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Abstract

The translation features typically used in state-of-the-art statistical machine trans-

lation (SMT) model dependencies between the source and target phrases, but not

among the phrases in the source language themselves. A swathe of research has

demonstrated that integrating source context modelling directly into log-linear phrase-

based SMT (PB-SMT) and hierarchical PB-SMT (HPB-SMT), and can positively

influence the weighting and selection of target phrases, and thus improve translation

quality. In this thesis we present novel approaches to incorporate source-language

contextual modelling into the state-of-the-art SMT models in order to enhance the

quality of lexical selection. We investigate the effectiveness of use of a range of

contextual features, including lexical features of neighbouring words, part-of-speech

tags, supertags, sentence-similarity features, dependency information, and semantic

roles. We explored a series of language pairs featuring typologically different lan-

guages, and examined the scalability of our research to larger amounts of training

data.

While our results are mixed across feature selections, language pairs, and learn-

ing curves, we observe that including contextual features of the source sentence

in general produces improvements. The most significant improvements involve the

integration of long-distance contextual features, such as dependency relations in

combination with part-of-speech tags in Dutch-to-English subtitle translation, the

combination of dependency parse and semantic role information in English-to-Dutch

parliamentary debate translation, supertag features in English-to-Chinese transla-

tion, or combination of supertag and lexical features in English-to-Dutch subtitle

translation. Furthermore, we investigate the applicability of our lexical contextual

model in another closely related NLP problem, namely machine transliteration.
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Chapter 1

Introduction

The current state-of-the-art Statistical Machine Translation (SMT) models (Koehn

et al., 2003; Chiang, 2007) can be viewed as log-linear combinations of features (Och

and Ney, 2002) that usually comprise translational features and language models.

The translational features involved in these models typically express dependencies

between the source and target phrases, but not dependencies between the phrases

in the source language themselves, i.e. they do not take into account the contexts

of those phrases.

Stroppa et al. (2007) observed that incorporating source-language context using

neighbouring words and part-of-speech tags had the potential to improve translation

quality. This has led to a whole tranche of research, of which we provide an overview

in Chapter 2, which has shown that integrating source context modelling into SMT

models can positively influence the weighting and selection of target phrases, and

thus improve translation quality.

Approaches to include source-language context to help select more appropriate

target phrases have partly been inspired by methods used in word-sense disam-

biguation (WSD), where rich contextual features are employed to determine the

most likely sense of a polysemous word given that context. These contextual fea-

tures may include lexical features, i.e. words appearing in the immediate context

(Giménez and Màrquez, 2007; Stroppa et al., 2007), shallow and deep syntactic fea-
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tures of the sentential context (Gimpel et al., 2008), full sentential context (Carpuat

and Wu, 2007), and sentence-similarity features (Costa-Jussà and Banchs, 2010).

Studies in which syntactic features are employed have made use of part-of-speech

taggers (Stroppa et al., 2007), supertaggers (Haque et al., 2009a, 2010a), and shallow

and deep syntactic parsers (Gimpel et al., 2008; Haque et al., 2009b).

In this thesis, we show that exploring local sentential context information in

the form of both supertags (Haque et al., 2009a, 2010a) and syntactic dependen-

cies (Haque et al., 2009b) can be integrated into a Phrase-Based SMT (PB-SMT)

(Koehn et al., 2003) and a Hierarchical Phrase-Based SMT (HPB-SMT) (Chiang,

2007) models successfully to improve target phrase selection. In addition to su-

pertags and dependency relations, we introduce semantic roles as a new contextual

feature in the PB-SMT model. We compare the effectiveness of these rich and com-

plex knowledge sources as source-language context features with that of the basic

contextual features (i.e. words and POS tags) in state-of-the-art SMT models. Fur-

thermore, we explore various similarity features (Haque et al., 2010b) by measuring

the similarity between a source sentence to be translated with the source side of

the parallel training sentences, the usefulness of which are examined by integrat-

ing them into a PB-SMT model, both individually and in collaboration with the

supertag-based features.

We examine the scalability of our research to larger amounts of training data,

and explore a range of language pairs featuring typologically different languages.

Our results allow us to conclude that incorporating source-language contextual fea-

tures benefits a range of different language pairs, both with English as source lan-

guage (translating to Dutch, Chinese, Japanese, Hindi, Spanish, and Czech) and

target language (from Dutch), on different types of data such as news articles and

commentary, parliamentary debates, patents, and subtitles, according to a range of

automatic evaluation measures.

Furthermore, we apply our context-informed PB-SMT model to a different NLP

task, namely machine transliteration (Haque et al., 2009c). We showed that our
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context-sensitive transliteration models significantly outperform the respective base-

line models in terms of transliteration accuracy.

1.1 Research Questions

Target phrase selection, and for that matter, target sentence generation in SMT are

mostly driven by the n-gram target language model (LM). Target phrase selection

to generate a target sentence mostly depends on the n-gram matches in the LM.

The generation of a target sentence with respect to an n-gram language model can

thus be viewed as a measure of similarity between the sentence under generation

and the sentences of the corpus on which the LM is built. In other words, the use

of LM makes the resulting translation similar to previously seen sentences.

Translation of a source sentence in example-based machine translation (EBMT)

(Nagao, 1984) can be seen as a process consisting of three consecutive steps: (i)

retrieval, i.e. look for the source sentences in the bilingual corpus that are similar

to the sentence to be translated, (ii) matching, i.e. find useful fragments in these

sentences, and (iii) recombination, i.e. adapt the translations of these fragments

(Nagao, 1984; Somers et al., 1994; Somers, 1999; Carl and Way, 2003). Consequently,

EBMT crucially relies on the retrieval of source sentences from the bilingual corpus,

which are similar to the input sentence to be translated; in other words, EBMT

is source-similarity-oriented. On the other hand, the word sense disambiguation, a

task intricately related to machine translation (MT), typically employs rich context-

sensitive features to determine contextually the most likely sense of a polysemous

word. Can we exploit the idea of EBMT’s source-similarity in SMT by making use

of source-language context which could play an important role in finding the most

suitable translation of a polysemous SMT phrase? A variety of research papers have

exploited source-language context in SMT in order to improve lexical selection (e.g.

Carpuat and Wu, 2007; Giménez and Màrquez, 2007; Stroppa et al., 2007), most of

which have focused on modelling neighbouring lexical and syntactic dependencies
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that an SMT phrase has as source-side context. Interestingly, the translation of an

ambiguous source phrase may depend on the context that could be either adjacent

or distant to the phrase to be translated (cf. Section 3.2). Therefore, exploration of

the nature of source-context on which the meaning of an SMT phrase depends may

enhance the quality of lexical selection of the state-of-the-art SMT models (Koehn

et al., 2003; Chiang, 2007). This leads to our first research question (RQ1):

• RQ1: What kind of information can be modelled as useful source-language

context in the state-of-the-art SMT systems in order to improve target phrase

selection?

In this thesis, we present novel approaches to embed various lexical and syntactic

contextual features in the state-of-the-art SMT models: (a) basic contextual features

(neighbouring words and POS tags) as in Stroppa et al. (2007), (b) lexical syntactic

descriptions in the form of supertags, (c) deep syntactic information (grammatical

dependency relations) as in Carpuat and Wu (2007) and Max et al. (2008),1 and (d)

semantic roles. While supertags capture long-distance dependencies in an indirect

way, dependency relations encode them directly; by following a dependency relation

one can, for example, obtain the lexical identity of the related word directly. We go

a step further by introducing semantic dependencies that an SMT phrase possesses

as contextual feature. This rich and complex syntactic and semantic information,

which helps capture long-distance word-to-word dependencies in a sentence, may

be more useful source-side contextual features to improve lexical selection in SMT.

Furthermore, following (Costa-Jussà and Banchs, 2010) we explore various sentence

similarity-based source-language contextual features which are measured on the basis

of similarity between the input source sentence and the source-side of the training

sentences. In a set of pilot experiments we examine the effect of incorporating the

sentence similarity-based contextual features, both individually and in collaboration

with the supertag-based features.

1We detail the differences between our approach and those of (Carpuat and Wu, 2007; Max et
al., 2008) with regard to various aspects in Section 6.2.1.1 (cf. page 162).

4



One important aspect is how to include rich and complex syntactic and semantic

context information in the phrase and rule tables. This invokes our second research

question (RQ2):

• RQ2: How can the rich and complex syntactic and semantic contexts be incor-

porated into state-of-the-art SMT models?

In order to incorporate these rich and complex knowledge sources into the SMT

models, we have made use of supertaggers (Bangalore and Joshi, 1999; Clark and

Curran, 2004), dependency parsers (Nivre et al., 2006; Van den Bosch et al., 2007),

and semantic role labelers (Johansson and Nugues, 2008), most of which are read-

ily available only for the English language. This forced us to choose English as the

source language of the translation direction for most of our translation tasks. We de-

tail the approaches we adopted to incorporate complex contextual information into

the SMT models later (cf. Sections 3.3, 5.2, 6.2) in this thesis. Context-dependent

phrase translation can naturally be seen as a multi-class classification problem. In

other words, a source phrase with associated contextual information has to be classi-

fied to obtain a reduced but fine-grained set of possible target phrases. Like Stroppa

et al. (2007), we use a memory-based classification framework (Daelemans and van

den Bosch, 2005) that enables the estimation of these features while avoiding sparse-

ness problems.

We tried to explore another related NLP problem – transliteration – in which we

could share the advantages of our context-informed SMT models. Our third research

question (RQ3) is:

• RQ3: Can we deploy our context-sensitive SMT model in the related applica-

tion of transliteration?

Our context-informed SMT model was employed to perform transliteration on

a standard English-to-Hindi data set. We show how the transliteration model can

also benefit from the inclusion of source-side contextual features into the model.
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Consistency and scalability are two important interrelated issues which one

should investigate in a proper manner before reaching a conclusion. This raises

our fourth research question (RQ4):

• RQ4: How does the performance of various context-informed SMT models vary

with increasing sizes of training data sets?

We investigate the effect of various contextual features in the SMT models by

systematically varying the amounts of training data for several language pairs. A

large set of experiments were carried out with increasing sizes of training data sets

exploring several contextual features. The experimental results obtained with varied

training data sizes yield informative learning curves which help us to draw a solid

conclusion.

Each experiments carried out in this thesis, as well as the usual automatic eval-

uation, we provide an in-depth analysis performed on the translations produced by

our context-sensitive SMT models and the respective baseline models.

1.2 Thesis Structure

The remainder of this thesis is organized as follows:

• Chapter 2 presents an overview of MT, followed by a discussion on foundation

of SMT and significant research contributions on the state-of-the-art SMT

models. This chapter also reassesses previous work on incorporating context

into SMT.

• Chapter 3 introduces an overview of the state-of-the-art in SMT (Koehn et

al., 2003; Chiang, 2007), followed by definitions of our context-informed SMT

models. Then, we present an overview of memory-based classification algo-

rithms used in this thesis, implementation aspects of our context-based mod-

els, data set statistics, and an overview of the MT evaluation techniques used

to validate our experimental findings.
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• Chapter 4 presents a series of experimental results obtained by integrating

basic contextual features (words and POS tags) into the two state-of-the-art

SMT models. Since we employ our word-contextual model in the application

of transliteration, this chapter also reports outcomes of the context-sensitive

transliteration systems.

• Chapter 5 introduces supertags as source-language contextual features and

reports a series of experimental results obtained by incorporating supertag

context into the state-of-the-art SMT models. Since our main intuition is to

employ the supertag contextual features with the sentence-level similarity fea-

tures, this chapter also introduces sentence-similarity contextual modelling and

reports experimental results obtained by adding various sentence-similarity

features into the PB-SMT model, both individually and in collaboration with

the supertag-based contextual features.

• Chapter 6 introduces deep syntactic and semantic contextual features and

reports the experimental results obtained by incorporating those features into

the state-of-the-art SMT models.

• Chapter 7 concludes and discusses avenues for future work.

1.3 Publications

Parts of the research presented in this thesis have been published in peer-reviewed

international conferences. Work which has resulted in publications includes:

• (Haque et al., 2009a) entitled “Using Supertags as Source Language Context

in SMT” was published in proceedings of the 13th Annual Meeting of the

European Association for Machine Translation (EAMT-09).

• (Haque et al., 2009b) entitled “Dependency Relations as Source Context in

Phrase-Based SMT” was published in proceedings of PACLIC 23: the 23rd

Pacific Asia Conference on Language, Information and Computation.
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• (Haque et al., 2009c) entitled “English–Hindi Transliteration Using Context-

Informed PB-SMT: the DCU System for NEWS 2009” was published in pro-

ceedings of Named Entities Workshop (NEWS 2009), ACL-IJCNLP 2009.

• (Haque et al., 2010a) entitled “Supertags as Source Language Context in Hi-

erarchical Phrase-Based SMT” was published in proceedings of AMTA 2010:

The Ninth Conference of the Association for Machine Translation in the Amer-

icas.

• (Okita et al., 2010) entitled “MaTrEx: the DCU MT System for NTCIR-8”

was published in proceedings of NTCIR-8.

• (Penkale et al., 2010) entitled “MaTrEx: The DCU MT System for WMT

2010” was published in proceedings of the Joint Fifth Workshop on Statistical

Machine Translation and Metrics MATR (WMT-MetricsMATR 2010), ACL

2010.

• (Haque et al., 2010b) entitled “Sentence Similarity-Based Source Context

Modelling in PBSMT” was published in proceedings of the International Con-

ference on Asian Language Processing 2010, (IALP 2010).

• Haque et al. (2011) entitled “Integrating Source-Language Context into Phrase-

Based Statistical Machine Translation” has been accepted for publication in

the Machine Translation journal.
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Chapter 2

Related Works

2.1 Overview of SMT Research Work

In this section, we give an introductory overview of statistical machine translation

(SMT). First, we present a general overview of machine translation (MT), followed

by word-based SMT (WB-SMT), and then we move from the word-based to phrase-

based SMT (PB-SMT) model. Then, we look at a few significant research con-

tributions in the PB-SMT model as well as in the hierarchical phrase-based SMT

(HPB-SMT) model. Furthermore, we extend the discussion with a special focus on

discriminative training in SMT.

In the subsequent section, we discuss the research work related to this thesis,

which makes use of the contextual knowledge sources from the either side of trans-

lation pair to improve lexical selection in the SMT model.

2.1.1 General Overview of Machine Translation

Machine Translation is a computer application that translates a text from one nat-

ural language to another. Linguistic analysis classifies the MT task into three alter-

native processes according to the Vauquois pyramid (Vauquois and Boitet, 1985):

direct, transfer, and interlingua. The Vauquois pyramid framework comprises two

more steps: source-language analysis and target-language generation.
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With regard to the translation approaches, MT can be broadly classified into

two categories: rule-based machine translation (RBMT) and corpus-based machine

translation (CBMT). RBMT relies on hand-built linguistic rules and bilingual dic-

tionaries for each language pair. On the other hand, CBMT uses large amounts

of bilingual and target monolingual corpus to acquire the translation knowledge re-

quired. Corpus-driven models of MT can further be divided into example based ma-

chine translation (EBMT) (Nagao, 1984) and statistical machine translation (SMT)

(Brown et al., 1988). In EBMT, translation is performed by analogy; in contrast,

statistical approaches are based on models created probabilistically from a bilin-

gual corpus. Statistical models are by far the most dominant and popular empirical

approaches in today’s MT technology.

With regard to the translation unit and decoding method, SMT models can fur-

ther be divided into three groups: word-based, phrase-based and syntax-based SMT.

The phrase-based SMT (PB-SMT) model of Koehn et al. (2003) and hierarchical

phrase-based SMT (HPB-SMT) model of Chiang (2007) are the current state-of-

the-art in MT technology. The work illustrated in this thesis have been carried out

with the above two state-of-the-art SMT models.

2.1.2 Beginning of Statistical Machine Translation

More than six decades ago, Weaver (1949) expressed the idea of applying statistical

methods to translate a word by taking its contexts into account. However, re-

searchers abandoned this approach due to the complexity involving implementation

at that time.

Four decades after the proposal of Weaver (1949), Brown et al. (1988, 1990)

expressed the MT process with a probabilistic model, namely, the noisy channel

model of translation. The noisy channel model of translation (Brown et al., 1988,

1990) maximizes the probability of generating a sentence eI1 = e1, ..., eI in the tar-

get language from a given sentence fJ1 = f1, ..., fJ in the source language, namely

P(eI1|fJ1 ). Therefore, according to the noisy channel model, the translation task can
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be viewed as a process that maximizes the probability P(eI1|fJ1 ), as in (2.1):

argmax
I,eI1

P(eI1|fJ1 ) = argmax
I,eI1

P(fJ1 |eI1).P (eI1) (2.1)

where P(fJ1 |eI1) and P(eI1) denote respectively the translation model and the target

language model. The translation model P(fJ1 |eI1) is estimated using a set of models:

e.g. translation, fertility, and distortion probabilities (Brown et al., 1988, 1990).

This model of MT is popularly known as word-based SMT (WB-SMT) model, since

the translation unit of this model is word.

The translation process of the noisy channel model is essentially a search problem

which Brown et al. (1988, 1990) facilitated with a variant of the stack search (Bahl

et al., 1983). The translation models (translation, fertility, distortion probabilities)

(Brown et al., 1988, 1990) are estimated applying the expectation maximization

(EM) algorithm (Dempster et al., 1977) on the bilingual training sentences. More

detail regarding the mathematical modelling of parameter estimation can be found

in (Brown et al., 1993). The parameter estimation algorithms described in (Brown

et al., 1993) are popularly known as the IBM models of word alignment, which

comprise five different models (IBM model 1 to model 5). Word alignment is an

advanced research topic in SMT. In the next section, we give a brief overview of the

IBM models and discuss a few recent research papers on word alignment.

2.1.3 Word Alignment

The IBM models are the most popular and dominant approaches to the problem

of word alignment. The IBM models learn from incomplete data. In other words,

these models adopt an unsupervised learning method, namely the EM algorithm

(Dempster et al., 1977). The EM algorithm works with sentences-level parallel

corpora. The translation model in Equation (2.1) can be rewritten in terms of the

word alignments, as in (2.2):
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P(fJ1 |eI1) =
∑
aJ1

P(fJ1 , a
J
1 |eI1) (2.2)

where the word alignment aJ1 = a1, ..., aJ is introduced as a hidden variable into the

translation model. Each alignment aj maps a source1 word position to either an

‘empty’ position (‘0’) or a target word position ([1, I]), i.e. ∀aj ∈ [0, I]. As men-

tioned earlier, the IBM models of Brown et al. (1993) comprise five different models

depending upon the inclusion of various features, such as fertility and distortion.

Here we give an overview on the five IBM models:

• IBM model 1: All alignments have the same probability, i.e. the alignment

of a target word (ei) into a source word (fj) is done uniformly.

• IBM model 2: The selection of a source word (fj) depends on the target

position i, i.e. model 2 introduces an alignment probability distribution.

• IBM model 3: In addition to the lexical translation and alignment proba-

bility, model 3 introduces fertility probability, namely the number of source

words (fj) a target word ei may generate.

• IBM model 4: Model 4 addresses the problem of the ordering of words in the

source sentence and introduces a distortion probability model. By taking the

relative word positions of the source sentence (fJ1 = f1, ..., fJ) and the target

sentence (eI1 = e1, ..., eI) into account, the distortion model reorders the source

sentence.

• IBM model 5: Model 3 and 4 might have impossible alignments in which

more than one source word is selected for the same position. Model 5 fixes

this problem.

Vogel et al. (1996) introduced the Hidden Markov Model (HMM)-based approach

to modelling word alignments, in which the current alignment position aj depends

1Source is the side of translation pair.
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on the previously aligned position aj−1. The generalized HMM model (Vogel et

al., 1996) includes three different models based on: (a) sentence length probability

(P(J |I)), (b) transition probability (P(aj|aj−1, I)), and (c) translation probability

(P(fj|eaj)). Unlike zero order dependencies of IBM model 1 and 2, the HMM word

alignment model (Vogel et al., 1996) is based on first-order dependencies for transi-

tion probability (P(aj|aj−1, I)).

The IBM models of Brown et al. (1993) including the HMM expansion of Vogel

et al. (1996) are said to be generative models, since these models generate a sen-

tence in one language from another language. A comparative overview of various

alignment models including the improved alignment models with many extensions

is provided in Och and Ney (2000a,b, 2003). The widely used word alignment soft-

ware GIZA++2 implements the improved IBM and HMM models (Och and Ney,

2003). We refer to two more pieces of recent research work using generative align-

ment models: word-to-phrase alignment model3 of Fraser and Marcu (2007a) and

m-to-n alignments of Deng and Byrne (2005). In contrast, MT researchers have also

applied discriminative methods to word alignment, which usually adopt supervised

learning algorithms, e.g. Moore (2005), Taskar et al. (2005) and Blunsom and Cohn

(2006).

2.1.4 Moving from Word to Phrase

The basic problem of the word-based model proposed by Brown et al. (1988, 1990,

1993) is that their model fails to capture neighbouring contexts, since the translation

unit of their model is the individual word. As a result, on the one hand, the word-

based model has poor lexical selection, and, on the other hand, this model fails

to maintain phrasal cohesion between the phrases of source and target languages.

To cope with such kinds of anomalies, Och et al. (1999) suggested a phrase-based

model, where they moved from the basic translation unit being a word to a phrase.

2http://code.google.com/p/giza-pp/
3This model is able to produce alignments which consists of M-to-N non-consecutive transla-

tional correspondences.
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The proposed alignment template method of Och et al. (1999) includes mainly two

consecutive alignment levels:

• Word-level alignment: This approach first takes the intersection of the source-

to-target (A1) and the target-to-source (A2) alignment matrices. Then, a

refined alignment matrix (A) is produced by adding additional links occurring

only in A1 or in A2.

• Phrase-level alignment: Those phrase pairs are extracted from the sentence

pair that are consistent with the refined alignment matrix A.

For further details of this heuristic approach of phrase extraction, we refer the

reader to Zens et al. (2002) and Och and Ney (2004). Koehn et al. (2003) slightly

modified the word-level alignment of Och et al. (1999) and proposed two different

heuristics, namely, grow-diag and grow-diag-final (Koehn et al., 2003; Koehn, 2009).

Koehn et al. (2003) add a neighbouring alignment point that presents in the union

matrix (A1 ∪ A2) but not in the intersection matrix (A1 ∩ A2). The process starts

from the top right corner4 of the refined alignment matrix, checks for the alignment

points for the first target word, then continues with alignment points for the second

target word, and so on. This process is iterated until no alignment point can be

added any more (grow-diag). In the next step, non-adjacent alignment points are

added under the same requirements (grow-diag-final). The approach of Koehn et

al. (2003) serves as our baseline phrase-based SMT model which we define with a

mathematical derivation in Chapter 3.

In addition to the phrase-based conditional probability models (Och and Ney,

2004; Koehn et al., 2003), Marcu and Wong (2002) proposed a phrase-based joint

probability model which can simultaneously learn source and target phrases from

a sentence-aligned parallel corpus. However, it is rarely used in practice due to its

considerable additional computational complexity.

4Left and bottom sides of alignment matrix represent respectively target and source sentences.
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2.1.5 Decoding & Reranking

2.1.5.1 Decoding

The translation process (i.e. decoding) of the noisy channel model (Brown et al.,

1990) (cf. Equation (2.1)) requires an extensive search which is a problem belonging

to the class of NP-complete (Knight, 1999) algorithms. There is, accordingly, a

growing interest in applying heuristic techniques to the decoding process in order to

make it more efficient. A few of the foremost research contributions which improve

the decoding by employing heuristic search techniques include:

• A* search (performed as depth-first search) (Och et al., 2001)

• Syntactic parsing-based decoding (Yamada and Knight, 2002)

• Greedy hill climbing decoding (Germann, 2003; Langlais et al., 2007)

• Stack-based beam search decoding (Koehn et al., 2003; Koehn, 2004a)

The current state-of-the-art decoder for the phrase-based SMT model is the

beam search decoder (Koehn et al., 2003; Koehn, 2004a). This beam search de-

coding, which is usually performed as breadth-first search, comprises many efficient

features, such as: (a) a dynamic programming algorithm to estimate the future cost

of an untranslated partial hypothesis, (b) various punning techniques, and (c) a

well-implemented data structure to store hypotheses with scores, and other many

advantages. The publicly available PB-SMT toolkit Moses (Koehn et al., 2007) de-

ploys a beam search decoder. Our baseline phrase-based SMT model (cf. Section

3.3.1 on page 43) adopts stack-based beam search decoding (Koehn et al., 2003;

Koehn, 2004a).

2.1.5.2 Reranking

The baseline system generates an n-best list translation hypotheses. For each hy-

pothesis translation, various lexical, and syntactic features are computed. Then, a
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process selects the best translation among the n-best list of hypothesis translations.

In sum, this describes the reranking process in SMT. Note that we do not apply any

reranking procedures in our work.

Discriminative reranking of the n-best list has emerged as an advanced research

topic in SMT. Och et al. (2004) utilized lexical as well as syntactic information from

parsers, chunkers, and POS taggers for improving the syntactic well-formedness

of the MT output. In their approach, the highest-scoring candidate translation

from an n-best list was selected by applying various features both individually and

collaboratively into a log-linear model (Och and Ney, 2002).

In a different approach, Kumar and Byrne (2004) proposed Minimum Bayes Risk

(MBR) decoding which selects the best candidate translation from an n-best list on

the basis of similarity function, i.e. BLEU.

2.1.6 The Log-linear Model

Today’s standard phrase-based SMT models (Koehn et al., 2003) follow the log-

linear model representation (Och and Ney, 2002) which can put together an arbitrary

number of (usually log-linear) features into a single model. Each bilingual log-linear

feature applies to single phrase pairs. The log-linear model (Och and Ney, 2002),

which is based on the maximum entropy (MaxEnt) principle (Berger et al., 1996),

can estimate phrase translation scores directly with a set of log-linear features at

decoding time. We present the formal definition of the log-linear model (Och and

Ney, 2002) with our baseline PB-SMT system (Koehn et al., 2003) in Section 3.3.1

(cf. page 43). The state-of-the-art PB-SMT model (Koehn et al., 2003) usually

employs the following set of log-linear features:

• Phrase translation probability and its inverse

• Lexical translation probability and its inverse

• Word penalty and phrase penalty
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• Distance-based or lexicalized phrase reordering models

• N -gram language model

Any additional feature that applies to the source and target phrase pairs can

be incorporated in the log-linear model. Each feature of the log-linear model is

associated with a weight which is usually estimated using minimum error rate train-

ing (MERT)5 (Och, 2003). Note that it is acknowledged that there is a degree of

randomness in how values are assigned to different parameters by MERT. That is,

optimizing features via MERT for one particular system may give different values

in different times. (Moore and Quirk, 2008) is a way to improve upon this solution.

However, in this thesis, for each system set up, we use MERT only once. Tuning is

an expensive process, and for the sheer number of experiments carried out in this

thesis, addressing this problem would be unduly burdensome. In next two sections,

we give a brief overview of the reordering model and the language model.

2.1.6.1 Reordering Model

Reordering is a well-known problem in translation. One natural language differs

from another in several grammatical aspects, among which syntactic word ordering

is crucial in MT. The basic reordering model of SMT is the distance-based reorder-

ing model which is conditioned on the distance between the words in the source

sentence. Tillmann (2004) first proposed a lexicalized reordering model for SMT,

which conditions reordering on phrases. The lexicalized reordering model considers

three different types of orientation of a phrase: monotone, swap and discontinu-

ous. Our baseline phrase-based SMT model (Koehn et al., 2003) (cf. Section 3.3.1)

adopts the state-of-the-art lexicalized reordering model of Tillmann (2004).

5http://www.statmt.org/moses/?n=FactoredTraining.Tuning
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2.1.6.2 Language Model

A language model (LM) predicts the likelihood of appearance of a sequence of words

in the language. In other words, in SMT, the language model probabilistically mea-

sures the linguistic well-formedness of the sentences generated by the MT system.

In real situation, a zero probability may be assigned to unseen n-grams. Many

smoothing techniques have been introduced to solve this problem. The idea behind

the smoothing techniques is that some probability mass is subtracted out (‘discount-

ing’) from seen n-gram word-sequences and redistributed (‘back-off’) to unseen

n-grams. MT researchers usually build language models with the interpolated mod-

ified Kneser-Ney smoothing (Chen and Goodman, 1998) technique. Interpolation

causes the discounted n-gram probability estimates at the specified order n to be

interpolated with lower order estimates. The LM order is usually set to 5- or higher-

gram to capture a wide range of contexts on the target side. SRILM6 is a freely

available toolkit for building statistical language models. In order to carry out our

experiments, we use SRILM with the above setting (i.e. 5-gram and interpolated

modified Kneser-Ney smoothing) to build the language models.

2.1.7 Target Syntactified Model

State-of-the-art PB-SMT models (Koehn et al., 2003; Och et al., 1999) produce

acceptable translations for language-pairs with similar word orders. However, these

models generate more ungrammatical output for language pairs which differ a lot in

terms of word order (e.g. Chinese-to-English, Arabic-to-English). In order to obtain

grammatical MT output, researchers have made use of the syntactic information

available from the target side of the translation pair. Marcu et al. (2006) proposed

a phrase-based SMT model where the target-language parse trees are mapped into

the source sentence via a transduction process. Their syntactified phrase-based MT

improves over a baseline PB-SMT model in terms of translation quality in a Chinese-

6http://www-speech.sri.com/projects/srilm/
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to-English translation task. Hassan et al. (2006, 2007, 2008) and Hassan (2009)

showed that incorporating lexical syntactic descriptions in the form of supertags in

the target language model and on the target side of the translation model could

improve significantly over the state-of-the-art PB-SMT model (Koehn et al., 2003).

2.1.8 Hierarchical Phrase-Based SMT

The state-of-the-art phrase-based SMT model (Koehn et al., 2003) has a few weak-

nesses despite the fact that PB-SMT dominates other approaches to MT. The

first drawback of the PB-SMT model is that this model cannot incorporate non-

contiguous phrases. Secondly, reordering in PB-SMT is modelled suboptimally since

PB-SMT cannot handle long-distance reordering properly. As mentioned earlier (cf.

Section 2.1.7), the problem usually arises for those language pairs that are syn-

tactically divergent and have a lesser degree of phrasal cohesion (like English and

Chinese).

To remedy such kinds of weakness, Chiang (2005, 2007) proposed a model of

hierarchical phrase-based SMT (HPB-SMT) that uses the bilingual phrase pairs of

phrase-based SMT (Koehn et al., 2003) as a starting point to learn hierarchial rules

using probabilistic synchronous context-free grammar (PSCFG). The decoding pro-

cess in the HPB-SMT model is based on bottom-up chart parsing (Chiang, 2005,

2007). This chart parsing decoder, known as Hiero, does not require explicit syntac-

tic representations on either side of the phrases in rules. We give a formal definition

of the Hiero model (Chiang, 2007) in Section 3.3.2 (cf. page 43).

The Hiero model of Chiang (2007) employs an efficient pruning technique, namely

‘cube’ pruning. Cube pruning generates the n-best new chart entries efficiently on

the basis of the different model estimates including language model scores. We refer

the reader to (Huang and Chiang, 2007) for a detailed description with examples of

the cube pruning algorithm.
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2.1.8.1 Syntactic Constraints

We have just mentioned that the state-of-the-art Hiero (Chiang, 2007) model does

not require explicit syntactic representations on either side of the phrases in rules.

The phrases in Hiero rules comprise a combination of terminal and nonterminal (NT)

symbols. Nonterminal in Hiero may not be a proper linguistic constituent like noun

phrases (NP) and verb phrases (VP). Moreover, Hiero nonterminals take only a sin-

gle form (i.e. NT rather than linguistic nonterminal VP, NP). MT researchers have

tried to model syntax-aware nonterminals instead of these non-syntactic Hiero non-

terminals on either side of the rules. For instance, Zollmann and Venugopal (2006)

and Marton and Resnik (2008) included ‘soft’ constituent-level constraints based

on the phrase structure parse trees of the target language and the source language,

respectively, to improve translation quality of the Hiero model (Chiang, 2007). How-

ever, such models (Zollmann and Venugopal, 2006; Marton and Resnik, 2008) gener-

ates much bigger rule-tables than baseline rule-table (Hiero), which brings additional

computational complexity.

2.1.9 Discriminative Training

Discriminative training is an emerging research topic in the SMT. Minimum error

rate training (MERT) of Och (2003) is a bottleneck for developing an SMT sys-

tem with a large number of features since it can optimize the weights of only a

limited number of features. In contrast to the limited number of features in a PB-

SMT model (Koehn et al., 2003), the discriminative training model can optimize

the weights of a large number of features over millions of bilingual training sentence

pairs. Discriminative training is an example of supervised learning. The discrimi-

native model assumes each phrase translation is a feature, and iteratively learns the

usefulness of that phrase translation and sets an appropriate weight.

Tillmann and Zhang (2006) employed a stochastic gradient descent method to

learn the weights of millions of features derived from the source and target block
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(‘phrase’) sequences. They set a binary value to each translational feature. In

addition to the ‘unigram’ block-based feature, Tillmann and Zhang (2006) employed

block orientation,7 as well as source and target n-gram features in their model. Liang

et al. (2006) applied an online perceptron training algorithm to set the weights of

millions of translational features. In addition to the translation and the language

model log-probabilities, Liang et al. (2006) employed lexical and POS-based features

to their model for learning weights. Wang and Shawe-Taylor (2007) applied a kernel

regression method to achieve a similar goal.

In order to learn the weights of a large number of feature functions, Wellington et

al. (2006) employed the regularization learning algorithm to a tree translation model

while reducing over-fitting and generalization errors. Cowan et al. (2006) used a

perceptron algorithm for discriminative training in a German-to-English translation

task. The discriminative model of Cowan et al. (2006) predicts the English aligned

extended projection from a given German clause structure.

Like previous approaches (Liang et al., 2006; Tillmann and Zhang, 2006), Watan-

abe et al. (2007) exploited a large number of binary features in the Hiero model (Chi-

ang, 2007) using an online discriminative training method. They used the margin

infused relaxed algorithm (MIRA) (Crammer et al., 2006) to optimize the weights

of millions of features. In addition to the Hiero baseline features, Watanabe et al.

(2007) incorporated binary feature, insertion and deletion features, word-pair fea-

ture, target bigram and normalized token features into the SMT model. Chiang et

al. (2008) explored the use of the MIRA algorithm as an alternative to MERT (Och,

2003). Chiang et al. (2009) analyzed the impact of adding a large number of features

into the Hiero model as well as the syntax-based model of Galley et al. (2006) while

optimizing their weights using MIRA. In our work, we deal with a limited number

of features that MERT (Och, 2003) can fairly handle.

In a similar manner to the above models, we deploy a discriminative learning

7Blocks are phrase pairs consisting of target and source phrases and local phrase reordering is
handled with block orientation.
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model in our work in order to incorporate contextual dependencies. There are a few

basic differences between our approach with those mentioned above. We introduce

new log-linear features (i.e. context-informed log probabilities) while retaining the

strengths of the existing state-of-the-art SMT models (Koehn et al., 2003; Chiang,

2007). The above models usually consider each phrasal translation as a single fea-

ture. We apply a memory-based learning algorithm (Daelemans and van den Bosch,

2005) to the training examples, and build decision trees on the basis of contextual

features of the source phrases; then, the context-dependent phrasal translations are

learned from the decision trees at decoding time. On the other hand, the above

mentioned discriminative models generally deploy the online learning algorithms to

set the weight to each instance of the training data.

2.2 Research Works Relating to the Thesis

In this section, we describe previous research which has suggested novel methods to

incorporate contextual information into statistical models of machine translation in

order to improve translational choice and the quality of translation. Context has

been incorporated into both the source and target sides of the translation pair. Tech-

niques to incorporate context into SMT can be broadly divided into two categories:

source-context modelling (e.g. Carpuat and Wu, 2007; Giménez and Màrquez, 2007;

Stroppa et al., 2007) and target-context modelling (e.g. Berger et al., 1996; Hasan et

al., 2008). In the first two subsections of this section we describe twenty three stud-

ies of context modelling with English as the target language. In the third subsection

we highlight six studies that use English as the source language.

In the three subsections we group related work according to six key aspects. Each

aspectual overview of related work is accompanied by a table highlighting the con-

trastive features of the studies discussed (Tables 2.1 to 2.6). In each table we list the

contextual features employed by each study and the types of SMT models employed.

In the second column of each table ‘SL→TL’ stands for ‘source language→target
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language’, referring to the translation pair and direction; ‘DS’ refers to the ‘data

sets’ used to train SMT models; and ‘S/L’ stands for ‘small/large’, indicating a

division between training set sizes below and above 500,000 words that we use to

structure our experiments. In the third column, ‘SL’ and ‘TL’ respectively stand

for ‘source’ and ‘target’ languages of the translation pair from which the listed con-

textual features are extracted.

2.2.1 Source Context Modelling

Approaches to integrating source-language contextual information into different

stages in the SMT model can in turn be broadly divided into: (i) discriminative

word alignment (e.g. Brunning et al., 2009; Patry and Langlais, 2009) for creat-

ing improved word-to-word translation lexicons, and (ii) discriminative translation

filtering (e.g. Carpuat and Wu, 2007; Chan et al., 2007; Stroppa et al., 2007) by

learning context-dependent translation probabilities.

2.2.1.1 Discriminative Word Alignment

Garćıa-Varea et al. (2001, 2002) present a MaxEnt approach to integrate contextual

dependencies of both the source and target sides of the statistical alignment model

to develop a refined context-dependent lexicon model. Using such a model, on

the German-to-English Verbmobil and the French-to-English Canadian Parliament

Hansards corpora, they obtained better alignment quality in terms of improved

alignment error rate (AER) (Och and Ney, 2000a). However, since alignment is

not an end-task in itself and is most often used as an intermediate task to generate

phrase alignments in PB-SMT systems, improved AER scores do not necessarily

result in improved translation quality, as noted by a number of researchers (Fraser

and Marcu, 2007b; Ma et al., 2008).

More recently, Patry and Langlais (2009) proposed an alignment model which

does not assume prior word alignments and considers all source words jointly when

evaluating the probability of a target word. They use a multilayer perceptron classi-
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fier to estimate this probability. The word alignment results surpassed IBM model 1

when their model was extended to include alignment information. However, the pro-

posed model is not verified with experimentation as to whether it can help improve

translation quality of an SMT system.

2.2.1.2 Discriminative Translation Filtering

Discriminative translation filtering in SMT, in which contextual information from

the source language is used to weight or select from the potentially large set of

lexical or phrasal translations, can furthermore be divided into two categories: (i)

hard interaction (e.g. Carpuat et al., 2005) and (ii) soft interaction (e.g. Chan

et al., 2007; Stroppa et al., 2007). Alternatively, the same techniques can also be

classified according to their use of (i) hard constraints (e.g. Stroppa et al., 2007) or

(ii) soft constraints (e.g. Carpuat et al., 2007; Marton and Resnik, 2008; Xiong et

al., 2010).

• Hard vs Soft Interaction : In soft interaction, the WSD-like translation

predictions, i.e. the context-informed translation models are allowed to inter-

act with other log-linear models (e.g. language model, distortion model and

additional translation models) at decoding time. In other words, scoring, rank-

ing, pruning and selection of translation hypotheses during decoding are per-

formed with a consensus of all SMT models including the additional context-

informed model. In hard interaction, the WSD-like translation predictions are

used during pre-processing or post-processing and they do not interfere with

the SMT process itself. In other words, the weights of the context-dependent

translations of a source phrase are not interwove with other SMT models to

select the best candidate translations.

• Hard vs Soft Constraints: In the soft constraints model, the decoder is

allowed to use all possible candidate phrases for a source phrase, while soft

constraints such as weights are introduced to influence the decoder’s lexical
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selection model. In the hard constraints model, the decoder is forced to use

a restricted but supposedly more appropriate set of candidate phrases for a

source phrase; in addition, the context-informed model imposes weights on

the candidate phrases on the basis of additional contextual information to

influence the decoder’s lexical selection model.

According to the above classifications, like the work of Stroppa et al. (2007),

our context-informed models (cf. Chapter 3) interact ‘softly’ with the other SMT

models, and we impose hard constraints on the decoder. The main reason behind

following the approach of Stroppa et al. (2007) is that their contextual models

significantly outperform the state-of-the-art PB-SMT using only the basic contextual

features8 in two standard translation tasks.

Discriminative translation filtering in SMT can further be divided into the follow-

ing four categories according to its deployment into different types of SMT engines:

• Word-Based SMT: Table 2.1 lists related research that integrates context

into word-based SMT models. Brown et al. (1991a,b) were the first to pro-

pose the use of dedicated WSD models in word-based SMT systems, using

an English-to-French translation task as their testbed. An instance of a word

is assigned a sense based on mutual information with the word’s translation.

Evaluation was limited to the case of binary disambiguation, i.e. deciding

between only the two most probable translation candidates, and to a reduced

set of common words. A significant improvement in translation quality was

reported according to manual evaluation.

Vickrey et al. (2005) built classifiers inspired by those used in WSD to fill

in blanks in a partially completed translation. This blank-filling task is a

simplified version of the translation task, in which the (possibly incorrect)

target context surrounding the word translation is already available. They

integrated a WSD-based model into the decoder in a ‘soft’ way, i.e. allowing

8Basic features refer to words and POS tags.
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it to interact with other models. The evaluation of the accuracies of a blank

filling task is essentially a WSD evaluation task.

However, initial attempts to embed context-rich approaches from WSD meth-

ods into SMT systems to enhance lexical selection did not lead to any improve-

ment in translation quality (Carpuat and Wu, 2005). Carpuat and Wu (2005)

integrated a WSD model into a word-based SMT system in two ways: (i) the

WSD model constrains the set of potential senses considered by the decoder;

and (ii) the SMT output is post-processed by directly replacing translation

candidates with the WSD predictions. The integration of the WSD model

into the SMT system was performed in a ‘hard’ manner, and both approaches

were found to hurt translation quality. However, in their later work (Carpuat

and Wu, 2005b), they showed that SMT systems alone perform much worse

than WSD systems on a WSD task, which suggests that SMT should benefit

from the WSD predictions.

Authors SL→TL [DS] [S/L] Contextual Features Integrated into
Brown et al. Fr→En[CPH][L] SL:Neighbouring words WB-SMT
(1991a,b) and basic POS model
Vickrey et al. Fr→En[Europarl][L] SL:POS and Neighbouring WB-SMT
(2005) words model
Carpuat & Wu Zh→En [UN:LDC][L] SL:Position-sensitive syn- WB-SMT
(2005a,b) tactic, and local collocations model

Table 2.1: Related research integrating context into word-based SMT (WB-SMT)
models. Notations: {SL: Source Language, TL: Target Language, DS: Data Sets,
S/L: Small/Large, En: English; Fr: French; Zh:Chinese; CPH: Canadian Parliament
Hansards, UN: United Nations}.

• Phrase-Based SMT : Table 2.2 summarizes related research on integrating

context into PB-SMT models. Carpuat et al. (2006) reported small improve-

ments in BLEU score when incorporating single-word WSD predictions in a

Pharaoh (Koehn, 2004a) baseline. They train their WSD system on the same

corpus used to build SMT models. Automatic evaluation shows these gains

are not consistent across all evaluation metrics.
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Target language models arguably play the most significant role in today’s

PB-SMT systems (Koehn et al., 2003). However, for some time now peo-

ple have believed that incorporation of some source-language information into

SMT systems was bound to help. Stroppa et al. (2007) integrated source-side

contextual features into a state-of-the-art log-linear PB-SMT system (Koehn

et al., 2003) by adding the context-dependent phrasal translation probabil-

ities learned using a decision-tree classifier (Daelemans and van den Bosch,

2005). They considered up to two words and/or POS tags on either side of the

source phrase as contextual features. Significant improvements over a baseline

PB-SMT system were obtained on Italian-to-English and Chinese-to-English

IWSLT tasks. Several proposals have recently been made to exploit the ac-

curacy and the flexibility of discriminative learning fully (Liang et al., 2006;

Tillmann and Zhang, 2006). Work of this type generally requires a redefini-

tion of the training procedure; in contrast, Stroppa et al. (2007) introduce new

features while retaining the strength of existing state-of-the-art systems.

