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Abstract

Abstract

The main focus of the research in this thesis is the investigation in DNA methylation mechanisms

of epigenetics and the study of a specific database. As part of the latter work, the role of curation

is described, and a new knowledge management system, PathEpigen1 , is reported that is currently

being developed for colon cancer in the Sci-Sym centre. The database deals with genetic and epigenetic

interactions and contains considerable data on molecular events such as genetic and epigenetic events.

The data curation includes biomedical and biological information. An efficient method was devised to

extract biological information from the literature to process, manage and upgrade data. We present

a Deterministic Finite Automata (DFA) model for the DNA methylation mechanism controlled by

DNA methyltransferase (DNMT) enzymes. This thesis provides a brief introduction to epigenetics, a

survey of ongoing research on computational epigenetics and a description of the DNA methylation

database. Furthermore, it also gives an overview of DNA methylation and its importance in cancer.

The DFA models three states of methylation frequency (normal, de-novo and hypermethylated) in the

cell. It has been executed on input of random strings of size 100. Out of the strings considered, we

found that 26%, 37% and 37% correspond to normal, de-novo (cancer initiation) and hypermethylated

(cancer) states, respectively.

1The PathEpigen Knowledge Management System is continually being added to in terms of data
content and additional features. It has also been renamed StatEpigen, to reflect its focus on the
statistical information. It is currently found at http://statepigen.sci-sym.dcu.ie/index.php.
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Chapter 1
Introduction

1.1 Context

Epigenetics is a field in which profound investigations of DNA and chromatin mod-

ifications often have reversible and far-reaching impacts on inheritance. It appears

in the literature as far back as the mid-19th century, although its conceptual origins

date further back. Information management in the nucleus means that some of the

genetic information is extraordinarily tightly packaged in the genome. Moreover, there

is genetic information that must be on and active all of the time, such as housekeeping

genes. Thus, epigenetics can resemble information management at home: things that

you need all the time do not get stored away, but your old school records are kept

packed in boxes in the attic. Computational methods for the analysis and interpreta-

tion of large epigenomic datasets can deepen our knowledge of epigenetics and disease

and may even enable optimized therapies, thus establishing computational epigenet-

ics as a relevant and exciting field at the intersection of epigenetic and bioinformatic

research. Research in computational epigenetics consists of developing bioinformatic

1



1.2. Scope Chapter 1. Introduction

methods capable of solving epigenetic questions as well as theoretical modelling of DNA

methylation.

1.2 Scope

In the present dissertation, we looked at elements needed to construct a simple mi-

croscopic model of epigenetic mechanisms, specifically those relating to DNA Methy-

lation features. As initial objectives, this thesis both develops a deterministic model

for analysing the activity of DNA methyltransferase enzymes on CpG islands (for tu-

mour suppressor genes in cancer initiation) and curates data on colon cancer. Ideally,

such a model would enable research into events at the molecular level that influence

overall cancer growth. This thesis is divided into 5 chapters. Chapter (1) provides

an overview of the content of the thesis. Chapter (2) gives a comprehensive discus-

sion of epigenetic structure and the role of DNA methylation in both cell growth and

cancer initiation. DNA methylation has a critical role in complex diseases such as can-

cer. The relationship between epigenetics and cancer is also discussed in this chapter.

In addition, Chapter (2) provides an overview of the computational representations

of epigenetic mechanisms and includes a discussion of the challenges and complexity

involved in developing computational models for epigenetics. These models provide

an interface between the biological concepts and the nature (or properties) of data.

Furthermore, this chapter discusses the scope of computational epigenetics as well as

epigenomic analyses and predictions. In Chapter (3), a model of DNA methylation

is presented. Fundamentals of epigenetic micro-modelling using the DFA1 model are

1In the theory of computation, a DFA is a deterministic finite state machine which accepts finite
‘strings of symbols’ over some alphabet. Set of strings form a DFA language.

2



1.2. Scope Chapter 1. Introduction

detailed. Primary results from this prototype model are discussed. The importance

of data curation in substantiating model forms is discussed in Chapter (4). Such data

can be used to populate an in-house database, namely, PathEpigen2, (Ruskin et al.,

2008) and provides the basis for the parametrisation of more advanced model forms.

Finally, conclusions are provided in Chapter (5). The main focus for our research is to

lay the groundwork for data analysis and to develop a model for investigating complex

epigenetic mechanisms such as DNA methylation.

2The PathEpigen Knowledge Management System is continually being added to in terms of data
content and additional features. It has also been renamed StatEpigen, to reflect its focus on the
statistical information. It is available at http://statepigen.sci-sym.dcu.ie/index.php.

3



Chapter 2
A Survey of Epigenetics

This chapter provides introductory background on genomes1 and epigenomes2. Sub-

sequent sections introduce epigenetics, examples of epigenetics and tools. In addition,

the chapter summarises the DNA methylation developments in epigenetics and pro-

vides a global overview of the various DNA methylation processes and the applications

of computational epigenetics.

2.1 Introduction

Any given biological cell contains the complete hereditary information for its species

in the form of DNA known as the genome. The basic building blocks of DNA are

the base pairs [A(Adenine)−T(Thiamine) and C(Cytosine)−G(Guanine)]. Long DNA

chains (200 base pairs wrapped around a histone3 octamer) are arranged in a structure

known as the nucleosome. Multiple nucleosomes comprise a bundle that is known as

1The total DNA contents in a single chromosome in a organism.
2A subset of genes whose function is controlled by specific biochemical factors.
3It is small spheres that DNA wraps around. If the way that DNA is wrapped around the histones

changes, gene expression can change as well.

4



2.1. Introduction Chapter 2. A Survey of Epigenetics

Figure 2.1: Possible states: Genome vs. Epigenome. Epigenome mainly considers two states:
(i) Methylated states of the CpG sites on the DNA, and (ii) Chromatin modifica-
tion. Methylated Cytosine is normally unmethylated at promoter and methylated
in the rest of the genome. On the other hand, modification in chromatin get direct
impacts on the nucleosome position and its protein (histone).

chromatin. Consequently, the sequential organisation of the DNA in a cell is as follows:

DNA strand −→ [histone + DNA (200 base pair)] −→ nucleosome −→ chromatids4 −→

chromosome5. Chemical modification of the DNA and histones that takes place without

changing the entire sequence is known as ‘epigenetics’ (i.e., ‘epi= over and ‘genetics’).

Generally, these changes occur on DNA (Cytosine and Thymine) nucleotides and the

histone proteins. In the ‘epigenome’, we study the overall epigenetic state of a cell.

Possible epigenetic states are illustrated in Figure (2.1).

4One of two identical strands into which a chromosome splits during cell division.
5A chromosome is an organised structure of DNA and protein, found in cells.

5



2.1. Introduction Chapter 2. A Survey of Epigenetics

2.1.1 CpG Islands

CpG6 dinucleotides occur randomly in the genome. Normally, CpG dinucleotides are

found to be frequently methylated across the whole genome. In contrast, when CpG

dinucleotides are found at high densities at the promoter7 region of a gene, (mainly

those genes that have a primary function in cell division), they are known as CpG

islands (or CG) islands. A CpG island is defined as a sequence that has a G+C

content greater than 60% and a CpG to GpC ratio of at least 0.6 or 200 GC base pairs,

(Antequera and Bird, 1993). They are found at high densities at the 5’ regulatory

regions of genes and are normally unmethylated. Recent predictions have lowered the

estimates of the number of CpG islands occurring across the whole genome to ≈ 27, 000

CG base pairs, (Antequera, 2003).

2.1.2 Epigenetics: History and Relevance

The biological term ‘epigenetics’ was introduced by, Waddington (1953). It refers

to heritable changes of observable traits (phenotypes) in living beings. Epigenetic

mechanisms control gene expression without any changes in the DNA sequence, (Bird,

2007). The study of epigenetics includes investigations of two major modifications of

DNA and chromatin, (Feinberg, 2007):

• Post-replication DNA methylation (a covalent modification of Cytosine residue).

• Post-translational modification of histones such as histone acetylation and methy-

lation respectively.

6“C” and “G” are connected by a phosphodiester bond on single stranded DNA.
7A promoter is a region of DNA that facilitates the transcription of a particular gene.
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Functionally, these modifications of epigenetics act as a mark that regulates gene ac-

tivity. A fundamental question in biological research is to address how a gene receives

information when multicellular organisms evolve from a single stem cell, (Reik, 2007).

Further, during development, there is a need to know which molecular mechanisms

are involved in phenotypic inheritance, (Richards, 2006). Recently, epigenetics has at-

tracted much attention in molecular biology and cancer research. In cancer research,

the study of epigenetics opens up the possibility of new approaches, such as identify-

ing gene methylation levels for the early diagnosis and treatment of primary cancers,

(Jones and Baylin, 2007; Costa and Shaw, 2007). Typical biological experiments deal

with enzymatic activity and analyse the up - or downregulation of gene activity, (Chen

et al., 2003; Clark and Melki, 2002). To study gene regulation activity, it is important

to investigate the role of factors that affect the degree of regulation and the phenotypic

behaviour of epigenetic mechanisms, (Jiang et al., 2004). The parameter range of epi-

genetic patterns between organisms due to phenotypic variation, together with the time

scale of cell stages, (Rando and Verstrepen, 2007), are very important for determining

cancer initiation but are non-trivial to deduce. Further, these epigenetic changes can

be used as a first step in the modelling of DNA methylation. The methylation profile

in humans must satisfy certain criteria established by the epigenomic database. The

following sections briefly introduce epigenetics tools and indicate a number of different

modelling approaches taken to provide insights into this active research area.

2.1.3 Examples and Tools of Epigenetics

Epigenetic knowledge has many potential applications in medical science. One of the

best examples of its relevance in humans is the transfer of information during stem cell
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differentiation. When a fertilised stem cell divides, a zygote is created, which transfers

the information to other cell types, (Reik, 2007). This information transfer into cells

is accomplished by epigenetic mechanisms, including DNA methylation and histone

modifications. A second example of the importance of epigenetics is in human dis-

eases, such as cancer, (Miyamoto and Ushijima, 2005) and epigenetic therapy (Brown

and Strathdee, 2002). In some congenital diseases, such as Angelman and Prader Willi

syndrome, epigenetics plays an important role, (Waterland and Jirtle, 2003) in terms of

gene expression patterns. Another example concerning epigenetic modification is that

some dietary supplements given to mammals cause epigenetic changes in gene expres-

sion that affect their phenotype and lead to cancer initiation, (Cooney et al., 2002).

The Human Epigenome Project (HEP) has taken on the challenges and opportunities of

high-resolution epigenomic analysis in multiple unrelated individuals. Two large-scale

efforts, the Chromatin Immunoprecipitation (ChIP) and Bisulfite sequencing projects,

have recently been completed and have analysed epigenetic markers (DNA methylation

patterns) simultaneously in a single cell and at multiple stages during cell differenti-

ation, (Barski et al., 2007; Mikkelsen et al., 2007). The growing resources (tools and

techniques) available for the study of epigenetics offer new and revolutionary ways to

study how environmental factors influence phenotype, (Rakyan et al., 2004; Eckhardt

et al., 2006).

2.1.4 Epigenetics and Cancer

The misregulation of epigenetic mechanisms plays an important role in phenotype

transmission and development, and it consequently affects uncontrolled cell division,

such as cancer, (Grnbek et al., 2007; Martin and Zhang, 2007). Connections between
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cancer and epigenetic mechanism misregulation are found in many genes in cancer cells,

including in the silencing of the MGMT (O6-methylguanine-DNA methyltransferase)

gene. MGMT has a primary role in DNA repair mechanisms in cell division. When

MGMT is silenced by methylation, DNA repair cannot occur during cell division.

Therefore, this gene plays a decisive role in the development of cancer, (Soejima et al.,

2005). Essentially, cancer is caused by alterations of two different classes of genes:

• Tumour suppressor genes8 which inhibit cell growth and have normally unmethy-

lated CpG islands in their promoter regions.

• Proto−oncogenes9 which promote cell growth and have normally methylated CpG

dinucleotides in the genome.

The various changes, including environmental changes that lead to gene misregulation,

are involved in full cancer progression and in the determination of the final cancerous

phenotype and are decided by the combined status of tumour suppressor genes and

oncogenes. These epigenetic changes are due to covalent modifications of amino acid10

residues in the histones around which the DNA is wrapped, together with changes in

the methylation patterns of cytosine residues (C) in the context of CpG dinucleotides

in the DNA, (Ro and Rannala, 2001). Furthermore, the heritable changes that oc-

cur due to DNA methylation are the basic markers of epigenetics, and they consist

of different stages, such as hypermethylation11 and hypomethylation12 in cancer. Mi-

8A tumour suppressor gene (MGMT, MLH1, P53 etc), or anti-oncogene, is a gene that protects a
cell from one step on the path to cancer. When this gene is mutated to cause a loss or reduction in
its function, the cell can progress to cancer.

9A proto-oncogene (RAS, WNT, MYC, ERK gene etc.) is a normal gene that can become an
oncogene due to mutations and increased expression.

10Amino acids are the structural units that make up histone proteins.
11An increase in the epigenetic methylation of cytosine residues in CpG island.
12A decrease methylation of cytosine residues in genomic DNA.
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croRNA13 inactivation by DNA methylation has also been studied in human cancer

cells, (Lujambio et al., 2007).

2.1.5 Epigenetic Challenges in Cancer

Generally, mutations and chromosome abnormalities inhibit the function of tumour

suppressor genes and initiate cancer. It is now clear that the inactivation of tumour

suppressor genes due to abnormal epigenetic patterns, (Esteller, 2007; Portela and

Esteller, 2010), can cause cancer. All of these results point to two specific challenges

for the epigenetics of cancer:

1. To observe common patterns and functional relationships in the epigenetics of

cancer cells in the genome.

2. To develop bioinformatic tools for improved cancer diagnosis, stage detection and

therapy , (Esteller, 2007).

Furthermore, in terms of cancer prediction, epigenomics offers new opportunities for

improving diagnostic technologies and therapeutic options.

2.2 Review of DNA Methylation

The DNA methylation mechanism controls gene activity. Faithful transfer of DNA

methylation patterns between parents and daughter cells is essential for human de-

velopment and for maintaining health, (Boyer et al., 2005). Dynamic alterations in

DNA methylation patterns are thought to change gene expression, and initiate the

13MicroRNAs are short RNA molecules (22 nucleotides) found in all eukaryotic cells and it regulates
post-transcriptional process by binding a complementary sequences on target mRNA transcripts and
resulting gene silencing.
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development of diseases such as cancer, (Stewart et al., 2005). However, methylation

patterns pose difficulties in understanding cancer mechanisms. Predicting the methy-

lation patterns in cancer is thus clearly a non-trivial step because cancer is a complex

disease that is highly heterogeneous among patients. For the successful treatment and

eradication of this disease, experts suggest that an individualised therapeutic strategy

is needed that can identify both genetic and epigenetic defects, (Marte et al., 2008).

2.2.1 DNA Methylation in Normal Cells

DNA methylation occurs at the Cytosine bases of DNA after which the Cytosine din-

ucleotide is converted to 5-methylcytosine by the activity of DNA methyltransferase

(DNMTs) enzymes, (Tajima and Suetake, 1998). During methylation, a methyl group

is attached to the DNA. For example, in the Cytosine pyrimidine ring, the methyl

group is attached to the number 5’ carbon, which has the specific effect of reducing the

expression of all genes in the sequence or fragment, as illustrated in Figure(2.2). This

modification is transient and does not alter the original DNA sequence through inher-

itance and subsequent removal, (Clark et al., 1995). Such modifications characterise

an epigenetic mechanism and are part of the epigenetic code (the DNA methylation

pattern).

2.2.1.1 DNA Methylation and Gene Regulation

In recent decades, it has been found that DNA methylation plays a crucial role in gene

repression by blocking promoters. The exact role of DNA methylation in gene expres-

sion is still unknown, but it has been hypothesised that DNA methylation impacts

cell differentiation and embryonic development, (Suzuki and Bird, 2008). The main

properties in DNA methylation include:

11
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Figure 2.2: Methylation at Cytosine ring. Here C, carbon; H, hydrogen; NH, NH2, Amino
group; CH3, methyl group; TF, transcription factor; O, oxygen, and 5’ is the
backbone direction (sugar base) for DNA, MBD is the DNA binding protein.
The net effect of the methylation process is to turn off the formerly activated
gene by attachment of methyl group and gene can not be expressed.

• Specific effects on reducing gene expression. In general, about 60-90% of all CpG

sites are methylated, (Tucker, 2001). Unmethylated CpGs, which are grouped

and are known as “CpG islands”, are present in the 5’ regulatory regions of many

genes.

