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Abstract

Any large library of information requires efficient ways to organise it and

methods that allow people to access information efficiently and collections of

digital images are no exception. Automatically creating high-level semantic tags

based on image content is difficult, if not impossible to achieve accurately. In

this thesis a framework is presented that allows for the automatic creation of rich

and accurate tags for images with landmarks as the main object. This framework

uses state of the art computer vision techniques fused with the wide range of

contextual information that is available with community contributed imagery.

Images are organised into clusters based on image content and spatial data

associated with each image. Based on these clusters different types of classifiers

are* trained to recognise landmarks contained within the images in each cluster. A

novel hybrid approach is proposed combining these classifiers with an hierarchical

matching approach to allow near real-time classification and captioning of images

containing landmarks.
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Chapter 1

Introduction

Over recent years the fast paced growth of technology has led to innovations

that allow people to capture a digital image, automatically associate valuable

metadata with that image, upload it to an on-line repository, and allow that image

to be shared and viewed around the world. As a consequence, there has been

significant growth in the amount of digital imagery that is being stored on-line.

Approaches are sought that allow for the efficient organisation and retrieval of

these images in a timely and precise manner. The work presented in this thesis,

aims to address some of the problems associated with recognising and retrieving

images relevant to a user’s query in large scale image corpora.

In this chapter an introduction to the subject of the thesis is provided, along

with the motivations behind the work and the main research objectives. Firstly,

an overview to the research problem addressed in this thesis is provided, together

with a brief description of a proposed solution to this problem. The next section

describes the motivating factors behind this research, and describes why the

solutions currently used are inefficient. Two hypotheses are then proposed and

outlined followed by the main research objectives of this work. This chapter

concludes with an outline of the thesis and brief description of each chapter.
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1.1 Overview

The main aim of this work is to recognise images that contain a landmark as the

main subject of a photograph, and to recognise the actual landmark depicted. A

landmark is defined as a unique man-made object or geographical feature in a

specific location, that is generally considered unique from other objects in the

region. For example, an object that a tourist might associate with a region, and

possibly photograph, could be considered a landmark. Several types of man-

made objects could be considered landmarks, such as bridges, unique buildings,

churches, fountains and statues among many others. The main aim of this work

is to provide a framework that allows for the recognition of these landmarks in a

memory efficient, automated manner and acceptable timeframe.

An acceptable timeframe is defined as near real-time recognition or more

specifically a timeframe that is tolerable for users in an interactive application. It

is envisaged that this framework could be successfully integrated into a mobile

image recognition platform (described in Appendix A) for use by large numbers

of people. Therefore it is important to perform these tasks within a set time-

frame that is considered tolerable to users. In work carried out by Hoxmeier

[Hoxmeier et al., 2000] it was determined that an upper threshold for the toler-

able waiting time for users in a browser environment for complex tasks was

approximately 12 seconds. It is assumed that with a mobile based device users

would be a little more tolerant due to additional complexity, and issues with

internet connection speeds.

It is very difficult to classify high level semantics, such as names of depicted

landmarks, from an image using content alone in an unconstrained environ-

ment. One approach to automatic landmark classification is to harvest a large

collection of annotated landmark images and match input images to this col-

lection, based on context and content features extracted from the input image
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[Qingji et al., 2008],[Rahmani et al., 2008],[Zhang and Kosecka, 2007]. However,

many of these approaches can lead to inaccurate results, and can not be achieved

in suitable time frames. Additionally, some of these approaches can also be

memory inefficient and restrictions can apply to the maximum size of a training

corpus.

The majority of these approaches are based upon a type of image feature

that describe small regions within an image. These localised image features

are commonly called interest points. Image and object matching using interest

point features has been shown to work well even in large-scale image databases

containing many different images [Konolige et al., 2009]. These localised features,

tend to be more discriminate and less sensitive to occlusion than traditional global

based features. The majority of landmark recognition algorithms that have been

suggested to date, are based upon the matching of these interest point features.

Brute force matching between keypoints is computationally expensive, and

with very large image databases will be computationally infeasible. Although it

depends on image content and size, each commonly used interest point detection

method will generate on average up to 1000 keypoints from an image [Lowe, 2004].

This presents a considerable challenge in terms of matching two images using

their interest points and means significant computational overhead. To put it into

perspective, to compare one image to all images in a 1000 image dataset using the

Scale Invariant Feature Transform (SIFT) algorithm [Lowe, 2004], would require

128 million comparisons to be made (1000 images × 1000 keypoints × 128 values

per keypoint vector). To compare one image against a dataset of 100,000 images,

would require over 12 trillion comparisons to be made and this number would

grow considerably as the size of the dataset grew. Clearly, this type of brute

force matching could not be done in real time with large scale image collections,

which is required in this work, due to the sheer number of images which could be

uploaded and would be required to be processed daily.

3



In order to achieve the objectives outlined in this chapter, techniques are

required which will filter the amount of keypoints that need to be compared, or

alternatively techniques that do not match keypoint by keypoint individually,

in order to be able to do this matching in real time. In this thesis, a framework

is hypothesised, that is based on existing computer vision techniques. These

are merged with a number of unique ways to organise data, fusing different

forms of semantic contextual data with image content features. The aim is to

improve upon the current state of the art image matching methods (with regards

to classification accuracy, speed and memory efficiency), most of which do not

scale well with regards to memory and processing time constraints when using

very large datasets. A large scale dataset is defined as a corpus consisting of tens

of thousands and possibly even millions of images. The framework described in

this thesis is then implemented and applied to an image collection, created from

community contributed data.

Viewpoint clustering involves taking many images of the same landmark

from a relatively similar viewpoint and clustering them together to create groups

of images that are visually similar. This framework is based on the concept of

viewpoint clustering, which allows for the efficient and accurate classification

of landmarks in a memory efficient manner, using a large scale training dataset.

Once these clusters are created and assigned spatial data, they should allow for

the classification of test images based on machine learning classification models

using a machine learning algorithm such as Support Vector Machines (SVMs).

In this work, a large number of machine learning classification models are

trained to recognise large landmarks within an image, with one class of training

features in each classification model representing a single landmark from a certain

viewpoint. The main advantages of utilising machine learning techniques such

as SVMs for image classification is that they are robust and accurate, and allow

for quick classification when used in conjunction with appropriate features. In
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the past, SVM classification models have been used with local image features to

classify scenes into high level semantics [Bosch et al., 2008], along with scene lo-

calisation [Ayers and Boutell, 2007] and have been shown to work efficiently and

accurately. One major drawback with using this technique however, is that a rela-

tively large number of positive examples are needed to classify an image correctly,

which might not be available for all landmarks in a dataset. In this work, this issue

is addressed by the proposal of a hybrid classification approach that avoids expen-

sive point to point matching and allows for the classification of landmark images

in situations where there is insufficient data to train an accurate SVM model. This

hybrid approach is based on combining spatially organised SVM models with

a divisive hierarchical classification algorithm [Lamrous and Taileb, 2006] that

selects candidate matches from a large dataset using computationally inexpensive

methods, before confirming matches using more sophisticated image matching

schemes.

1.2 Motivation

With the arrival of consumer digital cameras and the continuous reduction in the

cost of these devices, an average consumer now has the ability to capture very

large numbers of high-quality digital images quickly and cheaply. The number of

digital images that are being taken by the average consumer each year is growing

significantly.

Coinciding with this, there has been a recent explosion in the popularity of

’Web 2.0’ style social networking sites. Hundreds of millions of users worldwide,

possess accounts in a myriad of different types of online networking websites

such as facebook.com and bebo.com. One popular attribute of social networking

sites is the storing and sharing of digital imagery. Many users of social networks

routinely upload and share photos with their friends and sometimes much larger
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social circles. Another popular facet of the ’Web 2.0’ revolution is the emergence

of online photographic repositories. Web sites that store and organise personal

image collections online such as Flickr [Flickr, 2004] have very large volumes of

personal images in their databases. Flickr currently has over five billion personal

photos stored online with an average of 3-5 million images being uploaded

daily. Unfortunately, the proliferation of shared photographs has outpaced the

technology for searching and browsing such collections. With this very large body

of growing information, there is a clear requirement for efficient techniques to

structure and organise it, and for new and novel ways to present this information

to users.

Many consumers, tourists in particular, capture large numbers of images in

destinations that they visit, and upon return, share these images online with

friends and family. One large genre of images that are being uploaded to online

image repositories, are photographs containing famous landmarks from around

the world. Due to drawbacks in image classification technology, in most cases it is

not possible to automatically classify high level semantic information from these

images (such as to label them with the name and location of a landmark) based

on image content alone.

For high-level semantic image retrieval queries, retrieval systems are forced to

rely on text based retrieval methods based on captions created by users, with little

or no formal rules on objectivity or detail. This can lead to retrieval errors due to

homogeneous and subjective captions, and in some cases no caption provided at

all. Homogeneous captions result in poor reliability of individual items in search,

and subjective labels are unlikely to be useful for users other than the captioner,

or for the captioner themselves searching for the image in a different context.

Homogeneous captions are observed to be a common occurrence where a user

uploading a large number of images will use the same caption to describe the
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whole set, which creates obvious problems trying to distinguish between images

in this set based on text alone.

The average consumer, taking a picture with their digital camera or smart-

phone generally does not pay much attention to how images are stored, organised

and retrieved. They simply want a fast and reliable automated technology that

allows them to photograph an image and at a later stage retrieve, view and share

that image. They don’t wish to spend large amounts of time, in what they regard

as the monotonous task of providing textual descriptions for images before up-

loading them to a web site of their choice. Therefore, an automated approach to

this task is desirable.

The main motivation behind this work is to create a reliable framework for

the automated classification of popular landmarks using technology that will

soon become commonplace for the average user of digital photography tools.

Geographical features and landmarks have long been one of the most commonly

photographed objects that tourists capture and commonly search for in image

retrieval systems. Sanderson and Kohler [Sanderson and Kohler, 2005] claim

that almost one fifth of all web search engine queries had some geographical

relationship, while Gan et al. [Gan et al., 2008] claimed that one in eight web

queries contained the actual name of a specific location. While in the past, it

was very difficult to reliably retrieve images of landmarks, several advances in

technology and changes in the manner in which consumers utilise technology

have now provided the means to do so.

Several advances in computer vision have enabled automated, accurate match-

ing of images, even when using very large sample data collections. This has

been due to the development of effective methods for detecting image features

with a high level of repeatability. Additionally, several discriminative approaches

to describing these image features have been proposed, enabling a method to
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distinguish between images and matching similar ones with a high degree of

accuracy.

Another important technology that has recently been commercialised is the

Global Positioning System (GPS). GPS receiver devices can now be found in elec-

tronics stores, department stores and even in supermarkets worldwide. Globally,

consumers have embraced this technology to the extent that it has changed the

ways that people carry out many tasks, such as hiking, driving a car, and in many

cases, taking photographs. GPS receivers can now also be found in many smart-

phone devices that make up a large portion of the total mobile phone market. The

main advantage of GPS receivers from the perspective of image classification or

retrieval, is the ability that GPS offers to associate a geographical location with

an image. In image matching or retrieval tasks, geographical information allows

pruning large numbers of non-candidate images from a training dataset. Many

image matching algorithms that were previously computationally infeasible can

now be achieved in the reduced search space that becomes possible by introducing

geographical data.

Smartphone technology has become significantly more advanced in recent

years. Many mobile phone manufacturers now produce smartphone devices

that come equipped with high-quality digital cameras, along with GPS receivers

and fast 3G and soon to be 4G internet connections. The combination of these

technologies allow for the capture of imagery, followed by the automated geo-

tagging of this imagery, and the immediate upload of selected images to online

photo repositories. Images may be uploaded with or without textual annotation.

As noted earlier, even if such annotations exist they may be very sparse.

The framework that is hypothesised in this work aims to provide an auto-

mated solution to the problem of providing accurate textual metadata for images

containing large landmarks. Such metadata can potentially support image search

and automated captioning applications. Due to the rapid proliferation of smart-
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phones worldwide, the aim is to create a framework that would make it possible

to capture an image on a mobile device, have the device automatically tag the

image with an accurate and semantically relevant textual description, and then

upload that tagged image to a online website. This reduces the human effort

required to manually provide textual descriptions. This automated creation of

tags would have to take place in near real-time as users generally are reluctant to

use technologies which are considered time-consuming or inconvenient. In this

work a framework that aims to meet these criteria is outlined, implemented and

evaluated.

1.3 Hypotheses

In this research into automated recognition of landmarks within community

contributed datasets, the aim is to test two main hypotheses, both of which are

stated below.

• Hypothesis 1. It is hypothesised that by structuring image data into semantically

and visually related groups, that it would be possible to create a memory efficient

framework based on machine learning algorithms to accurately classify commonly

photographed landmarks within geo-tagged image corpora in real-time A frame-

work system is proposed and implemented to investigate this hypothesis

in a large dataset of community contributed images. An extensive investi-

gation is to be carried out using a variety of established computer vision

techniques fused with machine learning approaches to test this hypothesis.

• Hypothesis 2. It is hypothesised that by combining a machine learning based

method with a commonly used tree indexing based approach that it is possible to

improve upon existing methods to classify landmarks within digital images in a

memory efficient manner To test this hypothesis, a hybrid approach is proposed
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based on the fusion of machine learning methods with a tree structure for

indexing visual features to allow for the classification landmarks

1.4 Objectives

The primary research objectives in this work are to create a methodology to

automatically recognise images containing landmarks in a time and memory

efficient manner based on community contributed data. Based on landmark

recognition using these datasets, it may be possible to provide descriptive and

accurate captions for images containing large landmarks. The aim is to achieve this

using a novel approach based on established computer vision techniques, such as

local image feature matching and methods for quantising local image features into

global feature vectors that are suitable to be used as inputs into machine learning

methods. This approach combines two techniques for image classification. The

first technique is based on clustering images of landmarks taken from similar

viewpoints and using machine learning techniques to classify test images based

on features extracted from these clusters. This classification approach allows for

the efficient reduction of search space when classifying a query image. The second

technique is a divisive hierarchical approach that filters out non-candidate images

using an efficient matching process, before finding an accurate match using more

expensive image matching techniques. It is hypothesised that this automatic

classification could be carried out in a timeframe, that allows for interactive

addition and searching of a large scale database of geo-tagged images. It is also

intended to evaluate how well this approach will perform against a current state

of the art approach using a large image corpus, harvested from online community

sources.

As part of this framework, one problem that must be solved is how to accu-

rately cluster, such a large scale dataset into visually similar clusters within a
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feasible timeframe. Brute force point to point matching of local image feature

descriptors generally performs quite well in terms of accuracy, when clustering

images on a small scale. With large scale datasets containing perhaps millions of

images however, it becomes computationally infeasible. The k-means algorithm

is traditionally very slow (complexity of O(KNM) where K is number of iterations,

N is the process of re-assigning cluster centres and M is the process of calculat-

ing vector distances) and therefore an alternative clustering algorithm must be

utilised that reduces the time required to process the k-means algorithm while

still retaining accurate clustering results. Another aim of this work is to research

several multi-tiered approaches that will first utilise low cost image features that

might not discriminate as well as interest point features, but are much faster to

compute and compare before carrying out more accurate but costly interest point

matching. These image features are extracted and compared in the early stages of

the clustering approach. This is followed by interest point descriptor comparisons

on a filtered set of images. In this investigation, it will be imperative to find

the right balance between speed and clustering accuracy, as it is envisioned that

this framework could theoretically be utilised on a very large scale collection of

geo-tagged images.

Another objective is to analyse how best to train the Support Vector Machines

(SVMs) to create robust classification models. What granularity of clustering

will perform most accurately? Would images taken from multiple viewpoints of

a landmark with more training data perform better than training images from

just one viewpoint of a landmark. Many other combinations of parameters and

features must be explored to create the most robust and accurate SVM models for

this purpose, eg. What type of SVM kernel is most suitable to use for this purpose?

What values should be used to assign to errors in the training phase? Would indis-

criminate global based, low-level features improve or harm SVM classification? It

can be difficult to find the right balance of features and parameters to use to train
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a robust and accurate classification model, and the wrong combination will lead

to a noisy and inaccurate classifier. Additionally, another objective is to analyse

an alternative machine learning algorithm to conclude what might perform best

in this work. The aim is to experiment extensively to ascertain what combination

performs best for the problem described in this thesis.

Secondary research objectives include analysing the accuracy of community

contributed metadata for the purposes of image matching and classification. It

is important to know the limitations of the metadata that is available for the

purposes of organising and describing collections of images. It is not useful to

successfully match an image to images in an annotated training collection, only

to tag that image with an incorrect caption or set of tags that are associated with

the matched samples. It is aimed to analyse how useful the tags that accompany

community data might be, and how best to extract correct tags from successfully

matched images.

As the majority of images within the corpus have been manually geo-tagged

by the uploader, it is possible that large amounts of the corpus will contain

inaccurate location information. The accuracy of the geographical data is also an

important consideration. The geographical pruning and clustering processes are

based around disregarding images located outside a geographical radius. It is

necessary to ascertain what is an appropriate spatial radius to adopt during the

clustering and classification procedures to ensure maximum speed and accurate

classification. Will too small a spatial radius eliminate potential candidate images?

Will too large a spatial radius render the proposed approach infeasible due to

inefficient pruning of non-candidate images? The objective is to analyse the

geographical information with the hope of ascertaining the best trade-off between

classification speed and classification accuracy.

The final part of the landmark recognition framework is to automatically

provide a textual annotation to a query image based on the retrieved matched

12



images from the corpus. In a professionally annotated corpus, this process is

trivial as it means simply selecting the metadata associated with each matched

image. In a community contributed dataset, however, it becomes very difficult

to achieve this task with a high degree of accuracy. Given that large numbers of

community provided text tags will be heterogeneous or semantically irrelevant, it

remains a challenge to automatically create semantically relevant subsets from

sets of community provided tags. A secondary research objective of this thesis is

to implement and evaluate techniques that will help to solve this problem and

improve upon the current state of the art methodologies.

1.5 Structure of Thesis

The remainder of this thesis is structured as follows.

In chapter 2 the background to the research topic is introduced. An intro-

duction to image retrieval is first provided, describing historical background to

the field including some of the early technological innovations and established

practices in image retrieval systems and techniques developed and evaluated

over the years. More advanced approaches to classifying semantic information

from image content in the context of image retrieval are then discussed. Next a

number of techniques for comparing and classifying images using local image

features are introduced and described. The chapter concludes with an overview

of previous work carried out in the research field of object and landmark classifi-

cation in image collections, along with similar fields. It is important to provide an

overview of the background to the work presented in this thesis, as without these

previous technological breakthroughs, it would not now be possible to provide a

framework for large-scale accurate image classification.
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In chapter 3 the concept of social networks and community contributed data

collections are introduced. An overview is provided, describing data that is

currently available to augment the implementation and analysis of landmark

classification methods. The advantages and disadvantages of community con-

tributed metadata are outlined and an analysis is carried out to determine how

accurate and useful this data might be for the purposes of the work described

here. The approach that is used to create the dataset, which in turn is used to

build the classification framework, is discussed, followed by a description of all

datasets utilised. An analysis of the accuracy of a subset of Flickr geo-tags is

also carried out, along with an analysis of the relevance of the manually created

textual descriptions of image content. The chapter concludes with an evaluation

of community contributed data.

In chapter 4 the concept of clustering visually similar images is introduced,

along with the importance of an efficient approach when clustering large scale

image corpora. This is followed by a brief description of clustering algorithms,

in particular hierarchical clustering. The first clustering approach evaluated in

this work, based on community provided text is described, and the effectiveness

of this approach is examined. A number of different approaches to hierarchi-

cal clustering using low-level image content features are then reviewed. An

alternative clustering approach that is based on hashing techniques for quickly

finding approximate nearest neighbours in feature space is also implemented and

evaluated. The chapter concludes with a section on hierarchical combinations of

low-level features, interest point features and contextual features. The results of

these combinations are analysed and described in detail.

In chapter 5 the core hypothesis of the thesis is introduced and the core motiva-

tion behind this work is described in detail. The chapter starts with a description

of machine learning and many of the commonly used approaches to classifica-
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tion, in particular the machine learning method, Support Vector Machines. The

problem of using local image features for classification purposes is described, and

alternative approaches based on the quantisation of multiple local image features

into global based vectors are introduced. An evaluation is carried out to ascer-

tain how successfully machine learning classification models can be trained to

recognise landmarks using manually created training sets. The chapter concludes

with the results of an in-depth investigation and evaluation of utilising machine

learning methods for the purposes of landmark recognition.

Chapter 6 investigates approaches to landmark classification in situations

where classification models are not applicable. This occurs mainly in situations

where an individual landmark is sparsely represented within a corpus and there is

insufficient data to train a robust model. Two main approaches are investigated, a

vocabulary tree based approach and an efficient hierarchical classification scheme.

A hierarchical based approach that makes use of a scene classification methodol-

ogy, is introduced, and many different forms of this approach are evaluated. This

hierarchical approach utilises several low-level image classifiers, and an analysis

of these classifiers is presented. Following this, the background of a vocabulary

tree structure is introduced, along with motivations behind its use. A novel hy-

brid method combining SVM models and a hierarchical classification approach

is introduced and presented. This approach combines the use of classification

models with a hierarchical classification pipeline that aims to classify popular and

non-popular viewpoints of landmarks. An implementation of the current state of

the art method for landmark classification is introduced and evaluated against

the methods that make up the framework presented here.

In Chapter 7, an introduction is provided outlining the issues that arise with

captioning images using community contributed metadata. Previous work in the

field is introduced along with a explanation of proposed approaches to improve
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on this work. An analysis of these approaches is carried out and the chapter

concludes with a results of this analysis.

Finally in Chapter 8, the conclusions of this work are presented referring back

to the original hypotheses and research objectives. This chapter concludes by

outlining various research avenues that could be explored in future work.
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Chapter 2

Content-Based Image Retrieval and

Landmark Classification

This chapter provides a background to image information retrieval and image

classification. It gives a review describing previous research in the field, followed

by a discussion on current state of the art approaches to the automated recognition

of large landmarks.

Image retrieval is a very large research field, with many significant research

groups working worldwide on different areas within the field. Advances in image

retrieval have drawn different techniques and expertise from many other research

fields including text retrieval, computer vision, psychology and geographical

information science among many others.

In this chapter, the aim is to review the history of image retrieval, the many

technological breakthroughs that have been made in the field, and the difficulties

that researchers are faced with. The objective is to provide the reader with

contextual information concerning the research problem addressed in this thesis.

This should also help the reader gain insights into challenges posed by accurate,

automated captioning of digital imagery.
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2.1 Introduction

The task of automatically presenting images to a user that are relevant to their

wants and needs is called image retrieval. Image retrieval is currently a very active

research field, mainly because of the large amounts of digital imagery that are

now being created and stored by consumers. Most image retrieval systems accept

a user’s query and, using an algorithmic method attempt to return images that

are most relevant to the query from an available corpus of images. The meaning

of relevance can be subjective. For example, a user might associate temporal

similarity as a measure of relevance between two images, such as two images

photographed during the course of a holiday and therefore could be considered

relevant, even though they share no visual characteristics. Although there have

been methods suggested to retrieve images based on other measures of relevance

(such as event detection), for the entirety of this work it is assumed that relevance

is correlated with visual similarity.

Image retrieval techniques can be roughly categorised into two main ap-

proaches:

• Content-Based Image Retrieval. Content-based image retrieval is the or-

ganisation of sets of images and the retrieval of relevant images from these

sets based upon the actual visual content of an image. Content-based re-

trieval may refer to different measurements of colour, texture or region

shapes among others that are created from the image at a pixel level. More

recent approaches focus on the comparison between smaller regions within

an image, rather than considering the entire image as one entity.

• Context Based Image Retrieval. Context based image retrieval is based

upon information that is available about an image, commonly referred to

as contextual metadata. This information can include manually created

text tags describing the content of the image or information based in the

18



Exif header of the image. Most large scale image retrieval systems in use

today are based on context-based image retrieval with each image being

represented by a small number of keywords that have been provided by a

human annotator.

2.2 Content-Based Image Retrieval

Although the techniques applied in this framework rely on contextual information,

the majority of the research is carried out in the field of content-based image

retrieval (CBIR). CBIR is a large research field concerned with the retrieval of

images based on their pixel content. It combines technologies and methodologies

from many different research domains, such as computer vision, machine learning,

information retrieval, data mining, statistics and psychology. Several advances

in the field have enabled the creation of commonly used applications of CBIR

and have led to a wide interest in the field in recent years. It has been shown

that CBIR and related fields have grown roughly exponentially in terms of the

people involved and publications since the year 2000 [Datta et al., 2006]. CBIR

is a relatively mature research field with many solutions to problems have been

suggested and researched, however it is by no means considered a solved problem.

Large scale semantic retrieval as a real world technology is still a long way off.

In 2000, Arnold Smuelders outlined in a journal article called ’Content-Based

Retrieval: The End of the Early Years’, the main research problems facing CBIR as

the ’Sensory Gap’ and the ’Semantic Gap’ [Smeulders et al., 2000].

• Sensory Gap. Smeulders describes the sensory gap as ’the gap between the

object in the world and the information in a numerical/verbal/categorical

description derived from an image recording of that scene’. He outlines

several problems that exist when trying to process the visual information

available in the real world into a relevant computational description. For
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example, when a digital photographic device takes an image, it is stored as

a numerical representation. This representation is significantly quantised

from the amount of information that is available in a scene. The level of

this quantisation is based on limitations with individual image capturing

devices and can create problems with image recognition. Other sensorial

problems that occur with image capturing include image noise and object

occlusion.

• Semantic Gap. In terms of image retrieval from a user’s perspective, the

’Semantic Gap’ is a more important research issue. The ’Semantic Gap’

refers to the inability of computers to classify high level semantics that a

user might interpret from the content of an image. Computers excel with

numerical queries, such as retrieve an image that contains 20% red pixels,

30% blue pixels and 50% yellow pixels, but struggle to accurately return

images based on semantic human queries, such as return an image of ’a red

motorbike’, ’Guns and Roses’ or return an image of ’an argument’.

2.2.1 Challenges in Content-Based Image Retrieval

Traditionally in image retrieval, images are represented by feature vectors of

numerical data, intended to correlate with different features and attributes of

the image. These feature vectors are then used in conjunction with different

retrieval models which seek to return images relevant to user’s information needs.

Due to the large variations that can occur between apparently similar images,

several challenges exist when using computer vision techniques for classification

purposes. Some of the variations that can greatly effect classification performance

are:

• Illumination. Small changes in illumination might not cause problems

for humans to distinguish between similar scenes, but an image feature
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extraction algorithm might represent similar scenes very differently due to

small variations in illumination between the images. This is particularly

problematic when using image features that are calculated based on colour

information, or changes in image intensity values (changes in brightness).

Changes in illumination may be caused by the time of day that an image was

taken, different weather conditions, and different camera settings. These

possible illumination changes must be taken into account when developing

algorithms to extract image features or creating classification models to

recognise different image categories.

• Orientation. The orientation of the image can cause problems when retriev-

ing and classifying images. Many feature extraction algorithms will detect

features differently, based on the orientation of the image at extraction time.

Several image feature algorithms will also describe an image feature based

on the orientation of detected features. Clearly this presents a problem

when trying to match visually similar imagery, as similar images with small

orientation differences might be described differently and therefore will not

be successfully matched. Techniques have been developed to solve this prob-

lem, and several algorithms based on these techniques have been shown to

be invariant to large changes in orientation [Bay et al., 2006][Lowe, 2004].

• Scale. Scale refers to the distance between an object in an image and the

camera. From a semantic perspective, two pictures of a building facade

taken from similar viewpoints but from different distances are the same and

should be classified as such. It is imperative for an information retrieval

system to be able to recognise similar objects and locations taken at various

scale levels.

• Occlusion. Occlusion is when an object or objects are blocking or partially

blocking the intended object to be photographed. Occlusion occurs when
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another object is situated in the viewplane between the location of the

camera and the main object within an image. Several common types of

occluding objects include foliage and people and transport vehicles passing

in front of a camera while an image is being taken. The main problem with

occlusion is that image features are describing the occluding object as well

as the main scene or object. Depending on how severe the occlusion, the

accuracy of any retrieval method will be reduced.

• Affine Variations. Affine variations arise from differences in image view-

points. Images of an object with different lines of sight will look different.

Small affine variations do not effect a human observer who can still recog-

nise the same object from different, albeit similar viewpoints. When using

computer vision algorithms, the same variations can produce completely

different image features.

• Intra-Class Variation. Intra-class variation refers to the differences in visual

similarity that can occur between different instances of the same class of

object. For example, two buildings might have different sizes, colours,

shapes and features, however it is still possible to recognise that an image

contains a building due to similar characteristics that appear in the majority

of buildings.

• Inter-Class Variation. Inter-class variation refers to the visual similarities

that can exist between different classes of objects. It is possible that two

landmarks located within a single city could be visually very similar. This

particularly prevalent when different geographical objects within a city are

built in the same architectural style.
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2.2.2 Low-level Image Retrieval

Low-level image retrieval is based upon global measurements of different types

of image attributes gathered from analysing the raw pixel data within an image.

Low-level image features can be split into three main categories;

1. Colour Based Features

2. Texture Based Features

3. Shape Based Features

Many of the first successful image retrieval systems were based solely on low-

level image features. The Query by Image Content (QBIC) image retrieval system

[Ashley et al., 1995], developed by IBM was one of the earliest image retrieval

systems. The QBIC system was based on combinations of colour, texture and

shape features to return images to a user, based on a ”query by example” interface,

which is an interface where the user enters some input such as a test image, or

actually draws the desired query image into a canvas object and the system

returns images visually similar to the examples. The system has been successfully

integrated into a number of different domains, such as an art retrieval system

for museums and galleries, along with stock photo retrieval and applications

in the textile industry [Petkovic et al., 1996]. The idea behind the QBIC system

was to retrieve images based on measurable properties such as colour and shape.

For example, the QBIC system allows for users to draw the shape of a car into a

user interface screen. The system would then create a numerical representation

of this car shape and search for other similar representations in their database.

This task is very different from the more advanced semantic query ’Retrieve all

images of cars’, which is a high-level semantic query that requires a high-level

understanding of the content of an image, which does not necessarily correlate

with visual similarity.
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Another early image retrieval system was the VisualSEEK system developed

at Columbia University [Smith and fu Chang, 1996]. The VisualSeek system re-

trieves images based mainly on colour features, specifically features generated

from visually salient regions of an image. The system allows for the retrieval of

images based on region based queries, whereby images are retrieved based on

the spatial layout of colour within corpus imagery.

Low-level image features can typically provide an efficient means to retrieve

visually similar imagery from a large corpus, as most low-level features are global

based and tend to be inexpensive to extract and compare.

2.2.3 Types of Low-Level Image Features

Colour

One class of low-level image features are colour features. These are based on

different representations of the colour values within an image.

The most basic image colour feature is the histogram, which is still widely

used today. A histogram is a description of the frequencies of pixel intensities and

colour values in an image. Each bin in a histogram represents the number of pixels

in an image that will have a value corresponding to the bin value eg. histogram

H for a grayscale image I that has an intensity value range of I(u, v)ε[0, K − 1]

with K=256, will have 256 bins. H(i) represents the number of pixels in image I

with the intensity value i. A colour histogram in thee RGB colour space represents

more information than a greyscale histogram. An average RGB colour histogram

will have 768 bins with 256 bins per colour (Red, Green and Blue).

RGB histograms provide an effective measurement of colour distribution,

however, a significant issue for image matching using colour features is that they

are not robust in particular to changes in illumination [van de Sande et al., 2010].

Even small changes in illumination can cause large changes in the colour distribu-
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tion, which can impair matching of apparently similar images. It has been shown

that histograms processed in different colour spaces outperform RGB histograms

for many computer vision and image retrieval tasks [Borghesani et al., 2009].

For example, histograms based on the Hue, Saturation and Value (HSV) colour

space are more similar to the way a human perceives the visual spectrum and

hence outperform RGB histograms for visual retrieval from a human perspec-

tive [Kotoulas and Andreadis, 2003] [Borghesani et al., 2009]. Other types of his-

tograms have also been tested for image retrieval purposes in a number of

different colour spaces, such as the LCH [Missaoui et al., 2004] and the YCbCr

colour spaces [Talbar and Varma, 2010]. Traditional histograms tend to be suscep-

tible to noise interference within an image, which is a phenomenon consisting

of random light variations captured by a camera sensor. Stricker and Orengo

[Stricker and Orengo., 1995] proposed an alternative to the traditional histogram,

by utilising cumulative frequencies of intensity values to represent a histogram.

They proposed the cumulative colour histogram, in order to add robustness to

image noise, and demonstrated that this approach outperformed the standard

colour histogram method for retrieval tasks based on colour features.

As the CBIR research field grew, more and more groups started to exploit

colour information in different ways. The main drawback of traditional colour

histograms is that they do not capture any spatial information about the distri-

bution of colour within an image. Several algorithms have since been developed

that measure distributions of colour and additional measurements containing

information about the spatial layout of colour values within an image.

Birchfield [Birchfield and Rangarajan, 2005] introduced a spatial colour fea-

ture called a spatiogram, that has been used successfully in object localisation

tasks [Conaire et al., 2007]. The spatiogram is an extension of the standard colour

histogram structure in that it adds statistical information about not only the distri-

bution of colour within an image but also can add information about the spatial
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relationships between these distributions. As part of the MPEG7 standard various

descriptions of colour features were proposed, and have been used in a wide vari-

ety of retrieval and classification tasks, from retrieving video surveillance imagery

[Annesley et al., 2005] to adult image classification [Kim et al., 2005]. Many of

these MPEG7 features contain spatial measurements such as the colour structure

feature [Messing et al., 2001] and the colour layout features [Kasutani and Yamada, 2001].

Using these improved methods to provide complex descriptions of colour distri-

bution within an image allows for more efficient comparison of images, using in

most cases features that have been quantised into small feature vectors, augment-

ing the fast comparison of large numbers of images.

In this work, different colour features are utilised as higher level methods in a

hierarchical clustering scheme in Chapter 4.

Texture

It is quite difficult to provide a strict definition for image texture. Image texture

could be described as a measure of reoccurring patterns within an image, or

perhaps a measure of the small variations in changes of intensity within an image

region or as a global measure. In general, texture provides extra information

about the spatial layout of intensity levels within an image.

First order statistics such as mean or standard deviation of pixel or intensity

values are generally not useful measurements to calculate image texture as many

visually different images might have similar or identical values. Therefore, the

first types of image texture descriptions consisted of a set of measurements based

on second-order statistics. In 1973 Haralick proposed an approach to extract

texture properties from image blocks using grey level co-occurrence matrices

(GLCM), which are a measure of the frequencies of the spatial relationships that

exist between certain pixel values [Haralick et al., 1973]. Five texture measures

were proposed:
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∑
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∑
j(i− µi)(j − µj)Nd[i, j]

σiσj

where N is equal to the GLCM for an image. At the same time, Tamura et al.

[Tamura et al., 1973] proposed a similar approach to describing texture, based

on human perception. This approach was composed of 6 features; Coarseness,

Contrast, Directionality, Linelikeness, Regularity and Roughness. While Tamura’s

and Haralick’s features were widely used for early image retrieval tasks including

landmark classification [Takeuchi and Hebert, 1998], they are not discriminative

enough for large scale image retrieval tasks, and have since been outperformed

by more advanced texture features [Howarth and Rger, 2004]. While they were

used initially for image retrieval purposes, they lack the discrimination values

to be effective for large scale image retrieval tasks, particularly when not used in

conjunction with other sets of features.

Due to the limitations of these second-order statistical features some more

advanced texture features have been proposed, such as those calculated from

distributions of image edges. Edges are points within an image where there

are measurable sharp changes in intensity in one or more directions. Several

algorithms have been developed in the computer vision and machine visions

fields to detect the presence of edges, such as the Canny algorithm [Canny, 1983].

As edges correspond to sharp changes in intensity values, they can be used as a

rough measure of image texture and several image features have been developed
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for this purpose such as edge orientation histograms [Gagaudakis et al., 2000]

[Jain and Vailaya, 1996] and the MPEG7 edge histogram [Manjunath et al., 2001].

Another alternative to edge based texture features, are features based upon

wavelet transform functions, such as Gabor filters. Gabor texture features are

built around banks of Gabor filters and have been used in many image analysis

and image retrieval tasks, such as iris recognition for biometric identification

[Daugman, 1993] and object segmentation [Jain et al., 1997]. Each Gabor filter

captures change at a specific frequency in a set direction. Generally a texture

feature will contain dozens of these filters containing a number of varying fre-

quencies and directions, to give an overall representation of image texture. These

features are described in more detail in Chapter 4.

Over the years, more and more advanced methods to describe texture within

an image have been proposed by the research community, and image features

based on texture continue to play an important part in many image retrieval

[Manjunath and Ma, 1996], image clustering [Cai et al., 2004], image classification

[Peterson and Larin, 2009], image segmentation [Weldon and Higgins, 1999] and

image matching tasks [Zhang and Kosecka, 2007].

In this work, texture features are utilised and their performance is evaluated as

part of image clustering processes in Chapter 4, along with pruning non-candidate

images in a hierarchical classification technique in Chapter 6.

2.3 Low-Level Semantic Classification

As the extraction and representation of image features became more reliable,

several techniques were developed to classify low-level semantic information

from an image. Combinations of global low-level image features can be combined

with classification techniques to infer basic information about the content of an

image. For example, in the absence of EXIF information, colour based image
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features can be useful to determine whether an image was taken during the day

or at night [Kuthan and Hanbury, 2006]. Successful low-level classification of

semantics allowed for image retrieval systems to organise and return images

based on more humanistic queries. For example, instead of returning images

consisting of 30% red pixels and 70% blue pixels, a system could now be queried

to retrieve images containing a sunset, snow covered landscape or perhaps a

seascape scene. These types of semantics are getting closer to the types of queries

that humans might make to a retrieval system.

Several successful classification methods were developed to recognise a variety

of low-level semantics such as the recognition of a cityscape (urban) or landscape

(rural) scene [Yan et al., 2003]. Szummer and Picard [Szummer and Picard, 1998]

combined colour histograms with texture features to train a nearest neighbour

classifier to recognise whether an image was taken indoors or outdoors. Vailaya

et al. [Vailaya et al., 1998] trained a k-Nearest Neighbour classifier to group im-

ages into a finite number of low-level semantic classes. These classes contained

cityscape, landscape, forest, mountain and sunset among others. They used colour

and edge features as inputs into the classifier.

As more research groups began to experiment with image semantic classifica-

tion techniques, it became possible to infer higher level semantic knowledge from

an image. Several mid-level semantics were successfully classified from images.

One established mid-level semantic classifier that has been heavily researched

and is in widespread use today is the detection of human faces within an image.

Early approaches to face detection involved searching for regions of an image

with large areas of colour similar to that of human skin, and analysing these

regions to determine if they contain a face [Hsu et al., 2002], [Singh et al., 2003].

Once these regions are detected they are compared against a database of face

images to measure the correlation. More advanced techniques were also devel-

oped that allow for the real-time detection of faces within images. Viola and Jones
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[Viola and Jones, 2001] developed a face detection technique that made use of an

image representation called integral images combined with fast approximations

of Gabor filters, which allowed for the fast accurate classification of faces at 15

frames per second. They utilise a cascade of classifiers, where simple classifiers

are used to reject candidate regions for faces, while more complex classifiers are

used at later stages to achieve low false positive rates.

For the investigation described in this thesis a suite of low-level classifiers

was trained to aid in a hierarchical approach to image classification. A full

description of the implementation and performance of these classifiers can be

found in Chapter 6.

2.4 Context-Based Image Retrieval

It has been shown that image content alone is not sufficient for high level semantic

classification of imagery . The approach adopted today in most large scale image

retrieval systems is based upon textual information associated with an image.

Short textual descriptions called tags are created by users while uploading images

into a system. These tags are intended to represent the semantic content and

context of the image. The system indexes these short textual descriptions and

retrieval is carried out using established text retrieval techniques.

Several other approaches to context based retrieval have been implemented

and tested. O Hare et al. [O’Hare et al., 2005] developed a system called Me-

diAssist with the aim of annotating people in personal photo collections in a

semi-automated manner. The MediAssist system used different types of context

data such as the time an image was taken and camera settings available in the

EXIF header. The system classified images into semantic categories based on

this context information. Images were grouped into four different categories of

light status; Daylight, Dusk, Darkness and Dawn, using the temporal information
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available. This was used to gather weather data, which combined with the GPS

allowed the system to determine ambient light conditions. They also developed a

technique to classify an image as indoor or outdoor based on a number of camera

settings such as brightness, shutter speed and the ISO values. All images within

the MediAssist system contained GPS information and images were also grouped

and classified based on location.

2.5 Local Image Features

Local image features focus on salient regions within an image. These are regions

that display a certain amount of non-uniformity in intensity values. These features

can be used to find correspondences (visually similar image patches) between sets

of images and tend to be more discriminative than low-level features, such as those

based on edges, colour and texture. Since local image features are based around

small regions centred on informative image regions, they also tend to be far more

robust to background clutter and occlusions. These features, also called interest

points, have been used in many applications of computer vision including object

recognition [Lowe, 1999], object recognition in video [Sivic and Zisserman, 2003],

object classification and image retrieval from large databases [Philbin et al., 2007].

