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Glossary:

2A5NP – 2-amino-5-nitropyridine

A – geometric electrode surface area (cm2)

AB – alcian blue

AFM – atomic force microscopy

ATR – attenuated total reflectance

bpy – 2, 2’-bipyridine

biH2 – 2,2’-biimidazole, doubly protonated

biq – 2,2’-biquinoline

bmte – 1,2-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)-ethane

bmtp – 1,5-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)pentane

BnOH – benzyl alcohol

box – bisoxazoline

BPBH – 1, 6 bis-(2-(2-pyridyl)benzimidazoyl)hexane

[(But)4N]+ – tetrabutylammonium cation

(But)4NBF4 – tetrabutylammonium tetrafluoroborate

(But)4NOH – tetrabutylammmonium hydroxide

(But)4NPF6 – tetrabutylammmonium hexafluorophosphate
tBubpy – 4, 4’-di-tert-butyl-2, 2’-bipyridine

C – concentration of electroactive material in a thin film (mol.cm-3)

(caip-COOH) – 2-(4-carboxyphenyl)imidazo[4,5-f][1,10]phenanthroline

(caip-NH2) – 2-(4-aminophenyl)imidazo[4,5-f][1,10]phenanthroline

(caip-NO2) – 2-(4-nitrophenyl)imidazo[4,5-f][1,10]phenanthroline

co-poly – co-polymer

CPE – carbon paste electrode

CT – charge transfer

CV – cyclic voltammetry/cyclic voltammogram

d – thin film thickness (cm)

DAB – diaza-di(5-amino-2,2’-bipyridine)

dcbpy – 4,4′-dicarboxy-2,2′-bipyridine

DCM – dichloromethane

DCT – homogeneous charge transfer diffusion coefficient
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ddbpy – 4,4’-bis[3,5-bis(dodecyloxy)benzyloxy]-2,2’-bipyridine

DLS – dynamic light scattering

DMF – N, N-dimethylformamide

DMSO – dimethylsulfoxide

DODA – dimethyldioctadecylammonium

dpb – 4, 4’-diphosphonic-2, 2’-bipyridine acid

dpp – 4, 7-diphenyl (1, 10-phenanthroline)

dppz – dipyrido[3, 2-a:2’, 3’-c]phenazine

DSSC – dye-sensitized solar cell

E1/2 – formal redox potential (Volts)

Ea – activation energy

ECL – electrochemiluminescence

EDX – energy dispersive X-ray

EPR – electron paramagnetic resonance

ESI-MS – electrospray ionization mass spectrometry/ electrospray ionization mass spectrum

Et2O – diethyl ether

EtOH – ethanol

F – Faraday’s constant (96485 C.mol-1)

Fc/Fc+ – ferrocene/ferrocenium

FDTO – fluorine-doped tin oxide

FeSEM – field emission scanning electron microscopy

FLIM – fluorescence lifetime imaging

FRET – fluorescence resonance energy-transfer

FTIR – Fourier-transform infrared

GC – glassy carbon

[(Hex)4N]+ – tetrahexylammonium cation

ILCT – interligand charge transfer

ILs – ionic liquids

ip – peak current (Amps)

ISC – intersystem crossing

ITO – indium tin oxide/indium-doped tin oxide

IVCT – intervalence charge transfer

Ka – association constant

kq – quenching rate constant
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KSV – Stern-Volmer constant

LB – Langmuir-Blodgett

LBL – layer-by-layer

LMCT – ligand to metal charge transfer

LP – long pass

LUMO – lowest unoccupied molecular orbital

m/z – mass to charge ratio (mass spectrometry)

MB – methylene blue

MBL–PPV – poly[5-methoxy-2-(4-sulfobutoxy)-1,4-phenylvinylene]

Mebpy-py – 4-(4’’-pyridinyl ethyl)-4’-methyl-2, 2’-bipyridine

MeCN – acetonitrile

MeOH – methanol

MLCT – metal to ligand charge transfer

n – number of electrons transferred (electrochemistry)

NB – narrow band

Nd:YAG – neodymium-doped yttrium aluminium garnet

NHE – normal hydrogen electrode

NIR – near-infrared

NMR – nuclear magnetic resonance

ORTEP – Oak Ridge Thermal Ellipsoid Plot Program (X-ray diffraction)

oop – out of plane

p0p – 4, 4’-bipyridine

PAH – poly(allylaminehydrochloride)

PDDA – poly(diallyldimethylammonium chloride)

PEC – photoelectrochemistry/ photoelectrochemical

PEG – polyethylene glycol

PEI – poly(ethylenimine)

phen – 1, 10-phenanthroline

pKa – acid dissociation constant

PMT – photomultiplier tube

[(Pn)4N]+ – tetrapentylammonium cation

polyazabpy – poly[1-(2, 2’-bipyridine-4-yl)-1, 4- diazabutadiene-4, 4’-diyl]

POM – polyoxomolybdate

POW – polyoxotungstate
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ppy-CN – phenylpyridinate

PR+ – pararosaniline

PSS – (poly(styrenesulfonate)

PtC – colloidal platinum

PVP – poly(4-vinylpyridine)

Q – Faradaic charge passed (Coulombs)

QD – quantum dot

qpy – 2, 2’:4, 4’’:4’, 4’’-quarterpyridyl

R – universal gas constant (8.31 J.mol-1.K-1)

RR – resonance Raman

RS – quenching sphere radius

SANS – small-angle neutron scattering

SCE – saturated calomel electrode

SEM – scanning electron microscope/ scanning electron microscopy

SEC - spectroelectrochemistry

SV – Stern-Volmer

SWCNTs – single-wall carbon nanotubes

T – absolute temperature (K)

TCSPC – time-correlated single photon counting

terpy/tpy – 2, 2’; 6’, 2’’-terpyridine

THABr – tetrahexylammmonium bromide

TM – transition metal

TPA – tripropylamine

TTF – tetrathiafulvalene

UV/Vis – Ultraviolet/visible

UV/Vis/NIR – Ultraviolet/visible/near-infrared

υ – electrochemical scan rate (V.s-1)

X2 – regression coefficient (luminescent lifetime fitting)

XPOM – mole fraction of polyoxomolybdate

XPOW – mole fraction of polyoxotungstate

XPS – X-ray photoelectron spectroscopy

α – transfer coefficient of the potential energy barrier

ε – molar absorption coefficient (M-1.cm-1)

Γ – surface coverage of electroactive material (mol.cm-2)
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λmax – wavelength of highest absorption/emission intensity

δ – depletion layer thickness

τ – luminescent lifetime (luminescence)

τ – experimental timescale (electrochemistry)

v – wavenumber (cm-1)

Φ – fluorescence quantum yield

η – overpotential
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Chapter 1: 

Introduction and literature survey. 
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1.1 – Introduction to photovoltaics: 

 

1.1.1 - Dye-sensitised solar cells: 

 

The first dye-sensitized solar cell (DSSC) was produced by Michael Grätzel in 1991 and was 

based on the ruthenium complex [Ru(dcbpy)2(NCS)2)]2- (where dcbpy = 4,4�-dicarboxy-2,2�-

bipyridine and NCS = isothiocyanate) immobilized on TiO2 (see Fig 1.1.1).1  This type of cell 

was the first “second-generation” functioning material with promising efficiency, and research 

in this area is extensive (first generation materials are semiconductor based; see section 1.6.1).  

These cells require the presence of a donating electrolyte typically based on an I-/I3
- redox cycle.  

In 1997 Grätzel’s group immobilized [Ru(4, 4', 4"-(COOH)3-terpy)(NCS)3]3- on TiO2 (where 

terpy = 2, 2’, 6’, 2’’-terpyridine).2 This so-called “black-dye” absorbs up to 900 nm and had a 

higher energy conversion efficiency of the previous system.  In 2008 a new ruthenium complex, 

[cis-Ru(4,4’-bis(5octylthieno[3,2-b]thiophen-2-yl)-2,2’-bpy)(4,4’-dicarboxyl-2,2’bpy)(NCS)2], 

was employed in a TiO2 DSSC with an overall reported efficiency of 11 %.3 
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Fig 1.1.1: Schematic diagram of a functioning Grätzel Cell employing the famous “N3” dye as a 

sensitizer and iodide/tri-iodide as the regenerative redox couple.  Reproduced from [4].  Below 

is an energy level diagram of the system, with potentials referenced to the normal hydrogen 

electrode (NHE).  Reproduced from [5]. 
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The energy level diagram shown in Fig 1.1.1 shows the basic operating principles of DSSCs.  

The Ru dye is immobilized on the surface of the TiO2 nanoparticles via strong covalent bonds.  

Absorption of a photon in the visible region by the dye results in population of the dye singlet 

excited state S*, from which the excited electron is injected into the conduction band of the 

TiO2.  The Ru3+ center is regenerated to Ru2+ via the redox couple mediator, which is itself 

regenerated at the cathode.  The magnitude of the photogenerated voltage is equal to the 

difference between the Fermi level of the electron in the TiO2 and the redox potential of the 

electrolyte.  The use of DSSCs in electricity generation is hampered mainly by the necessity of 

adding the regenerative donor (I-/I3
-) to the system.  This liquid electrolyte has proven difficult 

to seal into a closed cell, as it can react with adhesives and the organic solvent can leak through 

plastic.  A recent study by Bai et al has investigated the use of a ternary eutectic melt based on 

alkylimidazolium ionic liquids and the complex [NaRu(4-carboxylic acid-4’-carboxylate)(4, 4’-

dinonyl-2, 2’-bipyridine)(NCS)2].6  Although a decrease in overall conversion efficiency was 

recorded (a reduction from 11 % to 8.2 %) this could prove to be a significant breakthrough in 

getting this technology to mass markets as these salts do not permeate plastic.  This system has 

yet to be optimised. 

 

 Materials other than transition metal complexes have been investigated as sensitizers for 

TiO2.  For example the use of porphyrins and phthalocyanines have also been investigated in 

recent years.  Wang et al recently reported the use of zinc metalloporphyrins on TiO2 

nanocrystalline films.7  The use of a range of Ru-phthalocyanines in DSSCs has also been 

recently reported; however the conversion efficiency obtained was relatively low at 3.5 %.8  

While some of these other systems show promise none have been studied to the same extent as 

the Ru polypyridyl complexes. 

 

As first generation solar technologies have achieved such high levels of efficiency the 

key reason for research in dye-sensitised technologies is to address the high production cost of 

the first generation cells.  The dye sensitised titanium dioxide cells are comprised of relatively 

cheap and abundant components.  TiO2 is available in bulk and although ruthenium ore is rare 

and expensive to mine, the concentrations required are small (ie: monolayer coverage of the 

TiO2 nanoparticles).  Certainly the cost of obtaining these materials is a fraction of that for first 

generation materials.  The chemistry of both ruthenium complexes and TiO2 is also very well 

defined.  The physicochemical properties of the materials, when considered along with their 

associated economic benefits, indicate that these materials will become commercially very 

important in medium-term energy generation consideration. 
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In the context of this thesis it was hoped that a series of photoelectrochemical cells 

involving interfacial assemblies of Ru polypyridyl complexes and polyoxometalates could be 

designed and tested.  Very little research has been conducted into the photocatalytic properties 

of polyoxometalates deposited on conducting substrates, and the Keyes group has extensive 

experience working with Ru complex/polyoxometalate photochemical interactions in solution.  

It was hoped that by merging the group’s expertise in surface electrochemistry and ruthenium 

based interfacial photochemistry that some of the first dye-sensitized polyoxometalate based 

photoelectrochemical cells could be produced. 

 

1.2 – Polyoxometalates: 

 

1.2.1 - Introduction: 

 

Polyoxometalates are a broad class of (poly)oxoanions in which the metal atoms are linked via 

shared oxygen atoms.  They have long been the focus of study due to their potential applications 

in photocatalysis.9, 10, 11  The metal atoms are known as addenda atoms, typically high oxidation 

state (d0 or d1) transition metals such as Mo, W, V and Nb.  In many structures this bridged 

framework may encapsulate a coordinated heteroatom, such as sulfur in the form of tetrahedral 

SO4
2-.12  The different polyoxometalate geometrical structures are typically named after their 

discoverer and they include the Keggin, Dawson, Lindqvist, Anderson, Tourné and Preyssler 

structures; although other less well known structures also exist.  The synthesis of new sub-

varieties of polyoxometalate is constantly being reported in the literature, but in general the 

Keggin and Dawson structures have been studied to the largest degree.13 

 

1.2.2 – Types of polyoxometalate structure: 

 

The first polyoxometalate reported was an ammonium phosphomolybdate of the formula 

(NH4)3[PMo12O40] by Berzelius in 1826.14  Linus Pauling was one of the first to attempt to 

describe its structure, in terms of ionic radii.15  However the structure of the molecule was not 

determined until the tungstate analogue [PW18O40]3- was discovered in 1934 by Keggin.16  By 

the mid twentieth century hundreds of polyoxometalate structures had been isolated and 
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identified, including the Dawson structure, which is the main focus of this work.17  Some of the 

more common conventional polyoxometalate structures are given in Fig 1.2.1.  Octahedral 

edges are O atoms, with addenda metal atoms at centre of each octahedron, encapsulated groups 

are yellow. 

 

                

f                                                                 g 

 

Fig 1.2.1: Diagrams of various polyoxometalate geometrical structures. (a) Lindqvist structure; 

(b) �-Keggin structure; (c) �-Dawson structure; (d) Anderson structure; (e) Icosahedral structure 

[{XO12}Mo12O30]n- incorporating (X), which is a tetravalent lanthanide or actinide anion 

(Reproduced from [18]); (f) Preyssler anion [Na(H2O)P5W30O110]14- incorporating Na+ viewed 

approximately down the molecular C5 axis (Reproduced from [19]) and (g) the Tourné 

“sandwich” anion [CoII
4(PW9O34)2]10-, showing Co atoms (blue) sandwiched between two 

{PW9O34}9- fragments (Reproduced from [20]). 
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Polyoxometalates are capable of accepting multiple protons and electrons and hence are 

powerful electrocatalysts for hydrogen and oxygen evolution.  As mentioned previously, the 

Dawson (sometimes denoted Wells-Dawson) polyoxometalates are the primary focus of this 

investigation.  The general structure of these molecules is [X2M18O62]n-, where M = Mo, W and 

X = P, S.  The structure of a Dawson polyoxometalate is shown in Fig 1.2.2. 

 

Fig 1.2.2: Structure of the phosphate containing Dawson polyoxomolybdate �-[Mo18O54(PO4)2]6- 

as determined by X-ray crystallography.  Red = oxygen, green = molybdenum and purple = 

phosphorous.  Reproduced from [21]. 

 

The structure in Fig 1.2.2 shows the general features of the Dawson polyoxometalates.  The 

molecules exhibit a horizontal mirror plane which separates two Mo9 clusters.  The Mo atoms 

can be subclassified as occupying either the “capping” or “belt” positions and are connected by 

bridging oxygen ligands.  The principle axis of rotation is C3 and connects the two phosphorus 

atoms.  The structure of �-[Mo18O54(PO4)2]6- is a conventional one, as the shape of the metal-

oxide framework is not distorted at any location.  In the case of the non-conventional sulfite-

containing Dawson clusters, such as �-[W18O54(SO3)2]4-, the structure of the molecule is 

distorted inwards at the equator.  This “peanut” configuration is due to the unusual charge 
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distribution of the encapsulated SO3
2- groups, which are not isostructural with true tetrahedral 

ions such as PO4
3- and SO4

2-.22 

 

 A huge variety of derivitised polyoxometalates also exist, with new structures and 

variants being reported frequently.  An important polyoxometalate synthon for making 

derivitised analogues is the lacunary defect structure.  If one or more addenda atoms are 

removed from the structure a defect site becomes available for functionalization.  The space left 

by the removal of a metal atom is usually filled with a labile ligand such as H2O, which is easily 

removed under conventional synthetic conditions.  An example of the structure of a lacunary-

substituted polyoxometalate dimer is shown below.23 

 

Fig 1.2.3: Polyhedral view of the [Re2(PW11O39)2]8- anion as obtained from X-ray 

crystallography.  Red = Re atoms, blue = WO6 octahedra, and pink = PO4 tetrahedra.  

Reproduced from [23]. 

 

This novel structure, which contains a Re-Re quadruple bond, was synthesized from the 

lacunary defective polyoxometalate precursor K7[PW11O39] and (Bu4N)2[Re2Cl8] at low pH.  A 

great many modified polyoxometalates have been synthesized in more recent years via similar 

lacunary starting materials.  The linking of potentially sensitizing units in such fashion is 

discussed in sections 1.4.2 – 1.4.4. 
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1.2.3: Structural isomerism in polyoxometalates: 

 

Structural isomerism in polyoxometalates is subtle and common.  Minor differences in the 

orientations of atoms or groups within the molecule give different isomers.  This is usually 

achieved by rotating one isolated part of the molecule around the Cn axis so that the groups 

along the axis will be oriented differently relative to each other.  The isomers for each structure 

are differentiated by an �, �, �, �, �, etc prefix. Fig 1.2.4 shows the subtle differences in 

symmetry between Dawson polyoxometalates. 

 

 

Fig 1.2.4: Geometric isomerism in Dawson polyoxomolybdates. (a) �-[Mo18O54(SO3)2]4-, (b) �-

[Mo18O54(SO3)2]4- and (c) �-[Mo18O54(SO4)2]4-.  Red = oxygen, light blue = belt Mo, dark blue = 

capping Mo, yellow = sulfite or sulfate anions.  Reproduced from [24]. 

 

The structures of the �/�-[Mo18O54(SO3)2]4- vary mainly in the orientation of the encapsulated 

sulfite moieties relative to each other, as viewed down the principal axis of rotation;  in the � 

case the sulfite groups are eclipsed and in the � case they are staggered.  The � isomer is 

considered the more stable of the two and this difference is considered negligible in the case of 

the fully oxidized (ie: 4- charge) polyoxometalate ions; however in their reduced forms this 

energy difference becomes increasingly significant.  EPR studies demonstrated that � � � 

isomerisation occurs in solution over a period of 37 days, both under light and dark conditions.  

The study concludes that this slow isomerization is due to thermodynamic differences and this 

indicates that the reduced form of the � isomer is favoured energetically over the reduced form 
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of the � isomer.  This renders the � isomer potentially more useful in photocatalytic 

applications, as the � isomer is potentially unstable under photoelectrochemical conditions.24 

 

This difference in stability of isomeric pairs is not restricted to �/�-[Mo18O54(SO3)2]4- 

alone.  The Dawson polyoxotungstate [W18O54(SO4)2]4- is unusual in that it crystallizes naturally 

as the �* isomer.12  The corresponding �-[W18O54(SO4)2]4- isomer could only be synthesized via 

the one-electron reductive electrosynthesis �*-[W18O54(SO4)2]4- �  �-[W18O54(SO4)2]5-.25  This 

reaction demonstrates again how the � form of the Dawson polyoxometalates is generally 

favoured, but only under photochemically or electrochemically reductive conditions.  Under 

ambient, dark conditions in solution this isomerization is either not favoured or very slow 

(months or longer).  Since the goal of this study is to develop a well-defined and reversible 

photocatalyst the use of anything other than �-type Dawson anions has been avoided wherever 

possible. 

 

1.2.4 – General Dawson polyoxometalate properties: 

 

Polyoxometalates generally have the following properties:26 

 

(a) They can accept and subsequently release a number of electrons (either 

photochemically or electrochemically) without any substantial change in their 

molecular structure.  Reduction results in the formation of mixed-valence metal 

compounds with a blue or green-blue colour.  These “heteropoly blues” exhibit broad 

electronic transitions between 650 and 1100 nm (see Fig 1.3.1). 

(b) Reduction is very often accompanied by a pH dependant protonation step.  The 

reduction potentials of each step are therefore pH dependant.  The electrochemistry of 

�*-[W18O54(SO4)2]4- is an excellent example of this kind of behaviour.12 

(c) Molybdates are easier to reduce than their tungstate analogues.  This makes them more 

efficient oxidants; however their reoxidation requires stronger oxidising agents.  Under 

ambient conditions the only oxidising agent present in any significant amount is 

molecular oxygen, therefore only tungstates will complete the photocatalytic cycle 

under aerated (ambient) conditions.  Molybdates require the addition of a stronger 
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oxidising agent, such as an acid, to complete the catalytic cycle and hence tungstates are 

generally better candidates for solution phase photocatalysis. 

(d) The addition of electrons beyond a certain number results in distortion of the molecular 

geometry due to the formation of d2 metal electronic configuration.  For example in the 

case of the reduction of [W12O40]6- to [W12O40]7-.27 

(e) Molybdates generally absorb at longer wavelengths than their corresponding tungstates, 

and this is true in the cases of �*-[W18O54(SO4)2]4- (colourless) and �-[Mo18O54(SO4)2]4- 

(yellow).12,  28 

 

Special attention must be paid to the fact that reduced polyoxomolybdates are very difficult to 

reoxidise, and this makes the photocatalytic potential of molybdates in solution quite poor.  

Although they are better initial oxidants and they absorb further into the visible these seemingly 

advantageous points are simply negated by the fact that the back reaction is so difficult to 

complete.  This is because the speed of regeneration of the catalyst is very important in 

determining the turnover number.  A high turnover number is one of the necessary prerequisites 

of a good photocatalyst, and tungstates are more likely to be able to accommodate this.10  It is 

hoped that immobilising the polyoxometalate as a film on an electrode will allow ease of 

catalyst regeneration, as the rate of interfacial electron transfer at electrode interfaces is usually 

very fast and the applied potential can be controlled. 

 

1.3 - Photodegradation of organic compounds by polyoxometalates: 

 

1.3.1 – Background: 

 

Both polyoxomolybdates and polyoxotungstates can undergo multiple electron and proton 

transfer reactions in the presence of a suitable catalytic substrate under UV irradiation, and 

hence may be employed as photocatalysts to oxidise simple organic compounds such as benzyl 

alcohol and isopropanol.29, 30  Examples of polyoxometalate photocatalysis include the use of a 

homogeneously dispersed powder of H3[PW12O40]/TiO2, which has been used to decompose a 

range of organic dyes;31 the use of [PW12O40]3- in decomposing toxic herbicide atrazine;32 and 

more recently the use of the novel iridium-substituted polyoxotungstate 

K14[(IrCl4)KP2W20O72].23H2O in splitting water.33 
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The quantum yield of a photochemical reaction (i.e.: is the number of molecules of 

reactant consumed or product formed, per photon absorbed) is dependant on a number of factors 

including the nature of the polyoxometalate, which reduction step is taking place, the pH, the 

type of substrate and, importantly, the formation of a preassociation complex.  The 

photodecomposition of organic substrates can be followed easily by electronic spectroscopy, as 

the reduction of all polyoxometalates results in the formation of new features in the visible/near-

IR region of the spectrum.  An example of the reduction of [PMo12O40]3- is given below. 

 

Fig 1.3.1: The electronic absorption change during the steady-state photolysis (� = 254 nm) of a 

deaerated aqueous solution containing 1.0 mM [PMo12O40]3- and 5.0 M MeOH at pH = 2.0.  

Reproduced from [34]. 

 

The new features present here are typical of reduced polyoxometalate spectra.  In its fully-

oxidized form all [PMo12O40]3- Mo atoms are d0 or d1, and when the molecule is reduced the 

extra electron is localized on a single Mo atom.  A new type of intervalence metal to metal 

charge transfer (MoV � MoVI) is thus observed which exhibits absorption at very high 

wavelengths.  The low wavelength absorption present both before and after photoreduction is a 

MoVI � O LMCT.  This type of band is common to all polyoxometalates but shifts slightly 

depending on which metallic elements are present.  
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1.3.2 - The photocatalytic mechanism: 

 

Two mechanisms of substrate photodecomposition by polyoxometalates have been identified 

previously: (a) the formation of a pre-associated {catalyst---substrate} complex leading to hole 

transfer and (b) radical hydroxylation. 

 

Polyoxometalate-substrate systems studied to date have typically involved the 

formation of a preassociated equilibrium complex between catalyst and substrate in solution.  

POM + S � (POM---S) 

This mechanism has been confirmed to take place in reactions involving both polyoxometalates 

and semiconductor catalysts.  In each case an increasing concentration of substrate results in an 

increased initial rate of photocatalysis under conditions of constant catalyst concentration.  An 

example of one such study is given below. 

 

Fig 1.3.2: Study of the affect of increasing 4-chlorophenol (substrate) concentration on the 

initial rate of photocatalysis (� < 300 nm) under conditions of constant [PW12O40]3- (catalyst) 

concentration in deaerated aqueous media with pH adjusted to 1.35 

 

Fig 1.3.2 shows an adherence to the Langmuir-Hinshelwood model, the reciprocal plot of which 

yields a straight line.  This model indicates that at constant [PW12O40]3- concentration and 

relatively low concentrations of substrate the photochemical reaction is first order, but as the 

substrate concentration reaches saturation the reaction becomes zero-order in the substrate.  This 

implies that the photochemistry is reliant on the pre-association complex formed between 
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catalyst and substrate.  The formation of this preassociated complex is extremely fast, and its 

value is one of the factors affecting the initial rate of catalysis.36  For example this rate was 

measured by single-photon counting to be in the region of 1012 M-1s-1 for the complexation 

between the weakly fluorescent [NaPWI2O40]3- and n-propanol substrate.36 

 

Direct photolysis of organic compounds, such as alcohols, via the preassociation 

complex (i.e.: via hole (h+) transfer with the substrate) has been demonstrated to be the 

dominant photocatalytic pathway.  Using semiconductor notation 

POM (h+ + e-) + S � POM(e-) + S(ox) 

However it is possible that another mechanism of action occurs indirectly by hydroxyl radicals 

in the presence of water and/or organics 

POM (h+ + e-) + H2O � POM (e-) + 
.
OH + H+ 

Evidence for the second mechanism is derived from the fact that several hydroxylated products 

and intermediates have been found after the irradiation of p-chlorophenol in the presence of 

W10O32
4-, and from spin-trapping experiments involving EPR spectroscopy.37, 38 However 

photochemistry also occurs in dry, inert solvents to a substantial degree meaning that the 

reaction can occur without radicals and must be attributed to electron or hole transfer.  This 

cannot be due to the presence of trace amounts of water as the photochemistry is too extensive.  

It has been postulated that the dominant mechanism is hole transfer as in some cases specific 

products only are formed and hydroxyl radicals tend to be highly unselective.9  For example, 

primary alcohols have been selectively photooxidised to aldehydes and secondary alcohols to 

ketones by [SiW12O40]5- under UV irradiation.28 

 

1.3.3: The polyoxometalate photocatalytic cycle: 

 

Absorption of a photon by a polyoxometalate in the presence of an oxidizable substrate in the 

UV region results in the formation of a reduced blue polyoxometalate species and oxidised 

substrate.  Typically a single polyoxometalate catalytic cycle is thought to follow the scheme in 

Fig 1.3.3: 
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Fig 1.3.3: A complete photocatalytic cycle involving polyoxometalate and an alcoholic 

substrate.  Reproduced from [39]. 

 

In Fig 1.3.3 [Pn----RCH2OH]* is the pre-associated complex containing a polyoxometalate 

molecule in its excited state which is pre-associated with the substrate, and this is the state 

responsible for redox chemistry.  The re-oxidation of the reduced polyoxometalate is usually the 

rate-determining step for the catalytic cycle.  This can be achieved using an artificially added 

acid reagent, by applying an electrochemical potential or, in the case of polyoxotungstates, by 

molecular oxygen.  This reaction is generally thermodynamically unfeasible for 

polyoxomolybdates and polyoxovanadates.  Rüther et al have demonstrated that for the Dawson 

polyoxotungstate �*-[S2W18O62]4- the reoxidation step is facile when O2 is employed, and 

although oxidation by H+ is thermodynamically possible it is also a slow process, relative to the 

corresponding polyoxomolybdate.40   

�

As discussed in section 1.3.2 the formation of the pre-associated complex is thought to 

be a crucial step in determining the initial rate of reaction between the polyoxoanion and the 

substrate.  Other factors include the redox potential of the polyoxometalate; the nature of the 

substrate (eg: primary alcohols are far easier to oxidise than their corresponding secondary and 

tertiary analogues); and the pH, which has an effect on reoxidation of polyoxometalate to close 

the catalytic cycle by dioxygen or other oxidising agents.  This is normally the rate determining 

step for the photocatalytic cycle. 
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In order for a photocatalyst to be practically useful it must have a high turnover number; 

that is “the number of events that the overall reaction (the photochemical transformation) 

includes during a photocatalytic cycle”.41  Essentially this means that the catalyst must be able 

to undergo all of the processes highlighted in Fig 1.3.3 (one turnover) many times without any 

degradation of the pathway or poisoning of the catalyst occurring.  It is a measure of the number 

of moles of substrate that a catalyst can degrade before it becomes deactivated.  Most turnover 

numbers are in the region of 101 to 104 but some very efficient enzymes have values exceeding 

several million.  The turnover number of polyoxometalates in solution is quite high, and in 

many cases the reaction simply proceeds until all the substrate has been used up.  For example, 

in the case of the photooxidation of toluene by the metal-substituted [Ru(II)-(DMSO)3Mo7O24]4- 

the POM was demonstrated to be stable up to 700 turnovers.133  This is due to the ease of 

reversibility of the first few redox steps. 

 

1.3.4 – Working example polyoxotungstate photoreactor: 

 

The production of a functioning photoreactor exploiting the Keggin ion [SiW12O40]4- 

(tungstosilicic acid) has been reported by Muradov and Raissi.42  This reactor incorporated an 

array of fused silica tubes 1 m long filled with H4[SiW12O40].  A variety of simple organic 

species such as sugars, alkanes and alcohols were used as “fuel” and the decomposition 

measured by the amount of H2 gas produced.  The addition of colloidal platinum (PtC, optimum 

concentration 2-20 µM) was reported to increase the efficiency by one order of magnitude in 

preliminary experiments.  It was found that substrate degradation was more efficient in the 

presence of trace amounts of Pt than without; and that hydrogen evolution was dependant on the 

strength of the C-H bonds in each molecule.  Therefore alcohols gave higher levels of H2 

generation, while alkanes had low efficiency.  The average solar-to-hydrogen conversion 

efficiency of the system was estimated to be approximately 2%.  It is important to note that this 

system was not electrochemical. 
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Fig 1.3.4: Functioning [SiW12O40]4- based photoreactor employing organic substrates as 

‘feedstocks’ for H2 evolution.  1: Trough with reflective surface, 2: Fused silica reactor tubes 

containing [SiW12O40]4-/PtC, 3: Gas collection chamber, 4: Distribution manifold, 5: Pump, and 

6: Ice trap.  Reproduced from [52]. 

 

It is one of the primary goals of this project that we harness substrate oxidation and 

photocurrent production of polyoxometalates in one system; and that the use of a visible 

sensitizer would increase the overall catalytic efficiency.  The main drawback of the above 

system is that its efficiency is inherently low due to the UV absorption spectrum of the ground 

state polyoxometalate, particularly in climates without intense sunshine.  Only a relatively small 

percentage of incident solar photons can be absorbed by the polyoxometalate, and only a small 

percentage of those will be converted to harnessed energy.  Hence it is extremely desirable to 

couple an effective visible sensitizer to the polyoxometalate.  It is vital however that the 

sensitizer itself is stable against photodegradation or else the photocatalytic cycle would be 

broken.  An overview of optically interesting molecules that have been investigated as 

sensitizers or charge transfer counterions for polyoxometalates is given in section 1.3.2. 
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1.4: Ru polypyridyl complexes and their supramolecular chemistry: 

 

1.4.1 – Ru polypyridyl complexes and supramolecular chemistry: 

 

Ruthenium is a second row transition metal (TM) which forms complexes of co-ordination 

number 6 with polypyridyl ligands when in the Ru (II) oxidation state.  The prototypical 

example is Ru (II) tris-2, 2-bipyridine, or [Ru(bpy)3](X-)2 for short, where X is an anionic 

counterion such as Cl- or PF6
-.  The complex exhibits D3 symmetry and the two optical isomers 

of the complex, 	 and 
, are photophysically and electrochemically identical and are generally 

omitted when naming the complex.  Ru (II) polypyridyl complexes are well known for their 

ability to absorb in the visible region, their intense and long lived phosphorescence and their 

reversible electrochemistry.  These properties make them ideal candidates for a wide range of 

optical technologies and the photophysics of [Ru(bpy)3]2+ and related compounds has thus been 

studied extensively.43,  44 

 

 The energy of low lying antibonding orbitals on the bipyridine ligands facilitates their 

direct optical population from the occupied Ru t2g orbitals, which is manifest by the appearance 

of the characteristic MLCT absorption band in the visible region of the electronic spectrum 

(centered around 450 nm for [Ru(bpy)3]2+).  Photon absorption at 450 nm results in the 

electronic population of a vibrationally hot S1 state which, after vibrational relaxation, is 

succeeded by ultrafast intersystem crossing (ISC) to the T1 state with kISC � 300 fs and a 

probability of unity.45  This is the long lived state from which phosphorescence occurs.  ISC is a 

spin forbidden isoenergetic process which is facilitated by the presence of the heavy Ru nucleus.  

The total amount of time that an complex spends in the excited state before returning to the 

ground state is its lifetime, denoted �.  Photophysical parameters such as the wavelengths of 

absorption and phosphorescent emission, the luminescent lifetime, and other excited state 

processes such as electron transfer, are heavily dependant on a wide range of external factors.  

These include solvent polarity, temperature and the presence of oxygen.  

 

The excited state of ruthenium complexes is often sufficiently long-lived to facilitate 

both inter and intramolecular processes such as electron transfer and energy transfer.  A well 

known example of electron transfer from a Ru complex excited state is in a Grätzel cell when 

the Ru complex absorbs a photon in the visible which is injected into the conduction band of the 
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TiO2.5  Some of the fundamental photophysical processes that [Ru(bpy)3]2+ can undergo are 

shown in Fig 1.4.1. 

 

 

Fig 1.4.1: Jablonski diagram outlining electronic excitation and some of the deactivation 

pathways for the [Ru(bpy)3]2+
 ion (left).  The T1 � T2 transition is thermally activated.  

Potential energy diagram showing the isoenergetic nature of intersystem crossing (right).  

Reproduced from [46].   

 

The Jablonski diagram in Fig 1.4.1 outlines some of the photophysical pathways open to an 

excited electron in the [Ru(bpy)3]2+
 ion.  Initial excitation from the ground S0 state results in the 

population of a vibrationally hot S1 state.  From this unstable state the molecule sheds excess 

energy via vibrational relaxation ie: energy transfer, in the form of heat, by collision with 

neighboring molecules.  This is an equilibrium process by which the molecule relaxes into 

vibrational equilibrium with its surroundings.  The forbidden process of ISC may occur only if 

the excited electron occupies a vibrationally hot S1 state which is both isoenergetic and 

geometrically equivalent to a vibrationally hot T1 state (see dotted arrow, Fig 1.4.1 right).  The 

probability of ISC depends on a wide range of factors but since it is forbidden its probability is 

usually inherently low.  However ISC is greatly favoured due to the heavy atom effect, and the 

probability of ISC occurring is dependant on the fourth power of the number of protons in the 

metal in the system (a Z4 dependence).  This means that ISC and hence phosphorescence is seen 

much more commonly in molecules containing a metallic or otherwise heavy nucleus; and in 

[Ru(bpy)3]2+ the probability of ISC occurring is one.  From the bottom of the T1 state many 
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intramolecular processes, such as electron transfer and collisional energy transfer, can occur.  

This is also the state from which thermal population of a dissociative 3MC state (the T2 state 

shown in Fig 1.4.1) can occur, which leads to ligand exchange in solvents such as acetonitrile.  

Long-lived phosphorescence also occurs from the T1 state.  The � of phosphorescence of 

[Ru(bpy)3]2+ in H2O at 25ºC is ~ 4.2 %, making thermal deactivation of T1* to S0 the dominant 

process.47 

 

1.4.2 – Transition metal polypyridyl complex/polyoxometalate systems: 

 

Investigation into the interaction between Ru (II) complexes and polyoxometalates is a 

relatively new endeavor, except for one notable exception published over 20 years ago.  This 

first work in this area was conducted by Ballardini et al, who investigated the intramolecular 

electron-transfer rates between the polyoxotungstates [Mn(OH)PW11O39]6- or 

[Co(H2O)SiW11O39]6- and [Ru(bpy)3]2+.  The authors observed that changing the 

polyoxotungstate and Ru complex allowed them to tune the electron transfer properties of the 

system in solution.  Ka values for both POW ions with [Ru(bpy)3]2+ were calculated and values 

of 7.4 x 104 for the Mn POW and 5.4 x 104 for the Co POW were obtained.  These values were 

calculated from quenching data in the presence of excess Ru, and hence are for the 1:1 

associated species only.  This study concentrated primarily on fitting quenching data to various 

models; however the group did not isolate the associated species in the solid state.48 

  

Hultgren et al have reported the synthesis of solid [Ru(bpy)3]2[S2Mo18O62].49  It was 

reported that the redox properties of both the Dawson polyoxomolybdate and [Ru(bpy)3]2+ 

changed very slightly upon association in a 0.1 M (Bu4N)PF6 solution of DMF.  SEM images 

showed an amorphous mesoporous structure when adhered to a surface.  Inspiration for the 

synthesis of this compound was based on the multilayer work involving [Os(bpy)3]2+ and 

[P2Mo18O62]6- of Anson et al (see multilayers section 1.5.2).50 

  

The report of the synthesis of [Ru(bpy)3]2[S2Mo18O62] led to investigations of the 

photophysics of the ion-pair both in solution and in the solid state.  Keyes et al observed that the 

associated species displayed a new feature in its electronic difference spectra centered at ~ 480 

nm.  This new transition was assigned to an inter-complex charge transfer transition by 

resonance Raman spectroscopy under 488 nm excitation, as polyoxometalate modes were 

enhanced at this wavelength where the fully-oxidized polyoxometalate anion does not absorb.  
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The association between the two complexes was electrostatic in nature, as demonstrated by 

luminescence quenching measurements.  The 2:1 adduct exhibited a reasonably high association 

constant (Ka = 4 x 105) but it is worth noting that in the case of the 1:1 complex {[Ru(bpy)3]2+---

[S2Mo18O62]4-} this figure was reduced to 3 x 104, which is close to the Ka values of the 1:1 

complexes obtained by Ballardini et al (vide supra).48  It was observed that [Ru(bpy)3]2+ 

exhibited remarkable photostability as part of the associated species, relative to free 

[Ru(bpy)3]2+ in solution.  The adducts also displayed weak luminescence which was red-shifted 

with respect to the parent complex, and excitation spectra confirmed that this new emission 

arose from the new absorption band seen in the visible spectrum.  Transient absorption 

spectroscopy revealed the existence of a short-lived charge-separated [Ru(III)-(bpy)3]3+-

[S2Mo18O62]5- state, shown in Fig 1.4.2.51 

 

 
 

Fig 1.4.2: Transient absorption spectra of (a) [Ru(bpy)3](Cl)2 and (b) [Ru(bpy)3]2[S2Mo18O62] in 

MeCN 20 ns after excitation.  Excitation wavelength was 355 nm.51 

 

The investigation of the corresponding tungstate derivative, [Ru(bpy)3]2[S2W18O62], was later 

carried out by Seery et al.  The photophysics proved to be similar to those for 

[Ru(bpy)3]2[S2Mo18O62] as a statically associated species again was formed, displaying 

significant [Ru(bpy)3]2+ luminescence quenching.  In this case the charge transfer state was not 

observed in the transient absorption and this was attributed to the lower reduction potential of 

the tungstate relative to the molybdate (i.e.: the 	G of intramolecular electron transfer was less 

negative).  Temperature dependant luminescence measurements yielded values of Ea from the 

Arrhenius equation and demonstrated that the Ea value for [Ru(bpy)3]2[S2Mo18O62] was an order 

of magnitude lower than that for free [Ru(bpy)3]2+ (where Ea is the energy in cm-1 required to 
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populate the 3MC state from the 3MLCT state).  The 3MC state is antibonding with respect to the 

Ru-N bond and leads to photodissociation in solvents that can act as ligands, such as MeCN.  

The Arrhenius equation relates the combined rate of radiative and non-radiative decay, k0, to the 

temperature.  The Ka values for the 2:1 and 1:1 associated clusters were 1 x 106 and 7.7 x 105 

respectively, an order of magnitude higher than those observed for the corresponding molybdate 

(vide supra).  The study concludes that the presence of [S2W18O62]4- distorts the [Ru(bpy)3]2+ 

energy levels and hence the thermally populated 3MC state is inaccessible in the associated 

species.52 

 

 A later study by Seery et al employing [Ru(bpy)3]2+ and a variety of substituted 

polyoxotungstates investigated the effects of increasing polyoxometalate charge on [Ru(bpy)3]2+ 

associations.53  It was found that [P2W17O61(FeOH2)]7-, [P2W17O61(FeBr)]6- and [P2W17O61]10- all 

formed fully charge-compensated adduct species with [Ru(bpy)3]2+, as demonstrated by 

elemental analysis of the solids.  Surprisingly, there was no correlation in the size of the 

association constants and the charge on the POW.  In fact [P2W17O61]10- displayed a much lower 

Ka value with [Ru(bpy)3]2+ than did [P2W17O61(FeOH2)]7- and [P2W17O61(FeBr)]6- (four to five 

orders of magnitude smaller), and this huge reduction was attributed to the steric difficulty of 

forming a complex unit of 5:1 stoichiometry.  The Rehm-Weller expression was used to assess 

if the exoergonicity of a Ru to POW electron transfer was related to the differences in 

polyoxometalate charge and association constants, but the thermodynamics of all three systems 

were predicted to be very similar.  Interestingly the resonance Raman spectrum of the 5:1 

complex [Ru(bpy)3]5[P2W17O61] showed no polyoxotungstate modes under 488 nm excitation, 

even though the complex showed a new transition at that wavelength in the UV/Vis difference 

spectra.  The other two adducts [Ru(bpy)3]3.5[P2W17O61(FeOH2)] and 

[Ru(bpy)3]3[P2W17O61(FeBr)] had much higher association constants and showed significant 

polyoxotungstate participation in the ~ 480 nm transition. 

 

A similar study of the photophysics of clusters between the polyoxotungstates �-

[P2W18O62]6- and �2-[P2W17O61(FeOH2)]7- with [Ru(bpy)3]2+ and [Ru(bpy)2(Mebpy-py)]2+ 

revealed that the bulky Mebpy-py ligand had a detrimental effect on quenching.  The study also 

revealed that the formation of an electrostatic adduct between [Ru(bpy)2(Mebpy-py)]2+ and �2-

[P2W17O61(FeOH2)]7- was favoured over the formation of a co-ordination bond between the 

ligand free pyridyl nitrogen and the POW lacunary Fe atom.  This is reflected generally in the 

exceptionally high Ka values for the electrostatic salts.54 
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In the last few years several more studies of Ru complex-polyoxometalate photophysics 

have been reported.  In a study employing the Keggin polyoxometalate [PW12O40]3- as a 

quencher to [Ru(bpy)3]2+ it was discovered that the I0/I Stern-Volmer plot curved upward in 

MeCN.  The authors attributed this to very fast quenching process within the ion-pair, but 

without kinetic data to measure the effects of [PW12O40]3+ concentration on [Ru(bpy)3]2+ � 

values this model could not be confirmed.  Interestingly, the authors obtained crystal structures 

of K5{[Ru(bpy)3][PW11O39]} and K{[Ru(bpy)3][PW12O40]} from the 1:1 reaction between 

[Ru(bpy)3]2+ and [PW11O39]7- or [PW12O40]3-.  Crystal structures of polyoxometalate/transition 

metal complex electrostatic clusters are very rare, and since the high Ka values suggest that 

formation of electrostatically neutral clusters is favoured it is interesting to see the use of a 1:1 

mixture in crystallization in this case.55  Surprisingly, in a different study where solutions of the 

ratio 1 [Ru(bpy)3]2+ : 2 [PW12O40]3- were employed a solid, non-crystalline precipitate was 

obtained.  This solid was analyzed by EDX spectroscopy and the stoichiometry was 

demonstrated to be [Ru(bpy)3]1.5[PW12O40].  These two studies together may indicate that 

obtaining crystal structures of Ru/polyoxometalate clusters is more likely when employing 1:1 

ratios only.56 

 

The charge-transfer character of the polyoxometalate/Ru adducts has been investigated 

by Fay et al.57  The photochemistry of the associated species [Ru(bpy)3]2[S2Mo18O62] and 

[Ru(bpy)3]2[S2W18O62] were compared with the photochemistry of [S2Mo18O62]4- and 

[S2W18O62]4- with optically inactive counterions to observe the sensitization effects.  It was 

found that at 420 nm, where [S2Mo18O62]4- only very weakly absorbs, the quantum yield of 

polyoxomolybdate photoreduction of BnOH was increased by a factor of 40.  Given this 

increase in quantum yield it was assumed that an increase in photo-electrochemical current 

generation would be seen under white light irradiation, but a decrease was actually observed 

when [Ru(biq)2(box)]+ was used as a sensitizer.  This decrease was attributed to competitive 

absorption from Ru at low wavelengths.  The reduction in photocurrent was more drastic in the 

tungstate than the molybdate.  The use of [Ru(biq)2(box)]+ as a sensitizer resulted in a larger 

decrease in current generation despite the fact that it displays absorption bands covering more of 

the visible spectrum.  The photophysics of this ion in the presence of [S2Mo18O62]4- have not 

been reported and these two ions may only weakly interact, though why they interact differently 

is not precisely known.  However [Ru(biq)2(box)]+ has a shorter lifetime than most other Ru (II) 

polypyridyl complexes and a low quantum yield of phosphorescence so either of these 

properties may render it a poor candidate for polyoxometalate photosensitization. 
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In another photochemical study of polyoxometalate/[Ru(bpy)3]2+ hybrid salts both 

[Ru(bpy)3][Mo6O19] and [Ru(bpy)3]2[W10O32] were synthesized and isolated by centrifugation.58  

As a general rule, it has proven extremely difficult to obtain single crystals of the hybrid 

materials for X-ray structure analysis.  Methylene blue (MB) was also employed as an organic 

sensitizer and [MB]4[W10O32] was also isolated.  The ruthenium composites were dissolved in 

water buffered with carbonate (pH = 10.5) which has not been reported previously, possibly due 

to the exceptionally low solubility of the adducts in water.  Homogeneous photocatalysis of 

phenol in water was carried out at � > 375 nm, and it was shown that the 1:1 associated species 

[Ru(bpy)3][Mo6O19] had a higher catalytic response than [Ru(bpy)3]2[W10O32].  This may be due 

to the nature of the 1:1 species, which has not been photophysically analyzed previously or may 

simply be due to the generally higher catalytic activity of molybdates due to their more positive 

reduction potentials.  However the use of buffer is a cause for concern, as our own studies have 

demonstrated that addition of electrolyte to Ru/Dawson polyoxometalate electrostatic ion-

clusters can result in disruption of electrostatic communication. 

