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Abstract

We describe an asymptotic method for approximating solutions of systems
of ODEs with oscillatory forcing terms. The approach is based on asymptotic
expansions in inverse powers of the oscillatory parameterω and on modulated
Fourier expansions. We revise some relevant examples, including problems that
appear in the modelling of mechanical and electronic systems, and for which the
proposed procedure is superior to standard methods.
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1. Introduction

The efficient and accurate solution of systems of ordinary differential equations
(ODEs) subject to oscillatory forcing terms is highly relevant in several aspects of the
modelling of electronic circuits subject to amplitude and frequency modulation, see for
instance [3, 12, 21] and also [10] and the references therein. More precisely, in this
review we are concerned with systems of ODEs of the form

y′(t) = h(y(t)) + gω(t)f (y(t)), y(0) = y0, (1)

wherey(t) : R → R
d, f(y),h(y) : R

d → R
d are analytic functions (generally

nonlinear), and the scalar termgω(t) can be written in the form of a modulated Fourier
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expansion (MFE), that is

gω(t) =

∞
∑

m=−∞

am(t)eimωt. (2)

Observe that we allow the coefficientsam(t) to depend on the variablet, and also
that within this setting we cover the case of ODEs with oscillatory forcing terms (when
the functionf (y(t)) is constant). In general, we make the important assumption that
the functionsh andf are independent ofω. Under certain conditions it is possible
to allow dependence onω in the differential equation with only minor changes in the
general setting, see the details below.

Typical examples of forcing terms are

gω(t) = eiωt, gω(t) = eη cos ωt. (3)

In this latter case, the forcing term has full spectrum, as follows from the Fourier
expansion

eη cos ωt = I0(η) + 2

∞
∑

m=1

Im(η) cosmωt, (4)

in terms of the modified Bessel functionsIm(η), see [1, Eq. 9.6.34]. Other examples
include two different large frequenciesgω1,ω2

(t) = sinω1t sinω2t, and combinations
of the above. See for instance [11], and also [23, 22], where this type of problem is
formulated in terms of PDEs.

From a mathematical point of view, the use of standard methods of numerical ODEs
(such as Runge–Kutta) is problematic in this context, sincethe oscillatory behaviour of
the solutions of the differential equation imposes an exceedingly small stepsize which
is both too expensive for implementation and leads to an accumulation of round-off
error due to the large number of steps needed to integrate theODE in a given interval.

As a toy example, consider the following second order linearequation with forcing
term:

y′′(t) + y(t) = 2 sinωt, y(0) = 1, y′(0) = 0.

or in matrix form

y(t) =

(

0 1
−1 0

)

y(t) + sinωt

(

0
2

)

. (5)

If we setω = 104 (a very modest value, given the high frequencies in which we
are interested), and solve it with the MATLAB standardode45 routine in the interval
t ∈ [0, 10], with initial valuesy(0) = 1, y′(0) = 0, the number of steps needed for a
fixed relative tolerance is as follows:

RelTol Steps
10−4 42.233
10−6 127.329
10−8 345.189



Asymptotic solvers for oscillatory systems of ODEs 3

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

t
4.65 4.7 4.75

0.997

0.998

0.999

1

t

Figure 1: On the left, the functiony(t) (solid) and its derivativey′(t) (dashed),
solutions of the system (5), withω = 104. On the right, detailed plot of the derivative
y′(t), showing the rapid oscillations that are superimposed on the smooth curve on the
left.

The plots shown in Figure 1 are quite revealing of the behaviour of the solutions of
this kind of systems of ODEs, and they give a crucial insight that leads to theansatz
that we propose later on. Observe that the (apparently) slowly varying functiony′(t)
is superimposed with tiny oscillations (of amplitudeO(ω−1)), which require a very
small stepsize on a standard time-stepping routine. See a similar example in [8]. This
is consistent with the behaviour observed in the example.

The reason for the poor performance of standard methods in this setting is a
direct consequence of their underlying mathematical construction. Methods such as
Runge–Kutta are essentially based on Taylor expansion and matching of the exact
and the numerical solution up to a certain order. In any numerical method of order
p with steph, the error scales roughly likehp+1y(p+1)(t), and since the amplitudes
of the derivatives of highly oscillatory functions grow very fast, typicallyy(p+1)(t) =
O(ωp+1) (consider the standard exampley(t) = eiωt), we requireh to be extremely
small in order to keep the error down to an acceptable size.

2. Perturbation theory and oscillatory integrals

The idea of the proposed method is related to perturbation theory, although not
in a standard form. We recall that, roughly speaking, perturbation methods (such as
averaging) are designed for problems where the perturbation (or other terms in the
differential equation) is multiplied by a small parameterε, see for instance [4, 25].
Then the general idea is that the solution of the unperturbedsystem plus corrections in
powers ofε yields a good approximation to the solution of the perturbedproblem.

