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Abstract

We describe an asymptotic method for approximating satstiof systems
of ODEs with oscillatory forcing terms. The approach is lohea asymptotic
expansions in inverse powers of the oscillatory parametand on modulated
Fourier expansions. We revise some relevant examplesidimg) problems that
appear in the modelling of mechanical and electronic systemd for which the
proposed procedure is superior to standard methods.
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1. Introduction

The efficient and accurate solution of systems of ordinaffeintial equations
(ODEs) subject to oscillatory forcing terms is highly redaetin several aspects of the
modelling of electronic circuits subject to amplitude arebuency modulation, see for
instance [3, 12, 21] and also [10] and the references theMaore precisely, in this
review we are concerned with systems of ODEs of the form

y'(t) = h(y(t)) + 9. Fy®),  y(0) =y, 1)

wherey(t) : R — R%, f(y),h(y) : R? — R? are analytic functions (generally
nonlinear), and the scalar tegn(t) can be written in the form of a modulated Fourier
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expansion (MFE), that is

oo

gu(t) = D am(t)e™". (2)

m=—o0

Observe that we allow the coefficients, (¢) to depend on the variablge and also
that within this setting we cover the case of ODEs with oatmlty forcing terms (when
the functionf (y(¢)) is constant). In general, we make the important assumphiain t
the functionsh and f are independent af. Under certain conditions it is possible
to allow dependence an in the differential equation with only minor changes in the
general setting, see the details below.

Typical examples of forcing terms are

G (t) _ eiwt’ G (t) — gfeos wt. (3)

In this latter case, the forcing term has full spectrum, dsvis from the Fourier
expansion

elcoswt _ Iy (,,7) +2 Z I (77) cos mwt, (4)
m=1

in terms of the modified Bessel functiofig (n), see [1, Eg. 9.6.34]. Other examples
include two different large frequencies, .., (t) = sinw;t sinwst, and combinations
of the above. See for instance [11], and also [23, 22], wHasetype of problem is
formulated in terms of PDEs.

From a mathematical point of view, the use of standard metbbdumerical ODEs
(such as Runge—Kutta) is problematic in this context, siheescillatory behaviour of
the solutions of the differential equation imposes an edicegy small stepsize which
is both too expensive for implementation and leads to anraatation of round-off
error due to the large number of steps needed to integrateltiein a given interval.

As a toy example, consider the following second order lirepration with forcing
term:

y'(t) +y(t) = 2sinwt, y(0)=1, ¥ (0)=0.

or in matrix form
y(t) = ( _01 (1) )y(t)—i—sinwt( g ) . (5)

If we setw = 10* (a very modest value, given the high frequencies in which we
are interested), and solve it with theAVLAB standardbde45 routine in the interval
t € [0,10], with initial valuesy(0) = 1, ¢'(0) = 0, the number of steps needed for a
fixed relative tolerance is as follows:

RelTol | Steps
10~* | 42.233
107% | 127.329
10~8% | 345.189
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Figure 1: On the left, the functiog(¢) (solid) and its derivative//(¢) (dashed),
solutions of the system (5), with = 10%. On the right, detailed plot of the derivative
y'(t), showing the rapid oscillations that are superimposed esihooth curve on the
left.

The plots shown in Figure 1 are quite revealing of the behaabthe solutions of
this kind of systems of ODEs, and they give a crucial insigiat teads to thansatz
that we propose later on. Observe that the (apparently)shavying functiony’(t)
is superimposed with tiny oscillations (of amplitud&w—1)), which require a very
small stepsize on a standard time-stepping routine. Seeiaisexample in [8]. This
is consistent with the behaviour observed in the example.

The reason for the poor performance of standard methodsisnséiting is a
direct consequence of their underlying mathematical caosbn. Methods such as
Runge—Kutta are essentially based on Taylor expansion atdhing of the exact
and the numerical solution up to a certain order. In any nigabmethod of order
p with steph, the error scales roughly like?*1y(P+1)(¢), and since the amplitudes
of the derivatives of highly oscillatory functions grow yeast, typicallyy®*+1 (¢) =
O(wP*1) (consider the standard examplét) = c“?), we requireh to be extremely
small in order to keep the error down to an acceptable size.

2. Perturbation theory and oscillatory integrals

The idea of the proposed method is related to perturbatiearyh although not
in a standard form. We recall that, roughly speaking, pbetion methods (such as
averaging) are designed for problems where the perturb@ioother terms in the
differential equation) is multiplied by a small parametersee for instance [4, 25].
Then the general idea is that the solution of the unpertusigstm plus corrections in
powers ofe yields a good approximation to the solution of the pertunpedblem.

