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ABSTRACT

In this paper, we address the problem of reconstructing 3D
volumetric models, illustrating human sporting performance
for use in coaching scenarios. We advocate the use of low
cost camera networks for acquiring such data, allowing the
approach to be feasibly adopted by both amateur and elite
level sports athletes. A dynamic voxel carving approach is
described, coupled with over-head player tracking and au-
tonomous background subtraction, to automatically produce
a 3D reconstruction technique that intelligently uses memory
resources. We demonstrate the efficacy of our approach in the
context of tennis as a challenging application scenario.

Index Terms— Image processing, Reconstruction algo-
rithms, Voxel carving

1. INTRODUCTION

In order for a coach to improve an athlete’s performance, both
technically and tactically, deficiencies in the student’s abil-
ities must be both identified and eliminated – starting with
larger faults in technique and tactical awareness, and finally
fine tuning to remove smaller issues. However, these two
complementary objectives of identification and elimination
are difficult to achieve in practice. Identifying the factors
needing improvement, requires a solid understanding of the
many variables critical to optimal performance. In addition,
the coach must be able to effectively convey this information
to the player for the benefits of the coach’s knowledge to be
efficiently leveraged.

In this paper, we describe a non-invasive approach for ac-
quiring a 3D reconstruction of a human’s performance using
a low cost camera network. An accurate 3D rendering of
an athlete’s motion can be used to maximise the impact of
coaching feedback, allowing a coach further flexibility when
clarifying a tactical issue, by allowing the game to be viewed
from any angle. In addition, the coach has the ability to re-
play the match from the point of view of either player. This
can provide the athlete with highly beneficial tactical infor-
mation obtained from reliving the match not only from their
own viewpoint, or a spectator’s viewpoint, but also from their
opponent’s point of view.

This paper is organized as follows: Section 2 details pre-
vious work in the area. Section 3 provides a description of the
3D reconstruction of an athlete’s movements from a number
of low cost cameras. In section 4 we quantitatively evaluate
our approach in a real world test scenario, namely for obtain-
ing rapid motions from a tennis player in competitive action.
Tennis is a challenging test scenario, given both the speed and
explosive nature of the actions performed by athletes. Finally,
section 5 provides conclusions and future work.

2. PRIOR WORK

The main motivation in this work is to extract 3D motion from
athletes using low cost techniques, which can be feasibly ac-
quired by most amateur sporting clubs. This data can then
be applied in performance evaluation from both training and
match scenarios. Although sensor-based techniques could be
employed in training, such as the strapping of wireless wear-
able sensors [1] to players, the use of such technologies in
competitive action is currently not a feasible solution, due to
sporting body regulations. In addition, despite the relatively
small size of such sensors, discussions with elite athletes and
sports professionals lead us to believe that their size could still
impair the performance of athletes. As such, in this work we
focus on the use of non-invasive, image processing techniques
from camera networks.

Space carving, or voxel (three dimensional pixel), tech-
niques [2, 3, 4, 5] have received much attention in the litera-
ture in recent years. These approaches create a 3D represen-
tation of a subject from multiple 2D images, synchronously
captured from a number of calibrated cameras at different
viewing angles. In each camera view, the subject of interest
is identified, and its silhouette is segmented from the image
background. The approach of space carving, as described in
the seminal work of Kutulakos and Seitz [4], is to progres-
sively remove inconsistent voxels from a pre-defined initial
volume, using the extracted silhouettes from each image. The
output of the technique is the maximum volume in 3D space
which may have produced the extracted silhouettes. However,
the choice of this initial volume can have a considerable im-
pact on the outcome of the reconstruction process [4].

Many others have expanded on the Kutulakos and Seitz
algorithm. Broadhurst and colleagues present a probabilis-



tic approach to space carving, accessing the likelihoods of a
voxel existing or not existing [2]. This approach benefits from
assuring no holes are carved in the final model. A more ac-
curate carving, in a moving environment, is produced by in-
troducing a ’hexel’ and performing motion carving in six di-
mensions in [6]. Yang at el. presents a progressive scheme to
improve the reconstruction of surfaces that lack sufficient tex-
ture details coupled with robustness to variations in lighting
conditions [7]. Kolmogorov and Zabih take a slightly differ-
ent approach, and employ an energy minimization technique
via graph cuts [8]. Bhatia at el. designed a bottom-up 3D
limb detection system that utilises a multi-view Eigen model
to provide approximate 3D pose information that combines
the concepts of space carving and Eigen recognition [9]. Seitz
and colleagues presented a quantitative comparison of sev-
eral multi-view stereo reconstruction algorithms and try to ad-
dress the challenges in comparing and evaluating multi-view
stereo algorithms [5]. Real time space carving implementa-
tions have been proposed that use graphics hardware [10] or
several computers [11]. Cheung at el. [11] present a near-real
time system for voxel reconstruction that uses multiple com-
puters, one computer is used for each camera in the system
and a further computer to compute the final voxel carving.

