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Abstract

One of the challenges in the designing of pairing-based cryptographic pro-

tocols is to construct suitable pairing-friendly curves: Curves which would

provide efficient implementation without compromising the security of the

protocols. These curves have small embedding degree and large prime order

subgroup. Random curves are likely to have large embedding degree and

hence are not practical for implementation of pairing-based protocols.

In this thesis we review some mathematical background on elliptic and

hyperelliptic curves in relation to the construction of pairing-friendly hyper-

elliptic curves. We also present the notion of pairing-friendly curves. Fur-

thermore, we construct new pairing-friendly elliptic curves and Jacobians

of genus two hyperelliptic curves which would facilitate an efficient imple-

mentation in pairing-based protocols. We aim for curves that have smaller

ρ-values than ever before reported for different embedding degrees.

We also discuss optimisation of computing pairing in Tate pairing and

its variants. Here we show how to efficiently multiply a point in a subgroup

defined on a twist curve by a large cofactor. Our approach uses the theory

of addition chains. We also show a new method for implementation of the

computation of the hard part of the final exponentiation in the calculation

of the Tate pairing and its variants.
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Chapter 1
Introduction

1.1 Background

Elliptic curves were independently introduced to cryptography in 1985 by

Victor Miller [66] and Neal Koblitz [52] . While in 1989, to get a more

general class of curves and possibly larger group orders, Neal Koblitz [53]

proposed the use of divisor class groups on Jacobians of hyperelliptic curves.

The proposals of Elliptic Curve Cryptography (ECC) and Hyperelliptic

Curve Cryptography (HECC) were as an alternative to public-key systems

such as RSA algorithms [78]. The advantage of ECC and HECC is that

for suitably chosen curves there is no known subexponential algorithm like

the number field sieve algorithm [59] for integer factorization, to solve the

Elliptic Curve Discrete Logarithm Problem (ECDLP) or the Hyperelliptic

Curve Discrete Logarithm Problem (HECDLP). Consequently, this leads to

smaller key length in ECC and HECC to achieve the same level of security

as in public-key systems based on factorisation and the Discrete Logarithm

Problem (DLP) in finite fields. The shorter key length, in turn, leads to

faster encryption and decryption, savings in bandwidth and efficient imple-

1



BILINEAR PAIRINGS 2

mentation.

1.2 Bilinear pairings

Initially, pairings were used for cryptanalysis purposes. In 1993, Menezes,

Okamoto and Vanstone [63] showed how it is possible, using the Weil pair-

ing, to convert a discrete logarithm problem on elliptic curves to a discrete

logarithm problem in a finite field. This cryptanalysis is known as MOV-

reduction. In particular, if the curve is supersingular and the Weil pairing

is defined over any r-torsion subgroup then with MOV-reduction one can

solve the DLP in a sub-exponential time. This is achieved by establishing

an isomorphism between the subgroup of points on a curve C, generated by

a point P , and a subgroup of r-th roots of unity. Similar work was later

done by Frey and Rück [35] by using the Tate pairing.

However some ‘constructive’ use of pairings were later proposed by differ-

ent researchers. For instance, Joux [48], Sakai, Ohgishi and Kasahara [80]

and Boneh and Franklin [13] proposed cryptosystems using elliptic curve

pairings.

The cryptosystem proposed by Joux in 2000 for example, is analog to

the Diffie-Hellman protocol [25] for key exchange. The Joux’s key exchange

protocol, allows three parties to share a private key in only one round which

the Diffie-Hellman protocol does in two rounds. In 1984, Shamir [90] con-

ceptualised a public-key encryption scheme where the public key of each

person is directly linked to his or her identity. This idea removed the need

for its certification by a trusted certification authority. Sakai, Ohgishi and

Kasahara [80] and independently Boneh and Franklin [13] devised the first

practical implementation of such an Identity-Based Encryption scheme us-

ing bilinear maps.

Page 2



BILINEAR PAIRINGS 3

The following is the definition of a non-degenerate bilinear pairing [10]:

Definition 1.2.1. Let G1 and G2 be finite cyclic additive groups of prime

order r and GT be a finite cyclic multiplicative group of order r. A non-

degenerate bilinear pairing is a map e : G1 × G2 → GT that satisfies the

following properties:

i. bilinear

e(P + P ′, Q) = e(P,Q).e(P ′, Q);

e(P,Q+Q′) = e(P,Q).e(P,Q′);

for all P, P ′ ∈ G1 and Q, Q′ ∈ G2 and a, b,∈ Zr.

ii. non-degenerate: For all P ∈ G1, P 6= O there is some Q ∈ G2 such

that e(P,Q) 6= 1. For all Q ∈ G2, Q 6= O there is some P ∈ G1 such

that e(P,Q) 6= 1.

iii. computable: e can be efficiently computed.

That is the function e bilinearly maps two elements, P ∈ G1 and Q ∈ G2

to an element, rth root of unity, in GT . The bilinearity condition is the main

property of the pairing. In fact, it is the one property that facilitates the

efficient reduction of the DLP in G1 to the DLP in GT . Moreover, the non-

degeneracy property ensures that the mapping is not trivial; that is, sending

every pair of elements of G1 and G2 to the identity element of GT . This

would not be interesting and practical.

The pairing can be delivered by either the Weil pairing or the Tate

pairing and its variants (we introduce this in Section 5.1.1 later). In this

thesis, we identify G1 as a group of points on a curve defined over a base

field and G2 as a group of points on a curve defined over some extension

Page 3
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of the base field. The computational complexity of the Tate pairing is less

than that of the Weil pairing.

1.2.1 Security considerations

The security of pairing-based protocols relies on the hardness of the problems

stated in Definitions 1.2.2, 1.2.3 and others. We say that a problem in a

group G is hard if no polynomial algorithm solves the problem with non-

negligible probability, see [97] for more details.

Definition 1.2.2 (Discrete Logarithm Problem (DLP)). Let G be additive

cyclic group of order r generated by P . For P,Q ∈ G, find a ∈ Zr such that

Q = aP .

In 1970, Diffie and Hellman showed that cryptographic protocols can be

constructed if one assumes that the Computational Diffie-Hellman Problem

(CDHP) is hard. The CDHP in a cyclic group G, is to compute gab given

a triple, (g, ga, gb), where g is uniform in G and a, b are uniform in Zr. A

variant of the CDHP in pairings is known as Bilinear Diffie-Hellman Problem

(BDHP). In its general terms it is defined as follows [97]:

Definition 1.2.3 (Bilinear Diffie-Hellman Problem (BDHP)). Let G1 be a

finite additive cyclic group generated by P1, G2 be a finite additive cyclic

group generated by P2 and GT be a finite multiplicative cyclic group, let

e be a bilinear pairing on (G1,G2,GT ) and let a, b, c ∈ Zr. Given values

x, y, z, ∈ {1, 2} and P1, P2, aPx, bPy and cPz compute the value of the bi-

linear pairing, e(P1, P2)abc.

Groups in which the BDHP is hard and for which the group law can be

performed efficiently are possible candidates for pairing-based cryptographic

applications.

Page 4
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We consider two types of groups here; the group of points on elliptic

curves, and the group of points on the Jacobian of genus 2 hyperelliptic

curves. In these groups under certain conditions, there is no method like in-

dex calculus known to solve the DLP. If the groups are chosen with care, then

the most efficient way to solve the DLP is by means of parallelised Pollard-

rho method [77] and it has a fully exponential running time of
√
π|G|/2

group operations.

1.2.2 Divisors

Divisors are useful tools for tracking the zeros and poles of a rational func-

tion. We need these tools to construct a group law on hyperelliptic curves.

We state the results only. The proofs can be found in [95], [10] or [103].

Let C be a non-singular projective curve defined over a field F and let F̄

be its algebraic closure. A divisor D is defined as follows:

Definition 1.2.4. A divisor D is a formal sum of all symbols (P ) given by

D = {
∑

P∈C(F̄)

nPP : nP ∈ Z} (1.1)

where only a finite number of np are non-zero and P is an F̄-point on the

curve C.

Set of divisors of the curve forms a free abelian group generated by the

points on C, referred to as the divisor group of C which we represent by

Div(C). The degree of a divisor D is defined to be

deg(D) =
∑

P∈C(F̄)

nP ∈ Z

Page 5
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and the order of D at P , is defined by:

ordP (D) = nP ∈ Z.

The divisors of degree zero form a subgroup of Div(C), which is a set defined

as:

Div0(C) = {D ∈ Div(C)| deg(D) = 0}.

The support of D, denoted by supp(D), is defined as the finite set of points

P with nP 6= 0.

Let F̄(C) be the function field of rational functions on C. Let f ∈ F̄(C)

be a non zero function. Then the rational function f on C has an associated

divisor

div(f) =
∑

P∈C(F̄)

ordP (f)(P )

which keeps track of the number and location of its zeros and poles. A

divisor which is the divisor of a function in this way is called a principal

divisor. We denote this by Princ(C) and is defined as:

Princ(C) = {D ∈ Div(C)|D = div(f), f 6= 0, forf ∈ F̄(C)}.

In fact Princ(C) is a subgroup of Div0(C). Moreover, for non-zero ra-

tional functions f, g ∈ F̄(C), div(fg) = div(f) + div(g) and div(f/g) =

div(f)− div(g).

Two divisors D and D′ are said to be equivalent, D ∼ D′, if D′ =

D + div(f) for some non-zero f ∈ F̄(C).

We refer to D as prime to D′ if supp(D) ∩ supp(D′) = ∅. Furthermore,

we say, D is effective or positive divisor when all nP ≥ 0.

For an element α in the Galois group of F̄ over F and for a divisor,

Page 6



CYCLOTOMIC POLYNOMIALS 7

D ∈ Div(C), Gal(F̄/F) acts on the divisor as follows:

(
∑

P∈C(F̄)

nP (P ))α =
∑

P∈C(F̄)

nP (Pα).

A divisor D is said to be defined over F if Dα = D for all α ∈ Gal(F̄/F).

The equivalence classes of divisors of degree zero, Div0(C), form a group

known as the Picard group denoted by Pic0(C). The Pic0(C) is a quotient

group of degree zero divisors modulo principal divisors, that isDiv0(C)/Princ0(C).

If C is an elliptic curve E/F for example, then for every divisor D ∈

Div0(E) there is a unique point P ∈ E(F) such that D ∼ (P )−O. This gives

a one-to-one correspondence between Pic0(E) and E(F).

In general, if a curve has a rational point then there is a natural iso-

morphism between the degree zero part of the Pic0(C) group of genus two

hyperelliptic curve C and and its Jacobian JC which is an abelian variety

into which the curve embeds. In this thesis for genus 2 hyperelliptic curve,

C, we identify the Picard group Pic0(C) with JC .

1.3 Cyclotomic polynomials

1.3.1 Introduction

Cyclotomic polynomials play a very important role in the construction of

pairing-friendly curves. For proofs and more on this area the reader is

referred to [102] and [43].

Definition 1.3.1. Let k be a positive integer. A complex number ζ is called

a kth root of unity if ζk = 1.

From the polar form of complex numbers we know that there are k kth

Page 7
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roots of unity which are exactly the numbers

e
2πi
k , e

2πi
k

2, . . . , e
2πi
k
k = 1.

Definition 1.3.2. Let ζ be a kth root of unity. If m is the smallest positive

integer such that ζm = 1, then m is called the order of ζ which we denote

by Ordζ .

Definition 1.3.3. Let ζ be an kth root of unity. Then ζ is called a primitive

kth root of unity, denoted ζk, if Ordζ = k.

Definition 1.3.4. Let k be a positive integer. Denote ζk a primitive kth

root of unity. Then the kth cyclotomic polynomial is the monic polynomial

given by the following equation:

Φk(z) =
∏

1≤s≤k
gcd(s,k)=1

(z − ζsk) (1.2)

The polynomial Φk(z) is irreducible over Q, has integer coefficients and

of degree ϕ(k), where ϕ(.) is the Euler’s totient function. Furthermore, by

setting Φ1(z) = z − 1 one can recursively generate the other cyclotomic

polynomials by using the following theorem:

Theorem 1.3.1. Let m be a positive integer. Then

zm − 1 =
∏
d|m

Φd(z). (1.3)
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Here we state the first 10 cyclotomic polynomials:

Φ1(z) = z − 1;

Φ2(z) = z + 1;

Φ3(z) = z2 + z + 1;

Φ4(z) = z2 + 1;

Φ5(z) = z4 + z3 + z2 + z + 1;

Φ6(z) = z2 − z + 1;

Φ7(z) = z6 + z5 + z4 + z3 + z2 + z + 1;

Φ8(z) = z4 + 1;

Φ9(z) = z6 + z3 + 1;

Φ10(z) = z4 − z3 + z2 − z + 1.

1.3.2 Cyclotomic fields

When a complex primitive root of unity is adjoined to the field of rational

numbers Q, a cyclotomic field or cyclotomic number field is constructed.

For a positive integer k > 2 and ζk a primitive kth root of unity we denote

the kth cyclotomic field by Q(ζk). This field contains all kth roots of unity

and is the splitting field of the kth cyclotomic polynomial Φk(z), over Q.

The ring of integers of a cyclotomic field always has a power basis over

Z. Specifically, the ring of integers of Q(ζk) is Z[ζk].

1.4 Pairing-friendly abelian varieties

A general literature on abelian varieties can be sourced from [47],[79],[91],[104],

or [54]. In this section, we introduce the notion of pairing-friendly abelian
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varieties.

An abelian variety A defined over a field F, is a projective algebraic va-

riety that is also an algebraic group with F-rational point O, the identity

element, morphisms ψ : A×A → A, the addition law and Θ : A → A, the

inverse. That is, it has a group law that can be defined by regular functions.

The group law on abelian variety is necessarily commutative and the

variety is non-singular. An elliptic curve for example, is a one-dimensional

abelian variety and an abelian surface is a two-dimensional abelian vari-

ety.See [104] and [47] for more details.

1.4.1 Embedding degree

We introduce the notion of the embedding degree. Let A be an abelian

variety defined over a finite field Fp, let Fp-rational points of A be denoted

by A(Fp), assume A contains an additive cyclic group of prime order r. Let

µr ⊂ F̄p be the group of rth roots of unity in algebraic closure of Fp. We

define the Tate pairing as a non degenerate bilinear map

A(Fp)[r]× Â(Fp)/rÂ(Fp) 7→ F×p /(Fp×)r

where Â is the dual of A. The quotient group F×p /(Fp×)r is isomorphic to

µr. That means; in order to obtain pairing values of order r we must work

over a field containing the rth roots of unity. If k is a positive integer then

we say A has embedding degree k with respect to r if Definition 1.4.1 is

satisfied.

Definition 1.4.1 ([31]). Let A be an abelian variety defined over Fp, let r

be a prime distinct from the characteristic of Fp. Then A has embedding

degree k with respect to r if
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� A has an Fp-rational point of order r and

� [Fp(µr) : Fp] = k.

The name embedding degree, is derived from the fact that the k-extension

field of Fp is the smallest field over which the pairing can be used to embed

an additive cyclic group of order r, a subset of A(Fp), into a multiplicative

cyclic group Fp(ζr).

We will say a curve C has embedding degree k with respect to a prime

integer r if and only if a Jacobian does.

Lemma 1.4.1. Let A be an abelian variety over a finite field Fp with Fp-

rational point of order r. If r is relatively prime to p then the following

conditions are equivalent:

1. A has embedding degree with respect to r.

2. k is the smallest integer such that r divides pk − 1.

3. k is the multiplicative order of p modulo r

Furthermore, if r is a prime not dividing k then these conditions are

equivalent to:

4. Φk(p) ≡ 0 (mod r), where Φk is the kth cyclotomic polynomial.

Proof. See [31]

1.4.2 Frobenius endomorphism

Let p be an odd prime, Fp a finite field of order q with char(Fp) = p. Let g

be a positive integer and A be an abelian variety of dimension g defined over

Fp. Then the Frobenius endomorphism π, of A/Fp has a characteristic poly-

nomial χA. This is a degree 2g monic polynomial with integer coefficients
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of the form:

χA = t2g + a1t
2g−1 + · · ·+ agt

g + pag−1t
g−1 + pg. (1.4)

In fact this polynomial determines A up to Fp-isogeny, thus two abelian

varieties A and A′ are Fp-isogenous if and only if χA is equal to χA′ [47].

If A is a g-dimensional simple abelian variety defined over a field Fp and

K = Q(π) ⊂ End(A) ⊗ Q, the number field generated by the Frobenius

endomorphism π, then the Fp-rational points of A form the kernel of the

endomorphism (π − 1). And hence in the case where K = Q(π) is the

full endomorphism algebra, End(A)⊗Q, the number #A(Fp) is completely

determined by χA according to the formula:

#A(Fp) = χ(1) = NormK/Q(π − 1). (1.5)

Moreover, we say A is ordinary if the middle coefficient of χA is prime

to the field characteristic and A is supersingular if A is F̄p-isogenous to a

product of supersingular abelian varieties of lower dimensions.

If r is a prime integer then r-torsion points onA are denoted asA(Fp)[r] ⊆

A(Fp). This is a group of points defined as:

A(Fp)[r] = {P ∈ A(Fp)| rP = O} (1.6)

where O is the identity of the group.

When developing a pairing-based protocol one chooses a large prime, say

r, and the embedding degree k such that the DLP in both A(Fp)[r] ⊆ A(Fp),

and Fp(ζr)∗ are computationally of similar difficulty.

Typically, for practical purposes, abelian varieties must have small em-
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bedding degree k. Otherwise the computations will not be feasible in Fpk .

With today’s recommendations for security and applicability reasons the

size of pk should at least be 1024 bits in length. While a large prime order

subgroup of size r should be at least 160 bits, see Table 1.1.

This leads to understanding pairing-friendly abelian varieties as the one

that satisfies the following [32]:

� A(Fp) has a large prime order subgroup, A(Fp)[r], so that the DLP is

suitably hard.

� the embedding degree k ofA(Fp) with respect toA(Fp)[r] is sufficiently

small so that the arithmetic in Fpk can be efficiently implemented and

large enough so that the DLP in Fpk is hard.

Pairing-friendly abelian varieties satisfy conditions in the Proposition

1.4.1 below.

Proposition 1.4.1 ( [33]). Let A(Fp) be a simple abelian variety, let Fp be a

finite field and let π be the Frobenius endomorphism and assume K = Q(π)

is a full algebra endomorphism, End(A)⊗Q. Let k be a positive integer, Φk

be the kth cyclotomic polynomial, and r a prime number such that r - pk. If

we have

NormK/Q(π − 1) ≡ 0 mod r; (1.7)

Φk(p) ≡ 0 mod r; (1.8)

then A has embedding degree k with respect to r.

In an ordinary one-dimensional abelian variety, the elliptic curves, the

number field generated by the Frobenius endomorphism π, is a quadratic

imaginary field, K = Q(π) = End(A) ⊗ Q. In this instance π corresponds
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to the imaginary quadratic integer such that NormK/Q(π) = ππ̄ = p and

its trace can be viewed as t = π + π̄. The conditions in Proposition 1.4.1

are then equivalent to:

(p+ 1− t) ≡ 0 mod r; (1.9)

Φk(p) ≡ 0 mod r. (1.10)

The first relation, in both instances, ensures that the order of the abelian

variety has a large prime factor while the second one ensures that the em-

bedding degree of the abelian variety is k.

The efficiency of computations on A(Fp) is determined by #A(Fp) ≈ pg

in relation to the size of the prime order subgroup r. For efficient imple-

mentations one usually wishes to choose A with an r as close to #A(Fp) as

possible.

A parameter, ρ, is used as a measure of this efficiency. It roughly ap-

proximates the ratio of the bit size of the entire group A(Fp) to the bit size

r of the cryptographic group. The ρ-value of a g-dimensional abelian variety

A, defined over a finite field Fp, is defined as:

ρ =
g log p

log r
(1.11)

where log is the natural logarithm. For a secure and efficient implementa-

tion of protocols, the ideal situation is to have ρ ≈ 1.

Supersingular abelian varieties exhibit the above qualities. That is; hav-

ing a small embedding degree and reaching the ideal case for ρ-values. Un-

fortunately there is skepticism over their use because the more interesting su-

persingular varieties are only defined with small characteristic field in which

index calculus attack is particularly powerful [21] and have small embedding
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degree k. Hence Miyaji et al.[69], Barreto and Naehrig [8] and Freeman [29]

proposed methods for constructing ideal one-dimensional ordinary pairing-

friendly abelian varieties for embedding degrees k. Furthermore, with the

growing deployment of pairing-based cryptographic protocols there is a need

to have at our disposal abelian varieties of various embedding degrees k, to

cater for different levels of security, see Table 1.1.

