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Abstract has several advantages. One obvious advantage is
that automatic methods of rule induction are much
quicker than manual rule development. This means
that a much larger quantity of transfer rules can now

be produced.

We present a method of encoding transfer
rules in a highly efficient packed structure us-
ing contextualized constraints (Maxwell and
Kaplan, 1991), an existing method of encod-

ing adopted from LFG parsing (Kaplan and
Bresnan, 1982; Bresnan, 2001; Dalrymple,
2001). The packed representation allows us to
encode)(2™) transfer rules in a single packed

Riezler and Maxwell (2006) use feature structures
of the Lexical Functional Grammar (LFG) formal-
ism (Kaplan and Bresnan, 1982; Bresnan, 2001;
Dalrymple, 2001) for deep transfer. They impose a

representation only requirin@(n) storage
space. Besides reducing space requirements,
the representation also has a high impact on
the amount of time taken to load large num-
bers of transfer rules to memory with very
little trade-off in time needed to unpack the
rules. We include an experimental evaluation
which shows a considerable reduction in space
and time requirements for a large set of auto-
matically induced transfer rules by storing the
rules in the packed representation.

limit of a maximum of threeprimitive rules to con-
struct acomplexrule . We believe removing arbi-
trary limits on the number of transfer rules induced
could result in improved translations, and therefore
we wish to induce as many different size rules as
possible from a pair of parsed training sententes
Short rules® are needed for high coverage of un-
seen sentences, but where possible larger fudes
preferred so as to increase the likelihood of a flu-
ent target language sentence (all other things being
equal).

Another issue for transfer rule induction is the

Probabilistic Transfer-Based Machine Translation i@mount of linguistic information that should be kept
one of several current approaches to machine trari§-the transfer rules. We would like to investigate the
lation that combine data-driven statistical method§ffects of keeping all or most of the linguistic infor-
with the use of linguistic information (Quirk et al., mation in the rules. If we both increase the number
2005; Koehn and Hoang' 2007; D|ng and Pa|me9f induced rules and increase the amount of infor-
2005; Charniak et al., 2003; Lavie, 2008; Riezle Riezler and Maxwell (2006) construgrimitive transfer
and Me_1>_<wel|, 2006; Bojar and Hajic, 2008). rules using SMT phrases and then construct larger rulesry co
Traditionally, transfer rules were manually de-ining contiguous primitive rules.
veloped. Recently, methods of automatically in- *The notion of different size rules we refer to is related to
ducing transfer rules from bilingual corpora havé“ﬁglrfr}t 'e:‘hgt:‘ phrases in P”hrasf'??sed SMT. | t
s I 3 . ules that cover a small part o € source language struc-
em_t_avrged (Hajl_c et al., 2002; Eisner, 2003; BOja_.l’_ anﬁijrel
Hajic, 2008; Riezler and Maxwell, 2006). Acquiring

_ n “Rules that cover a large part of the target language struc-
transfer rules automatically from bilingual corporature.

1 Introduction



) ) . . . bi . In, X0 supj( reflect, X0)
mation contained in the rules, storing the rules in Subit spiegeln. X0) obj( reflect, X1)

the conventional way of enumerating each rule sep- clause-type( spiegeln, dec) clause-type( reflect, decl)

passive( spiegeln, -) passive( reflect, -)

arately will require large amounts of storage space prt-form( spiegeln, wider) " ctypel reflect, main)

stmt-type( spiegeln, decl) tense( reflect, pres)
and time to load the rules to memory. We address y-ype( spiesein, main) Nty indie)
these problems by providing a packed data structure prog( reflect, -)
that efficiently stores large numbers of linguistically
rich transfer rules, greatly reducing both the requireffigure 3: Example Constraint-based Encoding for Trans-

storage space and load time. fer Rule of Figure 2(a)

