Aggregating Semantic Concepts for Event Representation
in Lifelogging”

Peng Wang
CLARITY: Centre for Sensor Web Technologies
School of Computing, Dublin City University
Glasnevin, Dublin 9, Ireland
pwang@computing.dcu.ie

ABSTRACT

The performance of automatic detection of concepts in im-
age and video data has been improved to a satisfactory level
for some generic concepts like indoor, outdoor, faces, etc.
on high quality data from broadcast TV or movies. How-
ever it remains a challenge to apply this to interpreting the
high-level semantics of events as they occur in visual lifelogs
from wearable cameras. This is because poorer quality im-
age data and the activities of the wearer make it difficult to
automatically categorise them. In this paper, we propose an
interestingness-based semantic aggregation and representa-
tion algorithm, to tackle the problem of event management
and representation in visual lifelogging. Semantic concept
interestingness is calculated by fusing image-level concepts
which are then exploited to select a representation for the
semantic event correlated to various event topics. Experi-
mental results show the efficacy of our algorithm in fusing
semantics at the event level, and in selecting representations
for event management in visual lifelogging.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.5.0 [Information Interfaces and
Presentation]: General

General Terms

Algorithms, Experimentation, Measurement

Keywords
visual lifelogging, concept interestingness, concept aggrega-
tion, keyframe selection, semantic fusion

1. INTRODUCTION

It is now quite practical for researchers to investigate the un-
derlying patterns of our daily lives following the widespread
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availability of lightweight devices such as mobile phones en-
dowed with sensing abilities through built-in cameras and
other sensors. The vision of using technology to automati-
cally record everything that happens to us is called lifelog-
ging [2]. Steve Mann is a pioneer who tried to capture what
he saw through video cameras mounted on his head [9]. Fol-
lowing Steve Mann, there has been much research work on
life assistance using visual lifelogging techniques. Microsoft
Research in Cambridge have developed the SenseCam to
capture everyday lives and there is evidence that these im-
ages can improve peoples’ memory abilities [11]. At MIT,
an experiment was carried out using Bluetooth-enabled mo-
bile telephones to measure information context in order to
identify the deep social patterns in user activities [7]. In
[17], Vemuri and Bender presented a memory re-finding use
of lifelogging which is called “iIRemember”. In their research
they recorded audio clips as the main information to navi-
gate memory.

As a new form of multimedia data, the management of vi-
sual lifelogs should involve semantic indexing and retrieval
for which much preliminary work has already been done in
other domains on bridging the gap between low-level fea-
tures (colour, texture, shape, etc.) and high-level semantics
(concepts, topics, etc.). State-of-the-art techniques use sta-
tistical approaches to map low level features to concepts
which are then fused to relate to high level semantic topics
[15]. According to the TRECVid benchmark [14], acceptable
results for concept detection have been achieved already in
many cases particularly for parts of concepts and related
tasks when there exists enough annotated training data. A
large-scale concept ontology (LSCOM) has been developed
for standardizing multimedia semantics in the broadcast TV
news domain [10]. As a framework, the LSCOM effort also
produced a set of use cases and queries along with a large
annotated data set of broadcast news video. The individual
concepts detected by standalone classifiers are usually fused
for topic-related filtering which demands a high level of clas-
sification accuracy [3]. However, in the visual lifelogging do-
main, the burden of improving detection accuracy is more
severe given the visual diversity of visual lifelog content and
the large variety of concepts compared to, say, broadcast TV
news. Even the images captured passively within the same
lifelogged event might have significant perceptual differences
due to wearer’s movement. An approach to fuse detected se-
mantic concepts in terms of event-level topics is demanded
by aggregating useful concepts in a stable manner. In this
paper, an interestingness-based concept aggregation algo-



rithm is proposed to extract concepts under the consistency
of the semantics of the lifelog event. Concept aggregation
refers to combining and ranking concepts detected at the
image level to obtain the most unique and specific concepts
at the event level.