3. APPROACH

In general, there are a number aspects required to achieve high
quality voxel carvings; (a) a high number of images, captured
from multiple calibrated cameras at varying viewing angles;
(b) good camera calibration; (c) quality object silhouette seg-
mentation; and (d) the initial volume selected for carving.
Within these constraints, the number of images available is
generally predetermined by the number of available cameras
in a particular physical setup, and good manual calibration
can ensure the second.

In this work, we focus on the last two aspects, extend-
ing the work of Yang at el. [12] to cope with the difficulties in
object segmentation in relatively unconstrained real world en-
vironments. In addition, we detail a technique for providing
a good choice for the 3D initial volume to be used for carv-
ing. The camera setup used in this study, shown in figure 1(a),
consists of nine low cost IP-network cameras, (seven cameras
with 640 × 480 pixels and two cameras with 704 × 576 pix-
els), forming a 220 degree arch around a tennis court and one
overhead camera. This overhead camera was a specific re-
quirement of the tennis coaches, in order to visualise tactical
shots and movement during matches. It should be noted that
in this scenario, 360 degree ring of cameras was not possible
in this case due the presence of three additional tennis courts
beside the test court. However this represents a realistic court
setup that could be obtained in most amateur sports clubs.

This camera setup tends to differ significantly when com-
pared to those adopted in the voxel carving, both in terms
of camera pixel resolution and the spatial volume that recon-
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Fig. 1. (a) Camera Setup; (b/c) Player tracking.

struction can occur (the nine cameras cover the 78 × 36 feet
size of a standard tennis court, in addition the overhead cam-
era is 45 feet above the ground). In our experimental setup,
the spatial region covered by a bounding box of a human sub-
ject can range from maximum of 92 × 357 pixels (width ×
height) when the athlete is close to a given camera, to a min-
imum of 48 × 135 pixels when the player is at the opposing
end of the court to the camera. In addition, the spatial region
covered by the player from the overhead viewpoint is an aver-
age of 42× 21 pixels. As we are focusing on low cost camera
networks, the camera pixel resolution and number of cameras
should be kept low, in order to minimise expense. As such,
it is imperative that the segmentation quality of the silhou-
ette must be high. For each camera viewpoint, we employ a
layered background modelling approach, which includes ro-
bust shadow removal techniques [1], to learn the background
scene. However, even with such a technique, accurate seg-
mentation is difficult to achieve in real world scenarios, where
moving backgrounds, lighting conditions and lack of variabil-
ity in colour intensity between players and background ob-
jects in the scene are unconstrained. In order to maximise
the accuracy of the segmentation technique, we leverage the
benefits of having multiple calibrated cameras.

An overhead camera is used to perform player tracking
[13], which identifies the groundplane player location on the
court in real-world Euclidean coordinates (see figure 2(b),
where the location of the base of the cube indicates the player
position). A player-cube is then placed around the spatial vol-
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Fig. 2. Player localisation and silhouette extraction.

ume occupied by the player. The cube’s groundplane dimen-
sions are determined using the bounding box of the player
tracker, the height of the cube is set to 2.4 metres (see fig-
ure 1(c)). As the intrinsic and extrinsic camera calibration
parameters of each the other eight cameras in the network
are known, the player-cube location can be obtained in each
one of the other camera’s local coordinate systems – see fig-
ure 2 row (2), for the projection of a 3D player-cube onto
four different camera image planes. Using the bounds of the
player-cube on each image plane, the player location can be
constrained to a specific section of the image. As such, in
order to segment the players silhouette from each viewpoint,
foreground pixels are obtained (using the layered background
modelling technique of Ó Conaire and colleagues[1]) from
within the bounds of the 2D player-cube only. These pix-
els are then filtered to remove noise, via connected compo-
nent analysis and regions under a predefined threshold are re-
moved. This technique of silhouette extraction can cut down
on computational complexity, while simultaneously increas-
ing precision on silhouette extraction – see figure 2 rows (2)
and (3) for example results of this process.

