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Abstract. The availability of accurate, low-cost sensors to scientists has
resulted in widespread deployment in a variety of sporting and health
environments. The sensor data output is often in a raw, proprietary or
unstructured format. As a result, it is often difficult to query multiple
sensors for complex properties or actions. In our research, we deploy a
heterogeneous sensor network to detect the various biological and phys-
iological properties in athletes during training activities. The goal for
exercise physiologists is to quickly identify key intervals in exercise such
as moments of stress or fatigue. This is not currently possible because
of low level sensors and a lack of query language support. Thus, our
motivation is to expand the sensor network with a contextual layer that
enriches raw sensor data, so that it can be exploited by a high level query
language. To achieve this, the domain expert specifies events in a tradi-
ational event-condition-action format to deliver the required contextual
enrichment.

1 Introduction

Many new applications employ sensors or networks of sensors to automatically
monitor and generate reports and analysis across domains. Increasingly, elite
sports men and women are monitored to determine the effects of various train-
ing sessions on their bodies. Multiple hetrogeneous sensors are often deployed
to discover physiological or biological information generated during the activity.
As these sensors generate output in unstandardised and proprietary formats,
examining it to identify key events or properties involves time consuming exam-
ination of multiple files. Manual alignment, integration and the application of
context from which this data was gathered is required to aid with querying the
information.

These issues can be demonstrated by examining a sport such as cycling.
Laboratory based cycling experiments attempt to quantify certain aspects of
the effect of cycling on the participant. This is facilitated by gathering data such
as power output (a measure of work created by the cyclist in order to overcome
the forces against them, such as gradient, drag, etc.), cadence (a measure of the
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number of times a pedal revolution is performed per minute) and heart rate,
among other factors. By measuring these in a laboratory based environment, it
is possible to generate a dataset that can be specific to the question being asked
by researchers and free of external artefacts. Many different systems exist to test
cyclists under laboratory conditions while attempting to recreate the specific de-
mands of cycling, with each cycling ergometer (a machine designed to replicate
cycling in a measurable and repeatable manner) generating and measuring its
resistive force in a different manner. However, this can lead to significant differ-
ences between ergometers. For the purpose of reliability in testing, an athlete
must repeat tests on the same ergometer, under the same environmental con-
ditions, and in the same training state. This will not eliminate all the changes
from test to test, but will reduce the error from testing on dissimilar systems.

Scientists tend to prefer field-testing rather than laboratory testing, as it pro-
vides additional environmental factors which can effect performance. However,
field tests for absolute physiological values tend to be less exact than labora-
tory based tests and are logistically more difficult to perform. Depending on
the activity, there are many different factors that can predict eventual perfor-
mance during the event. These predictors can be physiological, environmental,
or equipment specific. Measurement of physiological factors is generally done
via heart rate monitoring, power output measurement, respiration, and psycho-
logical scales. The information gained on physiological performance factors can
give insight into how an athlete is performing during the training session, race,
or event in which they are partaking. Over repeat measures it can be possible
to track changes in performance and fitness of the athlete. By sensing physio-
logical, environmental, and equipment changes and how they affect each other
we are able to get a greater understanding of the changes that are occurring in
both racing and training. This can potentially allow the development of targeted
training sessions to investigate aspects of race performance.

1.1 Motivation

Over the past decade cycling has undergone a surge in technology aimed at
the measurement and analysis of training and racing. Due to its repetitive and
prolonged nature, it is possible to measure many factors during cycling once a
sensor is available to monitor the variable required. Technological advances have
allowed sensors and computers to reduce in size and weight dramatically bringing
previously laboratory based tools to the general market. Technologies such as
power measuring and GPS systems are now light enough for competitive cyclists
to apply them on their bicycles. Although some of these systems integrate several
sensors with one unit, many do not. This generates a problem when several
different sensor sets are needed to determine the information needs described
above. As cyclists are ever concerned with gaining a competitive edge, a system
that will allow them to combine and investigate the data gathered from several
sources is crucial to cyclists, their coach, and the scientists who can interpret
the data. Thus, the goal is to provide a means of facilitating high level queries
across all of these low level devices.
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1.2 Contribution

In simple terms, data can be queried if we develop a protocol to transfer it into
a relational database or encode the data in XML. However, through working
with both exercise physiologists and cyclists, we discovered that their informa-
tion needs could not be met (queries could not be expressed) with a process
of supplying structure and low level semantics to sensor data. Instead, a more
complex layer of contextual enrichment was required to prepare sensor data for
high level query languages. Furthermore, this contextual enrichment must be
specified by end users and not by computer scientists. In this paper, we present
a framework and methodology for automated processing of sensor data so that
it can be queried using a standard query language. While this method uses XML
to provide the structre for sensor data, it is the end user (domain expert) who
can add semantics to the data through the specification of data mining rules. By
working closely with end user scientists, we evalute our system by meeting the
information needs of the end user, allowing them to specify how data repositories
are enriched with context data, and by reducing the query execution times as a
result of the contextual enrichment process.

