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Abstract

This thesis investigates the asymptotic behaviour of a scalar, nonlinear differential equa-

tion with a fixed delay, and examines whether the properties of this equation can be

replicated by an appropriate discretisation. We begin by considering equations for which

the solution explodes in finite–time. Existing work on such explosive equations has dealt

with devising numerical schemes for equations with polynomially growing instantaneous

feedback, and methods to deal with delayed feedback have not been fully explored. We

therefore set out a discretised scheme which replicates all the qualitative features of the

continuous–time solution for a more general class of equations. Next, for non-explosive

equations which exhibit extremely rapid growth, the rate of growth of the solution depends

on the comparative asymptotic nonlinearities of the coefficients of the equation and the

magnitude of the delay. Thus we set out conditions on these parameters which charac-

terise the growth rate of the solution, and investigate numerical methods for recovering

this rate. Using constructive comparison principles and nonlinear asymptotic analysis, we

extend the numerical methods devised for explosive equations for this purpose.
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Introduction and Preliminaries

0.1 Overview

This thesis considers the asymptotic behaviour of nonlinear differential equations, as well

as the asymptotic behaviour of corresponding numerical approximations. A perusal of the

literature on the former topic reveals it to be extensive, even though the topic has only been

studied in depth since the 1950s. One of the earliest papers is due to Myskhis [42], which

develops characteristic equations. In the last thirty years, the field has been particularly

active; much progress has been made in particular on the asymptotic behaviour of linear

equations, especially on the asymptotic stability of their equilibria. Important monographs

written which are devoted to this topic include [29, 33]. Furthermore, linearisation results

comparable to those available for ordinary differential equations are also available [20, 29].

Suppose that it is known that the solution of the equation converges to an equilibrium

or grows without bound, but the functional on the right-hand side does not have leading

order linear behaviour in the region in which the solution ultimately lies. In the case of

stability, some results are known; precise information on asymptotic behaviour, including

rates of convergence, have been obtained by Haddock and Krisztin [26, 27]. For such

problems, the intrinsically nonlinear character of the leading order terms makes exponen-

tial convergence of solutions to equilibrium impossible. Therefore, the delicate and precise

theory associated with the linear case cannot characterise the asymptotic behaviour. Inter-

esting surveys of this work, and techniques to understand such highly nonlinear systems,

is provided in the monograph of Lakshmikantham, Wen and Zhang [34].

It would appear that the case when solutions grow unboundedly is less well studied, and

one aim of this thesis is to develop techniques to tackle such highly nonlinear equations.

Unbounded growth in this case can take two forms, and this is best seen by considering

the simple family of scalar ordinary differential equations

x′(t) = f(x(t)), t > 0; x(0) = ψ > 0, (0.1.1)

where f(x) = xβ for x > 0. If 0 < β < 1, there is a unique continuous solution of (0.1.1)
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Chapter 0, Section 1 Introduction

defined on [0,∞) which obeys

lim
t→∞

x(t) = +∞, (0.1.2)

and moreover grows at a well–defined rate according to

lim
t→∞

x(t)

t1/(1−β)
= (1− β)1/(1−β). (0.1.3)

The case when β = 1 corresponds to the linear differential equation. However, if β > 1,

the unique continuous solution of (0.1.1) is defined on a finite interval of the form [0, T ),

where

lim
t→T−

x(t) = +∞, (0.1.4)

and T , often called the explosion time or blow–up time, depends on the initial data (in

fact T = Tψ = ψ1−β/(β − 1)). The asymptotic behaviour of the solution as it approaches

the explosion time is also readily determined, and given by

lim
t→T−ψ

x(t)

((β − 1)(Tψ − t))−1/(β−1)
= 1. (0.1.5)

These two distinct types of behaviour are in this thesis termed unbounded growth and

explosion. It is our goal to investigate the asymptotic behaviour of the simplest possible

scalar delay differential equation extension to (0.1.1); one suitable candidate is

x′(t) = f(x(t)) + g(x(t− τ)), t > 0; x(t) = ψ(t), t ∈ [−τ, 0]. (0.1.6)

The fixed delay here is τ > 0. Since our interest is in the unbounded growth or explosion

of solutions, it is natural to request that f and g be positive, so that for any initial function

ψ which is positive on [−τ, 0], solutions will tend to infinity as they approach the upper

endpoint of their interval of existence. We also wish in general to avoid any complications

that might ensue owing to the existence of multiple solution of (0.1.6). So for this reason,

we assume f to be locally Lipschitz continuous, and g and ψ for be continuous, though

for the purpose of our numerical analysis we often request that g be locally Lipschitz

continuous. Since these conditions on f , g and ψ are referred to throughout our work, we

list them now:

f ∈ C((0,∞); (0,∞)) is locally Lipschitz continuous, (0.1.7)

2



Chapter 0, Section 1 Introduction

g ∈ C((0,∞); (0,∞)) is locally Lipschitz continuous, (0.1.8)

ψ ∈ C([−τ, 0]; (0,∞)). (0.1.9)

Our task can be summarised as follows: to find conditions on f , g and τ under which

the solutions of (0.1.6) obey (0.1.4) or (0.1.2). In the case that the solution obeys (0.1.2),

we attempt to determine the rate at which x(t)→∞ by finding a deterministic function

J and a positive λ (both of which depend explicitly on f , g and τ) such that

lim
t→∞

J(x(t))

t
= λ, (0.1.10)

which is the natural analogue of the asymptotic result (0.1.3) for the ordinary equation.

If, on the other hand (0.1.4) occurs, we attempt to determine the rate at which x explodes

by finding a deterministic function M (which again can depend on f , g and τ) such that

lim
t→T−ψ

M(x(t))

Tψ − t
= 1, (0.1.11)

which is the natural analogue of the asymptotic result (0.1.5) for the ordinary equation.

It transpires, in the case when x obeys (0.1.4), that the function M is given by F̄ ,

defined by

F̄ (x) =

∫ ∞
x

1

f(u)
du, x > 0. (0.1.12)

However, in contrast to the ordinary differential equation (0.1.1) we cannot obtain an

explicit formula for the explosion time Tψ in terms of f , g, ψ and τ . Furthermore, there

may be circumstances in which we cannot compute a closed form formula for F̄ . For

these reasons, it is desirable to develop reliable, versatile and tractable numerical methods

which will reproduce the qualitative asymptotic features of the explosion, approximate

the solution adequately on compact intervals, and approximate the explosion time with

arbitrary accuracy.

Equally, one may wish to obtain information about the rate of growth of solutions in

the non-exploding case characterised by (0.1.3), because the function J and normalising

constant λ in (0.1.10) may not be known, or computable in closed form. In contrast to the

explosive case, in which the function M = F̄ characterises the asymptotic behaviour, it

happens that the function J in (0.1.10) which characterises the rate of growth of solutions
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Chapter 0, Section 2 Introduction

of (0.1.6) differs according to the relative sizes of f(x) and g(x) as x→∞, and the mag-

nitude of τ . Therefore it is desirable, amongst other things, that our numerical methods

detect the switch between various types of growth function J , provide a computable con-

dition for detecting the switch, and estimate the rate of growth. Naturally, the method

should approximate the solution satisfactorily on compact time and space domains.

We have confined our attention to scalar autonomous equations with fixed delay; ap-

plications of delay differential equations often require systems of equations or contain

non-autonomous features. Our restriction, however, can be justified in a number of ways.

First, a complete picture of the asymptotic behaviour of equations of the form (0.1.6) is

unavailable, even in the scalar autonomous case, and in fact the rate of growth of solutions

in the case when solutions obey (0.1.2) is unexplored and complicated. Second, it is diffi-

cult to assess the quality of a general numerical method for a class of differential equations

without first identifying some sufficiently rich subclass of problems whose properties are

comprehensively understood by purely analytical means. We believe that the analytical

work in this thesis generates such a subclass of equations which exemplify the properties

of explosion, growth, and dependence on delay, and that the numerical methods presented

demonstrate successful strategies as well as potential difficulties for the numerical analysis

of more complicated, but related, real–world equations.

0.2 Relevant Literature and Inspiration for the Work

As the outline above indicates, the analysis in this thesis is concerned with the asymptotic

behaviour of delay differential equations and reproducing this behaviour for appropriate

numerical methods. For a linear equation of the form (0.1.6) (i.e., where f and g are

linear functions), a very complete understanding of the asymptotic behaviour exists, with

every solution having asymptotic behaviour described by the complex–valued solutions of

a characteristic equation [21]. One interesting feature that can be observed is that the fixed

delay τ can change the asymptotic behaviour. Even for more general linear differential

equations with delay, the picture is very complete: for instance, for most initial functions,

the asymptotic behaviour is dominated by the solution of the characteristic equation with

largest real part (cf. e.g., [20, 29]). These results cover convergence of solutions to steady
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Chapter 0, Section 2 Introduction

states and unbounded growth as well as oscillation of solutions (something we do not

investigate here). Of course, linear autonomous equations cannot experience finite time

explosions. There is also an extensive theory concerned with perturbations from the linear

case; this can include forcing terms independent of the state, or nonlinearities. In the

latter case, for autonomous equations, one can show that the exponential rate of growth

or convergence is preserved from the underlying linear equation. Recent very sharp results

in this direction include [25].

However, when one moves to equations for which the leading order behaviour is not

described by linear functions or functionals, the literature is sparse. Indeed, results on

finite–time explosion of equations with a fixed delay seem quite limited, and include Ezzinbi

and Jazar [22], and Jordan [31]. Other results in which delays can prevent explosions in

highly nonlinear equations include Nie and Mei [43], and Redheffer and Redlinger [44].

There is however a nice literature of finite–time explosions in solutions of Volterra inte-

gral equations; the point in common with our work is the presence of a superlinear space–

dependent term, which in both cases causes the explosion. Some recent and classical works

on this topic include Ma lolepszy and Okrasiński [35], and Bushell and Okrasiński [18]; a

work which includes sharp asymptotic estimates on the explosion rate, in a manner related

to (0.1.11) is Roberts and Olmstead [45]. Numerical treatment of explosions is given in

Kirk [32], with foundational work on techniques appearing in Brunner [16]. A common

feature between our work and that for Volterra equations is that the presence of weakly

singular convolution kernels, acting on a nonlinear function, in these Volterra equations

has an effect comparable to the point concentration of the instantaneous nonlinear term

on the right-hand side of (0.1.6). However, in our case, the past and present on the right-

hand side may be considered separately owing to the presence of a fixed delay; there is no

analogous separation in the Volterra case.

The analysis of finite–time explosions in partial differential equations is another growing

field of research which relates to our work. It encompasses both numerical and asymptotic

analysis of explosions. Some recent papers include Acosta, Durán and Rossi [1], Brändle,

Groisman and Rossi [13], Brändle, Quirós, and Rossi [14]. We also note that spurious

blow–up of solutions can arise from misspecifying the discretisation, and this is reported

5



Chapter 0, Section 2 Introduction

in [24]. The notion of state–dependent discretisation, which we utilise extensively in this

thesis to capture rapidly growing solutions, is of major importance in the numerical PDE

theory.

Finally, there is a wealth of research on the numerical analysis of functional Volterra

and delay differential equations. Important summaries of the state–of–the–art include

those of Bellen and Zennaro [10], Brunner and van der Houwen [15], and Hairer and Wan-

ner [28]. An interesting monograph which considers, amongst other things, the asymptotic

behaviour of discretisations of differential equations is Stuart and Humphries [47]. We note

however, that much of the work concerning the preservation of asymptotic behaviour of

the underlying continuous time equation relates to asymptotic stability, and concerns very

wide classes of equations in which the coefficients do not depart significantly from linear-

ity. Moreover, the emphasis on preserving the exact asymptotic growth or decay rates of

solutions is often of secondary importance to these authors.

Preserving asymptotic features in the discretisation of differential equations which in-

clude, but is not limited to boundedness, stability or asymptotic stability, is work on

“dynamic consistency”, developed by Mickens (see e.g., [37, 38, 39, 40, 41]).

Our work, on the other hand, deals with a narrow class of scalar equations which exhibit

a wide variety of nonlinear behaviour, in which solutions grow unboundedly or explode.

Indeed, our analysis focuses on recovering exactly the rates at which growth or explosion

occur. It can therefore be seen that our work is motivated by the same concerns of dynamic

consistency and the properties of A–stability and AN–stability in numerical analysis (cf.

e.g., [10, 47]).

Some works which have the same philosophy as this thesis are Appleby, Rodkina and

Schurz [5] and Appleby, Berkolaiko, and Rodkina [6], which are concerned with highly non-

linear stochastic differential equations and their continuous and discrete–time analogues.

However, these papers are devoted to the study of asymptotic stability, rather than growth

or explosion rates.

For this thesis, we have drawn especially on three existing techniques from continuous

dynamical systems and their numerical treatment. These are (a) constructive comparison

principles; (b) state–dependent meshes for ordinary (stochastic) differential equations; and

6
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(c) continuous extensions of discrete schemes for delay–differential equations to continuous

time. The properties of regularly, slowly, and rapidly varying functions are used frequently

throughout.

The relevant papers for state dependent meshes for stochastic differential equations in-

clude Davila et al. [19] in which solutions explode in finite–time; analytical results about

the explosion time occur in Bonder, Groisman, and Rossi [12]. Our simplest state depen-

dent mesh and explosion proofs are inspired by [19]. The importance of such meshes in

preventing overshooting of equilibria in stochastic equations is demonstrated in Appleby,

Kelly, and Rodkina [8].

For nonlinear delay differential equations which are not linear to a first approximation,

results on asymptotic behaviour are sparse. However, a general method which seems suc-

cessful for determining asymptotic behaviour is a “constructive” comparison principle.

The idea here is to construct functions which are upper and lower solutions of the dy-

namical system. This has been applied to determine exact rates of growth in linear and

max–type deterministic equations with unbounded delay (see Appleby and Buckwar [7])

and to polynomial stochastic delay differential equations (see Appleby and Rodkina [2]).

In our justification on the assumption of the positivity of the coefficients in our equation,

we make use of a result from Burton [17] regarding the existence of a unique, fixed point

in delay differential equations with asymptotically constant solutions.

Our proofs of convergence draw heavily on the continuous interpolation methods for

stochastic differential equations presented in Mao, Stuart and Higham [30]. Moreover,

these continuous–time extensions enable us to recover in a continuous–time (and not only a

discrete–time) approximation the growth rates in the underlying delay differential equation

(0.1.6).

As indicated above, the properties of regular variation enable us to ascertain very precise

asymptotic information about both continuous and discrete–time equations. Standard

references to the topic of regular variation include Feller [23] and Bingham et al. [11].

Of course, regular variation has proved to be a useful tool for the asymptotic analysis of

differential equations (cf. e.g., [36]) and linear non-autonomous differential equations with

delay [48] in many other situations.

7
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Some of the work in this thesis has already appeared in abridged form in the scientific

literature. [4] forms the basis of Chapter 7 while [3] comprises a significant proportion of

Chapter 1.

We make a brief remark that, in addition to the combustion problems alluded to in the

PDE and Volterra theory, applications of exploding solutions of differential equations can

be found in the study of (random) metal fatigue (see e.g., Sobczyk and Spencer [46]).