The question now is:

Given positive integers g and k construct a g-dimensional ordi-

nary pairing-friendly abelian variety A, defined over a finite field

Fp, such that:

� #A(Fp) has a large prime factor r;

� A has embedding degree k with respect to r;

� the ρ-value of A is as close to one as possible.

We address this problem by describing constructions of ordinary elliptic

curves and Jacobians of genus two hyperelliptic curves, with a large prime-

order subgroup and have prescribed embedding degree k.

Our methods are based on the Brezing-Weng method for constructing

pairing-friendly elliptic curves [17] and the Kawazoe-Takahashi method of

constructing genus two pairing-friendly hyperelliptic curves [51]. In our

construction we look for abelian varieties with smaller ρ-values than any

previously reported; as field arithmetic on such abelian varieties is faster

compared to those varieties with larger ρ-values [32].

Table 1.1 outlines the recommended sizes of r and pk at different levels of

security for dimension one and two abelian varieties [32]. The listed bit sizes

are those matching the security levels of the SKIPJACk, Triple-DES, AES

small, AES-Medium and AES-Large symmetric key encryption schemes.
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Table 1.1: Bit sizes parameters r and pk

Security
level
(bits)

Subgroup
size r
(bits)

Extension field
size pk (bits)

k.ρ

genus 1 genus 2

80 160 960-1280 6 - 8 12 - 16

112 224 2200-3600 10 - 16 20 - 32

128 256 3000-5000 12 - 20 24 - 40

192 384 8000-10000 20 - 26 40 - 52

256 512 14000-18000 28 - 36 56 - 72

1.4.3 Families of curves

Our approach in constructing families of pairing-friendly curves is to use

polynomials to define parameters. Polynomials were used in other construc-

tions such as those due to Miyaji, Nakabayashi and Takano [69]; Barreto,

Lynn and Scott [7]; Scott and Barreto [86] and Brezing and Weng [17]. This

is good for implementors since it brings flexibility in choosing curves of spec-

ified bit size. Hence we have the notion of a family of pairing-friendly curves

as presented in [32].

Here we need the polynomials we construct to take in infinite values

of integers and primes. To that effect there is famous conjecture by Buni-

akowski [16] and reformulated by Schinzel and Sierpiński [81].

However, for our purpose we also consider polynomials with rational co-

efficients. Before we state the adapted conjectures we need the following

definition [32]:

Definition 1.4.2. Let g(z) be a polynomial with rational coefficients. Then

g(z) represents integers if there exists z0 ∈ Z such that g(z0) is an integer.

In other words, there must be infinitely many integers z0, such that g(z)

is an integer too. It turns out that it is enough using representatives of Zn
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to test the condition in Definition 1.4.2; that is on z0 ∈ [0, 1, 2, . . . n − 1]

for some n such that n.g(z) ∈ Z[z]. If one of the values of z0 evaluates the

polynomial to an integer then we say it represents integers.

Conjectures 1.4.1 and 1.4.2 describe conditions that will likely make a

polynomial with rational coefficients take infinite prime values [16], [32].

Conjecture 1.4.1. Let g(z) be a polynomial with rational coefficients. Sup-

pose g(z) is a non constant irreducible polynomial with a positive leading co-

efficient and represents integers. Moreover, suppose that there is no prime

p which divides g(z) for every integer value of z. Then g(z) is prime for

infinitely many positive integer values of z.

This was later generalised to a family of polynomials by Schinzel and

Sierpiński [81] who gave several applications to elementary number theory.

It is extended here to include polynomials with rational coefficients.

Conjecture 1.4.2. Let g1(z), · · · gj(z) be a polynomials with rational coef-

ficients. Let g1(z), · · · gj(z) be non constant irreducible polynomials with a

positive leading coefficient and represents integers. Moreover, suppose that

there is no prime p for which

i=j∏
i=1

gi(z) ≡ 0 mod p

for every value of z. Then there are infinitely many positive integers z for

which g1(z), · · · , gj(z) are simultaneously prime.

Moreover, if g(z0) = ±1 for some value z0 then g(z) will automatically

represent integers and primes.

Example 1.4.1. Consider g(z) = (z10+z9+z8−z6+2z5−z4+z2−2z+1)/3
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g(0) = 1/3;

g(1) = 1;

g(2) = 1777/3.

Hence, only when z ≡ 1 mod 3 will g(z) represents integers and primes.

1.5 Complex multiplication method

In this section we complete the picture of constructing pairing-friendly curves.

A curious reader may consult [94], [9], [20] or [105] for more on theoretical

background on complex multiplication. This idea originated in [2] in the

circumstances of primality proving.

As we have seen the security of protocols developed from curves depend

on the hardness of the DLP in the group of points on the curve. In particu-

lar, on the large prime order subgroup of the group of points on the curve.

The tradition has been to pick a curve which is defined over a finite field,

count the number of points on this curve and find out whether a group of

points on this curve has a subgroup of prime order size. This is not efficient

with the construction of pairing-friendly curves considering the divisibility

conditions we require on the prime order subgroup and security needed for

different protocols. Moreover, random curves are likely to have large em-

bedding degrees.

However, with the complex multiplication method (CM) one can con-

struct curves with known number of points on it.

Page 18



COMPLEX MULTIPLICATION METHOD 19

1.5.1 CM in elliptic curves

The ultimate goal here is the following. Suppose we are given a prime p and

a non-negative number n, in the so called Hesse-Weil interval [p+1−2
√
p, p+

1 + 2
√
p] construct an elliptic curve E defined over Fp with n Fp-points:

#E(Fp) = n = p+ 1− t (1.12)

where t is the trace of the Frobenius endomorphism of E over Fp.

Let D be a positive integer such that −D is a fundamental discriminant

of the imaginary quadratic field K = Q(
√
−D). That is −D is a number

congruent to 1 or 0 modulo 4 and that no odd prime divides D to a power

grater than one. We refer to d as a square free positive integer such that

K = Q(
√−d); in other words:

D =


d if d ≡ 3 mod 4

4d if otherwise.

We denote the imaginary quadratic order of discriminant −D by O−D.

Furthermore, we write h−D the class number of O−D. If p is the prime

number then p is said to be a norm in O−D if and only if we can solve the

equation:

4p = t2 +Dy2 (1.13)

in integers t, y.

In such a scenario elliptic curves with n = p + 1 − t or n′ = p + 1 + t

can be constructed by complex multiplication method. For an ordinary

elliptic curve defined over a field L, endomorphism End(E), is either Z or

an order in an imaginary quadratic number field. The curve E , is said to
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have complex multiplication if its endomorphism End(E), is equal to an

order in an imaginary quadratic number field.

Unless otherwise noted, in this thesis we henceforth write D to mean the

absolute value of the discriminant and d a positive square free integer.

Let τ be a complex algebraic number of degree two in Poincaré half plane

H = {e = a + ib : a, b ∈ R, b > 0}. Let Q(x, y) = ax2 + bxy + cy2 be a

quadratic form and denote by τ = −b+
√
−D

2a the root of Q(x, 1). We denote

j([a, b, c]) to mean j(τ).

SupposeHK is a Hilbert class field of K, namely the maximal unramified

Abelian extension of K. Its Galois group is isomorphic to the class group of

K:

Gal(HK) ' ClK .

The degree of HK over Q(τ) is equal to h−D, the class number.

The following proposition, the proof of which can be obtained from [2],

relates the Hilbert class field to the values of the j-function at points in H.

Proposition 1.5.1. Let K =
√
−D. The Hilbert class field of K can be

obtained by adjoining a value of j([a, b, c]), where [a, b, c] ∈ ClK is any one

of the reduced quadratic forms of the discriminant −D. The minimal poly-

nomial of the j([a, b, c])’s, denoted as H−D(z), has integer coefficients. The

Galois group Gal(HK) is isomorphic to the class group ClK and if f ∈ ClK
then we denote σ(g) to mean the corresponding element in Gal(HK). The

action of σ(g) on j is given by

σ(g)(j(f)) = j(g−1 · f).

The Hilbert class polynomial H−D(z) ∈ Z, generates the Hilbert class
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field HK . This monic polynomial of degree h−D is defined by:

H−D(z) =
∏
τ∈S

(x− j(τ)) (1.14)

where S = {τ = −b+
√
−D

2a : b2 − 4acy = −D, |b| ≤ a ≤
√
|D|
3 , a ≤ c,

gcd(a, b, c) = 1 and if |b| = a or a = c then b ≥ 0}.

It follows that if τ is a quadratic number of discriminant −D in HK then

j(τ) is an algebraic integer of degree h−D.

The roots j(τ), of the Hilbert class polynomialH−D(z) are the j-invariants

of the elliptic curve Eτ with complex multiplication by an order in Q(τ) =

Q(
√
−D).

Using sufficiently accurate complex approximations of the zeros in Equa-

tion 1.14, as suggested in [20], the quantity j(τ) can be computed as follows:

Let B = e2iπτ and define the quantity 4(τ) as:

4(τ) = B

1 +
∑
n≥1

(−1)n(Bn(3n−2)/2 + Bn(3n+1)/2)

24

, (1.15)

then

j(τ) =
(256f(τ) + 1)3

f(τ)
(1.16)

where

f(τ) =
4(2τ)

4(τ)
.

The following theorem describes the behaviour of certain rational primes

in the Hilbert class field [2].

Theorem 1.5.1. Let K = Q(
√
−D) and H be the Hilbert class field of K.

Then if p is a rational prime the following statements are equivalent.

� p is a norm in K
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� p splits completely in H

� H−D(z) modulo p slits completely into linear factors with roots in Fp

� 4p = t2 + |D|y2 has a solution in rational integers.

Since we wish to construct a curve over Fp with complex multiplica-

tion by an order of discriminant −D the j-invariant of such a curve is an

element of a finite field Fp. So for a particular fundamental discriminant

−D which satisfies Equation 1.13 we compute H−D(z). Any zero of the

irreducible polynomial H−D(z) ∈ Z[z] generates HK over K and the poly-

nomial H−D(z) ∈ Fp[z], splits into linear factors. The roots of H−D(z) in Fp

are the j-invariants of the elliptic curves defined over Fp having endomor-

phism ring isomorphic to the ring of integers O−D of K. If one of roots to

Equation 1.14 is j0, then we write down the equation as outlined in Lemma

1.5.1. We proceed by checking the order of the curve if it is n. If not, we

have constructed a curve with n′ points.

However, the running time of CM method is exponential in log p; as such

for an efficient implementation D should be small. Due to results of Enge

and Sutherland [28], given the current computation power, the method can

construct curves over finite fields when |D| ≤ 1015.

The curves for various j0 are defined in Lemma 1.5.1 below [9]:

Lemma 1.5.1. The following hold for elliptic curves E/Fp.

� Every element in FP is the j-invariant of an elliptic elliptic curve over

Fp.

� If D > 4 then all elliptic curves with given j-invariant, j 6= 0 , 1728

over Fp are given by

y2 = x3 + 3yc2x+ 2yc
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where y = j0
1728−j0 and c ∈ Fp .

� Suppose E and E ′ have the same j-invariant but are not isomorphic

over Fp. If j 6= 0 or j 6= 1728 then E ′ is a quadratic twist of E and if

#E = p+ 1− t then #E ′ = p+ 1 + t.

� If D ≤ 4 and j = 0 or j = 1728, elliptic curves over Fp are given by:

E : y2 =x3 +B when j = 0

E : y2 =x3 +Ax when j = 1728

where A, B ∈ F∗p. Furthermore, if #E 6= p + 1 − t consider cubic,

quartic or sextic twist of E.

The method is summerised in Algorithm 1.5.1 and give a toy example in

Example 1.5.1 below.

Algorithm 1.5.1: Complex multiplication algorithm

For a prime integer p, integers t and D satisfying Equation 1.13

1. Construct the Hilbert class polynomial H−D(z) ∈ Z[z] for −D.

2. Find a root j0 ∈ Fp of HD(z) ∈ Fp[z]. This is the j-invariant of the
curve to be constructed

3. Construct the equation of an elliptic curve E as in Theorem 1.5.1
with j0.

4. Check the order of E . If it is not p+ 1− t, then consider the twist.

5. Return E .

Example 1.5.1. For D = 19 take p = 10111019 a prime and suppose
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t = −1760. Then the CM Equation 1.13 becomes

−19y2 = 17602 − 4(10111019)

y2 = 227012

which has the solution y = 2 · 701. It turns out that Hilbert class polynomial

H−D(z) is as follows:

H−D(z) = z + 884736.

Clearly, H−D(z) has a root j0 = −884736 ≡ 9226283 modulo p. Using

Theorem 1.5.1 we compute c

easily. There are two elliptic curves. These are:

E1 : y2 = x3 + 7331964x+ 4887976

E2 : y2 = x3 + 6789932x+ 7304986.

It is easy then to verify that E2 is the curve with the right order.

In the remainder of this thesis we will consider values of D sufficiently

small such that corresponding CM curves may be efficiently constructed.

1.6 Addition chains

Addition chains are used to ease computations on powering, by reducing

the total number of computations needed to generate such an exponent.

In an algorithm for example, in order to compute mv we would compute

intermediate exponents of m first before arriving at the value mv. The list

of these intermediate exponents is what we refer to as an addition chain.

We define an addition chain as follows [98]:

Page 24



ADDITION CHAINS 25

Definition 1.6.1. Let v be a positive integer. An addition chain for v is

an increasing sequence C = c0, c1, ..., cn, such that ci is a positive integer for

i ∈ {0, 1, 2, · · · , n} with c0 = 1 and cn = v. Moreover, for each i > 0 there

exist j and j′, 0 < j ≤ j′ < i, such that ci = cj + cj′. The length of C is

defined to be n.

In general, an element ci in the addition chain relates to computing mci

in the exponentiation algorithm. The elements ci in an addition chain reflect

the fact that mci can only be computed by multiplying to known powers of

m.

What does this say? Consider the following chain for example, (1, 2, 4, 6, 12),

of length 5. This chain shows that m12 can be computed using only 4 mul-

tiplications by successively computing

m2 = m.m

m4 = (m2)2

m6 = m4.m2

m12 = (m6)2.

In some instances, such as abelian groups on curves, inversion is relatively

cheap [22]. Allowing inversions during the exponentiation routine is relating

to taking the additive inverse of an element in the addition chain. Definition

1.6.1 can be adapted to allow subtractions by requiring that for each ci there

exists a pair j′, j < i such that either cj + cj′ = ci or cj − cj′ = ci.

This approach gives rise to so-called addition-subtraction chains. The

shortest addition- subtraction chain is evidently at most as long as the short-

est addition chain.

Finding an addition or addition-subtraction chain of minimal length is
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a difficult task; the problem is in fact NP-complete [106]. However, there

are several techniques to compute relatively short chains. See [44] for a

comparison of different algorithms.

1.6.1 Vector addition chain

We finally introduce a vector addition chain. A vector addition chain of

given vectors is the shortest list of vectors that minimizes the number of

multiplications in multinomial powers mc0
0 ·mc1

1 · · ·mcn
n . The property that

each intermediate results is a product of powers of the mci
i now translates

to the property that each term in the corresponding sequence of vectors is

the sum of previous terms. To achieve this we use the Olivos’ algorithm

introduced in [74].

Suppose C = (c0, c1, · · · , cn) is a shortest addition sequence of length n

which we can write as [c0, c1, · · · , cn]. Then in Olivos’ algorithm we need to:

� set the initial vectors as unit vectors:

[1, 0, 0, . . . , 0, 0], [0, 1, 0, . . . , 0, 0], · · · [0, 0, 0, . . . , 0, 1]. That is vectors

with a 1 on the ith position for i ∈ {0, 1, · · · , n} and 0s elsewhere.

� find a subsequent vectors as a linear combination of two preceding

vectors by working towards the final vector.

� find the last vector equal the given vector addition sequence, C =

[c0, c1, · · · , cn] as follows:
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[1, 0, · · · , 0, 0]

[0, 1, · · · , 0, 0]

. . .

[0, 0, · · · , 0, 1]

. . .

[c0, c2, · · · , cn]

The length of the vector addition chain is the number of vectors after

the initial vectors.

We utilize the ideas in this section to develop our contribution in Chapter

5

1.7 Organisation

Our main contribution in this thesis is the construction of new ordinary

pairing-friendly elliptic curves and genus two pairing-friendly hyperelliptic

curves and their efficient implementation. We aim at constructing curves

with a small ρ-value because such curves facilitate a secure and efficient im-

plementation of pairing based cryptography.

In Chapter 2 we introduce elliptic curves and discuss a general frame-

work for constructing pairing-friendly elliptic curves.

In Chapter 3, we construct pairing-friendly elliptic curves using a new

approach which generalises the Brezing-Weng method [17]. In addition, we

demonstrate our method by giving some interesting cryptographic examples.

This work which also appears in [50] is a joint work with Edward Schaefer

and Mike Scott.
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We turn our attention to the question of constructing two-dimensional

abelian varieties in Chapter 4. Here we discuss theoretical foundations

on Jacobians of ordinary genus 2 hyperelliptic curves. Furthermore, we

present a method of constructing such Jacobians. The method generalises

the Kawazoe-Takahashi construction presented in [51]. Using the proposed

algorithm we give new cryptographic examples with better ρ-values than

previously reported. This work is also reported in [49].

In Chapter 5, we look at implementation issues in pairings. The contents

of this chapter result from joint work with Michael Scott, Naomi Benger,

Manuel Charlemagne and Luis J. Dominguez Perez which appears in [88]

and [87]. Here we present a method for fast multiplication in G2 and an

efficient way of computing the final exponentiation in a pairing. In both

optimisations we make use of the polynomial structure of the parameters in

the family.
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Chapter 2
Pairing-friendly elliptic curves

2.1 Introduction

In this chapter we give a short introduction to elliptic curves defined over

finite fields for cryptographic purposes only. In particular, to aid the under-

standing of the theory and concepts for constructing pairing-friendly elliptic

curves. We also discuss some notable constructions of pairing-friendly ellip-

tic curves. This is by no means a complete discussion. For a more systematic

treatment of elliptic curves, see [94], [103], [9] [3] and [45] while [32] gives a

good collection of strategies for constructing pairing-friendly elliptic curves.

We start by looking at elliptic curves.

2.2 Elliptic curves

The following is a definition of an elliptic curve [45]:

Definition 2.2.1. Let F be a field. An elliptic curve E over F is a smooth

29
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curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.1)

in so called “long Weierstrass form” where the coefficients ai lie in F and

the discriminant of E ,4 � 0 in F, where 4 is defined as:

4 = −d2
2d8 − 8d3

4 − 27d2
6 + 9dd2d4d6 with

d2 = a2
1 + 4a2;

d4 = 2a4 + a1a3;

d6 = a2
3 + 4a6;

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a1a

2
3 − a2

4;

together with a special point known as the point at infinity, O.

By smooth curve, we mean a curve with no singular points, in other words

no points where both partial derivatives in x and y vanish. We denote by

E(F) the set of couples (x, y) ∈ F2 such that (x, y) are solutions of Equation

2.1 and E defined over F by E/F.

2.2.1 Short Weierstrass form

Consider the following change of variables in Equation 2.1 when the char(F) 6=

2, 3:

x =
x− 3a2

1 − 12a2

36
,

y =
y − 3a1x

216
− a3

1 + 4a1a2 − 12a3

24
.
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This transforms Equation 2.1 to the equation of an isomorphic curve of

the form:

E : y2 = x3 +Ax+B. (2.2)

We refer to this simplier form as a short Weierstrass form. When using

this equation, there is a simple criterion to ensure that the curve in Equation

2.2 has no singular points. That is ascertaining that the curve’s discriminant

∆ = 4A3 + 27B2 6= 0.

2.2.2 The Group law

We center our discussions on elliptic curves of the form in Equation 2.2,

the short Weierstrass form. Elliptic curves are of great use in a number of

cryptographic protocols, mainly because it is possible to take two points on

such a curve and generate a third point on the same curve. In fact, we will

show that by defining an addition operation and introducing an extra point,

a point at infinity, the points on the elliptic curve E/F generate an additive

abelian group. This group can then be used to develop a similar instance

of the discrete logarithm problem which is the basis for most public key

cryptosystems.

The chord-and-tangent rule for adding two points in E(F) provides E(F)

with the needed abelian structure where the point at infinity O, is the iden-

tity element. See [94], [3] and [103]. Figure 2.1 illustrates the group law on

an elliptic curve E .
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Figure 2.1: Elliptic curves point additon and doubling.

To add two points on the curve, say P and Q, one proceeds by drawing

a straight line to connect the two points and extending the line so that it

intersects the curve at a third point. If points P and Q are not distinct then

the straight line is a tangent to the curve E . This third point is −(P +Q).

