The Analysis and Implementation of Exponential Almost Runge-Kutta Methods for Semilinear Problems

Eóin O'Callaghan
B.Sc.
eoin.ocallaghan3@mail.dcu.ie

A Dissertation Submitted for the Degree of Doctor of Philosophy
Dublin City University

Supervisor

Prof. John Carroll

School of Mathematical Sciences
Dublin City University
john.carroll@dcu.ie

Declaration

I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Doctor of Philosophy in Mathematics is entirely my own work, that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work.

Signed:
Eóin O'Callaghan
Date

ID Number: 51711288

Date: 19 September 2011

Contents

List of Tables vii
List of Figures viii
Abstract x
Acknowledgements xi
1 Introduction 1
1.1 Stiff Differential Equations 2
1.2 Exponential Time-Integrator (EI) History 3
1.3 Exact Solution and φ-functions 6
2 ERK and EGLM Families of EIs 9
2.1 Exponential Runge-Kutta Methods 10
2.1.1 Order Conditions 11
2.1.2 $\quad 1^{\text {st }}$ Order Consistency Conditions 12
2.1.3 $\quad 2$ nd Order Conditions 13
2.1.4 4-Stage, $4^{\text {th }}$ Order Conditions 15
2.2 Exponential General Linear Methods 25
2.2.1 \quad-Stage $4^{\text {th }}$ Order Conditions 26
2.2.2 Examples 27
3 Multi-value Families of EIs 29
3.1 Exponential Almost Runge-Kutta Methods 30
3.1.1 Deriving EARKs 32
3.1.2 \quad 3-Stage $4^{\text {th }}$ Order Conditions 32
3.1.3 Outgoing Approximations 33
3.1.4 Examples 34
3.2 Exponential Almost General Linear Methods 35
3.2.1 3 -Stage $6^{\text {th }}$ Order Conditions 35
3.2.2 Outgoing Approximations 46
3.2.3 Example 47
3.3 Convergence Bounds 49
3.3.1 Order Conditions 49
3.3.2 Proof of Convergence Bound 53
3.3.3 Equivalence between EGLMs and EAGLMs 55
3.3.4 Summary 56
4 Stability 58
4.1 Stability Analysis 59
4.2 Comparisons with mixed Explicit-Implicit Schemes 59
4.3 Stability of ERKs 60
4.4 Unconditional Stability of ERKs 62
4.5 Stability of EGLMs 65
4.6 Stability of EARKs 66
4.7 Summary 67
5 Numerical Experiments 69
5.1 Test Problems 70
5.1.1 The Kuramoto-Sivashinsky Equation 70
5.1.2 Brusselator System 71
5.1.3 The Allen-Cahn Equation 71
5.1.4 Hochbruck \& Ostermann Parabolic PDE 72
5.1.5 The Reaction Diffusion Advection (RDA) 2D Equation 73
5.1.6 The Gray-Scott Equation 73
5.2 Computing φ-functions 75
5.2.1 Padé approximations 75
5.2.2 Krylov Subspace Methods 77
5.2.3 Real Leja Points Method 79
5.2.4 Contour Integration 81
5.2.5 Conclusions 84
5.3 Convergence Order 90
5.3.1 Two-Stage ERKs 90
5.3.2 Three-Stage ERKs 91
5.3.3 Four-Stage ERKs 94
5.3.4 EGLMs 97
5.3.5 EARKs and EAGLMs 98
5.3.6 Summary 101
5.4 Variable Step Size 102
5.4.1 Basic Requirements 102
5.4.2 Truncation Error Estimation 105
5.4.3 Stepsize Adjustment 109
5.4.4 Initial Stepsize and Starting Points 113
5.5 Benchmarks 115
5.5.1 Brusselator System 115
5.5.2 Allen-Cahn Equation 116
5.5.3 The Kuramoto-Sivashinsky Equation 118
5.5.4 The RDA 2D Equation 119
5.5.5 The Gray-Scott Equation 122
5.6 ODE15s CPU Cost Scaling 126
6 Conclusions 127
A Definitions 129
A. 1 Parabolic Evolution Equations 129
A.1.1 Analytical Framework 129
A. 2 B-Convergence 130
B Complete Results 132
B. 1 Brusselator System Tables 132
B. 2 Allen-Cahn Equation Tables 134
B.2.1 Chebyshev Differentiation Matrix 134
B.2.2 Finite-Differences 135
B. 3 1D Kuramoto-Sivashinsky Equation Tables 136
B. 4 RDA 2D Equation Tables 137
B. 5 Gray-Scott Equation Tables 139
B.5.1 1-Dimensional Problem 139
B.5.2 2-Dimensional Problem 141
B.5.3 3-Dimensional Problem 142
C Alternative Order Condition Proofs 143
C. 1 3-Stage, $6^{\text {th }}$ Order EAGLMs 143
D Acronyms 149
Bibliography 150

List of Tables

2.1 Computational inspection of Scheme 2.1.42 22
2.2 Computational inspection of Scheme (2.1.43) 23
2.3 Computational inspection of Scheme (2.1.46) 24
5.1 Padé timings in seconds using PHIPADE from the EXPINT package, $h=1 \times 10^{-2}$ 76
5.2 PHIPM at tolerance 1×10^{-13} with $h=1 \times 10^{-2}$ 79
5.3 Real Leja Points Method (ReLPM) at tolerance 1×10^{-13} with $h=1 \times 10^{-2}$ 81
5.4 Computational timings for $e^{L} v$ in seconds 83
5.5 Rational Approximations with $h=1 \times 10^{-2}$ 84
5.6 Relative performance measure for the 2 and 3-Stage Exponential Runge-Kutta Methods (ERKs) 94
5.7 Timings for 256 Timesteps, with Exponential Time Differencing Method (ETD) Euler and the 2 \& 3-Stage ERKs 94
5.8 Relative performance measure for the 4-Stage ERKs 97
5.9 Relative performance measure for the 4-Stage Exponential General Linear Meth- ods (EGLMs) 98
5.10 Relative performance measure for the 4-Stage Exponential Almost General Lin- ear Methods (EAGLMs) 99
5.11 Scheme (3.2.30) with all Controllers for Problem (5.1.3) 112
5.12 1D Brusselator System $N=256$, Step Counts 115
5.13 Allen-Cahn, Global Error $=2 \times 10^{7}$, Step Counts 118
5.14 Kuramoto-Sivashinsky Equation, $N=256$, Step Counts 119
5.15 2D RDA Equation, Step Counts, $\varepsilon=0.05, \alpha=-1$ 121
5.16 Memory Usage in Megabytes (MBs) 123
5.17 Gray-Scott Equation, Global Error $=1 \times 10^{-6}$ 125

List of Figures

4.1 Mixed explicit-implicit schemes stability boundaries for $y=-2$ 60
4.2 ERK_{2} (2.1.19) stability graphs 61
4.3 ETD2 (1.3.14) stability boundaries 62
4.4 EGLM ${ }_{322} c_{2}$ (2.2.6) Stability Plots 66
4.5 Exponential Almost Runge-Kutta Method (EARK) $3_{21} c_{2}$ (3.2.30) Stability Plots 66
4.6 $\mathrm{EGLM}_{322} c_{2}$ (2.2.6) and EARK $321 c_{2}$ (3.2.30) side-by-side stability regions 67
4.7 $\mathrm{EGLM}_{322} c_{2}$ (2.2.6) with scaled $\mathrm{EARK}_{321} c_{2}$ (3.2.30) stability region 67
5.1 The 1D Kuramoto-Sivashinsky Equation Solution (5.1.1) 70
5.2 The Brusselator System Solution (??) 71
5.3 The Allen-Cahn Equation (5.1.5) 72
5.4 Rendering of 2D RDA Equation with $\varepsilon=0.05, \alpha=-1, \rho=100$ 73
5.5 The 1D Gray-Scott Equation (5.1.13) for $u(t, x)$ 74
5.6 φ Timings for the Hochbruck \& Ostermann Parabolic PDE, $\mathrm{h}=0.001$ 86
5.7 φ Timings for the 2D RDA Equation, $\mathrm{h}=0.001$ 87
5.8φ Timings for the Kuramoto-Sivashinsky Equation, $\mathrm{h}=0.001$ 88
5.9φ Timings for the Allen-Cahn Problem, $\mathrm{h}=0.001$ 89
5.10 Fixed step integration of Problem 5.1.9 91
5.11 CPU Timings against Global Error for Problem 5.1.9 94
5.12 Fixed stepsize ERKs for Problem 5.1.9 96
5.13 Fixed stepsize EGLMs for Problem 5.1.9 98
5.14 Fixed stepsize EAGLMs for Problem 5.1.9 99
5.15 Allen-Cahn Equation, fixed stepsize, $N=50$ 100
5.16 Kuramoto-Sivashinsky Equation, fixed stepsize 101
5.17 Illustration of Local Error Profiles 108
5.18 Scheme (3.2.30) with the Stepping Controller for Problem (5.1.3) 110
5.19 Scheme (3.2.30) with the Guided Controller for Problem (5.1.3) 111
5.20 Scheme (3.2.30) with the I-controller for Problem (5.1.3) 112
5.21 Illustration of Different β Exponents with $l=16$ (5.4.19) 114
5.22 Brusselator System, adaptive stepsize, $N=64$ 115
5.23 Brusselator System, Global Error against CPU Time without ODE15s 116
5.24 Allen-Cahn Equation, adaptive stepsize, $N=50, \varepsilon=0.001$ 116
5.25 Allen-Cahn Equation, adaptive stepsize without ODE15s, $N=50, \varepsilon=0.001$ 117
5.26 Allen-Cahn Equation "Type 1", $N=512, \varepsilon=0.001$ 117
5.27 Allen-Cahn Equation "Type 2", $N=512, \varepsilon=0.001$ 118
5.28 Kuramoto-Sivashinsky Equation, $N=256$ 119
5.29 2D RDA Equation, $N=20 \times 20, \varepsilon=0.05, \alpha=-1, \rho=1$ 120
5.30 2D RDA Equation, $N=64 \times 64, \varepsilon=0.05, \alpha=-1, \rho=1$ 120
5.31 2D RDA Equation without ODE15s, $\varepsilon=0.05, \alpha=-1, \rho=1$ 120
5.32 2D RDA Equation, CPU Timings, $\varepsilon=0.05, \alpha=-1, \rho=1$ 121
5.33 2D RDA Equation, $N=32 \times 32, \varepsilon=0.05, \alpha=-1, \rho=100$ 122
5.34 2D RDA Equation without ODE15s, $\varepsilon=0.05, \alpha=-1, \rho=100$ 122
5.35 2D RDA Equation, CPU Timings, $\varepsilon=0.05, \alpha=-1, \rho=100$ 122
5.36 1D Gray-Scott, $\mathrm{N}=512$ 123
5.37 1D Gray-Scott, N = 1024 123
5.38 1D Gray-Scott, CPU Timings against Problem Size 124
5.39 2D Gray-Scott, $N=32 \times 32$ 124
5.40 2D Gray-Scott, CPU Timings against Problem Dimension 125
5.41 3D Gray-Scott Equation, $n=8 \times 8 \times 8$ 125
5.42 Effect of matrix dimension on ODE15s computational cost 126

Abstract

Recently there has been a great deal of interest in the construction of Exponential Time-Integrators (EIs) for semilinear problems. EIs in particular are well suited to the numerical integration of stiff ODEs arising from the spatial discritisation of PDEs. For such problems, stability issues rather than accuracy requirements dominate the choice of stepsize. Established methods for solving stiff problems have revolved around implicit schemes, for example, implicit Runge-Kutta Methods (RKs). EIs offer an explicit alternative.

We study and test the performance of numerical schemes derived from EIs, for the integration of large stiff systems of non-linear initial value problems, typically PDEs,

$$
y_{t}=\mathcal{L} y+\mathcal{N}(y, t), \quad y\left(t_{0}\right)=y_{0}
$$

where \mathcal{L} is an unbounded linear operator and \mathcal{N} is a non-linear operator. Our field of interest is primarily with the system of semi-linear ODEs,

$$
y^{\prime}(t)=L y(t)+N(t, y(t)), \quad y\left(t_{n}\right)=y_{n}
$$

obtained after a space discretisation of the PDE. The linear part, L, of the equation is stiff, while the nonlinear part, N, is assumed to be non-stiff, in the sense that it can be approximated by an explicit method.

EIs, as their name suggests, use the exponential function, and related functions known as φ-functions, of L, or an approximation to it, inside the numerical method. Though not a new idea, it is only with recent developments in computing the exponential of a matrix have EIs become practical. Now, with these new methods, renewed interest in Exponential Integrators has been observed, and EIs are now proving themselves to be competitive against existing algorithms.

Our work contains an overview of the main established families of EIs, those being Exponential Time Differencing Methods (ETDs), Exponential Runge-Kutta Methods (ERKs) and Exponential General Linear Methods (EGLMs). ETDs are a class of multi-step integrators, while ERKs are 1-step integrators using lower order intermediate steps as in classical Runge-Kutta schemes. EGLMs represent a framework that can combine multi-step and multi-stage approaches and within EGLMs the ETD and ERK families become a special case.

We introduce a new family of EIs, namely Exponential Almost Runge-Kutta Methods (EARKs). Like EGLMs, they retain the ERK's concept of multiple stages but, instead of the multi-step nature of EGLMs, the input and output values passed from step-to-step are function evaluations of the approximate solution, $N\left(y_{n+1}\right)$, followed by increasing derivatives, $N_{n}^{(i)}$. In this sense, the schemes are multi-value rather than multi-step. Also a broader family, named Exponential Almost General Linear Methods (EAGLMs), is introduced, which represent a unifying framework within which all the families of EIs become special cases. The convergence properties of EIs are studied with particular interest in our EARKs. A number of the methods, which had been selected for further investigation, have their stability properties studied.

While carrying out a survey of the new methods for calculating the φ-functions we perform a comprehensive suite of numerical experiments. By concentrating initially on fixed stepsize experiments we confirm the order convergence properties of the various schemes involved in our earlier work. This allows us to plot order graphs and observe the accuracy performances of the schemes.

Our work culminates in the construction of a complete and robust variable-stepsize integrator. All the necessary aspects for a general purpose implementation are addressed. This includes initial stepsize selection and reliable truncation error estimation with minimal computational overhead. We also include intelligent stepsize control to both minimise rejected steps and manage the global error. At the heart of this engine is our most efficient EARK and we show that it is the most optimal scheme for this purpose. Our integrator is run on a number of test problems, representative of the PDEs we are interested in, and is benchmarked against the built in Matlab ODE solvers.

Acknowledgements

I would like to thank Prof. John Carroll, my supervisor, for his constant support during this research. I am indebted to him for his ongoing guidance, enthusiasm and encouragement.

I would like to thank the Dublin City University School of Mathematical Sciences for their financial support during the four years.

Many thanks also to my family and to my friends in DCU and elsewhere. Their support has been greatly appreciated.

Chapter

Introduction

In this chapter we will look at:

- The classes of problems we are interested in. Those problems exhibit a property known as stiffness and we will show why this property has motivated the development of Exponential Time-Integrators (EIs).
- The history behind the development of EIs. By investigating the work of various authors in this field, we will see how the formulation of EIs has evolved over the past few decades.
- How the model PDE for a scalar function y, defined in a spatial domain $\Omega \subset \mathbf{R}^{d}$ for $t>0$,

$$
\begin{equation*}
y_{t}=\mathcal{L} y+\mathcal{N}(y, x, t) \tag{1.0.1}
\end{equation*}
$$

- \mathcal{L} is linear elliptic operator
- \mathcal{N} is a generic nonlinear term
with suitable initial and boundary conditions [15], is represented within the EI framework and the key role which the so called φ-functions play in the approximation to the exact solution of (1.0.1).

1.1 Stiff Differential Equations

Stiff problems are a type of differential equation which are extremely difficult to solve with explicit schemes. A pragmatic definition attributed [21] to Curtiss \& Hirschfelder [14], is
"Stiff equations are equations where certain implicit methods, in particular BDFs [Backward Differentiation Methods], perform better, usually tremendously better, than explicit ones."

Stiff problems are usually characterised locally at a point (t, y), by the spectrum of the Jacobian, $J(t, y)=\frac{\partial f}{\partial y}(t, y)$. A problem is usually called stiff if there exist eigenvalues, $\lambda_{i}(t, y)$, of $J(t, y)$ with $\operatorname{Re}\left(\lambda_{i}(t, y)\right) \ll 0$, together with moderately sized eigenvalues [16].

When integrating stiff equations with an explicit classical scheme, the choice of stepsize, h, is governed by stability requirements, rather than accuracy. The standard solution to this problem is to use implicit schemes.

To demonstrate this, we look at a stability analysis of the explicit and implicit Euler's methods. Following the format of [21], we start with

$$
\begin{equation*}
y^{\prime}=f(t, y) \tag{1.1.1}
\end{equation*}
$$

where $\phi(t)$ is a smooth solution of (1.1.1). We look at the linearisation of f in its neighbourhood about $\phi(t)$

$$
\begin{equation*}
f(y(t)-\phi(t))=f(t, \phi(t))+\frac{\partial f}{\partial y}(t, \phi(t))(y(t)-\phi(t))+\cdots \tag{1.1.2}
\end{equation*}
$$

and introduce $y(t)-\phi(t)=\bar{y}(t)$ to obtain

$$
\begin{align*}
\bar{y}^{\prime}(t) & =\frac{\partial f}{\partial y}(t, \phi(t)) \bar{y}(t)+\cdots \tag{1.1.3}\\
& =J(t) \bar{y}(t)+\cdots
\end{align*}
$$

We consider $J=-\lambda$, where $\lambda>0$ is a constant scalar, and as an approximation, we neglect terms above $1^{\text {st }}$ order. Simplifying notation, we arrive at

$$
\begin{equation*}
y^{\prime}=-\lambda y \tag{1.1.4}
\end{equation*}
$$

Explicit Euler. Applying the explicit Euler's method

$$
\begin{equation*}
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right) \tag{1.1.5}
\end{equation*}
$$

to (1.1.4) gives

$$
\begin{equation*}
y_{n+1}=R(h \lambda) y_{n} \tag{1.1.6}
\end{equation*}
$$

with $R(z)=1-z$.

We study the behaviour of (1.1.4) by looking at the equation

$$
\begin{equation*}
y_{n}=(R(h \lambda))^{n} y_{0} \tag{1.1.7}
\end{equation*}
$$

For y_{n} to remain bounded as $n \rightarrow \infty$, we require that the complex number $z=h \lambda$ satisfy

$$
\begin{equation*}
|1-z| \leq 1 \tag{1.1.8}
\end{equation*}
$$

From this analysis we can work out that, for the explicit Euler to remain stable, we must limit the stepsize to $0 \leq h \leq \frac{2}{\lambda}$.

Implicit Euler. To perform a similar stability analysis with an implicit method, we look at the implicit Euler method

$$
\begin{equation*}
y_{n+1}=y_{n}+h f\left(t_{n+1}, y_{n+1}\right) \tag{1.1.9}
\end{equation*}
$$

applied to (1.1.4). This gives us

$$
\begin{equation*}
y_{n+1}=R(h \lambda) y_{n} \tag{1.1.10}
\end{equation*}
$$

with $R(z)=\frac{1}{1+z}$.
Looking at (1.1.7) with $R(z)=\frac{1}{1+z}$ we can see that y_{m} remains bounded as $m \rightarrow \infty$ for all $h \geq 0$. This tells us implicit Euler is unconditionally stable.

Implicit schemes require the solution of systems of equations at each timestep [29], which means the total work complexity required to perform the integration is $O\left(N^{3}\right), N^{2}$ for the number of steps, and N for the work per step [21].

1.2 EI History

EIs offer an explicit alternative for the integration of stiff problems. Recently, there has been a great deal of interest in the construction of EIs. These integrators use the exponential function (and related functions) of the linear part of the problem, inside the numerical method.

Using the matrix exponential within a numerical integrator is not new. These exponential integrators were regarded as impractical until recent advances in evaluating the matrix exponential and, in particular, its operation upon a vector. For quite some time prior to these developments, EIs did not play a prominent role in applications. With the development of new methods for computing or approximating the exponential of a matrix (for example with Krylov subspace techniques), interest in EIs has increased.

Lawson Methods [28] An early approach for solving stiff problems was introduced by Lawson in 1967. Lawson looked at stiff problems of the form

$$
\begin{equation*}
y^{\prime}(t)=f(t, y(t)), \quad y(0)=y_{0} \tag{1.2.1}
\end{equation*}
$$

with large Lipschitz constants. He worked with a related problem which could be solved by a traditional Runge-Kutta Method (RK) solver, and from which the solution of (1.2.1) could be deduced. By combining the integration of the related problem with the recovery of the original, an efficient solution could be obtained. He called this combination, a generalised Runge-Kutta process.

The idea of Lawson was to consider, as a related function,

$$
\begin{equation*}
z(t)=e^{-t A} y(t) \tag{1.2.2}
\end{equation*}
$$

such that,

$$
\begin{align*}
z^{\prime}(t) & =e^{-t A}\left[f\left(t, e^{t A} z(t)\right)-A e^{t A} z(t)\right] \tag{1.2.3}\\
z(0) & =y_{0}
\end{align*}
$$

Viewing (1.2.3) as $z^{\prime}=g(t, z)$, it can be shown that the eigenvalues of the Jacobian $\left(\frac{\partial g}{\partial z}\right)$ are the same as those of $\left(\frac{\partial f}{\partial y}\right)-A$. One therefore tries to select A, such that the eigenvalues of $\left(\frac{\partial g}{\partial z}\right)$ are small enough to allow (1.2.3) to be solved with a traditional method. Lawson methods are more commonly referred to as Integrating Factor Methods (IFs) [34].

The IF approach can also be applied to semi-linear equations, the class of problems we are most interested in,

$$
\begin{equation*}
y^{\prime}(t)=L y(t)+N(t, y(t)), \quad y\left(t_{n}\right)=y_{n} \tag{1.2.4}
\end{equation*}
$$

Considering a related function, $z(t)=e^{-t L} y(t)$, of (1.2.4), we get

$$
\begin{align*}
z^{\prime}(t) & =e^{-t L} N\left(e^{t L} z(t), t\right)=g(z, t) \tag{1.2.5}\\
z(0) & =y_{0}
\end{align*}
$$

Since

$$
\begin{equation*}
\frac{\partial g}{\partial z}=e^{-t L} \frac{\partial N}{\partial y} e^{t L} \quad \text { and } \quad e^{-t L}=\left(e^{t L}\right)^{-1} \tag{1.2.6}
\end{equation*}
$$

we would once again hope that (1.2.5) can be solved by a traditional method [33].

Ultimately, the main issue with Lawson-type methods is that they only achieve stiff order of 1 , and are best suited to moderately stiff problems for which the solution is periodic, or tends towards zero. Furthermore, they do not preserve the fixed points of the original problem [34, 13].

Hochbruck, Lubich \& Selhofer [24] looked at using the exponential of the Jacobian and related functions within a numerical integrator. By combining this with Krylov approximation techniques, they were able to compute

$$
\varphi(\tau A) v
$$

where A is the Jacobian of (1.2.1), and

$$
\varphi(z)=\frac{e^{z}-1}{z}
$$

They formulated a number of methods based on this technique and presented a Matlab code, exp4 for semilinear problems of the type (1.2.4), which was the first actual implementation of an EI. A number of numerical tests on stiff and oscillatory problems showed that the code performed well when compared with the Matlab ODE codes and some classical solvers [24, 34].

Beylkin, Keiser \& Vozovoi [5] investigated the stability of classes of implicit and explicit Exponential Time Differencing Methods (ETDs), referring to them as Exact treatment of the Linear Part, L, Methods (ELPs) and presented a derivation for formulating such methods. They performed the stability analysis by establishing a baseline against an existing $3^{\text {rd }}$ Order AdamsMoulton / Adams-Bashforth Method (AMAB) and a 3rd Order mixed Implicit-Explicit Method (I-EM).

By comparing both an implicit and explicit example of their ELPs against this baseline, they were able to draw conclusions about their relative stability. The comparison showed that the implicit ELP was "super-stable", having a much larger stability region than the I-EM. The stability region of the explicit ELP was smaller than that of the implicit schemes, which meant that it would require timesteps of about half the length of the implicits stepsize to remain stable. When compared with the classical schemes, the explicit ELP was comparable to the I-EM and was significantly more stable than the AMAB.

Cox \& Matthews [13] presented an alternative formulation of ETDs, providing a more elegant derivation for constructing schemes of arbitrary order. Their approach was based on a polynomial approximation to $N\left(t_{n}+\tau, y\left(t_{n}+\tau\right)\right)$.

Alongside this, they developed a 1-step RK type extension to ETDs which they referred to as ETD Runge-Kutta Methods (ETDRKs). These schemes are now described as belonging to the family of Exponential Runge-Kutta Methods (ERKs). Cox \& Matthews provided schemes of $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ Order, and subjected them to a number of numerical tests. The results of these tests demonstrated that both ETDs and ERKs consistently outperformed IFs in terms of
accuracy. The $4^{\text {th }}$ order scheme appears in a number of our own numerical experiments, where we refer to it as ERK_{4} Cox-Matthews [13, Equations (26-29)] .

Krogstad [27] looked at overcoming the difficulties associated with IFs. For problems where the norm of the linear term is large, IFs produce large error coefficients. Krogstad proposed a generalisation of IFs displaying significantly improved accuracy.

Krogstad also looked at the construction of ERKs, and like Cox and Matthews, he referred to them as ETDRKs. In particular he developed the $4^{\text {th }}$ Order ERK, that we will refer to as ERK 4 Krogstad [27, Equation (51)] throughout this thesis. This scheme will be included in many of our numerical experiments in Section 5.3.

Ostermann, Thalhammer \& Wright [38] introduced the Exponential General Linear Method (EGLM) family of EIs. EGLMs are an extension of classical General Linear Methods (GLMs), which were introduced by Butcher in [7], into the EI setting. EGLMs represent a framework of multi-stage multi-step schemes, within which, the earlier families of ETDs and ERKs become special cases. By combining the advantages of both families, it is possible to achieve high stage order which facilitates the construction of high-order methods with favorable stability properties for stiff problems [38].

1.3 Exact Solution and φ-functions

We study and test the performance of numerical schemes derived from EIs, for the integration of large stiff systems of non-linear initial value problems, typically PDEs.

$$
\begin{equation*}
y_{t}=\mathcal{L} y+\mathcal{N}(y, t), \quad y\left(t_{0}\right)=y_{0} \tag{1.3.1}
\end{equation*}
$$

- \mathcal{L} is an unbounded linear operator independent of y,
- \mathcal{N} is a non-linear operator

There are several well known examples of this type of problem, such as Allen-Cahn, KuramotoSivasinsky and the Brusselator System. Our field of interest is primarily with the system of semi-linear ODEs,

$$
\begin{equation*}
y^{\prime}(t)=L y(t)+N(t, y(t)), \quad y\left(t_{n}\right)=y_{n} \tag{1.3.2}
\end{equation*}
$$

obtained after a space discretisation of (1.3.1). The linear part, L, of the equation is stiff, while the non-linear part, N, is assumed to be non-stiff, in the sense that it can be approximated by an explicit method.

More formally, we consider ODEs of the type 1.3.2, where $L \in \mathbb{R}^{d \times d}$ has a large norm together with a non-positive or moderately positive logarithmic norm and $N:\left[t_{0},+\infty\right) \times \mathbb{R}^{d} \rightarrow$ \mathbb{R}^{d} has a moderate Lipschitz constant with respect to the second argument [32].

Stiffness in the L part is inherent to the PDE. The system of ODEs from the discretisation of the PDE retain this stiffness. Finite differences and spectral methods are examples of discretisation approaches which can be used to solve stiff PDEs where the system of ODEs produced is generally stiff [13]. EIs solve the linear part exactly through the matrix exponential.

We derive the exact solution of (1.3.2) via the variation-of-constants formula. Pre-multiply with $e^{-t L}$ (integrating factor) to obtain

$$
\begin{align*}
e^{-t L} y^{\prime} & =e^{-t L} L y+e^{-t L} N(t, y), \tag{1.3.3}\\
\left(e^{-t L} y(t)\right)^{\prime} & =e^{-t L} N(t, y) d t
\end{align*}
$$

Now integrate,

$$
\begin{equation*}
e^{-t L} y_{p}(t)=\int e^{-t L} N(t, y) d t \tag{1.3.4}
\end{equation*}
$$

add the homogeneous solution to (1.3.2), to the particular solution $y_{p}(t)$ and simplify

$$
\begin{align*}
y(t) & =e^{(t-a) L} y_{a}+e^{t L} \int_{a}^{t} e^{-\tau L} N(\tau, y(\tau)) d \tau \tag{1.3.5}\\
y\left(t_{n}+h\right) & =e^{\left(t_{n}+h-t_{n}\right) L} y_{n}+e^{\left(t_{n}+h\right) L} \int_{0}^{h} e^{-\left(t_{n}+\tau\right) L} N\left(t_{n}+\tau, y\left(t_{n}+\tau\right)\right) d \tau \tag{1.3.6}\\
& =e^{h L} y_{n}+\int_{0}^{h} e^{(h-\tau) L} N\left(t_{n}+\tau, y\left(t_{n}+\tau\right)\right) d \tau .
\end{align*}
$$

Substituting the Taylor expansion for $N\left(t_{n}+\tau, y\left(t_{n}+\tau\right)\right)$

$$
\begin{equation*}
\sum_{m=0}^{\infty} \frac{\tau^{m} N^{(m)}\left(y\left(t_{n}\right)\right)}{m!} \tag{1.3.7}
\end{equation*}
$$

into (1.3.6), and by defining

$$
\begin{equation*}
\varphi_{k}(h L)=\frac{1}{h^{k}} \int_{0}^{h} e^{(h-\tau) L} \frac{\tau^{k-1}}{(k-1)!} d \tau \tag{1.3.8}
\end{equation*}
$$

we can represent the exact solution for (1.3.2) as

$$
\begin{equation*}
y\left(t_{n+1}\right)=e^{h L} y_{n}+h \varphi_{1} N+h^{2} \varphi_{2} N^{\prime}+h^{3} \varphi_{3} N^{\prime \prime}+\cdots \tag{1.3.9}
\end{equation*}
$$

where $y\left(t_{n+1}\right)$ denotes $y\left(t_{n}+h\right)$. It is also common to make reference to the exact solution at an intermediate point $t_{n}+c_{i} h$, which is represented as,

$$
\begin{equation*}
y\left(t_{n}+c_{i} h\right)=e^{c_{i} h L} y_{n}+c_{i} h \varphi_{1 i} N+c_{i}^{2} h^{2} \varphi_{2 i} N^{\prime}+c_{i}^{3} h^{3} \varphi_{3 i} N^{\prime \prime}+\cdots \tag{1.3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{j i}=\varphi_{j}\left(c_{i} h L\right) \tag{1.3.11}
\end{equation*}
$$

A key element in the implementation of exponential integrators is the evaluation of the matrix exponential and exponential like functions, (1.3.8), commonly referred to as φ-functions in literature.

Integration by parts reveals that (1.3.8) obeys the recurrence relation

$$
\begin{align*}
\varphi_{k}(h L) & =\frac{1}{h^{k}} \int_{o}^{h} e^{(x-\tau) L} \frac{\tau^{k-1}}{(k-1)!} d \tau \\
& =\frac{1}{h^{k}}\left[\left.\frac{-e^{(h-\tau) L} \tau^{k-1}}{(k-1)!L}\right|_{0} ^{h}-\int_{0}^{h} \frac{-e^{(x-\tau) L}}{L} \frac{\tau^{k-2}}{(k-2)!} d \tau\right] \tag{1.3.12}\\
& =\frac{1}{h(k-1)!L}+\frac{1}{h L} \frac{1}{h^{k-1}} \int_{o}^{h} e^{(x-\tau) L} \frac{\tau^{k-2}}{(k-2)!} d \tau \\
& =\frac{\varphi_{k-1}(h L)-\frac{1}{(k-1)!}}{h L}
\end{align*}
$$

where, for convenience it is common to define $\varphi_{0}(z)=e^{z}$. When $j=1,2$ and 3 the respective φ-functions are

$$
\varphi_{1}(z)=\frac{e^{z}-1}{z} \quad \varphi_{2}(z)=\frac{e^{z}-z-1}{z^{2}} \quad \varphi_{3}(z)=\frac{e^{z}-z^{2} / 2-z-1}{z^{3}}
$$

When deriving ETDs, we approximate the function $N\left(t_{n}+\tau, u\left(t_{n}+\tau\right)\right)$ within (1.3.6), by a Newton backward-difference interpolation polynomial. The simplest case is to approximate by a constant N_{n}. This gives us the ETD1 method.

$$
\begin{equation*}
u_{n+1}=e^{h L} u_{n}+h \varphi_{1}(h L) N_{n}, \quad \varphi_{1}(h L)(z)=\frac{e^{z}-1}{z} \tag{1.3.13}
\end{equation*}
$$

It is known as the ETD Euler method as it reduces to the classical Euler method when $L=0$.

As a second example, $N\left(t_{n}+\tau, y\left(t_{n}+\tau\right)\right)$ is approximated by the linear polynomial

$$
N_{n}+\frac{\tau}{h}\left(N_{n}-N_{n-1}\right)
$$

giving us the two-step method known as ETD2.

$$
\begin{equation*}
y_{n+1}=e^{h L} y_{n}+h\left[\varphi_{1}(h L)+\varphi_{2}(h L)\right] N_{n}-h \varphi_{2}(h L) N_{n-1} \tag{1.3.14}
\end{equation*}
$$

Chapter 2

ERK and EGLM Families of Els

In this chapter we look at two different families of EIs, namely

- Exponential Runge-Kutta Methods (ERKs)
- Exponential General Linear Methods (EGLMs)

We derive order conditions allowing us to construct new schemes and look at the difficulties which surround the design of higher order schemes.

2.1 Exponential Runge-Kutta Methods

We saw in Section 1.2 that some early examples of ERKs were presented by Cox \& Matthews [13]. ERKs are 1-step methods using lower order intermediate steps as in classical RKs. If we start with the general representation of our problem (1.3.2) we can then define a general explicit ERK for solving this class of problems

$$
\begin{aligned}
y_{n+1} & =e^{h L} y_{n}+h \sum_{n=1}^{q} b_{n}(h L) K_{n} \\
K_{i} & =N\left(e^{c_{i} h L} y_{n}+h \sum_{j=1}^{i-1} a_{i j}\left(c_{i} h L\right) K_{j}\right)
\end{aligned}
$$

Classical (non-exponential) RK integrators are often written in a tableau format

A modified form of this tableau will also be used to represent ERKs, for example the tableau

0			I
$\frac{1}{2}$	$\frac{1}{2} \varphi_{1,2}$		$e^{\frac{1}{2} h L}$
	$\varphi_{1}-2 \varphi_{2}$	$2 \varphi_{2}$	

represents the method

$$
\begin{align*}
K_{1} & =N_{n} \\
K_{2} & =N\left(e^{\frac{h L}{2}} y_{n}+\frac{h}{2} \varphi_{1,2}\left(\frac{h L}{2}\right) N_{n}\right) \tag{2.1.2}\\
y_{n+1} & =e^{h L} y_{n}+h\left(\left(\varphi_{1}-2 \varphi_{2}\right) K_{1}+2 \varphi_{2} K_{2}\right)
\end{align*}
$$

More generally, we can see here how the coefficients within 3-stage ERKs relate to the entries in the tableau representation

$$
\begin{array}{c|ccc|c}
0 & & & & \tag{2.1.3}\\
c_{2} & a_{21} & & & e^{c_{2} h L} \\
c_{3} & a_{31} & a_{32} & & e^{c_{3} h L} \\
\hline & b_{1} & b_{2} & b_{3} & e^{h L}
\end{array}
$$

$$
\begin{aligned}
& K_{1}=N_{n} \\
& K_{2}=N\left(t_{n}+c_{2} h, e^{c_{2} h L} y_{n}+h a_{21} K_{1}\right) \\
& K_{3}=N\left(t_{n}+c_{3} h, e^{c_{3} h L} y_{n}+h\left[a_{31} K_{1}+a_{32} K_{2}\right]\right) \\
& y_{n+1}=e^{h L} y_{n}+h\left(b_{1} K_{1}+b_{2} K_{2}+b_{3} K_{3}\right)
\end{aligned}
$$

2.1.1 Order Conditions

For classical RKs, the order of a scheme is defined based on a Taylor expansion of the exact solution for $y\left(t_{0}+h\right)$ and the approximation y_{1} :

Definition 1. [20, Definition 1.2] A Runge-Kutta method has order p if for sufficiently smooth problems (1.1.1),

$$
\begin{equation*}
\left\|y\left(t_{0}+h\right)-y_{1}\right\| \leq K h^{p+1} \tag{2.1.4}
\end{equation*}
$$

i.e., if the Taylor series for the exact solution $y\left(t_{0}+h\right)$ and for y_{1} coincide up to (and including) the term h_{p}.

The above definition defines order in a classical (nonstiff) sense. We are interested in working with stiff equations of the form (1.3.2) and will construct schemes based on the concept of stiff order,

Definition 2. [32, Definition 1] An exponential method is said to be of stiff order p if the local error has order $p+1$ with respect to h_{n} when the method is applied to the general semilinear ODE (1.3.2) in which $N(t, y(t))$ is a sufficiently smooth function of t. Stiff convergence order describes the behaviour of the local error independently of the norm of L.

It is not possible in general, to obtain order by simply using a RK for the nonlinear part N of the problem. There are coupling conditions between the nonlinear and linear parts of the problem despite the fact that the linear part has been solved exactly [33].

When deriving order conditions for constructing schemes of higher order, we will see that it is sometimes not possible to satisfy all the conditions unless we weaken some of them. We will therefore make a distinction between schemes of strong and weak stiff order.

Definition 3. An exponential method is said to be of strong order p if it satisfies the p stiff order conditions for the general semi-linear ODE (1.3.2).

Definition 4. An exponential method is said to be of weak order p if it has strong order $p-1$ and satisfies the p stiff order conditions only in the weakened case where $L=0$.

Hochbruck \& Ostermann developed an approach based on trees for deriving stiff order conditions. Their approach represents the elementary differentials of $F(u)=L u+N(u)$ which come from a Taylor expansion of the exact solution [25]. This allowed them to develop conditions for arbitrary orders in a way similar to classical RKs.

We adopt the approach whereby we view the Taylor expansions of the method's internal stages, K_{i}, on 2-dimensional grids. The columns of the grids group terms by the order of their
h coefficient, while the rows group terms relative to successive derivatives of N. Within this interpretation, operations upon the entries in the grid become simple shifts in locations.

To illustrate this we will view a general K_{i} in the following format where R_{i} is some residual term.

$$
\begin{equation*}
K_{i}=N\left(t_{n}+c_{i} h, y\left(t_{n}+c_{i} h\right)+R_{i}\right) \tag{2.1.5}
\end{equation*}
$$

Then the Taylor expansion of (2.1.5) can be viewed more naturally in a 2-dimensional sense

$$
K_{i}=\left\{\begin{array}{ccccccc}
N & + & R_{i} N_{y} & + & R_{i}^{2} N_{y y} & + & R_{i}^{3} N_{y y y} \tag{2.1.6}
\end{array} \cdots\right.
$$

2.1.2 $\quad 1^{\text {st }}$ Order Consistency Conditions

We will consider an ERK of the form

$$
\begin{align*}
& y_{n+1}=e^{h L} y_{n}+h \sum_{i=1}^{q} b_{i}(h L) K_{i} \\
& K_{1}=N\left(t_{n}, y_{n}\right) \tag{2.1.7}\\
& K_{i}=N\left(t_{n}+c_{i} h, e^{c_{i} h L} y_{n}+\sum_{j=1}^{i-1} h a_{i j} K_{j}\right)
\end{align*}
$$

when applied to approximate the solution of problem (1.3.2). The conditions for a method to be of order 1 are usually referred to as the consistency conditions [20]. To derive these conditions we will require that the method be exact for the case $N(y(t))=N$, a constant. This means, that the internal stages,

$$
\begin{equation*}
y\left(t_{c}+c_{i} h\right)=e^{c_{i} h L} y_{n}+\sum_{j=1}^{i-1} h a_{i j} K_{j} \tag{2.1.8}
\end{equation*}
$$

and y_{n+1} are exact. Let $Y_{n i}$ denote the ERK approximation to $y\left(t_{n}+c_{i} h\right)$,

$$
Y_{n i}=e^{c_{i} h L} y_{n}+\sum_{j=1}^{i-1} h a_{i j} N
$$

where the exact solution (1.3.10) is

$$
y\left(t_{n}+c_{i} h\right)=e^{c_{i} h L} y_{n}+c_{i} h \varphi_{1, i} N
$$

for $Y_{n i}=y\left(t_{n}+c_{i} h\right)$, we must have

$$
\begin{equation*}
\sum_{j=1}^{i-1} a_{i j}=c_{i} \varphi_{1, i} \tag{2.1.9a}
\end{equation*}
$$

For ERK, the approximation y_{n+1},

$$
y\left(t_{n+1}\right)=e^{h L} y_{n}+\sum_{i=1}^{S} h b_{i} N
$$

to equal the exact solution (1.3.9)

$$
e^{h L} y_{n}+h \varphi_{1} N
$$

where S is the number of stages, we require the condition

$$
\begin{equation*}
\sum_{i=1}^{S} b_{i}=\varphi_{1} \tag{2.1.9b}
\end{equation*}
$$

For non-constant N, a scheme satisfying these conditions will have an error of order h^{2} or more and so will be of, at least, stiff-order 1 for the general problem (1.3.2).

2.1.3 $\quad 2^{\text {nd }}$ Order Conditions

Theorem 1. A 2-stage Exponential Runge-Kutta of the form

0	0	0	1
c_{2}	a_{21}	0	$e^{c_{2} h L}$
	b_{1}	b_{2}	$e^{h L}$

will be of $2^{\text {nd }}$ order if it satisfies the condition (2.1.9), and if

$$
\begin{equation*}
b_{2} c_{2}=\varphi_{2} \tag{2.1.13}
\end{equation*}
$$

Proof. Using the notation $N \equiv N\left(t_{n}, y\left(t_{n}\right)\right)$, from (2.1.11) we have,

$$
\begin{equation*}
K_{2}=N\left(t_{n}+c_{2} h, e^{c_{2} h L} y_{n}+h a_{21} N\right) \tag{2.1.14}
\end{equation*}
$$

and require,

$$
\begin{equation*}
N\left(t_{n}+c_{2} h, e^{c_{2} h L} y_{n}+h a_{21} N\right)=N\left(t_{n}+c_{2} h, y\left(t_{n}+c_{2} h\right)+R_{2}\right) \tag{2.1.15}
\end{equation*}
$$

where R_{2} is a residual term of order h^{3}. Replacing $y\left(t_{n}+c_{2} h\right)$ with the exact solution expansion (1.3.10) we get,

$$
\begin{equation*}
R_{2}=e^{c_{2} h L} y_{n}+h a_{21} N-e^{c_{2} h L} y_{n}-c_{2} h \varphi_{1,2} N+O\left(h^{3}\right) \tag{2.1.16}
\end{equation*}
$$

This implies that $c_{2} \varphi_{1,2}=a_{21}$, which recovers the consistency condition (2.1.9a).

Substituting for (2.1.16) into K_{2} this process is then repeated using the Taylor expansion about $y\left(t_{n}+c_{2} h\right)$

$$
\begin{aligned}
K_{2} & =N\left(t_{n}+c_{2} h, e^{c_{2} h L}+h a_{21} N\right) \\
& =N\left(t_{n}+c_{2} h, e^{c_{2} h L}+h c_{2} \varphi_{1,2} N\right) \\
& =N\left(t_{n}+c_{2} h, y\left(t_{n}+c_{2} h\right)+R_{2}\right) \\
& =N\left(t_{n}+c_{2} h, y\left(t_{n}+c_{2} h\right)\right)+R_{2} N_{y}\left(t_{n}+c_{2} h, y\left(t_{n}+c_{2} h\right)\right)+O\left(h^{4}\right) .
\end{aligned}
$$

Then, expanding K_{2} about t_{n},

$$
\begin{align*}
K_{2}= & N+c_{2} h N^{\prime}+\frac{1}{2} c_{2}^{2} h^{2} N^{\prime \prime}+\frac{1}{6} c_{2}^{3} h^{3} N^{\prime \prime \prime} \\
& +R_{2} N_{y}+c_{2} h R_{2} N_{y}^{\prime}+O\left(h^{4}\right) \tag{2.1.17}\\
= & N+c_{2} h N^{\prime}+\frac{1}{2} c_{2}^{2} h^{2} N^{\prime \prime}+R_{2} N_{y}+O\left(h^{3}\right)
\end{align*}
$$

Here, the pattern key to our grid approach of representing the expansions is beginning to emerge. When deriving higher order conditions, we are required to retain higher powers of h from the Taylor expansion. For those derivations, the grid representation will then be used.

Returning then to the general form of the numerical method (2.1.10), we substitute K_{1} and (2.1.17) into (2.1.11) to obtain

$$
\begin{align*}
y_{n+1} & =e^{h L} y_{n}+h\left(b_{1} K_{1}+b_{2} K_{2}\right) \\
& =e^{h L} y_{n}+h b_{1} N+h b_{2} N+b_{2} c_{2} h^{2} N^{\prime}+\frac{1}{2} b_{2} c_{2}^{2} h^{3} N^{\prime \prime}+h b_{2} R_{1} N_{y}+O\left(h^{4}\right) \tag{2.1.18}\\
& =e^{h L} y_{n}+h\left(b_{1}+b_{2}\right) N+b_{2} c_{2} h^{2} N^{\prime}+O\left(h^{3}\right)
\end{align*}
$$

Finally, by matching terms to ensure y_{n+1} coincides with the exact solution (1.3.9) up to $O\left(h^{3}\right)$, we recover the remaining conditions (2.1.9b) and (2.1.13).

Theorem 1 demonstrates that two-stage ERKs can achieve $2^{\text {nd }}$ order, constrained by 3 conditions, (2.1.9a), (2.1.9b) and (2.1.13), for 4 unknowns.

We can view c_{2} as a free parameter giving the following family of $E R K_{2}$ methods,

$$
\begin{array}{c|cc|c}
0 & & & I \tag{2.1.19}\\
c_{2} & c_{2} \varphi_{1,2} & & e^{c_{2} h L} \\
\hline & \varphi_{1}-\frac{1}{c_{2}} \varphi_{2} & \frac{1}{c_{2}} \varphi_{2} &
\end{array}
$$

Here, we have derived the same order conditions as presented by Hochbruck \& Ostermann [25, Equations $5.1 \& 5.2$]. ERK_{2} (2.1.19) is also presented in that same paper [25, Method 5.3].

This method requires 2 distinct φ-functions if $c_{2}=1$ and 3 if $c_{2} \neq 1$. There is a possibility here to reduce this computational cost to 1 and 2 distinct φ-functions for $c_{2}=1$ and $c_{2} \neq 1$ respectively if we weaken the condition (2.1.13) to

$$
\begin{equation*}
b_{2}(0) c_{2}=\varphi_{2}(0)=\frac{1}{2} \tag{2.1.20}
\end{equation*}
$$

This gives us a second 1-parameter family of ERK_{2} [25, Scheme 5.4] schemes

With condition (2.1.13) only satisfied weakly, this family of methods is not strongly $2^{\text {nd }}$ order.

2-stage ERKs can achieve at most $2^{\text {nd }}$ order. To achieve higher order it is necessary to consider methods with additional internal stages.

We will see that, as we aim for higher order, the number of conditions to be satisfied grows rapidly. This makes it increasingly difficult to achieve higher orders, and this difficultly makes the notion of weak order, as defined in Definition 4, very important. For example, we will see that there are no strongly $3^{\text {rd }}$ order 3-stage ERKs, only weakly $3{ }^{\text {rd }}$ order methods. Still numerical comparisons of the relative performances of methods shows that weak order can be a desirable property. For example, the weakly $3^{\text {rd }}$ order methods perform somewhere in between the strongly $2^{\text {nd }}$ and strongly $3^{\text {rd }}$ order methods.

2.1.4 4-Stage, $4^{\text {th }}$ Order Conditions

We will now extend our formulation of (2.1.2) to include 3-stage and 4-stage schemes, and will derive the conditions for constructing schemes up to $4^{\text {th }}$ order.

