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Abstract

We present a numerical scheme for an efficient discretization of nonlinear systems of
differential equations subjected to highly oscillatory perturbations. This method is supe-
rior to standard ODE numerical solvers in the presence of high frequency forcing terms,
and is based on asymptotic expansions of the solution in inverse powers ofthe oscillatory
parameterω, featuring modulated Fourier series in the expansion coefficients. Analysis of
numerical stability and numerical examples are included.

1 Introduction

In this paper we are concerned with systems of ordinary differential equations (ODEs) of the
form

y′(t) = h(y(t)) + gω(t)f(y(t)), y(0) = y0, (1.1)

wherey(t) : C → C
d, f(y),h(y) : C

d → C
d are analytic functions, and the scalar term

gω(t) can be expressed as a modulated Fourier expansion (MFE), that is

gω(t) =
∞∑

m=−∞

am(t)eimωt (1.2)

– see (Cohen, Hairer & Lubich 2005, Hairer, Lubich & Wanner 2006, Sanz-Serna 2009) for
applications of MFE in the theory of numerical analysis of Hamiltonian and oscillatory ODEs.
Observe that we allow the coefficientsam(t) to depend ont. Therefore it is possible to think
of the functiongω(t) as periodic in the variableωt, but not necessarily int, which allows us
to consider a wide range of different perturbations.

Typical examples of highly oscillatory forcing terms in this context are

gω(t) = eiωt, gω(t) = eη cos ωt. (1.3)

The first example involves just a Fourier oscillator (and similarly one can considergω(t) =
sin ωt or gω(t) = cos ωt), whereas the second appears in the modelling of diode and transistor
circuits, see for instance (Dautbegovic, Condon & Brennan 2005). An essential difference
between these two examples is that the first one is band limited and the other is not, which has
an impact on the implementation of our method, as explained in Section 3.
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This general problem also has a very immediate application in the context of commu-
nications and optical systems, which are governed by nonlinear differential and algebraic-
differential equations (DAEs), see for example (Dautbegovic et al. 2005, Pedro & Carvalho
2002, Roychowdhury 2001). Also, oscillators are employed for frequency translation of in-
formation signals, channel selection or for synchronization. In this context, our problem
corresponds with the situation where a physical system is subject to a high frequency forcing
term (which could for instance be an electromagnetic wave ora mechanical excitation), and
one wishes to analyse the behaviour of the system on a time scale which is much larger than
the period of the forcing function.

It is also well known that this type of periodic forcing can beused to change intrinsic
features of the system, see for instance an application to injection-locking of circuits in (Bar-
tuccelli, Deane & Gentile 2009) or (O’Neill, Bourke, Ye & Kennedy 2005). This is of impor-
tance when the frequency of the external force is close to thenatural frequency of the system,
but investigation of oscillators subject to external perturbations which do not cause locking is
also of interest (Lai & Roychowdhury 2004), for understanding the operation and bandwidth
limitations of injection locked oscillators. The effect ofperturbations of differing frequencies
is also important for oscillator design and operation (Lai 2008). Furthermore, the effect of
power supply interference or high-frequency signal interference on oscillator performance is
an important phenomenon to be accounted for in design work (Lai, Zhu & Feng 2009).

The numerical challenge of this setting is underlied by the fact that in many communica-
tions systems it is common to employ high frequenciesω, which are in the MHz range and
higher, in such a way that physical devices of practical dimensions can be employed. Also, a
particular concern in the operation of electronic systems and oscillators is the effect of noise
and spurious high-frequency signals, see (Demir, Mehrotra& Roychowdhury 2000). Such
unwanted signals can result in undesired phenomena such as interchannel interference and
timing jitter, see (Demir 2000).

All these applications are a formidable computational challenge since, whenω ≫ 1, the
highly oscillatory nature of the solution imposes a very small stepsize on standard numerical
methods for ODEs. The reason for the poor performance of classical numerical methods
for solving ODEs in the presence of high oscillation lies at the very heart of the standard
numerical theory, which is essentially based on Taylor expansion of the solution. In any
numerical method of orderp with steph, the error scales roughly likehp+1y(p+1)(t). Since
the derivatives of highly oscillatory functions grow very fast, typicallyy(p+1)(t) = O(ωp+1),
we requireh to be extremely small in order to keep the error down to an acceptable size. This
usually renders standard numerical methods exceedingly expensive, see for instance (Condon,
Deãno & Iserles 2009a).

An alternative is given by perturbation theory, albeit not in a completely standard form.
The setting (1.1) belongs to the general framework of the so-called parametric perturbation or
parametric modulation of differential equations. In the mathematical literature this has been
a recurring topic in the field of perturbation theory, see forinstance the classical reference
(Bogoliubov & Mitropolsky 1961), (Verhulst 1990) or (Jordan & Smith 2007). However,
most standard methods, such as averaging, are developed forsystems where the perturbation
is multiplied by a small parameterε. In this context, the general idea is that the solution of
the unperturbed system plus corrections in powers ofε may yield a good approximation to the
solution of the perturbed problem.