The paper is structured as follows. In Section 2
we describe dependency-based transfer rules, Sege rules the atomic features are needed to correctly
tion 3 describes in detail our packed transfer rulghflect the words in the target language sentence dur-
representation, Section 4 describes an algorithm f@fig generation.
unpacking the transfer rules. Finally, in Section 5 There are many ways to visualize an f-structure.
we report an experimental evaluation in which wen Figyre 1(a) the f-structure is shown in the conven-
extract a large number of transfer rules automatyjona| LFG format®. Figure 1(b) shows a simplified
cally from a bilingual corpus and compare the spacgraph-based visualization we use for most of the ex-
and time requirements of the packed representati%pnmes in this paper. Each local f-structure is rep-
to that of storing each rule separately. Section 6 dgagented by a node in the dependency structure la-

scribes our conclusions and future work. belled by its predicate value, with branches labelled
with the grammatical dependencies between local f-
2 Dependency-Based Transfer-Rules structures.

Riezler and Maxwell (2006) automatically induce

In our research we use LFG f-structures as the irE— . .
. . ransfer rules composed of a snippet of the original
termediate representation for transfer. F-structures

. . S ?ource language f-structure on the LHS and a snip-
are attribute-value structure encodings of bilexica

. . et of the target language f-structure on the RHS.
labelled dependencies. In order to automatically.. .
. igure 2 shows a subset of the rules that can be in-
induce transfer rules from a source and target 5

. ) yced from the f-structure pair shown in Figure 1. In
structure pair, correspondences between pairs 0 .
a transfer rule, corresponding leaf-level arguments

source and _target local f-structures are drawn US= 1 e replaced by a variabl&;, on either side
ing the predicate (PRED) of the local f-structures, . .
of the rule to map equivalent arguments in the LHS

Figure 1(a) shows an example f-structure pair W'tggucture to the appropriate place in the RHS struc-
correspondences between local f-structures dep'CtFure For example, the rule in Figure 2(a) maps the
by lines Iinking the prgdicates. F-structures enCOds?ubj.ect ofspiegelnéo the subject ofeflectand the
the grammatlcal_ reIatpns betW(_een the words of 8bject ofspiegelnto the object ofeflect F-structure
sentence and this motivates their use as a rePreSelsed transfer rules are each stored as two sets of
tation for transfer-based machine translation. Se%'onstraints encoding the LHS and RHS of the rule

tences often contain long distance dependencies br(?a'spectively. For every dependency relation that ex-

tween words. One advantage of using f—structurelgts between two words in the sentence, a constraint

for transfer-based machine translation is that tw@. 010 thic relation. Figure 3 shows the trans-

. : Wj
_non—ad_Jacent dependent words in a sentence are ?Slf rule in Figure 2(a) represented in terms of con-
jacent in the f-structure representation. In addition

) ) straints’.

to these grammatical dependencies, the f-structure

also contains information about the atomic gram- Swithout atomic features and values.

matical features of words, such aase number Atomic features and reentrancy are left out of the simpli-
personandtense On the LHS of a transfer rule fied representation. Figure 1(a) shows an example of rewytra

the atomic features are useful to guide translation bf;?e.rma” local f-structure 1, value of TOPIC). The transiies
e induce do contain the atomic grammatical feature and reen

choosing a rule that appropriatefigs the f-structure  rancy information.
of the source language sentence, and on the RHS of “with atomic features and values.



a. F-structure Pair:

“Sprachen spiegeln die Veilfalt der Européischen Union wider.”

PRED 'spiegeln<SUBJ,0BJ>'
SUBJ2[PRED  ‘Sprache’
[PRED Vielfalt
PRED 'Union’
)| OoBJ 3, 4:| ADJUNCT s[
ADJ-GEN

SPEC 7: DET9:[ PRED ‘die|

“Languages reflect the diversity of the European Union.”