More recent approaches of integrating state-of-the-art WSD methods into PB-

SMT (Carpuat and Wu, 2007; Giménez and Màrquez, 2007; Gimpel et al.,

2008; Max et al., 2008) have also met with success in improving the overall

translation quality. Giménez and Màrquez (2007) extended the work of Vick-

rey et al. (2005) by (i) considering the more general case of frequent phrases

and moving to full translation rather than the blank-filling task on the target

side, and (ii) moving from word translation to phrase translation. The con-

textual features were defined by taking into account words of the immediate

context, n-grams, part-of-speech, lemmas, chunk label as well as global fea-

tures (bag-of-words). Further study by Giménez and Màrquez (2009) shows

that their discriminative models yield significantly improved lexical choice over

a PB-SMT model, which does not necessarily lead to improved grammaticality.

Carpuat and Wu (2007) use bag-of-words features, local collocations, position-

specific local part-of-speech tags, and basic dependency features as contextual
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features for a phrase translation disambiguation task, producing consistent

gains across all evaluation metrics on IWSLT 2006 and NIST Chinese-to-

English translation tasks.

Costa-Jussà and Banchs (2010) integrate source context information in the

Moses decoder (Koehn et al., 2007) by incorporating a contextual feature func-

tion estimated using a cosine distance similarity metric. The feature function

is computed for each phrase by determining cosine distance between the in-

put sentence to be translated and the source sentences in the training corpus.

They showed a slight improvement over the Moses baseline on the internal

test set for Arabic-to-English and Chinese-to-English translation tasks in the

IWSLT’09 evaluation campaign.

Authors SL→TL [DS] [S/L] Contextual Features Integrated into
Carpuat & Wu Ar→En[IWSLT][S] SL: Position-sensitive PB-SMT model
(2006) It→En[IWSLT][S] syntactic, and local

Jp→En[IWSLT][S] collocations
Carpuat & Wu Zh→En[IWSLT][S] SL:Bag-of-words, collocations, PB-SMT model
(2007) Zh→En[NIST][L] POS and dependency features
Giménez & Sp→En[Europarl][L] SL:Local context, n-grams, PB-SMT model
Màrquez POS, lemmas, chunk label
(2007, 2009) & bag-of-words
Stroppa et al., Zh→En[IWSLT][S] SL:Neighbouring words PB-SMT model
(2007) It→En[IWSLT][S] and POS tags
Costa-Jussà & Banchs Ar→En[IWSLT][S] SL: Sentence similarity PB-SMT model
(2010) Zh→En[IWSLT][S] features

Table 2.2: Related research integrating context into PB-SMT models. Notations:
{SL: Source Language, TL: Target Language, DS: Data Sets, S/L: Small/Large, En:
English; It: Italian; Sp: Spanish; Zh: Chinese}.

• Hierarchical Phrase-Based SMT : Table 2.3 lists related research that in-

tegrates context into hierarchical PB-SMT (HPB-SMT) (Chiang, 2007) mod-

els. Chan et al. (2007) were the first to use a WSD system to integrate ad-

ditional features in HPB-SMT, achieving statistically significant performance

improvements for several automatic measures for Chinese-to-English transla-

tion.
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Despite not mentioning the obvious link between the two pieces of work, He

et al. (2008) show that the source-language features used by (Stroppa et al.,

2007) are also of benefit when used with the Hiero decoder (Chiang, 2007).

More recently, Shen et al. (2009) proposed a method to include linguistic and

contextual information in the HPB-SMT model. The features employed in

the system are non-terminal labels, non-terminal length distribution,9 source

context, and a language model created from source-side grammatical depen-

dency structures. While their source-side dependency language model does not

produce any improvement, the other features seem to be effective in Arabic-to-

English and Chinese-to-English translation. Chiang et al. (2009) define new

translational features using neighbouring word contexts of the source phrase,

which are directly integrated into both the translation model of the Hiero

system and the syntax-based system of Galley et al. (2006).

Authors SL→TL [DS] [S/L] Contextual Features Integrated into
Chan et al. Zh→En[FBIS][S] SL:Local collocations, POS Hiero
(2007) tags and neighbouring words
He et al. Zh→En[IWSLT][S] SL: POS; SL &TL: Words and Hiero
(2008) Zh→En[NIST 03][S] length distribution features
Shen et al. Ar→En[NIST 06, 08][L] SL:Nonterminal labels, length, Hiero
(2009) Zh→En[NIST 06, 08][L] context LM and dependency LM
Chiang et al. Zh→En[NIST][L] SL:Neighbouring words Hiero & syntax-
(2009) based model

Table 2.3: Related research integrating context into Hiero models. Notations: {SL:
Source Language, TL: Target Language, DS: Data Sets, S/L: Small/Large, En:
English; Zh:Chinese; Ar: Arabic; FBIS: Foreign Broadcast Information Service}.

• Alternative SMT Architectures : Table 2.4 lists related research that in-

tegrates context into alternative SMT models. Bangalore et al. (2007) pro-

posed an SMT architecture based on stochastic finite state transducers (FST),

that addresses global lexical selection in which parameters are discriminatively

trained using a MaxEnt model considering n-gram features from the source

9Lengths of subphrases covered by non-terminals.
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Authors SL→TL [DS] [S/L] Contextual Features Integrated into
Bangalore et al. Ar→En[UN][L] SL:Bag-of-words FST-based
(2007) Fr→En[CPH][L] MT model

Zh→En[IWSLT][S]
Ittycheriah Ar→En[UN, NIST 06][L] SL:Lexical, morphological & Proposed
et al. (2007) syntactic features DTM2 model
Gimpel & Smith De→En[BTEC][S] SL & TL:Syntactic features Proposed
(2009) from dependency trees MT model

Table 2.4: Related research integrating context into alternative SMT models.
Notations: {SL: Source Language, TL: Target Language, DS: Data Sets, S/L:
Small/Large, En: English; Fr: French; De: German; Zh:Chinese; Ar: Arabic; CPH:
Canadian Parliament Hansards; UN: United Nations; BTEC: Basic Travel Expres-
sion Corpus; FST: Finite State Transducer}.

sentence. They deal with reordering in a different manner, where source sen-

tences are reordered according to the target-language-specific ordering. The

results obtained on Chinese-to-English IWSLT translation, Arabic-to-English

translation of Proceedings of the United Nations and French-to-English trans-

lation of Proceedings of the Canadian Parliament show significant improve-

ments.

Ittycheriah et al. (2007) introduced the Direct Translation Model 2 (DTM2), a

MaxEnt-based SMT architecture, which differs from PB-SMT models in that

it extracts a non-redundant set of minimal phrases from a word-aligned parallel

corpus such that no two phrases overlap with each other. The main difference

between the DTM2 decoder and the standard PB-SMT decoders is that DTM2

employs discriminative MaxEnt models to obtain the translation likelihoods

by deploying lexical, morphological and syntactic contextual features. They

report improvements over a state-of-the-art PB-SMT decoder in Arabic-to-

English translation task.

Gimpel and Smith (2009) present an MT framework based on lattice pars-

ing with a quasi-synchronous grammar that can incorporate arbitrary features

from both source and target sentences. They show that phrase features and de-

pendency syntax produce improvements in translation quality on the German-
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to-English portion of the Basic Travel Expression Corpus (BTEC), although

compared to a state-of-the-art SMT system their model produces considerably

lower scores.

2.2.2 Target Context Modelling

Table 2.6 enumerates related research that integrates context into word alignment

models. Berger et al. (1996) suggested context-sensitive modelling of word transla-

tions in order to integrate local contextual information into their IBM translation

models using a MaxEnt model. Probability distributions are estimated by Max-

Ent based on position-sensitive local collocation features in a window of three words

around the target word. This work is not supported by significant evaluation results.

Mauser et al. (2009) extended the work of Hasan et al. (2008) (cf. Section 2.2.3)

by integrating additional discriminative word lexicons into the PB-SMT model, by

using sentence-level source information to predict appropriate target words.

Authors SL→TL [DS] [S/L] Contextual Features Integrated into
Berger et al. Fr→En[CPH][L] TL:Neighbouring words IBM model
(1996) De→En[Verbmobil][S]
Garćıa-Varea De→En[Verbmobil][S] SL & TL:Neighbouring IBM model
et al. (2001, 2002) Fr→En[CPH][L] words and word class
Mauser et al. Zh→En[GALE][L] TL:Neighbouring words & IBM model &
(2009) Ar→En[NIST 08][L] SL:Sentence level proposed discrimi-

Zh→En[NIST 08][L] lexical feature native WA model
Patry & Langalais Fr→En[Europarl][S] SL:Bag-of-words Proposed WA
(2009) model

Table 2.5: Related research integrating context into word alignment models.
Notations: {SL: Source Language, TL: Target Language, DS: Data Sets, S/L:
Small/Large, En: English; Fr: French; De: German; Zh:Chinese; Ar: Arabic; CPH:
Canadian Parliament Hansards; WA: Word Alignment}.

2.2.3 English as Source Language

It is a common belief that translating into a less inflected language (such as English)

from a highly inflected language should be more effective than the other way round

where context-sensitive translation is concerned. This belief is hardly challenged
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in the related work cited in this section; all above-mentioned twenty three studies

translate to English. Nonetheless, Table 2.6 lists six studies that take English as the

source language. Most of these studies employ contextual features computed on the

English input; the ample availability of Natural Language Processing (NLP) tools

for English, such as part-of-speech taggers and parsers, makes this possible.

Both Max et al. (2008) and Gimpel et al. (2008) worked with a state-of-the-art

PB-SMT system (Koehn et al., 2003) and focused on language pairs where the target

is not English. Using local as well as broader contexts in addition to grammatical

dependency information, Max et al. (2008) report no significant gains over a PB-

SMT baseline model in terms of automatic evaluation, yet modest gains are observed

in manual evaluation. Gimpel et al. (2008) employed lexical and positional features

as well as various shallow syntactic features extracted from phrase structure parse

tree. They worked with two different English-to-German data sets (WMT’07 and

WMT’08) and performed a range of experiments. Most gains were not statistically

significant for the WMT’07 translation task, while most gains were statistically

significant for WMT’08 translation task. In addition to the English-to-German

translation tasks, in their Chinese-to-English translation tasks, Gimpel et al. (2008)

achieved statistically significant gains for the UN task; however, their approach

did not work on the NIST News and the combined (UN + NIST News data) tasks.

Furthermore, they were unable to show any improvements for the German-to-English

translation task.

Venkatapathy and Bangalore (2007) conducted experiments on a small amount

of English-to-Hindi training data with their proposed global lexical selection and

sentence reconstruction model. Their bag-of-words model considers all words of

the source sentence as features, regardless of their positions. Using these features,

a MaxEnt-based classifier predicts target words that should occur in the target

sentence. The target sentence is determined by permuting the generated target

words using a language model.

On an English-to-Portuguese translation task, Specia et al. (2008) worked with a
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Authors SL→TL [DS] [S/L] Contextual Features Integrated into
Max et al. En→Fr[Europarl][S] SL:Neighbouring words & PB-SMT model
(2008) POS, & dependency relations
Gimpel & Smith Zh→En[NIST 08, UN][L] SL:Lexical, shallow syntactic PB-SMT model
(2008) De→En[WMT 07][L] and positional features

En→De[WMT 07, 08][L]
Venkatapathy & En→Hi[News][S] SL:Bag-of-words Proposed global lex-
Bangalore (2007) ical selection model
Specia et al. En→Pt[Europarl][L] SL:Morphological features Dependency
(2008) (person, tense & number) treelet system
Hasan et al. Zh→En[IWSLT][S] TL:Neighbouring words IBM model
(2008) Sp→En[TC-STAR EPPS][L]

En→Sp[TC-STAR EPPS][L]
Brunning et al. Ar→En[NIST 08][S] SL & TL:POS tag MTTK WA
(2009) En→Ar[NIST 08][S] model

Table 2.6: Related research using English as source language. Notations: {SL:
Source Language, TL: Target Language, DS: Data Sets, S/L: Small/Large, En:
English; Fr: French; De: German; Sp: Spanish; Zh:Chinese; Ar: Arabic; Pt: Por-
tuguese; Hi: Hindi; WA: Word Alignment}.

syntactically motivated PB-SMT system (Quirk et al., 2005) and their WSD model

was limited to disambiguating a small set of words, namely 10 highly frequent and

ambiguous verbs.

Two more research works (Hasan et al., 2008; Brunning et al., 2009) considered

English as the source language. Both approaches focused on improving word align-

ment for creating refined word-to-word translation lexicons. Hasan et al. (2008)

present target context modelling into SMT using a triplet lexicon model that cap-

tures long-distance dependencies. Their approach is evaluated in a reranking frame-

work; slight improvements are observed over IBM model 1 in terms of BLEU (Pap-

ineni et al., 2002) and translation edit rate (TER) (Snover et al., 2006). Brunning

et al. (2009) introduce context-dependent alignment models for MT that exploit

source-language context information to estimate word-to-word translation probabil-

ities using a decision tree algorithm. Their model decreases the AER compared to a

context-independent model, and improves translation quality in Arabic-to-English

and English-to-Arabic translation tasks.

We can see from the above summary tables that a range of contextual features

have been employed at different stages in the SMT model. In this work, we inte-
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grate a range of contextual features into the state-of-the-art SMT models (Koehn et

al., 2003; Chiang, 2007), including neighbouring words and POS tags of the source

phrases as in (Stroppa et al., 2007). We introduce lexical syntactic descriptions in the

form of supertags and semantic roles as new contextual features in the SMT model.

Moreover, we investigate the integration of deep syntactic information (grammatical

dependency relations) into the SMT models as in (Max et al., 2008). A more de-

tailed account of the main difference between our approach and that of (Max et al.,

2008) with respect to various aspects is given in Section 6.2. We explore a number of

sentence similarity-based contextual features including cosine distance (Costa-Jussà

and Banchs, 2010) in PB-SMT. Furthermore, various contextual features have been

employed collaboratively in the PB-SMT and the Hiero models. Table 2.7 summa-

rizes various source-language contextual features that we have taken into account

in our experiments, most of which are introduced as new contextual features in the

state-of-the-art SMT models (Koehn et al., 2003; Chiang, 2007).

Source Language PB-SMT Hiero
Contexts

Used Novel Authors Used Novel Authors
Words & POS tags Y (Stroppa et al., 2007, ,etc.) Y (Chan et al., 2007, ,etc.)
Supertags Y Y (Haque et al., 2009a) Y Y (Haque et al., 2010a)
Dependency Y (Max et al., 2008) Y Y (Yet to be published)
Relations (Haque et al., 2009b)
Semantic Roles Y Y (Haque et al., 2011)
Sentence-similarity (Costa-Jussà and Banchs, 2010)
Features (Haque et al., 2010b)
Feature Y Y
Combinations

Table 2.7: List of contextual features employed in our experiments.

In this thesis, we report a range of experiments on several data sets considering

English as the source language of the translation pairs (English-to-Hindi, English-

to-Czech, English-to-Dutch, English-to-Chinese, English-to-Japanese, English-to-

Spanish). We examine the scalability of our research to larger amounts of training

data. Furthermore, we report on experiments with the Dutch-to-English translation,

using experimental data from two different domains.
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2.3 Summary

In this chapter, first we presented an overview of MT, and provided a brief overview

of foundation of SMT. We mentioned the importance of word alignment in SMT.

Then, we reassessed the idea state-of-the-art SMT models with a discussion on a few

significant research contributions in those areas. Paying extra attention on research

work involving discriminative training in SMT, we identified differences between our

approach with discriminative learning in SMT. In the second part of this chapter

we presented the previous studies related to this thesis, which have been grouped

according to six key aspects. Research work in each group is summarized in tabular

form to highlight their contrastive features.

In the next chapter, we will define the state-of-the-art SMT models as well as

our context-informed SMT models formally. Then, we will elaborate the following

areas: memory-based classification approaches used in this thesis, implementation

issues of context-sensitive SMT models, data set statistics, and an overview of MT

evaluation techniques used to validate our experimental results.
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Chapter 3

Context-Informed SMT

3.1 The state-of-the-art SMT Models

The work demonstrated in this thesis has been carried out with two state-of-the-art

SMT models: phrase-based SMT (PB-SMT) (Koehn et al., 2003) and hierarchical

phrase-based SMT (HPB-SMT) (Chiang, 2007), both of which serve as our baseline

models. In the following two subsections, we give formal definitions of the two

state-of-the-art SMT models with mathematical derivations.

3.1.1 PB-SMT Baseline

In this section, we formally define the phrase-based SMT model of Koehn et al.

(2003), which serves as one of our baseline models. The translation task in SMT

can be viewed as a search problem (Brown et al., 1993), in which the goal is to find

the most probable candidate translation eI1 = e1, ..., eI for the given input sentence

fJ1 = f1, ..., fJ . The best translation can be obtained applying the noisy channel

model (Brown et al., 1990) of translation by maximizing P(eI1|fJ1 ), as defined in

Equation (2.1) (cf. page 11). In noisy channel model, the translation process can be

viewed as a product of two terms: the translation model (P(fJ1 |eI1)) and the target

language model (P(eI1)).

The log-linear translation model (Och and Ney, 2002) is a special case of the
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noisy channel model of translation, in which the posterior probability P(eI1|fJ1 ) is

directly modelled as a (log-linear) combination of features, that usually comprise M

translational features, and the language model, as in (3.1):

log P(eI1|fJ1 ) =
M∑
m=1

λmhm(fJ1 , e
I
1, s

K
1 ) + λLMlog P(eI1) (3.1)

where sK1 = s1, ..., sk denotes a segmentation of the source and target sentences re-

spectively into the sequences of phrases (f̂1, ..., f̂k) and (ê1, ..., êk) such that (we set

i0 := 0):

∀k ∈ [1, K] sk := (ik; bk, jk), (bk corresponds to starting index of fk)

êk := êik−1+1, ..., êik ,

f̂k := f̂bk , ..., f̂jk

Since both the source and target phrases may appear in any position1 of the respec-

tive sentence, we define them differently. Each feature hm in Equation (3.1) can be

rewritten as in (3.2):

hm(fJ1 , e
I
1, s

K
1 ) =

K∑
k=1

ĥm(f̂k, êk, sk) (3.2)

In theory, log-linear PB-SMT features can apply to the entire sentence, but in prac-

tice, those features apply to a single phrase-pair (f̂k, êk). Thus translational features

in (3.1) can be rewritten as in (3.3):

M∑
m=1

λm

K∑
k=1

ĥm(f̂k, êk, sk) =
K∑
k=1

h̃(f̂k, êk, sk), with h̃ =
M∑
m=1

λmĥm (3.3)

In Equation (3.3), ĥm is a feature defined on phrase-pairs (f̂k, êk), and λm is

the feature weight of ĥm. One intuitively natural feature is the phrase translation

log-probability (ĥm = log P(êk|f̂k)) where probabilities are estimated using relative

1For example, the first target phrase ê1 (k = 1) may be aligned with the source phrase that
appears in the last position of the source sentence.
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frequency count for a phrase pair (f̂k, êk) independent of any other context infor-

mation. Other typical features used in PB-SMT (Koehn et al., 2003) are derived

from the inverse phrase translation probability (log P(f̂k|êk)), the lexical probabil-

ity (log Plex(êk|f̂k)), its inverse (log Plex(f̂k|êk)), and language model. Our context-

informed model will be expressed as additional features in the model.

3.1.2 HPB-SMT Baseline

In this section, we formally define the hierarchical phrase-based SMT model of Chi-

ang (2007), which serves as another baseline model. The hierarchical phrase-based

SMT model (also known as Hiero) is based on probabilistic synchronous context-free

grammar (PSCFG). Synchronous rules in Hiero take the form as in (3.4):

X → 〈α, γ,∼ 〉 (3.4)

where X is the nonterminal (NT) symbol, and α and γ are the source and target

phrases, which contain combinations of terminal and nonterminals in the source and

target language. The ∼ symbol indicates a one-to-one correspondence between NTs

in α and γ. In practice, the number of NTs on the right hand side is constrained to

at most two (Chiang, 2007), which must be separated by lexical items in α.

Like the log-linear representation of the PB-SMT features shown in Section 3.1.1,

each Hiero rule is associated with a score which is derived using the log-linear model

(Och and Ney, 2002) as in (3.5):

w(X → 〈α, γ,∼ 〉) =
∑
i

λiφi (3.5)

where φi is a feature defined on rules and λi is the feature weight of φi. One in-

tuitively natural feature is phrase translation log-probability (φ(α, γ)= log P(γ|α)).

Like the PB-SMT features, the other typical features used in Hiero are derived from

the inverse phrase translation probability P(α|γ), the lexical probability Plex(γ|α)

and its inverse Plex(α|γ). In the hierarchical model, translation probabilities are es-
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timated using a relative frequency count for a phrase pair 〈α, γ〉 independent of any

other context information. Thus, a limitation that Hiero shares with the PB-SMT

model (Koehn et al., 2003) is that it also does not take into account the contexts

in which the source-sides of the rules appear. In other words, it can be argued that

rule selection in Hiero is suboptimally modelled. Our context-informed model will

be expressed as an additional feature in the model. In addition to these features the

system generally employs a word penalty, a phrase penalty, a glue rule penalty, and

language model features.

The translation task in HPB-SMT can be expressed as a CYK parsing with

beam search together with a post-processor for mapping source derivations to target

derivations (Chiang, 2007). The most likely translation ê of a source sentence f is

formulated as a search for the most probable derivation d whose source side is equal

to f, as in (3.6):

ê = e

(
argmax

d∈D(G):src(d)=f

p(d)

)
(3.6)

where e(d) is the target-side yield of derivation d, and D(G) is the set of PSCFG

derivations. In the next section we provide some motivation for work we carried out

in this thesis.

3.2 Motivation

Target phrase selection, a crucial component of the state-of-the-art SMT models,

plays a key role in generating accurate translation hypotheses. The phrase-based

SMT model of Koehn et al. (2003) and syntax-based SMT model of Chiang (2007)

possess a common weakness in the lexical selection model since both the SMT mod-

els select target equivalents for a source phrase only on the basis of the source

phrase itself, regardless of its contexts, and the target language model. The target

language model does represent contextual information, but only (clearly) of the tar-

get language. In other words, the sense-disambiguation tasks inherent to both the

phrase-based and syntax-based models are modelled suboptimally as they ignore
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source-side contexts when translating a source phrase. We argue that the disam-

biguation of a source phrase can be enhanced by taking into account the contexts

of the source phrase.

 

. 

. 

. 

戏  (xi) 

玩  (wan)  

扮演  (banYan)  

播放  (boFang) 

play 

He wrote a play. 

They play football. 
She’ll play the queen in the drama. 

Can you play my favourite old record? 
 

English Chinese 

Figure 3.1: Examples of ambiguity for the English word ‘play ’, together with differ-
ent translations depending on the contexts.

Figure 3.1 shows translation examples for a highly ambiguous English word

‘play ’. The ambiguous word ‘play ’ has many translation equivalents in Chinese,

some (‘xi ’, ‘wan’, ‘banYan’, ‘boFang ’) of which are shown in Figure 3.1. Figure 3.1

also shows four English sentences, each containing the ambiguous word ‘play ’ which

is translated into four different Chinese words depending on the context in which

it appears. For example, the most suitable translation for the word ‘play ’ in the

first English sentence ‘He wrote a play ’ is ‘xi ’ amongst the four Chinese candidate

translations. The translation of ‘play ’ in this sentence depends on the neighbouring

word ‘wrote’. Similarly, the appropriate translation for ‘play ’ in the English sen-

tence ‘Can you play my favourite old record? ’ is ‘boFang ’ amongst the four Chinese

candidate translations. In this English sentence, the translation of ‘play ’ depends

on the distant word ‘record ’. In addition to improving lexical selection, contexts

in which source phrases appear improve ordering of candidate phrases in the target

sentence. In other words, the exact target positions of the translations of source

phrases may depend on its contextual dependencies in the source sentence.

Like the single-word phrase ‘play ’, translations of a multi-word ambiguous phrase

depend on the context in which that phrase appears. We carried out a manual

analysis to see how frequently ambiguous words occur in a text. We looked at
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the English sentences in the development set of the Dutch-to-English data set (cf.

Section 3.6). We observed that about 64% sentences of the development set contain

at least one ambiguous word. We also found that 10.8% words of the development

text are highly ambiguous. However, a sentence that a human reader may not

regard as ambiguous can be interpreted as ambiguous by a MT system (Hutchins

and Somers, 1992, page 88–89). Hutchins and Somers (1992) pointed out that it is

very difficult for a MT system to recognize accidental structural ambiguities unless

contextual ‘knowledge’ is provided to the system.

Translation of a source sentence in the PB-SMT and HPB-SMT models begins

by generating all possible source phrases and gathering all candidate phrases for

each source phrase. In the translation process, thousands of translation hypotheses

(chart entries in Hiero model) are statistically generated using the pool of all target

phrases to form the candidate translations. Thus, the decoder considers all target

phrases for a given source phrase as possible candidate translations of that source

phrase. The candidate phrases with higher translation probabilities have a better

chance in occurring in the most likely candidate translations.2 On the other hand,

the candidate phrases with lower translation probabilities have a higher risk of being

pruned out during the formation of translation hypotheses due to the decoder’s beam

size limit. Interestingly, the phrase translation probabilities are simply measured

based on the frequency of occurrences of the source and target phrase pairs in

the training corpus, while completely ignoring the contexts in which those phrases

appear.

Let us go back to the example of the ambiguous word ‘play ’ in Figure 3.1.

Let us assume that the translation probability of ‘play ’ into ‘xi ’ is higher than

that of ‘play ’ into any of the remaining Chinese words (‘wan’, ‘banYan’, ‘boFang ’).

During translation of any of the English sentences in Figure 3.1, the decoder would

ignore whatever contextual dependency the source phrase ‘play ’ has in the source

2In addition to the translation models, the target language model also controls the selection of
candidate phrases and thereby generation of most likely target sentences.
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sentence, consider all Chinese words as probable candidate translations, and always

give preference to ‘xi ’ in order to form the best candidate translations (best chart

entries in Hiero).

In particular, the language model plays an important role in the selection of the

candidate phrases. In addition to the language model, in our work we incorporate a

range of source-language context features into the state-of-the-art PB-SMT (Koehn

et al., 2003) and HPB-SMT (Chiang, 2007) models in order to perform discriminative

translation filtering (cf. Section 2.2.1.2) by learning context-sensitive translation

probabilities which in effect should improve target phrase selection. We see from

Figure 3.1 that the translations of ‘play ’ may depend on the neighbouring lexical

context (e.g. ‘wrote’ in the first example sentence) as well as quite distant lexical

context (e.g. ‘record ’ in the last example sentence). We investigate the incorporation

of basic contextual features (words and POS tags) (cf. Chapter 4), lexical syntactic

descriptions (supertags) (cf. Chapter 5), deep syntactic information (grammatical

dependency relations) and semantic roles (cf. Chapter 6) into the SMT models. We

conjecture that such kinds of complex and rich syntactic and semantic knowledge

sources, some of which inherently capture long-distance word-to-word dependencies

in a sentence, can be useful in improving lexical selection in PB-SMT and HPB-

SMT.

3.3 Context-Informed SMT models

We conjecture that context-dependent phrase translation can be expressed as a

multi-class classification problem, where a source phrase with given additional con-

text information is classified into a distribution over possible target phrases. The size

of this distribution is possibly limited, and would ideally omit improbable or irrele-

vant target phrase translations that the standard PB-SMT or HPB-SMT approach

would normally include. In the subsequent sections, we define our context-informed

PB-SMT and HPB-SMT models formally with mathematical derivations.
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3.3.1 Context-Informed PB-SMT

A context-informed feature ĥmbl
3 can be viewed as the conditional probability of the

target phrases êk given the source phrase f̂k and its context information (CI), as

in (3.7):

ĥmbl = log P(êk|f̂k,CI(f̂k)) (3.7)

Here, CI may include any feature (e.g. lexical, syntactic, semantic), which can

provide useful information to disambiguate the given source phrase. In addition to

ĥmbl, we derive a simple two-valued feature ĥbest, defined as in (3.8):

ĥbest =


1 if êk maximizes P(êk|f̂k,CI(f̂k))

≈ 0 otherwise

(3.8)

where ĥbest is set to 1 when êk is one of the target phrases with highest probability

according to P(êk|f̂k,CI(êk)); otherwise, ĥbest is set to a very low non-zero value

(0.000001).

We performed experiments by integrating these two features ĥmbl and ĥbest di-

rectly into the log-linear PB-SMT model (Koehn et al., 2003). Their weights are

optimized using minimum error-rate training (MERT) (Och, 2003) on a held-out

development set.

3.3.2 Context-Informed HPB-SMT

As mentioned earlier, dependencies between consecutive source phrases (α) are not

directly expressed in HPB-SMT as is the case in PB-SMT. A context-informed

feature φmbl in Hiero can be viewed as the conditional probability of the target

phrases γ given the source phrase α and its context information (CI), which is

expressed as in (3.9):

3The term ‘mbl’ stands for memory-based learning (cf. Section 3.4).
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φmbl(α, γ) = log P(γ|α,CI(α)) (3.9)

In addition to φmbl, we derive a simple binary feature φbest, defined as in (3.10):

φbest =


1 if γ maximizes P(γ|α,CI(α))

≈ 0 otherwise

(3.10)

where φbest is set to 1 when γ is one of the target phrases with the highest probability

according to P(γ|α,CI(α)); otherwise, φbest is set to 0.000001.

We performed experiments by integrating these two features φmbl and φbest di-

rectly into the log-linear model of Hiero. Feature weights are optimized using MERT

(Och, 2003) on a development set.

Figure 3.2 display a diagram of the context-sensitive SMT framework. In ad-

dition to the language model and the traditional translation model, SMT decoder

makes use of our context-sensitive translation models in order to improve target

phrase selection during decoding.
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Translation Models 

Language 

Model 

Translation 
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Input 
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Figure 3.2: Context-sensitive translation models inside the log-linear SMT frame-
work.
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3.4 Memory-Based Classification

Stroppa et al. (2007) pointed out that directly estimating context-dependent phrase

translation probabilities using relative frequencies is problematic. Indeed, Zens

and Ney (2004) showed that the estimation of phrase translation probability (i.e.

P(êk|f̂k) or P(γ|α)) using relative frequencies results in overestimation of the proba-

bilities of long phrases; consequently, smoothing factors in the form of lexical-based

features are often used to counteract this bias (Foster et al., 2006). In the case of

context-informed features, this estimation problem can only become worse.

As an alternative, we make use of memory-based machine learning classifiers

that are able to estimate context-dependent phrase translation probabilities (i.e.

P(êk|f̂k,CI(f̂k)) in PB-SMT or P(γ|α,CI(α)) in Hiero) by similarity-based reasoning

over memorized nearest-neighbour examples of source–target phrase translations to

a new source phrase to be translated. In this work, we use three memory-based

classifiers: IB1, IGTree and TRIBL4 (Daelemans and van den Bosch, 2005). Both

IGTree and TRIBL algorithms approximate the unabridged (and computationally

expensive) memory-based IB1 (k-nearest neighbour (k-NN)) classifier (Aha et al.,

1991). Some interesting properties of such classifiers include: (a) training can be

performed efficiently, even with millions of examples, (b) any number of output

classes can be handled, (c) the output can be seen as a posterior distribution. In

the next three subsections we give a detailed account of description respectively on

IB1, IGTree and TRIBL.

3.4.1 Unabridged Memory-Based Classification: IB1

Aha et al. (1991) introduced the IB1 algorithm as an implementation of the k-nearest

neighbour classifier. The major difference between the IB1 algorithm originally

proposed by Aha et al. (1991) and the TiMBL version is that the value of k refers

to k-nearest distances rather than k-nearest examples in the Tilburg memory-based

4An implementation of IB1, IGTree and TRIBL is freely available as part of the TiMBL software
package, which can be downloaded from http://ilk.uvt.nl/timbl
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learner (TiMBL) version.

3.4.2 Fast Approximate Memory-Based Classification: IGTree

IGTree makes a heuristic approximation of k-NN search (Aha et al., 1991) by storing

examples of source-target translation instances in the form of lossless-compressed

decision trees, and performing a top-down traversal of this tree (Daelemans et al.,

1997a). As a normal k-NN classifier, IGTree retains the labeling information of

all training examples, but in a compressed form. In our case, a labeled example

is a fixed-length feature-value vector representing the source phrase (as an atomic

feature: both single-word and multi-word source phrases are treated as concatenated

single values, just as its POS tags or supertags are) and its contextual information,

associated with a symbolic class label representing the associated target phrase found

through an alignment procedure. A weighting metric such as information gain (IG)

is used to determine the order in which features are tested in the tree (Daelemans et

al., 1997a). Prediction in IGTree is a straightforward traversal of the decision tree

from the root node down, where a step is triggered by a match between a feature

value of the new example and an arc fanning out of the current node. When a step

ends in a leaf node, the homogeneous class (i.e. a single phrase translation) stored

at that node is returned; when no match is found with an arc fanning out of the

current node, the distribution of possible class labels at the current node is returned;

in our case, a weighted distribution of target phrase translations, where the weights

denote the counts in the subset of the training set represented at the current node.

The source phrase itself is intuitively the feature with the highest prediction power;

it should take precedence in the similarity-based reasoning, and indeed it does, as

it always receives the highest IG value. In case of an input that mismatches on the

source phrase, the overall target phrase distribution in the training set is returned.

We refer the interested reader to (Stroppa et al., 2007) for details of how the IGTree

has been used for classifying source phrases with additional contextual information.
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3.4.3 A Hybrid Between IB1 and IGTree: TRIBL

TRIBL, which stands for Tree-based approximation of Instance-Based Learning, a

hybrid combination of IGTree and unabridged k-NN classification, performs heuris-

tic approximate nearest neighbour search (Daelemans et al., 1997b). A parameter n

determines the switching point in the feature ordering from IGTree to normal k-NN

classification. The TRIBL approximation performs an initial decision-tree split of

the database of training examples on the n most informative features, like IGTree

would. Throughout our experiments we set n = 1; thus, we split on the values of the

single most informative feature, again by computing the information gain (IG) to

determine the ordering. During classification, after sub-selecting training examples

matching on the most informative feature, the nearest-neighbour distance function

is applied to the remaining features (weighted by their IG) to arrive at the set of

nearest-neighbours. In other words, TRIBL with n = 1 effectively creates individ-

ual k-NN classifiers per source phrase, where all classifiers share the same feature

weights. When predicting a target phrase given a source phrase and its context

information, the identity of the source phrase is (also intuitively) the feature with

the highest prediction power. This implies that nearest neighbours always match on

the source phrase, and are most similar (preferably, identical) with respect to their

contextual features.

A parameter k determines the k closest radii of distances around the source

phrase that encompass the nearest neighbours; then, the distribution of target

phrases associated with these nearest neighbours is taken as the output of the clas-

sification step. The contribution of a single nearest neighbour in this set can be

weighted by its distance to the source phrase to be translated, e.g. by assigning

higher weights to closer neighbours. In our experiments, we empirically set the

value of k, and use exponential decay for the distance-weighted class voting (Daele-

mans and van den Bosch, 2005). Choosing the optimal setting of k can be handled

empirically, as are other hyperparameter settings for the k-NN part of TRIBL. We

used a heuristic-automated hyperparameter estimation method based on wrapped

47



progressive sampling (Van den Bosch, 2004)5 throughout our experiments.

A TRIBL classification produces a class distribution derived from the aggregate

distance-weighted class voting generated by all found nearest neighbours, from which

we estimate context-dependent phrase translation probabilities (i.e. P(êk|f̂k,CI(f̂k))

in PB-SMT or P(γ|α,CI(α)) in Hiero) for all possible target phrases (i.e. êk or γ). By

normalizing the class votes generated by TRIBL, we obtain the posterior probability

distributions we are interested in. We refer the reader to Section 5.3.7 where we give

an example to illustrate how a source phrase with additional contextual information

is classified into a distribution over possible target phrases using the memory-based

classifier.

In this regard, in order to build the set of examples required to train the classifier,

we modify the standard phrase-extraction methods (Koehn et al., 2003; Chiang,

2007) to extract the context of the source phrases at the same time as the phrases

themselves. Importantly, therefore, the context extraction comes at no extra cost.

3.4.4 Efficiency of Classification Algorithms

In the trade-off between generalization accuracy and efficiency, IB1 usually leads

to improved accuracy at the cost of more memory and slower computation than

IGTree and TRIBL. Although TRIBL is a fast approximation of unrestricted k-NN,

it retains its relatively large memory consumption, which becomes hard to handle

on current computing machinery when the number of examples is of the order of

107 or higher. IGTree is faster than TRIBL in terms of classification speed, but the

latter leads to better accuracy than the former. In short, IGTree can be employed in

large-scale translation tasks, whereas IB1 and TRIBL can be employed in small-scale

translation tasks.

In the experiments reported in this thesis, experiments with small-scale data sets

are usually performed with TRIBL; experiments on large-scale data sets are usually

performed with IGTree. A small set of experiments with a particular small-scale

5http://ilk.uvt.nl/˜antalb/paramsearch/
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data set6 are performed with IB1. Since IB1 is more expensive in terms of memory

usage and computation than IGTree and TRIBL, we tested this classifier only with

a single small-scale data set.

However, TRIBL was reprogrammed recently, and can now efficiently handle

large numbers of training examples. This inspired us to deploy TRIBL classifiers

for the large-scale translation tasks. We employed the TRIBL classifier in order to

carry out learning curve experiments reported in Chapters 4, 5, and 6.

3.5 Feature Integration

The output of memory-based k-NN classification is a set of weighted class labels, rep-

resenting the possible target phrases (êk or γ) given a source phrase (f̂k or α) and its

context information (CI). Once normalized, these weights can be seen as the poste-

rior probabilities of the target phrases (êk or γ) which give access to P(êk|f̂k,CI(f̂k))

or P(γ|α,CI(α)). Thus, from the classifier’s output we can derive the log-linear

PB-SMT features ĥmbl and ĥbest defined in Equation (3.7) and Equation (3.8), re-

spectively. Similarly, we can derive the log-linear Hiero features φmbl and φbest

defined in Equation (3.9) and Equation (3.10), respectively.

In order to carry out the PB-SMT experiments, we used the widely used open-

source toolkit Moses.7 We integrate the context-informed features ĥmbl and ĥbest

directly into the log-linear framework of Moses. As Stroppa et al. (2007) point out,

PB-SMT decoders such as Pharaoh (Koehn, 2004a) or Moses (Koehn et al., 2007)

rely on a static phrase table, represented as a list of aligned phrases accompanied

by several estimated metrics. Since these features do not express the context infor-

mation in which those phrases occur, no context information is kept in the phrase

table, and there is no way to recover this information from the phrase table.

In order to carry out syntax-based experiments, we used a freely available tree-

6IWSLT English-to-Chinese (cf. Section 3.6).
7http://www.statmt.org/moses/

49



based decoder moses-chart.8 We integrate the context-informed features φmbl and

φbest directly into the log-linear model of Hiero. Like the Moses decoder, moses-chart

also rely on a static rule table, represented as a list of aligned phrases accompanied by

several estimated metrics; therefore, there is no way to insert the context information

into the rule table, or to recover this information from the rule table.

In order to take into account the context-informed features within such decoders,

we implemented a calling framework to translate the test set or development set,

which we illustrate as follows. Each word appearing in the test set (or, during de-

velopment, in the development set) is assigned a unique identifier. First we derive

the phrase table or rule table from the training data. Subsequently, we generate all

possible phrases from the test set. These phrases are then looked up in the phrase

table or rule table, and when found, the phrase along with its contextual infor-

mation is given to the memory-based classifier to be classified. As stated earlier,

memory-based classifiers produce target phrase distributions according to the train-

ing examples found within the k-nearest distance radii around the source phrase to

be classified. We derive target phrase probabilities from this distribution and tem-

porarily insert them into a new phrase or rule table with the original phrase or rule

table estimates, to take our feature functions into account directly in the log-linear

model. Thus we create an updated phrase table or rule table. Figure 3.3 graphically

illustrates the training and decoding processes of the context-sensitive SMT model.

A lexicalized reordering model is used for all the PB-SMT experiments under-

taken on the development and test sets. The source phrases in the reordering table

are replaced by the sequence of unique identifiers when the new phrase table is cre-

ated. After replacing all words by their unique identifiers, we perform MERT using

our updated phrase table to optimize the feature weights.

8http://www.statmt.org/moses/?n=Moses.SyntaxTutorial
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Figure 3.3: Training and Decoding Modules of the Context-Informed SMT Model.

3.6 Data

The various corpora we used for carrying out our experiments are listed in Table

3.1. In Table 3.1, we show statistics of each of data sets with number of sentences,

source (S) and target (T) vocabulary size (VS) and average sentence length (ASL).

An overview of each data set is given below:

English-to-Chinese (IWSLT 2006): The first set of experiments were carried out

on English-to-Chinese training data obtained from the IWSLT 2006 evaluation

campaign. The test set (489 sentences) and development set (500 sentences)

were chosen from the IWSLT 2002 and IWSLT 2007 evaluation campaigns

respectively. This multilingual speech corpus contains sentences similar to

those that are usually found in phrasebooks for tourists going abroad.

Dutch-to-English (Open Subtitles): This corpus is collected as part of the Opus

collection of freely available parallel corpora (Tiedemann and Nygaard, 2004).9

The corpus contains user-contributed translations of movie subtitles.

English-to-Hindi (EILMT): This small EILMT tourism domain corpus was released

for the shared task on English-to-Hindi SMT (Venkatapathy, 2008).10

9http://urd.let.rug.nl/tiedeman/OPUS/OpenSubtitles.php
10http://ltrc.iiit.ac.in/nlptools2008/index.html
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Data Source Data set Sentences VS VS ASL ASL
(S) (T) (S) (T)

English-to-Chinese:
IWSLT

Train. 40,458 11,358 14,238 9.74 8.77
Dev. 500 819 862 7.44 6.32
Eval. 489 846 916 7.61 7.06

Dutch-to-English:
Open Subtitles

Train. 286,160 59,863 44,594 7.34 8.85
Dev. 1,000 1,286 1,228 7.00 8.02
Eval. 1,000 1,435 1,327 6.67 7.29

English-to-Hindi:
EILMT

Train. 6,755 16,344 24,734 24.56 25.97
Dev. 500 3,689 4.021 24.58 25.99
Eval. 495 3,598 3,879 24.07 25.51

English-to-Czech:
WMT 2010

Train. 94,501 89,672 241,948 20.91 18.68
Dev. 2051 10,531 14,757 21.18 17.74
Eval. 1 2525 11,945 17,817 21.64 17.73
Eval. 2 2489 12,326 13,726 21.70 18.57

Dutch-to-English:
Europarl

Train. 1,311,111 247,079 126,141 26.97 27.74
Dev. 1,000 4,020 3,450 24.81 25.17
Eval. 1,000 4,312 3,751 24.95 26.15

English-to-Japanese:
NTCIR-8

Train. 600,000 193,526 65,934 28.30 29.58
Dev. 1,814 7,722 4,911 29.36 37.09
Eval. 1 927 4,264 3,574 28.77 37.08
Eval. 2 1,119 5,157 3,062 28.51 35.57

English-to-Chinese:
NIST-08

Train. 500,000 112,773 128,647 34.38 31.99
Dev. 1,082 5,097 5,693 33.29 28.12
Eval. 1,357 2,990 3,320 29.38 24.48

English-to-Spanish:
Europarl

Train. 1,639,764 260,099 980,000 24.27 25.96
Dev. 2,000 8,651 10,371 26.54 27.28
Eval. 2,000 8,689 10,552 27.15 27.90

Table 3.1: Corpus Statistics. Notation: {S: source, T: target, VS: vocabulary size,
ASL: average sentence length}

English-to-Czech (WMT 2010): For the English-to-Czech translation task we em-

ployed the News Commentary training data set released in the Joint Fifth

Workshop on Statistical Machine Translation and Metrics MATR (WMT-

MetricsMATR 2010).11 To tune the system during development, we used the

WMT 2008 test set of 2051 sentences. For evaluation purposes we used two

different test sets: the WMT 2009 test set of 2525 sentences, and the WMT

2010 testset of 2489 sentences.

