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Abstract 

Personal information archives are emerging as a new challenge for information retrieval (IR) techniques . 
The user’s memory plays a greater role in retrieval  from person archives than from other more 
traditional types of information collection (e.g. t he Web), due to the large overlap of its content an d 
individual human memory of the captured material. T his paper presents a new analysis on IR of 
personal archives from a cognitive perspective. Som e existing work on personal information 
management (PIM) has begun to employ human memory f eatures into their IR systems. In our work we 
seek to go further, we assume that for IR in PIM sys tem terms can be weighted not only by traditional I R 
methods, but also taking the user’s recall reliabil ity into account. We aim to develop algorithms that
combine factors from both the system side and the u ser side to achieve more effective searching. In 
this paper, we discuss possible applications of hum an memory theories for this algorithm, and present 
results from a pilot study and a proposed model of data structure for the HDMs achieves. 
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1. INSTRUCTION 

Development of hardware recording devices together with associated recording software, and reductions in the 
cost of in digital storage is now allowing vast digital archives of personal life experiences to be captured. These 
personal archives, which we call Human Digital Memories (HDMs), can contain various types of data created or 
accessed by the individual. While most of present ‘life logging’ projects are still confined to recording users’ 
activities in the ‘digital world’, mainly concerning user’s interactions with electronic files (e.g. documents, emails, 
images, videos, etc.) that they have accessed on their computers [e.g. 2, 3], another strand of work, which is aimed 
at recording the real life, is beginning to develop. Research in this area usually involves wearing audio or video 
capturing devices to track the user’s behaviour in a laboratory environment [e.g., 4, 6]. Many potential benefits 
have been put forward for such systems. According to Sparck Jones [5], these archives can be used in following 
ways: storing the past information for a person as an ‘Deposit’; amplifying people’s memory of events as a ‘super 
me’, by providing linked relevant information; showing one’s past life (or certain aspect of it) to other people; 
sharing memory of certain information among different people. By far the most common proposition for real life 
logging is to provide support for people’s memory about their past by presenting them with data captured during 
their daily activities [e.g, 1, 6]. However, for any of the above applications, it is essential for an individual to be able 
to locate and retrieve the desired items from them. We aim to explore an efficient way of information retrieval (IR) 
for this new type of data collection. 

We structure this paper as follows: Section 2 introduces some related work on integrating context data in IR of life 
logs, and basic notions of human memory with an associated memory model, which deals with how information is 
encoded and retrieved with contextual cues. Based on his model, we explain how memory works when people 
perform information re-finding tasks. Section 3 presents results from our pilot study on memory of photos; Section 
4 gives a brief description of our present data collection work and presents our proposed model of linking and 
weighting the collected data in retrieval.  

2. BACKGROUND 

Present life logging data usually involves multimedia data such as audio, video or static images. Due to the huge 
amount of data, it would be a time consuming and tedious to look for a certain frame of scene from one year’s 
video recordings, merely by browsing. For the same reason, it is almost impossible for the users to annotate these 
data sources manually. Lack of textual content in these types of data makes them difficult to retrieve by traditional 
content-based text IR methods. Current IR techniques for audio and images collections are based on content 
analysis of low level features. The lower quality of HDM data may significantly reduce the accuracy of automatic 
semantic annotation with content-based methods. Indexing these types of information with their embedded 
timestamps may be a solution. Yet,  just like other textual types of data, traditional query based searching in IR 
systems relies too much on the user‘s ability to recall accurate details about the searching target, such as the key 
words, titles, and the exact time.  
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2.1 RELATED WORK 

Existing studies have been trying to cope with the problem of indexing features by allowing manual annotation and 
then searching files with well remembered types of features such as episodic context information [12]. Hori et. 
al.[17] have tried to log people’s life with wearable camcorders. They used simultaneously captured context 
information to help index and retrieval. Apart form the microphone and camera embedded in the camcorder, they 
also had a GPS device to provide address keys, latitudes and longitudes; Biometric devices such as acceleration 
sensor, and a gyro sensor and a brain wave analyzer were employed in their system to capture the wearer’s 
motion and mental status information. Face detection technology was also used to indicate the people shown in 
the captured video. With this context information embedded in the life log video,  their system allowed the user to 
locate and retrieve required episodes of video with information about their corresponding experiences, such as 
their emotion, location, action, weather and other people shown up.    

