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Abstract

Recently there has been a great deal of interest in the construction of Exponential Time-Integrators (EIs)
for semilinear problems. EIs in particular are well suited to the numerical integration of stiff ODEs arising
from the spatial discritisation of PDEs. For such problems, stability issues rather than accuracy require-
ments dominate the choice of stepsize. Established methods for solving stiff problems have revolved
around implicit schemes, for example, implicit Runge-KuĴa Methods (RKs). EIs offer an explicit alterna-
tive.

We study and test the performance of numerical schemes derived fromEIs, for the integration of large
stiff systems of non-linear initial value problems, typically PDEs,

yt = Ly +N (y, t), y(t0) = y0

whereL is an unbounded linear operator andN is a non-linear operator. Our field of interest is primarily
with the system of semi-linear ODEs,

y′(t) = Ly(t) +N(t, y(t)), y(tn) = yn

obtained after a space discretisation of the PDE. The linear part, L, of the equation is stiff, while the non-
linear part,N , is assumed to be non-stiff, in the sense that it can be approximated by an explicit method.

EIs, as their name suggests, use the exponential function, and related functions known asφ-functions,
of L, or an approximation to it, inside the numerical method. Though not a new idea, it is only with
recent developments in computing the exponential of a matrix have EIs become practical. Now, with
these new methods, renewed interest in Exponential Integrators has been observed, and EIs are now
proving themselves to be competitive against existing algorithms.

Our work contains an overview of the main established families of EIs, those being Exponential Time
Differencing Methods (ETDs), Exponential Runge-KuĴa Methods (ERKs) and Exponential General Lin-
ear Methods (EGLMs). ETDs are a class of multi-step integrators, while ERKs are 1-step integrators using
lower order intermediate steps as in classical Runge-KuĴa schemes. EGLMs represent a framework that
can combine multi-step and multi-stage approaches and within EGLMs the ETD and ERK families be-
come a special case.

We introduce a new family of EIs, namely Exponential Almost Runge-KuĴa Methods (EARKs). Like
EGLMs, they retain the ERK’s concept of multiple stages but, instead of the multi-step nature of EGLMs,
the input and output values passed from step-to-step are function evaluations of the approximate solu-
tion,N(yn+1), followed by increasing derivatives,N (i)

n . In this sense, the schemes are multi-value rather
than multi-step. Also a broader family, named Exponential Almost General Linear Methods (EAGLMs),
is introduced, which represent a unifying framework within which all the families of EIs become special
cases. The convergence properties of EIs are studied with particular interest in our EARKs. A number of
the methods, which had been selected for further investigation, have their stability properties studied.

While carrying out a survey of the new methods for calculating the φ-functions we perform a com-
prehensive suite of numerical experiments. By concentrating initially on fixed stepsize experiments we
confirm the order convergence properties of the various schemes involved in our earlierwork. This allows
us to plot order graphs and observe the accuracy performances of the schemes.

Our work culminates in the construction of a complete and robust variable-stepsize integrator. All
the necessary aspects for a general purpose implementation are addressed. This includes initial stepsize
selection and reliable truncation error estimation with minimal computational overhead.We also include
intelligent stepsize control to both minimise rejected steps and manage the global error. At the heart of
this engine is our most efficient EARK and we show that it is the most optimal scheme for this purpose.
Our integrator is run on a number of test problems, representative of the PDEs we are interested in, and
is benchmarked against the built in Matlab ODE solvers.
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Chapter 1

Introduction

In this chapter we will look at:

• The classes of problems we are interested in. Those problems exhibit a property known

as stiffness and we will show why this property has motivated the development of Expo-

nential Time-Integrators (EIs).

• The history behind the development of EIs. By investigating the work of various authors

in this field,wewill see how the formulation of EIs has evolved over the past fewdecades.

• How the model PDE for a scalar function y, defined in a spatial domain Ω ⊂ Rd for t > 0,

yt = Ly +N (y, x, t) (1.0.1)

– L is linear elliptic operator

– N is a generic nonlinear term

with suitable initial and boundary conditions [15], is represented within the EI frame-

work and the key role which the so called φ-functions play in the approximation to the

exact solution of (1.0.1).

1



1.1 Stiff Differential Equations

Stiff problems are a type of differential equation which are extremely difficult to solve with

explicit schemes. A pragmatic definition aĴributed [21] to Curtiss & Hirschfelder [14], is

“Stiff equations are equations where certain implicit methods, in particular BDFs

[Backward Differentiation Methods], perform beĴer, usually tremendously beĴer,

than explicit ones.”

Stiff problems are usually characterised locally at a point (t, y), by the spectrum of the Ja-

cobian, J(t, y) = ∂f
∂y (t, y). A problem is usually called stiff if there exist eigenvalues, λi(t, y), of

J(t, y) with Re(λi(t, y))≪ 0, together with moderately sized eigenvalues [16].

When integrating stiff equations with an explicit classical scheme, the choice of stepsize,

h, is governed by stability requirements, rather than accuracy. The standard solution to this

problem is to use implicit schemes.

To demonstrate this, we look at a stability analysis of the explicit and implicit Euler’s meth-

ods. Following the format of [21], we start with

y′ = f(t, y) (1.1.1)

where ϕ(t) is a smooth solution of (1.1.1). We look at the linearisation of f in its neighbourhood

about ϕ(t)

f (y(t)− ϕ(t)) = f (t, ϕ(t)) + ∂f
∂y (t, ϕ(t)) (y(t)− ϕ(t)) + · · · (1.1.2)

and introduce y(t)− ϕ(t) = ȳ(t) to obtain

ȳ′(t) = ∂f
∂y (t, ϕ(t)) ȳ(t) + · · ·

= J(t)ȳ(t) + · · ·
(1.1.3)

We consider J = −λ, where λ > 0 is a constant scalar, and as an approximation, we neglect

terms above 1ŋᵗ order. Simplifying notation, we arrive at

y′ = −λy (1.1.4)

Explicit Euler. Applying the explicit Euler’s method

yn+1 = yn + hf (tn, yn) (1.1.5)

to (1.1.4) gives

yn+1 = R(hλ)yn (1.1.6)
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with R(z) = 1− z.

We study the behaviour of (1.1.4) by looking at the equation

yn = (R (hλ))
n
y0 (1.1.7)

For yn to remain bounded as n→∞, we require that the complex number z = hλ satisfy

|1− z| ≤ 1 (1.1.8)

From this analysis we can work out that, for the explicit Euler to remain stable, we must limit

the stepsize to 0 ≤ h ≤ 2
λ .

Implicit Euler. To perform a similar stability analysis with an implicit method, we look at

the implicit Euler method

yn+1 = yn + hf (tn+1, yn+1) (1.1.9)

applied to (1.1.4). This gives us

yn+1 = R(hλ)yn (1.1.10)

with R(z) = 1
1+z .

Looking at (1.1.7) with R(z) = 1
1+z we can see that ym remains bounded as m → ∞ for all

h ≥ 0. This tells us implicit Euler is unconditionally stable.

Implicit schemes require the solution of systems of equations at each timestep [29], which

means the total work complexity required to perform the integration is O(N3), N2 for the

number of steps, and N for the work per step [21].

1.2 EI History

EIs offer an explicit alternative for the integration of stiff problems. Recently, there has been a

great deal of interest in the construction of EIs. These integrators use the exponential function

(and related functions) of the linear part of the problem, inside the numerical method.

Using the matrix exponential within a numerical integrator is not new. These exponen-

tial integrators were regarded as impractical until recent advances in evaluating the matrix

exponential and, in particular, its operation upon a vector. For quite some time prior to these

developments, EIs did not play a prominent role in applications. With the development of new

methods for computing or approximating the exponential of amatrix (for examplewith Krylov

subspace techniques), interest in EIs has increased.
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LawsonMethods [28] An early approach for solving stiff problems was introduced by Law-

son in 1967. Lawson looked at stiff problems of the form

y′(t) = f(t, y(t)), y(0) = y0 (1.2.1)

with large Lipschiĵ constants. He worked with a related problem which could be solved by a

traditional Runge-KuĴa Method (RK) solver, and from which the solution of (1.2.1) could be

deduced. By combining the integration of the related problemwith the recovery of the original,

an efficient solution could be obtained. He called this combination, a generalised Runge-KuĴa

process.

The idea of Lawson was to consider, as a related function,

z(t) = e−tAy(t) (1.2.2)

such that,

z′(t) = e−tA
[
f
(
t, etAz(t)

)
−AetAz(t)

]
z(0) = y0

(1.2.3)

Viewing (1.2.3) as z′ = g(t, z), it can be shown that the eigenvalues of the Jacobian
(

∂g
∂z

)
are the

same as those of
(

∂f
∂y

)
− A. One therefore tries to select A, such that the eigenvalues of

(
∂g
∂z

)
are small enough to allow (1.2.3) to be solved with a traditional method. Lawson methods are

more commonly referred to as Integrating Factor Methods (IFs) [34].

The IF approach can also be applied to semi-linear equations, the class of problems we are

most interested in,

y′(t) = Ly(t) +N(t, y(t)), y(tn) = yn (1.2.4)

Considering a related function, z(t) = e−tLy(t), of (1.2.4), we get

z′(t) = e−tLN(etLz(t), t) = g(z, t)

z(0) = y0.
(1.2.5)

Since
∂g

∂z
= e−tL

∂N

∂y
etL and e−tL =

(
etL
)−1 (1.2.6)

we would once again hope that (1.2.5) can be solved by a traditional method [33].

Ultimately, the main issue with Lawson-type methods is that they only achieve stiff order

of 1, and are best suited to moderately stiff problems for which the solution is periodic, or

tends towards zero. Furthermore, they do not preserve the fixed points of the original problem

[34, 13].
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Hochbruck, Lubich & Selhofer [24] looked at using the exponential of the Jacobian and re-

lated functions within a numerical integrator. By combining this with Krylov approximation

techniques, they were able to compute

φ(τA)v

where A is the Jacobian of (1.2.1), and

φ(z) =
ez − 1

z

They formulated a number of methods based on this technique and presented a Matlab

code, exp4 for semilinear problems of the type (1.2.4), which was the first actual implementa-

tion of an EI. A number of numerical tests on stiff and oscillatory problems showed that the

code performed well when compared with the Matlab ODE codes and some classical solvers

[24, 34].

Beylkin, Keiser & Vozovoi [5] investigated the stability of classes of implicit and explicit

Exponential Time Differencing Methods (ETDs), referring to them as Exact treatment of the

Linear Part, L,Methods (ELPs) and presented a derivation for formulating such methods. They

performed the stability analysis by establishing a baseline against an existing 3Ŋᵈ Order Adams-

Moulton / Adams-Bashforth Method (AMAB) and a 3Ŋᵈ Order mixed Implicit-Explicit Method

(I-EM).

By comparing both an implicit and explicit example of their ELPs against this baseline,

they were able to draw conclusions about their relative stability. The comparison showed that

the implicit ELP was “super-stable”, having a much larger stability region than the I-EM. The

stability region of the explicit ELP was smaller than that of the implicit schemes, which meant

that itwould require timesteps of about half the length of the implicits stepsize to remain stable.

When compared with the classical schemes, the explicit ELP was comparable to the I-EM and

was significantly more stable than the AMAB.

Cox & MaĴhews [13] presented an alternative formulation of ETDs, providing a more ele-

gant derivation for constructing schemes of arbitrary order. Their approach was based on a

polynomial approximation to N(tn + τ, y(tn + τ)).

Alongside this, they developed a 1-step RK type extension to ETDs which they referred to

as ETD Runge-KuĴa Methods (ETDRKs). These schemes are now described as belonging to

the family of Exponential Runge-KuĴa Methods (ERKs). Cox & MaĴhews provided schemes

of 2ņᵈ, 3Ŋᵈ and 4ᵗŀ Order, and subjected them to a number of numerical tests. The results of

these tests demonstrated that both ETDs and ERKs consistently outperformed IFs in terms of
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accuracy. The 4ᵗŀ order scheme appears in a number of our own numerical experiments, where

we refer to it as ERK4 Cox-MaĴhews [13, Equations (26-29)] .

Krogstad [27] looked at overcoming the difficulties associated with IFs. For problems where

the norm of the linear term is large, IFs produce large error coefficients. Krogstad proposed a

generalisation of IFs displaying significantly improved accuracy.

Krogstad also looked at the construction of ERKs, and like Cox and MaĴhews, he referred

to them as ETDRKs. In particular he developed the 4ᵗŀ Order ERK, that wewill refer to as ERK4

Krogstad [27, Equation (51)] throughout this thesis. This scheme will be included in many of

our numerical experiments in Section 5.3.

Ostermann, Thalhammer &Wright [38] introduced the Exponential General LinearMethod

(EGLM) family of EIs. EGLMs are an extension of classical General Linear Methods (GLMs),

which were introduced by Butcher in [7], into the EI seĴing. EGLMs represent a framework

of multi-stage multi-step schemes, within which, the earlier families of ETDs and ERKs be-

come special cases. By combining the advantages of both families, it is possible to achieve high

stage order which facilitates the construction of high-order methods with favorable stability

properties for stiff problems [38].

1.3 Exact Solution and φ-functions

We study and test the performance of numerical schemes derived from EIs, for the integration

of large stiff systems of non-linear initial value problems, typically PDEs.

yt = Ly +N (y, t), y(t0) = y0 (1.3.1)

• L is an unbounded linear operator independent of y,

• N is a non-linear operator

There are severalwell known examples of this type of problem, such asAllen-Cahn, Kuramoto-

Sivasinsky and the Brusselator System. Our field of interest is primarily with the system of

semi-linear ODEs,

y′(t) = Ly(t) +N(t, y(t)), y(tn) = yn (1.3.2)

obtained after a space discretisation of (1.3.1). The linear part, L, of the equation is stiff, while

the non-linear part, N , is assumed to be non-stiff, in the sense that it can be approximated by

an explicit method.
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More formally, we consider ODEs of the type 1.3.2, where L ∈ Rd×d has a large norm

together with a non-positive ormoderately positive logarithmic norm andN : [t0,+∞)×Rd →

Rd has a moderate Lipschiĵ constant with respect to the second argument [32].

Stiffness in the L part is inherent to the PDE. The system of ODEs from the discretisation of

the PDE retain this stiffness. Finite differences and spectral methods are examples of discreti-

sation approaches which can be used to solve stiff PDEs where the system of ODEs produced

is generally stiff [13]. EIs solve the linear part exactly through the matrix exponential.

We derive the exact solution of (1.3.2) via the variation-of-constants formula. Pre-multiply

with e−tL (integrating factor) to obtain

e−tLy′ = e−tLLy + e−tLN(t, y),(
e−tLy(t)

)′
= e−tLN(t, y)dt.

(1.3.3)

Now integrate,

e−tLyp(t) =

∫
e−tLN(t, y)dt (1.3.4)

add the homogeneous solution to (1.3.2), to the particular solution yp(t) and simplify

y(t) = e(t−a)Lya + etL
∫ t

a

e−τLN(τ, y(τ))dτ (1.3.5)

y(tn + h) = e(tn+h−tn)Lyn + e(tn+h)L

∫ h

0

e−(tn+τ)LN(tn + τ, y(tn + τ))dτ

= ehLyn +

∫ h

0

e(h−τ)LN(tn + τ, y(tn + τ))dτ.

(1.3.6)

Substituting the Taylor expansion for N (tn + τ, y(tn + τ))

∞∑
m=0

τmN (m) (y(tn))

m!
(1.3.7)

into (1.3.6), and by defining

φk(hL) =
1

hk

∫ h

0

e(h−τ)L
τk−1

(k − 1)!
dτ (1.3.8)

we can represent the exact solution for (1.3.2) as

y(tn+1) = ehLyn + hφ1N + h2φ2N
′ + h3φ3N

′′ + · · · (1.3.9)

where y(tn+1) denotes y(tn + h). It is also common to make reference to the exact solution at

an intermediate point tn + cih, which is represented as,

y(tn + cih) = ecihLyn + cihφ1iN + c2ih
2φ2iN

′ + c3ih
3φ3iN

′′ + · · · (1.3.10)

where

φji = φj(cihL) (1.3.11)
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A key element in the implementation of exponential integrators is the evaluation of the

matrix exponential and exponential like functions, (1.3.8), commonly referred to asφ-functions

in literature.

Integration by parts reveals that (1.3.8) obeys the recurrence relation

φk (hL) =
1

hk

∫ h

o

e(x−τ)L
τk−1

(k − 1)!
dτ

=
1

hk

[
−e(h−τ)Lτk−1

(k − 1)!L

∣∣∣∣h
0

−
∫ h

0

−e(x−τ)L

L

τk−2

(k − 2)!
dτ

]

=
1

h (k − 1)!L
+

1

hL

1

hk−1

∫ h

o

e(x−τ)L
τk−2

(k − 2)!
dτ

=
φk−1(hL)− 1

(k−1)!

hL

(1.3.12)

where, for convenience it is common to define φ0(z) = ez . When j = 1, 2 and 3 the respective

φ-functions are

φ1(z) =
ez − 1

z
φ2(z) =

ez − z − 1

z2
φ3(z) =

ez − z2/2− z − 1

z3

When deriving ETDs, we approximate the function N (tn + τ, u(tn + τ)) within (1.3.6), by

a Newton backward-difference interpolation polynomial. The simplest case is to approximate

by a constant Nn. This gives us the ETD1 method.

un+1 = ehLun + hφ1(hL)Nn, φ1(hL)(z) =
ez − 1

z
(1.3.13)

It is known as the ETD Euler method as it reduces to the classical Euler method when L = 0.

As a second example, N (tn + τ, y(tn + τ)) is approximated by the linear polynomial

Nn +
τ

h
(Nn −Nn−1)

giving us the two-step method known as ETD2.

yn+1 = ehLyn + h [φ1(hL) + φ2(hL)]Nn − hφ2(hL)Nn−1 (1.3.14)
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Chapter 2

ERK and EGLM Families of EIs

In this chapter we look at two different families of EIs, namely

• Exponential Runge-KuĴa Methods (ERKs)

• Exponential General Linear Methods (EGLMs)

Wederive order conditions allowing us to construct new schemes and look at the difficulties

which surround the design of higher order schemes.
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2.1 Exponential Runge-KuĴa Methods

We saw in Section 1.2 that some early examples of ERKs were presented by Cox & MaĴhews

[13]. ERKs are 1-step methods using lower order intermediate steps as in classical RKs. If we

start with the general representation of our problem (1.3.2) we can then define a general explicit

ERK for solving this class of problems

yn+1 = ehLyn + h

q∑
n=1

bn(hL)Kn

Ki = N

ecihLyn + h
i−1∑
j=1

aij(cihL)Kj


Classical (non-exponential) RK integrators are often wriĴen in a tableau format

c A

b

0

1
2

1
2

0 1

Amodified form of this tableau will also be used to represent ERKs, for example the tableau

0 I

1
2

1
2φ1,2 e

1
2hL

φ1 − 2φ2 2φ2

(2.1.1)

represents the method

K1 = Nn

K2 = N

(
e
hL
2 yn + h

2φ1,2

(
hL
2

)
Nn

)
yn+1 = ehLyn + h ((φ1 − 2φ2)K1 + 2φ2K2)

(2.1.2)

More generally, we can see here how the coefficients within 3-stage ERKs relate to the en-

tries in the tableau representation

0

c2 a21 ec2hL

c3 a31 a32 ec3hL

b1 b2 b3 ehL

(2.1.3)

K1 = Nn

K2 = N
(
tn + c2h, e

c2hLyn + ha21K1

)
K3 = N

(
tn + c3h, e

c3hLyn + h [a31K1 + a32K2]
)

yn+1 = ehLyn + h (b1K1 + b2K2 + b3K3)
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2.1.1 Order Conditions

For classical RKs, the order of a scheme is defined based on a Taylor expansion of the exact

solution for y(t0 + h) and the approximation y1:

Definition 1. [20, Definition 1.2] A Runge-KuĴa method has order p if for sufficiently smooth

problems (1.1.1),

∥y (t0 + h)− y1∥ ≤ Khp+1 (2.1.4)

i.e., if the Taylor series for the exact solution y(t0+h) and for y1 coincide up to (and including)

the term hp.

The above definition defines order in a classical (nonstiff) sense. We are interested in work-

ing with stiff equations of the form (1.3.2) and will construct schemes based on the concept of

stiff order,

Definition 2. [32, Definition 1] An exponential method is said to be of stiff order p if the local

error has order p+ 1 with respect to hn when the method is applied to the general semilinear

ODE (1.3.2) in which N(t, y(t)) is a sufficiently smooth function of t. Stiff convergence order

describes the behaviour of the local error independently of the norm of L.

It is not possible in general, to obtain order by simply using a RK for the nonlinear part N

of the problem. There are coupling conditions between the nonlinear and linear parts of the

problem despite the fact that the linear part has been solved exactly [33].

When deriving order conditions for constructing schemes of higher order, we will see that

it is sometimes not possible to satisfy all the conditions unless we weaken some of them. We

will therefore make a distinction between schemes of strong and weak stiff order.

Definition 3. An exponential method is said to be of strong order p if it satisfies the p stiff order

conditions for the general semi-linear ODE (1.3.2).

Definition 4. An exponential method is said to be of weak order p if it has strong order p − 1

and satisfies the p stiff order conditions only in the weakened case where L = 0.

Hochbruck & Ostermann developed an approach based on trees for deriving stiff order

conditions. Their approach represents the elementary differentials of F (u) = Lu+N(u)which

come from a Taylor expansion of the exact solution [25]. This allowed them to develop condi-

tions for arbitrary orders in a way similar to classical RKs.

We adopt the approach whereby we view the Taylor expansions of the method’s internal

stages,Ki, on 2-dimensional grids. The columns of the grids group terms by the order of their
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h coefficient, while the rows group terms relative to successive derivatives of N . Within this

interpretation, operations upon the entries in the grid become simple shifts in locations.

To illustrate thiswewill view a generalKi in the following formatwhereRi is some residual

term.

Ki = N (tn + cih, y(tn + cih) +Ri) (2.1.5)

Then the Taylor expansion of (2.1.5) can be viewed more naturally in a 2-dimensional sense

Ki =



N + RiNy + R2
iNyy + R3

iNyyy · · ·

+ + +
...

cihN
′ + RicihN

′
y + R2

i cihN
′
yy · · ·

+ +
...

1
2c

2
ih

2N ′′ + 1
2Ric

2
ih

2N ′′y · · ·

+
...

1
6c

3
ih

3N ′′′ · · ·
...

(2.1.6)

2.1.2 1ŋᵗ Order Consistency Conditions

We will consider an ERK of the form

yn+1 = ehLyn + h

q∑
i=1

bi(hL)Ki

K1 = N(tn, yn)

Ki = N

tn + cih, e
cihLyn +

i−1∑
j=1

haijKj


(2.1.7)

when applied to approximate the solution of problem (1.3.2). The conditions for a method to

be of order 1 are usually referred to as the consistency conditions [20]. To derive these conditions

we will require that the method be exact for the caseN(y(t)) = N , a constant. This means, that

the internal stages,

y(tc + cih) = ecihLyn +
i−1∑
j=1

haijKj (2.1.8)

and yn+1 are exact. Let Yni denote the ERK approximation to y(tn + cih),

Yni = ecihLyn +
i−1∑
j=1

haijN

where the exact solution (1.3.10) is

y(tn + cih) = ecihLyn + cihφ1,iN
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for Yni = y(tn + cih), we must have

i−1∑
j=1

aij = ciφ1,i (2.1.9a)

For ERK, the approximation yn+1,

y(tn+1) = ehLyn +
S∑

i=1

hbiN

to equal the exact solution (1.3.9)

ehLyn + hφ1N

where S is the number of stages, we require the condition

S∑
i=1

bi = φ1 (2.1.9b)

For non-constant N , a scheme satisfying these conditions will have an error of order h2 or

more and so will be of, at least, stiff-order 1 for the general problem (1.3.2).

2.1.3 2ņᵈ Order Conditions

Theorem 1. A 2-stage Exponential Runge-KuĴa of the form

0 0 0 1

c2 a21 0 ec2hL

b1 b2 ehL

(2.1.10)

K1 = N(tn, yn)

K2 = N(tn + c2h, e
c2hLyn + ha21K1)

(2.1.11)

yn+1 = ehLyn + h(b1K1 + b2K2) (2.1.12)

will be of 2ņᵈ order if it satisfies the condition (2.1.9), and if

b2c2 = φ2 (2.1.13)

Proof. Using the notation N ≡ N(tn, y(tn)), from (2.1.11) we have,

K2 = N(tn + c2h, e
c2hLyn + ha21N) (2.1.14)

and require,

N(tn + c2h, e
c2hLyn + ha21N) = N(tn + c2h, y(tn + c2h) +R2) (2.1.15)

13



whereR2 is a residual term of order h3. Replacing y(tn+c2h)with the exact solution expansion

(1.3.10) we get,

R2 = ec2hLyn + ha21N − ec2hLyn − c2hφ1,2N +O(h3) (2.1.16)

This implies that c2φ1,2 = a21, which recovers the consistency condition (2.1.9a).

Substituting for (2.1.16) into K2 this process is then repeated using the Taylor expansion

about y(tn + c2h)

K2 = N
(
tn + c2h, e

c2hL + ha21N
)

= N
(
tn + c2h, e

c2hL + hc2φ1,2N
)

= N (tn + c2h, y(tn + c2h) +R2)

= N (tn + c2h, y(tn + c2h)) +R2Ny (tn + c2h, y(tn + c2h)) +O(h4).

Then, expandingK2 about tn,

K2 = N + c2hN
′ +

1

2
c22h

2N ′′ +
1

6
c32h

3N ′′′

+R2Ny + c2hR2N
′
y +O(h4)

= N + c2hN
′ +

1

2
c22h

2N ′′ +R2Ny +O(h3).

(2.1.17)

Here, the paĴern key to our grid approach of representing the expansions is beginning to

emerge. When deriving higher order conditions, we are required to retain higher powers of

h from the Taylor expansion. For those derivations, the grid representation will then be used.

Returning then to the general form of the numerical method (2.1.10), we substituteK1 and

(2.1.17) into (2.1.11) to obtain

yn+1 = ehLyn + h (b1K1 + b2K2)

= ehLyn + hb1N + hb2N + b2c2h
2N ′ +

1

2
b2c

2
2h

3N ′′ + hb2R1Ny +O(h4)

= ehLyn + h(b1 + b2)N + b2c2h
2N ′ +O(h3)

(2.1.18)

Finally, by matching terms to ensure yn+1 coincides with the exact solution (1.3.9) up to

O(h3), we recover the remaining conditions (2.1.9b) and (2.1.13).

Theorem 1 demonstrates that two-stage ERKs can achieve 2ņᵈ order, constrained by 3 con-

ditions, (2.1.9a), (2.1.9b) and (2.1.13), for 4 unknowns.

We can view c2 as a free parameter giving the following family of ERK2 methods,

0 I

c2 c2φ1,2 ec2hL

φ1 − 1
c2
φ2

1
c2
φ2

(2.1.19)
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Here, we have derived the same order conditions as presented byHochbruck &Ostermann

[25, Equations 5.1 & 5.2]. ERK2 (2.1.19) is also presented in that same paper [25, Method 5.3].

This method requires 2 distinct φ-functions if c2 = 1 and 3 if c2 ̸= 1. There is a possibility

here to reduce this computational cost to 1 and 2 distinct φ-functions for c2 = 1 and c2 ̸= 1

respectively if we weaken the condition (2.1.13) to

b2(0)c2 = φ2(0) =
1

2
(2.1.20)

This gives us a second 1-parameter family of ERK2 [25, Scheme 5.4] schemes

0 I

c2 c2φ1,2 ec2hL

(1− 1
2c2

)φ1
1

2c2
φ1

(2.1.21)

With condition (2.1.13) only satisfied weakly, this family of methods is not strongly 2ņᵈ order.

2-stage ERKs can achieve at most 2ņᵈ order. To achieve higher order it is necessary to con-

sider methods with additional internal stages.

We will see that, as we aim for higher order, the number of conditions to be satisfied grows

rapidly. This makes it increasingly difficult to achieve higher orders, and this difficultly makes

the notion of weak order, as defined in Definition 4, very important. For example, we will see

that there are no strongly 3Ŋᵈ order 3-stage ERKs, onlyweakly 3Ŋᵈ ordermethods. Still numerical

comparisons of the relative performances of methods shows that weak order can be a desir-

able property. For example, the weakly 3Ŋᵈ order methods perform somewhere in between the

strongly 2ņᵈ and strongly 3Ŋᵈ order methods.

2.1.4 4-Stage, 4ᵗŀ Order Conditions

Wewill now extend our formulation of (2.1.2) to include 3-stage and 4-stage schemes, and will

derive the conditions for constructing schemes up to 4ᵗŀ order.

Theorem 2. 4-stage ERKs of the form

0 0 I

c2 a21 0 ec2hL

c3 a31 a32 0 ec3hL

c4 a41 a42 a43 0 ec4hL

b1 b2 b3 b4
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with the general format of the scheme being

yn+1 = ehLyn + h (b1K1 + b2K2 + b3K3 + b4K4)

K1 = Nn

K2 = N
(
tn + cih, e

c2hL + ha21K1

)
K3 = N

(
tn + cih, e

c3hL + ha31K1 + ha32K2

)
K4 = N

(
tn + cih, e

c4hL + ha41K1 + ha42K2 + ha43K3

)
(2.1.22)

that satisfy (2.1.9) will achieve 2ņᵈ order if they also satisfy

b2c2 + b3c3 + b4c4 = φ2, (2.1.23)

will achieve 3Ŋᵈ order if, in addition, they satisfy

4∑
i=2

bi

i−1∑
j=2

aijcj − c2iφ2,i

 = 0, (2.1.24a)

b2c
2
2 + b3c

2
3 + b4c

2
4 = φ3, (2.1.24b)

and 4ᵗŀ order if

4∑
i=3

bi

i−1∑
j=2

ai2

(
c22φ2,j −

j−1∑
k=2

ajkck

) = 0, (2.1.25a)

4∑
i=2

bici

c2iφ2,i −
i−1∑
j=2

aijcj

 = 0, (2.1.25b)

4∑
i=2

bi

c3iφ3,i −
1

2

i−1∑
j=2

aijc
2
j

 = 0, (2.1.25c)

b2c
3
2 + b3c

3
3 + b4c

3
4 = 6φ4, (2.1.25d)

are also satisfied.

Proof. As in the earlier derivations we initially wish to express ec2hL + ha21K1, from the K2

stage (2.1.22), in the form y(tn + c2h) +R2. Using the exact solution (1.3.10) for i = 2,

⇒ ec2hL + ha21K1 = y(tn + c2h) +R2

= ec2hLyn + c2hφ12N + c22h
2φ2,2N

′ + . . .+R2

when a21 = c2φ1,2

⇔ R2 = −c22h2φ2,2N
′ − c32h

3φ3, 2N ′′ +O(h4)
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We will now introduce the grid representation to ease calculation with these increasingly

large terms. The first two terms of the residual R2 can be wriĴen down in the grid format

R2 1 h h2 h3

N

N ′ −c22h
2φ2,2N ′

N ′′ −c32h
3φ3,2N ′′

N ′′′

(2.1.26)

This tabular grid format will serve to make it easier to identify the relevant terms within

our expressions forKi’s andRi’s. As such, it will be used as the primary representation for the

Ki and Ri expressions.

In Taylor expanding K2 we follow the paĴern of (2.1.6) taking into account all terms of

order h3 and less. It is clear that R2 is of order h2. We will see that this applies to R3 and R4

also. As a result we will not need to take the R2
iNyy term fromKi into account.

Using (2.1.6) we can construct a table for K2. The 1ŋᵗ column of the expansion leads to the

main diagonal of the grid. The R2Ny term from the expansion (2.1.6) contributes the h2N ′ and

h3N ′′′ entries, while the h3N ′ term comes from R2c2hN
′
y in the expansion.

K2 1 h h2 h3

N N

N ′ c2hN ′ −c22h
2φ2,2N ′Ny −c32h

3φ2,2N ′N ′
y

N ′′ 1
2
c22h

2N ′′ −c32h
3φ3,2N ′′Ny

N ′′′ 1
6
c32h

3N ′′′

(2.1.27)

Progressing in a similar vein forK3 we will seek that

y(tn + c3h) +R3 = ec3hL + ha31K1 + ha32K2

c23h
2φ2,3N

′ + c32h
3φ3,3N

′′ +O(h4) +R3 = ha31K1 + ha32K2

= ha31N+

ha32
[
N + c2hN

′ +−c22h2φ2,2N
′Ny + . . .

]
= h(a31 + a32)N+

ha32
[
c2hN

′ +−c22h2φ2,2N
′Ny + . . .

]
when a31 + a32 = c3φ1,3,

R3 = ha32
[
c2hN

′ +−c22h2φ2,2N
′Ny + . . .

]
− c22h

2φ2,2N
′ − c32h

3φ3, 2N ′′ +O(h4)
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The superficially complex residual R3 is actually just a combination of some of the ha32 ×K2

terms minus some of the terms from (1.3.10) for i = 3.

We can tabulateR3 as shown below. Here the {bracketed} entries are simplifications of the

terms in the adjacent cells.

R3 1 h h2 h3

N

N ′ {
h2N ′[c2a32 − c23φ2

]} −c23h
2φ2,3N ′

+c2h
2a32N ′

−c22h
3a32φ2,2N ′N ′

y

N ′′ {
h3N ′′[ 1

2
c22a32 − c33φ3,3

]} −c33h
3φ3,3N ′′

+ 1
2
c22h

3a32N ′′

N ′′′

(2.1.28)

Asmentioned earlier,R3 is indeed of order h2. This meanswe can proceed to tabulateK3 in

exactly the same fashion as we did forK2, with the exception that the h3N ′ term in the table is

now a combination of contributions from both the R3Ny and R3c3hN
′
y terms in the expansion

ofK3.

K3 1 h h2 h3

N N

N ′ c3hN ′ h2N ′ (c2a32 − c23φ2,3

)
Ny

h3N ′c3
(
c2a32 − c23φ2,3

)
N ′

y

−c22h
3a32φ2,2N ′(Ny)2

N ′′ 1
2
c23h

2N ′′ h3N ′′ ( 1
2
c22a32 − c33φ3,3

)
Ny

N ′′′ 1
6
c33h

3N ′′′

(2.1.29)

For theK4 stage, we require

y(tn + c4h) +R4 = ec4hL + ha41K1 + ha42K2 + ha43K3

= ha41N

+ ha42
[
N + c2hN

′ +−c22h2φ2,2N
′Ny + . . .

