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Abstract

We present a statistical post-editing method
for modifying the dependency labels in a de-
pendency analysis. We test the method us-
ing two English datasets, three parsing sys-
tems and three labelled dependency schemes.
We demonstrate how it can be used both to
improve dependency label accuracy in parser
output and highlight problems with and dif-
ferences between constituency-to-dependency
conversions.

1 Introduction

The quality of dependency analyses produced by au-
tomatic parsing is usually evaluated using both at-
tachment accuracy and label accuracy. A parsing
system’s attachment accuracy reflects its ability to
recover structure correctly, i.e. dependencies be-
tween heads and dependents. Label accuracy, on the
other hand, reflects the system’s ability to correctly
determine the nature of these dependencies. In or-
der to ascertain who did what to whom, the depen-
dency labels are crucial since they allow us to dis-
tinguish between grammatical roles (subjects versus
objects, indirect objects versus adverbial modifiers,
etc.). In this paper we focus on dependency labels
and present a post-editing method for boosting label
accuracy.

The idea behind the method is to automatically
capture systematic error patterns characterised by
local features. A set of parser output dependency
analyses is compared to a set of gold standard anal-
yses and a label revision model is learned which can

then be applied to new dependency analyses. We ex-
periment with two feature sets to condition the prob-
ability of a label. The first makes use of lexical in-
formation and the second includes more structural
context. We find that both feature sets are effective
on their own but are more so when we backoff to
the non-lexicalised feature set in the event that the
lexicalised feature set does not make a prediction.

The method is designed to fix labelling errors
rather than attachment errors, and in that it differs
from the tree revision rules of Attardi and Ciaramita
(2007). Label and attachment post-editing can be
viewed as complementary techniques and in practice
may potentially be combined within one system. To
our knowledge, this is the first post-editing method
to target dependency label accuracy.

In order to fully demonstrate the strengths and
weaknesses of the post-editing method, we apply
it to two datasets, three parsers and three labelled
dependency schemes. In theory, the method is
language-independent, although, in this study, we
concentrate on English. Our two main datasets are
the Wall Street Journal Section of the Penn Treebank
(Marcus et al., 1994) and QuestionBank (Judge et
al., 2006). We employ two dependency parsers and
one constituency parser. The dependency parsers
are trained directly on dependency trees produced by
applying constituency-to-dependency conversion to
Penn Treebank constituency trees. The constituency
parser, on the other hand, is trained on the Penn
Treebank constituency trees and its output is con-
verted to dependency trees using the same conver-
sion procedure. The dependency parsers we employ
are MaltParser (Nivre et al., 2006) and MSTParser



(McDonald et al., 2005), and the constituency parser
is the two-stage Charniak and Johnson reranking
parser (Charniak and Johnson, 2005). The use of
more than one labelled dependency scheme is desir-
able not only because there is no one standard de-
pendency scheme for English but also because it al-
lows us to highlight some of the differences between
the various schemes. The three schemes we employ
are LTH (Johansson and Nugues, 2007), Stanford
(de Marneffe et al., 2006; de Marneffe and Manning,
2008) and LFGDEP (Cetinoglu et al., 2010).

The post-editing method results in improved la-
belled attachment scores for the Charniak and John-
son parser and the three dependency schemes. For
two of the schemes, the improvements are statisti-
cally significant (89.92 → 91.12 for LTH and 90.67
→ 90.88 for LFGDEP). The method does not work
as well for the two dependency parsers. Because the
Charniak and Johnson parser has higher unlabelled
attachment accuracy than MaltParser and MST-
Parser, it is able to benefit more from the method
since label modifications can only be learned from
correctly attached dependencies. We also find that
the post-editor works when trained on the same data
on which the parser was trained. This is an encour-
aging practical result since it demonstrates that im-
provements may be achieved at no additional anno-
tation cost.

The difference between the Stanford scheme and
the LTH and LFGDEP schemes is that the Stan-
ford scheme has been designed to be applied to con-
stituency trees which do not contain function tags or
empty nodes. The other two conversions work bet-
ter when applied to trees containing this information
and so there is an inherent mismatch between gold
constituency trees (which contain tags and traces)
and constituency parser output (which doesn’t). We
show that the post-editing method can be used to re-
cover some of this missing information and that it
is also effective when used in conjunction with an
automatic function labeller.

