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1. Abstract 

 

In this paper, we report our ongoing investigations into the properties of 

poly(vinyl)chloride (PVC) based polymeric membranes incorporating the ionic liquid 

(IL) trihexyltetradecylphosphonium dicyanamide [P6,6,6,14][DCA] which fulfils 

several key functions - plasticiser, ligand and transducer dye. Upon co-ordination with 

Cu2+ ions, a yellow colour is generated within the membrane. Similarly exposure of a 

membrane to Co2+ ions produces a blue colour, whilst the IL is capable of co-

ordinating both ions simultaneously, thereby generating a green optical response. 

Using Wireless Radio Frequency (WRF) detection however, the inherent conducting 

nature of these membranes can now also be exploited as a sensor signal. WRF is a 

novel detection technique which monitors the conductivity of a given sample 

wirelessly, allowing non-contact detection and measurement of IL-PVC membranes 

as they pass through the channel. The various co-ordinated membranes produce a 

discriminatory drop in the resulting signal, which is a direct function of the specific 

metal ion (Cu2+, Co2+ or a mixture) co-ordinated to the IL. The results of the novel 

WRF technique have been validated principally by electrochemical impedance 

spectroscopy (EIS) and also by portable x-ray fluorescence (XRF). 

 

Keywords: Ionic Liquids, Electrochemical Sensors, Polymeric Sensors 
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2. Introduction 

 

 

 

The ongoing drive for more sophisticated chemical sensing templates is based on not 

only the development of new materials [1, 2], but also on the engineering of new 

sensing instrumentation and on how the information is retrieved [3, 4]. The 

development of new sensing materials seems to be based on the use of single 

molecular probes capable of simultaneous determination of multianalytes [5, 6], and 

also on simultaneous detection via multiple detection channels inherent to the material 

studied [7-9]. 

At the same time, the instrument used for detection should be non-invasive on the 

sample, and be capable of performing multiple analyses in a short space of time. 

Combining these efforts represents an obvious incentive to improve many aspects of 

chemical sensing, such as in the remote, autonomous monitoring of analytes [10, 11]. 

Ionic Liquids (IL’s) exhibit both a negligible vapour pressure and a wide 

electrochemical window [12], and have emerged as quite promising materials in both 

electrochemistry [13, 14] and  electrochemical sensing [15]. IL’s are the product of an 

ion-exchange metathesis reaction, resulting in a unique combination of ions that are 

liquid at room temperature [16, 17]. They may find use in virtually all branches of 

chemistry, most notably as alternative non-volatile solvents in organic synthesis [18] 

but also fulfilling the same role in ionic polymeric based transducers [19, 20]. 
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Conversely IL’s have been studied as co-ordinating media, with complexes of most 

transition and some lanthanide metals reported [21-23]. Furthermore, the ease of 

incorporation of IL’s into a polymer support (most commonly via in situ 

polymerisation of the monomer dissolved in the IL [24] or via polymer swelling [25]) 

provides the basis for both solid state electrolyte [26-28] and sensing templates [29]. 

Our technique for the production of IL based polymer membranes involves the co-

dissolution of the IL and polyvinylchloride (PVC) with Tetrahydrofuran (THF).  As 

the solvent completely evaporates over time (12h) a transparent polymer film is 

produced (see experimental section).  

In our previous work we described how the many favourable properties of the IL 

trihexyltetradecylphosphonium dicyanamide [P6,6,6,14][DCA] was incorporated into 

polymeric based optodes. [P6,6,6,14][DCA] acted as ion-exchanger, plasticizer, ligand 

and colorimetric dye in PVC based membranes, these membranes produced an optical 

response upon exposure to Cu2+ (yellow), Co2+ (blue) and both ions simultaneously 

(green) [30]. 

We now wish to expand on the use of IL’s in polymeric membrane based sensors 

capable of generating optical and electrochemical signal responses. The Wireless 

Radio Frequency (WRF) detection instrument used in this study works particularly 

well for solid state, conductive samples. A signal is produced that is a direct function 

of the ability of the solid material to facilitate an electrical conductivity through ion 

movement. It has the required sensitivity, is non-invasive on the sample to be 

analysed and is capable of batch analyses in short spaces of time [31].  