Other example systems include Mylifebits[7] and MediAssist[14]. In Mylifebits, contextual information such as 
location, people, and date are used, they do not only assist retrieval, but also link events by these data [7]. 
MediAssist uses extended types of both content and contextual information in a photo retrieval system, and allows 
more flexibility, for example, instead of limiting the date time to accurate numbers, which the user may not 
necessarily knew even at the time of the occurrence of the event, it enable them to roughly decide the range or 
period, which is more likely to be perceived and therefore remembered from the time of capture [14]. 

Significantly personal archives are different from other more traditional information collections in that they comprise 
information that is or used to be in the owner’s memory. Therefore, they possess more potential for interaction with 
the features recalled from the owner’s memory. We assume that if well remembered information can satisfy 
searching needs, it may to some extent relieve the burden of human memory at the time of re-finding, and make 
the IR (based on the information that can be recalled) more reliable. Combined with the presentation of related 
clusters and iterative rounds of searching outlined above, we believe that this can form the basis for improved 
search techniques suitable for the HDM domain. As very little computer-human interaction literature explores the 
link between life-logging technologies and human memory, we aim to put more effort in this aspect by exploring the 
possible application of human memory from cognitive theories or models into technologies for IR from HDMs. To 
have a better idea of how to utilize human memory for more efficient and less effortful searching, we first look into 
the information processing of human memory. 

2.2 Human Memory Information Process: Basic Concept s 

2.2.1 Encoding and working memory 
Encoding can be defined as a set of operations that people use to code incoming stimuli. These processes modify 
and organize the arriving data by associating it with information in their current memory. Encoding involves sensory 
memory, working memory, as well as long term memory. Sensory memory, which is also called sensory 
registration, stores massive amount of raw data from physical stimuli features very briefly (<1 second) before 
processing them. This kind of memory decays very quickly and is replaced immediately when new sensory 
information is registered. Working memory holds limited information (typically limited to 7±2 items) for a longer time 
(usually no more than a few minutes) while processing them [1].  

FIGURE 1: Chunking Structure 

Due to the limited capacity and durance of this short term storage, some memory strategies are either intentionally 
or unconsciously employed to make maximum use of each processing stage. These strategies are particularly 
important for explicit intentional learning. Chucking is one strategy most frequently observed in learning 
experiments. It breaks big information sets into small pieces randomly, but usually base on sequential proximity [3]. 
Strategic chunking applied in learning enables short term storage holding 7±2 chunks of items, which can be 
expanded to smaller units [1]. For example, if you were asked to remember a list of random digits, 
987398798379831708200812345, it would be very difficult to hold them all in mind to repeat. However, if they were 
broken into pieces, for instance, 9873987983 happens to be a phone number you remembers well, 17082008 can 
be considered as a date17-08-2008, then user can chunk them into 9873987983- 17-08-2008-12345; The chunked 
sequence is then much easier to hold in short term memory.  The strategy behind this chunking might be to extract 
the lower level elements from long term memory where the chain of these lower level elements resides. The lower 
level items are of strong association, thus requiring less cognitive or attentional resources to retrieve them one by 

The 2nd BCS-IRSG Symposium on Future Directions in Information Access

15



3

one. This process schema may be able to inspire some algorithms in IR, which for instance, only processes the 
higher level nodes (chunks).  

