
The XFM View Adaptation Mechanism: An Essential Component
for XML Data Warehouses

Jun Liu

Bachelor of Science in Computer Science

A Dissertation submitted in fulfilment of the

requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

Faculty of Engineering and Computing, School of Computing

Supervisor: Mark Roantree

August 2011

Declaration
I hereby certify that this material, which I now submit for assessment on the programme of

study leading to the award of Doctor of Philosophy is entirely my own work, that I have

exercised reasonable care to ensure that the work is original, and does not to the best of my

knowledge breach any law of copyright, and has not been taken from the work of others

save and to the extent that such work has been cited and acknowledged within the text of

my work.

Signed: ID No.: 57115001 Date: August 24, 2011

Acknowledgements
I would like to thank all those people who made this dissertation possible. In particular, I

wish to express my sincere gratitude to my supervisor Dr. Mark Roantree for his patience

guide, effort, encouragement and excellent advices throughout the PhD project. Without

Mark, this dissertation would not have been possible.

A special note of thanks goes to Prof. Zohra Bellahsene for her guidance and support on

my initial entry into the project.

Thanks also to Enterprise Ireland who supplied the funding for my research and to Dublin

City University for the various structures and support they provided.

Thanks to my colleagues from the Interoperable Systems Group for sharing their experi-

ences and knowledge during the time of my study. Especially to Martin and Gerard for

helping me improve my writing skill and thrashing out various idea.

Finally, I would like to express my deepest gratitude to my wife Fangfang for all her support

and encouragement during my PhD study.

Contents

Acknowledgements iii

List of Tables viii

List of Figures ix

List of Algorithms x

Abstract xii

1 Introduction 1

1.1 The Emergence of XML . 1

1.2 XML and Structure . 3

1.2.1 XML Databases . 4

1.2.2 XML Data Warehouses . 5

1.3 View Materialisation and Adaptation . 6

1.4 Issues and Motivation . 7

1.4.1 Research Goals and Contribution 9

1.5 Summary and Dissertation Structure . 10

2 Literature Review 12

2.1 View Adaptation Overview . 12

2.2 Early Efforts at View Adaptation . 13

2.3 View Redefinition in SQL Clauses . 14

2.4 View Adaptation Using Auxiliary Attributes 18

iv

2.5 View Adaptation Using Expression Trees 22

2.6 Fragment-Based View Adaptation . 24

2.7 XML View Adaptation . 25

2.8 Approaches to Containment Checking . 29

2.9 Approaches to Fragment Selection . 32

2.10 Summary . 34

3 The XFM View Framework 35

3.1 View Adaptation Outline . 35

3.2 The XFM View Adaptation System . 36

3.2.1 Graph Transformation . 37

3.2.2 Classification . 38

3.2.3 View Adaptation . 38

3.2.4 View Selection and Materialisation 39

3.3 The Worldbikes Repository . 39

4 The XFM View Model and Graph 44

4.1 XML Data Model . 44

4.2 XML Query Language . 47

4.2.1 Tree Patterns . 48

4.2.2 Sequences and Instances . 49

4.3 XFM View Model . 50

4.3.1 Sequence-Based Algebraic Operators 50

4.3.2 From XPath to Algebraic Representation 52

4.4 XFM Fragments and View Graph . 54

4.4.1 View Fragments . 55

4.4.2 XFM View Graph . 56

4.5 Constructing the View Graph . 57

4.5.1 The XFM View Graph Construction 58

4.6 Summary . 59

v

5 Containment Checking 60

5.1 Strategy Overview . 60

5.2 The SchemaGuide . 61

5.3 Embedding and Embedded Trees . 64

5.4 Containment Checking Algorithms . 72

5.4.1 Basic Containment Checking . 74

5.4.2 Optimised Containment Checking 76

5.4.3 Region-Based Optimisation . 78

5.4.4 Subtree-Based Containment . 82

5.4.5 Incorporating Value Predicates . 85

5.4.6 Containment at XFM Graph Level 86

5.5 Summary . 87

6 A Fragment Selection Strategy 88

6.1 Fragment Selection Overview . 88

6.2 Selection Metrics . 90

6.2.1 Cost Matrix . 93

6.3 Cost-Based Greedy Heuristics . 95

6.4 Fragment Selection Mechanism . 97

6.4.1 Fragment Selection . 98

6.4.2 View Coverage . 98

6.4.2.1 Clustering Based Selection 99

6.4.2.2 Subgraph Based Selection 104

6.5 Summary . 105

7 A Fragment-Based View Adaptation Mechanism 106

7.1 View Adaptation Outline . 106

7.2 Structural Adaptation . 110

7.2.1 Fragment Replication . 110

7.2.2 Target View Adaptation . 112

7.2.2.1 Fragment Insertion . 112

7.2.2.2 Fragment Deletion . 113

vi

7.2.2.3 Fragment Modification 115

7.2.3 Fragment Optimisation . 116

7.3 Data Adaptation . 120

7.3.1 Data Adaptation Methods . 122

7.4 Summary . 129

8 Evaluating Fragment Based Adaptation 130

8.1 Experiment Deployment and Implementation 131

8.1.1 The Worldbikes Dataset . 131

8.1.2 Views and Changes . 132

8.1.2.1 View Generator. 132

8.1.2.2 View Adaptation Simulator. 135

8.1.3 Limitations of Current XML Technology 136

8.2 Experiment Evaluation on the XFM Framework 136

8.2.1 Performance of Fragment Selection 137

8.2.2 Performance of View Adaptation 140

8.3 Summary . 143

9 Conclusions and Future Work 144

9.1 Thesis Summary . 144

9.2 Areas for Future Research . 148

9.2.1 Short Term Research Goals . 148

9.2.2 Longer Term Goals . 149

Bibliography 151

vii

List of Tables

2.1 Query Answering and View Adaptation 14

2.2 TPC-W Benchmark: Sample Data . 18

2.3 Sample View and Augmented Relation . 19

2.4 Change in FROM Clause . 20

2.5 Changing the Root Node . 23

3.1 Coverage of System Processes . 39

3.2 Sources and Statistics of Sensor Data . 40

6.1 Cost Matrix . 90

6.2 Similarity Matrix . 101

8.1 Worldbikes Data and SchemaGuide Statistics 131

8.2 Query Generator Parameters . 132

8.3 View Statistics . 133

8.4 Clusters and Candidates . 137

viii

List of Figures

1.1 Sample XML Document and XML Tree 3

2.1 TPC-W Benchmark . 13

2.2 A Schema Architecture of a Data Warehouse 15

2.3 The Expression Tree of the View CustomerOrder 22

2.4 Multi-View Materialisation Graph . 24

2.5 Access Controlled XML Data and View 26

3.1 XFM View Adaptation: Process Flow . 36

3.2 View Adaptation System Architecture . 37

3.3 The Worldbikes Schema . 41

3.4 A Segment of the Worldbikes Dataset . 42

4.1 XML Data Tree and Schema Guide of Worldbikes Dataset 45

4.2 Tree Patterns Correspond to the XPath Expressions in Example 4.2 and 4.3 48

4.3 Algebra and Fragment-Based Representation (Case 1) 52

4.4 Algebra and Fragment-Based Representation (Case 2) 53

4.5 XML Fragment Materialization View Graph 54

5.1 XML Tree Embedding . 65

5.2 XML Tree and Tree Pattern . 66

5.3 SchemaGuide Embedding . 68

5.4 Tree Pattern and Embedded Tree . 70

5.5 Tree Pattern, Embedded Tree and SchemaGuide 71

5.6 Overall Mapping . 73

ix

5.7 A SchemaGuide With Positional Encoding Scheme 78

5.8 Sample 1: Tree Pattern and Embedded Tree Set 79

5.9 Sample 2: Tree Pattern and Embedded Tree Set 81

5.10 Sample 3: Tree Pattern and Embedded Tree Set 84

5.11 Tree Pattern and Embedded Tree with Predicates 86

6.1 Fragment Selection Methodology . 89

7.1 Adaptation Area of Fragment Insertion . 108

7.2 Adaptation Area of Fragment Deletion and Modification 109

7.3 Fragment Replication . 111

7.4 Fragment Insertion - Insert A New Predicate 112

7.5 Fragment Deletion . 114

7.6 Fragment Modification . 116

7.7 Fragment Optimisation - Modifying A Predicate 117

7.8 Fragment Optimisation - After Modification 118

7.9 Fragment Optimisation - After Optimisation 119

7.10 Standard Except and Deep-Except Operators 124

7.11 Standard Union and Deep-Union Operators 126

8.1 Materialisation Cost for View Set VS1 - VS5 138

8.2 Materialisation Cost for View Set VS6 - VS10 139

8.3 Materialisation Cost for View Set VS11 - VS15 140

8.4 View Adaptation Cost for View Set VS1 - VS5 141

8.5 View Adaptation Cost for View Set VS6 - VS10 142

8.6 View Adaptation Cost for View Set VS11 - VS15 142

x

List of Algorithms

4.1 XFMViewGraphConstruction(E) . 58

7.1 FragmentReplication(fAR, V , G) . 110

7.2 TargetViewAdaptationForFragmentInsertion(f, fAR, V , G) 113

7.3 TargetViewAdaptationForFragmentDeletion(f, V , G) 114

7.4 TargetViewAdaptationForModifyFragment(f, V , G) 116

7.5 FragmentOptimisation(fAR, V , G) . 120

7.6 AdaptFragment(fAR, fAF, V) . 121

xi

Abstract
In the past few years, with many organisations providing web services for business and

communication purposes, large volumes of XML transactions take place on a daily ba-

sis. In many cases, organisations maintain these transactions in their native XML format

due to its flexibility for exchanging data between heterogeneous systems. This XML data

provides an important resource for decision support systems. As a consequence, XML

technology has slowly been included within decision support systems of data warehouse

systems. The problem encountered is that existing native XML database systems suffer

from poor performance in terms of managing data volume and response time for complex

analytical queries. Although materialised XML views can be used to improve the perfor-

mance for XML data warehouses, update problems then become the bottleneck of using

materialised views. Specifically, synchronising materialised views in the face of changing

view definitions, remains a significant issue. In this dissertation, we provide a method for

XML-based data warehouses to manage updates caused by the change of view definitions

(view redefinitions), which is referred to as the view adaptation problem. In our approach,

views are defined using XPath and then modelled using a set of novel algebraic operators

and fragments. XPath views are integrated into a single view graph called the XML Frag-

ment Materialisation (XFM) View Graph, where common parts between different views are

shared and appear only once in the graph. Fragments within the view graph can be selected

for materialisation to facilitate the view adaptation process. While changes are applied, our

view adaptation algorithms can quickly determine what part of the XFM view graph is af-

fected. The adaptation algorithms then perform a structural adaptation to update the view

graph, followed by data adaptation to update materialised fragments.

Chapter 1

Introduction

The eXtensible Markup Language (XML) has become an extraordinarily popular format

for marking up all kinds of data, e.g., web content, sensor data and data used in many

online applications. Due to its flexibility, it has widespread usage in terms of data storage,

exchange and display. As a consequence, there are compelling reasons for using XML

and related database technologies for querying and manipulating XML data. However, its

flexibility and rich semantics have a downside: queries across large XML repositories are

often slow. In this chapter, we provide an overview of XML and related technologies,

describe a popular approach to optimisation, and by highlighting the limitations to this

approach, provide a motivation and work plan for the research presented in this thesis.

1.1 The Emergence of XML

In the 1970’s, three researchers at IBM invented GML, to provide a means of marking up

technical documents with structural tags. GML developed into the Standard Generalised

Markup Language (SGML) and was adopted by the ISO in 1986. SGML is a specification

for defining markup languages rather than a markup language itself. A well known applica-

tion of SGML is HTML (Hypertext Markup Language), which defines a specific set of tags

suitable for web pages.

HTML became the means for separating content from presentation so that web browsers can

render them in as consistent a manner as possible. However, when it comes to data storage

and exchange, HTML is not a best choice, as it was originally designed as a presentation

1

technology. Furthermore, SGML is not suited to exchanging information over the web and

is considered too complex for general usage. As a result, the eXtensible Markup Language

(XML) was created to bridge this gap as its characteristics made it flexible enough to be

a support platform and architecture independent data exchange mechanism so that richly

structured data could be exchanged over the web and other applications.

In parallel to these developments, e-commerce has seen a tremendous amount of business

transactions being conducted over the Internet. It is believed that XML is one of the best

vehicles for exchanging business transactions on the Internet [LWC06] due to the powerful

capabilities brought by XML [Bra03] as listed below:

• Heterogeneity: Where each “record” can contain different data fields. The real world

is not neatly organised into tables, rows, and columns. There is great advantage in

being able to express information, as it exists, without restrictions.

• Extensibility: Where new types of data can be added as needed and do not need to be

determined in advance.

• Flexibility: Where data fields can vary in size and configuration from instance to

instance. XML imposes no restriction on data; each data element can be as long or

as short as necessary.

Due to its applicability, we now see an increasingly large amount of business transactions

has been stored in XML format and exchanged online. Additionally, XML is also an es-

sential tool for building digital government which refers to the possibilities to utilise cur-

rent and future information and communication technologies (ICT) effectively to build new

kinds of services both for people working in public sectors and for people needing their

services [Sal05].

The exploitation of XML for e-commerce and government is also matched by new forms

of web services and in recent times, the sensor web [RS09]. Large volumes of XML data

are likely to be generated in Sensor Web systems due to its highly interoperable properties,

which is crucial when integrating sensor data, both within a single sensor network and with

the data generated by other sensor networks [RS09]. One such example demonstrates how

raw data output from sensor devices is structurally and semantically enriched using XML

2

CREATE VIEW V AS
SELECT Title, OrderDate
FROM Item & OrderLine & Orders
WHERE Cost>100

CREATE VIEW V’ AS
SELECT Title, OrderDate, Description
FROM Item & OrderLine & Orders
WHERE Cost>100

Figure 1: Changing the SELECT Clause

<Dublin>

<stations date="01-Mar-2010">

<station>

<available>12</available>

<free>6</free>

<total>18</total>

</station>

<station>

<available>22</available>

<free>8</free>

<total>30</total>

</student>

</stations>

</Dublin>

Customer(CustomerID, AddressID, FirstName, LastName)

Address(AddressID, Street, City, State, ZIP)

Orders(CustomerID, OrderID, AddressID, OrderDate, OrderTotal)

OrderLine(OrderLineID, OrderID, ItemID, Status, Discount, QTY)

Item(ItemID, Title, Cost, Description)

CREATE VIEW V AS

SELECT A1, . . ., An

FROM R1 & . . . & Rm

WHERE C1 AND . . . AND Ck

ALTER TABLE G ADD Description UPDATE G SET Description =
(SELECT Description FROM Item WHERE Item.ItemID=G.ItemID)

1

(a) XML Document

Dublin

stations

date

01-Mar-2010

station

available

12

free

6

total

18

station

available

22

free

8

total

30

//Dublin//station[.//total>20](c) XPath Query :

(b) XML Tree

Customer(CustomerID, AddressID, FirstName, LastName)

Address(AddressID, Street, City, State, ZIP)

Orders(CustomerID, OrderID, AddressID, OrderDate, OrderTotal)

OrderLine(OrderLineID, OrderID, ItemID, Status, Discount, QTY)

Item(ItemID, Title, Cost, Description)

CREATE VIEW V AS

SELECT A1, . . ., An

FROM R1 & . . . & Rm

WHERE C1 AND . . . AND Ck

ALTER TABLE G ADD Description UPDATE G SET Description =
(SELECT Description FROM Item WHERE Item.ItemID=G.ItemID)

CREATE VIEW CustomerOrder(FirstName,LastName,Item,Cost,Description) AS
SELECT FirstName, LastName, Item, Cost, Description
FROM Customer, Orders, OrderLine, Item
WHERE date>10/02/2010

CREATE VIEW V AS
SELECT Title, OrderDate
FROM Item & OrderLine & Orders
WHERE Cost>100

CREATE VIEW V’ AS
SELECT Title, OrderDate, Description
FROM Item & OrderLine & Orders
WHERE Cost>100

Figure 1: Changing the SELECT Clause

1

Figure 1.1: Sample XML Document and XML Tree

for heart rate monitors worn by players in team sports [MRMW09]. What started out as an

emerging model for information enrichment and exchange, has now become so common

place and used in diverse scenarios and applications, that we now see considerable volumes

of both XML transactions and repositories.

1.2 XML and Structure

Before proceeding to describe both structure and storage for XML data, we now briefly

introduce the dataset that will be used throughout the thesis for motivating issues and pre-

senting examples. Figure 1.1 is a sample segment of the Worldbikes dataset, which is a

collection of sensor data that are continuously collected from the Bicycle Sharing System

over the world. As discussed in Chapter 4, the collection is through a daily based auto-

matic process with data obtained from 635 stations of 7 different cities over the world, e.g.,

Dublin, Lyon and Brisbane.

Figure 1.1a is a segment of the XML document of Worldbikes data which contains struc-

tured information. The content of the dataset is encapsulated with elements that are defined

by tags, e.g., stations in Figure 1.1a. Those tags are nested and self-descriptive, which help

users or applications understand the content of XML documents. Elements within the XML

dataset are hierarchically organised into a tree-based structure as shown in Figure 1.1b. Ad-

ditional descriptive information, namely attributes, may be included in tags. XML content

can be accessed with different languages, XPath [W3C10a] and XQuery [W3C10b]. XPath

is used to navigate and select nodes from XML documents. It is designed to be embed-

3

ded in a host language such as XQuery. Therefore, many research efforts focus on XPath.

Figure 1.1c gives an example of an XPath expression which retrieves all stations in Dublin

that have more than 20 bikes in total. In the example, Dublin, stations and total are re-

ferred to as the NameTests in XPath, whereas the double slash (//) and single slash (/)

represent either ancestor-descendant or parent-child relationships between NameTests. The

ancestor-descendant and parent-child relationships are known as the descendant and child

axis, respectively, in the XPath language.

XML datasets are semi-structured, which means no schema is required with data self-

describing. However, XML documents can be associated with and validated against either

a Document Type Definition (DTD) file [W3C08] or an XML Schema file [W3C04]. Both

DTD and XML Schema describe the structure of XML documents and express constraints

about the contents of XML documents. In order to obtain a better understanding of how

these query languages and schemas are used, we now discuss storage mechanisms for XML

data repositories.

1.2.1 XML Databases

Currently there are two types of XML databases: XML-Enabled Databases and Native

XML Databases. The XML-enabled databases are built on top of relational databases and

apply relational techniques over the XML data, e.g., traditional join algorithms like merge-

join and hash-join used in the relational database systems. XML documents are converted

to the relational model and stored in tables. The major problems as stated in [LWC06] with

the XML-enabled databases are:

• As XML is expressed in tree structure, data must be converted into relational data

format, a model with lesser semantics.

• Parts of the XML data structures, such as Prolog Instructions and comments are lost

after converting XML documents into relational database systems. As a consequence,

it is hard to restore an XML document with its original structure from the rational

database systems.

• XML elements can be arbitrarily inserted into an XML document due to its hetero-

geneity. However, relational database systems require that all schemas are predefined

4

before any value can be inserted.

• Relational database systems must transform XML queries into the corresponding

SQL queries.

For the above reasons, native XML databases emerged. As defined by the XML DB consor-

tium, the formal definition of a Native XML Database states that it must have the following

properties:

• Defines a (logical) model for an XML document;

• Has an XML document as its fundamental unit of (logical) storage, just as a relational

database has a row in a table as its fundamental unit of (logical) storage;

• Need not have any particular underlying physical storage model. For example, Native

XML Databases can use relational, hierarchical, or object-oriented database struc-

tures, or use a proprietary storage format (such as indexed, compressed files).

Native XML databases utilise a set of XML-specific technologies for representing and

querying XML data. Within native XML databases, data objects are represented by us-

ing labelling schemes. Each node within an XML tree is assigned a label which uniquely

identifies it. Additionally, XML-specific algorithms are used for processing XML data,

e.g., twig join algorithms [BKS02, QYD07, LR10]. The XML-specific algorithms are per-

formed upon an encoding scheme, which is constructed based on a labelling scheme and

augments it with the information necessary to perform query processing [OR10]. As men-

tioned above, the physical storage of how those labelling schemes or encoding schemes

are stored is irrelevant as long as XML-specific technologies are used. Examples of native

XML databases are eXist [eXist], MonetDB [MonetDB] and BaseX [BaseX].

1.2.2 XML Data Warehouses

Since the Internet has evolved into a global platform for e-commerce and information ex-

change, the interest in XML has been growing significantly and large volumes of XML

data already exist to provide an important resource for decision support systems [GRV01].

Furthermore, as more organisations view the web as integral to their communication and

5

business strategies, the importance of integrating XML data in data warehousing systems is

becoming increasingly high. As a consequence, XML technology has slowly been included

into the decision support process, e.g., data warehouses.

Existing efforts on integrating XML data into traditional data warehouses [NNNT02, RRT04],

shows data being extracted from the XML documents and converted to the native format of

the data warehouse (usually a relational database). An issue with this approach is the con-

version of the heterogeneous data structure that is implied by the XML structure into a uni-

fied relational database schema. In a second approach, XML documents are either logically

integrated within an XML warehouse by storing XML documents apart from the warehouse

[PRP02, PP03, PPP04], or physically integrated within the warehouse by storing documents

within data warehouse operating on native XML databases [ZWLZ05, NDRR06]. An is-

sue with this approach is the poor performance when retrieving XML data due to the lack

of maturity of XML databases. Other efforts merely differ from each other based on how

they enable decision-support process, e.g., On-line Analytical Processing (OLAP), while

an XML-based data warehouse is used. What all of this shows, is that the worlds of XML

and data warehousing are beginning to converge.

1.3 View Materialisation and Adaptation

As this dissertation is based on XML data warehouses that use materialised views to boost

query performance, it is necessary to provide a brief overview of the process and associated

issues. As stated in [RTTZ10], existing XML-based data warehouse techniques all suffer

from performance issues when using native XML databases. The reason is that native XML

databases do not perform well when dealing with large data volumes and complex analytical

queries that are typical in data warehousing [MD09]. Moreover, as XPath is a navigational

language, XPath expressions often define complicated navigation over XML trees, which

result in expensive query processing, especially when queries are executed over a large set

of XML data. As a consequence, an extensive amount of research has been carried out in the

past decade using materialised views [BOB+04, LWZ06, TYÖ+08a, WTW09, WLY11] to

expedite XML query performance. Defining a small set of materialised views may result in

avoiding complex computations and thus, yield important performance improvements for a

6

large set of queries [ABMP07].

Although using materialised views improves query performance, this approach suffers from

an inconsistency problem, caused by either an update of the underlying databases or changes

to view definitions. Existing efforts focus on providing view maintenance mechanisms

[STP+05, OCMH05, JL10] which synchronise materialised views as the underlying data

source is updated. There has been little research activity focused on developing approaches

to keep views updated in response to view definition changes (or view redefinition). The

process that handles view redefinition is called view adaptation and was first outlined by

Gupta [GMR95] in relational database systems. The main objective of view adaptation

is to adapt existing materialised data in response to view definition changes so that view

definitions and associated materialised data, remain consistent.

Generally speaking, there are two methods to manage view redefinition. When a view is

redefined, if the new view resulting from the redefinition is obtained by utilising previously

materialised data, then this process is called adapting (incremental adaptation of) the view.

The adaptation process usually adds (removes) data into (from) previously materialised

data. However, when the result of the new view is obtained by evaluating the new view

definition from scratch, the process is then referred to as recomputing or rematerialising

the view.

1.4 Issues and Motivation

Materialised views have been shown to offer significant performance gains across different

forms of data warehousing technologies. However, a crucial feature of these systems is the

view adaptation component, that enables consistency between view definitions and mate-

rialised data. However, the primary problem is that current view adaptation methods for

XML data warehouses have significant shortcomings, as we will point out in this section.

In relational database systems, the view adaptation problem has been studied in the con-

text of both centralised [GMR95, GMRR01] and distributed environments [MD96, Moh97,

Bel98, Bel00, Bel04]. In a centralised environment, [GMR95] provides a single-view based

adaptation approach which augments views by adding extra attributes, mainly foreign keys.

The effectiveness of the adaptation relies heavily on the existence of these foreign keys. In

7

their approach, they did not take network communication costs into account which is essen-

tial in the data warehousing environment. [MD96] improved the view adaptation approach

presented in [GMR95] by augmenting the base relations and views with “join-count” and

“derive-count” attributes. They analyse the network communication between different sites,

e.g, they assume views and source data are distributed at different locations over the Inter-

net. [Moh97] refines the work in [MD96] by providing new forms of view changes. Their

approach is based on expression trees that consist of relational algebraic operators where

changes can be made to the algebraic operators. However, all adopt a single view based

approach and view adaptation algorithms are limited to the amount of materialised data

that can be reused for adaptation. For this reason, the research in [Bel00, Bel04] provides

a view adaptation approach based on a multi-view framework. In their approach, materi-

alised data are shared between views by means of fragments. Fragments can be selected

for materialisation provided that a selection algorithm is utilised. If any change is made to

the view definition, their approach first checks to see whether the local shared materialised

data can be reused so that access to the remote data source can be avoided. However, due

to the difference between structured relational data, which is flat, regular, homogeneous

and unordered, and semi-structured XML data, which is nested, irregular, heterogeneous

and ordered, existing relational approaches cannot be directly adopted by XML warehouse

systems.

The view adaptation problem provides very different challenges due to the particular char-

acteristics of XML. To the best of our knowledge, [AML+07] is the sole research effort

focusing on view adaptation for XML database systems. In their approach, views are repre-

sented by a combination of union and intersection of XPath expressions. However, we will

show that their approach handles very limited changes, either adding or removing an XPath

expression from the view representation, and they do not take network communication cost

(as studied in [MD96]) and the shareability of the materialised data (as studied in [Bel04])

into account.

In summary, existing XML approaches to view materialisation adopt an approach where

a view is materialised as a single entity, for each view definition. To understand the is-

sues inherent in this approach, let us look at the advantages of a fragmented approach as

proposed in [Bel04]. A fragmented approach has the following benefits: materialised data

8

is shared which avoids duplication; the view adaptation performance is improved as there

is a greater chance that materialised data can be reused; and finally, the number of access

operations to source data is decreased, which reduces the network communication cost and

further improves the view adaptation performance. This is important for distributed data

warehouse systems. While all of these benefits are enjoyed by a fragmented approach to

view materialisation, the sole fragmented approach [Bel04] operates only on relational data.

1.4.1 Research Goals and Contribution

Given the issues described in the previous section, we can now present the research goals

that form the workplan for this dissertation. Our overall research goal is to provide query

optimisation for XML using a materialisation approach. Having highlighted the issues

when views are disjoint entities, materialised in full, our approach is to create a network

of smaller materialised partitions. The hypothesis put forward in this research is that the

view adaptation component, crucial to view maintenance, is more efficient when using a

multi-view based framework with materialised data shared between views. The research

goals necessary to deliver XML view adaptation can now be listed:

• We must define an XML view model with sufficiently expressive constructs and al-

gebraic operators, to represent XML views.

• It is then necessary to develop a process whereby the XML view is transformed into

our view model.

• To develop the view adaptation process which updates the view graph after applying

changes to view definitions. This includes containment checking algorithms, which

form an essential component of view adaptation. Its purpose is in identifying com-

mon expressions between views and determining the extent of changes between old

view definitions and the new ones.

• To optimise the view adaptation process and to balance the cost of query performance

and view maintenance, it is necessary to develop a process which selects the best view

fragments within the view model for materialisation.

9

• Once we have components for both containment checking and selection, our view

adaptation process is complete. However, it is essential that a framework is devised

to enable each of the different components to interact.

The overall contribution of this dissertation is to provide a new view adaptation system for

XML databases and warehouses. As part of this research, it was necessary to deliver:

• An XML view model consisting of a set of novel algebraic operators and view con-

structs.

• A novel transformation process which transforms XML views into our view model.

• A containment checking algorithm that exploits a novel XML metadata construct to

improve speed and accuracy.

• A novel cost-based fragment selection algorithm.

1.5 Summary and Dissertation Structure

In this chapter, a general introduction to the eXtensible Markup Language, XML databases

and XML-based data warehouses was provided. Due to the powerful features of hetero-

geneity, extensibility and flexibility brought by XML, it has been widely adopted as an

exchange format for heterogeneous data sources from any forms of information systems.

The interest in XML has been growing significantly and large volumes of XML data al-

ready exist which provide an important resource for decision support systems. More and

more users of XML applications are seeking for solutions to integrate XML data into their

decision support systems.

A major obstacle for XML-based data warehousing systems is the performance issue of

the native XML databases. Although materialised XML views are used to expedite query

performance, they suffer when updates to the views are required. In this respect, view adap-

tation is a crucial component in these systems. Furthermore, this view adaptation process

strongly benefits from a fragmented approach to materialisation. To date, no research effort

has attempted to combine the fragmented approach to XML data.

Finally, we provide details of the structure of this dissertation. We continue in Chapter 2

by giving a detailed literature review of existing work in this area; in Chapter 3, a system

10

overview is provided together with a description of the XML dataset used for examples

through this dissertation; Chapter 4 presents our XFM view model; Chapter 5 introduces

the containment checking algorithm; we then present our fragment selection mechanism

in Chapter 6, which analyses existing views and determines those parts of the views to be

materialised; we describe view changes in Chapter 7 together with the corresponding view

adaptation algorithms; in Chapter 8, we present our evaluation with a detailed analysis of

experiments; and finally, we provide conclusions and discuss future work in Chapter 9.

11

Chapter 2

Literature Review

The primary focus of our research is on view adaptation for materialised data. In this chap-

ter, we begin with an overview of the adaptation process. We then examine adaptation in

relational database systems, beginning with the earliest efforts, and discuss how issues have

evolved over time. We complete our discussion in the relational context with an analysis

of a multi-view based adaptation approach. We then proceed to discuss XML based adap-

tation. At the end of this chapter, we discuss two essential problems that are related to the

multi-view based adaptation approach: containment checking and fragment selection.

2.1 View Adaptation Overview

View adaptation has been studied extensively in relational database systems for both cen-

tralised and distributed environments. The traditional view maintenance approaches, both in

relational context [GMS93, LSK07, ZLE07] and in XML context [OCMH05, STP+05], aim

to maintain the materialised view in response to the modifications of source data, whereas,

the view adaptation approach aims to “adapt” the view incrementally in response to changes

made in the view definition. When incremental adaptation is not possible, rematerialisation

is required. As will be shown later, to reduce the cost of rematerialisation, different ap-

proaches are presented to reuse existing materialised data so that access to the source data

can be avoided.

On the other hand, view adaptation is very close to the query answering [TYÖ+08b, WTW09]

problem which aims to find a rewriting plan over an existing materialised view so that the

12

Customer(CustomerID, AddressID, FirstName, LastName)

Address(AddressID, Street, City, State, ZIP)

Orders(CustomerID, OrderID, AddressID, OrderDate, OrderTotal)

OrderLine(OrderLineID, OrderID, ItemID, Status, Discount, QTY)

Item(ItemID, Title, Cost, Description)

1

Figure 2.1: TPC-W Benchmark

existing materialised data can be reused to answer the new query. However, they differ

from each other based on their purpose, the cost of the process and the approach adopted as

shown in Table 2.1.

In the rest of this chapter, we introduce view adaptation approaches within different con-

texts. We analysis different approaches in detail with examples based on the database

schema depicted in Figure 2.1, where attributes that are underlined indicate the key at-

tributes. This sample schema is a subset of the schema introduced in the TPC-W Bench-

mark [TW05] which is a transactional web benchmark.

2.2 Early Efforts at View Adaptation

In [Bel98], view adaptation is triggered by view redefinitions that are caused by schema

evolution. In their approach, views are defined based on an integrated schema as shown in

Figure 2.2. The integrated schema is generated by merging source schemas obtained from

different data sources. View redefinition is implicitly caused by the schema evolution of the

existing views as explained below.

Suppose the clients or the data warehouse administrator can execute update upon the data

warehouse schema independently of the information sources (e.g., Data Source 1). As a

result, the modification and deletion of an attribute type in an existing view schema will

cause the incoherence with regard to the data source schema.

Their solution to the modification of an attribute type in a view schema is to create a new

view with the new attribute type without materialising it, but reference to the old materiali-

sation. When deleting an attribute, they apply a Hide operation to hide the old materialised

data corresponding to the deleted attribute. In both case, no new materialised data is pro-

duced.

13

Query Answering View Adaptation
Problem Given a materialised view V

and a query Q, how Q is an-
swered by using V .

Given a materialised view V and a
change c, V ′ is the view after apply-
ing the change c to V . The problem
is how V is updated by reusing the
previously materialised data.

Approach 1. To find a query C, upon
Q and V , when executed
on V , gives the result of
Q. The query C is re-
ferred to as the compensa-
tion query or the compos-
ing query

2. Recomputing: ifC cannot
be found, then computeQ
from scratch.

1. Incremental Adapting: If V ′ is
less restrictive than V , then the
process adds extra data into the
materialised view. If V ′ is
more restricted than V , then the
process removes redundant data
from the materialised view.

2. Recomputing: if previously ma-
terialised data cannot be reused,
then compute V ′ from scratch.

Cost Complexity The complexity of using V is
O(n), where n indicates the
amount of data contained in
V .

The cost of the maintenance pro-
cess is O(log(n)) by the incremen-
tal adapting.

After Execution V is retained. V is deleted and V ′ is kept.

Table 2.1: Query Answering and View Adaptation

Summary and Issues. In their approach, a limited amount of changes are supported,

modifying or deleting an attribute. View adaptation is achieved by either referencing to or

hiding the old materialised data, the old materialised data is not actual adapted.

The work presented in the next section takes different types of changes into account. Dif-

ferent view adaptation algorithms are provided to handle each type of change and the adap-

tation process is treated as an update process over the existing materialised view.

2.3 View Redefinition in SQL Clauses

Different types of changes are considered by [GMR95, GMRR01] for relational database

systems in a centralised environment. In their approach, additional information is stored

with materialised views to facilitate view adaptation. Views are defined by the SELECT-

FROM-WHERE queries and changes can be made to either the SELECT, FROM or WHERE

clauses. Examples of possible changes are: adding or deleting an attribute in a SELECT

14

Integrator

Integrated
Schema

View 1

Data Source 3

Wrapper/Monitor

Source
Schema 3

Source
Schema 1

Data Source 1

Wrapper/Monitor

Data Source 2

Wrapper/Monitor

Source
Schema 2

View 2
View N

Figure 2.2: A Schema Architecture of a Data Warehouse

clause; adding, deleting, or modifying a predicate in the WHERE clause; adding or deleting

a join operand in the FROM clause. Our examination of this work is useful in presenting a

more in-depth overview of the issues involved and how they can be addressed.

When changes are encountered, the view adaptation process is treated as an incremental

update problem upon the old materialised view, which means that the view adaptation is

achieved by executing an update statement upon the old materialised data. The update

statement is obtained by comparing the new and old view definitions and the result of the

new materialisation is computed by executing the update statement over the materialised

data. However, in most of the cases, the update statement needs access to the source data as

the old materialised data do not contain sufficient information, e.g., if the primary/foreign

key is not stored, the process cannot identify rows in a view (table). As a result, extra

attributes are stored with the view to facilitate the adaptation process. Those extra attributes

could be the entire set of attributes of a relation or merely the primary/foreign keys. As

demonstrated in the examples listed below, when the SELECT clause is changed, in order

to achieve the adaptation process, it is necessary to store the key attributes with the view.

15

Example 2.1 (The Old View V)
CREATE VIEW V AS
SELECT Title, OrderDate
FROM Item & OrderLine & Orders
WHERE Cost>100 �

Example 2.2 (The New View V)
CREATE VIEW V’ AS
SELECT Title, OrderDate, Description
FROM Item & OrderLine & Orders
WHERE Cost>100 �

Example 2.3 (Changing the SELECT Clause - The Update Statement)
ALTER TABLE A ADD Description UPDATE A SET Description =
(SELECT Description FROM Item WHERE Item.ItemID=G.ItemID) �

Define a view V which stores title and order date of all items that cost greater than 100

Euro. The view is expressed by the SQL statement shown in Example 2.1, where the “&” is

used here to indicate the equality conditions in a natural join (used throughout this chapter).