• In cancer, CpG islands in a gene’s promoter acquire abnormal hypermethylation

(as presented in our model), resulting in heritable gene silencing.

• DNA methylation may impact the transcription of a gene in two ways: (i) through

direct inhibition by transcription factors, and (ii), through indirect binding of

MBD proteins; further details are provided in Section (2.2.2).
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The most widely accepted hypothesis, however, is that DNA methylation facilitates

the control of gene expression during development and cell differentiation, (Razin and

Cedar, 1991). As described in recent research, (Herman and Baylin, 2003; Miller and

Sweatt, 2007) it has been described that the long term memory storage in humans

may be regulated by DNA methylation. However, in normal tissue, the methylation of

particular subgroups of CpG island promoters can be detected. Promoter CpG islands

undergo abnormal hypermethylation in diseases such as cancer, which may result in

heritable transcriptional silencing, (Bird, 2002; Xue et al., 2009). Impacts on gene

transcription due to DNA methylation may occur in two different ways:

1. The binding of transcriptional proteins to the gene may be physically impeded

by DNA methylation itself, (Ordway et al., 2004).

2. More importantly, methyl-CpG-binding domain proteins (MBDs) may bind to

methylated DNA, (Ng et al., 2000).

After this binding, MBDs recruit more proteins to the locus such as histone deacetylases

and other chromatin remodelling proteins. These additional proteins may modify the

histone, thereby forming “silent chromatin”, which is compact and inactive, (Ng et al.,

2000; Hendrich and Bird, 1998). The link between DNA methylation and chromatin is

inherently important in cancer; for example, the loss of methyl-CpG-binding protein

2 (MeCP2) has been implicated in Rett syndrome, (Jones et al., 1998). Similarly, the

transcriptional silencing of hypermethylated genes in cancer is mediated by methyl-

CpG binding domain protein2 (MDB2), (Singal and Ginder, 1999). DNA methylation

modification patterns are established and maintained by DNA methyltransferases (DN-

MTs). There are a number of processes associated with DNA methylation, including
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imprinting and X-chromosome inactivation, (Yasukochia et al., 2010). Thus, DNA

methylation is essential for the normal development of the cell. The following sections

discuss the role of DNMTs in DNA methylation.

2.2.1.2 DNA Methyltransferases (DNMTs) in DNA Methylation Mecha-

nisms

DNA methyltransferases are enzymes that catalyse DNA methylation, i.e., de−novo

methylation and the maintenance of methylation, as shown in Figure(2.3). Their family

encompasses the enzymes DNMT1, DNMT2, DNMT3A and DNMT3B. These enzymes

are divided into two categories, (i) maintenance (DNMT1 and DNMT2) and (ii) de-

novo (DNMT3A and DNMT3B) methyltransferases, (Doerfler et al., 2006). After

replication, DNMT1 binds methyl groups to hemimethylated14 DNA, as illustrated in

Figure (2.3). DNMT3A and DNMT3B attach methyl groups to CpG dinucleotides

of unmethylated DNA, as also shown in Figure (2.3). The formation of established

methylation patterns in promoters and in the first exons15 of human genomic DNA

are executed by DNMT1, DNMT3A and DNMT3B. The patterns of DNA methylation

are highly conserved in somatic cells16 and are maintained during cell division by

the methylation maintenance enzyme DNMT1, (Das and Singal, 2004; Momparler,

2003). These patterns of methylation are disrupted in major human diseases, such

as imprinting disorders and cancer, (Jones and Liang, 2009), hence the importance

of understanding how these patterns are established and maintained. It is generally

believed that embryonic development and faithfully inherited methylation patterns are

14 Double strand DNA where only one of the two strands is methylated. Important for regulating
and protecting DNA.

15Active part of the DNA for transcription.
16Somatic cell (diploid) is any cells forming the body of an organism.
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Figure 2.3: De−novo and maintenance methylation activity during replication. (A) Here,
DNMT3 adds methyl group on unmethylated CpG sites, (B) After replication
DNMT1 adds the methyl group to the hemimethylated CpG sites. Blocked circle
and open circles methylated and unmethylated dinucleotides respectively.

established in somatic cells by a maintenance mechanism. As a component of the DNA

replication complex, DNMT1 maintains DNA methylation by adding a methyl group to

the 5’-position of the cytosine ring within the CpG dinucleotides of newly synthesised

DNA strands. In genomic DNA, DNMT3A and DNMT3B establish new methylation

patterns, (Brown and Strathdee, 2002; Das and Singal, 2004).

2.2.2 DNA Methylation and Cancer

Alterations in DNA Methylation, observed in cancer initiation during the past few

decades, (Jiang et al., 2004; Kim et al., 2010), have attributed the role of methylation

marker patterns to three things:

• Mutations at CpG dinucleotides involved in DNA hypomethylation and in the

generation of oncogenic point mutations.
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• The epigenetic silencing of tumour suppressor genes by DNA hypermethylation.

• The utilisation of experimental data in the study of DNA methylation patterns.

Aberrant patterns of DNA methylation may cause “incorrect” gene expression of cer-

tain genes, and in cancer, aberrant methylation, as well as both hypomethylation and

hypermethylation, have been observed. DNA methylation is also influenced by histone

modifications, (Singal and Ginder, 1999). The following sections briefly discuss the

roles of DNA hypermethylation and hypomethylation in cancer development.

2.2.2.1 DNA Hypermethylation

DNA hypermethylation is the regional methylation of gene promoters in CpG islands

that are normally unmethylated. This regional methylation of CpG islands is found in

tumour suppressor genes in cancer. Some studies have found that regional hyperme-

thylation in the promoter region of the RB17 gene can reduce its expression by up to

8%, (Ohtani-Fujita et al., 1993). Consequently, cancer occurs due to aberrant methy-

lation of the promoter regions of tumour suppressor genes (TSGs) that is linked to a

loss of gene activity. These gene changes constitute a heritable state, not mediated by

altered DNA sequence, that appears to be tightly linked to the formation of transcrip-

tionally active chromatin18. All three methyltransferase enzymes (DNMT1, DNMT3A

and DNMT3B) are overexpressed in human tumours, although only at moderate levels,

(Rodenhiser and Mann, 2006). DNA methylation was the first epigenetic alteration

to be observed in cancer cells, (Jiang et al., 2004). Hypermethylation of CpG islands

in a tumour suppressor gene switches the gene off. Abnormal methylation in the cell

17RB stand for ‘Retinoblastoma’ and is involved in cell division maintenance.
18Active for gene expression.
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can lead to the hypermethylated state and is therefore most likely involved in car-

cinogenesis, (Houshdaran et al., 2010). Two types of mechanisms are responsible for

transcriptional repression via DNA methylation.

1. Methylation directly inhibits the binding of transcription factors at CpG dinu-

cleotides present within the TF binding site (transcription factors), and these are

sensitive to methylation, (Christensen et al., 2009). Figure (2.4) shows the direct

impact of methylation by DNMT on a gene promoter in both a normal cell and

a tumour cell.

2. Proteins specific for m5CpG dinucleotides bind to methylated DNA, which re-

cruits m5CpG-binding (MeCP2) and MBD proteins, (Fatemi and Wade, 2006).

Figure (2.5) illustrates transcriptional repression by MeCP-2 proteins.

Figure 2.4: Direct Effects of DNA Methylation. Filled circle indicates methylated DNA.

MeCP1 and MeCP2 create steric obstacles by binding specifically to methylated DNA

throughout the whole genome to disable the binding of TFs to promoter sequences.
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The transcription of specific genes is repressed by MeCP1, and single methylated CpGs

in DNA strands are bound by MeCP2, (Hendrich and Bird, 1998). The proteins in

the MBD family are MBD1, MBD2, MBD3 and MBD4, and they are characterised by

Kaiso complexes, which bind to methylated DNA, (Baylin and Herman, 2000; Das and

Singal, 2004). The symmetrically methylated CpG dinucleotides are also bound by one

of the MBD proteins, which inhibits gene expression by blocking TF interactions with

the promoter, (Fujita et al., 2000). The MBD2 protein actively demethylates DNA in

vivo and may bind to methylated DNA (Ng et al., 2000; Szyf et al., 2004). MBD3 is

a component of the chromatin remodelling protein complex and, in association with

MBD2, targets methylated DNA, (Ballestar et al., 2003). MBD4 is a Thymine and

Uracil glycosylase involved in the repair of DNA mismatches formed during Cytosine

and methylcytosine deamination, (Fujita et al., 2003; Hendrich et al., 1999).

2.2.2.2 DNA Hypomethylation

Hypomethylation is a process that reduces the methylation level of proto-oncogenes

in the cell. Some studies have found that, in a large variety of hypomethylated tu-

mour samples, the changes in the cell are not only correlated with altered methylation

patterns but also with increased tumour progression, (Feinberg and Tycko, 2004). Con-

sequently, particular DNA hypomethylations are linked to cancer initiation. Tumour

cells also exhibit hypomethylation of CpG dinucleotides in various DNA regions that

are responsible for increased gene expression, invasion and metastasis of cancer cells.

Tumour cells display global DNA hypomethylation. Global hypomethylation leads to

genomic instability and inappropriate activation of proto−oncogenes and transposable

elements, (Feinberg, 2007). It appears that genomic DNA methylation levels, which
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Figure 2.5: Transcriptional repression by MeCpG binding Proteins. (A) Active state of DNA
for the transcription; (B) Inactive state of the DNA by binding of the MeCP-1
and MBD proteins in to methylated DNA; (C) Inactive state of DNA by binding
of MeCP-2 and MBD proteins. Filled circles indicate methylated and unfilled
circles unmethylated CpG dinucleotides.

are maintained by DNMT enzymes, are directly balanced within cells; the overexpres-

sion of DNMTs is linked to cancer in humans, (Feinberg and Tycko, 2004; Rodenhiser

and Mann, 2006). In numerous cells, global hypomethylation has been observed that

is responsible for the overexpression of proto-oncogenes, growth factors and genes in-

volved in cancer cell proliferation, invasion and metastasis via their protein products,

(Szyf et al., 2004). In some medical examples related to malignant cell metastasis and

invasiveness, the most common protease is the PLAU (urokinase type plasminogen)

enzyme, which is expressed in many cancers such as breast and prostate cancer, (Pak-

neshan et al., 2004, 2005). The precise roles of global DNA methylation (hypomethyla-

tion of CpG dinucleotides) in malignant cells remain unclear. Research indicates that

one reason may be the complete or partial deficiency of numerous enzymes involved in
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methyl transport at the cellular level, (Steele et al., 2005).

2.2.3 DNA Methylation and Cancer Therapy

Currently, scientists are studying the connections between methylation abnormalities,

gene expression and silencing, and various diseases such as cancer, (Robertson and

Jones, 2000). The result of these studies will be invaluable for treating these diseases,

as well as for understanding and preventing complications of treatment of cancer. For

example, in cancer treatment, two types of DNMT inhibitors are used:

• The nucleoside analogue 5-Aza-2 deoxycytidine (5-Aza-CdR), which is incorpo-

rated into DNA and inactivates DNMTs, (Yoo and Jones, 2004).

• Antisense oligonucleotides that induce the degradation of DNMT1 mRNA and

inhibit enzyme biosynthesis, (Yoo and Jones, 2004).

The reversibility of epigenetic changes is the key target in cancer therapy, (Cooney

et al., 2002; Klisovic et al., 2008). DNMT inhibitors are drugs that change gene ac-

tivity, and they include 5-Azacytidine (5-Aza-CR), 5-AzaCdR and 1-D ribofuranasyl-

2(1H)-pyrimidinone (Zebularine), (Laird, 2005; Yoo and Jones, 2004). Furthermore,

these enzymes induce the demethylation of the promoters of TSGs such as CDKN2A19,

RB120, MLH121 in cancer cells, (Yoo and Jones, 2004; Robertson and Jones, 2000). To

correct silent gene expression patterns and revert cells back to more normal functions,

DNMT inhibitors, such as 5-Aza-CR and 5-Aza-CdR, are used. It seems likely that

19Cyclin-dependent kinase inhibitor gene is multiple tumour suppressor, other name of this gene is
p14; p19; p16,p16INK4A, p14ARF.

20RB1’,retinoblastoma (RB) gene, involved to maintain cell divisions.
21It is DNA mismatch repair gene and protein is Mlh1, COCA2; FCC2; HNPCC; HNPCC2;

MGC5172; hMLH1.
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cancer diagnosis based on epigenetics, together with cancer therapies, will create pos-

sibilities in the future treatment.

2.3 Epigenomic Analysis

DNA methylation and histone modifications are studied in the epigenome. Here,

we describe epigenomic analytical techniques that are essential to predicting epige-

netic states. Epigenetic research utilises powerful experimental techniques to analyse

DNA methylation. Some of these include: bisulphate modification associated with

polymerase-chain-reaction and chromatin immunoprecipitation (ChIP), (Herman et al.,

1996). Epigenomic techniques generally describe the epigenomes of human diseases by

calculating the frequencies of different stages of DNA methylation, (Ballestar et al.,

2003; Esteller, 2007).

2.3.1 Epigenomic Mapping Techniques

Three techniques that convert raw epigenetic data into a readable form are elucidated

in Figure (2.6). These techniques are used to generate large amounts of epigenetic data,

and they provide an efficient way to analyse epigenetic information in the genome. All

three techniques are designed for genome-wide mapping and for acquiring epigenetic

data in three stages:

1. Epigenetic information is converted to genetic information.

2. Then, genetic engineering techniques, such as tiling microarrays, are used to

obtain DNA sequences.

3. Finally, computational algorithms are used to generalise the epigenetic informa-
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tion from the DNA sequences.

Figure 2.6: Methods of epigenomic mapping

The main goal of the techniques defined above is to map epigenetic information on a

genome-wide scale. In some cases, researchers want to know whether the frequency

of methylation in regions of the genome differs between different cell types or patient

populations, (Baker, 2010). Brief details on the three epigenomic mapping techniques

illustrated in Figure (2.6), are provided in the following two subsections.

2.3.1.1 ChIP and ChIP− seq Techniques

The objective of the ChIP (or ChIP−on−chip) technique is to use chromatin immuno-

precipitation (ChIP) to find differences between normal and modified DNA. The main

goal of ChIP is to locate protein binding sites that identify functional elements in

the genome. Chromatin is extracted from DNA and protein and is fragmented into

500 base pair lengths. ChIP-seq is a variant of ChIP-on-chip that uses for the whole

genome. The advantages of ChIP-seq technique is:

• Less data normalisation.

• That sequencing results are given in complete counts compared to hybridisation

scores in ChIP−on−ChIP.

• That sequencing synthesis methods are highly cost-efficient.
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2.3.1.2 Bisulphite sequencing

Another technique for the analysis of methylation is bisulphite sequencing. In bisul-

phite sequencing, bisulphite22 converts methylated Cytosines into methylation-dependent

SNPs23. The advantage of bisulphite sequencing is that DNA methylation patterns are

detected in a single cell.

2.3.2 Epigenome Analysis Projects:

A number of projects have been established to try to manage large-scale epigenetic data

and to develop tools for analysing the data. Six of the well-known epigenome mapping

projects are illustrated in Figure (2.7), and a brief description of their objectives is

provided below.

Figure 2.7: Schematic Diagram of Epigenome Mapping Projects

• The plan of the ‘AHEAD’ (Alliance for Human Epigenomics and Disease) project

is to ‘genomicise’ epigenomics research and pave the way for breakthroughs in

the prevention, diagnosis and treatment of human disease, (Jones, 2008). It coor-

dinates with the human epigenome mapping project, (American Association for

22Bisulfite is an ion; (hydrogen sulfite of HSO3-). Salts containing the HSO3- ion are termed
bisulfites also known as sulfite lyes.

23A single-nucleotide polymorphism (SNP) is a DNA sequence variation occurring when a single
nucleotide A, T, C, or G in the genome. For example, two sequenced DNA fragments from different
individuals, AAGCCTA to AAGCTTA, contain a difference in a single nucleotide. In this case we say
that there are two alleles: C and T.
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Cancer Research Human Epigenome Task Force and European Union, Network

of Excellence, Scientific Advisory Board, 2008) and focuses on determining the

epigenetic status of the cell.

• The ‘ENCODE’ (ENCyclopedia Of DNA Elements) project is an example of a

close collaboration between experimental and computational biologists. The aim

of this project is to functionally map the genome and identify key epigenetic

questions, (Consortium, 2004).

• The ‘HEP’ (Human Epigenome project) focuses on high resolution epigenome

analysis of multiple individuals. Current contributors to this project are ‘The

Wellcome Trust Sanger Institute’ (UK), ‘Epigenomics AG’ (U.S.A., Bosten and

Berlin) and the ‘Centre National de Genotypage’, (France), (Bradbury, 2003).