In our case the perturbation is not necessarily small in size, but a somewhat related
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idea can be applied, since ifgω(t) is of the trigonometric type, for instance, then it
gives a contribution which is not small but has an average of zero because of major
cancellation between positive and negative parts of the forcing termgω(t)f (y(t)).

More rigorously, the main idea is to consider the system (1) as a perturbation of

z′(t) = h(z(t)), z(0) = y0, (6)

and then use nonlinear variation of constants [17], in orderto relate the solutions of the
perturbed and unperturbed systems with the same initial data:

y(t) − z(t) =

∫ t

0

Φ(t− s)f(y(s))gω(s)ds. (7)

HereΦ is the solution of the so-called variational equation

Φ
′ =

∂h(z(t))

∂z
Φ, Φ(0) = I.

The matrixΦ is in general not available analytically, yet if the integrand is smooth
enough andgω(t) is a trigonometric function (see the examples cited before)then
integration by parts gives

y(t) − z(t) =

∫ t

0

Φ(t− s)f (y(s))gω(s)ds = O(ω−1), ω → ∞, (8)

sinceΦ is independent ofω.
This demonstrates that, subject to fairly general assumptions, the difference

between both solutions is of orderO(ω−1). Note that here it is essential to suppose
that the functionsh andf are independent ofω, otherwise the estimation needs to be
modified.

This observation makes it possible to use the methodology recently developed for
oscillatory integrals, see for instance [19] or [18], as an effective alternative to standard
quadrature. More explicitly, in [8, 11] the authors proposethe use of Filon quadrature
(plus waveform relaxation) to approximate efficiently the oscillatory integral present in
(7). This method is numerically effective, but it has the disadvantage of time-stepping,
which can be expensive.

A deeper idea, in the spirit of the general theory of oscillatory integrals, is to look
for a full expansion of this integral in inverse powers of theoscillatory parameterω,
either by repeated integration by parts or by another method. The mainansatz proposed
in [9, 10] is precisely that the solutiony(t) admits an expansion in inverse powers ofω,
and that the terms in this construction adopt the form of modulated Fourier expansions.
This can be seen as a correction (in inverse powers ofω this time) of the solution of
the unperturbed system, in the spirit of perturbation theory.

If feasible, this approach confers three important computational advantages: firstly,
the terms in the expansion can be computed beforehand (symbolically or numerically),
and then the desired value oft can be substituted therein, without subdividing the
interval of integration. Secondly, the cost of the method isessentially independent
of the size ofω, unlike what happens with standard methods, and increasingthis
parameter will make our method more accurate. Finally, oncethe (ω-independent)
coefficients have been computed, the equation can be solved easily for different
frequenciesω.
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3. The form of the asymptotic expansion

3.1. Systems of ODEs

If the forcing term in the differential equation can be written as a modulated Fourier
expansion, it seems reasonable to suppose that a similar structure holds for the solution
of the ODE. More explicitly, we assume thaty(t) can be written in the form

y(t) ∼
∞
∑

s=0

1

ωs
ψs(t) ω ≫ 1, (9)

where the functionsψs(t) may depend onω, but in any caseψs(t) = O(1), ω ≫ 1,
for s ∈ Z+. Each of theψs(t) is itself a modulated Fourier expansion:

ψs(t) =

∞
∑

m=−∞

ps,m(t)eimωt, s ≥ 1. (10)

Once we stipulate that the coefficients of the ODE are independent ofω, the first
level of the expansion can be simplified, that is,ψ0(t) = p0,0(t), i.e. p0,m(t) ≡ 0

whenm 6= 0. This prevents positive powers ofω from appearing in the derivative of
y(t).

We also imposeψ0(0) = y(0) = y0 in order to match the initial condition, which
means thatψs(0) = 0 for s ≥ 1, or equivalently

∞
∑

m=−∞

p0,m(0) = y0,
∞
∑

m=−∞

ps,m(0) = 0, s ≥ 1.

Therefore, the generalansatz is

y(t) ∼ p0,0(t) +

∞
∑

s=1

1

ωs

∞
∑

m=−∞

ps,m(t)eimωt. (11)

We differentiate the functiony(t) formally,

y′ ∼ p′0,0 +
∞
∑

m=−∞

imp1,me
imωt +

∞
∑

s=1

1

ωs

∞
∑

m=−∞

[

p′s,m + imps+1,m

]

eimωt.

Observe that for simplicity of notation, we have omitted thedependence ont of the
ps,m(t) terms. Next, we expand the functionsh,f : R

d → R
d about the leading term

p0,0. In this expansion, we group all those terms that multiply equal (inverse) powers
of ω, thus separating orders of magnitude:

h(y) ∼ h(p0,0) +

∞
∑

s=1

1

ωs

s
∑

n=1

1

n!

