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ABSTRACT 
 

Short range wireless technology such as ultra-wideband (UWB) and 60 GHz 

millimetre wave (mm-wave) play a key role for wireless connectivity in indoor 

home, office environment or large enclosed public areas. UWB has been allocated at 

the frequency band 3.1-10.6 GHz with an emission power below -41.3 dBm. Mm-

wave signals around 60 GHz have also attracted much attention to support high-

speed data for short range wireless applications. The wide bandwidth and high 

allowable transmit power at 60 GHz enable multi-Gbps wireless transmission over 

typical indoor distances. Radio-over-fibre (RoF) systems are used to extend the 

propagation distance of both UWB and mm-wave signals over hundred of meters 

inside a building. UWB or mm-wave signals over fibre can be generated first at the 

central office before being distributed to the remote access points through optical 

fibre. 

 

In this work, we investigate two new techniques to generate and distribute UWB 

signals. These techniques are based on generating Gaussian pulse position 

modulation (PPM) using a gain switched laser (GSL). The simulation and 

experimental results have been carried out to show the suitability of employing gain 

switching in UWB over fibre systems (UWBoF) to develop a reliable, simple, and 

low cost technique for distributing UWB pulses. The second part of this work 

proposes two configurations for optical mm-wave generation and transmission of 

3 Gbps downstream data based on GSL. We investigate the distribution of these two 

methods over fibre with wireless link, and demonstrate the system simplicity and 

cost efficiency for mm-wave over fibre systems. Both configurations are simulated to 

verify our obtained results and show system performance at higher bit rates. In the 

third part, we generate phase modulated mm-waves by using an external injection of 

a modulated light source into GSL. The performance of this system is experimentally 

investigated and simulated for different fiber links. 



 vi 

TABLE OF CONTENTS 
 

DECLARATION ............................................................................................................ iii 

ACKNOWLEDGMENT ................................................................................................... iv 

ABSTRACT .................................................................................................................... v 

TABLE OF CONTENTS.................................................................................................. vi 

LIST OF FIGURES ........................................................................................................ ix 

LIST OF TABLES ......................................................................................................... xii 

LIST OF ACRONYMS .................................................................................................. xiii 

Chapter 1 – Introduction ........................................................................................... 1 

1.1 Wireless Access Networks ................................................................... 1 

1.2 Optical Fibre Access Networks ............................................................ 4 

1.3 Objective and Major Contribution ....................................................... 6 

1.4 Thesis Organization ............................................................................. 8 

References ................................................................................................................. 10 

Chapter 2 –Radio over Fibre Technologies ........................................................... 12 

2.1 Introduction ........................................................................................ 12 

2.2 Electrical Methods for RF Signal Distribution .................................. 13 

2.3 Optical Methods for RF Signal Distribution ...................................... 14 

2.4 Basic Radio over Fibre Systems ........................................................ 15 

2.5 RoF Link Components ....................................................................... 17 

 2.5.1 Optical Transmitter ................................................................ 17 

 2.5.2 Optical Receiver ..................................................................... 23 

 2.5.3 Optical fibre links ................................................................... 23 

2.6 Network Architectures for RoF technologies .................................... 25 

2.7 Limitation of Radio over Fibre .......................................................... 27 

 2.7.1 Noise Sources in the RoF links .............................................. 28 

 2.7.2 Distortions in the RoF systems .............................................. 29 

2.8 Summary ............................................................................................ 30 

References ................................................................................................................. 32 

Chapter 3 –RoF for Short Range Wireless Communications .............................. 37 

3.1 Regulations and Spectral Definitions ................................................. 38 



 vii 

3.1.1 Conventional UWB Radio Signal ...................................................... 38 

3.1.2 60 GHz Millimetre Wave Signals ...................................................... 39 

3.2 Types of UWB Signals ....................................................................... 40 

 3.2.1 IR-UWB Signals .................................................................... 40 

 3.2.2 MB-OFDM UWB Signals ...................................................... 43 

3.3 Fibre Distribution for Short Range Wireless Signals......................... 44 

3.4 Optical Methods for Generation and Distribution of UWB Signals .. 45 

3.5 Optical Methods for Generation and Distribution of Millimetre wave 

Signals ................................................................................................ 50 

 3.5.1 Intensity Modulation Direct Detection (IMDD) Receivers ... 50 

 3.5.2 Remote Heterodyne Receivers ............................................... 51 

3.6 Summary ............................................................................................ 58 

References ................................................................................................................. 59 

Chapter 4 – Generation and Distribution of IR-UWB Signals ............................ 66 

4.1 Introduction ........................................................................................ 66 

4.2 System Overview ............................................................................... 66 

4.3 Gain Switching Technique ................................................................. 67 

4.4 Generation of IR-UWB Using External Modulators ......................... 70 

 4.4.1 Experimental Setup ................................................................ 70 

 4.4.2 Results and Discussions ......................................................... 73 

 4.4.3 Simulation Results ................................................................. 78 

4.5 Generation of IR-UWB Using Direct Modulation ............................. 81 

 4.5.1 Experimental Setup ................................................................ 81 

 4.5.2 Results and Discussion ........................................................... 83 

 4.5.3 Simulation Results ................................................................. 86 

4.6 Summary and Conclusions ................................................................. 89 

References ................................................................................................................. 91 

Chapter 5 – Optical Generation of Modulated Millimetre-Wave Signals .......... 93 

5.1 Introduction ........................................................................................ 93 

5.2 Optical Mm-Wave Generation using GSL ......................................... 94 

5.3 Externally modulated GSL ................................................................. 98 

 5.3.1 Experimental Setup ................................................................ 98 

 5.3.2 Simulation Results ............................................................... 102 



 viii 

5.4 Directly Modulated GSL .................................................................. 104 

 5.4.1 Experimental Setup and Results .......................................... 104 

 5.4.2 Simulation Results ............................................................... 110 

5.5 Comparison of Direct and External Modulation .............................. 112 

5.6 Summary and Conclusion ................................................................ 113 

References ............................................................................................................... 114 

Chapter 6 – Phase Modulated Millimetre Waves Based on External Injection 

GSL .......................................................................................................................... 116 

6.1 Introduction ...................................................................................... 116 

6.2 Experimental Setup .......................................................................... 117 

6.3 Simulation ........................................................................................ 123 

6.4 Summary and Conclusion ................................................................ 127 

References ............................................................................................................... 128 

Chapter 7 – Conclusions and Future Work ......................................................... 129 

7.1 Conclusions ...................................................................................... 129 

7.2 Future Work ..................................................................................... 133 

APPENDIX A - LIST OF PUBLICATIONS ARISING FROM THIS WORK ..................... 135 

APPENDIX B – MATLAB CODES ............................................................................... 137 

B.1. Numerical Solution for Single Mode Laser‟s Rate Equations ............. 137 

B.2. Numerical Simulation for Time Shift versus Injection Level .............. 141 

 



 ix 

LIST OF FIGURES 
 

Fig. 1.1. Wireless access technologies ........................................................................... 2 

Fig. 1.2. PON configurations for FTTH/P; (a) TDM-PON and (b) WDM-PON. .......... 5 

Fig. 2.1. Electrical distribution scheme for data signals. ............................................. 13 

Fig. 2.2. The schematic diagram for radio signal distribution over fiber. ................... 14 

Fig. 2.3. The schematic diagram for the simple bidirectional RoF system. ................. 16 

Fig. 2.4. Schematic diagram for bi-directional RoF system using an electro-

absorption transceiver at the RAU. ...................................................................... 17 

Fig. 2.5. Direct intensity modulation of the optical signal. .......................................... 18 

Fig. 2.6. Frequency response for 1.55 μm  laser with several bias levels. ................... 20 

Fig. 2.7. Intensity modulation of the optical signal. .................................................... 22 

Fig. 2.8. Fiber feeding for mobile cellular communications ........................................ 26 

Fig. 2.9. RoF architecture for fibre based distributed antenna system. ....................... 26 

Fig. 2.10. MAN architecture for RoF technology [6]. ................................................. 27 

Fig. 2.11. Output power versus input optical power for analogue optical links, 

illustrating spurious free dynamic range (SFDR) due to third order inter-

modulation products. ............................................................................................ 30 

Fig. 3.1. UWB spectral mask for indoor distribution ................................................... 39 

Fig. 3.2. Gaussian pulses for higher order derivatives. ................................................ 42 

Fig. 3.3. PSD for Gaussian pulses with higher order derivatives. ............................... 42 

Fig. 3.3. UWB pulses with different modulation schemes. ......................................... 43 

Fig. 3.4. UWB spectrum configurations for MB-OFDM [18]. .................................... 44 

Fig. 3.5. Fibre distribution for short range wireless communication signals. .............. 45 

Fig. 3.6. The basic UWB over fibre distribution for up and down link. ...................... 46 

Fig. 3.7. Schematic diagram of optical UWB generation based on PM-IM method. .. 47 

Fig. 3.8. Schematic diagram for optical UWB generation based on EOM .................. 48 

Fig. 3.9. Schematic diagram for optical UWB generation based on XGM ................. 48 

Fig. 3.10. Schematic diagram for optical UWB generation using BPD method. ........ 49 

Fig. 3.11. Schematic diagram of optical mm-wave generation using direct 

modulation of the optical intensity ....................................................................... 51 

Fig. 3.12. Optical remote heterodyne to generate microwave signal using two optical 

waves .................................................................................................................... 53 

Fig. 3.13. Schematic diagram of the optical injection locking of two slave lasers 

using a frequency modulated master laser ........................................................... 54 

Fig. 3.14. Schematic diagram of optical phase lock loop. ........................................... 55 

Fig. 3.15. Schematic diagram showing an optical injection locking and phase locking56 

Fig. 3.16. Schematic diagram for generating a continuously tunable microwave 



 x 

signal based on external modulation and notch optical filter. ............................. 57 

Fig. 4.1. Block diagram of our proposed optical distribution system. ......................... 67 

Fig. 4.2. Waveforms for: (a) the applied current, (b) the carrier density, and (c) the 

output pulses. ....................................................................................................... 68 

Fig. 4.3. Experimental setup for generating and distributing UWB PPM pulses by 

using two external modulators. ............................................................................ 70 

Fig.4.4. Optical spectra for gain switched: (a) FP-LD, (b) DFB-LD, and EI DFB-LD.71 

Fig. 4.5. Waveform for gain switched pulses; (a) at the laser output (point A), (b) 

after coupling (point B), and (c) at the output of UWB filter (point C)............... 71 

Fig. 4.6. Electrical spectra for; (a) the electrical PPM pulses before and (b) after the 

UWB filter. ........................................................................................................... 72 

Fig. 4.7. Measured BER versus received optical power and eye diagrams for three 

different transmitter configurations; (a) FP-LD, (b) DFB-LD, and (c) EI DFB-

LD. ....................................................................................................................... 75 

Fig. 4.8. UWB radio terminal using a carrier recovery circuit. ................................... 75 

Fig. 4.9. S21 transmission of the carrier recovery filter .............................................. 76 

Fig. 4.10. Measured BER and total electrical power versus the percentage of bit slot 77 

Fig. 4.11. Electrical RF spectrum of the UWB signal for PPM delay of (a) 56% and 

(b) 60%. ................................................................................................................ 78 

Fig. 4.12. Eye diagrams for PPM delay of (a) 56%, (b) 60% using carrier recovery, 

and (c) 60% using separate LO. ........................................................................... 78 

Fig. 4.13. Simulated setup diagram using two external modulators. ........................... 79 

Fig. 4.14. Simulated BER versus received optical power for the three different GSLs.80 

Fig. 4.15. Simulated eye diagrams for FP- lasers at (a) BTB and (b) 650 m, DFB-

laser at (c) BTB and (d) 1500 m, and EI-DFB laser at (e) BTB and (f) 47 km. .. 81 

Fig. 4.16. Schematic diagram for generating PPM pulses using two direct modulated 

GSLs. .................................................................................................................... 82 

Fig. 4.17. (a), and (b) are optical spectra for direct modulated GS DFB and EI DFB-

LD. ....................................................................................................................... 83 

Fig. 4.18. Data, combined data and an RF sinusoid, and output pulses from lasers for 

(a) data, (b) inverted data at 1.625 Gbit/s. ........................................................... 84 

Fig. 4.19. Measured BER versus received optical power and eye diagrams for two 

different transmitter configurations; (a) two GS-DFBs, (b) two EI GS-DFBs. ... 85 

Fig. 4.20. Simulation setup for direct modulated GSL. ............................................... 86 

Fig. 4.21. Simulated BER versus received optical power for two transmitter 

configurations of the two direct modulated GSLs. .............................................. 87 

Fig. 4.22. Simulated eye diagrams for DM DFB-LD at (a) BTB and (b) 10 km and 

DM EI DFB-LD at (c) BTB and (d) 25 km. ........................................................ 88 

Fig.5.1. Principle of comb generation using a GSL. .................................................... 94 

Fig. 5.2. Optical spectra of a GSL: (a) before and (b) after optical filters. .................. 95 



 xi 

Fig. 5.3. Electric RF spectrum at centre frequency (CF) = 60 GHz. ........................... 96 

Fig. 5.4. Block diagrams for proposed schemes. ......................................................... 97 

Fig. 5.5. Experimental setup for mm-wave generation and transmission for data 

downstream link using an external modulator. .................................................... 98 

Fig. 5.6. Optical spectra for a modulated optical 60 GHz with (a) 1.25 Gbps and (b) 3 

Gbps. .................................................................................................................... 99 

Fig. 5.7. Measured BER for received baseband signal versus the received optical 

power.at: (a) 1.25 Gbps and (b) 3 Gbps. Insets: the eye diagrams for lowest 

BER. ................................................................................................................... 101 

Fig. 5.8. Captured optical pulses at various fibre propagation distances. .................. 102 

Fig. 5.9. Simulation model for externally modulated GSL. ....................................... 103 

Fig. 5.10. Simulated BER versus received optical power for 3 km fibre transmission 

and higher bit rates. ............................................................................................ 103 

Fig. 5.11. Experimental setup for mm-wave generation using DM-GSL. ................. 104 

Fig. 5.12. (a) the resultant RF signal at point A, and (b) the filtered optical signal at 

point B. ............................................................................................................... 105 

Fig. 5.13. Optical spectra for DM-GSL: (a) without external injection, (b) without 

external injection, and (c) after optical filters. ................................................... 107 

Fig. 5.14. Measured BER versus ROP for: (a) 1.25 and (b) 3 Gbps baseband signals.109 

Fig. 5.15. Eye diagrams for base band signal at different bit rates: (a) 5, (b) 7.5, and 

(c) 10 Gbps. ........................................................................................................ 110 

Fig. 5.16. Simulation model for DM-GSL. ................................................................ 111 

Fig. 5.17. Simulated BER for direct modulated GSL for (a) higher bit rates and (b) 

different sideband suppression ratios. ................................................................ 112 

Fig. 6.1. block diagram of the proposed phase modulated mm-wave signal. ............ 116 

Fig. 6.2. Experimental setup for optical generation of phase modulated mm-wave by 

injecting an OOK modulated optical source. ..................................................... 117 

Fig. 6.3. Optical spectra for: (a) GSL at point A, (b) external injected GSL at point B, 

and (c) after optical filters at point C. ................................................................ 119 

Fig. 6.4. Optical pulses at two different time scales: (a) 133 ps/div and (b) 33 ps/div.121 

Fig. 6.5 Measured BER versus received optical power for: (a) 1.25 and (b) 2.5 Gbps 

baseband signals. ................................................................................................ 122 

Fig. 6.6. (a) PI curve for the modelled single mode laser and (b) frequency response 

for the free running laser. ................................................................................... 125 

Fig. 6.7. Simulated optical pulses for: (a) free running GSL and (b) modulated 

optical injection GSL ......................................................................................... 126 

Fig. 6.8. Simulated injection level versus time shift in optical pulse. ....................... 127 

 



 xii 

LIST OF TABLES 
 

Table 1.1. Summary of wireless access networks. ......................................................... 3 

Table 4.1. Results summary for IR-UWB generation by using two external 

modulators ............................................................................................................ 81 

Table 4.2. Results summary for IR-UWB generation by using two directly modulated 

GSLs. .................................................................................................................... 88 

Table 4.3. Comparison between the two approach setups in terms of their limiting 

factors. .................................................................................................................. 89 

Table 6.1. List of symbols in single mode rate equations for injection locked laser. 124 

 



 xiii 

LIST OF ACRONYMS  
 

2G Second generation 

3G Third generation 

4G Fourth generation 

APD Avalanche photodiode 

ASE Amplified spontaneous emission 

AWG Arbitrary waveguide grating 

BER Bit error rate 

BERT Bit error rate tester 

BPF Bandpass filter 

BPSK Binary phase shift keying 

BPSK Binary phase shift keying 

BS Base station 

BTB Back-to-Back 

CEPT European conference of postal and telecommunications  

CO Centre office 

CW Continuous wave 

DAS  Distributed antenna system 

DBR Distributed Bragg refelector 

DC Direct current 

DFB-LD Distributed feedback laser diode 

DM Direct modulated 

DR Dynamic range 

DR Dynamic range 

DSB Double sideband 

DSF Dispersion shifted fibre  

DVD Digital versatile disc  

EAM Electro-absorption modulator 

ECC Electronic communication committee 

EDFA Eribum doped fiber amplifier 



 xiv 

EI External injection 

EIRP  Equivalent isotropic radiation power 

EOM Electro-optic intensity modulator 

EOPM Electro-optic phase modulator 

EPON Ethernet passive optical network 

ETSI European telecommunications standards institute 

FBG Fiber Bragg grating 

FCC Federal communication commission 

FFT Fast Fourier transform 

FP-LD Fabry Perot laser diode 

FTTH Fiber to the home 

FTTP Fiber to the premise 

FWA  Fixed wireless access 

GPON Gigabit passive optical network 

GPRS General packet radio service 

GPS Global positioning system 

GS-DFB Gain switched distributed feedback 

GSL Gain switched laser 

GSM  Global system for mobile communications 

GVD Group velocity dispersion 

HDMI High definition multimedia interface 

HDTV High definition television 

HNA Home networking area 

IEEE Institute of electrical and electronics engineers 

IF Intermediate frequency 

IFFT Inverse fast Fourier transform 

IM Intensity modulation 

IM3 Third intermodulation product 

IM-DD Intensity modulation and direct detection 

IMT International mobile telecommunication 

IR-UWB Impulse radio Ultra-wide band 

ISI Intersymbol interference 

LD Laser diode 



 xv 

LNA Low noise amplifier 

LO Local oscillator 

LOS Line-of-sight 

LTE+ Advanced long term evolution 

MAN Metropolitan area network 

MIMO Multiple input multiple output 

MMF Multi-mode fiber 

Mm-wave Millimetre wave 

MPN  Mode partition noise 

MQW Multiple quantum well 

MU Mobile unit 

MZM Mach Zehnder modulator 

NLOS Non-line-of-sight 

NRZ Non-return to zero 

OBPF Optical bandpass filter 

ODC  Optical distribution centre 

ODL Optical delay line 

OFDM Orthogonal frequency division multiplexing 

OIL Optical injection locking 

OIPL Optical injection phase locking 

OLT Optical line terminal 

ONU Optical network unit 

OOK On-off keying 

OPLL Optical phase locked loop 

OSSR Optical sidebands suppression ratio 

P2MP Point-to-multipoint 

P2P Point-to-point 

PAM  Pulse amplitude modulation 

PD Photo-diode 

PIN-PD p-i-n photodetector 

PM Phase modulation 

PPM Pulse position modulation 

PRBS Pseudo random bit sequence 



 xvi 

PSD Power spectral density 

PSK Phase shift keying 

R&O the First Report and Order 

RAU Remote antenna unit 

RF Radio frequency 

RIN Relative intensity noise 

RN Remote node 

RoF Radio over fiber 

ROP Received optical power 

RT Radio terminal 

RZ Return to zero 

SFDR Superior free dynamic range 

SMF Single mode fiber 

SMSR Side mode suppression ratio 

SNR Signal to noise ratio 

SSMF Standard single mode fiber 

TDM Time Division multiplexing 

TFC Time frequency coding 

TLM Transmission line model 

UMTS Universal mobile telecommunication system  

UWB  Ultra wideband 

UWBoF Ultra-wideband over fiber 

VCSEL Vertical cavity surface emitting laser 

VCSEL Vertical cavity surface emitting laser 

WDM Wavelength division multiplexing 

WiMax Worldwide Interoperability for Microwave Access 

WLAN Wireless local area network 

WPAN Wireless personal area network 

  



 1 

Chapter 1 – Introduction  

1.1 Wireless Access Networks 

Wireless access networking is one of the fastest growing technologies in the area of 

telecommunications and computer systems. The advances in wireless technologies 

and the existence of inexpensive wireless equipment have contributed much to the 

tremendous growth of wireless access networks during the last decades. These 

networks have changed the way people use computers and other personal electronic 

devices at work, home, and when they are travelling.  

 

Nowadays, there are many wireless access technologies that vary according to 

bandwidth, range, and speed as shown in Fig. 1.1. The first and second generation 

(1G and 2G) of wireless mobile telephone were intended for voice transmission. The 

main difference between these generations is that 1G used analogue signals and the 

2G uses digital signals.  The global system for mobile (GSM) is the most popular 

digital cellular network standard and allocated in radio spectrum around 900, and 

1800 MHz. The initial GSM standard allowed only 13 kbps for voice transmission 

and 9.6 kbps for data transmission [1]. An extension to the GSM standard was 

defined by the general packet radio service (GPRS) which offers data transmission 

up to 160 kbps [2]. The third generation of wireless cellular phone such as universal 

mobile telecommunication system (UMTS) provides both voice and data 

applications [3].  This allows people to make phone calls, send text and multimedia 

messages, and browse the internet. The fourth generation (4G) offers higher data 

speeds and more mobility such as advanced long term evolution (LTE+), and 

worldwide interoperability for microwave access (WiMax). The 4G system provides 

a comprehensive and secure all IP based mobile broadband to smartphones, laptop 

computer and other mobile devices. The use of multiple input multiple output 

(MIMO) technology improves communication performance and increases the 

potential throughput by using additional antennas at both the transmitter and receiver 

end. The requirement speed of 4G services by international mobile 

telecommunication advanced (IMT-advanced) standard is targeted to  reach a peak 
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download at 100 Mbit/s for high mobility communication in a moving vehicle and 

1 Gbit/s for low mobility communication (such as pedestrians and stationary users) 

[4].  

 

Wireless local area networks (WLAN) or IEEE standards 802.11 a/b/g/n provide 

wireless coverage in one or more rooms in a building. The cost, data speed, and easy 

integration of WLAN have gained great popularity. IEEE 802.11 series standards 

have different speed and frequency ranges, shown in summary table 1.1 [5], and the 

range of these varies from 30 -100 m based on location. 

 

Fig. 1.1. Wireless access technologies 

Wireless personal area network (WPANs) is another paradigm that provides short 

range wireless connectivity between consumer electronic devices such as personal 

digital assistants (PDA), and mobile phones. Bluetooth (IEEE standard 802.15.1) 

was the first low data rate standard for WPAN networks [6]. It enables wireless 

connectivity between mobile phones, computers, and electronic appliances with data 

rates up to 3 Mbps. ZigBee (IEEE standard 802.15.4) wireless technology is 

designed for data rates up to 250 kbps, primarily for wireless sensor applications [7]. 

This technology is mainly devoted for low data rate, low power consumption, and 

low cost wireless networking. Other exciting technologies in this area are ultra 

wideband (UWB) and millimetre waves (mm-waves) at 60 GHz. These are of 

particular importance to the work presented in this thesis.  
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UWB wireless technology is intriguing as it lies in the frequency band 3.1- 10.6 GHz 

and has low power consumption [8]. It is designed for short range applications in fast 

home networks for video or audio data transport. Mm-wave communication systems 

are another growing wireless technology that enables transmission of data at speeds 

of more than 1 Gbps. This is possible due to the huge and unexploited bandwidth 

available, combined with advances of low cost fabrication technology and low loss 

packaging material. Mm-waves use the frequency band 30 -300 GHz, which 

corresponds to the wavelengths from 10 – 1 mm and within that range, the frequency 

band around 60 GHz has been assigned globally for unlicensed use. The goal of the 

60 GHz system is for future “super broadband” data services delivery in terms of 

data rate and power consumption. Compared to lower frequency bands, the radio 

signals in this mm-wave band are extremely susceptible to attenuation from 

atmospheric oxygen absorption. In addition, the free space loss increases 

quadratically with signal frequency giving up to 21 dB more loss than a signal at 5 

GHz. This classifies mm-waves for short range applications but it also means dense 

frequency reuse patterns [9]. 

 

Table 1.1. Summary of wireless access networks. 