 

Recently, the photophysics of [Ru(bpy)3]2+  in the presence of the Dawson-like sulfite 

containing polyoxomolybdates �/�-[Mo18O54(SO3)2]4- has been reported.  It was found that the 

polyoxomolybdate anions were not sensitized by [Ru(bpy)3]2+ under visible irradiation, and this 

was attributed to their more negative reduction potentials relative to �-[Mo18O54(SO4)2]4-.  The 

clusters also exhibited mixed static/dynamic quenching, which has not been observed 

previously in studies of similar systems.59  These data are discussed in greater detail in Chapter 

3.  The voltammetry of [Ru(bpy)3]2�/�-[Mo18O54(SO3)2] and [Ru(bpy)3]2�-[W18O54(SO3)2] in 

both organic solvents and ionic liquids (ILs) has also been reported.  It was observed that in the 

presence of ILs that more polyoxometalate based redox processes were observed and that the 

redox processes were shifted positive by several hundred mV relative to those processes in 

organic electrolyte.60  These two studies have contributed significantly to the understanding of 

photophysical and voltammetric processes of these types of clusters. 

  

Other studies on Ru complex/polyoxometalate associated species have generally 

focused on electrochemistry both in solution and in the solid state.  The syntheses of 

[Ru(bpy)3]3[P2W18O62] and [Os(bpy)3]3[P2W18O62] have been reported.61, 62  The authors used 31P-

NMR, UV/Vis and FTIR spectroscopy to characterize the systems.  The FTIR spectra 

demonstrated that the terminal stretching modes of both ions were unchanged upon association.  

These spectroscopic data revealed that the interactions between [Ru(bpy)3]2+/[Os(bpy)3]2+ and 

�/�-[P2W18O62]6- were weak, which is in contrast to FTIR data in other Ru/polyoxometalate 
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electrostatic systems reported.55, 59  SEM images of [Ru(bpy)3]3[P2W18O62] attached to a glassy 

carbon electrode were obtained and are shown in Fig. 1.4.3. 

 

 

 

Fig 1.4.3: SEM images of [Ru(bpy)3]3[P2W18O62] before (left) and after (right) voltammetric 

cycling in 1.0 M HClO4.  Electrode area = 0.0707 cm2, scan rate = 10 mV.s-1.  Reproduced from 

[61]. 

 

The SEM images show that before cycling in acid the [Ru(bpy)3]3[P2W18O62] material exists as 

a random array of particles that electrocrystallize upon acidic cycling to form bulk plate-like 

crystals.  Differences in the cyclic voltammetry before and after cycling confirmed that a change 

in layer structure has occurred.  Interestingly this result was not observed in neutral electrolyte.  

Similar results were seen when [Os(bpy)3]3[P2W18O62] was investigated under the same 

conditions.  Initial EDX spectra of the newly formed crystalline material confirmed the presence 

of osmium, tungsten, phosphorous, oxygen and carbon; however hydrogen was not detected due 

to its low atomic number.  There was no mention of chlorine detection in the crystal, indicating 

that the material may still be analytically pure [Os(bpy)3]3[P2W18O62] which does not contain 

ClO4
- electrolyte.  Future work on the mechanism of electrocrystallization has yet to be 

reported. 

Zhang et al have performed electrocatalytic experiments employing the Keggin 

polyoxomolybdate isomers �-[SiW12O40]4- and �-[SiW12O40]4- and nitrite substrate.63  A thin 

film of the reduced form of the �-isomer �-[SiW12O40]5- was found to have greater catalytic 

activity towards HNO2 than the �-isomer when immobilized on a glassy carbon electrode.  A 

modified layer of [Ru(bpy)3]2�-[SiW12O40] was also investigated for catalytic activity (the 
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corresponding �-isomer was not examined at this stage).  This layer was formed by dip-coating 

a GC electrode into a solution of polyoxometalate then cycling it in a solution of [Ru(bpy)3]2+ 

and Na2SO4, which formed a water-insoluble layer of [Ru(bpy)3]2�-[SiW12O40].  Under these 

conditions the counter-ions precipitated out and were removed.  The catalytic behavior of this 

material was increased at low pH, which was not observed in the parent ion �-[SiW12O40]4-.  It 

was observed that a thin film of [Ru(bpy)3]2�-[SiW12O40] was not formed on the electrode but 

rather an array of microcrystals.  This could affect the voltammetry of the solid due to diffusion 

through the bulk material. 

  

Although crystal structures of transition metal complex/polyoxometalate adducts are 

notoriously hard to obtain there have been a few examples of success in this area.  As discussed 

previously, 1:1 electrostatic crystalline adducts between Keggin polyoxometalates and 

[Ru(bpy)3]2+ have been obtained.55  The synthesis and crystal structure of 

[Ru(bpy)3]2[W10O32].3DMSO has also been reported by Han et al;64 however their attempts to 

obtain crystal structures for the related [Ru(bpy)3][W6O19] and [Ru(bpy)3]2[Mo8O26] salts were 

unsuccessful.  X-ray structure data indicated that the RuN6 octahedron is slightly distorted and 

this was attributed to hydrogen bonding between the bipyridine protons and the terminal oxygen 

atoms of the anion.  A broad feature at 3438 cm-1 in the FTIR spectrum of the solid ground in 

KBr was attributed to intramolecular hydrogen bonding.  The X-ray structure of 

[Ru(bpy)3]2[W10O32].3DMSO is shown in Fig. 1.4.4.  Knaust et al have reported the crystal 

structure of a molecular host-guest system based on a copper hexamer with “bowl” shaped 

cavities.65  Two [PM12O40]3- (M = Mo, W) units were found to occupy the bowl spaces, yielding 

a molecular entity of the form [Cu6(phen)8(MeCN)4]2[PM12O40] (M = Mo or W).  It was 

speculated that the orange colour of the crystals was due to some charge transfer character based 

on a Cu(I) d10 – W (VI) d0 interaction as previously synthesized related composites were yellow. 

 

 

Fig 1.4.4: Crystal structure of [Ru(bpy)3]2[W10O32].3DMSO.  Reproduced from [64]. 
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Many polyoxometalate/dye composite materials have also been synthesized hydrothermally.  

This is when very high vapour pressures and temperatures are employed during the synthesis, 

and it is performed in a sealed pressure vessel.  This is a very popular emerging area in synthetic 

polyoxometalate chemistry.  For example [Zn(bpy)3]2[V4O12].11H2O has been crystallized 

successfully by reacting at 170 °C for 68 hours in a sealed vessel under autogenous pressure (up 

to 15 atm).66  This study also contains a report of the synthesis of the related [Zn(bpy)2]2[V4O12], 

which formed a covalently bonded single molecule as the Zn atoms simply co-ordinated to two 

oxygen atoms on either side of the [V4O12]4- framework.  More recently 

[Cu4(bmte)3.5][SiW12O40] and [Cu4(bmtp)4][SiW12O40] (where bmte = 1,2-bis(1-methyl-5-

mercapto-1,2,3,4-tetrazole)-ethane, and bmtp = 1,5-bis(1-methyl-5-mercapto-1,2,3,4-

tetrazole)pentane]) have been hydrothermally prepared.  It was discovered that the tetrazole N 

atoms bond strongly to peripheral tungstate oxygen atoms and that the crystal structures can be 

controlled by altering the ligands.67  As well as Cu (I) complexes, Ag (I) complexes are also 

becoming increasingly popular in hydrothermal polyoxometalate composite synthesis.  This is 

mainly due to their versatility under hydrothermal conditions and their ability to form 1D, 2D 

and 3D chains in the crystal lattice with polyoxometalates.  

{[Ag(bpy)]2[P2W18O62]}·2[H2bpy]·4H2O, {[Ag(bpy)]4[P2W18O62]}·2[Hbpy] and  

K[P2W18O62]·2.5[H2bpy]·2H2O have all been synthesized, with the different ratios controlled by 

the pH of the hydrothermal syntheses.68  The authors of this study concluded that the co-

ordination geometry and sterics of the TM complex are important in determining the synthetic 

outcome of hydrothermal syntheses.  Very recently the hydrothermal synthesis of 

{[Cu6(PO4)2(H2O)4(phen)6]6+-[P2W18O62]6-} has been reported.69  This composite material had a 

Cu-polyoxotungstate charge-transfer band at 690 nm, and the system displayed good 

photocatalytic activity towards methyl orange.  The catalyst was also easily recoverable from 

the reaction solution after use.   

 

In summary, the field of TM complex/polyoxometalate composite synthesis by 

hydrothermal methods is becoming increasingly popular at present and a broad review of this 

area would be beyond the scope of this thesis.  Although the synthesis of these hybrid materials 

is interesting in itself, it is not of significant relevance to this project as the LBL multilayer 

formation approach requires conditions a lot less extreme than those involved in hydrothermal 

synthesis.  A detailed review article of the synthesis of these hybrid materials has been 

published recently.70 
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1.4.3 - Coupling photoactive organic molecules to polyoxometalates: 

 

Attempts have been made to couple organic ions to polyoxometalates electrostatically in order 

to exploit their useful optical properties.  For example the Lindqvist [M6O19]2- and Keggin 

[SiM12O40]4- (M = Mo, W) anions have been co-crystallized with planar arene cations such as 

pyrenes and anthracenes, modified with cationic side chain groups.71  This was one of the most 

extensive cases of polyoxometalate/dye charge-transfer crystallizations reported to date with 

seven separate species characterized.  The crystals obtained were intensely colored, and were 

characterized by X-ray diffraction.  These materials exhibited new bands in the diffuse 

reflectance UV/Vis spectra that were not present in the parent ion spectra and hence are 

assigned to be CT transitions.  The CT nature of the transitions was confirmed by Mulliken 

theory as the wavelength of the transition red-shifted with corresponding lowering of 

polyoxometalate reduction potentials.  The location of the bands was also dependant on the CT 

distance between the two moieties, as shown by X-ray crystallography of two different 

polymorphs of the same composition.  Transient absorption measurements yielded kinetics of 

back electron transfer and provided further evidence for CT.  In another study by Zhang et al the 

intensity of the CT transition between [SiMo12O40]4- and 2,2’-dipyridylamine cations was 

dependant on the intermolecular distance obtained from X-ray crystal data.72 

 

 A variety of electrostatic polyoxometalate/organic cation charge-transfer (CT) 

composites have been synthesized.  For example the synthesis of 

(2A5NP)4H3[PMo12O40]·2.5H2O·0.5C2H5OH (where 2A5NP = 2-amino-5-nitropyridine) has 

been reported.73  The structure was confirmed by X-ray crystallography and elemental analysis.  

The compound displayed CT character in the visible region, manifested in a new feature > 530 

nm which is not present in the parent ion spectra.  Protonated 7-methyl quinoline and 

[GeMo12O40]4- have been used to synthesise the [C10H10N]4[GeMo12O40].6DMF adduct.74  Low-

temperature EPR spectra demonstrated the existence of a radical electron delocalization over the 

Mo atoms in the photoreduced sample.  This was attributed to a methyl quinoline to POM 

charge transfer transition.  Another example of a polyoxometalate/organic compound CT salt 

was reported by Xie et al.75  Pararosaniline ([C19H18N3]+) was used as a cation for the 

polyoxometalates [S2Mo18O62]4-, �-[Mo8O26]4-, �-[CoW12O40]6- and �-[ZnW12O40]6-.  The 

association between the organic fluorophore and anionic polyoxometalate was investigated 

using luminescence quenching methods. Addition of [S2Mo18O62]4- to a solution of [C19H18N3]+ 

resulted in quenching of the fluorescence at 610 nm.  Excitation spectra of solutions of 

[(Bu4N)]4[S2Mo18O62] and [C19H18N3]4[S2Mo18O62] (Fig 1.4.5, shown below) revealed that 

different wavelengths were responsible for the two different emission profiles, ie: the 
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electronics of the emitting dye were affected significantly upon association with the 

polyoxometalates.  This indicates that there are two emitting species in solution and that the 

interaction between the two ions is significant.  This is similar to what was observed in studies 

by our group involving [Ru(bpy)3]2[S2Mo18O62] and [Ru(bpy)3]2[S2W18O62] (vide supra).51, 52 

 

 
 

Fig 1.4.5: Excitation spectra of [C19H18N3]+Cl- in DMF (6.0 x 10-4 M) for 610 nm emission 

(left); and [C19H18N3]4[S2Mo18O62] in DMF (2.5 x 10-5 M) for 590 nm emission (right).  

Reproduced from [75]. 

 

Two recent studies involving organic cationic dyes and polyoxometalates have been reported.  

Guo et al demonstrated that pararosaniline (PR+) and crystal violet can co-crystallize with the 

Lindqvist polyoxometalates [M6O19]2- (where M = Mo, W).76  These materials displayed similar 

patterns in their electrochemistry to [Ru(bpy)3]2�/�-[Mo18O54(SO3)2], where the potential of the 

polyoxometalate reduction shifts positive by 400 mV in ionic liquid electrolyte.  The 

crystallography of [PR]2[Mo6O19].6DMF showed the importance of multiple hydrogen bonds 

between the terminal polyoxometalate O atoms and the dye NH2 groups.  This extra stability 

may be the reason that crystal structures were obtained here, and not in our group’s studies 

involving the Dawson polyoxometalates.  In another study tetrathiafulvalene 

(TTF)/polyoxometalate composite materials have been electrocrystallized on a variety of 

substrates.77  The film exhibited extremely high conductivity.  This is one of the first examples 

of the formation of polyoxometalate/dye composites by controlled potential electrolysis. 
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1.4.4 – Coupling cationic organometallics and porphyrins to polyoxometalates: 

 

Research into the synthesis of novel polyoxometalate-organometallic complex ion-clusters has 

also been carried out; for example ferrocene has been used to this affect as a counter-ion.  Juraja 

et al have demonstrated that decamethyl ferrocene crystallizes with [S2Mo18O62]4- as 

[Fe(Cp*)2]5[HS2Mo18O62].3DMF.2Et2O.78  The species has unusual charge separation 

characteristics, with a paramagnetic ferrocenyl portion and a diamagnetic POM portion 

identified by EPR spectroscopy.  Magnetic interaction between the two ions is very weak in this 

case.  In a separate study the ferrocene derivative CpFeCpCH2N+(CH3)3 has been isolated as a 

CT salt with the Lindqvist polyoxometalates [M6O19]2- where M = Mo, W.79  Picosecond 

transient absorption measurements have shown that a short-lived CpFe+CpCH2N+Me3-

[Mo6O39]3- CT state is formed.  This state exhibited a new absorbance band centered at ~550 nm 

in the diffuse reflectance electronic spectrum.  This is one of the best literature examples of a 

time-resolved spectrum confirming the charge separated excited state to date.  The spectroscopy 

is shown in Fig. 1.4.6. 

 

Fig 1.4.6: Transient absorption spectrum taken 25 ps after 532 nm excitation pulse of 10 % 

[CpFeCpCH2NMe3]2[Mo6O19] in neutral alumina (solid line, x 10).  The reduced 

polyoxomolybdate acceptor [Mo6O19]3- (dashed) and oxidized ferrocenyl donor 

CpFe+CpCH2N+Me3 spectra (dots) are shown for comparison.  Reproduced from [79]. 
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In recent years macrocyclic porphyrin-based systems have also been employed as electrostatic 

sensitizers for polyoxometalates.  It has been observed in solution that cationic porphyrins form 

stable electrostatic adducts with anionic polyoxometalates which display intramolecular charge-

transfer characteristics, similar to those involving polyoxometalates and [Ru(bpy)3]2+.  

Porphyrins are not naturally cationic so substituted macrocycles were synthesized for this 

purpose by adding quaternary ammonium N-methylpyridine groups to each corner of the 

molecule.  For example the tetramethylated Zn porphyrin [ZnTMePyP]4+ has been investigated 

as a sensitizer for the sandwich polyoxometalate [M4(H2O)2(P2W15O56)2]n- (with n = 16 for M = 

ZnII, NiII, and n = 12 for M = FeIII).80  The complexes exhibited fast intramolecular porphyrin to 

polyoxometalate quenching and high Ka values.  The complex [ZnTMePyP4+]3-[Fe4(P2W15O56)2] 

was also shown to be photoactive towards the reduction of Ag+ ions in solution under visible 

irradiation.  In another study by the same authors the polyoxotungstate ����-

Na17[Co4(H2O)(OH)(P2W15O56)2] was effectively sensitized by zinc-meso-tetrakis(N-

pyridinium)-�-octaethylporphyrin [ZnOETPyP]4+ in solution to form Ag nanoparticles from 

dissolved Ag+ ions.81  An image of these nanoparticles is given in Fig 1.4.7.  The group also 

studied the possibility of forming a co-ordination complex between 5, 10, 15-tritolyl-20-(3-

pyridyl)porphyrin (H2T3P-3-Py) and the substituted Keggin polyoxometalates �-[MSiW11O39]3- 

(M = CoII, NiII).  Surprisingly Ka values of the order of 106 were obtained, which is of the same 

order as most electrostatic Ru complex/polyoxometalate composites reported vide supra.82  In a 

previous study the interaction between [Ru(bpy)2(Mebpy-py)]2+ and �2-[P2W17O61(FeOH2)]7- 

was determined to be purely electrostatic, even though a co-ordination binding mode was 

possible, it is somewhat surprising to see a co-ordination mode as strong as a typical 

electrostatic bond in this case.54 

 

 

Fig 1.4.7: Ag nanoparticles formed by visible irradiation of 2 x 10-6 M 

{[Co4(H2O)(OH)(P2W15O56)2]17- - [ZnOETPyP]4+} aqueous solution in the presence of 8 x 10-5 

M Ag2SO4 (8 hours irradiation).  Reproduced from [91]. 
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1.5 – Polyoxometalate photoelectrochemistry and multilayer 

assemblies: 

 

1.5.1 – Transition metal complex-polyoxometalate multilayer systems: 

 

Multilayers often form as a consequence of physisorption at an interface.  However very stable 

base layers can also be formed by chemisorption.  Although the driving force for 

polyoxometalate multilayer formation is generally purely electrostatic, as the anionic 

polyoxometalates can be immobilised on any cationic surface, other methods can also be 

employed.  For example, cationic pyridnium dyes have been covalently grafted onto a boron-

doped diamond substrate (see Fig 1.5.1).  The cationic charge of this initial layer was then used 

to drive bilayer formation with the anionic polyoxotungstate [PW12O40]3-, and these films 

exhibited promising photoelectrochemistry.83  Langmuir-Blodgett films of a variety of 

polyoxometalates and the dimethyldioctadecylammonium cation (DODA) have also been 

reported.84  Although polyoxometalate photochemistry has been extensively studied in solution, 

studies of thin film photochemistry assembled on electrodes are relatively rare.  Future solar 

energy applications would very likely be interfacial in nature so it is our goal to drive research 

forward in this area. 

 

 

Fig 1.5.1: Electrochemical grafting of the molecular pyridinium dye followed by electrostatic 

self-assembly of the supramolecular architecture with H3[PW12O40].  Reproduced from [83]. 
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Anionic polyoxometalates can form stable electrostatic multilayers with cationic metal 

polypyridyl complexes.  Anson et al have reported the formation of stable multilayers 

consisting of [Os(bpy)3]2+-[P2Mo18O62]6- or [Ru(bpy)3]2+-[P2Mo18O62]6-
 on various electrode 

surfaces (ie: glassy carbon, highly ordered pyrolytic graphite, indium tin oxide, and gold-coated 

quartz electrodes); and assemblies up to 8 bilayers thick were reported.50  The layers were 

prepared by dip coating and were stable to multiple redox cycles.  Multilayers of [Fe(bpy)3]2+-

[P2Mo18O62]6- have also been reported.85  These layers were found to have electrocatalytic 

activity towards the reduction of nitrate, peroxide and bromate ions.  The electrochemistry of 

the polyoxometalate moiety was shown to exhibit pH dependant behavior typical of this 

polyoxometalate in solution.  Based on this work, Zynek et al constructed multilayers based on 

the mixed-metal polyoxotungstate [P2W17VIVO62]8- and a ruthenium pentaerythritol derivitised 

terpy metallodendrimer (see Fig 1.5.2) on glassy carbon electrodes.86  This structure was chosen 

as it is fully charge-compensated relative to the [POW]8- anion.  The multilayers were analyzed 

by electrochemistry, AFM and XPS.  Up to 15 stable bilayers could be formed, as demonstrated 

by linear growth in cyclic voltammetry measurements.  The permeability of ions through the 

multilayer to the electrode surface was shown to be dependant on the number of layers 

employed.  The group concluded that the charge-compensated nature of the multilayers was 

responsible for their stability over long periods, which may be a very important observation 

with implications for future work.  In another study a similar metallodendrimer, without any 

functionalization of the terpy ligands, was built into multilayers with [P2W18O62]6− on quartz 

electrodes.87  They noticed that the film exhibited negligible changes in voltammetry when 

stored in air for over a month.  The films also displayed bifunctional electrocatalysis towards 

iodate and arsenate ions, so it is likely that POM/Ru metallodendrimer films are good 

candidates for stable films for electroanalysis.  No photochemistry of either metallodendrimer 

based systems was performed. 
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Fig 1.5.2: Structure of the Ru pentaerythritol-derivitised terpyridine metallodendrimers used as 

the counterion in multilayer formation with [P2W17VIVO62]8-.88 

 

The formation of multiply luminescent multilayers of [Ru(bpy)3]2+ and [Eu(SiMo9W2O39)2]13- by 

alternating dip-coating onto poly(ethylenimine) coated quartz has also been described.89  

Interesting catalytic activity towards a variety of substrates was observed for the POW, with 

separate catalysis of C2O4
2- ions by the [Ru(bpy)3]2+ also observed.  The multilayers thus 

displayed electrocatalytic behavior of both parent complexes.  Up to 50 stable bilayers were 

produced in this study.  A linear growth of discrete layers was confirmed by UV/Vis 

spectroscopy and cyclic voltammetry.  Multilayers of [Ru(phen)3]2+ and [P2Mo18O62]6− on ITO 

electrodes have also been reported.90  The initial POW layer was adhered to the surface by a 

layer of PEI (poly(ethyleneimine)), a cationic polymer that was deposited onto the quartz 

substrate.  Linear growth was observed with each deposition cycle by UV and CV 

measurements.  Surprisingly, given solution phase quenching experiments, the films retained 

the luminescent properties of the free [Ru(phen)3]2+; although a blue-shift was observed for the 

composite film.  These films were also used in the electrocatalytic reduction of nitrite.  

Multilayers of [Nd(SiW9Mo2O39)]13− and the ruthenium dimer [Ru(bpy)2(BPBH)]4+ (where 

BPBH = 1,6 bis-(2-(2-pyridyl)benzimidazoyl)hexane) on quartz have also been produced.91  

The same Ru dimer has also been used in films of [SiW12O40]4- and an intramolecular charge-

transfer band was seen at 471 nm in the composite film.92  To our knowledge these are the only 
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reported instance in which a Ru dimer has been employed in a multilayer assembly with a 

dimeric ruthenium complex. 

 

 Several other Ru complex/polyoxometalate multilayer studies have been performed, 

generally with a view to producing electrocatalytic films.  In one instance, the Keggin POM 

[PMo12O40]3- and [Ru(bpy)3]2+ were fabricated into multilayers on ITO electrodes using PEI and 

PSS (poly (styrenesulfonate)), which is a commonly used polymer for binding electrostatic 

multilayers together.93  In another study these ions were used to coat a carbon paste electrode 

(CPE).  The modified electrode displayed bifunctional electrocatalytic activity towards both the 

reduction of hydrogen peroxide and bromate and also toward the oxidation of arsenite.  The 

very low solubility of these materials meant the films were exceptionally stable.94  In a different 

study the decatungstate anion, [W10O32]4-, was used to build films with [Ru(bpy)3]2+ and PDDA 

(poly(diallyldimethylammonium chloride)).  These films showed electrocatalytic activity 

towards the reduction of iodate and the oxidation of oxalate, which demonstrated the individual 

properties of the two parent ions.  Moreover, the films exhibited electrochemiluminescence 

(ECL) with TPA (tripropylamine) as the co-reactant and the ECL response was proportional to 

the number of layers.95  Recently a multilayer study involving [Ru(bpy)3]2+ and [P2Mo18O62]6- 

successfully demonstrated that a thin film of the two ions on ITO undergoes electrochromic 

changes as a function of applied potential, and that by switching the potential the Ru emission 

can be switched on and off.96  The versatility of potential multilayer formation was 

demonstrated by Salimi et al, who formed LBL multilayer assemblies of �-[Si�
12�40]4− and 

[Ru(bpy)(terpy)Cl]+ on single-wall carbon nanotubes (SWCNTs).  The layers were stable over a 

large pH range and displayed catalytic activity towards sulfite ions.97  Despite the growing 

interest in the area of Ru complex/polyoxometalate multilayers no reports of the use of Ru 

metallopolymers in this area have been reported to date and we believe that by integrating both 

sensitizer and surface binding agent into one metallopolymer we may be able to direct stable 

multilayer formation on electrode surfaces. 

 

 Other TM complexes have also been used in POW multilayer assemblies.  Both 

[CuII(phen)2]2+ and [FeII(phen)3]2+ were employed with the lacunary POW �-[P2W17O61]10- in 

multilayer LBL assemblies.98  The films were electrochromically reversible and were very 

robust; they could be electrochemically cycled reversibly in 0.2 M AcOH/AcONa buffer at pH 

= 3.5 and were stable up to 150 ºC.  Films of �-[SiMo12O40]4- and [Cu(bpy)2]2+ have also been 

self-assembled on SWCNTs.  The films were used for nM detection of bromate ions so may 

find use as a sensor in future.99  Langmuir-Blodgett (LB) films of the decatungstoeuropate 

[Eu(W5O18)2]9- and the amphiphilic Ir complex [Ir(ddbpy)(ppy-CN)2]+ have been reported 

(where (ddbpy) = 4,4’-bis[3, 5-bis(dodecyloxy)benzyloxy]-2, 2’-bipyridine and (ppy-CN) = 
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phenylpyridinate).100  The Ir based emission was partially quenched by the proximity to the 

POW acceptor, but when the surfactant DODA was integrated into the LB films dual emission 

from the two ions was observed from the film.  The colour of the Ir emission also shifts as a 

function of Ir/DODA ratio.  The structure of the ions used and the dual emission of the film are 

shown in Fig 1.5.3. 

 

 

 
 

Fig 1.5.3: Above: The structure of [Eu(W5O18)2]9- and the amphiphilic Ir complex 

[Ir(ddbpy)(ppy-CN)2]+ used in building LB films.  Below: The dual-emission of the LB film 

containing above POW and the Ir:DODA in a 20:1 ratio.  Reproduced from [100]. 

 

1.5.2 – Polyoxometalate multilayers with other photoactive counterions: 

 

Photoactive counterions other than TM polypyridyl complexes have been employed as cations 

in polyoxometalate multilayer formation.  For example a system consisting of K6[P2W18O62] and 

the metalloporphyrin [Tetrakis (N-methylpyridyl) porphyrinato] cobalt (CoTMPyP(ClO4)5) 

multilayers on 4-aminobenzoic acid functionalized glassy carbon electrodes has been 
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reported.101  The deposition of homogeneous and stable layers was followed by cyclic 

voltammetry and UV/Vis spectroscopy.  It was observed that as the number of layers increased 

so did the amount of porphyrin in each layer.  The Soret band of the porphyrin red-shifted from 

445 nm to approximately 455 nm upon immobilization on the surface, relative to the absorption 

maximum of the free porphyrin in solution, which was attributed to porphyrin stacking in the 

film.  The multilayers were investigated for photocatalytic activity and it was discovered that 

[SiW12O40]3- had very different kinetics for the hydrogen evolution reaction than when 

[P2W18O62]6- was integrated into this type of multilayer.  In a similar report by Jin et al 

multilayers of [P2W18O62]6- were built up using alcian blue, a cationic copper phthalocyanine.102  

It was shown that a greater amount of both materials was adsorbed onto an ITO electrode when 

dip-coating into an aqueous solution of 0.01 M PSS than when pure water was used.  The 

multilayers were shown by electrochemistry to be stable when exposed to air for over a month.  

The multilayers also demonstrated electrocatalytic reduction of nitrite.  A simplified schematic 

of the mutilayers is shown in Fig 1.5.4. 

 

 
 

Fig 1.5.4: Schematic representation of the internal layer structure of a [PSS/PAH(AB–

P2W18O62/PSS)n] multilayer film self-assembled on a substrate. PSS = poly(styrenesulfonate), 

PAH = poly(allylaminehydrochloride), AB = alcian blue.102 
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This kind of diagram is common in polyoxometalate/cation multilayer publications, but whether 

such architectures represent reality is highly questionable.  Polymers in particular tend to have a 

lot of interlayer inter-penetration even if true layers do form, and the multilayer films are very 

likely to exhibit at least some heterogeneity on the nanoscale.  Recently reported AFM images 

show that the structure of a multilayer of cobalt tetraaminophthalocyanine (CoTAPc) and 

[P2Mo18O62]6- exhibits granular aggregates with gaps between islands of material.103  This was 

attributed to Coulombic repulsion between neighbouring ions.  These AFM images are shown in 

Fig 1.5.5. 

 
 

Fig 1.5.5: AFM images of a multilayer film of (P2Mo18O62/CoTAPc/PSS/PAH)3 showing 

islands of  material on a silicon substrate.  Scale 100 nm/div (left) and 500 nm/div (right).  

Reproduced from [103]. 

 

Gao et al have investigated the use of various organic dyes as counterions in polyoxoanion 

multilayers.104  A variety of related cationic dyes were employed such as methylene blue, 

thionin and nile blue chloride.  When integrated into multilayers with the Keggin ion 

[BW12O40]5− or the “sandwich” complex [Co4(H2O)2(PW9O34)2]10− a variety of results were 

obtained.  Some of the dyes did not give a linear growth in absorbance relative to the number of 

layers deposited, as measure by UV/Vis spectroscopy on a quartz slide.  It was therefore 

postulated that the side groups of the dyes were important in layer formation.  A control 

experiment involving the same dyes and the polyelectrolyte polystyrene sulfonate (PSS) 

demonstrated that the formation of the layers is dependant on hydrogen bonding between the 

dye and the polyoxoanion, as well as the relative charges on the ions.  Another control 

experiment showed that some layers are formed between polyoxometalate and uncharged 

moieties such as polyethylene glycol (PEG), however the formation of more than four layers 

could not be achieved.  This demonstrates that the main driving force for multilayer formation is 

electrostatics, with hydrogen bonding playing a relatively minor role.  The work concluded with 

photochemical and thermal stability tests of the multilayers.  The most stable multilayer system 
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was between the polyoxometalates and the thionin dye, as the NH2 side groups facilitate H-

bonding with the polyoxometalate oxygen atoms which is, as discussed, a secondary factor in 

multilayer formation. 

 

 Significant effort has been invested into making and characterizing multilayers 

incorporating various polyoxometalates to date.  Most of these studies have only focused on the 

principle of electrostatic LBL multilayer assemblies, as demonstrated by the fact that most have 

been produced on quartz slides and not on electrodes.  The quartz slides do allow for ease of 

characterization by UV/Vis spectroscopy; however it is difficult to see how such multilayers 

will have applications.  The photocatalytic behavior of these systems has been studied in some 

cases, but has been neglected in much work.  Overall, the potential for photovoltaic devices 

based on POM/POW multilayers has not been significantly investigated to date.  In truth most 

of the work performed to date represents a newly emerging field that is only beginning to 

achieve its potential, and studies of polyoxometalate catalysis at electrode interfaces have only 

become popular in the past four years or so. 

 

1.5.3 – Photocurrent generation/photo-electrochemistry: 

Polyoxometalates can be used to generate currents photochemically, and this can be achieved 

both in solution and when immobilised on the surface of the working electrode.  Tungstates 

generally result in smaller current magnitude than their corresponding molybdates.  The lower 

photocurrent generation of tungstates is generally attributed to the fact that they are harder to 

reduce than molybdates.  In fact, recent quantitative and qualitative study by Bond et al showed 

that under UV/Vis irradiation [S2W18O62]4- is a significantly less efficient photocatalyst than 

[S2Mo18O62]4- due to the more negative redox potential of its excited states.105  As discussed 

previously, however, they are also easier to reoxidise and since this is the rate determining step 

in the catalytic cycle they are more likely to be used in photovoltaics.9 

 

 The wavelength dependence of photocurrent generation has also been reported for 

[S2W18O62]4- as shown in Fig 1.5.6 (b).  Strong wavelength dependence is observed for current 

generation and interestingly as the reduced [S2W18O62]5- is formed a new absorbance band 

grows in, similar to that in Fig 1.3.1, which contributes to the photocurrent in the visible region.  

However a much higher driving force is required to trigger the [S2W18O62]5-/6- reduction, 

rendering this process relatively inaccessible.39  Thus it is critical that a solution or film of 

reduced polyoxometalate photocatalyst is readily reoxidized in order to complete further 

catalytic cycles as quickly as possible. 
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Fig 1.5.6: Photocurrent generation by reduction of [S2W18O62]4- in the presence of BnOH 

substrate (a) + 0.2 V, � = 312 - 700 nm and (b) wavelength dependence at + 0.4 V.  3 mm GC 

working electrode, potentials vs Ag/Ag+.  Electrolyte: MeCN containing 0.1 M (Bu4N)PF6.  

Reproduced from [39].  

 

A significant breakthrough in polyoxometalate photocatalysis came in 2009 with the synthesis 

of [{Ru4O4(OH)2(H2O)4}-(�-SiW10O36)2]10-, a tetraruthenium substituted Keggin POW dimer 

with excellent photocatalytic activity.106  The complex was sensitized by [Ru(bpy)3]2+ in 

aqueous solution and photocatalytic water splitting to form O2 was observed.  Persulfate was 

used as the sacrificial donor to regenerate the catalyst.  This polyoxometalate has also been 

employed as a water oxidation catalyst in the presence of the tetranuclear Ru tetramer [Ru(�-

dpp)Ru(bpy)2}3]8+, (where �-dpp = 2, 3-bis(2’-pyridyl)pyrazine), and displayed a very high 

quantum yield of O2 formation of 0.30 at 550 nm, as measured by gas chromatography.107  This 

impressive photochemistry has also been exploited as a thin film.108  A film of the [Ru(bpy)3]2+ 

derivative, [Ru(bpy)2(dpb)]2+ (dpb = 4, 4’-diphosphonic-2, 2’-bipyridine acid), on a TiO2 

electrode was dipped into a POW solution for 30 minutes to allow self-assembly to occur.  The 

TiO2-Ru complex-POW films display ultrafast hole scavenging.  Fast hole scavenging is a 

necessary requisite of an efficient photocatalyst as it must be able to scavenge the hole on the 

photogenerated oxidant in competition with charge recombination.  The structure of this 

interfacial photocatalytic system is shown in Fig 1.5.7.  Most recently, our own group published 

impressive photocurrent results obtained upon visible excitation of a hybrid film of 

[S2Mo18O62]4- and [Ru(bpy)2(PVP)10]2+ (where PVP = poly (vinylpyridine)).109  The current 
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generated by the composite film was approximately 5 times larger than that generated by 

[S2Mo18O62]4- alone.  The implications of these data will be discussed throughout this thesis. 

 
 

Fig 1.5.7: Interfacial photocatalytic film employed in visible (550 nm) water splitting.  Red = 

oxygen, blue = tungsten and lilac = tetraruthenium core.  Reproduced from [108]. 

 

 

1.6 – Scope and future work: 

 

1.6.1 - Photovoltaic devices and their marketability: 

 

At present there are several approaches to building cheap and efficient photovoltaic devices.  

The first generation of solar cells was based on the use of doped silicon wafers of extremely 

high quality.  These wafers were first used in the 1950’s and subsequent developments have 

produced functioning cells with very high levels of photon to electron conversion efficiency (> 

25%).  They consist of monocrystalline silica, which is ultra pure and practically homogeneous.  

Other devices based on semiconductors such as GaAs have been manufactured.  These cells 

have been marketed for a long time but they have not achieved sufficiently high levels of sales 

due to their cost.  At present no novel devices can rival the numerical photon to electron 

conversion factor of the older silica based systems.  However the cost-to-efficiency ratio 

necessary for mass production of new technologies is coming down annually and solar energy is 

likely to become one of the main sources of world energy production over the coming years. 
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Fig 1.6.1: The projected marketability of solar cells for the US market.  As the price falls 

demand will substantially increase.  Assuming fundamental advances, the market should begin 

to see a significantly increased market share after 2015.  Reproduced from U.S. Dept. of Energy 

[110]. 

The second generations of solar cells are known as multi-junction devices.  They consist of 

multiply-doped p-n junctions that each have different bandgap energies and hence different 

absorptivity in the solar spectrum.  They are often made from GaAs or InP.  The world record 

for energy generation efficiency as of April 2011 is 43.5 %, generated by Solar Junction Ltd 

(Watts of electricity generated per incident Watt of solar irradiation).111  It is beyond reasonable 

doubt that multijunction semiconductor based photovoltaic technologies are the most efficient 

of photovoltaics but the cost remains too high for serious commercialisation.  Other second 

generation approaches are therefore invariably based on inherently cheaper technologies. 

 

1.6.2 – Future work: 

 

Much of the work performed on polyoxometalates over the last ten years has been in the 

synthesis of novel polyoxometalate ions and composites.  The real strength in this is that with 

enough knowledge of these syntheses and a sound theoretical understanding of the systems 

under study, polyoxometalates can now to a large extent be custom built for a specific purpose.  

For example polyoxometalates were traditionally considered to generally be non-luminescent.  

However derivatized polyoxometalates have long ago been synthesized that display 

luminescence; for example Nd and Eu containing polyoxometalates.112, 113  These 

polyoxometalates can thus be directly probed by luminescence spectroscopy when immobilized 

in multilayer composites. 
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 Some researchers believe that polyoxometalate multilayers look promising as their 

electrochromic properties may be used to manufacture digital display devices.114, 115  Another 

group recently reported the ability of a POW/polymer/quantum dot (QD) composite film to 

“write” different states.116  Firstly a film of [(PEI/Na-POW)9/PEI/CdSe@CdS]10 (where Na-

POW = the Preyssler anion [Na(H2O)P5W30O110]14-) was deposited via the LBL method on a 

silicon substrate, and covered with a square mesh copper grid and irradiated with UV light for 

30 seconds.  The film exhibited FRET (fluorescence resonance energy-transfer) between the 

POW and QDs, resulting in a pattern appearing only in the gaps in the grid.  When the grid was 

removed the “information” was stored on the surface.  However upon exposure to ambient light 

at room temperature over a day the film returned to its normal “unwritten” state.  It was then 

covered with a honeycomb copper mesh and the UV irradiation repeated, proving that the film 

can be reversibly written.  This fascinating application is shown in Fig 1.6.2. 

 

 
 

Fig 1.6.2: Confocal fluorescence microscopy of a thin film of [(PEI/[Na(H2O)P5W30O110]14-

)9/PEI/CdSe@CdS]10 deposited on a silicon substrate (a) covered with a square mesh copper 

grid and irradiated with UV light for 30 seconds, (b) after 1 day exposure to ambient light and 

(b) “rewritten” using a honeycomb mesh and UV light.  Reproduced from [116]. 
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Although it is difficult to predict where the field of polyoxometalate chemistry will branch into 

in future, it is highly likely that both catalysis and thin film applications will play a big role in 

the coming years.  A recent overview of polyoxometalate applications is provided.117 

 

 

1.7 - Techniques: 
 

1.7.1 – Photoluminescence techniques: 

 

1.7.1.1 – Steady state emission measurements and quenching: 

 

Fluorescence is a short-lived process of radiative deactivation that occurs from the vibrational 

ground state of the S1 state only (in rare cases, such as that of coronene, it can occur from the S2 

state also).118  It is generally a short-lived process, usually on the nanosecond or picosecond 

timescale. Phosphorescence occurs from the T1 state and is usually much longer lived, often on 

the micro to millisecond timescale.  Note that ISC and emission from T1 � S0 are spin 

forbidden processes in theory, and this means that the probability of such transitions being 

observed is in reality quite low and limited to a relatively small number of exceptional cases.  

As discussed in section 1.4.1, the heavy atom effect is one mechanism by which ISC can occur.  

Many other important processes such as electron and energy transfer occur when the molecule 

in the T1 state interacts with another molecule. For example collisions in solution with other 

molecules can deactivate the excited state and this is known as collisional (dynamic) quenching.  

Electron transfer from the T1 state to an acceptor species can also occur if the donor and 

acceptor moieties form a ground-state association complex electrostatically, which is known as 

static quenching.  Otherwise, static quenching may arise due to the formation of a non-emissive 

ground state associated complex.  This is the primary mechanism by which Ru (II) polypyridyl 

complexes studied previously may sensitize polyoxometalates and has been widely reported 

previously by the Keyes group and by others for electrostatic composites of [Ru(bpy)3]2+ and the 

Dawson polyoxometalates (see discussion in section 1.4.2). 

 

 Studies involving Ru/polyoxometalate donor-acceptor electrostatic clusters frequently 

investigate the mechanism through which quenching occurs.  This is usually achieved by 

employing the Stern-Volmer model for intramolecular quenching.  To apply the Stern-Volmer 

model to a particular system the quenching of the fluorophore fluorescence intensity must be 

measured as a function of increasing quencher concentration.  In addition either the quenching 
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of the fluorescent lifetime, �, or quantum yield, �, must be recorded.  The slopes of the two 

plots can give much insight into the nature of the quenching process hence the Stern-Volmer 

model is commonly and widely applied to a huge variety of systems such as proteins and 

fluorescent polymers.119, 120 

 

1.7.1.2 – Time-resolved emission: 

 

The fluorescent lifetime, �, of a species is “the parameter describing the time evolution of the 

decay of the fluorescent radiant intensity”.121  The measurement of fluorescence lifetimes is a 

field which has grown significantly in recent years, in particular with relation to fluorescence 

lifetime imaging (FLIM) of live cells and in the study of proteins.122  The current explosion in 

the use of this technology is likely to continue for some time, as the popularity of the field is 

still increasing since the study of the Green Fluorescent Protein won the Nobel Prize in 

Chemistry in 2008.123, 124 

 

 The decay kinetics of an excited state electron returning radiatively to the ground state 

can be measured using time-correlated single photon counting (TCSPC) techniques.  This 

technique uses a pulsed laser of short duration (approx 500 ps) to excite the fluorophore and the 

emitted signal is detected at a PMT.  The decay is fitted to an applicable model (ie: 

monoexponential, biexponential, stretched exponential, etc) using specialized software, in order 

to extract the lifetime values.  The precision and accuracy of the measurement can be improved 

by collecting large number of counts which is facile because of the way in which the TCSPC 

method works (counting of individual photons) but can make the acquisition long for long lived 

species. Fluorescence lifetimes are extremely sensitive to the environment of the fluorophore 

and are drastically affected by temperature, solvent polarity and the presence of O2.  

Measurement of � of a fluorophore as a function of increasing quencher concentration can give 

insight into the applicability of the Stern-Volmer model.  Both static and dynamic Stern-Volmer 

behaviour are shown below. 



� 46 

 
Fig 1.7.1: Stern-Volmer behaviour for dynamic quenching (left) and static quenching (right).  

Reproduced from [119]. 

 

Fig 1.7.1 shows that in the case of dynamic quenching both the fluorescence intensity (I0/I) and 

lifetime (�0/�) plots both exhibit a slope, though the slopes are not necessarily coincident as in 

this idealized case.  In the case of purely static quenching the intensity is quenched but the 

lifetime is not.  Therefore luminescence quenching experiments are vital for characterizing the 

quenching mechanisms in ruthenium complex/polyoxometalate systems. 

 

1.7.2 – Electronic spectroscopy: 

 

1.7.2.1: Difference electronic spectroscopy: 

 

Difference electronic spectroscopy is a technique in which the UV/Vis spectra of two or more 

components are added together electronically and then subtracted from the spectrum of the 

corresponding mixture at identical concentrations.  This is performed using spreadsheet 

software such as Microsoft Excel.  The reason for generating difference spectra is to clearly see 

any new spectral features that form as a consequence of ion-pair formation; for instance Ru to 

polyoxometalate charge-transfer bands.  These bands can be difficult to see as they have low 

extinction coefficients and are usually obscured by intense nearby parent-ion bands.  A good 

example of a set of difference spectra is shown in Fig 1.7.2. 
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Fig 1.7.2: Difference electronic spectra of a titration of increasing quantities of [S2W18O62]4- 

into a solution of [Ru(bpy)3]2+ at constant concentration in acetonitrile showing the grow-in of a 

new inter-complex charge transfer band at ~ 480 nm.  Reproduced from [52]. 

 

1.7.2.2 – Transient absorption spectroscopy: 

 

Information about the fate of transient species some time after initial excitation can give 

valuable information into the kinetics and mechanisms of excited state chemical reactions.  