Ideally, interest point algorithms should be invariant to scale, translation and

rotation. The algorithms should also be partially invariant to small affine changes

and changes in illumination. The most important feature of an interest point

detection algorithm is repeatability, which is the ability of the algorithm to detect

the same interest points in different images.

The detection and description of salient regions is now relatively mature and

several algorithms exist that can detect salient regions and create a highly discrim-

inative feature descriptor to describe the region. One of the first, and still widely

used, interest point detectors is the Harris corner detector [Harris and Stephens, 1988].
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Figure 2.1: An illustration displaying an example of the discriminatory attributes
of local image features. In this example, three visually and semantically similar
images are selected from the test collection, used in this work. Three of the images
contain visually similar objects in a similar setting, however only two of the
images contain the same object. The test image is matched against a relevant
and non relevant image using the SIFT algorithm [Lowe, 2004]. There were 72
correspondences found between the test image and the relevant image, while
there were zero correspondences found in the visually similar non-relevant image.

The Harris algorithm detected points in an image that were located on corners

(horizontal and vertical edges). Several commonly used interest point algorithms

include Multi-Scale Oriented Patches (MOPS) [Brown et al., 2005], Scale Invariant

Feature Transform (SIFT) [Lowe, 1999] and Speeded Up Robust Features (SURF)

[Bay et al., 2006].
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2.5.1 Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) algorithm was first published in

1999 [Lowe, 1999]. It has since become one of the most widely used algorithms to

detect and describe local image features. The SIFT algorithm provides a method

for detecting distinctive, salient regions within an image (interest points) and for

creating highly discriminative feature vectors for each of these interest points.

These feature vectors can then be used for reliable matching of visually similar

interest points within different images. An example of this is depicted in Figure

2.1.

The first stage of the algorithm is to select locations/regions within the image

that could be suitable as candidates for interest points. Repeatability is the impor-

tant factor in this stage. It is important that the same locations would be selected

in a similar image. A scale-space pyramid [Lindeberg, 1994] is created for each

image. Difference of Gaussian functions are then applied to each image in the

pyramid and the local minima and maxima are selected as candidates for interest

points as illustrated in Figure 2.2.

The location and scale of each candidate point is then determined. Unstable

interest points are filtered out based on a number of measures such as low-contrast

and keypoints that are located on strong edges within the image. An orientation is

assigned to each keypoint based on the image gradients surrounding the keypoint

location. The SIFT descriptor is calculated based on local image gradients around

a keypoint. Orientation histograms are created over 4 × 4 sample regions around

the interest point. This creates a 4 × 4 array of orientation histograms each

containing 8 different orientation directions thus creating an image descriptor of

length 128 (4 × 4 × 8).
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Figure 2.2: An illustration of a scale space pyramid using difference of Gaussian
functions that make up the scale space extrema detection in the first part of the
SIFT algorithm taken from [Lowe, 2004]

2.5.2 Speeded Up Robust Features

Speeded Up Robust Features (SURF) is an algorithm created by Herbert Bay et al.

[Bay et al., 2006] to detect and describe salient regions within an image. The SURF

algorithm is similar to Lowe’s SIFT algorithm [Lowe, 2004] in that the algorithm

will detect ’regions of interest’ or ’interest points’ within an image, however it is

optimised to detect these regions in a shorter time frame than SIFT.

One of the big advantages of SURF in comparison to SIFT is speed. SURF

image features are detected very quickly due to the algorithm’s use of integral

images. SURF image features are also faster to match and compare, as they

are half the size (vector size of 64) of SIFT features (vector size of 128). This

reduction in the size of the descriptor does not however, harm the discrimination

properties of the features. Like SIFT, SURF is invariant to scale, rotation and

small variations in image viewpoint (affine variations) [Juan and Gwon, 2009].

Several studies show that the SURF algorithm performs at least as well, or better
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than the SIFT algorithm for certain image matching tasks [Connaire et al., 2009],

[Murillo et al., 2007]. The SIFT algorithm, however is more invariant to changes

in illumination.

Another big advantage with the SURF algorithm is the inclusion of the sign of

the Laplacian within the feature vector. This distinguishes bright regions on a dark

background from dark regions on a light background, enabling only the matching

of bright interest points against similar bright interest points and similar for dark

interest points. This effectively halves the number of interest point comparisons

required when matching images.

Interest Point Detection

The detection of interest points using SURF is faster to process than SIFT mainly

due to the use of an image representation called integral images, introduced by

Viola et al. [Viola and Jones, 2001]. Each point within an integral image is the sum

of the values between the point and the image origin, which can be represented by:

I∑(x, y) =

i≤x∑
i=0

i≤y∑
j=0

I(x, y)

where x and y represent the coordinates of a pixel within image I .

With these integral image representations the process of calculating the area of

a rectangular region consists of four operations and processing time is not effected

by changes in the size of an image. For example, A rectangular region bounded

by the vertices v1, v2, v3 and v4, the sum of the intensity values is calculated by

v1 + v4 − (v3 + v2).

Using these integral images, the SURF algorithm detects candidate interest

points based on the determinant of the Hessian matrix. The idea behind the

algorithm is that feature points will be detected at locations within the image
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where the determinant of the Hessian is at its maximum. The Hessian matrix is

defined at a point p in an image (where p = [x, y]) as:

H(p, σ) =

Lxx(p, σ) Lxy(p, σ)

Lxy(p, σ) Lyy(p, σ)


where Lxx(p, σ) is a reference to the convolution of the second order Gaussian

derivative
∂2g(σ)

∂x2
, also known as the Laplacian of Gaussian (LoG), at point p with

a scale value of σ and likewise for Lxy(p, σ) and Lyy(p, σ). In [Lowe, 2004] it was

found that a significant performance increase in terms of speed can be obtained by

approximating the values of these LoGs using Difference of Gaussian functions.

The SURF algorithm also approximates the LoG to speed up the processing time,

albeit through the use of a number of box filters.

The combination of box filters with integral images allows for a significant

speed increase. For example, with a filter of size 9× 9 (which is the approximation

of a Gaussian with σ = 1.2, the smallest scale examined with the algorithm), it

would require 81 operations to complete a convolution without the use of box

filters, whereas, the box filters combined with integral images would require 8

operations. As the σ value increases, the number of operations required without

the use of box filters would increase quadratically, while the box filter approach

would still require only 8 operations.

Interest points are determined at locations where the local maxima is outputted

from the determinant of the Hessian over both area and scale. Bay proposes that

the an accurate approximation of the determinant of the Hessian can be calculated

using the following formula:

det(Happrox(p, σ)) = DxxDyy − (wDxy)
2

where Dxx, Dyy and Dxy are the results of approximations of the Gaussians using

box filters in the x, y and xy directions, as illustrated in Figure 2.3, and w is a
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Figure 2.3: An image displaying the box filters (bottom) used to approximate
Gaussian functions (top) in the SURF algorithm. These filters are shown in the x
(left), y(centre) and xy (right) directions. Image taken from [Bay et al., 2006]

correction constant that is calculated based on the scale and size of the box filters.

Bay suggested assigning a constant value of .9 to w.

These candidate interest point regions are then thresholded such that all re-

gions below the threshold value are removed as candidates. The threshold value

can be adapted to suit the application with lower thresholds provided more inter-

est points per image but generally the regions will not be as strong (lower level of

uniqueness) as with a higher threshold. Non-maximal suppression is then carried

out to further filter the candidate regions. Each candidate point is compared in

scale-space to its 26 neighbours, which comprise of the 8 neighbouring pixels

in the same scale as the candidate and the 9 neighbouring pixels in the scale

above and below it. This is illustrated in Figure 2.4. Only points that are a local

maximum in this scale space region are retained as candidates.
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Figure 2.4: Non Maximal Supression. A pixel x is marked as a maxima if it is
greater than all of it’s neighbours in it’s scale space interval and the intervals
above and below it. Image taken from [Lowe, 2004]

Interest Point Descriptor

The first step in the creation of a descriptor is to assign an orientation to the interest

point to ensure that it is invariant to changes in image rotation. A circular region

is selected around the interest point, from which the orientation is calculated

based on Haar wavelet responses in both the x and y directions. These responses

can be calculated quickly through the use of box filters similar to those used in

the detection phase of the algorithm.

After an orientation is assigned, the descriptors are then built by constructing

a square window around the interest point. This window will have a size of 20σ

where σ refers to the scale of the interest point. This window is then divided

into 4 × 4 subregions to retain some spatial information. For each of these

subregions, Haar wavelet responses are measured at regularly spaced intervals.

These responses in horizontal and vertical directions (dx and dy) are summed over

each subregion. The absolute values (|dx| and |dy|) are also summed to capture

polarity information about the interest point. For each region a vector with a

length of 4 is created based on these wavelet responses, yielding:

Vsubregion = [
∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|]
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As each subregion contributes four values to the feature vector, this yields an

overall vector length of 64 (4 × 4 × 4 = 64). The overall image descriptor that

represents each interest point feature vector contains 70 values, which consist of

6 localisation values combined with the 64 feature values. The structure of the

descriptor is as follows: [x, y, σ, b, σ, l, V ] where x and y are the coordinates of the

points location within an image, σ refers to the scale of the keypoint, b represents

the corner strength of the keypoint, l refers to the sign of the Laplacian and V is

the feature vector that is used to match keypoints [Bay et al., 2006].

Figure 2.5: An image displaying the interest points that have been detected using
the SURF algorithm on a picture of the Arc De Triomphe. As can be seen from the
image, the majority of the interest points detected are in the salient regions of the
landmark, while few interest point features are detected in the uniform regions.
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2.6 Spatial Based Context Retrieval

Another research development that greatly assisted in the accurate matching of

images from large scale datasets is the use of spatial information. Many different

sources of imagery have become available in recent years, and increasingly they

come accompanied by geographical information relating to the location where

the image was photographed. Spatial based information can greatly aid image

classification. For example, the knowledge that an image was photographed in

a small geographical area allows for the classification of imagery using datasets

of an unprecedented size, as large numbers of non-candidate images can be

quickly filtered out in a retrieval task. Several research groups have developed

frameworks and prototype image retrieval systems that make use of spatial data

associated with images and fuse it with image content data. The Mediassist

system [O’Hare et al., 2005] developed to retrieve images based on low-level

image features such as colour and texture fused with location data in the retrieval

process. Tests carried out with this system showed that location data alone does

not retrieve similar images as effectively as image content data by itself. They

showed that for image retrieval the best results were attained by combining image

content with image location data.

Another image retrieval system that combines image content and context data,

is the Photocopain system developed by Tuffield et al. [Tuffield et al., 2006]. The

Photocopain system fuses image content data with different types of context data

to aid with image retrieval. It uses GPS data along with weather information and

other data such as calendar entries and news stories. The system has pre-trained

low-level semantic classifiers which also provide automated tags for images such

as natural object, artificial object, indoor, outdoor, landscape, cityscape, portrait

and group-photo.
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Both of these prototype image management systems have shown that the

combination of location data associated with image features can greatly improve

the precision and recall of image matching and retrieval tasks.

2.7 Object Classification and Landmark Recognition

2.7.1 Object Classification

As image features and matching techniques became more advanced, a lot of work

has been carried out in the field of object classification. Object classification is the

automated recognition of different classes of objects and different instances of

object classes within an image.

Many approaches to object classification fused low-level image features, such

as colour and texture with machine learning algorithms. Tsapatsoulis et al.

[Tsapatsoulis and Theodosiou, 2009] utilised the MPEG7 feature set to classify

a selection of 8 object categories from a dataset consisting of just under 2000

images. From this work, they concluded that SVMs was the most robust method

to use for their task.

Fei-Fei et al. [Fei-Fei et al., 2004] adopt an approach based on image intensity

patches quantized into small vectors using a method called ’principal component

analysis’. These patches are extracted from salient regions of the image using

the Kadir and Brady feature extractor [Kadir and Brady, 2001]. They then adopt a

Bayesian based approach to classify objects into 1 of 101 object categories.

As local image features became more widely used, more advanced techniques

were proposed based on the use of features consisting of quantised sets of local

images features. Liu et al. [Liu et al., 2009] use a modified version of the visual bag

of words model (described in Chapter 5) to classify a selection of 10 object classes

from the PASCAL dataset. This approach adopts a form of query expansion to
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emphasise correlated image patches between sets of objects. They report a small

performance increase from the use of this technique over the standard visual bag

of words model.

Bosch et al. [Bosch et al., 2008] use a spatial based approach to object classifi-

cation based on pyramids of image features. They use an image feature called

’Histograms of Orientation Gradients’ (HOGs), which was first proposed by Dalal

and Triggs [Dalal and Triggs, 2005] to detect the presence of humans within an

image, to classify an image into 1 of 101 object categories using a SVM. To incor-

porate spatial information, they use a pyramid structure that extracts HOGs from

finer and finer spatial areas of the image at each descending level of the pyramid.

Features based on pyramid structures are discussed in more detail in Chapter 5.

2.7.2 Landmark Classification

One facet of object classification is the classification and retrieval of images con-

taining landmarks, differences between multiple views of the same landmark and

distinguishing between images containing different landmarks. In the past, it was

not possible to create an automated approach to landmark classification, mainly

due to the large visual disparity that exists between different types of landmarks

and technology constraints.

In this work, the focus is on the creation of a framework that should allow for

automated, accurate and efficient matching and tagging of landmarks contained

within digital images. Landmarks are considered to be unique man-made objects,

or unique geographical features depicted in an image. The focus is on landmarks

due to the significant contribution that they make to a large scale public photo

repository such as Flickr (eg. Flickr search for ’Eiffel Tower’ returns over 450,000

images, Flickr search for ’Empire State’ returns over 370,000 images (June 2011)).
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Landmarks also tend to have a unique visual appearance that leads to high

discrimination values between different landmarks.

The automated classification of landmarks is based upon the photographing

behaviour of users on large scale photo-sharing websites. Users tend to visit

similar destinations and landmarks. When at these places, they also tend to take

images of these landmarks from a small number of locations due to geographical

constraints and the photogencity of an image from certain viewpoints. This leads

to a huge overlap of visually similar images of popular landmarks. Based on

this premise, this research takes advantage of this overlap by reducing the search

space in a large scale dataset by clustering similar images thus creating more

robust means of classifying an image using SVMs.

A large amount of previous work has been carried out in this research domain

and although a relatively young research area, several solutions and methods

have been suggested and implemented to address this research problem. These

methods can be roughly classified into a number of types of approaches:

• Global Feature Based

• Local Image Feature Matching

• Geographical Based

• Inverted Visual Words

• Tree Based Approaches

• Model Based Approaches

Global Feature Based

The earliest landmark and scene classification systems were based on global

image features such as colour and texture features as described in section 2.2.3.
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Tackeuchi and Herbert [Takeuchi and Hebert, 1998] proposed an early landmark

classification system based on three low-level image features; normalised red im-

age histogram, Haralick texture features [Haralick et al., 1973] and an edge based

histogram. They grouped similar images into a model and used different distance

metrics to classify a test image against this model. They showed promising results,

however, this approach was only evaluated using a very small set of images (68)

and it is assumed that it would not scale to a much larger corpus.

Torralba et al. [Torralba et al., 2003] developed a helmet mounted mobile

location classification system based on a wavelet based texture features using

Gabor filters. This system could recognise 60 different locations such as a location

on a specific street or a specific room within a building. The system could also

classify objects within these locations based on a combination of content and

contextual information using Bayesian probability. For example, an object would

have a higher likelihood of being classified as a chair if the system had already

classified the location as being in an office.

Yeh et al. [Yeh et al., 2004] developed a mobile based landmark classification

engine that augmented landmark classification with web search. Their system

compared images taken on a mobile device against a corpus of landmark images

provided by a stock photography company (Corbis), and text based annotations

that were associated with a successful match were used as queries to the Google

search engine to retrieve information and images about that landmark. To perform

the image matching they use a k-nearest neighbour approach based on two global

image features (frequency information in the Fourier Spectrum and a wavelet

based texture feature).

Local Image Feature Matching

A more advanced two stage classification approach was developed by Kosecka

and Zhang [Zhang and Kosecka, 2007]. This approach utilised localised colour
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histograms to prune a sample dataset before carrying out SIFT point to point

matching. The results of experiments were promising with an accuracy result

of 90.4% and a hit rate of 94.8% in the top 5 nearest neighbours. However, the

dataset (ZuBuD dataset) used in this work was quite small and the spectrum of

visual differences in building types is quite narrow. In addition to this two stage

approach, the authors, improved upon it by training probabilistic based models

in the SIFT matching phase which increased classification accuracy to 98.5%. Due

to the small size of the dataset, it is not known how well this approach would

perform with a large scale corpus; however it is assumed that as the size of the

dataset increases, the accuracy of the approach would decrease significantly. In

this work, a similar approach is implemented which improves upon the work

of Kosecka and Zhang by ensuring that the size of the search space is kept to

a minimum before interest point matching, thus ensuring a high classification

accuracy.

Geographical Based

One of the earliest landmark classification systems combining content and spa-

tial information is the ’EXTENT’ system [Qamra and Chang, 2008] developed by

Qamra and Chang. The Extent system combined content and context analysis

to compare a test image against a dataset of sample landmark images. In the

first stage of classification, GPS or Cell tower identification tags where available

were used to prune the sample image dataset. In situations where GPS or Cell id

information was unavailable, the system tried to infer some spatial information

based on annotation information provided by humans (e.g. tag annotation con-

tains phrase ’New York City’). Once spatial pruning had taken place, the system

uses expensive point to point matching using SIFT image features. Rudimen-

tary geometric constraint analysis was then carried out to certify a match. The

system showed promising classification accuracy, however the matching process
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employed was extremely slow. On average each test image required four hours

to classify. Clearly this timeframe would not be suitable for a casual user, and

certainly would not be suitable for a near real-time classification system.

Inverted Visual Words

Inverted Visual Words were first proposed for large scale image matching in

[Sivic and Zisserman, 2003]. Using inverted files with visual word features is an

efficient way to match a test image against large corpora. They provide a high

level of discrimination, require a small heap memory footprint and provide a

method to match large numbers of images quickly. Inverted visual words are

described in more detail in Chapter 7.

Philbin et al. [Philbin et al., 2007] proposed an efficient method for landmark

recognition consisting of an inverted visual word approach, followed by a fast

spatial re-ranking procedure. They utilise large vocabulary sizes (k =10,000, 20,000,

50,000 and 1,000,000) and calculate inverted visual word features for each image

from their corpora. Inverted features from test images are then compared against

the index of inverted words using word frequencies as weights. Their approach is

evaluated using a 3 different image corpora and they report a MAP score of .645

using a vocabulary size of one million.

Tree Based Approaches

Tree based approaches to matching local image features allow for accurate match-

ing (usually approximate nearest neighbour approaches) in a very short timeframe.

The first tree based approaches utilised K-d trees [Bentley, 1975], which are similar

to binary trees but allow for the storage of local image features in k dimensional

space.

A landmark approach was developed at the information retrieval company

Google that made use of graph data structures. Zheng et al. [Yan-Tao Zheng, 2009]
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used a large-scale parallel computing system to extract landmark images from

a collection of over 21 million community contributed images. This community

data was augmented with web images gathered using a novel approach based

on the extraction of possible landmark names from a travel guide website (wik-

itravel.com), and subsequent web search for images based on these landmark

names. These images are organised into a graph structure using interest point

matching with nodes representing images and edges representing matched re-

gions between images. Once the graph structure is created and landmark images

are identified, a K-d tree structure is created to index their local features and test

images are matched against these images in real-time.

Model Based Approaches

Another approach to landmark recognition is to build a model constructed from

a number of visually similar images, and then utilising different classification

methods (for example, machine learning classification techniques such as neural

networks or support vector machines), to classify the presence of a landmark

within an image based on this model.

Li et al. [Li et al., 2009b] extracted from a large scale image corpus, a collection

of images containing 500 of the worlds most photographed landmarks. Each

of these landmark clusters were based upon peaks in photo distribution when

searching the Flickr API using geographical coordinates as inputs. The top 500

peaks in this search were chosen as the top 500 landmarks worldwide.

A single multiclass SVM model was then trained to recognise each of these

500 landmarks using visual bag of word features as the inputs with a vocabulary

size of 20,000. They also combine these visual features with textual information

associated with each image. They reported a classification accuracy of just over

45% when classifying across 500 landmarks. However, they also experimented

with training models to recognise smaller numbers of these landmarks and when
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this number was reduced to the top 10 landmarks, the classification accuracy

was increased to over 80%. The techniques used in the work described in this

thesis are similar to that of Li et al. [Li et al., 2009b] in that multi-class SVMs are

utilised for landmark classification, however, the aim is to classify a much larger

spectrum of landmarks (popular and non-popular), even those that might not

have a high generality, which is a more challenging task. In this work, it is also

intended to improve upon the results of their SVM classification accuracy, using a

more efficient manner in which to cluster training sets of data, including taking

effects of affine variation into account along with adding overlap visually similar

images to different clusters to aid robustness.

Popescu et al. [Popescu and Mollic, 2009] use a k-Nearest Neighbour ap-

proach to differentiating between clusters of landmark images. They use a dataset

consisting of a collection of the most commonly photographed landmarks in the

world, each landmark image cluster is created by querying Flickr and Panoramio

with the name of a landmark and populating the returned results into the cluster.

To classify an image they use the cumulative scores of the distances between the

top 5 nearest neighbours for each landmark cluster. This approach however, only

accounts for the classification of very popular landmarks and makes no provision

for landmarks that might not be densely represented in a community dataset.

In this thesis, the aim to improve upon Popescu’s approach firstly by reducing

the amount of noisy images in each image cluster through the use of visually

similar image clusters as opposed to semantically similar and additionally provid-

ing a means to classify uncommon viewpoints of landmarks within community

corpora.

Several other model based approaches that have been implemented, and

include the novel use of a scene map model to represent a scene in community

data imagery. Avrithis et al. [Avrithis et al., 2010] cluster Flickr images based on

geographical data followed by a visual clustering process to group sets of visually
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similar images. Once this clustering has taken place they calculate homographies

between images within a cluster using the RANSAC algorithm and align all

features. They then construct a 2d spatial map (which they call a scene map)

of all features in that scene extracted from all the different viewpoints. These

scene maps are the treated as training images, and test images are then compared

against each of these scene maps using the visual bag of words approach with

inverted index files. They compare this approach against a baseline visual word

method and illustrate significant improvements in classification accuracy.

Another novel model based technique is the use of 3d point clouds to extract

only interest points from the sections of an image where the landmark is located.

Xiao et al. [Xiao et al., 2010] developed a technique to improve landmark classi-

fication based on creating a model of a scene using 3d reconstruction methods,

specifically a structure from motion technique [Snavely et al., 2006]. Using these

3d reconstruction models they calculate the regions of an image that contain the

landmark by projecting the 3d points to 2d space. Image features are extracted

from these landmark regions and test images are matched against the landmark

region features using a kd-tree data structure. While the results of this work are

quite promising, the dataset used in the experiments was quite small, contain-

ing only 6 landmarks. Additionally also the processing time required is quite

expensive.

2.8 Summary

In this chapter, a brief history of the techniques proposed and used in the field

of image retrieval are introduced. The background concerning the computer

vision technologies used in this thesis was then described and motivations behind

the usage of these features was presented. The chapter was concluded with a

description of several of the alternative methods proposed in the literature to
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solve the problem of automated landmark recognition. The main aim of this work

is to improve upon many of these previously suggested approaches in three main

categories: recognition precision, classification time and memory requirements.

The framework proposed in this thesis builds upon much of the previous work

in the field, taking advantage of techniques that have been shown to work well

while disregarding others and improving upon many of the inefficient methods

in the literature. Many of the alternative techniques in the literature are based

on the indexing of interest point features which require these features to be

stored in a heap memory structure. This method places a limit on the number of

images that can be included in a training corpus. The framework proposed in this

thesis improves upon this by ensuring that there is a static memory requirement

regardless of corpus size.

Additionally, the framework proposed in this thesis will improve upon many

of the interest point matching schemes previously suggested in the literature by

first effectively reducing the search space to a small subset before interest point

matching is carried out. This search space reduction allows for the recognition of

landmarks in real time even with a large scale training corpus.
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Chapter 3

Community Contributed Datasets

3.1 Introduction

The term ’Web 2.0’ was first coined by Tim O’Reilly at the O’Reilly Media Web 2.0

conference in 2004. Web 2.0 refers to a fundamental change in how the internet

functions, and how average users are able to create and share content online.

The phrase is now used to describe methodologies and technologies that allow

and facilitate the sharing of information between internet users. One of the

main paradigms of ’Web 2.0’ is the emergence of online user generated content.

Before the arrival of ’Web 2.0’ most information online was generated by a small

number of people, usually from a small spectrum of society such as IT graduates,

technology enthusiasts and large businesses. Most average users did not have

the time or expertise to develop websites and populate them with content due

to the complexity involved. Most utilised the internet as a means of retrieving

information but they had little opportunity to publish and edit their information

online.

The term ’Web 2.0’ has been quite controversial as there is no strict definition

of the phrase. In a blog entry in September 2005 Tim O’Reilly outlined his

understanding of the phrase, saying ’like many important concepts, Web 2.0

51



doesn’t have a hard boundary, but rather, a gravitational core. You can visualise

Web 2.0 as a set of principals and practices that tie together a veritable solar system

of sites that demonstrate some or all of those principals at a varying distance from

that core [O’Reilly, 2005].

Irrespective of how the exact definition of ’Web 2.0’ is interpreted, several

technologies have been developed in the last decade that follow the methodologies

of O’Reilly’s ’gravitational core’. Since the O’Reilly media Web conference in 2004,

thousands of websites and online applications have emerged that follow the

core principals of the ’Web 2.0’ ideal. Many new methods have been developed

to distribute information in different ways and more efficiently across the web.

Large numbers of web users are now not only using the web for the retrieval of

information but actively creating and distributing information online using Web

2.0 technologies. Some of the new tools and methods that have emerged and are

referred to as Web 2.0 applications are:

• Wikis. Wikis are online collaborative websites that allow users to exchange

resources including text and multimedia. The main feature of wikis is that

they are collaborative. An entry in a wiki can be created by many users.

Once data is added to a wiki, all other users of the wiki can edit or delete

that data. One of the main aims behind wikis is that any user can add or

edit content with ease and without the need for specialist technical knowl-

edge. One commonly used wiki is the online encyclopaedia ’Wikipedia’

[Wikipedia, 2001], which allows users to upload and edit encyclopaedic

entries and currently over 300,000 users contribute to Wikipedia each month

(June 2011).

• Blogs. Blogs are another application of ’Web 2.0’ that have become extremely

popular in recent years. A blog is a webpage that acts as an online journal

for the owner. A blog consists of regular journal entries that contain the

52



creator’s thoughts, ideas, multimedia entries and sometimes web links.

Readers of a blog are able to leave comments on each entry and this can

soon lead to large discussions building up quickly involving many users.

Many blogs can be created using software packages that do not require

technical expertise to use them efficiently. Some commonly used examples

of weblog software include WordPress [WordPress, 2003] and Movable Type

[MovableType, 2001].

• Social Networking. Social networking sites have become very popular in

recent years with many of the sites becoming household names such as MyS-

pace [MySpace, 2003] and Facebook [Facebook, 2004]. The social network

Facebook alone has over 750 million active users (June 2011). An online

social network is a website that allows a user to create an account, usually

called a profile. A user’s profile can then be linked to their friend’s accounts

and others within their social circle. A user can populate their profile with

information about themselves, such as images and details describing hob-

bies and interests. A user can generally make their profile public which

means that it can be viewed by all members of the social network, or private

which means that it can be viewed only by that user’s friends. One common

feature of social networks is the ability of users to maintain a blog on their

profile page for others to read.

• Social Bookmarking. Social bookmarking is an application where users

can share links to webpages with other people. A social bookmarking site

is a content management system that allows users to upload and store

bookmarks that they find interesting or useful. A user can then share these

links with the wider community or just with other users within their social

circle. Social bookmarking originated from a desire for organisations to

share information between members mainly within academia within a short
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timeframe. It has since grown to become very popular worldwide with

many commonly used social bookmarking sites being used by millions

of people regularly such as Digg.com (45 million monthly vistors - July

2010) [Digg, 2004] and Reddit.com (16.5 million monthly visitors - July 2010)

[Reddit, 2005].

• Video Sharing. Another popular facet of Web 2.0 is online video shar-

ing. Video sharing websites have grown in popularity hugely in the last 5

years. There are several reasons for this, including the reduction in cost of

camcorders and video creation devices and the constant increase in internet

connection speeds. Several years ago it would have taken a user many hours

to upload or download a large video file to or from a webserver, whereas

today with a high speed broadband internet connection the same file might

take minutes or even seconds to transfer. This has led to the creation of

websites that allow users to upload and store videos on webservers that can

be shared and viewed by other users of the site. Several video sharing web-

sites also contain a social network aspect, allowing users to create profiles

and playlists and comment on other user’s videos. The most commonly

used video sharing website today is YouTube [YouTube, 2005]. Such is it’s

popularity, that in August 2010 Alexa internet, a subsidiary company of

Amazon that tracks of internet traffic, reported that YouTube was the third

most visited website in the world [Alexa, 2010].

• Photo Sharing. Digital cameras have become more accessible to people over

the last few years and as a result more and more digital imagery is being

created. Image capture and storage in particular has undergone many large

changes in the last decade. In the past, users tended to keep personal photo

collections private and store them in photo albums or digitally on personal

54



computers at home. In recent years however, users have now started to

share their personal photo collections online with the world.

Many websites have been created in recent years that allow users to upload

imagery and store it, where it can be viewed by others. Several of these

websites follow the guidelines of ’Web 2.0’ and contain social network

aspects. Many of the online photo sharing websites allow for the creation

of profiles and groups. Many sites allow for the addition of tags (short

textual annotations) to describe the content of an image, which allows for

the browsing of photos by different categories. The most commonly used

photo-sharing website in use today is Flickr [Flickr, 2004]. A screenshot of

the Flickr interface is presented in Figure 3.1.

3.1.1 Community Contributed Data

The large increase in the amount of users creating and distributing data online

has led to the creation of multimedia datasets of unprecedented scale. There are

huge amounts of multimedia being stored on servers worldwide that have been

created,modified and distributed by hundreds of millions of people. Many new

research genres have been created based on how to organise and retrieve this

data.

In this work, the focus is on utilising large collections of images that have been

created by online communities of people. Specifically, the focus is on geo-tagged

imagery, which is imagery containing some geographical data describing the

location where the image was taken.

3.1.2 Geo-Tagging and Global Positioning Systems

The ’Global Positioning System’ (GPS) is a satellite based system that provides

accurate time and location data anywhere on the planet. The system consists of
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Figure 3.1: An illustration of the Flickr interface displaying an image. Marked
in the illustration are the different types of metadata associated with the image,
along with various social network information.

24 satellites that orbit the earth in three separate orbital planes. Each satellite

broadcasts information consisting of orbital information and time information. A

GPS receiver with line of sight to at least four satellites can work out the longitude

and latitude of the receiver based on these broadcasts. The GPS system is very

accurate and can predict a receiver’s geographical location to within a radius of

ten metres.

One method for storing descriptive metadata about an image at capture time

is to store it in a header file. One of the most commonly used standards today is
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the Exchangeable Image File Format (EXIF). The EXIF standard is now supported

by most of the large digital camera manufacturers and it has also been adopted

by many smart phone producers. The EXIF standard allows data to be stored in

the header of an image providing contextual information describing basic camera

settings (time of image capture, aperture, focus length, etc..). The standard also

supports geographical information in the form of longitude/latitude coordinates.

Image geo-tagging refers to the process of associating a geographical position

(ideally the location where the image was taken) with an image. This process may

be carried out automatically on the image capturing device or manually by the

user. Many high-end digital cameras and many new smartphones come equipped

with GPS receivers, thus allowing the automated geo-tagging of images with a

high degree of accuracy. These devices can embed the GPS position directly into

the EXIF header of an image, which can then be extracted easily by software at a

later stage. If the camera does not support automatic geotagging it is still possible

to insert longitude/latitude coordinates after image capture using third party

software and a GPS device.

In the absence of a GPS device or a GPS enabled camera, photographs can

still be associated with geographic co-ordinates by scrolling, zooming into and

selecting a location on a map [Panoramio, 2005][Toyama et al., 2003]. This process

is called ’Geo-Tagging’ and is carried out manually by a human annotator.

Geographical information has become very important in the field of informa-

tion retrieval. Sanderson and Kohler [Sanderson and Kohler, 2005] analysed large

numbers of queries sent to the then popular search engine Excite with the aim of

measuring how many contained geographical locations. Their work showed that

almost 20% of these web queries referred to a geographical location. Another anal-

ysis of over 36 million AOL queries, revealed that 13% of the queries submitted to

the system referenced a specific place or landmark [Gan et al., 2008].
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3.2 Creation of Geo-Tagged Datasets

At present there is no standard large scale geo-tagged photo dataset used by the

wider research community for analysing the effectiveness of landmark classifica-

tion techniques. As part of this work it was necessary to create an appropriate

dataset with which to carry out experiments to test the hypotheses outlined in

Chapter 1. Several small scale landmark datasets are available such as the Paris

landmark dataset and the Oxford landmark dataset, both released by the Visual

Geometry group at Oxford University and used in the papers [Philbin et al., 2008]

and [Philbin et al., 2007]. These datasets are quite small, however. They do not

contain geographical information and have been used to test image recognition

techniques only.

Several other groups have created datasets for use in landmark categorisation

and classification. Crandall et al. [Crandall et al., 2009] created a dataset consist-

ing of 35 million Flickr images with the aim of organising them effectively and

revealing interesting properties about world cities and commonly photographed

landmarks. As part of their work they analysed the textual tags that accompany

Flickr images along with some quantised SIFT feature vectors [Lowe, 2004]. They

combined these features to group large numbers of images into clusters based on

location and landmark. Lists of the most commonly photographed landmarks

in the world were created and representative images of the most commonly pho-

tographed landmarks contained within a city were generated for many world

cities. This dataset has not been publicly released by the authors, due to the disk

space required to store a dataset of this size, the time and bandwidth required to

transfer this dataset online and perhaps some licensing issues with redistributing

data created by thousands of people. Additionally, as this was not a classification

task there is no test collection of images with which to test the accuracy of the

landmark clustering process.
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Two large online photo websites that specialise in storing and displaying geo-

tagged imagery are Panoramio and Flickr. Both of these websites allow access

to sub-sets of their collections through web based application programming

interfaces (API).

Panoramio

The Panoramio website [Panoramio, 2005] was launched in 2005 as a photo shar-

ing website that specialises with images that have accompanying geo-location

information. It was one of the first image sharing websites that dealt solely with

geo-tagged images. The site quickly became popular after it was launched and

within two years contained over 5 million images. When a user uploads an image

to Panoramio they can provide a weak annotation of the image by creating textual

tags describing the image.

Panoramio have developed a publicly available API that can be used to access

and display their content. Using this API, all images within the Panoramio dataset

can be accessed and download links can be requested. A search to the API consists

of sending bounding box coordinates, and the service will return data describing

all images located within that region. The site was bought by Google in July 2007

and the images stored on the site were integrated into the popular Google Earth

application. There are some restriction issues with the usage rights of Panoramio’s

data, therefore the main corpus used in this work was collected from another

source, Flickr.

Flickr

Flickr [Flickr, 2004] started off its life as a mini application that was developed

by an engineer working with the online game firm Ludicorp. This allowed users

to take pictures of their current progress in a game and upload the screenshots

to a web page. One of the firms founders, Caterina Fake, saw potential in this
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application and decided to cancel game development to solely concentrate on a

web-based photo sharing system. This system was launched in February 2004

and became known as Flickr.

Flickr was purchased by Yahoo in 2005 and has now grown to become one

of the most popular and largest photo sharing websites in the world. Over 50

million people are now registered Flickr users worldwide. The website has an

average 5.3 million visitors per day [TechCrunch, 2010]. There are now over 4

billion user uploaded images stored on the Flickr servers. Flickr also contains the

largest collection of geo-tagged images in the world. Over 130 million images

have been uploaded to flickr and either automatically geo-tagged by GPS enabled

camera devices or manually geo-tagged by users.

Along with being a large photo repository, Flickr is also a social network.

Users can create accounts that allow them to add and contact friends, join social

groups and limit viewing of their images to certain people within their social

circle. Users can also comment on other user’s photos, add others photos to their

list of favorites and suggest groups for the photos to be associated with.

3.2.1 Creating a Geo-Referenced Landmark Dataset

There were several challenges involved with collecting a landmark image dataset

based on publicly provided geo-tags and annotations. One of the biggest chal-

lenges is trying to differentiate between images containing a landmark as the main

subject within an image, and images taken within the locality of a landmark but

not actually containing the landmark itself. It is quite common that Flickr users

will tag an image of an event that has taken place in the locality of a landmark

with the name of the landmark.

The term landmark can be quite subjective. Several types of building, geo-

graphical features, and monuments could be considered to be landmarks. These
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landmarks can take many different shapes, colours and sizes, and due to these

differences it is very difficult to automatically classify an image as containing a

landmark using computer vision techniques alone.

One set of features that can help to distinguish between Flickr images con-

taining landmarks and images depicting events are textual features. The se-

mantic textual annotations that accompany Flickr images can be used to filter

out event-based images and find landmark images from a dataset. Abbasi et al.

[Abbasi et al., 2009] developed a technique for finding landmark images from

large Flickr datasets using a binary SVM classifier to classify whether an image

contained a landmark based on their associated text annotations. This approach

used collections of known landmark imagery and used their tags to train an SVM

model, while using tags from arbitrary groups of photos labeled with generic tags

such as ’birds’ and ’airplanes’ as negative inputs.

Ahern et al. created a data visualisation tool to display landmark images

and landmark tags within small geographical areas [Ahern et al., 2007] based

on image tagging habits of Flickr users. They utilise a system based on term

frequency and inverse document frequency scoring of the tags. For each small

geographical region the application displays high scoring tags along with images

associated with these tags, usually depicting landmarks and places of interest

within the region.

3.2.2 Harvesting a Geo-Referenced Landmark Dataset

For this investigation it was desired to create a dataset of geo-tagged imagery

that covered an entire metropolitan region of a large city. As geo-tags provide

an efficient means to filter any large dataset of images worldwide, it is assumed

that any approaches to landmark classification using the image data from one

city could be replicated on a larger dataset containing data from many cities, or
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possibly even a very large image corpus that covers the entire world. The accuracy

and time required to carry out the framework described in this work would not

be hindered by enlarging the dataset to include other regions, as spatial filtering

techniques could quickly prune out all images outside of a query image’s region.

The city of Paris was chosen for this work. This is mainly because Paris con-

tains a large number of objects and locations that could be considered landmarks,

and in certain regions within the city there is a high distribution of landmarks.

Additionally, the Parisian region is one of the most densely populated regions that

is represented on Flickr with regards to geo-tagged photographs (490,000 in Paris

region (June 2011)). A large training collection of images was harvested from

Flickr for this purpose along with a test collection to evaluate the framework, all

located within the Parisian area. An example of the wide availability of a Parisian

landmark in the Flickr archives is presented in Figure 3.2.

The training collection of geo-tagged images was harvested using the publicly

available Flickr API. When using the Flickr API, users can provide a text query

which is used by the Flickr system to return images relevant to that query. To

return possible landmark images, the Flickr system was queried with a list of

generic words that might indicate a landmark is present in an image, such as

’landmark’, ’church’, ’bridge’, ’building’, ’facade’ etc..

In this work, the approach that was proposed to filter out non-landmark

imagery from harvested images is based on the presence of certain tags that might

indicate that an image is depicting an event, people or an object, rather than a

landmark. A list of tags was created, each of which occurs frequently in sets of

images that do not contain landmarks and do not tend to occur in sets of images

that do contain landmarks. This list of tags are labelled as candidate tags and

images containing one of these candidate tags were then filtered out from the data

set.
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Figure 3.2: An illustration of the Flickr online interface. Displayed are the top
results returned by the Flickr system using the query string ”le tour eiffel paris”.

To build a list of candidate tags, an image set collected from Flickr consisting of

1000 images was manually inspected and classified as containing a large landmark.

This set was labelled as S1. A further set of 1000 images that did not contain a

large landmark, but rather depicted an event or different types of objects, people,

and animals was also collected and denoted S2.

For the set S1 a list of tags was created denoted as T1, containing all tags that

were associated with the images contained in S1. Another list of tags T2 was

created containing all the tags associated with images in S2. All tags contained in

T2\T1 were considered possible candidate tags, however the presence of a tag in

T2\T1 alone is not enough to indicate that the tag would suggest a non-landmark

image. It was decided therefore, to selected the tags that occurred the highest

number of times in T2 but not T1. The final set of candidate tags was selected based
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Table 3.1: Most frequent filtered tags
Parade Marathon People Wedding Concert

Bar Dinner Friends Cat Dog
Flower Pride Gay Party Sport
Game Graffiti Kiss Love Match

Demonstration Band Football Reception Springbreak

on the tag frequency of each possible candidate tag from T2\T1 . The frequency

was calculated using the following formula:

tfi =
ti

|T2\T1|

where ti is the number of occurrences of the tag i in the list T2\T1 . If the term

frequency was above a threshold of .005 (roughly translating to a frequency of

10), the tag was marked as a candidate tag. Some of the most frequent candidate

tags are shown in Table 3.1.