Technology Frequency band Bit rate 
Signal 

range 
Typical usage 

GSM 900/1800 MHz 9.6 kbps 35 km Voice and data 

GPRS 900/1800 MHz 160 kbps 35 km Data and WAP 

UMTS 873/1900 MHz 2 Mbps 2 km 
Voice, data, and 

multimedia 

Bluetooth 2.4 GHz 2.1 Mbps 10 m WPAN 

ZigBee 2.4 GHz 250 kbps 10 m WPAN 

ÙWB 3.1 – 10.6 GHz > 100 Mbps 10 m WPAN 

Mm-wave 

(60 GHz) 
57- 64 GHz > 1Gbps 10 m WPAN 

802.11a 5 GHz 54 Mbps 100 / 30 m WLAN 

802.11b 2.4 GHz 11 Mbps 110/ 35 m WLAN 

802.11g 2.4 GHz 54 Mbps 110/ 35 m WLAN 

802.11n 2.4 / 5 GHz 600 Mbps 250/ 70 m WLAN 
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1.2 Optical Fibre Access Networks 

The growing demands for broadband internet connection at home are increasing 

nowadays in most countries. Services and multimedia applications such as internet 

video, video communication, and video on demand are now available and need much 

greater bandwidth than that is offered today. At the same time, new services such as 

high definition television (HDTV) and interactive video have been developed and are 

becoming commercially available in many countries. These applications and services 

drive the need for new connections that can carry the increased bitrates inside homes, 

or buildings. 

 

Single mode optical fibre provides huge transmission bandwidth over extremely long 

distances, compared to the existing access networks such as digital subscriber lines 

(DSL), and cable modems. The end goal is to provide this fibre connection to each 

customer‟s home or premises. Fibre to the home/premises (FTTH/P) is a solution to 

open up the “last mile” bandwidth bottleneck and enables the increasing delivery of 

high speed services to the final users‟ front door [10]. The number of FTTH 

subscribers in Europe (including Russia) has reached 4.5 million with more than 25 

million homes/buildings passed, according to the latest figures from FTTH council 

[11]. While Japan continues to lead the world in terms of the number of FTTH/P 

subscribers, and South Korea has the highest penetration in the world and is the first 

country in the world to reach over 50% penetration of households using FTTH/P.  

 

The broadband market is expected to steadily grow in the coming years to reach 

close to 140 million subscribers around the globe by 2014 [12]. FTTH/P installation 

is achieved by using either a point-to-point (P2P) or point-to-multipoint (P2MP) 

topology [13]. In the case of P2P topology, optical networks rely on a variety of 

electronically enabled equipment to distribute the signal such as switches, routers, or 

multiplexers. However, there is a growing attention to P2MP passive optical network 

(PON) architectures due to the 20 - 35% expense reduction from sharing the fibre 

and all passive optical components, in addition to the low maintenance requirement 

for passive modules. The basic configuration of a PON connects the telecom central 

office (CO) to businesses and residential users by using one wavelength channel in 
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the downstream direction. A single feeder fibre is used in PON to connect an optical 

line terminal (OLT) at the CO to multiple drop fibres that go to each home. At the 

subscriber end, the drop fibre terminates at an optical network unit (ONU) that 

converts the optical signals to electrical signals for use by various devices such as 

phones, computers, HDTVs, etc.  

 

A PON configuration reduces the required amount of fibre and does not have any 

active elements in the signal‟s path compared to P2P topology. The only elements 

used in such a network are passive combiners, couplers, and splitters. There are 

several multiple-access techniques that are used in a single PON architecture. The 

most promising candidate techniques are time division multiplexing PON (TDM-

PON) and wavelength division multiplexing PON (WDM-PON) as shown in Fig. 1.2 

[14]. 

 

Fig. 1.2. PON configurations for FTTH/P; (a) TDM-PON and (b) WDM-PON. 
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A TDM-PON shares a single transmission channel with multiple subscribers in the 

time domain. A passive optical splitter is used to split the downstream signals to 

multiple ONUs. Each ONU selects its destined packets, and discards the packets 

addressed to the other ONUs.  This scheme has low installation and maintenance 

cost, however, the number of ONUs is limited by the splitting loss, and by the bit 

rate of the transceiver in the OLT. Several TDM-PON standards have been 

developed for 16 ONUs or more with a maximum transmission distance up to 20 km 

such as; Gigabit PON (GPON) with 2.5/1.25 Gbps down/upstream and Ethernet PON 

(EPON) with 1.25 Gbps for both directions. Another new commercial standard 

available now is 10GPON which supports up to 10 Gbps downstream and 2.5 Gbps 

upstream.  

 

In a WDM-PON the bandwidth of the fibre is shared between the subscribers, and 

each subscriber is assigned a pair of wavelength channels for up/down links. This 

means that each subscriber gets a dedicated point-to-point optical channel to the 

OLT and can send data at any time independent of other subscribers, although they 

are sharing a common point-to multipoint physical architecture. A WDM 

multiplexer/demultiplexer or array waveguide grating (AWG) is used to 

combine/separate the multiple-wavelength signals instead of the optical power 

splitter in a TDM-PON configuration. This decreases the insertion power loss in 

WDM-PONs and improves its ability to scale up to serve a large number of users 

sharing a single PON. However, there are some challenges in developing a practical 

system since each ONU requires a specified wavelength source and „N‟ separate 

transceivers at the OLT to realize a connection to each subscriber.  

1.3 Objective and Major Contribution 

Fibre connections to the home provide a reliable distributed signal, but they are not 

flexible enough to allow convenient roaming connection inside homes. Therefore, 

the combined technology between wireless and optical fibre can provide access 

solutions that offer portability and flexibility to users. This technology is known as 

radio over fibre (RoF) and is the most promising solution to increase the capacity 

coverage, bandwidth and mobility in environments such as conference centres, 

airports, hotels, shopping malls, and ultimately to home and small offices [15]. 
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Furthermore, the use of photonic technologies in optical wireless generation is 

desirable and can greatly reduce the cost and the requirement of high frequency 

electrical components for signal processing in these short range radios.  

 

The objective of this thesis is to investigate a number of simple and cost effective 

RoF systems for delivering future high speed wireless signals over optical fibres and 

air links. The main contributions of this thesis are to present novel techniques for 

optical generation of short range wireless signals as follows.   

 

- Two optical transmitter schemes for generating an electro-optic impulse radio 

(IR-UWB) signal based on gain switched laser (GSL) and pulse position 

modulation (PPM) at 1.625 Gbps are proposed in chapter 4. 

 

o The first setup uses a single gain switched optical source with two 

optical Mach-Zehnder modulators (MZM) [16, 17].  

o The second setup has two optical sources driven with a signal 

composed of an NRZ data and an RF sinusoid signal [18]. 

 

- Two setups for optical generation and distribution over fibre of mm-waves at 

60 GHz with bit rates up to 3 Gbps are demonstrated in chapter 5. These two 

schemes are based on optical comb generation of the GSL. The optical 

60 GHz signal is produced by selecting two optical tones from the optical 

comb. 

 

o The first setup uses an external modulator to modulate the selected 

tones with NRZ data signal [19].  

o The second setup drives the laser with the RF sinusoidal and data 

signal coupled together [20].  

 

- Another alternative way for generating an optical modulated mm-wave signal 

is proposed in chapter 6 by externally injecting OOK modulated light into a 

GSL and selecting two signals separated by 60GHz [21]. 



 8 

1.4 Thesis Organization 

The rest of this thesis is organized as follows. Chapter 2 mainly focuses on an 

overview of radio over fibre (RoF) technology and its basic components. The 

conventional structure of a RoF system and its main optical components are 

described in detail. RoF networks are described for different applications such as 

cellular networks, and indoor distribution. Furthermore, the main limitation factors 

such as optical noise and nonlinear distortion that affect the performance of RoF 

systems are discussed in this chapter.  

 

In chapter 3, optical generation and distribution of short range wireless 

communication signals over optical fibres are described for ultra wideband (UWB), 

and mm-waves at 60 GHz.  Regulation and spectrum allocation for these signals are 

defined. Several recent reported schemes for optical generation, processing, and 

distribution of these short range signals are also presented in this chapter. 

 

Chapter 4 proposes and demonstrates two different optical generation techniques for 

electro-optical impulse radio (IR-UWB) signals based on a GSL and pulse position 

modulation (PPM) scheme at a bit rate of 1.625 Gbps. The system performance of 

the two setups is evaluated by using experimental implementations and simulations 

for different optical transmitter configurations and different fibre links. Then, a 

comparison between both setups is presented to show the trade-off between the 

cost/complexity of the transmitter configuration in a UWB over fibre system, and the 

required reach and performance of the distribution network.    

 

In chapter 5, two novel optical transmitter schemes are proposed for generation and 

distribution of mm-waves at bit rates up to 3 Gbps. Experimental investigations and 

simulations are carried out to assess the system performance in both cases. 

Comparison between the two setups is also discussed to show the advantages and 

disadvantages of both systems.  

 

Chapter 6 investigates another novel technique for optical generation of a phase 

modulated mm-wave at 60 GHz by using external injection into GSL with a 
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modulated light source. The experimental setup is implemented and analysed at 1.25 

and 2.5 Gbps data rates and simulation work is also carried out to validate the 

obtained results.    

 

Finally, chapter 7 provides a brief summary of the thesis and the possible future 

research opportunities. 



 10 

References 
[1] M. P. Clark and M. Clarke, Wireless Access Networks: Fixed Wireless Access 

and WLL Networks--Design and Operation, John Wiley \& Sons, Inc, New 

York, NY, USA, 2000.  

[2] T. Halonen, J. Melero and J. R. Garcia, GSM, GPRS and EDGE Performance: 

Evolution Toward 3G/UMTS, Halsted Press, New York, NY, USA, 2002.  

[3] B. Walke, R. Seidenberg, M. P. Althoff, UMTS: The Fundamentals, Wiley & 

Sons, England, 2003.  

[4] International Telecommunication Union. IMT-Advanced (4G) Mobile wireless 

broadband on the anvil [Online]. Available: http://www.itu.int/newsroom/press 

releases/2009/48.html. [accessed: 3/2/2011]  

[5] Wi-Fi Alliance. Wi-Fi CERTIFIED™ n: Longer-Range, Faster-Throughput, 

Multimedia-Grade Wi-Fi® Networks [Online]. Available: http://www.wi-fi. 

org/register.php?file=wp_Wi-Fi_CERTIFIED_n_Industry.pdf. [accessed: 

2/2/2011]  

[6] IEEE 802.15 WPAN Task Group 1 (TG1). IEEE 802.15 Bluetooth standard for 

wireless personal area network [Online]. Available: http://ieee802.org/15/pub/ 

TG1 .html. [accessed: 2/2/2011]  

[7] IEEE 801.15 WPAN Task Group 4 (TG4). IEEE 802.15.4 Standard for Low Rate 

Wireless Personal Area Networks (WPAN) [Online]. [accessed: 

http:\\www:ieee802.org\15\pub\TG4.html]  

[8] IEEE 801.15 WPAN Task Group 3 (TG3), IEEE 802.15.3 Standard for High Rate 

Wireless Personal Area Networks. [Online]. Available: http:\\www.ieee802.org\ 

15 \pub\TG3.html. [accessed: 2/2/2011]  

[9] C. Park and T. S. Rappaport, "Short-range wireless communications for next-

generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee," 

Wireless Communications, IEEE, vol. 14, no. 4, pp. 70-78, 2007.  

[10] P. W. Shumate, "Fiber-to-the-home: 1977-2007," Lightwave Technology, 

Journal of, vol. 26, no. 9, pp. 1093-1103, 2008.  

[11] TelecomPaper, FTTH/B subscribers in Europe up 22 percent in H1 [Online]. 

http://www.telecompaper.com/news/ftthb-subscribers-in-europe-up-22-percent-

in-h1. [accessed: 2/2/2011]  

[12] IDATE Consulting and Research: Telecoms, Internet, Media [Online]. 

http://www.itu.int/newsroom/press%20releases/2009
http://www.itu.int/newsroom/press%20releases/2009
http://www.wi-fi/
http://ieee802.org/15/pub/


 11 

Available: http://www.idate.org/en/News/Inventory-of-FTTH-in-Europe-

Middle-East625.html. [accessed: 3/18/2010]  

[13] P. E. Green, "Fiber to the home: The next big broadband thing," 

Communications Magazine, IEEE, vol. 42, no. 9, pp. 100-106, 2004.  

[14] C. H. Lee, W. V. Sorin, and B. Y. Kim, "Fiber to the home using a PON 

infrastructure," Lightwave Technology, Journal of, vol. 24, no. 12, pp. 4568-

4583, 2006.  

[15] R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, 

S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, "Perspective in next-generation 

home networks: Toward optical solutions?" Communication Magazine, IEEE, 

vol. 48, no. 2, pp. 39-47, 2010.  

[16] A. Kaszubowska-Anandarajah, P. Perry, L. P. Barry, and H. Shams, "An IR-

UWB photonic distribution system," Photonics Technology Letters, IEEE, vol. 

20, no. 22, pp. 1884-1886, 2008.  

[17] H. Shams, A. Kaszubowska-Anandarajah, P. Perry, and L. Barry, 

"Demonstration and optimization of an optical impulse radio ultrawideband 

distribution system using a gain-switched laser transmitter," Optical Networks, 

Journal of, vol. 8, no. 2, pp. 179-187, 2009.  

[18] H. Shams, A. Kaszubowska-Anandarajah, P. Perry, P. Anandarajah, and L. P. 

Barry, "Electro-optical generation and distribution of ultrawideband signals 

based on the gain switching technique,"  Optical Communications and 

Networking, IEEE/OSA Journal of,  vol. 2, no. 3, pp. 122-130, 2010.  

[19] H. Shams, P. M. Anandarajah, P. Perry, and L. Barry, "Optical generation and 

wireless transmission of 60 GHz OOK signals using gain switched laser,"  

presented at Optical Fiber Communication and National Fiber Optic Engineers 

Conference (OFC/NFOEC 2010), pp. OThO7, 21- 25
th

 March, San Diego, USA.  

[20] H. Shams, P. M. Anandarajah, P. Perry, and L. P. Barry, "Optical generation of 

modulated millimeter waves based on a gain-switched laser," Microwave Theory 

and Techniques, IEEE Transactions on, vol. 58, no. 11, pp. 3372-3380, 2010.  

[21] H. Shams, P. Perry, P. Anandarajah, and L. Barry, "Modulated millimeter-wave 

generation by external injection of a gain switched laser," Photonics Technology 

Letters, IEEE, vol. 23, no. 7, pp. 447-449, 2011.  

http://www.idate.org/en/News/Inventory-of-FTTH-in-Europe-Middle-East625.html
http://www.idate.org/en/News/Inventory-of-FTTH-in-Europe-Middle-East625.html


 12 

Chapter 2 –Radio over Fibre Technologies 

2.1 Introduction 

The combination of wireless and fibre optics was first introduced in the early 1980s 

in the United States for military applications. Fibre cables were used to connect the 

control or central station to distant antennas in the development of radar systems. 

The RF signals were conventionally transported via bulky copper cables and 

waveguides where all high frequency elements of a system have to be placed 

together to minimize the RF losses. Therefore, the low optical loss and large 

bandwidth features of the fibre made it an efficient transmission medium for 

transporting high frequency radio signals. In addition, optical fibre cables have 

substantially less weight over the coaxial cable and are cost effective for long link 

lengths [1]. In late 1980s, radio over fibre (RoF) systems were then developed by 

Cooper for cordless and mobile communications [2]. Following this many research 

centres and scientists across the world have developed new techniques to send 

wireless signals over fibre.  

 

RoF systems are now being used in many RF applications for transporting the radio 

signal from a central office (CO) to a remote antenna site such as cellular networks, 

indoor distributed antenna systems, and wireless local area networks (WLANs). 

When utilizing a large number of distributed remote terminals, the corresponding 

remote antenna units (RAUs) should be simple, small in size, light and low cost. 

Equally, the system components should be arranged in such a way that most of the 

expensive and high frequency equipment such as that required for coding, 

modulation, multiplexing, and up-conversion process are localized at the central 

station [3].  

  

This chapter is divided up into eight sections. The electrical and optical methods for 

RF distribution are introduced in sections 2.2 and 2.3. The basic bi-directional RoF 

transmission systems are described in section 2.4. In section 2.5, the optical link 

components in RoF systems are discussed in terms of their operating principles and 
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characteristics. Section 2.6 represents the network architectures for RoF and its 

applications. Then, the limitations on RoF system are discussed in section 2.7. 

Finally, the chapter summary is outlined in section 2.8.  

2.2 Electrical Methods for RF Signal Distribution 

The electrical distribution of radio signals such as VHF, UHF, microwave, or 

millimetre wave is challenging due to the very high loss and high cost of such cables 

or waveguides.  This means that the central generation and distribution of the radio 

signals is not practical, and the data signals must be distributed in a baseband or a 

low intermediate frequency (IF) to the base station. Then, the baseband or IF signal 

would have to be upconverted to the required RF frequency at each base station, 

amplified, and radiated. This leads to a rather complex base station system that has 

very tight performance requirements.  

 

The typical electrical distribution system is shown in Fig. 2.1. The system design 

includes a number of repeaters along the transmission lines to counteract the cable 

loss and maintain an appropriate value of signal to noise ratio. However, the number 

of stages and thus the covered area from a switching centre are limited due to the 

degradation in the signal fidelity. Coaxial cables or waveguide also suffer from 

moisture problems that can significantly reduce system performance. This can be 

addressed by replacing the affected cable with another. Once distribution has been 

achieved the base stations have to transform the baseband or IF signals up to the 

required RF frequency [4].  

 

Fig. 2.1. Electrical distribution scheme for data signals. 
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From the above discussion, electrical methods for generation and distribution of 

modulated RF signals are severely limited in both performance, and cost.  

2.3 Optical Methods for RF Signal Distribution 

Optical fibres are used to deliver high quality radio signals directly to a point of free 

space radiation (antenna site). The simple system arrangement for radio signal 

transmission over fibre is shown in Fig. 2.2. There are three possible transmission 

configurations used to generate and distribute wireless signals over optical fibre links 

[5, 6]. These configurations depend on the required application and the hardware 

components in the CO and base stations. The three transmission systems are 

classified based on the transmission frequency bands into:  

 RF-over-fibre,  

 IF-over-fibre, and  

 Baseband-over-fibre.  

In RF-over-fibre, the radio signal is directly transmitted over the fibre link at the 

radio carrier transmission frequency without any need for frequency conversions at 

the base station. This leads to centralization of all control and electrical hardware at 

the CO, and reduces the complexity and the cost of the base stations. However, it is 

vulnerable to fibre chromatic dispersion and requires high speed optical electronic 

components for high frequency radio signals [5].  

 

 

Fig. 2.2. The schematic diagram for radio signal distribution over fiber. 
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In order to reduce the effect of chromatic dispersion, the wireless signal for 

downstream transmission can be distributed from the CO to the remote terminals at a 

lower IF which is known as IF-over-fibre. This scheme uses lower speed opto-

electronic devices and can allow transmission over the multimode fibre (MMF). This 

can be advantageous as MMF is cheaper than single mode fibre (SMF) and many 

buildings now have infrastructure networks based on MMF. At the receiver side, it 

requires a local oscillator (LO) and high speed electronic mixers which increase the 

complexity and cost of the RAU. In addition, this also results in limitations to 

upgrading or reconfiguring the wireless channel for different wireless frequencies. 

Baseband-over-fibre is the third transport technique where the data signal is 

transported in baseband to the remote terminal and then up-converted to the required 

RF signals. This greatly reduces the limitations imposed by fibre chromatic 

dispersion (as for IF-over-fibre scheme) and the need for high speed opto-electronic 

devices. However, the system complexity and cost increases due to the high LO 

frequency signal needed at the remote terminals. This can only be simplified if the 

LO signal is delivered optically from a CO.  

 

For any transmission system, practical issues such as the size, weight, reliability, 

cost, and power consumption at the antenna site are of critical importance. Therefore, 

it is necessary to keep most of the expensive, high frequency equipment at a central 

location, thus allowing the remaining equipment at the base station to be simple, 

small sized, and requiring low power consumption. This results in easy installation, 

and low maintenance making it suitable for installation in remote or inaccessible 

places.    

2.4 Basic Radio over Fibre Systems 

The simplest schematic diagram of a bi-directional RoF system is shown in Fig. 2.3 

[7]. In the downlink/uplink direction, the light intensity of the laser diode is directly 

modulated with the RF signal and then transmitted towards the photodiode through 

optical fibre links. The choice between MMF or SMF, depends on the application 

and transmission distance. The wavelength of the light can be either 1300 nm or 

1550 nm for low transmission loss in silica fibre. Normally, SMF is used to carry the 

information in a single direction only (simplex), which means that we need to use 
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two optical fibre links for bi-directional (duplex) communication. However, 

wavelength division multiplexing (WDM) technology makes it possible to transmit 

the information in the two directions by using different wavelengths. The optical 

receiver is usually a normal Positive Intrinsic Negative (PIN) photodiode and it 

converts the optical signal back to the electrical signal, where the RF power output is 

directly proportional to the square of the input optical power. This kind of the RoF 

system is called intensity modulated-direct detection (IM-DD) which is widely used 

in cellular applications due to its simplicity and low cost. There are also other types 

of optical modulation used for different application, such as frequency or phase 

modulation which require an external modulator. 

 

 

Fig. 2.3. The schematic diagram for the simple bidirectional RoF system. 

 

In this conventional RoF system, the RAU contains a laser, photodoiode, amplifiers, 

circulator, control circuit, and power supplies. These components can be enclosed in 

a compact and integrated package. However complexity still contributes much cost 

to the remote terminals.  

 

For applications that need a large number of remote terminals, the cost and power 

consumption are very important in the overall design. Therefore, it would be more 

desirable to have radio access points with zero power consumption and a low cost 

component. In Fig. 2.4, another proposed RAU replaces the laser, photodiode, 

amplifiers and circulator with a single opto-electronic device, an electro-absorption 

modulator (EAM) that acts as a remote transceiver [7, 8]. This means that the EAM 

device can be used as a photodiode for downlink and as an optical modulator for the 

uplink transmission. In this case, the RAU does not need a light source or control 
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circuit, and therefore it is much simpler and cheaper. For small radio coverage such 

as pico-cell networks, the RAU can be made simpler without using any RF 

amplifiers or DC bias [9].  

 

 

Fig. 2.4. Schematic diagram for bi-directional RoF system using an electro-absorption 

transceiver at the RAU. 

2.5 RoF Link Components 

This section describes in detail the operating principles and characteristics of the 

optical transmitter, receiver, and optical link that make up the RoF system. 

2.5.1 Optical Transmitter 

In the optical transmitter, the laser diode is an essential element in fibre optic links 

since it generates the optical signal that carries the information. Normally, the laser 

wavelengths are selected to be at 1300 nm and 1550 nm, corresponding to the lowest 

known values of dispersion and attenuation, respectively. The RF (10 kHz- 

300 MHz) or the microwave (300 MHz- 300 GHz) signal can be carried on the laser 

frequency (around 200 THz) and transported over the fibre links in several ways. The 

simplest way is to directly modulate the injection current of a semiconductor laser 

diode (direct modulation) or to drive an electro-optic modulator (external 

modulation).  
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A. Direct Modulation Scheme 

The direct modulation scheme and the laser light output power versus injection 

current (L-I) of a typical semiconductor laser are shown in Fig. 2.5. The biased laser 

emits a constant level of optical power P0 if there is no RF signal. When the RF 

signal is applied, the optical power is deviated from bias point P0 according to the 

change of the driving current. The L-I curve shows that the output laser power 

increases slowly at low current values up to the threshold point Ith. Above the 

threshold current level, the optical output increases rapidly until it reaches power 

saturation. Power saturation is basically due to heating of the laser junction which 

results from internal losses or current leakage at high operating power [10]. A large 

input current will give high optical output power and high signal to noise ratio. 

However, this can drive the laser into a non-linear region where distortion occurs. 

Another serious limitation is due to the clipping and distortion at the nonlinear region 

near the knee of the L-I curve. That means the laser diode should be biased at a point 

in the linear region where there is minimum distortion. The output laser power Popt 

versus current I in the linear region can be given as: 

 

                          SththLopt IIIII
e

hf
P  );(   2.1 

 

where h is Plank‟s constant, f  is the laser frequency, e is the electron‟s charge, Is is 

the saturation current, and ηL is the laser quantum efficiency, that is, the average 

number of the generated photons per electron. Semiconductor lasers are classified 

into a single and multimode type.  

 

Fig. 2.5. Direct intensity modulation of the optical signal. 