]
+ ha43

[
N + c3hN

′ + h2N ′
(
c2a32 − c23φ2,3

)
Ny + . . .

]

c24h
2φ2,4N

′ + c34h
3φ3, 4N ′′ +O(h4) +R4 =

h(a41 + a42 + a43)N + ha42
[
c2hN

′ +−c22h2φ2,2N
′Ny + . . .

]
+ ha43

[
c3hN

′ + h2N ′
(
c2a32 − c23φ2,3

)
Ny + . . .

]
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= y(tn + c3h) + ha42
[
c2hN

′ − c22h
2φ2,2N

′Ny + . . .
]

+ ha43
[
c3hN

′ + h2N ′
(
c2a32 − c23φ2,3

)
Ny + . . .

]
− c24h

2φ2,4N
′ − c34h

3φ3,4N
′′ − . . .

when a41 + a42 + a43 = c3φ1,3

⇔ R4 = ha42
[
c2hN

′ +−c22h2φ2,2N
′Ny + . . .

]
+ ha43

[
c3hN

′ + h2N ′
(
c2a32 − c23φ2,3

)
Ny + . . .

]
− c24h

2φ2,4N
′ − c34h

3φ3,4N
′′ − . . .

ForR4, as withR3, we tabulate the order h2 and h3 terms from a42K2 and a43K3 minus the

order h2 and h3 terms of (1.3.10) for i = 4.

R4 1 h h2 h3

N
{
h3N ′Ny

[
−c22a42φ2,2 + a43

(
c2a32 − c23φ2,3

)]}
N ′

{
h2N ′

[∑3
j=2 cja4j − c24φ2,4

]} −c24h
2φ2,4N ′

+c2h2a42N ′

+c3h2a43N ′

h3a4,3N ′(c2a32 − c23φ2,3)Ny

−c22h
3a42φ2,2N ′Ny

N ′′
{
h3N ′′′

[
1
2

∑3
j=2 c

2
ja4j − c34φ3,4

]} −c34h
3φ3,4N ′′

+ 1
2
c22h

3a42N ′′

+ 1
2
c23h

3a43N ′′

N ′′′

(2.1.30)

Likewise we can tabulate the expression forK4. Again note that R4 is of order h2.

K4 1 h h2 h3

N N

N ′ c4hN ′ h2N ′
(∑3

j=2 cja4j − c24φ2,4

)
Ny

h3N ′ [−c22a42φ2,2

+a43
(
c2a32 − c23φ2,3

)]
(Ny)2

+h3N ′c4
[∑3

j=2 c
2
ja4j − c24φ2,4

]
N ′

y

N ′′ 1
2
c24h

2N ′′ h3N ′′
(

1
2

∑3
j=2 c

2
ja4j − c34φ3,4

)
Ny

N ′′′ 1
6
c34h

3N ′′′

(2.1.31)

Returning to the exact solution

y(tn+1) = ehLyn + hφ1N + h2φ2N
′ + h3φ3N

′′ + h4φ4N
′′′ + . . . (2.1.32)
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we will try to determine the conditions necessary to aĴain a scheme of 4ᵗŀ order.

yn+1 = ehLyn + h (b1K1 + b2K2 + b3K3 + b4K4)

= ehLyn + hb1N+

hb2
(
N + c2hN

′ − c22h
2φ2,2N

′Ny − c32h
3φ2,2N

′N ′y + . . .
)
+

hb3
(
N + c3hN

′ + h2N ′
[
c2a32 − c23φ2,3

]
Ny+

h3N ′
{
c3
[
c2a32 − c23φ2,3

]
N ′y + . . .

}
+ . . .

)
+

hb4

N + c4hN
′ + h2N ′

 3∑
j=2

cja4j − c24φ2,4

Ny + . . .



(2.1.33)

yn+1 = ehLyn + hN (b1 + b2 + b3 + b4)+

h2N ′
(
b2c2 + b3c3 + b4c4 +Ny

{
−c22φ2,2 +

[
c2a32 − c23φ2,3

]
+ . . .

}
+ . . .

)
+

h3N ′

Ny

b3
[
c2a32 − c23φ2,3

]
+ b4

 3∑
j=2

cja4j − c24φ2,4

+ . . .

 +

N ′y
{
−c32φ2,2

}
+ . . .

)
+

. . .

(2.1.34)

Due to the complexity of these expressions, we will return to the grid forms for the Ki’s

and proceed to collect expressions from terms that occur in the same grid cells.

The Conditions

We can recover the familiar consistency conditions (2.1.9a) and (2.1.9b) by requiring the cells

(1, N) = 0. The (h,N ′) cells recover condition (2.1.23).

The
(
h2, N ′

)
cells give

0 = b3c2a32 + b4

3∑
j=2

cja4j − b2c
2
2φ2,2 − b3c

2
3φ2,3 + b4c

2
4φ2,4

⇒ condition (2.1.24a)

(2.1.35)

While from the
(
h2, N ′′

)
cells we recover condition (2.1.24b).

From the
(
h3, N ′

)
cells.

0 = b4
[
−c22a42φ2,2 + a43

(
c2a32 − c23φ2,3

)]
− b3c

2
2a32φ2,2

⇒ condition (2.1.25a)
(2.1.36)
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The
(
h3, N ′

)
cells.

0 = b2c
3
2φ1,1 + b3c3

(
c2a32 − c23φ2,3

)
+ b4c4

 3∑
j=2

c2ja4j − c24φ2,4


⇒ condition (2.1.25b)

(2.1.37)

The
(
h3, N ′′

)
cells.

0 = b2c
3
2φ3,2 + b3

(
1

2
c22a32 − c33φ3,3

)
+ b4

1

2

3∑
j=2

c2ja4j − c34φ3,4


⇒ condition (2.1.25c)

(2.1.38)

Finally, the
(
h3, N ′′′

)
cells give us condition (2.1.25d).

With these conditions it is possible to derive strongly 3Ŋᵈ and weakly 4ᵗŀ Order 4-stage

schemes. Note that no strongly 4ᵗŀ Order 4-stage scheme is possible.

We can compare these conditions with those presented by Hochbruck & Ostermann [25,

Equations (5.14a)-(5.14i)] and see that they are equivalent.

Weakly 3Ŋᵈ Order 3-Stage Schemes

For 3-stage ERKs, conditions (2.1.24a) and (2.1.24b) are impossible to satisfy simultaneously,

when the earlier conditions are satisfied. Here, we can see how it is advantageous to introduce

the concept of weakly satisfying an order condition.

Hochbruck & Ostermann presented a number of weakly 3Ŋᵈ order 3-stage schemes. As an

example the following tableau represents one such scheme [25, Equation (5.8)],

0 1

c2 c2φ1,2 ec2hL

2
3

2
3φ1,3 − 4

9c2
φ2,3

4
9c2

φ2,3 e
2
3hL

φ1 − 3
2φ2 0 3

2φ2

(2.1.39)

This scheme only satisfies condition (2.1.24b) in a weakened form

b2(0)c
2
2 + b3(0)c

2
3 = 2φ3(0) =

1

3
, (2.1.40)

yet it still displays superior performance to the earlier strong 2ņᵈ schemes. Alternatively, one
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can derive a weakly 3Ŋᵈ scheme using a weakened form of (2.1.24a) to

b3c2a32 = b3c
2
3φ2,3 + b2c

2
2φ2,2

=
(
b2(0)c

2
2 + b3(0)c

2
3

)
φ2(0)

= 2φ3(0)φ2(0)

=
1

6

(2.1.41)

Strongly 3Ŋᵈ Order 4-Stage Schemes

0

1
3

1
3φ1,2

2
3

2
3φ1,3 − 4

3φ2,3
4
3φ2,3

1 φ1,4 − φ2,4 −φ2,4 −φ2,4

φ1 − 5
2φ2 + 3φ3 0 9

2φ2 − 9φ3 −2φ2 + 6φ3

(2.1.42)

Scheme (2.1.42) is a 4-stage scheme with fixed ci coefficients, it requires a total of 8 distinct

φ-functions.

Order 2 L ̸= 0 L = 0

2,1 5.55× 10−17

2,2 3.47× 10−17

2,3 3.58× 10−18

Order 3

3,4 2.78× 10−17 0

3,5 2.61× 10−18 0

Order 4

4,6 0.00182 0.0278

4,7 0.00138 0.00926

4,8 0.00225 0

4,9 1.88× 10−18 0

Table 2.1: Computational inspection of Scheme 2.1.42

Table 2.1 shows computational test of the scheme coefficients against the order conditions

for a sample L ̸= 0 and L = 0. The test is performed by explicitly evaluating the tableau

entries of the scheme and subjecting them to the order conditions. For non-zero L we used a

discretisation matrix from a standard three-point finite differences discretisation.

If a scheme satisfies a condition, the corresponding value in the table should be 0. This

approach clearly demonstrates that Scheme (2.1.42) is strongly third order, but it fails to satisfy
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most of the fourth order conditions, even weakly.

0

1
2

1
2φ1,2

2
3

2
3φ1,3 − 8

9φ2,3
8
9φ2,3

1 φ1,4 − φ2,4 −2φ2,4 3φ2,4

φ1 − 5
2φ2 + 3φ3 0 − 9

2φ2 − 9φ3 −2φ2 + 6φ3

(2.1.43)

Like Scheme (2.1.42), Scheme (2.1.43) is a 4-stage scheme with fixed ci coefficients again

requiring a total of 8 distinct φ-functions. Table 2.2 demonstrates that the method is strongly

third order but it fails to satisfy all but the final 4ᵗŀ order condition.

Order 2 L ̸= 0 L = 0

2,1 5.55× 10−17

2,2 3.47× 10−17

2,3 2.95× 10−18

Order 3

3,4 2.78× 10−17 0

3,5 1.34× 10−18 0

Order 4

4,6 0.00182 0.0278

4,7 0.000349 0.00463

4,8 0.00374 0

4,9 1.34× 10−18 0

Table 2.2: Computational inspection of Scheme (2.1.43)

Parametrised 3Ŋᵈ Order Families

It is also possible to maintain some of the ci coefficients as free parameters, as in the 2-stage

scheme (2.1.19). If we do sowe can derive families ofmethods.Numerical experiments can then

be performed with varying parameters to identify schemes with desirable properties. Tableau

(2.1.44) shows one such family of parametrised schemes.

0

c2 c2φ1,2

c3 c3φ1,3 − c23
c2
φ2,3

c23
c2
φ2,3

1 φ1,4 − 1
c2
φ2,4

1
c2
φ2,4 0

φ1 − c3+1
c3 φ2 +

2
c3φ3 0 − 1

c32−c3φ2 +
2

c32−c3φ3
c3

c3−1φ2 +
2

c3−1φ3

(2.1.44)
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The following tableau describes another family of strongly 3Ŋᵈ order schemes with two free

parameters,

0

c2 c2φ1,2

c3 c3φ1,3 − c23
c2
φ2,3

c23
c2
φ2,3

c2 c2φ1,4 − 2c2φ2,4 2c2φ2,4 0

φ1 − c3+c2
c2 c3 φ2 +

2
c2 c3φ3 β2 − c2

c32−c2 c3φ2 +
2

c32−c2 c3φ3 β2

(2.1.45)

with

β2 =
c3

2c2 c3 − 2c22
φ2 −

1

c2 c3 − c22
φ3

Here the flexibility in the free ci parameters allows us to achieve weak 4ᵗŀ order with the

choices c2 = 1
2 and c3 = 1. Table 2.3 shows the results of an order inspection of the scheme

highlighting the weakly satisfied 4ᵗŀ order conditions.

0

1
2

1
2φ1,2

1 1φ1,3 − 2φ2,3 2φ2,3

1
2

1
2φ1,4 − φ2,4 φ2,4 0

φ1 − 3φ2 + 4φ3 2φ2 − 4φ3 −φ2 + 4φ3 2φ2 − 4φ3

(2.1.46)

In Section 5.3, where we run a number of numerical experiments, we will see how different

Order 2 L ̸= 0 L = 0

2,1 2.78× 10−17

2,2 4.34× 10−19

2,3 3.25× 10−19

Order 3

3,4 6.94× 10−18 0

3,5 0 0

Order 4

4,6 0.00164 0

4,7 0.000885 5.2× 10−18

4,8 0.00352 0

4,9 0 0

Table 2.3: Computational inspection of Scheme (2.1.46)

choices of c2 and c3 produce schemes with different accuracy performance.
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2.2 Exponential General Linear Methods

General Linear Methods (GLMs) are a class of multi-step, multi-stage explicit methods intro-

duced by Butcher in [7]. They are a generalisation of multi-step Adams-Bashforth methods

with the multi-stage nature of Runge-KuĴa methods. The advantage they offer is that they

allow one to easily construct higher-order schemes while retaining an inherent Runge-KuĴa

stability [8]. Stability is a key property for a method and we will study it in detail in Section

4.1.

Exponential General Linear Methods (EGLMs) are an extension of GLMs into the exponen-

tial framework. These methods contain as special cases the ETD and ERK families. Ostermann,

Talhammer &Wright investigated EGLMs and presented a number of example methods. They

concluded that EGLMs, like their classical counterparts, combine the ease of construction of

high-order methods with the superior stability properties of ERKs [38].

For problems of type (1.1.1), a 3-stage, 3-step GLMs has the following format

K1 = f(tn, yn)

K2 = f (tn + c2h, yn + h [a21K1 + u21yn−1 + u22yn−2])

K3 = f (tn + c3h, yn + h [a31K1 + a32K2 + u31yn−1 + u32yn−2])

yn+1 = yn + h (b1K1 + b2K2 + b3K3 + v1yn−1 + v2yn−2)

wriĴen in tableau layout as

c A U

B V

0

c2 a21 u21 u22

c3 a31 a32 u31 u32

b1 b2 b3 v1 v2

Ostermann, Thalhammer & Wright [38] introduced a class of explicit exponential general

linear methods based on the Adams-Bashforth schemes. For given start values, y0, y1, . . . , yq−1
the internal stagesKn are defined through

Ki = N

ehLyn + h

i−1∑
j=1

aij(hL)Kj + h

q∑
j=1

uij(hL)N(yn−j)

 (2.2.1)

and the numerical approximation yn+1 at time tn+1 is given by the recurrence formula.

yn+1 = ehLyn + h
s∑

i=1

bi(hL)Ki + h

q∑
j=1

vi(hL)N(yn−j). (2.2.2)

From this general representation, we can proceed to derive order conditions for various

combinations of the number of stages and the number of previous timesteps used in a scheme.
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Following the format of [38], we used the naming notation EGLMpsq to denote a p-order s-

stage q-step method. In addition we will postfix the name with c2 when referring to families of

methods with c2 as a free parameter.

Note that the ERKs seen previously are containedwithin the EGLM tableauwhenU = V =

0. As with the ERKs, we have limited our research to explicit schemes. Therefore, the Amatrix

in the EGLM tableau is strictly lower-triangular.

2.2.1 3-Stage 4ᵗŀ Order Conditions

We can see more clearly the similarities between GLMs and their exponential counterparts by

looking once again at a 3-stage 2-step example. An EGLM of such type is wriĴen generally in

the following format,

K1 = Nn

K2 = N
(
tn + c2h, e

c2hLyn + h
[
a21K1 + u21Ntn−1 + u22Ntn−2

])
K3 = N

(
tn + c3h, e

c3hLyn + h
[
a31K1 + a32K2 + u31Ntn−1

+ u32Ntn−2

])
yn+1 = ehLyn + h

(
b1K1 + b2K2 + b3K3 + v1Ntn−1 + v2Ntn−2

)
(2.2.3)

and can be represented compactly in tableau form,

c A U

B V

0

c2 a21 ec2hL u21 u22

c3 a31 a32 ec3hL u31 u32

b1 b2 b3 ehL v1 v2

As with ERKs, we must derive conditions before we can begin constructing EGLMs of par-

ticular orders. For themoment, it will suffice to summarise the 3-stage, 4ᵗŀ order conditions here

and look at examples of specific schemes. In Theorem 12, we will look at the full derivation of

the following EGLM order conditions.

First Order (Consistency)
i−1∑
j=1

aij +

q∑
k=1

uik = ciφ1,i (2.2.4a)

s∑
i

bi +

q∑
j=1

vj = φ1 (2.2.4b)

Second Order
s∑

i=2

bici −
q∑

j=1

jvj = φ2 (2.2.5a)
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Third Order
s∑

i=2

bic
2
i +

q∑
j=1

j2vj = 2φ3 (2.2.5b)

s∑
i=2

bi

i−1∑
j=2

cjaij −
q∑

j=1

juij − c2iφ2,i

 = 0 (2.2.5c)

Fourth Order
s∑

i=2

bic
3
i −

q∑
j=1

j3vj = 6φ4 (2.2.5d)

s∑
i=2

bi

i−1∑
j=2

c2j
1

2
aij +

q∑
j=1

j2

2
uij − c3iφ3,i

 = 0 (2.2.5e)

i−1∑
j=2

cjaij −
q∑

j=1

juij − c2iφ2,i = 0 (2.2.5f)

2.2.2 Examples

We will show two example EGLM schemes, a 3Ŋᵈ order scheme followed by a 4ᵗŀ order one.

3Ŋᵈ Order

This family of schemes is referred to as EGLM322c2

c2 a2,1 ec2hL u2,1

b1 b2 ehL v1
(2.2.6)

a2,1 = c2φ1,2 + c22φ2,2

b1 = φ1 +
c2 − 1

c2
φ2 +

−2
c2

φ3 b2 =
1

c22 + c2
φ2 +

2

c22 + c2
φ3

u2,1 = −c22φ2,2 v1 =
−c2
c2 + 1

φ2 −
2

c2 + 1
φ3

It has 2 matrix exponentials and 6 distinct φ’s and as a consequence will require at least 8

matrix-vector products to implement.

Ostermann, Thalhammer & Wright made reference to the particular case of (2.2.6) where

c2 = 1 [38]. We refer to this scheme as EGLM322 [38, Table 4.1]

1 φ1 + φ2 −φ2

φ1 − 2φ3
1
2φ2 + φ3 − 1

2φ2 − φ3

(2.2.7)
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Here, the number of matrix exponentials has been reduced to just 1, and the number of distinct

φ’s to 3. In the implementation of the scheme, the number of matrix vector products is reduced

to just 5 in comparison to the more general case when c2 ̸= 1, where 8 matrix vector products

are necessary.

4ᵗŀ Order

This family of schemes is referred to as EGLM423c2

c2 a21 ec2hL u21 u22

b1 b2 ehL v1 v2
(2.2.8)

a2,1 = c2φ1,2 +
3c22
2

φ2,2 + c32φ3,2

u2,1 = −2c22φ2,2 − 2c32φ3,2 u2,2 =
c22
2
φ2,2 + c32φ3,2

b1 = φ1 +
3c2−2

2 φ2 + c2 − 3φ3 − 3φ4

c2
b2 =

2φ2 + 6φ3 + 6φ4

c32 + 3c22 + 2c2

v1 =
−2c2φ2 − 2c2 − 4φ3 + 6φ4

c2 + 1
v2 =

c2
2 φ2 + c2 − 1φ3 − 3φ4

c2 + 2

This scheme has 2 matrix exponentials and 8 distinct φ’s.

As with (2.2.7), Ostermann, Thalhammer & Wright consider the choice of fixing c2 = 1 to

help minimise the number of distinct φ-functions evaluations needed, and gives us the pub-

lished scheme, EGLM423 [38, Table 4.2] .

1 φ1 +
3
2φ2 + φ3 −2φ2 − 2φ3

1
2φ2 + φ3

φ1 +
1
2φ2 − 2φ3 − 3φ4

1
3φ2 + φ3 + φ4 −φ2 + φ3 + 3φ4

1
6φ2 − φ4

(2.2.9)

The number of matrix exponentials is again 1, and the number of distinct φ’s is 4. As before

we see a significant reduction in the number of matrix-vector products necessary within the

implementation. Specifically here we see that number reduced to just 7. All of these schemes

require two function evaluations per time step.
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Chapter 3

Multi-value Families of EIs

In this chapter we,

• Introduce twonew families of EIswhose construction is based on classicalAlmost Runge-

KuĴa Methods (ARKs) introduced by Butcher in [9]. We name these new families,

– Exponential Almost Runge-KuĴa Methods (EARKs)

– Exponential Almost General Linear Methods (EAGLMs)

We will introduce the classical ARK family and show how the concepts behind its con-

struction can be extended into the EI framework.

• Derive order conditions for these new families and present some example schemes.

• Provide a convergence analysis of EAGLMs within a framework of abstract semilinear

parabolic evolution equations.
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3.1 Exponential Almost Runge-KuĴa Methods

ARKs were introduced by Butcher in 1997 [9]. They are a special case of GLMs and they retain

the multi-stage nature of RKs, but allow for the passing of more than one value from step to

step. In a sense they are multi-value schemes rather than multi-step schemes. For an ARKs

scheme, three values form the inputs and outputs at each step. They are, the approximation to

the solution, which is accompanied by approximations to the first and second derivatives. The

general form of an ARK is,

Y1

...

YS

yn+1

hy′n+1

h2y′′n+1


=

 A W

B Z





hf(Y1)
...

hf(YS)

yn

hy′n

h2y′′n


(3.1.1)

where the Yi’s are the stage approximations and yn+1, hy′n+1 and h2y′′n+1 and the outing ap-

proximations for the next step. The general form of the tableau is,

A U

B V
=

a21
...

. . . e c−Ae c2

2 −Ac

as−1,1 as−1,3
. . .

b1 b2 · · · bs−1

b1 b2 · · · bs−1 0 1 b0 0

0 0 · · · 0 1 0 0 0

β1 β2 · · · βs−1 βs 0 β0 0

(3.1.2)

In ARKs, the approximation to the second derivative need only be of order h3 because

the method imposes special “annihilation conditions” to ensure this lower order does not ad-

versely affect the solution. A distinct advantage of ARKs is that they have a stage order of 2,

as opposed to RKs which have a stage order of at most 1. This higher stage order allows one

to interpolate or obtain an error estimate cheaply [40].

Within EIs, EARKs become a special case of EGLMs. The input and output value passed

from step-to-step are the function evaluations of the approximate solution,N(yn+1), again fol-

lowed by increasing derivatives, N (i)
n . Here, however, we see an important difference with

EARKs namely, the values passed are derivatives of the function N rather than the solution y.

That is, we pass the values N (i)(yn+1) on to the next step.

With traditional ARKs, we arrange that the final internal stage gives us the same value as
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that generated to be the first outgoing approximation, yn+1. This means that, in ARKs, the

first row of the B matrix is the same as the last row of the A matrix, as can be seen in (3.1.2).

Similarly, the first row of the Z matrix is the same as that last row of theW matrix.

EARKs exhibit the same characteristic as ARKs. However, EARKs differ in that that the first

outgoing approximation passed to the next step is not yn+1, but the function N evaluated at

yn+1, usually wriĴen Nn+1. Still, the first B and Z matrix rows will be identical to the last A

and W matrix rows when wriĴen in the tableau format. When implementing the scheme, the

yn+1 stage result used to approximate theNn+1 output, is simply reused to avoid a redundant

calculation.

A significant difference between ARKs and EARKs is in the second row of the B and Z

matrices. In traditional ARKs, the second output value, y′ ≡ f(y), and is already available to

pass to the next step. As such, the second row of the B and Z matrices contain all zeros except

for a 1 in the (2, s) position, where s is the number of stages. In EARKs both the second and

third output values will be non-trivial.

The general form of an EARKpsr tableau is,

c2 a21 w21 · · · w2r

...
...

. . .
...

...

cs−1 as−1,1 · · · as−1,s−2) ws−1,1 · · · ws−1,r

1 b1 · · · bs−1 0 z1 · · · zr

b1 · · · bs−1 0 z1 · · · zr

β11 · · · β1,s−1 β1s δ11 · · · δ1r
...

...
...

...
...

βr1 · · · βr,s−1 βrs δr1 · · · δrr

(3.1.3)

where, using a similar notation to EGLMs, the subscripts denote a p-order s-stage r-value

method.

We have concentrated on 3-stage EARKs, where s = 3 and r = 1 or 2. The repetition in

the final row of the tableaus upper half, and the first row of the lower half means that, s-stage

EARKs sharemore in commonwith (s−1)-stage EGLMs. The simplest form EARK is a 3-stage,

1-value method. The tableau for such a method would look like the following

c2 a21 w21

1 b1 b2 z1

b1 b2 0 z1

β21 β22 β23 δ21

(3.1.4)
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wriĴen out explicitly, such a method takes the following form,

K1 = Nn

Y2 = ec2hLyn + h [a21K1 + w21hN
′]

K2 = N (tn + c2h, Y2)

Y3 = ehLyn + h (b1K1 + b2K2 + z1hN
′)

K3 = N (tn + c3h, Y3)

yn+1 = Y3

hN ′n+1 = β21K1 + β22K2 + β23K3 + δ21hN
′
n

(3.1.5)

3.1.1 Deriving EARKs

In deriving EARKs the input derivatives of the N function on a given step match those of the

exact solution (1.3.9) and as such can be used directly to estimate the next step. Consequently,

the w2i entries in the EARKs tableau must be ci+1
2 φi+1. This will then generate an intermediate

step of order p− 1, where p is the overall order of the scheme.

Using Taylor expansions of the approximations generated by the internal stages, together

with the input values for that step, it is possible to derive the coefficients to produce the neces-

sary output values, N ′n+1 and N ′′n+1. Because EARKs do not pass derivatives of the solution y

to the next step but rather pass derivatives of the N function, we do not need to involve the φ

functions in generating those outputs. Consequently, the second and third rows of theB andZ

matrices contain only scalar entries. Here EARKs show their potential to achieve high orders,

while avoiding too many matrix-vector products.

3.1.2 3-Stage 4ᵗŀ Order Conditions

As with EGLMs, we will first present the order conditions for EARKs of the form (3.1.3) and

then introduce example schemes. Theorem 13 will provide a full proof of these conditions.

FirstOrder (Consistency) The consistency conditions of EARKs are identical to those of ERKs

(2.1.9). This is because in the case Nn = N a constant, N (i) = 0 for i > 0.

Second Order
s∑

i=2

bici + z1 = φ2 (3.1.6)
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Third Order
s∑

i=2

bic
2
i + 2z2 = 2φ3 (3.1.7)

s∑
i=2

bi

i−1∑
j=2

cjaij + wi1 − c2iφ2,i

 = 0 (3.1.8)

Fourth Order
s∑

i=2

bic
3
i = 6φ4 (3.1.9)

s∑
i=2

bi

i−1∑
j=2

c2j
1

2
aij + wi2 − c3iφ3,i

 = 0 (3.1.10)

i−1∑
j=2

cjaij + wi1 − c2iφ2,i = 0, i = 2, . . . , s (3.1.11)

3.1.3 Outgoing Approximations

To produce the vector of outgoing approximations, v =
(
N ′n+1, . . . , N

(r)
n+1

)
, we construct a

matrixM = (β δ), where β is r × s and δ is r × r, such that,

M



Nn

Nn+c2

...

Nn+cs

Nn+1

hN ′n
...

hPN
(r)
n



=


hN ′n+1

...

hPN
(r)
n+1

 (3.1.12)

This matrix is constructed by solving a number of linear systems generated from Taylor

expansions of the elements of incoming vector of approximations, together with theNn+ci and

Nn+1 values produced by the internal stages. Specifically, mj , the jᵗŀ row of the matrix M , is

the solution to the linear system

XmT
j = ej+1 (3.1.13)

where ei is the standard basis vector and the r+s×r+smatrixX = (Y Z) is thematrix formed
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by the matrices Y and Z arranged side-by-side where,

Y =



1 c2 · · · ci · · · cs−1 1

−1 −c2 · · · −ci · · · cs−1 0

1
2

1
2c2 · · · 1

2ci · · · 1
2cs−1 0

...
...

...
...

...

−1j−1 1
(j−1)! · · · −1j−1 1

(j−1)!ci · · · 0
...

...
...


(3.1.14)

Z =



0 0 0

1 0

−1 1
. . .

...
1
2 −1

. . .
... 1

2

. . . 0
...

. . . 1

−1j−r−1

(j−r−1)!
...



(3.1.15)

Looking at just the 3-stage, 2-value case, to construct the βj , δj rows for a scheme of the

form (3.1.4), one has to solve the linear system

1 c 1 0 0

−1 −c 0 1 0

1
2

c
2 0 −1 1

−1
6 − c

6 0 1
2 −1

1
4!

c
4! 0 −1

6
1
2





βj1

βj2

βj3

δj1

δj2


= ej (3.1.16)

3.1.4 Examples

Weare now in a position to construct families of EARKs. Looking at a 4ᵗŀ ordermethod,we note

that it is not necessary to utilise the N ′′n incoming approximation to produce approximations

toN ′n+1 andN ′′n+1 of sufficient order. As such, the δj2 tableau entries can be zero. EARK432c2 is

a 3-stage, 2-value family of 4ᵗŀ order schemes with one free parameter, c2.

c2 c2φ1,2 c22φ2,2 c32φ3,2

1 φ1 − 6
c32
φ4

6
c32
φ4 0 φ2 − 6

c22
φ4 φ3 − 3

c2
φ4

φ1 − 6
c32
φ4

6
c32
φ4 0 φ2 − 6

c22
φ4 φ3 − 3

c2
φ4

− 2 c2
2−3 c2

c22−2 c2+1 − 1
c23−2 c22+c2

2 c2+1
c2

− c2
c2−1 0

2 c2
2−6

c22−2 c2+1 − 4
c23−2 c22+c2

2 c2+4
c2

−2 c2+2
c2−1 0

(3.1.17)
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3.2 Exponential Almost General Linear Methods

As our goal is to have a consistent representation of all our schemes, we use an expanded

tableau which can unambiguously contain all method families so far mentioned. In addition,

the representation points towards a broader family of methods, which we refer to as EAGLMs.

These combine the multi-stage, multi-step nature of EGLMs with the multi-value format of

EARKs. To that end, the following tableau is capable of representing all 3-stage schemes pre-

sented so far

c A U W

B V Z

c2 a21 ec2hL u21 u22 w21 w22

c3 a31 a32 ec3hL u31 u32 w31 w32

1 b1 b2 b3 0 ehL v1 v2 z1 z2

b1 b2 b3 0 ehL v1 v2 z1 z2

β21 β22 β23 β24 0 γ21 γ22 δ21 δ22

β31 β32 β33 β34 0 γ31 γ32 δ31 δ32

(3.2.1)

K1 = Nn

K2 = N
(
tn + c2h, e

c2hLyn + h
[
a21K1 + u21Ntn−1 + u22Ntn−2 + w21hN

′ + w22h
2N ′′

])
K3 = N

(
tn + c3h, e

c3hLyn+

h
[
a31K1 + a32K2 + u31Ntn−1 + u32Ntn−2 + w31hN

′ + w32h
2N ′′

])
yn+1 = ehLyn + h

(
b1K1 + b2K2 + b3K3 + v1Ntn−1 + v2Ntn−2 + z1hN

′ + z2h
2N ′′

)
(3.2.2)

We can see that the earlier families of methods all become special cases of EAGLMs. For

example when representing EGLMs in (3.2.1), the W and Z matrices contain all zeros and

likewise the β, γ and δ entries are all zero. For pure EARKs on the other hand, which makes

no use of previous steps, the U and V are zero matrices, and the γ entries are zero.

3.2.1 3-Stage 6ᵗŀ Order Conditions

The final extension to order conditions, is to look at the combined family of EAGLMs. We will

present a full proof for the derivation of 3-stage, q-step, r-value EAGLM conditions. We will

then use that result to prove the conditions presented earlier for EGLMs and EARKs in Section

2.2.1 and Section 3.1.2.
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Theorem 3. EAGLMs of the form

0

c2 a21 ec2hL u21 · · · u2q w21 · · · w2r

...
...

. . .
...

...
...

cs as1 · · · as(s−1) ecshL us1 · · · usq ws1 · · · wsr

b1 · · · · · · bs ehL v1 · · · vq z1 · · · zr

K1 = Nn = N(tn, yn)

Yi = ehLyn + h
i−1∑
j=1

aij(hL)Kj + h

q∑
k=1

uik(hL)Nn−k + h
r∑

j=1

wijh
jN (j)

Ki = N (Yi)

yn+1 = ehLyn + h

 s∑
i=1

bi(hL)Ki +

q∑
k=1

vk(hL)Nn−k +

r∑
j=1

zj(hL)h
jN (j)


(3.2.3)

will be exact in the case Nn = N , a constant, if the following conditions are met

i−1∑
j=1

aij +

q∑
j=1

uij = ciφ1,i (3.2.4a)

for i = 1, . . . , s

s∑
i

bi +

q∑
i=1

vi = φ1 (3.2.4b)

These conditions are referred to as the consistency conditions.

Proof. From the stage approximations with N(tn, yn) = N , a constant, we obtain:

If

y(tn + cih) = Yi

then

ecihLyn + cihφ1,iN = ecihLyn + h

i−1∑
j=1

aij(hL)Ki + h

q∑
k=1

uij(hL)N

= ecihLyn + h

i−1∑
j=1

aij(hL) +

q∑
k=1

uij(hL)

N

⇒
i−1∑
j=1

aij +

q∑
j=1

uij = ciφ1,i

recovering condition (3.2.4a). By a similar approach, the outgoing step approximation, if

y(tn + h) = yn+1
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then

ehLyn + hφ1N = ehLyn + h

s∑
i=1

biKi + h

q∑
k=1

viN

= ehLyn + h

(
s∑

i=1

bi +

q∑
k=1

vi

)
N

⇒
s∑

i=1

bi +

q∑
i=1

vi = φ1

and we recover condition (3.2.4b).