The tags from all images downloaded from Flickr were examined, and any

image containing one of these candidate tags was filtered out. In total from over

200,000 images downloaded from Flickr in the Paris region, over 100,000 were

filtered out using this approach, leaving a final training corpus consisting of just

over 90,000 images. From informal empirical inspection this tag filtering approach

seems to work quite well, with the vast majority of images in our dataset depicting

a place or landmark.

3.2.3 Training Collections

After this filtering process the main training corpus used in this work consisted

of 90,968 images containing a landmark as the main subject of the image. A

randomly selected subset of this corpus is presented in Figure 3.3. Each image in

the collection contains a set of context information. For each image there is a set

of photo context information:
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• Image ID. Each image in the dataset is represented by a unique identification

number that is represented as an integer.

• User ID. Flickr identifies people by using a unique user name for each user

of the system.

• Image Title. When a user uploads an image to Flickr they are given an

opportunity to suggest a title name for that image. This title is optional

and many users choose to leave it blank, in which case the Flickr system

will consider the file name of the image as the title. This can lead to many

generic title names that are created by the device used to capture the image.

• Location Information. All images in the dataset contain spatial information,

describing the location where the image was taken. This information comes

in the form of longitude and latitude coordinates.

• Textual Tags. When uploading an image to Flickr, users are encouraged to

suggest a set of words (called tags) describing semantic information about

an image, which are then organised as a list of words.

• Licence Information. Licence information is available for all images within

the dataset. The license information is represented by an integer, which

corresponds to a license type outlined on the Flickr website.

3.2.4 Test Collections

Flickr was also farmed for a test collection of images that consisted of 1000 random

landmark photos in Paris. The test collection was created in the same manner

as the training collection using the same list of candidate tags to filter out non-

landmark images. The images were searched using the generic tag ’landmark’,

which combined with analysing the associated tag information and removing
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Figure 3.3: A random subset of images from the training corpus used in this work.
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images containing any of the candidate tags, seems to work accurately from

empirical inspection.

To differentiate the training collection from the test collection, Flickr was

searched using an option to rank the images returned by upload date. Only

images with an upload date later than the latest upload date from any image

within the training collection were considered. As with the training collection,

each image in the test collection contained metadata in the format: image id, user

id, image title, location information, textual tags and license information. For the

purposes of the evaluations carried out in this work, the textual tags and image

title information was dismissed and unused.

3.3 Analysing Community Contributed Metadata

In recent years there has been a dramatic increase in the volume of community

contributed resources online. The sheer size of these resources has created many

new research opportunities. Community contributed data sets are undoubtedly

useful resources for research purposes, particularly in the collection of large

amounts of training and testing data for experimentation. There are several draw-

backs however, in the use of this data, in particular with community contributed

imagery and metadata.

3.3.1 Analysis of Geographical Information

Flickr provides an interactive map interface to users while uploading an image to

geo-tag it. A user can pan and zoom to the location where they believe the image

was taken. The tagging system will then associate this location with the image in

the form of longitude and latitude coordinates. Some users will pan and zoom

to a very accurate location, while some users will not zoom enough to create

accurate geographical information. It is also possible that some users will not be
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aware of the exact location where the image was taken, and incorrectly pan and

zoom to a different location altogether. Another potential issue is that humans

tend not to think of location in terms of latitude and longitude coordinates, but

rather in vague spatial relations such as ’near O’Connell Street, Dublin’ and might

possibly tag a image with a geo-location that belongs to a nearby landmark, street

or region, rather than that of the image itself. As spatial information plays an

important role in the overall framework outlined in this thesis, it is vital to know

to what extent these inconsistencies affect the accuracy of the metadata.

Several research groups have carried out analysis on the accuracy of geo-tags

in community image collections, in particular using Flickr datasets. Girardin

and Blat [Girardin and Blat, 2007], carried out a study on location information

granularity using Flickr geo-tags along with other metadata. When users perform

geo-tagging on the Flickr system they zoom to a specific location. The Flickr

system automatically assigns a zoom level attribute to a geo-tag based on the

zoom level that the user geo-tags at. These zoom attributes were analysed in a

collection of 1.6 million Flickr images taken in 12 cities around the world. They

noted that peaks seemed to appear in graphs of geo-tags at zoom levels 12 and 16.

Zoom level 12 is defined as a general city level, while zoom level 16 is determined

to be at street level. The authors not only wanted to discover the zoom levels users

tended to geo-tag an image, but also if a user’s familiarity with an area effects the

accuracy of a geo-tag. The time data associated with an image was noted and any

user that had uploaded photos in a city with time stamps more than two months

apart was deemed to have familiarity with a city. This research seemed to suggest

that a user’s familiarity with a region did not effect the accuracy of the geo-tag. It

must be noted that this work did not approximate the actual locations of images,

but only the zoom levels of the map interface provided by Flickr, therefore, there

is no check to see if the geo-tags are accurate or not. In this work, the aim is to
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improve upon the work of Girardin et al, by analysing the accuracy of the geo-tags

over the level of zoom that users commonly use when geo-tagging an image.

One of the most detailed analyses of Flickr geo-tag accuracies was carried out

by Hollenstein as part of her research for her masters thesis at the University of

Zurich [Hollenstein, 2008]. In this work, just under 10,000 images taken within

London were gathered that had a tag ’hydepark’, representing the public park.

A bounding box surrounding the park was created and the geo-tags associated

with the images examined to check if they were located within this bounding box.

Over 86% of the geo-tags were found to be located within this bounding box, with

varying levels of granularity. Although the significant majority of these geo-tags

were found to be located within the bounding box, this information still only

provides a rough indication of the accuracy of geo-tags as no experimentation

was carried out to inspect whether or not the tagging was accurately associated

with the image by the user.

It remains quite difficult and time consuming to garner a precise measurement

of the level of accuracy of each individual geo-tag, since only the person who

captured the image can be sure to a high degree of accuracy where they were

located at the time of image capture. Based on this premise, it is assumed that

some element of manual inspection and a fundamental level of local geographical

knowledge is required to measure precisely the level of accuracy contained in this

metadata. Inspired by the work of Hollenstein, and to address the issue of manual

inspection, detailed manual analysis was carried out on a subset of the images

contained within the Paris dataset to provide a reliable and accurate measurement

of geo-tag precision. A subset comprising of 673 landmark images from the Paris

training set were selected to be analysed. Based on local knowledge of the region,

each of these images was estimated to have been photographed within very close

proximity(approximately 100 metres) of four different landmarks in Paris (Paris

Opera House, Arc De Triomphe, Louvre Pyramid and Pont Neuf Bridge).
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The actual geographical centre point of each of these landmarks was noted,

and a bounding box with side lengths of 200 metres was created. Each bounding

box was centred around it’s associated landmark centre point. The geo-tags of

each of these 673 images were examined, and for each one the distance between

the geo-tag and the associated bounding box was calculated to measure the

accuracy of each geo-tag.

To calculate distances between two geographical locations, it is not sufficient to

use Euclidean geometry distance formulas such as the Euclidean or Mahalanobis

distance measures. This is because the Earth is a spherical object and the distance

between two points on a sphere must be calculated using spherical geometry.

To calculate distances between a geo-tag and a geographical bounding box the

Haversine formula is used, which can be described in pseudocode in 6 steps as:

1. R = Radius of the Earth (6371km)

2. dLat = latitude2 − latitude1

3. dLong = longitude2 − longitude1

4. a = sin2(
dLat

2
) + cos(latitude1).cos(latitude2).sin

2(
dLong

s
)

5. c = 2.atan2(
√
a,
√

(1− a))

6. Distance = R ∗ c

The results of this analysis are quite interesting (presented in Table 3.2 and

illustrated in Figures 3.4, 3.5, 3.6 and 3.7), in that they indicate that manually

created geo-tags are accurate to within a certain radius. These results show that

the majority of geo-tags that were examined are accurate to within 200 metres

(over 80%). This is not as accurate as a modern, high end GPS receiver (generally

accurate to within 10 metres, depending on the strength of the connection and

line of sight), but should be accurate enough to allow for efficient filtering of
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Distance(Metres) 50 100 200 250 500 1000 2000 >2000 Total
No. of Geo-Tags 372 506 545 552 578 599 625 673 673
% of Geo-Tags 55.2 75.1 80.9 82 85.8 89 92.8 100 100

Table 3.2: Results describing the number of correct geo-tags for each spatial radius,
along with the percentage of correct geo-tags from the subset of those examined

unwanted images while clustering or classifying imagery using community data.

It must be noted that a number of these images might have geo-tags that were

created automatically (using a GPS enabled device) and not entered manually by

the uploader. The results of the analysis are presented in Table 3.2.

3.3.2 Analysis of Human Defined Captions and Tags

Flickr supports annotation while an image is being uploaded to the site. Users

can provide a title for an image along with a set of short tags to describe the

semantic content of an image or extra contextual information. These text tags

are freely entered by a user and do not have to adhere to any set of rules. These

annotations are not part of any ontology or categorisation process, and therefore

large inaccuracies can occur. Many users will enter tags that are heterogenous,

as their interpretation of the semantic content within an image might differ

from another users interpretation. An average Flickr user will generally not be

concerned with how these tags might aid image retrieval and often will not spend

the time required to create rich and accurate tags. This can lead to ambiguous

and vague annotations that are not suitable to enable effective text-based image

retrieval.

Several research groups in the past have analysed the usefulness of community

contributed metadata for image retrieval tasks, in particular the relevance to their

associated image, of textual tags provided by users uploading image to Flickr.
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Figure 3.4: A graph illustrating the accuracy of the geo-tags for all images in
the dataset taken of the facade of the Paris Opera House. As can be seen in the
illustration, over 75% of all images are accurate to within 200 metres, with only
3% of images inaccurate by over 2 kilometres.

Figure 3.5: A graph illustrating the accuracy of the geo-tags for the images in the
dataset taken of the Arc de Triomphe from nearby. Over 75% of all images are
accurate to within 200 metres.

In their work on Flickr tag recommendation Sigurbjournsson and Van Zwol

[Sigurbornsson and van Zwol, 2008] analysed tags associated with over 52 mil-
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Figure 3.6: A graph illustrating the accuracy of the geo-tags for all images in the
dataset taken of the Lourve Pyramid. As can be seen in the illustration, over 85%
of all images are accurate to within 200 metres, with only 3% of images inaccurate
by over 2 kilometres.

Figure 3.7: A graph illustrating the accuracy of the geo-tags for the images in the
dataset taken of the Pont Neuf Bridge from the banks of the Seine. Over 85% of
all images are accurate to within 200 metres.
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lion Flickr images and organised them into Wordnet categories. They found that

tags describing or representing specific locations (28%) were the most common

types of tags followed by tags representing objects or artefacts (16%). Tags rep-

resenting people (13%) were the next most popular category followed by tags

representing events (9%) with tags representing time the least popular category

(7%). Based on these statistics it would seem that Flickr users would first associate

a place with an image when annotating it rather than an actual event that might

be occuring within the image.

Kennedy et al. [Kennedy et al., 2007] analysed how textual tags could be

utilised to extract place and event semantics within Flickr collections. They gen-

erated a representative cluster of images for each of 10 well known landmarks

around the world using only similarities between textual tags as a baseline. Tex-

tual tags were then also combined with location and content information. They

found that adding location information increased the precision by 30% and adding

content information increased the precision by a further 45%.

3.3.3 Analysis of Community Contributed Textual Metadata

In this section, Flickr tags are analysed to ascertain their usefulness in aiding the

classification of landmark images. While any additional contextual information

regarding image clustering and classification will generally be useful to some

extent, noisy contextual information can harm classification accuracy. It is im-

portant to measure the level of noise that exists within community contributed

image annotations to gauge whether they might help or harm clustering and

classification processes.

To analyse the relevance of the manually created textual tag annotations for

use in this work, a small subset of images were chosen randomly from the Parisian

dataset. To determine the semantic relevance of each tag, they have to be examined
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manually which is a time consuming task. This subset consisted of 100 images,

which should be enough to provide an estimation of the applicability of tags

for retrieving visually similar imagery. The tags that accompany these images

were extracted and analysed by the author. Each tag was given a relevance score

between one and five, with one being deemed as a tag with the most semantic

relevance to the landmark/location depicted within the image and five being

the score given to a tag with the least relevance to the content of an image. The

relevance scoring procedure is outlined as follows:

• Relevance rating 1. A score of one is given to a tag that contains a high level

semantic meaning such as the name of the landmark or location. Vague

location tags or tags that define a large area such as ’Europe’ or ’France’ are

excluded. For a score of one to be given a tag, it must contain the name of

the main landmark or small geographical area contained within the image

such as ’Eiffel Tower’ or ’Place de la Concorde’.

• Relevance rating 2. A score of two is given to a tag that contains a mid-level

semantic description of the content within an image. If a tag describes

the type of landmark or location depicted or describes some additional

information describing the part of a landmark that is photographed, it

receives a relevance score of 2. Some examples are: ’Cathedral’, ’Facade’ or

’Fountain’.

• Relevance rating 3. A score of three is given to a tag that contains low-level

semantic information about an image or a describes a city scale location. A

score of three is also given if the tag describes a landmark or location that is

in the immediate vicinity (within 500 metre radius). Examples of a low-level

semantic tag might be ’outdoor’, ’sky’, ’night’, ’river’ or ’park’. The tag

’Paris’ would also be given a relevance score of three.
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• Relevance rating 4. A relevance score of four is given to a tag with very

little relevance to the content contained within an image. These tags might

be vague geographical descriptions such as ’Europe’, ’city’ or ’continent’

that provide little discrimination value. Other examples include tags that

contain vague spacial prepositions such as ’view’.

• Relevance rating 5. A score of five is given to an incorrect tag or a tag

with no relevance to the content of the image. These types of tags might be

heterogeneous or possibly describe an event that is relevant to the annotator,

but not useful from a larger information retrieval perspective. Common

heterogeneous tags include ’holidays’, ’honeymoon’ and ’trip’. Some other

common irrelevant tags include the brand names of the camera manufac-

turer used to take the photo such as ’Canon EOS’ or ’Nikon D50’.

An example image displaying the relevance results from sample image is illus-

trated in Figure 3.8.

In total there were 918 tags associated with the 100 randomly selected images,

amounting to an average of 9 tags per image. The relevance of these tags with the

semantic content of each image was quite poor. Of these 918 tags, only slightly

over 10% were given a relevance score of 1. The majority of tags were deemed as

’noise’. Over 40% of tags were given a relevance score of 5, which was deemed

not to be useful for image similarity measurements. The results of this analysis is

presented in Figure 3.9.

Another attribute that could be useful to match images in a large dataset, is

the level of uniqueness that exists between tags. Ideally from the perspective of

this work, a high degree of uniqueness in the textual tags in images that contain

different content is desired along with a low degree of change between tags

belonging to visually similar images. This measurement is roughly analogous

to inverse document frequency in text based information retrieval, which is
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Figure 3.8: An example of an image taken from Flickr with its provided textual
tags along with a relevance ranking. A ranking of 1 being most relevant to the
content of the image, with a ranking of 5 being least relevant. This image contains
a sculpture that is located within the Tuileries Garden in the centre of Paris.

described in more detail in Chapter 7. The tag frequencies in the 100 images were

analysed.

From the results of this analysis, illustrated in Figure 3.10, it can be seen that

the majority of tags within the dataset are quite unique. Almost 300 tags had a

frequency of one, and the number of tags dropped significantly with the increase

of tag frequency, with the exception of two tags.

Two tags that did appear regularly were ’Paris’ and ’France’. Paris appeared

in 86% of images examined, while France appeared in 54%. In the absence of

geographical data these tags could be very useful in the predicting an image’s

location. The appearance of ’France’ would suggest the image’s location down to

a countrywide scale, while the appearance of ’Paris’ would give an indication of
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the location down to a citywide scale. More importantly, the appearance of both

tags together would reinforce the assumption that an image was taken in Paris.
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Figure 3.9: An outline of the results from the tag analysis experiments. The scores
are based on the percentage of tags that received each relevance ranking score. As
can be seen from this graph, the majority of tags examined were deemed to be
noisy or heterogeneous, and not semantically relevant to the content of the image.

Figure 3.10: An outline of the analysis of the how unique user tags are. The scores
are based on the number of tags that recur each number of times. As can be seen
from this chart, the number of unique tags is quite high.
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Chapter 4

Clustering Community Contributed

Imagery

4.1 Introduction

In this chapter, several approaches to clustering large volumes of images are

proposed and evaluated for the purposes of creating groups of visually near-

identical images, which are to be used as inputs into machine learning algorithms.

The chapter begins with an introduction to clustering algorithms. An outline

of the proposed algorithm used in this work is then provided, followed by a

description of all features used as part of this algorithm. The chapter concludes

with an evaluation and the proposed algorithm is compared against an alternative

widely used image clustering algorithm.

One important aspect of applying SVMs to solving the problem of landmark

classification is having accurate sets of input data to train the models. Manually

creating the training sets would be extremely time consuming, and in very large

datasets infeasible. One approach to automatically creating accurate sets of input

data is to cluster visually similar images, and use the results of this clustering

process as the positive training data in the machine learning training phase.
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The main aim of a clustering algorithm is to create groups of images that are

similar internally, but each image in every cluster is clearly quite different from

all images within other clusters. Clustering is a form of unsupervised learning,

which means that there is no human supervisor assigning images to a cluster

and that the clusters are organised in an automated manner, using some kind of

similarity measure. Ideally this measure should produce clusters of images that

replicate how a human supervisor might group sets of images into clusters.

Clustering algorithms tend to be quite computationally expensive, particularly

when clustering imagery, as image features tend to be quite large in size. It is

envisaged that one day the framework described in this work could be scaled

up to contain a training collection of millions of images, therefore an efficient

approach to clustering large amounts of community data is essential. There is no

known clustering algorithm that is optimal for all uses and different algorithms

perform better for different tasks. Due to the large scale of training data used

in this framework (outlined in section 3.2.2), two attributes of any clustering

algorithm must be taken into account: algorithm complexity and memory usage.

Several clustering algorithms require that the number of final clusters be specified

before the algorithm is executed. Without very expensive and time consuming

human classification, there is no prior knowledge of the number of landmarks

or clusters that will exist in the data, therefore many commonly used clustering

algorithms are unsuitable for use here.

Clustering algorithms can be roughly grouped into two classes:

• Flat clustering Flat clustering is the creation of groups of clusters without

a related structure. Each cluster is considered an independent entity and

there is no information suggesting which clusters relate to each other. Sev-

eral well known flat clustering algorithms include the k-means algorithm

[Hartigan and Wong, 1979] and the Expectation Maximisation algorithm

[Dempster et al., 1977]. Many flat clustering algorithms can be expensive,
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and in many cases there is a requirement that the user has prior knowledge

of the number of clusters that will be desired after the algorithm has finished

completion.

• Hierarchical clustering Hierarchical clustering divides the dataset into a

tree structure, which has many advantages with the datasets used in this

work as it speeds up processing times. This hierarchical based clustering

allows for the division of a dataset into much smaller clusters of data using

efficient and inexpensive image comparison metrics. This division of data

can continue iteratively down the tree structure allowing for more expensive

and complex image comparisons to be processed at lower levels of the tree

structure. Due to this iterative division, the most expensive operations can be

carried out on the smallest number of images possible, similar to the divide

and conquer paradigm used widely in computer science [Dwyer, 1987].

Flat clustering algorithms that linearly compare each image within a dataset

to a potentially large number of cluster centres using expensive distance metrics

(such as local feature point matching) are not scalable to very large datasets. A

hierarchical clustering approach therefore, is adopted in this work.

4.2 Divisive Hierarchical Clustering

Hierarchical clustering algorithms can be separated into two main groups:

• Agglomerative Agglomerative algorithms follow a ’bottom up’ approach

to grouping data, where the dataset starts as single entities, with each datum

representing a cluster in the initial stage. The algorithm then combines these

clusters based on a merging criteria. This process iteratively continues from

the bottom up until there is one single cluster. Commonly, four merging

approaches are used;
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1. Single-link is a method where the measure of similarity between two

clusters is calculated based on the distance between their two closest

features.

2. Complete-Link is a method where the measure of similarity between

two clusters is calculated based on the distance between their two most

distant features.

3. Centroid is a method where the measure of similarity between two

clusters is calculated based on the average similarity between their

features.

4. Group Average is a method where the measure of similarity between

two clusters is calculated based on the average similarities between all

features, including intra cluster features.

Agglomerative clustering algorithms typically have a quadratic running

timeO(n2), which generally makes them unsuitable for large scale clustering

tasks, although recently several variants have been proposed with a sub

quadratic running time [Walter et al., 2008].

• Divisive Hierarchical Due to the expensive running time of agglomerative

clustering algorithms, an alternative to an agglomerative approach was

adopted in this work called divisive hierarchical clustering (DHC), also

known as a top-down clustering approach. The main concept behind DHC

is that when the algorithm starts there is one large cluster of data, which

is iteratively sub-clustered until a stopping criteria is met. This concept

is illustrated in Figure 4.1. The stopping criteria that would apply to this

framework would be the near-identical visual similarity of images within

a cluster. This near-identical similarity is measured by comparing image

regions using the SURF algorithm, and processing all images in the small-
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est sub clusters in a graph linked by SURF correspondences. This SURF

correspondence matching is described in more detail in section 4.3.9.

Figure 4.1: An sample of a divisive hierarchical clustering method. The dataset
starts off as a single cluster which consists of all data (1), and is divided into sub
clusters (2,3), based on some similarity measure, which in turn are sub-clustered
(4,5,6,7) until a stopping criteria is met (8,9,10,11,12,13,14,15).

4.3 Hierarchical K-means Clustering

Hierarchical clustering approaches provide a solution to the shortcomings of the

k-means algorithm by carrying out expensive matching processes on iteratively

smaller datasets therefore reducing the numbers of expensive comparisons to be

made. The problem still remains however, with how to efficiently cluster sets of

data at each level of the hierarchical tree.

An hierarchical k-means (HKM) approach is one method to effectively cluster

large amounts of data containing large variations in similarity. The HKM is

an algorithm that consists of a tree structure with a branch factor of k, and a
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number of levels l. To create the tree, data is iteratively clustered using the k-

means algorithm. Each level consists of k cluster centres used as pivot points,

which have been calculated using k-means on all of the data contained in its child

nodes. Therefore, as one propagates down the tree, the size of the datasets used to

calculate the cluster centres becomes smaller and smaller. The main idea behind

the HKM algorithm is that at higher levels of the clustering tree where the data

sizes are large, inexpensive distance measurements may be used to initially cluster

the data. As one propagates down the tree, more expensive data comparisons

may be carried out to generate accurate data groupings.

When using a hierarchical k-means clustering algorithm, two important consid-

erations much be taken into account that determine the final number of clusters:

• The branch factor, or the cardinality of the clustering algorithm, referred to

as k. This determines the number of clusters to be created in each iteration

of the k-means algorithm.

• The number of levels in the tree, denoted as l. The number of levels in the

tree will generally be directly related to the size of the data being clustered

and the branch level assigned to the tree.

Without prior knowledge of the final number of clusters it is difficult to know in

advance what values for k and l will be optimal for a given dataset in advance

of a clustering process. In this work, different values for k were analysed and

different values of l assigned depending on the value of k.

The k-means algorithm is an iterative algorithm that is non-deterministic,

therefore there are no guarantees that optimal data convergence will be found.

The iterative algorithm will continue until some criteria is met, which in this work

is either when convergence is found or an iteration count is met. To speed up

required processing time, a value of 25 is assigned to the maximum number of

iterations.
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Given a set of feature vectors (v1, v2, .., vn), the aim of the k-means algorithm

is to partition this set of features into k sets of data to minimise the intra cluster

variance and maximise the inter cluster variance. The algorithm comprises of 6

main steps:

1. Set an iteration count iteration to 1

2. Choose a set of k random cluster seeds/centres Citeration (c1, c2, .., ck) from

the global set of feature vectors

3. For each vector vi, compute the Euclidean distance dist(vi, cj) , from each

cluster centre 1, .., k and assign vi to the cluster cj where cj is equal to

argmin(dist(vi, ck)).

4. Increment iteration

5. Calculate a new set of means from each cluster and assign as new set of

cluster centres Citeration (c1, c2, .., ck)

6. Repeat steps 3, 4 and 5 until Citeration = Citeration−1 or iterations >= 25

Using this HKM algorithm, a wide array of distance measures using different

features were evaluated in this chapter. Some of these distance measures included

distances between low-level feature vectors and numbers of interest point corre-

spondences. The distance measure used in the first stage of all HKM variants was

based on geographical data.

4.3.1 Spatial-Based Clustering

By overlaying a grid over the surface of the earth, any location on the planet can be

effectively described using a coordinate based system. The most commonly used

geographical coordinate system in use today is the longitude/latitude system.

Longitude measures distances between points on the earth’s surface in a east-west
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direction, while latitude measures points in a north-south direction. Combining

two of these coordinates (one longitude and one latitude) can pinpoint any loca-

tion on the planet accurately. These simple coordinates can be very effective from

an image retrieval perspective to prune non-relevant images from a geo-tagged

image corpus. These geographical coordinates are particularly effective for prun-

ing datasets when the purpose behind the image retrieval involves searching

for specific scenes and locations. It is for this reason that the first stage in the

hierarchical based clustering approaches analysed in this work is based around

spatial clustering.

Spatial-based clustering involves grouping numbers of images using distances

between geographical data as the measurements to cluster the images. The

dataset used in this work is quite large, and comparing large numbers of images

is processor intensive and time consuming. Spatial data allows for filtering of

unwanted images very efficiently, allowing the pruning of the candidate dataset,

which in turn reduces the number of expensive image matching operations that

need to be processed. Based on this knowledge, spatial based clustering is used

as the first stage in the hierarchical clustering algorithm.

The first stage of a spatial clustering algorithm involves selecting initial cluster

centres or seeds. Each of these seeds at this stage will simply be comprised of

longitude/latitude coordinates in the WSG 84 format: dd.dddd [W3C, 2006]. To

select these seeds a rectangle bounding box was created encompassing all of the

images in the training set. This bounding box was created from analysing the

minimum and maximum longitude and latitude coordinates from all images in

the corpus. This bounding box was located at coordinates: This bounding box

is roughly constituted with a width of 20km (18.80km) and a height of 11km

(11.12km), which approximately consists of a total area a little over 200km2.

The first level of all the hierarchical clustering approaches analysed in this

work consists of clustering the whole dataset based on spatial data into k clusters
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48.90 N, 2.27 E 48.90 N, 2.44 E

48.80 N, 2.27 E 48.80 N, 2.44 E

using the k-means clustering algorithm. The k-means algorithm as described in

section 3.3 splits a dataset into k clusters based on distance measurements, in this

case geographical distances, calculated using the Haversine formula (as described

in section 3.3.1) from each cluster’s centre.

Figure 4.2: An illustration displaying the map area covered by the Paris dataset.
The grid displays how the geographical space was partitioned into sub regions.
The geographical centre of each of these segments were chosen as the initial cluster
seeds for the k-means algorithm at the top level of the hierarchical clustering tree.

To provide initial cluster centres as inputs into the k-means algorithm, the

geographical area was evenly partitioned in k subregions. An example of this

partitioning is presented in Figure 4.2. The centre point of each region was chosen
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as the initial cluster centre. All images in the dataset were then clustered using a k-

means algorithm, and distances between geographical locations used to determine

each images optimal cluster. Choosing an optimal value for k is a non-trivial task.

It is necessary to analyse the geographical information to figure out how best to

partition the dataset, to ascertain the effect that different values of k might have

in pruning relevant and non-relevant images.

Analysing Effects of Spatial Radii

When using spatial data as a filtering mechanism to identify similar images, the

aim is to choose a spatial distance that will contain the maximum number of cor-

rect matches, while filtering out incorrect matches. The number of images filtered

out dramatically effects the speed and quality of a classification technique. Too

many images retrieved will result in a low precision rate and a slow classification

time. Too few images retrieved will reduce classification time but might result in

a low recall rate.

To analyse the effects of selecting different spatial radii, 250 test images were

selected at random from the corpus, and all images located within a number of

different spatial radii from the test images were retrieved from the training corpus.

For each of these searches, the average number of retrieved images was noted for

each spatial radius examined. The results of these searches are presented in Table

4.1.

From section 3.3.1 it is known that on average over 80% of the images within

this dataset have spatial data that is accurate to within 200 metres. This means that

when selecting a spatial radius of 200 metres over 80% of the correct candidate

images will be included after spatial clustering. Selecting a spatial radius of

500 metres should ensure that over 85% of the correct candidate images will be

included after spatial clustering. Based on the results in Table 4.1, however, the

number of images returned from a spatial query will have increased by over 200%.
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Table 4.1: Analysis of Spatial Radii
Spatial Radius Avg No of Images Returned % of Training Set Recall Rate

50m 1104 1.2% 55.2%
100m 1960 2.1% 75.1%
200m 3436 3.7% 80.9%
250m 4205 4.6% 82.0%
500m 8008 8.8% 85.8%
1km 16080 17.6% 89.0%
2km 29602 32.5% 92.8%

This means that the average processing time required to match a test image will

have increased by over 200% even though the number of relevant images returned

after a spatial query will only have increased by 6.25%. Clearly a threshold has

to be selected which provides the best balance between precision, recall and

processing speed.

By analysing the results displayed in Table 4.1 it becomes evident that a spatial

radius of 200 or 250 metres would be the most preferable of all tested radii values,

as these two spatial radii encapsulate over 80 % of the relevant images, while

filtering out over 95% of all irrelevant images. Based on these experiments, along

with the related analysis of geo-tag accuracy described in chapter 3 (section 3.3.1),

a geographical radius of 250 metres is chosen as the optimal value for spatial

based pruning in the remainder of this work.

Based on this information, the dataset was partitioned in sub-regions with a

length of 500 metres × 500 metres, which meant that a value of 800 was chosen

for k in the spatial clustering process. It must be noted that although 800 clusters

might seem a lot for a first stage of a clustering algorithm comprising of a dataset

of 90,100 images, many of these clusters contained very few or no images at

all. On the other hand some of these clusters contain thousands of images in

geographical regions where there is a high distribution of photographs.
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4.3.2 Text-Based Clustering using Community Contributed An-

notations

Introduction

User contributed tags have been used by several research groups over recent

years as a means of clustering similar imagery. The most prominent example of

this is the community tags assigned to images in the Flickr archive. Moëllic et al.

[Moëllic et al., 2008] apply a Shared Nearest Neighbour algorithm to contextual

data to cluster Flickr imagery. To measure tag similarities, they use the Pointwise

Mutual Information measure which is defined as

pmi(wi, wj) = log(
P (wi, wj)

P (wi).P (wj)
)

where P (wi, wj) is the probability of tags wi and wj occurring in the same im-

age, while P (wi) and P (wj) are the probabilities of wi and wj occurring in any

image in the collection. These probabilities are calculated based on document

frequency statistics. They combine this tag similarity metric with visual word

histograms with a vocabulary size k equal to 5000, to cluster groups of images for

three semantic queries: Eiffel Tower (location), Roger Federer (Personality) and

Presidential (Event).

Abbasi et al. [Abbasi et al., 2009] measure tag and group frequencies to clas-

sify groups of Flickr images into landmark and non-landmark images. Images

are classifed into landmark and non-landmark images using an SVM classifier

combined with tag frequency statistics. They also propose a metric that they call

the ’city tag frequency’, which is a measure of the tag frequency within a specific

city, which they use to classify a set of representative tags to describe a city.

Flickr tags are used by the Flickr retrieval system [Flickr, 2004], to return

images that are semantically relevant to different queries. Queries that contain

location information or some information relating to an event work quite well
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using the tagging format. Tag similarity measures alone, however, contain no

content information. While these tags are a good resource for extracting different

kinds of information from image datasets, several issues arise in the context of

image matching. In this work, the goal is to cluster imagery that is visually

near identical (ie. Images that are taken of a landmark from a similar viewpoint,

taken from similar distances and at similar zoom ranges) and these Flickr tags

are created by human annotators and can be subjective. As can be seen from

section 3.3.2, there is no guarantee that the tag provided by a human annotator is

semantically relevant to the visual content of the image. Two images containing

different near identical content could contain completely different tags, while two

visually different images could have matching tags.

Other issues that can arise when using textual tags to measure visual or

semantic similarity are polysemy and synonyms. Polysemy is when a single word

can have multiple definitions, such as the word ’match’ (This could indicate a

sporting event, an object that closely resembles another or it could indicate a little

piece of wood topped with sulphur that is used to ignite a fire). Synonyms are

different words that have similar meanings for example: church, cathedral and

chapel all indicate a place of worship for Christians. Users might describe an

image using different synonyms. When comparing images based on similarity

between tags, the context or semantic definition of these tags is not known in

advance. Synonyms are problematic in a tag matching context as it is difficult

when using text comparison methods to find a correspondence between two

synonyms.

Tag Based Clustering

In this section, an evaluation is carried out using tag similarities as the distance

measure as part of a HKM algorithm. A two-stage clustering method was pro-

cessed. This consists of spatial clustering, described in section 4.3.1, followed
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by clustering based on tag and image title similarities. These similarities are

calculated by firstly processing all tags and titles into case insensitive tokens to

account for similar tags being mismatched. Each token within a set associated

with an image is then compared to each token contained within a set belonging to

the cluster seed.

In order to compare the metadata, it is firstly organised into comparable

groupings. The image title that is provided by a user can often describe the

content of an image (Example: ’Me and Marie in front of the Eiffel Tower’, would

imply that the content of the image contains two people photographed with the

Eiffel Tower in the background). For each image within the corpus, the image title

is tokenised, and all tokens are added to the tag set associated with that image.

All tags in this extended tag set are then grouped into a set St and this is then

associated with the image.

There are many situations where tokens are slightly different but it would

still be desirable for a match to be counted. For example, the tag ’EiffelTower’

should be matched with the tags ’eiffel-tower’ and ’Eiffel tower’. To account for

these situations, it is necessary to process all tags within datasets a the view of

normalising them to account for these small discrepancies between pairs of tags.

White space is removed within the sets of tags. Any tag containing white

space is tokenised into separate tags, using the white space as the separator. Any

tag containing an upper-case character in any position other than the first position

of the tag was also tokenised, using the capital letter as the separating point. This

was not the case if all characters within a tag were upper-case.

While there exist many grammatical rules to applying capital letters to words

in language, there exists no enforced rules to ensure that users apply these to their

metadata. Case-folding is therefore carried out on all characters within tags to

lower case.
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For each example image, the set St is compared against sets S{1.....n}, where S1

is equal to the set of tags belonging to the first image examined in the cluster, and

n is equal to the number of images within the cluster. Several different distance

measures to measure correlation between sets of tags were evaluated. These

included:

• Jaccard Distance

• Dice’s Coefficient Distance

• Overlap Coefficient Distance

Jaccard Distance

The Jaccard Coefficient is a measure of the similarity between sets of variables,

while the Jaccard distance is a measure of dissimilarity [van Rijsbergen, 1979].

The formula for calculating Jaccard’s Coefficient from two sets of tags, T1 and T2

can be described as:

c =
|T1
⋂
T2|

|T1
⋃
T2|

whereas the formula for calculating the Jaccard distance from T1 and T2 can be

described as:

d = 1− c = 1− |T1
⋃
T2| − |T1

⋂
T2|

|T1
⋃
T2|

Dice’s Coefficient

Dice’s coefficient is a similarity measure similar to the Jaccard coefficient, however

it does not penalise small numbers of similar objects to the same extent. It is

defined as twice the shared number of items in two sets divided by the total

number of objects in the two sets. It can be calculated from two sets of tags, T1

and T2, using the formula:
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c =
2|T1

⋂
T2|

|T1
⋃
T2|

In this work a dissimilarity metric is utilised to calculate the overlap distance with

the following formula:

d = 1− c = 1− 2|T1
⋂
T2|

|T1
⋃
T2|

Overlap Coefficient

The overlap coefficient is used to measure the overlap that exists between two

sets. If one set is a subset of another, or the converse, the coefficient value is 1,

whereas if there is no overlap between the two sets the returned coefficient value

is 0. It can be calculated from two sets of tags T1 and T2 using the formula:

c = 1
|T1
⋂
T2|

min(|T1|, |T2|)

In this work a dissimilarity metric is utilised to calculate the overlap distance with

the following formula:

d = 1− c = 1
|T1
⋂
T2|

min(|T1|, |T2|)

4.3.3 Low-level Feature Based Clustering

Low-level image features are global features that consist of a single feature vector

to represent an entire image. As each image is represented by a single vector,

multiple images can be compared and matched quickly. One of the big disad-

vantages of global based features is their sensitivity to occlusion and variations

in lighting conditions. Another significant issue with the use of low-level global

features is that they do not discriminate sufficiently between inter class variations

of images. Notwithstanding these issues, low-level features can be extracted and

compared quickly due to their generally small vector lengths and relatively sim-

ple extraction methods. Combined with appropriate threshold values, low-level
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image features can be successfully utilised to provide a method of eliminating

non-relevant images at an early stage in a hierarchical clustering process. In

this section, many low-level features and combinations of these features are ex-

plored together with varying threshold values to determine their usefulness for

clustering near identical landmark imagery.

4.3.4 Colour Based Clustering

The first type of global features analysed for clustering purposes were colour

image features. Colour features have been widely used in the past for comparing

images for visual similarity [Ashley et al., 1995][Smith and fu Chang, 1996], and

can be useful for filtering out unwanted images. The most basic colour feature is

the colour histogram, which is a description of the distribution of colour features

within an image. The colour space is usually quantised to provide more efficient

memory footprints and faster feature matching. Each quantised colour or small

range of colours are allocated to a bin within the histogram. The colour values

of each pixel are analysed and binned according to their similarity to the colours

associated with each bin.

One significant disadvantage with the use of colour histograms for image

comparison is that feature vectors may not be discriminative enough to accurately

match near identical imagery in large datasets. It is common that several visu-

ally different images can have similar colour histograms (see Figure 4.3 for an

example). Another significant problem with low-level colour features in general

is that they are generally not invariant to changes in illumination. Thus, images

that are visually similar, and could be automatically classified as being similar by

a human observer, may have very different colour histograms (for example, see

Figure 4.4).
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Figure 4.3: An illustration displaying 3 visually different images and their associ-
ated colour histograms. As can be seen from the illustration, all of the histograms
are identical, even though the visual content of each image is different.

The main advantages of low-level colour features is that they require a small

memory footprint, and quick to extract and compare. The problems with colour

features arising from shortcomings in discrimination and invariance to illumi-

nation differences mean that a filtering threshold must be carefully selected to

maximize the number of non-relevant images, while minimising the number of

correct candidate images to be filtered out.

In this work, a colour feature based on the spatial relationships between similar

colour regions is utilised. This feature is called a colour correlogram in literature.

Colour Correlogram

The colour correlogram is based on the computation of the spatial correlations

between pairs of colours that exist within an image. The feature measures how

these correlations change with spatial distance. This represents a significant im-

97



Figure 4.4: An illustration displaying the R,G and B histograms generated from
two visually similar images with variation in illumination and a slight affine
variation. As can be seen from the diagram, the three histograms for each image
are radically different even though the image content is similar.

provement over a standard colour histogram feature and it is therefore evaluated

in this chapter as part of a HKM clustering algorithm.

It has been shown that correlograms perform better in the HSV colour space

than the RGB colour space for image retrieval tasks [Ojala et al., 2001], therefore

in this work, the colour correlogram feature is calculated in the HSV colour space.
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Firstly an image is converted from the RGB space to the HSV colour space using

the following formula:

R,G,B ∈ [0, Cmax] where Cmax is 255

Chigh = max(R, G, B) , Clow = min(R, G, B) and Chroma = Chigh

The saturation value is then calculated as

S = Chroma− Clow if Chigh > 0 otherwise S = 0

The V value is then defined as

V =
Chigh
Cmax

The H value is then defined as H ′ × 60◦ where

H
′
=

G−B
Chigh − Clow

if R = Chigh

H
′
=

2 + (B −R)

Chigh − Clow
if G = Chigh

H
′
=

4 + (R−G)

Chigh − Clow
if B = Chigh

The HSV image is then quantised into 256 colour values with 16 bins repre-

senting the H value, and 4 bins representing each the S and V values, in this case

denoted as C1−256. The correlogram feature is based on the probability that a pixel

p1 with a colour value ci and another pixel p2 with a colour value cj are located at

a distance d from each other. The standard colour histogram H can be defined for

an image I as:

Hci(I) = Prbp ∈ Icic

whereas the colour correlogram can be defined as:

γdcicj = Prbp2 ∈ Icj ||p1 − P2| = dcwhere P1 ∈ IciP2 ∈ I

In this work a feature called an ’autocorrelogram’ is utilised to speed up

processing time. The autocorrelogram determines the probability that two pixels

are identical at a distance d, ie. ci = cj The feature utilised in this work used 4

values for d; 1,2,3 and 4 and produced a feature vector with a length of 256.
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4.3.5 Texture Based Clustering

One of the most important classes of low-level features utilised for image com-

parisons and retrieval are those based around measurements of image textures.

As noted in Chapter 2, several commercial image retrieval systems utilise texture

features in their retrieval stages. This is mainly because many commonly used

texture features are relatively quick to calculate and extract from images. They can

be readily compared in a non processor intensive manner while still providing an

accurate and useful visual description of an image or an image region.