Theorem 2. 4-stage ERKs of the form

0	0				I
c_{2}	a_{21}	0			$e^{c_{2} h L}$
c_{3}	a_{31}	a_{32}	0		$e^{c_{3} h L}$
c_{4}	a_{41}	a_{42}	a_{43}	0	$e^{c_{4} h L}$
	b_{1}	b_{2}	b_{3}	b_{4}	

with the general format of the scheme being

$$
\begin{align*}
& y_{n+1}=e^{h L} y_{n}+h\left(b_{1} K_{1}+b_{2} K_{2}+b_{3} K_{3}+b_{4} K_{4}\right) \\
& K_{1}=N_{n} \\
& K_{2}=N\left(t_{n}+c_{i} h, e^{c_{2} h L}+h a_{21} K_{1}\right) \tag{2.1.22}\\
& K_{3}=N\left(t_{n}+c_{i} h, e^{c_{3} h L}+h a_{31} K_{1}+h a_{32} K_{2}\right) \\
& K_{4}=N\left(t_{n}+c_{i} h, e^{c_{4} h L}+h a_{41} K_{1}+h a_{42} K_{2}+h a_{43} K_{3}\right)
\end{align*}
$$

that satisfy (2.1.9) will achieve $2^{\text {nd }}$ order if they also satisfy

$$
\begin{equation*}
b_{2} c_{2}+b_{3} c_{3}+b_{4} c_{4}=\varphi_{2} \tag{2.1.23}
\end{equation*}
$$

will achieve $3^{\text {rd }}$ order if, in addition, they satisfy

$$
\begin{align*}
\sum_{i=2}^{4} b_{i}\left(\sum_{j=2}^{i-1} a_{i j} c_{j}-c_{i}^{2} \varphi_{2, i}\right) & =0 \tag{2.1.24a}\\
b_{2} c_{2}^{2}+b_{3} c_{3}^{2}+b_{4} c_{4}^{2} & =\varphi_{3} \tag{2.1.24b}
\end{align*}
$$

and $4^{\text {th }}$ order if

$$
\begin{align*}
\sum_{i=3}^{4} b_{i}\left[\sum_{j=2}^{i-1} a_{i 2}\left(c_{2}^{2} \varphi_{2, j}-\sum_{k=2}^{j-1} a_{j k} c_{k}\right)\right] & =0 \tag{2.1.25a}\\
\sum_{i=2}^{4} b_{i} c_{i}\left(c_{i}^{2} \varphi_{2, i}-\sum_{j=2}^{i-1} a_{i j} c_{j}\right) & =0 \tag{2.1.25b}\\
\sum_{i=2}^{4} b_{i}\left(c_{i}^{3} \varphi_{3, i}-\frac{1}{2} \sum_{j=2}^{i-1} a_{i j} c_{j}^{2}\right) & =0 \tag{2.1.25c}\\
b_{2} c_{2}^{3}+b_{3} c_{3}^{3}+b_{4} c_{4}^{3} & =6 \varphi_{4} \tag{2.1.25d}
\end{align*}
$$

are also satisfied.

Proof. As in the earlier derivations we initially wish to express $e^{c_{2} h L}+h a_{21} K_{1}$, from the K_{2} stage (2.1.22), in the form $y\left(t_{n}+c_{2} h\right)+R_{2}$. Using the exact solution (1.3.10) for $i=2$,

$$
\begin{aligned}
\Rightarrow \quad e^{c_{2} h L}+h a_{21} K_{1} & =y\left(t_{n}+c_{2} h\right)+R_{2} \\
& =e^{c_{2} h L} y_{n}+c_{2} h \varphi_{12} N+c_{2}^{2} h^{2} \varphi_{2,2} N^{\prime}+\ldots+R_{2}
\end{aligned}
$$

when $a_{21}=c_{2} \varphi_{1,2}$

$$
\Leftrightarrow \quad R_{2}=-c_{2}^{2} h^{2} \varphi_{2,2} N^{\prime}-c_{2}^{3} h^{3} \varphi 3,2 N^{\prime \prime}+O\left(h^{4}\right)
$$

We will now introduce the grid representation to ease calculation with these increasingly large terms. The first two terms of the residual R_{2} can be written down in the grid format

R_{2}	1	h	h^{2}	h^{3}
N				
N^{\prime}			$-c_{2}^{2} h^{2} \varphi_{2,2} N^{\prime}$	
$N^{\prime \prime}$				$-c_{2}^{3} h^{3} \varphi_{3,2} N^{\prime \prime}$
$N^{\prime \prime \prime}$				

This tabular grid format will serve to make it easier to identify the relevant terms within our expressions for K_{i} 's and R_{i} 's. As such, it will be used as the primary representation for the K_{i} and R_{i} expressions.

In Taylor expanding K_{2} we follow the pattern of (2.1.6) taking into account all terms of order h^{3} and less. It is clear that R_{2} is of order h^{2}. We will see that this applies to R_{3} and R_{4} also. As a result we will not need to take the $R_{i}^{2} N_{y y}$ term from K_{i} into account.

Using (2.1.6) we can construct a table for K_{2}. The $1^{\text {st }}$ column of the expansion leads to the main diagonal of the grid. The $R_{2} N_{y}$ term from the expansion (2.1.6) contributes the $h^{2} N^{\prime}$ and $h^{3} N^{\prime \prime \prime}$ entries, while the $h^{3} N^{\prime}$ term comes from $R_{2} c_{2} h N_{y}^{\prime}$ in the expansion.

K_{2}	1	h	h^{2}	h^{3}
N	N			
N^{\prime}		$c_{2} h N^{\prime}$	$-c_{2}^{2} h^{2} \varphi_{2,2} N^{\prime} N_{y}$	$-c_{2}^{3} h^{3} \varphi_{2,2} N^{\prime} N_{y}^{\prime}$
$N^{\prime \prime}$			$\frac{1}{2} c_{2}^{2} h^{2} N^{\prime \prime}$	$-c_{2}^{3} h^{3} \varphi_{3,2} N^{\prime \prime} N_{y}$
$N^{\prime \prime \prime}$				$\frac{1}{6} c_{2}^{3} h^{3} N^{\prime \prime \prime}$

Progressing in a similar vein for K_{3} we will seek that

$$
\begin{aligned}
y\left(t_{n}+c_{3} h\right)+R_{3}= & e^{c_{3} h L}+h a_{31} K_{1}+h a_{32} K_{2} \\
c_{3}^{2} h^{2} \varphi_{2,3} N^{\prime}+c_{2}^{3} h^{3} \varphi_{3,3} N^{\prime \prime}+O\left(h^{4}\right)+R_{3}= & h a_{31} K_{1}+h a_{32} K_{2} \\
= & h a_{31} N+ \\
& h a_{32}\left[N+c_{2} h N^{\prime}+-c_{2}^{2} h^{2} \varphi_{2,2} N^{\prime} N_{y}+\ldots\right] \\
= & h\left(a_{31}+a_{32}\right) N+ \\
& h a_{32}\left[c_{2} h N^{\prime}+-c_{2}^{2} h^{2} \varphi_{2,2} N^{\prime} N_{y}+\ldots\right]
\end{aligned}
$$

when $a_{31}+a_{32}=c_{3} \varphi_{1,3}$,

$$
\begin{aligned}
R_{3}= & h a_{32}\left[c_{2} h N^{\prime}+-c_{2}^{2} h^{2} \varphi_{2,2} N^{\prime} N_{y}+\ldots\right] \\
& -c_{2}^{2} h^{2} \varphi_{2,2} N^{\prime}-c_{2}^{3} h^{3} \varphi 3,2 N^{\prime \prime}+O\left(h^{4}\right)
\end{aligned}
$$

The superficially complex residual R_{3} is actually just a combination of some of the $h a_{32} \times K_{2}$ terms minus some of the terms from (1.3.10) for $i=3$.

We can tabulate R_{3} as shown below. Here the $\{$ bracketed $\}$ entries are simplifications of the terms in the adjacent cells.

As mentioned earlier, R_{3} is indeed of order h^{2}. This means we can proceed to tabulate K_{3} in exactly the same fashion as we did for K_{2}, with the exception that the $h^{3} N^{\prime}$ term in the table is now a combination of contributions from both the $R_{3} N_{y}$ and $R_{3} c_{3} h N_{y}^{\prime}$ terms in the expansion of K_{3}.

K_{3}	1	h	h^{2}	h^{3}
N	N			
N^{\prime}		$c_{3} h N^{\prime}$	$h^{2} N^{\prime}\left(c_{2} a_{32}-c_{3}^{2} \varphi_{2,3}\right) N_{y}$	$h^{3} N^{\prime} c_{3}\left(c_{2} a_{32}-c_{3}^{2} \varphi_{2,3}\right) N_{y}^{\prime}$ $-c_{2}^{2} h^{3} a_{32} \varphi_{2,2} N^{\prime}\left(N_{y}\right)^{2}$
$N^{\prime \prime}$			$\frac{1}{2} c_{3}^{2} h^{2} N^{\prime \prime}$	$h^{3} N^{\prime \prime}\left(\frac{1}{2} c_{2}^{2} a_{32}-c_{3}^{3} \varphi_{3,3}\right) N_{y}$
$N^{\prime \prime \prime}$			$\frac{1}{6} c_{3}^{3} h^{3} N^{\prime \prime \prime}$	

For the K_{4} stage, we require

$$
\begin{aligned}
y\left(t_{n}+c_{4} h\right)+R_{4}= & e^{c_{4} h L}+h a_{41} K_{1}+h a_{42} K_{2}+h a_{43} K_{3} \\
= & h a_{41} N
\end{aligned} \quad \begin{aligned}
\quad & \quad h a_{42}\left[N+c_{2} h N^{\prime}+-c_{2}^{2} h^{2} \varphi_{2,2} N^{\prime} N_{y}+\ldots\right] \\
& \quad+h a_{43}\left[N+c_{3} h N^{\prime}+h^{2} N^{\prime}\left(c_{2} a_{32}-c_{3}^{2} \varphi_{2,3}\right) N_{y}+\ldots\right]
\end{aligned}
$$

$$
\begin{aligned}
& c_{4}^{2} h^{2} \varphi_{2,4} N^{\prime}+c_{4}^{3} h^{3} \varphi 3,4 N^{\prime \prime}+O\left(h^{4}\right)+R_{4}= \\
& h\left(a_{41}+a_{42}+a_{43}\right) N+h a_{42}\left[c_{2} h N^{\prime}+-c_{2}^{2} h^{2} \varphi_{2,2} N^{\prime} N_{y}+\ldots\right] \\
& \quad+h a_{43}\left[c_{3} h N^{\prime}+h^{2} N^{\prime}\left(c_{2} a_{32}-c_{3}^{2} \varphi_{2,3}\right) N_{y}+\ldots\right]
\end{aligned}
$$

$$
\begin{aligned}
=y\left(t_{n}\right. & \left.+c_{3} h\right)+h a_{42}\left[c_{2} h N^{\prime}-c_{2}^{2} h^{2} \varphi_{2,2} N^{\prime} N_{y}+\ldots\right] \\
& +h a_{43}\left[c_{3} h N^{\prime}+h^{2} N^{\prime}\left(c_{2} a_{32}-c_{3}^{2} \varphi_{2,3}\right) N_{y}+\ldots\right] \\
& -c_{4}^{2} h^{2} \varphi_{2,4} N^{\prime}-c_{4}^{3} h^{3} \varphi_{3,4} N^{\prime \prime}-\ldots
\end{aligned}
$$

when $a_{41}+a_{42}+a_{43}=c_{3} \varphi_{1,3}$

$$
\begin{aligned}
\Leftrightarrow \quad R_{4}=h a_{42} & {\left[c_{2} h N^{\prime}+-c_{2}^{2} h^{2} \varphi_{2,2} N^{\prime} N_{y}+\ldots\right] } \\
& +h a_{43}\left[c_{3} h N^{\prime}+h^{2} N^{\prime}\left(c_{2} a_{32}-c_{3}^{2} \varphi_{2,3}\right) N_{y}+\ldots\right] \\
& -c_{4}^{2} h^{2} \varphi_{2,4} N^{\prime}-c_{4}^{3} h^{3} \varphi_{3,4} N^{\prime \prime}-\ldots
\end{aligned}
$$

For R_{4}, as with R_{3}, we tabulate the order h^{2} and h^{3} terms from $a_{42} K_{2}$ and $a_{43} K_{3}$ minus the order h^{2} and h^{3} terms of (1.3.10) for $i=4$.

R_{4}	1	h	h^{2}	h^{3}
N			$\left\{h^{3} N^{\prime} N_{y}\left[-c_{2}^{2} a_{42} \varphi_{2,2}+a_{43}\left(c_{2} a_{32}-c_{3}^{2} \varphi_{2,3}\right)\right]\right\}$	
N^{\prime}	$\left\{h^{2} N^{\prime}\left[\sum_{j=2}^{3} c_{j} a_{4 j}-c_{4}^{2} \varphi_{2,4}\right]\right\}: \begin{array}{c:c} -c_{4}^{2} h^{2} \varphi_{2,4} N^{\prime} \tag{2.1.30}\\ & +c_{2} h^{2} a_{42} N^{\prime} \\ : & +c_{3} h^{2} a_{43} N^{\prime} \end{array}$			$\begin{gathered} h^{3} a_{4,3} N^{\prime}\left(c_{2} a_{32}-c_{3}^{2} \varphi_{2,3}\right) N_{y} \\ -c_{2}^{2} h^{3} a_{42} \varphi_{2,2} N^{\prime} N_{y} \end{gathered}$
$N^{\prime \prime}$	$\left\{h^{3} N^{\prime \prime \prime}\left[\frac{1}{2} \sum_{j=2}^{3} c_{j}^{2} a_{4 j}-c_{4}^{3} \varphi_{3,4}\right]\right\}$			$\begin{aligned} & -c_{4}^{3} h^{3} \varphi_{3,4} N^{\prime \prime} \\ & \quad+\frac{1}{2} c_{2}^{2} h^{3} a_{42} N^{\prime \prime} \\ & \quad+\frac{1}{2} c_{3}^{2} h^{3} a_{43} N^{\prime \prime} \end{aligned}$
$N^{\prime \prime \prime}$				

Likewise we can tabulate the expression for K_{4}. Again note that R_{4} is of order h^{2}.

K_{4}	1	h	h^{2}	h^{3}		
N	N					
N^{\prime}			$c_{4} h N^{\prime}$	$h^{2} N^{\prime}\left(\sum_{j=2}^{3} c_{j} a_{4 j}-c_{4}^{2} \varphi_{2,4}\right) N_{y}$		$h^{3} N^{\prime}\left[-c_{2}^{2} a_{42} \varphi_{2,2}\right.$
:---:						
$\left.+a_{43}\left(c_{2} a_{32}-c_{3}^{2} \varphi_{2,3}\right)\right]\left(N_{y}\right)^{2}$						
$+h^{3} N^{\prime} c_{4}\left[\sum_{j=2}^{3} c_{j}^{2} a_{4 j}-c_{4}^{2} \varphi_{2,4}\right] N_{y}^{\prime}$						
$N^{\prime \prime}$						

Returning to the exact solution

$$
\begin{equation*}
y\left(t_{n+1}\right)=e^{h L} y_{n}+h \varphi_{1} N+h^{2} \varphi_{2} N^{\prime}+h^{3} \varphi_{3} N^{\prime \prime}+h^{4} \varphi_{4} N^{\prime \prime \prime}+\ldots \tag{2.1.32}
\end{equation*}
$$

we will try to determine the conditions necessary to attain a scheme of $4^{\text {th }}$ order.

$$
\begin{gather*}
y_{n+1}=e^{h L} y_{n}+h\left(b_{1} K_{1}+b_{2} K_{2}+b_{3} K_{3}+b_{4} K_{4}\right) \\
=e^{h L} y_{n}+h b_{1} N+ \\
h b_{2}\left(N+c_{2} h N^{\prime}-c_{2}^{2} h^{2} \varphi_{2,2} N^{\prime} N_{y}-c_{2}^{3} h^{3} \varphi_{2,2} N^{\prime} N_{y}^{\prime}+\ldots\right)+ \\
h b_{3}\left(N+c_{3} h N^{\prime}+h^{2} N^{\prime}\left[c_{2} a_{32}-c_{3}^{2} \varphi_{2,3}\right] N_{y}+\right. \tag{2.1.33}\\
\left.h^{3} N^{\prime}\left\{c_{3}\left[c_{2} a_{32}-c_{3}^{2} \varphi_{2,3}\right] N_{y}^{\prime}+\ldots\right\}+\ldots\right)+ \\
h b_{4}\left(N+c_{4} h N^{\prime}+h^{2} N^{\prime}\left[\sum_{j=2}^{3} c_{j} a_{4 j}-c_{4}^{2} \varphi_{2,4}\right] N_{y}+\ldots\right) \\
y_{n+1}=e^{h L} y_{n}+h N\left(b_{1}+b_{2}+b_{3}+b_{4}\right)+ \\
h^{2} N^{\prime}\left(b_{2} c_{2}+b_{3} c_{3}+b_{4} c_{4}+N_{y}\left\{-c_{2}^{2} \varphi_{2,2}+\left[c_{2} a_{32}-c_{3}^{2} \varphi_{2,3}\right]+\ldots\right\}+\ldots\right)+ \\
h^{3} N^{\prime}\left(N_{y}\left\{b_{3}\left[c_{2} a_{32}-c_{3}^{2} \varphi_{2,3}\right]+b_{4}\left[\sum_{j=2}^{3} c_{j} a_{4 j}-c_{4}^{2} \varphi_{2,4}\right]+\ldots\right\}+\right. \\
\left.N_{y}^{\prime}\left\{-c_{2}^{3} \varphi_{2,2}\right\}+\ldots\right)+
\end{gather*}
$$

Due to the complexity of these expressions, we will return to the grid forms for the K_{i} 's and proceed to collect expressions from terms that occur in the same grid cells.

The Conditions

We can recover the familiar consistency conditions (2.1.9a) and (2.1.9b) by requiring the cells $(1, N)=0$. The $\left(h, N^{\prime}\right)$ cells recover condition (2.1.23) .

The $\left(h^{2}, N^{\prime}\right)$ cells give

$$
\begin{align*}
0 & =b_{3} c_{2} a_{32}+b_{4} \sum_{j=2}^{3} c_{j} a_{4 j}-b_{2} c_{2}^{2} \varphi_{2,2}-b_{3} c_{3}^{2} \varphi_{2,3}+b_{4} c_{4}^{2} \varphi_{2,4} \tag{2.1.35}\\
& \Rightarrow \text { condition (2.1.24a) }
\end{align*}
$$

While from the $\left(h^{2}, N^{\prime \prime}\right)$ cells we recover condition (2.1.24b).
From the $\left(h^{3}, N^{\prime}\right)$ cells.

$$
\begin{align*}
0 & =b_{4}\left[-c_{2}^{2} a_{42} \varphi_{2,2}+a_{43}\left(c_{2} a_{32}-c_{3}^{2} \varphi_{2,3}\right)\right]-b_{3} c_{2}^{2} a_{32} \varphi_{2,2} \tag{2.1.36}\\
& \Rightarrow \text { condition (2.1.25a) }
\end{align*}
$$

The (h^{3}, N^{\prime}) cells.

$$
\begin{align*}
0 & =b_{2} c_{2}^{3} \varphi_{1,1}+b_{3} c_{3}\left(c_{2} a_{32}-c_{3}^{2} \varphi_{2,3}\right)+b_{4} c_{4}\left(\sum_{j=2}^{3} c_{j}^{2} a_{4 j}-c_{4}^{2} \varphi_{2,4}\right) \tag{2.1.37}\\
& \Rightarrow \text { condition (2.1.25b) }
\end{align*}
$$

The $\left(h^{3}, N^{\prime \prime}\right)$ cells.

$$
\begin{align*}
0 & =b_{2} c_{2}^{3} \varphi_{3,2}+b_{3}\left(\frac{1}{2} c_{2}^{2} a_{32}-c_{3}^{3} \varphi_{3,3}\right)+b_{4}\left(\frac{1}{2} \sum_{j=2}^{3} c_{j}^{2} a_{4 j}-c_{4}^{3} \varphi_{3,4}\right) \tag{2.1.38}\\
& \Rightarrow \text { condition (2.1.25c) }
\end{align*}
$$

Finally, the $\left(h^{3}, N^{\prime \prime \prime}\right)$ cells give us condition (2.1.25d).

With these conditions it is possible to derive strongly $3^{\text {rd }}$ and weakly $4^{\text {th }}$ Order 4 -stage schemes. Note that no strongly $4^{\text {th }}$ Order 4-stage scheme is possible.

We can compare these conditions with those presented by Hochbruck \& Ostermann [25, Equations (5.14a)-(5.14i)] and see that they are equivalent.

Weakly 3 ${ }^{\text {rd }}$ Order 3-Stage Schemes

For 3-stage ERKs, conditions (2.1.24a) and (2.1.24b) are impossible to satisfy simultaneously, when the earlier conditions are satisfied. Here, we can see how it is advantageous to introduce the concept of weakly satisfying an order condition.

Hochbruck \& Ostermann presented a number of weakly $3^{\text {rd }}$ order 3-stage schemes. As an example the following tableau represents one such scheme [25, Equation (5.8)],

0				1
c_{2}	$c_{2} \varphi_{1,2}$			$e^{c_{2} h L}$
$\frac{2}{3}$	$\frac{2}{3} \varphi_{1,3}-\frac{4}{9 c_{2}} \varphi_{2,3}$	$\frac{4}{9 c_{2}} \varphi_{2,3}$		$e^{\frac{2}{3} h L}$
	$\varphi_{1}-\frac{3}{2} \varphi_{2}$	0	$\frac{3}{2} \varphi_{2}$	

This scheme only satisfies condition (2.1.24b) in a weakened form

$$
\begin{equation*}
b_{2}(0) c_{2}^{2}+b_{3}(0) c_{3}^{2}=2 \varphi_{3}(0)=\frac{1}{3} \tag{2.1.40}
\end{equation*}
$$

yet it still displays superior performance to the earlier strong $2^{\text {nd }}$ schemes. Alternatively, one
can derive a weakly $3^{\text {rd }}$ scheme using a weakened form of (2.1.24a) to

$$
\begin{align*}
b_{3} c_{2} a_{32} & =b_{3} c_{3}^{2} \varphi_{2,3}+b_{2} c_{2}^{2} \varphi_{2,2} \\
& =\left(b_{2}(0) c_{2}^{2}+b_{3}(0) c_{3}^{2}\right) \varphi_{2}(0) \tag{2.1.41}\\
& =2 \varphi_{3}(0) \varphi_{2}(0) \\
& =\frac{1}{6}
\end{align*}
$$

Strongly 3rd Order 4-Stage Schemes

$$
\left.\begin{array}{c|ccc}
0 & & \tag{2.1.42}\\
\frac{1}{3} & \frac{1}{3} \varphi_{1,2} & & \\
\frac{2}{3} & \frac{2}{3} \varphi_{1,3}-\frac{4}{3} \varphi_{2,3} & \frac{4}{3} \varphi_{2,3} & \\
1 & \varphi_{1,4}-\varphi_{2,4} & -\varphi_{2,4} & -\varphi_{2,4} \\
\hline & \varphi_{1}-\frac{5}{2} \varphi_{2}+3 \varphi_{3} & 0 & \frac{9}{2} \varphi_{2}-9 \varphi_{3}
\end{array}-2 \varphi_{2}+6 \varphi_{3}\right)
$$

Scheme (2.1.42) is a 4 -stage scheme with fixed c_{i} coefficients, it requires a total of 8 distinct φ-functions.

Order 2	$L \neq 0$	$L=0$
2,1	5.55×10^{-17}	
2,2	3.47×10^{-17}	
2,3	3.58×10^{-18}	
Order 3		
3,4	2.78×10^{-17}	0
3,5	2.61×10^{-18}	0
Order 4		
4,6	0.00182	0.0278
4,7	0.00138	0.00926
4,8	0.00225	0
4,9	1.88×10^{-18}	0

Table 2.1: Computational inspection of Scheme 2.1.42

Table 2.1 shows computational test of the scheme coefficients against the order conditions for a sample $L \neq 0$ and $L=0$. The test is performed by explicitly evaluating the tableau entries of the scheme and subjecting them to the order conditions. For non-zero L we used a discretisation matrix from a standard three-point finite differences discretisation.

If a scheme satisfies a condition, the corresponding value in the table should be 0 . This approach clearly demonstrates that Scheme (2.1.42) is strongly third order, but it fails to satisfy
most of the fourth order conditions, even weakly.

$$
\begin{array}{c|cccl}
0 & & & \tag{2.1.43}\\
\frac{1}{2} & \frac{1}{2} \varphi_{1,2} & & \\
\frac{2}{3} & \frac{2}{3} \varphi_{1,3}-\frac{8}{9} \varphi_{2,3} & \frac{8}{9} \varphi_{2,3} & & \\
1 & \varphi_{1,4}-\varphi_{2,4} & -2 \varphi_{2,4} & 3 \varphi_{2,4} & \\
\hline & \varphi_{1}-\frac{5}{2} \varphi_{2}+3 \varphi_{3} & 0 & -\frac{9}{2} \varphi_{2}-9 \varphi_{3} & -2 \varphi_{2}+6 \varphi_{3}
\end{array}
$$

Like Scheme (2.1.42), Scheme (2.1.43) is a 4 -stage scheme with fixed c_{i} coefficients again requiring a total of 8 distinct φ-functions. Table 2.2 demonstrates that the method is strongly third order but it fails to satisfy all but the final $4^{\text {th }}$ order condition.

Order 2	$L \neq 0$	$L=0$
2,1	5.55×10^{-17}	
2,2	3.47×10^{-17}	
2,3	2.95×10^{-18}	
Order 3		
3,4	2.78×10^{-17}	0
3,5	1.34×10^{-18}	0
Order 4		
4,6	0.00182	0.0278
4,7	0.000349	0.00463
4,8	0.00374	0
4,9	1.34×10^{-18}	0

Table 2.2: Computational inspection of Scheme (2.1.43)

Parametrised $3^{\text {rd }}$ Order Families

It is also possible to maintain some of the c_{i} coefficients as free parameters, as in the 2-stage scheme (2.1.19). If we do so we can derive families of methods. Numerical experiments can then be performed with varying parameters to identify schemes with desirable properties. Tableau (2.1.44) shows one such family of parametrised schemes.

$$
\begin{array}{c|cccl}
0 & & & \tag{2.1.44}\\
c_{2} & c_{2} \varphi_{1,2} & & \\
c_{3} & c_{3} \varphi_{1,3}-\frac{c_{3}^{2}}{c_{2}} \varphi_{2,3} & \frac{c_{3}^{2}}{c_{2}} \varphi_{2,3} & & \\
1 & \varphi_{1,4}-\frac{1}{c_{2}} \varphi_{2,4} & \frac{1}{c_{2}} \varphi_{2,4} & 0 & \\
\hline & \varphi_{1}-\frac{c 3+1}{c 3} \varphi_{2}+\frac{2}{c 3} \varphi_{3} & 0 & -\frac{1}{c 3^{2}-c 3} \varphi_{2}+\frac{2}{c 3^{2}-c 3} \varphi_{3} & \frac{c 3}{c 3-1} \varphi_{2}+\frac{2}{c 3-1} \varphi_{3}
\end{array}
$$

The following tableau describes another family of strongly $3^{\text {rd }}$ order schemes with two free parameters,

$$
\begin{array}{c|ccc}
0 & & \tag{2.1.45}\\
c_{2} & c_{2} \varphi_{1,2} & \\
c_{3} & c_{3} \varphi_{1,3}-\frac{c_{3}^{2}}{c_{2}} \varphi_{2,3} & \frac{c_{3}^{2}}{c_{2}} \varphi_{2,3} & \\
c_{2} & c_{2} \varphi_{1,4}-2 c_{2} \varphi_{2,4} & 2 c_{2} \varphi_{2,4} & 0 \\
\hline & \varphi_{1}-\frac{c 3+c 2}{c 2 c 3} \varphi_{2}+\frac{2}{c 2 c 3} \varphi_{3} & \beta_{2} & -\frac{c 2}{c 3^{2}-c 2 c 3} \varphi_{2}+\frac{2}{c 3^{2}-c 2 c 3} \varphi_{3}
\end{array} \beta_{2}
$$

with

$$
\beta_{2}=\frac{c_{3}}{2 c_{2} c_{3}-2 c_{2}^{2}} \varphi_{2}-\frac{1}{c_{2} c_{3}-c_{2}^{2}} \varphi_{3}
$$

Here the flexibility in the free c_{i} parameters allows us to achieve weak $4^{\text {th }}$ order with the choices $c_{2}=\frac{1}{2}$ and $c_{3}=1$. Table 2.3 shows the results of an order inspection of the scheme highlighting the weakly satisfied $4^{\text {th }}$ order conditions.

0				
$\frac{1}{2}$	$\frac{1}{2} \varphi_{1,2}$			
1	$1 \varphi_{1,3}-2 \varphi_{2,3}$	$2 \varphi_{2,3}$		
$\frac{1}{2}$	$\frac{1}{2} \varphi_{1,4}-\varphi_{2,4}$	$\varphi_{2,4}$	0	
	$\varphi_{1}-3 \varphi_{2}+4 \varphi_{3}$	$2 \varphi_{2}-4 \varphi_{3}$	$-\varphi_{2}+4 \varphi_{3}$	$2 \varphi_{2}-4 \varphi_{3}$

In Section 5.3, where we run a number of numerical experiments, we will see how different

Order 2	$L \neq 0$	$L=0$
2,1	2.78×10^{-17}	
2,2	4.34×10^{-19}	
2,3	3.25×10^{-19}	
Order 3		
3,4	6.94×10^{-18}	0
3,5	0	0
Order 4		
4,6	0.00164	0
4,7	0.000885	5.2×10^{-18}
4,8	0.00352	0
4,9	0	0

Table 2.3: Computational inspection of Scheme (2.1.46)
choices of c_{2} and c_{3} produce schemes with different accuracy performance.

2.2 Exponential General Linear Methods

General Linear Methods (GLMs) are a class of multi-step, multi-stage explicit methods introduced by Butcher in [7]. They are a generalisation of multi-step Adams-Bashforth methods with the multi-stage nature of Runge-Kutta methods. The advantage they offer is that they allow one to easily construct higher-order schemes while retaining an inherent Runge-Kutta stability [8]. Stability is a key property for a method and we will study it in detail in Section 4.1.

Exponential General Linear Methods (EGLMs) are an extension of GLMs into the exponential framework. These methods contain as special cases the ETD and ERK families. Ostermann, Talhammer \& Wright investigated EGLMs and presented a number of example methods. They concluded that EGLMs, like their classical counterparts, combine the ease of construction of high-order methods with the superior stability properties of ERKs [38].

For problems of type (1.1.1), a 3-stage, 3-step GLMs has the following format

$$
\begin{aligned}
& K_{1}=f\left(t_{n}, y_{n}\right) \\
& K_{2}=f\left(t_{n}+c_{2} h, y_{n}+h\left[a_{21} K_{1}+u_{21} y_{n-1}+u_{22} y_{n-2}\right]\right) \\
& K_{3}=f\left(t_{n}+c_{3} h, y_{n}+h\left[a_{31} K_{1}+a_{32} K_{2}+u_{31} y_{n-1}+u_{32} y_{n-2}\right]\right) \\
& y_{n+1}=y_{n}+h\left(b_{1} K_{1}+b_{2} K_{2}+b_{3} K_{3}+v_{1} y_{n-1}+v_{2} y_{n-2}\right)
\end{aligned}
$$

written in tableau layout as

$$
\begin{array}{c|c|c}
c & A & U \\
\hline & B & V
\end{array}
$$

0					
c_{2}	a_{21}			u_{21}	u_{22}
c_{3}	a_{31}	a_{32}		u_{31}	u_{32}
	b_{1}	b_{2}	b_{3}	v_{1}	v_{2}

Ostermann, Thalhammer \& Wright [38] introduced a class of explicit exponential general linear methods based on the Adams-Bashforth schemes. For given start values, $y_{0}, y_{1}, \ldots, y_{q-1}$ the internal stages K_{n} are defined through

$$
\begin{equation*}
K_{i}=N\left(e^{h L} y_{n}+h \sum_{j=1}^{i-1} a_{i j}(h L) K_{j}+h \sum_{j=1}^{q} u_{i j}(h L) N\left(y_{n-j}\right)\right) \tag{2.2.1}
\end{equation*}
$$

and the numerical approximation y_{n+1} at time t_{n+1} is given by the recurrence formula.

$$
\begin{equation*}
y_{n+1}=e^{h L} y_{n}+h \sum_{i=1}^{s} b_{i}(h L) K_{i}+h \sum_{j=1}^{q} v_{i}(h L) N\left(y_{n-j}\right) . \tag{2.2.2}
\end{equation*}
$$

From this general representation, we can proceed to derive order conditions for various combinations of the number of stages and the number of previous timesteps used in a scheme.

Following the format of [38], we used the naming notation EGLM $_{p s q}$ to denote a p-order s stage q-step method. In addition we will postfix the name with c_{2} when referring to families of methods with c_{2} as a free parameter.

Note that the ERKs seen previously are contained within the EGLM tableau when $U=V=$ 0 . As with the ERKs, we have limited our research to explicit schemes. Therefore, the A matrix in the EGLM tableau is strictly lower-triangular.

2.2.1 \quad 3-Stage $4^{\text {th }}$ Order Conditions

We can see more clearly the similarities between GLMs and their exponential counterparts by looking once again at a 3-stage 2-step example. An EGLM of such type is written generally in the following format,

$$
\begin{align*}
& K_{1}=N_{n} \\
& K_{2}=N\left(t_{n}+c_{2} h, e^{c_{2} h L} y_{n}+h\left[a_{21} K_{1}+u_{21} N_{t_{n-1}}+u_{22} N_{t_{n-2}}\right]\right) \tag{2.2.3}\\
& K_{3}=N\left(t_{n}+c_{3} h, e^{c_{3} h L} y_{n}+h\left[a_{31} K_{1}+a_{32} K_{2}+u_{31} N_{t_{n-1}}+u_{32} N_{t_{n-2}}\right]\right) \\
& y_{n+1}=e^{h L} y_{n}+h\left(b_{1} K_{1}+b_{2} K_{2}+b_{3} K_{3}+v_{1} N_{t_{n-1}}+v_{2} N_{t_{n-2}}\right)
\end{align*}
$$

and can be represented compactly in tableau form,

$$
\begin{array}{c|c|l}
c & A & U
\end{array} \quad \begin{array}{c|cc|ccc}
0 & & & & & \\
c_{2} & a_{21} & & & e^{c_{2} h L} & u_{21} \\
u_{22} \\
& B & V
\end{array} \quad \begin{array}{cccccc}
& c_{3} & a_{31} & a_{32} & & e^{c_{3} h L} \\
u_{31} & u_{32} \\
\hline & b_{1} & b_{2} & b_{3} & e^{h L} & v_{1}
\end{array} v_{2}
$$

As with ERKs, we must derive conditions before we can begin constructing EGLMs of particular orders. For the moment, it will suffice to summarise the 3 -stage, $4^{\text {th }}$ order conditions here and look at examples of specific schemes. In Theorem 12, we will look at the full derivation of the following EGLM order conditions.

First Order (Consistency)

$$
\begin{align*}
& \sum_{j=1}^{i-1} a_{i j}+\sum_{k=1}^{q} u_{i k}=c_{i} \varphi_{1, i} \tag{2.2.4a}\\
& \sum_{i}^{s} b_{i}+\sum_{j=1}^{q} v_{j}=\varphi_{1} \tag{2.2.4b}
\end{align*}
$$

Second Order

$$
\begin{equation*}
\sum_{i=2}^{s} b_{i} c_{i}-\sum_{j=1}^{q} j v_{j}=\varphi_{2} \tag{2.2.5a}
\end{equation*}
$$

Third Order

$$
\begin{align*}
& \sum_{i=2}^{s} b_{i} c_{i}^{2}+\sum_{j=1}^{q} j^{2} v_{j}=2 \varphi_{3} \tag{2.2.5b}\\
& \sum_{i=2}^{s} b_{i}\left(\sum_{j=2}^{i-1} c_{j} a_{i j}-\sum_{j=1}^{q} j u_{i j}-c_{i}^{2} \varphi_{2, i}\right)=0 \tag{2.2.5c}
\end{align*}
$$

Fourth Order

$$
\begin{align*}
& \sum_{i=2}^{s} b_{i} c_{i}^{3}-\sum_{j=1}^{q} j^{3} v_{j}=6 \varphi_{4} \tag{2.2.5d}\\
& \sum_{i=2}^{s} b_{i}\left(\sum_{j=2}^{i-1} c_{j}^{2} \frac{1}{2} a_{i j}+\sum_{j=1}^{q} \frac{j^{2}}{2} u_{i j}-c_{i}^{3} \varphi_{3, i}\right)=0 \tag{2.2.5e}\\
& \sum_{j=2}^{i-1} c_{j} a_{i j}-\sum_{j=1}^{q} j u_{i j}-c_{i}^{2} \varphi_{2, i}=0 \tag{2.2.5f}
\end{align*}
$$

2.2.2 Examples

We will show two example EGLM schemes, a $3^{\text {rd }}$ order scheme followed by a $4^{\text {th }}$ order one.

$3^{\text {rd }}$ Order

This family of schemes is referred to as EGLM $3_{32} c_{2}$

$$
\begin{array}{rlrl}
& \begin{array}{l|llll}
c_{2} & a_{2,1} & & e^{c_{2} h L} & u_{2,1} \\
\hline & b_{1} & b_{2} & e^{h L} & v_{1}
\end{array} \tag{2.2.6}\\
a_{2,1} & =c_{2} \varphi_{1,2}+c_{2}^{2} \varphi_{2,2} & & \\
b_{1} & =\varphi_{1}+\frac{c_{2}-1}{c_{2}} \varphi_{2}+\frac{-2}{c_{2}} \varphi_{3} & & b_{2}
\end{array}=\frac{1}{c_{2}^{2}+c_{2}} \varphi_{2}+\frac{2}{c_{2}^{2}+c_{2}} \varphi_{3} .
$$

It has 2 matrix exponentials and 6 distinct φ^{\prime} s and as a consequence will require at least 8 matrix-vector products to implement.

Ostermann, Thalhammer \& Wright made reference to the particular case of (2.2.6) where $c_{2}=1$ [38]. We refer to this scheme as EGLM 322 [38, Table 4.1]

$$
\begin{array}{c|cc|c}
1 & \varphi_{1}+\varphi_{2} & & -\varphi_{2} \tag{2.2.7}\\
\hline & \varphi_{1}-2 \varphi_{3} & \frac{1}{2} \varphi_{2}+\varphi_{3} & -\frac{1}{2} \varphi_{2}-\varphi_{3}
\end{array}
$$

Here, the number of matrix exponentials has been reduced to just 1 , and the number of distinct φ^{\prime} s to 3. In the implementation of the scheme, the number of matrix vector products is reduced to just 5 in comparison to the more general case when $c_{2} \neq 1$, where 8 matrix vector products are necessary.

$4^{\text {th }}$ Order

This family of schemes is referred to as EGLM $_{423} c_{2}$

$$
\begin{array}{rlrl}
& c_{2} & a_{21} & e^{c_{2} h L} \tag{2.2.8}\\
\hline & u_{21} & u_{22} \\
a_{2,1} & =c_{2} \varphi_{1,2}+\frac{3 c_{2}^{2}}{2} \varphi_{2,2}+c_{2}^{3} \varphi_{3,2} & e^{h L} & v_{1}
\end{array} v_{2} .
$$

This scheme has 2 matrix exponentials and 8 distinct φ^{\prime} s.

As with (2.2.7), Ostermann, Thalhammer \& Wright consider the choice of fixing $c_{2}=1$ to help minimise the number of distinct φ-functions evaluations needed, and gives us the published scheme, EGLM ${ }_{423}$ [38, Table 4.2] .

$$
\begin{array}{c|cc|cc}
1 & \varphi_{1}+\frac{3}{2} \varphi_{2}+\varphi_{3} & -2 \varphi_{2}-2 \varphi_{3} & \frac{1}{2} \varphi_{2}+\varphi_{3} \tag{2.2.9}\\
\hline & \varphi_{1}+\frac{1}{2} \varphi_{2}-2 \varphi_{3}-3 \varphi_{4} & \frac{1}{3} \varphi_{2}+\varphi_{3}+\varphi_{4} & -\varphi_{2}+\varphi_{3}+3 \varphi_{4} & \frac{1}{6} \varphi_{2}-\varphi_{4}
\end{array}
$$

The number of matrix exponentials is again 1, and the number of distinct φ^{\prime} s is 4 . As before we see a significant reduction in the number of matrix-vector products necessary within the implementation. Specifically here we see that number reduced to just 7. All of these schemes require two function evaluations per time step.

Chapter 3

Multi-value Families of Els

In this chapter we,

- Introduce two new families of EIs whose construction is based on classical Almost RungeKutta Methods (ARKs) introduced by Butcher in [9]. We name these new families,
- Exponential Almost Runge-Kutta Methods (EARKs)
- Exponential Almost General Linear Methods (EAGLMs)

We will introduce the classical ARK family and show how the concepts behind its construction can be extended into the EI framework.

- Derive order conditions for these new families and present some example schemes.
- Provide a convergence analysis of EAGLMs within a framework of abstract semilinear parabolic evolution equations.

3.1 Exponential Almost Runge-Kutta Methods

ARKs were introduced by Butcher in 1997 [9]. They are a special case of GLMs and they retain the multi-stage nature of RKs, but allow for the passing of more than one value from step to step. In a sense they are multi-value schemes rather than multi-step schemes. For an ARKs scheme, three values form the inputs and outputs at each step. They are, the approximation to the solution, which is accompanied by approximations to the first and second derivatives. The general form of an ARK is,

$$
\left(\begin{array}{c}
Y_{1} \tag{3.1.1}\\
\vdots \\
Y_{S} \\
\hline y_{n+1} \\
h y_{n+1}^{\prime} \\
h^{2} y_{n+1}^{\prime \prime}
\end{array}\right)=\left(\begin{array}{c|c}
A & W \\
\hline B & Z
\end{array}\right)\left(\begin{array}{c}
h f\left(Y_{1}\right) \\
\vdots \\
h f\left(Y_{S}\right) \\
\hline y_{n} \\
h y_{n}^{\prime} \\
h^{2} y_{n}^{\prime \prime}
\end{array}\right)
$$

where the Y_{i}^{\prime} s are the stage approximations and $y_{n+1}, h y_{n+1}^{\prime}$ and $h^{2} y_{n+1}^{\prime \prime}$ and the outing approximations for the next step. The general form of the tableau is,

$$
\begin{array}{c|llll|cc}
a_{21} & & & & \tag{3.1.2}\\
\vdots & \ddots & & & e & \\
A & U \\
\hline B & V
\end{array}=\begin{array}{cccccc}
& c-A e & \frac{c^{2}}{2}-A c \\
a_{s-1,1} & a_{s-1,3} & \ddots & & & \\
b_{1} & b_{2} & \cdots & b_{s-1} & & \\
\hline b_{1} & b_{2} & \cdots & b_{s-1} & 0 & 1 \\
b_{0} & 0 \\
0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 0 & 0 \\
\beta_{1} & \beta_{2} & \cdots & \beta_{s-1} & \beta_{s} & 0 \\
\beta_{0} & 0
\end{array}
$$

In ARKs, the approximation to the second derivative need only be of order h^{3} because the method imposes special "annihilation conditions" to ensure this lower order does not adversely affect the solution. A distinct advantage of ARKs is that they have a stage order of 2, as opposed to RKs which have a stage order of at most 1. This higher stage order allows one to interpolate or obtain an error estimate cheaply [40].

Within EIs, EARKs become a special case of EGLMs. The input and output value passed from step-to-step are the function evaluations of the approximate solution, $N\left(y_{n+1}\right)$, again followed by increasing derivatives, $N_{n}^{(i)}$. Here, however, we see an important difference with EARKs namely, the values passed are derivatives of the function N rather than the solution y. That is, we pass the values $N^{(i)}\left(y_{n+1}\right)$ on to the next step.

With traditional ARKs, we arrange that the final internal stage gives us the same value as
that generated to be the first outgoing approximation, y_{n+1}. This means that, in ARKs, the first row of the B matrix is the same as the last row of the A matrix, as can be seen in (3.1.2). Similarly, the first row of the Z matrix is the same as that last row of the W matrix.

EARKs exhibit the same characteristic as ARKs. However, EARKs differ in that that the first outgoing approximation passed to the next step is not y_{n+1}, but the function N evaluated at y_{n+1}, usually written N_{n+1}. Still, the first B and Z matrix rows will be identical to the last A and W matrix rows when written in the tableau format. When implementing the scheme, the y_{n+1} stage result used to approximate the N_{n+1} output, is simply reused to avoid a redundant calculation.

A significant difference between ARKs and EARKs is in the second row of the B and Z matrices. In traditional ARKs, the second output value, $y^{\prime} \equiv f(y)$, and is already available to pass to the next step. As such, the second row of the B and Z matrices contain all zeros except for a 1 in the $(2, s)$ position, where s is the number of stages. In EARKs both the second and third output values will be non-trivial.

The general form of an EARK ${ }_{p s r}$ tableau is,

$$
\begin{array}{c|cccc|ccc}
c_{2} & a_{21} & & & & w_{21} & \cdots & w_{2 r} \tag{3.1.3}\\
\vdots & \vdots & \ddots & & & \vdots & & \vdots \\
c_{s-1} & a_{s-1,1} & \cdots & a_{s-1, s-2)} & & w_{s-1,1} & \cdots & w_{s-1, r} \\
1 & b_{1} & \cdots & b_{s-1} & 0 & z_{1} & \cdots & z_{r} \\
\hline & b_{1} & \cdots & b_{s-1} & 0 & z_{1} & \cdots & z_{r} \\
& \beta_{11} & \cdots & \beta_{1, s-1} & \beta_{1 s} & \delta_{11} & \cdots & \delta_{1 r} \\
& & \vdots & \vdots & \vdots & & \vdots \\
& \beta_{r 1} & \cdots & \beta_{r, s-1} & \beta_{r s} & \delta_{r 1} & \cdots & \delta_{r r}
\end{array}
$$

where, using a similar notation to EGLMs, the subscripts denote a p-order s-stage r-value method.

We have concentrated on 3-stage EARKs, where $s=3$ and $r=1$ or 2 . The repetition in the final row of the tableaus upper half, and the first row of the lower half means that, s-stage EARKs share more in common with $(s-1)$-stage EGLMs. The simplest form EARK is a 3-stage, 1-value method. The tableau for such a method would look like the following

c_{2}	a_{21}			w_{21}
1	b_{1}	b_{2}		z_{1}
	b_{1}	b_{2}	0	z_{1}
	β_{21}	β_{22}	β_{23}	δ_{21}

written out explicitly, such a method takes the following form,

$$
\begin{align*}
K_{1} & =N_{n} \\
Y_{2} & =e^{c_{2} h L} y_{n}+h\left[a_{21} K_{1}+w_{21} h N^{\prime}\right] \\
K_{2} & =N\left(t_{n}+c_{2} h, Y_{2}\right) \\
Y_{3} & =e^{h L} y_{n}+h\left(b_{1} K_{1}+b_{2} K_{2}+z_{1} h N^{\prime}\right) \tag{3.1.5}\\
K_{3} & =N\left(t_{n}+c_{3} h, Y_{3}\right) \\
y_{n+1} & =Y_{3} \\
h N_{n+1}^{\prime} & =\beta_{21} K_{1}+\beta_{22} K_{2}+\beta_{23} K_{3}+\delta_{21} h N_{n}^{\prime}
\end{align*}
$$

3.1.1 Deriving EARKs

In deriving EARKs the input derivatives of the N function on a given step match those of the exact solution (1.3.9) and as such can be used directly to estimate the next step. Consequently, the $w_{2 i}$ entries in the EARKs tableau must be $c_{2}^{i+1} \varphi_{i+1}$. This will then generate an intermediate step of order $p-1$, where p is the overall order of the scheme.

Using Taylor expansions of the approximations generated by the internal stages, together with the input values for that step, it is possible to derive the coefficients to produce the necessary output values, N_{n+1}^{\prime} and $N_{n+1}^{\prime \prime}$. Because EARKs do not pass derivatives of the solution y to the next step but rather pass derivatives of the N function, we do not need to involve the φ functions in generating those outputs. Consequently, the second and third rows of the B and Z matrices contain only scalar entries. Here EARKs show their potential to achieve high orders, while avoiding too many matrix-vector products.

3.1.2 3-Stage $4^{\text {th }}$ Order Conditions

As with EGLMs, we will first present the order conditions for EARKs of the form (3.1.3) and then introduce example schemes. Theorem 13 will provide a full proof of these conditions.

First Order (Consistency) The consistency conditions of EARKs are identical to those of ERKs (2.1.9). This is because in the case $N_{n}=N$ a constant, $N^{(i)}=0$ for $i>0$.