Transient absorption is a form of fast time-resolved electronic spectroscopy in which the decay 

of an excited state signal is measured over a very short period (sometimes as low as 

femtoseconds).  For Ru (II) polypyridyl complexes excited state lifetimes are usually in the 

region of nanoseconds to microseconds, and it is usually straightforward to elucidate the fate of 

these states using very short laser pulses.  The spectrometer records the absorbance at each 

wavelength as a function of time, and will hence measure the time-resolved spectrum as the 

excited state relaxes back to the ground state.  Using this technique the movement of electrons 

to form reactive intermediates can be unambiguously followed.  This is of importance in 

supramolecular systems where several competing excited state processes may possibly occur.  

Below is the transient spectrum of [Ru(bpy)3]2+. 
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Fig 1.7.3: Transient absorption spectrum of [Ru(bpy)3]2+  at 1 ps (plus signs), 100 ps (circles), 

and 1 ns (crosses).  Reproduced from [125]. 

 

Fig 1.7.3 shows that the Ru MLCT absorption decays upon excitation, and that a new peak at 

360 nm grows in.  This is a (bpy).- radical peak and reveals the location where the radical 

electron is localized during the excited state of the molecule.  The two peaks then decay back to 

the baseline after a certain time and the kinetics of the decay give insight into the excited state 

lifetime of the species.  The possibility of studying multilayer films of polyoxometalates and Ru 

(II) complexes will be investigated using diffuse reflectance.  The diffuse reflectance setup is 

shown in Fig 1.7.4. 

           
 

Fig 1.7.4: Sample acquisition using Applied Photophysics LKS.60 transient absorption system.  

Left: co-linear excitation of liquid sample in a cuvette; right: diffuse reflectance.  A: laser source 

(Nd:YAG, 355 nm), B: white light source (pulsed Xe arc lamp) and C: monochromator and 

PMT.  Reproduced from supplier’s website [126]. 
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1.7.3 - Vibrational spectroscopy: 

 

1.7.3.1 – Attenuated total reflectance Fourier-transform infrared spectroscopy: 

 

Attenuated total reflectance (ATR) is an accessory which can be used to acquire FTIR spectra of 

pure samples without the need for a matrix such as KBr or Nujol.  The sample is placed on a 

reflective surface and a detector tip is screwed down into contact with the sample.  The IR beam 

from the spectrometer is directed onto the sample at an angle, �, greater than the critical angle, 

�c, so that the infrared light undergoes internal reflection.  At each point of internal reflection an 

evanescent wave is produced, which is absorbed by the sample in direct contact with the 

reflective surface.  ATR measurements have the advantage of being easy to perform, however 

the ATR accessories tend to be expensive and can be somewhat delicate.  Examples of common 

ATR tips are those made from germanium, ZnSe or diamond.  An illustration of an ATR-FTIR 

measurement is given in Fig 1.7.5. 

 
Fig 1.7.5 – Illustration of internal reflections through a high refractive index medium (ZnSe), 

used as the reflective surface.  At each reflection, an evanescent wave is produced that decays 

exponentially into the tip above.  The tip is screwed into contact with the sample from above.  

Reproduced from [127]. 

 

1.7.3.2 – Resonance Raman spectroscopy: 

 

The Raman Effect is an optical phenomenon observed when a small portion (approximately 1 in 

107 photons) of light incident on a sample surface are scattered inelastically.  This light is 

scattered at a wavelength different to the one incident on the sample and this difference in 

wavelength is called the Raman Shift.  Raman scattering occurs when an incident photon is 

absorbed by an electron, promoting it to a virtual state.  This distorts the electronics of a 

molecule momentarily, causing the bond to form a temporary dipole.  The bond then vibrates 
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back to its ground state, causing the dipole to vanish.  The Raman shift results from a change in 

the wavelength of the emitted light relative to the wavelength of absorption (known as 	�), and 

a Raman spectrum plots 	� versus emission (scattering) intensity.  Only bonds that show a 

change in polarizabilty are Raman active.  In resonance Raman the wavelength of absorbance is 

coincident with a molecular chromophore and hence excites to vibrationally hot states of the 

first electronic excited state (see Fig 1.7.6).  Different vibrational modes are IR or Raman active 

(or both), so Raman is often used as a complimentary tool to infrared spectroscopy. For 

example, water is IR active but has a weak signal in the Raman spectrum; and this useful 

property makes Raman very useful in biospectroscopy.  Raman spectroscopy has inherently low 

sensitivity and so for years after its discovery (1928) it was difficult to use, usually only for 

concentrated liquid samples, and hence was only used very rarely.  Nowadays it has become 

popular due to the availability of tuneable lasers and the advent of Resonance Raman 

spectroscopy. 

 

Fig 1.7.6: The origin of Raman signals for non-resonant (left) and resonant Raman 

spectroscopy.  Reproduced from [128]. 

 

In resonance Raman (RR) spectroscopy the exciting laser is resonant with an electronic 

absorbance of the material under study.  Any Raman active vibrational modes associated with 

this electronic transition, i.e. associated with the chromophoric being resonantly probed, will 

have their signals enhanced greatly; sometimes by as much as seven orders of magnitude.129  

This useful property means that one species can be observed in a mixture by exciting into its 

chromophore.  Even though other molecules in the sample will Raman scatter, the intensity 

from this conventional Raman scatter is so weak compared with the resonantly enhanced modes 
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that only the resonantly enhanced spectrum is observed. This technique permits study of key 

transitions in complex materials and has found potential use in biospectroscopy to observe 

labels entering live cells.122 

 

1.7.4 – Electrochemistry: 

 

1.7.4.1 – Photoelectrochemistry: 

 

Photoelectrochemistry is a technique which employs both a conventional three-electrode 

electrochemical cell and a light source for inducing photochemical reactions.  In a 

photoelectrochemical experiment a molecule either in solution or immobilized on the surface of 

the working electrode absorbs a photon and undergoes a photochemical reaction.  This results in 

the production of electrons, protons or oxygen which may be captured and stored.  The 

photocatalyst then has to be regenerated in order for it to participate in another catalytic cycle 

and this can be done by applying the necessary potential at the working electrode.  This kind of 

system obviously doesn’t apply to irreversible photochemical reactions or photodegradations 

but can be used for systems involving polyoxometalates as their electrochemistry is fully 

reversible.  For example, the photoelectrochemistry of the composite material 

[Ru(bpy)3]2[S2W18O62] and a variety of other Ru (II) polypyridyl complex/Dawson 

polyoxometalate ion clusters have previously been performed in solution.57  This data is shown 

in Fig 1.7.7 and Fig 1.7.8. 

 
Fig 1.7.7: Photoelectrochemistry of a mixed solution of [Hex4N]4[S2Mo18O62] (0.1 mM) and 

[Ru(biq)2(box)]+ (0.4 mM) in DMF (0.1 M Bu4NPF6) irradiated by white light.  The potential 

was poised at + 400 mV (vs. Fc/Fc+).  Reproduced from [57]. 
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Fig 1.7.8: Cyclic voltammogram of [Ru(bpy)3]2[S2W18O62] in CH3CN (0.1 M Bu4NPF6).  

Working electrode = glassy carbon (d = 3 mm), scan rate = 100 mV.s-1).  Reproduced from [57]. 

 

Fig 1.7.7 shows the photoelectrochemical response of the hybrid material 

[Ru(biq)2(box)]4[S2Mo18O62] in the presence of DMF substrate under white light irradiation.  

The current applied to reoxidise the polyoxotungstate after photoreduction was + 400 mV (see 

Fig 1.7.8).  This potential was chosen as it is more positive than the first reduction of the 

polyoxoanion and less positive than the oxidation of the Ru cations.  Consequently, zero current 

should be recorded in the absence of light when this potential is applied. 

 

1.7.5.3 – Spectroelectrochemistry: 

 

Spectroelectrochemistry (SEC) is a technique that combines electrochemistry and spectroscopy.  

In a specially designed electrochemical cell that also acts as a cuvette, a redox active compound 

is oxidized or reduced.  The products of the redox transformation are monitored in situ by the 

spectrometer.  In the case of polyoxometalate reductions new absorption bands appear in the 

visible and NIR regions as a consequence of electron localization (see Fig 1.3.1).  Although 

these electronic transitions have been well characterized for the Dawson polyoxometalates, the 

resonance Raman spectroscopy of these chromophores have not been extensively investigated.  

However, in one literature example the resonance Raman spectroscopy of the “giant” 

polyoxomolybdate (NH4)21[{VIV(H2O)O}6{MoV(�-H2O)2(�-

OH)MoV}3{Mo15(MoNO)2O58(H2O)2}3].65H2O cluster was studied in solution under 1064 nm 

irradiation.130  It was observed that new Raman modes appeared in the spectra of the 6 and 12-

electron reduced products and these modes were characterized.  The giant polyoxomolybdates 

commonly undergo multi-electron reductions.131, 132  

 



� 53 

1.8 - References: 

�������������������������������������������������������������

1 B. O' Regan and M. Grätzel, Nature, 1991, 353, 737 - 740. 

2 M. K. Nazeeruddin, P. Péchy and M. Grätzel, Chem. Commun., 1997, 1705 - 1706. 

3 F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. Humphry-Baker, P. Wang, S. M. 

Zakeeruddin and M. Grätzel, Chem. Commun., 2008, 2635 - 2637. 

4 R.J. Forster, T.E. Keyes and J.G. Vos, Interfacial Supramolecular Assemblies, Wiley, UK, 

2003, p. 268. 

5 M. Grätzel, Inorg. Chem., 2005, 44, 6841. 

6 Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, S. M. Zakeeruddin and M. Grätzel, 

Nature Mater., 2008, 7, 626 - 630. 

7 Q. Wang, W. M. Campbell, E. E. Bonfantani, K. W. Jolley, D. L. Officer, P. J. Walsh, K. 

Gordon, R. Humphry-Baker, M. K. Nazeeruddin, and M. Grätzel, J. Phys. Chem. B, 2005, 109, 

15397 - 15409. 

8 A. Morandeira, I. Lopez-Duarte, B. O’ Regan, M. V. Martinez-Diaz, A. Forneli, E. Palomares, 

T. Torres and J. R. Durrant, J. Mater. Chem., 2009, 19, 5016 - 5026. 

9 E. Papaconstantinou, A. Hiskia and A. Troupis, Front. Biosci., 2003, 8, s813 - 825. 

10 A. Hiskia, A. Troupis, S. Antonaraki, E. Gkika, P. Kormali and E. Papaconstantinou, Int. J. 

Environ. An. Ch., 2006, 86, 233 - 242. 

11 M. D. Tzirakis, I. N. Lykakis and M. Orfanopoulos, Chem. Soc. Rev., 2009, 38, 2609 - 2621. 

12 P. J. S. Richardt, R. W. Gable, A. M. Bond and A. G. Wedd, Inorg. Chem., 2001, 40, 703 - 

709. 

13 D-L. Long, E. Burkholder and L. Cronin, Chem. Soc. Rev., 2007, 36, 105 - 121. 

14 J. J. Berzelius, Poggend. Ann. Phys. Chem., 1826, 6, 369. 

15 L. Pauling, J. Am. Chem. Soc., 1929, 51, 2868 - 2880. 

16 J. F. Keggin, Nature, 1933, 131, 908. 

17 B. Dawson, Acta Cryst., 1953, 6, 113 - 126. 



� 54 

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

18 P. Gouzerh and M. Che, L’Actualité Chimique, 2006, 298, 1 - 14. 

19 M. H. Alizadeh, S. P. Harmalker, Y. Jeannin, J. Martin and M. T. Pope, J. Am. Chem. Soc., 

1985, 107, 2662 - 2669. 

20 M. T. Ma, T. Waters, K. Beyer, R. Palamarczuk, P. J. S. Richardt, R. A. J. O’Hair and A. G. 

Wedd, Inorg. Chem., 2009, 48, 598 - 606. 

21 H. An, T. Xu, X. Liu and C. Jia, J. Coord. Chem., 2010, 63, 3028 - 3041. 

22 N. Fay, A. M. Bond, C. Baffert, J. F. Boas, J. R. Pilbrow, D-L. Long and L. Cronin, Inorg. 

Chem., 2007, 46, 3502 - 3510. 

23 M. N. Sokolov, V. S. Korenev, N. V. Izarova, E. V. Peresypkina, C. Vicent and V. P. Fedin, 

Inorg. Chem. 2009, 48, 1805 - 1807. 

24 C. Baffert, J. F. Boas, A. M. Bond, P. Kögerler, D. L. Long, J. R. Pilbrow, and L. Cronin, 

Chem. Eur. J., 2006, 12, 8472 - 8483. 

25 P. J.S. Richardt, J. M. White, P. A. Tregloan, A. M. Bond and A. G. Wedd, Can. J. Chem., 

2001, 79, 613 - 620. 

26 E. Papaconstantinou, Chem. Soc. Rev., 1989, 18, 1-31. 

27 J. P. Launay, J. Inorg. Nucl. Chem., 1976, 38, 807 - 816. 

28 J. B. Cooper, D. M. Way, A. M. Bond and A. G. Wedd, Inorg. Chem., 1993, 32, 2416 - 2420. 

29 N. Fay, V. M. Hultgren, A. G. Wedd, T. E. Keyes, R. J. Forster, D. Leane and A. M. Bond, 

Dalton Trans., 2006, 4218 - 4227. 

30 E. Papaconstantinou, D. Dimotikali, and A. Politou, Inorg. Chim. Acta, 1980, 46, 155. 

31 Y. Yang, Q. Wu, Y. Guo, C. Hu and E. Wang, J. Mol. Catal. A - Chem., 2005, 225, 203 - 212. 

32 A. Hiskia , M. Ecke , A. Troupis, A. Kokorakis, H. Hennig and E. Papaconstantinou, Environ. 

Sci. Technol., 2001, 35, 2358 - 2364. 

33 R. Cao, H. Ma, Y. V. Geletii, K. I. Hardcastle, and C. L. Hill, Inorg. Chem. 2009, 48, 5596 - 

5598. 

34 T. Yamase, Cat. Surveys Asia, 2003, 7, 203 - 217. 



� 55 

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

35 H. Einaga and M. Misono, Bull. Chem. Soc. Jpn., 1996, 69, 3435. 

36 M. A. Fox, R. Cardona and E. Gaillard, J. Am. Chem. Soc., 1987, 109, 6347 - 6354. 

37 A. Mylonas and E. Papaconstantinou, J. Photoch. Photobio. A, 1996, 94, 77 - 82. 

38 T. Yamase, Chem. Rev., 1998, 98, 307 - 325. 

39 T. Rüther, A. M. Bond and W. R. Jackson, Green Chem., 2003, 5, 364 - 366. 

40 T. Rüther, V. M. Hultgren, B. P. Timko, A. M. Bond, W. R. Jackson and A. G. Wedd, J. Am. 

Chem. Soc., 2003, 125, 10133 - 10143. 

41 http://www.iupac.org/projects/posters01/parmon01.pdf 

42 N. Muradov and A.T. Raissi, J. Sol. Energy Eng., 2006, 128, 326 - 330. 

43 T. J. Meyer, Pure & Appl. Chem., 1986, 58, 1193 - 1206. 

44 V. Balzani, A. Juris and M. Venturi, Chem. Rev., 1996, 96, 759 - 833. 

45 N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V. Shank and J. K. McCusker, 

Science, 1997, 235, 54 - 57. 

46 T. Engel, Quantum Chemistry and Spectroscopy, Prentice Hall, USA, First Ed, p. 313. 

47 J. Van Houten and R. J. Watts, J. Am. Chem. Soc., 1976, 98, 4853 - 4858. 

48 R. Ballardini, M. T. Gandolfi and V. Balzani, Inorg. Chem., 1987, 26, 862 - 867. 

49 V. M. Hultgren, A. M. Bond and A. G. Wedd, J. Chem. Soc., Dalton Trans., 2001, 1076 -  

1082. 

50 A. Kuhn and F. C. Anson, Langmuir, 1996, 12, 5481 - 5488. 

51 T. E. Keyes, E. Gicquel, L. Guerin, R. J. Forster, V. M. Hultgren, A. M. Bond, and A. G. 

Wedd, Inorg. Chem., 2003, 42, 7897. 

52 M. K. Seery, L. Guerin, R. J. Forster, E. Gicquel, V. M. Hultgren,  A. M. Bond, A. G. Wedd, 

and T. E. Keyes,  J. Phys. Chem. A, 2004, 108, 7399 - 7405. 

53 M. K. Seery, N. Fay, T. McCormac, E. Dempsey, R. J. Forster and T. E. Keyes, Phys. Chem. 

Chem. Phys., 2005, 7 , 3426 - 3433. 



� 56 

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

54 L. Ruhlmann, C. Costa-Coquelard, J. Hao, S. Jiang, C. He, L. Sun and I. Lampre, Can. J. 

Chem., 2008, 86, 1034 - 1043. 

55 J. Song, Z. Luo, H. Zhu, Z. Huang, T. Lian, A. L. Kaledin, D. G. Musaev, S. Lense, K. I. 

Hardcastle and C. L. Hill, Inorg. Chim. Acta, 2010, 363, 4381 - 4386. 

56 Y. Li, H. Zhu and X. Yang, Talanta, 2009, 80, 870 - 874. 

57 N. Fay, V. M. Hultgren, A. G. Wedd, T. E. Keyes, R. J. Forster, D. Leane and A. M. Bond, 

Dalton Trans., 2006, 4218 - 4227. 

58 M. Bonchio, M. Carraro, G. Scorrano, A. Bagno, Adv. Synth. Catal. 2004, 346, 648 - 654. 

59 J. J. Walsh, D-L. Long, L. Cronin, A. M. Bond, R. J. Forster and T. E. Keyes, Dalton Trans., 

2011, 40, 2038 - 2045. 

60 M. Góral, T. McCormac, E. Dempsey, D-L. Long, L. Cronin and A. M. Bond, Dalton Trans., 

2009, 6727 - 6735. 

61 N. Fay, E. Dempsey, A. Kennedy and T. McCormac, J. Electroanal. Chem., 2003, 556, 63 - 

74. 

62 N. Fay, E. Dempsey, A. Kennedy and T. McCormac, Electrochim. Acta, 2005, 51, 281 - 288. 

63 J. Zhang, J. K. Goh, W. T. Tan and A. M. Bond, Inorg. Chem., 2006, 45, 3732 - 3740. 

64 Z. Han, E. Wang, G. Luan, Y. Li, C. Hu, P. Wang, N. Hu, and H. Jia, Inorg. Chem. Commun., 

2001, 4, 427 - 429. 

65 J. M. Knaust, C. Inman and S. W. Keller, Chem. Commun., 2004, 492 - 493. 

66 Y. Zhang, P. J. Zapf, L. M. Meyer, R. C. Haushalter and J. Zubieta, Inorg. Chem., 1997, 36, 

2159 - 2165. 

67 X. Wang, H. Hu, A. Tian, H. Lin, and J. Li, Inorg. Chem., 2010, 49, 10299 - 10306. 

68 J. Sha, J. Peng, Y. Lan, Z. Su, H. Pang, A. Tian, P. Zhang and M. Zhu, Inorg. Chem., 2008, 

47, 5145 - 5153. 

69 H. Yang, T. Liu, M. Cao, H. Li, S. Gao and R. Cao, Chem. Commun., 2010, 46, 2429 - 2431. 

70 R. Yu, X-F. Kuang, X.-Y. Wu, C-Z. Lu and, J. P. Donahue, Coord. Chem. Rev., 2009, 253, 

2872 - 2890. 



� 57 

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

71 P. Le Maguere, S. M. Hubig, S. V. Lindeman, P. Veya, and J. K. Kochi, J. Am. Chem. Soc., 

2000, 122, 10073 - 10082. 

72 L. J. Zhang, Y. S. Zhou, Z. Yu, G. S. Fang, and X. Z. You, J. Mol. Struct., 2001, 570, 83 - 90. 

73 J. A. F. Gamelas, F. M. Santos, V. Felix, A. M. V. Cavaleiro, E. de Matos Gomes, M. Belsley 

and M. G. B. Drew, Dalton Trans., 2006, 1197 - 1203. 

74 J. Y. Nu, J. P. Wang, W. Chen, C. H. L. Kennard and K. A. Byriel, J. Coord. Chem., 2001, 

53, 153 - 162. 

75 J. Xie, B. F. Abrahams and A. G. Wedd, Chem. Commun., 2008, 576 - 578. 

76 S-X. Guo, J. Xie, R. Gilbert-Wilson, S. L. Birkett, A. M. Bond and A. G. Wedd, Dalton 

Trans., 2011, 40, 356 - 366. 

77 Q. Li, C. Zhao, A. M. Bond, J. F. Boas, A. G. Wedd, B. Moubarakia and K. S. Murray, J. 

Mater. Chem., 2011, 21, 5398 - 5407. 

78 S. Juraja, T. Vu, P. J. S. Richardt, A. M. Bond, T. J. Cardwell, J. D. Cashion, G. D. Fallon, G. 

Lazarev, B. Moubaraki, K. S. Murray and A. G. Wedd, Inorg. Chem., 2002, 41, 1072 - 1078. 

79 P.L. Veya  and J.K. Kochi, J. Organomet. Chem., 1995, 488, 4 - 8. 

80 C. Costa-Coquelard, S. Sorgues and L. Ruhlmann, J. Phys. Chem. A, 2010, 114, 6394 - 6400. 

81 D. Schaming, C. Costa-Coquelard, S. Sorgues, L. Ruhlmann and I. Lampre, Appl. Catal. A - 

Gen., 2010, 373, 160 - 167. 

82 D. Schaming, C. Costa-Coquelard, I. Lampre, S. Sorgues, M. Erard, X. Liu, J. Liu, L. Sun, J. 

Canny,  R. Thouvenot and L. Ruhlmann, Inorg. Chim. Acta, 2010,  363, 2185 - 2192. 

83 Y. L. Zhong, W. Ng, J-X. Yang and K. P. Loh, J. Am. Chem. Soc., 2009, 131, 18293 - 18298. 

84 M. Clemente-León, E. Coronado, C. J. Gómez-García, C. Mingotaud, S. Ravaine, G. 

Romualdo-Torres and P. Delhaès, Chem. Eur. J., 2005, 11, 3979 - 3987. 

85 N. Fay, E. Dempsey, T. McCormac, J. Electroanal. Chem., 2005, 574, 359 - 366. 

86 M. Zynek, M. Serantoni, S. Beloshapkin, E. Dempsey and T. McCormac, Electroanal., 2007, 

19, 681 - 689. 

87 L. Cheng and J. A. Cox, Chem. Mater., 2002, 14, 6 - 8. 



� 58 

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

88 E. C. Constable, C. E. Housecroft, M. Cattalini and D. Phillips, New J. Chem., 1998, 193 - 

200. 

89 T. Dong, H. Ma, W. Zhang, L. Gong, F. Wang and C. Li, J. Colloid Interf. Sci., 2007, 311, 

523 - 529. 

90 H. Ma, T. Dong, F. Wang, W. Zhang and B. Zhou, Electrochim. Acta, 2006, 51, 4965 - 4970. 

91 Y-Q. Zhang, K-Z. Wang and L-H. Gao, Colloid Surface A., 2005, 257, 391 - 394. 

92 Y-Q. Zhang, L-H. Gao, K-Z. Wang, H-J. Gao and Y-L. Wang, J. Nanosci. Nanotech., 2008, 

8, 1248 - 1253. 

93 H. Ma, J. Peng, Y. Chen, Y. Feng and E. Wang, J. Solid State Chem., 2004, 177, 3333 - 3338. 

94 X-L. Wang, Z-B. Han, E. Wang, H. Zhang and C-W. Hu, Electroanalysis, 2003, 15, 1460 - 

1464. 

95 L. Bi, H. Wang, Y. Shen, E. Wang and S. Dong, Electrochem. Commun., 2003, 5, 913 - 918. 

96 B. Wang, L-H. Bi and L-X. Wu, J. Mater. Chem., 2011, 21, 69 - 71. 

97 A. Salimi, A. Korani, R. Hallaj, S. Soltanian and H. Hadadzadeh, Thin Solid Films, 2010, 

518, 5304 - 5310. 

98 G. Gao, L. Xu, W. Wang, W. An, Y. Qiu, Z. Wang and E. Wang, J. Phys. Chem. B, 2005, 

109, 8948 - 8953. 

99 A. Salimi, A. Korani, R. Hallaj, R. Khoshnavazi and H. Hadadzadeh, Anal. Chim. Acta, 2009, 

635, 63 - 70. 

100 M. Clemente-Léon, E. Coronado, Á. López-Muñoz, D. Repetto, T. Ito, T. Konya, T. 

Yamase, E. C. Constable, C. E. Housecroft, K. Doyle, and S. Graber, Langmuir 2010, 26, 1316 

- 1324. 

101 Y. Shen, J. Liu, J. Jiang, B. Liu, and S. Dong, J. Phys. Chem. B, 2003, 107, 9744 - 9748. 

102 Y. Jin, L. Xu, L. Zhu, W. An and G. Gao, Thin Solid Films, 2007, 515, 5490 - 5497. 

103 Y. Yang, L. Xu, F. Li, X. Du and Z. Sun, J. Mater. Chem., 2010, 20, 10835 - 10840. 

104 S. Gao, R. Cao and C. Yang, J. Colloid Interface Sci, 2008, 324, 156 - 166. 



� 59 

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

105 A. M. Bond, J. C. Eklund, N. Fay, P. J.S. Richardt and A. G. Wedd, Inorg. Chim. Acta, 2008, 

361, 1779 - 1783. 

106 Y. V. Geletii, Z. Huang, Y. Hou, D. G. Musaev, T. Lian and C. L. Hill, J. Am. Chem. Soc., 

2009, 131, 7522 - 7523. 

107 F. Puntoriero, G. La Ganga, A. Sartorel, M. Carraro, G. Scorrano, M. Bonchio and S. 

Campagna, Chem. Commun., 2010, 46, 4725 - 4727. 

108 M. Orlandi, R. Argazzi, A. Sartorel, M. Carraro, G. Scorrano, M. Bonchio and F. Scandola, 

Chem. Commun., 2010, 46, 3152 - 3154. 

109 J. Zhu, Q. Zeng, S. O’Carroll, T. E. Keyes and R. J. Forster, Electrochem. Commun., 2011, 

13, 899 - 902. 

110 http://www.energyandcapital.com/articles/solar-energy-stocks/542 

111 (a) http://www.sj-solar.com/ 

(b) http://cleantechnica.com/2011/04/19/solar-junction-breaks-concentrated-solar-world-record-

with-43-5-efficiency/ 

112 S. But, S. Lis, R. Van Deun, T. N. Parac-Vogt, C. Gorller-Walrand and K. Binnemans, 

Spectrochim. Acta A, 2005, 62, 478 - 482. 

113 L. Xu, H. Zhang, E. Wang, D. G. Kurth and Z. Li, J. Mater. Chem., 2002, 12, 654 - 657. 

114 J. Chen, L. M. Ai, W. Feng, D. Q. Xiong, Y. Liu, W. M. Cai, Mater. Lett., 2007, 61, 5247 - 

5249. 

115 Y. Wang, X. Wang, C. Hu and C. Shi, J. Mater. Chem., 2002, 12, 703 - 707. 

116 B. Qin, H. Chen, H. Liang, L. Fu, X. Liu, X. Qiu, S. Liu, R. Song and Z. Tang, J. Am. Chem. 

Soc. 2010, 132, 2886 - 2888. 

117 S. Liu and Z. Tang, Nano Today, 2010, 5, 267 - 281. 

118 C-J. Ho, R. J. Babbitt and M. R. Topp, J. Phys. Chem., 1987, 91, 5599 - 5607. 

119 J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer, Volume 1, 3rd ed, 2006, 

Chapter 8, pages 277 - 330. 



� 60 

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

120 P. C. Innis, F. Masdarolomoor, L. A. P. Kane-Maguire, R. J. Forster, T. E. Keyes and G. G. 

Wallace, J. Phys. Chem. B, 2007, 111, 12738 - 12747. 

121 http://goldbook.iupac.org/FT07377.html 

122 L. Cosgrave, M. Devocelle, R. J. Forster and T. E. Keyes, Chem. Commun., 2010, 46, 103 - 

105. 

123 K. Suhling, J. Siegel, D. Phillips, P. M. W. French, Sandrine Lévêque-Fort, S. E. D. Webb 

and D. M. Davis, Biophys. J., 2002, 83, 3589 - 3595. 

124 http://nobelprize.org/nobel_prizes/chemistry/laureates/2008/ 

125 S. Wallin, J. Davidsson, J. Modin and L. Hammarstrom, J. Phys. Chem. A,  2005, 109, 4697 - 

4704. 

126 http://www.photophysics.com/lks60options.php 

127 J. D. Schuttlefield and V. H. Grassian, J. Chem. Educ., 2008, 85, 279 - 281 

128 http://jolisfukyu.tokai-sc.jaea.go.jp/fukyu/tayu/ACT97E/07/0701.htm 

129 J. R. Ferraro, Introduction to Raman Spectroscopy, Academic Press, New York, 1994. 

130 A. Nicoara, A. Patrut, D. Margineanu and A. Müller, Electrochem. Commun., 2003, 5, 511 - 

518. 

131 A. Müller, S. Qaiser Nazir Shah, H. Bögge, M. Schmidtmann, P. Kögerler, B. Hauptfleisch, 

S. Leiding and K. Wittler, Angew. Chem. Int. Ed., 2000, 39, 1614 - 1616. 

132 T. Yamase, S. Kumagai, P. V. Prokop, E. Ishikawa and A-R. Tomsa, Inorg. Chem., 2010, 49, 

9426 - 9437. 

133 A. M. Khenkin, L. J. W. Shimon and R. Neumann, Inorg. Chem., 2003, 42, 3331 - 3339.�



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Chapter 2: 

 
Experimental 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 62 

2.1 – Materials: 

 

Solution phase studies were carried out in aerated spectroscopic grade acetonitrile, benzyl alcohol, 

ethanol and dimethylsulfoxide (Sigma-Aldrich, spectrophotometric grade).  The solvents were dried 

over molecular sieves (3 Å) prior to use.  Diethyl ether (bench grade) was dried over molecular 

sieves (3 Å) before use.  All aqueous solutions were prepared using deionised water.  Concentrated 

sulfuric acid (VWR) was diluted to 0.5 M with deionised water.  Perchloric acid 60% was diluted to 

1.0 M with deionised water prior to use.   d6-dimethylsulfoxide and d3-acetonitrile (Euriso-top) were 

used as purchased.  D2O (Apollo Scientific) was used as purchased.  1.0 M tetrabutylammmonium 

hydroxide solution (Fluka) was used as purchased.  Ludox AM-30 colloidal silica solution was used 

as purchased (Aldrich). 

 

Potassium bromide (Riedel de Haën) was heated to 100°C to remove residual water content 

prior to use.  Potassium hexafluorophosphate and lithium perchlorate (Aldrich) were used as 

purchased.  Potassium chloride, tetrabutylammonium tetrafluoroborate, tetrabutylammonium 

bromide and tetrahexylammonium bromide (Fluka) were used as purchased. 

 

2.2 – Syntheses: 

 

[Ru(bpy)3](PF6)2 was synthesised according to literature methods.1  [(Pn)4N]4�/�-[Mo18O54(SO3)2] 

and [Ru(bpy)3]2�/�-[Mo18O54(SO3)2] were provided by Prof. Leroy Cronin, University of Glasgow 

and were synthesized according to the literature.2, 3  The polyoxomolybdate 

[(Hex)4N]4[Mo18O54(SO4)2] was synthesized according to the procedure of Cooper et al.4  It was 

characterized by UV/Vis, FTIR and Raman spectroscopies; and also by cyclic voltammetry and 

ESI-MS.  The parent ion peak at m/z = 696 was clearly visible.  [Ru(bpy)2(PVP)10](NO3)2 was 

synthesized according to the literature by Mr. Shane O’ Carroll.5  The metallopolymer was 

characterized by UV/Vis and emission spectroscopy, and the absence of appreciable amounts of the 

undesired N5 coordinated monochloride complex was confirmed by cyclic voltammetry.  

[Ru(bpy)2(PVP)10](PF6)2 was synthesized by dissolving [Ru(bpy)2(PVP)10](NO3)2  in deionised 

water with extensive sonication, followed by addition of a saturated aqueous solution of KPF6.  The 

mixture was sonicated for 30 minutes and then centrifuged, the supernatant was removed and fresh 

deionised water was added.  This was repeated in triplicate and afterwards the solid was dried under 

N2.  It was then redissolved in spec grade MeCN and any insoluble (nitrate) material was removed 
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by centrifugation.  The final concentration of the [Ru(bpy)2(PVP)10](PF6)2 solution was measured 

by UV/Vis spectrophotometry using an � value of 10233 M-1.cm-1 at 455 nm.5   

 

[Ru(bpy)2(caip co-poly)n](ClO4)2 (n = 5, 7, 9) were synthesized by Dr. Qiang Zeng 

according to the following procedure:  As illustrated in Scheme 1, the synthesis of the copolymers 

involved free radical polymerization of styrene with 4-vinylpyridine chloride at ratios of 8:1, 6:1, 

and 4:1 in order to achieve co-polymer ratios of the same values.  The molar mass, obtained by gel 

permeation chromatography (GPC), revealed that the copolymer-CH2Cl backbones contain 3, 5, and 

7 repeat units, respectively.  1H-NMR spectra indicated that there were no significant changes in the 

chemical shifts of the backbone and aromatic protons with differing monomer ratio.  However, the 

methylene protons shifted downfield by 0.23 to 4.76 ppm on replacement of chloride by 

phthalimide and then shifted upfield by 0.77 to 3.79 ppm upon changing from a phthalimide to a 

primary amine.  The chemical shift of these methylene protons was observed at 4.47 ppm in their 

metallopolymers.  This observation is in agreement with a previous report on the characterisation of 

a similarly structured copolymer and its metallopolymers, and suggests that the alkyl chlorides 

within the copolymers were first transformed into primary amines, and that these amine groups 

were later coupled with the terminal carboxylic acid groups of [Ru(bpy)2(caip)](ClO4)2  through 

amide bonds to form the new metallopolymers.  
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Fig 2.1.1: Synthesis of the copolymer backbones used to make the metallopolymers [Ru(bpy)2(caip 

co-poly)n](ClO4)2 (n = 5, 7, 9). 

 

The relative ratio of the two monomers in each copolymer backbone could be conveniently 

calculated from the peak areas of aromatic protons (or backbone protons) and methylene protons in 
1H-NMR.  These calculated results are very close to the desired ratios and indicates that the target 

structures of copolymer backbones, with one derivatized styrene monomer every 8, 6, or 4 styrene 

units, were obtained.  Furthermore, the peak areas of aromatic protons and methylene protons can 

be used to estimate the loading of Ru complexes in the metallopolymer.  The extent of loading is 

consistent with the ratio of the two monomers within the copolymer backbone suggesting that all 

amine groups are completely coupled with the carboxylic acid containing Ru complexes through 

amide bonds.  FTIR spectroscopy was also used to confirm the formation of the amide.  The amide 

�(C�O) stretch at 1708 cm-1 is observed in the infrared spectrum of the parent Ru complex and is 

attributed to the pendant carboxylic acid group.  In the metallopolymer the band occurring at 1708 

cm-1 is lost and replaced with a band at 1647 cm-1, which is attributed to the amide carbonyl stretch 

mode.  
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The deprotonated form of the 7-1 copolymer, [Ru(bpy)2(caip co-poly)7](ClO4), was synthesized by 

slow addition of 1.0 M aqueous TBAOH solution to a 1 mM [Ru(bpy)2(caip co-poly)7](ClO4)2 

solution in MeCN.  The solution turned cloudy and was allowed to sit overnight in the dark.  The 

precipitated [Ru(bpy)2(caip co-poly)7](ClO4) was isolated by centrifugation.  The supernatant was 

removed and the product rinsed thoroughly with MeCN and water.  The [Ru(bpy)2(caip co-poly)7]+ 

complex was insoluble in MeCN but soluble in DMSO.  The change in protonation state was 

confirmed by resonance Raman spectroscopy. 

 

 The ion-pair composite material [Ru(bpy)2(PVP)10]4.5[Mo18O54(SO4)2] was synthesized by 

the dropwise addition of a solution of approximately 4.5 mM [Ru(bpy)2(PVP)10](NO3)2 dissolved 

with extensive sonication in DMSO to a solution of 1 mM [(Hex)4N]4[Mo18O54(SO4)2] fully 

dissolved in MeCN with vigorous stirring.  An orange-brown precipitate was instantly formed, and 

the mixture was allowed to stand overnight in the dark.  The solutions were centrifuged and the 

supernatant removed, and the solid was then washed with MeCN, to remove any unbound polymer 

and centrifuged twice more.  After the third centrifugation the supernatant was colorless and all 

soluble unassociated material was deemed removed.  The solids were then washed with diethyl 

ether and centrifuged a final time.  After the supernatant was removed the brown solids were dried 

under a stream of N2.  [Ru(bpy)2(caip co-poly)7]5[Mo18O54(SO4)2] was synthesized as above.  The 

solids were characterized by ATR-FTIR and EDX spectroscopies. 

 

The organic soluble analogue [(But)4N]6�-[P2W18O62] was synthesized by slow addition of 

a saturated aqueous solution of tetrabutylammonium bromide to a solution of approximately 1 mM 

K6�-[P2W18O62].  The polyoxotungstate solution turned cloudy and was let sit overnight in the dark.  

The following day a white precipitate was formed and was collected by centrifugation.  The solid 

was washed several times with deionised water to remove any residual aqueous-soluble K6�-

[P2W18O62] and was finally dried under a stream of N2.  The molar extinction coefficient of 

[(But)4N]6�-[P2W18O62] in MeCN was calculated as � 305 nm = 27400 ± 550 M-1.cm-1.  The ion-cluster 

composite material was synthesized as described in section 2.2.1.  The ruthenium to tungsten ratio 

was quantified by EDX spectroscopy 

 

In order to maximize the amount of data collected for Chapter 6, samples of a wide variety 

of transition metal complexes were obtained from colleagues in the Keyes research group.  Each 

complex was analyzed by 1H-NMR and/or ESI-MS before synthesis of the composite materials was 

performed.  The following list of complexes was used. 
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2.2.1 - [Os(bpy)2(p0p)2]2+: Synthesized by Dr. Yann Pellegrin according to the literature.6 

 

2.2.2 - [Os(bpy)2(qpy)]2+: Synthesized by Dr. Yann Pellegrin according to the literature.11 

 

2.2.3 - [Ru(dpp)3]2+: Synthesized according to procedure.7 

 

2.2.4 - [Ru(bpy)2(caip)]2+: Synthesized by Mr. Ciarán Dolan according to procedure.8 

 

2.2.5 - [Ru(dpp)2(caip)]2+: Synthesized by Ms. Lynda Cosgrave according to procedure.8 

 

2.2.6 - [Ru(dppz)2(caip)]2+: Synthesized by Ms. Lynda Cosgrave according to procedure.9 

 

2.2.7 - [Os(bpy)3]2+: Synthesized according to procedure.10 

 

2.2.8 - [Os(bpy)2(PVP)10]2+: Synthesized by Dr. Emmet O’ Reilly according to procedure.5 

 

2.2.9 - [Ru(bpy)2(PVP)10]2+: Synthesized by Mr. Shane O’ Carroll according to procedure.5 

 

2.2.10 - [Ru(bpy)2(qpy)]2+: Synthesized by Dr. Yann Pellegrin according to procedure.11 

 

2.2.11 - [Fe(bpy)3]2+: Synthesized by Mr. Gavin Sewell according to procedure.12 

 

2.2.12 - [Fe(terpy)2]2+: Synthesized by Mr. Gavin Sewell according to procedure.12 

 

2.3 – Spectroscopic methods: 

 

UV/Vis spectra were measured using either a Carey 50 spectrophotometer or a Jasco V-670 

UV/Vis/NIR spectrophotometer.  Solution phase measurements were conducted in Hellma quartz 

cuvettes of either 1 cm or 0.2 cm optical path lengths.  Spectra of self-assembled thin films on ITO 

electrodes were collected by blanking in air and using a clean, blank ITO electrode as the baseline. 

 

Steady state emission measurements were undertaken using a Cary Eclipse Fluorescence 

spectrometer with 10 nm emission and 10 nm excitation slits exciting at 450 nm. 
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Time-correlated single photon counting (TCSPC) measurements were carried out using a 

Picoquant 'Fluotime 100' compact fluorescence lifetime spectrometer.  The 450 nm pulse was 

generated by Picoquant 'PDL 800-B' pulsed diode laser and a Thurlby Thandar Instruments (TTi) 

TGP110 10MHz pulse generator.  An average of three measurements was taken for each sample.  

The instrument response function was measured using a scattering Ludox AM-30 colloidal silica 

solution. 

 

Resonance Raman spectra were collected on a Horiba Jobin Yvon HR800 UV 

spectrometer.  The laser lines were generated by a Coherent Innova 70c tuneable Ar-ion laser 

(457.9, 488, 514.5 nm), a HeNe laser (633 nm) or a 785 nm diode laser.  A 10x or 100x microscope 

objective was used to focus the laser beam onto a sample ground into a compressed KBr disc.  A 

600 lines/mm diffraction grating was employed.  The x-axis was calibrated versus the Rayleigh line 

(0 nm) and the phonon mode from silicon wafer (520 cm-1). 

 

FTIR spectroscopy was performed using a Varian 610-IR FTIR microscope with either a 

slide-on ATR accessory with a germanium crystal tip or with in transmittance mode with samples 

dispersed in KBr discs.  The purified solid powder samples for ATR were mounted on a clean gold 

substrate and each spectrum acquired consisted of an average of 256 scans. 

 

NMR spectra were recorded on a 600 MHz Bruker Advance series spectrometer operating 

at 600 MHz (1H), 150 MHz (13C) 162 MHz (31P) or 61 MHz (15N). 

 

Field emission scanning electron microscopy was performed on a Hitachi S-5500 SEM, and 

elemental analyses were performed with a coupled EDX spectrometer operating at an accelerating 

voltage of 10 keV.  The sample was either the isolated solid composite mechanically adhered to a 

carbon tape surface or a composite thin film self-assembled onto an ITO electrode.  The instrument 

was calibrated versus pure cobalt, and ruthenium to molybdenum/tungsten ratios for the composites 

were calculated from an average of five measurements. 

 

Fluorescence lifetime imaging (FLIM, Zeiss LSM 50) was used to record luminescence 

images of the metallopolymers on silicon wafers, which were pre-cleaned by rinsing with acetone 

and ethanol, followed by air-drying.  An argon ion laser was used for 488 nm excitation.  The 

scanned images contain 512 × 512 pixels. 
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Transient absorption measurements were carried out on solid samples in KBr employing a 

LKS.60 system from Applied Photophysics, Leatherhead, Surrey, UK.  A Quantel 'Brilliant Eazy' 

Q-switched Nd:YAG laser (third harmonic, 355 nm) was used as excitation source.  The signal was 

monitored with a pulsed Oriel 150 W Xe arc lamp.  The signal was detected at right angles to the 

laser source with an R928 5-stage photomultiplier coupled to an Agilent 60 MHz 'Infiniium 

DSO8064A' digital oscilloscope and a monochromator with slit widths of 0.5 nm.  A 355 nm long 

pass filter was employed to remove laser light. 

 

Electrospray-ionization mass spectra were obtained using a Bruker Daltonics Esquire ESI-

ion trap mass spectrometer operating in negative mode. 
 

2.4 - Electrochemical and photoelectrochemical methods: 

 

Solution phase cyclic voltammetry of K6�-[P2W18O62] was performed in D2O containing 1 M 

H2SO4.  The solution was degassed with N2 for 20 minutes prior to use.  The working electrode was 

a glassy carbon macro-disk (A = 0.0717 cm2), the counter electrode was a Pt wire and the reference 

electrode was Ag/AgCl (calibrated versus SCE).  The scan rate used was 10 mV.s-1. 

 

Photoelectrochemical measurements were carried out using a standard three-electrode 

system and a CH Instruments 720b electrochemical workstation.  ITO slides (Delta Technologies 

Ltd., Stillwater, MN) were employed as the working electrodes and were sonicated in ethanol prior 

to use.  The working electrodes were prepared by drop-casting 25 �l of 1 mM (Chapter 3) or 100 �l 

of 1 x 10-4 M (Chapter 4) acetonitrile suspension/solution of Ru:POM adduct onto an ITO working 

electrode and allowing it to dry in air.  A Pt flag was used as the counter electrode.  An Ag wire was 

employed as the pseudo-reference, which was calibrated versus the IUPAC recommended ferrocene 

(Fc/Fc+) internal reference.  The potential was either kept constant at + 400 mV (Chapter 3) or 

systematically from + 400 mV to + 800 mV in repeat experiments (Chapter 4).  Neat benzyl alcohol 

was used as both the solution and sacrificial donor; and no electrolyte was added to avoid ion-pair 

disruption. 

 

The light source for photochemistry was an Oriel 68811 arc lamp employing a 350 W Xe 

bulb and a > 400 nm LP filter (Chapter 3) or 480 ± 5 nm narrow band filter (Chapter 4) and was 

kept at a distance of 10 cm from the sample solution.  The optical filters were purchased from 

Spectrogon UK Ltd. 
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The photoelectrochemistry in Chapter 5 was performed using self-assembled films on ITO 

electrodes.  The films were prepared by immersing a pre-cleaned ITO electrode into a concentrated 

solution (approximately 5 mM) of [Ru(bpy)2(PVP)10](NO3)2 in 80:20 EtOH/H2O for 30 minutes.  

The sample was removed and dried in air, then immersed in a solution of MeCN to remove any 

unbound surface material.  The slide was again dried in air before immersion for another 30 minutes 

in a 1 mM aqueous solution of K6�-[P2W18O62].  The electrode was removed, dried and rinsed as 

described above.  For the films comprised of �-[P2W18O62]6- or [Ru(bpy)2(PVP)10]2+ alone the 

supporting electrolyte used was 0.1 M (But)4NBF4 in MeCN.  However the composite self-

assembled film consisting of both ions was unstable in this solvent and hence 0.1 M (But)4NBF4 in 

BnOH was used. 