In our case the perturbation is not necessarily small in fiaea somewhat related
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idea can be applied, since df,(¢) is of the trigonometric type, for instance, then it
gives a contribution which is not small but has an averageeod because of major
cancellation between positive and negative parts of tharigrtermg,, (¢) f (y(t)).

More rigorously, the main idea is to consider the system ¢ perturbation of

Z'(t) =h(z(t),  2(0) =y, (6)

and then use nonlinear variation of constants [17], in otole¢late the solutions of the
perturbed and unperturbed systems with the same initiat dat

y(t) — 2(t) = / B(t — ) F(y(5))gu(s)ds. @)

Here ® is the solution of the so-called variational equation

Oh(z(t))
/ = =
P = o P, ®0)=1.
The matrix® is in general not available analytically, yet if the integiddas smooth
enough andy,(t) is a trigopnometric function (see the examples cited beftrep

integration by parts gives

y(t) —z(t) = /O D(t—5)f(y(s))gu(s)ds = O(w™),  w—o00, (8)

since® is independent af.

This demonstrates that, subject to fairly general assumgtithe difference
between both solutions is of ordél(w~1). Note that here it is essential to suppose
that the functiong and f are independent af, otherwise the estimation needs to be
modified.

This observation makes it possible to use the methodologgntéy developed for
oscillatory integrals, see for instance [19] or [18], as fieative alternative to standard
guadrature. More explicitly, in [8, 11] the authors proptseuse of Filon quadrature
(plus waveform relaxation) to approximate efficiently ttseitlatory integral presentin
(7). This method is numerically effective, but it has theadigantage of time-stepping,
which can be expensive.

A deeper idea, in the spirit of the general theory of os@hgaintegrals, is to look
for a full expansion of this integral in inverse powers of tieillatory parametep,
either by repeated integration by parts or by another methlod mairansatz proposed
in [9, 10] is precisely that the solutiaj(t) admits an expansion in inverse powers.of
and that the terms in this construction adopt the form of ntettdd Fourier expansions.
This can be seen as a correction (in inverse powets thiis time) of the solution of
the unperturbed system, in the spirit of perturbation theor

If feasible, this approach confers three important contpartal advantages: firstly,
the terms in the expansion can be computed beforehand ($igadbyoor numerically),
and then the desired value ofcan be substituted therein, without subdividing the
interval of integration. Secondly, the cost of the methoéssentially independent
of the size ofw, unlike what happens with standard methods, and incredhkisg
parameter will make our method more accurate. Finally, dhee(-independent)
coefficients have been computed, the equation can be sobsty dor different
frequencies.
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3. The form of the asymptotic expansion

3.1. Systems of ODEs

If the forcing term in the differential equation can be waittas a modulated Fourier
expansion, it seems reasonable to suppose that a similatg® holds for the solution
of the ODE. More explicitly, we assume thgft) can be written in the form

)~y %ws(t) w1, 9)
s=0

where the functiong, (t) may depend o, but in any casep (t) = O(1), w > 1,
for s € Z,. Each of they(¢) is itself a modulated Fourier expansion:

Z Do ()™, s>1. (10)

Once we stipulate that the coefficients of the ODE are indégeinofw, the first
level of the expansion can be simplified, thatys,(t) = p, ((t), i.e. py,,(t) =0
whenm # 0. This prevents positive powers offrom appearing in the derivative of

y(t).
We also impose),(0) = y(0) = y, in order to match the initial condition, which
means thatp,(0) = 0 for s > 1, or equivalently

Y~ Pom(0) =y, > po,(0)=0, s>1

m=—0o0 m=—0Q
Therefore, the generahsatzis

o0 o0

( ~ pO O + Z Ljs Z ps,m met' (11)

m=—0o0

We differentiate the functiog(¢) formally,

/ / - . imwt - 1 > / . imwt
Yy ~ p0,0 + Z Zmpl,me + Z E Z [ps,m + Zmszrl,m] € .

m=—oo s=1 m=—oo

Observe that for simplicity of notation, we have omitted dependence onof the
p,.m(t) terms. Next, we expand the functiohsf : R — R about the leading term
Do o- In this expansion, we group all those terms that multiplyadinverse) powers
of w, thus separating orders of magnitude:

h(y) ~ h(py,) +Zwsz Z n(P0,0s Xkey» """+ Xk, )» (12)

= T k€l

where

d
(hn(p0,0v boeen @ = Z

71=1 =1

d

hr(Po o)
ayll ayin ! 2

in 3Ly ey
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> P (e (13)
and
Ins={(ki,...,kn) €eN" : |k| = s}, (14)

with the standard notation for multi-indicls = k1 +k2+. . .+ k,,. A similar formula
applies to the functiorf.