The goal of this work therefore is a proof of concept case intended to (a) exhibit 2-

component polymeric optodes as electroactive materials capable of generating 

observable electrochemical signals as a result of transition metal ion binding;  
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and (b) demonstrate and validate the use of WRF detection technology by varying 

both components of the polymeric membrane and monitoring their inherent ionic 

conductivity. 

The WRF instrument produces a signal in arbitrary units; its response has been 

validated principally by Electrochemical Impedance Spectroscopy (EIS). The level of 

ion coordination within the respective membrane has been characterised by X-Ray 

Fluorescence (XRF) Spectroscopy; which allows the reader to elucidate both 

observable trends in the WRF and EIS results. 
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3. Experimental 

 

 3.1 Chemicals and Materials 

 

Trihexyltetradecylphosphonium dicyanamide [P6,6,6,14][DCA] was generously donated 

by CYTEC® industries. Further purification was achieved by washing with both 

water and hexane, and by column cleansing with basic alumina [32].  

Poly(vinyl)chloride (PVC), Poly(3-octylthiophene-2,5-diyl) (POT), Copper Nitrate 

trihydrate, Cobalt Nitrate hexahydrate, Aluminum oxide(activated, basic, Brockmann 

1), Chloroform, Hexane and anhydrous Tetrahydrofuran (THF) were used as 

purchased from Sigma-Aldrich® Ireland Ltd.  

  

 

 3.2 Polymer Membrane Preparation 

 

In order to prepare membranes; both PVC and [P6,6,6,14][DCA] in their respective 

ratios (totalling 240mg) were dissolved in 3mL of anhydrous THF and left to stir for 5 

minutes until completely dissolved. Once dissolved the cocktail was then poured into 

a glass ring bound to a glass slide by rubber bands. They were then covered and left to 

dry overnight. 

 The result is a clear, homogenous membrane of approximately 2.5cm in diameter and 

approximately 0.28mm in thickness. Once dry the membranes were then exposed to 

1mL of a 0.1M metal ion solution for 12 hours. The metal salt solution was then 

removed by decanting of the liquid off the hydrophobic surface. The membrane was 

next dried in an oven overnight at 400C leaving the desired colour for analysis.  
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 3.3 RF Wireless Conductivity Analysis 

 

All measurements were performed using the A PCIS-3000 10-95 6536 radio 

frequency detector (Detection Systems, Melbourne, Australia). All measurements 

were performed at 83.18 kHz, the speed of the carousel was kept at 8.9 metres per 

minute. 

The individual membranes to be analysed were initially cut to a 10 x 20mm strip. The 

film strip was then placed onto a non-conducting glass slide and placed inside the 

polystyrene container. In order to improve the accuracy of the reading, the strip was 

aligned vertically with the signal vector from the instrument. To further improve the 

accuracy of the measurement all samples were allowed to pass through the electrode 

channel 5 times.  

The response was analysed via peak area integration; which accounts for the 

contribution of the whole sample to the response obtained as well as the sample 

dimensions. The values quoted are normalised according to the sample weight; a 

detailed account of how the responses were obtained can be found in figure S1.  

The results of the data analysis are the values quoted below. 

 

 3.4 Electrochemical Impedance Spectroscopy 

 

Characterization was performed using the CHI® Instruments 660A potentiostat. 

Screen-printed carbon paste silver electrodes with an active electrode area of 9mm2 

were prepared in-house using a previously reported technique [33].  
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The electrodes were initially dropcast with a layer of POT (10-2M in chloroform) in 

order to aid the conversion of ionic to electronic conductivity in accordance with 

previous works [34-36].   

 

100μL of the membrane cocktail composition (in 1mL THF) to be analysed was then 

dropcast onto the silver electrode using a 1mL microsyringe. The resultant dry 

membranes on the electrodes were then left in their respective metal ion salt solution 

overnight.  

 

The thickness of the resultant membranes were estimated using a Mitutoyo® 

micrometer calibrated to a resolution of 1μm. 

 

The impedance measurements were performed in the frequency range of 1 MHz to 

0.01 Hz with a perturbation signal of 100mV. The reference electrode used was an 

aqueous Ag/AgCl (CHI® Instruments 111, surface area: 3.14 mm2). 

