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Abstract

Building models for gene regulation has been an important aim of Systems Biology over the

past years, driven by the large amount of gene expression data that has become available.

Models represent regulatory interactions between genes and transcription factors and can

provide better understanding of biological processes, and means of simulating both natu-

ral and perturbed systems (e.g. those associated with disease). Gene regulatory network

(GRN) quantitative modelling is still limited, however, due to data issues such as noise and

restricted length of time series, typically used for GRN reverse engineering. These issues

create an under-determination problem, with many models possibly fitting the data. How-

ever, large amounts of other types of biological data and knowledge are available, such

as cross-platform measurements, knockout experiments, annotations, binding site affinities

for transcription factors and so on. It has been postulated that integration of these can im-

prove model quality obtained, by facilitating further filtering of possible models. However,

integration is not straightforward, as the different types of data can provide contradictory

information, and are intrinsically noisy, hence large scale integration has not been fully

explored, to date.

Here, we present an integrative parallel framework for GRN modelling, which employs

evolutionary computation and different types of data to enhance model inference. Integra-

tion is performed at different levels. (i) An analysis of cross-platform integration of time

series microarray data, discussing the effects on the resulting models and exploring cross-

platform normalisation techniques, is presented. This shows that time-course data integra-

tion is possible, and results in models more robust to noise and parameter perturbation, as

viii



well as reduced noise over-fitting. (ii) Other types of measurements and knowledge, such as

knock-out experiments, annotated transcription factors, binding site affinities and promoter

sequences are integrated within the evolutionary framework to obtain more plausible GRN

models. This is performed by customising initialisation, mutation and evaluation of can-

didate model solutions. The different data types are investigated and both qualitative and

quantitative improvements are obtained. Results suggest that caution is needed in order to

obtain improved models from combined data, and the case study presented here provides

an example of how this can be achieved. Furthermore, (iii), RNA-seq data is studied in

comparison to microarray experiments, to identify overlapping features and possibilities

of integration within the framework. The extension of the framework to this data type is

straightforward and qualitative improvements are obtained when combining predicted in-

teractions from single-channel and RNA-seq datasets.
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Chapter 1

Introduction

1.1 Motivation

Correct functioning of living organisms is the result of collaboration and interdependency

between several agents that work together to govern different processes. This starts from

the genetic and molecular level, and continues to population, environmental and global

level, with each of these levels affecting the others. Analysis of the complex system of

interactions at all levels, as well as between them, is key to understanding the different as-

pects of life. At the molecular level, in particular, this collaboration occurs between genes,

gene products and the environment, resulting in pathways, (e.g. signalling, regulatory or

metabolic), which are crucial for natural processes [Heath and Kavraki, 2009]. Disruptions

along these pathways can result in organism malfunction, i.e. in disease. Multifactorial ge-

netic disorders, for instance, (e.g. cancer), are caused by genetic modifications (both innate

and induced by the environment). These cascade in very complex processes, interfering

with multiple pathways and leading to serious illness. These diseases are very common and

an important cause of death both in humans and other species. In consequence, analysis

of the molecular players and their interactions is extremely important in order to underpin

disease markers and develop effective treatments [Tan et al., 2008].

Gene Regulatory Networks (GRNs) are an example of pathways that govern the correct

functioning of the organism, by providing a mechanism to control protein levels in cells.

2



The agents involved are proteins, (i.e. transcription factors), and genes, (i.e. protein coding

DNA sequences), which work together to control different processes. Considering the large

number of genes present in the genome, these networks can be extremely difficult to analyse

by human experts, so computational resources, tools and high throughput techniques for

measuring gene activity have been developed [Hecker et al., 2009]. This has resulted in

a vast amount of data, with which whole genome analysis of such pathways [Liang et al.,

1998], using suitable computational tools, may be attempted.

1.2 Scope and contribution

The discovery of regulatory interactions can be performed at different levels, each exploring

various data aspects and providing different types of knowledge of the GRN. A first step in

GRN analysis is considered to be clustering of gene expression patterns [Thieffry, 1999].

Genes that belong to the same cluster are assumed to be co-regulated, (i.e. regulated by

the same protein complex), or co-regulating, (i.e. regulating each other). Once clusters

are generated, binding site motifs in the precursors of the genes in each cluster can be

sought and hypotheses formulated on which proteins are involved in co-regulation, based

on previous knowledge on the regulatory motifs.

While clustering is valuable, simulation of the gene expression process is important also

and mathematical modelling is a powerful tool. Building a GRN model requires inference,

(or reverse engineering), of parameters from available data (typically using a computational

method, i.e. an inferential algorithm). The models can then be used for analysis and sim-

ulation in various contexts, which are often difficult to realise in laboratory experiments.

Several approaches using mathematical modelling, ranging from qualitative (e.g. Boolean

Networks, Rule Sets) to quantitative (e.g. Artificial Neural Networks, Differential Equation

Systems), have been applied to discovery of GRNs. Simulation models have proved very

useful to analyse some aspects of these complex systems. However, the size of GRNs and

the nature of the data, (which are highly dimensional, noisy, and sometimes insufficient for

analysis of GRN dynamics), limit robustness when mimicking natural behaviour. This is
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particularly true for quantitative models, which aim to simulate very detailed patterns of ex-

pression, increasing the number of parameters to be inferred. However, such models could

provide extremely useful insight on the gene expression process, and their improvement is

an ongoing aim of Systems Biology [Przytycka et al., 2010].

Given the challenges posed by available gene expression data and poor model robust-

ness to date, integration of several data types is a new direction for Systems Biology [Hecker

et al., 2009]. In this thesis, a novel integrative inferential framework is presented, which per-

mits data to be analysed at different stages. Included are (i) pre-processing and combining

time-series expression data, (ii) use of other data types and knowledge and (iii) extension to

next generation sequencing datasets. A novel inferential algorithm, based on Evolutionary

Computation, is developed. Evolutionary Algorithms have been selected as they provide

increased flexibility, implicit parallelism and have proved to be suitable search methods for

underdetermined problems, noisy data and large search spaces [Baeck et al., 2000].

The strength of the newly-introduced platform is based on the number of data types to

be combined and flexibility of integration. The customisation of different stages of the Evo-

lutionary Algorithm enables more knowledgeable exploration of the search space and more

informative evaluation criteria. Furthermore, a general methodology for GRN inference

from multiple data types is developed. This includes an error structure analysis to identify

at which stage of the algorithm each data type should be integrated.

The aim of this work is to enhance GRN inference, i.e. the reverse engineering algo-

rithm, by introducing new criteria for evaluation and solution exploration. This, however,

does not include development of novel mathematical models. The EGIA framework can

be applied to any model in a relatively straightforward manner, by substituting different

programming modules.

1.3 Thesis structure

Part I presents an introduction to GRN modelling and the state of the art in this field. Chap-

ter 2 provides a description of the gene regulation process, while in Chapter 3, a literature
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review of GRN modelling and the role of Evolutionary Computation is presented.

Part II introduces the novel integrative framework, consisting of three integration steps.

The first step, (Chapter 4), analyses the integration of cross-platform microarray time se-

ries for GRN inference, with respect to normalisation choice and model impact. The sec-

ond step consists of integrating additional data types and knowledge in the inferential pro-

cess. Detailed information on the reverse engineering algorithm, under the name of EGIA

(Evolutionary optimisation of GRNs - an Integrative Approach), is presented in Chapter 5.

The performance of different novel elements, introduced by this framework, is analysed in

Chapter 6, which studies the effect of additional data types on a Drosophila melanogaster

test case. A third step towards integration is extension of the framework to next generation

sequencing data, which are rapidly becoming available. A high-level analysis of microarray

and RNA-seq data, aiming to identify overlapping features, is presented in Chapter 7, to-

gether with application of the EGIA framework to these data. Finally, Chapter 8 concludes

the thesis and outlines future research directions.

Additional details on topics discussed are provided in the Appendices in Part III. Ex-

isting Evolutionary Algorithms for quantitative modelling are described in Appendix A,

involving implementation and analysis of seven selected methods and discussion of their

advantages and disadvantages. Information on the datasets used is provided in Appendix B

and definitions of standard evaluation criteria in Appendix C. Finally, Appendix D includes

a list of publications arising from this work.
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Chapter 2

Biological Background

2.1 Gene Regulatory Networks

The functioning of living organisms, i.e. the coordination of the different processes in-

volved, is governed by proteins working together. The information to create these molecules

is encoded in the genetic material of the cell, in the DNA. The DNA is composed of two

strands of nucleotides (ACGT), joined together in a double helical form by hydrogen bonds

which can only appear between pairs A-T and C-G, and has both coding and non-coding

regions. Genes are coding regions that contain the information for creating a protein, which

is synthesised during the process of gene expression.

The central dogma of molecular biology describes the gene expression process as being

composed of two stages (Figure 2.1): transcription and translation [Brown, 2002]. At the

first stage, a copy of a coding region is created, resulting in messenger RNA (mRNA). RNA

is a single-stranded sequence of nucleotides (ACGU), and can have different functions in

the gene expression process. mRNA, in particular, is used as material to create proteins

during the second stage of gene expression, translation.

The central dogma is a very simplified view of the true and complex gene expression

process. Although the DNA is the same in all cells, different tissues display different be-

haviour, so cells clearly have other mechanisms to regulate gene expression levels. One

such mechanism is transcriptional regulation and occurs during the initiation of transcrip-
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Figure 2.1: Central dogma of molecular biology and transcriptional regulation

tion (Figure 2.1).

A particular class of proteins, namely Transcription Factors (TFs), act as activators or

repressors for genes. This regulating activity is enabled by the binding of TFs to specific

DNA regions that are close to the target gene, (typically upstream, i.e. before the gene in the

sequence order). These regions are known as promoter regions or cis-regulatory modules.

When an activator TF is bound to a promoter, the transcription rate of the associated gene

is increased. Conversely, a bound repressor decreases the transcription level of the gene.

The specific location where the protein binds is the binding site. The process of TF binding

depends on the DNA sequence in the promoter region. Each TF has preference for specific

DNA sequences: a binding site affinity.

Given that each TF is encoded by a corresponding gene, transcriptional regulation re-

sults in a complex network of interactions between genes and gene products. This is known

as the Gene Regulatory Network, and is very important in controlling most natural processes

[Lee and Tzou, 2009]. Figure 2.2 displays an example of such a network, with three genes

and their corresponding gene products forming a regulatory circuit. Network visualisation

can be simplified by removing the gene products, resulting in a graph with genes as vertices

and regulatory effects as edges.

2.2 Measurement technologies

Several types of measurement can be performed at the level of transcriptional regulation,

and advances in technology have enabled vast amounts of data to be generated, most of

which are available in public databases. These data include gene expression measurements,

either at the mRNA or protein level, assessment of binding site affinities for different tran-
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Figure 2.2: Gene regulatory network - an example

scription factors and identification of promoter regions for genes. In the following, we

outline the different technologies and data types available.

2.2.1 Gene expression data

Gene expression measurements can be performed both at the mRNA and protein level,

by measuring concentration of these molecules in the cell. Several different technologies

are available, and these range from qPCR (quantitative polymerase chain reaction) [Logan

et al., 2009] or in-situ hybridisation [Jin and Lloyd, 1997] to microarrays and RNA-seq.

The former class allows for high-quality quantitative information to be extracted, but for a

limited number of genes, while the latter yield more noisy measurement but at the genome

level, i.e. including thousands of genes at the same time. In this work, we concentrate on

high-throughput technologies, as these provide a data base for inference of large GRNs.

Microarrays [Quackenbush, 2001] are a mature technology based on hybridisation of

cDNA, cRNA or ssDNA molecules onto a predefined array of complementary probes,

where each probe corresponds to a specific transcript. The sample is labelled with a flu-

orescent dye and quantification of gene expression is performed by measuring the intensity

of the dye on each probe. Two types of classical microarray platforms exist, single-channel

(oligonucleotide, e.g. Affymetrix), where one sample is hybridised to one array [Lock-

hart et al., 1997], and dual-channel (cDNA) where two samples with different dyes are

hybridised on the same array and relative expression levels can be retrieved [Schena et al.,

1995]. Initially, the arrays contained probes for a set of known genes or transcripts; how-
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ever, more recently, tiling arrays have appeared [Kapranov et al., 2002], which span the

whole genome. These have the advantage of sampling DNA sequences not known to con-

tain any genes at all, so that novel transcript discovery can be achieved.

Consequent upon microarray technology features, the resulting data are characterised

by noise, which can be introduced at different stages [Baldi and Hatfield, 2002]. Firstly,

unspecific hybridisation, i.e. hybridisation to probes that are not a perfect match, can affect

the expression levels obtained. This, together with fluorescence from chemicals other than

labelling dyes, forms the background noise. This can be estimated and subtracted from the

expression levels. Secondly, different probes on the array, as well as different arrays, can

have different specificity. Also, the various dyes used can introduce bias. Further, an image

processing stage is required to obtain expression levels from dye intensity, which is also

prone to errors. Additional noise can be introduced during the experiment, by variations in

the sample preparation.

A different type of noise is natural noise. The gene expression process is stochastic in

nature, and variation could have harmful effects. In consequence, regulatory networks and

pathways have evolved to be resilient to natural variance and mechanisms such as auto-

regulation or existence of low transcript genes have been shown to be key in GRN robust-

ness [Ozbudak et al., 2002]. However, natural variance also has beneficial effects, as it

results in phenotypic variation within populations. One issue in gene expression data anal-

ysis is the fact the natural and experimental noise cannot be distinguished. Normalisation of

these data can somewhat help, and has stimulated considerable research efforts Do and Choi

[2006]; Lim et al. [2007]. Nevertheless, problems still exist with experiment reproducibility

and integration of these data [Hurd and Nelson, 2009].

Good statistical analysis of gene expression data typically requires experimental repli-

cates. These can be biological, when samples from different populations, but from the same

environment and describing the same process, are measured. This allows for assessment of

natural variability of the expression process, which needs to be taken into account when

measuring variability between samples. Additionally, technical replicates can be obtained,

which measure gene expression repeatedly for the same sample. This enables estimation
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of variability due to experimental settings and other technology-specific biases. One type

of technical replicate is the dye-swap replicate for dual-channel microarrays, which repeats

an experiment by cross-labelling the two samples, to enable analysis of dye-based biases.

Other technical replicates are used to control for probe- or array-specific bias. Typically,

technical replicates display less variability than biological replicates.

Recent advances in high throughput sequencing technologies (Next Generation Se-

quencing - NGS) have introduced a new alternative to microarrays, namely RNA-seq [Mor-

tazavi et al., 2008]. This quantifies gene expression by sequencing short strands of cDNA,

aligning the sequences obtained back to the genome or transcriptome1, and counting the

aligned reads for each gene. This technology is expected to overcome some of the disad-

vantages of microarrays. For instance, it is able to identify transcripts that have not been

previously annotated [Hurd and Nelson, 2009] and it can quantify both very low transcripts,

(unlike microarrays where there is background noise interference) [Mortazavi et al., 2008],

and very high ones (where microarrays suffer from hybridisation saturation, i.e. only a

limited amount of cDNA can hybridise to a microarray spot) [Hurd and Nelson, 2009]. At

the moment, although significant efforts have been made to modify algorithms and tech-

nologies, problems still exist with obtaining quantified transcription data. Some of these

relate to read errors, short read mapping, SNPs, RNA splicing and sequencing depth, which

particularly affect analysis of more complex transcriptomes [Mortazavi et al., 2008]. Ad-

ditionally, the experimental cost for these technologies is still very high, compared to mi-

croarrays [Hurd and Nelson, 2009], while data handling is not straightforward, as large

amounts of data result from each experiment, and this needs to be stored for further pro-

cessing. Improvements are expected as the length of reads is increased and new algorithms

and methods are developed [Hurd and Nelson, 2009]. Despite these initial issues, this tech-

nology is becoming increasingly used for gene expression quantification [Bullard et al.,

2010] and datasets are becoming available. However, these are still scarce, in terms of

number of replicates and time-course data.

Gene expression can be measured at different stages during a process. The most com-
1Ensemble of all RNA molecules produced through transcription in a particular organism.

10



Position 1 2 3 4 5 6 7 8
A 9 8 45 47 1 1 2 5
C 18 3 1 0 0 44 26 12
G 3 1 1 1 16 0 3 18
T 18 36 1 0 31 3 17 13

Table 2.1: PSWM example.

mon are steady-state measurements, i.e. sampled at equilibrium state. For the purpose of

quantitative modelling of the expression process, however, time-series measurements are

very important. These follow the change of gene expression with time, e.g. during a certain

process or after perturbation (such as a mutation or treatment). Samples that are not per-

turbed in any way are known as wild-type. One type of applied perturbation can silence a

gene or set of genes, and the resulting knockout (KO) expression data measure the changes

caused by the perturbation. Typically, both knockout and wild-type experiments are per-

formed, and the effects on the other genes can be expressed as log-ratios between the two,

(which can be analysed using differential expression analysis).

2.2.2 Binding site affinities

Binding site affinities are important in assessing which TFs can bind to a specific DNA

promoter sequence. For some organisms, the genome is known, so discovery of particular

areas where a TF binds is possible. Chromatin immunoprecipitation (ChIP, [Collas, 2010])

has been widely used to study in vivo binding of proteins to DNA sequences. This enables

isolation of the DNA regions where the specific protein binds, and has been combined

with genome-wide technologies such as microarrays (ChIP-chip), [Buck and Lieb, 2004],

or Next Generation Sequencing (ChIP-seq), [Jothi et al., 2008], to enable genome-wide

identification of binding sites. DNA footprinting [Hampshire et al., 2007] can be also used

to measure in vitro interactions between proteins and DNA.

One disadvantage of these technologies is that only analysis of one TF at a time is

possible. This limits the availability of binding site affinity data, although this is expected

to change as the technology becomes more advanced and sophisticated.

Footprinting and ChIP analyses identify a large number of positions in the DNA where
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the TF binds, and indicate locations on the genome where promoter regions exist. These

bound sequences can be combined to define a general pattern of the binding sites for the

TF under analysis. This results in a Position-Specific Weight Matrix (PSWM) [Bergman

et al., 2005], which can be used subsequently to compute an affinity measure to different

sequences in the genome. The PSWM is composed of 4 rows, (nucleotides), and a number

of columns representing the length of the pattern. On each column, a score is given to each

nucleotide, showing how often that nucleotide has appeared at that specific position during

the experiment, e.g. Table 2.1. Positions 3,4 and 6 in this example can be seen to be very

specific, with one nucleotide having a very large score, while positions 1 and 8 allow more

nucleotide possibilities, so are more flexible.

Given a new DNA sequence, represented as an array of characters of length n, and the

PSWM, a 4 × n matrix with rows indexed by the four nucleotides, the affinity score is

computed as:

BS =
n∑

i=1

PSWM [DNA[i], i] (2.1)

For instance, for the PSWM in Table 2.1, the DNA sequence GGTCAGGA would

achieve a score of 14, while the sequence CTAATCCG would achieve the maximum possi-

ble score of 265. In Chapters 5 and 6, this method is used to compute affinities of TFs to

regions upstream of genes or to known cis-regulatory modules.
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Chapter 3

Modelling Background

3.1 Introduction

Uncovering interactions between genes and their products has been a major aim of Systems

Biology over recent years, [Przytycka et al., 2010]. The objective is to gain a better under-

standing of the functioning of different organisms, as well as discovering disease markers

and new treatments, [Bar-Joseph, 2004; Tan et al., 2008]. Gene regulatory network (GRN)

analysis has been facilitated by the advent of technologies for measuring gene expression

such as microarrays or, more recently, RNA-Seq. Characterised as they are by high dimen-

sionality and noise levels, analysis of these data is far from trivial. The class of computa-

tional methods known as Evolutionary Algorithms, (EAs), has demonstrated relevance for

different investigative targets, [Sı̂rbu et al., 2010a; Pal et al., 2006]. This chapter, in con-

sequence, presents an overview of approaches and issues in GRN modelling and inference,

and discusses the role of EAs in this regard1.

Three different analysis stages can be identified for GRN inference: (i) expression pat-

tern analysis, (ii) mathematical modelling from expression data and (iii) integrative mod-

elling. At each of these, and most particularly at the last stage, EAs have an important role

to play, due to the strength and flexibility of these search methods.
1This work has been published in [Sı̂rbu et al., 2011b].
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Figure 3.1: Gene expression data interpretations: (a) a set of vectors representing expres-
sion values for one gene under different experiments and (b) a set of vectors representing
expression values for multiple genes under a single experiment

Expression pattern analysis is largely concerned with the application of classification and

clustering methods to gene expression data. Gene expression data consists of the expres-

sion levels of many genes under multiple conditions, [Stekel, 2003]. Hence, for each gene,

a vector of values shows the gene expression pattern for a number of different experiments,

(Figure 3.1a). At the same time, the data can be viewed as a set of vectors describing the

behaviour of the organism under certain conditions, (experiments), i.e. the experimental

patterns, which represent expression values for many genes in a single experiment, (Figure

3.1b). By analysing both pattern types, (separately or together), useful knowledge related to

the connections between genes or the similarity between conditions can be found. Cluster-

ing of gene patterns, as a first step towards GRN modelling, [Thieffry, 1999; Lee and Yang,

2008], together with sample classification2, give valuable insight on gene involvement in

different processes. EAs are typically employed at this stage, with some success, for feature

selection as well as clustering.

A second stage in GRN inference is mathematical modelling using time series gene ex-

pression data. In these data, gene expression levels are measured over time, with each

experiment in the data describing a different time point. These series patterns can be mod-

elled using mathematical tools, of which a large number have been applied to GRNs, ([He

et al., 2009; Lee and Tzou, 2009] and references therein). Models obtained can be used for
2usually for diagnostic purposes, to distinguish between tissue types, e.g. control/treatment or

healthy/infected
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in silico simulation and process analysis under various criteria. Generally, the process of

modelling GRNs consists of a few main steps: choosing an appropriate model, inferring pa-

rameters from data, validating the model and conducting simulations of the GRN to predict

its behaviour under different conditions. Due to the large number of genes in such datasets,

clustering methods (stage one) have been applied by some authors for dimensionality re-

duction (either by considering cluster centroids as being one gene in the network, [Wahde

and Hertz, 2000], or by analysing subsets of genes corresponding to selected clusters, [Lee

and Yang, 2008]).

In order to model a GRN, genes are considered to be variables that change their values

over time. Depending on variable type, methods can be classified as discrete or continuous,

deterministic or stochastic, qualitative or quantitative, or as hybrid (using more than one

type of variable). Approaches in the literature distinguish between coarse- and fine-grained

models, [Lee and Tzou, 2009], with the former containing less detail on the interactions

between genes. Usually, coarse-grained models use discrete variables, while fine grained

models use continuous ones. However, a GRN can be very large and contain complicated

interactions, so fine-graining carries its own penalties, such as an enormous number of

parameters to deal with. Global analysis depends on the ‘top-down’ or coarse-grained ap-

proach to reduce complexity, [Maki et al., 2001; Repsilber et al., 2002; Linden and Bhaya,

2007]. Other authors, [Morishita et al., 2003; Wahde and Hertz, 2000; Kikuchi et al., 2003;

Tominaga et al., 1999; Noman and Iba, 2006; Xu et al., 2007], have chosen to focus on

detailed models, but for the analysis of sub-networks only of the entire GRN. Combining

both levels of detail, by moving between the coarse and fine-grained model to highlight key

biological knowledge is clearly useful [Maki et al., 2001; Kirkilionis et al., 2011a].

The ideal model for a GRN would be quantitative, accounting for all the features of the

real GRN, applied to the entire genome in a cell. Achieving such a model is a non-trivial

task, as most methods to date are either too coarse or can not model large systems [Lee

and Tzou, 2009]. Also, existing gene expression time-series data are insufficient to infer

the large number of parameters for such a detailed model, due to experimental cost and

limitations. This leads to under-determination [Xu et al., 2004], also known as the curse
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of dimensionality, especially when quantitative models need to be extracted (as these have

an increased number of parameters). This means that multiple parameter sets are able to

reproduce the behaviour seen in the data, and, in consequence, means of discriminating

between these are necessary [Fomekong-Nanfack et al., 2009].

Consequently, a third stage in network inference, integrative analysis, [Hecker et al.,

2009], aims at reconciling different data types and sources, in order to improve reliability

of the inferential process, and model realism. This is not without risk, as multi-source data

can contain heterogeneous noise. Further, large scale integrative analysis requires large

computational resources and algorithms have to be optimised and parallelised to address

this. Additional data types, which can contribute to this synthesis, include DNA-protein

interactions, knock-out/knockdown experiments, binding site affinities, as well as known

transcription factors (TFs) and RNA interference measures (Chapter 2). Integrative ap-

proaches have started to appear, [Hecker et al., 2009] and references therein, but are at an

early stage only. Examples based on EAs are presented here. Typically, these combine

only one additional data type with expression measurements, while, ideally, all related data

should contribute to the inferential process.

3.2 GRN mathematical models

Boolean Networks Boolean networks are coarse-grained models for GRNs that use Boolean

values for gene expression: the gene is on/off with values 1/0 respectively ([Liang et al.,

1998]). Regulation is expressed in terms of Boolean functions attached to each gene :

Yi = Fi(Xi1 , .., Xik)

where Xi1 , .., Xik are the binary expression levels of regulators of gene i and Yi is the pre-

dicted expression value for gene i. This model is very well suited to modelling large net-

works, as it does not require a large number of parameters. Hence, Boolean networks have

been employed in the analysis of steady state and general behaviour of GRNs. However,
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disadvantages include inability to simulate continuous behaviour and complex nonlinear

interactions, which characterise GRNs [Lee and Tzou, 2009]. Additionally, discretisation

of expression values may lead to information loss.

A generalisation of the Boolean network is the multistate discrete network [Repsilber

et al., 2002]. In this model, gene expression levels can take more than two discrete values

( in the set S = {0, .., n}) and the regulation rules are general functions Fi : {0, .., n}k →
{0, .., n}, mapping between current expression values for all genes and that of gene i at the

next time point.

Rule Sets Another model of regulation uses different types of rules to explain the ob-

served patterns in the data. This approach has the advantage of being more intuitive, as

relationships between genes are expressed using natural language. One such model uses

fuzzy rules, [Linden and Bhaya, 2007], based on fuzzy sets. These have imprecise bound-

aries, defined by a membership function: applied to any element in the universe, they return

a number in the interval [0,1], representing the degree to which that element is a member

of the current set. A fuzzy rule is a conditional of the form if x is in A then y is in B, which

specifies a relation between fuzzy sets A and B. Every fuzzy rule also has a membership

function that specifies the degree of truth of the implication.

Bayesian Networks Bayesian networks [Friedman et al., 2000] model gene expression

as a joint probability distribution over a set of variables, each of these corresponding to one

gene. They are represented as directed acyclic graphs, with an associated set of conditional

probability distributions. The model adopts the Markov assumption that all variables are in-

dependent of the other variables, (except for their parents), given their parents in the graph.

Thus, the joint probability can be decomposed as a product of conditional probabilities:

P (X) =
∏

i

P (Xi∣Pa(Xi)) (3.1)

where Xi is the variable associated with the expression levels of gene i and Pa(Xi) is

the set of parents of gene i in the Bayesian network (i.e. those nodes that have outgoing
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edges to gene i). Fitting such a model to data requires both the connection graph and the

probability distribution parameters. Network variables can be discrete or continuous.

If we have a set of gene expression vectors D, we can formulate the problem of infer-

ring a Bayesian network as finding the model M with the maximum posterior probability,

(P (M ∣D)). Using Bayes’ rule ([Mitchell, 1997]):

P (M ∣D) =
P (D∣M)P (M)

P (D)
(3.2)

we can express the posterior probability of a model M using the probability of the data

under that model, (P (D∣M)), the prior probability of the model, (P (M)), and the prior

probability of the data, (P (D)). As P (D) is the same for all possible Bayesian network

models, we can eliminate this term from the computation when looking for the most prob-

able model. The probability of the data given the model is computed in Equation 3.1 and

the prior probability of the model has to be given. This can be equal for all models or it can

promote preferred ones, based on known biological facts.

Advantages of Bayesian networks for gene expression data are stochasticity and scala-

bility, [Kim et al., 2003]. However, a disadvantage is that they can not contain cycles, so

can not model feedback loops, known to be crucial elements of GRNs.

Dynamic Bayesian Networks Dynamic Bayesian Networks (DBN) [Friedman et al.,

1999; Kim et al., 2003] are able to model stochastic evolution of complex systems over

time, by treating the value of gene Xi at time t as a random variable Xi[t]. The variables

can be discrete or continuous. Letting X[t] = {X1[t], .., Xn[t]}, the goal is to obtain the

joint distribution over all genes at all times, P (X[0], X[1], .., X[T ]). The modelled process

is assumed to be Markovian, i.e. the expression values at moment t+ 1 depend only on the

expression values at time t

P (X[t+ 1]∣X[0], .., X[t]) = P (X[t+ 1]∣X[t]) (3.3)
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and stationary, i.e. P (X[t + 1]∣X[t]) does not depend on t. To specify the model one has

to specify two components: a prior Bayesian network B0 that represents a distribution over

the initial states X[0] and a transition network B→ over the variables X[0] ∪X[1], which

specifies the transition probabilities P (X[t+ 1]∣X[t]).

The DBN adds the ability to model feedback loops to advantages of Bayesian networks.

The method has been successfully applied to microarray data to build both discrete and

continuous models [Kim et al., 2003].

Ordinary Differential Equations Most models described so far are coarse-grained. These

use discrete states for gene expression values, with the influences of a given set of genes on

other genes described qualitatively, rather than quantitatively. However, gene interactions

are very complex and, in order to model these, a fine-grained continuous model is needed,

which considers interactions quantitatively. One such model is a system of differential

equations.

Ordinary Differential Equation systems express the change in the expression level of

each gene in time as a function of the expression levels of other genes, but make no other

assumption about the mathematical form:

dxi
dt

= Fi(x1, .., xn) (3.4)

where xi represents the expression level of gene i. The inferential algorithm, therefore, is

not restricted to a prescribed set of functions and can model complex behaviour. At the

same time, few constraints mean that the search space is very large and more sophisticated

methods are typically required to refine the analysis.

Linear Differential Equations The simplest model example, and one that has received a

lot of attention [Ando and Iba, 2003; Deng et al., 2005; Akutsu et al., 2000], is the linear

system of differential equations. This retains the continuous aspects inherent in differential

equations but results in loss of modelling power, as gene interactions are known to be more

complex than linear dependencies imply.
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This model describes changes in gene expression values as:

dxi
dt

=
n∑

j=1

wijxj (3.5)

where xi and xj represent expression values of genes i and j and wij the regulation strength

of gene j on gene i. A negative value for wij corresponds to repression of gene i by gene

j, a positive value corresponds to activation and a null value to no effect of gene j on gene

i. Different versions of the model exist, which add other terms to the equation, accounting

for external stimuli, degradation rates or noise [Yeung et al., 2002]. The system can be

described by the matrix W= (wij), also known as the interaction or regulation matrix.

Inferring a model means finding the values in W.

S-Systems Although linear systems include some detail, regulatory networks are intrin-

sically nonlinear systems and more sophisticated models of gene interactions are needed.

S-Systems are a special type of differential equation systems, based on power-law formal-

ism, and are capable of capturing complex dynamics. The disadvantages are an increase

in the number of parameters and reduction in choice of reverse engineering techniques, as

linear regression methods do not apply. The equations in S-Systems are of the form:

dxi
dt

= ®i

n∏

j=1

x
gij
j − ¯i

n∏

j=1

x
ℎij

j (3.6)

The two terms correspond, respectively, to synthesis and degradation, influenced by

other genes in the network; specifically, the rate constants ®i and ¯i represent basal synthe-

sis and degradation rate, while gij and ℎij , (kinetic orders), indicate the influence of gene j

on the synthesis and degradation of the product of gene i.

Partial Differential Equations The differential equations models, presented so far, do

not take into account the spatial distribution of cells and gene products. However, in cer-

tain situations, such as cell differentiation during development, spatial information is very

important, so Partial Differential Equation systems are needed [Baldi and Hatfield, 2002].
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These express concentration changes in both space and time, using reaction-diffusion equa-

tions. Here, the one-dimensional version of these equations is described, but these can be

extended to 2- or 3-D situations. Considering a linear sequence of L compartments or cells,

the concentration of product i in cell l depends on the regulatory effects in cell l but also

on the diffusion process between this cell and its neighbours. Diffusion is considered to

be proportional to the concentration difference between the two cells. So, the differential

equation that describes this process is:

dx
(l)
i

dt
= Fi(x

(l)
1 , .., x(l)n ) +Di(x

(l−1)
i − 2x

(l)
i + x

(l+1)
i ) (3.7)

where Fi are the regulation functions and Di are diffusion functions. This is for the case

when space is discrete (well-delimited cells and compartments). In the continuous case, the

concentrations of the products are functions of both time and space, so the system can be

modelled with equations of the form

∂Xi

∂t
= Fi(x1, .., xn) +Di(

∂2xi
∂s2

) (3.8)

where s is the space variable.

Artificial Neural Network (ANN) models ANNs are inspired by neural activity, and

consist of interconnected neural units [Mitchell, 1997]. Each unit has a set of inputs and

an output, and the output value is computed by applying an activation function (e.g. a

sigmoid or a step function) to a weighted sum of inputs. The input weights are the model

parameters ‘learned’ from data. ANNs are well-suited to model complex behaviour as they

have been proved to be able to simulate any mathematical function, by adjusting the weights

and topology [Cybenko, 1989]. A type of ANN that has been consistently used to model

GRNs is the Recurrent Neural Network (RNN) [Wahde and Hertz, 2000; Vohradsky, 2001;

Lee and Yang, 2008], which model dependencies between genes as:

dxi
dt

= miS(
n∑

j=1

wijxj + bi)− dixi (3.9)
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where di is the degradation rate of gene product i, bi accounts for external input, mi is the

maximum expression rate and xj are expression levels while S is a sigmoid function. This

model is similar to that of linear systems of differential equations, but introduction of the

sigmoid function allows for modelling non-linear behaviour. A variant of this model con-

siders discrete time points, [Keedwell and Narayanan, 2005], and computes the expression

value of gene i at time point t+ 1 using the values of the regulators at time t:

xi(t) = S(
n∑

j=1

wijxj + bi − dixi) (3.10)

This reduces the computational cost for simulation, as no differential equations are involved,

an important advantage in the context of evolutionary optimisation, (which requires simu-

lation for every fitness evaluation - Section 3.3).