The paper is organised as follows: we begin by
discussing related work in Section 2; Our datasets,
parsing systems and labelled dependency schemes
are described in Section 3, and the post-editing
method itself is described in Section 4. Our exper-
iments with the post-editing method are presented
and discussed in Section 5. Finally, Section 6 con-

tains some suggestions for future work.

2 Related Work

Attardi and Ciaramita (2007) and Keith and Novak
(2005; 2011) present techniques for automatic cor-
rection of dependency trees. The basic idea behind
these approaches and the approach described here is
the same — correction rules are learned from train-
ing data consisting of parser output for which gold
standard analysis are available. The difference is
that previous techniques learn how to modify the
structure of the dependency tree, whereas our tech-
nique learns how to modify the labels on individual
dependency arcs. The more general idea of statis-
tical post-editing has also been applied to machine
translation output (Simard et al., 2007).

Dickinson (2008; 2010) has explored the use of
automated techniques to signpost potential anoma-
lies in parse trees by identifying atypical cases in
both attachments and labelling. Our method, though
originally designed for post-editing, can be also ap-
plied similarly to this. That is, the relabelling tech-
nique can be used, not only as a post-editing correc-
tion step, but also as a type of diagnostic to signal
differences between two sets of dependency trees,
and hence, potential problems with either parser out-
put or gold standards.

Bryl et al. (2009) presented a way of restor-
ing the missing dependency labels in LFG-based
statistical machine translation output. Atomic fea-
tures of LFG f-structures, such as case, number, etc.,
were used as features for a Naive Bayes classifier.
Though the problem is similar to ours, the approach
is not readily reusable for our purpose, because such
atomic features (many of which are highly relevant
for guessing the correct label) are not used in the
kind of parsers we explore in our work.

3 Data and Tools

3.1 Datasets
We employ two datasets in this work, the Wall Street
Journal Section of the Penn Treebank (Marcus et al.,
1994) and QuestionBank (Judge et al., 2006), a set
of 4,000 manually parse-annotated questions from a
TREC question answering task.1 Both datasets con-

1Questions occur relatively infrequently in the WSJ dataset
(Clark et al., 2004).



tain constituency trees which have been produced
by an automatic parser and then corrected by hand.
Note that the trees in the WSJ dataset contain more
information than the trees in QuestionBank, namely
empty nodes which capture long-distance dependen-
cies and function labels on non-terminal categories.

We use WSJ22 as our post-editing train-
ing/development set and WSJ23 as our test set. We
use sentences 2001-3000 from QuestionBank as our
post-editing training/development set and sentences
3001-4000 as our test set. For the remainder of the
paper, we use the term QuestionDev to refer to this
development set and the term QuestionTest to refer
to the test set.

3.2 Parsing Systems
We evaluate the post-editing method using one con-
stituency parser and two dependency parsers, both
trained on Sections 2-21 of the WSJ section of the
Penn Treebank (Marcus et al., 1994). We prefer the
Charniak and Johnson parser mainly because of its
accuracy. We employ MaltParser and MSTParser
because, although they are not the most accurate
dependency parsers available, they are very widely
used and they exemplify the two main approaches
to statistical dependency parsing, namely, transition-
based dependency parsing and maximum-spanning-
tree dependency parsing.

The Charniak and Johnson parser The Char-
niak parser (Charniak, 2000) is a generative con-
stituency parser which uses a head-lexicalised
smoothed PCFG which is conditioned on the parse
history and whose probability model is fine-tuned
for English. In our experiments, we use the rerank-
ing version in which the n-best list returned by the
generative parser is re-ordered using a discrimina-
tive reranker trained on features extracted from the
complete trees (Charniak and Johnson, 2005).

MaltParser MaltParser is a multi-lingual
transition-based dependency parsing system
(Nivre et al., 2006). During training, a classifier
learns to predict a parsing action at a particular
parsing configuration using information from the
parse history and the remaining input string. During
parsing, the classifier is used to deterministically
construct a dependency tree. For our experiments,
we use the stacklazy parsing algorithm, which can

handle non-projective structures (Nivre et al., 2009).
Following Attardi and Ciaramiata (2007) and Zhang
and Clark (2008), we train a linear classifier which
models interactions between features using feature
conjunctions. MaltParser expects POS-tagged input
— we use SVMTool (Gimenez and Marquez, 2004)
to perform POS tagging.