The rest of the paper is organized as follows: in Section 2, we
describe the construction of a semantic concept space in our
passive-capture visual lifelogging domain. Our algorithm
for interestingness-based concept aggregation is discussed in
Section 3, followed by the semantic selection of event repre-
sentations in Section 4. The experimental setup and results
analysis is presented in Section 5. Finally, we close the paper
with conclusions.

2. CONSTRUCTING A CONCEPT SPACE

In the lifelogging domain, visual concepts are important se-
mantic sources for interpreting everyday events which are
the subject of the lifelog. In order to record what we see and
what we do unobtrusively, we employed SenseCam (shown
in Figure 1) as a wearable device to log details of users’ lives.
SenseCam is a lightweight passive camera with several sen-
sors built-in which captures the view of the wearer with its
fisheye lens. By default, images are taken at the rate of
about one every 50 seconds while the onboard sensors can
help to trigger the capture of pictures when sudden changes
are detected in the environment of the wearer. Some typical
example events from SenseCam data are shown in Figure 2.

Figure 1: SenseCam (right as worn by a user).

Semantic concepts appearing in SenseCam images can be
used to construct a concept space which is defined as a linear
space with a set of concepts as the base vectors. In order to
reflect the semantics for events, every concept representing
any event should represent one of the dimensions in seman-
tic space, and the projection of an event onto concepts is
the co-occurrence information among the concepts. How-
ever, different concepts have different impacts on event in-
terpretation. Concepts which are neither too general nor too
specific should be selected in the semantic space to reduce
dimensionality and noise (where noise refers to erroneous
classification in this paper) for concept detection, similar to
the way index terms are chosen to represent documents in
information retrieval. This means we should include event-
centered concepts with decent frequency, and exclude gen-
eral and over-specific ones.

In order to ensure high coverage of this space, we elaborate
the selection of a set of concept bases according to the gen-
eralization of entities in the semantic space. During the pro-
cedure to determine the target concepts, a subset of Sense-
Cam images were first inspected to determine the typical
concepts employed among the LSCOM [10] and MediaMill

concept ontologies [16] some of which might have been ap-
plicable to our domain. As expected, we found that some
of the LSCOM concepts, for example weapon, government
leader, etc., are never useful or even encountered in the lifel-
ogging domain so while the hierarchical structure of LSCOM
might have been useful, the actual concepts were not. We
also considered including some concepts beyond the ones in
these ontologies which have high frequency of appearance
among SenseCam images. The generalisability of each con-
cept is thus investigated across collections and users as a
criterion to refine the concept set iteratively [2]. We used
a final set of 27 concepts in constructing the concept space
in our SenseCam-based event interpretation. These 27 con-
cepts are shown in Table 1 as a universal set organized into
general categories of objects, scene/setting/site, people and
events. Note that the methodology in this paper is generic
and can be extended to larger concept sets as well.

Table 1: SenseCam concept sets

Objects screen, steering wheel, car/bus/vehicles
indoor, outdoor, office, toilet/bathroom,

Scene/Settings/Site  door, buildings, vegetation, road, sky, tree,
grass, inside vehicle, view horizon, stair

People face, people, hand

Fvent reading, holding cup, holding phone,

presentation, meeting, eating, shopping

Following the state-of-art in concept detection, we employed
the popular generic SVM learning algorithm for concept
detection. Two MPEG-7 features were extracted for each
image, Scalable Colour (12 bins) and Colour Layout (64
bins) forming 76-dimensional feature vectors. For the re-
sults presented in this paper, SVM-Light [8] was employed
with the radial basis function (RBF) as a kernel, K(a,b) =
exp(—v|la — b||?). The parameter settings were determined
through iterative searching among parameter combinations.
Classification models were trained for different concepts yield-
ing a 27-dimensional confidence vector for each image. There
are disadvantages of having concepts work independently
and in isolation as in our 27 but how to overcome these and
have concept detection work as a group of concepts which
learn from each other during the detection phase, is cur-
rently not a well-established technique in machine learning
and so not used in concept detection.