11http://www.statmt.org/wmt10/
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Dutch-to-English (Europarl): The Dutch-to-English Europarl parallel corpus is

extracted from the proceedings of the European Parliament (Koehn, 2005).12

English-to-Japanese (NTCIR-8): The experimental data sets were taken from the

NTCIR-8 Patent Translation Task.13 For the purpose of evaluation, we used

two different test sets: the first test set contains 927 sentences (henceforth

referred to as ‘EJTestset1’), and the second test set contains 1,119 sentences

(‘EJTestset2’).

English-to-Chinese (NIST-08): The training set of this English-to-Chinese data set

contains sentence pairs of benchmark news text from the NIST Open Machine

Translation 2009 Evaluation (MT09).14 We used the NIST MT05 test set

sentences for tuning purpose, and the NIST MT08 ‘current’ test set sentences

for evaluation.

English-to-Spanish (Europarl): This training corpus was provided in the Joint Fifth

Workshop on Statistical Machine Translation and Metrics MATR (WMT-

MetricsMATR 2010).15 We use the WMT ‘test2006’ set as the development

set, and the WMT ‘test2008’ set as the test set; both sets contain 2,000 sen-

tence pairs. In this data set, we observed a huge difference between the size

of English vocabulary and that of Spanish (Spanish vocabulary size is more

than three times larger than that of English).

This thesis reports an wide range of experiments which involves a range of lan-

guage pairs, a number of domains and varied sizes of data sets, summary of which

is graphically illustrated in Figure 3.4.

12http://www.statmt.org/europarl/
13http://www.cl.cs.titech.ac.jp/˜fujii/ntc8patmt/
14http://www.itl.nist.gov/iad/mig//tests/mt/2009/
15http://www.statmt.org/wmt10/
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Figure 3.4: Language Pairs, Domain, and Data sets.

3.7 MT Evaluation

Evaluating translated output is the most sensitive step in machine translation since it

plays an important role in improving the performance of MT systems. We performed

MT evaluation with manual analysis, as well as with automatic metrics.

3.7.1 Manual Evaluation

Manual evaluation, the most reliable method for judging the quality of MT output, is

performed on the basis of adequacy and fluency. Adequacy is measured on the basis

of how similar the meaning of a translation is compared to its equivalent input source

sentence. Fluency is measured on the basis of grammatical well-formedness of a

translation. We performed manual qualitative analysis on the basis of adequacy and

fluency comparing the output of a subset of our best-performing context-informed

SMT systems with those of the respective baseline systems.

3.7.2 Automatic Evaluation

There are many reasons why MT researchers prefer performing evaluations with

automatic metrics over manual analysis despite the fact that manual evaluation

is the most reliable method to judge translation quality. Manual evaluation is an

expensive and time-consuming process, and so cannot be conducted as often as
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required during system development. On the contrary, automatic evaluation is very

fast and language-independent, and it can be applied repeatedly to the translation

output during system development. Therefore, automatic evaluation has become a

popular approach in today’s MT technology.

We evaluate our MT systems across a wide range of automatic evaluation metrics:

BLEU (Papineni et al., 2002), NIST (Doddington, 2002), METEOR (Lavie and

Agarwal, 2007), TER (Snover et al., 2006), WER (Levenshtein, 1966), and PER

(Tillmann et al., 1997). A general overview of the above mentioned widely used

evaluation metrics is given as follows.

BiLingual Evaluation Understudy (BLEU): BLEU is an n-gram precision-

based metric. It compares a system’s translation output with the reference

translations on the basis of occurrences of n-gram word sequences in each pair

of candidate and reference translation. BLEU score is measured by summing

the logarithm values of 4-gram, trigram, bigram and unigram precisions and

multiplying by a weight 1
4
.

NIST: NIST is a variant of the BLEU metric. The NIST metric differs with

BLEU in the following respects: (i) firstly, BLEU assigns equal weights to

each n-gram pair, while NIST assigns higher weights for more rarely occurring

n-gram pairs, (ii) secondly, BLEU is measured over the logarithmic average

of n-gram precisions, while NIST is measured over the arithmetic average of

n-gram precisions, (iii) finally, BLEU and NIST differ from each other with

respect to how they calculate the brevity penalty (used to prevent shorter

candidate translations from receiving too high scores).

Metric for Evaluation of Translation with Explicit ORdering (METEOR):

The METEOR metric performs evaluation on the basis of matching of candi-

date and reference translations in three consecutive steps: (i) exact matching of

unigrams, (ii) stemmed matching using a Porter stemmer, and (iii) synonymy

matching using a Word-Net. We followed the above three steps in order to
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evaluate English sentences, whereas only the first set-up was followed in order

to evaluate sentences of other languages. Note that METEOR metric supports

a limited set of languages (English, Spanish, French, German, and Czech). In

order to evaluate translations in other languages, we used METEOR with its

default English settings with the first set-up (i.e. exact matching of unigrams).

Translation Edit Rate (TER): TER is an error metric that measures the num-

ber of edits (insertion, deletion, substitution, and shift) required to change a

candidate translation into one of the reference translations.

Word Error Rate (WER): WER is based on the word-level Levenshtein dis-

tance. It measures the distance between the reference and candidate transla-

tions based on the number of insertions, substitutions and deletions of words.

Position-Independent Word Error Rate (PER): PER is same as WER except

that it allows reordering of words between the candidate translation and the

reference translation.

Additionally we performed statistical significance tests using bootstrap resam-

pling (Koehn, 2004b) on BLEU and METEOR. The confidence level (%) of the

improvements obtained by the best-performing context-informed systems with re-

spect to the SMT baseline are reported. An improvement in system performance at

a confidence level above 95% is assumed to be statistically significant.

3.8 Summary

In this chapter, we first presented the mathematical derivation of two state-of-the-

art SMT models: PB-SMT (Koehn et al., 2003) and HPB-SMT (Chiang, 2007).

Then, we defined our context-informed SMT models. This chapter also provided an

overview of three memory-based classification algorithms: IB1, IGTree and TRIBL

(Daelemans and van den Bosch, 2005). Thereafter, we described the approach we

56



adopted to integrate the contextual features into the log-linear frameworks of PB-

SMT and HPB-SMT. Finally, we summarized our experimental data sets in a tab-

ular form, and briefly described the MT evaluation methods used to validate our

experiments.

In the next chapter, we will present a series of experiments which we carried

out with basic contextual features (words and POS tags). The next chapter also

introduces our context-sensitive transliteration model.
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Chapter 4

Basic Contextual Features

In this chapter, first we demonstrate how we make use of basic features in order to

form the contextual information (CI) of a source phrase. Here, ‘basic features’ refer

to words and part-of-speech (POS) tags. Henceforth, CI with the basic features is

referred to as basic contextual information, i.e. ‘basic CI’. In Section 4.1, we describe

how we form the basic CI of a source phrase in order to derive the log-linear context-

informed PB-SMT features. Section 4.2 illustrates how we form the basic CI of a

source phrase in order to derive the log-linear context-informed HPB-SMT features.

In Section 4.3 and 4.4, we report the experimental results obtained by employing

basic contextual features in the PB-SMT and HPB-SMT models, respectively. In

Section 4.5, first we describe how machine transliteration, a well-known NLP prob-

lem related to machine translation, can be performed with our context-informed PB-

SMT model; then, we present the experimental outcomes of our context-informed

transliteration systems. We place this discussion here because the transliteration

experiments were carried out with the word-based context-informed SMT system.

4.1 Basic Contextual Information for PB-SMT

In the following two subsections, we derive contextual information (CI) of a PB-SMT

source phrase with the basic features (i.e. words and POS tags).
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4.1.1 Lexical Features

Lexical features include the immediately neighbouring words within l token positions

to the left and right (respectively fik−l...fik−1 and fjk+1...fjk+l) of a given focus phrase

f̂k = fik ...fjk . Lexical features thus form a window of size 2l. The lexical contextual

information (CIlex) can be described as in (4.1):

CIlex(f̂k) = {fik−l, ..., fik−1, fjk+1, ..., fjk+l} (4.1)

We consider the example sentence ‘Can you play my favourite old record? ’ in

Figure 3.1 (on page 40) to illustrate how lexical CI for the single word focus phrase

‘play ’ is formed. In the example sentence, CIlex for the focus phrase ‘play ’ is formed

as: CIlex = {can, you, my, favourite} (with l = 2).

4.1.2 Part-of-Speech Tags

In addition to lexical features, it is also possible to exploit other information sources

characterizing the context. For example, we may consider the part-of-speech (POS)

tags of the context words, as well as of the focus phrase itself. In our model, the POS

tag of a multi-word focus phrase is the concatenation of the POS tags of the words

composing that phrase. We generate a window of size 2l + 1 features, including the

concatenated complex POS tag of the focus phrase. Accordingly, the POS-based

contextual information (CIpos) is described as in (4.2):

CIpos(f̂k) = {pos(fik−l), ..., pos(fik−1), pos(f̂k), pos(fjk+1), ..., pos(fjk+l)} (4.2)

For the example sentence ‘Can you play my favourite old record? ’ (Figure 3.1),

the POS-based CI for the focus phrase ‘play ’ is formed as: CIpos = {pos(can),

pos(you), pos(play), pos(my), pos(favourite)} = {MD, PRP, VB, PRP$, JJ} (with

l = 2).
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We also carried out experiments combining the two feature types (CIpos and

CIlex). In order to derive the context-based log-linear feature ĥmbl (defined in Equa-

tion (3.7)) using a memory-based classifier, the lexical- and/or POS-based CI (i.e.

CIlex, CIpos, or the combined CI = CIlex ∪ CIpos) for each source phrase in the test or

development set is formed during classification. In order to carry out experiments

with the basic contextual features, we incorporate the context-informed feature ĥmbl

and a binary feature ĥbest (defined in Equation (3.8)) in the log-linear framework of

Moses, and experimental results obtained are reported in Section 4.3.

4.2 Basic Contextual Information for HPB-SMT

In this section, we derive contextual information (CI) of a Hiero source phrase with

the basic features (i.e. words and POS tags) as follows.

4.2.1 Lexical Feature

These features include the direct left- and right-neighbouring words of length l (resp.

wα−l , ...,wα−1 and wα+1 , ...,wα+l) of a given source phrase α. In our experiments, we

consider the context size up to 2 (i.e. l := 1, 2). It also includes boundary words

(wntstarts
and wntends

) of subphrases covered by nonterminals (nt) in the α. Like Chiang

(2007), we restrict the number of nonterminals to two (i.e. s := 2). The resultant

lexical features form a window of size 2(l+s) features. Thus, lexical contextual

information (CIlex) can be described as in (4.3):

CIlex(α) = {wα−l , ...,wα−1 ,wα+1 , ...,wα+l ,

wntstart1
,wntend1

, ...,wntstarts
,wntends

}
(4.3)

We consider the example sentence ‘Can you play my favourite old record? ’ in

Figure 3.1 (on page 40) to illustrate how the lexical CIlex feature for the Hiero

focus phrase ‘play NT old ’ is formed, where NT is a nonterminal constituting the

word sequence ‘my favourite’. The source phrase ‘play NT old ’ contains only one
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nonterminal. Following Equation (4.3), we derive context information of that source

phrase as: CIlex = {Can, you, record?, ==, my, favourite, ==, ==}. Empty tokens

are represented with a special symbol ‘==’.

4.2.2 Part-of-Speech Tags

We consider the POS of each word in the lexical features in Equation (4.3). POS-

based contextual information (CIpos) is described as in (4.4):

CIpos(α) = {pos(wk)} (4.4)

where ∀k ∈ [1, |CIlex|] : wk ∈ CIlex.

We consider the example sentence ‘Can you play my favourite old record? ’ and

the source phrase ‘play NT old ’ to illustrate how we derive the POS-based CIpos

feature for that source phrase. Following Equation (4.4), we define the context

information of that source phrase by taking the POS tag of each word occurring in

CIlex as: CIpos = {MD, PRP, NN, ==, PRP$, JJ, ==, ==}. POS tags of empty

tokens are represented with the special symbol ‘==’.

We also carried out experiments joining the two feature types (CIlex and CIpos).

In order to derive the context-informed log-linear feature φmbl (defined in Equation

(3.9)) using a memory-based classifier, the lexical- and/or POS-based CI (i.e. CIpos,

CIlex, or the combined CI = CIlex ∪ CIpos) for each source phrase in the test or de-

velopment set is formed during classification. In order to conduct experiments with

the basic contextual features, we incorporate the memory-based context-informed

feature φmbl and a binary feature φbest (defined in Equation (3.10)) in the log-linear

framework of Hiero, and the experimental results obtained are reported in Section

4.4.
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4.3 Experiments with Context-Informed PB-SMT

We carried out experiments by applying lexical- and POS-based features system-

atically for different language pairs with varying training data sizes. The system

outputs are evaluated across a wide range of automatic evaluation metrics, which

we described in Section 3.7.

We divide the reports on our experiments into six subsections. Section 4.3.1

reports on small-scale data sets representing the language pairs English-to-Chinese,

Dutch-to-English, English-to-Hindi, and English-to-Czech, with less than 300,000

training sentences. Section 4.3.2 reports on large-scale data sets with more than

500,000 training sentences, representing the language pairs Dutch-to-English, English-

to-Dutch, and English-to-Japanese. Section 4.3.3 provides some analysis of the re-

sults obtained from the small- and large-scale translations. In Section 4.3.4, we com-

pare the effectiveness of the basic contextual features with regard to different source

and target languages. In Section 4.3.5, we present the results of the learning curve

experiments we carried out on three different language pairs: English-to-Spanish,

Dutch-to-English, and English-to-Dutch. Section 4.3.6 analyzes the results of the

learning curve experiments.1

4.3.1 Experiments on Small-Scale Data Sets

4.3.1.1 English-to-Chinese

The first set of experiments were carried out on English-to-Chinese data provided

by the IWSLT evaluation campaign (Haque et al., 2009a).2 (see data set details in

Section 3.6).

• An additional Log-Linear Feature: In this translation task, we derive an

additional log-linear feature (ĥmod)3 only for this data set, as in (4.5):

1Parts of the experiments carried out with our context-informed PB-SMT model including
learning curve experiments have been reported, albeit in a different form, in Haque et al. (2011).

2Experiments reported in this section have been published in (Haque et al., 2009a).
3Here, ‘mod’ stands for ‘modified’.
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ĥmod = log [δP(êk|f̂k,CI(f̂k)) + (1− δ)P(êk|f̂k)] (4.5)

In Equation (4.5), the log-linear feature ĥmod is derived by interpolating the

memory-based context-dependent phrase translation probability P(êk|f̂k,CI(f̂k))

with the baseline forward phrase translation probability P(êk|f̂k) with respect

to a weight δ.4 However, we avoid adding the feature (ĥmod) for conducting

experiments on the remaining data sets (cf. Section 3.6) for two reasons: (i)

this feature, being influenced by other features, is not fully context-sensitive,5

and (ii) the interpolation weight α is tuned manually on the development set,

which is very expensive. We conducted a set of experiments for each context

type or size by integrating the memory-based features (ĥmod, ĥmbl, and ĥbest).

In the first experiment, the baseline feature log P(êk|f̂k) is directly replaced by

ĥmod. In the second experiment, we integrate the memory-based feature ĥmbl

together with the baseline features, keeping all the baseline features unaffected.

In the third experiment, both the features ĥmbl and ĥbest are integrated into the

model in the same manner (i.e. keeping all the baseline features unaffected).

As for the standard phrase-based approach, feature weights are optimized us-

ing MERT (Och, 2003) for each of the experiments we carried out. The best

results obtained amongst the set of experiments are reported in the tables.

Note that we adopt the above experimental set-ups only for the English-to-

Chinese IWSLT data set. In order to conduct experiments for the remaining

data sets (cf. Section 3.6) reported in this thesis, we adopt only the third

experimental set-up which adds only pure context-sensitive features: ĥmbl and

ĥbest (keeping all the baseline features unaffected).

4We observed that memory-based classifiers assigned large weights to more appropriate candi-
date phrases than less appropriate ones.

5Baseline phrase translation probability P(êk|f̂k) is fully context-independent since it is mea-
sured based on the frequency of occurrences of the source and target phrase pairs in training
corpus, while completely ignoring the contexts in which those phrases appear. This probability is
exploited in order to form the log-linear feature ĥmod (cf. Equation (4.5)), so ĥmod is not fully
context-sensitive.
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Experiments were performed employing the lexical- and POS-based features both

individually and in collaboration. Additionally, we considered varying windows of

context size. This set of experiments were carried out with IGTree classifiers.

BLEU NIST WER PER
Baseline 20.56 4.67 57.82 48.99
Context Size ±1 ±2 ±1 ±2 ±1 ±2 ±1 ±2
POS 21.52 21.70 4.70 4.76 57.87 57.21 49.62 49.10
Word 21.64 21.59 4.77 4.78 57.15 57.41 49.21 48.37
Word+POS 21.77 21.89 (96.2%) 4.78 4.83 56.77 56.51 48.58 48.03

Table 4.1: Experiments with uniform context size using IGTree

The results with uniform context size are shown in Table 4.1, which clearly

shows that translation from English-to-Chinese can benefit from the addition of

source-language features, as the inclusion of the basic contextual feature easily im-

proves upon the baseline across most of the evaluation metrics. Adding neighbouring

words as source-context adds almost a whole BLEU point (5.25% relative increase),

and further improvements are to be seen when POS tags (a 1.14 BLEU point im-

provement; a relative improvement of 5.54%) are used. POS tags, when used as an

individual feature, produce the highest improvement over the Moses baseline.

With respect to BLEU, we observed an improvement of 1.33 BLEU points

(a 5.94% relative improvement) over the Moses baseline for the combination of

Word+POS when a context window of ±2 is used. This experimental set-up appears

to be most effective in this translation task.

Experiments BLEU NIST WER PER
Baseline 20.56 4.67 57.82 48.99
Word±2 + POS±1 21.61 (95.8%) 4.77 56.78 48.66

Table 4.2: Experiments with varying context size using IGTree.

The results with varying context size are shown in Table 4.2. Moderate improve-

ments across the all evaluation metrics are to be observed for the combination of

POS tags and neighbouring words with a varying context size.
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In summary, on the English-to-Chinese translation task, we observed that word

and POS contextual features (individually or in collaboration) significantly improves

over the PB-SMT baseline.

As an additional point of analysis, we compared our best-performing context-

informed (CI) model (Word±2+POS±2) with the Moses baseline in terms of various

aspects. We carried out a deeper analysis to see how two systems (Word±2+POS±2

and Moses baseline) differ from each other in terms of automatic evaluation measures

(BLEU and TER), closeness to the reference set, and weights assigned to the various

translational models. Table 4.3 shows number of sentences in which the CI model

produces better, worse or similar translations to those produced by the Moses base-

line, as per two sentence-level evaluation measures (TER and BLEU).6 We also mea-

sure closeness of the translations produced by the two systems (Word±2+POS±2

and Moses) with respect to the reference translations. We calculated percentages

of sentences and words in the reference set that appear in the set of translations

generated by the CI and the Moses systems (see Table 4.3).

The weights (λi) of the various log-linear features directly affects the phrase

translation scores during translation; thus, λi plays a crucial role in selecting the

most appropriate candidate phrases. Additionally, Table 4.4 compares weights as-

signed to the various translational features of the Word±2+POS±2 and the baseline

systems obtained by MERT (Och, 2003) training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 24 14 61 387
Sentence-Level TER 85 80 287 34
Closeness to Reference Set CI Moses
Matching Translations (%) 8.45 7.81
Matching Words (%) 58.54 57.44

Table 4.3: Comparison between translations produced by the best-performing
context-informed (CI) system (Word±2+POS±2) and Moses baseline.

6Sentence-level BLUE scores for most of the test set sentences are zero due to the fact that
4-gram word sequence matching are seldom found for short sentences.
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System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmod

Moses 0.2388 0.0686 0.0076 0.0477 0.0842 0.0507 0.7030 -
Word±2+POS±2 0.1742 0.0426 0.0371 - 0.0266 0.0323 0.1379 0.0316

Table 4.4: Comparison of weights for each translational feature of the two systems
(Word±2+POS±2 and Moses baseline) obtained by MERT training. [Notations:
lm: language model, btp: backward translation probability, blexp: backward lexical
weighting probability, ftp: forward translation probability, flexp: forward lexical
weighting probability, phrpty: phrase penalty, wrdpty: word penalty, mod: modified
(cf. Equation (4.5))].

4.3.1.2 Dutch-to-English

Dutch-to-English experiments were performed on the Dutch-to-English Open Sub-

titles corpus (cf. Section 3.6) (Haque et al., 2009b).7 For the Dutch-to-English

translation task, we carried out experiments using the TRIBL classifier. We em-

ployed our previously best-performing set-ups obtained from the English-to-Chinese

translation task in order to form the basic contextual information of a source phrase.

The experimental results are reported in Table 4.5. In all cases, the width of the

left and right context is set to 2. In this translation task, an additional experiment

(labeled POS±2†)8 was performed in which the concatenated parts-of-speech of the

focus phrases were not included as a feature. As can be observed from Table 4.5,

the POS±2† experiment produces the best improvements (0.90 BLEU points; 2.78%

relative) over the baseline. However, the improvement is not statistically significant.

Experiments BLEU NIST METEOR TER WER PER
Baseline 32.39 6.11 55.39 50.15 49.67 43.12
Word±2 32.48 6.11 55.72 50.40 50.43 42.91
POS±2 33.07 6.13 56.17 50.07 49.38 42.85
POS±2† 33.29 (74%) 6.17 55.72 49.56 48.91 42.77
Word±2+POS±2 32.59 6.09 55.36 50.11 49.63 43.10

Table 4.5: Experiments with words and parts-of-speech as contextual features.

In this translation task, we also carried out an analysis on the translations

produced by our best-performing context-informed (CI) system (POS±2†) and the

Moses baseline. Table 4.6 shows how two systems differ from each other in terms of

7Experiments reported in this section have been published in Haque et al. (2009b).
8Signalling one particular exception, we use the dag(†) symbol for experiments in which syn-

tactic information of the focus phrase is ignored.
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sentence-level automatic evaluation measures (BLEU and TER) and closeness to the

reference set. Additionally, Table 4.7 compares weights of the various translational

features of the POS±2† and the baseline systems obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 66 45 252 637
Sentence-Level TER 118 77 643 162
Closeness to Reference Set CI Moses
Matching Translations (%) 16.9 17.2
Matching Words (%) 61.86 61.72

Table 4.6: Comparison between translations produced by the best-performing
context-informed (CI) system (POS±2†) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.1065 0.0583 0.0078 0.0579 0.0650 0.0998 -0.2357 - -
POS±2† 0.1083 0.0225 0.0276 0.0616 0.0899 0.0794 -0.3419 0.0553 0.0014

Table 4.7: Comparison of weights for each translational feature of the two systems
(POS±2† and Moses baseline) obtained by MERT training.

4.3.1.3 English-to-Hindi

For English-to-Hindi translation we conducted experiments using the relatively small

EILMT tourism corpus (cf. Section 3.6). Like other Indian languages, Hindi is a

relatively free word order language. Experiments were carried out with the TRIBL

classifier. The experimental results are displayed in Table 4.8.

Experiments BLEU NIST METEOR TER WER PER
Baseline 10.93 4.54 28.59 74.87 82.06 56.67
Word±1 10.76 4.53 28.27 75.42 82.75 57.26
Word±2 11.24 (85%) 4.58 28.27 74.89 82.18 56.45
POS±1 10.82 4.55 28.59 74.76 81.85 56.65
POS±2 11.00 4.55 28.90 74.67 81.89 56.72
Word±2+POS±2 10.98 4.54 28.90 74.84 81.99 56.61

Table 4.8: Experiments applying basic contextual features in English-to-Hindi trans-
lation.

Experimental results in Table 4.8 show that the Word±2 produces the best im-

provement (0.31 BLEU points, 2.84% relative increase) over the baseline. This im-

provement is not statistically significant, although close to the statistical significance
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level. The POS±2 and Word±2+POS±2 improve on the Moses baseline; neverthe-

less, the improvements with respect to the baseline are small and not statistically

significant. The other evaluation metrics tend to show improvements almost similar

to those observed on BLEU. In summary, neighbouring words as an individual fea-

ture seem to provide the most effective source-language context in this translation

task.

We also carried out an analysis on the translations produced by our best-performing

context-informed (CI) system (Word±2) and the Moses baseline. Table 4.9 shows

how two systems differ from each other in terms of sentence-level automatic evalu-

ation measures (BLEU and TER) and closeness to the reference set. Additionally,

Table 4.10 compares weights of the various translational features of the Word±2

and the baseline systems obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 79 55 20 341
Sentence-Level TER 161 168 166 0
Closeness to Reference Set CI Moses
Matching Translations (%) 0 0
Matching Words (%) 51.72 51.86

Table 4.9: Comparison between translations produced by the best-performing
context-informed (CI) system (Word±2) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.0980 0.0453 0.0652 0.0510 0.1948 0.0910 -0.1683 - -
Word±2 0.0584 0.0484 0.0143 0.0196 0.099 0.0400 -0.2395 0.0161 0.0321

Table 4.10: Comparison of weights for each translational feature of the two systems
(Word±2 and Moses baseline) obtained by MERT training.

4.3.1.4 English-to-Czech

For the English-to-Czech translation task (Penkale et al., 2010)9 we employed the

TRIBL classifier and the previously best-performing set-up in terms of context width

and feature combinations. The evaluation results on the WMT 2009 test set are

9Parts of experimental results in the English-to-Czech translation task have been summarized
in Penkale et al. (2010) which describes the DCU machine translation system in the evaluation
campaign of the Joint Fifth Workshop on Statistical Machine Translation and Metrics in ACL-2010.
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reported in Table 4.11.10 As can be seen from Table 4.11, none of the contextual

features cause improvements over the Moses baseline on BLEU. However, we achieve

a small improvement in terms of METEOR over the Moses baseline for the POS±2.

Experiments BLEU NIST METEOR TER WER PER
Baseline 7.83 3.90 34.13 87.66 80.53 67.88
POS±2 7.80 3.90 34.25 87.87 80.84 67.95
Word±2 7.50 3.83 33.84 88.73 81.68 68.67

Table 4.11: Experimental results on WMT 2009 test set.

Experimental results on the WMT 2010 test set are shown in Table 4.12. The

POS±2 and the Word±2 do not cause any improvements in any of the evaluation

metrics.

Experiments BLEU NIST METEOR TER WER PER
Baseline 8.05 3.97 34.61 86.01 78.54 67.48
POS±2 7.91 3.94 34.57 86.50 79.03 67.84
Word±2 7.57 3.88 34.16 87.13 79.77 68.39

Table 4.12: Experimental results on WMT 2010 test set.

We also carried out an analysis on the translations produced by the POS±2

and the Moses baseline (with WMT 2010 test set). Table 4.13 shows how two sys-

tems differ from each other in terms of sentence-level automatic evaluation measures

(BLEU and TER) and closeness to the reference set. Additionally, Table 4.14 com-

pares weights of the various translational features of the POS±2 and the baseline

systems obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 188 202 101 1998
Sentence-Level TER 545 658 1299 7
Closeness to Reference Set CI Moses
Matching Translations (%) 0.28 0.28
Matching Words (%) 30.69 30.73

Table 4.13: Comparison between translations produced by the context-informed
(CI) system (POS±2) and the Moses baseline.

10The English-to-Czech baseline system produced a very low BLEU score (7.83 BLUE points)
because: (i) firstly, morphologically-rich languages (like Czech) are more difficult to translate
into than from, and (ii) secondly, Czech is a free word-order language; only one set of reference
translations is not sufficient for evaluating a free word-order language.
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System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.1017 0.0405 0.0265 0.0550 0.0222 0.2377 -0.1147 - -
POS±2 0.1586 0.1616 0.0902 0.0095 0.0269 0.0920 0.0048 0.0048 0.0013

Table 4.14: Comparison of weights for each translational feature of the two systems
(POS±2 and Moses baseline) obtained by MERT training.

4.3.2 Experiments on Large-Scale Data Sets

4.3.2.1 Dutch-to-English

To explore the question whether similar improvements to the ones obtained on small-

scale data sets reported in the previous subsection can be achieved with large-scale

data sets, we carried out a similar series of experiments. Our first experimental

data set is Dutch-to-English Europarl data (cf. Section 3.6). Analogous to the

experiments on small-scale data sets, we experimented with adding contextual fea-

tures representing words, part-of-speech tags, and their combinations. We used the

IGTree classifier to carry out these experiments, as TRIBL’s memory requirements

become too demanding with data sets of this size.11

Experiments BLEU NIST METEOR TER WER PER
Baseline 27.29 6.686 56.81 58.65 63.97 45.18
Word±2 27.13 6.66 56.78 59.1 64.44 45.41
POS±2 26.93 6.67 56.51 59.06 64.19 45.51
POS±2† 26.90 6.67 56.61 58.94 64.10 45.52

Table 4.15: Results on Dutch-to-English Translation considering words and part-of-
speech tags as contexts.

We used the same experimental settings as used with the small-scale Open Sub-

titles data set reported in Section 4.3.1.2. Experimental results are reported in

Table 4.15, where we can see that word and part-of-speech contexts are unable to

yield any improvement over the Moses baseline on any of the evaluation metrics.

Additionally, we carried out an analysis on the translations produced by the

Word±2 and the Moses baseline. Table 4.16 shows how two systems differ from

11For example, the memory structure built by TRIBL takes about 90 GB primary memory when
trained on a training set of 70 million instances generated on the Dutch-to-English training data set
containing 1.3 million sentence pairs, when only the Word±2 features are included. Additionally,
the TRIBL classifier leads to very slow processing speed with large-scale data.
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each other in terms of sentence-level automatic evaluation measures (BLEU and

TER) and closeness to the reference set. Table 4.17 compares weights of the various

translational features of the Word±2 and the baseline systems obtained by MERT

training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 270 265 185 280
Sentence-Level TER 266 302 394 38
Closeness to Reference Set CI Moses
Matching Translations (%) 4.0 4.2
Matching Words (%) 65.39 65.23

Table 4.16: Comparison between translations produced by the context-informed
(CI) system (Word±2) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.1086 0.0641 0.0107 0.0569 0.0867 0.0977 -0.2459 - -
Word±2 0.1015 0.0529 0.0237 0.0042 0.0757 0.0404 -0.2418 0.0118 0.0102

Table 4.17: Comparison of weights for each translational feature of the two systems
(Word±2 and Moses baseline) obtained by MERT training.

4.3.2.2 English-to-Dutch

English-to-Dutch translation were carried out on the same Dutch-to-English Eu-

roparl data set described in Section 4.3.2.1, but in the reverse direction. Experi-

mental results for basic contextual features are displayed in Table 4.18. As can be

seen from the table, the Word±2 yields a small (statistically insignificant) BLEU

improvement (0.24 BLEU points, 0.98% relative increase) over the Moses baseline,

whereas, the POS±2 is unable to yield any improvement.

Experiments BLEU NIST METEOR TER WER PER
Baseline 24.26 6.177 52.68 64.37 68.81 50.02
Word±2 24.50 (80%) 6.248 52.78 63.96 68.46 49.59
POS±2 24.04 6.150 52.17 64.44 68.69 50.1

Table 4.18: Results on English-to-Dutch Translation employing words and part-of-
speech features.

In this translation task, we also carried out an analysis on the translations pro-

duced by the Word±2 and the Moses baseline. Table 4.19 shows how two systems dif-

fer from each other in terms of sentence-level automatic evaluation measures (BLEU
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and TER) and closeness to the reference set. Table 4.20 compares weights of the

various translational features of the Word±2 and the baseline systems obtained by

MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 262 267 154 317
Sentence-Level TER 321 290 351 38
Closeness to Reference Set CI Moses
Matching Translations (%) 3.9 3.8
Matching Words (%) 61.99 61.74

Table 4.19: Comparison between translations produced by the context-informed
(CI) system (Word±2) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.1072 0.0102 0.0509 0.1103 0.0468 0.0936 -0.2689 - -
Word±2 0.0781 0.0072 0.0642 0.0150 0.0522 0.0284 -0.2124 0.0567 0.0001

Table 4.20: Comparison of weights for each translational feature of the two systems
(Word±2 and Moses baseline) obtained by MERT training.

4.3.2.3 English-to-Japanese

Our next sets of experiments were carried out on a large-scale English-to-Japanese

data set (cf. Section 3.6) using the IGTree classifier. Experimental results are shown

in Table 4.21. None of the contextual features are able to improve on the Moses

baseline with any of the test sets. The NTCIR data has been reported to be very

noisy (Okita et al., 2010), which might affect the results.12

Experiments BLEU NIST TER WER PER
Baseline 27.30 6.746 63.31 80.01 43.36
Evaluation Results on EJTestset1
POS±2 27.03 6.728 64.03 80.85 43.67
Word±2 26.65 6.656 64.18 80.20 43.83
Evaluation Results on EJTestset2
Baseline 27.76 6.838 60.64 77.49 42.61
POS±2 27.39 6.744 61.65 78.79 43.18
Word±2 27.15 6.752 61.53 78.25 43.13

Table 4.21: Experimental results for large-scale English-to-Japanese translation.

12The contents in this section have been published, albeit in a different form, in Okita et al.
(2010).
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As shown in the previous sections as well as in this section, a large set of ex-

perimental results were obtained from four small-scale and three large-scale MT

set-ups. In the following two sections, we provide some analysis of these results,

along several different indices: the effectiveness of different context types, classifi-

cation approaches, the nature of the data sets, divergence of translation pairs, and

directionality of translation.

We also carried out an analysis on the translations produced by the POS±2 and

the Moses baseline (with EJTestset2). Table 4.22 shows how two systems differ

from each other in terms of sentence-level automatic evaluation measures (BLEU

and TER) and closeness to the reference set. Additionally, Table 4.23 compares

weights of the various translational features of the POS±2 and the baseline systems

obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 313 424 190 0
Sentence-Level TER 333 436 42 116
Closeness to Reference Set CI Moses
Matching Translations (%) 0 0
Matching Words (%) 69.15 69.86

Table 4.22: Comparison between translations produced by the context-informed
(CI) system (POS±2) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.0739 0.0323 0.0292 0.0558 0.0418 0.0739 -0.1977 - -
POS±2 0.0765 0.0184 0.0250 0.0432 0.0230 0.0127 -0.1860 0.0024 -0.0042

Table 4.23: Comparison of weights for each translational feature of the two systems
(POS±2 and Moses baseline) obtained by MERT training.

4.3.3 Effect of Small vs Large-Scale Data Sets

4.3.3.1 Small-scale data sets

On small-scale data sets, little difference in translation quality is to be seen among

the various context-informed models. On IWSLT English-to-Chinese translation,

any differences in automatic evaluation scores are not statistically significant for the

POS tag and word contexts. Nonetheless, the highest evaluation scores over the
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baseline are achieved employing their combinations; indeed, most of the improve-

ments over the baseline are statistically significant in terms of BLEU. Note that the

IGTree classifier was employed for the English-to-Chinese translation task.

The small-scale Dutch-to-English translation task showed that the POS con-

textual features produced the biggest improvement over the baseline. For English-

to-Hindi, the word contextual model produces the biggest improvement over the

baseline in terms of BLEU when we look at individual features, although the im-

provement is not statistically significant. For English-to-Czech, POS and word con-

texts do not provide any improvement over the baseline at all. For these latter three

language pairs, the TRIBL classifier was used.

4.3.3.2 Large-scale data sets

While the results on small-scale data sets were rather mixed, the results of the

large-scale translation tasks provide a clearer overall picture. Note, however, that

we had to work with IGTree classifiers to handle the large set of examples in these

experiments.

For large-scale Dutch-to-English translation, word- and POS-based models do

not show any improvement over a baseline PB-SMT model. For the reverse language

direction, improvements for the word contextual model are not statistically signifi-

cant, and the POS-based model performs below the baseline PB-SMT model. For

large-scale English-to-Japanese translation, none of the contextual features showed

any improvement over the baseline.

Comparing the effectiveness of the classifiers on large-scale translation tasks,

IGTree proved useful for English-to-Dutch, but not for Dutch-to-English and English-

to-Japanese. In contrast, both IGTree and TRIBL were effective for small-scale

translation tasks.
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4.3.4 Effect of Different Source and Target Languages

As stated earlier, this chapter models basic features (words and POS tags) as a

source-language context in the state-of-the-art SMT models. Later in this thesis

(i.e. Chapters 5 and 6), we will see that our research focuses on incorporating

mainly rich and complex syntactic knowledge sources (i.e. supertags (Bangalore

and Joshi, 1999), grammatical dependency relations (Nivre, 2005), and semantic

roles (Carreras and Márquez, 2004)) into the state-of-the-art SMT systems in order

to improve lexical selection. We considered English as the source language in all

our translation tasks except for Dutch-to-English translation, owing to the fact that

most of the syntactic tools13 used in our experiments are readily available only for

English. In this section, we examine the role of different source and target languages

on our context-informed models.

4.3.4.1 English as target

The results of the small-scale Dutch-to-English translation task (cf. Section 4.3.1)

clearly show that none of the improvements over the Moses baseline are statistically

significant in terms of BLEU when words and POS features are employed either

individually or collectively. In the large-scale Dutch-to-English task (cf. Section

4.3.2), word and POS contexts do not improve the PB-SMT model.

4.3.4.2 English as source

It is well understood that performing MT from English to a morphologically richer

target language is inherently more difficult than the other way round. We have

investigated the effects of deploying various contextual features for a wide range of

target languages, and we compare the results obtained in this section.

For Hindi as the target language, consistent but statistically insignificant im-

provements over the baseline were observed when words and POS features were

13We employed rich and complex syntactic tools (i.e. supertaggers, dependency parsers, and
semantic role labeler), which we will introduce in Chapters 5 and 6.
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employed in the model. As Hindi is a relatively free word order language, albeit

with a preference for SOV word order, we consider our results to be due to the fact

that having only one reference translation available per sentence is not sufficient for

meaningful evaluation. However, for Czech – another free word order language –

we noted that words and POS-based context features do not improve the English-

to-Czech PB-SMT system, and here too, only one set of reference translations was

available.

For English-to-Japanese patent translation, none of the contextual features was

able to beat the performance of the PB-SMT baseline (cf. Section 4.3.2). Note,

however, that in addition to providing the largest amount of training data of all our

experiments, the NTCIR data was very noisy (Okita et al., 2010), which may have

affected the results somewhat.

For English-to-Dutch, neighbouring words improved the PB-SMT model when

we employed them as source-language contextual features, while POS-based features

did not contribute much.

4.3.5 Experiments on Increasing Size of Training Sets

4.3.5.1 English-to-Spanish

Thus far, using two different approximate memory-based classifiers, different data

set sizes, different language pairs, texts from different genres and domains, various

source-side context features and context widths, we have obtained mixed results. We

observed that the context-informed models tend to perform better than the baseline

PB-SMT model on small-scale training data, but the relative gains tend to diminish

when we use larger training sets, which may be partly due to the less optimal

behaviour of the IGTree classifier. So far, however, we have not systematically varied

the amount of training data sizes given a particular data set, to see whether the

relative advantage of TRIBL over IGTree changes with the amount of training data

available, and how their performance relates to the baseline with varying amounts
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of training data available.

In this section we explore a new language pair, English-to-Spanish. We conduct

learning curve experiments on increasing training data sets while adding an opti-

mized set of contextual features (i.e. best-performing experimental set-ups). We

segment the English-to-Spanish data set into several incremental slices of increasing

size, and perform a series of experiments on each of these data sets.

To conduct learning curve experiments, we employ the English-to-Spanish Eu-

roparl data set (cf. Section 3.6). We segmented the English-to-Spanish training

set into eight pseudo-exponentially increasing training sets: 10K, 20K, 50K, 100K,

200K, 500K, 1M, and 1,639,764 training sentences. To perform experiments on this

sequence of training sets, we used both IGTree and TRIBL. We were only able to

use the TRIBL classifier with training sets containing up to 100K sentences due to

TRIBL’s relatively high memory requirements.

IGTree as classifier: Experimental results of the English-to-Spanish translation

employing IGTree as a classifier are displayed in Table 4.24. As can be seen from

the Table 4.24, for every size of training data, the POS±2 and the Word±2 systems

always remain below the Moses baseline according to the performance measured by

any of the evaluation metrics.

TRIBL as classifier: The experimental results employing TRIBL as a classifier

are displayed in Table 4.25. Statistically significant improvements in BLEU and

METEOR are to be seen at larger amounts of training data (50K and 100K) when

neighbouring words and POS tags are employed as source-side contextual features.

Learning Curves: While we were able to see some broad tendencies in previous

sections as well as in Table 4.25, we present here a more analytical study of the

effect of increasing amounts of training data with drawing learning curves, for both

IGTree and TRIBL classifiers.
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Train. Experi- BLEU NIST METEOR TER WER PER
Size ments

10K
Baseline 22.68 6.00 26.15 68.93 67.58 50.81
POS±2 21.61 5.85 25.52 69.86 68.67 51.63
Word±2 21.94 5.90 25.67 69.78 68.36 51.36

20K
Baseline 24.58 6.38 27.77 66.51 65.16 48.71
POS±2 23.66 6.27 27.26 67.49 66.27 49.40
Word±2 23.97 6.30 27.35 67.35 66.21 49.26

50K
Baseline 27.33 6.84 29.93 64.15 62.97 46.63
POS±2 26.34 6.67 29.25 65.07 64.01 47.41
Word±2 26.58 6.75 29.44 64.66 63.52 46.88

100K
Baseline 28.64 7.09 30.91 62.30 61.26 45.1
POS±2 27.78 6.98 30.47 63.30 62.32 45.81
Word±2 28.37 7.02 30.55 63.00 61.89 45.71

200K
Baseline 29.96 7.32 31.90 60.97 60.01 44.06
POS±2 29.10 7.17 31.25 62.14 61.18 44.91
Word±2 29.33 7.23 31.42 61.57 60.62 44.63

500K
Baseline 31.08 7.47 32.67 59.86 58.83 43.18
POS±2 30.54 7.42 32.37 60.41 59.52 43.63
Word±2 30.54 7.42 32.25 60.38 59.50 43.54

1M
Baseline 31.52 7.54 32.94 59.45 58.50 42.84
POS±2 31.15 7.51 32.75 59.57 58.72 42.93
Word±2 31.24 7.49 32.76 59.6 58.67 43.03

1.64M
Baseline 31.92 7.60 33.24 59.06 58.14 42.42
POS±2 31.41 7.51 33.01 59.52 58.55 42.98
Word±2 31.61 7.57 32.92 59.36 58.45 42.76

Table 4.24: Results of English-to-Spanish learning curve experiments with IGTree
classifier.