∑

k∈In,s

hn(p0,0,χk1
, · · · ,χkn

), (12)

where

(hn(p0,0,θ, . . . ,θ))r =
d

∑

i1=1

· · ·
d

∑

in=1

∂nhr(p0,0)

∂yi1 · · · ∂yin

θi1θi2 · · · θin
, r = 1, 2, . . . , d,
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χk(t) =

∞
∑

m=−∞

pk,m(t)eimωt (13)

and
In,s = {(k1, . . . , kn) ∈ N

n : |k| = s}, (14)

with the standard notation for multi-indices|k| = k1+k2+. . .+kn. A similar formula
applies to the functionf .

Finally, we collect all those terms that have the same frequency (that is, those terms
that multiplyeimωt for eachm ∈ Z) within each level:

h(y) ∼ h(p0,0) +
∞
∑

s=1

1

ωs

∞
∑

m=−∞

bm,s[h]eimωt, (15)

where we use the notation

bm,s[h] =

s
∑

n=1

1

n!

∑

k∈In,s

∑

l∈Kn,m

hn(p0,0,pk1,l1 , · · · ,pkn,ln) (16)

and
Kn,m = {(l1, . . . , ln) ∈ Z

n : |l| = m}. (17)

Equating both sides of the differential equation, from (11)and (15), a general
pattern emerges: fors ≥ 1, we obtain nonoscillatory differential equations for the
ps,0 terms:

p′s,0 = bs,0[h] +

∞
∑

r=−∞

ar(t)bs,−r[f ] (18)

with initial condition
ps,0(0) = −

∑

m 6=0

ps,m(0), (19)

since we have imposed thatψs(0) = 0 for s ≥ 1. Additionally, we get recursions to
computeps+1,m(t) for m 6= 0 from the previous coefficients:

ps+1,m = − i

m

[

−p′s,m + bs,m[h] +

∞
∑

r=−∞

ar(t)bs,m−r[f ]

]

(20)

form 6= 0.
This is the general scheme that we are going to use to deduce the coefficients in

the expansion. Note that the differential equations for thepr,0 terms can in principle
be solved by standard methods, since there is no highly oscillatory behaviour involved.
However, in some cases there may be an additional structure to this equation (such as a
Hamiltonian formulation, see the example of the inverted pendulum later on), and this
calls for more specialised methods.

We remark that modulated Fourier expansions for oscillatory ODEs have been
widely analysed as an essential tool in Geometric NumericalIntegration and highly
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oscillatory ODEs in [6, 7, 16]. In that context, the authors are concerned with equations
of the formẍ+ Ωx = g(x), where

Ω =

(

0 0
0 ω2I

)

,

ω ≫ 1 andI is the identity matrix, both in Hamiltonian and non Hamiltonian settings.
The main difference between this setting and the one proposed in this paper is that

from the point of view of perturbation theory, this is no longer a regular perturbation
problem but a singular one. Note that ouransatz corresponds essentially to a regular
perturbation problem: we expand the perturbed solution in inverse powers ofω, so the
standard small parameter would beε = 1/ω, and we assume that whenω → ∞ we
only have the unperturbed solution.

If powers ofω are allowed in the differential equation, sayh(y),f(y) = O(ωr),
r > 0, then great care is needed, since we may be faced with a singular perturbation
problem, and the derivation of the terms in the asymptotic expansion should be carried
out in a different way, see [16, XIII.5]. One important case where our setting remains
valid, while allowing dependence onω of the coefficients of the ODE, is that of the
inverted pendulum, that we analyse in Section 6.3.

3.2. Second order ODEs

The general setting (11) can be simplified in some circumstances. One particular
case of importance is that of second order differential equations with oscillatory forcing
terms. This situation has been analysed in [9] for differential equations of the form

y′′(t) −R(y)y′(t) + S(y(t)) = gω(t), y(0) = y0, y′(0) = y′0,

which includes equations of Van der Pol and Duffing type. In this case, if we are only
interested in the analysis of the solutiony(t), and not of the derivative, we may assume
that

y(t) ∼ p0,0(t) +
1

ω
p1,0(t) +

∞
∑

r=2

1

ωr

∞
∑

m=−∞

pr,m(t)eimωt. (21)

We note that this is consistent with the fact thaty(t) exhibits small oscillations with
amplitudeO(ω−2), increasing toO(ω−1) for y′(t), see [9]. However, if we analyse the
complete system, then we need to use (11), because the derivative will have oscillatory
terms at theO(ω−1) level.

If we are working with a second order differential equation of the form

y′′(t) + S(y(t)) = gω(t)Q(y(t)), y(0) = y0, y′(0) = y′0,

then using (21), we obtain the scheme

p′′s,0 = −bs,0[S] +

∞
∑

r=−∞

ar(t)bs,−r[Q], (22)
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for s ≥ 1, together with the initial conditions

ps,0(0) = −
∑

m 6=0

ps,m(0), s ≥ 2, (23)

p′s,0(0) = −
∑

m 6=0

p′s,m(0) − i

∞
∑

m=−∞

mps+1,m(0), s ≥ 2,

see [9], and also

ps+2,m =
1

m2

{

p′′s,m + 2imp′s+1,m + bs,m[S] −
∞
∑

r=−∞

ar(t)bs,m−r[Q]

}

, (24)

form 6= 0. In this case

bs,m[Q] =
s

∑

n=1

Q(n)(p0,0)

n!