A human observer can readily identify and recognise prominent texture pat-

terns in an image (e.g. the stripes on a zebra or the pattern of leaves within

foliage). It remains quite difficult however, to provide a concise definition as

to what constitutes texture. Texture can be viewed as a measure of changes in

light intensity within an image, the coarseness of these changes, or perhaps the

repetition of intensity patterns across different regions of an image. In the ab-

sence of a standard definition, it is assumed that texture is some non random

arrangement of intensity values. A number of approaches have been proposed

and implemented to measure these arrangements. As described in Chapter 2,

several of these techniques are widely used in the image retrieval and computer

vision communities.

As image texture plays a fundamental part in many image matching and

retrieval systems, in the following section, one of the most commonly used and

discriminative texture descriptors is analysed to evaluate its attributes as part of a

hierarchical clustering procedure.

Gabor Texture Features

Gabor texture features are a very commonly used class of texture feature in

the computer vision community. They have been shown to outperform many
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other types of texture features based on second-order statistics as described in

Chapter 2. As Gabor filters have been utilised for a large variety of image analysis

tasks such as fingerprint matching [Xu and Zhang, 2005] and object recognition

[Jain et al., 1997], it is proposed in this work that they may also be useful as a

discriminative mid level clustering feature. The Gabor features are evaluated as a

cluster feature by themselves and as part of a fusion of different low-level features.

The results of this evaluation can be seen in Tables 4.7, 4.11 and 4.12.

Gabor based texture features are a description of the coefficients obtained

from a bank of Gabor filter responses in a range of different orientations, scales,

and frequencies. This set of filters is calculated based upon the Gabor Wavelet

Transform, which is formally defined as:

γ(x, y) =
1

2πσxσy
exp

[
−1

2

(
x̄2

σ2
x

+
ȳ2

σ2
y

)
+ 2π

√
−1Wx

]
where

x̄2 = x cos θ + y sin θ

ȳ2 = −x sin θ + y sin θ

σx and σy are scaling parameters that determine how large a neighbourhood

around a pixel to calculate the summation for the filter response. θ is a parameter

that specifies the orientation of the filter and W is the radial frequency of the

sinusoid. By changing these parameters it is possible to create a bank of filters able

to detect responses in a number of different scales, orientations, and frequencies.

A texture feature composed of a suite of Gabor filters in 6 orientations, 3 scales,

and 2 frequencies is used in this work producing a feature vector with a length of

36.

4.3.6 Clustering Based on MPEG7 Feature Sets

The MPEG7 standard is an attempt by the Moving Picture Experts Group (MPEG)

to standardise a set of technologies that can be used to describe audio and video
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content. These technologies consist of a set of tools for extracting multimedia

features (visual and audio), along with standardised description schemes to de-

scribe these features. The well known MPEG1 and MPEG2 standards were mainly

based around the representation of video data, however, the MPEG7 standard

is more concerned with the description of the data along with its metadata. The

MPEG7 standard aims to be applicable to a wide array of data types, such as

audio, imagery and video. To achieve this, a number of different feature extractors

were proposed depending on the underlying data type. These features can be

broadly split into two main groups; audio based and visual based.

The visual features are split into four main types; colour, texture, shape, and

motion. The motion features are intended to describe video files and require

multiple images to be calculated, therefore they are not useful in this work and

are disregarded. The shape descriptors are used to identify simple classes of

objects, mainly based on the outline shape of an object. Landmark images such as

buildings, for example, are likely to have similar outline shapes in many situations,

and hence the discrimination value of these features for the purposes of this work

is limited.

Colour and texture features are more likely to be useful for the purposes of

this work and therefore it is these features that are analysed and evaluated.

Scalable Colour Descriptor

The scalable colour descriptor (SCD) is calculated based on the Haar trans-

form of a colour histogram in the HSV colour space. The SCD feature has

been widely used in image matching and image retrieval systems in the past

[Chatzichristofis et al., 2009]. To calculate the SCD, firstly an image is mapped to

the HSV colour space using the formula described in section 4.2.4. A Histogram

with 256 bins is then extracted from this image, with the H component quantised

to 16 bins, and the S and V components quantised to 4 bins each. This histogram
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is then normalised and mapped into a four-bit integer, with more significance

given to smaller values. This allows for efficient storage requirements. The Haar

transform is then applied to each of these four bit integers across all values in the

H, S and V bins.

It is possible to sum the values of every two adjacent Hue features to produce

a quantised histogram of length 128 with 8 bins given to the H component and 4

bins given to the S and V components respectively. If desired, this process may be

repeated allowing for the creation of further quantised histograms of lengths 64,

32 or 16. While these quantisation levels allow for faster matching of histograms

and smaller memory requirements, the smaller the histogram length, the lower

discrimination value of the feature. Therefore, in this work, a histogram length of

256 is used to ensure the highest level of discrimination.

Edge Histogram Descriptor

One of the most commonly used texture features in the MPEG7 standard is the

Edge Histogram Descriptor (EHD). The EHD is a global based feature vector

containing spatially organised histograms of edge orientations detected within

an image. It is based on the measurements of four directional edges (vertical,

horizontal, 45◦ and 135◦ ) and one non directional edge.

When extracting image features to represent objects or landmarks within an

image, it is preferable to have some division of the image into meaningful regions

that are relevant to the actual objects/landmarks depicted. Once this division has

been calculated, features can be calculated for each region, which allows for the

inclusion of local information to be embedded into these features.

Global based features traditionally were calculated based on the whole content

of an image. The main disadvantage of this is that all geometrical information

regarding the layout of the extracted features is disregarded. It is preferable

for global features to include some spatial information, which also increases the
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discrimination value of the feature. Two of the most commonly used approaches

to dividing an image into these regions are: Segmentation based and Block based

division.

• Segmentation based division involves utilising a segmentation algorithm to

partition the image into non-uniform segments that are relevant and display

shape similarity to the object within the image. Optimally segmented images

would provide a lot of additional geometrical information about objects

depicted, such as shape, size and position. Object segmentation is still a

active research field however, and there is no one algorithm that will lead

to optimal segmentation in all situations [Gokalp and Aksoy, 2007]. Some

alternative approach is therefore desired. One alternative of many is block

based segmentation.

• Block based segmentation is the process of partitioning the image into

blocks or regions, each one a predetermined size, and calculated in a defined

manner. Each of these blocks is then treated as a separate entity for the

purposes of feature extraction and the geometrical information regarding

the regions location and relationship to other regions can be preserved in

the feature descriptor. This information provides a weak form of geometric

consistency when comparing and matching features from multiple images.

The MPEG7 edge histogram feature utilises a block based segmentation

scheme.

To calculate the feature, the image is firstly partitioned into 4 × 4 (16) equal

sized sub images. The width and height of each block isW/4 andH/4 respectively,

where W and H represent the overall width and height of the image. Each of

these sub images is then treated as a separate entity. Irrespective of the size

of the image, each of these blocks are further divided into 1100 smaller blocks

(experiments carried out showed that a value of 1100 small sub blocks seemed
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to capture good directional edges [Manjunath et al., 2002]). Each of these smaller

sub blocks are then processed with a suite of 5 oriented edge detectors (0, 45, 90,

145 and non-directional). The sub block is then marked as the orientation that

had the maximum edge strength outputted from these edge detectors, if above a

threshold. If not, the block is disregarded. For each original larger sub block (16

in total) the average numbers of edges in each orientation is histogramed into 5

features. As this process is repeated for each larger sub block, this gives a total of

80 values to create the global EHD. This process is illustrated in Figure 4.5.

Figure 4.5: An illustration displaying the process of extracting an edge histogram
feature from an image. Firstly the image is split into 16 sub images (1), followed
by the further block segmentation of each of these sub blocks to 1100 much smaller
blocks (2). A histogram is created for each large sub block, containing 5 values (3).
All of these smaller histograms are merged into one global histogram (4).
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4.3.7 Hybrid Low-level Feature Based Clustering

While a single global image feature may not be discriminate enough for large

scale accurate clustering, it is possible that combinations of global features might

perform a lot better. It is therefore necessary, to evaluate different combinations of

these features to ascertain which combination might perform best for landmark

viewpoint clustering. Four combinations of global features were evaluated;

• Spatial Colour and Texture

• Colour and Texture

• Colour and Edge

• Texture and Edge

All of these hybrid approaches were located at level 2 and 3 of the HKM algorithm.

The first level of the hierarchical clustering algorithm for each evaluated hybrid

approach consisted of k-means clustering using spatial data with a value of 800

for k. Additionally for each of the low-level hybrid approaches examined, the

feature vectors for both features were normalised.

4.3.8 Inverted Visual Word Features

As shown in the past, low-level image features are not as discriminative as local

image features [Bosch et al., 2006]. It is assumed that a more successful clustering

algorithm could be created based on these local features. Local image feature

matching using brute force techniques is slow to process and with large clustering

tasks the processing time required on the full datasets would be undesirable.

A technique has been proposed in the computer vision field that allows for the

quantisation of these local image features into a single global feature, while still

retaining some of their discrimination value. This level of discrimination can be
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roughly correlated with the level of quantization. As the quantization increases,

the discrimination values decrease. This is not always a negative attribute (for

example, in the case of scene classification, a higher level of quantization adds

robustness to classification models). However, for the purposes of clustering, a

happy medium is desired that can be used as an efficient method to cluster images

at a high level of the hierarchical pipeline. The level of quantisation was carefully

chosen as to maximise the number of similar images within a cluster, retaining a

high level of recall while also disregarding the maximum number of dissimilar

images. In this work a vocabulary size of 50,000 was used.

Images are clustered with the cluster centre that they share the most inverted

visual word features with. Soft assignment is used in this method, which means

that an image may be clustered with more than one cluster centre provided that

the number of correspondences is above a threshold of 20. Once this clustering

has taken place, images within each cluster are ranked in descending order by

the number of visual word correspondences. The top k nearest neighbours were

then retained for use in a final local image feature verification stage. All images

ranked beneath k were disregarded from the cluster.

4.3.9 Local Image Feature Clustering

The lowest level of the hierarchical tree structure consists of expensive compar-

isons of local image patch features (SURF). As local image features generally

outperform global images features for image matches purposes, this stage is the

most crucial to obtain a high level of precision in each cluster.

Point to Point Image Comparison

As described in Chapter 2, the SURF algorithm (and many image patch descrip-

tion algorithms in general) will output a highly discriminative feature vector,

107



describing intensity changes in the local region surrounding the actual detected

point. An accurate method to compare features is therefore desired.

As the SURF algorithm outputs a 64 value feature vector for each point, it

would seem logical to utilise a standard distance measurement when comparing

two features such the L1 Norm:

D(v1, v2) =
n∑
i

|v1(i) − v2(i)|

or the L2 Norm:

D(v1, v2) =

√√√√ n∑
i

(v1(i) − v2(i))2

where v1 and v2 represent two interest point descriptors and n represents the

length of the feature, which in the case of SURF would be 64. It has been demon-

strated by Lowe [Lowe, 2004], however, that these standard distance measure-

ments are particularly sensitive to small changes, such as affine transformations.

Due to these sensitivities, Lowe suggested utilising a method called the distance

ratio test to compare and match two local image features.

The distance ratio test is a method based upon the ratio of distances between

the two nearest neighbours to a point. If the ratio of the Euclidean distances

between features v1 and v2 (where v1 is the nearest neighbour to a test point and

v2 is the second nearest neighbour) is above a threshold, the test feature and

point v1 are considered a match. Lowe found that using a threshold value of .8

eliminated 90% of the false positive matches. He also suggest that for 2 images

to be considered a match or at least an object depicted within two images, that it

required 3 of these distance ratio matches to be considered a good match.

Geometric Consistency

SURF image features are quite discriminative and invariant to a certain extent to

occlusion, affine,rotation and scale variations [Bay et al., 2006]. It has also been
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shown that matching approaches using the distance ratio test are invariant to a

certain level of image noise [Lowe, 2004]. However, even with all these properties,

it is still quite possible that in very large collections of images there will be false

positive matches between sets of SURF features. One approach to reduce the

percentage of these false positives, is to determine or verify that sets of SURF

correspondences share the same geometric properties. An object should retain

geometrical properties irrespective of the scale, viewpoint or orientation that it has

been photographed from. The same remains true for sets of local image features

extracted from a landmark within an image. The sets of matched features between

two landmark images should share geometrical properties, even if they were

photographed at different scales and from different viewpoints. For example, a

landmark containing straight line features, will still contain straight line features

when photographed from a different scale or rotation.

Using sets of SURF correspondences, it is possible to estimate a geometrical

relationship between a landmark depicted in two or more images based on the

geometrical properties of the matched features. By ensuring that all matched

features adhere to this relationship, it provides a higher level of discrimination

by verifying that the matched keypoints detected from one image correspond

geometrically to matched keypoints extracted from the same landmark within

another image. This process is referred to as geometric consistency or geometrical

verification, and it has proved successful in verifying that two matched images

do indeed contain the same matched objects [Fan et al., 2006].

Random Sample Consensus Algorithm

One approach to calculating geometrical models between sets of image fea-

tures and the approach adopted in this work, is the Random Sample Consensus

(RANSAC) algorithm [Fischler and Bolles, 1987]. The RANSAC algorithm is an

iterative algorithm, that can estimate a geometrical model from a set of point
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correspondences between two images. It is assumed that any matched pair of

images will contain outlier matches, possibly due to occluding objects, repetition

of a structure pattern, or false positive matches between SURF features. One big

advantage of the RANSAC algorithm is the ability to remove these outlier matches

that do not correspond to the geometrical model between a pair of images.

The RANSAC algorithm takes as input a set of features N , where each feature

is a correspondence between two matched SURF features. It is assumed that the

algorithm can calculate a model based on a set of features S, where S is a subset

of N . In this work, the value assigned to the size of S is four, which is required to

calculate a homography between a pair of images. To estimate the geometrical

model, the algorithm comprises of five main steps:

1. Calculate a random subset of features S from N

2. Estimate a model based on the set of data S

3. Calculate the number of features from the total dataset N that fit the model

and call this number m.

4. If m is above a predetermined threshold parameter, fit the model and exit

algorithm, else if m > previous value of m, mark this model as the best fit

and continue algorithm.

5. Repeat steps 1 to 4 k times, where k is a predetermined parameter

6. Return the best fit model

RANSAC is a non-deterministic algorithm, and therefore some sort of stop-

ping criteria is required. The parameter k determines the maximum number of

iterations that the algorithm should repeat itself. In this work, an approximate

estimate is made that 50% of all SURF matches are inliers (ie. actual matches

between landmark objects), therefore a value of .5 is assigned to a parameter o. As
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the algorithm is non-deterministic, it will produce a reasonable result only with

a certain probability, defined as p. Although usually an acceptable probability

value of 99% is the norm, the number of iterations required to estimate a model

with a probability of 99% is large (72 iterations in this case) and thus the time

required to verify two images (which will be repeated a large number of times) is

not acceptable. In this work, it is deemed that a desired probability that a correct

model be found of above 90% to be an acceptable value. This value was chosen to

reduce the size of k and therefore reduce the processing time involved, while still

retaining a reasonable probability estimate. To calculate the number of iterations,

the following equation is solved for k:

1− (1− om)k >= p

where m is the size of the subset N (ie. the number of inliers required to estimate

the model). In the context of this work, this equation then becomes

1− (1− .54)k >= .90

which is turn gives a value of 36 for k, which exactly halves the number of

iterations if the desired value for p was 99%

1− (1− .54)36 = .903

Once a model has been fitted, all data points are verified against the model and

outliers are removed, where outliers are determined to be data points that don’t

fit the model. All inlier features (ie. data points that fit the model) are deemed to

be geometrically verified.

It must be noted that one big disadvantage of the RANSAC algorithm is that

it can require a lot of processing time. When this process has to be repeated a

large number of times, it can provide a processing bottleneck that will lead to

unattractive matching and clustering times. When comparing very large numbers

of images, this could be intractable using today’s hardware. It is imperative,
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therefore, from a image matching and clustering perspective that geometrical

verification is carried out only on a small subset of candidate images, as opposed

to large portions of the training corpus.

Pruning Cluster Outliers

Once there is a small number of images located in a cluster at the lowest level of

the clustering tree structure, it is necessary to carry out a verification procedure

that might remove irrelevant images from the cluster. From experiments carried

out as part of this work, it was determined that SVMs provide a higher level

of classification accuracy, when the training data has a small spectrum of affine

variation. If the training images contain a wide affine variation there can be a

significant decrease in classification accuracy. By carrying out a verification stage,

the aim is to remove any outlier images that might have a large affine variation

from the other images within the clusters. To carry out this verification, a graph

data structure based on geometrically verified SURF correspondences was used.

Graph Data Structures for Evaluating Cluster Correspondences

A graph data structure is a commonly used data structure in computer science

that consists of a collection of linked data in a non structured manner. A graph

is quite similar to a tree in that nodes are linked to one another, however a tree

contains nodes that are linked in a hierarchical manner where each node except

the root has a parent node. Graphs are different in that there does not necessarily

have to be an hierarchical structure and graphs can generally be bi-directional or

multi-directional.

The aim of this section is to describe processing at the very lowest level of

the clustering procedure that is utilised in this work. At the lowest level of the

hierarchical tree, it is expected that there remains a large number of small clusters

containing subsets of the overall dataset. Due to the small size of these subsets,

112



it is possible to carry out expensive processing tasks to verify that an image

optimally belongs in the cluster to which it has been assigned.

To carry out this verification, it is not sufficient to simply compare all images

against the pre-determined cluster centre. The centre of each cluster was assigned

at a previous level of the hierarchical algorithm (such as that assigned using

inexpensive global image features) in a different feature space. This might not

represent the optimal representative cluster centre. One option at this point is

to randomly select a cluster centre and measure correspondences between this

center, or to perhaps select a representative image (perhaps based on the image

with the highest number of feature matches between all images with the cluster)

which has a high probability of being the most iconic image in the cluster and then

compare against this representative image. There are disadvantages however, to

both of these approaches.

Due to experiments carried out in this work, it has been established that

classification models perform more accurately when the collection of images used

in the training phase for each class contains a small spectrum of affine variation.

Based on this, the overall aim of the clustering pipeline is to cluster images that

have been taken from a similar viewpoint (desired to be in an affine variation

range of approximately 45 degrees, and in a similar scale). The main disadvantage

of selecting representative images or selecting a random cluster centre at this stage

is that, although the iconic image could be representative of the entire cluster, it is

still likely that images within the cluster might be matched with the representative

image, but might be taken from a viewpoint outside of the desired range.

A method is required that will not only compare an image within a cluster to

the cluster center, or the ’iconic’ image within the cluster, but to compare each

image to all images within the cluster. This is to establish whether an image is

an outlier within the cluster, that might simply be matched to the cluster center.

For the purposes of this section, an outlier is defined as an image that is visually
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dissimilar, or has been photographed from a different viewpoint than the majority

of images within the cluster.

The approach adopted here is to organise all images within a cluster into a

graph structure Gk, where k is equal to the number of images within the cluster.

Each image represents a node N within the graph, and there is an edge Nij be-

tween nodes Ni and Nj if there are at least 3 geometrically verified SURF matches

between the images. Each node is then examined and any node containing a

number of edges below a threshold t is deemed as an outlier and removed from

the cluster. From empirical evaluations, a value for t of 3 appears to perform well,

and was chosen as a good balance between retaining candidate images within a

cluster and removing obvious outliers. This process is illustrated in Figure 4.6.

Figure 4.6: An illustration displaying the process of pruning outlying images from
a cluster at the final level of the clustering process. This illustration contains a sub-
set of the cluster created in the evaluation process using the red bordered image
in the centre as the cluster seed. The two green bordered images were eliminated
from the cluster based on the number of edges that their nodes contained within
the graph. In total, this cluster contained 36 images after outlier pruning.
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4.4 Clustering Based on Hashing Techniques

In this section, a widely used image clustering algorithm is described, imple-

mented and compared against the hierarchical approach to evaluate performance.

This approach has been proposed in the literature for efficient clustering of large

scale image collections, specifically focusing on near-duplicate image clustering,

using hash functions [Foo et al., 2007][Chum and Matas, 2008][Frahm et al., 2010].

Specifically, hash functions that allow for fast approximations of nearest neigh-

bours in feature space. This technique is called Locality Sensitive Hashing (LSH).

In this section, an implementation of a LSH algorithm was implemented and the

hierarchical clustering approaches described in section 4.3 are evaluated against

this implementation.

4.4.1 Hash Tables

Large scale image clustering is an computationally expensive process, due to

the time required to compare large numbers of image feature vectors, therefore

a technique that accurately approximates visually similar images from a large

corpus in near constant time would reduce the processing time significantly (from

O(knm) in the case of k-means to O(1)).

A hash table is a data structure that enables rapid mapping between a key (eg.

a string) and associated value. This achieved by using a ’hash function’, that maps

the key to an integer that is used to index a table storing the associated values.

Linear search allows for searching for an object in O(n) time where n is the

number of objects in the database. For a large scale database, this could be infea-

sible for many applications, particularly, real-time image matching applications.

A balanced binary search tree structure allows for search in O(log n) time as

the search space is halved at each level of the tree. A well designed hash table,

however, will allow for the lookup of a key value in O(1) time. The speed gain
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associated with the use of hash tables over other data structures therefore is

significant.

A hashtable consists of an array of values with each element in the array (also

called a bucket) storing a value, or a group of values. A key value is associated

with each object to be inserted into the hashtable. Each key value is mapped to

a location within the array. This mapping is created with the use of a function

called a hash function. The output of this hash function is called a hash value and

will be in the range 0 - N where N is the size of the hash table size. Ideally a hash

function should provide a uniform distribution of hash values and ensure that

two distinct key values get mapped to different buckets in the hashtable (with a

high level of probability).

If a hash function returns the same hash value for different key values, a

collision occurs. Even with a good hash function and a uniform distribution,

collisions are inevitable. The load factor of a hashtable is the ratio between the

number of stored items and the size of the table. A low load factor can lead to

less collisions, however there are significant memory overheads. Most hashtable

structures are dynamically resized based on the load factor of the structure. Once

a load factor threshold is passed, resizing is carried out to prevent high numbers

of collisions.

4.4.2 Locality Sensitive Hashing

Locality sensitive hashing (LSH) is an algorithm based on hash functions that

allow for approximate nearest neighbour searching in sub linear time. In this

section, a clustering approach based on LSH is implemented and evaluated. The

main idea behind LSH is that when a feature is close to another in feature space,

after a projection, the two features will remain close together.
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LSH provides the ability to very quickly cluster an image based on the values

of initial cluster seeds (in O(n1+p log n)), as opposed to iteratively comparing a

feature against all cluster seeds such as in traditional k-means clustering.

Figure 4.7: An diagram illustrating the main concept behind Locality Sensitive
Hashing. As opposed to standard hashing techniques, features that are close to
each other in some feature space will be assigned to the same hash bucket.

4.4.3 Hashing Functions

The main idea behind locality sensitive hashing is that a feature v1 will be projected

to another feature space using some hash function. Another feature that is located

close in feature space v2 will also be located close to v1 after this projection. Once

these projections have taken place it assumed that both features v1 and v2 would be

hashed to the same bucket, which is illustrated in Figure 4.7. In this work, a hash

function was implemented that was based on p-stable distributions described in

[Datar and Indyk, 2004].

4.4.4 BOW Feature Histograms

Similarly to LSH implementations described in [Lee et al., 2010], each image was

represented as a set of Visual Bag of Words (VBOW) features, which have been
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used widely in image retrieval tasks in recent years. They provide a global based

alternative to large numbers of local image features , and have been shown to

be robust and discriminative [Sivic and Zisserman, 2003]. The VBOW histogram

is a quantisation of a finite number of local image features into a single global

histogram. In the VBOW model, a static collection of interest point descriptors

is used as a comparison set called a vocabulary. A histogram is created with a

length k, where k is the total number of features in the vocabulary. Interest points

from test images are then compared against this vocabulary and the histogram

bin associated with the nearest neighbour in the vocabulary is incremented.

4.4.5 LSH Parameter Selection

When using VBOW, the main parameter to optimise is a value for k, which

determines the length of the vocabulary to use, and in turn, the length of the

histogram vector. Another parameter to select, is the number of hash tables to

utilise called C. A higher number of hash tables should increase recall, however

they will effect precision values negatively. Additionally the higher the value for

C the higher the memory requirement. To account for memory restrictions, some

techniques have recently been evaluated based on large scale parallelisation of

hundreds of desktop machines [Aly et al., 2009]. In this work, four values were

evaluated for C; 16, 25, 45 and 60.

4.5 Clustering Evaluation

In this section, an evaluation is carried out on several different hierarchical clus-

tering approaches. It is important that a clustering algorithm performs quickly,

however, as the clustering processes are usually carried out offline, a more im-

portant measure is the accuracy of the final result. It is not useful to cluster

images using a very fast performing algorithm if the outputted results are full
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of inaccurate groupings. If the algorithm does not perform accurately, the input

classes used to train classification models in Chapters 5 and 6, will be very noisy.

Depending on the levels of inaccuracies, results would be expected to be no better

than random. It is important, therefore, to compare and evaluate many different

clustering approaches to ascertain which one will provide the highest level of

intra cluster similarity and the lowest level of intra cluster similarity with the

datasets used in this work.

It is quite challenging to evaluate the outputs of clustering algorithms. It

would be very time consuming to manually inspect thousands of clusters out-

putted from a number of algorithms. Alternative approaches to ascertaining

clustering accuracy, such as comparing community provided contextual informa-

tion as a verification of accurate clustering, is fraught with potential problems.

There is no guarantee that the labelled data is accurate, and hence will lead to

inaccurate evaluation results when using metrics such as precision or recall. An-

other challenge in evaluating clustering approaches in this work is that all of the

hierarchical approaches use the k-means algorithm. This is a non-deterministic

algorithm that might produce different cluster results on each run, as the cluster

seeds are chosen randomly before each initialisation of the algorithm. Due to

this observation, it would not be an even comparison evaluating two different

clustering runs using different features or distance metrics.

An information retrieval evaluation methodology is adopted in this section.

A benchmark of an optimal clustering process was processed on the dataset.

This benchmark process used pre-determined cluster seeds at each level of the

hierarchical tree, which allows for a like for like comparison between different

clustering approaches. Once this benchmark has been created, all evaluated

approaches are evaluated against the benchmark, using a wide variety of common

information retrieval metrics.
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To create this benchmark clustering set, a brute force processor intensive ap-

proach was used which, should be optimal for clustering images in large datasets.

This approach should be optimal, as in the majority of the best performing cluster-

ing runs, this brute force matching approach is either approximated or images are

pruned out before this expensive brute force matching is carried out on subsets of

the corpus. It therefore stands to reason that a brute force approach on the full

dataset should outperform brute force searches on possibly inaccurately pruned

subsets of the same data. Due to the processing time constraints, this benchmark

was restricted to 250 clusters from the Paris dataset.

4.5.1 Benchmark Clustering

To ensure that each clustering run produced comparable results, 250 random

images from the dataset were randomly chosen as initial cluster seeds. These

same 250 images are then chosen as cluster centres at each stage of the clustering

processes. For each of these seed images, all images in the corpus within a spatial

radius of 250 metres were examined and clustered. One of the most accurate

methods to match and cluster similar images is to use a technique called point to

point matching using local image features followed by a geometric consistency

check. The idea behind point to point matching is that each interest point feature

extracted from an image is compared against every interest point extracted from

another image. Point to point matching using extracted SURF interest point

features was is carried out. This matching process used the distance ratio test with

a ratio of .8, similar to the ratio used by Lowe [Lowe, 2004] with SIFT features

for image matching. All images were clustered based on the number of point to

point matches between the image and the cluster seed image. If there was no

point to point match between an image and all of the cluster seeds, the image was

disregarded.

120



This point to point matching phase was then followed by a geometric verifica-

tion stage to verify that all clustered matches are geometrically consistent. This

stage was carried out after initial clustering due to processing time constraints.

The algorithm used in the geometric verification stage is the Random Sample

Consensus (RANSAC) algorithm. For each cluster the images were ranked based

on the number of geometrically consistent matches between each image and

the cluster seed, if the number of geometrically verified matches were above a

threshold of 3, the image was clustered with the seed image, otherwise, it was

disregarded. As this benchmark clustering method is near optimal with regards

to current state of the art image comparison methods, all evaluated approaches

were compared against it.

4.5.2 Evaluation

The evaluation is based upon several commonly used information retrieval evalu-

ation metrics; precision, recall, and the F-measure. In this clustering evaluation, a

relevant image is defined as a clustered image that is also contained within the

associated optimal cluster. If an image has been grouped with a cluster centre

using the optimal point to point matching technique, and then also grouped with

the same cluster centre using an hierarchical approach, it is deemed relevant.

Precision is a commonly used evaluation metric that measures how many

members of a retrieved set are relevant. Therefore, precision is defined as the

fraction of relevant clustered images, divided by all images within a cluster. It

can be formally defined as

P =
Number Of Relevant Images Clustered

Number of Total Images Clustered

Recall is defined as the number of relevant images within a cluster divided by

all images within a cluster. It can be formally defined as

R =
Number Of Relevant Images Retrieved

Number of Total Relevant Images in Dataset
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Precision and recall provide measurements for determining the percentage

of clustered images that were correct(Precision) and the percentage of the total

relevant images that were clustered(Recall). These two values, however, trade off

against one another. Whenever the precision of a cluster is quite high, the recall

will generally be low and vice versa. It is difficult to know which of these two

measures are more important for the purposes of this work. A high precision is

desired, as inaccurate clusters will lead to noisy training sets and degrade the

performance of machine learning classification approaches. A machine learning

approach also requires a significant amount of data to create a robust model,

therefore a high recall is also desired.

One evaluation metric that trades off precision against recall is the F-Measure,

also called the F1 score [van Rijsbergen, 1979]. This is a weighted harmonic mean

of precision and recall and provides a balanced evaluation metric. The F-Measure

is formally defined as:

F =
1 + b2

b2

P
+

1

R

where b is a weighted value that determines the importance of precision and recall.

A value of b < 1 will emphasise importance on precision, where as a value of b > 1

will emphasise recall. In this work the value assigned to b is 1, which calculates

the harmonic mean of precision and recall. To determine the F-measure metric,

the following formula is used:

F1 =
2

1

P
+

1

R

=
2PR

P +R

Contextual-Based Clustering

The first hierarchical based approach evaluated consists of contextual information

only. Firstly, spatial based clustering was carried out at the top level of the tree,

followed by contextual based clustering using the textual features that accompany
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each image within the training collection using the methods outlined in section

4.3.2. For each of the chosen 250 seeds, all images within a spatial radius of 250

metres were clustered. At the second stage of the clustering pipeline, the textual

features associated with all images were pre-processed and evaluated using three

different metrics and a variety of thresholds. For each threshold, images were dis-

carded from the cluster if the metric distance was above the threshold. The results

of each cluster were then compared against the benchmark standard to ascertain

the usefulness of textual information in clustering community contributed image

collections.

As the 3 examined metrics measure correlation between sets of tokens, and 1

is the minimum score possible for all 3, a score of 1 will determines the minimum

correlation possible between cluster images (i.e. Any score below 1 indicates that

at least 1 match was calculated between the two sets of tokens, while any score of

1 determines that there was no match at all).

As can be seen from the results, one poor performance attribute from the

perspective of this work, is the precision score. With regards to recall, clustering

visually similar images based on tag similarities performs well for the purposes

required in this work. At the lowest possible threshold value of 1, however, the

highest recall score across all text based approaches is .42. This means that in

utilising the text based features as part of a clustering algorithm, over 50% of

all candidate images would be disregarded, irrespective of any threshold value

chosen.

It would seem evident based on the high proliferation of tags describing a

location, that in the absence of geo-tags, this contextual information could prove

useful in the initial clustering stages of an hierarchical algorithm. Based on the

results of Tables 4.2, 4.3 and 4.4, spatial information, provides a more accurate

and cheaper comparison method with a higher level of recall than that of text
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Threshold Value 0.6 0.7 0.8 0.9 1.0
Recall .117 .179 .210 .301 .420

Precision .085 .091 .067 .044 .028
F-Score .098 .120 .101 .076 .052

Table 4.2: Textual Based Clustering - Jaccard Distance

Threshold Value 0.6 0.7 0.8 0.9 1.0
Recall .210 .239 .301 .382 .420

Precision .067 .058 .044 .030 .028
F-Score .101 .093 .076 .055 .052

Table 4.3: Textual Based Clustering - Dice Coefficient Distance

Threshold Value 0.6 0.7 0.8 0.9 1.0
Recall .277 .322 .360 .406 .420

Precision .057 .045 .040 .031 .031
F-Score .094 .078 .072 .057 .057

Table 4.4: Textual Based Clustering - Overlap Distance

based data, therefore textual based features were not included in the optimal

HKM algorithm.

Single Low-Level Features

In this section, clustering was evaluated using solely one low-level image feature

at the second stage of the hierarchical clustering algorithm. Four low-level features

were evaluated; Colour Correlogram, Gabor Texture Feature (36 bin), MPEG7

Scalable Colour Feature and the MPEG7 Edge Histogram. Each feature was first

evaluated on its own as a second level in the hierarchical k-means tree, with the

first level being spatial based clustering as defined in section 4.3.1.

From the results in Tables 4.5 - 4.8 and Figure 4.8, it is evident that the best

performing low-level feature for the purposes of this work is the MPEG7 edge

histogram descriptor. The EHD provides a high precision score when using a low
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threshold value. Using the two strictest thresholds (15 and 20) the EHD provides

a F-score measurement of over .1. As expected, the colour features performed

poorly in comparison to the EHD. It is assumed that this is because of issues with

invariance to illumination changes. The scalable colour feature scored highly

with regards to precision when used with a strict threshold value, however the

corresponding recall score was very low and not sufficient enough for use in this

work. The Gabor wavelet feature also performed poorly, this may be because the

feature contains no geometrical information.

Based on these results, the MPEG7 feature was selected for use in other tasks

described in Chapter 5, however it was not selected to be used as part of a

clustering algorithm as it did not perform as well as more advanced image patch

features, presented in Table 4.13.

Fusion of Low-Level Features

In this section, an hierarchical approach consisting of three levels was analysed

and evaluated. This top level of the clustering tree consisted of spatial based

clustering. The next layer consisted of clustering based on a global low-level image

feature, followed by the final layer consisting of a second global low-level feature.

The aim is to ascertain whether combined with geographical clustering, which

already would have drastically reduced the feature space, if the combination of

multiple low-level features is sufficient enough to produce accurate groupings of

images. Four combinations of low-level features were evaluated.

• Spatial Colour + Texture

• Colour + Texture

• Colour + Edge
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Threshold Value 1.0 2.0 3.0 4.0 5.0
Recall .093 .222 .527 .819 .847

Precision .061 .058 .037 .026 .024
F-Score .074 .092 .069 .051 .048

Table 4.5: Spatial + Colour - Colour AutoCorrelogram

Threshold Value 10.0 20.0 30.0 40.0 50.0
Recall .020 .055 .123 .196 .296

Precision .060 .075 .071 .056 .045
F-Score .031 .064 .090 .087 .078

Table 4.6: Spatial + Colour - MPEG7 Scalable Colour Feature

Threshold Value 1.0 3.0 5.0 10.0 20.0
Recall .051 .124 .183 .270 .358

Precision .034 .037 .035 .030 .024
F-Score .041 .057 .059 .054 .045

Table 4.7: Spatial + Texture - Gabor Wavelets

Threshold Value 15 20 25 30 35
Recall .125 .429 .694 .796 .814

Precision .159 .057 .031 .025 .024
F-Score .140 .101 .060 .049 .048

Table 4.8: Spatial + Texture (Edge Based) - MPEG7 Edge Histogram

• Texture + Edge

The results of this evaluation can be seen in Tables 4.5 - 4.8. From these results, it

is evident that the combinations of low-level features actually degrade clustering

accuracy. In the best performing fusion approach (Texture + Edge), the F-Measure

score decreases by .006 when comparing against the score output by using the

edge based feature on its own. The main reason for degradation across all fusion

results is the poor performance of all low-level features excluding the MPEG7

edge histogram.
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Figure 4.8: An illustration displaying the results of four clustering runs compared
against the benchmark clustering results, using just one low level feature per run.
The results in the top diagram are the precision values and the bottom diagram
displays the recall values.

Overall, the fusion of low-level feature approaches performed poorly and this

approach was disregarded for the remainder of this work.

Fusion of Local Image Feature Clustering

In this section, a hierarchical clustering algorithm consisting of spatial data, VBOW

features and a graph based SURF correspondence measure was evaluated. In the

visual word stage of the algorithm, 4 different values for k were analysed where k
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Threshold Value .75 1.0 1.25 1.5 1.75
Recall .358 .368 .369 .369 .369

Precision .021 .021 .021 .021 .021
F-Score .040 .040 .040 .040 .040

Table 4.9: Spatial + Colour AutoCorrelogram + Gabor Texture

Threshold Value .75 1.0 1.25 1.5 1.75
Recall .145 .363 .629 .758 .804

Precision .124 .062 .035 .026 .025
F-Score .134 .107 .067 .051 .048

Table 4.10: Spatial + Colour AutoCorrelogram + Mpeg7 Edge Histogram

Threshold Value .75 1.0 1.25 1.5 1.75
Recall .128 .187 .284 .389 .389

Precision .042 .034 .027 .021 .021
F-Score .064 .058 .050 .039 .039

Table 4.11: Spatial + Colour AutoCorrelogram + Gabor Texture

Threshold Value .75 1.0 1.25 1.5 1.75
Recall .208 .344 .369 .369 .369

Precision .040 .023 .021 .021 .021
F-Score .068 .043 .040 .040 .040

Table 4.12: Spatial + Texture (Edge Based) - MPEG7 Edge Histogram + Gabor
Texture

determined how many ranked images to retain in each cluster before expensive

SURF based verification was carried out. These values were 50, 100, 150 and 200.

The results of this evaluation can be seen in Table 4.13.

From the results in Table 4.13, it is evident that the fusion of spatial data,

inverted visual word features and a graph based SURF verification process, per-

formed well. This approach achieved a F-Measure score above any of the other

evaluated methods, which is illustrated in Figure 4.9. The clustered images output

by this approach for a random test image are displayed in Figure 4.11.
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Top k Matches Threshold k =50 k =100 k =150 k =200
Precision .460 .462 .460 .451

Recall .323 .378 .398 .409
F-Score .380 .416 .427 .429

Table 4.13: Inverted Visual Words + SURF Geometric Consistency Matching

The performance of the approach increases as the value for k increases, how-

ever it must be noted that the processing time required also increases. In this

work, the clustering algorithm with highest evaluated value for k required on

average 51 seconds for each test cluster seed. While this was deemed acceptable

for the purposes of this work as the processing is carried out offline, it must be

taken into account when using a larger scale image corpus.

From informal empirical inspection, the algorithm seems to achieve the desired

aims. For each cluster, the majority of images seem to be relevant and share similar

viewpoints of a landmark. This is illustrated for a random test image in Figure

4.11.

Locality Sensitive Hashing

As described in section 4.4, locality Sensitive Hashing is an efficient method

to find approximate nearest neighbours in high dimensional space. In other

work, approaches have been proposed to populate LSH tables with interest

point descriptors and cluster imagery based on nearest neighbours, however

this method has a high memory footprint. Due to memory constraints, the input

features evaluated in this work were global-based features, visual BOW histogram

features with various vocabulary lengths.

When constructing the visual word histograms, 4 values for k were evaluated,

1000, 2500, 5000 and 10,000. Additionally, 4 values for C were also evaluated. The

results of this evaluation can be seen in Tables 4.14 - 4.17.
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From the results of the evaluation, it can be seen that the hierarchical approach

using spatial data, visual bag of words features and a graph based SURF corre-

spondence process, significantly outperforms the LSH based approach in terms

of a balance between precision and recall. The LSH algorithm achieves a higher

precision score when utilising a low value for C, however, using this parameter

reduces recall to .01. This is not a suitable level of recall for the purposes of this

work. Based on this result, it would appear that the locality sensitive hashing ap-

proach would perform well in a recognition task where a high level of precision is

desired. When using a value of C that achieves a better balance between precision

and recall, the f-measure score is well below that of the hierarchical approach.

This is illustrated in Figure 4.10.

Figure 4.9: An illustration comparing the F-Measure scores for all evaluated
clustering approaches
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Visual Vocabulary Size k =1000 k =2500 k =5000 k =10000
Precision .595 .475 .363 .420

Recall .018 .022 .031 .027
F-Score .034 .042 .040 .050

Table 4.14: Locality Sensitive Hashing (C = 16) - Global Visual BOW Features

Visual Vocabulary Size k =1000 k =2500 k =5000 k =10000
Precision .161 .142 .246 .113

Recall .083 .075 .046 .116
F-Score .109 .098 .077 .114

Table 4.15: Locality Sensitive Hashing (C = 25) - Global Visual BOW Features

Visual Vocabulary Size k =1000 k =2500 k =5000 k =10000
Precision .143 .143 .115 .207

Recall .085 .090 .093 .058
F-Score .106 .115 .102 .090

Table 4.16: Locality Sensitive Hashing (C = 45) - Global Visual BOW Features

Visual Vocabulary Size k =1000 k =2500 k =5000 k =10000
Precision .211 .150 .096 .120

Recall .055 .067 .136 .082
F-Score .087 .092 .112 .097

Table 4.17: Locality Sensitive Hashing (C = 60) - Global Visual BOW Features

4.6 Conclusions

In this chapter, several methodologies were proposed to solve the problem of ac-

curately clustering large numbers of community contributed images into visually

near identical clusters. All of the clustering approaches implemented used spatial

based clustering as the first stage in the clustering tree. The spatial clustering

allowed for the significant reduction of the corpus before more expensive image

comparison methods were processed. Without this spatial data, it is assumed that

the accuracy of the clustering algorithms would decrease due to the increased
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Figure 4.10: An illustration displaying the results of four clustering runs compared
against the benchmark clustering results, using just one low level feature per run.
The results in the top diagram are the precision values and the bottom diagram
displays the recall values.

size of the clustering space. The discrimination value of the image features used

in this chapter decreases as the size of the image corpus increases.