Second Order

$$
\begin{equation*}
\sum_{i=2}^{s} b_{i} c_{i}+z_{1}=\varphi_{2} \tag{.1.6}
\end{equation*}
$$

Third Order

$$
\begin{align*}
& \sum_{i=2}^{s} b_{i} c_{i}^{2}+2 z_{2}=2 \varphi_{3} \tag{3.1.7}\\
& \sum_{i=2}^{s} b_{i}\left(\sum_{j=2}^{i-1} c_{j} a_{i j}+w_{i 1}-c_{i}^{2} \varphi_{2, i}\right)=0 \tag{3.1.8}
\end{align*}
$$

Fourth Order

$$
\begin{align*}
& \sum_{i=2}^{s} b_{i} c_{i}^{3}=6 \varphi_{4} \tag{3.1.9}\\
& \sum_{i=2}^{s} b_{i}\left(\sum_{j=2}^{i-1} c_{j}^{2} \frac{1}{2} a_{i j}+w_{i 2}-c_{i}^{3} \varphi_{3, i}\right)=0 \tag{3.1.10}\\
& \sum_{j=2}^{i-1} c_{j} a_{i j}+w_{i 1}-c_{i}^{2} \varphi_{2, i}=0, i=2, \ldots, s \tag{3.1.11}
\end{align*}
$$

3.1.3 Outgoing Approximations

To produce the vector of outgoing approximations, $v=\left(N_{n+1}^{\prime}, \ldots, N_{n+1}^{(r)}\right)$, we construct a matrix $M=(\beta \delta)$, where β is $r \times s$ and δ is $r \times r$, such that,

$$
M\left(\begin{array}{c}
N_{n} \tag{3.1.12}\\
N_{n+c_{2}} \\
\vdots \\
N_{n+c_{s}} \\
N_{n+1} \\
h N_{n}^{\prime} \\
\vdots \\
h^{P} N_{n}^{(r)}
\end{array}\right)=\left(\begin{array}{c}
h N_{n+1}^{\prime} \\
\vdots \\
h^{P} N_{n+1}^{(r)}
\end{array}\right)
$$

This matrix is constructed by solving a number of linear systems generated from Taylor expansions of the elements of incoming vector of approximations, together with the $N_{n+c_{i}}$ and N_{n+1} values produced by the internal stages. Specifically, m_{j}, the $j^{\text {th }}$ row of the matrix M, is the solution to the linear system

$$
\begin{equation*}
X m_{j}^{T}=e_{j+1} \tag{3.1.13}
\end{equation*}
$$

where e_{i} is the standard basis vector and the $r+s \times r+s$ matrix $X=(Y Z)$ is the matrix formed
by the matrices Y and Z arranged side-by-side where,

$$
\begin{align*}
& Y=\left(\begin{array}{ccccccc}
1 & c_{2} & \cdots & c_{i} & \cdots & c_{s-1} & 1 \\
-1 & -c_{2} & \cdots & -c_{i} & \cdots & c_{s-1} & 0 \\
\frac{1}{2} & \frac{1}{2} c_{2} & \cdots & \frac{1}{2} c_{i} & \cdots & \frac{1}{2} c_{s-1} & 0 \\
\vdots & \vdots & & \vdots & & \vdots & \vdots \\
-1^{j-1} \frac{1}{(j-1)!} & & \cdots & -1^{j-1} \frac{1}{(j-1)!} c_{i} & \cdots & & 0 \\
\vdots & & & \vdots & & & \vdots
\end{array}\right) \tag{3.1.14}\\
& Z=\left(\begin{array}{cccc}
0 & 0 & & 0 \\
1 & 0 & & \\
-1 & 1 & \ddots & \vdots \\
\frac{1}{2} & -1 & \ddots & \\
\vdots & \frac{1}{2} & \ddots & 0 \\
& \vdots & \ddots & 1 \\
& & & \frac{-1^{j-r-1}}{(j-r-1)!} \\
& & & \vdots
\end{array}\right) \tag{3.1.15}
\end{align*}
$$

Looking at just the 3 -stage, 2 -value case, to construct the β_{j}, δ_{j} rows for a scheme of the form (3.1.4), one has to solve the linear system

$$
\left(\begin{array}{ccccc}
1 & c & 1 & 0 & 0 \tag{3.1.16}\\
-1 & -c & 0 & 1 & 0 \\
\frac{1}{2} & \frac{c}{2} & 0 & -1 & 1 \\
-\frac{1}{6} & -\frac{c}{6} & 0 & \frac{1}{2} & -1 \\
\frac{1}{4!} & \frac{c}{4!} & 0 & -\frac{1}{6} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{l}
\beta_{j 1} \\
\beta_{j 2} \\
\beta_{j 3} \\
\delta_{j 1} \\
\delta_{j 2}
\end{array}\right)=e_{j}
$$

3.1.4 Examples

We are now in a position to construct families of EARKs. Looking at a $4^{\text {th }}$ order method, we note that it is not necessary to utilise the $N_{n}^{\prime \prime}$ incoming approximation to produce approximations to N_{n+1}^{\prime} and $N_{n+1}^{\prime \prime}$ of sufficient order. As such, the $\delta_{j 2}$ tableau entries can be zero. EARK $432 c_{2}$ is a 3 -stage, 2 -value family of $4^{\text {th }}$ order schemes with one free parameter, c_{2}.

c_{2}	$c_{2} \varphi_{1,2}$			$c_{2}^{2} \varphi_{2,2}$	$c_{2}^{3} \varphi_{3,2}$
1	$\varphi_{1}-\frac{6}{c_{2}^{3}} \varphi_{4}$	$\frac{6}{c_{2}^{3}} \varphi_{4}$	0	$\varphi_{2}-\frac{6}{c_{2}^{2}} \varphi_{4}$	$\varphi_{3}-\frac{3}{c_{2}} \varphi_{4}$
	$\varphi_{1}-\frac{6}{c_{2}^{3}} \varphi_{4}$	$\frac{6}{c_{2}^{3}} \varphi_{4}$	0	$\varphi_{2}-\frac{6}{c_{2}^{2}} \varphi_{4}$	$\varphi_{3}-\frac{3}{c_{2}} \varphi_{4}$
	$-\frac{2 c_{2}{ }^{2}-3 c_{2}}{c_{2}{ }^{2}-2 c_{2}+1}$	$-\frac{1}{c_{2}{ }^{3}-2 c_{2}{ }^{2}+c_{2}}$	$\frac{2 c_{2}+1}{c_{2}}$	$-\frac{c_{2}}{c_{2}-1}$	0
$\frac{2 c_{2}{ }^{2}-6}{c_{2}{ }^{2}-2 c_{2}+1}$	$-\frac{4}{c_{2}{ }^{3}-2 c_{2}{ }^{2}+c_{2}}$	$\frac{2 c_{2}+4}{c_{2}}$	$-\frac{2 c_{2}+2}{c_{2}-1}$	0	

3.2 Exponential Almost General Linear Methods

As our goal is to have a consistent representation of all our schemes, we use an expanded tableau which can unambiguously contain all method families so far mentioned. In addition, the representation points towards a broader family of methods, which we refer to as EAGLMs. These combine the multi-stage, multi-step nature of EGLMs with the multi-value format of EARKs. To that end, the following tableau is capable of representing all 3-stage schemes presented so far

c_{2}	a_{21}				$e^{c_{2} h L}$	u_{21}	u_{22}	w_{21}	w_{22}			
c_{3}	A	U	W									
	B	V	Z	c_{3}	a_{32}			$e^{c_{3} h L}$	u_{31}	u_{32}	w_{31}	w_{32}
a_{31}	b_{1}	b_{2}	b_{3}	0	$e^{h L}$	v_{1}	v_{2}	z_{1}	z_{2}			
	b_{1}	b_{2}	b_{3}	0	$e^{h L}$	v_{1}	v_{2}	z_{1}	z_{2}			
β_{21}	β_{22}	β_{23}	β_{24}	0	γ_{21}	γ_{22}	δ_{21}	δ_{22}				
β_{31}	β_{32}	β_{33}	β_{34}	0	γ_{31}	γ_{32}	δ_{31}	δ_{32}				

$$
\begin{align*}
K_{1}= & N_{n} \\
K_{2}= & N\left(t_{n}+c_{2} h, e^{c_{2} h L} y_{n}+h\left[a_{21} K_{1}+u_{21} N_{t_{n-1}}+u_{22} N_{t_{n-2}}+w_{21} h N^{\prime}+w_{22} h^{2} N^{\prime \prime}\right]\right) \\
K_{3}= & N\left(t_{n}+c_{3} h, e^{c_{3} h L} y_{n}+\right. \\
& \left.\quad h\left[a_{31} K_{1}+a_{32} K_{2}+u_{31} N_{t_{n-1}}+u_{32} N_{t_{n-2}}+w_{31} h N^{\prime}+w_{32} h^{2} N^{\prime \prime}\right]\right) \\
y_{n+1}= & e^{h L} y_{n}+h\left(b_{1} K_{1}+b_{2} K_{2}+b_{3} K_{3}+v_{1} N_{t_{n-1}}+v_{2} N_{t_{n-2}}+z_{1} h N^{\prime}+z_{2} h^{2} N^{\prime \prime}\right) \tag{3.2.2}
\end{align*}
$$

We can see that the earlier families of methods all become special cases of EAGLMs. For example when representing EGLMs in (3.2.1), the W and Z matrices contain all zeros and likewise the β, γ and δ entries are all zero. For pure EARKs on the other hand, which makes no use of previous steps, the U and V are zero matrices, and the γ entries are zero.

3.2.1 3-Stage $6^{\text {th }}$ Order Conditions

The final extension to order conditions, is to look at the combined family of EAGLMs. We will present a full proof for the derivation of 3-stage, q-step, r-value EAGLM conditions. We will then use that result to prove the conditions presented earlier for EGLMs and EARKs in Section 2.2.1 and Section 3.1.2.

Theorem 3. EAGLMs of the form

$$
\begin{align*}
& \begin{array}{c|ccc|c|ccc|ccc}
0 & & & & & & & & & & \\
c_{2} & a_{21} & & & & & & & & & \\
c_{2} h L & u_{21} & \cdots & u_{2 q} & w_{21} & \cdots & w_{2 r} \\
\vdots & \vdots & \ddots & & & \vdots & & \vdots & & & \vdots \\
c_{s} & a_{s 1} & \cdots & a_{s(s-1)} & & e^{c_{s} h L} & u_{s 1} & \cdots & u_{s q} & w_{s 1} & \cdots \\
\hline & b_{1} & \cdots & \cdots & b_{s} & e^{h L} & v_{1} & \cdots & v_{q r} & z_{1} & \cdots \\
\hline
\end{array} \\
& K_{1}=N_{n}=N\left(t_{n}, y_{n}\right) \\
& Y_{i}=e^{h L} y_{n}+h \sum_{j=1}^{i-1} a_{i j}(h L) K_{j}+h \sum_{k=1}^{q} u_{i k}(h L) N_{n-k}+h \sum_{j=1}^{r} w_{i j} h^{j} N^{(j)} \tag{3.2.3}\\
& K_{i}=N\left(Y_{i}\right) \\
& y_{n+1}=e^{h L} y_{n}+h\left(\sum_{i=1}^{s} b_{i}(h L) K_{i}+\sum_{k=1}^{q} v_{k}(h L) N_{n-k}+\sum_{j=1}^{r} z_{j}(h L) h^{j} N^{(j)}\right)
\end{align*}
$$

will be exact in the case $N_{n}=N$, a constant, if the following conditions are met

$$
\begin{equation*}
\sum_{j=1}^{i-1} a_{i j}+\sum_{j=1}^{q} u_{i j}=c_{i} \varphi_{1, i} \tag{3.2.4a}
\end{equation*}
$$

for $i=1, \ldots, s$

$$
\begin{equation*}
\sum_{i}^{s} b_{i}+\sum_{i=1}^{q} v_{i}=\varphi_{1} \tag{3.2.4b}
\end{equation*}
$$

These conditions are referred to as the consistency conditions.

Proof. From the stage approximations with $N\left(t_{n}, y_{n}\right)=N$, a constant, we obtain:

If

$$
y\left(t_{n}+c_{i} h\right)=Y_{i}
$$

then

$$
\begin{aligned}
& e^{c_{i} h L} y_{n}+c_{i} h \varphi_{1, i} N=e^{c_{i} h L} y_{n}+h \sum_{j=1}^{i-1} a_{i j}(h L) K_{i}+h \sum_{k=1}^{q} u_{i j}(h L) N \\
&=e^{c_{i} h L} y_{n}+h\left(\sum_{j=1}^{i-1} a_{i j}(h L)+\sum_{k=1}^{q} u_{i j}(h L)\right) N \\
& \Rightarrow \quad \sum_{j=1}^{i-1} a_{i j}+\sum_{j=1}^{q} u_{i j}=c_{i} \varphi_{1, i}
\end{aligned}
$$

recovering condition (3.2.4a). By a similar approach, the outgoing step approximation, if

$$
y\left(t_{n}+h\right)=y_{n+1}
$$

then

$$
\begin{aligned}
& e^{h L} y_{n}+h \varphi_{1} N=e^{h L} y_{n}+h \sum_{i=1}^{s} b_{i} K_{i}+h \sum_{k=1}^{q} v_{i} N \\
&=e^{h L} y_{n}+h\left(\sum_{i=1}^{s} b_{i}+\sum_{k=1}^{q} v_{i}\right) N \\
& \Rightarrow \quad \sum_{i=1}^{s} b_{i}+\sum_{i=1}^{q} v_{i}=\varphi_{1}
\end{aligned}
$$

and we recover condition (3.2.4b).

Theorem 4. EAGLMs of the form (3.2.3), where $s=2$ or 3 , that is 2 or 3 -stage methods, that meet the consistency conditions (3.2.4), can achieve order p if

$$
\begin{equation*}
\sum_{k=2}^{j-1} a_{j k} \frac{c_{k}^{i}}{i!}+\sum_{k=1}^{q} \frac{(-k)^{i}}{i!} u_{k j}+w_{k i}=c_{k}^{i+1} \varphi_{i+1, k} \tag{3.2.5a}
\end{equation*}
$$

for $i=1, \ldots, p-3, j=1, \ldots, s$,

$$
\begin{equation*}
\sum_{j=2}^{s} b_{j}\left(\sum_{k=2}^{j-1} a_{j k} \frac{c_{k}^{i}}{i!}+\sum_{k=1}^{q} \frac{(-k)^{i}}{i!} u_{j k}+w_{j i}-c_{j}^{i+1} \varphi_{i+1, j}\right)=0 \tag{3.2.5b}
\end{equation*}
$$

where $i=p-2$, and

$$
\begin{equation*}
\sum_{j=2}^{s} \frac{c_{j}^{i}}{i!} b_{j}+\sum_{j=1}^{q} \frac{(-j)^{i}}{i!} v_{j}+z_{i}=\varphi_{i+1} \tag{3.2.5c}
\end{equation*}
$$

for $i=1, \ldots, p-1$

Lemma 5. The $2^{\text {nd }}$ stage approximation to the solution at $y\left(t_{n}+c_{2} h\right)$, at the intermediate point $t_{n}+c_{2} h$

$$
e^{c_{2} h L} y_{n}+h\left(a_{21} K_{1}+\sum_{k=1}^{q} u_{2 k} N_{n-k}+\sum_{j=1}^{r} w_{2 j} h^{j} N_{n}^{(j)}\right)
$$

differs from the exact solution, $y\left(t_{n}+c_{2} h\right)$, by $\sum_{i=1} \mathcal{R}_{2, i}^{*} h^{i+1}$ with

$$
\begin{equation*}
\mathcal{R}_{j, i}^{*}=\left(\sum_{k=2}^{j-1} a_{j k} \frac{c_{k}^{i}}{i!}+\sum_{k=1}^{q} \frac{(-k)^{i}}{i!} u_{j k}+w_{j i}-c_{j}^{i+1} \varphi_{i+1, j}\right) N_{n}^{(i)} \tag{3.2.6}
\end{equation*}
$$

where $w_{2 i}=0$ for $i>r$

Proof.

$$
y\left(t_{n}+c_{2} h\right)=e^{c_{2} h L} y_{n}+c_{2} h \varphi_{1,2} N+c_{2}^{2} h^{2} \varphi_{2,2} N^{\prime}+\ldots
$$

given condition (3.2.4a) we can determine the format of R_{2}

$$
\begin{gathered}
e^{c_{2} h L} y_{n}+h\left[a_{21} K_{1}+\sum_{k=1}^{q} u_{2 k} N_{n-k}+\sum_{j=1}^{r} w_{2 j} h^{j} N_{n}^{(j)}\right] \\
=\quad y\left(t_{n}+c_{2} h\right)-c_{2}^{2} h^{2} \varphi_{2,2} N_{n}^{\prime}-c_{2}^{3} h^{3} \varphi_{3,2} N_{n}^{\prime \prime}-\cdots \\
-u_{21} h^{2} N_{n}^{\prime}+\frac{1}{2!} u_{21} h^{3} N_{n}^{\prime \prime}-\cdots \\
+\quad \cdots \\
\quad-u_{2 q} h^{2} N_{n}^{\prime}+\frac{q^{2}}{2!} u_{2 q} h^{3} N_{n}^{\prime \prime}-\cdots \\
\quad+w_{21} h^{2} N_{n}^{\prime}+\cdots+w_{2 r} h^{r+1} N_{n}^{(r)} \\
=\quad \begin{array}{c}
y\left(t_{n}+c_{2} h\right)-\sum_{i=1} c_{2}^{i+1} \varphi_{i+1,2} h^{i+1} N_{n}^{(i)} \\
+\sum_{i=1}^{q} \sum_{j=1}^{q} \frac{(-j)^{i}}{i!} u_{2 j} h^{i+1} N_{n}^{(i)} \\
+\sum_{i=1} w_{2 i} h^{i+1} N_{n}^{(i)} \\
= \\
y\left(t_{n}+c_{2} h\right)+\sum_{i=1}\left(\sum_{j=1}^{q} \frac{(-j)^{i}}{i!} u_{2 j}+w_{2 i}-c_{2}^{i+1} \varphi_{i+1,2}\right) h^{i+1} N_{n}^{(i)}
\end{array}
\end{gathered}
$$

Hence

$$
\begin{align*}
e^{c_{2} h L} y_{n}+h\left[a_{21} K_{1}+\sum_{k=1}^{q} u_{2 k} N_{n-k}+\sum_{j=1}^{r} w_{2 j} h^{j} N^{(j)}\right] & =y\left(t_{n}+c_{2} h\right)+\sum_{i=1} \mathcal{R}_{2, i}^{*} h^{i+1} \tag{3.2.7}\\
& =y\left(t_{n}+c_{2} h\right)+R_{2}
\end{align*}
$$

The $2^{\text {nd }}$ residual R_{2} is $O\left(h^{2}\right)$. We also write

$$
R_{2}^{2}=\sum_{i=1} \mathcal{R}_{2, i}^{* *} h^{i+3}
$$

where

$$
\begin{equation*}
\mathcal{R}_{k, i}^{* *}=\sum_{j=1}^{i} \mathcal{R}_{k, j}^{*} \mathcal{R}_{k, i-j+1}^{*} N^{(j)} N^{(i-j+1)} \tag{3.2.8}
\end{equation*}
$$

Higher powers of R_{2} will be $O\left(h^{6}\right)$ or greater and will not be needed.
Lemma 6. When $\mathcal{R}_{2, i}^{*}=0$ for $i=1, \ldots, p-1$ the $2^{\text {nd }}$ stage approximation is order p.

Proof. This follows simply from the fact that for $\mathcal{R}_{2, i}^{*}=0$ for $i=1, \ldots, p-1$, then

$$
y\left(t_{n}+c_{2} h\right)+\sum_{i=1}^{p-1} \mathcal{R}_{2, i}^{*} h^{i+1}=y\left(t_{n}+c_{2} h\right)+O\left(h^{p+1}\right)
$$

Lemma 7. The $2^{\text {nd }}$ stage approximation

$$
K_{2}=N\left(t_{n}+c_{2} h, e^{c_{2} h L} y_{n}+h\left[a_{21} K_{1}+\sum_{k=1}^{q} u_{2 k} N_{n-k}+\sum_{j=1}^{r} w_{2 j} h^{j} N_{n}^{(j)}\right]\right)
$$

can be expressed as

$$
\begin{equation*}
K_{2}=\sum_{i=0}^{p-1} \frac{c_{2}^{i}}{i!} N_{n}^{(i)} h^{i}+\sum_{i=0}^{p-3} \mathcal{K}_{2, i}^{*} h^{i+2}+\sum_{i=0}^{p-5} \mathcal{K}_{2, i}^{* *} h^{i+4}+O\left(h^{p}\right) \tag{3.2.9}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{K}_{j, i}^{*} & =\sum_{k=0}^{i} \frac{c_{j}^{i-k}}{(i-k)!} \mathcal{R}_{j, k+1}^{*} N_{y}^{(i-k)} \tag{3.2.10}\\
\mathcal{K}_{j, i}^{* *} & =\sum_{k=0}^{i} \frac{c_{j}^{i-k}}{(i-k)!} \mathcal{R}_{j, k+1}^{* *} N_{y y}^{(i-k)} \tag{3.2.11}
\end{align*}
$$

Proof. From Theorem 5, $K_{2}=N\left(t_{n}+c_{2} h, y\left(t_{n}+c_{2} h\right)+R_{2}\right)$. Then, using (2.1.6), we have

$$
K_{2}=\sum_{i=0}^{p-3} \frac{c_{2}^{i}}{i!}\left(\sum_{j=1}^{2} R_{2}^{j} N_{y^{i}}^{(i)}\right) h^{i}
$$

Since R_{2}^{2} is $O\left(h^{6}\right)$ we need only consider $j<3$, as such

$$
K_{2}=\sum_{i=0}^{p-1} \frac{c_{2}^{i}}{i!} N_{n}^{(i)} h^{i}+\sum_{i=0}^{p-3} \frac{c_{2}^{i}}{i!} R_{2} N_{y}^{(i)} h^{i}+\sum_{i=0}^{p-5} \frac{c_{2}^{i}}{i!} R_{2}^{2} N_{y y}^{(i)} h^{i}+O\left(h^{5}\right)
$$

focusing on the final $j=1$ and 2 terms we see

$$
\begin{aligned}
\sum_{i=0}^{p-3} \frac{c_{2}^{i}}{i!} R_{2} N_{u}^{(i)} h^{i} & +\sum_{i=0}^{p-5} \frac{c_{2}^{i}}{i!} R_{2}^{2} N_{u u}^{(i)} h^{i} \\
& =\sum_{i=0}^{p-3} \frac{c_{2}^{i}}{i!}\left(\sum_{j=1}^{p-2-i} \mathcal{R}_{2, j+1}^{*} h^{j+2}\right) N_{u}^{(i)} h^{i}+\sum_{i=0}^{p-5} \frac{c_{2}^{i}}{i!}\left(\sum_{j=0}^{p-4-i} \mathcal{R}_{2, j+1}^{* *} h^{j+4}\right) N_{u u}^{(i)} h^{i} \\
& =\sum_{i=0}^{p-3}\left(\sum_{j=0}^{i} \frac{c_{2}^{i-j}}{(i-j)!} \mathcal{R}_{2, j+1}^{*} N_{y}^{(i-j)}\right) h^{i+2}+\sum_{i=0}^{p-5}\left(\sum_{j=0}^{i} \frac{c_{2}^{i-j}}{(i-j)!} \mathcal{R}_{2, j+1}^{* *} N_{y y}^{(i-j)}\right) h^{i+4} \\
& =\sum_{i=0}^{p-3} \mathcal{K}_{2, i}^{*} h^{i+2}+\sum_{i=0}^{p-5} \mathcal{K}_{2, i}^{* *} h^{i+4}
\end{aligned}
$$

Lemma 8. The $3^{\text {rd }}$ stage approximation at the intermediate point $t_{n}+c_{3} h$,

$$
e^{c_{3} h L} y_{n}+h\left(a_{31} K_{1}+a_{32} K_{2}+\sum_{i=1}^{q} u_{3 i} N_{t_{n-i}}+\sum_{j=1}^{r} w_{3 j} h^{j} N^{(j)}\right)
$$

differs from the exact solution, $y\left(t_{n}+c_{3} h\right)$ by

$$
\begin{equation*}
R_{3}=\sum_{i=1}^{p-2} \mathcal{R}_{3, i}^{*} h^{i+1}+a_{32} \sum_{i=0}^{p-4} \mathcal{K}_{2, i}^{*} h^{i+3}+a_{32} \sum_{i=0}^{p-6} \mathcal{K}_{2, i}^{* *} h^{i+5} \tag{3.2.12}
\end{equation*}
$$

with $\mathcal{R}_{3, i}^{*}, \mathcal{K}_{j, i}^{*}$ and $\mathcal{K}_{j, i}^{* *}$ as in (3.2.6), (3.2.10) and (3.2.11) respectively.

Proof. The prerequisite condition (3.2.4a) implies that

$$
a_{31} K_{1}+a_{32} K_{2}=c_{3} h \varphi_{1,3}+\sum_{i=1}^{p-2} \frac{c_{2}^{i}}{i!} N_{n}^{(i)} h^{i}+\sum_{i=0}^{p-4} \mathcal{K}_{2, i}^{*} h^{i+2}+\sum_{i=0}^{p-6} \mathcal{K}_{2, i}^{* *} h^{i+4}
$$

Hence the $3^{\text {rd }}$ stage approximation to $y\left(t_{n}+c_{3} h\right)$ may be written as follows

$$
\begin{gathered}
e^{c_{3} h L} y_{n}+h\left[a_{31} K_{1}+a_{32} K_{2}+\sum_{k=1}^{q} u_{3 k} N_{n-k}+\sum_{j=1}^{r} w_{3 j} h^{j} N_{n}^{(j)}\right] \\
=\quad y\left(t_{n}+c_{2} h\right)-\sum_{i=1}^{p-2}\left(\sum_{j=1}^{q} \frac{(-j)^{i}}{i!} u_{3 j}+w_{3 i}-c_{3}^{i+1} \varphi_{i+1,3}\right) h^{i+1} N_{n}^{(i)} \\
\quad+\sum_{i=1} \frac{c_{2}^{i}}{i!} N_{n}^{(i)} h^{i}+\sum_{i=0} \mathcal{K}_{2, i}^{*} h^{i+2}+\sum_{i=0} \mathcal{K}_{2, i}^{* *} h^{i+4} \\
= \\
=y\left(t_{n}+c_{2} h\right)+R_{3}
\end{gathered}
$$

When considering R_{3}^{2} we note that

$$
R_{3}=\sum_{i=1}^{2} \mathcal{R}_{3, i}^{*} h^{i+1}+a_{32} \mathcal{R}_{2,1}^{*} h^{3} N_{y}+O\left(h^{4}\right)
$$

so that

$$
\begin{equation*}
R_{3}^{2}=\sum_{i=1}^{2} \mathcal{R}_{3, i}^{* *} h^{i+3}+a_{32} \mathcal{R}_{2,1}^{*} \mathcal{R}_{3,1}^{*} h^{5} N_{y}+O\left(h^{6}\right) \tag{3.2.13}
\end{equation*}
$$

with $\mathcal{R}_{3, i}^{* *}$ as in (3.2.8).
Lemma 9. If $\mathcal{R}_{2, i}^{*}=\mathcal{R}_{3, i}^{*}=0$ for $i=1, \ldots, p-1$ then the $3^{\text {rd }}$ stage approximation is order p.

Proof. Given $\mathcal{R}_{2, i}^{*}=\mathcal{R}_{3, i}^{*}=0$ for $i=1, \ldots, p-1$ then

$$
\begin{aligned}
y\left(t_{n}+c_{3} h\right)+R_{3} & =y\left(t_{n}+c_{3} h\right)+\sum_{i=1}^{p-1} \mathcal{R}_{3, i}^{*} h^{i+1}+a_{32} \sum_{i=0}^{p-3} \mathcal{K}_{2, i}^{*} h^{i+3}+a_{32} \sum_{i=0}^{p-5} \mathcal{K}_{2, i}^{* *} h^{i+5} \\
& =y\left(t_{n}+c_{3} h\right)+O\left(h^{p+1}\right)+O\left(h^{p+2}\right)+O\left(h^{2 p+3}\right) \\
& =y\left(t_{n}+c_{3} h\right)+O\left(h^{p+1}\right)
\end{aligned}
$$

Lemma 10. The $3^{\text {rd }}$ stage outgoing approximation

$$
K_{3}=N\left(t_{n}+c_{3} h, e^{c_{3} h L} y_{n}+h\left[a_{31} K_{1}+a_{32} K_{2}+\sum_{k=1}^{q} u_{3 k} N_{n-k}+\sum_{j=1}^{r} w_{3 j} h^{j} N_{n}^{(j)}\right]\right)
$$

can be expressed as

$$
\begin{align*}
& K_{3}= \sum_{i=0}^{p-1} \frac{c_{3}^{i}}{i!} N_{n}^{(i)} h^{i} \\
&+\sum_{i=0}^{p-3} \mathcal{K}_{3, i}^{*} h^{i+2}+\sum_{i=0}^{p-4} \mathcal{K}_{3, i}^{* *} h^{i+4}+ \tag{3.2.14}\\
& \sum_{i=0}^{p-3} \mathcal{L}_{3, i}^{*} h^{i+3}+a_{32}\left(\left(\mathcal{R}_{2,1}^{*}\right)^{2}+\mathcal{R}_{2,1}^{*} \mathcal{R}_{3,1}^{*}\right) h^{5}\left(N^{\prime}\right)^{2} N_{y y} N_{y}+O\left(h^{p}\right)
\end{align*}
$$

with $\mathcal{K}_{3, i}^{*}$ and $\mathcal{K}_{3, i}^{* *}$ as in (3.2.10) and (3.2.11) respectively, and where

$$
\mathcal{L}_{3, i}^{*}=a_{32} \frac{c_{3}^{i}}{i!}\left(\sum_{j=0}^{i}\left[\sum_{l=0}^{i-j} \frac{c_{2}^{i-l}}{(i-l)!} \mathcal{R}_{2, j+1}^{*} N_{y}^{(i-l)} N_{y}^{(l)}\right]\right)
$$

Proof. Following the format of (3.2.1), we can write

$$
K_{3}=\sum_{i=0}^{p-1} \frac{c_{3}^{i}}{i!} N_{n}^{(i)} h^{i}+\sum_{i=0}^{p-3} \frac{c_{3}^{i}}{i!} R_{3} N_{y}^{(i)} h^{i}+\sum_{i=0}^{p-5} \frac{c_{3}^{i}}{i!} R_{3}^{2} N_{y y}^{(i)} h^{i}+O\left(h^{p}\right)
$$

Using (3.2.12) we obtain

$$
\sum_{i=0}^{p-3} \frac{c_{3}^{i}}{i!} R_{3} N_{y}^{(i)} h^{i}=\sum_{i=0}^{p-3} \frac{c_{3}^{i}}{i!}\left(\sum_{j=1}^{p-2-i} \mathcal{R}_{3, i}^{*} h^{j+1}+a_{32} \sum_{j=0}^{p-4-i} \mathcal{K}_{2, j}^{*} h^{j+3}+a_{32} \sum_{j=0}^{p-6-i} \mathcal{K}_{2, j}^{* *} h^{j+5}\right) N_{u}^{(i)} h^{i}
$$

The order of the summations of the terms involving $\mathcal{K}_{2, j}^{*}$ can be rearranged such that

$$
\begin{aligned}
\sum_{i=0}^{p-3} a_{32} \frac{c_{3}^{i}}{i!}\left(\sum_{j=0}^{p-4-i} \mathcal{K}_{2, j}^{*} h^{j+3}\right) & N_{y}^{(i)} h^{i} \\
& =\sum_{i=0}^{p-3} a_{32} \frac{c_{3}^{i}}{i!}\left(\sum_{j=0}^{p-4-i}\left[\sum_{l=0}^{j} \frac{c_{2}^{j-l}}{(j-l)!} \mathcal{R}_{2, l+1}^{*} N_{y}^{(j-l)}\right] h^{j+3}\right) N_{y}^{(i)} h^{i} \\
& =\sum_{i=0}^{p-3} a_{32} \frac{c_{3}^{i}}{i!}\left(\sum_{j=0}^{i}\left[\sum_{l=0}^{j} \frac{c_{2}^{j-l}}{(j-l)!} \mathcal{R}_{2, l+1}^{*} N_{y}^{(j-l)}\right] N_{y}^{(i-j)}\right) h^{i+3} \\
& =\sum_{i=0}^{p-3} a_{32} \frac{c_{3}^{i}}{i!}\left(\sum_{j=0}^{i}\left[\sum_{l=0}^{i-j} \frac{c_{2}^{i-l}}{(i-l)!} \mathcal{R}_{2, j+1}^{*} N_{y}^{(i-l)} N_{y}^{(l)}\right]\right) h^{i+3}
\end{aligned}
$$

For the terms involving $\mathcal{K}_{2, j}^{* *}$, only one is below order $O\left(h^{6}\right)$

$$
\sum_{i=0}^{p-3} \frac{c_{3}^{i}}{i!} a_{32}\left(\sum_{j=0}^{p-6-i} \mathcal{K}_{2, j}^{* *} h^{j+5}\right) N_{y}^{(i)} h^{i}=a_{32}\left(\mathcal{R}_{2,1}^{*}\right)^{2}\left(N_{n}^{\prime}\right)^{2} h^{5} N_{y y} N_{y}+O\left(h^{6}\right)
$$

In addition, by (3.2.13)

$$
\begin{aligned}
\sum_{i=0}^{p-3} \frac{c_{3}^{i}}{i!} R_{3}^{2} N_{y y}^{(i)} h^{i} & =\sum_{i=0}^{p-3} \frac{c_{3}^{i}}{i!}\left(\sum_{j=0}^{p-6-i} \mathcal{R}_{3, j}^{* *} h^{j+3}+\mathcal{R}_{2,1}^{*} \mathcal{R}_{3,1}^{*} h^{5} N_{y}\right) N_{y}^{(i)} h^{i} \\
& =\sum_{i=0}^{p-3}\left(\sum_{j=0}^{i} \frac{c_{3}^{i-j}}{(i-j)!} \mathcal{R}_{3, j+1}^{* *} N_{y y}^{(i-j)}\right) h^{i+4}+a_{32} \mathcal{R}_{2,1}^{*} \mathcal{R}_{3,1}^{*} h^{(i+5)} N_{y} N_{y y}
\end{aligned}
$$

Collecting $\mathcal{R}_{j, i}^{*}$'s and $\mathcal{R}_{j, i}^{* * \prime}$ s we obtain (3.2.14).
Lemma 11. If $\mathcal{R}_{2, i}^{*}=\mathcal{R}_{3, i}^{*}=0$ for $i=1, \ldots, p-3$ then the outgoing approximation,

$$
y_{n+1}=e^{h L} y_{n}+h\left(b_{1} K_{1}+b_{2} K_{2}+b_{3} K_{3}+\sum_{k=1}^{q} v_{k} N_{n-k}+\sum_{j=1}^{r} z_{j} h^{j} N_{n}^{(j)}\right)
$$

differs from the exact solution, $y\left(t_{n}+h\right)$, by

$$
\begin{equation*}
\sum_{i=1}^{p-1}\left(\sum_{j=1}^{2} \frac{c_{j}^{i}}{i!} b_{j}+\sum_{j=1}^{q} \frac{(-j)^{i}}{i!} v_{j}+z_{i}-\varphi_{i+1}\right) N_{n}^{(i)} h^{i+1}+\sum_{j=1}^{2} b_{j} \mathcal{R}_{j, p-1}^{*} N_{y} h^{p}+O\left(h^{p+1}\right) \tag{3.2.15}
\end{equation*}
$$

Proof. The conditions $\mathcal{R}_{2, i}^{*}=\mathcal{R}_{3, i}^{*}=0$ for $i=1, \ldots, p-3$ implies

$$
\begin{aligned}
K_{2} & =\sum_{i=0}^{p-1} \frac{c_{2}^{i}}{i!} N_{n}^{(i)} h^{i}+\sum_{i=0}^{p-3} \mathcal{K}_{2, i}^{*} h^{i+2}+\sum_{i=0}^{p-5} \mathcal{K}_{2, i}^{* *} h^{i+4}+O\left(h^{6}\right) \\
& =\sum_{i=0}^{p-1} \frac{c_{2}^{i}}{i!} N_{n}^{(i)} h^{i}+\mathcal{K}_{2, p-3}^{*} h^{p-1}+O\left(h^{p}\right) \\
& =\sum_{i=0}^{p-1} \frac{c_{2}^{i}}{i!} N_{n}^{(i)} h^{i}+\mathcal{R}_{2, p-2}^{*} N_{u} h^{p-1}+O\left(h^{p}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
K_{3}= & \sum_{i=0}^{p-1} \frac{c_{3}^{i}}{i!} N^{(i)} h^{i}+\sum_{i=0}^{p-3} \mathcal{K}_{3, i}^{*} h^{i+2}+\sum_{i=0}^{p-5} \mathcal{K}_{3, i}^{* *} h^{i+4} \\
& +\sum_{i=0}^{p-4} \mathcal{L}_{3, i}^{*} h^{i+3}+a_{32}\left(\left(\mathcal{R}_{2,1}^{*}\right)^{2}+\mathcal{R}_{2,1}^{*} \mathcal{R}_{3,1}^{*}\right) h^{5}\left(N_{n}^{\prime}\right)^{2} N_{y y} N_{y}+O\left(h^{6}\right) \\
= & \sum_{i=0}^{p-1} \frac{c_{3}^{i}}{i!} N_{n}^{(i)} h^{i}+\mathcal{K}_{3, p-3}^{*} h^{p-1}+O\left(h^{p}\right) \\
= & \sum_{i=0}^{p-1} \frac{c_{3}^{i}}{i!} N_{n}^{(i)} h^{i}+\mathcal{R}_{3, p-2}^{*} N_{y} h^{p-1}+O\left(h^{p}\right)
\end{aligned}
$$

also, given the consistency condition (3.2.4b),

$$
e^{h L} y_{n}+h\left(b_{1} K_{1}+b_{2} K_{2}+b_{3} K_{3}+\sum_{k=1}^{q} v_{k} N_{n-k}+\sum_{j=1}^{r} z_{j} h^{j} N_{n}^{(j)}\right)
$$

$$
\begin{aligned}
& =\quad y\left(t_{n}+h\right)-h^{2} \varphi_{2} N_{n}^{\prime}-h^{3} \varphi_{3} N_{n}^{\prime \prime}-\cdots \\
& -v_{1} h^{2} N_{n}^{\prime}+\frac{1}{2!} v_{1} h^{3} N_{n}^{\prime \prime}-\cdots \\
& +\quad \cdots \\
& -v_{q} h^{2} N_{n}^{\prime}+\frac{q^{2}}{2!} v_{q} h^{3} N_{n}^{\prime \prime}-\cdots \\
& +z_{1} h^{2} N_{n}^{\prime}+\cdots+z_{r} h^{r+1} N_{n}^{(r)} \\
& +b_{1} \sum_{i=0}^{p-1} \frac{c_{2}^{i}}{i!} N_{n}^{(i)} h^{i+1}+b_{1} \mathcal{R}_{2, w-2}^{*} h^{r} \\
& +b_{2} \sum_{i=0}^{p-1} \frac{c_{3}^{i}}{i!} N_{n}^{(i)} h^{i+1}+b_{2} \mathcal{R}_{3, p-2}^{*} N_{y} h^{p}+O\left(h^{p+1}\right) \\
& =\quad y\left(t_{n}+h\right)-\sum_{i=1}^{p-1} \varphi_{(i+1)} h^{i+1} N_{n}^{(i)} \\
& +\sum_{i=1}^{p-1} \sum_{j=1}^{q} \frac{(-j)^{i}}{i!} v_{j} h^{i+1} N_{n}^{(i)} \\
& +\sum_{i=1}^{p-1} z_{i} h^{i+1} N_{n}^{(i)} \\
& +\sum_{i=1}^{p-1} \sum_{j=1}^{2} \frac{c_{j}^{i}}{i!} b_{j} h^{i+1} N_{n}^{(i)} \\
& +\sum_{j=2}^{3} \mathcal{R}_{j, p-2}^{*} N_{y} h^{p}+O\left(h^{p+1}\right) \\
& =\quad y\left(t_{n}+h\right)+\sum_{i=1}^{p-1} \mathcal{S}_{i}^{*} h^{i+1}+\sum_{j=2}^{3} \mathcal{R}_{j, p-2}^{*} N_{y} h^{p}+O\left(h^{p+1}\right)
\end{aligned}
$$

with

$$
\begin{equation*}
\mathcal{S}_{i}^{*}=\left(\sum_{j=1}^{2} \frac{c_{j}^{i}}{i!} b_{j}+\sum_{j=1}^{q} \frac{(-j)^{i}}{i!} v_{j}+z_{i}-\varphi_{i+1}\right) N_{n}^{(i)} \tag{3.2.16}
\end{equation*}
$$

Proof of Theorem 19. Within each $\mathcal{L}_{3, i}^{*}$ the terms $\frac{c_{2}^{i}}{(i)!} \mathcal{R}_{2, i+1}^{*} N_{y}^{(i)} N_{y} h^{i+3}$ occur in isolation, therefore, to achieve order p implies that $\mathcal{R}_{2, i}^{*}=0$ for $i=1, \ldots, p-3$. From the $\mathcal{K}_{j, i}^{*}$ terms, this restriction on $\mathcal{R}_{2, i}^{*}$ also implies $\mathcal{R}_{3, i}^{*}=0$. These two results recover the order condition (3.2.5a). From this we can apply Lemma 11. To ensure the approximation

$$
y\left(t_{n}+h\right)+\sum_{i=1}^{p-1}\left(\sum_{j=1}^{2} \frac{c_{j}^{i}}{i!} b_{j}+\sum_{j=1}^{q} \frac{(-j)^{i}}{i!} v_{j}+z_{i}-\varphi_{i+1}\right) N^{(i)} h^{i+1}+\sum_{j=1}^{2} b_{j} \mathcal{R}_{j, p-1}^{*} N_{y} h^{p}
$$

is of order p then we require

$$
\sum_{j=1}^{2} \frac{c_{j}^{i}}{i!} b_{j}+\sum_{j=1}^{q} \frac{(-j)^{i}}{i!} v_{j}+z_{i}-\varphi_{i+1}=0
$$

for $i=1, \ldots, p-2$, recovering order condition (3.2.5b) and

$$
\sum_{j=1}^{2} b_{j} \mathcal{R}_{j, p-1}^{*}=0
$$

which recovers condition (3.2.5c).

Note. When considering 3 -stage methods where $c_{2} \neq c_{3}$, the condition (3.2.5b) becomes merged with condition (3.2.5a) for the extended set of values $i=1, \ldots, p-2$. A consequence of this can be seen from Propositions 6 and 9; all such methods will have stage order $p-1$ when the method is of order p.

Theorem 12. EGLMs of the form

0							
c_{2}	a_{21}				$e^{c_{2} h L}$	u_{21}	\cdots
\vdots	\vdots	\ddots		$u_{2 q}$			
c_{s}	$a_{s 1}$	\cdots	$a_{s(s-1)}$		$e^{c_{s} h L}$	$u_{s 1}$	\cdots
	b_{1}	\cdots	\cdots	b_{s}	$e^{h L}$	v_{1}	\cdots

$$
\begin{align*}
K_{1} & =N_{n} \\
K_{i} & =N\left(e^{h L} y_{n}+h \sum_{j=1}^{i-1} a_{i j}(h L) K_{j}+h \sum_{k=1}^{q} u_{i k}(h L) N_{n-k}\right) \tag{3.2.17}\\
y_{n+1} & =e^{h L} y_{n}+h\left(h \sum_{i=1}^{s} b_{i}(h L) K_{i}+\sum_{k=1}^{q} v_{k} N_{n-k}\right)
\end{align*}
$$

will be exact in the case $N_{n}=N$, a constant, if the consistency conditions (3.2.4) are met.

When N is non-constant, EGLMs of the form (3.2.17) where $s=2$ or 3 , can achieve order p if they satisfy (3.2.4) and

$$
\begin{equation*}
\sum_{k=2}^{j-1} a_{j k} \frac{c_{k}^{i}}{i!}+\sum_{k=1}^{q} \frac{(-k)^{i}}{i!} u_{k j}=c_{k}^{i+1} \varphi_{i+1, k} \tag{3.2.18a}
\end{equation*}
$$

for $i=1, \ldots, p-3, j=1, \ldots, s$,

$$
\begin{equation*}
\sum_{j=2}^{s} b_{j}\left(\sum_{k=2}^{j-1} a_{j k} \frac{c_{k}^{i}}{i!}+\sum_{k=1}^{q} \frac{(-k)^{i}}{i!} u_{j k}-c_{j}^{i+1} \varphi_{i+1, j}\right)=0 \tag{3.2.18b}
\end{equation*}
$$

for $i=p-2$, and

$$
\begin{equation*}
\sum_{j=2}^{s} \frac{c_{j}^{i}}{i!} b_{j}+\sum_{j=1}^{q} \frac{(-j)^{i}}{i!} v_{j}=\varphi_{i+1} \tag{3.2.18c}
\end{equation*}
$$

for $i=1, \ldots, p-1$

Proof. This follows naturally from Theorem 3 and 19 where all $w_{i j}=z_{i j}=0$.

In the 2-stage, case these conditions become

$$
\sum_{k=2}^{j-1} a_{j k} \frac{c_{k}^{i}}{i!}+\sum_{k=1}^{q} \frac{(-k)^{i}}{i!} u_{k j}=c_{k}^{i+1} \varphi_{i+1, k}
$$

for $i=1, \ldots, p-2 ; j=1,2$ and, for $i=1, \ldots, p-1$,

$$
\sum_{j=2}^{s} \frac{c_{j}^{i}}{i!} b_{j}+\sum_{j=1}^{q} \frac{(-j)^{i}}{i!} v_{j}=\varphi_{(i+1)}
$$

These match the same conditions as those derived by Ostermann, Thalhammer \& Wright [38, (2.3) \& (2.7)].

Theorem 13. EARKs of the form

$$
\begin{array}{c|cccc|cccc}
0 & & & & & & & \\
c_{2} & a_{21} & & & e^{c_{2} h L} & w_{21} & \cdots & w_{2 r} \\
\vdots & \vdots & \ddots & & & \vdots & & \vdots & \tag{3.2.19}\\
c_{s} & a_{s 1} & \cdots & a_{s(s-1)} & & e^{c_{s} h L} & w_{s 1} & \cdots & w_{s r} \\
\hline & b_{1} & \cdots & \cdots & b_{s} & e^{h L} & z_{1} & \cdots & z_{r} \\
K_{1} & =N_{n} \\
K_{i} & =N\left(e^{h L} y_{n}+h \sum_{j=1}^{i-1} a_{i j}(h L) K_{j}+h \sum_{l=1}^{r} w_{i l} h^{l} N^{(l)}\right) \\
y_{n+1}=e^{h L} y_{n}+h\left(h \sum_{i=1}^{s} b_{i}(h L) K_{i}+\sum_{l=1}^{r} z_{l} h^{l} N^{(l)}\right)
\end{array}
$$

will be exact in the case $N_{n}=N$, a constant, if the following conditions are met

$$
\begin{equation*}
\sum_{j=1}^{i-1} a_{i j}=c_{i} \varphi_{1, i} \tag{3.2.20a}
\end{equation*}
$$

for $i=1, \ldots, s$

$$
\begin{equation*}
\sum_{i} b_{i}=\varphi_{1} \tag{3.2.20b}
\end{equation*}
$$

These conditions are the same as the ERKs consistency conditions.

In the case where N_{n} is non-constant, EARKs of the form (3.2.19) where $s=2$ or 3 , can achieve order p if they satisfy (3.2.20) and

$$
\begin{equation*}
\sum_{k=2}^{j-1} a_{j k} \frac{c_{k}^{i}}{i!}+w_{k i}=c_{k}^{i+1} \varphi_{i+1, k} \tag{3.2.21a}
\end{equation*}
$$

for $i=1, \ldots, p-3, j=1, \ldots, s$,

$$
\begin{equation*}
\sum_{j=2}^{s} b_{j}\left(\sum_{k=2}^{j-1} a_{j k} \frac{c_{k}^{i}}{i!}+w_{j i}-c_{j}^{i+1} \varphi_{i+1, j}\right)=0 \tag{3.2.21b}
\end{equation*}
$$

for $i=p-2$, and

$$
\begin{equation*}
\sum_{j=2}^{s} \frac{c_{j}^{i}}{i!} b_{j}+z_{i}=\varphi_{i+1} \tag{3.2.21c}
\end{equation*}
$$

for $i=1, \ldots, p-1$

Proof. This follows naturally from Theorem 3 and 19 where all $u_{i j}=v_{i j}=0$.

3.2.2 Outgoing Approximations

Like EARKs, the format for deriving the β_{j}, γ_{j} and δ_{j} rows of a method follows from constructing a matrix $M=\left(\begin{array}{lll}\beta & \gamma & \delta\end{array}\right)$ such that

$$
M\left(\begin{array}{c}
N_{n} \tag{3.2.22}\\
N_{n+c_{2}} \\
\vdots \\
N_{n+c_{s}} \\
N_{n+1} \\
N_{n-1} \\
\vdots \\
N_{n-q} \\
h N_{n}^{\prime} \\
\vdots \\
h^{r} N_{n}^{(r)}
\end{array}\right)=\left(\begin{array}{c}
h N_{n+1}^{\prime} \\
\vdots \\
h^{r} N_{n+1}^{(r)}
\end{array}\right)
$$

As earlier, the m_{j} rows of the matrix M, are the solutions to the linear system

$$
\begin{equation*}
X m_{j}^{T}=e_{j+1} \tag{3.2.23}
\end{equation*}
$$

with X being the $(s+q+r) \times(s+q+r)$ matrix

$$
X=\left(\begin{array}{lll}
Y & Z & W \tag{3.2.24}
\end{array}\right)
$$

where A and Z are as in (3.1.14) and (3.1.15) respectively and

$$
W=\left(\begin{array}{ccc}
1 & \cdots & 1 \tag{3.2.25}\\
-1 & \cdots & -1 \\
\frac{1}{2} & \cdots & \frac{1}{2} \\
\vdots & & \vdots \\
\frac{-j^{j-1}}{(j-1)!} & \cdots & \frac{-1^{j-1}}{(j-1)!} \\
\vdots & & \vdots
\end{array}\right)
$$

If we look at the EARK scheme (3.1.17) for the case where $c_{2}=1$, one looses the ability to generate approximations of sufficiently high order since the two output values $N_{n+c_{2}}$ and N_{n+1} are equal. With the two internal stages giving an approximation at the same point in time, there are no longer enough points of information on which to perform the interpolation. The solution is to carry along additional information at each step. The obvious choice for providing this information are previous steps and this naturally leads us to favour these hybrid EAGLMs over pure EARKs.

In practice we shall see that the optimal approach is to restrict both the internal stages and output step calculations to a pure EARKs format. This means, not involving any previous steps in their computation, i.e. $u_{i j}=0$. This preserves the reduction in φ matrix-vector products exhibited earlier. By using non-zero $\delta_{i j}$ values we have the option to include involve the previous steps, in the approximations of N_{n+1}^{\prime} and $N_{n+1}^{\prime \prime}$, where there are no matrix-vector products.