• ‘HEROIC’ (High-throughput Epigenetic Regulatory Organisation In Chromatin)

is an integrated project of the ‘European Commission. The main goals of this

project are to understand the regulation of the whole human genome through

analysis of ChIP−on ChIP− data and chromosome interactions. Time period of

this project is 2005-11-01 - 2010-02-28.

• The Broad Institute of MIT and Harvard uses ChIP−seq data and maps genome-

wide maps of mouse stem cells, to analyse the massive amounts of genome-related

data that are being generated by scientists at the Broad Institute and around

the world, (Mikkelsen et al., 2007). Currently, a wide range of critical biomedical

projects24 are in progress at this institute, such as genome mapping projects.

24 Available at http://www.broadinstitute.org/science/projects/projects.
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• The National Heart, Blood and Lung Institute of the National Institutes of Health

(NHLBI) (USA) also uses ChIP−seq data to analyse the genome-wide chromatin

status of human T-cells. The institute has three strategic branches structured to

link, as indicated, successive stages of scientific discovery, (Barski et al., 2007).

These are denoted as the following:

– Form to function,

– Function to causes

– Cause to cures.

• Another project in this series is the “AACR Human Epigenome Task”, (Jones

and Martienssen, 2005). The main goals of this project are to finalise the number

of epigenomes, to define histone modifications on the basis of epigenetic markers

and to characterise pathological states such as cancer.

2.3.3 Epigenome Databases

The development of multiple epigenomic analytical techniques, including high-throughput

assays, has resulted in datasets of increasing complexity and diversity. Here, we talk

about the most important DNA methylation databases. DNA methylation data are

useful for studying the covalent modification of the genome. A number of online epi-

genetics databases are available, and they contain information on DNA methylation

frequencies for different tissues, cells and phenotypes, as illustrated in Table (2.1).

All of these databases are available online and URL addresses are given in appendix

(A). Important sources for methylation databases are MethDB, PubMeth, MeInfoText,

methprimerDB and PathEpigen. These contain information on DNA methylation pat-
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Database Number and Records Country Year

MethDB 19,905 DNA methylation content data
and 5,382 methylation patterns for 48
species, 1,511 individuals, 198 tissues and
cell lines and 79 phenotypes

Germany 2006

MeInfoText Gene methylation information across 205
human cancer types.

Taiwan 2006

PubMeth 5,000 records on methylated genes in var-
ious cancer types.

Belgium 2007

REBASE 22,000 DNA methyltransferases genes de-
rived from GenBank.

New England 2005

MethPrimerDB 259 primer sets from human, mouse and
rat for DNA methylation analysis.

Belgium 2003

The Histone Database 254 sequences from histone H1, 383 from
histone H2, 311 from histone H2B, 1043
from histone H3 and 198 from histone
H4, altogether representing at least 857
species.

USA 2007

ChromDB 9,341 chromatin-associated proteins, in-
cluding RNAi-associated proteins, for a
broad range of organisms.

AZ USA 2005

CREMOFAC 1725 redundant and 720 non-redundant
chromatin-remodeling factor sequences in
eukaryotes.

India 2009

KFEL* DNA methylation data of human chromo-
somes 21, 22, male germ cells and DNA
methylation profiles in monozygotic and
dizygotic twins.

Canada 2003

MethyLogiX DNA methylation data of human chro-
mosomes 21 and 22, male germ cells.

Germany 2006

PathEpigen 5,500 genetic and epigenetic events. Ireland 2009

Table 2.1: DNA methylation databases. *KFEL (The Krembil Family Epigenetics Labora-
tory) is a PAHO/WHO Collaborating Centre and fully affiliated with the Univer-
sity of Toronto.
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terns across different species, tissues, cell types and phenotypes. The Pubmeth and

PathEpigen databases contain information on the gene methylation profiles of specific

cancer types. Our model frequencies are based on PubMeth (Belgium) and PathEpigen

(Ireland). More details about these databases are presented in Chapter (3). Recently

(Bock, 2008), the BiQ Analyzer software was developed to simplify methylation data

analysis and to help visualise the resulting output. BiQ Analyzer facilitates the visu-

alisation and quality control of DNA methylation data from bisulphite sequencingand

presents a bioinformatic analysis of the National Methylome Project for the Chro-

mosome 21 dataset, (Bock, 2008). Finally, large-scale data present clear epigenetic

modifications in the genome, but it remains a significant challenge in computational

epigenetics to find genomic and epigenomic activities, which are two prominent inde-

pendent systems for identifying patterns related to inheritance.

2.4 Computational Epigenetics

Current research in computational epigenetics aims to analyse the available data related

to cancer and to generate models to facilitate better treatment for this complex disease.

2.4.1 Evaluation

The role of computational epigenetics lies in the development and application of bioin-

formatic methods for solving epigenetic questions as well as in computational modelling

and data analysis, (Bock, 2008; Perrin et al., 2008; Raghavan et al., 2010). The key

things to epigenetics study are include individual or aggregated histone changes or the

epigenomic (overall) picture, or how computation is going to help in this. One possi-

ble way is that it can handle the different dynamics of histone modification and DNA

27



2.4. Computational Epigenetics Chapter 2. A Survey of Epigenetics

methylation changes they are very different wit the latter being more stable and the for-

mer showing cumulative effects over much shorter time periods. While complex to han-

dle experimentally, both can be incorporated in a computational approach. In general,

DNA sequences are invariant across tissues, but epigenetic marks show tissue-specific

variations, (Jones and Liang, 2009). New paradigms, (such as epigenome mapping

tools), have been designed to study complex diseases such as cancer, and computa-

tional methods have played an important role in interpreting epigenomic information.

Examples (Bock et al., 2006) include comparing methylation patterns between can-

cer and normal tissues, (brain and blood), and predicting the preferential locations of

epigenetic modifications.

2.4.2 Scope

Computational epigenetics combines elements of emerging fields such as, population ge-

netics, evolutionary genetics, medical epigenetics, theoretical modelling, pattern recog-

nition and computational biology. Modelling provides a new dimension in epigenetic

research. For example, Genereux et al. (2005) and Siegmund et al. (2008) have de-

veloped a model for methylation mechanisms from gene expression profiles of a large

heterogeneous cell population. Furthermore, Perrin and Ruskin (2010) analysed aber-

rant methylation pattens of the H. Pylori25 infection for gastric cancer and Raghavan

et al. (2010) used a stochastic approach to analysis of histone modification during tran-

scription. The direct benefits of producing an accurate model for DNA methylation

patterns and other features include a reduction in the number of experiments and the

minimisation of the costs associated with them as well as a the establishment of a gen-

25Helicobacter pylori (H. pylori) is the bacteria and spread stomach inflammation such as ulcers.
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eral framework for exploring a number of possible changes simultaneously. This can

be achieved through computational investigations. Hence, based on simple initial pa-

rameter choices, dependent parameters of methylation mechanisms can be derived and

their evolution montored, by simulating e.g. the dynamics of the methylation activ-

ity of methyltransferase expression in different cancer cells, (Fraga and Esteller, 2007;

Jiang et al., 2004). Initial and derived values form the inputs to sensitivity analyses,

which enable assessment of the robustness of different outcomes to initial parameter

values. These parameters may be specific to a particular cancer type and vary for

other cancer types, (Boyer et al., 2005). Thus, theoretical modelling can provide an in

depth and quantitative understanding of epigenetic mechanisms. In medical epigenet-

ics, such models can explore the role of epigenetic mechanisms in complex diseases, such

as cancer, mental disorders and autoimmune diseases, (Brown and Strathdee, 2002).

In addition, computational epigenetic modelling, in general, can lead to a better scien-

tific understanding of the behaviour of many biological systems and can guide further

experimentation. In recent decades, studies have shown e.g. that cooperative protein

activity is required to maintain epigenetic states at the molecular level, (Cowley and

Atchley, 1992; Sagal et al., 2001) and (Dodd et al., 2007; Reik, 2007). A key require-

ment is to understand methylation patterns in cancer progression and their affect on

cell status, (Jones and Martienssen, 2005) and analysis of such patterns is an ongoing

challenge, (Raghavan and Ruskin (2011)- private communication).

2.4.3 Challenges

Although dramatic progress has been made over the last few years, (Delcuve et al.,

2009), DNA methylation for cancer detection remains, by and large, an ‘academic ex-
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ercise’. For example, there is an urgent need for an informative set of targets and for

knowledge of how DNA methylation is altered to specify cancerous states. A number

of genome-wide approaches have been developed, (Beck and Rakyan, 2008; Illingworth

et al., 2008) to identify DNA methylation biomarkers for various types of cancer. How-

ever, the clinical validation of each candidate target with respect to both specificity

and sensitivity is a slow and tedious process not to mention the difficulty of collect-

ing a good cohort of clinical samples. Furthermore, effective recovery of DNA from

bodily fluids (plasma DNA in particular) is essential for the successful use of DNA

methylation profiling for early detection and disease outcome prediction. Finally, as-

say development for a faithful set of target genes tailored to clinical oncology demands

extra resources and skills, which are simply lacking in the majority of research labs in

both academic and clinical institutions. In this regard, the main challenges are:

1. Understanding the molecular mechanisms by which DNA methylation patterns

are regulated because the DNMT126 and DNMT327 families of methyltransferases

do not appear to have any sequence specificity beyond CpG dinucleotides, (Dodge

et al., 2002).

2. Interpreting chromatin-based mechanisms: proposed to explain how DNA methyl-

transferases find their target sequences in the genome, (Bird, 2002).

Inevitably, a further major challenge for computational epigenetics is to generate ap-

propriate data and to manage epigenomic databases, which can help build theoretical

models. The main challenges here are:

26DNMT1 is the most abundant DNA methyltransferase in mammalian cells, and considered to be
the key maintenance methyltransferase in mammals.

27DNMT3 is a family of DNA methyltransferases that could methylate hemimethylated and un-
methylated CpG at the same rate.

30



2.4. Computational Epigenetics Chapter 2. A Survey of Epigenetics

1. The generation of experimental data, together with epigenomic data analysis ,

(Bock, 2008).

2. Epigenome mapping in different genomic and epigenomic regions for different

individuals, (Jones, 2008).

3. Understanding the dynamics of epigenetic mechanisms to develop theoretical and

empirical models, (Reik, 2007).

4. Reducing the cost of epigenomic mapping tools (software as well as wet-lab costs),

so that different species can be analysed.

5. Data visualisation; for an example of web browsers available for the statistical

analysis of epigenomic data, see Galaxy (http://bitbucket.org/galaxy).

2.4.4 Model Considerations

For modelling, processes are classified with respect to a set of criteria. Some consider-

ations include:

2.4.4.1 Top-Down vs. Bottom-Up

For any system specified in abstract terms, there are two types of modelling approaches:

(i) top-down and (ii) bottom-up. Top-down modelling is formal equation-based mod-

elling that formulates and specifies an overview of the system. By contrast, bottom-up

modelling is based on the individual elements of the system, which are first specified in

great detail, in terms of their onherent characteristics and the ways in which they can

interact with other elements. System elements are then linked together to form larger

subsystems, which then in turn are linked, sometimes at many levels, until a complete
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top-level system is formed when, in theory, the system of equations should effectively

aggregate or complete the local information to give a larger picture, (Szallasi et al.,

2010).

2.4.4.2 Ab-Initio vs Template or Empirical Modelling

Ab-initio is also known as fundamental (or first principles) modelling, and it is based

on what is known and what can be assumed about the components of a given system.

People use this approach to make predictions about biological features. Example in-

clude (i) Molecular Dynamics, which tries to specify each component and the forces

and interactions, which affect it, in order to determine electronic structure, (Tuck-

erman et al., 1996) (ii) Monte Carlo, used for many-body problems, which are too

complex to allow for individual elements to be modelled, so a sampling technique is

used to solve either the direct or indirect (substitute) problem from what is known

/can be assumed about the ‘particles’ statistical behaviour, (Riley et al., 1995) (iii)

Markov model variants, which exploit the Markov property to determine departure

from random occupation of possible ‘states’ for system elements and many others. The

Hidden Markov model, for example, which incorporates features of both ab-initio and

template modelling, is widely-used to explore patterns in biological sequences, (Yoon,

2009; Krogh et al., 1994). The template or empirical model is typically developed from

actual data, as the name suggests, and centres on the concepts of observation, depen-

dency and agency, (Demin and Goryanin, 2008), with the objective in broad terms of

finding close or distant matches.
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2.4.4.3 Deterministic vs. Stochastic Modelling

A deterministic model is one in which every set of variable states is uniquely deter-

mined by model parameters and by sets of the previous of these variables, e.g., (A +

B = C). Consequently, deterministic models perform the same way for a given set of

initial conditions. Conversely, in a stochastic model, randomness is present, and vari-

able states are not described by unique values but rather by probability distributions,

(Wilkinson, 2006).

2.4.4.4 Parameterisation/Estimation

Parameterisation is the process of deciding and defining and/or deriving the parameters

(or variables) necessary for the relevant specification of a model. Estimation is a pro-

cess typically used to find the upper or lower bounds of a quantity that can not readily

be computed precisely. Mostly, formal parameterisation is based on, e.g., known mech-

anisms or system values (in metamathematical terms), as well as on assumptions that

can be made about the model’s elements. With parameter values can be either assigned

or estimated (based on actual data). The level at which these can be estimated from

the data, i.e., whether at the system or unit level, can influence whether a top-down

or bottom-up approach is chosen. This choice also influences the questions that can

be addressed and how the information can be used for the system, (Wilkinson, 2006).

The model focus, discussed in this thesis, together with the corresponding parameter-

isation work on PathEpigen, is deterministic and bottom-up: we used a Deterministic

Finite Automata (DFA) machine for the simulation of methylation dynamics and this

is described in Chapter (3).
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2.5 Summary

The precise mechanisms underlying epigenetic patterns, such as DNA methylation, are

still unknown, but information is accumulating. One important question in molecu-

lar genetics is: what patterns of DNA methylation are observed during normal and

cancer cell divisions? Recent studies have shown that remarkable changes in DNA

methylation in tumour suppresser genes promote the initiation of cancer development,

(Teng et al., 2011). DNA methylation patterns in cell populations are diverse in can-

cers, but the last few decades have seen broad acceptance of the role of methylation.

Some medical experimental examples have shown individually that a number of fea-

tures, such as mutations at CpG dinucleotides, are involved in DNA hypomethylation

and the generation of oncogenic point mutations, and these contribute to methylation

change. A significant ongoing challenge is, clearly, to identify methylation patterns

for all cancer stages. There is an urgent need for an informative set of targets and

knowledge of how DNA methylation is altered to specify cancerous states, (Jones and

Liang, 2009). Given that methylation patterns are highly heterogeneous among pa-

tients, computational modelling (which can exploit available experimental data and

build on this through sensitivity analyses) is a good method for analysing and predict-

ing the methylation patterns in different cancer cell types. Computational epigenetics

thus uses bioinformatics knowledge and modelling methods and assumptions to comple-

ment experimental research. In recent research, on epigenomic datasets, computational

methods are playing an increasingly important role in all areas of epigenetic research.

Nevertheless, a detailed molecular description of epigenetic modifications and gene reg-

ulation does not yet exist, (Artyomov et al., 2010). We have outlined several possible
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modelling approaches, which are being employed to address this lack. Further, it is

known that DNA methylation patterns in cancer tissues generally display more varia-

tion than those of normal tissues, so that computational modelling also have a role in

the design and implementation new databases. As these resources develop, they are

expected to greatly facilitate template model determination as well as parameterisation

of ab-initio models in computational studies of epigenetics. Different aspects of epige-

netic modifications at the cellular level can be explored using one or more modelling

approaches and should lead to increased understanding of the complexity of molecular

mechanisms, such as DNA methylation. A deterministic model for DNA methylation

dynamics is discussed in the next chapter.
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Chapter 3

A Deterministic Finite Automata (DFA)

Model of DNA Methylation Dynamics

In this chapter we present a simple, prototype deterministic model of methylation

dynamics for the promoter region of the MGMT (Methyl Guanine Methyl Trans-

ferase) gene. We briefly describe the epigenetic modelling methods, which are strongly

empirically-based. A subsequent section describes the parameterisation for MGMT and

methylation, gathered from the reported literature. The dynamics of DNA methylation

with respect to the methyltransferase concentration patterns, is then discussed and we

present an initial DFA model of DNA methylation and evaluate it based on random

strings. These random string represents changing value of the DNA methyltransferase

concentration.
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3.1 Introduction

3.1.1 The Deterministic Finite Automata (DFA)

A Deterministic Finite Automata (DFA) is finite state machine accepting strings of

symbols over some alphabet Σ. For each state, there is a transition arrow leading out

to a next state for each symbol in the alphabet. The language L is simply a subset

of Σ⋆ i.e, a set of strings over Σ. Languages accepted by DFA are known as regular

language. Formally, a DFA is a five tuple system (Q, Σ, δ, q0, F), consisting of

1. a finite set of states (Q)

2. a finite set of input symbols called the alphabet (Σ)

3. a transition function (δ : Q × Σ → Q)

4. a start state (q0 ∈ Q)

5. a set of accept states (F⊆ Q)

The DFA is a simple ‘machine’ driver and has been used extensively in providing logic

to vending machines for example. We describe a DFA by its transition function δ

using a table of states and input symbols with an arrow for a start state and a star

(asterisk) for an end state (for example, see Table [(3.7 and 3.8)]). In this chapter we

model the DNA methylation dynamics using the DFA.