3. INTERESTINGNESS-BASED CONCEPT
AGGREGATION

An interestingness-based concept aggregation method is pro-
posed which fuses the occurrence of concepts at the image
level in order to reflect semantic consistency within the same
event, as well as differences among individual events. It is
important to realise that a single lifelog event such as sitting
on a bus, walking to a restaurant, eating a meal, watching
TV, etc. consists of many, usually hundreds, of individual
SenseCam images. In the case of sitting on a bus, where
there is little movement by the wearer, most SenseCam im-
ages are the same whereas giving a lecture, for example,
where the wearer is moving around, generates a large range
of dissimilar images. How we construct representative con-
cepts for events is now described.

3.1 Event Concept Interestingness



In visual lifelogging, successively captured images may have
quite different visual appearance and a variety of concepts
detected, unlike traditional video for which two successive
frames within the one shot will be visually very similar. This
makes it impossible to use the concepts from one single lifel-
ogged image to infer the semantics of a whole event. Mean-
while, different concepts play different roles in interpreting
event topics. For example, in analyzing concepts for a ‘meet-
ing’ event, we can detect such concepts as ‘indoor’, ‘office’
and ‘face’. As ‘indoor’ is not a unique concept for ‘meet-
ing’ compared to other events such as ‘working’, ‘shopping’
that also have the concept ‘indoor’ occurring, it should be
ranked lower while concepts like ‘office’ and ‘face’ are bet-
ter representations for ‘meeting’. The interestingness-based
concept aggregation is motivated by the notion that the best
descriptive concepts for an event should be the most unique
across the collection yet representative, in order to differ-
entiate the given event from others; meanwhile the concept
should also have relatively high frequency within the event.
This is the same rationale as t f x I DF weighting in standard
information retrieval.

To simplify the problem domain, we limit event coverage to
within the range of a day because most of the time users in-
terpret events within a daily basis. The algorithm could eas-
ily be extended to a week or month basis which has broader
time intervals. To formalize the calculation, we assume a
universe of concepts C. Let {E17 E>. .. EN} be the sequence
of events in a given day. Event F; is represented by succes-

sive images 1@ = {Im{”, Im{” .. Im'Y}. Each image Im
might have several concepts detected, we assume the con-
cepts appearing in image Imy) are C](Z) = {cg.ll),c;;)...cﬁ}.

Then the frequency of concept ¢ occuring in event E; is
calculated in the form of f(c, Ei) = >, .,,, Hc € CJ(-Z)},
where 1{-} is the indicator function.

The weight for each concept ¢ € C for E; given the above
assumption is:

N f(cv El)
wle ) = Pi<jen fle Ej) +€ )

The definition above can satisfy the assumptions in [6] as
follows:

1) Frequently occurring concepts show semantic consistency
within the event and should be selected as candidates.

2) Concepts appearing more during E; than during other
events are more unique and should have higher weights.

Concepts detected at the image level are prone to noise and
suffer from misclassification. £ in the denominator of (1) is
used to filter misclassified concepts with very low frequency.
However, the aggregation at the event level can filter mis-
classified concepts and only consistent concepts having a
higher weight will be selected.

3.2 Semantic Aggregation of Concepts

In the event segmentation stage, each event is separated
from others using sensor readings from the SenseCam’s on-
board sensors [5], and a keyframe is selected as the best

representative image for each event [4]. Though concept de-
tection is easily affected by noise at the image level, our
concept aggregation fuses the dominant concepts from the
event level which shows greater robustness to concept detec-
tion noise. The fusion procedure returns the Top-k concepts
for event E; ranked according to concept interestingness as
{cgl),cg)...cg)}, where interestingness weight w(c;l),Ei) >
w(c;'ll,Ei). The choice of Top-k value can be modified,
which will be explored in the experiments in Section 5.