1.3 Structure

The structure of the paper is as follows: §2 introduces cycling, the domain in
which our system was deployed and provides an overview of the EventSense
system architecture, with the Context Profiles explored in detail in §3. §4 details
our experimental evaluation and results, and in §5 we present related research.
§6 details our conclusion and our current work.

2 User Requirements and Operating Architecture

In this section, we present the user requirements in the form of a query set,
defined by the end users. Queries 1 to 5 in Table 1 can be expressed using
XQuery but the remaining queries are more complex, difficult to express and
may require long calculation times. We will then describe the architecture used
enable the exercise physiologists to extract the required information.

In general, the system must collect data from several independent sources,
synchronise the data, and structure the data in some manner. It must also pro-
vide a facility for defining and applying event rules specific to a particular do-
main. In Table 1, this includes the hill classification, and complex accelerometer
based algorithms for pedal cadence/vector/force and braking activity. The sys-
tem needs to work in a context driven environment where the user can specify
if the data comes from a training session, race, or the laboratory.

2.1 The EventSense Architecture

Figure 1 illustrates the architecture of our proposed solution to sensor data
management. The remainder of this section details the individual processors
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Queries

1. Find total amount of time spent above 250W (Power-measuring)
2. Find Heart Rate for each occurrence above 250W (Power-measuring)
3. Find total amount of time spent above 165BPM (Heart rate-measuring)
4. Calculate average heart rate spent above 200W
5. Find the total amount of time where pedal pivot = ’pivot range 1’
6. Find ’best intervals’ for highest ’1minute’ heart rate and return values

for distance covered
7. Find the average performance factors (Power/Heart Rate/Speed) for each

gradient of type=’hill’
8. Find the average Power value when pedal vector magnitude =’peak’
9. Find the average speed when braking activity = ’none’
10. Find all occurences where gradient profile = ’flat’ and cycle

cadence =’cadence range 1’
Table 1. Sample Query Set

involved to close the gap between the requirements of the domain expert and
the initial format of the sensors output. These processors are discussed briefly
and in the following section, we discuss Contextual Enrichment in greater detail
- as this is the main focus of the paper.
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Fig. 1. EventSense System Architecture

Sensor Enablement. Sensors output data in a simple plaintext format. The
common approach to analysing data requires considerable manual effort using
spreadsheet tools to compare results across multiple sensor files. The common
approach to automation is to build proprietary wrappers for every sensor to
store data in a database format. This requires new wrappers for new sensors
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and database reengineering each time the structure of the output differs. Sensor
Enablement is a form of structural enrichment whereby we convert all sensor data
to a standard XML format using simple user defined templates. One can define
how sensor output should be interpreted and structured using sensor profiles,
and automatically apply data transformations based on this information. The
role of the Sensor Enablement processor is to generate machine queryable XML
files.

Contextual Enrichment. Following Sensor Enablement, basic queries can be
performed using XQuery. However, many of the queries listed in Table 1 cannot
be expressed at this point as the data lacks the necessary semantics. To reduce
this semantic gap, the system uses Participant and Activity Profiles to under-
stand the deployment domain (or activity), the sensors, participants, and key
events. Essentially, these are metadata constructs used to describe any object
or person measured by the sensor. In the following section, we describe how the
specification of event detection definitions can mine for the information necessary
to end user queries.

Integration. The querying needs of the coaches and sports scientists are exten-
sive, ranging from basic sensor analysis and comparison to anthropometric based
analysis of participants with multiple sensors deployed while engaged in some
activity. Some information such as sensor data is extensive and specific to a cer-
tain time span, or geographic location whereas much physiological or biological
data rarely changes. In general, a single sensor cannot meet information needs
and multiple sources of evidence must be integrated to provide both results and
highs levels of accuracy. For the current experiments used in this paper, sensors
were manually synchronised and this processor was not used. However, analysis
of sporting events is often chaotic and synchronisation of inexpensive sensors
devices cannot be guaranteed. Thus, integration is an important part of current
work.

