Optimising the Number of Channels in
EEG-Augmented Image Search

Graham Healy
CLARITY: Centre for Sensor Web Technologies
School of Computing
Dublin City University, Ireland
ghealy@computing.dcu.ie

Alan F. Smeaton

CLARITY: Centre for Sensor Web Technologies

School of Computing
Dublin City University, Ireland
Alan.Smeaton@dcu.ie

Recent proof-of-concept research has appeared showing the applicability of Brain Computer Interface (BCl)
technology in combination with the human visual system, to classify images. The basic premise here is that
images that arouse a participant’s attention generate a detectable response in their brainwaves, measurable
using an electroencephalograph (EEG). When a participant is given a target class of images to search for,
each image belonging to that target class presented within a stream of images should elicit a distinctly
detectable neural response. Previous work in this domain has primarily focused on validating the technique
on proof of concept image sets that demonstrate desired properties and on examining the capabilities of the
technique at various image presentation speeds. In this paper we expand on this by examining the capability
of the technique when using a reduced number of channels in the EEG, and its impact on the detection

accuracy.
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1. INTRODUCTION

Traditionally the problems addressed by BCI (Brain
Computer Interfaces) focused on the restoration
of functionality and/or communication with people
suffering from a variety of disorders such as ALS,
stroke, and brain damage to name a few. There are
many signals detectable from the brain, and many
techniques for capturing these signals which can
then be used to drive these systems. The systems
tend to be classified based on their invasiveness
from the less invasive being EEG/nIR/fMRI/MEG
through to scenarios where recording sensors are
placed directly on the surface of the brain to
measure electrical signals (ECoG). These modalities
of sensing provide different levels of functionality
and benefit, whilst also bringing varying costs and
dangers. Recently, however, it has come to light
that some of the same fundamental principles
employed to allow brain-computer communication
can be used in a different application scenario
to allow us to detect a users level of arousal or
attentional orientation in response to viewing an
image (Gerson, et al. (2006); Bigdely-Shamlo, et al.
(2008); Huang, et al. (2008)). By detecting neural
signals related to attentional orientation in response
to particular images within a presentation stream, we
can build a system to label or rank images directly,

driven by neural signals elicited from a participant
by each of the images. Of primary interested to
the BCI community is electroencephalograph (EEG)
due to its relative low cost, availability, safety,
and demonstrated applicability in regard to BCI
applications. Due to its high level of temporal
accuracy it allows for finer-grained analysis of a type
of signal known as an ERP (Event Related Potential),
which occurs in response to the presentation of an
image to a participant. In this paper we present
a brief overview of previous work in this area to
equip the reader with an understanding of the
fundamental techniques employed. Following this we
provide a description and results of an experiment
carried out utilizing EEG signals to drive an image
search system. The primary contribution of our
work in this paper is in demonstrating that similar
or even better accuracy may be achieved using
fewer EEG channels or nodes which makes for a
less computationally demanding process, and which
is ultimately more comforting for the participant
involved.

2. BACKGROUND

Our work addresses the well-known problem of
information overload, which is a fundamental
challenge to search. In the case of searching image
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data, the field of computer vision has developed
feature sets which can be extracted from images
and used to support content-based access to
large image datasets. However, for high-level image
interpretation, a human is required in the loop
to assist the process of image interpretation, or
perhaps is needed to entirely guide the process.

The idea of driving an image search system by
a user's neural signals is relatively new, but the
fundamental physiological phenomenon that this
process can be based on has been known for a
long time (Sutton, et al. (1965)). The seminal work
in this area (Gerson, et al. (2006)) highlighted the
applicability of the technique in triaging a sequence
of images where a proportion of these contained
a figure of a person in a forest vs. just a picture
of trees. These target images were inserted into
blocks of 100 non-target images where the block
was then presented at a speed of 10 images per
second (10Hz) to a participant connected to an
EEG machine. Presenting images in this fashion
is commonly known as RSVP (Rapid Serial Visual
Presentation). What the authors found was that in
response to target image presentations a temporally
defined signal perturbation presented itself that was
not present for the non-target images, i.e. the
users involuntary attention was orientated toward
the target image, and this could be seen from their
brainwaves. Others have explored this technique on
a variety of other datasets including satellite imagery
with experienced intelligence analysts (Bigdely-
Shamlo, et al. (2008); Huang, et al. (2008)). Other
work (Shenoy, et al. (2008)) has examined the
role of neural signals related to implicit processing
where the user can be unaware of the task yet
their brainwaves can still guide the process. One
such example of these signals are those in response
to faces. Signals of this type tend to be category-
specific meaning that such an implicit analysis does
not always extend. In this paper we are concerned
with analysis of EEG signals captured at precisely
the same time as a participant is involved in the
explicit processing and detection of target images
where the user is aware of the target be searched
for.