Reflecting −(P +Q) in the x-axis we obtain another rational point (P +Q).

The process is generalised in Theorem 2.2.1 [94]:

Theorem 2.2.1. Let E/F be an elliptic curve given by y2 = x3 + Ax + B.

The chord-tangent method defines an addition on the set E(F) of F-rational
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points on E; let P = (x1, y1) and Q = (x2, y2) be points on E with P,Q 6= O.

We then define P +Q = (x3, y3) as follows:

a). If x1 6= x2 then x3 = m2 − x1 − x2 and y3 = m(x1 − x3)− y1.

where m = y2−y1
x2−x1

b). If x1 = x2 but y1 6= y2 then P +Q = O.

c). If P = Q and y1 6= 0 then x3 = m2 − 2x1 and y3 = m(x1 − x3) − y1

where m =
3x21+A

2y1
.

d). If P = Q and y1 = 0, then P +Q = O Also we define P +O = P for

all points P on E.

This addition law can be shown to be commutative and associative, ef-

fectively making (E(F),+) an abelian group. Theorem 2.2.2 describes these

properties.

Theorem 2.2.2 ([103], Theorem 2.1 page 15). The addition of points on

an elliptic curve E defined over a field F satisfies the following properties:

1. commutativity: P +Q = Q+ P for all P, Q on E

2. existence of identity: P +O = P for all points P on E.

3. existence of inverse: Given P on E, there exists P ′ on E such that

P + P ′ = O. This point P ′, is usually denoted by −P .

4. associativity: (P +Q) +R = P + (Q+R) for all P,Q,R on E

In other words, the points on E form an abelian group with O as the identity

element.

Proof. For proofs of these properties, we refer to [103] or [94].

Page 33



ELLIPTIC CURVES 34

2.2.3 The order of the curve

If F is a finite field say, Fp, then the total number of points on E , denoted by

#E(Fp), is described by the bound known as Hasse’s theorem stated below.

The proof of the theorem can be found in [94] or [103].

Theorem 2.2.3. Let E be an elliptic curve defined over Fp. Then (
√
p −

1)2 ≤ #E(Fp) ≤ (
√
p+ 1)2.

In other words, since 2
√
p is small with regard to p then the theorem is

stating that the number of points on the elliptic curve has roughly as many

elements as Fp itself.

The following simple example is an illustration of an abelian group on

elliptic curves using some of the basic built-in Magma commands for elliptic

curves.

Example 2.2.1. The following example shows the structure of a cyclic group

on elliptic curves.

>p:=373;
> F_p:=GF(p); //finite field
> E:=EllipticCurve([F_p|0,6]);
> E; // Gives the details on the elliptic curve
Elliptic Curve defined by yˆ2 = xˆ3 + 6 over GF(373)
> #E; // Number of points in E(F_373)
349
> IsCyclic(AbelianGroup(E));
true
> Generators(E); // Points that would generate all other

points in E(F_p)
[ (90 : 263 : 1) ]
> E!0; // Point at infinity
(0 : 1 : 0)
> P:=E![90,263,1]; // Sets P equal to the point [90:263:1] in

E(F_373)
> P+P;
(263 : 60 : 1)
> 2*P;
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(263 : 60 : 1)
> -P; // Computes the inverse of P
(90 : 110 : 1)
> Order(P); // Computes the order of P
349
> for i in [1..Order(P)] do // Generating all points in E(F_p)
for> print(i*P);
for> end for;
(90 : 263 : 1)
(263 : 60 : 1)
(307 : 52 : 1)
...
...
...
(263 : 313 : 1)
(90 : 110 : 1)
(0 : 1 : 0)

We also consider the same equation defined over some extension of Fp,

say Fpe , for some positive integer e. It is worth mentioning here that in

this case we still require A, B to remain in Fp. In fact, if E/Fp then E

is also defined over any extension Fpe of Fp and the group E(Fp) of Fp-

rational points is a subgroup of the group E(Fpe) of Fpe-rational points.

Consequently, if #E(Fp) is known then #E(Fpe) is characterised as follows:

Theorem 2.2.4 ( [45], Theorem 3.11 page 83). Let #E(Fp) = p + 1 − t.

Let β and β̄ be the roots of the trinomial z2 − tz + p, we can then write

z2−tz+p = (z−β)(z− β̄). Then, for all integers e > 1, we have #E(Fpe) =

pe + 1− (βe + β̄e).

Here (βe + β̄e) can be computed using the Lucas sequence {Se} [11]

where we define

S0 = 2

S1 = β + β̄ = t
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and then define recursively

Se = S1Se−1 − pSe−2

and have

#E(Fpe) = pe + 1± Se.

We use Example 2.2.1 to demonstrate this in Magma:

Example 2.2.2. Compute #E(Fp2) in Example 2.2.1

> p:=373;
> F_p:=GF(p);
> E:=EllipticCurve([F_p|0,6]);
> E;
Elliptic Curve defined by yˆ2 = xˆ3 + 6 over GF(373)
> #E;
349
> t:=#E-(p+1);
> F_p2:=GF(pˆ2);
> E2:=EllipticCurve([F_p2|0,6]);
> E2;
Elliptic Curve defined by yˆ2 = xˆ3 + 6 over GF(373ˆ2)
> S_0:=2;
> S_1:=t;
> S_2:=S_1*S_1-p*S_0;
> EF_p2:=pˆ2+1-S_2;
> EF_p2;
139251
> EF_p2 eq #E2;
true

2.2.4 Curve endomorphisms

Let E be an elliptic curve defined over Fq. The set of all points on E whose

coordinates are elements of any finite extension of Fq is also denoted by E .
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Endomorphism φ of E/Fq is a rational map :

φ : E → E

such that φ(O) = O and φ(Q) = (g(Q), g′(Q)) for some rational functions

g and g′ whose coefficients lie in Fq and for all Q ∈ E . The set of all

endomorphism of E/Fq, denoted by End(E), forms a ring under addition

and multiplication, which is referred to as the endomorphism ring of E/Fq.

An endomorphism is also a group homomorphism i.e

φ(Q+Q′) = φ(Q) + φ(Q′) (2.3)

for all Q,Q′ ∈ E(Fq).

The characteristic polynomial of an endomorphism φ is defined to be the

monic polynomial f(z) ∈ Z[z] of least degree, such that f(φ)Q = O for all

Q ∈ E . If E/Fq is non-supersingular curve then the degree f(z) is equal to

1 or 2 [45].

The qth-power Frobenius map, on an elliptic curve E/Fq defined as:

φq =



¯E(Fq) → E ¯(Fq)

(x, y) 7→ (xq, yq)

O 7→ O

(2.4)

is a special endomorphism of an elliptic curve E/Fq known as Frobenius

endomorphism. The map φq, maps points on E to points on E and respects

the group law.

It follows from Theorem 2.2.3 that the characteristic polynomial of φq is
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given by:

z2 − tz + q (2.5)

where t = q+ 1−#E(Fq) is the trace of the Frobenius, φq, see [45] and [94]

for more details.

The Trace of Frobenius otherwise known as the trace reveals other struc-

tures of the curve related to the type and cryptographic relevance of the

curve.

Definition 2.2.2. Let p be a prime. An elliptic curve E/Fp is supersingular

curve if p|t, where t is the trace. If gcd (p, t) = 1, then E is an ordinary

curve.

Menezes, Okamoto and Vanstone [63] showed that for supersingular el-

liptic curves their embedding degree, k, is always less than or equal to 6.

These are popular for the bilinear cryptographic protocols, as it is easy to

implement Fpk when k is small.

However, with the MOV-attack [63] and Frey-Rück attack [35] shows

that supersingular elliptic curves are weak for cryptographic purposes be-

cause of their low embedding degree. The interest then is to construct

ordinary pairing-friendly elliptic curves with higher embedding degree than

the supersingular curves.

2.3 Twists of curves

One of the optimisations in implementing pairings on ordinary pairing-

friendly curves, is to place one of the inputs to the pairing on the curve,

E/Fp, and the other on a twisted curve, E ′/Fpe , where there exists a group
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of points of order r which is isomorphic to a group of points on the curve

defined over the full k-th extension of the base field.

Definition 2.3.1 ( [94]). Let E/Fp with be an elliptic curve that has em-

bedding degree k > 1 with respect to prime r. Then E ′ is said to be a twist

of E of degree d if there exists an isomorphism ηd : E ′ → E defined over Fpd

with d minimal.

Let E ′ be a twist of E of degree d such that r|#E ′(Fpe) for some d|k and

e.d = k. If d is less than k, we can define G2 to be the unique subgroup of

order r on E ′/Fpe .

The degree d-twist of a curve can always be 2 if k is even. This is known

as a quadratic twist. Moreover, k being even has other advantages as it en-

ables the denominator elimination optimization in pairing computation [6].

If a pairing-friendly elliptic curve has CM discriminant D = 4 and 4|k

quartic twists can then be applied. Thus we can choose e = k/4. While if

the CM discriminant of the curve is 3 and 6|k then we can choose e = k/6

and in a such a case we say that the sextic twist exists.

Clearly, in these cases in a bilinear map e, see to Definition 1.2.1, we

would define our points in G2 on a rather smaller finite field than originally

expected and hence easier to manipulate the points. This choice of an input

in pairing computation reduces the running time of the algorithms because

we can avoid full Fpk arithmetic to compute the line functions in Miller’s

algorithm (see later in Chapter 5).

Twisted curves of E for various choices of d are described in Table 2.1.

Here δ is an element of F∗q , the choice of which result in a curve easily

mapped to the original, while other choices lead to either a quadratic, or

quartic or sextic twists. The details for the theoretical description of twists

can be obtained from [94] and [46].
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Since it is only when considered over a full extension Fpk that a curve

Table 2.1: Structures and maps of twist curves

d Curve equation Twist curve equa-
tion E ′

E ′ 7→ E

2 y2 = x3 +Ax+B y2 = x3 + A
δ2
x+ B

δ3
(x, y) 7→ (δx, δ3/2y)

4 y2 = x3 +Ax y2 = x3 + A
δ x (x, y) 7→ (δ1/2x, δ3/4y)

6 y2 = x3 +B y2 = x3 + B
δ or

y2 = x3 + B
δ3

(x, y) 7→ (δ1/3x, δ1/2y)

supports bilinearity, we need to map the points from the twisted curve back

to the original curve. This mapping is shown in column 4 of Table 2.1 which

is required for the line function evaluation in the computation of the pairing.

Let E be an elliptic curve defined over Fq with q = pe. To compute the

order of the twist curve, #E ′(Fq), we may apply Theorem 2.2.4. Neverthe-

less, the next result, proved in [46], determines the possible values of #E(Fq)

as E varies over all elliptic curves defined over Fq where q = pe [46].

Proposition 2.3.1. Let E/Fq be an elliptic curve with #E = q + 1 − t,

admitting a twist E ′ of degree d. Then the possible group orders of E ′(Fq)

are given by the following:

d = 2 : #E ′(Fq) = q + 1 + t;

d = 3 : #E ′(Fq) = q + 1− (3T − t)/2 with T = ±
√
t2 − 4q

−3

#E ′(Fq) = q + 1− (−3T − t)/2 with T = ±
√
t2 − 4q

−3
;

d = 4 : #E ′(Fq) = q + 1 + T with T = ±
√
t2 − 4q

#E ′(Fq) = q + 1− T with T = ±
√
t2 − 4q;

d = 6 : #E ′(Fq) = q + 1− (−3T + t)/2 with T = ±
√
t2 − 4q

−3

#E ′(Fq) = q + 1− (3T + t)/2 with T = ±
√
t2 − 4q

−3
.
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2.4 Torsion points

Torsion points are points in E whose orders are finite. Let E/Fp be an elliptic

curve, let the algebraic closure of Fp be denoted by F̄p and let r ∈ Z>0 and

P ∈ E(Fp) and denote

r︷ ︸︸ ︷
P + P + ...+ P by [r]P . For a given r we define a

subgroup of r-torsion points in E(Fp) by:

E [r] = {P ∈ E(F̄p)|[r]P = O}.

This group acts as the kernel of the multiplication by r endomorphism. If

p and r are co-prime, then E [r] is isomorphic to Zr × Zr. This means that

E [r] has r2 elements but no element of order r2. This case where p and r are

relatively prime will be of particular interest to construct the pairings. In

particular, the group G1 is an r-torsion subgroup of E(Fp) of order r with O

the identity element of the group. Furthermore, to avoid degeneracy in the

Tate pairing and its variants, G2 must be different from G1, thus we chose

G2 as a r-torsion subgroup of E(Fpk) and GT would correspond to µr, the

group of rth-roots of the unity in F∗
pk

, defined as follows

µr = {τ ∈ F∗pk | τ r = 1}. (2.6)

2.5 Constructing pairing-friendly elliptic curves

To construct suitable ordinary pairing-friendly elliptic curves with embed-

ding degree k, discriminant D, and efficiently computable pairings we look

for integer values that satisfy the following:

� p a prime, that defines the size of the finite field over which our hypo-

thetical curve will be defined;

� r a prime, that defines the size of the cryptographic group and the
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largest prime factor of #E = p+ 1− t such that r|pk − 1;

� t an integer such that gcd(p, t) = 1, and t ≤ 2
√
p, t is defined to be

the trace of Frobenius endomorphism of the curve such that the curve

has p+ 1− t points and Φk(t− 1) ≡ 0 modulo r;

� for some sufficiently small integer D > 0 and some integer y, we have

4p− t2 = Dy2.

If the degree of the class polynomial H−D(z) is not too large, for such

a triple (t, r, p), we can construct an elliptic curve E/Fp with a prime order

subgroup of size r, embedding degree k and CM discriminant D using the

CM method.

Considering the above facts in polynomial context, we would like to

parameterize t, r, p as polynomials t(z), r(z), p(z). With Definition 1.4.2

and Conjectures 1.4.1 and 1.4.2 in mind, a family of pairing-friendly elliptic

curves in this context are defined as [32]:

Definition 2.5.1. Let t(z), r(z), and p(z) be polynomials with rational co-

efficients. For a given positive integer k and a positive integer D, the triple

(t(z), r(z), p(z)) represents a family of elliptic curves with embedding degree

k and CM discriminant D if the following conditions are satisfied:

a. p(z) represents primes.

b. r(z) represents primes.

c. t(z) represents integers.

d. r(z) divides p(z) + 1− t(z).

e. r(z) divides Φk(t(z)− 1), where Φk is the kth cyclotomic polynomial.

f. Dy2 = 4p(z)− t(z)2 for some positive integer D and some integer y.
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In Definition 2.5.1, part d. says that the curve has a large prime order

subgroup of size r while part e., using Lemma 1.4.1, ensures that the curve

has embedding degree k. Moreover, by Equation 1.13, the last condition

ensures that there exists an ordinary elliptic curve defined over Fp(z) with

trace t(z) by the CM method. This is done by finding integer solutions to

the CM Equation:

Dy2 = 4p(z)− t(z)2 = 4h(z)r(z)− (t(z)− 2)2. (2.7)

The ρ-value of such a family of curves is defined to be:

Definition 2.5.2 ( [32]). Let t(z), r(z), p(z) ∈ Q[z], and suppose (t(z), r(z), p(z))

represents a family of elliptic curves with embedding degree k. The ρ-value

of the family (t(z), r(z), p(z)) is given by ρ = limz→∞
log(p(z))
log(r(z)) = deg(p(z))

deg(r(z)) .

2.6 Some constructions

The problem of constructing pairing-friendly elliptic curves has been studied

by several researchers. The difference has been the construction of individual

curves or a family of curves. Here we recall some notable constructions. For

a thorough discussion of different constructions with many examples refer

to [32].

2.6.1 The Cocks-Pinch method

One of the earliest methods of constructing ordinary pairing-friendly ellip-

tic curves with arbitrary embedding degree k was proposed by Cocks and

Pinch. This method, otherwise known as the CP method in this thesis,

constructs individual curves. As observed in [32], the size of the field p is

approximately equal to the square of the size of the prime order subgroup i.e
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r2. This characterises the Cocks-Pinch curves with the ρ-value of approxi-

mately 2 and hence results into slower implementation compared to curves

with ρ-value closer to 1.

However, Cocks and Pinch curves are easy to generate and in construct-

ing the curves one chooses the size of the prime subgroup of size r. More-

over, the method was later generalized to produce families of pairing-friendly

elliptic curves with arbitrary embedding degree k with better ρ-values. Fur-

thermore, Freeman [30] and Freeman, Stevenhagen and Streng [33] used the

same approach to construct abelian varieties of higher dimensions.

The algorithm for constructing Cocks-Pinch curves is as follows [32]:

Algorithm 2.6.1: Cocks-Pinch pairing-friendly elliptic curves

Fix a positive integer k and positive square-free integer d. Execute

the following steps:

1. Let r be a prime such that k divides r − 1 and (−dr ) = 1.

2. Let z be a primitive kth root of unity in (Z/Zr)×. (Such a z exists

since k|r − 1)

Let t′ = z + 1.

3. Let y′ = (t′ − 2)/
√−d mod r.

4. Let t ∈ Z be congruent to t′ mod r and let y ∈ Z be congruent to y′

mod r.

5. Let p = (t2 + dy2)/4 for some integer y.

If p is prime, then we construct an elliptic curve E defined over Fp with

a prime order subgroup of size r, and embedding degree k by CM method.

The approach in Algorithm 2.6.1 is to choose r for a particular em-

bedding degree k, a discriminant d and then try to find the trace of the
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Frobenius t and the prime size of the field p such that CM norm Equation

1.13 is satisfied.

2.6.2 Dupont-Enge-Morain method

The Dupont-Enge-Morain method [26] is similar to the CP method. The

only difference being the approach of constructing the prime subgroup of

order r. In this method the authors use resultants to compute r and t si-

multaneously and then p such that the CM equation is satisfied.

The algorithm for constructing Dupont-Enge-Morain curves is as follows:

Algorithm 2.6.2: Dupont-Enge-Morain pairing-friendly elliptic

curves
Fix a positive integer k. Execute the following steps:

1. Compute the resultant R(e) = Resz(Φk(z − 1), e+ (z − 2)2)

2. Choose e such that R(e) has a large prime factor r.

3. Compute g(z) = gcd(Φk(z − 1), e+ (z − 2)2) ∈ Fr[z].

4. Let t′ be a root of g(z) modulo r.

5. Let t ∈ Z be a unique lift of t′ to (0, r].

6. Let p =
(e+ t2)

4
.

If p is a prime integer, use the CM method to construct an elliptic curve

defined over Fp with a prime order subgroup of size r. This method can

be used to generate curves of arbitrary embedding degree k. However, the

ρ-value of these curves is again around 2 as for the CP curves.
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2.6.3 Miyaji-Nakamula-Takano method

The first polynomial families of parameters for ordinary pairing-friendly

elliptic curves were proposed by Miyaji, Nakabayashi and Takano [69] for

embedding degrees, k = 3, 4 and 6. In this Section we present a general idea

of the construction.

The following conditions must be satisfied to construct MNT curves:

Φk(t− 1) = e · r;

h.r = p+ 1− t;

Dy2 = 4p− t2;

|t| ≤ 2
√
p;

where Φk(·) is the k-the cyclotomic polynomial, r and p are primes, and h

is called the cofactor and D is the discriminant of the curve. Substituting

the first and second equations in the third we get:

Dy2 = 4h
Φk(t− 1)

e
− (t− 2)2. (2.8)

The challenge has been to find integer solutions to Equation 2.8 for small

D and arbitrary y.

Originally in [69] authors only considered cases for which h = e = 1.

However, the method is extended by Scott and Barreto in [86] by considering

the values of h ∈ {2, 3, 4, 5} and e > 1. With such approach more suitable

ordinary pairing-friendly curves of MNT-type are found for k = 3, 4 and 6.

Theorem 2.6.1 below describes the MNT curves.

Theorem 2.6.1 ([69]). Let p be a prime and let E be an ordinary elliptic

curve defined over a finite field Fp such that r is prime. Let t = p+ 1− r.
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1) Suppose p > 64. E has embedding degree k = 3 if and only if there

exists z ∈ Z such that t = −1± 6z and p = 12z2 − 1.

2) Suppose p > 36. E has embedding degree k = 4 if and only if there

exists z ∈ Z such that t = −z or t = z + 1 and p = z2 + z + 1.

3) Suppose p > 64. E has embedding degree k = 6 if and only if there

exists z ∈ Z such that t = −1± 2z or and p = 4z2 + 1.

Proof. We show for the case of k = 3. For the other cases refer to [69].