An example of such a scheme is the $3^{\text {rd }}$ order EAGLM ${ }_{3331} c_{2}$,

$$
\begin{align*}
& \begin{array}{c|cc|cc|cc|cc|cc|c}
c_{2} & a_{2,1} & & & u_{2,1} & u_{2,2} & w_{2,1} & c_{2} & c_{2} \varphi_{1,2} & & 0 & 0 \\
1 & b_{1} & b_{2} & & v_{2,1} & v_{2,2} & z_{1} & = & c_{2}^{2} \varphi_{2,2} \\
1 & \varphi_{1}-\frac{2 \varphi_{3}}{c_{2}^{2}} & \frac{2 \varphi_{3}}{c_{2}^{2}} & 0 & 0 & \varphi_{2}-\frac{2 \varphi_{3}}{c_{2}} \\
\hline & b_{1} & b_{2} & 0 & v_{2,1} & v_{2,2} & z_{1}
\end{array} \tag{3.2.26}\\
& \left.\begin{array}{l|l|l}
\beta & \gamma & \delta \\
\hline-5 & 0 & 2
\end{array} \left\lvert\, \begin{array}{ccc|cc|c}
-3 & 0 & \frac{11}{6} & \frac{3}{2} & -\frac{1}{3} & 0 \\
-1 & 0
\end{array}\right.\right) \times\left(\begin{array}{c}
N_{n} \\
N_{t_{c}} \\
N_{n+1} \\
N_{n-1} \\
N_{n-2} \\
h N_{n}^{\prime}
\end{array}\right)=\binom{h N_{n+1}^{\prime}}{h^{2} N_{n+1}^{\prime \prime}}
\end{align*}
$$

3.2.3 Example

In our research, we have concentrated on 2-stage schemes. Of course, technically, when speaking about EARKs and EAGLMs, we mean 3-stage schemes, because of the repeated B, V, Q
row. For such 2-stage schemes

c_{2}	a_{21}		$e^{c_{2} h L}$	u_{21}	u_{22}	w_{21}	w_{22}
	b_{1}	b_{2}	$e^{h L}$	v_{1}	v_{2}	z_{1}	z_{2}

$$
\begin{aligned}
& K_{1}=N \\
& K_{2}=N\left(t_{n}+c_{2} h, e^{c_{2} h L} y_{n}+h\left[a_{21} K_{1}+u_{21} N_{t_{n-1}}+u_{22} N_{t_{n-2}}+w_{21} h N^{\prime}+w_{22} h^{2} N^{\prime \prime}\right]\right)
\end{aligned}
$$

we can simplify conditions (3.2.5) to

$$
\begin{equation*}
\sum_{k=2}^{j-1} a_{j k} \frac{c_{k}^{i}}{i!}+\sum_{k=1}^{q} \frac{(-k)^{i}}{i!} u_{k j}+w_{k i}=c_{k}^{i+1} \varphi_{k, i+1} \tag{3.2.28}
\end{equation*}
$$

for $i=1, \ldots, \beta-2, j=1, \ldots, s$, and

$$
\begin{equation*}
\sum_{j=2}^{s} \frac{c_{j}^{i}}{i!} b_{j}+\sum_{j=1}^{q} \frac{(-j)^{i}}{i!} v_{j}+z_{i}=\varphi_{i+1} \tag{3.2.29}
\end{equation*}
$$

for $i=1, \ldots, \beta-1$.

We will now present some examples of such schemes. We have adopted the convention whereby we call a scheme an EAGLM only if it has non-zero $u_{i j}$ or v_{i} entries in it's tableau. A scheme where $u_{i j}=v_{i}=0$ is called an EARK even if it has non-zero $\gamma_{i j}$ entries. In other words, an EARK which uses previous steps to generate the N derivatives, is still referred to as an EARK, and not an EAGLM.
$3^{\text {rd }}$ Order EARK $321 c_{2}$

$$
\begin{array}{c|cc|cc|cc|cc|cc|c}
c_{2} & a_{2,1} & & & u_{2,1} & u_{2,2} & w_{2,1} & c_{2} & c_{2} \varphi_{1,2} & & 0 & 0 \tag{3.2.30}\\
c_{2}^{2} \varphi_{2,2} \\
1 & b_{1} & b_{2} & & v_{2,1} & v_{2,2} & z_{1} \\
\hline & b_{1} & b_{2} & 0 & v_{2,1} & v_{2,2} & z_{1}
\end{array}=\begin{aligned}
& \varphi_{1}-\frac{2 \varphi_{3}}{c_{2}^{2}} \\
& \frac{2 \varphi_{3}}{c_{2}^{2}} \\
& \\
& \varphi_{1}-\frac{2 \varphi_{3}}{c_{2}^{2}} \\
& \frac{2 \varphi_{3}}{c_{2}^{2}}
\end{aligned} 0
$$

$\mathbf{4}^{\text {th }}$ Order $^{\text {EARK }}{ }_{422} c_{2}$

c_{2}	$a_{2,1}$			$w_{2,1}$	$w_{2,2}$	c_{2}	$c_{2} \varphi_{1,2}$		$c_{2}^{2} \varphi_{2,2}$	$c_{2}^{3} \varphi_{3,2}$						
1	b_{1}	b_{2}		z_{1}	z_{2}											
	b_{1}	b_{2}	0	z_{1}	z_{2}						$=$					
:---:	:---:	:---:	:---:	:---:												
1	$\varphi_{1}-\frac{6}{c_{2}^{3}} \varphi_{4}$	$\frac{6}{c_{2}^{3}} \varphi_{4}$	$\varphi_{2}-\frac{6}{c_{2}^{2}} \varphi_{4}$	$\varphi_{3}-\frac{3}{c_{2}} \varphi_{4}$												
	$\varphi_{1}-\frac{6}{c_{2}^{3}} \varphi_{4}$	$\frac{6}{c_{2}^{3}} \varphi_{4}$	0	$\varphi_{2}-\frac{6}{c_{2}^{2}} \varphi_{4}$	$\varphi_{3}-\frac{3}{c_{2}} \varphi_{4}$											

$4^{\text {th }}$ Order EAGLM

This family of schemes, referred to as EAGLM ${ }_{4221}$, is $4^{\text {th }}$ order 3-stage 2-step 1-value. It combines the use of one previous timestep, with the N^{\prime} derivative. We can see clearly the significant
increase in the complexity of the tableau entries over scheme (3.2.30) and (3.2.31).

$$
\begin{align*}
& \left.\begin{array}{c|cc|cc|ccc|c}
c_{2} & a_{2,1} & & & \ldots & c_{2} & c_{2} \varphi_{1,2}-2 c_{2}^{3} \varphi_{3,2} & & \ldots \\
1 & b_{1} & b_{2} & & \ldots \\
\hline & b_{1} & b_{2} & 0 & \ldots
\end{array}=\begin{array}{llll}
& \frac{c_{2}\left(6 \varphi_{4}+2 \varphi_{3}\right)-6 \varphi_{4}-2 c_{2}^{2} \varphi_{3}-2 \varphi_{3}+\varphi_{1} c_{2}^{2}}{c_{2}^{2}} & \frac{6 \varphi_{4}+2 \varphi_{3}}{c_{2}^{3}+c_{2}^{2}} & \ldots \\
c_{2} & \frac{c_{2}\left(6 \varphi_{4}+2 \varphi_{3}\right)-6 \varphi_{4}-2 c_{2}^{2} \varphi_{3}-2 \varphi_{3}+\varphi_{1} c_{2}^{2}}{c_{2}^{2}} & \frac{6 \varphi_{4}+2 \varphi_{3}}{c_{2}^{3}+c_{2}^{2}} & 0
\end{array}\right] \ldots \\
& \begin{array}{c|c|cc|c|c}
\ldots & u_{2,1} & w_{2,1} & \ldots & 2 c_{2}^{3} \varphi_{3,2} & 2 c_{2}^{3} \varphi_{3,2}+c_{2}^{2} \varphi_{2,2} \\
\ldots & v_{1} & z_{1}= & = & \frac{2 c_{2} \varphi_{3}-6 \varphi_{4}}{c_{2}+1} & \frac{-6 \varphi_{4}+2 c_{2} \varphi_{3}-2 \varphi_{3}+c_{2} \varphi_{2}}{c_{2}} \\
\hline \ldots & v_{1} & z_{1} & \ldots & \frac{2 c_{2} \varphi_{3}-6 \varphi_{4}}{c_{2}+1} & \frac{-6 \varphi_{4}+2 c_{2} \varphi_{3}-2 \varphi_{3}+c_{2} \varphi_{2}}{c_{2}}
\end{array} \tag{3.2.32}
\end{align*}
$$

3.3 Convergence Bounds

We saw that Ostermann, Thalhammer \& Wright introduced EGLMs in [38]. As part of the theory supporting their new family of methods, they provided a convergence analysis within a framework of abstract semilinear parabolic evolution equations. As part of that analysis they provide a Theorem, [38, (3.4)], which proves a convergence estimate for EGLMs.

Following the format of that Theorem, we will modify the proof and apply it to EAGLMs to show that the convergence bounds derived hold for EAGLMs.

3.3.1 Order Conditions

We use the format of the expansion of the solution of the linear differential equation from [38, Lemma 1.1] in our own convergence analysis.

Lemma 14. [38, Lemma 1.1] The exact solution of the initial value problem

$$
\begin{equation*}
y^{\prime}(t)=L y(t)+f(t), \quad t \geq t_{n} \tag{3.3.1}
\end{equation*}
$$

with $y\left(t_{n}\right)$ given, has the following representation

$$
\begin{align*}
& y\left(t_{n}+\tau\right)=e^{\tau L} y\left(t_{n}\right)+\sum_{l=0}^{m-1} \tau^{l+1} \varphi_{l+1}(\tau L) N^{(l)}\left(t_{n}\right)+R_{n}(m, \tau) \tag{3.3.2}\\
& R_{n}(m, \tau)=\int_{0}^{\tau} e^{(\tau-\sigma) L} \int_{0}^{\sigma} \frac{(\sigma-\xi)^{m-1}}{(m-1)!} N^{(m)}\left(t_{n}+\xi\right) d \xi d \sigma \tag{3.3.3}
\end{align*}
$$

Proof. The proof of this follows from substituting the Taylor expansion of N

$$
\begin{gather*}
N\left(t_{n}+\sigma\right)=\sum_{l=0}^{m-1} \frac{\sigma^{l}}{l!} N^{(l)}\left(t_{n}\right)+S_{n}(m, \sigma) \\
S_{n}(m, \sigma)=\int_{0}^{\sigma} \frac{(\sigma-\xi)^{m-1}}{(m-1)!} N^{(m)}\left(t_{n}+\xi\right) d \xi \tag{3.3.4}
\end{gather*}
$$

into the variation of constants formula

$$
\begin{equation*}
y\left(t_{n}+\tau\right)=e^{\tau L} y\left(t_{n}\right)+\int_{0}^{\tau} e^{(\tau-\sigma) L} f\left(t_{n}+\sigma\right) d \sigma \tag{3.3.5}
\end{equation*}
$$

Within the framework of EAGLMs, the internal stages and numerical approximation are defined by

$$
\begin{align*}
Y_{n i} & =e^{c_{i} h L} y_{n}+h \sum_{j=1}^{i-1} a_{i j}(h L) N_{n i}+h \sum_{k=1}^{q} u_{i k}(h L) N_{n-k}+h \sum_{m=1}^{r} w_{i m}(h L) h^{m} N_{n}^{(m)} \\
N_{n i} & =N\left(Y_{n i}\right) \tag{3.3.6}\\
y_{n+1} & =e^{h L} y_{n}+h \sum_{i=1}^{s} b_{i}(h L) N_{n i}+h \sum_{k=1}^{q} v_{k}(h L) N_{n-k}+h \sum_{m=1}^{r} z_{m}(h L) h^{m} N_{n}^{(m)}
\end{align*}
$$

with $q+r=\theta-1 . N_{n}^{(i)}$ is defined by a linear combination of the available values at a given step, that is

$$
\begin{align*}
h^{i} N_{n}^{(i)} & =\sum_{j} \alpha_{i j} \mathcal{N}_{n j}, \quad \mathcal{N}_{n j} \in\left\{N_{n-k}, N_{(n-1) i}\right\}, \tag{3.3.7}\\
k & =0, \ldots, q, \quad i=1, \ldots, s, \quad m=1, \ldots, r
\end{align*}
$$

and we introduce the notation

$$
\begin{equation*}
\Delta N_{n}^{(i)}=\sum_{j}\left(\alpha_{i j} \mathcal{N}_{n j}\left(\hat{y}_{n}\right)-\alpha_{i j} \mathcal{N}_{n j}\left(y_{n}\right)\right) \tag{3.3.8}
\end{equation*}
$$

We also define

$$
\begin{gather*}
\mathcal{S}_{n i}(m)=\sum_{j} \alpha_{i j} S_{n}(m, h \omega), \quad \omega \in\left\{-k,-1+c_{i}\right\} \tag{3.3.9}\\
k=0, \ldots, q, \quad i=1, \ldots, s
\end{gather*}
$$

We assume the starting values, y_{1}, \ldots, y_{q} and $N_{S}^{\prime}, \ldots, N_{S}^{(r)}$ have been computed beforehand. Defining the exact solution values,

$$
\begin{equation*}
\hat{y}_{n}=t\left(t_{n}\right), \quad \hat{Y}_{n i}=y\left(t_{n}+c_{i} h\right) \tag{3.3.10}
\end{equation*}
$$

the defects of the internal stages take the form

$$
\begin{equation*}
D_{n i}=\hat{Y}_{n i}-e^{c_{i} h L} \hat{y}_{n}-h \sum_{j=1}^{s} a_{i j} N_{n+c_{i}}-h \sum_{k=1}^{q} u_{i k} N_{n-k}-h \sum_{m=1}^{r} w_{i m} h^{m} N_{n}^{(m)} \tag{3.3.11}
\end{equation*}
$$

and those of the numerical solution are

$$
\begin{equation*}
d_{n+1}=\hat{y}_{n+1}-e^{h L} \hat{y}_{n}-h \sum_{i=1}^{s} b_{i} N_{n+c_{i}}-h \sum_{k=1}^{q} v_{k} N_{n-k}-h \sum_{m=1}^{r} z_{m} h^{m} N_{n}^{(m)} \tag{3.3.12}
\end{equation*}
$$

Making use of the expansion of the exact solution (1.3.9) we get the following expansion for the defects of the internal stage,

$$
\begin{align*}
D_{n i} & =\sum_{l=1}^{q} h^{l} \Theta_{l i}(h L) f^{(l-1)}\left(t_{n}\right)+R_{n i}^{(\theta)}, \tag{3.3.13}\\
\Theta_{l i}(h L) & =c_{i}^{l} \varphi_{l}\left(c_{i} h L\right)-\sum_{j=1}^{i-1} \frac{c_{j}^{l-1}}{(l-1)!} a_{i j}(h L)-\sum_{k=1}^{q} \frac{(-k)^{l-1}}{(l-1)!} u_{i k}(h L)-w_{l i} \tag{3.3.14}
\end{align*}
$$

and for the defects of the numerical solution we get the expansion

$$
\begin{align*}
d_{n+1} & =\sum_{l=1}^{r} h^{l} \Psi_{l}(h L) f^{(l-1)}\left(t_{n}\right)+\varrho_{n+1}^{(\theta)}, \tag{3.3.15}\\
\Psi_{l}(h L) & =\varphi_{l}(h L)-\sum_{j=1}^{s} \frac{c_{j}^{l-1}}{(l-1)!} b_{j}(h L)-\sum_{k=1}^{q} \frac{(-k)^{l-1}}{(l-1)!} v_{k}(h L)-z_{l} \tag{3.3.16}
\end{align*}
$$

The numerical solution will be of stage order θ and quadrature order p if $D_{n i}=O\left(h^{\theta+1}\right)$ for $1 \leq i \leq s$ and $d_{n+1}=O\left(h^{p+1}\right)$ [38]. Therefore we will require $\Theta_{l i}(h L)=0$ for $1 \leq i \leq s$ and $1 \leq l \leq \theta$, and $\Psi_{l}(h L)=0$ for $1 \leq l \leq p$. This implies

$$
\begin{align*}
c_{i}^{l} \varphi_{l}\left(c_{i} h L\right)= & \sum_{j=1}^{i-1} \frac{c_{j}^{l-1}}{(l-1)!} a_{i j}(h L) \tag{3.3.17}\\
& \quad+\sum_{k=1}^{q} \frac{(-k)^{l-1}}{(l-1)!} u_{i k}(h L)+w_{l i}, \quad 1 \leq i \leq s \quad 1 \leq l \leq q \\
\varphi_{l}(h L)= & \sum_{j=1}^{s} \frac{c_{j}^{l-1}}{(l-1)!} b_{j}(h L)+\sum_{k=1}^{q} \frac{(-k)^{l-1}}{(l-1)!} v_{k}(h L)+z_{l}, \quad 1 \leq l \leq p \tag{3.3.18}
\end{align*}
$$

This "recovers" the EAGLM order conditions (3.2.4) and (3.2.5), as proved in Theorem 3. We will proceed under the assumption that the scheme satisfies these order conditions. This implies that the remainders, which combine the residuals (3.3.3) and (3.3.4), are defined by

$$
\begin{align*}
& R_{n i}^{(\theta)}=R_{n}\left(\theta, c_{i} h\right)-h \sum_{j=1}^{i-1} a_{i j}(h L) S_{n}\left(\theta, c_{j} h\right) \\
& \quad-h \sum_{k=1}^{q} u_{i k}(h L) S_{n}(\theta,-k h)-h \sum_{m=1}^{r} w_{i m}(h L) h^{m} \mathcal{S}_{n m}(\theta) \tag{3.3.19}\\
& \varrho_{n+1}^{(p)}=
\end{aligned} \begin{aligned}
& R_{n}\left(\theta, c_{i} h\right)-h \sum_{i=1}^{S} b_{i}(h L) S_{n}\left(p, c_{i} h\right) \\
& \quad-h \sum_{k=1}^{q} v_{k}(h L) S_{n}(p,-k h)-h \sum_{m=1}^{r} z_{m}(h L) h^{m} \mathcal{S}_{n m}(p)
\end{align*}
$$

The errors are defined by

$$
\begin{equation*}
e_{n}=\hat{y}_{n}-y_{n}, \quad E_{n i}=\hat{Y}_{n i}-Y_{n i}, \quad 1 \leq i \leq s \tag{3.3.20}
\end{equation*}
$$

so that the stage errors take the form

$$
\begin{equation*}
E_{n i}=e^{c_{i} h L} e_{n}+h \sum_{j=1}^{S} a_{i j} \Delta N_{n i}+h \sum_{k=1}^{q} u_{i k} \Delta N_{n-k}+h \sum_{m=1}^{r} w_{i m} h^{m} \Delta N_{n}^{(m)}+D_{n i} \tag{3.3.21}
\end{equation*}
$$

and those of the numerical solution are

$$
\begin{equation*}
e_{n+1}=e^{h L} \hat{y}_{n}+h \sum_{i=1}^{S} b_{i} \Delta N_{n i}+h \sum_{k=1}^{q} v_{k} \Delta N_{n-k}+h \sum_{m=1}^{r} z_{m} h^{m} \Delta N_{n}^{(m)}+d_{n+1} \tag{3.3.22}
\end{equation*}
$$

which gives us the recurrence for e_{n}

$$
\begin{align*}
e_{n}=e^{\left(t_{n}-t_{\theta-1}\right) L} e_{\theta-1} & +\sum_{l=q}^{n} e^{\left(t_{n}-t_{l}\right) L} d_{l}+h \sum_{l=q}^{n-1} e^{\left(t_{n}-t_{l+1}\right) L} \times \\
& \left(\sum_{j=1}^{S} b_{i} \Delta N_{l i}+\sum_{k=1}^{q} v_{k} \Delta N_{n-k}+\sum_{m=1}^{r} z_{m} h^{m} \Delta N_{l}^{(m)}\right), \quad n \geq \theta-1 \tag{3.3.23}
\end{align*}
$$

Within the analytical framework of abstract semilinear parabolic evolution equations, we will avail of the following key bounds, presented by Ostermann, Thalhammer \& Wright [38, (3.5) and (3.6)]. Appendix A. 1 summarises many of the definitions which we use within this analysis. See [23] for a thorough treatment of the theory of sectorial operators and analytic semigroups.

The requirement (A.1.2), together with Hypothesis 17, renders (1.3.2) a semilinear parabolic problem [38]. We will make use of the following two bounds from [38, (3.5) \& (3.6)].

$$
\begin{align*}
\left\|t^{v-\mu} e^{t L}\right\|_{X_{v} \leftarrow X_{\mu}} & \leq C \tag{3.3.24}\\
\left\|t^{v-\mu} \varphi_{l}(t L)\right\|_{X_{v} \leftarrow X_{\mu}} & \leq C \tag{3.3.25}
\end{align*}
$$

where $0 \leq t \leq T$ and $0 \leq \mu \leq v \leq 1$, with a constant $C>0$. The bound (3.3.25) is valid of all $l \geq 1$. We also extend assumption [38, (3.11)],

$$
\begin{align*}
& \left\|a_{i j}(h L)\right\|_{X_{v} \leftarrow X_{\mu}}+\left\|b_{i}(h L)\right\|_{X_{v} \leftarrow X_{\mu}}+\left\|u_{i j}(h L)\right\|_{X_{v} \leftarrow X_{\mu}}+ \\
& \quad\left\|v_{i}(h L)\right\|_{X_{v} \leftarrow X_{\mu}} \leq C h^{-v+\mu}, \quad h>0, \quad 0 \leq \mu \leq v \leq 1 \tag{3.3.26}
\end{align*}
$$

to include the $w_{i j}$ and $z_{i j}$ method coefficients,

$$
\begin{align*}
& \left\|a_{i j}(h L)\right\|_{X_{v} \leftarrow X_{\mu}}+\left\|b_{i}(h L)\right\|_{X_{v} \leftarrow X_{\mu}}+\left\|u_{i j}(h L)\right\|_{X_{v \leftarrow X_{\mu}}}+\left\|v_{i}(h L)\right\|_{X_{v} \leftarrow X_{\mu}}+ \\
& \quad\left\|w_{i j}(h L)\right\|_{X_{v} \leftarrow X_{\mu}}+\left\|z_{i}(h L)\right\|_{X_{v} \leftarrow X_{\mu}} \leq C h^{-v+\mu}, \quad h>0, \quad 0 \leq \mu \leq v \leq 1 \tag{3.3.27}
\end{align*}
$$

which we can verify by applying (3.3.25).

In addition we extend the assumption [38, (3.1) Remark 1], that the function N is locally Lipschitz-continuous

$$
\begin{equation*}
\|N(v)-N(w)\|_{X} \leq C_{1}(\zeta)\|v-w\|_{X_{\alpha}}, \quad\|v\|_{X_{\alpha}}+\|w\|_{X_{\alpha}} \leq \zeta \tag{3.3.28}
\end{equation*}
$$

and require that the derivatives $N^{(i)}$ are also locally Lipschitz-continuous

$$
\begin{equation*}
\left\|N^{(i)}(v)-N^{(i)}(w)\right\|_{X} \leq C_{2}(\zeta)\|v-w\|_{X_{\alpha}}, \quad\|v\|_{X_{\alpha}}+\|w\|_{X_{\alpha}} \leq \zeta \tag{3.3.29}
\end{equation*}
$$

3.3.2 Proof of Convergence Bound

We are now in a position to present a modified formulation of Ostermann, Thalhammer \& Wright's proof for [38, Theorem 3.1], applying the results to EAGLMs.

Theorem 15. Under the requirements of Hypothesis 17, assume that EAGLMs of the form (3.3.6), applied to the initial value problem (1.3.2), satisfy (3.3.28) and fulfill the order conditions as defined in Theorem 3 and 19. Suppose that $N^{(\theta)}(t) \in X_{\beta}$ for some $0 \leq \beta \leq \alpha$ and $N^{(p)}(t) \in X$. Then for stepsizes $h>0$ the estimate

$$
\begin{align*}
&\left\|y\left(t_{n}\right)-y_{n}\right\|_{X_{\alpha}} \leq C \sum_{l=0}^{q}\left\|y\left(t_{l}\right)-y_{l}\right\|_{X_{\alpha}}+C h^{\theta+1-\alpha+\beta} \sup _{0 \leq t \leq t_{n}}\left\|N^{(\theta)}(t)\right\|_{X_{\beta}} \\
&+C h^{p} \sup _{0 \leq t \leq t_{n}}\left\|N^{(p)}(t)\right\|_{X}, t_{q} \leq t_{n} \leq T \tag{3.3.30}
\end{align*}
$$

holds with a constant $C>0$ independent of n and h.
In addition we require that the approximation of $h^{i} N_{n}^{(i)}$, through a linear combination of $N_{n-k}, k \geq$ 0 (3.3.7), is of order $O\left(h^{p+i}\right)$.

Proof. Starting from the EAGLMs form of e_{n} (3.3.31), measured in the norm of X_{α}

$$
\begin{align*}
& \left\|e_{n}\right\|_{X_{\alpha}} \leq\left\|e^{\left(t_{n}-t_{\theta-1}\right) L}\right\|_{X_{\alpha} \leftarrow X_{\alpha}}\left\|e_{\theta-1}\right\|_{X_{\alpha}}+\left\|\sum_{l=q}^{n} e^{\left(t_{n}-t_{l}\right) L} d_{l}\right\| \\
& +h \sum_{l=\theta-1}^{n-1} \sum_{i=1}^{s}\left\|e^{\left(t_{n}-t_{l+1}\right) L} b_{i}(h L)\right\|_{X_{\alpha} \leftarrow X}\left\|\Delta N_{l i}\right\|_{X} \\
& +h \sum_{l=\theta-1}^{n-1} \sum_{k=1}^{q}\left\|e^{\left(t_{n}-t_{l+1}\right) L} v_{k}(h L)\right\|_{X_{\alpha} \leftarrow X}\left\|\Delta N_{l-k}\right\|_{X} \\
& \quad+h \sum_{l=\theta-1}^{n-1} \sum_{j=1}^{r}\left\|e^{\left(t_{n}-t_{l+1}\right) L} z_{j}(h L)\right\|_{X_{\alpha} \leftarrow X} h^{j}\left\|\Delta N_{l}^{(j)}\right\|_{X} \tag{3.3.31}
\end{align*}
$$

we look at the terms involving $\Delta N_{l}^{(m)}$, these are bounded

$$
\begin{gather*}
\sum_{m=1}\left\|e^{\left(t_{n}-t_{l+1}\right) L} z_{m}(h L)\right\|_{X_{\alpha} \leftarrow X} h^{m}\left\|\Delta N_{l}^{(m)}\right\|_{X} \leq C h\left(t_{n}-t_{l}\right)^{-\alpha} \sum_{m=1} h^{m}\left\|\mathcal{E}_{l m}\right\|_{X_{\alpha}} \tag{3.3.32}\\
\mathcal{E}_{n m} \in\left\{e_{n-k}, E_{(n-1) i}\right\}, \quad k=0, \ldots, q, \quad i=1, \ldots, s .
\end{gather*}
$$

In combination with the similar bounds on the $\Delta N_{l i}$ and ΔN_{l-k} terms as presented in [38] we have the result

$$
\begin{align*}
\left\|e_{n}\right\|_{X_{\alpha}} \leq & C\left\|e_{\theta-1}\right\|_{X_{\alpha}}+\left\|\sum_{l=q}^{n} e^{\left(t_{n}-t_{l}\right) L} d_{l}\right\|_{X_{\alpha}} \\
& +C h \sum_{l=\theta-1}^{n-1}\left(t_{n}-t_{l}\right)^{-\alpha}\left(\sum_{i=1}^{s}\left\|E_{l i}\right\|_{X_{\alpha}}+\sum_{k=1}^{q}\left\|e_{l-k}\right\|_{X_{\alpha}}+\sum_{m=1} h^{m}\left\|\mathcal{E}_{l m}\right\|_{X_{\alpha}}\right) . \tag{3.3.33}
\end{align*}
$$

Here the constant $C>0$ depends on T, but is independent of h. This is the EAGLMs equivalent of [38, (3.12)].

Likewise, looking at the error of the internal stages (3.3.21)

$$
\begin{align*}
& \left\|E_{l i}\right\|_{X_{\alpha}} \leq\left\|e^{c_{i} h L}\right\|_{X_{\alpha} \leftarrow X_{\alpha}}\left\|e_{l}\right\|_{X_{\alpha}}+h \sum_{j}^{i-1}\left\|a_{i j}\right\|_{X_{\alpha} \leftarrow X}\left\|\Delta N_{l j}\right\|_{X} \\
& \quad+h \sum_{k}^{q}\left\|u_{i k}\right\|_{X_{\alpha} \leftarrow X}\left\|\Delta N_{l-k}\right\|_{X}+h \sum_{m}^{r}\left\|w_{i m}\right\|_{X_{\alpha} \leftarrow X} h^{m}\left\|\Delta N_{l}^{(m)}\right\|_{X}+\left\|D_{l i}\right\|_{X_{\alpha}} \tag{3.3.34}
\end{align*}
$$

and focusing on the additional terms introduced by the EAGLM formulation, those being the terms involving $\Delta N_{l}^{(m)}$, we have the bound

$$
\begin{equation*}
\sum_{m=1}\left\|w_{i m}(h L)\right\|_{X_{\alpha} \leftarrow X} h^{m}\left\|\Delta N_{l}^{(m)}\right\|_{X} \leq C h^{1-\alpha} \sum_{m=1} h^{m}\left\|\mathcal{E}_{l m}\right\|_{X_{\alpha}} \tag{3.3.35}
\end{equation*}
$$

which leads us to the estimate

$$
\begin{align*}
\left\|E_{l i}\right\|_{X_{\alpha}} \leq C\left\|e_{l}\right\|_{X_{\alpha}}+C h^{1-\alpha} \sum_{j=1}^{i-1}\left\|E_{l j}\right\|_{X_{\alpha}}+ & C h^{1-\alpha} \sum_{k=1}^{q}\left\|e_{l-k}\right\|_{X_{\alpha}} \\
& +C h^{1-\alpha} \sum_{m=1} h^{m}\left\|\mathcal{E}_{l m}\right\|_{X_{\alpha}}+\left\|D_{l i}\right\|_{X_{\alpha}} \tag{3.3.36}
\end{align*}
$$

From this we follow [38] and insert this relation into (3.3.33), to recover the bound [38, (3.13)] for EAGLMs,

$$
\begin{align*}
\left\|e_{n}\right\|_{X_{\alpha}} \leq C\left\|e_{\theta-1}\right\|_{X_{\alpha}}+ & C h \sum_{l=0}^{n-1}\left(t_{n}-t_{l}\right)^{-\alpha}\left\|e_{l}\right\|_{X_{\alpha}} \\
& +C h \sum_{l=\theta-1}^{n-1} \sum_{i=1}^{s}\left(t_{n}-t_{l}\right)^{-\alpha}\left\|D_{l i}\right\|_{X_{\alpha}}+\left\|\sum_{l=q}^{n} e^{\left(t_{n}-t_{l}\right) L} d_{l}\right\|_{X_{\alpha}} \tag{3.3.37}
\end{align*}
$$

Next we must also estimate the terms involving the defects, (3.3.11) and (3.3.12). The assumption that the order conditions are satisfied implies $D_{l i}=R_{l i}^{(q)}$ and $d_{l}=\varrho_{l}^{(p)}$, giving the formulation for the remainders as in (3.3.19). From the condition imposed on $h^{i} N_{n}^{(i)}$, the following bounds on $S_{n}(m, \sigma)$ (3.3.4) and $\mathcal{S}_{n i}(m)$ (3.3.9),

$$
\begin{equation*}
\left\|S_{l}\left(\theta, c_{j} h\right)\right\|_{X_{\beta}}+\left\|S_{l}(\theta,-k h)\right\|_{X_{\beta}}+\left\|\mathcal{S}_{n l}(\theta)\right\|_{X_{\beta}} \leq C h^{\theta}\left\|f^{(\theta)}\right\|_{X_{\beta}, \infty} \tag{3.3.38}
\end{equation*}
$$

imply that

$$
\begin{align*}
\left\|R_{l i}^{(\theta)}\right\|_{X_{\alpha}} \leq & \left\|R_{l}\left(\theta, c_{i} h\right)\right\|_{X_{\alpha}}+h \sum_{j=1}^{i=1}\left\|a_{i j}\right\|_{X_{\alpha} \leftarrow X_{\beta}}\left\|S_{l}\left(\theta, c_{j} h\right)\right\|_{X_{\beta}} \\
& \quad+h \sum_{k=1}^{q}\left\|u_{i k}\right\|_{X_{\alpha} \leftarrow X_{\beta}}\left\|S_{l}(\theta,-k h)\right\|_{X_{\beta}}+h \sum_{m=1}^{r}\left\|w_{i m}\right\|_{X_{\alpha} \leftarrow X_{\beta}}\left\|\mathcal{S}_{n l}(\theta)\right\|_{X_{\beta}} \tag{3.3.39}\\
\leq & C h^{\theta+1-\alpha+\beta}\left\|f^{(\theta)}\right\|_{X_{\beta}, \infty}
\end{align*}
$$

and

$$
\begin{align*}
\left\|\varrho_{l}^{(p)}\right\|_{X} \leq & \left\|R_{l-1}(p, h)\right\|_{X}+h \sum_{i=1}^{i=1}\left\|b_{i}\right\|_{X \leftarrow X}\left\|S_{l-1}(p, h)\right\|_{X} \\
& \quad+h \sum_{k=1}^{q}\left\|v_{k}\right\|_{X \leftarrow X}\left\|S_{l}(p,-k h)\right\|_{X}+h \sum_{m=1}^{r}\left\|z_{m}\right\|_{X \leftarrow X}\left\|S_{n l}(p)\right\|_{X} \tag{3.3.40}\\
\leq & C h^{p+1}\left\|f^{(p)}\right\|_{X, \infty}
\end{align*}
$$

With these two bounds established we recover the bound [38, (3.14)] which now holds for EAGLMs.

$$
\begin{equation*}
\sum_{l=q}^{n-1}\left\|e^{\left(t_{n}-t_{l}\right) L}\right\|_{X_{\alpha} \leftarrow X}\left\|\varrho_{l}^{(p)}\right\|_{X}+\left\|\varrho_{n}^{(p)}\right\|_{X_{\alpha}} \leq C h^{p+1} \sum_{l=q}^{n-1}\left(t_{n}-t_{l}\right)^{-\alpha}\left\|f^{(p)}\right\|_{X, \infty} \tag{3.3.41}
\end{equation*}
$$

Having shown that EAGLMs satisfy all the same bounds as EGLMs the results of [38, Theorem 3.1] hold for EAGLMs.

Ostermann, Thalhammer \& Wright establish in [38], that the convergence of an EGLM is $\min (p, \theta+1)$, where p is the quadrature order and θ is the stage order. Here, $q=\theta-1$ steps are necessary to achieve a stage order of θ. We can see from Theorem 15 , that the convergence of an EAGLM is also $\min (p, \theta+1)$, where now, the requirement on the number of steps and derivative values is $q+r=\theta-1$.

3.3.3 Equivalence between EGLMs and EAGLMs

We will look at how there is an equivalence between EAGLMs and EGLMs. We will show this by looking at $\mathrm{EGLM}_{322} c_{2}$ (2.2.6) and $\mathrm{EARK}_{321} c_{2}$ (3.2.30).

Writing EGLM ${ }_{322} c_{2}$ (2.2.6) out explicitly in the form of (2.2.3) we get,

$$
\begin{align*}
Y_{2} & =e^{c_{2} h L} y_{n}+h\left[\left(c_{2} \varphi_{21}+c_{2}^{2} \varphi_{22}\right) N_{n}-c_{2}^{2} \varphi_{22} N_{n-1}\right] \tag{3.3.42}\\
K_{2} & =N\left(t_{n}+c_{2} h, Y_{2}\right)
\end{align*}
$$

$$
\begin{align*}
& y_{n+1}=e^{h L} y_{n}+h\left[\left(\varphi_{1}+\frac{c_{2}-1}{c_{2}} \varphi_{2}+\frac{-2}{c_{2}} \varphi_{3}\right) N_{n}+\left(\frac{1}{c_{2}^{2}+c_{2}} \varphi_{2}+\frac{2}{c_{2}^{2}+c_{2}} \varphi_{3}\right) K_{2}\right. \\
&\left.+\left(\frac{-c}{c_{2}+1} \varphi_{2}-\frac{2}{c_{2}+1} \varphi_{3}\right) N_{n-1}\right] \tag{3.3.43}
\end{align*}
$$

We can see that N_{n} and the previous step N_{n-1} are both multiplied by a linear combination of φ-functions. If we now look at $\mathrm{EARK}_{321} c_{2}$ (3.2.30), written explicitly in the form of (3.2.3) we get

$$
\begin{align*}
Y_{2} & =e^{c_{2} h L} y_{n}+h\left[c_{2} \varphi_{21} N_{n}-c_{2}^{2} \varphi_{22} N_{n}^{\prime}\right] \tag{3.3.44}\\
K_{2} & =N\left(t_{n}+c_{2} h, Y_{2}\right) \\
y_{n+1} & =e^{h L} y_{n}+h\left[\left(\varphi_{1}-\frac{2}{c_{2}^{2}} \varphi_{3}\right) N_{n}+\frac{2}{c_{2}^{2}} \varphi_{3} K_{2}+\left(\varphi_{2}-\frac{2}{c_{2}} \varphi_{3}\right) N_{n}^{\prime}\right] \tag{3.3.45}
\end{align*}
$$

If we approximate N_{n}^{\prime} by $\frac{3}{2} N_{n}-2 N_{n-1}+\frac{1}{2} N_{n-2}$, we can see that (3.3.44) and (3.3.45) become

$$
\begin{align*}
& Y_{2}= e^{c_{2} h L} y_{n}+h\left[c_{2} \varphi_{21} N_{n}-c_{2}^{2} \varphi_{22}\left(\frac{3}{2} N_{n}-2 N_{n-1}+\frac{1}{2} N_{n-2}\right)\right] \\
&= e^{c_{2} h L} y_{n}+h\left[\left(c_{2} \varphi_{21}-\frac{2}{3} c_{2}^{2} \varphi_{22}\right) N_{n}+2 \varphi_{22} c_{2}^{2} N_{n-1}-\frac{1}{2} \varphi_{22} c_{2}^{2} N_{n-2}\right] \tag{3.3.46}\\
& K_{2}= N\left(t_{n}+c_{2} h, Y_{2}\right) \\
& y_{n+1}=e^{h L} y_{n}+h\left[\left(\varphi_{1}+\frac{3}{2} \varphi_{2}-\frac{3 c_{2}+2}{c_{2}^{2}} \varphi_{3}\right) N_{n}+\frac{2}{c_{2}^{2}} \varphi_{3} K_{2}+\right. \\
&\left.\left(\frac{4}{c_{2}} \varphi_{3}-2 \varphi_{2}\right) N_{n-1}+\left(\frac{1}{2} \varphi_{2}-\frac{1}{c_{2}} \varphi_{3}\right) N_{n-2}\right] \tag{3.3.47}
\end{align*}
$$

which is a $3^{\text {rd }}$ Order EGLM, albeit one which uses two previous steps within the method rather than just one as (2.2.6) does.

For any EAGLM where the $N_{n}^{(i)}$'s are approximated by a linear combination of the current N_{n}, and previous steps N_{n-j}, we can rewrite the scheme as an EGLM. This means, that for all EAGLMs satisfying that condition on the derivatives, the results of [38, Theorem 3.1] automatically hold.

3.3.4 Summary

We have introduced in this chapter two new families of EIs. The first family, EARKs, pass derivatives from one step to the next and are considered to be multi-value schemes. This property, together with their multi-stage nature, makes them a special case of EGLMs, though with the critical distinction of being 1-step methods.

We also introduced in this chapter a broader framework of EAGLMs, this framework allowed us to create a unified representation of the earlier families. We showed that once order conditions for this family were derived, the order conditions for the other families could be recovered as special cases of the EAGLM conditions. A convergence analysis of EAGLMs showed that they also satisfy the convergence bounds which Ostermann, Thalhammer \& Wright proved for EGLMs.

Through numerical experiments in Chapter 5, we will show that EARK schemes demonstrate excellent accuracy performance together with a very efficient implementation. When we look to further optimizing the implementation of schemes we will see that approximating the outgoing derivative approximations to sufficient order can limit the optimisation opportunities. The switch to the EAGLM family provides the additional flexibility to allow one to construct schemes with the superior accuracy of EARKs, combined with implementations that outperform EGLMs in computational cost.

Chapter 4

Stability

In this chapter we study the stability regions of the families of EIs introduced in the last chapter.

We follow the analysis method of Cox \& Matthews [13], that is, we linearise the autonomous ODE,

$$
u^{\prime}=L u+N(u)
$$

about a fixed point u_{0} to obtain,

$$
\begin{equation*}
u^{\prime}=L u+\lambda u \tag{4.0.1}
\end{equation*}
$$

where $\lambda=N^{\prime}\left(u_{0}\right)$.

We then apply a specific EI scheme to (4.0.1) and plot the boundary curves of the stability regions. Comparing these boundary curves allows us to gauge the relativity stability of different schemes and identify desirable stability properties.

4.1 Stability Analysis

In numerical analysis stability is a measure of the extent to which a numerical scheme gives useful approximations. Stability analysis helps identify the range of step-sizes for which a scheme provides numerically stable results. We will compare and analyse the stability properties of some of the methods we have seen so far. In general, the techniques used in this section can only give an indication of the relative stability of different schemes.

The standard method of analysing stability is to apply the scheme to the test problem

$$
\begin{equation*}
u^{\prime}=\lambda u, \quad \text { where } u=u_{r}+i u_{i} \in \mathbb{C} \tag{4.1.1}
\end{equation*}
$$

A discretisation method is applied to (4.1.1) to obtain a homogeneous linear difference equation,

$$
\begin{equation*}
\sum_{k=0}^{M}\left(\alpha_{k} u_{n-k}-\lambda \Delta t \beta_{k} u_{n-k}\right)=0 \tag{4.1.2}
\end{equation*}
$$

which is solved explicitly. Then we consider a region of the complex plane where the solution is bounded.

The approach for analysing the stability of schemes which treat the linear and non-linear parts of the equation separately is developed in [5, 13]. We compute a number of boundary curves of the stability regions of a more general test problem

$$
\begin{equation*}
u^{\prime}=-L u+\lambda u \tag{4.1.3}
\end{equation*}
$$

with each curve corresponding to different values of L. After we discreetise (4.1.3) we can fix the parameter $y=h L$ and plot the boundary of the respective stability region.

4.2 Comparisons with mixed Explicit-Implicit Schemes

Beylkin, Keiser \& Vozovoi [5] studied the stability behaviour of ELP schemes both explicit and implicit with the stability properties of known implicit-explicit scheme, namely AMAB schemes. Figure 4.1 reproduces the stability plots for the two mixed explicit-implicit schemes presented in that paper for fixed $y=-2$. Citing [19] they note that a method is stiffly stable if it is consistent in a neighbourhood about the origin and absolutely stable away from the origin in the left imaginary plane.

They concluded that both explicit and implicit ELP schemes have excellent stability properties. In particular the stability regions of explicit ELP schemes are reminiscent of classical

Figure 4.1: Mixed explicit-implicit schemes stability boundaries for $y=-2$
implicit schemes. They also note that growth of the stability region as L becomes larger is a very important property for a scheme to be useful, and is a property which the ELP schemes exhibit.

4.3 Stability of ERKs

Cox \& Matthews [13] study the stability of several $2^{\text {nd }}-$ order schemes and in particular, some linearly implicit schemes such as an AMAB, and the standard Integrating Factor methods; Integrating Factor/Adams-Bashford Method (IFAB) and Integrating Factor/Classical RungeKutta Method (IFRK). These are compared with a number of ETDs and ERKs. To perform this analysis for such composite schemes, we use the same approach as in [5]. We linearise the nonlinear, autonomous ODE test problem (4.1.3) about a fixed point u_{0}, such that $L u_{0}+N\left(u_{0}\right)=0$ leading to

$$
\begin{equation*}
u^{\prime}=L u+\lambda u \tag{4.3.1}
\end{equation*}
$$

where u is now the perturbation to u_{0} and $\lambda=N^{\prime}\left(u_{0}\right)$. The fixed point u_{0} is stable if

$$
\begin{equation*}
\operatorname{Re}(L+\lambda)<0 \tag{4.3.2}
\end{equation*}
$$

As noted earlier, this technique can only provide us with a relative comparison of the stabilities of various schemes.

In general, both L and λ are complex so the resulting stability region is four-dimensional. In order to plot two dimensional stability regions, we will look at two cases. First, by assuming λ is complex and that L is fixed, negative and real, we can plot the resulting stability regions in the complex plane. Second we look at the case where L is not fixed and both L and λ are real.

The analysis is performed by applying a scheme to the test problem (4.1.3). For ERK 2_{2} (2.1.19) with $c_{2}=1$, that results in the following expression,

$$
\begin{align*}
& u_{n+1}=u e^{h L}+h\left(\frac{\lambda\left(\frac{e^{h L}-1}{h L}-1\right)\left(u e^{h L}+\frac{\lambda u\left(e^{h L}-1\right)}{L}\right)}{h L}\right) \\
&+h\left(\lambda u\left(\frac{e^{h L}-1}{h L}-\frac{\frac{e^{h L}-1}{h L}-1}{h L}\right)\right) \tag{4.3.3}
\end{align*}
$$

then by setting $r=u_{n+1} / u_{n}, x=h \lambda$ and $y=h L$ we obtain

$$
\begin{equation*}
r=\frac{\left(x y+x^{2}\right) e^{2 y}+\left(y^{3}+\left(-x^{2}-2 x\right) y-2 x^{2}\right) e^{y}+\left(x^{2}+x\right) y+x^{2}}{y^{3}} \tag{4.3.4}
\end{equation*}
$$

In the first case we will fix $y<0 \in \mathbb{R}$. We wish to plot the boundary of the stability region which occurs when $r=1$. To plot this in the complex plane we set $r=e^{i \theta}$ and solve for x on the interval $\theta \in[0,2 \pi)$.

We can see in Figure 4.2(a) the stability region boundaries for $E R K_{2}$ (2.1.19) when $y=$ $-1,-2,-5$ respectively. We can identify from the boundary curves that the stability regions of (2.1.19) are broader than those of the mixed explicit-implicit schemes from Figure 4.1.

Figure 4.2: ERK $_{2}$ (2.1.19) stability graphs

For the second case, we fix $r=1$, and plot the growth of the real extents of the stability regions against a varying y. For (2.1.19), the solutions to (4.3.4) are

$$
\begin{equation*}
x=-\frac{y^{2}}{e^{y}-y-1} \quad x=-y \tag{4.3.5}
\end{equation*}
$$

and Figure 4.2(b). shows a graph of those solutions. We can see as y grows in magnitude the stability regions real extents also grow approximately linearly.

Figure 4.3(a) reproduces the Cox and Matthew plots for ETD2 (1.3.14). The region of stability is significantly smaller than that of ERK 2 (2.1.19) and Figure 4.3(b) highlights the slower growth of the real extents of that stability region as y grows.

Figure 4.3: ETD2 (1.3.14) stability boundaries

Finally in [27], Krogstad investigated the stability regions of a number of fourth order schemes, notably his own ERK_{4} Krogstad (5.3.5), and some multi-step generalization of IF methods, also developed by him. He came to the conclusion that (5.3.5) had the largest stability region.

He also suggests that, since the generalized IF methods touch the imaginary axis only at a point, they will not perform well for equations where the eigenvalues of the linearisation lie on the imaginary axis.

4.4 Unconditional Stability of ERKs

In [32], Maset \& Zennaro studied the stability of ERK methods and, in particular, they looked at the necessary requirement for such methods to have unconditional stability. Before looking at their results, we need to introduce some notation. We will use $\mu(L)$ to represent the logarithmic norm of L, and γ for Lipschitz condition of the function $N(t,(t))$ with respect to the second parameter

$$
\begin{equation*}
\left\|N\left(t, y_{1}\right)-N\left(t, y_{2}\right)\right\| \leq \gamma\left\|y_{1}-y_{2}\right\| . \tag{4.4.1}
\end{equation*}
$$

They consider the linear system (1.3.2) at two different starting values, u_{0} and v_{0} such that

$$
\begin{equation*}
u^{\prime}(t)=L u(t)+N(t, u(t)), \quad t \geq 0, \quad u(t)=u_{0} \tag{4.4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
v^{\prime}(t)=L v(t)+N(t, v(t)), \quad t \geq 0, \quad v(t)=v_{0} \tag{4.4.3}
\end{equation*}
$$

To guarantee contractivity for the system, we require that the condition

$$
\begin{equation*}
\mu(L)+\gamma \leqslant 0 \tag{4.4.4}
\end{equation*}
$$

must hold. This implies

$$
\begin{equation*}
\|\delta(t)\| \leqslant\left\|\delta_{0}\right\|, \quad t \geqslant 0 \tag{4.4.5}
\end{equation*}
$$

where

$$
\begin{aligned}
\delta(t) & =u(t)-v(t) \\
\delta_{0} & =u_{0}-v_{0}
\end{aligned}
$$

for all u_{0} and v_{0}. Also, if we replace the \leqslant in (4.4.4) with $<$ then the system is asymptomatically stable, that is

$$
\begin{equation*}
\|\delta(t)\| \rightarrow 0 \quad t \rightarrow-\infty \tag{4.4.6}
\end{equation*}
$$

It is worth noting also, that this result, when applied to (4.1.3), reproduces the requirement (4.3.2) identified earlier.