 19 

A Fabry Perot (FP) laser is a multimode laser and emits light in several longitudinal 

modes that only satisfy the condition of constructive interference of forward and 

backward travelling optical waves in the cavity. However, a distributed feedback 

laser diode (DFB-LD) lases in a single longitudinal mode generated from the 

coupling between the forward and backward wave. This occurs due to the periodic 

variation of the refractive index across one side of the active layer. There are some 

important factors that should be considered when semiconductor lasers are directly 

modulated in optical fibre communication systems.  

 

Modulation bandwidth: In a typical semiconductor laser, the modulation bandwidth 

is an important parameter in a RoF system where it sets the limit on the maximum 

RF frequency attainable in a direct modulated laser. The modulation response for a 

laser is relatively flat over a wide frequency range with a peak at the relaxation 

oscillation frequency as shown in Fig. 2.6. This peak is due to the intrinsic response 

of the device, and then drops sharply for higher frequencies indicating a decrease of 

the laser‟s responsivity. Normally, this relaxation oscillation frequency increases 

with the bias current and hence increases the modulation bandwidth of the laser 

diode. A modulation bandwidth of 30 GHz was reported in multiple quantum well 

(MQW) laser at 1550 nm wavelength and 37 GHz for a distributed Bragg reflector 

(DBR) laser [11, 12]. The modulation bandwidth can also be extended further by 

more than five times that of the free running laser by using an injection locking 

technique. The improvement of the optical bandwidth is achieved by injecting the 

semiconductor laser with another free running laser with a specific power and 

detuned frequency. Recently, an enhancement in modulation bandwidth using optical 

injection was recorded for DFB laser at 44 GHz, and vertical cavity surface emitting 

laser (VCSEL) at 50 GHz [13, 14].   

 

Laser noise: The main contribution to laser noise is due to random spontaneous 

emission. Each spontaneously emitted photon adds a small field component with 

random phase to the coherent field, and thus results in fluctuations of both the 

amplitude and phase of an optical source. The unwanted intensity variation is known 

as relative intensity noise (RIN) while the phase noise leads to a finite linewidth. The 

value of RIN is a function of the modulation frequency and degrades the signal to 
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noise ratio [15]. In a typical semiconductor laser at 1550 nm, the RIN increases with 

the modulation frequency, and peaks at the relaxation oscillation frequency. For 

higher frequencies, the laser can not respond to fluctuations and thus the RIN 

decreases rapidly. The laser phase noise is converted to intensity noise after 

transmission through a fibre due to fibre dispersion [16]. This noise contributes to 

the RIN and limits the signal to noise ratio at the receiver end.  

 

 

Fig. 2.6. Frequency response for 1.55 μm  laser with several bias levels.  

 

Frequency chirping: Direct modulation of a laser not only changes the output power 

of the laser but also the emission frequency [15]. This is due to the carrier density in 

the cavity varying with the changing current, which results in a change in the 

refractive index of the cavity. Since the laser wavelength is a function of refractive 

index, the emitted frequency fluctuates with the changes in the injected current. This 

is known as frequency chirping and causes optical spectral broadening [15].  Such 

spectral broadening affects the pulse shape at the fibre output because of fibre 

dispersion and limits the propagation length in optical communication systems. 
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Several methods have been used to reduce the chirp. One direct method is to design 

semiconductor lasers with small values of the linewidth enhancement factor α.  Most 

semiconductor lasers have typical values of α in the range of 3-5. A small broadening 

in the linewidth under direct modulation was achieved in quantum well lasers [17], 

and a further reduction has been shown for strained quantum wells [18]. The chirp 

reduction in the high speed modulated semiconductor laser was also achieved by 

using injection locking with a CW laser [19]. Another way to eliminate the laser 

chirp is to modulate the laser output by using an external modulator.  

B. External Modulation Scheme 

When semiconductor lasers are not modulated, they exhibit less RIN [20], and 

problems such as chirp and distortion are eliminated. Therefore, an externally 

modulated optical system offers an alternative way to overcome the difficulties of 

direct laser modulation. As a results many RoF system that have been proposed use 

external modulators. 

 

There are two different principles of an external optical modulator used in optical 

fibre communication: electro-optic effect, where the applied electric field changes 

the optical refractive index, and electro-absorption effect, where the optical 

absorption changes under the influence of electric field changes. The electro-

absorption materials are semiconductors that can be easily integrated with the 

continuous wave (CW) laser diode [21]. In electro-optic modulators, the substrate is 

made of an insulating material (lithium niobate (LiNbO3)) which has many 

advantages such as a refractive index that changes linearly with applied voltage, high 

electro-optic coefficient, and stability at normal electronic operating temperatures 

[22]. This type of modulator can handle much higher optical powers (up to 400 mW) 

than electro-absorption modulators (limited to a few tens of milliwatts) [23], and 

exhibits much higher extinction ratio (~25 dB) than EAMs (~10dB) but in general 

they also need higher drive voltages. 

 

The main type of electro-optic modulator used in photonic systems is the Mach-

Zehnder modulator (MZM). Figure 2.7 shows the schematic diagram for employing a 

MZM and its transfer function. The input light is split into two paths in the upper and 
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lower waveguide. The optical phase of the upper arm is shifted with respect to the 

phase in the lower arm according to the applied voltage. Then, the two waveguides 

are recombined again in the output to produce constructive or destructive 

interference based on the relative phase of the light in the two arms. The transfer 

function of the MZM is a raised cosine function as shown in Fig. 2.6 and given by: 
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where tff  is the optical transmission factor of the device and related to its loss, V is 

the applied voltage, Vл is the half wave voltage required to change the output from 

maximum to minimum, and Φb is the bias phase. This modulator has a sinusoidal 

transfer function, and therefore needs to be biased at the quadrature (half power 

point) with a small modulation index to operate in the linear region. The link gain or 

the slope efficiency can be enhanced by using devices with low switching voltages or 

increasing the input light power for a given modulation depth. The main 

disadvantage in this modulator is the nonlinearity of the light output power versus 

voltage transfer characteristics of the interferometeric intensity [24]. Other 

disadvantages of external modulators include optical loss, polarization sensitivity, 

and it is a separate component which makes its application more complex and costly.  

 

 

 
Fig. 2.7. Intensity modulation of the optical signal. 
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2.5.2 Optical Receiver  

The function of an optical receiver is to convert the optical signal back into electrical 

form and has an enough large bandwidth that can handle the RF frequency used in 

the RoF system [22]. Optical receivers normally consist of a photodetector which is a 

photodiode and an amplifier. There are two common types of photodiode: the PIN 

and avalanche photodiode (APD). The PIN diode consists of an intrinsic layer (i-

layer) inserted between a p-type layer and an n-type layer. When this structure is 

reverse biased, and light is incident upon it, it generates a current which is 

proportional to the intensity of the light. The ratio of the current generated to light 

absorbed is known as the responsivity and is normally around 0.5- 0.7 A/W. For PIN 

diodes this current is usually very small, so they are often coupled directly to a 

transimpedence amplifier which converts the small current to a more useable voltage. 

 

Receiver sensitivity can be greatly improved by using an avalanche photodiode 

(APD). The device structure of an APD differs from that of a PIN photodiode mainly 

in one additional layer p-type is added between i-layer and n
+
-layer.  Under reverse 

bias, a high electric field exists in this additional layer where secondary electron-hole 

pairs are generated through the impact ionization process. This increases the 

responsivity of the detector by several orders of magnitude higher than a PIN.  

 

The disadvantages of APDs are that they are noisier than PIN diodes and their gain is 

temperature dependent. In addition, the multiplication process reduces the response 

time and hence the bandwidth of the device. Traditionally the bandwidth of APDs 

was limited to less than 5 GHz but advances in the technology have yielded APDs 

with bandwidths of more than 10 GHz. In optical fibre communications, the PIN 

device is cheaper, less sensitive to temperature and requires lower reverse bias 

voltage than the APD. However, the APD is generally preferred when the system is 

loss limited, as occurs for long distance links.  

 

2.5.3 Optical fibre links 

The communication channel in most lightwave systems is the optical fibre which 

transports the optical signal from the transmitter to receiver. Therefore, it is 
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important to consider the effect of the fibre during the propagation of the optical 

signal. Optical fibre attenuation and dispersion are very important factors that 

degrade the system performance due to a reduction in signal to noise ratio or result in 

an increase in the signal distortion.   

 

Fibre attenuation is an important design issue in optical fibre systems and is 

relatively low, typically 0.5 dB/km or 0.2 dB/km for 1330 nm and 1550 nm 

windows, respectively. This attenuation is mainly caused by the absorption of the 

light by impurities in the glass (primarily OH ions), and by light scattering due to the 

interactions between the photons and silica molecules, known as Rayleigh scattering 

[15]. This attenuation decreases the signal to noise ratio at the optical receiver and 

limits the transmission distance of the fibre optic communication systems. In some 

optical systems, optical amplifiers such as erbium doped fibre amplifiers (EDFAs) 

which can easily provide gain of 20 dB or more are used to increase the link length 

or provide distribution to a large number of users but this decreases the signal to 

noise ratio.  

 

Fibre dispersion is another important issue which leads to the broadening of data 

pulses as the optical signal travels along the fibre causing intersymbol interference 

(ISI) between bits. There are three types of dispersion in the fibre. Intermodal 

dispersion results from the modes of a multimode fibre propagating with different 

velocities. This is also called modal dispersion and does not occur in the single mode 

fibre. The second dispersion is material dispersion or chromatic dispersion.  

 

The refractive index of the fibre material is a function of wavelength. The material 

dispersion means that each wavelength travels with a different velocity and arrives at 

different times. This dispersion occurs in all transmission systems since the light 

source and data signal has finite bandwidth. The third type of dispersion is 

waveguide dispersion and results from the waveguide characteristics such as fibre 

indices and the shape of the fibre core and cladding. This type of dispersion is very 

small and can be neglected in the transmission link. The combination of the material 

and waveguide dispersion can be reduced to zero by operating at 1330 nm or at 

1550 nm in dispersion shifted fibre (DSF). Another way to decrease the effects of 
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dispersion is to use a compensating fibre with a strong negative dispersion known as 

dispersion compensation fibre (DCF) [25, 26]. 

 

The effect of chromatic dispersion is more significant at higher modulation 

frequencies and severely limits the fibre transmission distance. In the conventional 

intensity modulated direct detection (IM-DD) RoF system, the information signal is 

generated on both sides of the optical carrier which is known as double sideband 

(DSB) modulation [27]. When the optical carrier and the two sidebands are 

transmitted over fibre, the chromatic dispersion causes a phase change for each 

sideband depending on the fibre length, modulation frequency, and chromatic 

dispersion parameter. This results in the two RF signals generated by the two 

sidebands beating with the optical carrier, at the receiver, being out of phase, 

resulting in low RF power.  

2.6 Network Architectures for RoF technologies 

The integration between broadband wireless and the optical access networks enables 

a wide range of applications and services for wireless connectivity between the users. 

RoF networks have different architectures according to the required application.  In 

mobile cellular networks, rural and urban regions are divided into small geographical 

areas known as cells and connected to the central station through optical fibre as 

shown in Fig. 2.8. The first cellular system was achieved by using high power base 

stations inside relatively large cells or macrocells (with a diameter of 16 – 48 km). 

This was possible only for a small number of users, however to increase system 

capacity, each large cell is split into several small cells known as microcells (a few 

hundred meters) where the carrier frequency can be reused [28]. 

 
 

In each microcell radio port, the base station consists of a simple and compact 

optoelectronic repeater connected by an optical fibre link to the centralized radio and 

control equipment. This allows the changes of modulation format or system 

frequency to be done at the central location without the need to update any radio 

equipment. For in-building coverage, RF signals are very weak and often can not 

penetrate building walls. Therefore, RoF links were also used for in building 

coverage for 2G networks such as large office blocks, shopping malls, airports, 
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stadium, and subways [29].  

 

Fig. 2.8. Fiber feeding for mobile cellular communications 

 

The indoor distribution of radio system over fibre, known as fibre distributed antenna 

system (DAS), is considered as a large mass market for extending the capacity and 

range of radio signals in a variety of locations [5]. Figure 2.9 shows a commercial 

RoF system for fibre based on DAS for indoor wireless signal distribution. In this 

case, the wireless signals are distributed to a large number of remote sites, known as 

pico-cells, (in a building with a high user density) and each cell is connected to the 

central station through the fibre infrastructure [30].  

 

Fig. 2.9. RoF architecture for fibre based distributed antenna system. 

 

Another application for RoF network architectures is shown in Figure 2.9.  In this 

configuration, a large metropolitan area network (MAN) supports multiple optical 

wavelength division multiplexed (WDM) channels, each carrying data rates up to 
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10 Gbps. A number of centralized switching nodes are interconnected together via an 

optical MAN ring. Each switching node provides control, switching, and routing to 

the remote node (RN) or base stations (BS). As shown in Figure 2.10, the CO can be 

connected to several RNs using ring or star topology as in CO1 and CO2 

respectively. In either arrangement, the optical WDM channels at the CO are de-

multiplexed and dropped from the MAN to the remote terminals. Then, each optical 

channel is directed to the specified BS for signal detection and radio distribution. A 

full duplex, WDM system, star- tree architecture was demonstrated by Smith et. al 

for delivering broad band wireless access to the customers [32]. 

 

 

Fig. 2.10. MAN architecture for RoF technology [6]. 

 

2.7 Limitation of Radio over Fibre 

All optical communication systems suffer from noise and distortions on the optical 

transmission link. Noise added to the optical signal produces bit errors at the 

decision gate in the receiver side, while distortion results in inter-symbol interference 

(ISI) due to the induced changes in the optical pulse shapes which also increases the 

received bit errors. The system performance is determined by the measurement of bit 

error rate (BER), usually plotted as a function of received optical power. Therefore, 

the determination of noise and distortion contribution is vital in digital and analogue 

optical communication systems and tends to limit the radio system distributions [15, 
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33]. In this section we describe the main noise sources and the nonlinear distortions 

in a RoF system. 

2.7.1 Noise Sources in the RoF links  

The noise sources in optical communication systems include the laser‟s relative 

intensity noise (RIN), the laser‟s phase noise, the photodiode‟s shot noise, and 

amplifier‟s thermal noise [33]. In a semiconductor laser, the output of the laser 

exhibits intensity fluctuations even when the laser is biased at a constant current with 

negligible current fluctuations. These intensity fluctuations known as RIN are 

embedded into the received signal and degrade the signal quality. Another 

phenomenon called mode partition noise (MPN) can also increase the effect of RIN. 

In practice, single mode semiconductor lasers oscillate in a single longitudinal mode 

and are accompanied by one or more side modes. The main and side modes exhibit 

fluctuations in their intensities, but the total intensity remains relatively constant. 

These mode fluctuations have no effect in the absence of fibre dispersion, as all 

modes are received at the same time on the photodiode. However, in the presence of 

the fibre transmission all modes do not arrive simultaneously at the receiver because 

they travel at slightly different speeds and cause an amplitude fluctuation of the 

signal at the decision circuit in the receiver. Therefore, MPN can severely affect the 

performance of an optical communication system and is dependant on the side mode 

suppression ratio (SMSR) which is defined as the ratio of the main mode power to 

the power of the most dominant side mode. In practice, most commercial DFB 

semiconductor lasers are accompanied by one or more side bands that are suppressed 

by more than 30 dB [15].  

 

During signal propagation over the fibre, the optical fibre channel does not 

contribute to noise generation in the optical signal but reduces the signal power 

through attenuation. However, optical amplifiers are used to increase the signal 

power but at the same time decrease the SNR by at least 3 dB [33]. All optical 

amplifiers add noise to the signal due to amplified spontaneous emission (ASE). The 

effect of the spontaneous emission is to add fluctuations to the amplified power 

which are converted to current fluctuations during the photodiode detection. 
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The receiver noise includes shot noise, photodiode dark current noise, and thermal 

noise from the RF amplifier. In most practical cases for low input power, the 

dominant noise source is the thermal noise which is due to random thermal motion of 

electrons and causes current fluctuations at the receiver output. This noise can be 

reduced by increasing the optical power or the load resistance. Therefore, many 

attempts were made to reduce this noise contribution by using high impedance or 

transimpedance front ends. However, if the incident power is large, the receiver 

performance is dominated by the shot noise where the electric current consists of a 

stream of electrons that are generated at random times [34]. All these mentioned 

noise processes tend to limit the noise figure and dynamic range (DR) of RoF links.  

2.7.2 Distortions in the RoF systems 

The distortions in optical communication systems are produced from the fibre 

dispersion and nonlinearities in the laser. The effect of fibre dispersion as described 

previously severely limits the overall transmission distance and the maximum 

transmission rate [33].  Another important type of distortion is the nonlinearity in the 

transfer function of the laser or the external modulator. Consider two input signals at 

f1 and f2 which are fed into the link. The output generates spurious signals at the 

second and third harmonics of the input signals due to nonlinearity. The second 

harmonic signals can be easily filtered out for narrow band systems, while the most 

important type of distortion are the third harmonics 2f1 – f2  and 2f2-f1 which are 

known as the third order inter-modulation products (IM3) [23]. These spurious 

signals fall in band and cause signal distortions. Fig. 2.11 shows the output power of 

the fundamental signal and IM3 signal as a function of the input power. The 

fundamental signal has a slope of one and varies linearly with input power, while the 

IM3 signal has a slope of three and varies with the cube of the input power.  The 

intersection point between these two lines is an important parameter of optical RoF 

links. The other important parameter is the spur free dynamic range (SFDR), which 

can be defined as the range of the input power bounded by the intersection between 

the fundamental and IM3 with the noise floor. That means that the stronger signal 

power is limited by a point where the intermodulation products reach the noise floor, 

whereas the weaker signal is limited by the noise floor. Dynamic range (DR) is an 

essential parameter for cellular communication systems due to the wide range of the 
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received power from MUs to the base station. The received input RF power 

difference between users who are close by and those at the cell edge can be greater 

than 80 dB. However, this effect of DR can be neglected for in-building coverage 

systems where the cells are in range of pico and microcells. Many research 

techniques have been also proposed to combat these nonlinearities and increase the 

dynamic range in RoF links by using distortion cancellation methods [35-37], or by 

reducing system‟s noise floor including the RIN, shot noise, and phase induced 

intensity noise [38, 39].  

 

Fig. 2.11. Output power versus input optical power for analogue optical links, illustrating 

spurious free dynamic range (SFDR) due to third order inter-modulation products. 

2.8 Summary 

This chapter gave an introduction to RoF technology and discussed basic 

characterization and operation of the required optical components. It has also shown 

the distribution of the wireless signal over optical links which are classified into 

three transmitter configurations depending on the hardware components and cost. 

This shows that centralization of system complexity and simplification of RAUs can 

help to reduce installation and maintenance costs especially in large scale coverage 

areas (i.e. picocell networks) compared to the conventional distributed radio. System 

impairments such as noise, distortion, and fiber dispersion degrade the signal-to-

noise ratio and limit the system transmission lengths. However, these impairments 

can be reduced with careful management of the optical system. Overall, we can see 

that RoF systems have a very important role in radio signal distribution for cellular 

networks, and high speed applications in wireless personal networks. In the next 
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chapter, we will discuss more about optical generation methods and the distribution 

of RoF systems for future broadband wireless communication concepts such as ultra-

wide band (UWB) and millimeter wave (mm-wave) systems. 



 32 

References 

[1] S. Hunziker and W. Baechtold, "Cellular remote antenna feeding: Optical fibre or 

coaxial cable?" Electronic Letters, vol. 34, no. 11, pp. 1038-1040, 1998.  

[2] A. J. Cooper, "„Fibre/radio‟ for the provision of cordless/mobile telephony 

services in the access network," Electronic Letters, vol. 26, no. 24, pp. 2054, 

1990.  

[3] M. Sauer, A. Kobyakov, and J. George, "Radio over fiber for picocellular 

network architectures," Lightwave Technology, Journal of, vol. 25, no. 11, pp. 

3301-3320, 2007.  

[4] J. J. O'Reilly, P. M. Lane, and M. H. Capstick, ,"Optical generation and delivery 

of modulated mm-waves for mobile communications," in B. Wilson, Z. 

Ghassemlooy, and I. Darwazeh, Analogue optical fibre communication, 1st ed., 

the institute of Electrical Engineers, London, 1995.  

[5] D. Novak, et al.,"Hybrid fiber radio- concepts and prospects," in C. H. Lee, 

Microwave photonics, 1st ed., CRC Press, USA, 2007.  

[6] C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. Lee, Y. Yang, D. Novak, and 

R. Waterhouse, "Fiber-wireless networks and subsystem technologies," 

Lightwave Technology, Journal of, vol. 28, no. 4, pp. 390-405, 2010.  

[7] D. Wake,"Radio over fiber systems for mobile application," in H. Al-Raweshidy 

and S. Komaki, Radio over fiber technologies for mobile communications 

networks, Artech House, Norwood, 2002.  

[8] L. D. Westbrook and D. G. Moodie, "Simultaneous bi-directional analogue fibre-

optic transmission using an electroabsorption modulator," Electronic Letters, 

vol. 32, no. 19, pp. 1806, 1996.  

[9] D. Wake, D. Johansson, and D. G. Moodie, "Passive picocell: A new concept in 

wireless network infrastructure," Electronic Letters, vol. 33, no. 5, pp. 404, 

1997.  

[10] G. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers Van 



 33 

Nostrand Reinhold, 1986.  

[11] Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz 

bandwidth 1.55-&mu;m strain-compensated InGaAlAs-InGaAsP MQW laser," 

Photonic Technology Letters, vol. 9, no. 1, pp. 25-27, 1997.  

[12] L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, T. W. Berg, and B. Tromborg, 

"Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with 

a coupled-cavity-injection-grating design," Electronic Letters, vol. 39, no. 22, 

pp. 1592-1593, 2003.  

[13] L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. 

Amann, "50 GHz directly-modulated injection-locked 1.55 μm VCSELs," 

Optical Fiber Communication Conference, Technical Digest.(OFC/NFOEC 

2005) , Vol. 4, pp. 3, 6 -11 March, Anaheim, California, USA, 2005.  

[14] E. K. Lau, Hyuk-Kee Sung, and M. C. Wu, "Ultra-high, 72 GHz resonance 

frequency and 44 GHz bandwidth of injection-locked 1.55-/spl mu/m DFB 

lasers," Optical Fiber Communication and the National Fiber Optic Engineers 

Conference (OFC/NFOEC 2006), pp. 3, 5- 10 March, Anaheim, California, 

USA, 2006.  

[15] G. P. Agrawal, Fiber-Optic Communication Systems, Wiley-Interscience, 2002.  

[16] W. K. Marshall, B. Crosignani, and A. Yariv, "Laser phase noise to intensity 

noise conversion by lowest-order group-velocity dispersion in optical fiber: 

Exact theory," Optics Letters, vol. 25, no. 3, pp. 165-167, 2000.  

[17] C. A. Green, N. K. Dutta, and W. Watson, "Linewidth enhancement factor in 

InGaAsP/InP multiple quantum well lasers," Applied Physics Letters, vol. 50, 

no. 20, pp. 1409, 1987.  

[18] H. D. Summers and I. H. White, "Measurement of the static and dynamic 

linewidth enhancement factor," Electronic Letters, vol. 30, no. 14, pp. 1140-

1141, 1994.  

[19] C. Lin, J. K. Andersen, and F. Mengel, "Frequency chirp reduction in a 2.2 

Gbit/s directly modulated InGaAsP semiconductor laser by CW injection," 



 34 

Electronic Letters, vol. 21, no. 2, pp. 80-81, 1985.  

[20] W. Stephens and T. Joseph, "System characteristics of direct modulated and 

externally modulated RF fiber-optic links," Lightwave Technology, Journal of, 

vol. 5, no. 3, pp. 380-387, 1987.  

[21] R. H. Kingston, "Electroabsorption in GaInAsP," Applied Physics Letters, vol. 

34, no. 11, pp. 744, 1979.  

[22] P. k. L. Yu and M. C. Wu,"Photodiodes for high performance analog links," in 

William S. C. Chang, RF photonic technology in optical fiber links, 1st 

ed.,Cambridge University Press, United Kingdom, 2002.  

[23] R. C. Williamson and R. D. Esman, "RF photonics," Lightwave Technology, 

Journal of, vol. 26, no. 9, pp. 1145-1153, 2008.  

[24] B. H. Kolner and D. W. Dolfi, "Intermodulation distortion and compression in 

an integrated electrooptic modulator," Applied Optics, vol. 26, no. 17, pp. 3676-

3680, 1987.  

[25] G. Keiser and G. Keiser, Optical Fiber Communications, McGraw-Hill, 1999.  

[26] J. M. Senior, Optical Fiber Communications: Principles and Practice Prentice 

Hall, 1992.  

[27] U. Gliese, S. Norskov, and T. N. Nielsen, "Chromatic dispersion in fiber-optic 

microwave and millimeter-wave links," Microwave Theory and Techniques, 

IEEE Transaction on, vol. 44, no. 10, pp. 1716-1724, 1996.  