Finally, we collect all those terms that have the same fraquéhat is, those terms
that multiplye?~* for eachm ¢ Z) within each level:

oo

h( ~ h pO O + Z E Z bm,s[h]ezmwt7 (15)
s=1

m=—oo

where we use the notation

Z Z Z hn(Po,0s Pry i Prt) (16)

n= 1 keHn s leKn m

and
Kom={(1,...,0,) €Z" : |l| =m}. a7

Equating both sides of the differential equation, from (abd (15), a general
pattern emerges: for > 1, we obtain nonoscillatory differential equations for the
Ps o terms:

Plo="bsolhl+ Y a.(t)bs ,[f] (18)
with initial condition
ps,O(O) = - Z ps,m(o)v (19)
m#0

since we have imposed thet, (0) = 0 for s > 1. Additionally, we get recursions to
computep, . ; ,,,(t) for m # 0 from the previous coefficients:

. o0
DPsi1im = _% _p/s,m + bs.,m[h] + Z ar(t)bS,mfr[.ﬂ (20)
T=—00
form # 0.

This is the general scheme that we are going to use to dedaa#fficients in
the expansion. Note that the differential equations forghg terms can in principle
be solved by standard methods, since there is no highlyateci behaviour involved.
However, in some cases there may be an additional structtinestequation (such as a
Hamiltonian formulation, see the example of the invertendudum later on), and this
calls for more specialised methods.

We remark that modulated Fourier expansions for oscifa@DEs have been

widely analysed as an essential tool in Geometric Numetidagration and highly
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oscillatory ODEs in [6, 7, 16]. In that context, the authaes@oncerned with equations
of the formz + Qz = g(z), where

0] 0
2= < 0| w?I > ’

w > 1 and/ is the identity matrix, both in Hamiltonian and non Hamiliam settings.

The main difference between this setting and the one prajasais paper is that
from the point of view of perturbation theory, this is no l@ng regular perturbation
problem but a singular one. Note that @nsatz corresponds essentially to a regular
perturbation problem: we expand the perturbed solutionuerise powers ab, so the
standard small parameter would be= 1/w, and we assume that when— oo we
only have the unperturbed solution.

If powers ofw are allowed in the differential equation, shyy), f(y) = O(w"),
r > 0, then great care is needed, since we may be faced with a aimggiturbation
problem, and the derivation of the terms in the asymptotaesion should be carried
out in a different way, see [16, XIII.5]. One important caseene our setting remains
valid, while allowing dependence an of the coefficients of the ODE, is that of the
inverted pendulum, that we analyse in Section 6.3.

3.2. Second order ODEs

The general setting (11) can be simplified in some circuneg®nOne particular
case of importance is that of second order differential gnawith oscillatory forcing
terms. This situation has been analysed in [9] for diffdediguations of the form

y'(t) — R(y)y'(t) + S(y(t) = gu(t),  y(0)=yo, ¥'(0)=yjp,

which includes equations of Van der Pol and Duffing type. Is tase, if we are only
interested in the analysis of the solutigft), and not of the derivative, we may assume
that

m=—oo

y(t) ~ pool(t) + %pm(t) +) % > Prm(t)e™ 21)
r=2

We note that this is consistent with the fact thé) exhibits small oscillations with
amplitudeO(w=2), increasing t@)(w ') for ' (t), see [9]. However, if we analyse the
complete system, then we need to use (11), because thetilerivdl have oscillatory
terms at thed(w 1) level.

If we are working with a second order differential equatidhe form

y'(6) +S) = 9.(0)Q(®),  y(0)=yo. ¥'(0)=up,
then using (21), we obtain the scheme

o0

Plo=—bsolSI+ > ar(t)bs Q] (22)

rT=—00
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for s > 1, together with the initial conditions

ps,O(O) = - Z ps,m(o)a 5> 21 (23)
m#0

p./S,O(O) = - Z p./s,m(o) -1 Z mps+l,m(0)7 S 2 27
m##0 m=—o00

see [9], and also

1 ' 0o
Ps+2,m = m2 {pls/,m + 2zmp/s+1,m + bs,m[S] - Z aT(t)bs,m—r[Q]} , (24)

T=—00

for m # 0. In this case

ZQ( (po,0) Z Z Hpkl

kel, s I€K, m i=1

In this setting we can also allow dependencewrnin the coefficients of the
differential equation. For example, in the case of the i&pendulum, see Section
6.3, we have)(y(t)) = O(w). Our approach is still valid in this situation, although we
will need to shift the coefficients, ,,,[Q] computed above, because of the extra power
of w. Moreover, from (8) we deduce thaft) — poo(t) = O(1) whenw is large,
so we need additional terms in the expansion in order to gieghat the difference
between the perturbed and unperturbed solutions beconavginenw grows.