Multi-Scale Dynamic Modelling The models mentioned above are general mathemati-

cal models applied to the GRN problem, and analyse the different molecules involved on

the same level, i.e. by making the same assumptions on all. Recently, a novel hybrid model

of gene regulation has been introduced, [Kirkilionis et al., 2011a], especially tailored for

GRNs. The so called ‘macro-molecules’ such as DNA or transcriptases, which appear in

low copy-numbers, are assumed to have a finite number of discrete states modelled by a

Markov Chain (MC). The state of the MC is determined by which binding sites are occu-

pied and which are not. Transcription factors, on the other hand, are smaller molecules that

appear in large copy-number and are described by continuous variables. In each state of the

Markov chain, certain genes are expressed and the change in the concentration of transcrip-

tion factors is described by a set of differential equations. At the same time, the transition

between MC states depends on transcription factors, which bind with a specific rate to the

gene promoters. These two levels continuously feed into one another, subject to the as-

sumption that the time scale at the macroscopic level is longer than at microscopic level,

and that MC state transitions are instantaneous. Using the invariant measure of the MC, a

set of average dynamics can be derived as a system of differential equations. This approach
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has been used to model a synthetic genetic clock that was engineered in Escherichia coli,

[Kirkilionis et al., 2011b], where the number of binding sites involved and the interactions

were previously known.

This modelling approach has the advantage of taking into account structural aspects of

gene regulation, such as binding sites, as well as more complex mechanisms such as DNA

looping and cooperative binding. However, due to the need for a complete description of the

binding sites available for each gene, inference may require optimisation of this information

as well. Nevertheless, reverse engineering can be enhanced by using previous knowledge

of binding sites and affinities, providing a good base for data integration.

3.3 Evolutionary algorithms

EAs are a family of population-based optimisation algorithms inspired by Darwinian evolu-

tion, sharing a set of common features (see [Baeck et al., 2000] for a general description of

EAs). Included are: Genetic Algorithm, (GA), Evolution Strategy, (ES), Genetic Program-

ming, (GP), Evolutionary Programming, (EP), Differential Evolution, (DE). They perform

an iterated search in the solution space, using information from previous iterations (gener-

ations) to guide exploration. The algorithm starts with a fixed-size population of candidate

solutions to the optimisation problem, (also called individuals or chromosomes), which

evolve over a number of generations. The value of each individual, i.e. its fitness, is given

by a function defined for the specific optimisation problem. Evolution is performed using

genetic operators that depend on the specific problem and encoding, e.g (i) mutation, which

modifies one solution from the population, to obtain a new one and (ii) crossover, which

uses several parents to create a number of offspring. Mutation is used to explore new areas

of the solution space, while crossover exploits the information already gained in previous

generations. The optimisation process needs to balance these two components, exploration

and exploitation, to build an intelligent search strategy, with an emergent property being the

ability to construct viable solutions for the problem at hand [Mitchell, 1999]. For each gen-

eration, a new set of solutions is produced from the previous population, either by replacing
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Figure 3.2: General schema of EAs.

selected parents by children, or by performing fitness-based selection on all parents and

children. Figure 3.2 depicts the general algorithmic schema of EAs, with each individual

component described in the rest of this section.

3.3.1 Representation

In order to be able to model candidate solutions, a computer representation needs to be

derived. This defines the genotype of each EA individual, consisting of a set of genes, and

a correspondence to the phenotype, i.e. the parameters to be optimised. In classical GAs,

for instance, individuals are encoded as bit strings, and conversion to the corresponding

parameters forming the solution is required [Mitchell, 1999]. For example, if the solution

sought is an integer array (i.e. the phenotype), then the binary representation of these in-

tegers would be used as genotype, with each bit representing one gene. Other examples of

representations are permutations (e.g. the Travelling Salesman Problem), or trees, (com-

mon in GP). However, over the years, new types of representations have been used, such as

real-encoded individuals, which have been shown to be more suitable for multidimensional
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continuous optimisation problems, [Mitchell, 1999]. In this case, the genes are the parame-

ters to be optimised, removing the need to transform genotype into phenotype and reducing

the computational power needed. Similarly, integer arrays can be used for representation of

solutions, depending on the problem to be solved.

3.3.2 Initialisation

The initialisation phase defines the initial population of the algorithm, i.e. generation zero.

This can be performed by assigning a value to each gene of the GA individual, chosen

randomly from all possible values. However, if additional knowledge exists, the distribution

for initial solution sampling can be non-uniform. Another option is to perform a heuristic

search, (such as Hill Climbing), to derive a set of initial solutions.

3.3.3 Genetic operators

Mutation The exploration of the search space is performed by the EA using mutation.

This is applied to each individual or gene with a certain probability and depends on the

type of representation used. For instance, for bit-string representations, a mutation is a bit

flip while for permutations, a mutation can swap the values on two random positions. For

real-encoded EAs, mutations add a sample value to one gene (for a certain distribution,

such as Gaussian). Mutations help to preserve diversity within the population of candidate

solutions.

Crossover The crossover operator is applied to a number of individuals in the population

to generate offspring. This results in different components of the parents being preserved

in the offspring and aims at finding a better combination of these in the future generations.

A typical crossover operator for individuals encoded as arrays, (of bits, integer or real num-

bers), is n-point uniform crossover, where two parents generate two children, by selecting

n cutting points and randomly reconnecting the sections obtained. However, non-uniform

crossover operators can be derived also, giving higher priority for example to sections cor-

responding to the fittest of the parents.
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Selection Selection is performed to progress from one generation to another. In the gen-

eral schema for EAs, selection can be performed at two stages: before and after crossover

and mutation [Baeck et al., 2000]. The former, known as mating selection, allows only the

most fit individuals in the population to generate offspring. These offspring can replace the

parents, based on their fitness value or otherwise. Alternatively, the offspring can be incor-

porated in the population along with the parents. In this case, at the end of the generation,

the second selection type is employed to reduce the population to the initial size. A popular

mating selection is tournament selection, [Baeck et al., 2000], where a number of randomly

selected individuals participate in a ‘tournament’, where the best wins the possibility to per-

form crossover. For population selection, (i.e. after crossover and mutation), an example of

operator is the wheel of fortune selection (also known as roulette wheel) [Mitchell, 1999].

This assigns, to each individual in the population, a probability of selection in the next gen-

eration, proportional to its fitness. Individuals with higher fitness are assigned higher odds

and the wheel is spun to select a number of individuals equal to the algorithm population

size. This may result in multiple copies of the same individual being transferred to the

next generation. The two types of selection, i.e. mating and population selection, can be

combined, if necessary.

3.3.4 Evaluation

Evaluation of candidate solutions is very important as it influences which individuals are

selected for mating and transferred to the next generation. It depends on the objective

of the optimisation process (usually specified as a maximisation/minimisation problem).

An evaluation function, applied to the phenotype of an individual, gives the quality of

the solution. This results in a fitness landscape, with fitness values associated with all

possible individuals in the search space. While defining an evaluation function can be

straightforward in many cases (such as the travelling salesman problem, where the objective

is to minimise the travel distance) this is not generally true. In most modelling problems,

evaluation criteria need to be carefully derived, as, in these cases, the fitness landscape can

be noisy, and can contain many local minima that could negatively influence the algorithm
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performance. Selection of evaluation criteria depends on the information available for the

system being modelled, so is often a challenging task.

3.3.5 Termination condition

Among the most popular termination conditions are the number of fitness evaluations per-

formed, or the number of generations. This needs to be fixed at the start of the algorithm,

and offers control over the running time. However, there is no guarantee of achieving a

certain fitness value. Hence, some approaches use more advanced termination conditions,

such as solutions with fitness larger than a threshold value, which controls the approxi-

mation error obtained at the end. However, the running time of the optimisation is not

controlled beforehand. Of course, these criteria can be combined in order to obtain the

optimal configuration.

Although these are common features of EAs (representation, genetic operators, selection

procedures, etc.) they are also the elements that differentiate one type of EA from the others.

For instance, individuals of GAs are typically encoded as binary arrays, DE and ES use ar-

rays of real numbers as an encoding for the solution, while GP evolve tree-encoded expres-

sions. At the same time, these methods use different genetic operators (applied to the dif-

ferent encodings) or use one main operator (for instance, an ES does not perform crossover

but only mutation on its individuals). Even given strict differences between each individual

in the EA family of methods, the distinction has become fuzzier with time [Mitchell, 1999],

as new hybrid approaches have appeared, such as real- or integer-encoded GA.

EAs have been widely used for different optimisation problems, and examples include

[Kita, 2011; Chambers, 2000; Baeck et al., 2000; Mitchell, 1999] and references therein.

These range from the classical Travelling Salesman Problem or Prisoner’s Dilemma, to

more practical applications such as feature selection techniques for different classifiers,

scheduling optimisation or modelling in environmental, social, physical or biological con-

texts. This wide usage has been triggered by advantages of EAs in working with underdeter-

mined problems and noisy fitness functions, as well as flexibility and implicit parallelism.
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However, from the theoretical point of view, EAs are not fully understood, although several

theories have been applied in this direction (such as the Schema Theorem or Statistical Me-

chanics approaches [Mitchell, 1999]), and the good performance is still an empirical fact.

This can be considered a disadvantage if a detailed mathematical description is required for

the optimisation strategy. However, the empirically proven good performance, described

as an emergent behaviour of a complex system [Mitchell, 1999], makes these algorithms

a viable choice. An additional disadvantage of this algorithm type is the number of meta-

parameters and operator choices that exist. Typically, the user defines values for these in an

empirical manner; however, optimisation can be applied at the algorithm level to select the

best meta-parameter set.

Here, the aim is to explore the power of these search methods for gene regulatory net-

work reverse engineering. For this, EAs require a specified model type and data set. This

enables parameter evolution to be monitored and performance to be evaluated. The fitness

function is typically defined as the difference between the observed data and the output of

the model, (squared, or averaged over the data points), as described in Equation 3.11.

fitness =
n∑

i=1

T∑

t=1

(xi(t)− yi(t))
2 (3.11)

where xi(t) is the expression value of gene i at time t, observed in real experiments, and

yi(t) is the expression value of gene i at time t generated by the model. Since every model

has its distinctive features, steps in the algorithm differ from one approach to another, but

the main skeleton is usually preserved. Different EA approaches will be presented here,

for inferences on discrete qualitative to continuous quantitative models. Consequently, the

discussion includes classical to hybrid EAs and identification of strengths and weaknesses.
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3.4 Stage 1 - Pattern Recognition

3.4.1 Clustering

Clustering is considered here as unsupervised3 learning where a set of data entries has to be

grouped into clusters, based on their attribute values [Manning and Schtze, 1999]. The clus-

ters and cluster assignment for the training data set are typically not known beforehand, but

are deduced based on dissimilarity or distance measures. Such measures may be statistical

constructs, such as correlation, as well as standard spatial distance measures: Euclidean,

Manhattan and others. Bi-clustering is also a variant that has been widely applied to gene

expression data [Kerr et al., 2008]. This aims at grouping both genes and experiments at the

same time, indicating not only clusters of co-expressed genes, but also in which experiments

these appear.

GenClust [Di Gesu et al., 2005] is a novel method, using a GA-like approach. It differs

from other GAs in that the population does not represent a set of possible solutions, but

only one. Each individual in the population encodes one sample and a label representing

its cluster (Figure 3.3). By analyzing these labels, the components of each cluster can be

computed. The approach incorporates elements of EC, such as genetic operators, that are

applied at each generation. Fitness evaluation is based on the sum of intra-cluster variances.

The aim of the algorithm is to minimise this measure and, consequently, to obtain tight clus-

ters. The method has been validated on five datasets (Rat Nervous System, Reduced Yeast

Cell Cycle, Yeast Cell Cycle, Peripheral Blood Monocytes and Reduced Peripheral Blood

Monocytes) and compared with other clustering methods like K-Means. The algorithm has

been shown to converge rapidly to a local minimum; however, the resulting clusters were

comparable those obtained by other techniques.

A similar objective was pursued by [Lu et al., 2004b,a], where a hybrid Genetic K-

Means Algorithm (GKA) with two different versions (FGKA - Fast GKA and IGKA -

Iterative GKA) was introduced. Hybridisation with K-Means consists of a custom genetic

3Recently, supervised clustering methods have emerged [Eick et al., 2004] addressing the need for more
control over the meaning of the resulting clusters or the features that are considered by the unsupervised clus-
tering technique. This section does not consider these.
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Figure 3.3: Chromosome representation in GenClust

operator, which changes cluster allocation to the closest centroid in random individuals.

Neither FGKA nor IGKA uses a crossover operator, and mutation is performed based on dy-

namically computed probabilities depending on current cluster assignment. The difference

between the two algorithms is that the latter updates cluster centroids and within-cluster

variance each time a mutation is performed on an individual, while the former computes

these for each generation. This makes IGKA faster when mutation probabilities are low,

while FGKA is faster when these are large. In consequence, a hybridisation of the two

(HGKA - hybrid GKA) is also proposed [Lu et al., 2004b]. The algorithms were applied

to microarray yeast and serum data and IGKA was shown to obtain better clusters of genes

from the same functional categories.

In [Chakraborty and Maka, 2005] a genetic Bi-Clustering algorithm based on K-Means

and greedy local search seeding is presented. The algorithm was applied to yeast and hu-

man lymphoma data and was shown to provide better bi-clusters when validated against

previous biological knowledge, compared to [Cheng and Church, 2000] (which adopts a

greedy search4 approach). A similar algorithm, that of [Mitra and Banka, 2006], employs

multi-objective optimisation for Bi-Clustering. The algorithm is initialised using a greedy

algorithm based on random initial solutions. Two objective functions are used, one max-

imising the number of genes and conditions in the bi-cluster, and another maximising ho-

mogeneity. Method evaluation was performed on the same yeast and human lymphoma

datasets, and results indicate better performance compared to the single objective variant

and to Simulated Annealing for Bi-Clustering [Bryan, 2005].
4A greedy algorithm is an optimisation algorithm that makes choices based on local optimum, with the aim

of reaching the global optimum.
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3.4.2 Feature selection techniques

A gene expression dataset can contain thousands of genes so that the elements to be clus-

tered/classified are points in a high-dimensional space, hence analysis is computationally

intensive [Sun et al., 2010]. Also, as data are intrinsically noisy, the high number of di-

mensions can bias algorithm convergence. It is possible that some features of the gene

expression data are redundant [Cho and Won, 2003]; hence there is a need to develop fea-

ture selection techniques, in order to make analysis more efficient. Such methods select

features (genes) that are important in the process under analysis, as they display a change

in expression from one experiment to another. This aids sample classification.

Feature selection methods can be classified into two categories: Wrapper and Filter

methods. Filter methods compute for each feature a measure of relevance for the current

classification task. The features are sorted by their relevance and the top n are further used

for pattern recognition. Wrapper methods, on the other hand, use the classifier itself to find

the importance of a set of genes. They select a feature subset and train a chosen method on

that set. The performance of the trained classifier can be seen as a measure of the relevance

of the genes in the subset. The wrapper method iterates this operation for different subsets

and chooses the best one. The difficulty is how to choose feature subsets that maximise the

accuracy of the classifier, while minimising the number of selected genes and iterations.

The search space for this problem is huge: if the number of initial genes is n, 2n possible

subsets exist. In this context, evolutionary techniques are known to cope well, as they

benefit from mechanisms obtaining good solutions by searching a small portion only of the

entire space, [Baeck et al., 2000]. Consequently, there are several approaches that use EAs

as wrapper methods for feature selection, for example [Li, 2001; Ooi and Tan, 2003; Shah

and Kusiak, 2004; Souza and Carvalho, 2005; Li et al., 2004]. One of these has also been

applied to proteomics data, [Li, 2001; Li et al., 2004].

Most evolutionary approaches for wrapper methods are very similar. A population of

gene subsets is maintained and allowed to evolve using different genetic operators. The

fitness of each candidate solution is a measure based on the training error of the classifier
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when using that specific set of features. After applying genetic operators, the fittest indi-

viduals remain in the next generation. While the principles are the same, existing methods

differ in terms of classifier used or EA components, (e.g. size of the chromosomes, fitness

function, etc). Additionally, some methods, [Li, 2001; Shah and Kusiak, 2004; Liu et al.,

2009b], aggregate features obtained in multiple runs in order to improve performance. Ta-

ble 3.1 summarises existing EA wrapper methods.

Method EA Classi-
fier

Multi-
class

Feature
set size

Combining
results

Fitness Datasets

[Li, 2001;
Li et al.,
2004]

GA K-NN No Fixed Filter by
appearance
count

Classifier
accuracy

Leukemia
(microar-
ray),
Ovarian
cancer
(SELDI-
TOF)

[Shah and
Kusiak,
2004]

GA Decision
tree

No Fixed Reunion or
intersec-
tion

Classifier
accuracy

Emulated

[Ooi and
Tan, 2003]

GA Bayesian Yes Variable None Classifier
error rate in
cross- vali-
dation and
independent
test

9 cancer
types, 14
cancer
types

[Souza
and Car-
valho,
2005]

GA SVM Yes Variable None Classifier
error rate
and feature
set size

Leukemia,
Blue-cell
tumour

[Liu et al.,
2009b]

GA ICA-
SVM,
P-ICR

No Variable Intersection LOOCV +
feature set
size

Colon
cancer,
High-
grade
glioma

Table 3.1: Features of EA wrapper methods. Abbreviations: ICA - Independent Component
Analysis, [Liu et al., 2009b], GA- Genetic Algorithm, SVM - Support Vector Machine,
K-NN - K - Nearest Neighbours, LOOCV - Leave One Out Cross Validation, P-ICR -
Penalised Independent Component Regression

Recently, a new method for feature selection using genetic algorithms has been devel-

oped [Zhu et al., 2007]. This is a hybrid of the wrapper and filter methods: two operators
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that add or remove features from a set, in a filter-like manner, are applied to the feature set

encoded by the best individual of each generation. In this way, the individuals of the genetic

algorithm, (candidate feature sets), are fine-tuned to improve the overall fitness and reduce

the number of generations. The algorithm uses an SVM as a classifier. The algorithm was

applied by the authors on 11 different datasets, including ones for lung or breast cancer,

and compared to other filter and wrapper feature selection methods. It was shown to per-

form better than other methods for most datasets. Further, in [Zhu and Ong, 2007], another

hybrid filter-wrapper GA-based feature selection algorithm is presented, which implements

the new genetic operators using a ranking method, i.e. [Robnik-Łikonja and Kononenko,

2003]. This is shown to have similar results in terms of accuracy. However, the [Zhu et al.,

2007] algorithm finds smaller gene sets, so it has an important advantage in terms of prac-

tical use: the smaller the number of features, the less expensive the diagnostic procedure.

Further, [Zhu et al., 2007] has also been applied very recently to multi-class problems, [Zhu

et al., 2010b,a], using multi-objective optimisation, (where each objective corresponds to

the accuracy of a bi-classification task in a one-versus-all manner). Here, the notions of

full class relevant and partial class relevant features are introduced. These, respectively,

are features that have a role in differentiating all classes (i.e. display different expression

levels in all classes) and features that differentiate only part of the classes (i.e. may have

similar values is some classes). The algorithm identifies both types of features and is shown

to perform better than [Zhu et al., 2007] on synthetic and microarray gene expression data.

3.5 Stage 2 - Model inference using time-series data

An overview of existing EAs for GRN model inference from time series data is presented

in this section. The discussion considers methods applied to both discrete and continuous

models. Due to the added complexity of the latter models, many EA approaches have been

developed, from classical to advanced algorithms, and these are outlined, indicating their

gradual development and their role in GRN inference.
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3.5.1 Discrete models

Although applied more extensively for continuous models, EAs have been also used for

qualitative model analysis. [Linden and Bhaya, 2007] introduced a method of inferring

fuzzy rules from microarray data, using genetic programming. The algorithm uses the

Reverse Polish Notation5 for rules, which can be easily represented as trees, with three

Boolean operators for the conditions: NOT, AND and OR. A population of this type was

evolved using classical genetic operators on trees and the best individuals were selected to

progress to the next generation. Fitness was defined as the percentage error observed be-

tween real data and the data generated by the rules. The algorithm was applied to finding

rules in microarray data from experiments on the response to cold of the plant Arabidopsis

Thaliana, as well as on the rat nervous system. A clustering algorithm was applied ini-

tially to reduce dimensionality, with resulting clusters considered to form one node in the

network. Results were validated based on previous knowledge of the datasets, while new

hypotheses for subsequent laboratory experimentation were proposed.

In [Repsilber et al., 2002] a Genetic Algorithm was used to fit a multistate discrete

network, (Section 3.2), to simulated gene expression data. The aim was to rank previously

known hypotheses about the structure of the network, by allowing model parameters to

evolve. The approach also introduced time delays (± = {±1, .., ±N}) to model the time gap

between the transcription of one gene and the regulation effect of the resulting protein. This

time gap is the time needed for the mRNA to be translated into a protein, so a node changes

its state only after initiation of transcription plus a time delay. The algorithm thus searches

for the most probable model structure for the data available.

Another method of inferring discrete GRN models, based on Genetic Programming,

was developed by [Eriksson and Olsson, 2004]. Here, genes take Boolean values and the

regulatory network structure for each target gene is encoded as a tree and evolved to obtain

better structure. For each such tree in the population, a Boolean function is determined from

data (by computing the truth table using expression levels in the data) and fitness is assigned
5In the Reverse Polish Notation, the symbol order in an expression is changed: the operators are in front of

the operands. For instance, a× (b+ c)− d becomes −× a+ bcd.
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Method EA Model Fitness Local
search

Stages Datasets
(Size)

[Sakamoto and Iba,
2001; Ando et al.,
2002; Iba, 2008]

GP ODE Error + de-
gree penalty

LMS - Synthetic (5)

[Fomekong-Nanfack
et al., 2007]

ES PDE Error - - Fly (6)

[Ando and Iba, 2003] GA LDE Error -
√

E. coli (9),
Yeast (8)

[Deng et al., 2005] GA LDE 1 + Error -
√

Rat 20)
[Tominaga et al.,
1999]

GA SS Error - - Synthetic (2)

[Iba and Mimura,
2002]

GA SS Error -
√

Synthetic (10)

[Kikuchi et al., 2003] GA SS Error +
parameter
penalty

Simplex
Crossover

√
Synthetic (5)

[Kimura et al., 2003] GA SS Error +
parameter
penalty

QP
√

Synthetic (30)

[Noman and Iba,
2005]

DE SS Error +
parameter
penalty

-
√

Synthetic (5)

[Noman and Iba,
2006, 2007]

DE SS Error +
parameter
penalty

HC
√

Synthetic
(20), Yeast
(14- qualita-
tive)

Table 3.2: Evolutionary Algorithms for continuous model inference (1). Error is a mea-
sure of the difference between observed and simulated data, and different versions of this
(RSS - Residual Sum of Squares, MSE - Mean Squared Error, Appendix C) have been
used; however, their use is equivalent, as the number of genes and time points, (i.e. degrees
of freedom), is the same for all individuals to be evaluated in a given optimisation run.
Methods employing any type of iterated optimisation (Section 3.5.2.2), nested optimisation
(Section 3.5.2.1) or divide et impera (Section 3.5.2.1) contain

√
in column Stages. Abbrevi-

ations: ODE - Ordinary Differential Equations, EA - Evolutionary Algorithm, GP - Genetic
Programming, LMS - Least Means Squares, PDE - Partial Differential Equations, LDE -
Linear Differential Equations, SS - S-System, ES - Evolutionary Strategy, DE - Differential
Evolution, HC - Hill Climbing, QP- Quadratic Programming.
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based on ambiguities that arise. This results in choosing those structures that have fewer

ambiguities, so indicate more plausible interactions. The method was tested on synthetic

networks of different size, (10 to 160 genes), and shown, for networks smaller than 40

genes, to successfully locate structures with over 75% of the optimal fitness (with a value

of 51% for the 160-gene network). However, to date, this method has not been validated

with real data.

A similar EA optimising the wiring of a Boolean network is described in [Esmaeili and

Jacob, 2009]. This method starts with randomly generated wirings with a limited number

of regulators for each gene and evolves these structures using differential evolution. Each

structure is evaluated using a multi-objective approach, which aims at optimising sensitivity,

attractor cycle length and number of attractors. The method is shown to yield more stable

structures for a synthetic network of size 8. However, as before, the method was not applied

to real gene expression data, so further analysis is required.

3.5.2 Continuous models

Several algorithms for inference of continuous GRN models from gene expression data

have been developed in recent years, and Tables 3.2 and 3.3 give an overview of methods.

These include application of classical evolutionary techniques and development of novel

algorithms, especially tailored for gene expression data. In this section, a general discussion

on the benefits introduced by these methods is presented. A more detailed comparison of

seven methods from the literature is presented in Appendix A.

One of the first approaches to GRN reverse engineering, based on Evolutionary Compu-

tation (EC), is due to [Tominaga et al., 1999]. A classic, double-encoded Genetic Algorithm

is used to infer S-System models from time series data. However, this method was only

applied to synthetic data for a very small network (2 genes). Another more recent applica-

tion of a classic evolutionary algorithm is that of [Fomekong-Nanfack et al., 2007]. This

employs an Evolutionary Strategy to optimise model parameters for a 6-gene developmen-

tal network for Drosophila Melanogaster, based on Partial Differential Equations (Section

3.2). Although suitable for a larger network than [Tominaga et al., 1999], the size of the
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Method EA Model Fitness Local
search

Stages Datasets
(Size)

[Xu et al., 2007] DE
PSO

RNN Error - - Synthetic (8),
E. Coli(8)

[Koduru et al., 2004,
2005, 2007, 2008]

GA
PSO

LDE,
SS,
RNN

Multi Ob-
jective -
Error per
gene

Simplex - Rice (2), A.
Thaliana(3)

[Morishita et al., 2003;
Ono et al., 2004;
Imade et al., 2003,
2004]

GA SS Error GA
√

Synthetic (5)

[Spieth et al., 2004,
2005c]

GA SS Error ES
√

Synthetic (20)

[Keedwell and
Narayanan, 2005]

GA ANN BP Error BP
√

Synthetic
Boolean (10),
Rat (112),
Yeast (2468)

[Daisuke and Horton,
2006]

GA SS Error Simplex
Crossover,
Scale
free

√
Synthetic (5),
Mouse (7)

[Spieth et al., 2005b] GA,
ES

SS Multi Ob-
jective -
Error, Con-
nectivity

- - Synthetic (5,
10)

[Kabir et al., 2010] SA-
DE

LTV Error - - Synthetic (5),
E. Coli (6)

Table 3.3: Evolutionary Algorithms for continuous model inference (2). Abbreviations:
LDE - Linear Differential Equations, SS - S-System, PSO - Particle Swarm Optimisation,
RNN - Recurrent Neural Network, ES - Evolutionary Strategy, ANN - Artificial Neural
Network, BP - Back-Propagation, SA-DE - Self Adaptive Differential Evolution, LTV -
Linear Time-Variant.
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inferred GRN is still very small compared to the total number of genes typically involved

in such a system, showing that classical EAs are not powerful enough for larger networks.

This will be discussed in more detail also in Appendix A.

The limitation in size and model quality for quantitative analysis derives from the nature

of the data to be studied. A consequence of noise and under-determination is the ruggedness

of the fitness landscape for this problem, [Rodrigo et al., 2010]. Hence, application of

algorithms to real data is not straightforward. This is emphasised in Tables 3.2 and 3.3,

where few algorithms have been applied to real data. However, EAs are known to perform

well on under-determined problems and noisy fitness functions [Mitchell, 1999], so have

clear benefit over other inferential methods. Evolutionary Computation approaches that

address these issues can guide the optimisation towards more plausible solutions and are

discussed next.

3.5.2.1 Addressing the under-determination problem

Divide et impera Given that model parameters are independent for each gene, (relying

only on the expression level of the genes at previous time points), one method of address-

ing under-determination is to use a divide et impera approach. This consists of separate

optimisation of parameters for each individual gene, using observed rather than simulated

expression levels for the other genes. This method has been implemented in several EAs,

[Ando and Iba, 2003; Iba and Mimura, 2002; Liu et al., 2008; Noman and Iba, 2006, 2007;

Keedwell and Narayanan, 2005], and has the advantage of reducing the solution space by

decreasing the number of parameters to be inferred at any one time. In Appendix A, a com-

parison study will show that algorithms using this approach scale better than those which

attempt to optimise parameters for the entire network simultaneously. However, a typical

disadvantage of this method is that expression levels in the data are noisy, and these are used

in single gene simulations, resulting in model parameters slightly different from those that

would be obtained by simulating all genes. This can be avoided by a second optimisation

stage: starting from single gene models, evolutionary optimisation is employed to fine-tune

the parameters for the entire network, [Ando and Iba, 2003; Noman and Iba, 2005]. Further,
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a model that handles noise better, such as an Artificial Neural Network, (which employs a

Sigmoid function to compute expression levels), may also decrease this effect.

Obtaining skeletal/scale-free structures To further distinguish between many possible

models, known characteristics of the network structure, such as low connectivity or scale-

free nature, have been considered also. Many methods apply such knowledge to the opti-

misation process at different levels of the algorithm. The simplest idea sets parameters to

zero once these fall below a fixed threshold [Tominaga et al., 1999; Kikuchi et al., 2003].

However, more advanced approaches have also been developed. For instance, [Kikuchi

et al., 2003; Kimura et al., 2003; Noman and Iba, 2005, 2006] use an additional term that

penalises solutions with large parameter values. A refinement of this penalty-based idea

can be seen in methods, which start by penalising all connections, and then use a con-

nectivity threshold to reduce possibilities. This results in more advanced fitness functions,

and is possible because evolutionary optimisation, unlike numerical methods, has the ad-

vantage of not restricting fitness function type. A similar method, [Spieth et al., 2005b],

uses the connectivity as a second objective in multi-objective optimisation. Analogously,

[Sakamoto and Iba, 2001; Ando et al., 2002; Iba, 2008] have used Genetic Programming

to evolve sparse Ordinary Differential Equations, by penalising functions of large degree.

[Deng et al., 2005] also employed a limit on the connectivity of a Linear Differential Equa-

tion model, evolving the connectivity parameter during optimisation, in order to find the

optimal connectivity for the network, i.e. the number of regulators that achieves best data

fit.

Another mechanism, used to obtain solutions with more plausible structures, is local

search. For instance, [Noman and Iba, 2006] use Hill Climbing to set parameters to zero in

two candidate solutions for each generation. Also, in [Daisuke and Horton, 2006], models

are checked for scale-free structure, and modified if they do not comply, by adding or

removing random connections, (setting the corresponding parameters to zero). All these

methods result in sparser networks.
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Nested Optimisation Reduction in the number of parameters to be optimised has been

also performed using a Nested Optimisation approach, [Morishita et al., 2003; Spieth et al.,

2004, 2005c; Keedwell and Narayanan, 2005]. These methods divide the search into two

stages: structure and parameter search. During structure search, network topology is evolved

using a genetic algorithm. Candidate structures are built so that the number of regulators is

bounded for each gene, and these are evaluated by a second algorithmic stage, which op-

timises parameters for the existing connections. This reduces the number of real-valued

parameters to be inferred at the second stage. The parameter search is performed us-

ing an Evolution Strategy, [Spieth et al., 2004, 2005c], a Genetic Algorithm, [Morishita

et al., 2003], or Back-Propagation, ([Keedwell and Narayanan, 2005], with an ANN as the

model). Again, this is facilitated by the flexibility of fitness evaluation, which is character-

istic of EAs. Nested Optimisation increases parallelisation potential, (a parallelised version

of [Morishita et al., 2003] was later developed by [Imade et al., 2003]). Separation of struc-

ture and parameter search is important as this allows the topology to have a larger influence

in the optimisation process, rather than optimising real-valued parameters directly. This is

particularly relevant in the current context as dynamical behaviour in biological networks

relies mostly on topology, [Alvarez-Buylla et al., 2007], with parameter perturbations of

lesser importance.

Parallelisation Quantitative models require optimisation of a very large number of pa-

rameters, and fitness evaluation is costly in simulation terms. These costs increase when

additional time series datasets are used, so parallelisation of methods is mandatory. EAs

have the advantage of being intrinsically parallel, facilitating efficient multi-threading of

the optimisation process. Several examples of parallel implementations exist in evolution-

ary methods for GRN modelling, [Imade et al., 2004, 2003; Fomekong-Nanfack et al., 2007;

Daisuke and Horton, 2006; Spieth et al., 2005a]. These correspond to both grid and cluster

systems, while parallel frameworks for analysis have been implemented and are publicly

available [Swain et al., 2005; Spieth et al., 2006].
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3.5.2.2 Handling local minima

Combining multiple methods Due to the ruggedness of the fitness landscape, an EA

can be trapped in local minima and fail to find an optimal solution. One way to avoid

this is to combine different evolutionary methods. For instance, [Xu et al., 2007] alter-

nates differential evolution and Particle Swarm Optimisation, (parameterisation of a Neural

Network model), to obtain better overall models than from the two optimisation strategies

separately. A different approach, [Kikuchi et al., 2003; Daisuke and Horton, 2006], uses

Simplex Crossover, which efficiently balances the exploration and exploitation of the search

space [Kikuchi et al., 2003] and in consequence speeds up convergence (as the local minima

problem is diminished).