PRED 'reflect<SUBJ,0BJ>'
—
| SUBJZ [PRED 'language]
I A—
PRED diversity
[
| PRED
1| OBJ 5
—

SPEC
DET 8 PRED 'die'

SPEC s EF.T 7:[PRED

TOPIC 2

|__PRT-FORM wider

'of <SUBJ>'

PRED  'Eurgpean Union'

SPEC s: %ET o PRED

‘the] ]

b. F-structure Dependency Representation:

spiegeln reflect
D
. langtiage S
Sprache Vielfalt diversity
die Union the  of
die  européisch ‘European Union'

the

c. F-structure Constraints:

pred( 1, 'spiegeln’)
subj( 1, 2)

obj( 1, 3)

topic( 1, 2)
prt-form( 1, wider)
pred( 2, 'Sprache’)
pred( 3, 'Vielfalt)
adj-gen( 3, 4)

spec( 3, 5)

pred( 4, 'Union")
adjunct_member( 4, 6)
spec( 4, 7)

pred( 6, 'europdisch’)
subj( 6, 4)

det( 7,9)

pred( 9, 'die")

det( 5, 8),

pred( 8, 'die")

pred( 1, 'reflect’)

subj( 1, 2)

obj(1,3)

pred( 2, 'language')
pred( 3, 'diversity)
adjunct_member( 3, 4)
spec( 3, 5)

pred( 4, of)

obj( 4, 6)

pred( 6, 'European Union')
spec( 6, 8)

det(8,9)

pred( 9, 'the")
det(5,7)

pred( 7, 'the")

Figure 1: Example (a) F-structure Pair, (b) Dependencyti®eisiin Simplified Representation, (c) Constraint Encod-
ing for the parsed Sentenc&yprachen spiegeln die Vielfalt der Eurafschen Union wider’and”Languages reflect
the diversity of the European Union.”
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shown in Figure 1.

Figure 2: Example Transfer Rules: A subset of the transfesrautomatically induced from training f-structure pair



For automatic rule induction, multiple transfer
rules are extracted from each f-structure pair in the

corpus. When several rules are extracted from & tpiccao,x1,x2)

single f-structure pair, the resulting set of rules of-

a.

pred( A0, X1, 'spiegeln)
subj( A0, X1, X2)
obj( A0, X1, X3)

pred( A1, X2, 'Sprache")
pred( A2, X3, 'Vielfalt")
adj-gen( A2, X3, X4)

ten contains a large amount of duplicated data. The spec(az,x3,x5)

only existing method of encoding transfer rules, to
the best of our knowledge, involves enumerating the
entire set of LHS and RHS constraints of each rule
separately (Figure 3). This method of encoding re-
sults in a large number of constraints being recorded

det( A2, X5, X8),

pred( A4, X4, 'Union")
adjunct_member( A4, X4, X6)
spec( A4, X4, X7)

det( A4, X7, X9)

pred( A6, X6, 'europdisch')
subj( A6, X6, X4)

pred( A5, X9, 'die")

pred( A3, X8, 'die')

pred( A0, X1, 'reflect’)

subj( A0, X1, X2)

obj( A0, X1, X3)

pred( Al, X2, 'language")
pred( A2, X3, 'diversity")
adjunct_member( A2, X3, X4)
spec( A2, X3, X5)

det( A2, X5, X7)

pred( A7, X4, of)

obj( A7, X4, X6)

pred( A4, X6, 'European Union'")
spec( A4, X6, X8)

det( A4, X8, X9)

pred( A5, X9, 'the")

pred( A3, X7, 'the")

repeatedly, once for each transfer rule they end up”™

in. Figure 2(h) shows the transfer rule that maps the
entire source language set of constraints to the en
tire target language set of constraints. Every other

b

A1: Sprache

AO0: spiegeln
-
A2: Vielfalt
A3: die A4: Union

AO: reflect
Al: language A2: diversity

A3:the A7:of

A4: 'European Union'

rule induced from the f-structure pair will consist of
a subset of these constraints. Recording each sub
sequent rule separately involves duplicating the con;
straints already recorded in rule 2(h). Since the num

ber of transfer rules that can be induced from a given
f-structure pair is Of*), wheren is the number of Figure 4: (a)Packed Transfer Rule with Context Variables

local f-structures, storing the rules by enumeratind®) SimPlified Representation of Transfer Rule
each rule separately is highly inefficient.