MSTParser Instead of predicting parsing actions,
MSTParser (McDonald et al., 2005; McDonald,
2006) comes from the family of dependency parsers
which learn to predict entire dependency trees. The
parser finds the maximum spanning tree in a multi-
digraph using one of several algorithms described
in McDonald (2006). For our experiments, we use
the second-order approximate non-projective pars-
ing model introduced in McDonald and Pereira
(2006). Labelling is carried out at the same time as
the tree structure is predicted.

3.3 Labelled Dependency Schemes
Stanford The Stanford dependency scheme repre-
sents parser output as labeled bilexical dependen-
cies, and it has been designed with real-world ap-
plications in mind (de Marneffe et al., 2006; de
Marneffe and Manning, 2008). Stanford dependen-
cies have been used in a variety of NLP applications
including recognising textual entailment, informa-
tion extraction, biomedical information extraction,
sentiment analysis and grammatical error detection.
Stanford dependencies can produce dependencies in
different formats. In our study we focus on basic
dependencies, because we want to be able to com-
pare with two other representations both of which
assume that representations are trees that include all
tokens. Stanford dependencies do not use traces and
function tags during the conversion and the resulting
trees are projective.

LTH In contrast to the Stanford conversion tool,
the LTH tool (Johansson and Nugues, 2007) makes
crucial use of function tag and trace information in
constituency trees. The resulting dependencies –
which were used in the CoNLL 2007 dependency
parsing shared task (Nivre et al., 2007) – are de-
signed to be useful in downstream semantic pro-
cessing. The LTH dependency scheme has the rich-
est set of labels of the representations used in this
study and, because it tries to take trace informa-



tion into account, has a higher proportion of non-
projective dependencies. Johansson and Nugues
(2007) demonstrate that they are harder for parsers
to accurately produce than the simpler conversions
previously used by dependency parsers (Yamada and
Matsumoto, 2003), but that their use leads to im-
proved performance on the task of semantic role la-
beling.

LFGDEP Cetinoglu et al. (2010) introduce a de-
pendency scheme that takes as a basis a linguisti-
cally motivated Lexical Functional Grammar (LFG)
f-structure and changes it so that it is a dependency
tree. It uses the LFG Annotation Algorithm (AA)
which generates LFG f-structures from Penn Tree-
bank style trees (Cahill et al., 2008). In order to use
the output of the AA to train the dependency parser,
LFG f-structures are converted to dependency trees.
The conversion includes substantial modifications to
the f-structure representation, namely, representing
each token in the f-structure, removing dependen-
cies that cause multiple heads and avoiding multiple
roots. This dependency scheme has a lower number
of labels than the Stanford and LHT dependencies.
The trees can be non-projective but the proportion of
non-projectivity is not as high as LTH.

4 Dependency Label Post-Editing

The new dependency label for the ith arc in a depen-
dency structure, li,new, is predicted as follows:

li,new = arg max
lgold

P̂ (li,gold|fi,1, fi,2, ...)

where li,gold is the gold (correct) dependency label
of the ith dependency arc in the structure, fi,1, fi,2,
etc. are features extracted from the parser output,
and P̂ is the approximation of the given probability
calculated on a training dataset for which gold stan-
dard parses are available. If several labels receive
equal probability estimates, the “do not change”
outcome is given priority. With this method, we
make no assumption about feature independence2

2In preliminary experiments, Naive Bayes was also tried on
the same features (described later in the section) and produced
very discouraging results. Together with some correct modifica-
tions this method made a huge amount of wrong ones, signalling
that Naive Bayesian assumption is too strong for these fea-

and instead calculate the probability approximation
directly:

P̂ (li,gold|fi,1, fi,2, ...) =
count(li,gold, fi,1, fi,2, ...)

count(fi,1, fi,2, ...)

Only correctly attached (in accordance with the
gold standard) dependency arcs are used for train-
ing. We additionally request that the denominator
of this fraction is not less then 2; in other words,
that a decision is made on the basis of at least two
relevant samples in the training data. It means, that
for some cases no decision is made. This allows us
to combine several post-editing transformations in
a queue. If, for the given case, a post-editor with
a longer feature list refuses to make a decision, an-
other post-editor with a shorter feature list may be
given a chance.