0.3 Synopsis of the Thesis

This thesis begins by discussing the limitations of a uniform Euler method. It is shown

that when f and g are sublinear, the solution to the delay differential equation does not

explode in finite–time, and moreover the rate of unbounded growth is determined by the

asymptotics of g/f and can be replicated in discrete–time with a uniform discretisation.

However when f is superlinear (but not sufficiently nonlinear to cause an explosion) and is

determining the rate of growth, a uniform method is unsuitable in that it underestimates

the growth rate of the differential equation. This motivates the use of more complex

methods.

Finite–time explosions of (0.1.6) are introduced in Chapter 2. We begin by stating a

necessary and sufficient condition for the presence of explosion, and comment on the in-

ability of explicit and implicit uniform methods to replicate this asymptotic behaviour in

discrete–time. We then construct an explicit, state–dependent method, which is essen-

tially the simplest discretisation which allows us to detect the explosion. This enables

us to approximate the solution on any compact interval, and thus provides a method for

approximating the explosion time with arbitrary accuracy. Under conditions on f being a

regularly varying function, we can obtain very precise information on the continuous–time

rate of explosion, which is always dependent solely on f . However for equations with

coefficients that grow faster than regularly varying, our information on the explosion rate

is no longer as precise, and this motivates the use of the more computational intensive

method introduced in Chapter 3 which correctly determines the exact rate of explosion of

the differential equation.

In Chapter 4, we apply the numerical method introduced in Chapter 2 for the purpose of

8
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replicating the growth rate of the superlinear, non-explosive equations for which Chapter 1

demonstrated that a uniform method will not suffice. We see that if g/f tends to a finite

limit, this extension is relatively straightforward. The solution to the differential equation

grows at a rate dependent solely on f , the numerical solution will indeed pick up this

exact asymptotic behaviour, and moreover the approximation error can be controlled on

any compact interval. If g/f is no longer tending to a finite limit however, things become

a bit more complicated. In Chapter 5, we determine conditions on f , g and τ for the

solution to grow at a rate which is identical to that of the ordinary differential equation

given by (0.1.1). Examples of such equations are provided along with commentary on

their construction.

However when we try to use the method introduced in Chapter 2 to replicate this growth

rate in discrete–time, we encounter a problem. Estimating the growth rates in the case

where g/f tends to a finite limit made use of a constructive comparison principle (cf.

e.g., [2, 7]), but this strategy is no longer effective since g is growing at a more rapid

rate. In Chapter 6 we “pretransform” the differential equation to an equation which

we know is growing linearly and discretise this equation. However the formula for the

transformed equation requires explicit forms for certain functions which are in practice

very problematic to compute. It is our strategy to replace them with auxiliary functions

which are obtained by applying a state–dependent discretisation to the ordinary differential

equation equivalent of (0.1.6). We can then apply the inverse transform to verify that the

resulting discrete–time approximation grows a rate identical to that (0.1.6).

In Chapter 7, we look at conditions for which the asymptotic behaviour of the differen-

tial is no longer determined solely by f , in that it is now the delayed component of the

equation that is responsible for the rate of growth. These conditions rely on the existence

of a function that obeys certain asymptotic properties relative to f and g, and while we do

not attempt to prove that the existence of such a function is guaranteed, we demonstrate

that for a wide range of representative examples, this function can be determined. In Sec-

tion 8, we consider appropriate numerical methods for replicating these “delay-dominant”

rates of growth, and see that a uniform step-size Euler method will in fact recover the

essential asymptotic behaviour of the solution to (0.1.6). To this end we are able to con-
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sider examples of equations which have identical rates of growth, but for which different

components of the equation are responsible for this rate; indicating that the appropriate

discretisation method for replicating asymptotic behaviour is in fact independent of the

rate of growth of the solution.

10
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0.4 Preliminaries

Notations The following notations are used in this thesis:

R: set of real numbers.

R+: set of non-negative real numbers.

C((a, b); (c, d)): set of continuous functions mapping from (a,b) onto (c,d)

C1((a, b); (c, d)): set of continuously differentiable functions mapping from (a,b) onto (c,d)

x ∨ y : the maximum value between x and y.

x ∧ y : the minimum value between x and y.

g = O(f): lim supx→∞ g(x)/f(x) <∞.

g = o(f): limx→∞ g(x)/f(x) = 0.

Definitions and Technical Issues The major relevant definitions and theorems on

technical issues are given here:

Regularly varying functions (cf. e.g., [11]): A function m : (0,∞) → (0,∞) is regularly

varying at infinity with index α ∈ R if

lim
x→∞

m(λx)/m(x) = λα for each λ > 0.

We write m ∈ RV∞(α).

Some properties of functions which are regularly varying at infinity include:

• If m ∈ RV∞(α), 1/m ∈ RV∞(−α) and if M(x) :=
∫ x

1 m(u) du, x > 0, then M ∈

RV∞(α+ 1) for α > −1, and M ∈ RV∞(0) for α = −1 if M(x)→∞ as x→∞.

• If m ∈ RV∞(α), ∃µ such that µ(x)/m(x)→ 1, then xµ′(x)/µ(x)→ α as x→∞.

• If m ∈ RV∞(α), and x and y are continuous with x(t)/y(t) → 1, x(t) → ∞ and

y(t)→∞ as t→∞, then limt→∞m(x(t))/m(y(t)) = 1.

Similarly, a function n : (0,∞)→ (0,∞) is regularly varying at zero with index β ∈ R if

lim
x→0

n(λx)/n(x) = λβ for each λ > 0.

We write n ∈ RV0(β).

Some properties of functions which are regularly varying at zero include:

11
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• If n ∈ RV0(β), 1/n ∈ RV0(−β) and if N(x) :=
∫ 1
x n(u) du, x > 0, then N ∈

RV0(β + 1) for β > −1, and N ∈ RV0(0) for β = −1 if N(x)→∞ as x→ 0.

• If n ∈ RV0(β), ∃ν such that ν(x)/n(x)→ 1, then xν ′(x)/ν(x)→ β as x→ 0.

• If n ∈ RV0(β), and x and y are continuous with x(t)/y(t)→ 1, x(t)→ 0 and y(t)→ 0

as t→∞, then limt→∞ n(x(t))/n(y(t)) = 1.

Banach Fixed Point Theorem (cf. e.g.,[17]): Let (X, d) be a complete metric space and

a function f : X → X be a contracting operation, i.e. there exists a λ ∈ (0, 1) such that

d(f(x), f(y)) ≤ λd(x, y) for any x, y ∈ X. Then there exists a unique p ∈ X such that

f(p) = p.

12



Chapter 1

The Limitations of a Uniform Euler Discretisation

1.1 Introduction

In the study of numerical analysis, one of the simplest methods of constructing an ap-

proximation for a solution of a differential equation is the uniform Euler method. This

method is very well understood, and a wealth of literature exists on the performance of

uniform Euler methods in analysing a broad spectrum of classes of differential equation.

It is both easy to construct and straightforward to implement, and moreover in the pres-

ence of fixed–time delay it greatly simplifies the analysis of the delayed component of the

equation, in that the discretisation parameter can be chosen to avoid any issues arising

out of referencing the past values of the numerical method at inputs in between those for

which it is defined.

A well-known necessary and sufficient condition for the solution to (0.1.1) to grow un-

boundedly on the interval [0,∞) is given by
∫∞

1
1

f(u) du = ∞. We now demonstrate that

the condition for the delay differntial equation (0.1.6) to grow unboundedly is given by∫ ∞
1

1

f(u)
du =∞, lim inf

x→∞
f(x) > 0. (1.1.1)

Theorem 1.1.1. Let f obey (0.1.7) and (1.1.1), g obey (0.1.8), and ψ obey (0.1.9) where

τ > 0. Then there is x ∈ C([−τ,∞)) which is the unique continuous solution of (0.1.6)

and which moreover obeys (0.1.2).

Proof. It is evident that there is a unique continuous solution of (0.1.6) on [−τ, T ) where

T ∈ (0,∞] is such that

lim
t→T−

x(t) =∞.

This limit is ∞ as the positivity of the initial condition together with the positivity of

f and g ensure that x′(t) > 0 for t ∈ (0, T ). We wish to rule out the possibility that

T < +∞. Suppose that T ∈ (0, τ ]. Clearly, if g1 = maxs∈[−τ,0] g(x(s)) ≥ 0, we have

x′(t) ≤ f(x(t)) + g1, t ∈ [0, T ).

13
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Define f1(x) := f(x) + g1 for x ≥ 0. Then, as x(t)→∞ as t→ T−, we have∫ ∞
x(0)

1

f1(x)
dx = lim

t→T−

∫ t

0

x′(s)

f1(x(s))
ds ≤ T <∞.

Now (1.1.1) implies
∫∞
x(0) 1/f(u) du =∞ and therefore∫ ∞

x(0)

(
1

f(u)
− 1

f1(u)

)
du =∞.

Thus∫ ∞
x(0)

1

f(u) (f(u) + g1)
du =

∫ ∞
x(0)

f1(u)− f(u)

f(u)f1(u)
du =

∫ ∞
x(0)

(
1

f(u)
− 1

f1(u)

)
du =∞.

But lim infx→∞ f(x) > 0. Since f(x) > 0 for x > 0 there exists x∗ > 0 such that f(x) ≥ c1

for all x > x∗. Now since f is continuous there exists x1 ∈ [0, x∗] such that

inf
x∈[0,x∗]

f(x) = min
x∈[0,x∗]

f(x) = f(x1) =: c2.

Therefore f(x) ≥ c3 > 0 for all x > 0. Thus f(u) (f(u) + g1) ≥ c3 (f(u) + g1) = c3f1(u).

So ∫ ∞
x(0)

1

f(u) (f(u) + g1)
du ≤

∫ ∞
x(0)

1

c3
· 1

f1(u)
du <∞,

which gives a contradiction. Hence T > τ

Suppose now that x does not explode in [0, nτ ], but does in (nτ, (n+ 1)τ ]. This is true

for n = 1. Clearly, if gn = maxs∈[(n−1)τ,nτ ] g(x(s)) ≥ 0, we have

x′(t) ≤ f(x(t)) + gn, t ∈ [nτ, T ).

Define fn(x) := f(x) + gn for x ≥ 0. Then, as x(t)→∞ as t→ T−, we have∫ ∞
x(nτ)

1

fn(x)
dx = lim

t→T−

∫ t

nτ

x′(s)

fn(x(s))
ds ≤ T − nτ <∞.

Now (1.1.1) implies ∫ ∞
x(0)

(
1

f(u)
− 1

fn(u)

)
du =∞.

Thus∫ ∞
x(0)

1

f(u) (f(u) + gn)
du =

∫ ∞
x(0)

fn(u)− f(u)

f(u)fn(u)
du =

∫ ∞
x(0)

(
1

f(u)
− 1

fn(u)

)
du =∞.

By the same arguments as before, f(u) (f(u) + gn) ≥ c3 (f(u) + gn) = c3fn(u). So∫ ∞
x(0)

1

f(u) (f(u) + gn)
du ≤

∫ ∞
x(0)

1

c3
· 1

fn(u)
du <∞,

14
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which gives a contradiction. Hence T > (n + 1)τ . Since this is true for any n ∈ N, it

follows that T =∞.

We have shown that (0.1.6) has interval of existence [−τ,∞). Since ψ(t) > 0 for t ∈

[−τ, 0] and f(x) > 0, g(x) > 0 for all x > 0, we have that x′(t) > 0 for all t > 0. Therefore

limt→∞ x(t) =: L ∈ [ψ(0),∞]. Suppose that L > 0 is finite. Since

x(t) = ψ(0) +

∫ t

0
f(x(s)) ds+

∫ t−τ

−τ
g(x(s)) ds, t ≥ τ,

by the continuity of f and g we have

lim
t→∞

1

t

∫ t

0
f(x(s)) ds = f(L), lim

t→∞

1

t

∫ t−τ

−τ
g(x(s)) ds = g(L).

Since x(t) tends to the finite limit L, we get

0 = lim
t→∞

x(t)

t
= lim

t→∞

ψ(0)

t
+

1

t

∫ t

0
f(x(s)) ds+

1

t

∫ t−τ

−τ
g(x(s)) ds = f(L) + g(L).

Since f and g are positive we have L = 0, a contradiction. Hence L = ∞ and x obeys

(0.1.2), as claimed.

Throughout this thesis, we make of (1.1.1) when we wish to restrict ourselves to solutions

which exhibit unbounded growth and do not explode in finite–time.

In this chapter we investigate the effectiveness of a uniform Euler method for the purpose

of replicating the growth rate of the unique solution x of the delay differential equation

given by (0.1.6) when x obeys (0.1.2). That is, we set out conditions for which the linear

interpolant x̄h of the solution xn to the equation given by

xn+1(h) = xn(h) + hf(xn(h)) + hg(xn−N (h)), n ∈ N, h := τ/N, (1.1.2a)

xn(h) = ψ(nh) > 0, n = −N,−N + 1, . . . , 0. (1.1.2b)

exhibits the same rate of growth as the solution to (0.1.6).

For certain classes of functions, these conditions are well understood. For example if f

is linear and “dominates” g (in the sense that g/f → 0 as x→∞), solutions to the delay

differential equation grow exponentially. Using a uniform Euler method to estimate this

rate of growth leads to a familiar result. Consider the equation given by

x′(t) = αx(t) + g(x(t− τ)), t > 0; x(t) = ψ(t), t ∈ [−τ, 0] (1.1.3)

15
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where g obeys (0.1.8), ψ obeys (0.1.9) and limx→∞ g(x)/f(x) = 0. Discretising this

equation gives for h := τ/N where N ∈ N

xn+1(h) = xn(h) + hαxn(h) + hg(xn−N (h)), n > 0; xn(h) = ψ(nh), n = −N, . . . , 0.

(1.1.4)

Since g and ψ are positive, we have that xn(h) is increasing for n ≥ 0 and so

lim
n→∞

xn+1(h)

xn(h)
= 1 + hα.

Therefore

lim
t→∞

log x(t)

t
= α whereas lim

n→∞

log xn(h)

nh
=

log(1 + hα)

h
=: αh, (1.1.5)

that is the growth rate of the difference equation is dependent on the discretisation pa-

rameter h. However αh → α as h → 0, indicating that the correct growth rate of (1.1.3)

can replicated by (1.1.4) with increased computational effort.

This chapter will set out the classes of functions for which the Euler method given by

(1.1.2) will replicate the correct growth rate of the solution to (0.1.6), and introduce the

classes of functions for which it will not. Throughout this chapter we will assume that

condition (1.1.1) is satisfied, which ensures that the solution to (0.1.6) will not explode in

finite–time. We begin by setting out a discussion of the main results in Section 1.2, the

proofs are deferred to Section 1.3.

The work in this chapter appears mainly in a paper [3], joint with John Appleby and

Alexandra Rodkina.