A platinum wire electrode (CHI® Instruments 115, surface area: 3.14 mm2) was used 

as the counter. A 1nF capacitance shunt was used to reduce high frequency noise. 

 

 

 In order to obtain the impedance of the non-complexed membrane, the electrode in 

question was placed in 6ml of a 0.1M KCl solution. K+ is a soft, non-coordinating 

cation, and with no reported complexation behaviour with [DCA]-. 
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 3.5 Portable XRF Measurements 

 

Measurements were performed using the Thermo NITON® portable XRF analyser, 

using the standard thin film mode. In order to improve the accuracy of the 

measurement a batch reading of 3 x 180secs was performed. The averages of these 

measurements are the values quoted below. 
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4. Results and Discussion 

 

 4.1 Membrane Components 

 

Dicyanamide (DCA)- has previously been termed a pseudohalide with rather complex 

binding stoichiometry [37]. Complexation of this ligand with heavy metals results in 

net neutral complexes of 1, 2 and 3 dimensions [38, 39] plus electrochemically neutral 

co-ordinated polymers [40]. It was first used as an anion for IL’s as its extensive 

electron delocalisation meant it only exhibited electrostatic interactions with the IL 

cation; resulting in a liquid with a comparably low viscosity[41]. 

 

Solid, hydrophobic, polymeric membranes of this nature are typical of those used in 

Ion-Selective Electrodes (ISE’s) [42], a type of electrochemical sensor used for the 

determination of trace amounts of ions in solution. As the analysis typically involves 

the migration of an analyte between an aqueous phase and the hydrophobic polymeric 

surface, the mechanism of ion-transfer must be taken into account.  

In our previous work we have detailed that the migration mechanism of metal ions 

from aqueous to organic phase is co-extraction of the metal and its counter ion into 

the membrane rather than the ion-exchange convention [30]. In this case as the metal 

ion transfers through the polymeric membrane boundary it complexes and neutralises 

the anionic ligand; the counter ion of the metal salt (NO3) must therefore cross the 

membrane boundary in order to preserve electroneutrality within the membrane. 
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The two principal components used in ISE membranes are the polymer and the 

plasticiser. Depending on the analytical approach, the w/w ratio of these can vary 

greatly, although a ratio of 2:1 plasticiser: polymer (w/w) is generally accepted as the 

optimum. Changing the IL-polymer ratio can significantly influence important 

characteristics such as physical stability and elasticity [43]. In order to elucidate what 

affect the ratio of components will impart on the resulting conductivity and binding 

levels, the amounts of [P6,6,6,14][DCA] were varied from 66wt% to 50wt% and 33wt%. 

The characteristics of the resulting membranes were then investigated using WRF, 

EIS and XRF. 
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 4.2 Membrane Component Ratio 2:1, IL:PVC. 

 

The WRF detector system used in this study utilises radio frequency technology in 

order to obtain the conductivity of a sample as it passes through a defined point.  

This point is the transmitting electrode, which passes a low voltage, low-frequency 

AC signal toward a receiving electrode wirelessly. The sample to be analysed is 

housed in an insulating polystyrene based container which is placed on a miniature 

conveyor (Fig 1).  

The insulating container with the sample placed inside is then allowed to pass through 

the electrode channel where it is processed and analysed via a PC. It has been used to 

great effect previously for the wireless detection of acetic acid and ammonia vapour 

using ink-jet printed polyaniline dispersions [31].  

 

Figure 2 shows results obtained for a set of membranes containing a component ratio 

of 2:1, IL: PVC. Firstly a “blank” membrane (i.e. no metal ion exposure) was allowed 

to pass through the electrode channel. Next, three membranes individually exposed to 

(a) Cu2+, (b) Co2+ and finally (c) a solution containing a mixture of both ions were 

then allowed to pass through the electrode channel.  

One can see from Figure 2 the response obtained for the blank membrane (bold, 

dashed line). It demonstrates that this membrane is indeed electroactive (due to the 
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presence of the IL) as the WRF instrument proved capable of detecting it as it passed 

through the electrode channel. 

 

 

What is also interesting to observe is the signal reduction seen for the respective co-

ordinated membranes, which ultimately means that they have become less conductive. 

This downward trend is most likely due to the co-ordinating chemistry of [DCA]-; as 

previously discussed. The observed signal trend is Cobalt > Mix > Copper which we 

believe is directly related to the level of ion transfer and co-ordination within the 

membrane; which will be discussed later in this text.   