∑

k∈In,s

∑

l∈Kn,m

n
∏

i=1

pki,li .

In this setting we can also allow dependence onω in the coefficients of the
differential equation. For example, in the case of the inverted pendulum, see Section
6.3, we haveQ(y(t)) = O(ω). Our approach is still valid in this situation, although we
will need to shift the coefficientsbs,m[Q] computed above, because of the extra power
of ω. Moreover, from (8) we deduce thaty(t) − p0,0(t) = O(1) whenω is large,
so we need additional terms in the expansion in order to guarantee that the difference
between the perturbed and unperturbed solutions becomes small whenω grows.

4. Construction of the asymptotic expansion

In this section we derive the first few terms of the asymptoticexpansion explicitly
in a general setting.

4.1. The zeroth term

The termp0,0(t) obeys the following differential equation:

p′0,0 = h(p0,0) + a0(t)f (p0,0),

which is obtained by equating all theO(1) terms with zero frequency in the ODE.
Additionally, we impose the initial conditionp0,0(0) = y(0) = y0. Equating nonzero
terms with the same frequency, we obtain

p1,m = − iam(t)

m
f(p0,0), m 6= 0.
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4.2. The first term

Whens = 1 we obtain

p′1,0 = b1,0[h] +

∞
∑

r=−∞

ar(t)b1,−r[f ]. (25)

Here
b1,m[h] = h1(p0,0,p1,m), m ∈ Z,

and similarly forf . Additionally we have the initial condition

p1,0(0) = −
∑

m 6=0

p1,m(0),

which follows fromψ1(0) = 0. Furthermore, we get

p2,m = − i

m

[

−p′1,m + b1,m[h] +

∞
∑

r=−∞

ar(t)b1,m−r[f ]

]

, m 6= 0, (26)

so we can computep2,m for m 6= 0 from (26).
The equation and initial conditions forp2,0 are obtained when analysing the

O(ω−2) terms.

4.3. The second term

Whens = 2 we obtain

p′2,0 = b2,0[h] +

∞
∑

r=−∞

ar(t)b2,−r[f ]. (27)

Here

b2,m[h] = h1(p0,0,p2,m) +
1

2

∞
∑

l=−∞

h2(p0,0,p1,l,p1,m−l), m ∈ Z,

and similarly forf , together with

p2,0(0) = −
∑

m 6=0

p2,m(0),

and a recursion for thep3,m terms,

p3,m = − i

m

[

−p′2,m + b2,m[h] +
∞
∑

r=−∞

arb2,m−r[f ]

]

, m 6= 0. (28)

It is clear that the process can be iterated, at the price of increasingly cumbersome
expressions.

We point out that when the forcing term has a finite number of nonzero frequencies,
then there is a considerable simplification in the construction, see the examples below.
Moreover, in many relevant cases the functionsh andf are quite simple, for example
multivariate polynomials of low degree, and hence many terms involving high order
derivatives vanish identically.
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5. Bandwidth and stability

We highlight two important aspects of this approach: firstly, if the original forcing
term is band-limited, that is, if there exists̺ such thatam = 0 in (2) if |m| ≥ ̺ + 1,
then is this bandwidth preserved in theψs(t) functions of the expansion? Secondly,
if we fix ω, is it possible to say something about the stability of the solution whent
grows?

The answer to the first question is in general negative. If thesystem is nonlinear,
one should expect an increase in the number of nonzero frequencies as we move to
higher values ofs. We call this phenomenonblossoming, and it is mainly due to the
convolution-type term

∞
∑

r=−∞

ar(t)bs,m−r[f ]

that appears when computingps+1,m, see the previous section. Nevertheless, the rate
of increase can be estimated in general. Namely, we have the following result:

Theorem 1 For s ≥ 0, the maximum bandwidth θs of the term ψs(t) is

θs = s̺,

where ̺ is the bandwidth of the original forcing term.

Proof. We refer the reader to [10] for the details. �

The actual rate of blossoming can be smaller in some important cases. For instance:

Theorem 2 Let f (y) be constant, then we have θ0 = 0, θ1 = ̺ and the maximum
bandwidth θs of the term ψs(t) is

θs = (s− 1)̺, s ≥ 2.