1.2 Main Results on Uniform Euler Methods

Firstly, we show that if f and g are sublinear functions (in the sense that f(x)/x → 0,

g(x)/x → 0 as x → ∞), the solution to the continuous equation x, the solution to

the Euler scheme xn, and its continuous–time interpolant x̄h all have the same growth

rate. Furthermore in contrast to the linear example given by (1.1.4), this growth rate is

independent of the discretisation parameter h. So for sublinear functions an Euler method

is an ideal choice to replicate the exact rate of growth of the solution to (0.1.6), as it picks

up the correct asymptotics at a very small computational cost.
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Let τ > 0 and let f obey (0.1.7) and (1.1.1), g obey (0.1.8) and ψ obey (0.1.9). Then

there is a unique continuous and strictly positive x obeying (0.1.6) defined on t ∈ [−τ,∞).

Theorem 1.2.1. Suppose

lim
x→∞

f(x)/x = 0, lim
x→∞

g(x)/x = 0; and (1.2.1)

there exists λ ∈ [0,∞] such that λ := lim
x→∞

g(x)/f(x). (1.2.2)

(i) If λ ∈ [0,∞) and f ∈ RV∞(α) (note (1.2.1) implies α ≤ 1), then

lim
t→∞

F (x(t))

t
= 1 + λ, (1.2.3)

where F is defined by

F (x) :=

∫ x

ξ

1

f(u)
du, x > ξ > 0. (1.2.4)

If α < 1, then

lim
t→∞

x(t)

F−1((1 + λ)t)
= 1. (1.2.5)

(ii) If λ =∞ and g ∈ RV∞(α) (note (1.2.1) implies α ≤ 1), then

lim
t→∞

G(x(t))

t
= 1, (1.2.6)

where G is defined by

G(x) :=

∫ x

ξ

1

g(u)
du, x > ξ > 0. (1.2.7)

If α < 1, then

lim
t→∞

x(t)

G−1(t)
= 1. (1.2.8)

We can see from the above result that for sublinear equations the growth rate of the

solution to (0.1.6) is dependent solely whichever of the feedback functions are asymptoti-

cally dominant. Note that when λ ∈ [0,∞), the solution grows like that of the equivalent

ordinary differential equation (ODE) y given by y′(t) = (1 + λ)f(y(t)). Also for λ = ∞

the growth rate is that of the equivalent ODE z given by z′(t) = g(z(t)), independent of

the magnitude of the delay τ . Theorem 1.2.1 applies when f and g are asymptotic to e.g.,

φ1(x) = xα logβ(x) (for α < 1 and β ∈ R) or to φ2(x) = x logβ(x) or φ3(x) = x(log log x)β
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(for β < 0) as x→∞. Neither f nor g need be monotone nor tend to infinity as x→∞.

Note that (1.2.1) implies that (1.1.1) is satisfied, namely sublinear equations cannot gen-

erate finite–time explosions of the solution to (0.1.6).

Next we show that a uniform Euler method does indeed preserve the growth rates given

by Theorem 1.2.1.

Theorem 1.2.2. Let N ∈ N, h := τ/N and xn(h) given by (1.1.2) be the approximation

of the solution x of (0.1.6) at time t = nh.

(i) If λ ∈ [0,∞) in (1.2.2) and f ∈ RV∞(α) (note (1.2.1) implies α ≤ 1), then

lim
n→∞

F (xn(h))

nh
= 1 + λ, (1.2.9)

where F is defined by (1.2.4). If α < 1, then

lim
n→∞

xn(h)

F−1(nh)
= 1 + λ. (1.2.10)

(ii) If λ =∞ in (1.2.2) and g ∈ RV∞(α) (note (1.2.1) implies α ≤ 1), then

lim
n→∞

G(xn(h))

nh
= 1, (1.2.11)

where G is defined by (1.2.7). If α < 1, then

lim
n→∞

xn(h)

G−1(nh)
= 1. (1.2.12)

Now consider the linear interpolant of the discrete–time equation given by (1.1.2). Define

x̄h ∈ C([−τ,∞), (0,∞)) by

x̄h(t) = xn(h) + (xn+1(h)− xn(h))(t− nh)/h, t ∈ [nh, (n+ 1)h], n ≥ 0, (1.2.13a)

x̄h(t) = ψ(t), t ∈ [−τ, 0]. (1.2.13b)

So, x̄h takes the value xn(h) at time nh for n ≥ 0 and interpolates linearly between the

values of xn(h) at the times {0, h, 2h, . . .}. It is well understood that the error associ-

ated with using x̄h as an approximate for x is controlled on any compact interval by the

discretisation parameter h (see e.g [10]) in the sense that for any T > 0,

lim
h→0

sup
0≤t≤T

|x(t)− x̄h(t)| = 0. (1.2.14)

We now summarise that Theorems 1.2.1 and 1.2.2 do indeed show that x̄h mimics the

asymptotic behaviour of x.
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Theorem 1.2.3. Let N ∈ N, h := τ/N , xn(h) obey (1.1.2) and x̄h be given by (1.2.13).

(i) If λ ∈ [0,∞) in (1.2.2) and f ∈ RV∞(α) (note (1.2.1) implies α ≤ 1), then

lim
t→∞

F (x̄h(t))

t
= 1 + λ, (1.2.15)

where F is defined by (1.2.4). If α < 1, then

lim
t→∞

x̄h(t)

x(t)
= 1. (1.2.16)

(ii) If λ =∞ in (1.2.2) and g ∈ RV∞(α) (note (1.2.1) implies α ≤ 1), then

lim
t→∞

G(x̄h(t))

t
= 1, (1.2.17)

where G is defined by (1.2.7). If α < 1, then

lim
t→∞

x̄h(t)

x(t)
= 1. (1.2.18)

Next for the main result of the chapter, in which we consider superlinear equations, that

is equations for which f obeys f(x)/x→∞ as x→∞. For the purpose of this chapter we

add that f dominates g, or that g/f is bounded. For such equations, the solution to (0.1.6)

behaves asymptotically as the solution to the equivalent ODE y given by y′(t) = f(y(t)).

Theorem 1.2.4. Suppose

lim
x→∞

f(x)/x =∞, f ∈ RV∞(1),

∫ ∞
1

1/f(u) du =∞; and (1.2.19a)

there exists Λ ∈ [0,∞) such that Λ := lim sup
x→∞

g(x)

f(x)
, (1.2.19b)

then

lim
t→∞

F (x(t))

t
= 1. (1.2.20)

Functions obeying (1.2.19) include those asymptotic to φ5(x) = x logβ x for β ∈ (0, 1]

(but not β > 1) or to φ6(x) = x(log log x)β for β > 0 (but not β ≤ 0).

Under the conditions of Theorem 1.2.4, the solution xn(h) of (1.1.2) and the interpolant

x̄h given by (1.2.13) have different growth rates from the solution x of (0.1.6), irrespective

of the mesh size h > 0. This is in contrast to the linear equation given by (1.1.3), in which

the exact growth rate could be obtained by letting h→ 0. For superlinear equations where
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g/f tends to a finite limit, a uniform Euler method will underestimate the growth rate

of the solution to (0.1.6), suggesting that we may need special meshes to deal with such

equations. This problem is revisited in Chapter 4.

Theorem 1.2.5. Suppose the conditions of Theorem 1.2.4 hold and let N ∈ N, h := τ/N ,

xn(h) obey (1.1.2) and x̄h be given by (1.2.13). Also suppose there is a function f1 such

that

x 7→ f0(x) =
f1(x)

x
is positive, non-decreasing on (X1,∞), lim

x→∞

f1(x)

f(x)
= 1. (1.2.21)

If H is defined by

H(x) =

∫ x

ψ(0)
1/{u log(1 + f(u)/u)} du, x > ψ(0), (1.2.22)

then

lim
n→∞

H(xn(h))

n
= 1, lim

t→∞

H(x̄h(t))

t
=

1

h
. (1.2.23)

The proof of Theorem 1.2.5 is facilitated by the following Lemma

Lemma 1.2.1. Let k > 0. Suppose φ ∈ C((0,∞); (0,∞)), φ ∈ RV∞(1), φ(y)/y → ∞ as

y →∞,
∫∞

1 1/φ(u) du = +∞, and there is a function φ1 with φ1(y)/φ(y)→ 1 as y →∞

such that φ0 : (y1,∞)→ (0,∞) : y 7→ φ0(y) := φ1(y)/y is non-decreasing. If

yn+1(k) = yn(k) + kφ(yn(k)), n ≥ 0; y0(k) = ξ > 0, (1.2.24)

then

lim
n→∞

K(yn(k))

n
= 1, (1.2.25)

where

K(y) =

∫ y

ξ

1

u log(1 + φ(u)/u)
du, y > ξ. (1.2.26)

Note that (1.1.1) implies H(x)→∞ as x→∞. To see this, put y = f(x)/x > 0 in the

inequality log(1 + y) < y, y > 0. Thus 1/{x log(1 + f(x)/x)} > 1/f(x), and integration

gives H(x) ≥ F (x). Condition (1.1.1) implies F (∞−) =∞, proving the claim. Indeed as

H(x)/F (x) → ∞ as x → ∞, the Euler scheme always underestimates the growth rate of

the solution of (0.1.6). The second limit in (1.2.23) implies

lim
t→∞

F (x̄h(t))

t
= 0.
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irrespective of the discretisation parameter h, but x obeys

lim
t→∞

F (x(t))

t
= 1.

The second limit in (1.2.23) is derived using the method of proof of Theorem 1.2.3.

1.3 Proofs

Proof of Theorem 1.2.1 Since x(t) > 0 for t ≥ −τ and f and g are positive, it

follows that x′(t) > 0 for t > 0. This implies x(t) → L ∈ (0,∞] as t → ∞. Now if

L < ∞, integrate (0.1.6) over [0, t], divide by t and let t → ∞ to get the contradiction

f(L) + g(L) = 0, so

lim
t→∞

x(t) =∞

Now since x′(t) > 0 for t > 0 we have that x(t− τ) < x(t) for t ≥ τ . Therefore for t ≥ τ

0 <
x′(t)

x(t)
=
f(x(t))

x(t)
+
g(x(t− τ))

x(t)
<
f(x(t))

x(t)
+
g(x(t− τ))

x(t− τ)
.

Since f and g obey (1.2.1) and x(t) → ∞ as t → ∞ this implies that x′(t)/x(t) → 0 as

t→∞ and so

lim
t→∞

x(t− τ)

x(t)
= 1. (1.3.1)

In case (i), since f ∈ RV∞(α), (1.3.1) implies f(x(t− τ))/f(x(t))→ 1 as t→∞. Hence

using this, (1.2.2) and diving both sides of (0.1.6) by f(x(t)) we get

lim
t→∞

x′(t)

f(x(t))
= 1 + λ. (1.3.2)

Thus for every ε ∈ (0, 1) there is a Tε > 0 such that for all t > Tε we have

(1 + λ)(t− Tε) ≤
∫ t

Tε

x′(s)

f(x(s))
ds ≤ (1 + ε)(1 + λ)(t− Tε).

Using the definiton of F , dividing both sides of the equation by t, and then letting t→∞

and ε→ 0+ yields (1.2.3). (1.2.5) follows since f ∈ RV∞(α) implies F ∈ RV∞(1− α). As

α < 1, F−1 ∈ RV∞(1/(1− α)). By (1.2.3),

lim
t→∞

F−1(F (x(t)))

F−1((1 + λ)t)
= lim

t→∞

x(t)

F−1((1 + λ)t)
= 1.
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In case (ii), since g ∈ RV∞(α), (1.3.1) implies g(x(t− τ))/g(x(t))→ 1 as t→∞. Hence

using this, (1.2.2) and diving both sides of (0.1.6) by g(x(t)) we get

lim
t→∞

x′(t)

g(x(t))
= 1. (1.3.3)

Proceeding as in (i) yields (1.2.6) and (1.2.8) follows.

Proof of Theorem 1.2.2 Firstly, define the function a ∈ C((0,∞); (0,∞)) by a(x) =

f(x) + g(x). In case (i), a(x)/f(x) → 1 + λ as x → ∞, and since f ∈ RV∞(α), this

implies a ∈ RV∞(α). Similarly in case (ii), a(x)/g(x) → 1 as x → ∞, and since g ∈

RV∞(α), this implies a ∈ RV∞(α). So since a is a regularly varying function, there exists

b ∈ C1((0,∞); (0,∞)) such that

lim
x→∞

b(x)

a(x)
= 1; lim

x→∞

xb′(x)

b(x)
= α. (1.3.4)

Let B(x) :=
∫ x
ψ(0) 1/b(u) du for x > ψ(0), so B ∈ C2((0,∞); (0,∞)).

Now consider the uniform Euler scheme give by (1.1.2). Since ψ(nh) > 0 and f and g

are positive, we have that xn(h) > 0 for n ≥ −N and also is also increasing for n ≥ 0.

Therefore there exists L ∈ (0,∞] such that

lim
n→∞

xn(h) = L.

If L < ∞, by taking limits across (1.1.2) we get f(L) + g(L) = 0. But since f and g are

positive, this is a contradiction, so we must have L = ∞. Since xn(h) is increasing, we

have that xn(h) > xn−N (h) and so

1 <
xn+1(h)

xn(h)
≤ 1 +

f(xn(h))

xn(h)
+
g(xn−N (h)

xn−N (h)

and since xn(h)→∞ as n→∞, using (1.2.1) we obtain

lim
n→∞

xn+1(h)

xn(h)
= 1. (1.3.5)

Next define hn := h(f(xn(h))/a(xn(h)) + g(xn−N (h))/a(xn(h))) so that xn+1(h) =

xn(h) + hna(xn(h)) for n ≥ 0. Then in case (i) we have

lim
n→∞

f(xn(h))

a(xn(h))
=

1

1 + λ
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since xn(h)→∞ as n→∞. Now (1.3.5) implies xn−N (h)/xn(h)→ 1 as n→∞, and since

a ∈ RV∞(α) we have a(xn−N (h))/a(xn(h)) → 1 as n → ∞. Therefore since xn(h) → ∞

as n→∞

lim
n→∞

g(xn−N (h))

a(xn(h))
=

λ

1 + λ

Combining these two limits we see that hn → h as n→∞.

By Taylor’s Theorem, there is an ξn(h) ∈ [xn(h), xn+1(h)] such that

B(xn+1(h))−B(xn(h)) = B′(xn(h))hna(xn(h)) +
1

2
B′′(ξn(h))h2

na
2(xn(h)). (1.3.6)

Now by (1.2.1), a(x)/x→ 0 as x→∞. Since

1 ≤ ξn(h)

xn(h)
≤ 1 + hn

a(xn(h))

xn(h)

it follows that ξn(h)/xn(h)→ 1 as n→∞. Consider the right-hand side of (1.3.6). Firstly,

B′(xn(h))hna(xn(h)) = hna(xn(h))/b(xn(h))→ h as n→∞. Rewrite the second term to

get

−1

2
h2
n

b′(ξn(h))

b2(ξn(h))
a2(xn(h)) = −1

2
h2
n

ξn(h)b′(ξn(h))

b(ξn(h))
· b(xn(h))

b(ξn(h))
· xn(h)

ξn(h)
· a(xn(h))

xn(h)
· a(xn(h))

b(xn(h))
.

