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A new method for simulating radio-frequency (RF) oscillators is presented.  The 

asymptotic numeric method enables the efficient simulation of the transient response 

of such oscillators.  Simulation results are provided for a practical RF oscillator circuit 

to validate the approach.  

 

 

Introduction   

The study of phase-noise in oscillators and the design of new circuit topologies 

necessitates an efficient technique for the simulation of oscillators.  While numerous 

approaches have been developed over the years e.g. [1-3], each has its own merits 

and demerits.  In this contribution, an asymptotic numeric method developed in e.g. 

[4-5] is applied to the simulation of RF oscillators.  The method is closely related to 

the stroboscopic and high-order averaging method in [6] and the Heterogeneous 

Multiscale Methods in [7].  The method is advantageous in that the same 

methodology can be applied for the simulation of general circuit problems involving 

highly oscillatory ordinary differential equations, partial differential equations and 

delay differential equations.   Furthermore and counter-intuitively, its efficacy 

improves with increasing frequency, a feature that is very favourable in modern 

communications systems where operating frequencies are ever rising.  Results for a 

CMOS oscillator will confirm the validity and efficiency of the proposed method. 

 



        

Methodology   

Our concern is with highly oscillatory equations involving frequency ω :   
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where n is the highest order derivative present.  In particular, note that the some of 

the coefficients 11 −nββ L will be polynomials in ω .  f is a nonlinear function.    

The method proceeds by employing a Modulated Fourier Expansion for  v
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This is substituted in (1). 

 

Separating orders of magnitude (powers of ω ) and then frequencies (values of m ) 

leads either to non-oscillatory ordinary differential equations (ODEs) or recursions for 

the coefficients .  In this manner, the oscillations are removed from the 

numerical process and only added at the end when assembling the Modulated 

Fourier Expansion forv .   This means that the high-frequency oscillations no longer 

place impractical restrictions on the step size employed in the numerical integration 

for the simulation of the oscillator. 
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Test example:  To illustrate the proposed method, a CMOS oscillator similar to that in 

[8] is chosen and the equation describing its behaviour around an equilibrium point is 
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values are selected to have a very-high frequency oscillation present and confirm the 

merits of the proposed method with such oscillators. 

 

Equation (2) is substituted into (3) and the orders of magnitude are compared.   The 

terms are compared first as this is the highest order of 3ω ω present for this 

oscillator. 

0)1( 2
,0 =−mp m      (4) 

From (4),  the only non-zero terms are . mp ,0 1,01,00,0 ,, −ppp

 

On comparing the terms 2ω
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Three differential equations result for m=0, 1± .  For 1>m ,  0,1 =mp  as  

when 

0,0 =mp

1>m  from the previous level  (i.e. from the results identified in eqn. 4). 

The equations may be solved analytically to give 

00,0 cp =          (6) 

where   is a constant determined by the initial conditions and 0c
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 Similarly, on comparing terms 1ω
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Again, three differential equations result for m=0, 1± .  For 1>m ,   

as  and when 

0,2 =mp

0,0 =mp 0,1 =mp 1>m  from the previous levels. 

The analytical solutions are 

10,1 cp =          (9) 



where   is a constant and 1c
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For the terms 0ω

m=0 
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In this case, differential equations occur for m=0, 1±  and recursive equations for 

m=±2.  Again, equations 11-12 may be solved analytically. 

The process may be continued by matching decreasing orders of powers of ω  to 

achieve a higher level of accuracy. 

  

For the example oscillator, it was possible to solve the differential equations 

analytically.  However, even if this was not the case, the equations are non-

oscillatory and hence, numerical integration with an acceptable step size may be 

employed.  

  

Results    

Fig. 1 shows the result obtained with the proposed method matching powers of ω  to 

the level.  It is superimposed on the result from an ODE solver in MATLAB.  For 0ω



the ODE solver, the absolute and relative tolerances were set to .  Note, from 

the figure, the accuracy of the proposed method without having to resort to using 

numerical integration with very small and inefficient stepsizes.   Matching 

additional powers in 

16101 −×

ω  results in greater accuracy.   

An important feature of the method is that its accuracy increases with frequency 

while matching the same number of powers of ω . Fig. 2 shows the result when the 

oscillation frequency is increased by a factor of ~10.  Note the excellent match in the 

results.    

 

Conclusion 

The letter has presented a new technique for the efficient simulation of RF oscillators.  

The technique involves expansion of the solution in inverse powers of ω  together 

with modulated Fourier expansions.  The technique obviates the need for the 

exceedingly slow and inefficient use of very small step sizes in numerical integration.  

A further feature of the method is that its performance improves with increasing 

frequency. Consequently, it is most suited for the simulation of high-frequency 

oscillators in state-of-the-art communication systems.    
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Figure captions: 

 

Figure 1: Comparison between result from MATLAB ODE solver and new method 

matching terms up to order  0ω

Figure 2: Comparison between result from MATLAB ODE solver and new method 

matching terms up to order  when the oscillation frequency is increased by a 

factor of ~10. 
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Figure 2 
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