Theorem 4. EAGLMs of the form (3.2.3), where s = 2 or 3, that is 2 or 3-stage methods, that meet the

consistency conditions (3.2.4), can achieve order p if

j−1∑
k=2

ajk
cik
i! +

q∑
k=1

(−k)i
i! ukj + wki = ci+1

k φi+1,k (3.2.5a)

for i = 1, . . . , p− 3, j = 1, . . . , s,

s∑
j=2

bj

(
j−1∑
k=2

ajk
cik
i! +

q∑
k=1

(−k)i
i! ujk + wji − ci+1

j φi+1,j

)
= 0 (3.2.5b)

where i = p− 2, and
s∑

j=2

cij
i! bj +

q∑
j=1

(−j)i
i! vj + zi = φi+1 (3.2.5c)

for i = 1, . . . , p− 1

Lemma 5. The 2ņᵈ stage approximation to the solution at y(tn+c2h), at the intermediate point tn+c2h

ec2hLyn + h

a21K1 +

q∑
k=1

u2kNn−k +
r∑

j=1

w2jh
jN (j)

n


differs from the exact solution, y(tn + c2h), by

∑
i=1

R∗2,ihi+1 with

R∗j,i =

(
j−1∑
k=2

ajk
cik
i! +

q∑
k=1

(−k)i
i! ujk + wji − ci+1

j φi+1,j

)
N (i)

n (3.2.6)

where w2i = 0 for i > r

Proof.

y(tn + c2h) = ec2hLyn + c2hφ1,2N + c22h
2φ2,2N

′ + . . .
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given condition (3.2.4a) we can determine the format of R2

ec2hLyn + h

a21K1 +

q∑
k=1

u2kNn−k +
r∑

j=1

w2jh
jN (j)

n


= y(tn + c2h)− c22h

2φ2,2N
′
n − c32h

3φ3,2N
′′
n − · · ·

− u21h
2N ′n + 1

2!u21h
3N ′′n − · · ·

+ · · ·

− u2qh
2N ′n + q2

2! u2qh
3N ′′n − · · ·

+ w21h
2N ′n + · · ·+ w2rh

r+1N (r)
n

= y(tn + c2h)−
∑
i=1

ci+1
2 φi+1,2h

i+1N (i)
n

+
∑
i=1

q∑
j=1

(−j)i
i! u2jh

i+1N (i)
n

+
∑
i=1

w2ih
i+1N (i)

n

= y(tn + c2h) +
∑
i=1

 q∑
j=1

(−j)i
i! u2j + w2i − ci+1

2 φi+1,2

hi+1N (i)
n

Hence

ec2hLyn + h

a21K1 +

q∑
k=1

u2kNn−k +
r∑

j=1

w2jh
jN (j)

 = y(tn + c2h) +
∑
i=1

R∗2,ihi+1

= y(tn + c2h) +R2

(3.2.7)

The 2ņᵈ residual R2 is O(h2). We also write

R2
2 =

∑
i=1

R∗∗2,ihi+3

where

R∗∗k,i =
i∑

j=1

R∗k,jR∗k,i−j+1N
(j)N (i−j+1) (3.2.8)

Higher powers of R2 will be O(h6) or greater and will not be needed.

Lemma 6. WhenR∗2,i = 0 for i = 1, . . . , p− 1 the 2ņᵈ stage approximation is order p.

Proof. This follows simply from the fact that forR∗2,i = 0 for i = 1, . . . , p− 1, then

y(tn + c2h) +

p−1∑
i=1

R∗2,ihi+1 = y(tn + c2h) +O(hp+1)
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Lemma 7. The 2ņᵈ stage approximation

K2 = N

tn + c2h, e
c2hLyn + h

a21K1 +

q∑
k=1

u2kNn−k +

r∑
j=1

w2jh
jN (j)

n


can be expressed as

K2 =

p−1∑
i=0

ci2
i! N

(i)
n hi +

p−3∑
i=0

K∗2,ihi+2 +

p−5∑
i=0

K∗∗2,ihi+4 +O(hp) (3.2.9)

where

K∗j,i =
i∑

k=0

ci−k
j

(i−k)!R
∗
j,k+1N

(i−k)
y (3.2.10)

K∗∗j,i =
i∑

k=0

ci−k
j

(i−k)!R
∗∗
j,k+1N

(i−k)
yy (3.2.11)

Proof. From Theorem 5,K2 = N (tn + c2h, y(tn + c2h) +R2). Then, using (2.1.6), we have

K2 =

p−3∑
i=0

ci2
i!

 2∑
j=1

Rj
2N

(i)
yi

hi

Since R2
2 is O(h6) we need only consider j < 3, as such

K2 =

p−1∑
i=0

ci2
i! N

(i)
n hi +

p−3∑
i=0

ci2
i! R2N

(i)
y hi +

p−5∑
i=0

ci2
i! R

2
2N

(i)
yy h

i +O(h5)

focusing on the final j = 1 and 2 terms we see

p−3∑
i=0

ci2
i! R2N

(i)
u hi +

p−5∑
i=0

ci2
i! R

2
2N

(i)
uuh

i

=

p−3∑
i=0

ci2
i!

p−2−i∑
j=1

R∗2,j+1h
j+2

N (i)
u hi +

p−5∑
i=0

ci2
i!

p−4−i∑
j=0

R∗∗2,j+1h
j+4

N (i)
uuh

i

=

p−3∑
i=0

 i∑
j=0

ci−j
2

(i−j)!R
∗
2,j+1N

(i−j)
y

hi+2 +

p−5∑
i=0

 i∑
j=0

ci−j
2

(i−j)!R
∗∗
2,j+1N

(i−j)
yy

hi+4

=

p−3∑
i=0

K∗2,ihi+2 +

p−5∑
i=0

K∗∗2,ihi+4

Lemma 8. The 3Ŋᵈ stage approximation at the intermediate point tn + c3h,

ec3hLyn + h

a31K1 + a32K2 +

q∑
i=1

u3iNtn−i +

r∑
j=1

w3jh
jN (j)


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differs from the exact solution, y(tn + c3h) by

R3 =

p−2∑
i=1

R∗3,ihi+1 + a32

p−4∑
i=0

K∗2,ihi+3 + a32

p−6∑
i=0

K∗∗2,ihi+5 (3.2.12)

withR∗3,i, K∗j,i and K∗∗j,i as in (3.2.6), (3.2.10) and (3.2.11) respectively.

Proof. The prerequisite condition (3.2.4a) implies that

a31K1 + a32K2 = c3hφ1,3 +

p−2∑
i=1

ci2
i! N

(i)
n hi +

p−4∑
i=0

K∗2,ihi+2 +

p−6∑
i=0

K∗∗2,ihi+4

Hence the 3Ŋᵈ stage approximation to y(tn + c3h)may be wriĴen as follows

ec3hLyn + h

a31K1 + a32K2 +

q∑
k=1

u3kNn−k +
r∑

j=1

w3jh
jN (j)

n


= y(tn + c2h)−

p−2∑
i=1

 q∑
j=1

(−j)i
i! u3j + w3i − ci+1

3 φi+1,3

hi+1N (i)
n

+
∑
i=1

ci2
i! N

(i)
n hi +

∑
i=0

K∗2,ihi+2 +
∑
i=0

K∗∗2,ihi+4

= y(tn + c2h) +R3

When considering R2
3 we note that

R3 =

2∑
i=1

R∗3,ihi+1 + a32R∗2,1h3Ny +O(h4)

so that

R2
3 =

2∑
i=1

R∗∗3,ihi+3 + a32R∗2,1R∗3,1h5Ny +O(h6) (3.2.13)

withR∗∗3,i as in (3.2.8).

Lemma 9. IfR∗2,i = R∗3,i = 0 for i = 1, . . . , p− 1 then the 3Ŋᵈ stage approximation is order p.

Proof. GivenR∗2,i = R∗3,i = 0 for i = 1, . . . , p− 1 then

y(tn + c3h) +R3 = y(tn + c3h) +

p−1∑
i=1

R∗3,ihi+1 + a32

p−3∑
i=0

K∗2,ihi+3 + a32

p−5∑
i=0

K∗∗2,ihi+5

= y(tn + c3h) +O(hp+1) +O(hp+2) +O(h2p+3)

= y(tn + c3h) +O(hp+1)
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Lemma 10. The 3Ŋᵈ stage outgoing approximation

K3 = N

tn + c3h, e
c3hLyn + h

a31K1 + a32K2 +

q∑
k=1

u3kNn−k +
r∑

j=1

w3jh
jN (j)

n


can be expressed as

K3 =

p−1∑
i=0

ci3
i! N

(i)
n hi +

p−3∑
i=0

K∗3,ihi+2 +

p−4∑
i=0

K∗∗3,ihi+4+

p−3∑
i=0

L∗3,ihi+3 + a32

((
R∗2,1

)2
+R∗2,1R∗3,1

)
h5(N ′)2NyyNy +O(hp) (3.2.14)

with K∗3,i and K∗∗3,i as in (3.2.10) and (3.2.11) respectively, and where

L∗3,i = a32
ci3
i!

 i∑
j=0

[
i−j∑
l=0

ci−l
2

(i−l)!R
∗
2,j+1N

(i−l)
y N (l)

y

]
Proof. Following the format of (3.2.1), we can write

K3 =

p−1∑
i=0

ci3
i! N

(i)
n hi +

p−3∑
i=0

ci3
i! R3N

(i)
y hi +

p−5∑
i=0

ci3
i! R

2
3N

(i)
yy h

i +O(hp)

Using (3.2.12) we obtain
p−3∑
i=0

ci3
i! R3N

(i)
y hi =

p−3∑
i=0

ci3
i!

p−2−i∑
j=1

R∗3,ihj+1 + a32

p−4−i∑
j=0

K∗2,jhj+3 + a32

p−6−i∑
j=0

K∗∗2,jhj+5

N (i)
u hi

The order of the summations of the terms involving K∗2,j can be rearranged such that

p−3∑
i=0

a32
ci3
i!

p−4−i∑
j=0

K∗2,jhj+3

N (i)
y hi

=

p−3∑
i=0

a32
ci3
i!

p−4−i∑
j=0

[
j∑

l=0

cj−l
2

(j−l)!R
∗
2,l+1N

(j−l)
y

]
hj+3

N (i)
y hi

=

p−3∑
i=0

a32
ci3
i!

 i∑
j=0

[
j∑

l=0

cj−l
2

(j−l)!R
∗
2,l+1N

(j−l)
y

]
N (i−j)

y

hi+3

=

p−3∑
i=0

a32
ci3
i!

 i∑
j=0

[
i−j∑
l=0

ci−l
2

(i−l)!R
∗
2,j+1N

(i−l)
y N (l)

y

]hi+3

For the terms involving K∗∗2,j , only one is below order O(h6)

p−3∑
i=0

ci3
i! a32

p−6−i∑
j=0

K∗∗2,jhj+5

N (i)
y hi = a32(R∗2,1)2(N ′n)2h5NyyNy +O(h6)

In addition, by (3.2.13)
p−3∑
i=0

ci3
i! R

2
3N

(i)
yy h

i =

p−3∑
i=0

ci3
i!

p−6−i∑
j=0

R∗∗3,jhj+3 +R∗2,1R∗3,1h5Ny

N (i)
y hi

=

p−3∑
i=0

 i∑
j=0

ci−j
3

(i−j)!R
∗∗
3,j+1N

(i−j)
yy

hi+4 + a32R∗2,1R∗3,1h(i+5)NyNyy

41



CollectingR∗j,i’s andR∗∗j,i’s we obtain (3.2.14).

Lemma 11. IfR∗2,i = R∗3,i = 0 for i = 1, . . . , p− 3 then the outgoing approximation,

yn+1 = ehLyn + h

b1K1 + b2K2 + b3K3 +

q∑
k=1

vkNn−k +

r∑
j=1

zjh
jN (j)

n


differs from the exact solution, y(tn + h), by

p−1∑
i=1

 2∑
j=1

cij
i! bj +

q∑
j=1

(−j)i
i! vj + zi − φi+1

N (i)
n hi+1 +

2∑
j=1

bjR∗j,p−1Nyh
p +O(hp+1) (3.2.15)

Proof. The conditionsR∗2,i = R∗3,i = 0 for i = 1, . . . , p− 3 implies

K2 =

p−1∑
i=0

ci2
i! N

(i)
n hi +

p−3∑
i=0

K∗2,ihi+2 +

p−5∑
i=0

K∗∗2,ihi+4 +O(h6)

=

p−1∑
i=0

ci2
i! N

(i)
n hi +K∗2,p−3hp−1 +O(hp)

=

p−1∑
i=0

ci2
i! N

(i)
n hi +R∗2,p−2Nuh

p−1 +O(hp)

and

K3 =

p−1∑
i=0

ci3
i! N

(i)hi +

p−3∑
i=0

K∗3,ihi+2 +

p−5∑
i=0

K∗∗3,ihi+4

+

p−4∑
i=0

L∗3,ihi+3 + a32

((
R∗2,1

)2
+R∗2,1R∗3,1

)
h5(N ′n)

2NyyNy +O(h6)

=

p−1∑
i=0

ci3
i! N

(i)
n hi +K∗3,p−3hp−1 +O(hp)

=

p−1∑
i=0

ci3
i! N

(i)
n hi +R∗3,p−2Nyh

p−1 +O(hp)

also, given the consistency condition (3.2.4b),

ehLyn + h

b1K1 + b2K2 + b3K3 +

q∑
k=1

vkNn−k +
r∑

j=1

zjh
jN (j)

n


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= y(tn + h)− h2φ2N
′
n − h3φ3N

′′
n − · · ·

− v1h
2N ′n + 1

2!v1h
3N ′′n − · · ·

+ · · ·

− vqh
2N ′n + q2

2! vqh
3N ′′n − · · ·

+ z1h
2N ′n + · · ·+ zrh

r+1N (r)
n

+ b1

p−1∑
i=0

ci2
i! N

(i)
n hi+1 + b1R∗2,w−2hr

+ b2

p−1∑
i=0

ci3
i! N

(i)
n hi+1 + b2R∗3,p−2Nyh

p +O(hp+1)

= y(tn + h)−
p−1∑
i=1

φ(i+1)h
i+1N (i)

n

+

p−1∑
i=1

q∑
j=1

(−j)i
i! vjh

i+1N (i)
n

+

p−1∑
i=1

zih
i+1N (i)

n

+

p−1∑
i=1

2∑
j=1

cij
i! bjh

i+1N (i)
n

+

3∑
j=2

R∗j,p−2Nyh
p +O(hp+1)

= y(tn + h) +

p−1∑
i=1

S∗i hi+1 +
3∑

j=2

R∗j,p−2Nyh
p +O(hp+1)

with

S∗i =

 2∑
j=1

cij
i! bj +

q∑
j=1

(−j)i
i! vj + zi − φi+1

N (i)
n (3.2.16)

Proof of Theorem 19. Within each L∗3,i the terms ci2
(i)!R

∗
2,i+1N

(i)
y Nyh

i+3 occur in isolation, there-

fore, to achieve order p implies that R∗2,i = 0 for i = 1, . . . , p − 3. From the K∗j,i terms, this

restriction onR∗2,i also impliesR∗3,i = 0. These two results recover the order condition (3.2.5a).

From this we can apply Lemma 11. To ensure the approximation

y(tn + h) +

p−1∑
i=1

 2∑
j=1

cij
i! bj +

q∑
j=1

(−j)i
i! vj + zi − φi+1

N (i)hi+1 +
2∑

j=1

bjR∗j,p−1Nyh
p
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is of order p then we require

2∑
j=1

cij
i! bj +

q∑
j=1

(−j)i
i! vj + zi − φi+1 = 0

for i = 1, . . . , p− 2, recovering order condition (3.2.5b) and

2∑
j=1

bjR∗j,p−1 = 0

which recovers condition (3.2.5c).

Note. When considering 3-stage methods where c2 ̸= c3, the condition (3.2.5b) becomes

merged with condition (3.2.5a) for the extended set of values i = 1, . . . , p−2. A consequence of

this can be seen from Propositions 6 and 9; all such methods will have stage order p− 1when

the method is of order p.

Theorem 12. EGLMs of the form

0

c2 a21 ec2hL u21 · · · u2q

...
...

. . .
...

...

cs as1 · · · as(s−1) ecshL us1 · · · usq

b1 · · · · · · bs ehL v1 · · · vq

K1 = Nn

Ki = N

ehLyn + h
i−1∑
j=1

aij(hL)Kj + h

q∑
k=1

uik(hL)Nn−k


yn+1 = ehLyn + h

(
h

s∑
i=1

bi(hL)Ki +

q∑
k=1

vkNn−k

) (3.2.17)

will be exact in the case Nn = N , a constant, if the consistency conditions (3.2.4) are met.

When N is non-constant, EGLMs of the form (3.2.17) where s = 2 or 3, can achieve order p if they

satisfy (3.2.4) and
j−1∑
k=2

ajk
cik
i! +

q∑
k=1

(−k)i
i! ukj = ci+1

k φi+1,k (3.2.18a)

for i = 1, . . . , p− 3, j = 1, . . . , s,

s∑
j=2

bj

(
j−1∑
k=2

ajk
cik
i! +

q∑
k=1

(−k)i
i! ujk − ci+1

j φi+1,j

)
= 0 (3.2.18b)

for i = p− 2, and
s∑

j=2

cij
i! bj +

q∑
j=1

(−j)i
i! vj = φi+1 (3.2.18c)

for i = 1, . . . , p− 1
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Proof. This follows naturally from Theorem 3 and 19 where all wij = zij = 0.

In the 2-stage, case these conditions become

j−1∑
k=2

ajk
cik
i! +

q∑
k=1

(−k)i
i! ukj = ci+1

k φi+1,k

for i = 1, . . . , p− 2; j = 1, 2 and, for i = 1, . . . , p− 1,

s∑
j=2

cij
i! bj +

q∑
j=1

(−j)i
i! vj = φ(i+1)

These match the same conditions as those derived by Ostermann, Thalhammer & Wright [38,

(2.3) & (2.7)].

Theorem 13. EARKs of the form

0

c2 a21 ec2hL w21 · · · w2r

...
...

. . .
...

...

cs as1 · · · as(s−1) ecshL ws1 · · · wsr

b1 · · · · · · bs ehL z1 · · · zr

K1 = Nn

Ki = N

ehLyn + h
i−1∑
j=1

aij(hL)Kj + h
r∑

l=1

wilh
lN (l)


yn+1 = ehLyn + h

(
h

s∑
i=1

bi(hL)Ki +
r∑

l=1

zlh
lN (l)

) (3.2.19)

will be exact in the case Nn = N , a constant, if the following conditions are met

i−1∑
j=1

aij = ciφ1,i (3.2.20a)

for i = 1, . . . , s

∑
i

bi = φ1 (3.2.20b)

These conditions are the same as the ERKs consistency conditions.

In the case where Nn is non-constant, EARKs of the form (3.2.19) where s = 2 or 3, can achieve

order p if they satisfy (3.2.20) and

j−1∑
k=2

ajk
cik
i! + wki = ci+1

k φi+1,k (3.2.21a)
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for i = 1, . . . , p− 3, j = 1, . . . , s,

s∑
j=2

bj

(
j−1∑
k=2

ajk
cik
i! + wji − ci+1

j φi+1,j

)
= 0 (3.2.21b)

for i = p− 2, and
s∑

j=2

cij
i! bj + zi = φi+1 (3.2.21c)

for i = 1, . . . , p− 1

Proof. This follows naturally from Theorem 3 and 19 where all uij = vij = 0.

3.2.2 Outgoing Approximations

Like EARKs, the format for deriving the βj , γj and δj rows of a method follows from construct-

ing a matrixM = (β γ δ) such that

M



Nn

Nn+c2

...

Nn+cs

Nn+1

Nn−1
...

Nn−q

hN ′n
...

hrN
(r)
n



=


hN ′n+1

...

hrN
(r)
n+1

 (3.2.22)

As earlier, themj rows of the matrixM , are the solutions to the linear system

XmT
j = ej+1 (3.2.23)

with X being the (s+ q + r)× (s+ q + r)matrix

X = (Y Z W ) (3.2.24)
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where A and Z are as in (3.1.14) and (3.1.15) respectively and

W =



1 · · · 1

−1 · · · −1
1
2 · · · 1

2

...
...

−1j−1

(j−1)! · · · −1j−1

(j−1)!
...

...


(3.2.25)

If we look at the EARK scheme (3.1.17) for the case where c2 = 1, one looses the ability

to generate approximations of sufficiently high order since the two output values Nn+c2 and

Nn+1 are equal.With the two internal stages giving an approximation at the same point in time,

there are no longer enough points of information on which to perform the interpolation. The

solution is to carry along additional information at each step. The obvious choice for providing

this information are previous steps and this naturally leads us to favour these hybrid EAGLMs

over pure EARKs.

In practice we shall see that the optimal approach is to restrict both the internal stages and

output step calculations to a pure EARKs format. This means, not involving any previous steps

in their computation, i.e. uij = 0. This preserves the reduction in φmatrix-vector products ex-

hibited earlier. By using non-zero δij values we have the option to include involve the previous

steps, in the approximations of N ′n+1 and N ′′n+1, where there are no matrix-vector products.

An example of such a scheme is the 3Ŋᵈ order EAGLM3331c2,

c2 a2,1 u2,1 u2,2 w2,1

1 b1 b2 v2,1 v2,2 z1

b1 b2 0 v2,1 v2,2 z1

=

c2 c2φ1,2 0 0 c22φ2,2

1 φ1 − 2φ3

c22

2φ3

c22
0 0 φ2 − 2φ3

c2

φ1 − 2φ3

c22

2φ3

c22
0 0 0 φ2 − 2φ3

c2

(3.2.26)

β γ δ =

 −3 0 11
6

3
2 −1

3 0

−5 0 2 4 −1 0

×



Nn

Ntc

Nn+1

Nn−1

Nn−2

hN ′n


=

 hN ′n+1

h2N ′′n+1



3.2.3 Example

In our research, we have concentrated on 2-stage schemes. Of course, technically, when speak-

ing about EARKs and EAGLMs, we mean 3-stage schemes, because of the repeated B, V,Q
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row. For such 2-stage schemes

c2 a21 ec2hL u21 u22 w21 w22

b1 b2 ehL v1 v2 z1 z2
(3.2.27)

K1 = N

K2 = N
(
tn + c2h, e

c2hLyn + h
[
a21K1 + u21Ntn−1 + u22Ntn−2 + w21hN

′ + w22h
2N ′′

])
we can simplify conditions (3.2.5) to

j−1∑
k=2

ajk
cik
i! +

q∑
k=1

(−k)i
i! ukj + wki = ci+1

k φk,i+1 (3.2.28)

for i = 1, . . . , β − 2, j = 1, . . . , s, and
s∑

j=2

cij
i! bj +

q∑
j=1

(−j)i
i! vj + zi = φi+1 (3.2.29)

for i = 1, . . . , β − 1.

We will now present some examples of such schemes. We have adopted the convention

whereby we call a scheme an EAGLM only if it has non-zero uij or vi entries in it’s tableau.

A scheme where uij = vi = 0 is called an EARK even if it has non-zero γij entries. In other

words, an EARK which uses previous steps to generate theN derivatives, is still referred to as

an EARK, and not an EAGLM.

3Ŋᵈ Order EARK321c2

c2 a2,1 u2,1 u2,2 w2,1

1 b1 b2 v2,1 v2,2 z1

b1 b2 0 v2,1 v2,2 z1

=

c2 c2φ1,2 0 0 c22φ2,2

1 φ1 − 2φ3

c22

2φ3

c22
0 0 φ2 − 2φ3

c2

φ1 − 2φ3

c22

2φ3

c22
0 0 0 φ2 − 2φ3

c2

(3.2.30)

4ᵗŀ Order EARK422c2

c2 a2,1 w2,1 w2,2

1 b1 b2 z1 z2

b1 b2 0 z1 z2

=

c2 c2φ1,2 c22φ2,2 c32φ3,2

1 φ1 − 6
c32
φ4

6
c32
φ4 φ2 − 6

c22
φ4 φ3 − 3

c2
φ4

φ1 − 6
c32
φ4

6
c32
φ4 0 φ2 − 6

c22
φ4 φ3 − 3

c2
φ4

(3.2.31)

4ᵗŀ Order EAGLM

This family of schemes, referred to as EAGLM4221, is 4ᵗŀ order 3-stage 2-step 1-value. It com-

bines the use of one previous timestep, with theN ′ derivative.We can see clearly the significant
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increase in the complexity of the tableau entries over scheme (3.2.30) and (3.2.31).

c2 a2,1 · · ·

1 b1 b2 · · ·

b1 b2 0 · · ·

=

c2 c2 φ1,2 − 2 c32 φ3,2 · · ·

1
c2 (6φ4+2φ3)−6φ4−2 c22 φ3−2φ3+φ1 c22

c22

6φ4+2φ3

c32+c22
· · ·

c2 (6φ4+2φ3)−6φ4−2 c22 φ3−2φ3+φ1 c22
c22

6φ4+2φ3

c32+c22
0 · · ·

· · · u2,1 w2,1

· · · v1 z1

· · · v1 z1

=

· · · 2 c32 φ3,2 2 c32 φ3,2 + c22 φ2,2

· · · 2 c2 φ3−6φ4

c2+1
−6φ4+2 c2 φ3−2φ3+c2 φ2

c2

· · · 2 c2 φ3−6φ4

c2+1
−6φ4+2 c2 φ3−2φ3+c2 φ2

c2

(3.2.32)

3.3 Convergence Bounds

We saw that Ostermann, Thalhammer & Wright introduced EGLMs in [38]. As part of the

theory supporting their new family of methods, they provided a convergence analysis within

a framework of abstract semilinear parabolic evolution equations. As part of that analysis they

provide a Theorem, [38, (3.4)], which proves a convergence estimate for EGLMs.

Following the format of that Theorem, we will modify the proof and apply it to EAGLMs

to show that the convergence bounds derived hold for EAGLMs.

3.3.1 Order Conditions

We use the format of the expansion of the solution of the linear differential equation from [38,

Lemma 1.1] in our own convergence analysis.

Lemma 14. [38, Lemma 1.1] The exact solution of the initial value problem

y′(t) = Ly(t) + f(t), t ≥ tn, (3.3.1)

with y(tn) given, has the following representation

y (tn + τ) = eτLy (tn) +
m−1∑
l=0

τ l+1φl+1 (τL)N
(l) (tn) +Rn (m, τ) (3.3.2)

Rn (m, τ) =

∫ τ

0

e(τ−σ)L
∫ σ

0

(σ − ξ)
m−1

(m− 1)!
N (m) (tn + ξ) dξdσ (3.3.3)
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Proof. The proof of this follows from substituting the Taylor expansion of N

N (tn + σ) =

m−1∑
l=0

σl

l!
N (l) (tn) + Sn (m,σ)

Sn (m,σ) =

σ∫
0

(σ − ξ)
m−1

(m− 1)!
N (m) (tn + ξ) dξ

(3.3.4)

into the variation of constants formula

y (tn + τ) = eτLy(tn) +

∫ τ

0

e(τ−σ)Lf (tn + σ) dσ (3.3.5)

Within the framework of EAGLMs, the internal stages and numerical approximation are

defined by

Yni = ecihLyn + h
i−1∑
j=1

aij (hL)Nni + h

q∑
k=1

uik (hL)Nn−k + h
r∑

m=1

wim (hL)hmN (m)
n

Nni = N (Yni)

yn+1 = ehLyn + h

s∑
i=1

bi (hL)Nni + h

q∑
k=1

vk (hL)Nn−k + h

r∑
m=1

zm (hL)hmN (m)
n

(3.3.6)

with q + r = θ − 1. N (i)
n is defined by a linear combination of the available values at a given

step, that is

hiN (i)
n =

∑
j

αijNnj , Nnj ∈
{
Nn−k, N(n−1)i

}
, (3.3.7)

k = 0, . . . , q, i = 1, . . . , s, m = 1, . . . , r

and we introduce the notation

∆N (i)
n =

∑
j

(αijNnj(ŷn)− αijNnj(yn)) (3.3.8)

We also define

Sni(m) =
∑
j

αijSn(m,hω), ω ∈ {−k,−1 + ci} (3.3.9)

k = 0, . . . , q, i = 1, . . . , s

We assume the starting values, y1, . . . , yq and N ′S , . . . , N
(r)
S have been computed before-

hand. Defining the exact solution values,

ŷn = t(tn), Ŷni = y(tn + cih), (3.3.10)

the defects of the internal stages take the form

Dni = Ŷni − ecihLŷn − h
s∑

j=1

aijNn+ci−h
q∑

k=1

uikNn−k−h
r∑

m=1

wimhmN (m)
n (3.3.11)
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and those of the numerical solution are

dn+1 = ŷn+1 − ehLŷn − h
s∑

i=1

biNn+ci−h
q∑

k=1

vkNn−k−h
r∑

m=1

zmhmN (m)
n (3.3.12)

Making use of the expansion of the exact solution (1.3.9) we get the following expansion for

the defects of the internal stage,

Dni =

q∑
l=1

hlΘli (hL) f
(l−1)(tn) +R

(θ)
ni , (3.3.13)

Θli (hL) = cliφl(cihL)−
i−1∑
j=1

cl−1j

(l − 1)!
aij(hL)−

q∑
k=1

(−k)l−1

(l − 1)!
uik(hL)− wli (3.3.14)

and for the defects of the numerical solution we get the expansion

dn+1 =

r∑
l=1

hlΨl (hL) f
(l−1)(tn) + ϱ

(θ)
n+1, (3.3.15)

Ψl (hL) = φl(hL)−
s∑

j=1

cl−1j

(l − 1)!
bj(hL)−

q∑
k=1

(−k)l−1

(l − 1)!
vk(hL)− zl (3.3.16)

The numerical solution will be of stage order θ and quadrature order p if Dni = O(hθ+1) for

1 ≤ i ≤ s and dn+1 = O(hp+1) [38]. Therefore we will require Θli (hL) = 0 for 1 ≤ i ≤ s and

1 ≤ l ≤ θ, and Ψl (hL) = 0 for 1 ≤ l ≤ p. This implies

cliφl(cihL) =
i−1∑
j=1

cl−1j

(l − 1)!
aij(hL)

+

q∑
k=1

(−k)l−1

(l − 1)!
uik(hL) + wli, 1 ≤ i ≤ s 1 ≤ l ≤ q

(3.3.17)

φl(hL) =

s∑
j=1

cl−1j

(l − 1)!
bj(hL) +

q∑
k=1

(−k)l−1

(l − 1)!
vk(hL) + zl, 1 ≤ l ≤ p. (3.3.18)

This “recovers” the EAGLM order conditions (3.2.4) and (3.2.5), as proved in Theorem 3. We

will proceed under the assumption that the scheme satisfies these order conditions. This im-

plies that the remainders, which combine the residuals (3.3.3) and (3.3.4), are defined by

R
(θ)
ni = Rn (θ, cih)− h

i−1∑
j=1

aij (hL)Sn (θ, cjh)

− h

q∑
k=1

uik (hL)Sn (θ,−kh)− h
r∑

m=1

wim (hL)hmSnm(θ)

ϱ
(p)
n+1 = Rn (θ, cih)− h

S∑
i=1

bi (hL)Sn (p, cih)

− h

q∑
k=1

vk (hL)Sn (p,−kh)− h
r∑

m=1

zm (hL)hmSnm(p)

(3.3.19)

The errors are defined by

en = ŷn − yn, Eni = Ŷni − Yni, 1 ≤ i ≤ s (3.3.20)
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so that the stage errors take the form

Eni = ecihLen + h

S∑
j=1

aij∆Nni+h

q∑
k=1

uik∆Nn−k+h

r∑
m=1

wimhm∆N (m)
n +Dni (3.3.21)

and those of the numerical solution are

en+1 = ehLŷn + h
S∑

i=1

bi∆Nni+h

q∑
k=1

vk∆Nn−k+h
r∑

m=1

zmhm∆N (m)
n + dn+1 (3.3.22)

which gives us the recurrence for en

en = e(tn−tθ−1)Leθ−1 +
n∑

l=q

e(tn−tl)Ldl + h
n−1∑
l=q

e(tn−tl+1)L×

 S∑
j=1

bi∆Nli +

q∑
k=1

vk∆Nn−k+
r∑

m=1

zmhm∆N
(m)
l

 , n ≥ θ − 1 (3.3.23)

Within the analytical framework of abstract semilinear parabolic evolution equations, we

will avail of the following key bounds, presented by Ostermann, Thalhammer & Wright [38,

(3.5) and (3.6)]. Appendix A.1 summarises many of the definitions which we use within this

analysis. See [23] for a thorough treatment of the theory of sectorial operators and analytic

semigroups.

The requirement (A.1.2), together withHypothesis 17, renders (1.3.2) a semilinear parabolic

problem [38]. We will make use of the following two bounds from [38, (3.5) & (3.6)].∥∥tv−µetL∥∥
Xv←Xµ

≤ C (3.3.24)∥∥tv−µφl (tL)
∥∥
Xv←Xµ

≤ C (3.3.25)

where 0 ≤ t ≤ T and 0 ≤ µ ≤ v ≤ 1, with a constant C > 0. The bound (3.3.25) is valid of all

l ≥ 1. We also extend assumption [38, (3.11)],

∥aij(hL)∥Xv←Xµ + ∥bi(hL)∥Xv←Xµ + ∥uij(hL)∥Xv←Xµ+

∥vi(hL)∥Xv←Xµ ≤ Ch−v+µ, h > 0, 0 ≤ µ ≤ v ≤ 1 (3.3.26)

to include the wij and zij method coefficients,

∥aij(hL)∥Xv←Xµ + ∥bi(hL)∥Xv←Xµ + ∥uij(hL)∥Xv←Xµ + ∥vi(hL)∥Xv←Xµ+

∥wij(hL)∥Xv←Xµ + ∥zi(hL)∥Xv←Xµ ≤ Ch−v+µ, h > 0, 0 ≤ µ ≤ v ≤ 1 (3.3.27)

which we can verify by applying (3.3.25).

In addition we extend the assumption [38, (3.1) Remark 1], that the function N is locally

Lipschiĵ-continuous

∥N(v)−N(w)∥X ≤ C1(ζ) ∥v − w∥Xα
, ∥v∥Xα

+ ∥w∥Xα
≤ ζ (3.3.28)
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and require that the derivatives N (i) are also locally Lipschiĵ-continuous∥∥∥N (i)(v)−N (i)(w)
∥∥∥
X
≤ C2(ζ) ∥v − w∥Xα

, ∥v∥Xα
+ ∥w∥Xα

≤ ζ (3.3.29)

3.3.2 Proof of Convergence Bound

We are now in a position to present a modified formulation of Ostermann, Thalhammer &

Wright’s proof for [38, Theorem 3.1], applying the results to EAGLMs.