Text based features were evaluated and produced some encouraging results

but a limit on the recall score meant that they were not utilised. It is however

assumed that in a landmark recognition system where geographical information is

not available, text based features would perform well as a first stage in a clustering

algorithm.

Low-level image features were shown to perform poorly with the exception of

the EHD feature. The fusion of multiple low-level features surprisingly hindered

clustering performance. Overall, it has been shown that these features lack the

discrimination power to accurately cluster images into visually near identical

viewpoints of landmarks.

In the evaluation section 4.5.2, it has been shown that a hierarchical approach

based on VBOW features, followed by a graph based SURF correspondence

process, outperformed all other evaluated clustering algorithms. This approach

achieved an F-Measure score of .429 with a k parameter of 200. Through the
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use of spatial data and a first stage clustering process consisting of visual word

matching, the corpus was significantly reduced for each test cluster centre and

allowed for the clustering algorithm to process each test image in just over 44

seconds on average. This is a significant improvement over using a brute force

approach, such as that used in the benchmark, which required over 1 hour per

test image.

Based on the performance of this approach, it was selected to be used as the

clustering algorithm to group images in the training phase of the machine learning

models used at the core of the landmark recognition framework proposed in this

thesis.
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Figure 4.11: A visualisation of the top 12 ranked clustering results and the bottom
12 ranked results for a randomly selected cluster seed in the clustering evaluation
set. The total size of the cluster was 78. This clustering was based on the optimal
hierarchical k-means approach that was selected to use for the remainder of this
work. 134



Chapter 5

Landmark Recognition with

Computational Classification

Techniques

5.1 Introduction

In this chapter, the hypothesis that SVM classification models can be used as part

of robust methods to classify an individual landmark within an image is explored.

The chapter begins with some motivation behind this approach and a description

of the proposed framework. A background of machine learning is provided along

with a description of the two machine learning algorithms used in this work.

An introduction to each of the image features used in this framework is then

provided. The chapter concludes with an evaluation of all proposed approaches.

There are three main advantages to be gained from the use of classification

models over other approaches:

• Computational overhead: The amount of time taken to compare and classify

images in a large-scale database is significantly reduced. With efficient
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filtering methods, this classification could be done in near real time in large-

scale databases.

• Memory Requirements: This approach does not require that large amounts

of data need to be stored in heap memory at classification time, therefore,

there is no restriction on the maximum size of the image corpus.

• Robustness: Increased robustness is obtained by combining features ob-

tained under multiple imaging conditions into a single model view.

The main motivation behind this approach is that in the tourist districts of

many world cities, there tends to be a large proliferation of photos taken of

the landmarks situated in these districts. Traditional approaches to landmark

classification filter a dataset using geographical data and the carry out local image

feature matching on the pruned dataset [Qamra and Chang, 2008]. The problem

with this approach is that in the popular tourist areas of a city, there can be a very

large number of images in the filtered data (even with spatial filtering). A large

number of these images will overlap visually as tourists tend to take images of

the same viewpoints of landmarks from similar perspectives. The aim of this

approach is to take advantage of this overlap by creating a classification model

to recognise these clusters of visually similar images, thus significantly reducing

the time required to match a test image to a landmark or a certain viewpoint of a

landmark.

One advantage of using machine learning models is memory requirements.

One commonly used approach to landmark classification and retrieval is the

use of large visual bag of words vocabularies combined with inverted index files

[Philbin et al., 2007]. This work reported that this technique works very efficiently,

with typical queries to an image dataset numbering over one hundred thousand

images processed in just 100 milliseconds. They organise the inverted index into

what they describe as a ’space efficient binary-packed structure’. This structure
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is then loaded into the main memory of a system. The main problem with this

approach is that memory constraints become an issue once the image dataset is

scaled up. The memory required to store the inverted index of an image set of

just over one million images is 4.3 gigabytes. This is larger than the maximum

addressable memory that is available in a 32-bit machine.

Another approach to landmark classification is to organise local image fea-

tures into different types of tree structures (Kd-Tree, hierarchical tree) and match

test image features by proliferating them down the tree [Yan-Tao Zheng, 2009],

[Schindler et al., 2007]. These tree structures require significant building time and

must be rebuilt each time a classification system is re-run. The structure itself is

loaded into heap memory and is thus subject to memory constraints.

A single SIFT feature vector has a length of 128. Each entry within this vector

contains a float value, which is 4 bytes is size. This means that to store a single

SIFT feature requires 512 bytes of memory. The maximum addressable memory in

a 32-bit system is 4 gigabytes. Therefore, the maximum number of interest point

vectors (without additional information such as scale, indexing values or spatial

information) that can be stored in a vocabulary tree on a standard 32-bit machine

is around 8 million.

In the approach proposed in this chapter, the memory requirement is static.

Machine learning models can be stored in hard disk memory. The memory

footprint of each model is quite small, can be loaded into physical memory

quickly, and models do not have to be loaded into memory at runtime. The means

that the only limitation to the size of the dataset is hard disk space. This represents

a considerable advantage over many of the other approaches proposed in the

literature in terms of scalability.
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5.1.1 System Overview

In this section, a brief introduction into the process of classifying a test image using

machine learning algorithms is provided. The first stage of the system consists of

grouping the entire training corpus into clusters of near identical imagery. This

clustering process is described in Chapter 4. For a specific spatial region, all

clusters within that region are then input into a machine learning algorithm with

each cluster representing a class. A classification model is then trained for each

region consisting of these classes. For each model, a spatial location is assigned

to it based on the mean location of all images within the model. This process

is illustrated in Figure 5.1. All of these spatial coordinates are then saved into

a database. Each classification model is a multi-class classification model. This

is a model that does not make a binary decision, such as whether the image is

associated with a specific class or not, but rather outputs a nearest neighbour class

label from a finite number of classes used to train the model. This is illustrated in

Figure 5.2.

To classify a test image using the system, firstly, the location information

associated with that test image is firstly extracted. This information is used to

retrieve the nearest model from the system using the closest distance between

geographical coordinates. Image features from the test image are then extracted

and processed through the model. All images associated with the outputted

class/cluster from the machine learning algorithm are then analysed and ranked

according to the number of interest point correspondences (using the SURF

algorithm) between them and the test image. If the number of correspondences is

above a threshold of 3, an image is considered a match. This classification process

is illustrated in Figure 5.3.
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Throughout this chapter, all of the evaluated classification approaches are

based on algorithms that form part of a facet of computer science called machine

learning. In the next section, a brief introduction to this field is provided.

5.2 Machine Learning

Machine learning grew from early research in the field of artificial intelligence and

is now widely used in applications across many research fields, such as predicting

stock prices [Huang et al., 2005], classifying protein types from DNA sequences

[Ma et al., 2009] and classifying semantics from image content [Rafiee and Sarajian, 2008].

Machine learning was described by Arthur Samuel as ’The field of study that

gives computers the ability to learn without being explicitly programmed’. Ma-

chine learning methods are typically used in situations where there is no evident

solution for a programming problem, and instead a computer ’learns’ a desired

output from a training set of inputs.

Consider the problem of trying to program a computer to recognise a hand-

written character image. It is very difficult, if not impossible, to create a set of

programming instructions to recognise a character from an image. There will

be many discrepancies that arise from different people writing the same letter.

There will be deviations in size and shape and there is no way to predict and

describe how a letter will appear from person to person. However, there are

many examples of handwritten images of characters available, along with their

associated letter that they are meant to represent. One solution to this problem is

for the computer to classify the output based on a set of these labelled training

examples (This is the same method that children use to classify certain semantics,

learning by example. For example, Children will learn to recognise that a room

is untidy by being shown rooms in untidy states and being told that they are

untidy, rather than be given a strict definition of the word untidy). A collection
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Figure 5.1: An illustration of the SVM training process using a small set of data.
Images are clustered based on geographical location. These clusters are then
subclustered based on image content.
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Figure 5.2: A diagram illustrating how the multi-class SVMs are trained and spa-
tially organised. Here is an example from the centre of Paris where 8 multi-class
SVMs have been trained to recognise a number of landmarks from different view-
points at different spatial locations. The light red circles around each classification
model centre represent the spatial radii used to select clusters to include in the
model.
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Figure 5.3: An illustration of the process of classifying a test image using machine
learning classification models.

of positive and negative examples are collected and using learning algorithms, a

model is created to recognise input images with similar patterns to the positive

sample data. An input image is then compared against this model and a machine

learning algorithm will try to predict the similarity of the input image to the

sample images. Machine learning methods can be roughly divided into two main

types:
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• Supervised Learning Supervised learning is the process of creating a classi-

fier based on a set of inputs that is created by a human supervisor. Given

a set of inputs (x1, x2, x3...) and a set of desired outputs y1, y2, y3...., the aim

of a supervised learning algorithm is to produce the correct output when

given a new input. This process of classifying data that is not located in the

training examples is called generalisation.

There are three main types of supervised learning:

1. Binary Classification is when the outputs from a machine learning

algorithm will be binary. An input example belongs to a class or not.

An example of binary classification is face detection in images, where

the outputs are either true (image pattern was classified as containing

a face) or false (image pattern was classified as not containing a face).

2. Multi-class classification is where an output will be classified into one

of a finite number of classes. A training set of input features will contain

a number of different class labels and the classification algorithm will

output the label with the highest prediction score. In the case of SVMs,

a multi-class classifier is an extension to a binary classifier consisting of

n-1 binary SVMs where n is the number of class labels in the training

set.

3. Regression is where the desired output is not a member of a set class,

but rather a predicted value based on a set of statistical inputs. The

machine learning algorithm would learn the relationship between a

sample set of statistics and associated output values and then attempt

to predict an output value based on a similar set of statistical data.

One example of where regression is used is in the forecasting of stock

market prices [Ping-Feng and Chih-Sheng, 2005].
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• Unsupervised Learning In supervised learning, the process of a machine

learning algorithm is to make a prediction based on a set of inputs that

are provided by a ’supervisor’. In unsupervised learning the input data

is unorganised. The aim of unsupervised learning is to find structure or

similarity in the data, and without human supervision or the aid of a fitness

function, organise it into structured inputs. One method for this automatic

structuring of data is called clustering, which is described in Chapter 4.

Clustering involves grouping sets of data based on the distances between

features using a similarity measure. Several well known algorithms exist to

cluster data with the most commonly used being the K-Means algorithm

[MacQueen, 1967].

5.2.1 Anatomy of a Machine Learning Algorithm

In machine learning, there is typically a relationship between a set of input

features (x1, x2, x3...) and the outputs produced y1, y2, y3.... This relationship is

built on a target function, and it is this function that a machine learning algorithm

seeks to replicate. The actual estimate of this function that is produced by a

machine learning algorithm is called a decision function. This decision function

is selected from a set of possible functions which map the input features to the

produced outputs. This set of possible functions are known for historical reasons

as hypotheses. The algorithm that analyses the sets of input features and selects

a hypothesis function from the set of possible hypotheses is referred to as the

learning algorithm.

The ability of a machine learning algorithm to learn a training set without

error is defined as the capacity of the machine. An algorithm with a high capacity

would be able to learn a large number of input/output parings irrespective of

how they are labelled. A hypothesis that can learn a training set without large
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amounts of error is said to be consistent. An algorithm with a high capacity does

not necessarily mean that the algorithm will perform well. For example, if a

training set is noisy, there is no guarantee that the hypothesis will correctly map

the input/output function.

The aim of a learning algorithm is to classify feature vectors that are not

present within the training set. This is called generalisation. It is common that

many machine learning algorithms will be able to correctly learn the training

set, but may produce random predictions on any test data not in the training set.

This phenomenon is known as overfitting and can lead to poor generalisation

performance. Overfitting can commonly occur due to too much complexity in

the decision function. One approach to overcome overfitting issues is to ensure

that an algorithm’s capacity is kept low. If an hypothesis’ capacity is too low

however, many important patterns in the training set will be ignored. Therefore it

is important that the capacity of a hypothesis is kept balanced. Two commonly

used machine learning algorithms are used as part of this framework. In the next

section, a brief description to both of these algorithms is provided.

5.2.2 Commonly Used Machine Learning Algorithms

Nearest Neighbour Classification

One of the most basic classification methods is nearest neighbour (NN)classification,

which is a supervised learning technique, and although basic, it can be a very ef-

fective classification method. NN classification is based on the similarity between

an unlabelled sample feature and the closest feature to it in a labelled training set.

The label associated with this closest feature is then applied to the sample. The

distance between the sample feature and all features in the training set is usually

calculated using an established distance metric such as the Euclidean distance.

Although nearest neighbour classification can be accurate in certain cases, bas-
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ing classification on a single nearest neighbour can be particularly sensitive to

outliers in training sets. K-Nearest neighbour classification address this issue by

calculating the nearest class of features based on a number of nearest neighbours

in feature space. K-nearest neighbour (k-NN) classification is based on a majority

vote among the k closest neighbours in feature space, where k is a positive integer

value and all neighbours have a known class value associated with them.

The algorithm can be described as follows: Given a training collection of n

labelled image features T = v1, v2....., vn, and a k value of 1, the algorithm will

assign to a test image Itest, from which an image feature vtest is extracted, the label

associated with its closest neighbour in T based on a distance measure such as the

Euclidean distance or the Mahalanobis distance. If the value of k is higher than 1,

the test image Itest is classified as belonging to the label that has the majority vote

within the k nearest neighbours in T . The higher the value of k, the more robust

the classifier is to noisy data, but more processing time is involved in classification.

This issue is illustrated in Figure 5.4.

K-Nearest Neighbour classification is a simple model, but can often provide ac-

curate prediction results. Due to the simplicity of the model, there are drawbacks

however. The K-NN classifier is prone to errors, particularly with outlier features

and noisy data. Therefore, it is necessary to evaluate and select an optimal value

for k to avoid this. The other machine learning algorithm used in this work is

called Support Vector Machines (SVM).

5.2.3 Support Vector Machines

A SVM is a learning algorithm originally developed by Vapnik [Cortes and Vapnik, 1995]

that can perform input/output mappings from labelled examples and can choose

a balanced capacity for each decision function. SVMs have been widely used in
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Figure 5.4: A diagram illustrating K-NN classification on a sample two class
training set (class a = red, class b = blue). The value of k can play an important
part in the accuracy of the classification. The hyperplane H1 represents a decision
function that might be created using a linear classifier on this training set. From
this hyperplane, it is evident that X should be classified as belonging to class a. In
this toy example, if k is given a small value such as 1 or 3 (yellow circle), the test
feature (X) will be mis-classified due to two outliers from class b being near to the
test feature X in feature space. However if k is given a value of 5 (green circle) or
larger, the test feature will be correctly classified as belonging the class a.

many different research genres and are highly regarded for scaling well with high

dimensional data [Lin and Nevatia, 1998].

Applications of Support Vector Machines

In this work, SVMs were chosen as the machine learning algorithm for classifica-

tion tasks, mainly because SVMs have been applied recently to a variety of real

world problems. Of particular relevance in this work is that their performance

has compared favourably to other machine learning approaches in the field of
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image classification [Chapelle et al., 1999]. SVMs also scale well to high dimen-

sional data and allow for a fast classification process, even with the use of high

dimensional data.

Linear Classification

The main aim of an SVM is to seperate classes of data with the use of a hyperplane,

an example of which is displayed in Figure 5.5. The general equation for a

hyperplane H is

H = w · xi + b >= 1 where yi = +1

and

H = w · xi + b <= −1 where yi = −1

where x is an input point (a vector) lying on the hyperplane, w is a set of weights

(also a vector) and b is a constant. H1 andH2 are two hyperplanes, that are parellel

to H where

H1 = w · x+ b = 1

and

H2 = w · x+ b = −1

The points that lie along the hyperplanes H1 and H2 are the closest points to the

the hyperplane H and are called the support vectors. The support vectors are

the critical elements of the training set as they are the input features that would

influence the position of the dividing hyperplane decision if removed from the

dataset. Distance d+ is defined as the distance from H to the closest positive point,

while distance d− is defined as the distance from H to the closest negative point.

The margin of the separating hyperplane is defined as d− + d+. This margin can

be calculated as 2/||w||.
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Figure 5.5: An illustration of two hyperplanes (H1 and H2) separating two classes
containing two dimensional data. Hyperplane H1 separates the data with the
maximum margin. H2 separates the data, but not with the maximum margin.

The main aim of SVMs is to create a hyperplane with as large a margin as

possible, i.e. optimise w and b so that 2/||w|| is maximised, which is the equivalent

to minimising 1
2
||w||2. A maximum margin hyperplane ensures a higher certainty

level of correct classification, as points located near the decision plane represent

unpredictable classification decisions. A classifier with a maximum margin will

make much fewer of these low certainty decisions. This provides a slight margin

of error within the classification procedure. A noisy variable will not cause a

classification error.
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Non-Linear Classification

When classifying data, it is possible that the dataset will be linearly separable,

however, as the inputs become more complex, it is more likely that the datasets

will not be linearly separable. This is particularly the case when dealing with

large numbers of high dimensional image feature vectors. In most cases, even if

the data could be separated linearly, it would be desirable to be able to separate

the majority of the data while ignoring a small number of noisy input features

(outliers). This ensures that these features would not significantly affect overall

classification accuracy. Commonly a larger margin classifier can be created by

allowing the classifier to misclassify some of these noisy inputs. This type of

margin is called a soft margin classifier.

SVMs allow for soft margin classification with the use of slack variables,

which allow an input within the margin to be misclassified. These slack variable

constraints can be formally described as:

H = w · xi + b >= 1− ξi where yi = +1

and

H = w · xi + b <= −1 + ξi where yi = −1

where the value ξi is a measure of how much a particular variable violates the

original constraints. Any training feature with a value for ξi that is higher than 1

will be misclassified. Training features with a value of 0 > ξi < 1, will be classified

correctly, but will fall inside the margin. All other points in the model will have

the value ξi = 0.

In soft margin SVMs a variable Cis defined, which is a cost variable to discour-

age the use of slack variables ξi. If a large value is given to C, a large penalty is

assigned to errors. The selection of a relevant C parameter when training an SVM

model is then very important, as it instructs the decision function to prioritise
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either maximising the margin (in the case of a small value for C) or minimising the

amount of classification errors (in the case of a large value forC). The optimisation

problem can then be formulated as minimising 1
2
||w||2 + C

∑
i ξi

Kernel Functions

In many real-world applications, complex datasets might not be linearly separable

and will require more complex hypothesis than linear functions. One approach

to solve this problem is the use of multiple layers of linear functions, which in

turn lead to the creation of multi-layer neural networks. SVMs solve this problem

through the mapping of a feature vector into a different feature space using a

simple mathematical function based on the inner product values between feature

vectors.

In situations where complex data is not linearly separable, it might be possible

that a transformation of this data into a higher dimensional space could result in a

linearly separable model, where the linear based SVM approach described above

could then be applied. The function behind this transformation, or mapping to

a higher dimensional feature space is referred to in the literature as the kernel

function.

For the duration of this work, an SVM classification library called libSVM

[Chang and Lin, 2001] was utilised. There is no guarantee that a dataset will be

separable in a higher dimensional space, and for different tasks, different types

of mappings to different feature spaces will perform more accurately. For the

purposes of this work it is therefore important to evaluate which kernels will

perform best. In total, 4 kernel functions implemented in libSVM were analysed

to evaluate their classification performance with the Paris corpus. These functions

were:
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Linear Kernel

The most basic kernel evaluated was the linear kernel. A linear kernel fuction

relies on a dot product between two sets of high dimensional features. It can be

formally defined as:

K(x, y) = xTy

Polynomial Kernel

The polynomial kernel is a directional function which means the outputs depend

on the directionality of the original low-dimensional input vectors. Due to this

directionality dependence, it is assumed that the polynomial kernel might not

perform as well as other kernel functions in one versus all, classification, as

differences in directions of input vectors could mean that the data might not

converge. The kernel function is defined as:

K(x, y) = s(x · y + c)p

Radial Basis Function Kernel

Possibly the most commonly used SVM kernel function is the Radial Basis Func-

tion. This function takes a parameter called gamma (g) that defines the influence

of each support vector. A large gamma value will enable a support vector to have

a stronger influence over a larger area, which in turn can lead to a smaller number

of support vectors in each classifier. With stronger influence over larger areas,

fewer support vectors are required to define a boundary. In libSVM, a default

value of
1

n
is assigned to the gamma parameter, where n is the number of input

features in the model. In this work, optimal values for g were defined through

k-fold cross validation. The RBF kernel is formally defined as:

K(x, y) = exp(−g||x− y||2)
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Sigmoid Kernel

The Sigmoid kernel, also known as the Hyperbolic Tangent kernel, is borrowed

from another class of machine learning algorithms known as neural networks

(NN). In neural networks, the Sigmoid function is often used as an activation

function for neurons within a NN. An SVM classifier using the Sigmoid kernel is

the equivalent of a two layer perceptron neural network. The kernel is formally

defined as:

K(x, y) = tanh(kx · y − δ)

Parameter Validation

The majority of classification methods have one or more parameters that can be

tweaked to improve or hinder classification accuracy, such as the k parameter in

the k-NN classifier or the C value in SVMs that is associated with the cost applied

to outliers in a training set. One important challenge that needs to be addressed is

how to optimally select these free parameters to ensure a low generalisation error

and avoid overfitting. If there is access to a large number of example images, this

problem is trivial to solve. All examples can be processed through the classifier

with each of the possible parameters (or a subset of the parameters) assessed,

choosing the set with the highest classification rate or the lowest error rate. In

practice however, it is more likely that there will rarely be an excess of training

images and therefore an alternative method is desired.

One alternative approach to validating parameters is to extract examples

from the training set and create a model minus these examples. The removed

examples are then considered test images and classified by the model to ascertain

performance. This approach to parameter optimisation is called cross validation

and is used extensively in this work. Every classification model trained as part
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of this investigation has its parameters selected using a type of cross validation

called k-fold cross validation.

K-fold cross validation is a technique where the training set is randomly split

into k disjoint sub sets of equal sizes (n/k where n is the total size of the training

collection). A model is trained k times, with a separate sub set excluded each time

and used as a test set (therefore model consists of n−k training examples). Each of

these k test sets are then classified against the model and the overall performance

of that model is calculated as the mean accuracy of the k classification runs. In

this work, a value of 5 is chosen for k, which is empirically determined to provide

a reasonable balance between processing time required to train each model and

the accuracy of the validation.

5.2.4 Multi-Class Support Vector Machines

SVMs are fundamentally binary classifiers, which are classifiers that are used to

predict between two classes of data or whether an input belongs to a class or not

(e.g. positive or negative output). It is possible, however, to extend a support

vector machine to enable it to classify between multiple classes. These types of

SVMs are called multi-class SVMs.

One common implementation of a multi-class SVM is called the ’one versus

all’ method. This is a technique where k SVM models are trained, where k is equal

to the number of classes. The ith model is trained with all sample inputs that are

associated with the ith class, and all these inputs are labelled as positive. All other

sample inputs are labelled as negative.

The technique adopted in this work uses the ’one vs one’ method. This is an

approach where (k − 1) binary classifiers are trained for each class. The ith model

for each class is trained using negative inputs that are associated with the ith class.
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A test feature is then classified against all of these models and the optimal class is

defined using a voting approach.

5.2.5 Input Features for SVM Classification

As the number of interest points detected within an image using an algorithm

such as SURF is dependent upon the salience of each individual image and not

based on an algorithm parameter, the features are not considered static. As these

features are not static, they are not suitable for use as inputs in SVM classification.

SVM algorithms require that all input vectors are of identical length, and each

feature is in the same vector position for each input. It is therefore necessary

to quantise local features into a fixed length feature vector or to exploit global

features.

Low-Level Image Features

Many low-level image features are global and consist of feature vectors comprising

a fixed length, and are thus suitable as input features to classification models. The

main issue with using low-level features is that they might not discriminate well

enough to ensure a high degree of classification accuracy. Colour features will not

be suitable for use in this classification task, due to the fact that they are sensitive

to small illumination changes. Additionally, it might be necessary to classify a

black and white image, using this framework, which would make colour based

features redundant. Based on these considerations, the main features that were

experimented with were based on image texture (MPEG-7 Edge Histogram) and

local image features (SURF).
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MPEG7 Edge Histogram

In Chapter 4, the MPEG7 edge histogram feature was shown to outperform the

other low-level features analysed (Gabor Texture, Scalable Colour and Colour

Auto-Correlogram) as part of an image clustering process. Based on these re-

sults, the first input feature evaluated for use with the machine learning based

framework outlined in this chapter is the EHD (described in section 4.3.6).

Visual Bag Of Words

It is not possible to use interest point descriptor values as inputs into a machine

learning algorithm as the feature space is not static. Interest point features are de-

tected in salient regions of an image. Some images have more salient regions than

others, therefore, different numbers of features will be extracted from different

images. An approach is desired that will quantise all interest points within an

image into a fixed length, global descriptor, so that it is possible to use interest

point features with machine learning algorithms. One such approach is called

the visual bag of words model (VBOW). Bag of words (BOW) models have been

used in document classification successfully in the past [Lebanon et al., 2007]

[Metzler, 2008] [Torkkola, 2002]. A BOW model is a technique where a document

is represented as an unordered collection of words that are then used to classify

a document based on these representations. VBOW features are based upon the

same basic premise, however the bag of words is replaced by a bag of descriptions

of image patches. These image patches can be identified from a sample set of

images using a variety of approaches such as dense sampling, random sampling

or using an interest point detection algorithm, such as SURF. Descriptor vectors

are then processed for each of these image patches, usually using an established

algorithm such as SIFT or SURF. A collection of these descriptors is referred to as

a visual vocabulary or a codebook.
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Once a codebook is created, the VBOW approach provides an efficient method

to quantise large numbers of image descriptors. Each image is represented as

a bag of visual words that are created based on the presence of visually similar

image descriptions of salient regions in an image and contained within the visual

vocabulary [Tirilly et al., 2008].

There are several steps involved in creating a VBOW model:

• Local image feature descriptions are extracted from each image or from a

subset of images within the dataset.

• These image features are then quantised into a visual vocabulary using

a k-means clustering algorithm, with k being the vocabulary size of the

dictionary.

• Using this vocabulary, each image can then be represented by a global

histogram value that is calculated by comparing each image feature to every

feature in the dictionary and a vote is counted for the entry in the dictionary

that has the smallest distance from the image feature. The histogram forms

a vector where the number of possible words is the length of the feature

vector.

This VBOW model effectively quantises large numbers of local image features

into a single feature vector, while retaining a high level of discrimination which

is illustrated in Figure 5.6. A VBOW histogram is an orderless image feature, in

that the order of feature values is not determined in advance, and has little or

no impact of classification/matching accuracy. These histograms are considered

to be global image features as they represent all the content of an image. Due

to this global representation, there are several drawbacks to the visual BOW

model. There is no way to extract information solely about individual objects

(i.e. landmarks in this work) or shape information describing these objects. This
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means that the model could be capturing redundant data such as occluding

objects or background features, for example, that might not be desirable to be

matched. The process of extracting specific objects from an image is called object

segmentation and this is still an active research area. No standard approach is

known to work optimally for all objects, and therefore many approaches can often

be unreliable and inaccurate. One alternative approach to object segmentation

that has been suggested to overcome this object versus global representation, is

suggested in [Xiao et al., 2010]. This approach however, relies on a lot of data and

near duplicate images for each object/landmark to be available.

Even without this localised information, the VBOW model has been shown to

work well in not only identifying a scene, but also for the classification of whether

a specific object is present in a scene or not. Additionally, it could be argued

that the lack of spatial information in the feature, while lacking discrimination

ability in near duplicate image retrieval tasks, could add robustness to a model in

classification tasks.

Figure 5.6: An illustration of the process of calculating a visual word histogram
from a collection of sample images.
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Assignment of Visual Word Features

Traditionally in the VBOW model, image features are assigned to their closest

neighbour in the vocabulary, and only their closest neighbour. This assignment

process is referred to as ’hard assignment’ and can be formally defined as:

Hist(i) =
1

n

n∑
i=1


1, if i = argmin(Dist(v, pj)

0, otherwise

where n is the number of interest points extracted from an image, pj represents an

interest point j extracted from an image, and Dist(v, pj) represents the distance

between a vocabulary word i and an interest point j. This hard assignment

model has many disadvantages, in that for each input feature, its similarity is

only considered for the closest neighbour in feature space. This model disregards

all other features that could be also quite similar, and some of these might only be

marginally further away in feature space than the nearest neighbour. Clearly this

approach is not ideal as relevant information that can aid discrimination of each

feature is simply disregarded.

One method to address this shortcoming is to utilise an approach to feature

assignment based on the similarity of features to each vocabulary word, called

soft assignment, illustrated in Figure 5.7. This is where each input can be assigned

to k bins in a histogram, where k represents its nearest neighbours in feature space.

It is desirable to set the amount of the value assigned to each neighbour’s bin to

be directly proportional to how close the input feature is to each of its neighbours.

Several functions have been proposed and evaluated to calculate the propor-

tional value to be assigned to the k nearest neighbour bins [Viitaniemi and Laaksonen, 2009]

such as:

• The inverse Euclidean distance: ||vi − v||−1

• The squared inverse Euclidean distance: ||vi − v||−2
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• The exponential of Euclidean distance: exp(−αexp
||vi−v||
d0

• The Gaussian function: exp(−αg
||vi − v||2

d20
)

where d0 is defined as the average distance between two neighbouring vo-

cabulary features. Viitaniemi and Laaksonen [Viitaniemi and Laaksonen, 2009]

analysed the effectiveness of this assignment functions in an object classification

task using the PASCAL(VOC) 2007 collection of images. They showed that the soft

assignment of visual word features to histograms outperformed hard assignment

in every category of experiments that they carried out. In similar experiments,

Van Gemert et al. [van Gemert et al., 2010] also showed that soft assignment sig-

nificantly outperformed hard assignment for object classification. Also, what is

evident from these experiments is that there are minimal performance differences

between the four assignment functions that they tested.

Based on the work of [Viitaniemi and Laaksonen, 2009], among others, a soft

assignment visual word approach was implemented and analysed for the pur-

poses of landmark classification. In this work, a ranking based soft histogram

assignment function is used. This is mainly due to the fact that this ranking

function is quite quick to compute and performs favourably along with some of

the more complex assignment functions. This ranking based feature essentially

calculates the proportionality of the score assigned to the k nearest neighbour

bins, by using the position of each bin in a ranked list (of length k) of nearest

neighbours to designate the score. This ranking based function can be formally

defined as:

Hist(k)+ =
1

2i − 1

where i is the position of the bin k in the ranked list of nearest neighbours.
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Figure 5.7: An illustration outlining the advantages of the soft assignment of
visual word features. This diagram presents a hypothetical partition of a visual
word vocabulary containing 5 visual word features A-E, and four feature points
to be assigned to a visual word cluster center, P1-P4. It can be clearly seen that
points P1, P2 and P3 are quite close together in feature space, however, using a
hard assignment approach would not take into account the similarity between
these features and they would never be matched. P1 would only be associated
with the visual word B, while points P2 and P3 would only be associated with the
visual words A and E respectively. Using hard assignment, the only point to be
matched to P1 would in fact be P4, even though P2 and P3 are closer in feature
space. Using soft assignment, the points P1, P2 and P3 would be assigned to each
the visual words A, B and E, albeit, with different weights which are calculated
based on the distance from the visual words. This would allow these features to
be matched as they are closer in feature space.

Spatial Pyramid Features

VBOW features have been used in the computer vision community for a wide

variety of image classification tasks. These features provide an indication of the

presence of image patches that are visually similar to their nearest neighbours

within the BOW codebook. However, VBOW histograms are not ordered, and

more importantly there is no spatial information provided about how the features

relate to each other geometrically. A technique is desired that will retain some
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information about the spatial layout of visual words. One approach that has been

suggested to address the shortcomings of standard visual word features is the use

of spatial pyramids .

A spatial pyramid is a feature structure that augments the traditional visual

BOW histogram with additional geometrical information. The spatial pyramid

is a tree-like structure where the image is partitioned into smaller sub-images

using block based segmentation (described in section 4.3.6) at each level of the

tree. Each of these sub-images represent finer and finer spatial regions as one

traverses down the the tree. The feature is the concatenated histograms from each

spatial region at each level of the tree. This is illustrated in Figure 5.8.

While the use of spatial information can be advantageous in many situations,

there are also many drawbacks with incorporating spatial information into the

BOW model. The main disadvantage is the memory overheads that accompany a

much larger feature vector. If the spatial pyramid has 3 levels with a division of 1

× (2 × 2) × (4 × 4), this will create a feature vector with a length of k × 1 × (2 × 2)

× (4 × 4), where k is the size of the vocabulary being used. The extra complexity

involved with feature vectors of this length can also be immense. Although

the process of training SVM models happens offline, the additional complexity

involved with spatial pyramids, particularly when using a large value of k, can

mean that the training process of each model can take hours, or even days in the

case of large models. While offline processing complexity is not as important as the

classification or matching processes in an image retrieval/matching framework,

the extra processing time involved with spatial pyramids must be considered in

any large scale SVM model based system.

Another potential issue is that candidate images could be misclassified if they

do not adhere to the spatial constraints of a model. Additionally, the spatial

pyramids used in this work (similarly to the other block based segmentation

feature used in this section - MPEG7 Edge Histogram), are rotation invariant.
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Figure 5.8: An illustration of the process of calculating a spatial pyramid feature
vector with a 3 levels and a visual word vocabulary size of 4.
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This addition of a weak geometric consistency check could potentially effect the

robustness of a classifier.

5.3 Landmark Classification with Supervised Clustered

Imagery

The evaluation section at the end of this chapter measures the performance of the

machine learning framework (described in section 5.1), however, the evaluation

only measures the final outputs of the system. These outputs will be the results of a

SURF correspondence process after being processed through the machine learning

algorithm. While the final outputs provide a good indication of the accuracy the

machine learning methods, there is no specific evaluation to ascertain the exact

classification accuracy from the SVMs. In this section, the aim is to evaluate a

set of classification models to ascertain a precise measure of how accurately this

approach can classify an image of a landmark.

In this work, the aim is to classify between a potentially very high number of

instances of a small number of object classes. This task brings with it significant

challenges. It is not known in advance how well SVM models would be able to

discriminate between these different instances of landmarks which are members

of the same class. In this section, experiments were carried out to evaluate how

well a machine learning algorithm can distinguish between groups of landmark

images. It was infeasible to manually cluster the entire image corpus into clusters,

therefore, a manual clustering process was carried out on a different dataset from

the main Paris corpus. As this manual clustering was carried out by a human

annotator, it is expected that it would produce optimal results. Additionally, in

this section, it was desired to discern the effects that affine variation might have

on the classification of landmarks using machine learning techniques. This will
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help to select optimal parameters to use in the clustering phase that is necessary

to create the training data for the machine learning framework.

A new dataset of images was collected for this purpose. This dataset consisted

of a large collection of some of the most commonly photographed landmarks in

the world (see list below). This dataset was created as it would not be feasible

to manually trawl through the Paris corpus and to cluster images manually into

viewpoint clusters, as the dataset is very large. Additionally, it is intended to

analyse the effects of affine transformations between instances of images within

the same class, and this requires a large amount of data for each landmark, and

it is desired to determine how this will perform for a range of visually different

landmarks.

One of the big advantages of creating a new dataset consisting solely of very

well known landmarks is that they can be searched for efficiently online, for

example by using the Flickr API using the landmark name as the query text. The

hit-ratio of candidate images within this returned set could be quite high, as

images returned have a high probability of being relevant to the query. Addi-

tionally the advantage of using a dataset consisting of commonly photographed

landmarks is that there are a large number of images for each landmark available

from Flickr.

A collection of images was collected representing 42 of the most commonly

photographed landmarks in the world. For each of these landmarks, 100 near-

identical training images was gathered, along with 10 testing images containing

the landmark from the same viewpoint. Each of the training and testing images

were photographed at similar viewpoints (in the human observers estimation, all

were photographed within an affine variation of 45 degrees) These landmarks

were selected specifically to represent a diverse range of different types of land-

marks, such as churches, bridges, buildings and statues. The 42 landmarks
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selected were:

Arc De Triomphe Astroclock (Prague) Atominum (Brussels)

Ayers Rock St Basil’s Cathedral Brandenburg Gate

Buckingham Palace Christ the Redeemer Colloseum

Dome, Reichstag Building Golden Gate Bridge Golden Temple (Kyoto)

Hagia Sofia Helsinki Cathedral Il Duomo (Florence)

Il Duomo (indoor) Kiyumizu (Kyoto) Louvre Pyramid

Lincoln Monument Machu Picchu Notre Dame Cathedral

Neuschwanstein Castle Osaka Castle Parthenon (Athens)

Petronas Towers Leaning Tower (Pisa) Ponte Vecchio

Prague Castle Reichstag Building Rialto Bridge (front)

Rialto Bridge (side) Sacre Coeur Cathedral Santa Maria Novella

Arc De Triomphe Astroclock (Prague) Atominum (Brussels)

Statue of David Statue of David (Outdoor) Statue of Liberty

Stonehenge Taj Mahal Tower Bridge

Trevi Fountain Westminster (Palace)

A binary SVM model was trained for each landmark. VBOW features were

evaluated using 4 values for k: 256, 512, 1024 and 2048. Each SVM was trained

using a one versus all scheme, which is a training method where features from

all the class samples are used as positive inputs, while features from all other

classes are used as negative inputs. To evaluate the accuracy of machine models

using optimally clustered image data, each test image was processed through its

associated SVM model. The results of this evaluation can be seen in Figures 5.9,

5.10, 5.11 and 5.12.

From these results, it can be seen that the majority of landmarks can be classi-

fied with a high degree of accuracy. Using the highest performing vocabulary size,

all classification models achieved an accuracy of over 70%. This clearly demon-
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strates that SVMs can be successfully trained to recognise landmark images from

a training collection of visually similar images.

5.3.1 Measuring the Effects of Viewpoint Variation

It is important to know how large variations in viewpoint will effect the classi-

fication accuracy of SVMs. This information will allow for optimal parameters

to be selected in a clustering stage to create sets of training data. More accurate

data should ensure a higher classification accuracy. It is desired to discern when

training classification models, whether training sets with smaller numbers of near-

identical images outperform larger training sets taken from a large variation of

viewpoints. In this section, a subset of the 42 landmarks used above was selected

to evaluate the effects that large amounts of affine variation in the training collec-

tions might have on the accuracy of a classification model. This subset consisted

of 10 landmarks. For each landmark two sets of training data were created. The

first set consisted of training images that were photographed from a large variety

of viewpoints and had a large affine variation. The second set consisted of a group

of training images that were all photographed from a similar viewpoint and had

a small amount of affine variance. Two sets of test images were collected for each

landmark in a similar manner. One test set had a large amount of affine variance

and the other contained images taken from the same viewpoint as the second

training collection. For each landmark two SVM models were trained using the

training data and the test collections were processed through their associated

SVM. The results of this experiment are presented in Figures 5.13 and 5.14. From

these results, it is evident that there was a large decrease in classification accuracy

when using a training set containing large affine variation over the set with a

small affine variance.
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Figure 5.9: Single Viewpoint Classification. A diagram illustrating the classifica-
tion results of the 42 landmarks using a visual vocabulary size of 256.

Figure 5.10: Single Viewpoint Classification. A diagram illustrating the classifi-
cation results of the 42 landmarks using a visual vocabulary size of 512.
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Figure 5.11: Single Viewpoint Classification. A diagram illustrating the classifi-
cation results of the 42 landmarks using a visual vocabulary size of 1024.

Figure 5.12: Single Viewpoint Classification. A diagram illustrating the classifi-
cation results of the 42 landmarks using a visual vocabulary size of 2048.
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Figure 5.13: An illustration of results from the multi-view classification experi-
ments. The training images in these experiments differed greatly, and contained
the associated landmark from a wide variety of angles and viewpoints.

Figure 5.14: A comparison of the percentage of images classified correctly using
single viewpoint SVMs versus multiple viewpoint SVMs for 10 landmarks.
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5.4 SVM Evaluation

The aim of the framework presented in this thesis is to provide the means to

create a memory efficient near real-time landmark classification system. The main

focus of evaluating its performance rests with the precision of the framework as

opposed to the recall values. While recall is important, particularly in relation

to accurate caption and tag selection. In this work, it is viewed as a secondary

benefit. It is believed that users of a image classification system would appreciate

faster recognition with a small number of accurate results than slower recognition

times for a higher number of relevant results, and the framework is designed for

this objective.