Suppose one would like to add a new attribute, Description, into the SELECT clause, V

then becomes V ′ as shown in Example 2.2. In this case, since the foreign key is not stored

with V , e.g., ItemID, the view adaptation process cannot identify each item stored in V .

Therefore, the approach is to augment V with attribute ItemID. Suppose the augmented

view is stored in a relation A, then the adaptation problem can be treated as an incremental

update problem by executing an update statement shown in Example 2.3 upon the relation

A.

Example 2.4 (Changing the FROM Clause - The Old View V)

CREATE VIEW V AS

SELECT FirstName, LastName, OrderTotal, AddressID

FROM Customer & Orders

WHERE Customer.CustomerID=Orders.CustomerID �

Example 2.5 (Changing the FROM Clause - The Update Statement)

ALTER TABLE V ADD Street, City

UPDATE V SET Street, City = (SELECT Street, City

FROM V , Address WHERE V .AddressID=Address.AddressID) �

16

When a change takes place in the FROM clause, a relation is either added or deleted to/from

the join expression. A two-step approach is presented for each case. For the case where

a new relation is added into a view, the adaptation process first alters the view (table) by

extending it with the extra attributes required and then executes an update statement upon

the view to fill the columns corresponding to the new attributes. When a relation is removed,

the adaptation process first deletes duplicate tuples from the old materialisation and then

adds dangling tuples to the new view. A dangling tuple is a tuple in a base relation that

may not join with any tuples in another base relation. Both cases require key attributes to

be stored with the old view so that when a join relation is added (removed) into (from) the

view, the adaptation process can identify extra data to be added into or, redundant data to

be removed from, the old materialised data. Example 2.4 and Example 2.5 demonstrate the

circumstance that when a join relation is added into the FROM clause.

Define a view V , as shown in Example 2.4, which contains customer names and total num-

ber of items that they have ordered. Suppose one would like to add the relation Address

into the FROM clause with additional attributes Street and City into the SELECT clause,

the adaptation is achieved by, 1) augmenting V with additional attributes required, Street

and City; 2) filling the new columns with the corresponding data required for Street and

City. Those steps are achieved by executing the update statement shown in Example 2.5

upon the old materialisation provided that key attributes are stored. In this case, the key

AddressID is required to determine which rows containing the attributes Street and City

should be retrieved so that they join with existing materialised data.

Summary and Issues. Several limitations appear in this approach:

1. This approach is limited to cases where foreign keys are available in the database

schema. However, in a real world environment this might not be the case.

2. The incremental update approach requires foreign keys (or other attributes) always

stored with the view, which is fine for small number of attributes. When there are

several base relations and many attributes exist, keeping a copy of all may not be

feasible. In the worst case, an entire table is stored.

3. The adaptation algorithms do not take network communication cost into account.

17

C
us

to
m

er
ID

A
dd

re
ss

ID

Fi
rs

tN
am

e

La
st

N
am

e

c1 a1 f1 l1
c2 a2 f2 l2
c3 a3 f3 l3
c4 a4 f4 l4
c5 a5 f5 l5

(a) Customer

C
us

to
m

er
ID

O
rd

er
ID

A
dd

re
ss

ID

O
rd

er
D

at
e

O
rd

er
To

ta
l

c1 o1 a1 25/03/2010 1
c1 o2 a1 04/02/2010 2
c3 o3 a3 01/01/2010 5
c2 o4 a2 10/01/2010 2
c2 o5 a2 15/01/2010 1

(b) Orders

Table 2.2: TPC-W Benchmark: Sample Data

They assume that views and base relations are stored on the same site. However, in

reality, it is likely to be the case that materialised views and base relations are stored

separately over the network.

4. For the case of changing the FROM clause, their approach works only under a very

restricted situation, when duplicates of tuples are maintained, dangling tuples are

allowed and key attributes must be stored with the view.

2.4 View Adaptation Using Auxiliary Attributes

The work presented in [MD96] either extends or provides more efficient methods based on

the centralised approach for data warehouses. They proposed a view adaptation mechanism

that saves network communication cost, mainly the data transferring cost, and does not

rely on foreign keys. Their approach augments base relations and derived materialised

views with a join-count and a derive-count attribute, respectively. The join-count on a base

relation indicates how many times a tuple joins with tuples in other relations and the derive-

count attribute represents the number of derivations of each view tuple. They support the

situation that dangling tuples are allowed.

Unlike the approach in [GMR95], which relies on the appearance of the foreign key at-

tributes, in this approach, when changes take place in the SELECT clause, it stores join

attributes as extra information with views and with an extra join-count attribute indicating

the number of times a tuple joins with other tuples in the second relation. Similar to the

18

C
us

to
m

er
ID

O
rd

er
D

at
e

O
rd

er
To

ta
l

c1 25/03/2010 1
c1 04/02/2010 2
c2 10/01/2010 2
c2 15/01/2010 1
c3 01/01/2010 5

(a) Materialised View V

C
us

to
m

er
ID

A
dd

re
ss

ID

Fi
rs

tN
am

e

La
st

N
am

e

jo
in

-c
ou

nt

c1 a1 f1 l1 2
c2 a2 f2 l2 2
c3 a3 f3 l3 1
c4 a4 f4 l4 0
c5 a5 f5 l5 0

(b) Customer (Augmented with join-count at-
tribute)

Table 2.3: Sample View and Augmented Relation

previous approach, the purpose of augmenting the view with extra data is to facilitate the

identification of the relevant data required for adaptation and additionally, to reduce the

network communication cost. Example 2.6 gives an illustration of a change takes place in

the SELECT clause. Table 2.2 shows the sample data of the Customer and Orders relations

that are used in Example 2.6.

Assume we wish to define a view V , which stores all details of the customer orders includ-

ing customer id, order date and order total. The view is expressed in Example 2.6 and the

materialised data of the view is shown in Table 2.3a.

Example 2.6 (Handle Changes with a Join-Count Attribute)

CREATE VIEW V AS SELECT CustomerID, OrderDate,

OrderTotal FROM Customer & Orders �

Suppose one would like to add customer names into V . This involves retrieving all tuples

from the Customer relation and joining them with the materialised view V . However, by

observation, one would easily find that customer c4 and c5 (see Table 2.2) have no orders at

all. Therefore, retrieving c4 and c5 from the base relation is a redundant process, which may

become a significant cost when the number of redundant tuples are large and the Customer

relation is stored on a different site on the network. By augmenting the base relation with

an additional join-count attribute as shown in Table 2.3b, the process can avoid unnecessary

data transferring cost caused by the dangling tuples, e.g., c4 and c5. The old view is then

19

Fi
rs

tN
am

e

La
stN

am
e

O
rd

er
To

ta
l

de
riv

e-
co

un
t

f1 l1 1 1
f1 l1 2 1
f2 l2 1 1
f2 l2 2 1
f3 l3 5 1

(a) Before Adaptation

Fi
rs

tN
am

e

La
stN

am
e

de
riv

e-
co

un
t

f1 l1 2
f2 l2 2
f3 l3 1
f4 l4 1
f5 l5 1

(b) After Adaptation

Table 2.4: Change in FROM Clause

adapted by joining the old materialised view with tuples retrieved from the base relation

and projecting out the new attributes that are desired, e.g., in this case, FirstName and

LastName.

When removing a relation from the FROM clause, the previous approach [GMR95] works

under very restricted parameters: when duplicate tuples are maintained and where dangling

tuples are permitted in the view. As depicted in Example 2.7, the algorithm presented in

this work does not have such restrictions as extra or redundant tuples can be identified by

using the join-count and derive-count attributes.

Define a view V containing order information of all customers, the view is expressed in

Example 2.7 where the materialised data contained in V is shown in Table 2.4a with an

additional derive-count attribute.

Example 2.7 (Using Join-Count and Derive-Count Attributes)

CREATE VIEW V AS SELECT FirstName, LastName, OrderTotal

FROM Customer & Orders �

Suppose one would like to delete relation Orders from V , which leads to the deletion of

OrderTotal column in V as it is part of the relation Orders. The materialised view becomes

less restricted after deleting and therefore, tuples that were previously eliminated should

now be added into the view. In this case, customer c4 and c5 should be added. The following

steps are used to achieve the adaptation:

20

• Execute the statement SELECT FirstName, LastName, derive-count INTO I FROM

V . The purpose of this is to temporarily store attributes that will not be deleted into

a relation I .

• Find tuples in Customer relation (Table 2.3b) where the join-count is zero and store

them in a temporarily relation C, i.e., c4 and c5.

• Compute the new view V ′ = I ∪ C; also update the derive-count (see cells in red in

Table 2.4b);

The new materialisation results from the change is shown in Table 2.4b. As shown in

Example 2.7 extra data transferring costs are eliminated when retrieving data from base

relations and it is not necessary to retrieve data with join-count greater than 0 as they are

already in the materialised view. The purpose of these examples is to demonstrate how this

work addresses the shortcomings in [GMR95] where network communication costs were

not considered. These costs are crucial in systems such as data warehouses as we will show

in our experiments.

Summary and Issues. One of the problem involved in this approach is that, depending

on the number of joins existing in a view, each join relation involved in the FROM clause

is augmented by one or more join-count and derive-count attributes. When there are many

relations involved in the query and each relation contains a large number of tuples, a signifi-

cant amount of additional data is added into each relation. Additionally, views are treated as

single entities and adaptation algorithms cannot detect and reuse exiting materialised data

to further improve the adaptation performance or to reduce the number of accesses to the

source data.

The next approach we are about to present considers the reusability of the old materiali-

sation. Rather than augmenting the materialised view, their purpose is to find maximum

reusability of the existing materialisation for the view adaptation process.

21

2.5 View Adaptation Using Expression Trees

The adaptation algorithms previously introduced [GMR95, MD96, GMRR01] focus on

augmenting either materialised views, base relations or both, to facilitate the adaptation

process. None studied the problem of how to maximise reuse of existing materialised data.

The work proposed in [Moh97] focuses on identifying reusable materialised data. Only

when changes are dramatic, extra data is then stored. In their approach, changes can be

made at relational algebra level within an expression tree, e.g., adding/deleting/modifying

relational algebraic operators. As their approach is based on the expression tree, we there-

fore refer to their adaptation approach as the ExpressionTree approach. Assume we require

a view CustomerOrder containing customer order information after 10/02/2010. The view

is represented by in Example 2.8.

Example 2.8 (A Sample View - CustomerOrder)

CREATE VIEW CustomerOrder(FirstName,LastName,Item,Cost,Description) AS

SELECT FirstName, LastName, Item, Cost, Description

FROM Customer, Orders, OrderLine, Item

WHERE date>10/02/2010 �

Customer Orders

JN

PJ(FirstName,Lastna
me,CustomerID)

PJ(CustomerID,
OrderID)

JN

OrderLine

SL(date>10/02/2011)

PJ(FirstName,Lastna
me,CustomerID,Order

ID)

Item

JN

PJ(ItemID,Title,Cost,
Description)

PJ(CustomerID,Order
ID,ItemID)

PJ(FirstName,Lastna
me,ItemID)

d=0

d=1

d=2

d=3

Figure 2.3: The Expression Tree of the View CustomerOrder

The ExpressionTree approach defines views using relational algebraic expressions contain-

ing Selection (SL or σ), Projection (PJ or π), Join (JN or ./), Union (UN or ∪) and Dif-

ference (DIFF or −). The evaluation of a view can be represented by a binary expression

22

tree, where leaf nodes represent base relations and non-leaf nodes contain binary algebraic

operators. The unary operations such as selection and projection are associated with edges

of the expression tree. Figure 2.3 gives an example of the expression tree corresponding to

the view, CustomerOrder, in Example 2.8. The depth of each node within the expression

tree is denoted by d. The depth of leaf nodes is 0, whereas, the depth of a non-leaf node is

defined as the maximum depth of its descendants + 1. Root node has the maximum depth

value in an expression tree.

The result of each binary algebraic operator indicates the intermediate result of the view. For

instance, in Figure 2.3, the node at d=1 represents the intermediate result of performing a

selection (SL(data>10/02/2010)) over the base relation Orders followed by a join operation

between Customer and the derived tuples of Orders generated by the select operation. The

result produced by each operator serves as the input to the next operator located above it.

The result of the view is obtained by computing the root node of the expression tree. When

changes are made to the operators, it is not necessary to recompute all the operators from

scratch.
HHH

HHHFrom
To

DIFF (−) UN (∪) JN (./)

DIFF (−) n/a V ′ = V ∪ IR(↓ c2) V ′ = IR(↓ c1) ./ IR(↓ c2)

UN (∪) V ′ = V − IR(↓ c2) n/a V ′ = IR(↓ c1) ./ IR(↓ c2)

JN (./) V ′ = IR(↓ c1)− IR(↓ c2) V ′ = IR(↓ c1) ∪ IR(↓ c2) n/a
↓ c1 and ↓ c2 represent all left and right parts of nodes of the root node, respectively.

Table 2.5: Changing the Root Node

If one changes the operator of the root node to the join operator or from a join operator to

another operator, as shown in Table 2.5, the old materialisation cannot be used for adap-

tation and intermediate results must be stored with the view. IR returns the intermediate

results of an algebraic expression. When the operator changes from union to difference or

vice-versa, then the process can reuse the left part of the root node and recompute only the

right part.

Summary and Issues. As with previous approaches, the ExpressionTree approach treats

views as single entities with no sharing considered. As views are defined using algebraic

expressions encapsulated in nodes, it will be more beneficial if nodes can be somehow

shared between views to further improve the adaptation process.

23

OrderLine

Order

Customer

Item

SP1

JF2

JF3

JF4

V1

10/02/2011dateσ >

100Costσ >

SP2

V2

AF2

V3

OrderDate,
SUM(QTY)

AF1

AF3

Title,
Description

FirstName,
LastName,
OrderTotal

Figure 2.4: Multi-View Materialisation Graph

2.6 Fragment-Based View Adaptation

The MultiView approach proposed by [Bel00, Bel04] considers adaptation in a multi-view

based environment, which provides the ability to reuse materialised data. Views are ex-

pressed by algebraic operators and fragments and common parts between views are shared

and then exploited by the view adaptation process to improve the performance.

In their approach views are modelled using a Multiview Materialisation (MVM) Graph,

which is a bipartite directed acyclic graph with two types of nodes: AND-nodes and OR-

nodes. AND-nodes represent algebraic expression corresponding to select, project and join

with possible aggregate function and OR-nodes represent the results produced by evaluat-

ing the algebraic expressions. As shown in Figure 2.4, the OR-nodes are represented by

circles and AND-nodes are expressed by the rectangular boxes. An OR-node represents

either a fragment or a base relation. The fragment is a node resulting from the application

of an algebraic operator. There are three types of fragments, SP fragment, J fragment

24

and A fragment, correspond to select, join and project operation, respectively. The leaf

nodes of the MVM graph represent database relations, see Figure 2.4. Each fragment is a

potential candidate for materialisation. Any change applied to an existing materialised view

is reflected by changing the MVM graph.

When changes are encountered, the MultiView approach adapts both the structure of the

MVM graph and the materialised data affected by the change. Based on the actual type of

fragment that is effected by the change, a corresponding view adaptation algorithm is ap-

plied. The main advantage of the MultiView approach is that when view definitions change,

it is generally not necessary to update the entire view. Instead, only those fragments af-

fected by the view change, representing a far smaller segment of materialised data, must be

updated.

Summary and Issues. The MultiView approach was designed for relational database sys-

tems and does not suit other data models. When it comes to XML, different challenges

are encountered, e.g., XML data is nested, irregular, heterogeneous and ordered, whereas,

relational data is flat, regular, homogeneous and unordered. Additionally, as shown in §2.8

and §2.9, the two subproblems of the multi-view based adaptation mechanism, containment

checking and fragment selection, are also facing different challenges for XML databases.

2.7 XML View Adaptation

In [AML+07], the authors proposed the first view adaptation mechanism for XML. How-

ever, rather than adopting the view adaptation technique to XML data warehouses, they

apply the technique to the context of XML-based security. In their approach, an XML

document is represented as a hierarchy of nested nodes with fine-grained access control

applied to it at the node level. Access to XML data (nodes) is granted/restricted by defining

a set of positive/negative access control rules, denoted by ACR+ and ACR−, respectively.

The access control rules are represented by a subset of XPath expressions containing only

ancestor-descendant and parent-child relationships. Views (also called access control view

in their work) are defined by a combination of positive and negative access control rules.

Figure 2.5b is an example of the access control view containing one positive rule and one

25

negative rule. The positive rule grants node access in an XML tree to users (see dashed box

in red in Figure 2.5a). The negative rule prevents XML nodes from being accessed by the

users (see solid box in blue in Figure 2.5a). The difference between ACR+ and ACR− are

the result of the view.

{ }station//Dublin//ACR =+

otal}/station/t{//Dublin/ACR =−

(a) XML Data

{ }station//Dublin//ACR =+

otal}/station/t{//Dublin/ACR =−

(b) Access Controlled View V

Figure 2.5: Access Controlled XML Data and View

Four types of view definition changes are allowed: (1) removal of a positive rule; (2) ad-

dition of a positive rule; (3) removal of a negative rule; and (4) addition of a negative rule.

Depending on adding/deleting a positive/negative rule, nodes are either added to, or delete

from, the old materialised data. Their view adaptation algorithms are based on a set of adap-

tation rules that are discussed later in this section. Furthermore, in their approach, adding

or deleting data is achieved by using deep intersect [LLLL04] and deep except [LLLL05]

operators, denoted by ∩D and −D, respectively. The result of the deep intersection oper-

ation is the intersection between two subtrees of an XML tree, whereas, the deep except

operation computes the difference between two subtrees.

Addition of Positive Rules. Two rules are used in response to the addition of a positive

rule R:

• Containment Rule. IfR is contained in ACR+∪ACR−, then no adaptation is required

as R is covered by existing rules;

• Default Rule. If the containment rule does not apply, then R potentially adds extra

data into the old materialised view. The process computes the extra data that are

granted access by R and augments the previously materialised data. The default rule

26

is expressed to the following equation:

V ′(D) = V (D) ∪ (R(D)−D (R′(D) ∪R′′(D)))

where R′ = R ∩D ACR+ and R′′ = R ∩D ACR−, D is an XML document.

Removal of Positive Rules. Deleting a positive rule R from ACR+ is handled by two

rules:

• Containment Rule. If R is contained in ACR+
new ∪ ACR−, where ACR+

new is

the new positive rule set after deleting R, then no adaptation process is required as

deleting R from ACR+ does not remove any data from the materialised view.

• Default Rule. If R is not covered by existing access control rules, then the default

rule is applied to remove data that were previously granted access by R. The process

first determines what data were previously granted access and should be removed

now and it then removes the data from the old materialised view.

V ′(D) = V (D)−D (R(D)−D (R′(D) ∪R′′(D)))

where R′ = R ∩D ACR+
new and R′′ = R ∩D ACR−.

Addition of Negative Rules. The addition of a negative rule causes old materialised data

to be either more restricted or may possibly have no effect. Three adaptation rules are used

in response to the change caused by adding a negative rule: Intersection Rule, Containment

Rule and Default Rule.

• Intersection Rule. If a new negative ruleR does not intersect with any positive rule,R

∩D ACR+ = ∅, then adding R does not restrict access to the old view and, therefore,

no adaptation is required.

• Containment Rule. If R is contained by a negative rule in ACR−, then removing R

does not prevent users from accessing the materialised view and, thus, no change is

required.

27

• Default Rule. The same Default Rule as defined in the case of Removal of Positive

Rules is applied.

Removal of Negative Rules. Removing a negative rule R is also handled by three adap-

tation rules: Intersection Rule, Containment Rule and Default Rule.

• Intersection Rule: if R does not intersect with existing positive rules, R ∩D ACR+

= ∅, then removing R does not restrict access to the materialised data and, therefore,

no adaptation is required.

• Containment Rule. If R is covered by ACR−new, where ACR−new is the set of

remaining negative rules after deleting R, then the removal of R does not effect the

materialised view as there is another negative rule in ACR−new that restricts access

to the same data as R.

• Default Rule. IfR is not covered by another negative rule in ACR−new, then data that

were previously restricted by R are added. The adaptation process computes those

extra data by intersecting R with all existing positive and negative rules. The new

materialised data is the union of the previously materialised data and those extra data

computed. The default rule is expressed by the following equation:

V ′(D) = V (D) ∪ (R′(D)−D R′′(D))

where R′ = R ∩D ACR+ and R′′ = R ∩D ACR−new.

Auxiliary Rule Views. In order to improve the performance of view adaptation, a set of

auxiliary rule views are created for each negative rule to facilitate the adaptation process.

For the case that a negative rule is removed, data may need to be added to the view and

typically it is necessary to find out the additional data that needs to be added to the view. The

auxiliary rule view corresponding to each negative rule is used to identify those additional

data.

Summary and Issues. There are several issues/limitations involved in this approach as

listed below:

28

• Only a very limited amount of changes are supported and it is difficult to incorporate

new changes. Only adding or deleting an access control rule (XPath expression) is

supported.

• The cost of computing extra or redundant data is expensive, which requires the pro-

cess to perform join operations between the change and all existing positive and neg-

ative rules.

• To create auxiliary rule views, one needs to materialise all negative access control

rules of the view, which is impractical and leads to materialising a significantly num-

ber of data and, hence, many duplicate data are created.

• Finally, their approach does not support multi-view based adaptation where material-

isation is shared between views.

2.8 Approaches to Containment Checking

Two essential problems that are involved in a multi-view based adaptation approach (as

presented in [Bel04]) are: how to identify common sub-expressions between views and the

extent of the change between the new and old views; and how to determine those view

segments that must be materialised. The first issue is closely related to the query contain-

ment problem, whereas, the latter one is considered as a selection problem over existing

views. Although those problems have been well researched in the relational context, e.g.,

[FTU98, FTU99] for the containment problem and [CHS02, Bel04] for the selection prob-

lem, different challenges are encountered for XML. In the remainder of this section, we

will examine related research in containment checking for XML views, and in the follow-

ing section, we will examine fragment selection.

Existing efforts for the containment problem are based on a subset of XPath expressions,

mainly on two most important axes, child and descendant axes. Compared to the classical

containment problem for relational conjunctive queries, the challenge for containment in

XPath is that queries might involve recursion (e.g., queries may require navigation along the

descendant-axis). The first attempt at containment checking for XPath queries was proposed

by [MS02, MS04]. They proposed two techniques, canonical model and homomorphism,

29

both covered in this section.

The general concept of containment between two XPath expressions is that the evaluation

result of the first expression over an XML tree is contained in the result of the second

expression. Thus, the first expression is said to be contained by the second one. To verify

the containment relationship, it is necessary to determine that for all trees, the evaluation

result of the first expression is always contained by the second one. It has been shown in

[MS02] that it is sufficient to find a counter example where the evaluation result of the first

expression over an XML tree is not contained by the evaluation result of the second one.

However, as there may be an infinite set of trees [MS04], it is thus, necessary to reduce the

search space. The canonical model approach reduces the search space of the containment

checking from an infinite set of trees to a finite set. However, the search space is still very

large which leads to an exponential-time algorithm for checking containment.

The homomorphism approach provides a much more efficient mechanism for containment

checking. However, it is an incomplete algorithm, which means that the existence of the

homomorphism is not a necessary criterion for containment, as it may return false negatives.

Besides the canonical model and homomorphism, there is also automata based technique

[Nev02, NS03], which is based on tree automata. The idea of the automata approach is

to find a set of all counter examples, where a containment relationship does not exist. If

this is not a NULL set, it is represented by a tree automaton. At the start of containment

checking, the process constructs an automaton for the first expression representing all trees

from which the result of the expression is obtained and it then builds an automaton for

the second expression representing all trees that no result is returned when evaluating the

second expression over them. The containment relationship is verified by joining the two

automata and checking whether the join returns an empty set. The process returns an empty

set if containment relationship exists, otherwise, a non-empty set is returned. While this

approach provides a complete containment checking algorithm, it requires exponential time

for processing that is not feasible for practical applications.

As the consequence, the mainstream of the existing research tries to narrow the gap between

canonical model and homomorphism approaches, that is to provide an approach which is

more efficient than the canonical model approach and more complete than the homomor-

phism approach.

30

To extend the homomorphism based approach, existing efforts focus on the containment

problem in the presence of the DTD or XML Schema file, e.g., the chase technique [Woo01,

AYCLS02, Woo03], where the containment relationship is checked against the constraints

outlined by the DTD or XML Schema. However, although those approaches derive the

advantage of the homomorphism approach, they also suffer from the disadvantage brought

by the homomorphism. Another problem of those approaches is that recursion may be

defined in a DTD or XML Schema file and exists in an XML tree, however, the depth of the

recursion is unknown which makes containment difficult to be verified.

The conditioned and hidden conditioned approaches proposed by [FLZ07] also extend the

homomorphism technique, the algorithms they provided are complete under the conjunc-

tion of some conditions. The problem of the conditioned homomorphism is that there are

special cases that still return false negatives. The hidden conditioned homomorphism cov-

ers those special cases and provides a more complete algorithm. However, both approaches

need to compute all potential conditions that might be required to satisfy the containment

relationship. Due to the lack to metadata information, e.g., constraints covered by DTD and

XML Schema files, some of the computed conditions are redundant.

The summary-based [ABMP07] approach provides containment checking under constraints

outlined by a strong DataGuide [GW97] of tree-structured data. The benefit of a sum-

mary based approach is that it provides more precision regarding the structure of the XML

data and explores the exact depth of the recursion defined in the DTD or XML Schema

files. However, the containment algorithm they provide is concerned only with the path

constraints. The path constraint restricts the node to be processed must satisfy the root-

to-node path defined in the constraint. A similar approach is also presented in [LWH10]

which determines the equivalence between two tree patterns in the presence of a DataGuide.

However, neither approach takes subtree constraints into consideration. The subtree con-

straint restricts nodes to be processed need to have the exact subtree structure defined in the

constraints. As a result, both approaches may lead to incorrect result of the containment

checking.

Summary and Issues. Containment checking with constraints, reduces the search space

by avoiding unnecessary checking. However, the approaches discussed here, are based

31

on XML schemas, DTD or a path-based data guide. Here, only root-to-node paths are

considered and the potential subtree constraint is ignored. Both the search space required

by the containment checking algorithm, and the performance should be further optimised

by taking a more comprehensive set of constraints into account. For example, the subtree

structure and ordering of nodes can significantly reduce the search space for containment

checking.

2.9 Approaches to Fragment Selection

Apart from the containment problem, a multi-view based approach also suffers from the

issue of determining what part of the views should be materialised to avoid duplication and

to expedite the view adaptation process. Existing selection mechanisms fall into three parts

which we refer to them as plan-based selection, full materialisation selection and partial

materialisation selection, respectively.

Many research efforts have been proposed for cost-based plan selection in relational database

systems. In [GPSH02], the authors provide a cluster based selection plan, where queries are

grouped based on their corresponding similarities. In their approach, they store a database

of plans and attempt to assign one of these plans to the new query with the expectation that

the selected plan would be the same as the plan generated by the optimiser. Only in the

event that no suitable assignment can be found, is the optimisation process actually carried

out and the newly generated plan is added to the plan database for future use. In [GCV09],

the authors present a cost-based optimisation and execution framework. Their selection

algorithm is based on a navigation-focused XPath algebra with novel operators and a com-

prehensive set of rewriting rules. By evaluating the costs of different algebraic representa-

tions after applying rewriting rules, their approach can select best plans for query execution.

However, while these approaches provide an example of selecting the appropriate view to

answer a query, they do not solve the problem of selecting views for materialisation.

On the other hand, there has been considerable research on full materialisation selection for

relational database systems and this can be broadly categorised in two ways: centralised

approaches [GZ08, KGJ10] and distributed approaches [BL03, YGYL05, CBHB09]. The

former chooses materialised views in centralised scenarios, where storage is considered

32

to be the limiting factor while the later chooses materialised views in distributed environ-

ments, where the primary factor for concern is network communication costs. However,

all approaches focuses on selecting entire views for materialisation and do not consider the

potential shareability between views.

The partial materialisation mechanism discussed earlier in this chapter [Bel04], tries to

balance the query processing cost and view maintenance cost. In their approach, each OR-

Node (fragment) in the view graph is associated to a level, where the top OR-node has the

level value 1. When an OR-node at level 1 is materialised, the query processing cost is low

as the result of that OR-node is the result of the view, but the maintenance cost is high as

the entire result is stored. However, if the OR-node at any other level is materialised, then

the query processing cost is relatively high, but the maintenance cost is low. The purpose

of their approach is to find an intermediary level for materialisation which balances the

cost of query processing cost and view maintenance. The selection algorithm is based on

two measures: local benefit and global benefit. A view is considered locally beneficial

if its materialisation significantly reduces the query processing cost without significantly

increasing the view maintenance. The global benefit is the measure of the importance of a

fragment to all views in the view graph. Their selection is a two-step process, where the

first step is to select a set of fragments within each query based on the local benefit and

the second part filters fragments selected in the first part according to their global benefit

to the entire view graph. In their approach, a suboptimal decision may be made when

materialised views are dissimilar to each other, leading to potentially poor performance

during view adaptation.

Summary and Issues. When there are a large number of views, merely calculating the

benefit of each fragment to all views is not an appropriate solution. A more desirable ap-

proach would take user preferences into account. Suppose the benefit of a fragment is high,

but it is only shared by views that are rarely required by the users, therefore, there is no rea-

son to materialise such a fragment. Besides, views should only compare to other existing

views that are similar to them as this provides a more accurate measure of the benefit that a

fragment contributing to existing views. As we will shown in our experiments, view adap-

tation performs better by attempting to optimise the selection fragments for materialisation.

33

2.10 Summary

In this chapter, different view adaptation approaches were examined and analysed. Early

work failed to “adapt” materialised data, and instead simply hid the old materialisation

from the new view, or referenced the old materialisation when attribute type is changed.

The centralised approach discussed in §2.3 provided a more comprehensive view adapta-

tion mechanism that could be used to handle different changes. However, they did not take

network communication costs into account, a key feature in §2.4. This work utilised two

auxiliary attributes to save the cost of transferring redundant data over the network. To max-

imise reuse, the ExpressionTree approach divided views into different nodes and analysed

when old materialisation can be reused and when intermediate results are required.

The MultiView approach was shown to outperform the single view based approaches by

sharing materialised data between views to improve not only the view adaptation perfor-

mance, but also the reusability of materialised data. Additionally, the cost of maintaining

materialised data is also reduced. However, existing XML view adaptation does not em-

ploy a multi-view approach, with view adaptation algorithms based on single views, and

changes are very restricted. Thus, views must often be recomputed with data retrieved from

data sources. Strongly motivated by this literature review, the next chapter will provide an

outline of a fragment based adaptation system for XML repositories.

34

Chapter 3

The XFM View Framework

In Chapter 2, a number of view adaptation approaches were discussed in both relational

and XML contexts. Any approach to view adaptation requires a suitable framework and

methodology in order to maintain consistency between views and underlying data. In this

chapter, we present our XML Fragment Materialisation (XFM) view framework which pro-

vides an overview of the different processes developed during this research. Our motivation

is that the reader understands the tasks involved in view adaptation. In §3.1, we introduce

the framework in terms of workflow; in §3.2, we discuss the system architecture and provide

more detail on the role of each process; and finally in §3.3, we present a detailed overview

of the XML repository used in our evaluation as this will be used repeatedly, to explain

concepts and features of our system.

3.1 View Adaptation Outline

The View Adaptation system is deployed on top of the XFM view framework which is built

based on our view model introduced in Chapter 4, and it contains five major processes:

Graph Transformation, Classification, View Adaptation, View Selection and Materialisa-

tion. As shown in Figure 3.1, these processes, depending on their objectives, are divided

into two parts, the offline and online parts, as described below:

• The offline part follows arrows labelled with 1, it accepts XPath Queries as input (In-

put 1); constructs the overall view representation of those XPath queries (P1),(P3);

35

(P1.1)
XPath to Algebraic

Transformation

(P1.2)
Algebraic to View

Graph
Transformation

(P3.1)
Adaptation

(P3.2)
Containment Check

(P2.1) Classification

1

XPath
Queries

Change
Change

Change

2 (P5.1)
Fragment

Materialisation

Input 2Input 1

2

1

2

1 1

(P4.1)
Fragment Selection

(P4.2)
View Coverage

Figure 3.1: XFM View Adaptation: Process Flow

and selects candidate fragments for materialisation (P4),(P5).

• The online part follows arrows labelled with 2, which runs at all times and contin-

uously accepts user requirements (changes) as input. Changes (Input 2) are trans-

formed into the internal representation (P1), based on the type of changes applied

(P2) and the process adapts views accordingly (P3).

In summary, the offline segment involves the initialisation of the View Adaptation system,

which creates and integrates views, selects view fragments for materialisation and then ma-

terialises those selected candidates. Although, this runs only once, after a certain number

of changes are made to views, the system administrator may decide to run this part again

to reorganise the materialisation. The online part of the system, continuously accepts view

change requests from users and is responsible for synchronising the materialised data and

the new view definitions. In next section, we give a detailed description of the View Adap-

tation System architecture and its components.

3.2 The XFM View Adaptation System

As illustrated in Figure 3.2, the system accepts a set of queries as input and they are trans-

formed into the XML Fragment Materialisation (XFM) View Graph, by the Graph Transfor-

mation (P1) process. In the XFM view graph, common parts are shared between different

36

(P1.1)
XPath to Algebraic

Transformation

(P1.2)
Algebraic to View

GraphTransformation

(P3.1)
Adaptation

SFRF

... SF

VF

DF

∏ D

α

α

SFRF

...

VF

FF

∏ D

α

qσ

DF VF

SF

...

SF

RF

FF VF
α α

qσ ∏D

∏D

(P3.2)
Containment Check

(P2.1)
Classification

...

View
Repository

XML DB XML DB

XML DB
XML DB

...

(P4.1)
Fragment Selection

XPath
Queries

Change
Change

Change

Materialisation
Plan

(P5.1)
Fragment

MaterialisationInput 2 Input 1 (P4.2)
View Coverage

Figure 3.2: View Adaptation System Architecture

views by means of fragments. The View Selection (P4) process then selects fragments

among the views for materialisation based on different costs estimated by the process and

the Materialisation (P5) process materialises all fragments that are selected by the View

Selection process. On the other hand, if changes are submitted by users, the Classification

(P2) process verifies the type of the change applied, and the View Adaptation (P3) process

verifies the extent of the changes between the old and new views, using the Containment

Check process (P3.2) and eventually adapts existing views (P3.1) both structurally, in terms

of the XFM view graph, and physically, where it is necessary to adapt the actual materi-

alised data. We now proceed with a brief description of each process.

3.2.1 Graph Transformation

The Graph Transformation (P1) process is responsible for translating XPath queries into

our view graph representation and it is divided into two subprocesses as listed below,

1. XPath to Algebraic Transformation (P1.1), which translates each XPath expression

into its algebraic representation.

2. Algebraic to View Graph Transformation (P1.2), which transforms algebraic repre-

37

sentations to the view graph representations through a set of fragments indicating the

results of each algebraic operation.

3.2.2 Classification

The Classification (P2) process verifies the type of the change required, as one of two types:

1. Structural change, which further includes

(a) adding a step into a view (XPath expression)

(b) removing a step from a view (XPath expression).

2. Predicate change, which contains

(a) adding a predicate to a step

(b) removing a predicate from a step

(c) modifying a predicate of a step.

3.2.3 View Adaptation

The adaptation process is involved in both the online and the offline parts of the View

Adaptation system as described below:

1. In the offline part, the View Adaptation (P3) process is used to build the XFM view

graph. Basically, after the graph transformation process, a global XFM view graph

is created by integrating all individual view graphs. The initial global view graph is

built from scratch by integrating all fragments of a view sequentially into an empty

view graph. The common parts between views are identified with the assistant of the

Containment Check (P3.2) subprocess and only displayed once in the global view

graph. We treat the construction of the graph as a special case of the view adaptation.