In our case the perturbation is not necessarily small, but a somewhat related idea can be ap-
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plied. Intuitively, for large values ofω, the exceedingly fast oscillations ofgω(t) will produce
massive cancellation between positive and negative parts of the forcing termgω(t)f(y(t)),
and will therefore give a small contribution, roughly speaking. More rigorously, if we con-
sider the unperturbed system

z′(t) = h(z(t)), z(0) = y0, (1.4)

then nonlinear variation of constants (Hairer, Nørsett & Wanner 1993) allows us to connect
the two solutions

y(t) − z(t) =

∫ t

0

Φ(t − s)f(y(s))gω(s) ds,

whereΦ solves the so-called variational equation

Φ
′ =

∂h(z(t))

∂z
Φ, Φ(0) = I.

The matrixΦ may not be analytically available in general, but the important fact is that if
the integrand is smooth enough andgω(t) is a trigonometric function (see the examples cited
before), then integration by parts gives

∫ t

0

Φ(t − s)f(y(s))gω(s) ds = O(1/ω), ω → ∞.

This motivates the fundamental ansatz that we propose lateron, that is, that the solution
y(t) admits an expansion in inverse powers of the oscillatory parameterω. The terms in this
expansion can be computed explicitly in a quite general setting, and they adopt the form of
modulated Fourier expansions themselves. The expansion can be seen therefore as a correc-
tion (in inverse powers ofω this time) of the solution of the unperturbed system.

We remark that one cannot expect this approach to be satisfactory in general when the
system exhibits chaotic behaviour, for example. It is knownthat a parametric perturbation
can be used to take such a system into or out of chaotic behaviour, or to alter the chaotic
states of the original problem, see for instance (Wu, Lu, Iu &Wong 2007), but the very high
sensitivity of the problem to changes in the data will typically render useless any method
based on perturbation theory.

The paper is organised as follows: in Sections 2.1 and 2.2 we present the basic features
of our method and how to construct the expansion explicitly.Next, in Section 3 we analyse
the bandwidth of the different terms in the expansion, depending on the original bandwidth
of the forcing termgω(t). In Section 4 we pay special attention to the stability properties of
the algorithm, which essentially depends, as expected, on the behaviour of the linearisation
of the system around the nonoscillatory base function. We conclude the paper with several
examples to illustrate the performance of the method.
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2 Asymptotic-numerical solvers

2.1 Construction

Our basicansatz in constructing asymptotic-numerical solvers is that the solutiony(t) admits
an asymptotic expansion in inverse powers of the oscillatory parameterω:

y(t) ∼
∞∑

s=0

1

ωs
ψs(t) ω ≫ 1, (2.1)

where theψs(t)s depend onω, butψs(t) ∼ O(1), ω ≫ 1, for s ∈ Z+. Given the structure
of the original ODE, a reasonable assumption is that eachψs(t) in (2.1), except whens = 0,
has itself the form of a modulated Fourier expansion,

ψs(t) =

∞∑

m=−∞

ps,m(t)eimωt, s ≥ 1. (2.2)

Furthermore,ψ0(t) = p0,0(t) is independent ofω, i.e. p0,m(t) ≡ 0 whenm 6= 0. In
order to satisfy the initial condition of the differential equation, we imposeψ0(0) = y(0) =
y0, which means thatψs(0) = 0 for s ≥ 1, or equivalently

∞∑

m=−∞

p0,m(0) = y0,

∞∑

m=−∞

ps,m(0) = 0, s ≥ 1.

Thus our basicansatz reads

y(t) ∼ p0,0(t) +
∞∑

s=1

1

ωs

∞∑

m=−∞

ps,m(t)eimωt,

and differentiation term by term gives, formally,

y′(t) ∼ p′0,0(t) +
∞∑

s=1

1

ωs

∞∑

m=−∞

[
p′s,m(t) + imωps,m(t)

]
eimωt.

Sinceh,f : C
d → C

d are analytic functions, we can expand them into Taylor series
aroundψ0, assuming that this term will yield the main contribution,

h(ψ0 + θ) =

∞∑

n=0

1

n!
hn(ψ0,

n times
︷ ︸︸ ︷

θ,θ, . . . ,θ).

Herehm is ann-tensor related to then-th derivative ofh atψ0,

h0(ψ0) = h(ψ0),

h1(ψ0,θ) =
∂h(ψ0)

∂y
θ,

(h2(ψ0,θ,θ))r =

d∑

i=1

d∑

j=1

θi
∂2hr(ψ0)

∂yi∂yj
θj , r = 1, 2, . . . , d,
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etc. In general we have

(hn(ψ0,θ, . . . ,θ))r =
d∑

i1=1

· · ·
d∑

in=1

∂nhr(ψ0)

∂yi1 · · · ∂yin

θi1θi2 · · · θin
, r = 1, 2, . . . , d.

Note that eachhn(ψ0,θ, . . . ,θ) is linear in each of theθks. It is clear that if the functionsh
andf are not analytic, but sayCr, we can still consider the first few terms of the expansion
and adapt everything accordingly.

In the sequel, we will use the following notation,

h(y) ∼ h(p0,0) +

∞∑

s=1

1

ωs

s∑

n=1

1

n!

∑

k∈In,s

hn(p0,0,χk1
, · · · ,χkn

), (2.3)

where

χk(t) =
∞∑

m=−∞

pk,m(t)eimωt (2.4)

and
In,s = {(k1, . . . , kn) ∈ N

n : |k| = s}, (2.5)

with the standard notation for multi-indices|k| = k1 + k2 + . . . + kn. A similar formula
applies to the functionf . Furthermore, we can express this expansion in the following way,

h(y) ∼ h(p0,0) +

∞∑

s=1

1

ωs

s∑

n=1

1

n!