[28] L. J. Greenstein, N. Amitay, Ta-Shing Chu, L. J. Cimini Jr., G. J. Foschini, M. J. 

Gans, I. Chih-Lin, A. J. Rustako Jr., R. A. Valenzuela, and G. Vannucci, 

"Microcells in personal communications systems," Communication Magazine, 

IEEE, vol. 30, no. 12, pp. 76-88, 1992.  

[29] A. Arredondo, D. M. Cutrer, J. B. Georges, and K. Y. Lau, "Techniques for 

improving in-building radio coverage using fiber-fed distributed antenna 

networks," Vehicular Technology Conference, 'Mobile Technology for the 

Human Race., IEEE 46th  1996, vol.3, pp. 1540-1543, 28
th

 April - 1
st
 May, 



 35 

Atlanta, Georgia, USA.  

[30] A. Ng'oma and M. Sauer, "Radio-over-fiber technologies for high data rate 

wireless applications," 2009 IEEE Sarnoff Symposium, pp. 1-6, 30
th

 March- 1 

April, NJ, USA.  

[31] CommScope :Andrew [Online]. Available: http://www.commscope.com/andrew 

/eng/index.html. [accessed: 10/11/2010]  

[32] G. H. Smith, D. Novak, and C. Lim, "A millimeter-wave full-duplex fiber-radio 

star-tree architecture incorporating WDM and SCM," Photonics Technology 

Letters, IEEE, vol. 10, no. 11, pp. 1650-1652, 1998.  

[33] P. A. Davies and N. J. Gomes,"Subcarrier multiplexing in optical 

communication networks," in B. Wilson, Z. Ghassemlooy, and I. Darwazeh, 

Analogue optical fibre communications, Institution of Electrical Engineers, 

London, 1995.  

[34] J. C. Palais, Fiber Optic Communications (5th Edition) Prentice Hall, 2004.  

[35] S. Yaakob, W. R. W. Abdullah, M. N. Osman, A. K. Zamzuri, R. Mohamad, M. 

R. Yahya, A. F. A. Mat, M. R. Mokhtar, and H. A. A. Rashid, "Effect of laser 

bias current to the third order intermodulation in the radio over fibre system," 

RF and Microwave Conference, 2006. RFM 2006. International, pp. 444-447.  

[36] D. Hassin and R. Vahldieck, "Feedforward linearization of analog modulated 

laser diodes-theoretical analysis and experimental verification," Microwave 

Theory and Techniques, IEEE Transactions on, vol. 41, no. 12, pp. 2376-2382, 

1993.  

[37] L. Roselli, V. Borgioni, F. Zepparelli, F. Ambrosi, M. Comez, P. Faccin, and A. 

Casini, "Analog laser predistortion for multiservice radio-over-fiber systems," 

Lightwave Technology, Journal of, vol. 21, no. 5, pp. 1211-1223, 2003.  

[38] R. D. Esman and K. J. Williams, "Wideband efficiency improvement of fiber 

optic systems by carrier subtraction," Photonics Technology Letters, IEEE, vol. 

7, no. 2, pp. 218-220, 1995.  



 36 

[39] S. Mathai, F. Cappelluti, T. Jung, D. Novak, R. B. Waterhouse, D. Sivco, A. Y. 

Cho, G. Ghione, and M. C. Wu, "Experimental demonstration of a balanced 

electroabsorption modulated microwave photonic link," Microwave Theory and 

Techniques, IEEE Transactions on, vol. 49, no. 10, pp. 1956-1961, 2001.  

 



 37 

Chapter 3 –RoF for Short Range Wireless 

Communications 

The demands for fast, high capacity and more secure wireless connections have 

attracted much attention from both researchers and industrial developers. In addition, 

the rapid evolution of wireless technologies facilitates the distribution of high-speed 

applications to the customers which takes the form of short range wireless 

communications. Ultra-wideband (UWB) wireless communication is one of the most 

important candidates for short range wireless signals at high data rates (>1 Gbps). It 

has been allocated in unlicensed frequency band between 3.1 – 10.6 GHz (7.5 GHz 

width) by the Federal Communications Commission (FCC) of the United States in 

February, 2002 [1]. This frequency band is partially occupied with narrowband 

wireless services. Therefore the average radiated power of the UWB signal was 

limited to -41.3 dBm/MHz to minimize the effect of interference on the existing 

signals. Another frequency band has also been located at millimetre-wave (mm-

wave) frequencies around 60 GHz to support high-speed data for medium and short 

range wireless applications [2]. The FCC set aside 7 GHz of spectrum at 57 - 64 GHz 

for general unlicensed applications with an equivalent isotropic power density 

(EIRP) of 40 dBm/MHz [3, 4]. The wide bandwidth and high allowable transmit 

power at 60 GHz enable multi-Gbps wireless transmission over typical indoor 

distances. However, signals at 60 GHz suffer from high path loss of about 20 – 

40 dB compared to the low microwave frequencies [5, 6] and the atmospheric 

absorption such as gases, rain, scattering, and diffraction loss also increases the 

power loss by 7- 15.5 dB/km [6]. Despite these disadvantages, the 60 GHz signal is 

confined within a room in an indoor environment, allowing high frequency reuse and 

more densely packed communication links [7]. Typically, 60 GHz systems are 

designed to provide multi-Gigabit rates with operating range below 20 m and to 

support various applications [8]. Both frequency bands are suitable for numerous 

applications for high data rate in home area networking (HAN) and wireless personal 

area networking (WPAN), such as transferring a video stream between a VCR, 

camcorders, and other consumer electronic devices such as laptop, DVD, digital 

camera, and HDTV monitors.  
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In this chapter, we describe the spectral definition and regulations of the UWB and 

60 GHz mm-wave technologies in section 3.1. The type of UWB signals and 

modulation techniques are presented in section 3.2, followed by discussion of several 

approaches for transmitting UWB over fibre in section 3.3. In section 3.4, the optical 

methods for generation and distribution of mm-waves are then described in terms of 

the receiver technology. Finally, the chapter is concluded and summarised in section 

3.5.   

3.1 Regulations and Spectral Definitions  

3.1.1 Conventional UWB Radio Signal 

The FCC‟s First Report and Order (R&O) in 2002 has defined UWB technology as 

any UWB device emitting a signal with a fractional bandwidth greater than 0.2 or a 

bandwidth of at least 500 MHz [1]. This fractional bandwidth is defined by: 
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where ƒH and ƒL are the upper and lower frequency at -10 dB emission point. The 

FCC mandated Part 15.209 rules to approve the UWB deployment in the unlicensed 

frequency band from 3.1 to10.6 GHz for indoor wireless communications, with a 

power spectral density (PSD) less than -41.3 dBm/MHz as shown in Fig. 3.1. The 

FCC‟s spectrum mask for UWB also has additional power limitations for the existing 

radio systems such as global position system (GPS) at 1.5 GHz and digital cellular 

network at 1.9 GHz.  

 

In Europe and other countries, the UWB spectrum has different regulations to protect 

other wireless signals such as WiMax terminals or Radar systems [9-11]. In July, 

2007, the electronic communication committee (ECC) of the European conference of 

posts and telecommunications (CEPT) has defined UWB for short range radio 

communication with bandwidth more than 50 MHz in the frequency bands 3.1- 4.8 

GHz, and 6- 8.5 GHz with emission level less than -41.3 dBm/MHz [9]. The 
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frequency band over 3.1- 4.8 GHz has a restricted operation with mitigation 

technique detection and avoidance mechanism (DAA) on UWB devices. The DAA 

mechanism is used to reduce the emitted power to −70 dBm/MHz level (or 

completely stop it). In Japan, the ministry of internal affairs and communications 

(MIC) has approved the frequency bands 3.4 - 4.8 GHz and 7.25- 10.25 GHz with 

emission limit similar to FCC rule. A DAA mechanism is also required for the 

emission level of – 41.3 dBm, otherwise -70 dBm is required [10]. While in Korea, 

the UWB spectrum has been assigned in the frequency band 3.1- 4.2 GHz under 

DAA control, and 7.2 - 10.6 GHz without DAA requirement [11]. 

             

Fig. 3.1. UWB spectral mask for indoor distribution 

 

Generally, UWB communication is allowed with a very low average transmitted 

power below the noise level, this restricts UWB signals to short range applications in 

comparison with the conventional narrowband systems.  

 

3.1.2 60 GHz Millimetre Wave Signals 

The unlicensed frequency band available around 60 GHz millimetre wave band has 

been assigned globally for medium and short range wireless communications. The 

frequency band, maximum transmitted power, and EIRP are listed in table 3.1 for 

various regulatory regions. The frequency band (57.0 -64.0 GHz) is regulated for 

unlicensed utilization for indoor application in most of the countries with average 

transmitted power 10 dBm. 
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Table 3.1. Frequency band, maximum transmitted power, and EIRP for various countries 

 

3.2 Types of UWB Signals 

There are two common types of UWB communications; single band and multiband 

signals [17, 18]. A single band is usually known as impulse radio UWB (IR-UWB) 

where the signal consists of very short pulses, while multiband-based is achieved by 

using orthogonal frequency division multiplexing (OFDM) and dividing the UWB 

frequency band into multiple smaller bands.  

3.2.1 IR-UWB Signals 

IR-UWB is based on sending very narrow pulses, typically on the order of 

nanoseconds, with a very low duty cycle to convey information. This small pulse 

width covers a large spectral bandwidth [18]. It is a carrier free signal that can be 

implemented with simple, low cost transceiver circuits and low consumed power.  

The extremely low power spectral density and short time duration of the pulse makes 

the transmitted signal difficult to detect and intercept, which is an advantage for 

ensuring a secure network. However, fast switching times for the transmitter and 

receiver are needed for highly precise synchronization. 

 

The pulse shape is an important key issue in IR-UWB since the choice of it can 

affect the UWB performance [19, 20]. Hence, several pulse shapes have been 

investigated for generating UWB signals. It has been shown that the Gaussian 

monocycle pulse and its higher derivatives spread its power over a wide range of 

frequencies and have virtually no DC component which makes it more suitable for 

Region 
Unlicensed Bandwidth 

(GHz) 

Transmitted 

Power (dBm) 

EIRP 

(dBm) 
Ref. 

USA/Canada 57-64 GHz  (7 GHz) 27  43  [4, 12] 

Japan 59- 66 GHz  (7 GHz) 10  58  [13] 

Australia 59.4-62.9 GHz (3.5 GHz) 10  27  [14] 

Korea 57- 64 GHz (7 GHz) 10  51.7  [15] 

Europe 57- 66 GHz (9 GHz) 13  57  [16] 
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UWB communications [21]. It was also reported that the higher derivatives of the 

Gaussian pulses meet more to the FCC mask with the decreasing of their bandwidth 

as the order of the derivation increase [20]. The basic Gaussian pulse equation is 

expressed as follow; 
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where A is the amplitude of the pulse, µ is the location in the time for the midpoint 

of the Gaussian pulse in time, and σ is the standard deviation or the pulse shape used 

as bandwidth decaying parameter. The n
th

 derivative of the Gaussian pulse can be 

determined from, 
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The normalized PSD for the n
th

 derivative of the Gaussian pulse is given by, 
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The order of derivative and the suitable pulse width are selected in order to get 

pulses that meet the FCC‟s mask. Fig 3.2 and 3.3 shows the higher derivatives 

Gaussian pulses and the normalized PSD for orders (1, 2, 3, and 4). It can be seen 

that the high order derivatives of the Gaussian pulse satisfies the FCC‟s mask for 

UWB indoor communications. These higher derivatives could be implemented easily 

by using a bandpass filter which acts in a similar manner as frequency derivative. 
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Fig. 3.2. Gaussian pulses for higher order derivatives. 
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Fig. 3.3. PSD for Gaussian pulses with higher order derivatives. 
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The pulse modulation scheme is also an important aspect of UWB systems. Several 

modulation schemes have been widely used in order to satisfy the application and the 

design parameters as illustrated in Fig. 3.3 [17, 22]. A pulse position modulation 

(PPM) transmits bit „1‟ as a pulse without any delay and bit „0‟ is transmitted with a 

delay τ relative to window time reference. The delay time is a fraction of a 

nanosecond and the frame time is typically much longer to avoid interference 

between pulses. In an on-off keying (OOK) modulation, the information bit „1‟ is 

encoded by the presence of a pulse and no pulse is sent for bit „0‟. A pulse amplitude 

modulation (PAM) is based on encoding the information with the amplitude of the 

impulse as illustrated in Fig. 3.2 (c) such as „0‟ bit is represented with a lower level 

of amplitude than bit „1‟.   For binary phase shift keying (BPSK) scheme, the 

polarity of the pulses is switched to encode „0‟ or „1‟ as shown in Fig. 3.2 (d).  

 

 

Fig. 3.3. UWB pulses with different modulation schemes. 

 

3.2.2 MB-OFDM UWB Signals 

MB-OFDM is a multiband scheme that divides the UWB spectrum into 14 bands 

called sub-bands each with 528 MHz bandwidth [23]. The first 12 sub-bands are 

grouped into 4 band groups and the last two sub-bands are grouped into a fifth band 

group as shown in Fig. 3.4. The sixth band group contains the sub-bands 9, 10, and 

11. The MB-OFDM transmits information on 110 subcarriers overlapped in the 

frequency domain without interference. In addition, 12 pilot subcarriers are used for 

coherent detection. Each group of OFDM signals are hopped at different frequency 
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sub-bands with a sequence determined by a time frequency hopping codes (TFC). 

This technique offers the advantage of coexistence with other narrowband signals 

and has a more relaxed synchronization requirement than IR-UWB signals. 

However, this approach needs an inverse fast Fourier transformer (IFFT) at the 

transmitter and FFT at the receiver side which makes it more complex.  

 

 

Fig. 3.4. UWB spectrum configurations for MB-OFDM [18]. 

3.3 Fibre Distribution for Short Range Wireless Signals  

As mentioned above, UWB and 60 GHz mm-wave signals are limited to short range 

distribution distance. In order to overcome this limitation and deploy it for longer 

transmission distances, RoF systems are considered as a cost effective solution to 

distribute short range wireless signals over hundreds of metres inside a building or a 

medium range network in the home or business offices [24, 25]. UWB or mm-wave 

signals over fibre can be generated first at the central office before being distributed 

to the remote access points through single mode optical fibre as illustrated in Fig. 

3.5. The modulated optical signal will then be recovered at the remote access points 

for wireless transmission. A RoF network using single mode fibre is an attractive 

method to distribute UWB radio due to the large bandwidth, low loss and the ability 

to centralise the operation. This helps to reduce the infrastructure and operational 

cost. 
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Fig. 3.5. Fibre distribution for short range wireless communication signals. 

3.4 Optical Methods for Generation and Distribution of 

UWB Signals 

A basic setup for optical distribution of UWB signals is shown in Fig 3.6 [26]. This 

setup is a full duplex transmission system and consists of a laser and photodiode at 

each end. The laser is directly intensity modulated by the input electrical UWB 

signals. After transmission over optical links, the optical UWB signal is recovered by 

direct detection at the photodiode and radiated to a wireless UWB device. The 

transmission of UWB has been investigated for single and multi-mode fibers [26, 

27]. SMF systems have a higher cost of optical single mode fibre with the advantage 

of broadband optical bandwidth, while multi mode fibre (MMF) systems exhibit very 

low cost transducers and fiber and are suitable for small area coverage.  

 

Since UWB radio signals are distributed over optical fibers, it is preferable to 

generate UWB signals directly in the optical domain without the need for an extra 

electrical-to-optical conversion. In addition, the other benefits from using the optical 

techniques are the light weight and small size of the optical components, and the 

large bandwidth that is offered by optics enables the easy generation of UWB pulses.  
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Fig. 3.6. The basic UWB over fibre distribution for up and down link. 

 

In the following subsections, we describe the optical methods for generating and 

distributing IR-UWB signals over fiber that have been developed over the last few 

years [26-37].  These approaches will be classified and discussed based on the 

method of UWB generation. 

 

A. Optical UWB Generation based on PM-IM Conversion 

Optical generation of UWB pulses was achieved by using an electro-optic phase 

modulator (EOPM) and a fixed length of single mode fiber (SMF) as shown in 

Fig. 3.7 [29]. This combination works as an all-optical microwave bandpass filter 

which was used to shape the input Gaussian pulse into that of the Gaussian doublet 

pulse that meets the UWB spectral requirement. In Fig. 3.7, the optical carrier is 

phase modulated by the Gaussian pulse train representing the data sequence, with the 

EOPM, and then transmitted through SMF to the photodiode. Due to chromatic 

dispersion in SMF, the optical phase modulated signal is converted to an intensity 

modulated (IM) signal. The frequency response is shown as inset in the Fig. 3.6 and 

forms a passband with a notch at dc value and second notch determined by fibre 

length. This generates a spectrum corresponding to Gaussian monocycle, or doublet 

pulses. However, this technique needs a certain fixed fiber length to achieve the 

desired filtering which limits the distribution distance of UWB signal. This was 

solved by using a fiber Bragg grating (FBG) and altering the location of the optical 

carrier at the linear or the quadrature slopes of the FBG frequency response to 

generate either monocycle or doublet Gaussian pulses [30].  
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Fig. 3.7. Schematic diagram of optical UWB generation based on PM-IM method. 

B. Optical UWB Generation based on Electro-Optic Intensity Modulator (EOM) 

Another technique has been used to generate optical UWB Gaussian monocycle and 

doublet pulses in [32]. Three optical light sources and two external modulators are 

exploited to generate a UWB pulse from an electrical Gaussian pulse.  However, this 

technique needs to bias the two modulators at different points in their transfer 

functions, which increases the cost and complexity of the system. Bolea et al. [38] 

proposed another scheme based on biasing two electro-optic modulators (EOMs) at 

opposite slopes in the linear region. When an electrical Gaussian pulse is applied to 

the EOMs, two optical pulses with different polarities are obtained at the output. 

Then, these pulses are combined to generate a monocycle UWB pulse by using a 

variable optical delay.  

 

In a different approach, Wang et al. proposed a simple scheme to generate doublet 

UWB pulses by employing only a single laser diode and an EOM as shown in 

Fig. 3.8 [34]. A Gaussian pulse is applied to the EOM which is biased at a nonlinear 

region near the maximum or minimum point in its transfer function, which leads to 

inversion of the pedestal or the peak of the Gaussian pulse and forms a UWB 

Gaussian doublet pulse with both polarities. An optical amplifier is used in this 

technique to compensate the insertion loss in the EOM. In this case, the bias voltage 

of EOM is high and the output power is not stable. 
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Fig. 3.8. Schematic diagram for optical UWB generation based on EOM 

C. Optical UWB Generation based on Cross Gain Modulation (XGM)   

In this technique, the cross gain modulation (XGM) effect in a semiconductor optical 

amplifier (SOA) is employed to generate UWB monocycle pulses [35]. As shown in 

Fig. 3.9, an optical Gaussian pulse pump and a continuous wave (CW) probe with 

different optical wavelengths are applied together into the SOA. When a high-power 

pulsed pump light is injected into the SOA, the variation of the pump power 

modulates the carrier density of the SOA so that the gain of the SOA varies inversely 

with the input laser power leading to a variation of the CW probe power. At the 

output of the SOA, a pair of polarity-reversed pulses is generated, with one pulse at 

the pump wavelength and the other at the probe wavelength. If a proper time-delay 

difference is introduced between the two pulses, a new pulse that has a monocycle 

shape is generated. However, this method needs two optical sources and two FBGs 

specially designed with accurate delay controlling and wavelength reflection. 

 

Fig. 3.9. Schematic diagram for optical UWB generation based on XGM 
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D. Optical UWB Generation based on Balanced Photodetection 

Optical UWB Gaussian monocycle pulses can also be generated by using a balanced 

photo-detection of modulated Gaussian pulses as has been proposed by Beltrán et al 

[39]. In this technique as shown in Fig. 3.10, a pulsed laser was used to generate 

optical Gaussian pulses that are then intensity modulated with an electrical data 

sequence. After that, the optical data pulses are split into two equal parts to drive the 

two inputs of the balanced photo-detector (BPD). An optical delay line is employed 

to adjust the relative time delay between the two signals. The pulse width of the 

Gaussian pulses and the time-delay difference are adjusted so as to generate the 

desired UWB bandwidth. This approach has been experimentally demonstrated in a 

system that has Gaussian monocycle UWB pulses with a 10 dB bandwidth of 6 GHz, 

and can transmit  at 1.25 Gbps. Another approach from Beltrán et al. has also been 

proposed based on differential photoreception of data Gaussian pulses to achieve low 

cost and less complexity [40].  Instead of using two photo-detectors, the optical data 

pulses are split after photo-detection and amplified by an electrical amplifier. The 

two outputs are then combined after adjusting their relative time delay to generate 

monocycles. This approach shows monocycles pulses with a 10 dB bandwidth of 

3.8 GHz for1.244 Gbps data transmission. 

 

Fig. 3.10. Schematic diagram for optical UWB generation using BPD method. 

E. Optical UWB Generation based on Microwave Differentiator  

Lin et al. proposed a hybrid system for generating UWB monocycle pulses [36, 37]. 

A Gaussian pulse train is generated by using a gain switched Fabry–Perot laser diode 

(FP-LD) and an erbium doped fiber amplifier (EDFA) as an external injection light 

source. These pulses are recovered by a PIN photodiode, and then filtered by using a 
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microwave differentiator to generate the first derivative of the Gaussian pulse. 

Simulated results show that a Gaussian monocycle pulse results with a 10 dB 

bandwidth of 6.5 GHz centered around 3.2 GHz. In a different approach, Lin et al. 

proposed the generation of UWB pulses by using a gain switched distributed 

feedback laser diode (DFB-LD), and a pair of UWB antennas used as bandpass 

filters to generate UWB pulses that meet FCC regulations. This approach results in 

UWB pulses with a 10 dB bandwidth of 2.8 GHz for 100 Mbps transmission, and 

2 GHz of bandwidth for  500 Mbps transmission 

3.5 Optical Methods for Generation and Distribution of 

Millimetre wave Signals 

In this section, we will discuss the methods that are available for optical generation 

of mm-waves. These methods can be classified into those that are based on intensity 

modulation and direct detection receivers, and those that are based on remote 

heterodyning receivers.    

3.5.1 Intensity Modulation Direct Detection (IMDD) Receivers 

The simplest and easiest way for optical mm-wave generation is to modulate the 

intensity of the laser output by either directly modulating the laser intensity or using 

an external modulator as shown in Fig. 3.11. After transmission through the optical 

fibre, the mm-wave can be recovered by direct detection on a photodiode, amplified 

and transmitted by the antenna. The main limitation of the direct modulation is its 

restriction to the modulation bandwidth of the laser. In addition, the laser noise is 

high due to intensity modulation, and the nonlinearity in the laser leads to inter-

modulation products that cause signal distortion. On the other hand, external 

modulators suffer from high insertion loss and need high driving voltages which in 

turn increase the cost and complexity of the system [41]. 

 

A further limitation of this method is the chromatic dispersion that reduces the 

transmission distance of the fibre. With this technique, the data signal is carried in 

side-bands on both sides of the optical carrier which is known as double side band 

(DSB) operation. Transmission of such a signal through a fibre will cause a phase 
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shift between the two sidebands due to the chromatic dispersion effect. This can 

cause fading in the received power as a result of destructive interference as the two 

side bands add vectorially [42, 43]. However, it is also possible to suppress one 

sideband to give a single side band (SSB) modulation scheme which reduces the 

power fading effect. This can be achieved by filtering one of the sidebands [44], or 

using a dual drive intensity modulator [42].  Nevertheless, this increases the 

complexity and cost of IMDD and has lower receiver sensitivity than DSB due to the 

large dc power component at the optical carrier [42, 45-49].  

 

Fig. 3.11. Schematic diagram of optical mm-wave generation using direct modulation of the 

optical intensity 

3.5.2 Remote Heterodyne Receivers 

A microwave or mm-wave signal can be generated optically by using a remote 

heterodyne receiver as illustrated in Fig. 3.12 where two phase correlated optical 

carriers are generated at the centre station with a frequency offset equal to the 

desired frequency of the microwave or mm-wave signal. The generated carriers are 

then transmitted over the fibre and beat together at a high-speed photodetector. This 

technique can be explained as follows [41, 50, and 51]. Consider two optical fields 

with angular frequencies ω1 and ω2 as shown in Fig. 3.12 and are given by 

 

  11011 cos   tEE   3.2 

  22022 cos   tEE   3.3 

 

where E01, E02 are the amplitude terms, and ф1, ф2 are the instantaneous phase terms 

of the two optical waves. When these fields are combined together and hit on the 

surface of a photodetector with a limited bandwidth, a photocurrent that is 
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proportional to the square of the sum of the two fields is generated at the output of 

the photodetector 

 

      termsothertAI PD  2121cos     3.4 

 

where A is a constant which is determined by E01, E02 and the responsivity of the 

photodetector. The first term is the only term of interest that shows that any 

frequency of the mm-wave can be generated by controlling the frequency difference 

between the two optical fields up to THz frequencies, limited only by the bandwidth 

of the photodiode. The other terms include higher frequency components that are 

suppressed at the output of photodiode due to its limited bandwidth. 