2. In the online part, when changes are required, depending on the type of the change,

the Adaptation (P3.1) subprocess dynamically adapts the effected materialised views

and repeatedly invokes the Containment Check (P3.2) subprocess to determine the

extent of changes between the new view and the old view. The adaptation process

38

maintains the existing views both structurally, in terms of fragment changes and phys-

ically, where it is necessary to adapt the existing materialised data.

3.2.4 View Selection and Materialisation

The View Selection (P4) process selects fragments from the global XFM view graph for

materialisation and it consists of two subprocesses:

1. Fragment Selection (P4.1), which performs a baseline scan over the XFM view graph

to select an initial set of fragments from the XFM view graph for materialisation.

2. View Coverage (P4.2), which performs an iterative-based process to ensure that all

views are covered by the selection.

The result of the view selection process is a Materialisation Plan, which contains can-

didate fragments for materialisation. The Materialisation (P5) process materialises those

fragments selected.

Table 3.1 lists the chapters in which each process and its subprocessess are discussed.

P ROCESS S UBPROCESS C HAPTER

(P1)
GRAPH (P1.1) XPath to Algebraic Transformation

Chapter 4
TRANSFORMATION (P1.2) Algebraic to View Graph Transformation

(P2) CLASSIFICATION (P2.1) Classification Chapter 7

(P3)
VIEW (P3.1) Adaptation Chapter 4,7
ADAPTATION (P3.1) Containment Check Chapter 5

(P4,P5) VIEW SELECTION
(P4.1) Fragment Selection

Chapter 6
(P4.2) View Coverage

Table 3.1: Coverage of System Processes

3.3 The Worldbikes Repository

In Chapter 1, we discussed the growing value of the XML data generated by web services

and in particular, the sensor web. As our work focuses on large XML repositories generated

by these types of services and applications, we choose a dataset, the WorldBikes repository,

generated by an application developed in Dublin City University [MRS11] as part of the

Smart City initiative. A bicycle sharing system is a scheme in which numbers of bicycles

are made available for rental to inhabitants and visitors. Many cities have now deployed

39

a bike sharing scheme where people can rent and return a bicycle to and from various

locations. Stations are equipped with sensors that monitor station status such as bicycle

and stand availability. This information is published online to inform consumers about the

status of each bike station.

In our system, sensor data, containing the current status of every station, across every city, is

harvested every 60 seconds and stored in an XML database system. As shown in [MRS11],

every 24 hours, the system harvests 1,440 sensor outputs per city, each representing the state

of all stations concerning the number of bicycles or parking slots at the given time stamp.

The motivation for this project was to have the ability to perform more complex analysis on

the usage of these bicycles and the growing repository provides a useful platform for our

research, as the dataset is very large and an OLAP style of analysis can require continuous

query adaptation.

Cities Country No. of Stations Data Collected (GB)
Dublin Ireland 44 0.30

Brisbane Australia 120 0.72
Luxembourg Luxembourg 54 0.36

Bruxelles

France

180 1.15
Amiens 25 0.18

Besancon 30 0.21
Mulhouse 35 0.24

Nancy 25 0.18
Nantes 88 0.56
Rouen 20 0.14

Santander Spain 14 0.11
11 Cities 5 Countries 635 Stations 4.15 GB

Table 3.2: Sources and Statistics of Sensor Data

As shown in Table 3.2, sensor data is obtained from 635 stations in 11 cities across 5

countries. The total amount of data that has been collected so far is 4.15GB and the size is

still growing by roughly 200MB per week.

In Figure 3.3, we show the structure of the WorldBikes repository. The repository consists

of 11 cities (e.g., Dublin, the character * indicates those cities that can occur multiple times

in the repository) and each of them contains information as listed below:

• Each station (station) consists a number of parking stands for bicycles, the actual

40

Worldbikes

bikes

city

Dublin*

Brisbane*

Luxembourg*

Bruxelles*

Amiens*

Besancon*

Mulhouse*

Nancy*

Nantes*

Rouen*

Santander*

stations

time

hour

minute

second

date

year

month

day

station id

timeTaken

available

free

total

ticket

error

weather

time

wind

humidity

pressure

temp

condition

weatherTimeTaken

chill

direction

speed unit

unit

unit

timeOfDay

timeUnit
timeStart

Figure 3.3: The Worldbikes Schema

bicycles available, and a sensor based system to determine the status of the park-

ing stands (empty or occupied). The following information is made available online

through the service provider’s website,

– station ID (id)

– number of bikes available (available)

– number of free bike stands (free)

– total number of bikes (total)

– number of tickets (ticket)

The time required to retrieve the station data is also added (timeTaken) and any errors

encountered during the collection are recorded (error).

• The station data is integrated with the most recent weather conditions (weather) in-

cluding wind, humidity, pressure, temperature, condition with data obtained from

41

various weather sites.

• The time at which the information is retrieved is added as a timestamp to the station

data, e.g., date, time, timeOfDay, timeStart and timeUnit.

The time required to retrieve the station data is also added (timeTaken) and any errors

encountered during collection are recorded (error).

• The station data is integrated with the most recent weather conditions (weather),

which includes wind, humidity, pressure, temperature, condition, using data har-

vested from various weather sites.

• The time at which the information is retrieved is added as a timestamp to the station

data, e.g., date, time, timeOfDay, timeStart and timeOfUnit.
C:\Users\Jun\Desktop\Dublin.xml 04 May 2011 14:40

<?xml version="1.0" encoding="UTF-8"?>
<Worldbikes>
<bikes>

<city>
<Dublin>

<stations>
<time>

<hour>15</hour>
<minute>17</minute>
<second>25</second>

</time>
<date>

<year>2011</year>
<month>03</month>
<day>08</day>

</date>
<timeOfDay>15:17:25 08-03-2011</timeOfDay>
<timeUnit>milliseconds</timeUnit>
<timeStart>1299597445836</timeStart>
<weather>

<time>Tue, 08 Mar 2011 3:01 pm GMT</time>
<wind>

<chill>41</chill>
<direction>230</direction>
<speed unit="mph">22</speed>

</wind>
<humidity>76</humidity>
<pressure unit="inches">29.91</pressure>
<temp unit="degrees farenheit">48</temp>
<condition>Mostly Cloudy</condition>
<weatherTimeTaken>70</weatherTimeTaken>

</weather>
<station>

<id>40</id>
<timeTaken>565</timeTaken>
<available>13</available>
<free>8</free>
<total>21</total>
<ticket>1</ticket>
<error>0</error>

</station>
</stations>

</Dublin>
</city>

</bikes>
</Worldbikes>

-1-

Figure 3.5: A Segment of the Worldbikes Dataset

11

Figure 3.4: A Segment of the Worldbikes Dataset

A segment of the Worldbikes repository is shown in Figure 3.4, which lists the status of

station 40 in Dublin with the corresponding weather conditions and timestamps. Below is

a list of sample XPath queries:

• Q1. Return all information recorded for each station in the city of Dublin.

//Worldbikes/bikes/city/Dublin/stations/station

42

• Q2. Return all stations in Dublin that have bicycle availability greater than 10.

//Worldbikes/bikes/city/Dublin//station[./available≥10]

• Q3. Return stations that had a wind speed greater than 22 mph.

//stations[.//speed>22]/station

A larger query set is used in Chapter 8 as part of our evaluation process. In the evaluation,

we use a query generator to define 1,000 views based on the Worldbikes Dataset. The next

chapter introduces our data model and view graph which uses the same dataset in presenting

a global view graph.

43

Chapter 4

The XFM View Model and Graph

The chapter begins in §4.1 by introducing the XML data model followed by a detailed de-

scription of the XML query language in §4.2. The XFM view model is then introduced in

§4.3 together with a set of sequence-based algebraic operators in §4.3.1 and the correspond-

ing translation process in §4.3.2, which translates XPath expressions into the algebraic rep-

resentation. A set of fragments is presented in §4.4.1, together with the algebraic operators,

form the XFM view graph as discussed in §4.4.2. We show how the algebraic representation

is transformed into the view graph representation in §4.5. Finally, in §4.5.1, a construction

algorithm is presented to demonstrate how a global XFM view graph is constructed based

on a set of individual view graphs that are obtained by transformation process.

4.1 XML Data Model

An XML document can be modeled as a rooted and ordered tree with labels from an alpha-

bet Σ. An XML tree corresponding to an XML document is denoted by t, where t ∈ TΣ

and TΣ denotes the set of all possible trees that are formed by labels obtained from Σ. An

XML tree node corresponds to either an element, attribute or character content in an XML

document. The root node of an XML tree represents the document root (root element) of

the corresponding XML document. An XML tree is expressed as a 4-tuple, outlined below

in Definition 4.1.

44

Worldbikes

bikes

city

Amiens Brisbane Dublin Dublin

stations

time date weather station

... ...

...

hour minute second

17 25

year month day

2010 17 25

temppressurewind

speed unitunit

unit

......

...

410

409

408
35 183109 183

182

station
181181173156152

149 150 151 153 154 155 170

167

168

163

164

165
...

available free total errorticket
176 177 178 179 180

13 8 21 1 022

29.19

inches

mph

degree
farenheit

48

Worldbikes

bikes

city

Brisbane DublinAmiens

410

409

408
18310935

stations

time date weather

...
...

...

hour minute second year month day temppressurewind

speed unitunit

unit

...
182

station
181173156152

149 150 151 153 154 155 170

169167

168

163

164

165

...

...

15
169

a) XML Data Tree

b) SchemaGuide

stations

station

34

33

stations

station

34

33

Figure 4.1: XML Data Tree and Schema Guide of Worldbikes Dataset

Definition 4.1 [XML Tree]

For a given XML tree t of an XML document, t is represented by a 4-tuple <Rt, Nt, Et,

Lt>, where Rt is the root of t; Nt denotes a set of nodes in t; Et indicates a set of edges in

t; and Lt represents a set of labels in t, where Lt ⊆ Σ. �

Suppose t is an XML tree corresponding to the Worldbikes dataset, Figure 4.1a demon-

strates a segment of t. Worldbikes is the root of t represented by Rt. By definition, Nt

contains all nodes in t and Lt contains all labels of those nodes, e.g., the label of Rt in

this case is Worldbikes. For a given node u ∈ Nt, Lt(u) returns the label of node u. For

example, if u is the root of the XML tree in Figure 4.1a, then Lt(u)=Worldbikes, which is

the label of the root. Et contains a set of edges between nodes in the tree, for example, the

edge between Worldbikes and bikes. In the rest of this dissertation, we refer to the node in

an XML tree as an instance node and a node labelled with l as the node l, or simply l, e.g., a

node labelled with Worldbikes is referred to as the node Worldbikes, or simply Worldbikes.

We use them interchangeably.

45

Additionally, we denote E+
t to be the transitive closure of Et defining the ancestor-descendant

relationship between any arbitrary pair of instance nodes within t that are not directly con-

nected to each other, e.g., the edge between Worldbikes and city. Nevertheless, if two nodes

are directly connected to each other in t, then their edge is specified in Et. A subtree of t is

considered as the tree consisting of a node in t and all or part of its descendants. A subtree

corresponding to a node u in t, is denoted by tu. For example, the dotted box in Figure 4.1a

is a subtree rooted at the node station.

For a path starting from the root node and ending at any non-root node, we refer to it

as a tree path of that XML tree (the concept of the tree path is essential for proving the

propositions used by our containment checking algorithm as discussed in Chapter 5). Each

node within an XML tree has a tree path associated with it, which is the path starting from

the root node of the XML tree and ending at the node itself. Two nodes are said to be on the

same path if and only if the paths associated with them contain exactly the same node labels

and they are in the same sequential order. A formal description of a tree path is outlined in

Definition 4.2.

Definition 4.2 [Tree Path]

Given an XML tree t, a path P is a chain of labels separated by / denoted by /l1/l2/.../lk, k

≤ n, n is the total number of labels, such that l1 is the label of Rt and l2 is the label of one

of the child of Rt etc. A node u is on path P if the label path going from the root of t to

node u is P . A node u is on the path of a node v if they are both on path P . �

Based on Definition 4.2, we can also say that a node u is said to be reachable from a node

v by a path P , if and only if u is on the path P and the label of v corresponds to a label l in

P , where the label l is not equal to the label of u (l 6= Lt(u)).

Example 4.1 (Tree Path with Explanation)

Suppose a path P is represented by the following expression,

/Worldbikes/bikes/city/Dublin/stations/station

which indicates the path from the node Worldbikes to the node station (see Figure 4.1a),

where bikes, city, Dublin and stations are the intermediate nodes between Worldbikes and

46

station. The node labelled with station is on the path P . As shown in Figure 4.1a, there

are two nodes that are labelled with station under Dublin and they are on the same path.

Additionally, those two station nodes are reachable from the node Dublin. �

As depicted in this section, XML data has a tree-based representation. In the next section,

we introduce an XML query language, which navigates the XML tree and locates nodes

from it, and the corresponding XML query data model.

4.2 XML Query Language

In this dissertation, we are concerned with a subset of XPath expressions, which is used

to navigate and locate instance nodes within an XML tree, and it is a rather robust subset

of XPath: many applications use only expressions in this subset and it is also an important

component (sub-expression) of XQuery expressions that are commonly used to query a

broad spectrum of XML information sources [ZLBT03]. The subset of XPath expressions

is specified by the following grammar:

Expr expr ::= /q | q

Path q ::= q1/q2 | q1[q2] | α : n

Axis α ::= child | descendant | attribute

NameTest n, where n ∈ Σ

In the above grammar, the three options of Axis can be abbreviated to “/”, “//” and “@”,

respectively. The single slash “/” represents the parent-child relationship, the double slash

“//” means the ancestor-descendant relationship and “@” indicates the attribute. An expres-

sion can be expressed as one or more paths. Each path contains an axis and a NameTest.

The combination of a single axis and NameTest is also referred to as a step. An expression

that is included in a pair of square brackets is called a predicate. Each step has a context

(see §4.2.2), which is referred to as the intermediate result that is produced by the previous

step. Two sample XPath expressions are given in Example 4.2 and Example 4.3.

47

Example 4.2 (A Single Path Expression)

Expression: //bikes/city//Brisbane//station

Description: list all information of bicycle stations in Brisbane �

Example 4.3 (An XPath Expression with Predicate)

Expression: //Worldbikes/bikes//Dublin[//year=2010]/station

Description: list all information of bicycle stations in Dublin in 2010 �

The two sample XPath expressions listed in Example 4.2 and Example 4.3 are based on the

Worldbikes dataset. An XPath expression with no predicate is referred to as a single path

expression (Example 4.2). When evaluating an XPath expression, the intermediate result (a

sequence of instance nodes) produced by each path expression is passed as the input to the

evaluation of the next path expression (see §4.2.2 for more detailed discussion). The result

of the last path expression that is not a predicate serves as the result of the entire XPath

expression, e.g., //station of the single path expression in Example 4.2.

bikes

city

Brisbane

station

bikes

Dublin

station

Worldbikes

year=2010

(a) Tree Pattern 1

bikes

city

Brisbane

station

bikes

Dublin

station

Worldbikes

year=2010
(b) Tree Pattern 2

Figure 4.2: Tree Patterns Correspond to the XPath Expressions in Example 4.2 and 4.3

4.2.1 Tree Patterns

The subset of the XPath expression mentioned previously can be expressed by a more gen-

eral representation named tree pattern queries or simply tree patterns. A tree pattern con-

tains only parent-child and ancestor-descendant relationships and it has an arity [MS02]

48

assigned to it indicating the number of return/output nodes in the tree pattern. The sub-

set of the XPath expression introduced in last section is a special case of the tree pattern

with arity 1, that is, only one output node is defined. A tree pattern is denoted by p and is

represented by a 4-tuple as shown in Definition 4.3.

Definition 4.3 [Tree Pattern]

Given a tree pattern p, p is represented by a 4-tuple <Rp, Np, Ep, Lp>, where Rp is the

root of the tree pattern, Np is a set of nodes in p, Ep is a set of edges containing only

/ (parent-child relationship) and // (ancestor-descendant relationship) and Lp is a set of

labels, where Lp ⊆ Σ. �

The tree patterns in Figure 4.2 correspond to the XPath expressions in Example 4.2 and 4.3.

Edges between nodes represent the corresponding relationships (axes) between them. The

root node has an implicit ancestor-descendant relationship to the document root. Nodes

that are surrounded with dotted rectangular boxes are the return nodes of the tree patterns.

Tree patterns and the SchemaGuide which is introduced in the next chapter, are essential

concepts of our containment checking algorithm (see Chapter 5).

4.2.2 Sequences and Instances

By definition [W3C10c], during the evaluation of an XPath expression, each path expres-

sion is passed a sequence of nodes from the previous path expression and generates a new

sequence that serves as the input to the next path expression. A sequence with one node

(document element) is passed as the input for the initial path expression. When a predicate

is encountered, it is applied to the node sequence and filtered based on the predicate. Even-

tually, when the last non-predicate path is reached, a serialisation process is performed to

return all subtree nodes of each node in the sequence.

Therefore, based on the above evaluation process, we define the core component of our

XPath data model as instance node and sequence, where an instance node represents a

node in an XML tree and a sequence is a list of instance nodes in document order. As will

be shown in §4.3.1, a set of algebraic operators, which operate on the XPath data model,

are defined according to the semantics of each evaluation step.

49

To keep our data model abstract so as to support different physical data models and storage

techniques, an instance node is not required to carry references to their parent or child in

the XML tree. This information may be explicitly included through concrete implementa-

tions. However, for the purpose of our model, all operations are based upon sequences and

instance nodes.

4.3 XFM View Model

In this section, we now introduce our XFM view model. As part of this discussion, it is

necessary to describe our algebraic operators as they form part of the view graph [LRB10b].

We then show how XPath expressions are translated into our data model.

4.3.1 Sequence-Based Algebraic Operators

We now introduce our sequence-based algebraic operators. Our main objective is to pro-

vide a view model using the algebraic operators and then build our fragment-based view

framework based on this view model. There are three types of operators, dependency join,

select and deep project operator. We give a detailed description for each of them as listed

below.

Dependency Join Operator (djoin,
α
./
→

). As explained previously, an XPath expression is

comprised of a sequence of path expressions and this sequence of expressions is represented

as a chain of dependency joins (djoin). The input of the djoin operation are two sequences

of instance nodes: 1) a sequence of instance nodes resulting from the previous evaluation

and 2) another sequence of instance nodes satisfying the NameTest specified in the context

path expression. The output of the djoin operation is a sequence of instance nodes resulting

from the axis operation and predicate filtering. We refer to the input sequence as context

sequence since it serves as the context to the current operation.

Definition 4.4 [Semantic of a djoin Operation]

A djoin operation is a binary operation written as S
α
./
→
S′, where both S and S′ are se-

quences of instance nodes and α is an axis. The result of a djoin operation is a sequence

50

of instance nodes which fulfills the dependency condition (axis α). The semantics of a

dependency join is provided as:

S
α
./
→
S′ =

k⊕

i=0

vi, vi ∈ S′, 0 ≤ k ≤ |S′|

∧ ∃u ∈ S, (u, vi)→
PC

∧
(u, vi) ∈ Et, if α→ PC

AD
∧

(u, vi) ∈ E+
t , if α→ AD

where
⊕

is the concatenation function, which creates a sequence by concatenating instance

nodes (vi) satisfying the dependency condition specified by α, either PC (parent-child) or

AD (ancestor-descendant). �

Select Operator (select, σpred). Recall that a path expression may contain an optional set

of predicates. For each predicate, the select operation performs a filtering over the context

sequence, which selects instance nodes satisfying the predicate.

Definition 4.5 [Semantic of a select Operation]

A select operation is an unary operation written as σpred(S) where pred is a condition of

the selection and S is the context sequence. This operation selects a sequence of instance

nodes in S for which pred holds. The semantics of the select is:

σpred(S) =
k⊕

i=0

vi, vi ∈ S, 0 ≤ k ≤ |S|
∧

vi→ pred

The result of a select operation is a sequence of instance nodes, which is created by con-

catenating all instance nodes that satisfy the predicate.

Deep Project Operator (dproject, ΠD(S)). A Deep Project operation returns a specified

sequence of instance nodes together with all instance nodes within their subtree. When an

XPath expression generates its final set of result nodes, it will always return the entire sub-

tree beneath each instance node according to the W3C XPath Recommendation [W3C10a].

For this reason, we define a deep project operation (dproject) to project the entire subtree

content of each instance node in the sequence.

51

Definition 4.6 [Semantic of a dproject Operation]

A deep project operation is a unary operation written as ΠD(S). This operation projects the

entire subtree content of instance nodes within S resulting a sequence of subtrees, where

each subtree is represented by a sequence of instance nodes within the subtrees. The se-

mantic of the dproject is:

ΠD(S) =
k⋃

i=0

tvi , vi ∈ S, 0 ≤ k ≤ |S|
∧

tvi ∈ t

where tvi is a subtree in t, which rooted at node vi. �

The result of a dproject is a union of subtrees that are rooted at instance nodes within the

context sequence.

ΠD

αn
./
→

· · ·

α2
./
→

α1
./
→

ROOT(t) T [n1]

T [n2]

. . .

T [nn]

VF

ΠD

DFn

αn
./
→

· · ·

DF2

α2
./
→

DF2

α1
./
→

RF1 SF1

SF2

. . .

SFn

(a) Algebra Representation (Case 1)

ΠD

αn
./
→

· · ·

α2
./
→

α1
./
→

ROOT(t) T [n1]

T [n2]

. . .

T [nn]

VF

ΠD

DFn

αn
./
→

· · ·

DF2

α2
./
→

DF2

α1
./
→

RF1 SF1

SF2

. . .

SFn

(b) XFM View Graph

Figure 4.3: Algebra and Fragment-Based Representation (Case 1)

4.3.2 From XPath to Algebraic Representation

In this part, we demonstrate how to translate XPath expressions into our view model based

on the algebraic operators just introduced. In our XPath data model, an expression e is

52

ΠD

σqn

· · ·

σq2

α1
./
→

ROOT(t) T [n1]

VF

ΠD

FF n

σqn

· · ·

FF 2

σq2

DF 1

α1
./
→

RF SF 1

(a) Algebra Representation
(Case 2)

ΠD

σqn

· · ·

σq2

α1
./
→

ROOT(t) T [n1]

VF

ΠD

FF n

σqn

· · ·

FF 2

σq2

DF 1

α1
./
→

RF SF 1

(b) XFM View Graph

Figure 4.4: Algebra and Fragment-Based Representation (Case 2)

a sequence of instance nodes resulting from evaluating e over an XML document. We

define a translation function T and the translation of an expression e into the algebraic

representation is denoted by T [e]. For each XPath expression, we add an initial execution

context to it, denoted by ROOT(t), which represents a sequence with only one instance node,

the root of the XML tree. Based on the subset of the XPath expressions, there are two cases

when translating XPath expressions into the algebraic representations. Case 1 summarises

expressions with no predicate and Case 2 outlines the circumstance that expressions may

contain predicates.

Case 1 When e = q1/q2/q3 . . . qn with no predicate, where qi = αi/ni and 1 ≤ i ≤ n

(see Figure 4.3a):

T [e] = ΠD(((ROOT(t)
α1
./
→
T [n1])

α2
./
→
T [n2]) . . .

αn
./
→
T [nn]);

Case 2 When e = q1[q2][q3]. . .[qn] (see Figure 4.4a):

T [e] = ΠD(σqn(. . . σq3(σq2(ROOT(t)
α1
./
→
T [q1]))));

53

As shown in Case 1, path expressions are connected by a chain of djoin operators starting

from the initial context ROOT(t). After all djoin operations are executed, a dproject operator

is then applied to the sequence of instance nodes produced by the last path expression.

Whereas, for Case 2, a djoin operation is first executed upon q1 and ROOT(t). The select

operations are performed sequentially over the sequence of instance nodes produced by

the initial djoin operation. As with Case 1, a dproject operation is finally applied to the

sequence of instance nodes resulting from the last select operation.

As will be shown in §4.4, the algebraic representation is a fundamental construct for the

XFM view graph.

4.4 XFM Fragments and View Graph

In this section, we present the XFM view graph, which is built on top of the XFM view

model and a classification of fragments as discussed in the §4.4.1.

RF

ROOT(t)

d
./
→SF1

Worldbikes

DF1

Worldbikes

d
./
→SF2

city

DF2

city

c
./
→SF3

Dublin

DF3

Dublin

σ.//year≥2005
FF7

year

σ.//year=2005
FF1

year

σ.//month≥03

FF8

month

σ.//month<06

FF9

month

d
./
→SF14
stations

DF14

stations

d
./
→SF15
stations

DF15

available

ΠD

VF3

σ.//month=03
FF2

month

σ.//day=16

FF6

day

d
./
→SF9

stations

DF9

stations

c
./
→

SF10

station

DF10

station ΠD

VF2

d
./
→

SF4

stations
DF4

station

σ.//free>8

FF12

free

σ.//available≥10
FF3

available

d
./
→

SF25

stations

DF25

weather ΠD

VF5

c
./
→SF5

station

DF5

station ΠD

VF1

c
./
→SF20

station

DF20

station ΠD

VF4

V1 : List operation status of stations that have more than 10 bikes available in Dublin in March 2005.

//Worldbikes//city/Dublin[.//year=2005][.//month=03]//stations[.//available>10]/station

V2 : List operation status of each station in Dublin on the 16th of March 2005.

//Worldbikes//city/Dublin[.//year=2005][.//month=03][.//day=16]/stations/station

V3 : List bike availability of each station in Dublin for the months of March, April and May after 2005.

//Worldbikes//city/Dublin[.//year≥2005][.//month≥03][.//month<06]/stations//available

V4 : List stations in Dublin that always have more than 8 free bicycle stands in March 2005.

//Worldbikes//city/Dublin[.//year=2005][.//month=03]//station[.//free>8]/station

V5 : List weather conditions at all stations in Dublin in March 2005.

//Worldbikes//city/Dublin[.//year=2005][.//month=03]//stations//weather

1

Figure 4.5: XML Fragment Materialization View Graph

54

4.4.1 View Fragments

As outlined previously, the XFM view model is based on a set of algebraic operators where

for each of these operators, we define different types of fragments representing the result

of the algebraic operators. Basically, a fragment (except Source Fragment) is a sequence

of instance nodes resulting from an algebraic operation. As shown in §4.4.2, it is these

fragments that can be shared across XML views and when applied to the XFM view model,

forms our fragment-based view framework. A sample graph is shown in Figure 4.5, with

fragments represented as rectangular boxes. Fragments are categorised into 5 types as listed

below:

• Root Fragment (RF) – The RF fragment is a 4-ary tuple <fid, V, n, p >, where fid

is the unique identifier assigned to RF; V is a set of views sharing this fragment; n

represents the NameTest and the label (tag name) of the return node in p; and p is

the tree pattern mapped to RF from which the RF fragment can be evaluated. For

a Root Fragment, p is simply a tree with a single node represented by the document

node. The RF fragment represents the initial execution context. It contains a sequence

with only one instance node, which is the root of an XML tree (also known as the

document node). It always represents the starting point of an XFM view graph. While

a view graph will contain multiple query representations, they are all joined by the

same root fragment, as shown in Figure 4.5, e.g., RF with rectangle box.

• Filter Fragment (FF) – The FF fragment is a 5-ary tuple<fid, V, n, pred, p>, where

fid is the unique identifier assigned to FF; V is a set of views sharing this fragment;

n is the NameTest as well as the label (tag name) of the return node in p; pred is the

predicate applied to the context sequence; and p is a tree pattern mapped to the FF

fragment from which the FF fragment can be evaluated (p is a subpart of the original

query). The FF fragment (e.g., FF1 in Figure 4.5) represents the result produced

by a select operation. In our view model, the select operation always contains a

predicate used to filter an input sequence, e.g., free>8 in Figure 4.5 represents the

filter operation that results in FF12.

• Dependency Join Fragment (DF) – The DF fragment is a 6-ary tuple<fid, V, nleft,

55

nright, α, p>, where fid is the unique identifier assigned to DF; V is a set of views

sharing this fragment; nleft is the NameTest of the left join operand and the label

of (tag name) the return node in p; nright is the NameTest of the right join operand;

α is the axis of djoin (the relationship between two operands) operation; and p is

the tree pattern from which a DF fragment can be evaluated, (p is a subpart of the

original query). A DF Fragment (e.g., DF1 in Figure 4.5) represents the sequence

resulting from a djoin operation, e.g., the
d
./
→

before DF1 represents a dependency join

operation, where d indicates the ancestor-descendant relationship.

• Source Fragment (SF) – The SF fragment is a triple <fid, V, n >, where fid is the

unique identifier assigned to SF; V is a set of views sharing this fragment; and n

represents the NameTest. The SF fragment represents the full set of instance nodes

whose labels match n. The major difference between this fragment and all others is

that it cannot be reused and merely acts as an operand in a djoin operation.

• View Fragment (VF) – A VF fragment is a 4-ary tuple <fid, V, n, p>, where fid

is the unique identifier assigned to VF; V is a set of views sharing this fragment;

n is the NameTest and the label (tag name) of the return node in p, and p is a tree

pattern from which a VF fragment can be evaluated (in this case, p equals to the

entire query). A VF fragment (e.g., VF1 in Figure 4.5) represents the final result for

the view definition. It always follows a deep project operation, e.g., ΠD before VF1

indicates the deep projection.

4.4.2 XFM View Graph

The XFM View graph is a directed acyclic graph consisting of two types of nodes: a frag-

ment node denoted by f , and an operation node denoted by o. Fragment nodes can have

operation nodes only as neighbours and operation nodes can have only fragment nodes as

neighbours. The Root Fragment is the root of the XFM view graph. A formal definition of

an XFM View Graph is given in Definition 4.7.

Definition 4.7 [XFM View Graph]

An XFM View Graph is a directed acyclic graph represented by a 4-tuple, denoted by G =

< fr, F, O, V >, where fr is the RF fragment, F is a set of F-Nodes, O is a set of O-Nodes

56

and V is a set of views in G. �

A sample XFM view graph is shown in Figure 4.5, where fragment nodes are represented

by rectangular boxes and operation nodes by circles, and a list of natural language descrip-

tions of the views appearing in the sample graph and the corresponding XPath expressions.

Within an XFM view graph, a simple path determines a path that has distinct edges in a view

graph. A simple path starting at the RF fragment and ending at the VF fragment, uniquely

identifies an XPath expression/view in an XFM view graph. We use the notation V to rep-

resent the view that is uniquely identified by a simple path. We assign a level value to each

fragment with the exception of SF fragments, within the XFM view graph. As shown in

Figure 4.5, the XFM graph contains five views V1 to V5 that end with VF fragments, VF1,

VF2, . . ., VF5, respectively. The fragments in gray, FF7 and DF4 are the only materialised

fragments in this graph. Bear in mind that we use it only for the purpose of illustration as

the selection algorithm may choose different fragments for materialisation. In the rest of

this dissertation, we use fragment and fragment node interchangeably and also algebraic

operator and operation node.

4.5 Constructing the View Graph

At the end of §4.3.2, we have shown view (XPath) expression in algebraic format. In §4.4,

we described the view graph, components and operators. The final step is relatively simple:

transforming the algebraic view into the graph representation, and merging views into a

global XFM view graph. We begin with a description of the transformation process as

listed below:

1. The initial execution context ROOT(t) is transformed to a fragment node representing

the RF fragment.

2. Algebraic operators are transformed into operation nodes.

3. Depending on the type of the algebraic operation encountered, i.e., djoin, selection

or dproject, the transformation process generates different types of fragments indi-

cating the result of the algebraic operations and those fragments are transformed to

the fragment nodes and appended after the corresponding operation node.

57

4. During the process depicted in Step 3, if an operation node implies a djoin opera-

tion, then a SF fragment is also generated representing the right operand of the djoin

operation and is then transformed into a fragment node.

Figure 4.3b and 4.4b are the XFM view graphs representing single XPath views after per-

forming the transformation process on the algebraic representation shown in Figure 4.3a

and 4.4a.

4.5.1 The XFM View Graph Construction

The approach taken in the construction process is to first transform all views into the corre-

sponding graph representations, which includes XPath to Algebraic Representation Trans-

lation and Algebraic Representation to XFM View Graph Transformation, and then merge

all those single view based XFM view graphs together.

Algorithm 4.1: XFMViewGraphConstruction(E)
Input: A set of XPath expressions E = {e1, e2 · · · en}
Output: An XFM view graph G

1 Transform e1, e2 · · · en into the graph representation, V1, V2 · · · Vn, respectively;
2 set G to be an empty graph;
3 foreach Vi ∈ {V1, V2 · · · Vn} do

/* Case 1: When G is empty */
4 if G is empty then
5 add Vi into G;

/* Case 2: When there is one or more views in G */
6 else
7 foreach f ′ in Vi do
8 if there exits a fragment in G that is equivalent to f ′ then continue;
9 else

10 search for a fragment f in G after where f ′ is inserted;
11 TargetViewAdaptationForInsertFragment(f , f ′, Vi,

G);

As shown in Algorithm 4.1, a set of XPath expressions/views are accepted as the input.

During the initialisation, all XPath expressions are transformed into the graph representa-

tion (Line 1) and an empty XFM view graph is created (Line 2). The graph construction

algorithm is a special case of the view adaptation process, where a new view is treated as

a list of linked fragments starting from the RF fragment representing the document. The

58

merging of the view graph is achieved by inserting the fragments of the new view into

the global XFM view graph. By iteratively verifying the containment relationship between

the new fragments and existing ones, the algorithm determines the place in the XFM view

graph where the insertion should take place. This description is deliberately brief for now

as we discuss containment checking in depth, in Chapter 5.

In summary, there are two possible cases, as outlined in Algorithm 4.1, when adding a view

Vi into the global XFM view graph G,

Case 1 When G is empty. This case is managed by directly adding Vi into G by setting

the root of G as the root of Vi, Line 5-6.

Case 2 When G contains one or more views. The algorithm checks for each fragment

f ′ in Vi: whether f ′ is equivalent to an existing fragment. If not, then f ′ is

added into the global view graph by calling the TargetViewAdaptationFo

rInsertFragment function, Line 8-12.

TargetViewAdaptationForInsertFragment (see Algorithm 7.2 on Page 113) is

discussed in detailed in Chapter 7. For the moment, one needs only know that TargetView

AdaptationForInsertFragment accepts two fragments, an existing one (i.e.,f) from

G, and a new one (i.e.,f ′) from Vi to be inserted into G.

4.6 Summary

In this chapter, the XML data model and query language were introduced, followed by a

description of XML queries and XPath processing. We then provided a detailed discus-

sion on the XFM view model and graph. At this point, we can represent XPath views in

our system and are ready to consider view management, including containment checking,

fragment selection and adaptation which form the basis of the next three chapters.

59

Chapter 5

Containment Checking

In this chapter, we present our containment checking mechanism, which is based on a new

metadata structure, the SchemaGuide. The containment checking process is necessary to

identify common parts between views and to determine the extent of changes between new

and old view definitions. The chapter begins with a strategy overview in §5.1 and then in

§5.2, we present the SchemaGuide construct which is the key component in our contain-

ment checking algorithm. In §5.3, the concepts of Embedding and Embedded Trees are

introduced, before our containment algorithms are discussed in §5.4.

5.1 Strategy Overview

When a view definition has changed, it requires the comparison between old and new def-

initions, with changes identified at the fragment level. Therefore, our containment mecha-

nism focuses on a fragment comparison process and in particular, whether or not the new

fragment is contained within the old fragment. View adaptation is rarely confined to the

modification, addition or deletion of a single fragment as it often impacts on connected

fragments in the XFM view graph.

As summarised in [Sch04], the most general notion of containment is based on the evalua-

tion result of two tree patterns (see Chapter 4), to determine if the result of a tree pattern is

contained in another one. Based on this general notion, our containment checking algorithm

checks whether the results of two tree patterns are contained. We differ however, in that we

manage containment based on the sets of matched subtrees retrieved from a SchemaGuide,

60

that match the tree patterns. Our approach provides both accuracy and improved perfor-

mance as shown in [LRB10a, LRB11].