Based on this belief, the main evaluation objective is to measure the precision

of classification results returned by the system. These precision values are created

when compared against a benchmark approach, similar to the evaluation approach

adopted in Chapter 4.

To create the benchmark, the test collection of 1000 images (described in section

3.2.4) were processed using the benchmark approach described in section 4.5.1.

All of the machine learning approaches implemented in this chapter are then

evaluated against this benchmark.

The evaluation metrics adopted are:

• Precision (Average) - Precision is defined as the number of relevant images

matched divided by the total number of images matched. It is desired to

ascertain how accurately each approach performs therefore to calculate the

precision metric the average precision value is calculated only using the test

images where at least one image was retrieved from the corpus as a match,

while all images that had zero matches were disregarded.

• Image Recall - The image recall measure is defined as the normalised per-

centage of the images within the test set, where at least 3 correct matched
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images were returned. Traditional recall metrics measure the percentage

of relevant images that are retrieved, however, in this work the aim is not

to achieve a high recall, the aim to achieve a high precision across as many

query images as possible. The number of images successfully matched is

deemed to be more important than the number of relevant images retrieved

for each image, therefore, it was believed that a metric measuring the per-

centage of successfully matched test images was a more relevant in this

work.

• Image Recall (Relevant) - For some of the images in the test collection, the

benchmark classification process was unable to retrieve a relevant image for

them. This could be down to inaccurate geographical data, there was no

match for the image with the corpus, or failure of the benchmark approach to

recognise them. The image recall (relevant) score is calculated based on the

total number of images that at least 3 correct image matches were retrieved

for, from only the images within the dataset that had results returned, using

the benchmark approach.

• Precision Top 3 - Precision(3) - The Precision(3) ranking calculates the aver-

age precision score for only the top 3 ranked images for each test image.

• Precision Top 5 - Precision(5) - The Precision(5) ranking calculates the aver-

age precision score for the top 5 ranked images only for each test image.

• Precision Top 10 - Precision(10) - The Precision(10) ranking calculates the

average precision score for only the top 10 ranked images for each test

image.

• Recall - As described in Chapter 4, recall is a measure of the percentage

of the total relevant images within the dataset that were returned for each

query image. In this work, recall is not deemed as important as precision,
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as it is more important to return a small number of accurate images, rather

than a larger number of images with a low precision. Therefore, recall is

only considered as a secondary metric, as the main aim of this work is to

achieve a high precision score, particularly in the top percentiles of the

returned ranked results, i.e. Precision (3). It is expected that the recall score

will be quite low for each query image, as during the clustering process a

significant proportion of relevant images will be disregarded. Additionally,

as these classification models only represent the commonly photographed

landmarks within the training corpus, a large number of the test collection

will not be classified by this approach.

• Classification Time - As it is envisaged that this framework could be imple-

mented to achieve real-time recognition of landmarks, the required time to

process an image is an important attribute to evaluate for each approach.

The classification time is defined as the mean number of milliseconds that it

required to process all test images. All experiments in this work were carried

out on a desktop machine running Windows 7, with an Intel Core 2 Duo,

2.4 GHz chipset and 2 GB of ram. All algorithms were implemented in the

Java programming language. Since Java code is converted to bytecode and

executed in a runtime environment, it must be noted that these approaches

could be further optimized and running times reduced if implemented in a

compiled language such as C.

5.4.1 Global Low Level Image Features

Due to the sensitivity of colour features to illumination changes, and the inapplica-

bility of shape based low-level features for the purposes of recognising landmark

objects within images, it was decided that texture based features might perform

the most reliably out of all types of low-level image features. In this section,
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SVM Kernel Linear Polynomial Radial Basis Function Sigmoid
Precision(Overall) 0.434 0.452 0.395 0.452

Image Recall .356 .349 .352 .349
Image Recall (Relevant) .429 .421 .425 .421

Precision(3) 0.602 0.619 0.588 0.618
Precision(5) 0.434 0.452 0.412 0.518

Precision(10) 0.434 0.452 .0.403 0.518
Recall .011 .013 .011 .003

Classification Time (ms) 2575 2665 2691 2701

Table 5.1: Classification results: MPEG7 Edge Histogram

Number of Neighbours k = 1 k = 5 k = 9 k = 15
Precision(Overall) 0.709 0.693 0.698 0.703

Image Recall .313 .341 .349 .352
Image Recall (Relevant) .378 .411 .421 .425

Precision(3) 0.866 0.857 0.862 0.870
Precision(5) 0.832 0.819 0.826 0.827

Precision(10) 0.774 0.761 0.768 0.771
Recall .074 .070 .068 .070

Classification Time (ms) 2575 2665 2691 2356

Table 5.2: k-NN Classification results: MPEG7 Edge Histogram

experiments were carried out using a texture based feature as an input into classi-

fication models. The feature evaluated was the MPEG7 Edge Histogram feature

which is described in section 4.3.6.

As expected the low-level feature based approach performed poorly when

using SVM models. A large number of images were classified using this approach,

however, the precision scores were low. It was found that if combining low-level

features with a k-NN classifier, the results were above the average of all evaluated

approaches. It is assumed that the nearest neighbours in feature space were quite

close visually, and therefore, using a small value for k in the k-NN classifier,

allows for these images to be classified correctly.
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5.4.2 Visual Bag of Word Histograms

In this section, the machine learning classification system was evaluated using

VBOW histograms with hard assignment as the input features. Three values were

evaluated for k; 1024, 2048 and 4096. Two machine learning algorithms were

evaluated for each of these values, SVMs and K-NN. The results of this evaluation

can be seen in Tables 5.5 - 5.10.

Of all of the approaches evaluated, the VBOW hard assignment performed

with the highest level of classification precision and additionally has the highest

image recall scores. This is illustrated in Figure 5.15. Based on the results in Table

5.7, it can be seen that 399 images of the test collection were successfully classified

using this method.

The training data used to create the classification models contained a lot of

near duplicate images. This meant that as opposed to solving a scene classification

task, effectively by the nature of the clustered data, the problem being solved here

was an specific object recognition task, with little visual variation between training

images. It is therefore logical that a straightforward measure of the distribution

of visually similar image patches would outperform a noisier feature such as

that provided by VBOW with soft assignment. Although, it is expected that soft

assignment would outperform hard assignment in a scene classification task.

From analysing the results in Tables 5.5 - 5.10 it can be seen that the hard

assignment visual word features not only achieve a higher precision(3) score but

higher precision scores as the lower ranking matches are measured. This would

indicate that the algorithms using these features are selecting the optimal class

from the multi-class model on more occasions than other features.
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SVM Kernel Linear Polynomial Radial Basis Function Sigmoid
Precision(Overall) 0.688 0.651 0.695 0.685

Image Recall .363 .333 .405 .395
Image Recall (Relevant) .438 .402 .489 .477

Precision(3) 0.855 0.849 0.860 0.853
Precision(5) 0.815 0.808 0.824 0.814

Precision(10) 0.757 0.737 0.769 0.757
Recall .060 .053 .068 .066

Classification Time (ms) 2990 3372 2899 2980

Table 5.3: SVM Classification results: Visual BOW (k = 1024)

SVM Kernel Linear Polynomial Radial Basis Function Sigmoid
Precision(Overall) 0.678 .651 0.688 0.688

Image Recall .356 .333 .396 .399
Image Recall (Relevant) .429 .402 .478 .481

Precision(3) 0.841 0.849 0.861 0.868
Precision(5) 0.792 0.808 0.823 0.826

Precision(10) 0.729 0.737 0.763 0.762
Recall .061 .053 .068 .066

Classification Time (ms) 3102 3542 3029 3212

Table 5.4: SVM Classification results: Visual BOW (k = 2048)

SVM Kernel Linear Polynomial Radial Basis Function Sigmoid
Precision(Overall) 0.709 0.651 0.712 0.696

Image Recall .397 .333 .399 .398
Image Recall (Relevant) .479 .402 .481 .480

Precision(3) 0.871 0.849 0.873 0.868
Precision(5) 0.838 0.808 0.841 0.831

Precision(10) 0.776 0.737 .0.777 0.766
Recall .071 .053 .069 .071

Classification Time (ms) 3470 3934 3508 3656

Table 5.5: SVM Classification results: Visual BOW (k = 4096)
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Number of Neighbours k = 1 k = 5 k = 9 k = 15
Precision(Overall) 0.709 0.702 0.698 0.694

Image Recall .356 .349 .352 .349
Image Recall (Relevant) .429 .421 .425 .421

Precision(3) 0.866 0.868 0.860 0.860
Precision(5) 0.830 0.834 0.828 0.823

Precision(10) 0.774 0.775 .0.771 0.765
Recall .074 .079 .076 .081

Classification Time (ms) 2575 2665 2691 2701

Table 5.6: k-NN Classification results: Visual BOW (k = 1024)

Number of Neighbours k = 1 k = 5 k = 9 k = 15
Precision(Overall) 0.718 0.710 0.705 0.705

Image Recall .434 .331 .359 .368
Image Recall (Relevant) .429 .421 .433 .444

Precision(3) 0.876 0.871 0.873 0.871
Precision(5) 0.835 0.838 0.838 0.835

Precision(10) 0.775 0.776 0.775 0.773
Recall .066 .074 .075 .074

Classification Time (ms) 2657 2719 2800 2868

Table 5.7: k-NN Classification results: Visual BOW (k = 2048)

Number of Neighbours k = 1 k = 5 k = 9 k = 15
Precision(Overall) 0.697 0.706 0.707 0.699

Image Recall .352 .356 .360 .359
Image Recall (Relevant) .425 .429 .434 .433

Precision(3) 0.860 0.868 0.871 0.870
Precision(5) 0.827 0.840 0.840 0.838

Precision(10) 0.768 0.778 0.776 0.775
Recall .079 .078 .077 .079

Classification Time (ms) 2781 2939 3001 3078

Table 5.8: k-NN Classification results: Visual BOW (k = 4096)
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5.4.3 Visual Bag of Word Histograms with Soft Assignment

In this section, the SVM classification system was evaluated using VBOW his-

tograms with soft assignment as the input features. Three values were evaluated

for k: 1024, 2048 and 4096. Two machine learning algorithms were evaluated for

each of these values. The results of this evaluation are presented in Tables 5.5 -

5.10.

From the results of this evaluation, it has been found that the soft assign-

ment method does not perform as well as using the standard hard assignment

method when creating VBOW histograms. The only soft assignment approach

that achieved acceptable precision and image recall scores was when using a

vocabulary size of 4096. At smaller sizes, the feature seemed only to be able to

separate very dominant clusters in the dataset. When using the values of 1024 and

2048 for k, the system seems to classify a similar number of images as when using

the spatial pyramid features described in Tables 5.15 - 5.17. This would suggest

that when using classification models trained on noisy features, that the algorithm

fails to partition the dataset effectively and only dominant image clusters are

recognised correctly.

5.4.4 Spatial Pyramid

In this section the machine learning classification system was evaluated using

spatial pyramid features as the inputs to the classification algorithms. Three sizes

were evaluated for k: 128, 256 and 512. The pyramid feature evaluated in this

work consisted of 3 levels with a block segmentation of 1 × (2 × 2) × (4 × 4). This

consisted of feature vector lengths of 2688, 5376 and 10,572. The large size of these

178



SVM Kernel Linear Polynomial Radial Basis Function Sigmoid
Precision(Overall) 0.694 0.694 0.694 0.694

Image Recall .235 .229 .233 .233
Image Recall (Relevant) .283 .276 .281 .281

Precision(3) 0.849 0.855 0.854 854
Precision(5) 0.808 0.812 0.810 810

Precision(10) 0.746 0.746 .0.746 0.746
Recall .047 .047 .046 .046

Classification Time (ms) 2950 3372 2899 2980

Table 5.9: SVM Classification results (Soft Assignment): Visual BOW (k = 1024)

SVM Kernel Linear Polynomial Radial Basis Function Sigmoid
Precision(Overall) 0.692 0.694 0.694 0.694

Image Recall .235 .229 .233 .233
Image Recall (Relevant) .283 .276 .281 .281

Precision(3) 0.848 0.855 0.854 0.854
Precision(5) 0.807 0.812 0.810 0.810

Precision(10) 0.744 0.746 .0.746 0.746
Recall .047 .047 .046 .046

Classification Time (ms) 3550 3542 3029 3212

Table 5.10: SVM Classification results (Soft Assignment): Visual BOW (k = 2048)

SVM Kernel Linear Polynomial Radial Basis Function Sigmoid
Precision(Overall) 0.697 0.673 0.684 0.682

Image Recall .369 .301 .357 .355
Image Recall (Relevant) .445 .363 .431 .428

Precision(3) 0.861 0.855 0.858 0.832
Precision(5) 0.825 0.820 0.821 0.802

Precision(10) 0.766 0.754 0.760 0.744
Recall .072 .056 .064 .186

Classification Time (ms) 3470 3934 3508 3656

Table 5.11: SVM Classification results (Soft Assignment): Visual BOW (k = 4096)
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Number of Neighbours k = 1 k = 5 k = 9 k = 15
Precision(Overall) 0.687 0.687 0.687 0.687

Image Recall .244 .244 .244 .244
Image Recall (Relevant) .294 .294 .294 .294

Precision(3) 0.877 0.877 0.877 0.877
Precision(5) 0.829 0.829 0.829 0.829

Precision(10) 0.754 0.754 .0.754 0.754
Recall .049 .049 .049 .049

Classification Time (ms) 2203 2129 2127 2126

Table 5.12: k-NN Classification results (Soft Assignment): Visual BOW (k = 1024)

Number of Neighbours k = 1 k = 5 k = 9 k = 15
Precision(Overall) 0.687 0.687 0.687 0.687

Image Recall .244 .244 .244 .244
Image Recall (Relevant) .294 .294 .294 .294

Precision(3) 0.877 0.877 0.877 0.877
Precision(5) 0.829 0.829 0.829 0.829

Precision(10) 0.754 0.754 .0.754 0.754
Recall .049 .049 .049 .049

Classification Time (ms) 2284 2274 2279 2273

Table 5.13: k-NN Classification results (Soft Assignment): Visual BOW (k = 2048)

Number of Neighbours k = 1 k = 5 k = 9 k = 15
Precision(Overall) 0.687 0.687 0.687 0.687

Image Recall .244 .244 .244 .244
Image Recall (Relevant) .294 .294 .294 .294

Precision(3) 0.877 0.877 0.877 0.877
Precision(5) 0.829 0.829 0.829 0.829

Precision(10) 0.754 0.754 .0.754 0.754
Recall .049 .049 .049 .049

Classification Time (ms) 2566 2544 2551 2536

Table 5.14: k-NN Classification results (Soft Assignment): Visual BOW (k = 4096)
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feature vector lengths meant that it required significant processing time to train

a set of models using the SVM algorithm. For example, to train a set of models

using the RBF kernel with a vocabulary size of 512 required over 220 hours of

computing time.

The results in Tables 5.15 - 5.20 suggest that the spatial pyramid features are

not suitable to this type of classification. The features are too sparse to be suitable

for training machine learning models. A large proportion of the feature vector

will remain empty, particularly in the finer segmented regions. A smaller number

of interest point features will be detected the smaller the size of the region being

analysed. Additionally, many regions within an image might not be very salient

and will produce very few interest point features. This is less of an issue when

calculating a global based feature such as a VBOW, as it is expected there will be

a high distribution of visual word features across an entire image.

The Spatial pyramid features all performed identically for each evaluated

classification algorithm, regardless of vocabulary size or classification parameters.

Results from Tables 5.15 - 5.17 would suggest that for 226 test images, the correct

image class is quite dominant in the feature space of the nearest SVM model.

Classification using this feature only works well with these images and performs

very poorly for all other classes that are less dominant. Using the feature, the

machine learning algorithm is unable to separate the data accurately. Tables 5.18

- 5.20 would also support this theory, as similar results are recorded. Using the

k-NN classifier, it would appear that for 244 test images, the correct image class is

quite dominant in the feature space of the nearest k-NN model.

Overall, the spatial pyramid features performed poorly. A high precision was

recorded for images that were classified using the feature, however, only a small

number of images were recognised, most likely the test images that would be

expected to be classified correctly due to large representation in the training sets.
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SVM Kernel Linear Polynomial Radial Basis Function Sigmoid
Precision(Overall) 0.704 0.704 0.704 0.704

Image Recall .226 .226 .226 .226
Image Recall (Relevant) .272 .272 .272 .272

Precision(3) 0.858 0.858 0.858 0.858
Precision(5) 0.814 0.814 0.814 0.814

Precision(10) 0.750 0.750 .0.750 0.750
Recall .047 .047 .047 .047

Classification Time (ms) 2118 2292 2348 2408

Table 5.15: SVM Classification results : Spatial Pyramid (k = 128)

SVM Kernel Linear Polynomial Radial Basis Function Sigmoid
Precision(Overall) 0.704 0.704 0.704 0.704

Image Recall .226 .226 .226 .226
Image Recall (Relevant) .272 .272 .272 .272

Precision(3) 0.858 0.858 0.858 0.858
Precision(5) 0.814 0.814 0.814 0.814

Precision(10) 0.750 0.750 .0.750 0.750
Recall .047 .047 .047 .047

Classification Time (ms) 2588 2584 2589 2583

Table 5.16: SVM Classification results: Spatial Pyramid (k = 256)

SVM Kernel Linear Polynomial Radial Basis Function Sigmoid
Precision(Overall) 0.704 0.704 0.704 0.704

Image Recall .226 .226 .226 .226
Image Recall (Relevant) .272 .272 .272 .272

Precision(3) 0.858 0.858 0.858 0.858
Precision(5) 0.814 0.814 0.814 0.814

Precision(10) 0.750 0.750 .0.750 0.750
Recall .047 .047 .047 .047

Classification Time (ms) 3213 3202 3201 3185

Table 5.17: SVM Classification results : Spatial Pyramid (k = 512)
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Number of Neighbours k = 1 k = 5 k = 9 k = 15
Precision(Overall) 0.687 0.687 0.687 0.687

Image Recall .244 .244 .244 .244
Image Recall (Relevant) .294 .294 .294 .294

Precision(3) 0.877 0.877 0.877 0.877
Precision(5) 0.829 0.829 0.829 0.829

Precision(10) 0.750 0.750 .0.750 0.750
Recall .049 .049 .049 .049

Classification Time (ms) 2409 2109 2173 2172

Table 5.18: k-NN Classification results : Spatial Pyramid (k = 128)

Number of Neighbours k = 1 k = 5 k = 9 k = 15
Precision(Overall) 0.687 0.687 0.687 0.687

Image Recall .244 .244 .244 .244
Image Recall (Relevant) .294 .294 .294 .294

Precision(3) 0.877 0.877 0.877 0.877
Precision(5) 0.829 0.829 0.829 0.829

Precision(10) 0.750 0.750 .0.750 0.750
Recall .049 .049 .049 .049

Classification Time (ms) 2750 2763 2749 2746

Table 5.19: k-NN Classification results : Spatial Pyramid (k = 256)

Number of Neighbours k = 1 k = 5 k = 9 k = 15
Precision(Overall) 0.687 0.687 0.687 0.687

Image Recall .244 .244 .244 .244
Image Recall (Relevant) .294 .294 .294 .294

Precision(3) 0.877 0.877 0.877 0.877
Precision(5) 0.829 0.829 0.829 0.829

Precision(10) 0.750 0.750 .0.750 0.750
Recall .049 .049 .049 .049

Classification Time (ms) 3213 3202 3201 3185

Table 5.20: k-NN Classification results : Spatial Pyramid (k = 512)
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Figure 5.15: An outline of the precision scores for the top performing classification
run for each evaluated image feature.

Figure 5.16: An outline of the image recall (relevant) scores for the top performing
classification run for each evaluated image feature.

5.5 Conclusion

In this Chapter, a framework was implemented based on spatially organised

machine learning classification models. From the evaluation section it is this

chapter, it is evident that by structuring models in this manner it is possible

to classify query images containing commonly photographed landmarks with

a high degree of precision. This method of organising classification models
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based on geographical location improves upon previous techniques suggested

in the literature [Li et al., 2009b]. Quantising the number of classes used to train

each multi-class model, can ensure that classification accuracy will remain high

provided the classes can be differentiated using visual features.

Two separate machine learning algorithms were evaluated, SVMs and k-NN.

As can be seen from Figures 5.16 and 5.17, there was a marginal difference in the

performance between the two algorithms. It would seem that the most important

parameter is the actual input feature. Overall, the best performing algorithm

was the SVM, however, for many of the classification runs, the k-NN output a

higher precision score and had the advantage of a lower processing time. The

k-NN classifier with relatively small values of k was chosen to for this evaluation

because, by the nature of the clustering process used (described in Chapter 4), the

training data for each classification model, contained numerous near-duplicate

images. From this observation, it is logical to assume that the training features

from the near duplicate images would be located close to each other in feature

space. It is expected that, as the visual variation in cluster images becomes larger

and the numbers of non near-duplicate images within a cluster increases, the

performance of the k-NN would decrease and the SVM would provide a better

generalisation performance. From the results of the evaluation it would seem that

the SVM decision function is able to perform better with the less dominant image

clusters and thus successfully recognises a larger number of test images.

It would seem that using the optimal parameters, just under 50% (48.9%) of

all test images can be classified in real-time with a high level of accuracy using

the machine learning based classification approach. Given the high precision

scores alongside the high image recall, this is deemed to be a good result. The

recognition process can be executed in real-time and this approach represents a

dramatic decrease (by a factor of over 100) in the time required to classify a test
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image, over the brute force interest point matching as utilised in the benchmark

approach.

186



Figure 5.17: An outline of the precision scores for the top 3 ranking results between
two different machine learning algorithms (SVM and k-NN) using the optimal
input features (VBOW - Hard Assignment). When the VBOW is assigned smaller
values for k where k in this case refers to the size of the visual vocabulary, the
k-NN will outperform the SVM method.

Figure 5.18: An outline of the image recall(relevant) scores between two different
machine learning algorithms (SVM and k-NN) using the optimal input features
(VBOW - Hard Assignment).
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Figure 5.19: An example of the set of retrieved images that were matched with a
random test image using the top performing approach (SVM, VBOW (k = 4096)).
The test image is displayed at the top and the images are ranked from left to right
, top to bottom in terms of image similarity.
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Chapter 6

Hybrid Approaches to Landmark

Classification

6.1 Introduction

In this chapter, two approaches are proposed to solve the problem of classifying

landmark images with a low frequency within the corpus. These images include

landmarks that are not commonly photographed, and images of a landmark

taken from a non-popular viewpoint. The chapter begins with a description

of the first approach evaluated. This approach is based on the use of scene

classification models to reduce the search space as part of a nearest neighbour

search problem. The second approach is then introduced which is based upon

the use of a tree structure to index local image features. The best performing of

these two approaches is then combined with the machine learning classification

method described in Chapter 5, to form a hybrid system. An evaluation of all 3

approaches is then presented. In this evaluation, these approaches are compared

against a current state of the art technique for landmark recognition.

Support Vector Machines require a set of positive and negative examples in

order to train a classification model. Although the number of examples is not

189



explicitly known in advance for a problem, too small a number will produce

inaccurate prediction results and lead to high numbers of false positives. There

is significant overlap in the number of visually similar images for a commonly

photographed view of a popular landmark, there is a need, however, to address

the issue of how to classify viewpoints of landmarks that are not commonly

captured.

Several techniques developed by the computer vision community for match-

ing visually similar images in large data collections, have been shown to work

quite accurately [Sivic and Zisserman, 2006], however, many of the commonly

used image matching algorithms cannot be used with very large data sets using

standard desktop computers, due to memory constraints. Image feature vectors

can be quite large and, in the case of interest points can require more memory

to store and process than the actual image itself. Several algorithms used for

efficient scene and object matching, such as vocabulary trees, require that the

data structure containing the image features be loaded into heap memory before

the matching process can be executed. This provides a constraint on the number

of training features that will fit into the heap memory. In this section, an image

matching approach is used that allows for additional images to be added to a

training corpus, while retaining a static memory requirement.

The aim of this chapter is to find the nearest neighbour of a test image within

the corpus that could not be classified, or was perhaps mis-classified by the

SVM classification approach (presented in Chapter 5). The nearest neighbour is

represented in some feature space using a distance metric. In this case the metric

used is the L2 norm in Euclidean space.

This may sound like a trivial task that could be computed in linear time i.e.

O(n) where n is the number of images within a training corpus. When there

are large values for n, however (where a large value is defined as thousands,

or perhaps even millions), this exact nearest neighbour approach could not be
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achieved in real time. For extremely large values of n, the task would soon become

intractable using today’s technology.

This issue is particularly important when the distance measure concerns corre-

spondences between sets of interest point descriptors, primarily because hundreds

and possibly thousands of local image features can represent a single image, de-

pending on its level of saliency. Therefore, to calculate a distance measurement

between a single pair of images could potentially require millions of feature vector

comparisons.

The search space in this work is too large to allow for exact brute force nearest

neighbour matching of interest point features in real time, an approach is required

that will find an approximate nearest neighbour, or that will reduce the size of the

search space through the removal of non-relevant matches using cheap distance

measures. Two of these proposed approaches to address this problem were

analysed and evaluated: Hierarchical Classification using Scene Classification

Models and Hierarchical Vocabulary Trees.

6.2 Hierarchical Classification

As was discussed in section 6.1, when matching a test image using point to point

approaches based on SURF descriptors, it is not feasible to compare a test image

against all images in the corpora, as it would require a significant amount of

computing resources. Additionally, the accuracy of the interest point matching

will decrease as the size of the corpus increases. It is desirable to first prune the

search space using less expensive methods, disregarding non-relevant corpus

images. One such method, is to disregard non-relevant images based on spatial

locations extracted from GPS information or manually created geo-tags. Although

spatial based methods will successfully filter out large numbers of non-relevant

191



images, issues still exist in areas where there is a high concentration of commonly

photographed landmarks.

Many large urban areas, such as the centre of Paris, contain well known

landmarks in close proximity to one another. This can cause problems even

with spatial filtering techniques as large numbers of images would remain after

filtering. This issue is even more prevalent with the dataset used in this work, as

the majority of geographical information is set manually by human observers and

therefore relatively wide spatial radii (250 meters) need to be used to ensure an

acceptable balance between relevant and non-relevant images being retrieved, as

described in Chapter 3. It is necessary to employ additional techniques to further

reduce the query space before expensive interest point matching methods are

processed.

In this section, an approach is proposed to help solve this problem. This

approach is based on structuring the search space according to the class or type

of landmark that is represented in each image. In a hierarchical image matching

scheme, traditionally the aim is to treat this search space reduction problem as

an image similarity process, where a corpus image is disregarded if a similarity

measure between it, and a query image is above a threshold. This similarity

measure ideally can be calculated quickly and efficiently. In this section, it is

proposed to analyse the effectiveness of semantic scene classification models,

which effectively treats this search space pruning process as a scene classification

task. If a corpus can be structured into small spatially organised collections of

images that are semantically grouped into different landmark categories, it is

proposed that this will allow for efficient pruning of the corpus when matching a

query image. In this section, an evaluation is carried out to test this proposal.
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6.3 Low-Level Semantic Classifiers and Concept De-

tection

Understanding the content of a scene depicted within an image is one of the core

goals of computer vision. The aim is to convert the pixel data contained within an

image into one or more high level semantic descriptions of the scene or event that

is displayed in an image. A high level semantic description could be described as

a detailed and meaningful representation of the content of an image, which would

be relevant to a human observer (or perhaps a description that could be converted

by a computer so that it would be relevant to a human observer). High-level

semantic image classification is still a very open problem in the computer vision

community, particularly in unconstrained environments. In recent years however,

much progress has been made in image classification at a lower semantic level,

such as the ability to classify images into different categories of scenes.

Following the paradigm of the machine learning approach described in Chap-

ter 5, it was hypothesised that it would be possible to classify an image of a

landmark into one of a finite number of visually distinct categories. The moti-

vation behind this is that if accurate semantically relevant groupings of corpus

images could be achieved, it would be possible to reduce the size of the search

space dramatically in a landmark recognition task, based on these groupings. In

this work, 8 different classes of landmarks were chosen that had a high represen-

tation within the corpus, and could be suitable for classification using machine

learning approaches. These were:

• Artwork The artwork class is defined as images (that contain a painting

or drawing) taken inside an art gallery or museum. From an informal

empirical study of the Paris corpus, it is evident that many Flickr users
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commonly photograph paintings, and several well known pieces of art

could be considered landmarks.

• Bridge Another very commonly photographed landmark is a bridge. Many

iconic bridges span the river Seine and many of the canals that flow through

the Parisian region, and due to their unique visual appearance and photo-

genicity, large numbers appear in the training corpus. In this work, a bridge

is defined as a man-made object that spans across a body of water, a road or

a railway track.

• Building Facade A building facade is a category containing the main facade

of a large building. If there is no notable facade, for example in the case of

an office block or a skyscraper, the facade is considered to be any side of the

building.

• Fountain A fountain is defined as a man made object that sprays or pours

water either into the air or into a man made reservoir. Although originally

used for human water consumption purposes, today fountains are mainly

used for ornamental purposes.

• Monument The category of monument is quite nebulous and can refer to

a large number of objects. In this work, a monument is considered a man-

made structure that does not have a use as a dwelling place (such as a

building) and does not contain a large statue or sculpture. Some examples

of monuments in the image corpus are; the ’Eiffel Tower’ and the ’Arc de

Triomphe’.

• Church: A Church is defined as a place where a Christian might practice

their religion, such as a church, cathedral or a chapel. This category is

concerned solely with images that were taken outside of the structure.
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• Church(Indoor): The church indoor is defined as an image that was pho-

tographed inside a Christian place of worship. These commonly include

close up images of stained glass windows, church ornaments and altars.

• Statue A statue is defined as a sculpture that usually represents a person or

historical event. Additionally, a sculpture within an art gallery or museum

will fall into this category.

• Other Any landmark that does not fall into one of the above categories is

defined in this class.

Although there is a large amount of variance in intra class visual similarity

within each of these categories, many different landmarks within a class share

some basic characteristics. Take, for example, the class ’Church’, which includes

churches and cathedrals, among others. In many cases, a human observer could

quickly recognise a church as being a church irrespective of the size of the land-

mark or the architecture style, as illustrated in Figure 6.1. Whether a church

was built in the Gothic style, such as the famous Notre Dame Cathedral, or in

a more modern style such as the Sagrada Familia in Barcelona, many humans

could identify from visual recognition that these structures are places of worship.

This recognition could be based on knowledge obtained in their lifetime using the

visual style of other visually similar places of worship, which could be considered

analogous to supervised learning. It is logical, therefore, to assume that these two

structures share enough characteristics visually, for a human observer to predict

the category of both structures without heterogeneous knowledge. It is based on

this premise, that a suite of classification models was implemented with the aim

of grouping landmarks into a finite set of categories.

The ability to quickly classify a landmark category from an image would

prove useful in selecting relevant candidates for further analysis from a large

corpus in an image matching approach. Effectively this approach is adopting a
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scene classification approach to pruning the search space. By using this approach

and training a suite of k classification models representing landmark categories,

the nearest neighbour search problem would remain linear. It would however,

be reduced to a complexity of O(n/k). Combining a suite of classifiers with

geographical based pruning can further reduce the complexity of the search

algorithm to O(n/(k × i)), where i represents the number of spatial divisions

within a corpus. With large values of k and i, a corpus can be quickly reduced to

a small subset of relevant images, within which a linear search may be carried

out for the nearest neighbour. It must be noted, however, that this is an optimal

complexity measurement which assumes a uniform geographical distribution of

images within a region, which is not the case in this work. The proposed system

based on this approach is illustrated in Figure 6.2.

6.3.1 Visual Semantic Classifier

To create a hierarchical classification system based on semantic classification mod-

els, first it is necessary to evaluate how accurately these classifiers can categorise

landmark images. A collection of training and testing images was collected for

this purpose. The training collection was gathered from two sources. The first

source was the SUN image dataset [Xiao et al., 2010], which is a large scale collec-

tion of images categorised into 899 scene categories. Of these 899 scenes, 7 were

deemed useful for the purposes of this work. These included: bridge, building

facade, church (outdoor), church (indoor), fountain and statue.

The other source used to gather data for the training set was the Flickr API.

For 8 of the 9 semantic categories, the Flickr API was queried using the category

name as the query text. All retrieved images were manually analysed and if they

conformed to the category class, they were added to the training data. In total the

training collection consisted of 3886 images:
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Figure 6.1: An example illustrating many different examples in a landmark cate-
gory ’place of worship’. Although there is a lot of visual intra class variation, it
will still be possible, based on visual information alone for many human observers
to quickly classify all of these images as either being churches, chapels, cathedrals
or mosques.

• Artwork - 246 images

• Bridge - 562 images

• Building - 625 images

• Church - 480 images

• Church (Indoor) - 616 images

• Fountain - 709 images

• Monument - 185 images
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Figure 6.2: An illustration outlining the proposed classification system utilising
semantic classification models. For each test image, only images belonging from
the same semantic class and a similar location are retrieved from the corpus. SURF
interest point matching is then carried out on this smaller subset.

• Other - 155 images
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• Statue - 308 images

A multi-class SVM model was trained to classify images into one of these nine

categories. Several different kernel functions were evaluated but it was the RBF

kernel that performed best for this task. Parameter selection was carried out using

k-fold cross validation which is described in Chapter 5. An evaluation of this model

is described in the next section.

6.3.2 Visual Semantic Classification Evaluation

To evaluate the classifier, a test collection of images was collected. All of these

images were retrieved from Flickr using their corresponding landmark class as the

query text, with the exception of the ’Other’ category. In total for each landmark

class 100 images was collected. Each of these images contained geographical data

and had been photographed in the Paris region. Insufficient test data could be

gathered to evaluate the ’Other’ category, therefore, it was not included in the

evaluation.

All of the test images were processed through the multi-class semantic classifier

with a variety of different input features:

• MPEG7 Edge Histogram

• Visual Bag of Words (Hard Assignment) k = 1024, k = 2048, k = 4096

• Visual Bag of Words (Soft Assignment) k = 1024, k = 2048, k = 4096

The results of this evaluation can be seen in Figure 6.3. If selecting a baseline

classification score based on random selection, it would be expected that a correct

selection could be achieved around 11% of the time. Therefore, on average the

visual classifiers performed significantly better than the baseline.

As expected, some landmark classes could be classified more successfully than

others. The highest performing class was ’Church (Indoor)’, which achieved an
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accuracy score of 88% correct. From informal inspection, the intra class visual

variation in this class was deemed to be the lowest across all the classes. The class

with the highest level of intra class visual variation, ’Monument’ performed very

poorly.

A vocabulary size of 2048 performed best for this task. Interestingly, there was

a large improvement when using soft assignment as opposed to hard assignment.

From these results, it is evident that visual information alone does not allow for

an acceptable classification accuracy across all classes.

6.3.3 Landmark Class Classification with Community Created

Geographical Data

Visual information can be useful when classifying low-level semantic information

from digital images [Szummer and Picard, 1998], however it is more difficult to

infer high level semantics. From Figure 6.3, it is evident that global based image

features alone are insufficient for accurate classification across all semantic classes.

To overcome this, it is hypothesised that utilising geographical contextual infor-

mation will help to bridge this ’Semantic Gap’. There now exist rich geographical

databases, accessible online, that contain high level semantic information describ-

ing a specific region. In this section, it is proposed that by fusing visual and

geographical information, it would be possible to classify an image into a high

level semantic landmark category with a higher degree of accuracy than if using

visual information alone.

In recent years, there has been a surge in the creation and dissemination of

information on-line by large communities of contributors. One particular type

of information accessible online includes geographical data. Large numbers of

websites have recently been created that enable for the creation of large scale
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semantic databases describing geographical locations. One example of these

services is ’FourSquare’ [FourSqaure, 2009], which allows users to post their

geographical location to other users in a social network, and also to provide

semantic information about the user’s geographical surroundings.

In this work, a database containing geographical points of interest (POI) was

created. This consisted of a number of objects referenced by geographical location,

which were harvested from two online sources. A technique was proposed to

classify an image into one of the 9 landmark categories based on the objects stored

in this POI dataset.

6.3.4 Open Street Map

One example of an online geographical community is Open Street Map. Open

Street Map is an online repository where community contributors upload the

spatial coordinates of a wide range of geographical entities, along with semantic

data describing these entities. With a large community of users, these present a

very valuable resource for research communities across several fields.

Human contributors can upload map data which is represented by lists of

waypoints. Each waypoint contains latitude and longitude coordinates. Users can

also upload geographical objects, otherwise known as ’Points of Interest’ (POI),

and assign them a location. OpenStreetMap has a strict set of guidelines to ensure

that uploaded data is accurate. Each uploaded POI can be assigned one of a

finite number of feature classes dependent on the use and attributes of the feature.

In this work 8 different feature classes were selected to coincide with the set of

semantic classes desired to be classified in this work. These feature classes were:

• Bridge

• Building

• Fountain
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• Gallery

• Monument

• Museum

• Place of Worship

• Statue

All of these feature classes located in the Paris region were downloaded and

stored in the POI dataset.

6.3.5 GeoNames

Another online resource that contains accessible geographical data is the GeoN-

ames repository located at geonames.org. GeoNames is an online geographical

repository that contains over 10 million geographically mapped location names,

along with 7.5 million geographical features. These features are split into 9 feature

classes, which are then split into 645 feature types. Of these feature types, 5 were

deemed relevant to the set of landmark classes outlined in section 6.3. Each feature

type is associated with a set of metadata, including geographical coordinates, a

code representing the country, and the name of the geographical feature. Each of

these feature types is considered to be a POI. GeoNames data has been gathered

from many reputable sources, including the United States Geological Survey,

Netherlands Statistics Office, and the French National Institute of Statistics and

Economic Studies, it is therefore expected that this data is quite accurate.

Using the publicly available API, all geographical features located within Paris

associated with a set of feature classes was retrieved and stored in a database.

This set of feature classes included:

• Bridge
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• Building

• Church

• Monument

• Museum

It must be noted that the GeoNames data collection is by no means a compre-

hensive list for each geographical feature. For several of the features retrieved, the

data was quite sparse. For example, for the class Church, only 15 geographical

features were found. It must be noted that the majority of geographical features

that populate the dataset tend to be well known landmarks, which could be

beneficial for this work as these are the objects that users are most likely to visit

and photograph. All of these feature classes located in the Paris region were

downloaded and stored in the POI dataset. In total, the OpenStreetMap and

GeoNames data combined comprised of 1235 POIs.

6.3.6 Evaluation of Classification using Geographical Data

To analyse the effectiveness of community geographical data to classify landmark

classes, the test collection of images was processed based on a nearest neighbour

scheme. The location information from each test image was extracted and all POIs

within a radius of 250 metres were retrieved from the POI database. Retrieved

features were then ranked according to geographical distance, using the Haversine

formula described in Chapter 3, with the shortest distance ranked at the top. This

top ranked feature was then assigned to the test image.

It is assumed that the POIs ’Gallery’ and ’Museum’ might be useful to classify

the semantic class ’Artwork’, due to the likelihood of pieces of art appearing in

both of these locations. If the closest POI to an ’Artwork’ test image is ’Museum’

or ’Gallery’ then this images is marked as being correctly classified. Similarly for
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the semantic class ’Statue’, it is assumed that there is a correlation with the POI

class ’Museum’. Results from this evaluation are presented in Figure 6.4.

6.3.7 Fusion of Visual and Geographical Features for Semantic

Classification

In this section, experiments were carried out that fused the visual and geo-

graphical data to ascertain whether a classification accuracy improvement can be

achieved using both sets of features. Two fusion approaches were implemented,

one based on the presence of a POI in the vicinity of a test image and the other

based on the distance between a test image and nearby associated POIs.

Presence of POI Approach

The first fusion technique was based on combining the output values from the

SVM classifier with a static value to represent whether a landmark class was

present in the POI database. There was no weighted measure applied to this

value, and all landmark classes detected within a spatial radius had this value

added to its corresponding output from the classifier.

A minor change was made to the libSVM library to output an array of confi-

dence measures C, with a value representing each landmark class C1....Cn (where

n is the number of landmark classes). If the presence of a landmark class was

found in the database within a spatial radius of a test image (defined to be 250

metres), a value v was added to ci, where i is the associated landmark class. There-

fore if a POI was discovered in the database associated with the landmark class i

then Ci becomes Ci + v.

The values in C are normalised into the range 0-1. A value for v is selected

based on the maximum value in C, ie. v = argmax(C). Several variations of this

calculation were evaluated, some providing a weighted bias towards the visual
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data and others providing a weighted bias towards the geographical data. Three

weighted variations of v = w × argmax(C) were evaluated, where w is equal to 2

(denoted as weight 1 in the evaluation),
1

2
(denoted as weight 2 in the evaluation)

and
1

4
(denoted as weight 3 in the evaluation). A value of 2 for w weights the

metric in favour of the geographical data. Values of
1

2
and

1

4
for w weight the

metric in favour of the visual data.

Weighted Distance Approach

Similarly to the first approach, the second method added a value to relevant

confidence measures outputted by the SVM model. The weight of these values

was determined by the distance from a POI to the test image. Landmark classes

that were nearby had a higher weight assigned to them than those they were

located further away. As with above, an array of confidence measures C with a

value representing each landmark class C1....Cn was output from the SVM model.