Train. Experi- BLEU NIST METEOR TER WER PER
Size ments

10K
Baseline 22.68 6.00 26.15 68.93 67.58 50.81
POS±2 21.61 5.85 25.52 69.86 68.67 51.63
Word±2 21.94 5.9 25.67 69.78 68.36 51.36

20K
Baseline 24.58 6.38 27.77 66.51 65.16 48.71
POS±2 24.67 6.40 27.88 (89.87%) 66.59 65.31 48.72
Word±2 24.59 6.39 27.86 66.70 65.40 48.74

50K
Baseline 27.33 6.84 29.93 64.15 62.97 46.63
POS±2 27.51 (98.1%) 6.90 30.14 (99.16%) 63.39 62.48 46.08
Word±2 27.39 (72%) 6.86 29.98 (72.59%) 63.75 62.74 46.41

100K
Baseline 28.64 7.09 30.91 62.30 61.26 45.1
POS±2 29.05 (98.7%) 7.16 31.16 (98.5%) 62.14 61.19 45.04
Word±2 28.84 (96.7%) 7.12 31.04 (94.7%) 62.39 61.26 45.10

Table 4.25: Results of the English-to-Spanish learning curve experiments with
TRIBL classifier.
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We plot the BLEU, METEOR and TER learning curves of the word- and POS-

based context-informed models (POS±2 and Word±2) for TRIBL and IGTree, as

well as the Moses baseline in the left-side graphs (top, centre and bottom graphs

represent respectively BLEU, METEOR and TER learning curves) of Figure 4.1.

Each graph in the figure adopts a logarithmic horizontal axis, representing the num-

ber of training sentences. In addition, the three right-hand side graphs of Figure 4.1

represent the BLEU (top), METEOR (centre) and TER (bottom) score-difference

curves of the two classifier experiments against the baseline, highlighting the gains

and losses against the baseline. The IGTree curves extend up to the maximum of

1.64M training sentences; as noted earlier, due to limitations in memory, the TRIBL

experiments extend only up to 100K training sentences.

We see from the top two graphs in Figure 4.1 that BLEU learning and score-

difference curves of the POS±2 and Word±2 systems always remain below the Moses

baseline curves while employing IGTree as the classifier. In contrast, BLEU learning

and score-difference curves mostly remain above the Moses baseline curves when we

employ TRIBL as the classifier. METEOR learning and score-difference curves

(centre-left and right graphs in Figure 4.1) resemble the BLEU curves. The bottom

two graphs of Figure 4.1 show TER learning and score-difference curves, respectively.

Note that TER is an error metric, so a lower score indicates better performance.

When we used IGTree as the classifier, TER learning and score-difference curves

remain always above the baseline curves; on the other hand, TER learning and

score-difference curves mostly remain below the baseline curves when TRIBL is

employed as the classifier.

To summarize, in the English-to-Spanish translation task, (a) TRIBL appears to

be effective on both small and moderately large-scale data sets, though its memory

needs prohibit it from being used with the larger-sized training sets; on the other

hand, it does not improve the context-informed models on the smallest amounts of

training data tested (e.g. 10K sentences); (b) IGTree does not offer improvements

over the baseline either with the small- or the large-scale context-informed models,
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Figure 4.1: Learning curves (left-hand side graphs) and score-difference curves
(right-hand side graphs) comparing the Moses baseline against word- and POS-based
context-informed models (POS±2 and Word±2) in English-to-Spanish translation
task. The curves are plotted with scores obtained using three evaluation metrics:
BLEU (top), METEOR(centre) and TER (bottom).
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while the performance of the large-scale context-informed models with the IGTree

classifier are close to the performance of the Moses baseline.

We carried out an analysis on the translations produced by our best-performing

context-informed (CI) system (POS±2)14 and the Moses baseline. Table 4.26 shows

how two systems differ from each other in terms of sentence-level automatic evalu-

ation measures (BLEU and TER) and closeness to the reference set. Additionally,

Table 4.27 compares weights of the various translational features of the POS±2 and

the baseline systems obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 643 562 310 485
Sentence-Level TER 606 605 751 38
Closeness to Reference Set CI Moses
Matching Translations (%) 2.1 2
Matching Words (%) 59.95 59.65

Table 4.26: Comparison between translations produced by the best-performing
context-informed (CI) system (POS±2) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.0795 0.0448 0.0091 0.0449 0.0527 0.1151 -0.1451 - -
POS±2 0.1043 0.0411 0.0741 -0.0168 0.0260 0.1096 -0.1164 0.0619 0.0336

Table 4.27: Comparison of weights for each translational feature of the two systems
(POS±2 and Moses baseline) obtained by MERT training.

4.3.5.2 Dutch-to-English

Originally we ran our large-scale experiments on the Dutch-to-English and English-

to-Dutch language pairs with the IGTree classifiers (cf. Section 4.3.2). As stated in

the above section, we observe in the English-to-Spanish learning curve experiments

that TRIBL seems to be a more effective classifier than IGTree in improving the

performance of the context-informed SMT systems, but we were able to use TRIBL

classifiers only for the small-scale translations due to its relatively high memory

requirements. However, TRIBL was reprogrammed recently, and can now efficiently

14The best-performing POS±2 system which we used for this analysis was built on 100K training
set with TRIBL (cf. Table 4.25).
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handle large numbers of examples. This inspired us to deploy TRIBL classifiers for

the large-scale translation.

To investigate the consequences of the different context-informed SMT systems

on the increasing sizes of training sets while employing TRIBL as the classifier,

we carried out experiments on the Dutch-to-English and English-to-Dutch language

pairs. First, like the division of our English-to-Spanish data set (cf. Section 4.3.5.1),

we segmented the Dutch-to-English training set (cf. Section 3.6) into eight pseudo-

exponentially increasing training sets: 10K, 20K, 50K, 100K, 200K, 500K, 1M, and

1,311,111 training sentences. In this section, we report the outcomes of the Dutch-

to-English learning curve experiments.

Train. Experi- BLEU NIST METEOR TER WER PER
Size ments

10K
Baseline 18.31 5.14 46.73 69.13 74.06 54.77
POS±2 18.62 (97.1%) 5.19 46.78 (60.6%) 68.52 73.19 54.50
Word±2 18.58 (93.8%) 5.18 46.84 (82.4%) 68.74 73.34 54.73

20K
Baseline 20.13 5.47 49.14 67.22 72.24 52.79
POS±2 20.37 (91.9%) 5.51 49.32 (92.6%) 66.79 71.59 52.49
Word±2 20.41 (89.7%) 5.49 49.25 (71.8%) 66.79 71.54 52.69

50K
Baseline 23.35 5.96 52.54 63.85 68.91 49.76
POS±2 23.71 (90.7%) 6.02 52.66 (75.6%) 63.62 68.36 49.67
Word±2 23.71 (96.3%) 6.00 52.68 (78%) 63.72 68.47 49.81

100K
Baseline 24.72 6.19 54.18 62.30 67.54 48.35
POS±2 25.06 (68%) 6.25 54.38 (85.1%) 61.82 66.86 48.18
Word±2 25.24 (98.9%) 6.26 54.50 (98%) 61.81 66.87 48.03

200K
Baseline 25.89 6.36 55.30 61.02 66.34 47.15
POS±2 26.01 (35%) 6.45 55.52 (94.2%) 60.48 65.67 46.81
Word±2 26.18 (87%) 6.42 55.50 (92.9%) 60.60 65.61 46.95

500K
Baseline 26.56 6.53 56.23 59.89 65.02 46.25
POS±2 27.06 (99.7%) 6.63 56.78 (99.9%) 59.38 64.40 45.71
Word±2 26.94 (99.9%) 6.57 56.40 (89.6%) 59.62 64.75 46.13

1M
Baseline 27.06 6.63 56.60 59.08 64.29 45.54
POS±2 27.14 (54%) 6.68 56.83 (92.6%) 58.86 63.98 45.43
Word±2 27.30 (88.5%) 6.67 56.85 (95.5%) 58.82 63.95 45.45

1.31M
Baseline 27.29 6.68 56.81 58.65 63.96 45.17
POS±2 27.35 (13%) 6.71 56.84 (32.1%) 58.61 63.72 45.23
Word±2 27.59 (84%) 6.72 57.11 (98.1%) 58.46 63.65 45.06

Table 4.28: Results of the Dutch-to-English learning curve experiments with TRIBL
classifier.

Results obtained from the Dutch-to-English learning curve experiments are dis-
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Figure 4.2: Learning curves (left-hand side graphs) and score-difference curves
(right-hand side graphs) comparing the Moses baseline against word- and POS-
based context-informed models (POS±2 and Word±2) in Dutch-to-English trans-
lation task. These curves are plotted with scores obtained using three evaluation
metrics: BLEU (top), METEOR(centre) and TER (bottom).
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played in Table 4.28, where we see that POS±2 and Word±2 produce statistically

significant BLEU improvements with respect to the Moses baseline at most training

data sizes. Performance measured by the METEOR and the TER evaluation met-

rics seem to be follow the same trend as BLEU. Drawing graphs with the evaluation

scores produced by the BLEU, METEOR and TER metrics, we thoroughly investi-

gate the effects of the word- and POS-based models against the Moses baseline with

increasing sets of training data.

Figure 4.2 shows the learning and score-difference curves comparing the Dutch-

to-English Moses baseline against the two context-based models (POS±2, Word±2).

The three left-hand side graphs in Figure 4.2 show respectively BLEU (top), ME-

TEOR (centre) and TER (bottom) learning curves representing the performance of

the context-informed models against the baseline. In contrast, the three right-hand

side graphs in Figure 4.2 show respectively BLEU (top), METEOR (centre) and

TER (bottom) score-difference curves, highlighting the gains and losses against the

baseline.

We observe that the BLEU and METEOR curves (learning and score-difference)

of the word- and POS-based models always remain above the baseline curve from

the starting point (10K training data) to the end point (1.31M training data). The

bottom two graphs of Figure 4.2 show that the TER curves (learning & score-

difference) of the context-informed models (POS±2, Word±2) always remain below

the baseline curves, which indicates the effectiveness of the basic contextual features

in this translation task also according to the TER evaluation metric.

In sum, both words and POS tags, when used as source-language contexts in

this translation task, show approximately similar improvements when using TRIBL

as the classifier.

As an additional point of analysis, we compare translations produced by our

best-performing context-informed (CI) system (Word±2)15 with those by the Moses

15The best-performing PR system which we used for this analysis was built on the largest
available training data (1.31M sentences) with TRIBL classifier (cf. Table 4.28).
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baseline. Table 4.29 shows how two systems differ from each other in terms of

sentence-level automatic evaluation measures (BLEU and TER) and closeness to the

reference set. Additionally, Table 4.30 compares weights of the various translational

features of the Word±2 and the baseline systems obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 248 201 271 280
Sentence-Level TER 255 223 481 41
Closeness to Reference Set CI Moses
Matching Translations (%) 4.3 4.2
Matching Words (%) 65.28 65.23

Table 4.29: Comparison between translations produced by the best-performing
context-informed (CI) system (Word±2) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.1086 0.0641 0.0107 0.0569 0.0867 0.0977 -0.2459 - -
Word±2 0.0747 0.0324 0.0257 0.0583 0.0644 0.0822 -0.1882 -0.0095 0.0034

Table 4.30: Comparison of weights for each translational feature of the two systems
(Word±2 and Moses baseline) obtained by MERT training.

4.3.5.3 English-to-Dutch

In this section, we report the outcomes of the English-to-Dutch learning curve exper-

iments. Results obtained from the English-to-Dutch learning curve experiments are

displayed in Table 4.31, where we see that none of the BLEU improvements for the

POS±2 and the Word±2 systems with respect to Moses baseline are statistically

significant. However, statistically significant improvements in METEOR for the

Word±2 system with respect to the baseline are to be observed at larger amounts of

training data. The Word±2 system improves on the Moses baseline at most training

data sizes (100K to 1.31M) according to the performance measured by TER, while

POS±2 system improves on the Moses baseline at smaller amounts (10K, 20K, and

100K) as well as larger amounts (1M and 1.31M) of training data. We draw graphs

with the evaluation scores produced by the BLEU, METEOR and TER metrics for

the POS- and word-based SMT models as well as for the Moses baseline, by which

we investigate the effects of the context-informed models thoroughly against the
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baseline with a increasing set of training data.

Figure 4.3 illustrates BLEU (top), METEOR (centre) and TER (bottom) learn-

ing curves (left-hand side graphs) and score-difference curves (right-hand side graphs)

which compare the performance of the Moses baseline and the basic context-informed

models (POS±2 and Word±2) in the English-to-Dutch translation task.

Train. Experi- BLEU NIST METEOR TER WER PER
Size ments

10K
Baseline 17.20 4.99 43.74 72.40 75.39 57.17
POS±2 17.12 4.99 43.76 72.20 75.22 57.30
Word±2 16.32 4.92 43.07 72.88 75.91 57.39

20K
Baseline 19.03 5.31 46.30 70.33 73.69 55.08
POS±2 19.11(78.1%) 5.32 46.23 70.14 73.48 55.07
Word±2 18.56 5.29 45.87 70.74 74.16 55.26

50K
Baseline 21.70 5.74 49.31 67.32 71.19 52.48
POS±2 21.80 (33.4%) 5.75 49.33 67.40 71.07 52.51
Word±2 21.06 5.69 48.62 67.92 71.66 52.94

100K
Baseline 22.53 5.88 50.30 66.42 70.48 51.84
POS±2 22.49 5.89 50.22 66.14 70.35 51.72
Word±2 22.18 5.89 50.23 66.31 70.52 51.50

200K
Baseline 23.47 6.04 51.46 65.30 69.40 50.90
POS±2 23.54 (65%) 6.05 51.56 (73.14%) 65.37 69.22 50.71
Word±2 23.19 6.06 51.27 65.07 69.22 50.71

500K
Baseline 24.06 6.11 52.06 64.59 68.58 50.36
POS±2 23.89 6.11 52.01 64.70 68.77 50.35
Word±2 24.02 6.18 52.36 (96.9%) 64.09 68.45 49.84

1M
Baseline 24.26 6.17 52.39 64.55 68.72 50.12
POS±2 24.15 6.16 52.37 64.51 68.69 50.11
Word±2 24.46 (83%) 6.25 52.61 (93.4%) 63.58 67.96 49.51

1.31M
Baseline 24.26 6.17 52.68 64.36 68.80 50.02
POS±2 24.39 (88%) 6.20 52.61 64.11 68.38 49.77
Word±2 24.36 (57%) 6.28 52.84 (88.35%) 63.66 68.10 49.20

Table 4.31: Results of the English-to-Dutch learning curve experiments with TRIBL
classifier.

We see from the top-left graph in Figure 4.3 that the BLEU learning curve of

the word-based model (Word±2) starts much below the baseline curve, crosses it

at 1M training data, and remains above it till the end. On the other hand, the

BLEU learning curve of the POS±2 resembles the Moses baseline curve, although,

it resides above the baseline at 20K, 50K, 200K and 1.31M amounts of training data.

Moreover, one can perceive this phenomenon looking at the BLEU score-difference

86



 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 10  100  1000

B
L
E

U

x 1000 Training Sentences

Baseline
POS±2
Word±2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 10  100  1000

B
L
E

U
 D

if
fe

re
n
c
e

x 1000 Training Sentences

Baseline
POS±2
Word±2

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 10  100  1000

M
E

T
E

O
R

x 1000 Training Sentences

Baseline
POS±2
Word±2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 10  100  1000

M
E

T
E

O
R

 D
if
fe

re
n
c
e

x 1000 Training Sentences

Baseline
POS±2
Word±2

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 10  100  1000

T
E

R

x 1000 Training Sentences

Baseline
POS±2
Word±2

-1.5

-1

-0.5

 0

 0.5

 1

 10  100  1000

T
E

R
 D

if
fe

re
n
c
e

x 1000 Training Sentences

Baseline
POS±2
Word±2

Figure 4.3: Learning curves (left-hand side graphs) and score-difference curves
(right-hand side graphs) comparing the Moses baseline against word- and POS-
based context-informed models (POS±2 and Word±2) in English-to-Dutch trans-
lation task. These curves are plotted with scores obtained using three evaluation
metrics: BLEU (top), METEOR(centre) and TER (bottom).
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curves for the POS±2 and the Word±2.

We observe from the centre-left and -right graphs in Figure 4.3 that METEOR

learning and score-difference curves approximately follow the BLEU curves. The

METEOR learning-curve for the Word±2 crosses the baseline curve for the larger

amounts of training data (500K to 1.3M). In contrast, the METEOR learning-curve

for the POS±2 stays beneath the baseline curve for the larger amounts of training

data (500K to 1.3M).

The bottom-left and -right graphs in Figure 4.3 show TER learning and score-

difference curves, respectively. The TER learning and score-difference curves of the

POS±2 system approximately resemble the Moses baseline curve. On the other

hand, TER learning curve of the Word±2 starts above the baseline curve, crosses it

for 100K amount of training data, and remains below it till the end.

We sum up the above observations despite the fact that it is difficult to reach a

concrete conclusion. In this translation task, word-based features appear to be an

effective source-language context for the larger amounts of training data. Integration

of POS tags as a source-language context into the PB-SMT model does not show

much consistency in improving the baseline.

As an additional point of analysis, we compare translations produced by our

best-performing context-informed (CI) system (POS±2)16 with those by the Moses

baseline. Table 4.32 shows how two systems differ from each other in terms of

sentence-level automatic evaluation measures (BLEU and TER) and closeness to the

reference set. Additionally, Table 4.33 compares weights of the various translational

features of the POS±2 and the baseline systems obtained by MERT training.

4.3.6 Analysis of Learning Curve Experiments

As far as English-to-Spanish translation is concerned, we see in Section 3.6 that

the vocabulary size of the Spanish training set is four times larger than that of the

16The best-performing POS±2 system which we used for this analysis was built on the largest
available training data (1.31M) (cf. Table 4.31).
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CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 226 189 256 329
Sentence-Level TER 274 219 469 38
Closeness to Reference Set CI Moses
Matching Translations (%) 3.8 3.8
Matching Words (%) 61.71 61.74

Table 4.32: Comparison between translations produced by the best-performing
context-informed (CI) system (POS±2) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.1072 0.0102 0.0509 0.1103 0.0468 0.0936 -0.2689 - -
POS±2 0.0892 -0.0053 0.0446 0.0528 0.055 0.0677 -0.2773 0.02574 0.0045

Table 4.33: Comparison of weights for each translational feature of the two systems
(POS±2 and Moses baseline) obtained by MERT training.

English training set. Accordingly, availing of source-side contextual information has

much more potential to improve translation quality in the Spanish-to-English direc-

tion rather than the other way round. Nevertheless, even for the reverse language

direction, source-side basic contexts (words and part-of-speech tags) were able to

improve over the baseline (cf. Section 4.3.5.1). If we look at the Dutch-to-English

learning curves, we see that both words and POS tags show their importance as a

source-side context while integrated into the any size of PB-SMT model. Like the

English-to-Spanish direction, the English-to-Dutch direction should be a difficult

choice if we want to utilize source-side contexts in order to improve lexical selec-

tion. Nevertheless, words and POS tags appear to be effective source-side contexts

in the large-scale English-to-Dutch translation. Moreover, in this translation task,

when the PB-SMT model is built with small amounts of training data, benefits from

adding POS tags as a source-language context are also to be seen.

4.4 Experiments using Context-Informed HPB-

SMT

We integrate words and POS tags as source-language contexts into a hierarchical

PB-SMT (HPB-SMT) model, and perform a range of experiments. In Section 3.3.2,

we demonstrated how source-language context can be incorporated into a Hiero
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model, and in Section 4.2, we presented how basic features (words and POS tags)

are used in order to model contextual information (CI) of a Hiero source phrase.

In this section, we report experimental results obtained from the two different

translation tasks. The system outputs are evaluated across a wide range of auto-

matic evaluation metrics, which were discussed in Section 3.7. Section 4.4.1 reports

the outcomes of English-to-Hindi and English-to-Dutch translations. Section 4.4.2

provides some analysis of results obtained from the two translation tasks.17

4.4.1 Experimental Results

4.4.1.1 English-to-Hindi

Experimental results of the English-to-Hindi translation task are displayed in Ta-

ble 4.34 which shows the performance of the two context-based models (Word±2,

POS±2) against the Hiero baseline.

Experiments BLEU NIST METEOR TER WER PER
Baseline 11.08 4.44 29.19 75.30 82.09 57.98
Word±2 11.58 (96.1%) 4.50 26.32 74.27 80.53 57.51
POS±2 11.79 (99.3%) 4.53 29.32 73.96 79.93 57.10

Table 4.34: Results on English-to-Hindi translation obtained integrating basic con-
texts into Hiero.

We see from Table 4.34 that addition of words and part-of-speech tags as source-

language contexts improves the Hiero baseline significantly across most evaluation

metrics. The POS- and word-based models add 0.71 BLEU points (6.8% relative

increase) and 0.50 BLEU points (4.5% relative) to the Hiero baseline. These im-

provements with respect to the baseline are statistically significant. Improvements

obtained with the error metrics (TER, WER and PER) seem to be quite similar to

those obtained with the BLEU.

We see one exception in Table 4.34, where Word±2 produces about 3 METEOR

points less than the Hiero baseline. Like Dutch, the METEOR evaluation metric

17The experiments reported in this section have partly been published, albeit in a different form,
in Haque et al. (2010a).
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does not support the Hindi language (Lavie and Agarwal, 2007), which might be

the reason for the above anomaly.

As an additional point of analysis, we compare translations produced by our

best-performing context-informed (CI) system (POS±2) (cf. Table 4.34) with those

by the Hiero baseline. Table 4.35 shows how two systems differ from each other

in terms of sentence-level automatic evaluation measures (BLEU and TER) and

closeness to the reference set. Additionally, Table 4.36 compares weights of the

various translational features of the POS±2 and the baseline systems obtained by

MERT training.

CI>Hiero CI<Hiero CI=Hiero Zero
Sentence-Level BLEU 101 61 17 316
Sentence-Level TER 212 150 133 0
Closeness to Reference Set CI Hiero
Matching Translations (%) 0 0
Matching Words (%) 51.49 51.10

Table 4.35: Comparison between translations produced by the best-performing
context-informed (CI) system (POS±2) and the Hiero baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λglue λwrdpty λmbl λbest

Moses 0.1885 0.0817 -0.0093 0.0914 0.0312 0.1227 -0.0598 -0.4151 - -
POS±2 0.1421 0.0060 0.0158 0.0463 0.0680 -0.0855 0.0035 -0.6120 0.0166 0.0031

Table 4.36: Comparison of weights for each translational feature of the two systems
(POS±2 and Hiero baseline) obtained by MERT training.

4.4.1.2 English-to-Dutch

Experiments on English-to-Dutch translation (Haque et al., 2010a) were carried out

on the Open Subtitles corpus (cf. Section 3.6).18 The results obtained are shown in

Table 4.37. We observe that the English-to-Dutch subtitle translation task benefits

from the addition of source-language context features, as the inclusion of any type

of contextual feature improves upon the Hiero baseline across all evaluation metrics.

Adding words as source contexts adds 0.41 BLEU points (a relative improvement

of 1.87%) to the baseline. Somewhat higher improvements are observed with the

18Experimental results reported in this section has been described in (Haque et al., 2010a)
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addition of POS context (0.47 BLEU; 2.15% relative increase). However, none of

the BLEU improvements are statistically significant with respect to the HPB-SMT

baseline.

Exp. BLEU NIST METEOR TER WER PER

Baseline 21.92 5.29 43.06 56.72 55.43 48.60

Word±2 22.33 (77%) 5.33 43.23 (96%) 56.36 55.32 48.28
POS±2 22.39 (80%) 5.33 43.66 (96.2%) 56.68 55.6 48.54
Word±2+POS±2 22.22 (30%) 5.29 43.85 (93.4%) 56.93 55.71 48.54

Table 4.37: Experimental results with individual features, compared against the
Hiero baseline.

When focusing on the METEOR evaluation metric, we find that among the

individual features, POS±2 produces the highest improvements (0.60 points; 1.4%

relative increase) over the baseline. Improvement in METEOR is also observed for

the the Word±2 (0.17 METEOR; 0.4%). Unlike BLEU, METEOR improvements for

the Word±2 and the POS±2 with respect to the baseline are statistically significant.

Improvement in TER for the Word feature (a reduction of 0.36 TER points) is

comparable to improvements in METEOR and BLEU evaluation metrics. We see

an exception for the POS±2 which produces only a 0.04 point reduction in TER

over the Hiero baseline.

Subsequently, we performed an experiment in which we combined the lexical

features with the syntactic features. Results obtained combining word and POS

contexts are shown in the last row of Table 4.37. Interestingly, POS features to-

gether with word contexts cause system performance to deteriorate compared to the

individual results; we observe only a 0.30 BLEU point improvement (1.38% relative

increase, not statistically significant) over the baseline.

As an additional point of analysis, we compare translations produced by our

best-performing context-informed (CI) system (POS±2) (cf. Table 4.37) with those

by the Hiero baseline. Table 4.38 shows how two systems differ from each other

in terms of sentence-level automatic evaluation measures (BLEU and TER) and

closeness to the reference set. Additionally, Table 4.39 compares weights of the

various translational features of the POS±2 and the baseline systems obtained by
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MERT training.

CI>Hiero CI<Hiero CI=Hiero Zero
Sentence-Level BLEU 46 40 129 785
Sentence-Level TER 103 106 679 112
Closeness to Reference Set CI Hiero
Matching Translations (%) 12.4 12.4
Matching Words (%) 58.18 57.66

Table 4.38: Comparison between translations produced by the best-performing
context-informed (CI) system (POS±2) and the Hiero baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λglue λwrdpty λmbl λbest

Moses 0.0823 0.0205 0.0217 0.1702 0.0409 -0.3477 0.3421 0.095 - -
POS±2 0.1081 0.0023 0.0180 0.1807 0.0436 -0.3842 -0.3841 -0.088 0.0070 0.0021

Table 4.39: Comparison of weights for each translational feature of the two systems
(POS±2 and Hiero baseline) obtained by MERT training.

4.4.2 Discussion

Basic features such as neighbouring words and POS tags were successfully integrated

as source-side contexts into the state-of-the-art hierarchical phrase-based SMT sys-

tem, Hiero. Both words and POS tags appear to be effective source-language con-

texts in English-to-Hindi translation since addition of such context types surpasses

the Hiero baseline with statistically significant gains in BLEU. For English-to-Dutch

translation, incorporation of basic contextual features provides moderate gains in

BLEU over a Hiero baseline, which are close to the significance level. Moreover,

we observed statistically significant improvements in METEOR for both word- and

POS-based models. Thus, words and POS tags prove to be effective source-language

contexts in the state-of-the-art Hiero model.
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4.5 Machine Transliteration: An Application of

Context-Informed PB-SMT

4.5.1 Machine Transliteration Overview

A process which translates proper nouns and technical terms across languages with

different alphabets and sound inventories is commonly called transliteration (Knight

and Graehl, 1998). In other words, the transliteration process finds a phonetic

equivalent in the target language for a given named entity (NE) or proper noun

written in the source language. If two languages use the same set of alphabets,

the transliteration task becomes easier since the word can be copied verbatim in

the target output. For example, a phrase like ‘Antonio Gil’ in English usually

gets translated as ‘Antonio Gil’ in Spanish (Knight and Graehl, 1998). Different

challenges arise in transliteration for those language pairs that differ in alphabets

and sound inventories, such as English-to-Hindi, English-Chinese, and English-to-

Arabic, etc. There are numerous ways of performing automatic transliteration, e.g.

with the noisy channel model (Knight, 1999), joint source channel model (Li et al.,

2004), decision-tree based model (Kang and Choi, 2000), statistical SMT model

(Matthews, 2005), etc.

4.5.2 Impact of Transliteration on Machine Translation

Machine transliteration is of key importance in many cross-lingual natural language

processing applications, such as MT, information retrieval and question answering.

Named entities (NEs) or proper nouns rarely appear in the training sentences from

which MT systems are usually built. Moreover, NEs are very productive in nature.

Therefore, translating out-of-vocabulary NEs is a real problem for any MT system.

While translating an input source sentence having an out-of-vocabulary NE, the MT

system usually copies that OOV NE verbatim to the target output. Thus, an NE

composed of the source-language alphabet appears in the MT output, which a native
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speaker of the target language can seldom recognize. In this regard, transliteration

plays an important role in the MT process, as it can translate out-of-vocabulary

NEs of the source language into NEs of the target language. MT researcher have

deployed transliteration engines into the MT system order to translate OOV NEs

(Langlais and Patry, 2007; Habash, 2008).

4.5.3 Machine Transliteration with Context-Informed PB-

SMT

We adapt the PB-SMT model of Koehn et al. (2003) for transliteration, where

characters are translated rather than words as in a character-level translation system

(Lepage and Denoual, 2006). However, we go a step further from the basic PB-SMT

model by using source-language contextual features (Stroppa et al., 2007). We

also create transliteration models by constraining the character-level segmentations,

i.e. treating a consonant-vowel cluster as one transliteration unit. Our machine

transliteration models are based on the PB-SMT (Koehn et al., 2003) toolkit Moses

(Koehn et al., 2007).

In order to carry out the transliteration experiments, we adopt two different ex-

perimental approaches depending on the nature of the transliteration unit (character-

level and syllable-level) employed, which are described as follows.

4.5.3.1 Character-Level Transliteration

In this approach, named entities are split into characters (i.e. alphabets), each of

which can be viewed as the transliteration unit. The transliteration system inputs a

NE represented as a sequence of characters in the source language, and generates a

target NE in the form of a sequence of characters in the target language. Henceforth,

we refer to this approach as character-level (CL) transliteration.

Each NE in the training data (parallel NE list) is represented as a sequence of

characters in its respective language in order to build the transliteration model.
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4.5.3.2 Syllable-Level Transliteration

In this approach, we break NEs into transliteration units which bear close resem-

blance to syllables. In our English-to-Hindi transliteration task, we split English

NEs into transliteration units having a C*V* pattern (C: consonant, V: vowel) and

Hindi NEs are divided into transliteration units having a Ch+M pattern (M: Hindi

matra/vowel modifier, Ch: characters other than matras) (Ekbal et al., 2006). The

transliteration system inputs an NE represented as a sequence of syllables in the

source language, and generates the target NE in the form of a sequence of syllables

in the target language. Henceforth, we refer to this approach as syllable-level (SL)

transliteration.

Each NE of the training data is represented as a sequence of syllables in its

respective language in order to build the transliteration model.

4.5.3.3 Experimental Set-Up

We carried out transliteration experiments on both character-level (CL) and syllable-

level (SL) data. In order to build our context-informed transliteration system, we

derive two memory-based log-linear features ĥmbl and ĥbest (cf. Section 3.3.1), and

integrate them into the log-linear framework of Moses. Like lexical contextual in-

formation (CI) defined in Equation (4.1), we form contextual information (CI) of

a transliteration unit (character or syllable) in order to derive the above memory-

based log-linear features. In short, we followed the word-based context-informed

PB-SMT model in order to conduct context-sensitive transliteration experiments,

where characters or syllables are assumed as words as in the standard phrase-based

approach. The context-based transliteration experiments were performed with three

different memory-based classifiers: IGTree, IB1 and TRIBL (Daelemans and van den

Bosch, 2005). The Moses PB-SMT system serves as our baseline.
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4.5.3.4 Data

In order to carry out experiments, we used 10,000 parallel NEs from the NEWS

200919 (Li et al., 2009) English-to-Hindi training data (Kumaran and Tobias, 2007).

Henceforth, we refer to this small amount of data as SmallEH. Additionally, we

used English-to-Hindi parallel person names data (105,905 distinct name pairs) of

the Election Commission of India (ECI).20 We add SmallEH data together with the

ECI data to conduct large-scale experiments. Henceforth, we refer to the combined

large size of data as LargeEH. Both the development set and test set are taken from

NEWS 2009, each of which contains 1,000 parallel NEs.

4.5.3.5 Evaluation

In order to evaluate transliteration output with respect to the reference transliter-

ation set, we used the Word Accuracy in Top-1 (ACC) metric described in (Li et

al., 2009). It measures the correctness of the first transliteration candidate in the

candidate list generated by a transliteration system. ACC = 1 means that the top

candidate is correct transliteration, i.e. it matches one of the references, and ACC

= 0 means that the top candidate is incorrect. ACC is defined as in Equation (4.6):

ACC =
N∑
i=1


1 if ∃rij : rij = ci1

0 otherwise

(4.6)

where N : total number of names (source words) in the test set, rij: j-th reference

transliteration for i-th name in the test set, and cik: k-th candidate transliteration

(system output) for i-th name in the test set (1 ≤ k ≤ 10).

19http://www.acl-ijcnlp-2009.org/workshops/NEWS2009/
20http://www.eci.gov.in/DevForum/Fullname.asp
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4.5.4 Experimental Results

In addition to the baseline Moses system, we carried out three different set of ex-

periments with IGTree, IB1 and TRIBL. Each of these experiments was carried out

on both the SmallEH and the combined larger data (LargeEH), both at character

level (CL) and syllable level (SL), and considering ±1/±2 tokens as context. For

each experiment, we produce the 10-best distinct hypotheses; nevertheless, just top

candidate translation is used in evaluation (cf. Equation (4.6)).

Data Set SmallEH LargeEH

Transliteration Unit CL SL CL SL

Moses Baseline .290 .391 .352 .407

Context Size ±1 ±2 ±1 ±2 ±1 ±2 ±1 ±2

IB1 0.391 0.386 0.406 0.359 0.431 0.420 0.437 0.427
IGTree 0.372 0.371 0.412 0.416 0.413 0.407 0.445 0.427
TRIBL 0.382 0.399 0.408 0.395 0.439 0.421 0.444 0.439

Table 4.40: Results of Context-Informed PB-SMT on Transliteration.

We observed that many of the (unseen) transliteration units (TU) in the test set

remain untranslated in SL systems due to the problem of data sparseness. Whenever

an SL system fails to translate a TU, we fall back on the corresponding CL system

to translate the TU as a post-processing step.

The experimental results are displayed in Table 4.40. As can be seen from Table

4.40, the accuracy of the SL baseline system (0.391 ACC points) is much higher

than that of the CL baseline system (0.290 ACC points) on the SmallEH data set.

Similarly, the accuracy of the SL baseline system (0.407 ACC points) is also much

higher than that of the CL baseline system (0.352 ACC points) on the LargeEH

data set.

We see from Table 4.40 that the accuracy of any of the context-sensitive translit-

eration systems is much higher compared to that of the respective baseline. On the

SmallEH data set, the CL system with ±2 size of context window produced the high-

est accuracy (0.399 ACC points; a 0.109 ACC point improvement; 36.45% relative

increase) over the Moses baseline when TRIBL is employed as the classifier. On the

same data set, the SL system with ±2 size of context window produced the highest
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accuracy (0.416 ACC points; a 0.025 ACC point improvement; 6.40% relative) over

the Moses baseline; this time, IGTree was used as the classifier.

Similar improvements are to be observed on the large-scale data set, i.e. LargeEH.

The CL system with ±1 size of context window produced highest accuracy (0.439

ACC points; a 0.087 ACC point improvement; 24.71% relative) over the baseline

when TRIBL is employed as the classifier. Overall highest accuracy was achieved

(0.445 ACC points; a 0.038 ACC point improvement; 9.33% relative) for the SL sys-

tem on LargeEH data set when ±1 size of context window and the IGTree classifier

were used. The transliteration experiments described so far (in Table 4.40) have

been reported in (Haque et al., 2009c) which presents DCU transliteration system

for NEWS 2009 shared task (Li et al., 2009). Our transliteration systems secured

9th, 10th, 11th and 14th places among the 19 submissions in the NEWS 2009 shared

task.

Subsequently, we changed our Moses baseline set-up, which results in an im-

proved baseline model. We made two major changes in the baseline configuration:

(a) maximum phrase length is set to 7 instead of 2 in our previous baseline set-up,21

(b) the objective function of MERT (Och, 2003) was the BLEU evaluation metric

(Papineni et al., 2002) in our previous baseline set-up, which is replaced with an

edit distance-based evaluation metric PER (Tillmann et al., 1997). The improved

baseline accuracies can be seen from Table 4.41, which displays the results produced

by the different context-sensitive models. As can be seen from Table 4.41, the new

configuration also affects the performance of all context-sensitive models which pro-

duce much better scores compared to the scores reported in Table 4.40. This time,

we achieve the highest accuracy (0.476 ACC points; a 0.028 ACC point improve-

ment; 6.25% relative increase) for the CL system with ±1 size of context window

on the LargeEH data set while employing IB1 as the classifier.

We also conducted experiments with an additional set-up in which we added three

21The syllable-level system breaks NEs into usually a average of 3 to 5 syllables. That is why
we chose maximum phrase length to 2 in our previous baseline set-up.
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Data Set SmallEH LargeEH

Transliteration Unit CL SL CL SL

Moses Baseline 0.442 0.400 0.448 .407

Context Size ±1 ±2 ±1 ±2 ±1 ±2 ±1 ±2

IB1 0.441 0.461 0.390 0.392 0.476 0.470 0.408 0.421
IGTree 0.445 0.451 0.385 0.390 0.456 0.470 0.427 0.426
TRIBL 0.451 0.470 0.412 0.414 0.473 0.460 0.428 0.429

IB1+IGTree+TRIBL 0.453 0.465 0.393 0.400 0.466 0.479 0.435 0.447

Table 4.41: Transliteration results.

memory-based log-linear features together into the PB-SMT model. Three different

features (IB1, IGTree and TRIBL) were derived separately from the distribution of

target transliteration units (classification result) for a given source transliteration

unit and its additional context information. Then these three features were collec-

tively integrated into the PB-SMT model. The last row of Table 4.41 shows the

experimental result obtained applying this set-up, where we see that overall high-

est accuracy (0.479 ACC points; a 0.031 ACC point improvement; 6.92% relative

increase) is obtained for the CL system with ±2 size of context window and the

combined set-up. We compare our best-performing system (cf. last row in Table

4.41) on new configuration with the top-performing systems22 of the NEWS 2009

English-to-Hindi transliteration shared task (Li et al., 2009). We discovered that

our best-performing system (CL±2: 0.479 ACC points) could have secured 3rd place

amongst all the systems in the English-to-Hindi transliteration shared task.

4.5.5 Transliteration Examples

Figure 4.4 shows outputs (transliterations of two English NEs: ‘Kaamalwala’ and

‘Mahil’) produced by our best-performing context-informed (CI) transliteration sys-

tem (CL±2 with combined set-up) and the baseline system. As can be seen from the

Figure 4.4, our context-sensitive transliteration system generates target NEs that

are similar to the references. In contrast, both target NEs generated by the baseline

transliteration model is incorrect.

22Shared task report can be found at http://research.microsoft.com/pubs/115623/
2009 NEWS SharedTaskReport.pdf
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Source Reference Baseline CI Model 

Kaamalwala कामलवाला क म ल व ◌ा ल ◌ा   क ◌ा म ल व ◌ा ल ◌ा 

Mahil मा�हल म ह ि◌ ल  म ◌ा ह ि◌ ल 

Figure 4.4: Examples comparing transliterations produced by our best-performing
context-informed (CI) transliteration system (CL±2 with combined set-up, cf. Table
4.41) and the baseline model.

4.5.6 Discussion

We have successfully employed source-context modeling into a state-of-the-art PB-

SMT model for the English-to-Hindi transliteration task. We have shown that taking

source context into account substantially improves the baseline transliteration sys-

tems. This work can be viewed as a deployment of the context-informed PB-SMT

model in a different NLP application, i.e. machine transliteration.

4.6 Summary

In this chapter, we defined contextual information for a source phrase with basic

features (words and POS tags). Then, we reported a varied set of experimental

results obtained by integrating basic contextual features into the PB-SMT model

(Koehn et al., 2003). This set of experiments involved a range of language pairs and

a series of small- and large-scale data sets. In our experiments we employed two

memory-based classification algorithms: IGTree and TRIBL. IGTree was used for

large-scale translations.

On examining the evaluation results, we discovered that basic contextual features

appear to be effective source-language contexts in small-scale translations. On the

large-scale translations, we found that basic contextual features do not help much

in improving MT quality. Experiments with increasing sizes of training sets yield a
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set of learning curves comparing various context-based SMT models with the Moses

baseline. We employed TRIBL as a classifier to conduct most of the learning curve

experiments, where basic features appeared to be effective source-context for large-

scale translations as well. As far as context-sensitive translations are concerned,

TRIBL proved to be a more effective classifier than IGTree in improving MT quality.

We also demonstrated evaluation results obtained by employing basic contextual

features in the Hiero model (Chiang, 2007). We examined the effectiveness of basic

context in two different translation tasks: English-to-Hindi and English-to-Dutch.

We observed that basic features seemed to be effective source-language contexts in

the Hiero model as well.

Finally, we introduced our context-informed transliteration models. In addition

to the result of the Moses baseline, we report a series of experimental results obtained

from those models. With an English-to-Hindi transliteration task, we showed that

our context-informed transliteration models improve significantly over the Moses

baseline in terms of transliteration accuracy.

In the next chapter, we employ supertags as source-language contexts in the

two state-of-the-art SMT models (Koehn et al., 2003; Chiang, 2007). Furthermore,

we will explore various sentence-similarity features, and investigate the integration

of such feature types into a PB-SMT model (Koehn et al., 2003) individually and

collectively with supertag-based features.
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Chapter 5

Lexical Syntactic Features

In the previous chapter, we investigated the incorporation of basic features (words

and POS tags) as a source-language context into the state-of-the-art PB-SMT

(Koehn et al., 2003) and the hierarchical PB-SMT (HPB-SMT) (Chiang, 2007) mod-

els. In this chapter, we introduce lexical syntactic information as a source-language

context in the state-of-the-art SMT models (Koehn et al., 2003; Chiang, 2007). A

range of experiments was carried out integrating lexical syntactic context into those

models, which we will report in this chapter. This chapter is organized as follows.

In Section 5.1, we present an overview of the lexical syntactic information. Section

5.2 illustrates how we make use of lexical syntactic information in order to form

contextual information (CI) of a source phrase. The experimental results obtained

adding lexical syntactic context into the PB-SMT and the HPB-SMT models are

demonstrated in Sections 5.3 and 5.4, respectively. In Section 5.5, we describe how

we derive sentence similarity-based contextual features, and integrate them into the

PB-SMT model individually and in collaboration with lexical syntactic features.

We place this discussion here because sentence similarity-based features were em-

ployed together with the supertag-based features in order to carry out context-based

experiments.
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5.1 Overview of Lexical Syntax

A lexicalized grammar can be viewed as a finite set of atomic structures each associ-

ated with a lexical item and a small set of operations to combine them into a complex

structure. An atomic structure represents a syntactic construct (an elementary tree

or a lexical category) associated with a lexical item. A finite set of operations is

applied to assemble the elementary structures into a parse tree. Each elementary

structure represents a complex linguistic category that expresses the specific syn-

tactic behaviour of a word in terms of the arguments it takes, and more generally,

the syntactic environment in which it appears.

In order to integrate lexical syntactic context into the state-of-the-art SMT mod-

els (Koehn et al., 2003; Chiang, 2007), we made use of two types of lexicalized

grammar, namely combinatory categorial grammar (CCG) (Steedman, 2000) and

lexicalized tree adjoining grammar (LTAG) (Joshi and Schabes, 1992). Both LTAG

and CCG may assign one or more syntactic structures to each word in a sentence.

Supertagging (Bangalore and Joshi, 1999) was introduced to reduce the number

of elementary structures for each word, which in effect improves the parsing effi-

ciency. Thus, a supertagger chooses the most correct ‘supertag’ (syntactic structure)

amongst a set of syntactic structures. Both the LTAG (Chen et al., 2006) and the

CCG (Hockenmaier, 2003) supertag sets were acquired from the WSJ section of the

Penn-II Treebank using hand-built extraction rules.