∞∑

m=−∞

eimωt
∑

k∈In,s

∑

l∈Kn,m

hn(p0,0,pk1,l1 , · · · ,pkn,ln),

(2.6)
where

Kn,m = {(l1, . . . , ln) ∈ Z
n : |l| = m}. (2.7)

Observe that for simplicity of notation, we have omitted thedependence ont of the dif-
ferent termsps,m in the expansion.

Putting all the ingredients together, we can equate both terms and we obtain

p′0,0 +

∞∑

s=1

1

ωs

∞∑

m=−∞

[
p′s,m + imωps,m

]
eimωt

= h(p0,0) +
∞∑

s=1

1

ωs

s∑

n=1

1

n!

∞∑

m=−∞

eimωt
∑

k∈In,s

∑

l∈Kn,m

hn(p0,0,pk1,l1 , · · · ,pkn,ln)

+ gω(t)



f(p0,0) +

∞∑

s=1

1

ωs

s∑

n=1

1

n!

∞∑

m=−∞

eimωt
∑

k∈In,s

∑

l∈Kn,m

fn(p0,0,pk1,l1 , · · · ,pkn,ln)



.

Now we identify coefficients in two levels: first we consider orders of magnitude (inverse
powers ofω), and then frequencies (values ofm) within each order of magnitude. The first
level (corresponding tos = 0) is clear:

p′0,0 + i
∞∑

m=−∞

mp1,meimωt = h(p0,0) +
∞∑

m=−∞

am(t)eimωtf(p0,0). (2.8)
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Separation of frequencies yields a differential equation for the coefficientp0,0(t):

p′0,0 = h(p0,0) + a0(t)f(p0,0), (2.9)

together with the initial conditionp0,0(0) = y(0) = y0, and additionally

p1,m = − iam(t)

m
f(p0,0), m 6= 0. (2.10)

Observe that the ODE forp0,0 is nonoscillatory. Hence, even if it is not solvable explic-
itly (due to the nonlinear termsh andf ), it can be efficiently solved using standard numerical
methods. Note also that the componentsp1,m(t) depend ont in general, even if the coef-
ficientsam(t) are independent oft (that is, if the forcing termgω(t) is periodic and has a
classical Fourier expansion).

Fors ≥ 1 andm ∈ Z, we have

p′s,m + imps+1,m = bs,m[h] +

∞∑

r=−∞

ar(t)bs,m−r[f ], (2.11)

where

bs,m[h] =
s∑

n=1

1

n!

∑

k∈In,s

∑

l∈Kn,m

hn(p0,0,pk1,l1 , · · · ,pkn,ln), m ∈ Z, (2.12)

and similarly withbs,m[f ]. Note that once again we have omitted the dependence ont for
brevity. Observe that fors ≥ 1 we have on the one hand the ODE

p′s,0 = bs,0[h] +
∞∑

r=−∞

ar(t)bs,−r[f ] (2.13)

with initial condition
ps,0(0) = −

∑

m 6=0

ps,m(0), (2.14)

since we have imposedψs(0) = 0, and on the other hand the recursion

ps+1,m = − i

m

[

−p′s,m + bs,m[h] +
∞∑

r=−∞

ar(t)bs,m−r[f ]

]

(2.15)

for m 6= 0. This is the pattern that we will find for each value ofs ≥ 1. From a computational
perspective, an alternative to this scheme would be to solvea systems of DAEs involving all
the termsps,m(t) up to the desired value ofs. In this context, the analysis of bandwidth
presented in Section 3 is relevant to determine the number ofterms that we need within each
level.

2.2 Explicit form of the asymptotic expansion

In this section we derive explicitly the first few terms of ourasymptotic expansion. We first
note that there is an important simplification in the above formulas when the number ofar(t)
terms that are different from0 is finite (in other words when the input functiongω(t) is band
limited). As an example, we illustrate the case where the perturbation is of the formgω(t) =
µ sin ωt. In that case it is clear thata−1(t) = iµ/2, a1(t) = −iµ/2 andam(t) ≡ 0 if |m| 6= 1.
Thus, the original bandwidth is̺= 1. Similar results hold for the casegω(t) = µ cos ωt.
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2.2.1 The zeroth term

As explained before, the termp0,0(t) obeys the differential equation

p′0,0 = h(p0,0) + a0(t)f(p0,0),

together with the initial conditionp0,0(0) = y(0) = y0. Equating terms with the same
frequency, we obtain additionally

p1,m = − iam(t)

m
f(p0,0), m 6= 0.

With gω(t) = µ sin ωt, the previous ODE can be reduced to

p′0,0 = h(p0,0), p0,0(0) = 0,

and also
p1,1 = p1,−1 = −µ

2
f(p0,0), (2.16)

together withp1,m(t) ≡ 0 when|m| ≥ 2.

2.2.2 The first term

Whens = 1 we obtain

p′1,0 = b1,0[h] +

∞∑

r=−∞

ar(t)b1,−r[f ]. (2.17)

Here
b1,m[h] = h1(p0,0,p1,m), m ∈ Z,

and similarly forf . Additionally we have the initial condition

p1,0(0) = −
∑

m 6=0

p1,m(0),

which follows fromψ1(0) = 0. Furthermore, we get

p2,m = − i

m

[

−p′1,m + b1,m[h] +

∞∑

r=−∞

ar(t)b1,m−r[f ]

]

, m 6= 0. (2.18)

Whengω(t) = µ sin ωt then (2.17), the differential equation forp1,0, reads

p′1,0 = b1,0[h] +
iµ

2
(b1,1[f ] − b1,−1[f ]) = h1(p0,0, p1,0) = J [h](p0,0)p1,0.