First, consider the conditions for the embedding degree k, refer to Lemma

1.4.1. The condition Φk(p) ≡ 0 (mod r) becomes

Φ3(p) = p2 + p+ 1 = e · r with e ∈ Z (2.9)

(2.10)

Setting the order of the cuve as:

n = p+ 1− t

we can factor Equation 2.9 as

(p+ 1− t)(p+ 1 + t− e) = p− t2. (2.11)

Using the Hasse-Weil bound (i.e. |t| ≤ 2
√
p) the problem reduce to the

following cases:

−3 ≤ (1 +
1

p
+
t

p
)(p+ 1 + t− e) ≤ 1.

Assuming p > 64, (1 +
1

p
+
t

p
) turns to 1 and hence it is enough to solve for
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the following cases:

(p+ 1 + t− e) = −3, −2, −1, 0, 1.

Substituting the values of (p+1+t−e) into Equation 2.11 we can show that

{−2, 0} is the only possible set of values. Then (t, p) = (−1± 6z, 12z2 − 1)

or (±√z, z) for z ∈ Z.

Working backwards finishes the proof for ‘and only if’ part.

To construct MNT curves, we need to solve the complex multiplication

equation. To do this we need to transform the equations in Theorem 2.6.1

into generalized Pell equations.

By linear change of variables the CM equation Dy2 = 4p(z) − t(z)2

transforms into a generalised Pell equation of the form z′2 − SDy2 = m.

The cases for each embedding degree in MNT curves are as follows:

� k = 3, setting z′ = 6z ± 3 we get z′2 − 3Dy2 = 24;

� k = 4, setting z′ = 3z + 2 when t = −z or z′ = 3z + 1 if t = z + 1 we

get z′2 − 3Dy2 = −8;

� k = 6, setting z′ = 6z ∓ 1 we get z′2 − 3Dy2 = −8.

2.6.4 Barreto-Naehrig construction

Galbraith, McKee and Valença [38] studied the factorisation of Φk(u(z)) for

k ∈ {5, 8, 10, 12} with u(z) as a quadratic polynomial. They noted that

if u(z) − ζk = 0 has a solution in Q(ζk) then Φk(u(z)) factors into two

irreducible polynomials, where the degree of each of the irreducible factors

is a multiple of ϕ(k).

For k = 12, the goal in this construction is to choose t(z) and define r(z)
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as one of irreducible factors of Φ12(t(z)−1) such that f(z) = 4r(z)− (t(z)−

2)2 has multiple roots.

By constructing K ∼= Q[z]/r(z) and mapping ζ12 to 6z2 in K, Barreto

and Naehrig [8] found the following family of k = 12 curves:

t(z) = 6z2 + 1;

r(z) = 36z4 + 36z3 + 18z2 + 6z + 1;

p(z) = 36z4 + 36z3 + 24z2 + 6z + 1.

For values z0 ∈ Z for which r(z) and p(z) represents primes the triple

(t(z), r(z), p(z)) parameterizes a family of curves of embedding degree 12.

The ρ-value of this family is equal to 1 and has a complex multiplication

discriminant equal to −3. BN curves are not rare; that is, it is easy to

specify the bit size of r by selecting appropriate size of z0 ∈ Z until both

r(z0) and p(z0) are prime. The desired elliptic curve can then be generated

using the CM method.

2.6.5 Freeman construction

Using the idea of Galbraith, McKee and Valença [38] for factorisation of

Φk(u(z)) for k = 10 and a technique from the MNT construction for solving

the complex multiplication equation, Freeman [29] constructed a family of

pairing friendly curves of embedding degree, k = 10. Even though it is highly

unlikely that the right hand side of Equation 2.7 reduces to a quadratic for

ϕ(k) > 2, Freeman discovered such a curve when ϕ(k) = 4. The parameters
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are as follows:

t(z) = 10z2 + 5z + 3;

r(z) = 25z4 + 25z3 + 15z2 + 5z + 1;

p(z) = 25z4 + 25z3 + 25z2 + 10z + 3.

In this case Dy2 = 15z2 + 10z + 3 and by linear change of variables

z′ = 15z + 5, the generalised Pell equation reduces to z′2 − 15Dy2 = −20.

2.6.6 Brezing-Weng method

The Brezing-Weng method, first introduced in [17], is a construction that

uses the Cocks and Pinch idea over polynomials to construct near ideal

pairing-friendly elliptic curves for a general embedding degree, k. This

means that in order to obtain the families they parametrize t, r, p as poly-

nomials t(z), r(z), p(z).

Brezing and Weng used the cyclotomic fields to generate examples of

pairing-friendly elliptic curves. Algorithm 2.6.3 summarises the Brezeng-

Weng construction.
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Algorithm 2.6.3: [[32]]Brezing-Weng algorithm for finding pairing-

friendly elliptic curves

For a fixed positive integer k and positive square-free integer d,

execute the following steps:

1. Choose a number field K containing
√−d and a primitive kth root of

unity ζk.

2. Find an irreducible (but not necessarily monic) polynomial

r(z) ∈ Z[z] such that Q[z]/r(z) ∼= K.

3. Let t(z) ∈ Q[z] be a polynomial mapping to ζk + 1 ∈ K.

4. Let y(z) ∈ Q[z] be a polynomial mapping to ζk−1√
−d ∈ K.

5. Let p(z) = (t(z)2 + dy(z)2)/4 ∈ Q[z].

If p(z) and r(z) represent primes and t(z) represents integers then the

triple (t(z), r(z), p(z)) represents a family of curves with embedding degree

k and discriminant −d. The ρ-value of this family is defined by ρ = deg(p(z))
deg(r(z)) .

When working modulo an irreducible polynomial, the power of a field

element will be a polynomial of degree at least one less than that of the

irreducible polynomial. In some instances it may even be much less than this.

In Brezing and Weng curves this instance occurs and curves constructed

with this method have a ρ-value much less than 2, and closer to 1, unlike

the Cocks-Pinch method.

Furthermore, this method is favourable when the complex multiplication

discriminant is −4 or −3. In [32], the authors extend the method to find

more curves with complex multiplication discriminant equal to −8.

All in all, in the next chapter we utilize this construction by defining K
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to be generated by other elements rather than ζk. With this approach we

find that we construct more curves with interesting properties.
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Chapter 3
New construction of pairing-friendly

elliptic curves

3.1 Introduction

In this chapter we construct new pairing-friendly elliptic curves by the

Brezing-Weng method presented in Chapter 2 Section 2.6.6. Our approach

is to define a number field K, to be generated by elements of the cyclotomic

field which are a linear combination of a power basis with integer coefficients.

The results reported here also appears in [50].

3.2 Outline of our Algorithm

In our construction, for a particular embedding degree k and a complex mul-

tiplication discriminantD, we look for a set of polynomials (t(z), r̃(z)/e, p(z))

with e some integer and t(z) defines the trace, r̃(z)/e defines the prime size

of the cryptographic group and p(z) defines the field in which the elliptic
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curve is defined. The idea here is to allow some small integer factor e when

searching for a prime size of the cryptographic group. That is; if for some

case r̃(z) does not represent primes then we can divide by some integer e

such that the quotient is a prime. This means we can represent the order of

the curve as follows:

r̃(z)c′(z) = p(z) + 1− t(z) (3.1)

where r̃(z) = e.r(z) with e.c′(z) = c(z) referred to as the cofactor and r(z)

representing primes. Combining Equation 3.1 and complex multiplication

Equation 1.13 in polynomial terms we get:

Dy(z)2 = 4p(z)− t(z)2 (3.2)

= 4r̃(z)c′(z)− (t(z)− 2)2 (3.3)

= 4r(z)c(z)− (t(z)− 2)2. (3.4)

Instead of using a cyclotomic polynomial to define the number field we

use minimal polynomials of the elements γ(ζ`) of the cyclotomic field, Q(ζ`),

with ` some multiple of the embedding degree k.

Elements of Q(ζ`) are easily represented as polynomials of degree less

than ϕ(`) with integer coefficients. Here we consider γ(ζ`) to be of the form:

γ(ζ`) =

ϕ(`)−1∑
i=0

aiζ
i
` (3.5)

where ai ∈ Z and ζ` is `-th primitive root of unity.

For practical reasons we let ai lie in some integer interval say, [L,−L]

and allow a maximum of M non-zero coefficients in γ(ζ`).

If the element, γ(ζ`), is in Q(ζ`) but not in any proper subfield then
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we find the minimal polynomial of γ(ζ`) in Q(ζ`) which we set as r̃(z).

Otherwise, we know γ(ζ`) gives a minimal polynomial whose degree is less

than ϕ(`). We proceed by using the Brezing-Weng construction to look for

pairing-friendly elliptic curves, with predefined k and D.

3.2.1 Finding r̃(z)

Now suppose γ(ζ`) is not in any proper subfield. Then we know that the

degree of its minimal polynomial r̃(z), is ϕ(`). This is so because [Q(ζ`) :

Q] = ϕ(`) [102]. In addition, since r̃(γ(ζ`)) = 0, then we can compute r̃(z)

explicitly using the following equation:

r̃(z) =

ϕ(`)∏
i=1

(z − γi(ζ`)) (3.6)

where γi(ζ`) are the conjugates of γ(ζ`).

In Example 3.2.1 we demonstrate the computation of a minimal polyno-

mial for ` = 8.

Example 3.2.1. Let ` = 8. Consider γ(ζ8) = ζ8 − 2ζ3
8 ∈ Q(ζ8). Since

[Q(ζ8) : Q] = ϕ(8) = 4 and ζ8 =
√

2
2 + i

√
2

2 ∈ Q(ζ8) then

ζ8 − 2ζ3
8 = 3

√
2

2
− i
√

2

2

and Equation 3.6 becomes:

r̃(z) = (z − (3

√
2

2
− i
√

2

2
))(z − (3

√
2

2
+ i

√
2

2
))

× (z − (−3

√
2

2
− i
√

2

2
))(z − (−3

√
2

2
+ i

√
2

2
))
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= ((z − 3

√
2

2
)2 + (

√
2

2
)2)((z + 3

√
2

2
)2 + (

√
2

2
)2)

= (z2 − 3
√

2z + 5)(z2 + 3
√

2z + 5)

= (z2 + 5)2 − (3
√

2z)2

= z4 + 10z2 + 25− 18z2

= z4 − 8z2 + 25.

⇒ ζ8 − 2ζ3
8 has a minimal polynomial r̃(z) = z4 − 8z2 + 25.

However, since we need to loop through many elements γ(ζ`), Magma

[15] and PariGP [75] have internal function for computing minimal poly-

nomials of elements of a field. The function in Magma for example is as

follows:

Example 3.2.2. Computing a minimal polynomial in Magma

Magma
> F:= NumberField(Rationals());
> P<z> := PolynomialRing(F);
> f:=CyclotomicPolynomial(8);
> K<z> := ext<F|f>;
> r := MinimalPolynomial(z-2*zˆ3);
> r;
zˆ4 - 8*zˆ2 + 25

Recall, we denote D to mean the absolute value of the discriminant and

d a positive square free integer. The full algorithm is as follows:
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Algorithm 3.2.1: New Algorithm for finding pairing-friendly elliptic

curves
For a fixed positive integers k and positive square-free integer d, execute the

following steps:

1. Choose a number field K ∼= Q[z]/Φ`(z) containing
√−d and a primitive kth

root of unity, ζk, i.e set D be d if d ≡ 3 mod 4, 4d otherwise and let

` = lcm(D, k)

2. Compute a minimal polynomial of γ(ζ`) ∈ Q(ζ`) call it r̃(z). Re-define

K ∼= Q[z]/r̃(z)

3. Compute the polynomial l(z) modulo r̃(z) mapping to ζk.

4. Let t(z) = l(z) + 1, which maps to ζk + 1 in Q[z]/r̃(z).

5. Using the algebraic relationship between ζk and
√−d, find a polynomial

s(z) representing
√−d in Q[z]/r̃(z).

6. Compute the polynomial y(z) = (t(z)− 2)s(z)/(−d) in Q[z]/r̃(z).

7. Compute the polynomial p(z) = (t(z)2 + dy(z)2)/4, and compute ρ. If p(z)

represents primes and the ρ-value is better than the best known, then:

(a) find the smallest positive number n ∈ Z, such that p(z) ∈ Z[z];

(b) find the residue classes b modulo n such that p(z) ∈ Z

for z ≡ b mod n;

(c) find the subset of those residue classes for which t(z) ∈ Z

for z ≡ b mod n.

8. If r̃(nz + b) = e · r(z) where e is a constant in N and r(z) represents primes,

then output t(z), r̃(z), p(z), n, b, e.

Thus for a given value of k and d, (t(nz + b), r̃(nz + b)/e, p(nz + b))

represents a family of pairing-friendly elliptic curves. The ρ-value of this

family of curves is defined as ρ = deg p(z)
deg r(z) .
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3.2.2 Algorithm explained

This algorithm is potentially very time consuming as the number of possi-

bilities for Equation 3.5 in any number field is huge. For example, using

counting argument, the number of choices we have in a number field is

ϕ(`)∑
i=1

Si
(
ϕ(`)

i

)
(3.7)

for any absolute size of the range of search space for our coefficients S.

So our approach is to restrict the search for a favourable element in some

way. We take two approaches to achieve this.

Firstly, for each value of k we restrict our search to cases where k is even

and d is 1 or 3. These cases lead to curves which support higher order twists

of degree 4 and 6 (see, Section 2.3) and supports denominator elimination

optimisation in pairing computation [6]. We also consider odd values of k

which are divisible by 3, as these cases support cubic twist and a type of

denominator elimination, see [70] and [60].

Secondly, we search through a possible power basis. This is a polynomial

of degree ϕ(`)−1 but with ϕ(`) terms. We find that using a search restricted

to a polynomial with up toM = 3 (non-zero terms) and coefficients limited

to the range −3 to +3 in Equation 3.5 usually lead to favourable elements.

This means that Expression 3.7 reduces to

3∑
i=1

6i
(
ϕ(`)

i

)
(3.8)

choices.

The search is then conducted for all eligible k values from 8 to 40. In

some cases, such as k = 34 and k = 38, we had to further restrict the search
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to power basis polynomials with up toM = 2 and coefficients ranging from

−1 to +1, as the value of ϕ(`) is too large.

On Intel(R) Core(TM)2 Duo CPU 3.00GHz it takes a week to find all

the families reported here.

The search programs are written in a mixture of NTL [93] and PariGP

[75] and for comparison purposes we also use a simple NTL program that gen-

erates Brezing and Weng families of pairing friendly curves. This program

can be found at Mike Scott’s website [84].

Step 1 and 2: Set up

The first two steps in the algorithm involve the construction of a number

field, K which is isomorphic to Q[z]/Φ`(z) and contains ζk and
√−d. To

achieve this case we set

D =


d if D ≡ 3 mod 4

4d if D otherwise

for any square free integer d and define ` = lcm(D, k). Lemma 3.2.1 below

gives the choice of the cyclotomic field containing both ζk and
√−d.

Lemma 3.2.1. Q(ζD) is the minimal cyclotomic field containing
√−d,

where −D is the discriminant of Q(
√−d).

Proof. By Conductor-discriminant formulas [102], −D is equal to its con-

ductor.

Hence this way ensures that Q(ζ`) is our minimal `-th cyclotomic field

containing both ζk and
√−d. We then choose a favourable element γ(ζ`),

compute its minimal polynomial and call it r̃(z).
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Step 3, 4 and 5: representing ζk and
√−d

Now suppose K ' Q[z]/r̃(z) where degree of r̃(z) is ϕ(`). We compute the

polynomials l(z) which maps to ζk. There are ϕ(k) primitive kth roots of

unity in Q(ζ`) ∼= Q[z]/r̃(z). We consider all the primitive roots. One such

obvious root is z`/k for z the primitive `th root of unity. If gcd(σ, k) = 1,

then (z`/k)σ is another primitive kth root of unity.

Similarly, there are ϕ(D) primitive D-th roots of unity, but there are

only two possibilities for a square root of −d. That is ±√−d. So say z`/D is

corresponding to ζD ∈ K, then since
√−d ∈ Q(ζD) we can find the solution

of the polynomial z2 + d in K.

Step 6,7 and 8: computing the family

Computations in these steps are done modulo r̃(z) except when computing

p(z). We ensure that the computed polynomials t(nz+b), r̃(nz+b)/e, p(nz+

b) satisfy Definition 2.5.1 by using Conjectures 1.4.2 and 1.4.2.

Finally, one can use the CM method to find the equation of the elliptic

curve using the integers D, t, r and p.

3.3 New curves

The following examples demonstrate the construction of new families of

pairing-friendly elliptic curves. Most of our examples also improve the ex-

isting ρ-values found in the literature. It is easy to verify that (t(nz +

b), r̃(nz+ b)/e, p(nz+ b)) for a particular embedding degree, satisfy the con-

ditions given in Definition 2.5.1.

However, we give a thorough proof for the first example. The proofs for

the other examples basically follow the same line by taking the appropriate
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ζk and
√−d.

3.3.1 k = 8 family

We start however with the case k = 8, where we set no records in terms

of ρ, but nevertheless find some interesting new families of pairing-friendly

curves. For this embedding degree there is a known Brezing and Weng

family of curves for d = 3 and ` = 24 [17].

Example 3.3.1 ([17]). Brezing-Weng family

k = 8, d = 3;

t(z) = z5 − z + 1;

p(z) = (z10 + z9 + z8 − z6 + 2z5 − z4 + z2 − 2z + 1)/3;

r(z) = z8 − z4 + 1;

ρ = 5/4.

Such a family suffers from the fact that we cannot use a possible higher

order twist (quartic) for G2, which must therefore, in this case, be repre-

sented by points on E(Fp4).

However for a family of curves with k = 8 and and complex multipli-

cation equal to 4 the quartic twist for G2 would be possible. Using our

proposed method for K ∼= Q(ζ8) and searching through the range in which

ai ∈ [−2, 2] and setting M = 2, we find the following family.

Theorem 3.3.1. Let k = ` = 8 and d = 1. Let γ(ζ8) = ζ8 − 2ζ3
8 ∈ Q(ζ8)
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and define polynomials r̃(z), p(z), t(z) as follows

r̃(z) = z4 − 8z2 + 25;

t(z) = (2z3 − 11z + 15)/15;

p(z) = (z6 + 2z5 − 3z4 + 8z3 − 15z2 − 82z + 125)/180.

Then (t(30z ± 5), r̃(30z ± 5)/450, p(30z ± 5)) represent a family of ordinary

pairing-friendly elliptic curves with embedding degree 8. The ρ-value of this

family is 3/2.

Proof. Consider γ(ζ8) = ζ8− 2ζ3
8 ∈ Q(ζ8). The minimal polynomial of γ(ζ8)

in Q(ζ8) is computed as r̃(z). Now working in Q[z]/r̃(z) choosing ζ8 7→

(2z3 − 11z)/15 and
√−d 7→ (z2 − 4)/3, we apply Algorithm 3.2.1 to get

t(z) and p(z) as stated. By construction, r̃(z), p(z), t(z) satisfy Proposition

1.4.1. Since the ultimate goal is to get integers, using PariGP we find that

(t(30z ± 5), r̃(30z ± 5)/450, p(30z ± 5)) represent a family of curves with

embedding degree k = 8.

Clearly, the ρ-value of this family is inferior to the ρ-value of Brezing-

Weng family. However as already stated, curves with complex multiplication

equal to 4 have automorphism of order 4 and hence G2 can now be repre-

sented by points on a curve defined over a smaller extension field, that is

Fp2 . See [1] for an efficient implementation of this type of a curve.

Furthermore, this family does not set any new record as similar family

of curves with same ρ-value are also reported before this result in [32] and

independently with [99].
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Examples of k = 8 curves

In this section we generate some examples of pairing-friendly elliptic curves

with various cryptographic subgroup sizes for embeeding degree k = 8. We

use a Magma code in Listing 3.1 to generate the parameters p and r and

then use a C++/NTL program implemented by Mike Scott [84] to get the

curve equation with complex multiplication discriminant −D.

The function KSSCurves, acting on a specified seed z, also outputs the

trace of Frobenius t and the co-factor c of the curve.

Listing 3.1: Magma code for finding p and r

// Input <- any random integer number;
// Output -> p,r,t,z Integers, p and r primes.
KSSCurves:= function(z)
while (z-b) mod n ne 0 do
z:=z+1;

end while;
while true do
r:=rtilde(nz+b) div e;
if IsPrime(r) then
p:=p(nz+b);
if IsPrime(p) then
break;

end if;
end if;
z:=z+n;

end while;
t:=t(nz+b);
c:=(p+1-t) div r;
return p,r,t,c;
end function;

Refer to Table 1.1. A curve of embedding degree k = 8 and ρ = 1.5 would

be suitable at both 112 and 128- bit security level. Here we give one such

example in each case.
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Example 3.3.2.

k =8, D = 4, p is 341 bits r is 224 bit prime

p =40500000000073924920000056223187209922805457428407945369184473389373\

81400850294762406470524090160653389;

r =18000000000021903600000009995160268402027129559118994171649270112553;

E :y2 = x3 − 3x.