4. Construction of the asymptotic expansion

In this section we derive the first few terms of the asymptexisansion explicitly
in a general setting.

4.1. The zeroth term

The termp,, ,(¢) obeys the following differential equation:

which is obtained by equating all th@(1) terms with zero frequency in the ODE.
Additionally, we impose the initial conditiop,, ,(0) = y(0) = y,. Equating nonzero
terms with the same frequency, we obtain

tam(t)

Pim = _Tf(po,o)a m # 0.
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4.2. The firstterm

Whens = 1 we obtain

oo

Pho="biolhl+ > ar(t)br[f]. (25)

Here
bl,m[h] = h’l (p0707p1,m)1 me Za

and similarly forf. Additionally we have the initial condition

P10(0) =— Z P1,m(0),

m#0

which follows from), (0) = 0. Furthermore, we get
Z. o0
pQ,m = _E _pll,m + blm[h] + Z aT(t)blym*T[f] ) m # Oa (26)

SO we can computg, ,,, for m # 0 from (26).

The equation and initial conditions fgs, , are obtained when analysing the
O(w™?2) terms.
4.3. The second term

Whens = 2 we obtain

Pho =baolh]+ > ar(t)ba, . [f]. (27)
Here
1 oo
ba m[h] = hl(p0,07p2,m) + ) Z hQ(p0,0apl,lvpl,mfl)v m € Z,
l=—00

and similarly forf, together with

P2,0(0) = - Z p2,m(0)’

m#0
and arecursion for thp; ,,, terms,
i ) -
= —— |— b m h rb m—r ) 0. 28
Pom = —— |=Phm + b2, H+T:2_jooa 2m-r[f] m # (28)

It is clear that the process can be iterated, at the pricecoé@singly cumbersome
expressions.

We point out that when the forcing term has a finite number ofzeoo frequencies,
then there is a considerable simplification in the consimagcksee the examples below.
Moreover, in many relevant cases the functiérand f are quite simple, for example
multivariate polynomials of low degree, and hence many $einaolving high order
derivatives vanish identically.
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5. Bandwidth and stability

We highlight two important aspects of this approach: firstlthe original forcing
term is band-limited, that is, if there existssuch thati,,, = 0in (2) if |m| > o + 1,
then is this bandwidth preserved in tiie (¢) functions of the expansion? Secondly,
if we fix w, is it possible to say something about the stability of thietsen whent
grows?

The answer to the first question is in general negative. Is{stem is nonlinear,
one should expect an increase in the number of nonzero fnegseas we move to
higher values ok. We call this phenomenadsiossoming, and it is mainly due to the
convolution-type term

o0

S (Oba i [f]

r=—00

that appears when computipg , ,,,, see the previous section. Nevertheless, the rate
of increase can be estimated in general. Namely, we havelibe/ing result:

Theorem 1 For s > 0, the maximum bandwidth 6 of theterm ), (¢) is
93 = S0,
where ¢ is the bandwidth of the original forcing term.

Proof. We refer the reader to [10] for the details. O

The actual rate of blossoming can be smaller in some impiréaes. For instance:

Theorem 2 Let f(y) be constant, then we have 6, = 0, ; = ¢ and the maximum
bandwidth 6, of theterm ) (¢) is

0s = (s—1)p, s> 2.

Proof. See [10]. O

In [9] another particular case is considered: if we are degalith second order
differential equations and we are only interested in blosag for y(¢) (and not for
the derivative/(t)), then we have the following

Theorem 3 If y(¢) is a solution of the ODE
y"(t) = R(y(®)y'(t) + S(y(t)) = gu(t),

where R(y) and S(y) areanalytic, and if 6, is the maximum bandwidth of ¢, (¢) in the
asymptotic expansion of y(¢), thenitistruethat 6, = 6; = 0, 62 = g and

95_{SQ1JQ, s> 3. (29)
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Regarding stability for fixed values af, it is possible to carry out an analysis of
the method by means of standard linearization of the diffiggbequation around the
unperturbed solution. We take a partial sum of the asynmpésgpansiorz(¢), in such
away thaty(t) — z(t) = O(1/w). If the coefficients of the ODE are independentof
then it suffices to take(t) = v, (t), otherwise we need more terms in the asymptotic
expansion, according to (8).