Proof. See [10]. �

In [9] another particular case is considered: if we are dealing with second order
differential equations and we are only interested in blossoming for y(t) (and not for
the derivativey′(t)), then we have the following

Theorem 3 If y(t) is a solution of the ODE

y′′(t) −R(y(t))y′(t) + S(y(t)) = gω(t),

where R(y) and S(y) are analytic, and if θs is the maximum bandwidth of ψs(t) in the
asymptotic expansion of y(t), then it is true that θ0 = θ1 = 0, θ2 = ̺ and

θs =

⌊

s− 1

2

⌋

̺, s ≥ 3. (29)
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Regarding stability for fixed values ofω, it is possible to carry out an analysis of
the method by means of standard linearization of the differential equation around the
unperturbed solution. We take a partial sum of the asymptotic expansionz(t), in such
a way thaty(t)−z(t) = O(1/ω). If the coefficients of the ODE are independent ofω,
then it suffices to takez(t) = ψ0(t), otherwise we need more terms in the asymptotic
expansion, according to (8).

Let us writey(t) = z(t)+w(t), assuming thatw(t) = O(1/ω) for largeω. Then,
to leading order we have

w′ = [A(t) +B(t)gω(t)]w + gω(t)f(z), w(0) = 0, (30)

whereA(t) andB(t) are respectively the Jacobian matrices ofh andf evaluated at
z(t). Now we split the matricesA(t) +B(t)gω(t) = U + V (t), whereU is a constant
matrix, and compare (30) with the system

v′ = Uv, v(0) = 0,

with trivial solutionv ≡ 0. Variation of constants gives

w(t) = 0 +

∫ t

0

Φ(t− s)F (s)ds =

∫ t

0

e(t−s)UF (s)ds, (31)

whereΦ(t) = etU is the fundamental matrix of the system and

F (s) = V (s)w(s) + gω(s)f (z(s)).

It is clear from (31) thatw(t) represents a deviation from the zero solutionv(t),
and therefore the behaviour ofw(t) as t > 0 is related to the stability of this zero
solution. This in turn is governed by the eigenvalues of the fundamental matrixU , see
for instance [25, Ch. 6]. More explicitly:

Theorem 4 If

all the eigenvalues of the matrix U , say λk , 1 ≤ k ≤ d, satisfy that ℜλk ≤ 0,
and those eigenvalues with zero real part are simple, and

it is true that for any t > 0 there exist constants c1, c2 > 0 such that
∫ t

0

‖V (s)‖ds < c1,

∫ t

0

‖gω(s)f(z(s))‖ds < c2,

then the zero solution solution v(t) is stable in the sense of Lyapunov, andw(t)
is bounded.

Proof. It is a consequence of Gronwall’s lemma, see [10] for more details. �

When any of the eigenvalues of the matrixU has a positive real part, then one
should expect deterioration of the approximation whent grows, even if one still has
theO(ω−1) estimate. A typical example of this situation is given by systems that can
develop chaotic behaviour. In those cases, the solution of the perturbed system may be
very different from the solution of the unperturbed one, andactually one of them can be
chaotic and the other non chaotic, if the perturbation is used for chaos suppression, see
for instance [5]. That being said, it may happen that even in this case the approximation
is acceptable for small values oft, depending on the application that we have in mind.
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6. Examples

In this section, we present the method applied to several different problems.
In all cases, we will compare the approximation given by the first few terms of
the asymptotic-numerical solver with the exact solution (which is either analytically
available or computed numerically – and laboriously – with standard MATLAB routines
up to prescribed accuracy). Although other more sophisticated comparisons are
possible, we will normally use the standard ODE solverode45 in MATLAB , with
absolute and relative tolerance equal to10−12 as an illustration.

We use the notation

es =

∣

∣

∣

∣

∣

y(t) −
s

∑

n=0

ψn(t)

ωn

∣

∣

∣

∣

∣

, s ≥ 0,

for the errors, taken componentwise.
We remark that the values ofω that we use in these examples are smaller than

the ones normally present in applications. This restriction is essentially imposed by
the fact that the comparison with the ‘exact’ solution produced with MATLAB should
be reliable and affordable. Increasingω will benefit the asymptotic-numerical solver,
since the approximation with a fixed number of terms will be more accurate, and the
computational cost will be roughly similar.

6.1. A damped harmonic oscillator

As a first example, we consider a simple forced oscillator with damping. This
system is modelled by a simple second order ODE:

x′′(t) + bx′(t) + kx(t) = µ cosωt, x(0) = x0, x′(0) = x′0, (32)

whereb is the damping coefficient,k the spring constant and we have set the massm
equal to1 for simplicity. We introduce a forcing term with amplitudeµ and frequency
ω, and we suppose thatω ≫ ω0, whereω0 is the natural frequency of the unperturbed
oscillator in the underdamped case. In matrix form:

x′(t) =

(

0 1
−k −b

)

x(t) +

(

0
1

)

µ cosωt, (33)

thereby using our notation

h(x) =

(

0 1
−k −b

)

x, f(x) =

(

0
1

)

.