Theorem 15. Under the requirements of Hypothesis 17, assume that EAGLMs of the form (3.3.6),

applied to the initial value problem (1.3.2), satisfy (3.3.28) and fulfill the order conditions as defined

in Theorem 3 and 19. Suppose that N (θ)(t) ∈ Xβ for some 0 ≤ β ≤ α and N (p)(t) ∈ X . Then for

stepsizes h > 0 the estimate

∥y(tn)− yn∥Xα
≤ C

q∑
l=0

∥y(tl)− yl∥Xα
+ Chθ+1−α+β sup

0≤t≤tn

∥∥∥N (θ)(t)
∥∥∥
Xβ

+ Chp sup
0≤t≤tn

∥∥∥N (p)(t)
∥∥∥
X
, tq ≤ tn ≤ T (3.3.30)

holds with a constant C > 0 independent of n and h.

In addition we require that the approximation of hiN
(i)
n , through a linear combination ofNn−k, k ≥

0 (3.3.7), is of order O(hp+i).

Proof. Starting from the EAGLMs form of en (3.3.31), measured in the norm of Xα

∥en∥Xα
≤
∥∥∥e(tn−tθ−1)L

∥∥∥
Xα←Xα

∥eθ−1∥Xα
+

∥∥∥∥∥∥
n∑

l=q

e(tn−tl)Ldl

∥∥∥∥∥∥
+ h

n−1∑
l=θ−1

s∑
i=1

∥∥∥e(tn−tl+1)Lbi(hL)
∥∥∥
Xα←X

∥∆Nli∥X

+ h
n−1∑

l=θ−1

q∑
k=1

∥∥∥e(tn−tl+1)Lvk(hL)
∥∥∥
Xα←X

∥∆Nl−k∥X

+ h
n−1∑

l=θ−1

r∑
j=1

∥∥∥e(tn−tl+1)Lzj(hL)
∥∥∥
Xα←X

hj
∥∥∥∆N

(j)
l

∥∥∥
X

(3.3.31)

we look at the terms involving∆N
(m)
l , these are bounded∑

m=1

∥∥∥e(tn−tl+1)Lzm(hL)
∥∥∥
Xα←X

hm
∥∥∥∆N

(m)
l

∥∥∥
X
≤ Ch(tn − tl)

−α
∑
m=1

hm∥Elm∥Xα
(3.3.32)

Enm ∈
{
en−k, E(n−1)i

}
, k = 0, . . . , q, i = 1, . . . , s.
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In combination with the similar bounds on the∆Nli and∆Nl−k terms as presented in [38] we

have the result

∥en∥Xα
≤ C ∥eθ−1∥Xα

+

∥∥∥∥∥∥
n∑

l=q

e(tn−tl)Ldl

∥∥∥∥∥∥
Xα

+ Ch
n−1∑

l=θ−1

(tn − tl)
−α

(
s∑

i=1

∥Eli∥Xα
+

q∑
k=1

∥el−k∥Xα
+
∑
m=1

hm∥Elm∥Xα

)
. (3.3.33)

Here the constantC > 0 depends on T , but is independent of h. This is the EAGLMs equivalent

of [38, (3.12)].

Likewise, looking at the error of the internal stages (3.3.21)

∥Eli∥Xα
≤
∥∥ecihL∥∥

Xα←Xα
∥el∥Xα

+ h

i−1∑
j

∥aij∥Xα←X ∥∆Nlj∥X

+ h

q∑
k

∥uik∥Xα←X ∥∆Nl−k∥X + h
r∑
m

∥wim∥Xα←X hm
∥∥∥∆N

(m)
l

∥∥∥
X
+ ∥Dli∥Xα

(3.3.34)

and focusing on the additional terms introduced by the EAGLM formulation, those being the

terms involving∆N
(m)
l , we have the bound∑

m=1

∥wim(hL)∥Xα←X hm
∥∥∥∆N

(m)
l

∥∥∥
X
≤ Ch1−α

∑
m=1

hm∥Elm∥Xα
(3.3.35)

which leads us to the estimate

∥Eli∥Xα
≤ C ∥el∥Xα

+ Ch1−α
i−1∑
j=1

∥Elj∥Xα
+ Ch1−α

q∑
k=1

∥el−k∥Xα

+ Ch1−α
∑
m=1

hm∥Elm∥Xα
+ ∥Dli∥Xα

(3.3.36)

From this we follow [38] and insert this relation into (3.3.33), to recover the bound [38, (3.13)]

for EAGLMs,

∥en∥Xα
≤ C ∥eθ−1∥Xα

+ Ch
n−1∑
l=0

(tn − tl)
−α ∥el∥Xα

+ Ch

n−1∑
l=θ−1

s∑
i=1

(tn − tl)
−α ∥Dli∥Xα

+

∥∥∥∥∥∥
n∑

l=q

e(tn−tl)Ldl

∥∥∥∥∥∥
Xα

(3.3.37)

Next we must also estimate the terms involving the defects, (3.3.11) and (3.3.12). The as-

sumption that the order conditions are satisfied implies Dli = R
(q)
li and dl = ϱ

(p)
l , giving the

formulation for the remainders as in (3.3.19). From the condition imposed on hiN
(i)
n , the fol-

lowing bounds on Sn (m,σ) (3.3.4) and Sni(m) (3.3.9),

∥Sl(θ, cjh)∥Xβ
+ ∥Sl(θ,−kh)∥Xβ

+ ∥Snl(θ)∥Xβ
≤ Chθ

∥∥∥f (θ)
∥∥∥
Xβ ,∞

(3.3.38)
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imply that∥∥∥R(θ)
li

∥∥∥
Xα

≤∥Rl(θ, cih)∥Xα
+ h

i=1∑
j=1

∥aij∥Xα←Xβ
∥Sl(θ, cjh)∥Xβ

+ h

q∑
k=1

∥uik∥Xα←Xβ
∥Sl(θ,−kh)∥Xβ

+ h
r∑

m=1

∥wim∥Xα←Xβ
∥Snl(θ)∥Xβ

≤Chθ+1−α+β
∥∥∥f (θ)

∥∥∥
Xβ ,∞

(3.3.39)

and ∥∥∥ϱ(p)l

∥∥∥
X
≤∥Rl−1(p, h)∥X + h

i=1∑
i=1

∥bi∥X←X ∥Sl−1(p, h)∥X

+ h

q∑
k=1

∥vk∥X←X ∥Sl(p,−kh)∥X + h
r∑

m=1

∥zm∥X←X ∥Snl(p)∥X

≤Chp+1
∥∥∥f (p)

∥∥∥
X,∞

(3.3.40)

With these two bounds established we recover the bound [38, (3.14)] which now holds for

EAGLMs.
n−1∑
l=q

∥∥∥e(tn−tl)L∥∥∥
Xα←X

∥∥∥ϱ(p)l

∥∥∥
X
+
∥∥∥ϱ(p)n

∥∥∥
Xα

≤Chp+1
n−1∑
l=q

(tn − tl)
−α
∥∥∥f (p)

∥∥∥
X,∞

(3.3.41)

Having shown that EAGLMs satisfy all the same bounds as EGLMs the results of [38, Theorem

3.1] hold for EAGLMs.

Ostermann, Thalhammer & Wright establish in [38], that the convergence of an EGLM is

min(p, θ + 1), where p is the quadrature order and θ is the stage order. Here, q = θ − 1 steps

are necessary to achieve a stage order of θ. We can see from Theorem 15, that the convergence

of an EAGLM is also min(p, θ + 1), where now, the requirement on the number of steps and

derivative values is q + r = θ − 1.

3.3.3 Equivalence between EGLMs and EAGLMs

We will look at how there is an equivalence between EAGLMs and EGLMs. We will show this

by looking at EGLM322c2 (2.2.6) and EARK321c2 (3.2.30).

Writing EGLM322c2 (2.2.6) out explicitly in the form of (2.2.3) we get,

Y2 =ec2hLyn + h
[(
c2φ21 + c22φ22

)
Nn − c22φ22Nn−1

]
K2 =N (tn + c2h, Y2)

(3.3.42)

yn+1 = ehLyn + h
[(

φ1 +
c2−1
c2

φ2 +
−2
c2

φ3

)
Nn +

(
1

c22+c2
φ2 +

2
c22+c2

φ3

)
K2

+
(
−c

c2+1φ2 − 2
c2+1

φ3

)
Nn−1

]
(3.3.43)
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We can see thatNn and the previous stepNn−1 are both multiplied by a linear combination of

φ-functions. If we now look at EARK321c2 (3.2.30), wriĴen explicitly in the form of (3.2.3) we

get

Y2 =ec2hLyn + h
[
c2φ21Nn − c22φ22N

′
n

]
K2 =N (tn + c2h, Y2)

(3.3.44)

yn+1 =ehLyn + h
[(

φ1 − 2
c22
φ3

)
Nn + 2

c22
φ3K2 +

(
φ2 − 2

c2
φ3

)
N ′n

]
(3.3.45)

If we approximateN ′n by 3
2Nn − 2Nn−1 +

1
2Nn−2, we can see that (3.3.44) and (3.3.45) become

Y2 =ec2hLyn + h
[
c2φ21Nn − c22φ22

(
3
2Nn − 2Nn−1 +

1
2Nn−2

)]
=ec2hLyn + h

[(
c2φ21 − 2

3c
2
2φ22

)
Nn + 2φ22c

2
2Nn−1 − 1

2φ22c
2
2Nn−2

]
K2 =N (tn + c2h, Y2)

(3.3.46)

yn+1 = ehLyn + h
[(

φ1 +
3
2φ2 − 3c2+2

c22
φ3

)
Nn + 2

c22
φ3K2 +(

4
c2
φ3 − 2φ2

)
Nn−1 +

(
1
2φ2 − 1

c2
φ3

)
Nn−2

]
(3.3.47)

which is a 3Ŋᵈ Order EGLM, albeit one which uses two previous steps within the method rather

than just one as (2.2.6) does.

For any EAGLM where the N
(i)
n ’s are approximated by a linear combination of the cur-

rent Nn, and previous steps Nn−j , we can rewrite the scheme as an EGLM. This means, that

for all EAGLMs satisfying that condition on the derivatives, the results of [38, Theorem 3.1]

automatically hold.

3.3.4 Summary

We have introduced in this chapter two new families of EIs. The first family, EARKs, pass

derivatives from one step to the next and are considered to be multi-value schemes. This prop-

erty, together with their multi-stage nature, makes them a special case of EGLMs, though with

the critical distinction of being 1-step methods.

We also introduced in this chapter a broader framework of EAGLMs, this framework al-

lowed us to create a unified representation of the earlier families. We showed that once order

conditions for this family were derived, the order conditions for the other families could be re-

covered as special cases of the EAGLMconditions. A convergence analysis of EAGLMs showed

that they also satisfy the convergence boundswhichOstermann, Thalhammer&Wright proved

for EGLMs.
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Through numerical experiments in Chapter 5, we will show that EARK schemes demon-

strate excellent accuracy performance together with a very efficient implementation. When

we look to further optimizing the implementation of schemes we will see that approximating

the outgoing derivative approximations to sufficient order can limit the optimisation oppor-

tunities. The switch to the EAGLM family provides the additional flexibility to allow one to

construct schemes with the superior accuracy of EARKs, combined with implementations that

outperform EGLMs in computational cost.
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Chapter 4

Stability

In this chapterwe study the stability regions of the families of EIs introduced in the last chapter.

We follow the analysismethod of Cox&MaĴhews [13], that is, we linearise the autonomous

ODE,

u′ = Lu+N(u)

about a fixed point u0 to obtain,

u′ = Lu+ λu (4.0.1)

where λ = N ′(u0).

We then apply a specific EI scheme to (4.0.1) and plot the boundary curves of the stability re-

gions. Comparing these boundary curves allows us to gauge the relativity stability of different

schemes and identify desirable stability properties.
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4.1 Stability Analysis

In numerical analysis stability is ameasure of the extent towhich a numerical scheme gives use-

ful approximations. Stability analysis helps identify the range of step-sizes for which a scheme

provides numerically stable results. We will compare and analyse the stability properties of

some of the methods we have seen so far. In general, the techniques used in this section can

only give an indication of the relative stability of different schemes.

The standard method of analysing stability is to apply the scheme to the test problem

u′ = λu, where u = ur + iui ∈ C (4.1.1)

A discretisation method is applied to (4.1.1) to obtain a homogeneous linear difference equa-

tion,
M∑
k=0

(αkun−k − λ∆tβkun−k) = 0 (4.1.2)

which is solved explicitly. Then we consider a region of the complex plane where the solution

is bounded.

The approach for analysing the stability of schemes which treat the linear and non-linear

parts of the equation separately is developed in [5, 13]. We compute a number of boundary

curves of the stability regions of a more general test problem

u′ = −Lu+ λu (4.1.3)

with each curve corresponding to different values of L. After we discreetise (4.1.3) we can fix

the parameter y = hL and plot the boundary of the respective stability region.

4.2 Comparisons with mixed Explicit-Implicit Schemes

Beylkin, Keiser & Vozovoi [5] studied the stability behaviour of ELP schemes both explicit

and implicit with the stability properties of known implicit-explicit scheme, namely AMAB

schemes. Figure 4.1 reproduces the stability plots for the two mixed explicit-implicit schemes

presented in that paper for fixed y = −2. Citing [19] they note that a method is stiffly stable if

it is consistent in a neighbourhood about the origin and absolutely stable away from the origin

in the left imaginary plane.

They concluded that both explicit and implicit ELP schemes have excellent stability prop-

erties. In particular the stability regions of explicit ELP schemes are reminiscent of classical
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Figure 4.1: Mixed explicit-implicit schemes stability boundaries for y = −2

implicit schemes. They also note that growth of the stability region as L becomes larger is a

very important property for a scheme to be useful, and is a property which the ELP schemes

exhibit.

4.3 Stability of ERKs

Cox & MaĴhews [13] study the stability of several 2ņᵈ-order schemes and in particular, some

linearly implicit schemes such as an AMAB, and the standard Integrating Factor methods;

Integrating Factor/Adams-Bashford Method (IFAB) and Integrating Factor/Classical Runge-

KuĴa Method (IFRK). These are compared with a number of ETDs and ERKs. To perform this

analysis for such composite schemes, we use the same approach as in [5]. We linearise the non-

linear, autonomous ODE test problem (4.1.3) about a fixed point u0, such that Lu0+N(u0) = 0

leading to

u′ = Lu+ λu (4.3.1)

where u is now the perturbation to u0 and λ = N ′(u0). The fixed point u0 is stable if

Re(L+ λ) < 0 (4.3.2)

As noted earlier, this technique can only provide us with a relative comparison of the sta-

bilities of various schemes.

In general, both L and λ are complex so the resulting stability region is four-dimensional.

In order to plot two dimensional stability regions, we will look at two cases. First, by assuming

λ is complex and that L is fixed, negative and real, we can plot the resulting stability regions in

the complex plane. Second we look at the case where L is not fixed and both L and λ are real.
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The analysis is performedby applying a scheme to the test problem (4.1.3). For ERK2 (2.1.19)

with c2 = 1, that results in the following expression,

un+1 = u ehL + h

λ
(

ehL−1
hL − 1

) (
u ehL +

λu (ehL−1)
L

)
hL


+ h

(
λu

(
ehL − 1

hL
−

ehL−1
hL − 1

hL

))
(4.3.3)

then by seĴing r = un+1/un, x = hλ and y = hLwe obtain

r =

(
x y + x2

)
e2 y +

(
y3 +

(
−x2 − 2x

)
y − 2x2

)
ey +

(
x2 + x

)
y + x2

y3
(4.3.4)

In the first case we will fix y < 0 ∈ R. We wish to plot the boundary of the stability region

which occurs when r = 1. To plot this in the complex plane we set r = eiθ and solve for x on

the interval θ ∈ [0, 2π).

We can see in Figure 4.2(a) the stability region boundaries for ERK2 (2.1.19) when y =

−1,−2,−5 respectively. We can identify from the boundary curves that the stability regions

of (2.1.19) are broader than those of the mixed explicit-implicit schemes from Figure 4.1.
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Figure 4.2: ERK2 (2.1.19) stability graphs

For the second case, we fix r = 1, and plot the growth of the real extents of the stability

regions against a varying y. For (2.1.19), the solutions to (4.3.4) are

x = − y2

ey − y − 1
x = −y (4.3.5)

and Figure 4.2(b). shows a graph of those solutions. We can see as y grows in magnitude the

stability regions real extents also grow approximately linearly.

Figure 4.3(a) reproduces theCox andMaĴhewplots for ETD2 (1.3.14). The region of stability

is significantly smaller than that of ERK2 (2.1.19) and Figure 4.3(b) highlights the slower growth

of the real extents of that stability region as y grows.
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Figure 4.3: ETD2 (1.3.14) stability boundaries

Finally in [27], Krogstad investigated the stability regions of a number of fourth order

schemes, notably his own ERK4 Krogstad (5.3.5), and some multi-step generalization of IF

methods, also developed by him. He came to the conclusion that (5.3.5) had the largest sta-

bility region.

He also suggests that, since the generalized IF methods touch the imaginary axis only at a

point, they will not perform well for equations where the eigenvalues of the linearisation lie

on the imaginary axis.

4.4 Unconditional Stability of ERKs

In [32],Maset &Zennaro studied the stability of ERKmethods and, in particular, they looked at

the necessary requirement for such methods to have unconditional stability. Before looking at

their results, we need to introduce some notation.Wewill use µ(L) to represent the logarithmic

norm of L, and γ for Lipschiĵ condition of the function N(t, (t)) with respect to the second

parameter

∥N (t, y1)−N (t, y2)∥ ≤ γ ∥y1 − y2∥ . (4.4.1)

They consider the linear system (1.3.2) at two different starting values, u0 and v0 such that

u′ (t) = Lu (t) +N (t, u (t)) , t ≥ 0, u (t) = u0, (4.4.2)

and

v′ (t) = Lv (t) +N (t, v (t)) , t ≥ 0, v (t) = v0, (4.4.3)

To guarantee contractivity for the system, we require that the condition

µ(L) + γ 6 0 (4.4.4)
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must hold. This implies

∥δ (t)∥ 6 ∥δ0∥ , t > 0 (4.4.5)

where

δ(t) = u(t)− v(t)

δ0 = u0 − v0

for all u0 and v0. Also, if we replace the6 in (4.4.4) with< then the system is asymptomatically

stable, that is

∥δ (t)∥ → 0 t→ −∞ (4.4.6)

It is worth noting also, that this result, when applied to (4.1.3), reproduces the requirement

(4.3.2) identified earlier.

Applying ERKs with stepsize h to the linear system at different starting values, (4.4.2) and

(4.4.3), the differences

δn+1 = un+1 − vn+1

∆i
n+1 = Ui − Vi, i = 1, . . . , s

where

un+1 = ehLun + h
s∑

i=1

bi (hL)N(Ui)

Ui = ecihLun + h
i−1∑
j=1

aij (hL)N(Uj)

and vn+1 and Vi are defined similarly. Then δn+1 and∆i
n+1 satisfy the following,

δn+1 =ehLδn + h
s∑

i=1

bi (hL) [N (Ui)−N (Vi)] (4.4.7)

∆i
n+1 =ecihLδn + h

i−1∑
j=1

aij (hL) [N (Uj)−N (Vj)] (4.4.8)

LetM be a class of matrices closed under positive scalar multiplication. The stability prop-

erties are then studied on the class C(M) with L ∈ M. We introduce, for α 6 0, the (1 × v)-

vector b (α) with

bi (α) = sup
M∈M, µ(M)6α

∥bi (M)∥ , i = 1, . . . , v (4.4.9)

and the (s× s)-matrix Ā(α)whose elements are

aij (α) = sup
M∈M, µ(M)6α

∥aij (M)∥ , i, j = 1, . . . , s (4.4.10)
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Maset & Zennaro then give a bound for ∥δn+1∥wriĴen in terms of ∥δn∥which holds when

L ∈M. If

∥δn+1∥ 6 eµ(hL) ∥δn∥+ hγ

s∑
i=1

∥bi (hL)∥
∥∥∆i

n+1

∥∥ (4.4.11)

∥∥∆i
n+1

∥∥ 6 eciµ(hL) ∥δn∥+ hγ

i−1∑
j=1

∥aij (hL)∥
∥∥∥∆j

n+1

∥∥∥ (4.4.12)

then

∥δn+1∥ 6 ehµ(hL) ∥δn∥+ hγb (hµ (L))∆n+1, (4.4.13)(
I − hγA (hµ (L))

)
∆n+1 6 echµ(hL)Is ∥δn∥ (4.4.14)

Noting here that the matrix A (hµ (L)) is strictly lower triangular, they obtain the bound

∥δn+1∥ ≤ S̄ (hµ (L) , hγ) ∥δn∥ (4.4.15)

where

S̄ (α, β) := eα +
s−1∑
k=0

βk+1b̄ (α) Ā (α)
k
ecα1v, α ∈R and β ≥ 0 (4.4.16)

and prove the following

Lemma 16. If an explicit Exponential Runge-KuĴa Method (ERK) satisfies

S̄ (−β, β) ≤ 1, β ≥ 1 (4.4.17)

then it is unconditionally contractive and asymptotically stable on the class C (M) with respect to the

norm ∥·∥

The parameters α and β to function S̄ can be related back to stability plot analysis as they

correspond to the variables y = hL and x = hλ respectively.

Since S̄ is an increasing function in it’s first parameter, an unconditionally stable scheme

remains that way so long as α + β ≤ 0. Therefore when looking at stability plots for such

schemes we would expect r = un+1

un
≤ 1 for all x ≤ −y.

Example ERK

Maset andZennaro also extend these results for the general case to the two ERKs, both ofwhich

we saw earlier (Section 2.1.3). The first, ERK2 (2.1.19),

0 I

cα cαφ1,2 ec2hL

φ1 − 1
cα
φ2

1
cα
φ2
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and ERK2 (2.1.21),
0 I

cβ cβφ1,2 ecβhL

(1− 1
2cβ

)φ1
1

2cβ
φ1

and they demonstrate that they are unconditionally stable when cα ≥ 1 and cβ ≥ 1
2 .
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This result reinforces the stability region plots, see Figures 4.4(a) and 4.4(b), which show

that the stability regions of the respective scheme contain the circular region x ≤ −y only

when the conditions on cα and cβ are met.

4.5 Stability of EGLMs

In Section 2.2 that Ostermann, Thalhammer & Wright [38], introduced the family of EGLMs,

which combine exponential explicit Runge-KuĴa methods with exponential Adams-Bashforth

methods.

They provide a convergence analysis for this class of schemes and use those results to con-

struct some example methods. By applying our analysis through boundary plots to one such

method, EGLM322c2 (2.2.6), we can see how the many desirable properties mentioned earlier

are present. Figures 4.4(c) and 4.4(d) show those plot for (2.2.6).

We can see from Figure 4.4 that the stability region of EGLM322c2 (2.2.6) extends back into

the negative complex plane. This is a property observed in the ERK example, but not in ETD2

plot.
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Figure 4.4: EGLM322c2 (2.2.6) Stability Plots

4.6 Stability of EARKs

Finally, we can apply this analysis to the new EARK schemes. In performing the analysis we

use previous steps to approximate the derivatives of N needed by the methods. Figure 4.5

plots both the stability regions for EARK321c2 (3.2.30). Note that the growth of the stability

regions is again linear with L. In this particular case the value of N ′ was approximated by

−2Nn−2 +
1
2Nn−1 +

2
1Nn = N ′ +O(h3).
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Figure 4.5: EARK321c2 (3.2.30) Stability Plots

Comparisons with earlier methods

In geĴing a beĴer handle on the comparative stabilities of the schemes seen so far, we produce

some plots with the stability regions of different schemes ploĴed side-by-side for fixed hL = y.

Figure 4.6 shows the two primary 3Ŋᵈ order schemes; EGLM322c2 (2.2.6) and EARK321c2 (3.2.30)

for y = 20.
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It is evident here that the EARK scheme has a smaller stability region than the EGLM.How-

ever given that EARK schemes have a lower computational cost per step over EGLMs, we can

scale the EARK region by the savings in φ-vector products. This is similar to a technique used

by Butcher in [8] where he scaled the stability regions relative to the number of internal stages

of the classical schemes being compared. Figure 4.7 shows that new stability region and we

can see now that the real axis stability extents of the EARK scheme exceed those of the EGLM

scheme.
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Figure 4.6: EGLM322c2 (2.2.6) and EARK321c2 (3.2.30) side-by-side stability regions
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4.7 Summary

We compared the stability region of ERK2 (2.1.19) with that of ETD2 (1.3.14) and showed that

the region for ETD2 was significantly smaller, in particular with regards to its extension into
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negative complex plane. This result supported what we expected from literature; that ERKs

have superior stability properties over ETDs.

By performing the same stability analysis for EGLM322c2 (2.2.6) and EARK321c2 (3.2.30),

we observed that both families of methods also exhibited stability regions extending into the

negative complex plane. This indicated that both possessed similar stability properties to those

of ERKs. In addition, our study showed that the superior performance of EARKs offset their

slightly weaker stability properties compared with EGLMs.
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Chapter 5

Numerical Experiments

In this chapter we study the computational costs involved in implementing EIs. To do this we

• Study the CPU and memory costs associated with the φ-functions. These functions rep-

resent a boĴleneck for all EIs and we look at the different approaches which have been

developed to compute the matrix exponential and the related φ-functions.

• Analyse the relative per-step accuracy, and the per-step cost, of the schemes introduced

earlier. We run numerical tests, ploĴing accuracy against stepsize, to visualise the con-

vergence orders of a wide selection of schemes. We also analyse the computational costs

involved when assuming an optimal implementation.

• Review the families of schemes from a variable stepsize perspective and we discuss any

changes needed to ensure that the schemes can cope in a variable stepsize environment.

• Look at local truncation errors and the different approaches to estimating it. We use one

such approach, known as embedding, to construct an EGLM and EARK scheme which

produce local truncation errors estimates. We use this estimate to guide an adaptive step-

size controller.

• Implement a complete adaptive integrator and perform a comprehensive benchmark

against a suite of test problems. We see that an EARK-based scheme is the best perform-

ing EI, and on large problems it outperforms Matlab’s ODE15s.

All numerical experiments were performed in Matlab 2010b 64bit running on Windows 7

x64. The CPU was an Intel Core 2 Quad Q9450 clocked at 2.66GHz and the system had 8GB of

RAM.
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5.1 Test Problems

We have selected a number of test problems to help determine the relative rankings of the EIs

seen so far, and demonstrate the superior performance of EAGLMs.

5.1.1 The Kuramoto-Sivashinsky Equation

The Kuramoto-Sivashinsky Equation is a 1D PDE of the form

yt = −yxx − yxxxx − yyx (5.1.1)

with periodic boundary conditions and with the initial condition,

y(0, x) = cos
(

1
16

) (
1 + sin

(
1
16

))
(5.1.2)

with x ∈ [0, 32π]. The PDE exhibits complex dynamical behaviour and which arises in a great

number of applications [1]. It is an example of deterministic chaos [26].
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Figure 5.1: The 1D Kuramoto-Sivashinsky Equation Solution (5.1.1)

The second-derivative term acts as an energy source and destabilises the system, while the

fourth-derivative term has a stabilising effect. The non-linear term acts to transfer energy for

low to high wavenumbers [26].

We avail of the EXPINT package’s implementation [4, Section 4.2.3]. The code uses a Fourier

spectral discritisation, which results in a diagonal L matrix. This linear part of the problem is

very stiff due to the fourth derivative [13].
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5.1.2 Brusselator System

One of the key test problems we use for the purpose of studying the variations in local trunca-

tion error, is the Brusselator System [21]. It models diffusion in a chemical reaction

u′i = 1 + u2
i vi − 4ui + α (N + 1)

2
(ui−1 − 2ui + ui+1)

v′i = 3ui + u2
i vi + α (N + 1)

2
(vi−1 − 2ui + vi+1)

(5.1.3)

and is solved on the time interval [0, 10]with α = 1/50 and initial conditions,

ui(0) = 1 + sin(2πxi)

vi(0) = 3

 with xi =
i

(N + 1)
, for i = 1, . . . , N (5.1.4)

There are 2N equations in the system, but the Jacobian is banded with a constant width 5 if the

equations are ordered as u1, v1, u2, v2, . . .. As N increases, the problem becomes increasingly

stiff.
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Figure 5.2: The Brusselator System Solution (??)

Figure 5.2 shows a rendering of the solutions of u and v. Our implementation is based on

Matlabs BRUSSODE.

5.1.3 The Allen-Cahn Equation

The Allen-Cahn equation is a 1D parabolic PDE

yt = λyxx + y − y3, (5.1.5)

with initial condition,

y(0, x) = 0.53x+ 0.47 sin(−1.5πx)

and boundary conditions,

y(t,−1) = −1, y(t, 1) = 1
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Figure 5.3: The Allen-Cahn Equation (5.1.5)

Looking at the illustration of the problem in Figure 5.3 we can see that it exhibits interesting

behaviour about t = 37. Here the solution switches abruptly, from beingmetastable, to a lower

energy state [12].

We make use of the implementation supplied by the EXPINT Matlab package [4, Section

4.2.6]. The boundary conditions are handled by defining, y = w + x, and working with w,

giving us

wt = λwxx + (w + x)− (w + x)
3

w0 = 0.47 (−xi + sin (−1.5πxi))
(5.1.6)

which has homogeneous boundary conditions, with x ∈ [−1, 1]. The use of a Chebyshev dif-

ferentiation matrix for discretising the linear part, λwxx, means that the Lmatrix is dense.

5.1.4 Hochbruck & Ostermann Parabolic PDE

Themain test problemwewill use in fixed stepsize experiments is theHochbruck&Ostermann

Parabolic PDE [25, Problem 6.1]

yt = yxx +
1

1 + y2
+Φ, (5.1.7)

with x ∈ [0, 1], and initial condition,

y(0, x) = x(1− x), (5.1.8)

subject to homogeneous Dirichlet boundary conditions. The function Φ is chosen such that the

exact solution is y = x(1− x)et. The problem is discritised in space with n = 200,∆x = 1
n ,

y′i = Ay +
1

1 + y2i
+ g(t)

yi(0) =
xi

n

(
1− xi

n

) (5.1.9)
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where 1 ≤ i ≤ n−1, andwe integrate from t = 0 to t = 1. We use the implementation provided

by the EXPINT Matlab package [4].

5.1.5 The Reaction Diffusion Advection (RDA) 2D Equation

The 2DRDA is another stiff problem. TheLmatrix is a pent-diagonal, finite differences, matrix.

The equation describes reaction-diffusion-advection

ut = ε (uxx + uyy)− α (ux + uy) + ρu
(
u− 1

2

)
(1− u) (5.1.10)

on the unit square Ω = [0, 1]
2, subject to homogeneous Neumann boundary conditions with

the initial condition

u(t = 0, x, y) = 0.3 + 256 (x(1− x)y(1− y))
2
. (5.1.11)

This problem was presented by Caliari & Ostermann [10]. We will run our experiments for

similar combinations of parameters as used by Caliari & Ostermann.
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Figure 5.4: Rendering of 2D RDA Equation with ε = 0.05, α = −1, ρ = 100

Being a 2D problem, the L matrix can be very large, even for moderately coarse mesh dis-

cretisation, and depending on the integrator, can have excessive memory requirements.

5.1.6 The Gray-ScoĴ Equation

The Gray-ScoĴ equation represents a process known as cubic autocatalysis, and is given by the

equations 
kf−→A+ 2B

k1−→ 3B, r = k1ab
2

B
k2−→C, r = k2b

(5.1.12)
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where kf , k1 and k2 are positive rate constants [22]. Themodel, in non-dimensional form, leads

to the following system of reaction-diffusion equations.

ut = Duuxx − k1uv
2 + kf (1− u) , (5.1.13)

vt = Dvvxx + k1uv
2 − k2v (5.1.14)

for the concentrations u(t, x) and v(t, x) of U and V respectively. Here kf = α, k1 = 1 and

k2 = α+ β.Du andDv are the diffusion coefficients of the chemicals U and V , and are usually

chosen so that the ratio Du

Dv
= 2 [4].

The problem is solved on [0, L]d, where d is the space dimension and L = 2.5, subject to

homogeneous Neumann boundary conditions. For the 1D problem, the initial conditions, with

f = −150, are,

u(0, x) = 1− 1

2
e
f
(
x−L

2

)2

v(0, x) =
1

2
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Figure 5.5: The 1D Gray-ScoĴ Equation (5.1.13) for u(t, x)

The initial conditions of the 2D problem are

u(0, x, y) = 1− e
f
(
x−L

2

)2
+
(
y−L

2

)2

v(0, x, y) = e
f
(
x−L

2

)2
+2

(
y−L

2

)2

and those of the 3D problem are

v(0, x, y, z) = ef(x−L)2+10(y−L)2+10(z−L)2

u(0, x, y, z) = 1− v0.
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5.2 Computing φ-functions

Problems arise in implementing Exponential Integrators when some of the eigenvalues of the

matrix,A, are close to zero. The first of two of the complications that occur are rounding errors

introduced into the calculation due to cancellation among the scheme coefficients. Secondly it

becomes impractical to use the explicit form of the φ-functions as the matrix A is, or is close to

being, singular.

In addition, calculating the exponential of a matrix is not an easy task, computationally, in

its own right [36]. If thematrix exponential is computed explicitly then the resultantmatrixwill

typically not retain any of the sparse properties of the original A, [36] making this approach

unsuitable for very large matrices due to excessive storage requirements.

To tackle these difficulties a number of approaches have been developed that work with

the application of the matrix exponential on a vector, eA × v, without generating eA explicitly.

This technique lends itself nicely to the large sparse matrices we expect to get from spatial

discretisations of PDE’s.

5.2.1 Padé approximations

Simply computing the φ-functions directly is not practical when the norm, ∥A∥, is small, as the

results will be compromised due to cancellation errors. Alternatively, one could use the Taylor

expansion

φ1(A) = 1 +
A

2
+

A2

3!
+

A3

4!
+ · · · (5.2.1)

and this will work well for small ∥A∥. However when the eigenvalues of A are large, this ap-

proach proves too inaccurate. Cox & MaĴhews proposed using a cut-off in terms of the eigen-

values, to switch between the two methods. They noted however that this is not always prac-

tical, in particular both methods suffer from inaccuracies around the switch-over point [13].