Let us writey(t) = z(t) + w(t), assuming that (t) = O(1/w) for largew. Then,
to leading order we have

w' = [A(t) + B(t)go ()] w + 9o (1) f(2),  w(0) =0, (30)

where A(t) and B(t) are respectively the Jacobian matriceshadnd f evaluated at
z(t). Now we split the matriced(t) + B(t)g., (t) = U + V (t), whereU is a constant
matrix, and compare (30) with the system

v =Uv, v(0) =0,

with trivial solutionv = 0. Variation of constants gives

w(t) = 0+/0t<1>(t— s)F(s)ds = /Ote(ts)UF(s)ds, (31)

where®(t) = ¢!V is the fundamental matrix of the system and
F(s) = V(s)w(s) + gu(s)f(2(s))-

It is clear from (31) thatw(¢) represents a deviation from the zero solutidn),
and therefore the behaviour ai(t) ast > 0 is related to the stability of this zero
solution. This in turn is governed by the eigenvalues of thelamental matrix/, see
for instance [25, Ch. 6]. More explicitly:

Theorem 4 If

= all the eigenvalues of the matrix U, say A\x, 1 < k < d, satisfy that R\, < 0,
and those eigenvalues with zero real part are simple, and

= itistruethat for anyt > 0 there exist constantsc;, co > 0 such that

/O IV(s)llds < e, / 90 (s) F(2(s)llds < c2,

then the zero solution solution v(¢) is stable in the sense of Lyapunov, and w(¢)
is bounded.

Proof. It is a consequence of Gronwall’'s lemma, see [10] for motailde O

When any of the eigenvalues of the mattixhas a positive real part, then one
should expect deterioration of the approximation whemows, even if one still has
the O(w~!) estimate. A typical example of this situation is given byteyss that can
develop chaotic behaviour. In those cases, the solutidmegbérturbed system may be
very different from the solution of the unperturbed one, actially one of them can be
chaotic and the other non chaotic, if the perturbation igldsechaos suppression, see
forinstance [5]. That being said, it may happen that evehigxdase the approximation
is acceptable for small values ©fdepending on the application that we have in mind.
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6. Examples

In this section, we present the method applied to sever&rdiit problems.
In all cases, we will compare the approximation given by thst fiew terms of
the asymptotic-numerical solver with the exact solutiohi@li is either analytically
available or computed numerically — and laboriously — witimglard MATLAB routines
up to prescribed accuracy). Although other more sophistita@omparisons are
possible, we will normally use the standard ODE solode45 in MATLAB, with
absolute and relative tolerance equal@o '2 as an illustration.

We use the notation

€s = ‘y(t) - Z Q/):—ff)
n=0

for the errors, taken componentwise.

We remark that the values af that we use in these examples are smaller than
the ones normally present in applications. This restnictessentially imposed by
the fact that the comparison with the ‘exact’ solution progdiwith MATLAB should
be reliable and affordable. Increasiagwill benefit the asymptotic-numerical solver,
since the approximation with a fixed number of terms will berenaccurate, and the
computational cost will be roughly similar.

)

6.1. A damped harmonic oscillator

As a first example, we consider a simple forced oscillatohwiamping. This
system is modelled by a simple second order ODE:

2 (t) + bx' (t) + kx(t) = pcoswt, z(0) = =y, 2'(0) = xy, (32)

whereb is the damping coefficienk; the spring constant and we have set the mass
equal tol for simplicity. We introduce a forcing term with amplitugeand frequency
w, and we suppose that > wq, wherewy is the natural frequency of the unperturbed
oscillator in the underdamped case. In matrix form:

' (t) = < _Ok _1b ):c(t)—l— < (1) >ucoswt, (33)

thereby using our notation

nw=( 5 L )e s@=( 7).

The construction of the asymptotic expansion is parti¢ylsimple in this case,
since we have after brief computation:

)

0 1
Poo = < “k —p )po,()a po,o(o) = x(0),
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X(t)
?
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Figure 2: Solution of the perturbed system (32), with partansd: = 4.2, b = 0.6,
1 = 0.8 andw = 50.