Since a view is comprised of a number of fragments, a fragment is always represented by

a sub-query and we use the concept of a tree pattern to represent this sub-query. Thus, our

containment checking algorithm evaluates whether one tree pattern is contained in a second

tree pattern.

In summary, the containment check involves a single step which compares two tree patterns

and evaluates to true or false. For the purpose of explanation, we separate our discussion

into two streams: the first involving a structural check between tree patterns and the sec-

ond focusing on value-based predicates. The structural check evaluates the containment

relationship between two tree patterns using the SchemaGuide. Both structure (pattern and

relationship between nodes) and data (label name) must be preserved between the two tree

patterns. The second discussion takes predicates into consideration. We begin our discus-

sion with the introduction of the SchemaGuide that is used extensively by the containment

checking algorithm.

5.2 The SchemaGuide

A SchemaGuide [LRB10a] is a tree-based metadata structure that summarises the structural

(pattern) information of an XML tree and describes constraints. It is used by the contain-

ment checking algorithm to determine the containment relationship between fragments and

identify the common sub-expressions between views. Moreover, as will be shown in Chap-

ter 7, it provides metadata that can be exploited for performance gains.

A SchemaGuide describes the structure of an XML tree without concern for the content

of the corresponding XML document. Similar to other existing metadata structures, it also

provides constraints on XML data that are either explicitly defined in a DTD file or an XML

schema, or implicitly outlined by a structural-based summary such as a strong DataGuide

[GW97] or a QueryGuide [IHH09]. The difference between the SchemaGuide and existing

metadata structures is that it provides more detailed structural information of XML docu-

ments, e.g., the subtree structure of each instance node and the order of each instance node

appearing in the subtree. Similar to an XML tree, a SchemaGuide has a tree based structure

61

and is represented by a 4-tuple as depicted in Definition 5.1.

Definition 5.1 [SchemaGuide]

Given an XML document and its tree representation t, a SchemaGuide G is a tree sum-

marising the structural information in t and it is represented by a 4-tuple < RG, NG, EG,

LG > where RG denotes the root node of G; NG is a set of nodes in G; EG represents a set

of edges in G; and LG contains a set of labels in G, where LG ⊆ Σ. �

If G is a SchemaGuide corresponding to an XML tree t, then we say that G summarises

t or t conforms to G, denoted by G � t. Given a schema node u, where u ∈ NG, LG(u)

returns the label of u and LG(u) ∈ Σ. E+
G is the transitive closure of EG defining the

ancestor-descendant relationship between any arbitrary pair of schema nodes in G.

Figure 4.1b (see Page 45) is a snapshot of the SchemaGuide corresponding to the segment

of the Worldbikes dataset shown in Figure 4.1a. Each instance node of an XML tree is

mapped to a node within the SchemaGuide, to differentiate between nodes in an XML tree

and nodes in a SchemaGuide, we refer to nodes in a SchemaGuide as the schema nodes.

Each schema node is uniquely identified by an integer value called the schema node id

(sid), e.g., the number that is associated with each node in Figure 4.1b. We use gu to denote

a subtree of a SchemaGuide rooted at the schema node u and it contains all nodes that are

transitively reachable from u, e.g., a subtree rooted at time in Figure 4.1b is denoted by

gtime.

As depicted in Definition 5.2, for an XML tree and the corresponding SchemaGuide, we

define a mapping function, ϕ, which maps all nodes between the XML tree and the corre-

sponding SchemaGuide. The mapping function must retain all characteristics as specified

in Definition 5.2 and serves as an essential concept for our later propositions and proofs. It

is the many-to-one characteristic of the mapping function that makes it suitable for an XML

tree to SchemaGuide mapping where there are generally many instances of a schema node

in the XML tree.

Definition 5.2 [The Mapping Function (ϕ)]

Given a tree t and a SchemaGuide G, G � t. Let ϕ : Nt → NG be a mapping function

where the following characterises are preserved:

62

1. Root preserving: ϕ(Rt) = RG.

2. Edge preserving: if (u, v) ∈ Et −→ (ϕ(u), ϕ(v)) ∈ EG.

3. Label preserving: ∀ u ∈ Nt −→ Lt(u) = LG(ϕ(u)).

4. Root-to-Node Path preserving: ∀ u ∈ Nt and u is reachable from Rt by the path P

−→ ϕ(u) is reachable from ϕ(Rt) by the same path P .

5. Subtree Structure preserving: ∀ u ∈ Nt
∧ ∀ v ∈ Ntu −→ ϕ(v) ∈ NGϕ(u)

∧
Lt(v) =

LG(ϕ(v)).

6. Order preserving: ∀ u ∈ Nt
∧ ∀ vi ∈ Ntu , 0 < i < k, where k is the number of

children of u −→ ϕ(vi) ∈ NGϕ(u)
and ϕ(vi) is the ith child of ϕ(u). �

As shown in Definition 5.2, when mapping nodes from an XML tree t to a SchemaGuideG,

the mapping functionϕ guarantees: 1) the root node between t andG are mapped; 2) for any

pair of instance nodes in t, their edge must be identical to the edge between their mapped

schema nodes in G; 3) the same labels are assigned to nodes in t and G that are mapped;

4) for any instance node in t and its mapped schema node in G, they are on the same path;

5) for any mapped nodes in t and G, they must have identical subtree structure and; 6)

the order of nodes within the subtree must remain same. Existing research has focused on

the first four characteristics and we extend existing work by providing the more detailed

metadata information required by 5 and 6. This is the key contribution in our SchemaGuide

as it made possible to reduce the search space required for containment checking.

Based on the mapping function defined in Definition 5.2, we now present a new property

for our SchemaGuide. Property 5.1 outlines the fact that if an XML tree t conforms to a

SchemaGuide G, then there must exist a many-to-one mapping between instance nodes in

t and schema nodes in G. Every instance node in t maps to a schema node in G, whereas,

every schema node in G can be mapped to at least one instance node in t.

Property 5.1 Given an XML tree t and a SchemaGuide G, if G |= t, then there exists a

mapping function ϕ which maps every instance node in t to a schema node in G, whereas,

a schema node can be mapped to multiple instance nodes. �

63

Furthermore, according to Property 5.1, each instance node within an XML tree maps to a

schema node in the corresponding SchemaGuide and as a result, it derives the correspond-

ing sid from the mapped schema node. As was shown in Figure 4.1a, each instance node

is associated with an integer value representing the sid. Based on the concepts outlined

in Definition 5.2 and Property 5.1, for any XML tree, one could build its corresponding

SchemaGuide during the XML document parsing process by temporarily storing all root-

to-leaf and subtree structures of each instance node. A schema node is only created if the

root-to-leaf and subtree structure associated with an instance node have never been previ-

ously encountered during the parsing. The algorithm for generating a SchemaGuide were

implemented using the Xerces2 SAXParser [Xerces2], which scans an XML document and

each time it encounters a tag, it calls the corresponding tag handler method. We record all

paths and subtree structures by iteratively concatenating/substracting tags that are encoun-

tered during the parsing.

5.3 Embedding and Embedded Trees

In this section, we introduce the concepts that are necessary for our containment checking

algorithm. Recall that a tree pattern is a subset of an XPath expression. An embedding

function maps the tree pattern to an instance in an XML tree. To return all instances that

match a tree pattern, multiple embeddings are required. This is formalised in Definition 5.3

which outlines that for each tree pattern p, there exists one or more subtrees in t that maps

p to t with structural characteristics preserved. This provides a platform for evaluating

containment at schema level. As mentioned in Chapter 4, a subtree of a tree t is a tree

consisting of a node in t and all or part of its descendants. A subtree rooted at a node u in

t is denoted by tu. Also, a subtree without context information, i.e., the root of its original

tree, is itself a tree. From now on, we use the term tree and subtree interchangeably.

Definition 5.3 [XML Tree Embedding]

Given a tree pattern p and an XML tree t, let e : Np → Nt be an embedding of p in t

where Ep = E/p ∪ E//p , E/p and E//p contain edges indicating all parent-child and ancestor-

descendant relationships, respectively, and the following characteristics are preserved:

• Root preserving: e(Rp) = Rt

64

Worldbikes

bikes

city

Amiens Brisbane Dublin Dublin

stations

time date weather station

... ...

...

hour minute second

17 25

year month day

2010 17 25

temppressurewind

speed unitunit

unit

......

...

410

409

408
35 183109 183

182

station
181181173156152

149 150 151 153 154 155 170

167

168

163

164

165
...

available free total errorticket
176 177 178 179 180

13 8 21 1 022

29.19

inches

mph

degree
farenheit

48

...

15
169

bikes

Dublin

station

Worldbikes

year
stations

station

34

33

Figure 5.1: XML Tree Embedding

• Child edge preserving: if (u, v) ∈ E/p −→ (e(u), e(v)) ∈ Et

• Descendant edge preserving: if (u, v) ∈ E//p −→ (e(u), e(v)) ∈ E+
t

• Label preserving: ∀u ∈ Np −→ Lp(u) = Lt(e(u)) �

A tree pattern contains parent-child (child axis) and ancestor-descendant (descendant axis)

relationships, while ancestor and parent axes can be handled by translating them into the

corresponding child and descendant axes [OMFB02]. Definition 5.3 states that the embed-

ding process requires that the root of p maps to the root of tu, where u is a node in t and

u is the embedding of Rp in t; all parent-child and ancestor-descendant relationships are

preserved; and matching nodes in p and tu have identical labels.

Example 5.1 (XML Tree Embedding in Figure 5.1)

There are two embeddings (e and e′) between the tree pattern p and the XML tree t. Both e

and e′ map the root node of p to the root node of t (root preserving). The label of each pair of

mapped nodes are identical (label preserving), e.g., node labelled with bikes in p is mapped

to the node labelled with bikes in t by both e and e′. Edges (relationships) between tree

65

r

· · ·

· · · a

· · ·

b

· · · · · ·

· · ·

· · ·
a

· · ·

b

· · ·

XML Tree t

instance nodes

(a b)

(a b)

result (node) sequence
(instance of return set)

result (node) sequence
(instance of return set)

result nodes

r

a

return
node

b

return
node

Tree Pattern p

(a b)

return (node) set

result set1

Figure 5.2: XML Tree and Tree Pattern

pattern nodes are consistent with the corresponding edges between the mapped instance

nodes, e.g., both Dublin and year in p and t have ancestor-descendant relationships (child

and descendant edge preserving). �

Before we outline our discussion, some terminologies are introduced now to help under-

stand definitions and propositions for our containment checking mechanism. Recall that a

tree pattern may have multiple return nodes. As shown in Figure 5.2, the nodes a and b are

the return nodes of the tree pattern p and the set containing both a and b is referred to as the

return node set of p or simply the return set, and nodes within the XML tree t are instance

nodes. When evaluating p over t, all instance nodes match to the return nodes are returned,

we refer to those instance nodes as the result nodes of the tree pattern p. Among all result

nodes, there are several sequences which group a set of result nodes together and map to the

return set (they are instances of the return set), we refer to them as the result node sequence,

or simply result sequence. A set of all potential result sequences are referred to as the result

set.

We now define the evaluation result of executing a tree pattern p over an XML tree t. Based

on the embedding function in Definition 5.3, the following equation formally defines the

results of evaluating a tree pattern p over an XML tree t, which is a set of sequences of

66

instance nodes that are extracted from each embedding,

p(t) = {e(u) | e is an embedding of p in t,

u = (u1, u2, . . . , uk) is the return set of p} (5.1)

The above equation shows that the evaluation of a tree pattern over an XML tree is a set of

k-tuples derived from the XML tree embedding, where k is the arity of the tree pattern and

every k-tuple represents a result sequence containing instance nodes in the XML tree.

Example 5.2 (Evaluating p in Figure 5.3 where station is the return node)

The result nodes for p are determined through all possible embeddings of p in t. In this case,

station is the return node of p and the result of evaluating p is all station nodes resulting from

the embeddings. In the sample XML tree, two station nodes associated with sid 181 are the

result of p. They both have the same sid as they map to the same schema node. Note that the

node station with sid 33 does not preserve the root-to-node-path (e.g., city-Dublin-station

and city-Amiens-station). �

The matched instances of a tree pattern returned by all potential XML tree embeddings may

be located in different areas of an XML tree. The containment checking process requires

that we associate each instance with its absolute location (with respect to the root of the

XML tree and its descendants) within the tree. As the SchemaGuide is the metadata equiv-

alent of the XML tree, it provides this absolute location for each instance returned by the

embedding process. A SchemaGuide embedding function returns those metadata instances

that correspond to the matched instances returned by the XML tree embedding function.

We use this one-to-many mapping to reduce the search space of verifying the containment

relationship as discussed in §5.4.

In Definition 5.4, we formally define the embedding of a tree pattern in a SchemaGuide.

There may be multiple embeddings of a tree pattern in a SchemaGuide, where each em-

bedding defines a mapping between a tree pattern to a subtree of the SchemaGuide with

structural characteristics preserved. As will be shown, there is a one-to-many relation-

ship between subtree instances returned from the XML tree embeddings and the subtree

instance obtained from a SchemaGuide embedding. Several subtree instances of an XML

67

Worldbikes

bikes

city

Brisbane DublinAmiens

410

409

408
18310935

stations

time date weather

... ...

...

hour minute second year month day temppressurewind

speed unitunit

unit

...
182

station
181173156152

149 150 151 153 154 155 170

169167

168

163

164

165

...

bikes

Dublin

station

Worldbikes

year

SchemaGuide Embedding

)
(e

g

stations

station

34

33 ...

Figure 5.3: SchemaGuide Embedding

tree may map to one single subtree of a SchemaGuide. This optimises the containment

checking process by restricting the search space to a set of SchemaGuide subtrees. Defini-

tion 5.4 is fundamental to prove the correctness of the containment checking process using

a SchemaGuide. Bear in mind that a SchemaGuide G has a tree-based representation with

a subtree in G rooted at a schema node u, denoted by gu.

Definition 5.4 [SchemaGuide Embedding]

Given a tree pattern p and a SchemaGuide G, let eg : Np → NG be an embedding of p in

G where the following characterises are preserved:

• Root preserving: eg(Rp) = Rg

• Child edge preserving: if (u, v) ∈ E/p −→ (eg(u), eg(v)) ∈ EG

• Descendant edge preserving: if (u, v) ∈ E//p −→ (eg(u), eg(v)) ∈ E+
G

• Label preserving: ∀u ∈ Np −→ Lp(u) = LG(eg(u)) �

68

Example 5.3 (SchemaGuide Embedding eg in Figure 5.3)

The SchemaGuide embedding eg maps the root node of p, Worldbikes, to the root node of

g, Worldbikes (root preserving). All mapped nodes in p and g have identical labels (label

preserving). The relationship between mapped schema nodes in g and the corresponding

nodes in p are consistent (child and descendant edge preserving). �

The embedding functions serve as a matching of a tree pattern, both at data level (Defini-

tion 5.3) and at the schema level (Definition 5.4). As stated previously, containment is based

on the evaluation of two tree patterns and the determination of whether one is contained in

the other. Definition 5.5 formally defines the containment relationship between two tree

patterns. It states that one tree pattern is contained in a second tree pattern if the first result

set is a subset of the second result set. As each fragment maps to a tree pattern, we will

show in §5.3 that if the first tree pattern is contained in the second tree pattern, then we have

shown that the first fragment is contained in the second fragment. A formal definition of

containment between two tree patterns is given in Definition 5.5.

Definition 5.5 [Containment Between Two Patterns]

Given a tree t, two tree patterns p and p′ and a SchemaGuide G, where t ∈ TΣ, we say that

p is G-contained in p′, denoted by p ⊆G p′, if for any t ∈ TΣ, G � t and p(t) ⊆ p′(t). �

In Definition 5.5, a tree pattern p is said to be G-contained (G is a SchemaGuide) in another

tree pattern p′ if their result sets are contained. Two tree patterns are equivalent if p ⊆G p′

and p′ ⊆G p. From now on, we use the terms contained and G-contained interchangeably.

At this point, we are still focused on structural containment.

For each SchemaGuide embedding, there exists a tree that preserves all characteristics of

the embedding. We refer to such a tree as an Embedded Tree (see Definition 5.6) derived

from the SchemaGuide embedding of a tree pattern in a SchemaGuide. As multiple embed-

dings may exist where a tree pattern occurs in different parts of the SchemaGuide, there are

multiple embedded trees. The concept of the embedded tree allows us to perform contain-

ment checking at schema level and thus, reduces the search space. A set of all trees derived

from all possible embeddings of p in G is called a Embedded Tree Set, denoted by Teg (p).

69

bikes

Dublin

station

Worldbikes

year

bikes

Dublin

station

Worldbikes

city

stations

date

year

410

409

408

183

182

156

153

181

Figure 5.4: Tree Pattern and Embedded Tree

Definition 5.6 [Embedded Tree]

An embedded tree is a tree derived from a SchemaGuide embedding eg of a tree pattern p

in a SchemaGuide G denoted by teg . teg is obtained as follows:

• For each node u ∈ Np, teg contains a node eg(u) whose label is identical to u. If u is

a return node of the tree pattern p, we say that eg(u) is a return node of teg .

• Let u be a node in Np and v1, v2 . . . vk be its children. The node, eg(u), in teg

corresponding to u has exactly k children, and for every 1 ≤ i ≤ k, its ith child

consists of a parent-child chain of nodes, whose labels are those connecting eg(u) to

eg(vi). �

Definition 5.6 states that an embedded tree teg of a tree pattern is obtained from a SchemaGuide

through the SchemaGuide embedding such that i) for each node in p, there is a correspond-

ing node in teg with an identical label, and the nodes in teg that map to the return nodes of

p are the return nodes of teg ; ii) each path in teg maps to a path in p, where the root and leaf

of the path in p correspond to the root and leaf of the path in teg , and the nodes in the path

of teg contain only parent-child relationship.

An example of the embedded tree is given in Figure 5.4b, where each node in Figure 5.4a

maps to a node in Figure 5.4b. The descendant edge is expanded into a chain of parent-child

edges, i.e., Dublin//year is expanded to Dublin/stations/date/year in Figure 5.4b. Further-

more, the sid associated with each node in the embedded tree is used to identify the correct

70

r

a

return
node

b

return
node

Tree Pattern p

(a b)

return (node) set

r

a b

Embedded Tree te1g

r

a b

Embedded Tree te2g

r

a b a b

SchemaGuide G(a b)

schema context

(a b)

schema context

2

Figure 5.5: Tree Pattern, Embedded Tree and SchemaGuide

instance of nodes with the same label. For instance, station may occur multiple times in

a SchemaGuide with different sid. In Figure 5.3, station within the subtree of Dublin and

station within the subtree of Amiens have different sid as the paths between them to the

root node of the tree are different according to Definition 5.2. To be precise, in Figure 5.3,

station has sid values of 33 and 181.

Before proceeding, we now introduce terms that are used extensively in §5.4. As we have

discussed, the return set of a tree pattern maps to one or more embedded trees. As shown

in Figure 5.5, the return set of p maps to the return nodes of te1g and te2g . We refer to each

matched instance of the return set as the schema context which contains return nodes of

each embedded tree. In other words, different subtrees within the SchemaGuide are often

returned, not just a single context.

71

5.4 Containment Checking Algorithms

As stated in Chapter 2, existing efforts attempt to either reduce the search space or improve

the completeness of containment checking in the presence of a DTD, XML Schema or

structural summary. However, none of these approaches reflect the actual root-to-node or

subtree structure of each instance node within an XML tree, as they provide only “rough”

structural information regarding each XML tree. For example, the depth of recursion is

unknown where elements are nested inside each other. Furthermore, the subtree structure

is unpredictable where an element as defined in the DTD for example, may be optional.

As our SchemaGuide provides more detailed information about an XML tree, we will now

show that our approach provides more completeness for containment checking and only a

small search space is required.

As stated in Definition 5.5, the containment relationship between two tree patterns is veri-

fied by determining the relationship between the result sets of them, which tends to be time

consuming. To reduce costs, our algorithm uses the embedded tree sets of the two tree

patterns rather than the actual instance nodes of the return set. To prove the correctness

of this method, it is proposed in Proposition 1 that for every result sequence of a tree pat-

tern, there always exists a mapping between the instance nodes within the result sequence

and the subtrees in the embedded tree sets. Therefore, the algorithm needs only determine

the containment relationship between two tree patterns at the schema level based on the

mapped subtrees. This is used to prove the correctness of the later propositions that are a

fundamental part of our containment checking algorithm.

Proposition 1 states that for each result sequence there exists an embedded tree such that 1)

the embedded tree is also a subtree of the corresponding XML tree; and 2) nodes in each

schema context of the embedded tree have the same root-to-leaf paths as the result nodes.

Proposition 1 Let t be a tree and G be a SchemaGuide such that G � t, ϕ is a mapping

from t to G and also p be a tree pattern. For each result sequence (u1, u2, . . ., uk) ∈ p(t),

there exists a tree teg that is derived from an embedding eg, where teg ∈ Teg (p), such that:

• the embedded tree teg is isomorphic to a subtree in t and thus, teg is a subtree of t.

• the result node ui (0 < i ≤ k) is on the path of a node vi in teg , where vi ∈ Nteg and

72

bikes

Dublin

station

Worldbikes

year

bikes

Dublin

station

Worldbikes

city

stations

date

year

410

409

408

183

182

156

153

181

teg

181
(station)

181
(station)

...
...

...
...

Figure 5.6: Overall Mapping

vi is the ith return node of teg . 2

Since the SchemaGuide is derived from an XML tree, based on Property 5.1, we know that

there is a mapping between every instance node in the XML tree to schema nodes within the

corresponding SchemaGuide. As the tree pattern is a parameter in the function that creates

the set of embedded trees in the SchemaGuide, all nodes in the tree pattern are mapped to

their equivalent schema nodes in the embedded trees in the SchemaGuide. In many cases,

this is a one-to-many mapping as there are likely to be many matched instances of the tree

pattern in the SchemaGuide as show in Figure 4.1. Thus, Proposition 1 states that there is a

direct mapping between every result node of the tree pattern and the corresponding node in

the embedded trees.

PROOF (OF PROPOSITION 1.) [⇒] For each result sequence (u1, u2, . . ., uk) ∈ p(t), by

definition, there exists an XML tree embedding e of p in t. For every node mi ∈ Np, we

have e(mi) = ui, 0 < i ≤ k. Let eg be a SchemaGuide embedding of p in G, teg is a tree

derived from eg and teg ∈ Teg (p). For every vi ∈ Nteg and vi = ϕ(ui), where ϕ is a mapping

from t to G, then ui is on the path of vi for every 0 < i ≤ k. Therefore, by definition, teg is

a subtree of the XML tree t. Since vi = e(mi) and mi is the ith return node of p, therefore,

vi is the ith return node of teg . �

The above proof shows that for any result sequence, there exists an embedded tree (subtree)

73

in the SchemaGuide that is isomorphic to a subtree of the XML tree and each instance node

within the result sequence is mapped to a node in the embedded tree with same sid (same

root-to-node and subtree structure).

For example, as shown in Figure 5.6, evaluating the tree pattern p (Figure 5.6a) over the

XML tree t (Figure 5.1a) results in a sequence of 1-tuple (p has only one return node),

where each 1-tuple contains an instance node station (Figure 5.6c). For each station, there

must exist an embedded tree whose return node is also node station. In this case, the above

proof shows that for each of those 1-tuples, there always exists an embedded tree teg derived

from the SchemaGuide embedding of p in G, where each 1-tuple maps to the return node

of teg . In Figure 5.6c, both station nodes map to the station node of the embedded tree in

Figure 5.6b.

PROOF (OF PROPOSITION 1.) [⇐] Let (v1, v2, . . ., vk) be the return nodes of p, then by

definition, they are also the return nodes of teg (with identical labels), where teg ∈ Teg (p).

Let e be an XML tree embedding of p in t, then we have (e(v1), e(v2), . . ., e(vk)) ∈ p(t) and

for every 0 < i ≤ k, we have e(vi) is on the path of vi. By replacing e(v1), e(v2), . . ., e(vk)

with u1, u2, . . ., uk, we have (u1, u2, . . ., uk) ∈ p(t). �

The second proof shows the bidirectional nature of the mapping between instance nodes

and embedded trees. Thus, for any embedded tree, there is an one-to-many mapping from

the embedded tree to the result nodes, e.g., the station of the embedded tree in Figure 5.6b

is mapped by the two instance nodes resulting from the evaluation of p.

5.4.1 Basic Containment Checking

In this section, we present a basic containment checking algorithm, which iteratively com-

pares two set of embedded trees to verify the containment relationship between two tree

patterns, based on Proposition 2. We now show that the basic containment checking needs

only to compare the embedded trees retrieved from all possible embeddings of both tree

patterns as outlined in Proposition 2.

Proposition 2 Given a tree t, a SchemaGuide G and two tree patterns p and p′, where t ∈
TΣ and G � t, then statements (2-1) and (2-2) are equivalent:

74

(2-1) : p ⊆G p′.

(2-2) : ∀ teg ∈ Teg (p), ∃ te′g ∈ Te′g (p′)→ i) te′g is a subtree of teg and, ii) both teg and te′g

have the same return nodes. 2

In (2-1), we state that p is G-contained in p′. This is identical to stating that in (2-2), for each

embedded tree teg in the embedded tree set of p, there exists a tree te′g in the embedded tree

set of p′, such that i) teg is a subtree of te′g and ii) both of them have the same return nodes

(labels are same). Therefore, we can prove that a tree pattern p is contained by another tree

pattern p′, if each embedded tree of p′ is a subtree of an embedded tree of p and both of

them have identical return nodes (same labels). We now show that (2-2) can be deduced

from (2-1) and vice versa.

PROOF (OF PROPOSITION 2) [(2-1) ⇒ (2-2)] Since p ⊆G p′, so we have p(t) ⊆ p′(t).

Let (u1, u2, . . ., uk) ∈ p(t), by definition, as p(t) contains a subset of return nodes of p′(t)

then we have (u1, u2, . . ., uk) ∈ p′(t). Based on Proposition 1, we know that for each (u1,

u2, . . ., uk) ∈ p(t), there exists a tree teg , where teg ∈ Teg (p). There also exists a tree te′g ,

where te′g ∈ Te′g (p′). As p(t) ⊆ p′(t), then p and p
′

have the same return nodes. Therefore,

for each teg ∈ Teg (p), teg must contain a subtree te′g in Te′g (p′) with the same return nodes

so that p(t) ⊆ p′(t) is valid. �

This proof outlines the fact that if p is contained within p′, for any embedded tree teg of p,

there must exist an embedded tree teg in p so that te′g is a subtree of teg that have the same

return nodes.

PROOF (OF PROPOSITION 2) [(2-2)⇒ (2-1)] Let t be a tree, and the result sequence (u1,

u2, . . ., uk) ∈ p(t). There exists a tree teg ∈ Teg (p), teg is a subtree of t. Since teg contains a

subtree te′g ∈ Te′g (p′) with the same return nodes and te′g is a subtree of t, by Proposition 1,

(u1, u2, . . ., uk) ∈ p′(t). Therefore, p(t) ⊆ p′(t), which further implies p ⊆ p′ based on

Definition 5.5. �

The above proof states that for any embedded tree teg of p, there exists an embedded tree te′g

in p′ so that te′g is a subtree of teg that have the same return nodes, then the result of p over t

is a subset of the result of p′ over t, which indicates that p is contained in p′ (Definition 5.5).

75

According to Proposition 2, the containment relationship between tree patterns p and p′ is

determined by the following two steps:

1. Generating the embedded tree sets of p and p′, Teg (p) and Te′g (p′), according to the

SchemaGuide embeddings.

2. Comparing all trees in the embedded tree sets and then verifying whether (2-2) of

Proposition 2 is true or not.

The complexity of the algorithm is O(|NG|2 × |Teg (p)| × |Te′g (p′)|). For p and p′, there are

maximum |NG| × |Teg (p)| and |NG| × |Te′g (p′)| nodes, respectively. Therefore, to compare

embedded trees derived from all embeddings of both tree patterns, the time required is

|NG|2 × |Teg (p)| × |Te′g (p′)|.

5.4.2 Optimised Containment Checking

Proposition 2 highlights the fact that the algorithm requires two iterations for checking

containment: one for each embedded tree set. To further improve performance, Proposi-

tion 3 implies a new algorithm, which reduces the time complexity by evaluating the first

tree pattern over the embedded trees retrieved from the second tree pattern. This algorithm

can be achieved in a more efficient way by using holistic twig pattern matching algorithms

such as, TwigList [QYD07] and OTwig [LR10], which cannot be achieved using the former

approach.

Proposition 3 Given a tree t, a SchemaGuide G and two tree patterns p and p′, where t ∈
TΣ and G � t, then (3-1) and (3-2) are equivalent,

(3-1) : ∀teg ∈ Teg (p) whose return nodes are (u1, u2, . . ., uk), there exists (u1, u2, . . ., uk)

∈ p′(teg).

(3-2) : ∀ teg ∈ Teg (p), ∃ te′g ∈ Te′g (p′)→ i) te′g is a subtree of teg and, ii) both teg and te′g

have the same return nodes. 2

Proposition 3 states that for each embedded tree teg of p, if the return nodes of teg are

identical to the result nodes p′ over teg , then p is contained in p′. To show the correctness of

this proposition, we prove that (3-1) is equivalent to (3-2). To demonstrate the equivalence,

76

we first show that (3-2) can be deduced from (3-1) of Proposition 3. Note that, (3-2) is

equivalent to (2-2) of Proposition 2.

PROOF (OF PROPOSITION 3.) [(3-1)⇒ (3-2)] Since (u1, u2, . . ., uk) ∈ p′(teg), based on

Proposition 1, there must exist a tree which is a subtree of teg and let such a tree be te′g . As

ui is on the path of vi in te′g , where vi ∈ Nte′g , 0 < i ≤ k, thus, teg and te′g have the same

return node. �

The above proof verifies that if the nodes returned by evaluating a tree pattern p′ over the

embedded tree teg are equivalent to the return nodes of teg of p, then (3-2) holds. In the

following proof, we also show that the reverse holds.

PROOF (OF PROPOSITION 3.) [(3-2) ⇒ (3-1)] Let (u1, u2, . . ., uk) be the return nodes

of p. By Definition 5.6, (u1, u2, . . ., uk) are the return nodes of all trees derived from the

SchemaGuide embeddings of p in G. Since ∀teg ∈ Teg (p), there exists a tree te′g that is

derived from a SchemaGuide embedding of p′ so that te′g is a subtree of teg and teg and te′g

have the same return nodes. Therefore, (u1, u2, . . ., uk) ∈ p′(teg). �

The above proof states that for an embedded tree teg of p, there exists an embedded tree te′g

of p′, where te′g is a subtree of teg and both subtrees have the same return nodes. Thus, (3-1)

in Proposition 3 is true. We can exploit this property to deliver an optimised containment

checking algorithm.

Based on Proposition 3, the following algorithm checks the containment relationship be-

tween p and p′:

• Retrieving all embedded trees of p that are derived from the embeddings of p in a

SchemaGuide G.

• Evaluating p′ over all teg ∈ Teg (p) and verifying that the return nodes of p belong to

p′(teg).

The complexity of the algorithm is O(|NG| × |Teg (p)| × |Np′ |) as each embedded tree of p

contains at most |NG| nodes and the evaluation of p′ takes |Nteg | × |Np′ |, which equals to

the number of nodes in the embedded tree multiplies the number of nodes in the tree pattern

p′.

77

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(152,221,109)
Brisbane

(300,369,183)
Dublin

(4,73,35)
Amiens

(301,368,182)
stations

(302,309,152)
time

(310,317,156)
date

(324,351,173)
weather

...

(303,304,149)
hour

(305,306,150)
minute

(307,308,151)
second

(311,312,153)
year

(313,314,154)
month

(315,316,155)
day (343,346,170)

temp
(339,342,168)

pressure
(327,336,165)

wind

(332,335,164)
speed

(344,345,169)
unit

(340,341,167)
unit

(333,334,163)
unit

...

(352,367,181)
station

...

(5,72,34)
stations

(56,71,33)
station

...

(Start,End,SID)

(359,360,177)
free ...

(63,64,29)
free

...

...

Figure 5.7: A SchemaGuide With Positional Encoding Scheme

5.4.3 Region-Based Optimisation

The algorithms described in the previous section must consider all nodes, either in tree

patterns or in all embedded trees. We now present an approach that reduces the search

space by focusing only on the return nodes of each embedded tree (schema context) during

containment checking. The idea is to encode each schema node by applying a positional

(region) encoding/labelling scheme, the benefit of this is that we can quickly determine

regions within a SchemaGuide in where each schema node locates and then check contain-

ment relationship based on those regions.

The region encoding scheme we adopted in our approach is called the StartEnd encoding

scheme, which was originally devised for XML twig pattern matching algorithms to fa-

cilitate the process of determining the parent-child and ancestor-descendant relationships

between XML tree nodes and it is a variation of the PrePost encoding scheme [Gru02].

Although StartEnd is used, it is not mandatory as any containment-based encoding scheme,

as discussed in [OR10], can be adopted. As shown in Figure 5.7, each schema node is now

represented by a 3-tuple, (start,end,sid), where the start and end values of a schema node

78

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(4,73,35)
Amiens

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(301,368,182)
stations

(311,312,153)
year

(310,317,156)
date

(352,367,181)
station

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(4,73,35)
Amiens

(5,72,34)
stations

(56,71,33)
station

(15,16,5)
year

(14,21,8)
date

bikes

stations

station

Worldbikes

year

bikes

Worldbikes

bikes

Dublin

station

Worldbikes

year stations

(311,3
y

(310,3
d

(a) Tree Pattern p1

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(301,368,182)
stations

(311,312,153)
year

(310,317,156)
date

(352,367,181)
station

(359,360,177)
free

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(4,73,35)
Amiens

(5,72,34)
stations

(56,71,33)
station

(15,16,5)
year

(14,21,8)
date

(63,64,29)
free

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(301,368,182)
stations

(311,312,153)
year

(310,317,156)
date

(352,367,181)
station

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(4,73,35)
Amiens

(5,72,34)
stations

(56,71,33)
station

(15,16,5)
year

(14,21,8)
date

bikes

stations

station

Worldbikes

year

bikes

stations

free

Worldbikes

year

bikes

Dublin

station

Worldbikes

year stations

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(301,368,182)
stations

(311,312,153)
year

(310,317,156)
date

(352,367,181)
station

(b) Embedded Tree Set Te1g (p1)

Figure 5.8: Sample 1: Tree Pattern and Embedded Tree Set

u forms the region of u, denoted by REG(u). The start and end values can be obtained by

performing a depth-first traversal and sequentially assigning a number to each visit. Each

node is visited twice, once before visits all its children and once after. Although leaf nodes

are visited only once, we treat them as if they were visited twice so that, rather than having

just the start value, they are assigned both start and end values.

Based on the region encoding scheme, schema nodes can be divided into different regions

as outlined in Definition 5.7 and explained in Example 5.4.

Definition 5.7 [Region Containment]

Give two schema nodes u and v, u is in the region of v iff u.start > v.start and u.end <

v.end, denoted by REG(u) ⊆ REG(v). �

Example 5.4 (Region Containment Between stations, Amiens and Dublin)

As shown in Figure 5.7, by definition, node stations, labelled with (5,72,34), is in the region

of node Amiens (4,73,35) as region (5,72) is in the region of (4,73). Moreover, stations

(301,368,182) is in the region of Dublin (300,369,183) as (301,368) is in the region of

(300,369). In brief, the start value 301 is greater than 300 and the end value 369 is less

79

than 369. From an optimisation perspective, it was not necessary to check all nodes within

that region as it is replaced with a single comparison operation. �

Definition 5.8 outlines that the region between two schema nodes are same only if the

two schema nodes are identical (with same sid). This forms the basis of the region-based

containment checking.