2.2.2 Storage and retention 
Storage refers to the process of placing the coded information into memory system for long term storage, similar to 
saving a file on the hard drive. Representation is the format in which the information is stored in memory, e.g. 
spatial, auditory, and semantic [1]. One of the most important issues in memory storage is the retention of memory, 
which means how well the information is stored. Among many studies investigating this issue, the basic two most 
widely consented factors determining retention are: time lapse since encoding and frequency of repetition. It also 
depends on the initial strength determined by the encoding quality at learning [18]. Information processing theories 
have suggested that human memory exists in an associated network where the nodes of memory are bi-
directionally linked; the stronger the link means the easier to evoke the associated information [19].  During each 
repetition, the item is re-encoded, thus the memory of one item may be bonded (linked) to various contexts. While 
the links between the item and most of the context information fade overtime, some association may be reinforced 
due to repetition. Also, as some information (context) is more readily associated with the item (target at the 
retrieving task), possibly due to their pre-existed relationship, the link between this context information and the item 
is likely to encoded with greater strength and retained for longer. For this reason, we can expect an uneven 
distribution and dynamic change of memory about the items and their related context.  

2.2.3 Retrieval and forgetting 
Retrieval is the process of recollecting information from long-term storage, and presenting the output [18], which 
can either be detailed information of the retrieving target or a judgement of whether the target exists in one’s 
memory. These two types of outputs are referred to as remembered and known. The remember/know paradigm is 
widely used in studying the human memory, corresponding to recall and recognition tasks respectively. 

According to psychology literature, forgetting (of the past) is usually caused by the inability to retrieve the item from 
memory rather than the lost or damage of storage. That is, the inability of tracing back to where that piece of 
memory is stored [1]. It explains why cued recall tests (prompted with related information) usually results in better 
recall performance than free recall tests (with no provided cues nor subject to any specific order). Thus, we 
assume that a user can have better recollection of required information for searching (queries), if they are 
presented with relevant information as cues. As for free recall, most of the ideas that pop out are in fact either cued 
by the previous recalled piece of memory (thoughts) or triggered by external environment, which possesses certain 
elements that are associated with the piece of information in long term memory.  Clustering is usually observed in 
free recall tasks.  It can be considered as a more advanced version of chunking in retrieving, as it groups 
information according to some higher-level criterion, such as cross-modality similarity [16]. Forgetting has also 
been argued as an mechanism of filtering out unwanted memory, that means it is possible that people forget things 
because they do not think they want to remember them (i.e. unimportant, or cause too much pain remembering 
that) [1]. Yet, it is also possible they might want to use this previously unwanted information, but are unable to 
retrieve it due to forgetting. In this case, an HDM can potentially shows its advantage as a ‘repository’. However, it 
also faces the same problem as forgetting in human memory of being unable to locate the information.  

2.2.4 Context Factors that Influence Memory Retrieval 
Retrieval and the popping out of associated (or clustered) ideas are triggered by the interaction of external 
information and internal context [20]. Context is a vague concept. In the physical world, it usually refers to the 
external physical environment, including temporally and specially surrounding information, which is assumed to be 
encoded together, associating with each other, and acting as cues at retrieval.  These types of related information 
present at the time of encoding or retrieval, are called external context, while the internal context is the activated 
information in human memory. When new information comes in, it broadcasts to the stored memory and the pre-
existing nodes which are active enough (above the ‘to be perceived’ threshold), these nodes react to the broadcast 
if they can be associated with the incoming information according the clustering rules. The threshold is determined 
by the effort or energy at the time of broadcasting. Those high priority links with best matched nodes pop out and 
construct the internal context which interacts with the input and leads to the searching target. It resides in short 
term storage waiting to associate or to reinforce association with the input information [21].  