The construction of the asymptotic expansion is particularly simple in this case,
since we have after brief computation:

p′0,0 =

(

0 1
−k −b

)

p0,0, p0,0(0) = x(0),
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Figure 2: Solution of the perturbed system (32), with parametersk = 4.2, b = 0.6,
µ = 0.8 andω = 50.
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together with

p1,−1 =
iµ

2

(

0
1

)

= −p1,1.

Because the functionf is constant, we have from (18) and (19) that fors ≥ 1

p′s,0 =

(

0 1
−k −b

)

ps,0, ps,0(0) = −
∑

m 6=0

ps,m(0).

In particular, that means that

p′1,0 =

(

0 1
−k −b

)

p1,0, p1,0(0) = 0,

which leads top1,0 ≡ 0. Hence we conclude that in this case the first term is simply

ψ1(t) =

(

0
µ

)

sinωt.

Note that theO(1/ω) term is0 for the first component of the solution. In other
words,x(t) is superimposed with tiny oscillations of amplitudeO(1/ω2), whereas in
the case of the derivativex′(t), these oscillations have amplitude of orderO(1/ω).
This is intuitively consistent with what can be observed in Figure 2, and also with the
ansatz taken in [9]. Analogously,

p2,−1 = −µ
2

(

1
−b

)

= p2,1,

and since the bandwidth in this example isθ2 = 1, see Section 5, then we know that
p2,m ≡ 0 if |m| > 1. Furthermore

p′2,0 = Up2,0, p2,0(0) = −2p2,1(0) = µ

(

1
−b

)

,

hence

ψ2(t) = p2,0 + µ

(

−1
b

)

cosωt.

Hence, writing everything together, we have

S2(t) = p0,0(t) +
1

ω

(

0
µ

)

sinωt+
1

ω2

[

p2,0(t) + µ

(

−1
b

)

cosωt

]

as our approximation to the solution of the ODE (32) up to order O(ω−2). In Figure 3
we plot the errors when taking the first few terms of the expansion, compared with the
solution of the perturbed system computed directly by the MATLAB standard routine
ode45.

Regarding stability, since the system is already linear, the matrixU is directly

U =

(

0 1
−k −b

)

,
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with eigenvalues

λ± =
−b±

√
b2 − 4k

2
.

Since bothb, k > 0, then the real part of both eigenvalues is always negative and
we have asymptotic stability according to Section 5.

6.2. An expcos oscillator

We include an example that features an oscillator with full spectrum, to show that
the method can be equally effective. More precisely, we recall the example of a simple
electronic circuit that was presented in [10],

x′(t) = − L

RC
x(t) +

IsL

C

[

exp

(

gω(t) − x(t)

VT

)

− 1

]

− L

C
y(t), y′(t) = x(t),

whereL,R,C, Is andVT are parameters, and the perturbation isgω(t) = eµ cos ωt.
Realistic values of the parameters are for instanceL = 10−4,R = 100,C = 10−6,

Is = 10−12 andVT = 0.0259. The constant term−IsL/C can be added in theO(1)
level in a straightforward way. The resulting system is
(

x(t)
y(t)

)′

=

(

−L/RC −L/C
1 0

) (

x(t)
y(t)

)

+

(

βe−x(t)/VT

0

)

exp

(

gω(t)

VT

)

−
(

β
0

)

,

whereβ = IsL/C. The properties of similar types of oscillator have been analysed in
[8] and [11]. As noticed before, see (4), the functiongω(t) can be expanded in Fourier
series using modified Bessel functions, whose asymptotic behaviour for large orders
guarantees convergence for fixed values ofµ andt.

It is clear that the coefficients aream = Im(µ) for m ∈ Z, using the fact that for
integer ordersIm(µ) = I−m(µ), see [1, Eq. 9.6.6]. The equation for the zeroth term
follows from (18):

p0,0 = h(p0,0) + I0(µ)f (p0,0), p0,0(0) = x(0),

and also

p1,m = − iIm(µ)

m
f(p0,0), m 6= 0.

The differential equation for the nonoscillatory functionp0,0 cannot be solved
explicitly because of the nonlinearity originating in the functionf , but, being non-
oscillatory, can be computed numerically using standard methods.

The differential equation forp1,0 reads

p′1,0 = b1,0[h] +

∞
∑

r=−∞

ar(t)b1,−r[f ],

which can be simplified to

∞
∑

r=−∞

ar(t)b1,−r[f ] = I0(µ)b1,0[f ] + i
∑

r 6=0

I2
r (µ)

r
f (p0,0) = I0(µ)b1,0[f ],
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the last sum being0 because of the symmetry of the modified Bessel functions with
respect to the order. Hence

p′1,0 = b1,0[h] + I0(µ)b1,0[f ] = (J [h] + I0(µ)J [f ])p1,0, p1,0(0) = 0,

which implies thatp1,0 ≡ 0. Therefore,

ψ1(t) = 2f(p0,0)
∞
∑

m=1

Im(µ)

m
sinmωt.