Definition 5.8 [Region Equivalent]

Given two schema nodes u and v, u and v have equivalent regions iff u.start = v.start

and u.end = v.end, denoted by REG(u) ≡ REG(v). �

Proposition 4 outlines the fact that given two tree patterns, p and p′, to prove that p′ contains

p (p ⊆ p′), it is necessary to verify only whether (4-2) of Proposition 4 is satisfied. If two

tree patterns are contained, the corresponding set of schema contexts are contained and

(4-2) states that their nodes are equivalent.

Proposition 4 Given a tree t, a SchemaGuide G and two tree patterns p and p′, where t ∈
TΣ and G � t, let teg∈Teg (p), te′g∈Te′g (p′) and the return nodes of teg and te′g are (u1, u2,

. . ., uk) and (v1, v2, . . ., vk), respectively, the following statements are equivalent,

(4-1) : p ⊆G p′

(4-2) : ∀teg ∈ Teg (p), ∃te′g ∈ Te′g (p′)→ REG(ui) ≡ REG(vi), 0 < i ≤ k 2

(4-2) of Proposition 4 shows that p′ contains p if the schema contexts of p are a subset of

the schema contexts of p′ (see Example 5.5).

Example 5.5 (Subtree containment between p1 and p2 in Figure 5.8 and Figure 5.9)

It is easy to determine that p1 contains p2 (p2 ⊆ p1), as the number of return nodes of the

embedded tree set (Te2g (p2)) of p2 is a subset of the return nodes of the embedded tree set

(Te1g (p1)) of p1. The result is that {station (352,367,181)} ⊆ {station (56,71,33), station

(352,367,181)}. �

We now demonstrate that if two tree patterns are contained, then the return nodes of the

embedded trees of the first tree pattern are a subset of the return nodes of the embedded

trees of the second tree pattern.

80

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(301,368,182)
stations

(311,312,153)
year

(310,317,156)
date

(352,367,181)
station

(359,360,177)
free

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(4,73,35)
Amiens

(5,72,34)
stations

(56,71,33)
station

(15,16,5)
year

(14,21,8)
date

(63,64,29)
free

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(301,368,182)
stations

(311,312,153)
year

(310,317,156)
date

(352,367,181)
station

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(4,73,35)
Amiens

(5,72,34)
stations

(56,71,33)
station

(15,16,5)
year

(14,21,8)
date

bikes

stations

station

Worldbikes

year

bikes

stations

free

Worldbikes

year

bikes

Dublin

station

Worldbikes

year stations

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(301,368,182)
stations

(311,312,153)
year

(310,317,156)
date

(352,367,181)
station

(a) Tree Pattern p2

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(301,368,182)
stations

(311,312,153)
year

(310,317,156)
date

(352,367,181)
station

(359,360,177)
free

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(4,73,35)
Amiens

(5,72,34)
stations

(56,71,33)
station

(15,16,5)
year

(14,21,8)
date

(63,64,29)
free

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(301,368,182)
stations

(311,312,153)
year

(310,317,156)
date

(352,367,181)
station

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(4,73,35)
Amiens

(5,72,34)
stations

(56,71,33)
station

(15,16,5)
year

(14,21,8)
date

bikes

stations

station

Worldbikes

year

bikes

stations

free

Worldbikes

year

bikes

Dublin

station

Worldbikes

year stations

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(301,368,182)
stations

(311,312,153)
year

(310,317,156)
date

(352,367,181)
station

(b) Embedded Tree Set Te2g (p2)

Figure 5.9: Sample 2: Tree Pattern and Embedded Tree Set

PROOF (OF PROPOSITION 4.) [(4-2)⇒ (4-1)] For all ui ∈ (u1, u2, . . . , uk) ∈ teg , there

exists a node vi ∈ (v1, v2, . . . , vk) ∈ te′g such that REG(ui)≡ REG(vi). According to Defini-

tion 5.8, since REG(ui) ≡ REG(vi), ui is equivalent to vi, and (u1, u2, . . . , uk) is equivalent

to (v1, v2, . . . , vk). This implies that p and p′ have same return nodes. According to the

definition of the SchemaGuide embedding, ui and vi have identical root-to-node and sub-

tree structure. Therefore, the embedded trees corresponding to ui and vi have identical

structure. As a result, according to Proposition 2, p ⊆G p′. �

PROOF (OF PROPOSITION 4.) [(4-1)⇒ (4-2)] Let teg ∈ Teg (p) and te′g ∈ Te′g (p′). Since

p ⊆G p′ and according to Proposition 2, for all teg in Teg (p), there exists a te′g in Te′g (p′),

such that te′g is a subtree of teg and both subtrees have the same return nodes. Therefore,

those return nodes are within the same regions and for all ui ∈ (u1, u2, . . . , uk) ∈ teg , there

exists a vi ∈ (v1, v2, . . . , vk) ∈ te′g , where 0 < i ≤ k, we have REG(ui) ≡ REG(vi). �

We now present an algorithm based on Proposition 4 to check the containment relationship

between two tree patterns p and p′. The algorithm is comprised of two steps.

1. Retrieving all embedded trees Teg (p) and Te′g (p′) of p and p′ that are derived from the

SchemaGuide embedding of p and p′, respectively.

81

2. Check whether or not (4-2) of Proposition 4 is satisfied.

The above algorithm requires two nested iterations, one traverses all return nodes of teg ∈
Teg (p) and the other one loops through all return nodes of te′g ∈ Te′g (p′). The algorithm

returns either true or false indicating whether p is contained in p′ or not. We use a function

RET NUM which takes a tree pattern as input and returns the number of return nodes of a

tree pattern. RET NUM(p) and RET NUM(p′) output the number of return nodes of p and p′,

respectively. The complexity of the algorithm is as listed below,

O(|Teg (p)|×RET NUM(p)×|Te′g (p′)|×RET NUM(p′))

which is more efficient than the previous approach which requiresO(|NG|×|Teg (p)|×|Np′ |),
where RET NUM(p′) ≤ Np′ as the number of return nodes of p′ is always less equal than the

total number of nodes in Np′ and RET NUM(p)×|Te′g (p′)| ≤ |NG|. In the worst case, the

number of return nodes of p and p′ are equal to the number of nodes in G and the number

of embedded trees is one. In reality, it is unusual that a query returns every node in an XML

tree.

5.4.4 Subtree-Based Containment

Our region optimised algorithm has clear benefits to containment checking in terms of

search space reduction, as will be demonstrated later in our evaluation. However, accord-

ing to the W3C recommendation [W3C10d], the result of an XML query is a new XML

document (XML tree) constructed by concatenating subtrees of all result nodes. There-

fore, we consider that if the result nodes of one tree pattern are within the subtree of the

result nodes of the second one, then they are contained. This is an essential concept to

our fragment-based approach as it determines the containment relationship between two

fragments, whether the first fragment should reside at the level above or below the second

one. This is different from standard containment checking which checks whether one set of

result sequences is contained in another. To differ from the previous terminology, we refer

to this type of containment relationship as subtree containment. Given two tree patterns p

and p′, we say that p is subtree-contained in p′ (see Definition 5.9), denote by p⊆SubG p′. As

shown later, to verify the containment relationship between two fragments, it can use either

82

concept to determine containment.

Definition 5.9 states that two tree patterns are subtree-contained if all result nodes of the

first tree pattern are within the region of the result nodes of the second tree pattern.

Definition 5.9 [Subtree Containment Between Tree Patterns]

Given two tree patterns p and p′, an XML tree t and a SchemaGuide G, where G � t. p

⊆SubG p′ if for each ui ∈ (u1, u2, . . . , uk) ∈ p(t) there exists vi ∈ (v1, v2, . . . , vk) ∈ p′(t)
such that ui is in the subtree of vi, where 0 < i ≤ k. �

Based on Definition 5.9, Proposition 5 implies a containment checking algorithm which

determines whether the return nodes of the first embedded tree set are within at least one

return node of the second embedded tree set.

Proposition 5 Given a tree t, a SchemaGuide G and two tree patterns p and p′, where t ∈
TΣ and G � t, let teg∈Teg (p), te′g∈Te′g (p′) and the return nodes of teg and te′g are (u1, u2,

. . ., uk) and (v1, v2, . . ., vk), respectively, (5-1) and (5-2) are equivalent,

(5-1) : p ⊆SubG p′

(5-2) : ∀teg ∈ Teg (p), ∃te′g ∈ Te′g (p′)→ REG(ui) ⊆ REG(vi), where 0 < i ≤ k. 2

(5-2) of Proposition 5 indicates that p is subtree-contained in p′ if for each embedded tree

teg of p, there exists an embedded tree te′g of p′ such that the return nodes of teg are within

the subtree of the return nodes of te′g .

Example 5.6 (Subtree-Containment Between p1 and p3 in Figure 5.8 and 5.10)

The return node of p1 and p3 are station and free, respectively. In this case, free (63,64,29)

and free (359,360,177) (Figure 5.10b) are within the region of station (56,71,33) and station

(352,367,181) (Figure 5.8b), respectively. �

We now provide our proofs to demonstrate if two tree patterns are contained, then the return

nodes of all embedded trees of the first tree pattern is in the region of the return nodes of

the embedded tree of the second tree pattern.

83

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(301,368,182)
stations

(311,312,153)
year

(310,317,156)
date

(352,367,181)
station

(359,360,177)
free

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(4,73,35)
Amiens

(5,72,34)
stations

(56,71,33)
station

(15,16,5)
year

(14,21,8)
date

(63,64,29)
free

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(301,368,182)
stations

(311,312,153)
year

(310,317,156)
date

(352,367,181)
station

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(4,73,35)
Amiens

(5,72,34)
stations

(56,71,33)
station

(15,16,5)
year

(14,21,8)
date

bikes

stations

station

Worldbikes

year

bikes

stations

free

Worldbikes

year

bikes

Dublin

station

Worldbikes

year stations

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(301,368,182)
stations

(311,312,153)
year

(310,317,156)
date

(352,367,181)
station

(a) Tree Pattern p3

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(301,368,182)
stations

(311,312,153)
year

(310,317,156)
date

(352,367,181)
station

(359,360,177)
free

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(4,73,35)
Amiens

(5,72,34)
stations

(56,71,33)
station

(15,16,5)
year

(14,21,8)
date

(63,64,29)
free

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(301,368,182)
stations

(311,312,153)
year

(310,317,156)
date

(352,367,181)
station

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(4,73,35)
Amiens

(5,72,34)
stations

(56,71,33)
station

(15,16,5)
year

(14,21,8)
date

bikes

stations

station

Worldbikes

year

bikes

stations

free

Worldbikes

year

bikes

Dublin

station

Worldbikes

year stations

(1,820,410)
Worldbikes

(2,819,409)
bikes

(3,818,408)
city

(300,369,183)
Dublin

(301,368,182)
stations

(311,312,153)
year

(310,317,156)
date

(352,367,181)
station

(b) Embedded Tree Set Te3g (p3)

Figure 5.10: Sample 3: Tree Pattern and Embedded Tree Set

PROOF (OF PROPOSITION 5) [(5-2)⇒ (5-1)] Suppose (n1,n2,· · · ,nk)∈ p(t), (n′1,n′2,· · · ,n′k)

∈ p′(t) are the result nodes of p and p′, respectively. Let ϕ be a mapping function of

t in a SchemaGuide G, where G � t. By definition, we have (ϕ(n1),ϕ(n2),· · · ,ϕ(nk))

∈ teg and (ϕ(n′1),ϕ(n′2),· · · ,ϕ(n′k)) ∈ te′g and we replace them with (u1, u2, . . . , uk) and

(v1, v2, . . . , vk), respectively. Since for all ui ∈ (u1, u2, . . . , uk) ∈ teg , there exists a node

vi ∈ (v1, v2, . . . , vk) ∈ te′g such that REG(ui) ⊆ REG(vi) and ui is within the subtree of

vi. As for each ui ∈ (u1, u2, . . . , uk), there exists a vi ∈ (v1, v2, . . . , vk) such that ui is in

the subtree of vi. By definition, ni and n′i are on the same path of ui and vi, respectively.

As a result, for all ni ∈ (n1,n2,· · · ,nk) and n′i ∈ (n′1,n′2,· · · ,n′k), ni is in the subtree of n′i.

Therefore, according to Definition 5.9, p ⊆SubG p′. �

PROOF (OF PROPOSITION 5) [(5-1)⇒ (5-2)] Let (u1, u2, . . . , uk)∈ p(t), (v1, v2, . . . , vh)

∈ p′(t) and ϕ be a mapping function of t to a SchemaGuide G. For all teg ∈ Teg (p)

and te′g ∈ Te′g (p′), we have (ϕ(u1),ϕ(u2),· · · ,ϕ(uk)) ∈ teg and (ϕ(v1),ϕ(v2),· · · ,ϕ(vk))

∈ te′g . By definition, for all ui ∈ (u1, u2, . . . , uk) ∈ p(t), there exists a node vi such that

vi ∈ (v1, v2, . . . , vk) ∈ p
′
(t) and ui is in the subtree of vi (0 < i ≤ k). Since ui, vi are on

the path of ϕ(ui) and ϕ(vi), respectively, therefore, ϕ(ui) is in the subtree of ϕ(vi), that is,

REG(ϕ(ui)) ⊆ REG(ϕ(vi)). �

84

Based on Proposition 5, we can devise an approach that uses two steps to check whether a

tree pattern p is subtree-contained in a second tree pattern p′:

• Retrieving all embedded trees Teg (p) and Te′g (p′) of p and p′ that are derived from the

SchemaGuide embedding of p and p′, respectively.

• Check whether or not (5-2) of Proposition 5 is satisfied.

The time complexity required for the containment checking is as follows,

O(|Teg (p)|×RET NUM(p)×|Te′g (p′)|×RET NUM(p′))

5.4.5 Incorporating Value Predicates

The containment algorithm presented so far does not consider that predicates may appear

in a fragment/tree pattern. A predicate, denoted by pred, is represented in the form of val

θ c, where val is the value of the node, θ ∈ {<,=, >,≤,≥, 6=}, and c is a constant value.

Given a tree pattern p mapping to a fragment f , we define a binding function φ, which

associates the predicates with the corresponding nodes in p. The logical formula of the

binding is represented by φu(pred), where u ∈ Np and pred is a predicate in p. If a node

has no predicate, the binding function assigns an empty value to it. For each node u in p, its

corresponding schema node within each embedded tree of p “inherits” its value predicate

during the SchemaGuide embedding. The embedding of the node year in Figure 5.11a

is mapped to the node year in Figure 5.11b and its value predicate is “inherited”. The

remaining nodes in Figure 5.11a do not have a predicate and therefore, are assigned empty

values as shown in Figure 5.11b.

Given two tree patterns p and p′, where P and P ′ are sets of value predicates (including

empty predicates) of p and p′, respectively,P =P1∪P2∪. . .∪Pn andP ′ =P ′1∪P ′2∪. . .∪P ′m.

Containment checking is achieved by comparing all value predicates within P and P ′ in

sequential order. During containment checking, value predicates are processed first and

only when a TRUE value is returned, is structural checking then performed.

The containment checking algorithm first compares each pair of value predicates corre-

sponding to each pair of mapped schema nodes between embedded trees of two tree pat-

terns. If comparison takes place between Pi (0 < i ≤ n) and ∅ or ∅ and P ′j (0 < j ≤ m),

85

bikes

Dublin

station

Worldbikes

year=2010

bikes

Dublin

station

Worldbikes

city

stations

date

year

410

409

408

183

182

156

153

181

val=2010

Ø

Ø

Ø

Ø

Ø

ØØ

Ø

Ø

Ø

Ø
val=2010

Figure 5.11: Tree Pattern and Embedded Tree with Predicates

then FALSE is returned as one node contains no predicate. If both nodes have associated

predicates, a string-based or numeric-based comparison is performed.

5.4.6 Containment at XFM Graph Level

Using previous definitions and propositions, Definition 5.10 states the requirements that

are necessary to determine the containment relationship between fragments within an XFM

view graph. It is the key component of the graph construction and the view adaptation

process that we will introduce in Chapter 7.

Definition 5.10 [Containment Between Fragments]

Given a tree t and a SchemaGuideG, whereG � t, f and f
′

are fragments and p and p
′

are

tree patterns mapping to f and f
′
, the fragment f is contained by the fragment f ′ if either

1 or 2 is true:

1. p ⊆G p
′

2. p ⊆SubG p
′

�

86

Recall that each fragment maps to a tree pattern. The approach is to verify the contain-

ment relationship between two fragments by determining the corresponding containment

relationship between two tree patterns that map to these fragments.

Containment Rules Between Fragments. Based on the characteristics of the XFM view

graph, there are cases where the containment relationship is obvious and thus, it is sufficient

to simply follow the set of predefined containment rules. Given two fragments f and f ′,

the following rules can be used together with the containment algorithms to check whether

f contains f ′, true for f contains f ′, otherwise, false:

• if f is a RF fragment and f ′ is any fragment type, return true.

• if f ′ is a RF fragment and f is not a RF fragment, return false.

• if f ′ is a VF fragment and f and f ′ are shared by at least one view, return true.

• if f ′ is a VF fragment and f and f ′ are shared by different views, then return false.

• if f is a VF fragment, return false.

5.5 Summary

In this chapter, we presented our containment checking process. Unlike containment check-

ing in relational systems, this is far more complex due to the tree-structured nature of

XML documents and XPath queries. The challenge is to determine if one fragment (or

step in an XPath expression) is contained within another and then to provide a mechanism

whereby the containment check could be optimised. As part of this process, we developed

the SchemaGuide and through a number of mapping and embedding functions were able

to reduce the search space of the containment check considerably. The goal of this chapter

was to demonstrate the correctness of our approach. Later, in Chapter 7, we show how

containment checking algorithm is used together with the view adaptation algorithms to

manage view redefinitions.

87

Chapter 6

A Fragment Selection Strategy

In Chapter 4, we introduced the XFM view graph, where views are integrated with frag-

ments shared and each fragment within the XFM view graph represents a candidate for

materialisation. Although materialising every fragment for every view will have the best

performance for query processing, the view adaptation costs will be far higher. As a result,

a fragment selection strategy is necessary to determine a suitable set of fragments for mate-

rialisation. In §6.1, an overview of the selection strategy is presented together with a brief

description of each component of the system. We then proceed in §6.2 with a description

of the full range of costs that are estimated, based on the view graph. These costs are then

used by the heuristics introduced in §6.3 to manage the selection of fragments. Our three

selection mechanisms are then presented in §6.4. The Graph-Based, Cluster-Based and

Subgraph-Based selection strategies ensure that an optimised selection plan is produced

and all views have at least one fragment materialised.

6.1 Fragment Selection Overview

We begin with a high level overview of the fragment selection process [LR11], where the

objective is to select candidate fragments for materialisation. From a high level point of

view, Figure 6.1 shows the selection method as consisting of two processes, Fragment Se-

lection and View Coverage.

• Fragment Selection. The purpose of Fragment Selection is to perform a baseline

88

scan over the entire fragment list to select an initial set of fragments for materialisa-

tion. The end result is two separate fragment lists: the first contains a set of fragments

to materialise; the second contains those fragments which have not been selected, but

which are now passed to the View Coverage process where new criteria is used to

select additional fragments for materialisation.

• View Coverage. As fragments chosen by the Fragment Selection process may not

cover all views, the View Coverage process invokes an iterative-based process to

ensure that fragments from unrepresented views are part of the final materialisation

set. This process will not be invoked if fragments selected in Fragment Selection

process represent every view.

VIEW COVERAGE

Compute Cost Matrix
(Full XFM Graph)

Filter Fragments
(Heuristic Rule Set)

Compute Cost Matrix
(Per Cluster)

Filter Fragments
(Heuristic Rule Set)

Compute Cost Matrix
(On Diminishing Sub‐Graph)

Filter Fragments
(Heuristic Rule Set)

FRAGMENT SELECTION

Figure 6.1: Fragment Selection Methodology

Within both processes, there are two components which drive the fragment selection pro-

cess.

• Cost Estimation. The Cost Estimation process computes different forms of costs for

each fragment based on a specified context. As shown in Figure 6.1, in Fragment

Selection, the costs are computed based on the global view graph, whereas in View

Coverage, costs are calculated based on a subset of existing views (Per Cluster and

On Diminishing Sub-Graph).

• Filtering. The Filtering process applies a set of cost-based heuristic rules to each

89

fragment and only those fragments that satisfy the rules are added to the candidate

list for materialisation.

6.2 Selection Metrics

In selecting fragments, different costs are computed for each fragment and a cost matrix is

used to map costs to fragments. The cost-based heuristics, to be presented in §6.3, use a

combination of different costs from the matrix. Table 6.1 gives an illustration of the cost

matrix of fragments in the XFM view graph shown in Figure 4.5 on Page 54. Before we

give a detailed description of the cost matrix, we first present a set of primitive costs that

form the basis of the cost matrix and the cost-based heuristics.

FID Sh
ar

ea
bi

lit
y

M
ai

nt
en

an
ce

C
os

t

R
eu

se
C

os
t

M
at

er
ia

lis
at

io
n

C
os

t

C
ar

di
na

lit
y

Fr
ag

m
en

t U
sa

ge

Fr
eq

ue
nc

y

Fr
ag

m
en

t C
os

t

G
lo

ba
l B

en
efi

t

DF1 5 380275484 1 380275485 1 77 0.09 1 1
FF7 5 27222192 39048 27300292 39048 77 0.09 78100 1
FF2 4 27222192 758917404 27378388 39048 75 0.09 156196 0.8
DF4 3 27183321 505957833 1545135277 38870 69 0.08 1517951956 0.6
VF1 1 359660967 0 2858942723303 24100889 3 0.01 2858583062336 0.2

Table 6.1: Cost Matrix

• Shareability of a fragment f (share(f)): the number of views sharing fragment f

in the XFM view graph.

• Maintenance cost of a fragment f (maincost(f)): is the storage requirement of

materialising f . In our approach, the storage requirement is the total number of nodes

to be materialised.

• Reuse cost of a fragment f (reusecost(f)): the cost of reusing a materialised

fragment f rather than computing it from scratch for every change. For instance, to

determine the cost of the operation node between FF8 and FF9 as shown in Figure 4.5,

the process can use materialised data in FF8 rather than accumulating the costs of

operation nodes and fragment nodes between RF fragment and FF8.

90

• Materialisation cost of a fragment f (matcost(f)): the cost of materialising f .

• Cardinality of a fragment f (card(f)): the number of instance nodes within f .

Apart from the above costs, we also consider user preferences relative to each view, e.g.,

whether one view is queried more than another. These statistics are used to further improve

a fragment’s chances of selection, where the fragment is frequently requested by the user.

• Usage of a view V (usage(V)): the number of times a view V is used or is re-

quired/queried by users.

• Usage of a fragment f (usage(f)): the number of times a fragment is required.

This value is with respect to the number of views sharing f and their corresponding

usages. The usage of a fragment f is equal to the sum of the usages of all views

sharing f ,

usage(f) =
k∑

i=0

usage(Vi), where Vi shares f . (6.1)

• Frequency of a fragment f (freq(f)): measures the frequency of the usage of f

among the overall fragment usages. The fragment frequency is equal to the result of

dividing the fragment usage of f by the overall fragment usages,

freq(f) =
usage(f)
k∑
i=0

usage(fi)

(6.2)

where k is equal to the number of fragments in an XFM view graph and freq(f) is

in the range (0, 1].

Cost of Operation and Fragment Nodes. Recall that views are formed by operation

nodes and fragment nodes. The cost for an entire view is equivalent to the cost of all nodes

along the path between the RF fragment and the VF fragment. For example, in Figure 4.5,

the cost of evaluating V4 is equal to the sum of the costs of all nodes along the path from

91

RF to VF4. We use the polymorphic function cost, to calculate operation nodes (o) and

fragment nodes (f) in views:

cost(o) = the execution cost of o + the cost of the fragment node (6.3)

at Level(o)-1

cost(f) = the cost of the operation node at Level(f)-1 (6.4)

cost(fp, f) = the sum of the costs of fragment and operation nodes (6.5)

between fp and f , where Level(fp) < Level(f)

where Level returns the level value of that node in the graph and the fragment node rep-

resenting the RF fragment has level value 1 and fragment nodes representing VF fragments

are at the lowest level in the graph. As outlined by Equation (6.3) and Equation (6.4), the

cost of an operation node is equal to the evaluation cost of the operator represented by the

operation node plus the cost of the fragment at the higher level of the operation node in

the global view graph; and the cost of a fragment node is equal to the cost of the operation

node at the higher level of the context fragment node within the global view graph. The

cost of a RF fragment is always 1 and SF fragments are excluded from all computations

as they can never be materialised. For example, the fragment cost of VF1 shown in Ta-

ble 6.1 is computed by accumulating the cost of every node on the path from RF to VF1

in the XFM graph in Figure 4.5. The fragment and operation nodes involved in computing

cost(VF1) are RF, DF1, DF2, DF3, FF7, FF1, FF2, DF4, FF3, DF5 and all the operation

nodes between them.

Additionally, Equation (6.5) is used when computing a fragment f based on another frag-

ment f ′. For instance, in Figure 4.5, cost(DF3,FF7) returns the fragment cost of FF7

based on DF3, that is the cost of executing the operation node (σ.//year≥2010) over DF3. In

such a case, we say that the fragment cost of FF7 is computed based on DF3.

Global Benefit. The term Global Benefit is used to measure the contribution of a fragment

across all existing views. The global benefit is obtained by using Equation (6.6).

• Global Benefit of a fragment f (GBenefit(f)): is the benefit of f that contributes

92

to the overall view graph, where

GBenefit(f) =
share(f)

|V| (6.6)

|V| is the number of views in the XFM view graph. The global benefit of a fragment

is always in the range (0,1], where the global benefit of a RF fragment is always 1

and the global benefit of all VF fragments is close to 0. The larger the global benefit,

the greater the chance that this fragment can contribute to other fragments (views).

6.2.1 Cost Matrix

Table 6.1 on Page 90 demonstrates the estimated costs of sample fragments within the

global view graph shown in Figure 4.5. As will be shown in our experiment chapter, the

Worldbikes dataset contains 4.15GB data with 380,275,484 nodes in total, 8-level depth

and the usage of each fragment is computed using the user preferences that are generated

randomly in our experiment. For ease of understanding the costs in Table 6.1, we now

briefly explain how they were calculated.

• Shareability Column: the number of views in the global view graph sharing the con-

text fragment, e.g., in Table 6.1, share(DF1) = 5, as there are five views in the

global XFM view graph sharing the fragment DF1.

• Maintenance Cost Column: the number of nodes that are actually stored. The main-

tenance cost of a context fragment is treated as the number of instance nodes within

the fragment and all of the nodes within their subtrees. For example, in Table 6.1,

maincost(FF7) = 27222192, that is there are 27,222,192 nodes within the subtree

of all instance nodes of FF7.

• Reuse Cost Column: the value of the reuse cost is equal to the average fragment

costs based on the context fragment, e.g., the fragment costs of FF1 and FF8 are

computed based on FF7. The fragment costs of those fragments are computed using

Equation (6.5) and the reuse cost of the context fragment is then calculated using the

93

formula listed below:

reusecost(f) =
cost(f, f1) + cost(f, f2) + · · ·+ cost(f, fn)

n
(6.7)

,where Level(fi)=Level(f)+2 and 0 < i ≤ n.

Equation (6.7) outlines the fact that the reuse cost of the context fragment f is the

average cost of the fragment costs of f1 · · · fn computed based on f . For instance,

as shown in Figure 4.5, the reuse cost of FF7 as follows:

reusecost(FF7) =
cost(FF7,FF1) + cost(FF7,FF8)

2
= 39048.

• Materialisation Cost Column: This is the cost of the context fragment plus the net-

work communication cost. We consider the evaluation cost as the fragment cost of

the context fragment and the number of nodes required to be transferred over the net-

work as the network communication cost. Bear in mind, the network communication

cost is only considered when source data and views are stored on different sites over

the network, which is the context for our research.

• Cardinality Column: the number of instance nodes in the context fragment. During

the XML document parsing process, we count the number of instance nodes mapped

to each node in the SchemaGuide and store these statistics in the SchemaGuide. Bear

in mind that we are dealing with XPath queries and thus, there may be more than one

part of the SchemaGuide that matches the query. For example, /Project/Name

may occur in different contexts throughout the SchemaGuide. In this case, we sum

up the instance counts for each part of the SchemaGuide.

• Fragment Usage Column: We randomly generate the usage of each view, and then,

based on the view usage, we compute the fragment usage using Equation (6.1). This

has the effect of possibly adding to the set of materialised fragments and is crucial

where fragments are not be selected based on the estimated costs, but have a high

frequency of usage in real world situations.

• Frequency Column: computing the frequency of the context fragment is straightfor-

94

ward by applying Equation (6.2) according to the fragment usages.

• Fragment Cost Column: the value of the fragment cost is computed by accumulating

costs of all fragment and operation nodes along the path from the RF fragment to

the context fragment. As part of this, it is necessary to estimate a cost for each op-

erator. However, this cost is determined by the underlying database technology. For

example, we use MonetDB which has one set of operators costs while Oracle or SQL

Server will have another set of costs. As our approach is technology independent, we

assign a fixed constant to this cost (currently set at “1”) for all operators, i.e., they are

of equal cost. As shown in Table 6.1, the fragment cost of VF1 is far bigger than that

of the other fragments as the fragment cost starts from the root, and VF1 is at the end

of the longest path.

• Global Benefit: the value of the global benefit is computed using Equation (6.6), that

is the result of dividing the shareability of the context fragment by the total number of

views in the global XFM view graph. For example, as shown in Table 6.1, the global

benefit of DF1 is 1 as it is shared by 5 views and there are total number of 5 views in

the graph, therefore, GBenefit(DF1) = 5
5 = 1. On the other hand, the global benefit

of FF2 is 0.8 as there are only 4 views out of 5 sharing it, thus, GBenefit(FF2) = 4
5

= 0.8.

6.3 Cost-Based Greedy Heuristics

In this section, we present a set of cost-based heuristics to drive the filtering process for

fragments. There are five heuristics in all, each using different combination of costs.

Size Heuristic : The maintenance cost of a selected fragment should be less than a

predefined threshold M , maincost(f) <M .

The Size Heuristic is concerned with the materialisation size as one does not want to ma-

terialise a fragment containing the number of instance nodes that is more than a certain

percentage of the original data size. Based on empirical studies, we have set this threshold

at 0.08 or 8% of the overall size of the dataset in our implementation. This heuristic uses

95

column Maintenance Cost in the matrix to determine the size.

Frequency Heuristic : freq(f) > F , where 0 < F ≤ 1.

In addition to the maintenance restriction specified in the Size Heuristic, the process also en-

sures that the frequency of a fragment exceeds a predefined rate. Unlike the Size Heuristic,

which focuses on the storage requirement of a fragment, the Frequency Heuristic concen-

trates on the usage of fragments of existing views (columns Fragment Usage and Frequency

in the matrix). The Frequency Heuristic states that the frequency of a fragment should be

greater than a threshold F , where F is a predefined value. The motivation is not to ma-

terialise a fragment that is used only in a single view or even those with a relatively low

frequency rate. During our experiments, we discovered that by setting the threshold F to

be the average frequency of the overall fragments, we generally obtained the best selection

plan.

Reuse Heuristic : cost(f) + matcost(f) + reusecost(f) * (share(f)-1)

< cost(f) * share(f)

The Reuse Heuristic determines that for each fragment within the view graph, its material-

isation and reuse cost should be less than the cost of computing it from scratch for every

change. Columns Shareability, Reuse Cost, Materialisation Cost and Fragment Cost in cost

matrix are used to make the determination.

Through observation, one can see the contradiction or tradeoff between the Reuse and Fre-

quency heuristics. For instance, a fragment may have very high usage (or frequency rate),

but still failed to pass Frequency Heuristic due to its high execution, materialisation and

reuse cost (see the left operand in Reuse Heuristic). To avoid this occurring, we extend

the Reuse Heuristic to take user preferences into account. The concept is that based on the

frequency rate of a fragment f , the left operand of the Reuse Heuristic should be reduced

by a factor of nf , where nf = 1-freq(f), freq(f) ∈ (0, 1], to reflect its user preference.

96

Therefore, the higher the frequency rate, the less the cost will be. The Extended Reuse

Heuristic listed below uses the Usage column from the cost matrix.

Extended Reuse Heuristic : (cost(f) + matcost(f) + reusecost(f) *

(share(f)-1)) * nf < cost(f) * share(f)

The cost-based heuristics defined so far ensure that selected fragments have better reusabil-

ity, lower maintenance cost and relatively high frequency rate. However, one must also

consider the benefit of a fragment contributing to the overall view graph. The global benefit

of a fragment (column Global Benefit) must exceed a predefined threshold. In our evalua-

tion, we set the threshold value to be the average global benefit value of all views.

Global Heuristic : The global benefit of a fragment must exceed the threshold G,

GBenefit(f) > G.

The cost estimation heuristics presented in this section are loosely based on [RSSB00,

Bel04]. However, it was necessary to extensively modify these approaches due to different

characteristics of relational and XML data models. [RSSB00] focus on multi-query optimi-

sation, which addresses the problem of optimising sets of queries that may have common

sub-expressions based on different cost-based heuristics. Any common expression satisfy-

ing all cost-based heuristics is materialised for further query processing. On the other hand,

[Bel04] provides two notions of measures: local benefit and global benefit, for fragment

selection. The selection is made based on the local and global contribution of a fragment

to existing views. The cost-estimation mechanism for our XFM view framework uses both

approaches, but it was necessary to develop new cost heuristics suitable for XML data.

6.4 Fragment Selection Mechanism

In this section, we give a detailed description of the Fragment Selection and View Coverage

processes, particularly the Graph-Based, Clustering-Based and Subgraph-Based selection

mechanisms involved in these two processes (see Figure 6.1). Graph-based selection per-

97

forms an overall scan over the entire graph to select fragments for materialisation, whereas

clustering-based and subgraph-based approaches divide the view graph into small groups

(a subset of views) and select fragments based on those groups.

6.4.1 Fragment Selection

During the Fragment Selection process, an overall scan is performed over the global (Full)

XFM graph and the cost matrix is generated in the context of the entire view graph, e.g.,

shareability is computed corresponding to the total number of views in the XFM view graph.

We refer to this type of selection as the Graph-Based selection as the cost matrix is calcu-

lated based on the entire view graph, which differs from the other two types of selection

mechanisms, Cluster-Based and Subgraph-Based selections (see Figure 6.1), where new

criteria are used and cost matrixes are computed based on clusters or subgraphs (see §6.4.2).

Graph-based selection performs a baseline scan over the entire fragment list to select an ini-

tial set of fragments for materialisation. Fragments are filtered by the cost-based heuristics

and only those fragments that survive the filtering process are retained for materialisation.

The problem with graph-based selection is that the process may drop good fragments. This

is due to the fact that cost estimation is superior when views within the graph are very

similar, i.e., views have most of their sub-expressions shared. There is a high probability

that fragments selected by graph-based selection will cover a small number of views. Thus,

most views are not materialised and this reduces the possibility that the view adaptation

process can reuse fragments to manage view definition changes. Therefore, it is necessary

to group views that are similar and perform a “group” based selection to ensure that every

view is covered by at least one fragment (this is for the purpose of query processing).

The Cluster-Based and Subgraph-Based selections introduced in the next section refine the

selection plan by grouping views into different clusters and ensuring that all views are

covered.

6.4.2 View Coverage

In the Fragment Selection process, when each view is represented by at least one frag-

ment, the selection process is terminated. However, in the event that some views have no

materialised fragments, we proceed to the View Coverage process to address this situation.

98

In effect, this involves a similar process in that we create a cost matrix and apply the same

heuristics to select fragments. However, the construction of the matrix differs with changes

to columns Shareability, Reuse Cost, Usage, Frequency and Global Benefit. To effect these

new changes, we introduce our clustering strategy with associated similarity measures. In

general, this will result in the selection of many more fragments after the application of

heuristics. We again check to see if all views are covered. If not, we recompute the cost

matrix once more, and apply the heuristics again, possibly several times, until all Views are

covered. We begin our discussion with a description of how we compute the new matrix

based on clustering and then describe the final iterative process (Subgraph-Based Selection),

to complete the materialisation graph.