Since ξn(h)→∞ as n→∞, we have that

lim
n→∞

ξn(h)b′(ξn(h))

b(ξn(h))
= α

by (1.3.4). Also since ξn(h)/xn(h)→ 1 as n→∞, this implies that b(xn(h))/b(ξn(h))→ 1

as n → ∞. The fourth factor tends to zero by (1.2.1), and since xn(h) → ∞ the fifth

factor tends to unity by (1.3.4). Since hn → h, we have

lim
n→∞

B′′(ξn(h))h2
na

2(xn(h)) = 0.

Therefore by (1.3.6), B(xn+1(h))−B(xn(h))→ h as n→∞ and so

lim
n→∞

B(xn(h))

nh
= 1. (1.3.7)

Now in case (i), by L’Hôpital’s rule and the first part of (1.3.4)

lim
x→∞

F (x)/B(x) = lim
x→∞

b(x)/f(x) = 1 + λ,

so (1.2.9) is proved. (1.2.10) follows since f ∈ RV∞(α) implies F ∈ RV∞(1 − α). As

α < 1, F−1 ∈ RV∞(1/(1− α)). By (1.2.9),

lim
n→∞

F−1(F (xn(h)))

F−1(nh)
= lim

n→∞

xn(h)

F−1(nh)
= 1.

In case (ii), (1.2.11) and (1.2.12) follow similarly as limx→∞G(x)/B(x) = 1.
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Proof of Theorem 1.2.3 This follows from the proof of Theorem 1.2.2. Note that for

every t > 0 there is an n(t) ∈ N such that t ∈ [n(t)h, (n(t) + 1)h), so xn(t)(h) ≤ x̄h(t) <

xn(t)+1(h). In case (i) as F is increasing,

n(t)h

t

1

n(t)h
F (xn(t)(h)) ≤ 1

t
F (x̄h(t)) ≤ (n(t) + 1)h

t

1

(n(t) + 1)h
F (xn(t)+1(h)).

As n(t)h/t→ 1 as t→∞, (1.2.9) implies

lim
t→∞

F (x̄h(t))

t
= 1 + λ. (1.3.8)

To prove that x̄h(t)/x(t)→ 1 as t→∞, note that f ∈ RV∞(α) implies F ∈ RV∞(1− α).

As α < 1, F−1 ∈ RV∞(1/(1− α)). By (1.3.8)

lim
t→∞

F−1(F (x̄h(t)))

F−1(t)
= 1, (1.3.9)

and so by (1.2.5), x̄h(t)/x(t)→ 1 as t→∞ follows. The proof is similar in case (ii) where

λ =∞.

Proof of Theorem 1.2.4 Firstly, condition (1.2.19) ensures that (0.1.6) has a unique,

continuous solution defined on all of [−τ,∞). Since x(t) > 0 for t ≥ −τ and f and g are

positive, it follows that x′(t) > 0 for t > 0 and so x(t) → ∞ as t → ∞ using the same

reasoning as in the proof of Theorem 1.2.1. Thus

lim
t→∞

x′(t)

x(t)
≥ lim

t→∞

f(x(t))

x(t)
=∞

by (1.2.19). Hence for every M > 0 there is a TM > 0 such that x′(t)/x(t) > M for

t > TM . Thus for t > τ + TM ,

log

(
x(t)

x(t− τ)

)
=

∫ t

t−τ

x′(s)

x(s)
ds ≥Mτ,

so

lim
t→∞

x(t)

x(t− τ)
=∞. (1.3.10)

Hence for every ε > 0 there is a T1(ε) > 0 such that x(t− τ) < εx(t) for t > T1(ε). Since

f ∈ RV∞(1), there exists a function c such that

lim
x→∞

c(x)

f(x)
= 1; lim

x→∞

xc′(x)

c(x)
= 1, (1.3.11)
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with c increasing on [x2,∞) for some x2 > 1. Since x(t)→∞ as t→∞ there is a T2 > 0

such that x(t − τ) > x2 for t > T2. Let T3(ε) = max(T2, T1(ε)). Then for t > T3(ε),

c(x2) < c(x(t − τ)) < c(εx(t)). So as c satisfies (1.3.11) and f ∈ RV∞(1), this implies

c(εx)/c(x)→ ε as x→∞ and so

lim sup
t→∞

f(x(t− τ))

f(x(t))
= lim sup

t→∞

f(x(t− τ))

c(x(t− τ))
· c(x(t− τ))

c(εx(t))
· c(εx(t))

c(x(t))
· c(x(t))

f(x(t))
≤ ε.

Thus f(x(t− τ))/f(x(t))→ 0 as t→∞. Using this, (1.2.19b) and dividing both sides of

(0.1.6) by f(x(t)) yields

lim
t→∞

x′(t)

f(x(t))
= 1.

Integration gives (1.2.20).

Proof of Lemma 1.2.1 Set d(u) := log(1 + kφ(eu)/eu), u ∈ R. Since yn(k) given by

(1.2.24) satisfies yn(k) > 0 for n ≥ 0, let un(k) = log yn(k) so that

un+1(k) = un(k) + d(un(k)), n ≥ 0. (1.3.12)

Since φ ∈ RV∞(1), there is φ2 ∈ C1 such that φ2(y)/φ(y) → 1, yφ′2(y)/φ2(y) → 1 as

y →∞ and φ2 is positive on (y2,∞) for some y2 := eu2 . Define

d2(u) := log(1 + φ2(eu)/eu), u > u2

so d2 ∈ C1 is positive. Also φ(y)/y →∞, φ2(y)/φ(y)→ 1 as y →∞ imply

lim
u→∞

d2(u)

d(u)
= 1. (1.3.13)

Since yφ′2(y)/φ2(y)→ 1 and φ2(y)/y →∞ as y →∞

lim
u→∞

d′2(u) = lim
u→∞

φ2(eu)/eu

1 + φ2(eu)/eu
·
(
euφ′2(eu)

φ2(eu)
− 1

)
= 0.

Now let d1(u) = log(1 + φ1(eu)/eu), u > u1 := log(y1). d1 is positive and increasing, as

y 7→ φ1(y)/y is increasing on (y1,∞), and as φ(y)/y →∞ and φ1(y)/φ(y)→ 1 as y →∞,

we get d1(u)/d(u)→ 1 as u→∞.

Set K2(u) =
∫ u
u2

1/d2(v) dv, u > u2, so K2 ∈ C2(u2,∞), K ′2(u) = 1/d2(u) and K ′′2 (u) =

−d′2(u)/d2
2(u). Since un(k) → ∞ as n → ∞, there is an N1 > 1 such that un(k) >

max(u1, u2), n ≥ N1. By Taylor’s theorem, there is a ξn(k) ∈ [un(k), un+1(k)] such that

K2(un+1(k))−K2(un(k)) =
d(un(k))

d2(un(k))
− 1

2
d′2(ξn(k))

d2(un(k))

d2
1(un(k))

· d
2
1(un(k))

d2
1(ξn(k))

· d
2
1(ξn(k))

d2
2(ξn(k))

.

(1.3.14)
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Consider the right-hand side of (1.3.14). As d(u)/d2(u)→ 1 as u→∞, the first term tends

to unity as n→∞. For the second term, as ξn(k)→∞ as n→∞ and d1(u)/d2(u)→ 1 as

u → ∞ we have d2
1(un(k))/d2

1(ξn(k)) → 1 as n → ∞. Also as d2
1 is increasing on (u1,∞)

and ξn(k) ≥ un(k) > u1, d2
1(un(k))/d2

1(ξn(k)) ≤ 1. Next d2(un(k))/d2
1(un(k)) → 1 as

n→∞ since d(u)/d1(u)→ 1 as u→∞. Finally as ξn(k)→∞ as n→∞, d′2(ξn(k))→ 0

as n→∞. Thus K2(un+1(k))−K2(un(k))→ 1 as n→∞ and so

lim
n→∞

K2(un(k))

n
= 1. (1.3.15)

Now define

k2(y) :=

∫ y

y2

1/(wd2(logw)) dw,

so K2(un(k)) = k2(yn(k)) and define

d0(u) := log(1 + φ(eu)/eu), u ∈ R

so that limu→∞ d0(u)/d(u) = 1. Note that K(y) given by (1.2.26) satisfies K(y) :=∫ y
1 1/(wd0(logw)) dw. By L’Hôpital’s rule and using d2(u)/d(u) → 1 as u → ∞ we get

k2(y)/K(y)→ 1 as y →∞, which gives (1.2.25).

Proof of Theorem 1.2.5 Using the same reasoning as in Theorem 1.2.2, we have that

xn(h) → ∞ as n → ∞. Now since xn+1(h) > xn(h) + hf(xn(h)) and the first part of

(1.2.19) holds,

lim
n→∞

xn+1(h)

xn(h)
=∞ and therefore lim

n→∞

xn−N (h)

xn(h)
= 0. (1.3.16)

Again since f ∈ RV∞(1), there exists a function c obeying (1.3.11) with c increasing on

[x2,∞) for some x2 > 1. So there is a N2 := N2(h) such that xn−N (h) > x2 for n > N2

and by (1.3.16) for every ε > 0 an N3 := N3(ε;h) such that xn−N (h) < εxn(h) for n ≥ N3.

Thus for n ≥ N4 := max(N2, N3) we have c(xn−N (h)) < c(εxn(h)), and by (1.3.11) and

since f ∈ RV∞(1)

lim sup
n→∞

f(xn−N (h))

f(xn(h))
= lim sup

n→∞

f(xn−N (h))

c(xn−N (h))
·c(xn−N (h))

c(εxn(h))
·c(εxn(h)

c(xn(h))
· c(xn(h))

f(xn(h))
≤ ε. (1.3.17)

Thus f(xn−N (h))/f(xn(h)) → 0 as n → ∞, and by (1.2.19b), g(xn−N (h))/f(xn(h)) → 0

as n→∞. Set

hn :=
hf(xn(h)) + hg(xn−N (h))

c(xn(h))
.
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Then xn+1(h) = xn(h) +hnc(xn(h)) and hn → h as n→∞. Hence there is a N5 > 0 such

that for n ≥ N5, h/2 < hn < 2h and xn(h) > 4x2. So for n ≥ N5,

xn+1(h) > xn(h) +
h

2
c(xn(h)) and xn+1(h) < xn(h) + 2hc(xn(h)).

Now define two sequences y−n (h) and y+
n (h) by

y−n+1(h) = y−n (h) +
h

2
c(y−n (h)); n > N5; y−N5

(h) =
xN5(h)

2

y+
n+1(h) = y+

n (h) + 2hc(y+
n (h)); n > N5; y+

N5
(h) = 2xN5(h).

As c is increasing on [x2,∞), x2 < y−n (h) < xn(h) < y+
n (h) for n > N5 and as K given by

(1.2.26) is increasing on (1,∞), K(y−n (h)) < K(xn(h)) < K(y+
n (h)) for n > N5.

Now since f(x)/c(x)→ 1 as x→∞ we have by (1.2.19) and (1.2.21) that c ∈ RV∞(1),

c(y)/y →∞ as y →∞, c1 := f1 is such that c1(y)/c(y)→ 1 as y →∞ and y 7→ c0(y) :=

c1(y)/y is non-decreasing on (X1,∞). Hence by applying Lemma 1.2.1 to the sequences

y−n (h) and y+
n (h) we get

lim
n→∞

K(y−n (h))

n
= 1 and lim

n→∞

K(y+
n (h))

n
= 1

and so

lim
n→∞

K(xn(h))

n
= 1. (1.3.18)

Finally as f(x)/c(x)→ 1 and c(x)/x→∞ as x→∞, L’Hôpital’s rule gives H(x)/K(x)→

1 as x→∞, so the first part of (1.2.23) holds.

To prove the second part of (1.2.23), note that for every t > 0 there is an n(t) ∈ N such

that t ∈ [n(t)h, (n(t) + 1)h), so xn(t)(h) ≤ x̄h(t) < xn(t)+1(h). As H is increasing,

n(t)h

t

1

n(t)h
H(xn(t)(h)) ≤ 1

t
H(x̄h(t)) ≤ (n(t) + 1)h

t

1

(n(t) + 1)h
H(xn(t)+1(h)).

As n(t)h/t→ 1 as t→∞, the first part of (1.2.23) implies

lim
t→∞

H(x̄h(t))

t
=

1

h
. (1.3.19)
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Chapter 2

Explosions

2.1 Introduction

As we have seen in Theorem 1.2.4, nonlinear differential equations can grow at very rapid

rates. For example solutions to equations which obey the criteria of Theorem 1.2.4 include

those which grow at rates asymptotic to iterated exponentials, that is

lim
t→∞

x(t)

expn(t)
= 1

where expn(x) := exp(exp(exp . . . exp(x))) is the n-th fold composition of exponential

functions. Moreover, it was demonstrated that under the conditions of Theorem 1.2.5, a

uniform Euler discretisation would not replicate these rapid rates of growth.

However, for certain classes of equations the solution may “explode” in finite–time, that

is the feedback is sufficiently nonlinear to guarantee that there exists some T > 0 such

that x is continuous on [−τ, T ),

lim
t→T−

x(t) =∞,

and T is referred to as the “explosion time” or “blow-up time” of the solution. Equations

which exhibit explosive rates of growth include hyperbolic equations like x(t) = 1/(1− t)

for t ∈ [−τ, 1). Such equations are frequently encountered in epidemiology, population

dynamics and in the study of fracture mechanics. The characteristics of these explosions

have been studied for equations which do not involve delay [1, 13, 14]. It is therefore

natural to examine the impact of nonlinear, fixed–time delayed feedback on the presence

of these explosions, the time at which they occur and the rate at which the solution

explodes. In this chapter, we study the limiting behaviour of explosive equations which

satisfy (0.1.6), analysing the role of the feedback functions f and g, the initial function ψ

and the delay τ on the asymptotics of the finite–time explosion.

The uniform Euler method described by (1.1.2) will give incorrect information about the

presence of a finite–time explosion in the solution to the delay differential equation. Indeed
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it will suggest that the solution t 7→ x(t) is defined for all t ≥ 0, in contrast to (0.1.4)

which illustrated that the solution will have finite interval of existence. Furthermore, an

implicit method will not work for explosive equations. Consider the implicit equation

xn+1 = xn + hf(xn+1) + hg(xn−N ), n ≥ 0, for h := τ/N where N ∈ N, (2.1.1)

where the underlying continuous–time equation obeys (0.1.4). If a solution exists, it must

be increasing. So it either tends to a limit or tends to infinity as n→∞. Suppose it has

a limit L ∈ (0,∞). This implies

L = L+ hf(L) + hg(L) > L

since f is positive. Thus we must have xn → ∞ as n → ∞. Next, it follows that since f

obeys (2.2.1), f(x)/x → ∞ as x → ∞, and there is an x∗ = x∗(h) > 0 such that for all

x > x∗ we have f(x)/x > 2/h. Now since xn → ∞ as n → ∞ there exists an N1(h) > 0

such that xn > x∗(h) for all n ≥ N1(h). By hypothesis there is an xN1(h)+1 > 0 which

obeys

xN1(h)+1 = xN1(h) + hf(xN1(h)+1) + hg(xN1(h)−N ).

