

Edel O'Connor

Prof. Alan F. Smeaton, Prof. Noel E. O'Connor & Prof. Dermot Diamond

This Beaufort Marine Research Award is carried out under the Sea Change Strategy and the Strategy for Science Technology and Innovation (2006-2013), with the support of the Marine Institute, funded under the Marine Research Sub-Programme of the National Development Plan 2007–2013.

Presentation Outline

- Water management and issues with in-situ WSNs.
- Multi-modal sensor networks
- **Data Aggregation**
- **Pilot studies**
 - River Lee water depth study
 - Water level prediction for adaptive sampling _
- Trust and reputation framework

Water Management

- Water management is an important part of the monitoring of the natural environment.
- For many years water managers relied on field measurements for coastal monitoring and water quality evaluation.
- However this process is being revolutionised through the introduction of new technologies such as sensor networks

Issues

- Current state of the art in **chemo/biosensor networks** not at a stage for reliable long-term large scale deployment.
- Even without the complexity of chemo-bio sensing, still considerable issues
 - Sensors subject to harsh conditions
 - Bio-fouling

Narine Institute

- Limited spatial resolution
- Difficult to monitor large areas over long periods of time
- Unsuitable for certain environments and the immediate detection of certain events
- Developments in sensor research pushing towards ever cheaper systems
- Huge information overload user requires reliable event detection.

www.ferrybox.eu/imperia/md /images/ferryboxuse

Multi-modal sensor networks

The incorporation of alternative sensing modalities such as visual sensors, alongside an in-situ WSN can help to overcome some of these problems.

Test Sites

Requirements	River Lee	Galway Bay	River Tolka
Network	X	Х	
Power	X	Х	
Security	X	Х	
Multiple sensing modalities	X	Х	
Interesting from marine perspective	X	Х	X

Data Aggregation – Camera data

Data Aggregation – Satellite data

Deploy: River Lee

Rainfall Radar processing

SmartBay: Galway Bay

Image: Marine Institute

ERDF Buty
Tide Gauge
OSitriverin Bay Buoy
Ocean Energy Test 5

River Lee Water Depth Study

	C ₁	C ₂	C ₃
Class Distance Error	0.642	0.537	0.302
Classific ation Rate	0.467	0.732	0.750

Marine Institute Foras na Mara

Reputation and Trust-based multi-modal sensor network

- Development of a reputation and trust-based multi-modal sensor network
- Adaptation of a model developed for in situ sensor networks known as RFSN (RFSN Ganeriwal & Srivistava 2008).
- Adaption of this model to multi-modal sensor networks

WATCHDOG

[j,k,l,m]

Series of outlier detection protocols, outputs cooperation metrics for each of the nodes.

Cooperation metrics

REPUTATION

Updates reputation for each of the nodes [I, j, k,l] i.e. R_{ij}, R_{ik}, R_{il}, R_{im}

trust

External evidence

WATCHDOG

[j,k,l,m]

Series of outlier detection protocols, outputs cooperation metrics for each of the nodes.

Cooperation metrics

REPUTATION

Updates reputation for each of the nodes [I, j, k,l] i.e. R_{ij}, R_{ik}, R_{il}, R_{im}

trust

Acknowledgements

- Beaufort Research Awards in Marine Sensing
- Marine Institute
- CLARITY Centre for Sensor Web Technologies, Science Foundation Ireland under grant 07/CE/I1147
- HRDDS (GHRSST Project) and David Poulter at the National Oceanography Centre, Southampton, UK

