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ABSTRACT

Semantic concept detection is a very useful technique for de-
veloping powerful retrieval or filtering systems for multime-
dia data. To date, the methods for concept detection have
been converging on generic classification schemes. However,
there is often imbalanced dataset or rare class problems in
classification algorithms, which deteriorate the performance
of many classifiers. In this paper, we adopt three “under-
sampling” strategies to handle this imbalanced dataset issue
in a SVM classification framework and evaluate their perfor-
mances on the TRECVid 2007 dataset and additional positive
samples from TRECVid 2010 development set. Experimental
results show that our well-designed “under-sampling” meth-
ods (method SAK) increase the performance of concept de-
tection about 9.6% overall. In cases of extreme imbalance in
the collection the proposed methods worsen the performance
than a baseline sampling method (method SI), however in the
majority of cases, our proposed methods increase the perfor-
mance of concept detection substantially. We also conclude
that method SAK is a promising solution to address the SVM
classification with not extremely imbalanced datasets.

Index Terms— Imbalanced Dataset, Classification,
SVM, Under-sampling, TRECVid

1. INTRODUCTION

Semantic concept detection, also known as high-level feature
extraction, is a research topic of great interest as it provides an
alternative solution to the major scientific problem for video
retrieval: the semantic gap [1]. After many years of research,
the current emphasis on concept detection is to utilise a more
generalized semantic indexing by classification learning al-
gorithms [2] rather than utilizing domain-specific cues (or
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knowledge) within the multimedia data which correlate with
semantic concepts [3].

Theoretically, semantic concept detection can be pro-
cessed by any supervised learning algorithm. However, this is
not always valid in the real-world scenario, because learning
algorithms often assume the positive/negative data distribu-
tion is balanced but multimedia collections usually contain
only a small fraction of positive examples for semantic con-
cepts. For example, in the TRECVid 2007 [4] training set,
the imbalance for 20 concepts is shown in Fig. 1. Especially,
there are only 8 shots labeled as concept U.S. flag. This is be-
cause the positive examples of a semantic concept is typically
a coherent subset of keyframes, but the negative class is less
well-defined as “everything else” in the collection. Unfortu-
nately, many learning algorithms will face difficulties because
of this imbalance. For instance, when the class distribution is
too skewed, SVMs will generate a trivial model by predict-
ing everything to the majority class, even though SVMs have
been shown to be relatively insensitive to the distribution of
training examples. Japkowiczaz [5] shows that the data im-
balance issue can significantly degrade the prediction perfor-
mance especially when the training data are non-linearly sep-
arable. Therefore, it’s of crucial importance to address the
rare data problem in the context of detecting concepts.

There has been a little work to date addressing the clas-
sification problem with imbalanced datasets. Existing work
can be divided into two categories. One is based on im-
provements of classification algorithms, which aims to make
these algorithms applicable to classification with imbalanced
datasets by introducing some solutions to eliminate the influ-
ence of imbalance [6, 7, 8, 9]. In [6], Joshi et al. provided
insights into the cases when AdaBoost, a strong ensemble-
based learning algorithm, can achieve better precision and re-
call in the context of rare classes. They claimed that the per-
formance of AdaBoost for rare class is critically dependent on
the learning abilities of the base classifiers. Yan et al. [7] pro-
posed an ensemble approach that first partitions negative data
into small groups, constructs multiple classifiers using posi-
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Fig. 1. Imbalance in TRECVid 2007 video dataset. P and N
denote the size of positive and negative samples respectively.
The y axis represents the concept No., and the x axis repre-
sents the proportion of positive samples to negative samples.

tive data as well as each group of negative data, and finally
merges them via a top-level meta-classifier. Various classi-
fier combination strategies are investigated including major-
ity voting, sum rule, neural network and hierarchical SVMs.
In [10], Dacheng Tao et al. analyzed the reason why small
size of positive samples produce poor classification perfor-
mance for SVM and they proposed asymmetric bagging and
random subspace mechanism (with three algorithms) to ad-
dress this biased classification problem.