2.3 Human Memory in Information Re-finding Tasks 

When an individual is motivated to re-find some information from their previously accessed information (e.g. files 
on their desktop), the first recalled pieces of information of the item will trigger clusters of memory which they 
belong to. These clusters of information form the internal context which contains both the information of the 
external context in the events when encoding the item, and those associated with the item based on (cross 
modality) similarity. There two general types of memory cluster, either episodic memory of the related information 
of the events during which the item was encoded, or semantic memory where the item conceptually resides in (e.g. 
information of the same the category). With the memory searching criteria provided by the system interface, the 
individual could decide which route or cluster to look into in order to retrieve the corresponding memory. For 
example, to search for (or re-find) previously accessed data, users need to look into their own memory to find 
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information which is needed to perform the searching task. For example, the Microsoft Windows desktop search 
(WDS) allows the user to search by file name, path, file size, etc. while searching for his or her previous accessed 
files, the user needs to recall the information that the above fields require, in order to be able to perform the 
search. The recalled information will then be transformed into the form of a query to perform the IR task in the 
search engine. The matched results will be returned to the user to judge and decide whether one of the items is the 
requested target. When these results are presented, they act as an external input, which will modify the user’s 
internal context. This change of context (usually new information is added) means that there is a possibility of 
recalling more related information, which does not belong to the clusters in the previous internal context. The newly 
recalled information may therefore lead to another round of searching. Admittedly, the user’s memory may make 
mistakes, going to the wrong route (and misleading queries) or get a false alarm in recognition of suggested 
information. In these cases, an automatic estimation of the memory retrieval reliability would be a great help. 

FIGURE 1: How human memory works during Information Re-finding

2.4 Related work on memory of personal data 
A previous study tested people’s memory about several types of content and context information of their own 
photos [12]. The participants were required to free recall 3 tasks followed with an implicit evaluation of the features 
of their interface, which offered several categories of context fields. Their study found that outdoor/indoor 
classification, location and people were all well recalled and proved to be useful cues for retrieval. Location and 
time derived context such as weather, daylight status and season were also proved to be useful. In particular, local 
time and daylight status seem to be stronger cues than the date/time of the photo, or even actual year if the photo 
was taken long ago. Finally, people also seem to remember photo colours, but its role as a retrieval cue was not 
tested. 

Further studies explored memory on extended types of data from a small HDM, with a concern of decay of memory 
over time [6][11].  Memory of context information (involved in this data collection) showed a generally consistent 
pattern with [12].  Comparing with the participant’s recall performances 6 month ago, we saw a varied degree of 
memory fade for different context information sources for the searching targets, e.g. semantic memory about 
textual information may decay faster than the episodic contextual information; also different behaviour of accessing 
the files influences and affects the memory recollection, e.g., self-generated data were generally better recalled 
than passively presented information. We also noticed that the keywords (content) which the participant selected to 
describe the documents 6 months ago were not necessarily the same as she recalled 6 months later. This finding 
is congruent with the memory model mentioned above, in that, as people’s knowledge changes, their internal 
memory context may became difference from the target time (6 month ago) this item was encoded, therefore, the 
first few key words that the file links to changed. Thus, for the files whose retrieval is mainly based on metadata 
(e.g keywords), the mismatch between recalled features and the annotation might lead to a decline in their 
reliability for use in retrieval.  

Traditional ways of automatically extracting keywords or summary content are based on statistics, e.g. term 
frequency (tf) and inverse document frequency (Idf). However, according to above findings, the most significant 
items as indicated by tf-idf weights may not necessarily be the ones that users are most likely to remember 
accurately for an item, although the frequent appearance of certain terms may to some extent improve the user’s 
memory about them. A possible application of this finding is to modify the tf-idf score with recency and frequency 
components. For example, we may assume that the more recently frequently encountered terms are more 
important, as they are more likely to be recalled and therefore used it as queries.  
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According to various reasons mentioned above, static weighting of the metadata may be insufficient to achieve the 
best possible IR effectiveness. Besides, personal differences, e.g. different life style (for example, some people 
have most of their activity at the same place, thus location may not be distinctive for retrieval, while some people 
are frequent travellers, the locations may be a more distinctive and strongly associated context information) may 
also benefit from a more dynamic way of weighting the information. We believe that dynamic annotation or 
weighting of the annotations (or metadata) according to likelihood of being recalled correctly may be a solution for 
this issue. One of our goals is to explore how to use the above memory model to estimate the memory of individual 
metadata based on the data we capture. To estimate the recall possibility, an algorithm is needed to calculate and 
update the memory status of the data owner. According to the associated memory model, the ease or likelihood of 
memory being evoked and retrieved depends on the strength of links (either direct or indirect) to the provided cues. 
One essential step is to establish these links. 