AS5: die A6: europdisch

AS5: the

use contextualized constraints to encode that each
constraint of the original f-structure pair may be in-
cluded or excluded from a transfer rule, depending

Our method of storing transfer rules involves packon the context. A packed rule contains a single in-
ing all the transfer rules induced from the same trairStance of each of the constraints of the original f-
ing f-structure pair into a single packed transfer rulgtructure pair with each constraint being assigned a
data structure. Our packing method can encodeontext variable. This enables the encoding af'Q)(
O(@2") transfer rules without duplicating any con-fules in a singleD(n) size packed structure. Figure
straints. The packed rule representation uses cofi@) shows an example packed rule structtignd
textualized constraints (Maxwell and Kaplan, 1991)fFigure 4(b) shows the same rule using the simpli-
a well-established method of encoding grammars ified visualisation. The entire set of source language
LFG parsing (Kaplan and Bresnan, 1982). Cont-structure constraints forms the LHS of the packed
straints are contextualized to improve the efficiencjule, and the whole set of constraints of the target
of processing disjunctive constraints of a gramm&{rstructure forms the RHS. Each constraint is given
and thus simplify the encoding of grammatical posa context variable A;, which is used to determine
sibilities, by allowing disjunctive statements as conWhether or not the constraint should be included or
straints. For example, the following constraint forexcluded from a particular transfer rule.

the German wordlie is taken from (Maxwell and
Kaplan, 1991):

case(die, nom)V case(die, acc)

3 Packed Representations for
Dependency-Based Transfer Rules

3.1 Assigning Context Variablesto the
F-structure Constraints

In this examole the value of the atomic featureThe constraints of each local f-structure on the LHS
Pie, of the packed rule is labelled with a context vari-

case of the worddie can ithemominativeor . o
& of the wo dd. €c be_ elthe €0 able (see variables A0-A6 on LHS of the rule in Fig-
accusativedepending on a given context.
We adopt this approach but adapt it for our own  satomic features and values have been left out of this dia-

purposes of translation as opposed to parsing, agehm to save space.



Variable Instatiations:
A0O=0 A3=1 A6
Al=0 A4=0 A7
A2=1 A5=0

=0
=1

0: spiegeln
1: Vielfalt
1: die 0: Union

0: europdisch

0: Sprache

0: die

0: language

0: reflect

1: diversity

1: the 1: of

0: European Union

@ed

dep( <parent>, <optional dependents>, <obligatory dependents>).

Figure 6: Parent-Dependent Relation Statement Format

3.2 Contextualizing the Context Variables

The variables are given a context in order to con-
strain the types of rules that can be induced. Al-
though it is possible to encode &) transfer rules

within the packed structure, many of these rules are

actually undesirable, and we therefore give a context
to the variables to eliminate such rules.
¢ Riezler and Maxwell (2006) define a contiguity

lfalt e constraint for transfer rules, that states that neither
e . | side of a rule may contain any gaps in the structure.

die X0 the of ) ) .
To enforce this constraint we encode the relations

between the context variables in a seriepaient-
dependent relation statements relation statement
consists of the context variable of a single local f-
Figure 5: Context Variable instantiations producing atructure, which we call thearent f-structure and
Transfer Rule: (a) the values each context variable of theyecifies two lists, each containing context variables
packed rule is instantiated to, (b) the instantiated pack@longing to thedependent-structures of the par-
rule structure (c) the transfer rule produced by the vari- o
able instantiations ent f-structure. Dependents of a parent are split into
two disjoint sets,optional dependents andbliga-
tory dependents. The inclusion in a transfer rule
of the constraints labelled by avbligatory depen-
ure 4). The constraints of the corresponding localentcontext variable is entailed by the inclusion of
f-structure on the RHS is given the context variabléhe constraints of itparentin the rule. The con-
of its LHS counterpart (see variables A0-A5 on thestraints of aroptional dependenbn the other hand,
RHS of the rule in Figure 4). The constraints of anynay either be included or omitted from a rule that
remaining unaligned local f-structures on the RH$ncludes its parent’s constraints. The distinction be-
are each assigned another distinct variable (see vafiveenobligatory and optional dependents is useful
able A7 in Figure 4). Extracting a particular transto permit a rule induction algorithm to constrain the
fer rule from the packed structure now simply in-rules so that the inclusion of a given local f-structure
volves assigning the valuteue to the constraints of in the rule entails the inclusion of one or more of
the extracted rule anthlse to the constraints that jts dependentéol Figure 6 shows the format of the
are not part of the rule. Figure 5(a) shows one of theslation statements and Figure 7 shows réation
possible combinations of boolean values for the setatementghat constrain the rules encoded in the
of context variables given to the constraints of thgacked structure of Figure 4.
packed rule shown in Figure 4. Figure 5(b) shows
the packed rule with context variables instantiated Unpacking the Rules
and Figure 5(c) shows the rule that results by takin
the constraints labelletlue for this particular com-
bination of boolean values