Example 3.3.3.

k =8, D = 4, p is 386 bits r is 254 bit prime

p =976433513559724882989400889832739443685211989918097185359821976670\

66941687166997161340636175627392944002966462589973;

r =4466758982432410260701742405456264609721921271354515944007313548449\

4997471080880181529642102212802961052026338393;

E :y2 = x3 − 3x.

3.3.2 k = 12 family, the BN curves

Interestingly, our method can also construct the Barreto-Naehrig family of

pairing-friendly elliptic curves of k = 12. An efficient implementation of

this family is discussed thoroughly in [24], where the authors show how

one can avoid a full Fp12 arithmetic by providing explicit formulas for sextic

twist implementation for evaluation of the line functions required by Miller’s

algorithm.

Searching through ai ∈ [−2, 2] and setting M = 4 we find the element

γ(ζ12) = ζ3
12 − ζ2

12 + ζ12 + 2 ∈ Q(ζ12) which we use to get a family of BN
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curves.

Theorem 3.3.2. Let k = ` = 12 and d = 3. Let γ(ζ12) = ζ3
12−ζ2

12 +ζ12 +2 ∈

Q(ζ12) and define polynomials r̃(z), t(z), p(z) as follows:

r̃(z) = z4 − 6z3 + 18z2 − 36z + 36;

t(z) = (z2 + 6)/6;

p(z) = (z4 − 6z3 + 24z2 − 36z + 36)/36.

Then (t(6z), r̃(6z)/36, p(6z)) represent a family of ordinary pairing-friendly

elliptic curves with embedding degree 12. The ρ-value of this family is 1.

Proof. See the arguments in Theorem 3.3.1. We work in Q[z]/r̃(z) choosing

ζ12 7→ z2/6 and
√−d 7→ (z3 − 3z2 + 6z − 9)/3.

3.3.3 k = 16 family

A family with CM discriminant equal to 4 for embedding degree k = 16,

exhibits quartic twists. This means that for an efficient implementation

it is possible to define G2 to be a group of points on the curve defined

over Fp4 . Here we search through ai ∈ [−2, 2] and set M = 2, we find

−2ζ5
16 + ζ16 ∈ Q(ζ16) as one of the favourable elements. Theorem 3.3.3

describes this family in detail.

Theorem 3.3.3. Let k = ` = 16 and d = 1. Let γ(ζ16) = −2ζ5
16 + ζ16 ∈
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Q(ζ16) and define polynomials r̃(z)t(z), p(z) as follows:

r̃(z) = z8 + 48z4 + 625;

t(z) = (2z5 + 41z + 35)/35;

p(z) = (z10 + 2z9 + 5z8 + 48z6 + 152z5 + 240z4 + 625z2 +

2398z + 3125)/980.

Then (t(70z ± 25), r̃(70z ± 25)/61250, p(70z ± 25)) represent a family of

ordinary pairing-friendly elliptic curves with embedding degree 16. The ρ-

value of this family is 5/4.

Proof. See the arguments in Theorem 3.3.1. We work in Q[z]/r̃(z) and

choose ζ16 7→ (2z5 + 41z)/35 and
√−d 7→ (z4 + 24)/7.

This is an improvement over the old record value of ρ = 11/8.

Examples of k = 16 curves

A curve for k = 16 and ρ = 1.25 could be better implemented at 128 or 192

security levels (see Table 1.1) . Here we give both examples.

Example 3.3.4.

k =16, D = 4, p is 329 bits r is 256 bit prime

p =9982877420681771738798161363200087197122010962692149724323572220858\

00720234411457746445641213203213;

r =638674178780437250345865800686827844954476848189702963315697579770\

07320538113;

E :y2 = x3 + 5x.
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Example 3.3.5.

k =16, D = 4, p is 489 bits r is 383 bit prime

p =10212136989854597407310130335097458132594024729633006931133900124\

17160724265772303647392042316758176249245989686365565004106501443209\

547345752401333;

r =16336840655754900420818546213142686791837767994570975344431357288616

909671884311072269221657942686660371056900408673;

E :y2 = x3 + 2x

3.3.4 k = 18 family

For k = 18 and CM discriminant D = 3 the curves exhibits sextic twists.

Here we search through ai ∈ [−3, 3] and settingM = 2 we find the following

family.

Theorem 3.3.4. Let k = ` = 18 and d = 3 Let γ(ζ18) = −3ζ5
18 + ζ2

18 ∈

Q(ζ18) and define polynomials r̃(z), t(z), p(z) as follows:

r̃(z) = z6 + 37z3 + 343;

t(z) = (z4 + 16z + 7)/7;

p(z) = (z8 + 5z7 + 7z6 + 37z5 + 188z4 + 259z3 + 343z2 +

1763z + 2401)/21.

Then (t(42z+14), r̃(42z+14)/343, p(42z+14)) represent a family of ordinary

pairing-friendly elliptic curves with embedding degree 18. The ρ-value of this

family is 4/3.

Proof. See the arguments in Theorem 3.3.1. We work in Q[z]/r̃(z) choosing
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ζ18 7→ (2z4 + 39z)/7 and
√−d 7→ 2z3 + 37.

This is a significant improvement in ρ over the old record value of 19/12.

Examples for k = 18 curves

This is a good choice for the 192-bits security level.

Example 3.3.6.

k =18, D = 3, p is 517 bits r is 383 bit prime

p =312804539213964949520062295441506147680459708209947129809805715157027\

29379585055360801613143086470712542538756772665150987415840403133861643\

9956764110764403;

r =1196258773548209773133786314818973842240746549410171436796113860571799\

3172156757767547296263557180359354607350114537;

E :y2 = x3 + 11.

3.3.5 k = 32 family

Until now there has not been a good choice of pairing-friendly families of

curves which are a good fit for the AES-256 level of security, for larger

values of k. For the embedding degree k = 32, there is a Brezing and Weng

family of curves with ρ = 17/16, but with d = 3, which is the “wrong”

discriminant (3 - k). The best one can do here is to represent G2 by a group

of points on a curve E/Fp16 . Here we suggest an alternative curve which has

an automorphism of order 4, where G2 can be a group of points on a curve

E ′/Fp8 .
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Example 3.3.7 ([17]). Brezing-Weng family

k = 32, d = 3;

t(z) = z17 − z + 1;

p(z) = (z34 + z33 + z32 − z18 + 2z17 − z16 + z2 − z + 1)/3;

r(z) = z32 − z16 + 1;

ρ = 17/16.

Theorem 3.3.5. Let k = ` = 32 and d = 1. Let γ(ζ32) = −3ζ32 + 2ζ9
32 ∈

Q(ζ32) and define polynomials r̃(z), t(z), p(z) as follows:

r̃(z) = z16 + 57120z8 + 815730721;

t(z) = (−2z9 − 56403z + 3107)/3107;

p(z) = (z18 − 6z17 + 13z16 + 57120z10 − 344632z9 + 742560z8 +

815730721z2 − 4948305594z + 10604499373)/2970292.

Then (t(6214z±325), r̃(6214z±325)/93190709028482, p(6214z±325)) rep-

resent a family of ordinary pairing-friendly elliptic curves with embedding

degree 32. The ρ-value of this family is 9/8.

Proof. We work in Q[z]/r̃(z) choosing ζ32 7→ (−2z9 − 56403z)/3107 and
√−d 7→ (z8 + 28560)/239.
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Examples for k = 32 curves

Example 3.3.8.

k = 32, D = 4, p is 456 bits r is 512 bit prime

p =4277837582859918908224505993820544209667439822546624944764321730\

991783796118447174080977393272980868626365856189698199477361601960\

77614542630713357092559410187417013700783508266820169;

r =13276777022727811310997148343578745596674841193277234710069303803\

5261697223031411177967558887558325408667712987392480474283677197268\

26946896711428948707041;

E :y2 = x3 − 3x.

3.3.6 k = 36 family

Theorem 3.3.6. Let k = ` = 36 and d = 3. Let γ(ζ36) = 2ζ36 +ζ7
36 ∈ Q(ζ36)

and define polynomials r̃(z), t(z), p(z) as follows:

r̃(z) = z12 + 683z6 + 117649;

t(z) = (2z7 + 757z + 259)/259;

p(z) = (z14 − 4z13 + 7z12 + 683z8 − 2510z7 +

4781z6 + 117649z2 − 386569z + 823543)/28749.

Then (t(777z + 287), r̃(777z + 287)/161061481, p(777z + 287)) represent a

family of ordinary pairing-friendly elliptic curves with embedding degree 36.

The ρ-value of this family is 7/6.
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Proof. Working in Q[z]/r̃(z) we choose ζ36 7→ (2z7 +757z)/259 and
√−d 7→

(2z6 + 683)/37.

Again this is an improvement in ρ over the old record value of 17/12.

Examples of k = 36 curves

Example 3.3.9.

k = 36, D = 3, p is 614 bits r is 512 bit prime

p =410803687730142857447437508057751682669963481995389418153798321521\

284547298280212913734970341586816079838057503146027085569686141799873\

21998155548175320874191793446470216187748749394757;

r =7160493398860400714190770003245558326039580239536138979123491008825;

928581757313936188471893680834532456483932850896474895071365268434386

643812340063458729;

E :y2 = x3 + 5.
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3.3.7 k = 40 family

Theorem 3.3.7. Let k = ` = 40 and d = 1. Let γ(ζ40) = −2ζ40 + ζ11
40 ∈

Q(ζ40) and define polynomials r̃(z), t(z), p(z) as follows:

r̃(z) = z16 + 8z14 + 39z12 + 112z10 − 79z8

+ 2800z6 + 24375z4 + 125000z2 + 390625;

t(z) = (2z11 + 6469z + 1185)/1185;

p(z) = (z22 − 2z21 + 5z20 + 6232z12 − 10568z11 + 31160z10

+ 9765625z2 − 13398638z + 48828125)/1123380.

Then the triple (t(2370z ± 1205), r̃(2370z ± 1205)/2437890625, p(2370z ±

1205)) represent a family of ordinary pairing-friendly elliptic curves with

embedding degree 40. The ρ-value of this family is 11/8.

Proof. In Q[z]/r̃(z) consider ζ40 7→ (2z11 + 6469z)/1185 and
√−d 7→ (z10 +

3116)/237.

Again this is an improvement in ρ over the old record value of 23/16.
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Example 3.3.10.

k = 40, D = 4, p is 528 bits r is 368 bit prime

p =788393920046756398169798689630026981370370352094559494898970334\

718625643261770704786968372789144557093419214412968893615837884828\

704906798447661131070845220589;

r =375523118238511238071845237635722567112016821386203251898688303\

964837743206809343618657141090944150496681402721;

E :y2 = x3 + x.

Example 3.3.11.

k = 40, D = 4, p is 545 bits r is 380 bit prime

p =9048880749252533974544237955588008429699804895806536294907259455\

268180313928759168890711703696099057697965024161091977653921386403\

3629729602023588105148864031497409;

r =1796919997572550341362795662974871903040034409825967090743124762\

621026010619614448069572553071985947718026899759201;

E :y2 = x3 − 3x.

3.4 Conclusion

Our method presented in Algorithm 3.2.1 constructs new ordinary pairing-

friendly elliptic curves with improved ρ-values. The main idea in the con-
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struction is to use minimal polynomials of the elements of the cyclotomic

field other than the cyclotomic polynomial Φk(z) to define the cyclotomic

field Q(ζk).

Moreover, the curves constructed admit higher order twists. This means

that G2 can be represented as a group of points on a curve defined over a

smaller field than anticipated.
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Chapter 4
Genus 2 pairing-friendly

hyperelliptic curves

4.1 Introduction

Developing protocols, which are based on the DLP, using divisor class groups

on hyperelliptic curves was first suggested by Neil Koblitz [53].

Even though there are many constructions accredited to construction of

pairing-friendly abelian varieties of dimension one, as discussed in Chapter

2, there are very few explicit construction for higher dimensions. In this

chapter we discuss the construction of ordinary pairing-friendly Jacobian of

genus two hyperelliptic curves.

One may ask why hyperelliptic curves? Well, one of the advantage of

genus two hyperelliptic curves over elliptic curves is that one can construct

cryptographic protocols at the same security level as elliptic curves using a

defining field of half the size. What does this mean? This means that if we

need, for example, a 1024-bit field to implement a secure protocol based on

Elliptic Curve Cryptography we only need a 512-bit field size for Hyperel-
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liptic Curve Cryptography.

Our main result in this chapter is found in Algorithms 4.5.1 and 4.5.2

which produce new families of genus two pairing-friendly hyperelliptic curves

by generalising the Kawazoe-Takahashi approach [51]. By using our ap-

proach we observe that we can construct curves that were not reported

before and improve some ρ-values of genus two pairing-friendly hyperelliptic

curves. This work is also reported in [49].

4.2 Pairing-friendly hyperelliptic curves

In this section, we review some facts on constructing pairing-friendly hy-

perelliptic curves. Firstly, as in other previous chapters, we let p > 2 be

a prime and r a prime distinct from p and denote a hyperelliptic curve of

genus g defined over a field F by C/F.

Definition 4.2.1 ([103]). A hyperelliptic curve of genus g over a field F

is the non-singular projective model of a smooth affine curve given by an

equation of the form:

C : y2 + h(x)y = f(x), (4.1)

where h, f ∈ F[x],deg(f) = 2g+1,deg(h) ≤ g, and f is a monic polynomial.

To ensure that C is smooth, it suffices to verify that the partial derivatives

2y + h and f ′ − h′y do not simultaneously vanish at any point of C(F̄).

Suppose  L is a field extension of F then the set

C( L) = {(x, y) ∈  L×  L|y2 + h(x)y = f(x)} ∪ {O}

is called the  L-rational points on C and the point O, is referred to as a point

at infinity. If the characteristic of F is not equal to 2, we can transform the
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Equation 4.1 to an equation of the form:

y2 = f(x) (4.2)

with f monic of degree 2g + 1. Throughout this thesis we consider hyper-

elliptic curves of the form as in Equation 4.2 where f(x) has no multiple

roots.

Figure 4.1 below presents an example of the graph of a hyperelliptic

curve of genus two over the reals.

Figure 4.1: An example of a hyperelliptic curve of genus 2 over the reals

As opposed to the case of elliptic curves, there is no natural way to

provide C( L) with a group structure. This is so because in general, a straight

line intersects a curve, C, in 2g+ 1 points. Hence, the clever way to proceed

is to consider a different object related to C, which to each field extension  L
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of F associates a group. This object is called the Jacobian of C.

Recalling the discussion from Section 1.2.2, a Jacobian of C over a finite

field Fp is an abelian group formed by a group of rational divisors of degree

zero modulo principal divisors.

The group operation in the Jacobian of a hyperelliptic curve was first

proposed by Cantor [18]. The Fp-rational points of the Jacobian denoted as

JC(Fp) are given in Mumford representation. The representation is through

a unique pair of polynomials [a(x), b(x)]. When the degree of a(x) is less or

equal to g then the divisor is referred to as a reduced divisor. The Mumford

representation is defined as follows:

Definition 4.2.2 ([3]). A divisor D in Mumford representation is a pair

[a(x), b(x)] of polynomials in F[x] such that

� a(x) is monic;

� deg (b(x)) < deg (a(x)) ≤ g;

� b(x)2 − f(x) ≡ 0 mod a(x).

The identity element in the group structure of JC(F) is O = (1, 0) and

the inverse of (a(x), b(x)) is (a(x),−b(x)).

Now suppose D1 = (a1(x), b1(x)) and D2 = (a1(x), b2(x)) to be two

divisor classes in JC(F). Cantor’s algorithm for adding D1 + D2 = D3 =

[a3(x), b3(x)] is as follows [3]:
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Algorithm 4.2.1: Cantor’s algorithm

Input: Two divisors D1 = [a1(x), b1(x)] = [a1, b1]
and D2 = [a2(x), b2(x)] = [a2, b2] on a curve C : y2 = f(x)

Output: D3 = [a3(x), b3(x)] = [a3, b3]

1. Compute e1, e2, d1 such that d1 = gcd(a1, a2)

and d1 = e1a1 + e2a2

2. Take c1, c2, d such that d = gcd (d1, b1 + b2) is monic

and c1d1 + c2(b1 + b2) = d.

3. Define s1 = c1e1, s2 = c2e2, s3 = c2,

and find d = s1a1 + s2a2 + s3(b1 + b2).

4. Put a =
a1a2

d2
, and b =

(s1a1b2 + s2a2b1 + s3(b1b2 + f))

d
mod a.

5. Put a′ =
(f − b2)

a
and b = b mod a′

6. If deg a′ > g then a← monic (a′), b← b′, go to 5

7. Put a3 ← monic a′, b3 ← b′
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Figure 4.2 represents a hyperelliptic curve of genus two over the reals.

It illustrates the group law on the Jacobian. It shows D1 +D2 = D3.

1 2 3 4 5−1−2−3

1

2

3

4

5

−1

−2

−3

−4

−5

−6

•P

•P ′

•Q

•
Q′

•

•

•
S

• S′

Figure 4.2: Hyperelliptic curve: addition of divisor classes represented by D1 =
(P ) + (P ′) and D2 = (Q) + (Q′) giving D3 = (S) + (S′)
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4.2.1 Order of the Jacobian

The number of points on a hyperelliptic curve C, and the number of divisors

in JC over the base field and its extensions is dependent on the characteristic

polynomial, χ(t). For genus 2 hyperelliptic curves Equation 1.4 becomes:

χ(t) = t4 − a1t
3 + a2t

2 − a1pt+ p2 (4.3)

with a1, a2 ∈ Fp and furthermore | a1 |≤ 4p and | a2 |≤ 6p. A challenge is

to determine all values of a1 and a2 which occur in this way for genus two

curves, C/Fp. If we know χ(t) it is easy to compute #C/Fp and #C/Fpi for

1 ≤ i ≤ g. In genus two this is given by the following relation [42]:

#C/Fp = p− a1 and #C/Fp2 = p− a2
1 + 2a2 (4.4)

However, our interest is in the order of the Jacobian of genus 2 hyperel-

liptic curve #JC , which can be computed using Equation 4.3 as:

#JC = χ(1) = 1− a1 + a2 − a1p+ p2. (4.5)

The Hasse-Weil bound puts the order of the Jacobian of the curve in a

rather small interval. Theorem 4.2.1 describes the bounds on the cardinali-

ties of #C(Fp) and #JC(Fp).

Theorem 4.2.1. Let C be a hyperelliptic curve of genus g defined over a

finite field Fp. Then we have

⌈
(
√
p− 1)2g

⌉
≤ #JC(Fp) ≤

⌊
(
√
p+ 1)2g

⌋
. (4.6)

|#C(Fp)− (p+ 1)| ≤ 2g
√
p. (4.7)
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4.3 Freeman-Satoh genus 2 curves

The first explicit construction of ordinary pairing-friendly hyperelliptic curves

was shown by David Freeman [31]. Freeman modeled the Cocks-Pinch

method to construct ordinary hyperelliptic curves of genus 2. His algorithm

produce curves over prime fields with prescribed embedding degree k with

ρ-value ≈ 8. The ρ-value of the curves constructed made them unattractive

for an efficient implementation.

However, Freeman and Satoh [34] proposed an algorithm for generating

Jacobian of genus two pairing-friendly hyperelliptic curves. In this construc-

tion they showed that if an elliptic curve E , is defined over a finite field Fp,

and A is an abelian variety isogenous over Fpd to a product of two isomor-

phic elliptic curves then the abelian variety A, is isogenous over Fp to a

primitive subvariety of the Weil restriction of E from Fpd to Fp.

Notably, with this approach Freeman and Satoh constructed Jacobian of

hyperelliptic curves with improved ρ-value compared to previously reported

curves. The best for example, achieves a ρ-value of 20/9 for an embedding

degree k = 27, see [34] for examples.

4.4 Kawazoe-Takahashi pairing-friendly hyperelliptic curves

Kawazoe and Takahashi [51] presented an algorithm which constructed hy-

perelliptic curves of the form y2 = x5 + ax with ordinary Jacobians. Their

construction used two approaches; one was based on the Cocks-Pinch method

of constructing ordinary pairing-friendly elliptic curves and the other was

based on cyclotomic polynomials. Both approaches were based on the pre-

defined sizes of the Jacobian as presented in [36].

Theorem 4.4.1 below outlines the characteristic polynomials which de-
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fines hyperelliptic curve, C of the form y2 = x5 + ax defined over Fp.