A well known approach when concerned with just computing the matrix exponential com-

bines Padé approximations with repeated scaling and squaring [35]. Here the (p, q) Padé ap-

proximation to eA is given by

Rpq(A) = [Dpq(A)]
−1

Npq(A),
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where

Npq(A) =

p∑
i=0

(p+ q − j)!p!

(p+ q)!j! (p− j)!
Li,

Dpq(A) =

q∑
j=0

(p+ q − j)!p!

(p+ q)!j! (p− j)!
(−A)j

This Padé approximation alone can only be used if ∥A∥ is sufficiently small, if this is not

the case the technique becomes expensive and loses accuracy [31]. These difficulties can be

controlled however by exploiting a fundamental property of the exponential function

eA =
(
e

A
m

)m

The idea is to chose m to be a power of 2 for which e
A
m can be efficiently computed. The

matrix
(
eA/m

)m can then be calculated by repeated squaring. Ifm is chosen to be the smallest

power of 2 such that ∥A∥m 5 1 then e
A
m can be computed with Padé approximations.

Expanding on this method Hochbruck, Lubich & Selhofer [24] applied this technique to the

1ŋᵗ φ-function by exploiting the property that

φ1(2x) =
(ex + 1)φ1(x)

2

For the higher φ-functions, φk when k > 1, reversing the scaling becomesmore difficult but

is still possible. The implementation within the EXPINT package makes use of the relations

φ2k(2A) =
1

22k

φk(A)φk(L) +
2l∑

j=k+1

2

(2k − j)!
φk(A)

 , (5.2.2)

φ2k+1(2A) =
1

22k+1

φk(A)φk+1(A) +
2k+1∑
j=k+2

2

(2k + 1− j)!
φk(A) +

1

j!
φk+1(A)

 (5.2.3)

to undo the scaling [4]. Unfortunately, as can be seen in Table 5.1, by using this approach the

work needed to compute φk increases as k increases.

Fn. 3-point 1D FD Matrix, 512× 512 5-point 2D FD Matrix, 1024× 1024

φ1 56.2 15.7

φ2 84.3 25.3

φ3 112.7 35

φ4 142.1 44.9

Table 5.1: Padé timings in seconds using PHIPADE from the EXPINT package, h = 1× 10−2
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5.2.2 Krylov Subspace Methods

Krylov subspace methods for approximating the action of a matrix exponential on a vector

have been around for a long time and are seen as a very promising approach. In the late eighties

and early nineties a number of authors pioneered this technique, notably Friesner, Tuckerman,

Dornblaser & Russo [17], and Gallopoulos & Saad [18].

EXPOKIT Krylov Implementation

The popular software package, EXPOKIT [44], from Sidje provides codes in Fortran and Matlab

source for performing this calculation, for both the operations of the matrix exponential and

that of the first φ-function, upon a vector using the Krylov subspace approach.

The idea behind Krylov methods is to approximate the vector φk(A)v, which resides in the

large space Rn, within the smaller space Rm. This Krylov space,

Km = span
{
v,Av,A2v,A3v, . . . , Am−1v

}
(5.2.4)

is the smaller subspace we wish to work with, but unfortunately the vectors Ajv form a bad

basis as they all point in nearly the same direction of the dominant eigenvector.

The solution is to use the Gram-Schmidt procedure to generate an orthonormal basis of the

Krylov space

Km = span {v1, v2, . . . , vm} (5.2.5)

Now taking Vm to be the n × m matrix whose columns are v1, v2, . . . , vm then the m × m

matrixHm = V T
mAVm is the projection of the action of A on the Krylov subspace. Note that the

matrix Hm is Hessenberg. Also if the matrix A is symmetric then Hm is both symmetric and

Hessenberg, meaning that it is tridiagonal.

The next step is to approximate φk(A)v by φk(VmHmV T
m )v. Since we know that V T

mVm = Im

and VmV T
mv = v we have

φk(VmHmV T
m )v = Vmφk(Hm)V T

mv (5.2.6)

Additionally we note that V T
mv = βe1, where β = ∥v∥ and e1 is the first standard basis vector,

which leads us finally to the approximation

φk(A)v ≈ φk(VmHmV T
m )v

≈ βVmφk(Hm)e1

(5.2.7)
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For example a 1024× 1024matrix from a standard 3-point finite-differences discritisation,

A = 10252



−2 1

1 −2 1

. . . . . . . . .

1 −2 1

1 −2



For A the EXPOKIT Krylov code constructs the following m × m projection matrix of the

action of A onto the Krylov subspace.

Hm =



−0.001 0.0004 1 0 0

0.0004 −1.23 11.33 0 0 0

11.33 −2α α

α −2α α

. . . . . . . . .
...

...
...

α −2α α

α −2α 0 0 0

0 0 1 0

0 0 1

0 0



, α =
10252

10000

wherem, the user specified subspace dimension, is in this case 45.

PHIPM Krylov Implementation

The EXPOKIT implementation is limited by its use of a fixed Krylov subspace dimension and by

the fact that it can only be used to compute φ1. This means that the user is required to be able

to estimate the optimal subspace dimension prior to using the methods, in addition the lack of

support for higher φ-function restricts its use to the 1ŋᵗ order ETD scheme.

To tackle the first limitation Hochbruck, Lubich & Selhofer [24] proposed an approach to

dynamically adapt the size of the subspace. In a recent paper, Niesen & Wright developed a

Krylov method along with accompanying Matlab code for calculating eA and the higher order

φ-functions [37]. This implementation, which we refer to as PHIPM, addresses a number of the

shortcomings of the EXPOKIT implementation.

Their solver combines time-stepping ideas [44] with the approach proposed in [24] for

adapting the subspace dimension. Crucially the PHIPM code works on a full linear combina-
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tion of φ-functions upon input vectors v0, . . . , vp,

eAv0 + φ1(A)v1 + φ2(A)v2 + · · ·+ φp(A)vp (5.2.8)

during a single call to the code. This allows it to compute the result of an entire stage of an

exponential scheme very efficiently. Table 5.2 presents some computational timings for two

common problem matrices. The final row, ”All”, refers to the calculation of a full linear com-

bination up to φ4,

ehLv0 + hφ1(hL)v1 + h2φ2(hL)v2 + h3φ3(hL)v3 + h4φ4(hL)v4 (5.2.9)

(a) 3-point 1D FD Matrix, 512× 512

Fn. Error Timing

hφ1 2.4026× 10−15 0.108

h2φ2 4.248× 10−17 0.094

h3φ3 9.7932× 10−17 0.103

h4φ4 1.0567× 10−16 0.071

All 1.0021× 10−12 0.118

(b) 5-point 2D FD Matrix, 1024× 1024

Fn. Error Timing

hφ1 1.9255× 10−16 0.004

h2φ2 5.4287× 10−16 0.007

h3φ3 1.1915× 10−15 0.003

h4φ4 1.9057× 10−15 0.006

All 1.6653× 10−13 0.004

Table 5.2: PHIPM at tolerance 1× 10−13 with h = 1× 10−2

5.2.3 Real Leja Points Method

Krylov subspacemethods are a class of polynomialmethods.An alternative class of polynomial

methods is based on direct interpolation or approximation of the corresponding scalar analytic

function on the spectrum of the relevant matrix.

To compute the matrix exponential through the use of polynomial methods, denote the

characteristic polynomial of A by c(z)where

c(z) = det(zI −A) = zn −
n−1∑
k=0

ckz
k

From the Cayley-Hamilton theorem, which states that every square matrix is annihilated by its

characteristic polynomial, we can say that c(A) = 0 and hence that

An = c0I + c1A+ · · ·+ cn−1A
n−1

It follows that any power of A can be expressed in terms of I, A, . . . , An−1

Ak =
n−1∑
j=0

βkjA
j
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This implies that etA is a polynomial in Awith analytic coefficients in t

etL =

∞∑
k=0

tkAk

k!
=

∞∑
k=0

tk

k!

n−1∑
j=0

βkjA
j


=

n−1∑
j=0

[ ∞∑
k=0

βkj
tk

k!

]
Aj

We are then required to generate the coefficients βkj . Alternatively, if we can generate an-

other set of matrices {A0, . . . , An−1} which span the same subspace as I, A, . . . , An−1 then the

analytic functions βj exist such that

etA =

n−1∑
j=0

βj(t)Aj (5.2.10)

which may be easier to generate.

Bergamaschi & Vianello compared Chebyshev series expansions against the then existing

Krylov based methods for the matrix exponential of large, sparse, symmetric matrices. They

noted that the Chebyshev series approach represented a viable alternative to Krylov methods

highlighting in particular the inherent simplicity of Chebyshev, which opens the door to effi-

cient implementations and optimising storage requirements [3].

Later Bergamaschi, Vianello & Caliari looked at applying polynomial methods to the φ-

functions. They proposed and analysed the Real Leja Points Method (ReLPM) approach which

uses pseudo-spectral estimates via families of confocal ellipses.

The ReLPM code estimates the spectral focal interval by Arnoldi approximation or Gersh-

gorin’s theorem, either of which will provide a polynomial approximation with similar be-

haviour [11]. The polynomial is then interpolated via Newton interpolation, not at uniform

points but rather on real Leja sequences of the corresponding focal intervals. This guarantees

maximal, and therefore, superlinear convergence [2].

The three authors together with Martínez, then compared the ReLPM method against the

Krylov implementation from EXPOKIT and showed superior performance in all tests [2].

Caliari & Ostermann employed the ReLPM method in Rosenbrock-type integrators up to

order 4. They presented numerical tests in bothMatlab and FORTRANdemonstrating excellent

performances [10]. TheMatlab implementation tested is the onewe used in our own numerical

experiments. It is suitable for computing φk(L)v products for k = 1, 2, 3, 4.
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(a) 3-point 1D FD Matrix, 512× 512

Fn. Error Timing

hφ1 1.3807× 10−13 0.138

h2φ2 6.0957× 10−14 0.146

h3φ3 1.7204× 10−15 0.154

h4φ4 4.3039× 10−15 0.161

All 1.9003× 10−12 0.609

(b) 5-point 2D FD Matrix, 1024× 1024

Fn. Error Timing

hφ1 3.4694× 10−17 0.011

h2φ2 1.0156× 10−16 0.012

h3φ3 7.0255× 10−17 0.014

h4φ4 1.6887× 10−15 0.015

All 4.5519× 10−14 0.05

Table 5.3: ReLPM at tolerance 1× 10−13 with h = 1× 10−2

5.2.4 Contour Integration

Polynomial based methods are not the only techniques being developed. One alternative ap-

proach is concerned with using ideas from complex analysis. Kassam & Trefethen looked at

evaluating

φk (z) =
1

2πi

∫
Γ

φk (s)

s− z
ds (5.2.11)

over a contour Γ in the complex plane [26].

The contours they worked with were circles of radius 1 centered on z far away from the

origin. In the matrix case the contour must enclose the eigenvalues of z. The technique can be

generalised to the non-diagonal matrices

φk (z) =
1

2πi

∫
Γ

φk (z) (sI −A)
−1

ds (5.2.12)

However the amount of computational work becomes greatly increased as a number of matrix

inverses must be calculated.

Their approach can also be extended to the more desirable action of the φ-functions upon

a vector by evaluating

φk (z) b =
1

2πi

∫
Γ

φk (z) (sI −A)
−1

bds (5.2.13)

The matrix inverses are still needed for non-diagonal matrices.

Kassam&Trefethen concentrated on a constant time stepping exponential integratorwhere

the φ-functions were explicitly evaluated. As such, the computationally expensive work only

needed to be done once prior to themain time-stepping loop. Crucially, this approach does not

extend to the variable-step case, where the matrix L can change at each time step.

The circular contours used by Kassam & Trefethen are not the only types which have been

looked at. For non-diagonal matrices, alternative contours which enclose the spectrum of the
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matrix are necessary. Here, it is important to note that, in the case of the matrix exponential

function, the integral

f(t) =
1

2πi

∫
Γ

eztF (z)dz (5.2.14)

where

F (z) = (zI −A)−1f0

is also that of the inverse Laplace transform

It is known as the Bromwich integral where Γ, the contour of integration is initially the

Bromwich line Re(z) = σ. The parameter σ should be large enough such that all the eigenvalues

of A lie in the half-plane Re(z) ≤ σ [46].

As it is, (5.2.14) is not suitable for numerical integration. One issue here is that the exponen-

tial factor is highly oscillatory on the Bromwich line. Secondly F (z) typically decays slowly.

Originally, Talbot suggested solving these issues by deforming the Bromwich line into a

contour and presented an approach based on a cotangent contour which can be expressed as

γ : z(θ) = σ + µ(θ cot θ + viθ), −1π 6 θ 6 π (5.2.15)

Talbot also devised a numerical method for the inversion using trapezoidal andmidpoint rules

[45].

Weideman [46] optimised Talbot’s method by finding near to optimal parameters to define

a closely related contour

Γ : z(θ) = σ + µ

(
1 +

2θ2

θ2 − π2
+ viθ

)
, −1π 6 θ 6 π (5.2.16)

This contour is mentioned in Talbot’s original paper [45] and is easier to analyse, though it is

noted that Talbot’s contour offers superior accuracy.

Later, Trefethen & Weideman looked at two alternative contours; a parabolic and a hyper-

bola, and they determined the optimal parameters to define these contours [47]. The conver-

gence achieved with these near optimal parameters for the cotangent, parabolic and hyperbola

contours are O(2.85−N ), O(3.20−N ) and O(3.89−N ) respectively for the trapezoid rule.

Rational Approximations

In [30] Ya Yan Lu proposed the use of uniform rational Chebyshev approximations. For the

matrix exponential case, the method computes the largest eigenvalue of T , λ1, and then ap-

proximates eT by a Chebyshev rational approximation of eT−λ1I , seeing as

eT = eλ1eT−λ1I
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and then calculating eA by

eA = QeTQT (5.2.17)

Lu extends this approach in [31] to computing the φ functions, though still only for sym-

metric matrices.

Schmelzer, Trefethen & Weideman investigated the use of this technique to optimise the

more general case of arbitrarily shaped contours. They claim that, when using rational ap-

proximations, a convergence rate approximately twice as fast, O(9.28903−N ), can be achieved.

Some numerical results to support that claim can be seen in Table 5.4, which compares the pre-

sented Matlab code for contour integration [41, Figure 3.2] against code for the method of best

rational approximations [41, Figure 4.4].

Matrix Dimension Contour Integration Rational Approximations

2401× 2401 0.48 0.23

9801× 9801 2.35 1.04

39601× 39601 12.79 5.66

Table 5.4: Computational timings for eLv in seconds

However, there is a caveat; the rational approximations, though faster in a number of situ-

ations, are noted to be sensitive to small changes in the problem type or parameter [41].

A weakness identified by Lu is that, for best rational approximations the coefficients are

hard to compute. However Schmelzer, Trefethen & Weideman utilise the Carathéodory-Fejér

method to produce approximate functions to the true best rational approximations. The ap-

proximate functions are accurate enough that they can be considered exact in practise. They

present, in that paper, a Matlab function for computing eA.

Schmelzer & Trefethen adapted this Matlab code to compute the φk functions making the

approach applicable to Exponential Integrators [42]. As it is common within the Exponential

Integrators to require the matrix vector product for several φ-functions they suggest the reuse

of common poles for φ1, . . . , φk. Using that approach the number of LU decompositions can

be reduced by a factor of 2.

They make use of a recurrence relation

r(l+k)(z) =

n∑
j=1

cjz
−1
j

z − zj
, k ∈ Z (5.2.18)

for rational approximation using common poles. Though not optimal, the common poles are

proved to be sufficiently so on the negative real axis. In numerical experiments, they note an

actual typical increase of efficiency by a factor of 2 to 3.5 [42].
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Nonetheless, it must be emphasised that in variable step integration, for non-diagonal ma-

trices, a number of matrix inverses must be computed at each time-step. In our numerical ex-

periments one can see that this is a crucial weakness of the approach and for a number of

problems it is simply inappropriate to use.

(a) 3-point 1D FD Matrix, 512× 512

Fn. Error Timing

hφ1 9.4039× 10−15 0.003

h2φ2 6.1826× 10−15 0.001

h3φ3 7.7083× 10−16 0.001

h4φ4 1.9599× 10−16 0.001

All 1.6560× 10−12 0.007

(b) 5-point 2D FD Matrix, 1024× 1024

Fn. Error Timing

hφ1 1.1345× 10−15 0.101

h2φ2 9.5589× 10−15 0.045

h3φ3 1.1189× 10−15 0.033

h4φ4 2.8185× 10−16 0.022

All 9.9032× 10−14 0.201

Table 5.5: Rational Approximations with h = 1× 10−2

5.2.5 Conclusions

Having put the different approaches to φ-functions computations through a number of nu-

merical tests we can begin to draw some concrete conclusions on their relative performances.

The crucial observation which comes from Table 5.1, is that aĴempting to compute the matrix

exponential or φ-functions explicitly is not at all practical and this supports the existing liter-

ature on the subject. In addition to the excessive CPU time costs there is the issue of memory

usage and indeed the 1024× 1024 pent-diagonal matrix from the 2D RDA problem was at the

limit of what our desktop PC could work with.

Clearly the way forward is to follow the recommended approach of working with the oper-

ation of the φ-functions upon a vector. Tables 5.2, 5.3 and 5.5 look at three competing proposals

for this approach. The PHIPM code proved to be the most robust, showing very consistent per-

formance. It also introduced the novel approach of working on a full linear combination of

φ-functions upon an input vector. This could possibly be applied to the two other techniques

which would put their experiments for the final, linear combination, entries of Tables 5.3 and

5.5 on a more level playing field. Such a modification however is beyond the scope of our in-

vestigation.

The conclusionwhichwe candrawabout the ReLPMpackage is that it shows superior perfor-

mance over that of EXPOKIT and of the Rational Approximations approach. However it does

not compete as well against PHIPM. The Rational Approximations tests show very good, in-

deed, excellent performances. They are, however a bit deceptive as the tabulated timings are
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restricted to the moderately-sized matrices which we were limited to in testing against Padé

results. This hides the significant slowdown experienced as the matrix sizes grow.

For the final conclusions we will present comparison plots for four different L matrices,

each representative of a particular type of PDE discretisation.

• Figure 5.6 tests a real tri-diagonal matrix. This matrix is the result of a finite difference

discretisation of the 1D Hochbruck & Ostermann Parabolic PDE (5.1.9).

• Figure 5.7 tests a real pent-diagonal matrix. This matrix is the result of a finite difference

discretisation of the 2D RDA Equation (5.1.10).

• Figure 5.8 tests a complex diagonal matrix. This matrix is the result of a Fourier spectral

discritisation of the Kuramoto-Sivashinsky Equation (5.1.1).

• Figure 5.9 tests a dense real matrix. This matrix is a Chebyshev differentiation matrix

from the Allen-Cahn equation (5.1.6).

From these plots, we can clearly identify the relative rankings between the approaches,

which demonstrate PHIPM to be the most efficient followed closely by the ReLPM implementa-

tion.
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Figure 5.6: φ Timings for the Hochbruck & Ostermann Parabolic PDE, h = 0.001
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Figure 5.7: φ Timings for the 2D RDA Equation, h = 0.001
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Figure 5.8: φ Timings for the Kuramoto-Sivashinsky Equation, h = 0.001
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Figure 5.9: φ Timings for the Allen-Cahn Problem, h = 0.001
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5.3 Convergence Order

It is important to verify the analytically derived order conditions for the various EI families. To

do this, we run a number of fixed stepsize experiments against the 1DHochbruck&Ostermann

Parabolic PDE (5.1.9), a test problem indicative of the type of real world problem that we are

interested in. By comparing schemes over the same number of time steps and stepsizes, we

can get a very reliable, relative, measure of their accuracy and convergence properties. In all of

these experiments, we will include the ETD Euler (1.3.13) schemewhich will serve to represent

a baseline, 2ņᵈ order solution.

5.3.1 Two-Stage ERKs

We return to the two families of 2-stage ERKs introduced in Section 2.1.3, which we saw were

also presented in [25]. These families are:

• ERK2 (2.1.19)
0 I

c2 c2φ1,2 ec2hL

φ1 − 1
c2
φ2

1
c2
φ2

represents a one-parameter family of 2ņᵈ order ERKs. Schemes constructed from this fam-

ily require the computation of two φ-functions for c2 = 1, and three when c2 ̸= 1.

• ERK2 (2.1.21)
0 I

c2 c2φ1,2 ec2hL

(1− 1
2c2

)φ1
1

2c2
φ1

is less computationally expensive as it does not make use of φ2. However, the schemes

derived for this family do not achieve full 2ņᵈ order.

Both of thesemethodswere presented earlier by Strehmel&Weinerwho showed them to be

B-consistent of order 1. B-consistency, togetherwith B-stability, is necessary for B-convergence,

which is a convergence property based on the one-side Lipschiĵ condition

⟨f (t, y1)− f (t, y2) , y1 − y2⟩ ≤ γ ∥y1 − y2∥2 . (5.3.1)

Frank, Schneid & Ueberhuber introduced B-convergence, which permits the derivation of uni-

form global error bounds independent of the stiffness of the considered problem [16]. See Ap-

pendix A.2 for the definitions of these properties.
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5.3.2 Three-Stage ERKs

Presented with the 2-stage ERKs in [25], are two families of 3-stage ERKs:

• ERK3 [25, Scheme 5.8]

0 I

c2 c2φ1,2 ec2hL

2
3

2
3φ1,3 − 4

9c2
φ2,3

4
9c2

φ2,3 e
2
3hL

φ1 − 3
2φ2 0 3

2φ2

(5.3.2)

• ERK3 [25, Scheme 5.9]

0 I

c2 c2φ1,2 ec2hL

c3 c3φ1,3 − α α ec3hL

φ1 −
(

γ
β −

1
β

)
φ2

γ
βφ2

1
βφ2

(5.3.3)

γ = (3c23 − 2c3)/(2c2 − 3c22)

α = γc2φ2,2 +
c23
c2
φ2,3

β = γc2 + c3

Both of these families require five distinct φ-functions. Though (5.3.2) and (5.3.3) are families

of 3-stage schemes, we saw in Section 2.1 that they only achieve weak 3Ŋᵈ order (Definition 4).
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Figure 5.10: Fixed step integration of Problem 5.1.9

Figure 5.10 shows the fixed step-size results, ploĴing step-size against L∞-norm of error.

It compares the two 2-stage (2.1.19, 2.1.21), and the two 3-stage (5.3.2, 5.3.3) schemes. The plot

highlights clearly that ERK2 (2.1.21) does not achieve the same degree of accuracy as (2.1.19).

91



We can also determine from the slopes of the plots that schemes ERK3 (5.3.2) and (5.3.3) out-

perform the 2ņᵈ order schemes in terms of convergence order and accuracy. This highlights that

weak 3Ŋᵈ order convergence still provides a performance advantage.

Computational Cost

What is not clear from this type of plot however is the cost per step differences between the

various schemes. We could plot the schemes against CPU time rather than stepsize, to get a rel-

ative measure of the trade-off between accuracy and computational cost. In doing so, however,

it is crucial to ensure that we are using the most optimal implementation for each scheme. Any

repetitions within the scheme tableau can represent opportunities for optimisation, which a

naive implementation will miss. Added to this is the complication that, for any given scheme,

the most efficient procedure for computing a single step depends on the specific method used

to evaluate the φ-functions.

The solution adopted here is to rate the CPU cost of each scheme in terms of a count of

the number of the most expensive operations that need to be performed at each time step.

We saw in Section 5.2 that the φ-functions themselves represent that expensive computational

operation. To get a measure of the cost of each method we analysed them under each of the

main categories for φ-function evaluation.

• Explicit Evaluation. This is the approach used by the EXPINT package, which itself re-

lies on Padé approximations. When the φ-functions are computed explicitly, they can

be reused for a number of matrix-vector products at negligible cost. As such, a count of

the number of distinct matrix exponentials and φ-functions gives us a very good relative

indicator of a schemes complexity.

We will take into account a key optimisation applicable to the majority of schemes. We

utilise the identity

ecihL × yn + hciφ1,i(hL)× v = yn + hciφ1,i(hL)× (Lyn + v) (5.3.4)

to save us from having to perform the matrix-exponential by a vector operation, (expm ×

vector) and this gives a significant performance boost.

• φ× vector Operations. This approach was taken by the EXPOKIT Krylov code as well as

the ReLPM and Contour Integration techniques. Here there is a possible need to compute a

φ× vector product with the same φ-function at two different stages within a step. There-

fore, the number of distinct φ-functions represents only a lower bound on the estimated

number of operations necessary to compute one step. In practice, each scheme must be
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considered separately to determine the true, optimal, number of operations needed. A

pseudo code example illustrates this procedure,

1: K2 ← N
(
tn + c2h, e

c2hL × yn + hc2φ1,2 ×Nn

)
2: K3 ← N

(
tn + 2

3h, e
2
3hL × yn + h

[
2
3φ1,3 ×Nn + 4

9c2
φ1,3 × (K2 −Nn)

])
3: yn+1 ← N

(
tn + h, ehL × yn + h

[
2
3φ1 ×Nn + φ2 × (K3 − 3

2Nn)
])

This algorithmperforms a single step for ERK3 (5.3.2). There are a total of seven expensive

matrix-vector operations. By incorporating the (5.3.4) optimisation, we can reduce this to

five operations in total,

1: K2 ← N (tn + c2h, yn + hc2φ1,2 × (Lyn +Nn))

2: K3 ← N
(
tn + 2

3h, yn + 2
3hφ1,3 × (Lyn +Nn) + h 4

9c2
φ1,3 × (K2 −Nn)

)
3: yn+1 ← N

(
tn + h, yn + hφ1 × (Lyn +Nn) + hφ2 × ( 32K3 −Nn)

)
• φ× vector Linear Combinations Finally, this is the technique introduced by the PHIPM

code, which computes a full linear combination of φ computations in one call to the code.

This means each stage can be completed in a single operation. Using ERK3 (5.3.2) again

as an example, we present a pseudo code algorithm,

1: M1 ←
(

yn Nn

)
2: K2 ← N (tn + c2h, phipm (M1))

3: M2 ←
(

yn Nn
−1
9c2

N2 +
1

9c2
K2

)
4: K3 ← N (tn + c2h, phipm (M2))

5: M3 ←
(

yn Nn
−3
2 N2 +

3
2K2

)
6: yn+1 ← phipm (M3)

The operations to construct theMimatrices are computationally negligible in comparison

to the phipm operation. Therefore, under this performance measure, we simply count the

number of stages.

Table 5.6 summarises the computational cost analysis for the ETDEuler (1.3.13) and the four

ERK schemes (2.1.19, 2.1.21, 5.3.2, 5.3.3), under each of the three categories of φ-function evalu-

ation. ETD Euler is 1-stage and requires only one φ-function. It’s computational cost therefore,

is 1 under each of the categories and it serves as an excellent baseline. The cost should be inter-

preted as a relative measure of the CPU time needed to take a time step. For example, under

the explicit evaluation of φ-functions, wewould expect ERK3 (5.3.2) to take 2.5 (ratio of distinct

φ’s is 5:2) times longer to complete the same number of time steps as ERK2 (2.1.19).

We can test this cost analysis experimentally by performing CPU timings. Table 5.7 shows

the CPU timings, in seconds, for the 2-stage and 3-stage ERKs for a fixed stepsize experiment.

Table 5.7 also shows the same experiment with the measurements normalised against the ETD

Euler timings. Figure 5.11 plots, for those same schemes, an accuracy against CPU timing com-
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Scheme Explicit Evaluation φ× vector Linear Combination

ETD Euler (1.3.13) 1 1 1

ERK2 (2.1.19) 3 3 2

ERK2 (2.1.21) 2 2 2

ERK3 (5.3.2) 5 5 3

ERK3 (5.3.3) 6 6 4

Table 5.6: Relative performance measure for the 2 and 3-Stage ERKs

(a) CPU Timings (secs)

Scheme phipade ReLPM phipm

ETD Euler (1.3.13) 254 6.3 4.7

ERK2 (2.1.19) 864 22.8 7.4

ERK2 (2.1.21) 482 11.9 8.5

ERK3 (5.3.2) 1405 39.2 10.4

ERK3 (5.3.3) 1635 49 10

(b) Normalised CPU Timings

phipade ReLPM phipm

1 1 1

3.4 3.6 1.56

1.9 1.88 1.77

5.5 6.18 2.2

6.4 7.72 2.1

Table 5.7: Timings for 256 Timesteps, with ETD Euler and the 2 & 3-Stage ERKs

parison. The implementation used to compute theφ-functions for the plot is ReLPM fromSection

5.2.3.

10
0

10
1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Time in seconds

E
rr

or

ETD Euler (1.3.13)
ERK2 (2.1.19)
ERK2 (2.1.21)
ERK3 (5.3.2)
ERK3 (5.3.3)

Figure 5.11: CPU Timings against Global Error for Problem 5.1.9

5.3.3 Four-Stage ERKs

Our interest in ERKmethods hasmostly beenwith the 4-stage, weakly 4ᵗŀ order schemes. Three

such schemes, well established in the literature, are
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• That of Krogstad for whom the stability of the scheme took high priority [27],

0

1
2

1
2φ1,2

1
2

1
2φ1,3 − φ2,3 φ2,3

1 φ1,4 − 2φ2,4 0 2φ2,4

φ1 − 3φ2 + 4φ3 2φ2 − 4φ3 2φ2 − 4φ3 −φ2 + 4φ3

(5.3.5)

• The scheme of Cox-MaĴhews which takes the 3Ŋᵈ order EI extension of the standard 4ᵗŀ

order RK, and tweaks it to make a 4ᵗŀ order ERK [13],

0

1
2

1
2φ1,2

1
2 0 1

2φ1,3

1 1
2φ1,3 (φ0,3 − 1) 0 φ1,3

φ1 − 3φ2 + 4φ3 2φ2 − 4φ3 2φ2 − 4φ3 4φ3 − φ2

(5.3.6)

• The scheme of Strehmel andWeiner who proved that the method is B-consistent of order

two [4],
0

1
2

1
2φ1,2

1
2

1
2φ1,3 − 1

2φ2,3
1
2φ2,3

1 φ1,4 − 2φ2,4 −2φ2,4 4φ2,4

φ1 − 3φ2 + 4φ3 0 4φ2 − 8φ3 −φ2 + 4φ3

(5.3.7)

Each of these schemes is weakly 4ᵗŀ order.

Also benchmarked is our own scheme, ERK4c2c3 (2.1.45), which is parametrised with two

free variables, c2 and c3,
0

c2 a21

c3 a31 a32

c2 a41 a42 0

b1 b2 b3 b4

a21 = c2φ1,2

a31 = c3φ1,3 −
c23
c2

φ2,3 a32 =
c23
c2

φ2,3

a41 = c2φ1,4 − 2c2φ2,4 a42 = 2c2φ2,4

b1 = φ1 −
c3 + c2
c2 c3

φ2 +
2

c2 c3
φ3 b2 =

c3
2 c2 c3 − 2 c22

φ2 −
1

c2 c3 − c22
φ3

b3 = − c2
c32 − c2 c3

φ2 +
2

c32 − c2 c3
φ3 b4 =

c3
2c2c3 − 2c22

φ2 −
1

c2c3 − c22
φ3

95



The scheme is strongly 3Ŋᵈ order. We test the scheme with two choices of parameters

c2 = 1, c3 =
1

2
(5.3.8a)

c2 =
1

2
, c3 = 1 (5.3.8b)

As we remarked in Section 2.1, for the choice of parameters (5.3.8b), the scheme achieves weak

4ᵗŀ order.

Numerical Experiment

Again we perform a numerical experiment with the Hochbruck-Ostermann equation (5.1.9)
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Figure 5.12: Fixed stepsize ERKs for Problem 5.1.9

Figure 5.12 shows the fixed step-size results for the 4-stage schemes, alongwith some of the

earlier schemes for comparison. Scheme ERK4c2c3 was included twice, with two different sets

of parameters, to highlight the improvement that a high weak-order scheme can achieve over

an exclusively lower strong-order scheme. It is clear from this plot that the schemes ERK4 Krog-

stad and ERK4 Strehmel-Weiner are the superior performers in terms of convergence order for

this test problem.

Once again we will look at a break down of the operations cost of each scheme.

Of particular note here is that the Cox-Mathews scheme (5.3.6) would require one addi-

tional “linear combination” than we would expect. This is due to the a41 entry in the tableau,

wriĴen as either 1
2φ1,3 (φ0,3 − 1) or 1

4 (φ1,3)
2, which cannot be formulated as part of the linear

combination structure of PHIPM for stage four.
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Scheme Explicit Evaluation φ× vector Linear Comb.

ERK4c2c3 , c2 = 0.5, c3 = 1 (5.3.8a) 8 7 4

ERK4c2c3 , c2 = 0.5, c3 = 1 (5.3.8b) 5 6 4

ERK4 Cox-MaĴhews (5.3.6) 5 6 5

ERK4 Krogstad (5.3.5) 6 6 4

ERK4 Strehmel-Weiner (5.3.7) 6 6 4

Table 5.8: Relative performance measure for the 4-Stage ERKs

5.3.4 EGLMs

Wewill run some of the EGLMs seen in Section 2.2 through the same numerical experiment as

before. The schemes which we will look at are the strongly 3Ŋᵈ order EGLM322c2 (2.2.6),

c2 a2,1 ec2hL u2,1

b1 b2 ehL v1

a2,1 = c2φ1,2 + c22φ2,2

b1 = φ1 +
c2 − 1

c2
φ2 +

−2
c2

φ3 b2 =
1

c22 + c2
φ2 +

2

c22 + c2
φ3

u2,1 = −c22φ2,2 v1 =
−c2
c2 + 1

φ2 −
2

c2 + 1
φ3

and the strongly 4ᵗŀ order EGLM423c2 (2.2.8),

c2 a21 ec2hL u21 u22

b1 b2 ehL v1 v2

a2,1 = c2φ1,2 +
3c22
2

φ2,2 + c32φ3,2

u2,1 = −2c22φ2,2 − 2c32φ3,2 u2,2 =
c22
2
φ2,2 + c32φ3,2

b1 = φ1 +
3c2−2

2 φ2 + c2 − 3φ3 − 3φ4

c2
b2 =

2φ2 + 6φ3 + 6φ4

c32 + 3c22 + 2c2

v1 =
−2c2φ2 − 2c2 − 4φ3 + 6φ4

c2 + 1
v2 =

c2
2 φ2 + c2 − 1φ3 − 3φ4

c2 + 2

For both schemes we will also look at the case c2 = 1, as this provides the greatest opportu-

nity for constructing an optimal implementation. Note that, when c2 = 1, these schemes have

appeared in the literature [38] as EGLM322 and EGLM423 respectively.