As an alternative way to handle this problem. Approaches
based on data sampling methods which aim to decrease the
imbalance by increasing the size of positive class or reducing
the size of the negative class artificially have been proposed in
the literature [11, 12, 13]. Two of the most popular solutions
are named “under-sampling” [11, 13], which throws away
part of the negative data and “over-sampling” [11, 12] which
replicates the positive data. In [11] Foster et al. provided
insights and qualitative analysis of the effectiveness on tun-
ing the training distribution. Over-sampling significantly in-
creases the quantity of training data and thus consumes more
time in the learning process. This problem is more critical
to SVMs than other learning algorithms, since the training
process for SVMs is very time-consuming. In [14], they re-
ported that the training time complexity for SVMs is close
to quadratic of the number of support vectors, even cubic in
the worse case. In order to overcome the imbalance whilst
decreasing the time for training, most of existing works only
subsample randomly the domain class to obtain a roughly bal-
anced training set [15].

In this paper, we employ three “under-sampling” strate-
gies to handle SVM classification with imbalanced datasets
for semantic concept detection. The first method is widely
used which subsamples randomly in the majority class (in this
paper, we select samples at intervals, named method SI). We
propose two methods which select samples based on analyz-

ing the sample distribution in the majority class (method SNF
and SAK), by which they aim to keep the information of the
sample distribution. The proposed methods are evaluated on
the TRECVid 2007 dataset, and additional positive samples
from TRECVid 2010 development set. Experimental results
demonstrate some promising results.

The rest of the paper is organized as follows. The strate-
gies we adopt to balance the rare data are elaborated in section
2. Section 3 describes the experiment setup and presents the
results. Section 4 concludes this paper.

2. BALANCING RARE DATA

In order to handle the rare class problem, three “under-
sampling” strategies are adopted in the training stage of the
SVM, namely method SI, SNF and SAK. In the following
section, let Nv , N, P be negative samples set, the number of
negative samples and the number of positive samples in the
training data respectively. The flowchart for processing im-
balanced data is show in Fig. 2.

Basic Biased SVM: Since the main problem existing
in the classification with imbalanced data is that the classi-
fication hyper-plane is partial to majority class, which is in-
clined to mis-classify the rare class. The common solution to
this problem is assigning different penalty parameters C+ and
C− to the incorrectly classified positive and negative samples
respectively. Therefore, the optimization problem is:

min 1
2

∥∥ω2
∥∥+ C+

∑l
{i|yi=+1} εi + C− ∑l

{i|yi=−1} εi

subject to:
yi [(ωxi) + b] ≥ 1− εi (i = 1, 2, 3, ...l)
εi ≥ 0 (l is the number of samples)
So that the primal formulation of the Lagrangian has two

loss functions for the two types of errors:
Lp = min1

2

∥∥ω2
∥∥+ C+

∑l
{i|yi=+1} εi +

C− ∑l
{i|yi=−1} εi −

∑l
i=1 αi [yi (ω · xi)− 1 + εi]

−
∑l

i=1 µiεi
where αi ≥ 0 and µi ≥ 0. It’s straightforward to show

that the dual formulation gives the same Lagrangian as that of
the primal SVM, but with the constrains as follows:

0 ≤ αi ≤ C+, if yi = +1
0 ≤ αi ≤ C−, if yi = −1

The αi corresponding to the rare class with a non-zero slack
variable is greater than that corresponding to the majority
class with a non-zero slack variable. Therefore the classifi-
cation hyper-plane is pushed towards the majority class.

Method SI: This intuitive method is commonly used in
existing works and is our baseline, namely, a fixed number of
the majority class is subsampled randomly to obtain a roughly
balanced training set. In this paper, one is selected in every
N/P negative samples, which produces the same size of neg-
ative samples as that of positive samples.
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Fig. 2. Flowchart for processing imbalance in the training
stage of the SVM classifier

The next two methods are proposed based on such consid-
eration: if we know the distribution of negative samples, then
based on this distribution, selecting the similar size of positive
samples may at least maintain the classification performance
whilst decreasing the time requiring for training.