Event Aggregated

Keyframes Event details
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Indoor People
Office Indoor

People Office
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Screen Face
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Meeting Reading
Reading Meeting
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People Road
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Figure 2: Event-level concept aggregation.

The main contribution of this paper by applying concept
aggregation is representing event with a vector of concepts
which not only reflects event semantics, but also facilitates
event visual representation, i.e. keyframe selection. Some
examples are shown in Figure 2 in which the resulting con-
cepts from the aggregation algorithm are listed. Due to the
disadvantages of the single concept classifier, only those con-
cepts with high confidence can be regarded as true from each
image. Thus some concepts which might be more relevant
at the event level are easily missed. In Figure 2 we can see
that the keyframe may be visually representative of the event
but we are not sure if it is semantically representative. In
Event_1, only two concepts can be detected from keyframe,
namely ‘indoor’ and ‘office’, forming a concept vector C51 =
{indoor, of fice}. From these two concepts there is ambi-
guity as to the nature of Event_1. The aggregated method
ranks the more unique concepts higher through intestingness
weight vector ver = (0.037,0.034, 0.022,0.020, 0.011, ...), of
which each value represents the weight for ‘people’, ‘indoor’,
‘office’, ‘hands’, ‘face’ and so on. These concepts have more
correlation with event semantics such as ‘talking’ (‘people’,
‘face’) and ‘using computer’ (‘hands’,‘screen’). These two
types of activities reflect the core semantics of Event_1.

4. EVENT SEMANTIC REPRESENTATION:

A VSM-LIKE PARADIGM

As a widely used search model, the Vector Space Model
(VSM) [1] is known as one of the most typical models in
information retrieval. In VSM, all entities including docu-
ments, queries and terms, are represented as vectors [12].
Using term vectors as the basis in vector space, both docu-
ment and query vectors are built as linear conmbinations of



the term vectors. The evaluation is then done by analyzing
the correlation between the vectors as the relationship be-
tween query and document. In this section, we employ the
VSM model as the representation for events.

4.1 Semantic Vector Similarity

To quantify the relationship between entities in the seman-
tic space, we will discuss the similarity of concept lists.
The tf x IDF weight is used as the most efficient weight-
ing definition in Vector Space Model where both documents
and queries are associated with t-dimensional vectors vj =
(wij,w2;,. .., wt;), where each dimension is a weight and t
is the size of lexicon. Traditional vector similarity measures
can be employed to quantify the relevance between two vec-
tors, such as inner product (v; e v;) or cosine of the angle
among those two vectors as (vi e v;)/([|vi]| % ||v;l]])-

However, the semantic contribution of each dimension to
the vector is ignored by these measures. Especially, it wors-
ens the case if terms, which are concepts in image or video
retrieval, can not be detected perfectly. The noise intro-
duced by imperfect concept detection will degrade the per-
formance. For example, assume we have three semantic vec-
tors: v1 = (0.1,0.2,0.1), v2 = (0,0.2,0), vg = (0.2,0.1,0.2),
whose components represent the weight for different con-
cepts representatively. Though cosine similarity sim(v1,v2)
is equal to sim(v1, v3), we prefer vz to approach vi because
they semantically emphasize the same concept. Besides, the
low weights in v1 such as 0.1 are more likely to be affected
by noise introduced by concept detection, making the simi-
larity unstable.

With this motivation, we define the similarity which consid-
ers both set agreement and rank consistency of two concept
vectors and apply the measurement in judicious selection of
an event keyframe. The similarity is shown as the following
equation:

|C;] 1C51
. . ) 1{Czk == jl}
sim(Ci, G) = |C; UC|Zzabs kE—1)+1

k=11=1

(2)

where C, C; stands for two concept vectors aggregated by
approaches described in Section 3.2, |C;|J C;| is the cardi-
nality of the set consisting of the union of two concept sets.
abs(k — 1) gives the absolute value of ranking difference for
the same concept in two vectors. The added “1” in the de-
nominator is used to avoid division by zero.