Observe that this last sum converges as well due to the decay of the modified Bessel
functions, so its numerical implementation is not problematic.

In a similar way, one can compute the second termψ2(t), although the different
sums involving modified Bessel functions that appear can be quite expensive to
evaluate. In particular, observe thatµ = 1/VT , so ifVT = 0.0259 thenµ is moderately
large and the convergence of the series (4) can be slow. We note, however, that even
in this situation the cost of computing the expansion is essentially independent ofω
(whereas any standard numerical method will need to reduce the stepsize considerably
whenω grows).

6.3. The inverted pendulum

Our main motivation for extending the method to systems of ODEs where the
coefficients depend on the parameterω originates in equations that model mechanical
systems, more precisely the equation governing the motion of the inverted pendulum
(also known as theKapitza pendulum)

θ′′(t) =
1

ℓ

[

g + aω2 cosωt
]

sin θ(t), θ(0) = θ0, θ′(0) = θ′0, (34)

whereℓ is the length of the rod,g is the gravitational acceleration,ω is the frequency
of the highly oscillatory motion of the pivot andθ(t) measures the angle with respect
to the vertical direction,t = 0 being the top position of the pendulum, see Figure 4.
The pivot is subject to a fast vertical movement given by the equation

y(t) =
a

ℓ
cosωt.

It is known that the top position of a pendulum, which is naturally unstable, can be
rendered stable by means of this fast vertical oscillation of the pivot. In order for this
stabilization to be possible, we needa = O(ω−1), so that the forcing input has velocity
of orderO(1) with respect toω, and therefore finite kinetic energy. An alternative
justification comes from the stability analysis of a Mathieuequation, which is obtained
by supposing that the deviation of the pendulum from the vertical position is small and
thereforesin θ(t) ≈ θ(t) in (34), see for example [20,§7.7].

We can rewrite the ODE as follows:

θ′′(t) =
1

ℓ
[g + σω cosωt] sin θ(t), θ(0) = θ0, θ′(0) = θ′0, (35)
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b

b

ℓ

θ(t)

y(t)

Figure 4: The inverted pendulum. The top position, corresponding to θ = 0, is
unstable, but can be rendered stable by adding a fast vertical movementy(t) of the
pivot.

where nowσ = O(1) with respect toω. The coefficients of the forcing term are clearly

a1 = a−1 =
σ

2ℓ
, am = 0, |m| 6= 1.

We can adapt the ansatz (21) to this case, but since there is a (linear) dependence
onω in the differential equation, it should be now

θ(t) ∼ p0,0(t) +

∞
∑

r=1

1

ωr

∞
∑

m=−∞

pr,m(t)eimωt. (36)

Equating coefficients at theO(ω) level, we get

−
∞
∑

m=−∞

m2p1,m(t)eimωt =
g

ℓ
cosωt sin(p0,0(t)),

so
p1,1(t) = p1,−1(t) = − σ

2ℓ
sin(p0,0(t)).

TheO(1) level gives

p′′0,0(t) =
g

ℓ
sin(p0,0(t)) −

σ2

4ℓ2
sin(2p0,0(t)),

with initial conditionsp0,0(0) = θ(0) andp′0,0(t) = θ′(0). This is the averaged system
proposed in [24], and it can be solved using standard procedures. Alternatively, if we
define the potential

H(p, q) =
1

2
p2 +

g

ℓ
cos q − σ2

8ℓ2
cos 2q
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Figure 5: The functionθ(t) with ℓ = 1, g = 9.8, ω = 100 andσ = 1 (left) andσ = 10
(right), with initial valuesθ(0) = 0.1 andθ′(0) = 0. Observe that the top position,
θ(t) = 0, becomes stable in the second case.

and set(x, x′) = (q, p), then the equation

x′′(t) =
g

ℓ
sin(x(t)) − σ2

4ℓ2
sin(2x(t)),

is of Hamiltonian type, see [16], and more specific methods can be used. For instance,
in [24] the well-known Verlet scheme is proposed, in the context of macrointegration
in the Heterogeneous Multiscale Method.

Furthermore, theO(1) level provides the coefficientsp2,m(t) for m 6= 0:

p2,m =
1

m2

[

2imp′1,m − σ

2ℓ
cos(p0,0) [p1,m−1 + p1,m+1]

]

,

which are, after brief computation,

p2,±1 = ∓ iσ
ℓ

cos(p0,0)p
′
0,0 −

σ

2ℓ
cos(p0,0)p1,0

p2,2 = p2,−2 =
σ2

32ℓ2
sin(2p0,0).

Observe that this is consistent with the bandwidth predicted by the theorem
presented in Section 5.