HereJ [h](p0,0) is the Jacobian matrix ofh evaluated atp0,0. It is not difficult to check
that b1,1[f ] − b1,−1[f ] = 0, because of the symmetry of the coefficientsp1,−1 andp1,1.
Since we imposeψ1(0) = 0, the initial condition forp1,0(t) is

p1,0(0) = −
∑

m 6=0

p1,m(0) = −p1,−1(0) − p1,1(0) = µf(p0,0).
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Putting all the information together, and taking into account (2.16), we obtain

ψ1(t) = p1,0 − µf(p0,0) cos ωt. (2.19)

Furthermore, we can computep2,m for m 6= 0 from (2.18). According to Section 3,
the predicted bandwidth is equal to2̺ = 2, and therefore we only need to compute the
coefficientsp2,±1 andp2,±2. Thus

p2,1 = ip′1,1 − ib1,1[h] − i (a−1(t)b1,2[f ] + a1(t)b1,0[f ])

= − iµ

2

d

dt
f(p0,0) − iJ [h](p0,0)p1,1 −

µ

2
J [f ](p0,0)p1,0

sinceb1,2[f ](t) ≡ 0.
Because of symmetry of thep1,m coefficients, we deduce that

p2,−1 =
iµ

2

d

dt
f(p0,0) + iJ [h](p0,0)p1,−1 −

µ

2
J [f ](p0,0)p1,0.

Now

p2,2 = − i

2

[
−p′1,2 + b1,2[h] + a−1(t)b1,3[f ] + a1(t)b1,1[f ]

]
= −µ

4
J [f ](p0,0)p1,1,

and clearlyp2,−2(t) = p2,2(t). Therefore, we have

ψ2(t) = p2,0 +

[

µ
d

dt
f(p0,0) + 2J [h](p0,0)p1,1

]

sin ωt − µJ [f ](p0,0)p1,0 cos ωt

− µ

2
J [f ](p0,0)p1,1 cos 2ωt (2.20)

The equation and initial conditions forp2,0 are obtained when analysing theO(ω−2)
terms.

2.2.3 The second term

Whens = 2 we obtain

p′2,0 = b2,0[h] +

∞∑

r=−∞

ar(t)b2,−r[f ]. (2.21)

Here

b2,m[h] = h1(p0,0,p2,m) +
1

2

∞∑

l=−∞

h2(p0,0,p1,l,p1,m−l), m ∈ Z,

and similarly forf , together with

p2,0(0) = −
∑

m 6=0

p2,m(0),
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and

p3,m = − i

m

[

−p′2,m + b2,m[h] +

∞∑

r=−∞

arb2,m−r[f ]

]

, m 6= 0. (2.22)

Whengω(t) = µ sin ωt then we have the following ODE forp2,0(t), in accordance with
(2.21):

p′2,0 = b2,0[h] +
iµ

2
(b2,1[f ] − b2,−1[f ]) , (2.23)

where we have useda1(t) = −a−1(t). Now

b2,0[h] = h1(p0,0,p2,0) +
1

2

∞∑

l=−∞

h2(p0,0,p1,l,p1,−l)

= h1(p0,0,p2,0) +
1

2
h2(p0,0,p1,0,p1,0) + h2(p0,0,p1,1,p1,−1)

Next, we have

b2,1[f ] = f1(p0,0,p2,1) + f2(p0,0,p1,0,p1,1).

The differenceb2,1[f ]−b2,−1[f ] can be simplified using the symmetry of the coefficients:

b2,1[f ] − b2,−1[f ] = f1(p0,0,p2,1) − f1(p0,0,p2,−1)

= −J [f ](p0,0)

[

iµ
d

dt
f(p0,0) + 2iJ [h](p0,0)p1,−1

]

.

Furthermore, we have the initial condition

p2,0(0) = −
∑

m 6=0

p2,m(0).

Equation (2.22) gives the coefficientsp3,m(t). Notice that now the bandwidth is3̺ = 3,
so we only need these terms when|m| ≤ 3.

It is clear that the process can be iterated, at the price of increasingly cumbersome expres-
sions. We also note that in many relevant cases the functionsh andf are quite simple, for
example multivariate polynomials of low degree, and hence many terms involving high order
derivatives vanish identically. We omit any further steps for brevity.

3 Bandwidth and blossoming

There is an important observation to be made regarding the bandwidth of the different func-
tionsψs(t). Due to the nonlinearity of the original equation, the number of nonzero frequen-
cies (i.e. values ofm) increases as we move to higher values ofs. We call this phenomenon
blossoming, and it is relevant when discussing efficiency issues, sinceit quantifies the number
of terms that we need to compute in each step of the algorithm.
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Let us suppose that there exists̺ ∈ N such thatam ≡ 0 when|m| ≥ ̺+1. In other words,
we suppose that the forcing termgω(t) is band limited. Letθs be the maximum bandwidth of
the termψs(t), that is

θs := max{m ∈ Z : ps,|m| 6= 0}.
It can be checked that the first few values are

θ0 = 0, θ1 = ̺.

For the general case, we can prove the following result.