  

 Some features inherent to this technique are so called “edge effects” which 

occur as the sample container first enters and leaves the electrode channel. These 

signals occur as the dielectric constant of the insulating housing material changes 

upon initial and final contact with the voltage vector. This, coupled with the signal 

produced from the conductive strip, means that the graph obtained is an effective 

picture of the dimensions of the container as it passes through the channel, with the 

conductive sample housed safely inside. A summary of the peak area integration 

analysis can be seen below (table 1) and in figure S2. 

 

 WRF detection is a novel technique producing peak heights of arbitrary units, 

and therefore its results must be validated appropriately. For this purpose, 

Electrochemical Impedance Spectroscopy (EIS) was employed, as this provides an 

independent estimation of the sample conductivity in S/cm. 
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 The resulting x-axis intercept of the Nyquist plot (fig 3.) is used to determine 

the resistance of charge transfer (RCT) of the membrane, which is then easily 

converted to the corresponding conductivity via the equations: 

 

 

  RG /1        (1) 

 

  AGL/        (2) 

 

 where G  is the conductance, R is the resistance, σ is the conductivity, A is the cross 

sectional area of the working electrode and L is the estimated thickness of the polymer 

membrane on the electrode [44, 45]. 

Our screen printed, in-house electrodes have a cross sectional area of 9mm2 [33]. In 

order to estimate the average thickness of the membrane; a Mitutoyo® micrometer 

calibrated to a resolution of 1μm was used.  The results of the thickness analysis 

across 6 electrodes can be seen in figures S3-S5. Table 2 provides a summary of the 

results obtained. 

 

 

One can see from both figure 3 and table 2 that the impedance of the metal ion co-

ordinated membranes has increased. Here the trend is inverted from the previous 

result obtained. In order to see how the response from the two instruments correlate, 

plots of both % decrease (WRF) and % increase (EIS) of the signal response vs. the 

samples were constructed (Figure S6). Both trends are effectively linear and 

complement each other. EIS is therefore an effective validation of the novel WRF 
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instrumental result; whilst also providing an independent estimation the increase in 

response seen. 

 

 

We believe that the inverse trends seen must be related to the level of co-ordination 

within the membrane. In order to confirm this; XRF was then finally used. We have 

also seen previously in our optical characterisation that whilst [P6, 6, 6, 14] [DCA] is 

capable of binding to both Co2+ and Cu2+, its preferentiality is toward Cu2+. Again for 

this analysis, membranes containing the same component ratio were analysed and the 

metal salt solutions concentration were also kept constant. 

 

 

Figure 4 (above) depicts the spectra obtained; the first feature to note is that the peak 

height obtained for chlorine is approximately the same for all 4 membranes. This 

illustrates that the ratio of PVC is indeed kept constant for all measurements, and so 

acts as an internal standard. The peaks for both Cobalt and Copper are also labelled, it 

can be seen that the peak height is considerably higher for Copper over Cobalt, which 

is indicative of the binding preferentiality of the IL.  

The peak heights obtained for the mixture are also labelled; they are, of course lower 

than those obtained for the pure ion solutions. The reduction in peak height is more 

dramatic for Cobalt over Copper, and given that the initial metal salt solution 

contained a volume ratio of 2:1, Co2+:Cu2+, further strengthens our binding 

preferentiality argument.  
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Not unlike its instrumental equivalent, the portable XRF analyser is also capable of 

quantifying the intensity of the fluorescent peak levels into parts per million 

concentrations (ppm) [46, 47]. The calculation is based on many factors, but is most 

heavily dependent on the weight fraction of the element in the membrane and the 

dimensions of the sample [48]. The quantitative results of the first set of XRF 

analyses are detailed in table 2. From this table it is easy to deduce that even though 

all of the membranes were exposed to the same concentration of metal ion solution, 

that the uptake of Copper is significantly higher than Cobalt (~2.2 times greater). 
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 4.3 Membrane Component Ratio 1:1, IL:PVC.  