Iterated optimisation A second technique with the same aim is iterated optimisation,

(possible due to the stochastic nature of Evolutionary Computation). Multiple runs of the

same algorithm typically lead to different solutions, i.e. different local minima, which can

be combined to obtain a better model: [Kikuchi et al., 2003] describe a second optimisation

run, initialised with these local solutions. An alternative is to analyse local solutions by

methods other than EAs. For instance, [Deng et al., 2005; Daisuke and Horton, 2006]

employ a voting procedure for connections found in multiple runs, while [Noman and Iba,

2005] use voting to find null parameters in the model. Similarly, [Noman and Iba, 2007]

apply Z-score analysis to local solutions to find plausible qualitative connections for yeast

cell cycle data, (quantitative analysis being hampered by data limitations of length and

noise).

3.5.2.3 Handling noise

Noise (both natural and experimental) is an intrinsic property of gene expression measure-

ments and, unfortunately, most of the algorithms developed for model inference from these

data do not specifically take it into account. This makes many methods unfit for real data,

even when validated in principle for synthetic systems. Appendix A will include evalu-

ations of method performance on noisy data [Sı̂rbu et al., 2010a]. While most methods
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displayed good behaviour, up to 5% added noise, only two maintained this with up to 10%.

One, [Keedwell and Narayanan, 2005], uses an ANN to model gene regulation, while the

second employs a local search procedure, based on Quadratic Programming, that handles

noisy measurements [Kimura et al., 2003]. The superior performance of these two methods

is a strong indication that noise needs to be explicitly addressed in the model or evolution-

ary process, in order to obtain algorithms that can be applied to real-world data (Refer again

to Tables 3.2 and 3.3).

3.6 Stage 3 - Integrating heterogeneous biological data

A first step towards integration is combining time-series data from different sources. Time-

course data have been widely used for model reverse-engineering, and is very important in

order to obtain quantitative models. However, most existing approaches use data from only

one laboratory, i.e. the authors analyse their own experiments only. Multiple time series

datasets from the same single channel platform have been used for linear model inference

using singular value decomposition [Wang et al., 2006], but integrating gene expression

data from different platforms has been formerly analysed only for tissue (sample) classifi-

cation, [Cheng et al., 2009]. In the context of quantitative GRN modelling, however, this

integration is not straightforward. Different analyses of normalisation techniques for multi-

platform integration have been performed recently [Johnson et al., 2007; Shabalin et al.,

2008], but again only for pattern recognition methods. Also, some normalisation tech-

niques, specific to single and dual-channel microarrays, have been extended to be used for

both types of microarrays, such as Loess or dChip, [Do and Choi, 2006]. An analysis of

these in the context of GRN model inference from cross platform data is required.

A second step in data integration incorporates other types of data in the inferential

process. It is widely recognised that integrative modelling approaches are required to en-

hance regulatory analysis, [Przytycka et al., 2010; Hecker et al., 2009; Alvarez-Buylla et al.,

2007], and these have started to appear in recent years, mostly for coarse-grained analysis

[Huttenhower et al., 2009; Kundaje et al., 2008] or based on Bayesian models, [Bernard and
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Hartemink, 2005]. These integrate expression data with other types of measurements, such

as binding affinities or protein interactions, to better discriminate between candidate mod-

els, but usually the integration is limited, (i.e. uses only one additional data type, besides

time-course data, to enhance the inferential process). However, several such data-types are

available, and the hypothesis is that combining all of these, i.e. large-scale integration, can

further increase the modelling power. Recently, Drosophila Melanogaster datasets (RNA-

seq, microarrays, ChIP-Seq, ChIP-chip ) have been integrated, but again, for qualitative

analysis only [modENCODE Consortium et al., 2010].

Evolutionary approaches for data integration are few, to date. One of the first meth-

ods attempting to incorporate previous knowledge, [Shin and Iba, 2003], used an AIC-

based (Akaike’s Information Criterion6) fitness function, (similar to that of [Noman and

Iba, 2006]), modified to account for known interactions between genes in an S-System

model. Thus models containing known interactions have better fitness and this leads the

search towards regions in space that are more likely to contain the correct structure. The

[Shin and Iba, 2003] algorithm was applied repeatedly and results were analysed using Z-

scores to identify significant relationships. On synthetic data, the approach was shown to

have increased sensitivity to finding correct interactions, compared to the standard method,

which made no use of previous knowledge. Further, the former worked well even when pre-

vious knowledge was partially incorrect, (not unusual in a real experiment). When applied

to the real microarray data of E. Coli, the method was also shown to identify previously

known interactions.

A second data type integrated into the evolutionary optimisation process relates to

knock-out experiments. [Ono et al., 2004] attempted inclusion of time series knock-out

data, and demonstrated that this improved the structure search. Again, the method was only

applied to synthetic systems. However, [Ferrazzi et al., 2007] integrated steady state knock-

out measurements to infer parameters for a linear model of regulation in the cell cycle of

Saccharomyces cerevisiae. The additional data are used to initialise a GA with biologi-
6Akaike’s Information Criterion (AIC, [Noman and Iba, 2006]) is an information criterion used for model

selection, which is based on the error between observed and simulated data.
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cally plausible interactions, by analysing differentially-expressed genes in the knock-out

experiments, and keeping these known interactions fixed in the structure. This enhanced

approach was compared to a simple GA, and was shown to be more robust. Thus, feeding

the optimisation with interactions from knock-out data guided the algorithm towards sim-

ilar solutions in the search space during different runs, (implying that these were closer to

the real network of interactions).

The increased availability of RNA-seq datasets has triggered efforts to extend analysis

of gene expression to this data type. The postulated advantages of RNA-seq over microar-

rays (Chapter 3) may increase the power of GRN model inference, especially by integration

of the two technologies. However, to date, integrative efforts are reduced to analyses of

compatibility and complementarity of datasets with respect to general expression patterns,

[Mortazavi et al., 2008; Fu et al., 2009], splice junctions, [Bradford et al., 2010], and differ-

ential expression, [Liu et al., 2011], and do not concentrate on model reverse engineering.

Results from these studies show good correlation between microarray (including exon ar-

rays) and RNA-seq expression levels, (reported Spearman rank and Pearson correlation val-

ues between 0.55 and 0.85, [Pickrell et al., 2010; Montgomery et al., 2010; Bradford et al.,

2010]). However, RNA-seq experiments are reported to be more suitable than microarrays

for quantifying absolute gene expression levels, when validated with mass spectrometry

measurements, [Fu et al., 2009]. RNA-seq data have been shown to display more sensitiv-

ity to differential expression tests, compared to microarrays, with the number of identified

genes generally larger, [Marioni et al., 2008; Bloom et al., 2009]. Additionally, the new

platform seems to display better discrimination of differentially expressed genes with very

large expression values (as expected based on technical specifications), while microarrays

were reported better for very low transcript concentrations, [Bloom et al., 2009; Liu et al.,

2011; Bottomly et al., 2011], (which is somewhat surprising given that NGS data have been

postulated to have an advantage for low transcript quantification). For sample classification,

[Cabanski et al., 2010] show that no significant difference between Agilent and Illumina

technologies exists. These studies mostly concentrate on the same samples measured with

the different technologies, in order to eliminate biases due to biological variability, which
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allows for a more robust test of advantages and disadvantages of each platform. However, in

the context of large scale integration, more heterogeneous datasets, from different sources

and samples, should also be analysed and overlapping features identified in the more gen-

eral setting. A detailed analysis of the gene space structure (i.e. clustering) is needed, as

well as integration for GRN inference, which has not yet been performed to our knowledge.

3.7 Summary

This chapter has presented the role of Evolutionary Algorithms at different stages of gene

regulatory network inference. These include (i) expression pattern analysis, (ii) model in-

ference from time series data and (iii) data integration for model inference. For (i), meth-

ods for clustering and feature selection for gene expression data have been described. For

(ii), method development from classical to more advanced hybrid algorithms has been pre-

sented. This has been motivated by issues in network modelling, such as under-determination

and noisy data. These issues have been addressed to some extent by taking advantage of the

flexibility and power of evolutionary approaches. For instance, the flexibility of the fitness

function has been used to reward models with sparse or scale free structures. Hybridisation

with local search and other optimisation algorithms has also benefited from the simple basis

of the evolutionary algorithmic scheme, in order to avoid local minima traps and to handle

noise. Additionally, the parallelisation potential of these methods, combined with their

stochastic underpinning, has led to iterated algorithm versions, (designed to handle local

solutions), and nested optimisation, (used to limit the number of real-valued parameters to

be addressed). All these improvements have permitted a scale-up of quantitative modelling,

from 2 to 30 genes, (Tables 3.2 and 3.3). However, this is still very modest compared to

real GRN requirements.

Many of the methods presented have, to date, been applied only to synthetic data, (Ta-

bles 3.2 and 3.3), while most applications to real data can yield only qualitative results, as

quantitative models obtained remain unreliable. In order to further improve inference, dif-

ferent data sources can be combined, and this has been presented as the third stage of GRN
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inference. Advances in high-throughput technologies other than microarrays and global

research efforts have created very large biological data sets containing protein-protein in-

teractions, protein measurements, knock-out experiments, protein binding sites and gene

sequence information. Although such data are currently insufficient to determine the under-

lying GRN, combining them could prove to be very powerful and EAs are flexible enough

to enable their integration. However, such integration is not straightforward, as the different

data types can negatively influence the modelling process, due to inherent noise and biases,

so caution is needed. Existing methods, nevertheless, under-exploit EC potential, to some

extent, by integrating only one additional data type. In consequence, in the following chap-

ters, we will introduce a novel integrative framework, drawing on methods presented in

Section 3.5.2. This aims at large-scale data integration for GRN quantitative modelling, us-

ing fitness evaluation, initialisation, mutation and parallelisation to include heterogeneous

data in the optimisation process.
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Part II

Integrative framework - description

and results
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Chapter 4

Step 1: Microarray Time Series

Integration

In this chapter, we first present an analysis of expression data integration in the context of

quantitative GRN modelling, using microarray time series datasets from different platforms

(Section 4.2). The hypothesis being investigated is that using such heterogeneous datasets

is possible and gives models which are more robust to data and parameter perturbations and

capture essential dynamics in the data, without noise over-fitting1.

Secondly, we assess the effect of cross-platform normalisation on the integration of the

four datasets (Section 4.3). To date, cross-platform integration of microarray data has been

analysed only for clustering and classification problems, using normalisation techniques

to remove platform and batch effects [Johnson et al., 2007; Shabalin et al., 2008]. In the

context of quantitative GRN modelling, this integration introduces new challenges, as dif-

ferent pre-processing techniques may impair data quality, e.g. by removing signal as well as

noise. This leads to over-smoothing, resulting in significant loss of information, especially

when multiple stages are involved, as for cross-platform normalisation. In consequence,

correlations between interacting genes may be lost, or spurious correlations introduced dur-
1These results have been presented in ECCS 2010, and accepted for publication in the ECCS10 Special

Issue Theory in Biosciences [Sı̂rbu et al., 2011a]. The final publication is available at springerlink.com. DOI
10.1007/s12064-011-0133-0.
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ing pre-processing, making it very difficult for inferential algorithms to uncover the real

structure of the GRN. Given that data are high-dimensional and complex, the resulting

datasets are difficult to validate. Additionally, the data used for inference need to measure

the same quantity, whereas the integration process may need to deal with log-ratios, log-

values or other transformed quantities from the pre-processing stage. In consequence, two

joint (single- and dual-channel) pre-processing approaches, based on existing normalisation

techniques, are introduced to reconcile derived quantities and a comparison framework is

built for assessment of results2.

4.1 Datasets and inferential approach

Several inferential algorithms for regulatory network modelling exist in the literature, and,

for this study, we have implemented and used one that has proven performance with real

microarray data [Sı̂rbu et al., 2010a]. This is an Evolutionary Algorithm based on a hy-

bridisation between Differential Evolution and Hill Climbing local search [Noman and Iba,

2006], described in Appendix A.1.7. The model used is the S-System (Chapter 3, Section

3.2). For the purpose of this chapter, the decoupled version is used, where model parame-

ters for each gene are inferred separately, as opposed to determining parameter values for

the whole system at once. Even though outcomes may be influenced by the inferential

technique, the error between these simulations and the real signal seen in the test datasets

is still a very good indication of how close the datasets are and, consequently, of how the

integration strategy performs.

Integration analysis has been performed on four distinct datasets representing microar-

ray time series measurements during the Yeast Saccharomyces cerevisiae cell cycle. The

datasets, as described in Appendix B.2, are: Spellman, PramilaS, PramilaL and Hasse. Each

of these analyse two cell cycles, at different time intervals. Combining these gave six time

series measurements of the cell cycle, with a total of 111 time-points. For the first analysis

below, the normalised data reported by the authors was used. For the second study, which
2This work has been published in PLoS ONE [Sı̂rbu et al., 2010b].
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assesses the effect of different normalisation techniques on time-course data integration, we

have drawn on the raw data from the same sources.

4.2 Model inference from cross-platform microarray datasets

The analysis was performed on a subset of 9 genes known to be involved in the cell cycle,

retrieved from KEGG database [Aoki-Kinoshita and Kanehisa, 2007]. These were selected

to form a sub-network that is poorly connected to the rest of the GRN, to facilitate separate

analysis.

Despite initial normalisation by the authors of the four datasets used, data had different

amplitudes. Consequently, a further scale normalisation was performed as follows. Firstly

(i), each dataset was standardised (Equation 4.1). Secondly (ii), the values in all datasets

were scaled to the interval [0, 1] (by subtracting the minimum overall value and then di-

viding by the maximum value), since the S-System model requires positive values for gene

expression levels. Additionally (iii), the time spans were modified to bring the cell cycle

length to the same level, i.e. 120 minutes. This heavy pre-processing, involving so many

stages, is mandatory for the integration to be possible. However, the risk of removing impor-

tant features, introducing false correlations and influencing the resulting GRN model [Lim

et al., 2007] is considerable. Nevertheless, this approach found good compatibility between

datasets in our evaluation, and was necessary in order to perform an initial assessment of

integration potential.

x′ =
x− x

s
(4.1)

In order to analyse performance when moving from one to more datasets, we have split

the four time series into two subsets: inference (training) and test datasets. The inference

subset has been used during model inference, then models have been applied to simulate the

test series. This bootstrapping approach has been used several times, resulting in thirteen

experiments, each using a different combination of datasets for inference. Twenty runs

have been performed for each experiment. All results presented in this section are based on
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Figure 4.1: Performance of models on test datasets. Graphs are displayed as notched box-
plots, (showing medians and quartile ranges of MSE values for 20 models for each exper-
iment). On the x axis different experiments are represented, using one to three inference
datasets as follows: S - Spellman, Pl - PramilaL, Ps - PramilaS, H - Hasse. The y axis is
log-scale. The three boxes correspond to the datasets used for test, as labelled.

the models obtained for gene CLN2. This gene was chosen, being differentially expressed

during different stages of the cell cycle. A repeat analysis, for gene CLN1, produced similar

results (not shown).

4.2.1 Performance on Test Datasets

Figure 4.1 displays MSE (Mean Squared error, Appendix C) between simulated and real

test data, for models obtained from different combinations of training datasets. Results

for 20 optimisation runs are displayed as notched box-plots (Appendix C). These provide

a representation of the distribution of MSE values in multiple runs, by showing medians

and quartile ranges. Additionally, notches around medians define intervals that should not

overlap in case of significant difference between medians (at the 5% level).

Figure 4.1 enables assessment of dataset compatibility and effect of integration on

model performance on test data. This is expected to improve when integrating different

datasets from a single platform, which is not, however, straightforward for cross-platform

data. MSE values are generally low, indicating that datasets are compatible.

In using the Spellman dataset to test models inferred from PramilaL and Hasse together,

Figure 4.1 shows MSE values to be, on average, lower than when using each dataset sepa-
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rately. This indicates that even though the datasets are from a different source and platform,

integration does enable capturing of more essential features by the resulting models. A

similar behaviour is seen for models inferred from the Spellman and Hasse dataset, when

validated with PramilaS data.

The lowest MSE on the PramilaS test dataset is obtained when the PramilaL dataset

only is used for training. This is, probably, due to the fact that measurements for the two

datasets are performed on the same platform, in the same laboratory and the time points

overlap. This highlights the reproducibility of data from the same platform. When the

two datasets are combined for inference (PlPs on horizontal axis), models obtained do not

show decrease in MSE compared to each dataset individually, when tested on Spellman and

Hasse. This shows that, under the MSE criterion, using such similar datasets for training

does not lead to improved fit, as the data lie in the same space.

On the Hasse test dataset, (single-channel), models trained with Spellman data (dual-

channel) achieve best MSE. When further adding dual-channel datasets (PramilaL and

PramilaS) to inference, models do not become better in simulating the Hasse dataset. This

indicates that by integration, more features characteristic of dual-channel data are modelled.

This, together with the improved MSE when integrating the Hasse with the PramilaL and

Spellman datasets above, supports the necessity for cross-platform data integration in order

to be able to better extrapolate to test datasets, without over-fitting platform-related features.

4.2.2 Wavelet Analysis of multiple time series

Naturally, integrating heterogeneous datasets decreases overall variability of models, as

only the main features common to all datasets are incorporated. For this, variability between

datasets with respect to main features has to be small enough to facilitate integration, while

noise has to be heterogeneous. In this section, we use wavelets to show that the main

features of the time series datasets are of comparable variability, and that models obtained

from more datasets exhibit lower noise over-fitting.

Wavelets [Kaiser, 1994], Appendix C, are a mathematical tool used for signal process-

ing, which permit a simultaneous time and scale analysis of the signal. At large scale, i.e.
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Figure 4.2: Correlation of wavelet coefficients for datasets PramilaL and Spellman at dif-
ferent levels. Image 4.2(a) shows all levels for both datasets, while 4.2(b) and 4.2(c) show
enlarged images of three levels for which details are poorly visible in the main image, due
to scale differences. The y axis is log-scale. When moving from one to more inference
datasets, correlations at levels 1 and 2 (high frequencies) decrease, while those at levels
3 and 4 remain very high, indicating less noise over-fitting, while maintaining important
features in the data.
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Table 4.1: Correlation of wavelet coefficients for four gene expression time series (Spellman
- S, PramilaS - Ps, PramilaL - Pl, Hasse - H). Level 1 corresponds to the smallest scale, i.e.
highest frequencies, while level 4,5 to lowest frequencies.

Level 1 Level 2 Level 3 Level 4,5
Ps Pl H Ps Pl H Ps Pl H Ps Pl H

S .582 .742 .087 .950 .890 .143 .907 .996 .844 .994 .998 .966
Ps .283 .078 .902 .167 .939 .707 .991 .938
Pl .156 .316 .828 .975

low frequencies, general features of the data can be analysed, while at small scale, i.e. high

frequencies, more detailed aspects are investigated. In real world applications, noise effects

are high frequency, thus visible at small scale in wavelet analysis, while much of the signal

is reflected in low frequencies, i.e. large scale.

Gene expression time series measurements can be considered as signals; we thus per-

formed a wavelet decomposition of the real signal (seen in the four datasets) corresponding

to gene CLN2 in the cell cycle GRN. For this, the signal was resampled using Spline In-

terpolation to generate 32 data points. This was necessary because the number of points

required for the wavelet analysis needs to be a power of 2, with 25 just larger that the num-

ber of samples in each time course dataset. In this way we avoided under-sampling for all

datasets and loss of information, as well as over-sampling, to reduce interpolation errors.

The Haar [Kaiser, 1994] wavelet was used for decomposition and resulted in 32 coefficients

at 5 scales (levels). The last two scales, 4 and 5, containing 4 coefficients, were combined

and labelled as level 4,5 coefficients in this chapter.

Firstly, the Pearson Product-Moment correlation coefficient (r) [Boslaugh and Watters,

2008] was computed between wavelet coefficients from each dataset at each level, Table

4.1. Correlation values between coefficients, corresponding to pairs of signals, show that all

four datasets are very similar at levels 3 and 4,5 (corresponding to low frequencies, i.e. real

features), while at levels 1 and 2, (i.e. noise effects), correlations are low, indicating noise

heterogeneity. The high correlation in essential features indicates that the four datasets

are compatible for integration. For the Hasse dataset, low correlation, at levels 1 and 2,

indicate differences with other datasets, which may be because of the different microarray
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platform (one-channel vs. two-channel). At the same time, for the three dual-channel

datasets, correlations are larger at levels 1 and 2 (high frequencies), indicating less noise

heterogeneity.

To analyse noise over-fitting, wavelet coefficients for different model simulations were

also computed. Models were trained starting with one dataset and then iterated by adding

more datasets to the inferential process. For each model obtained, the coefficients at each

level were compared to those in the initial training dataset, by computing r. The values

obtained are displayed in Figure 4.2 for the Spellman and PramilaL datasets.

Results show that correlations at high frequencies, (i.e. noise effects), decrease when

adding more time series to the inference process, while those corresponding to real features

in the data (levels 3 and 4,5), are stable. This suggests that using heterogeneous time series

reduces noise effects, while main features in the data are maintained. For instance, for the

Spellman dataset alone, correlations are high at all frequency levels, indicating over-fitting

of noise. However, adding other datasets to the inference shows decrease in high frequency

level correlation to initial Spellman data, while low frequency effects are relatively unaf-

fected.

4.2.3 Robustness to noise and parameter perturbation

Given the stochastic nature of the transcription process [Schlitt and Brazma, 2007], real

GRNs are robust to relatively small changes in expression values, so quantitative models

should be robust also to small data and parameter perturbations [Fomekong-Nanfack et al.,

2009]. By integrating heterogeneous data, with different types of noise, more robust models

should be obtained. This has been tested in this chapter by performing a sensitivity analysis

for noise and parameter perturbation.

Firstly, models obtained in different runs were analysed on data containing Gaussian

noise, which was added to the initial datasets, similar to [Noman and Iba, 2007]. Although

the noise distribution is artificial, this analysis gives good indication of the model robust-

ness. Noisy data were simulated by models, and MSE values obtained were compared to

MSE in simulations of initial data, without added noise, (by computing ratios). Figure 4.3
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Figure 4.3: Sensitivity to noise. Histograms show MSE ratios over 20 models for different
experiments, ranging from one (top) to four (bottom) inferential datasets, for two noise
levels (standard deviation of added Gaussian noise 0.01 - left - and 0.05 - right). Ratios
cluster to the left as moving from top to bottom for both noise levels.
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Figure 4.4: Sensitivity to parameter perturbations. Histograms of MSE ratios are plotted
for 20 models obtained in each experiment. Ratios are smaller for models obtained from
multiple datasets (bottom right), compared to those from one dataset only (top left).

plots histograms of MSE ratios for the 20 models in each experimental run, for two noise

levels (standard deviations of 0.01 and 0.05). When using more inference datasets, ratios

are closer to unity, indicating that models are more robust to data perturbations.

Secondly, a parameter sensitivity analysis was performed. For each model, individual

parameters were slightly modified and the time series simulated and compared. The ratio of

MSE (modified) to initial MSE was computed, analogous to the noise sensitivity analysis.

Figure 4.4 shows histograms of ratios obtained for the 20 models in each experiment, with

perturbations of ±1% of initial search interval, (0.2 in our case). Again, a clustering of the

MSE ratios to the left, (lower values), can be seen when moving from experiments using

one dataset to those using three or four datasets, indicating better resilience to parameter

perturbations for the latter.

Robustness to perturbation is improved for any dataset combination, whether the con-

stituent series are similar or not. However, this is markedly the case when combining dis-

similar datasets. For example, the PramilaL and Hasse datasets are less similar than the

PramilaL and PramilaS (as shown by wavelet analysis), resulting in models more robust to

both noise and parameter perturbations for the former pair (Figures 4.3 and 4.4). Neverthe-

less, improvement is obtained for the latter pair too, compared to the individual datasets,
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indicating that even when time series are very similar, integration does improve robustness

to perturbations.

4.3 Cross-platform microarray data normalisation for GRN in-

ference

This section presents the influence of different normalisation techniques on cross platform

data integration for GRN model inference.

4.3.1 Normalisation techniques

Raw datasets from Section 4.2 have been used for cross-platform normalisation, where the

common genes were extracted, resulting in 5337 for analysis. The normalisation performed

consists of two stages. Initially, noise pre-processing was performed, using three different

approaches. On the resulting datasets, three cross-platform normalisation techniques were

applied, resulting in a total of nine normalised datasets for comparison. Additionally, the

time spans were scaled so that the cell cycle length is the same across datasets.

Stage 1: Noise reduction within each dataset. Several normalisation techniques exist in

the literature, especially tailored for single- and dual-channel arrays [Do and Choi, 2006].

However, these methods usually yield data of different type and scale, i.e. log ratios for

dual-channel and ‘absolute’ expression values for single-channel, which are difficult to in-

tegrate in a qualitative model. In this context, three approaches (W(i-iii)), (one standard and

two integrative), were used for within-dataset normalisation and compared for each dataset

previously described.

W(i) PMLoess, applies different normalisation techniques depending on platform type:

PMOnly, (available in the dChip software, [Li and Wong, 2001]) for Affymetrix, and Loess

normalisation, (available in the Limma Bioconductor package, [Smyth and Speed, 2003]),

for dual-channel data. PMOnly was chosen as a preferred method in previous studies,

[Shakya et al., 2009], while Loess normalisation is an established method for pre-processing

dual-channel arrays, [Do and Choi, 2006]. The logarithm of expression levels resulting from
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dChip was computed for the Affymetrix dataset, to obtain semantics similar to log-ratios

obtained after Loess normalisation for the dual-channel datasets.

Additional normalisation aims at reconciling use of both log ratios and log values by ap-

plying Loess normalisation to Affymetrix data and PMOnly normalisation to dual-channel

data. These two methods are, henceforth, referred to as W(ii) LoessOnly and W(iii) PMOnly.

LoessOnly applies Loess normalisation [Smyth and Speed, 2003] to both dual- and single-

channel arrays, by considering the average of the perfect-match probes to be the red channel,

and the mismatch probes to be the green channel, (where red and green correspond to the

two samples compared in dual channel arrays). In dual-channel datasets (PramilaL, Prami-

laS and Spellman), the red channel corresponds to samples taken at the different time points

during the cell cycle, and the green channel to a control sample, which is the same for all

time points. In single-channel data, both perfect-match and mismatch probes correspond

to the same sample, for which values are different at each time point. However, given that

mismatch probes measure unspecific hybridisation3, and that the amount of sample solution

used in each experiment is the same, the mismatch signals should be close to one another

at different time points. Thus, correspondence applies between the green channel in dual-

channel time series and the mismatch probes in single-channel series. PMOnly, on the other

hand, applies dChip to both types of data, taking the background-normalised red channel to

be a perfect match probe.

Stage 2: For each dataset resulting from the first pre-processing stage, we applied cross-

platform normalisation techniques, as follows (X(i-iii)). X(i) A simple standardisation on

each dataset,

x′ =
x− x

s
(4.2)

for data values x with sample mean x and sample standard deviation s was performed

[Shabalin et al., 2008]. This was followed by a scaling of values to lie on the interval

(0,1), which restricts the data to the same range. The scaling was performed by subtracting,

from all values, the minimum expression level over all four datasets (plus a predefined ±),
3genes can hybridise even if their sequence is not the correct complement of the probe
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followed by dividing all values by the maximum (plus ±):

x′ =
x− xmin + ±

xmax − xmin + ±
(4.3)

where ± here is used to ensure that the limits of the interval (0,1) are not reached. This

scaling was necessary as the S-System model used here requires positive expression values

for all genes. Further, X(ii) ComBat [Johnson et al., 2007], a Bayesian technique aimed

at removing batch effects, and X(iii) XPN [Shabalin et al., 2008], a technique based on

iterative K-Means Clustering, were also applied for cross-platform normalisation. Addi-

tionally, scaling onto the interval (0,1), was performed, as noted. All these techniques

aim at standardising data across platforms, after a preliminary normalisation within each

dataset. The implementations, made available by the authors, were used for the latter two

methods. The final datasets are identified in this chapter by the name of the normalisa-

tion techniques used for each stage: PMLoess methods (PMLoess St, PMLoess ComBat,

PMLoess XPN), PMOnly methods (PM St, PM ComBat, PM XPN) and LoessOnly meth-

ods (Loess St, Loess ComBat, Loess XPN). The rest of this section briefly describes the

cross-platform normalisation procedures ComBat and XPN.

ComBat [Johnson et al., 2007] is a normalisation method for eliminating batch effects,

which models the gene expression level for gene g in experiment i and platform j as:

xgij = ®g +X¯g + °ig + ±ig"ijg (4.4)

with ®g the overall expression level, X a design matrix for experiment conditions, ¯g the

vector of regression coefficients for X , °ig and ±ig the batch effects, and "ijg the noise term

(Normally distributed with zero mean and ¾g variance).

The method consists of three steps. (a) The data are standardised to obtain similar

overall mean and variance for genes. This involves fitting of parameters ®g, ¯g and °ig by

using a least-squares approach, estimation of ¾g, and computation of a standardised data
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point as:

zgij =
xgij − ®̂g −X ˆ̄

g

¾̂g
(4.5)

where ®̂g, ˆ̄
g and ¾̂g are the estimated ®g, ¯g and ¾g. Further (b), the batch effect pa-

rameters are estimated, using the assumptions that °ig are Normally distributed (N(xi, ¿
2
i ))

while ±2ig follow the Inverse Gamma(¸i, µi)
4 distribution. The parameters for these dis-

tributions are estimated using the method of moments. Finally (c), the data are adjusted for

batch effects:

x∗gij =
¾̂g

±̂ig
(zgij − °̂ig) + ®̂g +X ˆ̄

g (4.6)

XPN [Shabalin et al., 2008] is a cross-platform normalisation procedure based on the

assumption that subsets of genes have the same pattern in subsets of experiments. The

expression level for a gene g in sample s and platform p is considered to be a block mean,

AGSp, which is the same for a subset of samples (S) and genes (G), and common across

platforms (p), transformed by a scaling and a shifting factor, i.e. bgp and cgp, specific to

each gene (g) and platform (p), and a noise term "gsp, (specific to each gene, sample and

platform):

xgsp = AGSpbgp + cgp + ¾gp"gsp (4.7)

In order to find G and S, i.e. the groups of genes and samples where the block mean values

apply, K-means clustering is applied separately on sample and gene patterns obtained by

combining the datasets to be normalised. Based on cluster assignment, the model described

in Equation 4.7 is fitted to the data, using a maximum likelihood method. Normalised

expression values are computed based on the model obtained:

x∗gsp = ÂGS b̂g + ĉg + ¾̂g
xgsp − ÂGSpb̂gp − ĉgp

¾̂gp
(4.8)

where ÂGS , b̂g, ĉg and ¾̂g are weighted averages of parameters ÂGSp, b̂gp, ĉgp and ¾̂gp, ob-

tained for each platform. The procedure is iterated 30 times to obtain 30 normalised values,

4Inverse Gamma(x;¸, µ) = µ¸

Γ(¸)
(x)−¸−1 exp(− µ

x
), where Γ is the Gamma function, Γ(x) = (x−1)!.
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corresponding to different cluster assignments and final expression values are computed as

the average of the values obtained in each run.

4.3.2 Evaluation criteria for normalisation methods

Evaluation of normalisation methods applied has been carried out using four different crite-

ria (E(i-iv)). Firstly, E(i), variability between replicates has been computed, as the average

over all genes of the RMSE (Root Mean Squared Error, Appendix C) between replicate ex-

pression values, normalised by the average gene expression level for each gene, (Equation

4.9).

var =
1

N

N∑

i=1

√
1
T

∑T
j=1 (xij1 − xij2)

2

xi
(4.9)

Here, xijk represents the expression level of gene i in experiment j and replicate k, N is

the total number of genes and T is the total number of experiments. The datasets contain a

dye-swap replicate for one dual-channel dataset (PramilaL) and one technical replicate for

the single-channel (Hasse) dataset. This allows for a comparison on both replicate types.

Ideally, after normalisation, replicates should be approximately the same, so the distance

between them is a criterion widely used for validation of normalisation techniques, [Shakya

et al., 2009].

Secondly, E(ii), wavelet analysis was used to compare the normalisation techniques, us-

ing the Daubechies discrete wavelet transform [Kaiser, 1994], similarly to the previous

study (Section 4.2). The average absolute value of the high frequency coefficients, corre-

sponding to 9 genes known to be involved in the cell cycle, (from KEGG database [Aoki-

Kinoshita and Kanehisa, 2007]), was computed, as these components are a good indication

of the magnitude of noise in the data. Also, wavelet coefficients for gene signals from

different datasets were compared at different scales, (by computing RSS values, Residual

Squared Error, Appendix C), in order to assess which normalisation techniques bring the

data closer together.
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Thirdly, E(iii), a correlation analysis was performed to test whether pair-wise gene cor-

relations vary between normalisation techniques, as well as to determine whether genes

known to interact are correlated after normalisation. Ideally, normalisation should remove

spurious or noise effects, while real gene correlations should be preserved, which is very

important for GRN model inference [Xulvi-Brunet and Li, 2010]. The Pearson correlation

coefficient (rij) was computed between all gene pairs (i, j) and three aggregation criteria

were used for analysis.

Aggregated criterion 1: The number of gene pairs with absolute correlation larger than

0.9 was computed and compared across normalised datasets, to determine whether normali-

sation techniques affect high correlation values. Aggregated criterion 2: average of absolute

correlations for each gene i were calculated as shown in Equation 4.10.

avgi =
1

n

∑

j ∕=i

∣rij ∣ (4.10)

where n is the number of gene pairs in each dataset. These values give a measure of how

the gene relates to the rest of the system, within each dataset. Aggregated criterion 3: the

correlation variability between microarray datasets (Spellman, Hasse, PramilaL, PramilaS),

for each normalisation technique, was computed for each gene pair, as indicated in Equa-

tion 4.11. Ideally, the same pair of genes should have similar correlation across microarray

datasets, but, due to platform differences and normalisation, these can vary. Correlations

common to the different datasets are most reliable, while others are more likely to be spuri-

ous.

varij =
1√
6

⎡
⎣∑

a,b

(raij − rbij)
2

⎤
⎦

1
2

(4.11)

where a, b ∈ S,Pl,Ps,H and a ∕= b, rdij represents the Pearson coefficient between genes i

and j in dataset d, with d having values S (Spellman), Pl (PramilaL), Ps (PramilaS) and H

(Hasse). This results in a matrix, for each normalisation technique, referred to as correlation

variability matrix in the rest of this chapter, which shows how correlations between pairs of

genes differ from one microarray dataset to another. This can be viewed as an indicator of
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the amount of spurious correlation or of increased variability in each normalised dataset. We

use the average of the values in the correlation variability matrix to quantify the correlation

similarity (between datasets) for each normalisation technique.