Theorem 1 For s ≥ 0, the maximum bandwidth θs of the term ψs(t) is

θs = s̺.

Proof We shall use formula (2.15),

ps+1,m(t) = − i

m

[

−p′s,m(t) + bs,m[h](t) +
∞∑

r=−∞

ar(t)bs,m−r[f ](t)

]

.

We note that differentiation does not alter the bandwidth, and also that the component
bs,m[h](t) is a combination of terms of the form

∑

k∈In,s

∑

l∈Kn,m

hn(p0,0,pk1,l1 , . . . ,pkn,ln).

Since

s =

n∑

j=1

kj ,

we obtain by induction ons that

n∑

j=1

θkj
= ̺

n∑

j=1

kj = s̺.

This is the maximum bandwidth contributed by the termbs,m[h](t). However, when
m = (s + 1)̺ andr = ̺ then

ar(t)bs,m−r[f ](t) = a̺(t)bs,s̺[f ](t)

is different from0 in general, since for example it contains the element

fs(p0,0,p1,̺, . . . ,p1,̺).

If we try m > (s + 1)̺, thenm − r > s̺, and according to the result given before we
get bs,m−r[f ](t) ≡ 0. A similar argument can be used with negative frequencies, setting
m = −(s + 1)̺ andr = −̺. Therefore, the maximum total bandwidth ofψs+1(t) is indeed
(s + 1)̺.

2
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It is important to observe that this result corresponds to the maximal possible bandwidth,
and that the actual one could well be smaller. For instance, if the functionf is constant (which
corresponds to the case of a system of ODEs with an oscillatory forcing term), thenbs,m[f ]
is identically0 for s ≥ 1. Therefore, we would have

ps+1,m(t) = − i

m

[
−p′s,m(t) + bs,m[h](t)

]
, s ≥ 1. (3.24)

The corresponding result is the following.

Theorem 2 Let f(y) be constant, then we have θ0 = 0, θ1 = ̺ and

θs = (s − 1)̺, s ≥ 2.

Proof We shall use formula (3.24) and proceed along the lines of theproof of Theorem
4.1 in (Condon, Deãno & Iserles 2009b). We recall that we have a combination of terms of
the form ∑

k∈In,s

∑

l∈Kn,m

hn(p0,0,pk1,l1 , . . . ,pkn,ln),

and we write
{k1, . . . , kn} = {β1, . . . , βn1

} ∪ {γ1, . . . , γn2
},

whereβ1 = . . . = βn1
= 1. We thus have

n = n1 + n2, s =
n∑

j=1

kj = n1 +

n2∑

j=1

γj .

By induction,

n∑

j=1

θkj
= n1̺ +

n2∑

j=1

θγj
= n1̺ + ̺

n2∑

j=1

(γj − 1) = s̺ − n2̺ ≤ s̺,

with equality whenn2 = 0, which corresponds to the case of the multi-index{(1, 1, . . . , 1)}.
2

Further reduction of the actual bandwidth can occur in some situations, particularly if
higher order derivatives ofh andf vanish identically. This is the case if these functions are
(multivariate) polynomials, which is typical in many applications. Compare with the analysis
in (Condon et al. 2009b), where blossoming appears at a slower rate, though consistent with
the results presented above.

4 Stability

As a direct consequence of the construction of the method in the previous subsections, one
obtainsy(t)−ψ0(t) = O(1/ω), wherey(t) is the solution of the perturbed system andψ0(t)
is the solution of the unperturbed one.

More precisely, suppose thaty(t) is a solution of the perturbed system

y′ = h(y) + gω(t)f(y), y(0) = y0,

11



and consider the unperturbed system

ψ′
0(t) = h(ψ0), ψ0(0) = y0,

Then, if we writey(t) = ψ0(t) +w(t), assuming thatw(t) = O(1/ω) for largeω, we
obtain to leading order

w′ = [A(t) + B(t)gω(t)]w + gω(t)f(ψ0), w(0) = 0, (4.25)

whereA(t) andB(t) are respectively the Jacobian matrices ofh andf evaluated atψ0(t).
This is nothing but a local linearisation of the solution aroundψ0. Now we split the matrices
A(t) + B(t)gω(t) = U + V (t), whereU is a constant matrix, and compare (4.25) with the
system

z′ = Uz, z(0) = 0,

with trivial solutionz ≡ 0. Using standard variation of constants it follows that

w(t) = 0 +

∫ t

0

Φ(t − s)F (s) ds =

∫ t

0

e(t−s)UF (s) ds, (4.26)

whereΦ(t) = etU is the fundamental matrix of the system and

F (s) = V (s)w(s) + gω(s)f(ψ0(s)).

It is clear from (4.26) thatw(t) represents a deviation from the zero solutionv(t), and
therefore the behaviour ofw(t) ast > 0 is related to the stability of this zero solution. This
in turn is governed by the eigenvalues of the fundamental matrix U , see for instance (Verhulst
1990, Ch. 6). More explicitly, we can state the following result.

Theorem 3 If

• all the eigenvalues of the matrix C, say λk, k = 1, . . . , d, satisfy that Re λk ≤ 0, and
those eigenvalues with zero real part are simple, and

• it is true that for any t > 0 there exist constants c1, c2 > 0 such that

∫ t

0

‖V (s)‖ds < c1,

∫ t

0

‖gω(s)f(ψ0(s))‖ds < c2,

then the zero solution solution v(t) is stable in the sense of Lyapunov, and w(t) is
bounded.