Once player silhouettes are extracted, space carving as per
the technique of Yang at el. [12] can be performed. However,
the amount of computer memory utilised in traditional space
carving techniques can be both computationally and mem-
ory intensive. In order to reduce this complexity, the num-
ber of voxels used in the initial volume selected for carving
can be decreased. This technique will also reduce the spa-
tial resolution of the 3D volumetric reconstruction. In this
work, we use the available computer memory as efficiently
as possible by adopting a dynamic space carving methodol-
ogy, which is controlled by player localisation on the court,
again provided by the overhead camera tracker. The initial
volume used for carving is centred, as before, on the area
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Fig. 3. Volumetric reconstructions using (a) 0, (b) 1, (c) 2, (d)
3 and (e) 4 camera viewpoints. Figure (f) shows the resultant
volumetric model with surface colouring.

occupied by the player. Only this specific volume is filled
with voxels. As such, we can keep the spatial resolution of
the voxels constant, but the number of voxels can be dynam-
ically changed with respect the size of the player bounding
box supplied by the overhead tracker. This intelligent use of
memory resources means that the approach can run comfort-
ably on a standard desktop computer, producing high quality
reconstructions, despite the low cost, low resolution cameras.

4. EXPERIMENTAL RESULTS

All experiments in this section were performed a standard
desktop computer; (Windows 32Bit, 3GHz CPU, 4GB RAM).
Figure 3(a) shows 3D volumetric reconstruction results, ob-
tained from our approach, on a sample frame using between
one and four cameras. In this example, the voxel resolutions
in the carved volume are set to 1cm3. It should be noted,
that if the initial volume extended to the whole tennis court,
a voxel resolution of approximately 1000cm3 (one voxel has
a resolution of 10cm×10cm×10cm ) would have to be set in
order for the same amount of memory to be utilised, result-
ing in a significant decrease in reconstruction accuracy. In
figure 3, a maximum of four cameras is used, although there
are nine cameras in the network, due to limited camera over-
laps, at most the player will appear in four fields of view at a
given moment in time. The graph in figure 4(a) illustrates the
trade-off between reconstruction time and voxel resolution.
For example, the process runs at 38 frames per second when
x = 3, i.e. a voxel is 3cm×3cm×3cm, or 27cm3.

A difficulty in evaluating a space carving technique that
covers a large area, such as a tennis court, is the lack of avail-
able ground truth data for comparison. In an attempt to pro-
vide quantitative evaluation figures, the Mean Squared Error
(MSE) of a single frames space carving and its associated sil-
houettes are compared in the graph of figure 4(b). In this
graph, a space carving was automatically generated from a
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Fig. 4. Quantitative evaluation results; (a) Reconstruction
time versus voxel resolution (where x is the length of each
of a voxel’s faces in cm); (b) Mean-square error (MSE) ver-
sus voxel resolution.

number of sets of input images. The resultant carving was
then back-projected into each camera plane, forming a sil-
houette of the final volumetric model. For each image, this
back-projected silhouette was compared to a manually seg-
mented ground truth silhouette using a Mean Square Error
metric. This qualitative measure was then averaged across all
cameras. This process was repeated and graphed for differing
voxel spatial resolutions. As expected, when the voxel spa-
tial resolution is decreased, the MSE decreases accordingly.
This highlights the importance of using memory efficiently,
to acquire the highest possible voxel spatial resolution.

5. DISCUSSION

In this work, we implemented a viable 3D visualisation tech-
nique, by means of dynamic voxel carving, and using a low
cost, low resolution, camera network. We demonstrated this
approach in the context of tennis, however a variety other real
world applications are possible. With the exception of initial
camera synchronisation and calibration the entire process is
completely autonomous and does not require any manual in-
teraction. In future work, we will investigate the possibility
of fitting a 3D human skeleton to the volumetric model and
acquiring dynamic motion data associated with an athlete’s
body. The acquisition of such data from athletes on the field
of play would allow to quantify performance data, such as
velocities, ground reaction forces and torques, amongst other
data to be obtained for evaluation of sporting performance.
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