Applying ERKs with stepsize h to the linear system at different starting values, (4.4.2) and (4.4.3), the differences

$$
\begin{aligned}
\delta_{n+1} & =u_{n+1}-v_{n+1} \\
\Delta_{n+1}^{i} & =U_{i}-V_{i}, \quad i=1, \ldots, s
\end{aligned}
$$

where

$$
\begin{aligned}
u_{n+1} & =e^{h L} u_{n}+h \sum_{i=1}^{s} b_{i}(h L) N\left(U_{i}\right) \\
U_{i} & =e^{c_{i} h L} u_{n}+h \sum_{j=1}^{i-1} a_{i j}(h L) N\left(U_{j}\right)
\end{aligned}
$$

and v_{n+1} and V_{i} are defined similarly. Then δ_{n+1} and Δ_{n+1}^{i} satisfy the following,

$$
\begin{align*}
\delta_{n+1} & =e^{h L} \delta_{n}+h \sum_{i=1}^{s} b_{i}(h L)\left[N\left(U_{i}\right)-N\left(V_{i}\right)\right] \tag{4.4.7}\\
\Delta_{n+1}^{i} & =e^{c_{i} h L} \delta_{n}+h \sum_{j=1}^{i-1} a_{i j}(h L)\left[N\left(U_{j}\right)-N\left(V_{j}\right)\right] \tag{4.4.8}
\end{align*}
$$

Let \mathcal{M} be a class of matrices closed under positive scalar multiplication. The stability properties are then studied on the class $C(\mathcal{M})$ with $L \in \mathcal{M}$. We introduce, for $\alpha \leqslant 0$, the $(1 \times v)$ vector $\bar{b}(\alpha)$ with

$$
\begin{equation*}
\bar{b}_{i}(\alpha)=\sup _{M \in \mathcal{M}, \mu(M) \leqslant \alpha}\left\|b_{i}(M)\right\|, \quad i=1, \ldots, v \tag{4.4.9}
\end{equation*}
$$

and the $(s \times s)$-matrix $\bar{A}(\alpha)$ whose elements are

$$
\begin{equation*}
\bar{a}_{i j}(\alpha)=\sup _{M \in \mathcal{M}, \mu(M) \leqslant \alpha}\left\|a_{i j}(M)\right\|, \quad i, j=1, \ldots, s \tag{4.4.10}
\end{equation*}
$$

Maset \& Zennaro then give a bound for $\left\|\delta_{n+1}\right\|$ written in terms of $\left\|\delta_{n}\right\|$ which holds when $L \in \mathcal{M}$. If

$$
\begin{gather*}
\left\|\delta_{n+1}\right\| \leqslant e^{\mu(h L)}\left\|\delta_{n}\right\|+h \gamma \sum_{i=1}^{s}\left\|b_{i}(h L)\right\|\left\|\Delta_{n+1}^{i}\right\| \tag{4.4.11}\\
\left\|\Delta_{n+1}^{i}\right\| \leqslant e^{c_{i} \mu(h L)}\left\|\delta_{n}\right\|+h \gamma \sum_{j=1}^{i-1}\left\|a_{i j}(h L)\right\|\left\|\Delta_{n+1}^{j}\right\| \tag{4.4.12}
\end{gather*}
$$

then

$$
\begin{align*}
\left\|\delta_{n+1}\right\| & \leqslant e^{h \mu(h L)}\left\|\delta_{n}\right\|+h \gamma \bar{b}(h \mu(L)) \bar{\Delta}_{n+1}, \tag{4.4.13}\\
(I-h \gamma \bar{A}(h \mu(L))) \bar{\Delta}_{n+1} & \leqslant e^{c h \mu(h L)} I_{s}\left\|\delta_{n}\right\| \tag{4.4.14}
\end{align*}
$$

Noting here that the matrix $\bar{A}(h \mu(L))$ is strictly lower triangular, they obtain the bound

$$
\begin{equation*}
\left\|\delta_{n+1}\right\| \leq \bar{S}(h \mu(L), h \gamma)\left\|\delta_{n}\right\| \tag{4.4.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{S}(\alpha, \beta):=e^{\alpha}+\sum_{k=0}^{s-1} \beta^{k+1} \bar{b}(\alpha) \bar{A}(\alpha)^{k} e^{c \alpha} 1_{v}, \quad \alpha \in \mathbb{R} \text { and } \beta \geq 0 \tag{4.4.16}
\end{equation*}
$$

and prove the following
Lemma 16. If an explicit Exponential Runge-Kutta Method (ERK) satisfies

$$
\begin{equation*}
\bar{S}(-\beta, \beta) \leq 1, \quad \beta \geq 1 \tag{4.4.17}
\end{equation*}
$$

then it is unconditionally contractive and asymptotically stable on the class $\mathcal{C}(\mathcal{M})$ with respect to the norm $\|\cdot\|$

The parameters α and β to function \bar{S} can be related back to stability plot analysis as they correspond to the variables $y=h L$ and $x=h \lambda$ respectively.

Since \bar{S} is an increasing function in it's first parameter, an unconditionally stable scheme remains that way so long as $\alpha+\beta \leq 0$. Therefore when looking at stability plots for such schemes we would expect $r=\frac{u_{n+1}}{u_{n}} \leq 1$ for all $x \leq-y$.

Example ERK

Maset and Zennaro also extend these results for the general case to the two ERKs, both of which we saw earlier (Section 2.1.3). The first, ERK ${ }_{2}$ (2.1.19),

0		I	
c_{α}	$c_{\alpha} \varphi_{1,2}$		$e^{c_{2} h L}$
	$\varphi_{1}-\frac{1}{c_{\alpha}} \varphi_{2}$	$\frac{1}{c_{\alpha}} \varphi_{2}$	

and ERK_{2} (2.1.21),

and they demonstrate that they are unconditionally stable when $c_{\alpha} \geq 1$ and $c_{\beta} \geq \frac{1}{2}$.

This result reinforces the stability region plots, see Figures 4.4(a) and 4.4(b), which show that the stability regions of the respective scheme contain the circular region $x \leq-y$ only when the conditions on c_{α} and c_{β} are met.

4.5 Stability of EGLMs

In Section 2.2 that Ostermann, Thalhammer \& Wright [38], introduced the family of EGLMs, which combine exponential explicit Runge-Kutta methods with exponential Adams-Bashforth methods.

They provide a convergence analysis for this class of schemes and use those results to construct some example methods. By applying our analysis through boundary plots to one such method, $\mathrm{EGLM}_{322} c_{2}$ (2.2.6), we can see how the many desirable properties mentioned earlier are present. Figures 4.4(c) and 4.4(d) show those plot for (2.2.6).

We can see from Figure 4.4 that the stability region of EGLM ${ }_{322} c_{2}$ (2.2.6) extends back into the negative complex plane. This is a property observed in the ERK example, but not in ETD2 plot.

Figure 4.4: $\mathrm{EGLM}_{322} c_{2}$ (2.2.6) Stability Plots

4.6 Stability of EARKs

Finally, we can apply this analysis to the new EARK schemes. In performing the analysis we use previous steps to approximate the derivatives of N needed by the methods. Figure 4.5 plots both the stability regions for $\mathrm{EARK}_{321} c_{2}$ (3.2.30). Note that the growth of the stability regions is again linear with L. In this particular case the value of N^{\prime} was approximated by $-2 N_{n-2}+\frac{1}{2} N_{n-1}+\frac{2}{1} N_{n}=N^{\prime}+O\left(h^{3}\right)$.

Figure 4.5: EARK ${ }_{321} c_{2}$ (3.2.30) Stability Plots

Comparisons with earlier methods

In getting a better handle on the comparative stabilities of the schemes seen so far, we produce some plots with the stability regions of different schemes plotted side-by-side for fixed $h L=y$. Figure 4.6 shows the two primary $3^{\text {rd }}$ order schemes; EGLM ${ }_{322} c_{2}$ (2.2.6) and EARK ${ }_{321} c_{2}$ (3.2.30) for $y=20$.

It is evident here that the EARK scheme has a smaller stability region than the EGLM. However given that EARK schemes have a lower computational cost per step over EGLMs, we can scale the EARK region by the savings in φ-vector products. This is similar to a technique used by Butcher in [8] where he scaled the stability regions relative to the number of internal stages of the classical schemes being compared. Figure 4.7 shows that new stability region and we can see now that the real axis stability extents of the EARK scheme exceed those of the EGLM scheme.

Figure 4.6: $\mathrm{EGLM}_{322} c_{2}$ (2.2.6) and EARK ${ }_{321} c_{2}$ (3.2.30) side-by-side stability regions

Figure 4.7: $\mathrm{EGLM}_{322} c_{2}$ (2.2.6) with scaled EARK ${ }_{321} c_{2}$ (3.2.30) stability region

4.7 Summary

We compared the stability region of ERK 2 (2.1.19) with that of ETD2 (1.3.14) and showed that the region for ETD2 was significantly smaller, in particular with regards to its extension into
negative complex plane. This result supported what we expected from literature; that ERKs have superior stability properties over ETDs.

By performing the same stability analysis for $\mathrm{EGLM}_{322} c_{2}$ (2.2.6) and EARK ${ }_{321} c_{2}$ (3.2.30), we observed that both families of methods also exhibited stability regions extending into the negative complex plane. This indicated that both possessed similar stability properties to those of ERKs. In addition, our study showed that the superior performance of EARKs offset their slightly weaker stability properties compared with EGLMs.

Chapter 5

Numerical Experiments

In this chapter we study the computational costs involved in implementing EIs. To do this we

- Study the CPU and memory costs associated with the φ-functions. These functions represent a bottleneck for all EIs and we look at the different approaches which have been developed to compute the matrix exponential and the related φ-functions.
- Analyse the relative per-step accuracy, and the per-step cost, of the schemes introduced earlier. We run numerical tests, plotting accuracy against stepsize, to visualise the convergence orders of a wide selection of schemes. We also analyse the computational costs involved when assuming an optimal implementation.
- Review the families of schemes from a variable stepsize perspective and we discuss any changes needed to ensure that the schemes can cope in a variable stepsize environment.
- Look at local truncation errors and the different approaches to estimating it. We use one such approach, known as embedding, to construct an EGLM and EARK scheme which produce local truncation errors estimates. We use this estimate to guide an adaptive stepsize controller.
- Implement a complete adaptive integrator and perform a comprehensive benchmark against a suite of test problems. We see that an EARK-based scheme is the best performing EI, and on large problems it outperforms Matlab's ODE15s.

All numerical experiments were performed in Matlab 2010b 64bit running on Windows 7 x64. The CPU was an Intel Core 2 Quad Q9450 clocked at 2.66 GHz and the system had 8 GB of RAM.

5.1 Test Problems

We have selected a number of test problems to help determine the relative rankings of the EIs seen so far, and demonstrate the superior performance of EAGLMs.

5.1.1 The Kuramoto-Sivashinsky Equation

The Kuramoto-Sivashinsky Equation is a 1D PDE of the form

$$
\begin{equation*}
y_{t}=-y_{x x}-y_{x x x x}-y y_{x} \tag{5.1.1}
\end{equation*}
$$

with periodic boundary conditions and with the initial condition,

$$
\begin{equation*}
y(0, x)=\cos \left(\frac{1}{16}\right)\left(1+\sin \left(\frac{1}{16}\right)\right) \tag{5.1.2}
\end{equation*}
$$

with $x \in[0,32 \pi]$. The PDE exhibits complex dynamical behaviour and which arises in a great number of applications [1]. It is an example of deterministic chaos [26].

Figure 5.1: The 1D Kuramoto-Sivashinsky Equation Solution (5.1.1)

The second-derivative term acts as an energy source and destabilises the system, while the fourth-derivative term has a stabilising effect. The non-linear term acts to transfer energy for low to high wavenumbers [26].

We avail of the EXPINT package's implementation [4, Section 4.2.3]. The code uses a Fourier spectral discritisation, which results in a diagonal L matrix. This linear part of the problem is very stiff due to the fourth derivative [13].

5.1.2 Brusselator System

One of the key test problems we use for the purpose of studying the variations in local truncation error, is the Brusselator System [21]. It models diffusion in a chemical reaction

$$
\begin{align*}
& u_{i}^{\prime}=1+u_{i}^{2} v_{i}-4 u_{i}+\alpha(N+1)^{2}\left(u_{i-1}-2 u_{i}+u_{i+1}\right) \tag{5.1.3}\\
& v_{i}^{\prime}=3 u_{i}+u_{i}^{2} v_{i}+\alpha(N+1)^{2}\left(v_{i-1}-2 u_{i}+v_{i+1}\right)
\end{align*}
$$

and is solved on the time interval $[0,10]$ with $\alpha=1 / 50$ and initial conditions,

$$
\left.\begin{array}{l}
u_{i}(0)=1+\sin \left(2 \pi x_{i}\right) \tag{5.1.4}\\
v_{i}(0)=3
\end{array}\right\} \quad \text { with } \quad x_{i}=\frac{i}{(N+1)}, \quad \text { for } i=1, \ldots, N
$$

There are $2 N$ equations in the system, but the Jacobian is banded with a constant width 5 if the equations are ordered as $u_{1}, v_{1}, u_{2}, v_{2}, \ldots$. As N increases, the problem becomes increasingly stiff.

Figure 5.2: The Brusselator System Solution (??)

Figure 5.2 shows a rendering of the solutions of u and v. Our implementation is based on Matlabs BRUSSODE.

5.1.3 The Allen-Cahn Equation

The Allen-Cahn equation is a 1D parabolic PDE

$$
\begin{equation*}
y_{t}=\lambda y_{x x}+y-y^{3}, \tag{5.1.5}
\end{equation*}
$$

with initial condition,

$$
y(0, x)=0.53 x+0.47 \sin (-1.5 \pi x)
$$

and boundary conditions,

$$
y(t,-1)=-1, \quad y(t, 1)=1
$$

Figure 5.3: The Allen-Cahn Equation (5.1.5)

Looking at the illustration of the problem in Figure 5.3 we can see that it exhibits interesting behaviour about $t=37$. Here the solution switches abruptly, from being metastable, to a lower energy state [12].

We make use of the implementation supplied by the EXPINT Matlab package [4, Section 4.2.6]. The boundary conditions are handled by defining, $y=w+x$, and working with w, giving us

$$
\begin{align*}
& w_{t}=\lambda w_{x x}+(w+x)-(w+x)^{3} \tag{5.1.6}\\
& w_{0}=0.47\left(-x_{i}+\sin \left(-1.5 \pi x_{i}\right)\right)
\end{align*}
$$

which has homogeneous boundary conditions, with $x \in[-1,1]$. The use of a Chebyshev differentiation matrix for discretising the linear part, $\lambda w_{x x}$, means that the L matrix is dense.

5.1.4 Hochbruck \& Ostermann Parabolic PDE

The main test problem we will use in fixed stepsize experiments is the Hochbruck \& Ostermann Parabolic PDE [25, Problem 6.1]

$$
\begin{equation*}
y_{t}=y_{x x}+\frac{1}{1+y^{2}}+\Phi, \tag{5.1.7}
\end{equation*}
$$

with $x \in[0,1]$, and initial condition,

$$
\begin{equation*}
y(0, x)=x(1-x), \tag{5.1.8}
\end{equation*}
$$

subject to homogeneous Dirichlet boundary conditions. The function Φ is chosen such that the exact solution is $y=x(1-x) e^{t}$. The problem is discritised in space with $n=200, \Delta x=\frac{1}{n}$,

$$
\begin{align*}
y_{i}^{\prime} & =A y+\frac{1}{1+y_{i}^{2}}+g(t) \tag{5.1.9}\\
y_{i}(0) & =\frac{x_{i}}{n}\left(1-\frac{x_{i}}{n}\right)
\end{align*}
$$

where $1 \leq i \leq n-1$, and we integrate from $t=0$ to $t=1$. We use the implementation provided by the EXPINT Matlab package [4].

5.1.5 The Reaction Diffusion Advection (RDA) 2D Equation

The 2D RDA is another stiff problem. The L matrix is a pent-diagonal, finite differences, matrix. The equation describes reaction-diffusion-advection

$$
\begin{equation*}
u_{t}=\varepsilon\left(u_{x x}+u_{y y}\right)-\alpha\left(u_{x}+u_{y}\right)+\rho u\left(u-\frac{1}{2}\right)(1-u) \tag{5.1.10}
\end{equation*}
$$

on the unit square $\Omega=[0,1]^{2}$, subject to homogeneous Neumann boundary conditions with the initial condition

$$
\begin{equation*}
u(t=0, x, y)=0.3+256(x(1-x) y(1-y))^{2} \tag{5.1.11}
\end{equation*}
$$

This problem was presented by Caliari \& Ostermann [10]. We will run our experiments for similar combinations of parameters as used by Caliari \& Ostermann.

Figure 5.4: Rendering of 2D RDA Equation with $\varepsilon=0.05, \alpha=-1, \rho=100$

Being a 2D problem, the L matrix can be very large, even for moderately coarse mesh discretisation, and depending on the integrator, can have excessive memory requirements.

5.1.6 The Gray-Scott Equation

The Gray-Scott equation represents a process known as cubic autocatalysis, and is given by the equations

$$
\left\{\begin{array}{lr}
\xrightarrow{k_{f}} A+2 B \xrightarrow{k_{1}} 3 B, & r=k_{1} a b^{2} \tag{5.1.12}\\
B \xrightarrow{k_{2}} C, & r=k_{2} b
\end{array}\right.
$$

where k_{f}, k_{1} and k_{2} are positive rate constants [22]. The model, in non-dimensional form, leads to the following system of reaction-diffusion equations.

$$
\begin{align*}
& u_{t}=D_{u} u_{x x}-k_{1} u v^{2}+k_{f}(1-u), \tag{5.1.13}\\
& v_{t}=D_{v} v_{x x}+k_{1} u v^{2}-k_{2} v \tag{5.1.14}
\end{align*}
$$

for the concentrations $u(t, x)$ and $v(t, x)$ of U and V respectively. Here $k_{f}=\alpha, k_{1}=1$ and $k_{2}=\alpha+\beta . D_{u}$ and D_{v} are the diffusion coefficients of the chemicals U and V, and are usually chosen so that the ratio $\frac{D_{u}}{D_{v}}=2$ [4].

The problem is solved on $[0, L]^{d}$, where d is the space dimension and $L=2.5$, subject to homogeneous Neumann boundary conditions. For the 1D problem, the initial conditions, with $f=-150$, are,

$$
\begin{aligned}
& u(0, x)=1-\frac{1}{2} e^{f\left(x-\frac{L}{2}\right)^{2}} \\
& v(0, x)=\frac{1}{2} e^{f\left(x-\frac{L}{2}\right)^{2}}
\end{aligned}
$$

(a) 3D Rendering

(b) Top View

Figure 5.5: The 1D Gray-Scott Equation (5.1.13) for $u(t, x)$

The initial conditions of the 2D problem are

$$
\begin{aligned}
& u(0, x, y)=1-e^{f\left(x-\frac{L}{2}\right)^{2}+\left(y-\frac{L}{2}\right)^{2}} \\
& v(0, x, y)=e^{f\left(x-\frac{L}{2}\right)^{2}+2\left(y-\frac{L}{2}\right)^{2}}
\end{aligned}
$$

and those of the 3D problem are

$$
\begin{aligned}
& v(0, x, y, z)=e^{f(x-L)^{2}+10(y-L)^{2}+10(z-L)^{2}} \\
& u(0, x, y, z)=1-v_{0} .
\end{aligned}
$$

5.2 Computing φ-functions

Problems arise in implementing Exponential Integrators when some of the eigenvalues of the matrix, A, are close to zero. The first of two of the complications that occur are rounding errors introduced into the calculation due to cancellation among the scheme coefficients. Secondly it becomes impractical to use the explicit form of the φ-functions as the matrix A is, or is close to being, singular.

In addition, calculating the exponential of a matrix is not an easy task, computationally, in its own right [36]. If the matrix exponential is computed explicitly then the resultant matrix will typically not retain any of the sparse properties of the original A, [36] making this approach unsuitable for very large matrices due to excessive storage requirements.

To tackle these difficulties a number of approaches have been developed that work with the application of the matrix exponential on a vector, $e^{A} \times v$, without generating e^{A} explicitly. This technique lends itself nicely to the large sparse matrices we expect to get from spatial discretisations of PDE's.

5.2.1 Padé approximations

Simply computing the φ-functions directly is not practical when the norm, $\|A\|$, is small, as the results will be compromised due to cancellation errors. Alternatively, one could use the Taylor expansion

$$
\begin{equation*}
\varphi_{1}(A)=1+\frac{A}{2}+\frac{A^{2}}{3!}+\frac{A^{3}}{4!}+\cdots \tag{5.2.1}
\end{equation*}
$$

and this will work well for small $\|A\|$. However when the eigenvalues of A are large, this approach proves too inaccurate. Cox \& Matthews proposed using a cut-off in terms of the eigenvalues, to switch between the two methods. They noted however that this is not always practical, in particular both methods suffer from inaccuracies around the switch-over point [13].

A well known approach when concerned with just computing the matrix exponential combines Padé approximations with repeated scaling and squaring [35]. Here the (p, q) Padé approximation to e^{A} is given by

$$
R_{p q}(A)=\left[D_{p q}(A)\right]^{-1} N_{p q}(A)
$$

where

$$
\begin{aligned}
& N_{p q}(A)=\sum_{i=0}^{p} \frac{(p+q-j)!p!}{(p+q)!j!(p-j)!} L^{i}, \\
& D_{p q}(A)=\sum_{j=0}^{q} \frac{(p+q-j)!p!}{(p+q)!j!(p-j)!}(-A)^{j}
\end{aligned}
$$

This Padé approximation alone can only be used if $\|A\|$ is sufficiently small, if this is not the case the technique becomes expensive and loses accuracy [31]. These difficulties can be controlled however by exploiting a fundamental property of the exponential function

$$
e^{A}=\left(e^{\frac{A}{m}}\right)^{m}
$$

The idea is to chose m to be a power of 2 for which $e^{\frac{A}{m}}$ can be efficiently computed. The matrix $\left(e^{A / m}\right)^{m}$ can then be calculated by repeated squaring. If m is chosen to be the smallest power of 2 such that $\frac{\|A\|}{m} \leqq 1$ then $e^{\frac{A}{m}}$ can be computed with Padé approximations.

Expanding on this method Hochbruck, Lubich \& Selhofer [24] applied this technique to the $1^{\text {st }} \varphi$-function by exploiting the property that

$$
\varphi_{1}(2 x)=\frac{\left(e^{x}+1\right) \varphi_{1}(x)}{2}
$$

For the higher φ-functions, φ_{k} when $k>1$, reversing the scaling becomes more difficult but is still possible. The implementation within the EXPINT package makes use of the relations

$$
\begin{align*}
\varphi_{2 k}(2 A) & =\frac{1}{2^{2 k}}\left[\varphi_{k}(A) \varphi_{k}(L)+\sum_{j=k+1}^{2 l} \frac{2}{(2 k-j)!} \varphi_{k}(A)\right], \tag{5.2.2}\\
\varphi_{2 k+1}(2 A) & =\frac{1}{2^{2 k+1}}\left[\varphi_{k}(A) \varphi_{k+1}(A)+\sum_{j=k+2}^{2 k+1} \frac{2}{(2 k+1-j)!} \varphi_{k}(A)+\frac{1}{j!} \varphi_{k+1}(A)\right] \tag{5.2.3}
\end{align*}
$$

to undo the scaling [4]. Unfortunately, as can be seen in Table 5.1, by using this approach the work needed to compute φ_{k} increases as k increases.

Fn.	3-point 1D FD Matrix, 512×512	5-point 2D FD Matrix, 1024×1024
φ_{1}	56.2	15.7
φ_{2}	84.3	25.3
φ_{3}	112.7	35
φ_{4}	142.1	44.9

Table 5.1: Padé timings in seconds using PHIPADE from the EXPINT package, $h=1 \times 10^{-2}$

5.2.2 Krylov Subspace Methods

Krylov subspace methods for approximating the action of a matrix exponential on a vector have been around for a long time and are seen as a very promising approach. In the late eighties and early nineties a number of authors pioneered this technique, notably Friesner, Tuckerman, Dornblaser \& Russo [17], and Gallopoulos \& Saad [18].

EXPOKIT Krylov Implementation

The popular software package, EXPOKIT [44], from Sidje provides codes in Fortran and Matlab source for performing this calculation, for both the operations of the matrix exponential and that of the first φ-function, upon a vector using the Krylov subspace approach.

The idea behind Krylov methods is to approximate the vector $\varphi_{k}(A) v$, which resides in the large space \mathbb{R}^{n}, within the smaller space \mathbb{R}^{m}. This Krylov space,

$$
\begin{equation*}
K_{m}=\operatorname{span}\left\{v, A v, A^{2} v, A^{3} v, \ldots, A^{m-1} v\right\} \tag{5.2.4}
\end{equation*}
$$

is the smaller subspace we wish to work with, but unfortunately the vectors $A^{j} v$ form a bad basis as they all point in nearly the same direction of the dominant eigenvector.

The solution is to use the Gram-Schmidt procedure to generate an orthonormal basis of the Krylov space

$$
\begin{equation*}
K_{m}=\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} \tag{5.2.5}
\end{equation*}
$$

Now taking V_{m} to be the $n \times m$ matrix whose columns are $v_{1}, v_{2}, \ldots, v_{m}$ then the $m \times m$ matrix $H_{m}=V_{m}^{T} A V_{m}$ is the projection of the action of A on the Krylov subspace. Note that the matrix H_{m} is Hessenberg. Also if the matrix A is symmetric then H_{m} is both symmetric and Hessenberg, meaning that it is tridiagonal.

The next step is to approximate $\varphi_{k}(A) v$ by $\varphi_{k}\left(V_{m} H_{m} V_{m}^{T}\right) v$. Since we know that $V_{m}^{T} V_{m}=I_{m}$ and $V_{m} V_{m}^{T} v=v$ we have

$$
\begin{equation*}
\varphi_{k}\left(V_{m} H_{m} V_{m}^{T}\right) v=V_{m} \varphi_{k}\left(H_{m}\right) V_{m}^{T} v \tag{5.2.6}
\end{equation*}
$$

Additionally we note that $V_{m}^{T} v=\beta e_{1}$, where $\beta=\|v\|$ and e_{1} is the first standard basis vector, which leads us finally to the approximation

$$
\begin{align*}
\varphi_{k}(A) v & \approx \varphi_{k}\left(V_{m} H_{m} V_{m}^{T}\right) v \tag{5.2.7}\\
& \approx \beta V_{m} \varphi_{k}\left(H_{m}\right) e_{1}
\end{align*}
$$

For example a 1024×1024 matrix from a standard 3-point finite-differences discritisation,

$$
A=1025^{2}\left(\begin{array}{ccccc}
-2 & 1 & & & \\
1 & -2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 & 1 \\
& & & 1 & -2
\end{array}\right)
$$

For A the EXPOKIT Krylov code constructs the following $m \times m$ projection matrix of the action of A onto the Krylov subspace.

$$
H_{m}=\left(\begin{array}{cccccccccc}
-0.001 & 0.0004 & & & & & & 1 & 0 & 0 \\
0.0004 & -1.23 & 11.33 & & & & & 0 & 0 & 0 \\
& 11.33 & -2 \alpha & \alpha & & & & & & \\
& & \alpha & -2 \alpha & \alpha & & & & \\
& & & \ddots & \ddots & \ddots & & \vdots & \vdots & \vdots \\
& & & & \alpha & -2 \alpha & \alpha & & \\
& & & & & \alpha & -2 \alpha & 0 & 0 & 0 \\
& & & & & & 0 & 0 & 1 & 0 \\
& & & & & & & 0 & 0 & 1 \\
& & & & & & & & 0 & 0
\end{array}\right), \quad \alpha=\frac{1025^{2}}{10000}
$$

where m, the user specified subspace dimension, is in this case 45 .

PHIPM Krylov Implementation

The EXPOKIT implementation is limited by its use of a fixed Krylov subspace dimension and by the fact that it can only be used to compute φ_{1}. This means that the user is required to be able to estimate the optimal subspace dimension prior to using the methods, in addition the lack of support for higher φ-function restricts its use to the $1^{\text {st }}$ order ETD scheme.

To tackle the first limitation Hochbruck, Lubich \& Selhofer [24] proposed an approach to dynamically adapt the size of the subspace. In a recent paper, Niesen \& Wright developed a Krylov method along with accompanying Matlab code for calculating e^{A} and the higher order φ-functions [37]. This implementation, which we refer to as PHIPM, addresses a number of the shortcomings of the EXPOKIT implementation.

Their solver combines time-stepping ideas [44] with the approach proposed in [24] for adapting the subspace dimension. Crucially the PHIPM code works on a full linear combina-
tion of φ-functions upon input vectors v_{0}, \ldots, v_{p},

$$
\begin{equation*}
e^{A} v_{0}+\varphi_{1}(A) v_{1}+\varphi_{2}(A) v_{2}+\cdots+\varphi_{p}(A) v_{p} \tag{5.2.8}
\end{equation*}
$$

during a single call to the code. This allows it to compute the result of an entire stage of an exponential scheme very efficiently. Table 5.2 presents some computational timings for two common problem matrices. The final row, "All", refers to the calculation of a full linear combination up to φ_{4},

$$
\begin{equation*}
e^{h L} v_{0}+h \varphi_{1}(h L) v_{1}+h^{2} \varphi_{2}(h L) v_{2}+h^{3} \varphi_{3}(h L) v_{3}+h^{4} \varphi_{4}(h L) v_{4} \tag{5.2.9}
\end{equation*}
$$

(a) 3-point 1D FD Matrix, 512×512

Fn.	Error	Timing
$h \varphi_{1}$	2.4026×10^{-15}	0.108
$h^{2} \varphi_{2}$	4.248×10^{-17}	0.094
$h^{3} \varphi_{3}$	9.7932×10^{-17}	0.103
$h^{4} \varphi_{4}$	1.0567×10^{-16}	0.071
All	1.0021×10^{-12}	0.118

(b) 5-point 2D FD Matrix, 1024×1024

Fn.	Error	Timing
$h \varphi_{1}$	1.9255×10^{-16}	0.004
$h^{2} \varphi_{2}$	5.4287×10^{-16}	0.007
$h^{3} \varphi_{3}$	1.1915×10^{-15}	0.003
$h^{4} \varphi_{4}$	1.9057×10^{-15}	0.006
All	1.6653×10^{-13}	0.004

Table 5.2: PHIPM at tolerance 1×10^{-13} with $h=1 \times 10^{-2}$

5.2.3 Real Leja Points Method

Krylov subspace methods are a class of polynomial methods. An alternative class of polynomial methods is based on direct interpolation or approximation of the corresponding scalar analytic function on the spectrum of the relevant matrix.

To compute the matrix exponential through the use of polynomial methods, denote the characteristic polynomial of A by $c(z)$ where

$$
c(z)=\operatorname{det}(z I-A)=z^{n}-\sum_{k=0}^{n-1} c_{k} z^{k}
$$

From the Cayley-Hamilton theorem, which states that every square matrix is annihilated by its characteristic polynomial, we can say that $c(A)=0$ and hence that

$$
A^{n}=c_{0} I+c_{1} A+\cdots+c_{n-1} A^{n-1}
$$

It follows that any power of A can be expressed in terms of I, A, \ldots, A^{n-1}

$$
A^{k}=\sum_{j=0}^{n-1} \beta_{k j} A^{j}
$$

This implies that $e^{t A}$ is a polynomial in A with analytic coefficients in t

$$
\begin{aligned}
e^{t L}=\sum_{k=0}^{\infty} \frac{t^{k} A^{k}}{k!} & =\sum_{k=0}^{\infty} \frac{t^{k}}{k!}\left[\sum_{j=0}^{n-1} \beta_{k j} A^{j}\right] \\
& =\sum_{j=0}^{n-1}\left[\sum_{k=0}^{\infty} \beta_{k j} \frac{t^{k}}{k!}\right] A^{j}
\end{aligned}
$$

We are then required to generate the coefficients $\beta_{k j}$. Alternatively, if we can generate another set of matrices $\left\{A_{0}, \ldots, A_{n-1}\right\}$ which span the same subspace as I, A, \ldots, A^{n-1} then the analytic functions β_{j} exist such that

$$
\begin{equation*}
e^{t A}=\sum_{j=0}^{n-1} \beta_{j}(t) A_{j} \tag{5.2.10}
\end{equation*}
$$

which may be easier to generate.

Bergamaschi \& Vianello compared Chebyshev series expansions against the then existing Krylov based methods for the matrix exponential of large, sparse, symmetric matrices. They noted that the Chebyshev series approach represented a viable alternative to Krylov methods highlighting in particular the inherent simplicity of Chebyshev, which opens the door to efficient implementations and optimising storage requirements [3].

Later Bergamaschi, Vianello \& Caliari looked at applying polynomial methods to the φ functions. They proposed and analysed the Real Leja Points Method (ReLPM) approach which uses pseudo-spectral estimates via families of confocal ellipses.

The ReLPM code estimates the spectral focal interval by Arnoldi approximation or Gershgorin's theorem, either of which will provide a polynomial approximation with similar behaviour [11]. The polynomial is then interpolated via Newton interpolation, not at uniform points but rather on real Leja sequences of the corresponding focal intervals. This guarantees maximal, and therefore, superlinear convergence [2].

The three authors together with Martínez, then compared the ReLPM method against the Krylov implementation from EXPOKIT and showed superior performance in all tests [2].

Caliari \& Ostermann employed the ReLPM method in Rosenbrock-type integrators up to order 4. They presented numerical tests in both Matlab and FORTRAN demonstrating excellent performances [10]. The Matlab implementation tested is the one we used in our own numerical experiments. It is suitable for computing $\varphi_{k}(L) v$ products for $k=1,2,3,4$.
(a) 3-point 1D FD Matrix, 512×512

Fn.	Error	Timing
$h \varphi_{1}$	1.3807×10^{-13}	0.138
$h^{2} \varphi_{2}$	6.0957×10^{-14}	0.146
$h^{3} \varphi_{3}$	1.7204×10^{-15}	0.154
$h^{4} \varphi_{4}$	4.3039×10^{-15}	0.161
All	1.9003×10^{-12}	0.609

(b) 5-point 2D FD Matrix, 1024×1024

Fn.	Error	Timing
$h \varphi_{1}$	3.4694×10^{-17}	0.011
$h^{2} \varphi_{2}$	1.0156×10^{-16}	0.012
$h^{3} \varphi_{3}$	7.0255×10^{-17}	0.014
$h^{4} \varphi_{4}$	1.6887×10^{-15}	0.015
All	4.5519×10^{-14}	0.05

Table 5.3: ReLPM at tolerance 1×10^{-13} with $h=1 \times 10^{-2}$

5.2.4 Contour Integration

Polynomial based methods are not the only techniques being developed. One alternative approach is concerned with using ideas from complex analysis. Kassam \& Trefethen looked at evaluating

$$
\begin{equation*}
\varphi_{k}(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\varphi_{k}(s)}{s-z} d s \tag{5.2.11}
\end{equation*}
$$

over a contour Γ in the complex plane [26].

The contours they worked with were circles of radius 1 centered on z far away from the origin. In the matrix case the contour must enclose the eigenvalues of z. The technique can be generalised to the non-diagonal matrices

$$
\begin{equation*}
\varphi_{k}(z)=\frac{1}{2 \pi i} \int_{\Gamma} \varphi_{k}(z)(s I-A)^{-1} d s \tag{5.2.12}
\end{equation*}
$$

However the amount of computational work becomes greatly increased as a number of matrix inverses must be calculated.

Their approach can also be extended to the more desirable action of the φ-functions upon a vector by evaluating

$$
\begin{equation*}
\varphi_{k}(z) b=\frac{1}{2 \pi i} \int_{\Gamma} \varphi_{k}(z)(s I-A)^{-1} b d s \tag{5.2.13}
\end{equation*}
$$

The matrix inverses are still needed for non-diagonal matrices.

Kassam \& Trefethen concentrated on a constant time stepping exponential integrator where the φ-functions were explicitly evaluated. As such, the computationally expensive work only needed to be done once prior to the main time-stepping loop. Crucially, this approach does not extend to the variable-step case, where the matrix L can change at each time step.

The circular contours used by Kassam \& Trefethen are not the only types which have been looked at. For non-diagonal matrices, alternative contours which enclose the spectrum of the
matrix are necessary. Here, it is important to note that, in the case of the matrix exponential function, the integral

$$
\begin{equation*}
f(t)=\frac{1}{2 \pi i} \int_{\Gamma} e^{z t} F(z) d z \tag{5.2.14}
\end{equation*}
$$

where

$$
F(z)=(z I-A)^{-1} f_{0}
$$

is also that of the inverse Laplace transform

It is known as the Bromwich integral where Γ, the contour of integration is initially the Bromwich line $\operatorname{Re}(z)=\sigma$. The parameter σ should be large enough such that all the eigenvalues of A lie in the half-plane $\operatorname{Re}(z) \leq \sigma$ [46].

As it is, (5.2.14) is not suitable for numerical integration. One issue here is that the exponential factor is highly oscillatory on the Bromwich line. Secondly $F(z)$ typically decays slowly.

Originally, Talbot suggested solving these issues by deforming the Bromwich line into a contour and presented an approach based on a cotangent contour which can be expressed as

$$
\begin{equation*}
\gamma: z(\theta)=\sigma+\mu(\theta \cot \theta+v i \theta), \quad-1 \pi \leqslant \theta \leqslant \pi \tag{5.2.15}
\end{equation*}
$$

Talbot also devised a numerical method for the inversion using trapezoidal and midpoint rules [45].

Weideman [46] optimised Talbot's method by finding near to optimal parameters to define a closely related contour

$$
\begin{equation*}
\Gamma: \quad z(\theta)=\sigma+\mu\left(1+\frac{2 \theta^{2}}{\theta^{2}-\pi^{2}}+v i \theta\right), \quad-1 \pi \leqslant \theta \leqslant \pi \tag{5.2.16}
\end{equation*}
$$

This contour is mentioned in Talbot's original paper [45] and is easier to analyse, though it is noted that Talbot's contour offers superior accuracy.

Later, Trefethen \& Weideman looked at two alternative contours; a parabolic and a hyperbola, and they determined the optimal parameters to define these contours [47]. The convergence achieved with these near optimal parameters for the cotangent, parabolic and hyperbola contours are $O\left(2.85^{-N}\right), O\left(3.20^{-N}\right)$ and $O\left(3.89^{-N}\right)$ respectively for the trapezoid rule.

Rational Approximations

In [30] Ya Yan Lu proposed the use of uniform rational Chebyshev approximations. For the matrix exponential case, the method computes the largest eigenvalue of T, λ_{1}, and then approximates e^{T} by a Chebyshev rational approximation of $e^{T-\lambda_{1} I}$, seeing as

$$
e^{T}=e^{\lambda_{1}} e^{T-\lambda_{1} I}
$$

and then calculating e^{A} by

$$
\begin{equation*}
e^{A}=Q e^{T} Q^{T} \tag{5.2.17}
\end{equation*}
$$

Lu extends this approach in [31] to computing the φ functions, though still only for symmetric matrices.

Schmelzer, Trefethen \& Weideman investigated the use of this technique to optimise the more general case of arbitrarily shaped contours. They claim that, when using rational approximations, a convergence rate approximately twice as fast, $O\left(9.28903^{-N}\right)$, can be achieved. Some numerical results to support that claim can be seen in Table 5.4, which compares the presented Matlab code for contour integration [41, Figure 3.2] against code for the method of best rational approximations [41, Figure 4.4].

Matrix Dimension	Contour Integration	Rational Approximations
2401×2401	0.48	0.23
9801×9801	2.35	1.04
39601×39601	12.79	5.66

Table 5.4: Computational timings for $e^{L} v$ in seconds

However, there is a caveat; the rational approximations, though faster in a number of situations, are noted to be sensitive to small changes in the problem type or parameter [41].

A weakness identified by Lu is that, for best rational approximations the coefficients are hard to compute. However Schmelzer, Trefethen \& Weideman utilise the Carathéodory-Fejér method to produce approximate functions to the true best rational approximations. The approximate functions are accurate enough that they can be considered exact in practise. They present, in that paper, a Matlab function for computing e^{A}.

Schmelzer \& Trefethen adapted this Matlab code to compute the φ_{k} functions making the approach applicable to Exponential Integrators [42]. As it is common within the Exponential Integrators to require the matrix vector product for several φ-functions they suggest the reuse of common poles for $\varphi_{1}, \ldots, \varphi_{k}$. Using that approach the number of $L U$ decompositions can be reduced by a factor of 2 .

They make use of a recurrence relation

$$
\begin{equation*}
r_{(l+k)}(z)=\sum_{j=1}^{n} \frac{c_{j} z_{j}^{-1}}{z-z_{j}}, \quad k \in \mathbb{Z} \tag{5.2.18}
\end{equation*}
$$

for rational approximation using common poles. Though not optimal, the common poles are proved to be sufficiently so on the negative real axis. In numerical experiments, they note an actual typical increase of efficiency by a factor of 2 to 3.5 [42].

Nonetheless, it must be emphasised that in variable step integration, for non-diagonal matrices, a number of matrix inverses must be computed at each time-step. In our numerical experiments one can see that this is a crucial weakness of the approach and for a number of problems it is simply inappropriate to use.
(a) 3-point 1D FD Matrix, 512×512

Fn.	Error	Timing
$h \varphi_{1}$	9.4039×10^{-15}	0.003
$h^{2} \varphi_{2}$	6.1826×10^{-15}	0.001
$h^{3} \varphi_{3}$	7.7083×10^{-16}	0.001
$h^{4} \varphi_{4}$	1.9599×10^{-16}	0.001
All	1.6560×10^{-12}	0.007

(b) 5-point 2D FD Matrix, 1024×1024

Fn.	Error	Timing
$h \varphi_{1}$	1.1345×10^{-15}	0.101
$h^{2} \varphi_{2}$	9.5589×10^{-15}	0.045
$h^{3} \varphi_{3}$	1.1189×10^{-15}	0.033
$h^{4} \varphi_{4}$	2.8185×10^{-16}	0.022
All	9.9032×10^{-14}	0.201

Table 5.5: Rational Approximations with $h=1 \times 10^{-2}$

5.2.5 Conclusions

Having put the different approaches to φ-functions computations through a number of numerical tests we can begin to draw some concrete conclusions on their relative performances. The crucial observation which comes from Table 5.1, is that attempting to compute the matrix exponential or φ-functions explicitly is not at all practical and this supports the existing literature on the subject. In addition to the excessive CPU time costs there is the issue of memory usage and indeed the 1024×1024 pent-diagonal matrix from the 2D RDA problem was at the limit of what our desktop PC could work with.

Clearly the way forward is to follow the recommended approach of working with the operation of the φ-functions upon a vector. Tables $5.2,5.3$ and 5.5 look at three competing proposals for this approach. The PHIPM code proved to be the most robust, showing very consistent performance. It also introduced the novel approach of working on a full linear combination of φ-functions upon an input vector. This could possibly be applied to the two other techniques which would put their experiments for the final, linear combination, entries of Tables 5.3 and 5.5 on a more level playing field. Such a modification however is beyond the scope of our investigation.

The conclusion which we can draw about the ReLPM package is that it shows superior performance over that of EXPOKIT and of the Rational Approximations approach. However it does not compete as well against PHIPM. The Rational Approximations tests show very good, indeed, excellent performances. They are, however a bit deceptive as the tabulated timings are
restricted to the moderately-sized matrices which we were limited to in testing against Padé results. This hides the significant slowdown experienced as the matrix sizes grow.

For the final conclusions we will present comparison plots for four different L matrices, each representative of a particular type of PDE discretisation.

- Figure 5.6 tests a real tri-diagonal matrix. This matrix is the result of a finite difference discretisation of the 1D Hochbruck \& Ostermann Parabolic PDE (5.1.9).
- Figure 5.7 tests a real pent-diagonal matrix. This matrix is the result of a finite difference discretisation of the 2D RDA Equation (5.1.10).
- Figure 5.8 tests a complex diagonal matrix. This matrix is the result of a Fourier spectral discritisation of the Kuramoto-Sivashinsky Equation (5.1.1).
- Figure 5.9 tests a dense real matrix. This matrix is a Chebyshev differentiation matrix from the Allen-Cahn equation (5.1.6).

From these plots, we can clearly identify the relative rankings between the approaches, which demonstrate PHIPM to be the most efficient followed closely by the ReLPM implementation.

Figure 5.6: φ Timings for the Hochbruck \& Ostermann Parabolic PDE, $\mathrm{h}=0.001$

Figure 5.7: φ Timings for the 2D RDA Equation, $\mathrm{h}=0.001$

Figure 5.8: φ Timings for the Kuramoto-Sivashinsky Equation, $\mathrm{h}=0.001$

Figure 5.9: φ Timings for the Allen-Cahn Problem, $\mathrm{h}=0.001$

5.3 Convergence Order

It is important to verify the analytically derived order conditions for the various EI families. To do this, we run a number of fixed stepsize experiments against the 1D Hochbruck \& Ostermann Parabolic PDE (5.1.9), a test problem indicative of the type of real world problem that we are interested in. By comparing schemes over the same number of time steps and stepsizes, we can get a very reliable, relative, measure of their accuracy and convergence properties. In all of these experiments, we will include the ETD Euler (1.3.13) scheme which will serve to represent a baseline, $2^{\text {nd }}$ order solution.

5.3.1 Two-Stage ERKs

We return to the two families of 2-stage ERKs introduced in Section 2.1.3, which we saw were also presented in [25]. These families are:

- ERK $_{2}$ (2.1.19)

represents a one-parameter family of $2^{\text {nd }}$ order ERKs. Schemes constructed from this family require the computation of two φ-functions for $c_{2}=1$, and three when $c_{2} \neq 1$.
- ERK_{2} (2.1.21)

is less computationally expensive as it does not make use of φ_{2}. However, the schemes derived for this family do not achieve full $2^{\text {nd }}$ order.

Both of these methods were presented earlier by Strehmel \& Weiner who showed them to be B-consistent of order 1. B-consistency, together with B-stability, is necessary for B-convergence, which is a convergence property based on the one-side Lipschitz condition

$$
\begin{equation*}
\left\langle f\left(t, y_{1}\right)-f\left(t, y_{2}\right), y_{1}-y_{2}\right\rangle \leq \gamma\left\|y_{1}-y_{2}\right\|^{2} . \tag{5.3.1}
\end{equation*}
$$

Frank, Schneid \& Ueberhuber introduced B-convergence, which permits the derivation of uniform global error bounds independent of the stiffness of the considered problem [16]. See Appendix A. 2 for the definitions of these properties.

5.3.2 Three-Stage ERKs

Presented with the 2-stage ERKs in [25], are two families of 3-stage ERKs:

- ERK_{3} [25, Scheme 5.8]

- ERK_{3} [25, Scheme 5.9]

0				I
c_{2}	$c_{2} \varphi_{1,2}$			$e^{c_{2} h L}$
c_{3}	$c_{3} \varphi_{1,3}-\alpha$	α		$e^{c_{3} h L}$
	$\varphi_{1}-\left(\frac{\gamma}{\beta}-\frac{1}{\beta}\right) \varphi_{2}$	$\frac{\gamma}{\beta} \varphi_{2}$	$\frac{1}{\beta} \varphi_{2}$	

$$
\begin{aligned}
& \gamma=\left(3 c_{3}^{2}-2 c_{3}\right) /\left(2 c_{2}-3 c_{2}^{2}\right) \\
& \alpha=\gamma c_{2} \varphi_{2,2}+\frac{c_{3}^{2}}{c_{2}} \varphi_{2,3} \\
& \beta=\gamma c_{2}+c_{3}
\end{aligned}
$$

Both of these families require five distinct φ-functions. Though (5.3.2) and (5.3.3) are families of 3-stage schemes, we saw in Section 2.1 that they only achieve weak $3^{\text {rd }}$ order (Definition 4).

Figure 5.10: Fixed step integration of Problem 5.1.9

Figure 5.10 shows the fixed step-size results, plotting step-size against L_{∞}-norm of error. It compares the two 2-stage (2.1.19, 2.1.21), and the two 3-stage (5.3.2, 5.3.3) schemes. The plot highlights clearly that ERK_{2} (2.1.21) does not achieve the same degree of accuracy as (2.1.19).

We can also determine from the slopes of the plots that schemes $E R K_{3}$ (5.3.2) and (5.3.3) outperform the $2^{\text {nd }}$ order schemes in terms of convergence order and accuracy. This highlights that weak $3^{\text {rd }}$ order convergence still provides a performance advantage.

Computational Cost

What is not clear from this type of plot however is the cost per step differences between the various schemes. We could plot the schemes against CPU time rather than stepsize, to get a relative measure of the trade-off between accuracy and computational cost. In doing so, however, it is crucial to ensure that we are using the most optimal implementation for each scheme. Any repetitions within the scheme tableau can represent opportunities for optimisation, which a naive implementation will miss. Added to this is the complication that, for any given scheme, the most efficient procedure for computing a single step depends on the specific method used to evaluate the φ-functions.

The solution adopted here is to rate the CPU cost of each scheme in terms of a count of the number of the most expensive operations that need to be performed at each time step. We saw in Section 5.2 that the φ-functions themselves represent that expensive computational operation. To get a measure of the cost of each method we analysed them under each of the main categories for φ-function evaluation.

- Explicit Evaluation. This is the approach used by the EXPINT package, which itself relies on Padé approximations. When the φ-functions are computed explicitly, they can be reused for a number of matrix-vector products at negligible cost. As such, a count of the number of distinct matrix exponentials and φ-functions gives us a very good relative indicator of a schemes complexity.

We will take into account a key optimisation applicable to the majority of schemes. We utilise the identity

$$
\begin{equation*}
e^{c_{i} h L} \times y_{n}+h c_{i} \varphi_{1, i}(h L) \times v=y_{n}+h c_{i} \varphi_{1, i}(h L) \times\left(L y_{n}+v\right) \tag{5.3.4}
\end{equation*}
$$

to save us from having to perform the matrix-exponential by a vector operation, (expm \times vector) and this gives a significant performance boost.