3.2 Epigenetic Micro-modelling

Epigenetic modelling is concerned with developing a framework for answering epige-

netic questions. In particular, at the “micro” level, we seek to formulate expressions
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that represent the relationships among key entities and that describe how these work

and are influenced by internal and external conditions. For example, a basic question

is how different measurable factors affect the way in which epigenetic mechanisms are

involved in cancer initiation. Modelling can help to explain how high-level changes

occur and how these affect low-level changes, (Dodd et al., 2007). Thus, just some

of the challenges include modelling the interactions between phenotypic and environ-

mental factors and modelling the transfer of heritable traits in different cells by known

epigenetic mechanisms. The advantage of a computational approach to epigenetics is

that this may be used in conjunction with quantitative data to test possible solutions.

Here, we present an overview of epigenetic models:

• A study done by Cowley and Atchley (1992) presents a multivariate quantita-

tive genetic model of epigenetic and maternal effects1. The model explains how

genetic correlations can arise through epigenetic effects.

• Haslberger et al. (2006) presented the interaction between genetic and epigenetic

mechanisms in cancer development and observed the interaction between the

genome and the environment. This biomedical concept includes environmental

health aspects regarding epigenetic and genetic modifications.

• Das et al. (2006) wrote a program (called HDFINDER) that predicts the methy-

lation landscape in human brain DNA for all 22 autosomes2.

• A useful approach for DNA methylation analysis was provided by Houseman

1This is a specific effect not just an effect. In terms of heritability the phenotype of an organism is
determined not only by the environment it experiences and its genotype, but also by the environment
and phenotype of its mother.

2An autosome is a chromosome that is not a sex chromosome i.e. an equal number of copies of the
chromosome in males and females.
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et al. (2008). It is a “beta mixture model”3 that uses a “recursive-partitioning

algorithm”4 for normal and ageing tissues.

• Artyomov et al. (2010) developed a computational model of epigenetic and genetic

regulatory networks for pluripotent cells5. They determined how cellular identity

is maintained and transformed during cell division. This study provides some

experimental predictions from the model for understanding the maintenance and

transformation of cellular identity.

• Raghavan et al. (2010) used a stochastic approach to DNA methylation and

transcription with a contribution of histone modifications.

• Perrin and Ruskin (2010) presents a model on aberrant DNA methylation for the

H. Pylori6 infection in gastric crypt7 and investigate the sensitivity of different

genes and cell types for the gastric cancer8.

• Recently, Ruskin and Perrin (2011) submitted a special report (private commu-

nication) on “Multi-scale modelling of epigenetic mechanisms” in Transactions

in Biomedical Engineering (IEEE).

The following section provides an overview of models of epigenetic mechanisms, such

as DNA methylation and chromatin remodelling.

3This approach to solve a variety of problems related to correlations of gene-expression levels.
4A algorithm for addressing the problem of decision tree construction.
5A stem cell that can give rise to more than one differentiated cell type.
6Helicobacter pylori (H. pylori) is the bacteria responsible for most ulcers and many cases of

stomach inflammation (chronic gastritis).
7These are gland cells in the stomach.
8Gastric cancer (or stomach cancer), develops in any part of the stomach and may spread through-

out the stomach and to other organs such as the esophagus, lungs, lymph nodes, and the liver.
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3.2.1 Contextual Chromatin Modelling

Global studies of the epigenome have shown that certain histone modification vari-

ants and post-translational modifications9 are correlated with DNA methylation. For

example, trimethylation of H3 at lysine10 4 is associated with gene expression activ-

ity. Therefore, it is impacted by DNA methylation, (Rice and Allis, 2001). Mono-,

di- and tri- methylation of this histone inhibits gene expression, and this activity of

the gene impacts its nucleosomal conformation, (Takeshima et al., 2006; Okuwaki and

Verreault, 2004). It has been suggested that specific modifications, such as DNA and

histone methylation, change the nucleosomal conformation; therefore, gene expression

can be affected during replication, (Workman and Kingston, 1998). Subsequently, as

described above, statements regarding methylation maintenance activity may be more

complex than existing models. The available database suggests that some modifica-

tions are necessary for the existing models of DNA methylation activity. The first

epigenetic tool for quantifying chromatin states was provided by Bio-Rad Laborato-

ries [http://www.biorad.com/], the “EpiQ chromatin analysis kit. This kit provides

quantitative information about chromatin accessibility for gene expression.

3.2.2 DNA Methylation Modelling

As mentioned earlier in section (2.2.1.1), DNA methylation is an important epigenetic

modification that impacts gene expression. The aim of DNA methylation studies is to

understand how methylated and unmethylated cytosine residues are preserved through

cell division in different biological processes. In this context, the fundamental questions

9Modification of the proteins after translation process.
10An amino acid which directly affected by histone modification, therefore, modified lysine impacts

on gene expression.

40



3.2. Epigenetic Micro-modelling Chapter 3. The Model

of DNA methylation research are:

• How are methylation patterns maintained during replication at the cellular level,

(Jones and Liang, 2009)?

• How are patterns quantified with respect to de-novo and maintenance methyla-

tion activities, (Jair et al., 2006) and (Xie et al., 2011)?

Consequently, it is important to understand the regulation of methylation reactions

in regard to the enzymatic activity of DNMTs. Several studies have provided infor-

mation on the maintenance methylation mechanism involving DNMT activity during

replication, (Ordway and Curran, 2002), but they do not fit with the experimental

data. The original hypothesis from experimental evidence has been supported as to

the existence of both de-novo and maintenance DNMTs in the methylation process,

(Herman et al., 1996; Costello and Plass, 2001). Unfortunately, investigating DNA

methylation is challenging due to its transient nature. Computational methods for

DNA methylation are used to identify specific sets of methylated genes, and computa-

tional modelling provides insights into the role of DNA methylation pattern variations

among different tissues, (Yi and Goodisman, 2009). Computational methods such as

hidden Markov model profiling and the Multiple Motif Scanning program can be used

to analyse known methyltransferases and to predict new ones , (Petrossian and Clarke,

2009). The following section presents the pros and cons of established models of DNA

methylation.
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3.3 Established Models of DNA Methylation Dy-

namics

3.3.1 A Population-Epigenetic Model for DNA Methylation

Patterns:

Genereux et al. (2005) used a population epigenetic approach to understand methy-

lation dynamics during DNA replication for the FMR1 gene. This model calculates

site-specific rates of de-novo and maintenance methylation in cell populations. The

pros and cons of this model are as follows:

• The merits of this useful mathematical model are that it shows how methylated

and unmethylated CpG sites in the FMR1 gene are transmitted and how methy-

lation dynamics are maintained during DNA replication.

• The downside of this model is that it does not explain DNMT activity during

DNA replication.

3.3.2 DNA methylation modelling for cancer cell populations:

Siegmund et al. (2008) used a Bayesian computation method and observed DNA methy-

lation patterns for cancer under different evolutionary factors. The pros and cons of

this model are as follows:

• The benefits of the cancer cell population model is that Siegmund et al. (2008)

concludes that methylation patterns of human cancer are consistent with replica-

tion errors and the growth of certain simple cancers, and it provides a statistical
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analysis for the increased size of methylated tumours.

• The downside is that it does not explore the methylation dynamics in the cell

population.

3.3.3 How DNA methylation patterns are maintained:

Jones and Liang (2009) present a model for maintaining DNA methylation patterns

involving methyltransferases (DNMT1 and DNMT3A and DNMT3B). The model fo-

cuses on how DNMT1, DNMT3A and DNMT3B maintain methylation activity during

DNA replication. The pros and cons of this model are as follows:

• Advantage: it addresses DNA methylation maintenance by the activity of DN-

MTs during cell division.

• Disadvantage: it needs to address the quantification of DNMT levels during cell

division. It is important to check the error rate of methylation levels for gene

expression notification.

3.4 A New Baseline DFA Model of Methylation

Dynamics

As mentioned earlier, it is important to understand the quantitative influence of DN-

MTs on genes in different cancer cell types. In this context, we propose an early

stage model to elucidate how methylation activity is regulated by DNMTs for different

genes. The aim of our model is to derive DNA methylation patterns from the activities

of methyltransferases. The DFA model accepts random strings of DNMTs and predicts
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the methylation patterns of genes. In the simplest terms, such a model can be used in

conjunction with actual data to check the methylation status. In extended form, other

pathways can be included to examine hyper-, hypo- and de-novo methylated forms.

An advantage is that the “benchmarking” of the DFA model can be used to predict

the cancer stage from quantitative DNMT data without the need for experimentation.

3.4.1 Comparison of the Established Model with the DFA

Model

As described in sections (3.2.2 and 3.3), it is important to emphasise that DNMT1 and

DNMT3 quantification reflect de-novo and maintenance methylation levels. In this

context, our DFA model addresses the quantification of DNMT activity for different

methylation levels of a particular gene. We utilise a methylation dynamics language

that represents the up- and downregulation of DNMT expression. Goals of using

this method include finding the quantitative values of DNMTs and understanding the

methylation patterns of different genes. Subsequently, our DFA model also provides a

potential approach for quantifying methylation activities with respect to de-novo and

maintenance of methylation research, as mentioned in section (3.2.2). It is hardly the

whole answer, but rather describes a way of going about it i.e. an approach. In two

useful studies (Jones and Liang, 2009; Jair et al., 2006) on DNMT activity, a DFA

model is used also to address the problem of DNMT quantification. Our DFA model

is used to quantitate DNMTs at different methylation stages. It facilitates the analysis

of methylation levels, as previously described, (Jair et al., 2006).
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Figure 3.1: MGMT Methylated Frequency Comparison. HN indicates Head and Neck cancer.

3.5 Data Sets

3.5.1 Data on Observed Frequencies for MGMT Gene

MGMT, (Methyl Guanine Methyl Transferase), is a tumour suppressor gene. It is

found on chromosome 10 in humans and acts as DNA repair protein during cell division.

The CpG island in the MGMT promoter region is ≈ 780 bp in length, including 97

CpG dinucleotides, (Soejima et al., 2005). Normally, the MGMT promoter region is

unmethylated in all tissues, (Esteller et al., 1999; Ongenaert et al., 2007). Silencing of

this gene plays a critical role in cancer initiation, (Soejima et al., 2005). The MGMT

methylation status of the tissues are varied: some of them show heavily methylated

CpG islands and others show hypomethylation, regardless of gene silencing. In this

work, we analysed some specific database such as PathEpigen and Pubmeth for MGMT

CpG hypermethylated frequency variations in different tissue and found that an average

hypermethylated frequency for the MGMT varies in between 4− 38 (PathEpigen) and

21 − 37 (PubMeth), shown in Table (3.1). These are wide ranges. According to the

PathEpigen and Pubmeth database average CpG hypermethylation frequencies for
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(a) PathEpigen Database

Tissue Frequency(%)

Bladder 4

Brain 38

kidney 8

Lung 29

Pancreas 11

Skin 11

Head and Neck 28

(b) PubMeth Database

Tissue Frequency (%)

Bladder 21

Brain 37

Kidney 25

Lung 29

Pancreas 24

Skin 25

Head and Neck 24

Table 3.1: MGMT CpG hypermethylation frequency variation for different databases

MGMT promoter region are ≈ 4 − 38. Figure (3.1) illustrates comparison between

cancer tissues of PubMeth and PathEpigen database. In Figure (3.1), X-axis denotes

methylated frequencies (%) for MGMT gene and Y-axis represents different cancer

tissues. Tables [(3.2) and (3.3)] represents frequency of MGMT promoter regions for

the colorectal and lung cancer respectively. Table (3.2) depicts an average methylation

range in between 0 − 12 for the normal tissues, with again a broad range of MGMT

Frequency(%) of MGMT

Cancer type Normal tissue Cancer

Colorectal adenocarcinoma 0 32

Colorectal carcinoma 0-10 3-44

Colorectal adenoma 0-10 8-50

No subtype specified 0-12 12-46

Table 3.2: MGMT frequency(%) variation for colorectal cancer from Pubmeth database

% for cancer initiation, i.e. 12 − 46. Additionally, a similar assessment for the lung

cancer, gives % MGMT of 0 for the normal tissues and between 14− 36 for the cancer
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Frequency(%)

Cancer type Normal tissue Cancer

No subtype specified 0 2-39

†SCL 0 20

§NSCL-squamous cell carcinoma 0 14-36

Table 3.3: MGMT frequency(%) variation for lung cancer from Pubmeth database. Table
(3.3) §Non-small cell lung cancer; †Small cell lung cancer.

tissues, illustrated in Table (3.3). According to these data, we estimate an average

frequency range for normal (0 − 10), de-novo (10 − 30) and hypermethylation (≥ 30)

of the MGMT promoter region.

3.5.2 Dynamics of DNA Methylation Mechanisms

Since DNA methylation is an important mechanism for regulation of gene activity. It is

important to know how methylation patterns are established on the CpG sites at a gene

promoter. Methylation patterns are initiated and maintained, as noted in Chapter (2),

mainly by combined activity of two enzymes: DNMT1 (D1) and DNMT3B (D2). Table

(3.4) represents the functions of DNMT1 and DNMT3B in DNA methylation mech-

anisms. With respect to cancer initiation, observed expressions data of DNMT1 and

Enzyme Function Reference

DNMT1 Maintain DNA methylation and low de-novo

activity.
(Doerfler et al., 2006)

DNMT3B De-novo methylation activity and very low
maintenance of DNA metylation.

(Doerfler et al., 2006)

Table 3.4: Function of DNMTs in the DNA methylation mechanisms

DNMT3B from the literature are given in Table (3.5). Here, a fold is a concentration
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Expression level DNMT1 DNMT3B References

Overexpressed >2 fold* >7.5 fold (Robertson et al., 1999)

Average 4 and 10-40 fold 3.1 fold (Robertson and Jones, 2000)

Hemimethylation 7-20 fold 3-7 fold (Hesketh, 2009)

Hemimethylation 5-30 fold >7.5 fold (Jair et al., 2006)

Table 3.5: DNMT1 and DNMT3B expression. *2 fold means that an increase level of enzyme
to two times the original amount

of the DNMT1 and DNMT3B from normal to other stages of methylation. Detailed

information for the DNA methyltransferase is available at http://www.uniprot.org/.

These DNA methyltransferase enzymes provide maintenance (DNMT1) and de-novo

(DNMT3B) methylation patterns in a cell. Two possible conditions for the methyla-

tion state instigated by the activity of methyltransferase in a cell, (Laird, 1996) are

given below:

1. Steady-state; when DNMT3B concentration level > DNMT1 concentration and

a limiting level of DNMT1 operates.

2. Higher- state; when DNMT1 concentration level > DNMT3B and a limiting level

of DNMT3B operates.

3.6 The DFA Model

In this section, we describe a new approach for analysing methylation dynamics. Fig-

ure (3.2(a)) shows possible methylation patterns by the activity of the enzymes for

CpG island methylation. The methylation dynamics has three states for the methyla-

tion frequency as illustrated in the Figure (3.2(a)): (i) normal, (ii) de-novo and (iii)

hypermethylated. The arrow in Figure (3.2(a)) indicates the change in two states after
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(a) DFA State of DNA methyltransferase for
double bit input: Strings of even length,
{(IX/ID/DI/XI),(II/ID/DI/XI/IX)and(II)} over
red colour arrows imply that increased or de-
creased concentration of D1 and D2 for the nor-
mal to de-novo, de-novo to hypermethylation and
normal to hypermethylation transition states.
Conversely, strings, {(DD/XD/DX), (XD/DX)
and (DD)} over the black arrows show that D1
and D2 increased or decreased concentration for
the de-novo to normal, hypermethylation to de-

novo and hypermethylation to normal transition
states respectively.

(b) DFA State of DNA methyltransferase
for single bit input: Strings of alphabet,
{(6,7,5,2),(8,7,5,2)and(8)} over red colour arrows
imply that increased or decreased concentration
of D1 and D2 for the normal to de-novo, de-novo

to hypermethylation and normal to hyperme-
thylation transition states. Conversely, strings,
{(4,1,3), (1,3) and (4)} over the black arrows
show that D1 and D2 increased or decreased con-
centration for the de-novo to normal, hyperme-
thylation to de-novo and hypermethylation to
normal transition states respectively.