 

UV/Vis/NIR and resonance Raman spectroelectrochemistry were performed using a 

standard three-electrode system and a CH Instruments 720b electrochemical workstation.  The 

working electrode was a high surface-area Pt mesh; the counter electrode a Pt wire and the pseudo-

reference electrode was an Ag wire, calibrated versus the Fc/Fc+ couple.   
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Chapter 3 

 

Photophysical and photochemical properties of [Ru(bpy)3]2+ in the 

presence of the sulfite Dawson-like type polyoxomolybdates �/�-

[Mo18O54(SO3)2]4-. 
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3.1 – Introduction: 

 

In the field of photocatalysis, the Dawson polyoxometalate anions (see Fig 3.1.1) are well known as 

efficient photocatalysts and are capable of multiple proton-coupled redox processes which may be 

initiated under UV irradiation.  In Chapter 1 it was described in detail that [Ru(bpy)3]2+ forms stable 

electrostatic adducts with the non-reduced Dawson sulfato anions [M18O54(SO4)2]4- (where M = Mo, 

W) to form analytically pure [Ru(bpy)3]2[M18O54(SO4)2] adducts.1  The photophysics of these 

adducts [Ru(bpy)3]2[M18O54(SO4)2] (where M = Mo, W) have been thoroughly investigated.2, 3  A 

remarkable degree of electronic coupling was exhibited between the polyoxoanions and 

[Ru(bpy)3]2+.  This was reflected in the substantial photochemical stability conferred on the 

normally photolabile [Ru(bpy)3]2+
 cation when incorporated into the adduct; and the presence of a 

new optical transition, assigned as an intramolecular charge-transfer transition from resonance 

Raman spectroscopy, involving both the polyoxoanion and the [Ru(bpy)3]2+
 centres.  A separate 

photoelectrochemical study of [Ru(bpy)3]2[M18O54(SO4)2] (M = Mo, W) demonstrated that the 

quantum yield of [Ru(bpy)3]2[Mo18O54(SO4)2] photoreduction at 420 nm was an order of magnitude 

higher than that for [(Hex)4N]4[Mo18O54(SO4)2] in the presence of benzyl alcohol substrate.4 

In this chapter the photophysical properties of [Ru(bpy)3]2+ in the presence of the sulfite 

containing Dawson-like anions �/�-[Mo18O54(SO3)2]4- are presented.  These relatively new 

structures were first reported in 2004.5  The replacement of conventional sulfate groups with sulfite 

groups allows for the possibility of intramolecular electronic communication between the 

encapsulated sulfur atoms, and indeed �-[Mo18O54(SO3)2]4- is more difficult to reduce than the 

corresponding �-[Mo18O54(SO4)2]4- by 105 mV.6   The differences between the fully oxidized � and 

� isomers of the sulfite polyoxoanion are minor.  The difference in molecular symmetry (see Fig 

3.1.1 and also Fig 1.2.4) leads to slight differences in the spectroscopy and electrochemistry of the 

two ions, which is manifest by the reduction processes occurring between 25 and 55 mV more 

negative for the � isomer.  These differences are unlikely to have a dramatic effect on the binding to 

[Ru(bpy)3]2+.  The unusual distribution of charge within the metal oxide framework results in a 

distortion of the geometry from the standard Dawson anion to the non-conventional “peanut” 

configuration, which has also been observed in the non-reduced sulfite polyoxotungstate �-

[W18O54(SO3)2]4- and in the tin substituted [H3SnW18O60]7-.7, 8  The sulfite and sulfate containing 

species exhibit similar spectroscopic properties, however the more recently discovered sulfite 

anions have not been studied extensively to date.  This is likely due to the fact that they are more 
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difficult to synthesize and purify than the corresponding molybdosulfate anion, and that the 

synthesis of the sulfites was reported far more recently (2004 for the sulfites relative to 1987 for the 

sulfate).25  The structures of �-[Mo18O54(SO3)2]4-, �-[Mo18O54(SO3)2]4- and �-[Mo18O54(SO4)2]4- are 

provided in Fig 3.1.1 for comparison. 

 

 

 

 

Fig 3.1.1: Structures of the �-SO3 (left), �-SO3 (centre) and �-SO4-based (right) polyoxomolybdate 

clusters. The encapsulated sulfate and sulfite moieties are not to scale. Reproduced from [9]. 

 

The aim of this study, in the context of optimising ruthenium polyoxometalate interactions for 

sensitized photocatalysis, was to determine how the electronic properties, charge and isomeric 

structure of these materials influenced their interactions with the [Ru(bpy)3]2+ sensitizer.  Our 

preliminary photoelectrochemical data revealed that [(Pn)4N]4�-[Mo18O54(SO3)2] produced a higher 

photocurrent than [(Hex)4N]4�-[Mo18O54(SO4)2] under the same conditions.  Given the improved 

photocatalysis evident for the �-[Mo18O54(SO3)2]4- anion by comparison with the sulfate analogue, 

and the improved catalytic efficiency of the sulfate in the presence of [Ru(bpy)3]2+, we were 

interested to know if these two phenomena could be combined to give even greater photocurrents 

using [Ru(bpy)3]2�-[Mo18O54(SO3)2]. 
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3.2 – Results and discussion: 

 

3.2.1 - Electronic spectroscopy: 

 

Strong electronic communication between ruthenium polypyridyl complexes and Dawson 

polyoxometalates has been characterised by significant modification of the UV/Vis spectroscopy of 

both species.  In order to elucidate the presence of any new optical transitions resulting from the 

electronic interaction between the donor and acceptor moieties, difference electronic spectroscopy 

was used.  This was conducted by adding the absorbance spectra of the individual molecular 

components electronically at the appropriate concentrations to yield a theoretical sum spectrum and 

subtracting this from the spectrum of the combined solutions at the same concentrations.  This 

technique is commonly used to reveal subtle spectral changes induced by electronic interaction 

between the two species. 

   

In this approach, a range of solutions were made up to investigate the effects of varying 

polyoxometalate concentration on the electronic spectroscopy of a constant concentration of 

[Ru(bpy)3]2+.  Each solution contained 7.3 x 10-6 M [Ru(bpy)3]2+ in which the concentration of � or 

β-[Mo18O54(SO3)2]4- was varied between 9.9 x 10-7 M to 3.0 x 10-5 M in order that the ratio of both 

metal complexes encompassed the 1:1 and 2:1 range.  Fig 3.2.1.1 shows the resulting electronic 

difference spectra generated by subtracting the electronically combined spectra of separate solutions 

of [Ru(bpy)3]2+ and �-[Mo18O54(SO3)2]4- at its different concentrations from that for the mixtures 

over the same concentration range. 
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Fig 3.2.1.1: UV/Vis difference spectra of [Ru(bpy)3]2+ (7.3 x 10-6 M)  upon addition of �-

[Mo18O54(SO3)2]4- (9.9 x 10-7 M – 4.8 x 10-6 M) in dry MeCN. 
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 Fig 3.2.1.2: Job’s Plot of absorbance change at 475 nm as a function of �-[Mo18O54(SO3)2]4- 

concentration for the data in Fig 3.2.1.1. 

 

Fig 3.2.1.1 shows that titration of the polyoxometalate into the ruthenium solution resulted in a blue 

shift and reduction in intensity of the feature centred around 280 nm to approximately 260 nm, and 

the appearance of broad, weak features at approximately 320 nm and 475 nm.  These changes are 

similar to those reported previously for association of [Ru(bpy)3]2+ with the sulfate 

polyoxometalate, although the extinction coefficient for the new band is approximately 50% smaller 

in the present case.  Interestingly, unlike the sulfato species, when the ratio of [Ru(bpy)3]2+
: �-

[Mo18O54(SO3)2]4- was below 3:1 the λmax of the new visible absorbance band shifted to 

approximately 485 nm.2  The feature around 380 nm only appeared at higher polyoxometalate 

concentrations, which was also observed when the sulfate polyoxoanion was used.  As the 

polyoxometalate was added to [Ru(bpy)3]2+, the ruthenium complex is initially present in a 

significant excess, so the 2:1 associated species [Ru(bpy)3]2�-[Mo18O54(SO3)2] is predicted to form 

first.  Consequently, the higher energy feature is likely to arise from the 2:1 complex.  The 

corresponding Job’s plot in Fig 3.2.1.2 was constructed from the absorbance change at 475 nm.  
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The maximum of the Job’s plot occurred at a polyoxometalate mole fraction (XPOM) of 

approximately 0.375, which corresponds to a �-[Mo18O54(SO3)2]4-/[Ru(bpy)3]2+ ratio of 

approximately  0.6:1.  This is in good agreement with the expected value of 0.5:1 (XPOM = 0.33) and 

provides strong evidence for a 2:1 complex where the anionic charge on the polyoxometalate is 

fully compensated for by the dicationic ruthenium complex.  When the corresponding isomer �-

[Mo18O54(SO3)2]4- was investigated slightly different behaviour was observed.  These data are 

presented in Fig 3.2.1.3 
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Fig 3.2.1.3: UV/Vis difference spectra of [Ru(bpy)3]2+ (7.3 x 10-6 M)  upon addition of �-

[Mo18O54(SO3)2]4- (3.2 x 10-7 M – 6.6 x 10-6 M) in dry MeCN. 
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 Fig 3.2.1.4: Job’s Plot of absorbance change at 475 nm as a function of �-[Mo18O54(SO3)2]4- 

concentration for the data in Fig 3.2.1.3. 

 

Fig 3.2.1.3 shows similar but subtly different behaviour for the association of the �-isomer with 

[Ru(bpy)3]2+, relative to Fig 3.2.1.1.  The new visible feature grew in at 479 nm and shifted to 486 

nm at higher concentrations, while the band at 320 nm appears very weak in this case.  The Job’s 

plot of the of addition of �-[Mo18O54(SO3)2]4- to [Ru(bpy)3]2+ is presented in Fig 3.2.1.4.  In the case 

of the �-isomer the new visible absorbance grew in at 479 nm and shifted to 486 nm upon reaching 

an XPOM value of 0.29, which is close to the expected value of 0.33.  These data strongly indicate 

that [Ru(bpy)3]2+ associates electrostatically with �-[Mo18O54(SO3)2]4- in a 2:1 ratio in acetonitrile 

and that the �-[Mo18O54(SO3)2]4-/[Ru(bpy)3]2+ adducts have very similar absorption properties to the 

�-[Mo18O54(SO3)2]4-/[Ru(bpy)3]2+ adducts. 

 

In order to investigate the formation of the 1:1 adducts the titration was performed in 

reverse.  In these cases the polyoxomolybdate concentration is kept constant and the Ru 
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concentration varied over a large range.  Fig 3.2.1.5 (below) shows the titration of increasing the 

concentration of [Ru(bpy)3]2+ (1.0 x 10-6 M – 4.5 x 10-5 M) in solutions containing a constant 

concentration (1.0 x 10-5 M)  of �-[Mo18O54(SO3)2]4-.   
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Fig 3.2.1.5: Difference spectroscopy of the reverse titration to observe formation of the 1:1 

stoichiometric complex of �-[Mo18O54(SO3)2]4-/[Ru(bpy)3]2+ in dry MeCN. 
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Fig 3.2.1.6: Plot of absorbance at 484 nm change vs [Ru(bpy)3]2+ concentration.  Data taken from 

Fig 3.2.1.5. 

 

In previous photophysical studies of polyoxometalate/[Ru(bpy)3]2+ the concentration of 

polyoxometalate was varied with respect to constant [Ru(bpy)3]2+ concentration.  Initial 

photophysical measurements were made with a vast excess of [Ru(bpy)3]2+ present; therefore it is 

the initial formation of the 2:1 species which is observed under these conditions.  It was predicted 

that the 1:1 species would only form when an excess of polyoxometalate is added as the 2:1 species 

partially dissociates.  The formation of the 1:1 complex can be favoured if an initial vast excess of 

polyoxoanion is used into which [Ru(bpy)3]2+ is titrated.  In Fig 3.2.1.5, the initial formation of the 

1:1 complex (�max 482 nm) followed by the 2:1 complex (�max 473 nm) accurately reflect the �max 

values obtained in Fig 3.2.1.1, with  minor differences (2 to 3 nm) in the new �max values were 

observed.  The shapes of the bands in the difference spectra are also different in these spectra, 

relative to those in Fig 3.2.1.1, with the bands at 320 and 380 nm appearing more intense in this 

case.  The plot of absorbance change in Fig 3.2.1.6 shows two distinct linear regions, and the slope 

changes at exactly a 1:1 mole ratio. 
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Fig 3.2.1.7: Difference spectroscopy of the reverse titration to observe formation of the 1:1 

stoichiometric complex of �-[Mo18O54(SO3)2]4-/[Ru(bpy)3]2+ in dry MeCN. 
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Fig 3.2.1.8: Plot of absorbance change vs [Ru(bpy)3]2+ concentration.  Data taken from Fig 3.2.1.7. 

 

Fig 3.2.1.7 reveals that a slightly different trend occurs for the �-isomer.  The peaks again grow in 

at 320 and 380 nm with greater intensity than those in Fig 3.2.1.3 (ie: for the corresponding 2:1 

titration).  The differences in �max between the two �-[Mo18O54(SO3)2]4-/[Ru(bpy)3]2+ titrations are 

only of the order of 2 to 4 nm.  As in the case of the � 1:1 titration, two linear regions are observed 

which intersect at exactly a 1:1 �-[Mo18O54(SO3)2]4-/[Ru(bpy)3]2+ mole ratio.  However in this case 

the slope over the high polyoxoanion concentration (ie: 2:1) region appears to be negative.  The 

reason for this apparent difference in slope is unknown but may be due to solubility differences 

between the two isomers. 
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3.2.2 – ATR-FTIR spectroscopy: 

 

The ATR-FTIR spectra of the polyoxometalates and their Ru metallo-adducts were obtained to 

identify any structural changes induced in the complexes on association.  Modes characteristic of 

the polyoxomolybdate anion are shifted by between 3 and 8 cm-1 by comparison with the parent 

anion on association with [Ru(bpy)3]2+.  For the composite material, key polyoxometalate modes are 

observed at 781 cm-1 (Mo-O-Mo involving edge-sharing octahedral), 972 cm-1 (Mo-O-Mo involving 

corner-sharing octahedral) and 935 cm-1 (Mo=O terminal stretching mode).10, 11  The sulfite S=O 

symmetric stretch is observed at 902 cm-1.10, 12  Interestingly the metal-oxide stretch at 781 cm-1 and 

the bpy out-of-plane C-H bending at 757 cm-1 shift in opposite directions upon association relative 

to their parent ion spectra; while the bipyridine out-of-plane ring bending at 730 cm-1 is 

unaffected.13, 14  Comparable behaviour has been reported in several other Ru/polyoxometalate 

electrostatic hybrid systems and has been interpreted as indicating strong electronic interaction.15, 16  

The peaks between 1350 and 1500 cm-1 were attributed to the tetrapentylammonium counterion, 

and the Ru complex PF6
- counterion mode was observed at 835 cm-1.  The fact that none of these 

peaks are present in the composite material spectrum indicates complete charge compensation of 

the molybdates by [Ru(bpy)3]2+.  The spectra of both isomers and their corresponding Ru adducts 

are presented in Fig 3.2.2.1 and 3.2.2.2.  The primary modes are summarized in Table 3.2.2. 
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Fig 3.2.2.1: ATR-FTIR spectra of (a) [(Pn)4N]4�-[Mo18O54(SO3)2], (b) [Ru(bpy)3](PF6)2 and (c) 

[Ru(bpy)3]2�-[Mo18O54(SO3)2].  Bands marked with * denote tetrapentylammonium cation modes, 

and red text denotes a (PF6)- mode. 
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Fig 3.2.2.2: ATR-FTIR spectra of (a) [(Pn)4N]4�-[Mo18O54(SO3)2], (b) [Ru(bpy)3](PF6)2 and (c) 

[Ru(bpy)3]2�-[Mo18O54(SO3)2].  Bands marked with * denote tetrapentylammonium cation modes, 

and red text denotes a (PF6)- mode. 
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Mode Compound/Wavenumber (cm-1) 

 � �   2-1 � �   2-1 [Ru(bpy)3]
2+ 

bpy ring out-of-plane bending  731  731 730 

bpy C-H out-of-plane bending  757  757 763 

Mo-O-Mo edge-sharing octahedra 767 781 777 781  

S=O symmetric stretch 896 902 899 903  

Mo-O terminal mode 935 935 935 935  

Mo-O-Mo corner-sharing octahedra 968 972 968 970  

bpy ring breathing  1465  1468 1467 

bpy ring breathing  1448  1446 1448 

bpy ring breathing  1429  1427 1427 

 

Table 3.2.2: Key vibrational modes identified in Figs 3.2.2.1 and 3.2.2.2. 
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3.2.3 - Luminescence studies: 

 

In order to determine the impact of association of �/�-[Mo18O54(SO3)2]4- on the photophysics of 

[Ru(bpy)3]2+, its luminescence was studied as a function of polyoxometalate concentration in dry 

acetonitrile. 
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Fig 3.2.3.1: Luminescence quenching of [Ru(bpy)3]2+ (1.0 x 10-5 M) by addition of the 

polyoxometalate �-[Mo18O54(SO3)2]4- (1.6 x 10-6 M – 2.6 x 10-5 M) in dry MeCN. 
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Fig 3.2.3.2: Luminescence quenching of [Ru(bpy)3]2+ (1.0 x 10-5 M) by addition of the 

polyoxometalate β-[Mo18O54(SO3)2]4- (1.5 x 10-6 M – 2.6 x 10-5 M) in dry MeCN. 
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Fig 3.2.3.3: Luminescence intensity quenching of [Ru(bpy)3]2+ by both polyoxomolybdate isomers.  

Data taken from Fig 3.2.3.1 and Fig 3.2.3.2. 

 

Fig 3.2.3.1 and 3.2.3.2 show that significant quenching of the [Ru(bpy)3]2+ 3MLCT luminescence is 

observed upon addition of �-[Mo18O54(SO3)2]4-.  The [Ru(bpy)3]2+ phosphorescence centred at 610 

nm decreased steadily upon addition of successive quantities of �-[Mo18O54(SO3)2]4- or β-

[Mo18O54(SO3)2]4- as the ions associated, although there was no evidence for a shift in the 

luminescence λmax.  This behaviour contrasts with that of the sulfato polyoxomolybdate 

[Mo18O54(SO4)2]4-, where, in addition to quenching, significant changes to the emission spectra were 

evident.  A shoulder observed at ~ 630 nm was formed in the sulfate polyoxomolybdate case, and 

was attributed to luminescence from the 2:1 associated complex.2  Even though a very weak 

residual luminescence at 610 nm remains when the �/β-[Mo18O54(SO3)2]4- concentration exceeds 

that of the ruthenium complex by more that 2.5 times, it is likely that this emission arises from 

unassociated [Ru(bpy)3]2+ rather than an intrinsic emission from the associated complex.  To 

confirm this, the isolated solids [Ru(bpy)3]2�/β-[Mo18O54(SO3)2] were examined using confocal 

fluorescence microscopy and this confirmed that the 2:1 complex is non-emissive.  These confocal 
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images are shown in Fig 3.2.3.4 and 3.2.3.5.  The excitation spectra taken for the weak residual 

emission confirmed that there was no change to the absorbance giving rise to this weak emission 

which also suggests that the emission arises from unassociated [Ru(bpy)3]2+.  This is again in 

contrast to the case of the sulfate analogue [Ru(bpy)3]2[Mo18O54(SO4)2], where the new optical 

transition seen in the UV/Vis spectra was demonstrated to be the source of the luminescence at 640 

nm. 

 

 

 

Fig 3.2.3.4: Confocal fluorescence microscopy of solid [Ru(bpy)3]2�-[Mo18O54(SO3)2].  Any 

residual observed luminescence is attributed to free [Ru(bpy)3]2+.  Scale: 500 µm/division. 
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Fig 3.2.3.5: Confocal fluorescence microscopy of solid [Ru(bpy)3]2β-[Mo18O54(SO3)2].  Any 

residual observed luminescence is attributed to free [Ru(bpy)3]2+.   

 

Comparison of the behaviour of the luminescence intensity and lifetime as a function of the 

quencher concentration can yield insights into the nature of the interaction between the two 

compounds.  Dynamic quenching, where interaction between the species is collisional and therefore 

diffusion controlled, is expected to follow the Stern-Volmer Equation (Equation 1): 

][1000 QKoror
I
I

SV+=
Φ

Φ
τ
τ

                            (1) 

where [Q] is the concentration of the quencher; I is the fluorescence intensity; � is the luminescent 

lifetime of the fluorophore; and Φ is the fluorescence quantum yield. KSV is the Stern-Volmer 

constant (Equation 2): 

KSV = kq. �0                                                        (2) 

where kq is the experimental rate constant for quenching and �0 is the lifetime of the unquenched 

fluorophore.  For purely static quenching, where a non-luminescent association complex forms 

between the complex an analogous equation is employed (Equation 3), but the physical meaning of 

the slope, K, is different, according to equation (3) 
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where K is the association constant.  In the case of purely static quenching, leading to a non-

emitting association complex, the observed lifetime of the luminophore is expected to be unaffected 

by quencher concentration, so the I0/I or Φ0/Φ plots will vary with quencher concentration but �0/� 

does not.  In a mixed static and dynamic scenario, the lifetime will be affected by quencher 

concentration, but the slope of the I0/I plot and �0/� plots differ.  Consequently, comparison of the 

luminescence lifetime and intensity as a function of quencher concentration can be used to assess 

whether quenching is static, dynamic or a combination of both.  The I0/I plots for addition of the 

sulfite polyoxomolybdates to [Ru(bpy)3]2+ are shown in Fig 3.2.3.6. 
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Fig 3.2.3.6: Stern-Volmer plots of the emission quenching of [Ru(bpy)3]2+ (1.0 x 10-5 M) by �-

[Mo18O54(SO3)2]4- (----) and �-[Mo18O54(SO3)2]4- (�) (1.6 x 10-6 M – 2.6 x 10-5 M) in aerated MeCN. 
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It is important to remember that the luminophore, [Ru(bpy)3]2+, is present in excess at the beginning 

of the experiment and that the formation of the associated complex is likely to occur in the 

following sequence: 

 

xs[Ru(bpy)3]2+ + [Mo18O54(SO3)2]4- � [Ru(bpy)3]2[Mo18O54(SO3)2] + [Ru(bpy)3]2+ (4) 

[Ru(bpy)3]2[Mo18O54(SO3)2] + [Mo18O54(SO3)2]4- � 2{[Ru(bpy)3][Mo18O54(SO3)2]}2- (5) 

 

At the initial stages when the ruthenium complex is in a large excess, the 2:1 complex would be 

expected to form.  As shown in Fig 3.2.3.6, the data applied to the SV model is non-linear with 

significant upward curvature and at least two distinct regions of response, when applied to a Stern-

Volmer model.  One explanation for such behaviour is that the 2:1 adduct remains luminescent but 

the 1:1 is not.  However, as described above, fluorescence microscopy confirmed this is not the 

case.  Upward curvature in the Stern-Volmer plot is often seen in situations where the quencher can 

both associate with the luminophore and quench it through molecular collision (ie: mixed static and 

dynamic quenching).17   

Although the shape of the plot is somewhat unusual it also coincides well with well-known 

adaptations of the Stern-Volmer model.  Up to a ratio of 2:1 the series slopes upwards, and in fact 

the application of a quadratic trendline to this portion of the series yielded a fit with a regression 

coefficient of 0.98 for � and 0.99 for the �-isomer.  After a 2:1 ratio it is clear that the SV data 

changes to a linear relationship.  The upwards curvature in this SV plot has also been observed in 

the quenching of [Ru(bpy)3]2+ phosphorescence by [PW12O40]3- in MeCN/DMSO.  The authors 

attributed this to the formation of non-emissive/very weakly emissive ion-pairs in solution; however 

they did not perform any time-resolved spectroscopy to investigate this interaction further. 
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3.2.4 - Time-resolved luminescence: 

 

To investigate the non-linearity of the luminescence intensity data when fitted to the Stern-Volmer 

model, time-correlated single photon counting was employed to investigate the effect of increasing 

polyoxometalate concentration on the luminescent lifetime of [Ru(bpy)3]2+ in MeCN.  The data 

obtained are shown in Fig 3.2.4.1. 
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Fig 3.2.4.1: Luminescent lifetime Stern-Volmer plots of 5.0 x 10-6 M [Ru(bpy)3]2+  lifetime 

quenched by �-[Mo18O54(SO3)2]4- (�) and by �-[Mo18O54(SO3)2]4- (�) in MeCN. 

 

As data derived from electronic spectroscopy indicated, a 2:1 complex forms between ruthenium 

and polyoxometalate in MeCN and, on the basis of previous studies, it was expected that the 

quenching would be purely static.  Surprisingly, unlike quenching by the sulfate polyoxometalate 
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analogue where the lifetime was unaffected by the polyoxometalate, consistent with purely static 

quenching, the sulfite complex did influence the [Ru(bpy)3]2+ lifetime.  The lifetime data was 

applied to a Stern-Volmer plot, i.e. �0/� versus [Q], for both sulfite isomers is shown in Fig 3.2.4.1 

which demonstrates that, after an initial plateau region, a reduction in [Ru(bpy)3]2+ lifetime 

accompanies increasing polyoxometalate concentration.  This implies that there is a dynamic 

component to the quenching of the ruthenium by both sulfite polyoxometalates.  This behaviour is 

likely to be the origin of the upward curvature in the I0/I plot.  The slopes of 	�0/� versus [Q] are 

equal to KSV, according to Equation 1 which are 3.1 x 104 for �-[Mo18O54(SO3)2]4-  and 2.5 x 104 for 

�-[Mo18O54(SO3)2]4-.  The quenching rate constants, kq were estimated according to equation (2) to 

be 1.9 ± 0.14 x 1011 s-1 and 1.6 ± 0.10 x 1011 s-1 for the � and � isomers respectively, which is not 

consistent with collisional quenching but is for static association.  This is because dynamic 

quenching rate constants are limited by the rate of diffusion through solution, which usually cannot 

exceed approximately 109 s-1 at room temperature. 

 

A modified form of the emission intensity Stern-Volmer equation (6) can be used for mixed 

static and dynamic quenching,17 equation (6), the parameters are as explained above; 

 

20 ][])[(1 QKKQKK
I
I

aSVaSV +++=   (6) 

 

Therefore, plotting ((I0/I)-1)/[POM] vs [POM] yields a slope equal to KSV.Ka.  Since the KSV values 

were obtained from lifetime data,  Ka values were derived from these fits as 5.9 ± 0.56 x 106 and 1.0 

± 0.09 x 107 for the � and � isomers respectively.  The Ka value obtained for the association of the 

corresponding 2:1 sulfate polyoxometalate complex with [Ru(bpy)3]2+ was 1 x 106; this suggests the 

sulfite polyoxomolybdate analogue has a slightly higher affinity for [Ru(bpy)3]2+ compared with the 

sulfato POM.2 
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Fig 3.2.4.2: Modified Stern-Volmer plots of the emission quenching of [Ru(bpy)3]2+ (1.0 x 10-5 M) 

by �-[Mo18O54(SO3)2]4- (squares) and �-[Mo18O54(SO3)2]4- (triangles) (1.6 x 10-6 M – 5.2 x 10-6 M) 

in aerated MeCN, from which equilibrium constants were estimated.  Slopes equal Ka.KSV. 

 

The applied mixed static/dynamic quenching model has never been applied to quenching studies 

between [Ru(bpy)3]2+ and the Dawson polyoxometalates studies previously, as in each case the Ru 

luminescent lifetime remained unaffected even at high quencher concetrations.2, 3, 18  However a 

dynamic quenching component was observed in the quenching of [Ru(bpy)3]2+ by the substituted 

Keggin polyoxotungstates [Co(H2O)SiW11O39]6- and [Mn(OH)PW11O39]6- but these data were for an 

ion-pair ratio of 1:1, and not for the fully charge compensated species as in the Dawson POM 

studies.19 
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3.2.5 - Ionic strength and association studies: 

 

To investigate the nature of the association between [Ru(bpy)3]2+ and �-[Mo18O54(SO3)2]4- further, 

the effect of ionic strength on the associated cluster was examined by studying the luminescence 

recovery with increasing salt concentration.  It is well known that ClO4
- ions have a high propensity 

to associate with ruthenium complexes, and this salt has been shown to disrupt ion pairing in the 

case of [Ru(bpy)3]2+ and various other Dawson polyoxometalates.2, 3, 18  Fig 3.2.5.1 displays the 

impact of LiClO4 addition on a solution of [Ru(bpy)3]2�-[Mo18O54(SO3)2] containing a tenfold POM 

excess. 
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Fig 3.2.5.1: Changes in emission intensity of a solution of 1 x 10-5 M [Ru(bpy)3]Cl2 and 1 x 10-4 M 

[(Pn)4N]4�-[Mo18O54(SO3)2] in dry MeCN upon addition of 1 M LiClO4, 
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Fig 3.2.5.2: Plot of increasing emission intensity vs LiClO4 concentration taken from data in Fig 

3.2.5.1. 

 

This study showed that by a concentration of 9.86 x 10-3 M LiClO4 the luminescence of free 

[Ru(bpy)3]2+  was fully recovered.  A plot of recovering luminescence intensity as a function of 

increasing LiClO4 concentration exhibited an upward curvature which was remarkably similar to 

that for the addition of LiClO4 to a solution of [P2W17O61(FeOH2)]7- and [Ru(bpy)3]2+ recorded by 

Seery et al, although the absolute concentrations used were different.18  Here a 99-fold excess of 

LiClO4 over polyoxometalate was required to disrupt the ion-ion association; however in the case of 

[P2W17O61(FeOH2)]7- and [Ru(bpy)3]2+ a 22500 fold excess of LiClO4 was required to recover the 

initial luminescence intensity.  This difference in required electrolyte concentration is reflected in 

the difference in both the large excess of POM used in this experiment and the lower Ka value of 

[Ru(bpy)3]2�-[Mo18O54(SO3)2] relative to the literature example. 
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An analogous experiment was then repeated with the � isomer.  In this case, addition of 

LiClO4 to a solution of 1 x 10-5 M [Ru(bpy)3]2+ and 1 x 10-4 M �-[Mo18O54(SO3)2]4- only resulted in 

partial recovery of the [Ru(bpy)3]2+ luminescence, and at high LiClO4 concentrations a time 

dependent decrease in luminescence occurred.  A UV/Vis spectrum taken before and after the 

additions showed that the [Ru(bpy)3]2�-[Mo18O54(SO3)2] MLCT at  ~ 475 nm had also reduced 

dramatically in intensity, and the baseline had also shifted.  This behaviour was attributed to poor 

solubility of the complex in acetonitrile which caused precipitation in the presence of the salt.  The 

origin of this difference in solubility observed for the two isomers is unknown as they are 

isoelectronic and isostructural. 

 

3.2.6 - Resonance Raman spectroscopy: 

 

The new absorbances formed around 475 - 485 nm in the electronic spectrum, on the basis of 

comparison with other clusters, is thought to be due to absorbance from a new inter-metal charge-

transfer within the cluster.  In order to confirm this, resonance Raman spectra of the solids dispersed 

in KBr was explored by exciting with a laser line closely resonant with this state.  The resonance 

Raman spectra of [Ru(bpy)3]2+, [Ru(bpy)3]2�-[Mo18O54(SO3)2] and �-[Mo18O54(SO3)2]4- under 488 

nm excitation are shown in Fig 3.2.6.1.  Spectral intensities are normalized for clarity; the two 

ruthenium containing complexes are resonant at 488 nm whereas [(Pn)4N]4�-[Mo18O54(SO3)2] is not, 

so there are large differences in absolute intensity between the spectra.  The Raman spectrum of the 

composite material exciting at 488 nm is shown in Fig 3.2.6.1 (b).  The Raman spectra of both 

sulfite polyoxometalates are very similar.  However there are some minor differences; notably the 

appearance of a broad featureless mode at approximately 1587 cm-1 in the � isomer spectrum (Fig 

3.2.6.2).  A common feature of both POM spectra is the Mo-O mode at ~ 904 cm-1, which is 

associated with an asymmetric stretching of MoO2 moieties containing terminal oxygen atoms.  The 

Mo-O bending mode is also observed at 388 cm-1.20  The 3MLCT resonance Raman spectrum of 

[Ru(bpy)3]2+ is well known and exhibits signature modes at 1608, 1565, 1492, 1320, 1279, 1178, 

1030 and 670 cm-1, all attributed to bpy vibrations, and a Ru-N mode at 375 cm-1.2 
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It is important to note that only the [Ru(bpy)3]2+ modes are expected to be resonantly 

enhanced under 488 nm excitation.  Interestingly, the prominent �-[Mo18O54(SO3)2]4- modes at 978 

and 991 cm-1 which were apparent in the sulfate polyoxometalate complex adduct are not observed 

in the adducts in this case.2, 3, 18  This suggests that the weaker 475 nm  transition is either too weak 

to provide a significant resonantly enhanced signal or it is not the same transition as observed in the 

sulfate polyoxometalates.  Nonetheless, a number of new features are detected in the composite, 

that are not observed for [Ru(bpy)3]2+ alone.  In particular, two modes appear at 1433 and 1467 cm-

1.   These bands appear weakly in the Raman spectrum of [(Pn)4N4]�-[Mo18O54(SO3)2].    
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Fig 3.2.6.1: Resonance Raman spectra of (a) [Ru(bpy)3](PF6)2, (b) [Ru(bpy)3]2�-

[Mo18O54(SO3)2]and (c) [(Pn)4]�-[Mo18O54(SO3)2] present in KBr discs (~ 5 % w/w) under 488 nm 

excitation. 
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Fig 3.2.6.2: Resonance Raman of (a) [(Pn)4N]�-[Mo18O54(SO3)2] and (b) [Ru(bpy)3]2�-

[Mo18O54(SO3)2] in KBr discs (~ 5 % w/w) under 488 nm excitation. 

 

The identity of these two modes is unclear. However, given their intensity in relation to the 

ruthenium polypyridyl modes they are clearly resonant enhanced.  The relative intensity of the 

modes at 1433 and 1467 cm-1 increased at longer excitation wavelengths, which may be a function 

of trace amounts of reduced [POM]5- coming into resonance at longer wavelengths.  A weak mode 

at 388 cm-1 appears to be attributable to �-[Mo18O54(SO3)2]4- , while the Ru-N mode at ~360 cm-1 

appears to be weakly enhanced and red-shifted by approximately 10 cm-1 in the adduct spectrum. 

 

The [Ru(bpy)3]2+ modes in the composite are affected by association with the 

polyoxometalate; they are broadened relative to those same features in the parent ion.  This is 

indicative of a heterogeneous environment for the ruthenium cations and is consistent with the 

association of the metal complex with the polyoxoanion.  Previous studies showed both the 

presence of polyoxometalate modes at non-resonant wavelengths and also showed modification of 
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the [Ru(bpy)3]2+ modes.  Spectra of the corresponding isomer �-[Mo18O54(SO3)2]4- and its ruthenium 

adduct [Ru(bpy)3]2�-[Mo18O54(SO3)2] (Fig 3.2.6.2) were very similar to those of the � isomer.  

 

Overall, resonance Raman spectra confirm the association of the ruthenium and 

polyoxometalate complex, and indicate that the ruthenium polypyridyl modes are perturbed by this 

association.  However, resonance with the weak optical transition observed around 475 nm does not 

enhance Mo-O modes, as noted with the sulfato complex.  Rather new high frequency modes are 

resonantly enhanced.  The possibility that these bands arise from resonance Raman of the 

photoreduced product of the polyoxometalate was investigated by irradiating the samples for 

extended periods under the laser lines.  No changes to the spectra were noted; so the green one-

electron reduced product, [(Pn)4N]5�-[Mo18O54(SO3)2], was electrosynthesized and examined.  This 

colour change from yellow to green is characteristic of reduced Dawson type polyoxomolybdates 

and arises from low energy MoV

MoVI intervalence charge-transfer transitions.5, 21  The spectrum 

of reduced [(Pn)4N]5�-[Mo18O54(SO3)2] is shown in Fig 3.2.6.3. 
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Fig 3.2.6.3: Resonance Raman spectrum of [(Pn)4N]5�-[Mo18O54(SO3)2] in KBr (~ 5 % w/w) under 

488 nm irradiation. 

 

The spectrum of reduced �-[Mo18O54(SO3)2]5- revealed the appearance of new features at 290, 302, 

1075, 1432, 1454 and 1471 cm-1 which are not present in the spectrum of �-[Mo18O54(SO3)2]4-.  

These features appear weakly in Fig 3.2.6.1 (b) and this strongly indicates that a small quantity of 

reduced POM is present in the isolated 2:1 adduct.  That this has not been detected by other 

spectroscopic means indicates an extremely small quantity is present, and only a very sensitive 

technique such as resonance Raman could reveal its presence. 
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3.2.7 - Photochemical stability: 

 

Previously studied polyoxometalate-ruthenium polypyridyl ionic composites have been 

demonstrated to exhibit exceptional photostability under visible irradiation in MeCN, relative to 

free [Ru(bpy)3]2+.2, 3, 18  Comparative studies of the novel cluster complexes in acetonitrile were 

therefore performed using a 300 W Xe arc lamp and a > 400 nm optical filter.  A solution 

containing 1 x 10-5 M [Ru(bpy)3]2+ and 5 x 10-6 M molybdate was irradiated and the UV/Vis 

spectrum monitored over a period of 4 hours.  In that time, a relatively minor decrease in intensity 

was observed at 450 nm (approximately an 8 % drop).  However in the case of [Ru(bpy)3]2�-

[Mo18O54(SO3)2] a decrease of approximately 18 % was observed.  The photolability of the 

[Ru(bpy)3]2+ cation in MeCN is well known,22 and in comparison an absorbance matched 1 x 10-5 M 

solution of [Ru(bpy)3]2+ showed a decrease in absorbance of almost 30 % over the same timescale.  

The increased photostability of the POM-Ru adducts relative to free [Ru(bpy)3]2+ has previously 

been proposed to be due to the perturbation of the dissociative Ru based 3MC state upon association 

to the POM, as demonstrated by temperature dependant luminescent studies.3  In this case some 

photodecomposition of the associated [Ru(bpy)3]2+ (incorporated in 2:1 cluster) was observed over a 

4 hour period, while in previous studies this was not reported.  This may indicate that the energy 

levels of the two ions are not as strongly coupled as for the parent and lacunary-substituted Dawson 

ions, which appears to be confirmed by the resonance Raman spectra.  An intramolecular charge-

transfer transition is still clearly present in this case, as the electronic spectra demonstrate; however 

it may be weak in this case, relative to the associated [Ru(bpy)3]2+ sulfato anion cluster. 

 

3.2.8 - Photoelectrochemistry: 

 

The presence of a new charge transfer transition in previous Dawson molybdate and tungstates 

[Ru(bpy)3]2+ cluster was implicated in the ability of the [Ru(bpy)3]2+ unit to sensitize  the 

photocatalytic activity of [(Pn)4N]�-[Mo18O54(SO3)2].  We were interested to know, given the 

enhanced photoelectrochemical activity of the sulfite anions, but also given the weak charge 

transfer transition and the fact that no associated vibrations appeared in the resonance Raman 

spectra, if the ruthenium polypyridyl complex could enhance the photocatalytic yield from the POM 

under visible irradiation. Initial photoelectrochemical studies of [(Pn)4N]4�-[Mo18O54(SO3)2] and 

[Ru(bpy)3]2�-[Mo18O54(SO3)2] were carried out on an ITO electrode using benzyl alcohol as the 
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donor.  The samples were prepared by drop casting the pre-prepared composite onto the pre-cleaned 

electrode.  The modified ITO electrode was immersed into benzyl alcohol and irradiated with > 400 

nm white light using a long pass filter.  Benzyl alcohol was chosen as the catalytic substrate for 

these studies.  Light-induced homogeneous photocatalytic oxidation of primary alcohols to 

selectively form aldehydes is a challenging proposition, and the Dawson polyoxometalates have 

been demonstrated previously to be excellent candidates for this process.23, 24  In order to ensure that 

the ion-pair remained associated, photochemical experiments were performed in the absence of any 

added supporting electrolyte.  The absence of electrolyte meant that iR drop is significant, 

nonetheless photocatalytic current could be observed.  The potential was held at 0.4 V to ensure that 

following photoreduction of polyoxometalate by the benzyl alcohol (Eqns 7 and 8), the reduced 

polyoxometalate (Eqn 8) was reoxidised back to [Mo18O54(SO3)2]4- at the working electrode to 

generate photocatalytic current.  It is expected that photo-oxidation of benzyl alcohol involves 

proton abstraction to initially form [Mo18O54(SO3)]5- and H+, which gives rise to the 

disproportionation reaction displayed in Eqn (9), as this maintains the polyoxometalate charge.  

This reduced polyoxometalate ion is finally reoxidized by the applied current at the electrode 

interface. 

 

[Mo18O54(SO3)2]4- + hν →  [Mo18O54(SO3)2]*4-        (7) 

2[Mo18O54(SO3)2]*4- + 2[C6H5CH2OH] →  2[Mo18O54(SO3)2]5- + 2[C6H5CHO] + 2H+      (8) 

2[Mo18O54(SO3)2]5- + 2H+ 
 [Mo18O54(SO3)2]4- + [Mo18O52(OH)2(SO3)2]4-                               (9)   
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Fig 3.2.8.1: Photocurrents generated by (a) [(Pn)4N]4�-[Mo18O54(SO3)2] and (b) [Ru(bpy)3]2�-

[Mo18O54(SO3)2] modified ITO electrodes in contact with benzyl alcohol (baselines normalized).  

Each was irradiated for 400 seconds (light on at 1000 seconds, light off at 1400 seconds). 
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Fig 3.2.8.2: Photocurrents of drop-cast films of (a) [(Pn)4N]�-[Mo18O54(SO3)2] and (b) 

[Ru(bpy)3]2�-[Mo18O54(SO3)2] modified ITO electrodes in contact with benzyl alcohol (baselines 

normalized).  Each was irradiated for 400 seconds (light on at 1000 seconds, light off at 1400 

seconds).   

 

The results of this experiment are striking in that both samples generate significant photocurrents 

under irradiation with visible light.  However, photocurrent generation by the polyoxometalate 

anion was disappointingly reduced by approximately 60% in the presence of [Ru(bpy)3]2+ 

(reduction from 61.2 nA to 23.9 nA, Fig 3.2.8.1).  The reduction in photocurrent confirms that in 

the case of the sulfite polyoxometalate, the ruthenium does not sensitize the polyoxometalate and 

indeed behaves as a filter, reducing the photon flux available to the polyoxomolybdate, resulting in 

a diminished photocurrent.  Comparison with the �-isomer revealed a slightly higher photocurrent 

(73.5 nA) than that generated by the � form under identical conditions.  The associated species, 

[Ru(bpy)3]2�-[Mo18O54(SO3)2], also generated a higher current than the � associated form, 

producing 52 nA.  Interestingly the reduction in current when the Ru was present was not as severe 
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as in the �-isomer case (approximately a 30 % decrease relative to 60 % for the � experiments).  

These data are presented in Fig 3.2.8.2.   Fig 3.2.8.3 demonstrates the degree of spectral overlap 

between the 2:1 associated species and the POM alone in MeCN solutions. 
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Fig 3.2.8.3: Spectral overlap of [(Pn)4N]4�-[Mo18O54(SO3)2] (5 x 10-6 M) and (b) [Ru(bpy)3]2�-

[Mo18O54(SO3)2] (5 x 10-6 M) showing the region of the visible spectrum used as a light source for 

PEC. 

 

Fig 3.2.8.3 shows that the Ru MLCT band overlaps with the tail of the POM absorbance in the 

visible region.  The absorbance is clearly extended in the case of the composite material; however it 

is obvious that this absorbance is detrimental to photocurrent generation.  It is also noteworthy that 

blank ITO can also generate a photocurrent under these conditions, as the tail of its absorbance 

stretches to longer wavelengths than 400 nm.  However in each case the POM alone generated a 

higher current than the ITO alone, and the associated species generated a lower current than the 

POM alone (of the order of 20 nA). 
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Fig 3.2.8.4 shows the comparative experiments performed between the sulfite �-

[Mo18O54(SO3)2]4- and the conventional sulfate containing analogue �-[Mo18O54(SO4)2]4-.  Although 

the addition of Ru did not result in sensitized POM photochemistry, a comparison of the 

photocurrent generated by the molybdosulfate [(Hex)4N]4[Mo18O54(SO4)2] anion with that of the 

sulfite in the absence of ruthenium confirmed that �-[Mo18O54(SO4)2]4- produced a larger 

photocurrent under identical conditions.  Thus, [(Pn)4N]4�-[Mo18O54(SO3)2]  produced a 

photocurrent of magnitude of 61.2 nA, while [(Hex)4N]4[Mo18O54(SO4)2] generated only 34.5 nA. In 

a study of the photocatalytic behaviour of [Mo18O54(SO4)2]4- dissolved in DMF, it was discovered 

that the quantum yield of photocatalysis was increased in the visible (420 nm irradiation) in the 

presence of the ruthenium cation, attributed to sensitization by this species.4  Apparently, structural 

differences in the sulfite and sulfate cases have introduced different redox, photochemical and ion 

association characteristics. 
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Fig 3.2.8.4: Comparative photocurrents generated by drop-cast POM films on ITO electrodes in the 

presence of excess benzyl alcohol substrate.  (a) [(Pn)4N]4�-[Mo18O54(SO3)2] and (b) the 

conventional [(Hex)4N]4[Mo18O54(SO4)2]. 