4 -4 -6

x 10 x 10 x 10

Figure 3: Absolute errors in the approximation of the soluf the perturbed system
(33)fork =4.2,b = 0.6, u = 0.8 andw = 100. Top row, errors inz(t) using the
zeroth term (left), using up to the first term of the approxiora(centre) and using up
to the second term of the approximation (right). Bottom reame forx’ (¢).
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together with

e (0
pl,—1:E 1 = —Pi1,1-

Because the functioffi is constant, we have from (18) and (19) thatfor 1
0 1
p;,O = ( —k —b >ps,Ov ps,O(O) == Z ps,m(o)'
m#0

In particular, that means that

0 1
P/1,0 = ( “k —p >P1,0a P1,0(0) =0,

which leads tg, , = 0. Hence we conclude that in this case the first term is simply

B, (1) = ( 2 >sinwt.

Note that theD(1/w) term is0 for the first component of the solution. In other
words,x(t) is superimposed with tiny oscillations of amplitu¥1/w?), whereas in
the case of the derivative/ (¢), these oscillations have amplitude of ord2(l/w).
This is intuitively consistent with what can be observed igufe 2, and also with the
ansatztaken in [9]. Analogously,

o 1
Py = 5\ 2 =P21>

and since the bandwidth in this exampl@is= 1, see Section 5, then we know that
Pa,m = 01if m| > 1. Furthermore

1
p/2,0 = UP2,0a P2,0(0) = _2P2,1(0) =K ( b ) )

hence
-1
ho(t) = Py + 1t ( b ) cos wt.
Hence, writing everything together, we have

170 . 1 -1
S5(t) = poo(t) + = < u ) sinwt + e [pz,o(t) +u < b > coswt]

as our approximation to the solution of the ODE (32) up to otdgv—2). In Figure 3
we plot the errors when taking the first few terms of the exfmamsompared with the
solution of the perturbed system computed directly by therdAe standard routine
ode45.

Regarding stability, since the system is already line@rntlatrixU is directly

0 1
(54
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with eigenvalues
—b+ Vb2 — 4k
) .
Since bothb, k > 0, then the real part of both eigenvalues is always negatide an
we have asymptotic stability according to Section 5.

A =

6.2. An expcos oscillator

We include an example that features an oscillator with fodlctrum, to show that
the method can be equally effective. More precisely, welrdzaexample of a simple
electronic circuit that was presented in [10],

20 = a0+ 5 (e Z0) 1 - 2y 0 =00,

whereL, R, C, I, andVr are parameters, and the perturbatiog.i§t) = e <5t

Realistic values of the parameters are for instahee 10~4, R = 100,C = 1079,
I, = 1072 andVr = 0.0259. The constant term-I,L/C can be added in thé(1)
level in a straightforward way. The resulting system is

G0) = (1 ) G0 ) = (57)-(0)

wheres = I,L/C. The properties of similar types of oscillator have beeryegal in
[8] and [11]. As noticed before, see (4), the functigr{t) can be expanded in Fourier
series using modified Bessel functions, whose asymptotiaweur for large orders
guarantees convergence for fixed valueg ahdt.

It is clear that the coefficients arg, = I,,(n) for m € Z, using the fact that for
integer orderd,,,(n) = I_,,,(u), see [1, Eq. 9.6.6]. The equation for the zeroth term
follows from (18):

Po.o = h(pgo) + Lo(1) f(Po.0), Po,0(0) = =(0),

and also L ()
U (1
Piom = — m f(Po.,o)v m # 0.

The differential equation for the nonoscillatory functipg , cannot be solved
explicitly because of the nonlinearity originating in then€ttion f, but, being non-
oscillatory, can be computed numerically using standarthaouks.

The differential equation fop, ,, reads

oo

Pho="biolhl+ > a(t)br,[f],

which can be simplified to

Z ar(t)b1,—r[f] = To(1)b1o[f] + i Z Ifiﬂ)

r=—00 r#0

F(Po,0) = Lo(1)b1,olf],
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the last sum bein@ because of the symmetry of the modified Bessel functions with
respect to the order. Hence

Pl = biolh] + Io(u)b1o[f] = (J[h] + Io(p) J[f]) P10 P1,0(0) =0,

which implies thap, , = 0. Therefore,

o~ I (1)
P,(t) =2Ff(p T sin mwt.
( 0,0 mZ:1 m

Observe that this last sum converges as well due to the détag modified Bessel
functions, so its numerical implementation is not probléma

In a similar way, one can compute the second tergit), although the different
sums involving modified Bessel functions that appear can Uite gexpensive to
evaluate. In particular, observe that 1/V, so if Vi = 0.0259 theny is moderately
large and the convergence of the series (4) can be slow. Vég natvever, that even
in this situation the cost of computing the expansion is rt$aslty independent ofv
(whereas any standard numerical method will need to redhecstépsize considerably
whenw grows).