Figure 3.2: State diagram of CpG Methylation dynamics at a promoter region for MGMT.
Red colour arrows indicate transition from normal to cancer state.
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receiving input of a string of even length over the alphabet Σ = {I, D, X}; where I, D

and X represent increased, decreased and zero concentrations of DNMT1 and DNMT3B

enzymes respectively and N, D, and Hy indicates normal, de-novo methylation and hy-

permethylation stages of a CpG island for gene promoter. For example, if we take even

length input string IXIDDIXI, DFA1 is in normal state (qn), as illustrated in Figure

(3.3). In the first step after consuming ‘two bit’ input IX, DFA1 moves to state qdn

and the string left is IDDIXI. In the next step it consumes ID and moves to state

qdn. Continuing in this way then, after consuming the entire string IXIDDIXI, DFA1

stops in qdn (final de-novo state). We can simplify both the DFA′s (Figure (3.4))

Figure 3.3: An example of transition state for the two bit input. qn and qdn represents normal,
de-novo states.

by identifying the set {XX,XD,XI,DX,DD,DI,IX,ID,II} with the set {0,1,2,3,4,5,6,7,8}

as shown in Table (3.6). After rewriting the DFA′s using the alphabet from the set

{0,1,2,3,4,5,6,7,8} we get single bit input DFA, illustrated in (3.2(b)). The DFA ac-

cepts numeric strings which is verified from the Table (3.6). One can ask the following

two questions from the dynamic as shown in Figure (3.2(a)).

1. If the methylation frequency is normal then what concentration patterns of D1

and D2 are necessary to retain the methylation level in a normal state? Here D1

and D2 are DNMT1 and DNMT3B respectively.

2. If the methylation frequency is normal then what are the concentration patterns

of D1 and D2 required to convert it into a hypermethylated frequency?
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D1 D2 Meaning Two bit Input Single bit Input

X X Both D1 and D2 are zero XX 0

X D D1 is zero and D2 is decreased XD 1

X I D1 is zero and D2 is increased XI 2

D X D1 is decreased and D2 is zero DX 3

D D Both D1 and D2 are decreased DD 4

D I D1 is decreased and D2 is increased DI 5

I X D1 is increased and D2 is zero IX 6

I D D1 is increased and D2 is decreased ID 7

I I Both D1 and D2 are increased II 8

Table 3.6: Variations of D1 and D2 enzymes Concentrations. Two and single bit DFA Input

Motivated by these two questions we consider two DFA models as described in Figure

(3.4). In this example, current DFA is present two automata state as shown in Figure,

(3.4(a) and 3.4(b)).

DFA1 When start and end state is normal, illustrated in Figure (3.4(a)).

DFA2 When start is normal and end state is hypermethylated, illustrated in Figure

(3.4(b)) .

3.6.1 The DFA′s Transition States

The deterministic finite automata (DFA) machine accepts regular languages (Sipser,

2008). Our DFA model reads single bits of the input strings at a given time. Here, we

are considering only the following two DFA cases: (i) When start and end states are

the normal state (denoted as qn), illustrated in Figures (3.5(a)), and (ii) when start

state is normal and end sate is hypermethylated (denoted as qhy), illustrated in Figure
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(a) DFA for normal state (DFA1) (b) DFA for cancer state (DFA2)

Figure 3.4: Double bit DFA of case 1 and 2

(3.5(b)). Figure (3.5(a)) and (3.5(b)) represents single bit DFA for the normal and

hypermethylated states respectively.

Transition states for the DFA1 and DFA2 are illustrated in Tables (3.7) and (3.8)

respectively. Next example (Figure 3.6) shows how DFA1 accepts the string 258014.

δ 0 1 2 3 4 5 6 7 8

−→ qn* qn qn qdn qn qn qdn qdn qdn qhy

qdn qdn qn qhy qn qn qhy qhy qhy qhy

qhy qhy qdn qhy qdn qn qhy qhy qhy qhy

Table 3.7: Transition function for DFA1. qn, qdn and qhy implies normal, de-novo, and
hypermethylation sates and (−→ qn*) denotes start and end state for DFA1. δ is
the transition function.

52



3.6. The DFA Model Chapter 3. The Model

(a) DFA for normal state (DFA1) (b) DFA for cancer state (DFA2)

Figure 3.5: Single bit DFA of case 1 and 2. qdn is denotes as de-novo state.

δ 0 1 2 3 4 5 6 7 8

−→ qn qn qn qdn qn qn qdn qdn qdn qhy

qdn qdn qn qhy qn qn qhy qhy qhy qhy

qhy* qhy qdn qhy qdn qn qhy qhy qhy qhy

Table 3.8: Transition function for DFA2. Here, (−→ qn) and (qhy*) start and end state for
the DFA2.

Example:

Suppose DFA1 is in normal sate (qn) and the input string is 258014 (see Figure (3.6)).

In step 1, after consuming 2, DFA1 moves to state qdn and the string left is 58014.

In the next step it consumes 5 and moves to state qhy and the string left is 8014.

Continuing in this way after consuming the entire string 258014, DFA1 stops in qn

(final normal state).
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Figure 3.6: An example of transition states of proposition 1.

3.7 Results

3.7.1 Language of the DFA Models

We present some languages11 accepted by DFA1 in the following proposition.

Proposition 1 Let Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8 } be the alphabet of symbols. If

Σ∗ denote the set of string of all possible size then some of the strings accepted

by DFA1 are from the set

L = L1 ∪ L2 ∪ L3 ∪ L4

where:

L1 = {x ∈ Σ∗ | x1 ∈ {0, 1, 3, 4}and xk = 4}

L2 = {x ∈ Σ∗ | x1 ∈ {2, 5, 6, 7}and xk = 4}

L3 = {x ∈ Σ∗ | x1 ∈ {2, 5, 6, 7, 8}, xk+1 ∈ {0, 1, 3, 4} and xk = 4}

L4 = {x ∈ Σ∗ | x1 = 8 and xk = 4}.

11The set L provides only some of strings accepted by DFA1. There are might be more strings that
are accepted by DFA1.
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Hence, some of the strings accepted DFA1 are either set of L1 or L2 or L3 or L4.

It would be an interesting future task to find other strings accepted by DFA1.

3.8 Discussion and Analysis

We used the Pubmeth and PathEpigen databases to access methylation frequencies

for the MGMT gene in different tissues, as illustrated in Table (3.1). One reason the

MGMT gene was chosen was because its silencing plays a prime role in the initiation of

all cancers (Soejima et al., 2005). MGMT silencing disturbs DNA repair mechanisms,

and errors occurring during DNA replication are preserved. We analysed MGMT

frequency variations and found that it is 0 − 10% methylated in normal tissues and

10 − 30% methylated in cancer tissues, as depicted in Tables (3.3 and 3.2). We note

two features of methylation dynamics based on DNMT activity:

1. Altered concentrations of D1 and D2 in normal to hypermethylated states.

2. Altered concentrations of D1 and D2 in hypermethylated to de-methylated states.

We examined 3 states (normal, de-novo12 and hypermethylated) within the MGMT

promoter region, as explained in Figure (3.2(a)). The distribution of the ‘3’ methyla-

tion states is denoted as methylation levels from the variations in the activities of the

DNMTs. The ‘zero’ value indicates an unmethylated promoter. Given the significance

of alternate methylation states, we applied the DFA method to analyse each methy-

lated state. The DFA estimates two conditions for each methylation states: (i) steady

state and (ii) higher state, as described in section (3.5.2). We used an even length ‘two

bit’ alphabet after the simplification of ‘one bit’ input [Table (3.6)] to simulate the

12De-novo is an intermediate state between normal and hypermethylation.
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Methylation State Cancer state Cancer Prediction (%)

Normal No cancer 26

de-novo Cancer initiation 37

Hypermethylated Cancer 37

Table 3.9: Cancer prediction based on the results of Table 3.10

DFA model. We found 9 possible transitions states for each methylation state. We

found possible strings as results for the methylation dynamics analysis, given in the

proposition in section (3.7.1). In the early stage of the model, we analysed some exam-

ples of each DNA methylation state (normal, de-novo and hypermethylated), as shown

in Table (3.10). Table (3.10) gives DFA1 and DFA2 outputs for 30 random strings of

length 100 generated by the software13. Table (3.9) presents cancer predictions based

on the analysis of random strings as given in Table (3.10). Here, we represent nor-

mal state de-novo methylation and cancer initiation via hypermethylation. Based on

the random data from Table (3.10), we obtained predictions. We analysed 30 random

strings of length 100 and found that out of the 30 strings, 26%, 37% and 37% repre-

sented normal (no cancer), de-novo (cancer initiation) and hypermethylation (cancer)

states.

Once we have real data of methylation frequency, we can check the methylation states

of the gene and cell populations. The DFA model developed by us can be used for

predicting cancer by obtaining methylation frequency corresponding to DNA methyl-

transferase (DNMTs) up- down regulation activity.

13Available at, for random string (http://www.psychicscience.org/random.aspx) and DFA simula-
tor (http://home.arcor.de/kai.w1986/dfasimulator/).
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Random String DF A1 DF A1 Output DF A2 DF A2 Output

7578327821753237363012444443760764118817045755887287728067368855055243728163241753765330686541168520 HM Reject HM Accept

6641458674714267058815431638248061852821001630063128435528560528812234630140545261068573080868836341 Normal Accept Normal Reject

0613521763672268248447040575535582261003656500041573200770884174758288153786782610858858526145770721 DN Reject DN Reject

0334271605505862018582250250824288214027655454801265528735147403354547225100727125555240845882657083 DN Reject DN Reject

6134233437177203770837562858825864831710608661472818712017260367871144058084360735732005878748468671 DN Reject DN Reject

6483463307755131707444154186312275108583055043144554526307428840828577288488612847264256067155554716 DN Reject DN Reject

5058125427861200025682267414557045683330515216545410460713878507552343615563345381224531113067450030 Normal Accept Normal Reject.

6411055652865161284650501605446278685833317656818108237586038728622551455258350226812782546455884440 Normal Accept Normal Reject

8325182865506168423148660855407015606607202751256631173802823833736126608383115568211031235628004137 DN Reject DN Reject

5427175522757131212421878666846456063247250525408282780743356383830333130133434473628318356262850288 HM Reject HM Accept

3672120121273300484708763055172804704463537360523083810373537622155047302676260386665876614238070670 HM Reject HM Accept

1067070552880200538724732877825364831144467172287424140871264387148271020830407256726774688136002280 HM Reject HM Accept

5671422635086578183584501471864136687515181455738342330648686014121260644418802300440504268312705454 Normal Accept Normal Reject

0380813507154512662251443468837647567738068576131608183750265625735386182021106871337543271731215056 HM Reject HM Accept

4160725884257654636548114112830662402303676053728637734613454603038825167271628114587835161868673070 HM Reject HM Accept

1235707022573552325746355410806534331783466553766233818814683375420884100337626856086274543550278502 HM Reject HM Accept

1213687353624360531072376275114630552587625255484180542482222026555858457312356671456507551754621168 HM Reject HM Accept

0500788301103067505635180554738341557642107644361517505276408542635512208037566164564156074877168281 DN Reject DN Reject

2382057572031543321660154730165610333634462704386376864088586362665557657761634627848735544718716243 Normal Accept Normal Reject

2012525570804530085465348024684603002282235572770248521760772065141147008368461003565228202754738450 DN Reject DN Reject

4188563572300517088166253211830276635175851301856562777748035630000037112358512510253463784282754037 DN Reject DN Reject

7043654465443864217366801508003876460130110331655757653005257485528161360576208010845268334206247444 Normal Accept Normal Reject

1686808387758386641847430848716206557213637670222331053671176604733064880703068832664710470340404021 Normal Accept Normal Reject

3880562642350707737013255143765651342063782706105672414254802354502066558170352341706138202564151600 DN Reject DN Reject

8324576565875150180246445201171840121145803134637414112538684106277684843834718675646788754023447341 Normal Accept Normal Reject

7174000181830611473304877047636010238055332374004142571370752232137388648748868124307023212757651120 DN Reject DN Reject

1751033740686004220034410674253835355214625011502200883107623204325238301331288454514281021737382557 HM Reject HM Accept

5027624043350063467155473886431738271505277402658502424862500317821327565478681207282127865542180246 DN Reject DN Reject

0408676441143660253702480886184236420261164717532750374067248368824752208010653400513148807614820500 HM Reject HM Accept

3442555722675364326480711743177663666383254466713081004530772755867673168103581554082381457314730685 HM Reject HM Accept

Table 3.10: Data for random strings. Here, DN and HM denotes de-novo, and hypermethylation state respectively.
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Chapter 4
Data Curation and Annotation for

PathEpigen

An overview of the “bioinformatics” or investigation towards parametrisation of future

models of epigenetic mechanisms is provided in this chapter. The first section gives an

introduction of the PathEpigen database. The data curation process is subsequently

discussed, “single and “double relation” are defined and examples are provided. In

concluding on the work of this chapter we highlight some of the key requirements for

biomedical resources in terms of querying and extraction of data for empirically-based

model.

4.1 Introduction

The Sci-Sym laboratory in DCU, has been involved in investigate biomedical resource

strands, and latterly in designing and developing, for its various investigations, a re-

source for epigenetics. In particular, work on PathEpigen, aims to integrate genetic
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and epigenetic molecular determinants of (colon) cancer (in the first instance). This

knowledge management platform consist of a database and a user interface and its

primary development has been by Dr. Barat and co-workers, (Ruskin et al., 2008).

The database correlates molecular events to various colon cancer phenotypes, with the

focus on early-stage examples. Currently, the resource contains 6,445 records on colon

cancer. These represent correlations between epigenetic and other molecular events

such as gene expression and mutations. The resource is expected to facilitate future

modelling and quantitative research in the cancer field, especially in the area of early

diagnosis and risk assessment. The objective of PathEpigen is to integrate and compre-

hend the involvement of genetic and epigenetic events in various phenotypes of colon

cancer. The resource stores and integrates colon cancer molecular data in a specified

computational format. It also collects specific clinico-pathological factors, different

phenotypes and statistical information about these such as the relative frequency of

occurrence of, or incidence of, a molecular event, given the Phenotype of the sample:

i.e. P(Event | Phenotype). The PathEpigen database is implemented in MySQL, fol-

lowing a relational schema generated according to an expert assessment of the data

structures encountered in the specialist literature. Efforts are being made to support

extension and refinement of the resource, and to incorporate additional details, as new

data are published. To provide high quality identification and storage of pathological

molecular determinants, the resource brings together, for common analysis, data ob-

tained from different experimental platforms, (epigenetic, genetic, mutation and other).

Therefore, the database is designed to support storage for a variety of distinct types

of data, to allow for dependent events such as “single” and “double relations”, and

allows for expansiion and growth of available data, with future provision built to be as
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flexible as possible in order to accommodate new data types. This is achieved through

PathEpigen’s own internal classification system, designed to facilitate both the cura-

tion and querying processes. As the project has expanded, it has generated additional

ramifications that need dedicated research and development inputs. In the following

subsections, the emphasis on colon cancer is given, and my contributions to project

tasks are described, providing a further dimension to the investigation of requirement

for epigenetic modelling.

4.2 Colon Cancer

Colon cancer, (also known as colorectal cancer), is a malignancy in which there is un-

controlled cell growth on the inner side or end of the colon. It arises from the epithelial

cells1 that line the colon2 of the gastrointestinal tract3. It is exacerbated by genetic and

epigenetic changes in the Wnt signalling pathway, (Segditsas and Tomlinson, 2006).

Both genetic and epigenetic processes are involved in colon cancer progression. Some

points concerning the progression of colon cancer involving the analysis of its molecular

genesis are as follows:

• Genomic instability, (Lengauer et al., 1997), which is due to genetic and epige-

netic alterations of housekeeping gene such as APC, MGMT and MLH1.

• Heritability4 character, (Kinzler and Vogelstein, 1996), which is due to genetic

defects in germ line cells5.

1It is a membranous tissue covering internal organs and other internal surfaces of the body.
2The colon (large intestine) is the last part of the digestive system and extracts water and salt

from solid wastes.
3The human gastrointestinal tract refers to the stomach and intestine.
4Heredity is the passing of traits to offspring.
5The germline of a mature or developing individual are those cells that have genetic material that
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Subsequently, the progression of colon cancer is activated and de-activated by onco-

genes and tumour suppressor genes, respectively. Consistent with the facts described

above, colon cancer is initiated by alterations in the Wnt signalling system and pro-

gresses through subsequent sequential events.