Proof The proof follows along the lines of the one given in (Verhulst 1990, Th. 6.2).
Since

w(t) =

∫ t

0

Φ(t − s)V (s)w(s) ds +

∫ t

0

Φ(t − s)gω(s)f(ψ0(s)) ds,

we get the immediate bound

‖w‖ ≤
∫ t

0

‖Φ(t − s)‖ · ‖V (s)‖ · ‖w(s)‖ds +

∫ t

0

‖Φ(t − s)‖ · ‖gω(s)f(ψ0(s))‖ds,

12



Because of the first condition, we have‖Φ‖ < c3, for a certain constantc3, and therefore

‖w‖ ≤ c3

∫ t

0

‖V (s)‖ · ‖w(s)‖ds + c3c2,

Applying Gronwall’s inequality, we get

‖w‖ ≤ c3c2e
c3

R

t

0
‖V (s)‖ ds ≤ c3c2e

c3c1 .

2

It is possible to obtain a stronger result if we impose strictnegativity of the real part of all
the eigenvaluesλk of the matrixU . In that case, one has the bound

‖Φ(t)‖ ≤ c4e
−νt,

for suitable positive constantsc4 andν, see (Verhulst 1990). Thus the zero solutionz(t) is
asymptotically stable andw(t) will tend exponentially fast to0 with t. This fact, together
with large values ofω will make our method very effective.

In the particular case where the system has a linear part, that is

y = My + gω(t)f(y), y(0) = y0,

for some constant matrixM ∈ C
n×n, then clearlyM = C and stability is determined by the

eigenvalues of the linear part of the system.
If the conditions of the theorem are not met, we expect the solutionw(t) to grow un-

boundedly int, and then the difference betweeny(t) andψ0(t) can be very large. A typical
example of this situation occurs when the system exhibits chaotic behaviour (like in the case of
the Lorenz system), and as such is very sensitive to small perturbations in the data. However,
we remark that from a computational perspective, if the sizeof the eigenvalues is moderate,
it may happen that the difference between the perturbed solution y(t) and the unperturbed
oneψ0(t) is small enough to be acceptable whenω is large. Some examples further on will
illustrate this last point.

5 Examples

In this section we present several examples that illustratethe construction and properties of
the expansion that we have presented in previous sections. In all cases we will compare
the approximation given by the first few terms of the asymptotic-numerical solver with the
exact solution (which is either analytically available or computed numerically with standard
MATLAB routines up to prescribed accuracy). We will normally use the standard ODE solver
ode45 in MATLAB , with an absolute and relative tolerance equal to10−12.

We stress that the values ofω that we use are much smaller than the ones normally present
in applications. This restriction is essentially imposed by the fact that the comparison with
the exact solution should be reliable and affordable. Increasingω will benefit the asymptotic-
numerical solver, since the approximation with a fixed number of terms is more accurate,
while the computational cost is roughly similar.
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We use the notation

es =

∣
∣
∣
∣
∣
y(t) −

s∑

n=0

ψn(t)

ωn

∣
∣
∣
∣
∣
, s ≥ 0,

for the errors, taken componentwise.

5.1 A linear system

As a first example, we can consider a simple forced oscillatorwith damping. This system is
modelled by a simple second order ODE:

x′′(t) + bx′(t) + kx(t) = µ cos ωt, x(0) = x0, x′(0) = x′
0,

whereb is the damping coefficient,k the spring constant and we have set the mass to1 for
simplicity. We introduce a forcing term with amplitudeµ and frequencyω, and we assume that
ω ≫ ω0, whereω0 is the natural frequency of the unperturbed oscillator in the underdamped
case. In a matrix form

x′(t) =

[
0 1
−k −b

]

x(t) +

[
0
1

]

µ cos ωt, (5.1)

thereby, using our notation,

h(x) =

[
0 1
−k −b

]

x, f(x) =

[
0
1

]

.

In this case, since the system is already linear, the matrixU is directly

U =

[
0 1
−k −b

]

,

with eigenvalues

λ± =
−b ±

√
b2 − 4k

2
.

Since bothb, k > 0, the real parts of both eigenvalues are always negative and we have
asymptotic stability according to Section 4. The construction of the asymptotic expansion is
particularly simple in this case, since we have after brief computation

p′0,0 = Up0,0, p0,0(0) = x(0),

together with

p1,−1 =
iµ

2

[
0
1

]

= −p1,1.

Actually, because of the functionf being constant, we have from (2.13) and (2.14) that
for s ≥ 1

p′s,0 = Ups,0, ps,0(0) = −
∑

m 6=0

ps,m(0).
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In particular, that means that

p′1,0 = Up1,0, ps,0(0) = 0,

which leads top1,0 ≡ 0. Hence we conclude that in this case the first term is

ψ1(t) =

[
0
µ

]

sin ωt.
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0.5

1

t
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1

t

x’
(t

)

Figure 5.1: Solution of the perturbed system (5.1) forω = 100.

Note that the orderO(1/ω) term is0 for the first component of the solution. In other
words,x(t) is superimposed with tiny oscillations of amplitudeO(1/ω2), whereas in the case
of the derivativex′(t) these are of orderO(1/ω). This is intuitively consistent with what can
be observed in Figure 5.1. Analogously,

p2,−1 = −µ

2

[
1
−b

]

= p2,1,

and since the bandwidth in this example isθ2 = 1, see Section 3, we know thatp2,m ≡ 0 if
|m| > 1. Furthermore

p′2,0 = Up2,0, p2,0(0) = −2p2,1(0) = µ

[
1
−b

]

,

hence

ψ2(t) = p2,0 + µ

[
−1
b

]

cos ωt.