However

xN1(h)+1 = xN1(h) + hf(xN1(h)+1) + hg(xN1(h)−N )

> xN1(h) + hf(xN1(h)+1)

> xN1(h) + 2xN1(h)+1 > xN1(h)+1,

a contradiction. Thus if f obeys (2.2.1) we cannot construct a solution to (2.1.1) and an

implicit method is an unreliable guide to the presence of explosions. This suggests that

alternative numerical methods must be used. Furthermore, the unsuitability of the implicit

method described above also applies to non-explosive equations covered by Theorem 1.2.4

for which an explicit uniform Euler method underestimates the rate of growth of the

solution in accordance with Theorem 1.2.5.

Existing work has been done on devising numerical schemes for explosive equations,

specifically equations with polynomially growing instantaneous feedback (cf. e.g., [1,

13, 14]), but equations involving delay have not been fully explored. Here we describe a
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state–dependent discretisation which inherits the appropriate explosion asymptotics for

a wider range of possible feedback functions and involves the presence of delay. Much

consideration has been given to make the scheme as versatile and extendable as possible,

as we will use the techniques developed in this chapter to replicate the growth rates of the

non-explosive, superlinear delay differential equations introduced in Theorem 1.2.4.

In Section 2.2, we state the condition for a finite–time explosion of the solution. Com-

ments on hypotheses are included, namely the positivity of g and it’s contribution to

the presence of an explosion. The state–dependent numerical scheme is described in Sec-

tion 2.3 along with some remarks on its construction, and the existence of an explosion

of this approximation is demonstrated in Section 2.4. Section 2.5 shows that the error

associated with using the approximation can be controlled and that the continuous–time

explosion can be approximated with arbitrary precision by the by discrete–time explosion.

In section 2.6, we determine the rates of explosion of the solutions to both the continu-

ous and discrete–time equations, and includes some representative examples. Section 2.7

considers what happens in the absence of any monotonicity assumptions on f , where the

limitations of the numerical method described in Section 2.3 are demonstrated through

constructing pathological examples and considering alternative discretisations. We use

the arguments of Section 2.7 to justify that we must assume some sort of monotonicity

assumption on f . Finally, certain proofs are deferred to Section 2.8.

2.2 Existence of Explosion

A well-known necessary and sufficient condition for the presence of a finite–time explosion

of the solution to (0.1.1) is given by∫ ∞
1

1

f(u)
du <∞. (2.2.1)

It is straightforward to show that this condition also holds for the delay differential equa-

tion given by (0.1.6).

Theorem 2.2.1. Let f obey (0.1.7) and (2.2.1), g obey (0.1.8) and ψ obey (0.1.9). Then

there exists a finite T > 0 and x ∈ C([−τ, T ); (0,∞)) such that x is increasing on [0, T ),

30



Chapter 2, Section 2 Explosions

x is the unique continuous solution of (0.1.6), and

lim
t→T−

x(t) =∞. (2.2.2)

Proof. It is evident that there is a unique continuous solution of (0.1.6) on [−τ, T ) where

T ∈ (0,∞] is such that

lim
t→T−

x(t) =∞.

This limit is ∞ as the positivity of the initial condition together with the positivity of

f and g ensure that x′(t) > 0 for t ∈ (0, T ). We wish to rule out the possibility that

T = +∞. Suppose that it is the case that T = +∞. Clearly since g is positive,

x′(t) > f(x(t)), t > 0.

Therefore as limt→T− x(t) = +∞,∫ ∞
ψ(0)

1

f(u)
du ≥ T =∞, t > 0.

But f obeys (2.2.1), which gives a contradiction. Therefore T is finite and moreover the

positivity of f and g ensure that x(t)→∞ as t→ T−.

The number T is called the explosion time of x. If condition (2.2.1) does not hold, but

(0.1.8) and (0.1.9) hold, then x cannot explode in finite–time (cf. Theorem 1.1.1). There-

fore (2.2.1) is a necessary and sufficient condition for an explosion of (0.1.6). Throughout

this thesis, we make of (2.2.1) when we wish to restrict ourselves to solutions which explode

and therefore and do not exhibit unbounded growth.

Suppose also that

∃φ ∈ C((0,∞); (0,∞)) such that φ is nondecreasing and lim
x→∞

f(x)

φ(x)
= 1. (2.2.3)

This assumption, which is essential to the reliability of our numerical method, is discussed

in the following section.

2.2.1 Discussion on hypotheses

Since (2.2.1) implies lim supx→∞ f(x) → ∞, it is perhaps natural to assume the mono-

tonicity of f . However we need only assume the existence of a positive, monotone function
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φ which obeys (2.2.3) (i.e. the asymptotic monotonicity of f) for our method to correctly

predict the existence or nonexistence of explosions of the unique solution of (0.1.6). In

Section 2.6, where we determine the growth rate of our state–dependent numerical scheme,

we make use of the property of regular variation of a function. Note that if f is indeed

regularly varying, such a positive, monotone, asymptotically equivalent function φ is guar-

anteed to exist. However in the absence of any sort of monotonicity our method will be

unreliable, as we will demonstrate in Section 2.7. Without monotonicity, we can construct

a family of pathological examples for which the method either fails to detect an explosion

of the continuous equation or incorrectly diagnoses the presence of an explosion when the

solution does not explode.

Throughout the remainder of this section, where we will justify the positivity assumption

on g, we assume f to be monotone to make the analysis more convenient. It is worth

noting that g need only be continuous, but assuming local Lipschitz continuity is useful

for control of the error estimates. The positivity of g cannot be relaxed if a finite–time

explosion of (0.1.6) is to be guaranteed. If the positivity does not hold, we can obtain

different asymptotic results for x depending on the initial condition ψ. To see this, we will

first consider the equation

x′(t) = f(x(t))− f(x(t− τ)), t > 0, (2.2.4a)

x(t) = ψ(t), t ∈ [−τ, 0]. (2.2.4b)

We show that we can have an explosion or solutions tending to a finite limit as t→∞

of (2.2.4) according as to whether the initial function ψ is small or large. This shows that

an explosion can be suppressed if there is a negative nonlinear delayed feedback term, the

initial condition is sufficiently small, and the nonlinear function f is superlinear local to

zero.

Theorem 2.2.2. Suppose that ψ in C([−τ, 0]; (0,∞)) is increasing and f is monotonically

increasing and suppose that f obeys

f ∈ C1([0,∞), (0,∞)), f ′(0) = 0,

∫ ∞
1

1/f(u) du < +∞. (2.2.5)

(i) Suppose that δ > 0 is such that 0 < ψ(t) ≤ δ/2 for t ∈ [−τ,−τ/2]. If ψ(0) > δ/2
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is sufficiently large, then there exists Tψ ∈ (0, τ/2) such that the unique solution of

(2.2.4) obeys limt→T−ψ
x(t) =∞.

(ii) There exists δ > 0 sufficiently small such that if 0 < ψ(t) ≤ δ/2 for all t ∈ [−τ, 0]

then there is a finite L ∈ (ψ(0), δ) such that

L = ψ(0)−
∫ 0

−τ
f(ψ(s)) ds+ τf(L), (2.2.6)

and the unique solution of (2.2.4) obeys limt→∞ x(t) = L.

The next result shows that we can have any negative nonlinear delayed feedback and

any delay (however short) and still consider initial functions which guarantee that the

solution of the delayed equation explodes in finite time.

Theorem 2.2.3. Suppose that ψ in C([−τ, 0]; (0,∞)), f ∈ C1((0,∞), (0,∞)) is increasing

and suppose that f obeys (2.2.1). Suppose g ∈ C((0,∞), (0,∞)). Let x be the unique

solution of

x′(t) = f(x(t))− g(x(t− τ)), t > 0, (2.2.7a)

x(t) = ψ(t), t ∈ [−τ, 0]. (2.2.7b)

If ψ(0) is sufficiently large, then there exists Tψ > 0 such that the unique solution of

(2.2.7) obeys

lim
t→T−ψ

x(t) =∞ (2.2.8)

Next we show that the explosion can always be contained, provided the initial condition

ψ is decreasing and f(0) = 0. In this case, we choose a controlling nonlinear function g

which always exceeds f . We extend f and g to be zero on (−∞, 0].

Theorem 2.2.4. Suppose that f is increasing and is in C1((0,∞), (0,∞)) and suppose

that f obeys (2.2.1). Suppose that g ∈ C((0,∞), (0,∞)) is increasing and

g(x) > f(x), x > 0. (2.2.9)

Extend f and g to (−∞, 0] so that g(x) = f(x) = 0 for x ≤ 0. Let ψ ∈ C([−τ, 0]; (0,∞))

be decreasing. Then there exists a finite L ≤ 0 such that the unique solution of (2.2.7)

obeys

lim
t→∞

x(t) = L. (2.2.10)
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So we can see that the presence of explosions in equations with negative delayed feedback

depends on the relative sizes of the functions f and g, the magnitude of the delay τ and

the nature of the initial function ψ. We do not investigate these equations in this thesis

and accordingly consider equations with positive delayed feedback which guarantee the

presence of a finite–time explosion.

2.3 Construction of State–Dependent Discretisation

We now construct a parameterised sequence xn(∆) and an associated continuous interpo-

lating function X̄∆ which will approximate the solution of (0.1.6) and mimic its asymptotic

behaviour. Let ∆ ∈ (0, τf(ψ(0))), and define N∆ ∈ N so that

N∆
∆

f(ψ(0))
≤ τ, (N∆ + 1)∆

f(ψ(0))
> τ.

Now define t−N∆
(∆) = −τ and

tn(∆) =
n∆

f(ψ(0))
, n = −N∆ + 1, . . . , 0.

Note that ∆ < τf(ψ(0)) ensures that N∆ ≥ 1, that is we have at least one mesh point on

the initial interval [−τ, 0]. Then

t−N∆+1(∆)− t−N∆
(∆) = −(N∆ − 1)∆

f(ψ(0))
+ τ <

(N∆ + 1)∆

f(ψ(0))
− (N∆ − 1)∆

f(ψ(0))
=

2∆

f(ψ(0))
,

and

t−N∆+1(∆)− t−N∆
(∆) = −(N∆ − 1)∆

f(ψ(0))
+ τ ≥ −(N∆ − 1)∆

f(ψ(0))
+N∆

∆

f(ψ(0))
=

∆

f(ψ(0))
.

Also define

xn(∆) = ψ(tn(∆)), n = −N∆, . . . , 0, (2.3.1)

X∆(t) = ψ(tn(∆)), t ∈ [tn(∆), tn+1(∆)), n = −N∆, . . . ,−1 (2.3.2)

and

X̄∆(t) = ψ(t), t ∈ [−τ, 0]. (2.3.3)

Next we extend (tn(∆)) for n ≥ 0 by

tn+1(∆) = tn(∆) +
∆

f(xn(∆))
, (2.3.4)
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where (xn(∆))n≥0 and X∆ are defined by

xn+1(∆) = xn(∆) + f(xn(∆))(tn+1(∆)− tn(∆))

+

∫ tn+1(∆)

tn(∆)
g(X∆(s− τ)) ds, n = 0, 1, 2, . . . (2.3.5)

and

X∆(t) = xn(∆), t ∈ [tn(∆), tn+1(∆)). (2.3.6)

Furthermore X̄∆ is defined for n ≥ 0 by

X̄∆(t) = xn(∆) + f(xn(∆))(t− tn(∆)) +

∫ t

tn(∆)
g(X∆(s− τ)) ds, t ∈ [tn(∆), tn+1(∆)).

(2.3.7)

Remark 2.3.1. We note that these constructions do indeed yield a well-defined, positive

and increasing sequence (xn(∆))n≥0, a well-defined, nonnegative and increasing sequence

(tn(∆))n≥0 and a well-defined continuous function X̄∆ on the interval [−τ, T∆) where

T∆ > 0 could be finite or infinite. Let

(xj(∆))0≤j≤n is well-defined, positive and increasing, (2.3.8a)

(tj(∆))0≤j≤n is well-defined, nonnegative and increasing, (2.3.8b)

X̄∆ ∈ C([−τ, tn(∆)) is well-defined and positive. (2.3.8c)

These statements are true for n = 0. If these statements are true at level n, we see that

f(xn(∆)) > 0, and so tn+1(∆) > tn(∆) ≥ 0 is well-defined, nonnegative and increas-

ing. Since (xj(∆))0≤j≤n is well-defined, X∆ is well-defined on [0, tn+1(∆)). It is also

positive, by hypothesis. Since tn+1(∆) − τ < tn+1(∆) we have g(X∆(s − τ)) > 0 for

s ∈ [tn(∆), tn+1(∆)) and so xn+1(∆) > xn(∆) > 0 is well-defined, positive and increasing.

Thus X̄∆ is well-defined and positive on [tn(∆), tn+1(∆)). Therefore (2.3.8a) and (2.3.8b)

have been proven at level n + 1, and so are true for all n ≥ 0. Finally, we prove that

X̄∆ ∈ C([−τ, tn(∆)); (0,∞)) for all n ∈ N and is increasing on [0, tn(∆)) for all n ∈ N.

First, we deal with the continuity. X̄∆ = ψ is continuous on [−τ, 0) = [−τ, t0(∆)). For
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each n ≥ 0, X̄∆ is continuous on [tn(∆), tn+1(∆)). Since

lim
t→tn+1(∆)−

X̄∆(t)

= xn(∆) + f(xn(∆))(tn+1(∆)− tn(∆)) + g(X̄∆(tn(∆)− τ)) (tn+1(∆)− tn(∆))

= xn+1(∆) = X̄∆(tn+1(∆)),

we see that X̄∆ is continuous at tn+1(∆) for all n ≥ 0. Since it is also continuous at

t0(∆) = 0, we see that X̄∆ is continuous on [−τ, tn(∆)) for n ≥ 0. X̄∆ is increasing

on [tn(∆), tn+1(∆)) for each n ≥ 0 since f(xn(∆)) > 0 and g(X∆(s − τ)) > 0 for s ∈

[tn(∆), tn+1(∆)), and so increasing on [0, tn(∆)) because X̄∆ is continuous on [0, tn(∆)).

Remark 2.3.2. Note that for s ∈ [tn(∆), tn+1(∆)], there can only be finitely many values

of X∆(s − τ). To see this, let m(n) ∈ Z such that m(n) ≥ −N∆ and X∆(tn(∆) − τ) =

xm(n)(∆). Clearly m(n) < n and tm(n) ≤ tn(∆)− τ .

Now tn+1(∆)−τ < tn+1(∆), it follows that X∆(tn+1(∆)−τ) can only assume the values

xm(n)(∆), xm(n)+1(∆), . . . , xn(∆), and therefore for s ∈ [tn(∆), tn+1(∆)] that X∆(s − τ)

can only assume the values xm(n)(∆), xm(n)+1(∆), . . . , xn(∆).

Moreover is f is non-decreasing, it can be shown that X∆(s − τ) can only assume the

values xm(n)(∆) or xm(n)+1(∆) on s ∈ [tn(∆), tn+1(∆)].