0: the

X0

anpacking a transfer rule involves instantiating the
context variables of the constraints that are part of
the rule to true and the rest of the context variables
in the packed structure to false. Unpacking all of

However, if such constraints are not required, then itis pos

°Notation: true=1 andfalse=0. sible to make all of the dependents in the rudesional



2002). The automatic rule induction algorithm used

Source Relations: Target Relations: - o ) .
a bilingual dictionary (Richter, 2007) and Giza++

dep( AO, [A1,A2], [1). dep( AO, [A1,A2], [1). . .
dep( AL, [],[]). dep( AL, [1,[]). word alignments (Och and Ney, 2000) to align lo-

. , [A7], . .
et As s et As s cal f-structures. A packed transfer representation for
dep( A4, [A6],[A5]). dep( A7, [A4], []). i _ i i
den( A5 [1.11). den( A4 1), [A5] ). each input f-structure pair was induced. All of thg
dep( A6, [1, [1). dep( A5, [1, [1). rules were then unpacked and counted. Our rule in-

duction algorithm induced 5,148,874 transfer rules
Figure 7: Node Relations for Packed Rules of Deperfrom the training data f-structure pairs. This resulted

dency Structures in Figure 3 in an average of 23.65 rules being induced from each
A gori thm aligned f-structure paitl. The total time taken for
Lnput: f-structure f and the rule extraction algorithm was approximately 3.5

rule root r hours running the algorithm on 8 parallel processors
O e Tor the s " (28 CPU hours).

variable of f In order to determine the effect of the packed rep-
A hen resentation we randomly selected 10 sets of 1000
Ve Ll sentences from the training data and examined the
elee IT pareni(f)==false then amount of space required to store the rules induced
e o0l gatory(f) then from these sentences in the packed representation
v Ctrue) and in the conventional way of storing rules, i.e.
e raise) enumerating each rule separately. Time and space
end if requirements were recorded for each of the 10 sets.

The results for each set of rules are shown in Ta-
Figure 8: Algorithm for Unpacking Transfer Rules fromple 1, as well as the average of these results and an
the Packed Rule Representation. All Rules Estimatei.e. an estimate of results for

rules extracted from the entire training corptfs

the rules from the structure involves assigning all € @verage number of rules induced from a set of
possible combinations of true and false values t&:000 training sentences was 23,955. The packed
the context variables with respect to the contiguityePresentation reduces the average disk space re-

constraint (Riezler and Maxwell, 2006) and relatiorfltiired to store rules extracted from 1,000 training
statements. The algorithm in Figure 8 is applied t§entences from 95.96M to 7.17M , and the estimated

each constraint variable recursively in a top-dowliSk Space required for rules induced from the entire
fashion starting with the context variable of the out{raining corpus is reduced from 20.4G to 1.52G. The
ermost f-structure. The set of solutions of the algo@Verage amount of time taken to load 23,955 rules to

rithm retrieves all unpacked rules from the packed€mory is reduced from 207.4 seconds to 18.1 sec-

representation. onds, and the reduction in load time for thkk Rules
Estimateis from 12 hours 32 minutes to 1 hour 6
5 Experimental Evaluation minutes. The average time to retrieve 23,955 rules

from memory as expected is slightly increased from
In order to evaluate the effects of using the packed.8 seconds for the enumerated representation to 2.6
rule representation on the space required to stogeconds for the packed representation, withAle
transfer rules, we ran an automatic transfer rule irRules Estimaténcreasing from 6 minutes 31 sec-
duction algorithm on sentences of the Europarl cobnds to 9 minutes 24 seconds. The average time to
pus. We restricted the test corpus to German-English
sentences within the length range of 5 to 15 words. *'We refer to the number of rule tokens as opposed to types
This resulted in 219,666 sentence pairs. We réere.