We employ a combination of two post-editing
transformations, with feature sets as follows (all fea-
tures are taken from the parser output; so, for exam-
ple, “the dependency label of the arc in question” is
the piece of data which might be replaced as a result
of the transformation):3

1. Lexicalised feature set: the dependency label,
the POS tag of the dependent word, and the sur-
face form of the dependent and head words of
the arc in question (see left tree in Figure 1)

2. Non-lexicalised feature set: the dependency
label, the POS tag of the dependent word and
the dependency label of the parent dependency
arc of the arc in question (see right tree in Fig-
ure 1)

5 Experiments

We learn post-editing label modification rules for
WSJ and QuestionBank by employing leave-one-out
cross-validation using the respective development
sets. The resulting rules are then applied to the test
sets WSJ23 and QuestionTest. For the WSJ dataset,

tures and leads to over-generalisation. Therefore, other methods
based on the independence assumption are also not promising,
though some kind of combined approach may succeed.

3We settle on these two feature sets after experimenting on
our development sets.



Figure 1: Lexicalised and unlexicalised features sets

we also experiment with using the full parser train-
ing data to train the post-editor. For some experi-
ments, we apply an automatic function labeller, Fun-
Tag (Chrupała et al., 2007), to the output of the
Charniak and Johnson parser, and to the Question-
Bank gold trees (which have not been labelled with
function tags). We use the CoNLL evaluation met-
rics of labelled attachment score (LAS) and unla-
beled attachment score (UAS).

5.1 WSJ Results

The results for the WSJ dataset are shown in Ta-
bles 1 - 3. For each parser type, the baseline
scores are provided first, followed by the post-
editing scores, where the post-editor is trained us-
ing leave-one-out cross-validation on WSJ22. The
post-editor results when the training set is WSJ2-21
are given in the third row. The scores are provided
both for WSJ22 and for WSJ23. Labeled attachment
scores also include the number of correct modifica-
tions minus the number of wrong modifications.

We can see from Tables 1 - 3 that LTH benefits the
most from post-editing. It is followed by LFGDEP
and then Stanford. The reason for these large differ-
ences in correction balances between the conversion
schemes is due to their design decisions. The parser
outputs do not contain function tags and LTH suffers
from the lack of this information. LFGDEP is less
dependent on them and Stanford is almost insensi-
tive. This explanation is confirmed by using Fun-
Tag. When function labels are provided by FunTag,
the order of balances remains the same, but the cor-
rection balance drops dramatically for LFGDEP and
even more for LTH, while the already small correc-
tion balances decreases slightly for Stanford depen-

dencies.
For the Stanford scheme, the most success-

ful post-editing rule is the one in which generic
dep relations are converted to more informative
npadvmod4 relations. Using FunTag eliminates
the problem almost without a need for post-editing.
Training the post-editing tool with a larger data set
does not affect the results.

For LTH, relations incorrectly labelled as VMOD
are converted to various other relations including
ADV, SUBJ and OBJ. The correction type break-
down is different for C&J and C&J with FunTag.
The VMOD corrections appear to cease altogether
with FunTag, but actually FunTag only transforms
VMOD into DEP in most of the cases. It still needs
to be corrected and it is successfully handled by
the post-editing tool. In most frequent sub-cases of
VMOD => SBJ/OBJ conversions, the post-editing
tool converts them to the correct label before using
FunTag. When the post-editing tool is trained on
WSJ2-21 instead of WSJ22, it makes fewer modi-
fications — the number of incorrect modifications
in particular drops, and this explains the increase in
correction balance. The type of the corrections is al-
most the same, but how they are corrected differs.
When the post-editor is trained on WSJ22, the non-
lexicalised feature set is used in modifications. The
same modifications are carried out based on the the
lexicalised feature set when the size of the training
data increases. On WSJ23, correct modifications in-
crease, and, more importantly, incorrect modifica-
tions drop dramatically. As a result the balance in-
creases by 0.5 % absolute, a statistically significant
improvement.