A different method of identifying spurious correlations would be to analyse partial cor-

relation coefficients in the data. These higher-order correlations, (as opposed to zero-order

coefficients such as Pearson), account for other genes (variables) in the data, rather than

considering each pair in isolation. However, this is non-trivial, as the pattern of covari-

ance is very complex, with many gene pairs having high zero-order correlation and circuits

known to exist in the networks. Hence our use of the correlation variability matrix, de-

scribed above, as a (weaker) criterion.

The fourth evaluation criterion used, E(iv), was the capability of single gene models to

translate between datasets. For this, models were built from each dataset individually, and

then applied to simulate the same genes in the other three datasets. S-System models of

regulation for two genes (CLN1, CLN2), in a 9-gene network, were developed, similar to

the previous Section (4.2). Twenty runs were performed for each inference task, and RMSE

values, normalised by the mean expression values (RMSE/Mean)5, were averaged across

these. Additionally, models have been inferred from combining two datasets and testing

on a third, to analyse how the data fit changes compared to using each training dataset

individually.

4.3.3 Results

Table 4.2 summarises overall values obtained for different cross- and within-platform nor-

malisation, for the criteria above, to support the discussion of results.
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Cross-platform Within-platform
Standardisation ComBat XPN PMOnly Loess

Only
PMLoess

SC DC SC DC SC DC SC DC SC DC SC DC
Variability
between
replicates

↑ with
PML;
↓ with
PM &
L

↑ with
PM &
PML;
↓ with
L

↑ with
PM &
L; ↓
with
PML

↑ with
L; ↓
with
PM &
PML

↑ with
PM &
L; ↓
with
PML

↓ ↑ ↑ ↓ ↓ ↓ ↓

Amplitude
of noise
frequen-
cies

↑ with PM
& PML; ↓
with L

↑ with L; ↓
with PM &
PML

↑ with L; ↓
with PM &
PML

↑ ↓ ↓

Number
of highly
correlated
genes

↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ in Pl
& Ps;
↓ in S

↓ ↓ ↑ ↑ in
S; ↓
in Ps
& Pl

Average
absolute
correla-
tion

↑ ↑ ↑ ↑ ↓ ↓ ↑ ↓ ↓ ↑ ↑ ↑

Table 4.2: Summary of variability and aggregated correlation values for different within-
and cross-platform normalisation. SC and DC identify results for single- and dual-channel
datasets; Pl, Ps and S represent the three dual-channel datasets (PramilaL, PramilaS and
Spellman), while PM, PML, L stand for PMOnly, PMLoess and LoessOnly, respectively.
Arrows indicate whether variability and correlations are increased (↑) or decreased (↓) rela-
tive to the other normalisation procedures in the same category (cross- or within-platform).
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Figure 4.5: Variability between replicates in 9 datasets obtained by different normalisa-
tion techniques. The graphs show average RMSE/Mean (Equation 4.9) values for dye-
swap (dual-channel arrays, PramilaL dataset) and technical replicates (single-channel ar-
rays, Hasse dataset).
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Figure 4.6: Magnitude of high frequencies. Graph shows average absolute value of wavelet
coefficients for levels 1 and 2, corresponding to highest frequencies in the data, i.e. noise.
Averages are computed over all four datasets.

4.3.3.1 Replicate variability analysis

Figure 4.5 indicates that PMOnly methods display increased variability in both dye-swap

(dual-channel) and technical replicates (single-channel). LoessOnly methods exhibit low

fluctuation even in single-channel technical replicates, indicating that, although not de-

veloped for this type of data originally, they perform well with respect to the variability

criterion. Also, ComBat and XPN give increased variability between replicates compared

to standardisation in some cases, showing that cross-platform normalisation comes with a

cost.

4.3.3.2 Wavelet analysis of normalised datasets

Based on wavelet decomposition, the amplitude of high frequencies in the different nor-

malised datasets was measured. High amplitudes indicate stronger noise compared to low

amplitudes. Figure 4.6 shows average absolute values for wavelet coefficients for the high-

est frequencies in the data, over all four datasets. Results show that PMOnly methods dis-

play the largest fluctuations, while PMLoess methods give the smallest. This was expected

to some extent, as the latter methods apply normalisation techniques especially tailored for
5Normalisation of RMSE values was necessary to enable comparison of model performance between the

different datasets (Appendix C).
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each type of data. Again, LoessOnly methods display good behaviour, very close to PM-

Loess. However, in LoessOnly, ComBat and XPN seem to increase variability, in contrast to

PMOnly and PMLoess, where variability decreases. This is in agreement with the replicate

variability analysis (Section 4.3.3.1), and shows, again, that cross platform normalisation

has a variability cost.

Secondly, wavelet coefficients corresponding to different scales are compared, for sig-

nals describing expression levels for the same gene occurring in different datasets. Nine

genes known to be involved in the cell cycle, (analysed as a GRN also in Section 4.3.3.4),

are compared across the four datasets and results are summarised in Figure 4.7. This shows

that for levels 1, 2 and 3, (corresponding to higher frequencies), PMOnly methods gener-

ally show the largest differences between gene signals, while LoessOnly and PMLoess are

comparable. This is probably due to high variability in high frequency PMOnly data, noted

earlier. However, the behaviour seen for levels 4 and 5, indicates how different the core

gene expression levels are. As Figure 4.7 shows, cross-platform normalisation methods

bring the data significantly closer together, compared to simple standardisation.

4.3.3.3 Correlation analysis of normalised datasets

Firstly, the number of highly correlated gene pairs has been studied in each dataset. The

correlation threshold used was 0.9 and Figure 4.8 shows the number of gene pairs with

absolute correlation larger than this, for each normalised dataset. Results show a very

large difference on the log scale between normalisation techniques used. PMOnly methods

display a large number of highly correlated gene pairs in the Hasse dataset and in two of the

three dual-channel datasets (PramilaS and PramilaL), while LoessOnly methods eliminate a

large part of these correlations, especially in the Hasse dataset. The question here is whether

this high number of correlations is an artefact of the PMOnly normalisation method, or

whether Loess methods do, in fact, substantially decrease correlations. A second important

observation is that ComBat and Standardisation display the same correlation values, while,

in comparison, XPN causes significant decrease in the number of high correlations for all

datasets.
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Figure 4.7: Dissimilarity between gene signals in different datasets. Graphs show average
RSS between wavelet coefficients corresponding to nine genes in the four datasets, at dif-
ferent scales(levels). Level 1 corresponds to highest frequencies, i.e. noise, while level 4
and 5 to lowest frequencies, i.e. the real signal.
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Figure 4.8: Number of highly correlated gene pairs in each dataset, for each normalisation
technique (in logarithmic scale). The correlation threshold used was 0.9.
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Figure 4.9: Average correlation for gene SWI4. This shows an aggregated measure of
correlation of this gene with all other genes in the network, for each normalisation tech-
nique. Note that ComBat cross-platform normalisation does not affect correlations, while
XPN decreases the average values.
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Secondly, the average of absolute correlations for a subset of nine genes was com-

puted, with results for gene SWI4, (which is a known transcription factor involved in cell

cycle regulation), shown in Figure 4.9. For the dual-channel datasets, (Spellman, Prami-

laL, PramilaS), LoessOnly methods show large average correlation, in contrast to the low

number of highly correlated pairs, noted for the same methods (previous paragraph). This

suggests that, for dual-channel data, large correlations are only slightly decreased by Loes-

sOnly methods, whereas, (given the large variability for PMOnly), the larger number of

highly correlated genes may be an artefact of the PMOnly normalisation technique. For

the single-channel dataset (Hasse), however, the average correlation is decreased by Loess

normalisation. Considering the significant drop in highly correlated gene pairs (Loess), it

can be concluded that, although PMOnly normalisation may lead to spurious correlations in

the Hasse dataset, Loess normalisation might also decrease real correlations for these data,

by over-smoothing, which is not uncommon of heavy processing. To test this, a further

analysis for quantifying spurious correlation has been performed.

Correlation Variability Matrix In order to assess the amount of spurious correlation for

each normalisation technique, the Correlation Variability Matrix (Equation 4.11) was com-

puted for each normalisation procedure, and averages over all gene pairs (i.e. all elements

in these matrices), are shown in Figure 4.10. ComBat does not affect correlations, com-

pared to standardisation for cross-platform normalisation, so the corresponding datasets,

(i.e. PM ComBat, Loess ComBat and PMLoess ComBat), are not included in the analysis.

Results show that Loess methods display smaller averages compared to PM, while XPN is

lower still, indicating less spurious correlation. In conclusion, Loess XPN exhibits the best

behaviour, as coefficients are in good agreement across microarray datasets. This perfor-

mance is closely followed by that of PM XPN. This indicates that cross-platform normal-

isation has a larger effect than within-dataset normalisation on the correlation differences,

which is to be expected. Given the use of the correlation variability matrix as a criterion for

studying spurious correlation, it can be argued that agreement between datasets may just be

due to systematic bias in the normalisation procedure. Although this can not be ruled out,
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Figure 4.10: Average of correlation variability matrix. (Equation 4.11). Plotted here is the
average of values in matrices for different normalisation procedures. Note that LoessOnly
methods display lowest correlation variability, indicating less presence of spurious correla-
tion, and better agreement between datasets. XPN normalisation also decreases differences,
compared to standardisation. Thus Loess XPN exhibits fewest differences, closely followed
by PM XPN.

compatibility between datasets is still required for data integration. Hence it may be con-

cluded that methods that display large correlation variability perform less well. To further

study the value of correlation, a small number of genes known to interact are analysed in

depth in the rest of this section.

Analysis of genes known to interact In the context of GRN modelling, it is very im-

portant that known interactions between genes are preserved within correlation patterns.

To examine this, we have chosen a set of 5 gene pairs, which are known to interact in

reality ([Aoki-Kinoshita and Kanehisa, 2007]). These include pairs (a) CLN1/2 of genes

working together as a complex, (i.e. co-regulated), (b) SWI4/CLN1 and (c) SWI4/CLN2,

where SWI4, in a protein complex, is known to activate genes CLN1/2, and the pairs (d)

FAR1/CLN1 and (e) FAR1/CLN2, where FAR1 represses the formation of CLN1/2. Ideally,

for (a), (b) and (c), a high positive correlation should be seen in the data, while for (d) and

(e), a high negative correlation should be present. Figure 4.11 shows correlations for each

dataset, and each normalisation technique.

For the first three datasets, (Spellman, PramilaL, Pramilas - dual-channel), Loess nor-
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Figure 4.11: Correlation between genes known to interact. The first three pairs of gene are
positively interacting, and the positive correlation values correctly indicate the interaction
type, in all datasets. The fourth and fifth gene pairs, on the other hand, should display
negative correlations, as they are repressor/target pairs. However, while for the dual-channel
datasets this relationship is confirmed by negative correlations, in the Hasse dataset it is only
visible with PM XPN and LoessOnly methods, with Loess XPN displaying largest absolute
value. This indicates that Loess XPN enhances correlations in this case.
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malisation displays better behaviour, with PMOnly methods giving significant decrease in

correlations between genes known to interact. It is important to note that the correlation

values do correctly indicate the nature of these interactions, with positive values for (a), (b),

(c), and negative for (d) and (e). However, correlations between CLN1/2 are higher than

those corresponding to activation/repression pairs, which can be explained by the regula-

tory time delay6, which causes a shift in the expression signal of the target, compared to

the regulator. For the Hasse dataset, on the other hand, the negative correlation between

FAR1/CLN1/2 is not present, except after Loess normalisation, and, even then, absolute val-

ues are very small. This supports the hypothesis that PMOnly methods introduce spurious

correlations into the data, probably due to the higher noise present (discussed in Sections

4.3.3.1 and 4.3.3.2). For the other gene pairs, positive correlations are decreased using

Loess, (Hasse dataset), but agreement with values obtained for dual-channel datasets (i.e.

PramilaL, PramilaS and Spellman) remains good.

It is very important to note, when analysing gene pairs known to interact, that, although

average correlations over all gene pairs are smaller, as noted earlier, XPN does not decrease

correlations in all cases; some increases are observed, compared to other methods. This,

combined with the low correlation variability between the different datasets, indicates that

XPN may act as a better filter for spurious high correlations. At the same time it conserves

or even amplifies ‘useful’ correlations, even where other techniques fail to do so (e.g. Hasse

dataset, Figure 4.11).

4.3.3.4 Model translation between datasets

Applying models to test data can indicate whether pre-processing improves agreement be-

tween datasets. To assess this, we have computed the average RMSE/Mean between sim-

ulations of 20 S-System models for each dataset and the real expression values. Results

are displayed in Figure 4.12, for gene CLN2 models inferred from Spellman, PramilaL and

Hasse datasets. These show that, in general, cross-platform normalisation, (as opposed

to simple standardisation), significantly decreases error on all test datasets, making it a
6The time elapsed between the expression of the regulator and that of the regulated gene
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Figure 4.12: Average RMSE/Mean on all datasets for 20 S-System models for gene CLN2.
Models were inferred from datasets Spellman, PramilaL and Hasse, separately, (identified
by graph titles), and then tested on the rest of the datasets (horizontal axis). Graphs show
that cross-platform normalisation, other than standardisation, decreases fitting errors for the
test datasets.
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Figure 4.13: Average RMSE/Mean on the Spellman dataset for gene CLN2. Twenty infer-
ence runs have been performed with datasets Hasse, PramilaL and Hasse+PramilaL com-
bined, and average errors, tested on the Spellman dataset, displayed for each normalisation
technique. These show that, for PMOnly and LoessOnly methods, behaviour on the test
dataset improves when using combined data, regardless of the cross-platform normalisation
technique used, while for PMLoess methods this happens only for ComBat cross-platform
normalisation. This is a good indication that these within dataset normalisation methods
improve integrated data inference. Loess XPN displays lowest RMSE values, suggesting
that this is a suitable normalisation method for cross-platform data integration.

very important step in data integration for GRN modelling. Also, it is important to note

that PMOnly and LoessOnly methods display behaviour comparable to combined PMLoess

methods, indicating that these normalisation approaches are also suitable for time series

model inference. Similar results were obtained for gene CLN1, but are not shown here.

Combining datasets In order to test how data integration improves model inference with

different normalisation techniques, a second analysis was performed. This involved in-

ferring models for the same gene (CLN2) from datasets PramilaL and Hasse together and

testing these on the Spellman dataset. The resulting error, (averaged over 20 runs), has been

compared to that obtained by models inferred from PramilaL and Hasse individually, with

results displayed in Figure 4.13, as RMSE/Mean values. This shows that, for most nor-

malisation techniques, increasing the number of datasets used to build models in the first

place, helps to reduce error for subsequent application to a new test dataset. Exceptions are
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PMLoess St and PMLoess XPN, where the error for the models inferred from combined

data is larger than from the PramilaL dataset alone. This is not too surprising since, in these

cases, within dataset normalisation is different for dual-channel (PramilaL and Spellman)

and single-channel (Hasse) data, i.e. log-ratios are derived for the former and log-values for

the latter. Consequently, model performance, tested on the Spellman dataset, is decreased

by including the Hasse dataset in the training set. In PMLoess ComBat, no increase in error

when using two datasets exists, even though this method also uses different within dataset

normalisation for single- and dual-channel data. This may indicate that the cross-platform

normalisation employed (i.e. ComBat) is better able to reconcile the different measures.

The decrease in error on the test dataset for PMOnly and LoessOnly methods, when using

two training datasets as opposed to one only, indicates that the integrative within dataset

normalisation procedures introduced here, (PMOnly and LoessOnly, which yield the same

measures of expression levels for both single- and dual-channel data), do aid combined data

inference.

Based on lowest error obtained for model inference, (using two datasets as opposed to

one), Loess XPN performs best, providing strong indication of its suitability as a normali-

sation method for data integration in GRN modelling.

4.4 Conclusions

We showed that integration of multiple time series for GRN quantitative model inference

is possible and can result in improved models. We inferred GRN S-System models from

four gene expression datasets measured on different platforms and analysed these and their

simulated data. A robustness analysis showed that models obtained from multiple datasets

were more resilient to both noise in the data and parameter perturbations. Additionally,

a wavelet decomposition of signals corresponding to gene CLN2 was performed. Results

demonstrated that integrating heterogeneous time series minimised noise effects on models.

A further analysis of the influence of normalisation techniques on integrated GRN infer-

ence was presented. Three pre-processing approaches (LoessOnly, PMOnly and LoessPM)
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have been applied to integrated raw microarray data from three different platforms. This has

included application of techniques developed for dual-channel, (Loess [Smyth and Speed,

2003]), on single-channel data and vice-versa, (PMOnly [Li and Wong, 2001]). Following

initial within-sample pre-processing, three cross-platform normalisation techniques, (Stan-

dardisation, ComBat [Johnson et al., 2007] and XPN [Shabalin et al., 2008]), were applied,

resulting in nine normalised datasets. These have been compared for four criteria, rele-

vant for data integration in the context of GRN quantitative modelling: variability between

replicates, wavelet coefficient analysis, simple gene-gene correlations and GRN differential

equation model translation between datasets.

In terms of the variability criteria, LoessOnly methods performed better than PMOnly,

although combined PMLoess methods exhibited best performance overall. Wavelet analy-

sis and model translation indicated that a second normalisation stage, (cross-platform), as

opposed to simple standardisation, is required in order to align the datasets for the same

inferential process. However, variance is increased for experimental replicates by cross-

platform processing. Additionally, combining datasets was shown to improve model per-

formance on a test dataset, especially when using integrated-within dataset normalisation,

with best data fit obtained by Loess XPN. Analysis of correlation between genes showed

that Loess methods may over-smooth high correlation values, although patterns between

genes that are known to interact are preserved. XPN also reduces some highly correlated

gene values, but, in many cases, correlations between genes known to interact are amplified,

even for those gene pairs for which other methods failed to obtain the correct correlation

sign. This suggests that it is a fairly sensitive probe for determining true interaction patterns

in the data.

In conclusion, results indicate that Loess XPN was found to be the best method for nor-

malisation of time-series data for quantitative model inference, as variability is acceptably

low, datasets are well aligned and correlations between interacting genes are enhanced.

Further, combined datasets produce models which perform better on test data than those

inferred from one dataset only. The method permits integrated pre-processing across plat-

forms, facilitating model inference from heterogeneous datasets.
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Chapter 5

EGIA - a novel framework for GRN

inference

In the previous chapter, a first step for data integration, consisting of combining microarray

time-series, was discussed. Other types of data also exist in the literature, however, and

are complementary to time series. In consequence, integration may further enhance model

reverse engineering. The integration process, however, is not straightforward, as data types

are not homogeneous, and computational complexity is increased, so careful analysis is

necessary to (i) assess the viability of combination and (ii) identify suitable ways to achieve

this. Here, a novel integrative framework based on evolutionary computation is presented

(EGIA - Evolutionary optimisation of GRNs - an Integrative Approach), which seeks to

exploit several related types of data. These include knockout experiments, Gene Ontology

annotation of known transcription factors, binding site affinities and promoter sequence

information (including known cis-regulatory modules), which are introduced in Chapter 2.

Such data types contribute at different stages of the evolutionary algorithm. The framework

is based on a previously introduced inferential algorithm, [Keedwell and Narayanan, 2005].
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Figure 5.1: Structure and parameter search in EGIA.

5.1 The basic algorithm

In [Keedwell and Narayanan, 2005], a neural-genetic hybrid approach to GRN inference

was introduced. This models the GRN as a single-layered ANN (Chapter 3, Section 3.2),

consisting of one neural unit per gene. Each unit i takes as input the expression values of

the regulators of gene gi (i.e. gj) at time point t and computes the expression level for gene

gi at time t+ 1, using the input weights wij and the logistic function for activation:

gi(t+ 1) = S

⎛
⎝∑

j

wijgj(t) + bi − digi(t)

⎞
⎠ (5.1)

where bi accounts for external input, while di represents the degradation rate.

S(x) =
1

1 + e−x
(5.2)

One common issue with quantitative models is that most are black-box approaches, i.e. in-

formation on suggested interactions is difficult to obtain. However, biological interpretabil-

ity is an important feature of GRN models, as it allows for both validation of results and

extraction of meaningful information on possible interactions. Here, the single-layered ap-

proach facilitates interpretation of results, as input weights indicate the type of interaction

between genes, while the capability to simulate non-linear behaviour is retained.

The basic algorithm divides optimisation into two phases: structure and parameter

search (Figure 5.1). The first phase involves optimising network topology, i.e. the set of reg-
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ulators for each gene. This is implemented as a Genetic Algorithm, where each individual

encodes a candidate structure, as a subset of the possible regulators for the current gene. We

have used an array of natural numbers identifying the set of transcriptional regulators, with

size limited to a maximum connectivity level - maximum allowed number of regulators.

Each candidate structure is assigned a fitness value during the parameter search phase. Pa-

rameter search employs Gradient Descent to optimise the input weights for the neural unit

for the current gene, by minimising the squared error between data and simulation. The fi-

nal error obtained is considered the fitness of the candidate structure under evaluation. The

population of the genetic algorithm, (structure search), is initialised randomly and Random

One-Point Mutation and One-Point Crossover are used to move through the solution space

(see Chapter 3, Section 3.3 for details on these operators). Tournament Selection (Chapter

3, Section 3.3) is employed before crossover and mutation to generate offspring from fit

parents only. A divide-and-conquer approach is used to optimise parameters for each gene

at a time.

We have implemented this approach and compared it to different other methods in the

literature (Appendix A) and results have shown that it is among the most scalable and least

sensitive to (synthetic added) noise of the techniques implemented. Based on this, we have

chosen to extend it further for data integration.

5.2 Algorithm enhancements and data integration

5.2.1 Algorithmic schema extension

The basic algorithm [Keedwell and Narayanan, 2005] optimises the parameters for each

neural unit corresponding to each gene separately. While this approach is very useful, as

it reduces the dimensionality of the system for each optimisation run, the model obtained

by directly combining sub-models may not be able to correctly simulate the whole system,

as separate optimisation disregards the feed-back from the genes being modelled. In con-

sequence, we have added a second optimisation stage, which combines single-gene models

and performs a fine-tuning of complete-model parameters (similar to [Kikuchi et al., 2003]).
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Multiple single-gene runs have been performed, and the connectivity level (i.e. the max-

imum number of transcription factors for each gene) has been varied. This gave multiple

possible models for each gene, which were combined in the complete-model optimisation

phase, during the initialisation of possible solutions. The approach thus allows for selection

of the best connectivity for each gene, facilitating simulation of the entire GRN.

In Chapter 4, we have seen that integrating cross-platform data reduces noise over-

fitting. This attempts to overcome experimental bias in the data. However, as discussed

(Chapter 2), the gene expression process is itself stochastic, so models have to be robust

to natural variability. One way of obtaining models robust to noise involves creating noisy

replicates from the available data [Wessels et al., 2001]. This simulates technical replicates,

and results in multiple time series to be used during inference. Here, a larger set of time-

series has been derived from available data through addition of random Gaussian noise.

This has been performed during the parameter optimisation phase, for ANN training.

5.2.2 Initialisation and mutation

The basic algorithm, achieves an initial population of candidate structures by randomly

selecting possible transcription factors for a specific gene, from the set of genes in the net-

work. Similarly, mutation is performed by replacing one of the regulators in the candidate

structure with a randomly chosen gene. Starting with the initial population, mutation and

crossover is used to explore the search space and move towards models with lower simula-

tion error.

The additional data types that can be integrated in the inferential algorithm provide in-

dications on which interactions between genes are most likely possible. For example, in

knockout experiments, large log-ratios between wild-type and knockout expression levels

may indicate an interaction between the knocked-out gene and the others. Similarly, binding

site affinities can indicate what transcription factors can bind to a specific gene promoter.

This information is very valuable, and can be used to explore the search space in a more

knowledgeable manner. For this, we have developed a customised initialisation and muta-

tion procedure, which uses likelihood assignment for gene regulation, based on additional
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data. This results, for each gene g, in a non-uniform probability mass function, which de-

scribes which of the genes in the network are more likely to be regulators of gene g. When

performing mutation or initialisation, this function is used to select a candidate regulator

for gene g. This is similar to Wheel of Fortune (WOF) selection (Chapter 3.3), so will be

addressed henceforth as WOF mutation and initialisation. The effect of this customisation

of the algorithm components is assessed in Chapter 6.

In order to build the probability mass function for each gene g, the strategy is to assign

segments on the WOF to each gene in the network, if there is any indication of a possible

effect of that gene on the current gene g. All genes start with no slice allocated, and are

allocated a number of segments when needed. This number of segments has to be set by the

user, and in the following we are providing the values used in our experiments (empirically

determined), but of course, these values can be changed to produce a higher or lower effect

on the resulting WOF. Several different types of data can be used for this, as follows.

Correlation patterns Pair-wise correlation of gene expression levels has been widely

used to determine putative interactions between genes and a good correspondence between

correlation-based networks and GRNs has been identified [Xulvi-Brunet and Li, 2010].

In consequence, we have introduced a mechanism to use correlation values between gene

patterns to enhance solution space exploration. For this, the Pearson correlation coefficient

has been computed between the time-series data of all genes in the network, and fed into

the Evolutionary Algorithm. Based on absolute values of the correlation to gene g, each

gene i is assigned segments on the WOF:

CORRgi =

⎧
⎨
⎩

0 if ∣rgi∣ < 1st decile

1 if 1st decile < ∣rgi∣ < 3rd decile

4 if 3rd decile < ∣rgi∣ < 7rd decile

6 otherwise

(5.3)

where rgi is the Pearson correlation coefficient of time series data for genes i and g, while

CORRgi is the amount of segments allocated to gene i on the WOF of gene g, based on
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correlation data. The deciles are based on all correlation values obtained. In this way,

genes that show high correlation with the current gene will be more likely to be selected as

possible regulators.

Knockout experiments Gene expression data from knockout experiments can also be

used to enhance the search for network models. Absolute values of log-ratios between

wild-type and knockout samples can be fed into the EGIA framework, and these will be

used to allocate segments on the WOF to those genes that display a large effect on other

genes. The number of segments (KOgi) allocated for each gene i on the WOF of gene g

depends on the magnitude of the log-ratio:

KOgi =

⎧
⎨
⎩

0 if ∣log-ratiogi∣ < 0.2

1 if 0.2 < ∣log-ratiogi∣ < 0.5

4 if 0.5 < ∣log-ratiogi∣ < 0.8

6 if 0.8 < ∣log-ratiogi∣ < 1.1

8 otherwise

(5.4)

Gene Ontology (GO) annotations The GO database contains annotations of which gene

products have been observed to have a specific function, and annotations of transcriptional

regulator activity can be included in the EGIA framework. For this, a list of the subset of

genes in the network that have this annotation needs to be provided as input. These genes

will be allocated additional segments (4 in our experiments) on all the wheels of fortune of

the genes in the network:

ANNOTgi =

⎧
⎨
⎩

0 if gene i is not annotated as TF

4 otherwise
(5.5)

where ANNOTgi represents the number of slices allocated to gene i on the WOF cor-

responding to gene g based on annotation data. In this way, known transcription factors

become more likely to be selected as regulators.

83



Binding site affinities Binding site (BS) affinities can be integrated in a similar manner to

the other types of data. In order to compute the affinity between a regulator and a gene, the

position weight matrix, (Chapter 2, Section 2.2.2), associated with the regulator is required,

as well as promoter sequences for the gene. The promoter sequences can represent known

cis-regulatory modules, or, if not available, simply the upstream DNA sequence. Using

these two pieces of information, BS affinity values are computed as the maximum score

obtained from the position weight matrix on the given sequences (Chapter 2, Equation 2.1).

Based on affinity values, for each regulator i, the average (A) and maximum affinity (Amax),

over all target genes g, is computed, and segments on the WOF are allocated as follows:

BSgi =

⎧
⎨
⎩

0 if Agi < A

6 if A < Agi < A+ A−Amax
2

8 otherwise

(5.6)

where Agi represents the affinity of gene i for binding to a promoter of gene g, and BSgi

represents the segments allocated to gene i on the WOF corresponding to gene i due to

binding site affinity data.

Once all the segments, corresponding to the different type of data, are allocated for

all possible regulators, these are summed (Equation 5.7) and the segments distribution is

normalised to represent a probability mass function (Equation 5.8), by dividing by the total

number of segments on the WOF.

WOFgi = CORRgi +KOgi +BSgi +ANNOTgi (5.7)

fg(i) =
WOFgi∑
iWOFgi

(5.8)

This probability mass function defines the probability that a gene i will be selected as

regulator for gene g during mutation and initialisation. Each target gene g is associated with

such a probability mass function, which will be used during initialisation and mutation to

select new putative regulators and create new candidate network topologies. All data types
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Figure 5.2: Simulations for gene SWI4 (Yeast cell cycle) from two models inferred using
RSS for fitness evaluation. Model 1 displays lower RSS; however, it can not simulate the
oscillation seen in the data. On the other hand, model 2 can simulate the behaviour, but RSS
is larger. The correlation coefficient, however, indicates model 2 as better for simulation.

mentioned can be integrated or left out, depending on availability. When no additional data

are available, the WOF mutation and initialisation are equivalent to the random assignment

from the basic algorithm.

5.2.3 Evaluation

5.2.3.1 Introducing correlation for evaluation

In the basic algorithm (Section 5.1), the fitness of candidate structures is given by the train-

ing error of the corresponding ANN model, obtained after applying the Back-Propagation

(BP) algorithm. The typical objective function for ANN BP is the RSS:

E =
1

2

∑

i

(oi − ti)
2 (5.9)

where oi is the output of the network, ti is the true value in the training data, while the

term 1
2 is used to simplify computation. This is minimised through Gradient Descent to

obtain values for weights, and has been previously used for GRN modelling [Vohradsky,

2001; Tian and Burrage, 2003; Keedwell and Narayanan, 2005]. However, it has some

disadvantages in the context of evolutionary optimisation from time series, as it yields low
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fitness values for those structures that can simulate general behaviour (i.e. the shape of

the time series), but which have shifts in expression values. Hence, these structures can be

discarded from optimisation, although, given the known high dependency between network

topology and oscillatory behaviour in gene expression [Alvarez-Buylla et al., 2007], they

may contain useful information. For instance, Figure 5.2 displays two different model

simulations for a gene, where one has higher RSS, but can simulate the oscillation seen in

the data (shown by the (Pearson) correlation value between simulated and real time series).

During optimisation, this model would be discarded in favour of the one with lower RSS. To

avoid this, a correlation term can be included in fitness evaluation. This has been performed

in two ways in this work: (i) after BP, by adding the negated Pearson coefficient to the

training error to obtain the fitness value for the individual and (ii) during BP, by introducing

the correlation term in the training objective function:

OBJ = E − crANN,D (5.10)

where E is the RSS term from Equation 5.9, rANN,D is the Pearson correlation coefficient,

computed between the output of the ANN and the real data, and c is a constant weight for

the correlation term, which is an algorithm parameter set by the user. The BP algorithm,

employed here, minimises the objective function, i.e. minimises the RSS and maximises

the correlation, by computing the gradient of each weight as described in Equation 5.11.

Δwi = −´

(
∂E

∂wi
− c

∂P

∂wi

)
(5.11)

where ´ is the BP learning rate. By adding the correlation term to the fitness function, those

structures that are able to display the same oscillatory behaviour as the data are also as-

signed a good fitness, facilitating their selection for crossover and mutation. Furthermore,

by including it in the BP calculation, parameter values are optimised to increase correlation

between data and simulation. Models thus obtained display both qualitative and quanti-

tative improvements, discussed in detail in [Sı̂rbu et al., 2010c]. This is one criterion for
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enhancing fitness evaluation, with a second one introduced in the next section.

5.2.3.2 Extending evaluation to other types of data

The fitness function described above only considers time-series data for evaluation. Using

additional data that might provide information on possible structures, and including it in

model evaluation, is one possibility of addressing the noise and under-determination prob-

lem, inherent in time-series data. This further changes the fitness landscape so that models

that have a plausible topology as well as ability to simulate the time-series data correspond

to better fitness.

Section 5.2.2 has presented a mechanism of including different data types that contain

indications on possible direct interactions into the mutation and initialisation operators of

the EA. For each gene, this constructs a probability mass function that describes the likeli-

hood of direct regulation from other genes in the system (WOF). Based on this, interactions

present in a model can also be evaluated, by computing an average of all probabilities as-

signed to them by the WOF. This, used in combination with the previous fitness function

discussed (Equation 5.11), enables construction of a fitness landscape that helps the op-

timisation algorithm find more plausible structures, as well as models that can simulate

continuous behaviour. The final fitness function to be minimised is:

F =
1

2

∑

i

(oi − ti)
2 − cP − w

1

n

∑

(i,j)∈INT

fj(i) (5.12)

where the first term on the right hand side represents the squared error from Equation 5.9,

the second the correlation term from Equation 5.11 while the last term is an average, over

all pair-wise interactions present in the model, of the probabilities obtained by the WOF

mechanism. INT represents the set of interactions predicted by the model ( (i, j) represents

an inferred regulatory effect of i on j), while fj(i) represents the fraction of the WOF

allocated to that interaction (Equation 5.8). This term is weighted by w, a parameter which

needs to be provided by the user. This evaluation criterion is used at both stages of the

optimisation process, i.e. single-gene and complete-model optimisation. Its performance
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Figure 5.3: Framework implementation: main components.

on different datasets will be discussed in Chapter 6.