The concept vectors are regarded as high-level features for
interpreting event semantics. To demonstrate the similarity
for high level features, let’s revisit the examples in Figure
2. We choose Top-5 concept vector for Event_1 for simplic-
ity, which are Ce1 = {people,indoor, of fice, hands, face}.
According to the definition above, the similarity of C.; and
Crys1 for the keyframe is 0.2 for Event_1. With the same
manner, the semantic similarity between keyframe (Cj 2 =
{indoor}) and event for Event_2 is 0.028. Event_2 has much
lower vector similarity due to the existence of sub-events
with disjoint semantics of ‘outdoor’ and ‘indoor’.

4.2 Semantics-based Keyframe Selection

Up to 3,000 images are captured on a typical day using
SenseCam. Without an effective indexing mechanism, look-
ing through these one-by-one is not a scalable approach to
navigating such a collection. The event-centric media rep-
resentation approach we propose here should yield high se-
mantic consistency with regard to representing the high-level
meaning of lifelog events. We employed aggregated concepts
rather than low-level features, aiming to select a keyframe
for an event which is most relevant to the whole event se-
mantics.

As described above, event semantics are represented in the
form of high-level features by a concept vector within which
concepts are ranked according to uniqueness. Assuming that
event e = s1, s2...sn has the concept vector C., each image
si has concept vector C;. Both C. and C; are ranked in
terms of the methodology in Section 3.2. The keyframe is
chosen as satisfying;:

s* = argmazs,ce1<i<nsim(Cs, Ce) 3)

ID | Keyframe (LLF) Keyframe (HLF) ID | Keyframe (LLF)

Keyframe (HLF)

Figure 3: Semantic representation for events.

To illustrate the advantages of this approach, Figure 3 demon-
strates examples from which the keyframes using low-level
features (LLFs) and high-level features (HLFs) are com-
pared. Six events are randomly selected from one day. The
representations selected by high-level features have obvi-
ously better image quality than the ones selected based on
low-level features, especially for events 1, 5 and 6. Objects
are hardly recognizable in the LLF representation for event
1 and 6 due to motion blur. The images with higher qual-
ity often have more detail and concept information, so they
are naturally selected as better representations using HLF's.
In events 2, 3 and 4, the HLF representations are better
than the LLF ones because of wider visual fields. Even dur-
ing darkness, the HLF selection approach will choose images
with more detail and better quality as shown for event 5.

5. EXPERIMENT AND EVALUATION

As mentioned earlier in this paper, SenseCam images have
very different visual characteristics to the video keyframes
used in the TRECVid benchmark [13, 14] and so we could
not evaluate the performance of our concept detection on
the TRECVid datasets. Thus an experiment was carried
out on 6 participants’ SenseCam image logs. The partic-
ipants are all researchers in our lab and have been wear-
ing SenseCam for varying lengths of time. The effect of



interestingness-based semantic keyframe selection is com-
pared with the baseline which is the selection of the middle
image as a representation for an event, the same technique
as is used for keyframe selection in video. Details of the
data are shown in Table 2 indicating a total of 1,055 events
composed of 96,217 individual images.

Table 2: Experimental data set
Users Userl User2 User3 Userd User5 User6

Events 300 248 242 168 70 27
Tmages 26,062 25,341 19,233 18,085 6,007 1,399

Concepts were first detected at image level, followed by
interestingness-based aggregation to model event semantics.
We empirically choose the value £ = 200 in Equation 1 con-
sidering the fact that most events have less than 200 images.
Image-event semantic similarities are calculated to select the
most similar image to the event semantics. In [4], a fusion
of the Contrast and Saliency Measures in exploiting image
quality show promising user judgement scores, which are
no less satisfactory than more complicated fusions taking
Colour Variance, Global Sharpness or Noise Measure into ac-
count. We employ the Contrast Measure and Saliency Mea-
sure from [4] as two measures to evaluate resulting keyframe
quality. The Contrast and Saliency scores are calculated and
normalized on a Max-Min scale respectively. To decrease the
effect of external factors such as life patterns of individuals
and characteristics of different SenseCam lenses, we analyze
the results of our algorithm on a per-user basis.