 

Using this technique can greatly reduce the bandwidth of the optical components 

required at the centre station, and can also eliminate the power fading effect due to 

fibre transmission. However, the major problem in this technique is the purity of 

generated microwave or mm-wave signal. The beating of two optical waves from 

two free running lasers produces a mm-wave signal with high phase noise if the 

phases of the two optical waves are not correlated. Therefore, it is necessary to either 

remove the actual laser signal phase noise or to correlate the phase noise of the two 

laser signals to generate a highly phase stable microwave or mm-wave signal. 

Several methods have been proposed to generate low phase noise microwave signals. 

These methods can be classified into: 

 

1- Optical injection locking (OIL), 

2- Optical phase lock loop (OPLL), 

3- Optical injection phase locking (OIPL), 

4- Microwave generation using external modulator, and 

5- Dual wavelength laser source. 

 

In the next subsection, we will give a brief description for each of them and show 

recent reported examples. 
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Fig. 3.12. Optical remote heterodyne to generate microwave signal using two optical waves  

 

A. Optical Injection Locking (OIL) 

Optical injection locking (OIL) generates high quality microwave or mm-wave 

signal by injection locking of either two slave laser diodes [52] or a multi-

longitudinal mode slave laser [53]. In Fig. 3.13, the master laser is frequency 

modulated (FM) with an RF reference to generate at the output an optical carrier and 

different orders of optical sidebands spaced by the modulating frequency. The output 

signal of the master laser is then injected into the two slave lasers. To achieve optical 

injection locking, the wavelengths of two slave lasers must be selected close to two 

sidebands, such as +2
nd

 order and -2
nd

 order sidebands as in Fig. 3.12 [52]. The 

output of the two slave lasers are phase correlated and would produce a beat note 

with low phase noise at a photodetector. In another scheme, a single multi-

longitudinal-mode slave laser was used as a replacement of the two slave lasers. A 

beat note at 35 GHz was generated by injection locking from a master laser 

modulated by an RF frequency of 5.846 GHz [53].  
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Fig. 3.13. Schematic diagram of the optical injection locking of two slave lasers using a 

frequency modulated master laser 

B. Optical Phase lock loop (OPLL) 

This approach represents another way to achieve phase coherence between two 

optical waves. The phase of one laser is locked to that of a second laser by using an 

optical phase lock loop (OPLL) as shown in Fig. 3.14. The generated microwave 

signal at the output of the photodetector is compared with an RF reference at the 

mixer and then filtered by low pass filter. The output voltage is fed back to control 

the phase of the locked laser by changing the laser cavity length or the injection 

current. However, to achieve effective phase locking this method requires two lasers 

with narrow linewidth and therefore have phase fluctuations only at low frequencies, 

which eases significantly the requirement for a very short feedback loop. A 

microwave tuneable signal from 6- 34 GHz with a linewidth less than 1 MHz was 

obtained by using two Nd: YAG lasers [54] and a package of OPLL system was 

produced with two semiconductor lasers capable of producing a microwave signal up 

to 14 GHz [55].  
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Fig. 3.14. Schematic diagram of optical phase lock loop. 

 

C. Optical Injection Phase Locking (OIPL) 

The signal quality can be further improved if the two techniques of OIL and OPLL 

are combined together. The diagram of an optical injection and phase locking (OIPL) 

is shown in Fig. 3.15. The master laser is modulated with an RF signal to generate 

harmonic sidebands. The optical output of the master laser is then divided into two 

channels before being injected into the slave laser. The slave laser is locked to the n
th

 

harmonic sideband of the master laser as in the OIL case. The other channel of the 

master laser is then combined with the output of the slave laser and beat at the 

photdetector. After that, the beat signal is mixed with a microwave reference and 

then filtered to achieve an OPLL. This technique produces a microwave signal with a 

lower phase noise compared with the other techniques. In addition, it overcomes the 

drawbacks in the OIL and OPLL, allowing locking with wide linewidth lasers and 

wide locking range [56].  The generation of a 36 GHz mm-wave was reported with a 

very narrow linewidth of a few kHz in [57] and a modulated 36 GHz mm-wave was 

also demonstrated with 140 Mbps data rate [58]. This technique greatly adds cost and 

complexity to the overall system. 

 



 56 

 

Fig. 3.15. Schematic diagram showing an optical injection locking and phase locking 

D. Microwave Generation using External Modulator 

Another technique to generate high quality microwave signals can also be achieved 

by using the non-linearity of external modulators. Here the modulator is driven with 

an RF signal to produce sidebands spaced by the driving RF frequency and phase 

correlated since they are derived from the same optical source. The use of external 

modulators has been widely used for generating frequency doubling and quadrupling 

of the RF sinusoidal drive signal. A frequency doubled electrical signal can be 

optically achieved by biasing the Mach-Zehnder modulator (MZM) at the minimum 

transmission point to suppress the even order optical sidebands. Two strong 

components therefore result centred at the optical carrier and separated by twice the 

RF drive frequency. Then, these components are mixed at the photodetector to 

generate a desired frequency doubled beat signal with a linewidth dependent only on 

the signal purity of the RF source. This was first proposed to generate a 36 GHz by 

driving the MZM modulator with an 18 GHz microwave signal in 1992 [59] and then 

was employed for a remote delivery of video services [60].  

 

A quadrupled frequency signal can be generated if the modulator is biased at the 

maximum transmission point of the transfer function to suppress the odd order 

optical sidebands. A 60 GHz millimetre wave signal was generated when a 15 GHz 

drive signal was applied to the MZM [61].  However, to ensure a clean spectrum at 

the output of a photodetector, a Mach-Zehnder filter was used to select the two 

second order sidebands and suppress the unwanted optical spectral components. 
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Another approach was used to generate a continuously tunable mm-wave signal 

based on external modulation using a MZM and a wavelength fixed optical filter 

which is used as a notch filter to remove the optical carrier as shown in Fig. 3.16 

[62]. In this approach, a 32-50 GHz mm-wave signal with low phase noise was 

generated when the electrical drive signal was tuned from 8-12.5 GHz. Both 

frequency doubling and quadrupling systems can produce a high quality mm-wave. 

However, these systems are based on biasing the MZM at the minimum or maximum 

transmission point to suppress the odd or even order optical sidebands, which would 

suffer from bias drifting, leading to poor system robustness. This can only be 

reduced by employing a complex bias control circuit.  

 

 

Fig. 3.16. Schematic diagram for generating a continuously tunable microwave signal based 

on external modulation and notch optical filter. 

E. Dual Wavelength Laser Source 

 A dual wavelength laser source is another approach to ensure that the optical modes 

become phase correlated so that the beat noise is cancelled. This technique generates 

two optical modes from the same laser cavity and separated by the desired frequency. 

The dual wavelength is different than the techniques of OIL and OPLL where the 

two wavelengths are not phase locked but are phase correlated since they are 

generated from the same laser cavity. The advantage of using a dual wavelength laser 

source is the generation of a microwave or mm-wave signal with a simpler system 

with no need for optical injection or phase locking needed in the other systems and 

can greatly reduce the system cost. The generation of 57 GHz mm-wave with a 
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linewidth less than 10 Hz was reported using a dual multi-section semiconductor 

laser modulated with 6.3 GHz [63, 64].   

3.6 Summary 

UWB radio signals and 60 GHz mm-waves are short range wireless communication 

signals due to the power restriction on UWB signals and high path loss around 

60 GHz. Therefore, in order to extend their coverage area, RoF is used to distribute 

these signals within rooms for indoor environment system. By employing optical 

techniques the flexibility for system deployment is greatly increased, allowing the 

signal transport over hundreds of meters, and contributing to low construction, 

installation and maintenance costs. Several optical techniques have been proposed 

for generating and distributing UWB or mm-wave signal over fiber. These 

techniques have been classified and reviewed here. In the next two chapters, we 

propose other methods for distributing UWB and mm-wave signals. Chapter 4 

describes two different techniques for generating and distributing UWB over fiber 

based on a gain switched DFB-LD and UWB bandpass filter, and each method is 

analyzed for system performance and stability. In Chapter 5, a modulated mm-wave 

signal is generated by using two approaches based on a gain switched laser and 

remote heterodyne receivers. Both methods are described clearly and analyzed.   
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Chapter 4 – Generation and Distribution of IR-

UWB Signals  

4.1 Introduction 

This chapter introduces two different approaches for the generation and distribution 

of electro-optic impulse radio ultra-wideband (IR-UWB) signals based on a gain 

switched laser (GSL) and pulse position modulation (PPM) scheme at a bit rate of 

1.625 Gbps. The first technique uses one GSL, and two Mach Zehnder Modulators 

(MZMs) for external data modulation [1], while the second approach is based on two 

directly modulated (DM) GSLs which is similar to a DM scheme for conversion of 

an electrical non-return-to-zero (NRZ) data signal to optical return-to-zero (RZ) data 

[2, 3]. To explore the trade off between cost, performance and reach, the 

performance of the two system setups has been evaluated using experimental 

implementations and simulations over different fibre links by using two different 

configurations of a GSL diode transmitter. 

  

The structure of this chapter is organized as follows. Section 4.2 gives the overview 

of optical distribution system for electro-optic IR-UWB signals. Section 4.3 

describes the gain switching technique and parameters of the optical pulses 

generated. Section 4.4 outlines the experimental and simulation results using the first 

transmitter setup for the electro-optic generation of IR-UWB based on a GSL and 

two external modulators. Section 4.5 then describes the experimental and simulation 

results of the second approach using two directly modulated GSLs, before section 4.6 

presents a summary and conclusion. 

4.2 System Overview 

The overall architecture of the optical distribution system is shown in Fig. 4.1. It 

consists of a central node or an optical distribution centre (ODC), which generates a 

pulse position modulated (PPM) optical signal using a GSL and a pulse pattern 

generator (PPG) at 1.625 Gbps. These optical signals are then distributed through 
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fibre links to a number of remote antenna units (RAUs). In the RAU the signals are 

photodetected, shaped to UWB signals using an electrical bandpass filter (BPF) and 

radiated through air to the radio terminal (RT). At the user end, the RT, the UWB 

signals are amplified and demodulated. The system performance has been measured 

by using a bit error rate tester (BERT) and high speed digital sampling scope. This 

system allows for the transmission of broadband data over hundreds of metres, with 

possible application areas of the proposed system involving the distribution of high 

quality video stream content from DVDs and personal video recorder to high 

definition television (HDTV) displays.  

 

 

Fig. 4.1. Block diagram of our proposed optical distribution system. 

4.3 Gain Switching Technique 

Gain switching is one of the simplest and most popular techniques for producing 

short optical pulses with high repetition rates and high peak power. This technique 

can be realized in any laser diode structure that has no external cavity or 

sophisticated fabrication technologies. The gain switching method is simply 

achieved by biasing the laser diode below the threshold and driving it with an 

electrical comb generator or a large electrical sinusoidal signal at sub-GigaHertz or 

GigaHertz frequency. The idea of gain switching originated from the observation of 

relaxation oscillations when turning on a diode laser from below threshold using 

electrical pulses with a fast leading edge. The idea of gain switching is to excite the 

first spike of relaxation oscillation and terminate it before the onset of the second 
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optical spike. This mechanism of generating short optical pulses is represented in 

Fig. 4.2. The figure shows a typical evolution in the electron and photon densities 

during a gain switched cycle. When the laser diode is biased below the threshold the 

photon density is negligible and the electron density is below the lasing threshold 

density. By applying a large sinusoidal signal, the carrier density increases above 

threshold until it reaches peak inversion density. At the same time, the photon 

density also increases slowly to such a level that stimulated emission begins to 

consume injected carriers significantly at the peak inversion point, and suppresses 

any further increase in carrier density.  

 

Fig. 4.2. Waveforms for: (a) the applied current, (b) the carrier density, and (c) the output 

pulses. 
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Gain switched pulse widths are generally of the order of 10 to 30 ps depending on 

the laser parameters and driving conditions. However, it is difficult to reduce the 

pulse width further due to the difficulty in obtaining a large initial population 

inversion at the beginning of each pulse cycle [4]. The large variation in carrier 

density also creates a number of optical pulse characteristics that are inherent to this 

technique, such as frequency chirp, timing jitter, and side mode suppression ratio 

(SMSR).  

 The frequency chirp is a key parameter that limits the system performance 

due to the significant dispersion penalty from the excessive emission 

bandwidth. This results from the carrier density variations due to the on-off 

nature of the applied electrical signal causing a variation in the refractive 

index.  

 The timing jitter is another important parameter that also affects the system 

performance of gain switched pulses. The timing jitter or pulse-to- pulse jitter 

is mainly originated from random fluctuations of the photon density in the 

laser cavity. The start up of each pulse in a gain switched laser relies upon the 

generation of random spontaneous photons. Typically, the timing jitter values 

are around 1- 10 ps and can be reduced by optimizing the driving current [5].  

 Gain switching also exhibits performance degradation due to a poor SMSR. 

Normally, distributed feedback (DFB) lasers have a SMSR of more than 

30 dB under continuous operation. However, under gain switching conditions 

the large fluctuations of photon density lead to strongly excite the side modes 

of the laser, and thus significant degradation of SMSR [6]. This then results 

in an increase in the noise of the pulses due to mode partition effect. As 

explained in Chapter (2) (see section 2.7.1), the random fluctuations between 

the propagated modes, combined with optical filtration and/or dispersion will 

manifest itself as intensity noise in the transmitted pulses [7, 8].  

Several methods have been proposed to mitigate these impairments in the gain 

switched pulses [6, 9]. It has been shown that external injection with a narrow 

linewidth continuous wave (CW) laser into the gain switched laser is a simple and 

cost efficient technique. By controlling the seeding power and aligning the seeding 

wavelength to the centre of the chirped spectrum, the lowest timing jitter and largest 
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SMSR can be observed with a slight increase in pulse width [10, 11]. 

4.4 Generation of IR-UWB Using External Modulators  

4.4.1 Experimental Setup 

The schematic diagram of the first proposed system is shown in Fig. 4.3. In the ODC 

section, the optical pulses are generated using the technique of gain switching. Three 

different laser configurations, operating at 1550 nm, were used for the gain 

switching: a Fabry Perot laser diode (FP-LD), a DFB-LD and an externally injected 

DFB-LD (EI DFB-LD). The FP-LD used was a commercially available InGaAsP 

device with a threshold current of 9 mA. The DFB-LD was a commercial NEL laser 

within a 14 pin butterfly package. The EI DFB-LD comprises of a modulated DFB 

laser and a continuous wave (CW) DFB-LD in a master-slave configuration [9]. The 

optical spectra for the three GSLs are shown in Fig. 4.4 (a), (b), and (c), respectively. 

 

The gain switching of the lasers is achieved by applying a bias below threshold in 

conjunction with an amplified sinewave at a repetition rate of 1.625 GHz. The gain-

switched (GS) pulses, which are of the order of 20 ps width, are shown in Fig. 4.5 

(a). These optical pulses are divided into two equal paths by using a 50:50 coupler. A 

pseudo random bit sequence (PRBS) of length 2
7
-1 at a bit rate 1.625 Gbps, from a 

PPG, is applied to the MZMs (as shown in Fig. 4.3).  

 

 

 

Fig. 4.3. Experimental setup for generating and distributing UWB PPM pulses by using two 

external modulators. 
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Fig.4.4. Optical spectra for gain switched: (a) FP-LD, (b) DFB-LD, and EI DFB-LD. 

 

The data output ( D ) of the PPG is used to drive the upper MZM (passing pulses for 

all logical „1‟), while the complementary output ( D ) of the PPG is used to drive the 

lower MZM (passing pulses for all logical „0‟). The output pulses from the lower 

MZM are then delayed using an optical delay line (ODL), before being combined 

with the output of the upper MZM. This composite waveform represents a PPM 

signal as shown in Fig. 4.5 (b) for the DFB-LD case for a sequence of „0010110100‟, 

which is then transmitted along a length of standard single mode fibre (SSMF) to the 

RAU. At the RAU, an optically pre-amplified receiver consisting of an erbium doped 

fibre amplifier (EDFA), an optical bandpass filter (OBPF) and a pin-photodetector 

(PIN-PD) is used to convert the optical pulses into electrical pulses. 

 

Fig. 4.5. Waveform for gain switched pulses; (a) at the laser output (point A), (b) after 

coupling (point B), and (c) at the output of UWB filter (point C). 

 

These electrical pulses are amplified and shaped to a UWB signal by using an 

electrical UWB filter (bandpass 3.1- 10.6 GHz), which acts as a differentiator and 

converts these Gaussian pulses into doublet Gaussian pulses. These pulses are shown 

in Fig. 4.5 (c) for the DFB-LD case and are broadly similar for the other lasers 
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tested. The electrical RF spectrum before and after the UWB filter are shown in Fig. 

4.6 (a) and (b). The measured RF spectrum at point A is adjusted to meet the 

stringent FCC‟s mask by setting the optical received power using a variable optical 

attenuator and the square dotted line represents the S21 of the UWB filter [12]. The 

output of the filter is then connected directly to point D in the RT using 1 m 

electrical cable. The system is evaluated without antenna transmission to isolate the 

effect of the fiber distribution system from the radio propagation and focus only on 

the UWB signal degradation over the fibre transmission link. At the RT, the signal is 

amplified and mixed with a 6.5 GHz signal (the 4
th

 harmonic of 1.625 GHz) from the 

local oscillator (LO) to down-convert the UWB signal to baseband.  

 

The output from the mixer is then amplified and filtered with a low pass filter (LPF) 

to remove the unwanted frequency components yielding a demodulated data signal. 

Bit error rate (BER) measurements are then performed for a back-to-back (BTB) 

case as well as for different fibre lengths placed between the ODC and RAU. A 

variable optical attenuator (VOA) is used with an inline power meter to enable the 

monitoring of the optical received power (Prec) before the pre-amplified receiver 

during the measurements of the BER. Eye diagrams are also recorded at the output of 

the RT by using a high speed digital sampling oscilloscope. 

  

 

Fig. 4.6. Electrical spectra for; (a) the electrical PPM pulses before and (b) after the UWB 

filter. 
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4.4.2 Results and Discussions 

In this section, two versions of the RT are considered; the first one uses the LO 

signal that is generated by a separate signal generator to down covert UWB signal 

and the second RT retrieves the LO signal from the received UWB signal (carrier 

recovery).  

A. Using Local Oscillator 

In this case, the local oscillator signal is generated from a signal generator locked by 

a 10 MHz reference signal to the signal generator at the transmitter. In Fig. 4.7, the 

BER is plotted versus received optical power (ROP) at the RAU for the three 

different optical transmitters. The eye diagrams corresponding to each of the 

transmitter configurations are shown as insets in each of the figures.  

 Fig. 4.7 (a) shows that the GS FP-LD can be used to achieve error free 

performance (BER<10
-9

) while transmitting over fibre lengths more than 450 

m. The degraded performance over 650 m is mainly due to mode partition 

noise (MPN). Dispersion in the fibre causes the fluctuations of the energy 

between the longitudinal modes of the FP-LD to be translated into intensity 

fluctuations on the transmitted optical signal, thus reducing its signal to noise 

ratio [13]. Another contributory factor to the performance degradation is the 

amplified spontaneous emission (ASE) from the EDFA (as no ASE removal 

filter is used). Optical filtering cannot be employed with this multi-mode 

transmitter scenario, as it would worsen the effect of MPN [13].  

 In the case of the DFB laser (Fig. 4.7 (b)), near error-free transmission whilst 

transmitting over 1 km of SSMF, can be achieved. In this case the system 

transmission reach is limited by noise resulting from the degradation in 

SMSR of the laser (~10 dB for gain-switched DFB), which causes MPN 

problems as outlined above for the FP laser, as well as a relatively large 

temporal jitter (5 ps) in the generated optical pulses.  

By employing external light injection, the performance of the DFB-LD can be 

greatly improved as shown in Fig. 4.7 (c) [14]. This improvement is achieved as a 

result of the enhancement of the pulse SMSR (>30 dB) which eliminates MPN, and a 

reduction of the temporal jitter (<1 ps). Hence, with this transmitter configuration 

error-free transmission over 37 km of SSMF has been achieved. 
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Fig. 4.7. Measured BER versus received optical power and eye diagrams for three different 

transmitter configurations; (a) FP-LD, (b) DFB-LD, and (c) EI DFB-LD. 

B. Using Carrier Recovery  

In the second RT configuration, the carrier recovery is realized by splitting the 

received UWB signal using a 90:10 directional coupler and passing the 10% output 

of the coupler through a BPF as illustrated in Fig. 4.8. This filter has a bandwidth of 

300 MHz and is centred at the 4
th

 harmonic. The S21 transmission of the carrier 

recovery filter is presented in Fig. 4.9. The recovered carrier is then amplified and 

used to downconvert the UWB signal. A manual phase shifter was use to eliminate 

the phase difference between the carrier and the UWB signal.  

 

Fig. 4.8. UWB radio terminal using a carrier recovery circuit. 
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Fig. 4.9. S21 transmission of the carrier recovery filter 

 

 In this section we will show that by varying the PPM delay in a signal, one can 

significantly change the spectrum of the PPM signal and system performance. Since 

in our system the pulses representing “0” are delayed, the PPM delay is defined as 

the time between the beginning of the bit period and the centre point of the “0” pulse 

and is expressed as a fraction of the bit period, e.g. if the 0‟s are delayed by a half of 

the bit slot in comparison to 1‟s the PPM delay equals 50%. Fig. 4.10 shows the 

received BER as a function of the PPM delay for both RT configurations; the 

diamonds represent the case when a separate LO is employed at the RT and the 

triangles represent the case when carrier recovery is used. It can be seen that in the 

first case the BER remains lower than 10
-8

 for a wide range of PPM delay values 

(20%-65%), while in the case of the carrier recovery there are two regions of PPM 

delay for which the BER is low: 23% - 30% and 43% - 55%. This difference in 

performance is due to the fact that the power of the fourth harmonic component 

fluctuates as the PPM delay is changed. Since, in the case of carrier recovery, it is 

this component that is used for signal down-conversion, any reduction in its power 

will have an adverse effect on the quality of the received signal. Fig. 4.10 shows also 

the plot of the total RF power in the PPM UWB signal as a function of the PPM 

delay. The total power in the radio signal was calculated by integration between 3.1 
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GHz and 10.6 GHz for the two cases.  From the plot it can be seen that the total 

power of the UWB signal varies significantly depending on the PPM delay and that, 

by correct adjustment of this parameter, the total power can be maximized, and 

lowest BER can be obtained. 

 

Fig. 4.10. Measured BER and total electrical power versus the percentage of bit slot  

 

The plots in Fig. 4.11 (a) and (b) present the RF spectrum of the UWB signal for 

PPM delays of 56% and 60% respectively. From the plots it can be seen that 

increasing the PPM delay from 56% to 60% affects the spectrum shape and reduces 

the power in the 4
th

 harmonic by around 10 dB.  Fig. 4.12 (a) shows the received eye 

diagrams for the PPM delay of 56% with carrier recovery employed at the receiver.  

Even though the noise and the ringing on the eye (due to the interference from “0” 

pulse) are clearly visible, the eye is open and we can achieve a BER of 10
-9

. The 

plots in Fig. 4.12 (b) and (c) on the other hand, show the eye diagrams received for 

PPM delay of 60% for carrier recovery and separate LO respectively. It can be seen 

that the reduction in the power level in the 4
th

 harmonic component causes a 

complete eye closure for the carrier recovery case; however, when the separate LO is 

used the eye opening is very clear and we obtain a BER 10
-10

. It is envisioned that 

the regions of good performance while using carrier recovery could be extended to a 

certain degree, by using a higher gain amplifier and narrower filtering to reduce the 

noise and interference. These results show how PPM delay can be optimized to 

improve system performance in this receiver configuration which could be used to 



 78 

minimize the cost and complexity of a UWB receiver.  

 

Fig. 4.11. Electrical RF spectrum of the UWB signal for PPM delay of (a) 56% and (b) 60%. 

 

 

Fig. 4.12. Eye diagrams for PPM delay of (a) 56%, (b) 60% using carrier recovery, and (c) 

60% using separate LO. 