 

3.3 – Conclusions: 

 

The photophysics of [Ru(bpy)3]2+ in the presence of the Dawson-like polyoxomolybdates �-

[Mo18O54(SO3)2]4- and �-[Mo18O54(SO3)2]4- have been presented.  Both anions associate strongly 

with [Ru(bpy)3]2+ and efficiently quench the luminescence from this complex.  Surprisingly, the 

quenching observed exhibited mixed static and dynamic behaviour, which has not been observed 

previously in other studies involving Dawson POMs and [Ru(bpy)3]2+.2, 3, 4  Difference electronic 

spectroscopy of the clusters revealed the presence of new electronic transitions which were red-

shifted with respect to the [Ru(bpy)3]2+ 3MLCT centred 450 nm and weaker compared to a similar 

absorbance in the sulfato anions.  Resonance Raman spectroscopy, exciting into this new transition, 
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correspondingly showed no contribution from the polyoxometalate, except from a trace amount of 

reduced species.  Furthermore, the adducts showed less photochemical stability than the sulfate 

adducts with photolability more akin to that of free [Ru(bpy)3]2+, which is indicative of weaker 

intermolecular electronic interaction in the sulfite containing adduct than that observed in the 

sulfate analogue.��Photo-electrochemical measurements on ITO electrodes with visible light (> 400 

nm) irradiation demonstrated that the associated [Ru(bpy)3]2�-[Mo18O54(SO3)2], unlike the sulfate 

analogue [(Pn)4N]4�-[Mo18O54(SO3)2], does not sensitize visible light photocatalysis of benzyl 

alcohol.  However, the sulfite molybdate does exhibit a significantly greater photocurrent than 

found with the sulfato analogue.  Structural differences in the sulfite and sulfate containing clusters 

therefore modify the redox and other physical properties in different ways so that electrochemical 

and photochemical properties are not analogous. 
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Chapter 4:

Characterization of novel luminescent metallopolymers and their

interactions with the Dawson type polyoxomolybdate α-

[Mo18O54(SO4)2]
4-.
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4.1 Introduction:

Metallopolymers provide an attractive means of combining the spectroscopic and electrochemical

properties of metal complexes with the processability of polymers. They are finding increasing

application in molecular electronics,1 catalysis/electrocatalysis,2, 3 electrochromic materials,4, 5 and

photo/electroluminescence materials.6, 7, 8 In particular, metallopolymers containing ruthenium

polypyridyl moieties have received significant attention in the areas of electrochemiluminescence

(ECL) and photovoltaics due to their long-live excited states, facile electron exchange dynamics and

amenability towards thin film assembly.9, 10, 11

Extensive effort has been invested in the preparation of ruthenium polypyridyl complexes

with optimised photophysical and redox properties.  Therefore, a particularly attractive proposition

is to chemically incorporate well characterised coordination compounds into a polymer structure in

such a way that the metal centre is relatively unperturbed, and largely retains its properties when

integrated into the polymeric material.  For example the ruthenium metallopolymer

[(polyazabpy)Ru(bpy)2]x
(2x)+ (where polyazabpy = poly[1-(2, 2’-bipyridine-4-yl)-1,4-

diazabutadiene-4, 4’-diyl]) has been demonstrated previously to exhibit very similar photophysical

and electrochemical characteristics to its parent dimetallic complex [{(Ru(bpy)2}2(DAB)]4+ (where

DAB = diaza-di(5-amino-2,2’-bipyridine)).12

In this chapter the characterization of novel co-polymer backbones based on poly(styrene-

p-(chloromethyl)styrene) which were prepared from the monomers of styrene and 4-

vinylbenzylchloride are described.  The chlorides within the copolymers were transformed into

primary alkyl amines and metallopolymers (Fig 4.1.1) were obtained from the condensation

reaction between these amines and carboxylic acid groups pendant on a ruthenium metal complex;

[Ru(bpy)2(caip)](ClO4)2, where caip is 2-(4-carboxyphenyl)imidazo[4,5-f] [1,10]phenanthroline.

The objective was to create a hydrogel metallopolymer wherein the metal centre

[Ru(bpy)2(caip)](ClO4)2, retains the properties of its associated monomer. The synthesis, redox and

photophysical characteristics of the precursor mononuclear complex; [Ru(bpy)2(caip)](ClO4)2, have

been reported in detail previously.  The complex exhibits an intense and pH dependant emission

which is long lived and enhanced in aqueous media.13  A detailed optical spectroscopic and

electrochemical study of the novel metallopolymers is presented and the effects of solvent on their

optical properties has been investigated and compared with the parent monomer.
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In the second half of this chapter the interactions of metallopolymers

[Ru(bpy)2(PVP)10]2+ or [Ru(bpy)2(caip co-poly)7]2+ and the Wells-Dawson structure α-

[Mo18O54(SO4)2]4- are examined.  The metallopolymers exhibit similar spectroscopic, photophysical

and electrochemical properties to [Ru(bpy)3]2+ which was demonstrated previously to sensitize

[Mo18O54(SO4)2]4- photochemistry in solution under visible irradiation.14  The polymers have the

added advantage of improved processability and can bind interfacially to form thin films.  The

photophysics of the metallopolymer [Ru(bpy)2(PVP)10]2+ have been extensively investigated.15  It

has been shown previously to form stable layers on various electrode surfaces, and therefore it may

be possible to use this property to drive discrete LBL multilayer formation or otherwise affect the

layer structure.16  [Ru(bpy)2(caip co-poly)7]2+ is a novel metallopolymer that has recently been

developed by our group and has also been investigated as a potential POM sensitizer.  The presence

of ionizable imidazole nitrogen atoms on the caip ligand permits facile and reversible changes in

electronic properties as a function of pH (see section 4.2).  The corresponding monomer complex

has been studied previously and provides a useful comparison.13  We were interested in

investigating whether upon polyoxometalate interactions with this polymer could these pH-induced

changes potentially alter the degree of electronic interaction with the POM when bound together in

the composite film.  Indeed, in a recent publication a Ru complex with ionizable imidazole ligands,

[Ru(tBubpy)2(biH2)]2+ (where tBubpy = 4,4’-di-tert-butyl-2,2’-bipyridine and biH2 = 2,2’-

biimidazole, doubly protonated), was electrostatically bound to the octamolybdate ion β-[Mo8O26]4-

and dramatic spectroscopic changes were induced upon association.17  These changes arose as a

consequence of the formation of strong N–H---O–Mo hydrogen-bonds, which in turn lead to proton

transfer to form N---O–H–Mo.  It was hoped that because of the analogous properties of the

metallopolymers to [Ru(bpy)3]2+ that comparable interactions with [Mo18O54(SO4)2]4- would occur,

coupled with the possibility of improved stability of potential interfacial layers. Recently we

reported the use of [Ru(bpy)2(PVP)10]2+ and [Ru(bpy)2(caip co-poly)7]2+ as sensitizers for

[Mo18O54(SO4)2]4- visible photochemistry, which was the first study employing self-assembled

metallopolymer/POM films for this purpose.11  The purpose of this present chapter is to probe, in

detail, the interactions of both polymers with the molybdate and the influence of any association

between anion and polymer on the electronic properties and photophysics of the component species.
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Fig 4.1.1: Structures of the metallopolymers studied in this chapter [Ru(bpy)2(caip co-

poly)7]2+ (n = 5, 7, 9) and [Ru(bpy)2(PVP)10]2+.  Structure of α-[Mo18O54(SO4)2]4- (below,

reproduced from Ref [18]).
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4.2 – Characterization of the metallopolymers [Ru(bpy)2(caip co-poly)n]
2+ (n = 5, 7, 9):

4.2.1 Electrochemistry:

The three metallopolymers were synthesized by Dr. Qiang Zeng (see Chapter 2). Table 4.2.1.1

summarizes the electrochemical data for the parent [Ru(bpy)2(caip)](ClO4)2 complex and the three

metallopolymers.  When dissolved in dry DMF with 0.1 M TBABF4 as supporting electrolyte the

metallopolymers exhibit a single, one electron, reversible metal centreed oxidation at approximately

+ 1.0 V.  Three reversible one electron reductions are observed around -1.23, -1.91, and -2.37 V,

which are assigned to the reduction of the bipyridine and caip ligands.  These redox potentials are

similar to those of the parent complex obtained under the same conditions and the values are

independant of the loading of metal centres in the co-polymers.13  These data suggest that the

coupling between the Ru metal centres and copolymer backbones through the amide linkage and

polymer backbone is minimal and higher loadings of metal do not significantly influence the energy

of the Ru2+/Ru3+ redox process. The effect of the polymer loading on the rate of charge diffusion

through metallopolymer films was also investigated by cyclic voltammetry of drop-cast thin films.

An example of this voltammetry is shown in Fig 4.2.1.1.
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Fig 4.2.1.1: Cyclic voltammograms of drop-cast thin film of [Copolymer (7)–CH2NHCO-Ru]2+ on a

glassy carbon working electrode (A = 0.0717 cm2) with 0.1 M HClO4 in MeCN electrolyte.  Scan

rates (from lowest) were 100, 200, 300, 400 and 500 mV.s-1.  The reference electrode was an Ag

wire (+ 400 mV vs Fc/Fc+) and the counter electrode was a Pt wire.

The films were prepared by drop-casting 10 μl aliquots of a 3 x 10-4 M solution of metallopolymer

onto a GC working electrode and allowing to dry in air. The voltammograms obtained indicate that

there is no evidence for metal-metal interaction at all three loadings as only one Ru redox process is

observed.  The corresponding experiments with [Copolymer (5)–CH2NHCO-Ru]2+ and [Copolymer

(9)–CH2NHCO-Ru]2+ show a similar voltammetric response. Using the peak currents obtained

from various scan rates, the homogeneous charge transfer diffusion coefficient, DCT, can be

determined using the Randles-Sevçik equation (Equation 1):

2/12/12/35 )1069.2( CTp ACDnxi =               (Equation 1)

where n is the number of electrons transferred, A is the area of the electrode (cm2), C is the

concentration of ruthenium centres within the film (mol.cm-3), and ip is the peak current (Amps).

Therefore a plot of ip vs υ1/2 should be linear and the value of DCT can be extracted from the slope,



119

provided the concentration is known.  The concentration was calculated from the surface coverage,

Γ, and the layer thickness.  The surface coverage can be calculated from cyclic voltammetry at slow

scan rates according to Equation 2:

Γ= A
RT

Fn
i p 

4

22

                (Equation 2)

where F is Faraday’s constant (96485 C.mol-1), T is the absolute temperature and R is the universal

gas constant (8.31 J.mol-1.K-1). Combining Equations 1 & 2 it can be seen that the peak current

varies linearly with scan rate for a surface confined process, and varies linearly with the square root

of scan rate for a diffusion controlled process.  The concentration of the three polymer films were

calculated as (8.2 ± 1.0) x 10-6 mol.cm-3 (5-1), (7.3 ± 1.6) x 10-6 mol.cm-3 (7-1) and (6.3 ± 0.8) x 10-

6 mol.cm-3 (9-1).  Using these C values the DCT values were calculated as (2.7 ± 0.5) x 10-9 cm2.s-1

(5-1), (5.7 ± 2.4) x 10-9 cm2.s-1 (7-1) and (3.5 ± 0.6) x 10-9 cm2.s-1 (9-1). These values are

significantly higher than those obtained for films of [Os(bpy)2(PVP)10]2+ and [Ru(bpy)2(PVP)10]2+,

which were usually of the order of 10-11 cm2.s-1. This may indicate higher surface coverages for the

caip based polymers, which could be due to the shorter chain lengths of the caip backbones relative

to PVP (ie: higher metal centre surface packing density).

4.2.2 Electronic spectroscopy:

The spectroscopic data for the three polymers explored are summarized in Table 4.2.1 along with

related data for the parent complex [Ru(bpy)2(caip)]2+
. The UV/Vis spectra of the metallopolymers

are very similar to that of the parent monomer and display both the characteristic metal to ligand

charge transfer (1MLCT) transition centred around 460 nm and the ligand π → π*  transitions at ~

280 nm.  Correspondingly the polymer would be expected to exhibit similar pH dependence as the

parent complex, which possesses two ionizable sites on the imidazole ring. These data are shown in

Fig 4.2.2.1.
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Fig 4.2.2.1 (a): pH induced spectral changes of [Copolymer (7)–CH2NHCO-Ru]2+ (1.1 x 10-5 M) in

aerated MeCN. Purple: pH = 1.3, blue: pH = 7 and red: pH = 10.9. (b): Spectral changes of 2.2 x 10-

5 M Copolymer (7)-CH2NH2 induced by changing solvent polarities. Pink: dichloromethane, orange:

acetonitrile, black: methanol and green: dimethylsulfoxide.

Fig 4.2.2.1 (a) shows the spectral changes induced by changing the pH of the solution wherein

deprotonation of the imidazole ring under basic conditions results in a red shift to the MLCT and

broadening of this feature out to 600 nm. This response is very similar to that reported for the

parent and also for a useful model complex reported previously, [Ru(bpy)2(caip-CONH-

adamantyl)](ClO4)2, where the carboxyl pendant is conjugated via an amide linker to amino-

adamantyl (see Fig 4.2.2.2).28  The red shift was attributed to increased σ-donor ability in the

deprotonated imidazole moiety, which can lead to destabilisation of the Ru t2g energy levels leading

to a decreased t2g → bpy(π*) energy gap. Another peak centreed at approximately 340 nm grows in

with increasing pH. This feature was attributed to the caip-based π → π* transition. Conversely,

under acidic conditions, the imidazole becomes fully protonated and this results in a cationic charge

on this ring and a blue shift in the MLCT transition.  Again, this is consistent with behaviour

observed for analogous complexes and attributed to the stabilisation of the t2g levels of the metal

with respect to the bipyridyl (π*) orbitals.

At high pH values (ie: [Copolymer (7)–CH2NHCO-Ru]+) the imidazole ring of the caip

ligand is fully deprotonated and this results in a red-shift of both the absorbances at 340 and 450

nm.  Previously this has been attributed to increased σ-donor ability in the deprotonated imidazole
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moiety, which can lead to decreased metal t2g energy levels.  In addition, a tail on the MLCT

appears which extends the absorption to approximately 550 nm.  This feature has been seen in the

spectrum of [Ru(bpy)2(caip)](ClO4)2 but not that of [Ru(bpy)2(caip-CONH-adamantyl)](ClO4)2, and

has been attributed to a benzocarboxylate → phenanthroline interligand charge-transfer (ILCT)

transition.  This suggests increased delocalization of the π system occurs, facilitating increased

electronic communication between the imidazole and phenanthroline groups. As in previous

studies, the changes to the MLCT are relatively minor which suggests that the LUMO of the MLCT

is based on the bipyridines and not the caip ligand. However, resonance Raman spectroscopy

reveals that both transitions contribute to the broad MLCT (see section 4.2.3). Changing the loading

of the metallopolymer increases the value of the extinction coefficient of the MLCT at 455 nm

nonlinearly as a function of increasing chain length. However, there is little change to the MLCT

wavelengths or band shape which is consistent with the electrochemical data and indicates little

electronic interaction between the metal complex moieties.  This deviation from linear Beer-

Lambert behaviour with metal centre loading, the so-called “hypochromic effect” has been

observed previously for a series of ruthenium polypyridyl polymers.34  This was also seen in the

case of poly(2-vinylpyridine), and this was attributed to electronic interactions between

neighbouring monomer groups.19  However significant ground-state electronic communication has

been ruled out in this case on the basis of UV/Vis and electrochemical data.

Fig 4.2.2.2: Structure of [Ru(bpy)2(caip-CONH-adamantyl)]2+.  Reproduced from [28].

Fig 4.2.2.1 (b) shows the impact of changing solvent polarity on the absorption spectra of

[Copolymer (7)–CH2NHCO-Ru]2+. The absorbance spectra of the polymer in MeCN and non-polar

DCM show only very minor differences in the relative intensities of the ligand based and MLCT

transitions with no evident shift in wavelength of the various transitions present.  In the case of a
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protic solvent, methanol, the caip (π→ π*) transition at approximately 330 nm appears along with a

slight broadening of the MLCT to the red. In DMSO similar but more extenuated behaviour is

observed.  Indeed the spectrum of the polymer in DMSO corresponds notably to the complex in the

deprotonated state, as the spectrum clearly resembles that of the pH = 10.9 solution from Fig 4.2.2.1

(a). DMSO has a very significant and anomalous impact on the spectroscopy of the polymers.

Overall, spectroscopic and electrochemical data in solution indicate that the metal centres within the

polymer retain the characteristics of the parent complex with little or no modification.

Materials
λMLCT nm

(ε 10-3, M-1 cm-1)a
E1/2

ox Vb E1/2
red Vb

[Ru(bpy)2(caip)](ClO4)2 455 (17.5) 1.01 -1.24, -1.93, -2.37

Copolymer (9)–CH2NHCO-Ru 455 (17.1) 1.00b -1.23, -1.91, -2.36

Copolymer (7)–CH2NHCO-Ru 455 (16.7) 1.01b -1.23, -1.91, -2.37

Copolymer (5)–CH2NHCO-Ru 455 (15.4) 1.00b -1.24, -1.93, -2.37

Table 4.2.1: Spectroscopic and electrochemical data for the three metallopolymers obtained at room

temperature.  Comparison with model monomer complex is included. a = in spec grade MeCN; b =

in DMF containing 0.1 M (But)4NBF4 electrolyte.

4.2.3 - Resonance Raman spectroscopy:

In order to investigate if incorporation of the [Ru(bpy)2(caip)]2+ unit into the polymer influences the

origin of the MLCT transition, resonance Raman spectroscopy of the polymers was conducted as a

function of pH. Resonance Raman is useful as it permits relatively unambiguous identification of

the nature of optical transitions in complex systems. Under resonance excitation in Raman

spectroscopy the excitation wavelength coincides with an absorbance, in this instance the 1MLCT of

the complex, and this yields a resonance Raman spectrum with a large increase in intensity of the

vibronic modes associated with the chromophore under irradiation. Resonance enhancements of 3

to 6 orders of magnitude are typical.20 The resonance Raman spectra of the three protonation states

of [Copolymer (7)–CH2NHCO-Ru]2+ are presented in Fig 4.2.3.1.
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Fig 4.2.3.1: Resonance Raman spectra of thin films of Copolymer (7)-CH2NH2 in its various

protonation states drop-cast from solutions of MeCN or DMSO onto a clean silicon wafer under

458 nm irradiation.  * silicon mode; † HClO4 mode.

The resonance Raman spectra under 458 nm irradiation show significant pH dependence.  At pH

10.9, when the imidazole groups are expected to be fully deprotonated (ie: [Copolymer (7)–

CH2NHCO-Ru]+) signature bipyridyl modes can be seen at 1608, 1563, 1491, 1323, 1278, 1180,

1028 and 669 cm-1, and a very weak Ru-N mode appears at 376 cm-1.  However other modes, which

are not attributable to the Ru(dπ)-bpy(π*) MLCT, are weak but visible at 1463, 1427, 1398 and

1203 cm-1, and are likely due to post-resonance with the caip-based π → π* transition at 330 nm.

As the pH is decreased, the spectra of [Copolymer (7)–CH2NHCO-Ru]2+ and [Copolymer (7)–

CH2NHCO-Ru]3+ (pH = 7 and pH = 1.3 respectively) become increasingly complex relative to that

of [Copolymer (7)–CH2NHCO-Ru]+ (pH = 10.9); the eight signature bpy modes remain strongly in

resonance at pH 7, but although present are strongly dominated by caip modes at 1654, 1628, 1592

and 1035 cm-1.  This suggests that the MLCT feature centred around 458 nm contains contributions

from both Ru(dπ)-bpy(π*) and Ru(dπ)- caip(π*) when the caip is partially protonated but that when

the caip is fully protonated the Ru(dπ)- caip(π*) is the dominant contribution to the MLCT at 458
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nm.  This is consistent with a situation in which the caip ligand becomes increasingly π-accepting as

it gains a positive charge when fully protonated at low pH.

Spectra taken at 488 nm confirm that the relative intensities of the bpy modes decreases

significantly relative to those of the caip ligand modes, confirming that the Ru(dπ)- caip(π*) MLCT

moves further into resonance at 488 nm.  These data would appear to suggest that the energy of the

Ru(dπ)- caip(π*) MLCT transition is strongly pH dependant.  At high pH values the ligand is

completely deprotonated and the energy of the Ru-caip transition moves to higher energy, meaning

that irradiation at 458 nm results in the resonant enhancement of the Ru-bpy transition only.  As the

caip becomes protonated, however, there is an increase in the degree of localization of the π*

acceptor state across the entire caip ligand. That the caip contribution to the resonance Raman

spectrum at low pH is even greater under 488 nm confirms that switching occurs between the

lowest energy transition from Ru(dπ)-bpy(π*) when the caip ligand is deprotonated to Ru(dπ)-

caip(π*) when it is fully protonated. The effect of changing the polymer chain length was also

investigated, and is shown in Fig 4.2.3.2.
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Fig 4.2.3.2: Resonance Raman spectra of the three metallopolymers in their 2+ state dispersed in

KBr (~ 5 % w/w) under 458 nm irradiation.
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Comparing the spectra of all three metallopolymers under 458 nm irradiation indicates that the

polymer, its chain length and metal loading have a negligible effect on the MLCT transitions being

probed under resonance.  This is also reflected in the electrochemical data. For comparison the

spectra of the monomer complex [Ru(bpy)2(caip-CONH-adamantyl)]2+ are included in Fig. 4.2.3.3.

This complex has very similar pH dependence to the polymers under study.

Fig 4.2.3.3: Resonance Raman spectra of [Ru(bpy)2(caip-CONH-adamantyl)]2+ at various pH values

in buffered aqueous solution under 458 nm irradiation.  Reproduced from [28].

The spectrum taken at pH 7 in Fig 4.2.2.3 is very similar to those of the metallopolymers shown in

Fig 4.2.2.2, indicating that both the adamantyl group and polymer backbone have very little effect

on the spectra of the complexes.  This is due to, as discussed, localization of the excited state on the

bpy ligands when the complex is not fully protonated.  The three spectra in Fig 4.2.3.3 also show

that the complexity of the spectra increase with decreasing pH, which is reflected in Fig 4.2.3.1.

This is due to the changing electronics of the caip ligand resulting in the Ru-caip MLCT coming

into resonance as a function of pH, as discussed previously.

4.2.4 - Emission spectroscopy:

The emission spectra of the metallopolymers have been studied in detail, and these data are

presented in Fig 4.2.4.1.
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Fig 4.2.4.1 (a): pH induced spectral changes of 1.1 x 10-5 M Copolymer (7)-CH2NH2 in aerated

MeCN. Purple: pH = 1.3, blue: pH = 7 and red: pH = 10.9. (b): Spectral changes of 2.2 x 10-5 M

Copolymer (7)-CH2NH2 induced by changing solvent polarities.  Pink: dichloromethane, orange:

acetonitrile, black: methanol and green: dimethylsulfoxide. Excitation wavelength was 460 nm.

Fig 4.2.4.1 (a) shows the emission data corresponding to the absorption spectra in Fig 4.2.2.1 (a).

Excitation (at 460 nm, absorbance matched) resulted in significant changes to the intensity and λmax

of the three pH states of the polymer.  In neutral MeCN the emission intensity maximum appeared

at 609 nm.  Upon acidification this feature red-shifted to 626 nm and its intensity was reduced by

approximately 10 %.  However upon pH adjustment to 10.9 the intensity dropped dramatically, to

only a quarter of the original intensity, and this feature appeared at 626 nm.  The pH dependant

emission of the metallopolymers is similar to but subtly different from the monomer complex

[Ru(bpy)2(caip)](ClO4)2.13  For the monomer complex in MeCN the emission of lowest energy was

for the fully protonated complex [Ru(bpy)2(caip)]3+, which exhibited a λmax of 635 nm. The

[Ru(bpy)2(caip)]2+ complex, in pH neutral media, exhibited a λmax of 605 nm, which is slightly blue-

shifted with respect to the polymer.  Although the λmax values of the polymer and monomer are very

similar, the relative intensities of emission varied.  In the case of the polymer the fully protonated

[Copolymer (7)–CH2NHCO-Ru]3+ states exhibit the highest emission intensity, approximately 15 %

more intense than that of [Copolymer (7)–CH2NHCO-Ru]2+, whereas in the case of the monomer

the [Ru(bpy)2(caip)]2+ state exhibited the more intense emission.  The emission of the fully

deprotonated [Copolymer (7)–CH2NHCO-Ru]+ occurs at 626 nm, relative to 618 nm in the case of

[Ru(bpy)2(caip)]+, which is attributed to solvation/local environment differences between the

monomer and polymer.  The minor differences in λmax of the polymer and monomer strongly
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suggest that the photophysical properties of the polymer MLCT based excited states are moderately

affected by the presence of the polymer backbone.

                 Fig 4.2.4.1 (b) presents the effects of changing solvents on the emission properties of the

polymer. The least polar solvent, DCM, exhibits by far the highest intensity emission, at about 2.5

times that of the neutral MeCN solution.  The emission was also blue-shifted from 609 nm to 604

nm. Changing from MeCN to MeOH resulted in an increase in emission intensity of approximately

25 %, and an accompanying red-shift of 4 nm. Upon changing solvent from MeCN to DMSO the

emission was red-shifted by 17 nm, resulting in an emission profile comparable to that observed

when the polymer was dissolved in high pH media. In strong contrast to the high pH media,

however, the luminescence intensity decreased by approximately 30 % in DMSO. The large

changes in UV and luminescence spectra of [Copolymer (7)–CH2NHCO-Ru]2+ in DMSO seem

rather anomalous.  DMSO is a polar aprotic solvent like acetonitrile and dichloromethane and in

terms of its dielectric constant (46.7) it lies above acetonitrile (37.5) and methanol (33).  The

spectroscopic changes induced in the polymers by DMSO are somewhat reminiscent of its

protonation of the benzimidazole ligand.  However DMSO is a H-bond acceptor and on this basis

might be expected to H-bridge to the benzimidazole proton, hence inducing spectral changes more

reminiscent of deprotonation.21  Luminescent lifetimes of the polymer also increase significantly

upon changing from acetonitrile to DMSO.  Fluorescence anisotropic measurements are currently

underway to investigate this further.

4.2.5 - Time-resolved emission and microscopy:

The excited state lifetimes of the metallopolymers have been studied as a function of solvent and

pH as both have been shown above to have a strong influence on the emission characteristics of the

polymers. The luminescent decays of the polymers fitted best to a biexponential function.  For

example, the luminescence decay of [Copolymer (7)–CH2NHCO-Ru]2+ in deaerated DCM is

presented in Fig 4.2.5.1. This multi-exponential decay behaviour is common for polymers due to

the microheterogeneous environment they display.31  The luminescent lifetimes of the three

copolymers and the parent monomer complex under different solvent and pH conditions are

presented in Table 4.2.5.
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Complex/Solvent λmax abs

(nm)

λmax emit

(nm)

τ 1 aerated (ns)

(% cont.)

τ 2 aerated (ns)

(% cont.)

τ 1 deaerated (ns)

(% cont.)

τ 2 deaerated (ns)

(% cont.)

[Ru(bpy)2(caip)]2+ 455a 605a N/A 973 ± 3a N/A

[Ru co-p 5]2+/MeCN 455 609 241 ± 6 (61) 142 ± 3 (39) 404 ± 17 (82) 177 ± 5 (18)

MeOH 458 611 213 ± 8 (72) 112 ± 12 (28) 694 ± 25 (86) 212 ± 18 (14)

DCM 459 604 444 ± 3 (71) 168 ± 3 (29) 953 ± 38 (76) 269 ± 29 (24)

DMSO 465 626 496 ± 16 (89) 167 ± 21 (11) 920 ± 37 (82) 337 ± 24 (18)

Thin film 236 ± 4 (84) 42 ± 2 (16)

[Ru co-p 5]3+ 440 b 634 b

[Ru co-p 5]+ 468 b 627 b

[Ru co-p 7]2+/MeCN 455 609 208 ± 5 (63) 102 ± 5 (37) 424 ± 5 (85) 117 ± 2 (15)

MeOH 458 613 273 ± 3 (95) 148 ± 4 (5) 542 ± 46 (95) 114 ± 17 (5)

DCM 459 604 422 ± 2 (94) 106 ± 7 (6) 994 ± 1 (94) 241 ± 3 (6)

DMSO 464 626 405 ± 1 (94) 140 ± 1 (6) 844 ± 1 (95) 285 ± 7 (5)

Thin film 321 ± 9 (71) 70 ± 4 (29)

[Ru co-p 7]3+ 437 b 635 b

[Ru co-p 7]+ 461 b 626 b

[Ru co-p 9]2+/MeCN 455 610 203 ± 4 (72) 98 ± 4 (28) 341 ± 24 (88) 118 ± 5 (12)

MeOH 458 615 214 ± 12 (65) 112 ± 19 (35) 709 ± 56 (82) 193 ± 10 (18)

DCM 459 603 425 ± 11 (77) 111 ± 25 (23) 971 ± 61 (77) 216 ± 23 (23)

DMSO 465 632 337 ± 2 (87) 98 ± 21 (13) 790 ± 44 (82) 324 ± 48 (18)

Thin film 259 ± 9 (84) 51 ± 4 (16)

[Ru co-p 9]3+ 440 b 635 b

[Ru co-p 9]+ 463 b 627 b

Table 4.2.5: Effects of solvent polarity and pH on the photophysics of all three copolymers and their

parent monomer. a: data reproduced from [13], b: Complex was dissolved in 100 μl MeCN and

made up to 3 ml with solvent listed (approx 3.3 % v/v); pH was adjusted by titrating 5 μl of either

1.0 M HClO4 or 1.0 M (But)4NOH into 3 ml of MeCN complex solution in order to prevent

precipitation.  Dissociation of acid/base is almost quantitative in MeCN.22
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The data in Table 4.2.5 shows that, as predicted on the basis of the behaviour of the parent

monomer, the presence of O2 in solution has a dramatic effect on the luminescent lifetime.  As

expected the long component of the decay is most affected, while the influence on the short

component depended on its lifetime.  In DCM and DMSO where the short component of the decay

exceed 200 ns it was strongly influenced by O2, due presumably to diffusion rate of O2 through the

polymer in solution, whereas this effect was not as pronounced in the cases  of MeCN and MeOH.

The lifetime of the polymer varies strongly with solvent ranging from 424 ns in deaerated

acetonitrile to 994 ns in dichloromethane.  Interestingly, the lifetime in polar DMSO was also high

at 844 ns.  The luminescent decay of [Copolymer (7)–CH2NHCO-Ru]2+ in deaerated DCM is shown

in Fig 4.2.5.1.
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Fig 4.2.5.1:  Luminescence decay from [Copolymer (7)–CH2NHCO-Ru]2+ in deaerated DCM at

room temperature.  The overlaid trace shows the fitted line to a biexponential model.23  Inset:

Residual of biexponential tailfit with regression coefficient of 1.04.

Fig 4.2.5.1 presents the long luminescence lifetime of [Copolymer (7)–CH2NHCO-Ru]2+ in DCM

when O2 is removed.  Interestingly the lifetimes of the other chain-length polymers under the same

conditions of solvent, temperature and O2 concentration are comparable to [Copolymer (7)–
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CH2NHCO-Ru]2+. This appears to suggest that the large distance from the metal centre to the

polymer backbone leads to negligible changes in lifetime due to environment or metal-metal

interaction.

Thin films of the polymers remain luminescent, so their lifetimes were also explored as an

understanding of their behaviour in this state is important in any layer-by-layer assembly.  In all

three cases the major component is largely similar and resembles the lifetimes observed in MeCN

or MeOH.  However the shorter component is drastically reduced relative to those measured in

solution.  This may be attributed to the fact that the polymer film is fully exposed to O2, or due to

their being less microenvironment homogeneity  Studies into the thin film topology of [Copolymer

(7)–CH2NHCO-Ru]2+ are shown in Fig 4.2.5.2.

Fig 4.2.5.2 (a): FeSEM image of a thin film of [Copolymer (7)–CH2NHCO-Ru]2+ drop-cast onto an

ITO electrode.  Magnification times 110000, scale 50 nm/division; (b) Fluorescence lifetime

imaging (FLIM) microscopy of a [Copolymer (7)–CH2NHCO-Ru]2+ thin film drop-cast onto silicon

wafer.  Scale was 100 μm; (c) FLIM microscopy of a [Ru(bpy)2(caip)]2+ monomer complex thin

film drop-cast onto silicon wafer.  Scale was 100 μm. FLIM images were recorded by Dr. Qiang

Zeng.

The images in Fig 4.2.5.2 are striking.  The FeSEM image (left) shows a high-resolution image of

the film on the sub-micron scale.  The film was prepared by drop-casting 100 μl of a 1 x 10-4 M

acetonitrile solution of polymer onto an ITO, followed by drying in air and rinsing with acetonitrile.

The film shows homogeneous deposition of polymer, with no obvious cracks or large pores.  Fig

4.2.5.2 (b) shows the confocal luminescence image which demonstrates that the polymer has a

similar appearance on the macro-scale.  The orderly packing of Ru metallopolymer films on
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surfaces is well known as the free pyridyl nitrogen atoms display a propensity to bind strongly to

surfaces.  Fig 4.2.5.2 (c) is a comparative image of the parent monomer complex film prepared

under the same conditions.  Clearly the monomer complex does not form dense films as it lacks the

free pyridyl groups to bind itself strongly to the surface.

4.3 – Photophysics of adducts of the metallopolymers [Ru(bpy)2(caip co-poly)7]
2+ and

[Ru(bpy)2(PVP)10]
2+ with the Dawson type polyoxomolybdate α-[Mo18O54(SO4)2]

4-.

4.3.1 - Electronic spectroscopy:
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Fig 4.3.1.1 (a): Difference electronic spectra (experimental-calculated) of [Ru(bpy)2(PVP)10]2+ in

the presence of increasing concentrations of [Mo18O54(SO4)2]4- in MeCN. Inset: Job’s Plot of

absorbance change at 258 nm versus increasing mole fraction of [Mo18O54(SO4)2]4-.
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Fig 4.3.1.1 (b): Electronic spectra of [Ru(bpy)2(caip co-poly)7]+ (1.8 x 10-5 M, DMSO) titrated with

[Mo18O54(SO4)2]4- (3.75 x 10-4 M, MeCN).  Spectra were baseline corrected at 700 nm.  Inset:

Absorbance changes as a function of increasing POM mole fraction.

UV/Vis spectroscopy was used to monitor electronic changes induced by association between the

anion and polymers.  As each Ru centre in the polymer carries a positive charge, the association

was expected to be electrostatically charge-neutral as reported for the association of

[Mo18O54(SO4)2]4- with [Ru(bpy)3]2+.24  Fig 4.3.1.1 (a) shows the difference spectra obtained on

combining [Ru(bpy)2(PVP)10](PF6)2 and [N(Hex)4]4[Mo18O54(SO4)2] at various concentrations in

MeCN. As mentioned previously, this approach has been used extensively in photophysical studies

of electrostatic cluster formation involving Dawson polyoxometalates and cationic ruthenium (II)

polypyridyl complexes.24, 25, 26  In each case significant changes to the UV/Vis spectroscopy of the

parent ions were observed indicating electronic perturbation of the metal centres on association.  In

Fig 4.3.1.1 (a) shifts and a grow-in of intensity in the UV attributed to polymer ligands and the

polyoxometalate LMCT band were observed between 258 and 350 nm.  In addition, a broad new

band grows in at approximately 470 nm which tailed to approximately 700 nm.  Although new

features have been observed on association between [Ru(bpy)3]2+ and the polyoxomolybdates
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[Mo18O54(SO4)2]4-, α-[Mo18O54(SO3)2]4- and β-[Mo18O54(SO3)2]4- (see Chapter 3), these features were

invariably narrow and did not exhibit the long tail to the red observed here.24, 27

The Fig 4.3.1.1 (a) inset shows a Job’s Plot from spectral data shown in Fig 4.3.1.1 (a),

where the increase in absorbance at 258 nm with increasing POM mole fraction yielded two linear

regions.  The intersection of the two lines occurs at a POM mole fraction (XPOM) of 0.18, which is

approximately a 4.5:1 Ru centres:POM ratio.  A Job’s plot of absorbance change at 475 nm

confirmed that the behaviour of the new absorbance changed at the same mole fraction as at 258

nm.  Interestingly this suggests that the binding stoichiometry is different than anticipated based on

charge compensation of the ruthenium centres by the polyoxomolybdate.  In previous studies

involving [Ru(bpy)3]2+ and Dawson POMs the thermodynamically favoured product was the adduct

formed in which the polyoxometalate anion was fully charge compensated by the ruthenium cation

leading to charge-neutral adduct with respect to Ru and POM.  Even in the case of

[Ru(bpy)3]5[P2W17O61], where the association constant was orders of magnitude lower than that of

the closely related [Ru(bpy)3]3[P2W17O61(FeBr)] due to steric repulsion, Stern-Volmer plots still

indicated that the favoured stoichiometry of ion-pairing was that which resulted in ion-cluster

neutrality.26

Fig 4.3.1.1 (b) shows the absorbance changes occurring as a solution of [Ru(bpy)2(caip co-

poly)7]+ is titrated with aliquots of [Mo18O54(SO4)2]4-.  This is because addition of POM to a solution

of [Ru(bpy)2(caip co-poly)7]2+, in which the polymer was synthesized in its protonated form,

resulted in an instantaneous shift in emission wavelength due to proton transfer to the

polyoxometalate, which significantly complicated the Stern-Volmer data.  In this experiment a set

of difference spectra could not be reliably obtained due to insolubility of the resulting adduct, which

resulted in changes in the absorbance baseline due to scatter. The spectra show that the POM based

bands at 255 and 272 nm increase in intensity whereas all of the Ru based bands decrease as the

POM concentration increases (see inset).  Although there is some dilution with addition of

[Mo18O54(SO4)2]4- the volumes of POM added were extremely small so as to minimize this effect

(the final solution was only 1.8 % MeCN v/v). Overall the volume of POM in MeCN added to the

DMSO solution increased by 1.8 % over the course of the titration, and this dilution was taken into

account when calculating mole ratios). The changes to the absorbance are tentatively attributed to

alterations of polarity of the solvent mixture changes throughout the experiment, which has been

shown before to dramatically affect the polymer spectroscopy, as well as the spectroscopy of the

corresponding monomer complex.28, 13  Inspection of the visible spectral region shows no evidence
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for the appearance of new features in the visible region as a consequence of cluster formation with

the POM, in contrast to those observed for the PVP polymer.  This implies weak or no electronic

communication between the two ions in DMSO/MeCN solution.

From the change in slopes in Fig 4.3.1.1 (b) inset it appears as though electrostatic

association is favoured at XPOM ~ 0.16, which would suggest a ratio of 5 Ru per POM centre.  This

ratio is also different than expected, given that full charge-compensation would result in a 4:1 ratio,

when the polymer is in the form [Ru(bpy)2(caip co-poly)7]+.  Alternatively, if the polymer was in

the form [Ru(bpy)2(caip co-poly)7]2+ then a 2:1 ratio would be expected. This 5:1 ratio is unusual

given the reported data for Ru monomer associations with polyoxoanions, but is quite similar to that

seen for [Ru(bpy)2(PVP)10]2+/[Mo18O54(SO4)2]4- in Fig 4.3.1.1 (a), and it is possible that these ratios

are the same within error.  These data also correlate with relative stoichiometric ratios obtained

from graphical integration of the redox processes in the cyclic voltammetry of self-assembled thin

films.29  To gain further insight into these interesting observations, luminescence quenching of the

two metallopolymers by [Mo18O54(SO4)2]4- was conducted.

4.3.2 - Luminescence spectroscopy:

The electrostatic association of cationic Ru (II) polypyridyl complexes with anionic Dawson

polyoxometalates has been shown to lead to significant quenching of the luminescence of the Ru

centre upon addition of increasing concentrations of polyoxometalate to a solution of the Ru

complex.24, 25, 26  This has, in all but one case to date, been attributed to purely static quenching due

to the formation of a charge-neutral Ru/polyoxometalate electrostatic cluster.27  The data for

emission quenching of [Ru(bpy)2(PVP)10]2+ and [Ru(bpy)2(caip co-poly)7]+ by [Mo18O54(SO4)2]4- are

presented in Fig 4.3.2.1.
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Fig 4.3.2.1: (a) Luminescence quenching of [Ru(bpy)2(PVP)10]2+ (1.9 x 10-5 M) in the presence of

increasing concentrations of [Mo18O54(SO4)2]4- in MeCN and (b) Quenching of [Ru(bpy)2(caip co-

poly)7]+ (1.83 x 10-5 M, in DMSO) by [Mo18O54(SO4)2]4- (3.75 x 10-4 M, in dry MeCN, final MeCN

volume was 1.8 % v/v).  λexc = 450 nm; both slit widths 10 nm.
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Fig 4.3.2.1 (a) shows the effect of adding aliquots of 1.13 x 10-3 M [Mo18O54(SO4)2]4- to a solution

of [Ru(bpy)2(PVP)10]2+ (1.9 x 10-5 M) in MeCN.  The strong 3MLCT luminescence centred at 616

nm decreased with addition of successive POM quantities.  Interestingly, no shift in emission

wavelength was observed throughout the titration and an isoemissive point was maintained at 557

nm.  In a study by Keyes et al involving [Mo18O54(SO4)2]4- and [Ru(bpy)3]2+, which is energetically

analogous to [Ru(bpy)2(PVP)10]2+, the λmax red shifted until a broad shoulder appeared centred at

approximately 640 nm when the cation to anion ratio was ~3:1 (XPOM ~0.25).24  However in this

case no such shoulder was observed and excitation spectra taken at 600, 640 and 700 nm confirmed

that the chromophore responsible for maximum emission was absorbing at ~ 465 nm without

change.  These data indicate that the interaction between the two ions has little or no effect on the

Ru based excited state responsible for emission, and that no new emissive state was observed for

the composite material.

             Fig 4.3.2.1 (b) shows the quenching of [Ru(bpy)2(caip co-poly)7]+ by [Mo18O54(SO4)2]4-.  As

in Fig 4.3.1.1 (b) the deprotonated form of the Ru complex was employed.  The differences in the

luminescent properties of [Ru(bpy)2(caip co-poly)7]2+ relative to [Ru(bpy)2(caip co-poly)7]+ have

been thoroughly studied as a function of pH (see section 4.2).  In this case, addition of the POM

results in significant Ru based quenching and, as for the PVP metallopolymer, no shift in emission

λmax or change in the excitation spectrum was observed.

The Stern-Volmer quenching model has been widely used in the study of Ru complexes

with POMs (see page 92-93). The Stern-Volmer data of the luminescence quenching are presented

in Fig 4.3.2.2.  It is clear that two distinct equilibria were reached for each metallopolymer

throughout the experiment.  Interestingly the ion pair ratios at which changes in Stern-Volmer

behaviour are seen are very different from previous cases involving polyoxometalates and Ru

polypyridyl complexes.  In the case of [Ru(bpy)2(PVP)10]2+ the ratios appear to be very different

than expected, with likely Ru-POM binding ratios of 9:1 and ~4.7:1 (approximately 9:2). The third

linear region is a plateau which corresponds to the fully-quenched species. The similarities in both

the Stern-Volmer and Job’s plots would appear to confirm these ratios.  It is possible that the

flexible PVP chain has some bearing on the electrostatic association with POM; however why a

ratio of 4.5:1 is favoured over the predicted 2:1 is unknown.  It may be that ion cluster formation

results in extra Ru centres accompanying those binding directly to the POM. According to the

static Stern-Volmer model the slopes of such plots are equal to the association constant of the ion-

pairs (or, in this case, higher-order ion-clusters).  This would indicate that the 9:1 and 4.5:1
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complexes, presumably in the forms {[Ru(bpy)2(PVP)10]9[Mo18O54(SO4)2]4-}14+ and

{[Ru(bpy)2(PVP)10]4.5[Mo18O54(SO4)2]}5+, exhibit Ka values of 2.7 x 105 and 6.2 x 105 M-1

respectively.  These Ka values are an order of magnitude higher than those reported for the

formation of 1:1 and 2:1 clusters between [Ru(bpy)3]2+ and [Mo18O54(SO4)2]4-.24 However the

applicability of the Stern-Volmer is in general poor when polymers are involved and hence the

another model must be used to accurately explain the quenching behaviour. It is also clear from

these data that the associated clusters are still luminescent to a moderate degree, but that this

luminescence is unchanged from that of free Ru.  Presumably this luminescence is from

unquenched Ru centres in the polymer, so it is reasonable to conclude that each POM is not capable

of quenching emission from 4.5 Ru centres simultaneously.  The formation of the 4.5:1 clusters may

be due to constraints such as the penetrability of the polyoxometalate to the polymer structure, or

the association of Ru with POM brings additional ruthenium centres not necessary for

electroneutrality into the ion-cluster with the remaining charge compensated by existing counterions

in solution.

               In the case of [Ru(bpy)2(caip co-poly)7]+ and [Mo18O54(SO4)2]4- quenching the Stern-

Volmer behaviour changes at POM mole fractions of approximately 0.06 and 0.16.  This would

appear to indicate Ru:POM ratios of approximately 15:1 and 5:1 respectively, presumably in the

forms {[Ru(bpy)2(caip co-poly)7)]+
15[Mo18O54(SO4)2]4-}9+ and {[Ru(bpy)2(caip co-

poly)7]+
5[Mo18O54(SO4)2]4-}+.  The Ka values inferred for these clusters were 6.5 x 105 and 1.1 x 106

M-1 respectively.  The formation of the 5:1 cluster reflects the UV/Vis data in Fig 4.3.1.1 (b).  The

slopes of this SV plot demonstrate that quenching is more efficient in the case of this polymer.  This

may be due to the shorter polymer chain length and thus closer proximity of Ru centres to each

other, as each POM may be able to quench more Ru units simultaneously if they are less sterically

hindered by the backbone.
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Fig 4.3.2.2: Stern-Volmer plots of luminescence quenching data in Fig 4.3.3.1.