If the presence of a landmark class i was found in the database within a spatial

radius of a test image, a value v was added to Ci. The value v is determined

by calculating the distance, denoted as dist, between i and a test image t, that

was calculated using the Haversine formula described in Chapter 3. Therefore

for each POI class that was located within the geographical radius Ci becomes

Ci+(1−dist(t, i)) where dist(t, i) is normalised into the range 0 - 1. Four weighted

variations of the metric Ci = Ci + w(1 − dist(t, i)) were evaluated, where w is

equal to 1 (denoted as weight 1 in the evaluation),
1

2
(denoted as weight 2 in the

evaluation),
1

4
(denoted as weight 3 in the evaluation) and

1

8
(denoted as weight 4

in the evaluation).
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6.3.8 Evaluation

In this section, experiments were carried out to ascertain how accurately a fusion

approach (visual and geographical) would perform for the task of landmark

class classification. From the results in Figure 6.5, it would seem that the fusion

of geographical and visual data for classifying images into semantic landmark

categories improves performance slightly over using either visual or geographical

features alone for a subset of the landmark classes. On average however, the fusion

of visual data with geographical data hinders performance over using visual

features alone. The main reason behind this is the sparsity of the geographical

database. For many of the landmark classes, there was insufficient data and visual

confidence measures were being decreased to the extent that other landmark

features that populated the dataset were being incorrectly classified.

To illustrate this point with an example, it can be seen in Figure 6.5, geograph-

ical data alone works well for the concept class ’Artwork’ but performs very

poorly for other concepts, such as ’Building’ for example. It would appear that

the general poor performance of geographical data is down to the sparsity of the

datasets. In the example of the concept ’Artwork’, there are very few locations

within the city where one would expect to find geo-tagged community images

of this concept, possibly less than a dozen (restricted to museums and art gal-

leries). From the geographical data, it can be seen that the largest museum and

largest art gallery in Paris(La Louvre and the Musee D’Orsay) are included in the

geographical dataset. For the concept ’Building’, however, one would expect to

find images in a wide variety of locations across the city. Based on this alone, it is

logical to assume that the majority of images within the test set of ’Artwork’ were

geotagged at one of these locations. Additionally, the significant improvement

in accuracy that is garnered from the fusion approach over visual features alone

for the concept ’Artwork’ would imply that with a comprehensive, accurate ge-
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ographical dataset, it might be possible to classify all well represented concepts

with a high degree of accuracy.

Overall, the accuracy of the scene classification was low and not deemed

accurate enough to enable large scale pruning of a search space for use in this

framework. Due to the results of the evaluations presented in Tables 6.3, 6.4 and

6.5, the scene classification approach was disregarded and the framework made

use of the more accurate vocabulary tree structure approach to classify landmark

images that the machine learning based technique failed to recognise.

6.4 Vocabulary Trees

One method to allow for fast approximate nearest neighbour search of image

features is the use of a tree structure. One of the first approaches to index visual

features into a tree structure for indexing was proposed in [Lowe, 2004]. Lowe

suggested using a kd-tree structure to index up to 100,000 SIFT feature point

descriptors (approximately 50 images × 2000 descriptors).

The kd-tree structure is a data structure that stores a finite number of multi-

dimensional feature vectors. The structure is a modified binary tree where data is

split along the dimension with the highest level of variance. Several variations of

the kd-tree have been suggested, their goals however, remain the same, i.e. split

a large collection of multi-dimensional points into a finite number of regions so

that each region contains the minimum number of points.

The number of nodes in a kd-tree increases exponentially as the number of

feature dimensions increases, therefore the kd-tree structure performs very poorly

in high dimensional feature space, to the extent that it would perform no better

than brute force search (O(n))(in situations where k > 20). To overcome this

disadvantageous property, Lowe suggest an algorithm that he called Best Bin First

(BBF) search. The BBF algorithm is not guaranteed to find the closest neighbour
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in the search space, but will approximate a nearest neighbour to within a distance

of 1 + ε. The BBF algorithm is based upon the observation that in any search

process, the majority of neighbouring nodes will not contain a nearest neighbour.

It selects a number of candidate nodes (eg. 200) that are within the distance 1 + ε

(where ε is a pre-determined parameter) from the query, and limits the search

to these candidates. Lowe estimates that 95% of the actual nearest neighbours

will be found using this approach. An alternative approach, which provides a

simpler approximation model, is based on a hierarchical k-means algorithm and

is adopted in this work.

6.4.1 Hierarchical Vocabulary Trees

One alternative approach to kd-trees is the use of a hierarchical k-means tree

that was first suggested by Nister [Nister and Stewenius, 2006]. A hierarchical

vocabulary tree is a tree structure that similarly to the kd based vocabulary trees

is built upon a large visual word vocabulary. It is a form of a hierarchical k-

means algorithm, where the inputs consist of visual words, and the clusters

centres outputted from each k-means invocation, are used as the pivots of the tree

structure.

The algorithm quantises the vocabulary into k smaller subsets at each level

using the k-means clustering algorithm on each partition independently. Each

quantisation takes place recursively on smaller subsets of data. Instead of the k

parameter determining the final number of leaf nodes, k determines the branch

factor of the structure. A balanced tree structure consists of a total number of k× l

leaf nodes, where l is the number of levels. An example vocabulary tree structure

is presented in Figure 6.6.

Hierarchical vocabulary trees are used in this work, due to their image match-

ing accuracy [Nister and Stewenius, 2006]. Additionally, one advantage of util-
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Figure 6.6: An example illustrating the structure of a hierarchical vocabulary tree
with a branch factor of 10 and a height of 3 levels.

ising Nister’s hierarchical tree approach is that the memory required in a clas-

sification system remains static. Once the original tree structure has been built,

irrespective of the scale of the corpus, the tree size does not increase. By utilising

an effective filtering mechanism, such as geographical based filtering, the discrim-

ination value of the tree structure can be preserved. The hierarchical tree reduces

the processing time from O(n) to O(n log k).

To classify a test image, firstly, its spatial data is analysed and only images

that are located within a geographical radius of 250 metres are retrieved from the

image corpus. Each child node within the tree represents a vocabulary feature,

and is given an identification number. SURF features are extracted from the test

image and propagated down the tree structure, each feature being assigned an id

based on its path down the tree. This list of ids is then compared against the list of

ids associated with all retrieved corpus images and identical ids correspond as a

match. Corpus images are then ranked based on the number of correspondences,

and if that number is above a threshold the corpus image is considered a match.
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6.4.2 Hierarchical Tree Evaluation

To ascertain the optimal parameters in using the hierarchical tree approach, sev-

eral different variations were analysed. In [Lowe, 2004], it is determined that three

interest point matches are sufficient to determine a corresponding object, however,

as the vocabulary tree approach is based on an approximation technique, it is nec-

essary to determine what number of approximated correspondences constitutes

as a legitimate match. It is assumed that this number will be directly related to the

number of nodes within the tree. Specifically, when using large vocabulary sizes,

the number of tree matches will be quite low, however, as the level of quantization

increases, the probability of two non corresponding SURF features following the

same path down the tree will increase. In this work, a vocabulary size of 250,000

is chosen to build the vocabulary tree structure.

Several different threshold values were used to determine how many tree

correspondences constitutes as a landmark match (5, 15, 25, 35). Additionally two

values for the branching factor of the tree, 5 and 10, were also evaluated.

A second evaluation was carried out by utilising SURF point to point matching

and re-ranking the already ranked images retrieved using the vocabulary tree

approach. This was carried out as a confirmation stage to eliminate false positives.

As point to point matching is an expensive process, two approaches were imple-

mented. The first approach carried out SURF re-ranking on all retrieved images

from the vocabulary tree, while the second approach carried out SURF re-ranking

only on the top k ranked images to reduce processing time. It is expected that

these images are more likely to be correct matches, thus this approach eliminates

potentially large numbers of unnecessary image comparisons. Geometrical ver-

ification is not used at this stage to reduce the processing time required and to

maintain real time recognition. Additionally, it has been shown that geometric

verification in similar landmark recognition tasks using a hierarchical vocabulary
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tree produces a relatively minor precision increase when using large vocabulary

sizes (6% with k = 250,000) [Philbin et al., 2007] (it must be noted that when us-

ing smaller vocabularies (50k), there was a significant improvement in precision

scores). The results of these evaluations can be see in Tables 6.1 - 6.5.

6.5 Hybrid Approach to Landmark Recognition

In this section, a hybrid approach to landmark classification is introduced and

evaluated. This hybrid framework combines the machine learning based approach

described in Chapter 5 with the vocabulary tree based approached described in

section 6.2. This hybrid framework takes advantage of the fact that a large

proportion of a training collection of landmark images for a city will contain many

large clusters of near identical imagery for a number of commonly photographed

landmarks. Instead of matching against all images in a training set located within

a certain region, the hybrid approach will quickly ascertain whether a test image

contains one of the more commonly photographed landmarks within the region.

A slight decrease in processing time is achieved by using machine learning ap-

proaches, as described in Chapter 5, over the vocabulary tree approach described

in section 6.2. The hybrid method takes advantage of this by first attempting to

classify an image using the machine learning models. If the number of matches is

beneath a threshold, the test image is then processed using the vocabulary tree

based technique. Due to the noisy textual metadata in the corpus, it is deemed

that a minimum of three images are required to be retrieved for a query image,

for that query image to be considered matched. This is to compensate for the

inaccuracies in the textual metadata. It is more robust to find relevant tags, with

which to annotate a query image, from a number of images as opposed to just one.

Work concentrating on tag selection schemes based on query matches is described

in Chapter 7.
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An outline of the hybrid system is illustrated in Figure 6.7. The hybrid ap-

proach consisted of the top performing machine learning method which was

using a VBOW feature with a vocabulary size of 4096. This method used an SVM

model based on the Radial Basis Function kernel.

Several variations of the hybrid method were evaluated utilising different

vocabulary tree attributes. The evaluated hybrid variations were as follows:

1. SVM + vocabulary tree (correspondence threshold of 25) with no SURF

feature point re-ranking

2. SVM + vocabulary tree (correspondence threshold of 25) with SURF feature

point re-ranking

3. SVM + vocabulary tree with SURF re-ranking restricted to top 20 nearest

neighbours

4. SVM + vocabulary tree with SURF re-ranking restricted to top 30 nearest

neighbours

5. SVM + vocabulary tree with SURF re-ranking restricted to top 50 nearest

neighbours

The results of this evaluation can be seen in Table 6.6.

6.6 State of the Art Techniques

6.6.1 Landmark Categorisation using Inverted BOW Indexes

In recent years, the computer vision community has been very active in de-

veloping methods to aid image matching operations in very large scale image

collections. In the past few years, problems in this domain that were previously

thought intractable have been made possible with advances in computer vision
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Figure 6.7: An example illustrating the structure of a hierarchical vocabulary tree
with a branch factor of 10 and a height of 3 levels.

216



and image retrieval algorithms, along with many advances in several related

fields. There now exist many established techniques to achieve relatively accurate

image matching and retrieval, even from within datasets consisting of millions of

images based solely on automated approaches.

One of the most commonly used methods to achieve this is based on the

visual word paradigm merged with a commonly used text retrieval technique

for efficiently storing large amounts of textual information. The files in which

this data is stored are called ’inverted files’. First introduced by Sivic et al.

[Sivic and Zisserman, 2003] for the purposes of finding similar video frames in

motion pictures, the inverted visual word technique has been shown to perform

very well in a wide variety of image matching applications in a myriad of do-

mains, including landmark recognition [Philbin et al., 2007]. This technique has

also been implemented into commercial landmark image recognition systems

such as Google Goggles [Goggles, 2008], which is a mobile phone based image

recognition system that allows for a user to photograph an object or scene and the

application will attempt to classify the image, along with providing information

about the main object depicted in that image.

The inverted visual word approach is very similar to the vocabulary tree

method described in this chapter, however, there are a few key differences.

Inverted Index Files

The main idea behind inverted visual word features is to adopt a text retrieval

style approach to image retrieval. Inverted indexes have been used to effi-

ciently store and describe a collection of documents in information retrieval

[Baeza-Yates and Ribeiro-Neto, 1999]. Inverted indexes based on visual vocabu-

laries follow the same approach. As opposed to storing a set of detected visual

words for each individual corpus image, a list is stored for each visual word

within the vocabulary. This list contains identification numbers representing each
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image within the corpus in which that word was detected. Query images are then

matched against these inverted lists. This indexing method reduces the space

required to store features in memory and speeds up the matching process.

Term Weighting

When comparing image features using a large vocabulary, some features will

be more discriminate than others. For example, a vocabulary feature that is

detected in 1% of all images within a corpus will not have the same discrimination

value as a feature that occurs in 0.01% of the corpus. To account for this, a

method was proposed in [Sivic and Zisserman, 2003], that takes into account the

discrimination value of each visual word feature based on frequencies. A tf-idf

[Sparck Jones, 1988] approach is used to assign a weight to each visual word in

the vocabulary.

Geometric Ranking

Once a ranked list of relevant images have been retrieved, they are re-ranked

based on geometric consistency. In [Philbin et al., 2007], a variant of the RANSAC

algorithm, called LO-RANSAC [Chum et al., 2003], is used to measure geometric

consistency. This is an approximation of the RANSAC algorithm used to improve

classification time. In this work, the standard RANSAC algorithm is used as

described in Chapter 4, to re-rank the images, which should aid precision.

Evaluation

In this section an inverted visual word approach based on the work in [Philbin et al., 2007]

was implemented. The goal is to evaluate the approaches in this work against this

widely used state of the art method. In the evaluation section, this approach is

referred to as inverted indexes of visual words.
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6.7 Evaluation of Hierarchical Matching

To evaluate the vocabulary tree and hybrid approaches, the test collection used in

the evaluation in Chapter 5 was used. The same evaluation metrics as Chapter 5,

were also used. These consisted of:

• Precision (Average)

• Image Recall

• Image Recall (Relevant)

• Precision Top 3 - Precision(3)

• Precision Top 5 - Precision(5)

• Precision Top 10 - Precision(10)

• Recall

• Classification Time

6.7.1 Vocabulary Tree

The vocabulary tree approach to classifying landmark images is evaluated in this

section. Experiments were carried out with 2 values for k, 5 and 10.

The branch factor parameter led to a large difference in the overall performance

of the tree. The tree with a branch factor of 5, achieved an increase in precision of

approximately .06 when using a threshold score of 15. This is due to the increase

in the number of tree levels and therefore an image feature is compared against

a smaller number of k-means values a larger number of times. A branch factor

value of 10 led to a slight decrease in precision but a large increase in image recall.

In the SURF feature re-ranking stage there was a larger number of relevant images

in the candidate set and therefore a higher precision was achieved.
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Additionally, 4 different threshold values were analysed to determine a matched

image. These values were 5, 15, 25 and 35. It can be assumed from analysing clas-

sification times in table 6.2, that when a low threshold is assigned to the acceptable

number of tree correspondences, as expected, the number of candidate images

retrieved grows significantly. As can be seen from Table 6.1, with a threshold value

of 5, the tree based approach actually achieves an image recall (relevant) score of

1.0 (i.e. every image in the test collection had at least 1 relevant match). However,

with this threshold value the precision performance is very poor. With the highest

evaluated threshold value of 35, the precision score increases by more than 200%.

Additionally, when using a high threshold the image recall performance is quite

poor. Of all the evaluated threshold values, the most encouraging is a value of 15.

A SURF based image re-ranking scheme significantly improves the precision

score of the vocabulary tree approach. As can be seen from Tables 6.2 and 6.4,

adding a SURF re-ranking stage can improve precision by up to 50%. This is

particularly important when a low-threshold score was utilised to represent an

image match using tree correspondences. With a high threshold the improvement

is less obvious but still significant. The inverted index approach outperforms

the standard vocabulary tree method, however, when SURF feature ranking is

carried out on the output from the vocabulary tree, the precision significantly

outperforms the inverted index method, as illustrated in Figure 6.8.

The main issue with using a low threshold value of 5 is that a large number of

images pass the threshold and the SURF re-ranking stage requires an unacceptable

amount of processing time. When using a threshold value of 5, it requires over 3

minutes to process a test image. Clearly, this is an unacceptable time frame. To

address this issue, only the top k ranking images output from the vocabulary tree

are processed by the SURF re-ranking scheme. 3 values for k were analysed 20,

30 and 50. It can be seen from Table 3.5 that this approach yielded a significant

improvement in terms of classification time and precision.
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Match Threshold 5 15 25 35
Precision(Overall) 0.319 0.514 0.612 0.697

Image Recall .963 .688 .453 .330
Image Recall (Relevant) 1.0 .830 .547 .398

Precision(3) 0.695 0.778 0.822 0.851
Precision(5) 0.595 0.711 0.774 0.814

Precision(10) 0.493 0.647 .0.720 0.776
Recall .17 .13 .12 .11

Classification Time (ms) 2225 2210 2188 2183

Table 6.1: Classification results: Hierarchical Vocabulary Tree (Branch Factor = 5)

Match Threshold 5 15 25 35
Precision(Overall) 0.875 0.936 0.925 0.937

Image Recall .505 .490 .332 .247
Image Recall (Relevant) .609 .507 .400 .298

Precision(3) 0.961 0.989 0.988 0.996
Precision(5) 0.934 0.978 0.981 0.984

Precision(10) 0.905 0.955 .0.968 0.970
Recall .31 .20 .22 .21

Classification Time (ms) 173500 40122 5300 3139

Table 6.2: Classification Results: Hierarchical Vocabulary Tree with SURF Corre-
spondence Re-Ranking(Branch Factor = 5)

6.8 Hybrid Evaluation

In this section, a hybrid approach was evaluated that consisted of an SVM based

approach using a value of 4096 for k and the RBF kernel (These were the pa-

rameters that were deemed optimal from the evaluation in Chapter 5), and a

vocabulary tree. 5 different hybrid approaches were evaluated:
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Match Threshold 5 15 25 35
Precision(Overall) 0.302 0.457 0.575 0.636

Image Recall .975 .767 .531 .382
Image Recall (Relevant) 1.0 .926 .641 .461

Precision(3) 0.688 0.744 0.801 0.825
Precision(5) 0.583 0.670 0.738 0.768

Precision(10) 0.487 0.604 0.684 0.727
Recall .18 .13 .12 .12

Classification Time (ms) 2160 2169 2164 2160

Table 6.3: Classification results: Hierarchical Vocabulary Tree (Branch Factor = 10)

Match Threshold 5 15 25 35
Precision(Overall) 0.874 0.876 0.918 0.947

Image Recall .780 .529 .371 .281
Image Recall (Relevant) .942 .638 .448 .339

Precision(3) 0.965 0.980 0.994 0.981
Precision(5) 0.940 0.970 0.984 0.974

Precision(10) 0.908 0.950 .0.966 0.964
Recall .34 .305 .24 .17

Classification Time (ms) 183943 47102 7300 3403

Table 6.4: Classification Results: Hierarchical Vocabulary Tree with SURF Corre-
spondence Re-Ranking(Branch Factor = 10)

Top k images k = 20 k = 30 k = 50

Precision(Overall) 0.900 0.866 .85
Image Recall .660 678 .703

Image Recall (Relevant) .797 818 .849
Precision(3) 0.966 0.926 .916
Precision(5) 0.949 0.910 .900

Precision(10) 0.923 0.900 .887
Recall .18 .17 .18

Classification Time (ms) 6105 8118 11553

Table 6.5: Classification results: Hierarchical Vocabulary Tree - SURF correspon-
dence matching - Top k Images
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Figure 6.8: A graph outlining the precision and image recall (relevant) scores
achieved by several of the evaluated vocabulary tree approaches

1. SVM + vocabulary tree (correspondence threshold of 25) with no SURF

feature point re-ranking

2. SVM + vocabulary tree (correspondence threshold of 25) with SURF feature

point re-ranking

3. SVM + vocabulary tree with SURF re-ranking restricted to top 20 nearest

neighbours

4. SVM + vocabulary tree with SURF re-ranking restricted to top 30 nearest

neighbours

5. SVM + vocabulary tree with SURF re-ranking restricted to top 50 nearest

neighbours

The results of the hybrid approach evaluation are presented in Table 6.6. It is

evident from these results that the hybrid approach has some desirable attributes
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over using either of the SVM or vocabulary tree approaches alone. It achieves an

increase in precision and image recall (relevant) scores over the SVM approach by

a large margin. Additionally it achieves a significant decrease in processing time

over using the vocabulary tree approach. The image recall score is also improved

by using the hybrid approach over using a vocabulary tree alone.

As expected, when using the hybrid method without SURF re-ranking, the

precision was the lowest out of all evaluated approaches. The vocabulary tree

alone does not provide a sufficient level of discrimination and a re-ranking stage

is required to rectify this. It might however, be possible to improve precision by

enlarging the vocabulary size. The smaller the level of quantisation, the more

discriminative the power of the vocabulary tree approach. By enlarging the size of

the vocabulary, the memory requirements would increase but still remain static.

Of all evaluated hybrid methods, it was number 3 that performed optimally. It

achieved the highest level of precision which is deemed to be the most important

attribute. It is deemed that a minimum of 3 retrieved images is required to provide

an annotation for a test image (described in Chapter 7) due to inaccuracies in the

metadata. When measuring the precision value for the top 3 retrieved images

using the optimal hybrid approach, it was found that a score of .916 could be

achieved. This is a very encouraging result, which means that over 91% of all

images were classified correctly.

It can also be seen from the results, the hybrid approach improves upon the

vocabulary tree approach in terms of image recall and required processing time.

This is depicted in Figures 6.9 and 6.10. The hybrid method achieves a higher

image recall (relevant) score by a value of .056. This improved image recall is

because a number of test images are classified by the SVM based method that were

missed using the vocabulary tree. There is a slight decrease in precision using the

hybrid approach, which is due to the lower precision scores being output from

the SVM models.
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Hybrid Approach 1 2 3 4 5
Precision(Overall) 0.601 0.622 0.809 0.794 .786

Image Recall .688 .559 .707 .721 740
Image Recall (Relevant) .830 .675 .853 .870 .893

Precision(3) 0.818 0.906 0.916 0.902 0.895
Precision(5) 0.758 0.875 0.889 0.876 0.869

Precision(10) 0.688 0.828 0.847 0.841 0.833
Recall .08 .10 .17 .16 .13

Classification Time (ms) 3176 4774 5139 5788 7541

Table 6.6: Classification results: Hybrid Approach

When the hybrid method is compared against the state of the art approach,

it shows encouraging results. It achieves a significantly higher precision score,

while sacrificing a slight decrease in image recall. This is depicted in Figure 6.11.

The state of the art method requires a significantly lower processing time than the

hybrid, however, it still achieves recognition in real-time. Overall, the results of

this evaluation show that the hybrid approach allows for accurate recognition in

real-time and compares favourably against state of the art techniques.

6.9 Conclusions

In this chapter, two approaches to classifying uncommon viewpoints of landmarks

were evaluated. The first approach adopted a scene classification method with the

aim of reducing the search space as part of a nearest neighbour search problem.

It was demonstrated that this approached performed poorly. It would seem

that visual features alone lack the required discrimination power to differentiate

between visually similar classes of objects. To address this issue, a geographical

database containing instances of each of these landmark classes was collected

from online sources. This data showed encouraging results in situations where the
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Figure 6.9: A diagram illustrating the precision and image recall (relevant) scores
for each of the evaluated systems: SVM, Vocabulary Tree and Hybrid

Figure 6.10: An chart illustrating the processing time required for each of the
evaluated approaches. The time is measure in milliseconds.

landmark class was represented correctly in the data, for other classes however,

the data set was too sparse to gain any advantage from its use, and in fact,

decreased classification accuracy. Based on the evaluation, it is assumed that
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Figure 6.11: A chart comparing the hybrid approach to the inverted index
method suggested in [Philbin et al., 2007]. The compared metrics are preci-
sion(3),precision(5), precision(10) and image recall (relevant)

with a large scale geographical dataset containing a larger representation of many

of the landmark classes that it might be possible to accurately group landmark

images into categories semantically.

The second approach evaluated was a method based on vocabulary tree struc-

tures to approximate nearest neighbour matches of interest points in O(log n)

time. It was determined that a significant precision increase can be achieved by

using a two stage approach consisting of adding a SURF re-ranking scheme to

the output ranked lists of test images from the vocabulary tree. It was also found

that by restricting this SURF re-ranking process to the top k images, there was an

increase in precision and processing time requirements.

In this chapter, it was also demonstrated that by fusing the SVM based ap-

proach described in Chapter 5 with the vocabulary tree method, there was an

improvement on using solely the vocabulary tree method, in terms of process-

ing time and the image recall (relevant) metric. This method sacrificed a small
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reduction in precision but this was minimal. This hybrid approach was compared

against a commonly used landmark recognition approach [Philbin et al., 2007]

and achieved encouraging results. The hybrid method outperformed the inverted

index approach by a large margin in terms of precision. However, it must be

noted that these precision increases are measured against the benchmark and

might be slightly skewed as the image features using to calculate the benchmark

are similar to those used to rank images in the hybrid approach.

Overall, the hybrid approach has achieved some very encouraging evaluation

results. The processing time required over brute force search has been reduced by

a factor of over 100, which represents a significant improvement. It allows for the

classification of a landmark image with a precision of over .91 when analysing the

top 3 retrieved images which means that there is only a decrease of approximately

9% in classification accuracy. Another important improvement with the use of this

hybrid approach over other commonly used methodologies, is that there is a static

memory requirement (in this work, deemed to be approximately 400MB), which

combined with geographical information will allow for scaling this approach up

to a much larger training corpus, without any memory restrictions.
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Chapter 7

Selecting Relevant Annotations from

Community Metadata

7.1 Introduction

Many of the large scale online photo repositories such as Flickr [Flickr, 2004] use

text based retrieval methods to return images relevant to a users search query. In

order for this approach to work, it is necessary for a user to manually create a

textual description describing the content or context of an image. There is a need

to automate this procedure as many users will not spend sufficient time required

to carry out this task. The aim of this chapter is to create an automated method to

associate a set of metadata with a query image based on the output of the image

recognition framework.

If an appropriate match is found for a query image, the landmark recognition

framework will return a ranked list containing a number of images, which in this

chapter will be referred to as the result set., each of which has a number of tags

associated with it. The aim of this chapter is to evaluate techniques to extract rich

semantic information from these retrieved tags and associate that information

with the query image. Due to the noisy nature of the data, there is a considerable
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challenge in selecting from this set of potential annotations one or more tags

that have a high semantic relevance to a query image. It would be pointless to

successfully recognise and classify a landmark within an image only to annotate

that landmark with a set of heterogeneous or inaccurate text annotations.

In recent years, work has been carried out analysing how best to extract

representative tags from clusters of images in community contributed datasets.

Kennedy et al. [Kennedy et al., 2007] explored different methods to structure

Flickr data, and to extract meaningful patterns from this data. Specifically, they

were interested in selecting metadata from image collections that might best

describe a geographical region. In similar work [Kennedy and Naaman, 2008],

focused these techniques on extracting textual descriptions of geographical fea-

tures, specifically landmarks, from large collections of Flickr metadata. Tags are

clustered based on location, and using a tf-idf approach tags are selected intended

to correlate with nearby landmarks.

Ahern et al. [Ahern et al., 2007] employ a tf-idf approach on sets of Flickr

tags to create a visualisation of representative tags overlayed on a geographical

map. They call this system the ’World Explorer’, and it allows users to view

unstructured textual tags in a geographically structured manner.

Xirong et al. [Li et al., 2009a] combine visual information with a tf-idf scoring

metric to estimate tag relevance within a dataset of Flickr images. For each test

image, they carry out a visual search procedure to find its nearest neighbours

visually within the dataset. They show that by calculating co-occurrences of tags

within visually similar images, it is possible to estimate relevant tags for a query

image over using text based methods alone with a higher probability.

Most of the approaches to date have focused on variations of text-retrieval

based models using a tf-idf [Sparck Jones, 1988] scoring approach to choose rel-

evant representative tags from a cluster of metadata [Mahapatra et al., 2011]. In

this chapter, the aim is to improve on this work, by analysing alternative statisti-
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cal methods, using other sources of information that are accessible through the

recognition framework described in this thesis and within the community data

itself.

7.2 Tag Selection Schemes

There is a significant challenge in retrieving semantically relevant annotations

from this dataset, as it is known from Chapter 3 that much of the data is het-

erogeneous and semantically non relevant. An example of the set of metadata

retrieved for a test image is depicted in Figure 7.1. In this section, many different

approaches are proposed to solve this problem. The goal is to create a method that

will optimally select relevant tags for an image that replicate those that might be

selected by a human annotator. For any query image, particularly if that image is

depicting a popular landmark from a commonly photographed viewpoint, there

could be a large number of matched images returned from the image corpus. Each

of these retrieved images will have its own set of textual tags, with no guarantee

that any tag is relevant. It remains a challenge, when captioning query images,

to select a relevant tag or set of tags that might best semantically describe the

landmark depicted within the query image.

In this work, a number of tag selection schemes were implemented and eval-

uated. From the structure of the data, three different types of selection schemes

were identified.

• Frequency Based schemes use information that is available regarding the

frequency of individual tags within a result set and across the entire corpus.

It is hypothesised that tags with a correlation across a high number of images

within a result set have a higher probability of being relevant to a test image

as opposed to those with a low correlation. Additionally, it is assumed that
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a tag with a high frequency across the entire corpus is less likely to have a

high degree of semantic relevance to a test image.

• Ranking Based schemes utilise information that is provided from the struc-

ture of the data output by the framework that is described in this thesis.

Images within a result set are retrieved with a rank describing how visually

similar each image is to the query image. It is assumed that a more visually

similar image has a higher probability of having relevant metadata than that

of a less visually similar image. A second set of experiments are carried out

regarding the ranking of each tag and its associated image.

• Geographical Based schemes take advantage of the geographical informa-

tion that is associated with each image and its associated tags. It is assumed

that tags with a large distribution across a large region would be less likely

to be describing an individual landmark, and would be more generic than

tags with a small spatial variance.

7.2.1 Tag Selection Based on Term Frequency

The first approach evaluated was based on selecting the tag with the highest

term frequency score within a result set. Term frequency (TF) is calculated by the

number of times a tag appears within a result set, divided by the total number

of images within the result set. Tags were ranked based on descending term

frequency scores, which essentially corresponds to the terms with majority repre-

sentation within a result set at the top of the ranking.

Although it would seem intuitive that the tags with the highest frequency

are considered the most representative tags of the result set, and in many cases

they are, several problems exist with this approach. From empirical inspection,

it seems that generic tags such as ’Paris’ and ’France’ are regularly the tags with
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Figure 7.1: An example illustrating the wide range of relevant and non-relevant
tags that have been retrieved from images matched with the test image above.
Each tag is sized according to its frequency within the result set of matched images.
A tag with a higher frequency is depicted larger than a tag with a low frequency.

highest frequency scores. While annotating a query image with the generic tag

’Paris’ could be useful in certain circumstances, it still has a low value semantic

meaning in this dataset, and therefore a low discrimination value. It is already

possible to ascertain from the geographical information that the image was located

in Paris, so the visual matching process adds no valued additional information.

The tf score was calculated by using the following formula:

tfi =
ti
q

where ti is the number of times a tag i appears within a result set, and q represents

the total number of images within the result set.
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7.2.2 Tag Selection Based on Global Frequency Distributions

The main problem with using an approach based on term frequency is that all of

the tags retrieved are considered to be of equal importance, and have an equal

probability of being ranked highly regardless of the tag’s discriminating power.

One important measurement in determining the importance of a candidate tag is

its level of ’uniqueness’ or ’specificity’ (as defined in [Sparck Jones, 1988]) across

the entire corpus.

Following a document retrieval methodology, a method based on the ’term fre-

quency - inverse document frequency’ (tf-idf) frequency approach is implemented.

This method assigns a higher score to tags that have a high term frequency within

a result set, and a lower frequency across the entire corpus. Additionally, it will

assign a low score to any tag that occurs regularly across the corpus.

The tf-idf metric is a combination of the term frequency metric defined in

section 7.2.1, and a metric called the inverse document frequency (idf). The

document frequency of a tag t is defined as the number of images within the

corpus that contain t. To scale the weight of the document frequency, an inverse

document frequency of a tag is defined as

idft = log
dfi
N

where dfi is the document frequency of the tag i and N is the total number of

images within the corpus. The tf-idf metric is then formulated as:

tf -idft = tft × idft

Each tag within an image result set was assigned a tf-idf score using this metric,

and tags were ranked in a descending order with the top k tags selected as the

most representative or relevant.
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7.2.3 Tag Selection Based on Image Similarity Rankings

Each result set is ranked based on visual similarity to the query image, with the

highest ranking images having the highest number of SURF correspondences.

It would seem logical to analyse whether this visual relationship with an image

corresponds to contextual similarity within the associated tags. The higher the

rank of an image, the more likely it is that the image is a correct match. An

incorrectly matched image is more likely to contain irrelevant tags, therefore

it seems plausible that the higher ranked images have a higher probability of

containing relevant tags. To evaluate this hypothesis, a tag selection scheme

based on the ranked position of each matched image was carried out. The higher

the rank of an image, the larger the weight associated with its corresponding

tags. Two weighting schemes were implemented, both of which were based on a

mixture of tag frequency within a result set and image ranking.

The first is similar to the weighting scheme adopted in Chapter 5 for the soft

assignment of visual words. This scheme places a large importance on a small

number of high ranked images, while the weight associated with images lower

down the ranking system is decremented significantly, to such an extent that the

lowest ranked images are effectively irrelevant. The score assigned to each tag t

was calculated as follows:

score(t) = tfi × wi where wi =
1

r

where n is the total number of images within the result set that the tag t appears

in and r is the rank of the image i.

The second ranking based scheme provided a more balanced weight across all

ranked images. The weight associated with lower ranked images is decremented

more slowly. This scheme can be formulated as:

Score(t) = tfi × wi where wi = 1− r

q
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where n is the total number of images within the result set that the tag t appears,

r is the rank of the image i, and q is the total number of images within the ranked

result set.

7.2.4 Tag Selection Based on Ranked Term Frequency

Using the Flickr interface, when users are prompted to create tags to describe the

content of an image, it could be assumed they they will enter the tags that they

deem most relevant to the image in descending order. This order is preserved

within the data, and therefore could be considered as a ranked list. It is possible

that these tags could be heterogeneous and only relevant through the users

interpretation, making the ranking redundant for a single image.

It is logical to assume, however, that if there is a high level of correlation

between high ranking tags over a result set of images, that these correlated tags

could be deemed most relevant semantically. An evaluation was carried out

across all top ranking tags within each result result set. Similarly to the ranked

image approach evaluated, two different ranking schemes were utilised. The first

ranking scheme places a large weight on tags that were ranked near the top of the

lists. Tags that are ranked at the lower ends of the list are assigned a weight so

low that they are effectively disregarded. This ranking scheme can be formulated

as:

Score(tj) = tfj ×
n∑
i

wj where wj = 1− 1

r

where n is the total number of images within a result set that the tag tj appears in

and r is the rank of the tag tj in image i.

The second ranking approach placed a more balanced weight distribution

across all tag ranking positions. The variation in weights between top ranking

and lower ranking tags is smaller than in the first ranking metric. This second

approach is formally defined as:
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Score(tj) = tfj ×
n∑
i

wj where wj = 1− r

q

where r is the rank of the tag tj in an image i, and q is the total number of tags

retrieved for image i.

Tags were then ranked in a descending order based on Score(tj). The top

ranked k tags were then chosen as the most representative tags for the retrieved

image result set.

7.2.5 Tag Selection Based on Geographical Distribution

One approach that might help to solve tag selection issues using community

data is the use of geographical information. Combining the geographical and

textual based metadata that accompanies each image within the training corpus,

should improve tag selection precision, as not only does a geo-tag have a semantic

relationship with an image, it also has a semantic relationship with the associated

textual metadata.

By calculating the spatial distribution of a tag throughout the whole corpus, it

is hypothesised that it is possible to predict a relevant tag with a higher probability.

A tag with a geographical distribution based over a small geographical area is

more likely to be describing a landmark within that area, rather than a tag with

a citywide geographical distribution. There are some exceptions to this rule,

however, as it has been empirically noted that many Flickr users tag all of the

images that they upload in a batch session with the same set of tags.

To indicate the geographically diverse distribution of each tag, a metric cal-

culating the standard deviation was utilised. The standard deviation is a second

order statistic that represents the amount of variation from the mean in a set of

values. It is formally calculated using the following formula:

devi =

√√√√ 1

N

N∑
i=0

(xi − x̄)2
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where xi is the geographical location for an ith instance of a tag and x̄ is the mean

geographical location of the tag. All standard deviation values are normalised in

the range 0 - 1.

The actual score calculated for each tag is a combination of the tag frequency

within the image result set and the geographical variation of the tag. This can be

formally defined as:

scorei = tfi × (1− devi)

It was found from experimentation that using a weighted value for tfi performed

with more precision. Based on this, two weights were evaluated:

scorei = w(tfi)× (1− devi)

where w is equal to 2 and 4.

7.3 Tag Selection Evaluation

7.3.1 Introduction

To evaluate tag selection approaches, a benchmark selection of tags representing a

number of ranked lists of images was created. The ranked results of 100 test image

queries utilising the hybrid approach described in section 6.5 were collected. Tags

associated with each image out of each of these ranked results were analysed

manually. This benchmark consisted of a total of 602 images with an average

of just under 6 tags per image, resulting in a total of 3444 tags. Each tag was

deemed semantically relevant or irrelevant to the query image. This relevance

was calculated based on a similar methodology to that described in section 3.3.2,

which was a method to classify tag relevance into 1 of 5 categories. In this section,

the 5 categories of semantic relevance in Chapter 3 were quantised into binary

relevance scores, i.e. relevant or non-relevant:
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• Relevant - 1 A score of one is given to a tag that contains a high level

semantic description. It must contain the name of the main landmark or

surrounding geographical area (localised, not on a city wide scale), such as

’Notre Dame Cathedral’ or ’Place de la Concorde’. A tag was also deemed

relevant if it contains a mid-level semantic description of the content within

an image. For example, if a tag describes the type of landmark or location

depicted, or describes some additional information describing the part of a

landmark that is photographed, it is deemed relevant. Some examples are:

’Cathedral’, ’Facade’ or ’Fountain’.

• Non-Relevant - 0 A classification of non relevant is given to a tag that con-

tains temporal information or a low-level semantic description of an image.

Examples of a low-level semantic tag might be ’outdoor’, ’sky’, ’night’, ’river’

or ’park’. The tags ’Paris’ and ’France’ would also be deemed non-relevant,

as the entire corpus is located within these locations. A non-relevant score is

also given to a tag with very little or no relevance to the content contained

within an image. For example, tags that contain vague geographical de-

scriptions such as ’Europe’,’city’ or ’continent’ provide little discrimination

value. Common heterogenous tags were also deemed irrelevant, including

’vacation’, ’honeymoon’ and ’trip’.

Each evaluated approach analysed different numbers of top ranked images k,

where 1,2,3,4 and 5 was assigned to k. Four different evaluation metrics were

utilised:

• Precision Precision is defined as the number of relevant tags selected for

each test image divided by the total number of tags selected for that image.

• Recall Recall is defined in this task as the number of images where at least 1

relevant tag was selected.
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• F-Score The F-Score or F-Measure is defined as the harmonic mean between

precision and recall.

It is believed that for this task a balanced performance between precision and

recall is desired. While the relevance of each selected tag is important, it is equally

important to select at least one relevant tag for as many images as possible. Based

on this, the F-Score metric is seen as the most important in the evaluation stage. A

graph displaying the overall F-Score measures for each approach is displayed in

Figure 7.2.

7.3.2 Term Frequency Selection

Two separate evaluations were carried out to analyse the effectiveness of fre-

quency based approaches to tag selection. The first approach utilised the method

described in section 7.2.1 using all the tags within each result set the results of

which can be seen in Table 7.1. From informal empirical inspection, it seemed that

the two terms ’paris’ and ’france’ had a disproportionate number of occurrences

across all result sets, and therefore were repeatedly ranked as the top two tags for

many of the query images. To account for this, a second approach was evaluated

where all occurrences of these two tags were removed from the dataset. This is

roughly analogous to stop word removal in document retrieval.

With the two terms removed, the results of the tag selection process improved

dramatically. It would seem that the two removed tags were being undesirably

selected for a large percentage of images analysed (approximately 27% where

k = 1). Based on the results in Table 7.2, this was repeated for all subsequent

evaluations.
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Number of Ranked Tags k =1 k =2 k =3 k =4 k =5
Precision .24 .225 .28 .31 .34

Recall .24 .41 .64 .82 .90
F-Score .24 .29 .38 .44 .49

Table 7.1: Tag Selection - Tag Frequency Scheme

Number of Ranked Tags k =1 k =2 k =3 k =4 k =5
Precision .51 .49 .506 .51 .50

Recall .51 .74 .88 .92 .95
F-Score .51 .58 .63 .65 .65

Table 7.2: Tag Selection - Tag Frequency Scheme (’paris’ and ’france’ omitted)

7.3.3 TF-IDF

The results of the tf-idf evaluations can be seen in Table 7.3. From these results, it

can be seen that the tf-idf method does not perform as well as the tag frequency

approach evaluated in Table 7.2 in terms of precision or recall. The 2 approaches

based on geographical distributions and tag rankings, evaluated in Tables 7.6, 7.7,

7.8 and 7.9, outperform the tf-idf scheme. It is assumed that this is due to the

nature of the corpus.