  

Increasing the amount of polymer in the membrane to 50wt% led to membranes with 

slightly reduced flexibility and elasticity. The polymer can also be viewed as an 

insulating matrix, so the resulting measured impedance should also increase; whilst 

the wireless conductivity signals should also decrease. Equally, by reducing the 

amount of IL, the availability of binding sites is lessened; so the competition for one 

binding site between two analytes increases. 

Table 5 (top) lists the values obtained from the WRF analysis. Once again; they are 

the result of peak area integration and mass correction analysis of the response 

obtained (figure S10 (a)). 

In the first instance; the conductivity values are uniformly shifted down. This is to be 

expected; as the concentration ratio of the IL has been reduced. The selective 

downward trend based on the nature of metal ion co-ordination still remains.  

Both WRF and EIS still complement each other in that the inverse trend of increased 

impedance for the co-ordinated membranes is still evident. This can be seen by 

looking at figure 5 (left) and table 4 (top) which summarises the results. What can 

also be observed is that the impedance for all membranes is significantly increased 

due to the increased concentration of PVC. Once again a correlation analysis of the 

respective responses from both EIS and WRF was undertaken (Figure S7). Again both 

trends are linear and serve to complement both techniques. 
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A summary of the XRF analysis can be seen in table 6 (top). XRF once again proves 

to be a valid tool to explain the EIS and WRF results obtained previously. The levels 

of both Cu and Co in the membrane serve to validate both the conductivity and 

impedance trends seen for both WRF and EIS respectively. Once again Cu levels 

prevail over Co in all cases, which again are a reflection of the co-ordinating 

chemistry of the ligand [DCA]-. 

What is interesting to note from both EIS and XRF analyses; is that the selectivity of 

the IL for Cu2+ over Co2+ has increased substantially when compared to the first case 

studied. This is most likely a combination of the decreased concentration of binding 

sites resulting in an increased competition between two analytes for one ligand plus 

also the fact that we have consistently observed a higher preference of the membranes 

for Cu2+ over Co2+. 
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 4.4 Membrane Component Ratio 1:2, IL:PVC.  

  

By further increasing the concentration of PVC to 66wt%, the resulting membranes 

became more inflexibile and brittle. A further reduced IL content means they have 

become primarily hydrophobic, which will impede their ability to uptake and bind 

metal ions. 

This proved to be a hindrance for the WRF detection system; a summary of the results 

obtained can be viewed in table 5 (bottom) and figure S10 (b). Given that its response 

is based on the conductivity of a given sample, it proved capable of only detecting the 

“blank” membrane containing only 33w% IL. Any co-ordination that does occur 

within this particular set of membranes results in neutral co-ordinated networks; 

which will lower the conductivity even further. This had the result of lowering the 

conductivity outside the limitation of the WRF instrumental setup. This is a limitation 

of the current setup and will be the subject of future work. 

Again; the EIS spectra yielded no observable trend (Figure 5 (right) and table 4 

(bottom)). The impedance for all membranes is again increased (approx. one order of 

magnitude) due to increasing the levels of PVC within the membrane.  

 

From the individual Bode plots -which depict the relationship between the modulus of 

impedance and the scanning frequency- the impedance shift for the blank membrane 

is linear for both IL and PVC concentrations, which can be seen in figures S8 and S9. 
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The XRF analysis proved helpful to validate the previously unexpected EIS trend 

(Table 6 (bottom)). Here the highest concentration of metal in the membrane was 

found to be the mixture, which corresponds to the highest impedance response seen 

for these membranes. The next highest levels are seen for Cu, whilst Co levels proved 

undetectable which correlates perfectly with the EIS response trend. The EIS spectra 

obtained are therefore directly related to the level of ion transfer and co-ordination 

within the membrane. 
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5. Conclusion 

   

In this work we have demonstrated that our IL based membranes do act as 

electroactive materials which; when co-ordinated to heavy metals provide a measured 

sensor response. We have also effectively demonstrated the use of WRF technology 

for this purpose and shown how the results obtained from 3 differing techniques 

definitively summarise the inherent co-ordinating chemistry of these membranes. 

 In this case the IL based polymeric optodes are capable of discriminatory co-

ordination of the heavy metals Cu2+, Co2+ and both ions in a mixture which produces 

an equal discriminatory conductivity decrease in the WRF signal. By documenting the 

inverse trend of impedance, we have validated this novel conductivity result. Both the 

WRF and EIS trends were then easily explained by studying the level of ion transfer 

and the co-ordinating preferences of the IL ligand [DCA]-. This was achieved by 

quantifying the amount of metal present in the membrane using XRF. 

