
A Layered Framework for Pattern-based

Ontology Evolution

Muhammad Javed , Yalemisew M. Abgaz , Claus Pahl

Centre for Next Generation Localization (CNGL)
School of Computing, Dublin City University, Dublin 9, Ireland

{mjaved,yabgaz,cpahl}@computing.dcu.ie

Abstract. The challenge of ontology-driven modelling of information
components is well known in both academia and industry. In this paper,
we present a novel approach to deal with customisation and abstraction
of ontology-based model evolution. As a result of an empirical study, we
identify a layered change operator framework based on the granularity,
domain-specificity and abstraction of changes. The implementation of the
operator framework is supported through layered change logs. Layered
change logs capture the objective of ontology changes at a higher level
of granularity and support a comprehensive understanding of ontology
evolution. The layered change logs are formalised using a graph-based
approach. We identify the recurrent ontology change patterns from an
ontology change log for their reuse. The identified patterns facilitate op-
timizing and improving the definition of domain-specific change patterns.

Key words: pattern-based ontology evolution, ontology change opera-
tors, layered change logs

1 Introduction

Ontology-driven modelling is beneficial for a wide range of information systems
aspects. Ontology-based approaches can be used to capture the architecture and
process patterns [1]. Ontology-based software models helped researchers to take
a step forward from traditional content management systems (CMS) to concep-
tual knowledge modelling to meet the requirements of the semantically aware
software systems. Domain ontologies have become essential for knowledge shar-
ing activities in dynamic enterprise software system. Ontologies can convey the
useful semantic information for software developers to understand and process.

Ontology change management is a challenging area. The dynamic nature
of knowledge in every conceptual domain requires ontologies to change over
time. The operationalisation of changes to ontologies is one of the vital parts of
ontology evolution. An ontology may evolve due to the change in the domain,
the specification, the conceptualization or any combination of them [2].

We present an approach to deal with ontology evolution through a framework
of compositional operators and change patterns. We introduce the notion of
layered change logs for explicit operational representation of ontology changes.
Some central features of our approach are:



2 Muhammad Javed et al.

– The representation of changes at a higher level of granularity using domain-
specific change pattern.

– The explicit representation of the intent of an ontology change, at a higher
level, using layered change logs.

– The discovery of recurring content change patterns provides an opportunity
to define reusable domain-specific change patterns.

A brief description of our empirical study of ontology evolution is given in
section 2. Layered change logs for ontology change representation are introduced
in section 3. We discuss metadata and storage aspects for change logs in section
4. A short evaluation is given in section 5 and we end with some discussion.

2 Empirical Study of Evolution of Domain Ontologies

We studied the evolution of ontologies empirically in order to investigate the rela-
tionships between generic and domain-specific changes and to determine common
patterns of change. In this paper, we provide a brief description of our empirical
study – details can be found in [4].

As a case study, the domains University Administration and Database Sys-
tems were taken into consideration. The former is selected because it represents
an organisation involving people, organisational units and processes. The lat-
ter is a technical domain that can be looked at from different viewpoints for
instance, being covered in a course or a textbook on the subject. We observed
that the changes in the database system can be identified by taking different
perspectives into account. In teaching, the course content changes almost ev-
ery year introducing new concepts, theories and languages. In publishing, new
database books in the area appear every couple of years resulting in addition of
new chapters, merging or removal of existing chapters and changing of the struc-
ture of the topics within and among chapters. In industry, new technologies and
languages are emerging. These changes result both in structural and instance
level change. In university ontology, changes are frequent at instance level due
to people joining or leaving, the introduction of new courses etc., but do also
occur, albeit more irregular at concept level. Domain experts in both areas have
contributed to the study [3]. Based on our observation of common changes in all

Level 1: Atomic Change Operators

Level 2: Composite Change Operators

Level 3: Domain-Specific Change PatternsPatterns

Operators

Domain-Specific

Generic

Fig. 1. Layered Framework of Change Operators and Patterns

ontologies, we studied the patterns they have in common, resulting in a layered
framework of change operators (Figure 1): level one captures elementary changes
which are atomic tasks, level two captures aggregated changes to represent com-
posite, complex tasks, and level three captures domain-specific change patterns.



A Layered Framework for Pattern-based Ontology Evolution 3

3 Layered Logs for Ontology Change Representation

Change logs can provide operational as well as analytical support in ontology
evolution process. If there is a need to reverse a change, we use the change log
to undo/redo the applied changes. In collaborative environments, change logs
are used to keep the evolution process transparent and centrally manageable.
It captures all changes ever applied to any entity of the ontology. However, we
focus on a mechanism of representing ontology changes expressively at different
levels of granularity (i.e. fine-grained changes such as the creation of a single
class and also coarse-grained changes such as merging two sibling classes) [5].