In this corpus, there may be a high distribution of images representing a single

landmark, and therefore a high distribution of tags describing the same landmark.

This, in turn, significantly affects the precision of the tf-idf approach, as many

semantically relevant tags would be incorrectly disregarded based on their idf

scores. It would seem that although the tf-idf scoring metric is widely used in

the literature for selecting representative landmark tags from unstructured sets

of Flickr data, it is not optimal due to large distributions of relevant tags for

commonly photographed landmarks throughout the corpus. It must be noted

however, that for a different global based tag selection problem, the tf-idf approach

might perform differently.
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Number of Ranked Tags k =1 k =2 k =3 k =4 k =5
Precision .43 .44 .46 .45 .43

Recall .43 .63 .78 .85 .87
F-Score .43 .51 .57 .58 .57

Table 7.3: Tag Selection - tf*idf

7.3.4 Image Ranking Schemes

In this section, two tag selection schemes based on image similarity rankings

are evaluated. Results of this evaluation can be seen in Tables 7.4 and 7.5. From

these results it can be seen that the ranking of an image based on visual similarity

within the result set does not necessarily correlate with tag relevance. Image

ranking performed poorly in comparison to the schemes based on geographical

variations, tag ranking, and term frequency when measuring precision. When

analysing recall, however, the scheme performs quite well.

One reason for the poor performance of the image ranking schemes is that each

image in the result set is likely to be visually similar based on the precision of the

recognition framework (shown in Table 6.6), and when there is only a negligible

difference in visual similarity within the result set there is unlikely to be a large

semantic difference in the associated tags. Overall the calculated F-Score measure

was below all of the other schemes.

7.3.5 Tag Ranking Schemes

In this section, the tag selection scheme based on tag rankings is evaluated. Results

of this evaluation are presented in Tables 7.6 and 7.7. Two ranking schemes were

analysed, one based on large weights assigned to high ranking tags and the
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Number of Ranked Tags k =1 k =2 k =3 k =4 k =5
Precision .35 .39 .43 .42 .41

Recall .35 .62 .79 .85 .89
F-Score .35 .47 .55 .56 .56

Table 7.4: Tag Selection - Image ranking Scheme (weighting =
1

r
)

Number of Ranked Tags k =1 k =2 k =3 k =4 k =5
Precision .34 .35 .39 .37 .33

Recall .34 .56 .74 .79 .82
F-Score .34 .43 .51 .50 .47

Table 7.5: Tag Selection - Image Ranking Scheme (weighting = 1− r

q
)

second based on a more evenly distributed weighting system. Interestingly, the

first ranking scheme performed very poorly which would suggest that the top

ranking tag is not necessarily the most semantically relevant. With a more evenly

distributed weighting system, however, there is a significant improvement. This

would suggest that although the actual top or top 2 ranking tags are not necessarily

the most relevant, users would still assign relevant tags in the top portion of a

ranked tag list.

7.3.6 Geographical Distribution Ranking Schemes

In this section, two selection schemes based on geographical distribution are

evaluated. Results of this evaluation are presented in Tables 7.8 and 7.9. The

geographical based scheme outperformed all of the other schemes evaluated. A

weighting value of 2 for tfi produced the highest F-Score results of all approaches.

It would seem that tags that are limited to a specific geographical region have a

higher probability of relevance to a specific landmark. It must also be assumed
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Number of Ranked Tags k =1 k =2 k =3 k =4 k =5
Precision .22 .34 .38 .38 .41

Recall .22 .59 .76 .85 .91
F-Score .22 .43 .50 .52 .56

Table 7.6: Tag Selection - Tag ranking Scheme (weighting =
1

r
)

Number of Ranked Tags k =1 k =2 k =3 k =4 k =5
Precision .58 .60 .58 .54 .52

Recall .58 .84 .91 .97 .97
F-Score .58 .70 .70 .69 .67

Table 7.7: Tag Selection - Tag Ranking Scheme (weighting = 1− r

q
)

that more generic tags that would still be considered relevant such as ’church’

or ’statue’ would have a high level of geographical variation due to their many

instances within a metropolitan area. Therefore, the selected tags using this

approach are more likely to contain the actual name of the landmark depicted,

which is a desirable attribute.

When assigned a weighting score of 4 to tfi, the results were somewhat erratic.

If a value of 5 is assigned to k, the precision score drops by a significant percentage.

It is assumed that this weighting measure is less stable than a weighting score of

2, therefore it is disregarded and the optimal weighting score is assigned to 2.

Results of the optimal weighting score enable the annotation of a test im-

age with a relevance precision in the worst case of over 50%. These results are

illustrated in Figure 7.2.
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Number of Ranked Tags k =1 k =2 k =3 k =4 k =5
Precision .60 .63 .62 .58 .53

Recall .60 .88 .97 .98 .98
F-Score .60 .73 .75 .72 .68

Table 7.8: Tag Selection - Geographical Distribution Scheme (scorei = 2(tfi)× (1−
devi))

Number of Ranked Tags k =1 k =2 k =3 k =4 k =5
Precision .57 .60 .60 .57 .41

Recall .57 .90 .96 .98 .98
F-Score .57 .72 .73 .72 .53

Table 7.9: Tag Selection - Geographical Distribution Scheme (scorei = 4(tfi)× (1−
devi))

7.4 Conclusions

In this chapter, several methods were proposed to garner semantic knowledge

about a test image from a collection of relevant and non-relevant textual tags.

The only structure that was available within the data was the knowledge that for

each set of tags retrieved from an image, the order in which a user had entered

those tags was preserved. As shown in Chapter 3, the majority of textual tags

associated with this community data is heterogeneous, subjective, and bears

minimal semantic relevance from an information retrieval perspective to the

content of an image. In this chapter, an approach was proposed and evaluated

that provides the means to extract semantic information with a high degree of

precision.

The aim of this chapter was to propose alternative approaches to the tf-idf

metric for scoring the relevance of Flickr tags within a visually similar result set.

From the results of this evaluation, it can be seen that three of the four proposed

approaches outperform the tf-idf method that has widely been used in similar

tasks [Ahern et al., 2007] [Kennedy and Naaman, 2008].
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From the results in Table 7.8, it is evident that the tag selection scheme based

on geographical distributions performed with the most desirable level of precision

and recall out of all evaluated approaches. When utilising a value of 5 for k, where

k is the number of selected tags to annotate a test image, 98% of the test images

had at least one relevant tag assigned to them. Additionally, when using this

value for k there is an average precision score of over 50% which indicates that

for every test image, there is on average 2.5 relevant tags assigned to it.

It must be noted that image title information was not taken into account in this

work. From an informal empirical inspection, it was evident that a large number

of image titles were vague and irrelevant. It was thought that the addition of this

metadata would have a negative effect on many of the tag selection schemes and

therefore it was disregarded.

It must also be noted that the proposed approaches to solve the problem

outlined in this chapter do not take multi-lingual text into account, and the

process could be further improved by utilising an established machine translation

method. Additionally, issues exist with synonyms, which could be improved

by giving relevant tags higher scores regardless of the metric if counted in tag

frequency statistics for each of their synonyms.

In other similar work [Ahern et al., 2007], an additional metric is proposed

to improve the tf-idf ranking based on user frequencies. Ahern et al. logically

propose that a tag with a higher level of user frequency is less likely to be het-

erogeneous and more likely to have a high level semantic relevance to a specific

region. In this work, the number of images retrieved within a result set is quite

small (whereas Ahern et al. calculated this metric based on global distributions),

and the probability of having an identical user within each of these result sets is

minimal. Therefore no experimentation utilising user frequencies was conducted.
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Chapter 8

Conclusion and Suggested

Extensions

This thesis has focused on the creation and evaluation of a framework that allows

for the automated recognition and annotation of landmarks within images. This

framework provides an efficient method to carry out recognition in real time,

where efficiency is measured in terms of recognition times for a single test image,

and memory requirements for the framework. A full pipeline system to evaluate

this framework was implemented, and each stage of the pipeline was evaluated

throughout the course of this thesis.

8.1 Hypotheses

In Chapter 1, two main hypotheses were proposed:

• Hypothesis 1. It is hypothesised that by structuring image data into semantically

and visually related groups, that it would be possible to create a memory efficient

framework based on machine learning algorithms to accurately classify commonly

photographed landmarks within geo-tagged image corpora in real-time
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• Hypothesis 2. It is hypothesised that by combining a machine learning based

method with a commonly used tree indexing based approach that it is possible to

improve upon existing methods to classify landmarks within digital images in a

memory efficient manner

The main hypothesis was that it would be possible to train a machine learn-

ing classification model with structured image data, to successfully recognise

a commonly photographed landmark within a digital image. In this thesis, a

framework was implemented and extensive experimentation was conducted to

test this hypothesis.

The evaluation stage described in Chapter 5, provides evidence supporting

this hypothesis. Experiments carried out reveal that a precision score of over .87

can be achieved, if analysing the top 3 ranking images. This is deemed to be an

acceptable score given the size of the dataset. Additionally, it has been shown

that this process can be carried out without the need for specialised hardware

or additional memory on a standard 32-bit desktop computer. Results from

this evaluation section show that the processing time required to achieve this

recognition is just 3508 milliseconds, which includes the time required to extract

image features from a query image. It is believed that this is an acceptable time

frame to allow for interactive or real time recognition. From the threshold outlined

in [Hoxmeier et al., 2000], it would seem that this timeframe would fit comfortably

into the tolerable waiting time suggested for users of complex computing tasks.

The main advantages of using an approach based on machine learning meth-

ods is that the memory requirements are small and the time required to process

a query image, allows for this process to be carried out in real-time. Many of

the previously suggested approaches to landmark recognition rely on the use of

an indexing structure, which is required to be loaded into heap memory. This

places a restriction on the maximum number of images within a training cor-

pus. It is estimated in [Philbin et al., 2007] that the inverted index structure for
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a corpus of 105,000 images required 1GB of heap memory. This suggests that

utilising this approach on a standard 32-bit machine would create a limitation on

a corpus size to approximately 400,000. Other commonly used methods based

on locality sensitive hashing and non-static vocabulary trees would require an

even larger memory footprint. The work outlined in Chapter 5, improves on these

techniques as it enables for the accurate classification of landmark images within

a corpus that is only limited by hard disk space. The average memory footprint

required for each multi-class classification model trained in this work was just

under 4MB. Although workaround approaches have been suggested to account

for this heap memory restriction, such as those based on using large numbers

of parallel machines and ’forests’ of vocabulary trees, these rely on expensive

hardware, whereas the framework proposed in this work, can be run on a 32-bit

desktop machine with 2GB of heap memory.

Another advantage of the machine learning approach is that, as the scale of the

training corpus grows, the framework performs more accurately and requires less

processing time. As new images are added to the training corpus, models become

more robust, due to the additional information provided. Also, new models

can be created, whereas previously, there was insufficient data. This provides

a significant advantage over alternative approaches where their classification

performance will decrease as the size of the corpus increases.

This novel approach to classifying landmarks based on the use of classifi-

cation models improves on other similar techniques proposed in the literature

[Li et al., 2009b] by structuring sets of models based on geographical information.

Li et al. demonstrated that there was a significant improvement in using small

number of classes in multi-class SVM models for landmark classification tasks.

They have shown an increase of almost 200% in terms of classification accuracy

between a 10-class classification model and a 500-class model. The framework

outlined in this thesis structures data based on spatial information, and therefore,
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ensures the number of classes per model can remain low. This is a significant

improvement over work carried out in [Li et al., 2009b] as it allows for the classi-

fication of a larger number of landmarks while retaining a higher classification

accuracy.

As part of this study, an extensive set of experiments were conducted to as-

certain optimal parameters when classifying using machine learning techniques.

A wide range of established computer vision features were evaluated. Some of

the more advanced features that have been successfully used for image retrieval

tasks performed quite poorly. Spatial pyramid based features, which provide

additional geometrical information to a VBOW feature, have been shown to

outperform VBOW features in many image matching and retrieval tasks. How-

ever, they achieved a precision and image recall score far below the optimal

feature. It is assumed that this poor performance is down to feature vector

length and a phenomenon in machine learning called ’the curse of dimensionality’

[Pavlenko, 2003]. Overall the highest performing feature evaluated in terms of

precision and image recall was the standard hard assignment, VBOW feature with

a vocabulary size of 4096.

Results from the evaluation section in Chapter 6 demonstrating the use of the

hybrid approach provide support for the second hypothesis. A commonly utilised

method for indexing local image features, is a tree structure called a vocabulary

tree. This tree structure provides a method to approximate nearest neighbour

matches of interest point features. This hybrid framework has been shown to

achieve a high precision score when evaluating the top ranking images retrieved.

It has been shown that the hybrid approach outperforms a brute force matching

method by a factor of approximately 100 in terms of required recognition time,

while sacrificing a precision score of just 3.8%.

It has also been demonstrated that when combining an SVM approach with a

vocabulary tree, that the required processing time is significantly reduced over
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using just the vocabulary tree alone. This hybrid approach also has been shown

to provide a more desirable image recall(relevant) score (recognising over 5%

percent more test images), while sacrificing only a minimal decrease in precision

(0.4%).

In Chapter 1, several secondary research objectives were defined. These

objectives included:

• Analysing the accuracy of community contributed metadata for the purposes of

image matching and classification

• Propose approaches to automatically annotate query images by selecting subsets of

semantically relevant tags from larger sets of noisy metadata.

In Chapter 3, a large scale analysis of metadata that accompanies Flickr im-

agery was carried out. The main aim behind this analysis was to discern how

much noise existed within the Flickr metadata, specifically how accurately the

images were geo-tagged and the relevance of the contextual tag information. The

outcome of this analysis showed that the geographical information that accompa-

nies each image within the corpus was quite accurate. Over 80% of the geo-tags

examined had an accuracy to within 200 metres. This analysis had enabled op-

timal parameters to be selected for spatial based search space pruning in the

clustering and classification processes utilised in this work.

This analysis will also be useful for the wider research community as it im-

proves upon previous work in the field. Many of the previous approaches to

estimating image geo-tag accuracies concentrated solely on geographical data

and thus were approximations with a potential large margin for error. Based on

local knowledge and manual inspection, the analysis carried out in Chapter 3

provides a more accurate measurement of geo-tag accuracies.

Another objective of this thesis is to automatically provide a textual annotation

for a query image based on a subset of all retrieved text tags. It is a challenging
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problem to extrapolate semantically relevant tags from a large subset of noisy

data. Several metrics to solve this problem were proposed in this work. Empirical

evidence presented in Chapter 7, provides support for this research objective.

Many of the suggested approaches in the literature are based upon a variation

of the tf-idf algorithm. This work improves upon this technique by analysing

additional contextual information that is available within the metadata. It has been

shown that three of the proposed approaches outperform the tf-idf methodologies.

8.2 Summary

This work proposes an end to end framework was proposed to solve the problem

of automatically classifying landmarks within geographical image collections and

automatically provided a relevant and accurate caption for a landmark image.

The key contributions of this work are:

1. It is possible to automatically recognise specific landmarks within digital

imagery, using a machine learning approach, with a high degree of precision

by structuring data based on visual and geographical similarity. Addition-

ally, is possible to conduct out this recognition procedure in real time in a

memory efficient manner.

2. A thorough investigation was carried out to ascertain optimal parameters

to be utilised when adopting classification models for the purposes of land-

mark recognition.

3. By combining two disjoint methods for landmark classification (SVM and

Vocabulary Tree) using community datasets, a significant gain can be made

in terms of required classification time and image recall.

4. A detailed analysis of community datasets was provided. The accuracy

of their associated metadata was analysed and evaluated for use in image
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matching an annotation tasks. The results of this analysis demonstrated that

a large percentage of geo-tags were accurate to within 200 metres.

5. Several approaches to automatically rank a tags semantic relevance to an

image were proposed and evaluated. Three of these proposed approaches

outperform the most commonly used approach in the literature.

8.3 Future Work

There are several potential avenues for future research based on the outcomes of

this thesis.

Based on the positive results from the evaluation in Chapter 6, it would seem

logical to evaluate this work using much larger image corpora. At present, there

are over 100,000,000 geo-tagged images stored in the Flickr repository. While this

work examined a small subset of that collection, it is believed that the framework

described in this thesis could be readily scaled up to process an image corpora of

that scale. Geographical filtering would ensure that the discrimination values and

real time classification times are retained. Using small, spatially organised classi-

fication models, the heap memory footprint would remain minimal. Scaling up

this framework to index a data collection of that scale would create an immensely

powerful image classification tool. Due to large distribution of the Flickr data

worldwide, users of the framework could capture an image of a landmark from

anywhere on the planet, and in real time, have that image recognised, annotated,

and uploaded to a social network or photo sharing repository of their choice.

Another research avenue is to pursue web based knowledge retrieval. There

is a wealth of knowledge available online in commercial and community created

repositories. If a collection of relevant text tags is selected, using the approaches

outlined in Chapter 7, it will be possible to use these tags as query terms into

internet based search engines. A wealth of contextual knowledge becomes acces-

254



sible, and it becomes possible to annotate query images with rich annotations.

Using these annotations it would be possible to create a virtual tour guide for a

user, using only a mobile phone device.

It is also intended to improve on the accuracy of the tag selection schemes

outlined in Chapter 7, using community contributed textual repositories and

more advanced text processing methods. One potential improvement to the tag

selection process, described in Chapter 7, is to utilise the online lexical datasets

such as ’WordNet’ [WordNet, 1985]. WordNet groups sets of English words into

collections of synonyms, called ’synsets’. In total, the dataset consists of over

150,000 English words, and would provide a valuable resource to measure co-

occurrences between sets of textual tags. For example, from the synset associated

with the word ’Church’, it would be possible to associate the semantically similar

words ’Chapel’ and ’Cathedral’. It is intended to explore the use of this data in

future work.
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Appendix A

Mobile Based Landmark

Recognition System

A.1 Introduction

In this section, some related work is described that was carried out based on the

research presented in this thesis. To analyse how this framework performs in

real world conditions, a mobile phone based landmark classification system was

developed and evaluated. The system allows for a user to take a photograph and

have it automatically captioned using the hybrid framework before uploading the

annotated image to a online photo repository of the user’s choice, such as Flickr

[Flickr, 2004] or Facebook [Facebook, 2004].

A user evaluation was also carried out on this system, including an evaluation

of the accuracy of the landmark recognition framework and a user evaluation of

the relevance of the annotations created by the system. It must be noted that some

of the work in this appendix was carried out by Daragh Byrne and Dr. Andrew

Salway. Additionally, some of this work appeared in [Jones et al., 2010].
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A.2 Mobile Landmark Classification

The goal of the mobile classification system is to analyse the effectiveness of

the landmark recognition framework in a real world scenario, and to gather

user feedback on the effectiveness and accuracy of the framework. This system

provided some novel improvements upon the framework described in this thesis

in that it made use of online resources to provide a detailed annotation of a query

image. For example, given an image with GPS data of its location of capture,

the system returns a semantically-rich annotation comprising of tags which both

identify the landmark in the image (as described in Chapter 7), and a list of

interesting facts about it, e.g. ’A view of the Eiffel Tower, which was built in 1889

for an international exhibition in Paris’ or ’A view of Le Tour Eiffel. Le Tour Eiffel

was built for the International Exhibition of Paris of 1889 commemorating the

centenary of the French Revolution’.

The system exploits visual and textual web mining in combination with

content-based image analysis and natural language processing. In the first stage,

an input image is matched to a set of community contributed images (with key-

word tags) on the basis of its GPS information and image classification techniques

using the hybrid framework described in this work. The depicted landmark is

inferred from the keyword tags associated with the matched set of images. The

system then takes advantage of the ample information written about landmarks

available on the web at large, to extract a fact about the landmark in the image.

A.3 Application

This system was created for use on Apple’s smartphone, the ’iPhone 3GS’. Addi-

tionally, it may also be used on Apple’s tablet computer, the ’iPad’. The iPhone

has an integrated digital camera along with an integrated GPS receiver. The
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integrated camera allows for the capture of digital imagery with a sensor size of 5

megapixels.

The application operates as follows: first the user selects a photo they want

to process, either by taking a new image with the device’s in-built camera or

by selecting an existing image from the photo library. They are then asked to

confirm that the location for the image is correct, after which the image and

location data is passed to the middleware layer through a REST-based API. After

the service completes the matching and annotation of the image, a response is

returned to the device. The annotated image is then saved to a local data store

and the application presents the results on-screen. The image, along with the

automatically generated captions and tags, can then be uploaded to a number

of social media sites including Flickr and Twitter through the results screen. An

overview of the system architecture is presented in Figure A.1.

From a users perspective the mobile application is comprised of several inter-

face screens:

1. Once a user takes an image, the system then analyses the GPS information

on the device and provides a map based interface, centred on the users

current location. The system then provides the user with an opportunity

to amend the GPS information in case of an error, where they can pan and

zoom to a correct location. This is illustrated in Figure A.2.

2. The system then sends the image across to a server running the landmark

recognition framework. The server carries out image recognition, image

annotation and retrieves information from online web services describing

the landmark depicted.

3. After processing, the first screen on the device that is presented to the

user consists of the all annotations created to describe the image. This is

illustrated in Figure A.3.
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4. The second screen displays all matched images from the corpus so that the

user can confirm that their image was correctly matched. This is illustrated

in Figure A.4.

5. The final screen that is available to a user displays social media websites,

where the user can upload the annotated image to. This screen is depicted

in Figure A.5.

Figure A.1: An illustration demonstrating how all components of the system fit
together and interact with each other.

A.4 System Pipeline

The system recognition pipeline consisted of four main stages:

1. Landmark Recognition

2. Tag Selection

3. Toponym Identification
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Figure A.2: Once an image has been taken by the system, the application will
automatically provide a map based interface, centred on the current GPS coordi-
nates. A user then has the option to refine the geo-tags to account for inaccurate
GPS coordinates. The user can pan and zoom to a more accurate location using
this map interface.

Figure A.3: The application allows a user to browse through the selected captions
and historical facts describing the landmark that they depicted.

260



Figure A.4: The application allows a user to browse through the images from the
corpus that their image was matched with. This stage allows for a user to confirm
that indeed their image was correctly classified before they upload the photo to
an online repository.

Figure A.5: The application provides the user with an option as to which online
image repository they would like to upload their captioned image to.
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4. Fact Extraction and Title Augmentation

A.4.1 Landmark Recognition

The landmark recognition framework used in this mobile system is described

in Chapter 6 of this thesis. It consisted of a hybrid based approach to landmark

recognition. This hybrid approach consisted of a collection of spatially organised

SVM classification models, which were used to classify commonly photographed

images of landmarks, and a hierarchical based approach, which was used to

classify uncommonly photographed images of landmarks. This hybrid approach

is described in more detail in section 6.5.

A.4.2 Tag Selection

Each matched image returned by the system has associated contextual information

which includes a set of tags. It was desired to assign the most relevant tags to

the query image. To achieve this, the set of returned images were examined and

an attempt to reach a consensus on appropriate tags to be applied to the input

image was made. The community-contributed tags were leveraged within the

result set to achieve this. A hashmap of tags is created from the available tag set,

by iterating through the matched images and the tags they contain and adding

them to the set. This yields a set of distinct candidate tags. Each tag within the set

is then given a weighting which corresponds to both the number of occurrences

within the result set and the order of the appearances within the ranked results

list (similarly to the image ranking approach outlined in section 7.3.4). To do this,

each tag is assigned an initial weight of zero and a weighting component, a real

number in the range of zero to one, is provided to initialize. The set of image

results is then iterated over, and each tag for the result is examined. As a tag

is encountered, that tags score is incremented by the initial weighting measure
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raised to the exponent of its index within the result set. This gives precedence

to the tags within the top ranked elements in the result set i.e. tags encountered

in the highest scoring match are given greater weight than those from images

further down the result set. Once each tag has been ranked, a thresholding step

is then applied to prune the candidate set to a representative set. In order to

perform this step, the percentage of the total tag set that it should be constrained

to must be defined. Setting the bound to be a percentage value is not ideal in all

cases, however, as in some over several hundred tags may occur in result sets

and this would result in potentially large numbers of tags being applied to the

image. Within increased numbers, the possibilities for more noisy output are

introduced and heuristically the tag set should be a relatively small number of

between 6-10 tags. As such the thresholding approach, in cases of large input tag

sets may lower the target size, e.g. to around 10 items. Once a target size has

been set, the scored tags are ordered by importance and the item on the boundary

of the target set is identified. To further prevent noisy sets a heuristic is applied

at this point by examining the number of items above the threshold score and

the number at the threshold point. If more than 60% of the target set above the

threshold and a further 30% or more of the tags lies on the threshold, only the

items above the threshold score will be included. This prevents cases where a

large number of items may lie on the threshold being accepted into the candidate

set. This thresholding approach using heuristic selection methods is designed to

limit the number of tags selected to a small but representative set which can be

used to annotate the target image.

The selection of appropriate tags for the target image is extremely important

within the workflow not only in terms of selecting tags for the image, but since

these tags are the source of input to web-based augmentation stage. In order to

evaluate the accuracy of the tagging phase. 150 test images were groundtruthed

in order to validate tag selection. The tag results returned by the image matching
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service were formed into a union pool set. An annotator manually judged each

tag and made a binary classification of it relevance. A tag was determined to

be relevant if it described the landmark featured in the image. As such, while

potentially useful in describing the image or its composition, associated tags were

not deemed relevant. Thus details such descriptions of camera types, related tags

such as weather or lighting, or information on the year or events and activities

were deemed non-relevant, since the emphasis in the groundtruthing was placed

on tags most useful for use in the augmentation stage. On average 5.95 tags

were deemed relevant per image, while an image had a average of 42.76 tags

taken from 7.58 matches from the corpus. With a groundtruth established, the

tag weighting and thresholding approach as previously described was applied

to the image matching results for each test image. The input parameters were

varied from 0.5-0.95 for both weighting and threshold and all of the combinations

iterated. The set of tags returned from each variation was compared against the

groundtruth for that image. Precision and recall measures were calculated as

outlined in [Jschke et al., 2009]. These were then averaged across all of the test

images and the f1m measure calculated. Within the selection of tags there’s a need

to balance precision and the recall so that ’noisy’ or heterogeneous tags are kept

to a minimum while a maximum of the relevant tags are contained within the

selected set. Applying a low threshold results in a more unconstrained and noisy

set displaying high recall but lower precision. Conversely, a high threshold and

weight, results in a more constrained set, which will displaying high precision,

has lower overall recall. The best precision (0.623) was found to occur with a harsh

threshold of 0.95 with a decrementing weight of 0.85. The worst precision (0.516),

but best recall (0.761), was found to occur with a threshold of 0.5 with a weighting

of 0.95. The poorest recall occurred almost opposite to the best precision score

(0.651), with a threshold of 0.95 and weight of 0.8. Given that the best and worst

scores for both precision and recall almost mirror each other, there is need to
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carefully balance the tag selection performance for both. By exploring the various

variations for the highest f1m (0.644), a threshold value of 0.85 was identified with

a iteratively decreasing tag weighting of 0.95 to be optimal for tag selection. This

results in an average of 6.92 tags being selected, which is very close to the desired

number of tags as indicated by the annotation effort.

A.4.3 Toponym identification

A toponym is used to initiate the fact extraction and title augmentation step,

and its accuracy is important to ensure the effectiveness of the fact extraction

stage. The identification of an appropriate toponym for the images is reliant upon

the outputs of the tag filtering and selection process as outlined previously. To

investigate this, 150 test images were selected, image matching was performed

and a set of tags filtered from the results selected. Nearby toponyms were looked

up using GeoNames and a candidate selected based on the tag set in a manner as

outlined in Section A.2.2. Each of the returned toponyms were then annotated into

one of the following categories: Incorrect toponym identified; Vague or unspecific

toponym identified, e.g. Paris, France; Toponym is related to the target but is

incorrect, this included a landmark nearby or within the image but which was

not the primary focus or featured landmark, e.g. the Champ de Mars returned in

place of the Eiffel Tower; and finally a correctly identified toponym. In total 30 of

the toponyms were incorrect, 16 were vague, 21 were incorrect but related and 83

were correct.

While 55.33% of the tested images returned a correctly identified toponym, a

further 14% (vague and related categories) may be considered acceptable (totalling

69.33%). All of the vague cases were composed of a generic toponym of ’Paris’,

which return facts such as ’Paris is named after a Celtic tribe called the Parisii who

lived on the island in the river’, ’Paris is famous for its huge number of cafes and
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brasseries’ and ’Paris was made for lovers and lovers of life.’ While these facts are

not ideal, they are generic enough to be reasonably acceptable. Additionally those

which are related often contained reference to the target landmark. For example,

in the case where the Champ de Mars was identified in place of the Eiffel tower,

the first returned fact is the following: ’Champ de Mars is a green area located in

the middle of the Eiffel Tower and the Ecole Militare building’. To ascertain the

reason for poor toponym selection the 30 cases were compared where an invalid

toponym was selected and applied to an image against the 83 cases where it was

successful. The invalid cases on average received only 3.03 results from the image

matching step (min 1, max 11, median 2) while the successful toponym cases

had an average of 8.94 results ( min 1, max 86, median 4.5). The successful cases

have higher number of results on average, often substantially higher, and can as a

result reach greater consensus on the appropriate tags. This most likely positively

affects the toponym selection step. Additionally, the invalid cases, had on average

12.77 distinct tags returned within the results set, of which 6.6 were selected as

representative tags for the target image. With the successful cases, there were

26.76 distinct tags of which 6.06 were selected. Having a lower number of tags

and less diversity in the tags may make it more difficult to filter and threshold

the tag set successfully. In the case of the successful set it can be seen that the set

of available tags is being more judiciously pruned to 22.6 of the original set in

comparison to 51

A.4.4 Fact Extraction and Title Augmentation

In the next stage of processing the output of the image classification and toponym

identification is used as input to a highly portable mechanism for the extraction of

partially structured facts from information on toponyms available on the World

Wide Web. A particular feature of this is that it exploits information redundancy
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on the web, i.e. the fact that the same information about a landmark is available in

many forms on the web. This method is described in detail in [Salway et al., 2010].

For a given landmark, a list of facts is returned in the form (Landmark, Cue, Text-

Fragment), ranked according to a score which is intended to promote interesting

and true facts. This fact structure makes it straightforward to combine it with

an existing image title. Crucially, for this information extraction process, it is

assumed that at least one key fact about a landmark will be expressed somewhere

on the web in a simple form, so that its only necessary to work with a few simple

linguistic structures and shallow language processing. The following sub-sections

describe the fact extraction process.

Get Snippets from Search Engine: A series of queries is made to a web search

engine (Yahoo’s BOSS API [Yahoo, 1995]). Each query takes the form<“Landmark

Cue”>; where the use of double quotes indicates that only exact matches are

wanted, i.e. text in which the given landmark and cue are adjacent. A set of

cues is manually specified to capture some common and simple ways in which

information about landmarks is expressed, e.g. ‘is a’, ‘is famous for’, ‘is popular

with’, ‘was built’.

Although around 40 cues were examined (including single / plural and present

/ past forms), a much smaller number are responsible for returning the majority

of high ranking facts; in particular (and perhaps unsurprisingly) the generic “is”

seems most productive. The query may also include a disambiguating term. For

example, streets and buildings with the same name may occur in different towns,

so a town name can be included in the query outside the double quotes, e.g.

<“West Street is popular with” Bridport>. For each query, all the unique snippets

returned up to a preconfigured maximum number are processed in the next step.

Typically a snippet is a few lines of text from a webpage around the words that

match the query, often broken in mid-sentence.
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Shallow Chunk Snippets to Make Candidate Facts: The system is only only

retrieving information about a given landmark that is expressed as “Landmark

Cue ...”, therefore, a simple extraction pattern can be used to obtain candidate facts

from the retrieved snippets. The gist of the pattern is ‘BOUNDARY LANDMARK

CUE TEXT-FRAGMENT BOUNDARY’, such that ‘TEXT-FRAGMENT’ captures

the ‘Text-Fragment’ part of a fact. The details of the pattern are captured in a

regular expression on a language-specific basis, e.g. to specify boundary words

and punctuation, to allow optional words to appear inbetween LANDMARK and

CUE, and to reorder the elements for non-SVO languages. A successful match of

the pattern on a snippet leads to the generation of a candidate fact. For example,

using extraction patterns the snippet text ‘...in London. Big Ben was named after

Sir Benjamin Hall. ...’ matches, giving the candidate fact (Big Ben, was named,

after Sir Benjamin Hall) but ‘The square next to Big Ben was named in 1848...’

does not match.

Filter Candidate Facts: Four filters are used as a quality control to remove

candidate facts that: contain potentially subjective words; end in words that

would be ungrammatical; are under a length threshold; and that contain words

that are all in capitals. Finally, facts are ranked so that it is more likely to get

correct and interesting facts at the top. The overlap between candidate facts

is exploited for the same Landmark-Cue pair to capture these notions to some

extent. For each Landmark-Cue pair a keyword frequency list is generated by

counting the occurrence of all words in the Text-Fragments for that pair, words in

a stopword list are ignored. The score for each fact is then calculated by summing

the Landmark-Cue frequencies of each word in the Text-Fragment, so that facts

containing words that were common in other facts with the same Landmark-Cue

will score highly. If shorter facts are wanted then the sum is divided by the word

length of the Text-Fragment.
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The sum score for a fact can become high in two ways: (i) there are many

overlapping Text-Fragments for an Landmark-Cue pair, so there are some high

word frequencies; and (ii) a fact contains more of these high frequency words

than other facts. Thus, the method is designed to highly rank facts with the most

appropriate Cue for the Landmark, and the best Text-Fragment for the Landmark-

Cue pair. For an existing image title, e.g. “A view of the Eiffel Tower”, then the

top-ranked fact, e.g. ‘Eiffel Tower, was built, in 1889 for an international exhibition

in Paris’, can be inserted in one of two ways: (i) as a new sentence - “A view of

the Eiffel Tower. The Eiffel Tower was built in 1889...”; or (ii) as a subclause - “A

view of the Eiffel Tower, which was built in 1889...”.

A.5 User Evaluation

The previous sections have outlined detailed evaluation of each component of

the overall system. In order to validate its overall performance, a user-evaluation

was conducted to examine the overall perception of the system’s end-to-end

performance in captioning landmark images.

A.5.1 Participants

15 study participants (12 male, 3 female) took part in the evaluation. Participants

were selected opportunistically and were expected to have some prior knowledge

of Paris in order to perform the evaluation. All of the participants were staff or

postgraduate students within the DCU School of Computing faculty and had

good computing experience. None of the participants had previous exposure to

the user interface, though some familiarity with the concepts and technologies

could be expected. All users had some previous experience with interactive

multimedia systems. No incentive to participation was provided.
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A.5.2 Evaluation Method

For the evaluation, 16 test cases were selected from the test corpus of 1000 Parisian

landmark images. Eight of these cases were popular and well-known landmarks

which occurred regularly in the corpus. These include for example the Eiffel Tower

and Notre Dame Cathedral. It was expected that for these popular landmarks, the

system should perform well in all aspects of the captioning process and this should

result in a good overall annotations being applied to the images. Additionally,

eight less popular and more challenging cases were evaluated. These included

less prevalent landmarks such as the College of the four nations and more difficult

landmarks such as statues e.g. the Thinker by Rodin.

Participants were provided with the hardware, an iPhone, required to complete

the evaluation. As the users had no previous experience with the interface, they

were instructed on its used and asked to familiarize themselves with the search

system for a short period prior to commencing the evaluation. Once familiar with

the system, they were asked to complete a series of topics. The order of topics was

organized to maximize the coverage of the topics. Nine participants completed

12 topics while the remaining 6 participants completed 6 topics. In total 144

captioning judgments were made. Users were allowed to complete their assigned

topics at their convenience but were encouraged to do so without interruption.

A questionnaire was administered across various stages of the evaluation.

Prior to commencing, background and demographic information, along with

familiarity with similar systems was captured. After each topic, the users were

asked to provide subjective ratings on the systems performance for that topic.

Finally, after completing all assigned topics, the participants were asked to provide

general feedback on their experiences with the user interface including the System

Usability Scale (SUS) [Brooke, 1996].
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A.5.3 Results and Discussion

Within this section, the outcomes of the end-to-end user evaluation are discussed.

The findings are presented in terms of the system’s usability and its efficacy in

captioning landmark images.

System Usability

The participants were generally unfamiliar with the interface. This scored an av-

erage 1.53 on a 7-point Likert scale. Despite their unfamiliarity with the interface,

they found it both very easy to use and very easy to learn. These components

scored 5.46, and 6.23 respectively on a 7-point scale. The participants additionally

provided qualitative feedback that supports its ease of use. When asked what

they liked about the system participant 6 indicated that it was easy to use while

participant 5 noted it being fast and simple. Participant 12 remarked upon the

overall user inteface: user interface is fluid nice flow.

To further evidence the general usability of the system, it scored favourably

with the SUS questionnaire. The user interface scored 79.375%. Within the SUS

scale, the system scored very highly for its ease of learning. For question 7 (I

would imagine that most people would learn to use this system very quickly)

and question 10 (I needed to learn a lot of things before I could get going with

this system) scored 4.333 and 1.166 on the 5-point Likert Scale respectively. The

system was not found to be cumbersome, scoring 1.416 for Question 8 and the

users felt very confident using the system (4.0, Question 9) even with limited

familiarity and a short training time.

System Performance

Following the completion of the topics the users were asked to score the system

generally in terms of its responsiveness and performance at captioning. This was
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rated again on 7-point Likert scale and the system scored favourably on each

criteria. The system was found to be very responsive (mean 5.46). The system was

also found to perform fairly well for its overall captioning effectiveness (mean

4.77), and its performance at providing titles using the matched toponym and at

providing suitable facts for the landmark was viewed as performing similarly well

(4.77 and 4.85 respectively.) The systems performance at selecting and applying

tags to the image was seen as slightly less effective scoring neitherly positive nor

negatively with 4.08.

Two freeform questions probed what the participants liked and disliked about

the system and this finds similar sentiment to the quantitative scores outlined

above. Participant 2 noted the system to be really accurate and fast while par-

ticipant 5 liked its overall responsiveness, commenting on its quick collection of

facts and tags. The facts were viewed very favourably by the participants, most

liking their inclusion and noting their utility. Participant 9 commented that the

system had Good captions performance and that the quality of facts proposed was

generally high. In particular, Participant 14 liked the facts provided by the system

noting them to be pretty accurate for the most part and the most informative of all

the data. The tags selected by the system were viewed somewhat less favourably

and participant 14 describing them as not always relevant. The qualitative feed-

back and the lower perceived performance indicate the participants were very

discerning about noisy or irrelevant tags.

The participants also completed a per-topic subjective rating of the systems

perceived performance. They were asked following each topic to rate the systems

performance at captioning that image on a 7 point Likert scale. A 55% confidence

in the systems captioning performance was found (4.86 mean, 1.94 standard

deviation.) The general perception of the system was it had fair performance

overall. The per-topic performance is now explored in more detail. The full details
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of the average topic performance and more detailed information on the test case

topics can be found in Table n below.

Within the evaluation the topics were divided into two groups. It was com-

posed of 8 cases relating to landmarks which were prevalent and popular, while

a further 8 cases appeared far less regularly within the test and training set. As

anticipated, with more exemplar images and more matched results, the popular

cases performed far higher than their sparse counterparts. The popular cases

rated a mean of 5.80 (or 68.7% confidence) with the sparse cases 3.953 (or 42.2%

confidence). From this it is asserted that the more prevalent a landmark is within

a corpus the more effective the system will be at captioning it. This is because

much of the captioning process relies on gaining consensus from the commu-

nity contributed annotations. In order to perform well there must be a sufficient

number of results to disambiguate relevant and non-relevant tags and allow the

system to gain consensus. Where there are low numbers of results it will be more

difficult for the system to achieve this.

To further explore this, the topics are divided into three groups: those that

returned more than ten results, those that returned between 10 and 1 result, and

those that returned just one result. There was 5 cases that had more than 5 results

(max 132, min 19, average 55.8). These cases because of their larger result set

has much larger numbers of tags (mean 95.8 distinct tags, max 157, min 36) from

which a relatively small constrained set were chosen (mean 7.8 selected, max 11,

min 6). As the tags for this set were very judiciously selected and constrained

to on average just 7.9% of the original tags, a strong consensus on the relevant

tags is reached. The participants agreed and rated these cases with an average

system captioning confidence of 74.1% (mean 6.19 on 7-point scale). The 8 cases

with between 1 and 10 image results faired less favourably scoring just 52.6%

confidence (mean score of 4.68). The difference in the results and tag set is marked.

These images included on average 3.88 results (min 2, max 7) with on average
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23.88 distinct tags (min 12, max 47) from which an average of 8.13 tags were

selected (min 3, max 32). This represents a selected set of 34% of the original set

and is far less constrained than the cases with larger results sets. Finally, three

cases had just one result. These were scored very poorly with just 31% confidence

in the captions output. All of these items had only one image match, and were

reliant on that image for candidate tags making the likelihood of noise being

introduced extremely probable.

From this it can be seen that the captioning performance is closely linked

with the number of matched results. In cases of well matched images the system

performs very well, with a perception of 75% captioning effectiveness. This is an

extremely encouraging result.
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