5.3 Implementation

The framework is implemented in C++, with an Object-Oriented modular design to fa-

cilitate replacement of different components for the analyses presented in the following

chapters. For this, we have used virtualisation to build interfaces for each component of

the EA. Additionally, the Template Method1 design pattern has been employed at several

stages. Figure 5.3 outlines the structure of the framework. Although a general criticism of

using virtualisation in C++ is speed, the flexibility of this design type was necessary in or-

der to facilitate analysis of different algorithm versions and models. The EGIA framework

discussed above uses a subset of all classes implemented, derived through careful analysis

of the different components involved.

The different modules involved correspond to general components of EAs (Chapter 3,
1Template Method [Gamma et al., 1995] is a design pattern that involves implementation of the main schema

of an algorithm in the base class, and delegation of the implementation of specific steps to subclasses.
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Section 3.3). Thus, the modules Initialisation, Mutation, Crossover, Selection and Evalu-

ation are used by the main component, EA, during optimisation (Figure 5.3). These are

defined as interfaces, and several classes for different versions of these operators are imple-

mented (e.g. N-Point Crossover, Gaussian Mutation, Tournament Selection). Customised

versions have also been developed, to account for additional biological knowledge, such as

WOF Mutation and WOF Initialisation.

The Evaluation module makes the connection between each EA individual and the cor-

responding GRN model, which is implemented as an additional module. This facilitates

replacement of model type, without large effects on the other components. The GRN model

component is able to perform simulations of the gene expression process, given the neces-

sary data and a set of parameters. Based on these, the Evaluation module computes the

fitness function and returns it to the main component, EA. Two models are currently imple-

mented in the framework, the S-System and the ANN, but the general framework for any

differential equation systems exists. Two EA schemas are also implemented: differential

evolution and genetic algorithm (Chapter 3). All components exist both for single-gene and

complete system optimisation, and the EGIA algorithm uses both, in an iterative manner,

as discussed (Section 5.2.1).

The complete implementation of the algorithm is attached to the thesis on CD support.

5.4 Parallelisation

The algorithm implements both coarse and fine-grained parallelisation, outlined in Figure

5.4, using MPI (Message Passing Interface).

An initial level of parallelisation, i.e. coarse-grained, is employed in the first stage,

when single gene runs are divided between multiple processor subgroups. Hence, each of

these subgroups is responsible for optimising single-gene model parameters for a subset of

genes.

Within each subgroup of processors, a second level of parallelisation (fine-grained) is

applied, used at the evaluation stage of the GA. Given the complex evaluation process,
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which requires ANN training for each individual, the population is divided between the

processors in each subgroup, to speed up computation. Specifically, the main processor

performs initialisation, mutation and crossover, but when evaluation is required, it invokes

the other processors, that evaluate individuals in parallel and send back the fitness values to

the main processors. This approach is very useful as evaluation is the most time-consuming

part of the algorithm.

For the second stage of the algorithm, i.e. complete-model optimisation, the single-gene

results from the subgroups of processors are combined, and optimisation is performed using

all processors (i.e. from all subgroups), by employing the same fine-grained parallelisation

as for the previous stage. This involves evaluating each individual by a different processor,

and returning the fitness values to the main node.

5.5 Discussion

This chapter presented the structure of the evolutionary integrative framework we have

developed, with detailed explanation of each step and algorithm enhancement. The perfor-

mance on both synthetic and real data will be discussed in subsequent chapters. However,

several advantages of this integration approach can be outlined here.
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Firstly, a major advantage is the flexibility in the amount of data required for inference.

The framework is built so that as much value as possible is extracted from the data available.

The only mandatory data type is time series gene expression data, which is required for

ANN training. No restriction is imposed on the other types of data. For instance, if only

one knockout experiment is available, this can be integrated, even if other genes lack similar

data. Similarly, any number of binding site PSWMs or cis-regulatory modules can be used.

This strategy enables a better description of interactions supported by previous knowledge,

but it is not without risk, as some interactions might be over-represented, if extensive data

focusing on them exists. This can be avoided by selecting the most representative subset of

these2.

Second, the parallel implementation of the algorithm allows for analysis of larger net-

works. In our experiments, we have studied networks ranging from 10 to 100 genes, with

good results, and running times of under 10 hours, on cluster computers. Two facilities

have been used, one internal, with Dual Quad-Core processors (2.66GHz) and one external,

with Dual Hex-Core processors (2.67GHz). Upscaling for larger networks requires a larger

number of nodes in order to obtain the model in such a short time. For instance, while for a

10-gene network 16 processing cores have been used, 100-gene network optimisation was

performed on 180 cores.

Finally, a very important advantage of the framework is the data integration achieved.

The extended number of types of data allows for a more informed exploration of the solution

space, and reduces biases coming from one data type alone. Additionally, this approach of

integrating additional data, beside time-series, is platform-independent, i.e. data from any

experimental setting can be included. This is due to the usage of PSWMs (for binding

affinity) and log-ratios (for knockout data), which can be extracted from every independent

experiment (i.e. within-platform analysis) and then can be integrated in the EGIA frame-

work directly, without any other pre-processing required. This is very important in the

context of existing data, which often come from different laboratories and platforms. How-
2Selection can be based on reliability of data source of other pre-inference data analyses (e.g. selecting

PSWMs that correctly identify some previously known interactions.
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ever, large-scale integration introduces the risk of inferring distorted models if the different

data sets are not of good quality. Consequently, a careful analysis prior to integration is

required, to identify the data texture and the benefits introduced by each data type. A case

study in this regard will be presented in Chapter 6.
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Chapter 6

Step 2: Integrating other types of

data

In this chapter, we consider a second step for the integration algorithm, i.e. inclusion of

other data types. The methodology has been presented in Chapter 5; here we discuss the ef-

fects of integration on the algorithm performance. This includes an analysis of the different

integration stages, i.e. customised mutation (WOF mutation) and evaluation. Further, the

effects of including available data types at the different integration stages are discussed.

Algorithm performance is evaluated both quantitatively and qualitatively. Qualitatively,

the AUROC (Area Under the ROC Curve) and AUPR (Area Under the Precision-Recall

Curve) are computed, using a set of known interactions as gold-standard (see Appendix

C for details on these measures). Given that the algorithm is stochastic in nature and the

model quantitative, predictions of interactions have been performed by using multiple mod-

els obtained in different runs, and employing a voting procedure for possible interactions.

In this way, an interaction that appears in more models is considered to be more plausible

(this method of voting has been previously used to extract qualitative information in similar

settings [Deng et al., 2005; Daisuke and Horton, 2006]). The set of possible interactions is

ranked from highest to lowest number of votes, and used for AUROC/AUPR computation.

Quantitative evaluation of the inferred models is performed by simulating a set of test data,
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not used for inference.

Both synthetic (DREAM4 data, described in Appendix B.1) and real (Drosophila melanog-

aster, Appendix B.3 ) datasets are used to assess algorithm performance. The synthetic

dataset includes two networks, of 10 and 100 genes respectively. For these, the gold-

standard interactions for the DREAM4 dataset are used for qualitative evaluation, and MSE

for dual-knockout experiments for quantitative. For real data, a sub-network of 27 genes

involved in embryo development is analysed, (Appendix B, Table B.1). The single-channel

(SC) microarray dataset, (as described in Appendix B.3), is used for training, while the dual-

channel (DC) dataset is used for quantitative evaluation, (RMSE between real and simulated

data). Cross-platform normalisation (namely XPN, Section 4.3.1) has been performed prior

to model inference. For qualitative evaluation, interactions from the Drosophila Interactions

Database (DROID, Appendix B) are considered gold-standard for the real dataset. The set

of known interactions is not complete but is based on experimental evidence and gives a

good indication on the efficiency of the algorithm in obtaining known direct interactions.

The hypothesis tested is that integration of large scale biological data improves both

qualitative and quantitative performance of models inferred. However, using meta-information

carries risk, as discussed (Chapter 5) and results are not always an improvement. Caution is

required, as quantitative improvement should not negatively affect qualitative analysis and

vice versa.

6.1 Customised mutation (WOF)

A first analysis of data integration studies the effects of using WOF mutation during optimi-

sation, in comparison to random mutation. This mutation employs meta-information, avail-

able from different data types, to lead the algorithm towards models with more direct inter-

actions that can simulate the time series. This attempts to reduce the under-determination

problem for large GRNs, and, in consequence, improve the inferential performance of the

automatic reverse engineering method. In order to identify which type of data is more use-

ful, different variants of WOF mutation have been employed, to assess each type separately,
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Figure 6.1: WOF mutation for the 10-gene DREAM4 network: qualitative results. The
graph shows AUROC and AUPR values obtained after 10 runs with each WOF mutation
variant, compared to random mutation (Random). The variants are: KO (knockout experi-
ments), Corr (correlation patterns), KO+Corr (both). Indications are that usage of knock-
out data results in an improved interaction set predicted, as opposed to correlation patterns.
However, usage of both provides the best predicted connections.

followed by the integration of all types.

6.1.1 WOF mutation for synthetic datasets

For synthetic data, two types of additional information have been used for WOF mutation,

namely pair-wise absolute correlation between time-series for genes and log-ratios from

knockout experiments. Three variants of WOF mutation thus apply: KO (using only knock-

out experiments), Corr (using only correlation patterns) and KO+Corr (using both). These

have been compared for the two networks (sizes 10 and 100) with the random mutation.

For the 10-gene network, Figure 6.1 displays qualitative results, i.e. AUROC and AUPR

values obtained after 10 different runs with each mutation operator. This indicates that

a larger number of correct interactions (i.e. that exist in the gold-standard network) are

included in models obtained by KO and KO+Corr, while correlation only does not display

an improvement compared to Random mutation. At the same time, Figure 6.2 displays

quantitative results, comparing average MSE values for dual-knockout experiments over 10

runs for each algorithm variant. T-tests were performed, to evaluate the significance of the

MSE differences observed between the basic algorithm (Random) and all other variants, and
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Figure 6.2: WOF mutation for the 10-gene DREAM4 network: quantitative results. The
graph shows average MSE on dual knockouts for models obtained with different mutation
variants (10 models for each bar) and error bars representing the standard deviation. Addi-
tionally, p-values of observed differences between each algorithm variant and the basic one
are given. The same mutation variants as Figure 6.1 are present. Models inferred with KO
mutation display best simulation ability, significantly different than Random mutation, at
the 1% level.

p-values are displayed on the bar-plot. These show improvement in MSE at 1% significance

level only for KO mutation, while the other variants yield MSE values similar or larger than

random mutation. Together with AUROC and AUPR values, this indicates that, for the

10-gene network, correlation patterns are not particularly useful to extract models with

increased performance, while KO mutation positively affects models, both qualitatively and

quantitatively. Using KO+Corr yields the best set of predicted connections, but quantitative

behaviour is not better than that of random mutation.

Similarly, Figures 6.3 and 6.4 display results for the larger network of 100 genes, for 9

inferential runs. Again, results show positive effect of knockout data on the predicted in-

teractions, while using correlation only disimproves results compared to random mutation.

On the quantitative level, KO mutation achieves best MSE improvement compared to the

basic algorithm, significant at the 1% level. Similar to the 10-gene network, the best set of

predicted interactions is obtained by KO+Corr, but with a slight increase in average MSE,

so we can conclude that KO mutation displays best results.
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Figure 6.3: WOF mutation for the 100-gene DREAM4 network: qualitative results. The
graph shows AUROC and AUPR values obtained after 5 runs with each WOF mutation
variant, compared to random mutation. The variants are the same as Figure 6.1. Similarly
to the 10-gene dataset, KO mutation has a positive effect, while Corr a negative one, and
the best interactions are found using both types of data.

6.1.2 WOF mutation for the real dataset

For the inference of the Drosophila melanogaster 27-gene network, several types of pub-

licly available data have been retrieved and used for building different variants of WOF

mutation operators. These include (i) knockout experiments for 8 genes, which were used

to compute log-ratios against wild-type experiments, (ii) pair-wise correlation between gene

expression patterns, (iii) Gene Ontology (GO) [Ashburner et al., 2000] annotations, which

assign the function of transcriptional regulation to 17 of these genes and (iv) binding site

affinities for 11 transcription factors (computed using known cis-regulatory modules and

position weight matrices). Details on these data are included in Appendix B.3, while the

methodology to integrate them in the WOF mutation operator has been described in Chap-

ter 5. With these data, five different variants of WOF mutation have been derived and

compared to random mutation: (i) KO, (ii) Corr, (iii) Annot, (iv) BS, (v) All (employing all

data available).

Figure 6.5 displays AUROC and AUPR values for the 5 variants, while Figure 6.6 dis-

plays RMSE (Root Mean Squared Error) values in simulation of dual-channel (DC) data

used for testing only. The set of predicted connections improves when using some addi-

tional data types for WOF mutation. However, compared to basic mutation, changes in
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Figure 6.4: WOF mutation for the 100-gene DREAM4 network: quantitative results. The
graph shows average MSE on dual knockouts and error bars for models obtained with differ-
ent mutation variants (9 models for each), and corresponding p-values for comparison with
the basic algorithm. The same mutation variants as Figure 6.1 are present. KO+Corr seems
to decrease simulating abilities, with a larger mean for MSE values, while KO performs
best, significantly better than the basic algorithm (p = 0.0097).

the simulation power seem random. For those data types showing better qualitative results,

binding site affinities seem to be most important, followed by knockout experiments, while

correlation patterns seem to decrease performance for these data as well. Similarly to syn-

thetic data, the best interaction set is found by integrating all data types, indicating that the

collective value of these data increases by integration, compared to the individual input of

each data type.

However, the lack of improvement in simulation performance is a concern. It is ex-

pected that, if interactions are better described, the ability to simulate patterns in the data

should increase. However, when applied to gene expression data, our customised mutation

operator still cannot describe better quantitative models, even when additional correct inter-

actions are found. This is particularly true for the real network. This may be because the fit-

ness landscape is still distorted by noise or may be inherently linked to under-determination.

The evaluation criterion (MSE and correlation to training data, Chapter 5) is crude so that

reverse engineering becomes increasingly fuzzy. To address this, we have derived a novel

fitness evaluation criterion that not only accounts for the similarity of simulation to training

data, but also includes meta-information on possible interactions. This meta-information
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Figure 6.5: WOF mutation for the 27-gene Drosophila melanogaster network: qualitative
results. The graph shows AUROC and AUPR values obtained after 10 runs with each WOF
mutation variant, compared to random mutation. The variants are: KO (knockout experi-
ments), Annot (GO annotations), BS (binding site affinities), Corr (correlation patterns), All
(all data). BS displays the largest positive effect on the set of interactions retrieved, followed
by KO, while Corr displays the largest negative effect, similarly to results on synthetic data.
However, as for DREAM4 data, the concerted effect of all integrated data types provides
the best inferred interaction set.

is based on the same types of data used for WOF mutation (details on derivation of the

criterion have been provided in Chapter 5). This new evaluation criterion creates a differ-

ent fitness landscape, where models that can simulate the training data, but also contain

plausible interactions given this meta-information, are assigned a better fitness value. The

next section discusses the effect on the resulting models of using this evaluation criterion

combined with WOF mutation.

6.2 Extending evaluation

As with the previous section, different variants of the algorithm using different types of data

are analysed, for each dataset. To analyse the error structure of each data type, algorithms

variants are built by systematic exclusion of each data type from the pool of available data,

i.e. step-down rather than step-up, as in the previous section.
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Figure 6.6: WOF mutation for the 27-gene Drosophila melanogaster network: quantitative
results on test data. The graph shows average over 10 runs of RMSE on test data (DC
dataset) for models obtained with different mutation variants. As previously, error bars and
p-values of observed differences from the basic algorithm are displayed. The same mutation
variants as Figure 6.5 are present. No significant change can be seen in the RMSE values.

6.2.1 Extended evaluation for synthetic datasets

For the synthetic datasets, only correlation patterns and log-ratios for knockout experiments

are available, so, again, three versions of the algorithm were compared to the basic one

[Sı̂rbu et al., 2010c] using random mutation and evaluation based on MSE and time series

correlation to initial data. These three variants are addressed as All-eval (including all data

available in WOF mutation and evaluation), -KO (all data excluding knockout experiments)

and -Corr (all data excluding correlation patterns).

Figure 6.7 displays AUROC and AUPR values obtained after 10 runs of each algorithm

on the 10-gene synthetic network, while Figure 6.8 displays average over 10 runs of MSE

values for dual knockout simulations, and corresponding p-values of differences observed

(compared to the basic algorithm- Random). As the figures show, extending the evaluation

criterion appears to produce both qualitative and quantitative improvement when compared

to the basic algorithm. Results are also better than when applying WOF mutation only (Fig-

ures 6.1 and 6.2), with larger AUROC/AUPR and lower MSE and p-values. The two types

of data used, i.e. correlation patterns and knockout experiments, have different effects on

the models. The set of predicted interactions is slightly improved when knockout experi-

ments only are used (-Corr), but quantitative behaviour is best (lowest MSE values) when

both data types are integrated. When knockout experiments are excluded, AUROC/AUPR
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Figure 6.7: Mutation and extended evaluation for the 10-gene synthetic dataset - qualitative
results. Three algorithm variants are compared to the basic algorithm without additional
data, under two criteria: AUROC and AUPR. These variants are: All-eval (including all
data available in WOF mutation and evaluation), -KO (all data excluding knockout experi-
ments) and -Corr (all data excluding correlation patterns). AUROC and AUPR values are
increased by using extended evaluation and WOF mutation. The greatest positive effect is
from knockout data, while correlation patterns do not appear to be beneficial.

values decrease significantly. This shows that knockout data are very important for extract-

ing direct interactions.

Similarly, for the 100-gene network, qualitative results are displayed in Figure 6.9,

while Figure 6.10 evaluates quantitative behaviour on dual knockout data (after 9 runs for

each algorithm variant). Introducing the enhanced evaluation criterion largely increases

the number of correct interactions discovered, as shown by the AUROC and AUPR values.

While WOF mutation only achieved an AUROC value of 0.73 and AUPR of 0.20 (Section

6.1), here we can observe values of 0.83 and 0.46 for these measures. The best results are

obtained after excluding correlation patterns from the data types used, indicating again that

these are not particularly useful in this context, (as found also for the 10-gene network).

On the other hand, when excluding knockout experiments, AUROC/AUPR values decrease

significantly, showing that these data are very important in predicting a good set of interac-

tions.

From the quantitative point of view, the novel evaluation criterion yields further models

with low MSE in dual knockout simulations (the minimum values obtained achieve values
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Figure 6.8: Mutation and extended evaluation for the 10-gene synthetic dataset - quantita-
tive results. The same algorithm variants as Figure 6.7 are compared under the criterion
MSE on dual-knockouts. Extended evaluation improves MSE on dual knockouts signifi-
cantly for all algorithm variants, with the largest difference when using both knockout data
and correlation patterns.

Table 6.1: Comparison of EGIA with DREAM4 results. For the dual knockout MSE values
of EGIA, both the minimum and the average values obtained in repeated runs are provided.

10-gene√
AUROC ∗AUPR

10-gene
dual-ko
MSE

100-gene√
AUROC ∗AUPR

100-gene
dual-ko
MSE

EGIA 0.6735 0.019/0.028 0.624 0.0229/0.0324
Team 548 0.654 0.038 0.544 0.0349
Team 532 0.733 0.020 0.505 0.0303
Team 498 0.702 0.029 0.28 0.0327

under 0.025, which has not been obtained by WOF mutation only), with best results when

excluding correlation patterns (with average MSE lower than WOF). However, although

minimum and average MSE are lower compared to the basic algorithm, the overall quan-

titative results from multiple experiments are only statistically significant at the 10% level

(-Corr).

We have compared these results to those obtained by the participants in the DREAM4

competition. The top three teams that have submitted quantitative and qualitative results

for both network sizes have been selected for comparison. For these, AUROC/AUPR and

MSE values are given in Table 6.1, with best performances outlined in bold font. EGIA

has obtained the best predicted interactions for the large scale network, while for the small
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Figure 6.9: Mutation and extended evaluation for the 100-gene synthetic dataset - qualita-
tive results. Three algorithm variants are compared to the basic algorithm without additional
data, under two criteria: AUROC and AUPR. These variants are: All-eval (including all data
available in WOF mutation and evaluation), -KO (all data excluding knockout experiments)
and -Corr (all data excluding correlation patterns). Results show a large increase in AU-
ROC and AUPR values after extending evaluation, with best influence from the knockout
data.

scale one it scored 3rd. This shows that our method is more scalable compared to the others.

From the quantitative simulation point of view, EGIA has obtained models with lower MSE

than the other methods on dual knockouts for both network sizes; however, on average,

behaviour is comparable to other methods. Nevertheless, given the good qualitative results,

we conclude that this framework has something to contribute for extracting models with

correct interactions, while it can also simulate unseen behaviour.

6.2.2 Extended evaluation for the real dataset

For the real dataset, five variants of the algorithm have been analysed: All-eval (evaluation

and WOF mutation using all data available), -Corr (all data excluding correlation patterns),

-KO (excluding knockout experiments), -BS (excluding binding site affinities), -ANNOT

(excluding GO annotations), enabling assessment of the error structure in these data and

how this influences the models obtained. Figure 6.11 displays AUROC and AUPR values

for the five algorithm variants, compared to the basic algorithm. These indicate that in-

tegrating all types of data yields the best prediction for interactions. The largest effect is

from the binding site affinity data, as with Section 6.1. However, all data types seem to
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Figure 6.10: Mutation and extended evaluation for the 100-gene synthetic dataset - quan-
titative results. The same algorithm variants as Figure 6.9 are analysed. As previously,
standard deviation and average of MSE values for dual knockout experiments and p-values
are displayed. -Corr achieves best error.

contribute, unlike the synthetic data where correlation patterns used both for mutation and

evaluation disimproved performance compared to the basic algorithm. The AUROC and

AUPR values obtained here are no better than those resulting from WOF mutation only,

indicating that some of the data types included in the evaluation criterion might favour indi-

rect interactions also. This leads to a decreased qualitative performance compared to WOF

mutation only, (but still superior to the basic algorithm).

Quantitative evaluation was performed again by computing the RMSE with the test

dataset (DC), and Figure 6.12 shows average results obtained by each of the algorithm

variants in 10 runs, with p-values of observed differences from the basic algorithm. Unlike

WOF mutation, extending evaluation does improve quantitative behaviour, with RMSE val-

ues significantly lower than the basic algorithm (at the 1% level for All-eval and -Corr, and

the 5% level for -KO and -Annot). This improvement is important, as it means that models

not only contain more valid interactions, but also simulate test data better, i.e. improvement

in both qualitative and quantitative performance. The error structure analysis also indicates

that correlation patterns are once again not particularly useful for improving quantitative

performance, while binding site affinities seem to be crucial.

For extended evaluation, qualitative results are not enhanced as much as by using WOF

mutation only, while quantitative improvements are significant. Given this, we hypothesise
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Figure 6.11: Mutation and extended evaluation for the 27-gene real dataset - qualitative
results. Five algorithm variants are compared, under the AUROC and AUPR criteria, to
the basic algorithm: All-eval (evaluation and WOF mutation using all data available), -
Corr (all data excluding correlation patterns), -KO (excluding knockout experiments), -BS
(excluding binding site affinities), -ANNOT (excluding GO annotations). All-eval achieves
best AUROC/AUPR. The most important type of data appears to be the binding site affinity
set, while the least affecting are the correlation patterns.

that it is possible to match the quality of connections from WOF, while maintaining the

simulation abilities (low RMSE values on test data), by using only some additional data

types for evaluation. While WOF mutation is a weak integration method, as it drives the

algorithm only towards promising areas of the search space, without forcing it to choose one

model or another, extended evaluation is a strong integration criterion, having the final say

in which model is better or not. This means that, while the mutation operator can be resilient

to some level of noise in the data, the evaluation criterion must include more specific data

types. Given the results from the error structure analysis of the available data for the real

dataset, correlation patterns, knockout experiments and GO annotation are more suitable for

mutation only, as they provide guidance information only on potential interactions. Binding

site affinities are, however, suitable for formal model evaluation, as they have proved to

be crucial for obtaining good quantitative performance (Figure 6.12). For the rest of this

section, therefore, we present similar analysis for different algorithm variants employing

only binding site affinities in evaluation, but use various forms of WOF mutation: BS-eval

(using all data types for mutation), -Corr (excluding correlation patterns from mutation),

-KO (excluding knockout experiments), -Annot (excluding GO annotations).
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Figure 6.12: Mutation and extended evaluation for the 27-gene real dataset - quantitative
results on test data. The same algorithm variants as Figure 6.11 are displayed. Average
RMSE values on the test data, for 10 runs of each algorithm, with corresponding error bars
and p-values are displayed. These show, finally for these data, a significant decrease in error.
The graph also suggests the fact that binding site affinity data is crucial to obtaining better
simulation abilities (a larger error is obtained by eliminating these data from the algorithm).

Figure 6.13 displays AUROC and AUPR values for all four algorithm variants above,

compared to All-eval (evaluation and mutation using all data types) and Random, the basic

algorithm (no meta-data used), while Figure 6.14 shows average RMSE values for test

data. BS-eval produces models with better connections compared to All-eval, while RMSE

on test data is maintained low (BS-eval and -KO significantly different from Random at

the 1% level). Connections obtained with BS-eval are better than any of the WOF mutation

variants (Section 6.1), while quantitative behaviour is similar to that for All-eval, suggesting

that this is the best approach for integrating these available data for this dataset, providing

both qualitative and quantitative improvements compared to the basic algorithm.

By extending evaluation, RMSE values for training data display a slight increase, both

for synthetic and real data. One explanation for this is that, during training, due to the use

of the advanced evaluation criterion, the generalisation ability of models is increased, as

discussed (RMSE on test data decreases), and the over-fitting of training data is decreased.

Generally, machine learning techniques need to obtain a balance between generalisation

and over-fitting, which was made possible here by the inclusion of additional data types for

training.
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Figure 6.13: Mutation and binding site extended evaluation for the 27-gene real dataset -
qualitative results. Four algorithm variants are compared, under the AUROC and AUPR
criteria, to the basic algorithm and to All-eval (from Figure 6.11): BS-eval (using binding
site affinities for evaluation and all data types for mutation), -Corr (excluding correlation
patterns from mutation), -KO (excluding knockout experiments), -Annot (excluding GO
annotations). All four variants are better than All-eval, while -KO achieves best overall
AUROC/AUPR.

6.2.3 Integrated time series

In Sections 6.1 and 6.2, an analysis of integrating different types of data at different stages

of the evolutionary algorithm (i.e. mutation and evaluation) was presented. Indications

were that, for the real dataset used, using WOF mutation with all data types and evaluation

extended for binding site affinities (BS-eval), gave best qualitative and quantitative predic-

tions. A single channel time-course dataset (SC) was used for training, and a dual-channel

(DC) for testing. This was necessary in order to enable validation of the different integra-

tion approaches, and to select an algorithm variant with optimum performance. However,

in Chapter 4 it was shown that integrating different available datasets can lead to less noise

over-fitting and better prediction of interactions. In this section, we develop this finding and

use the best-performing algorithm variant (BS-eval) to integrate the two microarray datasets

available for the Drosophila melanogaster embryo development. The aim is to obtain better

prediction of interactions between genes.

The RMSE (root mean squared error) values for the DC and SC dataset are provided

in Figure 6.15, both when the SC dataset only is used for training, and when the two time-
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Figure 6.14: Mutation and binding site extended evaluation for the 27-gene real dataset -
quantitative results on test data. The same algorithm variants as Figure 6.13 are displayed.
Average RMSE values on the test data, for 10 runs of each algorithm, error bars and p-values
are displayed. These suggest that the simulation abilities for test data remain significantly
different from Random, when BS-eval is used.

course datasets are integrated. This shows that, after integration, the RMSE on the SC

dataset increases slightly, indicating less noise over-fitting, while that for the DC dataset

decreases, as expected when data is transferred from the test to the training set.

Additionally, Figure 6.16 displays AUROC and AUPR values obtained by time-series

integration, compared to using only the SC dataset for training. This shows increase in AU-

ROC and AUPR values, suggesting that Drosophila melanogaster gene-interactions pre-

dicted from the two datasets are better than from one only. This is in agreement with broad

conclusions of Chapter 4.

6.3 Conclusions

This chapter has presented an analysis of data integration for gene regulatory network

modelling. Two integration mechanisms have been analysed, namely customised mutation

(WOF) and extended evaluation. Additionally, the error structure of available data has been

studied in order to identify which data type has a larger effect on the networks analysed

here.

WOF mutation yielded better prediction of pair-wise interaction between genes, com-

pared to random mutation, for all networks analysed, with knockout experiments and bind-

ing site affinities proving to be most important. However, for the real network, no quantita-
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Figure 6.15: Integrating time-course data for mutation and binding site extended evaluation
on the 27-gene real dataset - quantitative results. Boxplots of RMSE values on the SC and
DC datasets after inference from either SC only or SC+DC (10 runs for each box plot). The
image shows that the RMSE on the DC dataset decreases after integration (naturally, as it is
transformed from a test dataset into a training dataset), while RMSE on SC data increases,
suggesting less over-fitting by integration.

tive improvement could be achieved by considering other factors in mutation alone, which

is disappointing as better knowledge of interactions involved should intuitively lead to im-

proved model performance. An extended evaluation criterion, however, led to both quanti-

tative and qualitative improvement, with smaller errors obtained on the test datasets. This

supports the hypothesis that, given the limited nature of data, evaluation with time-series

alone is not powerful enough for GRN models and that additional information from other

data types is needed to aid further selection of models.

The error structure analysis suggested that not all data types are useful for inference,

however, and that great caution needs to be taken when integrating these. For synthetic

data, knockout experiments proved to be highly important to obtain better predictions of

regulatory interactions, while for real data, binding site affinities seemed to have the largest
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Figure 6.16: Integrating time-course data for mutation and binding site extended evaluation
on the 27-gene real dataset - qualitative results. AUROC and AUPR values are displayed
for connections obtained with the BS-eval version of the algorithm, from the SC dataset
and from both SC and DC datasets. Results show that better connections are obtained
integrating both datasets for inference.

impact. Correlation patterns, on the other hand, were of some help when integrated in

WOF mutation with the other data types, while individually were of less importance. This

might be due to the fact that correlation patterns do not indicate only direct interactions, but

also indirect effects, which can be captured by the models. Additionally, it is difficult to

distinguish between co-regulated genes and those that influence eachother, only from these

patterns. This is why integration with the other data types proved to be more valuable.

WOF mutation proved to be a flexible integration tool, while evaluation is a more rigid

one. For best quantitative and qualitative results, only very reliable data should be used

for the latter, while noisy data can be integrated in the former. In our experiments, best

performance on real data was found to be that for the algorithm variant which used only

binding affinities for evaluation, and all data types for mutation. This suggests that the

other data types can provide only general guidelines for possible structures. For instance,

log ratios in knockout experiments, or correlations between gene expression patterns can

sometimes be misleading, due to the existence of feedback loops, alternative regulatory

paths or indirect interactions in the real network. Also, results are highly dependent on data

quality.

Finally, an integration of the two time-series datasets has been performed, and this fur-

ther improved the ability to predict possible interactions, supporting findings from Chapter
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4.

Given the heterogeneity of the different data types and the intrinsic noise, this chapter

has also introduced a general methodology for data integration. This consists of dividing the

available time-course data into test and training datasets and performing an error structure

analysis to identify which data type is important for both qualitative and quantitative perfor-

mance, and at which stage these data should be integrated (i.e. mutation or evaluation). This

exposes the texture of the data. Based on the results obtained, we have concluded that noisy

data can be useful if integrated within the mutation operator, to span the solution space. At

the same time, data which are more specific with respect to possible connections should be

included in evaluation. The results presented here apply for the Drosophila melanogaster

embryo development and associated datasets available for this system. When changing the

system under analysis, e.g. a different process or organism, the data types available and

their quality change, so performing an initial error analysis is crucial to determining the

best integration strategy.
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Chapter 7

Step 3: Extension to NGS data

In this Chapter (Sections 7.1, 7.2 and 7.3), an analysis of RNA-seq expression data in com-

parison with microarrays is performed. Previous platform comparisons exist in the literature

(Chapter 3, Section 3.6), and these concentrate on validating results from RNA-seq on mi-

croarrays, and identifying advantages and disadvantages. For this, existing analyses use the

same sample for measurements on different platforms. However, in the real setting, large

scale data integration means combining heterogeneous datasets measured in different set-

tings and with different samples. In consequence, a discussion of overlapping features in a

broader sense, that may allow further integration of these data, is presented here1. For this,

three gene expression time series datasets measuring embryo development for Drosophila

melanogaster, (RNA-seq (NGS), single-channel (SC) and dual-channel (DC) microarrays,

Appendix B, Section B.3), have been studied for differential expression (DEx) , and results

compared to previous analyses focusing on more restrictive samples. Further, a cluster anal-

ysis is presented, to identify the structure of the gene space in the different datasets. This

has not been previously performed, to our knowledge (sample classification only has been

briefly analysed, [Cabanski et al., 2010]).

Additionally, Section 7.4 analyses the performance of the inferential framework pre-

sented here (EGIA) on RNA-seq data. Although application of the framework to this differ-
1Raw RNA-seq data has been processed by Dr. Gráinne Kerr, German Cancer Research Centre, Heidlberg,

to obtain gene counts and expression values.
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ent type of data is straightforward, an analysis of results obtained needs to be performed in

order to evaluate the extent to which the framework can be extrapolated for these data. For

this, the same 27-gene network for Drosophila melanogaster embryo development, studied

in Chapter 6, has been analysed and results compared to those obtained by using microarray

data for inference.