In this regard, in a separate strand of research, Hassan et al. (2006, 2007, 2008)

showed that incorporating supertags (Steedman, 2000; Joshi and Schabes, 1992) in

the target language model and on the target side of the translation model could

improve significantly on state-of-the-art approaches to MT. Despite the significance

of this work, it is currently not possible to develop a fully supertagged PB-SMT

system given supertaggers readily exist only for English.
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5.1.1 Lexicalized Tree Adjoining Grammar

In lexicalized tree adjoining grammar (LTAG), the supertag constitutes an LTAG

elementary tree category with a set of word-to-word dependencies. Bangalore and

Joshi (1999) used a standard Markov model tagger to estimate probabilities for

assigning LTAG elementary trees to words. An LTAG elementary tree encapsulates

syntactic dependencies on the words in a sentence. In other words, LTAG supertags

describe syntactic information such as the POS tag of a word, its subcategorization

information and the phrase-hierarchy in which it appears.

There are two types of LTAG elementary trees: initial trees and auxiliary trees.

Initial trees are minimal linguistic structures that contain no recursion. In con-

trast, auxiliary trees represent recursive structures, which are adjuncts to elemen-

tary structures. The LTAG elementary trees can be combined using two operations:

substitution and adjunction. An initial tree is inserted into an elementary tree under

the operation of substitution. An auxiliary tree is attached to an elementary tree

under the operation of adjunction.

Figure 5.1 shows the LTAG supertags for the example sentence ‘Can you play my

favourite old record? ’, which are assembled into a parse tree with the substitution

and adjunction operations. The left-side of Figure 5.1 shows seven elementary trees,

three of which are initial trees representing terminals ‘you’, ‘play ’, and ‘record? ’. The

remaining elementary trees in Figure 5.1 are auxiliary trees representing terminals

‘Can’, ‘my ’, ‘favourite’, and ‘old ’. The right-side of Figure 5.1 displays a phrase

structure parse tree which is formed by combining the elementary trees (shown at

the left-side of Figure 5.1) under the substitution and adjunction operations.

5.1.2 Combinatory Categorial Grammar

In combinatory categorial grammar, the supertag constitutes a CCG lexical category

with a set of word-to-word dependencies. Clark and Curran (2004) used a MaxEnt

model to estimate the probabilities for assigning lexical categories to each word of a
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Figure 5.1: Example of LTAG supertags, which are combined under the operations
of substitution and adjunction into a parse tree.

sentence. Each lexical category encapsulates its syntactic dependencies in different

contexts. The CCG supertag of a word is related to the supertags of its neighbour-

ing words which allows long-range word-to-word dependencies in a sentence to be

captured in an indirect way.

A CCG lexical category may be either atomic (S, N, NP) or complex (S\S,

S\NP, (S\NP)/NP). CCG supertags are combined under three types of operators

(application operators, composition operators and type raising) (Hockenmaier, 2003)

to form a parse tree.

Figure 5.2 shows the CCG supertags for the example sentence ‘Can you play

my favourite old record? ’, which are assembled into a parse tree with forward and

backward application operations. For an example, The right-hand side of Figure

5.2 shows that the word ‘old ’ is combined with ‘record? ’ under the operation of

forward application. In other words, ‘old ’ can be thought of as a function that takes

a category ‘N’ to its right and returns a category ‘N’.
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Figure 5.2: Example of CCG supertags, which are combined under the operations
of forward and backward application into a parse tree.

5.1.3 Comparison of CCG and LTAG

In LTAG, a lexical item is associated with an elementary tree. On the other hand,

CCG supertag constitutes a lexical category with a set of word-to-word dependen-

cies. Both LTAG elementary trees and CCG lexical categories share a common

property since both represent similar kind of arguments which preserve syntactic

dependencies amongst the words in a sentence. Accuracies of LTAG and CCG su-

pertaggers are quite similar (LTAG: 92% (Bangalore and Joshi, 1999); CCG: 92.39%

(Clark and Curran, 2007)).

Despite the similarities between CCG and LTAG, these two approaches differ in

following respects:

• The CCG supertag set is automatically extracted from CCGbank (Hocken-

maier and Steedman, 2002) which is derived from the Penn-II Treebank. The

number of tags in CCG tagset is 304 to 1,206 depending upon different fre-

quency cut-offs. In contrast, Chen and Vijay-Shanker (2000) extract LTAG

supertags automatically from the Penn-II Treebank with a different strategy.1

The size of the tagset is 800 to 1800 depending upon different frequency cut-

offs.

• Bangalore and Joshi (1999) used a standard Markov model tagger to assign

1In order to extract elementary trees from the Treebank, Chen and Vijay-Shanker (2000) made
use of a head percolation table to identify head word of a node in the parse tree. They identified
each node’s status as complement or adjunct. According to Chen and Vijay-Shanker (2000), trunks
of elementary trees are determined by finding paths in the parse tree using hand-built extraction
rules.
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LTAG elementary trees to words, while Clark and Curran (2004) used a Max-

Ent model to assign lexical categories to each word of a sentence.

• LTAG elementary trees represent rigid structures, while CCG categories allow

more flexibility in the derivation process. Hassan (2009) pointed out that

the flexibility of CCG derivations allows for the handling of non-constituent

constructions that LTAG cannot handle. This results in more spurious parse

trees in CCG than LTAG.

5.2 Supertags as Context Information

We derive contextual information (CI) for a source phrase with supertags. Section

5.2.1 shows how CI for a PB-SMT source phrase is formed. In Section 5.2.2, we

illustrate how CI for a Hiero source phrase is formed.

5.2.1 Context Information for PB-SMT

Like the CIpos feature defined in Equation (4.2) (cf. page 58), we define the contex-

tual information (CIst) with supertags as in (5.1):

CIst(f̂k) = {st(fik−l), ..., st(fik−1), st(f̂k), st(fjk+1), ..., st(fjk+l)} (5.1)

Similar to the CIpos feature, we form the supertag for a multi-word focus phrase

by concatenating the supertags of the words composing it. Thus, the supertag-based

CI constitutes a window of size 2l + 1 features. In our experiments, we consider

context widths ±1 and ±2 (i.e. l = 1, 2) surrounding the focus phrase. For example,

the CI of the focus phrase ‘play ’ in Figure 5.2 with CCG supertags is formed as:

CIst = {st(you), st(play), st(my)} = {NP, (S\NP)/NP, NP/N} (with l = 1). We

also carried out experiments joining the two supertag types (CCG and LTAG) (cf.

Section 5.3.1.1).
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5.2.2 Context Information for Hierarchical PB-SMT

Like our CIpos feature defined in Equation (4.4) (cf. page 61), we define the contex-

tual information (CIst) for a Hiero source phrase α with supertags as in (5.2):

CIst(α) = {st(wk)} (5.2)

where ∀k ∈ [1, |CIlex|] : wk ∈ CIlex (CIlex is defined in Equation (4.3)).

Similar to the CIpos (cf. Equation (4.4)) features, the supertag syntactic features

form a window of size 2(l + s). We carried out a series of experiments by integrating

the supertag context into the Hiero model. In addition, we combine the syntactic

features with the lexical features. For instance, when supertags are combined with

lexical features, the CI is formed by the union of these features, i.e. CI= CIst ∪ CIlex.

5.3 Experiments with Context-Informed PB-SMT

Since we intend to use supertags as source-side contextual features, we chose En-

glish as the source language, given the availability of supertag information for this

language. We carried out experiments by systematically applying supertag fea-

tures on different language pairs and with varying sizes of training data. Similar

to the division of the reports on the experiments with basic features in Section

4.3, we divide the reports on experiments with supertag features into seven subsec-

tions. Section 5.3.1 reports experimental results on small-scale data sets represent-

ing the language pairs English-to-Chinese, English-to-Hindi, and English-to-Czech.

Section 5.3.2 reports experimental results on large-scale data sets representing the

language pairs English-to-Dutch, English-to-Japanese, and English-to-Chinese. Sec-

tion 5.3.3 presents some analysis of results obtained from the small- and large-scale

translations. In Section 5.3.4, we demonstrate the outcomes of the learning curve ex-

periments which we carried out on two different language pairs: English-to-Spanish

and English-to-Dutch. In Section 5.3.6, we provide some analysis of the results
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of the learning curve experiments. Section 5.3.7 compares context-dependent and

context-independent phrase translation.2

5.3.1 Experiments on Small-Scale Data Sets

5.3.1.1 English-to-Chinese

The first set of experiments were carried out on IWSLT’06 English-to-Chinese train-

ing data (cf. Section 3.6) (Haque et al., 2009a).3 As stated earlier in Section 4.3.1.1

(cf. page 62), we adopted a different experimental set-up in order to perform exper-

iments on this data set.

BLEU NIST WER PER
Baseline 20.56 4.67 57.82 48.99
Context Size ±1 ±2 ±1 ±2 ±1 ±2 ±1 ±2
CCG 21.75 21.52 4.84 4.79 56.28 56.95 48.58 49.10
LTAG 21.92 (95.1%) 21.34 4.82 4.70 56.63 57.61 48.43 49.27
Word+CCG 21.52 21.53 4.75 4.78 57.21 57.38 48.95 49.45
Word+LTAG 21.64 (96.2%) 21.37 4.78 4.79 57.15 57.06 48.89 48.95

Table 5.1: Experiments of English-to-Chinese translation with uniform context size
using IGTree

The results with uniform context size are shown in Table 5.1, which clearly shows

that adding supertags as source-side context improves PB-SMT baseline across all

evaluation metrics. When LTAG supertags are added as an individual context fea-

ture, the system produces the highest BLEU score (a 1.36 BLEU point improvement;

6.61% relative increase) among all the systems. When CCG supertags are used as an

individual context feature, moderate improvements can be seen (1.19 BLEU points;

5.79% relative). In both cases, a context window of ±1 appears to be more useful

than that of ±2. Furthermore, we conducted experiments by applying the supertag

and lexical features in collaboration, the results of which can be seen in the last

two rows of the Table 5.1. Moderate improvements over the baseline are observed

2Parts of the experiments carried out with our context-informed PB-SMT model including
learning curve experiments have been reported, albeit in a different form, in Haque et al. (2011).

3Experiments reported in this section have been published, albeit in different form, in (Haque
et al., 2009a).
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for Word+CCG (a 0.96 BLEU point improvement; 4.66% relative increase) and

Word+LTAG (1.08 BLEU improvement; 5.25% relative increase) when a context

window of ±1 is used.

Experiments BLEU NIST WER PER
Baseline 20.56 4.67 57.82 48.99
Word±2+CCG±1 22.01 4.82 57.21 48.63
Word±2+LTAG±1 21.38 4.79 57.01 48.89
POS±2+CCG±1 21.08 4.68 58.22 50.05
CCG±1+LTAG±1 21.79 4.74 58.28 49.59
CCG±1+LTAG±1† 22.11 (97.5%) 4.82 56.95 48.81
Word±1+CCG±1+LTAG±1† 21.48 4.79 56.83 48.53
Word±2+POS±2+CCG±1 21.23 4.72 57.47 49.82
Super-Pair±1† 21.99 4.82 56.83 48.72

Table 5.2: Experiments of English-to-Chinese translation with varying context size
using IGTree. The symbol † indicates an experimental set-up in which we ignore
the syntactic information of the source phrase.

The results obtained employing combinations of features with varying context

sizes can be seen in Table 5.2. Here, adding CCG supertags to the neighbouring

words caused the system performance to reach a new high of 22.01 BLEU score, 1.45

BLEU points (7.05% relative improvement) over the PB-SMT baseline. Encourag-

ingly, the best performance of all was seen when both supertag features were used in

combination. Here an even higher BLEU score of 22.11 (7.54% relative improvement

over the baseline) was obtained for CCG±1+LTAG±1, when ignoring the syntactic

feature information of the focus phrase.

BLEU NIST WER PER
Baseline 20.56 4.67 57.82 48.99
CCG±1 22.08 (97.1%) 4.83 57.30 48.63
LTAG±1 22.06 4.75 58.05 49.04
CCG±1+LTAG±1† 21.72 4.76 58.48 49.18
Super-Pair±1† 22.03 4.79 57.35 49.15

Table 5.3: Experiments of English-to-Chinese translation using IB1.

We also tested the best-performing set-ups on IB1 and TRIBL classifiers, the

results of which are shown in Table 5.3 and 5.4, respectively. The differences we

see between using IGTree, TRIBL, and IB1 are generally small and somewhat un-
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predictable. When considered as a single concatenated feature, the supertag-pair

(Super-Pair) performed best on TRIBL. When the supertags are used as a stan-

dalone feature, IB1 produced the best score on LTAG (7.3% relative improvement),

and TRIBL on CCG (7.88% relatively better).

BLEU NIST WER PER
Baseline 20.56 4.67 57.82 48.99
CCG±1 22.18 (98.5%) 4.85 56.31 48.55
LTAG±1 21.39 4.78 56.83 48.72
CCG±1+LTAG±1† 22.00 4.75 58.16 49.59
Super-Pair±1† 22.13 4.80 57.24 48.92

Table 5.4: Experiments of English-to-Chinese translation using TRIBL.

We also carried out an analysis on the translations produced by our best-performing

context-informed (CI) system (CCG±1 with TRIBL, cf. Table 5.4) and the Moses

baseline. Table 5.5 shows how two systems differ from each other in terms of

sentence-level automatic evaluation measures (BLEU and TER) and closeness to

the reference set. Additionally, Table 5.6 compares weights of the various transla-

tional features of the CCG±1 and the baseline systems obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 31 17 56 382
Sentence-Level TER 102 87 263 34
Closeness to Reference Set CI Moses
Matching Translations (%) 8.93 7.81
Matching Words (%) 58.45 57.44

Table 5.5: Comparison between translations produced by the best-performing
context-informed (CI) system (CCG±1) and Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmod

Moses 0.2388 0.0686 0.0076 0.0477 0.0842 0.0507 0.7030 -
CCG±1 0.1851 0.0575 0.0116 - 0.0290 -0.0107 0.1851 0.0544

Table 5.6: Comparison of weights for each translational feature of the two systems
(CCG±1 and Moses baseline) obtained by MERT training.

5.3.1.2 English-to-Hindi

English-to-Hindi experiments were carried out using the EILMT tourism corpus (cf.

Section 3.6). The experimental results using the TRIBL classifier are displayed in
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Table 5.7.

Experiments BLEU NIST METEOR TER WER PER
Baseline 10.93 4.54 28.59 74.87 82.06 56.67
CCG±1 11.14 4.58 27.94 74.84 82.19 56.76
CCG±2 11.07 4.57 28.59 74.76 81.85 56.65
LTAG±1 11.19 4.55 28.28 74.67 81.48 56.78
LTAG±2 11.17 4.57 28.59 74.73 81.98 56.63
CCG-LTAG±1 11.01 4.53 28.73 75.34 82.62 56.89
CCG±1+LTAG±1† 11.04 4.55 28.73 74.94 82.14 56.66
Super-pair±1† 11.02 4.58 27.62 74.45 81.45 56.45
Super-pair±2† 11.15 4.58 28.27 74.87 82.22 56.45

Table 5.7: Experiments applying various supertag features in English-to-Hindi trans-
lation.

For the English-to-Hindi translation task, we copied the previously best-performing

set-up obtained from the English-to-Chinese translation task. Experimental results

in Table 5.7 show that among the various features, LTAG±1 produces the best im-

provement (0.26 BLEU points, 2.37% relative) over the baseline, but this improve-

ment is not statistically significant. Other context-informed features also produce

small but consistent improvements over the baseline in terms of BLEU. Neverthe-

less, these improvements are not statistically significant with respect to the baseline.

The other evaluation metrics show similar improvements.

We also carried out an analysis on the translations produced by our best-performing

context-informed (CI) system (LTAG±1) and the Moses baseline. Table 5.8 shows

how two systems differ from each other in terms of sentence-level automatic evalu-

ation measures (BLEU and TER) and closeness to the reference set. Additionally,

Table 5.9 compares weights of the various translational features of the LTAG±1 and

the baseline systems obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 67 57 22 339
Sentence-Level TER 158 146 191 0
Closeness to Reference Set CI Moses
Matching Translations (%) 0 0
Matching Words (%) 51.54 51.86

Table 5.8: Comparison between translations produced by the best-performing
context-informed (CI) system (LTAG±1) and the Moses baseline.
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System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.0980 0.0453 0.0652 0.0510 0.1948 0.0910 -0.1683 - -
LTAG±1 0.0652 -0.0051 0.0603 0.0334 0.05419 0.0306 -0.2402 0.0421 0.0090

Table 5.9: Comparison of weights for each translational feature of the two systems
(LTAG±1 and Moses baseline) obtained by MERT training.

5.3.1.3 English-to-Czech

For the English-to-Czech translation task (Penkale et al., 2010)4 we employed the

previously best performing set-up in terms of context width and feature combina-

tions, and the TRIBL classifier. The evaluation results on the WMT 2009 test set

are reported in Table 5.10. We observe that a small improvement over the Moses

baseline is achieved for the CCG±1 feature in terms of BLEU. Moderate improve-

ments in METEOR and TER are to be observed for all features except LTAG±1.

The highest METEOR score over the baseline is obtained for the supertag pair fea-

tures (Super-Pair: a 0.15 METEOR point improvement; 0.44% relative). On the

TER evaluation metric, the best performing set-up, CCG±1, yields an absolute re-

duction of 0.42 TER points below the baseline. Similar trends are also observed for

WER and PER metrics. Moreover, gains for the CCG±1 feature are seen across all

evaluation metrics over the baseline.

Experiments BLEU NIST METEOR TER WER PER
Baseline 7.83 3.90 34.13 87.66 80.53 67.88
CCG±1 7.88 3.95 34.23 87.24 80.15 67.39
LTAG±1 7.67 3.89 34.00 87.90 80.86 68.00
CCG-LTAG±1 7.80 3.90 34.35 88.24 81.17 68.16
Super-Pair±1 7.82 3.90 34.38 87.96 80.84 68.18

Table 5.10: Supertag-based experimental results on the WMT 2009 test set.

Experimental results on the WMT 2010 test set are shown in Table 5.11. We

observe that the improvements on this test set are similar to the improvements

obtained on the WMT 2009 test set. CCG±1 yields the highest improvements across

all evaluation metrics except for METEOR. As far as the METEOR evaluation

metric is concerned, the Super-Pair±1 feature produces the highest improvement

4Parts of experimental results in the English-to-Czech translation task have been summarized
in Penkale et al. (2010).
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(a 0.32 METEOR point gain, 0.92% relative) over the baseline. CCG±1 yields a

0.21 BLEU point gain (2.68% relative increase) and a 0.43 TER point reduction

compared to the baseline.

Experiments BLEU NIST METEOR TER WER PER
Baseline 8.05 3.97 34.61 86.01 78.54 67.48
CCG±1 8.26 4.02 34.76 85.58 78.06 66.96
LTAG±1 8.00 3.95 34.57 86.41 78.95 67.72
CCG-LTAG±1 8.09 3.96 34.90 86.62 79.18 67.91
Super-Pair±1 8.11 3.95 34.93 86.62 79.05 68.08

Table 5.11: Supertag-based experimental results on the WMT 2010 test set.

In summary, slight improvements over the baseline are seen for supertag features,

but none of the improvements over the baseline models are statistically significant

in terms of BLEU.

We also carried out an analysis on the translations produced by our best-performing

system (CCG±1) and the Moses baseline (with WMT 2010 test set). Table 5.12

shows how two systems differ from each other in terms of sentence-level automatic

evaluation measures (BLEU and TER) and closeness to the reference set. Addition-

ally, Table 5.13 compares weights of the various translational features of the CCG±2

and the baseline systems obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 212 161 124 1992
Sentence-Level TER 630 533 1320 6
Closeness to Reference Set CI Moses
Matching Translations (%) 0.24 0.28
Matching Words (%) 30.27 30.73

Table 5.12: Comparison between translations produced by the best-performing
context-informed (CI) system (CCG±2) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.1017 0.0405 0.0265 0.0550 0.0222 0.2377 -0.1147 - -
CCG±1 0.1029 0.0364 0.0099 -0.0472 0.0682 0.0989 -0.2044 0.0676 0.0001

Table 5.13: Comparison of weights for each translational feature of the two systems
(CCG±1 and Moses baseline) obtained by MERT training.
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5.3.2 Experiments on Large-Scale Data Sets

5.3.2.1 English-to-Dutch

We carried out a similar series of experiments to those that we reported in the

previous section to see whether similar improvements can be achieved with large-

scale data sets. The first experimental data set was English-to-Dutch Europarl data

(cf. Section 3.6). Analogous to the experiments on small-scale data sets, we ex-

perimented with adding contextual information features representing supertags and

their combinations. We used the IGTree classifier to carry out these experiments.

Experimental results are displayed in Table 5.14. As can be seen from the ta-

ble, CCG-LTAG±1 yields the highest improvement (0.38 BLEU points; 1.57% rel-

ative) over the baseline, which is statistically significant at the 96% level of confi-

dence. Other context-informed features also produce consistent improvements over

the baseline in terms of BLEU.

Experiments BLEU NIST METEOR TER WER PER
Baseline 24.26 6.177 52.68 64.37 68.81 50.02
CCG±1 24.58 6.229 52.46 63.79 68.2 49.85
LTAG±1 24.33 6.267 52.51 63.53 68.00 49.13
CCG-LTAG±1† 24.45 6.250 52.54 63.87 68.30 49.74
CCG-LTAG±1 24.64 (96%) 6.235 52.79 63.90 68.27 49.58
Super-Pair±1† 24.35 6.184 52.31 64.45 68.71 50.32
Super-Pair±1 24.34 6.224 52.70 64.03 68.42 49.6

Table 5.14: Results on English-to-Dutch Translation employing supertag features.

In this translation task, we carried out an analysis on the translations pro-

duced by our best-performing context-informed (CI) system (CCG-LTAG±1) and

the Moses baseline. Table 5.15 shows how two systems differ from each other in

terms of sentence-level automatic evaluation measures (BLEU and TER) and close-

ness to the reference set. Table 5.16 compares weights of the various translational

features of the CCG-LTAG±1 and the baseline systems obtained by MERT training.
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CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 271 256 157 316
Sentence-Level TER 338 288 340 36
Closeness to Reference Set CI Moses
Matching Translations (%) 3.8 3.8
Matching Words (%) 61.96 61.74

Table 5.15: Comparison between translations produced by the context-informed
(CI) system (CCG-LTAG±1) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.1072 0.0102 0.0509 0.1103 0.0468 0.0936 -0.2689 - -
Word±2 0.0840 0.0224 0.0274 0.0325 0.0247 0.139 -0.1706 0.0094 0.0073

Table 5.16: Comparison of weights for each translational feature of the two systems
(CCG-LTAG±1 and Moses baseline) obtained by MERT training.

5.3.2.2 English-to-Japanese

Our next set of experiments were carried out on a large-scale English-to-Japanese

data set (cf. Section 3.6). As with the other large-scale experiments, the experi-

ments were carried out using IGTree classifiers. Experimental results are shown in

Table 5.17. System performance was evaluated using two different test sets. None

of the contextual features are able to improve on the Moses baseline with any of the

test sets.5

Experiments BLEU NIST TER WER PER
Baseline 27.30 6.746 63.31 80.01 43.36
Evaluation Results on EJTestset1
CCG±1 27.11 6.722 63.97 80.40 43.84
LTAG±1 27.18 6.736 63.53 80.06 43.51
CCG-LTAG±1 27.13 6.690 64.19 80.81 44.04
Super-Pair±1 27.10 6.727 63.84 80.44 43.59
Evaluation Results on EJTestset2
Baseline 27.76 6.838 60.64 77.49 42.61
CCG±1 27.41 6.768 61.49 78.38 43.23
LTAG±1 27.37 6.771 61.19 78.04 43.13
CCG-LTAG±1 27.31 6.734 61.68 78.51 43.27
Super-Pair±1 27.40 6.773 61.19 78.29 43.14

Table 5.17: Experimental results for large-scale English-to-Japanese translation.

We also carried out an analysis on the translations produced by the LTAG±1

5The contents in this section have been published, albeit in a different form, in Okita et al.
(2010).
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and the Moses baseline (with EJTestset2). Table 5.18 shows how two systems differ

from each other in terms of sentence-level automatic evaluation measures (BLEU

and TER) and closeness to the reference set. Additionally, Table 5.19 compares

weights of the various translational features of the LTAG±1 and the baseline systems

obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 354 387 64 122
Sentence-Level TER 303 393 231 0
Closeness to Reference Set CI Moses
Matching Translations (%) 0 0
Matching Words (%) 69.34 69.86

Table 5.18: Comparison between translations produced by the context-informed
(CI) system (LTAG±1) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.0739 0.0323 0.0292 0.0558 0.0418 0.0739 -0.1977 - -
LTAG±1 0.0734 0.0182 0.0446 0.05279 0.0515 0.0398 -0.2274 0.0434 -0.0421

Table 5.19: Comparison of weights for each translational feature of the two systems
(LTAG±1 and Moses baseline) obtained by MERT training.

5.3.2.3 English-to-Chinese

Our next set of experiments were carried out on an English-to-Chinese data set (cf.

Section 3.6). Experiments were carried out with two types of supertags (CCG±1,

LTAG±1), using both IGTree and TRIBL.

Experimental results are displayed in Table 5.20. When IGTree classifiers were

used, the LTAG±1 feature does not show any improvement over the Moses baseline

for any of the evaluation metrics, while CCG±1 shows a slight improvement only in

BLEU.

On the other hand, when we use TRIBL classifiers, CCG±1 yields a 0.37 BLEU

points improvement (3.76% relative increase) over the baseline, a statistically sig-

nificant improvement at 99.3% level of confidence. LTAG±1 produces the highest

BLEU improvement (0.54 BLEU points; 5.48% relative) over the baseline, and the

improvement is statistically significant at 99.9% level of confidence.
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Experiments BLEU NIST TER WER PER
Baseline 9.85 4.87 77.13 82.03 60.29
IGTree
CCG±1 9.91 4.83 77.98 82.75 61.31
LTAG±1 9.80 4.82 77.71 82.58 61.12
TRIBL
CCG±1 10.22 (99.3%) 4.96 76.68 81.65 59.76
LTAG±1 10.39 (99.9%) 4.89 76.92 81.82 60.20

Table 5.20: Experimental results for large-scale English-to-Chinese translation.

In sum, while for large-scale English-to-Japanese translation none of the contex-

tual features showed any improvement over the baseline, for large-scale English-to-

Chinese translation a slight improvement in terms of BLEU was observed for the

CCG supertag context when IGTree was used for the classification task. We also

carried out experiments using TRIBL as the classifier, and achieved statistically

significant improvements over the baseline for both the CCG and LTAG supertag

features.

In this translation task, we also carried out an additional analysis on the trans-

lations produced by the best-performing system (LTAG±1 with TRIBL) and the

Moses baseline. Table 5.21 shows how two systems differ from each other in terms

of sentence-level automatic evaluation measures (BLEU and TER) and closeness to

the reference set. Additionally, Table 5.22 compares weights of the various transla-

tional features of the LTAG±1 and the baseline systems obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 178 117 95 967
Sentence-Level TER 377 341 637 4
Closeness to Reference Set CI Moses
Matching Translations (%) 0.29 0.37
Matching Words (%) 52.15 51.98

Table 5.21: Comparison between translations produced by the context-informed
(CI) system (LTAG±1) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.0805 0.0011 0.0760 0.0704 0.0086 -0.0020 -0.1972 - -
LTAG±1 0.0821 0.0012 0.0638 0.0454 0.0118 0.0337 -0.2202 0.0332 0.0003

Table 5.22: Comparison of weights for each translational feature of the two systems
(LTAG±1 and Moses baseline) obtained by MERT training.
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5.3.3 Effect of Small vs Large-Scale Data Sets

First, we compare the effectiveness of supertag contextual features, both collectively

and individually, on all small-scale translation tasks. We also provide a contrastive

overview in which we compare the impact of supertag contexts with that of basic

contexts (cf. Section 4.3.1).

On IWSLT English-to-Chinese translation, the highest evaluation scores over the

baseline are achieved employing supertags and their combinations. For English-to-

Hindi, supertag as a source-side context gives moderate improvements over the base-

line, but neighbouring words appear to be the most effective context. For English-

to-Czech, slight improvements over the baseline are seen for supertags, but POS and

word contexts do not improve the baseline at all. None of the improvements over the

baseline models on both the English-to-Hindi and the English-to-Czech translation

tasks are statistically significant in terms of BLEU.

Analyzing the outcomes of small-scale translation tasks, we see that supertags

seem to be the most effective context features, as compared to neighbouring words

and part-of-speech. Arguably, one can surmise that the differences in word order

between the source and target languages in our experiments are best treated by a

feature which is not entirely restricted to local context.

We can draw better conclusions from the outcomes of large-scale translation

tasks. For large-scale English-to-Dutch translation, improvements provided by supertag-

based SMT model are statistically significant in terms of BLEU at the 96% level

of confidence. In contrast, improvements for the word context are not statistically

significant, and the POS-based model performs below the baseline PB-SMT model.

For large-scale English-to-Japanese translation, none of the contextual features

showed any improvement over the baseline. For large-scale English-to-Chinese trans-

lation, a slight improvement in BLEU over the baseline was observed for the CCG

supertag context, when IGTree was used for the classification task. For this language

pair, we also carried out experiments with TRIBL as the classifier, and achieved

modest improvements over the baseline for the both CCG and LTAG supertag con-
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texts.

Comparing the effectiveness of the classifiers on large-scale translation tasks, we

observed that IGTree proved to be useful for English-to-Dutch, but not for English-

to-Japanese or English-to-Chinese. In contrast, TRIBL was effective for this latter

language direction. In terms of contextual features, overall supertags seemed to be

more effective than words and POS tags.

5.3.4 Experiments on Increasing Size of Training Sets

We carried out learning curve experiments considering basic features (words and

POS tags) as a source-language context on three different language pairs (English-

to-Spanish, English-to-Dutch, and Dutch-to-English), the results of which were re-

ported in Section 4.3.5. We carried out learning curve experiments considering

supertags as source-language context on English-to-Spanish and English-to-Dutch

language pairs. For that purpose we used the same data sets that we used to

perform learning curve experiments with basic contextual features. We report the

outcomes of English-to-Spanish and English-to-Dutch learning curve experiments

with supertag contextual features in Sections 5.3.4.1 and 5.3.4.2, respectively.

5.3.4.1 English-to-Spanish

As mentioned in Section 4.3.5.1, the English-to-Spanish training data set was divided

into eight different training sets ranging from 10K sentence pairs to 1.64M sentence

pairs. To perform experiments on this sequence of training sets, we used both IGTree

and TRIBL. As stated in Chapter 4 (cf. page 76), we were initially able to use the

TRIBL classifier with training sets containing only up to 100K sentences due to

TRIBL’s relatively high memory requirements.

IGTree as classifier: Experimental results on English-to-Spanish translation em-

ploying IGTree as the classifier are displayed in Table 5.23, which shows experimental

results obtained on training sets comprising 10K to 1.64M sentence pairs. On the
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training set containing 1.64M sentence pairs, we were not able to perform the ex-

periment for CCG-LTAG±1 set-up since the memory requirement for building the

IGTree classifier for that exceeded the limit of our computer memory (132G). As

can be seen from Table 5.23, for all amounts of training data except the largest

one (1.64M training data), supertag-based SMT systems remain below the Moses

baseline according to the performance measured by any of the evaluation metrics.

On the training set containing 1M sentence pairs, the performance of the PB-SMT

models with supertag context is very close to the performance of the Moses base-

line. Experimental results on the training set of 1.64M sentence pairs show similar

characteristics to the results obtained on the 1M training set with a few excep-

tions. LTAG±1 and CCG±1 improve the baseline BLEU and METEOR scores,

respectively, when the largest amount of training data is used.

TRIBL as Classifier: The experimental results obtained on the training sets

containing 10K to 100K sentence pairs using TRIBL as the classifier are shown in

Table 5.24. When the 10K training set is used, the CCG±1 system provides slight

improvements over the baseline across most evaluation metrics. We also see that

the performance of the other context-informed SMT models are very close to that

of the Moses baseline.

While using 20K sentence-pairs of training data, all context-informed SMT sys-

tems (CCG±1, LTAG±1, CCG-LTAG±1, Super-Pair±1) produce moderate im-

provements over the PB-SMT baseline across most evaluation metrics. However,

none of the BLEU and METEOR improvements with respect to the baseline are

statistically significant.

Adding any of the supertag contextual features improves upon the baseline across

all the evaluation metrics, when we used the training set of 50K sentence pairs. We

see from Table 5.24 that the best BLEU improvement (0.25 BLEU points; 0.92%

relative) over the Moses baseline are achieved for CCG±1. The improvement in

BLEU for CCG±1 with respect to the baseline is statistically significant. More-
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Train. Experi- BLEU NIST METEOR TER WER PER
Size ments

10K

Baseline 22.68 6.00 26.15 68.93 67.58 50.81
CCG±1 21.84 5.88 25.5 69.84 68.5 51.44
LTAG±1 21.76 5.89 25.58 69.78 68.44 51.44
CCG-LTAG±1 21.51 5.84 25.42 70.01 68.59 51.57
Super-Pair±1 21.61 5.85 25.51 70.17 68.77 51.69

20K

Baseline 24.58 6.38 27.77 66.51 65.16 48.71
CCG±1 23.93 6.3 2736 67.27 66.16 49.19
LTAG±1 23.89 6.27 27.26 67.41 66.18 49.49
CCG-LTAG±1 23.84 6.25 27.28 67.59 66.38 49.55
Super-Pair±1 23.85 6.25 27.15 67.67 66.64 49.56

50K

Baseline 27.33 6.84 29.93 64.15 62.97 46.63
CCG±1 26.73 6.75 29.44 64.50 63.44 46.97
LTAG±1 26.57 6.73 29.37 64.91 63.83 47.28
CCG-LTAG±1 26.38 6.70 29.34 65.05 63.87 47.35
Super-Pair±1 26.65 6.74 29.43 64.56 63.54 47.11

100K
Baseline 28.64 7.09 30.91 62.30 61.26 45.1
CCG±1 28.43 7.04 30.83 62.8 61.71 45.09
LTAG±1 28.19 7.04 30.85 62.8 61.66 45.62
CCG-LTAG±1 28.31 7.03 30.75 62.89 61.93 45.65
Super-Pair±1 28.38 7.06 30.87 62.58 61.53 45.46

200K
Baseline 29.96 7.32 31.90 60.97 60.01 44.06
CCG±1 29.57 7.23 31.55 61.62 60.71 44.61
LTAG±1 29.5 7.25 31.67 61.52 60.50 44.54
CCG-LTAG±1 29.39 7.23 31.55 6147 60.54 44.62
Super-Pair±1 29.45 7.23 31.54 6162 60.73 44.61

500K
Baseline 31.08 7.47 32.67 59.86 58.83 43.18
CCG±1 30.72 7.44 32.53 60.24 59.36 43.56
LTAG±1 30.80 7.44 32.47 60.20 59.32 43.42
CCG-LTAG±1 30.61 7.44 32.49 60.18 59.40 43.40
Super-Pair±1 30.86 7.44 32.57 60.11 59.26 43.38

1M
Baseline 31.52 7.54 32.94 59.45 58.50 42.84
CCG±1 31.35 7.52 32.85 59.41 58.53 42.86
LTAG±1 31.34 7.50 32.81 59.66 58.67 43.06
CCG-LTAG±1 31.31 7.51 32.81 59.63 58.67 43.07
Super-Pair±1 31.37 7.50 32.76 59.71 58.69 43.16

1.64M
Baseline 31.92 7.60 33.24 59.06 58.14 42.42
CCG±1 31.87 7.58 33.25 59.12 58.17 42.61
LTAG±1 31.93 7.57 33.21 59.36 58.37 42.77
Super-Pair±1 31.71 7.56 33.01 59.20 58.30 42.71

Table 5.23: Results of English-to-Spanish learning curve experiments with IGTree
classifier.
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Train. Experi- BLEU NIST METEOR TER WER PER
Size ments

10K

Baseline 22.68 6.00 26.15 68.93 67.58 50.81
CCG±1 22.66 6.02 26.21 68.84 67.41 50.66
LTAG±1 22.67 6.00 26.15 69.06 67.71 50.89
CCG-LTAG±1 21.51 5.84 25.42 70.01 68.59 51.57
Super-Pair±1 21.61 5.85 25.51 70.17 68.77 51.69

20K

Baseline 24.58 6.38 27.77 66.51 65.16 48.71
CCG±1 24.57 6.39 27.74 66.76 65.70 48.78
LTAG±1 24.57 6.40 27.85 66.57 65.39 48.65
CCG-LTAG±1 24.66 6.41 27.85 66.54 65.32 48.70
Super-Pair±1 24.70 (72%) 6.40 27.80 66.57 65.25 48.71

50K

Baseline 27.33 6.84 29.93 64.15 62.97 46.63
CCG±1 27.58 (97.7%) 6.90 30.08 (98.1%) 63.53 62.38 46.29
LTAG±1 27.45 (88%) 6.89 29.98 (74.8%) 63.66 62.66 46.18
CCG-LTAG±1 27.44 (92.7%) 6.89 30.02 (86.1%) 63.57 62.72 46.16
Super-Pair±1 27.56 (93.9%) 6.87 30.04 (91.1%) 63.77 62.60 46.52

100K

Baseline 28.64 7.09 30.91 62.30 61.26 45.1
CCG±1 29.02 (96.9%) 7.14 31.18 (99.9%) 62.25 61.21 45.09
LTAG±1 29.07 (99.5%) 7.15 31.21 (99.9%) 62.06 61.04 44.93
CCG-LTAG±1 29.11 (99.5%) 7.17 31.32 (99.9%) 61.88 60.89 44.86
Super-Pair±1 29.11 (99.5%) 7.16 31.32 (99.9%) 61.88 60.84 44.89

Table 5.24: Results of English-to-Spanish learning curve experiments using TRIBL
as the classifier.

over, improvements in BLEU for the remaining context-based systems (LTAG±1,

CCG-LTAG±1, Super-Pair±1) with respect to the baseline are very close to the sig-

nificance level. As far as METEOR is concerned, CCG±1 produces a statistically

significant improvement (0.15 METEOR points; 0.57% relative) over the baseline.

When the 100K training set is used, all of the supertag features provide modest

gains over the Moses baseline across all evaluation metrics. Both Super-Pair±1 and

CCG-LTAG±1 produce the highest BLEU (0.47 BLEU points improvement; 1.65%

relative) and METEOR (0.41 METEOR points improvement; 1.33% relative) im-

provements over the baseline, both of which are statistically significant with respect

to the baseline.

Learning Curves: With learning curves, here we present a more analytical study

of the effect of increasing amounts of training data, for both IGTree and TRIBL

classifiers. We plot the BLEU score learning curves of the two best-performing

context-informed models (LTAG±1, Super-Pair±1) for TRIBL and IGTree, as well

as the Moses baseline in Figure 5.3. The curves of IGTree extend up to the maximum
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Figure 5.3: BLEU Learning curves comparing the Moses baseline against supertag-
based SMT models in English-to-Spanish translation task.
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Figure 5.4: BLEU (top), METEOR (centre) and TER (bottom) score-difference
curves comparing the Moses baseline against supertag-based SMT models in English-
to-Spanish translation task.
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of 1.64M training sentences; as noted, due to limitations in memory, the TRIBL

experiments extend only up to 100K training sentences.

In addition, Figure 5.4 shows the BLEU (top), METEOR (centre) and TER

(bottom) difference curves of the supertag-based experiments against the baseline,

highlighting the gains and losses against the baseline. In addition to the two context-

based models (LTAG±1, Super-Pair±1) and the Moses baseline, this figure displays

the performances of the CCG±1 and the CCG-LTAG±1 against the baseline.

Figure 5.3 shows that the LTAG±1 and Super-Pair±1 curves of TRIBL start

just below the baseline curve, then improve over the baseline curve. The figure also

illustrates that the LTAG±1 and Super-Pair±1 curves of IGTree start at a lower

level than the baseline curve, and end at the same level as the baseline curve at the

largest training set size.

We summarize the outcomes of the English-to-Spanish translation task. TRIBL

appears to be effective on both small and moderately large-scale data sets. In con-

trast, IGTree does not offer improvements over the baseline either with the small or

the large-scale context-informed models. The performance of the large-scale context-

informed models with the IGTree classifier are comparable to that of the Moses

baseline.

As an additional point of analysis, Figure 5.5 compares the Moses baseline with

both TRIBL and IGTree using the CCG±1 feature, in terms of the average number

of target phrases considered for a source phrase for varying training data sizes.

The graph in Figure 5.5 shows that the TRIBL curve lies between the IGTree

curve and the Moses baseline curve; the Moses baseline uses an increasing number

of target phrases with more training data, reaching an average of several hundreds

of phrases at the maximal training set sizes. The TRIBL curve starts close to the

IGTree curve, but rises at 100K training sentences; nevertheless, the TRIBL curve

remains below the baseline curve. Thus, both the TRIBL and IGTree classifiers

produce smaller, more constrained distributions of the target phrases given a source

phrase and its context information.
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Figure 5.5: Average number of target phrase distribution sizes for source phrases
for TRIBL and IGTree compared to the Moses baseline.

In this translation task, we carried out an additional analysis on the translations

produced by our best-performing context-informed (CI) system (CCG-LTAG±1)6

and the Moses baseline. Table 5.25 shows how two systems differ from each other in

terms of sentence-level automatic evaluation measures (BLEU and TER) and close-

ness to the reference set. Additionally, Table 5.26 compares weights of the various

translational features of the CCG-LTAG±1 and the baseline systems obtained by

MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 603 538 356 503
Sentence-Level TER 595 540 828 37
Closeness to Reference Set CI Moses
Matching Translations (%) 2.1 2
Matching Words (%) 60.01 59.65

Table 5.25: Comparison between translations produced by the best-performing
context-informed (CI) system (CCG-LTAG±1) and the Moses baseline.

6The best-performing CCG-LTAG±1 system which we used for this analysis was built on 100K
training set with TRIBL (cf. Table 5.24).
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System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.0795 0.0448 0.0091 0.0449 0.0527 0.1151 -0.1451 - -
CCG-LTAG±1 0.1053 0.0504 0.0695 0.0012 0.0489 0.0880 -0.1333 0.0296 0.0001

Table 5.26: Comparison of weights for each translational feature of the two systems
(CCG-LTAG±1 and Moses baseline) obtained by MERT training.

5.3.4.2 English-to-Dutch

In this section, we report the outcomes of the English-to-Dutch learning curve exper-

iments. In this translation task, we adopted our previously best-performing set-ups

in order to carry out experiments with supertag contextual models. We took in

total four experimental set-ups, two (CCG±1, LTAG±1) representing individual

supertag features, and the remaining two (CCG-LTAG±1, Super-Pair±1) combina-

tions of supertag features.

In order to perform learning curve experiments with supertag contextual features,

we used the same English-to-Dutch data set which we used to conduct the learning-

curve experiments with basic contextual features (cf. Section 4.3.5.3). TRIBL is

used as the classifier, as in the learning-curve experiments with basic contextual

features.

The experimental results obtained on the training sets containing 10K to 1.31M

sentence pairs are shown in Table 5.27, where statistically significant improvements

are observed when the training data contains 100K sentence pairs or more. When

larger amounts (1M and 1.33M) of training data are used, both CCG and LTAG

supertags as individual context features provide statistically significant improve-

ments in BLEU over the Moses baseline. Supertag combinations (CCG-LTAG±1,

Super-Pair±1) produce moderate gains over the baseline, which are very close to

the significance level.