6.4.2.1 Clustering Based Selection

Although views are already grouped based on their common parts during XFM view graph

construction, calculating similarities between arbitrary pairs of views based on their com-

mon parts do not adequately distinguish views. To be more precise, one needs to take their

length and uncommon parts into account to compute their degree of similarity. The uncom-

mon parts between views are the sub-expressions that can not be shared between them.

Recall that, a view is represented by a sequence of fragment and operation nodes. To mea-

sure the similarity between two views, we can simply compare fragments that form those

two views sequentially within the view graph. Inspired by [JW02], which provides a gen-

eral method to measure the similarity between objects on graph models in the information

retrieval context, we have developed our own set of similarity measures that can be applied

to XFM view graphs.

SIM(Va, Vb) = (

k∑

i=0,j=0

SIM(fi,a, fj,b) +

m∑

h=0

LevelDecay(fh))/k (6.8)

LevelDecay(fh) =

{
SIM(fk,a, fk,b)× CL, where h = 0 (6.9a)

LevelDecay(fh−1)× CL, where h ≥ 1 (6.9b)

99

k =

{ |Va|,m = |Vb| − k, fh ∈ |Fb|, if |Va| ≤ |Vb| (6.10a)

|Vb|,m = |Va| − k, fh ∈ |Fa|, if |Vb| < |Va| (6.10b)

SIM(fi,a, fj,b)

{
1, if fi,a ≡ fj,b (6.11a)

SIM(fi−1,a, fj−1,b)× CT , if fi,a 6= fj,b (6.11b)

We define a function SIM, which returns the similarity between two objects, i.e., pairs of

views or fragments. Given two views Va and Vb, Fa and Fb are the sets of fragments (SF

fragments are not included) within Va and Vb, respectively. We now present the formulae

used to calculate the similarity between views and fragments. The process of measuring the

similarity between two views is to compare the corresponding fragments sequentially, start-

ing from the RF fragment and moving towards the VF fragment. Equation (6.8) calculates

the similarity between two views based on three steps as listed below:

1.
k∑

i=0,j=0
SIM(fi,a, fj,b): this sums the similarities of all fragment pairs in both views.

Each fragment is compared only once with its corresponding fragment in sequential

order.

2.
m∑
h=0

LevelDecay(fh): where one view contains more fragments than a second

view, the “redundant” fragments have no fragment with which to compare. How-

ever, rather than ignore them, we assign each “redundant” fragment a level decay

value to further refine the similarity between those two views. The level decay value

is necessary where one view is a fragment subset of the other. Without level decay,

those two views would have their similarity equal to 1, which simply means that they

are equivalent. The level decay for each “redundant” fragment is equivalent to the

level decay value of its previous fragment multiplied by a constant value CL, which

is referred to as the level dissimilarity decay. The range of the level dissimilarity

decay is in the range of (0,1). By applying the level dissimilarity decay, the process

ensures that the similarity between views are more accurate. The sole exception is

that for the first “redundant” fragment, its level decay value is obtained by multi-

plying the similarity of last pair of fragments by the level dissimilarity decay (see

100

PPPPPPPPPView
View

V1 V2 V3 V4 V5

V1 1 0.64 0.5 0.73 0.8
V2 0.64 1 0.5 0.64 0.7
V3 0.5 0.5 1 0.5 0.5
V4 0.73 0.64 0.5 1 0.8
V5 0.8 0.7 0.5 0.8 1

Table 6.2: Similarity Matrix

Equation (6.9a) and Equation (6.9b)).

3. Calculate the average similarity between fragments: the final step is to calculate the

average of the similarity values. We divide the sum of the similarity values and

level decay values by the number of fragment pairs (k), see Equation (6.10a) and

Equation (6.10b) for the value of k, and the result is the similarity between two views.

Equation (6.11a) and Equation (6.11b) are used to calculate similarities between fragments.

When two fragments are equivalent, their similarity is equivalent to 1, otherwise, their

similarity is equal to the similarity of the previous pair of fragments multiplying a constant

value CT , where CT ∈ (0, 1). CT is referred to as the term dissimilarity decay and term

simply indicates the XPath NameTests mapped to the fragments.

When comparing two fragments, Equation (6.11b) takes the preceding pairs of fragments

into account so that the current similarity value reflects not only the similarity between the

current pair of fragments, but also the context sub-structure of those two views from the RF

fragments to the current fragments.

Example 6.1 (Computing similarity between V1 and V5 in Figure 4.5)

Since V1 and V5 have common fragments shared from RF to DF4 and differ after DF4,

therefore, the similarities between all pairs of fragments from (RF,RF) to (DF4,DF4) are

equal to 1. After calculating the similarity of pair (DF4,DF4), FF3 is compared to DF25.

As FF3 and DF25 are different, their similarity is calculated based on the similarity of

the previous pair of fragments, (DF4,DF4). Therefore, SIM(DF4,DF4) is multiplied by

the term dissimilarity decay value, CT . The same steps are applied to the pair DF5 and

VF5. However, as VF1 is the “redundant” fragment, having no fragment in V5 to compare

with, we must calculate its level decay value, which is equal to the similarity value of its

101

previous pair, SIM(DF5,VF5), multiplied by level dissimilarity decay constant. Therefore,

LevelDecay(VF1) = SIM(DF5,VF5) × CL. Eventually, the similarity between V1 and

V5 is computed by dividing the sum of the similarities of all fragments pairs and the level

decay values by the number of fragment pairs. �

Table 6.2 lists similarities of sample views in the XFM view graph shown in Figure 4.5.

By observation, V1 is similar to V4 and V5, relative to its similarity to V2 and V3. This is

because they share more fragments, i.e., fragments from RF to DF4. V1 is more similar

to V5 than V4 as in this case, we have set the value of term dissimilarity decay to be 0.1

and the level dissimilarity decay to be 0.9 in our system. Thus, we consider two views to

be more similar if they differ from each other by the length of the query rather than by

different terms (NameTests). By empirical studies, we have found that setting these term

and level dissimilarity decay values, leads to a better clustering performance. To achieve

this, we purposely generated a set of queries where similarities were known in advance, and

examined the similarity values determined by the system.

Creating Clusters. Through clustering, we create a set of subgraphs, where a subgraph

consists of n views that are similar. Thus, these new subgraphs will result in new cost

estimations with the result that a subset of the fragments of the views in each cluster is

selected for materialisation. We now describe the process that classifies each view into one

of the new clusters.

As the fundamental concept of clustering is to group similar views into the same cluster, the

classification process is based on a predefined value called the similarity threshold. Views

that have their similarity above the similarity threshold are stored in the same cluster. Dif-

ferent similarity thresholds may lead to a different clustering strategy, which further affects

the performance and accuracy of the selection. By deliberately choosing the value of the

similarity threshold, we can significantly improve the performance of our view adaptation

process. As shown below, in our approach, the clusters are generated in an incremental

manner by iteratively changing the value of the similarity threshold and refining the clus-

ters on the basis of the new similarity threshold value.

1. Create a similarity matrix as per Table 6.2. This is highly beneficial due to the many

102

comparisons between views during clustering.

2. Using the similarity matrix, calculate the average similarity between views, which

becomes the initial similarity threshold.

3. Cluster views according to the similarity threshold. Basically, each cluster has a view

as its representative and that is always the first view added to that cluster. If no cluster

has already been created, the context view is added into a new cluster, otherwise, the

context view is compared to each view representative of existing clusters,

(a) Take the first view V1 and add it to the first cluster C1 (create the first cluster).

(b) Take the second view V2 and lookup SIM(V1,V2) in the similarity matrix.

(c) If this value exceeds the similarity threshold, then V2 is added to cluster C1.

(d) Otherwise, V2 is placed in cluster C2 (creating the new cluster C2).

(e) The next view is compared with each cluster representative until the similarity

value exceeds the similarity threshold or until there is no cluster left, and at that

point, a new cluster is formed with the current view as its representative.

(f) The process continues until all views are placed in clusters.

4. Calculate the average similarity for each cluster. Using these similarities, compute

the average similarity across clusters which becomes the new similarity threshold.

For each cluster, we now determine:

(a) If the similarity for cluster Ci, where 0 < i ≤ n and n is the number of clusters,

exceeds the current similarity threshold, then there is no need to further process

Ci, and we say that Ci is “fixed”. No more views can be added.

(b) If the similarity for cluster Ci does not exceed the current similarity threshold,

delete Ci and its views are reprocessed in the next iteration.

5. If all clusters are “fixed”, then there is no view remaining and the process is then

terminated. Otherwise, set the new similarity threshold to be the average similarity

of the remaining views and start from step 3 again.

103

By iteratively computing the average similarity for each cluster, we ensure that over time,

views that are grouped in the same cluster have highest similarities. The reason for this

approach is because if we set a similarity threshold to be a value close to 1, there will

be many clusters generated containing only a single view. On the other hand, if we set

the similarity threshold value to be too close to 0, then although the number of clusters

generated will be quite small, we will have the same problem as with the original global

graph: we will have views not represented and additionally, the lower level of fragment

sharing across views will mean higher numbers of fragments selected and thus, a higher

view adaptation cost. Therefore, by following the iterative process, we minimise the number

of clusters and improve the accuracy of selection.

The goal of the clustering algorithm is to create sub-graphs of similar views which will

ensure a good selection plan where most or all views will have fragments selected. We now

conclude with a description of this final fragment selection process.

6.4.2.2 Subgraph Based Selection

After clustering, there may still be a number of views for which no fragment has been

selected for materialisation. This final process takes all of these views and creates a single

graph (a small subgraph of the overall XFM graph), and begins an iterative process of

locating the best fragments for selection. The following steps are performed during the

process:

1. Based on the current subgraph, create a new cost matrix.

2. Using the heuristics, select new fragments.

3. Remove the views for which fragments have been selected and thus, create a smaller

subgraph.

4. If the process reaches a point where an iteration sees no fragment selected, it then

selects the VF fragment for the view and terminates the process. Otherwise, go to

step 1.

104

6.5 Summary

In this chapter, we presented our fragment selection strategy for the XFM view graph. As

part of this strategy, Graph-Based selection uses costs estimated on the full view graph. It

performs well when all views are relatively similar. The Cluster-Based and Subgraph-Based

approaches refine the estimated costs in order to select any “missed” fragments within clus-

ters and ensure all views are covered by selecting new fragments from a set of uncovered

views (subgraphs).

So far, we have discussed the XFM view graph (Chapter 4), the containment algorithms

(Chapter 5) used for building the graph and for detecting the degree of changes between

views and in this chapter, the fragment selection was presented. In Chapter 7, we will

present the final piece in the XFM View Framework, the view adaptation process, which

manages changes to view definitions.

105

Chapter 7

A Fragment-Based View Adaptation

Mechanism

At this point, we have framework, model, and algorithms necessary to maintain our view

graph and can now proceed to developing the process for adapting the view graph. This

chapter starts by outlining our view adaptation approach in §7.1 and provides a description

of some of the basic components. The adaptation process consists of two phases: structural

adaptation covered in §7.2, and data adaptation which is then discussed in §7.3.

7.1 View Adaptation Outline

In our XFM view framework (see Chapter 4), a set of XML views are integrated into a

global XFM view graph. A view to which a change applies within the XFM view graph is

referred to as the target view and the change is referred to as the target or target fragment.

In effect, a fragment is inserted into, modified or deleted from the XFM view graph. We

also refer to the views besides the target view in the XFM view graph as the non-target

views.

The concept of view adaptation is to maintain the XFM view graph both structurally and

physically in response to changes to existing views. Maintaining views structurally means

that the logical structure of the XFM view graph reflects fragments that are common to more

than one view, before and after applying the changes. Making physical updates implies that

106

the materialised data (if any) associated with the existing fragments should be adapted to

reflect any change applied. Based on the effect taking place on the XFM view graph, a

corresponding adaptation algorithm is chosen to maintain the view graph in response to

the change. One of three algorithms is selected: Fragment Insertion, Fragment Deletion

and Fragment Modification. These algorithms vary in detail but will always follow the two

broad phases of structural adaptation and data adaptation [LRB10b, LRB11].

1. Structural Adaptation – In this phase, the process maintains the logical structure

in response to view definition changes. The Structural Adaptation phase is further

divided into three components,

(a) Fragment Replication – The main objective of this part is to first identify

whether non-target views are affected by the change and then to replicate the

fragments that are influenced by the change. This has the effect of separating

the target view from those views affected by the change so that there are no

longer any shared fragments between the target view and other existing views.

(b) Target View Adaptation – This part performs the actual execution of the change

in the target view, e.g., insert a new fragment, delete an old fragment or modify

an existing fragment.

(c) Fragment Optimisation – This part checks to see whether the new view result-

ing from the change, shares common fragments with existing views.

2. Data Adaptation – In this phase, the process physically adapts existing materialised

data (if any) associated with the fragments. For each fragment that is affected by the

change, the View Adaptation process checks whether or not the fragment is materi-

alised and updates the fragment.

For the purpose of clarity, we first introduce three methods that are extensively used in our

view adaptation algorithms,

1. GetNextFragment, which returns the fragment at next level of the fragment passed

as a parameter. The method takes a view id and a context fragment id as part of its

input. For instance, as shown in Figure 4.5 on Page 54, the next fragment of FF7 in

V4 is FF1, i.e., GetNextFragment(FF7, 4) = FF1.

107

σ.//month=03
FF2

month

σ.//day=16

FF6

month

d
./
→SF9

stations

DF9

stations

c
./
→

SF10

station

DF10

station ΠD

VF2

d
./
→

SF4

stations
DF4

station

σ.//free>8

FF12

free

σ.//available≥10
FF3

available

d
./
→

SF25

stations

DF25

weather ΠD

VF5

c
./
→SF5

station

DF5

station ΠD

VF1

c
./
→SF20

station

DF20

station ΠD

VF4

FF13

day

σ.//day=16

1

Figure 7.1: Adaptation Area of Fragment Insertion

2. GetNextFragments, which returns all fragments at next level of a given frag-

ment. Recall that each fragment is assigned a value indicating their level in the XFM

view graph. As shown in Figure 4.5, the fragments at next level of FF7 are FF1 and

FF8, i.e., GetNextFragments(FF7) = {FF8,FF1}.

3. GetPreviousFragment, which returns the fragment that is located at the level

above the given fragment, or in other words, the fragment preceding the given frag-

ment. For example, the preceding fragment of FF7 in Figure 4.5 is DF3, that is,

GetPreviousFragment(FF7) = DF3.

It is now useful to identify segment areas in the XFM view graph. Depending on the loca-

tion where the change is made, we divide the global XFM view graph into two parts: the

Static Area, where fragments located in this part are not affected by the change; and the

Adaptation Area, which contains fragments that are update candidates. We refer to frag-

ments in the static area as the static fragments (SF) and fragments in the adaptation area

as the adaptation fragments (AF). The area inside the dashed rectangular box in Figure 7.1

and Figure 7.2 represents the adaptation area. The goal is to identify the segment of the

global XFM view graph that is potentially impacted by the change.

Each adaptation process, insertion, deletion and modification, starts by checking the impact

108

σ.//year=2010
FF1

year

σ.//month=03
FF2

month

σ.//day=16

FF6

month

d
./
→SF9

stations

DF9

stations

c
./
→

SF10

station

DF10

station ΠD

VF2

d
./
→

SF4

stations
DF4

station

σ.//free>8

FF12

free

σ.//available≥10
FF3

available

d
./
→

SF25

stations

DF25

weather ΠD

VF5

c
./
→SF5

station

DF5

station ΠD

VF1

c
./
→SF20

station

DF20

station ΠD

VF4

2

Figure 7.2: Adaptation Area of Fragment Deletion and Modification

of applying a change to the target view. The checking process generally starts from a

fragment preceding the target fragment with the exception of fragment insertion, where

the process starts with the fragment after the point that the new fragment is inserted. The

fragment that precedes the target fragment is the Adaptation Area Root, which we simply

refer to as the Adaptation Root from now on. As the Adaptation Root will never change, it

resides in the static area of the graph and thus, provides the link between both areas of the

graph.

Figure 7.1 gives an example of adding a new predicate (.//day=16) into an existing view

after the predicate .//month=03. The new fragment (target fragment) is shown as FF13 in

Figure 7.1. In this case, fragment FF2 is the adaptation root of the insertion process as

the new fragment is inserted after it. For Fragment Deletion and Fragment Modification,

as shown in Figure 7.2, assuming that the predicate .//month=03 must be either deleted or

modified, therefore, its corresponding filter fragment, FF2, is either deleted or modified. In

this case, the target fragment is FF2 and the adaptation root is the one preceding the target

fragment, that is, FF1.

109

7.2 Structural Adaptation

In this section, we focus on the structural adaptation of our view adaptation mechanism.

The structural adaptation phase consists of three components, Fragment Replication, Target

View Adaptation and Fragment Optimisation.

7.2.1 Fragment Replication

The basic step required for fragment replication is to iteratively check whether each adap-

tation fragment on the path toward the VF fragment is shared. If any adaptation fragment is

shared between existing views, FragmentReplication updates the logical structure of

the global XFM view graph so that non-target views retain the same logical structure after

applying the changes (Lines 4-7, Algorithm 7.1).

Algorithm 7.1: FragmentReplication(fAR, V , G)
Input: fAR, the adaptation root; the target view V ; the global XFM view graph G;
Output: an updated version of G;

1 fAF← GetNextFragment(fAR, V);
2 if fAFis not shared then return G;
3 else
4 while fAF is shared do
5 fcopy← create a copy of fAF;
6 replace fAFwith fcopy in V ;
7 fAF← GetNextFragment(fAF, V);
8 return G;

The algorithm iteratively checks all adaptation fragments toward the VF fragment of the

target view and each adaptation fragment is replicated if it is shared (Line 5). The adapta-

tion fragment referenced by the non-target views is replaced with the copy (Line 6). If the

original fragment is materialised, then a copy of the materialisation is also replicated. The

process stops when a fragment encountered is referenced only by the target view as once

this happens, sharing can no longer occur on the path to the VF fragment. Recall that frag-

ments located at lower levels of the global XFM view graph inherit the shareability from

fragments at higher levels of the view graph. Therefore, if a fragment is only referenced by

the target view, then all fragments starting from this fragment toward the VF fragment are

also referenced only by the target view. Example 7.1 demonstrates how Fragment Repli-

110

cation works when a predicate is applied to an existing view. The example is based on the

global XFM view graph shown in Figure 4.5 on Page 54, with Figure 7.1 representing a

segment of the global view graph.

σ.//month=03
FF2

month

σ.//day=16

FF6

month

d
./
→SF9

stations

DF9

stations

c
./
→

SF10

station

DF10

station ΠD

VF2

d
./
→

SF4

stations
DF4

station

σ.//free>8

FF12

free c
./
→SF20

station

DF20

station ΠD

VF4

FF13

day

σ.//day=16

DF4’

station

σ.//available≥10
FF3

available

d
./
→

SF25

stations

DF25

weather ΠD

VF5

c
./
→SF5

station

DF5

station ΠD

VF1

V1 : List operation status of the stations in Dublin that have more than 10 bikes available in March 2005.

//Worldbikes//city/Dublin[.//year=2005][.//month=03]//stations[.//available>10]/station

1

Figure 7.3: Fragment Replication

Example 7.1 (Fragment replication during the insertion process)

Suppose a new predicate day=16 is applied to V1, which restricts the view to contain only

station information of Dublin on the 16-Mar-2005. As shown in Figure 7.3, the new pred-

icate is represented by the new fragment FF13 and is inserted after fragment FF2. Since

fragment DF4 is shared between V1, V4 and V5, therefore, before inserting the new frag-

ment, the process must ensure that V4 and V5 are not influenced by the insertion. As a result,

the FragmentReplication algorithm makes a copy of DF4, i.e., DF4’. As shown in

Figure 7.3, fragment FF3 and all the following fragments are reconnected to DF4’. �

The purpose of Fragment Replication is to ensure that when adapting the target view, the

adaptation process has no impact on non-target views, and then, in the Target View Adapta-

tion sub-phase, the actual structural adaptation is performed.

111

7.2.2 Target View Adaptation

At this point, the process has isolated the target view from other views affected by the

change. The next step is to apply the change to the target view. Depending on the type

of the change, either Fragment Insertion, Fragment Deletion or Fragment Modification is

performed.

7.2.2.1 Fragment Insertion

The Fragment Insertion process either adds a new step or a predicate to an existing view.

In the case of adding a new step, the process merely inserts the corresponding new Depen-

dency Join Fragment into the target view. If a new predicate is applied to a step of an

existing view, the process needs to check the containment relationship in advance between

the new predicate and existing predicates for that step. This is due to the fact that the new

predicate may be more or less restricted than the existing predicate. Adding a predicate that

is more restricted than an existing one may require an update of the view structure. Based

on Figure 7.4, which is a segment of the XFM view graph shown in Figure 4.5, Example 7.2

demonstrates the case when a new predicate is applied to an existing view.

RF

ROOT(t)

d
./
→SF1

Worldbikes

DF1

Worldbikes

d
./
→SF2

city

DF2

city

c
./
→SF3

Dublin

DF3

Dublin

σ.//year≥2005
FF7

year

σ.//year=2005
FF1

year
· · ·

· · ·

σ.//month≥03

FF8

month

σ.//month<06

FF9

month

d
./
→SF14
stations

DF14

stations

d
./
→SF15
stations

DF15

available

ΠD

VF3

.//year>2005

V3 : List bike availability of each station in Dublin for the months of March, April and May after 2005.

//Worldbikes//city/Dublin[.//year≥2005][.//month≥03][.//month<06]/stations//available

1

Figure 7.4: Fragment Insertion - Insert A New Predicate

Example 7.2 (Insert a new predicate into V3 in Figure 7.4)

Assuming that a new predicate year>2005 is applied to the step Dublin (DF3) in V3. Since

112

there are other predicates in the view graph also applying to the step Dublin, the process

must compare the new predicate with existing ones. In this case, the predicates represented

by the filter fragments FF7, FF8 and FF9 (see predicates with underline) are compared

with the new predicate. The location in the global view graph to where the new predicate is

inserted depending on the containment relationship between the new fragment and existing

filter fragments. As shown in Figure 7.4, the new predicate is less restricted than the existing

predicate year≥2005 and, as a result, the new predicate is inserted between DF3 and FF7.�

Algorithm 7.2: TargetViewAdaptationForFragmentInsertion(f, fAR, V , G)
Input: the new fragment f to be inserted; fAR, the adaptation root; the target view V

and the global XFM view graph G;
Output: an updated version of G;

1 insert f after fAR in V ;
2 fnext ← GetNextFragment(f, V);
3 while f is a Filter Fragment do
4 if f contains fnext then break;
5 else if f is equal to fnext then remove fnext; break;
6 else if fnext contains f then swap f and fnext;
7 fnext← GetNextFragment(f, V);
8 return G;

As shown in Algorithm 7.2, the fragment insertion process first inserts the target fragment

into the target view after the adaptation root (Line 1). If the target fragment is a FF frag-

ment (Line 3), the process then compares it to those FF fragments in the target view,

moving in the direction of the VF fragment. The structure of the target view is updated

based on the containment relationship detected between the new fragment and the exist-

ing FF fragments referenced by the target view (see Line 3-7). Only those filter fragments

mapped to the predicates that are applied to the same step as the new predicate are compared

by the algorithm.

7.2.2.2 Fragment Deletion

For fragment deletion, there are two possible cases as shown below.

1. If a step is removed, the process also removes all predicates applying to it as they are

no longer used to restrict data in the view. This means that the DF fragment corre-

113

RF

ROOT(t)

d
./
→SF1

Worldbikes

DF1

Worldbikes

d
./
→SF2

city

DF2

city

c
./
→SF3

Dublin

DF3

Dublin

σ.//year≥2005
FF7

year

σ.//year=2005
FF1

year
· · ·

· · ·

σ.//month≥03

FF8

month

σ.//month<06

FF9

month

d
./
→SF14
stations

DF14

stations

d
./
→SF15
stations

DF15

available

ΠD

VF3

delete a step

delete a predicate

V3 : List bike availability of each station in Dublin for the months of March, April and May after 2005.

//Worldbikes//city/Dublin[.//year≥2005][.//month≥03][.//month<06]/stations//available

1

Figure 7.5: Fragment Deletion

sponding to the deleted step is removed from the graph together with the predicates

(FF fragments) for that step (see Line 1-3, Algorithm 7.3).

2. If a predicate is removed, the process merely deletes the corresponding FF fragment

from the target view (see Line 4, Algorithm 7.3).

Algorithm 7.3: TargetViewAdaptationForFragmentDeletion(f, V , G)
Input: the target fragment f; a target view V , and the global XFM view graph G;
Output: an updated version of G;

1 if f is a Dependency Fragment then
2 delete f from the target view V ;
3 iteratively delete all Filter Fragments that are applied to f;
4 else delete f from the target view V ;
5 return G;

Example 7.3 and Example 7.4 demonstrate the cases of deleting a step and deleting a pred-

icate, respectively, based on the segment of the XFM view graph shown in Figure 7.5.

Example 7.3 (Deleting a step of V3 in Figure 7.5)

Suppose one would like to change V3 to display bike availability of stations stored in the

database rather than only stations in Dublin. Therefore, the step /Dublin is deleted from

V3 together with all predicates applying to it. In this case, the fragment corresponding to

the step /Dublin, DF3, is deleted from the global view graph. Additionally, all fragments

114

corresponding to the predicates applying to the step /Dublin are also deleted, i.e., FF7, FF8

and FF9, as they are no long valid. �

Example 7.4 (Deleting a predicate of V3 in Figure 7.5)

Suppose one would like to change V3 to list bike availability of stations in Dublin after

March, 2005 instead of the months between March and June. For this case, the predicate

.//month<06 is removed. Since the target view has already been isolated from other existing

views during fragment replication, fragment FF9 corresponds to .//month<06 can be safely

deleted from the global view graph. �

7.2.2.3 Fragment Modification

Fragment modification will always be a result of a change to a view predicate and thus,

will affect only filter fragments. After a predicate has been modified, the process checks

existing predicates applying to the same step (fragment) to see if the new predicate already

exists. If it exists, the modification to the predicate will result in the fragment being deleted.

If it does not exist, the modification may result in the repositioning of the filter fragment

depending on the containment relationship detected between the existing filter fragments

and one resulting from the change. For example, the new predicate should not precede an

existing predicate that is less restricted than it.

Example 7.5 (Modify a predicate in V3 in Figure 7.6)

V3 lists the bike availability of stations in Dublin for the months of March, April and May,

after 2005. Suppose one would like to change the predicate from month<06 to month>02,

which lists bike availability status in Dublin after February 2005. Since the predicate

month<06 is mapped to the filter fragment FF9 in the graph, changing the predicate from

<06 to >02 causes FF9 to be less restricted than FF8 (month≥03). As a result, the new

fragment, FF9’, resulting from the modification should be placed between FF7 and FF8 as

shown in Figure 7.6. �

115

RF

ROOT(t)

d
./
→SF1

Worldbikes

DF1

Worldbikes

d
./
→SF2

city

DF2

city

c
./
→SF3

Dublin

DF3

Dublin

σ.//year≥2005
FF7

year

σ.//year=2005
FF1

year
· · ·

· · ·

σ.//month≥03

FF8

month

σ.//month<06

FF9

month

d
./
→SF14
stations

DF14

stations

d
./
→SF15
stations

DF15

available

ΠD

VF3

modify a predicate
σ.//month>02

FF9’

V3 : List bike availability of each station in Dublin for the months of March, April and May after 2005.

//Worldbikes//city/Dublin[.//year≥2005][.//month≥03][.//month<06]/stations//available

1

Figure 7.6: Fragment Modification

Algorithm 7.4: TargetViewAdaptationForModifyFragment(f, V , G)
Input: a target fragment f; a target view V , and the global XFM view graph G;
Output: an updated version of G;

1 fmodified← modify f;
2 while (fnext← GetNextFragment(fmodified, V)) is not a VF fragment do
3 if fmodified equals to fnext then remove fmodified from V ;
4 else if fmodified contains fnext then break;
5 else if fnext contains fmodified then swap fnext and fmodified;
6 return G;

As shown in Algorithm 7.4, the process first modifies the fragment corresponding to the

target predicate (Line 1). It then checks whether the fragment resulting from the modifi-

cation conflicts with an existing fragment referenced by the target view (see Line 2-5), for

instance, whether the modified fragment is equivalent to an existing fragment. As shown

on Line 3 and Line 5, respectively, the structure of the target view is updated if the modified

fragment is equivalent to, or contains any fragment at next level (towards the VF fragment)

of the modified fragment in the target view.

7.2.3 Fragment Optimisation

At this point, we have isolated the target view from previously connected views and have

performed the required graph changes. The next step is to optimise the current XFM view

graph to ensure that common fragments are still shared. Before discussing the optimisation

mechanism, we first introduce the concept of the Optimisation Area, which is the area in

116

the global XFM view graph containing those fragments that could be optimised. In other

words, fragments within this optimisation area are potential fragments to be shared. The

optimisation area is an extension of the adaptation area as we must include all fragments

that may share data with fragments in the target view. These can only be those fragments

that reside on paths that extend from the adaptation root. Since the actual change has been

performed in the Target View Adaptation sub-phase, all fragments within the optimisation

area are always more restricted than the adaptation root. Therefore, it is not necessary to

check fragments above the level of the adaptation root.

c
./
→SF3

Dublin

DF3

Dublin

σ.//year≥2005
FF7

year

σ.//year=2005
FF1

year

σ.//month≥03

FF8

month

σ.//month<06

FF9

month

d
./
→SF14
stations

DF14

stations

d
./
→SF15
available

DF15

available

ΠD

VF3

σ.//month=03
FF2

month

σ.//day=16

FF6

day

d
./
→SF9

stations

DF9

stations

c
./
→

SF10

station

DF10

station ΠD

VF2

d
./
→

SF4

stations
DF4

station

σ.//available≥10
FF3

available

d
./
→

SF25

stations

DF25

weather ΠD

VF5

c
./
→SF5

station

DF5

station ΠD

VF1

FF7’

year

σ.//year=2005

V3 : List bike availability of each station in Dublin for the months of March, April and May after 2005.

//Worldbikes//city/Dublin[.//year≥2005][.//month≥03][.//month<06]/stations//available

1

Figure 7.7: Fragment Optimisation - Modifying A Predicate

As demonstrated in Example 7.6, the objective of Fragment Optimisation is to determine if

any adaptation fragment can share with any static fragments in the optimisation area.

Example 7.6 (Fragment Optimisation)

Suppose one would like to change V3 to only list bike availability of stations in Dublin in

year 2005 rather than all years after 2005. As shown in Figure 7.7, the predicate year≥2005

in V3 is related to the filter fragment FF7. Since FF7 is shared by other views, a copy of

FF7 is created by the FragmentReplication process, i.e., FF7’, and FF7 is replaced

by FF7’ in V3. As FF7 is materialised, a copy of the materialised data is replicated and

referenced by FF7’. Figure 7.8 outlines the segment of the XFM graph after changing

117

the predicate year≥2005 to year=2005. The area within the dashed box in blue is the

adaptation area, DF3 is the adaptation root and the dashed box in red is the optimisation

area. Through observation, it is not difficult to see that FF1 is equivalent to FF7’ as both

represent the result of applying the predicate year=2005 to the step /Dublin. As a con-

sequence, the FragmentOptimisation algorithm manages this by comparing static

fragments within non-target views after the adaptation root to the adaptation fragments

within the adaptation area. As shown in Figure 7.8, as FF7’ and FF1 are equivalent, the

FragmentOptimisation algorithm deletes FF7’ from the graph and reconnects the

rest of the fragments in the target view to FF1 (see Figure 7.9 on Page 119) and FF1 derives

the materialised data from FF7’. As will be shown later, as FF7’ is a copy of the materi-

alised fragment FF7 and at this stage the adaptation process concerns only the structural

adaptation, the materialised data contained by FF7’ is still the same as FF7, year≥2005.�

c
./
→SF3

Dublin

DF3

Dublin

σ.//year≥2005
FF7

year

σ.//year=2005
FF1

year

σ.//year=2005
FF7’

yearσ.//month≥03

FF8

month

σ.//month<06

FF9

month

d
./
→SF14
stations

DF14

stations

d
./
→SF15
available

DF15

available

ΠD

VF3

σ.//month=03
FF2

month

σ.//day=16

FF6

day

d
./
→SF9

stations

DF9

stations

c
./
→

SF10

station

DF10

station ΠD

VF2

d
./
→

SF4

stations
DF4

station

σ.//available≥10
FF3

available

d
./
→

SF25

stations

DF25

weather ΠD

VF5

c
./
→SF5

station

DF5

station ΠD

VF1

V3 : List bike availability of each station in Dublin for the months of March, April and May after 2005.

//Worldbikes//city/Dublin[.//year≥2005][.//month≥03][.//month<06]/stations//available

2

Figure 7.8: Fragment Optimisation - After Modification

In summary, as shown in Algorithm 7.5 on Page 120, the process iteratively checks the

containment relationship between adaptation fragments (fAF) and static fragments (fSF)

next to the adaptation root (going towords the VF fragment in the target view). The process

starts from the adaptation fragment (fAF) at next level of the adaptation root in the target

118

view. There are four possible cases:

Case 1: fSF is equivalent to fAF (see Line 3);

Case 2: fSF contains fAF (see Line 6);

Case 3: fAF contains fSF (see Line 10);

Case 4: no relationship is detected between fAF and fSF (see Line 13);

c
./
→SF3

Dublin

DF3

Dublin

σ.//year≥2005
FF7

year

σ.//year=2005
FF1

year

σ.//month≥03

FF8

month

σ.//month<06

FF9

month

d
./
→SF14
stations

DF14

stations

d
./
→SF15
available

DF15

available

ΠD

VF3

σ.//month=03
FF2

month

σ.//day=16

FF6

day

d
./
→SF9

stations

DF9

stations

c
./
→

SF10

station

DF10

station ΠD

VF2

d
./
→

SF4

stations
DF4

station

σ.//available≥10
FF3

available

d
./
→

SF25

stations

DF25

weather ΠD

VF5

c
./
→SF5

station

DF5

station ΠD

VF1

V3 : List bike availability of each station in Dublin for the months of March, April and May after 2005.

//Worldbikes//city/Dublin[.//year≥2005][.//month≥03][.//month<06]/stations//available

3

Figure 7.9: Fragment Optimisation - After Optimisation

• In Case 1, if fSF and fAF are equivalent, the process then replaces fSF with fAF

(Line 4) and continues to check the fragments at next level of fSF in G (Line 5).

• In Case 2, if fSF contains fAF the process reconnects fAF with fSF (Line 7-8) frag-

ments at the next level. However, there is still the possibility that fAF may be con-

tained by the fragments at next level of fSF and, therefore, the algorithm recursively

calls FragmentOptimisation for further containment checking (see Line 9).

• In Case 3, if fAF contains fSF the process appends fSF to fAF. For the same reason

as depicted in Case 2, fragments at next level of fAF may also contain fSF and, there-

fore, the process continuously checks the containment relationship between fSF and

fragments at next level of fAF in the target view (see Line 12).

119

Algorithm 7.5: FragmentOptimisation(fAR, V , G)
Input: fAR, the adaptation root; the target view V and the global XFM view graph G
Output: an updated version of G

1 fAF← GetNextFragment(fAR, V);
2 foreach fSF ∈ GetNextFragments(fAR) do
3 if fSF ≡ fAF then
4 replace fAF in V with fSF;
5 return FragmentOptimisation(fSF, V , G);
6 else if fSF contains fAF then
7 remove the path from fAF towards the VF fragment in V ;
8 append fAF after fSF;
9 return FragmentOptimisation(fSF, V , G);

10 else if fAF contains fSF then
11 reconnect fSF after fAF;
12 return FragmentOptimisation(fAF, V , G);
13 else return G;

• In Case 4, if no relationship is found between fSF and fAF, then the XFM view graph

G is remain untouched (Line 13).