In Figures 5.1 and 5.2 we plot the solution of the perturbed system with parametersk =
4.2, b = 0.6, µ = 0.8, ω = 100 and initial valuesx(0) = x′(0) = 1/2, and the errors when
we compare with the first terms of the approximation, respectively.
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Figure 5.2: Absolute errors in the approximation of the solution of the perturbed system (5.1)
for k = 4.2, b = 0.6, µ = 0.8 andω = 100. Top row, errors inx(t) using the zeroth term
(left), using up to the first term of the approximation (centre) and using up to the second term
of the approximation (right). Bottom row, same for the derivativex′(t).

5.2 A model for an injection-locked frequency divider

Next we consider a nonlinear example, given by the followingsystem, which is used in
(O’Neill et al. 2005) and (Bartuccelli et al. 2009),

C
dVC

dt
= IL + f(VC), L

dIL

dt
= −RIL − VC ,

where

f(VC) = AVC

(

1 − V 2
C

V 2
dd

)

,

andA, Vdd, C, L andR are parameters of the system. A periodic perturbation can beintro-
duced as follows,

f(VC , t) = (A + B sin Ωt)VC

(

1 − VC

V 2
dd

)

, A > 0, B ∈ R.

After normalisation and scaling, this system can be writtenas

du

dt
= αv + Φ(t)u(1 − u2),

dv

dt
= −u − v, (5.2)

where

α =
L

R2C
, β =

LA

RC
, µ =

LB

RC
, Φ(t) = β + µ sin ωt, ω =

ΩL

R

16



Hence, using our notation, we have

h(u, v) =

[
αv + βu(1 − u2)

−u − v

]

,

and

f(u, v) =

[
u(1 − u2)

0

]

,

together withgω(t) = µ sin ωt, and thusa−1(t) = iµ/2 anda1(t) = −iµ/2.
The first term of the expansion, following (2.9), solves the system

p′0,0 = h(p0,0),

sincea0 ≡ 0, and we also get from (2.10)

p1,−1 = −µ

2
f(p0,0) = p1,1,

together withp1,m ≡ 0 when|m| > 1. From (2.17), the coefficientp1,0 satisfies the ODE

p′1,0 = b1,0[h] + a−1b1,1[f ] + a1b1,−1[f ] = b1,0[h] + a−1 (b1,1[f ] − b1,−1[f ]) = b1,0[h],

because of the parity of the coefficientsp1,±1. Here

b1,0[h] = J [h](p0,0)p1,0.

Furthermore, the initial condition is

p1,0(0) = −p1,−1(0) − p1,1(0) = µf(p0,0(0)).

Putting everything together, we have

ψ1(t) = p1,0 − µf(p0,0) cos ωt.

The termψ2(t) can be obtained from (2.20) substituting all the data corresponding to the
functionsh andf in this example.

In the following example, we have taken the following valuesof the parameters,

A = 2.5 × 10−3, B = 1 × 10−3, Vdd = 9, R = 3.06, L = 2.2 × 10−4.

We vary the parametersC andΩ in the examples, butC is always positive and small and
Ω large enough so that the scaled frequencyω = ΩL/R is large. We observe that the matrix
U in this case is

U =

[
β α
−1 −1

]

,

with eigenvalues

λ± =
β − 1 ±

√

(β + 1)2 − 4α

2
.

With the parameters given (in particular becauseL ≪ 1), the term(β + 1)2 − 4α is
negative, and we have complex eigenvalues. This is consistent with the observed oscillatory
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Figure 5.3: Solution of the perturbed system (5.2) forC = 10−6 andΩ = 2π × 106

behaviour of the solutions, see Figure 5.3. The real part of the eigenvalues is given by12 (β−1),
and for stability we needβ − 1 < 0, see Section 4. Thus

β − 1 < 0 ⇔ LA < RC,

which holds for roughlyC ≥ 10−7.
In Figure 5.4 we plot the solution of the unperturbed system and the absolute errors when

using the first terms of the expansions whenC = 10−6, Ω = 2π × 106 (which givesω =
451.73 after scaling) and initial valuesu(0) = v(0) = 1/2.

Similar results, with smaller errors, are obtained if we consider larger values ofΩ. If we
useC = 10−8 then the eigenvalues of the matrixU areλ± = 8.49 ± 47.53i, therefore we
do not expect numerical stability in this case. Indeed, Figure 5.5 shows that no significant
improvement is obtained when adding more terms in the expansion. However, it is worth
noting that the errors are quite small on the whole interval of integration, so the numerical
solution might be acceptable, depending on the required accuracy.

5.3 An expcos oscillator

A more complicated example features a linear part plus a perturbation of the formgω(t) =
eµ cos ωt. For example, in the modelling of diode circuits with inductive loads, we would find
an equation of the form

x′(t) = − L

RC
x(t) +

IsL

C

[

exp

(
gω(t) − x(t)

VT

)

− 1

]

− L

C
y(t), y′(t) = x(t),

whereL,R,C, Is andVT are parameters. We will take the valuesL = 10−4, R = 100,
C = 10−6, Is = 10−12 andVT = 0.0259. The forcing term isgω(t) = µ cos ωt, with large
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Figure 5.4: Absolute errors in the approximation of the solution of the perturbed system (5.2)
for C = 10−6 andΩ = 2π × 106. Top row, errors inu(t) using the zeroth term (left),
using up to the first term of the approximation (centre) and using up to the second term of the
approximation (right). Bottom row, same forv(t).