Representing the change log at the elementary level does not suffice. As the
intent of the ontology change is missing from such change logs (and mostly
specified at higher domain-specific level of granularity), the ontology engineer is
unable to understand why changes were performed. Whether it is an elementary
level change or a part of composite change and what the impact of such changes
is. We attempt to mine valuable information from a change log, making it easy for
the ontology engineer, (other) users and machines to understand and interpret
the ontology modifications. We propose a layered change log model, containing
two different levels of granularity, i.e. a Basic Change Log (BCL) and a Pattern
Change Log (PCL), shown in Figure 2.

Generic Change Operators

(Level 1 & 2)

Domain-Specific Change Patterns

 (Level 3) Pattern Change

Log

Basic Change

Log

Ontology

Engineer

Fig. 2. Layered Change Log

Layered change log work inline with the change operator framework presented
in figure 1. The basic change log contains generic level changes and the pattern
change log contains the information about the domain-specific change patterns.
Using pattern change logs, one can capture the objective of the ontology changes
at a higher level of abstraction and will help in comprehensible understanding of
ontology evolution. Storing ontology changes at two different levels of abstraction
help in identifying recurring domain-specific change patterns from low level logs.
We discuss this pattern discovery and pattern matching in Section 3.2.

3.1 Graph-based Representation for Layered Change Logs

A graph-based representation is an operational representation for the layered
change logs. Graphs enable efficient search and analysis and can also commu-
nicate information visually. The benefit of a graph-based representation is the



4 Muhammad Javed et al.

availability of well established algorithms and its well known characteristics such
as performance, which can be used for querying the change logs effectively.

Our graph is linear sequential, i.e. there are no concurrent change opera-
tions reflected in the graph. We used attributed graphs which are typed over
an attributed type graph (ATG) with node and edge attribution. Attributed
type graphs ensure that all edges and nodes of a graph are typed over the ATG
and each node is either a source or a target connected by an edge. BCL and
PCL are typed by a generic ATG where attributes carry labels. Types of nodes
refer to the respective ontology elements and types of edges refer to the change
operation applied. Several instances of a PCL can occur in a BCL (i.e. a PCL

could be a subgraph of BCL expressing that potentially several patterns can
capture the same sequence of elementary changes). Figure 3 shows a portion of

Element

Restriction

Parameters

Entity

elName

String Integer

No. of Parameters

parameter

String

pNameorder

StringInteger

Graph Node

Attribute Node

Node-Attribute Edge

Graph Edge

Edge-Attribute Edge

Fig. 3. Attributed Type Graph (ATG) Representation of Change Log

an Attributed Type Graph for a BCL. Each attribute node is named after the
data type an instance can have and each graph node represents a conceptual
representation of a change log entity. An attributed graph typed over ATG is
given in Figure 4. The types defined on the nodes and edges can be represented
as t(E1) = Entity, t(Class) = String, t(1) = Integer and t(P1) = String.

E1 P1Parameter

class

elName

1

No. of Parameters Order

1 Student

pName

Fig. 4. Typed Attributed Graph of Change Log

3.2 Identification of Recurrent Patterns in Change Log

During our empirical case study, we observed that a number of sequentially
ordered change operations are exercised by the users repeatedly during the evo-
lution of domain ontologies. Such a sequenced bundle of change operations are



A Layered Framework for Pattern-based Ontology Evolution 5

presented multiple times as a chain of single atomic changes in a basic change
log. We are interested in identifying such frequent recurring change patterns au-
tomatically. The motivation behind it is the reusability of domain-specific change
patterns, in line with the idea of managing change and maintaining consistency
through pattern-based ontology evolution.

We considered identifying recurring sequenced change operations from a
change log as a problem of recognition of frequent pattern in a graph i.e. graph-
based pattern discovery and pattern matching.

– Pattern Discovery : As discussed in section 2, domain-specific change patterns
can provide guidelines to content change management and support for evo-
lution of information systems. Discovering the recurring (but not yet explic-
itly defined) change patterns can provide an opportunity to define reusable
domain-specific change patterns that can be implemented encapsulating ex-
isting information systems.

– Pattern Matching : A user can also search for already defined domain-specific
change patterns in layered change logs for better understanding on how the
ontology evolves through time and in which segments such domain-specific
change patterns had been used.

The result of the change pattern identification is a set of subgraphs (change pat-
terns). Based on the resulting subgraphs, a user can select the potential change
pattern candidates and store them for further reuse. User may also customise the
candidate change patterns by adding/deleting or editing the change operations.
Details of these algorithms can be found in [1].

4 Metadata and Storage System for Ontology Change Logs

In order to conceptualise the ontology changes, we constructed a metadata ontol-
ogy by looking into concrete structure of OWL-DL syntax-based domain ontolo-
gies. The metadata ontology represents different categories of ontology changes
based on our layered change operator framework, types of ontology elements
(such as concept, axioms, restriction etc.) and other concepts such as change,
users, timestamp etc. Each instance of the change log is of type Change, available
in the metadata ontology.

In order to implement a uniform and efficient storage solution, we used RDF
triple stores. We used sesame native triple store for storage of the domain on-
tologies, static metadata ontology and change logs. Sesame provides an open
source API for fine-grained access to the repository. It offers methods to infer
the knowledge which is not explicitly given in the ontology. SPARQL format
queries are used to extract the data from the triple store repository.