4.2.1 Symptoms and Risk Factors

Colon cancer progression is marked by no specific symptoms. Colon cancer develop-

ment depends on the location of the tumour in the colon, and it spreads elsewhere in

the body to become metastatic or constitutional (affecting the whole body). Here, we

report some specific factors that facilitate colon cancer invasion, such as alcohol use,

age, polyps6, and environmental factors. A study by Cho et al. (2004) has found that

if a person takes in more than 30 grams of alcohol per day, they are at higher risk

for colon cancer. Ageing is also a risk factor. Most patients are in their 60s or 70s,

and patients under 50 are uncommon unless a family history of early colon cancer

is present, (Lengauer et al., 1997). Polyps of the colon, particularly adenomatous

polyps, (Segditsas and Tomlinson, 2006) present an additional risk. The removal of

colon polyps, identified by colonoscopy reduces the subsequent risk. Industrial coun-

tries are at a higher risk compared to less developed countries that traditionally have

high-fibre/low-fat diets. Studies of migrant populations have revealed a role for envi-

ronmental factors, particularly diet, in the aetiology of colorectal cancers, (Cho et al.,

2004).

may be passed to a child.
6A polyp is a fleshy growth, occurring on the lining of the colon.
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4.2.2 Specific Affected Genes

Important genes are frequently affected in colon cancer, including APC, MGMT and

MLH1.

4.2.2.1 APC:

Adenomatous polyposis coli (APC) is a tumour suppressor gene that regulates the

transcription of critical cell proliferation factors by interacting with transcription fac-

tors. Loss of APC function initiates a sequence of changes at both the molecular and

histological levels, (Fodde, 2002). Mutations in the APC gene alter transcription and

initiate familial adenomatous polyposis (FAP)7and sporadic colon cancer. They block

the Wnt pathway, and therefore, Wnt is turned off. Subsequently, either chromosomal

instability (CIN) or microsatellite instability (MSI), occurs, which appear early in tu-

mour progression, (Segditsas and Tomlinson, 2006). High APC mutation rates have

been reported, with APC mutated in up to 70% of all early stage colon cancers, (Miyaki

et al., 1994). APC hypermethylation initiates transcriptional silencing independently

of somatic mutations. Hypermethylation of promoters occurs at an early stage in tu-

mourigenesis, (Lee et al., 2009). APC is associated with FAP and somatic mutations

in colon cancer. Hypermethylation in the APC promoter region alters gene activation

mechanisms. One study (Esteller et al., 2001) suggested that ≈ 34% of promoter APC

methylation is found in colon cancer.

7An inherited condition in which numerous polyps form mainly in the epithelium of the large
intestine.
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4.2.2.2 MGMT:

MGMT gene encodes a protein known as methylated-DNA-protein-cysteine methyl-

transferase, (Lee et al., 2009). It is a DNA repair protein that is involved in defending

cells from O6-methylguanine (O6-MeG)8 in DNA. Inactivation and promoter hyper-

methylation of the MGMT gene frequently occurs in colon cancer, (Shen et al., 2005).

MGMT silencing is associated with a G (Guanine) to A (Adenine) point mutation in

the KRAS9 gene during colon cancer progression, (Esteller et al., 2000). Thus, MGMT

promoter methylation is a marker for colon cancer. One study has shown (Shima

et al., 2010) MGMT promoter hypermethylation in 325 tumours (38%) and the loss

of MGMT expression in 37% of colon cancers. Silencing of MGMT has been shown

to be associated with and to precede the appearance of G-to-A point mutations in the

KRAS gene during colorectal tumourigenesis.

4.2.2.3 MLH1:

MLH1 (MutL Homolog 1) is a mismatch repair gene (MMR) that provides a signal

for DNA repair proteins. It fixes errors that occur during DNA replication, (Jacob

and Praz, 2002). In HNPCC (Hereditary Non Polyposis Colorectal Cancer), MLH1

predisposition causes colon cancer more than other cancers, such as stomach or blood

cancer. Genetically, mutated MLH1 leads to DNA mismatch repair mechanisms and

causes the accumulation of mutations in the genome, thereby initiating microsatellite

instability (MSI) and promoting carcinogenesis, (Bronner et al., 1994). When MLH1

becomes inactive, errors are left during cell division and genomic instability increases.

86-O-Methylguanine is a derivative of the nucleobase guanine in which a methyl group is attached
to the oxygen atom. It base-pairs to thymine rather than cytidine, causing a G:C to T:A mutation in
DNA.

9A oncogene which is activate in the cancer genome.
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Subsequently, cells divide continuously and errors accumulate in the DNA. Finally,

the cells become inactive and form tumours in the colon. As described above, DNA

mismatch repair deficiency impacts MLH1 promoter methylation, (Perucho, 2000).

MLH1 hypermethylation contributes to DNA mismatch repair mechanisms and leads

to genomic instability, (Leung et al., 1999).

4.2.3 Genetic changes in Colon Cancer

Colon cancer is a multi-step process that is accompanied by genetic alterations to the

normal colonic epithelium, which leads to adenomatous polyps,10 (Lea et al., 2009).

Colon cancer steps are driven by mutations in different classes of genes, such as tumour

suppressor genes, proto-oncogenes and mismatch repair genes.

1. The key tumour-suppressor gene (TSG) changes in colon cancer are loss of het-

erogenicity at chromosome-5 (in the APC gene), chromosome-18, (in the DCC

tumour-suppressor gene), and chromosome-17 (p53). For example, a mutation

in the APC gene at the chromosome 5q-marker is an early event in colon can-

cer progression. It causes inherited familial adenomatous polyposis syndrome,11

(Gryfe et al., 1997).

2. Activating mutations in proto-oncogenes such as KRAS are also an early event

in colon cancer.

3. Mismatch repair genes such as MGMT and MLH1 play a role in the predisposition

of colon epithelial cells to cancer. If these gene are mutated, errors will start to

10An adenoma is a type of polyp which is pre-malignant.
11It is collection of hundreds to thousands of colonic adenomatous polyps. When these polyps are

left untreated, initiates colon cancer.
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accumulate at rates of hundreds or thousands per cycle.

4.2.4 Epigenetic Emphasis on Colon Cancer

Epigenetics is the inheritance of basic gene expression information in the absence of

base sequence changes. Detailed studies of epigenetic mechanisms are described in

chapter (2). Epigenetic modifications are also characteristic of colon cancer and include

DNA methylation, histone acetylation and gene silencing mediated by small non-coding

RNA (microRNA), (Wong et al., 2006). The promoter sites of tumour suppressor

genes have been found to be methylated in colon cancer. Some tumour suppressor

genes such as APC, MGMT and MLH1 have been found to be hypermethylated in

colon cancer. As mentioned earlier, DNA hypermethylation and hypomethylation are

related to gene silencing and genomic instability, respectively. Activation of proto-

oncogenes such as KRAS has also been detected in colon cancer. The range of aberrant

methylation of the APC, MLH1, and MGMT genes is 20%, 15% and 50%, respectively,

for colon cancer, (Lind et al., 2004). A study (Ramreza et al., 2008) found that 47%

of genes are nonmethylated, and 41% are methylated in 82 colon cancer samples. The

MGMT, APC and MLH1 genes are most frequently methylated in colon cancer. The

promoters of these genes are methylated in the early stages of colon cancer progression.

In addition, hypermethylation of these gene correlates with age, (Christensen et al.,

2009). Promoter methylation of the tumour suppressor gene SFRP causes activation

of the Wnt singling pathway in colon cancer, (Suzuki et al., 2004).Therefore, aberrant

methylation patterns are very common and the analysis of these changes is important

in colon cancer development.
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4.3 Data Curation

Data curation has been critical to the development of biology from Linnaeus to UniProt,

while the careful collection and organisation of data has been the source from which new

hypotheses and understanding have emerged, (Thornton, 2009). Data curation involves

extracting useful data from active and on-going research resources using bioinformatics

and biological knowledge. The aim of data curation is to improve data discovery and

retrieval, while preserving its quality, improving its value, and providing data re-use,

(such as examining it in conjunction with other data or as inputs for modelling). Data

curation involves important features, such as: authentication, archiving, management

and an emphasis on representation of ideas clearly, in order to support its verification

and validation. As biomedical and biological information continues to grow at stagger-

ing rates, efficient methods need to be devised to extract biological information from

the literature, then to process and manage it in order to achieve worth while upgrad-

ing. Without such efforts, there is little prospect for successful information synthesis.

In this context, manual curation remains essential, but should be limited to those

parts that can not be done automatically which, unfortunately, tends to be extensive

particularly for new fields of study. This intensive, manual curation of the scientific

literature is currently crucial to population of the PathEpigen platform, (as opposed to

text-mining), due to its acknowledged high accuracy, (Winnenburg et al., 2008). Text

mining is a high-throughput computational technique that scales easily, but is capable

of making large errors, due to the complexity of natural language. The information

sought for PathEpigen is thus too complex to be subject to automatic curation at the

current time of writing. Our records link together a number of concepts such as geno-
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type and phenotype, found in different parts of the published literature, under different

formats and from different assays; such data are not readily amenable to automatisa-

tion. The last decade of experience gained at the European Bioinformatics Institute

[http://www.ebi.ac.uk/] and other bioinformatics centres, such as EMBL, (Heidelberg;

http://www.embl.de/index.php) has shown that the best people to develop and design

biomedical resources are those who initially dedicate time to data curation, because

they have a fuller understanding of the structure and information content of the data.

Some challenges for the data curation task include:

1. Development of ontology-driven GUIs which play an important role in many

semantically working environments, such as knowledge management systems.

2. Improvement in presentation of data to users, e.g. in showing statistical relations

between molecular events e.g., the probability of the gene being expressed and

its dependence on the strength of its epigenetic regulation mechanisms.

3. Improvement in data submission systems.

One aim while working on data curation for PathEpigen, was to participate in the

design of its data submission system which is currently being developed in Sci-Sym.

While PathEpigen was in its initial stages of development, MySQL code was used in

order to insert new data. This approach is fairly rudimentary, and the reason for

adopting it was ease of use together with initial pilot resources. In particular, early

work involved a relatively small number of records in a limited number of tables, which

provide the main data-types in the database. However, as the resource has continued to

grow, the initial method of curation has proved both cumbersome and time-consuming

and a data submission interface is partly now designed.
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4.3.1 The PathEpigen Data Model

PathEpigen is a manually curated, web-accessible knowledge management system,

integrating comprehensive information initially, on molecular events for the genetics

and epigenetics of colon cancer, and their relations to various phenotypes, (Barat and

Ruskin, 2010). The database includes tables, containing basic information on geno-

types and phenotypes of colon cancer. These tables are the building blocks, which can

be used to represent interesting correlations between the events. There are two ways

by which PathEpigen represents correlations between genotype and phenotype:

1. The frequency of finding a molecular event in the context of a given phenotype;

defined as “single relation”.

2. The frequency of finding a molecular event in the context of another molecular

event and a given phenotype defined as a “double relation”.

The relation-entity association scheme of the database is illustrated in Figure (4.1).

“Single relations” record a molecular event, a phenotype and the frequency of that

event. In probabilistic terms, a “single relation” can be expressed as:

Event Freq = Probability(Event| Phenotype) (4.1)

Equation (4.1) thus represents the correlation between a molecular event and it’s as-

sociated phenotype. For example, if MGMT promoter methylation is observed in 38%

of 23 tubular adenoma12 samples, the main fields of a “single relation” record from

the database can be shown as for Table (4.1): From the point of view of conditional

12A benign epithelial tumour of glandular origin.
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Figure 4.1: Entity Relationship for PathEpigen Database
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Ref Gene Event Quanti Units Level Phen Clinpat Fr nb samp

PMID MGMT HM NULL NULL YES adenoma NULL 0.38 23

Table 4.1: Inserting example for the “Single relation”

Ref G1 Ev1 EID1 L1 Qnt Unit NTE1 G2 Ev2 EID2 L2 Fr Phe CP

PMID APC mut 128 Y NL NL 47 APC M 128 Y 0.980 10 NL

Table 4.2: Inserting example for the “Double relation”

probabilities, this can be written as:

P (MGMT promoter methylation = Y ES|Phenotype = colon tubular adenoma)

(4.2)

where MGMT promoter methylation and phenotype are variables which have taken the

values “YES” and “adenoma” respectively. The level (or status) of the molecular event

is “YES”, because the promoter methylation is present, (without any information on

the methylation intensity in this particular case). Certain references in the literature

will in addition give information such as the fact that the promoter is highly methylated,

or totally methylated. In those cases, the variable level in Table (4.1) takes the values,

“HIGH” and “TOTAL” respectively. A “Double Relation” is represented by Equation

(4.2). The records give two events, their qualitative or quantitative data, and their

summary statistics; the number of samples in which the first event is present, in the

case of the given phenotype, and the incidence of the second event in this number of

samples. For example, assuming that 47 colon carcinoma13 samples, with mutations

in the APC gene have been verified for APC promoter methylation, and 98% samples

were found to be methylated, the corresponding “double relation” is given by Table

(4.2), Equation (4.3) following: In this table it can be written as P(APC promoter

13Any malignant tumour derived from epithelial tissue.
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Figure 4.2: Venn diagram of “Double Relationship”. Where ‘X’ and ‘Y’ are probability of
event 1 and event 2 respectively.

methylation = YES — APC mutation = YES and Phenotype = colon carcinoma).

The variable phenotype can take other values such as colon adenoma, colon polyps,

normal colon and others.

Event 2 Freq = Probability(Event 1|Event 2 and Phenotype) (4.3)

Equation (4.3) represents a “double relation” from the statistical point of view, that

is: the frequency of event 2 can be defined by the probability of occurrence on event 2

in samples characterised by event 1 and the given phenotype. Consequently, equation

(4.3) can also be depicted as the Venn diagram in Figure(4.2).

4.4 Methods and Techniques

4.4.1 Data curation for PathEpigen

In order to extract biological information from bulk sources, expert analysis, compar-

ison and annotation is needed. Further, an extensive knowledge of the role of genetic

and epigenetic modifications in cancer development is required for data curation for

PathEpigen. Background work experience, (involving detailed study of the epigenetic
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molecular determinants of cancer), has provided this and this expertise has been fur-

ther improved upon for the current curation work, which has involved considerable

data fitting to the PathEpigen data model. Tasks included were:

• Familiarisation with the data model of the database.

• Assessment and minimisation of the error rate in manual data curation.

A strategy was devised for accomplishment of these tasks:

A. Based on specific keywords, related to molecular determinants of colon cancer,

relevant articles have been selected from the PubMed14 resource.

B. In this context new sources of data such as gene expression data from new microar-

ray experiments, paired with methylation data, have been explored.

C. Text-mining facilitated the extraction of accurate, comprehensive information from

literature for manual curation.

D. Further, articles have been selected by reading their abstracts.

E. Data related to epigenetic, genetic and phenotypic information have been extracted,

by examining the full manuscripts.

One of the main objectives of this work is to find correlations and associations between

new genetic and epigenetic events; such events are found in the colon cancer pheno-

type and molecular events are already known as cancer hallmarks. Therefore, much

attention has been paid to the simultaneous reporting or outcome between molecular

events. The following thus formed the focus of the curation work:

14A literature resource for the biomedical and life sciences journal literature. Available at www.
ncbi.nlm.nih.gov/pubmed.
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1. Clear distinction between different colon cancer phenotypes in order to provide

insight on pathology initiation and dynamics.

2. Extraction of quantitative data for the resource.

3. Provision of non-redundant data i.e. high-quality manually annotated data cu-

rated in relation to various types of cancers

4. Correlations between molecular events.

5. Analysis of molecular events, according to clinical pathological factors.

6. Selection of information on environmental factors, and their interaction with

epigenetic and genetic events.

4.4.2 Details of Curation Process

The curation process of individual scientific reference contained the following detailed

steps:

a. The phenotype characterising the samples involved in the specific study, was isolated

and compared against the PathEpigen classification of phenotypes. If the given

phenotype existed already in the classification, its ID was kept for further annotation

of the “single” and “double relations” found in the reference. Otherwise, a new

phenotype was added to the classification and allocated an identification number.

b. All molecular events found in the samples were isolated. Again, a molecular event

was checked against the database and introduced if not already present.

c. “Single relations” were curated. The molecular event and the phenotype were

recorded, together with the total number of samples analysed and the frequency

of the molecular event found in these samples.
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d. “Double relations” were dealt with similarly to “c” above.