By examining the case of Cu2+ co-ordination; the three detection techniques can be 

summarised as follows: Cu2+ exhibits the highest binding preferentiality to the IL 

(XRF), thereby producing the lowest WRF signal and the highest EIS response. The 

opposite then applies for Co2+ co-ordination with the mixture inevitably in between. 

With this and our previous work, we have now effectively shown how incorporation 

of a ligand as part of an IL can dramatically simplify a polymeric based optode’s 

composition, and how both the inherent optical and transduction processes can be 

monitored using a variety of detection techniques. 

As we have now gained a valid insight into the electrical effects of metal- ion co-

ordination in polymeric membranes through variation of its constituents; future work 
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will be aimed at optimising important analytical characteristics such as the effects of 

changing of the IL cation and optimising the effects of analyte concentration. 

 

 

As mentioned previously IL’s have been shown to bind to a range of d-block 

elements, plus important target analytes such as CO2 [49], benzaldehyde and acetone 

[50]. Recently they have been shown to act as direct sensing materials for acids in 

aqueous and non-aqueous environments[51].   

If a change in conductivity can be presumed upon binding to the analyte, then the 

inherent conductivity properties of IL’s should also change. The use of wireless 

conductivity monitoring also has many potential advantages, such as remote, 

autonomous monitoring. By combining the many advantageous properties of both 

IL’s and conductivity detection, then dramatic gains in sensing materials AND 

detection can be achieved.   
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7. Appendices 

 

Electronic Supplementary Information (ESI) available. WRF peak integral and mass 

correction analyses. Membrane thickness analyses on the working electrode plus EIS 

spectra on the effect of component ratio. 
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Figure S1: Details of peak area analysis used in WRF analysis 
 

 

 First the intensity value is taken at the beginning (Istart) of the signal peak, at 

the end (Iend), and a mean (Imean) of the two. 

 The x-axis parameter values are also taken i.e. Xstart and Xend, and the 

difference between them ΔX. 

 In order to obtain a background or blank value, the area with dimensions of 

Imean x  ΔX is calculated. 

 The integral is obtained by adding together each intensity value from Istart to 
Iend (Integral Raw). 

 The intergral is then corrected by each individual mass reading, and by 
subtracting the background value. 
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 Mass: 

(g) 

Istart Iend Imean Xstart Xend ΔX Blank Integral 

(raw) 

Integral 

(mass 

corrected) 

Blank 0.2309 
 

1638.9 
 

1611.6 
 

1625.25 
 

56 95 39 63384.75 
 

75503.8 
 

52486.14 
 

Copper 0.2221 

 

1636.2 

 

1632 

 

1634.1 

 

52 91 39 63729.9 

 

72456.8 

 

39292.66 

 

Cobalt 0.2317 

 

1625.6 

 

1629.4 

 

1627.5 

 

48 89 41 66727.5 

 

76801.8 

 

43479.93 

 

Mix 0.2277 
 

1629.2 
 

1633 
 

1631.1 
 

47 89 42 68506.2 
 

77675.17 
 

40267.75 
 

 

 
 

Figure S2: WRF Peak area analysis for membranes containing IL:PVC, 2:1. 
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electrode 
thickness  

electrode + membrane 
thickness membrane thickness 

 mm  mm mm 

1 0.24 1 0.34425 0.11175 

2 0.23 2 0.34825 0.11575 

3 0.23 3 0.33225 0.09975 

4 0.23 4 0.32925 0.09675 

5 0.24 5 0.33525 0.10275 

6 0.225 6 0.34425 0.11175 

average 0.2325 7 0.34925 0.11675 

stdev 0.006123724 8 0.36725 0.13475 

  9 0.34375 0.11125 

   average membrane thickness 0.111 

   stdev 0.011 

 
 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 

 
 