4.4.3 Simulation Results 

Simulations have also been carried out by using VPItransmissionMaker simulation 

platform to model the proposed setup and verify our experimental results. Fig. 4.13 

shows the schematic diagram for our simulation setup. The key parameters of the 

devices have been chosen to meet the real experimental parameters. The GSL was 

simulated by using a semiconductor laser module, in the VPI software, at a 

wavelength of 1550 nm and the output pulses were optimized by adjusting the bias 

and amplitude of the RF drive. In the case of the EI DFB-LD, a CW module laser 

was used to realize the external injection. The wavelength and power of the CW 

module laser were optimized to obtain pulses exhibiting the low jitter and narrow 

optical spectrum.  We also used SSMF with group velocity dispersion (GVD) 

of 16 ps/nm.km and loss of 0.2 dB/km. The optical receiver has a thermal noise 

current of 10
-11

 A/Hz
1/2

 and a responsivity of 1 A/W. In the down-conversion block 
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at the RT, the local oscillator phase was adjusted to give the lowest BER and an open 

eye diagram for each transmission distance. The simulation results for BER versus 

ROP for the three configurations are shown together in Fig. 4.14 and the simulated 

eye diagrams are also shown in Fig. 4.15. These results show the system 

performance for each of the three transmitter configurations for BTB and different 

fibre transmission lengths. For the FP-LD, the simulation illustrates that ASE noise 

causes the FP-LD to portray the worst receiver sensitivity in the BTB case and an 

error floor could be seen at a BER of 10
-06

. The error floor at 650 m is primarily 

caused by the multimode spectrum which when transmitted results in MPN as 

discussed in section 4.4.2. The simulated eye diagram for BTB and after 

transmission over 650 m are shown in Fig. 4.15 (a) and (b).  

 

 

Fig. 4.13. Simulated setup diagram using two external modulators. 

 

In the case of the DFB-LD an improvement in the BTB receiver sensitivity is 

achieved mainly due to the removal of ASE with the use of an OBPF. However, the 

transmission distance can only be doubled due to the degraded SMSR of the GS-

DFB, which results in MPN. Fig. 4.15 (c) and (d) show the simulated eye diagram 

for the BTB and after transmission over 1500 m. 
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The EI DFB-LD exhibits the best BTB receiver sensitivity as a result of the reduced 

pulse to pulse jitter. Moreover, it also achieves the error free transmission, which can 

be attributed to the enhanced SMSR, reduced jitter and reduced chirp. This can be 

seen also in the simulated eye diagram for BTB case in Fig. 4.15 (e). The traces in 

Fig. 4.15 (f) show that after transmission over a fibre link of 47 km, the eye diagram 

is degraded due to the combined effect of the fibre‟s attenuation and dispersion. 

However it is clear that we are able to achieve significant increase in performance 

and reach with the EI-DFB.   

 

The experimental and simulated results are also summarized in table 4.1 to show the 

performance for the three transmitter configurations. The table demonstrates that 

there are small differences between the simulated and experimental measurements in 

the receiver sensitivities for BTB, and the power penalty needed for BER <10
-9

.  

Power penalty defines as the required optical power to account for degradations due 

to attenuation, inter symbol interference, and MPN. 

 

 

Fig. 4.14. Simulated BER versus received optical power for the three different GSLs. 
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Fig. 4.15. Simulated eye diagrams for FP- lasers at (a) BTB and (b) 650 m, DFB-laser at (c) 

BTB and (d) 1500 m, and EI-DFB laser at (e) BTB and (f) 47 km. 

 

Table 4.1. Results summary for IR-UWB generation by using two external modulators 

Transmitter 

configuration 

BTB 

threshold 

at 10
-9 

(dBm) 

Power 

penalty for 

BER at 

10
-9

  

(dB) 

Fibre 

length 

at 10
-9

 

Error 

floor 

value 

Fibre length 

at error floor 

FP-LD 
meas. -25.3  3.2 

450 m 
10

-5 

650 m 
simul. -25.1 3.5 10

-6 

DFB-LD 
meas. -37.5  5.7  

1 km 
10

-6 

1.5 km 
simul. -38.2 4.7 10

-6
 

EI DFB-

LD 

meas. -38.9  9.9  
37 km 

10
-4

 
47 km 

simul. -39.9 10.2 10
-4 

4.5 Generation of IR-UWB Using Direct Modulation  

4.5.1 Experimental Setup 

The schematic diagram for the second approach for UWB over fibre (UWBoF) 

distribution system is shown in Fig. 4.16. The ODC uses the simpler direct 

modulation of a GSL for data transmission at a rate of 1.625 Gbps.  The ODC setup 
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consists of two DFB-LDs biased below the threshold current value via a bias tee. 

These two DFB-LDs are modulated using a combination of a 1.625 GHz sinusoidal 

signal generator and a synchronous 1.625 Gbps pattern generator (2
7
-1 PRBS). The 

output from the signal generator is amplified and then divided into two equal paths 

before it is combined with the NRZ data pattern for both data and inverted data. The 

resultant output waveforms are applied to both DFB-LDs to generate Gaussian 

pulses through the GS process only when the data signal applied to the laser is a bit 

„1‟. The output pulses are tuned by inspection of the eye diagrams to achieve the best 

extinction ratio and minimum pattern-dependent-effect by adjusting the bias level 

and the amplitude of the electrical data. The DFB-LD 1 generates a GS Gaussian 

pulse for each logical bit „1‟, while the DFB-LD 2 generates a GS Gaussian pulse for 

each logical bit „0‟.   

 

 

 

Fig. 4.16. Schematic diagram for generating PPM pulses using two direct modulated GSLs. 

 

 

The output from both lasers are then delayed relative to one another by using the 

optical delay line (ODL) before the data and inverted data pulses are combined using 

a 50:50 coupler, and then transmitted directly as a PPM signal over different lengths 

of SSMF. After fiber transmission, the signal is received by the same RAU, and RT 

(shown in Fig. 4.3) which amplifies the received PPM signal and transforms it to 

electrical UWB pulses. Then, the UWB signal is transmitted directly to the RT at 

point D to be demodulated using a separate LO and amplified.  BER measurements 

and eye diagrams are recorded for the received signal over different fibre lengths.  
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4.5.2 Results and Discussion 

The system performance is measured using two different configurations of our DM 

GS laser transmitters. In the first configuration two GS DFB laser diodes (DFB-LD) 

operating at approximately the same wavelength were used, and their optical 

spectrum is shown in Fig. 4.17 (a). While in the second configuration, an externally 

injected light from a third laser in a CW mode was launched into the two GS DFB 

lasers to give a pair of  externally injected GS DFB (EI DFB-LD) lasers that have the 

optical spectrum shown in Fig. 4.17 (b). Due to the limited availability of practical 

components, the DFB-LDs and EI DFB-LDs were chosen with different operating 

wavelengths.  

 

 

Fig. 4.17. (a), and (b) are optical spectra for direct modulated GS DFB and EI DFB-LD. 

 

The oscilloscope traces in Fig. 4.18 show the NRZ data, the laser drive signal 

consisting of the data combined with the RF sinusoid and the resulting optical pulses. 

It is interesting to note that the data needs only to create a small offset to generate 

narrow pulses with a good extinction ratio. The two optical outputs, which have 

pulse durations of around 20 ps, are combined together after delaying the lower 

branch by 285 ps relative to the beginning of a bit period.  
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Fig. 4.18. Data, combined data and an RF sinusoid, and output pulses from lasers for (a) 

data, (b) inverted data at 1.625 Gbit/s. 

 

The BER measurements for the different fibre spans versus the ROP at the RAU 

(Prec) are shown in Fig. 4.19. The results in Fig. 4.19 (a) show an error floor at 10
-8

 

due to significant levels of amplitude noise and temporal jitter on the GS pulses. This 

limits the performance, but is acceptable for a radio based system which includes a 

high level of forward error correction. The results also show a penalty of 0.7 dB 

between BTB and 1 km transmission at BER of 10
-8

.  However, the system reaches 

an error floor at around 10
-5

 on transmission over 10 km fibre due to the large 

frequency chirp on the GSL which broadens the spectrum to approximately 1 nm. 

The fibre dispersion results in the chirped pulses being significantly broadened such 

that the „1‟ and „0‟ data pulses overlap causing intersymbol interference (ISI). The 

eye diagrams are also shown in Fig. 4.19 (a) as insets for the lowest bit error rate at 

1 km, and after transmission over 10 km.  

 

When the EI GS-DFB laser diodes are employed, the performance of the system 

transmission is greatly improved. The result shown in Fig. 4.19 (b) reveals the 

transmission length is extended up to 10 km with error free (BER = 10
-9

) 

performance. It should be noted that the receiver sensitivity in the BTB case, has 

been improved by 3 dB compared to the non-injected case due to the reduction of 

timing jitter (from ~4 ps to <1 ps) and the enhancement in SMSR (from ~10 dB to 

>30 dB) of the GS-DFB lasers which reduce MPN cause by optical filtering in the 

experiment [13]. 
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Fig. 4.19. Measured BER versus received optical power and eye diagrams for two different 

transmitter configurations; (a) two GS-DFBs, (b) two EI GS-DFBs. 
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In the EI GS-DFB case, the system displays an error floor around 10
-7

 for a distance 

of 25 km. As for the non-injected case, this error floor is a result of ISI between the 

„1‟ and „0‟ data pulses. The significantly extended reach in the EI GS-DFB case is 

due to the chirp reduction caused by the external injection (spectral width reduced 

from ~1 nm to ~0.3 nm) [15]. 

4.5.3 Simulation Results 

The simulated model for the generation and distribution of UWB signals using 

directly modulated lasers has been carried out for the non-injected and injected case. 

As shown in Fig. 4.20, the simulation used two semiconductor laser modules from 

the VPI software kit with the same bias and RF drive power combined with both data 

and inverted data to achieve the DM GS DFB-LD.  

 

 
Fig. 4.20. Simulation setup for direct modulated GSL. 

 

 

The BER versus ROP is shown in Fig. 4.21 and the simulated eye diagrams are also 

shown in Fig. 4.22 for the direct modulated GS-DFB and EI GS-DFB. Fig. 4.22 (a) 

and (b) illustrate the simulated eye diagrams for DFB-LD and demonstrate the timing 

jitter and MPN effect in the downconverted pulse between BTB and 10 km 

transmission over fibre. These detrimental effects are eliminated in the injected case 
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as shown by the eye diagrams Fig. 4.22 (c) and (d) for BTB and transmission over 

25 km. However, this transmitter configuration shows a maximum reach only to 

25 km in EI GS-DFB which is significantly different from the externally modulated 

configuration that could achieve 37 km error free. This is mainly due to the poor 

extinction ratio (< 10 dB) in the direct modulation case compared to that with the 

external modulators.  

 

The important results from the direct modulated GS laser are summarized in 

table 4.2. The table clearly shows that there is a close match between experimental 

and simulation results. The simulated and experimental BER shows a 1 dB 

difference in BTB performance. The power penalty is about 2 dB for both cases at 

10
-9

. While the error floor is nearly the same for the longest transmission distance for 

DFB and EI DFB at 10 km, and 25 km, respectively.  

 

 

 

Fig. 4.21. Simulated BER versus received optical power for two transmitter configurations of 

the two direct modulated GSLs. 
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Fig. 4.22. Simulated eye diagrams for DM DFB-LD at (a) BTB and (b) 10 km and DM EI 

DFB-LD at (c) BTB and (d) 25 km. 

 

Table 4.2. Results summary for IR-UWB generation by using two directly modulated GSLs. 

Transmitter 

configuration 

BTB 

threshold 

at 10
-9 

(dBm) 

Power 

penalty for 

BER at 10
-9

  

(dB) 

Fiber 

length 

at 10
-9

 

Error 

floor 

value 

Fibre length 

at error 

floor 

DM  

DFB-

LD 

meas. -29.5 2.4 
1.5 km 

10
-6 

10 km 
simul. -31.2 3.1 10

-5
 

DM EI 

DFB-

LD 

meas. -33.4 2 
10 km  

10
-7

 
25 km 

simul. -34.1 2.3 10
-7 

 

The advantage of the direct modulation scheme over the previous setup is its 

simplicity as it does not require external modulators, and hence there is no additional 

insertion loss. Such a reduction in cost is vital for the development of a low cost 

solution for distribution of UWB signals. In table 4.3, the comparison between the 

two distribution setups is presented in terms of the limiting factors that affect the 

system distribution and the required costs. In systems that need the distribution for a 

small residential network or office building, the FP-LD or DM DFB-LD can be the 

best choice for a low cost and easily integrated system. However for a large 

distribution system, the EI DFB-LD scheme with two external modulators allows a 

more reliable and stable system for many end users with maximum reach.  
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Table 4.3. Comparison between the two approach setups in terms of their limiting factors. 

 

4.6 Summary and Conclusions  

UWB-over-fibre (UWBoF) is an attractive and cost effective solution for increasing 

the reach of UWB systems. The work presented in this chapter has successfully 

demonstrated the generation and distribution of 1.625 Gbps UWB signals modulated 

in PPM format by using two optical distribution setups. Both setups have been 

studied over different fibre links with using different GS laser configurations. The 

first approach uses one GS laser and two external modulators. The results show that 

error free transmission can be achieved for the GS FP, DFB, and EI DFB laser 

transmitters over 450 m, 1 km, and 37 km respectively. A simple receiver 

configuration that utilizes carrier recovery has also been presented in this context. 

Such an approach could be used to minimize the cost and complexity of a UWB 

receiver. 

 

An alternative approach for the generation and distribution of UWB signals has also 

been presented which is based on the direct modulation of a GSL. The method uses 

two lasers driven with a signal composed of an NRZ data signal and an RF sinusoid. 

The generated PPM pulses were transmitted over different fibre links by using GS-

DFBs and EI GS-DFBs. The obtained results show that the system can provide error 

free performance over 10 km with an EI GS-DFB. A somewhat degraded 

Approach 

setup 

Laser 

configuration 
Costs Limiting factors 

External 

modulators 

FP-LD $ 
 MPN resulting from the energy 

fluctuations in the longitudinal modes 

due to dispersive transmission. 

DFB-LD $$$ 

 SMSR degradation causes MPN 

problems. 

 Large inherent timing jitter in the 

generated gain switching pulses. 

EI DFB-LD $$$$  Attenuation and dispersion effect. 

Direct 

modulation 

DFB-LD $$ 

 Timing jitter in GS pulses. 

 SMSR degradation causes MPN 

problems. 

EI DFB-LD $$$  Degraded extinction ratio. 
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performance is also achievable with an un-injected GS-DFB at 10 km. Since these 

radio systems typically operate with BER of worse than 10
-3

, this performance may 

also be acceptable and offers a simpler transmitter design. There is thus a trade off 

between the cost/complexity of the transmitter configuration in a UWBoF system, 

and the required reach and performance of the distribution network. The noise effects 

caused by pulse propagation from the different sources means that one must choose 

the transmitter based on the required reach of the network. 
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Chapter 5 – Optical Generation of Modulated 

Millimetre-Wave Signals  

5.1 Introduction 

In this chapter, the optical generation and distribution of modulated millimeter wave 

signals (mm-waves) based on a gain switched laser (GSL) is demonstrated and 

experimentally investigated in two different transmitter configurations. In these 

configurations the GSL generates a comb of frequencies by driving the 

semiconductor laser with a large electrical sinusoidal signal which switches the laser 

on and off. By using appropriate optical filters two of these comb lines can be 

selected so that a high quality mm-wave can be produced at the photodetector [1, 2].  

 

 The first setup uses an external intensity modulator to modulate the optical 

tones with non-return to zero (NRZ) data at rates up to 3 Gbps.  

 The second setup produces optical OOK modulated tones by directly driving 

the laser with a combination of a sinusoidal signal and NRZ data up to 

3 Gbps [3, 4].  

 

The performance of both systems was experimentally investigated and simulated by 

using bit error rate (BER) tests. The comparison between both systems was also 

carried out to show the trade off between system complexity and cost. The external 

modulation setup increases the system cost and loss, while the direct modulation 

technique shows a simple and lower cost system solution for generating modulated 

mm-wave signals. Such a cost reduction will be an important parameter for the 

commercial deployment of such systems.  

 

This chapter is organized as follows. The principle of the optical mm-wave 

generation based on the gain switching technique, and the two proposed modulation 

schemes are described in section 5.2. Section 5.3 demonstrates the experimental 

setup for the first transmitter configuration, and this is then followed by the directly 
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modulated GSL setup in section 5.4. Finally, the comparison between theses two 

configurations and conclusions are outlined in section 5.5 and 5.6.   

5.2 Optical Mm-Wave Generation using GSL 

The principle of comb generation using a GSL is shown in Fig. 5.1. An electrical 

local oscillator (LO) signal at frequency ƒ0 (15 GHz) is amplified with the aid of a 

high power RF amplifier. A bias tee is then used to combine the electrical RF signal 

with a DC bias to enable gain-switching of a commercially available NEL
1
 

distributed feedback (DFB) laser contained within a hermetically sealed high-speed 

package. The laser used has a 3 dB bandwidth of 18 GHz, and an output power of 

4.7 dBm, both measured at a bias current of three times the threshold current (3 Ith). 

In this set up the bias point is selected to be 51 mA. The RF signal is sufficiently 

large to switch the LD from below to above the lasing threshold (chapter 4, section 

4.3) and produces a stream of optical pulses with 15 – 20 ps pulse widths with a 

repetition frequency of ƒ0. The generated gain switched spectrum was captured by a 

high resolution optical spectrum analyzer (OSA) and is shown in Fig. 5.2 (a). The 

spectrum shows the generated comb of multiple optical phase correlated tones 

equally spaced by ƒ0 (15 GHz).  

 

 

Fig.5.1. Principle of comb generation using a GSL. 

 

 Two optical tones, separated by the desired mm-wave frequency, can be selected by 

using optical filtering methods. The 60 GHz optical mm-wave was generated by 

using two optical filters; an optical bandstop filter (OBSF) with 3 dB bandwidth of 

0.28 nm is to suppress three middle frequency components and an optical bandpass 

                                                 

1
 NTT Electronics corporation  
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filter (OBPF) with bandwidth 0.485 nm is to reject the outer sidebands. The resultant 

output optical spectrum is illustrated in Fig. 5.2 (b). The suppressed tones are shown 

around 17 dB less than the main tones. These unwanted tones could be suppressed 

more by employing a specially designed Bragg filter to select these two optical 

carriers spaced by 60 GHz. These optical carriers generate a high stability mm-wave 

signal when detected at the high speed photo-detector.  

 

 

Fig. 5.2. Optical spectra of a GSL: (a) before and (b) after optical filters. 
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The electrical RF spectrum for the generated 60 GHz was measured by electrical 

spectrum analyzer (ESA) and is shown in Fig. 5.3. The resolution and video 

bandwidth for ESA were both adjusted at 1 kHz and the averaging set to 64. The 

spurs on the sides of the generated tone appear about at 183 kHz with -53 dBc and 

are caused by the power supply to the laser diode. The phase noise was measured to 

be -68 dBc/Hz at 10 kHz offset and -80 dBc/Hz at 100 kHz offset. It has been shown 

that the spectral linewidth of the beat signal does not depend on the laser linewidth 

and is only affected by the phase noise of the RF drive source [5, 6]. 

 

 

Fig. 5.3. Electric RF spectrum at centre frequency (CF) = 60 GHz. 

 

In the following sections, two different schemes for generation and transmission of 

optical modulated mm-waves based on the gain switching technique are 

demonstrated as shown in Fig. 5.4.  

 

 In scheme A, the selected sidebands are on-off keyed (OOK) modulated with 

a non-return to zero (NRZ) data stream using an external modulator and then 

transmitted over fiber. At the remote antenna unit (RAU), these components 

beat together at the photodiode to yield an amplitude modulated mm-wave 

signal at the frequency corresponding to the difference between the two 
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filtered lines (60 GHz in our experiment). This signal is then amplified and 

transmitted to the mobile units (MU).  

 In scheme B, gain switching is achieved by driving the laser with a 

combination of a sinusoid signal and the NRZ data. The GSL generates 

multiple phase correlated sidebands spaced by the driving RF frequency and 

modulated with NRZ data. This technique simplifies the transmitter setup as 

it does not require an external modulator. Hence, there is lower insertion loss 

and reduced cost.  

 

These two schemes are described in more detail and their performance investigated 

in the following sections. 

 

Fig. 5.4. Block diagrams for proposed schemes. 



 98 

5.3 Externally modulated GSL 

5.3.1 Experimental Setup 

The proposed experimental setup for scheme A is shown in Fig. 5.5. The front end of 

the optical transmitter consists of a commercial DFB laser diode (DFB-LD) with an 

emission wavelength of 1551 nm at room temperature and a threshold current of 

15 mA. The DFB-LD was gain switched by biasing it with a DC current of 51 mA 

and driving with an amplified 15 GHz RF sinusoidal signal at 24 dBm. The optical 

signal was amplified by an erbium doped fiber amplifier (EDFA) and then filtered by 

using the same optical filters described in the previous section. After filtering, the 

optical signal was modulated using a Mach-Zehnder modulator (MZM) with a data 

stream generated from a pseudo-random bit sequence (PRBS). The polarization 

controller (PC) is used to change the polarization state of the optical signal before 

being fed into the MZM. 

 

 

 

Fig. 5.5. Experimental setup for mm-wave generation and transmission for data downstream 

link using an external modulator. 
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The modulated optical signal after amplification is shown in Fig. 5.6 (a) and (b) for 

1.25 and 3 Gbps, respectively. It can be seen that the modulation is clearly visible on 

both of the main tones. This signal was then transmitted through standard single 

mode fiber (SSMF) to the RAU, where it was photodetected by a high speed 

photodiode with a 3 dB bandwidth of 70 GHz. The two sidebands beat together in 

the photo-detector and generate a modulated 60 GHz mm-wave. The generated 

electrical signal was subsequently amplified and radiated over the air through a horn 

antenna with 20 dBi gain. 

 

 

Fig. 5.6. Optical spectra for a modulated optical 60 GHz with (a) 1.25 Gbps and (b) 3 Gbps. 
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In the mobile unit (MU), the mm-wave signal was received using another identical 

20 dBi horn antenna and amplified. The received signal was demodulated by mixing 

it with a 60 GHz LO signal. Then, the data was filtered out by using a low pass filter 

(LPF) and amplified. The received data stream was analyzed by using a bit error rate 

test set (BERT) and the eye diagrams were recorded by using high speed sampling 

digital oscilloscope for 1.25 and 3 Gbps data streams as shown in Fig. 5.7 (a) and (b), 

respectively. 

 

In Fig. 5.7 (a), the measured BER is plotted versus the received optical power (ROP) 

at the photodetector for back-to-back (BTB), 37 km, and 62 km at 1.25 Gbps data 

stream without wireless transmission. The eye diagrams of the recovered baseband 

signals are also shown as insets in the same figure for BTB and 62 km. As can be 

seen from the figure, for BER of 10
-9

, the BTB receiver sensitivity is -33 dBm. The 

power penalty after transmission over 37 km is only 2 dB. However, the system 

performance degrades after transmission over 40 km and reaches an error floor 

around 10
-8

 after 62 km transmission.  This is due to the impact of chromatic 

dispersion, where the two optical carriers travel along the fibre with different speeds 

and are received at the photodetector with a time shift. This is called “bit walk off”, 

and it decreases the duration of the single bit „1‟ and limits the transmission distance 

[15, 16], as can be seen in the eye diagram in the inset (ii) in Fig. 5.7 (a). The 

captured optical pulses for various fibre propagation distances are shown in Fig. 5.8.  

 

To verify that this degradation is caused by dispersion, a dispersion compensating 

fibre (DCF) was inserted after transmission through 62 km of standard fibre. In this 

experiment, DCF with a dispersion parameter of -681 ps/nm was used to partially 

compensate for the dispersion incurred in the 62 km of SSMF. The BER vs. received 

power for this case is shown in Fig. 5.7 (a), and indicates that the performance is 

almost as good as that achieved for the BTB case. Unlike normal double side band 

radio-over-fibre (RoF) systems, this technique does not suffer from dispersive fading 

problems as there is no carrier signal between the data carrying side-bands. 
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Fig. 5.7. Measured BER for received baseband signal versus the received optical power.at: 

(a) 1.25 Gbps and (b) 3 Gbps. Insets: the eye diagrams for lowest BER. 
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Fig. 5.8. Captured optical pulses at various fibre propagation distances. 