Looking at the breakdown of results in Table 3,
we see that, for the LFGDEP dependency scheme,
the post-editing rules succeed in correctly convert-
ing adjuncts to obliques and complements to ad-
juncts. Very few instances of these corrections re-
main after using FunTag. Post-editing corrects only
topicrel => subj in the C&J FT configura-
tion. This covers sentences with a relative pronoun
which acts both as a subject and a relative topic. Due
to design decisions (there is only one head of a de-
pendent and a grammatical function has a higher pri-
ority than a discourse function), LFGDEP prefers to

4noun phrase adverbial modifier



WSJ 22 WSJ 23
Parser UAS LAS UAS LAS
C&J 94.18 91.52 94.21 91.76
C&J post-editor-WSJ22 94.18 91.82 (128 - 26 = 102) 94.21 91.94(20 - 9 = 11)
C&J post-editor-WSJ2-21 94.18 91.80 (118 - 21 = 97) 94.21 91.98(20 - 7 = 13)
C&J FT 94.18 91.94 94.21 92.03
C&J FT post-editor-WSJ22 94.18 91.99 (31 - 14 = 17) 94.21 92.06(109 - 20 = 89)
C&J FT post-editor-WSJ2-21 94.18 91.95 (11 - 10 = 1) 94.21 92.06(129 - 17 = 112)
Malt 90.61 87.98 90.28 87.68
Malt post-editor-WSJ22 90.61 87.93 (11 - 26 = -15) 90.28 87.67(15 - 23 = -8)
Malt post-editor-WSJ2-21 90.61 87.95 (12 - 16 = -4) 90.28 87.68(11 - 8 = 3
MST 91.33 88.76 90.74 88.36
MST post-editor-WSJ22 91.33 88.74 (14 - 26 = -12) 90.74 88.35(22 - 27 = -5)
MST post-editor-WSJ2-21 91.33 88.73 (9 - 16 = -7) 90.74 88.35(7 - 10 = -3)

Table 1: Parser accuracy scores for WSJ 22 and WSJ 23 when Stanford Dep. is used

WSJ 22 WSJ 23
Parser UAS LAS UAS LAS
C&J 92.21 65.32 91.91 64.31
C&J post-editor-WSJ22 92.21 82.57 (6313 - 25 = 6288) 91.91 81.52(8803 - 18 = 8785)
C&J post-editor-WSJ2-21 92.21 84.54 (7112 - 95 = 7017) 91.91 84.46(10377 - 32 = 10345)
C&J FT 93.99 89.66 93.86 89.82
C&J FT post-editor-WSJ22 93.99 90.87 (530 - 92 = 438) 93.86 90.68(659 - 233 = 426)
C&J FT post-editor-WSJ2-21 93.99 90.89 (483 - 26 = 457) 93.86 91.12(710 - 31 = 679)
Malt 90.84 87.18 90.80 87.58
Malt post-editor-WSJ22 90.84 87.22 (87 - 96 = -9) 90.80 87.31(46 - 209 = -163
Malt post-editor-WSJ2-21 90.84 87.17 (21 - 24 = -3) 90.80 87.61(32 - 15 = 17)
MST 92.24 88.8 91.89 88.9
MST post-editor-WSJ22 92.24 88.81 (78 - 78 = 0) 91.89 88.7(40 - 146 = -106)
MST post-editor-WSJ2-21 92.24 88.77 (8 - 19 = -11) 91.89 88.91(9 - 6 = 3)

Table 2: Parser accuracy scores for WSJ 22 and WSJ 23 when LTH is used

keep the subj relation. Gold trees have the sub-
ject information due to traces and coindexation, so
LFGDEP correctly picks the subj relation. Parse
trees lack this information hence, only topicrel
can be assigned. The other remaining correction is
subj => adjunct, which highlights a system-
atic error made by LFGDEP. Using a larger training
data does not change the type of modifications and
slightly increases the correction balance.

Post-editing does not help the dependency parsers
for any of the conversion schemes. A closer look re-
veals that the kind of errors made by the dependency
parsers are not systematic enough to aid the post-
editing tool in learning anything with the existing
feature sets. Take for instance the non-lexicalised
feature set which includes the parent label as a fea-
ture: when the C&J parse trees are converted to de-
pendency trees using LDFDEP, there are 3070 la-

belling errors, and 57% of these have the correct
parent. For Malt, there are 2742 labelling errors, but
only 26% of them have the correct parent. There-
fore, the post-editing training data for Malt contains,
not only fewer training instances due to lower at-
tachment accuracy, but also more noise than the cor-
responding training data for C&J.5 The same expla-
nation applies to MST.