Numerical Experiment

As part of this experiment, we will also include the best performing scheme seen so far, in this

case ERK4 Krogstad along with the baseline ETD Euler (1.3.13), to help illustrate the relative

97



rankings of these EGLMs. For these experiments we set c2 = 0.5 for schemes (2.2.6) and (2.2.8).
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Figure 5.13: Fixed stepsize EGLMs for Problem 5.1.9

We see from Figure 5.13(b) that the c2 = 1 case for both EGLMs, (2.2.7) and (2.2.9), causes a

slight accuracy reduction, but not an order reduction. Table 5.9 summarises the computational

cost of each method and it shows clearly that the accuracy drop is compensated for in terms of

reduced computational cost in both the ’Explicit Evaluation’ and ’φ× vector’ categories.

Scheme Explicit Evaluation φ× vector Linear Comb.

EGLM322c2 (2.2.6) 5 5 2

EGLM322 (2.2.7) 3 4 2

EGLM423c2 (2.2.8) 7 7 2

EGLM423 (2.2.9) 4 6 2

Table 5.9: Relative performance measure for the 4-Stage EGLMs

5.3.5 EARKs and EAGLMs

Finally we study the performance characteristics of our new EARK schemes. Specifically, we

look at a 3Ŋᵈ order and a 4ᵗŀ order scheme, both 2-stage. These schemes, introduced in Section

3.2, are referred to as EARK321c2 and EARK422c2 respectively and we will include the particu-

lar case of parameter choice where c2 = 1, as this allows for the most efficient implementation.

1 φ1 φ2

1 φ1 − 2φ3 2φ3 0 φ2 − 2φ3

1 φ1 − 2φ3 2φ3 0 φ2 − 2φ3

(5.3.9)
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1 φ1 φ2 φ3

1 φ1 − 6φ4 6φ4 φ2 − 6φ4 φ3 − 3φ4

φ1 − 6φ4 6φ4 0 φ2 − 6φ4 φ3 − 3φ4

(5.3.10)

Note that we do not need to consider the different methods of computing the outgoing

derivatives. The reason for this is that the computational cost of producing the derivatives

is negligible compared with computing the φ-functions. Therefore, in performance terms, an

EAGLMschemewith zero uij and vij entries has identical CPUperformance to that of an EARK

scheme, regardless of the format of theM matrix.

Numerical Experiments

We follow the same procedure as before with EAGLMs, ploĴing them against the best per-

forming 3Ŋᵈ order and 4ᵗŀ order EGLMs.
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Figure 5.14: Fixed stepsize EAGLMs for Problem 5.1.9

An interesting result of this experiment is that EARK422c2 does not suffer at all from accu-

racy degradation for the case c2 = 1, as was observed in the EGLMs and EARK321c2 . Table

5.10 summarises the computational cost of each method

Scheme Explicit Evaluation φ× vector Linear Comb.

EARK321c2 (3.2.30) 5 5 2

EARK321 (5.3.9) 3 3 2

EARK422c2 (3.2.31) 7 7 2

EARK422 (5.3.10) 4 4 2

Table 5.10: Relative performance measure for the 4-Stage EAGLMs
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The Allen-Cahn Equation Experiments

We run two fixed stepsize experiments, using the same parameter configurations as Kassam

& Trefethen [26, (3.4)] and Krogstad [27, Section 5.2]. Those parameters are N = 80, ε = 0.001

and N = 50, ε = 0.01 respectively. In both cases we integrate for t ∈ [0, 3].
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(a) Comparison with [26, Fig. 3, pg. 1224]
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(b) Comparison with [27, Fig. 8, pg. 85]

Figure 5.15: Allen-Cahn Equation, fixed stepsize, N = 50

The results of the fixed stepsize experiments match up with the corresponding experi-

ments in [26, 27]. From Figure 5.15(a) we can confirm that our implementation of ERK4 Cox-

MaĴhews is achieving the correct performance, while Figure 5.15(b) confirms the same for our

ERK4 Krogstad implementation. It is clear from these experiments that these 4ᵗŀ order ERKs

perform beĴer than our adaptive schemes, EGLM423 and EARK422 .

The Kuramoto-Sivashinsky Equation Experiments

To perform a comparison with results published in [26, 27, 13] we run three fixed stepsize

experiments, the first withN = 32, t ∈ [0, 3] and then two experiments withN = 128 for times,

t ∈ [0, 30] and t ∈ [0, 65].

As with the Allen-Cahn comparisons, the results of our fixed stepsize experiments match

up, for the most part, with those published already. An exception are the results from Figure

5.16(b)which seem to show our ERK implementations achieving superior accuracy over the

results in [26, Fig. 3, pg. 1224].
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Figure 5.16: Kuramoto-Sivashinsky Equation, fixed stepsize

5.3.6 Summary

The conclusion that can be drawn from this analysis is that the EARK and EAGLM schemes

offer the best accuracy performance in their respective order categories.

In terms of computational efficiency, EARKs and EAGLMs are as efficient as the EGLMs

under the “Explicit Evaluation” and “φ× vector Linear Combinations” methods of computing

the φ-functions.

Under the “φ× vector” approach, the EARKs are themost efficient schemes in the 3Ŋᵈ and 4ᵗŀ

order categories by a significantmargin. Thismarginwould increase for higher ordermethods,

a 2-stage p order EGLMwith c2 = 1, will require 2p−2 “φ× vector” operations, while a similar

EARKs would require only p operations.
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5.4 Variable Step Size

5.4.1 Basic Requirements

If exponential integrators are to be benchmarked competitively against traditional solvers, they

will need to implement adaptive stepsize strategies as well as generate efficient and reliable

error estimates. We shall see that EARKs and EAGLMs offer both of these features.

A fundamental requirement for a scheme is its ability to handle changes in step sizewithout

losing stability or accuracy. Schemes must possess this property if they are to work within an

adaptive step-size environment. The 1-step nature of some schemes, such as those constructed

from ERKs, makes them inherently compatible with a variable stepsize environment. Such

schemes can be used without any changes to their implementation.

Multi-step Schemes

Multi-step schemes, such as EGLMs in the format presented so far, are not practical for use in

a variable stepsize algorithm. As they stand, they would require a number of restarting steps

to be calculated after every change in stepsize. The issue is, that during the derivation of the

order conditions in Section 2.2, and that when constructing the schemes, an assumption was

made that the previous timesteps occurred with uniform spacing.

The solution to this is to not treat the previous values as being at integral steps lengths

during the derivation of the order conditions. This means that when Taylor expanding the

previous values we view them in the more general form Ntn−j

Ntn−j ≡ N(tn − jh, y(tn − jh))

= N − jhN ′ +
1

2
j2h2N ′′ − 1

6
j3h3N ′′′ + · · ·

(5.4.1)

where j is any positive real number. Thus it is possible to construct an EGLM scheme which is

fully capable of preserving both it’s stability and accuracy.

Sample 4ᵗŀ Order EGLM Here is an example 4ᵗŀ Order schemewith previous stepsNtn−p and

Ntn−q

0

c a21 ec2hL u21 u22

b1 b2 ehL v1 v2
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a2,1 = cφ2,1 +
c2(p+ q)

pq
φ2,2 +

2c3

pq
φ2,3

u2,1 =
c2p

p2 − pq
φ2,2 +

2c3

p2 − pq
φ2,3 u2,2 =

c2p

q2 − pq
φ2,2 +

2c3

p2 − pq
φ2,3

b1 = φ1 +
(c(p+ q)− pq)φ2 + 2(c− pq)φ3 − 6φ4

cpq
b2 =

pqφ2 + 2(p+ q)φ3 + 6φ4

c3 + c2p+ c(p+ c)q

v1 =
−2cpφ2 + 2(q − c)φ3 + 6φ4

(c+ q)pq − p3 − cp2
v2 =

cpφ2 + 2(c− p)φ3 − 6φ4

q3(c− p)q2 − cpq

Multi-value Schemes

Multi-value EARKs, by their 1-step nature, do not require the same treatment as EGLMs to

make them compatible with a variable stepsize environment. Indeed, both the order conditions

and themajority of the scheme tableau remain unchanged.However, care does need to be taken

regarding the incoming and outgoing approximations. The lower, M = (β δ), section of an

EARK tableau is a matrix which is constructed on the assumption that the approximations are

scaled by the current step size, h. For example, taking scheme EARK432c2 (3.1.17), and fixing

c2 = 1
2 , we have theM matrix

M =

 −4 −8 4 1 0

22 −32 10 6 0

 (5.4.2)

We have seen already in (3.1.12) how this matrix operates on the vector of input values and

on outgoing approximations of the current step, to produce the input derivative approxima-

tions for the next step. In that earlier example, we were assuming a constant stepsize h. With

the switch to variable stepsizes, one must ensure that the incoming approximations are scaled

only by the current hn and not by any previous hn−j .

This implementation detail is best taken care of by writing theM matrix as a function of hn.

Each element of theM matrix becomes multiplied by a hα where α obeys the following simple

paĴern
β11 · · · βij δ11 · · · δi1
...

. . .
...

. . .

β1j βij δ1j δij

 :


h−1 · · · h−1 h0 · · · hi−1

...
. . .

...
. . .

h−j h−j h1−j hi−j

 (5.4.3)

Returning to our example (5.4.2) we now expressM as the following function

M(h) =

 −4
h

−8
h

4
h 1 0h

22
h2

−32
h2

10
h2

6
h 0

 (5.4.4)
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where we generate the output derivatives through the operation

M(hn)



Nn

Nn+c2

Nn+1

N ′n

N ′′n


=

 N ′n+1

N ′′n+1

 (5.4.5)

Here we see that the vectors of incoming and outgoing approximations have no dependence

on any stepsize h.

We noted earlier, a property of the M matrices is that the lower rows do not involve any

φ-functions. When we add this distinction to the complexity introduced in adapting the ma-

trices to handle variable h, we are naturally led to exclusively viewingM as a separate entity,

presented alongside the more traditional tableau. This can be done without sacrificing the pos-

sibility of reintegrating the two to recover the tableau representation given earlier (3.1.3). This

parallels neatly with the implementation details of the schemes where the two elements are

treated very differently due to the computationally beneficial lack of φ’s in theM matrix.

Variable Stepsize Compatibility of EAGLMs

The hybrid EAGLMs, which we are most interested in, must follow the EGLMs approach of

using a expansion of the previous values in deriving the conditions for producing the internal

stage and initial output approximations.

In determining the coefficients for the M matrix, we must combine the techniques devel-

oped for EARKswith themore general form of theNn−j ’s. Together, this allows us to construct

approximations of sufficiently high orders toN ′n+1 andN ′′n+1 as before. The format which this

follows is almost identical to that seen in example (5.4.3). The lower M matrix of an EAGLM

tableau has an additional section of γij values, as seen in (3.2.1), the hn multipliers derived

from those γij entries follow the same paĴern as those from the βij entries.
γ11 · · · γij

βij

...
. . . δij

γ1j γij

 :


h−1 · · · h−1

h−j
...

. . . hi−j

h−j h−j



The three free variables; the two representing the non-integral step lengths of the previous

values, and the free c2 variable present in most schemes, makes the tableau’s very difficult to

construct without the help of a symbolic calculator. And even with that, the resultant tableau’s

are too complex to represent succinctly.

104



5.4.2 Truncation Error Estimation

The local truncation error is defined as the amount by which the exact solution y(tn) fails to

satisfy the difference equation of the numerical method [39]. An equivalent definition of the

local truncation error is the error incurred by taking a single step assuming exact information,

that is, a single step using exact past values, solution derivatives and assuming no rounding

errors [39].

The laĴer definition can be very useful in testing schemes which cannot produce their own

truncation error estimate. In addition, when the scheme being investigate can produce esti-

mates it can still be advantageous to use this exact truncation error, doing so allows us to con-

centrate and study other aspects of the integration procedure in isolation.

Embedding

A well established method for producing a truncation error estimate is to take each step with

two methods, one of order p and the second of order p+ 1 producing two estimated solutions

yn+1 and ŷn+1. Then the difference |yn+1 − ŷn+1|, is a good estimate of the lower schemes true

local truncation error. This estimate can then be used to guide the integrator. It is natural to

use the higher order estimate, ŷn+1, to advance the integration. In this case |yn+1 − ŷn+1| serves

only to control the stepsize. This process is known as “local extrapolation” [20].

Taking each step twice introduces considerable extra computation. To limit this additional

cost we try to choose, or design, the two schemes so that much of the work in generating the

lower order estimate, yn+1, can be reused for the higher order one, ŷn+1. A common approach

to this is known as embedding, whereby the lower order scheme can be wriĴen as embedded

within the tableau for the higher order scheme.

Classical RK Embedding

When designing an embedded RK we construct two schemes, producing a yn+1 and ŷn+1 ap-

proximation, where the twomethods use the same function values [20]. Because of their similar
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nature, these two RKs can be wriĴen within the same tableau

0

c2 a21
...

...
. . .

cs as1 · · · as,s−1

b1 · · · bs−1 bs

b̂1 · · · b̂s−1 b̂s

(5.4.6)

such that

yn+1 = yn + h(b1K1 + . . .+ bsKs) (5.4.7)

ŷn+1 = yn + h(b̂1K1 + . . .+ b̂sKs) (5.4.8)

An example of a 2ņᵈ and 3Ŋᵈ order embedded RK, also known as a (2,3) pair is the method

of Bogacki & Shampine [6]
0

1
2

1
2

3
4 0 3

4

1 2
9

1
3

4
9

2
9

1
3

4
9 0

7
24

1
4

1
3

1
8

(5.4.9)

This method is familiar from it’s use as part of the Matlab ODE suite, where it is referred to by

the function name ode23.

ERK Embedding

In adapting the classical notion of embedding to EIs, we can construct a trivial example of

ERK embedding by viewing the 1-stage ETD Euler (1.3.13) as embedded within the 2-stage

ERK2 (2.1.19), with c2 = 1,
0 I

1 1φ1 ehL

φ1 0

φ1 − φ2 φ2

(5.4.10)

This approach embeds a strongly 1ŋᵗ order scheme within a strongly 2ņᵈ order scheme. By

subtracting the formula for the 1ŋᵗ and 2ņᵈ order approximations, ŷn+1 and yn+1 respectively,
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and the difference between the two schemes

yn+1 = Y1 = ehLyn + hφ1Nn

ŷn+1 = ehLyn + hφ1Nn + hφ2 (−Nn +N(tn+1, Y1))

→ |yn+1 − ŷn+1| = hφ2 (−Nn +N(tn+1, Y1))

(5.4.11)

gives us a truncation error estimate for ETD Euler. We have verified, experimentally that this

is a robust estimate for guiding an integration controller. In addition to its reliability, the 1-

step nature of this embedded scheme means that it can be used for generating starting values

to be used subsequently by a multi-step scheme, or to generate derivative approximations for

EARKs.

Developing embedded ERKs of higher order provedmore troublesome.We discovered that

the weak order properties, common to the higher order, meant the truncation errors produced

were unreliable.

EAGLM Embedding

Embedding can be extended beyond the (E)RK families of methods to multi-step and multi-

value schemes. In the case of the 4ᵗŀ order EARK422c2 (3.2.31), it is possible to produce a 3Ŋᵈ

order error estimate by embedding a 3Ŋᵈ order scheme, for example EARK321c2 (3.2.30), within

its tableau.

Scheme EARK422c2 requires both N ′ and N ′′, unlike EARK321c2 which uses only N ′. The

1ŋᵗ stage formula for both schemes is therefore different and limits the potential for reusing a

calculation from the 3Ŋᵈ order step to generate the 4ᵗŀ. By constructing a new 3Ŋᵈ order scheme,

which has an identical 1ŋᵗ stage to EARK422c2 , we can greatly reduce the computational cost

of estimating the truncation error.

Such a scheme is the 3Ŋᵈ order method EARK422c2 , a 3-stage 3-value EAGLM

c2 a2,1 w2,1 w2,2

b1 b2 z1 z2

b1 b2 z1 z2

=

c2 c2φ1,2 c22φ2,2 c32φ3,2

φ1 − βφ4 β φ2 − c2βφ4 φ3 − c22β
2 φ4

φ1 − βφ4 β φ2 − c2βφ4 φ3 − c22β
2 φ4

(5.4.12)

where β is a free parameter. This scheme is embeddable within EARK422c2 .

If we choose β = 0 then the difference between the two schemes, (3.2.31) and (5.4.12), can

be calculated explicitly as

ŷn+1 − yn+1 =
6

c32
φ4Nn −

6

c32
φ4K2 +

6

c22
φ4N

′
n +

3

c2
φ4N

′
n (5.4.13)

= φ4

(
6

c32
Nn −

6

c32
K2 +

6

c22
N ′n +

3

c2
N ′n

)
(5.4.14)
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Under both the “Explicit Evaluation” and ‘φ× vector’ approaches to implementing the in-

tegrator, the calculation (5.4.14) is already performed as part of the procedure for computing

yn+1. Producing the truncation estimate does not change the scheme’s implementation, or the

computational expense summaries as seen in Table 5.10, row 5, columns 2 & 3. In a sense, the

truncation error estimate is produced for free as part of the normal calculation of a step.

Numerical Experiments

Looking at the numerical results from fixed-step experiments, we can quickly get an overview

of the local error behaviour of a given problem. Figure 5.17 plots the results for four problems.

In the plots the grey curves plot a profile of the estimated solution, and the thick black line plot

the exact local error.
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(a) Hochbruck & Ostermann PDE (5.1.9)
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(b) Allen-Cahn Equation (5.1.5)
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(c) Kuramoto-Sivashinsky Equation (5.1.1)
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(d) Brusselator System (5.1.3)

Figure 5.17: Illustration of Local Error Profiles

The Brusselator System (5.1.3), which exhibits erratic behaviour represented the toughest

test of a robust integration controller. The Allen-Cahn problem (5.1.5) exhibits interesting be-

haviour near t = 37. There is a spike in the local truncation errors about this point (visible in

Figure 5.17(b)) which makes the problem a good test for a stepsize controller.
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It is important to note that the low local error exhibited at the beginning of each of the

problems in Figure 5.17 is a results of our method for producing the starting values.

5.4.3 Stepsize Adjustment

The goal of an efficient solver is to control the stepsize, h, with the aim of performing the nu-

merical integration in as few time step as possible, while at the same time, keeping the local

error below a user specified tolerance. The tolerance value, τ , is derived from twouser specified

values; and absolute tolerance, τabs, and a relative tolerance, τrel

τ = τabs + ∥yn∥ τrel (5.4.15)

The basic approach to this is to increase hwhere the local error is below τ , and decrease the

stepsize where the error exceeds τ . In practice, a solver will not have access to the exact local

truncation error, so instead local error estimates are used to guide the algorithm.

Types of Stepsize Controller

There is no one approach to govern how the stepsize should be adjusted so as to control the

truncation error and indeed, designing methods to do so, is a field of study in itself. We looked

at a number of different algorithms, referred to as controllers, starting with a very basic algo-

rithm and, from that, constructed increasingly complex procedures in order to more intelli-

gently predict an appropriate subsequent stepsize.

Naive Approach. The simplest approach is to compare the estimated truncation error, en,

to a user specified tolerance, τ , and increase the step size if the estimation is below toler-

ance or decrease and repeat the step, if the truncation error exceeds the tolerance. For exam-

ple,

1: if τ < en then

2: hn+1 ← hn

α

3: redo

4: else

5: hn+1 ← αhn

6: continue

7: end if
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where α > 1 is simply some scaling value to adjust how quickly the step size changes, often

α = 2.

0 2 4 6 8 10
Time

E
st

im
at

ed
 S

ol
ut

io
n

0 2 4 6 8 10
0

0.5

S
te

p 
S

iz
e

(a) Varying Stepsizes

0 2 4 6 8 10
Time

E
st

im
at

ed
 S

ol
ut

io
n

0 2 4 6 8 10
10

−10

10
0

T
ru

nc
at

io
n 

E
rr

or

(b) Local and Truncation Errors

Accepted Steps Rejected Total Global Error

105 26 131 8.5× 10−3

(c) Integration Statistics

Figure 5.18: Scheme (3.2.30) with the Stepping Controller for Problem (5.1.3)

Figure 5.18 shows the results of a numerical experiment integrating the Brusselator system

(5.1.3) with EARK321c2 , c2 = 1. In Figure 5.18(b) the dashed line is the estimated truncation

error, en, maintained by the controller, while the solid line plots the exact local error. Table

5.20(c) records the timestep and global error statistics. The visible fluctuation of the stepsize

indicates that this approach is prone to oscillating about the optimal step length. Though the

global error is higher, it is still within the specified tolerance.

Guided Approach. There is information available to a controller, in the form of the magni-

tude of the difference between en and the desired tolerance, τ . This can be used as a guide to

determine howmuch h should be adjusted by, to get en+1 as close to τ as possible For example

|yn+1 − ŷn+1| = en+1 (5.4.16)

hopt = hn ×
(

τ̂
en

) 1
p+1 (5.4.17)

where p is the order of the scheme used to generate yn+1 [20]. An algorithm implementing such

a controller could be wriĴen as

1: β ←
(

τ̂
en

) 1
p+1

2: hn+1 ← βhn

3: if τ < en then

4: redo

5: else
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6: continue

7: end if

For our experiments with EARK321c2 we set p = 4. The tolerance value τ̂ is usually set to some

value just smaller than the cut-off tolerance, τ . This helps to reduce the number of rejected

steps. In our experiments we usually set τ̂ = 0.8τ . An alternative approach is to use a “safety

factor”, and we will see this used in the controller we introduce next.
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Figure 5.19: Scheme (3.2.30) with the Guided Controller for Problem (5.1.3)

Figure 5.19 shows an experiment using the guided adapter. Table 5.19(c) shows an overall

improvement in terms of the performance of the scheme.Most interesting here is Figure 5.19(a)

wherewe can see a very smooth and controlled adjustment of the stepsizes. This is a significant

improvement over the behaviour seen in Figure 5.18(a).

Established Approaches. Amore traditional approach from control theory is the integral or

I-controller. The format of the controller makes use of a safety factor, γ < 1.

loghn+1 = loghn + 1
p+1

(
log
∥∥γp+1ξ

∥∥− log ∥en∥
)

(5.4.18)

We implement the I-controller with the following algorithm.

1: ec ← log
∥∥γp+1τ

∥∥− log ∥en∥

2: hn+1 ← exp
(
log(hn) +

ec
p+1

)
3: if τ < en then

4: redo

5: else
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6: continue

7: end if

Here p is the order of the method, for the experiments in Figure 5.20 we set p = 4 and γ = 0.9.
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Figure 5.20: Scheme (3.2.30) with the I-controller for Problem (5.1.3)

Table 5.20(c) shows that the number of rejected steps has been significantly decreased, al-

though it did take more accepted steps to complete the integration. Table 5.11 summarises the

results for all three controllers run for a tighter tolerance.

Controller Accepted Steps Rejected Total Global Error

Naive-controller 589 129 718 4.72× 10−5

Guided-controller 593 10 603 3.49× 10−5

I-controller 634 4 638 2.49× 10−5

Table 5.11: Scheme (3.2.30) with all Controllers for Problem (5.1.3)

Step Rejection

Each rejected step represents a waste of computational time, as the estimated solution it pro-

duces must be discarded, therefore minimising their occurrences is of high priority. In the

controller approaches outlined above, reducing the number of rejected steps was addressed

by either using a slightly lower tolerance, τ̂ , as in the guided approach, or by using a safety

factor, γ, as in the I Controller. Such controllers work by selecting a hn+1, for the next step,
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based on the current local error. This means, that for some problems, that when the integrator

encounters a period of increasing local error, rejected steps are almost inevitable.

Experiments indicate that rejected steps tend to occur in clusters during the periods where

the local truncation error for the solution is increasing. It makes sense, therefore, to over com-

pensate for a rejected step with a smaller hn+1 than reported as the optimal choice by the con-

troller. One approach is to reduce hn+1 by a greater amount than indicated by the controller’s

basic calculation, such as (5.4.18) for example. This means that, upon encountering a rejected

step at time tr, the controller would reduce the recommended next stepsize hr+1 by a factor

α < 1. To achieve this correctly, a sophisticated controller must avail of time-stepping history.

Without history, the following stepsize, hr+2, would no longer take this compensation factor,

α, into account.

At some point tn > tr the controller will stop taking α into account. To prevent a sudden

increase in stepsize, we adopted an algorithm to gradually increase α towards 1 over a number

of steps l. As a result, α has less influence over the controller’s recommended stepsize the

further the integrator has advanced from tr. For tn > tr+l we stop taking α into account. We

used the following method to control how the influence of α decreases over time.

hr+i = min
[
hr+i, αhr +

(
hr+i − αhr

(
i
l

)β)] (5.4.19)

Here the β exponent controls the behaviour of this interpolation. For β = 1, the interpolation

is linear, while β = 2 gives a quadratic interpolation. The min function ensures that we never

force a higher hn+1 than is recommended.

Figure 5.21 illustrates the effects of different values for β, when an artificial rejected step is

simulated in a fixed stepsize experiment. In practice the effects different β’s have is subtle and

varied depending on the problem, on average seĴling on the value β = 1.5 seemed to work

well.

5.4.4 Initial Stepsize and Starting Points

We approached the problems of selecting an initial stepsize, and generating starting points,

with the use of a one step method. The ideal scheme to use was ERK2 (2.1.19) with the embed-

ded ETD Euler (1.3.13) as described in Section 5.4.2. Starting with some arbitrary stepsize, we

could rely on the controller to ensure the initial steps were of sufficient accuracy. Once enough

steps had been generated they would be used to compute the incomingN -function derivatives

for EARKs, and be passed to multi-step EGLMs and EAGLMs.

The ERK2 / ETD Euler scheme is only of 2ņᵈ order compared with the 4ᵗŀ order schemes
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(c) β = 2

Figure 5.21: Illustration of Different β Exponents with l = 16 (5.4.19)

used to complete the integration. Thismeant that, the initial stepsizeswere, unavoidably,much

smaller than those needed for the higher order scheme, as such there would be an abrupt in-

crease in stepsizes where the higher order scheme took over. Our experiments tended to show

a spike in the local truncation error at this point. While the tolerance threshold would be main-

tained, this spike often represented the global error for the estimation. There is additional scope

for investigation, in the future, to improve the controller’s logic.
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5.5 Benchmarks

For comparative purposes wewill include the built-inMatlab ODE15s in a number of our adap-

tive stepsize experiments. ODE15s is an implicit solver for stiff systems implementedwith back-

wards differences. It uses a quasi-constant stepsize implementation and it defaults to using 5ᵗŀ

order integration. The solver takes advantage of any sparse properties of the Jacobian to accel-

erate the calculations [43].

5.5.1 Brusselator System

We introduced the Brusselator System in Section 5.1.2 and saw it used in our discussion about

local truncation error profiles in Section 5.4.3. We will now run some adaptive stepsize exper-

iments to benchmark EIs.
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Figure 5.22: Brusselator System, adaptive stepsize, N = 64

Figure 5.22 shows thatMatlab’s ODE15s achieves slightly beĴer step count performance and

is faster in CPU costs. The EARK422 can be seen to outperform EGLM423 by a large margin.

Global Error: 5× 10−4 5× 10−6 5× 10−8

EGLM423 462 1363 4224

EARK422 287 801 2450

Table 5.12: 1D Brusselator System N = 256, Step Counts

To get a clearer view of the difference between the EIs we look to Figure 5.23, which does

not include ODE15s, and to Table 5.12, which summarizes the step counts at different global

errors. We can see that EGLM423 requires almost 1.75 times as many steps as EARK422 making
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Figure 5.23: Brusselator System, Global Error against CPU Time without ODE15s

EGLM423 significantly slower. Appendix B.1 lists the complete integration statistics for three

problem sizes, N = 64, 256 and 1024.

5.5.2 Allen-Cahn Equation

Returning to the Allen-Cahn problem from Section 5.1.3 we will now perform some adaptive

stepsize experiments against the problem. To include the local truncation error spike (see Fig-

ure 5.17(b) at t = 37), we run the experiments for t ∈ [0, 50].
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Figure 5.24: Allen-Cahn Equation, adaptive stepsize, N = 50, ε = 0.001

Figures 5.24 show the results of an adaptive stepsize experiment. From the results we can

see that the step count performance of EARK422 is as good as ODE15s. EGLM423 ismuch poorer,

needing about 1.75 times more steps.

It is important to highlight that this problem uses a dense, and relatively small, L matrix.

It is not the type of problem the underlying phipm code is optimised for. Figure 5.25, without
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Figure 5.25: Allen-Cahn Equation, adaptive stepsize without ODE15s, N = 50, ε = 0.001

ODE15s included, shows the relative performance of the EIs.

Calvo & Portillo [12] preformed variable step experiments with ETDs against the Allen-

Cahn problem using a standard three-point finite differences discretisation. To compare our

results to those published,wewill run some experiments using the sameproblemdiscretisation

and parameters.

There are however, two possible implementations of the problem.Workingwith (5.1.6), the

termw(t, x) on the right-hand side can be included as part of the linear part L or the non-linear

functionN(t, w(t)). Wewill perform our experiments twice, once for each implementation. We

will see the term “Type 1” when L is a standard three-point finite difference matrix, and “Type

2” for when the w(t, x) is included as part of the L operator.
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Figure 5.26: Allen-Cahn Equation “Type 1”, N = 512, ε = 0.001

For a tolerance of 1× 10−4, EGLM423 and EARK422 take a total of 130 and 109 steps respec-

tively, under the “Type 1” implementation, and 169 and 147 steps for “Type 2”. This is a big

improvement over the published 248 steps for ETD3 and 484 for ETD4 [12, Page 635]. For a
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Figure 5.27: Allen-Cahn Equation “Type 2”, N = 512, ε = 0.001

tolerance of 1 × 10−8, EGLM423 and EARK422 take a total of 315 and 219 steps for “Type 1”,

and 383 and 265 steps for “Type 2”. These are significantly beĴer that the published 3105 and

1044 steps for ETD3 and ETD4 [12, Page 635 & 636]. In fact EARK422 shows more than a 4-fold

improvement over ETD4.

Table 5.13 compares the EIs performance with ODE15s, again it highlights the significant

improvement EARK422 gives over EGLM423 , which requires 1.4 times as many steps under

the finite-differences implementations. The tabulated results in Appendix B.2 give the exact

step count figures for all experiments.

Chebyshev FD “Type 1” FD “Type 2”

ODE15s 674 168 168

EGLM423 1157 218 275

EARK422 686 151 204

Table 5.13: Allen-Cahn, Global Error = 2× 107, Step Counts

5.5.3 The Kuramoto-Sivashinsky Equation

The 1D Kuramoto-Sivashinsky Equation was seen in Section 5.1.1 where we performed some

fixed stepsize experiments and compared the results with some published in literature. For

adaptive stepsize tests, we perform the integration up t = 100. We make this choice after ob-

serving (see Figure 5.1) that the solution becomes increasingly chaotic after t = 40. A look at

local error profile in Figure 5.17(c) shows that over this period a controller must constantly

adjust stepsizes and deal with rejected steps.

The results of the adaptive stepsize experiments echo those of the Allen-Cahn problem.
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Figure 5.28: Kuramoto-Sivashinsky Equation, N = 256

Global Error: 1× 10−1 5× 10−3 5× 10−4

ODE15s 478 1005 1491

EGLM423 833 1501 2701

EARK422 408 862 1551

Table 5.14: Kuramoto-Sivashinsky Equation, N = 256, Step Counts

Figure 5.28(a) and Table 5.14 demonstrate that the step count performance of EARK422 is su-

perior to that of Matlab’s ODE15s, we can see that ODE15s requires 1.17 times more steps than

EARK422 needs to take. EGLM423 has fallen much further behind, from the step count per-

formance EGLM423 take about 1.75 times more steps than EGLM423 requires. The CPU Time

comparison in Figure 5.28(b) shows that the EAGLM is much beĴer than the EGLM.

5.5.4 The RDA 2D Equation

The 2D RDA Problem, from Section 5.1.5, produces a very large system of ODEs with a pent-

diagonal Lmatrix. Caliari & Ostermann [10] published the results for some numerical experi-

mentswithRosenbrock-type integratorswith theRDAproblem. To compare their performance

with EAGLMs we will run experiments with the same parameters.

We run a first set of experiments with the parameters ε = 0.05, α = −1, ρ = 1. Figures

5.29(b) and 5.30(b) illustrate that the step count performance of the three integrators is again

largely the same. TheCPUcomparisons, ploĴed in Figures 5.29(a) and 5.30(a), are very different

from those we saw in the earlier 1D problems. Now ODE15s is significantly slower than either

of the EIs. This result clearly highlights the superior performance which EIs schemes can offer

for larger problems.
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Figure 5.29: 2D RDA Equation, N = 20× 20, ε = 0.05, α = −1, ρ = 1
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Figure 5.30: 2D RDA Equation, N = 64× 64, ε = 0.05, α = −1, ρ = 1

Figure 5.31 shows the two “Global Error against CPU Time” plots again, without ODE15s.

This makes the difference between EGLM423 and EARK422 clearer.

10
−0.1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

CPU Time

E
rr

or

EGLM423 (2.2.9)
EARK422 (5.3.10)

(a) N = 20× 20

10
1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

CPU Time

E
rr

or

EGLM423 (2.2.9)
EARK422 (5.3.10)

(b) N = 64× 64

Figure 5.31: 2D RDA Equation without ODE15s, ε = 0.05, α = −1, ρ = 1

The published results from Caliari & Ostermann [10], while not including any ERKs or
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Figure 5.32: 2D RDA Equation, CPU Timings, ε = 0.05, α = −1, ρ = 1

EGLMs, seem to indicate that Rosenbrock-type integrators can achieve similar levels of accu-

racy in fewer steps. However, without the inclusion of any established ERKs or EGLMs, it is

difficult for us to make a direct comparison with our own results.

To produce a second set of result, wewill also repeat the experiments for the parameters ε =

0.05, α = −1, ρ = 100. Here again we are carrying out a similar experiments to one performed

by Caliari & Ostermann.