In Fig. 5.7 (b), the measured BER is plotted versus the ROP at photodetector after 

3 km fiber for no wireless transmission and also for 1.5 m and 2 m wireless 

transmission distances for a 3 Gbps data stream. The wireless transmission was 

carried out in the photonic lab using two 20dBi horn antennas within height 100 cm 

above the ground level and in the line of sight (LoS) position. As can be seen from 

the figure, for BER of 10
-9

, the receiver sensitivity for 3 km fiber transmission and 

direct cable connection from photodetector to the MU, is -31 dBm and the inset (i) 

shows a clear and open eye diagram. After transmission over 3 km of fibre and 1.5 m 

wireless propagation, the BER curve shows about 4 dB power penalty due to the 

reduction of signal to noise ratio at the MU. The measurements were also done for 

2 m wireless transmission and the eye diagram for a ROP of -18.5 dBm is shown as 

inset (ii) in Fig. 5.7 (b). It can be clearly seen from the BER curve that there are two 

different BER slopes. This appears to be due to an increased level of multipath 

interference for this wireless transmission distance. It was believed that theses 

measurements can be improved if the link is located at a better position. 

5.3.2 Simulation Results 

The system was also simulated using the VPI TransmissionMaker simulation 

platform as shown in Fig. 5.9. The simulation parameters were chosen to emulate the 

real experimental parameters. The fiber link was a 3 km SSMF with a group velocity 

dispersion (GVD) of 16 ps/nm.km and loss of 0.2 dB/km. The optical spectrum was 

filtered to give the same sideband suppression values as the experimental case. A 

noise module was added after an optical amplifier to add amplified spontaneous 

emission (ASE) noise, and a self mixing demodulator was used at the MU. The BER 

was simulated for 3 km fiber and different bitrates as shown in Fig. 5.10. The BER 



 103 

curve at 3 Gbps coincides with our experimental measurements with no wireless 

transmission. The system performance degrades with higher bit rates and shows an 

error floor at (BER~10
-7

) for 10 Gbps data rate due to the interference from the 

suppressed optical sidebands. 

 

Fig. 5.9. Simulation model for externally modulated GSL. 

 

Fig. 5.10. Simulated BER versus received optical power for 3 km fibre transmission and 

higher bit rates. 
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5.4 Directly Modulated GSL 

5.4.1 Experimental Setup and Results 

The proposed experimental setup for optical modulated mm-wave generation and 

transmission over the fibre using a directly modulated gain switched laser (DM-

GSL) is shown in Fig. 5.11. In this case, one DFB-LD with an emission wavelength 

of 1551 nm at room temperature and a threshold current of 15 mA was biased at 

43 mA. The RF drive signal applied to the laser consisted of a 15 GHz sinusoidal 

signal and a PRBS 3 Gbps data signal combined together with the aid of a passive 

resistive combiner. The data generator and sine wave generator were locked together 

using the 10 MHz reference signal from the sine wave generator. The resultant RF 

signal comprised of a 19 dBm sinusoidal signal and a 10 dBm data signal as depicted 

in Fig. 5.12 (a), and it can be seen that there are five cycles of the 15 GHz sine wave 

per temporal bit slot.  

 

 

 

 

Fig. 5.11. Experimental setup for mm-wave generation using DM-GSL. 
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Fig. 5.12. (a) the resultant RF signal at point A, and (b) the filtered optical signal at point B. 

 

The DFB-LD was externally injected with another DFB-LD to decrease chirping and 

reduce the timing jitter of the gain switched pulses [7]. This was realised using a 

master-slave configuration with low level injection, with an injected power of           

~ -10 dBm (measured at the output of the master laser) and at the same wavelength 

as that of the slave. In this experiment, the external injection reduced the jitter from 

~3 ps to less than 1 ps.  

 

The generated spectrum was captured by a high resolution OSA after an optical 

amplifier and displayed in Fig. 5.13. The gain switching spectrum with the 

composite signal (sinewave and data) but without optical injection has a degraded 

comb as shown in Fig. 5.13 (a). With the external injection, however, the comb has 

more discernible tones as shown in Fig. 5.13 (b). Each optical tone is modulated by 

3 Gbps OOK data and spaced by 15 GHz.  This optical spectrum was filtered by 

using the same optical filtering schemes used in scheme A. The resultant output 

spectrum is illustrated in Fig. 5.13 (c) and it shows the two main optical tones spaced 

by 60 GHz which are clearly modulated with the data signal. The suppressed 

sidebands are 18 dB lower than the main sidebands, with this level of suppression 

being limited by the optical filters available. The filtered optical temporal signal was 

captured and shown in Fig. 5.12 (b).  

 

It was noticed that when the extinction ratio of the optical pulses was increased the 

timing jitter and noise on the optical pulses also increased, resulting in a broadened 

spectrum with no discernible tones thereby degrading the overall system 

performance. Hence, to improve this performance, the dc bias can be increased or 

modulation level reduced to not switch the pulses off completely thereby decreasing 

the extinction ratio between 1 and 0 bits. 
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Fig. 5.13. Optical spectra for DM-GSL: (a) without external injection, (b) without external 

injection, and (c) after optical filters. 

 

When these levels are optimized, subsequent pulses portray improved pulse to pulse 

phase coherence (reduced timing jitter) and an enhanced spectrum with clearly 

distinguishable tones [8]. After filtering, the optical signal was amplified again by 

using an EDFA and then transmitted over 3 km of single mode fiber to the RAUs. At 

the RAU, the optical signal was photodetected by a high speed photodiode with a 3 

dB bandwidth of 50 GHz. The generated electrical mm-wave signal was boosted by a 

broadband amplifier to compensate for the limited bandwidth of this detector (since 

the 70 GHz photo-detector was not available at that time). Afterwards, the mm-wave 

signals were transmitted to a MU via 20 dBi horn antenna. At the MU, the mm-wave 

signal was received by the same receiver configuration as used in Fig. 5.4. The 

demodulated signal was then evaluated by a BERT and the eye diagrams were 

monitored by a high speed scope.  

 

The measured BER is plotted versus ROP for 1.25 and 3 Gbps data stream in 

Fig. 5.14 (a) and (b), respectively. In Fig. 5.14 (a), the BER was measured for BTB, 

and 3 km fiber transmission with and without wireless transmission. The eye 

diagrams of the recovered baseband signals are also shown as insets in Fig. 5.14 (a). 
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The inset (i) exhibits the eye diagram for BTB without wireless transmission at 

received power of -30.9 dBm. As can be seen from the figure, the BTB receiver 

sensitivity for BER of 10
-9 

is -31.9 dBm and there is 0.7 dB power penalty after 3 km 

fiber transmission without wireless transmission. For BTB optical connection and 

2 m wireless transmission, the receiver sensitivity was degraded by 4.4 dB to -26.5 

dBm due to the signal to noise ratio degradation in the radio system. For a combined 

3 km fiber and 2 m wireless scenario, the receiver sensitivity is further degraded to 

about -25.2 dBm, and the eye-diagram in this case is shown as inset (ii) in 

Fig. 5.14 (a) for a received power -24.4 dBm.  

 

The graph in Fig. 5.14 (b) shows the measured BER at 3 Gbps after 3 km 

transmission through fiber for no wireless transmission and for 2 m wireless 

transmission. As can be seen from the figure, the receiver sensitivity for BER of 10
-9 

is -30.3.dBm when there is a direct cable connection between RAU and MU, and its 

eye diagram is shown as inset (i) in Fig. 5.14 (b). For 2 m wireless transmission, the 

receiver sensitivity was degraded by 9.8 dB to -20.5 dBm due to degraded 

performance in the radio system which is caused by (i) a reduction in the signal to 

noise ratio at the MU, and (ii) multipath interference in the wireless transmission. 

The received eye diagram after 2 m wireless distance is shown as inset (ii) in 

Fig. 5.14 (b) at ROP of -18.5 dBm. 

 

This system is also suitable for achieving higher data rate transmission on a 60 GHz 

RF carrier. In Fig. 5.15, the eye diagrams for BTB operation were also captured for 

downstream data rates of 5, 7.5, and 10 Gbps. The eye diagrams for 5  and 7.5 Gbps 

were taken when the modulating signal included a 15 GHz sinusoidal signal so that 

there are three or two cycles of 15 GHz per bit. To achieve 10 Gbps, the DFB-LD 

was directly modulated with 20 GHz sinusoidal signal and 10 Gbps downstream 

data. Even though the eye diagram shown in Fig. 5.15 (c) has more noise than those 

at 5 and 7.5 Gbps, a BER of around 10
-5

 was still achieved. The degradation in the 

signal to noise ratio is due to the reduced performance of the DFB-LD being driven 

at the edge of its modulation bandwidth (20 GHz), yielding less optical power. 
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Fig. 5.14. Measured BER versus ROP for: (a) 1.25 and (b) 3 Gbps baseband signals.  
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Fig. 5.15. Eye diagrams for base band signal at different bit rates: (a) 5, (b) 7.5, and (c) 

10 Gbps. 

 

5.4.2 Simulation Results 

The simulation model shown in Fig. 5.16 was also developed for direct modulation 

of GSL at higher bit rates. The simulation parameters were chosen as in the previous 

simulation model and the simulated BER versus ROP is shown in Fig. 5.17 (a). The 

degradation of BER at higher bit rates is evident and shows an error floor at 7.5 and 

10 Gbps. These error floors are a little higher than the simulated externally 

modulated case due to the bandwidth limitations of the laser at higher bit rates. This 

system shows the possibility to achieve high data rate transmission with a reduced 

optical component cost and this could be suitable for short range transmission of 

high data rate mm-wave signals.  

 

The system performance was also investigated with the influence of the optical 

sideband suppression ratio (OSSR). The OSSR is defined as the optical power of one 

of the desired comb signals divided by the optical power of the middle suppressed 

optical sideband. The optical carrier suppression was achieved by controlling the 

rejection parameter in the optical fibre Bragg grating filter module. The simulated 

BER was plotted for various optical sideband suppression ratios and is shown in Fig. 

5.17 (b).  It can clearly be seen that, as the optical suppression for the sidebands 

increases, the system performance is improved and the lowest BER curve is 

obtained.  
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Fig. 5.16. Simulation model for DM-GSL. 
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Fig. 5.17. Simulated BER for direct modulated GSL for (a) higher bit rates and (b) different 

sideband suppression ratios. 

5.5 Comparison of Direct and External Modulation 

Gain switching of a DFB laser is known to generate pulses with some level of 

amplitude and un-correlated temporal jitter, both of which result in noise in the 

demodulated data signal. It is important to note that both the amplitude and temporal 

jitter are worse when the DFB laser is directly modulated with a composite of sine 

wave and data signal than when an external modulator is used. In the externally 

modulated case, the laser is biased above the threshold and driven with a high power 

RF signal of 24 dBm, which generates pulses with a duration around 15 ps and a 

jitter less than 1 ps [9] (which is within the measurement accuracy of our 

oscilloscope). However, the timing jitter in the directly modulated case can be 

attributed to the random and longer switching (on and off) of the laser due to the 

PRBS data. This results in a larger pulse-to-pulse variation in turn on time delay and 

pulse amplitude. Hence, the intensity noise and temporal jitter on these pulses can be 

reduced by using external seeding of the gain switched laser to achieve optimal 

system performance [10, 11]. 
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 The conventional technique of using an external modulator, to impose the 

modulation, yields better performance; however, it results in an increased insertion 

loss, polarization dependency, bias drifting and cost of the optical system. The 

directly modulated GSL technique is a simple, robust and low cost solution for 

generating modulated mm-waves, with the main limitation of requiring external 

injection to decrease the jitter. However, the advantages of using direct modulation 

can outweigh the above-mentioned shortcoming, by using two integrated lasers, one 

for gain switching and the other for injection, thereby maintaining the cost efficiency 

of this solution. 

5.6 Summary and Conclusion 

In this chapter, two transmitter configurations were proposed and demonstrated for 

the optical generation and transmission of optical modulated mm-waves based on 

GSL. The proposed methods show the simplicity and low cost that can be obtained in 

comparison with other reported techniques for the generation of modulated optical 

mm-waves. The GSL generates a frequency comb with a spectrum which has a 

relatively flat power profile over eight phase correlated sideband tones. The tone 

spacing is the same as the driving frequency which allows for the possibility to 

generate mm-wave signals up to eight times the LO drive frequency.  

 

In the first transmitter configuration, the output from the GSL was filtered by using 

appropriated filters to select two optical sidebands spaced by 60 GHz which are then 

OOK modulated with downstream data. While in the second setup, the DFB-LD 

generates multiple optical modulated tones by directly driving the laser with a 

combination of 15 GHz sinusoidal signal and NRZ data. Optical filtering is then 

employed to select the relevant optical tones spaced by the required mm-wave 

frequency. Higher bit rate transmissions at 5, 7.5, and 10 Gbps were also achieved 

using this technique. These techniques generate high stability modulated millimeter 

wave signals which are suitable for implementation in future RoF systems operating 

at 60 GHz and beyond. The novel direct modulation technique was compared to an 

external modulation technique and showed the possibility of a significant cost 

reduction which will be critical to the widespread deployment of such systems. 
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Chapter 6 – Phase Modulated Millimetre Waves 

Based on External Injection GSL  

6.1 Introduction 

This chapter proposes and demonstrates all-optical up-conversion from an on-off 

keyed (OOK) optical data signal to a mm-wave optical signal using an externally 

injected gain switched laser (GSL) [1, 2].  The proposed block diagram for 

implementation of this technology is shown in Fig. 6.1, where the external network 

that is connecting the home to the service provider is an optical network using a 

standard such as Gigabit Ethernet (GbE). The gain-switched laser (GSL) produces 

phase correlated optical tones spaced by the driving frequency chapter 5 (see section 

5.2). The optical OOK data signal is used for the external injection into the GSL, and 

this optical injection changes the timing when the pulses are generated depending on 

whether a logical “1” or “0” is injected into the GSL. Two optical tones spaced by 

60 GHz are filtered to create the mm-wave optical signal that is distributed through 

fiber to remote antenna units (RAUs) around the home, with the mm-signal phase 

modulated as a result of the optical injection into the GSL. The two tones then beat 

together at a high speed photodetector to yield a phase modulated mm-wave signal. 

This signal is then amplified and transmitted to the mobile units (MUs) using 

directional horn antennas. 

 

 

Fig. 6.1. block diagram of the proposed phase modulated mm-wave signal.  
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The structure of this chapter is arranged as follows. Section 6.2 describes the 

experimental setup and results for the phase modulated mm-wave generation using 

the external injection of GSL. Section 6.3 simulates the effect of the injection in the 

GSL by solving the single mode rate equation for injection locked laser. Finally, 

section 6.4 presents a summary and conclusion of the chapter. 

 

6.2 Experimental Setup 

This section demonstrates the optical generation of modulated mm-wave signals at 

60 GHz based on injecting an OOK modulated optical source into a GSL. The 

proposed system for optical generation of modulated mm-wave is illustrated in 

Fig. 6.2. The central station (CS) consists of a commercial distributed feedback laser 

diode (DFB-LD) at 1550 nm. The DFB-LD was gain switched by driving it with an 

amplified electrical sinusoidal signal at 15 GHz coupled with a 39 mA bias current. 

The modulation switches the laser above and below threshold and generates a stream 

of short optical pulses with a pulsewidth of 15 ps. 

 

 

Fig. 6.2. Experimental setup for optical generation of phase modulated mm-wave by 

injecting an OOK modulated optical source. 
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The output optical spectrum, shown in Fig. 6.3 (a), consists of a comb of eight 

optical tones with an amplitude variation of less than 3 dB. The comb exhibits a free 

spectral range of 15 GHz and a 40 dB modulation depth which indicates excellent 

phase correlation. For the external network, a bench-top tunable external cavity laser 

(ECL) source was used to generate a continuous wave (CW) signal at a wavelength 

of 1550.69 nm which was then OOK modulated by using a Mach Zehnder modulator 

(MZM) with a non-return to zero (NRZ) data stream. The data was generated from a 

pattern generator with 2
31

-1 pseudo random bit sequence (PRBS). A polarization 

controller (PC1) was used to optimize the state of polarization before the MZM. 

Then, the modulated optical signal was injected into the DFB-LD cavity through an 

optical circulator. Another polarization controller PC2 was used to optimize the 

polarization of the injected light into the slave laser [3]. The average optical injected 

power was measured to be -7 dBm at the input of the circulator which implies a 

power of approximately -4dBm for a logical „1‟. 
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Fig. 6.3. Optical spectra for: (a) GSL at point A, (b) external injected GSL at point B, and (c) 

after optical filters at point C. 

  

The output optical spectrum shown in Fig. 6.3 (b) represents the modulated optical 

tones with injected data stream. To generate 60 GHz, two optical tones spaced by 

60 GHz were selected by using the same optical filters as used in previous setups 
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(see section 5.2). The output optical signal was amplified and captured by an optical 

spectrum analyzer (OSA), and is shown in Fig. 6.3 (c). Subsequently, the optical 

signal was propagated over SSMF to be distributed to a number of RAUs. At the 

RAU, the filtered optical tones beat together at a high speed photodetector and 

generate an electrical modulated mm-wave at 60 GHz. In this case, the MU was 

directly connected to the output of RAU to analyze only the system performance in 

terms of its optical propagation. The signal was received at the same MU described 

in section 5.3.1 and the system performance was measured by a bit error rate tester 

(BERT) and the eye diagrams were recorded by using a high speed digital sampling 

oscilloscope.  

 

The free running (without optical injection) GSL generates a stream of optical pulses 

at a repetition rate of 15 GHz, corresponding to a period of 66.7 ps. However, once 

the GSL is seeded with the modulated light source, the timing that each pulse is 

generated at changes according to the injected optical power. These optical pulses 

are shown in Fig. 6.4 (a) and represent the optical pulses after optical injection from 

the optical modulated light at point (B) in Fig. 6.2. The time variation was recorded 

to be ~3.8 ps and occurs at each transition of the seeding intensity level. A transition 

from the high seeding (logical 1) intensity to the low seeding (logical 0) intensity 

results in the next pulse being delayed by ~3.8 ps while a low to high transition in 

the seeding intensity yields an advancement of ~3.8 ps in the position of the pulse. 

As shown in Fig. 6.4 (b), the period of the pulses is 66.7 ps, but the high to low 

transition causes a 3.8 ps delay to the first pulse that occurs after the logical „1‟ to „0‟ 

transition, then the subsequent pulses return to their steady state with a 66.7 ps 

period. This delay and advancement can be attributed to changes in the turn on time 

delay (td) which stems from the fluctuation in the photon density during the buildup 

of the optical pulse caused by the random character of spontaneous emission [4]. 

However, external injection seeding significantly reduces this delay by increasing the 

number of photons in the cavity and swamping the effect of spontaneous emission on 

the lasing mode [5].  At the RAU, the mm-wave signal from the photodetector and 

the time shift is translated into a
 
phase shift in the 60 GHz signal – that is, the signal 

is phase shift keyed (PSK) modulated. At the MU, the received signal is mixed with 

a 60 GHz local oscillator to demodulate it. 
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 In Fig. 6.5 (a), the BER is plotted versus the received optical power (ROP) for a 

1.25 Gbps data stream. The eye diagrams are clear and open for back-to-back (BTB) 

and 3 km fiber as shown as insets (i) and (ii) in Fig. 6.5 (a), respectively. 

 

 

Fig. 6.4. Optical pulses at two different time scales: (a) 133 ps/div and (b) 33 ps/div. 

 

The receiver sensitivity for BTB is -24 dBm for BER< 10
-9

, and the power penalty 

for transmitting over 3 km fiber is only 2 dB. The BER is also plotted for 2.5 Gbps 

data stream as shown in Fig. 6.5 (b).  The receiver sensitivity for 2.5 Gbps is              

-33 dBm for BTB at BER<10
-4

, which is sufficient for wireless systems and there is 

no power penalty after transmitting over 3 km fiber. The corresponding eye diagrams 

are shown in same figure as inset (i) and (ii), respectively. Since, the system 
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performance is sensitive to phase changes, the noise in the received eye diagrams is 

due to the inherited timing jitter induced from the fluctuations in the photon density 

during the build up of the optical pulse. 

 

 

Fig. 6.5 Measured BER versus received optical power for: (a) 1.25 and (b) 2.5 Gbps 

baseband signals.  
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6.3 Simulation 

To gain a more thorough understanding of this phenomenon, numerical simulations 

were carried out using Matlab software to model the effect of the injection in the 

GSL. All the used codes in this chapter are included in the appendix B. The model 

for the injection locked GSL is based on solving the single mode rate equations for 

injection locked lasers [6, 7].   
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where all symbols used in this model are listed in table 6.1. Equation 6.1 and 6.2 are 

the rate equations for the photon and carrier densities, respectively, while the optical 

phase is represented by equation 6.3. This model ignores the noise and optical 

feedback into the laser. In addition, the output optical power can be calculated from 

the photon density as follows 
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The power-current (PI) curve for the modeled single mode laser is obtained by 

solving rate equations 6.1 and 6.2 without injection (Sinj = 0) as shown in 

Fig. 6.6 (a). It can be seen from the figure that the laser threshold is around 15 mA. 

In addition, the single mode rate equations, for free running laser case without 

injection (Sinj = 0), were solved to obtain the frequency response of the biased laser. 

From the plot it can be seen that the modulation bandwidth of the free running laser 

is around 25 GHz. 
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Table 6.1. List of symbols in single mode rate equations for injection locked laser. 

Symbol Descriptions Units 

I(t) laser current A 

S(t) photon density m
-3

 

n(t) carrier density m
-3

 

)(t  phase of the generated light Rad 

Sinj injected photon density m
-3

 

inj  phase of the injected light Rad 

  optical confinement factor --- 

go differential gain m
3
/s 

p  photon lifetime S 

n  carrier lifetime S 

β spontaneous emission factor --- 

kc coupling rate coefficient  s
-1 

Va volume of the active region m
3
 

no carrier density at transparency m
-3 

α linewidth enhancement factor --- 

nth carrier density at threshold m
-3 

 oinjinj    detuning parameter rad/s 

inj  the angular frequency of the slave laser rad/s 

o  the angular frequency of the master laser rad/s 

h Planck‟s constant. 6.626 ×10
-34

 Js J.s 

e electron charge, 1.6 ×10
-19

 C C 

υo laser center frequency  Hz 

η total quantum efficiency --- 
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Fig. 6.6. (a) PI curve for the modelled single mode laser and (b) frequency response for the 

free running laser. 

 

In order to explore the impact of the external injection into the free running GSL, the 

single mode rate equations for injection locked laser equations 6.1- 6.3 were first 

solved to get the photon density without injected light (Sinj=0), and then substituted 
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into equation 6.4 to get the optical power of the GSL. The simulation was run over a 

time period that was several orders of magnitude longer than the turn on transient 

effect to avoid oscillatory behaviors of photon and current densities. Fig. 6.7 (a) 

shows the simulated trace of the pulses from a free running GSL at a repetition rate 

of 15 GHz. Then, the laser rate equations were solved for modulated optical injection 

and the generated pulses are presented in Fig. 6.7 (b). As expected, the pulses exhibit 

a delay when there is a high to low seeding transition and show a small advance in 

time when there is a low to high seeding transition. The simulation was extended to 

verify the impact of the level of injection on the delay and the result achieved is 

plotted in Fig. 6.8. As the optical injection power in the “1” level increases the pulse 

is generated earlier, and the time shift is increased. The earlier experiment had a 

delay of approximately 3.8 ps which, from this curve would correspond to an 

injection power of -13 dBm which is somewhat lower than the -4 dBm injection 

power in the experiment. The difference between the experimental and simulated 

power levels are attributed to the additional loss in the coupling of the injected light 

into the slave laser in the experimental setup.  

 

Fig. 6.7. Simulated optical pulses for: (a) free running GSL and (b) modulated optical 

injection GSL. 
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Fig. 6.8. Simulated injection level versus time shift in optical pulse. 

6.4 Summary and Conclusion 

In this chapter, a phase modulated 60 GHz signal was generated by injecting an 

OOK modulated optical signal into a GSL. The optical injection modulates the time 

that the optical pulses are generated in the GSL which is translated to a phase shift in 

the mm-wave signal. The system performance was analyzed for 1.25 and 2.5 Gbps 

downstream signal and shows a small power penalty between BTB and 3 km fiber 

transmission. The system operation was then verified by comparing simulated results 

with the experimental set up. This system presents a simple and cost effective 

technique for generating a modulated mm-wave signal at 60 GHz directly from a 

gigabit Ethernet network. 
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Chapter 7 – Conclusions and Future Work  

7.1 Conclusions 

Radio-over-fibre (RoF) technology is an important field of optical fibre 

communication that combines wired and wireless networks. It offers mobility and 

wireless connectivity for delivering high data rate and information access to the 

users. Optical fibres are an attractive distribution medium for RF communication due 

to the advantages such as very high bandwidth, low loss, light weight, low cost, and 

high flexibility. High data rate access and short range wireless communications are a 

key motivation for many engineering researchers to implement new and low cost 

photonic systems. In such a system, data and multimedia services arrive at the central 

station (CS) and are distributed through fibre cables to a large number of remote 

antenna units (RAUs). Hence, all the RF signal processing, up conversion, carrier 

modulation, and multiplexing may be implemented in one shared location and use 

the optical fibre to distribute the RF signal to many RAUs. In this way, the RAUs are 

simplified significantly and reduced in cost as they need only to perform 

optoelectronic conversion and amplification functions.   