Figure S3: Electrode and membrane thickness analysis for membranes containing 
33wt% PVC. 
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electrode 
thickness   

electrode + membrane 
thickness 

 mm   mm 

1 0.24  1 0.5965 

2 0.23  2 0.6215 

3 0.23  3 0.5425 

4 0.23  4 0.5615 

5 0.24  5 0.5355 

6 0.225  6 0.5435 

average 0.2325  7 0.5705 

stdev 0.006123724  8 0.5405 

   9 0.5395 

   average 0.561 

   stdev 0.0299 

   
average membrane 

thickness 0.328 
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Figure S4: Electrode and membrane thickness analysis for membranes containing 

50wt% PVC. 
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electrode 
thickness   

electrode + membrane 
thickness 

 mm   mm 

1 0.24  1 0.66625 

2 0.23  2 0.64825 

3 0.23  3 0.66925 

4 0.23  4 0.62525 

5 0.24  5 0.59625 

6 0.225  6 0.65825 

average 0.2325  7 0.63925 

stdev 0.006123724  8 0.64525 

   9 0.65325 

   average 0.644 

   stdev 0.022 

   
average membrane 

thickness 0.412 
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Figure S5: Electrode and membrane thickness analysis for membranes containing 

66wt% PVC. 
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2:1 IL:PVC

WRF EIS

% Drop % increase

Blank 52486 Blank 3694

Copper 39292 13194 1 25.13813 cobalt 15140 11446 1 309.853817

Mix 40267 12219 2 23.28049 Mix 16180 12486 2 338.0075799

Cobalt 43479 9007 3 17.16077 Copper 16790 13096 3 354.5208446  
 
 

 
Figure S6: Detailed analysis of response obtained for membranes containing 2:1 
(IL : PVC). Here the parameters on the x-axes represent (for WRF) 1 = Copper; 2 

= Mix and 3 = Cobalt. For EIS; 1 = Cobalt, 2= Mix and 3 = Copper. 
 

 
 
 

 
 

 
 
 

 
 

 
 
1:1 IL:PVC

WRF EIS

Blank 15879 Blank 47760

Copper 7068 8811 1 55.48838 cobalt 126400 78640 1 164.6566

Mix 9428 6451 2 40.62598 Mix 209900 162140 2 339.4891

Cobalt 14908 971 3 6.114995 Copper 235600 187840 3 393.2998  
 
 

 

 

 

 

Figure S7: Detailed analysis of response obtained for membranes containing 2:1 

(IL : PVC). Here the parameters on the x-axes represent (for WRF) 1 = Copper; 2 
= Mix and 3 = Cobalt. For EIS; 1 = Cobalt, 2= Mix and 3 = Copper. 
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Figure S8: Bode plot’s obtained for increasing IL concentrations 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
     Figure S9: Top: Plot of Impedance versus IL concentration (left) and PVC 
concentration (right). 
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 Mass: 

(g) 

Istart Iend Imean Xstart Xend ΔX Blank               Integral 

(raw) 

Integral 

(mass 

corrected) 

Blank 0.2284 1650 1650 1650 52 94 42 69300 
 

72931 15879 

Copper 0.2248 1665 1665 1665 43 87 44 73260 
 

74849 7068 

Cobalt 0.226 1656 1654 1655 54 96 42 69510 
 

72879 14908 

Mixture 0.2106 1663 1665 1666.5 45 87 42 71552 
 

73537 9428 
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 Mass: 

(g) 

Istart Iend Imean Xstart Xend ΔX Blank Integral 

(raw) 

Integral 

(mass 

corrected) 

Blank 0.226 1669.4 1670.5 1670 34 56 22 40171.2 
 

38435 7502 

Copper 0.2325 - - - - - -  - - 

Mix 0.233 - - - - - -  - - 

Cobalt 0.2243 - - - - - -  - - 

 
 

 
Figure S10: WRF response obtained for (a) membranes containing 1:1, IL: PVC and 
(b) 1:2, IL: PVC. 

Figures: 

 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
Figure 1: The WRF instrument used in this work. The sample to be analysed is 

placed in the insulating material (centre) and passed along the green carousel through 

the detection channel containing the transmitting and receiving electrodes.  
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Figure 2: The individual responses obtained from WRF for membranes with 

component ratio 2:1, IL: PVC. Here the RF signal (y-axis) is given in arbitrary units. 
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Figure 3: EIS spectra for membranes containing 2:1, IL:PVC; Here (i) is the blank 

(no metal ion exposure) run, whilst the coloured lines depict exposure to (ii) Cu2+ 

ions, (iii) a 1:1 (v/v) mixture of Cu2+ and Co2+ ions and (iv) Co2+ ions.  