Query Interface. As all the sensor data is converted to XML during sensor
enrichment, queries can be expressed in XQuery or XPath. As neither of these
languages are intuitive to non-computing users, a view based system is currently
employed [5] which also offers optimisation features for high volume datasets.
However, Contextual Enrichment is an important enabler for query processing
as will be shown in the next section.

3 Context Profiles and Event Mining

Context Profiles provide genericity to the system and thus, facilitate hetero-
geneity. Individuals will have different physiological characteristics, activities
will have different timings, layouts and formats, and sensors will come and go,
bringing new information and heterogenous structures. The activity in which
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participants are being measured provides the widest range of heterogeneities.
For this reason, it receives a more detailed discussion here, including how it can
be used to extract new knoweldge from the sensor database, that can later be ex-
ploited by the query processor. All profiles and function descriptions (discussed
later) are stored in the System Repository.

3.1 Sensor, Activity and Participant Profiles

These three profiles are similar in nature. The sensor Profile allows for different
sensors to be introducted at any point, providing their output is described using
a template. The Activity Profile defines the activity or domain in which a set
of sensors were deployed. Some of this information is standard for each activity,
such as the start time, the sport involved and the list of sensors deployed. In
addition, the Activity Profile defines the key elements of a deployment that
are relevant for that sport and particular deployment. The Participant Profile
provides the anthropometric data valid for a user at the time of deployment.
There can be many participants, each with their own profile, in an activity.

3.2 Event Definition

The key componant of contextual enrichment are the Event Definitions. These
enable the end user to highlight important events during exercise activity given
the domain algorithms required for a certain set of sensor data. These algorithms
are defined by the end users. The Event Definition uses the traditional event-
condition-action format with a sample event is shown in Example 1. The key
elements are the Event, which has Condition and Action sub-elements. There
may be multiple Condition elements joined by logical operators and any number
of update Action elements.

Example 1. Terrain Classification

<Cycling_Events>
<Event_Terrain_Classification_steep_climb>

<Condition>
<GarminGPS>

<long ge 53.12714779087178>
<long le 53.13754992640523>
<lat le -6.29089645593262>
<lat ge -6.31175331323243>

</GarminGPS>
<Logical_Operator= "OR" />
<GarminGPS>

<long ge 53.12714779087178>
<long le 53.12714879587177>
<lat le -6.28553256846468>
<lat ge -6.31175331323243>

</GarminGPS>
</Condition>
<Action>

UPDATE <GarminGPS><Terrain> WITH <steep_climb>
</Action>

</Event_Terrain_Classification_steep_climb>
<Event_Terrain_Classification_long_climb>

<Condition>
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<GarminGPS>
<long ge 53.09035966189816>
<long le 53.13765290525642>
<lat le -6.22017196862793>
<lat ge -6.31192497460938>

</GarminGPS>
</Condition>
<Action>

UPDATE <GarminGPS><Terrain> WITH <long_climb>
</Action>

</Event_Terrain_Classification_long_climb>
<Event_Terrain_Classification_long_descent>

<Condition>
<GarminGPS>

<long ge 53.16354424912001>
<long le 53.18638566546003>
<lat le -6.29347137658692>
<lat ge -6.29510215966797>

</GarminGPS>
</Condition>
<Action>

UPDATE <GarminGPS><Terrain> WITH <long_descent>
</Action>

</Event_Terrain_Classification_long_descent>
...

</Cycling_Events>

In Example 1, the terrain corresponding to the GPS ranges are known to
be steep climb sections of a race or training session. A logical OR operator
ties two ranges of GPS values satisfying the steep climb criteria. There are two
ranges because the race or training session has taken place where the steep climb
is not always in the same direction geographically, and the GPS values do not
uniformally increase or decrease. It is standard practise for cycling based domain
experts to split the climb into two or more segments to allow this definition. If the
GPS sensor values for latitude and longitude match the criteria in the condition,
a <steep climb> element is encoded within the <terrain> element of the sensor
data file, as specified by the action.