Method SNF: By analyzing positive and negative sam-
ples for 130 annotated semantic concepts in the TRECVid
2007 and 2010 datasets, we find that the Euclidean distance
from one negative sample to the center C of positive sam-
ples follows approximately the Gaussian Distribution for each
concept. Distributions for two concepts are shown in Fig. 3.
Therefore, the training samples are selected according to the
distribution of the Euclidean distance, which is described in
detail by the following steps:

(1) Compute the center C of the positive samples and Eu-
clidean Distance di from negative sample i to center
C. D denotes the set of all the Euclidean distances and
D = {d1, d2, d3, ..., dN}.

(2) The distribution curve of D is normally fitted as f (x) =

1√
2πσ

e−
(d−µ)2

2σ2 , where µ and σ are the fitted parameters,
d is the random variable.

(3) Generating P ∗
(
1 +

∫ 0

−∞
1√
2πσ

e−
(d−µ)2

2σ2 dx

)
random

numbers from the Gaussian Distribution with parame-
ters µ and σ. All the random numbers which are greater
than zero are selected. The set of selected random num-
bers is denoted as R and card(R) ≈ P

(4) For ∀r ∈ R, select the i∗th negative sample as a training
sample if i∗ = argmin

1≤i≤N,i/∈T

|di − r|, where di /∈ D and

T denotes the set of indexes of negative samples that
have been selected as training data.

Method SAK: This method is based on such observa-
tion that if the negative samples can be divided into several
clusters, then samples selected on these clusters quite likely
represent the distribution of all negative data well. Based on

(a) office (b) truck

Fig. 3. Examples of the distribution of distance from negative
samples to the center of positive samples for 2 concepts

this consideration, we employ another under-sampling strat-
egy named method SAK. The details are described as follows:

(1) Decompose the negative samples into K clusters. In
our work, we use the k-means algorithm. Cluster i
(i = 1, 2, ...,K) is denoted as Ni =

{
ni
1, n

i
2, ..., n

i
qi

}
,

qi denotes as the size of cluster i. And
∑K

i=1 qi = N ,∪K
i=1 Ni = Nv . The cluster centers are denoted as

C = {c1, c2, c3, ..., cK}. Set i = 1.

(2) For cluster i, compute [qi ∗ P/N ] cosine values, the
mth (1 ≤ m ≤ [qi ∗ P/N ]) is computed as om =
cos(2π∗N∗m/(qi∗P )). Compute the cosine-similarity
between each negative sample ni

j and its center ci,
namely, si,j = Sim

(
ci, n

i
j

)
. Set m = 1.

(3) For the mth cosine value om, select ni
j as a training

data, if j = argmin
1≤j≤qi

(|si,j − om|).

(4) m+ = 1. if m ≤ [qi ∗ P/N ], repeat (3), else go to (5).

(5) i+=1, if i ≤ K, repeat(2), else end.

After the under-sampling operation, an approximately equiv-
alent number of negative samples and all the positive samples
are chosen as the training data for the SVM classifier.

3. EXPERIMENT SETUP AND RESULTS

In this section, we compare the performances of these three
under-sampling strategies on 20 semantic concepts based on
the TRECVid 2007 dataset and additional positive samples
from TRECVid 2010 development set.

3.1. Datasets

We test the performance of these three under-sampling strate-
gies on 20 semantic concepts based on the TRECVid 2007
video dataset of news magazine, science news, news reports,
documentaries, educational programs, and archival video in
MPEG-1 format. About 50 hours are used to train the clas-
sifiers, which are segmented into shots. Each video shot is
labeled with each of the 20 concepts by collaborative anno-
tation. And 50 hours are used for evaluation purposes. The
center frame is extracted as the keyframe for each shot. The



Table 1. Details of imbalance for 20 concepts in TRECVid
2007 dataset

Concepts Positive # Negative #
office(No.1) 1052 11621

airplane(No.2) 29 14797
maps(No.3) 64 14820

animal (No.4) 392 13597
truck (No.5) 90 14129

waterscape/waterfront(No.6) 408 13087
weather(No.7) 18 14175
sports (No.8) 220 13977

mountain (No.9) 69 14341
police security(No.10) 207 13584

military personnel (No.11) 328 13764
U.S flag(No.12) 8 15140
desert (No.13) 45 14497

explosion fire(No.14) 20 14846
computer/tv screen (No.15) 414 13357

charts(No.16) 90 13965
boat/ship (No.17) 136 13898
meeting (No.8) 710 12904

car (No.19) 478 13338
people marching(No.20) 221 14288

Table 2. Additional positive samples to six concepts
Concepts Sizes

airplane(No.2) 163
maps(No.3) 186

weather(No.7) 26
desert(No.13) 101

explosion fire(No.14) 1194
U.S flag(No.12) 120

imbalance for positive and negative samples in the training
data is shown in Fig. 1 and details are listed in Table 1. For de-
tailed concept descriptions, please refer to the LSCOM [16].