5.2 QuestionBank Results

The QuestionBank results in Table 4 are interesting
because they highlight the different ways the post-
editing method can be used. The method works
better for QuestionBank than for the WSJ dataset
because, for all three parsers, it succeeds in trans-
forming the parser output so that it more closely re-

5We experimented with different feature sets on Malt but did
not get a significant improvement.



WSJ 22 WSJ 23
Parser UAS LAS UAS LAS
C&J 92.22 87.35 91.67 87.61
C&J post-editor-WSJ22 92.22 88.77 (678 - 104 = 574) 91.67 88.48 (691 - 196 = 495)
C&J post-editor-WSJ2-21 92.22 89.44 (978 - 148 = 830) 91.67 89.33 (1190 - 235 = 955)
C&J FT 92.85 90.83 92.49 90.67
C&J FT post-editor-WSJ22 92.85 90.99 (97 - 23 = 74) 92.49 90.71 (87 - 53 = 34)
C&J FT post-editor-WSJ2-21 92.85 91.02 (108 - 14 = 94) 92.49 90.88 (145 - 20 = 125)
Malt 89.20 87.19 89.42 87.55
Malt post-editor-WSJ22 89.20 87.18 (26 - 29 = 3) 89.42 87.45 (14 - 62 = -48)
Malt post-editor-WSJ2-21 89.20 87.19 (15 - 15 = 0) 89.42 87.56 (15 - 11 = 4)
MST 91.02 89.12 90.75 88.94
MST post-editor-WSJ22 91.02 89.11 (20 - 21 = -1) 90.75 88.86 (9 - 56 = -47)
MST post-editor-WSJ2-21 91.02 89.11 (2 - 5 = -3) 90.75 88.94 (4 - 3 = -1)

Table 3: Parser accuracy scores for WSJ 22 and WSJ 23 when LFGDEP is used

Figure 2: The incorrect gold dependency tree converted
by the LTH scheme

sembles the gold standard. However, we have to
be careful here since the QuestionBank gold stan-
dard is even less “gold” than the WSJ gold stan-
dard for three reasons: 1) it has undergone not
one but two automatic procedures, constituency-to-
dependency conversion and automatic function la-
belling (recall that the manually annotated Question-
Bank constituency trees contain neither functional
labels nor traces), 2) no attempt is made to insert
traces into the constituency trees before conversion
to dependency trees, and 3) the three constituency-
to-dependency converters and the automatic func-
tion labeller have been developed using Penn Tree-
bank trees and so they are not expected to perform
as well on questions. Examining the QuestionBank
results in more detail we find problems with the in-
dividual converters as well as problems with parser
output.

The LTH converter particularly suffers when ap-
plied to QuestionDev. The most common ”correct”
relabelling rules for the two dependency parsers in-
volve a label being converted to the generic DEP
label. In order to investigate these suspicious re-

Figure 3: The incorrect gold dependency tree converted
by Stanford dependencies

labelling rules, we inspect the gold standard LTH
QuestionDev dependency trees and find that these
dependency trees are in fact incorrect (see, for ex-
ample, the tree in Figure 2). It is interesting that
we discover this problem by looking at the depen-
dency parser relabellings — in this case, the post-
editing method is making the dependency parser
output worse and this could be because the depen-
dency parsers are trained on dependency trees which
were produced from constituency trees containing
traces and so their output is more accurate than the
QuestionBank gold standard. Examination of the
post-editing results highlights a similar (albeit much
smaller) problem with the Stanford converter: the
correct cop dependency label for the copular verb
in a question such as Which X is Y? is replaced by
the incorrect aux dependency label because the gold
Stanford dependency trees are themselves incorrect.
The tree in Figure 3 is an example of an incorrect
gold Stanford tree.