6.3. The inverted pendulum

Our main motivation for extending the method to systems oft®Gvhere the
coefficients depend on the parameteoriginates in equations that model mechanical
systems, more precisely the equation governing the mofidineoinverted pendulum
(also known as th&apitza pendulum)

0" (t) = % [g + aw? cos wt} sin6(t), 0(0) =6y, 6'(0) = 6;, (34)

where/ is the length of the rody is the gravitational acceleratioa,is the frequency

of the highly oscillatory motion of the pivot art{t) measures the angle with respect
to the vertical directiont = 0 being the top position of the pendulum, see Figure 4.
The pivot is subject to a fast vertical movement given by tipeadion

y(t) = 4 coswt.
14

Itis known that the top position of a pendulum, which is naliyrunstable, can be
rendered stable by means of this fast vertical oscillatioth@ pivot. In order for this
stabilization to be possible, we need- O(w~!), so that the forcing input has velocity
of orderO(1) with respect tav, and therefore finite kinetic energy. An alternative
justification comes from the stability analysis of a Mathégation, which is obtained
by supposing that the deviation of the pendulum from theserposition is small and
thereforesin 6(t) ~ 0(t) in (34), see for example [2@7.7].

We can rewrite the ODE as follows:

0" (t) = % [g + ow coswt] sin 6(¢), 6(0) =6y, 6'(0) =6, (35)
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y(t)

Figure 4. The inverted pendulum. The top position, corresjitg tod = 0, is
unstable, but can be rendered stable by adding a fast Jamimeementy(t) of the
pivot.

where nows = O(1) with respect tav. The coefficients of the forcing term are clearly

o
a1 = a1 = o5, am =0, |m| # 1.

We can adapt the ansatz (21) to this case, but since therdingear] dependence
onw in the differential equation, it should be now

9(15) ~ po_’()(t) + Z % Z Pr.m (t)eith. (36)
r=1

m=—0o0

Equating coefficients at th@(w) level, we get

= Y mpim(®e™! = S coswtsin(poo(t)).
SO o
p1,1(t) = p1,-1(t) = 57 sin(po,o(t))-

TheO(1) level gives

2
g . oo .
Poo(t) = 7 sin(po,o(t)) — 2 sin(2po,0(t)),
with initial conditionspg o(0) = 6(0) andpy o(t) = 6'(0). This is the averaged system
proposed in [24], and it can be solved using standard praesdélternatively, if we
define the potential
2
H(p,q) = %pz + %cosq - ;7 cos 2¢
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7 0.15

Figure 5: The functiod(¢) with £ =1, g = 9.8, w = 100 ando = 1 (left) ando = 10
(right), with initial valuesf(0) = 0.1 and¢’(0) = 0. Observe that the top position,
0(t) = 0, becomes stable in the second case.

and se{z, ') = (g, p), then the equation

2 (t) = g sin(z(t)) — L sin(2z(t))
14 402 ’
is of Hamiltonian type, see [16], and more specific methodsheaused. For instance,
in [24] the well-known Verlet scheme is proposed, in the eahbf macrointegration
in the Heterogeneous Multiscale Method.
Furthermore, thé@(1) level provides the coefficiengs ,, (t) for m # 0:

1 .y, o
P2m = —3 [2Zmp1,m ~ % co8(po,o0) [P1,m—1 + P1,m+1]| 5

which are, after brief computation,

10 , o
P2,+1 = 3F7 COS(PO,O)PO,O Y c0s(p0,0)P1,0
O'2 .
P22=P2—2= 555 sin(2po,0)-

Observe that this is consistent with the bandwidth predidig the theorem
presented in Section 5.

The scheme for computing higher order terms can be obtanoed the general
formulas (22) and (24). However, since we have a factonultiplying the forcing
term, we need to shift the coefficients corresponding todinetionQ(y(t)), namely:

o0

p./s/,O = —bso[S] + Z ar(t)bst1,—r Q)

rT=—00



Asymptotic solvers for oscillatory systems of ODEs 19

fors > 1, and

1 ' [e'e]
Ps+2,m = e p./s/,m + 2Zmp/s+1,m + bs,m[S] — Z ar(t)bst1,m—r[Q]| 5
r=—00
where in this case
S(y) =—7siny,  Q(y) =siny.