In polymer systems electrostatic association is considered to occur in a rigid matrix, and in such

cases the Perrin equation (Eqn. 4) may be applied to estimate the volume within which quenching

may occur.  The Perrin model is the most commonly applied to quenching in polymer systems.  It

assumes static quenching between immobile (on the quenching timescale) fluorophores with

quenchers randomly in proximity.  Within a certain quenching sphere around the fluorophore the

efficiency of quenching is assumed to be 100 %, and therefore no quenching occurs outside of the

quenching sphere.  The slope of the Perrin equation can be used to estimate the electron transfer

distance of a static quenching reaction.
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Where I0 and I are the emission intensities of the quenched and unquenched samples respectively, Q

is the concentration of polyoxometalate quencher and RS is the radius of the quenching sphere.  The

Perrin plots of the quenching data in Fig 4.3.2.1 are shown in Fig 4.3.2.3.
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Fig 4.3.2.3: Perrin plots of luminescence quenching data in Fig 4.3.3.1.

Fig 4.3.2.3 demonstrates that the Perrin model fits the polymer quenching well, over the low POM

concentration region.  The model was not fitted over the high POM concentration region where the

data reached a plateau.  The slopes of the lines indicate that the radii of the quenching spheres, RS,

are approximately 4.6 Å and 5.8 Å for of [Ru(bpy)2(PVP)10]2+ and [Ru(bpy)2(caip co-poly)7]+

respectively.  These numbers correspond well with static electron transfer distances, and are shorter

than in a study of [Ru(bpy)3]2+ dispersed in a poly(ethyleneoxide) polymer matrix being quenched

by co-dispersed molecules of 2-methyl-4-(N,N-dibenzylamino)-benzaldehyde-N-2-benzothiazolyl-

N-n-butylhydrazone in proximity to the fluorophore a static electron transfer distance of 1.9 nm was

obtained.30

4.3.3 - Time-resolved luminescence:

To assess the impact of quencher addition on the luminescence of the metallopolymers, the

luminescent lifetime was measured as a function of increasing quencher concentration.  If

quenching is purely static then the lifetime should remain unaffected by the presence of quencher;
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however if the lifetime is reduced then a dynamic component may also be present.  The luminescent

lifetime quenching data are shown in Fig 4.3.3.1.
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Fig 4.3.3.1 (a): Luminescent lifetime Stern-Volmer plots for the long component (triangles) and the

short component (squares) of [Ru(bpy)2(PVP)10]2+ by [Mo18O54(SO4)2]4- in aerated MeCN.
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Fig 4.3.3.1 (b) modified luminescent lifetime Stern-Volmer plots for the long component (triangles)

and the short component (squares) of [Ru(bpy)2(caip co-poly)7]+ by [Mo18O54(SO4)2]4- in aerated

DMSO/MeCN.  Luminescent decays were recorded by TCSPC, λexc = 450 nm.

The results in Fig 4.3.3.1 (a) clearly show a small but significant reduction in τ for the quenching of

[Ru(bpy)2(PVP)10]2+ by [Mo18O54(SO4)2]4-.  All plots were fitted using a biexponential tailfit

method, and fit the model well (0.85 ≤ χ2 ≤ 1.30).  As described previously, biexponential lifetime

decays are commonly observed when working with Ru polymers in MeCN, and this is due to

heterogeneity arising from cross-linking.31  Both components were dynamically quenched weakly at

low POM concentrations, however little or no change was observed after a certain concentration of

polyoxometalate (XPOM = 0.25) was reached. This plateau was estimated to be over the same region

as that in Fig 4.3.3.2, within experimental error. The lower sloping region corresponds to the same

region over which the Perrin model was applied.  The contribution of the long component of the

decay decreased from 72 % for the unquenched sample to approximately 66 % for the highly

quenched samples.
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              In the case of [Ru(bpy)2(caip co-poly)7]+ quenching by [Mo18O54(SO4)2]4- there is also a

notable decrease in luminescent lifetime.  As for [Ru(bpy)2(PVP)10]2+ biexponential decays were

observed.  Upon addition of a very small quantity of POM to [Ru(bpy)2(caip co-poly)7]+ a large

decrease in both lifetime components was observed.  The origin of this initial change could be due

to the formation of non-emissive centres in the composite as the quantity of POM present was so

low (XPOM ~ 0.015).  This change is more likely due to solvent effects arising from the addition of

the POM (ie: MeCN solution), which would affect the solution pH and polarity, as the luminescent

lifetimes of [Ru(bpy)2(caip co-poly)7]+ are extremely sensitive to the microenvironment of the

sample.  In this case the contribution from the longer component, τ1, underwent a small initial

decrease, which accompanied the decrease in τ1, from 89 % to 83 %.  This value recovered to 88 ± 2

% above XPOM = 0.1.

Overall these plots show that there is, surprisingly, a weak dynamic component to the

quenching at low concentrations.  This implies that the purely static Perrin model applied in Fig

4.3.3.3 does not fully explain the behaviour.  However, the overall dynamic component is fairly

small in relation to the static, which is expected due to the highly associative nature of the

quenching process.  However, given the slopes present in Fig 4.3.3.1 it must be concluded that

some collisional quenching may occur at high polyoxomolybdate concentrations.  Mixed static and

dynamic quenching has been observed previously in quenching of Dawson-like polyoxometalates

by [Ru(bpy)3]2+ in solution (see Chapter 3).

4.3.4 - Resonance Raman spectroscopy:

The Stern-Volmer data and the Job’s plot indicate that an ion-pair ratio of approximately 4.5:1 is

favoured in these experiments in solution.  In order to analyze the properties of the isolated complex

a solution of 4.5 mM Ru was added to a solution of 1 mM POM with stirring.  The isolated solid

(see Chapter 2) was dried carefully under nitrogen and ground into a disc with oven dried KBr.  The

resonance Raman spectra are presented in Fig 4.3.4.1.
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Fig 4.3.4.2: Resonance Raman spectra of the metallopolymer [Ru(bpy)2(caip co-poly)7]+ in both its

2+ and 1+ forms and the electrostatically formed 4:1 POM cluster in KBr (~ 5 % w/w) under 488

nm irradiation.

Resonance Raman permits identification of vibronic modes associated with the electronic transition

under scrutiny by a resonant enhancement effect of those modes.  This resonance is extremely

strong, and enhancement factors of the order of 106 have been observed.20  Fig 4.3.4.1 (a) shows the

spectra of [Ru(bpy)2(PVP)10](NO3)2, [N(Hex)4]4[Mo18O54(SO4)2], and their associated ion cluster of

4.5:1 stoichiometry.  The spectrum of [Mo18O54(SO4)2]4- is similar to that of other Dawson

polyoxometalates, and is dominated by Mo-O stretching modes at 816 and 989 cm-1.24 This

spectrum is post-resonant under 514 nm excitation so is far less intense than the Ru based spectra;

hence the spectra were normalized here for clarity.  The Raman spectrum of [Ru(bpy)2(PVP)10]2+ is

well known.32  The characteristic pyridine breathing modes associated with ruthenium polypyridyl

complexes are observed at 1603, 1556, and 1485 cm-1; and the Ru-N mode at 375 cm-1 is also seen.

The Ru-based modes are all present in the adduct spectrum.  In addition to these modes, however, a

broad new feature centred at approximately 885 cm-1 appeared which is not present in the parent Ru

ion spectrum.  Based on its width and frequency this feature is attributed to the polyoxometalate
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Mo-O stretching mode, although it is blue-shifted from its initial 816 cm-1 and its shape is distorted.

That this mode is observed in this case despite the fact that the polyoxomolybdate is non-resonant

under 514 nm irradiation indicates that both ions participate in the new optical transition seen in Fig

4.3.1.2 (a). It is interesting to note that only the presumably H-bonded Mo-O mode is enhanced

under visible excitation into the new optical transition, which indicates that it may play a vital role

in mediating charge-transfer. When [Ru(bpy)3]2+ was studied with [Mo18O54(SO4)2]4- a similar

transition suggested to be an intramolecular charge-transfer transition was identified by resonance

Raman excitation at 488 nm; but in that instance no changes in Mo-O mode peak shape or

wavelength were observed.24  However Seery et al have demonstrated that electrostatic adducts of

[Ru(bpy)3]2+ and the lacunary substituted Dawson polyoxotungstate [P2W17O61(FeBr)]6- displayed a

shift in W-O mode similar to the one observed in this case when excited at 488 nm.26  Why exactly

the band is shifted is unclear but we tentatively ascribe this shift to Mo-O---H hydrogen-bond

formation between the bipyridyl ligand and the terminal POM oxygen atoms.  In the case of

K5{[Ru(bpy)3][PW11O39]}5- and K{[Ru(bpy)3][PW12O40]}- small shifts (7 cm-1 relative to the

tungstate alone) were seen in the infrared W-O terminal stretching modes, and X-ray

crystallography of these cluster complexes revealed H-bonding at three sites.33 In addition, the

absence of peak shifts for the pyridine modes indicate the absence of a quaternary pyridinium

species; therefore the spectral changes and unusual stoichiometry induced on binding due to the

POM cannot be due to protonation of free pyridine nitrogen atoms in the polymer chains.35

Excitation of the [Ru(bpy)2(PVP)10]4.5[Mo18O54(SO4)2]  cluster at 488 nm revealed the same

polyoxomolybdate-based mode, but it was significantly less intense relative to the bpy vibrational

modes.  This suggests that the new optical transition comes more strongly into resonance at

wavelengths higher than 488 nm, which reflects the long tail in Fig 4.3.1.1 (a).  The rising baseline

in the 4.5-1 spectrum also demonstrates that the Ru based emission has not been fully quenched,

which correlates well with the emission quenching data in Fig 4.3.2.1 (a).

           It was interesting to compare the resonance Raman spectra of the

[Ru(bpy)2(PVP)10]2+/[Mo18O54(SO4)2]4- composites with those of  [Ru(bpy)2(caip co-poly)7]+/

[Mo18O54(SO4)2]4-, as in the latter case no new significant optical transitions were observed (Fig

4.3.2.1 (b)).  Fig 4.3.4.1 (b) demonstrates that no POM based features are apparent in the spectrum

of [Ru(bpy)2(caip co-poly)7]5[Mo18O54(SO4)2], under 488 nm irradiation.  The Ru-based spectral

changes observed upon association with the POM were due to a change from Ru2+ to Ru+, due to

proton abstraction by the POM, as demonstrated by isolation of [Ru(bpy)2(caip co-poly)7]+ via

addition of excess base ((But)4NOH) to a solution of [Ru(bpy)2(caip co-poly)7]2+.  The POM modes
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at 816 or 989 cm-1 are not seen in the adduct spectrum in this case, whereas they clearly are

resonantly enhanced in Fig 4.3.4.1 (a).

4.3.5 - Transient absorption spectroscopy:

To further investigate the intramolecular charge-transfer transient absorption spectroscopy of the

isolated solids was performed.  Transient spectroscopy is a powerful tool in tracking reactive

intermediates as it can provide both mechanistic and kinetic information.  The transient data are

shown in Fig 4.3.5.1.
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Fig 4.3.5.1: Diffuse reflectance transient absorption spectra of (a) [Ru(bpy)2(PVP)10].2NO3 and (b)

[Ru(bpy)2(PVP)10]4.5[Mo18O54(SO4)2] ground into KBr discs (~ 5 % w/w) under 355 nm irradiation

104 ns after laser pulse excitation.
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Fig 4.3.5.2: Diffuse reflectance transient absorption spectra of (a) [Ru(bpy)2(caip co-

poly)7]5[Mo18O54(SO4)2]  and (b) [Ru(bpy)2(caip co-poly)7](ClO4)2 in KBr discs (~ 5 % w/w) 104

ns after laser pulse excitation.

Fig 4.3.5.1 shows the transient spectra of [Ru(bpy)2(PVP)10](NO3)2 and

[Ru(bpy)2(PVP)10]4.5[Mo18O54(SO4)2] as solids dispersed in KBr discs.  In each case the MLCT

depletion centred at ~ 440 nm can be clearly seen.  Interestingly this feature does not exhibit a tail

into the red for [Ru(bpy)2(PVP)10]4.5[Mo18O54(SO4)2] as it does in Fig 4.3.1.1 (a); however the

feature is far more intense as a consequence of the large Ru excess (4.5 times present).  The grow-in

of a bipyridine ligand based radical intermediate peak was unfortunately obscured by the laser pulse

at 355 nm.  The emission of each sample can be seen clearly at 600 nm, which correlates with the

phosphorescence data seen in Fig 4.3.2.1 (a).  The strong emission of unquenched

[Ru(bpy)2(PVP)10](NO3)2 can be seen in Fig 4.3.5.1; whereas the weak residual emission of free Ru

is present in the spectrum of [Ru(bpy)2(PVP)10]4.5[Mo18O54(SO4)2].  There is no evidence for the

presence of the formation of the reduced polyoxomolybdate [Mo18O54(SO4)2]5- as a consequence of

charge transfer, as there was in the spectrum of [Mo18O54(SO4)2]4- and [Ru(bpy)3]2+ in MeCN 20 ns

after excitation.24  However given the resonance Raman and photoelectrochemical data (discussed

later) it is likely that either the new optical transition is non-luminescent or photoinduced
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supramolecular electron transfer is the mechanism by which quenching occurs.  If this is the case

the process may be too fast for our instrumentation (laser pulse duration approx 5 ns).

The transient spectra of [Ru(bpy)2(caip co-poly)7]5[Mo18O54(SO4)2]  and [Ru(bpy)2(caip co-

poly)7]2+ are presented in Fig 4.3.5.2.  As in Fig 4.3.5.1, the MLCT absorption depletion at 450 nm

is visible at this timescale, while the emission band at 650 nm is quenched when the POM is

present.  The grow-in of the bpy radical is not observable, and no POM based radical grow in is

observed.  Since the Ru emission of both metallopolymers is quenched on addition of POM it can

be concluded that deactivation of the Ru excited state occurs through one of three mechanisms: (1)

Ultrafast electron transfer from the Ru based 1MLCT before ISC occurs; (2): Electron transfer from

the 3MLCT state before phosphorescence occurs; or (3) direct population of a non-luminescent

charge-transfer state from the ground state.  Direct population of a CT state is still likely in the case

of [Ru(bpy)2(caip co-poly)7]+ and [Mo18O54(SO4)2]4-, even given the absence of a new CT band

upon ion-cluster association.  All of these proposed mechanisms would almost certainly occur on a

timescale too fast for our instrumentation.  Whatever the mechanism, the population of a charge-

transfer state is clearly different in the cases of the two different metallopolymers, as indicated by

the resonance Raman and photoelectrochemical data.  It may be that these two deactivation

mechanisms compete with one another, and only one leads to a photocatalytically active state.  Why

these different pathways are favoured over one another in these two thermodynamically analogous

systems is unclear, but steric effects and/or donor-acceptor orbital overlap may play a vital role.

4.3.6 - Photoelectrochemistry:

Addition of [Mo18O54(SO4)2]4- to [Ru(bpy)2(PVP)10]2+ resulted in a new absorbance band in the

UV/Vis, while adding the POM to [Ru(bpy)2(caip co-poly)7]+ apparently did not we were interested

in investigating whether or not this new transition resulted in visible sensitised POM

photochemistry.  To achieve this, photoelectrochemical studies of the metallopolymer/POM thin

films were performed.  In a previous contribution we demonstrated that self-assembled thin films of

[Ru(bpy)2(PVP)10]4.5[Mo18O54(SO4)2] could effectively decompose benzyl alcohol under visible

(480 nm) irradiation with greater efficiency than a film of [(Hex)4N]4[Mo18O54(SO4)2] under the

same conditions.29  These studies were performed in the presence of 0.1 M (But)4NBF4 electrolyte

in order to enhance the conductivity through the film and hence increase the current magnitude;

however electrolyte is well known to disrupt ionic association between Ru complexes and POMs

(see Chapter 3). (But)4NBF4 was the only electrolyte tested that did not result in disruption of the
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films in this case, as was demonstrated by stable and reproducible film voltammetry obtained when

this electrolyte was used.29  These experiments were performed by drop-casting 100 µl of 1 x 10-4

M solutions/suspension of either [(Hex)4N]4[Mo18O54(SO4)2] or

[Ru(bpy)2(PVP)10]4.5[Mo18O54(SO4)2] onto ITO working electrodes and performing photo-

electrochemistry in 0.1 M (But)4NBF4 in MeCN. Under the same conditions of irradiation as in the

case of the self-assembled films, the net current generated under 480 nm irradiation actually

decreased from approximately 6 nA/400 seconds to 0.7 nA/400 seconds when Ru was present, a

decrease of a factor of 8. These data are shown in Fig 4.3.6.1.

Fig 4.3.6.1: Photocurrent responses of dropcast films on ITO working electrodes using a Xe arc

lamp operating at 350 W and a 480 ± 5 nm narrow band optical filter. The electrolyte was in 0.1 M

(But)4NBF4 in MeCN. The counter electrode was a Pt flag and the reference electrode was an Ag

wire (+ 400 mV vs Fc/Fc+).  Potential was held constant at + 400 mV. (a) - [(Hex)4N]4[SO4-POM]

(red): Current 5.9 nA; (b) - [Ru(bpy)2(PVP)]4.5[SO4-POM] (blue):Current 0.7 nA. 8 x smaller than

POM alone; (c) - [Ru(bpy)2(PVP)].(NO3)2 (green): Current 0.6 nA; and (d) - Blank ITO (purple):

Practically zero current.
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Fig 4.3.6.1 highlights the failure of drop-cast films to generate a sensitized photocurrent under

visible irradiation. This was in sharp contrast to the self-assembled films, where the current

increased from approximately 10 nA/100 secs for POM alone to 38 nA/100 secs when Ru was

present. These data are shown in Fig 4.3.6.2.

Fig 4.3.6.2: Enhanced photocurrents generated self-assembled films of (a)

[(Hex)4N]4[Mo18O54(SO4)2], (b) [Ru(bpy)2(PVP)]4.5[Mo18O54(SO4)2] and (c) [Ru(bpy)2(caip co-

poly)7]5[Mo18O54(SO4)2] on ITO. Light source was a Xe arc lamp operating at 350 W and a 480 ± 5

nm narrow band optical filter. The electrolyte was in 0.1 M (But)4NBF4 in MeCN.  The counter

electrode was a Pt flag and the reference electrode was an Ag wire (+ 400 mV vs Fc/Fc+).  Potential

was held constant at + 400 mV. Reproduced from [11].

In addition, both drop-cast and self-assembled films of [Ru(bpy)2(caip co-poly)7]2[Mo18O54(SO4)2]

resulted in poor photocurrent generation.  In each case the current magnitude produced by

[Mo18O54(SO4)2]4- decreased in the presence of  this metallopolymer, indicating a lack of

sensitization under visible irradiation.  These data strongly indicate that electrostatic self-assembly

is the only viable method for producing visible-light activated photocatalytic films using Dawson
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polyoxometalates.  Preliminary studies suggest that effective photocurrent generation is a function

of film thickness, as the value of DCT decreases with increasing surface coverage.29  Therefore drop

cast films are likely too thick to be used in future photovoltaic applications.

4.4 - Conclusions:

In this chapter was explored the photophysics of a new family of luminescent metallopolymer,

[Ru(bpy)2(caip co-poly)n]2+ (n = 5, 7, 9), and compared their ability to bind to the

polyoxomolybdate [Mo18O54(SO4)2]4- with the ability of the well known polymer

[Ru(bpy)2(PVP)10]2+. The photophysics of the metallopolymers [Ru(bpy)2(caip co-poly)n]2+ (n = 5,

7, 9) have been reported in a variety of solvent systems.  The polymer spectroscopy and

electrochemistry was found to be primarily independent of chain length.  It was observed that the

polymer spectroscopy had a strong dependence on pH, which was also observed in the

corresponding monomer complex [Ru(bpy)2(caip)]2+.  Upon increasing the pH the polymer charge

increases from 3+ → 2+ → 1+, and a new band correspondingly grows in at low energy. This has

been attributed to a benzocarboxylate → phenanthroline interligand charge-transfer (ILCT)

transition, which suggests a more increased delocalization of the π system, facilitating increased

electronic communication between the imidazole and phenanthroline groups, when the imidazole

ligand is fully deprotonated.  The relative contributions of the Ru → bpy and Ru → caip MLCT

transitions were probed by resonance Raman spectroscopy, and it was demonstrated that the Ru →

caip comes more strongly into resonance when fully protonated under 458 nm irradiation.  This

indicates that the relative energy levels of the caip ligand are changed significantly upon changing

pH.

The polymer optical spectroscopy also exhibited strong solvent dependence.  In particular

dissolution of the metallopolymers in dimethylsulfoxide induced significant spectral changes

relative to MeCN.  The UV/Vis spectrum appeared to indicate a situation where the DMSO solvent

molecules underwent strong H-bonding with the imidazole ligand, and hence the spectrum had the

appearance of the fully deprotonated polymer in MeCN.  The emission spectroscopy in DMSO also

reflected this trend, and the luminescent lifetime of DMSO was also abnormally long given the

values obtained in MeCN and MeOH, which have similar dielectrics.  It was postulated that DMSO

affects the free pyridyl nitrogen atoms in the polymer backbone, causing it to swell, and hence

affecting the spectroscopy.  Investigation into the fluorescence anisotropy of the polymers in

various solvents is currently underway in order to confirm this hypothesis.
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The photophysics of the metallopolymers [Ru(bpy)2(caip co-poly)7]+ and

[Ru(bpy)2(PVP)10]2+ in the presence of the Dawson polyoxomolybdate α-[Mo18O54(SO3)2]4- has

been thoroughly investigated in MeCN solutions.  Both the [Ru(bpy)2(PVP)10]2+ and [Ru(bpy)2(caip

co-poly)7]+ polycations associate strongly with [Mo18O54(SO3)2]4- and form MeCN-insoluble

electrostatic adducts of highly unusual stoichiometry (4.5: and 5:1 respectively) at high

concentrations (approximately mM), but at lower concentrations (ie: ~ 10-5 M) the solubility is

maintained.  UV/Vis and difference electronic spectroscopy of cluster formation revealed the

presence of a new intramolecular electronic transition in the case of

[Ru(bpy)2(PVP)10]2+/[Mo18O54(SO3)2]4- that tailed significantly into the red (to approximately 700

nm); but no new features were observed in the case of [Ru(bpy)2(caip co-poly7]+/[Mo18O54(SO3)2]4-.

Luminescence quenching experiments revealed strong quenching in both cases that did not

adequately fit to the linear static Stern-Volmer model. Application of the Perrin model for static

quenching yielded linear fits with excellent regression coefficients; and the values obtained for

quenching sphere radii were acceptable at 4.6 Å and 5.8 Å for [Ru(bpy)2(PVP)10]2+ and

[Ru(bpy)2(caip co-poly)7]+ quenching respectively. Resonance Raman spectroscopy, exciting into

the new transition, showed no contribution from the polyoxometalate in the case of [Ru(bpy)2(caip

co-poly)7]+/[Mo18O54(SO3)2]4-.  However, a resonantly enhanced polyoxometalate based Mo-O

stretching mode was clearly resonantly enhanced in the spectrum of

[Ru(bpy)2(PVP)10]4.5[Mo18O54(SO4)2].  This mode was blue-shifted significantly with respect to the

same vibration of the parent ion and this was tentatively ascribed to strong intramolecular H-

bonding with the Ru complex.  This mode also came more strongly into resonance at 514 nm

relative to 488 nm, which reflects the long tail observed in the electronic difference spectra.  Diffuse

reflectance transient absorption spectra of the solid adducts at 355 nm did not reveal the presence of

the transient reduced species [Mo18O54(SO3)2]5- in either metallopolymer adduct.  Photo-

electrochemical measurements on ITO electrodes with 480 nm irradiation demonstrated that the

associated ion-cluster [Ru(bpy)2(PVP)10]4.5[Mo18O54(SO4)2] generated a lower current than

[Mo18O54(SO3)2]4- under the same conditions. This was in sharp contrast to the photocurrents

generated by self-assembled films reported by us previously; and this has been attributed to

excessive layer thickness produced by drop-casting.11  In both drop-casting and self-assembly,

[Ru(bpy)2(caip co-poly)7]5[Mo18O54(SO4)2]  generated a lower photocurrent than [Mo18O54(SO3)2]4-

alone and was therefore deemed to be non-sensitizing.  The reason for the difference between the

effectiveness if the two metallopolymers is not known; however since the thermodynamics of

charge transfer are very similar the difference likely lies in sterics and/or orbital overlap.   We
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therefore conclude that resonance Raman spectroscopy can be use to identify potential donor-

acceptor electrostatic ion-clusters that exhibit enhanced photochemistry under visible irradiation.
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Chapter 5:

Photophysics and photoelectrochemistry of [Ru(bpy)2(PVP)10]
2+ in the

presence of the α-[P2W18O62]
6- anion.
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5.1: Introduction:

Zhu et al. recently reported that [Ru(bpy)2(PVP)10]2+ and α-[Mo18O54(SO4)2]4- could be employed to

produce interfacial LBL self-assembled multilayer films with the ability to photooxidize benzyl

alcohol substrate under visible (480 nm) irradiation.  These films were more efficient at

photocurrent generation than films consisting of either [Ru(bpy)2(PVP)10]2+ or α-[Mo18O54(SO4)2]4-

alone under the same conditions of irradiation. Furthermore, detailed studies of the film stability,

electrolyte concentration, layer thickness and substrate concentration were performed.1  The data

reported in Chapter 4 and by Zhu et al. strongly suggest that film morphology and thickness are

critical in determining photocurrent generating efficiency.10 Collectively, these studies

demonstrated that:

(a) Photocurrent generation initially increases with an increasing number of deposition cycles

(ie: increasing surface coverage, Γ).

(b) After a certain number of deposition cycles layer growth becomes non-linear and

photocurrent generation becomes adversely affected as DCT drops.

(c) Drop-cast films have very poor photocurrent generating ability, which is attributed to their

thickness.

(d) Photocurrent generation could be increased by addition of electrolyte to the films to

improve conductivity.  However most electrolytes investigated disrupted the electrostatic

association of the films, causing them to rapidly disassociate.

(e) Photocurrent generation increases as a non-linear function of increasing applied potential.

It was concluded that one of the limiting factors of current generation was the reoxidation of the

reduced [Mo18O54(SO4)2]5- moieties in the Ru-molybdate film after catalysis.  Polyoxotungstates

have a more negative initial reduction potential and therefore a larger overpotential for reoxidation

may be applied to a Ru-POW system relative to a Ru-POM system. α-[P2W18O62]6- was the

polyoxotungstate chosen for this study as it is isostructural with other polyoxometalates studied in

this thesis. To exploit the potentially preferable properties of the tungstate, this chapter therefore

focuses on the photophysics of adducts formed between α-[P2W18O62]6- and [Ru(bpy)2(PVP)10]2+,

and the photoelectrochemical studies of self-assembled [Ru(bpy)2(PVP)10]2+/α-[P2W18O62]6- films at

ITO electrodes.
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Fig 5.1.1: (a) Polyhedral representation of α-[P2W18O62]6- where each octahedron represents a WO6

unit and (b) ORTEP diagram of α-[P2W18O62]6- with thermal ellipsoids at 50% probability.

Reproduced from [2].

5.2 – Synthesis and characterization:

The polyoxotungstate K6α-[P2W18O62] was synthesized according to the method of Mbomekalle et

al.3  The compound was characterized by CV, UV/Vis spectroscopy, ATR-FTIR spectroscopy,

Raman spectroscopy and mass spectrometry.4  This synthetic procedure afforded excellent isomeric

purity, as demonstrated by 31P-NMR spectroscopy.  The cyclic voltammetry (CV) of the

polyoxotungstate is shown in Fig 5.2.1.1.
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Fig 5.2.1.1: Cyclic voltammogram of 2 x 10-4 M K6α-[P2W18O62] in 0.5 M H2SO4.  Working

electrode: glassy carbon disk; scan rate: 10 mV/s; solution pH: 0.33.  Counter electrode was a large

surface area Pt flag.  Reference electrode was Ag/AgCl.

The CV in Fig 5.2.1.1 demonstrates the purity of the α-[P2W18O62]6- synthesis.  The other isomer, β-

[P2W18O62]6-, has similar but subtly different electrochemical properties.  The first two reductions (1

electron processes) appear at more positive potentials and the second two (2 electron processes) at

more negative potentials, so that in a mixture of the two isomers all 4 peaks would be expected to

appear quite broadened.  CV, however, is insensitive to approximately 10 % isomeric impurities, so

the isomeric purity was confirmed by NMR. Fig 5.2.1.2 shows the 31P-NMR of α-[P2W18O62]6-.

The α-isomer exhibits one peak at -12 ppm, whereas the β-isomer has lower symmetry (D3d for β

relative to D3h for α) and exhibits two well separated 31P resonances of equal intensity, and the

absence of these peaks indicates that the quantity of β isomer is low.

[(But)4N]6α-[P2W18O62] was synthesized as described in Chapter 2.
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Fig 5.2.1.2: 31P-NMR spectrum (162 MHz) of isomerically pure K6α-[P2W18O62] in 1 M LiClO4 in

D2O.

5.3 – Ion-cluster photophysics and spectroscopy:

5.3.1 - UV/Vis spectroscopy:

Ion-cluster formation between Dawson polyoxometalates and Ru (II) polypyridyl complexes has

previously been shown to result in the appearance of a new electronic absorption band in the visible

region, attributed to an intramolecular charge-transfer transition between the two ions.5, 6, 7  These

low energy features tail significantly into the red in the case of molybdates but not in the case of

tungstates.  In previous cases difference spectroscopy was employed in order to clearly see these

often subtle spectral changes, as they can be obscured by more-intense adjacent parent-ion features.

However in this present case poor solubility has limited our spectral analyses of ion-cluster

formation; the degree of baseline drift observed in the UV spectra would suggest at least partial

precipitation of the [Ru(bpy)2(PVP)10]2+/α-[P2W18O62]6- composites, or aggregation of the polymer

leading to light scatter. The corrected UV spectra of a solution of [Ru(bpy)2(PVP)10](PF6)2 in the

presence of increasing concentrations of [N(But)4]6α-[P2W18O62] are presented in Fig 5.3.1.1.
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Fig 5.3.1.1: UV/Vis spectra (corrected) of [Ru(bpy)2(PVP)10]2+ (4.5 x 10-5 M) titrated with α-

[P2W18O62]6- (2.89 x 10-4 M) in dry MeCN.  Inset: The same series of spectra uncorrected.

The spectra in Fig 5.3.1.1 are not consistent with previous related studies involving

polyoxometalates and Ru monomeric complexes.  The baseline drift appears to be significant in this

case, indicating significant scatter from the electrostatic product formed in MeCN. The new low-

energy intramolecular charge-transfer band appears as a shoulder on the [Ru(bpy)2(PVP)10]2+

MLCT absorbance centered around 445 nm, and this feature tails significantly into the red. The

[Ru(bpy)2(PVP)10]2+ π → π* transition at 288 nm also broadens, decreases in intensity, and red-

shifts by approximately 6 nm to 294 nm. It also appears as though the Ru MLCT transition

increases in intensity upon association. This is highly unlikely to be a true increase, and is more

likely due to scattered light from the associated product.  The polyoxotungstate holds a 6- charge

and therefore will significantly increase the ionic strength of the solution upon its addition.  This

change in ionic strength could lead to initial swelling or contraction of the polymer, resulting in

unusual initial association behaviour. The change in behavior could otherwise possibly be due to

polymer particle formation.  The conformation of conjugated polymers in solution has been studied

previously as a function of ionic strength.  When the polymer poly[5-methoxy-2-(4-sulfobutoxy)-

1,4-phenylvinylene] (MBL–PPV) was dissolved in aqueous solution, small-angle neutron scattering
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(SANS) was used to demonstrate that the polymer formed aggregates that are stable in low ionic

strength media but dissociate in the presence of excess salt.8 In this present case the

polyoxotungstate carries a 6- charge and 6 tetrabutylammonium counterions, so its addition to

solutions of [Ru(bpy)2(PVP)10]2+ would result in significant ionic strength alteration. This means

that metallopolymer aggregation could be favoured in this case, which is likely to reduce the

number of available binding sites for the quencher and hence affect the associative behaviour.

Further investigation into this behaviour will be undertaken in future by dynamic light scattering

(DLS) measurements.

In previous related studies, Job’s method for calculating binding stoichiometry has been

successfully employed by using difference spectral data. In this case no difference spectra were

acquired so the raw data were employed instead.  These data are presented in Fig 5.3.1.2.
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Fig 5.3.1.2: Plot of α-[P2W18O62]6- mole fraction versus absorbance change at 450 nm as a function

of increasing α-[P2W18O62]6- concentration, data taken from Fig 5.3.1.1.

The plot in Fig 5.3.1.2 is strikingly similar to the shape of the I0/I Stern-Volmer plot obtained for

quenching of [Ru(bpy)2(PVP)10]2+ by the related Wells-Dawson polyoxomolybdate α-
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[Mo18O54(SO4)2]4- (see Chapter 4).  The intersections of the lines indicate the molar ratios at which

the spectroscopy changes and different ion-clusters may form at these ratios. In the case of

[Ru(bpy)2(PVP)10]2+ and α-[Mo18O54(SO4)2]4- ion-cluster formation occurred at a ratio of 4.5:1 (Ru

to Mo), which was demonstrated both spectroscopically (UV/Vis, emission quenching, EDX) and

by cyclic voltammetry (see Chapter 4).9, 10  This was, to our knowledge, the first reported instance

in which the ion-cluster ratio formed did not result in a full stoichiometric pairing of Ru and POW.

In the present case, the spectroscopy changes at the same stoichiometry (~ 4.5:1 Ru:POW ratio,

XPOW ~ 18 %), and also at a lower XPOW ~ 9 % (approximately a 9:1 Ru:POW ratio). Presumably

the ion-clusters exist in the forms {[Ru(bpy)2(PVP)10]9α-[P2W18O62]}12+ and

{[Ru(bpy)2(PVP)10]4.5α-[P2W18O62]}3+. These data are somewhat unexpected as α-[P2W18O62]6- has

been shown previously to form 3:1 charge neutral electrostatic adducts with [M(bpy)3]2+ (where M

= Fe, Ru, Os).11, 12, 13  Since the expected 3:1 ratio (ie: charge neutral overall with respect to Ru-

POW cluster formation) was not observed in this case it may be the case that ion-pair formation is

not driven purely by electrostatic attraction between [Ru(bpy)2(PVP)10]2+ and the Dawson

polyoxometalates that results in formation of the thermodynamically most favoured product, and

that different stoichiometric products can form at different ion-cluster ratios.

The UV/Vis spectra of thin films of [Ru(bpy)2(PVP)10]2+ and [Ru(bpy)2(PVP)10]2+/α-

[P2W18O62]6- on ITO electrodes have also been recorded.  The pre-cleaned ITO slide was dipped

into a 1 mM solution of [Ru(bpy)2(PVP)10]2+ for 30 minutes, removed from the solution and dried in

air.  The slide was then rinsed with MeCN to remove any non surface-bound material.  After drying

in air again the UV/Vis spectrum was recorded.  The slide was then dipped into a solution of 1 mM

α-[P2W18O62]6- for another 30 minutes to allow the POW to electrostatically bind to the Ru film.

The slide was removed, dried in air, and again rinsed with MeCN.  The slide was dried and the

UV/Vis spectrum was recorded. These spectra are shown in Fig 5.3.1.4.
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Fig 5.3.1.3: UV/Vis spectra of a (a) thin film of [Ru(bpy)2(PVP)10]2+ dip-coated onto an ITO

electrode and (b) thin film of the same electrode after subsequent dip-coating of α-[P2W18O62]6-

Unfortunately these spectra could not be recorded below 300 nm as the ITO substrate absorption

filters all light from reaching the detector below this wavelength, therefore the drop in spectral

intensity observed for [Ru(bpy)2(PVP)10]2+ π → π* transition at 288 nm in Fig 5.3.1.1 could not be

monitored here.  However the apparent increase in absorbance at approximately 470 nm seen in Fig

5.3.1.1 is also observed here, as is an absorbance that tails into the red.  These changes are likely to

be due to the presence of a new optical transition, on the basis of previous studies of Dawson

polyoxometalates and Ru (II) polypyridyl complexes; however this is not as clear as in this case.

Nonetheless, participation of both ions in the electronic absorption at > 480 nm is confirmed by

resonance Raman spectroscopy (vide infra).

5.3.2 - FTIR spectroscopy:

FTIR spectra of α-[P2W18O62]6-, [Ru(bpy)2(PVP)10]2+ and the isolated ion-composite material were

examined to identify any structural changes that occur upon ionic association.  The

polyoxotungstate (spectrum (a)) exhibits signature P-O stretching modes at 1090 and 1024 cm-1, a
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terminal W-O stretch at 960 cm-1 and two W-O-W (bridging oxygen) stretches at 914 and 777 cm-1.4

Upon association to the Ru polymer these modes all shift slightly, and the largest shift sees the

mode at 777 move to 792 cm-1 (spectrum (c)).  Modes associated with the metallopolymer are also

clearly visible in the adduct spectrum; in particular a series of bipyridine ring breathing modes are

observed between 1400 and 1600 cm-1, with no significant shifts observable on association. This is

not surprising as due to the high Ru:tungstate ratio not all Ru centers will be coupled directly to a

polyoxotungstate molecule. The band at 1340 cm-1 (spectrum (b)) is attributed to the nitrate

counterion and the absence of this mode in the composite material (spectrum (c)) is interesting as it

indicates full ion-exchange. This is unexpected, as on the basis of the UV/Vis and emission data

there appears to be an excess of Ru and therefore some residual NO3 should be observed. Overall

the spectra indicate full association of α-[P2W18O62]6- with [Ru(bpy)2(PVP)10]2+, and removal of the

NO3
- counterions.  The spectra also indicate that the W-O structure of the POW is perturbed upon

association, while the encapsulated PO4 moieties exhibit little change. This is expected given the

shielded environment of these anions relative to the metal-oxide framework and the possibility of

H-binding between the peripheral oxygen atoms and the bipyridine protons.  The FTIR spectra are

presented in Fig 5.3.2.1.
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Fig 5.3.2.1: ATR-FTIR spectra of (a) K6α-[P2W18O62], (b) [Ru(bpy)2(PVP)10](NO3)2 and (c)

[Ru(bpy)2(PVP)10]4.5α-[P2W18O62].
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5.3.3 - Emission spectroscopy:

The electrostatic association between Dawson polyoxometalates and Ru (II) polypyridyl complexes

has been shown to result in significant quenching of the Ru (II) luminescence intensity.5, 6, 7  The

quenching mechanism has usually been observed to be purely static quenching via intramolecular

charge transfer to a non-emissive state; however in one particular case mixed static/dynamic

quenching was observed.16 The emission from [Ru(bpy)2(PVP)10]2+ in the presence of increasing

concentrations of α-[P2W18O62]6- in MeCN is shown in Fig 5.3.3.1.  The quenching behaviour of this

system appeared at first to be unusual in that the apparent emission intensity of [Ru(bpy)2(PVP)10]2+

actually increased upon addition of α-[P2W18O62]6-. As described previously this change in

absorbance is attributed to likely initial formation of light-scattering polymeric aggregates at

initially high ionic strength, and since only those fluorophores at the surface of the aggregate will be

physically accessible to the quencher, the quenching behaviour will alter over the course of the

reaction as the increasing ionic strength unfolds the aggregate to allow quenching of internal Ru

fluorophores. Cross-linking in polymer The quenching data were fitted to various models in an

effort to understand this behaviour. When the uncorrected absorbance data obtained from Fig

5.3.1.2 (relative absorbance changes at 450 nm) are used to normalize the emission intensity values

then a I0/I Stern-Volmer plot was obtained.  These data are shown in Fig 5.3.3.1.
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Fig 5.3.3.1: Uncorrected emission spectra of [Ru(bpy)2(PVP)10]2+ in the presence of increasing

concentrations of [P2W18O62]6- in MeCN. Initial emission before addition of tungstate is in red.

Excitation wavelength 450 nm.

The Stern-Volmer relationship has been employed extensively in the study of photoinduced electron

transfer mechanisms that results in fluorescence quenching.  The Stern-Volmer relationship is

described in Chapter 3 (pages 82 – 83). The S-V plot of the data in Fig 5.3.3.1 (corrected using Fig

5.3.1.1) is shown in Fig 5.3.3.2.
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Fig 5.3.3.2: Modified fluorescence quenching Stern-Volmer plot of [Ru(bpy)2(PVP)10]2+ by α-

[P2W18O62]6- in MeCN. Plot was normalized using absorbance changes at 450 nm based on Fig

5.3.1.2  The red trace is the corresponding Stern-Volmer plot (uncorrected) of [Ru(bpy)2(PVP)10]2+

quenching by α-[Mo18O54(SO4)2]4- in MeCN (reproduced from Chapter 4 for comparison).

Excitation wavelength was 450 nm for both series.

The data presented in Fig 5.3.3.2 show the changes in emission behaviour as a function of changing

Ru/POW molar ratios. As for the absorbance data three linear regions are observed, indicating

binding stoichiometries of approximately 9:1 and 4.5:1 Ru:POW. The Ka values inferred for these

ion ratios were 2.7 x 104 and 2.8 x 105 M-1 respectively. Interestingly these same ratios were also

obtained upon complexation of [Ru(bpy)2(PVP)10]2+ with the analogous polyoxomolybdate α-

[Mo18O54(SO4)2]4- in MeCN (red series). However these values may not reflect true stoichiometric

ratios but rather average situations where some Ru centers are fully charge compensated and are

inaccessible to the POW quencher. As mentioned this may indicate that the stoichiometric binding

of [Ru(bpy)2(PVP)10]2+ to Dawson polyoxometalates is not driven by the electrostatics of forming

neutral ionic composites.  This 4.5:1 stoichiometry may arise because the cation is polymeric in

nature, so that the association of a Ru:polyoxometalate neutral 2:1 cluster brings additional

ruthenium centers not necessary to maintain electroneutrality. It may also be due to penetrability of
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polymer aggregates to the polyoxometalate quencher, which is a quite a large anion.  It is interesting

that this phenomenon is independent of polyoxometalate charge (ie: both the 4- molybdate and 6-

tungstate resulted in the same Ru:polyoxometalate ratios forming).  It must be noted that the use of

a polymer as the fluorophore effects the applicability of the purely static Stern-Volmer model.  The

Perrin model can be used to investigate the applicability of “sphere of action” quenching to this

system, and is widely used in studying the quenching of polymers

A more appropriate model to describe static quenching between a luminescent polymer

and a small quencher is likely to be the Perrin model.  Used both with polymers and for proteins,

the Perrin model describes static quenching between randomly distributed and immobile

fluorophores with quenchers which are randomly in proximity. In this model, one presumes that

there is instantaneous quenching of an excited donor (D*, ie: [Ru(bpy)2(PVP)10]2+*) by a quencher

(Q, ie: α-[P2W18O62]6-) if this quencher is within a spherical volume V centered on D*; and that no

quenching occurs when the quencher is outside of this volume.14  Since Ru monomer complexes are

mobile in solution the model cannot be applied in those cases; however Ru metallopolymers have

sufficiently constrained mobility to be considered for this “sphere of action” model.  The Perrin

equation (Equation 6) is given below.

].[..
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4].[.ln 30 QNRQNV

I

I
ASA ==





                 (6)

Where V is the volume of the quenching sphere of action and RS is the radius of the quenching

sphere.  The quenching data fitted to the Perrin model is shown in Fig 5.3.3.4.
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Fig 5.3.3.4: Perrin plot of the quenching data in Fig 5.3.3.1.

Again, the data showed three linear portions and slopes of these regions in Fig 5.3.3.4 were

analyzed using the Perrin model. Unlike for the quenching of the corresponding molybdate in

Chapter 4, the data did not fit the model well. For the Perrin equation to be employed in calculating

the radius of the quenching sphere the intercept of the equation must equal zero; therefore only the

lowest concentration region has been applied. This is somewhat speculative as if the Perrin model

fits the quenching behaviour then only one linear region should be observed until the quenching

plateaus (see Chapter 4). This unexpected change in slope is attributed to the polymer structure

changing as a function of increasing ionic strength (as discussed in section 5.3.1), which resulted in

light scatter and altered emission intensity being recorded. POW-bridged cross-linking between

polymer chains is also a possibility, as they polymer could uncoil as the ionic strength changes,

allowing access to previously inaccessible fluorophores. Nonetheless, the initial slope has been

employed in this case as an estimate. Inserting this number (26135 cm3.mol-1) into the Perrin

equation gives a quenching sphere radius RS of 2.2 ± 0.1 Å.  This number is a reasonable estimate

for static electron transfer distance involving Ru (II) polypyridyl fluorophores in a polymer matrix,

and corresponds to a very short distance (ie: one or two bond lengths).  If the second slope of

160707 cm3.mol-1 is used then a RS value of 4.0 ± 0.1 Å was obtained, which is closer to the values
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obtained in Chapter 4 for the corresponding molybdate study.  In either case, these distances are

both reasonable estimates for static quenching charge-transfer.

5.3.4 - Time-resolved emission:

Time-resolved luminescence spectroscopy can reveal further insight into the nature of the

quenching mechanism.  If the luminescent lifetime remains unaffected over the same quencher

concentration range that results in luminescence intensity quenching then the photoinduced electron

transfer is purely static in nature.  If the τ0/τ plot has a slope then a dynamic quenching component

may be present.  The τ0/τ plot of [Ru(bpy)2(PVP)10]2+ quenching by α-[P2W18O62]6- is given in Fig

5.3.4.1.

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25

X POW

τ 0
/τ

Fig 5.3.4.1: Luminescence lifetime quenching of [Ru(bpy)2(PVP)10]2+ (long component) by α-

[P2W18O62]6- in MeCN.  Recorded by TCSPC exciting at 450 nm.