3. PILOT STUDY  

We conducted a further new pilot study on memory of photos from the participants’ own photo collection, to explore 
the types of association human memory uses. The reason for using photos is that they have embedded contextual 
information in themselves, which means no specific data collection for the experiment is needed. The study 
described in [12] has already provided very useful and detailed data on well remembered features for photo 
collections such as location, indoor/out door, people, and weather. In this study, we want to further explore the 
reasons and factors that influence memory and retrieval of photos. 

3.1 Methods  
Subjects: Three graduate students (all around 25 years old) participated in this study, two of them were interested 
in travelling and photographing, and the other one had some knowledge of multimedia IR.  

Material: An electronic questionnaire was used to test their recall performance. It included one field for content, one 
for the photo’s location (e.g. folder name and path on their computer), and other fields for contextual information, 
including ‘your location’, ‘year’, ‘season’, ‘month’, ‘day’ ‘date’, ‘period of day’, ‘weather’, ‘people around’. This 
questionnaire also allowed the user to hide the content that they want to keep as private. Different from [6][11], the 
participant did not intend to collect data for re-finding task, which means that it was collected in a more natural 
setting.  

Procedures: Instructions were given for each field before they started. They were asked to free recall any 20 of 
their photos from any period of their lifetime, and to input the photo’s content and context into corresponding fields 
in the questionnaire, as soon as the photo popped into their mind. The participants were also asked to choose 
whether they took the photos themselves, which was assumed to indicate self-involvement, as according to our 
previous study, self-generated files were generally better remembered than passively present files.  

A post-test face-to-face interview was also conducted to investigate why and how they recalled these particular 
photos, and if there are certain associations of neighbouring photos. This step aimed to explore why some photos 
are better remembered, and how the external context at the time of retrieval (e.g. previous photo) triggers memory 
activities. For example, one may recall a photo which is not so meaningful, but may be somehow related to the 
previously recalled one. Finally, the participants were asked to re-find these photos and check their recall results. 

3.2 Results and Discussion 
The results are generally consistent with the findings in [12]. Experience related information such as the 
participants geographical location (98%), weather (or light status) (90%), the season (89%) and period of day 
(65%) were well recalled, while the exact day/date (12%) is seldom remembered unless the number is particularly 
bounded to the event, e.g. one participant only went to a certain place and met certain people on Fridays, thus if he 
remembered the photo was taken on those occasions, ‘Friday’ can be deduced. ‘Months’ are well remembered by 
two participants for the photos taken during their travels (82%), but not by the participant who did not have much 
travel experience (32%). ‘Years’ are usually well remembered (96%). unless the event was remote, e.g. more than 
5 years. ‘People around’ are also well recalled, though it cannot be checked only from the photos. ‘Locations’ 
(path) of the photos also had sound recall, possibly because that the participants organize their collections very 
well. Yet due to the considerable number of photos in each folder, the participants reported a searching tool might 
be of great help. However, the self-generating effect (photo taken by the participants themselves) did not show the 
same advantage as it was in our previous pilot study.  The result may have some ceiling effect due to that the first 
recalled photos might happen to be what the participants remembered well. This result suggests that in our future 
studies certain criteria of searching which increase the difficulty of recalling should be employed.  

The reported reasons for recalling photos generally fell into five categories (or combinations of these categories): 
interesting (46%), novelty or impressive (31%), frequently seen (18%), recently viewed (15%), and ‘no particular 
reason, but it popped into my mind’ (6%). The last category suggested a possibility that previous ones triggered the 
recall of these photos. This kind of trigger was also found possible in other neighbouring photos. This finding gives 
an example of the memory clustering mechanism at retrieval. The association found in this study included: things 
in the same event (e.g. in the same trip), similar occasions (e.g. gathering together with certain group of people, or 
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during festival celebrations), same location or similar type of location (e.g. train stations, parks, indoor). This 
implies a potential need to link files based on such kinds of information, and sheds light on interface design for 
presentation of results, e.g. to group the results by user preferred clustering approaches. Further study will be 
needed to explore other possible association or clustering approaches employed by human memory at retrieval 
time, with more data types. 