The imbalance for the concepts airplane (No.2), maps
(No.3), weather (No.7), desert (No.13), explosion fire
(No.14) and U.S flag (No.12) is much more severe than that
of other concepts, and both of method SNF and SAK achieve
worse classification performance (cf. section 3.4.). There-
fore, it’s worth considering whether the classification perfor-
mance will be better if more positive data are introduced. In
order to test this, we introduce more positive samples to the
training set. For each of these six concepts above, the corre-
sponding positive samples from TRECVid 2010 development
dataset are introduced. The size of additional positive samples
in TRECVid 2010 development dataset for these concepts are
listed in Table 2.

1 2 876543 9

Fig. 4. Processing of SURF feature extraction

3.2. Implementation Details

For the SVMs, they are implemented using LIBSVM (Version
2.91) [17]. The RBF kernel is chosen for its good classifica-
tion results comparing to polynomial and linear kernels [18].

The k-means algorithm used for clustering is sensitive to
the choice of initial centers. Different initial centers may pro-
duce different result of clusters, and the algorithm may be
trapped in the local optimum. In order to overcome this de-
fect, we run k-means algorithm 20 times with different initial
centers, and select the one with the least variance.

In our experiments, the penalty parameters C+ and C−

for mis-classified positive and negative samples are set as
C+ = 4, C− = 1 and the number of clusters is predefined as
K = 10 based on our observations.

3.3. Low-level Features of Keyframes

Three MPEG-7 color and texture descriptors and one scale-
and rotation-invariant descriptor SURF [19] are used as low-
level features in our experiments. Three MPEG-7 descriptors
are Color Layout (12 dimension), Scalable Color (64 dimen-
sion) and Edge Histogram (80 dimension). For the SURF fea-
ture, we adopt a histogram by grouping the interest points into
regions. Given a keyframe and a set of keypoints, a 3×3 grid
is defined. A 9-bin histogram which is a count of the key-
points that occur in each square is created (see Fig. 4). In
total, all the features are concatenated into a vector of 165
dimensions for each keyframe.

3.4. Results and Analysis

For evaluation, we use the common measure from the
TRECVID benchmarking: inferred average precision (in-
fAP); infAP is similar to average precision (AP) in that it
measures both precision and recall whilst taking into account
rank position, but varies in that it makes use of sampled truth
data, rather than complete truth data, More detail can be found
in [20]. The experimental results are shown in Fig. 5.

As shown in Fig. 5, our first observation is for the con-
cepts listed in Table 3, both method SNF and SAK worsen
the infAPs when compared to method SI, about 8.9% (includ-
ing boat/ship (No.17) ) and 7.6% (including people marching
(No.20)) respectively. When analyzing the results based on
the imbalance in training data (see Fig. 1), we conjecture the
reason for their lower performances is that the rare class prob-
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Fig. 5. Results Comparison of three strategies

Table 3. Method SI achieves better performance
Concepts SI SNF SAK

airplane(No.2) 0.0278 0.0256 0.0253
maps(No.3) 0.033 0.03 0.03

weather(No.7) 0.0031 0.0026 0.0028
desert(No.13) 0.0166 0.0159 0.0159

explosion fire(No.14) 0.023 0.02 0.02
U.S flag(No.12) 0.001 0.001 0.001

lem in the training set of these concepts is much more severe
than that of other concepts and the negative samples selected
by method SNF and SAK aren’t capable of capturing the dis-
tribution of all the negative samples accurately.