PathEpigen also supports annotation of relations with clinico-pathological factors. For

instance, if MGMT methylation frequency was observed in 73% of 15 proximal colon

cancer samples then the “single relation” record has the form as illustrated in Table

(4.3). PathEpigen also differentiates between primary tumours and cell lines; the reason

Ref Gene Event Quanti Units Level Phen CP Perc No. samp

PMID MGMT methylation NULL NULL YES C.C.* proximal 73 15

Table 4.3: Inserting “Single relation” example for the clinical pathological. C.C.* represents
colon cancer.

for this is that, as cell lines are passed on through many generations, they are likely

to acquire new modifications, absent from the primary tumours that the original cell

lines were collected from. Thus, each cell line is recorded as a distinct phenotype. In

the case of cell line phenotype, a “single relation” has the form shown in Table (4.4).

In this table a “single relation” contains a molecular event methylation, statistical

Ref Gene Event Quanti Units Level Phen Clincphat Perc nb samp

PMID NDRG2 M+ NULL NULL YES CaCo2 NULL 1 1

Table 4.4: Inserting “Single relation” example for the quantified unit

information about it, such as number of samples analysed, incidence of the event, i.e.

‘YES’ in the Level column, and any qualitative or quantitative information available

on the event. The phenotype is CaCo2 cell lines.

4.4.3 Algorithm

To support the curation process and data integration, a program which converts the

initial text annotation format to an SQL format has been developed.
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Open the input file ;1

Check name of the file (If file not correct, show message” File could not open”);2

if (fi! = NULL) then3

while (!feof(fi)) do4

ch = fgetc(fi) // get character from file ;5

if (ch == −1) then break; /* ch == -1 indicates end of the file */6

Put the file pointer p* at 1st position after reading and each line file pointer7

increase by one ;
Initialize new line to empty string ;8

Read the whole line from the input file ;9

p = line // p* points to the line;10

while (∗p! = 0) do11

if (strcmp(new line, ” ”)) then /* If new line is empty */12

Put ”(”at the beginning of the line;13

else14

else put ”,”);15

Copy line in to pointer p*;16

endif17

while ((∗p ! = ′new line′) && (∗p ! = ′tab′)) do18

If there is more letter in this line;19

Advance of the p pointer;20

endw21

change the ’ t’ or ’ n’ to ’ 0’, and then;22

Advance p* to the next word;23

strcat(new line, q) // Copy new line in to q* ;24

endw25

Put the ”)” at end of the line;26

Put the ”;” after bracket;27

Write the line in to out put file;28

Advances the pointer to the next line in the output file;29

Show message that “Job Done”;30

endw31

endif32

Algorithm 1: Algorithm of the developed Code
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The complete code has been implemented using C++ language. This code helps to

direct SQL query input to the database. A sequential view of the code is provided in

Algorithm (1).

4.5 Results

At present, the PathEpigen resource contains 6,445 records. Of these, the curation ef-

forts described here have added some 647 new records, including 430 “single relations”,

describing early colon cancer phenotypes and given molecular events in colon cancer

populations, as well as 212 “double relations”, all issuing from the manual curation of

50 scientific articles. Data were submitted for verification, quality control and valida-

tion. As part of this work, 24 new PathEpigen entries were included, which describe

molecular events for 21 genes and 3 phenotypes, such as Gastric CRC, carcinoma with

undifferentiated sub-histology, and colon cancer, originating from Crohn’s disease. An

example of “double relations” for the new phenotype of Gastric CRC is illustrated

in Table (4.5). In Table (4.5) statically possible outcomes for events MSI and CIMP

are as follows: All samples for event 1 (MSI)= 16. Possible outcome frequencies of

event 2 (CIMP) are 0.250 and 0.375 i.e. these event 2 frequencies may impact on the

cell phenotype, represented in Figure (4.3) (A) and (B) respectively. Significant data,

Ref G1 Ev1 EID1 L1 Qnt Units NTE1 G2 Ev2 EID2 L2 Fr Phen CP

262 NL MSI 115 H NL NL 16 NL CIMP 116 H 0.250 713 NL

262 NL MSI 115 L NL NL 16 NL CIMP 116 H 0.375 713 NL

Table 4.5: “Double relation” of the article (Kim et al., 2005). ‘713’ ID number represents
Gastric cancer phenotype.

with regard to genetic and epigenetic correlation have been extracted from articles

such as (Miyakura et al., 2001). In this article MLH1 gene promoter methylation and
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Figure 4.3: Diagrammatic representation of “Double Relationship” for the table (4.5).

expression status has been analysed in the context of colon cancer samples. The main

reason for selection of this article as one of those for curation is because MLH1 func-

tion is involved in DNA mismatch repair and DNA mutations have been associated

with colon cancer. Mammals without MLH1 are infertile and spermatocytes exhibit

high levels of prematurely separated chromosomes and cell cycle arrest. MLH1 and the

DNA repair mechanism, (of which MLH1 is a member), are directly linked to ageing.

Thus, inclusion of data from this article contributes towards refining the probabilities

of epigenetic events in the colon cancer population. For instance, “single relations”

from this reference can be represented as given in Table (4.6). Clinico-pathological fac-

tors here split the population in two with regards to MLH1 methylation. Table (4.7)

Ref Gene Event Quanti Unit Level Phen CP Fr No samp

259 MLH1 Methylation NULL NULL YES C.C. proximal 0.521 46

259 MLH1 Methylation NULL NULL YES C.C. distal 0.381 42

Table 4.6: “Single relation” of the article (Miyakura et al., 2001). C.C. represents colon
cancer.

shows a reciprocal relation between MLH1 methylation with colon cancer phenotype

in proximal as opposed to distal locations. This correlation shows the difference in

occurrence frequencies of tumour characteristics, MLH1 methylation according to two
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different clinicopathological factors: proximal15 and distal16 location of the tumours.

This example illustrates that in some cases clinico-pathological factors are associated

with different routes or pathways in oncogenesis.

Another example from this article is related to high MSI tumours. MSI tumours are

related to hypermethylation phenotype and have been found preferentially in proximal

colon tumours. This is illustrated in Table (4.7). The article, (Miyakura et al., 2001)

Ref Gene Event Quant Units Level Phn Clinphat Fr nb samples

259 NULL MSI NULL NULL HIGH colon cancer proximal 1 88

Table 4.7: “Single relation 2” from the article (Miyakura et al., 2001)

Ref Gene Event Quant Units Level Phn Clinphat Fr nb samples

259 MLH1 exp NULL NULL YES NAM NULL 0.965 85

Table 4.8: “Single relation 3” from the article (Miyakura et al., 2001)

concludes that MLH1 promoter methylation appears ‘upstream’, as an early event of

carcinogenesis. This impact on the MLH1 expression of normal adjacent mucosa is

illustrated in Table (4.8). In addition to these summarised elements, further informa-

tion from articles with respect to environmental factors has been included: for example,

dietary factors show hallmark changes in colon cancer (Pufulete et al., 2003).

Further, an example from the article Royce et al. (2009) of “double relations” for the

sporadic colon cancer phenotype is illustrated in Table (4.9). In Table (4.9) statically

possible outcomes for genes SAMD4 and TGFBR2 are as follows: All samples for gene

1 (SAMD4) = 79 and 24. Possible outcome frequencies of the gene 2 (TGFBR2) are

0.228 and 0.125, i.e. theses TGFBR2 frequencies may impact on the cell phenotype.

15Toward the beginning, the nearer of two (or more) items, e.g. proximal portion of the intestine
at right side.

16Anatomically located far from a point of reference, such as an origin or a point of attachment
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Ref G1 Ev1 L1 Qnt Units NTE1 G2 Ev2 L2 Fr Phen CP

PMID SAMD4 exp Y NL NL 79 TGFBR2 mut Y 0.228 10 NL

PMID SAMD4 exp N NL NL 24 TGFBR2 mut Y 0.125 10 NL

Table 4.9: “Double relation” of the article (Royce et al., 2009).

259 NULL MSI NULL NULL HIGH colon cancer proximal 1 88

Table 4.10: Format of C++ developed code

Format:

The developed C++ code converts the data in table format to My SQL format. To

illustrate, consider data in the format below, which converts to

Example:

My SQL format as follows:

INSERT INTO single rel(REF ID REF, EVENT ID EVENT, Quantified, Units, Level,

PHENOTYPES, Clinpath, frequency tumours, Nb tumours) VALUES

(256, 115, NULL, NULL, ‘HIGH’, 10, ‘proximal’, 1, 88);

4.6 Conclusions

PathEpigen is a peer-reviewed knowledge base, initially for colon cancer epigenetics and

pathways, and functions as a resource for both initial analysis and data-mining. This

curated database is integrated with phenotypical and genotypical interaction networks

which can be accessed computationally. All the data are extracted from non-curated

resources, (which include information on colon cancer). Other benefits of PathEpigen

include the provision of direct access to data required to facilitate development of

models at the molecular level and the combination of highly dispersed information, for

its current particular focus on simultaneous occurrence of annotated epigenetic and
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genetic information for colon cancer phenotypes. To support the curation process and

data integration, C++ code, which converts text annotation format to SQL format,

has been developed, as illustrated in Algorithm (1), and has been successfully used to

convert the curated data from tabular to SQL format, speeding up the process of data

entry to the system. The advantage of this approach is that the tabular annotation

format contains additional data fields to guide the curation and to minimise error, while

the SQL format addresses the information by its IDs in the relational scheme. Finally,

the knowledge accumulated, while studying the molecular determinants of colon cancer

and the corresponding genotype-phenotype relations, has provided experience enabling

further contributions to the design of the querying interface of the resource.
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Great progress has been made in the exploration of epigenetic mechanisms in both

normal and cancerous tissues. Epigenetic research mainly focuses on cancer, but it

has provided new insights into other kinds of diseases, such as neurological, (Javierre

et al., 2010) and autoimmune diseases, (Urdinguio et al., 2009). A challenging task in

epigenetic research is to determine how various epigenetic entities interact and what

mechanisms convey sequence specificity to the enzymes involved. Gene silencing is a

critical precursor in cancer cell stimulation because it changes the dynamic interplay

between de-novo methylation and demethylation of CpG islands. Gene expression ac-

tivity depends on DNA methylation. Precise mechanisms of DNA methylation are

still unknown. Some medical examples also make clear that oncogenic point muta-

tions at CpG dinucleotides are involved in DNA hypomethylation. It seems clear that

DNA methylation is directly or indirectly involved in cancer development. One of the

most important questions in molecular genetics is concerned with the patterns of DNA

methylation during cell division. An established model for DNA methylation explores
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the methylation patterns in the cell population, and the current data on DNA methyla-

tion inheritance suggests that methylation patterns are propagated, (Jones and Liang,

2009). Further questions involve the interactions of DNMTs with nucleosomes and the

quantification of methylation at the initiation of replication and also immediately after

nucleosome wrapping. Moreover, the placement of methylation patterns and the regu-

lation of their specificity remains uncharacterised. In addition, unanswered questions,

such as what are the roles and functions of micro-RNAs in humans in the context of

epigenetics, are highlighted in Chapter (2).

As described in Chapter (2), the main goals of computational epigenetic research are

to find and analyse the epigenetic states in the genome and to begin to understand epi-

genetic inheritance. In this regard, it is important to know the methylation patterns in

both normal and cancerous tissues. Long-term studies and bioinformatic analysis will

be used to predict the variation in DNA methylation mapping in the human population

with large scale epigenomic data. The ability to confidently detect aberrant methy-

lation in diseased patients will depend on the range of DNA methylation variation in

healthy individuals. It will be challenging to see whether comparative epigenomics

can improve our ability to identify functionally significant sites in the human genome,

as is the case for comparative genomics. International epigenomic analysis projects

such as the ENCODE Project and the AHEAD project are creating whole-genome,

high-resolution maps of epigenetic modifications, such as human DNA methylation

patterns, histone modifications and nucleosome positioning, in healthy and diseased

tissues. Current epigenomic projects deal with methylation mechanisms in the context

of proofreading, the repair of epigenetic information that occurs during DNA replica-

tion and how DNA methylation patterns are maintained in normal and cancer cells,
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(American Association for Cancer Research Human Epigenome Task Force and Euro-

pean Union, Network of Excellence, Scientific Advisory Board, 2008). A web address

has been provided for the methylation database in Appendix (A).

Computational epigenetics projects are being developed by the Sci-Sym centre in DCU,

and a number of aspects besides the assessment of DNA methylation profiles and knowl-

edge management are being explored. In the present dissertation, we have studied

epigenetic mechanisms in the context of DNA methylation dynamics by the activity

of DNMTs, and we addressed unanswered questions of methylation quantification in

cancer initiation as described above. The DFA model focuses, Chapter [3] on methy-

lated frequency variations due to corresponding DNMT alterations implemented for

possible low level changes, and it provides complete DFA terms for the normal and hy-

permethylated states. An advantage of this model is its analysis of more random data

and its prediction of methylation states on the basis of DNMT activity. This study

can be extended to find maintenance methylation patterns during replication. From

the current results, it is clear that methylation activity varies for DNMTs, and these

variations may alter methylation patterns, which affect cancer stages. In Chapter(4),

we have shown data curation work and extraction for a new Knowledge Management

System, PathEpigen. The database deals with genetic and epigenetic interactions and

contains considerable data on corresponding molecular events. To support the cura-

tion process and data integration, which converts the text annotation format to SQL

format, C++ code has been developed. Screen shots of the actual interface of the

PathEpigen database, a summary of 647 new records and information on the 24 new

entries in table format that summarise the genes involved are given in Appendix (B).
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Appendix A
Web address for Computational Epigenetics

Sources

A.1 Web addresses

Web addresses of the Table (2.1) for the Chapter (2):

1. Chip: http://www.chiponchip.org/.

2. NIH: http://www.nhlbi.nih.gov.

3. The broad institute of MIT and Harvard: http://www.broadinstitute.org.

4. AACR Human Epigenome Task: http://www.aacr.org/default.aspx.

5. KFEL: http://www.scienceblog.com/cms/company/krembil-family-epigenetics-laboratory.

6. MeInfoText: mit.lifescience.ntu.edu.tw.

7. PubMeth: http://www.pubmeth.org.

8. MethPrimer: medgen.ugent.be/methprimerdb.

9. The Histone Database: http://genome.nhgri.nih.gov/histones.
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A.1. Web addresses

10. ChromDB:http://www.chromdb.org/.

11. CREMOFAC ‘CREMOFAC’ has included 720 non-redundant chromatin-remodeling

factor sequences and it is available at http://www.jncasr.ac.in/cremofac/.

12. MethyLogiX: MethyLogiX DNA methylation database’ has male germ cells and

late-onset Alzheimer’s disease. http://www.methylogix.com/genetics/database.

shtml.htm.

13. PathEpigen: http://statepigen.sci-sym.dcu.ie/.

14. REBAS [New England Biolabs] (Roberts et al., 2005): http://rebase.neb.com/

rebase.

15. ENCODE: http://www.genome.gov/10005107.

16. HEROIC: http://www.heroic-ip.eu.

17. EpiGRAPH: http://epigraph.mpi-inf.mpg.de/WebGRAPH/.

18. BiQ Analyzer software: http://biq-analyzer.bioinf.mpi-sb.mpg.de/.

19. Human Epigenome project: http://www.epigenome.org.

20. Epigenie: http://www.epigenie.com/Home.html.
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Appendix B
A Summary of New Database Records

B.1 Objective

The main aim of the PathEpigen database is to become a biomedical resource for

genetic and epigenetic molecular events of various early-stage colon cancer phenotypes.

It is expected to facilitate future modelling and quantitative research in the cancer field

in the area of early diagnosis. One aim for the ongoing data curation for PathEpigen is

to provide more statistically sound relationships between genetic and epigenetic events,

e.g., the probabilities of gene expression and methylation states for a given phenotype.

Also, data submission is improved in the context of inserting new data. The resource

provides two ways of analysing molecular event data:

1. “Single relation”, i.e, Event Freq = Probability (Event — Phenotype).