The scheme for computing higher order terms can be obtained from the general
formulas (22) and (24). However, since we have a factorω multiplying the forcing
term, we need to shift the coefficients corresponding to the functionQ(y(t)), namely:

p′′s,0 = −bs,0[S] +

∞
∑

r=−∞

ar(t)bs+1,−r[Q],
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for s ≥ 1, and

ps+2,m =
1

m2

[

p′′s,m + 2imp′s+1,m + bs,m[S] −
∞
∑

r=−∞

ar(t)bs+1,m−r[Q]

]

,

where in this case
S(y) = −g

ℓ
sin y, Q(y) = sin y.

Applying this, we obtain:

p′′1,0 = −b1,0[S] + a1b2,−1[Q] + a−1b2,1[Q],

and since

b1,0[S] = S′(p0,0)p1,0 = −g
ℓ

cos(p0,0)p1,0,

b2,±1[Q] = ∓ iσ
ℓ

cos2(p0,0)p
′
0,0 −

σ

2ℓ
cos(2p0,0)p1,0,

then

p′′1,0 =

[

g

ℓ
cos(p0,0) −

σ2

2ℓ2
cos(2p0,0)

]

p1,0,

with initial conditions

p1,0(0) =
σ

ℓ
sin y0, p′′1,0(0) = −σ

ℓ
y′0 cos y0,

computed from (23).
Figure 6 illustrate the errors when we take the zeroth and thezeroth plus the first

term in the expansion, compared with direct computation of the solution in MATLAB .
As expected, and in accordance with (8), the approximation up to orderO(ω−1) gives
an error of orderO(ω−1) for the functionθ(t), and of orderO(1) for the derivative.

It is possible to compute higher order terms, although the algebra becomes quite
cumbersome due to the terms involving theQ function and the shift due to the
dependence onω. This becomes feasible using a symbolic algebra package, but we
omit further details for brevity.

7. Conclusions

This paper has presented a snapshot of the state of the art in anew computational
approach to ordinary differential equations with highly oscillatory forcing. Such
equations are ubiquitous in numerous applications, while their discretization by
standard methods is prohibitively expensive and, for realistic frequencies, often
impossible.

The main organising principle of our approach is to combine asymptotic
expansions (in inverse powers of the frequency) with numerical solution of non-
oscillatory problems. This leads to a number of important advantages.
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Figure 6: Absolute errors when taking the zeroth (left) and the zeroth plus first terms
in the expansion, with parametersℓ = 1, g = 9.8, ω = 1000 andσ = 10 and initial
valuesθ(0) = 0.1 andθ′(0) = 0.

1. The entire process consists of ‘non-oscillatory’ computations: only the final step,
a synthesis of different multiscale components, feeds oscillation into the system.

2. The accuracy of the truncated multiscale approximation improves with the
growth in frequency. This flies in the face of the usual numerical intuition,
which is based upon Taylor expansions, but should not be surprising because
of the extensive use of asymptotic information.

3. Once the different multiscale components are in place, they can be used
repeatedly with different frequencies: this is an important advantage in
engineering design problems when the real challenge is to select the right
frequency for a task in hand, e.g. for a stabilisation of a dynamical system.

4. The ‘leakage’ of oscillations to different bandwidths innonlinear systems (a
process we have termed ‘blossoming’) can be tracked explicitly and with great
precision.

5. Finally, the availability of a truncated asymptotic multiscale expansion
represents significantly more than just a long string of floating-point numbers
or a graph, the usual output of a standard numerical method. The expansion in
question consists of terms which are either solutions of substantively simpler,
non-oscillatory ODEs (of which a great deal of useful qualitative information
can be derived) or can be obtained by simple recursion. Therefore, such an
expansion is a valuable tool in the analysis of the underlying highly oscillatory
ODE.

This is the moment to mention that the approach of this paper is just one of the
many useful tools that have emerged in the last two decades inour understanding and
computation of highly oscillatory phenomena. Of particular relevance to the model of
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this paper, an ODE system with highly oscillatory forcing, are homogenization [15]
and multiscale methods [14]. Indeed, there are profound connections between our
approach and theheterogeneous multiscale method [2, 13, 24]. It is fair to expect
that the future of highly oscillatory computations, an emerging subject of applied
mathematics with an increasing profile, will depend not on a single ‘wonder method’
but on the understanding and combination of a number of analytic and computational
methodologies.

Finally, let us comment on the scope of the approach described in this paper.
The underlying motivation to our work is the modelling of high-frequency electronic
circuits. The breadth of phenomena modelled in this settingranges well beyond
‘simple’ ODEs and it also includes differential–algebraicequations (DAEs), delay
differential equations (DDEs) and even partial differential equations (PDEs), all with
highly oscillatory forcing. An extension of the methodology of this paper to these
settings is a matter of active research. Here we just state that such an extension,
although often highly nontrivial, is possible. The next challenge is to integrate the
different components – ODE, DAE, DDE and PDE expansions – into an overarching
technique for realistic electronic circuits.
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