Applying this, we obtain:

Pl o= —b1,0[S] 4+ aibs, 1[Q] + a_1b21(Q),

and since
b10[S] = 5" (po,0)p10 = —% c0s(po,0)P1,0,
be +1[Q] = ¥i70 cos?(po,0)Po.o — % c0s(2po,0)P1,0,
then

" g o?
Pio= 1% cos(po,0) — Y2 cos(2po,0) | P1,0,

with initial conditions
g ag
p1,0(0) = 7 Sy, p10(0) = —Zyé COS Yo,

computed from (23).

Figure 6 illustrate the errors when we take the zeroth anadheth plus the first
term in the expansion, compared with direct computatiomefdolution in MATLAB.
As expected, and in accordance with (8), the approximattowrderO(w 1) gives
an error of orde®(w ') for the functiond(t), and of ordei)(1) for the derivative.

It is possible to compute higher order terms, although thelala becomes quite
cumbersome due to the terms involving thefunction and the shift due to the
dependence ow. This becomes feasible using a symbolic algebra packageyéu
omit further details for brevity.

7. Conclusions

This paper has presented a snapshot of the state of the anein aomputational
approach to ordinary differential equations with highlycilatory forcing. Such
equations are ubiquitous in numerous applications, wHikdrtdiscretization by
standard methods is prohibitively expensive and, for séalifrequencies, often
impossible.

The main organising principle of our approach is to combirsyngtotic
expansions (in inverse powers of the frequency) with nucaérsolution of non-
oscillatory problems. This leads to a number of importaneathges.
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x10~°

Figure 6: Absolute errors when taking the zeroth (left) anelzeroth plus first terms
in the expansion, with parametets= 1, ¢ = 9.8, w = 1000 ando = 10 and initial
valuesd(0) = 0.1 and6’(0) = 0.

1. The entire process consists of ‘non-oscillatory’ comagions: only the final step,
a synthesis of different multiscale components, feeddlagon into the system.

2. The accuracy of the truncated multiscale approximatimproves with the
growth in frequency. This flies in the face of the usual nuc®rintuition,
which is based upon Taylor expansions, but should not berisurg because
of the extensive use of asymptotic information.

3. Once the different multiscale components are in placey ttan be used
repeatedly with different frequencies: this is an impoatrtadvantage in
engineering design problems when the real challenge is lextsthe right
frequency for a task in hand, e.g. for a stabilisation of aadgital system.

4. The ‘leakage’ of oscillations to different bandwidthsrionlinear systems (a
process we have termed ‘blossoming’) can be tracked ettplamd with great
precision.

5. Finally, the availability of a truncated asymptotic nmdale expansion
represents significantly more than just a long string of fl@gpoint numbers
or a graph, the usual output of a standard numerical methbd.eXpansion in
guestion consists of terms which are either solutions ostguttively simpler,
non-oscillatory ODEs (of which a great deal of useful qadiNe information
can be derived) or can be obtained by simple recursion. Tdreresuch an
expansion is a valuable tool in the analysis of the undeglyiighly oscillatory
ODE.

This is the moment to mention that the approach of this papgrsit one of the
many useful tools that have emerged in the last two decadasrinnderstanding and
computation of highly oscillatory phenomena. Of particutdevance to the model of
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this paper, an ODE system with highly oscillatory forcingge @domogenization [15]
and multiscale methods [14]. Indeed, there are profoundchections between our
approach and thieterogeneous multiscale method [2, 13, 24]. It is fair to expect
that the future of highly oscillatory computations, an egieg subject of applied
mathematics with an increasing profile, will depend not omgle ‘wonder method’

but on the understanding and combination of a number of finalygd computational
methodologies.

Finally, let us comment on the scope of the approach destiibehis paper.
The underlying motivation to our work is the modelling of hifrequency electronic
circuits. The breadth of phenomena modelled in this settargges well beyond
‘simple’ ODEs and it also includes differential-algebraiguations (DAESs), delay
differential equations (DDESs) and even partial differehéiquations (PDES), all with
highly oscillatory forcing. An extension of the methodojogf this paper to these
settings is a matter of active research. Here we just statestich an extension,
although often highly nontrivial, is possible. The next iidrage is to integrate the
different components — ODE, DAE, DDE and PDE expansionse-amtoverarching
technique for realistic electronic circuits.
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