We identified two types of information, which are essential to be stored into a
change log instance i.e., static properties and change properties. Table 1 shows an
example of single ontology change log instance Add subClassOf (“PhDStudent”,
“Student”), stored in the triple store. Our ontology editing framework (OnE)



6 Muhammad Javed et al.

offers a graph API which is used for generating and reading graphs (of type
GraphML) from change log triples, extracted from sesame repository.

Table 1. An Example of Change Log Triple stored in a Triple Store

Subject Predicate Object

Static Properties

Change:142845 rdf:type Metadata:Change
Change:142845 xsd:ID “142845”
Change:142845 Metadata:hasCreator Metadata:Javed
Change:142845 Metadata:Timestamp xsd:Jan 18 16:28:14 GMT 2011

Change Properties

Change:142845 Metadata:hasOperation Metadata:Add
Change:142845 Metadata:hasAxiom Metadata:subClassOf
Change:142845 Metadata:hasParameter1 University:PhdStudent
Change:142845 Metadata:hasParameter2 University:Student

5 Evaluation

We have looked at practical validity and adequacy of the pattern framework as
evaluation criteria. The change operators and patterns we found are based on
changes actually carried out by users and ontology engineers and observed by us
in both the university administration and database systems ontologies. Pattern
change log support higher level of abstraction of ontology changes which are not
visible at lower levels. Though it is not expected to be exhaustive, we found
that a significant portion of ontology change and evolution is represented in our
layered framework, making the supported operators and patterns valid from a
practical perspective. Our empirical study results confirm that the lower-level
change operators are useful to ontology engineers to suitably define their own
change operations, i.e. provide an adequate customisation solution. Domain ex-
perts can use the patterns and alter them to meet their requirements by varying
the sequence of the content elements.

We conducted experiments on a number of change log case scenarios em-
pirically in order to identify the frequent change patterns. We found that the
identified patterns capture the core segments of the ontology evolution and can
be reused to construct new domain-specific change patterns. The results acknowl-
edged that the proposed pattern identification framework facilitates a structured
evolution process and reduces effort in terms of time.

6 Discussion

The presented work continues our previous research [4] [6] by adding operational,
pattern-based change representation and analysis mechanisms. The approach
focuses on three levels of change operators which are based on granularity and
domain-specificity. Multilayered change logs have been proposed for ontology



A Layered Framework for Pattern-based Ontology Evolution 7

change representation and a graph-based representation has been suggested as
the formalism to capture and analyse ontology change logs.

Our framework deal with structural and semantic changes at separate levels
without loosing their interdependence. Furthermore, it enables us to define a
set of domain-specific changes. The empirical study indicates that the solution
is valid and adequate to efficiently handle ontology evolution. We have investi-
gated application scenarios where ontologies are used to annotate content. Our
observation here is that ontology changes affect the content and vice versa. In
these larger systems, change is very frequent and combined with the volume of
information affected, makes automated tool support to manage change at the
right (i.e. higher, application domain) level of abstraction highly beneficial.

In terms of future work, an optimisation of these in terms of better capturing
structural ontology aspects is planned. We will also supplement our technique
with improved impact determination and consistency management.

Acknowledgment

This research is supported by the Science Foundation Ireland (Grant 07/CE/I1142)
as part of the Centre for Next Generation Localisation at Dublin City University.

References

1. Gacitua-Decar, V., Pahl, C. Ontology-based Patterns for the Integration of Business
Processes and Enterprise Application Architectures. In G. Mentzas et al. (Eds). Se-
mantic Enterprise Application Integration for Business Processes: Service-Oriented
Frameworks. IGI Pub. 2009.

2. Noy, N.F., Klein, M.: Ontology evolution: Not the same as schema evolution. SMI
technical report SMI-2002-0926, 2002

3. Boyce, S., Pahl, C.: The development of subject domain ontologies for educational
tech. systems. In Journal of Educational Tech. & Society 10(3) (2007), pp. 275–288.

4. Javed, M., Abgaz, Y., Pahl, C.: A pattern-based framework of change operators for
ontology evolution. In 4th International Workshop on Ontology Content. Volume
5872 of Lecture Notes in Computer Science., Springer (2009), pp. 544–553.

5. Plessers, P., De Troyer, O.: Ontology change detection using a version log. In: Proc.
of the 4th International Semantic Web Conference, Springer (2005), pp. 578–592.

6. Abgaz, Y., Javed, M., Pahl, C.: Empirical analysis of impacts of instance-driven
changes in ontologies. In: 6th International Workshop on Ontology Content. Lecture
Notes in Computer Science, Springer (2010)

7. Gruhn, V., Pahl, C., Wever, M.: Model Evolution as Basis of Business Process
Management. In: Proceedings of the 14th Int. Conference on Object-Oriented and
Entity-Relationship Modelling (OOER ’95). Springer (1995), pp. 270–281.