When the participants looked back into their photo collections, there were a considerable number of photos that 
they could not recognize, and thus have no recollection of any information referring to these specific photos. This 
means these photos will not be searched. However, such photos might match some of the primary searching 
purpose, though they did not have these specific items in mind while performing the searching (re-finding) task. It 
would also be helpful to present these photos to them when what they actually want is a cluster of results, not 
specific files. Alternatively, the user may not wish to see the photos as all, and it would be interesting to explore 
means of suppressing the retrieval of items that are unlikely to be of interest to them at that moment. Again, the 
linking of files based on certain criteria, which the human memory uses to cluster information at retrieval, is 
desired. 

4. CURRENT AND FUTURE WORK 

4.1 Data Collection 
In order to do further research on extended types of data over a much longer period, we have started a long term 
data collection exercise. This will be gathered from across one-year period with four participants. We are collecting 
computer activity, and other related data from their daily life, for example: 

• Computer activities are logged by desktop software, Microsoft Digital Memories1 (DM) and S’life, every 
time an application comes to the foreground. The full textual content of the documents, WebPages, and 
other applications, as well as the file name and path, etc. are be recorded. 

• SenseCam image: The SenseCam [8] is a wearable camera, which passively takes photos with its fisheye 
lens, and store in 640x480 JPG format. It can be triggered by scheduled time (e.g. every 20s) or change of 
environment such as a detection of people, change of luminance. It takes about 3000 photo per day from
one person’s daily life. 

• Bluetooth is used to detect the surrounding Bluetooth devices, which can indicate the corresponding 
people (e.g. who have the Bluetooth on in their mobile photos) and objects (e.g. computers with Bluetooth 
on) [3]. Content based technologies such as face detection may also be a supplement, but not the main 
approach to detect people, due to the low quality of SenseCam images. It is also because that the wearer 
may not necessarily know the content of the SenseCam images, e.g. who were in the photos, since they 
may not want to review the images captured everyday. Also, as they may remember their experience 
context, such as who was present in an event, people who were nearby may not be captured in their 
SenseCam images, but may be a useful retrieval cue.   

• Geographical location: we use GPS function on Nokia N95 mobile phones to record the individual’s 
location [3]. 

• Biometric devices:  wearable biometric devices such as heart monitors and BodyMedia SenseWear 
armband are used record the participants’ physical conditions, which can to some extent, indicate the 
wearer’s motion, emotional status and arousal level [10]. 

• Similar to many other life logging projects, one major concern of our data collection is the privacy[4], not 
only of the participants whose life is ‘recorded ‘, but also of the third party individuals who may be
somehow involved in the recording. For example, people shown up in the photos taken by Sensecam, 
emails or messages sent to the participant involving the individual’s private information, etc. Consent forms 
were signed by the participants, and they are allowed to delete the data they are unwilling to show the 
developers. 

4.2 HDMs Model: Structuring Raw Data 
We aim to develop a memory model for data in the HDMs which can estimate the strength of memory features. In 
this model, we define following objects: 

• Item: an attribute or related context information of the file, e.g. the title, the location.  
• Link: There are difference types of links, as they are created according the rules of clustering memory. 

At this stage, we assume all the links to be bi-directional.   