7.1 NGS vs. microarrays: comparison setup

7.1.1 Data pre-processing

7.1.1.1 Sequencing data

The Illumina reads were mapped to the April 2006 assembly of the Drosophila melanogaster

genome (dm3, BDGP Release 5) using Tophat (v 1.0.14). This tool also makes use of gene

annotations to detect reads that map across known and putative splice junctions. HTSeq, a

Python package that provides infrastructure to process data from high throughput sequenc-

ing experiments, was used to ‘count’ the number of reads mapping to each gene. Read

counts per gene were calculated to be the total number of reads, which mapped uniquely

to annotated regions (Release 5.12 annotations). Reads that mapped to more than one lo-

cation were considered ambiguous and not used. Unique reads, which mapped to a locus

with more than one annotated gene, were considered ambiguous and not used (Figure 7.1).

Reads per kilo base per million reads mapped (RPKM) values were calculated to estimate

and compare mRNA expression levels across samples. Gene length was defined to be the

region that encompasses the union of all isoforms of a gene, which do not overlap other

genes, (Figure 7.1).

7.1.1.2 Microarray data

For the two microarray datasets, R software, specifically the limma package [Smyth and

Speed, 2003], was used for normalisation and expression value extraction. Background

extraction, within-array and between-array normalisation was performed for the DC dataset
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Figure 7.1: Calculation of gene length.

using the normexp and loess methods in limma, while for the SC dataset, the RMA method

was employed. The resulting normalised datasets were used for DEx and cluster analysis.

7.1.2 Evaluation of differential expression

DEx analysis was performed, using R software, i.e. the limma package (lmFit and eBayes

methods [Smyth, 2004]), for the two microarray datasets (SC and DC), and the DESeq

package [Anders and Huber, 2010] for the sequencing dataset (NGS). For each dataset,

the set of differentially expressed (DEx) genes, for at least one time point, compared to

the initial one, was retrieved. Given that the data were sampled at different time points

and sampling intervals in the three datasets, only those common to all datasets were used,

resulting in a total of four experiments for each. This resulted in excluding 42% of the

time points from the DC dataset, and 66% from the other two, which was far from ideal.

Nevertheless, the purpose of the current exercise was to find a ‘kernel’ comparison base,

for which to examine all three methodologies, and this is the basis for proceeding with the

severely truncated datasets. As more data become available, relative performance may be

assessed on more extensive and complete datasets 2.

The DEx tests assumed a linear model for the gene expression levels in the two microar-
2In the NGS dataset, genes with null counts in all time points, (11% of genes), were removed before DEx

analysis.
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ray datasets and a negative binomial distribution for counts in the NGS dataset. Based on

data replicates, estimates of the expected mean and variance were obtained. The DEx test

between two samples is based on the null hypothesis that the expression values of a gene

in both come from the same distribution, with p-values obtained for each gene and sample

pair ([Anders and Huber, 2010; Smyth, 2004] for more detail).

Sensitivity analyses, based on p-value thresholds for DEx, were performed for 0.000001 <

p < 0.01. These were used to assess how DEx sets of genes were reduced, and whether

these were common across different datasets. A similar analysis was performed for log-

ratios, (computed between each time point and the first one), as these can provide a more

uniform criterion for selection of DEx genes across platforms. Given very similar results

for thresholds based on p-values and log-ratios, only the former are discussed here.

Pair-wise comparison between the three datasets was performed, by computing the

number of DEx genes in each dataset for each threshold and extracting common DEx genes.

Given that some genes were not present in all datasets (as microarray probes differ between

platforms, with some having missing values); these were removed from the analysis before

each pair-wise comparison. Thus, when comparing datasets DC and SC, genes present in

both datasets only were considered, whether or not present in dataset NGS. This resulted

in eliminating the additional DEx genes from the first dataset that were not sampled in the

second, to remove bias due to platform sampling range. On average, 70% of genes were

retained between the DC and the other two datasets, while about 80% were retained for the

NGS vs. SC analysis. While the full data might reasonably be expected to provide addi-

tional insight on the extended gene set by platform, truncation was required for the current

study, which aimed to identify strictly overlapping data structures for eventual integration,

rather than to provide a ranking of technologies.

As indicated in Appendix B, each of the three datasets contains at least three replicates

for each time point. The NGS replicates are technical, while those from microarrays are

biological. Given that technical replicates differ only in experimental setting, while bio-

logical diversity is not present, the number of differentially expressed genes in the NGS

dataset may be inflated, due to variance over-estimation. However, using a pooled approach
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[Anders and Huber, 2010] for variance estimation in the NGS dataset resulted in a very

low number of differentially expressed genes. On investigating the coefficient of variation

for replicates in all datasets, larger values were obtained for the NGS dataset, indicating

that these technical replicates are not, in fact, very similar. In consequence, the non-pooled

approach was used for these, although this may have resulted in a small bias increasing the

number of DEx genes retrieved.

7.1.3 Clustering and evaluation measures

Further analysis involved clustering the DEx sets obtained for different thresholds, to anal-

yse how the quality of the clusters is affected for threshold choice and different datasets.

The analysis has been performed on the DEx sets corresponding to p-thresholds of 0.01

and 0.0001, using expression values for all time points available in the datasets, (i.e. values

resulting from limma normalisation for microarrays, and RPKM [Mortazavi et al., 2008]

values for NGS data). Again, p-thresholds were chosen for different level of test signifi-

cance. Two clustering algorithms (provided by R software) were employed: K-means, with

Euclidean distance, and biclustering using the Plaid algorithm; packages flexclust [Leisch,

2006] and biclust [Kaiser and Leisch, 2008] respectively. K-means was applied with the

preset number of clusters ranging from 2 to 400 (with a step of 1 between 2 and 20 and a

step of 10 between 20 and 400). This large range was chosen to explore different granularity

levels, given that some datasets clustered contained over 8000 genes. The Plaid algorithm

was applied 10 times for each dataset. The three datasets were standardised by experiment,

(i.e. converted to standard scores) prior to clustering, to remove biases related to scale,

that may differ from one time point to another, due to experimental differences. Additional

clustering was performed with correlation K-means, (i.e. by using Pearson correlation r

to compute a distance measure 1 − r), but results were very similar and are not, therefore,

discussed here.

To evaluate clusters obtained from each dataset and threshold, several criteria were

used. For K-means, the Davies-Bouldin index (DBI) [Davies and Bouldin, 1979] was com-

puted for each run, (with a different number of preset clusters), as this indicates whether
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Figure 7.2: Number of differentially expressed genes for each dataset with various p-
thresholds. The NGS dataset displays largest sensitivity to the DEx test, followed by SC
and DC.

clusters are both well-defined and well-separated (a lower DBI value indicates compact

and distinct clusters). For biclusters, the within-cluster variance was computed, using the

biclust package. This gives an indication of the bicluster compactness, with lower vari-

ance corresponding to tighter groupings. Additionally, for both K-means and biclusters,

the Biological Homogeneity Index (BHI) [Datta and Datta, 2006], based on Gene Ontology

[Ashburner et al., 2000] annotations for molecular function (MF) and biological process

(BPr) , was computed for all clusters (using package clValid [Brock et al., 2008]). The BHI

represents the percentage of gene pairs in a cluster with common annotation, and allows

for evaluation of cluster quality from the biological point of view (complementing the other

evaluation criteria based on expression value distance measures alone).

7.2 NGS vs. microarrays: comparison results

7.2.1 Differential expression analysis

In the first analysis performed, DEx sets of genes, obtained from different datasets with

different thresholds, were studied. Ideally, the gene sets should show significant overlap,

and should be similar in size. Figure 7.2 shows the number of differentially expressed

genes in each dataset, while Figure 7.3 shows percentages of common genes identified (for
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Figure 7.3: Percentage of common differentially expressed genes for dataset pairs with
different p-value thresholds. For each pair of datasets, only the genes that exist in both
datasets are considered. The percentage of common genes decreases always for the SC and
NGS datasets, while for the DC dataset, which has the lowest number of DEx genes, it
increases only slightly.
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dataset pairs). The NGS dataset identified the largest number of genes, in agreement with

previous studies, followed by SC and DC. Datasets SC and NGS show greatest similarity

for the DEx sets obtained, with a large number of DEx genes involved, mostly common to

both. Compared to this, the DC dataset captures only a restricted DEx gene set, implying

that the NGS and SC datasets are more sensitive to the DEx test. Additionally, when more

stringent p-thresholds are applied, a large number of DEx genes are retained for both, while

a decrease is seen for the DC dataset. One possible explanation for this may be that the

secondary channel function in DC data is known to smoothe out differences between time

points. The large number of DEx genes in the NGS dataset may also be partly due to use of

technical replicates; nevertheless, the SC dataset analysis (with biological replicates) also

retrieved many DEx genes. This suggests that the variance estimation assumption for the

technical replicates is reasonably robust. The fact that findings for the NGS dataset are in

good agreement with those for the SC dataset also indicates good potential for microarray

and RNA-seq data integration in future analysis. Similarity between RNA-seq and the

Affymetrix platform has been also identified in previous studies [Bottomly et al., 2011].

When a lower p-threshold is applied, the percentage of DEx genes common across

datasets is expected to increase, even if the DEx set cardinality decreases for individual

datasets, since the more stringent threshold should act as a filter for non common genes.

Unfortunately, this is not true for datasets SC and NGS, while for the DC dataset the per-

centage increase is very small, while the number of DEx genes decreases drastically. This

suggests that the DEx information on some genes is less precise for at least one dataset

of the pairing, regardless of thresholds used, probably due to different noise levels and/or

other platform differences. This behaviour also occurs when the two microarray platforms

are compared, however, so does not necessarily preclude NGS and microarray data inte-

gration (not least since dual- and single-channel data have been used in common studies,

Chapter 4, [Sı̂rbu et al., 2010b]). It does indicate, however, that reducing noise remains a

persistent issue in gene expression measurements.

The genes recorded as differentially expressed in the NGS dataset, but not in the SC

dataset, were also further investigated, and Figure 7.4 displays the average count values,
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Figure 7.4: Average count values for genes commonly DEx in the NGS and SC datasets,
versus those DEx only in the NGS dataset. Note that the vertical axis is in log-scale. Almost
half of the genes that are DEx expressed in the NGS and not in the SC dataset display a very
low number of counts (i.e. under 100), while more than three quarters have counts under
500. Only genes probed on both platforms were considered for this analysis.

(number of reads mapping to the specific gene), for differentially expressed genes in the

common and additional categories. The graph displays results only for genes from the NGS

dataset that also have matching probes in the SC dataset. A large number of genes, which

are found only in NGS data, have correspondingly low counts, with nearly half occurring

less than 100 times, and nearly three quarters less than 500. The fact that these genes were

not identified from the SC dataset may be due to background noise interference in microar-

rays, which hinders correct quantification of rare transcripts, while this problem does not

exist in RNA-Seq, giving the latter technology an advantage in handling low expression val-

ues. Some highly expressed genes are also missed by microarray analysis, and this might be

due to probe saturation, again not present in RNA-seq data. Previous studies have also re-

ported higher DEx sensitivity of RNA-seq for large copy-number transcripts [Bloom et al.,

2009]. However, this property has not been previously identified for low count transcripts

also [Liu et al., 2011], although supported by known characteristics of the different tech-

nologies. This might be due to the sequencing depth used in these previous studies [Bloom

120



� ��� ��� ��� �����	 
�	 �
���� �
����
�� ��������� ����� ����� � �� � � ���� � ����� � ������ � ���������
���� ��� ���� � !"#$% &'�

Figure 7.5: Percentage of reference genes represented in the DEx sets obtained from the
three datasets with different p-value thresholds. The NGS dataset identifies the largest
number of reference genes, and the DC dataset the lowest.

et al., 2009], which is lower than for the NGS dataset. For instance, [Liu et al., 2011] report

an average of 11.56 RPKM for their study, while the NGS dataset contains an average of

43.2 RPKM, significantly larger.

A reference set of genes, considered highly likely to be differentially expressed during

embryo development, was then selected in order to test whether these were identified from

the three datasets. This set of genes consisted of those annotated with the embryo devel-

opment term in the Gene Ontology database (641 genes). Figure 7.5 shows the proportion

of these genes identified from each dataset, together with the different threshold values that

apply. Genes that were missing from the three datasets were eliminated before comput-

ing proportions, (which are thus based, respectively, on 69, 51 and 72% of the 641 genes

actually present in the SC, DC and NGS datasets). Even though the total number of DEx

genes differs, with the DC dataset identifying very few compared to the other two datasets,

this reduced reference set of genes is expected to be highly represented in all, even when

low p-value thresholds are used. In fact, the DC dataset identifies the lowest percentage of

reference genes, decreasing further for low p-values, while the NGS dataset identifies the

highest, with over 80% of reference genes present even for the most stringent threshold,

again indicating an advantage over the microarray data.
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7.2.2 Clustering of differentially expressed genes

Two clustering algorithms were applied to the DEx gene sets, (for different p-value thresh-

olds). When the more stringent threshold is used (p < 0.0001), clusters are expected to

be well-defined and well-separated (i.e. to have smaller DBI and variance). Similarly, BHI

scores should increase, especially when a larger number of clusters is obtained, as those

DEx genes included in the same cluster, under these conditions, should share similar pro-

cesses or function. The rest of this section describes scores obtained for two alternative

clustering methods, in order to investigate this hypothesis, and provide insight on the data

structure for the three datasets.

7.2.2.1 K-Means

In order to analyse the quality of clusters from each dataset, (in terms of compactness,

separation and biological relevance), and the structure of the gene space, four criteria have

been used. These provide complementary information on the data space, so are considered

together for a complete view. Values obtained for the three DEx datasets (NGS, SC, DC)

corresponding to p < 0.01 are displayed in Figure 7.6. A first analysis of cluster quality

studied numerical separability of groupings obtained. The DBI (Davies-Bouldin index)

values for clusters obtained by K-means with the number of clusters (k) ranging from 2 to

400, are displayed in Figure 7.6(a). For a better view over the data space, the size of clusters

for selected k was determined for all three datasets (Figure 7.6(b)). The biological relevance

of groups obtained was analysed also. Ideally, clusters of ‘good quality’ (DBI criterion)

should contain genes involved in similar processes or with similar functions. Figure 7.6

includes BPr (Biological Process) BHI (Biological Homogeneity Index) values for clusters

obtained with different k for: NGS (c), SC (d) and DC (e). The boxplots for each cluster

analysis show the distribution of the homogeneity index for clusters obtained. Additionally,

the proportion of genes in each dataset, included in clusters with BHI larger than 0.1, was

computed for different k values (Figure 7.6(f)).
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Figure 7.6: K-means clustering evaluation for p < 0.01. Six graphs are included with values
for four evaluation criteria (vertical axis) with different number of centroids, k (horizontal
axis): (a) displays DBI values obtained for the three datasets with different k; (b) shows
the range of cluster sizes in each dataset, for selected number of centroids; (c), (d) and
(e) display boxplots of the homogeneity index (BHI) for biological process annotation of
genes in each cluster, with different k; (f) features the proportion of genes that are included
in clusters with BHI larger than 0.1 in each dataset for different k. The graphs show that
for small k, the NGS displays a different data space structure, with small gene islands
with better homogeneity, that are not visible in the other two datasets. For large k, results
are more similar among the three datasets, as more and more clusters with larger BHI are
present with the increase of k.
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K-choice: For few predefined centroids (k ≤ 15), the NGS, SC and DC datasets display

different high-level features. DBI values (Figure 7.6(a)) indicate similar numerical sepa-

rability for the first two, which is slightly better than that for the DC dataset. However,

cluster size and BHI criteria (Figure 7.6 (b,c,d,e)), indicate a different structure for NGS

across the gene space. Cluster sizes are highly heterogeneous, compared to those for the

two microarray datasets (SC and DC), for which size-range is limited. This suggests that,

in the NGS case, the presence of a set of well-separated small gene clusters, which are

more biologically homogeneous, is highlighted, in addition to larger, more heterogeneous

groupings. This corresponds to an extended distribution of BHI values across clusters for

these data, (Figure 7.6(c)), with around 90 genes included in clusters with homogeneity

better than 10%. These small compact clusters do not appear in the two microarray datasets

(SC and DC), which exhibit small BHI values for all clusters, (Figure 7.6(d,e)), and have

no genes included in groups with BHI greater than 0.1 for low k (Figure 7.6(f)). The high

scoring groups in the NGS dataset correspond to genes that exhibit extreme (low or high)

expression values at some time points. It appears that these are not as well captured by the

microarray technology, possibly due to background noise (for low expression values) and

hybridisation saturation (for high expression values).

Clustering for large k, results in cluster size distributions similar to those for small k.

The NGS dataset continues to include both large heterogeneous and small homogeneous

clusters, while the two microarray datasets produce groups reduced in size, but compa-

rable within each dataset. There is some indication that, at this finer-granularity, more

small compact clusters are also detectable, as might be expected. The NGS dataset displays

best separability (DBI) up to about 100 centroids, a threshold at which the larger well de-

fined groups start to sub-divide, (so that separability decreases significantly - Figure 7.6(a)).

However, homogeneous clusters (i.e. with larger BHI values), increase in number as more

small clusters are identified in all three datasets (ref. increased number of outliers in Figure

7.6(c,d,e)). This is also demonstrated, for increased k, by the proportion of genes included

in clusters with better than 10% homogeneity. Again, the DC dataset performs least well in

this regard, while the SC dataset performs best. These results indicate that for fine-grained
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clustering (large k), the data space for the three datasets is closer in structure compared to

that for low k, with the difference (again) that the NGS dataset retains a few very large gene

clusters, while remaining genes are grouped comparably to SC and DC.

P-threshold: To analyse the effects of using a tighter threshold for p-values, similar cri-

teria were studied for the DEx sets obtained with p < 0.0001, (specific values displayed

in Figure 7.7). These show that for low k, clusters obtained for all datasets are very sim-

ilar to those found for the less stringent p-threshold, indicating that the gene space is not

much affected at high-level by this filtering by p. For high k, an increase in cluster separa-

bility and compactness both from the biological and numerical point of view is expected,

compared to the previous p-value, with the proportion of genes in homogeneous clusters

increasing or at least stable. The NGS and SC datasets, however, maintain similar DBI

and BHI values, which may be due to partial filtering only at the low threshold, as seen in

Section 7.2.1. However, for the DC dataset, choice of p-threshold has a large effect (Figure

7.7(a)), with clear DBI pattern changes, as expected, and improved cluster separability as k

increases. However, BHI values decrease, indicating that, while more distinct clusters are

obtained, groupings are less biologically plausible. This is a real concern and may be due to

the inclusion of the reference sample in these data, which tends to smoothe out differences

between time points, resulting in both a low number of differentially expressed genes and

a transformed gene space. Additionally, it is important to note that, at this more stringent

p-threshold, the proportion of genes included in clusters with BHI over 0.1 decreases in

general for the DC dataset, while it increases for the NGS and SC datasets. This suggests

that in the DC data, the low threshold filters out genes both from the homogeneous and

less-homogeneous clusters. Homogeneous groupings are less affected for the other two

datasets, with genes mostly filtered out from heterogeneous groupings, (as desired). This,

together with clustering results observed for large k with the previous p-value threshold

(0.01), indicates considerable similarity between the NGS and SC dataset at fine-grained

level.

It is important, however, to note that BHI values for all datasets rarely exceed 0.3,
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Figure 7.7: K-means clustering evaluation for p < 0.0001. The same criteria as Figure 7.6
are displayed, for DEx datasets with a more stringent p-value threshold. The same structure
of the data space is present. Additionally, for this p-threshold, the SC and NGS dataset
assign a larger proportion of genes to clusters with BHI> 0.1, while the DC dataset the
proportion decreases compared to the previous threshold, indicating that the more stringent
test does not improve biological homogeneity of clusters obtained.
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which indicates only moderate biological homogeneity of clusters. However, this is also

found for previous K-means clustering analyses for wild-type gene expression data, [Kerr,

2009; Datta and Datta, 2006], and would still support the conclusion that the NGS dataset

displays better resolution for coarse-grained clustering (low k), while SC and NGS datasets

are similar at finer granularity. Similar results have been obtained using correlation-based

K-Means, confirming that the results obtained are due to the structure of the search space,

and not the distance measure chosen.

7.2.2.2 Plaid

Plaid biclustering results for repeated runs are displayed in the form of boxplots (Figure

7.8). These show average within-cluster variance, cluster size, number of clusters and MF

BHI values for biclusters found over ten runs, with DEx datasets corresponding to p <

0.01. For K-Means analysis, BPr (biological process) BHI values were the most significant

of the three possible annotations, (cellular component, molecular function and biological

process). However, the Plaid algorithm appears to identify better groups of genes with

similar molecular function (MF), hence MF BHI values are presented in this section.

As the figure shows, the SC dataset clusters display lowest variability, and the NGS

highest. The NGS data include a wide range of cluster sizes, in agreement with K-Means

results, and display similar space structure, (namely small, distinct ‘islands’, together with

very large gene clusters). However, the SC dataset also displays similar cluster structure,

with larger size-range compared to the DC dataset, again indicating similarities for NGS and

SC data. It also appears that the SC dataset contains the best-defined biclusters, both from

the numerical (low variance) and biological point of view, with best annotation homogeneity

on average. However, the NGS dataset contains more homogeneous clusters (represented

by the maximum and outliers in the boxplots), even though most of them have somewhat

lower BHI values. The DC data space is more compact, with clusters having similar size-

range and lower BHI values compared to SC.

Figure 7.9 shows values for similar criteria, for DEx datasets obtained with p < 0.0001.

For this threshold, the SC dataset again displays, on average, lowest within-cluster variance
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Figure 7.8: Bicluster properties: average additive variance, size and number of clusters,
and BHI distribution of values in the ten runs performed, for DEx datasets corresponding
to p < 0.01. These suggest the same space structure for the NGS dataset, with both large
and small islands with correspondingly small and large homogeneity. However, here, the
SC dataset shows similar behaviour, as a similar distribution of cluster sizes is present, but
clusters are more compact (lower variance). The DC dataset displays a smaller range for
cluster sizes, and lower BHI values compared to SC.
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Figure 7.9: Bicluster properties for p < 0.0001. The same criteria as Figure 7.8 are dis-
played. These show again better cluster homogeneity and compactness for the SC dataset,
and similar structure of the data space as for the previous p-value, for all three datasets.
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and largest homogeneity. For the NGS dataset, a more stringent DEx threshold appears to

increase the robustness of the Plaid algorithm, (i.e. results in slightly reduced range for

variance and cluster numbers). This indicates improved separability of clusters, (also sug-

gested by the slightly lower variance). BHI values are also more stable between runs, with

fewer outliers and with average values close to those obtained with the previous p-threshold.

Again, a few clusters with higher BHI compared to those found for the SC dataset are also

present. The DC dataset loses biological homogeneity when a more stringent p-threshold is

applied, as more clusters with low BHI are identified. Again, this is in agreement with the

K-means results, discussed earlier.

7.3 NGS vs. microarrays: Conclusions

An analysis of three types of gene expression data for Drosophila melanogaster embryo

development time series was presented; these include both dual- and single-channel mi-

croarrays, and RNA-seq. The aim was to identify similar and complementary features of

these datasets, with a view to investigating the potential for future data integration from

the three platforms. A sensitivity analysis was employed to study the sets of differentially

expressed (DEx) genes obtained with different p-value thresholds, and, subsequently, to as-

sess cluster quality on applying two clustering algorithms: Euclidean K-means and Plaid

biclustering.

Differential analysis indicated that the NGS and SC datasets are more sensitive to the

DEx test, with large numbers of DEx genes identified, in contrast to findings for the DC

dataset. However, agreement on which genes are DEx is not comprehensive, even for low

p-thresholds. The highest commonality is found between the NGS and SC datasets, with

lowest between NGS and DC. These findings are in agreement with previous studies of

differential expression, [Bloom et al., 2009], although those have been performed in a less

broad setting, i.e. by using the same sample for all experiments. This suggests that integra-

tion of highly heterogeneous datasets may be feasible. Many of the additional DEx genes in

the NGS dataset have relatively low expression values. Additionally, some very abundant
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genes have been identified only by RNA-seq data. This suggests that, as postulated, the new

technology has an advantage in quantifying extreme transcription levels.

K-Means clustering indicated that specific features of the data space are different for the

three datasets. High level analysis, (clustering with a small number of predefined centroids,

k), highlighted differences between the NGS and the two microarray datasets, in particular.

For the former, small groups of genes are clearly identified, distinct from larger groupings,

and usually correspond to similar biological process GO annotation, (BPr BHI). For the two

microarray datasets, such small gene islands are not identifiable and large heterogeneous

gene groups are present, resulting in poorer cluster annotation homogeneity.

For large k, the NGS and SC datasets exhibited an increase in the number of clusters

with similar annotation, but at the expense of considerable heterogeneity in others. This was

true for all p-value thresholds. The DC dataset, in contrast, displayed lower annotation ho-

mogeneity for large k and low thresholds, although numerical separability (Davies-Bouldin

Index) seemed to improve. One explanation is that the coherence of this dataset may suffer

from the presence of the secondary channel, which over-smoothes differences between time

points.

Clustering with the Plaid algorithm confirmed the existence of small islands in the NGS

data, with correspondingly large homogeneity values. However, the SC dataset displayed

similar data structure, indicative again of some feature overlap between the two datasets.

In conclusion, similarities between the NGS and SC datasets have been identified, both

for differential expression and fine-grained (large k) clustering results. For coarse-grained

clustering (small k), the NGS dataset appears to provide more information, since small

gene islands with similar annotation (containing genes with extreme expression values), are

readily identifiable, which is not the case for the SC dataset. These similarities suggest

that integration of NGS and SC for further analyses is feasible and may have extendable

complementarity (e.g. to less directly-overlapping datasets). Moreover, the possibility of

cross-platform analysis for all three types of data is not excluded, given that single and dual-

channel microarrays have been analysed in common before. However, indications are that

DC results are more useful for identifying a restricted gene set, with limited information on
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Figure 7.10: Qualitative evaluation of models trained with NGS and SC data. The graph
shows AUROC and AUPR values on a set of known interactions from the DROID database,
for interaction sets obtained after 10 runs of the algorithm, using NGS and SC data for
training. Models trained with NGS data display a larger number of correct interactions.

groupings, while NGS offers a refined probe for identifying smaller gene groupings with

extreme expression levels. This study, however, is a preliminary assessment of similarity

between such heterogeneous datasets. Further analyses should assess DEx sensitivity to

q-value thresholds, and clustering of DEx sets obtained. This would not change the ranking

of genes, but would, however, reduce the cardinality of DEx sets.

7.4 NGS data for EGIA

In order to analyse how the EGIA framework extends to RNA-seq data, the inferential al-

gorithm has been applied to the NGS dataset for inference of a 27-gene regulatory network.

Following the analysis presented in Chapter 6, we have applied the BS-eval version of the

algorithm, which used binding site affinity to enhance model evaluation and annotations,

correlation patterns and knockout experiments to customise the mutation operator of the

evolutionary algorithm. The same evaluation criteria used in the previous chapter, i.e. AU-

ROC/AUPR on 16 known interactions from the DROID database (Section B.3) and RMSE

on test data have been employed here as well. The NGS dataset has been used for training,

and the two microarray datasets (SC and DC) for testing. Prior to inference, XPN cross-

platform normalisation ([Shabalin et al., 2008], Section 4.3.1) has been applied to the three

datasets.

Figure 7.10 displays AUROC/AUPR values obtained after 10 runs of the algorithm, us-
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Figure 7.11: Quantitative evaluation of models trained with NGS and SC data. Box-plots
represent the distribution of RMSE values on test datasets (SC and DC) for models trained
on the SC and NGS datasets. Models obtained from SC data display a lower error when
applied to simulate DC data, compared to models obtained from NGS data. Testing the
NGS-inferred models on SC, as opposed to DC data, results in lower RMSE values.

ing the NGS and the SC dataset for inference. This shows that the NGS dataset highlights

more correct interactions compared to the SC dataset. It is important to underline the fact

that the two datasets contain exactly the same number of time points for training, result-

ing in the same level of determination of the system, with the difference that, for the NGS

dataset, the time-span between points is twice as large as the one for the SC dataset. The

improved quantitative behaviour for models obtained from NGS data suggests that these

data may prove to be less noisy and have an important impact in gene expression quantifi-

cation for discovery of regulatory interactions. Together with the more mature technologies,

this should enable more reliable reverse engineering of such networks. For instance, one

straightforward integration methodology, at the qualitative level, would be to look at the

union of the interaction sets obtained from each of the available datasets and sum the votes

obtained for each interaction. In the case of SC and NGS data, analysed here, this union

results in AUROC/AUPR values of 0.873/0.105 respectively, higher than using each dataset

individually (indicating that integration is useful from the qualitative point of view at least).
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Quantitative results are displayed in Figure 7.11, which show the distribution of RMSE

(root mean squared error) on test data simulations (for the DC and SC datasets). Results

for models obtained in 10 runs using the NGS dataset for training are displayed. For com-

parison, the RMSE obtained on the DC dataset by models inferred from SC data is also

provided in this figure. The values show that models obtained from SC data are better able

to simulate DC data, compared to those obtained from NGS data. This is probably due

to the fact that the single- and dual-channel microarray platforms are more alike than the

dual-channel and the NGS platform, and suggests work on a new cross-platform normali-

sation method, specifically tailored for microarray and NGS data integration. Nevertheless,

the RMSE values obtained, along with the AUPR/AUROC values, do provide an initial

indication that the EGIA framework can be successfully applied to RNA-seq data.

When simulating SC, as opposed to DC time series, the models trained with NGS data

generate smaller errors. This also indicates closer similarity between the NGS and SC data

compared to NGS and DC, supporting the tentative conclusions of the previous section.

Given the qualitative results discussed above, an integration of the different time series

may prove beneficial; however, for quantitative integration, strict attention to normalisation

criteria is likely to be required.
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Chapter 8

Concluding discussion and future

work

8.1 Summary and conclusions

Gene regulatory networks (GRNs) are an important mechanism for protein level control,

having a major role in most organism processes. Determining GRNs is thus crucial to un-

derstanding organism behaviour and finding disease markers and treatments. Mathematical

modelling is one tool used to analyse gene expression and regulation. To date, although

extensive work has been performed in this field, quantitative modelling is still limited, due

to data constraints such as noise and reduced length of time series. In this work, a detailed

analysis of existing methods was provided, focusing on evolutionary computation. Given

the limited power of current methods and models, new algorithms and criteria are needed

to enhance model inference. One possibility is integration of different data types, which are

widely available.

Here, we presented an analysis of data integration for quantitative model discovery.

A first step was combining cross-platform microarray time series from different sources.

Secondly, a novel inferential framework that includes different types of data and knowledge

was introduced. Thirdly, new gene expression data from RNA-seq measurements were
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analysed in comparison to microarray data to identify integration prospects at this level.

Main findings

1. The first part of the thesis provided an in-depth analysis of the state of the art in

GRN modelling. The role of evolutionary computation at different modelling stages

was outlined, and advantages such as flexibility, stochasticity and implicit parallelism

were shown to have a major role in data integration. A further detailed comparison of

seven evolutionary algorithms for quantitative model inference was performed. This

showed that classical approaches have reduced power, hence can be used for small-

scale analysis only, and that hybrid methods are required in order to cope with larger-

scale and data limitations. However, to date, issues related to under-determination

and applicability to real datasets still exist.

2. The first step towards data unification, i.e. cross-platform integration of time series

data, indicated that such datasets are compatible and that models based on combined

data exhibit better fit for test datasets and are more robust to noise and parameter

perturbations. Furthermore, a wavelet analysis showed that combined datasets lead

to less noise over-fitting. An analysis of cross-platform normalisation techniques

demonstrated that quantitative integration of such data is enhanced by applying cor-

rect pre-processing.

3. A novel integrative framework based on evolutionary computation was developed

and presented here (EGIA). This was implemented in C++ and takes advantage of

parallel computing to increase the inferential power, (networks of different sizes, up

to 100 genes have been studied). The novelty of the framework rests on the additional

data that can be incorporated in the analysis (i.e. time series, knockout experiments,

binding site affinities, known cis-regulatory modules and Gene Ontology annotations)

and in the flexibility offered by allowing integration at different algorithm stages.

4. One enhancement of the EGIA framework is to customise initialisation and mutation

in order to facilitate more knowledgeable exploration of the solution space. This was
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shown to result in better topology of the resulting GRN models. However, data fit was

not improved, especially in the case of real networks. This suggested that enhanced

exploration only is not enough for obtaining better models, due to the noise in the

data and the strongly data-dependent evaluation criterion.

5. A customised evaluation criterion was derived, aiming to address problems such as

noise and under-determination, by addition of two further evaluation terms. Correla-

tion inclusion was shown to result in better structures and data fit even when random

mutation and initialisation were used. The second evaluation term introduced re-

flected additional data types used to assess the plausibility of the candidate network

topologies. This was benchmarked on three datasets and shown to have a signif-

icant positive effect on both qualitative and quantitative value of resulting models.

Improvement was obtained after a consistent analysis of the error structure of the

data.

6. The error structure analysis of additional data that can be used for inference iden-

tified a set of important aspects (by repeating the reverse engineering process using

different subsets of these data). Firstly, it showed that, due to data variability, not all

additional data add value. This underlined the need for careful analysis of datasets, as

opposed to just combining all data available. Secondly, it has demonstrated the value

of the EGIA framework, which is flexible enough to allow for different configurations

of datasets for integration. This is possible due to the existence of the two integrative

mechanisms, within exploration and evaluation, with different resilience to noise in

the data. Specifically, the former provides a more flexible integration than the latter,

so that less reliable data can still be used, to extract some positive effects. Extended

evaluation proved to be crucial in order to observe improvements both quantitatively

and qualitatively, but at the same time less resilient to bias in the data. Thirdly, the

analysis has built a general methodology for GRN inference and validation, where

data is separated into training and test during the evaluation of the error structure

and then integrated using the best procedure identified. As data become more abun-
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dant and of better quality, due to technical advances, this framework has potential for

building GRN models.

7. The third step in data integration involved inclusion of RNA-seq measurements for in-

ference purposes. The analysis presented showed that microarray and RNA-seq data

do have overlapping features, especially in the case of single-channel microarrays.