- $\varphi \times$ vector Operations. This approach was taken by the EXPOKIT Krylov code as well as the ReLPM and Contour Integration techniques. Here there is a possible need to compute a $\varphi \times$ vector product with the same φ-function at two different stages within a step. Therefore, the number of distinct φ-functions represents only a lower bound on the estimated number of operations necessary to compute one step. In practice, each scheme must be
considered separately to determine the true, optimal, number of operations needed. A pseudo code example illustrates this procedure,

```
1: \(K_{2} \leftarrow N\left(t_{n}+c_{2} h, e^{c_{2} h L} \times y_{n}+h c_{2} \varphi_{1,2} \times N_{n}\right)\)
2: \(K_{3} \leftarrow N\left(t_{n}+\frac{2}{3} h, e^{\frac{2}{3} h L} \times y_{n}+h\left[\frac{2}{3} \varphi_{1,3} \times N_{n}+\frac{4}{9 c_{2}} \varphi_{1,3} \times\left(K_{2}-N_{n}\right)\right]\right)\)
3: \(y_{n+1} \leftarrow N\left(t_{n}+h, e^{h L} \times y_{n}+h\left[\frac{2}{3} \varphi_{1} \times N_{n}+\varphi_{2} \times\left(K_{3}-\frac{3}{2} N_{n}\right)\right]\right)\)
```

This algorithm performs a single step for ERK_{3} (5.3.2). There are a total of seven expensive matrix-vector operations. By incorporating the (5.3.4) optimisation, we can reduce this to five operations in total,

```
\(: K_{2} \leftarrow N\left(t_{n}+c_{2} h, y_{n}+h c_{2} \varphi_{1,2} \times\left(L y_{n}+N_{n}\right)\right)\)
2: \(K_{3} \leftarrow N\left(t_{n}+\frac{2}{3} h, y_{n}+\frac{2}{3} h \varphi_{1,3} \times\left(L y_{n}+N_{n}\right)+h \frac{4}{9 c_{2}} \varphi_{1,3} \times\left(K_{2}-N_{n}\right)\right)\)
3: \(y_{n+1} \leftarrow N\left(t_{n}+h, y_{n}+h \varphi_{1} \times\left(L y_{n}+N_{n}\right)+h \varphi_{2} \times\left(\frac{3}{2} K_{3}-N_{n}\right)\right)\)
```

- $\varphi \times$ vector Linear Combinations Finally, this is the technique introduced by the PHIPM code, which computes a full linear combination of φ computations in one call to the code. This means each stage can be completed in a single operation. Using ERK ${ }_{3}$ (5.3.2) again as an example, we present a pseudo code algorithm,

```
1: \(M_{1} \leftarrow\left(\begin{array}{ll}y_{n} & N_{n}\end{array}\right)\)
2: \(K_{2} \leftarrow N\left(t_{n}+c_{2} h\right.\), phipm \(\left.\left(M_{1}\right)\right)\)
3: \(M_{2} \leftarrow\left(\begin{array}{lll}y_{n} & N_{n} & \frac{-1}{9 c_{2}} N_{2}+\frac{1}{9 c_{2}} K_{2}\end{array}\right)\)
4: \(K_{3} \leftarrow N\left(t_{n}+c_{2} h\right.\), phipm \(\left.\left(M_{2}\right)\right)\)
5: \(M_{3} \leftarrow\left(\begin{array}{lll}y_{n} & N_{n} & \frac{-3}{2} N_{2}+\frac{3}{2} K_{2}\end{array}\right)\)
6: \(y_{n+1} \leftarrow \operatorname{phipm}\left(M_{3}\right)\)
```

The operations to construct the M_{i} matrices are computationally negligible in comparison to the phipm operation. Therefore, under this performance measure, we simply count the number of stages.

Table 5.6 summarises the computational cost analysis for the ETD Euler (1.3.13) and the four ERK schemes (2.1.19, 2.1.21, 5.3.2, 5.3.3), under each of the three categories of φ-function evaluation. ETD Euler is 1 -stage and requires only one φ-function. It's computational cost therefore, is 1 under each of the categories and it serves as an excellent baseline. The cost should be interpreted as a relative measure of the CPU time needed to take a time step. For example, under the explicit evaluation of φ-functions, we would expect ERK ${ }_{3}$ (5.3.2) to take 2.5 (ratio of distinct φ^{\prime} s is 5:2) times longer to complete the same number of time steps as ERK ${ }_{2}$ (2.1.19).

We can test this cost analysis experimentally by performing CPU timings. Table 5.7 shows the CPU timings, in seconds, for the 2-stage and 3-stage ERKs for a fixed stepsize experiment. Table 5.7 also shows the same experiment with the measurements normalised against the ETD Euler timings. Figure 5.11 plots, for those same schemes, an accuracy against CPU timing com-

Scheme		Explicit Evaluation	$\varphi \times$ vector	Linear Combination
ETD Euler	$(1.3 .13)$	1	1	1
ERK $_{2}$	$(2.1 .19)$	3	3	2
ERK $_{2}$	$(2.1 .21)$	2	2	2
ERK $_{3}$	$(5.3 .2)$	5	5	3
ERK $_{3}$	$(5.3 .3)$	6	6	4

Table 5.6: Relative performance measure for the 2 and 3-Stage ERKs

(a) CPU Timings (secs)					(b) Normalised CPU Timings		
Scheme		phipade	ReLPM	phipm	phipade	ReLPM	phipm
ETD Euler	(1.3.13)	254	6.3	4.7	1	1	1
ERK $_{2}$	(2.1.19)	864	22.8	7.4	3.4	3.6	1.56
ERK $_{2}$	(2.1.21)	482	11.9	8.5	1.9	1.88	1.77
ERK $_{3}$	(5.3.2)	1405	39.2	10.4	5.5	6.18	2.2
ERK $_{3}$	(5.3.3)	1635	49	10	6.4	7.72	2.1

(a) CPU Timings (secs)
(b) Normalised CPU Timings

Table 5.7: Timings for 256 Timesteps, with ETD Euler and the 2 \& 3-Stage ERKs
parison. The implementation used to compute the φ-functions for the plot is ReLPM from Section 5.2.3.

Figure 5.11: CPU Timings against Global Error for Problem 5.1.9

5.3.3 Four-Stage ERKs

Our interest in ERK methods has mostly been with the 4 -stage, weakly $4^{\text {th }}$ order schemes. Three such schemes, well established in the literature, are

- That of Krogstad for whom the stability of the scheme took high priority [27],

$$
\begin{array}{c|cccl}
0 & & & \tag{5.3.5}\\
\frac{1}{2} & \frac{1}{2} \varphi_{1,2} & & \\
\frac{1}{2} & \frac{1}{2} \varphi_{1,3}-\varphi_{2,3} & \varphi_{2,3} & & \\
1 & \varphi_{1,4}-2 \varphi_{2,4} & 0 & 2 \varphi_{2,4} & \\
\hline & \varphi_{1}-3 \varphi_{2}+4 \varphi_{3} & 2 \varphi_{2}-4 \varphi_{3} & 2 \varphi_{2}-4 \varphi_{3} & -\varphi_{2}+4 \varphi_{3}
\end{array}
$$

- The scheme of Cox-Matthews which takes the $3^{\text {rd }}$ order EI extension of the standard $4^{\text {th }}$ order RK, and tweaks it to make a $4^{\text {th }}$ order ERK [13],

$$
\begin{array}{c|cccl}
0 & & & \tag{5.3.6}\\
\frac{1}{2} & \frac{1}{2} \varphi_{1,2} & & \\
\frac{1}{2} & 0 & \frac{1}{2} \varphi_{1,3} & \\
1 & \frac{1}{2} \varphi_{1,3}\left(\varphi_{0,3}-1\right) & 0 & \varphi_{1,3} & \\
\hline & \varphi_{1}-3 \varphi_{2}+4 \varphi_{3} & 2 \varphi_{2}-4 \varphi_{3} & 2 \varphi_{2}-4 \varphi_{3} & 4 \varphi_{3}-\varphi_{2}
\end{array}
$$

- The scheme of Strehmel and Weiner who proved that the method is B-consistent of order two [4],

0				
$\frac{1}{2}$	$\frac{1}{2} \varphi_{1,2}$			
$\frac{1}{2}$	$\frac{1}{2} \varphi_{1,3}-\frac{1}{2} \varphi_{2,3}$	$\frac{1}{2} \varphi_{2,3}$		
1	$\varphi_{1,4}-2 \varphi_{2,4}$	$-2 \varphi_{2,4}$	$4 \varphi_{2,4}$	
	$\varphi_{1}-3 \varphi_{2}+4 \varphi_{3}$	0	$4 \varphi_{2}-8 \varphi_{3}$	$-\varphi_{2}+4 \varphi_{3}$

Each of these schemes is weakly $4^{\text {th }}$ order.

Also benchmarked is our own scheme, $\mathrm{ERK}_{4} c_{2} c_{3}$ (2.1.45), which is parametrised with two free variables, c_{2} and c_{3},

0				
c_{2}	a_{21}			
c_{3}	a_{31}	a_{32}		
c_{2}	a_{41}	a_{42}	0	
	b_{1}	b_{2}	b_{3}	b_{4}

$$
\begin{aligned}
a_{21} & =c_{2} \varphi_{1,2} & & \\
a_{31} & =c_{3} \varphi_{1,3}-\frac{c_{3}^{2}}{c_{2}} \varphi_{2,3} & a_{32} & =\frac{c_{3}^{2}}{c_{2}} \varphi_{2,3} \\
a_{41} & =c_{2} \varphi_{1,4}-2 c_{2} \varphi_{2,4} & a_{42} & =2 c_{2} \varphi_{2,4} \\
b_{1} & =\varphi_{1}-\frac{c_{3}+c_{2}}{c_{2} c_{3}} \varphi_{2}+\frac{2}{c_{2} c_{3}} \varphi_{3} & b_{2} & =\frac{c_{3}}{2 c_{2} c_{3}-2 c_{2}^{2}} \varphi_{2}-\frac{1}{c_{2} c_{3}-c_{2}^{2}} \varphi_{3} \\
b_{3} & =-\frac{c_{2}}{c_{3}^{2}-c_{2} c_{3}} \varphi_{2}+\frac{2}{c_{3}^{2}-c_{2} c_{3}} \varphi_{3} & b_{4} & =\frac{c_{3}}{2 c_{2} c_{3}-2 c_{2}^{2}} \varphi_{2}-\frac{1}{c_{2} c_{3}-c_{2}^{2}} \varphi_{3}
\end{aligned}
$$

The scheme is strongly $3^{\text {rd }}$ order. We test the scheme with two choices of parameters

$$
\begin{align*}
& c_{2}=1, \tag{5.3.8a}\\
& c_{3}=\frac{1}{2} \tag{5.3.8b}\\
& c_{2}=\frac{1}{2},
\end{align*} c_{3}=1 .
$$

As we remarked in Section 2.1, for the choice of parameters (5.3.8b), the scheme achieves weak $4^{\text {th }}$ order.

Numerical Experiment

Again we perform a numerical experiment with the Hochbruck-Ostermann equation (5.1.9)

Figure 5.12: Fixed stepsize ERKs for Problem 5.1.9

Figure 5.12 shows the fixed step-size results for the 4 -stage schemes, along with some of the earlier schemes for comparison. Scheme $\mathrm{ERK}_{4} c_{2} c_{3}$ was included twice, with two different sets of parameters, to highlight the improvement that a high weak-order scheme can achieve over an exclusively lower strong-order scheme. It is clear from this plot that the schemes ERK ${ }_{4}$ Krogstad and $E R K_{4}$ Strehmel-Weiner are the superior performers in terms of convergence order for this test problem.

Once again we will look at a break down of the operations cost of each scheme.

Of particular note here is that the Cox-Mathews scheme (5.3.6) would require one additional "linear combination" than we would expect. This is due to the a_{41} entry in the tableau, written as either $\frac{1}{2} \varphi_{1,3}\left(\varphi_{0,3}-1\right)$ or $\frac{1}{4}\left(\varphi_{1,3}\right)^{2}$, which cannot be formulated as part of the linear combination structure of PHIPM for stage four.

Scheme		Explicit Evaluation	$\varphi \times$ vector	Linear Comb.
ERK $_{4} c_{2} c_{3}, c_{2}=0.5, c_{3}=1$	$(5.3 .8 \mathrm{a})$	8	7	4
ERK $_{4} c_{2} c_{3}, c_{2}=0.5, c_{3}=1$	$(5.3 .8 \mathrm{~b})$	5	6	4
ERK $_{4}$ Cox-Matthews	$(5.3 .6)$	5	6	5
ERK $_{4}$ Krogstad	$(5.3 .5)$	6	6	4
ERK $_{4}$ Strehmel-Weiner	$(5.3 .7)$	6	6	4

Table 5.8: Relative performance measure for the 4-Stage ERKs

5.3.4 EGLMs

We will run some of the EGLMs seen in Section 2.2 through the same numerical experiment as before. The schemes which we will look at are the strongly 3 rd order EGLM ${ }_{322} c_{2}$ (2.2.6),

$$
\begin{aligned}
& \begin{array}{c|cc|cc}
c_{2} & a_{2,1} & & e^{c_{2} h L} & u_{2,1} \\
\hline & b_{1} & b_{2} & e^{h L} & v_{1}
\end{array} \\
& a_{2,1}=c_{2} \varphi_{1,2}+c_{2}^{2} \varphi_{2,2} \\
& b_{1}=\varphi_{1}+\frac{c_{2}-1}{c_{2}} \varphi_{2}+\frac{-2}{c_{2}} \varphi_{3} \quad b_{2}=\frac{1}{c_{2}^{2}+c_{2}} \varphi_{2}+\frac{2}{c_{2}^{2}+c_{2}} \varphi_{3} \\
& u_{2,1}=-c_{2}^{2} \varphi_{2,2} \\
& v_{1}=\frac{-c_{2}}{c_{2}+1} \varphi_{2}-\frac{2}{c_{2}+1} \varphi_{3}
\end{aligned}
$$

and the strongly $4^{\text {th }}$ order $\mathrm{EGLM}_{423} c_{2}$ (2.2.8),

c_{2}	a_{21}		$e^{c_{2} h L}$	u_{21}	u_{22}
	b_{1}	b_{2}	$e^{h L}$	v_{1}	v_{2}

$$
\begin{array}{rlrl}
a_{2,1} & =c_{2} \varphi_{1,2}+\frac{3 c_{2}^{2}}{2} \varphi_{2,2}+c_{2}^{3} \varphi_{3,2} & \\
u_{2,1} & =-2 c_{2}^{2} \varphi_{2,2}-2 c_{2}^{3} \varphi_{3,2} & u_{2,2} & =\frac{c_{2}^{2}}{2} \varphi_{2,2}+c_{2}^{3} \varphi_{3,2} \\
b_{1} & =\varphi_{1}+\frac{\frac{3 c_{2}-2}{2} \varphi_{2}+c_{2}-3 \varphi_{3}-3 \varphi_{4}}{c_{2}} & b_{2} & =\frac{2 \varphi_{2}+6 \varphi_{3}+6 \varphi_{4}}{c_{2}^{3}+3 c_{2}^{2}+2 c_{2}} \\
v_{1} & =\frac{-2 c_{2} \varphi_{2}-2 c_{2}-4 \varphi_{3}+6 \varphi_{4}}{c_{2}+1} & v_{2} & =\frac{\frac{c_{2}}{2} \varphi_{2}+c_{2}-1 \varphi_{3}-3 \varphi_{4}}{c_{2}+2}
\end{array}
$$

For both schemes we will also look at the case $c_{2}=1$, as this provides the greatest opportunity for constructing an optimal implementation. Note that, when $c_{2}=1$, these schemes have appeared in the literature [38] as EGLM_{322} and EGLM_{423} respectively.

Numerical Experiment

As part of this experiment, we will also include the best performing scheme seen so far, in this case ERK_{4} Krogstad along with the baseline ETD Euler (1.3.13), to help illustrate the relative
rankings of these EGLMs. For these experiments we set $c_{2}=0.5$ for schemes (2.2.6) and (2.2.8).

Figure 5.13: Fixed stepsize EGLMs for Problem 5.1.9

We see from Figure 5.13(b) that the $c_{2}=1$ case for both EGLMs, (2.2.7) and (2.2.9), causes a slight accuracy reduction, but not an order reduction. Table 5.9 summarises the computational cost of each method and it shows clearly that the accuracy drop is compensated for in terms of reduced computational cost in both the 'Explicit Evaluation' and ' $\varphi \times$ vector' categories.

Scheme		Explicit Evaluation	$\varphi \times$ vector	Linear Comb.
EGLM $_{322} c_{2}$	$(2.2 .6)$	5	5	2
EGLM $_{322}$	$(2.2 .7)$	3	4	2
EGLM $_{423} c_{2}$	$(2.2 .8)$	7	7	2
EGLM $_{423}$	$(2.2 .9)$	4	6	2

Table 5.9: Relative performance measure for the 4-Stage EGLMs

5.3.5 EARKs and EAGLMs

Finally we study the performance characteristics of our new EARK schemes. Specifically, we look at a $3^{\text {rd }}$ order and a $4^{\text {th }}$ order scheme, both 2-stage. These schemes, introduced in Section 3.2, are referred to as $\mathrm{EARK}_{321} c_{2}$ and $\mathrm{EARK}_{422} c_{2}$ respectively and we will include the particular case of parameter choice where $c_{2}=1$, as this allows for the most efficient implementation.

$$
\begin{array}{c|ccc|c}
1 & \varphi_{1} & & \varphi_{2} \tag{5.3.9}\\
1 & \varphi_{1}-2 \varphi_{3} & 2 \varphi_{3} & 0 & \varphi_{2}-2 \varphi_{3} \\
\hline 1 & \varphi_{1}-2 \varphi_{3} & 2 \varphi_{3} & 0 & \varphi_{2}-2 \varphi_{3}
\end{array}
$$

$$
\begin{array}{c|cc|cc}
1 & \varphi_{1} & & \varphi_{2} & \varphi_{3} \tag{5.3.10}\\
1 & \varphi_{1}-6 \varphi_{4} & 6 \varphi_{4} & & \varphi_{2}-6 \varphi_{4}
\end{array} \varphi_{3}-3 \varphi_{4} .
$$

Note that we do not need to consider the different methods of computing the outgoing derivatives. The reason for this is that the computational cost of producing the derivatives is negligible compared with computing the φ-functions. Therefore, in performance terms, an EAGLM scheme with zero $u_{i j}$ and $v_{i j}$ entries has identical CPU performance to that of an EARK scheme, regardless of the format of the M matrix.

Numerical Experiments

We follow the same procedure as before with EAGLMs, plotting them against the best performing $3^{\text {rd }}$ order and $4^{\text {th }}$ order EGLMs.

Figure 5.14: Fixed stepsize EAGLMs for Problem 5.1.9

An interesting result of this experiment is that EARK $_{422} c_{2}$ does not suffer at all from accuracy degradation for the case $c_{2}=1$, as was observed in the EGLMs and EARK ${ }_{321} c_{2}$. Table 5.10 summarises the computational cost of each method

Scheme		Explicit Evaluation	$\varphi \times$ vector	Linear Comb.
EARK $_{321} c_{2}$	$(3.2 .30)$	5	5	2
EARK $_{321}$	$(5.3 .9)$	3	3	2
EARK $_{422} c_{2}$	$(3.2 .31)$	7	7	2
EARK $_{422}$	$(5.3 .10)$	4	4	2

Table 5.10: Relative performance measure for the 4-Stage EAGLMs

The Allen-Cahn Equation Experiments

We run two fixed stepsize experiments, using the same parameter configurations as Kassam \& Trefethen [26, (3.4)] and Krogstad [27, Section 5.2]. Those parameters are $N=80, \varepsilon=0.001$ and $N=50, \varepsilon=0.01$ respectively. In both cases we integrate for $t \in[0,3]$.

Figure 5.15: Allen-Cahn Equation, fixed stepsize, $N=50$

The results of the fixed stepsize experiments match up with the corresponding experiments in [26, 27]. From Figure 5.15(a) we can confirm that our implementation of ERK ${ }_{4}$ CoxMatthews is achieving the correct performance, while Figure 5.15(b) confirms the same for our ERK ${ }_{4}$ Krogstad implementation. It is clear from these experiments that these $4^{\text {th }}$ order ERKs perform better than our adaptive schemes, EGLM $_{423}$ and EARK $_{422}$.

The Kuramoto-Sivashinsky Equation Experiments

To perform a comparison with results published in [26, 27, 13] we run three fixed stepsize experiments, the first with $N=32, t \in[0,3]$ and then two experiments with $N=128$ for times, $t \in[0,30]$ and $t \in[0,65]$.

As with the Allen-Cahn comparisons, the results of our fixed stepsize experiments match up, for the most part, with those published already. An exception are the results from Figure 5.16(b)which seem to show our ERK implementations achieving superior accuracy over the results in [26, Fig. 3, pg. 1224].

Figure 5.16: Kuramoto-Sivashinsky Equation, fixed stepsize

5.3.6 Summary

The conclusion that can be drawn from this analysis is that the EARK and EAGLM schemes offer the best accuracy performance in their respective order categories.

In terms of computational efficiency, EARKs and EAGLMs are as efficient as the EGLMs under the "Explicit Evaluation" and " $\varphi \times$ vector Linear Combinations" methods of computing the φ-functions.

Under the " $\varphi \times$ vector" approach, the EARKs are the most efficient schemes in the $3^{\text {rd }}$ and $4^{\text {th }}$ order categories by a significant margin. This margin would increase for higher order methods, a 2-stage p order EGLM with $c_{2}=1$, will require $2 p-2$ " $\varphi \times$ vector" operations, while a similar EARKs would require only p operations.

5.4 Variable Step Size

5.4.1 Basic Requirements

If exponential integrators are to be benchmarked competitively against traditional solvers, they will need to implement adaptive stepsize strategies as well as generate efficient and reliable error estimates. We shall see that EARKs and EAGLMs offer both of these features.

A fundamental requirement for a scheme is its ability to handle changes in step size without losing stability or accuracy. Schemes must possess this property if they are to work within an adaptive step-size environment. The 1-step nature of some schemes, such as those constructed from ERKs, makes them inherently compatible with a variable stepsize environment. Such schemes can be used without any changes to their implementation.

Multi-step Schemes

Multi-step schemes, such as EGLMs in the format presented so far, are not practical for use in a variable stepsize algorithm. As they stand, they would require a number of restarting steps to be calculated after every change in stepsize. The issue is, that during the derivation of the order conditions in Section 2.2, and that when constructing the schemes, an assumption was made that the previous timesteps occurred with uniform spacing.

The solution to this is to not treat the previous values as being at integral steps lengths during the derivation of the order conditions. This means that when Taylor expanding the previous values we view them in the more general form $N_{t_{n-j}}$

$$
\begin{align*}
N_{t_{n-j}} & \equiv N\left(t_{n}-j h, y\left(t_{n}-j h\right)\right) \\
& =N-j h N^{\prime}+\frac{1}{2} j^{2} h^{2} N^{\prime \prime}-\frac{1}{6} j^{3} h^{3} N^{\prime \prime \prime}+\cdots \tag{5.4.1}
\end{align*}
$$

where j is any positive real number. Thus it is possible to construct an EGLM scheme which is fully capable of preserving both it's stability and accuracy.

Sample $4^{\text {th }}$ Order EGLM Here is an example $4^{\text {th }}$ Order scheme with previous steps $N_{t_{n-p}}$ and $N_{t_{n-q}}$

$$
\begin{array}{c|cc|ccc}
0 & & & & & \\
c & a_{21} & & e^{c_{2} h L} & u_{21} & u_{22} \\
\hline & b_{1} & b_{2} & e^{h L} & v_{1} & v_{2}
\end{array}
$$

$$
\begin{array}{rlrl}
a_{2,1} & =c \varphi_{2,1}+\frac{c^{2}(p+q)}{p q} \varphi_{2,2}+\frac{2 c^{3}}{p q} \varphi_{2,3} & \\
u_{2,1} & =\frac{c^{2} p}{p^{2}-p q} \varphi_{2,2}+\frac{2 c^{3}}{p^{2}-p q} \varphi_{2,3} & u_{2,2} & =\frac{c^{2} p}{q^{2}-p q} \varphi_{2,2}+\frac{2 c^{3}}{p^{2}-p q} \varphi_{2,3} \\
b_{1} & =\varphi_{1}+\frac{(c(p+q)-p q) \varphi_{2}+2(c-p q) \varphi_{3}-6 \varphi_{4}}{c p q} & b_{2} & =\frac{p q \varphi_{2}+2(p+q) \varphi_{3}+6 \varphi_{4}}{c^{3}+c^{2} p+c(p+c) q} \\
v_{1} & =\frac{-2 c p \varphi_{2}+2(q-c) \varphi_{3}+6 \varphi_{4}}{(c+q) p q-p^{3}-c p^{2}} & v_{2} & =\frac{c p \varphi_{2}+2(c-p) \varphi_{3}-6 \varphi_{4}}{q^{3}(c-p) q^{2}-c p q}
\end{array}
$$

Multi-value Schemes

Multi-value EARKs, by their 1-step nature, do not require the same treatment as EGLMs to make them compatible with a variable stepsize environment. Indeed, both the order conditions and the majority of the scheme tableau remain unchanged. However, care does need to be taken regarding the incoming and outgoing approximations. The lower, $M=(\beta \delta)$, section of an EARK tableau is a matrix which is constructed on the assumption that the approximations are scaled by the current step size, h. For example, taking scheme EARK ${ }_{432} c_{2}$ (3.1.17), and fixing $c_{2}=\frac{1}{2}$, we have the M matrix

$$
M=\left(\begin{array}{ccc:cc}
-4 & -8 & 4 & 1 & 0 \tag{5.4.2}\\
22 & -32 & 10 & 6 & 0
\end{array}\right)
$$

We have seen already in (3.1.12) how this matrix operates on the vector of input values and on outgoing approximations of the current step, to produce the input derivative approximations for the next step. In that earlier example, we were assuming a constant stepsize h. With the switch to variable stepsizes, one must ensure that the incoming approximations are scaled only by the current h_{n} and not by any previous h_{n-j}.

This implementation detail is best taken care of by writing the M matrix as a function of h_{n}. Each element of the M matrix becomes multiplied by a h^{α} where α obeys the following simple pattern

$$
\left(\begin{array}{ccc:ccc}
\beta_{11} & \cdots & \beta_{i j} & \delta_{11} & \cdots & \delta_{i 1} \tag{5.4.3}\\
\vdots & \ddots & & \vdots & \ddots & \\
\beta_{1 j} & & \beta_{i j} & \delta_{1 j} & & \delta_{i j}
\end{array}\right):\left(\begin{array}{ccc:ccc}
h^{-1} & \cdots & h^{-1} & h^{0} & \cdots & h^{i-1} \\
\vdots & \ddots & & \vdots & \ddots & \\
h^{-j} & & h^{-j} & h^{1-j} & & h^{i-j}
\end{array}\right)
$$

Returning to our example (5.4.2) we now express M as the following function

$$
M(h)=\left(\begin{array}{ccc:cc}
\frac{-4}{h} & \frac{-8}{h} & \frac{4}{h} & 1 & 0 h \tag{5.4.4}\\
\frac{22}{h^{2}} & \frac{-32}{h^{2}} & \frac{10}{h^{2}} & \frac{6}{h} & 0
\end{array}\right)
$$

where we generate the output derivatives through the operation

$$
M\left(h_{n}\right)\left(\begin{array}{c}
N_{n} \tag{5.4.5}\\
N_{n+c_{2}} \\
N_{n+1} \\
N_{n}^{\prime} \\
N_{n}^{\prime \prime}
\end{array}\right)=\binom{N_{n+1}^{\prime}}{N_{n+1}^{\prime \prime}}
$$

Here we see that the vectors of incoming and outgoing approximations have no dependence on any stepsize h.

We noted earlier, a property of the M matrices is that the lower rows do not involve any φ-functions. When we add this distinction to the complexity introduced in adapting the matrices to handle variable h, we are naturally led to exclusively viewing M as a separate entity, presented alongside the more traditional tableau. This can be done without sacrificing the possibility of reintegrating the two to recover the tableau representation given earlier (3.1.3). This parallels neatly with the implementation details of the schemes where the two elements are treated very differently due to the computationally beneficial lack of φ^{\prime} s in the M matrix.

Variable Stepsize Compatibility of EAGLMs

The hybrid EAGLMs, which we are most interested in, must follow the EGLMs approach of using a expansion of the previous values in deriving the conditions for producing the internal stage and initial output approximations.

In determining the coefficients for the M matrix, we must combine the techniques developed for EARKs with the more general form of the N_{n-j} 's. Together, this allows us to construct approximations of sufficiently high orders to N_{n+1}^{\prime} and $N_{n+1}^{\prime \prime}$ as before. The format which this follows is almost identical to that seen in example (5.4.3). The lower M matrix of an EAGLM tableau has an additional section of $\gamma_{i j}$ values, as seen in (3.2.1), the h^{n} multipliers derived from those $\gamma_{i j}$ entries follow the same pattern as those from the $\beta_{i j}$ entries.

$$
\left(\begin{array}{c:ccc:c}
& \gamma_{11} & \cdots & \gamma_{i j} & \\
\beta_{i j} & \vdots & \ddots & & \delta_{i j} \\
& \gamma_{1 j} & & \gamma_{i j} &
\end{array}\right):\left(\begin{array}{c:ccc:c}
& h^{-1} & \cdots & h^{-1} & \\
h^{-j} & \vdots & \ddots & & h^{i-j} \\
& h^{-j} & & h^{-j} &
\end{array}\right)
$$

The three free variables; the two representing the non-integral step lengths of the previous values, and the free c_{2} variable present in most schemes, makes the tableau's very difficult to construct without the help of a symbolic calculator. And even with that, the resultant tableau's are too complex to represent succinctly.

5.4.2 Truncation Error Estimation

The local truncation error is defined as the amount by which the exact solution $y\left(t_{n}\right)$ fails to satisfy the difference equation of the numerical method [39]. An equivalent definition of the local truncation error is the error incurred by taking a single step assuming exact information, that is, a single step using exact past values, solution derivatives and assuming no rounding errors [39].

The latter definition can be very useful in testing schemes which cannot produce their own truncation error estimate. In addition, when the scheme being investigate can produce estimates it can still be advantageous to use this exact truncation error, doing so allows us to concentrate and study other aspects of the integration procedure in isolation.

Embedding

A well established method for producing a truncation error estimate is to take each step with two methods, one of order p and the second of order $p+1$ producing two estimated solutions y_{n+1} and \hat{y}_{n+1}. Then the difference $\left|y_{n+1}-\hat{y}_{n+1}\right|$, is a good estimate of the lower schemes true local truncation error. This estimate can then be used to guide the integrator. It is natural to use the higher order estimate, \hat{y}_{n+1}, to advance the integration. In this case $\left|y_{n+1}-\hat{y}_{n+1}\right|$ serves only to control the stepsize. This process is known as "local extrapolation" [20].

Taking each step twice introduces considerable extra computation. To limit this additional cost we try to choose, or design, the two schemes so that much of the work in generating the lower order estimate, y_{n+1}, can be reused for the higher order one, \hat{y}_{n+1}. A common approach to this is known as embedding, whereby the lower order scheme can be written as embedded within the tableau for the higher order scheme.

Classical RK Embedding

When designing an embedded RK we construct two schemes, producing a y_{n+1} and \hat{y}_{n+1} approximation, where the two methods use the same function values [20]. Because of their similar
nature, these two RKs can be written within the same tableau

0				
c_{2}	a_{21}			
\vdots	\vdots	\ddots		
c_{s}	$a_{s 1}$	\cdots	$a_{s, s-1}$	
	b_{1}	\cdots	b_{s-1}	b_{s}
	\hat{b}_{1}	\cdots	\hat{b}_{s-1}	\hat{b}_{s}

such that

$$
\begin{align*}
& y_{n+1}=y_{n}+h\left(b_{1} K_{1}+\ldots+b_{s} K_{s}\right) \tag{5.4.7}\\
& \hat{y}_{n+1}=y_{n}+h\left(\hat{b}_{1} K_{1}+\ldots+\hat{b}_{s} K_{s}\right) \tag{5.4.8}
\end{align*}
$$

An example of a $2^{\text {nd }}$ and $3^{\text {rd }}$ order embedded RK, also known as a $(2,3)$ pair is the method of Bogacki \& Shampine [6]

0				
$\frac{1}{2}$	$\frac{1}{2}$			
$\frac{3}{4}$	0	$\frac{3}{4}$		
1	$\frac{2}{9}$	$\frac{1}{3}$	$\frac{4}{9}$	
	$\frac{2}{9}$	$\frac{1}{3}$	$\frac{4}{9}$	0
	$\frac{7}{24}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{8}$

This method is familiar from it's use as part of the Matlab ODE suite, where it is referred to by the function name ode23.

ERK Embedding

In adapting the classical notion of embedding to EIs, we can construct a trivial example of ERK embedding by viewing the 1-stage ETD Euler (1.3.13) as embedded within the 2-stage ERK_{2} (2.1.19), with $c_{2}=1$,

0			I
1	$1 \varphi_{1}$		$e^{h L}$
	φ_{1}	0	
	$\varphi_{1}-\varphi_{2}$	φ_{2}	

This approach embeds a strongly $1^{\text {st }}$ order scheme within a strongly $2^{\text {nd }}$ order scheme. By subtracting the formula for the $1^{\text {st }}$ and $2^{\text {nd }}$ order approximations, \hat{y}_{n+1} and y_{n+1} respectively,
and the difference between the two schemes

$$
\begin{align*}
y_{n+1} & =Y_{1}=e^{h L} y_{n}+h \varphi_{1} N_{n} \\
\hat{y}_{n+1} & =e^{h L} y_{n}+h \varphi_{1} N_{n}+h \varphi_{2}\left(-N_{n}+N\left(t_{n+1}, Y_{1}\right)\right) \tag{5.4.11}\\
\rightarrow \quad\left|y_{n+1}-\hat{y}_{n+1}\right| & =h \varphi_{2}\left(-N_{n}+N\left(t_{n+1}, Y_{1}\right)\right)
\end{align*}
$$

gives us a truncation error estimate for ETD Euler. We have verified, experimentally that this is a robust estimate for guiding an integration controller. In addition to its reliability, the 1step nature of this embedded scheme means that it can be used for generating starting values to be used subsequently by a multi-step scheme, or to generate derivative approximations for EARKs.

Developing embedded ERKs of higher order proved more troublesome. We discovered that the weak order properties, common to the higher order, meant the truncation errors produced were unreliable.

EAGLM Embedding

Embedding can be extended beyond the (E)RK families of methods to multi-step and multivalue schemes. In the case of the $4^{\text {th }}$ order $\operatorname{EARK}_{422} c_{2}$ (3.2.31), it is possible to produce a $3^{\text {rd }}$ order error estimate by embedding a $3^{\text {rd }}$ order scheme, for example EARK ${ }_{321} c_{2}$ (3.2.30), within its tableau.

Scheme EARK ${ }_{422} c_{2}$ requires both N^{\prime} and $N^{\prime \prime}$, unlike EARK ${ }_{321} c_{2}$ which uses only N^{\prime}. The $1^{\text {st }}$ stage formula for both schemes is therefore different and limits the potential for reusing a calculation from the $3^{\text {rd }}$ order step to generate the $4^{\text {th }}$. By constructing a new $3^{\text {rd }}$ order scheme, which has an identical $1^{\text {st }}$ stage to $\mathrm{EARK}_{422} c_{2}$, we can greatly reduce the computational cost of estimating the truncation error.

Such a scheme is the $3^{\text {rd }}$ order method EARK ${ }_{422} c_{2}$, a 3-stage 3-value EAGLM

c_{2}	$a_{2,1}$	$w_{2,1}$	$w_{2,2}$	c_{2}	$c_{2} \varphi_{1,2}$	$c_{2}^{2} \varphi_{2,2}$	$c_{2}^{3} \varphi_{3,2}$
	$b_{1} \quad b_{2}$	z_{1}	z_{2}		$\varphi_{1}-\beta \varphi_{4} \quad \beta$	$\varphi_{2}-c_{2} \beta \varphi_{4}$	$\varphi_{3}-\frac{c_{2}^{2} \beta}{2} \varphi_{4}$
	$b_{1} \quad b_{2}$	z_{1}	z_{2}		$\varphi_{1}-\beta \varphi_{4} \quad \beta$	$\varphi_{2}-c_{2} \beta \varphi_{4}$	$\varphi_{3}-\frac{c_{2}^{2} \beta}{2} \varphi_{4}$

where β is a free parameter. This scheme is embeddable within EARK ${ }_{422} c_{2}$.

If we choose $\beta=0$ then the difference between the two schemes, (3.2.31) and (5.4.12), can be calculated explicitly as

$$
\begin{align*}
\hat{y}_{n+1}-y_{n+1} & =\frac{6}{c_{2}^{3}} \varphi_{4} N_{n}-\frac{6}{c_{2}^{3}} \varphi_{4} K_{2}+\frac{6}{c_{2}^{2}} \varphi_{4} N_{n}^{\prime}+\frac{3}{c_{2}} \varphi_{4} N_{n}^{\prime} \tag{5.4.13}\\
& =\varphi_{4}\left(\frac{6}{c_{2}^{3}} N_{n}-\frac{6}{c_{2}^{3}} K_{2}+\frac{6}{c_{2}^{2}} N_{n}^{\prime}+\frac{3}{c_{2}} N_{n}^{\prime}\right) \tag{5.4.14}
\end{align*}
$$

Under both the "Explicit Evaluation" and " $\varphi \times$ vector' approaches to implementing the integrator, the calculation (5.4.14) is already performed as part of the procedure for computing y_{n+1}. Producing the truncation estimate does not change the scheme's implementation, or the computational expense summaries as seen in Table 5.10, row 5, columns $2 \& 3$. In a sense, the truncation error estimate is produced for free as part of the normal calculation of a step.

Numerical Experiments

Looking at the numerical results from fixed-step experiments, we can quickly get an overview of the local error behaviour of a given problem. Figure 5.17 plots the results for four problems. In the plots the grey curves plot a profile of the estimated solution, and the thick black line plot the exact local error.

Figure 5.17: Illustration of Local Error Profiles

The Brusselator System (5.1.3), which exhibits erratic behaviour represented the toughest test of a robust integration controller. The Allen-Cahn problem (5.1.5) exhibits interesting behaviour near $t=37$. There is a spike in the local truncation errors about this point (visible in Figure 5.17(b)) which makes the problem a good test for a stepsize controller.

It is important to note that the low local error exhibited at the beginning of each of the problems in Figure 5.17 is a results of our method for producing the starting values.

5.4.3 Stepsize Adjustment

The goal of an efficient solver is to control the stepsize, h, with the aim of performing the numerical integration in as few time step as possible, while at the same time, keeping the local error below a user specified tolerance. The tolerance value, τ, is derived from two user specified values; and absolute tolerance, $\tau_{\text {abs }}$, and a relative tolerance, $\tau_{\text {rel }}$

$$
\begin{equation*}
\tau=\tau_{\mathrm{abs}}+\left\|y_{n}\right\| \tau_{\text {rel }} \tag{5.4.15}
\end{equation*}
$$

The basic approach to this is to increase h where the local error is below τ, and decrease the stepsize where the error exceeds τ. In practice, a solver will not have access to the exact local truncation error, so instead local error estimates are used to guide the algorithm.

Types of Stepsize Controller

There is no one approach to govern how the stepsize should be adjusted so as to control the truncation error and indeed, designing methods to do so, is a field of study in itself. We looked at a number of different algorithms, referred to as controllers, starting with a very basic algorithm and, from that, constructed increasingly complex procedures in order to more intelligently predict an appropriate subsequent stepsize.

Naive Approach. The simplest approach is to compare the estimated truncation error, e_{n}, to a user specified tolerance, τ, and increase the step size if the estimation is below tolerance or decrease and repeat the step, if the truncation error exceeds the tolerance. For example,

```
if \(\tau<e_{n}\) then
    \(h_{n+1} \leftarrow \frac{h_{n}}{\alpha}\)
    redo
    else
        \(h_{n+1} \leftarrow \alpha h_{n}\)
        continue
    end if
```

where $\alpha>1$ is simply some scaling value to adjust how quickly the step size changes, often $\alpha=2$.

(a) Varying Stepsizes

(b) Local and Truncation Errors

Accepted Steps	Rejected	Total	Global Error
105	26	131	8.5×10^{-3}

(c) Integration Statistics

Figure 5.18: Scheme (3.2.30) with the Stepping Controller for Problem (5.1.3)

Figure 5.18 shows the results of a numerical experiment integrating the Brusselator system (5.1.3) with EARK $_{321} c_{2}, c_{2}=1$. In Figure 5.18(b) the dashed line is the estimated truncation error, e_{n}, maintained by the controller, while the solid line plots the exact local error. Table 5.20(c) records the timestep and global error statistics. The visible fluctuation of the stepsize indicates that this approach is prone to oscillating about the optimal step length. Though the global error is higher, it is still within the specified tolerance.

Guided Approach. There is information available to a controller, in the form of the magnitude of the difference between e_{n} and the desired tolerance, τ. This can be used as a guide to determine how much h should be adjusted by, to get e_{n+1} as close to τ as possible For example

$$
\begin{align*}
\left|y_{n+1}-\hat{y}_{n+1}\right| & =e_{n+1} \tag{5.4.16}\\
h_{\mathrm{opt}} & =h_{n} \times\left(\frac{\hat{\tau}}{e_{n}}\right)^{\frac{1}{p+1}} \tag{5.4.17}
\end{align*}
$$

where p is the order of the scheme used to generate y_{n+1} [20]. An algorithm implementing such a controller could be written as
1: $\beta \leftarrow\left(\frac{\hat{\hat{f}}}{e_{n}}\right)^{\frac{1}{p+1}}$
2: $h_{n+1} \leftarrow \beta h_{n}$
if $\tau<e_{n}$ then redo
else

6: continue
7: end if

For our experiments with $\operatorname{EARK}_{321} c_{2}$ we set $p=4$. The tolerance value $\hat{\tau}$ is usually set to some value just smaller than the cut-off tolerance, τ. This helps to reduce the number of rejected steps. In our experiments we usually set $\hat{\tau}=0.8 \tau$. An alternative approach is to use a "safety factor", and we will see this used in the controller we introduce next.

(a) Varying Stepsizes

(b) Local and Truncation Errors

Accepted Steps	Rejected	Total	Global Error
99	23	122	1×10^{-2}

(c) Integration Statistics

Figure 5.19: Scheme (3.2.30) with the Guided Controller for Problem (5.1.3)

Figure 5.19 shows an experiment using the guided adapter. Table 5.19(c) shows an overall improvement in terms of the performance of the scheme. Most interesting here is Figure 5.19(a) where we can see a very smooth and controlled adjustment of the stepsizes. This is a significant improvement over the behaviour seen in Figure 5.18(a).

Established Approaches. A more traditional approach from control theory is the integral or I-controller. The format of the controller makes use of a safety factor, $\gamma<1$.

$$
\begin{equation*}
\log h_{n+1}=\log h_{n}+\frac{1}{p+1}\left(\log \left\|\gamma^{p+1} \xi\right\|-\log \left\|e_{n}\right\|\right) \tag{5.4.18}
\end{equation*}
$$

We implement the I-controller with the following algorithm.

```
\(e_{c} \leftarrow \log \left\|\gamma^{p+1} \tau\right\|-\log \left\|e_{n}\right\|\)
\(h_{n+1} \leftarrow \exp \left(\log \left(h_{n}\right)+\frac{e_{c}}{p+1}\right)\)
if \(\tau<e_{n}\) then
    redo
else
```

6: continue
7: end if

Here p is the order of the method, for the experiments in Figure 5.20 we set $p=4$ and $\gamma=0.9$.

(a) Varying Stepsizes

(b) Local and Truncation Errors

Accepted Steps	Rejected	Total	Global Error
107	8	115	8.9×10^{-3}
(c) Integration Statistics			

(c) Integration Statistics

Figure 5.20: Scheme (3.2.30) with the I-controller for Problem (5.1.3)

Table 5.20(c) shows that the number of rejected steps has been significantly decreased, although it did take more accepted steps to complete the integration. Table 5.11 summarises the results for all three controllers run for a tighter tolerance.

Controller	Accepted Steps	Rejected	Total	Global Error
Naive-controller	589	129	718	4.72×10^{-5}
Guided-controller	593	10	603	3.49×10^{-5}
I-controller	634	4	638	2.49×10^{-5}

Table 5.11: Scheme (3.2.30) with all Controllers for Problem (5.1.3)

Step Rejection

Each rejected step represents a waste of computational time, as the estimated solution it produces must be discarded, therefore minimising their occurrences is of high priority. In the controller approaches outlined above, reducing the number of rejected steps was addressed by either using a slightly lower tolerance, $\hat{\tau}$, as in the guided approach, or by using a safety factor, γ, as in the I Controller. Such controllers work by selecting a h_{n+1}, for the next step,
based on the current local error. This means, that for some problems, that when the integrator encounters a period of increasing local error, rejected steps are almost inevitable.

Experiments indicate that rejected steps tend to occur in clusters during the periods where the local truncation error for the solution is increasing. It makes sense, therefore, to over compensate for a rejected step with a smaller h_{n+1} than reported as the optimal choice by the controller. One approach is to reduce h_{n+1} by a greater amount than indicated by the controller's basic calculation, such as (5.4.18) for example. This means that, upon encountering a rejected step at time t_{r}, the controller would reduce the recommended next stepsize h_{r+1} by a factor $\alpha<1$. To achieve this correctly, a sophisticated controller must avail of time-stepping history. Without history, the following stepsize, h_{r+2}, would no longer take this compensation factor, α, into account.

At some point $t_{n}>t_{r}$ the controller will stop taking α into account. To prevent a sudden increase in stepsize, we adopted an algorithm to gradually increase α towards 1 over a number of steps l. As a result, α has less influence over the controller's recommended stepsize the further the integrator has advanced from t_{r}. For $t_{n}>t_{r+l}$ we stop taking α into account. We used the following method to control how the influence of α decreases over time.

$$
\begin{equation*}
h_{r+i}=\min \left[h_{r+i}, \alpha h_{r}+\left(h_{r+i}-\alpha h_{r}\left(\frac{i}{l}\right)^{\beta}\right)\right] \tag{5.4.19}
\end{equation*}
$$

Here the β exponent controls the behaviour of this interpolation. For $\beta=1$, the interpolation is linear, while $\beta=2$ gives a quadratic interpolation. The min function ensures that we never force a higher h_{n+1} than is recommended.

Figure 5.21 illustrates the effects of different values for β, when an artificial rejected step is simulated in a fixed stepsize experiment. In practice the effects different β^{\prime} s have is subtle and varied depending on the problem, on average settling on the value $\beta=1.5$ seemed to work well.

5.4.4 Initial Stepsize and Starting Points

We approached the problems of selecting an initial stepsize, and generating starting points, with the use of a one step method. The ideal scheme to use was ERK ${ }_{2}$ (2.1.19) with the embedded ETD Euler (1.3.13) as described in Section 5.4.2. Starting with some arbitrary stepsize, we could rely on the controller to ensure the initial steps were of sufficient accuracy. Once enough steps had been generated they would be used to compute the incoming N-function derivatives for EARKs, and be passed to multi-step EGLMs and EAGLMs.

The ERK $2 /$ ETD Euler scheme is only of $2^{\text {nd }}$ order compared with the $4^{\text {th }}$ order schemes

Figure 5.21: Illustration of Different β Exponents with $l=16$ (5.4.19)
used to complete the integration. This meant that, the initial stepsizes were, unavoidably, much smaller than those needed for the higher order scheme, as such there would be an abrupt increase in stepsizes where the higher order scheme took over. Our experiments tended to show a spike in the local truncation error at this point. While the tolerance threshold would be maintained, this spike often represented the global error for the estimation. There is additional scope for investigation, in the future, to improve the controller's logic.

5.5 Benchmarks

For comparative purposes we will include the built-in Matlab ODE15s in a number of our adaptive stepsize experiments. ODE15s is an implicit solver for stiff systems implemented with backwards differences. It uses a quasi-constant stepsize implementation and it defaults to using $5^{\text {th }}$ order integration. The solver takes advantage of any sparse properties of the Jacobian to accelerate the calculations [43].

5.5.1 Brusselator System

We introduced the Brusselator System in Section 5.1.2 and saw it used in our discussion about local truncation error profiles in Section 5.4.3. We will now run some adaptive stepsize experiments to benchmark EIs.

Figure 5.22: Brusselator System, adaptive stepsize, $N=64$

Figure 5.22 shows that Matlab's ODE15s achieves slightly better step count performance and is faster in CPU costs. The EARK ${ }_{422}$ can be seen to outperform EGLM ${ }_{423}$ by a large margin.

Global Error:	5×10^{-4}	5×10^{-6}	5×10^{-8}
EGLM $_{423}$	462	1363	4224
EARK $_{422}$	287	801	2450

Table 5.12: 1D Brusselator System $N=256$, Step Counts

To get a clearer view of the difference between the EIs we look to Figure 5.23, which does not include ODE15s, and to Table 5.12, which summarizes the step counts at different global errors. We can see that EGLM_{423} requires almost 1.75 times as many steps as EARK_{422} making

Figure 5.23: Brusselator System, Global Error against CPU Time without ODE15s

EGLM $_{423}$ significantly slower. Appendix B. 1 lists the complete integration statistics for three problem sizes, $N=64,256$ and 1024 .

5.5.2 Allen-Cahn Equation

Returning to the Allen-Cahn problem from Section 5.1 .3 we will now perform some adaptive stepsize experiments against the problem. To include the local truncation error spike (see Figure 5.17 (b) at $t=37$), we run the experiments for $t \in[0,50]$.