4.2.1 Weighting of Links 

                                                          
1 http://research.microsoft.com/erp/memex/presentations/MSR Digital Memories 2006 Jim Gemmell Software.ppt 
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This model aims to link items and estimate the corresponding memory retrieval strength, which means how likely 
an item on one end of the link can be retrieved when cued by that on the other end. Thus, instead of weighting 
individual items, we weight the links. Therefore, for example, the stronger the link between one attribute and a file 
(a combination of several links of its metadata), the higher score this attribute will get for this file. Based on the 
theories of memory and learning [18], we propose three main factors: time lapse, which means the more recent 
encoded information, is more likely to be recalled [1]; frequency of repetition, that is the more often one comes 
across such information, the more likely it is remembered [18], it can also be applied to the term frequency in a 
document; encoding quality, which refers to how well the information is encoded which depends on several factors, 
such as arousal level, easiness of association, and distinctiveness [18]. For example, it is usually easier to 
remember things when you are fully awake than when you are very sleepy. And it is easier to remember the 
content of the paper if it is about your daily life, than if it is about advanced mathematics, assuming that you are not 
majoring in maths. The factor of distinctiveness at encoding comes from the notion of inhibition. That is, when you 
have seen something for several times, you are less likely to allocate attention to it, which means this information 
will be less well encoded. It is similar to the inverse document frequency in traditional IR. 

4.2.2 Processing of Data 
The full details of files and digital images, as well as the corresponding contextual data (location, emotional status, 
etc.) at the time of accessing or creating them will be recorded automatically. When the files and the above data 
are uploaded to the server, we also ‘encode’ them into a structured database. For example, all the context 
information as well other metadata such as keywords will be linked to the files, and they may link to each other 
based on memory clustering rules, which are yet to be explored. 

TABLE1:  table ‘item’ (Exmaple database table) 
itemID Itemtype path Content 

00240000 ‘location’  ‘My kitchen’ 
00240001 ‘people’ ‘Alice’ 
00240002 ‘content’ C:\sensecam\img172.jpg ‘Spaghetti ’ 

…. …. …. …. 
00250006 ‘location’  [Lat: 52.480747 ing: 1.891784]
00250007 ‘people’ ‘Alice’ 
00250008 ‘file’ C:\sensecam\img234.jpg 

TABLE2:   table link’ (Example database table) 
linkID End1ID End2ID LinkType lastTIMEaccess Weight

00003400 00240001 00240000 ‘Episodic’(attributes belong to the 
same event) 

12/06/2007 11:20 12 

… … … … … … 
00007421 00250008 00250007 ‘fileAttribute’ 20/03/2008 15:21 22 
00007422 00250008 00240001 Filebyattribute 20/03/2008 15:21 5 

* Note: above table are only samples, the content of the fields, especially for Linktype and itemtype, is yet to be 
decided. 

The weight of links, after getting an initial value at first time encoding, can be updated every time when any link in 
the network is changed. For example, when item ‘A’ (new item) is linked to ‘B’ (pre-existed nodes), other links with 
B will be weakened. Also, memory decay due to time lapse should be updated as often as possible. In this model, 
an update will be triggered by every encoding, time schedule, or manually. 

4.2 Problems of Realizing the Model 
Although the raw data will also be stored in the form of independent files and full-text indexing in Digital Memory 
and S’life, the atomic unit of information in this model will not be files, but the pieces of information, e.g. keywords, 
phrases, attributes or other metadata of the files. We will try to explore the digital elements of content that 
correspond to output of memory representation or recall. While there are many theories in memory studies of 
clustering information in retrieval, we still need to explore suitable approaches of associating information in HDMs.  

4.3 Other Possible Applications (Interface) 
According to the context congruent retrieval point of view [1], the better match between the context at the time of 
encoding and the time of retrieval, the more likely the item can be retrieved; also, the same modality of cues may 
have a better chance of triggering each other. Although we cannot always change the searching interface 
according to the target before searching, the way of presenting results can be varied. For example, the result can 
be presented as representative cluster nodes in a way that people cluster information in memory retrieval. Besides, 
suggestive interface presentation of related information which may trigger recall of potential queries may also be a 
solution. For example, information associated with the query within the same events or categories. With this model, 
which structures data by estimating the owner’s memory status, we believe many other interesting applications 
may also be developed. 
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