Theorem 4.4.1 ([36],[51]). Let p be an odd prime, C a hyperelliptic curve

defined over Fp by equation y2 = x5 + ax, JC the Jacobian variety of C

and χ(t) the characteristic polynomial of the pth power Frobenius map of

C. Then the following holds: (In the following c, d are integers such that

p = c2 + 2d2 and c ≡ 1 (mod 4), d ∈ Z (such c and d exists if and only if

p ≡ 1, 3 (mod 8)).

1) If p ≡ 1 (mod 8) and a(p−1)/2 ≡ −1 (mod p), 2(−1)(p−1)/8d ≡ (a(p−1)/8+

a3(p−1)/8)c ( mod p), then χ(t) = t4 − 4dt3 + 8d2t2 − 4dpt+ p2.

2) If p ≡ 1 (mod 8) and a(p−1)/4 ≡ −1 (mod p) or if p ≡ 3 (mod 8) and

a(p−1)/2 ≡ −1 (mod p), then χ(t) = t4 + (4c2 − 2p)t2 + p2.

3) If p ≡ 1 (mod 16) and a(p−1)/8 ≡ 1 (mod p), or p ≡ 9 mod 16 and

a(p−1)/8 ≡ −1 (mod p), then χ(t) = (t2 − 2ct+ p)2.

4) If p ≡ 1 (mod 16) and a(p−1)/8 ≡ −1 (mod p), or p ≡ 9 mod 16 and

a(p−1)/8 ≡ 1 (mod p), then χ(t) = (t2 + 2ct+ p)2.

5) If p ≡ 3 (mod 8) and a(p−1)/2 ≡ 1 (mod p), then χ(t) = (t2 + 2ct +

p)(t2 − 2ct+ p).

Using the formulae in Theorem 4.4.1 (1) and (2) Kawazoe and Takahashi

developed a Cocks-Pinch-like method to construct genus 2 ordinary pairing-

friendly hyperelliptic curves of the form y2 = x5 +ax. The JC for these cases

is a simple ordinary Jacobian over Fp. As expected the curves generated by

the Cocks-Pinch-like method had ρ-values close to 4.

In addition, Kawazoe and Takahashi also presented cyclotomic families.

With this method the authors managed to construct a k = 24 curve with

ρ = 3.000.
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In both cases the ultimate goal is to find integers c and d such that there

is a prime p = c2 + 2d2 with c ≡ 1 (mod 4) and χ(1) having a large prime

factor. Algorithms 4.4.1 and 4.4.2 developed from Theorem 4.4.1 construct

individual genus 2 pairing-friendly hyperelliptic curves with ρ ≈ 4. The

proofs of these algorithms for their ‘pairing-friendliness’ involves ensuring

that p constructed in this way is a root of unity mudulo r and that χ(1) has

a large prime factor r.

Algorithm 4.4.1: Kawazoe-Takahashi type I pairing-friendly Hyper-
elliptic curves with #JC = 14 − 4d+ 8d2 − 4dp+ p2

Input: k ∈ Z.
Output: a hyperelliptic curve defined by y2 = x5 + ax. with
Jacobian group having a prime subgroup of order r.

1. Choose r, a prime such that lcm(8, k) divides r − 1.

2. Choose ζ, a primitive kth root of unity in (Z/rZ)×, ω, a positive
integer such that ω2 ≡ −1 mod r and σ, a positive integer such that
σ2 ≡ 2 mod r.

3. Compute integers, c, d such that:

• c ≡ (ζ + ω)(σ2(ω + 1))−1 mod r and c ≡ 1 mod 4

• d ≡ (ζω + 1)(2(ω + 1))−1 mod r.

4. Compute a prime p = c2 + 2d2 such that p ≡ 1 mod 8.

5. Find a ∈ Fp such that:

• a(p−1)/2 ≡ −1 mod p and

• 2(−1)(p−1)/8d ≡ (a(p−1)/8 + a3(p−1)/8)c mod p.

6. Define a hyperelliptic curve C by y2 = x5 + ax.
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Algorithm 4.4.2: Kawazoe-Takahashi type II pairing-friendly Hyper-
elliptic curves with #JC = 1 + (4c2 − 2p) + p2

Input: k ∈ Z
Output: a hyperelliptic curve defined by y2 = x5 + ax with Jacobian
group having a prime subgroup of order r.

1. Choose r, a prime such that lcm(8, k) divides r − 1.

2. Choose ζ, a primitive kth root of unity in (Z/rZ)×, ω, a positive
integer such that ω2 ≡ −1 mod r and σ a positive integer such that
σ2 ≡ 2 mod r.

3. Compute integers, c, d such that:

• c ≡ 2−1(ζ − 1)ω mod r and c ≡ 1 mod 4

• d ≡ (ζ + 1)(2σ)−1 mod r.

4. Compute a prime p = c2 + 2d2 such that :

� p ≡ 1, 3 mod 8

� δ(p−1)/2 ≡ −1 mod p for some integer δ ∈ Z

5. Find a ∈ Fp such that:

• a ≡ δ2 mod p when p ≡ 1 mod 8 or

• a ≡ δ mod p when p ≡ 3 mod 8.

6. Define a hyperelliptic curve C by y2 = x5 + ax.

The key feature in both algorithms is that r is chosen such that r− 1 is

divisible by 8 so that Z/rZ contains both square roots of −1 and 2 for both

c and d to satisfy the conditions in the algorithm.

4.5 Generalisation of Kawazoe-Takahashi construction

We observe that one can do better if the algorithms are parametrized by

polynomials in order to construct curves with specified bit size. We rep-

resent families of pairing-friendly curves for which parameters c, d, r, p are
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parametrized as polynomials c(z), d(z), r(z), p(z) in a variable z.

When working with the polynomials we consider polynomials with ra-

tional coefficients as in Chapter 3. Definition 4.5.1 below describes a family

of Kawazoe-Takahashi-type of pairing-friendly hyperelliptic curves.

Definition 4.5.1. Let c(z), d(z), r(z) and p(z) be non-zero polynomials with

rational coefficients. For a given positive integer k the couple (r(z), p(z))

parameterizes a family of Kawazoe-Takahashi type of hyperelliptic curves

with Jacobian JC whose embedding degree is k if the following conditions are

satisfied:

(i) c(z) represents integers such that c(z) ≡ 1 mod 4;

(ii) d(z) represents integers;

(iii) p(z) = c(z)2 + 2d(z)2 represents primes such that p(z) ≡ 1 or 3 mod

8;

(iv) r(z) represents primes;

(v) r(z)|1−4d(z)+8d(z)2−4d(z)p(z)+p(z)2 or r(z)|1+(4c(z)2−2p(z))+

p(z)2;

(vi) Φk(p(z)) ≡ 0 mod r(z), where Φk is the kth cyclotomic polynomial.

And we define the ρ-value of this family of curves as

ρ = 2 deg p(z)
deg r(z) .

In Definition 4.5.1 part (i) and (ii) ensures that the polynomial repre-

sentation of c and d conforms with the conditions. While condition (v) of

Definition 4.5.1 ensures that for a given z for which p(z) and r(z) represents

primes and r(z) divides the order of the Jacobian #JC(z). In other words,
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the order of the Jacobian of the constructed curve has a prime order sub-

group of size r(z). Finally, condition (vi) of Definition 4.5.1 ensures that

the Jacobian of the constructed curve has embedding degree k.

With these definitions we now adapt Algorithms 4.4.1 and 4.4.2 to the

polynomial context. This can be seen in Algorithms 4.5.1 and 4.5.2 below

generalizing Algorithms 4.4.1 and 4.4.2 respectively. In particular, we con-

struct our curves by taking a similar approach as described in Chapter 3

for constructing pairing-friendly elliptic curves. Even though this method is

time consuming as it involves searching for a right element, it mostly gives

a favorable irreducible polynomial r(z), which defines the size of the prime

order subgroup.

Recall, we find a minimal polynomial of an element γ(ζ`) ∈ Q(ζ`) and

call it r̃(z), where γ(ζ`) is not in any proper subfield of Q(ζ`). Since γ(ζ`) is

in no proper subfield, then we have Q(ζ`) = Q(γ(ζ`)), where the degree of

Q(γ(ζ`)) over Q is ϕ(`), where ϕ(.) is Euler totient function.

Proof. The proof of this construction is an application of the Kawazoe-

Takahashi construction in a polynomial setting. It is enough to show that

p(z) constructed in this way is in fact s(z) modulo r̃(z) and that #JC(z) has

an irreducible factor r̃(z). The first part is achieved by substituting c(z) and

d(z) into p(z) and reducing it modulo r̃(z) while the second part is realised

by utilising the structure of d(z) and substituting it into #JC(z).

With this approach, apart from reconstructing the Kawazoe-Takahashi

genus 2 curves, we discover new families of pairing-friendly hyperelliptic

curves of embedding degrees k = 2, 7, 8, 10, 11, 13, 22, 26, 28, 44 and 52 with

2 < ρ ≤ 3.

The success depends on the choice of the number field K. Thus, in the
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Algorithm 4.5.1: Our generalization for finding pairing-friendly hy-
perelliptic curves with #JC(z) = 1−4d(z) + 8d(z)2−4d(z)p(z) +p(z)2

Input: k ∈ Z, ` = lcm(8, k),K ∼= Q[z]/Φ`(z).
Output: Hyperelliptic curve of genus 2 defined by y2 = x5 + ax.

1. Choose an irreducible polynomial r̃(z) ∈ Z[z].

2. Choose polynomials s(z), ω(z) and σ(z) in Q[z] such that s(z) is a
primitive kth root of unity, ω(z) =

√
−1 and σ(z) =

√
2 in K.

3. Compute polynomials, c(z), d(z) such that:

• c(z) ≡ (s(z) + ω(z))(σ(z)(ω(z) + 1))−1 in Q[z]/r̃(z).

• d(z) ≡ (s(z)ω(z) + 1)(2(ω(z) + 1))−1 in Q[z]/r̃(z).

4. Let p(z) be an irreducible polynomial such that p(z) = c(z)2 + 2d(z)2.

5. For z0 ∈ Z such that c(z0), d(zo), p(z0), represent integers and that
c(z0) ≡ 1 mod 4

� find the subset of those residue classes for which p(z0) and r̃(z0)
represents primes and p(z0) ≡ 1 mod 8.

6. Find a ∈ Fp(z0) satisfying:

• a(p(z0)−1)/2 ≡ −1 mod p(z0). and

• 2(−1)(p(z0)−1)/8d(z0) ≡ (a(p(z0)−1)/8 + a3(p(z0)−1)/8)c(z0) mod
p(z0).

7. Output (r̃(z0), p(z0), a).

8. Define a hyperelliptic curve C by y2 = x5 + ax.
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Algorithm 4.5.2: Our generalization for finding pairing-friendly hy-
perelliptic curves with #JC(z) = 1 + (4c(z)2 − 2p(z)) + p(z)2

Input: k ∈ Z, ` = lcm(8, k),K ∼= Q[z]/Φ`(z)
Output: Hyperelliptic curve of genus 2 defined by y2 = x5 + ax .

1. Choose an irreducible polynomial r̃(z) ∈ Z[z].

2. Choose polynomials s(z), ω(z) and σ(z) in Q[z] such that s(z) is a
primitive kth root of unity, ω(z) =

√
−1 and σ(z) =

√
2 in K.

3. Compute polynomials, c(z), d(z) such that

• c(z) ≡ 2−1(s(z)− 1)ω(z) mod r̃(z)

• d(z) ≡ (s(z) + 1)(2σ(z))−1 mod r̃(z).

4. Let p(z) be an irreducible polynomial such that p(z) = c(z)2 + 2d(z)2

5. For z0 ∈ Z such that c(z0), d(zo), p(z0), represent integers and that
c(z0) ≡ 1 mod 4

� find the subset of those residue classes for which p(z0) and r̃(z0)
represents primes and p(z0) ≡ 1 or 3 mod 8.

6. Find a ∈ Fp(z0) such that:

• a = δ2 when p(z0) ≡ 1 mod 8 or

• a = δ when p(z0) ≡ 3 mod 8.

7. Output (r̃(z0), p(z0), a).

8. Define a hyperelliptic curve C by y2 = x5 + ax.

Page 89



GENERALISATION OF KAWAZOE-TAKAHASHI CONSTRUCTION 90

initial step we set K to be isomorphic to a cyclotomic field Q(ζ`) for some

` = lcm(8, k). The condition on ` ensures Q[z]/r̃(z) contains square roots

of −1 and 2.

However, with most values of k > 10 which are not multiples of 8, the

degree of r̃(z) tends to be large. As observed in [32], for such a family

of curves this limits the number of curves one can find (see Table 1.1 for

appropriate sizes of r).

4.5.1 The algorithm explained

Step 1: Set up

This involves initializing the algorithm by settingQ(ζ`) defined asQ[z]/Φ`(z).

The choice of this field should ensure that it contains ζk,
√
−1 and

√
2. The

ideal choice, in such a case, is Q(ζ8, ζk) = Q(ζ`), where ` = lcm(k, 8). This

follows from Lemma 4.5.1 below.

Lemma 4.5.1. Let ` be a positive integer and ζ` be a primitive `th root of

unity. If 8|` then the `th cyclotomic field, Q(ζ`), contains ζk and
√
−1 and

√
2.

Proof. Since 8|` then Q(ζ`) contains primitive eighth, ζ8, and fourth, ζ4,

roots of unity.

Consider (1 + i)2 = 1 + 2i+ i2

= 2i.

Hence 2 = −i(1 + i)2.

Therefore
√

2 =
√
−i(1 + i)

= ζ4ζ8(1 + ζ4).
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Step 2: Representing ζk,
√
−1 and

√
2

We search for a favorable element, γ(ζ`) ∈ Q(ζ`) such that the minimal

polynomial of γ(ζ`) has degree ϕ(`) and we call this r̃(z). We redefine our

field to Q[z]/r̃(z). In this field we find polynomials that represent ζk,
√
−1

and
√

2.

For ζk there are ϕ(k) numbers of primitive kth roots of unity. In fact

if gcd(α, k) = 1 then ζαk is also a primitive kth root of unity. To find the

polynomial representation of
√
−1 and

√
2 in Q[z]/r̃(z) is simple. Consider

for example
√

2. Let z be a primitive `th root of unity in K = Q[z]/(Φ`(z))

then z`/4 and z`/8 are the primitive 4th and 8th roots of unity respectively.

By using Lemma 4.5.1 we can therefore, represent
√

2 in K as:

√
2 = ζ4ζ8(1 + ζ4)

= z`/4.z`/8(1 + z`/4)

= z3`/8 + z5`/8 ∈ Q[z]/r̃(z).

Steps 3,4,5: Finding the family

All computations in the algorithm are done modulo r̃(z) except when com-

puting p(z). It is likely that polynomials p(z), c(z) and d(z) have rational

coefficients. At this point polynomials are tested to determine whether they

represent integers or primes as per Definition 4.5.1.

4.5.2 New curves

We now present a series of new curves constructed using the approach de-

scribed above. Proving the theorems is simple considering γ(ζ`) has minimal
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polynomial r̃(z). We give a proof of Theorem 4.5.1. For the other curves

the proofs are similar.

We start by constructing a curve of embedding degree, k = 7. It is

interesting to note that here we get a family with ρ = 8/3.

Theorem 4.5.1. Let k = 7, ` = 56. Let γ(ζ`) = ζ` + 1 ∈ Q(ζ`) and define

polynomials r̃(z), p(z), c(z), d(z) by the following:

r̃(z) = z24 − 24z23 + 276z22 − 2024z21 + 10625z20 − 42484z19 + 134406z18

−344964z17 + 730627z16 − 1292016z15 + 1922616z14 − 2419184z13 +

2580005z12 − 2332540z11 + 1784442z10 − 1150764z9 + 621877z8 −

279240z7 + 102948z6 − 30632z5 + 7175z4 − 1276z3 + 162z2 − 12z + 1;

p(z) = (z32 − 32z31 + 494z30 − 4900z29 + 35091z28 − 193284z27 + 851760z26 −

3084120z25 + 9351225z24 − 24075480z23 + 53183130z22 −

101594220z21 + 168810915z20 − 245025900z19 + 311572260z18 −

347677200z17 + 340656803z16 − 292929968z15 + 220707810z14 −

145300540z13 + 83242705z12 − 41279004z11 + 17609384z10 − 6432920z9 +

2023515z8 − 569816z7 + 159446z6 − 49588z5 + 16186z4 − 4600z3 +

968z2 − 128z + 8)/8;

c(z) = (−z9 + 9z8 − 37z7 + 91z6 − 147z5 + 161z4 − 119z3 + 57z2 −

16z + 2)/2;

d(z) = (z16 − 16z15 + 119z14 − 546z13 + 1729z12 − 4004z11 +

7007z10 − 9438z9 + 9867z8 − 8008z7 + 5005z6 − 2366z5 +

819z4 − 196z3 + 28z2)/4.

Then (r̃(2z), p(2z)) represents a family of genus 2 hyperelliptic curves. The ρ-value

of this family is 8/3.

Proof. Since ζ`+1 ∈ Q(ζ`) has minimal polynomial r̃(z), we apply Algorithm

4.5.1 by working in Q(ζ56) defined as Q[z]/r̃(z). We choose ζ7 7→ (z − 1)16,
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√
−1 7→ (z−1)14 and

√
2 7→ z(z−1)7(z−2)(z6−7z5 + 21z4−35z3 + 35z2−

21z+7)(z6−5z5+11z4−13z3+9z2−3z+1). Applying Algorithm 4.5.1 we find

p(z) as stated. Computations with PariGP [75], show that both r̃(2z) and

p(2z) represents primes and c(2z) represents integers equivalent to 1 modulo

4. Furthermore, by Algorithm 4.5.1 the Jacobian of our hypothetical curve

has a large prime order subgroup of order r̃(2z) and embedding degree,

k = 7.

Considering z0 = 758 we give an example of a 254- bit prime subgroup

that is constructed using the parameters in Theorem 4.5.1.

Example 4.5.1.

r = 21374855532566665289071366586525142876174268184114154484\

924405425230130090001; (254 bits)

p = 74150466118914277076982986134425794882179740154970735315\

435108095481642765042445975666095781797666897;

c = −21022477149693687350103984375;

d = 192549300334893812717931530445605096860437011144944;

a = 3;

ρ = 2.646;

C : y2 = x5 + 3x.

The next curve is of embedding degree, k = 8. According to [107] this

family of curves admits higher order twists. This means that it is possible

to have both inputs to a pairing defined over base field. The previous record

was ρ = 4. In Theorem 4.5.2 below we outline the parameters that defines

a family of hyperelliptic curves with ρ = 3.
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Theorem 4.5.2. Let k = ` = 8. Let γ(ζ`) = ζ3
` + ζ2

` + ζ` + 3 ∈ Q(ζ8) and

define polynomials r(z), p(z), c(z), d(z) by the following:

r̃(z) = z4 − 12z3 + 60z2 − 144z + 136;

p(z) = (11z6 − 188z5 + 1460z4 − 6464z3 + 17080z2 − 25408z + 16448)/64;

c(z) = (3z3 − 26z2 + 92z − 120)/8;

d(z) = (−z3 + 8z2 − 26z + 32)/8.

Then (r̃(32z)/8, p(32z)) represents a family of genus 2 hyperelliptic curves

with embedding degree 8. The ρ-value of this family is 3.

We can do the same here as in Theorem 4.5.1 to show that the set

of polynomials above define a family of hyperelliptic curves for embedding

degree 8. Specifically, in Q[z]/r̃(z) we choose:

ζ8 7→ (z3 − 8z2 + 28z − 36)7;

√
−1 7→ (z − 3)(z2 − 6z + 14);

√
2 7→ (z2 − 6z + 12)/2.

This type of a curve is recommended at the 128 bit security level, see

Table 1.1. Below we give an example obtained using the above parameters.

Example 4.5.2.

r = 131072000000009898508288000280324362739203528331792090742\

477643363528725893137; (257 bits)

p = 184549376000020905654747136986742251766767879474504560418\

252532669506933642904885116183766157641277112712983172884737;
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c = 12288000000000695988992000013140209336688082695322003440625;

d = −4096000000000231996416000004380073001064027565137751569916;

a = 3;

ρ = 3.012.

C : y2 = x5 + 3x.