Figure 5.24: Allen-Cahn Equation, adaptive stepsize, $N=50, \varepsilon=0.001$

Figures 5.24 show the results of an adaptive stepsize experiment. From the results we can see that the step count performance of EARK ${ }_{422}$ is as good as ODE15s. EGLM $_{423}$ is much poorer, needing about 1.75 times more steps.

It is important to highlight that this problem uses a dense, and relatively small, L matrix. It is not the type of problem the underlying phipm code is optimised for. Figure 5.25, without

Figure 5.25: Allen-Cahn Equation, adaptive stepsize without ODE15s, $N=50, \varepsilon=0.001$

ODE15s included, shows the relative performance of the EIs.

Calvo \& Portillo [12] preformed variable step experiments with ETDs against the AllenCahn problem using a standard three-point finite differences discretisation. To compare our results to those published, we will run some experiments using the same problem discretisation and parameters.

There are however, two possible implementations of the problem. Working with (5.1.6), the term $w(t, x)$ on the right-hand side can be included as part of the linear part L or the non-linear function $N(t, w(t))$. We will perform our experiments twice, once for each implementation. We will see the term "Type 1 " when L is a standard three-point finite difference matrix, and "Type $2^{\prime \prime}$ for when the $w(t, x)$ is included as part of the L operator.

Figure 5.26: Allen-Cahn Equation "Type 1", $N=512, \varepsilon=0.001$

For a tolerance of 1×10^{-4}, EGLM $_{423}$ and EARK $_{422}$ take a total of 130 and 109 steps respectively, under the "Type 1 " implementation, and 169 and 147 steps for "Type 2". This is a big improvement over the published 248 steps for ETD3 and 484 for ETD4 [12, Page 635]. For a

Figure 5.27: Allen-Cahn Equation "Type 2", $N=512, \varepsilon=0.001$
tolerance of 1×10^{-8}, EGLM $_{423}$ and EARK $_{422}$ take a total of 315 and 219 steps for "Type 1", and 383 and 265 steps for "Type 2". These are significantly better that the published 3105 and 1044 steps for ETD3 and ETD4 [12, Page 635 \& 636]. In fact EARK 422 shows more than a 4 -fold improvement over ETD4.

Table 5.13 compares the EIs performance with ODE15s, again it highlights the significant improvement EARK $_{422}$ gives over EGLM $_{423}$, which requires 1.4 times as many steps under the finite-differences implementations. The tabulated results in Appendix B. 2 give the exact step count figures for all experiments.

	Chebyshev	FD "Type 1"	FD "Type 2"
ODE15s	674	168	168
EGLM $_{423}$	1157	218	275
EARK $_{422}$	686	151	204

Table 5.13: Allen-Cahn, Global Error $=2 \times 10^{7}$, Step Counts

5.5.3 The Kuramoto-Sivashinsky Equation

The 1D Kuramoto-Sivashinsky Equation was seen in Section 5.1 .1 where we performed some fixed stepsize experiments and compared the results with some published in literature. For adaptive stepsize tests, we perform the integration up $t=100$. We make this choice after observing (see Figure 5.1) that the solution becomes increasingly chaotic after $t=40$. A look at local error profile in Figure 5.17(c) shows that over this period a controller must constantly adjust stepsizes and deal with rejected steps.

The results of the adaptive stepsize experiments echo those of the Allen-Cahn problem.

Figure 5.28: Kuramoto-Sivashinsky Equation, $N=256$

Global Error:	1×10^{-1}	5×10^{-3}	5×10^{-4}
ODE15s	478	1005	1491
EGLM $_{423}$	833	1501	2701
EARK $_{422}$	408	862	1551

Table 5.14: Kuramoto-Sivashinsky Equation, $N=256$, Step Counts

Figure 5.28(a) and Table 5.14 demonstrate that the step count performance of EARK_{422} is superior to that of Matlab's ODE15s, we can see that ODE15s requires 1.17 times more steps than EARK $_{422}$ needs to take. EGLM ${ }_{423}$ has fallen much further behind, from the step count performance EGLM 423 take about 1.75 times more steps than EGLM $_{423}$ requires. The CPU Time comparison in Figure 5.28(b) shows that the EAGLM is much better than the EGLM.

5.5.4 The RDA 2D Equation

The 2D RDA Problem, from Section 5.1.5, produces a very large system of ODEs with a pentdiagonal L matrix. Caliari \& Ostermann [10] published the results for some numerical experiments with Rosenbrock-type integrators with the RDA problem. To compare their performance with EAGLMs we will run experiments with the same parameters.

We run a first set of experiments with the parameters $\varepsilon=0.05, \alpha=-1, \rho=1$. Figures 5.29 (b) and 5.30 (b) illustrate that the step count performance of the three integrators is again largely the same. The CPU comparisons, plotted in Figures 5.29(a) and 5.30(a), are very different from those we saw in the earlier 1D problems. Now ODE15s is significantly slower than either of the EIs. This result clearly highlights the superior performance which EIs schemes can offer for larger problems.

Figure 5.29: 2D RDA Equation, $N=20 \times 20, \varepsilon=0.05, \alpha=-1, \rho=1$

Figure 5.30: 2D RDA Equation, $N=64 \times 64, \varepsilon=0.05, \alpha=-1, \rho=1$

Figure 5.31 shows the two "Global Error against CPU Time" plots again, without ODE15s. This makes the difference between EGLM ${ }_{423}$ and EARK $_{422}$ clearer.

Figure 5.31: 2D RDA Equation without ODE15s, $\varepsilon=0.05, \alpha=-1, \rho=1$

The published results from Caliari \& Ostermann [10], while not including any ERKs or

Figure 5.32: 2D RDA Equation, CPU Timings, $\varepsilon=0.05, \alpha=-1, \rho=1$

EGLMs, seem to indicate that Rosenbrock-type integrators can achieve similar levels of accuracy in fewer steps. However, without the inclusion of any established ERKs or EGLMs, it is difficult for us to make a direct comparison with our own results.

To produce a second set of result, we will also repeat the experiments for the parameters $\varepsilon=$ $0.05, \alpha=-1, \rho=100$. Here again we are carrying out a similar experiments to one performed by Caliari \& Ostermann.

(a) $\rho=1$			(b) $\rho=100$		
Global Error: 1×10^{-3} 5×10^{-5} 3×10^{-6} ODE15s 21 44 67 EGLM $_{423}$ 16 39 66 EARK $_{422}$ 16 33 49					

Table 5.15: 2D RDA Equation, Step Counts, $\varepsilon=0.05, \alpha=-1$

Table 5.15 lists step count statistics. They show that ODE15s takes about 1.3 times more steps than EARK 422 and EGLM ${ }_{423}$ needs 1.7 times as many.

In Table 5.16 we list the memory required for different problem discretisations. It is clear that memory usage is significantly lower for both the PHIPM and ReLPM approaches to implementing an EI. This is also a crucial result in favour of EIs, as excessive memory requirements can mean integrators such as ODE15s simply cannot be applied to real-world problems in two or more dimensions.

See Appendix B. 4 for the full integration statistics across three problem sizes, $32 \times 32,45 \times 45$ and 64×45.

Figure 5.33: 2D RDA Equation, $N=32 \times 32, \varepsilon=0.05, \alpha=-1, \rho=100$

Figure 5.34: 2D RDA Equation without ODE15s, $\varepsilon=0.05, \alpha=-1, \rho=100$

Figure 5.35: 2D RDA Equation, CPU Timings, $\varepsilon=0.05, \alpha=-1, \rho=100$

5.5.5 The Gray-Scott Equation

We run a number of numerical experiments with the 1D, 2D and 3D problem implementations provided by the EXPINT package [4, Section 4.2.8]. Due to memory limitations, imposed upon

Dimension	32	64	128	256	512
ODE15s	52	595	3950	N/A	N/A
PHIPM	53	71	170	585	1382
ReLPM	25	63	147	533	1094

Table 5.16: Memory Usage in Megabytes (MBs)
us by Matlab, the largest spacial discretisations we could use were $N=1024, N=32$ and $N=8$ for the 1D, 2D and 3D problems respectively.

1D Problem Tests. The L matrix for the Gray-Scott problem is a real diagonal matrix and we ran experiments with the 1D problem for discretisations of $N=512$ and 1024 giving us L matrices of 1024×1024 and 2048×2048.

(a) Error against Step Count

(b) Error against CPU Time

Figure 5.36: 1D Gray-Scott, N = 512

Figure 5.37: 1D Gray-Scott, N = 1024

In terms of step count performance (Figures 5.36(a) and 5.37(a)) the three schemes are, again, very similar. Looking at the computational work required per step, the EIs were more
efficient than than ODE15s and so produced faster results. This is in contrast to our earlier 1D Allen-Cahn and Kuramoto-Sivashinsky experiments where ODE15s proved quite efficient.

Figure 5.38: 1D Gray-Scott, CPU Timings against Problem Size

In Figures 5.38 we fix the integration tolerance and plot CPU measurement as the problem size increases. Here we observe that, as the size of the problem increases, the CPU timings for the EI schemes increase at a much slower rate over those of ODE15s. Consequently EIs remain practical choices for significantly larger problems.

2D \& 3D Problem Tests. Numerical tests with the 2D \& 3D Gray-Scott problems repeat the same pattern seen in the 1D tests. For the 2D problem, with $N=32 \times 32$, we observe from Figure 5.39(a) that step count performances are about equal. In the CPU measurements (Figure 5.39(b)) the EIs are both significantly better than ODE15s, with EARK 422 again being the top performer.

Figure 5.39: 2D Gray-Scott, $N=32 \times 32$

In the comparison of CPU times against the problem size (Figure 5.40) we can see a much bigger gap between ODE15s and the EIs than the gap observed in the 1D test.

Figure 5.40: 2D Gray-Scott, CPU Timings against Problem Dimension

Figure 5.41: 3D Gray-Scott Equation, $n=8 \times 8 \times 8$

The tests for the 3D problem, shown in Figure 5.41, are more erratic, and this is very likely due to the coarse spatial discretisation. Unfortunately memory constraints meant ODE15s could not be run for a finer mesh. From the CPU timings it is still clear that the EIs are significantly better at solving the problem.

	$N=512$	$N=32 \times 32$	$N=8 \times 8 \times 8$
ODE15s	194	108	54
EGLM $_{423}$	195	164	40
EARK $_{422}$	151	105	47

Table 5.17: Gray-Scott Equation, Global Error $=1 \times 10^{-6}$

Table 5.17 summarizes some step count statistics for each dimension. On average, the results show that EGLM_{423} consistently requires about 1.6 times as many steps as EARK_{422} takes. Appendices B.5.1, B.5.2 and B.5.3 tabulate the full integration statistics for the experiments.

5.6 ODE15s CPU Cost Scaling

An interesting result observed in some experiments is the rapid growth of the computational cost of ODE15s relative to N, the L-matrix dimension. Figures 5.32 and 5.38 are particularly illustrative of this. To study this behaviour we run some key test problems and measure the relative cost-per-step as N increases.

Figure 5.42: Effect of matrix dimension on ODE15s computational cost

The measurements are scaled to align them at the same starting point and then plotted in Figure 5.42, along with reference lines for linear, quadratic and cubic growth rates. The results clearly show that the scaling of ODE15s with respect to the matrix dimension N is almost exactly $O\left(N^{2}\right)$ for most of the problem. For the Kuramoto-Sivashinsky Equation, which has diagonal L-matrix, the graph shows approximately linear scaling for ODE15s.

Chapter 6

Conclusions

From our work we can draw a number of very positive conclusions regarding the EARK family of methods

- The stability analysis of EARKs showed that they exhibit the same "Runge-Kutta" stability property seen in EGLMs. The large stability region that these two families share with ERKs sets them apart from ETDs and makes them suitable to a wide variety of problems. Like EGLMs, EARKs retain the ETDs' advantage when it comes to constructing higherorder methods.
- Convergence analysis of EARKs shows that they meet all the same bounds as EGLMs and that existing results proved for EGLMs also hold for EARKs. In addition, we demonstrated an equivalence between EAGLMs and EGLMs when the N function derivatives are constructed using past steps only.
- Having compared accuracy with stepsize over a number of test problems we saw that the $4^{\text {th }}$ order EARKs rank among the top performers out of all the schemes looked at. Only two $4^{\text {th }}$ order ERKs (5.3.5 \& 5.3.7) achieve a similar level of performance.
- Looking at CPU cost per step we saw that EARKs are the top performers, matched only by EGLMs when using the phipm implementation of computing a full linear φ combination in one operation. By comparison, the $4^{\text {th }}$ order ERKs are only half as efficient.

When the $\varphi \times$ vector operations are counted separately, the EARKs are the most efficient schemes in the $3^{\text {rd }}$ and $4^{\text {th }}$ order categories. We also saw that efficiency improvement would be even greater for higher order methods.

- When generating local truncation error approximations, we showed that EARK ${ }_{422}$ (5.3.10) could produce a free estimate from an intermediate result computed as part of a standard implementation of the scheme. Numerical experiments verified that this estimate was robust and very effective at guiding an adaptive stepsize controller.
- Our implementation of an adaptive stepsize integrator was able to combine all of the advantages of EIs and, in particular, EARKs. We carried out a comprehensive comparison of the $4^{\text {th }}$ order EARK with EGLM $_{423}$ (2.2.9) and Matlab's ODE15s. The results showed conclusively that, when comparing step counts, EARK 422 required the fewest steps to complete the integration of the test problems. Across a range of problems we saw that, on average, EGLM_{423} would require about 1.7 times as many steps as EARK_{422} to achieve the same global error.
- When we looked at large problems, usually of two or more dimensions, we saw that EIs can easily outperform ODE15s with EARK 422 being the stand-out method.

In the end, it is step count performance where EARKs and EAGLMs demonstrated their superiority over EGLMs and their competitiveness with ODE15s. In terms of computationally efficiency we see that simpler structure of an EARK tableau makes them suitable for very efficient implementations.

Appendix A

Definitions

A. 1 Parabolic Evolution Equations

The convergence analysis we perform in Section 3.3 occurs in the framework of abstract semilinear parabolic evolution equations. Within this framework we follow the structure of Ostermann, Thalhammer \& Wright's proof for [38, Theorem 3.1].

A.1.1 Analytical Framework

Let X be a complex Banach space endowed with the norm $\|\cdot\|_{X}$ and $D \subset X$ another densely embedded Banach space. For any $0<v<1$ we denote by X_{v} some intermediate space between $D=X_{1}$ and $X=X_{0}$ such that the norm in X_{v} fulfills the relation

$$
\begin{equation*}
\|x\|_{X_{v}} \leq C\|x\|_{D}^{v}\|x\|_{X}^{1-v}, \quad x \in D, \quad 0<v<1 \tag{A.1.1}
\end{equation*}
$$

with a constant $C>0$.

We consider initial value problems of the form (1.3.2) where the right-hand side of the differential equation is defined by a linear operator $L: D \rightarrow X$ and a sufficiently regular nonlinear map

$$
\begin{equation*}
N: X_{\alpha} \rightarrow X: v \mapsto N(v), \quad D \subset X_{\alpha} \subset X, \quad 0 \leq \alpha<1 \tag{A.1.2}
\end{equation*}
$$

This requirement together with Hypothesis 17 renders (1.3.2) a semilinear parabolic problem [38].

Hypothesis 17. [38, Hypothesis 3.1] We assume that the closed and densely defined linear operator $L: D \rightarrow X$ is sectorial. Thus, there exist constants $a \in R, 0<\phi<\frac{\pi}{2}$ and $>\geq 1$ such that L satisfies the resolvent condition

$$
\begin{equation*}
\left\|(\lambda I-L)^{-1}\right\|_{X \leftarrow X} \leq \frac{M}{|\lambda-a|}, \quad \lambda \in C S_{\phi}(a), \tag{A.1.3}
\end{equation*}
$$

on the complement of the sector $S_{\phi}(a)=\{\lambda \in \mathcal{C}:|\arg (a-\lambda)| \leq \phi\} \cup\{a\}$. Moreover, we suppose that the graph norm of L and the norm in D are equivalent, that is, the estimate

$$
\begin{equation*}
C^{-1}\|x\|_{D} \leq\|x\|_{X}+\|L x\|_{X} \leq C\|x\|_{D}, \quad x \in D \tag{A.1.4}
\end{equation*}
$$

is valid for a constant $C>0$.

Under this Hypothesis, the operator L is the infinitesimal generator of an analytic semigroup $\left(e^{t L}\right)_{t \geq o}$ on the underlying Banach space $X[38,25]$ For $\omega>-a$, the fractional powers of $\tilde{L}=\omega I-L$ are well-defined [25].

Lemma 18. [25, Lemma 3.1] Under Hypothesis 17 and for fixed $\omega>-a$, the following bounds hold uniformly on $0 \leq t \leq T$.

$$
\begin{gather*}
\left\|e^{t L}\right\|_{X \leftarrow X}+\left\|t^{\gamma} \tilde{L}^{\gamma} e^{t L}\right\|_{X \leftarrow X} \leq C, \quad \gamma \geq 0 \tag{A.1.5}\\
\left\|h L \sum_{j=1}^{n-1} e^{j h L}\right\|_{X \leftarrow X} \leq C \tag{A.1.6}
\end{gather*}
$$

A. 2 B-Convergence

Definition 5 (B-convergent). For an initial value problem (1.1.1) where f satisfies a one-sided Lipschitz condition with a one-sided Lipschitz constant γ and where the solution sought satisfies

$$
\begin{equation*}
\left\|\frac{d^{i} y(t)}{d t^{i}}\right\| \leq M_{i}, \forall t \in[0, T] \tag{A.2.1}
\end{equation*}
$$

with bounds M_{i}, we call a method (producing the sequence $\left\{\eta_{v}\right\}$ with $\eta_{v} \approx y\left(t_{v}\right)$)B-convergent of order p if

$$
\begin{equation*}
\left\|\eta_{n}-y\left(t_{v}\right)\right\| \leq C\left(t_{v}\right) h^{p}, h \in\left(0, h_{0}\right] \tag{A.2.2}
\end{equation*}
$$

holds under the following assumptions:

- The function C depends only on γ (as the only characterisation of f_{y}), on bounds for certain other derivatives of $f\left(f_{t}, f_{y y}, f_{t y}, f_{t t}, \ldots\right)$ and on some of the bounds M_{i}.
- The maximum stepsize h_{0} depends on γ and, possibly, on bounds for derivatives of f (except f_{y}), only

Definition 6 (B-stable). For a given differential equation (1.1.1) where f satisfies a one-sided Lipschitz condition (5.3.1), with a Lipschitz constant γ, a one-step method is called B-stable if an inequality

$$
\begin{equation*}
\|\bar{\eta}-\bar{\zeta}\| \leq \phi(h \gamma)\|\eta-\zeta\| \tag{A.2.3}
\end{equation*}
$$

holds, where both $\bar{\eta}$ and $\bar{\zeta}$ are the results (at the point $t+h$) of one step of the method starting from (t, η) and (t, ζ) respectively. $\phi(x)$ is assumed to be a nonnegative monotone increasing function with $\phi(0)=1$.

Definition 7 (B-consistent). For a given initial value problem (1.1.1), where the solution y satisfies (A.2.1) with bounds M_{i}, we call a method B-consistent of order p if ζ, the result of one step of the method considered (with stepsize h starting from $(t, y(t))$), satisfies

$$
\begin{equation*}
\|\zeta-y(t+h)\| \leq D h^{p+1}, \quad h \in\left(0, h_{0}\right] \tag{A.2.4}
\end{equation*}
$$

D and h_{0} are assumed to depend at most on those quantities which are allowed to affect $C(t)$ and h_{0} of Definition 5 .

Appendix B

Complete Results

B. 1 Brusselator System Tables

$N=64$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-003$	Matlab ODE 15s	8.044e - 002	109	0.499	0.379
$1.000 e-003$	$\mathrm{EGLM}_{423}(2.2 .9)$	$5.092 e-002$	165	7.316	4.813
$1.000 e-003$	EARK $_{422} c_{2}(3.2 .31)$	$3.976 e-002$	128	6.973	0.117
$1.000 e-004$	Matlab ODE 15s	$7.090 e-003$	170	0.686	0.000
$1.000 e-004$	EGLM_{423} (2.2.9)	$4.728 e-003$	277	5.491	1.063
$1.000 e-004$	EARK $_{422} c_{2}(3.2 .31)$	$5.389 e-003$	184	5.538	0.000
$1.000 e-005$	Matlab ODE 15s	$6.939 e-004$	249	0.858	0.000
$1.000 e-005$	EGLM_{423} (2.2.9)	$5.507 e-004$	462	5.366	0.738
$1.000 e-005$	EARK $_{422} c_{2}(3.2 .31)$	$4.579 e-004$	287	4.415	-0.031
$1.000 e-006$	Matlab ODE 15s	$1.637 e-004$	344	1.108	0.000
$1.000 e-006$	$\mathrm{EGLM}_{423}(2.2 .9)$	$7.168 e-005$	778	6.770	4.352
$1.000 e-006$	EARK $_{422} c_{2}(3.2 .31)$	$6.213 e-005$	465	5.242	0.000
$1.000 e-007$	Matlab ODE 15s	$3.019 e-005$	491	1.482	0.000
$1.000 e-007$	EGLM_{423} (2.2.9)	$7.112 e-006$	1363	9.266	4.461
$1.000 e-007$	EARK $_{422} c_{2}(3.2 .31)$	$6.085 e-006$	801	6.958	0.000
$1.000 e-008$	Matlab ODE 15s	$5.278 e-006$	700	1.966	0.000
$1.000 e-008$	$\mathrm{EGLM}_{423}(2.2 .9)$	$7.121 e-007$	2386	14.461	3.422
$1.000 e-008$	EARK $_{422} c_{2}(3.2 .31)$	$5.481 e-007$	1385	9.610	0.000
$1.000 e-009$	Matlab ODE 15s	$7.821 e-007$	1007	2.605	0.000
$1.000 e-009$	$\mathrm{EGLM}_{423}(2.2 .9)$	$7.068 e-008$	4227	26.614	10.473
$1.000 e-009$	EARK $_{422} c_{2}(3.2 .31)$	$5.098 e-008$	2450	15.491	0.000

$N=256$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-003$	Matlab ODE 15s	1.251e-001	115	3.401	8.180
$1.000 e-003$	EGLM_{423} (2.2.9)	$5.094 e-002$	165	41.668	11.277
$1.000 e-003$	EARK $_{422} c_{2}$ (3.2.31)	$3.978 e-002$	128	35.568	9.477
$1.000 e-004$	Matlab ODE 15s	$1.077 e-002$	170	3.838	8.016
$1.000 e-004$	EGLM_{423} (2.2.9)	$4.720 e-003$	277	44.663	11.145
$1.000 e-004$	EARK $_{422} c_{2}(3.2 .31)$	$5.369 e-003$	184	35.740	11.484
$1.000 e-005$	Matlab ODE 15s	$7.898 e-004$	245	4.961	8.016
$1.000 e-005$	EGLM_{423} (2.2.9)	$5.503 e-004$	462	40.935	1.070
$1.000 e-005$	EARK $_{422} c_{2}$ (3.2.31)	$4.578 e-004$	287	36.301	19.148
$1.000 e-006$	Matlab ODE 15s	1.485e-004	346	5.897	8.016
$1.000 e-006$	EGLM_{423} (2.2.9)	$7.167 e-005$	778	43.150	2.988
$1.000 e-006$	EARK $_{422} c_{2}$ (3.2.31)	$6.242 e-005$	465	35.225	12.938
$1.000 e-007$	Matlab ODE 15s	$3.032 e-005$	495	7.847	8.016
$1.000 e-007$	EGLM_{423} (2.2.9)	$7.111 e-006$	1363	43.368	9.277
$1.000 e-007$	EARK $_{422} c_{2}$ (3.2.31)	$6.087 e-006$	801	42.136	6.543
$1.000 e-008$	Matlab ODE 15s	$5.190 e-006$	708	10.234	8.016
$1.000 e-008$	EGLM_{423} (2.2.9)	$7.120 e-007$	2386	39.796	31.598
$1.000 e-008$	EARK $_{422} c_{2}$ (3.2.31)	$5.483 e-007$	1385	36.036	20.738
$1.000 e-009$	Matlab ODE 15s	$7.741 e-007$	1030	13.853	8.016
$1.000 e-009$	EGLM_{423} (2.2.9)	$7.066 e-008$	4224	76.331	55.988
$1.000 e-009$	EARK $_{422} c_{2}(3.2 .31)$	$5.091 e-008$	2450	38.875	49.129

$N=1024$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-003$	Matlab ODE 15s	1.249e-001	115	70.809	134.992
$1.000 e-003$	EGLM_{423} (2.2.9)	$5.094 e-002$	165	941.700	21.777
$1.000 e-003$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	$3.979 e-002$	128	952.074	20.113
$1.000 e-004$	Matlab ODE 15s	$1.077 e-002$	170	83.195	130.164
$1.000 e-004$	EGLM_{423} (2.2.9)	$4.720 e-003$	277	1060.027	24.684
$1.000 e-004$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	$5.368 e-003$	184	984.132	22.371
$1.000 e-005$	Matlab ODE 15s	$1.215 e-003$	245	104.177	131.234
$1.000 e-005$	EGLM_{423} (2.2.9)	$5.503 e-004$	462	1167.480	26.129
$1.000 e-005$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	$4.578 e-004$	287	1136.405	39.480
$1.000 e-006$	Matlab ODE 15s	$1.482 e-004$	346	123.958	132.691
$1.000 e-006$	EGLM_{423} (2.2.9)	$7.167 e-005$	778	1311.344	58.598
$1.000 e-006$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	$6.242 e-005$	465	1350.547	45.316
$1.000 e-007$	Matlab ODE 15s	$2.787 e-005$	502	167.077	135.172
$1.000 e-007$	EGLM_{423} (2.2.9)	$7.111 e-006$	1363	1760.487	124.637
$1.000 e-007$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	$6.087 e-006$	801	1654.001	121.223
$1.000 e-008$	Matlab ODE 15s	$4.800 e-006$	715	217.996	138.879
$1.000 e-008$	EGLM_{423} (2.2.9)	N/A	N/A	N/A	229.078
$1.000 e-008$	EARK $_{422} c_{2}(3.2 .31)$	$5.482 e-007$	1385	1974.349	275.551

B. 2 Allen-Cahn Equation Tables

B.2.1 Chebyshev Differentiation Matrix

$N=25$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-003$	Matlab ODE 15s	$8.673 e-002$	73	0.062	0.000
$1.000 e-003$	EGLM_{423} (2.2.9)	$6.638 e-003$	106	2.137	19.770
$1.000 e-003$	EARK $_{422} c_{2}(3.2 .31)$	$5.545 e-004$	97	2.044	0.000
$1.000 e-004$	Matlab ODE 15s	$9.645 e-003$	112	0.078	0.000
$1.000 e-004$	EGLM_{423} (2.2.9)	$2.356 e-003$	150	2.480	0.133
$1.000 e-004$	EARK $_{422} c_{2}(3.2 .31)$	$3.195 e-003$	115	2.122	0.000
$1.000 e-005$	Matlab ODE 15s	$1.071 e-003$	172	0.109	0.000
$1.000 e-005$	EGLM_{423} (2.2.9)	$3.648 e-004$	237	3.151	0.492
$1.000 e-005$	EARK $_{422} c_{2}(3.2 .31)$	$2.773 e-004$	159	2.527	0.000
$1.000 e-006$	Matlab ODE 15s	$8.323 e-005$	240	0.140	0.000
$1.000 e-006$	EGLM_{423} (2.2.9)	$5.680 e-005$	383	4.087	1.980
$1.000 e-006$	EARK $_{422} c_{2}(3.2 .31)$	$4.788 e-005$	242	3.136	0.000
$1.000 e-007$	Matlab ODE 15s	$6.987 e-006$	334	0.187	0.000
$1.000 e-007$	EGLM_{423} (2.2.9)	$5.389 e-006$	655	5.694	1.289
$1.000 e-007$	EARK $_{422} c_{2}(3.2 .31)$	$4.573 e-006$	399	4.181	0.000
$1.000 e-008$	Matlab ODE 15s	$4.250 e-007$	460	0.250	0.000
$1.000 e-008$	EGLM_{423} (2.2.9)	$5.239 e-007$	1152	7.894	4.039
$1.000 e-008$	EARK $_{422} c_{2}(3.2 .31)$	$4.254 e-007$	683	6.006	-0.031
$1.000 e-009$	Matlab ODE 15s	$7.100 e-008$	646	0.343	0.000
$1.000 e-009$	EGLM_{423} (2.2.9)	$5.163 e-008$	2035	11.014	14.949
$1.000 e-009$	EARK $_{422} c_{2}(3.2 .31)$	$3.931 e-008$	1193	8.377	0.039

$N=50$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-003$	Matlab ODE 15s	$3.185 e-002$	69	0.437	-0.027
$1.000 e-003$	EGLM_{423} (2.2.9)	$6.161 e-003$	104	4.430	0.457
$1.000 e-003$	EARK $_{422} c_{2}$ (3.2.31)	$1.075 e-003$	97	8.112	0.000
$1.000 e-004$	Matlab ODE 15s	$2.941 e-003$	109	0.281	0.000
$1.000 e-004$	EGLM_{423} (2.2.9)	$1.351 e-003$	149	4.321	0.000
$1.000 e-004$	EARK $_{422} c_{2}$ (3.2.31)	$1.088 e-003$	109	6.958	-0.023
$1.000 e-005$	Matlab ODE 15s	7.636e-004	177	0.499	0.000
$1.000 e-005$	EGLM_{423} (2.2.9)	$1.879 e-004$	226	5.070	-0.020
$1.000 e-005$	EARK $_{422} c_{2}$ (3.2.31)	$1.275 e-004$	155	6.271	0.230
$1.000 e-006$	Matlab ODE 15s	$5.941 e-005$	247	0.499	0.000
$1.000 e-006$	EGLM_{423} (2.2.9)	$1.576 e-005$	379	6.349	-0.020
$1.000 e-006$	EARK $_{422} c_{2}$ (3.2.31)	$1.884 e-005$	238	5.522	-0.020
$1.000 e-007$	Matlab ODE 15s	$1.144 e-005$	346	0.593	0.000
$1.000 e-007$	EGLM_{423} (2.2.9)	$1.414 e-006$	659	8.596	0.227
$1.000 e-007$	EARK $_{422} c_{2}$ (3.2.31)	$1.776 e-006$	397	6.552	-0.016
$1.000 e-008$	Matlab ODE 15s	$1.019 e-006$	486	0.577	0.000
$1.000 e-008$	EGLM_{423} (2.2.9)	$1.323 e-007$	1157	11.825	13.738
$1.000 e-008$	EARK $_{422} c_{2}$ (3.2.31)	$1.507 e-007$	686	8.798	0.000
$1.000 e-009$	Matlab ODE 15s	$2.290 e-007$	674	0.764	0.000
$1.000 e-009$	EGLM_{423} (2.2.9)	$1.281 e-008$	2041	17.503	68.082
$1.000 e-009$	EARK $_{422} c_{2}$ (3.2.31)	$1.254 e-008$	1197	11.497	0.000

B.2.2 Finite-Differences

Type 1

$N=512$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-003$	Matlab ODE 15s	$1.329 e-003$	41	1.513	8.277
$1.000 e-003$	EGLM_{423} (2.2.9)	$3.659 e-004$	105	10.702	35.336
$1.000 e-003$	EARK $_{422} c_{2}$ (3.2.31)	$4.007 e-004$	98	10.265	4.617
$1.000 e-004$	Matlab ODE 15s	$2.010 e-004$	64	1.700	7.984
$1.000 e-004$	EGLM_{423} (2.2.9)	$4.611 e-005$	130	10.670	0.000
$1.000 e-004$	EARK $_{422} c_{2}(3.2 .31)$	$4.979 e-005$	109	9.828	2.688
$1.000 e-005$	Matlab ODE 15s	$1.376 e-005$	89	2.262	7.984
$1.000 e-005$	EGLM_{423} (2.2.9)	$3.737 e-006$	157	6.895	0.000
$1.000 e-005$	EARK $_{422} c_{2}(3.2 .31)$	$8.518 e-006$	128	8.752	1.176
$1.000 e-006$	Matlab ODE 15s	$2.731 e-006$	121	2.761	7.984
$1.000 e-006$	EGLM_{423} (2.2.9)	$4.051 e-007$	218	8.346	0.000
$1.000 e-006$	EARK $_{422} c_{2}(3.2 .31)$	$4.352 e-007$	151	7.457	11.039
$1.000 e-007$	Matlab ODE 15s	$3.094 e-007$	168	3.463	9.547
$1.000 e-007$	EGLM_{423} (2.2.9)	$4.402 e-008$	315	8.299	1.766
$1.000 e-007$	EARK $_{422} c_{2}(3.2 .31)$	$2.581 e-008$	219	7.566	2.184
$1.000 e-008$	Matlab ODE 15s	$3.616 e-008$	240	4.103	7.984
$1.000 e-008$	EGLM_{423} (2.2.9)	$4.867 e-009$	501	8.923	0.004
$1.000 e-008$	EARK $_{422} c_{2}(3.2 .31)$	$3.730 e-009$	325	6.443	0.000
$1.000 e-009$	Matlab ODE 15s	$4.958 e-009$	330	5.585	7.984
$1.000 e-009$	EGLM_{423} (2.2.9)	$4.105 e-010$	825	9.766	0.012
$1.000 e-009$	EARK $_{422} c_{2}(3.2 .31)$	$3.040 e-010$	513	6.365	0.000

Type 2

$N=512$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-003$	Matlab ODE 15s	$1.329 e-003$	41	1.466	8.234
$1.000 e-003$	EGLM_{423} (2.2.9)	$5.877 e-004$	156	14.898	3.449
$1.000 e-003$	EARK $_{422} c_{2}$ (3.2.31)	$4.502 e-004$	139	13.619	3.543
$1.000 e-004$	Matlab ODE 15s	$2.010 e-004$	64	1.981	7.984
$1.000 e-004$	EGLM_{423} (2.2.9)	$4.412 e-005$	169	13.354	0.000
$1.000 e-004$	EARK $_{422} c_{2}$ (3.2.31)	$5.402 e-005$	147	12.636	0.000
$1.000 e-005$	Matlab ODE 15s	$1.376 e-005$	89	2.215	7.984
$1.000 e-005$	EGLM_{423} (2.2.9)	$4.459 e-006$	212	12.230	2.473
$1.000 e-005$	EARK $_{422} c_{2}$ (3.2.31)	$7.705 e-006$	165	11.653	0.000
$1.000 e-006$	Matlab ODE 15s	$2.731 e-006$	121	2.558	7.984
$1.000 e-006$	EGLM_{423} (2.2.9)	$5.990 e-007$	275	12.184	5.883
$1.000 e-006$	EARK $_{422} c_{2}$ (3.2.31)	$4.386 e-007$	204	11.279	-0.008
$1.000 e-007$	Matlab ODE 15s	$3.094 e-007$	168	3.619	7.984
$1.000 e-007$	EGLM_{423} (2.2.9)	$4.220 e-008$	383	10.156	-0.008
$1.000 e-007$	EARK $_{422} c_{2}$ (3.2.31)	$4.222 e-008$	265	10.920	1.160
$1.000 e-008$	Matlab ODE 15s	$3.616 e-008$	265	9.266	7.984
$1.000 e-008$	EGLM_{423} (2.2.9)	$4.396 e-009$	582	9.656	0.000
$1.000 e-008$	EARK $_{422} c_{2}$ (3.2.31)	$3.754 e-009$	385	9.578	4.012
$1.000 e-009$	Matlab ODE 15s	$4.958 e-009$	387	18.112	7.984
$1.000 e-009$	EGLM_{423} (2.2.9)	$4.142 e-010$	933	10.655	0.000
$1.000 e-009$	EARK $_{422} c_{2}(3.2 .31)$	$3.289 e-010$	587	8.861	13.516

B. 3 1D Kuramoto-Sivashinsky Equation Tables

$N=128$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-002$	Matlab ODE 15s	$4.855 e+000$	207	2.387	1.516
$1.000 e-002$	EGLM_{423} (2.2.9)	$2.076 e+000$	405	46.098	30.363
$1.000 e-002$	EARK $_{422} c_{2}$ (3.2.31)	$4.096 e-001$	303	38.345	2.781
$1.000 e-003$	Matlab ODE 15s	$2.045 e+000$	300	1.763	0.000
$1.000 e-003$	EGLM_{423} (2.2.9)	$1.441 e-001$	703	65.505	17.664
$1.000 e-003$	EARK $_{422} c_{2}$ (3.2.31)	$6.680 e-002$	438	46.566	0.488
$1.000 e-004$	Matlab ODE 15s	$1.918 e-002$	447	2.309	0.000
$1.000 e-004$	EGLM_{423} (2.2.9)	$1.431 e-002$	1256	99.092	44.621
$1.000 e-004$	EARK $_{422} c_{2}$ (3.2.31)	$8.995 e-003$	718	63.196	0.285
$1.000 e-005$	Matlab ODE 15s	$7.674 e-003$	632	3.089	0.000
$1.000 e-005$	EGLM_{423} (2.2.9)	$1.365 e-003$	2265	163.083	4.797
$1.000 e-005$	EARK $_{422} c_{2}$ (3.2.31)	$3.633 e-004$	1298	101.791	7.438
$1.000 e-006$	Matlab ODE 15s	$3.645 e-003$	925	4.415	0.000
$1.000 e-006$	EGLM_{423} (2.2.9)	$1.296 e-004$	4061	292.845	8.309
$1.000 e-006$	EARK $_{422} c_{2}$ (3.2.31)	$5.010 e-005$	2339	170.727	4.395
$1.000 e-007$	Matlab ODE 15s	$1.757 e-003$	1352	6.224	0.000
$1.000 e-007$	EGLM_{423} (2.2.9)	$1.360 e-005$	7260	224.735	36.082
$1.000 e-007$	EARK $_{422} c_{2}$ (3.2.31)	$7.982 e-006$	4187	303.672	10.184

$N=256$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-002$	Matlab ODE 15s	$4.017 e+000$	225	7.254	4.645
$1.000 e-002$	EGLM_{423} (2.2.9)	$7.816 e-001$	480	181.882	79.352
$1.000 e-002$	EARK $_{422} c_{2}(3.2 .31)$	$5.022 e-002$	336	156.235	13.266
$1.000 e-003$	Matlab ODE 15s	$5.986 e-001$	347	5.928	0.000
$1.000 e-003$	EGLM_{423} (2.2.9)	$7.230 e-002$	833	220.585	4.117
$1.000 e-003$	EARK $_{422} c_{2}(3.2 .31)$	$2.735 e-002$	499	170.681	0.602
$1.000 e-004$	Matlab ODE 15s	$9.267 e-002$	478	6.256	0.000
$1.000 e-004$	EGLM_{423} (2.2.9)	$7.068 e-003$	1501	307.322	12.801
$1.000 e-004$	EARK $_{422} c_{2}(3.2 .31)$	$2.910 e-003$	862	225.827	9.578
$1.000 e-005$	Matlab ODE 15s	$1.265 e-002$	692	8.018	0.000
$1.000 e-005$	EGLM_{423} (2.2.9)	$6.672 e-004$	2701	443.261	16.035
$1.000 e-005$	EARK $_{422} c_{2}(3.2 .31)$	$2.016 e-004$	1551	293.438	10.445
$1.000 e-006$	Matlab ODE 15s	$1.585 e-003$	1005	11.107	0.000
$1.000 e-006$	EGLM_{423} (2.2.9)	$6.455 e-005$	4839	710.132	50.551
$1.000 e-006$	EARK $_{422} c_{2}(3.2 .31)$	$2.788 e-005$	2789	425.134	44.480
$1.000 e-007$	Matlab ODE 15s	$4.208 e-004$	1491	16.708	0.000
$1.000 e-007$	EGLM_{423} (2.2.9)	N/A	N/A	N/A	138.156
$1.000 e-007$	EARK $_{422} c_{2}(3.2 .31)$	$5.724 e-006$	4986	701.817	192.371

B. 4 RDA 2D Equation Tables

Parameters $\varepsilon=0.05, \alpha=-1, \rho=1$

$N=32 \times 32$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-002$	Matlab ODE 15s	$1.183 e-002$	12	2.387	24.734
$1.000 e-002$	EGLM_{423} (2.2.9)	$1.107 e-003$	16	1.841	3.133
$1.000 e-002$	EARK $_{422} c_{2}(3.2 .31)$	$2.996 e-003$	16	1.841	0.000
$2.683 e-003$	Matlab ODE 15s	$3.986 e-003$	14	2.574	24.734
$2.683 e-003$	EGLM_{423} (2.2.9)	$1.041 e-003$	19	1.544	0.066
$2.683 e-003$	EARK $_{422} c_{2}(3.2 .31)$	$1.169 e-003$	19	1.685	0.895
$7.197 e-004$	Matlab ODE 15s	$1.079 e-003$	17	2.652	24.734
$7.197 e-004$	EGLM_{423} (2.2.9)	$3.936 e-004$	25	1.716	0.066
$7.197 e-004$	EARK $_{422} c_{2}(3.2 .31)$	$7.495 e-004$	24	1.529	0.895
1.931e-004	Matlab ODE 15s	$3.363 e-004$	22	3.011	24.734
$1.931 e-004$	EGLM_{423} (2.2.9)	$1.029 e-004$	31	1.872	0.066
$1.931 e-004$	EARK $_{422} c_{2}(3.2 .31)$	$2.497 e-004$	26	1.622	0.895
$5.179 e-005$	Matlab ODE 15s	$9.418 e-005$	29	3.338	24.734
$5.179 e-005$	EGLM_{423} (2.2.9)	$2.650 e-005$	39	1.607	0.066
$5.179 e-005$	EARK $_{422} c_{2}(3.2 .31)$	$7.556 e-005$	32	1.825	1.031
$1.389 e-005$	Matlab ODE 15s	$2.672 e-005$	35	3.635	24.734
$1.389 e-005$	EGLM_{423} (2.2.9)	$6.701 e-006$	50	1.342	0.027
$1.389 e-005$	EARK $_{422} c_{2}(3.2 .31)$	$1.199 e-005$	38	1.264	-0.039
$3.728 e-006$	Matlab ODE 15s	$1.212 e-005$	44	4.384	24.734
$3.728 e-006$	EGLM_{423} (2.2.9)	$1.699 e-006$	65	1.591	2.059
$3.728 e-006$	EARK $_{422} c_{2}(3.2 .31)$	$2.102 e-006$	47	1.295	0.000
$1.000 e-006$	Matlab ODE 15s	$4.370 e-006$	56	5.054	24.734
$1.000 e-006$	EGLM_{423} (2.2.9)	$4.365 e-007$	86	1.950	0.031
$1.000 e-006$	EARK $_{422} c_{2}(3.2 .31)$	$4.906 e-007$	59	1.435	0.895

$N=64 \times 64$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-002$	Matlab ODE 15s	2.046e-002	14	75.957	450.953
$1.000 e-002$	EGLM_{423} (2.2.9)	$1.061 e-003$	16	3.650	6.309
$1.000 e-002$	EARK $_{422} c_{2}(3.2 .31)$	$1.931 e-003$	16	3.713	5.516
$2.683 e-003$	Matlab ODE 15s	$6.592 e-003$	16	77.018	450.723
$2.683 e-003$	EGLM_{423} (2.2.9)	$6.359 e-004$	19	4.056	3.625
$2.683 e-003$	EARK $_{422} c_{2}(3.2 .31)$	$1.434 e-003$	19	3.682	3.348
$7.197 e-004$	Matlab ODE 15s	$1.688 e-003$	21	85.941	450.391
$7.197 e-004$	EGLM_{423} (2.2.9)	$2.772 e-004$	25	4.602	2.172
$7.197 e-004$	EARK $_{422} c_{2}(3.2 .31)$	$9.786 e-004$	23	4.399	1.855
1.931e-004	Matlab ODE 15s	$3.353 e-004$	27	94.537	450.953
1.931e-004	EGLM_{423} (2.2.9)	7.885e-005	32	5.335	1.695
$1.931 e-004$	EARK $_{422} c_{2}(3.2 .31)$	$2.018 e-004$	28	5.132	2.695
$5.179 e-005$	Matlab ODE 15s	$1.413 e-004$	35	111.744	450.953
$5.179 e-005$	EGLM_{423} (2.2.9)	$2.173 e-005$	39	5.959	2.027
$5.179 e-005$	EARK $_{422} c_{2}(3.2 .31)$	$6.194 e-005$	33	5.288	3.566
$1.389 e-005$	Matlab ODE 15s	$3.305 e-005$	44	121.338	452.273
$1.389 e-005$	EGLM_{423} (2.2.9)	$5.848 e-006$	51	7.207	3.145
$1.389 e-005$	EARK $_{422} c_{2}(3.2 .31)$	$1.401 e-005$	40	6.224	3.020
$3.728 e-006$	Matlab ODE 15s	$9.051 e-006$	54	139.746	452.363
$3.728 e-006$	EGLM_{423} (2.2.9)	$1.557 e-006$	66	8.471	3.563
$3.728 e-006$	EARK $_{422} c_{2}(3.2 .31)$	$2.455 e-006$	49	6.880	4.824
$1.000 e-006$	Matlab ODE 15s	$3.291 e-006$	67	157.717	452.160
$1.000 e-006$	EGLM_{423} (2.2.9)	$4.124 e-007$	86	10.187	4.879
$1.000 e-006$	EARK $_{422} c_{2}(3.2 .31)$	$5.093 e-007$	61	7.800	3.980

Parameters $\varepsilon=0.05, \alpha=-1, \rho=100$

$N=32 \times 32$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-002$	Matlab ODE 15s	$2.915 e-002$	24	3.229	24.734
$1.000 e-002$	EGLM_{423} (2.2.9)	$7.871 e-003$	34	1.420	1.500
$1.000 e-002$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	$6.968 e-003$	32	2.402	0.000
$2.683 e-003$	Matlab ODE 15s	8.985e - 003	35	3.572	24.734
$2.683 e-003$	EGLM_{423} (2.2.9)	$2.732 e-003$	47	1.560	0.066
$2.683 e-003$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	$2.092 e-003$	48	1.576	0.664
$7.197 e-004$	Matlab ODE 15s	$2.499 e-003$	46	3.962	24.734
$7.197 e-004$	EGLM_{423} (2.2.9)	$9.814 e-004$	66	1.810	0.066
$7.197 e-004$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	$6.232 e-004$	61	1.622	1.402
$1.931 e-004$	Matlab ODE 15s	$5.513 e-004$	63	4.368	24.734
$1.931 e-004$	EGLM_{423} (2.2.9)	$2.625 e-004$	97	1.888	3.055
$1.931 e-004$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	$2.212 e-004$	69	1.622	-0.016
$5.179 e-005$	Matlab ODE 15s	$1.730 e-004$	84	4.976	24.820
$5.179 e-005$	EGLM_{423} (2.2.9)	$7.349 e-005$	131	2.262	12.176
$5.179 e-005$	EARK $_{422} c_{2}(3.2 .31)$	$6.362 e-005$	86	1.872	0.000
$1.389 e-005$	Matlab ODE 15s	$9.893 e-005$	115	6.349	24.734
$1.389 e-005$	EGLM_{423} (2.2.9)	$2.019 e-005$	179	2.824	2.887
$1.389 e-005$	EARK $_{422} c_{2}(3.2 .31)$	$1.556 e-005$	106	2.044	2.738
$3.728 e-006$	Matlab ODE 15s	$4.355 e-005$	129	6.770	24.734
$3.728 e-006$	EGLM_{423} (2.2.9)	$5.505 e-006$	244	3.245	1.695
$3.728 e-006$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	$3.165 e-006$	143	2.434	2.199
$1.000 e-006$	Matlab ODE 15s	$6.900 e-006$	150	7.831	26.129
$1.000 e-006$	EGLM_{423} (2.2.9)	$1.489 e-006$	335	4.290	1.605
$1.000 e-006$	EARK $_{422} c_{2}(3.2 .31)$	$5.870 e-007$	196	2.995	2.770

$N=64 \times 64$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-002$	Matlab ODE 15s	$2.381 e-002$	24	83.835	453.063
$1.000 e-002$	EGLM_{423} (2.2.9)	$7.995 e-003$	33	5.678	16.277
$1.000 e-002$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	$6.674 e-003$	33	5.788	5.129
$2.683 e-003$	Matlab ODE 15s	$7.263 e-003$	34	109.950	450.953
$2.683 e-003$	EGLM_{423} (2.2.9)	$2.389 e-003$	45	6.973	5.586
$2.683 e-003$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	$2.484 e-003$	42	6.708	3.633
$7.197 e-004$	Matlab ODE 15s	$1.827 e-003$	46	113.491	452.012
$7.197 e-004$	EGLM_{423} (2.2.9)	$7.949 e-004$	63	8.861	4.754
$7.197 e-004$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	$8.388 e-004$	52	7.925	4.457
1.931e-004	Matlab ODE 15s	$4.019 e-004$	63	127.718	452.625
$1.931 e-004$	EGLM_{423} (2.2.9)	$1.996 e-004$	93	11.918	5.934
$1.931 e-004$	$\mathrm{EARK}_{422} c_{2}$ (3.2.31)	$2.799 e-004$	66	9.313	4.664
$5.179 e-005$	Matlab ODE 15s	$1.323 e-004$	86	145.611	453.332
$5.179 e-005$	EGLM_{423} (2.2.9)	$5.369 e-005$	125	15.397	5.070
$5.179 e-005$	EARK $_{422} c_{2}(3.2 .31)$	$8.377 e-005$	78	10.296	4.055
$1.389 e-005$	Matlab ODE 15s	$4.710 e-005$	104	177.638	453.332
$1.389 e-005$	EGLM_{423} (2.2.9)	$1.446 e-005$	170	20.904	26.273
$1.389 e-005$	EARK $_{422} c_{2}(3.2 .31)$	$1.731 e-005$	101	12.776	4.340
$3.728 e-006$	Matlab ODE 15s	$1.569 e-005$	124	204.112	454.652
$3.728 e-006$	EGLM_{423} (2.2.9)	$3.874 e-006$	231	26.395	30.500
$3.728 e-006$	EARK $_{422} c_{2}(3.2 .31)$	$2.988 e-006$	135	16.864	4.984
$1.000 e-006$	Matlab ODE 15s	$2.513 e-006$	148	231.568	454.914
$1.000 e-006$	$\mathrm{EGLM}_{423}(2.2 .9)$	$1.099 e-006$	314	36.660	32.641
$1.000 e-006$	EARK $_{422} c_{2}(3.2 .31)$	$5.551 e-007$	186	22.870	45.180