2.4 Explosions in the Numerical Method

We now show that the function X̄∆ explodes in finite time and mimics other properties of

the solution x of (0.1.6) (cf. Theorem 2.2.1). We will make use of the following Lemma:

Lemma 2.4.1. Let f obey (0.1.7), (2.2.1) and (2.2.3). Let ∆ ∈ (0, τf(ψ(0))) and xn(∆)

be defined by (2.3.5). Then

(i) ∫ ∞
1

1

f(u)
du <∞ if and only if

∫ ∞
1

1

φ(u)
du <∞ (2.4.1)

(ii)
∞∑
j=0

∆

f(xj(∆))
<∞ if and only if

∞∑
j=0

∆

φ(xj(∆))
<∞. (2.4.2)
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Theorem 2.4.1. Let f obey (0.1.7), (2.2.1) and (2.2.3), g obey (0.1.8), and ψ obey (0.1.9)

where τ > 0. Let ∆ ∈ (0, τf(ψ(0))) and X̄∆ be defined by (2.3.7). Then there exists a

finite T∆ > 0 such that X̄∆ ∈ C([−τ, T∆); (0,∞)), is increasing on [0, T∆),

T∆ := lim
n→∞

tn(∆) (2.4.3)

and

lim
t→T−∆

X̄∆(t) =∞. (2.4.4)

Moreover we have that

T∆ ≤
∆

Rφ(ψ(0))
+

1

R

∫ ∞
ψ(0)

1

φ(u)
du (2.4.5)

where R := infx>0
f(x)
φ(x) ∈ (0,∞), and so there exist C > 0, ∆∗ > 0 such that

T∆ < C for ∆ < ∆∗. (2.4.6)

However we note that if condition (2.2.1) is modified to condition (1.1.1), X∆ does

not explode in finite time. Therefore the numerical scheme does not produce a spurious

explosion in the case where the continuous solution does not explode.

Theorem 2.4.2. Let f obey (0.1.7), (2.2.1) and (2.2.3), g obey (0.1.8), and ψ obey

(0.1.9) where τ > 0. Then there is x ∈ C([−τ,∞)) which is the unique continuous

solution of (0.1.6) and which moreover obeys limt→∞ x(t) =∞ (see Theorem 1.1.1). Let

∆ ∈ (0, τf(ψ(0))), X̄∆ be defined by (2.3.7), Then X̄∆ ∈ C([−τ,∞); (0,∞)) is increasing

on [0,∞) and

lim
t→∞

X̄∆(t) =∞.

These results are investigated in later chapters.

2.5 Convergence of the Scheme

We now state the first main results in the chapter which deal not only with qualitative

results (i.e., the existence of an explosion in X̄∆ given by (2.3.7)) but also establish quan-

titative properties of the approximate solution X̄∆. In this section, we concentrate on

two such properties, namely: (i) the supnorm error between the true solution x and the
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continuous approximation X̄∆ and (ii) the error between the true explosion time T and

the approximate explosion time T∆.

In Theorem 2.5.1, we show that given that the functions x and X̄∆ are compared when

they do not exceed some arbitrary ceiling M , X̄∆ can be made arbitrarily close to x by

choosing the parameter ∆ < ∆(M) sufficiently small.

Theorem 2.5.1. Let f obey (0.1.7), g obey (0.1.8), and ψ ∈ C([−τ, 0]; (0,∞)) where

τ > 0. Then there exists a unique continuous solution x of (0.1.6) and there exists a finite

T > 0 such that x is increasing on [0, T ) and x obeys (2.2.2).

Let ∆ ∈ (0, τf(ψ(0))), let X̄∆ be defined by (2.3.7) and let L(f, ψ) := infx≥ψ(0) f(x) > 0.

If ρM and ρ̄M (∆) are defined by

ρM = inf{t ≥ 0 : x(t) ≥ M}, (2.5.1)

ρ̄M (∆) = inf{t ≥ 0 : X̄∆(t) ≥ M}, (2.5.2)

where M ∈ (ψ∗,∞) with ψ∗ := maxs∈[−τ,0] ψ(s), we have

lim
∆→0

sup
t∈[0,ρM∧ρ̄2M (∆)]

∣∣x(t)− X̄∆(t)
∣∣ = 0. (2.5.3)

Theorem 2.5.1 deals with the error between x and X̄∆ on a compact interval, on which

both functions are well-defined. Therefore Theorem 2.5.1 shows that the time ρM at which

x hits the threshold M (for arbitrary M) can be approximated with arbitrary precision by

the time ρ̄M (∆) at which X̄∆ hits M . In fact this theorem holds whether f obeys (2.2.1)

or (1.1.1), as both x(t) and X̄∆(t) are finite on t ∈ [0, ρM ∧ ρ̄2M (∆)] regardless of which

condition is satisfied. Furthermore, f need not assume any degree of monotonicity.

We now show that under condition (2.2.1) the explosion time T of x can be approximated

with arbitrary precision by ρ̄M (∆).

Theorem 2.5.2. Let f obey (0.1.7), (2.2.1) and (2.2.3), g obey (0.1.8), and ψ obey (0.1.9)

where τ > 0. Then there exists a unique continuous solution x of (0.1.6) and there exists

a finite T > 0 such that x is increasing on [0, T ) and x obeys (2.2.2).

Let ∆ ∈ (0, τf(ψ(0))), let X̄∆ be defined by (2.3.7) and let L(f, ψ) := infx≥ψ(0) f(x) > 0.

If ρM and ρ̄M (∆) are defined by (2.5.1) and (2.5.2) where M ∈
(
maxt∈[−τ,0] ψ(t),∞

)
, we
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have

lim
M→∞

lim
∆→0
|ρ̄M (∆)− T | = 0.

Note that ρ̄M (∆) can be obtained explicitly from the numerical scheme for any M >

0,∆ ∈ (0, τf(ψ(0))), in contrast to T and even T∆, which cannot be determined in finite

time by the algorithm. Theorem 2.5.2 can be useful if it is not know in advance that con-

dition (2.2.1) is satisfied and x obeys (2.2.2). Since we can approximate ρM with arbitrary

precision by ρ̄M (∆), it is possible to investigate the convergence of these approximations

of ρM as M →∞. The observation that these values are approaching a finite limit, which

is very apparent given the nature of explosive equations, indicates the presence of an ex-

plosion of the solution of (0.1.6). However if f does not satisfy condition (2.2.3), such

a conclusion would be unwise as in the absence of monotonicity the numerical method

may give false information about the presence of an explosion, as we will demonstrate in

Section 2.7. To prove Theorem 2.5.2 we make use of the following Lemma.

Lemma 2.5.1. Let f obey (0.1.7), (2.2.1) and (2.2.3), g obey (0.1.8), ψ obey (0.1.9)

where τ > 0, M ∈
(
maxt∈[−τ,0] ψ(t),∞

)
and let ρM and ρ̄M (∆) be defined by (2.5.1) and

(2.5.2). Then there exists ∆(M) ∈ (0, τf(ψ(0))) such that

ρ̄2M (∆) ≥ ρM , ρ2M ≥ ρ̄M (∆) for ∆ < ∆(M). (2.5.4)

Proof of Theorem 2.5.2 Now, note that for ∆ < ∆(M)

ρ̄M (∆)− T = ρ̄M (∆)− ρ2M + ρ2M − T < ρ̄M (∆)− ρ2M ≤ 0

Note also that for ∆ < ∆(M/2)

ρ̄M (∆)− T = ρ̄M (∆)− ρM/2 + ρM/2 − T ≥ ρM/2 − T

Thus for all ∆ < min(∆(M),∆(M/2)),

ρM/2 − T ≤ ρ̄M (∆)− T < 0.

Therefore

lim sup
∆→0

|ρ̄M (∆)− T | ≤ T − ρM/2.
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Hence

lim
M→∞

lim
∆→0
|ρ̄M (∆)− T | = 0.

and the proof is complete.

2.6 Explosion Rate of Continuous and Discrete Equations

In this section we determine the rate of explosion of the solution of (0.1.6).

Theorem 2.6.1. Let f obey (0.1.7), (2.2.1) and (2.2.3), g obey (0.1.8), and let ψ obey

(0.1.9) where τ > 0. Then there is a unique continuous solution x of (0.1.6), and there

exists T > 0 such that x obeys (2.2.2). Moreover, with F̄ defined by (0.1.12), we have

lim
t→T−

F̄ (x(t))

T − t
= 1. (2.6.1)

Proof. We first notice that (0.1.7), (2.2.1) and (2.2.3) imply that f(x) → ∞ as x → ∞.

Therefore by (0.1.7) and (2.2.2) we have

lim
t→T−

f(x(t)) =∞.

By (0.1.8) and the continuity of x on [−τ, T − τ + τ/2], we have

lim
t→T−

g(x(t− τ)) = g(x(T − τ)),

which is finite. By these observations and (0.1.6), we have

lim
t→T−

x′(t)

f(x(t))
= 1.

Notice that x′(t) ≥ f(x(t)), t ∈ (0, T ). Therefore, for every ε > 0, there exists Tε ∈ (0, T )

such that

1 ≤ x′(t)

f(x(t))
< 1 + ε, t ∈ (Tε, T ).

Hence, by integrating across this inequality and using the definition of F̄ in (0.1.12), we

have

T − t ≤ F̄ (x(t)) ≤ (1 + ε)(T − t), t ∈ (Tε, T ),

from which (2.6.1) immediately follows.
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As a result of Theorem 2.6.1, we see that regularly varying equations with weaker

nonlinear feedback produce faster explosion rates. To illustrate this, consider the following

example:

Example 2.6.1. Suppose that

x′1(t) = f1(x1(t)) + g(x1(t− 1)), t > 0; x1(t) = 1/(1− t), t ∈ [−1, 0], (2.6.2a)

x′2(t) = f2(x2(t)) + g(x2(t− 1)), t > 0; x2(t) = 1/(1− t)2, t ∈ [−1, 0], (2.6.2b)

where f1(x) = x2 − x
(x+1) , f2(x) = 2x3/2 − x

(x+2
√
x+1)

and g(x) = x. We can easily show

that

x1(t) = 1/(1− t), t ∈ [−1, 1), (2.6.3a)

x2(t) = 1/(1− t)2, t ∈ [−1, 1). (2.6.3b)

Clearly limx→∞
f1(x)
f2(x) =∞ but limt→1−

x1(t)
x2(t) = 0.

In general, amongst equations with regularly varying feedback, RV∞(1) equations which

are just sufficient to satisfy condition (2.2.1) produce the quickest explosion rates. This

example is particularly interesting, as one might naturally expect equations with more

extreme nonlinearities as x → ∞ to give rise to the quickest explosion rates. However

equations with feedback that is more rapidly growing than regularly varying, for example

f(x) ∼ ex, will produce even quicker explosion rates.

Our task now is to show, under appropriate hypotheses on F̄ , that xn(∆) and X̄∆ obey

appropriate asymptotic analogues to (2.6.1). To do this, we need the following preparatory

result.

Lemma 2.6.1. Let f obey (0.1.7), (2.2.1) and (2.2.3), g obey (0.1.8), and ψ obey (0.1.9)

where τ > 0. Let ∆ ∈ (0, τf(ψ(0))) and let (xn(∆))n≥0 be defined by (2.3.5). Then

lim
n→∞

xn(∆)

n
= ∆. (2.6.4)

Proof. In Theorem 2.4.1 it was already established that T∆ > 0 defined by (2.4.3) is finite.

We establish (2.6.4) in the cases when T∆ ≤ τ or T∆ > τ .

If T∆ ≤ τ , then tn(∆) < τ for all n ≥ 0. Thus tn(∆) − τ < 0, so X̄∆(tn(∆) − τ) =

ψ(tn(∆)− τ). Therefore by (0.1.8), (0.1.9) and (2.4.3) we have

lim
n→∞

g(X̄∆(tn(∆)− τ)) = g(ψ(T∆ − τ)). (2.6.5)
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Now, inserting (2.3.4) in (2.3.5) gives

xn+1(∆) = xn(∆) + ∆ +
∆

f(xn(∆))
g(ψ(tn(∆)− τ)). (2.6.6)

Since xn(∆)→∞ as n→∞ and since (2.2.1) and (2.2.3) imply f(x)→∞ as x→∞, we

have by (2.6.5) that

εn(∆) :=
∆

f(xn(∆))
g(ψ(tn(∆)− τ))→ 0, as n→∞.

Using this and (2.6.6) we have (2.6.4).

If T∆ > τ , the fact that 0 ≤ tn(∆) ↑ T∆ as n→∞ implies that there is n′ ≥ 0 such that

0 ≤ tn′(∆) < T∆ − τ ≤ tn′+1(∆) < T∆. (2.6.7)

To check the strictness of the inner two inequalities, consider the possibility that tn(∆) 6=

T∆ − τ for all n ≥ 0 and the possibility that there is an n ≥ 0 such that tn(∆) = T∆ − τ .

We now claim that there exists n̄∆ ≥ 0 such that

tn′(∆) < tn(∆)− τ ≤ tn′+1(∆), n ≥ n̄∆. (2.6.8)

To prove (2.6.8), note that tn(∆) < T∆ for all n ≥ 0. Thus for all n ≥ 0, by (2.6.7)

tn(∆)− τ < T∆ − τ ≤ tn′+1(∆),

so the second member of (2.6.8) holds. To prove the first member of (2.6.8), first note

that tn′(∆) + τ < T∆. Therefore ε0 := 1
2(T∆ − tn′(∆) − τ) > 0. Since tn(∆) ↑ T∆ as

n→∞, there exists n(∆) > 0 such that

0 < T∆ − tn(∆) < ε0, n > n(∆).

Thus T∆ < tn(∆) + ε0, and because tn′(∆) + τ < T∆, we have

tn′(∆) < T∆ − τ < tn(∆)− τ + ε0, n > n(∆).

Thus

tn(∆)− τ > T∆ − τ − ε0 = T∆ − τ −
1

2
(T∆ − tn′(∆)− τ)

> T∆ − τ − (T∆ − tn′(∆)− τ) = tn′(∆),
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so tn′(∆) < tn(∆) − τ for all n > n(∆). Choosing n̄∆ = n(∆) + 1 now gives the first

member of (2.6.8).

(2.6.8) and the monotonicity of X̄∆ on [tn′(∆), tn′+1(∆)] imply that

X̄∆(tn(∆)− τ) ∈ [xn′(∆), xn′+1(∆)], n ≥ n̄∆.

Therefore for n ≥ n̄∆,

g
∆

:= min
x∈[xn′ (∆),xn′+1(∆)]

g(x) ≤ g(X̄∆(tn(∆)− τ)) ≤ max
x∈[xn′ (∆),xn′+1(∆)]

g(x) =: g∆.

Defining εn(∆) = ∆g(X̄∆(tn(∆)− τ))/f(xn(∆)), we have

∆

f(xn(∆))
g

∆
≤ εn(∆) ≤ ∆

f(xn(∆))
g∆, n ≥ n̄∆,

and so εn(∆)→ 0 as n→∞. Moreover by (2.3.4) and (2.3.5), we have

xn+1(∆) = xn(∆) + ∆ + εn(∆), n ≥ 0,

which therefore implies (2.6.4).

We are now in a position to determine the asymptotic behaviour of (xn(∆))n≥0 and

X̄∆(t) as n→∞ and as t→ T−∆ respectively.