Additionally, the EGIA framework was successfully applied to NGS data, result-

ing in better prediction of previously known interactions, compared to microarrays.

Qualitative integration of the predicted interactions (based on model inference from

single-channel and RNA-seq data separately) indicated that the unified set of inter-

actions is better than each of the two, suggesting the presence of both overlapping

and complementary features. This is very important in guiding future quantitative

integration of these data, which is likely to prove particularly challenging to achieve.

8.2 Future work

Following the findings presented in the previous section, several directions for extension of

the framework can be identified.

Quantitative integration of RNA-seq and microarray time series We have shown that

RNA-seq and microarray data display overlapping features, especially with respect to single-

channel microarrays (Chapter 7, Section 7.2). Furthermore, the union of the predicted sets

of interactions from one RNA-seq and one single-channel time series dataset resulted in

improved quality of inferred connections. This gives good prospects for quantitative time

series data integration. However, as the experiments presented in this thesis showed, quanti-

tative compatibility between datasets is not as high as for microarrays (i.e. models inferred

from one data type translate poorly to the other data types), indicating that more advanced

cross-platform normalisation techniques are required, which take into account platform spe-

cific features of these data.
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Multi-objective optimisation The customised fitness function of the evolutionary algo-

rithm (Chapter 5) can be easily transformed into separate objectives, corresponding to each

of the three terms. Multi-objective optimisation can be used to minimise these, as this can

have an improved performance over single-objective search [Koduru et al., 2004]. The flex-

ibility of this optimisation type would allow for further additional objectives to be added,

to account for model robustness to perturbation or known properties of GRNs.

Development of a user interface and visualisation Computational tools are, nowadays,

critical for analysis of biological data, and one important requirement for these is usability

by non-computational scientists. With this in mind, we plan to develop an intuitive graphical

interface to the EGIA algorithm. Additionally, exporting the resulting models and networks

in standard formats, such as Cytoscape, is planned, in order to facilitate integration with

other available tools, which are currently widely used in biological research.

Framework extension to a multi-scale model The EGIA framework currently makes

use of an Artificial Neural Network to model GRNs; however, hybrid models, such as that

introduced by [Kirkilionis et al., 2011a] (Chapter 3, Section 3.2) exist. This model repre-

sents more accurately the molecular interactions involved in gene regulation, as it models

binding sites, cooperative binding and loop formation, which is an advantage over other

quantitative models. However, this additional level of detail makes inference more chal-

lenging. Based on the framework introduced here, we plan a collaboration to extend the

algorithm for this hybrid model. The number of binding sites and associated transcription

factors can be optimised in a similar manner as the structure search performed in EGIA,

with an additional nested optimisation stage to infer continuous-valued parameters. Addi-

tional knowledge can be used to enhance the structure optimisation phase, both as metadata

for space exploration and in evaluating candidate network topologies.

Modelling RNA interference Transcriptional regulation is one of the many mechanisms

of controlling protein levels in cells, which happens at the beginning of the gene expression

process. An additional regulatory effect appears before translation, when short strands of
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RNA (small interfering RNAs - siRNA- or micro RNAs - miRNA) hybridise to the mRNA

and stop translation. This is known as RNA interference, and models presented here do not

take it into account when modelling gene expression. However, this mechanism has been

identified as being involved in many processes and diseases. Taking it into account in the

modelling process may be expected to lead to models with higher resemblance to real gene

expression.
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Appendix A

In depth: comparison of evolutionary

algorithms for quantitative model

inference

Chapter 3 provided an outline of modelling approaches for gene regulatory networks and

described the role of Evolutionary Computation in reverse engineering. In this Appendix,

we concentrate on quantitative modelling of gene regulatory networks, as this is more in-

formative than qualitative analysis of biological data. The aim is to analyse different Evo-

lutionary Algorithms in detail, and to provide a comparison framework indicative of the

advantages and disadvantages of each approach1.

Previous (pair-wise) algorithm comparisons for the methods analysed here have been

reported [Kikuchi et al., 2003; Noman and Iba, 2005]. However, to provide a valid compar-

ison of existing EAs for continuous models, the algorithms should be applied not only to

the same datasets, but also under the same framework. This work aims to achieve this and

to provide a consistent evaluation of ideas reported in the literature. The models used are

not evaluated here, but only the algorithms that build models from data.
1This comparison has been published in BMC Bioinformatics [Sı̂rbu et al., 2010a].
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A.1 Methods

In order to analyse the performance of EAs for model parameter inference, we have imple-

mented seven different approaches and compared them on several datasets. The approaches

are (outlined later in this Section): CLGA (Classical GA), MOGA (Multi-Objective GA),

GA+ES, GA+ANN , PEACE1 (Predictor by Evolutionary Algorithms and Canonical Equa-

tions 1), GLSDC (Genetic Local Search with distance independent Diversity Control) and

DE+AIC. These methods use different continuous fine-grained models to represent the

GRN and rely on EAs to find the model that best fits the experimental data. The algo-

rithms were implemented using EvA2, a Java framework for EAs [Streichert and Ulmer,

2005] and the implementation and data sets used are available online [Sı̂rbu et al., 2010a].

The analysis consists of two stages: (i) five hybrid EAs (GA+ES, GA+ANN, PEACE1,

GLSDC and DE+AIC) were assessed for scalability, robustness to noise and performance

with real microarray data, and (ii) two classical EAs (CLGA and MOGA), were compared

in a small-scale setting to evaluate the improvement introduced by the multi-objective ap-

proach.

Comparison of different EAs can be performed using several criteria. The most com-

mon are the fitness value of best individuals at the end of optimisation and the number

of fitness evaluations required for obtaining an observed fitness value. Robustness of fit-

ness values and solutions obtained over multiple runs can also be analysed. Additionally,

a problem-dependent criterion was used: the obtained solutions are also compared to the

initial models (in the case of synthetic data), or to previous biological knowledge (for real

microarray data). Robustness to noise is assessed by maintaining a fixed number of fitness

evaluations and other EA meta-parameters (e.g. mutation and crossover operators) and ob-

serving the decrease in fitness and solution quality with the addition of noise. Scalability

analysis involves reverse engineering of GRNs of increasing size. The number of fitness

evaluations was empirically chosen to allow the population to converge towards a stable

fitness value (i.e. until only small improvements in fitness are observed). Table A.1 lists the

criteria used for comparison of the algorithms implemented.
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Table A.1: Evaluation criteria. This table defines criteria used for method evaluation. For
detailed definitions, see Appendix C.

Criteria Description

Goodness of data fit (data
MSE)

Best/average MSE between real and simulated data over a number of
runs. This measures the ability of the model to reproduce the experi-
mental data

Identified interactions Ability of algorithm to qualitatively identify interactions (Sensitiv-
ity/Specificity). An interaction is taken to be identified if the corre-
sponding parameter has an absolute value larger than zero. Average
values over multiple runs are used for comparison purposes.

Parameter quality (param-
eter MSE)

Best/average MSE between real parameters and algorithm solution over
multiple runs. This measures the ability of the algorithm to find the ex-
act parameters of a known model (important especially for underspeci-
fied systems.)

Robustness over multiple
runs

Average variance of kinetic orders/rate constants over multiple runs

Robustness to noise Performance of algorithm with noisy datasets: goodness of fit, identified
interactions, parameter quality

Performance for real mi-
croarray data

Sensitivity/Specificity and goodness of fit when applied to real microar-
ray experiments rather than to synthetic data

Scalability Performance of algorithms with larger datasets, maximum dimension-
ality achieved, increase in running time and decrease in goodness of
fit and identified parameter quality, (when moving from a smaller to a
larger dataset)

Average running time Over multiple runs.

Function calls Average number of function calls required for the results obtained.

The rest of this section outlines the seven algorithms implemented.

A.1.1 CLGA

Introduced by [Tominaga et al., 1999], this algorithm optimises parameters for an S-System

model (Chapter 3, Section 3.2) using a simple real coded GA. The n(2n + 2) parameters

(®i, ¯i, gij , ℎij) of the system are encoded in a n×(2n+2) matrix of real values, represent-

ing the individuals in the algorithm. Classical uniform crossover and mutation operators on

vectors of real values are used. The algorithm minimises the difference between the mi-

croarray expression values and the expression values generated by the model.

fitness =
n∑

i=1

T∑

t=1

(
xi(t)− yi(t)

xi(t)

)2

(A.1)

where xi(t) is the expression value of gene i at time t, observed in real experiments, and

yi(t) is the expression value of gene i at time t generated by the model. In order to evolve

3



sparse networks2, the parameters falling below a pre-determined threshold are automatically

set to zero in each generation. This was the first attempt to use EAs for this problem,

and opened the way for many other approaches. Although its performance, i.e. finding

parameters for 2 genes in a GRN, has been improved upon, this algorithm is retained in

order to compare it to a multi-objective approach.

A.1.2 MOGA

Multi-objective (MO) optimisation is known to be more effective than combining the set

of functions into a single one, as it forces all individual fitness values to be close to the

optimum. This approach was applied to GRN S-System model inference by [Koduru et al.,

2004], who, rather than adding errors (as in CLGA), used those corresponding to each

gene expression series as a different objective. Furthermore, the concept of fuzzy domina-

tion was introduced, which gives a continuous aspect to individual domination in multi-

objective optimisation. The Simplex algorithm was used to create part of the offspring for

each generation. We have implemented this approach, apart from the Simplex algorithm.

This was omitted in order to test whether the multi-objective approach itself improves the

search performance in this problem setting and to determine how fuzzy dominance-based

selection affects its performance, without hybridising the search method as well. NSGAII

(Non-dominated Sorting Genetic Algorithm II [Deb et al., 2002]) tournament selection (im-

plemented in EvA2) was used for MOGA and fuzzy dominance-based tournament selection

for the Fuzzy MOGA. The MO algorithms use an archive of a maximum of 50 individuals

belonging to the Pareto front that are fed to the next generation, to implement elitism.

A.1.3 GA+ES

One of the more advanced and recent approaches to applying EAs to GRN modelling di-

vides the search into two phases: structure and parameter search. The S-System model is

once again used. The approach is based on the sparsity of the networks: as most of the
2GRN are known to be sparsely connected, as each gene has a small number of regulators. This makes the

matrix that encodes the solution sparse: many values are null and this fact is used in this approach.
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values in the connection matrix are null, there is no need to search for all the parameters,

but only for those found to be non-null. Consequently, one phase of the algorithm looks for

the non-null parameters, and the other finds the real values for them. These two phases are

nested into each other, the second one being similar to a local search performed on the indi-

viduals of the first. The first method of this kind we have implemented is the one introduced

by [Spieth et al., 2004]. Here, a GA finds the connection matrix with elements in {0, 1} and

then an ES is employed to find the S-System parameters for the connections represented by

the individuals of the GA. The fitness of the GA individuals is given by the best individual

in the ES. The method was reported to have achieved parameter determination for a 20-gene

artificial GRN.

A.1.4 GA+ANN

The second method implemented, which involves nesting the structure and the parameter

search phases, is [Keedwell and Narayanan, 2005]. This is a neural-genetic hybrid that

replaces the S-System in GA+ES with an ANN. Here, the structure search uses a different

representation: a binary encoded set of real values, rather than the characteristic vector3

used in [Spieth et al., 2004]. The ANN takes as input a subset of genes and learns the pa-

rameters for regulation through Backpropagation, (in order to find regulation strengths from

each gene to the gene under analysis), then outputs the error of the resulting model as fitness

for the GA individual. Figure A.1 shows the ANN topology used by this method. The fact

that it is single layered allows for inference of causal relationship from the topology.

A.1.5 PEACE1

Initially, most methods that took into account the fact that gene networks are sparse, forced

parameters that fell below a certain threshold to zero [Tominaga et al., 1999]. An additional

way of generating sparse networks was introduced in [Kikuchi et al., 2003], extending

CLGA. The fitness function was modified so that the algorithm tries to minimise the squared
3A characteristic vector encodes a subset of a finite universe, where, for each element in the universe, a

boolean value is used that denotes whether that element is in the subset or not.
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R1(t-1)

R2(t-1)

R3(t-1)

Gi(t)

Figure A.1: ANN Topology in GA+ANN: represents how expression value of a gene G at
time t is computed from the expression values of its regulators, R1, R2 and R3 at time t−1
through a single layered ANN.

error of the model (first term in Equation A.2), while penalising the models with high

connectivity (second term):

fitness =
n∑

i=1

T∑

t=1

(
xi(t)− yi(t)

xi(t)

)2

+ cnT
n∑

j=1

(∣gij ∣+ ∣ℎij ∣) (A.2)

Here, c is a constant that balances the two terms in the fitness function. Simplex crossover

is used and a two-stage gradual optimisation strategy is employed: initially, the GA is run

several times to find multiple models that fit the data. Using the resulting models, a new

instance of the GA is initialised and evolved towards a model that combines parameters

from local solutions into a better global one. During all generations, the parameters that

fall below the threshold are set to zero, in order to simplify the simulation process when

evaluating an individual. This improved model is analysed and the null parameters are fixed

at zero for the next iterations. This double optimisation (feeding one GA with the results of

other GAs), is needed in order to avoid setting necessary parameters to zero. Afterwards, a

new set of GA instances are employed to find local solutions, taking into account the fixed

parameters. This procedure is iterated until no more parameters need to be suppressed or

a maximum iteration number is reached. The method has been applied on the S-System

model for GRNs.
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A.1.6 GLSDC

GLSDC [Kimura et al., 2003] evolves parameters for one gene at a time, using the S-System

model and a skeletalising term similar to [Kikuchi et al., 2003]:

fitnessi = −
T∑

t=1

(
xi(t)− yi(t)

xi(t)

)2

− c
n−I∑

j=1

(∣Gij ∣+ ∣Hij ∣) (A.3)

Here, I is the maximum connectivity parameter and Gij and Hij are elements of two sets

containing gij and ℎij in ascending order of their absolute values. The approach differs

from that of [Kikuchi et al., 2003] in that only the chromosomes that contain more than I

activators and I repressors are penalised by the second term of the fitness function and only

the network connections with the lowest weights are included in the penalty term (as those

with high weights are taken to be the correct interactions).

One of the most costly parts of the EA implementations presented previously is the

evaluation of individuals, as it requires simulations of the model for each. GLSDC min-

imises this problem by splitting evolution into two stages: local search and convergence

stage. During the convergence stage, crossover and mutation are applied to the population,

similar to a classic GA, but no evaluation is performed, so that evolution is faster. Dur-

ing the local search phase, a set of restrictions, (inequalities involving model parameters),

derived from data, are tested on the individuals in the current population. In case the condi-

tions are not met for one individual, a local search, based on quadratic programming [Boot,

1964], is performed in order to find the closest parameters, (Euclidean distance), that do

satisfy the inequalities. For the rest of the individuals, i.e. those conforming to the restric-

tions, Powell’s local search [Press et al., 1992] is performed, to find a solution with a better

fitness.

A.1.7 DE+AIC

DE+AIC [Noman and Iba, 2006, 2007] introduced a further improvement with respect to

the penalty expression that forces the algorithm to evolve sparse models. Instead of ordering
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gij and ℎij in sets Gij and Hij , as seen in GLSDC, these are combined in only one ordered

set Kij . The fitness function no longer measures the closeness of the data generated, by

the model, to the experimental data, but uses an information theoretic criterion: Akaike’s

Information Criterion (AIC). This measures the likelihood of the data under a specific model

and penalises those models which describe the data using a large number of parameters.

The algorithm evolves parameters for one gene at a time. Considering all the modifications

specified above, the fitness function, which the GA needs to minimise, becomes:

fitnessi = −2Λ + 2Ái + c
2n−I∑

j=1

∣Kij ∣ (A.4)

where Λ is the likelihood of the data under the model encoded by the current chromosome,

Ái is the number of parameters corresponding to gene i and I is the maximum connectivity.

The search heuristic in [Noman and Iba, 2006] is Trigonometric DE. For each gener-

ation, a local search is operated using Hill Climbing4 [Chambers, 2000], to further skele-

talise the models (obtain sparser realisations), encoded by the best individual and one se-

lected randomly from the population. The procedure parses the set, K, of sorted kinetic

orders,(gij and ℎij), from the smallest to the largest. At each step, it sets the current kinetic

order to zero and, if the newly identified individual is better that the one before the change,

it replaces the old one. This is repeated until all the kinetic orders have been changed. In a

sense, this local search is similar to Powell’s method [Press et al., 1992], as it searches each

dimension at a time. This approach may miss some improvements that may happen only

when two or more parameters are null at the same time, but, however, setting one parameter

at a time to zero brings no fitness increase. Given that it is used as a local search technique

in a more ample search, this is not a major drawback.
4An optimisation heuristic that starts with one solution and iteratively modifies it to obtain a better one. The

modification is usually done with operators similar to GA mutation. The old solution is replaced by the new
one only if the latter is better. The search stops either after a certain number of mutations or when the solution
does not improve any more, within a specified tolerance.
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A.2 Results and Discussion

In order to be able to evaluate our implementation on the chosen criteria (Table A.1), six

datasets generated by S-System models of regulation and five for the ANN model were used.

The models for two and five-gene S-System synthetic regulatory networks were taken from

the literature [Tominaga et al., 1999], while those for larger systems (10, 20, 30, 50 genes,

and for ANNs (5, 10, 20, 30, 50 genes) were randomly generated so that they conform to

well known characteristics of real GRNs, i.e. scale-free sparse networks. Real GRNs are

also known to display other characteristics such as modularity and feedback mechanisms

[Marbach et al., 2009]. However, only sparsity is taken into account by the implemented

methods, so using random sparse networks is a good indication of comparative algorithm

performance. Nevertheless, we acknowledge that this could be a limitation with regard to

relevance of the synthetic experiments in determining algorithm ability to reverse engineer

the correct network from real data.

Robustness to noise was tested on the synthetic data for the five-gene networks to which

1%, 2%, 5% and 10% Gaussian noise was added to all values. The assumption of Gaus-

sian noise has been used before in relation to gene expression data [Noman and Iba, 2007;

Nacher and Akutsu, 2006] and, although it may not be true in all situations, it provides a

good indication of the behaviour of the algorithm with real noisy data.

Ideally, in order to be able to build an S-System model, or to train an ANN, for a large

scale network, a large number of measurements (time points) is required. This number

increases further when data are noisy, [Mitchell, 1997]. However, in reality, due to the high

cost of these experiments, only limited data are available. In order to simulate experiments

with real data, we reduced the number of (synthetic) experimental time points used for

inference to 60 for the 5-, 10- and 20-gene datasets, 80 for the 30-gene dataset and 125 for

the 50-gene dataset.

As EAs are stochastic in nature, multiple runs were performed for each experiment.

Multi-objective analysis was performed over 20 runs for each algorithm. The methods

analysing the entire system were applied seven times on each dataset, while those using the
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Figure A.2: Small-scale dataset - data fit. Box plot displaying data MSE values for each
algorithm with the 5-gene dataset. GA+ANN exhibits significantly better data fit, while
PEACE1 has the lowest performance.

Table A.2: Performance of algorithms over multiple runs using the 5-gene synthetic dataset,
under three criteria: robustness over multiple runs, qualitative interactions and number of
function calls performed.

Criteria PEACE1 GA+ ES GA+ ANN GLSDC DE+
AIC

Robustness (Kinetic
orders /Rate constants
variance)

0.25175/
4.22818

0.4861/
3.0170

0.07236 0.08449/
2.0419

0.21534/
6.41834

Identified interac-
tions (Sensitivity/
Specificity)

0.55384/
0.82702

0.6483/
0.8902

0.74074/ 0.8125 0.72307/
0.67837

0.58461/
0.81081

Function calls 1650000 3750000 2500 × 20000
ANN epochs

100000 275000

divide et impera approach were run five times for each of the first five genes, resulting in

25 runs per dataset. The quantitative results for the algorithms are displayed using notched

box plots, Appendix C.

A.2.1 Performance on small scale networks

For a first analysis, we applied five algorithms to the five-gene synthetic dataset from [Tom-

inaga et al., 1999]. We chose this benchmark dataset due to the fact that it has been already

used to validate most of the methods we are comparing. At the same time, the reduced

dimensionality allows for easier analysis of EA parameters and for multiple runs to be
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Figure A.3: Small-scale dataset - parameter quality. Box plot displaying parameter MSE
values for each algorithm with the 5-gene dataset. GA+ANN finds better parameters, con-
forming with data MSE values.

performed. Figure A.2 displays the box plots representing the data fit obtained by each

algorithm, while Figure A.3 presents the quality of parameters obtained over all runs per-

formed. Table A.2 contains numerical values for three more evaluation criteria (robustness

of parameters obtained, sensitivity and specificity and fitness calls). Note that PEACE1

and GA+ES analyse all genes simultaneously, while the others find interactions one gene

at-a-time. However, the numerical values for all the genes in the latter type of methods are

used, allowing for a direct comparison between them.

As Figure A.2 indicates, all five methods demonstrate good performance in fitting the

data (based on data MSE as a goodness of fit criterion). However, GA+ANN displays

best fitness, followed by GLSDC, while PEACE1 performs least. The fact that the notches

around the median do not overlap provides evidence for these differences to be statistically

significant at a 5% level. However, these are insufficient alone to choose a specific algo-

rithm, as other options may exist and alternative model parameters may give a good fit to

the data. Consequently, we provided (Figure A.3) the parameter MSE values that show how

close the resulting model parameters are to the real one, (i.e. how much does each param-

eter deviate, on average, from the real model). These and the values in Table A.2 indicate

that GA+ANN appears more robust and better able to identify correct interactions. How-
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ever, it should be noted that this model has fewer parameters compared to the others, (25

as opposed to 60), hence reducing the solution space for the EA and, possibly, enhancing

algorithm performance.

Although methods using the S-System model display similar average performance, (ac-

cording to the parameter quality criterion), GA+ES and DE+AIC obtain the best parameters

overall, (indicated by minimum values), while, (in sensitivity terms), GLSDC has a higher

value, indicating that the latter is more suitable for a quantitative analysis than the two

former, which, despite finding parameter values close to the real ones, can miss smaller

values.

Table A.2 also supplies the number of function calls needed by the algorithms to achieve

the performances above. These indicate the ANN approach to be faster; while each function

call represents the training of an ANN, this is not very costly as these are small, due to

the connectivity limit. PEACE1 requires a long running time, because of the numerous

iterations needed to find all null parameters and, given the low specificity, seems to miss

the low ones. GA+ES also requires a large number of function calls, due to the overhead of

running a new instance of an ES for each structure evaluation.

A.2.2 Performance on noisy data

An important feature for inferential GRN algorithms, in a real biological setting, is robust-

ness to noise. We have analysed the behaviour of the algorithms implemented on noisy

datasets, and the results are displayed in Figures A.4 and A.5, which show the evolution

with noise of data fit and parameter quality, using the same type of box plots for significance

analysis. Figure A.6 shows average sensitivity and specificity values for the algorithms at

the different noise levels.

The sensitivity and specificity criteria allow for a qualitative analysis of results. From

the sensitivity point of view, the methods can be divided into three categories: with (1)

stable sensitivity values (GLSDC, DE+AIC and GA+ANN), (2) decreasing sensitivity with

noise (GA+ES), and (3) increasing sensitivity with noise (PEACE1). Specificity values, on

the other hand, decline with noise for all methods, which is explained by the fact that the
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Figure A.4: Small-scale noisy datasets - data fit. Performance of the 5 algorithms with
noisy datasets in terms of data fit (data MSE). Algorithms displayed are, from left to right:
DE+AIC, GA+ANN, GLSDC, PEACE1, GA+ES. An increase of MSE values with noise
can be observed. PEACE1 displays lowest performance, while the rest of the algorithms
are comparable under this criterion.

algorithms concentrate on finding null interactions, so the number of true negatives discov-

ered decreases with noise. However, the first two categories seem to exhibit significantly

better behaviour than the third. This explains why PEACE1 achieves a maximum sensitiv-

ity with maximum noise: a very small proportion of parameters were found to be null, so

almost all genes were found to interact. This results in a large number of true positives,

however, accompanied by a very large number of false positives, which is undesirable.

The quantitative perspective has been analysed using the two criteria in Figures A.4 and

A.5. For PEACE1, both data and parameter MSE are inferior to the rest, indicating limited

ability to handle noise. However, only data MSE differences are statistically significant at

all noise levels. The other four methods are stable and have comparable performance up

to 5% noise (favourable behaviour for real microarray data). Concerning the 10% noisy

dataset, two trends can be indentified: GLSDC and GA+ANN decrease the data fit but

preserve a good parameter quality (parameter MSE), while for DE+AIC and GA+ES both

data fit and parameter quality decrease significantly. This means that the former set have

the ability to find good parameters in spite of noise, while the latter over-fit the noise in

the data, implying low quality solutions. Good performance in the case of GA+ANN may
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Figure A.5: Small-scale noisy datasets - parameter quality. Performance of the 5 algorithms
with noisy datasets in terms of parameter fit (parameter MSE). Algorithms displayed are,
from left to right: GA+ANN, GA+ES, DE+AIC, GLSDC, PEACE1. GA+ANN exhibits
(statistically significant) better parameters, while the rest of the algorithms display similar
behaviour. At high level of noise (10%), GLSDC also performs better compared to the rest.

be due to the nature of the ANN model, which has been proven to cope well with noise in

multiple practical applications [Mitchell, 1997], while GLSDC has a mechanism built in

the local search phase that specifically handles noise.

In conclusion, the ANN model and the GLSDC mechanism for controlling noise seem

to give good quantitative results even with a high noise rate. The best balance for sensitivity-

specificity is achieved with GA+ANN, while GA+ES, DE+AIC and GLSDC exhibit the

best qualitative behaviour with noise under the S-System model (the former two find more

null interactions, but miss some of the real ones and the latter finds most of the real ones

but also adds some false positives).

A.2.3 Scalability

Scalability analysis was performed on four synthetic datasets corresponding to four differ-

ent networks: 10, 20, 30 and 50 genes. For these data, quantitative results using box plots

are displayed in Figures A.7 and A.8, while the best qualitative results of all runs are shown

in Figure A.9. Given the small sensitivity on the 10 and 20 gene datasets (approximately

0.1), and the dimensionality achieved by the authors themselves, (five genes), no further
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Figure A.6: Small-scale noisy datasets - identified parameters. Performance of the 5 algo-
rithms with noisy datasets in terms sensitivity and specificity. Algorithms displayed are,
from left to right: GA+ANN, GA+ES, DE+AIC, GLSDC, PEACE1. GLSDC, DE+AIC
and GA+ANN display stable sensitivity values, GA+ES shows decreasing sensitivity with
noise while for PEACE1 sensitivity increases with noise. Specificity values decrease with
noise for all algorithms.

runs were performed with PEACE1 for the larger datasets. GA+ES was run on the 10-gene

dataset with low performance (fitness 25 after 7,500,000 fitness calls, in 170 generations,

during 47 hours), while on the 20-gene dataset, having doubled the allocated memory for

the Java virtual machine, one generation lasted approximately 3 hours, and, after 35 genera-

tions (≈ 109 hours), the best fitness value was 1.4E11. This indicates that this method does

not scale very well in a single CPU setting, and was thus discarded from the analysis. For

the three methods that analyse one gene at-a-time, we performed experiments on a limited

number of genes, (5), and averaged criteria values on them. The results obtained in this way

are indicative of the performance of the methods for all the genes in the network. The rest

of this section concentrates on these three methods.

Due to the characteristically low connectivity of the networks, all methods analysed
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Figure A.7: Scalability - data fit. Box plot representing data MSE with larger datasets. Due
to poor performance with the 10- and 20-gene datasets, the values for PEACE1 and GA+ES
are not displayed. DE+AIC exhibits (statistically significant at 5% level) better behaviour
compared to the rest.

displayed good specificity (preserved for all system scales). However, the sensitivity values

tend to decrease with the increase in size, which indicates that, for larger networks, these

methods tend to set increasing numbers of parameters to zero, so that more interactions

are missed. However, the number of false positives remains small. GA+ANN maintains

good qualitative performance up to 30 genes, while DE+AIC and GLSDC display good

behaviour with the 10-gene dataset, but do less well as the size of the gene set increases.

On the 50 gene dataset, all methods perform poorly in respect of the sensitivity values.

In order to analyse the quantitative behaviour of the methods implemented, values for

two criteria were provided: ability to reproduce data (Figure A.7) and parameter quality

(Figure A.8). Considering the fact that each benchmark dataset has a different number of

parameters to be inferred, of which most are zero, the parameter MSE displayed in Figure

A.8 is computed per gene rather than per parameter. Given the similar connectivity of the
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Figure A.8: Scalability - parameter quality. Parameter MSE with larger datasets (computed
per gene rather than per parameter, see text). Due to poor performance with the 10- and 20-
gene datasets, the values for PEACE1 and GA+ES are not displayed. Parameters identified
by GA+ANN and DE+AIC are better than the rest up to 20 genes while for 30 genes only
GA+ANN differs significantly.

four different networks (3 to 5), this offers a good measure of parameter quality that neither

depends on the number of genes in the network, (which would have been the case if we had

chosen the residual sum of squares), nor is biased by the large number of null parameters

usually discovered by the algorithms.

As Figure A.7 indicates, all methods, except for those eliminated from this analysis

after the first two experiments (PEACE1 and GA+ES), display good data fit for all datasets.

However, DE+AIC exhibits significantly better data fit at all scales.

GA+ANN achieves good parameter quality (parameter MSE, Figure A.8), up to 30

genes, confirming conclusions from the qualitative measures. DE+AIC exhibits a behaviour

comparable to GA+ANN up to 20 genes, but displays lower parameter quality for 30 genes,

possibly due to the limited data. The superiority of the first method could be partly due

to the smaller number of model parameters, compared to the other methods, the resulting
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Figure A.9: Sensitivity and specificity for larger datasets. Due to poor performance with the
10- and 20-gene datasets, the values for PEACE1 and GA+ES are not displayed. Specificity
values are stable with the increase in scale, but sensitivity values decrease with system size.

system being less markedly under-specified than in the case of S-Systems and the solution

space being reduced.

In conclusion, the ANN model displays superior performance again with larger net-

works, while methods that analyse the whole system at the same time fail to scale up for

a single CPU situation. The other two methods behave reasonably well up to 30 genes,

identifying the most important interactions to enable them to closely simulate the synthetic

time series.

A.2.4 Real DNA microarray data

In order to assess performance of the chosen algorithms on real microarray data, the Spell-

man dataset [Spellman et al., 1998] was used, which has become a benchmark for validat-

ing this type of method. This contains 18 time points measured during two Saccharomyces

cerevisiae cell cycles. The known interactions between genes and proteins were retrieved

from the KEGG database, [Aoki-Kinoshita and Kanehisa, 2007], for validation purposes.
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Figure A.10: Pathway for Yeast cell cycle, retrieved from KEGG database, for the 24 genes
analysed. The two coloured sets of genes correspond to the two small sub-networks, (6
and 7 genes), analysed separately. The connections between genes labelled with e represent
known gene regulatory interactions, while the ones labelled with p represent known inter-
actions between proteins that can activate or repress the activity of one or several proteins
involved.

Three subsystems of this network were analysed; two small-scale (6 and 7 genes) and one

medium-scale network, (24 genes), of which the former were subsets (see Figure A.10).

The two small-scale networks contain the genes known to be involved, respectively, in the

regulation of genes CLN2 and PHO5. The large-scale analysis focused on these two genes

as well, in order to investigate how inclusion of additional genes, either not connected or

distantly linked to the initial system, influences algorithm performance. The algorithms

were applied five times for each gene under analysis.

Figure A.11 displays the ability of each algorithm to reproduce the time series for the

two analysed genes (best results obtained in multiple runs), while Figure A.12 provides

box plots for data MSE values. Even though, for the PHO5 experiment, the difference in

MSE values, compared to GLSDC and GA+ANN, is not statistically significant, (as ex-

tracted from Figure A.12), PEACE1 and GA+ES perform poorly in reproducing behaviour
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Figure A.11: Ability of algorithms to reproduce real data. The upper graphs display the
real and the reproduced time series for the small-scale analysis, and the lower graphs for
the medium-scale analysis.

for the small networks (Figure A.11). The small difference in data MSE values is due to

the fact that the time series for GLSDC and GA+ANN are slightly shifted for this dataset,

although overall behaviour is preserved. For the CLN2 experiment, both ability to repro-

duce time series and observed MSE values differ significantly. Given similar unsatisfactory

performance on larger synthetic datasets, experiments with the 24-gene real dataset were

not pursued with these two methods. Note that DE+AIC displays the best overall ability

to reproduce the data, followed by GA+ANN and GLSDC. While GA+ANN and DE+AIC

maintain good data fit for the larger dataset on both genes analysed, GLSDC fails to repro-

duce the data for CLN2 (Figure A.11) and the MSE values increase significantly (Figure

A.12).

Due to noise and the limited number of time points available, it is possible that, al-

though a model is capable of reproducing the experimental data, the connections identified

are false positives, and the model invalid. We have analysed the connections obtained,
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Figure A.12: Real data fit. Box plot representing data MSE for experiments with real
microarray data. For the first gene analysed (PHO5), DE+AIC displays best behaviour,
while for the second (CLN2), both GA+ANN and DE+AIC perform comparably well. Due
to scale limitations, experiments with PEACE1 and GA+ES were not performed for the
24-gene network.

using data from the KEGG database and previous descriptions of the cell cycle from the

literature [Chen et al., 2000; Oshima et al., 1996]. Table A.3 displays the percentage of

known interactions out of the total number of interactions identified by each algorithm in

each experiment. The remaining percentage of the interactions predicted are clearly wrong,

(either opposite sign or false connection). Both overall values and values corresponding to

the fittest individual over multiple runs are presented, in order to facilitate a global view

over algorithm performance. These known interactions considered correspond not only to

Table A.3: Percent of interactions identified by each algorithm that are known to exist
previously. Average (overall) and best values over multiple runs are displayed.