3. EEG AND ERP

The EEG signal that previous authors have detected
for explicit processing is more commonly known as
a P300 (or an oddball response) and is one of the
most studied EEG signals in regard to novelty and
target detection within streams of images presented
to participants. The signal occurs at or after 300
ms upon exposure to the (visual) stimulus, with its
latency and amplitude modulated by factors such as
task difficulty, saliency of the target, and probability

of the target. Being able to detect this signal in
response to a specific image allows us to label or
rank that image as having somehow stood out in
comparison to the other images presented in the
RSVP stream. This signal of interest is however often
masked by the noise of other ongoing activity within
the brain that also characterizes its presence by
generating electrical activity detected on the surface
of the scalp like the P300. The P300 signal comes in
many forms (Polich (2007)) depending on the task,
and attentional strategy of the participant. These
subcomponents of the P300 manifest themselves
with different temporal and scalp topographies
(Makeig, et al. (2004)). Since these signals are
inertly noisy and often partly concealed by ongoing
unrelated neural activity, different techniques can
be used to study them. One such technique is
EEG signal averaging where a number of epochs
(time regions following the presentation of a visual
stimulus) are averaged together to produce a single
waveform where activity unrelated to the stimulus
should cancel out revealing a response related
to the stimulus. By doing this we can study the
neural responses and how they are differentiated
by comparing EEG signal averages for target and
non-target cases. An example of such an average
is in Figure 1 where P300 activity can be seen most
prominently at around 400 ms.
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Figure 1: A typical ERP average showing a P3 component
peaking at around 400ms

Recording EEG signals requires the placement of
electrically conductive nodes directly upon the scalp
of a participant using a conductive gel or paste. The
placement of these nodes on different areas of the
scalp corresponds to functionally distinct regions of
the brain. Examining the spectral power of frequency
for the channels for each of these nodes we can
see distinct spectral characteristics that have been
shown to correspond to various levels of attentional
engagement in tasks, and factors such as level of
arousal. These are examples of features that are
extracted and examined without regard to temporal
onset of sensory events such as images in an
RSVP stream. Within these streams of EEG signals
are perturbations related to specific cognitive and
sensory events such as seeing images. Of particular
interest to us are those related to sensory events,
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whose timing and content can be controlled (a
presented sequence of images where we know the
presentation time of each image). These responses
related to a sensory event are known as ERPs
(Event Related Potentials). The P300 is one such
class of ERP. Since numerous brain regions are
involved in the production of this oddball P300 signal
we aim to gain maximum coverage of the scalp
hence we used the 10-20 system for node placement
shown in Figure 2.

What is the focus of our work and what is addressed
later in this paper is whether a similar level of
accuracy can be achieved using a fewer number
of nodes. In the experiments introduced in the next
section of this paper we set out to see how such a
reduction in number of channels affects accuracy.
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Figure 2: 10-20 Placement system for EEG nodes on the
scalp

4. EXPERIMENT
4.1. Dataset

Images from the ALOI (Amsterdam Library of Object
Images) were used (Geusebroek, et al. (2005)) in
our experiments because they are well-known and
have been used previously by others. This image set
is comprised of 1,000 objects, each photographed
from a number of camera angles and under a
number of different lighting conditions. This image
set was also chosen because it allowed use of
a wide variety of non-target images which display
visually salient and attentional arousing properties
whilst allowing for a large number of different camera
angles/lighting conditions for each object (i.e. our
target object was represented by a large number
of different images). Examples of some of these
images are shown in Figure 3.