2. “Double relation”, i.e., Event 2 Freq = Probability ( Event 1 — Event 2 and

Phenotype).
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B.2 New Records for the PathEpigen

As described above in chapter (4), it contains 6,445 records on colon cancer, and my

contribution adds 647 records from the manual curation of 50 scientific reports, which

includes 430 and 212 “single” and “double” relations, respectively. It includes 24 new

Gene Event References

LRRC3B Expression Tian et al. (2009)

LRRC3B Methylation Tian et al. (2009)

NR3C1 Methylation Ahlquist et al. (2008)

DKK3 Expression Yu et al. (2009)

DKK3 Promoter methylation Yu et al. (2009)

MED1 Expression Howard et al. (2009)

TGFBR2 Frmashift mutation Royce et al. (2009)

MINT2 Methylation Kanai et al. (2001)

APC Mono-allelic mutation Segditsas et al. (2008)

SMAD4 Expression Royce et al. (2009)

SOCS-I Methylation Hibi et al. (2005)

HOXA9 Methylation Ahlquist et al. (2008)

SCGB3AI Methylation Ahlquist et al. (2008)

GATA4 Methylation Hellebrekers et al. (2009)

GATA5 methylation Hellebrekers et al. (2009)

HLTF Methylation Hibi et al. (2005)

RUNX3 Methylation Ahlquist et al. (2008)

PIK3CG Expression Nosho et al. (2009)

SST Methylation Deng et al. (2008)

COX-2 Expression Nosho et al. (2009)

HPGD Methylation Piepoli et al. (2009)

Table B.1: New entries in Genetic and Epigenetic Events

entries and describes genetic and epigenetic events for 21 genes [as illustrated in Table

(B.1)] and 3 phenotypes, including gastric CRC carcinoma subhistology (undifferen-

tiated) and CRC Crohn’s disease. The aim of choosing these studies was to analyse

new molecular events for colon cancer. Here, we summarise 24 new entries out of 647

in the database, as illustrated in Table (B.1 and B.2). These gene are influenced by

both genetic and epigenetic events and we describe some specific events of “ single and

“double relation” type as illustrated in Table (B.2) and (B.3) respectively. It is inter-

esting to see the “single” and “double” relations of new gene entries, such as DKK3,
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Gene Event Quantified Unit NbSmp Level Freq Phe CnecalPath cell line

NDRG2 Methylation NULL NULL 8 YES 0.500 CC NULL NULL

NDRG2 Expression ABNORMAL 1.6(up-reg) 1 YES NULL NULL NULL HCT116

PIK3CA Mut NULL NULL 666 YES 0.153 CC NULL NULL

SMAD4 Expression NULL NULL 109 NO 0.248 CC NULL NULL

MED1 Expression NULL NULL 39 YES 1 CC NULL 31 − 40

MED1 Expression NULL NULL 39 YES 1 CC NULL 41 − 50

DKK-3 Expression NULL NULL 9 NO 0.667 CC NULL NULL

DKK-3 Methylation NULL NULL 128 YES 0.523 CC NULL NULL

DKK-3 Methylation NULL NULL 64 YES 0.516 CC Male NULL

DKK-3 Methylation NULL NULL 64 YES 0.484 CC Female NULL

LRRC3B Methylation NULL NULL 31 YES 0.774 CC Female NULL

LRRC3B Expression NULL NULL 31 LOW 0.548 CC Female NULL

APC Mutation NULL NULL 63 YES 0.301 CC(Sporadic) NULL NULL

APC MAM* NULL NULL 112 YES 0.366 CC(Sporadic) NULL NULL

MINT2 Methylation NULL NULL 34 YES 0.176 CC NULL NULL

GATA4 Methylation NULL NULL 90 YES 0.700 CC NULL NULL

GATA4 Methylation NULL NULL 47 YES 0.659 CC Distal NULL

GATA4 Methylation NULL NULL 41 YES 0.780 CC NULL NULL

GATA5 Methylation NULL NULL 77 YES 0.792 CC NULL NULL

GATA5 Methylation NULL NULL 36 YES 0.861 CC Proximal NULL

HLTF Methylation NULL NULL 96 YES 0.521 CC NULL NULL

RUNX3 Methylation NULL NULL 25 YES 0.640 CC NULL NULL

SOCS-1 Methylation NULL NULL 61 YES 0.082 CC NULL NULL

SCGB3AI Methylation NULL NULL 49 YES 0.184 CC NULL NULL

NR3CI Methylation NULL NULL 63 YES 0.032 CC NULL NULL

SST Methylation NULL NULL 74 YES 0.910 CC(Sporadic) NULL NULL

Table B.2: “Single relation” for the new entries in Genetic and Epigenetic
Events. C.C = Colon Cancer; Sporadic colon cancer occurs in peo-
ple who have no family history of the disease. MAM*:Mono allelic
Mutation

GATA4 and GATA5.

Gene1 Event1 Level Quantified Unit NbTu Gne2 Event2 Level2 Freq Phe Cnecal

SAMD4 Expression YES NULL NULL 79 NULL TGFBR2 YES 0.228 CC NULL

NDRG2 Methylation YES NULL NULL 8 NULL MSI LOW 0.125 CC NULL

PIK3CG Mutation YES NULL NULL 102 JVCT Exp YES 0.340 CC NULL

SCGB3AI Methylation YES NULL NULL 9 NULL MSI YES 0.889 CC NULL

HOXA9 Methylation YES NULL NULL 12 NULL MSI YES 0.583 CC NULL

HOXA9 Methylation YES NULL NULL 12 NULL MSI NO 0.417 CC NULL

COX-2 Expression YES NULL NULL 645 JCVT Exp YES 0.370 CC NULL

RUNX3 Methylation YES NULL NULL 16s NULL MSI YES 1 CC NULL

Table B.3: “Double relation” for new entries in Genetic and Epigenetic Events.
CC = Colon Cancer
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B.3 Screen-shots of the new entries

B.3.1 Screen-Shot for the DKK3 gene

The DKK3 (Dickkopf homolog 3) gene is a member of the Dickkopf family and plays an

important role in embryonic development. It inhibits Wnt-regulated processes such as

antero-posterior axial patterning, limb development, somitogenesis and eye formation.

Generally, DKK3 is expressed at 0.667 frequency in 9 tissue samples and is hyper-

Figure B.1: “Single relation”screen-shot for the DKK3 gene

Figure B.2: “Double relation” screen-shot for the DKK3 gene

methylated at its promoter at 0.523 frequency in 128 tissue samples, as illustrated in
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Figure (B.1). When DKK3 is 100% methylated, it is not expressed, as illustrated in

Figure (B.2).

B.3.2 Screen-Shot for the GATA4 and GATA5 gene

The GATA4 gene encodes a member of the GATA family of zinc-finger transcription

factors. GATA5 encodes a protein known to bind to hepatocyte nuclear factor-1alpha

(HNF-1alpha), and this interaction is essential for cooperative activation of the in-

testinal lactase-phlorizin hydrolase promoter. Both genes (GATA4 and GATA5) are

transcriptional activators. Their hypermethylation was found in 18 tissue samples at

0.167 frequency, and LOH occurs at 8p21 chromosome at 0.421 frequency in 38 tissues.

GATA5 is maximally hypermethylated at its promoter with a frequency of 0.773 in 47

tissue samples, (Derks et al., 2006), as illustrated in (B.3).

Figure B.3: “Single relation” screen-shots of the GATA4 and GATA5 genes

B.3.3 Screen-Shot for the LRRC3B gene

LRRC3B (Leucine Rich Repeat Containing 3B) is a tumour suppressor gene playing

an important role in the pathogenesis of colorectal cancer (CRC), (Tian et al., 2009).
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Low expression of LRRC3B occurs when this gene is 100% methylated at its promoter

region, as illustrated in Figure (B.4). Consequently, LRRC3B is expressed at the low

Figure B.4: “Double relation” screen-shot of the LRRC3B gene

frequency of 0.548 and is hypermethylated at its promoter with 0.774 frequency in 31

tissue samples, as depicted in Figure (B.5).

Figure B.5: “Single relation” screen-shot of the LRRC3B gene

B.3.4 Screen-Shot for the MED1 gene

The MED1 gene encodes a protein mediator of RNA polymerase II transcription sub-

unit 1. It plays a main role in transcriptional activation and recognises transcriptional

enhancer sites in DNA. Abnormal expression of MED1 appears in adenoma adjacent

carcinoma. When CpG sites of MED1 are methylated, it shows abnormal gene expres-

sion, as depicted in Figures (B.6 and B.7).
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Figure B.6: “Single relation” screen-shot of MED1

Figure B.7: “Double relation” screen-shot of MED1

B.3.5 Screen-Shot for the SMAD4 gene

The SMAD4 gene is a member of the SMAD family of signal transduction proteins, (Se-

shimo et al., 2006). The proteins are activated by transmembrane serine-threonine re-

ceptor kinases in response to TGF-beta signalling. Seventy-nine tissue samples showed

mutations in both SMAD4 and TGFBR2 (‘YES’) with a frequency of 0.228. Addi-

tionally, SMAD4 and TGFBR2 were expressed at a frequency of 0.714 in 14 samples.

In contrast, SMAD4 expression is ‘YES’ when the second event is ‘LOH’ in 31 tissue

samples with 0.450 frequency, as shown in (B.8). In addition, ‘MSI’ highly correspond-

ing to ‘LOH’ events was observed in 10 tissue samples with a frequency of 0.100,
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Figure B.8: “Double relation” screen-shot of SMAD4

Figure B.9: “Single relation” screen-shot of SMAD4

and‘NO’ ‘MSI’ was observed in 35 samples. Furthermore, MSI was ‘HIGH’, ‘LOW’

and ‘NO’ in 17 (at frequency 0.820), 18 (at frequency 0.720), and 70 (at frequency

111



B.3. Screen-shots of the new entries

0.740)tissue samples, respectively, corresponding to SMAD4 expression. However, 24

tissue samples without SMAD4 gene expression but with TGFBR2 mutated show a

frequency of 0.125, as illustrated in Figure (B.8). Furthermore, SMAD4 ‘expression’,

‘LOH’ and ‘mutation’ with the frequency 0.367, 0.818 and 0.076 in 49, 11, 26 samples

respectively. Furthermore, 109 samples show SMAD expression with a frequency of

0.752, as illustrated in Figure (B.9).
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Appendix C
Glossary

The Cell: A cell is the basic unit of life. There are millions of different types of

cells such as human blood cell and bacteria cells etc.

Stem Cell: A biological cell found in all multicellular organisms, that can divide

through mitosis and differentiate into diverse specialized cell types and can self

renew to produce more stem cells.

DNA and RNA: These are two different nucleic acids found in the cells of

every living organism. RNA is single-stranded while DNA is a double-stranded

helix. DNA contains the genetic information of an organism, and this information

dictates how the body cells would construct new proteins according to the genetic

code of the organism.

Nucleotide: These are the main building blocks for DNA and RNA. Two nu-

cleotides on opposite complementary DNA or RNA strands that are connected

via hydrogen bonds are called a base pair (bp). These are Adenine (A), which
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forms a base pair with Thymine (T and Guanine (G), which forms a base pair

with Cytosine (C). In RNA, thymine is replaced by uracil (U).

Chromosome:DNA is organized into structures called chromosomes, which are

duplicated during cell division. These chromosomes would then release the ge-

netic codes that will be transcribed and carried by the RNA.

Nucleosome position: Each of our billions of cells contains about two metres

or six feet of nuclear DNA. All of this DNA has to be packed into a nucleus that

is about 10 microns or one hundredth of a millimetre across. In order to fit all

this DNA into this tiny space most of the DNA strand is wrapped into tiny loops

called nucleosomes. This arrangement of the DNA affects on physical structure

of the cell and the organisms, also readout of the DNA sequence and moderate

the expression of genes.

Promoter: A region of DNA that facilitates the transcription of a particular

gene.

Transcription: A process of creating a complementary RNA copy of a sequence

of DNA. During transcription, a DNA sequence is read by an enzyme (RNA

polymerase), which produces a complementary, antiparallel RNA strand.

Translation: In translation, RNA (messenger RNA) produced by transcription

is decoded by the ribosome1 to produce a specific amino acid chain, or polypep-

tide, that will later fold into an active protein.

1A cell component where translation takes place.
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Post Translational Modification (PTM): It is the chemical modification of a

protein after its translation and includes acetylation, methylation and alkylation

etc.

Histone Modification: Histone modification affects chromosome function through

at least two distinct mechanisms. (i) alter the electrostatic charge of the histone

resulting in a structural change in histones or their binding to DNA, (ii) binding

sites for protein recognition modules, such as the bromodomains or chromod-

omains, that recognize acetylated lysines or methylated lysine, respectively.

Human Genome Project (HGP): HGP (1990-2003) was a 13-year project

coordinated by the U.S. Department of Energy and the National Institutes of

Health and completed in 2003. The Goal of this project were to identify ≈

20,000 - 25,000 gene and determine the sequences of the 3 billion chemical base

pairs, improve tools for data analysis in human DNA.

The Epigenome: A component part of the covalent structure of DNA, methy-

lated cytosines located in the dinucleotide sequence CG and a noncovalent mod-

ule.

Human Epigenome Project(HEP): A multinational science project and co-

ordinated by “The Wellcome Trust Sanger Institute UK”, “ Epigenomics AG

Germany/USA” and “The Centre National de Gnotypage France”. Goal of this

project is identify, catalog, and interpret genome-wide DNA methylation patterns

of all human genes in all major tissues, (Bradbury, 2003)

Methyl Binding Protein (MBD): The MBD family, has been characterized

115



Glossary

at both the biochemical and genetic levels and members are MeCP2 (for specific

sequences), MBD2 (bind with somewhat relaxed specificity to methylated DNA),

MBD3 and MBD4, (Fatemi and Wade, 2006).

Chromatin Modification: A special modification on chromosome which im-

pacts histone and nucleosome positions.

CpG island methylator phenotype (CIMP): CIMP refers to the concordant

methylation of a group of genes in cancer.

Transcription Factor (TF): A TF is a protein that binds to specific DNA

sequences and controls the flow transcription. It performs by promoting, blocking

the recruitment of RNA polymerase2. to specific genes.

Evolutionary Genetics: A broad field of studies that attempts to account for

evolution in terms of changes in gene and genotype frequencies within populations

and the processes that convert the variation with populations into more or less

permanent variation between species.

Microsatellite Instability (MSI): It is repeated sequences of DNA highly vari-

able from person to person, each individual has microsatellites of a set length.

These repeated sequences are common, and normal. The most common mi-

crosatellite in humans is a dinucleotide repeat of Cytosine and Adenine.

Chromosomal Instability: Irregularity in chromosome structure during cell

division which occurs in cancer.

2The enzyme that performs the transcription of genetic information from DNA to RNA.
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Wnt signaling pathway: A network of proteins which plays role in embryoge-

nesis and cancer and their interactions with receptors on target cells.

PraderWilli syndrome (PWS): is a rare genetic disorder in which seven genes

on chromosome 15 (q 11-13) are deleted or unexpressed (chromosome 15q partial

deletion) on the paternal chromosome.

DNA Repair: DNA repair refers to a collection of processes by which a cell

identifies and corrects damage to the DNA molecules that encode its genome.

RNA polymerase (RNApol): is an enzyme that produces RNA. In cells,

RNAP is needed for constructing RNA chains from DNA genes as templates, a

process called transcription. RNA polymerase enzymes are essential to life and

are found in all organisms and many viruses.

Exon: An exon is a nucleic acid sequence that is represented in the mature form

of an RNA molecule.

TGFBR2 Gene: This gene encodes a member of the Ser/Thr protein kinase

family and the TGFB receptor subfamily. The encoded protein is a transmem-

brane protein that has a protein kinase domain, forming a heterodimeric com-

plex with another receptor protein, and its function is legend binding, forming

a receptor complex consisting of two type II and two type I transmembrane ser-

ine/threonine kinases.

Transforming growth factor beta (TGF) signaling pathway: The path-

way which is involved regulation of the developing embryo including cell growth,

cell differentiation, apoptosis, cellular homeostasis and other cellular functions.
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Histone methylation: Histone methylation is the modification of certain

amino acids in a histone protein by the addition of one, two, or three methyl

groups. It turns the allowing transcription factors and other proteins to access

the DNA or by encompassing their tails around the DNA, thus, restricting access

to the DNA.

Cell Line: Specific cells that can grow indefinitely given the appropriate medium

and conditions.

MLH1: MLH1 gene is located on the short arm of chromosome 3 at position

21.3. It is also known as COCA2, FCC2, hMLH1 and HNPCC2.

HNPCC: Hereditary Non Polyposis Colorectal Cancer (HNPCC) is an autoso-

mal dominant genetic condition which has a high risk of colon cancer.

House Keeping Gene: A housekeeping gene is typically a constitutive gene

that is required for the maintenance of basic cellular function, found in all cells

of an organism.

PathEpigen: The PathEpigen Knowledge Management System is continually

being added in terms of data content and additional features. It has now been

renamed StatEpigen (first referring to PathEpigen), to reflect its focus on the

statistical information and currently available at http://statepigen.sci-sym.dcu.

ie/. However, as it was known as PathEpigen during the period within which the

work reported here was performed, we have retained the original name in this

thesis.



Appendix D
Publication

D.1 ICG 2008

One poster publication was presented during this project.

Porwal, J. and Ruskin, H.J. and Perrin, D. and Roche, D.and Burns, J.(2008). Mi-

croscopic Model of Epigenetic Mechanisms (poster). XX International Congress of

Genetics, Berlin, Germany.

Abstract

“An initial microscopic model of epigenetic mechanisms is proposed, linking gene ex-

pression changes to cancer initiation. Emergent properties of complex tumours are

influenced by aberrant modification of DNA methylation through the process of cell

division. The objective here is to map the input for changes.”
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