Experiment GA+ANN DE+AIC GLSDC GA+ES PEACE1

6-gene PHO5 overall:92
best:100

overall:80
best:100

overall:41
best:50

overall:59
best:33

overall:25
best:0

24-gene PHO5 overall:11
best:0

overall:15
best:14

overall:39
best:40

- -

7-gene CLN2 overall:38
best:50

overall:40
best:40

overall:53
best:60

overall:36
best:40

overall:69
best:75

24-gene CLN2 overall:29
best:60

overall:31
best:28

overall:18
best:26

- -
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Table A.4: Average number of overlooked important immediate interactions (from SWI4/6
for CLN2 and from PHO4/2 for PHO5)

Experiment GA+ANN DE+AIC GLSDC GA+ES PEACE1

6-gene PHO5 1.67 0.4 0.4 1 1.5

24-gene PHO5 1.75 1.2 0 - -

7-gene CLN2 0 0 0 0 1

24-gene CLN2 0.6 0.6 1.8 - -

transcriptional activation or repression, but also to protein interactions, (e.g. phosphoryla-

tion5, ubiquitination6), that activate or repress transcription factors, hence influencing gene

expression. For example, it is known that CLN3 and CDC28 work together to activate,

(through phosphorylation), transcription factor SBF, (SWI4 and SWI6), which in turn acti-

vates gene CLN1/2; hence, CLN3 and CDC28 can also be considered as activators of these

genes. The methods implemented often identify this type of interaction. Table A.4 presents

the average number of previously known direct interactions missed by each algorithm in

each experiment.

Note that, for some methods, the fittest individual identifies fewer interactions than the

overall value, which confirms that good ability to reproduce data does not necessarily cor-

respond to a model containing biologically relevant connections. Qualitative analysis indi-

cates that, for the small networks, where all the genes are known to interact, the connections

identified by the best-fitting methods are mostly correct. For the 7-gene experiment, two

of the known interactions, (repression from FAR1 and activation from SWI6), have been

consistently assigned parameters with the wrong sign, by all the methods, in multiple runs.

This indicates noise interference, which explains lower values compared to the similar 6-

gene experiment. GLSDC, however, seems to identify a number of interactions comparable

to the 6-gene experiment, which confirms that it is more robust to noise than the others.

GA+ES and PEACE1 also seem to correctly identify many interactions, but, the fact that

the simulated gene values are highly dependent on the rest of the network, means they are

unable to reproduce the experimental data.
5Addition of a phosphate group to a specific protein, to activate or deactivate it.
6Addition of a ubiquitine group to a protein, typically for degradation purposes.
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Introducing more genes into the analysis triggers a different response from each method

and gene analysed. In the PHO5 experiment, the percentage of correct interactions iden-

tified by GA+ANN and DE+AIC decreases markedly when analysing more genes, while

the number of overlooked direct interactions increases, although data fit remains very good

or even increases (from Figure A.12, GA+ANN is significantly better in the second ex-

periment compared to the first). This relies on connecting nodes that are not immediately

linked in the real network, and, given that many added nodes may not really be connected

at all, this leads to a low percentage of true positives. GA+ANN suggests a positive auto-

regulation of PHO5, both with the small and large dataset, which can compensate for other

missed interactions, and explain the improvement in data fit for the larger network. On the

other hand, GLDSC maintains both quality of data fit, (though poorer than for the other

two algorithms), and percentage of interactions, and adds fewer false interactions outside

the PHO gene family (connections from SIC1 and APC/C). This suggests that, when the

added nodes are not connected to the existing ones, the algorithm is better at finding correct

qualitative interactions, although fit obviously suffers.

In the second experiment, where most of the new nodes are connected to the initial

network, GA+ANN and DE+AIC perform better both in terms of from the data fit and

validity of interactions. However, the number of false positives increases when moving to

the larger dataset. GLDSC finds many effects of PHO genes on CLN2, but these are not

biologically plausible. At the same time, when moving to the larger dataset, it correctly

adds a positive effect from FUS3, that affects the gene through FAR1, but fails to identify

the SBF complex (SWI4/6) as an activator. The fact that it does not succeed in identifying

the main activation link explains the poor performance when reproducing the data. DE+AIC

and GA+ANN preserve the connections from SWI4, SWI6 and CLN3 from one analysis to

the other, but at the same time add some false connections to PHO80, PHO4 and APC/C.

All in all, the results indicate GA+ANN and DE+AIC as better choices when a con-

tinuous simulation of the system is required, with less concern for qualitative analysis of

connections (i.e. a black box approach). GLDSC seemed to identify correct interactions in

most experiments, but is not able to reproduce the data as well as the other two methods.
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Figure A.13: Final data MSE for CLGA, MOGA and Fuzzy MOGA on the 2-gene dataset.
The difference observed is not statistically significant at a 5% level.

Methods analysing all genes simultaneously displayed very poor performance in terms of

reproducing the data, but succeeded in qualitatively identifying some correct interactions

for the small-scale datasets.

A.2.5 Single versus multi-objective optimisation

As CLGA ([Tominaga et al., 1999]) and MOGA ([Koduru et al., 2004]) were found not to

be suitable for large networks, these were compared only for a small network, i.e. a two-

gene GRN. The approach used in MOGA is to split the squared error fitness of CLGA into

separate objectives for each gene. Hence, in our experiments, we had 2 objective functions

to minimise. The aim of this experiment is to compare CLGA with this MO approach and to

identify the benefits of introducing fuzzy domination. The results of this experiment should

be indicative of the improvement of other, more advanced EA approaches, when using MO
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Figure A.14: Parameter MSE for CLGA, MOGA and Fuzzy MOGA on the 2-gene dataset.

optimisation.

In order to ensure the validity of our comparison we performed twenty 100,000-fitness

call runs for each of the three algorithms and the results are summarised in Table A.5 and

Figures A.13 and A.14. The averaged values in the table have been computed after elimi-

nating the two worst and best two results for each algorithm.

Figure A.15, which shows the average, minimum and maximum squared error between

the data and the model for the 20 best individuals in each generation, (one for each run),

indicates that the MO algorithms perform better in terms of goodness of fit (the models

found simulate the time series better than the CLGA). However, Figure A.13 indicates that

this difference is not statistically significant at a 5% level. Indeed, a t-test shows this is

likely to occur by chance 15% of the time. Similarly, although minimum values found for

parameter MSE are better for the multi-objective approaches, the differences are not statis-

tically significant at any meaningful level. Note, however, (Figure A.15), that the two MO
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Figure A.15: Multi objective optimisation - fitness evolution. Comparison of CLGA,
MOGA and Fuzzy MOGA on the 2-gene dataset during all generations.

approaches converge faster. This observed difference is confirmed by a t-test performed on

fitness values obtained after 20,000 iterations (a fifth of total optimisation), that resulted in

a p-value of 0.02 when comparing the single with the multi-objective approaches. However,

no significant improvement is introduced by fuzzy dominance selection in this case.

A more general observation is that, if we perform two rankings of the 20 solutions ob-

tained, (by goodness of fit and parameter quality, respectively), results differ, for all three

methods. So, improved fitness does not necessarily mean better parameters. This suggests

Table A.5: Performance of classical vs multi objective real-coded GA over 20 runs using
the 2-gene synthetic dataset.

Criteria CLGA MOGA Fuzzy MOGA

Goodness of data fit (Best/
Average SE)

0.0411/ 0.2091 0.0232/ 0.1400 0.0198/ 0.1070

Parameter quality (Best/
Average SE)

2.3689/ 10.2550 1.1388/ 11.2255 1.6858/ 9.6762

Robustness (Kinetic or-
ders /Rate constants vari-
ance)

0.3248/ 1.1070 0.3207/ 4.0854 0.2793/ 1.5181

Average running time 187.6s 302.8s 300.6s
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that some parameters may be more important than others. In consequence, a slight pertur-

bation of the more meaningful ones strongly influences the ability of the model to simulate

the data. Another argument for this is the observed difference between the robustness of

kinetic orders and that of rate constants, which suggests that variability in the latter impacts

less on the goodness of fit. These observations also suggest that alternative models are

possible, so that more precise discrimination is needed, as the MSE criterion not powerful

enough, even for small systems.

In conclusion, we have shown that, splitting the squared error objective into smaller sub-

objectives, for a MO approach, significantly speeds up convergence for EAs. Nevertheless,

after a large number of iterations, final results are comparable. This could be due to the fact

that this approach forces the algorithm to fit all parts of the time series at the same time,

instead of allowing it to converge more slowly by improving only some of the objectives,

which is an advantage, especially when dealing with high-dimensional problems. This

suggests that, even when analysing only one gene at-a-time, we can still split the time series

into shorter parts, to speed up convergence in a MO setting. Of course this is limited by

the length of the time-series, so further analysis, to investigate to what extent this objective

division is useful and at what point the overhead becomes greater than the gain, would be

valuable.

A.2.6 Divide et impera?

The argument found in the literature in favour of division of the optimisation process into

subproblems corresponding to each gene is increased scalability. This is due to a decrease

in number of parameters (linear instead of quadratic dependency on the number of genes

in the network [Noman and Iba, 2006]), and ease of solution evaluation, as only the time

series for the current gene needs to be simulated. However, these arguments do not take into

account the fact that this method has to be iterated for all genes, so, ultimately, the number

of parameters and the number of simulated time series is the same (no significant increase

in running time or computational power needed). Also, when simulating one series at-a-

time, the values of the rest of the genes are considered to be those of the experimental data.
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However, the effect of the current gene on the others is not taken into account and this can

give the impression of finding a good solution when, in reality, the difference between the

data and the simulation in a whole system setting could be larger. This effect is exacerbated

for real (noisy) data. In order to compensate for this disadvantage, a complete network

analysis can be performed, to fine tune the parameters obtained for each gene in each sub-

problem.

In order to avoid resource issues and enable scale-up even when analysing the entire

network simultaneously, parallelisation is clearly desirable. In a parallel setting, division

loses its advantages, becoming less viable than the complete network analysis, which can

be parallelised in a more convenient way, to avoid simulating only part of the network when

evaluating individuals.

During our experiments, division proved to be more useful when analysing real data,

statistically significant differences being observed in one of the small scale experiments.

Nevertheless, in both of these experiments, probably due to noise, the two methods analysing

the complete networks failed to reproduce the time series, even for a small number of genes.

However, a more detailed analysis, in a multi-CPU setting, is required with respect to their

behaviour with real microarray data.
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Appendix B

Datasets

B.1 DREAM 4 data

DREAM (Dialogue for reverse engineering assessments and methods)[Prill et al., 2010] is

an initiative to bring together research efforts for biological network inference, by compil-

ing a set of publications and providing a platform to validate reverse engineering methods.

A research competition is organised annually, where a set of data is published and the chal-

lenge is to predict the interactions within the system that produced the data. The DREAM4

competition for GRN inference concentrated on in-silico networks of two sizes (10 and 100

genes) [Marbach et al., 2010], and we have used the data available for two of the networks

to validate the experiments presented in this work (Chapter 6).

Validation with synthetic data has the advantage that the system under analysis is known

beforehand, so the interactions retrieved can be validated easily, unlike real systems where

the underlying network is unknown. DREAM4 data have a further advantage, in that the in-

silico networks have been designed to display the same connectivity patterns and modules

seen in real-life GRNs [Marbach et al., 2009]. This increases the relevance of evaluation

using these data.

The DREAM4 data used here consists of time-series data (5 experiments for the 10-

gene network and 10 for the 100-gene network, each experiment consisting of 11 time

points). Additionally, steady-state knockout measurements are provided after the knockout
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of every gene in the network. These two data types have been used here as training data

for the EGIA framework. For validation, the known gold-standards and a set of steady state

dual-knockout experiments were used as test datasets. The results obtained on these by the

EGIA framework have been compared to those obtained by the teams participating in the

competition, which are available on the DREAM website [Prill et al., 2010].

B.2 Saccharomyces cerevisiae data

Yeast data used in this work consists of four time series datasets measured on different

microarray platforms. These have been used together for analysis of data integration in

Chapter 4, while the Spellman dataset has been also employed for algorithm validation in

Appendix A.

Spellman dataset The Spellman dataset [Spellman et al., 1998], GEO accession number

GSE22, is a dual-channel microarray time series measuring the gene expression pattern

during the Yeast cell cycle. Two cell cycles are analysed every 7 minutes resulting in 18

time points.

PramilaL dataset The PramilaL dataset, [Pramila et al., 2006], GEO accession number

GSE4987, measures two yeast cell cycles at time intervals of 5 minutes, resulting in 25

different samples. The experiments are performed with dual-channel microarrays, FHCRC

Yeast Amplicon v1.1. The dataset contains a technical replicate, which has been used in

this work as an additional time series.

PramilaS dataset This dataset [Pramila et al., 2002] has been obtained on the same plat-

form and by the same authors of that in the previous paragraph, but contains only 13 time

points measured every 10 minutes, and no replicate. The accession number of the dataset is

GSE3635.
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Table B.1: Set of 27 genes selected for network analysis for the Drosophila melanogaster
dataset.
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Hasse dataset The Hasse dataset ([Orlando et al., 2008], GEO accession GSE8799) de-

scribes the same cell-cycle process in yeast, containing time series data sampled with single-

channel arrays (Affymetrix Yeast Genome 2.0) every 16 minutes. This results in 15 time

points available. A technical replicate is also present and is again used as a separate time

series during inference.

B.3 Drosophila melanogaster data

Drosophila melanogaster data have been used as a test case for the EGIA integrative plat-

form (Chapters 6 and 7), so several types of data have been retrieved from publicly available

databases. These include time series data from three platforms (retrieved from the Gene

Expression Omnibus database [Barrett et al., 2011]), a set of knockout microarray experi-

ments, PSWMs, known cis-regulatory modules and Gene Ontology annotations. For model

validation, a set of previously known interactions has been used. A subnetwork of 27 genes

involved in embryo development, listed in Table B.1, has been analysed.

Dual-channel (DC) dataset This time-course dataset analyses gene expression during

Fly embryo development, using dual-channel microarrays (GEO accession GSE14086, [Liu

et al., 2009a]). The dataset contains seven times points sampled at 1 and 2 hours intervals,

up to 10 hours after egg laying. Three biological replicates are available, resulting in three

time series in total.

Single-channel (SC) dataset The single-channel dataset [Tomancak et al., 2002], mea-

sured with Affymetrix arrays, contains gene expression measurements for 12 time points

during Drosophila m. embryo development. Samples have been taken every hour up to 12
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and a half hours after egg laying. Three biological replicates are present.

RNA-Seq (NGS) dataset A time-course dataset [NCBI, 2010] measured with the RNA-

Seq technology (Illumina Genome Analyzer II) for the same process of embryo develop-

ment in the Fruit Fly has been retrieved in order to analyse the applicability of the EGIA

framework on this data type, and identify overlapping features with microarray data. This

dataset contains 12 time points measured every 2 hours up to 24 hours after egg laying.

Three technical replicates are available. The data have been retrieved from the NCBI Se-

quence Read Archive database [SRA, 2011] (accession number SRP001065).

Previously known interactions For validation purposes, a set of known interactions have

been retrieved from DROID (DROsophila Interactions Database, [Murali et al., 2011]),

version 2010 10. This consists of 16 pair-wise interactions between transcription factors

and their target genes, for the 27-gene network under analysis.

Knockout datasets Five knockout microarray datasets have been retrieved form the Gene

expression omnibus database, which contain knockout experiments for 8 genes and the cor-

responding wild-type measurements. The accession numbers for the datasets are GSE23346

([Fox et al., 2010], Affymetrix Drosophila Genome 2.0 Array), GSE9889 ([Elgar et al.,

2008], Affymetrix Drosophila Genome Array), GSE7772 ([Toledano-Katchalski et al., 2007],

Affymetrix Drosophila Genome Array), GSE3854 ([Estrada et al., 2006], Affymetrix Drosophila

Genome Array) and GSE14086 ([Liu et al., 2009a], dual-channel array). For these, the log-

ratios between knockout and wild-type expression values have been used within the EGIA

framework, as described in Chapter 5.

Binding site affinities A set of PSWMs (Section 2.2.2) for 11 transcription factors have

been retrieved from [Pollard, 2011]. These matrices have been computed using DNA foot-

printing data from [Bergman et al., 2005]. Using promoter sequence information we used

these matrices to compute binding site affinities, which were integrated in the EGIA frame-

work as described in Chapter 5.
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Cis-regulatory modules In order to compute binding site affinities using PSWMs, the

promoter sequence for each gene is required. For the Drosophila genome, the RedFly

database [Gallo et al., 2010] provides a set of known cis-regulatory modules (CRMs), which

have been used for this purpose here. CRMs for 16 genes have been retrieved, while for the

other genes the upstream 2Kbp sequence has been used to assess binding affinity.

Gene Ontology (GO) annotations GO [Ashburner et al., 2000] is a database of genes

that have been annotated to have a specific function or to be involved in specific processes.

These annotations come from various sources, and have been determined using technologies

ranging from those in wet-lab experiments to computational methods. The database is a

valuable source of meta-information that can be used in different ways. Here, we have used

the GO platform to identify which of the gene products involved in the network analysed

have been previously shown to display transcription factor activity. This information was

used in the EGIA framework as described in Chapter 5.
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Appendix C

Evaluation criteria and basic

definitions

C.1 Quantitative evaluation criteria

Typical quantitative evaluation of models computes a distance or error measure between

simulated and real data. This gives an indication of the extent of simulation abilities that

the model displays. Several such criteria can be employed, depending on the evaluation

requirements.

The Residual Sum of Squares (RSS) is defined as:

RSS =
T∑

i=1

(xti − xsi)
2 (C.1)

where T is the number of data points available, xti is the value of point i in the real data,

while xsi is the corresponding simulated value. This distance measure is useful to compare

models on the same dataset; however, due to the dependence on the number of time points, a

comparison across datasets cannot be performed. In consequence, the Mean Squared Error

(MSE) can be used for such cases:

MSE =
RSS

T
(C.2)
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where RSS is defined in equation C.1. This offers a measure independent of the dataset

used for evaluation. However, the measurement unit is different than the data itself, so, in

order to provide a more insightful criterion of the error magnitude, the Root Mean Squared

Error (RMSE) can be used:

RMSE =
√
MSE (C.3)

A normalised version of the RMSE, which divides this by the Mean of the sample, also

exists. This is useful to compare algorithm behaviour between multiple datasets that may

have different expression ranges.

C.2 Qualitative evaluation criteria

In this work, qualitative evaluation of models consists of determining the amount of previ-

ously known interactions that the model is able to identify. This has been performed either

for one single model or, due to the stochasticity of the optimisation strategy used, by com-

bining results from multiple runs, through voting and sorting the interactions descending

by the number of votes obtained (i.e. the interactions contained in more models are more

likely to be actually true). Several statistical measures have been used to evaluate a set of

interactions predicted.

Sensitivity (also known as true positive rate (TPR) or recall), represents the fraction of

all the previously known interactions that have been uncovered by the algorithm.

Sensitivity =
TP

P
(C.4)

where TP represents the number of known interactions correctly uncovered by the algo-

rithm, while P represents the total number of known interactions.

Specificity is a complementary measure to sensitivity, which describes the algorithm

performance on the negative set of interactions (N, the number of interaction that are not
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known previously).

Specificity =
TN

N
(C.5)

where TN represents the number of interactions correctly identified by the model not to

exist.

The false positive rate (FPR) represents the proportion of N that are wrongly predicted

to be correct interactions.

FPR =
FP

N
(C.6)

where FP represents the amount of interactions wrongly predicted to exist.

Precision is a quantity describing the quality of the predicted interaction as the fraction

of predicted interactions that are actually present in the real system.

Precision =
TP

TP + FP
(C.7)

These measures, used alone, give only partial indication of the performance of the algo-

rithm in terms of the goodness of the predicted set of interactions. Hence, typically, at least

two of these are employed together to describe the performance more accurately. Exam-

ples are the TPR and FPR. By plotting these two measures (i.e. TPR vs. FPR), after each

individual interaction prediction, the ROC (Receiver Operating Characteristic) curve is ob-

tained. This shows how the two measures evolve during the prediction process, assuming

that in the end all possible interactions will be predicted as positive. Ideally, the FPR should

be null until the TPR reaches the value of 1, i.e. all the positive interactions are predicted

first. As a combined measure of quality of predicted interaction, the area under the ROC

curve (AUROC) can be computed. A value of 1 for this area indicates a perfect prediction,

while a value of 0.5 represents a prediction close to random.

A combined measure similar to AUROC, using precision vs. recall, is the AUPR (Area

Under the Precision Recall curve). This plots the precision and recall of the prediction and

computes the area under this curve. Ideally, the precision should maintain a value of 1 until

the recall reaches the same value, resulting in an AUPR value of 1. A value that represents
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Figure C.1: Notched box-plot example. Three different distributions are displayed, the
first one with values significantly lower than the other two. The horizontal lines show the
intervals defined by the notches for each distribution, which overlap for the last two plots.

the AUPR achievable by a random classification of interactions depends on the distribution

of N and P:

AUPRrandom =
P

P +N
(C.8)

C.3 Displaying results

Given that the platform presented in this work is based on stochastic optimisation, in order

to provide a consistent analysis of results, multiple runs of the algorithm have been per-

formed. The performance achieved (in qualitative or quantitative terms, i.e. MSE, RMSE,

etc.) has often been displayed as box plots, with their notched variant [McGill et al., 1978].

Box plots display the distribution of values over the multiple runs, i.e. minimum, max-

imum and quartiles. Notched box plots allow for significance analysis of results, hence,

in this work, enable identification of significant changes in algorithm performance. This

is performed by defining intervals around the median, displayed as notches, where two

distributions should not overlap if they are significantly different. The significance level

typically used in box plots is 5%. For example, Figure C.1 shows three such distributions,

with the notches defining an interval around the medians. The last two do not display a sig-
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nificant difference, although medians are different. However, the first distribution displays

significantly lower values that the other two. Throughout the thesis, box-plots have been

generated using R software, while for the results presented in Appendix A, they have been

created using the Free Statistics Software from Wessa.net [Wessa, 2008].

C.4 Wavelet analysis

Wavelets [Kaiser, 1994] are a mathematical tool for time-scale signal analysis: at large

scale, low frequencies present in the signal can be readily extracted, while small scale

analysis detects high frequency components. In signal decomposition in general, high fre-

quencies correspond to noise, while low frequencies correspond to the signal itself [Kaiser,

1994]; this also applies to time series gene expression measurements. Here, we have used

discrete wavelet decomposition to obtain wavelet coefficients for gene signals at different

scales, (also known as levels). This type of decomposition uses a set of functions, called

wavelets, which are generated by contracting and dilating a base function, i.e. the mother

wavelet, in discrete steps [Kaiser, 1994]:

Ψj,k(t) =
1√
sj
Ψ(

t

sj
− k¿) (C.9)

Here, Ψj,k is the wavelet obtained from Ψ, the mother wavelet, by using s, a fixed scaling

step, which is usually 2, and ¿ , a translation factor, usually 1. This results in a discrete

sampling of the time-scale space. The resulting wavelets are used to represent the signal as

a discrete superposition:

f(t) =
∑

j,k

wj,kΨj,k(t) (C.10)

where w(j, k) represent the wavelet transform coefficients, which describe components of

the signal, corresponding to scale window j and time window k. In practice, to obtain

these coefficients, an iterative approach is used, which builds coefficients for the upper half

of the frequency spectrum (considering s = 2 and ¿ = 1), filters these frequencies out

and repeats the process for the lower half, after sub-sampling the signal by 2. This results
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in different levels for coefficients, with low levels corresponding to small scale i.e. high

frequencies, and high levels to high scale i.e. low frequencies. Having 2k time points in

the data, 2k−1 level 1 coefficients are computed, for short time windows (total time divided

by number of coefficients), 2k−2 level 2, for double-sized time windows, while the last

level, k, contains just 2 coefficients, for large time windows. Each of these coefficients

indicates the importance of the current frequency level present in the signal in the current

time window, i.e. what part of the variation in the data is attributable to low/high frequency

effects. This results in high time resolution and low frequency resolution at small scale and

high frequency resolution and low time resolution at large scale.

Throughout the thesis, wavelet decomposition was performed using the MATLAB tool-

box WaveLab [Donoho et al., 1995].
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Sı̂rbu, A., Ruskin, H. J. and Crane, M. Regulatory network modelling: Correlation for

structure and parameter optimisation, In Proceedings of The IASTED International Confer-

ence on Computational Bioscience, Cambridge, Massachusetts, 1-3 Nov.

Sı̂rbu, A., Ruskin, H. J. and Crane, M. Modelling Gene Regulatory Networks - An Inte-

grative Approach, ERCIM News, 81(36-37), Special Issue: Computational Science/Scientific

Computing. Simulation and Modelling for Research and Industry.

Abstracts

Sı̂rbu, A., Ruskin, H. J. and Crane, M. (2011). Stages of Gene Regulatory Net-

work Inference: the Evolutionary Algorithm Role

http://www.intechopen.com/articles/show/title/stages-of-gene

-regulatory-network-inference-the-evolutionary-algorithm-

role

In all genetic material, the DNA information encoded is required by the cell to create

proteins that are vital for its mechanisms . Each cell has access to the same information,

but behaviour depends on tissue type. Hence, regulatory mechanisms exist, which control

protein level and function, dependent on the environment. One such regulatory mechanism,

transcriptional regulation, is controlled by proteins called transcription factors (TFs). These

TFs bind to the region upstream of the gene that needs to be expressed and regulate its

transcription in a positive or negative way (up- or down-regulation). Such interactions

contribute to create a complex network of regulation, known as gene regulatory network

(GRN).

Uncovering interactions between genes and their products has been a major aim of

Systems Biology over recent years. The objective is to gain a better understanding of the

functioning of different organisms, together with discovery of disease markers and new

treatments . The class of computational methods known as Evolutionary Algorithms (EAs)

have demonstrated relevance at different stages of these investigations. This chapter, in con-
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sequence, presents an overview of approaches and issues in GRN modelling and inference,

and discusses the role of EAs in this regard.

GRN analysis has been facilitated by the advent of technologies for measuring gene ex-

pression. These include mature technologies such as qrtPCR, , suitable for a limited number

of genes, and microarrays, which allow for high-throughput measurement of thousands of

genes at the same time. More recently, RNA-Seq measurements have become available, due

to advances in high throughput sequencing technology. However, these data are still scarce,

due to high experimental costs. Characterised as they are by high dimensionality and noise

levels, analysis of these data types is far from trivial.

Three different analysis stages can be identified for GRN inference: (i) expression pat-

tern analysis, (ii) mathematical modelling from expression data and (iii) integrative mod-

elling. At each of these, and most particularly at the latter stage, EAs have an important

role to play, due to the strength and flexibility of these search methods.

Expression pattern analysis is largely concerned with application of classification and

clustering methods to gene expression data. Clustering, as a first step towards GRN mod-

elling, together with classification, typically used to distinguish between tissue types (e.g.

control/treatment or healthy/infected), give valuable insight on gene involvement in differ-

ent processes. EAs are typically employed at this stage, with some success, for feature

selection and clustering.

At the second stage, a GRN model is created to explain the data, which can be used for

in silico simulation and process analysis under various criteria. Such a model is built by

reverse engineering from available time course expression data, with inferential algorithms

used to fit model parameters to the data, using evolutionary optimisation. Different EA

approaches are presented here, for inferences on discrete qualitative to continuous quan-

titative models. Consequently, the discussion includes classical to hybrid EAs, (hybridi-

sation by local search, divide-and-conquer and nested optimisation), and identification of

strengths and weaknesses. Earlier work on a comparison framework, will also be described

in this context.

A general limitation in GRN modelling is that, although qualitative models can be built
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for entire GRNs, quantitative analysis is still restricted to sub-networks, due to limited data

available and the large number of parameters to be optimised. Quantitative models allow

for a better representation of interaction links, and for continuous simulation of dynamical

behaviour, but the limitations in size and accuracy has impeded their use in real-world sce-

narios. Consequently, a third stage in network inference, integrative analysis, aims at rec-

onciling different sources for the large amount of biological data available, in order to im-

prove reliability of the inferential process, and realism of the models. Additional data types,

which can contribute to synthesis, include DNA-protein interactions, knockout/knockdown

experiments, binding site affinities, as well as known TFs and RNA interference measures.

To date, integration efforts are sparse. Nevertheless, examples of approaches based on

EAs are presented here, although these typically combine only one additional data type with

expression measurements. Ideally, all such related data should contribute to the inferential

process. With this aim, a novel algorithm, based on evolutionary computation, that aims at

large scale data integration for quantitative modelling, is also outlined, and the advantages

and disadvantages of EAs for data unification discussed.

Sı̂rbu, A., Ruskin, H. J. and Crane, M. , Integrating Heterogeneous Gene Ex-

pression Data for Gene Regulatory Network Modelling

Gene regulatory networks are complex biological systems that have a large impact on pro-

tein levels, so that discovering network interactions is a major objective of Systems Biol-

ogy. Quantitative GRN models have been inferred, to date, from time series measurements

of gene expression, but at small scale, and with limited application to real data. Time

series experiments are typically short, (number of time points of the order of 10), while

regulatory networks can be very large, (containing hundreds of genes). This creates an

under-determination problem, which negatively influences the results of any inferential al-

gorithm. Presented here is an integrative approach to model inference, which has not been

previously discussed, to the authors’ knowledge. Multiple heterogeneous expression time

series are used to infer the same model, and results are shown to be more robust to noise and
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parameter perturbation. Additionally, a wavelet analysis shows that these models display

limited noise over-fitting within the individual datasets.

Sı̂rbu, A., Kerr, G., Ruskin, H. J. and Crane, M. , NGS vs dual- and single-

channel microarray data: sensitivity analysis for differential expression and clus-

tering, In preparation.

With the fast development of high throughput sequencing technologies, a new generation

of genome-wide gene expression measurements is under way. Based on mRNA sequenc-

ing, which complement the already mature technology of microarrays, this is expected to

overcome some of the latter’s disadvantages. These data pose new challenges, however, as

strengths and weaknesses have yet to be fully identified, while very few study analyses have

been reported to date. Ideally, Next Generation Sequencing measures can be integrated for

more comprehensive gene expression investigation, to facilitate analysis of whole regula-

tory networks. At present, however, the nature of these data is not well understood.

In this paper, we study three alternative gene expression time series datasets for the

Drosophila melanogaster embryo development, in order to compare three measurement

techniques: RNA-seq, single-channel and dual-channel microarrays. The approach consists

of a sensitivity analysis for differential expression and clustering, and aims to highlight

different features of the three datasets.

In general, the RNA-seq dataset displayed highest sensitivity to differential expression

and robustness to stringent thresholds. The single-channel data performed similarly for

the differentially expressed genes common to gene sets considered. Cluster analysis was

used to identify different features of the gene space for the three datasets, with similarities

found for the RNA-seq and single-channel dataset at fine-grained level, and complementary

information from the RNA-seq dataset at coarse-grained clustering.
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Sı̂rbu, A., Ruskin, H. J. and Crane, M. (2010). Comparison of evolutionary

algorithms in gene regulatory network model inference

http://www.biomedcentral.com/1471-2105/11/59

The evolution of high throughput technologies that measure gene expression levels has

created a data base for inferring GRNs (a process also known as reverse engineering of

GRNs). However, the nature of these data has made this process very difficult. At the

moment, several methods of discovering qualitative causal relationships between genes

with high accuracy from microarray data exist, but large scale quantitative analysis on real

biological datasets cannot be performed, to date, as existing approaches are not suitable for

real microarray data which are noisy and insufficient.

This paper performs an analysis of several existing evolutionary algorithms for quan-

titative gene regulatory network modelling. The aim is to present the techniques used and

offer a comprehensive comparison of approaches, under a common framework. Algorithms

are applied to both synthetic and real gene expression data from DNA microarrays, and

ability to reproduce biological behaviour, scalability and robustness to noise are assessed

and compared.

Presented is a comparison framework for assessment of evolutionary algorithms, used

to infer gene regulatory networks. Promising methods are identified and a platform for

development of appropriate model formalisms is established.

Sı̂rbu, A., Ruskin, H. J. and Crane, M. (2010). Cross-platform microarray data

normalisation for regulatory network inference

http://www.plosone.org/article/info:doi/10.1371/journal.pone.

0013822

Inferring Gene Regulatory Networks (GRNs) from time course microarray data suffers

from the dimensionality problem created by the short length of available time series, com-

pared to the large number of genes in the network. To overcome this, data integration from

diverse sources is mandatory. Microarray data from different sources and platforms are
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publicly available, but integration is not straightforward, due to platform and experimental

differences.

We analyse here different normalisation approaches for microarray data integration, in

the context of reverse engineering of GRN quantitative models. We introduce two pre-

processing approaches based on existing normalisation techniques, and provide a compre-

hensive comparison of normalised datasets.

Results identify a method based on a combination of Loess normalisation and iterative

K-means as best for time series normalisation for this problem.

Sı̂rbu, A., Ruskin, H. J. and Crane, M. (2010). Regulatory network modelling:

Correlation for structure and parameter optimisation

http://www.actapress.com/Abstract.aspx?paperId=41573

Due to the limitations of available gene expression data, (i.e. noise and size of time

series), modelling gene regulatory networks is still restricted, especially in terms of their

quantitative analysis. To date, the only criterion used for model evaluation is the residual

error between observed and simulated data. This does not assign good fitness to mod-

els that can simulate the general oscillation, but are shifted with respect to observed data.

Given that oscillatory behaviour of such complex systems is mostly driven by the topol-

ogy of regulatory networks, these models may contain important information on network

structure, which can shed light on evolutionary parameter optimisation. In consequence, a

second model evaluation criterion is introduced here, namely the Pearson correlation coef-

ficient between simulated and observed time series, which enables good fit to be assessed

for candidate solutions able to approximate the general behaviour seen in the data. This

is employed in a nested optimisation algorithm, which separately analyses the structure

and parameters of the models. The method is evaluated using both synthetic and real mi-

croarray gene expression data, (Yeast cell cycle), and results show that models obtained in

this way display more plausible connections, also contributing to simulation of quantitative

behaviour.
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