Inset: Equivalent “Randles” circuit representation used to obtain experimental data; 

where RCT  is the membrane resistance of charge transfer, Q is constant phase element 

and ZW is Warburg impedance. “C 1nF” is the capacitance bridge used between the 

working and reference electrodes. 
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Figure 4: XRF spectra obtained for membranes with component ratio 2:1, IL: PVC. 

Here the black peaks are (i) no metal ion exposure (blank), whilst the coloured peaks 

correlate to membranes exposed to (ii) Cu2+ ions, (iii) a 1:1 (v/v) mixture of Cu2+ and 

Co2+ ions and (iv) Co2+ ions. 
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Figure 5: EIS results obtained for membranes containing 1:1, IL: PVC (left), and 

membranes containing 2:1, IL: PVC (right). For both cases; (i) no metal ion exposure 

(blank), (ii) exposure to Cu2+ ions, (iii) a 1:1 (v/v) mixture of Cu2+ and Co2+ ions and 

(iv) Co2+ ions.  
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Tables: 

 

Membrane Composition: Blank: Copper: Mix: Cobalt: 

2:1, IL: PVC 52486 39292 40267 43479 

 

 Table 1: Summary of WRF results for membranes containing 2:1 (IL : PVC); 

the values quoted are the result of peak area integration and mass correction analysis. 

 
 

Membrane: RCT: (Ω) σ: (S/cm) 

Blank 3694 3.346 x 10-5 

Cobalt 15140 7.362 x 10-6 

Mix 16180 7.64 x 10-6 

Copper 16790 8.165 x 10-6 

 

 Table  2: Resistance of charge transfer and conductivity values obtained via 

EIS analysis for membranes with component ratio 2:1, IL: PVC. 

 
 

Membrane Composition: Blank: Copper: Mix: Cobalt: 

 

2:1, IL:PVC 

Cu         Co 

192.55  <LOD 

(81.51) 

 

16996.25 

(424.75) 

Cu              Co 

12866.82     1559.59 

(357.98)      (179.21) 

 

7652.11 

(371.17) 

 

 Table 3: Concentration (ppm) values obtained from portable XRF analyser for 
membranes with component ratio 2:1, IL: PVC (errors in parentheses). 
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Membrane Composition: RCT:(Ω) σ : (S/cm) 

1:1, IL: PVC   

Blank 47760 7.649 x 10-6 

Copper 235600 1.551 x 10-6 

Mix 209900 1.74 x  10-6 

Cobalt 126400 2.89 x  10-6 

1:2, IL:PVC   

Blank 1,160,000 3.947 x 10-7 

Copper 1,200,000 3.816 x 10-7 

Mix 1,810,000 2.530 x 10-7 

Cobalt 919,000 4.982 x 10-7 

 

 Table 4: Resistance of charge transfer and conductivity values obtained via 

EIS analysis for membranes with component ratio 1:1, IL: PVC (top) and 1:2, 

IL: PVC (bottom).  

 

 

Membrane Composition: Blank: Copper: Mix: Cobalt: 

1:1, IL: PVC 15879 7068 9428 14908 

     

1:2, IL: PVC 7502 - - - 

 

 Table 5: Summary of WRF results for membranes membranes with 1:1, IL: 

PVC (top) and 1:2, IL: PVC (bottom). Again, the values quoted are the result of peak 

area integration and mass correction analysis. 
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Membrane 

Composition: 

Blank: Copper: Mix: Cobalt: 

1:1, IL: PVC Cu                       Co 

 

>LOD                 >LOD 

 

2642.14 

(165.73) 

Cu              Co 

2551.91         272.17 

(164.33)         (83.39) 

 

1207.55 

(153.38) 

1:2, IL: PVC Cu                        Co 

 

>LOD                 >LOD 

 

222.54 

(77.79) 

Cu              Co 

294.13          202.63 

(90.91)         (88.09) 

 

 

<LOD 

 

Table 6: Concentration (ppm) values obtained from portable XRF analyser for 

membranes with component ratio 1:1, IL: PVC (top) and 2:1, IL: PVC (errors 

in parentheses). 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 