ω. The constant term−IsL/C can be added in theO(1) level in a straightforward way. Thus
the resulting system is

[
x(t)
y(t)

]′

=

[
−L/RC −L/C

1 0

] [
x(t)
y(t)

]

+

[
βe−x(t)/VT

0

]

exp

[
gω(t)

VT

]

−
[

β
0

]

, (5.3)

whereβ = IsL/C. The properties of similar types of oscillator have been analysed in (Con-
don et al. 2009a) and (Condon, Deãno, Iserles, Maczýnski & Xu 2009c). The relevant fact
is that this function can be expanded in Fourier series usingmodified Bessel functions, see
(Abramowitz & Stegun 1964, Eq. 9.6.34)

eµ cos ωt = I0(µ) + 2

∞∑

m=1

Im(µ) cos mωt, (5.4)

and the asymptotic behaviour of the modified Bessel functions for large orders guarantees
convergence for fixed values ofµ andt.

It is clear that the coefficients aream = Im(µ) for m ∈ Z, using the fact that for integer
ordersIm(µ) = I−m(µ), see (Abramowitz & Stegun 1964, Eq. 9.6.6). The base equation
follows from (2.9),

p0,0 = h(p0,0) + I0(µ)f(p0,0), p0,0(0) = x(0),
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Figure 5.5: Same as Figure 5.4 but with parametersC = 10−8 andΩ = 2π × 106, in the
unstable regime.

and also

p1,m = − iIm(µ)

m
f(p0,0), m 6= 0.

The differential equation forp0,0 cannot be analytically solved because of the nonlinearity
originating in the functionf , but it is nonoscillatory and therefore amenable to numerical
solution using standard methods.

The differential equation forp1,0 apparently involves an infinite number of terms,

p′1,0 = b1,0[h] +

∞∑

r=−∞

ar(t)b1,−r[f ],

however
∞∑

r=−∞

ar(t)b1,−r[f ] = I0(µ)b1,0[f ] + i
∑

r 6=0

I2
r (µ)

r
f(p0,0) = I0(µ)b1,0[f ],

the last sum being zero because of the symmetry of the modifiedBessel functions with respect
to the order. Hence

p′1,0 = b1,0[h] + I0(µ)b1,0[f ] = (J [h] + I0(µ)J [f ])p1,0, p1,0(0) = 0,

which implies thatp1,0 ≡ 0. Therefore,

ψ1(t) = 2f(p0,0)

∞∑

m=1

Im(µ)

m
sin mωt.
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Observe that this last sum converges as well due to the rapid decay of the modified Bessel
functions, so its numerical implementation is not problematic.

The second termψ2(t) can be computed from the general setting, although the different
sums involving modified Bessel functions that appear can be quite expensive to evaluate. In
particular, observe thatµ = 1/VT , so if VT = 0.0259 thenµ is moderately large and the
convergence of the series (5.4) can be slow. As a compensation, we note that our expansion
has two important advantages, namely that its cost is essentially independent ofω (whereas
any standard numerical method will need to reduce the stepsize considerably whenω grows),
and that large values ofω will yield a more accurate expansion with the same number of
terms.

5.4 A Lorenz-type system

A final example is provided by the Lorenz-type system, see (Chang 2009):






ẋ = σ(y − x)
ẏ = x(ρ − z) − y
ż = xy − βz

whereσ, ρ andβ are given parameters. Usual values of the parameters areσ = 10, ρ = 28
andβ = 8/3, for which the system exhibits chaotic behaviour and develops a strange attractor.

Thush : R
3 → R

3, namely

h(x, y, z) =





σ(y − x)
x(ρ − z) − y

xy − βz





The perturbation considered in (Chang 2009) is given by

f(x, y, z) =





25(y − x)
−35x + 29y

−z/3



 ,

together with (using our notation)gω(t) = 1
2 ± 1

2 cos ωt. In this waya0 = 1
2 , a−1(t) =

a1(t) = 1
4 andam(t) ≡ 0 otherwise.

Alternatively, in (Wu et al. 2007) one has

f(x, y, z) =





0
cy
0



 ,

andgω(t) = ε sin ωt. It follows thata−1(t) = iε/2, a1(t) = −iε/2 andam(t) ≡ 0 when
|m| 6= 1.

Yet another perturbation of this system is given in (Choe, Hohne, Benner & Kivshar 2005),
where

f(x, y, z) =





0
ρx
0



 ,
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together withgω(t) = k cos ωt, wherebya1(t) = a−1(t) = k/2, am(t) ≡ 0 if |m| 6= 1. Thus
the original bandwidth is̺ = 1.

The computations can be carried out in a similar way to the previous examples. Away
from the chaotic regime the approximation gives good results, but when the perturbation is
used for chaos suppression then one should not expect the procedure to be accurate, since the
unperturbed solution will be chaotic and the perturbed one will not be so.
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Condon, M., Deãno, A. & Iserles, A. (2009b), On second order differential equations with
highly oscillatory forcing terms, Technical Report DAMTP NA2009/07, University of
Cambridge.
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