We now state two results which enable us to determine the asymptotic behaviour for

classes of f which grow at increasingly rapid rates. Commentary and examples will be

supplied after the statements.

Theorem 2.6.2. Let f obey (0.1.7), (2.2.1) and (2.2.3), g obey (0.1.8), and ψ obey (0.1.9)

where τ > 0. Let ∆ ∈ (0, τf(ψ(0))) and let (tn(∆))n≥0, (xn(∆))n≥0 and X̄∆ be as defined

by (2.3.4), (2.3.5) and (2.3.7). Then by Theorem 2.4.1 there exists T∆ ∈ (0,∞) such that

lim
t→T−∆

X̄∆(t) =∞, T∆ = lim
n→∞

tn(∆).

If F̄ is defined by (0.1.12) and F̄ ∈ RV∞(β) for some β ≤ 0, then

lim
n→∞

F̄ (xn(∆))

T∆ − tn(∆)
= 1, (2.6.9)

and

lim
t→T−∆

F̄ (X̄∆(t))

T∆ − t
= 1. (2.6.10)
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Theorem 2.6.2 applies to for example polynomially growing f . We now give a couple of

representative examples.

Example 2.6.2. Suppose f(x) ∼ cxα as x→∞, where c > 0, α > 1. Then

F̄ (x) ∼ 1

c

∫ ∞
x

u−α du =
1

c

x−(α−1)

α− 1
as x→∞,

and so F̄ ∈ RV∞(1 − α). Thus the hypotheses of Theorem 2.6.2 are satisfied with β =

1− α < 0. Then

lim
t→T−∆

(T∆ − t)1/(α−1)X̄∆(t) =

(
1

c(α− 1)

)1/(α−1)

.

By Theorem 2.6.1, the solution of (0.1.6) obeys

lim
t→T−

(T − t)1/(α−1)x(t) =

(
1

c(α− 1)

)1/(α−1)

,

and moreover lim∆→0+ T∆ = T .

Among equations which satisfy the conditions of Theorem 2.6.2, those for which the

rate of growth of f is just sufficient to cause an explosion produce the strongest rates

of explosion in accordance with Example 2.6.1. This is demonstrated in the following

examples:

Example 2.6.3. Suppose f(x) ∼ cx(log x)α as x→∞, where c > 0 α > 1. Then

F̄ (x) ∼ 1

c

∫ ∞
x

1

u(log u)α
du =

1

c

(log x)−(α−1)

α− 1
as x→∞,

and so F̄ ∈ RV∞(0), which satisfies the conditions of Theorem 2.6.2 with β = 0. So we

have

lim
t→T−∆

(T∆ − t)1/(α−1) log X̄∆(t) =

(
1

c(α− 1)

)1/(α−1)

.

By Theorem 2.6.1, the solution of (0.1.6) obeys

lim
t→T−

(T − t)1/(α−1) log x(t) =

(
1

c(α− 1)

)1/(α−1)

,

and moreover lim∆→0+ T∆ = T .

Example 2.6.4. Suppose f(x) ∼ cx log x(log log x)α as x → ∞, where c > 0, α > 1.

Then

F̄ (x) ∼ 1

c

∫ ∞
x

1

u log u(log log u)α
du =

1

c

(log log x)−(α−1)

α− 1
as x→∞,
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and so F̄ ∈ RV∞(0), which satisfies the conditions of Theorem 2.6.2 with β = 0. So we

have

lim
t→T−∆

(T∆ − t)1/(α−1) log log X̄∆(t) =

(
1

c(α− 1)

)1/(α−1)

.

By Theorem 2.6.1, the solution of (0.1.6) obeys

lim
t→T−

(T − t)1/(α−1) log log x(t) =

(
1

c(α− 1)

)1/(α−1)

,

and moreover lim∆→0+ T∆ = T .

Theorem 2.6.3. Let f obey (0.1.7), (2.2.1) and (2.2.3), g obey (0.1.8), and ψ obey (0.1.9)

where τ > 0. Let ∆ ∈ (0, τf(ψ(0))) and let (xn(∆))n≥0, (tn(∆))n≥0 and X̄∆ be as defined

by (2.3.7). Then by Theorem 2.4.1 there exists T∆ ∈ (0,∞) such that

lim
t→T−∆

X̄∆(t) =∞, T∆ = lim
n→∞

tn(∆).

If F̄ is defined by (0.1.12) and F̄−1 ∈ RV0(0), then

lim
n→∞

xn(∆)

F̄−1(T∆ − tn(∆))
= 1, (2.6.11)

and

lim
t→T−∆

X̄∆(t)

F̄−1(T∆ − t)
= 1. (2.6.12)

Theorem 2.6.3 includes exponentially growing f . We notice that in Theorem 2.6.2 we

made an assumption on the asymptotic behaviour of F̄ at infinity, while in Theorem

2.6.3 we made an asymptotic assumption on F̄−1 at zero. It transpires however that the

latter hypothesis proves to be a natural way to extend the scope of problems covered by

the former. Specifically, the hypothesis F̄ ∈ RV∞(β) for finite β < 0 is equivalent to

F̄−1 ∈ RV0(1/β). Therefore we can view the hypothesis F̄−1 ∈ RV0(0) in Theorem 2.6.3

as the analogue of F̄ ∈ RV∞(β) in Theorem 2.6.2 as β → −∞; hence Theorem 2.6.3 is a

natural extension of Theorem 2.6.2. Here are a couple of representative examples:

Example 2.6.5. Suppose f(x) ∼ ceαx as x→∞, where c > 0, α > 0. Then

F̄ (x) ∼ 1

c

∫ ∞
x

e−αu du =
1

cα
e−αx as x→∞,

which implies

F̄−1(x) ∼ log

(
1

x

)1/α

as x→∞,
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and so F̄−1 ∈ RV∞(0), which satisfies the conditions of Theorem 2.6.3. So we have

lim
t→T−∆

[
log

(
1

T∆ − t

)]−1

X̄∆(t) =
1

α
.

By Theorem 2.6.1, the solution of (0.1.6) obeys

lim
t→T−

[
log

(
1

T − t

)]−1

x(t) =
1

α
,

and moreover lim∆→0+ T∆ = T .

Example 2.6.6. Suppose f(x) ∼ ceαeβxe−βx as x→∞, where c > 0, α > 0, β > 0. Then

F̄ (x) ∼ 1

c

∫ ∞
x

e−αe
βu
eβu du =

1

cαβ
e−αe

βx
as x→∞,

which implies

F̄−1(x) ∼ log

[
log

(
1

x

)1/α
]1/β

as x→∞,

and so F̄−1 ∈ RV∞(0), which satisfies the conditions of Theorem 2.6.3. So we have

lim
t→T−∆

[
log log

(
1

T∆ − t

)1/α
]−1

X̄∆(t) =
1

β
.

By Theorem 2.6.1, the solution of (0.1.6) obeys

lim
t→T−

[
log log

(
1

T − t

)1/α
]−1

x(t) =
1

β
,

and moreover lim∆→0+ T∆ = T .

Of course (2.6.12) is not the exact analogue of (2.6.1), that is when we move beyond the

scope of equations covered by Theorem 2.6.2 we lose a bit of information about the exact

rate of explosion of the approximate solution. In Chapter 3, we investigate how to extend

the numerical method described in Section 2.3 to deal with such equations. We suggest

that an extra factor must be included in the step-size to create a “finer” mesh with which

to discretise the solution. However, this extra factor depends on f itself, and so will vary

within the class of equations for which F̄−1 ∈ RV0(0). For instance to obtain the exact

analogue of (2.6.1) for the equation given in Example 2.6.6 we must further modify the

numerical method over what would be required to obtain the exact analogue of (2.6.1) for

the equation given in Example 2.6.5.
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2.7 Absence of Monotonicity

In this section we show that if f does not obey (2.2.3), that is we do not make any sort of

monotonicity assumption on f , examples of f exist for which the existence of explosions

in (0.1.6) is not detected by our adaptive mesh described in Section 2.3. To illustrate

this, yet simplify the analysis, we do not consider the delayed component of (0.1.6), that

is we construct examples of equations which grow at any rate described by an ordinary

differential equation given by

y′(t) = η(y(t)), t > 0; y(0) = ξ,

where η obeys

η ∈ C1((0,∞); (0,∞)),

∫ ∞
1

1

η(x)
dx < +∞, η is increasing. (2.7.1)

At the same time, the numerical method can be interpreted as returning the same rate of

growth as the non-exploding equation

z′(t) = θ(z(t)), t > 0, z(0) = ξ,

where

θ ∈ C1((0,∞); (0,∞)),

∫ ∞
1

1

θ(x)
dx = +∞, θ is increasing. (2.7.2)

Therefore, the essence of these results is that differential equations exist which have ar-

bitrary explosion rates, but for which the numerical method incorrectly predicts that an

explosion is absent, and that the rate of growth of that non-exploding solution is also

arbitrary.

We make the mild additional assumption that

η(x) ≥ θ(x), x > 0, (2.7.3)

which is clearly consistent (but not a consequence of) (2.7.1) and (2.7.2).

Let ∆0 > 0 and define

εn =
1

4

1

n+ 2

θ2(ξ)

η(ξ + n∆0 −∆0/2)η(ξ + n∆0 + ∆0/2)
, n ≥ 1.
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Notice that εn > 0. Also, η(ξ + n∆0 + ∆0/2) ≥ η(ξ) ≥ θ(ξ), and η(ξ + n∆0 − ∆0/2) ≥

η(ξ) ≥ θ(ξ) so εn < 1/12 for all n ≥ 1. Since 1/η ∈ L1((0,∞); (0,∞)) and η is increasing,

we have that
∞∑
n=1

1

η(ξ + n∆0 + ∆0/2)
< +∞,

so we have that (εn)n≥1 is summable.

Define now f : [0,∞) → R by f(x) = η(x) for x ∈ [0, ξ + ∆0/2) and on the interval

[ξ + (n− 1/2)∆0, ξ + (n+ 1/2)∆0) for n ≥ 1 by

f(x) =



η(x), x ∈ [ξ + (n− 1/2)∆0, ξ + n∆0 − 2εn∆0),

l−(x), x ∈ [ξ + n∆0 − 2εn∆0, ξ + n∆0 − εn∆0),

θ(x), x ∈ [ξ + n∆0 − εn∆0, ξ + n∆0 + εn∆0),

l+(x), x ∈ [ξ + n∆0 + εn∆0, ξ + n∆0 + 2εn∆0),

η(x), x ∈ [ξ + n∆0 + 2εn∆0, ξ + (n+ 1/2)∆0),

(2.7.4)

where

l−(x) := η(ξ + n∆0 − 2εn∆0)

+
θ(ξ + n∆0 − εn∆0)− η(ξ + n∆0 − 2εn∆0)

εn
(x− (ξ + n∆0 − 2εn∆0)),

and

l+(x) := θ(ξ + n∆0 + εn∆0)

+
η(ξ + n∆0 + 2εn∆0)− θ(ξ + n∆0 + εn∆0)

εn
(x− (ξ + n∆0 + εn∆0)).

The condition that εn ∈ (0, 1/4) guarantees that the partition of [ξ + (n − 1/2)∆0, ξ +

(n + 1/2)∆0) into subintervals in (2.7.4) is well-defined, along with the function f itself.

Also note that the linear functions l+ and l− are chosen to make f continuous on the

interval [ξ + (n− 1/2)∆0, ξ + (n+ 1/2)∆0) for each n ≥ 1. Also, the fact that f is equal

to η on the first and last subinterval, as well as the continuity of η, ensures that f is

a continuous and indeed a positive function on (0,∞). Moreover, f is locally Lipschitz

continuous, because η and θ are in C1((0,∞); (0,∞)) and the linear interpolants l± are of

course locally Lipschitz continuous.
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Using the monotonicity of η and θ and (2.7.3), it can be seen that f is not an increasing

function. Indeed, if η(x)/θ(x) → ∞ as x → ∞, we cannot have that f is asymptotic to

an increasing function.

If we consider the initial value problem given by

x′(t) = f(x(t)), t > 0; x(0) = ξ, (2.7.5)

where f is the function defined by (2.7.4), we can show that the solution of x of (2.7.5)

obeys

lim
t→Tξ

x(t) =∞ where Tξ =

∫ ∞
ξ

1/f(u) du. (2.7.6)

Now, let ∆ > 0 and consider the following numerical approximation to the solution x

of (2.7.5). Define x0(∆) = ξ, t0(∆) = 0 and

hn(∆) =
∆

f(xn(∆))
, n ≥ 0, (2.7.7a)

xn+1(∆) = xn(∆) + hn(∆)f(xn(∆)), n ≥ 0, (2.7.7b)

tn(∆) =

n−1∑
j=0

hj(∆), n ≥ 1. (2.7.7c)

Clearly, xn(∆) is the forward Euler approximation to x(tn(∆)) consistent with the method

described in Section 2.3. However, the following results shows that the numerical method

does not predict the presence of the explosion in (2.7.5).

Proposition 2.7.1. Suppose that η and θ are functions which obey (2.7.1), (2.7.2) and

(2.7.3), and let f be the function defined by (2.7.4). Then the solution x of (2.7.5) obeys

(2.7.6), while the solution of (2.7.7) is such that tn(∆) defined by (2.7.7c) obeys

T∆0 := lim
n→∞

tn(∆0) = +∞. (2.7.8)

There are two other interesting properties of this example which does not detect the

presence of an explosion. The first is that there exist arbitrarily small and at least countably

many values of the control parameter ∆ for which the presence of the explosion is not

detected. The second is that the solution of the numerical method (2.7.7) grows at a rate

consistent with the non-exploding differential equation y′(t) = θ(y(t)) for t > 0, while the

solution of the differential equation in fact grows at a rate consistent with the exploding
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differential equation z′(t) = η(z(t)) for t > 0. The rate for the ODE arises because the

“troughs” in f (which represent departures from η) while deep, are sufficiently narrow to

guarantee that the rate of growth of the explosion that would arise if the right hand side

is η is retained. Therefore, as the numerical solution will appear quite well-behaved, and

reducing the error control parameter may not assist in detecting the explosion, it can be

seen that “false negatives” may be hard to spot for more complicated problems.

Proposition 2.7.2. If f is defined by (2.7.4), and x is the solution of (2.7.5), then x

obeys (2.7.6) and

lim
t→T−ξ

H̄(x(t))

Tξ − t
= 1

where

H̄(x) =

∫ ∞
x

1

η(u)
du, x ≥ 0.

Proposition 2.7.3. If f is defined by (2.7.4), and x is the solution of (2.7.5), then x

obeys (2.7.6). If T∆0 is defined by (2.7.8), then T∆0 = +∞ and

T∆0/k = +∞, for all k ∈ N.

Proof. Let k ≥ 2. Clearly

T∆0/k =
∞∑
n=0

∆0/k

f(ξ + n ·∆0/k)
≥

∞∑
n=0 :n/k is an non-negative integer

∆0/k

f(ξ + n ·∆0/k)
,

so by (2.7.8) we have

T∆0/k ≥
1

k

∞∑
j=0

∆0

f(ξ + j∆0)
=

1

k
T∆0 .