(a) ρ = 1

Global Error: 1× 10−3 5× 10−5 3× 10−6

ODE15s 21 44 67

EGLM423 16 39 66

EARK422 16 33 49

(b) ρ = 100

1× 10−3 5× 10−5 3× 10−6

46 104 148

45 125 231

42 78 135

Table 5.15: 2D RDA Equation, Step Counts, ε = 0.05, α = −1

Table 5.15 lists step count statistics. They show that ODE15s takes about 1.3 timesmore steps

than EARK422 and EGLM423 needs 1.7 times as many.

In Table 5.16we list thememory required for different problemdiscretisations. It is clear that

memory usage is significantly lower for both the PHIPM and ReLPM approaches to implementing

an EI. This is also a crucial result in favour of EIs, as excessive memory requirements can mean

integrators such as ODE15s simply cannot be applied to real-world problems in two or more

dimensions.

See Appendix B.4 for the full integration statistics across three problem sizes, 32×32, 45×45

and 64× 45.
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(b) Global Error against CPU Time

Figure 5.33: 2D RDA Equation, N = 32× 32, ε = 0.05, α = −1, ρ = 100
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(a) N = 20× 20

10
1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

CPU Time

E
rr

or

EGLM423 (2.2.9)
EARK422 (5.3.10)

(b) N = 64× 64

Figure 5.34: 2D RDA Equation without ODE15s, ε = 0.05, α = −1, ρ = 100
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(a) Tolerance, τ = 5× 10−5

10
2

10
0

10
1

10
2

10
3

Problem Size

C
P

U
 T

im
e

Matlab ODE15s
EGLM423 (2.2.9)
EARK422 (5.3.10)

(b) Tolerance, τ = 1× 10−6

Figure 5.35: 2D RDA Equation, CPU Timings, ε = 0.05, α = −1, ρ = 100

5.5.5 The Gray-ScoĴ Equation

We run a number of numerical experiments with the 1D, 2D and 3D problem implementations

provided by the EXPINT package [4, Section 4.2.8]. Due to memory limitations, imposed upon
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Dimension 32 64 128 256 512

ODE15s 52 595 3950 N/A N/A

PHIPM 53 71 170 585 1382

ReLPM 25 63 147 533 1094

Table 5.16: Memory Usage in Megabytes (MBs)

us by Matlab, the largest spacial discretisations we could use were N = 1024, N = 32 and

N = 8 for the 1D, 2D and 3D problems respectively.

1D Problem Tests. The L matrix for the Gray-ScoĴ problem is a real diagonal matrix and

we ran experiments with the 1D problem for discretisations of N = 512 and 1024 giving us L

matrices of 1024× 1024 and 2048× 2048.
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Figure 5.36: 1D Gray-ScoĴ, N = 512
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Figure 5.37: 1D Gray-ScoĴ, N = 1024

In terms of step count performance (Figures 5.36(a) and 5.37(a)) the three schemes are,

again, very similar. Looking at the computational work required per step, the EIs were more
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efficient than than ODE15s and so produced faster results. This is in contrast to our earlier 1D

Allen-Cahn and Kuramoto-Sivashinsky experiments where ODE15s proved quite efficient.
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(a) Tolerance, τ = 1−3
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(b) Tolerance, τ = 1−6

Figure 5.38: 1D Gray-ScoĴ, CPU Timings against Problem Size

In Figures 5.38 we fix the integration tolerance and plot CPU measurement as the problem

size increases. Here we observe that, as the size of the problem increases, the CPU timings for

the EI schemes increase at a much slower rate over those of ODE15s. Consequently EIs remain

practical choices for significantly larger problems.

2D & 3D Problem Tests. Numerical tests with the 2D & 3D Gray-ScoĴ problems repeat the

samepaĴern seen in the 1D tests. For the 2Dproblem,withN = 32×32, we observe fromFigure

5.39(a) that step count performances are about equal. In theCPUmeasurements (Figure 5.39(b))

the EIs are both significantly beĴer than ODE15s, with EARK422 again being the top performer.
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Figure 5.39: 2D Gray-ScoĴ, N = 32× 32

In the comparison of CPU times against the problem size (Figure 5.40) we can see a much

bigger gap between ODE15s and the EIs than the gap observed in the 1D test.
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Figure 5.40: 2D Gray-ScoĴ, CPU Timings against Problem Dimension
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Figure 5.41: 3D Gray-ScoĴ Equation, n = 8× 8× 8

The tests for the 3D problem, shown in Figure 5.41, are more erratic, and this is very likely

due to the coarse spatial discretisation. Unfortunatelymemory constraintsmeant ODE15s could

not be run for a finer mesh. From the CPU timings it is still clear that the EIs are significantly

beĴer at solving the problem.

N = 512 N = 32× 32 N = 8× 8× 8

ODE15s 194 108 54

EGLM423 195 164 40

EARK422 151 105 47

Table 5.17: Gray-ScoĴ Equation, Global Error = 1× 10−6

Table 5.17 summarizes some step count statistics for each dimension. On average, the re-

sults show that EGLM423 consistently requires about 1.6 times asmany steps as EARK422 takes.

Appendices B.5.1, B.5.2 and B.5.3 tabulate the full integration statistics for the experiments.
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5.6 ODE15s CPU Cost Scaling

An interesting result observed in some experiments is the rapid growth of the computational

cost of ODE15s relative to N , the L-matrix dimension. Figures 5.32 and 5.38 are particularly

illustrative of this. To study this behaviour we run some key test problems and measure the

relative cost-per-step as N increases.
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Figure 5.42: Effect of matrix dimension on ODE15s computational cost

The measurements are scaled to align them at the same starting point and then ploĴed in

Figure 5.42, along with reference lines for linear, quadratic and cubic growth rates. The results

clearly show that the scaling of ODE15swith respect to thematrix dimensionN is almost exactly

O(N2) for most of the problem. For the Kuramoto-Sivashinsky Equation, which has diagonal

L-matrix, the graph shows approximately linear scaling for ODE15s.
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Chapter 6

Conclusions

From ourworkwe can draw a number of very positive conclusions regarding the EARK family

of methods.

• The stability analysis of EARKs showed that they exhibit the same “Runge-KuĴa” stabil-

ity property seen in EGLMs. The large stability region that these two families share with

ERKs sets them apart from ETDs andmakes them suitable to a wide variety of problems.

Like EGLMs, EARKs retain the ETDs’ advantage when it comes to constructing higher-

order methods.

• Convergence analysis of EARKs shows that they meet all the same bounds as EGLMs

and that existing results proved for EGLMs also hold for EARKs. In addition, we demon-

strated an equivalence between EAGLMs and EGLMs when the N function derivatives

are constructed using past steps only.

• Having compared accuracywith stepsize over a number of test problemswe saw that the

4ᵗŀ order EARKs rank among the top performers out of all the schemes looked at. Only

two 4ᵗŀ order ERKs (5.3.5 & 5.3.7) achieve a similar level of performance.

• Looking at CPU cost per stepwe saw that EARKs are the top performers,matched only by

EGLMs when using the phipm implementation of computing a full linear φ combination

in one operation. By comparison, the 4ᵗŀ order ERKs are only half as efficient.

When the φ× vector operations are counted separately, the EARKs are the most efficient

schemes in the 3Ŋᵈ and 4ᵗŀ order categories. We also saw that efficiency improvement

would be even greater for higher order methods.

127



• Whengenerating local truncation error approximations,we showed that EARK422 (5.3.10)

could produce a free estimate from an intermediate result computed as part of a standard

implementation of the scheme. Numerical experiments verified that this estimate was ro-

bust and very effective at guiding an adaptive stepsize controller.

• Our implementation of an adaptive stepsize integrator was able to combine all of the

advantages of EIs and, in particular, EARKs.We carried out a comprehensive comparison

of the 4ᵗŀ order EARK with EGLM423 (2.2.9) and Matlab’s ODE15s. The results showed

conclusively that, when comparing step counts, EARK422 required the fewest steps to

complete the integration of the test problems. Across a range of problems we saw that,

on average, EGLM423 would require about 1.7 times asmany steps as EARK422 to achieve

the same global error.

• When we looked at large problems, usually of two or more dimensions, we saw that EIs

can easily outperform ODE15s with EARK422 being the stand-out method.

In the end, it is step count performance where EARKs and EAGLMs demonstrated their

superiority over EGLMs and their competitiveness with ODE15s. In terms of computationally

efficiency we see that simpler structure of an EARK tableau makes them suitable for very effi-

cient implementations.

128



Appendix A

Definitions

A.1 Parabolic Evolution Equations

The convergence analysis we perform in Section 3.3 occurs in the framework of abstract semi-

linear parabolic evolution equations. Within this framework we follow the structure of Oster-

mann, Thalhammer & Wright’s proof for [38, Theorem 3.1].

A.1.1 Analytical Framework

Let X be a complex Banach space endowed with the norm ∥·∥X and D ⊂ X another densely

embedded Banach space. For any 0 < v < 1wedenote byXv some intermediate space between

D = X1 and X = X0 such that the norm in Xv fulfills the relation

∥x∥Xv
≤ C ∥x∥vD ∥x∥

1−v
X , x ∈ D, 0 < v < 1 (A.1.1)

with a constant C > 0.

We consider initial value problems of the form (1.3.2) where the right-hand side of the dif-

ferential equation is defined by a linear operatorL : D → X and a sufficiently regular nonlinear

map

N : Xα → X : v 7→ N(v), D ⊂ Xα ⊂ X, 0 ≤ α < 1 (A.1.2)

This requirement together with Hypothesis 17 renders (1.3.2) a semilinear parabolic prob-

lem [38].
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Hypothesis 17. [38, Hypothesis 3.1] We assume that the closed and densely defined linear operator

L : D → X is sectorial. Thus, there exist constants a ∈ R, 0 < ϕ < π
2 and >≥ 1 such that L satisfies

the resolvent condition ∥∥∥(λI − L)
−1
∥∥∥
X←X

≤ M

|λ− a|
, λ ∈ CSϕ(a), (A.1.3)

on the complement of the sector Sϕ(a) = {λ ∈ C : |arg(a− λ)| ≤ ϕ}∪{a}. Moreover, we suppose that

the graph norm of L and the norm in D are equivalent, that is, the estimate

C−1 ∥x∥D ≤ ∥x∥X + ∥Lx∥X ≤ C ∥x∥D , x ∈ D, (A.1.4)

is valid for a constant C > 0.

Under this Hypothesis, the operator L is the infinitesimal generator of an analytic semi-

group
(
etL
)
t≥o on the underlying Banach space X [38, 25] For ω > −a, the fractional powers

of L̃ = ωI − L are well-defined [25].

Lemma 18. [25, Lemma 3.1] Under Hypothesis 17 and for fixed ω > −a, the following bounds hold

uniformly on 0 ≤ t ≤ T . ∥∥etL∥∥
X←X

+
∥∥∥tγL̃γetL

∥∥∥
X←X

≤ C, γ ≥ 0 (A.1.5)∥∥∥∥∥∥hL
n−1∑
j=1

ejhL

∥∥∥∥∥∥
X←X

≤ C (A.1.6)

A.2 B-Convergence

Definition 5 (B-convergent). For an initial value problem (1.1.1) where f satisfies a one-sided

Lipschiĵ condition with a one-sided Lipschiĵ constant γ and where the solution sought satis-

fies ∥∥∥∥diy(t)dti

∥∥∥∥ ≤Mi, ∀t ∈ [0, T ] (A.2.1)

with boundsMi, we call a method (producing the sequence {ηv}with ηv ≈ y(tv)) B-convergent

of order p if

∥ηn − y(tv)∥ ≤ C(tv)h
p, h ∈ (0, h0] (A.2.2)

holds under the following assumptions:

• The function C depends only on γ (as the only characterisation of fy), on bounds for

certain other derivatives of f (ft, fyy, fty, ftt, . . .) and on some of the boundsMi.

• The maximum stepsize h0 depends on γ and, possibly, on bounds for derivatives of f

(except fy), only.
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Definition 6 (B-stable). For a given differential equation (1.1.1) where f satisfies a one-sided

Lipschiĵ condition (5.3.1), with a Lipschiĵ constant γ, a one-step method is called B-stable if

an inequality ∥∥η̄ − ζ̄
∥∥ ≤ ϕ(hγ) ∥η − ζ∥ (A.2.3)

holds, where both η̄ and ζ̄ are the results (at the point t+ h) of one step of the method starting

from (t, η) and (t, ζ) respectively. ϕ(x) is assumed to be a nonnegative monotone increasing

function with ϕ(0) = 1.

Definition 7 (B-consistent). For a given initial value problem (1.1.1), where the solution y sat-

isfies (A.2.1) with boundsMi, we call a method B-consistent of order p if ζ, the result of one step

of the method considered (with stepsize h starting from (t, y(t))), satisfies

∥ζ − y(t+ h)∥ ≤ Dhp+1, h ∈ (0, h0] (A.2.4)

D and h0 are assumed to depend at most on those quantities which are allowed to affect C(t)

and h0 of Definition 5.
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Appendix B

Complete Results

B.1 Brusselator System Tables

N = 64 Method Global Error Steps CPU Time Memory
1.000e− 003 Matlab ODE 15s 8.044e− 002 109 0.499 0.379
1.000e− 003 EGLM423 (2.2.9) 5.092e− 002 165 7.316 4.813
1.000e− 003 EARK422c2 (3.2.31) 3.976e− 002 128 6.973 0.117
1.000e− 004 Matlab ODE 15s 7.090e− 003 170 0.686 0.000
1.000e− 004 EGLM423 (2.2.9) 4.728e− 003 277 5.491 1.063
1.000e− 004 EARK422c2 (3.2.31) 5.389e− 003 184 5.538 0.000
1.000e− 005 Matlab ODE 15s 6.939e− 004 249 0.858 0.000
1.000e− 005 EGLM423 (2.2.9) 5.507e− 004 462 5.366 0.738
1.000e− 005 EARK422c2 (3.2.31) 4.579e− 004 287 4.415 −0.031
1.000e− 006 Matlab ODE 15s 1.637e− 004 344 1.108 0.000
1.000e− 006 EGLM423 (2.2.9) 7.168e− 005 778 6.770 4.352
1.000e− 006 EARK422c2 (3.2.31) 6.213e− 005 465 5.242 0.000
1.000e− 007 Matlab ODE 15s 3.019e− 005 491 1.482 0.000
1.000e− 007 EGLM423 (2.2.9) 7.112e− 006 1363 9.266 4.461
1.000e− 007 EARK422c2 (3.2.31) 6.085e− 006 801 6.958 0.000
1.000e− 008 Matlab ODE 15s 5.278e− 006 700 1.966 0.000
1.000e− 008 EGLM423 (2.2.9) 7.121e− 007 2386 14.461 3.422
1.000e− 008 EARK422c2 (3.2.31) 5.481e− 007 1385 9.610 0.000
1.000e− 009 Matlab ODE 15s 7.821e− 007 1007 2.605 0.000
1.000e− 009 EGLM423 (2.2.9) 7.068e− 008 4227 26.614 10.473
1.000e− 009 EARK422c2 (3.2.31) 5.098e− 008 2450 15.491 0.000
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N = 256 Method Global Error Steps CPU Time Memory
1.000e− 003 Matlab ODE 15s 1.251e− 001 115 3.401 8.180
1.000e− 003 EGLM423 (2.2.9) 5.094e− 002 165 41.668 11.277
1.000e− 003 EARK422c2 (3.2.31) 3.978e− 002 128 35.568 9.477
1.000e− 004 Matlab ODE 15s 1.077e− 002 170 3.838 8.016
1.000e− 004 EGLM423 (2.2.9) 4.720e− 003 277 44.663 11.145
1.000e− 004 EARK422c2 (3.2.31) 5.369e− 003 184 35.740 11.484
1.000e− 005 Matlab ODE 15s 7.898e− 004 245 4.961 8.016
1.000e− 005 EGLM423 (2.2.9) 5.503e− 004 462 40.935 1.070
1.000e− 005 EARK422c2 (3.2.31) 4.578e− 004 287 36.301 19.148
1.000e− 006 Matlab ODE 15s 1.485e− 004 346 5.897 8.016
1.000e− 006 EGLM423 (2.2.9) 7.167e− 005 778 43.150 2.988
1.000e− 006 EARK422c2 (3.2.31) 6.242e− 005 465 35.225 12.938
1.000e− 007 Matlab ODE 15s 3.032e− 005 495 7.847 8.016
1.000e− 007 EGLM423 (2.2.9) 7.111e− 006 1363 43.368 9.277
1.000e− 007 EARK422c2 (3.2.31) 6.087e− 006 801 42.136 6.543
1.000e− 008 Matlab ODE 15s 5.190e− 006 708 10.234 8.016
1.000e− 008 EGLM423 (2.2.9) 7.120e− 007 2386 39.796 31.598
1.000e− 008 EARK422c2 (3.2.31) 5.483e− 007 1385 36.036 20.738
1.000e− 009 Matlab ODE 15s 7.741e− 007 1030 13.853 8.016
1.000e− 009 EGLM423 (2.2.9) 7.066e− 008 4224 76.331 55.988
1.000e− 009 EARK422c2 (3.2.31) 5.091e− 008 2450 38.875 49.129

N = 1024 Method Global Error Steps CPU Time Memory
1.000e− 003 Matlab ODE 15s 1.249e− 001 115 70.809 134.992
1.000e− 003 EGLM423 (2.2.9) 5.094e− 002 165 941.700 21.777
1.000e− 003 EARK422c2 (3.2.31) 3.979e− 002 128 952.074 20.113
1.000e− 004 Matlab ODE 15s 1.077e− 002 170 83.195 130.164
1.000e− 004 EGLM423 (2.2.9) 4.720e− 003 277 1060.027 24.684
1.000e− 004 EARK422c2 (3.2.31) 5.368e− 003 184 984.132 22.371
1.000e− 005 Matlab ODE 15s 1.215e− 003 245 104.177 131.234
1.000e− 005 EGLM423 (2.2.9) 5.503e− 004 462 1167.480 26.129
1.000e− 005 EARK422c2 (3.2.31) 4.578e− 004 287 1136.405 39.480
1.000e− 006 Matlab ODE 15s 1.482e− 004 346 123.958 132.691
1.000e− 006 EGLM423 (2.2.9) 7.167e− 005 778 1311.344 58.598
1.000e− 006 EARK422c2 (3.2.31) 6.242e− 005 465 1350.547 45.316
1.000e− 007 Matlab ODE 15s 2.787e− 005 502 167.077 135.172
1.000e− 007 EGLM423 (2.2.9) 7.111e− 006 1363 1760.487 124.637
1.000e− 007 EARK422c2 (3.2.31) 6.087e− 006 801 1654.001 121.223
1.000e− 008 Matlab ODE 15s 4.800e− 006 715 217.996 138.879
1.000e− 008 EGLM423 (2.2.9) N/A N/A N/A 229.078
1.000e− 008 EARK422c2 (3.2.31) 5.482e− 007 1385 1974.349 275.551
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B.2 Allen-Cahn Equation Tables

B.2.1 Chebyshev Differentiation Matrix

N = 25 Method Global Error Steps CPU Time Memory
1.000e− 003 Matlab ODE 15s 8.673e− 002 73 0.062 0.000
1.000e− 003 EGLM423 (2.2.9) 6.638e− 003 106 2.137 19.770
1.000e− 003 EARK422c2 (3.2.31) 5.545e− 004 97 2.044 0.000
1.000e− 004 Matlab ODE 15s 9.645e− 003 112 0.078 0.000
1.000e− 004 EGLM423 (2.2.9) 2.356e− 003 150 2.480 0.133
1.000e− 004 EARK422c2 (3.2.31) 3.195e− 003 115 2.122 0.000
1.000e− 005 Matlab ODE 15s 1.071e− 003 172 0.109 0.000
1.000e− 005 EGLM423 (2.2.9) 3.648e− 004 237 3.151 0.492
1.000e− 005 EARK422c2 (3.2.31) 2.773e− 004 159 2.527 0.000
1.000e− 006 Matlab ODE 15s 8.323e− 005 240 0.140 0.000
1.000e− 006 EGLM423 (2.2.9) 5.680e− 005 383 4.087 1.980
1.000e− 006 EARK422c2 (3.2.31) 4.788e− 005 242 3.136 0.000
1.000e− 007 Matlab ODE 15s 6.987e− 006 334 0.187 0.000
1.000e− 007 EGLM423 (2.2.9) 5.389e− 006 655 5.694 1.289
1.000e− 007 EARK422c2 (3.2.31) 4.573e− 006 399 4.181 0.000
1.000e− 008 Matlab ODE 15s 4.250e− 007 460 0.250 0.000
1.000e− 008 EGLM423 (2.2.9) 5.239e− 007 1152 7.894 4.039
1.000e− 008 EARK422c2 (3.2.31) 4.254e− 007 683 6.006 −0.031
1.000e− 009 Matlab ODE 15s 7.100e− 008 646 0.343 0.000
1.000e− 009 EGLM423 (2.2.9) 5.163e− 008 2035 11.014 14.949
1.000e− 009 EARK422c2 (3.2.31) 3.931e− 008 1193 8.377 0.039

N = 50 Method Global Error Steps CPU Time Memory
1.000e− 003 Matlab ODE 15s 3.185e− 002 69 0.437 −0.027
1.000e− 003 EGLM423 (2.2.9) 6.161e− 003 104 4.430 0.457
1.000e− 003 EARK422c2 (3.2.31) 1.075e− 003 97 8.112 0.000
1.000e− 004 Matlab ODE 15s 2.941e− 003 109 0.281 0.000
1.000e− 004 EGLM423 (2.2.9) 1.351e− 003 149 4.321 0.000
1.000e− 004 EARK422c2 (3.2.31) 1.088e− 003 109 6.958 −0.023
1.000e− 005 Matlab ODE 15s 7.636e− 004 177 0.499 0.000
1.000e− 005 EGLM423 (2.2.9) 1.879e− 004 226 5.070 −0.020
1.000e− 005 EARK422c2 (3.2.31) 1.275e− 004 155 6.271 0.230
1.000e− 006 Matlab ODE 15s 5.941e− 005 247 0.499 0.000
1.000e− 006 EGLM423 (2.2.9) 1.576e− 005 379 6.349 −0.020
1.000e− 006 EARK422c2 (3.2.31) 1.884e− 005 238 5.522 −0.020
1.000e− 007 Matlab ODE 15s 1.144e− 005 346 0.593 0.000
1.000e− 007 EGLM423 (2.2.9) 1.414e− 006 659 8.596 0.227
1.000e− 007 EARK422c2 (3.2.31) 1.776e− 006 397 6.552 −0.016
1.000e− 008 Matlab ODE 15s 1.019e− 006 486 0.577 0.000
1.000e− 008 EGLM423 (2.2.9) 1.323e− 007 1157 11.825 13.738
1.000e− 008 EARK422c2 (3.2.31) 1.507e− 007 686 8.798 0.000
1.000e− 009 Matlab ODE 15s 2.290e− 007 674 0.764 0.000
1.000e− 009 EGLM423 (2.2.9) 1.281e− 008 2041 17.503 68.082
1.000e− 009 EARK422c2 (3.2.31) 1.254e− 008 1197 11.497 0.000
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B.2.2 Finite-Differences

Type 1

N = 512 Method Global Error Steps CPU Time Memory
1.000e− 003 Matlab ODE 15s 1.329e− 003 41 1.513 8.277
1.000e− 003 EGLM423 (2.2.9) 3.659e− 004 105 10.702 35.336
1.000e− 003 EARK422c2 (3.2.31) 4.007e− 004 98 10.265 4.617
1.000e− 004 Matlab ODE 15s 2.010e− 004 64 1.700 7.984
1.000e− 004 EGLM423 (2.2.9) 4.611e− 005 130 10.670 0.000
1.000e− 004 EARK422c2 (3.2.31) 4.979e− 005 109 9.828 2.688
1.000e− 005 Matlab ODE 15s 1.376e− 005 89 2.262 7.984
1.000e− 005 EGLM423 (2.2.9) 3.737e− 006 157 6.895 0.000
1.000e− 005 EARK422c2 (3.2.31) 8.518e− 006 128 8.752 1.176
1.000e− 006 Matlab ODE 15s 2.731e− 006 121 2.761 7.984
1.000e− 006 EGLM423 (2.2.9) 4.051e− 007 218 8.346 0.000
1.000e− 006 EARK422c2 (3.2.31) 4.352e− 007 151 7.457 11.039
1.000e− 007 Matlab ODE 15s 3.094e− 007 168 3.463 9.547
1.000e− 007 EGLM423 (2.2.9) 4.402e− 008 315 8.299 1.766
1.000e− 007 EARK422c2 (3.2.31) 2.581e− 008 219 7.566 2.184
1.000e− 008 Matlab ODE 15s 3.616e− 008 240 4.103 7.984
1.000e− 008 EGLM423 (2.2.9) 4.867e− 009 501 8.923 0.004
1.000e− 008 EARK422c2 (3.2.31) 3.730e− 009 325 6.443 0.000
1.000e− 009 Matlab ODE 15s 4.958e− 009 330 5.585 7.984
1.000e− 009 EGLM423 (2.2.9) 4.105e− 010 825 9.766 0.012
1.000e− 009 EARK422c2 (3.2.31) 3.040e− 010 513 6.365 0.000

Type 2

N = 512 Method Global Error Steps CPU Time Memory
1.000e− 003 Matlab ODE 15s 1.329e− 003 41 1.466 8.234
1.000e− 003 EGLM423 (2.2.9) 5.877e− 004 156 14.898 3.449
1.000e− 003 EARK422c2 (3.2.31) 4.502e− 004 139 13.619 3.543
1.000e− 004 Matlab ODE 15s 2.010e− 004 64 1.981 7.984
1.000e− 004 EGLM423 (2.2.9) 4.412e− 005 169 13.354 0.000
1.000e− 004 EARK422c2 (3.2.31) 5.402e− 005 147 12.636 0.000
1.000e− 005 Matlab ODE 15s 1.376e− 005 89 2.215 7.984
1.000e− 005 EGLM423 (2.2.9) 4.459e− 006 212 12.230 2.473
1.000e− 005 EARK422c2 (3.2.31) 7.705e− 006 165 11.653 0.000
1.000e− 006 Matlab ODE 15s 2.731e− 006 121 2.558 7.984
1.000e− 006 EGLM423 (2.2.9) 5.990e− 007 275 12.184 5.883
1.000e− 006 EARK422c2 (3.2.31) 4.386e− 007 204 11.279 −0.008
1.000e− 007 Matlab ODE 15s 3.094e− 007 168 3.619 7.984
1.000e− 007 EGLM423 (2.2.9) 4.220e− 008 383 10.156 −0.008
1.000e− 007 EARK422c2 (3.2.31) 4.222e− 008 265 10.920 1.160
1.000e− 008 Matlab ODE 15s 3.616e− 008 265 9.266 7.984
1.000e− 008 EGLM423 (2.2.9) 4.396e− 009 582 9.656 0.000
1.000e− 008 EARK422c2 (3.2.31) 3.754e− 009 385 9.578 4.012
1.000e− 009 Matlab ODE 15s 4.958e− 009 387 18.112 7.984
1.000e− 009 EGLM423 (2.2.9) 4.142e− 010 933 10.655 0.000
1.000e− 009 EARK422c2 (3.2.31) 3.289e− 010 587 8.861 13.516
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B.3 1D Kuramoto-Sivashinsky Equation Tables

N = 128 Method Global Error Steps CPU Time Memory
1.000e− 002 Matlab ODE 15s 4.855e+ 000 207 2.387 1.516
1.000e− 002 EGLM423 (2.2.9) 2.076e+ 000 405 46.098 30.363
1.000e− 002 EARK422c2 (3.2.31) 4.096e− 001 303 38.345 2.781
1.000e− 003 Matlab ODE 15s 2.045e+ 000 300 1.763 0.000
1.000e− 003 EGLM423 (2.2.9) 1.441e− 001 703 65.505 17.664
1.000e− 003 EARK422c2 (3.2.31) 6.680e− 002 438 46.566 0.488
1.000e− 004 Matlab ODE 15s 1.918e− 002 447 2.309 0.000
1.000e− 004 EGLM423 (2.2.9) 1.431e− 002 1256 99.092 44.621
1.000e− 004 EARK422c2 (3.2.31) 8.995e− 003 718 63.196 0.285
1.000e− 005 Matlab ODE 15s 7.674e− 003 632 3.089 0.000
1.000e− 005 EGLM423 (2.2.9) 1.365e− 003 2265 163.083 4.797
1.000e− 005 EARK422c2 (3.2.31) 3.633e− 004 1298 101.791 7.438
1.000e− 006 Matlab ODE 15s 3.645e− 003 925 4.415 0.000
1.000e− 006 EGLM423 (2.2.9) 1.296e− 004 4061 292.845 8.309
1.000e− 006 EARK422c2 (3.2.31) 5.010e− 005 2339 170.727 4.395
1.000e− 007 Matlab ODE 15s 1.757e− 003 1352 6.224 0.000
1.000e− 007 EGLM423 (2.2.9) 1.360e− 005 7260 224.735 36.082
1.000e− 007 EARK422c2 (3.2.31) 7.982e− 006 4187 303.672 10.184

N = 256 Method Global Error Steps CPU Time Memory
1.000e− 002 Matlab ODE 15s 4.017e+ 000 225 7.254 4.645
1.000e− 002 EGLM423 (2.2.9) 7.816e− 001 480 181.882 79.352
1.000e− 002 EARK422c2 (3.2.31) 5.022e− 002 336 156.235 13.266
1.000e− 003 Matlab ODE 15s 5.986e− 001 347 5.928 0.000
1.000e− 003 EGLM423 (2.2.9) 7.230e− 002 833 220.585 4.117
1.000e− 003 EARK422c2 (3.2.31) 2.735e− 002 499 170.681 0.602
1.000e− 004 Matlab ODE 15s 9.267e− 002 478 6.256 0.000
1.000e− 004 EGLM423 (2.2.9) 7.068e− 003 1501 307.322 12.801
1.000e− 004 EARK422c2 (3.2.31) 2.910e− 003 862 225.827 9.578
1.000e− 005 Matlab ODE 15s 1.265e− 002 692 8.018 0.000
1.000e− 005 EGLM423 (2.2.9) 6.672e− 004 2701 443.261 16.035
1.000e− 005 EARK422c2 (3.2.31) 2.016e− 004 1551 293.438 10.445
1.000e− 006 Matlab ODE 15s 1.585e− 003 1005 11.107 0.000
1.000e− 006 EGLM423 (2.2.9) 6.455e− 005 4839 710.132 50.551
1.000e− 006 EARK422c2 (3.2.31) 2.788e− 005 2789 425.134 44.480
1.000e− 007 Matlab ODE 15s 4.208e− 004 1491 16.708 0.000
1.000e− 007 EGLM423 (2.2.9) N/A N/A N/A 138.156
1.000e− 007 EARK422c2 (3.2.31) 5.724e− 006 4986 701.817 192.371
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B.4 RDA 2D Equation Tables
Parameters ε = 0.05, α = −1, ρ = 1

N = 32× 32 Method Global Error Steps CPU Time Memory
1.000e− 002 Matlab ODE 15s 1.183e− 002 12 2.387 24.734
1.000e− 002 EGLM423 (2.2.9) 1.107e− 003 16 1.841 3.133
1.000e− 002 EARK422c2 (3.2.31) 2.996e− 003 16 1.841 0.000
2.683e− 003 Matlab ODE 15s 3.986e− 003 14 2.574 24.734
2.683e− 003 EGLM423 (2.2.9) 1.041e− 003 19 1.544 0.066
2.683e− 003 EARK422c2 (3.2.31) 1.169e− 003 19 1.685 0.895
7.197e− 004 Matlab ODE 15s 1.079e− 003 17 2.652 24.734
7.197e− 004 EGLM423 (2.2.9) 3.936e− 004 25 1.716 0.066
7.197e− 004 EARK422c2 (3.2.31) 7.495e− 004 24 1.529 0.895
1.931e− 004 Matlab ODE 15s 3.363e− 004 22 3.011 24.734
1.931e− 004 EGLM423 (2.2.9) 1.029e− 004 31 1.872 0.066
1.931e− 004 EARK422c2 (3.2.31) 2.497e− 004 26 1.622 0.895
5.179e− 005 Matlab ODE 15s 9.418e− 005 29 3.338 24.734
5.179e− 005 EGLM423 (2.2.9) 2.650e− 005 39 1.607 0.066
5.179e− 005 EARK422c2 (3.2.31) 7.556e− 005 32 1.825 1.031
1.389e− 005 Matlab ODE 15s 2.672e− 005 35 3.635 24.734
1.389e− 005 EGLM423 (2.2.9) 6.701e− 006 50 1.342 0.027
1.389e− 005 EARK422c2 (3.2.31) 1.199e− 005 38 1.264 −0.039
3.728e− 006 Matlab ODE 15s 1.212e− 005 44 4.384 24.734
3.728e− 006 EGLM423 (2.2.9) 1.699e− 006 65 1.591 2.059
3.728e− 006 EARK422c2 (3.2.31) 2.102e− 006 47 1.295 0.000
1.000e− 006 Matlab ODE 15s 4.370e− 006 56 5.054 24.734
1.000e− 006 EGLM423 (2.2.9) 4.365e− 007 86 1.950 0.031
1.000e− 006 EARK422c2 (3.2.31) 4.906e− 007 59 1.435 0.895