Figure 3: Example images from the ALOI dataset

4.2. Setup and Recording Procedure

For recording of EEG signals we used a KT88-1016
EEG system with a left mastoid reference and the
chin as ground. Ag/AgCl electrodes were used with a
10-20 placement cap at locations F7, F3, FZ, F4, F8,
T3, C3, CZ, C4, T4, T5, P3, PZ, P4, T6, OZ. Signals
were digitized at 100hz and subsequently band-
passed from .1Hz to 20Hz. Stimulus presentation of
images and recording of EEG data were carried out
on the same computer to ensure time stamps could
be matched between EEG data and the presentation
times. The Curiosity Cloning Image viewer from the
European Space Agency was used to present the
images. A press button was also used for the user to
signal target detection. This was placed on a table
on the side of their dominant hand so that they
could rest their arm and employ minimum physical
effort in pressing the button. Button presses were
recorded on the KT88 apparatus to allow for time-
stamping of behavioural responses to the EEG data.
An Intel Quad Core PC 2.4GHz with 3.2 gigabytes
RAM and an Nvidia 8600GT graphics card was used
for stimulus presentation and recording. With ethical
approval granted to carry out these experiments
from the university ethics board we recruited a total
of 8 participants from the postgraduate and staff
population on campus. 5 males and 3 females were
recruited with an average age of 27.5 years with
standard deviation of 4.5 years.

5. EXPERIMENTAL PARAMETERS AND
DESCRIPTION

Participants were shown a number of images of a
target object that they were to search for prior to
starting the experiment. Upon the appearance of this
object the participant was instructed to press the
button. In total 4800 images were shown to the user
at a rate of 10Hz. Amongst these images 60 target
images were randomly distributed accounting for
1.25%. The total duration of the task was 8 minutes.
Four different targets were randomly selected from
the ALOI dataset, with each target searched for by 2
users. Participants 1 & 5,2 &6, 3 & 7, 4 & 8 searched
for ALOI targets 161, 455, 18 and 373 respectively.
Each block sequence was constructed by randomly
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sampling the pool of available target and non-targets.
The images of the target object could be from any of
a number of perspectives or lighting conditions, thus
ensuring the actual target image would always be
different. The start of the presentation of each block
was signalled by a countdown.

6. RESULTS AND ANALYSIS

The purpose of EEG-augmented image search is
to enhance the detection capabilities of a user
searching for a target image within a large database.
In this regard we evaluate in this section the
increased accuracy achieved by using EEG in
combination with behavioural responses (button
press), and where trade-offs exist between the
number of channels used. To examine the EEG
signals and derive a set of measures of their
detectability we used a SVM (Support vector
machine) linear kernel (Chang, et al. (2001)).
For each image in the stream we extracted the
EEG signals from 16 channels for the 1 second
following its presentation, sampled at 100 Hz. We
also extracted an additional channel which recorded
the button presses. We set out to examine the effects
of a reduced number of channels on classification
accuracy of the EEG signals and behavioural
metrics. To achieve this we used a SFFS (Sequential
Forward Feature Selection) scheme (Somol, et al.
(1999)). This scheme finds subsets of features which
offer optimal discriminative capacity between two
classes, by starting with an empty set and adding
the feature (or set of features) that provide the
greatest increase in accuracy on each iteration. This
algorithm for each forward iteration also evaluates
back-steps by seeing if removing a feature (or set)
offers an increase in accuracy. In this way local
minima are avoided and optimal subsets are found
by this floating search method.

Using this algorithm in combination with a linear
kernel SVM we were able to find subsets of
channels which offered optimal solutions. We did
examine use of a SVM-RBF kernel with wide
gridsearching for cost and gamma parameters, but
this seemingly provided little gain at the cost of much
increased running times of the SFFS algorithm.
Using the SFFS algorithm with a linear svm we
employed a cross validation approach where on
each iteration a test set of 10/790 and 50/50
non overlapping target/non-targets were randomly
selected from the available pool of samples. The
training partition of 50/50 targets/non-target were fed
into the SFFS algorithm that then evaluated subset
combinations of channels. The SFFS algorithm
evaluated channel subset combinations by further
partitioning its training set into a test and training
set of sizes 10/10 and 40/40 respectively. On each

iteration the SFFS algorithm produced a set of the
channels for subset sizes 1 to 15 which represent
the best found channel combination for that subset
size. These subsets were evaluated on the initially
removed test set of 10/790. The feature vector
corresponding to a channel subset being evaluated
was created by concatenating the EEG signal for
those channels. Additionally a second feature vector
was created using only the button press signal
channel. SVM models using these two feature sets
were trained on the training set of size 50/50, where
an additional SVM model to fuse their outputs was
created by using their predictions in a 10-fold cross
validation on this set. These two models were then
used on the originally removed testing set of size
10/790 to produce prediction values for EEG and
button presses, where the third model was used
to combine the predictions. These predictions were
then evaluated using an accuracy measurement
function (P@n) for each of the 15 channel subsets.