In the case of purely static quenching no slope is observed in the τ0/τ plot; whereas if there is a

dynamic quenching component also present an upwards slope would be expected.  In this case of

Fig 5.3.4.1 it appears as though there is little or no initial slope, consistent with predominantly static

quenching; however at the ion-cluster ratio of 4.5:1 there appears to be a change in behaviour.  At
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this ratio the τ0/τ plot slopes downwards, and indeed the lifetime increased to 162 ± 5 ns from its

initial 116 ns.  The reason for this apparent increase in lifetime is unknown, but may be due to the

changes in polymer structure with increasing ionic strength mentioned previously. Interestingly, the

short component of the decay also increased from 13 ns for free [Ru(bpy)2(PVP)10]2+ to 22 ns for

[Ru(bpy)2(PVP)10]4.5α-[P2W18O62]. It is difficult to draw meaningful conclusions from the slope in

Fig 5.3.4.1 as the luminescent intensity decreased with increasing POW concentration, and hence

the error bars are substantial.

5.3.5 - Resonance Raman spectroscopy:

As discussed in previous chapters, resonance Raman spectroscopy may be used to identify

polyoxometalate/Ru complex ion-clusters in which both ions participate in the new intercomponent

lowest-energy optical transition centered on 475 nm (Fig 5.3.1.1).  Assuming an ion-cluster

stoichiometry of 4.5:1 Ru:POW as demonstrated by UV/Vis and fluorescence quenching solution

titrations, the associated cluster [Ru(bpy)2(PVP)10]4.5α-[P2W18O62] was synthesized as described in

Chapter 2.  The solid was ground into oven-dried KBr for resonance Raman analysis, in order to

prevent any unwanted photooxidation under laser irradiation.  The resonance Raman spectra of the

associated cluster and the parent ions are shown in Fig 5.3.5.1.
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Fig 5.3.5.1: Resonance Raman spectra of (a) [Ru(bpy)2(PVP)10](NO3)2, (b) [Ru(bpy)2(PVP)10]4.5α-

[P2W18O62]  and (c) K6α-[P2W18O62] in KBr discs (~ 5 % w/w) under 488 nm irradiation.

This technique was employed to investigate the origin of the weak changes seen in the UV/Vis

spectra upon Ru-POW association.  Resonance Raman spectroscopy is an extremely useful tool

which can be used to elucidate which vibrational modes are associated with a chromophore.  An

optical transition in resonance with laser excitation will exhibit large enhancement of its vibronic

modes, and enhancement factors of up to 107 have been observed.15  Investigations of

polyoxometalate/transition metal complex electrostatic adducts have demonstrated that a new

feature is commonly observed in the UV/Vis spectra of the adducts.  These new optical transitions

were shown, via resonance Raman spectroscopy, to involve both polyoxometalate and Ru-based

modes and hence were attributed to Ru to polyoxotungstate charge transfer transitions.  In this case

the use of Raman is absolutely necessary in characterizing the charge-transfer character of the

[Ru(bpy)2(PVP)10]4.5α-[P2W18O62] composite as the UV/Vis changes viewed upon association were

ambiguous, relative to those seen in Chapters 3 and 4.
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Although a wide variety of polyoxometalate/transition metal complex ion-clusters have been

studied using resonance Raman spectra (see Chapter 6) most studied to date have not shown the

presence of polyoxometalate bands under visible excitation (458, 488 or 514 nm).16  It is thought

that the presence of resonantly enhanced polyoxometalate modes in the resonance Raman of the

new optical transitions is important in identifying which ion-clusters will result in sensitization, as it

is likely that this transition participates in sensitization.  Therefore all candidate ion-pairs for

photochemistry were identified by checking for polyoxometalate modes in the resonance Raman

spectra of their solid ionic composites under visible irradiation.

The resonance Raman spectra of the two parent ions and of the [Ru(bpy)2(PVP)10]4.5α-[P2W18O62]

composite are presented in Fig 5.3.5.1.  The spectrum of [Ru(bpy)2(PVP)10](NO3)2 (Fig 5.3.5.1 (a))

exhibits modes characteristic of resonance with a Ru-bpy MLCT transition with modes at 1603,

1557, 1485, 1318, 1272, 1172, 1026 and 665 cm-1 attributed to bpy vibrations, and a Ru-N mode is

clearly visible at 376 cm-1.  The differences between the Raman spectra of [Ru(bpy)2(PVP)10]2+ and

[Ru(bpy)3]2+ are very minor, as the excited state (ie: resonantly enhanced chromophore) is localized

on bpy only in both cases.  Fig 5.3.5.1 (c) shows the spectrum of K6α-[P2W18O62].  The Raman

spectrum is typical of Dawson polyoxometalates without resonant enhancement, with the P-O

stretching mode at 1001 cm-1 dominating the spectrum.  The W-O (terminal oxygen) stretch is

observable as a shoulder at 983 cm-1, and the W-O-W (bridging oxygen) stretch exhibits two bands

at 938 and 875 cm-1.  Interestingly, Fig 5.3.5.1 (b) demonstrates that both bpy and POW modes

participate in the optical transition in resonance at 488 nm.  Since the POW is non-resonant at this

wavelength but the metallopolymer is, the Ru signal will be orders of magnitude higher than that of

the POW, and since the intensity of the POW mode at 960 cm-1 and is well within an order of

magnitude of those of the bpy modes it may be concluded that the POW modes are resonantly

enhanced under 488 nm irradiation. Importantly, the absence of other POW modes, including the

most intense feature at 1001 cm-1 indicates that the presence of the POW features in the resonance

Raman spectrum of the composite is not merely due to post resonance with POW transition.

Interestingly the terminal W-O stretch shifts to lower energy upon binding to [Ru(bpy)2(PVP)10]2+,

which may be due to H-bonding with the bipyridine protons. We can conclude that since the POW

itself is non-resonant at this wavelength that the new optical transition at 480 nm involves both Ru

and POW ions and assign this transition to an intramolecular charge-transfer state.
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5.4 – Thin film characterization:

5.4.1 – Cyclic voltammetry:

Since the resonance Raman spectra revealed the presence of a supramolecular charge-transfer

transition it was decided to examine the [Ru(bpy)2(PVP)10]4.5α-[P2W18O62] composite materials for

photoelectrochemical current generation.  Previous photoelectrochemical studies of

polyoxometalate/sensitizer combinations have generally been performed in solution, but a drive

towards using thin films is crucial if the true potential of these materials is to be achieved in a

practical application.  Our group have already published the photoelectrochemistry of thin films of

[Ru(bpy)2(PVP)10]4.5α-[S2Mo18O62].10

[Ru(bpy)2(PVP)10]2+ is well known for its ability to form stable layers on metal electrode surfaces.17

The free pyridine nitrogen atoms in the polymer backbone can adsorb quite strongly to electrode

surfaces such as silver and indium-doped tin oxide (ITO).10, 18 It has also been demonstrated that

polyoxometalates can be employed in the formation of self-assembled multilayers in conjunction

with large cationic polymers.19  The primary goal of this project is to attempt to optimize the

photoelectrochemical properties of some of these interfacial films.  Therefore a detailed

understanding of the surface redox processes and surface coverage of the films is crucial in

quantifying the efficiency of photocurrent generation.  The thin film cyclic voltammetry of films of

[Ru(bpy)2(PVP)10]2+, α-[P2W18O62]6- and one “bilayer” (ie: one LBL deposition cycle of both

materials) of [Ru(bpy)2(PVP)10]4.5[P2W18O62] on ITO working electrodes are shown in Figs 5.4.1.1

– 5.4.1.4.
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Fig 5.4.1.1: Cyclic voltammogram of self-assembled film of [Ru(bpy)2(PVP)10]2+ on an ITO

working electrode.  The supporting electrolyte was 0.1 M (But)4NBF4 in MeCN; scan rate was 10

mV.s-1.  Reference electrode was an Ag wire (+ 400 mV vs Fc/Fc+).

The CV of a film of [Ru(bpy)2(PVP)10]2+ alone is presented in Fig 5.4.1.1.  It reveals atypical redox

behaviour for a Ru polypyridyl complex.  A single redox process is observed at + 1.2 V which is

attributed to the Ru2+/Ru3+ redox couple, but the couple does not appear to be completely reversible

at this scan rate.  The sigmoidal shape of the voltammogram resembles that of a species adsorbed on

a microelectrode, and may indicate low surface coverage of the film in the form of islands of

material. Otherwise it may be that the rate of oxidation is much greater than the corresponding rate

of reduction; however this is less likely at 10 mV.s-1.  Either way this shape is unusual given the

well behaved voltammetric behaviour of [Ru(bpy)2(PVP)10]2+ adsorbed on surfaces such as gold.20

The absence of a shoulder on the negative side of the oxidation peak indicates that the purity of the

Ru polymer is at least 90% (ie: only one type of Ru center is present, and synthesis of the N6

coordinated metallopolymer rather than the corresponding N5Cl has been primarily achieved). This

indicates that deposition of [Ru(bpy)2(PVP)10]2+ from a concentrated MeCN/EtOH solution onto

ITO followed by extensive cycling in 0.1 M (But)4NBF4 does not affect film stability.  The ease and
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reproducibility of film preparation, coupled with the stability of the film itself, demonstrate the

usefulness of Ru metallopolymers over their corresponding monomers in thin film research.

Fig 5.4.1.2: Cyclic voltammogram of self-assembled film of α-[P2W18O62]6- on an ITO working

electrode.  Supporting electrolyte was 0.1 M (But)4NBF4 in MeCN; scan rate was 10 mV.s-1.

Reference electrode was an Ag wire (+ 400 mV vs Fc/Fc+).

For comparison, ITO electrodes were dipped into concentrated aqueous solutions of K6α-

[P2W18O62].  Polyoxotungstates are not known for their ability to form stable layers on electrodes by

themselves, and are often electrostatically attached to surfaces that have been modified to carry a

positive charge, such as glassy carbon surfaces modified with 4-aminobenzoic acid.24  In the case of

[Ru(bpy)2(PVP)10]2+ the free pyridyl nitrogens are coordinating ligands which can bind to the

surface, driving film formation. However in the case of α-[P2W18O62]6- the film forms as it dries to

the surface and is likely only bonded via very weak Van der Waals forces. In fact, the surface of

ITO is covered in polar oxo and hydroxyl functional groups, which are likely to repel the anionic

POW molecules.21  Fig 5.4.1.2 demonstrates that the amount of α-[P2W18O62]6- deposited on ITO by

dip-coating is relatively small, compared with the [Ru(bpy)2(PVP)10]2+.  The redox processes of α-
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[P2W18O62]6- are also greatly affected by adhering to the surface, as demonstrated by the significant

changes in voltammetry relative to that of the molecule in solution (see Fig 5.2.1.1).  The reason for

this change is unknown but may be due to weak interactions between POW and the surface.  The

solution phase voltammetry was also performed in the presence of acid, which has been reported to

alter the redox chemistry of Dawson polyoxotungstates.22

Fig 5.4.1.3: Cyclic voltammogram of self-assembled “bilayer” film on an ITO working electrode,

unstable in MeCN containing 0.1 M (But)4NBF4; scan rates from most intense 500, 400, 300, 200,

100 and 10 mV.s-1.  Reference electrode was an Ag wire (+ 400 mV vs Fc/Fc+).

Fig 5.4.1.3 shows the voltammetry of one “bilayer” of [Ru(bpy)2(PVP)10]4.5[P2W18O62] self-

assembled on an ITO working electrode when MeCN containing 0.1 M (But)4NBF4 is used as the

supporting electrolyte. The film was formed by assembling a layer of [Ru(bpy)2(PVP)10]2+ on ITO

via free pyridyl N atoms adsorbing strongly to the surface, followed by electrostatic adsorption of a

α-[P2W18O62]6- layer to the [Ru(bpy)2(PVP)10]2+. Although this electrolyte system was perfectly

adequate for obtaining voltammetry for films of both [Ru(bpy)2(PVP)10]2+ and α-[P2W18O62]6- alone,

as well as for films of [Ru(bpy)2(PVP)10]4.5[S2Mo18O62],10 the composite film was unstable under

these conditions.  With each voltammetric sweep more material was lost off the surface until little
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or no electroactive material was in contact with the ITO surface.  The reason for this is attributed to

disruption of the electrostatics via competitive electrolyte binding.  The loss of the polyoxotungstate

was accompanied by a loss in Ru, which is somewhat surprising since the Ru film was

demonstrated to be stable under these voltammetric conditions (see Fig 5.4.1.1).  Both ions are

therefore likely to be removed from the surface as electrostatic clusters, which indicate the strength

of this association.

Fig 5.4.1.4: Cyclic voltammogram of self-assembled “bilayer” film on ITO, stable in BnOH

containing 0.1 M (But)4NBF4; scan rates from largest peak currents: 100, 50 and 10 mV.s-1.

Reference electrode was an Ag wire (+ 400 mV vs Fc/Fc+).

Fig 5.4.1.4 demonstrates that the self-assembled film of [Ru(bpy)2(PVP)10]4.5[P2W18O62] is stable to

voltammetric cycling in 0.1 M (But)4NBF4 in BnOH at a variety of different scan rates.  Using the

different peak currents obtained at different scan rates, the charge-transfer diffusion coefficient of

the film can be calculated.  The surface coverage of each species can also be calculated from the

charge passed at slow scan rates using Equation 7:
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nFA

Q=Γ                           (7)

Where Γ is the surface coverage of redox active species (mol.cm-2), Q is the charge passed (in

Coulombs), n is the number of electrons transferred (in this case 1), F is Faraday’s constant (charge

per mole of electrons, 96485 C.mol-1) and A is the working electrode area (cm2).  In the case of both

[Ru(bpy)2(PVP)10]2+ and α-[P2W18O62]6- MeCN (0.1 M (But)4NBF4) was used as the supporting

electrolyte, whereas in the bilayer case the electrolyte was BnOH (0.1 M (But)4NBF4).  The surface

coverages are given in Table 5.4.1.

Film Γ (mol.cm-2)

[Ru(bpy)2(PVP)10]2+ (9.83 ± 3.38) x 10-10

α-[P2W18O62]6- (1.66 ± 0.77) x 10-12

[Ru(bpy)2(PVP)10]4.5[P2W18O62] Ru (6.11 ± 0.32) x 10-10

[Ru(bpy)2(PVP)10]4.5[P2W18O62] POW (1.44 ± 0.39) x 10-10

Table 5.4.1: Surface coverage calculated from cyclic voltammetric data (10mV.s-1) of self-

assembled thin films of [Ru(bpy)2(PVP)10]2+, α-[P2W18O62]6- and [Ru(bpy)2(PVP)10]4.5[P2W18O62] on

ITO electrodes.

The data in Table 5.4.1 shows that both the [Ru(bpy)2(PVP)10]2+ and

[Ru(bpy)2(PVP)10]4.5[P2W18O62] thin films displayed relatively low surface coverage, of the order of

10-10 mol.cm-2. These numbers correspond to several monolayers of material. The

polyoxotungstate surface coverage is extremely low (10-12 moles.cm-2), and is indicative of sub-

monolayer coverage.  This is not surprising as the nature of POW-ITO binding is likely to be only

physisorption or weak chemisorption.
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Fig 5.4.1.5: Scan rate dependence of cyclic voltammograms of self-assembled “bilayer” film on

ITO (shown in Fig 5.4.1.4), stable in BnOH containing 0.1 M (But)4NBF4.  Reference electrode was

an Ag wire (+ 400 mV vs Fc/Fc+).

The scan rate dependence of the film is presented in Fig 5.4.1.5.  The peak current of a redox

process plotted versus the square root of scan rate (v1/2) gives the value for the DCT of the film. DCT

is a measure of how fast an electron or ion can diffuse through a film and can be calculated using

the Randles-Sevçik equation (Equation 8).

2/12/12/35 ....)1069.2( vCDAnxi iCTp =               (8)

Where ip is the peak current (Amps), n is the number of electrons transferred in the redox process, A

is the geometric electrode area (cm2), DCT is the diffusion coefficient (cm2.s-1), Ci is the bulk

concentration of redox species (mol.cm-3) and v is the scan rate (V.s-1).  If the area of the electrode

is accurately measured and the film thickness measured then C can be calculated and hence DCT.

Using the slope for the Ru oxidation in Fig 5.4.1.5, DCT can be calculated from the Γ value in Table
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5.4.1. In the case of [Ru(bpy)2(PVP)10]4.5[S2Mo18O62] the mean layer thickness was measured by

AFM to be approximately 200 nm. Assuming the same film thickness of 200 nm for the

[Ru(bpy)2(PVP)10]4.5[P2W18O62] films, the concentration of Ru in the composite film was calculated

as 0.03 M, which yielded a DCT value of (2.62 ± 0.10) x 10-11 cm2.s-1.  This was a factor of two

larger than that reported for a film of [Ru(bpy)2(PVP)10]4.5[S2Mo18O62].7  The value obtained for DCT

was assessed using the following equations:

Fv

RT=                       (9)

 .CTD=                 (10)

Where v is the scan rate (V.s-1), τ is the experimental timescale (s) and δ is the depletion layer

thickness. Using our DCT value of 2.62 x 10-11 cm2.s-1 and scan rates of 10 mV.s-1 and 100 mV.s-1

(the lowest and highest scan rates used in measurements of DCT and Γ), values of τ obtained were

2.57 s and 0.26 s respectively.  Insertion of these values into Equation 10 yielded a depletion layer

thickness between 26 and 82 nm.  It is highly desirable that the value of δ is less than half the film

thickness and these numbers therefore appear to confirm that the value obtained for DCT in this case

is a reasonable one.

5.4.2 – Photoelectrochemistry:

The photocurrent generation ability of the films was examined using 480 ± 5 nm irradiation from a

Hg/Xe arc lamp.  The prepared films were immersed in a solution of pure BnOH containing 0.1 M

(But)4NBF4 electrolyte, as this electrolyte system was shown previously to not adversely affect

layer stability.  Some selected photocurrents are shown below.
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Fig 5.4.2.1: Photocurrent generated by blank ITO in pure BnOH containing 0.1 M (But)4NBF4

electrolyte at 0.5 V under 480 nm irradiation.

Fig 5.4.2.2: Photocurrent generated by [Ru(bpy)2(PVP)10]2+ in pure BnOH containing 0.1 M

(But)4NBF4 electrolyte at 0.6 V under 480 nm irradiation.



183

Fig 5.4.2.3: Photocurrent generated by one “bilayer” of [Ru(bpy)2(PVP)10]2+/[P2W18O62]6- dip-

coated onto an ITO working electrode in pure BnOH containing 0.1 M (But)4NBF4 electrolyte.

Potential held at + 0.7 V, irradiation at 480 nm.

The photocurrents shown in Figs 5.4.2.1 – 5.4.2.3 show that a clear pattern emerges in the data.

The blank ITO and α-[P2W18O62]6- alone generate tiny currents, of the order of 10 nA. This is due

to the almost negligible spectral absorptivity of these materials at 480 nm.  The Ru metallopolymer

alone does generate a current under these conditions and has been examined in the past as a

photocatalyst by itself.  In fact, [Ru(bpy)2(PVP)5]2+ coated on TiO2 was shown previously to

generate a photocurrent of 45 nA under 450 nm irradiation (ie: non-incident with TiO2

absorption);23 and although the surface coverage was far higher in that case (~10-7 mol.cm-2) the

photocurrent generated here under similar conditions is of comparable magnitude.  The data in Fig

5.4.2.3 clearly show that there is a substantial increase in photocurrent generated when the

composite film is employed, as the current increase from 40 nA.cm-2 to 170 nA.cm-2. In addition,

the surface coverage of Ru2+ centers in the composite film is actually 30 % lower than for the film

comprised of [Ru(bpy)2(PVP)10]2+ alone.

A potential dependence study was performed to optimize the driving force for this process.  The

data are presented in Fig 5.4.2.4.
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Fig 5.4.2.4: Plot of photocurrent generation versus applied overpotential of one “bilayer” of

[Ru(bpy)2(PVP)10]2+/[P2W18O62]6- dip-coated onto an ITO working electrode, fitted to an

exponential model.

The overpotential, η, was calculated as the difference between the experimental applied potential

and the formal E0 value of the first polyoxotungstate (electron acceptor) reduction.  It is clear that

the data follows an exponential trend, and the log plot of the data can be used to calculate the

transfer coefficient of the potential energy barrier, α, using the Equation 11.

RT

nF
i

e

i
nf 3.2

log
1

log 0


 −=
−

          (11)

Where α is a measure of the symmetry of the potential energy barrier for the photoreductive

process, and i is the current density (Amps) and i0 is the current density at E0 (for first tungstate

reduction).  When α is greater then 0.5, then the activation energy for the reduction process is

decreased while the activation energy for the oxidation process is increased.  The plot in Fig 5.4.2.5

was used to calculate α and i0 and is shown below.
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Fig 5.4.2.5: Tafel plot of the photocurrent data in Fig 5.4.2.4.

According to Equation 11 the value for α is approximately 0.52, indicating that the polyoxometalate

redox process is highly reversible.  This is reflected in the shape of the CVs in Fig 5.4.1.4. The

value for i0, the current generated at equilibrium (POW E0) was determined to be 0.36 nA.  This

kind of behaviour was not observed by Jie Zhu in the case of [Ru(bpy)3]2[S2W18O62], where a higher

α value of 0.92 was obtained.1 In this case the value of α simply indicates that the photocatalytic

reaction under investigation is fully reversible and therefore reoxidizing the reduced POW

molecules to close the catalytic cycle is unlikely to be a determining factor in the rate of

photocurrent generation. Indeed, the value of DCT for a film hundreds of nm thick is likely to be a

limiting factor in current generating efficiency.1

5.4.3 – Electron microscopy and EDX spectroscopy:

The data obtained in Chapter 4 and detailed studies performed by our group strongly suggest that

film morphology and thickness are critical in determining photocurrent generating efficiency for

self-assembled films of [Ru(bpy)2(PVP)10]2+ and α-[Mo18O54(SO4)2]4-. Assuming the morphology

of the films comprised of [Ru(bpy)2(PVP)10]2+ and α-[P2W18O62]6-, also influence
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photoelectrochemical performance through parameters such as ion transport, the microscopy of the

films has been investigated.

Fig 5.4.3.1: FeSEM image of [Ru(bpy)2(PVP)10]2+ thin film self-assembled on ITO. Scale: 500

nm/division.

Firstly the feSEM of the thin films of [Ru(bpy)2(PVP)10]2+ was recorded. Ru based

metallopolymers with free pyridine groups in the polymer backbone are well known to form stable

films on most electrode surfaces, as the disordered and flexible polyvinylpyridine chain bonds

directly to the surface via a series of pyridyl nitrogen-substrate coordination bonds.10, 20 As

expected, Fig 5.4.3.1 shows a relatively homogenous film that is fairly densely packed.  It was

difficult to get an image of greater magnification image of the film due to its high organic content,

but it was apparent that the film had cracks in it of the order of 100 – 500 nm across.  These cracks

likely formed during the drying process.
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Fig 5.4.3.2: FeSEM image of α-[P2W18O62]6- thin film self-assembled on ITO. Scale: 100

nm/division.

Fig 5.4.3.3: FeSEM image of α-[P2W18O62]6- thin film self-assembled on ITO. Scale: 40

nm/division.
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Fig 5.4.3.4: FeSEM image of a clean, unmodified ITO electrode. Scale: 50 nm/division.

The two Figs 5.4.3.2 and 5.4.3.3 show the self-assembled film of K6α-[P2W18O62] on an ITO surface

at different magnifications.  Fig 5.4.3.2 revealed that the polyoxotungstate did not form a densely

packed monolayer on ITO. Homogeneous surface adsorption is not favoured in this case as

covalent bond formation is not a driving force for assembly; in fact the POW is likely only held to

the surface via weak Van der Waals forces.  The rough ITO substrate can clearly be seen on the

right hand side of both images, and a blank ITO electrode is also shown in Fig 5.4.3.4 for

comparison.  The POW molecules cluster together in sub-micron sized spheres, which in turn clump

together to form islands of material on the electrode surface.  These spheres are roughly 100 nm to

300 nm in diameter.  The patchy self-assembled film of α-[P2W18O62]6- as revealed by feSEM is

consistent with the low surface coverages obtained in electrochemical studies of these films.
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Fig 5.4.3.5: FeSEM image of [Ru(bpy)2(PVP)10]4.5α-[P2W18O62] thin film self-assembled on ITO.

Scale: 500 nm/division.

Fig 5.4.3.6: FeSEM image of [Ru(bpy)2(PVP)10]4.5α-[P2W18O62] thin film self-assembled on ITO.

Scale: 50 nm/division.
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Fig 5.4.3.7: FeSEM image of [Ru(bpy)2(PVP)10]4.5α-[P2W18O62] thin film self-assembled on ITO.

Scale: 50 nm/division.

Fig 5.4.3.8: FeSEM image of [Ru(bpy)2(PVP)10]4.5α-[P2W18O62] thin film self-assembled on ITO.

Scale: 10 nm/division.
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Figs 5.4.3.5 to 5.4.3.8 show the feSEM images of a composite self-assembled film of

[Ru(bpy)2(PVP)10]2+ and α-[P2W18O62]6- at different magnifications.  The differences between this

film and the two parent ion films are striking.  The associated ion-clusters seem to form spherical

clumps upon association, reminiscent of the structures formed by the α-[P2W18O62]6- alone.  The

sphere surfaces were themselves rough and were on the 5 nm scale, which is approaching the

resolution of the instrument. These spheres fell roughly into three size categories.  Using the crude

graphical integration in Fig 5.4.3.6 the three particle sizes were estimated to be 45 ± 8, 74 ± 9 and

161 ± 41 nm.  Whether or not these numbers represent meaningful properties of the clusters on the

nanoscale is unclear; however it is clear that the clusters in Fig 5.4.3.6 are smaller than those in Fig

5.4.3.2.  Their smaller size is therefore likely a consequence of ion-cluster formation.

The composite film was probed by EDX spectroscopy to assess the ratio of

[Ru(bpy)2(PVP)10]2+ to α-[P2W18O62]6- in the film.  EDX spectroscopy is a very useful tool for

obtaining quantitative elemental analyses of thin films.  Exact quantitation can be difficult,

particularly with lighter elements, but in this case only a relative ratio (Ru:W) was required. The

absolute numbers provided below for all elements are not quantitatively accurate and should not be

treated as such; however the relative ratio of Ru:W is very accurate. The EDX spectra were

acquired over a large area in Fig 5.4.3.4 to avoid burning of the film.  The numerical data provided

is an average of 3 independent spectral acquisitions.
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Fig 5.4.3.8: EDX spectrum of self-assembled film of [Ru(bpy)2(PVP)10]2+ and α-[P2W18O62]6-.

Values in table are mean atomic percentages and were calculated as an average of 3 spectra.
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The results obtained in Fig 5.4.3.8 were somewhat surprising.  Firstly the presence of magnesium

and aluminium peaks were attributed to trace quantities in the underlying glass.  The sodium was a

trace impurity from the synthesis of the polyoxotungstate (starting material was sodium tungstate).

The calcium, indium, tin and silicon are present in the EDX spectrum of blank ITO.  Most

importantly, the average Ru:W atomic ratio was 0.053:0.473.  This is exactly a ratio of 2 Ru per

17.8 W atoms, or 2 Ru centers per polyoxotungstate molecule (W18).  This ratio is surprising for

three reasons.  Firstly, the UV/Vis and emission spectroscopy, as well as electrochemistry, appeared

to indicate a favoured 4.5:1 ratio for this cluster in solution; secondly the metallopolymer formed

4.5:1 ratios with the isostructural polyoxomolybdate α-[Mo18O54(SO4)2]4- and thirdly a 2:1 ratio

would not be expected to result in ion-cluster neutrality. The reason for this difference is unknown.

It may be that more than one ion-cluster ratio may be favoured at the electrode interface as a

function of deposition time.  It is possible that the formation of a kinetically controlled 2:1 product

is favoured as a disproportionation product when an excess of polyoxotungstate is present.  The

formation of disproportionation products has been postulated in previous studies involving

[Ru(bpy)3]2+ and [S2M18O62]4- (M = Mo, W) in which the charge-neutral 2:1 adducts dissociate to

form the 1:1 products.  These 1:1 products have never need isolated.  However in the case of

[Ru(bpy)3]2+ and the Keggin ion [PW12O40]3- adducts of both 1:1 and 3:2 ratios have been isolated

by different authors.25, 26  In this case the 1:1 adduct was grown slowly by recrystallization whereas

the 3:2 adduct was isolated using the same centrifugation method we have used (see Chapter 2).

Therefore it may be possible to isolate different stoichiometric products by controlling the rate of

reaction between the two ions.  It certainly appears, in our experience, that addition of

stoichiometric solutions to one another results in the most stable product precipitating almost

instantaneously; however slow diffusion has also been demonstrated to yield 1:1 crystals.25  This

observation merits further study in future.

5.5 – Conclusions:

The photophysics of [Ru(bpy)2(PVP)10]2+ in the presence of the polyoxotungstate anion α-

[P2W18O62]6- have been investigated.  The two ions form electrostatic composites of unusual ratios

in acetonitrile. UV/Vis association data appear to suggest that the solubility of the adducts changes

at two distinct ion-cluster ratios corresponding to {[Ru(bpy)2(PVP)10]9α-[P2W18O62]}12+ and

{[Ru(bpy)2(PVP)10]4.5α-[P2W18O62]}3+, which may indicate the formation of adducts of these

compositions in solution. A new absorbance band was also seen upon ion-cluster formation, which

tailed into the red. Luminescence quenching was observed between the two ions and the quenching
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data was fitted to various models.  The Stern-Volmer model was applied but has limited

applicability to polymer systems.  The Perrin model, which is the most commonly applied polymer

quenching model, did not give a great fit to the data.  In all three quenching models the presence of

three different linear regions was again observed.  Using the Perrin equation to fit the initial data

gives a quenching sphere radius RS of 2.2 ± 0.1 Å, which is a reasonable estimate for polymeric

quenching distance.  A luminescent lifetime Stern-Volmer plot appeared to reveal that the

quenching is purely static in nature; however there was an abrupt increase in luminescent lifetime at

a POW mole fraction of 0.18, which corresponds to the {[Ru(bpy)2(PVP)10]4.5α-[P2W18O62]}3+

species observed in the absorbance and emission intensity plots. Resonance Raman spectra of the

isolated cluster revealed the presence of a polyoxotungstate mode under visible (488 nm)

irradiation, which is coincident with the new optical transition seen in the UV/Vis spectra, and the

new optical transition was hence assigned to an intramolecular charge-transfer transition.

Cyclic voltammetry revealed that [Ru(bpy)2(PVP)10]2+ forms stable films when dip-coated

onto ITO working electrodes whereas α-[P2W18O62]6-, which lacks the free pyridyl nitrogen atoms to

drive thin film formation, formed very patchy films with sub-monolayer coverage.  Composite self-

assembled films of [Ru(bpy)2(PVP)10]2+ and α-[P2W18O62]6- were formed electrostatically and were

stable to voltammetric cycling in BnOH electrolyte but not MeCN.  The photoelectrochemistry of

the films was recorded under visible (480 ± 5 nm) irradiation using BnOH as the catalytic substrate.

It was found that the composite film produced a significantly higher photocurrent than that of

[Ru(bpy)2(PVP)10]2+ alone under the same conditions of irradiation and surface coverage.  The

driving force for photocurrent generation was increased by applying increased overpotential to the

system and this resulted in an exponential increase in current density as a function of increased

applied potential.  A Tafel plot was employed to estimate the value for α, which is a measure of the

symmetry of the potential energy barrier for the photoreductive process and is used to indicate if a

reaction is favoured or not.  The value of 0.8 obtained was lower than the 0.92 obtained for

analogous films of [Ru(bpy)2(PVP)10]4.5α-[S2Mo18O62] reported by Jie Zhu; however the

photocurrents obtained in this case were significantly higher as a higher overpotential could be

employed.  This is due to the more negative reduction potential of tungstates relative to their

analogous molybdates.  Field-emission scanning electron microscopy revealed that the composite

films were mesoporous, and EDX spectroscopy revealed a Ru:POW ratio of 2:1 It is postulated

that the 2:1 ratio is possibly favoured at high concentrations of polyoxotungstate due to a

disproportionation reaction.
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Chapter 6:

Combinatorial approach to identifying potentially sensitized clusters

using resonance Raman spectroscopy.
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6.1 – Introduction:

The failure of [Ru(bpy)3]2+ to effectively sensitise the Dawson-like sulfite α/β-[Mo18O54(SO3)2]4-

ions (Chapter 3) was unexpected given the thermodynamic similarities between [Ru(bpy)3]2α/β-

[Mo18O54(SO3)2] and the sulfate analogue [Ru(bpy)3]2α-[Mo18O54(SO4)2], as the latter resulted in

effective visible sensitisation under 480 nm irradiation as identified by resonance Raman (see Fig

6.1.1).1 Although in both cases a new optical transition was observed in the visible spectrum of the

electrostatic adducts, it appeared weaker in [Ru(bpy)3]2α/β-[Mo18O54(SO3)2] than in the sulphate

analogue composites. A key distinction between assemblies which showed photosensitization by

the ruthenium centre and the sulfite polyoxomolybdates, which did not, was in the resonance

Raman spectroscopy of the associated assemblies. For example [Ru(bpy)3]2α-[Mo18O54(SO4)2]

showed that resonantly enhanced vibrations from both cation and anion participation in the new

optical transition; however this was not true of [Ru(bpy)3]2α/β-[Mo18O54(SO3)2].2, 3 We rationalised

that the presence of a new optical transition and associated involvement of the polyoxometalate in

this transition was indicative of photosensitization as this optical transition is likely to play a role in

the sensitization process.  In this chapter we explored this premise by using resonance Raman to

take a combinatorial approach to identifying transition metal complex/polyoxometalate ion-clusters

with potential visible-sensitizing ability.
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Fig 6.1.1: Resonance Raman spectrum of solids dispersed in KBr discs (~ 5 % w/w) excited at 488

nm: (a) [(But)4N]4α-[Mo18O54(SO4)2]; (b) [Ru(bpy)3]Cl2; (c) [Ru(bpy)3]2α-[Mo18O54(SO4)2].

Reproduced from [3].

The inherently low solubility of transition metal complex/polyoxometalate ion-clusters in MeCN

renders them easy to isolate.  Concentrated solutions of both parent ions in MeCN at appropriate

molar ratios required for ion-cluster neutrality are added together slowly and the insoluble

composite material collected by centrifugation.  The solids are then washed repeatedly, dried under

a stream of N2 and ground into a KBr disc for Raman analysis.  Since both ruthenium polypyridyl

complexes and polyoxometalates are photoactive, the use of dry KBr as a matrix minimises the

chances of either ion undergoing undesirable side reactions during spectral acquisition.

6.2 - Synthesis and characterization:

In order to maximise the amount of data collected, a range of transition metal complexes which had

been studied and characterised previously by our group were assembled. Each monomer complex

(except the Fe complexes, which are paramagnetic) was analyzed by 1H-NMR (Appendix 1) before
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synthesis of the composite materials was performed. In total 14 metal cations were explored in

conjunction with three Dawson polyoxometalates. The cationic complexes used are shown in Table

6.2.1.  The synthetic procedures are outlined in Chapter 2.

Ru (II) Os (II) Fe (II)

[Ru(bpy)2(PVP)10]2+ [Os(bpy)3]2+ [Fe(bpy)3]2+

[Ru(bpy)2(qpy)]2+ [Os(bpy)2(qpy)]2+ [Fe(terpy)2]2+

[Ru(bpy)2(caip)]2+ [Os(bpy)2(p0p)2]2+

[Ru(dpp)2(caip)]2+ [Os(bpy)2(PVP)10]2+

[Ru(dppz)2(caip)]2+

[Ru(bpy)2(caip-NH2)]2+

[Ru(bpy)2(caip-NO2)]2+

[Ru(dpp)3]2+

Table 6.2.1: List of transition metal complexes employed in this combinatorial study.

The Dawson polyoxometalates α-[Mo18O54(SO4)2]4-, γ*-[W18O54(SO4)2]4- and α-[W18O54(PO4)2]6-

were synthesized as described previously.4, 5, 6 The electrostatic adduct materials were synthesized

according to the procedure of Hultgren et al.7  In brief 0.75 ml of metal complex solution (either 2

mM or 4.5 mM depending on the complex) was added dropwise to 1 ml of 1 mM polyoxometalate

solution with vigorous stirring.  At these concentrations the adduct materials are very insoluble in

MeCN and thus precipitate almost immediately.  The solid powders were isolated via

centrifugation.  The supernatant was removed and the material was washed with fresh MeCN, to

remove any residual starting materials.  This was performed in triplicate.  The solid was then

washed with diethyl ether and dried under a stream of N2.
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6.3 – Resonance Raman spectroscopy of novel ion-clusters with Ru complexes:

The Raman spectra of the isolated solids in KBr discs were performed under visible irradiation

(458, 488 and 514 nm). As described, the intensity of Raman spectra can be enhanced dramatically

if the excitation wavelength is coincident with an optical absorbance, and enhancements of the

order of 106 are commonly observed for chromophore vibrational modes.8  This permits relatively

unambiguous identification of the underlying optical transition, if it is isolated from other

absorbances as chromophore modes can be selectively tracked as the laser lines come in and out of

resonance. Importantly the fully oxidized polyoxometalates employed in this thesis only absorb

below 400 nm and hence give very weak intensity Raman spectra under visible irradiation, whereas

the Ru complexes absorb strongly in the visible and give intense resonantly enhanced spectra.

In almost every case studied to date, addition of a polyoxometalate solution to a solution of

Ru complex resulted in quenching of the Ru luminescence.  The sole exception to this was in the

case of [Ru(bpy)2(biq)]2+---[Co(H2O)SiW11O39]6-, where no quenching was observed, which was

attributed to the positive free energy of electron transfer for this system (+ 0.35 eV).9 The

association of a number of cationic Ru complexes with anionic Dawson polyoxometalates also

resulted in the appearance of a new optical transition at low energies in the UV/Vis spectra and

these transitions were assigned to intramolecular charge-transfer transitions on the basis of

resonance Raman data, as described in previous chapters. However the new charge-transfer

transitions observed did not always result in the appearance of polyoxometalate modes under visible

irradiation.2 The reason for this is not precisely known, however in the large majority of cases

examined in this study no polyoxometalate modes were seen under visible excitation.  The

polypyridyl complexes of ruthenium (II) employed in this study are discussed in this section.
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Fig 6.3.1: Structure of [Ru(bpy)2(PVP)10]2+ (left) and UV/Vis and emission spectroscopy (~ 9 x 10-6

M) of [Ru(bpy)2(PVP)10]2+ in MeCN (right).  Excitation wavelength was 450 nm.

Fig 6.3.1 shows the structure of the metallopolymer [Ru(bpy)2(PVP)10]2+, which has been used

extensively throughout this thesis.  The bidentate coordination of the two polymer pyridines to the

Ru center does not induce major spectral changes relative to [Ru(bpy)3]2+, as the UV/Vis and

emission spectra indicate.  The MLCT Ru dπ − bpyπ* absorption is centered at around 450 nm and

exciting into this band generates an intense phosphorescence band at 615 nm.  The phosphorescence

intensity has been normalized for clarity.
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Fig 6.3.2: Resonance Raman spectra of (a) [Ru(bpy)2(PVP)10](NO3)2, (b) [Ru(bpy)2(PVP)10]4.5α-

[Mo18O54(SO4)2] and (c) [Ru(bpy)2(PVP)10]4.5γ*-[W18O54(SO4)2] in oven-dried KBr (~ 5 % w/w)

under 514 nm excitation.

The spectra in Fig 6.3.2 show the changes in the Raman spectrum of [Ru(bpy)2(PVP)10]2+ upon

electrostatic cluster formation with various Dawson polyoxometalates.  In these spectra the

bipyridine ligand modes at 1603, 1556 and 1485 cm-1 are unaffected by counterion exchange, as is

the Ru-N stretch at 375 cm-1.  However some new modes that are not attributable to the Ru

metallopolymer are visible in the adduct spectra.  In the case of the polyoxomolybdate cluster

[Ru(bpy)2(PVP)10]4.5α-[Mo18O54(SO4)2] a new  mode appeared at 905 cm-1, which has previously

been attributed to the Mo-O stretching mode of α-[Mo18O54(SO4)2]4-.10  However it appears as

though a polyoxotungstate mode at 930 cm-1 is also resonantly enhanced in the case of

[Ru(bpy)2(PVP)10]2γ*-[W18O54(SO4)2].  This is likely the W-O stretching mode, although the

resonance enhancement appears to be weaker in this case.  These data imply a different type of

intramolecular electronic communication to those in the literature, which focused on the resonance

Raman of [Ru(bpy)3]2α-[Mo18O54(SO4)2] and [Ru(bpy)3]2γ*-[W18O54(SO4)2], and which revealed the

resonance enhancement of more than one polyoxometalate band.1, 11 These differences are not
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unusual given the difference in polyoxometalate binding between the polymer and monomer. The

enhancement of so many modes is not observed in this case, nevertheless the spectra do appear to

confirm that both ions participate in an optical transition based around 514 nm in the cases of both

molybdate and tungstate.  Resonance enhancement of the Ru-bpy modes is expected at this

wavelength, given that the tail of the MLCT mentioned previously is under irradiation; however

enhancement of the polyoxometalate modes at this wavelength indicates that the polyoxoanions

participate in the underlying transition at 514 nm.
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Fig 6.3.3: Resonance Raman spectra of (a) [Ru(bpy)2(PVP)10](NO3)2, (b) [Ru(bpy)2(PVP)10]2α-

[W18O54(PO4)2] and (c) K6α-[W18O54(PO4)2] in oven-dried KBr (~ 5 % w/w) under 488 nm

excitation.
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Fig 6.3.3 shows the Raman spectra of the phosphotungstate Dawson anion α-[W18O54(PO4)2]6-,

[Ru(bpy)2(PVP)10]2+ and the associated metallopolymer composite [Ru(bpy)2(PVP)10]4.5α-

[W18O54(PO4)2].  In the case of this polyoxometalate a new feature appeared at 960 cm-1 in the

adduct spectrum.  This feature has been attributed to the W-O stretching mode, which has

undergone a peak shift upon binding to metallopolymer. This peak shift may be due to

intramolecular H-bonding, which has been seen before in the infrared spectrum and crystal structure

of K5{[Ru(bpy)3][PW11O39]}5-.12 What Figs 6.3.2 and 6.3.3 demonstrate is that [Ru(bpy)2(PVP)10]2+

appears to be an excellent candidate for Dawson polyoxometalate sensitization, for both molybdates

and tungstates, and this has since been demonstrated in the photoelectrochemical studies in the

literature and in Chapters 4 and 5.13
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Fig 6.3.4: Structure of [Ru(bpy)2qpy]2+ (left) and UV/Vis and emission spectroscopy of

[Ru(bpy)2(PVP)10]2+ in DMSO (right).  Excitation wavelength was 465 nm.

Fig 6.3.4 shows the structure of [Ru(bpy)2qpy]2+ and its optical spectroscopy in DMSO.  The Ru-

bpy MLCT is clearly visible at approximately 465 nm and exciting into this band produced an

emission at 660 nm, which is red-shifted with respect to [Ru(bpy)3]2+.  The MLCT is also broadened

towards the red and hence is likely to be an overlap of the Ru-bpy and Ru-qpy MLCT transitions.

The free pyridyl nitrogen atoms can form coordination bonds with other molecules and with

electrode surfaces.
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Fig 6.3.5: Resonance Raman spectra of (a) [Ru(bpy)2(qpy)]2+, (b) [Ru(bpy)2(qpy)]2α-

[Mo18O54(SO4)2] and (c) [Ru(bpy)2(qpy)]2γ*-[W18O54(SO4)2] in oven-dried KBr (~ 5 % w/w) under

514 nm excitation.

Fig 6.3.1.5 shows the resonance Raman spectra of [Ru(bpy)2(qpy)]2+, [Ru(bpy)2(qpy)]2α-

[Mo18O54(SO4)2] and [Ru(bpy)2(qpy)]2γ*-[W18O54(SO4)2]  under visible irradiation. At this

wavelength it is clear that both bpy and qpy modes are resonantly enhanced, which confirms that

MLCT transitions to both ligands are resonant at 514 nm.  Some interesting changes are seen in the

adduct spectra. A major band at 1560 cm-1, assigned to a pyridine C-C stretching mode,

disappeared whereas new bands grew in at 1634 and 1507 cm-1.14  Other bipyridyl based modes

were enhanced at 1335, 434 and 410 cm-1.  Interestingly, addition of either molybdate (b) or

tungstate (c) resulted in the same spectral changes, which confirms that they are not

polyoxometalate based and therefore cannot be explained in terms of resonantly enhanced Ru-

polyoxometalate charge-transfer transition as in Fig 6.3.2. We tentatively assign the changes to

arise as a result of the free pyridyl nitrogen atoms interacting with the polyoxometalates, and thus

experiencing significant changes in electron density.  However without X-ray crystal diffraction or
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NMR data this for the moment is speculative. The resonance Raman spectroscopy of a range of

similar complexes is presented in Figs 6.3.7, 6.3.9 and 6.3.11.
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Fig 6.3.6: Structure of [Ru(bpy)2(caip-COOH)]2+ (left) and UV/Vis and emission spectroscopy of

[Ru(bpy)2(PVP)10]2+ in MeCN (right).  Excitation wavelength was 460 nm.

Fig 6.3.6 shows the structure and optical spectra of [Ru(bpy)2(caip-COOH)]2+.  This structure

contains a caip ligand which has three pKa values.  The absorption spectrum reveals the presence of

an MLCT band at ~ 460 nm which contains contributions from both the Ru-bpy and Ru-caip MLCT

transitions.  Excitation into this band results in emission at 610 nm.  The absorption and emission

properties can change as a function of pH, and the complex can also form amide bonds via the

carboxylic acid group.
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Fig 6.3.7: Resonance Raman spectra of (a) [Ru(bpy)2(caip-COOH)](ClO4)2 and (b) [Ru(bpy)2(caip-

COOH)]2α-[Mo18O54(SO4)2] in KBr discs (~ 5 % w/w) under 488 nm irradiation.
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Fig 6.3.8: Structure of [Ru(dpp)2(caip-COOH)]2+ (left) and UV/Vis and emission spectroscopy of

[Ru(dpp)2(caip-COOH)]2+ in DMSO (right).  Excitation wavelength was 480 nm.
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Fig 6.3.8 shows the structure and spectra of [Ru(dpp)2(caip-COOH)]2+.  The MLCT of the complex

clearly consists of two peaks, and excitation at 480 nm gave emission at approximately 635 nm.