12 . . . .
served 2000 of these sentences as a development seft.ResourceS did not permit unpacking all of the induced
rules, therefore estimates were calculated. AHeRules Es-

Each side of the corpus was parsed with @ monolifimatewas calculated by multiplying the average result for a set
gual LFG grammar (Butt et al., 2002; Riezler et al.pf 1,000 sentence pairs by 217.666.



Disk Space Write Time Load Time Unpacking Time
Set No. Rules| Enum. | Packed| Enum. | Packed| Enum. | Packed| Enum.| Packed
1 24,121 96.37M | 7.2M 144s 128s 211s 17s 2s 3s
2 24,486 98.89M | 7.16M | 145s 127s 215s 19s 2s 3s
3 23,650 93.58M | 7.17M | 142s 133s 200s 18s 2s 2s
4 23,882 96.83M | 7.22M | 149s 118s 210s 18s 2s 2s
5 24,146 98.03M | 7.15M 148s 128s 212s 17s 2s 3s
6 23,355 91.75M 7.1M 140s 128s 198s 21s 2s 3s
7 23,620 94.55M | 7.21M 141s 142s 204s 18s 2s 2s
8 23,687 94.02M | 7.11M 137s 124s 201s 17s 1s 3s
9 23,534 94.95M | 7.12M | 142s 120s 204s 17s 1s 3s
10 25,069 | 100.66M| 7.26M | 152s 231s 219s 19s 2s 2s
Average | 23,955 95.96M | 7.17M | 144s | 137.9s| 207.4s | 18.1s 1.8s 2.6s
All
Rules | 5,214,189 20.4G 1.52G | 8h43m| 8h20m | 12h32m| 1hO6m | 6m31s| 9m24s
Estimate

Table 1: Space and Time Comparison of Enumerated Rules (BEna@rsus Packed Representation (Packed): Results
shown are for rules induced from 10 randomly selected set®@d training sentence pairs. An average result for a

set of 1000 sentence pairs is also included and an estim#tie space and time requirements for inducing rules from

the All Rules EstimatéM = megabytes, G = gigabytes, h = hours, m = minutes, s = sa&jond

record 23,955 rules to disk was decreased from 144(2") transfer rules in &(n) size data structure.
seconds to 137.9 seconds, and from 8 hours 43 mi@ur experimental evaluation shows an impressive
utes to 8 hours 20 minutes fédl Rules Estimate reduction in the amount of disk space required to
TheAll Rules Estimatdor the total number of rules store the transfer rules as well as a great reduction
is 5,214,189, which is close to the actual no. of inin the time needed to load a large number of rules to
duced rules mentioned above. memory.

Our experimental evaluation clearly shows using This method of packing transfer rules is currently
the packed representation of transfer rules has tvused at the stage of transfer rule induction. However,
major advantages. Both the required disk space ame believe the packing scheme could be used for
time needed to load the rules to memory are reducgmcking rules in the transfer chart. This could pro-
by more than a factor of 10. This is achieved withvide a means of reducing the memory needed for de-
very little trade-off in the time taken by the unpack-coding and allow a larger beam size for beam search
ing algorithm that retrieves the rules from memorygdecoding, which could result in improved translation
as the estimate increase in time taken to retriewguality. In addition, the method could be applied to
23,955 rules from memory is less than a second, amnstrain factoring of linguistic features contained
the All Rules Estimatshows an increase of less thanin transfer rules. We plan to carry out this research
three minutes to retrieve over five million rules fromin the future.

memory.
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