Our semantic similarity measurement is tested on resulting
Contrast and Saliency scores. Figure 4 shows the Contrast
difference of selected keyframes by semantic similarity (SS)
defined as Equation 2 and by cosine similarity (COS) on
one random user’s dataset. The averaged Contrast scores
over all event numbers are 0.477 and 0.459 using SS and
COS measures respectively. From Figure 4, it’s obvious that
keyframes selected by SS measure have better Contrast qual-
ity. The same happens for the Saliency measure as shown by
Figure 5, where averaged Saliency scores using the SS mea-
sure outperforms the COS measure by 15%. The semantic
similarity also shows significant advantages over other mea-
sures like inner product, Euclidean and so on but we will
not elaborate the details here.
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Figure 4: Contrast difference (SS-COS).

In Figure 6, the improvement on average values of the Con-
trast and Saliency Measures with semantics-based represen-
tation are shown for each user. Both measurements are sig-
nificantly enhanced over the baseline for all participants.
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Figure 5: Saliency difference (SS-COS).

Note that userb5 is using an old SenseCam whose lens is
blurred yet the semantics-based algorithm still performs well
showing the robustness of our semantic modeling.
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Figure 6: Contrast vs. Saliency Measure.

Modeling complexity is modified in our experiments by chang-
ing the selection of Top-k ranking of concept vectors to test
the effect of event semantics on the selection of represen-
tative images. Figure 7 shows the dependence of keyframe
quality on the semantics of events, by selecting the Top-
k concepts. Results are depicted using an equally-weighted
image quality value of Contrast (0.5) and Salience (0.5). For
illustration, we randomly selected three participants’ fused
image quality scores and compared with their correspond-
ing baseline values. With parameter k£ decreasing, the fused
quality of semantics-based representation drops after k& is less
than 10. The correlation of quality score with choice of k
demonstrates the impact of semantics of events on keyframe
selection. When just a little semantics are employed, see
k < 2, the quality score curves intersect with their own base-
lines, showing no obvious improvement. This also shows
that our similarity measure is appropriate in deciding the
relationship for concept-based semantics.
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Figure 7: Correlation of quality with Top-k.



Figure 8 compares the number of concepts detected from
each selected keyframe. When more concepts are used, e.g.
k = 20 or 10, keyframes tend to contain more semantics
about the events (nearly half have 3 or 4 concepts). Simi-
lar to image quality in Figure 7, the number of concepts in
the representation decreases with smaller k£ values. Mean-
while, the representativeness of keyframes drops and less
detail about the represented events are found. When only
the first concept is selected from the event concept vector,
say k = 1, the semantics reflected in the semantics-based
representation is almost similar to the baseline.
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Figure 8: Concept number in single representation.

As demonstrated above, the image quality and potential
concepts from the keyframe selected based on semantics
shows strong correlation with the choice of k. When more
semantic information is applied (k > 5), our algorithm per-
forms well in selecting keyframes which are more representa-
tive and of better quality. Our interestingness-based event
aggregation not only reflects semantics of events but also
provides a computable platform in comparing semantic re-
lationships such as similarity in the same concept space.

6. CONCLUSIONS

An interestingness-based aggregation algorithm is proposed
to deal with the issue of event-level semantic fusion in visual
lifelogs. The approach is shown to be effective and robust
both in representing event semantics and selecting keyframes
for events. Experimental results demonstrate that the se-
mantically selected keyframes have better properties than
a baseline method in many aspects such as image quality
and concepts appearing as well as semantic similarity with
events. Our future work is to employ this algorithm in min-
ing semantic relationships between events, complementary
to low-level feature-based similarity measurements, to inter-
pret event patterns in lifelogging.
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