B. 5 Gray-Scott Equation Tables

B.5.1 1-Dimensional Problem

$N=512$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-002$	Matlab ODE 15s	$2.320 e-003$	54	17.035	67.543
$1.000 e-002$	EGLM_{423} (2.2.9)	$1.801 e-004$	60	6.100	18.910
$1.000 e-002$	EARK $_{422} c_{2}$ (3.2.31)	$3.505 e-004$	59	6.115	1.262
$3.511 e-003$	Matlab ODE 15s	$9.686 e-004$	65	18.892	64.031
$3.511 e-003$	EGLM_{423} (2.2.9)	$6.795 e-005$	78	7.020	0.000
$3.511 e-003$	EARK $_{422} c_{2}$ (3.2.31)	$1.743 e-004$	67	6.505	0.000
$1.233 e-003$	Matlab ODE 15s	$3.505 e-004$	79	21.840	64.031
$1.233 e-003$	EGLM_{423} (2.2.9)	$2.505 e-005$	103	8.502	17.566
$1.233 e-003$	EARK $_{422} c_{2}$ (3.2.31)	$8.641 e-005$	77	6.942	0.004
$4.329 e-004$	Matlab ODE 15s	$1.217 e-004$	89	20.857	64.039
$4.329 e-004$	EGLM_{423} (2.2.9)	$9.231 e-006$	124	9.812	34.383
$4.329 e-004$	EARK $_{422} c_{2}$ (3.2.31)	$2.911 e-005$	88	7.582	0.000
$1.520 e-004$	Matlab ODE 15s	$4.156 e-005$	106	24.445	64.105
$1.520 e-004$	EGLM_{423} (2.2.9)	$3.357 e-006$	154	11.669	22.707
$1.520 e-004$	EARK $_{422} c_{2}$ (3.2.31)	$1.338 e-005$	99	8.315	0.000
$5.337 e-005$	Matlab ODE 15s	$1.672 e-005$	126	28.564	64.035
$5.337 e-005$	EGLM_{423} (2.2.9)	$1.202 e-006$	195	13.931	2.590
$5.337 e-005$	EARK $_{422} c_{2}$ (3.2.31)	$3.462 e-006$	122	9.547	0.852
$1.874 e-005$	Matlab ODE 15s	$5.452 e-006$	149	30.405	69.590
$1.874 e-005$	EGLM_{423} (2.2.9)	$4.257 e-007$	245	17.145	9.652
$1.874 e-005$	EARK $_{422} c_{2}$ (3.2.31)	$1.202 e-006$	151	11.060	0.000
$6.579 e-006$	Matlab ODE 15s	$3.368 e-006$	167	34.507	64.102
$6.579 e-006$	EGLM_{423} (2.2.9)	$1.507 e-007$	305	19.750	11.824
$6.579 e-006$	EARK $_{422} c_{2}$ (3.2.31)	$3.341 e-007$	184	13.478	0.000
$2.310 e-006$	Matlab ODE 15s	$1.100 e-006$	194	37.627	65.934
$2.310 e-006$	EGLM_{423} (2.2.9)	$5.309 e-008$	388	25.397	16.750
$2.310 e-006$	EARK $_{422} c_{2}$ (3.2.31)	$1.005 e-007$	233	16.240	0.238
$8.111 e-007$	Matlab ODE 15s	$3.536 e-007$	224	43.290	67.055
$8.111 e-007$	EGLM_{423} (2.2.9)	$1.867 e-008$	498	32.901	19.199
$8.111 e-007$	EARK $_{422} c_{2}$ (3.2.31)	$2.958 e-008$	297	21.013	21.891
$2.848 e-007$	Matlab ODE 15s	$1.170 e-007$	261	48.126	67.621
2.848 e - 007	EGLM_{423} (2.2.9)	$6.565 e-009$	639	42.963	24.754
$2.848 e-007$	EARK $_{422} c_{2}$ (3.2.31)	$8.745 e-009$	379	26.411	39.254
$1.000 e-007$	Matlab ODE 15s	$4.407 e-008$	305	57.986	73.109
$1.000 e-007$	EGLM_{423} (2.2.9)	$2.307 e-009$	819	58.828	27.617
$1.000 e-007$	EARK $_{422} c_{2}$ (3.2.31)	$2.629 e-009$	482	34.507	36.906

$N=1024$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-002$	Matlab ODE 15s	$1.582 e-003$	60	88.297	259.625
$1.000 e-002$	EGLM_{423} (2.2.9)	$9.644 e-005$	71	11.762	57.789
$1.000 e-002$	EARK $_{422} c_{2}(3.2 .31)$	$2.538 e-004$	63	10.842	4.109
$3.511 e-003$	Matlab ODE 15s	$6.037 e-004$	73	96.877	256.039
$3.511 e-003$	EGLM_{423} (2.2.9)	$3.549 e-005$	90	13.260	1.367
$3.511 e-003$	EARK $_{422} c_{2}(3.2 .31)$	$8.653 e-005$	73	11.435	-0.426
$1.233 e-003$	Matlab ODE 15s	$1.905 e-004$	85	96.658	256.691
$1.233 e-003$	$\mathrm{EGLM}_{423}(2.2 .9)$	$1.302 e-005$	117	15.241	0.539
$1.233 e-003$	EARK $_{422} c_{2}$ (3.2.31)	$3.734 e-005$	84	12.605	0.574
$4.329 e-004$	Matlab ODE 15s	$6.433 e-005$	100	112.789	258.871
$4.329 e-004$	EGLM_{423} (2.2.9)	$4.745 e-006$	144	17.925	1.836
$4.329 e-004$	EARK $_{422} c_{2}$ (3.2.31)	$2.088 e-005$	93	13.307	0.438
$1.520 e-004$	Matlab ODE 15s	$2.973 e-005$	118	127.874	258.820
$1.520 e-004$	EGLM_{423} (2.2.9)	$1.692 e-006$	179	21.372	27.086
$1.520 e-004$	EARK $_{422} c_{2}(3.2 .31)$	$5.739 e-006$	114	15.210	1.570
$5.337 e-005$	Matlab ODE 15s	$1.321 e-005$	140	143.022	260.434
$5.337 e-005$	EGLM_{423} (2.2.9)	$6.025 e-007$	226	26.271	26.203
$5.337 e-005$	EARK $_{422} c_{2}(3.2 .31)$	$1.779 e-006$	140	17.737	1.949
$1.874 e-005$	Matlab ODE 15s	$3.668 e-006$	156	146.859	260.902
$1.874 e-005$	$\mathrm{EGLM}_{423}(2.2 .9)$	$2.146 e-007$	282	32.479	40.770
$1.874 e-005$	EARK $_{422} c_{2}(3.2 .31)$	$5.015 e-007$	171	21.419	37.477
$6.579 e-006$	Matlab ODE 15s	$1.928 e-006$	183	173.208	261.848
$6.579 e-006$	EGLM_{423} (2.2.9)	$7.560 e-008$	357	40.389	41.504
$6.579 e-006$	EARK $_{422} c_{2}(3.2 .31)$	$1.519 e-007$	215	25.023	34.336
$2.310 e-006$	Matlab ODE 15s	$5.518 e-007$	220	194.876	262.629
$2.310 e-006$	$\mathrm{EGLM}_{423}(2.2 .9)$	$2.658 e-008$	458	55.334	38.582
$2.310 e-006$	EARK $_{422} c_{2}(3.2 .31)$	$4.473 e-008$	273	31.949	55.301
$8.111 e-007$	Matlab ODE 15s	$3.402 e-007$	262	244.110	263.664
$8.111 e-007$	EGLM_{423} (2.2.9)	$9.348 e-009$	587	72.603	72.035
$8.111 e-007$	EARK $_{422} c_{2}$ (3.2.31)	$1.326 e-008$	348	47.128	76.070
$2.848 e-007$	Matlab ODE 15s	$9.387 e-008$	312	259.320	265.883
2.848 - 007	EGLM_{423} (2.2.9)	$3.286 e-009$	751	102.555	109.785
2.848 e - 007	EARK $_{422} c_{2}(3.2 .31)$	$3.951 e-009$	446	57.018	81.410
$1.000 e-007$	Matlab ODE 15s	$1.964 e-008$	3769	626.048	373.090
$1.000 e-007$	EGLM_{423} (2.2.9)	$1.155 e-009$	969	151.181	164.125
$1.000 e-007$	EARK $_{422} c_{2}(3.2 .31)$	$1.197 e-009$	569	75.224	135.133

B.5.2 2-Dimensional Problem

$N=32 \times 32$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-002$	Matlab ODE 15s	8.642e-003	23	59.873	256.418
$1.000 e-002$	EGLM_{423} (2.2.9)	$1.738 e-003$	32	3.354	14.105
$1.000 e-002$	$\mathrm{EARK}_{422} c_{2}$ (3.2.31)	$2.712 e-003$	29	3.167	5.633
$2.683 e-003$	Matlab ODE 15s	$3.364 e-003$	31	62.135	256.031
$2.683 e-003$	EGLM_{423} (2.2.9)	$5.991 e-004$	42	4.025	9.113
$2.683 e-003$	EARK $_{422} c_{2}(3.2 .31)$	$3.179 e-004$	44	4.446	13.641
$7.197 e-004$	Matlab ODE 15s	$1.915 e-003$	39	67.954	256.031
$7.197 e-004$	EGLM_{423} (2.2.9)	$1.645 e-004$	60	5.476	22.816
$7.197 e-004$	$\mathrm{EARK}_{422} c_{2}$ (3.2.31)	$2.079 e-004$	50	4.571	3.199
1.931e-004	Matlab ODE 15s	$3.527 e-004$	49	78.001	256.031
1.931e-004	EGLM_{423} (2.2.9)	$4.819 e-005$	75	6.115	3.965
1.931e-004	EARK $_{422} c_{2}$ (3.2.31)	$5.353 e-005$	62	5.460	1.969
$5.179 e-005$	Matlab ODE 15s	$6.941 e-005$	61	85.816	258.070
$5.179 e-005$	EGLM_{423} (2.2.9)	$1.536 e-005$	96	7.535	19.266
$5.179 e-005$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	$1.275 e-005$	69	5.554	5.238
$1.389 e-005$	Matlab ODE 15s	$2.521 e-005$	75	87.907	258.008
$1.389 e-005$	EGLM_{423} (2.2.9)	$4.173 e-006$	126	9.688	1.121
$1.389 e-005$	EARK $_{422} c_{2}$ (3.2.31)	$1.106 e-005$	84	6.646	27.629
$3.728 e-006$	Matlab ODE 15s	8.844e - 006	91	97.345	258.945
$3.728 e-006$	EGLM_{423} (2.2.9)	$1.146 e-006$	164	12.698	0.926
$3.728 e-006$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	$9.356 e-007$	105	8.143	0.961
$1.000 e-006$	Matlab ODE 15s	$1.788 e-006$	108	113.803	259.539
$1.000 e-006$	EGLM_{423} (2.2.9)	$3.093 e-007$	217	16.864	1.012
$1.000 e-006$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	$2.114 e-007$	139	10.702	0.770

$N=64 \times 64$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-002$	Matlab ODE 15s	N/A	N/A	N/A	4158.961
$1.000 e-002$	EGLM_{423} (2.2.9)	N/A	41	17.269	77.797
$1.000 e-002$	EARK $_{422} c_{2}$ (3.2.31)	N/A	43	11.123	36.516
$2.683 e-003$	Matlab ODE 15s	N/A	N/A	N/A	N/A
$2.683 e-003$	EGLM_{423} (2.2.9)	N/A	66	14.165	24.898
$2.683 e-003$	EARK $_{422} c_{2}$ (3.2.31)	N/A	58	13.744	36.301
$7.197 e-004$	Matlab ODE 15s	N/A	N/A	N/A	N/A
$7.197 e-004$	EGLM_{423} (2.2.9)	N/A	82	17.394	14.504
$7.197 e-004$	EARK $_{422} c_{2}$ (3.2.31)	N/A	70	15.475	75.980
$1.931 e-004$	Matlab ODE 15s	N/A	N/A	N/A	N/A
$1.931 e-004$	EGLM_{423} (2.2.9)	N/A	102	20.545	108.430
$1.931 e-004$	EARK $_{422} c_{2}$ (3.2.31)	N/A	73	15.444	47.000
$5.179 e-005$	Matlab ODE 15s	N/A	N/A	N/A	N/A
$5.179 e-005$	EGLM_{423} (2.2.9)	N/A	140	30.358	117.430
$5.179 e-005$	EARK $_{422} c_{2}$ (3.2.31)	N/A	95	21.513	160.012
$1.389 e-005$	Matlab ODE 15s	N/A	N/A	N/A	N/A
$1.389 e-005$	EGLM_{423} (2.2.9)	N/A	174	39.359	114.762
$1.389 e-005$	EARK $_{422} c_{2}$ (3.2.31)	N/A	103	22.901	137.160
$3.728 e-006$	Matlab ODE 15s	N/A	N/A	N/A	N/A
$3.728 e-006$	EGLM_{423} (2.2.9)	N/A	224	56.160	190.895
$3.728 e-006$	EARK $_{422} c_{2}$ (3.2.31)	N/A	136	30.966	151.008
$1.000 e-006$	Matlab ODE 15s	N/A	N/A	N/A	N/A
$1.000 e-006$	EGLM_{423} (2.2.9)	N/A	305	77.314	243.012
$1.000 e-006$	EARK $_{422} c_{2}(3.2 .31)$	N/A	176	41.886	301.766

B.5.3 3-Dimensional Problem

$N=8 \times 8 \times 8$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-002$	Matlab ODE 15s	$5.347 e-004$	16	6.053	70.660
$1.000 e-002$	$\mathrm{EGLM}_{423}(2.2 .9)$	$3.036 e-005$	21	2.075	6.977
$1.000 e-002$	EARK $_{422} c_{2}(3.2 .31)$	$1.496 e-005$	21	2.293	1.723
$2.683 e-003$	Matlab ODE 15s	$2.059 e-004$	20	7.114	64.031
$2.683 e-003$	EGLM_{423} (2.2.9)	$1.346 e-005$	26	2.356	1.379
$2.683 e-003$	EARK $_{422} c_{2}(3.2 .31)$	$1.058 e-004$	25	2.371	0.773
$7.197 e-004$	Matlab ODE 15s	$7.707 e-005$	24	7.519	64.031
$7.197 e-004$	EGLM_{423} (2.2.9)	$4.610 e-006$	31	2.402	0.484
$7.197 e-004$	EARK $_{422} c_{2}(3.2 .31)$	$5.684 e-005$	29	2.324	0.871
$1.931 e-004$	Matlab ODE 15s	$2.399 e-005$	30	9.282	64.035
$1.931 e-004$	$\mathrm{EGLM}_{423}(2.2 .9)$	$1.567 e-006$	40	2.761	2.758
$1.931 e-004$	EARK $_{422} c_{2}(3.2 .31)$	$1.682 e-005$	34	2.449	0.000
$5.179 e-005$	Matlab ODE 15s	$7.836 e-006$	37	9.875	64.031
$5.179 e-005$	$\mathrm{EGLM}_{423}(2.2 .9)$	$4.620 e-007$	54	3.526	9.449
$5.179 e-005$	EARK $_{422} c_{2}(3.2 .31)$	$3.944 e-006$	39	2.730	0.000
$1.389 e-005$	Matlab ODE 15s	$2.586 e-006$	44	10.889	64.031
$1.389 e-005$	EGLM_{423} (2.2.9)	$1.322 e-007$	67	3.947	8.953
$1.389 e-005$	EARK $_{422} c_{2}(3.2 .31)$	$1.116 e-006$	47	3.198	1.715
$3.728 e-006$	Matlab ODE 15s	$1.004 e-006$	54	12.230	64.031
$3.728 e-006$	$\mathrm{EGLM}_{423}(2.2 .9)$	$3.721 e-008$	85	4.836	18.844
$3.728 e-006$	EARK $_{422} c_{2}(3.2 .31)$	$2.657 e-007$	58	3.354	0.977
$1.000 e-006$	Matlab ODE 15s	$3.725 e-007$	62	14.726	64.113
$1.000 e-006$	EGLM_{423} (2.2.9)	$1.041 e-008$	109	5.569	34.168
$1.000 e-006$	EARK $_{422} c_{2}(3.2 .31)$	$5.408 e-008$	71	4.228	3.906

$N=16 \times 16 \times 16$	Method	Global Error	Steps	CPU Time	Memory
$1.000 e-002$	Matlab ODE 15s	N/A	N/A	N/A	4101.867
$1.000 e-002$	EGLM_{423} (2.2.9)	N/A	56	52.026	60.184
$1.000 e-002$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	N/A	47	17.862	47.305
$2.683 e-003$	Matlab ODE 15s	N/A	N/A	N/A	N/A
$2.683 e-003$	EGLM_{423} (2.2.9)	N/A	70	16.692	27.230
$2.683 e-003$	EARK $_{422} c_{2}$ (3.2.31)	N/A	65	20.483	143.340
$7.197 e-004$	Matlab ODE 15s	N/A	N/A	N/A	N/A
$7.197 e-004$	EGLM_{423} (2.2.9)	N/A	99	24.664	106.770
$7.197 e-004$	EARK $_{422} c_{2}(3.2 .31)$	N/A	74	18.798	46.227
$1.931 e-004$	Matlab ODE 15s	N/A	N/A	N/A	N/A
$1.931 e-004$	EGLM_{423} (2.2.9)	N/A	128	31.465	109.066
$1.931 e-004$	EARK $_{422} c_{2}$ (3.2.31)	N/A	88	24.071	147.148
$5.179 e-005$	Matlab ODE 15s	N/A	N/A	N/A	N/A
$5.179 e-005$	EGLM_{423} (2.2.9)	N/A	156	36.660	114.695
$5.179 e-005$	$\mathrm{EARK}_{422} c_{2}(3.2 .31)$	N/A	110	27.331	161.758
$1.389 e-005$	Matlab ODE 15s	N/A	N/A	N/A	N/A
$1.389 e-005$	EGLM_{423} (2.2.9)	N/A	205	50.903	192.574
$1.389 e-005$	EARK $_{422} c_{2}$ (3.2.31)	N/A	131	32.557	218.172
$3.728 e-006$	Matlab ODE 15s	N/A	N/A	N/A	N/A
$3.728 e-006$	EGLM_{423} (2.2.9)	N/A	273	73.898	232.445
$3.728 e-006$	EARK $_{422} c_{2}(3.2 .31)$	N/A	170	44.616	298.668
$1.000 e-006$	Matlab ODE 15s	N/A	N/A	N/A	N/A
$1.000 e-006$	EGLM_{423} (2.2.9)	N/A	365	107.828	317.359
$1.000 e-006$	EARK $_{422} c_{2}(3.2 .31)$	N/A	224	64.272	345.898

Appendix C

Alternative Order Condition Proofs

C. 1 3-Stage, $\mathbf{6}^{\text {th }}$ Order EAGLMs

What follows is an alternative proof of EAGLM order conditions in a grid format similar to the ERK proof of Theorem 2.

Theorem 19. 3-stgae EAGLMs of the form

0							
c_{2}	a_{21}			$e^{c_{2} h L}$	u_{21}	u_{22}	p_{21}
c_{3}	a_{31}	a_{32}		p_{22}			
	$b_{1} h$	b_{2}	b_{3}	$e^{h L}$	u_{31}	u_{32}	v_{31}
p_{2}	p_{32}						
	q_{1}	q_{2}					

$$
\begin{aligned}
& K_{1}=N \\
& K_{2}=N\left(t_{n}+c_{2} h, e^{c_{2} h L} y_{n}+h\left[a_{21} K_{1}+u_{21} N_{t_{n-1}}+u_{22} N_{t_{n-2}}+p_{21} N^{\prime}+p_{22} N^{\prime \prime}\right]\right) \\
& K_{3}=N\left(t_{n}+c_{3} h, e^{c_{3} h L} y_{n}+h\left[a_{31} K_{1}+a_{32} K_{2}+u_{31} N_{t_{n-1}}+u_{32} N_{t_{n-2}}+p_{31} N^{\prime}+p_{32} N^{\prime \prime}\right]\right) \\
& y_{n+1}=e^{h L} y_{n}+h\left(b_{1} K_{1}+b_{2} K_{2}+b_{3} K_{3}+v_{1} N_{t_{n-1}}+v_{2} N_{t_{n-2}}+q_{1} N^{\prime}+q_{2} N^{\prime \prime}\right)
\end{aligned}
$$

that meet the consistency conditions (3.2.4), can achieve the following listed orders if they also satisfy the accompanying conditions.

$2^{\text {nd }}$ Order

$$
\begin{equation*}
b_{3} c_{3}-2 v_{2}+b_{2} c_{2}-v_{1}+q_{1}=\varphi_{2} \tag{C.1.2}
\end{equation*}
$$

$3^{\text {rd }}$ Order

$$
\begin{gather*}
b_{3} c_{3}^{2}+4 v_{2}+2 q_{2}+b_{2} c_{2}^{2}+v_{1}=2 \varphi_{3} \tag{C.1.3a}\\
b_{2}\left(p_{21}-u_{21}-2 u_{22}-c_{2}^{2} \varphi_{22}\right)+b_{3}\left(c_{2} a_{32}+p_{31}-u_{31}-2 u_{32}-c_{3}^{2} \varphi_{23}\right)=0 \tag{C.1.3b}
\end{gather*}
$$

$4^{\text {th }}$ Order

$$
\begin{gather*}
b_{3} c_{3}^{3}-8 v_{2}+b_{2} c_{2}^{3}-v_{1}=3!\varphi_{4} \tag{C.1.4a}\\
p_{21}-u_{21}-2 u_{22}-c_{2}^{2} \varphi_{22}=0 \tag{C.1.4b}\\
c_{2} a_{32}+p_{31}-u_{31}-2 u_{32}-c_{3}^{2} \varphi_{23}=0 \tag{C.1.4c}
\end{gather*}
$$

$$
\begin{equation*}
b_{2}\left(p_{22}+\frac{1}{2} u_{21}+\frac{4}{2!} u_{22}-c_{2}^{3} \varphi_{32}\right)+b_{3}\left(\frac{1}{2} c_{2}^{2} a_{32}+p_{32}+\frac{1}{2} u_{31}+\frac{4}{2!} u_{32}-c_{3}^{3} \varphi_{33}\right)=0 \tag{C.1.4d}
\end{equation*}
$$

$5^{\text {th }}$ Order

$$
\begin{gather*}
b_{3} c_{3}^{4}+16 v_{2}+b_{2} c_{2}^{4}+v_{1}=4!\varphi_{5} \tag{C.1.5a}\\
p_{22}+\frac{1}{2} u_{21}+\frac{4}{2!} u_{22}-c_{2}^{3} \varphi_{32}=0 \tag{C.1.5b}\\
\frac{1}{2} c_{2}^{2} a_{32}+p_{32}+\frac{1}{2} u_{31}+\frac{4}{2!} u_{32}-c_{3}^{3} \varphi_{33}=0 \tag{C.1.5c}\\
b_{2}\left(-\frac{1}{3!} u_{21}-\frac{8}{3!} u_{22}-c_{2}^{4} \varphi_{42}\right)+b_{3}\left(\frac{1}{3!} c_{2}^{3} a_{32}-\frac{1}{3!} u_{31}-\frac{8}{3!} u_{32}-c_{3}^{4} \varphi_{43}\right)=0 \tag{C.1.5d}
\end{gather*}
$$

$6^{\text {th }}$ Order

$$
\begin{gather*}
b_{3} c_{3}^{5}-32 v_{2}+b_{2} c_{2}^{5}-v_{1}=5!\varphi_{6} \tag{C.1.6a}\\
-\frac{1}{3!} u_{21}-\frac{8}{3!} u_{22}-c_{2}^{4} \varphi_{42}=0 \tag{C.1.6b}\\
\frac{1}{3!} c_{2}^{3} a_{32}-\frac{1}{3!} u_{31}-\frac{8}{3!} u_{32}-c_{3}^{4} \varphi_{43}=0 \tag{C.1.6c}\\
b_{2}\left(\frac{1}{4!} u_{21}+\frac{16}{4!} u_{22}-c_{2}^{5} \varphi_{52}\right)+b_{3}\left(\frac{1}{4!} c_{2}^{4} a_{32}+\frac{1}{4!} u_{31}+\frac{16}{4!} u_{32}-c_{3}^{5} \varphi_{53}\right)=0 \tag{C.1.6d}
\end{gather*}
$$

Proof. The R_{2} grid for $6^{\text {th }}$ order EAGLMs is much the same as that of EGLMs though in this case extended to h^{5}. We introduce a new notation here of labelling the occupied grid locations so that referencing them later is much clearer.

R_{2}	1	h	h^{2}	h^{3}	h^{4}	h^{5}
N						
N^{\prime}			$\left.\begin{array}{ll} \left(p_{21}-u_{21}\right. & {[\mathrm{A}]} \\ -2 u_{22}-c_{2}^{2} \varphi_{22} \end{array}\right)$			
$N^{\prime \prime}$				$\begin{gathered} \left(p_{22}+\frac{1}{2} u_{21} \quad\right. \text { [B] } \\ \left.+\frac{4}{2!} u_{22}-c_{2}^{3} \varphi_{32}\right) \\ \hline \end{gathered}$		
$N^{\prime \prime \prime}$					$\begin{aligned} & \left(-\frac{1}{3!} u_{21} \quad[c]\right. \\ & \left.-\frac{8}{3!} u_{22}-c_{2}^{4} \varphi_{42}\right) \end{aligned}$	
$N^{\prime \prime \prime \prime}$						$\begin{aligned} & \left(\frac{1}{4!} u_{21}\right. \\ & \left.+\frac{16}{4!} u_{22}-c_{2}^{5} \varphi_{52}\right) \\ & \hline \end{aligned}$
$N^{\prime \prime \prime \prime \prime \prime}$						

(C.1.7)

In addition, to keep the terms manageable we will simply refer to entries in the R_{2} grid rather than write out the expressions explicitly.

K_{2}	1	h	h^{2}	h^{3}	h^{4}	h^{5}
N	1					
N^{\prime}		c_{2}	${ }_{\left[R_{2}, \mathrm{~A}\right]} N_{u} \quad$ [A]	$c_{2}\left[R_{2}, \mathrm{~A}\right] N_{u}^{\prime} \quad$ [E]	$\frac{c_{2}^{2}}{2}\left[R_{2}, \mathrm{~A}\right] N_{u}^{\prime \prime} \quad$ [H]	$\frac{c_{2}^{3}}{6}\left[R_{2}, \mathrm{~A}\right] N_{u}^{\prime \prime \prime} \quad$ [J]
$N^{\prime \prime}$			$\frac{1}{2} c_{2}^{2}$	${ }_{[R 2}$, B] $N_{u} \quad$ [B]	$c_{2}{ }^{\left[R_{2}, \mathrm{B]}\right.} N_{u}^{\prime} \quad{ }^{[\mathrm{F}]}$	$\frac{c_{2}^{2}}{2}\left[R_{2}, \mathrm{~B}\right] N_{u}^{\prime \prime} \quad$ [I]
$N^{\prime \prime}$				$\frac{1}{6} c_{2}^{2}$	$\left.{ }_{[R 2}, \mathrm{c}\right] N_{u} \quad$ [C]	$c_{2}\left[R_{2}, \mathrm{C}\right] N_{u}^{\prime} \quad[\mathrm{G}]$
$N^{\prime \prime}$					$\frac{1}{4!} c_{2}^{4}$	$\left.{ }_{[R 2}, \mathrm{D}\right] N_{u} \quad$ [D]
$N^{\prime \prime \prime \prime \prime}$						$\frac{1}{5!} c_{2}^{5}$

K_{2}		h^{4}	
$\left(N^{\prime}\right)^{2}$	$\left(\left[R_{2}, \mathrm{~A}\right]\right)^{2} N_{u u}$	$[\mathrm{~K}]$	$c_{2}\left(\left[R_{2}, \mathrm{~A}\right]\right)^{2} N_{u u}^{\prime}$
$[\mathrm{M}]$			
$N^{\prime} N^{\prime \prime}$			h^{5}

The K_{2} grid now contains two new rows, this is because to achieve $6^{\text {th }}$ order we cannot ignore the R_{i}^{2} terms from the K_{i} expansion (2.1.6). Specifically for K_{2} we have

$$
\begin{equation*}
R_{2}^{2}=\left[R_{2}, \mathrm{~A}\right]^{2}\left(N^{\prime}\right)^{2} h^{4}+\left(\left[R_{2}, \mathrm{~A}\right]+\left[R_{2}, \mathrm{~B}\right]\right) N^{\prime} N^{\prime \prime} h^{5}+O\left(h^{6}\right) \tag{C.1.9}
\end{equation*}
$$

The R_{3} and K_{3} grids also simply reference entries in the previous K_{2} and R_{3} grids respectively.

R_{3}	1	h	h^{2}	h^{3}	h^{4}	

R_{3}	h^{4}		h^{5}
$\left(N^{\prime}\right)^{2}$		$a_{32}\left[K_{2}, \mathrm{~K}\right]$	[K]
$N^{\prime} N^{\prime \prime}$			

As was required for K_{2} we must preserve the R_{3}^{2} terms in expansion of K_{3}.

$$
\begin{equation*}
R_{3}^{2}=\left[R_{3}, \mathrm{~A}\right]^{2}\left(N^{\prime}\right)^{2} h^{4}+\left(\left[R_{3}, \mathrm{~A}\right]+\left[R_{3}, \mathrm{E}\right]\right)\left(N^{\prime}\right)^{2} h^{5}\left(\left[R_{3}, \mathrm{~A}\right]+\left[R_{3}, \mathrm{~B}\right]\right) N^{\prime} N^{\prime \prime} h^{5}+O\left(h^{6}\right) \tag{C.1.11}
\end{equation*}
$$

K_{3}	1	h	h^{2}	h^{3}	h^{4}	h^{5}
N	1					
N^{\prime}		c_{3}	$\begin{array}{r} {[\mathrm{A}]} \\ {\left[R_{3}, \mathrm{~A}\right] N_{u}} \end{array}$	$c_{3}\left[R_{3}, \mathrm{~A}\right] N_{u}^{\prime}+\left[R_{3}, \mathrm{E}\right] N_{u}$	$\begin{aligned} & \frac{1}{2} c_{3}^{2}\left[R_{3}, \mathrm{~A}\right] N_{u}^{\prime \prime}+ \\ & c_{3}\left[R_{3}, \mathrm{E}\right] N_{u}^{\prime}+\left[R_{3}, \mathrm{H}\right] N_{u} \end{aligned}$	$\begin{aligned} & {\left[R_{3}, \mathrm{~J}\right] N_{u}+c_{3}\left[R_{3}, \mathrm{H}\right] N_{u}^{\prime}+\quad[\mathrm{J}]} \\ & \frac{1}{2} c_{3}^{2}\left[R_{3}, \mathrm{E}\right] N_{u}^{\prime \prime}+\frac{1}{6} c_{3}^{3}\left[R_{3}, \mathrm{~A}\right] N_{u}^{\prime \prime \prime} \end{aligned}$
$N^{\prime \prime}$			$\frac{1}{2} c_{3}^{2}$	[B] $\left[R_{3}, \mathrm{~B}\right] N_{u}$	$c_{3}\left[R_{3}, \mathrm{~B}\right] N_{u}^{\prime}+\left[R_{3}, \mathrm{~F}\right] N_{u}$	$\begin{array}{r} \frac{1}{2} c_{3}^{2}\left[R_{3}, \mathrm{~B}\right] N_{u}^{\prime \prime}+ \\ c_{3}\left[R_{3}, \mathrm{~F}\right] N_{u}^{\prime}+\left[R_{3}, \mathrm{I}\right] N_{u} \end{array}$
$N^{\prime \prime \prime}$				$\frac{1}{6} c_{3}^{3}$	[c] $\left[R_{3}, \mathrm{C}\right] N_{u}$	$c_{3}\left[R_{3}, \mathrm{C}\right] N_{u}^{\prime}+\left[R_{3}, \mathrm{G}\right] N_{u}{ }^{\text {[G] }}$
$N^{\prime \prime \prime \prime}$					${ }_{4}^{1} c_{3}^{4}$	${ }_{\left[R_{3}, \mathrm{D}\right] N_{u}}{ }^{\text {[D] }}$
$N^{\prime \prime \prime \prime \prime \prime}$						$\frac{1}{5!} c_{3}^{5}$

$\left.$| K_{3} | | h^{4} | |
| :---: | ---: | ---: | ---: |
| $\left(N^{\prime}\right)^{2}$ | $\left(\left[R_{3}, \mathrm{~A}\right]\right)^{2} N_{u u}$ | $[\mathrm{~K}]$ | $\left[R_{3}, \mathrm{~K}\right] N_{u}+c_{3}\left(\left[R_{3}, \mathrm{~A}\right]\right)^{2} N_{u u}^{\prime}+\left[R_{3}, \mathrm{~A}\right] \times\left[R_{3}, \mathrm{E}\right] N_{u u}$ |$\quad[\mathrm{M}] \right\rvert\,$

Summarizing Conditions

The grids cells along the diagonal, $\left(h^{i}, N^{(i)}\right)$ for $i \geq 1$, recover respective the first condition of each $i^{\text {th }}$ order set of conditions. That is, the necessary $2^{\text {nd }}$ order condition (C.1.2) as well as the additional conditions (C.1.3a), (C.1.4a), (C.1.5a) and (C.1.6a).

$3^{\text {rd }}$ Order

The $h^{2} N^{\prime} N_{u}$ cells imply the condition $b_{3}\left[R_{3}, \mathrm{~A}\right]+b_{2}\left[R_{2}, \mathrm{~A}\right]=0$ which, with condition In addition to (C.1.3a), recovers the remaining $3^{\text {rd }}$ order condition (C.1.3b).

$4^{\text {th }}$ Order

We get the following conditions from the cells;

- $h^{3} N^{\prime} N_{u}^{\prime} \Rightarrow b_{3} c_{3}\left[R_{3}, \mathrm{~A}\right]+b_{2} c_{2}\left[R_{2}, \mathrm{~A}\right]=0$
- $h^{3} N^{\prime}\left(N_{u}\right)^{2} \Rightarrow b_{3} a_{32}\left[R_{2}, \mathrm{~A}\right]=0$
- $h^{3} N^{\prime \prime} N_{u} \Rightarrow b_{3}\left[R_{3}, \mathrm{~B}\right]+b_{2}\left[R_{2}, \mathrm{~B}\right]=0$

The requirement $b_{3} a_{32}\left[R_{2}, \mathrm{~A}\right]=0$ together with the earlier $b_{3}\left[R_{3}, \mathrm{~A}\right]+b_{2}\left[R_{2}, \mathrm{~A}\right]=0$ imples both $\left[R_{2}, \mathrm{~A}\right]$ and $\left[R_{3}, \mathrm{~A}\right]=0$ recovering conditions (C.1.4b) and (C.1.4c). From $b_{3}\left[R_{3}, \mathrm{~B}\right]+b_{2}\left[R_{2}, \mathrm{~B}\right]=0$ we get (C.1.4d).

$5^{\text {th }}$ Order

Here the h^{4} cells imply

- $h^{4} N^{\prime} N_{u}^{\prime \prime} \Rightarrow \frac{b_{3} c_{3}^{2}\left[R_{3}, \mathrm{~A}\right]}{2}+\frac{b_{2} c_{2}^{2}\left[R_{2}, \mathrm{~A}\right]}{2}=0$
- $h^{4} N^{\prime} N_{u}^{\prime} N_{u} \Rightarrow b_{3} a_{32}\left(c_{3}+c_{2}\right)\left[R_{2}, \mathrm{~A}\right]=0$
- $h^{4} N^{\prime \prime} N_{u}^{\prime} \Rightarrow b_{3} c_{3}\left[R_{3}, \mathrm{~B}\right]+b_{2} c_{2}\left[R_{2}, \mathrm{~B}\right]=0$
- $h^{4} N^{\prime \prime}\left(N_{u}\right)^{2} \Rightarrow b_{3} a_{32}\left[R_{2}, \mathrm{~B}\right]=0$
- $h^{4} N^{\prime \prime \prime} N_{u} \Rightarrow b_{3}\left[R_{3}, \mathrm{c}\right]+b_{2}\left[R_{2}, \mathrm{c}\right]=0$
- $h^{4}\left(N^{\prime}\right)^{2} N_{u u} \Rightarrow b_{3}\left(\left[R_{3}, \mathrm{~A}\right]\right)^{2}+b_{2}\left(\left[R_{2}, \mathrm{~A}\right]\right)^{2}=0$

Like before, the requirement $b_{3} a_{32}\left[R_{2}, \mathrm{~B}\right]=0$ together with the earlier $b_{3}\left[R_{3}, \mathrm{~B}\right]+b_{2}\left[R_{2}, \mathrm{~B}\right]=0$ imples both $\left[R_{2}, \mathrm{~B}\right]$ and $\left[R_{3}, \mathrm{~B}\right]=0$ recovering conditions (C.1.5b) and (C.1.5c). From $b_{3}\left[R_{3}, \mathrm{C}\right]+$ $b_{2}\left[R_{2}, \mathrm{c}\right]=0$ we get (C.1.5d).

$6^{\text {th }}$ Order

The cells

- $h^{5} N^{\prime} N_{u}^{\prime \prime \prime} \Rightarrow \frac{1}{6} b_{3} c_{3}^{3}\left[R_{3}, \mathrm{~A}\right]+\frac{1}{6} b_{2} c_{2}^{3}\left[R_{2}, \mathrm{~A}\right]=0$
- $h^{5} N^{\prime} N_{u}^{\prime \prime} N_{u} \Rightarrow b_{3} a_{32}\left(\frac{c_{3}^{2}+c_{2}^{2}}{2}\right)\left[R_{2}, \mathrm{~A}\right]=0$
- $h^{5} N^{\prime}\left(N_{u}^{\prime}\right)^{2} \Rightarrow c_{2} c_{3} b_{3} a_{32}\left[R_{2}, \mathrm{~A}\right]=0$
- $h^{5} N^{\prime \prime} N_{u}^{\prime \prime} \Rightarrow \frac{1}{2} b_{3} c_{3}^{2}\left[R_{3}, \mathrm{~B}\right]+\frac{1}{2} b_{2} c_{2}^{2}\left[R_{2}, \mathrm{~B}\right]=0$
- $h^{5} N^{\prime \prime} N_{u} N_{u}^{\prime} \Rightarrow b_{3}\left(c_{3}+c_{2}\right) a_{32}\left[R_{2}, \mathrm{~B}\right]=0$
- $h^{5} N^{\prime \prime \prime} N_{u}^{\prime} \Rightarrow b_{3} c_{3}\left[R_{3}, \mathrm{C}\right]+b_{2} c_{2}\left[R_{2}, \mathrm{C}\right]=0$
- $h^{5} N^{\prime \prime \prime}\left(N_{u}\right)^{2} \Rightarrow b_{3} a_{32}\left[R_{2}, \mathrm{C}\right]=0$
- $h^{5} N^{\prime \prime \prime \prime} N_{u} \Rightarrow b_{3}\left[R_{3}, \mathrm{D}\right]+b_{2}\left[R_{2}, \mathrm{D}\right]=0$
- $h^{5}\left(N^{\prime}\right)^{2} N_{u} N_{u u} \Rightarrow b_{3} a_{32}\left[R_{2}, \mathrm{~A}\right]\left(\left[R_{3}, \mathrm{~A}\right]+\left[R_{2}, \mathrm{~A}\right]\right)=0$
- $h^{5}\left(N^{\prime}\right)^{2} N_{u u}^{\prime} \Rightarrow b_{3} c_{3}\left(\left[R_{3}, \mathrm{~A}\right]\right)^{2}+b_{2} c_{2}\left(\left[R_{2}, \mathrm{~A}\right]\right)^{2}=0$
- $h^{5} N^{\prime} N^{\prime \prime} N_{u u} \Rightarrow b_{3}\left(\left[R_{3}, \mathrm{~A}\right] \times\left[R_{3}, \mathrm{~B}\right]\right)+b_{2}\left(\left[R_{2}, \mathrm{~A}\right] \times\left[R_{2}, \mathrm{~B}\right]\right)=0$

Though there are a lot more $6^{\text {th }}$ orders conditions from the h^{5} cells there is a lot of repetition. The requirement $b_{3} a_{32}\left[R_{2}, \mathrm{C}\right]=0$ together with the earlier $b_{3}\left[R_{3}, \mathrm{c}\right]+b_{2}\left[R_{2}, \mathrm{C}\right]=0$ implies both $\left[R_{2}, \mathrm{~B}\right]$ and $\left[R_{3}, \mathrm{~B}\right]=0$. This satisfies a number of the cells conditions and recovers the required order conditions (C.1.6b) and (C.1.6c). Finally, the requirement $b_{3}\left[R_{3}, \mathrm{D}\right]+b_{2}\left[R_{2}, \mathrm{D}\right]=0$ gives condition (C.1.6d).

Appendix D

Acronyms

AMAB Adams-Moulton / Adams-Bashforth Method 5
ARK Almost Runge-Kutta Method 29
EAGLM Exponential Almost General Linear Method 29
EARK Exponential Almost Runge-Kutta Method 29
EI Exponential Time-Integrator 1
EGLM Exponential General Linear Method 6
ELP Exact treatment of the Linear Part, L, Method 5
ETD Exponential Time Differencing Method 5
ETDRK ETD Runge-Kutta Method 5
ERK Exponential Runge-Kutta Method 5
GLM General Linear Method 6
I-EM mixed Implicit-Explicit Method 5
IF Integrating Factor Method 4
IFAB Integrating Factor/Adams-Bashford Method 60
IFRK Integrating Factor/Classical Runge-Kutta Method 60
RDA Reaction Diffusion Advection 73
ReLPM Real Leja Points Method 80
RK Runge-Kutta Method 4

Bibliography

[1] G. Akrivis and Y.-S. Smyrlis, Implicit-explicit BDF methods for the Kuramoto-Sivashinsky equation, Applied Numerical Mathematics 51 (2004), no. 2-3, 151-169.
[2] L. Bergamaschi, M. Caliari, and A. Martínez andM. Vianello, Comparing Leja and Krylov approximations of large scalematrix exponentials, International Conference on Computational Science (4), 2006, pp. 685-692.
[3] L. Bergamaschi and M. Vianello, Efficient computation of the exponential operator for large, sparse, symmetric matrices, Numer. Linear Algebra Appl 7, 27-45.
[4] H. Berland, B. Skaflestad, and W. M. Wright, Expint - a Matlab package for exponential integrators, ACM Trans. Math. Softw. 33 (2007), no. 1, 4.
[5] G. Beylkin, J.M. Keiser, and L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys. 147 (1998), no. 2, 362-387.
[6] P. Bogacki and L.F. Shampine, A 3(2) pair of Runge-Kutta formulas, Applied Mathematics Letters 2 (1989), no. 4, 321 - 325.
[7] J.C. Butcher, On the convergence of numerical solutions to ordinary differential equations, Math. Comp. Volume 20 (1966), 1-10.
[8] _, General linear methods, Computers \& Mathematics with Applications Volume 31 (1996), no. 4-5, 105-112.
[9] ___ An introduction to "almost Runge-Kutta" methods, Appl. Numer. Math. 24 (1997), no. 2-3, 331-342.
[10] M. Caliari and A. Ostermann, Implementation of exponential Rosenbrock-type integrators, Appl. Numer. Math. 59 (2009), no. 3-4, 568-581.
[11] M. Caliari, M. Vianello, and L. Bergamaschi, Interpolating discrete advection-diffusion propagators at Leja sequences, J. Comput. Appl. Math. 172 (2004), no. 1, 79-99.
[12] M.P. Calvo and A.M. Portillo, Variable step implementation of ETD methods for semilinear problems, Applied Mathematics and Computation 196 (2008), no. 2, 627-637.
[13] S.M. Cox and P.C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys. 176 (2002), no. 2, 430-455.
[14] C.F. Curtiss and J.O. Hirschfelder, Integration of stiffequations, Proceedings of the National Academy of Sciences 38 (1952), 235-243.
[15] Qiang D. and Wenxiang Z., Analysis and applications of the exponential time differencing schemes and their contour integration modifications, BIT Numerical Mathematics 45 (2005), 307-328, 10.1007/s10543-005-7141-8.
[16] R. Frank, J. Schneid, and C.W. Ueberhuber, The concept of b-convergence, SIAM Journal on Numerical Analysis 18 (1981), no. 5, pp. 753-780 (English).
[17] R.A. Friesner, L.S. Tuckerman, B.C. Dornblaser, and T.V. Russo, A method for exponential propagation of large systems of stiff nonlinear differential equations, J. Sci. Comput. 4 (1989), no. 4, 327-354.
[18] E. Gallopoulos and Y. Saad, Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Stat. Comput. 13 (1992), no. 5, 1236-1264.
[19] C.W. Gear, Numerical initial value problems in ordinary differential equations, Prentice Hall PTR, Upper Saddle River, NJ, USA, 1971.
[20] E. Hairer, S.P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I,Nonstiff problems, Second Revised Edition with 135 Figures,Vol.: 1, 2Ed. Springer-Verlag, 2000, 2000.
[21] _, Solving Ordinary Differential Equations II. stiffand Differential-Algebraic Problems, Second Revised Edition with 137 Figures,Vol.: 2, 2Ed. Springer-Verlag, 2002, 2002.
[22] J.K. Hale, L.A. Peletier, and W.C. Troy, Stability and instability in the Gray-Scott model: The case of equal diffusivities, Applied Mathematics Letters 12 (1999), no. 4, 59-65.
[23] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer Berlin / Heidelberg, 1981, 10.1007/BFb0089648.
[24] M. Hochbruck, C. Lubich, and H. Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput. 19 (1998), no. 5, 1552-1574.
[25] M. Hochbruck and A. Ostermann, Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal. 43 (2005), no. 3, 1069-1090.
[26] A.-K. Kassam and L.N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput. 26 (2005), no. 4, 1214-1233.
[27] S. Krogstad, Generalized integrating factor methods for stiff PDEs, J. Comput. Phys. 203 (2005), no. 1, 72-88.
[28] J.D. Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants, SIAM Journal on Numerical Analysis 4 (1967), no. 3, 372-380.
[29] W. Liniger and R.A. Willoughby, Efficient integration methods for stiff systems of ordinary differential equations, SIAM Journal on Numerical Analysis 7 (1970), no. 1, pp. 47-66 (English).
[30] Y.Y. Lu, Exponentials of symmetric matrices through tridiagonal reductions, Linear Algebra and its Applications 279 (1998), 317-324.
[31] Y.Y. Lu, Computing a matrix function for exponential integrators, J. Comput. Appl. Math. 161 (2003), no. 1, 203-216.
[32] S. Maset and M. Zennaro, Unconditional stability of explicit exponential Runge-Kutta methods for semi-linear ordinary differential equations, Math. Comp. Volume 78 (2009), 957-967.
[33] B.V. Minchev, Exponential integrators for semilinear problems, Ph.D. thesis, University of Bergen, Department of Informatics, 2004.
[34] B.V. Minchev and W.M. Wright., A review of exponential integrators for first order semi-linear problems, Tech. Report 2/05 (2005).
[35] C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Review 20 (1978), 801-836.
[36] C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Review 45 (2003), no. 1, 3-49.
[37] J. Niesen and W.M. Wright, A Krylov subspace algorithm for evaluating the φ-functions appearing in exponential integrators, (2009).
[38] A. Ostermann, M. Thalhammer, and W.M. Wright, A class of explicit exponential general linear methods, BIT 46 (2006), no. 2, 409-431.
[39] K. Radhakrishnan and A.C. Hindmarsh, LSODE: Livermore solver for ordinary differential equations, (1987).
[40] N. Rattenbury, Almost Runge-Kutta methods for stiff and non-stiff problems, Ph.D. thesis, The University of Auckland, 2005.
[41] T. Schmelzer, Talbot quadratures and rational approximations, Bit Numerical Mathematics, 653-670(18).
[42] T. Schmelzer and L.N. Trefethen., Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximations and contour integrals, Published Online (2007).
[43] L.F. Shampine and M.W. Reichelt, The matlab ode suite, SIAM J. Sci. Comput. 18 (1997), 1-22.
[44] R.B. Sidje, ACM Trans. Math. Softw., no. 1, 130-156.
[45] A. Talbot, The accurate numerical inversion of Laplace transforms, IMA J Appl Math 23 (1979), no. 1, 97-120.
[46] J.A.C. Weideman, Optimizing Talbot's contours for the inversion of the Laplace transform, SIAM J. Numer. Anal. 44 (2006), no. 6, 2342-2362.
[47] J.A.C. Weideman and L.N. Trefethen, Parabolic and hyperbolic contours for computing the Bromwich integral, Mathematics of Computation 76 (2007), 1341-1356.