We observe the effect of increasing amounts of training data by drawing learning

curves. Figure 5.6 illustrates BLEU learning curves comparing the Moses baseline

against the two context-informed SMT models that are based on two different types

of supertag features: the individual contextual feature (LTAG±1) and combined

contextual feature (Super-Pair±1). We see from Figure 5.6 that the BLEU learning
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Train. Experi- BLEU NIST METEOR TER WER PER
Size ments

10K

Baseline 17.20 4.99 43.74 72.40 75.39 57.17
CCG±1 16.47 4.98 43.08 72.19 75.49 57.05
LATG±1 16.92 4.99 43.49 72.09 75.23 57.26
CCG-LTAG±1 16.96 4.96 43.47 72.60 75.59 57.81
Super-Pair±1 16.75 4.95 43.47 72.78 75.81 57.46

20K

Baseline 19.03 5.31 46.30 70.33 73.69 55.08
CCG±1 18.73 5.35 45.82 70.1 73.52 54.91
LATG±1 19.02 5.35 46.16 69.83 73.35 55.12
CCG-LTAG±1 19.09 (46%) 5.31 46.20 70.30 73.60 55.39
Super-Pair±1 18.76 5.29 46.23 70.67 74.09 55.21

50K

Baseline 21.70 5.74 49.31 67.32 71.19 52.48
CCG±1 21.22 5.77 48.61 67.15 70.82 52.45
LATG±1 21.62 5.80 49.16 66.74 70.57 52.23
CCG-LTAG±1 21.57 5.74 49.21 67.40 71.24 52.80
Super-Pair±1 21.57 5.75 49.27 67.48 71.27 52.53

100K

Baseline 22.53 5.88 50.30 66.42 70.48 51.84
CCG±1 22.20 5.96 50.04 65.51 69.82 51.22
LATG±1 22.95 (99.7%) 6.01 50.70 (99.48%) 65.00 69.33 50.87
CCG-LTAG±1 22.61 (68%) 5.93 50.55 (98.8%) 65.80 70.00 51.44
Super-Pair±1 22.58 (41%) 5.92 50.60 (94.9%) 66.00 69.95 51.28

200K

Baseline 23.47 6.04 51.46 65.30 69.40 50.90
CCG±1 23.60 (98.7%) 6.16 51.50 (70.8%) 64.35 68.28 50.05
LATG±1 23.45 6.11 51.33 64.55 68.64 50.36
CCG-LTAG±1 23.63 (52%) 6.08 51.55 (67%) 65.14 68.93 50.64
Super-Pair±1 23.60 (58.1%) 6.07 51.57 (77.7%) 65.12 69.16 50.71

500K

Baseline 24.06 6.11 52.06 64.59 68.58 50.36
CCG±1 23.96 6.22 52.00 63.63 67.84 49.67
LATG±1 23.97 6.19 51.94 63.87 67.99 49.94
CCG-LTAG±1 23.83 6.12 52.16 (73.8%) 64.65 68.82 50.29
Super-Pair±1 24.14 (53%) 6.15 52.30 (95.6%) 64.33 68.52 50.05

1M

Baseline 24.26 6.17 52.39 64.55 68.72 50.12
CCG±1 24.50 (99.5%) 6.29 52.36 63.25 67.59 49.23
LATG±1 24.40 (96.7%) 6.25 52.37 63.52 67.77 49.35
CCG-LTAG±1 24.30 (40%) 6.19 52.41 (59.4%) 64.19 68.34 49.72
Super-Pair±1 24.31 (58%) 6.2 52.57 (92.3%) 63.95 68.32 49.71

1.31M

Baseline 24.26 6.17 52.68 64.36 68.80 50.02
CCG±1 24.65 (99.9%) 6.34 52.74 (80.5%) 62.86 67.26 48.80
LATG±1 24.80 (99.9%) 6.3 52.67 63.2 67.6 49.17
CCG-LTAG±1 24.49 (80.7%) 6.22 52.73 (64%) 63.92 68.34 49.63
Super-Pair±1 24.56 (93.8%) 6.23 52.79 (79.11%) 63.92 68.25 49.71

Table 5.27: Results of the English-to-Dutch learning curve experiments with TRIBL
classifier comparing the effect of supertag context and Moses baseline.
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curves of the supertag-based SMT systems (LTAG±1, Super-Pair±1) start close to

the baseline curve, go upward and cross the baseline curve when more training data

is added.
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Figure 5.6: BLEU Learning curves comparing the Moses baseline against the
supertag-based SMT models in English-to-Dutch translation task.

In addition to the BLEU learning curve shown in Figure 5.6, Figure 5.7 shows

BLEU (top graph), METEOR (centre graph) and TER (bottom graph) score-

difference curves of four supertag-based SMT systems (CCG±1, LTAG±1, CCG-

LTAG±1, Super-Pair±1), showing the gains and losses against the Moses baseline.

LTAG±1 and CCG±1 produced respectively the highest and second highest BLEU

scores for the larger amounts of training data. We found that most of the BLEU

improvements with respect to the baseline are statistically significant. From the

central graph in Figure 5.7 which shows METEOR score-difference curves of four

supertag-based SMT systems against the Moses baseline, we see that most of the

curves do not resemble the BLEU score-difference curves (top graph of Figure 5.7).

Interestingly, METEOR score-difference curves of the CCG±1 and the LTAG±1
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systems reside mostly beneath the baseline curve.

The bottom graph in Figure 5.7 shows the TER score-difference curves where

we see that most such curves show consistency in residing below the baseline. Both

LTAG±1 and CCG±1 produce lower TER scores than other context-informed SMT

models (i.e. CCG-LTAG±1, Super-Pair±1) and the Moses baseline.

For the English-to-Dutch translation task, we compare the effectiveness of the

basic contextual features (Section 4.3.5.3) and the supertag contextual features.

In summary, the BLEU and TER metrics indicate supertags (CCG and LTAG)

to be the most effective context features, while the METEOR evaluation metric

suggests otherwise. As the METEOR metric does not support the Dutch language

(Lavie and Agarwal, 2007), we had to use it with its default English settings. We

strongly suspect this might be the reason why METEOR shows inconsistencies while

evaluating the Dutch sentences.

As an additional point of analysis, we compare translations produced by our

best-performing context-informed (CI) system (LTAG±1)7 with those by the Moses

baseline. Table 5.28 shows how two systems differ from each other in terms of

sentence-level automatic evaluation measures (BLEU and TER) and closeness to the

reference set. Additionally, Table 5.29 compares weights of the various translational

features of the LTAG±1 and the baseline systems obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 250 208 220 322
Sentence-Level TER 325 210 427 38
Closeness to Reference Set CI Moses
Matching Translations (%) 3.8 3.8
Matching Words (%) 61.50 61.74

Table 5.28: Comparison between translations produced by the best-performing
context-informed (CI) system (LTAG±1) and the Moses baseline.

7The best-performing LTAG±1 system which we used for this analysis was built on the largest
size of training data (1.31M) (cf. Table 5.27).
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Figure 5.7: BLEU (top), METEOR (centre) and TER (bottom) score-difference
curves comparing the Moses baseline against the supertag-based SMT models in
English-to-Dutch translation task.
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System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.1072 0.0102 0.0509 0.1103 0.0468 0.0936 -0.2689 - -
LTAG±1 0.1168 0.0081 0.0710 0.0032 0.0510 0.168 -0.2408 0.0697 0.0049

Table 5.29: Comparison of weights for each translational feature of the two systems
(LTAG±1 and Moses baseline) obtained by MERT training.

5.3.5 Translation Analysis

We performed manual qualitative analysis comparing the translated output of the

best-performing system with that of the Moses baseline system. In order to carry

out the manual evaluation, we randomly sampled 50 test set sentences.

We analyzed the translated output of our best-performing system (LTAG±1)

against that of the Moses baseline in the English-to-Dutch translation task (cf. Sec-

tion 5.3.4.2). We observed that the baseline Moses system frequently mistranslates

English function words. Moreover, the baseline prefers to generate certain phrases

that are collocationally strong n-grams in the Dutch language. We conjecture that

during the translation process the Dutch language model might overpower other

SMT models for selecting such candidate translations (i.e. those containing colloca-

tionally strong n-grams) despite the fact that those are incorrect Dutch equivalents

of the English phrases for the particular input sentence. The following two transla-

tion examples illustrate how our best-performing system (LTAG±1) surpasses the

Moses baseline on this translation task:

(1) English: European agriculture is not uniform .

Reference: De Europese landbouw is verre van eenvormig .

LTAG±1: De Europese landbouw is niet uniform .

Baseline: Europese landbouw niet uniform is .
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(2) Baseline: Apart from a limited budget , the European Union has little political

interest in Tajikistan .

Reference: Naast een beperkte begroting heeft de Europese Unie politiek gezien

weinig in Tadzjikistan te zoeken .

LTAG±1: Afgezien van een beperkte begroting heeft de Europese Unie weinig

politieke belang in Tadzjikistan .

Baseline: Afgezien van een beperkte begroting , de Europese Unie heeft weinig

politieke belang in Tadzjikistan .

In translation example (1), the translation produced by LTAG±1 is fluent and

roughly synonymous to the reference translation, while the baseline generates a

translation with the wrong word order, and also misses the initial article ‘De’. Trans-

lation example (2) resembles (1) in that the LTAG±1 system generates a fluent

and grammatical translation except for one agreement issue (the adjective politieke

should be politiek as the noun belang has neuter gender), while the baseline system

also generates a faulty word order.

5.3.6 Analysis of Learning Curve Experiments

In this section we summarize the outcomes of the learning curve experiments re-

ported in the above sections. When varying the amounts of English-to-Spanish

Europarl training data from 10,000 to 1.64 million sentences in a learning curve

experiment, the resulting curves demonstrate that our source-language contextual

models cannot surpass the baseline PB-SMT model for any amount of training data

used. We discover that the TRIBL classifier obtains gains at small training set sizes,

though not at the smallest size. In contrast, IGTree requires the maximal amount

of training data (1.64 million sentences) to equal the baseline.

Furthermore, learning curve experiments on the English-to-Dutch language di-

rection show that rich and complex syntactic features surpass basic features (words

and POS tags) as useful source-language context on small-scale as well as large-scale

translation tasks. Moreover, outcomes of the manual analysis conducted on the MT
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outputs of the best-performing context-informed model against the respective Moses

baseline resemble the findings of several automatic evaluation measures. In general,

learning curve experiments give a more accurate overview of relative gains when

more data is available.

5.3.7 Context-Dependent vs Context-Independent Phrase

Translation

In this section, we compare the effectiveness of the context-dependent phrase trans-

lation with that of the context-independent (PB-SMT) phrase translation. First,

we give an example to illustrate how a source phrase with additional context in-

formation is classified into a distribution over possible target phrases. We consider

a particular contextual feature (CCG±1) to illustrate the classification task. We

select a source English sentence (‘let me make a suggestion to the commission as

to how this problem could be tackled ’) from the development set of the English-to-

Spanish translation task (cf. Section 5.3.4.1). This sentence contains the ambiguous

single-word phrase ‘make’, the contextually appropriate Spanish translation of which

should be ‘hacer ’.

Following Equation (5.1), we take the CCG supertags of the neighbouring (±1)

words around the source phrase ‘make’ in order to form its context information,

namely: CI(make) = {st(me), st(make), st(a)} = {(S\NP)/NP, NP, NP/N}. Thus,

we form a test example 〈make,CI〉 which is given to the classifier for classifica-

tion. As part of the earlier offline training phase, millions of training examples

are generated that take the same form as the test examples, labeled with classes

(aligned target phrases), with one example for each alignment in the training data.

A memory-based classifier is then trained on these millions of training examples.

During decoding, we generate all possible test examples from the test set and

give them to the classifier in order to obtain possible translations for the source

phrases. For the above test example (〈make,CI〉), we classify it with the rele-
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vant classifier, which gives us a class distribution in the form of a list of target

phrases which are context-sensitive translations of the source phrase ‘make’. A

weight is associated with each class. From these weights we estimate the probabil-

ities of translation into target phrases (êk) from the source phrase ‘make’ with its

additional context information, which are P(êk|make,CI(make)). Table 5.30 shows

some of the possible Spanish translations of the English phrase ‘make’ including

‘hacer ’ with their memory-based context-dependent translation probabilities (i.e.

memory-based scores: P(êk|f̂k,CI(f̂k))) compared with context-independent trans-

lation probabilities (i.e. baseline scores: P(êk|f̂k)).

Baseline CCG±1

P(êk|f̂k) P(êk|f̂k,CIf̂k)
hacer 0.2353 0.3412
hagan 0.0851 0.0057

realizar 0.0277 0.0305
hacen 0.0245 0.0073
haga 0.0142 0.0113
. . . . . . . . .

TPDS 388 181

Table 5.30: Some of the possible Spanish translations of the English phrase ‘make’
with their memory-based context-dependent translation probabilities (rightmost col-
umn) compared against context-independent translation probabilities of the baseline
system. TPDS: target phrase distribution size.

Table 5.30 shows that the memory-based classifier assigns a relatively higher

score to the most suitable Spanish phrase ‘hacer ’, while it assigns lower scores to

three of the four alternative translations listed. The baseline phrase translation

probability is estimated using the relative frequency counts of source and target

phrases. Additionally we report the target phrase distribution size (TPDS, bottom

line in Table 5.30) for the source phrase ‘make’ in the baseline system, 388 phrases, as

well as in our memory-based model, 181 phrases. This illustrates how the memory-

based classifier typically produces a reduced set of target phrases for a given source

phrase in context.

As an additional point of analysis, we also compared the log-linear weights (λi)

of the context-informed memory-based features with those of a baseline features for
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the above experiment (CCG±1, an English-to-Spanish translation task described

further in Section 5.3.4.1).

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.0795 0.0448 0.0091 0.0449 0.0527 0.1151 -0.1451 - -
CCG±1 0.1075 0.0347 0.0551 0.02639 0.0247 0.0974 -0.1322 0.04633 0.0051

Table 5.31: Weights of different log-linear features of the CCG±1 system with Moses
baseline.

Table 5.31 indicates that our context-informed models (ĥmbl, ĥbest) contribute

positively to the phrase-scoring process during translation. Moreover, MERT (Och,

2003) assigns a notably higher weight to the context-informed feature ĥmbl than

the baseline feature ĥftp, directly indicating the importance of the memory-based

context-informed models.

5.4 Context-Informed Hierarchical PB-SMT

In Section 4.4.1, we reported the experimental results obtained by integrating basic

contextual features into the Hiero model. In this section, we demonstrate the ex-

perimental results obtained by employing supertags as contextual features into the

Hiero model.

Section 5.4.1 reports the outcomes of the English-to-Hindi and English-to-Dutch

translations. Section 5.4.2 provides some analysis of the results obtained from the

two translation tasks.8

5.4.1 Experimental Results

5.4.1.1 English-to-Hindi

We carried out English-to-Hindi translation with the EILMT corpus (cf. Section

3.6). Experimental results for this translation task are displayed in Table 5.32.

8The experiments reported in this section have partly been published, albeit in a different form,
in Haque et al. (2010a).
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Experiments BLEU NIST METEOR TER WER PER
Baseline 11.08 4.44 29.19 75.30 82.09 57.98
CCG±1 11.40 (75.1%) 4.49 28.05 74.35 80.52 57.98
LTAG±1 11.54 (87.9%) 4.51 29.32 74.49 80.40 57.25
CCG±2 11.63 (98.1%) 4.52 29.00 74.72 81.01 57.68
LTAG±2 11.56 (90.08%) 4.54 29.60 74.31 80.57 57.30

Table 5.32: Results on English-to-Hindi translation obtained integrating supertag
contexts into Hiero.

We see from Table 5.32 that adding any type of supertag feature as context

improves upon the Hiero baseline regardless of the context width used. CCG±2

produces the best BLEU improvement (0.55 BLEU points; 4.96% relative) over the

baseline, which is statistically significant. LTAG±2 gives the second-best BLEU

improvement (0.46 BLEU points; 4.16% relative) over the Hiero baseline, which is

very close to the significance level. Other evaluation metrics tend to follow a similar

trend to the BLEU metric. In summary, supertag-based SMT systems produce

slightly better scores when a context width of 2 is considered.

As an additional point of analysis, we compare translations produced by our

best-performing context-informed (CI) system (CCG±2) (cf. Table 5.32) with those

by the Hiero baseline. Table 5.33 shows how two systems differ from each other

in terms of sentence-level automatic evaluation measures (BLEU and TER) and

closeness to the reference set. Additionally, Table 5.34 compares weights of the

various translational features of the CCG±2 and the baseline systems obtained by

MERT training.

CI>Hiero CI<Hiero CI=Hiero Zero
Sentence-Level BLEU 85 68 21 321
Sentence-Level TER 190 155 150 0
Closeness to Reference Set CI Hiero
Matching Translations (%) 0 0
Matching Words (%) 51.54 51.10

Table 5.33: Comparison between translations produced by the best-performing
context-informed (CI) system (CCG±2) and the Hiero baseline.
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System λlm λbtp λblexp λftp λflexp λphrpty λglue λwrdpty λmbl λbest

Hiero 0.1885 0.0817 -0.0093 0.0914 0.0312 0.1227 -0.0598 -0.4151 - -
CCG±2 0.1544 0.0104 0.0657 0.0214 0.0367 -0.0832 -0.0519 -0.5522 0.0149 0.0086

Table 5.34: Comparison of weights for each translational feature of the two systems
(CCG±2 and Hiero baseline) obtained by MERT training.

5.4.1.2 English-to-Dutch

English-to-Dutch translation was carried out on the Open Subtitles corpus (cf. Sec-

tion 3.6). Although our main focus was to observe the effect of incorporating su-

pertags as a source contextual feature on translation quality, we also carried out

experiments combining supertags with lexical contextual features.

Exp. BLEU NIST METEOR TER WER PER

Baseline 21.92 5.29 43.06 56.72 55.43 48.60

CCG±2 22.65 (90.3%) 5.37 43.83 (99.4%) 56.27 55.08 48.08
LTAG±2 22.55 (91.1%) 5.34 43.99 (99.1%) 56.47 55.22 48.15

Table 5.35: Experimental results of English-to-Dutch translation with individual
features, compared against a Hiero baseline.

The results obtained with the individual context features, compared to the base-

line, are shown in Table 5.35. Moderate improvements over the Hiero baseline are

observed with the addition of CCG supertags (0.73 BLEU points; 3.33% relative in-

crease), and LTAG supertags (0.63 BLEU points; 2.88% relative). Thus, among the

individual contextual features, CCG±2 produces the highest BLEU improvements

over the baseline. However, none of the improvements are statistically significant

(although close) with respect to the baseline.

When focusing on the METEOR evaluation metric, we see that among the in-

dividual features, LTAG±2 produces the biggest improvements (0.93 points; 2.16%

relative increase) over the baseline. Moderate improvements in METEOR are also

observed for the CCG±2 feature (0.77 METEOR points; 1.79% relative increase).

In contrast to the BLEU comparisons, all the METEOR improvements with respect

to the baseline are statistically significant. Improvements in TER for CCG±2 (a

reduction of 0.45 TER points) and LTAG±2 (0.25 TER points) features are quite

reasonable and comparable to the improvements in METEOR and BLEU. As far as
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other evaluation metrics (NIST, PER and WER) are concerned, improvements (see

Table 5.35) measured by them are quite similar to the improvements measured on

BLEU, METEOR and TER.

Exp. BLEU NIST METEOR TER WER PER

Baseline 21.92 5.29 43.06 56.72 55.43 48.60

Word±2+CCG±2 22.90 (95.1%) 5.38 44.00 (98.2%) 56.12 54.90 48.24
Word±2+LTAG±2 23.30 (99.5%) 5.37 44.08 (99.6%) 56.37 55.11 47.87
Word±2+CCG±2+LTAG±2 23.00 (99.8%) 5.37 43.89 (98.5%) 55.87 55.27 48.05

Table 5.36: Experimental results with combined features, compared against Hiero
baseline.

Subsequently, we performed experiments in which we combined the lexical fea-

tures with the supertag-based features. The results of these experiments are shown

in Table 5.36. Combining LTAG supertags with Word features causes system per-

formance to improve to 23.30 BLEU score, 1.38 points (a relative improvement of

6.3%) over the HPB-SMT baseline. CCG supertags combined with Word features

produces an improvement of 0.98 absolute BLEU points (4.48% relative increase).

Improvements on both combinations are statistically significant at 99.5% and 95.1%

levels of confidence, respectively. Furthermore, we combine lexical features with

two types of supertags (Word±2+CCG±2+LTAG±2), which gives a statistically

significant 1.08 BLEU points improvement (4.93% relative) over the baseline.

The METEOR evaluation scores show similar trends for the combined set-ups.

The best METEOR score (an improvement of 1.02 METEOR points; 2.37% relative)

is obtained when words are combined with LTAG supertags. Moderate improve-

ments over the baseline are observed when Word±2+CCG±2 and Word±2+CCG±2+

LTAG±2 are used. The improvements on Word±2+CCG±2, Word±2+LTAG±2

and Word±2+CCG±2+LTAG±2 with respect to the baseline are statistically sig-

nificant in terms of METEOR.

On the TER evaluation metric, the best-performing combination, Word±2+CCG±2

+LTAG±2, yields an absolute reduction of 0.85 TER points below the Hiero base-

line. Reductions of 0.35 and 0.60 TER points below the baseline are seen with the

Word±2+CCG±2 and Word±2+LTAG±2 combinations, respectively. As far as
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other evaluation metrics (NIST, PER and WER) are concerned, They follow similar

trends.

As an additional point of analysis, we compare translations produced by our

best-performing context-informed (CI) system (Word±2+LTAG±2) (cf. Table 5.36)

with those by the Hiero baseline. Table 5.37 shows how two systems differ from each

other in terms of sentence-level automatic evaluation measures (BLEU and TER)

and closeness to the reference set. Additionally, Table 5.38 compares weights of the

various translational features of the Word±2+LTAG±2 and the baseline systems

obtained by MERT training.

CI>Hiero CI<Hiero CI=Hiero Zero
Sentence-Level BLEU 46 40 129 785
Sentence-Level TER 103 106 679 112
Closeness to Reference Set CI Hiero
Matching Translations (%) 12.4 12.4
Matching Words (%) 58.18 57.66

Table 5.37: Comparison between translations produced by the best-performing
context-informed (CI) system (Word±2+LTAG±2) and the Hiero baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λglue λwrdpty λmbl λbest

Hiero 0.0823 0.0205 0.0217 0.1702 0.0409 -0.3477 0.3421 0.095 - -
Word±2+
LTAG±2 0.0801 0.0260 0.005 0.113 0.060 -0.3157 0.3249 0.1306 0.0120 0.0349

Table 5.38: Comparison of weights for each translational feature of the two systems
(Word±2+LTAG±2 and Hiero baseline) obtained by MERT training.

5.4.1.3 Translation Analysis

For the English-to-Dutch translation task, we performed a manual qualitative analy-

sis of differences between the translations produced by our best-performing context-

informed system (Word±2+LTAG±2) and those by the Hiero baseline. Among the

1,000 test sentences, the Word±2+LTAG±2 system obtains a higher BLEU score

than the baseline for 56 sentences, among which in 32 cases the improvement is due

to better lexical choice. The Word±2+LTAG±2 system generates a more fluent

output in 17 sentences. These two types of improvements overlap on 10 occasions
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(i.e. in 10 sentences, the improvement involves both better lexical choice and bet-

ter fluency). The following are two such translation examples which show how our

context-informed system improves over the baseline:

(3) input: i appreciate your help .

reference: ik waardeer je hulp .

Word±2+LTAG±2: ik waardeer je hulp .

baseline: ik waardeer je helpen .

(4) input: we’ re taking the girl now .

reference: we halen het meisje nu .

Word±2+LTAG±2: we nemen het meisje nu .

baseline: nemen we de meisje nu .

In the example (3), the word ‘help’ in the source English sentence is ambiguous

as it can translate to the noun ‘hulp’ or the verb ‘helpen’. The Word±2+LTAG±2

system conveys a meaning more similar to the input sentence by choosing the correct

Dutch word ‘hulp’. In the example (4), the translation of the Word±2+LTAG±2

system is more fluent than the baseline Hiero translation, as it generates a correct

word order while the baseline does not, and the Word±2+LTAG±2 system chooses

the correct neuter article ‘het’ instead of the incorrect non-neuter article ‘de’ selected

by the baseline.

As an additional analysis, we examined the decoding process to discover why

the Word±2+LTAG±2 system generates better output than the baseline. In the

example (3), to translate the source sentence, 5,354 candidate phrases are used by

the baseline system, while only 460 candidate phrases (IGTree classes) are used by

the Word±2+LTAG±2 system (see Table 5.39). As a result, during decoding, 9,654

hypotheses are generated in the Word±2+LTAG±2 system compared to 20,371 hy-

potheses in the baseline. We also identified details regarding what candidate phrases

along with source spans are used for the best translation hypothesis. A source span
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for each candidate phrase is represented by word positions in the source sentence

([1..n]; where n: sentence length). In the Word±2+LTAG±2 system, candidate

phrases used in the best translation hypothesis are: ‘ik’:[1..1], ‘waardeer’:[2..2], ‘je

hulp’:[3..4] and ‘.’:[5..5]. In contrast, the baseline uses two candidate phrases (‘ik

waardeer je’:[1..3] and ‘helpen .’:[4..5]) to generate the best translation hypothesis,

and the usage of the last phrase (‘helpen .’) in this translation is incorrect.

Word±2+LTAG±2 Hiero
Example (3) Candidate Phrases 460 5,354

Hypotheses 9,654 20,371
Example (4) Candidate Phrases 1,577 8,518

Hypotheses 24,092 35,659

Table 5.39: Number of candidate phrases used and hypotheses generated by
Word±2+LTAG±2 and Hiero models during decoding.

In the example (4), to translate the source sentence, 8,518 candidate phrases

are used by the baseline system, while only 1,577 candidate phrases are used by

the Word±2+LTAG±2 system (see Table 5.39). As a result, during decoding,

24,092 hypotheses are generated in the Word±2+LTAG±2 system, as opposed to

35,659 hypotheses in the baseline. In the Word±2+LTAG±2 system, the candi-

date phrases used to generate the best translation hypothesis are: ‘we nemen’:[1..2],

‘het meisje’:[2..4], ‘nu’:[5..5] and ‘.’:[6..6]. The baseline uses the following candidate

phrases: ‘nemen we de’:[1..3], ‘meisje’:[4..4], ‘nu’:[5..5] and ‘.’:[6..6]. The baseline

system chooses an incorrect candidate phrase (‘nemen we de’) to generate the best

translation hypothesis.

The above analysis reveals that in addition to the context-dependent translation

features, context-informed models use reduced but more fine-grained sets of can-

didate phrases, which in turn force the model to weed out bad hypotheses during

decoding, and thereby improve translation quality.

5.4.1.4 Numbers of Rules and Examples

Hiero usually generates a massive number of rules compared to the phrase-based

approach. The first row in Table 5.40 shows that the number of distinct rules (rule
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table size) generated by Hiero for the English-to-Dutch data set is almost three

times larger than the number of distinct source-target phrase-pairs (phrase table

size) generated by Moses on the same data set. The last row in Table 5.40 shows

a similar trend in the case of all rules (non-distinct) generated from the parallel

training data during the rule extraction process of Hiero. IGTree classifiers are

built on the set of examples formed by the source phrase (α), target phrase (γ),

and the contextual information (CI) of the source phrase obtained during the rule

extraction process in Hiero. In other words, the number of training examples equals

the number of times Hiero’s rules apply to the training source sentences. Although

IGTree scales roughly linearly to larger numbers of examples, it would be a challenge

on present-day computers to train IGTree with large-scale training data.

Hiero Moses
Distinct 6,761,376 1,988,504
Non-distinct 11,603,617 3,817,252

Table 5.40: Numbers of rules in Hiero or phrase-pairs in Moses.

5.4.2 Discussion

We demonstrated that supertags can also be successfully integrated as source-

language contextual features into the state-of-the-art Hiero system (Chiang, 2007).

In the English-to-Hindi translation task, adding supertags as source-language

context improves a Hiero baseline despite working with a tiny training set. In the

English-to-Dutch translation task, considering only individual contextual features,

the system produces moderate gains for supertags (3.33% and 2.88% relative gains in

BLEU for CCG±2 and LTAG±2, respectively). Furthermore, we observed the best

improvement over the baseline when supertags are combined with word contexts

(4.48%, 6.3% and 4.93% relative improvements in BLEU for Word±2+CCG±2,

Word±2+LTAG±2 and Word±2+CCG±2+LTAG±2 respectively). If we compare

the integration of supertag features as opposed to that of contextual words and POS

tags in the Hiero system (cf. Section 4.4.1), the system produces better gains for
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supertags than on words and POS tags in the English-to-Dutch translation task.

On the English-to-Hindi translation task, the POS-based system performs slightly

better than the supertag-based systems, although the performance differences be-

tween them are not statistically significant.

The relative lack of efficiency of the combination of POS tags and supertags lies

in the fact that POS information is already present in the supertags. POS tags

are therefore redundant when supertags are available. Words, on the other hand,

remain relevant as they appear to contain complementary information not carried

by supertags.

5.5 Sentence-Similarity Based PB-SMT

In Chapter 4, we demonstrated a series of experimental results obtained by in-

tegrating basic contextual features (neighbouring words and POS tags) into the

state-of-the-art PB-SMT (Koehn et al., 2003) and Hiero (Chiang, 2007) models. In

this chapter, we have illustrated how we integrate lexical syntactic descriptions in

the form of supertags into the PB-SMT and Hiero models, and presented a range of

experimental results obtained employing supertag contextual features. Among the

different types of lexical and syntactic features, lexical syntactic descriptions in the

form of supertags (Bangalore and Joshi, 1999; Clark and Curran, 2004) that preserve

long-range word-to-word dependencies in a sentence have proven to be more effective

than neighbouring words and POS contexts. These rich contextual features are able

to disambiguate a source phrase, on the basis of the local syntactic behaviour of that

phrase. In addition to local contextual information, global contextual information

such as the grammatical structure of a sentence, sentence length and n-gram word

sequences could provide additional important information to enhance this phrase-

sense disambiguation. In other words, similarity between an input source sentence

to be translated with the tranining sentences that were used to create the SMT

system can be useful means to weight candidate phrases which are used form the
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most likely translation.

In section 5.5.1, we explore various sentence similarity features by measuring the

similarity between a source sentence to be translated with the source-side of the

bilingual training sentences and integrate them directly into the PB-SMT model.

We performed experiments on an English-to-Chinese translation task by applying

sentence-similarity features, both individually and collectively with supertag-based

features. In Section 5.5.2, we illustrate the results obtained from the experiments

we carried out by adding those features.9

5.5.1 Sentence-Similarity as Context Feature

Among the source-language contexts, supertags have been shown to perform bet-

ter than words and POS tags in target phrase selection. Supertags include rich

knowledge sources to disambiguate a source phrase, although they provide only lo-

cal syntactic behaviour of a source phrase. However, global contextual features, such

as the similarity measure between an input source sentence to be translated with

the source-side of the bilingual training sentences, could sometimes provide useful

evidence to choose more appropriate candidate phrases. In addition to local contex-

tual information, global contextual information could be an additional important

source of information to enhance the sense disambiguation task.

5.5.1.1 Sentence-Similarity Features

Costa-Jussà and Banchs (2010) integrated source context information into the PB-

SMT model by incorporating a feature function estimated using a cosine distance

similarity metric. Their feature function is computed for each of the phrase-pairs of

the t-table by measuring cosine distance between the input sentence to be translated

and the source sentences of the bilingual training corpus from which those phrase-

pairs were extracted. A slight improvement was reported over the Moses PB-SMT

9The contents in this section have been partly published, albeit in a different form, in Haque
et al. (2010b).
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baseline system on an English-to-Spanish experimental corpus. Following (Costa-

Jussà and Banchs, 2010), we explore various similarity features including cosine

distance by measuring the similarity between a source sentence to be translated with

the source-side of the parallel training sentences and integrate them directly into

the state-of-the-art log-linear PB-SMT (Koehn et al., 2003) model. Furthermore,

we conduct experiments by combining sentence-similarity features (global contexts)

with supertag-based features (local contexts).

A PB-SMT t-table contains a list of source phrases and their corresponding

translations (target phrases) with associated translation probabilities. Source and

target phrases are extracted from a large bilingual training corpus to build the t-

table. During training, we also keep track of the source sentences of the training

corpus from which phrase pairs are extracted.

To translate a source test sentence, first we generate all possible source phrases

and gather their corresponding candidate translations (target phrases). We then

collect the source training sentences that are linked to the source phrase of each of

the phrase-pairs. We measure the similarity between the source test sentence to be

translated with the source training sentences. There could be two possible cases:

(i) a phrase pair could be extracted from only one training sentence pair, in which

case we calculate the similarity score between the source test sentence and only that

particular training sentence, and (ii) phrase pairs could be extracted from many

training sentence pairs, in which case we calculate the similarity score between the

source test sentence and each of the training sentences separately, and then take the

average of the scores. The results of sentence-similarity measures are scores which

are not probabilities. Finally, we normalize these similarity scores to convert them

into probabilities (Psim). Thus, we derive a log-linear feature ĥsim to represent global

context information as in (5.3):

ĥSIM = log PSIM (5.3)
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We considered different similarity functions to measure the similarity between

two sentences, including: (i) cosine distance as used in (Costa-Jussà and Banchs,

2010), (ii) Dice coefficient (Dice, 1945), and (iii) the METEOR automatic MT eval-

uation metric (Lavie and Agarwal, 2007). We employed three variations of dice

coefficient in our experiments on the basis of the order of n-gram word sequence

match between two sentences: monogram overlap Dice coefficient (MODC), bigram

overlap Dice coefficient (BODC), trigram overlap Dice coefficient (TODC).

5.5.1.2 Employing Sentence Similarity-Based Feature with Supertag-

Based Features

In addition to the sentence-similarity features (cf. Equation 5.3), we also carried out

experiments by integrating supertag context into the PB-SMT model (Koehn et al.,

2003), both individually and in collaboration with sentence-similarity features. In

order to carry out experiments with the supertag features, as mentioned earlier, we

derive the context-informed feature ĥmbl and a binary feature ĥbest (defined in Equa-

tion 3.7 and Equation (3.8), respectively). We performed experiments by integrating

these log-linear features (ĥsim, ĥmbl, ĥbest) directly into the PB-SMT model.

5.5.2 Results and Analysis

Experiments were carried out on an English-to-Chinese task. We used the English-

to-Chinese NIST-08 data set (cf. Section 3.6) in order to carry out our experiments.

The training set contains 500,000 sentence pairs (henceforth referred to as ‘Large-

Set’) of newswire translation genres from the LDC. We had another training set

which is a subset of ‘LargeSet’ and contains the first 100,000 sentence pairs (hence-

forth referred as ‘SmallSet’) of the ‘LargeSet’. We used the NIST’05 1,082-sentence

test set for tuning and the NIST’08 1,357-sentence ‘current’ test set for evaluation

(cf. Section 3.6).

Our intention to combine sentence similarity-based features with supertag-based

features forced us to choose English as the source language, given that supertaggers
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are readily available only for English.

5.5.2.1 Automatic Evaluation

The results obtained with the similarity features, compared to the Moses baseline,

are shown in Table 5.41. The top rows of Table 5.41 displays the results obtained on

‘SmallSet’. In small-scale translation, the cosine distance and METEOR similarity

features are unable to show any improvement over the baseline. However, mono-

gram overlap dice coefficient (MODC) and bigram overlap dice coefficient (BODC)

similarity features produce 0.17 BLEU points (1.79% relative increase) and 0.18

BLEU points (1.89% relative increase) improvements respectively over the baseline,

and these improvements are very close to the significance level; by contrast, the

trigram overlap dice coefficient (TODC) similarity feature fails to show any BLEU

improvement over the baseline.

Experiments BLEU NIST TER WER PER

SmallSet

Baseline 8.52 4.37 80.31 84.79 64.08
Cosine 8.50 4.41 80.06 84.63 63.71
MODC 8.69 (94%) 4.44 79.62 84.21 63.38
BODC 8.70 (88%) 4.42 80.09 84.65 63.72
TODC 8.50 4.43 80.41 85.03 63.82
METEOR 8.52 4.42 80.40 85.06 63.94

LargeSet

Baseline 9.85 4.87 77.13 82.03 60.29
Cosine 10.16 (99.6%) 4.90 77.03 81.97 60.07
MODC 10.19 (98.9%) 4.91 77.37 82.41 60.44
BODC 10.06 (92.3%) 4.88 77.29 82.29 60.53
TODC 10.16 (98.8%) 4.92 76.60 81.70 59.73
METEOR 10.30 (99.9%) 4.94 76.22 81.06 59.62

Table 5.41: Experimental results applying sentence-similarity features. MODC:
Monogram Overlap Dice Coefficient, BODC: Bigram Overlap Dice Coefficient,
TODC: Trigram Overlap Dice Coefficient.

Contrary to the small-scale translation, all sentence-similarity based SMT sys-

tems in large-scale translation produce moderate improvements in BLEU over the

baseline, and most of the improvements are statistically significant with respect to

the baseline. The NIST evaluation metric tends to produce similar improvements

to those observed on BLEU. As far as edit-distance-based evaluation metrics (TER,
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WER, PER) are concerned, moderate improvements are seen for the cosine, TODC,

and METEOR similarity features. However, we do not see any improvement across

any of the edit-distance-based metrics for the MODC and BODC similarity func-

tions.

Experiments BLEU NIST TER WER PER

SmallSet

Baseline 8.52 4.37 80.31 84.79 64.08
CCG±1 8.74 (88%) 4.49 79.87 84.54 63.45
LTAG±1 8.71 (80%) 4.49 79.94 84.61 63.39

LargeSet

Baseline 9.85 4.87 77.13 82.03 60.29
CCG±1 10.22 (99.3%) 4.96 76.68 81.65 59.76
LTAG±1 10.39 (99.9%) 4.89 76.92 81.82 60.20

Table 5.42: Experimental results applying supertag-based features.

The results obtained with the supertag-based features, compared to the Moses

baseline, are shown in Table 5.42. The top three and bottom three rows of Table

5.42 display the results (of Moses baseline and supertag-based models (CCG±1 and

LTAG±1)) obtained on ‘SmallSet’ and ‘LargeSet’, respectively. Where small-scale

translation is concerned, we see moderate improvements in BLEU over the baseline

for both CCG (0.22 BLEU points; 2.31% relative) and LTAG (0.19 BLEU points;

2% relative) supertag contexts. Improvements are quite close to the significance

level. In large-scale translation, statistically significant improvements in BLEU are

to be observed for both the CCG±1 (0.37 BLEU points; 3.75% relative) and the

LTAG±1 (0.54 BLEU points; 5.48% relative) features.

Our main intention was to perform experiments by integrating sentence-similarity

features and supertag-based features together into the PB-SMT model as different

log-linear features to see whether further improvements could be achieved. Hence,

the best-performing sentence-similarity set-ups (MODC & BODC for small-scale

translation; METEOR for large-scale translation) are combined with CCG and

LTAG supertag-based features. Experimental results obtained combining both types

of features are shown in Table 5.43.

On small-scale translation, the improvement obtained on MODC and LTAG

feature combination is the highest (a 0.50 BLEU point improvement; 5.25% relative)
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Experiments BLEU NIST TER WER PER

SmallSet

Baseline 8.52 4.37 80.31 84.79 64.08
MODC + CCG±1 8.48 4.34 80.59 85.19 64.32
MODC + LTAG±1 9.02 (99.9%) 4.49 79.69 84.41 63.31
BODC + CCG±1 8.71 (88%) 4.44 79.92 84.45 63.67
BODC + LTAG±1 8.73 (90%) 4.43 80.05 84.69 63.75

LargeSet

Baseline 9.85 4.87 77.13 82.03 60.29
METEOR + CCG±1 10.16 (98.1%) 4.92 76.60 81.70 59.73
METEOR + LTAG±1 10.44 (99.9%) 4.93 76.43 81.41 59.62

Table 5.43: Experimental results applying combined features.

and is statistically significant; in contrast, adding the MODC feature to CCG feature

does not produce any improvement over the baseline. Adding the BODC feature to

the CCG and LTAG features adds 0.19 BLEU points (2% relative) and 0.21 BLEU

points (2.2% relative) respectively to the baseline score.

On the other hand, on large-scale translation, CCG and LTAG supertag features

combined with the METEOR similarity feature as source-side contexts produce

statistically significant improvements in BLEU (METEOR+CCG±1: 0.31 BLEU

points; 3.15% relative; METEOR+LTAG±1: 0.59 BLEU points; 5.98% relative)

over the Moses baseline.

Additionally, we carried out an analysis on the translations produced by the best-

performing system (METEOR + LTAG±1) and the Moses baseline in the large-scale

task. Table 5.44 shows how two systems differ from each other in terms of sentence-

level automatic evaluation measures (BLEU and TER) and closeness to the reference

set. Additionally, Table 5.45 compares weights of the various translational features

of the METEOR + LTAG±1 and the baseline systems obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 178 117 95 967
Sentence-Level TER 377 341 637 4
Closeness to Reference Set CI Moses
Matching Translations (%) 0.29 0.37
Matching Words (%) 52.15 51.98

Table 5.44: Comparison between translations produced by the best-performing
context-informed (CI) system (METEOR + LTAG±1) and the Moses baseline.
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System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest λsim

Moses 0.0805 0.0011 0.0760 0.0704 0.0086 -0.0020 -0.1972 - - -
METEOR+
LTAG±1 0.0898 0.0355 0.0398 0.0015 0.0359 0.1106 -0.2094 0.0484 0.0007 0.0052

Table 5.45: Comparison of weights for each translational feature of the two systems
(METEOR + LTAG±1 and Moses baseline) obtained by MERT training.

5.5.2.2 Translation Analysis

We also performed a sentence-level automatic evaluation of the translations pro-

duced by our best-performing context-informed (CI) system (MODC+LTAG±1) on

the small-scale translation, compared to those of the Moses baseline. Among the

1,357 test set sentences, the best system obtains a higher BLEU score than the

baseline in 177 sentences, while the baseline obtains a higher BLEU score than the

best system in 133 sentences. We performed a manual qualitative analysis of the

translations of the two systems by randomly sampling a few (25 sentences) of those

translations (i.e. 177 sentences). Figure 5.8 shows two such translation examples

which illustrate how our context-informed system produces better translations than

the baseline.

(5) input: he called for intensive talks in the coming weeks .  
reference: 他 呼吁 在 未来 几 周 进行 密集 谈判 。  
MODC + LTAG±1: 他 呼吁 在在在在 未来未来未来未来 数数数数 周周周周 密集 会谈 。  
baseline:  他 呼吁 密集 会谈 在在在在 未来未来未来未来 数数数数 周周周周 。  
 
(6) input: i have too many things waiting for me that i cannot do now . 
reference: 我 有 太 多 现在 无法 做 的 事情 等待 着 我 去 做 。 

MODC + LTAG±1: 我 有 太 多 的 事 等待 我 ，我 现现现现在在在在 不 做做做做 。 
baseline:  我 有 太 多 的 事 等待 我 ，我我我我 不不不不 能能能能 在在在在 。 
 

 

 

 

  

 

 
 
 
 
 

Figure 5.8: Translation examples comparing the best-performing system (MODC +
LTAG±1) and the Moses baseline.

We observe that our best-performing system produces more fluent translations

(as in example (5) and (6) in Figure 5.8) than the baseline Moses translations.

The improvements of our system over the baseline system are two-fold: better word

reordering (as in example (5) in Figure 5.8) and better lexical selection (as in example

(6) in Figure 5.8).
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We also looked at a few (25 sentences) of those translations (133 sentences) where

the baseline system generates better translations than our system. We observe that

both the baseline and our best-performing CI system (MODC+LTAG±1) show poor

lexical choice and bad word order for most of these translations, due perhaps to the

fact that the small training set does not contain the correct translation. Manual

evaluation also reveals that MODC+LTAG±1 tends to generate additional words

(i.e. preposition, verb) to form more fluent and grammatical translations than the

baseline.

As an additional point of analysis, we found that the average number of candidate

phrases that are used per source phrase to translate the development set is 97.54

in the baseline PB-SMT model (small-scale). In contrast, the average number of

candidate phrases per source phrase that are used to translate the same set are 57.01

and 53.74 in the CCG and LTAG supertag-based models (small-scale) respectively

(the combined models also use the same set of target phrases as the supertag-based

models). Hence, the supertag-based models use reduced but more fine-grained sets

of candidate phrases and employ a memory-based context-dependent weighting in

translation. Moreover, integration of sentence-similarity features into the PB-SMT

model helps the model to choose more appropriate candidate phrases for a source

phrase during translation. Therefore, integration of global (sentence-similarity) and

local (supertag) contextual features jointly into the PB-SMT model forces the model

to weed out bad hypotheses during decoding, which improves translation quality.