Theorem 4.5.3. Let k = 10, ` = 40. Let γ(ζ`) = ζ` + 1 ∈ Q(ζ`) and define

polynomials r̃(z), p(z), c(z), d(z) by the following:

r̃(z) = z16 − 16z15 + 120z14 − 560z13 + 1819z12 − 4356z11 + 7942z10 −

11220z9 + 12376z8 − 10656z7 + 7112z6 − 3632z5 + 1394z4 −

392z3 + 76z2 − 8z + 1;

p(z) = (z24 − 24z23 + 274z22 − 1980z21 + 10165z20 − 39444z19

+120156z18 − 294576z17 + 591090z16 − 981920z15 + 1360476z14 −

1578824z13 + 1536842z12 − 1253336z11 + 853248z10 − 482384z9 +

225861z8 − 88872z7 + 31522z6 − 11676z5 + 4802z4 − 1848z3 +

536z2 − 96z + 8)/8;

c(z) = (−z7 + 7z6 − 22z5 + 40z4 − 45z3 + 31z2 − 12z + 2)/2;

d(z) = (z12 − 12z11 + 65z10 − 210z9 + 450z8 − 672z7 + 714z6 −

540z5 + 285z4 − 100z3 + 20z2)/4.

Then (r̃(4z), p(4z)) represents a family of genus 2 hyperelliptic curve. The
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ρ-value of this family is 3. Here we choose

ζ10 7→ (z − 1)12;

√
−1 7→ (z − 1)10;

√
2 7→ z(z − 2)(z − 1)5(z4 − 5z3 + 10z2 − 10z + 5)(z4 − 3z3 + 4z2 − 2z + 1).

Below is a curve of embedding degree 10 with a prime order subgroup

of size 249 bits. The ρ-value of its JC is 3.036.

Example 4.5.3.

r = 47457491054103014068159312355967539444301108619814810948\

2797931132143318041; (249 bits)

p = 339268047683548227442734898907507152190802484314819125499\

393410802175044822928270159666053912399467210953623356417;

c = −1189724159035338550797061406711295;

d = 411866512163557810321097788276510052727469786602189684736;

a = 3;

ρ = 3.036;

C : y2 = x5 + 3x.

The next curve is of embedding degree, k = 28.

Theorem 4.5.4. Let k = 28, ` = 56. Let γ = ζ` + 1 ∈ Q(ζ`) and define

polynomials r̃(z), p(z), c(z), d(z) by the following:
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r̃(z) = z24 − 24z23 + 276z22 − 2024z21 + 10625z20 − 42484z19 +

134406z18 − 344964z17 + 730627z16 − 1292016z15 + 1922616z14 −

2419184z13 + 2580005z12 − 2332540z11 + 1784442z10 − 1150764z9 +

621877z8 − 279240z7 + 102948z6 − 30632z5 + 7175z4 − 1276z3 +

162z2 − 12z + 1;

p(z) = (z36 − 36z35 + 630z34 − 7140z33 + 58903z32 − 376928z31 +

1946800z30 − 8337760z29 + 30188421z28 − 93740556z27 + 252374850z26 −

594076860z25 + 1230661575z24 − 2254790280z23 + 3667649460z22 −

5311037640z21 + 6859394535z20 − 7909656300z19 + 8145387218z18 −

7487525484z17 + 613613430z16 − 4473905808z15 + 2893567080z14 −

1653553104z13 + 830662287z12 − 364485108z11 + 138635550z10 −

45341540z9 + 12681910z8 − 3054608z7 + 660688z6 − 141120z5 + 32008z4 −

7072z3 + 1256z2 − 144z + 8)/8;

c(z) = (−z11 + 11z10 − 55z9 + 165z8 − 331z7 + 469z6 − 483z5 +

365z4 − 200z3 + 76z2 − 18z + 2)/2;

d(z) = (z18 − 18z17 + 153z16 − 816z15 + 3059z14 − 8554z13 + 18473z12 −

31460z11 + 42757z10 − 46618z9 + 40755z8 − 28392z7 + 15561z6 −

6566z5 + 2058z4 − 448z3 + 56z2)/4.

Then (r̃(2z), p(2z)) represents a family of genus 2 hyperelliptic curve.
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The ρ-value of this family is ρ ≈ 3. Here we choose

ζ28 7→ (z − 1)18;

√
−1 7→ (z − 1)14;

√
2 7→ z(z − 2)(z − 1)7(z6 − 7z5 + 21z4 − 35z3 + 35z2 − 21z + 7)

(z6 − 5z5 + 11z4 − 13z3 + 9z2 − 3x+ 1).

Here is a curve with a 255 bit prime order subgroup constructed from the

above parameters:

Example 4.5.4.

r = 42491960053938594435112219237666767431311006357122111696\

690362883228500208481;

p = 1094889169501305037288247123944801366479653316841535239280\

568336193026632167195184728514564519636647060505191263121;

c = −66111539648877169993055611952337239;

d = 739894982244542944193343853775218465253390470331838998400;

a = 23;

ρ = 2.972.

C : y2 = x5 + 23x.

The following family for k = 24 has a same ρ-value as a family of k = 24

curves reported in [51]. One can use the following parameters to construct

a Kawazoe-Takahashi Type II pairing-friendly hyperelliptic curve of embed-

ding degree k = 24 with ρ = 3 using Algorithm 4.5.2.

Theorem 4.5.5. Let k = ` = 24. Let γ = ζ24 + 1 ∈ Q(ζ24) and define
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polynomials r̃(z), p(z), c(z), d(z) by the following:

r̃(z) = z8 − 8z7 + 28z6 − 56z5 + 69z4 − 52z3 + 22z2 − 4z + 1;

p(z) = (2z12 − 28z11 + 179z10 − 688z9 + 1766z8 − 3188z7 +

4155z6 − 3948z5 + 2724z4 − 1336z3 + 443z2 − 88z + 8)/8;

c(z) = (−z6 + 7z5 − 20z4 + 30z3 − 25z2 + 11z − 2)/2;

d(z) = (z5 − 4z4 + 5z3 − 2z2 − z)/4.

Then (r̃(8z+ 4)/8, p(8z+ 4)) represents a family of genus 2 hyperelliptic

curves with embedding degree 24. The ρ-value of this family is 3. Here we

choose

ζ24 7→ (z − 1)23;

√
−1 7→ (z − 1)6;

√
2 7→ (z − 1)(z4 − 4z3 + 5z2 − 2z − 1).

The following family is of embedding degree k = 2 with ρ = 3. In this

case the parameters correspond to a quadratic twist C′ of the curve C whose

order of JC has a large prime of size r.

Theorem 4.5.6. Let k = 2 , ` = 8. Let γ = ζ2
8 + ζ8 + 1 ∈ Q(ζ8) and define

polynomials r̃(z), p(z), c(z), d(z) by the following:
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r̃(z) = z4 − 4z3 + 8z2 − 4z + 1;

p(z) = (17z6 − 128z5 + 480z4 − 964z3 + 1089z2 − 476z + 68)/36;

c(z) = (z3 − 4z2 + 7z − 2)/2;

d(z) = (−2z3 + 7z2 − 14z + 4)/6.

Then (r̃(36z + 8)/9, p(36z + 8)) represents a family of genus 2 hyperelliptic

curve. The ρ-value of this family is 3. In Q[z]/r(z) we choose

ζ2 7→ ((2z3 − 7z2 + 14z − 4)/3)2;

√
−1 7→ (2z3 − 7z2 + 14z − 4)/3;

√
2 7→ (z + 1)(z2 − 3z + 4).

Here is a curve with a 164 bit prime subgroup generated from the above

parameters:

Example 4.5.5.

r = 18662407671139230451673881592011637799903138004697;

p = 102792562578915164898226742137468734090998250325265\

6165164129909459559679217;

c = 23328007191686179030939068128424560723;

d = −15552004794459612687736644908426134338;

a = 10;

ρ = 3.049.

Here our genus 2 hyperelliptic equation is C′ : y2 = x5 + 10x and hence
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C : y2 = 20(x5 + 10x) is the curve whose #JC has a large prime r and its

embedding degree is 2 with respect to r.

We now present pairing-friendly hyperelliptic curves of embedding degree

k, whose polynomial that defines the prime order subgroup r(z), has degree

greater or equal to 40. Currently these curves, as already pointed out, are

only of theoretical interest. Since we would wish to specify the group sizes,

the degree of r(z) cannot be too large [32].

Theorem 4.5.7. Let k = 11, ` = 88. Let γ = ζ` ∈ Q(ζ`) and define

polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z40 − z36 + z32 − z28 + z24 − z20 + z16 − z12 + z8 − z4 + 1;

p(z) = (z48 − 2z46 + z44 + 8z24 + z4 − 2z2 + 1)/8;

c(z) = −(z13 + z11)/2;

d(z) = 1/4(z24 − z22 − z2 + 1);

ρ = 12/5;

Family (r(4z + 3)/89, p(4z + 3)).

Theorem 4.5.8. Let k = 13, ` = 104. Let γ = ζ` + 1 ∈ Q(ζ`) and define

polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z48 − 48z47 + 1128z46 + ...+ 2z2 − 24z + 1;

p(z) = (z64 − 64z63 + 2016z62 − ...+ 4040z2 − 256z + 8)/8;

c(z) = −(z19 − 19z18 + 171z17 + ...+ 249z2 − 32z + 2)/2;

d(z) = (z32 − 32z31 + 496z30 − ...+ 20995z4 − 2340z3 + 156z2)/4;

ρ = 8/3;
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Family (r(8z + 4), p(8z + 4).

Theorem 4.5.9. Let k = 22, ` = 88. Let γ = ζ` ∈ Q(ζ`) and define

polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z40 − z36 + z32 − z28 + z24 − z20 + z16 − z12 + z8 − z4 + 1;

p(z) = (z56 − 2z50 + z44 + z28 + z12 − 2z6 + 1)/8;

c(z) = −(z17 + z11)/2;

d(z) = (z34 − z22 + z12 + 1)/4;

ρ = 14/5;

Family (r(4z + 3)/89, p(4z + 3)).

Theorem 4.5.10. Let k = 26, ` = 104. Let γ = ζ` ∈ Q(ζ`) and define

polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z48 − z44 + z40 − z36 + z32 − z28 + z24 − z20 + z16 − z12 + z8 − z4 + 1;

p(z) = (z56 − 2z54 + z52 + 8z28 + z4 − 2z2 + 1)/8;

c(z) = −(z15 + z13)/2;

d(z) = (z28 − z26 − z2 + 1)/4;

ρ = 7/3;

Family (r(4z + 3), p(4z + 3)).
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4.6 Conclusion

In this Chapter we have presented an algorithm that finds genus 2 pairing-

friendly hyperelliptic curves of type y2 = x5 + ax. In addition we have

presented new curves and improved ρ-values for some previously reported

families of curves. The curves are summerised in Table 4.1.

Table 4.1: Families of curves, k < 60, with 2.000 < ρ ≤ 3.000

k Degree(r̃(z)) Degree(p(z)) ρ-value

2 4 6 3.000

7 24 32 2.667

8 4 6 3.000

10 16 24 3.000

11 40 48 2.400

13 48 64 2.667

22 40 56 2.800

24 8 12 3.000

26 48 56 2.333

28 24 36 3.000

44 48 64 2.600

52 48 60 2.500
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Chapter 5
Implementation issues

5.1 Introduction

Efficient pairing computation is as significant as finding good curves as dis-

cussed in Chapters 3 and 4. There is a considerable amount of work done

by various researchers in trying to optimise the efficiency of computing the

pairings. Mainly, the effort has been to optimise the Miller loop and the

final exponentiation parts of the algorithm see [6], [85] [1] and [24].

In this Chapter, we describe some efficient implementations of bilinear

pairings. We pay particular attention to efficient computations in G2 and

the final exponentiation optimisation. This work also appears in [88] and

[87].

5.1.1 Computing the pairing

The most efficient way to compute a pairing is by using the Tate pairing

or its variants. Here we introduce the Tate and the Ate pairings for elliptic

curves.
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The Tate pairing

Let E be an elliptic curve defined over a finite field Fp, with an embedding

degree k. Let r be a prime distinct from p such that r is a large prime factor

of #E(Fp). Assume r2 does not divide pk − 1. For every integer s, let fs,P

be the function with a divisor:

(fs,P ) = s(P )− ([s]P − (s− 1)O),

then the Tate pairing [35] is a well-defined non-degenerate, bilinear pairing

defined by the following map:

E(Fp)[r] × E(Fpk)/rE(Fpk) −→ F×
pk
/(F×

pk
)r

er(P,Q) 7→ 〈P,Q〉r = fr,P (Q).

The value of this pairing is only defined up to a coset of (F×
pk

)r. However,

for practical purposes, we exponentiate the value of the pairing say, f , by a

quantity pk−1
r to obtain a unique representative of this class. This process

eliminates all rth powers leaving an exact rth root of unity in Fpk and is

referred to as the reduced Tate pairing.

The best known method to date for computing bilinear pairings is Miller’s

algorithm see [67], [10], [6] or [3]. Miller’s algorithm is basically the ‘double

and add’ algorithm for elliptic curve point multiplication combined with an

evaluation of certain intermediate functions which are the straight lines used

in the addition process (see Section 2.2.2).

In the algorithm, to compute the pairing we use the line functions l and

v to evaluate the point addition between any two points. For example, let

R = (xR, yR) and T = (xT , yT ) be points on the curve E/Fpk . The values of
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line function lR,T (Q) and vertical function vR+T (Q) are distances calculated

between the lines that arise when adding point R to point T and the fixed

point Q. The values of these functions are given by the following formulas:

lR,T (Q) = (yQ − yR)− λ(xQ − xR) (5.1)

vR+T (Q) = (xQ − yR+T ) (5.2)

where λ is the slope of the straight line through R and T given as follows:

λ =


yT − yR
xT − xR

if T 6= R

3x2
R

2y2
R

if T = R.

Below is a basic Algorithm to compute Tate pairing [10].

Algorithm 5.1.1: Basic Miller’s Algorithm

Require: r ∈ Z P, Q ∈ E
Ensure : fr,P (Q)

pk−1
r

T ← P ;1

f ← 1;2

for i← blog(r)c − 1 down to 0 do3

f ← f2 · lT,T (Q)/v2T (Q);4

T ← 2T ;5

if ri = 1 then6

f ← f · lT,P (Q)/vT+P (Q);7

T ← T + P8

end9

end10

f ← f
pk−1
r ;11

return f .12

The Miller’s algorithm can be simplified further for even embedding de-

grees. Suppose k = 2k′ and the extension field Fpk built as a quadratic

extension over Fpk′ . Then one can use the denominator elimination method
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to ease the computation of the pairing. The simplification is stated in The-

orem 5.1.1[6].

Theorem 5.1.1. Let P ∈ E(Fp)[r]. Suppose Q = (x, y) ∈ E(Fpk) and

x ∈ Fpk′ . Then v2T and vT+P denominators in the Miller’s algorithm can

be discarded without changing the value of the pairing e(P,Q).

The Ate pairing

The Ate pairing [46] is a well-defined non-degenerate pairing that generalises

the Eta pairing [5] to ordinary elliptic curves and is defined on G2×G1. That

is the arguments are swapped with respect to the Eta pairing.

The Ate pairing bilinear map is defined by the following:

E(Fpk)[r] ∩Ker(πp − [p]) × E(Fp)[r] ∩Ker(πp − [1]) −→ F×
pk
/(F×

pk
)r

et(Q,P ) 7→ 〈Q,P 〉t = ft−1,Q(P )
pk−1
r .

In the ate pairing the number of iterations in the Miller loop depends

on the size of the trace of the Frobenius t rather than on the size of the

subgroup r. Thus, as noted in [85] if ω = log r/ log |t| is greater than one

for a particular family then it may be possible to compute the ate pairing

faster than the Tate pairing.

5.2 Cofactor multiplication inG2

Some pairing-based protocols, such the Identity Based Encryption scheme

by Boneh and Franklin [13], require hashing of identities to G1 or G2. The

process involves hashing an input to some x in the finite field, and then

solve for a corresponding y on the curve. The process is repeated as many

times as necessary until it yields a point (x, y) on the curve and multiply
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this point by a cofactor.

However, Tate pairing and its variants require G2 to be a group of points

of prime order r on a curve defined over some extension of Fp. In this case,

to hash to an identity requires a multiplication by large cofactor because the

group G2, is defined over a larger field. This is considered to be inefficient.

Galbraith and Scott [39] presented an efficiently computable homomor-

phism of the groups G2 and GT in a pairing. This is based on a technique of

Gallant, Lambert and Vanstone [40] of fast point multiplication on curves.

In their method the authors used the homomorphism:

ψ = φ−1πpφ

where φ : E ′ → E is the isomorphism which maps points on the twisted

curve E ′(Fpe), to points on the isomorphic group on E(Fpk), and πp is the

pth power Frobenius map on E , see Section 2.3. The general points in E ′(Fpe)

satisfy the following identity [39]

ψ2(P )− [t]ψ(P ) + [p]P = 0 (5.3)

with P ∈ E ′(Fpe).

With Equation 5.3 in mind we work with polynomials to handle the

problem of multiplication by a large cofactor. We observe that since we can

represent the order of the elliptic curve E ′(Fpe), as #E ′(Fp(z)e) then we can

defined the cofactor in polynomial terms as follows, (see Section 2.2.3):

c(z) = #E ′(Fp(z)e)/r(z) (5.4)
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with p(z) a polynomial defining the field and r(z) a polynomial defining the

prime order subgroup on the curve E/(Fp(z)).

We now express c(z) to the base p(z) as follows:

c(z) =
∑
i

cip(z)
i ci ∈ Q (5.5)

and then use the relation

[p]P = [t]ψ(P )− ψ2(P ) (5.6)

recursively if necessary to reduce the co-factor multiplication to a form:

[c0 + p(c1 + p(c2 + ...))]P =
∑
i

[gi]ψ
i(P ) (5.7)

where all of the gi are less than p. Note for example that

[c1.p]P = [c1.t]ψ(P )− [c1]ψ2(P ). (5.8)

A further applications of the homomorphism may be necessary to effect

a complete reduction. In some circumstances we will also find the following

identity to be useful:

Φk(ψ(P )) = 0 (5.9)

where Φk is the k-th cyclotomic polynomial. Equation 5.9 allows terms of

degree greater or equal to ϕ(k) to be replaced with terms of lower degree.

In the case that k = de with gcd(d, e) = 1, we observe that the twist-

ing isomorphism φ defining the twist of degree e can be chosen so that the

twisted curve E ′ is actually defined over Fp (in this case φ is defined over

Fpd). In this case the cofactor c(z) can be factored as h(z).c′(z) where
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h(z) = #E ′(Fp(z)).

The endomorphism π′ − 1, where π′ is the pth-power Frobenius map on

E ′, projects into the subgroup of #E ′(Fpd) of order c′(z) ·r(z). Thus we only

need to perform a multiplication by c′(z) to obtain a point of order r(z). In

this case our algorithm only needs to be applied to a smaller cofactor c′(z).

This approach of reducing the cofactor multiplication to the evaluation

of polynomial of powers ψi(P ) with coefficients less than p is done using

Algorithm 5.2.1.

This algorithm takes in as inputs an integers k which is the embedding

degree; a polynomial p(z) which defines the size of the finite field; a poly-

nomial t(z) which parameterises the trace of the Frobenius of the pairing-

friendly curve and a polynomial c(z) parameterising the hard part of the

multiplication to be performed to obtain a point of order r.

The first part of the algorithm (lines 3 − 6) expresses c(z) to the base

p(z) while the second part of the algorithm (lines 8 − 13) expresses c(z) to

the base ψ(.) The coefficients of the base ψ(.) representation are computed

using the coefficients of the base p(z) representation and the appropriate

coefficients of the equation:

[pj ]P =

j∑
i=0

(ji )t(z)
j−i(−1)iψj+i(P ), (5.10)

obtained by applying induction on Equation 5.6. After c(z) has been ex-

pressed to the base ψ(.), the coefficients gi(z) are checked. If the degree of

gi(z) is greater than the degree of p(z) the identity in Equation 5.3 is applied

again (see lines 15 − 20 and examples Section 5.2.1). Finally, the relation

in Equation 5.9 is exploited to obtain a base ψ(.) representation of c(z) of

degree less than ϕ(k).
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5.2.1 Application of the algorithm

Let us demonstrate this approach by first working through the algorithm

using the MNT k = 6 curves. Recall the parameters for MNT k = 6 curves

from Section 2.6.3 in Theorem 2.6.1 .

Step 1: Lines 3-6 of Algorithm 5.2.1

Since k is even and the CM discriminant of these curves is not equal to−3 the

best we could do is to use the quadratic twist for an efficient implementation.