This complex also exhibits pH dependent spectroscopy.
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Fig 6.3.9: Resonance Raman spectra of (a) [Ru(dpp)2(caip-COOH)](ClO4)2 and (b) [Ru(dpp)2(caip-

COOH)]2α-[Mo18O54(SO4)2] in KBr discs (~ 5 % w/w)  under 488 nm irradiation.
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Fig 6.3.10: Structure of [Ru(dppz)2(caip-COOH)]2+ (left) and UV/Vis and emission spectroscopy of

[Ru(dppz)2(caip-COOH)]2+ in DMSO (right).  Excitation wavelength was 460 nm.

Fig 6.3.10 shows the structure and spectra of [Ru(dppz)2(caip-COOH)]2+.  The peak at ~ 470 nm in

the UV/Vis spectrum is the MLCT, and again contains contributions from the Ru-dppz and Ru-bpy

transitions.  The dppz π → π * transition at 365 nm is very pronounced in this case.  This molecule

also exhibits pH dependent electronic spectroscopy.
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Fig 6.3.11: Resonance Raman spectra of (a) [Ru(dppz)2(caip-COOH)](ClO4)2 and (b)

[Ru(dppz)2(caip-COOH)]2α-[Mo18O54(SO4)2] in KBr discs (~ 5 % w/w)  under 488 nm irradiation.

Figs 6.3.1.7 – 6.3.1.11 contain the spectra of a series of similar Ru complexes, all based on the caip

ligand, and their electrostatic adducts with α-[Mo18O54(SO4)2]4-.  It is clear that in all three cases

there is little or no change to the Ru Raman modes as a consequence of binding to the

polyoxomolybdate.  The degree of donor/acceptor energy level overlap should be extremely similar

for all three complexes and for [Ru(bpy)3]2+, however these three complexes contain either one

(caip-COOH) or three (caip-COOH and dpp or dppz) bulky ligands and hence molecular shape

likely plays a crucial role. It is worth noting that the terminal COOH group in each case has no

effect on the interaction with the molybdate, which is in contrast to the free pyridyl N atoms in Fig

6.3.4. It is therefore likely that an optimized sensitizer/polyoxometalate system would consist of a

complex with relatively small ligands, facilitating close packing in the electrostatic adduct and

possibly H-bonding, to accommodate charge-transfer.
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Fig 6.3.12: Structure of [Ru(bpy)2(caip-NH2)]2+ (left) and UV/Vis and emission spectroscopy of

[Ru(dppz)2(caip-NH2)]2+ in MeCN (right).  Excitation wavelength was 460 nm.

Fig 6.3.12 shows the spectra and structure of [Ru(bpy)2(caip-NH2)]2+. The complex exhibits an

MLCT with two contributions, Ru-bpy and Ru-caip, at approximately 460 nm.  Excitation at 460

nm resulted in emission at approximately 615 nm in MeCN.  The complex is spectroscopically and

electrochemically similar to [Ru(bpy)2(caip-COOH)]2+, shown in Fig 6.3.6.  However the free NH2

group is basic and will undergo different chemical reactions than the acidic COOH terminated

analogue.
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Fig 6.3.13: Resonance Raman spectra of (a) [Ru(bpy)2(caip-NH2)](ClO4)2 and (b) [Ru(bpy)2(caip-

NH2)]2α-[Mo18O54(SO4)2] 488 nm.

Fig 6.3.13 shows the resonance Raman spectra of the [Ru(bpy)2(caip-NH2)]2+. Clearly several

spectral changes occur upon association with the polyoxomolybdate.  Notably, the band at 1140 cm-

1 disappears when the POM is present.  Other bands at 1600 and 1455 cm-1 are decreased in

intensity whereas bands at 1028 and 370 cm-1 are increased in intensity, relative to the complex

alone.  The band at 730 cm-1 also increases in intensity and shifts to 770 cm-1.  The reason for these

spectral changes is unclear but they are tentatively attribtuted to interaction between the terminal

NH2 group and the polyoxometalate structure, either due to a change in local elevtron density and/or

H-bonding to the polyoxometalate.
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Fig 6.3.14: Structure of [Ru(bpy)2(caip-NO2)]2+ (left) and UV/Vis and emission spectroscopy of

[Ru(dppz)2(caip-NO2)]2+ in MeCN (right).  Excitation wavelength was 460 nm.

Fig 6.3.14 shows the structure and optical spectra of [Ru(bpy)2(caip-NO2)]2+.  The two contributions

from the overlapping Ru-bpy and Ru-caip MLCT transitions are visible at ~ 460 nm.  Excitation at

this wavelength gave luminescence at ~ 615 nm.  The spectra are very similar to that

[Ru(bpy)2(caip-COOH)]2+ and [Ru(bpy)2(caip-NH2)]2+ shown in Fig 6.3.6 and Fig 6.3.12

respectively.
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Fig 6.3.15: Resonance Raman spectra of (a) [Ru(bpy)2(caip-NO2)](ClO4)2 and (b) [Ru(bpy)2(caip-

NO2)]2α-[Mo18O54(SO4)2] dispersed in KBr (~ 5 % w/w) excitation wavelength 488 nm.

Fig 6.3.15 shows the resonance Raman of the Dawson polyoxomolybdate α-[Mo18O54(SO4)2]4- and

[Ru(bpy)2(caip-NO2)]2+, which is very similar to the [Ru(bpy)2(caip-NH2)]2+ complex used in Fig

6.3.13.  Several features in the adduct spectrum appear enhanced relative to the spectrum of

[Ru(bpy)2(caip-NO2)]2+ alone. Pyridine and caip ring stretch modes at 1620, 1556 and 1486 cm-1

appear more intense, relative to the bpy modes, whereas the peak at 1360 cm-1 splits into two

features of approximately equal intensity at 1339 and 1410 cm-1.  Interestingly the mode at 926 cm-1

disappears upon association.  Many low frequency modes below 800 cm-1 also appear significantly

enhanced. The mode at 1143 cm-1 decreases in intensity and the mode at 1028 cm-1 increases in

intensity, which reflects the similar changes in Fig 6.3.13, and hence is likely to changes in the

electronic distribution across the imidazole-based caip ligand.  However it is clear that no

polyoxometalate modes appear resonant in the adduct spectrum under 488 nm irradiation.  The

differences in the two spectra in this case likely arise from the change in electron density

experienced by the Ru complex upon changing counterion.  In particular the terminal NO2 group

appears to be sensitive to changes in its localized electronic environment, as when the
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corresponding COOH terminated ligand was employed the spectrum was virtually unchanged in the

presence of the same polyoxomolybdate (see Fig 6.3.6). All of the spectral changes may suggest

that the resonance of the complex itself is changing upon association, which could reflect an

underlying shift in the Ru-caip transition.

Most of the complexes employed in this study exhibited negligible or no spectral changes

upon electrostatic association with the Dawson polyoxometalates.  Some of these data are quite

surprising given the similarities between the complexes and [Ru(bpy)3]2+ which did appear to

exhibit significant electronic communication with the Dawson polyoxometalates.
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Fig 6.3.16: Structure of [Ru(dpp)3]2+ (left) and UV/Vis and emission spectroscopy of [Ru(dpp)3]2+

in MeCN (right).  Excitation wavelength was 460 nm.
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One complex in particular ([Ru(dpp)3]2+, which is shown in Fig 6.3.16) is analogous to

[Ru(bpy)3]2+. As shown its MLCT absorbance occurs around 460 nm and excitation at this

wavelength results in emission at ~ 610 nm.  The spectroscopic and electrochemical energy levels

of [Ru(dpp)3]2+ are almost identical to those of [Ru(bpy)3]2+.
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Fig 6.3.17: Resonance Raman spectra of (a) [Ru(dpp)3](PF6)2 and (b) [Ru(dpp)3]2α-[Mo18O54(SO4)2]

in KBr discs (~ 5 % w/w) under 488 nm laser excitation.

However, Fig 6.3.17 reveals that anion exchange from [Ru(dpp)3](PF6)2 to [Ru(dpp)3]2α-

[Mo18O54(SO4)2] resulted in very minor spectral changes.  This is somewhat surprising, given the

previously published data in Fig 6.1.1, as [Ru(dpp)3]2+ and [Ru(bpy)3]2+ have almost

indistinguishable absorption, emission and electrochemical characteristics.  The only significant

difference between the two complexes lies in the bulky character of the diphenylphenanthroline

ligands, relative to the much smaller bpy.  Several literature examples of electrostatic

donor/polyoxometalate systems cite the extent of charge-transfer to be strongly dependant on the

distance between the two moieties.15 Despite this it has also been shown in Chapter 4 that effective

charge-transfer can occur in the case of [Ru(bpy)2(PVP)10]4.5α-[Mo18O54(SO4)2], which is obviously
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very bulky.  However bonding would almost certainly be favoured on the bipyridine side of the Ru

centers and hence charge-transfer character is observed in the resonance Raman spectra (Fig 6.3.2).

It must therefore be concluded that complexes where all three ligands are bulky are bad candidates

for sensitizing the Dawson polyoxometalates.  It is likely that H-bond bridging from the excited

state (ie: LUMO containing) ligand to the terminal polyoxometalate oxygen ligand is necessary for

charge-transfer and photosensitization.  The H-bond here will probably be to the terminal phenyl

groups, which is poorly coupled to the phenanthroline moieties.

6.4 – Resonance Raman spectroscopy of novel ion-clusters with Os complexes:

In many of the ion clusters studied there were significant changes to the metal complex resonance

Raman upon association with polyoxometalates.  These new features were difficult to identify as

discrete polyoxometalate modes, as no polyoxometalate modes appear in the vicinity of these

features.  In addition, some bipyridine based modes actually disappear upon association with the

polyoxometalates.  An example of this kind of spectral behaviour is given in Fig 6.4.2.
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Fig 6.4.1: Structure of [Os(bpy)3]2+ (left) and UV/Vis spectrum of [Os(bpy)3]2+ in MeCN; spectrum

was reproduced from [16]. Excitation at 480 nm gives rise to emission at 740 nm.

The structure and UV/Vis spectrum of [Os(bpy)3]2+ are presented in Fig 6.4.1.  Os (II) polypyridyl

complexes have very different properties than the corresponding Ru (II) complexes, due to the

different relative energy levels of the metal bonding and antibonding orbitals.  In the UV/Vis

spectrum of [Os(bpy)3]2+ there are two important MLCT absorption bands in the visible region: an

intense singlet absorption band centered at 450 nm and a weaker triplet absorption extending from

520 to 700 nm. Excitation into the 1MLCT state is followed by rapid and efficient intersystem

crossing to the 3MLCT manifold, and long lived phosphorescence can occur from this state. In

addition, unlike Ru complexes, the 3MLCT can be excited directly, at lower wavelengths. The band

at ultraviolet wavelengths (not shown) corresponds to the bpy π → π* transition.  In addition to the

different spectroscopic properties, Os (II) complexes also exhibit lower oxidation potentials than

their Ru (II) counterparts.  The effects of these altered properties on the interaction with Dawson

polyoxometalates is shown in Fig 6.4.2.
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Fig 6.4.2 Resonance Raman spectra of (a) [Os(bpy)3]2+, (b) [Os(bpy)3]2γ*-[W18O54(SO4)2] and (c)

[Os(bpy)3]2α-[Mo18O54(SO4)2]in oven-dried KBr (~ 5 % w/w) under 514 nm excitation.

The spectra in Fig 6.4.2 reveal that coupling of [Os(bpy)3]2+ to the Dawson polyoxometalates results

in very weak electronic interaction, as negligible spectral changes to the [Os(bpy)3]2+ bands are seen

upon association.  This is in stark contrast with [Ru(bpy)3]2+, as shown in Fig 6.1.1.  Since the

sterics of electrostatic association are expected to be identical in this case, it may be possible that

the thermodynamics of charge-transfer are not favoured when Os is used.  In addition, if H-bonding

between bpy and the terminal polyoxometalate oxygen ligands is involved, the acidity of the bpy

protons will be affected by the greater π-backbonding ability of Os, relative to Ru.



220

0

0.5

1

1.5

250 350 450 550 650 750 850

Wavelength (nm)
A

bs
or

ba
nc

e 
(a

.u
.)

Em
iss

io
n 

In
te

ns
ity

Fig 6.4.3: Structure of [Os(bpy)2(qpy)]2+ (left) and UV/Vis and emission spectra of

[Os(bpy)2(qpy)]2+ in DMSO excited at 485 nm.

The structure and spectra of [Os(bpy)2(qpy)]2+ are shown in Fig 6.4.3.  The 1MLCT band at

approximately 500 nm is weaker in this case, relative to the spectrum of [Os(bpy)3]2+.  The emission

maximum is also red-shifted by approximately 20 nm to ~ 760 nm.  As in the case of

[Ru(bpy)2(qpy)]2+, the free pyridyl nitrogen atoms can form coordination bonds with electron

acceptors.
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Fig 6.4.4: Resonance Raman spectra of [Os(bpy)2(qpy)]2+ and [Os(bpy)2(qpy)]2[Mo18O54(SO4)2] in

oven dried KBr discs (~ 5 % w/w) under 488 nm irradiation.

The spectra in Fig 6.4.4 show that the addition of the polyoxomolybdate to Os induces spectral

changes in the Os resonance Raman.  Strikingly the modes at 1522, 1433 and 1336 cm-1 disappear

completely upon association, while new bands appear at 1638, 1301 and 1228 cm-1.  The main

polyoxometalate band, the Mo-O terminal stretch, is very intense and usually appears between 800

and 900 cm-1; however in this case there is no trace of this mode being resonant at 488 nm.  There

are several possible explanations for these spectral changes.  Firstly the association of the Os to

POM results in a significant change in the electronic environment experienced by the Os ligands,

relative to the original ClO4
- counterions.  In the case of [Ru(bpy)2(qpy)]2[Mo18O54(SO4)2] new

modes grew-in at 1634 and 1335 cm-1, relative to the spectrum of [Ru(bpy)2(qpy)]2+ alone, and a

similar pattern is observed here with these modes appearing at 1638 and 1301 cm-1.  The mode that

disappears at 1560 cm-1 in the Ru/molybdate adduct species disappears at 1522 cm-1 in the case of

Os.  It is therefore likely that both the Ru and Os complexes are interacting with [Mo18O54(SO4)2]4-

in the same way, and this is likely to occur via the free pyridyl nitrogens on the qpy ligand. This

data may indicate that binding of TM complexes to polyoxometalates through free pyridyl nitrogen
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atoms does not depend strongly on the identity of the cation metal.  Mo is known to form

coordination bonds with N but this is unlikely to be the binding mode in this case as it would almost

certainly involve partial degradation of the robust POM structure.17
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Fig 6.4.5: Structure of [Os(bpy)2(p0p)2]2+ (left) and UV/Vis and emission spectra of

[Os(bpy)2(p0p)2]2+ in DMSO (~ 3 x 10-5 M) excited at 483 nm.

Fig 6.4.5 shows the structure and optical spectra of [Os(bpy)2(p0p)2]2+ (sometimes called [Os(2,2’-

bpy)2(4,4’-bpy)2]2+).  This complex is structurally similar to [Os(bpy)2(qpy)]2+ and hence has similar

absorption and emission properties.  The emission is red-shifted with respect to [Os(bpy)3]2+ and

excitation at 483 nm yields an emission at ~ 795 nm.  Like [Os(bpy)2(qpy)]2+, the free pyridyl

nitrogen atoms can form dative covalent bonds.
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Fig 6.4.6: Resonance Raman spectra of [Os(bpy)2(p0p)2]2+ and [Os(bpy)2(p0p)2]2-[Mo18O54(SO4)2]

in oven-dried KBr (~ 5 % w/w)  under 488 nm excitation.

The spectra of [Os(bpy)2(p0p)2]2+ and its associated molybdate cluster are presented in Fig 6.4.6.

The spectra show large similarities to those in Fig 6.4.4, where an almost isostructural Os complex

was employed. New features grew in at 1633, 1283, 734 and 640 cm-1. The changes in the spectra

are again attributed to the free nitrogen groups coordinating to the polyoxomolybdate.  However the

band that appeared in the spectrum of [Os(bpy)2(qpy)]2+ at 1522 cm-1 and consequently disappeared

upon Os/POM association is in this case only visible in the adduct spectrum.  The reason for this

difference in behaviour is unknown, but it may be that the qpy and p0p ligands move into resonance

as a function of ion-association.
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Fig 6.4.7: Structure of [Os(bpy)2(PVP)10]2+.

200 600 1000 1400 1800
Raman Shift (cm-1)

In
te

ns
ity

 (N
or

m
al

iz
ed

)

(a)

(b)14
46

12
92

58
0

Fig 6.4.8: Resonance Raman spectra of (a) [Os(bpy)2(PVP)10]2+ and (b) [Os(bpy)2(PVP)10]4.5α-

[Mo18O54(SO4)2]in oven-dried KBr (~ 5 % w/w) under 514 nm excitation.
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In direct comparison to the case of [Ru(bpy)2(PVP)10]4.5α-[Mo18O54(SO4)2] discussed previously,

Fig 6.4.8 shows the spectra obtained when the corresponding Os metallopolymer is employed.

Some metallopolymer features are enhanced slightly in the adduct spectrum at 1446, 1292 and 580

cm-1 but no polyoxomolybdate modes appear resonant at this wavelength.  In this case the structure

and sterics of [Os(bpy)2(PVP)10]nα-[Mo18O54(SO4)2] ion-cluster formation are identical to those in

the case of [Ru(bpy)2(PVP)10]4.5α-[Mo18O54(SO4)2]. This trend mirrors the differences between

[Ru(bpy)3]2+ and [Os(bpy)3]2+ and appears to confirm that the thermodynamics of charge-transfer

from Os (II) polypyridyl complexes to polyoxometalates appear to be unfavourable for

sensitisation.

6.5 – Resonance Raman spectroscopy of novel ion-clusters with Fe complexes:

In addition to the Os (II) and Ru (II) complexes some Fe (II) complexes were also investigated in

this study.  Iron (II) polypyridyl complexes are very different from both their corresponding Ru and

Os analogues due to dramatic differences in their excited state potential energy surfaces. The

biggest difference is manifested in the presence of several low lying Fe ligand-field states which

promote extremely efficient thermal excited state decay, and hence iron polypyridyl complexes are

non-luminescent.  This deactivation pathway is highlighted in Fig 6.5.1.
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Fig 6.5.1: The electronic structure of [Fe(bpy)3]2+ including the low-spin 1A1 ground state, excited

ligand field states 1T2 and 3T1, and the low-lying MLCT state.  Reproduced from [18].

The d-d transitions are not visible in the absorption spectrum of [Fe(bpy)3]2+ as their intensities are

low relative to the adjacent intense MLCT band.  However their presence is indirectly seen in their

mediation of non-radiative decay.  The double intersystem crossing (1T2 → 3T1 → 5T2) occurs

through these states on a subpicoscond level, and the spin crossover back to the ground state is

relatively long lived in comparison (nanosecond timescale, depending on the temperature).18  As

shown in Fig 6.5.1 this spin crossover is non-radiative and hence [Fe(bpy)3]2+ is non-emissive.
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Fig 6.5.2: Structure of [Fe(bpy)3]2+ (left) and UV/Vis spectrum of [Fe(bpy)3](PF6)2 in DMSO.

Fig 6.5.2 shows the structure and UV/Vis spectrum of [Fe(bpy)3]2+.  The broad MLCT band is seen

at approximately 530 nm, and the low intensity Laporte forbidden d-d transitions are underneath

this peak.
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Fig 6.5.3: Resonance Raman spectra of (a) [Fe(bpy)3](PF6)2 and (b) [Fe(bpy)3]2α-[Mo18O54(SO4)2] in

KBr discs (~ 5 % w/w)  under 488 nm laser excitation.

Fig 6.5.3 shows the Raman spectra of composites of [Fe(bpy)3]2+ with the Dawson

polyoxometalates.  In both cases no significant spectral changes are observed upon ionic

association.  In comparison with the spectrum of [Ru(bpy)3]2α-[Mo18O54(SO4)2] shown in Fig 6.1.1

it is again evident that the strong electronic communication observed in that case is not seen here.

Like in the case of [Ru(bpy)3]2+, the ability of the complex to bind closely and strongly to the

polyoxomolybdate should be high in this case as no bulky ligands are present to interfere with the

bonding.  The lack of polyoxomolybdate modes present in the spectrum of [Fe(bpy)3]2α-

[Mo18O54(SO4)2] must therefore be attributed to poor orbital overlap or otherwise unfavourable

thermodynamics.
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Fig 6.5.4: Structure of [Fe(tpy)2]2+ (left) and UV/Vis spectrum of [Fe(tpy)2](PF6)2 in DMSO.

The structure and UV/Vis spectrum of [Fe(tpy)2]2+ is shown in Fig 6.5.4.  The two tridentate

terpyridine ligands give rise to an intense MLCT absorbance at approximately 570 nm.  Like

[Fe(bpy)3]2+, [Fe(tpy)2]2+ is also non-luminescent.
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Fig 6.5.5: Resonance Raman spectra of (a) [Fe(tpy)2](PF6)2, (b) [Fe(tpy)2]2α-[Mo18O54(SO4)2]  and

(c) [(But)4N]4α-[Mo18O54(SO4)2] in oven-dried KBr (~ 5 % w/w) under 488 nm excitation.

Fig 6.5.5 shows the change in the Raman spectroscopy upon binding of α-[Mo18O54(SO4)2]4- to

[Fe(tpy)2]2+. It appears as though the polyoxomolybdate mode at 990 cm-1 appears in the adduct

spectrum at 985 cm-1, possibly indicating a Fe-molybdate charge transfer transition is present at this

wavelength. The Fe-terpy mode at 460 cm-1 is also affected upon binding to the POM, as it is

shifted to 470 cm-1 and significantly reduced in intensity. Charge-transfer composites of Fe

compounds and polyoxometalates have been observed previously.  In the case of the Lindqvist

polyoxometalates [M6O19]2- (where M = Mo, W) electrostatically bound to the cationic ferrocenyl

cpFecpCH2N+(CH3)3 charge transfer bands were seen in the difference electronic spectra and the

transient absorption spectra.19  However the charge transfer character disappeared when the salt was

dissolved in DMF and hence was attributed to close ion proximity via strong H-bonding in the solid

state only.  It may be that, in this case, close electrostatic packing of the two ions makes charge-

transfer feasible. Therefore, it appears on the basis of electronic communication that the Fe

complexes here are candidates for photosensitization, however, given the short-lived nature of the
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Fe excited state it will be interesting to see whether they are capable in practice of sensitizing

polyoxometalate photochemistry.

6.6 - Control spectra:

It is informative to compare the numerous spectra in sections 6.3 – 6.5 with a variety of controls to

ensure that no false positive data is accidentally acquired.  The basis of this chapter is that

polyoxometalates alone are non-resonant under visible excitation and hence give extremely weak

non-resonant Raman spectra under irradiation of 458, 488 or 514 nm.  This knowledge, coupled

with UV/Vis data indicating that intramolecular charge-transfer occurs upon Ru-polyoxometalate

association, means we may be able to unambiguously assign which new optical transitions actually

involve the polyoxoanions.  Any polyoxoanion modes resonant under visible irradiation were

concluded to be due to the presence of optical charge-transfer characteristics due to effective

electronic coupling between ruthenium donor and polyoxometalate acceptor.  Previous evidence

points strongly to the fact that for the photochemistry to be sensitized this CT transition must be

present. We believe it is likely that sensitization occurs through this transition.  Therefore, we

rationalized that resonance Raman could be used as a swift marker of likely sensitization as it can

be readily used to confirm the presence of this transition.   This argument is based on the

assumption that the oxidized polyoxometalates used in this study are non-resonant in the visible

region; however trace amounts of a resonantly absorbing impurity could lead to resonantly

misidentification of resonantly enhanced Raman modes.  The reduced polyoxometalates are well-

known for their ability to absorb in the far-visible/near-infrared region, and it is possible that trace

amounts of these reduced polyoxoanions could lead to the appearance of resonantly enhanced

polyoxometalate modes under visible irradiation.  Therefore control spectra of the reduced

polyoxometalates were examined to identify what contribution, if any, they would make to

resonance Raman spectra if present.
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Fig 6.6.1: UV/Vis/NIR spectroelectrochemistry of ~ 2.9 x 10-4 M α-[MoVI
18O54(SO4)2]4- (green), α-

[MoVI
17MoVO54(SO4)2]5- (pink) and α-[MoVI

16MoV
2O54(SO4)2]6- (red) in MeCN containing 0.1 M

(But)4NBr.

The spectra of the reduced polyoxoanion species in Fig 6.6.1 were generated electrochemically by

exhaustive one-electron reduction at 0.08 V and -0.4 V respectively in MeCN containing 0.1 M

(But)4NBr. These spectra have been reported previously and are typical of reduced

polyoxomolybdates.20 The new bands that grow in at low energy are due to intervalence charge-

transfer transitions (IVCT) of the nature MoVI → MoV.  There are multiple sequential

electrochemical reductions possible, some of which are proton-coupled in acidic media. These

bands were probed using resonance Raman spectroscopy, and these spectra are shown in Fig 6.6.2.
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Fig 6.6.2: Resonance Raman spectroelectrochemistry of α-[MoVI
16MoV

2O54(SO4)2]6- at (a) 458, (b)

488, (c) 514, (d) 633 and (e) 785 nm. The top trace (e) is the Raman spectrum (785 nm) of the

MeCN/(But)4NBr electrolyte used, and modes from this mixture are marked *.

Reduction of the polyoxometalate has a profound effect on its Raman spectrum.  This is because as

shown in Fig 6.6.1 the new optical transition is very broad, and is resonant with most of the

excitation wavelengths explored here.  However, as Fig 6.6.2 demonstrates none of the new modes

are coincident with those identified as polyoxometalate modes seen in the adduct spectra throughout

section 6.3 – 6.5.  Thus the data in Fig 6.6.2 verify that the polyoxometalate modes identified in the

adduct spectra in section 6.3 – 6.5 are not due to resonant enhancement of trace quantities of

reduced product.

Another important control was required to ensure that any apparent new features do not

appear to come into resonance as a function of increasing wavelength.  This is because non-resonant

Raman spectra of all modes in a system can be obtained at wavelengths where no chromophore
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absorbs and hence no resonance enhancement occurs, which would otherwise obscure all other

modes.  In Fig 6.6.3 the Ru to polyoxometalate charge-transfer transition of [Ru(bpy)2(PVP)10]4.5α-

[W18O54(PO4)2] is examined as a function of wavelength.
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Fig 6.6.3: Resonance Raman spectra of [Ru(bpy)2(PVP)10]4.5α-[W18O54(PO4)2] in a KBr disc (~ 5 %

w/w)  under 458, 488 or 514 nm irradiation.

Fig 6.6.3 demonstrates that the polyoxometalate mode seen at 960 cm-1 (488 nm spectrum is

reproduced from Fig 6.3.1.2) appear resonantly enhanced under all three wavelengths. This is

expected given the broad nature of the new optical transition. However it is clear that the modes are

enhanced the most strongly under 488 nm excitation.  The polyoxometalate mode has a higher

intensity relative to the bpy peaks under 488 nm irradiation relative to when the cluster is excited at

458 or 514 nm.  This strongly suggests that the new optical transition comes into resonance most

strongly around the 488 nm laser line, and that the transition intensity drops before reaching 514

nm.  Interestingly, this was not seen in the case of [Ru(bpy)2(PVP)10]4.5α-[Mo18O54(SO4)2] (see
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Chapter 4) when the new transition was demonstrated by resonance Raman and difference

spectroscopy to tail strongly into the red.  This difference in optical behaviour between the new

transition involving the molybdate and the tungstate is not unexpected as molybdates are well

known to absorb at higher wavelengths than their corresponding tungstates.21

The final control experiments performed were to ensure that any spectral changes observed

upon complex electrostatic association was due to a true chemical interaction between the two

species. In this experiment [Os(bpy)2(qpy)]2α-[Mo18O54(SO4)2] was synthesized and isolated

according to standard methods.  The sample was washed repeatedly, dried and ground into KBr for

analysis.  For comparison, two equivalents of [Os(bpy)2(qpy)](ClO4)2 and one equivalent of

[(But)4N]4α-[Mo18O54(SO4)2] were added to a mortar and pestle and simply ground together into a

KBr disc.  The Raman spectra demonstrate that no polyoxomolybdate modes are visible at this

wavelength and that the Os complex undergoes negligible spectral change. The spectra are shown in

Fig 6.6.4.
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Fig 6.6.4: Resonance Raman spectra of (a) [Os(bpy)2(qpy)](ClO4)2, (b) [Os(bpy)2(qpy)]2α-

[Mo18O54(SO4)2] and (c) a solid mixture of unreacted [Os(bpy)2(qpy)](ClO4)2 and [(But)4N]4α-

[Mo18O54(SO4)2] in oven dried KBr discs (~ 5 % w/w) under 514 nm irradiation.

In these spectra it is demonstrated that the spectral changes upon addition of polyoxometalate to Os

complex only occur when the two ions are paired together chemically in solution, and not through a

trivial interaction with adjacent molecules.  This demonstrates unambiguously that the changes in

the Raman spectra arise out of electrostatic association only.  It also demonstrates that residual

[(But)4N]+ and (Br)- ions have no effect on the spectroscopy.
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6.7 – Conclusions:

Evidence from this and previous work strongly indicates that an optical charge transfer transition

between metal cation and anion is both necessary and indicative of visible sensitization of the

polyoxometalate photochemistry by the metal cation.  The most facile way of identifying this

transition is to use resonance Raman spectroscopy as M-O vibrations become apparent when the

charge transfer is operative at excitation wavelengths at which the polyoxometalate alone is not

resonant. In this chapter we exploit this observation to take a broad combinatorial approach to

identifying cation and anion pairs that are likely to lead to photosensitized photoelectrochemistry.

A total of 14 metal cations comprising Fe, Os and Ru (II) polypyridyl complexes were

combined with the Dawson polyoxometalates to form electrostatic clusters, and their resonance

Raman spectroscopy were examined under visible irradiation. Several of the systems analyzed

showed the presence of both metal complex and polyoxometalate under visible irradiation and were

successfully investigated in photoelectrochemical systems (see Chapters 4 and 5).  Some other

complexes have also been earmarked as potential sensitizers in future photoelectrochemical

systems, in particular [Fe(tpy)2]2+ showed signs of effective electronic communication with α-

[Mo18O54(SO4)2]4-; however most of the complexes examined showed little or no signs of strong

electronic communication between the two ions. In particular metal complexes with several bulky

ligands, such as [Ru(dpp)3]2+, [Ru(dpp)2(caip-COOH)]2+ and [Ru(dppz)2(caip-COOH)]2+ showed no

signs of electronic interaction with the polyoxoanions.  This was attributed to the remoteness of any

intramolecular H-bonding from the Ru centre which is likely to promote intramolecular charge-

transfer.  In other cases where the sterics of ion-pairing were favourable no polyoxometalate modes

were observed. Poor electronic communication was observed when [Fe(bpy)3]2+ and [Os(bpy)3]2+

were employed, which are isostructural with [Ru(bpy)3]2+, and the differences in behaviour here

were attributed to either poor donor/acceptor orbital overlap or unfavourable thermodynamics.

Unfortunately relatively few donor-acceptor complex systems were successfully identified.  In order

to postulate an empirical relationship between ion-selection and potential sensitization

photoelectrochemistry will be performed in future work on the pairs exhibiting the new optical

transition.  Sterics are extremely likely to play a role, and has been mentioned as an important factor

in previous charge-transfer electrostatic polyoxometalate clusters.15, 22  Future work will focus on
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further exploiting this method for rapidly identifying sensitized ion-clusters and will also focus on

conducting detailed photoelectrochemistry of these ionic composites.
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Chapter 7:

Conclusions and future work
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The key goals of this thesis were twofold.  Firstly, to investigate the photophysics of a variety of

polyoxometalate/transition metal complex ion-clusters in order to provide some insight into what

materials are capable of visible light sensitization of polyoxometalate photocatalysis; and secondly

to use this knowledge to produce an optimized interfacial photoelectrochemical system. Chapter 3

explored the photophysics and photochemistry of [Ru(bpy)3]2[Mo18O54(SO3)2], where bpy is 2, 2’-

bipyridyl and [Mo18O54(SO3)2]4- is either the α or β-sulfite containing polyoxomolybdate.  It was

found that the sulfite anions form complex adducts with [Ru(bpy)3]2+ whose properties are

considerably different from those formed with the analogous sulfate anion [Mo18O54(SO4)2]4-,

despite strong structural analogy. The Ka values inferred for the cluster complexes were 5.9 x 106

and 1.0 x 107 for the α and β-based clusters respectively. Although these new sulfite-containing

clusters exhibit intramolecular charge-transfer transitions they were significantly weaker than in the

case of the sulfate anion.  This was reflected in the fact that no resonance Raman for these

transitions were recorded and no visible-light sensitized POM photochemistry of benzyl alcohol

substrate was observed when a film of the composite material was drop-cast onto an ITO electrode.

Ultimately, for photoelectrochemical applications, interfacial assemblies of polyoxometalate and

sensitizing cations would be the best format for application.  Therefore we explored the

spectroscopy and photophysics of hydrogel metallopolymers incorporating [Ru(bpy)3]2+ analogues.

In Chapter 4 the photophysics of a novel family of metallopolymers [Ru(bpy)2(caip co-poly)n]2+ (n

= 5, 7, 9) were thoroughly investigated as a function of solvent pH and polarity and their properties

compared with the parent cation.  It was observed that increasing the chain length of the polymer

had little impact on the electrochemistry and spectroscopy of the luminophore, as the excited state

lies on the bipyridyl ligands and the metal centers are sufficiently separated so that inter-metal

communication does not occur on a measurable scale, and this was also demonstrated by cyclic

voltammetry which revealed that changing the metallopolymer loading had only a minor impact on

the DCT values of polymer thin films. Studies of the pH dependence of the polymers revealed the

presence of three forms of the metallopolymers.  At high pH values the imidazole moiety on the

caip ligand was fully deprotonated and resonance Raman spectra revealed that the nature of the

lowest energy optical transition was dependent on pH. The luminescent behaviour showed strong

solvent dependence. In particular the polymers exhibited anomalous behaviour in DMSO, which

tentatively was speculated to be due to interaction of the DMSO with the polymer backbone, and

fluorescence anisotropy will be performed in future investigate this phenomenon.

The photophysics of [Ru(bpy)2(PVP)10]2+ and the newly characterized [Ru(bpy)2(caip co-

poly)7]+ were then investigated and compared in the presence of the sulfate Dawson
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polyoxomolybdate α-[Mo18O54(SO4)2]4-.  UV/Vis spectroscopy revealed the formation of

electrostatic adducts of unexpected stoichiometries in solution, with the clusters

[Ru(bpy)2(PVP)10]4.5α-[Mo18O54(SO4)2] and [Ru(bpy)2(caip co-poly)7]5α-[Mo18O54(SO4)2] appearing

to be favoured.  Difference spectroscopy revealed that the formation of [Ru(bpy)2(PVP)10]4.5α-

[Mo18O54(SO4)2] in MeCN led to the appearance of a broad new intramolecular charge-transfer band

stretching from 450 nm to 700 nm; however no such band was evident for [Ru(bpy)2(caip co-

poly)7]5α-[Mo18O54(SO4)2]. Stern-Volmer plots were used to estimate Ka values of 6.2 x 105 and 1.1

x 106 for the [Ru(bpy)2(PVP)10]4.5α-[Mo18O54(SO4)2] and [Ru(bpy)2(caip co-poly)7]5α-

[Mo18O54(SO4)2] cluster ratios respectively. As the systems are polymeric the Perrin model was

explored as a fit to the luminescent quenching data and was found to give good fits to the quenching

data.  From this model quenching sphere radii RS were estimated to be 4.7 ± 0.1 and 5.7 ± 0.1 Å for

[Ru(bpy)2(PVP)10]4.5α-[Mo18O54(SO4)2] and [Ru(bpy)2(caip co-poly)7]5α-[Mo18O54(SO4)2]

respectively.  These numbers are acceptable for a static charge-transfer quenching process; and

energy transfer can been ruled out as a mechanism due to thermodynamic considerations (ie: poor

donor-acceptor spectral overlap can rule out Forster energy transfer.  In addition, Dexter energy

transfer is collisional and we have demonstrated by TCSPC that the quenching mechanism is

predominantly static). Surprisingly, lifetime data also indicated a weak dynamic quenching

component to the behaviour of both polymers by α-[Mo18O54(SO4)2]4-. Resonance Raman

spectroscopy of the associated cluster complexes was undertaken in the solid state and confirmed

that the new optical transition seen in the difference spectra was due to the formation of a new low-

lying intramolecular charge-transfer state involving both metallopolymer and polyoxoanion. For

both metallopolymer composites drop-cast onto ITO working electrodes and irradiated with visible

light in the presence of benzyl alcohol substrate no enhanced photochemistry was observed in either

case.  Subsequent studies by Zhu et al. demonstrated that self-assembled interfacial films of the

[Ru(bpy)2(PVP)10]4.5α-[Mo18O54(SO4)2] composite did result in sensitized photochemistry in the

visible, but [Ru(bpy)2(caip co-poly)7]5α-[Mo18O54(SO4)2] did not.  The differences in Zhu’s results

and the results obtained here are in the film formation process, and his data also suggested that film

thickness is a defining factor in photocurrent generating efficiency and that drop-casting is not a

viable method of thin film formation for photoelectrochemical studies. We therefore concluded that

strong electronic interaction between polyoxometalate and sensitizer is necessary for the formation

of the charge-transfer state if this state is to lead to visible light sensitized photochemistry.

In Chapter 5 the photophysical and photoelectrochemical properties of both ion-clusters and

interfacial assemblies of [Ru(bpy)2(PVP)10]2+ and α-[P2W18O62]6- were compared, as the tungstates
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are known to have more negative reduction potentials which means a larger overpotential can be

applied to reoxidise the reduced film after photocatalysis. UV/Vis and emission spectroscopy

revealed the presence of 4.5:1 Ru:POW clusters in solution, with Ka values of 1.2 x 105 (from

UV/Vis data) and 1 x 105 (from emission data) extrapolated from the Bourson-Valeur model for

static association. The Perrin model for static association was also applied to the quenching data.

The model fit the data well over a limited low concentration range, and yielded a quenching sphere

radius RS of 2.2 ± 0.1 Å; however over the full quenching range the model did not fit as two linear

regions were observed which was tentatively attributed to formation of aggregates of the polymer

forming upon addition of polyoxotungstate as a consequence of the greatly increased ionic strength

of the mixture solution. When the Perrin equation was applied to the second linear region an RS of

4.0 ± 0.1 Å; which is closer to the values obtained in Chapter 4 for [Ru(bpy)2(PVP)10]4.5α-

[Mo18O54(SO4)2] and [Ru(bpy)2(caip co-poly)7]5α-[Mo18O54(SO4)2]. However both 2.2 and 4.0 Å are

good estimates for charge-transfer quenching distance. The proposed aggregation will be addressed

in the future with fluorescence anisotropy and DLS measurements.

Overall from these studies and previous literature we conclude that visible light sensitization of the

Dawson polyoxomolybdate requires (a) strong electronic communication manifested by the

appearance of a broad, low-energy charge-transfer band upon association; (b) appearance of

polyoxometalate terminal oxygen modes in the resonance Raman spectra of the new transition,

indicating H-bond bridging between the two ions which can facilitate CT; and (c) self-assembled

composite material films on electrode surfaces instead of drop-cast films.  So finally, Chapter 6

took a combinatorial approach to identifying pairs of cations and polyoxoanions which exhibited

the new optical charge transfer using resonance Raman study of a range of TM complexes with a

variety of Dawson polyoxometalates.  Two of the composite material systems in which

polyoxometalate modes were resonantly enhanced under visible irradiation were employed in

photoelectrochemical studies ([Ru(bpy)2(PVP)10]2+/α-[S2Mo18O62]4- in Chapter 4 and

[Ru(bpy)2(PVP)10]2+/α-[P2W18O62]6- in Chapter 5); the other complexes investigated by Raman were

not employed in photoelectrochemical experiments.   Future work will focus on the [Fe(tpy)2]2+/α-

[S2Mo18O62]4- system, which appeared to show the same resonantly enhanced polyoxomolybdate

mode identified in the metallopolymer systems mentioned above, despite the very short excited

state lifetime typical of Fe (II) polypyridyl complexes.  Interestingly, [Os(bpy)2(PVP)10]2+,

[Os(bpy)3]2+ and [Fe(bpy)3]2+ showed little promise as sensitizers despite their structural analogies

to [Ru(bpy)2(PVP)10]2+ and [Ru(bpy)3]2+.  In addition, [Ru(dpp)3]2+ which is isoelectronic with

[Ru(bpy)3]2+, exhibited negligible spectral changes on association with α-[S2Mo18O62]4-, which
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strongly indicates that sterics play a role.  We propose that the strength of the intramolecular

charge-transfer transition in these cluster complexes is directly related to the visible sensitization of

polyoxometalate photochemistry.  We also believe that the strength of this transition is dependent

on favorable thermodynamics, which are apparently imbued by Ru and possibly Fe but not Os; and

on the ability of the donor/acceptor complex to bind closely.  Literature studies of CT complexes

involving polyoxometalates and donor molecules have demonstrated that the strength of CT

transitions is distance dependent; hence we postulate that complexes with large ligands such as dpp

and caip are unlikely candidates for sensitizers.

From the photophysical point of view, future work could focus on selecting the

polyoxometalate/transition metal complex system with the largest possible gap between their initial

redox processes, which would enable us to apply a large overpotential during photoelectrochemistry

to reoxidise the films. This would very likely be achieved through the use of polyoxotungstates

(which have more negative reduction potentials than molybdates) and iridium polypyridyl

complexes.  Iridium polypyridyl complexes exhibit extremely high metal oxidations and the large

difference between this and the POW reduction could be used to apply very high overpotentials.

Unfortunately Ir bpy complexes are usually yellow; hence a sensitizer complex with more extended

absorption, while retaining the redox properties mentioned above, would need to be synthesized.

From the photoelectrochemical point of view, studies by Zhu et al suggested that one of the limiting

factors of photocurrent generation by interfacial thin films of [Ru(bpy)2(PVP)10]4.5α-

[Mo18O54(SO4)2] was due to the poor rate of charge transfer through the film.  Therefore future work

would focus on improving the conductivity of these assemblies by addition of nanoparticles.

Recent studies performed by our group showed that the DCT value of composite films of

([Ru(bpy)2(PVP)10]2+ immobilized on Au nanoparticles increased dramatically at a certain Ru/Au

ratio (the percolation threshold), as this concentration of Au allowed electrons to hop between

individual nanoparticles in close proximity to each other.  Addition of gold nanoparticles to films of

[Ru(bpy)2(PVP)10]4.5α-[W18O54(PO4)2] and [Ru(bpy)2(PVP)10]4.5α-[Mo18O54(SO4)2] will hence be

explored.



Chapter 8:

Appendices
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8.1 - Characterization of complexes:

8.1.1 - [Os(bpy)2(p0p)2]
2+:

Fig 8.1.1: 1H-NMR spectrum of [Os(bpy)2(p0p)2]2+ in DMSO-d6, recorded at 400 MHz.  Total

integration 32 protons.

Mass spectrometric data:  Complex was dissolved in spec grade MeCN; spectrum acquired in

negative mode.  Molecular formula: C40OsN8H32; molecular weight: 814.9 g.mol-1. m/z = 407

observed.
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8.1.2 - [Os(bpy)2(qpy)]2+:

Fig 8.1.2: 1H-NMR spectrum of [Os(bpy)2(qpy)]2+ in DMSO-d6, recorded at 400 MHz.  Total

integration 30 protons.

Mass spectrometric data:  Complex was dissolved in spec grade MeCN; spectrum acquired in

negative mode.  Molecular formula: C40OsN8H30; molecular weight: 812.8 g.mol-1. m/z = 406.5

observed.
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8.1.3 - [Ru(bpy)2(qpy)]2+:

Fig 8.1.3: 1H-NMR spectrum of [Ru(bpy)2(qpy)]2+ in DMSO-d6, recorded at 400 MHz.  Total

integration 30 protons.

Mass spectrometric data:  Complex was dissolved in spec grade MeCN; spectrum acquired in

negative mode.  Molecular formula: C40RuN8H30; molecular weight: 724.6 g.mol-1. m/z = 362

observed.
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8.1.4 – [Ru(bpy)2(caip-NH2)]
2+:

Fig 8.1.4: 1H-NMR spectrum of [Ru(bpy)2(caip-NH2)]2+ in DMSO-d6, recorded at 400 MHz.

Imidazolium and NH2 protons appear only very weakly at ~ 14.7 ppm.

Mass spectrometric data:  Complex was dissolved in spec grade MeCN; spectrum acquired in

negative mode.  Molecular formula: C39RuN9H29; molecular weight: 725.6 g.mol-1. m/z = 724

observed, corresponds to the deprotonated form [Ru(bpy)2(caip-NH2)]+.  NMR and MS courtesy of

Mr. Ciarán Dolan.
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8.1.5 – [Ru(bpy)2(caip-NO2)]
2+:

Fig 8.1.5: 1H-NMR spectrum of [Ru(bpy)2(caip-NO2)]2+ in DMSO-d6, recorded at 400 MHz.

Mass spectrometric data:  Complex was dissolved in spec grade MeCN; spectrum acquired in

negative mode.  Molecular formula: C39RuN9H27O2; molecular weight: 755.6 g.mol-1. m/z = 754

observed, corresponds to the deprotonated form [Ru(bpy)2(caip-NO2)]+. NMR and MS courtesy of

Mr. Ciarán Dolan.
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