In this translation task, we observed that the baseline Moses systems (with

100K or 500K training sets) produced very low BLEU scores. There might be few

reasons for this anomaly: (i) Englisht-to-Chinese is a difficult translation pair since

both are morphologically divergent langauges, (ii) we had only one set of reference

translations in Chinese, and (iii) unlike IWSLT data, the NEWS data is quite noisy.
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Figure 5.9: Distribution of the source-target phrase-pairs over the number of training
sentences from which those phrase-pairs are extracted.

5.5.2.3 Distribution of t-table Entries over Number of Training Sen-

tences

Measuring similarity between a test sentence and a set of source sentences of the

training corpus is a time-consuming process. As an additional point of analysis,

we measured the distribution of source-target phrase-pairs (t-table entries) over

the number of training sentence pairs from which those phrase-pairs are extracted.

To perform this analysis, we considered the phrase-table created on the large-scale

training data (i.e. ‘LargeSet’) which contains 500,000 sentence pairs. We extract

those phrase-pairs from the original phrase table that are used to translate the

development set. Thus, we create a filtered phrase table that contains 773,703

source-target phrase-pairs.10 We plot the distribution of these source-target phrase-

pairs of the filtered phrase table against the number of training sentences from which

those phrase-pairs are extracted in Figure 5.9. As can be seen from the graph in

10Original phrase table contains 5,190,748 source-target phrase-pairs.
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Figure 5.9, 67.92% of the phrase pairs in the phrase-table (filtered) are extracted

from only single training sentence pair of the training set. We also observed that

only 6.01% and 3.55% phrase pairs of the phrase-table (filtered) are extracted from

more than 10 and 20 training sentence pairs, respectively. The above statistics

indicate that the similarity measurement process is an issue only for a small number

of phrase-table entries.

5.6 Summary

In this chapter, first we provided a short overview of two kinds of supertags: CCG

and LTAG. Then, we illustrated how we define contextual information with su-

pertags for a PB-SMT source phrase as well as for a HPB-SMT source phrase. Use

of supertag context forced us to use English as source-language of translation pairs

since supertag information is readily available only for English.

We demonstrated a series of experimental results obtained by employing various

supertag contextual features in the PB-SMT model. We employed three memory-

based classification algorithms: IB1, IGTree and TRIBL. However, we used IB1

thereafter only for one small-scale data set (English-to-Chinese IWSLT), and avoided

use of IB1 due to its large computing complexity. The experiments were carried out

on a series of small- and large-scale data sets, which involves various language pairs.

We discovered that supertags appear to be an effective source-language context for

both small- and large-scale translations. We also observed that TRIBL seems to be

more effective than IGTree since the latter does not contribute much in large-scale

translations. We compare the effectiveness of various contextual features, and by

this we conclude that supertags appear to be more effective source-side contextual

features than words and POS tags.

This chapter also introduced supertags as source-context in the Hiero model,

and reported a series of experimental results. We found that adding supertags as

well as a combination of supertags and words as source-language contexts improves
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upon the Hiero baseline significantly.

Furthermore, we introduced various sentence similarity-based contextual features

into PB-SMT, which were deployed individually and collectively with supertag-based

features. We found that the combined set-up provided the highest improvements in

BLEU over a PB-SMT baseline on both small- and large-scale translation tasks.

In the following chapter, we investigate the incorporation of deep syntactic and

semantic contextual information into the two state-of-the-art SMT models (Koehn

et al., 2003; Chiang, 2007).
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Chapter 6

Deep Syntactic and Semantic

Features

In the previous chapter, we have deployed neighbouring words, POS tags and su-

pertags as source language contexts in the state-of-the-art PB-SMT (Koehn et al.,

2003) and Hiero (Chiang, 2007) models. Thus far, the context information of a

source phrase is modeled as a sequence of features immediately before and after the

focus phrase. Although it can be argued that they offer a rich source of information

to disambiguate the translation of a source phrase, they remain position-specific and

local, and might, therefore, not provide all information needed for disambiguation.

In order to compensate for this, we model position-independent contextual features

related to the focus phrase. We choose to model the grammatical dependencies link-

ing from and to the head word of a focus phrase with words occurring elsewhere in

the sentence. We even go a step further by moving from deep syntactic dependencies

to semantic dependencies that a focus phrase has.

The remainder of the Chapter is organized as follows. In Section 6.1, we give

an overview of deep syntactic and semantic information which are the focus of this

chapter. In Section 6.2, we describe how we make use of the deep syntactic and

semantic features in order to form contextual information (CI) of a source phrase.

We carry out a range of experiments by incorporating those features into the state-
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of-the-art PB-SMT (Koehn et al., 2003) and hierarchical PB-SMT (Chiang, 2007)

models. The experimental results obtained adding deep syntactic and semantic

contexts into the PB-SMT and the HPB-SMT models are reported in Section 6.3

and Section 6.4, respectively.

6.1 Overview of Deep Syntactic and Semantic In-

formation

6.1.1 Grammatical Dependency Relations

Dependency parsers have become increasingly popular in recent years. They pro-

duce grammatical syntactic structures that consist of lexical elements linked by

binary asymmetrical relations called dependencies (Nivre, 2005). By definition, de-

pendency relations capture long range dependencies among the words in a sentence.

Data-driven dependency parsing, a popular approach, relies on a formal dependency

grammar and uses corpus data to induce a probabilistic model for disambiguation.

The formal dependency grammar has largely developed as a form for syntactic rep-

resentation used by traditional grammarians (Nivre, 2005).

Figure 6.1 shows the dependency parse tree of the English sentence ‘Can you

play my favourite old record? ’. It represents a syntactic structure based on the

predicate-argument relationships among the words in the sentence. Each relation

(i.e. dependency label) expresses a child-parent relationship between a pair of words

in the sentence.

MT researchers have made use of dependency parse information at different

stages of the SMT model in order to improve overall MT quality (Quirk et al.,

2005; Max et al., 2008; Shen et al., 2008). Importantly, Shen et al. (2008) embed

a target dependency language model during decoding to exploit long distance word

relations, which are unavailable with a traditional n-gram language model. Inspired

by these approaches, we tried to explore grammatical dependency information as
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Can   you      play             my   favourite          old        record? 
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sub 

obj 

nmod 
nmod 

poss 

An SMT phrase 

Head word 

PR= {frame_you_record} 
OE = {aux_obj_sub} 
PW= {null} 

root 

Figure 6.1: The dependency parse tree of the English sentence ‘Can you play my
favourite old record? ’ and the dependency features extracted from it for the SMT
phrase ‘play my favourite’ (cf. page 163).

source-language context features that could disambiguate a source phrase on the

basis of the distant contextual dependencies. In this chapter, we show that position-

independent syntactic dependency relations emanating from or pointing to the head

of a source phrase can be modeled as a useful source context feature in PB-SMT

(Koehn et al., 2003) and HPB-SMT (Chiang, 2007) models to improve target phrase

selection.

In our experiments, we used dependency parsers for two different languages: En-

glish and Dutch. In order to obtain the dependency parse information for English

sentences, we employ the Malt dependency parser1 (Nivre et al., 2006). To gen-

erate dependency features, the Dutch sentences were parsed using Frog,2 a robust

morphosyntactic analyzer and dependency parser (Van den Bosch et al., 2007).

We compare the dependency features with words, part-of-speech tags and su-

pertags as context, in order to observe the relative effects of position-independent

and position-dependent features. While supertags represent an abstract view up-

wards the tree or graph, excluding other lexical nodes and anything below the lowest

common ancestors in the tree between other lexical nodes and the words captured

in the contextual features, dependency relations directly encode relations between

tokens. One can follow a dependency and retrieve the lexical modifier or head at

1http://maltparser.org/download.html
2http://ilk.uvt.nl/frog/
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any distance.

6.1.2 Semantic Role Labeling

Semantic role labeling is an established benchmark task in NLP research since the

CoNLL-2004 shared task (Carreras and Márquez, 2004). The task is to identify the

semantic arguments associated with a clause’s predicate, and their classification into

specific semantic roles with respect to the predicate. Typical roles include agent,

theme, temporal, locative modifiers. The CoNLL 2008 shared task (Surdeanu et al.,

2008) introduced a unified dependency-based formalism that models both syntactic

dependencies and semantic roles for English. A dependency-based semantic role

labeler (SRL) (Johansson and Nugues, 2008) finds all semantic graphs around each

predicate verb or noun in an input sentence in addition to the dependency parse

tree. The SRL task begins with the identification of semantic predicates and their

arguments in a sentence. Then, SRL identifies all predicate roles, each of which

represents a relation between a pair of words in the sentence. For example, Figure

6.2 shows an English sentence (‘Can you play my favourite old record? ’) and two

semantic graphs around its two predicates (verbal: ‘play ’ and nominal: ‘record ’)

identified by SRL. In each graph, a set of roles express semantic dependencies of the

predicate word with other words (arguments) in the sentence.
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AL= {A0_A1_AM_MOD} 
PS = {04} 

Figure 6.2: The semantic graph of an English sentence and the semantic features
extracted from it for an SMT phrase (cf. page 166).

Recently, Wu and Fung (2009) utilized semantic roles in improving SMT accuracy
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by enforcing consistency between the semantic predicates and their arguments across

both the input sentence and the translation output. Inspired by Wu and Fung

(2009), we introduce semantic information as a new contextual feature in PB-SMT

for an English-to-Dutch translation task. In order to obtain the semantic graph

information of English sentences, we used the LTH semantic parser3 (Johansson and

Nugues, 2008), which assigns both predicative (PropBank-based) and nominative

(NomBank-based) graphs.

6.2 Deep Syntactic and Semantic Information as

Context

In this section, we describe how we utilize the deep syntactic and semantic parse

information in order to derive contextual information (CI) of a source phrase. In

Section 6.2.1, we show how CI with the grammatical dependency parse information

is derived for a PB-SMT source phrase as well as for a Hiero source phrase. In

Section 6.2.2, we illustrate how CI with the semantic information is formed for a

PB-SMT source phrase.

6.2.1 Dependency Relations as Context Information

6.2.1.1 Dependency Relations as Context Information for PB-SMT

We model grammatical dependencies linking to and from the head word of a PB-

SMT source phrase (f̂k) with words occurring elsewhere in the sentence. The identi-

fication of the head word of a phrase is non-trivial, as SMT phrases are not restricted

to linguistically coherent phrases, so the identification of a head word cannot be done

with linguistic rules of thumb (Magerman, 1995) (e.g. select the head noun from

the noun phrase). In our work, we identify head words of the SMT phrases from the

dependency tree generated for each sentence. For all words in a given source phrase,

3http://nlp.cs.lth.se/software/
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the word that hierarchically occupies the highest position in the dependency tree is

chosen as the head word. In Figure 6.1 which shows the dependency parse tree of

the English sentence ‘Can you play my favourite old record? ’, we see that the head

word of the PB-SMT English phrase ‘play my favourite’ is ‘play ’ according to the

tree structure.

We consider the following dependency features, drawing on the syntactic depen-

dencies emanating from or pointing to the head word of the source focus phrase (see

also Figure 6.1):

OE (outgoing edges) — For the head word of the focus phrase, we extract a list

of zero or more relations with other words of which the word is the parent

(i.e. the dependency type labels on all modifying dependency relations). The

list of relations is concatenated and sorted uniquely and alphabetically into

a single feature. This feature is denoted as OE, for ‘outgoing edges’. For

example, the head word (‘play’ ) of the focus phrase (‘play my favourite’) has

three outgoing edges: auxiliary, subject and object (see Figure 6.1). Therefore,

the OE feature is formed as: OE = {aux obj sub}.

PR (parent relation) — For the head word of the focus phrase we extract the

relation it has with its parent. If the head word is a verb, then the subcatego-

rization frame information is extracted and used as this feature. This feature

is denoted as PR, for ‘parent relation’. For example, the head word ‘play’ is a

verb, and so we extract its subcategorization frame information from the tree,

namely {frame you record}.

PW (parent word) — Extending the PR feature, we encode the identity of the

parent word of the head word of the focus phrase. This feature is denoted as

PW, for ‘parent word’. For example, the head word ‘play’ is root according to

the tree structure, and has no parent word. So we set the PW feature to null.

Together we refer to these dependency features as the grammatical dependency

information (CIdi(f̂k)) of the focus phrase (f̂k). These dependency features can be
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applied both individually and jointly. For instance, a combination of three depen-

dency features (OE, PR and PW) defines the contextual information CIdi(f̂k) as

in (6.1):

CIdi(f̂k) = {PR,OE,PW} (6.1)

We derive the context-sensitive log-linear feature ĥmbl (defined in Equation (3.7))

with the dependency contextual information (i.e. CIdi). In order to carry out exper-

iments with the dependency features, we incorporate the context-sensitive feature

ĥmbl and a binary feature ĥbest (defined in Equation (3.8)) in the log-linear framework

of Moses. The experimental results obtained employing the dependency features are

reported in Section 6.3.

Two published studies are closely related to our work on integrating dependency

features. Carpuat and Wu (2007) mention in passing that their WSD system uses ba-

sic dependency relations, but the nature of this information is not further described,

nor is its effect. Max et al. (2008) exploit grammatical dependency information, in

addition to information extracted from the immediate context of a source phrase.

Our approach differs with Max et al. (2008) at least in three respects:

1. Max et al. (2008) select a set of the 16 most informative dependency relations

for their experiments. Dependencies that link any of the tokens in the given

source phrase to tokens outside the phrase are considered. Each dependency

type is represented in the vector by the outside word it involves, or by the

symbol ‘nil’, which indicates that this type of dependency does not occur in

the phrase under consideration. In contrast to this approach, we used all (26)

dependency relations in our experiments, while only extracting features from

the head words of the SMT phrases.

2. They filter out phrases from the phrase table for which P(êk|f̂k) < 0.0002. In

contrast, we keep all phrase pairs.4

4Filtering out translations of a source phrase is always a risk since any of the discarded target
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3. Their experimental data contains 95K English-to-French training sentence

pairs, while we carried out a range of experiments considering different data

sizes, domains, and language pairs, elaborated further in Section 6.3.

6.2.1.2 Dependency Relations as Context Information for HPB-SMT

Like the head-word identification of the source phrases in PB-SMT, we identify

the head word of a Hiero source phrase (α) with the use of a dependency tree

generated for the sentence from which the Hiero phrase is extracted. A Hiero phrase

may contain a combination of terminal and nonterminals in the source language.

Accordingly, the head word of a source phrase (α) may appear in the nonterminal.

We derive two dependency features – OE and PR – for a Hiero phrase following

the similar approach to the one we adopted to derive those features for a PB-

SMT source phrase (cf. Section 6.2.1.1). We refer to these dependency features as

the grammatical dependency information CIdi(α) of the source phrase (α). As in

PB-SMT, these dependency features can be applied either individually or jointly.

For instance, a combination of the two dependency features (OE, PR) defines the

contextual information CIdi(α) as in (6.2):

CIdi(α) = {PR,OE} (6.2)

In order to derive the context-sensitive log-linear feature φmbl (defined in Equa-

tion (3.9)), we use the dependency feature-based context information (i.e. CIdi(α))

for each source phrase (α). In order to carry out experiments with the dependency

contextual features, we incorporate the context-sensitive feature φmbl and a binary

feature φbest (defined in Equation (3.10)) in the log-linear framework of Hiero. The

experimental results obtained integrating dependency features into the Hiero model

are reported in Section 6.4.

phrases could be the most acceptable translation of that source phrase under a particular contextual
environment.
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6.2.2 Semantic Roles as Context Information

We introduce semantic information as a source-side contextual feature in PB-SMT

for an English-to-Dutch translation task. The semantic parsing is computationally

very expensive, so we carried out experiments with semantic contextual features

only on the English-to-Dutch Europarl data set (cf. Section 3.6). Note that we did

not explore semantic context in the state-of-the-art Hiero system (Chiang, 2007).

The semantic information (CIsi) of a PB-SMT source phrase (f̂k) originates from

the semantic (verbal or nominal) predicate captured in that phrase. This introduces

three possible cases: (a) there is no predicate in the source phrase, (b) there is

only one predicate in the source phrase, in which case this is chosen as the head

predicate to define (CIsi), and (c) more than one predicate occurs in the source

phrase; for such cases, the predicate that occupies hierarchically a superior position

in the dependency parse tree is chosen as the head predicate. Figure 6.2 shows

an English phrase ‘play my favourite’ identified by our baseline PB-SMT system,

Moses, which contains only the verbal predicate ‘play ’.

In our experiments, two semantic features were considered for the head predicate:

AL (argument labels) — We extract the list of one or more predicate roles (ar-

gument labels) of the head predicate of a source phrase. The roles are concate-

nated and sorted uniquely and alphabetically into a single feature. This feature

is denoted as AL, for ‘argument labels’. For example, Figure 6.2 illustrates

that the head predicate (‘play’ ) of the focus phrase (‘play my favourite’) has

three semantic dependencies (argument labels): acceptor (A0), thing accepted

(A1) and modal (AM MOD).

PS (predicate sense) — In addition to the semantic roles of a predicate, SRL

attempts to disambiguate the sense of the predicate in the source sentence.

We extract the sense of the head predicate of the source phrase. This feature

is denoted as PS, for ‘predicate sense’. For example, the sense of the head
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predicate (‘play’ ) in the sentence in Figure 6.2 is {04}.5

The two features AL and PS are applied both individually and jointly. For in-

stance, a combination of the two semantic features defines the contextual information

CIsi(f̂k) of the source phrase (f̂k) as in (6.3):

CIsi(f̂k) = {AL,PS} (6.3)

In order to carry out experiments by integrating semantic contextual features into

the PB-SMT model (Koehn et al., 2003), we followed the approach that we adopted

in order to integrate dependency contextual features into the PB-SMT model (il-

lustrated in the previous section). The experimental results obtained employing

semantic features are reported in Section 6.3.

6.3 Experiments with Context-Informed PB-SMT

In this section, we report the experimental results obtained by integrating deep syn-

tactic and semantic contextual features into the PB-SMT model. This section is

divided into six subsections. Section 6.3.1 reports experimental results on small-

scale data sets representing the language pairs Dutch-to-English, English-to-Hindi,

and English-to-Czech. Section 6.3.2 reports experimental results on large-scale data

sets representing the language pairs Dutch-to-English and English-to-Dutch. Sec-

tion 6.3.3 provides some analysis of the effectiveness of various contextual features

in small- and large-scale translations. In Section 6.3.4, we present the experimental

results of the learning curve experiments which we carried out on three different lan-

guage pairs: English-to-Spanish, Dutch-to-English and English-to-Dutch. In Section

6.3.5, we provide some analysis of the outcomes of the learning curve experiments.6

5Figure 3.1 (cf. page 40) shows four English sentences, each containing the word ‘play ’. The
fourth sentence in Figure 3.1 is used in Figure 6.2 to illustrate the semantic features.

6Parts of the experiments carried out with our context-informed PB-SMT model including
learning curve experiments have been reported, albeit in a different form, in Haque et al. (2011).
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6.3.1 Experiments on Small-Scale Data Sets

6.3.1.1 Dutch-to-English

Small-scale Dutch-to-English translation was performed on the Dutch-to-English

Open Subtitles corpus (cf. Section 3.6).7 Five experiments were performed com-

bining dependency features (outgoing edges: OE, parent relation: PR, and parent

word: PW), the results of which are shown in Table 6.1. The combination of PR and

OE produces the best results in terms of BLEU and NIST: we observe a 0.67 abso-

lute improvement corresponding to 2.07% relative improvement in terms of BLEU,

which is not statistically significant.

Experiments BLEU NIST METEOR TER WER PER
Baseline 32.39 6.11 55.39 50.15 49.67 43.12
PR 32.69 6.08 55.08 50.48 50.11 43.58
OE 32.61 6.00 55.53 52.40 51.56 45.09
PR+PW 32.74 6.06 55.98 51.15 50.75 43.61
PR+OE 33.06 (60%) 6.20 55.70 49.45 48.83 42.44
PR+OE+PW 32.79 6.18 55.37 49.51 49.03 42.43

Table 6.1: Experiments with dependency relations.

Experiments BLEU NIST METEOR TER WER PER
Baseline 32.39 6.11 55.39 50.15 49.67 43.12
PR+OE+Word±2 33.05 6.11 56.02 50.62 49.82 43.68
PR+OE+POS±2 33.30 6.09 56.57 50.52 50.17 43.81
PR+OE+POS±2† 33.39 (98.7%) 6.11 56.30 50.43 50.34 43.54

Table 6.2: Experiments combining dependency relations, words and part-of-speech.

In the second series of experiments, we combined the position-independent PR+OE

dependency feature with the position-dependent word and part-of-speech features.

The combined experimental results are reported in Table 6.2. We observe that com-

bining POS±2† with PR+OE yields the highest BLEU improvement (1.0 BLEU

point; 3.08% relative) over the baseline, which is statistically significant at the 98.7%

level of confidence. The best METEOR score (an improvement of 1.18 METEOR

7Experiments reported in this section have been summarized, albeit in different form, in Haque
et al. (2009b).
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points over the baseline; 2.14% relative) is obtained when PR+OE is combined with

POS±2.

In this translation task, we compare the effectiveness of the dependency rela-

tions with that of the basic features (experimental results with basic contextual

features were reported in Section 4.3.1.2) as source-language context in PB-SMT.

In sum, the small-scale Dutch-to-English translation task shows the POS contex-

tual feature to produce the largest single-feature improvement over the baseline,

while the difference in score between POS-based and dependency-based contextual

models is negligible. Moreover, the highest improvement (statistically significant)

in BLEU over the baseline is obtained employing the combination of the POS- and

dependency-based features.
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Figure 6.3: Distances found between phrase boundaries with linked modifier words
and parent word.

As an additional analysis, Figure 6.3 displays the distribution of distances (num-

ber of tokens) between the source phrase boundary and the words outside the phrase

linked via a dependency relation. There are about twice as many outgoing edge

dependency relations linking to modifier words outside the focus phrase than to
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phrase-internal modifiers. About half the phrases have the root of the dependency

graph as the parent, i.e. they are the main verbs. For the remaining phrases, the

parent of the head-word is a phrase-external word. From the distance distribution

statistics we find that the average distance of head-modifying words to the phrase

boundary is only 0.75 tokens when including phrase-internal relations, indicating

that modifiers of the phrases are usually not too far away, and are mostly imme-

diate neighbours. In contrast, parent words of the phrases’ head words are found

relatively further away, at an average distance of 1.69 tokens outside the phrase

boundary.

In this translation task, we carried out an analysis on the translations produced

by our best-performing context-informed (CI) system (PR+OE+POS±2†) and the

Moses baseline. Table 6.3 shows how two systems differ from each other in terms of

sentence-level automatic evaluation measures (BLEU and TER) and closeness to the

reference set. Additionally, Table 6.4 compares weights of the various translational

features of the PR+OE+POS±2† and the baseline systems obtained by MERT

training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 62 54 246 638
Sentence-Level TER 107 117 613 163
Closeness to Reference Set CI Moses
Matching Translations (%) 17.5 17.2
Matching Words (%) 62.42 61.72

Table 6.3: Comparison between translations produced by the best-performing
context-informed (CI) system (PR+OE+POS±2†) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.1065 0.0583 0.0078 0.0579 0.0650 0.0998 -0.2357 - -
PR+OE+POS±2† 0.0907 0.0086 0.0047 0.0211 0.0253 0.1798 -0.2184 0.0692 -0.0018

Table 6.4: Comparison of weights for each translational feature of the two systems
(PR+OE+POS±2† and Moses baseline) obtained by MERT training.

170



6.3.1.2 English-to-Hindi

For the English-to-Hindi translation task, we use the previously best-performing

set-up (PR+OE) obtained from the Dutch-to-English translation task. We employ

dependency contextual features jointly with lexical, POS, and supertag contextual

features. Experiments were carried out using the small EILMT tourism corpus (cf.

Section 3.6). The experimental results for individual and joint features, using the

TRIBL classifier, are displayed in Table 6.5.

Experimental results in Table 6.5 show that dependency features (i.e. PR+OE)

produce an improvement of just 0.09 BLEU points (0.82% relative increase) over the

baseline, which is not statistically significant. The other evaluation metrics show

similar levels of improvement. The results of combining the dependency features

with various contextual features are also shown in Table 6.5. Combining PR+OE

with POS±2 and the concatenation of CCG and LTAG supertag features, referred to

as PR+OE+POS±2+CCG+LTAG±1† (last row in Table 6.5), we achieve the overall

best improvement (0.41 BLEU points; 3.7% relative) over the baseline. Again, the

improvement is not statistically significant, yet is close to the significance level.

Similar trends are observed on other evaluation metrics for the combined features.

Experiments BLEU NIST METEOR TER WER PER
Baseline 10.93 4.54 28.59 74.87 82.06 56.67
PR+OE 11.02 4.58 28.28 74.65 81.75 56.55
PR+OE+POS±2 11.08 4.56 28.59 75.39 82.67 56.65
PR+OE+Word±2 11.02 4.55 28.59 75.13 82.27 56.85
PR+OE+CCG±1 11.02 4.57 28.27 74.77 82.08 56.56
PR+OE+LTAG±1 11.08 4.56 28.27 75.39 82.67 56.65
PR+OE+CCG±1+LTAG±1† 11.02 4.57 28.27 74.77 82.08 56.56
PR+OE+Super-pair±1† 11.02 4.54 28.27 75.00 82.00 56.82
PR+OE+Super-pair±2† 11.23 4.57 28.59 74.74 81.92 56.55
PR+OE+POS±2+CCG+LTAG±1† 11.34 (89%) 4.58 27.94 74.70 82.00 56.44

Table 6.5: Experiments applying dependency features features in English-to-Hindi
translation.

In this translation task, we compare the effectiveness of various contextual fea-

tures (experimental results with basic contextual features and supertag contextual

features were reported in Sections 4.3.1.3 (on page 67) and 5.3.1.2 (on page 112),

respectively) as a source-language context in PB-SMT. To summarize, the word con-
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textual model produces the biggest single-feature improvement over the baseline in

terms of BLEU. The combination of dependency, supertag, and POS features brings

about the highest BLEU score in this translation task, although the improvements

are not statistically significant.

We also carried out an analysis on the translations produced by our best-performing

context-informed (CI) system (PR+OE+POS±2+CCG+LTAG±1†) and the Moses

baseline. Table 6.6 shows how two systems differ from each other in terms of

sentence-level automatic evaluation measures (BLEU and TER) and closeness to

the reference set. Additionally, Table 6.7 compares weights of the various transla-

tional features of the PR+OE+POS±2+CCG+LTAG±1† and the baseline systems

obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 72 54 29 358
Sentence-Level TER 167 160 168 0
Closeness to Reference Set CI Moses
Matching Translations (%) 0 0
Matching Words (%) 51.78 51.86

Table 6.6: Comparison between translations produced by the best-performing
context-informed (CI) system (PR+OE+POS±2+CCG+LTAG±1†) and the Moses
baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.0980 0.0453 0.0652 0.0510 0.1948 0.0910 -0.1683 - -
PR+OE+POS±2+
CCG+LTAG±1† 0.0719 0.0268 0.0313 0.0237 0.0589 0.0021 -0.2066 0.0447 -0.006

Table 6.7: Comparison of weights for each translational feature of the two sys-
tems (PR+OE+POS±2+CCG+LTAG±1† and Moses baseline) obtained by MERT
training.

6.3.1.3 English-to-Czech

For the English-to-Czech translation task (Penkale et al., 2010)8 we employed the

previously best performing experimental set-up. The evaluation results on the WMT

2009 test set are reported in Table 6.8. We observe that small improvements over

8Parts of experimental results in the English-to-Czech translation task have been reported in
Penkale et al. (2010).
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the Moses baseline are achieved for PR and PR+OE features in terms of BLEU.

Moderate improvements are observed for PR and PR+OE in METEOR and TER.

The highest METEOR score over the baseline is obtained for the dependency parent

relation (PR: 0.31 METEOR points improvement; 0.91% relative). On TER, PR

yields an absolute reduction of 0.13 TER points below the baseline.

Experiments BLEU NIST METEOR TER WER PER
Baseline 7.83 3.90 34.13 87.66 80.53 67.88
PR 7.85 3.92 34.44 87.53 80.57 67.88
PR+OE 7.86 3.92 34.29 87.55 80.53 67.80

Table 6.8: Experimental results on the WMT 2009 test set.

Experimental results on the WMT 2010 test set are shown in Table 6.9. We

observe that the improvements with this test set are similar to the improvements

obtained with the WMT 2009 test set. PR yields a slight improvement in BLEU

over the Moses baseline. As far as METEOR is concerned, the PR feature produces

the best improvement (a gain of 0.28 METEOR points, 0.81% relative) over the

baseline. However, PR+OE produces moderate improvement in METEOR (a gain

of 0.20 METEOR points; 0.57% relative) above the baseline.

Experiments BLEU NIST METEOR TER WER PER
Baseline 8.05 3.97 34.61 86.01 78.54 67.48
PR 8.06 4.00 34.89 85.98 78.62 67.43
PR+OE 8.03 3.99 34.81 85.97 78.63 67.44

Table 6.9: Experimental results on the WMT 2010 test set.

To summarize the effectiveness of the different contextual features (experimental

results with basic contextual features and supertag contextual features were reported

in Sections 4.3.1.4 (on page 68) and 5.3.1.3 (on page 114), respectively) as a source-

language context in PB-SMT, for this translation task slight improvements over

the baseline are seen for supertag and dependency features, while POS and word

contexts do not improve the baseline at all. None of the improvements over the

baseline models are statistically significant in terms of BLEU.

We also carried out an analysis on the translations produced by the PR sys-
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tem and the Moses baseline (with WMT 2010 test set). Table 6.10 shows how two

systems differ from each other in terms of sentence-level automatic evaluation mea-

sures (BLEU and TER) and closeness to the reference set. Additionally, Table 6.11

compares weights of the various translational features of the PR and the baseline

systems obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 205 190 106 1988
Sentence-Level TER 584 591 1308 6
Closeness to Reference Set CI Moses
Matching Translations (%) 0.241 0.281
Matching Words (%) 30.53 30.73

Table 6.10: Comparison between translations produced by the best-performing
context-informed (CI) system (PR) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.1017 0.0405 0.0265 0.0550 0.0222 0.2377 -0.1147 - -
PR 0.1108 0.0080 0.0905 -0.0965 0.0234 0.0134 -0.1165 0.1273 0.0022

Table 6.11: Comparison of weights for each translational feature of the two systems
(PR and Moses baseline) obtained by MERT training.

6.3.2 Experiments on Large-Scale Data Sets

6.3.2.1 Dutch-to-English

We carried out a similar series of experiments with large-scale data sets to the ones

reported in the previous section. Our first experimental data set is the Dutch-to-

English Europarl corpus (cf. Section 3.6). Like the classification approaches em-

ployed in the previous large-scale translation tasks, we used the IGTree classifier to

carry out this set of experiments, as TRIBL’s memory needs become too demanding

with data sets of this size.

We used similar experimental settings to that used with the small-scale Open

Subtitles data set reported in Section 6.3.1.1. Experimental results are reported in

Table 6.12, where we see that some of the dependency features produce small im-

provements over the baseline. Of these, PR+OE produces the largest improvement
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Experiments BLEU NIST METEOR TER WER PER
Baseline 27.29 6.686 56.81 58.65 63.97 45.18
Dependency Relations
PR 27.47 (66%) 6.726 57.02 58.5 63.59 45.10
OE 27.40 6.737 56.95 58.3 63.56 44.92
PR+OE 27.53 (63%) 6.721 57.15 58.64 63.93 45.08
PR+PW 27.17 6.690 56.86 58.94 64.09 45.34
PR+OE+PW 27.29 6.725 56.89 58.68 63.82 45.18
Combinations of Words, Part-of-Speech tags and Dependency Relations
PR+OE+Word±2 27.02 6.69 56.7 59.00 64.23 45.44
PR+OE+POS±2 27.14 6.64 56.68 59.39 64.56 45.76
PR+OE+POS±2† 27.16 6.66 56.58 59.00 64.17 45.53

Table 6.12: Results on large-scale Dutch-to-English translation.

(0.24 BLEU points; 0.88% relative) over the baseline, but, none of the improve-

ments are statistically significant. Furthermore, we combine the best-performing

dependency feature combination (PR+OE) with Word±2, POS±2 and POS±2†,

the results of which are shown in the last rows of Table 6.12. Nevertheless, none of

the combinations are able to produce any improvement over the baseline. The other

evaluation metrics tend to follow the same trends as with BLEU.

We summarize the Dutch-to-English translation task by comparing the effec-

tiveness of the basic contextual features (experimental results with basic contextual

features were reported in Section 4.3.2.1 (on page 70)) with that of the dependency

contextual features. In sum, word- and POS-based models do not show any im-

provements over the baseline PB-SMT model. In contrast, we achieve small but

consistent improvements over the baseline across all evaluation metrics when depen-

dency relations are employed as source-language contextual features.

Additionally, we carried out an analysis on the translations produced by the PR

and the Moses baseline. Table 6.13 shows how two systems differ from each other in

terms of sentence-level automatic evaluation measures (BLEU and TER) and close-

ness to the reference set. Table 6.14 compares weights of the various translational

features of the PR and the baseline systems obtained by MERT training.
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CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 258 224 240 278
Sentence-Level TER 249 249 261 41
Closeness to Reference Set CI Moses
Matching Translations (%) 4.3 4.2
Matching Words (%) 65.43 65.23

Table 6.13: Comparison between translations produced by the best-performing
context-informed (CI) system (PR) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.1086 0.0641 0.0107 0.0569 0.0867 0.0977 -0.2459 - -
PR 0.1068 0.0259 0.0731 0.0642 0.0545 0.0503 -0.2100 0.0343 0.0013

Table 6.14: Comparison of weights for each translational feature of the two systems
(PR and Moses baseline) obtained by MERT training.

6.3.2.2 English-to-Dutch

We conducted experiments by incorporating dependency features on the same Dutch-

to-English Europarl data set described in the above section (Section 6.3.2.1), but

in the reverse direction. We introduce semantic roles as a new contextual feature

for this translation task, and in addition we tried different combinations of lexical,

syntactic and semantic features.

Experiments BLEU NIST METEOR TER WER PER
Baseline 24.26 6.177 52.68 64.37 68.81 50.02
Dependency Relations
PR 24.72 (99.9%) 6.245 52.75 63.87 68.36 49.76
OE 24.32 6.219 52.62 64.00 68.52 49.87
PR+OE 24.62 6.235 52.82 63.95 68.26 49.81
PR+PW 24.58 6.260 52.80 63.62 68.33 49.49
PR+PW+OE 24.26 6.204 52.46 64.24 68.70 50.03
Semantic Roles
AL 24.56 (90.9%) 6.237 52.66 63.95 68.09 49.54
AL+PS 24.50 (91.6%) 6.221 52.50 64.15 68.33 49.79

Table 6.15: Results on English-to-Dutch Translation employing deep syntactic and
semantic features.

Experimental results for individual contextual features are displayed in Table

6.15. Among the dependency features, PR produces the highest improvement (0.46

BLEU points; 1.90% relative) over the baseline, which is statistically significant at

a 99.9% level of confidence. Among the semantic features, AL yields the highest
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score (a 0.30 BLEU point improvement; 1.24% relative) over the baseline, but this

is not statistically significant, although it is close to the significance level. Overall,

PR remains the best performing feature among the individual context features.

Similar to the previous approaches, the best-performing settings were combined

to see whether further improvements could be achieved. Experimental results for

the combined features are reported in Table 6.16. We see from Table 6.16 that a

combined set-up (AL+PS+PR) equals the BLEU score obtained with the PR feature

(cf. Table 6.15), and this improvement is statistically significant at the 98.2% level

of confidence. Among the other combinations, Word±2 combined with PR produces

the second highest improvement (0.40 BLEU points, 1.64% relative increase) over

the baseline, although this is not a statistically significant increase.

Experiments BLEU NIST METEOR TER WER PER
Baseline 24.26 6.177 52.68 64.37 68.81 50.02
PR+Word±2 24.66 (92.9%) 6.302 52.89 63.36 67.95 49.09
PR+CCG-LTAG±1 24.51 6.301 52.55 63.14 67.32 49.04
PR+CCG-LTAG±1† 24.55 6.232 52.58 63.72 68.01 49.48
AL+PR 24.70 (92.9%) 6.258 52.79 63.70 68.10 49.55
AL+CCG-LTAG±1 24.55 6.236 52.59 63.99 68.26 49.81
AL+PS+PR 24.72 (98.7%) 6.254 52.64 63.89 68.14 49.53
AL+PS+CCG-LTAG±1 24.50 6.218 52.77 64.23 68.35 49.73

Table 6.16: Results on English-to-Dutch translation combining best performing fea-
tures.

Similar to the previous translation tasks reported in the above sections, for this

translation task we compare the effectiveness of the various contextual features in the

PB-SMT model (experimental results with basic contextual features and supertag

contextual features were reported in Sections 4.3.2.2 (on page 71) and Section 5.3.2.1

(on page 116), respectively). We see that improvements over the baseline for the de-

pendency and supertag-based context-informed models are statistically significant in

terms of BLEU at 99.9% and 96% levels of confidence respectively. In contrast, im-

provements for the word context are not statistically significant, and the POS-based

model performs below the baseline PB-SMT model. The semantic role contextual

feature achieved modest gains over the baseline, both when used individually and
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in collaboration with other features. While this is encouraging, as noted earlier,

semantic parsing is computationally expensive, so any gains in translation accuracy

need to be offset against slower processing speeds.

In this translation task, we carried out an additional analysis on the translations

produced by our best-performing context-informed (CI) system (PR) and the Moses

baseline. Table 6.17 shows how two systems differ from each other in terms of

sentence-level automatic evaluation measures (BLEU and TER) and closeness to

the reference set. Table 6.18 compares weights of the various translational features

of the PR and the baseline systems obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 226 189 256 329
Sentence-Level TER 274 219 469 38
Closeness to Reference Set CI Moses
Matching Translations (%) 3.8 3.8
Matching Words (%) 61.72 61.74

Table 6.17: Comparison between translations produced by the context-informed
(CI) system (PR) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.1072 0.0102 0.0509 0.1103 0.0468 0.0936 -0.2689 - -
PR 0.0916 0.0059 0.0440 0.0324 0.0357 0.049 -0.2123 0.0808 0.0203

Table 6.18: Comparison of weights for each translational feature of the two systems
(PR and Moses baseline) obtained by MERT training.

6.3.3 Effect of Different Contextual Features

In this section, we report a comparison of the different contextual features in small-

and large-scale translations. We compare the effectiveness of deep syntactic and

semantic contextual features with that of the basic and supertag contextual features

reported in previous chapters.

The small-scale Dutch-to-English translation task showed that the POS contex-

tual feature produces the biggest improvement over the baseline, but the difference

in score between POS-based and dependency-based contextual models is negligible.

Moreover, in this translation task, the highest improvement over the baseline is
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obtained by employing a combination of the POS- and dependency-based features,

which is statistically significant in terms of BLEU.

For English-to-Hindi, the word contextual model produces the biggest improve-

ment over the baseline in terms of BLEU when we look at individual features. How-

ever, the combination of dependency, supertag, and POS features brings about the

highest BLEU score in this translation task, although the results are not statistically

significant.

For English-to-Czech, slight improvements over the baseline are seen for su-

pertags and dependency features, but POS and word contexts do not contribute at

all. None of the improvements over the baseline models in both English-to-Hindi

and English-to-Czech translation tasks are statistically significant in terms of BLEU.

If we roughly compare the effectiveness of the various contextual features both

collectively and individually, for small-scale translation tasks we see that supertags

and dependency relations seem to be more effective contexts than neighbouring

words and part-of-speech contexts.

For large-scale Dutch-to-English translation, word- and POS-based models do

not show any improvements over the baseline PB-SMT model. In contrast, we

achieve small but consistent improvements over the baseline for all evaluation metrics

when dependency relations are employed as the source-language contextual features.

For the reverse language direction, the dependency and supertag-based context-

informed models produced statistically significant improvements over a PB-SMT

baseline. In contrast, improvements for the word context are not statistically sig-

nificant, and the POS contextual features do not improve the baseline PB-SMT

model. Our semantic role contextual feature produced moderate improvements over

the baseline, both when used individually and in collaboration with other features.

In sum, for large-scale translation, in terms of contextual features, overall su-

pertags, dependency relations and semantic roles seem to be more effective than

word- and POS-based models.
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6.3.4 Experiments on Increasing Size of Training Sets

We carried out learning curve experiments considering basic features (words and

POS tags) as source-language contexts on three different language pairs (English-

to-Spanish, English-to-Dutch, and Dutch-to-English), the results of which were re-

ported in Sections 4.3.5. Section 5.3.4 reported the results of learning curve ex-

periments obtained incorporating supertags as source-language contexts into the

PB-SMT model. Like basic and supertag contextual features, we carried out learn-

ing curve experiments on the English-to-Spanish, Dutch-to-English and English-to-

Dutch language pairs by employing deep syntactic and semantic features as source-

language contexts. In order to carry out the learning curve experiments with deep

syntactic and semantic contextual features, we used the same data sets as used in

the previous learning curve experiments.

We report the outcomes of English-to-Spanish and Dutch-to-English learning

curve experiments deploying deep syntactic contextual features in the PB-SMT

model in Sections 6.3.4.1 and 6.3.4.2, respectively. In Section 6.3.4.3, we report

the learning curve experiments which we performed on English-to-Dutch language

pair employing deep syntactic and semantic contextual features in the PB-SMT

model.

6.3.4.1 English-to-Spanish

As mentioned in Sections 4.3.5 and 5.3.4, the English-to-Spanish training data set

was divided into eight different training sets ranging from 10K sentence pairs to

1.64M sentence pairs. To perform experiments on this sequence of training sets,

we used both IGTree and TRIBL. As noted earlier, we were able to use only the

TRIBL classifier with training sets containing up to 100K sentences due to TRIBL’s

relatively high memory requirements.

IGTree as classifier: Table 6.19 shows experimental results obtained on English-

to-Spanish training sets comprising 10K to 1.64M sentence pairs by employing
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IGTree as the classifier. As can be seen from Table 6.19, for all amounts of training

sets except two (100K and 1.64M training sets), dependency relation-based systems

remain below the Moses baseline according to the performance measured by any of

the evaluation metrics. On the 500K and the 1M training sets, the performance

of the dependency relation-based SMT models are close to that of the Moses base-

line. On the 100K training set, adding the parent relation context feature improves

upon the baseline in terms of BLEU, NIST, and METEOR. Moreover, on the 1.64M

training set, the PR system produces a slight improvement in BLEU over the Moses

baseline.

TRIBL as Classifier: The experimental results obtained using TRIBL as the

classifier on the training sets containing 10K to 100K sentence pairs are shown

in Table 6.20. When the 10K training set is used, we see that the performance

of all context-informed SMT systems (PR, OE, PR+OE) are much closer to the

performance of the Moses baseline across all evaluation metrics.

The PR and OE systems produce slight improvements over the Moses baseline

at the 20K amount of training data across most evaluation metrics. However, none

of the BLEU and METEOR improvements are statistically significant with respect

to the baseline.

Adding any of the dependency contextual features improves upon the baseline

across all evaluation metrics, when we used 50K amount of training data. We see

from Table 6.20 that most of the improvements in METEOR over the Moses baseline

are statistically significant, and improvements in BLEU are very close to significance

level with respect to the baseline.