Table 1: Detailed results per participant

Participant Max P@n Button | % Increase
(#n of channels)

1 4 (3) .31 28.6%
2 .67(3) 511 30.1%
3 .6(3) .375 62.6%
4 .76 (5) .466 63.1%
5 .62 (6) 315 96.8%
6 .41(5) .328 25%

7 4(3) .287 41.4%
8 .44 (5) .247 76.2%

We repeated this 20 times, and averaged the P@n
accuracies as identified by their channel subset size
(i.e. 20 accuracy values for channel subsets of size
4 were averaged to give an accuracy value for
4 channels). This scheme of keeping independent
testing sets was necessary to ensure that subset
solutions found by the algorithm were not simply
biased by random relationships in the training data
which did not generalise to the rest of the data.
By keeping a test set of size 10/790 separate from
the begenning on each iteration, we can ensure the
models applied and evaluated are in no way biased.
Precision@n is the fraction of true positives within
the first n elements of an ordered list. We set n at
10 since our test set contained 10 targets, as this
reflects the target to non-target ratio of the pool data
collected (10/790 to 60/4740). Shown in Figure 4 are
the results of this for all 8 Participants. As we can see
the inclusion of the EEG signals improved accuracy
over just using behavioural metrics (x-axis value=0)
for all users. We can also see that the inclusion of
additional EEG channels in some cases can actually
reduce detection performance (i.e. participant 3)
albeit not very much. This may be due to that
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Figure 4: Combined P@n accuracy of EEG + Button
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Figure 5: Average precentage increase of P@n across users against number of channels

fact additional channels do not provide any further
discriminate information, and only serve to introduce
noise. Examining the button press channel following
target presentations it was found that some users
failed on occasion to respond within one second (i.e
missed the target). Participants 7 and 3 missed 9
and 3 targets respectively, with participants 3 and 6
missing 2. This may explain the lowered accuracy in
some cases.

Table 1 summaries some of this detail from Figure 4
for each participant. In column 1 (c1) we show the
maximum P@n achieved along with the associated
number of channels. In column 2 (c2) we show the
P@n achieved using only button presses (x-axis
value = 0). In column 3 we show the percentage
increase calculated by ( (c1-c2) / ¢2) * 100. The
average increase by including EEG data was 52.8%
that of using only the button press.

Of interest to us in this paper is examining the effects
that a greater/fewer number of EEG channels has
on performance of signal detection. In Figure 5 we

show the average increase across the set of 8 users
achieved by adding an additional channel. We can
see that by using 4 channels of EEG we achieve
near 50% of an increase compared to only using
button press responses. The optimum seems to be
indicated at 6 channels with a 51.17% increase, but
this negligible gain if statistically significant hardly
seems world introducing 2 more channels for.

For each iteration of the SFFS algorithm we kept
a score for how many times each channel was
selected to be included when the channel set
being evaluated was of size 4. A callopsed list
of these channel counts across all participants
revealed that the most frequently chosen channels
for inclusion resided on the posterior points of the
scalp, which is consistent with the discriminating
activity typically produced by a P3b ERP (Polich
(2007)) in repsonse to target detection. The channel
counts across users were ranked as follows:
Oz,P3,Pz,Cz,C3,T6,T5,Fz,C4,T4,F8
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These results show that EEG does provide an
increase in accuracy when combined with the button
press, and this increase can be realised using a
subset of the available channels.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that EEG signals
can be used to augment the image search process
by fusing them with behavioural responses and
using a reduced number of EEG channels. This
is of significance as there is a growing availability
of cheap consumer-grade EEG hardware. With an
activity as pervasive as image search, there is much
scope to evaluate the types of image search tasks
which may benefit most from including EEG data.
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