 

In this thesis, a general overview of RoF technology was presented in terms of 

configurations and optical link components. Three possible transmission schemes 

were discussed for wireless signal distribution over fibre. The relevant optical 

components have been described in terms of their operation and characteristics. 

Several parameters that have to been considered were presented such as modulation 

bandwidth, frequency chirping, noise sources, and dispersion on fibre links. RoF 

networks were classified based on system application and coverage, for example, a 

distributed antenna system (DAS) is used for wireless distribution into a large 

number of pico-cells in indoor areas. Noise and distortion on optical links were 

discussed as the main limiting factors in RoF systems. Noise sources can be 

generated from lasers, photodiodes or amplifier‟s thermal noise. The fibre dispersion 

and nonlinearity in the laser or external modulator can severely limit the 

transmission distance, and data speed. Therefore, controlling and managing system 
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impairments have to be considered in order to achieve efficient use of RoF links. 

Short range communication signals such as ultra-wideband (UWB) and 60 GHz are 

the next generation of future broadband wireless signals. Their spectral definitions, 

regulation, and modulations were described in the literature review. RoF links are 

suitable candidates for distributing these short range signals for indoor environments. 

The state of the art research was also discussed for different methods of photonic 

generation and distribution over fibre of impulse radio ultra wideband (IR-UWB) 

and mm-waves.   

 

The work presented in chapter 4 proposed two different methods for photonic 

generation and distribution of IR-UWB signal based on a gain switched laser (GSL). 

These two methods generate short optical pulses at the CS and modulated in pulse 

position modulation (PPM) format at a bit rate 1.625 Gbps. The first technique uses 

one GSL and two MZMs for external data modulation. This method has been 

investigated and simulated for three different laser configurations FP-LD, DFB-LD, 

and externally injected DFB-LD. The generated PPM pulses after transmission over 

different fibre lengths are filtered using electrical UWB filter (3.1- 10.6 GHz) to 

produce doublet Gaussian pulses. At the radio terminal (RT), the received UWB 

signal is down-converted to the baseband by using either a signal generator or carrier 

recovery at the forth harmonic component. The experimental results show that error 

free transmission can be achieved for the GS FP, DFB, and EI DFB laser transmitters 

over 450 m, 1 km, and 37 km respectively. The range of the FP-LD was limited by 

the mode partition noise and amplified spontaneous emission (ASE) produced from 

the optical amplifier. While using DFB-LD the system was affected by the SMSR 

degradation and temporal jitter in the generated optical pulses. However, in the case 

of the externally injected DFB-LD, the system performance was improved as a result 

of the SMSR enhancement (>30 dB) and reduced timing jitter (<1 ps).  

 

The second approach uses two laser sources biased below threshold and gain 

switched by the combined signal from the local oscillator (1.625 GHz) and NRZ data 

at 1.625 Gbps. The system was investigated and simulated for two GS DFB-LDs 

with and without external injection.  In the case of GS DFB-LDs without external 

injection, the system achieved error free performance (BER< 10
-8

) up to 1.5 km. This 
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is limited by the timing jitter and MPN effect. However, the EI DFB-LDs scheme 

showed a maximum reach up to 25 km where it becomes limited by the poor 

extinction ratio in the direct modulation case.  The advantage of the direct 

modulation scheme over the external modulation case is its simplicity as it does not 

require external modulators, and hence there is no additional insertion loss and cost. 

Such a reduction in cost is vital for the development of a low cost solution for 

distribution of UWB signals. Therefore, the distribution for a small network or office 

building would be better by using either the FP-LD or DM DFB-LD for a low cost 

and easily integrated system. However for a system with a large distributed network, 

the EI DFB-LD scheme with two external modulators allows a more reliable and 

stable system for many RAUs with maximum reach.  

 

In chapter 5, optical generation and distribution of modulated mm-waves was 

demonstrated for two transmitter configurations based on the GSL. The proposed 

methods show the simplicity and low cost that can be obtained in comparison with 

other reported techniques for the generation of modulated optical mm-waves. The 

key element in the three transmitters is the GSL. By biasing a semiconductor laser 

and driving it with large electrical sinusoidal signal, the GSL generates a frequency 

comb with a spectrum which has a relatively flat power profile over eight phase 

correlated sideband tones. The frequency tones are spaced with the same driving 

frequency which allows for the possibility to generate mm-wave signals with a 

frequency of up to eight times the driving frequency. Optical bandstop and bandpass 

filters (OBSF & OBPF) with 3 dB bandwidth of 0.28 and 0.485 nm were used to 

select two optical tones separated by 60 GHz. The maximum suppression ratio 

obtained between the sidebands and main tones was around 17 dB. However, this 

suppression could be increased by using a specially designed fibre Bragg grating 

(FBG) filter. These two tones generate high stability at 60 GHz with phase noise of -

68 dBc/Hz at 10 kHz offset and -80 dBc/Hz at 100 kHz offset.  

 

In the first mm-wave transmitter configuration, the selected optical sidebands spaced 

by 60 GHz were OOK modulated with downstream data using an external modulator 

for two different bit rates 1.25 Gbps, and 3 Gbps. The system exhibited error free 

performance at 1.25 Gbps for up to 37 km fiber. However, the system performance 
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degraded after 40 km fiber and reached an error floor around 10
-8

 after 62 km 

transmission. This was due to bit walk off of the two optical tones caused by fibre 

dispersion. A dispersion compensating fibre (DCF) with a dispersion parameter of -

681 ps/nm was used to compensate for the dispersion incurred in the 62 km fibre. 

This system was also tested for 3 Gbps downstream data and after 3 km fiber 

transmission for no wireless transmission (0 m), 1.5 m and 2 m wireless distances 

between the RAU and the RT. The BER measurements showed around 4 dB power 

penalty for 2 m wireless transmission. In addition, the system was simulated for 3 km 

fiber and different bitrates with no wireless transmission. The system performance 

degraded with higher bit rates and showed an error floor at (BER~10
-7

) for 10 Gbps 

data rate due to the interference from the suppressed optical sidebands. 

 

In the second mm-wave setup, the DFB-LD was directly driven with a combination 

of a 15 GHz sinusoidal signal and NRZ data to generate multiple optical modulated 

tones. Optical filtering was then employed to select the relevant optical tones spaced 

by 60 GHz mm-wave frequency. The DFB-LD was externally injected with another 

DFB-LD to decrease chirping and the timing jitter of the gain switched pulses. The 

external injection was realised by injecting the GS DFB-LD with low injected power 

level of ~ -10 dBm. The system performance was measured for 1.25 and 3 Gbps data 

streams. The BTB receiver sensitivity for BER of 10
-9 

was -31.9 dBm at 1.25 Gbps 

data rate and there was 0.7 dB power penalty after 3 km fiber transmission without 

wireless transmission.  The receiver sensitivity is further degraded to about -25.2 

dBm after 2 m wireless transmission. While at 3 Gbps data rate, the receiver 

sensitivity was degraded by 9.8 dB to -20.5 dBm due to degraded signal to noise 

ratio and multipath interference. Higher bit rate transmissions at 5, 7.5, and 10 Gbps 

were also experimentally demonstrated using this technique. A simulation model was 

also developed to investigate the impact of higher bit rate, and optical sideband 

suppression ratio. Direct modulation technique represents a significant cost and loss 

reduction compared with external modulation which will be critical to the 

widespread deployment of such systems.  

 

Another optical mm-wave transmitter scheme was presented in chapter 6. A phase 

modulated 60 GHz signal was generated by using an OOK modulated optical 
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injection into a GSL. The optical injection modulates the time that the optical pulses 

are generated in the GSL. The system performance was analyzed for 1.25 and 2.5 

Gbps downstream. A simulation was also developed to investigate the effect of an 

externally injected GSL by solving the laser rate equations for an injection locked 

laser. The simulation showed the shifted GSL pulse due to injection, and the shifted 

time. This scheme presents a simple and cost effective technique for generating a 

modulated mm-wave signal at 60 GHz, directly from a gigabit Ethernet optical 

network. 

7.2 Future Work 

Although the objectives of the work have been achieved, there are still some research 

opportunities that can be addressed in future work for RoF systems. Some of the 

recommended works are derived from the thesis and described as follows; 

 

 This thesis has investigated the delivery of high speed data to RAUs in a 

single direction. However, real time full duplex transmission is required 

for interactive multimedia services. Then, it is interesting to include the 

uplink direction in the system setup and investigate how to achieve 

simple and cost effective solution for RAUs. 

 Another interesting point is to design and fabricate an optical filter that 

selects out the required wavelength tones spaced by the required 

frequency separation. This filter can be designed with only two passbands 

spaced by 60 GHz and integrated to the optical transmitter. The designed 

optical filter will also improve the system performance due to improved 

suppression of the optical sidebands and reduce the cost. 

 Most of the experimental works were achieved at 60 GHz for OOK data 

modulation. So, it would be vital to investigate the system setup with 

another modulation technique such as orthogonal frequency division 

multiplexing (OFDM). UWB signals at 60 GHz can be modulated on two 

optical tones by using either direct modulation to the laser or external 

modulator.   

 It is also important to include the media access control (MAC) layer in 

the proposed RoF setups. This can improve the system performance by 
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implementing communication protocols that can work between the 

physical and MAC layer.   

 

It is clear then that, although the work presented in this thesis has been broad and 

thorough, there are many open research challenges in this area. 
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APPENDIX B – MATLAB CODES  
 

B.1. Numerical Solution for Single Mode Laser’s Rate 

Equations  

B.1.1. Solving single mode rate equations for gain switched laser with 

injection and non injection case 
 

clc 
clear,  
close all; 
format long e; 
 

%% Numerical constants 
h = 6.626e-34;              % plancks constant (m^2kgs^-1) 
c = 3e8;                    % speed of light (ms^-1) 

  
%% Computational grid 
  
npt = 10*1024;              % number of points 
freq = 15e9;                 % modulation frequency (Hz) 
wf = 2*pi*freq;             % angular frequency 
Tint = 1/freq;              % bit period (s) 
Tspan = 10*Tint;            % number of time spans to graph (5) 
dt = Tspan/npt;             % temporal resolution 
t = (-npt/2:npt/2-1)*dt;    % time span 
f = (-npt/2:npt/2-1)*freq;  % frequency span 
Y0 = [0 0 0]; 

  
%% Laser parameters 
wave = 1.55e-6;         % nominal lasing wavelength (m) 
fc = c/wave;            % nominal lasing frequency (Hz) 
w = 3e-6;               % waveguide width (m) 
d = 0.2e-6;             % active layer thickness (m) 
L = 300e-6;             % cavity length (m) 
gamma = 0.35;           % confinement factor (m) 
g0 = 2.4e-12;           % differential gain (m^3s^-1) 
nt = 1.2e24;            % transparency density (m^-3) nt=1.2e24; 
SR_A = 2e18;            % spontaneous recombination factor A (s^-1) 
SR_B = 1e-16;           % spontaneous recombination factor B (m^3s^-

1) 
SR_C = 3e-41;           % spontaneous recombination factor C (m^6s^-

1) 
beta = 1e-4;            % spontaneous emission factor 
R1 = 0.32;              % mirror reflectivities 
R2 = R1;                % mirror reflectivities 
NL_g = 1.5e-23;         % nonlinear gain coefficient (m^3) 
alpha_i = 30e2;         % internal loss (m^-1) 
ng = 3.7;               % group refractive index 
e = 1.6e-19;            % electron charge C 
alpha = 5.2;            % alpha factor of laser diode 
eta = 0.5;              % total quantum efficiency (50%) 
%global Sinj; 
Si=8e19; 
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bits=[1 0 1 1 0 0 1 0 1 1]; % Data Pattern 

  
bits1=ones(1024,1)*bits; 
bits2=reshape(bits1,10240,1); 
Sinj=Si*bits2;          % Modulated Injection Pattern     
St=t;                   % Needed for time base for Sinj 

  
%% Computation 
                 
vg = 3e8/ng;                                 % group velocity 
alpha_m = 1/(R1*R2);                         % mirror loss 
tau_p = 1/(vg*(alpha_m+alpha_i));            % photon lifetime 
tau_s = 3e-9;                              % initial carrier 

lifetime 
Jth = 1/beta*(alpha_i+(1/2*L)*log(1/R1*R2)); % current density 
Ith = Jth*w*L;                               % bias current 
V = w*L*d;                                   % volume of active 

region(m^3) 

  
%% Bias and drive currents 
% 
global I0 I1; 
I0 = 500e-3;                                    % bias current (A) 
I1 = 650e-3;                                    % drive current (A) 
Ct=t; 
It = I0 + I1*sin(wf*Ct);                       % modulation signal 

(A) 

  
%% Rate equation calculation 
%no. of runs to pass the transient time. 
[T1 Y1] = ODE45(@rate_equation_HS1, t, Y0);     
                             % first iteration of rate equations 
Y0 = [Y1(10240,1), Y1(10240,2), Y1(10240,3)]; 
                            % set the start carrier density equal to  
                            % the final value of the previous run 
[T2 Y2] = ODE45(@rate_equation_HS1, t, Y0); 
                            % second iteration of rate equations 
Y0 = [Y2(10240,1), Y2(10240,2), Y2(10240,3)]; 

  
[T3 Y3] = ODE45(@(t,y) rate_equation_HS(t,y,St,Sinj,Ct,It), t, Y0);   
                            % third iteration of rate equations 

  
for i=1:10;                 %loops to get the Pulse Peak positon  
    Li=1024*i;              %end index 
    [m I] = max(Y3((1+Li-1024):Li,2)); 
    Xp(i)=t(I+(1+Li-1024)); Yp(i)=m; 
                            %Xp and Yp position for text writing. 
end, 

  
%% Graphing 
 

%Plotting Drive signal, Photon density (no injection)and with 

injection 
figure 
subplot(3,1,1) 
plot(T1, It, 'r'); 
title('Drive signal applied to laser') 
xlabel ('Time (s)'); 
ylabel ('Current (A)'); 

 
subplot(3,1,2) 
plot(T1, Y2(:,2)); 
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title('Photon density as a funciton of time') 
xlabel('Time (s)'); 
ylabel('s (m^-3)'); 
subplot(3,1,3) 
plot(T1, Y3(:,2)) 
title('Photon density as a funciton of time') 
xlabel('Time (s)'); 
ylabel('s (m^-3)'); 

  
for i=1:10 
    text(Xp(i),Yp(i),num2str(bits(i))); 
end 
power1 = ((V*eta*h*fc)/(2*gamma*tau_p))*Y2(:,2); 
power2 = ((V*eta*h*fc)/(2*gamma*tau_p))*Y3(:,2); 
%-------------------------------------------------------------------

----- 
%Plotting optical power with and without optical injection 
figure 
subplot(2,1,1); 
plot(T1/1e-12,power1); 
ylabel('Optical power (W)') 
xlabel('Time (ps)'); 
grid; 
subplot(2,1,2); 
plot(T1/1e-12, power2); 
ylabel('Optical power (W)') 
xlabel('Time (ps)'); 
grid; 
Ytext(1:10)=0.45; %position of horizontal line. 
for i=1:10 
    text(Xp(i)/1e-12,Ytext(i),num2str(bits(i))); 
end 

 

B.1.2. Single Mode Laser Rate Equations File for Non-Injection Case 
  
function dy=rate_equation_HS1(ty, y) 

  
dy = zeros(3,1); 

  
%% Laser parameters 
wave = 1.55e-6;         % nominal lasing wavelength (m) 
c = 3e8;                % speed of light 
wth = 2*pi*(c/wave);    % laser frequency 
w = 3e-6;               % waveguide width (m) 
d = 0.2e-6;             % active layer thickness (m) 
L = 300e-6;             % cavity length (m) 
gamma = 0.35;           % confinement factor (m) 
g0 = 2.4e-12;           % differential gain (m^3s^-1) 
nt = 1.2e24;            % transparency density (m^-3) 

  
beta = 1e-4;            % spontaneous emission factor 
R1 = 0.32;              % mirror reflectivities 
R2 = R1;                % mirror reflectivities 
NL_g = 1.5e-23;         % nonlinear gain coefficient (m^3) 
alpha_i = 30e2;         % internal loss (m^-1) 
alpha = 5.2;            % alpha factor of laser diode 
ng = 3.7;               % group refractive index 
e = 1.6e-19;            % electron charge C 

  
%% Computation 
vg = 3e8/ng;            % group velocity 
alpha_m = 1/(R1*R2);    % mirror loss 
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tau_p = 1/(vg*(alpha_m+alpha_i));   % photon lifetime 
tau_s = 0.3e-9;                     % initial carrier lifetime 
nth = 1/(gamma*g0*tau_p)+nt;        % threshold carrier density 

  
%% Bias and drive currents 
global I0 I1; 
It = I0 + I1*sin(2*pi*15e9*ty);     % modulation signal (A) 
 

%% Equations 
dy(1) = ((It/(w*L))/(e*d))-g0*(y(1)-nt)*y(2)-y(1)/tau_s;       
                                % rate equation for carrier density 
dy(2) = gamma*g0*(y(1)-nt)*y(2)-y(2)/tau_p+(beta*gamma*y(1))/tau_s;       
                                % rate equation for photon density 
dy(3) = alpha/2*(gamma*g0*(y(1)-nth)); 
                                % rate equation for phase change 

 

B.1.3. Single Mode Laser Rate Equations File for Injection Case 
  
function dy=rate_equation_HS(ty,y,St,Sinj,Ct,It) 

  
dy = zeros(3,1); 
It = interp1(Ct,It,ty); 
Sinj = interp1(St,Sinj,ty); 

  
%% Laser parameters 
wave = 1.55e-6;         % nominal lasing wavelength (m) 
c = 3e8;                % speed of light 
wth = 2*pi*(c/wave);    % laser frequency 
w = 3e-6;               % waveguide width (m) 
d = 0.2e-6;             % active layer thickness (m) 
L = 300e-6;             % cavity length (m) 
gamma = 0.35;           % confinement factor (m) 
g0 = 2.4e-12;           % differential gain (m^3s^-1) 
nt = 1.2e24;            % transparency density (m^-3) 
beta = 1e-4;            % spontaneous emission factor 
R1 = 0.32;              % mirror reflectivities 
R2 = R1;                % mirror reflectivities 
alpha_i = 30e2;         % internal loss (m^-1) 
alpha = 5.2;            % alpha factor of laser diode 
ng = 3.7;               % group refractive index 
e = 1.6e-19;            % electron charge C 
Phi_inj=300;            % phase of the injected light 
winj=2*pi*(c/wave+15e9); 
                        % angular frequency of injected light. 
kc=2.5e11;              % injected light coupling coefficient 

  
%% Computation 
vg = 3e8/ng;                         % group velocity 
alpha_m = 1/(R1*R2);                 % mirror loss 
tau_p = 1/(vg*(alpha_m+alpha_i));    % photon lifetime 
tau_s = 0.3e-9;                      % initial carrier lifetime      
                                     %(I changed it from tau_s=3e9; 
nth = 1/(gamma*g0*tau_p)+nt;         % threshold carrier density 

  
%% Equations 
dy(1) = ((It/(w*L))/(e*d))-g0*(y(1)-nt).*y(2)-y(1)/tau_s;       
                           % rate equation for carrier density 
dy(2) = gamma*g0*(y(1)-nt).*y(2)-

y(2)/tau_p+(beta*gamma*y(1))/tau_s... 
    +2*kc*sqrt(y(2).*Sinj).*cos(y(3)-Phi_inj);       
                            % rate equation for photon density 
dy(3) = alpha/2*(gamma*g0*(y(1)-nth))-(winj-wth)... 
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    -kc*sqrt(Sinj./y(2)).*sin(y(3)-Phi_inj); 
                              % rate equation for phase change 

 

B.2. Numerical Simulation for Time Shift versus Injection 

Level  

clc 
clear,  
close all; 
format long e; 

  
%% Numerical constants 
h = 6.626e-34;              % plancks constant (m^2kgs^-1) 
c = 3e8;                    % speed of light (ms^-1) 

  
%% Computational grid 
npt = 10*1024;              % number of points 
freq = 15e9;                 % modulation frequency (Hz) 
wf = 2*pi*freq;             % angular frequency 
Tint = 1/freq;              % bit period (s) 
Tspan = 10*Tint;            % number of time spans to graph (5) 
dt = Tspan/npt;             % temporal resolution 
t = (-npt/2:npt/2-1)*dt;    % time span 
f = (-npt/2:npt/2-1)*freq;  % frequency span 
Y0 = [0 0 0]; 

   
%% Laser parameters 
wave = 1.55e-6;         % nominal lasing wavelength (m) 
fc = c/wave;            % nominal lasing frequency (Hz) 
w = 3e-6;               % waveguide width (m) 
d = 0.2e-6;             % active layer thickness (m) 
L = 300e-6;             % cavity length (m) 
gamma = 0.35;           % confinement factor (m) 
g0 = 2.4e-12;           % differential gain (m^3s^-1) 
nt = 1.2e24;            % transparency density (m^-3) 
SR_A = 2e18;            % spontaneous recombination factor A (s^-1) 
SR_B = 1e-16;         % spontaneous recombination factor B (m^3s^-1) 
SR_C = 3e-41;         % spontaneous recombination factor C (m^6s^-1) 
beta = 1e-4;            % spontaneous emission factor 
R1 = 0.32;              % mirror reflectivities 
R2 = R1;                % mirror reflectivities 
NL_g = 1.5e-23;         % nonlinear gain coefficient (m^3) 
alpha_i = 40e2;         % internal loss (m^-1) 
ng = 3.7;               % group refractive index 
e = 1.6e-19;            % electron charge C 
alpha = 5.2;            % alpha factor of laser diode 
eta = 0.5;              % total quantum efficiency (50%) 
%global Sinj 
Si= 1e18; 
Sinj=ones(10240,1)*Si; 
St=t; 

  
%% Computation         
vg = 3e8/ng;                             % group velocity 
alpha_m = 1/(R1*R2);                     % mirror loss 
tau_p = 1/(vg*(alpha_m+alpha_i));        % photon lifetime 
tau_s = 0.3e-9;                          % initial carrier lifetime 
Jth = 1/beta*(alpha_i+(1/2*L)*log(1/R1*R2));    % current density 
Ith = Jth*w*L;                         % bias current 
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V = w*L*d;                             % volume of active region 

(m^3) 

  
%% Bias and drive currents 
%  
I0 = 500e-3;                              % bias current (A) 
I1 = 600e-3;                              % drive current (A) 
Ct=t; 
It = I0 + I1*sin(wf*Ct);                  % modulation signal (A) 

  
%% Rate equation calculation 
  
[T1 Y1] = ODE45(@rate_equation_HS1, t, Y0);   

        % first iteration of rate equations 
Y0 = [Y1(10240,1), Y1(10240,2), Y1(10240,3)];           

% set the start carrier density equal to the 

final value of the previous run 
[T2 Y2] = ODE45(@rate_equation_HS1, t, Y0);            

% second iteration of rate equations 
[m1, I1]=max(Y2(1:1024,2)); 

  
figure 
subplot(3,1,1) 
plot(t, It, 'r'); 
title('Drive signal applied to laser') 
xlabel ('Time (s)'); 
ylabel ('Current (A)'); 
% axis([-2.5e-9 2.5e-9 -0.15 0.2]) 
subplot(3,1,2) 
plot(T1, Y2(:,2)) 
title('Photon density as a funciton of time') 
xlabel('Time (s)'); 
ylabel('s (m^-3)'); 

  

  
for i=1:60; 
    Sinj=Sinj+i*1e18;  
    power = ((V*eta*h*fc)/(2*gamma*tau_p))*Sinj(1);     

dbm(i)=10*log(power/1e-3); 
    Y0 = [Y2(10240,1), Y2(10240,2), Y2(10240,3)]; 
    [T3 Y3] = ODE45(@(t,y) rate_equation_HS(t,y,St,Sinj,Ct,It), t, 

Y0);             % third iteration of rate equations 
    [m2, I2]=max(Y3(1:1024,2)); 
    Delta(i)=(I1-I2)*dt; 
    hold on; 
    subplot(3,1,3) 
    plot(T3, Y3(:,2)) 
    title('Photon density as a funciton of time') 
    xlabel('Time (s)'); 
    ylabel('s (m^-3)'); 

     
end 
hold off; 

  
%% Graphing 
  
figure 
plot(dbm,Delta) 
ylabel('Time shift') 

  
title('Injected Power versus Delta change in pulse position') 
xlabel('Optical power injection (dBm)'); 
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