Example 2. Vector Magnitude Classification

<Cycling_Events>
<Event_VectorMagnitude_Classification_low>

<Condition>
<FnVectorMagnitude>

<result le 500>
</FnVectorMagnitude>

</Condition>
<Action>

UPDATE <GT3XAccelerometer><VectorMagnitude> WITH <low>
UPDATE <GT3XAccelerometer><VectorMagnitude> WITH <value>&result</value>

</Action>
</Event_VectorMagnitude_Classification_low>
<Event_VectorMagnitude_Classification_average>

<Condition>
<FnVectorMagnitude>

<result gt 500>
<result le 1500>

</FnVectorMagnitude>
</Condition>
<Action>

UPDATE <GT3XAccelerometer><VectorMagnitude> WITH <average>
UPDATE <GT3XAccelerometer><VectorMagnitude> WITH <value>&result</value>

</Action>
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</Event_VectorMagnitude_Classification_average>
<Event_VectorMagnitude_Classification_high>

<Condition>
<FnVectorMagnitude>

<result gt 1500>
</FnVectorMagnitude>

</Condition>
<Action>

UPDATE <GT3XAccelerometer><VectorMagnitude> WITH <high>
UPDATE <GT3XAccelerometer><VectorMagnitude> WITH <value>&result</value>

</Action>
</Event_VectorMagnitude_Classification_high>

</Cycling_Events>

It is also necessary to support the use of functions to explicitly define complex
algorithms, the results of which can be used as part of the condition. Example 2
shows the result of a function FnVectorMagnitude (which detects the direction
and force of the power produced by the cyclist, allowing for the detection of
the part of the pedal stroke at a given point in time) being used as part of
the condition. In effect, we treat the output from the sensor and function in an
identical manner. We support operators EQ, LT (less-than), GT, GE (greater-
than-or-equal-to) and GT. The action is always an update of a sensor data file.

A simple user interface to define events means that the user is only required
is to select from the list of sensors or functions; the relevant properties, decide on
the criteria for satisfying an occurance of an event, and define what to update.
Functions allow advanced algorithms to be applied which could not have been
applied using XQuery alone.

4 Experiments and Evaluation

Experiments were run on identical servers with a 2.66GHz Intel Core2 Duo CPU
and 4GB of RAM. The aim of the experiments is to compare query times on
the contextually enriched data with equivalent queries on data which is only
structurally enriched. We also measure the time taken for the once-off contex-
tual enrichment, and illustrate the comparitive ease of querying for the encoded
domain events.

Filename (Event) Size Values Enabled Enriched Result Size

1 wickm.xml (Strong Cadence) 3MB 17,798 178ms 82ms 2,111

2 raim.xml (Strong Cadence) 30MB 65,536 399ms 150ms 7,631

3 wickm.xml (Low Vector Magnitude) 3MB 17,798 n/a 104ms 5,652

4 raim.xml (Low Vector Magnitude) 30MB 65,536 n/a 374ms 29,490

5 wickgps.xml (Steep Climb Terrain) 150kb 655 77ms 75ms 49

Table 2. Sample Event Detection Execution times

A summary of the experiments is presented in Table 2. Two accelerometer
sensor data files were queried to detect all occurences of a low vector magnitude,
and all occurences of a strong cadence. This was performed twice to detect the



Expanding Sensor Networks to Automate Knowledge Acquisition 9

cadence, once on the enabled data, where the cadence requirement is included
as part of an XQuery expression, and secondly the query is performed following
contextual enrichment, using a simple XQuery expression to detect occurences
of a strong cadence.

Due to its complex nature, the algorithm for Vector Magnitude cannot be
queried using XQuery and thus, the query for low vector magnitude was per-
formed on the contextually enriched data only. We chose two files to query, one
hour-long file representing the accelerometer deployed in an hour long moun-
tainous time trial (wickm), the second has values from an 18-hour long ultra
endurance race. As shown in the table, the query time for detecting cadence is
significantly reduced for the contextually enriched data. Of the 17,798 entries in
wickm.xml, 2,111 matched the criteria of a strong cadence. In the larger raim.xml
file, 7,631 of 65,536 entries correspond to a strong cadence. Following contextual
enrichment, we can detect vector magnitude of type = Low. Due to the incresed
number of results matching the criteria, the query time is longer than the query
for strong cadence.

The GPS based query is also performed both before and after contextual en-
richment. The time taken to evaluate is similar in both cases due to the reletively
small size of the input file, wickgps.xml. The main benefit of including GPS based
ranges as event definitions is that it allows the end user to specify the important
segments of the session which is applied directly to the data and made simple to
query. GPS coordinates are bulky and having to pass them as part of a complex
query to detect relevant segments of a session increases the potential for error.
As GPS coordinates differ for every environment, it is necessary for the end user
to have access to defining these boundaries efficiently.