At this stage, all fragments are shared between views in the XFM view graph. The adap-

tation area is reconfigured with fragments that may be materialised and thus, need to be

adapted. As shown in Figure 7.9, the dashed box is the new adaptation area and the adapta-

tion root becomes FF7. In the next section, we show how data adaptation is achieved within

the adaptation area.

7.3 Data Adaptation

The second phase, Data Adaptation, is responsible for managing the data updates. The main

objective is to reuse existing materialised fragments to adapt any fragments that are affected

by the change. Recall that after the Fragment Optimisation sub-phase, all fragments are now

shared. The potential fragments to be updated are those referenced by the target view and

within the adaptation area. As shown in Algorithm 7.6 on Page 121, the data adaptation

process involves two searches: i) the Impact Search seeks for any materialised fragments

in the adaptation area that are affected by the change (see Line 14-17); ii) the Reusability

Search looks for any materialised fragment in the static area that can be reused to adapt

120

materialised fragments detected in the first search process (see Line 1-13). We refer to

the materialised fragment that is used for adaptation as the Reusable Fragment and both

searches start at adaptation root. Continuing with the Example 7.6, the search starts from

the adaptation root FF7 (see Figure 7.9).

Algorithm 7.6: AdaptFragment(fAR, fAF, V)
Input: adaptation root fAR, a potential effected adaptation fragment fAF and the

target view V
Output: A boolean value, true for successfully adapted, otherwise, false

1 if fAF is materialised then
2 if fAR is materialised then
3 adapt fAF using fAR;
4 if fAF is not the VF fragment then
5 fAF← NextFragment(fAF, V);
6 return AdaptFragment(fAR, fAF, V)
7 return true;
8 else
9 fAR ← PreviousFragment(fAR);

10 if fAR is Root Fragment then
11 adapt fAF;
12 return true;
13 return AdaptFragment(fAR, fAF, V);
14 else
15 fAF← NextFragment(fAF,V);
16 if fAF is null then return false;
17 return AdaptFragment(fAR, fAF, V);

As shown in Algorithm 7.6, AdaptFragment accepts two fragments as parameters. The

first input fragment is the adaptation root fAR, which is considered to be a potential mate-

rialised fragment that can be reused for data adaptation. The Reusability Search starts by

comparing fAR to other static fragments on the path toward the RF fragment. This is due

to the fact that fAR contains the most restricted data and therefore, the data adaptation pro-

cess starts from fAR all the way to the RF fragment until a materialised fragment is found.

The second (fragment) parameter is a candidate affected by the view redefinition and re-

quires an update. Any fragment located in the adaptation area is a candidate. The Impact

Search starts from the first fragment in the adaptation area, continuing to the VF fragment

in the adaptation area. For example, FF1 in Figure 7.9 is the first adaptation fragment to

be processed. The Impact Search collects information concerning all fragments that are

121

materialised and affected by the change for further processing.

As shown in Line 6 and Line 17 in Algorithm 7.6, AdaptFragment recursively retrieves

any adaptation fragments that are “marked” as materialised. As soon as a fragment is found

(Line 1, Algorithm 7.6), AdaptFragment searches for the fragment with the most re-

stricted data (smallest fragment), in the static area that can be reused for the adaptation. By

using smaller fragments, we ensure faster adaptation. If this fragment exists, it is used to

rematerialise the affected fragment (Line 3, Algorithm 7.6). Otherwise, the process contin-

uously searches for a fragment that can be reused, until the RF fragment is reached (Line 7,

Algorithm 7.6).

Example 7.7 (Searching for impacted and reusable fragments)

As shown in Figure 7.9, the Impact Search starts from the adaptation root FF7 (exclusive)

to the VF fragment of the target view (VF3). In this case, FF1 is affected by the adaptation

process. After the affected fragment is detected, the process then searches for an existing

fragment that can be reused with, the Reusability Search also starting at the adaptation root

FF7 (inclusive) towards the Root Fragment. In this case, FF7 is the candidate that can be

reused by the adaptation methods introduced in §7.3.1. �

7.3.1 Data Adaptation Methods

So far, we have shown how affected fragments and potential reusable materialised frag-

ment are detected. In this section, we show the actual methods used for data adaptation.

We consider a distributed environment where views and source data are stored on different

sites over the network. Depending on whether data can be obtained locally or remotely,

different methods are used. Basically, we classify the data adaptation methods into two

types, Incremental Adaptation and Recomputing, where for Incremental Adaptation, the

result of the new view definition is obtained by either removing redundant data from the

affected fragments or adding extra data into the affected fragments. When redundant data

must be deleted, the affected fragments are considered to be self-maintainable as data adap-

tation is achieved by executing an additional query over the affected fragments. However,

when it comes to the case of adding extra data, the process must obtain extra data from

122

either an existing materialised fragment or database servers where source data are stored,

where the former one saves network communication cost. For the case of Recomputing,

to keep the affected fragments updated, the process executes the new definition resulting

from the change over either an existing materialised fragment or data sources. Based on

different contexts, we refine the Incremental Adaptation and Recomputing methods into the

following classification,

1. Self-Maintained Incremental Adaptation (IASelf): where no extra data is required,

views can be adapted by directly removing redundant data from the affected fragment.

2. Incremental Adaptation Using Local Fragments (IALocal): where extra data is

obtained from an existing materialised fragment and then inserted into the affected

fragment.

3. Incremental Adaptation Using Remote Data (IARemote): where extra data is ob-

tained from the database servers, transferred to the site where views are stored and

then inserted to the affected fragment.

4. Recomputing Locally (RELocal): for this case, the incremental adaptation can not

be achieved either because the incremental adaptation is too expensive or because it

is not possible to do so. Therefore, this method computes the new definition based

on an existing materialised fragment. For example, in Figure 7.9, FF1 is computed

based on FF7.

5. Recomputing Remotely (RERemote): this method simply executes the view defi-

nition from scratch by using data stored on the database servers that are distributed

over the network.

In reality, a query optimiser determines which method to apply during data adaptation based

on their corresponding processing cost. The processing cost required by our adaptation

methods vary in different implementations. As recomputing only involves the method to

find an existing materialised fragment for reuse, which we have already discussed previ-

ously in Reusability Search, therefore, in the rest of this section, we focus on how incremen-

tal adaptation is achieved. Before we start, we first introduce the concept of a deep-except

and deep-union as discussed in [LLLL05]. The deep-except and deep-union operators are

123

stations

weatherstation

id
total

free

stations

weatherstation

id
total

free

<stations>
<station>

<id>10</id>
<free>20</free>
<total>40</total>

...
</station>
<weather>…</weather>

</stations>

<stations>
<station>

<id>10</id>
<free>20</free>
<total>40</total>

...
</station>
<weather>…</weather>

</stations>

(a) Before node “free” is deleted (//stations)

stations

weatherstation

id
total

free

stations

weatherstation

id
total

free

<stations>
<station>

<id>10</id>
<free>20</free>
<total>40</total>

...
</station>
<weather>…</weather>

</stations>

<stations>
<station>

<id>10</id>
<free>20</free>
<total>40</total>

...
</station>
<weather>…</weather>

</stations>

(b) After node “free” is deleted (//stations deep-except
//stations//total)

Figure 7.10: Standard Except and Deep-Except Operators

the extended version of the standard except and union operators introduced in [W3C10a]

and are extensively used in our incremental adaptation methods.

Deep-Except Operator The standard except operator works on sequences and returns

instance nodes appearing in its first operand (sequence), but not the second operand (se-

quence). The deep-except (−D) operator takes two sequences of instance nodes as input

and the results is calculated based on three conditions:

1. When the first operand (sequence) is equal to any instance nodes in the second

operand (sequence), or is a descendant of any nodes in the second operand, then

the result is an empty sequence;

2. When any node(s) of the second operand (sequence) is descendant(s) of the first

operand (sequence), it is removed from the first operand. This requires that each

instance node within the first operand maintains a reference to their descendants.

Therefore, when deletion is necessary to take place, the target instance nodes are lo-

124

cated by following the node references of instance nodes within first input sequence;

3. Otherwise, when there is no overlap between the first and second operands, the first

operand (sequence) is returned.

Example 7.8 demonstrates the difference between standard except operator and deep-except

operator.

Example 7.8 (Standard except and deep-except operators)

Figure 7.10a: //stations

Figure 7.10b: //stations deep-except //stations//total

Result: total is deleted. �

Figure 7.10a demonstrates a segment of the result obtained by executing the query //sta-

tions over the Worldbikes dataset. By executing the query expression //stations deep-except

//stations//total over the XML tree in Figure 7.10a, as shown in Figure 7.10b, the node to-

tal is deleted from the XML tree. If, in Example 7.8, the deep-except is replaced by the

standard except operator, that is, //stations except //stations//total, then the result is equal to

the segment of the Worldbikes dataset shown in Figure 7.10a. This is due to the fact that

//stations returns a sequence of stations nodes, where as the expression //stations//total re-

turns a sequence of total nodes. The standard except operator returns nodes only in the first

sequence, but not in the second. Therefore, for this case, the sequence of stations nodes are

returned. The except operator is not concerned about the instance nodes within the subtree

of each stations nodes.

Deep-Union Operator The standard union (∪) operator takes two sequences as input and

returns a sequence containing all the nodes that occur in either of the operands (sequences).

Unlike the standard union operator, the deep-union (∪D) operator takes two sequences of

instance nodes as input and compares not only instance nodes in each sequence, but also

their descendants. The deep-union operator returns a sequence of instance nodes which

satisfy the two conditions:

1. the returned instance nodes must originate from one of the operands;

125

stations

station

id
free

total
available

weather

⋃
available

=

stations

station

id
free

total
available

weather

available

2

(a) Standard Union Operation (//stations union //station/available)

stations

station

id
free

total
available

weather

⋃D

available

=

stations

station

id
free

total
available

weather

1

(b) Deep-Union Operation (//stations deep-union //station/available)

Figure 7.11: Standard Union and Deep-Union Operators

2. the returned instance nodes must not exist in the subtree of a node within either

operand.

To successfully perform the deep-union operation, it is necessary that each instance node

within the operands maintains references to all their descendants.

Example 7.9 (Standard union and deep-union operators)

Figure 7.11a: //stations union //station/available

Figure 7.11b: //stations deep-union //station/available

Result: stations is returned. �

The sample query of Example 7.9, //stations union //station/available, yields a sequence

containing nodes stations and available. If one were to replace the standard except opera-

tor with the deep-union operator, i.e., //stations deep-union //station/available, the process

would return a sequence containing only stations node, the node available is already in the

subtree of the stations node as shown in Figure 7.11b.

We now continue our discussion of data adaptation. For all types of changes, as listed

below, there are three possible actions to effect the change:

126

1. Adding extra data (instance nodes), which involves changes of deleting a step, delet-

ing a predicate and modifying a predicate.

2. Deleting redundant data (instance nodes), which involves changes of adding a step,

adding a predicate and modifying a predicate

3. When both 1 and 2 must take place. This occurs in some instances when we modify

a predicate.

Assume that the original fragment is fold and the new fragment resulting from the change

is fnew. We define f+ as the extra data to be added and f− as the redundant data to be

removed, the data adaptation problem can be expressed as the following equation,

fnew = fold ∪D f+ −D f− (7.1)

Equation (7.1) indicates that the new materialisation (fnew) is obtained by adding the extra

data (f+) into the old materialisation (fold) using the deep-union operator (∪D) and then

deleting the redundant data (f−) with the deep-except operation (−D). As discussed below,

depending on the type of the change being processed, either f+ or f− could be empty.

meaning we need only add extra data or remove redundant data.

Adding Extra Instance Nodes If a change causes the affected fragments to be less re-

stricted, i.e., delete a step, delete a predicate or modify a predicate, as a result, “extra”

instance nodes are added into the affected fragments. We must first identify extra instance

nodes to be added and then inserting those instance nodes into the affected fragments. To

identify extra instance nodes, Equation (7.2) is applied,

f+ = Exprnew −D Exprold (7.2)

In Equation (7.2), Exprnew is the original expression associated with the affected fragment

and Exprold is the expression mapped to the affected fragment after applying the change.

In the case of adding extra nodes, f− is empty as no instance node is deleted from the

old materialisation. The next step is to add instance nodes into the affected fragment. The

challenge here is that, by definition, the process must maintain the original order between

127

instance nodes to be inserted and existing nodes. Our solution is to make use of the position

encoding schemes as discussed in Chapter 5, which identifies the position of each instance

node within the original XML tree. During insertion, the nodes are inserted into their

corresponding region (see Definition 5.7 on Page 79 for the explanation of region).

During the adaptation process, the right operand of Equation (7.2) is evaluated over ei-

ther an existing materialised fragment (IALocal) or the source data stored on the database

servers (IARemote). If the cost of IALocal and IARemote methods are too expensive, the

query optimiser can also decide to apply the RELocal method. Nevertheless, if none of the

three approaches is applicable as either they are too expensive or no existing materialised

fragment can be reused, the RERemote method must be applied, which recomputes the

view from scratch using data stored on the database servers.

Deleting Redundant Instance Nodes Three types of changes restrict materialised data:

1) adding a step, 2) adding a predicate and 3) modifying a predicate. For the case of mod-

ifying a predicate, we consider the case that further restricts materialised data. Similar to

the previous case, to delete redundant instance nodes, the process needs to first identify the

“redundant” instance nodes and then delete them from the affected fragments.

f− = Exprold −D Exprnew (7.3)

As shown in Equation (7.3), redundant data is detected by executing the expression specified

in the right operand directly over the affected fragment and then deleting them from the

affected fragment (IASelf method). Both steps can be achieved by applying an XQuery

Update [W3C11] statement as listed below,

fnew = do delete (Exprold −D Exprnew) (7.4)

In the case of deleting redundant nodes, f+ is empty as no instance node is added. If the

IASelf method is too expensive to achieve, either RELocal or RERmote method is used

depending on whether or not there is an existing fragment that can be reused. Different

from other cases, the RELocal method used in this case recomputes views based on the

affected fragment rather than another existing fragment since the affected fragment already

128

contains all instance nodes for the new view definition.

Mixture of Adding and Deleting This occurs when a modification causes a dramatic

change to the original predicate, e.g., the NameTest is changed or changes take place to the

predicates with text values. Our solution to this case is to compute the new view definition

over an existing materialised fragment (RELocal). For the case when the affected fragment

becomes more restricted, then RELocal is performed upon the affected fragment. Despite

the fact that the affected fragment has to be recomputed from scratch, using the existing

materialised fragment saves network communication cost required by transferring data from

different locations on the network. If no existing materialised fragment can be reused, the

RERmote method is used.

7.4 Summary

We now have all the pieces required to develop a system capable of view adaptation for

XML views. Furthermore, this system, unlike all other XML view adaptation systems, use a

fragment-based approach to deliver increased sharing and improved performance. However,

one further step is required in this dissertation. Recall that the hypothesis put forward

was that view adaptation is more efficient when using a multi-view based framework with

materialised data shared between views. While we have delivered a multi-view adaptation

approach, it remains for us to evaluate our system in order to demonstrate that the stated

efficiencies can be delivered. In the next chapter, we present a detailed evaluation of both

the fragment selection process and the method for view adaptation.

129

Chapter 8

Evaluating Fragment Based

Adaptation

In this chapter, we evaluate the XFM framework and adaptation algorithms. To do this, we

implemented the adaptation algorithms on top of two different selection mechanisms: the

basic XFM approach (XFM) and an approach using Clustering (XFM-C). We also imple-

mented the Full Materialisation Approach (FULL), which is based on the materialisation

of entire views, to show the performance gain and the reduction in materialised data, when

using our approach. The FULL approach materialises the query after each change is ap-

plied. As the goal is to demonstrate the benefits of the fragment-based framework, we

show the percentage of time and storage costs required by XFM-C and XFM relative to

FULL approach. We did not apply the single-view based adaptation algorithm proposed in

[AML+07] as in their approach, 1) a view is represented by a set of unions and intersections

of positive and negative access control rules (XPath expressions), which is quite different

to using a single XPath expression; and 2) the result of the view is obtained by performing

all deep-union and deep-except operations over all access control rules, which is very time

consuming process and is slower than recomputing the entire view. The chapter has two

main sections: firstly, we provide a description of the experimental setup with some basic

assumptions, and then we proceed to the evaluation and a discussion of the results.

130

8.1 Experiment Deployment and Implementation

Three database servers were deployed for this experiment: two MonetDB servers act as the

remote database servers storing all source XML data, and a third MonetDB server used as a

local view repository containing all views and materialised data. This models a typical data

warehousing system where data is often distributed due to the high volumes generated. We

initially attempted to deploy other native XML databases such as eXist and BaseX but they

were unable (or very inefficient) to load large XML datasets, e.g., 4GB, and caused problem

when repeatedly creating and deleting views, which are essential in our experiment. We

use version 4.38.5 for all MonetDB servers. The remote servers are distributed on two

Intel Core(TM)2 Due 2.66Hz workstations running 64-bit Fedora Server 12 with 4GB and

2GB RAM, respectively. The local server is installed on an Intel Core(TM)2 Duo 3.00GHz

workstation running 32-bit Windows 7 with 4GB RAM.

Dataset No. of No. of No. of Total No. No. of
Size (GB) Elements Attributes Text Nodes of Nodes Levels

8.30 405,848,131 2,539,758 351,450,328 759,838,217 8
(a) Worldbikes Data Statistic

SchemaGuide Size (KB) No. of Schema Nodes No. of Levels
21.2 388 8

(b) SchemaGuide Statistic

Table 8.1: Worldbikes Data and SchemaGuide Statistics

8.1.1 The Worldbikes Dataset

We opted to use a real world dataset, the Worldbikes dataset (described in Chapter 3),

which contains information regarding the Bicycle Sharing System distributed in different

cities over the world. For our setup, we stored a Worldbikes dataset (4.15GB each) on each

of the remote MonetDB servers, with more than 759 millions of nodes in total and with

upto 8 levels as shown in Table 8.1a.

The SchemaGuide. A SchemaGuide for the Worldbikes dataset is created during the

parsing process, i.e., using Xerces SAXParser. During parsing, the program incrementally

stores each unique combination of root-to-node path and subtree structure of the instance

131

nodes and a schema node is generated for each combination with an unique identifier (sid).

After parsing has completed, the program assigns each schema node a label using the po-

sitional encoding scheme, and eventually, stores all schema nodes within a B-tree. The

B-tree is small enough to be maintained in the main memory for the purpose of fast access.

As shown in Table 8.2, the SchemaGuide created for the two Worldbikes dataset is size of

21.2KB with 388 schema nodes and 8 levels in depth.

8.1.2 Views and Changes

As part of our evaluation, it was necessary to develop a View Generator and a View Adap-

tation Simulator. To generate meaningful views, valid changes and ensure that views are

still meaningful even after applying changes, all paths and value information are retrieved

from the SchemaGuide and a Text Value Index of the Worldbikes dataset. For easy access,

we store all text values in a hash table, where keys represent names of elements (the node at

a higher hierarchy of the tree) containing the text value and the values of the hash table are

the actual text values. To avoid storing paragraphs of texts embedded in an XML element,

we deliberately store text values by setting the maximum length of the text to be less than

40 characters as in general, it is unusual to have a predicate value more than 40 characters.

par1 View Size the number of views to be generated
par2 % with Predicates the percentage of views containing predicates
par3 Max. Length the maximum length (no. of steps) of a view
par4 Common Prefix the common sub-expressions shared between views
par5 TD Decay the term dissimilar decay
par6 LD Decay the level dissimilar decay

Table 8.2: Query Generator Parameters

8.1.2.1 View Generator.

As shown in Table 8.2, we consider different factors (parameters) when generating views.

We control the maximum length of views (Max. Length) and the common sub-expressions

between views (Common Prefix), those two parameters influence similarities between views

(or shareability) and the total number of fragments to be generated. The term (TD Decay)

and level (LD Decay) dissimilar decays, control the number of potential clusters that are

132

View Set
No. of No. of

No. of Steps
No. of

Fragments Shared Fragments Predicates
VS1 2664 368 4133 3513
VS2 2616 337 4099 3472
VS3 2700 362 4121 3529
VS4 2731 349 4120 3552
VS5 2667 366 4116 3506
VS6 2258 309 3525 2376
VS7 3012 357 4022 3139
VS8 2962 348 4091 3093
VS9 2938 379 4056 3120
VS10 2783 338 3797 3105
VS11 2773 367 4252 3167
VS12 2856 365 3870 3029
VS13 2647 351 4251 3036
VS14 2343 323 4473 2437
VS15 2674 358 4251 3063

Avg. 2708 352 4078 3142

Table 8.3: View Statistics

created during the selection.

In our experiment, we have fixed the value of TD Decay and LD Decay to be 0.1 and 0.9,

respectively, as by empirical study, those two values produce far better selection plans. We

manually change the Common Prefix and Max. Length to generate different sets of views

which in turn, leads to different adaptation performance.

For an exhaustive evaluation, we generated 15 view sets (15 configurations of the XFM

view graphs), where each set contains 1000 views. As shown in Table 8.3, there are an

average of 2,708 fragments in each view set and among them, 352 fragments are shared

between views. Each view set contains 4,078 XPath steps and 3,142 predicates on average.

The View Generator ensures that each step is a valid step relative to its previous step, which

is verified by the SchemaGuide to ensure that schema nodes map to the previous and current

steps, respectively. If their relationship does not imply the specified relationship (parent-

child or ancestor-descendant relationships), the View Generator skips the current step and

continues to generate new steps until a valid step satisfying the axis condition is obtained.

When generating predicates, it first searches for a valid value within the Text Value Index

and randomly generates an operator if the type of the value is numeric. The View Generator

133

compares the new predicate with the existing ones that are applied to the same context

(step). If the predicate already exists or it contradicts an existing predicate, e.g., the new one

is year>2010 and the existing one is year< 2010, then it is discarded and the process stops

if either a valid predicate is generated or specified number of attempts are exceeded. Two

sample views generated by the View Generator are given in Example 8.1 and Example 8.2.

Example 8.1 (Sample Query One)

//worldbikes/bikes/city/Dublin[.//year>2008][.//year<2011][.//month=6][.//day=1]

/stations[.//hour=8]/station �

Example 8.2 (Sample Query Two)

//worldbikes/bikes/city/Dublin[.//year>2007][.//month>=5][.//day=24]//stations

/station/total �

The query in Example 8.1 simply asks the operational status of each station in Dublin every

day after 8 am in June between 2008 and 2011 and the query in Example 8.2 searches for the

total number of bikes at stations in Dublin on the 24th of each month after May (inclusive)

2007.

For our experiment, the key factors that determine whether or not clustering is necessary

and also the amount of VF fragments to be selected, are the similarity between views and the

overall costs of the common fragments between views, e.g., Fragment Cost, Materialisation

Cost, Reusing Cost and etc. If a view set contains views that are very similar and with low

overall costs for common fragments, then no clustering is required and views can be covered

by a small amount of non-VF fragments. If views have either low average similarity value

or high overall costs for common fragments, then clustering is required and VF fragments

may be selected. Based on these two factors, we demonstrate different circumstances by

categorising view sets into three types based on the amount of VF fragments selected by

the XFM-C approach and whether clustering is required.

1. Views are very similar to each other and the overall costs of common fragments are

low. Thus, no clustering is required and no VF fragment is selected (VS1-VS5).

134

2. Both the average similarity and overall costs of common fragments are low and as a

result, clustering is required. However, no VF fragment is selected (VS6-VS10).

3. The average similarity value is relatively low and the overall costs of common frag-

ments are high. For this case, clustering is performed and View Fragments are se-

lected (VS11-VS15).

For each view set, 40 changes are applied, where each change is guaranteed to be mean-

ingful, and changes are applied in a sequential manner, e.g. adding a predicate followed by

adding a step. The changes are randomly created by the View Adaptation Simulator with a

variety of change types.

We also randomly generate user preferences for each view. User preferences are of benefit

to the user only during query evaluation as this process becomes faster due to the materi-

alisation of the popular fragment. As the focus of this work is on view adaptation (when

users change their queries), the effect will generally be negative when a query using a pop-

ular fragment is changed. Thus, we randomly generate user preferences to highlight their

impact on the adaptation process.

8.1.2.2 View Adaptation Simulator.

The type of changes that are allowed includes: 1) add a step or predicate, 2) remove a

step or predicate and 3) modify a predicate, which involves making changes to the operator

applied to the NameTest (see §4.2 on Page 47), the value of the predicate, or the NameTest

to which the predicate applies. An example of the change would be change year from 2011

to 2001, or change year>2007 to year<2010 in Example 8.2.

Changes are pre-generated and stored in an external file. During the evaluation, the simu-

lator reads changes sequentially from the external file and applies them to the global XFM

view graph. Changes are generated based on the existing views with the change type ran-

domly selected. An existing view is selected and based on the type of change, the generator

traverses the selected view, finds a place to apply the change and then creates all necessary

components of the change. For example, if a step is added, the generator first picks an axis

(relationship) of the step, searches for the SchemaGuide for a NameTest of the current step

and ensures that nodes for the new step, and the step after the position the new step is added,

135

satisfy the axis condition. For the case of adding a predicate, an operator and a text value

are also generated, based on the type of the value (numeric, string or date), a corresponding

operator is selected. For example, if a text value is a type of either numeric or date, then

one of the five different type of operators can be selected (=, ≤, ≥, > and 6=). However,

if the text value is a string value, then only the = operator can be applied. Furthermore, all

text values are selected from the Text Value Index and validated against existing predicates

to avoid duplication and contradiction.

8.1.3 Limitations of Current XML Technology

One of the reasons we undertook this research was that despite the growing demand for

XML query languages and data warehouse functionality, the underlying technology remains

quite slow. As our research requires, to some extent (or at least for evaluation purposes) ex-

isting technology, we examined a number of XML database technologies and deemd Mon-

etDB to be among the best. However, efficient updates are still an open research problem

for XML researchers and updates remain slow for large datasets. For our experiments, we

could not apply the incremental methods introduced in §7.3.1 for two reasons, 1) existing

XML databases does not have the required performance for XML updates and it is often

the case that recomputing is much faster, and 2) for relational tuple-based data, it is not

necessary to retain their orders after adaptation, but for tree-based XML data, structure and

order are essential. For example, to add extra instance nodes into a view, the process must

determine the original order and hierarchy structure between the new instance nodes and

the existing ones. In XML databases, structural and order information between nodes are

explored by the underlying labelling/encoding schemes used, i.e., the index. Nevertheless,

since our view adaptation system is deployed on top of the MonetDB, we have no access to

the underlying index and our implementation of the deep-union and deep-except operators

cannot be suitably efficient as they operate on the node level rather than the index level.

8.2 Experiment Evaluation on the XFM Framework

Despite the fact that the incremental methods could not be applied, the fragment-based

approach remains far more efficient than the FULL approach as we can still reuse existing

136

No. of Clusters Candidates No. of VFs % of Fragments No. of Iterations
XFM-C XFM XFM-C XFM XFM-C XFM XFM-C XFM XFM-C XFM

VS1 0 n/a 35 35 0 0 1.31% 1.31% 0 1
VS2 0 n/a 29 29 0 0 1.11% 1.11% 0 1
VS3 0 n/a 32 32 0 0 1.19% 1.19% 0 1
VS4 0 n/a 31 31 0 0 1.14% 1.14% 0 1
VS5 0 n/a 31 31 0 0 1.16% 1.16% 0 1
VS6 26 n/a 54 319 0 264 2.39% 14.13% 1 3
VS7 25 n/a 31 410 0 387 1.03% 13.61% 1 1
VS8 23 n/a 45 54 0 0 1.52% 1.82% 1 1
VS9 77 n/a 70 557 0 470 2.38% 18.96% 1 2

VS10 26 n/a 35 648 0 624 1.26% 23.28% 1 1
VS11 37 n/a 222 202 169 180 8.01% 7.28% 1 1
VS12 30 n/a 289 323 210 294 10.12% 11.31% 2 1
VS13 42 n/a 209 209 128 128 7.90% 7.90% 2 2
VS14 54 n/a 517 601 428 556 22.07% 25.65% 1 1
VS15 42 n/a 199 167 113 113 7.44% 6.25% 4 4

Table 8.4: Clusters and Candidates

materialised fragments that are shared between views in cases where the FULL approach

must access source data from the remote servers.

In §8.2.1 and §8.2.2, we record and analyse the following measures and costs, respectively:

1. Adaptation Cost: the total time required to achieve a sequence of changes.

2. No. of Candidates: the total number of fragments selected.

3. No. of VF fragments: the total number of VF fragments selected among the candi-

dates.

4. Percentage of Instance Nodes: the percentage of instance nodes materialised by the

XFM-C and XFM approaches relative to the FULL approach.

5. No. of Iterations: the number of iterations performed by the selection algorithm,

where required.

8.2.1 Performance of Fragment Selection

As the fragment selection component is specific to the XFM view framework, we compare

between our own approaches: the standard selection and selection with clustering. Those

are the methods used in XFM and XFM-C, respectively. To compare with other approaches,

we also show the costs when all views are materialised (FULL approach).

137

VS1 VS2 VS3 VS4 VS5
XFM‐C 280,795,066 306,845,926 344,212,586 310,307,316 281,323,180
XFM 280,795,066 306,845,926 344,212,586 310,307,316 281,323,180
FULL 3,956,645,552 5,148,063,284 5,283,158,820 4,952,864,966 4,518,078,848

0

1,000,000,000

2,000,000,000

3,000,000,000

4,000,000,000

5,000,000,000

6,000,000,000

N
o.
 O
f N

od
es

Figure 8.1: Materialisation Cost for View Set VS1 - VS5

The purpose of fragment selection is to select the best fragments for materialisation. Should

one materialise all views (VF fragments), this has the most positive impact on query perfor-

mance as query processing is more efficient when all views are pre-computed and stored.

Nevertheless, to fully materialise all views, will have a negative impact on view adaptation

performance as every view change will impact on materialised views. Furthermore, full

materialisation also increases view maintenance costs as large amount of nodes are stored

and, additionally, many of them are duplicated. An optimised selection algorithm tries to

balance the costs between query processing, view adaptation and view maintenance. In

our approach, there are two key performance indicators for fragment selection: the cost of

maintaining the materialised views and the number of VF fragments to be materialised. For

the second indicator, we are seeking to materialise the smallest number of VF fragments.

The fact that this is always the final fragment means that any change to the view definition

must result in data adaptation.

For view set VS1 to VS5, since views are very similar and the overall costs of shared frag-

ments are low, no clustering is required by the XFM-C approach. As a result, the selection

is achieved by both XFM and XFM-C approaches within the first phase of the selection

process, i.e., Fragment Selection phase. As shown in Figure 8.1, the materialisation cost

of XFM and XFM-C are far less than the FULL approach, and as depicted in Table 8.4,

they both select less than 1.5% of the overall set of fragments. The less nodes that have

been materialised the less maintenance cost is required. In this case, no VF fragment is

138

selected which increases the chances that a change may not affect materialised fragments

and thus, further improve the view adaptation performance. As will be shown in §8.2.2, the

adaptation performance is much better when no View Fragment is materialised.

VS6 VS7 VS8 VS9 VS10
XFM‐C 634,317,682 333,878,614 352,385,958 1,127,660,512 387,466,834
XFM 2,924,366,398 2,161,778,152 389,023,394 4,257,651,862 4,340,598,502
FULL 7,369,927,384 3,363,983,674 2,754,299,746 4,831,862,558 5,329,378,474

0

1,000,000,000

2,000,000,000

3,000,000,000

4,000,000,000

5,000,000,000

6,000,000,000

7,000,000,000

8,000,000,000

N
o.
 O
f N

od
es

Figure 8.2: Materialisation Cost for View Set VS6 - VS10

Views within the set VS6 and VS10 have low average similarity value and low overall costs

for common fragments and as a consequence, views within those sets are clustered by the

XFM approach, but no VF fragment is selected. As shown in Table 8.4, the XFM-C ap-

proach selects between 1.03% and 2.39% of the total fragments for materialisation, whereas

the XFM approach selects more than 13.61% of the fragments with the exception of VS8.

For VS8, although the XFM approach cannot complete the selection in the Fragment Se-

lection phase, the sub-graph based selection in the View Coverage phase covers all views

in one iteration as the remaining views are close to each other and have low overall costs.

As shown in Figure 8.2, the XFM-C approach materialises far less instance nodes than the

other two approaches as the consequence of applying the clustering technique. Addition-

ally, as shown in Table 8.4, the XFM approach selects many VF fragments since the Cost

Evaluation process is performed based on the context of the entire view graph and in such

a case, costs do not reflect the real “importance” of each fragment to existing views. Nev-

ertheless, the Cost Evaluation process of the XFM-C approach is performed based on each

cluster to reflect the real significance of each fragment to existing views.

When views are either quite different or common fragments between views are costly, both

XFM and XFM-C approaches select a large set of fragments for materialisation. As high-

139

VS11 VS12 VS13 VS14 VS15
XFM‐C 1,814,537,766 3,003,009,392 1,980,070,190 9,180,767,544 1,965,918,894
XFM 1,663,074,354 2,734,910,130 1,694,519,248 9,564,266,556 1,750,103,662
FULL 3,671,439,426 6,117,980,184 6,117,980,184 10,020,495,16 3,799,984,688

0

2,000,000,000

4,000,000,000

6,000,000,000

8,000,000,000

10,000,000,000

12,000,000,000

N
o.
 O
f N

od
es

Figure 8.3: Materialisation Cost for View Set VS11 - VS15

lighted in Table 8.4, the number of fragments selected by both approaches vary, from 7% to

25% and large amounts of VF fragments are selected. As shown in Figure 8.3, in the worst

case, i.e., VS14, three approaches materialise nearly the same amount of instance nodes

and both XFM and XFM-C approaches require 4 iterations to cover all views. This type

of case is unavoidable as when views are very different from each other or common frag-

ments are too expensive to materialise, the only way to cover all views, for the purpose of

query processing, is to materialise all VF fragments. Moreover, for the XFM-C approach,

it materialises more nodes than the XFM approach for VS11, VS12, VS13 and VS15. This

is due to the fact that a view may be covered by more than one fragment. For example, a

view might be covered by candidates selected in the Fragment Selection phase, a fragment

selected in the View Coverage phase by the clustering approach may also cover the same

view, which increases the materialisation cost and also has more chances to influence the

view adaptation performance.

In summary, the clustering-based approach requires much less materialisation costs than

the other two approaches in terms of the number of fragments selected and the amount of

nodes to materialise.

8.2.2 Performance of View Adaptation

The goal of this part of our evaluation is to demonstrate the improvements to view adapta-

tion gained by the fragment-based approach, over the FULL approach. We do this by the

140

VS1 VS2 VS3 VS4 VS5
XFM‐C 1.612 22.678 15.929 22.991 20.292
XFM 1.966 23.322 15.865 23.513 20.071
FULL 1962.249 2008.307 2042.075 1949.582 1946.975

0

500

1000

1500

2000

2500

Se
co
nd

s

Figure 8.4: View Adaptation Cost for View Set VS1 - VS5

time required for a series of changes across the 15 view sets. Furthermore, we show our

own adaptation performance under different selection plans.

As part of the evaluation, there are two possibilities for data adaptation.

1. Recomputing by using an existing materialised fragment where the reused fragment

could be the affected fragment itself or a shared materialised fragment depending on

the type of change applied.

2. Recomputing by using data obtained from the database servers.

As shown in Figure 8.4, where no cluster was created (VS1-VS5), both XFM-C and XFM

approaches have a similar adaptation performance. Furthermore, changes are handled far

more efficiently by the XFM-C and XFM approaches than by the FULL approach. In this

circumstance, views are relatively similar to each other and common fragments are rela-

tively cheap for materialisation. Therefore, only a small number of fragments are materi-

alised and changes applied to existing views may require only structural adaptation and no

data is required to be adapted.