This means that G2 is a group of points of order r in E ′(Fp3). From

Section 2.2.3 using Theorem 2.2.4 the order #E ′(Fp3), is computed explicitly

as follows in polynomial terms:

s0 = 2

p(z) = z2 + 1

t(z) = z + 1

s1 = t(z)

s2 = s1 · s1 − (p(z) · s0)

= −z2 + 2z − 1

s3 = s1 · s2 − p(z) · s1

= −2z3 − 2

#E ′(Fp3) = p3 + 1 + s3

= z6 + 3z4 − 2z3 + 3z2.

from which we can compute the cofactor c(z), easily as:

c(z) =
#E ′(Fp3)

r(z)
=
z6 + 3z4 − 2z3 + 3z2

z2 − z + 1
= z4 + z3 + 3z2. (5.11)
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Algorithm 5.2.1: Reduction of cofactor to base ψ(.)

Require: k, t(z), c(z)
Ensure : Coefficients of a base ψ(.) : g0(z), g1(z), ...gϕ(k)−1 with deg

gi(z) < deg p(z)

f ← bdeg(c(z))/deg(p(z))c;1

� Express c(z) to the base p;2

for i← 0 to f do3

ci(z)← c(z) mod p(z);4

c(z)← c(z) div p(z);5

end6

� Using Equation 5.6 make first pass to determine gi of c(z) to the7

base ψ(.) ;
for j ← 0 to f do8

g2j ← 0, g2j+1 ← 0;9

for i← 0 to 1 do10

gj+i ← gj+i + (ji )t(z)
j−1(−1)icj(z);11

end12

end13

� Make a second pass to force all the coefficients to have degree <14

degree p;
g2f+1 ← 0, g2f+2 ← 0;15

for j ← 1 to 2f do16

w(z)← gj(z) div p(z);17

gj(z)← gj(z) mod p(z);18

gj+1(z)← gj+1(z) + t(z)w(z);19

gj+2(z)← gj+2(z)− w(z);20

end21

� Finally exploit Equation 5.9; ai is the coefficient of zi in Φk(z);22

for j ← 2f + 2 down to ϕ(k) do23

for i← 1 to ϕ(k) do24

gj−i(z)← gj−i(z)− aϕ(k)−i · gj(z);25

end26

gj(z)← 0;27

end28
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Running through lines 3− 6 in the algorithm we express the cofactor in

Equation 5.11, to the base p(z) which becomes:

c(z) = p(z)2 + (z + 1)p(z) + (−z − 2). (5.12)

Step 2: Lines 8-20 of Algorithm 5.2.1

Using the identity in Equation 5.3, applying it to each term in Equation

5.12 involving the power of p(z), we express [c(z)]P to the base ψ(.). This

can be seen in lines 8− 13 in Algorithm 5.2.1. Here we get

[−z − 2]P + [z2 + 2z + 1]ψ(P ) + [z2 + z]ψ2(P ) + [−2z − 2]ψ3(P ) + ψ4(P ).

Since the degrees of some of the coefficients in the expression above are

equal to the degree of p(z), we apply Equation 5.3 again to finally get:

[−z − 2]P + [2z]ψ(P ) + [z2]ψ2(P ) + [−2z − 2]ψ3(P ). (5.13)

This action can be seen in lines 15− 20 in Algorithm 5.2.1.

Step 3: Lines 22-27 of Algorithm 5.2.1

Now consider Equation 5.9, since ψ2(P ) = ψ(P ) − P we can substitute

this in the expression above for ψ2(P ). With lines 22-27 in Algorithm 5.2.1

Expression 5.13 reduces to

ψ(4zP )− 2zP. (5.14)

Compared to explicit point multiplication by z4 + z3 + 3z2, the expres-

sion above is equivalent to multiplication only by z, two doublings, one
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application of homomorphism and a point addition.

5.2.2 The Freeman Curves

Recall the parameters for the family of pairing-friendly elliptic curves of em-

bedding degree 10 discovered by David Freeman from Section 2.6.5.

The best that can be done for G2 is to represent it as a group of points

in E ′(Fp5) (quadratic twist).

Here we can compute #E ′(Fp5) as in MNT k = 6 curves. This is a partic-

ularly large and rather awkward extension, and the cofactor multiplication

threatens to be huge. In fact c(z) in this particular case works out as the

rather intimidating degree 16 polynomial of the following form:

c(z) = 390625z16 + 1562500z15 + 4062500z14 + 7421875z13

+10750000z12 + 12593750z11 + 12356250z10 + 10203125z9

+7178125z8 + 4284375z7 + 2171000z6 + 920250z5 + 322400z4

+89875z3 + 19120z2 + 2740z + 217.

This has p(z) + 1 + t(z) as a factor; and choosing the quadratic twist

E ′ to be defined over Fp then the multiplication by p(z) + 1 + t(z) can be

handled by the transformation P ← π′(P )− P , and so the hard-part of the

cofactor multiplication can be reduced to:

c′(z) = 15625z12 + 46875z11 + 93750z10 + 128125z9

+138125z8 + 116875z7 + 80875z6 + 44875z5 + 20225z4

+7075z3 + 1880z2 + 325z + 31.

Applying our algorithm we find that multiplying P by c′(z) can be ex-
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pressed as:

3∑
i=0

[gi(z)]ψ
i(P ) (5.15)

where

g0(z) = −5z2 − 10z − 2;

g1(z) = −25z3 − 20z2 − 10z − 4;

g2(z) = 3;

g3(z) = −25z3 − 10z2 − 5z.

We proceed by computing zP, z2P = z.zP, z3P = z.z2P , and then

ψi(P ), ψi(zP ), ψi(z2P ) and ψi(z3P ) for 1 ≤ i ≤ 3.

and this becomes:

[25](−ψ3(z3P )− ψ(z3P )) + [20](ψ(z2P )) + [10](−ψ3(z2P )− ψ(zP )− zP )

+ [5](−ψ3(zP )− z2P ) + [4](−ψ(P )) + [3]ψ2(P ) + [2](−P ),

which we can represent as:

25A+ 20B + 10C + 5D + 4E + 3F + 2G,

when A,B,C,D,E, F and G are calculated using just 4 extra point addi-

tions.

We proceed to form the smallest addition sequence which includes all of

the small multipliers in the above expression as follows:

{1, 2, 3, 4, 5, 10, 20, 25}.
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Then find a vector addition chain for [2, 3, 4 5 10 20 25] as follows (see

Section 1.6.1):

A B C D E F G

[1 0 0 0 0 0 0]

[0 1 0 0 0 0 0]

[0 0 1 0 0 0 0]

[0 0 0 1 0 0 0]

[0 0 0 0 1 0 0]

[0 0 0 0 0 1 0]

[0 0 0 0 0 0 1]

[1 1 0 0 0 0 0]

[1 0 0 1 0 0 0]

[2 2 0 0 0 0 0]

[2 2 1 0 0 0 0]

[4 4 2 0 0 0 0]

[5 4 2 1 0 0 0]

[5 4 2 1 1 0 0]

[10 8 4 2 2 0 0]

[10 8 4 2 2 0 1]

[10 8 4 2 2 1 1]

[5 4 2 1 0 1 0]

[20 16 8 4 4 2 2]

[25 20 10 5 4 3 2]

This shows that using the Olivos algorithm we get 9 extra point additions
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and 4 point doublings as shown below:

Γ0 ← A+B

Γ1 ← A+D

Γ0 ← 2 · Γ0

Γ0 ← Γ0 + C

Γ0 ← 2 · Γ0

Γ1 ← Γ0 + Γ1

Γ0 ← Γ1 + E

Γ0 ← 2 · Γ0

Γ0 ← Γ0 +G

Γ0 ← Γ0 + F

Γ1 ← Γ1 + F

Γ0 ← 2 · Γ0

Γ0 ← Γ0 + Γ1.

where the final result is in Γ0.

5.2.3 The k = 8 family of curves

Recall the parameters of k = 8 curves reported from Chapter 3 in Theorem

3.3.1. Since the CM discriminant of this family is −4 and the embedding

degree is 8, the best that can be done for G2 is to represent it as a group of

points in E ′(Fp2). We can proceed by first computing the order of the twist
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#E ′(Fp2), using Theorem 2.2.4 and secondly, the cofactor

c(z) = #E ′(Fp(z)2)/r(z). (5.16)

Proceeding as before we work through Algorithm 5.2.1 to get:

g0(z) = (2z5 + 4z4 − z3 + 50z2 + 65z − 36)/6;

g1(z) = (2z5 + 4z4 − z3 − 7z2 − 25z + 75)/6;

g2(z) = (−15z2 − 30z − 75)/6.

The common denominator of 6 which appears in each gi(z) above can

be dealt with by completing the hashing to G2 with the point multiplication

[6.c(z)]P ; this still results in a point of order r as 6 and r are co-prime. To

complete the calculation we need an addition sequence which includes all of

the integer coefficients that arise:

{1, 2, 4, 5, 6, 7, 10, 15, 25, 30, 36, 50, 65, 75}, (5.17)

where the underlined numbers are the extra numbers included to complete

the sequence (see Section 1.6). Proceeding as for the Freeman curves case,

the computation using this addition sequence can compute the vectorial

addition chain which can be completed with 18 point additions and 5 point

doublings.

5.2.4 The k = 18 family of curves

Recall the parameters for the family of k = 18 curves from Chapter 3 in

Theorem 3.3.4. For this family of curves, as for the BN curves, z can be

chosen with a low Hamming weight. Since the CM discriminant of this
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family is −3 and the embedding degree is 18, the best that can be done for

G2 is to represent it as a group of points in E ′(Fp3). Proceeding as before

we compute #E ′(Fp3) and the cofactor works out to be:

c(z) = z18 + 15z17 + 96z16 + 409z15 + 1791 + z14 + 7929z13 + 27539z12

+81660z11 + 256908z10 + 757927z9 + 1803684z8 + 4055484z7

+9658007z6 + 19465362z5 + 30860595z4 + 50075833z3 + 82554234z2

+88845918z + 40301641

In this case using Algorithm 5.2.1 we get:

g0(z) = (−5z7 − 26z6 − 98z5 − 381z4 − 867z3 − 1911z2 − 5145z − 5774)/3;

g1(z) = (−5z7 − 18z6 − 38z4 − 323z3 − 28z2 + 784z)/3;

g2(z) = (5z7 − 18z6 − 38z4 − 323z3 + 1029z + 343)/3;

g3(z) = (−11z6 − 70z5 − 98z4 − 176z3 − 1218z2 − 2058z − 686)/3;

g4(z) = (28z2 + 245z + 343)/3.

Using the same reasoning as in the k = 8 case, the denominator is

removed by performing the evaluation [3c(z)]P . The best addition sequence

we could find that includes all of the coefficients of gi(z) is as follows:

{1, 2, 3, 5, 7, 8, 11, 18, 26, 28, 31, 38, 45, 69, 70, 78, 98, 176, 245,

253, 323, 343, 381, 389, 686, 784, 829, 867, 1029, 1218, 1658, 1911, 2058, 4116,

5145, 5774}.

This can be used to complete the calculation in 51 point additions and 5

point doublings using the vectorial addition chain.
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5.3 The final exponentiation

The final exponentiation by pk−1
r can be expressed as :

pk − 1

r
=

∏
d/k,d<k

Φd(p)
Φk(p)

r
(5.18)

where the first factor,
∏
d/k,d<k Φd(p), can be computed easily by using the

pth power Frobenius operations and Φk(.) is the kth cyclotomic polynomial.

Computing the last part poses a challenge and is referred to as the hard

exponentiation.

Let us consider for example the BN curves (see Section 2.6.4 for param-

eters). In this case Equation 5.18 is expressed as:

p12 − 1

r
= (p6 − 1) · (p2 + 1)

(p4 − p2 + 1)

r
.

Recall that p and r have a special form. Both are polynomials in z. Therefore

this hard part of the final exponentiation
(p4 − p2 + 1)

r
, can be computed

explicitly as a large polynomial in z. This can in turn be expressed to the

base p as:

p3 + (6z2 + 1)p2 + (36z3 − 18z2 + 12z + 1)p+ (36z3 − 30z2 + 18z − 1).

The naive way is to use the method of multi-exponentiation coupled with

the Frobenius [64], so that the final exponentiation is the computation of:

(fp
3
) · (fp2)(6z+1) · (fp)(36z3−18z2+12z+1) · f (36z3−30z2+18z−1)

Nevertheless, in [24] they proceed by express the exponent to the base
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p. This means that the power of the expression will be less than ϕ(k) where

ϕ(.) is Euler totient function. That is:

Φ(p)

r
=

ϕ(k)−1∑
i=0

λi p
i.

That is if the value of the base is m then we need to compute

ϕ(k)−1∏
i=0

mλi p
i

which can be re-arranged to become

ϕ(k)−1∏
i=0

(mpi)λi .

The idea here is to use the Frobenius to compute the mpi in the the Ex-

pression 5.3 while the hard part can be computed using the multi-exponentiation

algorithm [64].

5.4 Our way of computing the hard part

We utilize the structure of the polynomial that defines the field size p, and

the size of the cryptographic group r, to optimise the computation of the

hard-part of the final exponentiation. We demonstrate our optimisation by

working through the families of k = 8 and k = 18 curves which are reported

in Chapter 3.

5.4.1 The k = 8 family of curves

Recall the parameters of the k = 8 curves from Chapter 3 in Theorem

3.3.1. In this case the hard part of final exponentiation is to the power
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Φ8(p(z))/r(z) which becomes (p4 + 1)/r(z) and proceed as follows.

Firstly, we express the hard part to the base p and get:

3∑
i=0

λi p(z)
i

where

λ3 = (15z2 + 30z + 75)/6;

λ2 = (2z5 + 4z4 − z3 + 26z2 − 55z − 144)/6;

λ1 = (−5z4 − 10z3 − 5z2 − 80z + 100)/6;

λ0 = (z5 + 2z4 + 7z3 + 28z2 + 10z + 108)/6.

To make the computations easier we eliminate the denominator in the

above set of equations. This means we are evaluating the pairing to the

sixth power. Fortunately, this does not affect the bilinearity property of the

pairing when r is of cryptographic size.

Secondly, we construct almost optimal addition chain sequence which

contains all the exponents of the above equations. Fortunately, in our case

we are dealing with small values and the number sets already contains some

subsets of an addition sequence.

It is easy, both manually or through computer search, to find an almost

optimal addition sequence for that given set of numbers.

{1, 2, 4, 5, 7, 10, 15, 25, 26, 28, 30, 36, 50, 55, 75, 80, 100, 108, 144.}

The extra numbers to complete the addition sequence are underlined. The

vectorial addition chain (see Section 1.6.1) derived from the addition se-

quence just requires 27 multiplication and 6 squarings in order to complete

the hard part of the final exponentiation.
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5.4.2 The k = 18 family of curves

Recall the parameters of the k = 18 curves from Chapter 3 in Theorem

3.3.4. The hard part of final exponentiation is to the power Φ18(p(z))/r(z).

Proceeding again as above, we compute:

λ5(z) = (49z2 + 245z + 343)/3;

λ4(z) = (7z6 + 35z5 + 49z4 + 112z3 + 581z2 + 784z)/3;

λ3(z) = (5z7 − 25z6 − 35z5 − 87z4 − 450z3 − 609z2 + 54)/3;

λ2(z) = (−49z5 − 245z4 − 343z3 − 931z2 − 4802z − 6517)/3;

λ1(z) = (14z6 + 70z5 + 98z4 + 273z3 + 1407z2 + 1911z)/3;

λ0(z) = (−3z7 − 15z6 − 21z5 − 62z4 − 319z3 − 434z2 + 3)/3.

Using the same argument as in the k = 8 curves case, we evaluate the

cube of the pairing to remove the awkward denominator of 3. In this case the

coefficients again nearly form a natural addition chain. Our best attempt

to find an addition sequence containing all of the exponents in the above, is

as follows:

1, 2, 3, 4, 5, 7, 8, 14, 15, 16, 21, 25, 28, 35, 42, 49, 54, 62, 70,

87, 98, 112, 147, 245, 273, 294, 319, 343, 392, 434, 450, 581,

609, 784, 931, 1162, 1407, 1862, 1911, 3724, 4655, 4802, 6517.

The vectorial chain derived from this addition sequence requires just 56

multiplications and 14 squarings to complete the calculation of the hard part

of the final exponentiation. We use the solution above as the computations

are performed over an extension field and squaring are therefore notably

cheaper than multiplications.
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5.5 Conclusion

The Tate pairing and its variants, ate and R-ate, are the most efficient

pairings to date. These pairings require an element from G2 to be also of

prime order. Hashing to a point in G2 requires additional multiplication by

a large cofactor. In this chapter, we have shown how to efficiently multiply

a point in G2 defined on a twist curve by a large cofactor.

Finally, we have also described a new approach for implementation of the

hard part of the final exponentiation in the calculation of the Tate pairing or

its variants, which is generally applicable, faster and requires less memory

than the previously described methods.
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Chapter 6
Summary of contributions

6.1 Introduction

An efficient and secure implementation of pairing-based protocols depends

on what are known as pairing-friendly curves. These are curves with a large

prime order subgroup and a small embedding degree. However, the embed-

ding degree of most randomly generated curves is too large for an efficient

implementation. Hence there are two main problems to be addressed when

aiming at a practical implementation of the pairing-based protocols. The

first is the construction of pairing-friendly curves. The second is to make

pairing computations more efficient and suitable for different pairing-based

protocols. In this thesis we addressed both areas to some extent.

6.2 Pairing-friendly elliptic curves

The construction of pairing-friendly elliptic curves is addressed in Chapter

3. Inspired by the work of Brezing and Weng [17] we construct new curves.

The main idea in the construction is to use minimal polynomials of the el-

ements of the cyclotomic field other than the cyclotomic polynomial Φ`(z)
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to define the cyclotomic field Q(ζ`). The potential of the method has been

illustrated by constructing families of pairing-friendly elliptic curves of de-

grees 8, 12, 16, 18, 32, 36 and 40.

However, since we require ` = lcm(k,D), with a large D the search space

for an element γ(ζ`) becomes huge making this method not favourable in

such a case. Furthermore, the limits imposed on M and L might, in one

way or the other, lead to missing some good curves.

Maybe by extending the search space, further families of ideal or near

ideal pairing-friendly curves might be found.

We also have seen that the proposed curves have nice properties favour-

ing an efficient implementation. For instance, these curves have a small

ρ-value interpreted as the ratio of a cryptographic group’s required band-

width to its security level. In fact, curves with smaller ρ-values provide

the best performance in implementations. Furthermore, these curves admit

higher order twists of either degree 6 or 4. Use of twisted curves facilitate

an efficient implementation of G2 in the pairing computation by defining the

group on a curve defined on a much smaller field than anticipated.

However, elliptic curves with small class number are very special and

therefore might be considered weak from a cryptographic viewpoint. Even

though there is no known attack taking advantage of this yet, we might want

to generate curves with slightly larger class number to avoid the potential

attacks. This becomes a challenge if we need to keep the ρ-values as attrac-

tive as they are.

As such the question of constructing ordinary pairing-friendly elliptic

curves of prime or near prime order is still open for most embedding de-

grees.
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6.3 Genus two pairing-friendly hyperelliptic curves

Based on the work of Kawazoe and Takahashi [51], in Chapter 4 we have

presented a generalisation of a construction of genus 2 pairing-friendly hy-

perelliptic curves of type y2 = x5 + ax. With our approach we find new

curves and improve ρ-values for some previously reported curves.

A problem with some of the reported curves is that the degree of the

polynomial r(z), which defines the prime order subgroup, is greater than 40.

As pointed out in [32] if we would like to generate pairing-friendly curves

and wish to specify the field and prime subgroup sizes the degree of the poly-

nomials p(z) and r(z) should not be too large. For example, if one wants to

construct curves at 256-bit security level with a degree 32 polynomial that

defines the prime subgroup, we could expect to find only about four curves

(see [32] ).

Furthermore, the ρ-value of most of these curves are still large when

compared to the pairing-friendly elliptic curve case. Referring to Table 1.1

we see that for most of our reported curves their value k · ρ falls outside the

range of the table. We would like the ρ-value of the families to be closer to

1.

6.4 Implementation optimisation

The two variants of Tate pairing; the ate[46] and the R-ate [58] pairings are

the most efficient pairings to date. Both pairings require an element from

G2 to be of prime order. Hashing to a point in G2 therefore, would require

a multiplication by a large cofactor. In Chapter 5 we have shown how to

efficiently multiply a point in G2 defined over on a twisted curve by a large

cofactor. Our approach uses the theory of additional chains which includes
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a problem of finding the shortest possible addition sequence. We observe

that sometimes it is preferable to use slightly longer addition sequence which

trades addition for doublings since in most cases point doublings are signif-

icantly faster than point additions. This scenario is complex and requires a

further investigation.

Finally, we have also shown a new method for implementing the hard

part of the final exponentiation in the calculation of the Tate pairing and

its variants, which is generally applicable, faster and requires less memory

than the previously described methods.
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