Event Filename Sensor Time

1 Cadence Classification wickm.xml GT3X Accelerometer 1,195ms

2 Cadence Classification raim.xml GT3X Accelerometer 12,245ms

3 Vector Magnitude Classification wickm.xml GT3X Accelerometer 1,074ms

4 Vector Magnitude Classification raim.xml GT3X Accelerometer 11,309ms

5 Terrain Classification wickgps.xml Garmin GPS 114ms

Table 3. Sample Enrichment Times

The time taken to contextually enrich the rules into the sensor files is dis-
played in Table 3, where times for vector magnitude classification and cadence
classification are proportional to the input filesize. While times can require up
to 12,245ms for the 30MB file, the process needs only to be performed once.

In summary, the experiments demonstrate that enablement and enrichment,
with their XML and semantic overheads, can be queried using high level query
languages without signifciant overhead. The main evaluation comes from our
collaborators, the exercise physiologists, who provide the datasets, specify the
queries, and can now extract information independently, using events and an
XQuery interface.
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5 Related Research

[6] describes the approach to building OntoSensor, a prototype sensor knowledge
repository compatible with evolving Sensor Web infrastructure. OntoSensor in-
cludes definitions of concepts and properties adopted in part from SensorML, the
Web Ontology Language (OWL)[11] and extensions to IEEE Suggested Upper
Merged Ontology (SUMO)[8]. Sensor ontologies are used to establish a termi-
nology for sensors, their properties, capabilities and services. OntoSensor has
a number of advantages, including self-descriptive metadata embedded in the
descriptions, which can be used in various sensor discovery and reasoning ap-
plications. OntoSensor illustrates a semantic approach to sensor description and
provides an extensive knowledge model. However, this approach lacks a distinc-
tive data description model to facilitate interoperable data representation for
sensor observation and measurement data. Additionally, it does not facilitate
the specification or inclusion of context by the end user.

In [1], the authors describe a semantic model for heterogeneous sensor data
representation. A sensor data ontology is created based on the Sensor web En-
ablement (SWE)[7] and SensorML data component models. Semantic relation-
ships and operational constraints are deployed in a uniform structure to describe
the sensor data. The ontology based model allows machines to process and in-
terpret the emerging semantics to create intelligent sensor network applications.
However, this work is in an early stage of development, with many of its aims
and goals yet to be implemented, whereas we have a working prototype system
which facilitates interaction with domain experts and full query interface.

In [12], the authors represent context with varying granularity with a tuple
consisting of an RDF triple defining the relationship, a lifespan and a conditional
confidence value. This project aims to reduce uncertainty in context integration.
The method used to achieve this is combining multiple sources of information
and using a Bayesian approach to calculate conditional confidence values. This
is useful for the target ubiquitous computing environment but is not suitable for
an ever-changing set of events to be detected using multiple sensors in multiple
locations.

In the core target domain of analysing sensor data corresponding to cyclists,
there are a number of tools available which allow a limited analysis for sensor
data. The most successful commercial application for analysing power meter data
in the cycling domain is TrainingPeaks WKO+ [9]. An open source application,
Golden Cheetah [4] can also be used to analyse cycling sensor data. Querying
in WKO+ is limited to identifying the minimum/maximum/average data value
for each stream for a lap-by-lap or specific time period defined by the user.
Apart from the wattage analysis, no additional variables such as speed or current
position can be applied as a filter. Querying is not supported by Golden Cheetah.
In addition, Neither of these applications can support user defined events or
context.
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6 Conclusions

Sensor technology is used in many application areas now as a means of automated
data generation and collection. However, the low level nature of these devices and
the often complex query requirements of end users and specialists, means that a
considerable gap exists between the information generation and end user queries.
In this research, our goal was to minimse or even close that gap by allowing users
to specify events that would lead to contextual enrichement of the data sources.
Our system begins with an automatic process of basic enrichment which we refer
to as sensor enablement. At the next point in the architecture, the end users can
influence the level and type of context by specifying a series of events. Before we
introduced this step many queries were difficult to express and in some cases,
it was not possible to express the more complex queries. As is typical in data
warehouse systems, this also leads to an improvement in query processing times
as the knowledge acquisition step provides partially executed queries.

Our current efforts are focused on the Integration Processor as we are cur-
rently limited to situations where each sensor can be synchronised against a
common clock. As we begin to introduce sensors from outside our direct con-
trol, we must be able to auto-synchronise based on a set of algorithms we are
currently developing. However, the delivery of a high-level interface for sensor
data analysis provides a significant step forward for exercise physiologists where
previous efforts required a manual analysis of spreadsheet data.
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