For VS6 to VS10, the XFM-C approach has far better adaptation performance than the other

two approaches for set VS6, VS9 and VS10. This is because a large set of VF fragments are

selected and materialised by the XFM approach, hence, when adaptation takes place, it must

update those materialised VF fragments. Using the XFM-C superior fragment selection

141

VS6 VS7 VS8 VS9 VS10
XFM‐C 28.289 4.025 35.152 245.616 103.898
XFM 975.454 29.915 35.347 657.825 1173.262
FULL 2001.267 1912.79 1921.581 2013.541 1985.55

0

500

1000

1500

2000

2500

Se
co
nd

s

Figure 8.5: View Adaptation Cost for View Set VS6 - VS10

plan, the ability to manage changes with no data adaptation is improved and it has also

a higher possibility to detect a fragment for reuse. For the cases that a view becomes

more restricted after applying a change, the affected fragment is self-maintainable and the

new sub-expression can be executed directly over the affected fragment provided that it is

materialised.

VS11 VS12 VS13 VS14 VS15
XFM‐C 376.122 505.971 120.962 1327.796 609.351
XFM 405.871 552.522 102.149 1415.185 606.641
FULL 2041.279 1980.315 1995.16 1989.388 1993.642

0

500

1000

1500

2000

2500

Se
co
nd

s

Figure 8.6: View Adaptation Cost for View Set VS11 - VS15

Where existing views require a large number of VF fragments to be created, as in the case

with VS11 to VS15, it may happen (e.g., VS14) that the XFM-C and XFM approaches

obtain smaller performance gains against the FULL approach. This is due to the fact that a

142

large amount of VF fragments are selected and when changes make those VF fragments less

restricted, both the XFM-C and XFM approaches must find a fragment for reuse where the

affected fragments cannot be adapted from an existing fragment. However, for cases VS11,

VS12, VS13 and VS15, most of the changes cause the fragment to be more restricted, which

indicates that the affected fragments are self-maintainable and thus, the XFM-C and XFM

approaches have far better adaptation performance.

8.3 Summary

In summary, both selection mechanisms perform well when compared to the FULL ap-

proach, both in terms of materialisation cost and view adaptation cost. The XFM-C ap-

proach delivers the best fragment selection and thus, has the biggest impact on both view

adaptation performance and on materialisation cost. When views are very similar and the

overall costs of common fragments are low, both XFM and XFM-C approaches make simi-

lar select decisions and have similar view adaptation performance, with both approaches far

more efficient than the FULL approach. In our evaluation, we have a clear demonstration

that the fragment based approach outperforms the FULL view approach.

When examining different approaches within our own system, our evaluation showed clear

results. In the case where both the average similarity between views and the overall costs

of common fragments are low, the XFM-C method makes better selection decision and

obtains far better view adaptation performance. However, where views are very different

and overall costs of common fragments are high, both XFM and XFM-C select a large set

of VF fragments for materialisation and as a result, the view adaptation performance is not

as good.

143

Chapter 9

Conclusions and Future Work

In this dissertation, we presented a fragment-based view adaptation approach for XPath

views which are represented by XFM view graphs consisting of algebraic operators and

fragments. The fragment-based view adaptation process operates on a global XFM view

graph, where all views are integrated and when changes are applied, it adapts the graph both

structurally, in terms of repositioning fragment nodes and operation nodes, and physically,

where materialised fragments are updated. In this final chapter, we review the concepts

presented and following that, we discuss areas where future research can be explored.

9.1 Thesis Summary

The initial hypothesis of this research was that view adaptation is more efficient when using

a multi-view based framework with materialised data shared between views. Therefore, our

research goals to deliver multi-view based approach can be reviewed.

1. It was necessary to define an XML view model with sufficiently expressive constructs

and algebraic operators, to represent XML views.

2. We developed the view adaptation process which updates the view graph after apply-

ing changes to view definitions. This includes containment checking algorithm which

identifies common expressions between views and determines the extent of changes

between the old and new view definitions.

3. We developed a fragment selection process which decides the best fragments within

144

the view model for materialisation. This optimises the view adaptation process and

balances the cost of query performance and view maintenance.

4. Finally, we devised a framework to enable each of the different components to inter-

act.

A methodology was set to complete each goal in an incremental manner through the entire

dissertation.

In Chapter 1, an introduction to XML databases and XML-based warehouse systems was

presented and existing efforts of view adaptations were briefly discussed. It was concluded

that, through lack of maturity, existing XML databases suffer from the performance issues.

As a result, special attention was paid to view-based optimisation, which facilitates XML

query processing.

In Chapter 2, a set of view adaptation mechanisms were discussed. Previous efforts fo-

cused mainly on view adaptation for relational views and among them, a fragment-based

approach was demonstrated to be an optimised approach due to the fact that 1) materialised

data is shared which avoids duplication; 2) the view adaptation performance is improved

as there is a greater chance that materialised data can be reused; 3) the number of access

operations to source data is decreased, which reduces the network communication cost and

further improves view adaptation performance; and finally, 4) the fragment-based frame-

work balances the query processing cost and view maintenance cost as only part of the

fragments are materialised. However, due to different characteristics of relational data and

XML data, the current fragment-based approach can only operate with relational views.

Despite the fact that XML view adaptation approaches exist, there are several limitations,

i.e., very limited changes are supported, no network communication cost is considered and,

most importantly, views are treated as single entities, which faces the same problems as

were encountered in relational world, e.g., duplication and decreased view adaptation per-

formance.

To demonstrate how fragment-based adaptation is achieved in the XML world, we have

proposed 1) a fragment-based view framework, where XPath views are merged and com-

mon parts are shared; 2) a containment checking algorithm to identify common expressions

and the extent of changes between old view definitions and the new ones; 3) a cost-based

145

selection algorithm to select fragments for materialisation and a set of view adaptation algo-

rithms to handle a classification of changes. Those four components were covered through

Chapter 4 to Chapter 7 in this dissertation.

In Chapter 4, an introduction of the XFM view model and graph representation was pre-

sented. In our work, views are defined based on a subset of the XPath expressions, a core

component of the XPath language. XPath Views are represented by XFM view graphs,

which consist of algebraic operators and fragments. A transformation process is applied to

transform XPath views first into the algebraic representation and then to the graph repre-

sentation. We deliberately chose this path to allow further optimisation for our system, e.g.,

query rewriting. A merge algorithm was provided to integrate all view graphs into a global

XFM view graph which serves as the basic framework for our view adaptation system.

In Chapter 5, a detailed description of our containment checking algorithm was given. In

our approach, containment checking is achieved at the schema level with the assistance of a

metadata construct, the SchemaGuide. We start by discussing relationships between XML

trees, tree pattern queries, SchemaGuide and fragments. Based on those relationships, we

proposed a containment checking algorithm to verify containment relationships between

fragments within the global XFM view graph.

In Chapter 6, a cost-based fragment selection was presented. The selection plan is generated

by applying a set of cost-based heuristics to each fragment and only those fragments that

satisfy all heuristics are materialised. Based on whether all views are covered or not, fur-

ther selection may be required. We demonstrated three selection algorithms, Graph-Based,

Cluster-Based and Subgraph-Based methods, and the overall method uses a combination of

those algorithms. As part of the selection process, Graph-Based selection uses costs esti-

mated on the full view graph and applies cost-based heuristics to all fragments within the

global view graph. It performs well when all views are relatively similar. The Cluster-Based

and Subgraph-Based approaches refine the estimated costs in order to select any “missed”

fragments within clusters and ensure all views are covered by selecting new fragments from

a set of uncovered views (subgraphs).

In Chapter 7, a set of adaptation algorithms was presented which achieve view adaptation

by means of a two-step process. The first step is to perform the structural adaptation, which

updates the logical structure of the XFM view graph, and the second step is data adaptation

146

which updates the materialised fragments that are affected by the change. Our adaptation

approach operates by first checking whether a change has an impact on views besides the

target view. FragmentReplication is used to replicate fragments that are shared between

target and non-target views and any fragment that is shared and affected by the change is

then replicated. Based on the type of change, different adaptation algorithms are applied to

maintain the logical structure of the graph and this is followed by the FragmentOptimisation

which optimises the graph structure by exploring potential fragments to be shared. For data

adaptation, we proposed five methods corresponding to different circumstances. From a

high level perspective of view, the data adaptation process consists of two main methods:

incremental adaptation and recomputing. Based on the two broad methods, we further

refined them into five categories,

1. Self-Maintained Incremental Adaptation

2. Incremental Adaptation Using Local Fragments

3. Incremental Adaptation Using Remote Data

4. Recomputing Locally

5. Recomputing Remotely

They differ from each other by how views are adapted and XML instance nodes are ob-

tained. Although recomputing may appear naive, in the context of XML databases, it is

often the case that recomputing is faster than the incremental approach as updates are very

inefficient for XML data.

We demonstrated in our evaluation chapter, the performance of view adaptation based on

different selection strategies. We deliberately generated a large set of views to show the

performance gain under different situations. In §8.2.1, we demonstrated the selection per-

formance in terms of how selection plan affects the view adaptation, query processing and

view maintenance. Materialising all views definitely has the best query processing per-

formance, however, when it comes to view maintenance or view adaptation, it decreases

view adaptation performance and increases maintenance cost. In §8.2.2, we demonstrated

the performance of view adaptation comparing to the FULL approach. Our results demon-

147

strated that the view adaptation process has much better performance on a fragment-based

framework.

9.2 Areas for Future Research

Based on what was learnt while delivering this research, we believe that there is a number of

interesting research areas to be explored. We separate these into short term goals which can

be achieved relatively quick and longer term goals, which require more prolonged research

effort.

9.2.1 Short Term Research Goals

We think the following goals are relative easy to complete from a short term perspective

and therefore, we set them as our primary research objects.

Clustering-Based Selection. One of the issues that the clustered-based approach faces

is that a view is covered by more than one fragment. This is because in the Fragment

Selection phase, the process checks only whether all views are covered or not, it ignores the

actual fragments that have been selected in the Fragment Selection phase. As a result, when

it reaches the clustering process in the View Coverage phase, the selection algorithm re-

examines all fragments in each cluster and selects valid candidates. The fragments selected

by the cluster-based method may cover same views as those fragments that were selected

in the Fragment Selection phase. For some cases, this could be a valid action, i.e., when

nodes contained by one fragment is a very small subset of the second fragment, then the

first fragment is more “dedicated” to a small amount of views, whereas the second fragment

is shared by a much larger set of views. Then it is necessary to materialise both of them to

facilitate the adaptation process and also benefits the query processing in spite of that this

is not our main concern here. When two fragments are shared by similar amount of views

and contains similar amount of XML nodes, then it is not necessary to materialise both of

them as this increases both maintenance and adaptation costs. Therefore, the first short term

goal of our research is to refine our selection algorithm to analyse the difference between

fragments and whether it is necessary to materialise multiple fragments to cover the same

148

set of views.

Incremental View Adaptation. We proposed different incremental methods to manage

views that are either more or less restricted after applying a change. Incremental adapta-

tion is a two-step process: 1) they first identify “redundant” or “extra” data depending on

the type of changes applied; and 2) delete redundant data from the affected fragment or

insert extra data into the affected fragment. Identifying data is relatively easy. However,

deletion and insertion are more difficult as one must somehow maintain the original or-

der and structural information between the XML nodes. As we have stated, a positional

labelling/encoding scheme (index) can be used to maintain the order and structural infor-

mation. The problem is how to efficiently perform the update process on it. We believe

that the view adaptation process can provide further gains if it has access to the underlying

database technology and exploit the XML index to develop update operators.

9.2.2 Longer Term Goals

The long term research goals of our research are to provide a more comprehensive frame-

work to cover more XPath expressions, or XQuery expressions and to support more types

of changes, e.g., grouping and aggregation.

The XFM Framework. Existing view-based approaches focus on a subset of XPath ex-

pressions, which is considered to be the core construct of the language. Most of the practical

queries use this subset. However, we believe that from a long term perspective, as user re-

quirements may vary, it is possible to extend our framework to support a larger set of XPath

expressions or even XQuery expressions. This involves extending the XFM view graph

with additional algebraic operators and fragment types and a more detailed containment

checking algorithm based on the new view definition.

View Adaptation With Support of Grouping and Aggregation. As stated by [WLXB09],

there is a compelling need of supporting analytical operations in XML queries, where

grouping and aggregate functions are essential constructs of the queries. Another future

goal for this research is to add support of grouping and aggregation to view adaptation

149

process.

Finally, we believe that as organisations continue to generate XML data through online

services and transactions, the need to query and data mine these repositories for strategic

information will grow. As a result, there is a significant impact that can be achieved through

research that improves both functionality and speed of XML data.

150

Bibliography

[ABMP07] Andrei Arion, Véronique Benzaken, Ioana Manolescu, and Yannis Papakon-

stantinou. Structured Materialized Views for XML Queries. In Proceedings of

the 33rd International Conference on Very Large Data Bases, VLDB ’07, pages

87–98. VLDB Endowment, 2007.

[AML+07] Padmapriya Ayyagari, Prasenjit Mitra, Dongwon Lee, Peng Liu, and Wang-

Chien Lee. Incremental adaptation of XPath access control views. In Pro-

ceedings of the 2nd ACM Symposium on Information, Computer and Commu-

nications Security, ASIACCS ’07, pages 105–116, New York, NY, USA, 2007.

ACM.

[AYCLS02] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava. Tree Pattern

Query Minimization. The VLDB Journal, 11:315–331, December 2002.

[BaseX] BaseX. Visual Exploration and Querying of XML Data., 2010.

[Bel98] Zohra Bellahsene. View Adaptation in Data Warehousing Systems. In Database

and Expert Systems Applications, 9th International Conference, DEXA ’98, Vi-

enna, Austria, August 24-28, 1998, Proceedings, volume 1460 of Lecture Notes

in Computer Science, pages 300–309. Springer, 1998.

[Bel00] Zohra Bellahsene. Adapting Materialized Views after Redefinition in Dis-

tributed Environments. In ER, pages 239–252, 2000.

[Bel04] Zohra Bellahsene. View Adaptation in the Fragment-Based Approach. IEEE

Transactions Knowledge Data Engineering, 16(11):1441–1455, 2004.

151

[BKS02] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic Twig Joins: Opti-

mal XML Pattern Matching. In Proceedings of the 2002 ACM SIGMOD Inter-

national Conference on Management of Data, Madison, Wisconsin, June 3-6,

2002, pages 310–321. ACM, 2002.

[BL03] Andreas Bauer and Wolfgang Lehner. On Solving the View Selection Prob-

lem in Distributed Data Warehouse Architectures. In Proceedings of the 15th

International Conference on Scientific and Statistical Database Management,

SSDBM ’03, pages 43–54, Washington, DC, USA, 2003. IEEE Computer So-

ciety.

[BOB+04] Andrey Balmin, Fatma Özcan, Kevin S. Beyer, Roberta J. Cochrane, and

Hamid Pirahesh. A Framework for Using Materialized XPath Views in XML

Query Processing. In Proceedings of the Thirtieth International Conference on

Very Large Data Bases, volume 30 of VLDB ’04, pages 60–71. VLDB Endow-

ment, 2004.

[Bra03] Chris Brandin. XML Data Management: Information Modeling with XML,

May 2003.

[CBHB09] Leonardo Weiss F. Chaves, Erik Buchmann, Fabian Hueske, and Klemens

Böhm. Towards Materialized View Selection for Distributed Databases. In

Proceedings of the 12th International Conference on Extending Database Tech-

nology: Advances in Database Technology, EDBT ’09, pages 1088–1099, New

York, NY, USA, 2009. ACM.

[CHS02] Rada Chirkova, Alon Y. Halevy, and Dan Suciu. A Formal Perspective on the

View Selection Problem. The VLDB Journal, 11:216–237, November 2002.

[eXist] eXist. eXist-db Open Source Native XML Database, 2000.

[FLZ07] Jian-Hua Feng, Yu-Guo Liao, and Yong Zhang. HCH for Checking Con-

tainment of XPath Fragment. Journal of Computter Science and Technology,

22:736–748, September 2007.

152

[FTU98] Carles Farré, Ernest Teniente, and Toni Urpı́. Query Containment Checking as

a View Updating Problem. In Proceedings of the 9th International Conference

on Database and Expert Systems Applications, DEXA ’98, pages 310–321,

London, UK, 1998. Springer-Verlag.

[FTU99] Carles Farré, Ernest Teniente, and Toni Urpı́. The Constructive Method for

Query Containment Checking. In Proceedings of the 10th International Con-

ference on Database and Expert Systems Applications, DEXA ’99, pages 583–

593, London, UK, 1999. Springer-Verlag.

[GCV09] Haris Georgiadis, Minas Charalambides, and Vasilis Vassalos. Cost Based Plan

Selection for XPath. In Proceedings of the 35th SIGMOD International Confer-

ence on Management of Data, SIGMOD ’09, pages 603–614, New York, NY,

USA, 2009. ACM.

[GMR95] Ashish Gupta, Inderpal Singh Mumick, and Kenneth A. Ross. Adapting Mate-

rialized Views after Redefinitions. In Proceedings of the 1995 ACM SIGMOD

International Conference on Management of Data, San Jose, California, May

22-25, 1995, pages 211–222. ACM Press, 1995.

[GMRR01] Ashish Gupta, Inderpal S. Mumick, Jun Rao, and Kenneth A. Ross. Adapting

Materialized Views after Redefinitions: Techniques and a Performance Study.

Information Systems, 26:323–362, July 2001.

[GMS93] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining

Views Incrementally. SIGMOD Rec., 22:157–166, June 1993.

[GPSH02] Antara Ghosh, Jignashu Parikh, Vibhuti S. Sengar, and Jayant R. Haritsa. Plan

Selection Based on Query Clustering. In Proceedings of the 28th international

conference on Very Large Data Bases, VLDB ’02, pages 179–190. VLDB En-

dowment, 2002.

[Gru02] Torsten Grust. Accelerating XPath Location Steps. In Proceedings of the 2002

ACM SIGMOD international conference on Management of data, SIGMOD

’02, pages 109–120, New York, NY, USA, 2002. ACM.

153

[GRV01] Matteo Golfarelli, Stefano Rizzi, and Boris Vrdoljak. Data Warehouse Design

from XML Sources. In Proceedings of the 4th ACM International Workshop

on Data Warehousing and OLAP, DOLAP ’01, pages 40–47, New York, NY,

USA, 2001. ACM.

[GW97] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formulation

and Optimization in Semistructured Databases. In Proceedings of the 23rd

International Conference on Very Large Data Bases, VLDB ’97, pages 436–

445, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[GZ08] An Gong and Weijing Zhao. Clustering-Based Dynamic Materialized View

Selection Algorithm. In Fifth International Conference on Fuzzy Systems and

Knowledge Discovery, 2008. FSKD ’08., volume 5, pages 391 –395, October

2008.

[IHH09] Sayyed Kamyar Izadi, Theo Härder, and Mostafa S. Haghjoo. S3: Evaluation

of Tree-Pattern XML Queries Supported by Structural Summaries. Data &

Knowledge Engineering, 68:126–145, January 2009.

[JL10] Xueyun Jin and Husheng Liao. An algorithm for Incremental Maintenance of

Materialized XPath View. In Proceedings of the 11th International Conference

on Web-Age Information Management, WAIM’10, pages 513–524, Berlin, Hei-

delberg, 2010. Springer-Verlag.

[JW02] Glen Jeh and Jennifer Widom. SimRank: A Measure of Structural-Context

Similarity. In Proceedings of the Eighth ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, KDD ’02, pages 538–543,

New York, NY, USA, 2002. ACM.

[KGJ10] T.V. Vijay Kumar, Anurag Goel, and Neeraj Jain. Mining Information for Con-

structing Materialised views. Int. J. Inf. Commun. Techol., 2:386–405, August

2010.

[LLLL04] Bo Luo, Dongwon Lee, Wang-Chien Lee, and Peng Liu. QFilter: fine-grained

run-time XML access control via NFA-based query rewriting. In Proceedings

154

of the thirteenth ACM international conference on Information and knowledge

management, CIKM ’04, pages 543–552, New York, NY, USA, 2004. ACM.

[LLLL05] Bo Luo, Dongwon Lee, Wang-Chien Lee, and Peng Liu. Deep Set Operators

for XQuery. In Daniela Florescu and Hamid Pirahesh, editors, Proceedings

of the Second International Workshop on XQuery Implementation, Experience

and Perspectives <XIME-P/>, in cooperation with ACM SIGMOD, June 16-

17, 2005, Baltimore, Maryland, USA, 2005.

[LR10] Jun Liu and Mark Roantree. OTwig: An Optimised Twig Pattern Matching

Approach for XML Databases. In SOFSEM 2010: Theory and Practice of

Computer Science, 36th Conference on Current Trends in Theory and Practice

of Computer Science, Spindleruv Mlýn, Czech Republic, January 23-29, 2010.

Proceedings, volume 5901 of Lecture Notes in Computer Science, pages 564–

575. Springer, 2010.

[LR11] Jun Liu and Mark Roantree. Selecting Fragments in a Partially Materialized

XML View Graph. Paper in Submission to TKDE, May 2011.

[LRB10a] Jun Liu, Mark Roantree, and Zohra Bellahsene. A SchemaGuide for Accelerat-

ing the View Adaptation Process. In 29th Interational Conference on Concep-

tual Modeling (ER’10), volume 6412, pages 160–173. Springer, 2010.

[LRB10b] Jun Liu, Mark Roantree, and Zohra Bellahsene. Optimizing XML Data with

View Fragments. In Shen H.T. and A. Bouguettaya, editors, 21st Australasian

Database Conference (ADC 2010), volume 104 of CRPIT, pages 151–160,

Brisbane, Australia, 2010. ACS.

[LRB11] Jun Liu, Mark Roantree, and Zohra Bellahsene. A Fragment-Based View Adap-

tation Mechanism for XPath Views. Paper in Submission to DKE, Feb 2011.

[LSK07] Ki Yong Lee, Jin Hyun Son, and Myoung Ho Kim. Reducing the Cost of

Accessing Relations in Incremental View Maintenance. Decis. Support Syst.,

43:512–526, March 2007.

155

[LWC06] Eric Jui-Lin Lu, Bo-Chan Wu, and Po-Yun Chuang. An Empirical Study of

XML Data Management in Business Information Systems. Journal of Systems

and Software, 79(7):984 – 1000, 2006.

[LWH10] Ki-Hoon Lee, Kyu-Young Whang, and Wook-Shin Han. XMin: Minimizing

Tree Pattern Queries with Minimality Guarantee. World Wide Web, 13:343–

371, 2010. 10.1007/s11280-010-0089-x.

[LWZ06] Laks V. S. Lakshmanan, Hui Wang, and Zheng Zhao. Answering Tree Pattern

Queries Using Views. In Proceedings of the 32nd international conference on

Very large data bases, VLDB ’06, pages 571–582. VLDB Endowment, 2006.

[MD96] Mukesh K. Mohania and Guozhu Dong. Algorithms for Adapting Materialised

Views in Data Warehouses. In CODAS, pages 309–316, 1996.

[MD09] Hadj Mahboubi and Jérôme Darmont. Enhancing XML Data Warehouse Query

Performance by Fragmentation. In Proceedings of the 2009 ACM symposium on

Applied Computing, SAC ’09, pages 1555–1562, New York, NY, USA, 2009.

ACM.

[Moh97] Mukesh Mohania. Avoiding Re-computation: View Adaptation in Data Ware-

houses. In In Proc. of 8 th International Database Workshop, Hong Kong, pages

151–165, 1997.

[MonetDB] MonetDB. MonetDB/XQuery, 2008.

[MRMW09] Dónall McCann, Mark Roantree, Niall Moyna, and Michael Whelan. Syn-

chronizing Sensed Data in Team Sports. ERCIM News, 2009(76), 2009.

[MRS11] Gerard Marks, Mark Roantree, and Dominick Smyth. Optimising Queries for

Web Generated Sensor Data. In In The 22nd Australasian Database Confer-

ence, Perth, Australia, 2011, 2011.

[MS02] Gerome Miklau and Dan Suciu. Containment and Equivalence for an XPath

Fragment. In Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems (PODS ’02), pages 65–76, New

York, NY, USA, 2002. ACM.

156

[MS04] Gerome Miklau and Dan Suciu. Containment and Equivalence for a Fragment

of XPath. Journal of the ACM, 51:2–45, January 2004.

[NDRR06] Vicky Nassis, Tharam Dillon, Rajugan Rajagopalapillai, and Wenny Rahayu.

An XML Document Warehouse Model. In Mong Li Lee, Kian-Lee Tan, and Vi-

las Wuwongse, editors, Database Systems for Advanced Applications, volume

3882 of Lecture Notes in Computer Science, pages 513–529. Springer Berlin /

Heidelberg, 2006.

[Nev02] Frank Neven. Automata Theory for XML Researchers. SIGMOD Rec., 31:39–

46, September 2002.

[NNNT02] Tapio Niemi, Marko Niinimäki, Jyrki Nummenmaa, and Peter Thanisch. Con-

structing an OLAP cube from distributed XML data. In Proceedings of the 5th

ACM international workshop on Data Warehousing and OLAP, DOLAP ’02,

pages 22–27, New York, NY, USA, 2002. ACM.

[NS03] Frank Neven and Thomas Schwentick. XPath Containment in the Presence of

Disjunction, DTDs, and Variables. In Proceedings of the 9th International Con-

ference on Database Theory, ICDT ’03, pages 315–329, London, UK, 2003.

Springer-Verlag.

[OCMH05] Makoto Onizuka, Fong Yee Chan, Ryusuke Michigami, and Takashi Honishi.

Incremental Maintenance for Materialized XPath/XSLT Views. In Proceedings

of the 14th international conference on World Wide Web, WWW ’05, pages

671–681, New York, NY, USA, 2005. ACM.

[OMFB02] Dan Olteanu, Holger Meuss, Tim Furche, and François Bry. XPath: Looking

Forward. In Akmal B. Chaudhri, Rainer Unland, Chabane Djeraba, and Wolf-

gang Lindner, editors, XML-Based Data Management and Multimedia Engi-

neering - EDBT 2002 Workshops, EDBT 2002 Workshops XMLDM, MDDE,

and YRWS, Prague, Czech Republic, March 24-28, 2002, Revised Papers, vol-

ume 2490 of Lecture Notes in Computer Science, pages 109–127. Springer,

2002.

157

[OR10] Martin F. O’Connor and Mark Roantree. Desirable Properties for XML Update

Mechanisms. In Proceedings of the 2010 EDBT/ICDT Workshops, EDBT ’10,

pages 23:1–23:9, New York, NY, USA, 2010. ACM.

[PP03] Dennis Pedersen and Torben Bach Pedersen. Achieving Adaptivity for OLAP-

XML Federations. In Proceedings of the 6th ACM international workshop on

Data warehousing and OLAP, DOLAP ’03, pages 25–32, New York, NY, USA,

2003. ACM.

[PPP04] D. Pedersen, J. Pedersen, and T.B. Pedersen. Integrating XML Data in the

TARGIT OLAP System. In Data Engineering, 2004. Proceedings. 20th Inter-

national Conference on, pages 778 – 781, Apr 2004.

[PRP02] D. Pedersen, K. Riis, and T.B. Pedersen. XML-extended OLAP querying. In

Scientific and Statistical Database Management, 2002. Proceedings. 14th In-

ternational Conference on, pages 195 – 206, 2002.

[QYD07] Lu Qin, Jeffrey Xu Yu, and Bolin Ding. Twiglist: Make Twig Pattern Matching

Fast. In Proceedings of the 12th international conference on Database systems

for advanced applications, DASFAA’07, pages 850–862, Berlin, Heidelberg,

2007. Springer-Verlag.

[RRT04] Laura Rusu, Wenny Rahayu, and David Taniar. On Building XML Data Ware-

houses. In Zheng Yang, Hujun Yin, and Richard Everson, editors, Intelligent

Data Engineering and Automated Learning ?IDEAL 2004, volume 3177 of Lec-

ture Notes in Computer Science, pages 293–299. Springer Berlin / Heidelberg,

2004.

[RS09] Mark Roantree and Mikko Sallinen. Introduction - The Sensor Web - Bridging

the Physical-Digital Divide. ERCIM News, 2009(76), 2009.

[RSSB00] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and

Extensible Algorithms for Multi Query Optimization. SIGMOD Rec., 29:249–

260, May 2000.

158

[RTTZ10] Franck Ravat, Olivier Teste, Ronan Tournier, and Gilles Zurfluh. Finding an

Application-Appropriate Model for XML Data Warehouses. Information Sys-

tems, 35:662–687, September 2010.

[Sal05] Airi Salminen. Building Digital Government by XML. In Proceedings of the

Proceedings of the 38th Annual Hawaii International Conference on System

Sciences (HICSS’05) - Track 5 - Volume 05, pages 122.2–, Washington, DC,

USA, 2005. IEEE Computer Society.

[Sch04] Thomas Schwentick. XPath Query Containment. SIGMOD Rec., 33:101–109,

March 2004.

[STP+05] Arsany Sawires, Junichi Tatemura, Oliver Po, Divyakant Agrawal, and

K. SelÇuk Candan. Incremental Maintenance of Path-Expression Views. In

Proceedings of the 2005 ACM SIGMOD international conference on Manage-

ment of data, SIGMOD ’05, pages 443–454, New York, NY, USA, 2005. ACM.

[TW05] TPC-W. TPC-W: Transactional Web e-Commerce Benchmark, April 2005.

[TYÖ+08a] Nan Tang, Jeffrey Xu Yu, M. Tamer Özsu, Byron Choi, and Kam-Fai Wong.

Multiple Materialized View Selection for XPath Query Rewriting. In Proceed-

ings of the 24th International Conference on Data Engineering, ICDE 2008,

April 7-12, 2008, Cancún, México, pages 873–882. IEEE, 2008.

[TYÖ+08b] Nan Tang, Jeffrey Xu Yu, M. Tamer Özsu, Byron Choi, and Kam-Fai Wong.

Multiple Materialized View Selection for XPath Query Rewriting. In Proceed-

ings of the 24th International Conference on Data Engineering, ICDE 2008,

April 7-12, 2008, Cancún, México, pages 873–882. IEEE, 2008.

[W3C04] W3C. XML Schema, Oct 2004.

[W3C08] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition), November

2008.

[W3C10a] W3C. XML Path Language (XPath) 2.0 (Second Edition), December 2010.

159

[W3C10b] W3C. XQuery 1.0: An XML Query Language (Second Edition), December

2010.

[W3C10c] W3C. XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition), De-

cember 2010.

[W3C10d] W3C. XSLT 2.0 and XQuery 1.0 Serialization (Second Edition) -

http://www.w3.org/TR/xslt-xquery-serialization/, December 2010.

[W3C11] W3C. XQuery Update Facility 1.0, March 2011.

[WLXB09] Huayu Wu, Tok Wang Ling, Liang Xu, and Zhifeng Bao. Performing grouping

and aggregate functions in XML queries. In Proceedings of the 18th interna-

tional conference on World wide web, WWW ’09, pages 1001–1010, New York,

NY, USA, 2009. ACM.

[WLY11] Junhu Wang, Jiang Li, and Jeffrey Xu Yu. Answering Tree Pattern Queries

Using Views: A Revisit. In Proceedings of the 14th International Conference

on Extending Database Technology, EDBT/ICDT ’11, pages 153–164, New

York, NY, USA, 2011. ACM.

[Woo01] Peter T. Wood. Minimising Simple XPath Expressions. In WebDB, pages 13–

18, 2001.

[Woo03] Peter T. Wood. Containment for XPath Fragments under DTD Constraints. In

Proceedings of the 9th International Conference on Database Theory, ICDT

’03, pages 300–314, London, UK, 2003. Springer-Verlag.

[WTW09] Xiaoying Wu, Dimitri Theodoratos, and Wendy Hui Wang. Answering XML

Queries Using Materialized Views Revisited. In Proceeding of the 18th ACM

conference on Information and knowledge management, CIKM ’09, pages 475–

484, New York, NY, USA, 2009. ACM.

[Xerces2] Xerces2 Parser. The Apache Xerces Project - http://xerces.apache.org/.

[YGYL05] Wei Ye, Ning Gu, Genxing Yang, and Zhenyu Liu. Extended Derivation Cube

Based View Materialization Selection in Distributed Data Warehouse. In Wen-

160

fei Fan, Zhaohui Wu, and Jun Yang, editors, Advances in Web-Age Information

Management, volume 3739 of Lecture Notes in Computer Science, pages 245–

256. Springer Berlin / Heidelberg, 2005.

[ZLBT03] Ji Zhang, Tok Ling, Robert Bruckner, and A Tjoa. Building XML Data Ware-

house Based on Frequent Patterns in User Queries. In Yahiko Kambayashi,

Mukesh Mohania, and Wolfram W?, editors, Data Warehousing and Knowl-

edge Discovery, volume 2737 of Lecture Notes in Computer Science, pages

99–108. Springer Berlin / Heidelberg, 2003.

[ZLE07] Jingren Zhou, Per-Ake Larson, and Hicham G. Elmongui. Lazy Maintenance

of Materialized Views. In Proceedings of the 33rd international conference on

Very large data bases, VLDB ’07, pages 231–242. VLDB Endowment, 2007.

[ZWLZ05] Ji Zhang, Wei Wang, Han Liu, and Sheng Zhang. X-Warehouse: Building

Query Pattern-Driven Data Warehouse For XML Data. In Special interest tracks

and posters of the 14th international conference on World Wide Web, WWW

’05, pages 896–897, New York, NY, USA, 2005. ACM.

161

	Acknowledgements
	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Introduction
	The Emergence of XML
	XML and Structure
	XML Databases
	XML Data Warehouses

	View Materialisation and Adaptation
	Issues and Motivation
	Research Goals and Contribution

	Summary and Dissertation Structure

	Literature Review
	View Adaptation Overview
	Early Efforts at View Adaptation
	View Redefinition in SQL Clauses
	View Adaptation Using Auxiliary Attributes
	View Adaptation Using Expression Trees
	Fragment-Based View Adaptation
	XML View Adaptation
	Approaches to Containment Checking
	Approaches to Fragment Selection
	Summary

	The XFM View Framework
	View Adaptation Outline
	The XFM View Adaptation System
	Graph Transformation
	Classification
	View Adaptation
	View Selection and Materialisation

	The Worldbikes Repository

	The XFM View Model and Graph
	XML Data Model
	XML Query Language
	Tree Patterns
	Sequences and Instances

	XFM View Model
	Sequence-Based Algebraic Operators
	From XPath to Algebraic Representation

	XFM Fragments and View Graph
	View Fragments
	XFM View Graph

	Constructing the View Graph
	The XFM View Graph Construction

	Summary

	Containment Checking
	Strategy Overview
	The SchemaGuide
	Embedding and Embedded Trees
	Containment Checking Algorithms
	Basic Containment Checking
	Optimised Containment Checking
	Region-Based Optimisation
	Subtree-Based Containment
	Incorporating Value Predicates
	Containment at XFM Graph Level

	Summary

	A Fragment Selection Strategy
	Fragment Selection Overview
	Selection Metrics
	Cost Matrix

	Cost-Based Greedy Heuristics
	Fragment Selection Mechanism
	Fragment Selection
	View Coverage
	Clustering Based Selection
	Subgraph Based Selection

	Summary

	A Fragment-Based View Adaptation Mechanism
	View Adaptation Outline
	Structural Adaptation
	Fragment Replication
	Target View Adaptation
	Fragment Insertion
	Fragment Deletion
	Fragment Modification

	Fragment Optimisation

	Data Adaptation
	Data Adaptation Methods

	Summary

	Evaluating Fragment Based Adaptation
	Experiment Deployment and Implementation
	The Worldbikes Dataset
	Views and Changes
	View Generator.
	View Adaptation Simulator.

	Limitations of Current XML Technology

	Experiment Evaluation on the XFM Framework
	Performance of Fragment Selection
	Performance of View Adaptation

	Summary

	Conclusions and Future Work
	Thesis Summary
	Areas for Future Research
	Short Term Research Goals
	Longer Term Goals

	Bibliography