When 100K sentence-pairs of training data are used, all dependency contextual

features produce modest gains over the Moses baseline across all the evaluation met-

rics. The PR system produces a statistically significant and the highest improvement

in BLEU (PR: 0.33 BLEU points; 1.15% relative) as well as a statistically signif-

icant improvement in METEOR (PR: 0.25 METEOR points; 0.81% relative) over
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Train. Experi- BLEU NIST METEOR TER WER PER
Size ments

10K

Baseline 22.68 6.00 26.15 68.93 67.58 50.81
PR 22.29 5.94 25.83 69.49 68.04 51.21
OE 22.22 5.94 25.88 69.31 67.84 51.03
PR+OE 22.01 5.91 25.76 69.51 68.09 51.14

20K

Baseline 24.58 6.38 27.77 66.51 65.16 48.71
PR 24.45 6.36 27.63 66.92 65.65 49.00
OE 24.32 6.36 27.64 66.89 65.58 48.93
PR+OE 24.02 6.32 27.52 67.14 65.83 49.14

50K

Baseline 27.33 6.84 29.93 64.15 62.97 46.63
PR 27.12 6.82 29.77 64.06 63.09 46.63
OE 27.22 6.81 29.65 64.22 63.13 46.82
PR+OE 26.81 6.8 29.65 64.27 63.28 46.76

100K

Baseline 28.64 7.09 30.91 62.30 61.26 45.1
PR 28.71 7.11 31.06 62.28 61.39 45.02
OE 28.64 7.06 30.76 62.77 61.73 45.47
PR+OE 28.49 7.05 30.84 62.6 61.63 45.49

200K

Baseline 29.96 7.32 31.90 60.97 60.01 44.06
PR 29.56 7.27 31.67 61.41 60.44 44.45
OE 29.65 7.25 31.70 61.52 60.56 44.51
PR+OE 29.68 7.28 31.73 61.24 60.28 44.31

500K

Baseline 31.08 7.47 32.67 59.86 58.83 43.18
PR 30.94 7.45 32.54 60.13 59.19 43.38
OE 31.07 7.48 32.64 59.93 59.02 43.24
PR+OE 30.87 7.45 32.52 60.21 59.27 43.39

1M

Baseline 31.52 7.54 32.94 59.45 58.50 42.84
PR 31.37 7.53 3288 59.46 58.56 42.85
OE 31.47 7.51 32.86 59.63 58.71 43.03
PR+OE 31.42 7.52 32.86 59.61 58.65 42.88

1.64M

Baseline 31.92 7.60 33.24 59.06 58.14 42.42
PR 31.94 7.566 33.19 59.42 58.38 42.65
OE 31.8 7.59 33.10 59.2 58.22 42.54
PR+OE 31.76 7.56 32.98 59.44 58.51 42.87

Table 6.19: Results of English-to-Spanish learning curve experiments with deep
syntactic and semantic contextual features while employing IGTree as the classifier.

182



Train. Experi- BLEU NIST METEOR TER WER PER
Size ments

10K

Baseline 22.68 6.00 26.15 68.93 67.58 50.81
PR 22.56 5.99 26.05 69.09 67.72 50.92
OE 22.54 5.97 26.07 69.26 67.80 51.02
PR+OE 22.39 5.98 25.97 69.31 67.97 50.78

20K

Baseline 24.58 6.38 27.77 66.51 65.16 48.71
PR 24.69 6.402 27.8 66.48 65.16 48.63
OE 24.64 6.39 27.8 66.62 65.38 48.82
PR+OE 24.54 6.39 27.78 66.54 65.35 48.76

50K

Baseline 27.33 6.84 29.93 64.15 62.97 46.63
PR 27.49 (76%) 6.89 30.11 (99.28%) 63.62 62.67 46.16
OE 27.44 (83%) 6.877 30.01 (87.10%) 63.57 62.64 46.20
PR+OE 27.49 (81%) 6.891 30.11 (99.27%) 63.64 62.76 46.06

100K

Baseline 28.64 7.09 30.91 62.30 61.26 45.1
PR 28.97 (94.1%) 7.13 31.16 (99.91%) 62.16 61.18 45.00
OE 28.81 (91.5%) 7.12 31.10 (99.44%) 62.20 61.17 44.96
PR+OE 28.86 (53%) 7.11 31.12 (99.45%) 62.33 61.31 45.12

Table 6.20: Results of English-to-Spanish learning curve experiments with deep
syntactic and semantic contextual features while employing TRIBL as the classifier.

the Moses baseline. For the 100K training set, we observed statistically significant

improvements in METEOR also for other experimental set-ups (OE and PR+OE)

of the dependency features.

Learning Curves: We draw learning curves in order to examine the effect of

increasing amounts of training data, for both IGTree and TRIBL classifiers. We

plot the BLEU score learning curves of the two best-performing context-informed

SMT models (PR, OE) for TRIBL and IGTree, as well as for the Moses baseline in

Figure 6.4.

In addition, Figure 6.5 shows the BLEU (top), METEOR (centre) and TER

(bottom) difference curves of the dependency relation-based SMT systems against

the baseline, highlighting the gains and losses achieved. In addition to the PR, OE

and the Moses baseline, Figure 6.5 displays the performance of the PR+OE system

against the baseline.

Figure 6.4 shows that the PR and OE curves for TRIBL start just below the

baseline curve, then cross the baseline curve when more training data is added. The
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Figure 6.4: BLEU Learning curves comparing the Moses baseline against the two
context-informed SMT models (PR, OE) in English-to-Spanish translation task.
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Figure 6.5: BLEU (top), METEOR (centre) and TER (bottom) score-difference
curves comparing the Moses baseline against the context-informed SMT models
(PR, OE, PR+OE) in English-to-Spanish translation task.

185



figure also illustrates that the PR and OE curves for IGTree start at a lower level

than the baseline curve, and end at the same level as the baseline curve at the largest

training set size.

In sum, TRIBL appears to be effective on both small and moderately large-scale

data sets. In contrast, IGTree does not offer improvements over the baseline either

with the small or the large-scale context-informed models; the performance of the

large-scale context-informed models with the IGTree classifier are close or equal to

the performance of the Moses baseline.

In this translation task, we carried out an additional analysis on the translations

produced by our best-performing context-informed (CI) system (PR)9 and the Moses

baseline. Table 6.21 shows how two systems differ from each other in terms of

sentence-level automatic evaluation measures (BLEU and TER) and closeness to the

reference set. Additionally, Table 6.22 compares weights of the various translational

features of the PR and the baseline systems obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 529 493 462 516
Sentence-Level TER 514 499 949 38
Closeness to Reference Set CI Moses
Matching Translations (%) 2.05 2
Matching Words (%) 59.90 59.65

Table 6.21: Comparison between translations produced by the best-performing
context-informed (CI) system (PR) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.0795 0.0448 0.0091 0.0449 0.0527 0.1151 -0.1451 - -
PR 0.0963 0.0508 0.0383 0.0009 0.0417 0.1193 -0.1280 0.0401 -0.0010

Table 6.22: Comparison of weights for each translational feature of the two systems
(PR and Moses baseline) obtained by MERT training.

6.3.4.2 Dutch-to-English

In this section, we report the outcomes of the Dutch-to-English learning curve ex-

periments. On the Dutch-to-English translation task, we adopted our previously

9The best-performing PR system which we used for this analysis was built on 100K training
set with TRIBL (cf. Table 6.20).
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best-performing experimental set-ups (PR, OE, PR+OE) in order to integrate de-

pendency relation-based contextual features into the PB-SMT model. On this trans-

lation task, we used TRIBL as the classifier as we did for the learning-curve exper-

iments with basic contextual features (cf. Section 4.3.5.2 (on page 81)).

Train. Experi- BLEU NIST METEOR TER WER PER
Size ments

10K

Baseline 18.31 5.14 46.73 69.13 74.06 54.77
PR 18.39 (46%) 5.20 46.67 68.65 73.31 54.37
OE 18.35 (38%) 5.18 46.65 68.74 73.35 54.49
PR+OE 18.34 (25%) 5.16 46.72 68.94 73.52 54.69

20K

Baseline 20.13 5.47 49.14 67.22 72.24 52.79
PR 20.28 (30%) 5.52 49.29 (84.9%) 66.87 71.64 52.48
OE 20.34 (76%) 5.52 49.31 (89.5%) 66.69 71.45 52.45
PR+OE 20.05 5.47 49.09 67.07 71.85 52.76

50K

Baseline 23.35 5.96 52.54 63.85 68.91 49.76
PR 23.56 (93.7%) 6.03 52.45 63.65 68.49 49.68
OE 23.59 (66.67%) 6.01 52.56 (52%) 63.61 68.66 49.64
PR+OE 23.48 (27%) 5.99 52.58 (56%) 63.59 68.63 49.68

100K

Baseline 24.72 6.19 54.18 62.30 67.54 48.35
PR 24.92 (20%) 6.27 54.29 (73.7%) 61.92 67.13 48.10
OE 24.88 (18%) 6.24 54.36 (87.5%) 61.99 67.08 48.08
PR+OE 24.98 (66%) 6.24 54.42 (90.2%) 61.99 67.20 48.13

200K

Baseline 25.89 6.36 55.30 61.02 66.34 47.15
PR 25.96 (20%) 6.46 55.38 (53%) 60.51 65.74 46.86
OE 25.96 (20%) 6.42 55.33 (53.1%) 60.70 65.95 47.04
PR+OE 26.04 (53%) 6.42 55.38 (57.8%) 60.73 65.82 47.10

500K

Baseline 26.56 6.53 56.23 59.89 65.02 46.25
PR 26.82 (81%) 6.61 56.48 (93.7%) 59.63 64.89 46.03
OE 26.97 (98.5%) 6.61 56.63 (99.48%) 59.48 64.67 46.04
PR+OE 27.00 (95.1%) 6.59 56.58 (98.14%) 59.57 64.70 46.08

1M

Baseline 27.06 6.63 56.60 59.08 64.29 45.54
PR 27.41 (91.5%) 6.70 56.98 (97.30%) 58.88 64.08 45.56
OE 27.26 (86%) 6.68 56.92 (96.9%) 58.87 64.11 45.56
PR+OE 27.30 (74%) 6.67 56.94 (95.02%) 59.04 64.25 45.60

1.31M

Baseline 27.29 6.68 56.81 58.65 63.96 45.17
PR 27.60 (84%) 6.74 57.12 (95.17%) 58.71 63.85 45.25
OE 27.56 (82%) 6.72 57.23 (99.53%) 58.66 63.86 45.27
PR+OE 27.59 (79%) 6.71 57.17 (97.24%) 58.64 63.89 45.38

Table 6.23: Results of the Dutch-to-English learning curve experiments with deep
syntactic contextual features and TRIBL classifier.

The experimental results obtained on the eight training sets containing 10K

to 1.31M amounts of sentence pairs are shown in Table 6.23. As can be seen from

Table 6.23, moderate improvements are to be observed for dependency relation-based
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contextual features for any amount of training set used. Statistically significant

improvements in BLEU are seen when the 500K training set is used. As far as other

training sets are concerned, most of the improvements in BLEU are close to the

significance level with respect to the baseline.

If we look at the performance of the dependency relation-based SMT systems as

measured by the METEOR evaluation metric in Table 6.23, we see that most of the

improvements in METEOR over the baseline are statistically significant. Moreover,

performance measured by other evaluation metrics seem to be quite similar to those

measured by BLEU and METEOR.

We draw learning curves of our context-informed SMT systems together with the

baseline in order to observe the effect of increasing amounts of training data. Figure

6.6 shows the BLEU learning curves comparing the Dutch-to-English Moses baseline

against the two context-based models (PR, OE). Additionally, Figure 6.7 shows

respectively BLEU (top), METEOR (centre) and TER (bottom) score-difference

curves, highlighting the gains and losses of the context-based models (PR, OE,

PR+OE) against the baseline.

In Figure 6.6, we observe that the BLEU learning curves of all the context-

informed models (PR, OE) always remain above the baseline curve from the starting

point (10K training data) to the end point (1.31M training data).

The top two graphs in Figure 6.7 show the BLEU and METEOR score-difference

curves, respectively. We see that the BLEU and METEOR score-difference curves

for all the context-informed models (PR, OE, PR+OE) always remain above the

baseline curve from the starting point (10K training data) to the end point (1.31M

training data). The bottom graph of Figure 6.7 show that the TER score-difference

curves of all the context-informed models (PR, OE, PR+OE) mostly remain below

the baseline curve, which illustrates the effectiveness of source-language context in

this translation task also in terms of TER.

In summary, in the Dutch-to-English translation task, the dependency relations

appear to be effective source-language context features in PB-SMT according to all
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evaluation metrics.
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Figure 6.6: BLEU Learning curves comparing the Moses baseline against the two
context-informed SMT models (PR, OE) in Dutch-to-English translation task.

As an additional point of analysis, we compare translations produced by our best-

performing context-informed (CI) system (PR)10 with those by the Moses baseline.

Table 6.24 shows how two systems differ from each other in terms of sentence-level

automatic evaluation measures (BLEU and TER) and closeness to the reference set.

Additionally, Table 6.25 compares weights of the various translational features of

the Word±2 and the baseline systems obtained by MERT training.

6.3.4.3 English-to-Dutch

In this section, we report the outcomes of the English-to-Dutch learning curve ex-

periments. In order to conduct English-to-Dutch learning curve experiments, we

10The best-performing PR system which we used for this analysis was built on the largest
available training data (1.31M sentences) with TRIBL classifier (cf. Table 6.23).
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Figure 6.7: BLEU (top), METEOR (centre) and TER (bottom) score-difference
curves comparing the Moses baseline against the context-informed SMT models
(PR, OE, PR+OE) in Dutch-to-English translation task.
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CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 278 247 202 273
Sentence-Level TER 279 278 402 41
Closeness to Reference Set CI Moses
Matching Translations (%) 4.3 4.2
Matching Words (%) 65.41 65.23

Table 6.24: Comparison between translations produced by the best-performing
context-informed (CI) system (PR) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.1086 0.0641 0.0107 0.0569 0.0867 0.0977 -0.2459 - -
PR 0.1018 0.0292 0.0838 0.0106 0.0620 -0.1129 -0.1958 0.0467 0.0062

Table 6.25: Comparison of weights for each translational feature of the two systems
(PR and Moses baseline) obtained by MERT training.

consider the previously best-performing experimental set-ups comprising each fea-

ture type (dependency relation (PR, OE, PR+OE), semantic role (AL, PS-AL)).

In order to perform the deep syntactic and semantic feature-based learning curve

experiments, we used the same English-to-Dutch data set which we used to con-

duct the learning-curve experiments with the basic contextual features (cf. Section

4.3.5.3) as well as with the supertag-based contextual features (cf. Section 5.3.4.2).

The experimental results obtained on the increasing amounts of training sets

are shown in Table 6.26. As can be seen from the table, adding deep syntactic

and semantic contextual features (individually or jointly) improves upon the Moses

baseline when the training data used contains 20K or more sentence pairs.

The dependency relation-based PR system produces statistically significant im-

provements in BLEU (0.25 BLEU points; 1.06% relative) when the training set

contains 200K sentence pairs. As far as the other training sets are concerned, PR

produces consistent improvements in BLEU over the baseline, some of which are

very close to the significance level. Like PR, other dependency feature-based sys-

tems (OE and PR+OE) consistently outperform the Moses baseline.

When adding semantic features as source language context, the PB-SMT system

gives statistically significant improvements in BLEU (PS-AL: 0.39 BLEU points;

2.04% relative) over the Moses baseline when 20K sentence-pairs training data are

used. On 100K, 200K, and 1.31M training sets, improvements in BLEU for the
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PS-AL over the baseline are very close to the significance level. Table 6.26 shows

that the AL system performs slightly worse than the PS-AL, but shows consistency

in improving over the baseline. As far as the other evaluation metrics are concerned,

we see from Table 6.26 that adding semantic features (AL and PS-AL) as source-

language contexts consistently improves over the PB-SMT baseline.

Figure 6.8 illustrates BLEU learning curves comparing the Moses baseline against

the best-performing context-informed SMT models (Dependency relations: PR, Se-

mantic roles: PS-AL) for each feature type.
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Figure 6.8: BLEU Learning curves comparing the Moses baseline against SMT
models added with deep syntactic and semantic contextual features in the English-
to-Dutch translation task.

We see from the graph in Figure 6.8 that the dependency and semantic feature-

based BLEU curves (PR, PS-AL) show consistency in residing mostly above the

baseline BLEU curve from the starting point (10K training data) to the end point

(1.31M training data).

In addition to the BLEU learning curves shown in Figure 6.8, the three graphs
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Train. Experi- BLEU NIST METEOR TER WER PER
Size ments

10K

Baseline 17.20 4.99 43.74 72.40 75.39 57.17
PR 17.12 5.01 43.69 71.95 75.06 57.11
OE 16.90 4.97 43.65 72.62 75.68 57.38
PR+OE 17.05 5.00 43.83 (80.6%) 72.18 75.21 57.15
AL 16.95 5.00 43.51 72.19 75.31 57.17
PS-AL 17.17 5.01 43.62 71.93 74.90 57.18

20K

Baseline 19.03 5.31 46.30 70.33 73.69 55.08
PR 19.10 (56.6%) 5.34 46.26 70.16 73.54 54.96
OE 19.20 (83.1%) 5.34 46.54 (94.4%) 70.34 73.78 55.03
PR+OE 19.05 5.33 46.39 (73.5%) 70.23 73.59 55.05
AL 19.05 5.33 46.11 70.45 73.86 55.37
PS-AL 19.42 (99.7%) 5.36 46.39 (70.42%) 69.92 73.23 54.90

50K

Baseline 21.70 5.74 49.31 67.32 71.19 52.48
PR 21.88 (80%) 5.78 49.33 67.15 70.82 52.41
OE 21.71 5.73 49.34 67.58 71.32 52.72
PR+OE 21.73 (34%) 5.76 49.37 (67%) 67.46 71.21 52.54
AL 21.53 5.75 48.97 67.37 71.12 52.58
PS-AL 21.71 5.74 49.15 67.34 71.16 52.72

100K

Baseline 22.53 5.88 50.30 66.42 70.48 51.84
PR 22.60 (66%) 5.92 50.36 (68%) 65.96 70.12 51.65
OE 22.52 5.88 50.44 (81.8%) 66.39 70.64 51.91
PR+OE 22.65 (67%) 5.92 50.55 (95.6%) 66.13 70.20 51.63
AL 22.50 5.90 50.26 66.12 70.27 51.78
PS-AL 22.75 (91.9%) 5.91 50.36 (61%) 66.04 70.21 51.71

200K

Baseline 23.47 6.04 51.46 65.30 69.40 50.90
PR 23.72 (99%) 6.08 51.65 (89.70%) 64.96 69.12 50.74
OE 23.55 (40%) 6.05 51.51 (62.8%) 65.17 69.28 50.84
PR+OE 23.51 (89%) 6.05 51.53 (63.4%) 65.31 69.28 50.88
AL 23.63 (93.4%) 6.07 51.49 (53%) 65.12 69.26 50.95
PS-AL 23.77 (94.1%) 6.06 51.49 (48%) 65.16 69.28 50.99

500K

Baseline 24.06 6.11 52.06 64.59 68.58 50.36
PR 24.10 (47%) 6.15 52.19 (84.7%) 64.46 68.51 50.22
OE 24.02 6.12 52.13 (78.9%) 64.35 68.60 50.17
PR+OE 23.91 6.13 52.06 64.46 68.68 50.22
AL 24.01 6.15 52.22 (86.41%) 64.37 68.58 50.10
PS-AL 24.16 (52%) 6.14 52.19 (74.9%) 64.41 68.52 50.20

1M

Baseline 24.26 6.17 52.39 64.55 68.72 50.12
PR 24.34 (43%) 6.23 52.46 (72.35%) 63.99 68.09 49.64
OE 24.08 6.15 52.19 64.32 68.54 50.16
PR+OE 24.29 (54%) 6.18 52.50 64.24 68.43 50.10
AL 24.17 6.14 52.29 63.83 68.37 49.63
PS-AL 24.36 (53%) 6.19 52.42 (54%) 64.23 68.46 50.00

1.31M

Baseline 24.26 6.17 52.68 64.36 68.80 50.02
PR 24.59 (89.7%) 6.27 52.79 (83.8%) 63.78 68.27 49.54
OE 24.41 (88.9%) 6.19 52.56 63.99 68.35 49.84
PR+OE 24.41 (82.3%) 6.23 52.67 64.00 68.45 49.81
AL 24.34 (44%) 6.23 52.64 63.83 68.37 49.63
PS-AL 24.51 (91.8%) 6.21 52.72 (58%) 64.23 68.69 49.92

Table 6.26: Results of the English-to-Dutch learning curve experiments with TRIBL
classifier comparing the effect of supertag context and Moses baseline.
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in Figure 6.9 show respectively BLEU (top), METEOR (centre) and TER (bottom)

score-difference curves, highlighting the gains and losses against the Moses baseline.

The top graph in Figure 6.9 shows BLEU score-difference curves of five context-

informed SMT systems (PR, OE, PR+OE, AL, PS-AL) against the Moses baseline.

We see from the graph that most semantic and dependency feature-based BLEU

curves reside above the baseline BLEU curve for the most training set sizes. The

central graph of Figure 6.9 shows METEOR score-difference curves. We see that

most of the METEOR score-difference curves show consistency in residing mostly

above the baseline curve for all amounts of training data used.

The bottom graph in Figure 6.9 displays TER score-difference curves, from which

we see that most of the TER score-difference curves show consistency in residing

below the baseline.

In summary, in this translation task, all the metrics (BLEU, METEOR, TER)

suggest that deep syntactic and semantic features are effective source-language con-

texts in PB-SMT.

As an additional point of analysis, we compare translations produced by our best-

performing context-informed (CI) system (PR)11 with those by the Moses baseline.

Table 6.27 shows how two systems differ from each other in terms of sentence-level

automatic evaluation measures (BLEU and TER) and closeness to the reference set.

Additionally, Table 6.28 compares weights of the various translational features of

the PR and the baseline systems obtained by MERT training.

CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 231 228 211 330
Sentence-Level TER 293 232 438 37
Closeness to Reference Set CI Moses
Matching Translations (%) 3.8 3.8
Matching Words (%) 61.98 61.74

Table 6.27: Comparison between translations produced by the best-performing
context-informed (CI) system (PR) and the Moses baseline.

11The best-performing PR system which we used for this analysis was built on the largest
available training data (1.31M sentence pairs) (cf. Table 6.26).
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Figure 6.9: BLEU (top), METEOR (centre) and TER (bottom) score-difference
curves comparing the Moses baseline against dependency and semantic feature-based
SMT models in English-to-Dutch translation task.
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System λlm λbtp λblexp λftp λflexp λphrpty λwrdpty λmbl λbest

Moses 0.1072 0.0102 0.0509 0.1103 0.0468 0.0936 -0.2689 - -
PR 0.0859 0.0122 0.0433 0.0746 0.0673 0.0415 -0.2198 0.016 0.0004

Table 6.28: Comparison of weights for each translational feature of the two systems
(PR and Moses baseline) obtained by MERT training.

6.3.5 Analysis of Learning Curve Experiments

In this section we summarize the outcomes of the learning curve experiments re-

ported in the above sections. We report a comparative overview of the effectiveness

of the different contextual features in the learning-curve experiments on three dif-

ferent language pairs (English-to-Spanish, Dutch-to-English, and English-to-Dutch).

Moreover, we compare the effectiveness of deep syntactic and semantic contextual

features with that of the basic and supertag-based contextual features reported in

the previous chapters (cf. Sections 4.3.5 (on page 76) and 5.3.4 (on page 121)).

The learning curve experiments on the English-to-Spanish language pair show

that supertags and dependency relations are more effective source-language contex-

tual features than neighbouring words and POS tags. On the English-to-Spanish

translation task, the TRIBL classifier produces gains at smaller training sets, though

not at the smallest sizes (10K training sentences). When using IGTree as the clas-

sifier, the context-informed SMT systems equal the baseline at the largest amount

of training data.

The learning curve experiments on the Dutch-to-English and English-to-Dutch

language pairs show that rich and complex syntactic contexts (supertags, depen-

dency relations and semantic roles) outperform basic contexts (words and POS tags)

in terms of effectiveness in the small- and large-scale translations.

For the Dutch-to-English translation task, we see that all types of contextual

features improve upon the PB-SMT baseline across all sizes of training data. On this

language pair, deep syntactic and semantic feature-based SMT systems outperform

the basic contextual feature-based SMT systems when larger amounts of training

data are used.

We see from the learning curve experiments on the English-to-Dutch language
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pair that the deep syntactic and semantic features show consistency in improving

over the baseline for most sizes of training data used. In contrast, the supertag-based

contextual features give the highest improvements over the PB-SMT baseline while

using larger amounts of training data, but do not show consistency in improving

over the baseline when smaller amounts of training data are used.

6.3.6 Translation Analysis

We performed manual qualitative analysis comparing the translation output of the

best-performing systems with those of the Moses baseline systems. In order to carry

out the manual evaluation, we randomly sampled 50 test set sentences.

First, we looked at the translated output of our best-performing system (PR+OE+

POS±2†) against that of the Moses baseline in the small-scale Dutch-to-English

translation task (cf. Section 6.3.1.1). We observed that the (PR+OE+POS±2†)

system generates a more fluent and adequate output than the baseline for 11.7% of

the test set sentences. The following are two such translation examples:

(7) Dutch: heeft mijn vader je gestuurd ?

Reference: did my father send you ?

PR+OE+POS±2†: did my father send you ?

Baseline: my father has sent you ?

(8) Dutch: daarna vraag je om informatie .

Reference: then you call for information .

PR+OE+POS±2†: then you ask for information .

Baseline: then ask you to get information .

In Example (7) we observe that the baseline does not select the proper word order

of an interrogative sentence, and selects a less optimal (more literal) translation of

the Dutch auxiliary verb heeft (has), while the PR+OE+POS system generates a

translation identical to the reference translation. In example (8), the baseline system

again selects a less appropriate (Dutch) word order.

We carried out a manual analysis on the translation output of the best-performing
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system (PR) against the Moses baseline in the large-scale Dutch-to-English transla-

tion task (cf. Section 6.3.4.2). Examples (9) and (10) show how our best-performing

system (PR) improves over the Moses baseline in this task.12 Again, the baseline

makes sub-standard choices, leaving out the main verb in (9) and failing to ap-

proximate the intended meaning, as it also mangles the negation in example (10).

However, on that example the PR system also fails to generate a fluent and adequate

output.

(9) Dutch: De afschaffing van de doodstraf maakt als het ware deel uit van onze cultuur .

Reference: The abolition of the death penalty belongs , as it were , to our culture .

PR: The abolition of the death penalty , as it were , is part of our culture .

Baseline: The abolition of the death penalty , as part of our culture .

(10) Dutch: Alleen Koeweit heeft het stemrecht enkel verleend aan mannen en niet

aan vrouwen .

Reference: Only Kuwait extended the vote to men and not to women .

PR: Only Kuwait has the right to vote to men and not only granted to women .

Baseline: Only Kuwait has just granted the right to vote , not to men and women .

In translation example (9), we see that PR generates a grammatical translation,

and the translation conveys the same meaning as the source sentence. In contrast,

the Moses baseline neither generates a grammatical translation, nor does the trans-

lation convey a meaning similar to the input sentence. The translations in example

(10) tend to follow a similar trend to the translations in example (9).

6.4 Experiments with Context-Informed Hierar-

chical PB-SMT

In addition to the basic and supertag contextual features, we integrate deep syntac-

tic information as a source language context into the Hiero model (Chiang, 2007).

12We see from examples that the translations produced by the PR system are slightly semnat-
ically distant from the reference transaltions but far better than those produuced by the baseline
in terms of fluency and adequency.
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In Section 4.4 (cf. page 89), we reported the experimental results obtained by inte-

grating basic contextual features into the Hiero model. Section 5.4 (cf. page 138)

demonstrated the experimental results obtained employing supertags as source-side

contextual features in the Hiero model. In the following section, we report the

experimental results obtained employing dependency relations as source-language

context into the Hiero system.

6.4.1 Experimental Results

Exp. BLEU NIST METEOR TER WER PER

Baseline 21.92 5.29 43.06 56.72 55.43 48.60

PR 22.44 (90%) 5.32 43.61 (96.19%) 56.64 55.67 48.28
OE 22.47 (94.9%) 5.32 43.54 (96.94%) 56.47 55.37 48.3
PR+OE 22.29 (52%) 5.31 43.33 (84%) 56.68 55.56 48.20

Table 6.29: Experimental results with dependency features, compared against Hiero
baseline.

English-to-Dutch translation was carried out on the Open Subtitles corpus (cf.

Section 3.6). Table 6.29 shows the experimental results obtained by applying de-

pendency relation-based contextual features into the Hiero model. Moderate im-

provements over the Hiero baseline are observed with the addition of PR (0.52

BLEU points; 2.37% relative increase), OE (0.55 BLEU points; 2.51% relative), and

PR+OE (0.37 BLEU points; 1.69% relative). As can be seen from Table 6.29, OE

and PR produce respectively the highest and the second highest improvements in

BLEU over the baseline, which are very close to the significance level.

As far as the METEOR evaluation metric is concerned, PR produces the highest

improvement (0.55 METEOR points; 1.26% relative) over the baseline. Moderate

improvements in METEOR are observed for the OE (0.48 METEOR points; 1.13%

relative) as well. Contrary to the improvements in BLEU, these improvements in

METEOR with respect to the baseline are statistically significant.

Improvements in TER for PR (a reduction of 0.08 TER points), OE (0.25 TER

points), and PR+OE (0.04 TER points) features are somewhat small compared to

improvements in METEOR and BLEU.
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Exp. BLEU NIST METEOR TER WER PER

Baseline 21.92 5.29 43.06 56.72 55.43 48.60

Word±2+PR 22.24 (80%) 5.32 43.84 (93.6%) 56.55 55.41 48.36
Word±2+OE 22.16 (57%) 5.34 43.40 (84.15%) 56.08 54.98 48.27
Word±2+PR+OE 22.41 (81%) 5.33 43.34 (71.41%) 56.3 55.19 48.32

Table 6.30: Experimental results with combined features, compared against Hiero
baseline.

We also performed experiments in which we combined the lexical features with

the dependency relation-based features. The results of these experiments are shown

in Table 6.30. Combining dependency features with Word±2 features causes the

system performance to deteriorate. The Hiero systems with combined features give

smaller improvements than those with individual features (Word±2+PR: 0.32 BLEU

points improvement, 1.46% relative; Word±2+OE: 0.24 BLEU points improvement,

1.09% relative). However, we also see from Table 6.30 that the Word±2+PR+OE

model produces a 0.49 point improvement in BLEU (2.23% relative) over the Hiero

baseline, which is slightly better than that produced by the PR+OE system (the

result of the PR+OE system was displayed in Table 6.29).

The best METEOR score (an improvement of 0.78 METEOR points; 1.81%

relative increase) is obtained when words are combined with the PR dependency

feature. Moderate improvements in METEOR over the Hiero baseline are observed

for the Word±2+OE and the Word±2+PR+OE features. On the TER evaluation

metric, Word±2+PR, Word±2+OE, and Word±2+PR+OE produce reductions of

0.17, 0.64, and 0.42 TER points below the Hiero baseline, respectively.

As an additional point of analysis, we compare translations produced by our best-

performing context-informed (CI) system (OE) (cf. Table 6.30) with those by the

Hiero baseline. Table 6.31 shows how two systems differ from each other in terms of

sentence-level automatic evaluation measures (BLEU and TER) and closeness to the

reference set. Additionally, Table 6.32 compares weights of the various translational

features of the OE and the baseline systems obtained by MERT training.
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CI>Moses CI<Moses CI=Moses Zero
Sentence-Level BLEU 32 19 161 788
Sentence-Level TER 65 57 759 119
Closeness to Reference Set CI Moses
Matching Translations (%) 13 12.4
Matching Words (%) 58.30 57.66

Table 6.31: Comparison between translations produced by the best-performing
context-informed (CI) system (OE) and the Moses baseline.

System λlm λbtp λblexp λftp λflexp λphrpty λglue λwrdpty λmbl λbest

Hiero 0.0823 0.0205 0.0217 0.1702 0.0409 -0.3477 0.3421 0.095 - -
OE 0.1005 0.0091 0.0036 0.1128 0.2983 -0.3796 0.3715 0.0635 0.0034 0.0672

Table 6.32: Comparison of weights for each translational feature of the two systems
(OE and Hiero baseline) obtained by MERT training.

6.4.2 Discussion

We have successfully incorporated deep syntactic features (dependency relations) as

source-language contexts into the state-of-the-art Hiero system (Chiang, 2007) for

English-to-Dutch translation. In this translation task, we compare the effectiveness

of the deep syntactic contextual features with that of the basic and supertag-based

contextual features, which we reported in the previous chapters (cf. Sections 4.4.1.2

(on page 91) and 5.4.1.2 (on page 140)). We observe that both the supertags and

the dependency features appear to be more effective as a source-language context

than the basic contextual features (words and POS tags). When the supertag-

and dependency relation-based contextual features are employed individually, both

yield quite similar improvements. However, supertags together with lexical features

outperform both the combined dependency relation and lexical feature-based SMT

systems.

6.5 Summary

In this chapter, we introduced deep syntactic and semantic parse information as

source-language contexts into the state-of-the-art SMT models (Koehn et al., 2003;

Chiang, 2007). We used the same data sets and language pairs which were used for

the studies with basic and supertag contextual features in Chapters 4 and 5.
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We reported a series of experimental results obtained by integrating deep syn-

tactic features (grammatical dependency relations) into the PB-SMT model (Koehn

et al., 2003). We found that the deep syntactic features appear to be useful source-

language contexts for both small- and large-scale translations. In order to obtain

context-sensitive phrase translations, we employed two different memory-based clas-

sification algorithms: IGTree and TRIBL. As observed in previous chapters, we also

saw in this chapter that TRIBL is more effective than IGTree in improving MT

quality. In addition to dependency relations, the chapter introduced semantic roles

as a new contextual feature in PB-SMT. In a large-scale English-to-Dutch trans-

lation task, semantic roles as a contextual feature significantly improved over the

PB-SMT baseline, both when used individually and in collaboration with other fea-

tures. Moreover, this chapter provided a comparative overview of the utility of vari-

ous contextual features in PB-SMT. We found that while integrating deep syntactic

and semantic contexts into the PB-SMT model, the system shows more consistency

compared to the supertag-based context-informed systems. Nevertheless, supertag

contexts prove to be more useful than deep syntactic and semantic contexts when

using larger amounts of training data.

Finally, we showed that dependency relations can also be modelled as a useful

source-language context in the Hiero model. Comparing the usefulness of various

contextual features in the Hiero model in an English-to-Dutch translation task, we

observed that both supertags and dependency relations produce similar improve-

ments over a Hiero baseline. We discovered that a combination of supertag and

lexical features proved to be most effective contexts in the Hiero model; in contrast,

combining dependency relations and neighbouring words did not contribute much.
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Chapter 7

Conclusions and Future Work

7.1 Contributions of this Thesis

In this thesis, we presented a large set of experimental results obtained using a range

of features as source-language context to better enable the state-of-the-art SMT

systems (Koehn et al., 2003; Chiang, 2007) to select appropriate target-language

phrases for consideration in the generation of the most probable translation given

the input. Such features include neighbouring position-specific lexical and part-

of-speech features of words surrounding the phrase to be translated, information

linking the head word of the focus phrase to its syntactic context in terms of su-

pertags or dependency relations, as well as semantic dependencies the source phrase

encapsulates. We explored a range of language pairs with featuring typologically

different languages, and examined the scalability of our research on larger amounts

of training data.

As far as the context-sensitive PB-SMT systems are concerned, the most sig-

nificant improvements observed in our experiments involve the integration of long-

distance contextual features, such as:

• dependency relations in combination with part-of-speech tags in Dutch-to-

English subtitle translation,

• the combination of dependency parse and semantic role information in English-
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to-Dutch parliamentary debate translation,

• dependency parse information in Dutch-to-English parliamentary debate trans-

lation,

• CCG and LTAG supertag features in English-to-Chinese translation.

As far as scalability is concerned, when our PB-SMT systems were trained with

larger amounts of parallel data, the effects of the source-language context are less-

ened somewhat, but remain statistically significant in some cases. For English-

to-Dutch, for example, while the POS-based model failed to contribute positively,

our dependency- and supertag-based models continued to be effective. Furthermore,

use of semantic roles as a source-language discriminative feature showed encouraging

improvements over the PB-SMT baseline.

When we varied the amount of English-to-Spanish Europarl training data used

from 10,000 to 1.64 million sentences in a learning curve experiment, the resulting

curves demonstrated that gains obtained by our source-language contextual models

cannot be expected to occur given any amount of training data. We observed that

the TRIBL classifier obtains gains at small training set sizes, though not at the

smallest sizes (10,000 training sentences). IGTree, on the other hand, disappointed

by requiring the maximal amount of training data (1.64 million sentences) just

to equal the baseline. Furthermore, learning curve experiments on the Dutch-to-

English and English-to-Dutch language pairs show that rich and complex syntactic

features were able to surpass basic features (words and POS tags) as source-language

context features in both small- and large-scale translation tasks. Moreover, the

outcomes of our manual analysis conducted on the MT outputs of several context-

informed models against the respective baselines justify our claims established on

the basis of the gains obtained on several automatic evaluation measures. We believe

that, in general, learning curve experiments give a more complete overview of relative

gains when more data is available. In order to obtain better MT performance, using

more training data seems to be most effective.
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We compared the integration of sentence-similarity features to the integration of

supertag features into the PB-SMT system. Furthermore, we performed experiments

by integrating both feature types collectively into the PB-SMT model on small- and

large-scale data sets. We achieved the highest improvement over the baseline when

the global context (sentence-similarity) was combined with the local context (i.e.

supertags). Thus, sentence similarity-based source-context modelling proves to be

a useful means to improve lexical selection in PB-SMT.

We employed our source context modelling into the state-of-the-art PB-SMT for

an English-Hindi transliteration task. We found that our context-sensitive translit-

eration system achieved substantial improvement over the baseline. This piece of

work can be viewed as a successful application of our context-sensitive PB-SMT

model to a different NLP application, namely machine transliteration.

We have also shown that source-language contextual features can be integrated

successfully into the state-of-the-art Hiero system. As in PB-SMT, we explored basic

features as well as rich and complex syntactic features (supertags and grammatical

dependency relations) as source-language contexts in Hiero. We carried out ex-

periments on two different language pairs: English-to-Hindi and English-to-Dutch.

Considering only individual contextual features, the system produced significant

gains over the Hiero baseline for any of the contextual features used. We observed

the highest improvement over the baseline when supertags were combined with lex-

ical context in the English-to-Dutch translation task, whereas adding dependency

features did not seem to contribute much where translation quality is concerned.

To summarize our findings, we have shown that whatever language pair is de-

ployed, using source-language context system generally produces better translations

compared to baseline SMT systems. To be more precise, if one has a parser avail-

able for the source language at hand, integrating syntactic dependency information

pertaining to the current input string can generate improved translation quality.

Alternatively, if no such parser is available, then POS or supertag information can

be useful; but even if this is absent, then taking the neighbouring words into account
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is also likely to be effective. Such source-language contextual models become less

effective when scaling to large amounts of parallel data, yet even here, statistically

significant scores are still to be seen. We come to this conclusion having carried

out experiments on a wide range of language pairs, and on a variety of domains of

training material.

7.2 Future Work

In this section, we provide some potential avenues for future research work as follows:

• In this thesis, we have demonstrated how our source-language contextual mod-

els can benefit both PB-SMT (Koehn et al., 2003) and HPB-SMT (Chiang,

2007). We are certain that other SMT systems such as Syntax-Augmented Ma-

chine Translation (SAMT) (Zollmann and Venugopal, 2006) could also take

advantages of our source-language contextual models, as could any potentially

new MT systems that have yet to appear, but which can be expressed in a

log-linear framework.

• In order to obtain context-sensitive translation, we used mainly two memory

based classifiers: IGTree and TRIBL (Daelemans and van den Bosch, 2005).

In future we would like to introduce another classification algorithm: TRIBL2

(Daelemans et al., 1999). Like TRIBL, TRIBL2 is a hybrid combination of

IGTREE and IB1. The main difference between TRIBL and TRIBL2 is that

the latter does not use threshold parameter. In other words, in TRIBL, we

explicitly provide a fixed point in the feature ordering where IGTREE is suc-

ceeded by IB1, while TRIBL2 determines this switching point automatically

per classification. In this manner, TRIBL2 offers a fairly optimal use of IB1

which is only invoked when mismatching (feature) occurs. Another advantage

of TRIBL2 over TRIBL is that the former is faster than the latter in terms of

classification time.
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• We tried to investigate the actual role of memory-based classifier with a

deeper look at the classification results. A classification example has been

provided in Section 5.3.7 (on page 136) in order to show how context-sensitive

translations are derived. The Section 5.3.7 also compares context-dependent

translation probabilities (memory-based classification’s scores) with context-

independent translations probabilities (baseline scores) considering a partic-

ular English phrase in a English-to-Spanish translation task, from which we

found that the memory-based translation model appear to be more effective

than the maximum-likelihood estimation-based translation model. In future,

we would like to dive into the advantages that memory-based classifiers bring.

In other words, we want to carry out a detail investigation on how to utilize

the memory-based classifiers optimally for this kind of task.

• Following the work of (Hassan et al., 2006, 2007, 2008; Hassan, 2009), we aim

to develop fully supertagged SMT systems, with supertags deployed as source

language context (as in this thesis), as well as in the target language model

and the target side of the t-table. We have been made aware that a German

version of the CCGBank may be available, but so far we have been unable to

verify this. We will continue to pursue this line of investigation, with a view

to benefiting from the clear advantages that supertags bring to bear in each

phase of the translation process.

• We introduced semantic roles as a new contextual feature in PB-SMT (Koehn

et al., 2003). In future, we would like to introduce semantic roles as a source

language context in the state-of-the-art Hiero model (Chiang, 2007). We also

intend to model sentence-similarity features as a source-language context in

the Hiero system.

As far as experiments with the Hiero system are concerned, our experiments

have focused on a standard but medium sized data set. Despite the challenges

in training classifiers with large sets of instances for Hiero (cf. page 144), we
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intend to further validate our conclusions by scaling up to larger data sets,

and perform learning curve experiments to observe changes in the relative

differences between using different types of additional source-side contextual

features.

• Finally, apart from experimenting with still more language pairs and different

types of training data, we would like to provide a comprehensive guide to how

best to combine different source-language contextual features where more than

one type is available, and if possible, to predict a priori – perhaps based on the

combination of language pair and training data type – the optimal features to

use in such circumstances. As a first step we would investigate the influence

of the degree to which a domain triggers formulaic language.1 If a domain

contains largely formulaic language,2 selecting only simple lexical features such

as neighbouring words could already be effective, as the generalizing power of

more abstract linguistic features is not needed. The reverse may be the case

in more open, less formulaic domains. Our memory-based classifiers could be

used to provide a quantitative estimate of how similar unseen sequences are

to the training sentences, much like a fuzziness score in translation memories

or example-based machine translation.

1Formulaic language might have special kinds of processing, in which proper linguistic proce-
dures are avoided in order to form words with morphemes, phrases with words, and sentences with
phrases. By this, one can bypass the need to analyze sentences grammatically. For an example,
formulaic languages may contain those kinds of sentences that usually appear in a phrasebook.

2More formulaic language means it contains larger number of polysemous words than that of
less formulaic language.
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Garćıa-Varea, I., F. J. Och, H. Ney, and F. Casacuberta. Refined lexicon models

for statistical machine translation using a maximum entropy approach. In 39th

Annual meeting of the Association for Computational Linguistics and 10th Con-

ference of the European Chapter of the Association for Computational Linguistics

(ACL/EACL 2001), pages 204–211, Toulouse, France, 2001.

214
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