However, for the 14 concepts listed in Table 4, method
SNF and (or) SAK get better performance than method SI,
increasing the performance by 9.7% (excluding boat/ship
(No.17)) and 16.9% (excluding people marching (No.20)) re-
spectively than SI. The reason for the increasing is possi-
bly due to less imbalance in the training set for these con-
cepts. For 14 concepts (including U.S flag (No.12) but peo-
ple marching (No.20) excluded), method SAK gets the best
results, especially for concept office (No.1), police-security
(No.10) and computer/tv screen (No.15), the infAPs increase
by more than 30% respectively. In total, for these 20 concept,
method SNF and SAK increase the detection performance by
9.7% and 16.9% than SI respectively.

Furthermore, for concept U.S flag (No.12), three under-
sampling strategies achieve the same and very low perfor-
mance, only about 0.001 (as shown in Table 3), the reason
for which may be attributed to two aspects. One is the dis-
crimination power of the low-level features we select are very
weak for this concept, and other more discriminative low-
level features should be considered; The other is the imbal-
ance of the training data is too prominent (just as aforemen-
tioned, P/N ≈ 0.0005), no under-sampling approach is ca-
pable of capturing the distribution of all the negative samples

Table 4. Method SNF and SAK get better infAPs

Concepts SI SNF SAK
office(No.1) 0.0683 0.0784 0.0903
animal(No.4) 0.081 0.096 0.098
truck(No.5) 0.0561 0.058 0.058

waterscape/waterfronts(No.6) 0.154 0.168 0.168
sports(No.8) 0.056 0.0585 0.0585

mountain(No.9) 0.0416 0.044 0.046
police security(No.10) 0.0098 0.0102 0.0153

military personnel(No.11) 0.0103 0.012 0.0126
computer/tv screen(No.15) 0.0524 0.0672 0.0695

charts(No.16) 0.0131 0.0142 0.0142
boat/ship(No.17) 0.0831 0.0805 0.0859
meeting(No.18) 0.0563 0.0665 0.0701

car(No.19) 0.0826 0.0859 0.0899
people marching(No.20) 0.0344 0.0344 0.0341

Table 5. Results after introducing more positive samples
Concepts SI SNF SAK

airplane(No.2) 0.031 0.028 0.031
maps(No.3) 0.031 0.038 0.035

weather(No.7) 0.0033 0.0026 0.0031
desert(No.13) 0.0171 0.021 0.0241

explosion fire(No.14) 0.042 0.046 0.051
U.S flag(No.12) 0.003 0.002 0.005

to some extent. Finally, for most of the concepts, method SNF
achieves a median between the infAPs obtained by method SI
and that by method SAK.

In order to test our hypothesis that the server imbal-
ance causes the poor performance, we introduce more addi-
tional positive samples from the TRECVid 2010 development
dataset for six concepts. Experimental results are shown in
Table 5. Comparing Table 5 with Table 3, for nearly all the
six concepts, the three under-sampling strategies achieve bet-
ter performances after introducing more positive samples (ex-
cept that for concept maps (No.3) obtained by method SI, and
weather (No.7) by SNF), which is consistent with the com-
mon view that more annotated training set would gain per-
formance. We could also find that the infAPs for most of
the six concepts increase significantly, especially for concept
explosion fire (No.14) and U.S flag (No.12,), although the in-
fAP for concept U.S flag (No.12) is still very low, which may
attribute to the low discrimination power of the low-level fea-
ture we used. Furthermore, except for concept maps (No.3)
and weather (No.7), method SAK achieves the best perfor-
mance among the three under-sampling strategies. In total,
introducing more positive samples can boost the performance
to some extent.



4. CONCLUSION

In this paper, we adopt three under-sampling strategies SI,
SNF and SAK to address the imbalanced dataset problem in
a SVM classification framework for semantic detection. Ex-
perimental results on TRECVid datasets show that, our well-
designed “under-sampling” methods (method SNF and SAK)
increase the performance of concept detection about 9.6%
overall. In cases of extreme imbalance in the collection the
proposed methods reduce the performance when compared to
a simple baseline sampling method (method SI), however in
the majority of cases, our proposed methods increase the per-
formance of concept detection substantially. we also conclude
that method SAK is a promising solution to address the SVM
classification with not extremely imbalanced samples.
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