There are also many instances in which the gold
data is correct and the post-editing method succeeds
in correcting labelling errors in parser output. For
example, the Stanford relabelling rules manage to



QuestionDev QuestionTest
Parser UAS LAS UAS LAS
C&J 88.47 72.1 88.70 72.46
C&J post-editor-QDev 88.47 81.38 (1017 - 152 = 865) 88.70 81.83 (1041 - 161 = 880)
C&J FT 90.00 82.7 90.43 83.54
C&J FT post-editor-QDev 90.00 85.73 (383 - 109 = 274) 90.43 86.51 (394 - 119 = 275)
Malt 84.89 71.75 85.56 72.61
Malt post-editor-QDev 84.89 78.95 (809 - 155 = 654) 85.56 79.73 (836 - 172 = 664)
MST 85.16 73.06 85.94 74.35
MST post-editor-QDev 85.16 79.52 (751 - 116 = 635) 85.94 71.9 (71 - 297 = -226)

(a) LFGDEP

C&J 82.58 78.40 83.62 79.22
C&J post-editor-QDev 82.58 78.72 (41 - 12 = 29) 83.62 79.47(41 - 16 = 25)
C&J FT 82.58 78.41 83.62 79.26
C&J FT post-editor-QDev 82.58 78.73 (41 - 11 = 30) 83.62 79.5(41 - 16 = 25)
Malt 72.59 67.39 74.10 69
Malt post-editor-QDev 72.59 67.65 (56 - 26 = 30) 74.10 69.45(62 - 17 = 45)
MST 74.75 68.9 76.42 70.59
MST post-editor-QDev 74.75 69.62 (99 - 18 = 81) 76.42 71.17(86 - 25 = 61)

(b) Stanford Dependencies

C&J 90.66 68.47 90.99 69.27
C&J post-editor-QDev 90.66 81.34 (1212 - 5 = 1207) 90.99 81.51(1152 - 3 = 1149)
C&J FT 90.78 84.08 91.21 86.9
C&J FT post-editor-QDev 90.78 86.33 (227 - 22 = 205) 91.21 84.81(223 - 30 = 193)
Malt 85.39 66.96 87.08 68.54
Malt post-editor-QDev 85.39 79.37 (1219 - 88 = 1131) 87.08 80.68(1209 - 89 = 1120)
MST 85.29 68.09 87.03 69.64
MST post-editor-QDev 85.29 79.23 (1133 - 113 = 1020) 87.03 67.63(790 - 1043 = -253)

(c) LTH Conversion

Table 4: Parser accuracy scores for QuestionDev and QuestionTest

correct the mislabelled dependency between the ex-
pletive there and the main verb in questions such
as How many James Bond novels are there? from
advmod to expl. An inspection of the LFGDEP
rules show that many correct relabellings are from
subj to xcomp and vice versa in questions of the
form What are/is X?. We have tracked these parser
errors back to the question annotation strategy in the
Penn Treebank. According to the Penn Treebank
bracketing guidelines (Bies et al., 1995), copular
verbs are annotated differently to other main verbs
in questions in that they do not introduce a VP node
(see Figure 4). Judge et al. (2006) comment that
this distinction is difficult for parsers to learn. The
fact that the relabelling occurs for the dependency
parsers (where the conversion is applied to the gold
constituency trees before parser training) as well as
the constituency parser (where the conversion is ap-
plied to the parser output) suggests that this is not a
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NP

NN

ethology

S

WHNP
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Figure 4: Question Annotation According to PTB Brack-
eting Guidelines

parser-specific problem but rather that the gold stan-
dard PTB questions contain some noise.6

6 Conclusion

We have presented a technique for modifying the
labels in a dependency tree and shown how it

6An example is the following tree in WSJ02:
( (SBARQ (“ “) (WHNP-305 (WP What) ) (SQ (NP-SBJ (-
NONE- *T*-305) ) (VP (VBZ is) (NP-PRD (NP (DT the) (NN
way) ) (ADVP (RB forward) )))) (. ?) ))



can be used to improve labelled attachment accu-
racy. We have also demonstrated how the tech-
nique can be used to pinpoint problems in automatic
constituency-to-dependency converters. The latter
use of the technique is important given the absence
of a truly gold dependency test set for English.

We have tested our label correction method on
three parsers and shown that it has considerably
more success on the Charniak and Johnson rerank-
ing parser (for which it brought about statistically
significant improvements in accuracy) than on Malt-
Parser and MSTParser. Since the Charniak and
Johnson parser is a two-stage parser in which attach-
ment mistakes made during the first-stage are cor-
rected during the second, this suggests that the op-
timal application of our method is after attachment
post-editing. We intend to explore this in the future.
We also intend to explore the extent to which the
method can be improved by taking into account la-
bel hierarchies and by imposing global constraints.
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