N = 64× 64 Method Global Error Steps CPU Time Memory
1.000e− 002 Matlab ODE 15s 2.046e− 002 14 75.957 450.953
1.000e− 002 EGLM423 (2.2.9) 1.061e− 003 16 3.650 6.309
1.000e− 002 EARK422c2 (3.2.31) 1.931e− 003 16 3.713 5.516
2.683e− 003 Matlab ODE 15s 6.592e− 003 16 77.018 450.723
2.683e− 003 EGLM423 (2.2.9) 6.359e− 004 19 4.056 3.625
2.683e− 003 EARK422c2 (3.2.31) 1.434e− 003 19 3.682 3.348
7.197e− 004 Matlab ODE 15s 1.688e− 003 21 85.941 450.391
7.197e− 004 EGLM423 (2.2.9) 2.772e− 004 25 4.602 2.172
7.197e− 004 EARK422c2 (3.2.31) 9.786e− 004 23 4.399 1.855
1.931e− 004 Matlab ODE 15s 3.353e− 004 27 94.537 450.953
1.931e− 004 EGLM423 (2.2.9) 7.885e− 005 32 5.335 1.695
1.931e− 004 EARK422c2 (3.2.31) 2.018e− 004 28 5.132 2.695
5.179e− 005 Matlab ODE 15s 1.413e− 004 35 111.744 450.953
5.179e− 005 EGLM423 (2.2.9) 2.173e− 005 39 5.959 2.027
5.179e− 005 EARK422c2 (3.2.31) 6.194e− 005 33 5.288 3.566
1.389e− 005 Matlab ODE 15s 3.305e− 005 44 121.338 452.273
1.389e− 005 EGLM423 (2.2.9) 5.848e− 006 51 7.207 3.145
1.389e− 005 EARK422c2 (3.2.31) 1.401e− 005 40 6.224 3.020
3.728e− 006 Matlab ODE 15s 9.051e− 006 54 139.746 452.363
3.728e− 006 EGLM423 (2.2.9) 1.557e− 006 66 8.471 3.563
3.728e− 006 EARK422c2 (3.2.31) 2.455e− 006 49 6.880 4.824
1.000e− 006 Matlab ODE 15s 3.291e− 006 67 157.717 452.160
1.000e− 006 EGLM423 (2.2.9) 4.124e− 007 86 10.187 4.879
1.000e− 006 EARK422c2 (3.2.31) 5.093e− 007 61 7.800 3.980
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Parameters ε = 0.05, α = −1, ρ = 100

N = 32× 32 Method Global Error Steps CPU Time Memory
1.000e− 002 Matlab ODE 15s 2.915e− 002 24 3.229 24.734
1.000e− 002 EGLM423 (2.2.9) 7.871e− 003 34 1.420 1.500
1.000e− 002 EARK422c2 (3.2.31) 6.968e− 003 32 2.402 0.000
2.683e− 003 Matlab ODE 15s 8.985e− 003 35 3.572 24.734
2.683e− 003 EGLM423 (2.2.9) 2.732e− 003 47 1.560 0.066
2.683e− 003 EARK422c2 (3.2.31) 2.092e− 003 48 1.576 0.664
7.197e− 004 Matlab ODE 15s 2.499e− 003 46 3.962 24.734
7.197e− 004 EGLM423 (2.2.9) 9.814e− 004 66 1.810 0.066
7.197e− 004 EARK422c2 (3.2.31) 6.232e− 004 61 1.622 1.402
1.931e− 004 Matlab ODE 15s 5.513e− 004 63 4.368 24.734
1.931e− 004 EGLM423 (2.2.9) 2.625e− 004 97 1.888 3.055
1.931e− 004 EARK422c2 (3.2.31) 2.212e− 004 69 1.622 −0.016
5.179e− 005 Matlab ODE 15s 1.730e− 004 84 4.976 24.820
5.179e− 005 EGLM423 (2.2.9) 7.349e− 005 131 2.262 12.176
5.179e− 005 EARK422c2 (3.2.31) 6.362e− 005 86 1.872 0.000
1.389e− 005 Matlab ODE 15s 9.893e− 005 115 6.349 24.734
1.389e− 005 EGLM423 (2.2.9) 2.019e− 005 179 2.824 2.887
1.389e− 005 EARK422c2 (3.2.31) 1.556e− 005 106 2.044 2.738
3.728e− 006 Matlab ODE 15s 4.355e− 005 129 6.770 24.734
3.728e− 006 EGLM423 (2.2.9) 5.505e− 006 244 3.245 1.695
3.728e− 006 EARK422c2 (3.2.31) 3.165e− 006 143 2.434 2.199
1.000e− 006 Matlab ODE 15s 6.900e− 006 150 7.831 26.129
1.000e− 006 EGLM423 (2.2.9) 1.489e− 006 335 4.290 1.605
1.000e− 006 EARK422c2 (3.2.31) 5.870e− 007 196 2.995 2.770

N = 64× 64 Method Global Error Steps CPU Time Memory
1.000e− 002 Matlab ODE 15s 2.381e− 002 24 83.835 453.063
1.000e− 002 EGLM423 (2.2.9) 7.995e− 003 33 5.678 16.277
1.000e− 002 EARK422c2 (3.2.31) 6.674e− 003 33 5.788 5.129
2.683e− 003 Matlab ODE 15s 7.263e− 003 34 109.950 450.953
2.683e− 003 EGLM423 (2.2.9) 2.389e− 003 45 6.973 5.586
2.683e− 003 EARK422c2 (3.2.31) 2.484e− 003 42 6.708 3.633
7.197e− 004 Matlab ODE 15s 1.827e− 003 46 113.491 452.012
7.197e− 004 EGLM423 (2.2.9) 7.949e− 004 63 8.861 4.754
7.197e− 004 EARK422c2 (3.2.31) 8.388e− 004 52 7.925 4.457
1.931e− 004 Matlab ODE 15s 4.019e− 004 63 127.718 452.625
1.931e− 004 EGLM423 (2.2.9) 1.996e− 004 93 11.918 5.934
1.931e− 004 EARK422c2 (3.2.31) 2.799e− 004 66 9.313 4.664
5.179e− 005 Matlab ODE 15s 1.323e− 004 86 145.611 453.332
5.179e− 005 EGLM423 (2.2.9) 5.369e− 005 125 15.397 5.070
5.179e− 005 EARK422c2 (3.2.31) 8.377e− 005 78 10.296 4.055
1.389e− 005 Matlab ODE 15s 4.710e− 005 104 177.638 453.332
1.389e− 005 EGLM423 (2.2.9) 1.446e− 005 170 20.904 26.273
1.389e− 005 EARK422c2 (3.2.31) 1.731e− 005 101 12.776 4.340
3.728e− 006 Matlab ODE 15s 1.569e− 005 124 204.112 454.652
3.728e− 006 EGLM423 (2.2.9) 3.874e− 006 231 26.395 30.500
3.728e− 006 EARK422c2 (3.2.31) 2.988e− 006 135 16.864 4.984
1.000e− 006 Matlab ODE 15s 2.513e− 006 148 231.568 454.914
1.000e− 006 EGLM423 (2.2.9) 1.099e− 006 314 36.660 32.641
1.000e− 006 EARK422c2 (3.2.31) 5.551e− 007 186 22.870 45.180

138



B.5 Gray-ScoĴ Equation Tables

B.5.1 1-Dimensional Problem

N = 512 Method Global Error Steps CPU Time Memory
1.000e− 002 Matlab ODE 15s 2.320e− 003 54 17.035 67.543
1.000e− 002 EGLM423 (2.2.9) 1.801e− 004 60 6.100 18.910
1.000e− 002 EARK422c2 (3.2.31) 3.505e− 004 59 6.115 1.262
3.511e− 003 Matlab ODE 15s 9.686e− 004 65 18.892 64.031
3.511e− 003 EGLM423 (2.2.9) 6.795e− 005 78 7.020 0.000
3.511e− 003 EARK422c2 (3.2.31) 1.743e− 004 67 6.505 0.000
1.233e− 003 Matlab ODE 15s 3.505e− 004 79 21.840 64.031
1.233e− 003 EGLM423 (2.2.9) 2.505e− 005 103 8.502 17.566
1.233e− 003 EARK422c2 (3.2.31) 8.641e− 005 77 6.942 0.004
4.329e− 004 Matlab ODE 15s 1.217e− 004 89 20.857 64.039
4.329e− 004 EGLM423 (2.2.9) 9.231e− 006 124 9.812 34.383
4.329e− 004 EARK422c2 (3.2.31) 2.911e− 005 88 7.582 0.000
1.520e− 004 Matlab ODE 15s 4.156e− 005 106 24.445 64.105
1.520e− 004 EGLM423 (2.2.9) 3.357e− 006 154 11.669 22.707
1.520e− 004 EARK422c2 (3.2.31) 1.338e− 005 99 8.315 0.000
5.337e− 005 Matlab ODE 15s 1.672e− 005 126 28.564 64.035
5.337e− 005 EGLM423 (2.2.9) 1.202e− 006 195 13.931 2.590
5.337e− 005 EARK422c2 (3.2.31) 3.462e− 006 122 9.547 0.852
1.874e− 005 Matlab ODE 15s 5.452e− 006 149 30.405 69.590
1.874e− 005 EGLM423 (2.2.9) 4.257e− 007 245 17.145 9.652
1.874e− 005 EARK422c2 (3.2.31) 1.202e− 006 151 11.060 0.000
6.579e− 006 Matlab ODE 15s 3.368e− 006 167 34.507 64.102
6.579e− 006 EGLM423 (2.2.9) 1.507e− 007 305 19.750 11.824
6.579e− 006 EARK422c2 (3.2.31) 3.341e− 007 184 13.478 0.000
2.310e− 006 Matlab ODE 15s 1.100e− 006 194 37.627 65.934
2.310e− 006 EGLM423 (2.2.9) 5.309e− 008 388 25.397 16.750
2.310e− 006 EARK422c2 (3.2.31) 1.005e− 007 233 16.240 0.238
8.111e− 007 Matlab ODE 15s 3.536e− 007 224 43.290 67.055
8.111e− 007 EGLM423 (2.2.9) 1.867e− 008 498 32.901 19.199
8.111e− 007 EARK422c2 (3.2.31) 2.958e− 008 297 21.013 21.891
2.848e− 007 Matlab ODE 15s 1.170e− 007 261 48.126 67.621
2.848e− 007 EGLM423 (2.2.9) 6.565e− 009 639 42.963 24.754
2.848e− 007 EARK422c2 (3.2.31) 8.745e− 009 379 26.411 39.254
1.000e− 007 Matlab ODE 15s 4.407e− 008 305 57.986 73.109
1.000e− 007 EGLM423 (2.2.9) 2.307e− 009 819 58.828 27.617
1.000e− 007 EARK422c2 (3.2.31) 2.629e− 009 482 34.507 36.906
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N = 1024 Method Global Error Steps CPU Time Memory
1.000e− 002 Matlab ODE 15s 1.582e− 003 60 88.297 259.625
1.000e− 002 EGLM423 (2.2.9) 9.644e− 005 71 11.762 57.789
1.000e− 002 EARK422c2 (3.2.31) 2.538e− 004 63 10.842 4.109
3.511e− 003 Matlab ODE 15s 6.037e− 004 73 96.877 256.039
3.511e− 003 EGLM423 (2.2.9) 3.549e− 005 90 13.260 1.367
3.511e− 003 EARK422c2 (3.2.31) 8.653e− 005 73 11.435 −0.426
1.233e− 003 Matlab ODE 15s 1.905e− 004 85 96.658 256.691
1.233e− 003 EGLM423 (2.2.9) 1.302e− 005 117 15.241 0.539
1.233e− 003 EARK422c2 (3.2.31) 3.734e− 005 84 12.605 0.574
4.329e− 004 Matlab ODE 15s 6.433e− 005 100 112.789 258.871
4.329e− 004 EGLM423 (2.2.9) 4.745e− 006 144 17.925 1.836
4.329e− 004 EARK422c2 (3.2.31) 2.088e− 005 93 13.307 0.438
1.520e− 004 Matlab ODE 15s 2.973e− 005 118 127.874 258.820
1.520e− 004 EGLM423 (2.2.9) 1.692e− 006 179 21.372 27.086
1.520e− 004 EARK422c2 (3.2.31) 5.739e− 006 114 15.210 1.570
5.337e− 005 Matlab ODE 15s 1.321e− 005 140 143.022 260.434
5.337e− 005 EGLM423 (2.2.9) 6.025e− 007 226 26.271 26.203
5.337e− 005 EARK422c2 (3.2.31) 1.779e− 006 140 17.737 1.949
1.874e− 005 Matlab ODE 15s 3.668e− 006 156 146.859 260.902
1.874e− 005 EGLM423 (2.2.9) 2.146e− 007 282 32.479 40.770
1.874e− 005 EARK422c2 (3.2.31) 5.015e− 007 171 21.419 37.477
6.579e− 006 Matlab ODE 15s 1.928e− 006 183 173.208 261.848
6.579e− 006 EGLM423 (2.2.9) 7.560e− 008 357 40.389 41.504
6.579e− 006 EARK422c2 (3.2.31) 1.519e− 007 215 25.023 34.336
2.310e− 006 Matlab ODE 15s 5.518e− 007 220 194.876 262.629
2.310e− 006 EGLM423 (2.2.9) 2.658e− 008 458 55.334 38.582
2.310e− 006 EARK422c2 (3.2.31) 4.473e− 008 273 31.949 55.301
8.111e− 007 Matlab ODE 15s 3.402e− 007 262 244.110 263.664
8.111e− 007 EGLM423 (2.2.9) 9.348e− 009 587 72.603 72.035
8.111e− 007 EARK422c2 (3.2.31) 1.326e− 008 348 47.128 76.070
2.848e− 007 Matlab ODE 15s 9.387e− 008 312 259.320 265.883
2.848e− 007 EGLM423 (2.2.9) 3.286e− 009 751 102.555 109.785
2.848e− 007 EARK422c2 (3.2.31) 3.951e− 009 446 57.018 81.410
1.000e− 007 Matlab ODE 15s 1.964e− 008 3769 626.048 373.090
1.000e− 007 EGLM423 (2.2.9) 1.155e− 009 969 151.181 164.125
1.000e− 007 EARK422c2 (3.2.31) 1.197e− 009 569 75.224 135.133
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B.5.2 2-Dimensional Problem

N = 32× 32 Method Global Error Steps CPU Time Memory
1.000e− 002 Matlab ODE 15s 8.642e− 003 23 59.873 256.418
1.000e− 002 EGLM423 (2.2.9) 1.738e− 003 32 3.354 14.105
1.000e− 002 EARK422c2 (3.2.31) 2.712e− 003 29 3.167 5.633
2.683e− 003 Matlab ODE 15s 3.364e− 003 31 62.135 256.031
2.683e− 003 EGLM423 (2.2.9) 5.991e− 004 42 4.025 9.113
2.683e− 003 EARK422c2 (3.2.31) 3.179e− 004 44 4.446 13.641
7.197e− 004 Matlab ODE 15s 1.915e− 003 39 67.954 256.031
7.197e− 004 EGLM423 (2.2.9) 1.645e− 004 60 5.476 22.816
7.197e− 004 EARK422c2 (3.2.31) 2.079e− 004 50 4.571 3.199
1.931e− 004 Matlab ODE 15s 3.527e− 004 49 78.001 256.031
1.931e− 004 EGLM423 (2.2.9) 4.819e− 005 75 6.115 3.965
1.931e− 004 EARK422c2 (3.2.31) 5.353e− 005 62 5.460 1.969
5.179e− 005 Matlab ODE 15s 6.941e− 005 61 85.816 258.070
5.179e− 005 EGLM423 (2.2.9) 1.536e− 005 96 7.535 19.266
5.179e− 005 EARK422c2 (3.2.31) 1.275e− 005 69 5.554 5.238
1.389e− 005 Matlab ODE 15s 2.521e− 005 75 87.907 258.008
1.389e− 005 EGLM423 (2.2.9) 4.173e− 006 126 9.688 1.121
1.389e− 005 EARK422c2 (3.2.31) 1.106e− 005 84 6.646 27.629
3.728e− 006 Matlab ODE 15s 8.844e− 006 91 97.345 258.945
3.728e− 006 EGLM423 (2.2.9) 1.146e− 006 164 12.698 0.926
3.728e− 006 EARK422c2 (3.2.31) 9.356e− 007 105 8.143 0.961
1.000e− 006 Matlab ODE 15s 1.788e− 006 108 113.803 259.539
1.000e− 006 EGLM423 (2.2.9) 3.093e− 007 217 16.864 1.012
1.000e− 006 EARK422c2 (3.2.31) 2.114e− 007 139 10.702 0.770

N = 64× 64 Method Global Error Steps CPU Time Memory
1.000e− 002 Matlab ODE 15s N/A N/A N/A 4158.961
1.000e− 002 EGLM423 (2.2.9) N/A 41 17.269 77.797
1.000e− 002 EARK422c2 (3.2.31) N/A 43 11.123 36.516
2.683e− 003 Matlab ODE 15s N/A N/A N/A N/A
2.683e− 003 EGLM423 (2.2.9) N/A 66 14.165 24.898
2.683e− 003 EARK422c2 (3.2.31) N/A 58 13.744 36.301
7.197e− 004 Matlab ODE 15s N/A N/A N/A N/A
7.197e− 004 EGLM423 (2.2.9) N/A 82 17.394 14.504
7.197e− 004 EARK422c2 (3.2.31) N/A 70 15.475 75.980
1.931e− 004 Matlab ODE 15s N/A N/A N/A N/A
1.931e− 004 EGLM423 (2.2.9) N/A 102 20.545 108.430
1.931e− 004 EARK422c2 (3.2.31) N/A 73 15.444 47.000
5.179e− 005 Matlab ODE 15s N/A N/A N/A N/A
5.179e− 005 EGLM423 (2.2.9) N/A 140 30.358 117.430
5.179e− 005 EARK422c2 (3.2.31) N/A 95 21.513 160.012
1.389e− 005 Matlab ODE 15s N/A N/A N/A N/A
1.389e− 005 EGLM423 (2.2.9) N/A 174 39.359 114.762
1.389e− 005 EARK422c2 (3.2.31) N/A 103 22.901 137.160
3.728e− 006 Matlab ODE 15s N/A N/A N/A N/A
3.728e− 006 EGLM423 (2.2.9) N/A 224 56.160 190.895
3.728e− 006 EARK422c2 (3.2.31) N/A 136 30.966 151.008
1.000e− 006 Matlab ODE 15s N/A N/A N/A N/A
1.000e− 006 EGLM423 (2.2.9) N/A 305 77.314 243.012
1.000e− 006 EARK422c2 (3.2.31) N/A 176 41.886 301.766
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B.5.3 3-Dimensional Problem

N = 8× 8× 8 Method Global Error Steps CPU Time Memory
1.000e− 002 Matlab ODE 15s 5.347e− 004 16 6.053 70.660
1.000e− 002 EGLM423 (2.2.9) 3.036e− 005 21 2.075 6.977
1.000e− 002 EARK422c2 (3.2.31) 1.496e− 005 21 2.293 1.723
2.683e− 003 Matlab ODE 15s 2.059e− 004 20 7.114 64.031
2.683e− 003 EGLM423 (2.2.9) 1.346e− 005 26 2.356 1.379
2.683e− 003 EARK422c2 (3.2.31) 1.058e− 004 25 2.371 0.773
7.197e− 004 Matlab ODE 15s 7.707e− 005 24 7.519 64.031
7.197e− 004 EGLM423 (2.2.9) 4.610e− 006 31 2.402 0.484
7.197e− 004 EARK422c2 (3.2.31) 5.684e− 005 29 2.324 0.871
1.931e− 004 Matlab ODE 15s 2.399e− 005 30 9.282 64.035
1.931e− 004 EGLM423 (2.2.9) 1.567e− 006 40 2.761 2.758
1.931e− 004 EARK422c2 (3.2.31) 1.682e− 005 34 2.449 0.000
5.179e− 005 Matlab ODE 15s 7.836e− 006 37 9.875 64.031
5.179e− 005 EGLM423 (2.2.9) 4.620e− 007 54 3.526 9.449
5.179e− 005 EARK422c2 (3.2.31) 3.944e− 006 39 2.730 0.000
1.389e− 005 Matlab ODE 15s 2.586e− 006 44 10.889 64.031
1.389e− 005 EGLM423 (2.2.9) 1.322e− 007 67 3.947 8.953
1.389e− 005 EARK422c2 (3.2.31) 1.116e− 006 47 3.198 1.715
3.728e− 006 Matlab ODE 15s 1.004e− 006 54 12.230 64.031
3.728e− 006 EGLM423 (2.2.9) 3.721e− 008 85 4.836 18.844
3.728e− 006 EARK422c2 (3.2.31) 2.657e− 007 58 3.354 0.977
1.000e− 006 Matlab ODE 15s 3.725e− 007 62 14.726 64.113
1.000e− 006 EGLM423 (2.2.9) 1.041e− 008 109 5.569 34.168
1.000e− 006 EARK422c2 (3.2.31) 5.408e− 008 71 4.228 3.906

N = 16× 16× 16 Method Global Error Steps CPU Time Memory
1.000e− 002 Matlab ODE 15s N/A N/A N/A 4101.867
1.000e− 002 EGLM423 (2.2.9) N/A 56 52.026 60.184
1.000e− 002 EARK422c2 (3.2.31) N/A 47 17.862 47.305
2.683e− 003 Matlab ODE 15s N/A N/A N/A N/A
2.683e− 003 EGLM423 (2.2.9) N/A 70 16.692 27.230
2.683e− 003 EARK422c2 (3.2.31) N/A 65 20.483 143.340
7.197e− 004 Matlab ODE 15s N/A N/A N/A N/A
7.197e− 004 EGLM423 (2.2.9) N/A 99 24.664 106.770
7.197e− 004 EARK422c2 (3.2.31) N/A 74 18.798 46.227
1.931e− 004 Matlab ODE 15s N/A N/A N/A N/A
1.931e− 004 EGLM423 (2.2.9) N/A 128 31.465 109.066
1.931e− 004 EARK422c2 (3.2.31) N/A 88 24.071 147.148
5.179e− 005 Matlab ODE 15s N/A N/A N/A N/A
5.179e− 005 EGLM423 (2.2.9) N/A 156 36.660 114.695
5.179e− 005 EARK422c2 (3.2.31) N/A 110 27.331 161.758
1.389e− 005 Matlab ODE 15s N/A N/A N/A N/A
1.389e− 005 EGLM423 (2.2.9) N/A 205 50.903 192.574
1.389e− 005 EARK422c2 (3.2.31) N/A 131 32.557 218.172
3.728e− 006 Matlab ODE 15s N/A N/A N/A N/A
3.728e− 006 EGLM423 (2.2.9) N/A 273 73.898 232.445
3.728e− 006 EARK422c2 (3.2.31) N/A 170 44.616 298.668
1.000e− 006 Matlab ODE 15s N/A N/A N/A N/A
1.000e− 006 EGLM423 (2.2.9) N/A 365 107.828 317.359
1.000e− 006 EARK422c2 (3.2.31) N/A 224 64.272 345.898
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Appendix C

Alternative Order Condition Proofs

C.1 3-Stage, 6ᵗŀ Order EAGLMs

What follows is an alternative proof of EAGLM order conditions in a grid format similar to the

ERK proof of Theorem 2.

Theorem 19. 3-stgae EAGLMs of the form

0

c2 a21 ec2hL u21 u22 p21 p22

c3 a31 a32 ec3hL u31 u32 p31 p32

b1 b2 b3 ehL v1 v2 q1 q2

(C.1.1)

K1 = N

K2 = N
(
tn + c2h, e

c2hLyn + h
[
a21K1 + u21Ntn−1 + u22Ntn−2 + p21N

′ + p22N
′′])

K3 = N
(
tn + c3h, e

c3hLyn + h
[
a31K1 + a32K2 + u31Ntn−1 + u32Ntn−2 + p31N

′ + p32N
′′])

yn+1 = ehLyn + h
(
b1K1 + b2K2 + b3K3 + v1Ntn−1 + v2Ntn−2 + q1N

′ + q2N
′′)

that meet the consistency conditions (3.2.4), can achieve the following listed orders if they also satisfy

the accompanying conditions.

2ņᵈ Order

b3 c3 − 2 v2 + b2 c2 − v1 + q1 = φ2 (C.1.2)
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3Ŋᵈ Order

b3 c
2
3 + 4 v2 + 2 q2 + b2 c

2
2 + v1 = 2φ3 (C.1.3a)

b2
(
p21 − u21 − 2u22 − c22φ22

)
+ b3

(
c2a32 + p31 − u31 − 2u32 − c23φ23

)
= 0 (C.1.3b)

4ᵗŀ Order

b3 c
3
3 − 8 v2 + b2 c

3
2 − v1 = 3!φ4 (C.1.4a)

p21 − u21 − 2u22 − c22φ22 = 0 (C.1.4b)

c2a32 + p31 − u31 − 2u32 − c23φ23 = 0 (C.1.4c)

b2
(
p22 +

1
2u21 +

4
2!u22 − c32φ32

)
+ b3

(
1
2c

2
2a32 + p32 +

1
2u31 +

4
2!u32 − c33φ33

)
= 0 (C.1.4d)

5ᵗŀ Order

b3 c
4
3 + 16 v2 + b2 c

4
2 + v1 = 4!φ5 (C.1.5a)

p22 +
1
2u21 +

4
2!u22 − c32φ32 = 0 (C.1.5b)

1
2c

2
2a32 + p32 +

1
2u31 +

4
2!u32 − c33φ33 = 0 (C.1.5c)

b2
(
− 1

3!u21 − 8
3!u22 − c42φ42

)
+ b3

(
1
3!c

3
2a32 − 1

3!u31 − 8
3!u32 − c43φ43

)
= 0 (C.1.5d)

6ᵗŀ Order

b3 c
5
3 − 32 v2 + b2 c

5
2 − v1 = 5!φ6 (C.1.6a)

− 1
3!u21 − 8

3!u22 − c42φ42 = 0 (C.1.6b)

1
3!c

3
2a32 − 1

3!u31 − 8
3!u32 − c43φ43 = 0 (C.1.6c)

b2
(
1
4!u21 +

16
4! u22 − c52φ52

)
+ b3

(
1
4!c

4
2a32 +

1
4!u31 +

16
4! u32 − c53φ53

)
= 0 (C.1.6d)
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Proof. The R2 grid for 6ᵗŀ order EAGLMs is much the same as that of EGLMs though in this

case extended to h5. We introduce a new notation here of labelling the occupied grid locations

so that referencing them later is much clearer.

R2 1 h h2 h3 h4 h5

N

(p21 − u21 [A]

N ′ −2u22 − c22φ22

) (
p22 + 1

2
u21 [B]

N ′′ + 4
2!
u22 − c32φ32

) (
− 1

3!
u21 [C]

N ′′′ − 8
3!
u22 − c42φ42

) (
1
4!
u21 [D]

N ′′′′ + 16
4!
u22 − c52φ52

)
N ′′′′′

(C.1.7)

In addition, to keep the terms manageable we will simply refer to entries in the R2 grid

rather than write out the expressions explicitly.

K2 1 h h2 h3 h4 h5

N 1

N ′ c2 [R2,A]Nu [A] c2[R2,A]N ′u [E]
c22
2 [R2,A]N ′′u [H]

c32
6 [R2,A]N ′′′u [J]

N ′′ 1
2c

2
2 [R2,B]Nu [B] c2[R2,B]N ′u [F]

c22
2 [R2,B]N ′′u [I]

N ′′ 1
6c

2
2 [R2,C]Nu [C] c2[R2,C]N ′u [G]

N ′′ 1
4!c

4
2 [R2,D]Nu [D]

N ′′′′′ 1
5!c

5
2

K2 h4 h5

(N ′)2 ([R2,A])
2
Nuu [K] c2 ([R2,A])

2
N ′uu [M]

N ′N ′′ [R2,A]× [R2,B]Nuu [L]

(C.1.8)

The K2 grid now contains two new rows, this is because to achieve 6ᵗŀ order we cannot

ignore the R2
i terms from theKi expansion (2.1.6). Specifically forK2 we have

R2
2 = [R2,A]2(N ′)2h4 + ([R2,A] + [R2,B])N ′N ′′h5 +O(h6) (C.1.9)
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The R3 andK3 grids also simply reference entries in the previousK2 and R3 grids respec-

tively.

R3 1 h h2 h3 h4 h5

N (
c2a32 − c23φ23 [A] [E] [H] [J]

N ′ +p31 − u31 − 2u32) a32[K2,A] a32[K2,E] a32[K2,H](
1
2
c22a32 − c33φ33 [B] [F] [I]

N ′′ +p32 + 1
2
u31 + 2u32

)
a32[K2,B] a32[K2,F](

1
6
c32a32 − c43φ43 [C] [G]

N ′′′ − 1
6
u31 − 4

3
u32

)
a32[K2,C](

1
4!
c42a32 − c53φ53 [D]

N ′′′′ + 1
4!
u31 + 2

3
u32

)
N ′′′′′

R3 h4 h5

(N ′)2 a32[K2,K] [K]

N ′N ′′

(C.1.10)

As was required forK2 we must preserve the R2
3 terms in expansion ofK3.

R2
3 = [R3,A]2(N ′)2h4 + ([R3,A] + [R3,E]) (N ′)2h5 ([R3,A] + [R3,B])N ′N ′′h5 +O(h6) (C.1.11)

K3 1 h h2 h3 h4 h5

N 1

[A] [E] 1
2
c23[R3,A]N ′′

u+ [H] [R3,J]Nu + c3[R3,H]N ′
u+ [J]

N ′ c3 [R3,A]Nu c3[R3,A]N ′
u + [R3,E]Nu c3[R3,E]N ′

u + [R3,H]Nu
1
2
c23[R3,E]N ′′

u + 1
6
c33[R3,A]N ′′′

u

[B] [F] 1
2
c23[R3,B]N ′′

u+ [I]

N ′′ 1
2
c23 [R3,B]Nu c3[R3,B]N ′

u + [R3,F]Nu c3[R3,F]N ′
u + [R3,I]Nu

[C] [G]

N ′′′ 1
6
c33 [R3,C]Nu c3[R3,C]N ′

u + [R3,G]Nu

[D]

N ′′′′ 1
4!
c43 [R3,D]Nu

N ′′′′′ 1
5!
c53

K3 h4 h5

(N ′)2 ([R3,A])2 Nuu [K] [R3,K]Nu + c3 ([R3,A])2 N ′
uu + [R3,A] × [R3,E]Nuu [M]

N ′N ′′ [R3,A] × [R3,B]Nuu [L]

(C.1.12)
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Summarizing Conditions

The grids cells along the diagonal, (hi, N (i)) for i ≥ 1, recover respective the first condition of

each iᵗŀ order set of conditions. That is, the necessary 2ņᵈ order condition (C.1.2) as well as the

additional conditions (C.1.3a), (C.1.4a), (C.1.5a) and (C.1.6a).

3Ŋᵈ Order

The h2N ′Nu cells imply the condition b3[R3,A]+ b2[R2,A] = 0which, with condition In addition

to (C.1.3a), recovers the remaining 3Ŋᵈ order condition (C.1.3b).

4ᵗŀ Order

We get the following conditions from the cells;

• h3N ′N ′u ⇒ b3c3[R3,A] + b2c2[R2,A] = 0

• h3N ′(Nu)
2 ⇒ b3a32[R2,A] = 0

• h3N ′′Nu ⇒ b3[R3,B] + b2[R2,B] = 0

The requirement b3a32[R2,A] = 0 together with the earlier b3[R3,A] + b2[R2,A] = 0 imples both

[R2,A] and [R3,A] = 0 recovering conditions (C.1.4b) and (C.1.4c). From b3[R3,B] + b2[R2,B] = 0

we get (C.1.4d).

5ᵗŀ Order

Here the h4 cells imply

• h4N ′N ′′u ⇒
b3 c23[R3,A]

2 +
b2 c22[R2,A]

2 = 0

• h4N ′N ′uNu ⇒ b3a32 (c3 + c2) [R2,A] = 0

• h4N ′′N ′u ⇒ b3c3[R3,B] + b2c2[R2,B] = 0

• h4N ′′(Nu)
2 ⇒ b3a32[R2,B] = 0

• h4N ′′′Nu ⇒ b3[R3,C] + b2[R2,C] = 0

• h4(N ′)2Nuu ⇒ b3([R3,A])
2
+ b2([R2,A])

2
= 0
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Like before, the requirement b3a32[R2,B] = 0 together with the earlier b3[R3,B] + b2[R2,B] = 0

imples both [R2,B] and [R3,B] = 0 recovering conditions (C.1.5b) and (C.1.5c). From b3[R3,C] +

b2[R2,C] = 0 we get (C.1.5d).

6ᵗŀ Order

The cells

• h5N ′N ′′′u ⇒ 1
6b3c

3
3[R3,A] + 1

6b2c
3
2[R2,A] = 0

• h5N ′N ′′uNu ⇒ b3a32

(
c23+c22

2

)
[R2,A] = 0

• h5N ′(N ′u)
2 ⇒ c2c3b3a32[R2,A] = 0

• h5N ′′N ′′u ⇒ 1
2b3 c

2
3[R3,B] + 1

2b2 c
2
2[R2,B] = 0

• h5N ′′NuN
′
u ⇒ b3 (c3 + c2) a32[R2,B] = 0

• h5N ′′′N ′u ⇒ b3c3[R3,C] + b2c2[R2,C] = 0

• h5N ′′′(Nu)
2 ⇒ b3a32[R2,C] = 0

• h5N ′′′′Nu ⇒ b3[R3,D] + b2[R2,D] = 0

• h5(N ′)2NuNuu ⇒ b3a32[R2,A] ([R3,A] + [R2,A]) = 0

• h5(N ′)2N ′uu ⇒ b3c3 ([R3,A])
2
+ b2c2 ([R2,A])

2
= 0

• h5N ′N ′′Nuu ⇒ b3 ([R3,A]× [R3,B]) + b2 ([R2,A]× [R2,B]) = 0

Though there are a lot more 6ᵗŀ orders conditions from the h5 cells there is a lot of repetition.

The requirement b3a32[R2,C] = 0 together with the earlier b3[R3,C] + b2[R2,C] = 0 implies both

[R2,B] and [R3,B] = 0. This satisfies a number of the cells conditions and recovers the required

order conditions (C.1.6b) and (C.1.6c). Finally, the requirement b3[R3,D] + b2[R2,D] = 0 gives

condition (C.1.6d).
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Appendix D

Acronyms

AMAB Adams-Moulton / Adams-Bashforth Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

ARK Almost Runge-KuĴa Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

EAGLM Exponential Almost General Linear Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

EARK Exponential Almost Runge-KuĴa Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

EI Exponential Time-Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

EGLM Exponential General Linear Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ELP Exact treatment of the Linear Part, L,Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

ETD Exponential Time Differencing Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

ETDRK ETD Runge-KuĴa Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

ERK Exponential Runge-KuĴa Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

GLM General Linear Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I-EM mixed Implicit-Explicit Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

IF Integrating Factor Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

IFAB Integrating Factor/Adams-Bashford Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

IFRK Integrating Factor/Classical Runge-KuĴa Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

RDA Reaction Diffusion Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ReLPM Real Leja Points Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

RK Runge-KuĴa Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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