By Proposition 2.7.1, we have T∆0 = +∞, the proof is complete.

Proposition 2.7.4. If f is defined by (2.7.4), and xn(∆) is the solution of (2.7.7), then

T∆0 = +∞, xn(∆) is defined on (0,∞) and

lim
n→∞

Θ(xn(∆0))

tn(∆0)
= 1

where

Θ(x) =

∫ x

ξ

1

θ(u)
du, x ≥ ξ.
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Proof. Note that since xn(∆0) = ξ + n∆0 for n ≥ 0 and f obeys (2.7.4),

f(xn(∆0)) = f(ξ + n∆0) = θ(ξ + n∆0), n ≥ 1

and so

tn(∆0) =
∆0

f(x0(∆0))
+
n−1∑
j=1

∆0

f(xj(∆0))

=
∆0

f(ξ)
+
n−1∑
j=1

∆0

θ(ξ + j∆0)

=
∆0

η(ξ)
+
n−1∑
j=0

∆0

θ(ξ + j∆0)
− ∆0

θ(ξ)
.

As 1/θ is decreasing,

n−1∑
j=0

∆0

θ(ξ + j∆0)
≥ Θ(ξ + n∆0)) ≥

n−1∑
j=0

∆0

θ(ξ + (j + 1)∆0)

=

n∑
j=0

∆0

θ(ξ + j∆0)
− ∆0

θ(ξ)

>
n−1∑
j=0

∆0

θ(ξ + j∆0)
− ∆0

θ(ξ)
.

Therefore

tn(∆0)− ∆0

η(ξ)
+

∆0

θ(ξ)
≥ Θ(xn(∆0)) > tn(∆0)− ∆0

η(ξ)

and taking limits as n→∞ obtains Θ(xn(∆0))/tn(∆0)→ 1, as required.

These constructions can also be used to generate examples of equations for which the

solution to the differential equation does not explode, yet the numerical method described

by (2.7.7) spuriously detects the presence of an explosion. The analysis is very similar and

can be obtained simply by switching the roles of the functions η and θ in the definition of

f .

One solution to the problem illustrated by these examples is to consider inserting mono-

tonicity into the numerical method itself. Consider the ODE given by

w′(t) = f(w(t)), t > 0; w(0) = ψ(0), (2.7.9)

where f obeys (0.1.7) and (2.2.1). Let ∆ > 0 and ε ∈ (0, 1/2). Define the sequence
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(wn(∆))n≥0 by

w0(∆) = ψ(0) (2.7.10a)

wn+1(∆) = wn(∆) (2.7.10b)

+ inf{w ∈ [(1− ε)∆,∆] : f(w + wn(∆)) = max
z∈[(1−ε)∆,∆]

f(z + wn(∆))}.

The continuity of f ensures that this sequence is well-defined. Moreover, it can be seen

that (wn(∆))n≥0 is increasing.

Next, define the sequence (ln(∆))n≥0 by

ln(∆) =
inf{w ∈ [(1− ε)∆,∆] : f(w + wn(∆)) = maxz∈[(1−ε)∆,∆] f(z + wn(∆))}

f(wn(∆))
.

(2.7.11)

This is well-defined because f(wn(∆)) > 0 for all n ≥ 0, due to the positivity of f and

(wn(∆))n≥0; moreover ln(∆) > 0 for all n ≥ 0. Also define the sequence (sn(∆))n≥0 by

s0(∆) = 0; sn(∆) =

n−1∑
j=0

lj(∆), n ≥ 1. (2.7.12)

The fact that ln(∆) is positive for each n ≥ 0 forces (sn(∆))n≥0 to be an increasing

sequence. We mention in passing that the infima in (2.7.10b) and also in (2.7.11) can

be replaced by minima, due to the continuity of f . In the case when f is increasing, we

have that wn+1(∆) = wn(∆) + ∆ for n ≥ 0, and therefore that ln(∆) = ∆/f(wn(∆)),

which shows that this method reduces to the scheme describes in Section 2.3 when f is

monotone.

Now,

wn+1(∆)− wn(∆)

= inf{w ∈ [(1− ε)∆,∆] : f(w + wn(∆)) = max
z∈[(1−ε)∆,∆]

f(z + wn(∆))}

= ln(∆)f(wn(∆)).

Since wn+1(∆) ∈ [wn(∆)+(1−ε)∆, wn(∆)+∆], evidently we have wn(∆)→∞ as n→∞.

We now show that the approximation wn(∆) does indeed detect the presence of an

explosion. This amounts to showing that the sequence ln(∆) is summable.
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Theorem 2.7.1. Suppose that f obeys (0.1.7) and (2.2.1). Suppose that (wn(∆))n≥0 is

defined by (2.7.10a). Then there exists a finite T∆ ∈ (0,∞) such that

T∆ = lim
n→∞

sn(∆) =

∞∑
j=0

lj(∆). (2.7.13)

While always predicting an explosion when it is present, this method suffers from the

disadvantage of needing to determine the maximum of f on an interval, a problem which

requires information about the behaviour of f at every point on the interval which therefore

makes it hard to implement precisely and somewhat impractical. Moreover, we do not

know whether it falsely predicts the presence of an explosion when one is not present

in the underlying continuous time equation (2.7.10). Therefore this method does not

satisfactorily deal with equations which do not make any sort of monotonicity assumption

on f .

As mentioned in the introduction to this chapter, by virtue of the counterexamples

described in this section we wish to inform the reader that we will be assuming that

the instantaneous coefficient of the differential equation obeys some sort of monotonicity

assumption for the remainder of the thesis.

2.8 Proofs

Proof of Theorem 2.2.2 To prove part (i), note that since f is increasing and f obeys

(2.2.5), we have that f(x) → ∞ as x → ∞. Therefore (f(x) − f(δ/2))/f(x) → 1 as

x → ∞. Also since f is monotone and we have f(x) − f(δ/2) > 0 for all x > δ/2 and so

by (2.2.5) for any δ′ > δ/2 we have∫ ∞
δ′

1

f(x)− f(δ/2)
dx < +∞.

Therefore ψ(0) > δ/2 can be chosen sufficiently large so that∫ ∞
ψ(0)

1

f(u)− f(δ/2)
du <

τ

2
. (2.8.1)

Since f is in C1(0,∞), (2.2.4) has a solution on [−τ, Tψ). Let us assume that there is

no explosion so that the solution is defined on (0, τ/2]. Now for t ∈ [0, τ/2], x(t − τ) =

ψ(t− τ) ∈ (0, δ/2], so 0 < f(x(t− τ)) < f(δ/2) . Hence

x′(t) ≥ f(x(t))− f(δ/2), t ∈ [0, τ/2]; x(0) = ψ(0).
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We now prove that there exists Tψ ≤ τ/2 such that limt→T−ψ
x(t) =∞. Since x(0) > δ/2,

x′(0) > 0 and x is increasing at 0. Moreover, if there exists a minimal t′ ∈ [0, τ/2] such

that x′(t′) = 0, then x(t′) > x(0) > δ/2 and so 0 = x′(t′) ≥ f(x(t′)) − f(δ/2) > 0, a

contradiction. Therefore x is increasing on [0, τ/2]. Therefore

x′(t)

f(x(t))− f(δ/2)
≥ 1, t ∈ [0, τ/2].

This implies∫ x(t)

ψ(0)

1

f(u)− f(δ/2)
du =

∫ t

0

x′(s)

f(x(s))− f(δ/2)
ds ≥ t, t ∈ [0, τ/2].

By assumption x(t) is finite for all t ∈ [0, τ/2]. Therefore there exists x∗ ∈ (ψ(0),∞) such

that x(τ/2) = x∗. Thus∫ x∗

ψ(0)

1

f(u)− f(δ/2)
du = lim

t→τ/2−

∫ x(t)

ψ(0)

1

f(u)− f(δ/2)
du ≥ τ

2
.

By (2.8.1) we have

τ

2
>

∫ ∞
ψ(0)

1

f(u)− f(δ/2)
du >

∫ x∗

ψ(0)

1

f(u)− f(δ/2)
du ≥ τ

2
,

a contradiction. Therefore there exists Tψ < τ/2 such that limt→T−ψ
x(t) =∞, as claimed.

To prove part (ii), note that since f ∈ C1([0,∞), (0,∞)), for every δ > 0 there exists

Kδ ≥ 0 given by Kδ := max0≤x≤δ |f ′(x)|. That is for y, z ∈ [0, δ],

|f(y)− f(z)| ≤ Kδ|y − z|, y, z ∈ [0, δ].

Now extend f to be defined on [−δ, 0] according to

f(x) = 2f(0)− f(−x), x ∈ [−δ, 0].

Thus f ′(x) = f ′(−x) for x ∈ [−δ, 0] and so for y, z ∈ [−δ, δ],

|f(y)− f(z)| ≤ Kδ|y − z|, y, z ∈ [−δ, δ]. (2.8.2)

Also since f ′(0) = 0, we have Kδ → 0 as δ → 0+. Let δ > 0 be so small that

Kδτ <
1

2
. (2.8.3)

Let

N = {y ∈ C([−τ,∞);R) : y0 = ψ, |y(t)| ≤ δ, t ≥ 0}.
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Define for y ∈ N

(Ωy)(t) =


ψ(t), t ∈ [−τ, 0],

ψ(0) +
∫ t

0 f(y(s)) ds−
∫ t−τ
−τ f(ψ(s)) ds, t ∈ [0, τ ],

ψ(0) +
∫ t
t−τ f(y(s)) ds−

∫ 0
−τ f(ψ(s)) ds, t ≥ τ.

We will show that Ω : N → N and that Ω is a contraction on (N, ‖ · ‖) where ‖ · ‖ is the

supnorm on [−τ,∞).

For t ∈ [0, τ ],

(Ωy)(t) = ψ(0) +

∫ t

0
f(y(s)) ds−

∫ t−τ

−τ
f(ψ(s)) ds

= ψ(0) +

∫ t

0
(f(y(s))− f(ψ(s− τ))) ds

≤ ψ(0) +

∫ t

0
|f(y(s))− f(ψ(s− τ))| ds

≤ ψ(0) +

∫ t

0
|f(δ)− f(ψ(s− τ))| ds

≤ ψ(0) +

∫ t

0
Kδ |δ − ψ(s− τ)| ds

≤ ψ(0) +Kδδt

≤ ψ(0) +Kδδτ ≤ δ.

Also for t ∈ [0, τ ],

(Ωy)(t) ≥ ψ(0) +

∫ t

0
(f(−δ)− f(ψ(s− τ))) ds.

Now

|f(−δ)− f(ψ(s− τ))| ≤ Kδ |−δ − ψ(s− τ)| = Kδ |δ + ψ(s− τ)| = Kδ (δ + ψ(s− τ)) .

So

(Ωy)(t) ≥ ψ(0) +

∫ t

0
(f(−δ)− f(ψ(s− τ))) ds

≥ ψ(0) +

∫ t

0
−Kδ (δ + ψ(s− τ)) ds

.

Since ψ(t) ≤ δ for t ∈ [−τ, 0], we have δ/2 ≤ δ + ψ(s − τ) ≤ 3δ/2 for s ∈ [0, τ ]. So
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−Kδ (δ + ψ(s− τ)) ≥ −Kδ3δ/2. Thus for t ∈ [0, τ ]

(Ωy)(t) ≥ ψ(0) +

∫ t

0
−Kδ3δ/2 ds

≥ ψ(0)−Kδt3δ/2

≥ ψ(0)−Kδτ3δ/2

> ψ(0)− 3δ/4

> −3δ/4 > −δ,

where we have used (2.8.3), ψ(0) > 0 and t ≤ τ .

Now for t ≥ τ ,

(Ωy)(t) = ψ(0) +

∫ t

t−τ
f(y(s)) ds−

∫ 0

−τ
f(ψ(s)) ds

≤ ψ(0) +

∫ t

t−τ
Kδ |δ − ψ(s)| ds

≤ ψ(0) +Kδδτ ≤ δ.

Also for t ≥ τ ,

(Ωy)(t) ≥ ψ(0) +

∫ t

t−τ
(f(−δ)− f(ψ(s))) ds

≥ ψ(0) +

∫ t

t−τ
−Kδ (δ + ψ(s)) ds

≥ ψ(0) +

∫ t

t−τ
−Kδ3δ/2 ds

≥ ψ(0)−Kδτ3δ/2 > −δ,

using similar arguments as before.

Therefore |(Ωy)(t)| ≤ δ for t ∈ [−τ,∞). Hence Ω : N → N and moreover (N, ‖ · ‖) is a

Banach space.

Suppose that y, z ∈ N . Then for t ∈ [−τ, 0] we have (Ωy)(t)− (Ωz)(t) = 0. For t ∈ [0, τ ]

we have

(Ωy)(t)− (Ωz)(t) =

∫ t

0
f(y(s))− f(z(s)) ds.

Therefore

|(Ωy)(t)− (Ωz)(t)| ≤
∫ t

0
|f(y(s))− f(z(s))| ds ≤

∫ τ

0
Kδ|y(s)− z(s)| ds

≤ Kδτ sup
0≤s≤τ

|y(s)− z(s)|,
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and so sup0≤t≤τ |(Ωy)(t)− (Ωz)(t)| ≤ Kδτ sup0≤s≤τ |y(s)− z(s)|. For t ≥ τ we have

(Ωy)(t)− (Ωz)(t) =

∫ t

t−τ
f(y(s))− f(z(s)) ds,

so

|(Ωy)(t)− (Ωz)(t)| ≤
∫ t

t−τ
|f(y(s))− f(z(s))| ds ≤

∫ t

t−τ
Kδ|y(s)− z(s)| ds

≤ Kδτ sup
t−τ≤s≤t

|y(s)− z(s)|.

Thus

‖Ωy − Ωz‖ = sup
t≥−τ

|(Ωy)(t)− (Ωz)(t)|

= sup
t≥0
|(Ωy)(t)− (Ωz)(t)|

= max

(
sup

0≤t≤τ
|(Ωy)(t)− (Ωz)(t)|, sup

t≥τ
|(Ωy)(t)− (Ωz)(t)|

)
≤ max

(
Kδτ sup

0≤s≤τ
|y(s)− z(s)|,Kδτ sup

t≥τ
sup

t−τ≤s≤t
|y(s)− z(s)|

)
= Kδτ max

(
sup

0≤s≤τ
|y(s)− z(s)|, sup

s≥0
|y(s)− z(s)|

)
= Kδτ sup

s≥0
|y(s)− z(s)| = Kδτ sup

s≥−τ
|y(s)− z(s)| = Kδτ‖y − z‖

≤ 1

2
‖y − z‖.

Therefore Ω is a contraction.

Hence by the contraction mapping theorem, Ω has a unique fixed point in N . This fixed

point is a function x ∈ C([−τ,∞),R) obeying

(i) x(t) = ψ(t) for t ∈ [−τ, 0];

(ii) x(t) = (Ωx)(t) for t ≥ −τ ;

(iii) |x(t)| ≤ δ for all t ≥ 0.

Since (Ωx)′(t) = f(x(t))−f(x(t−τ)) for all t > 0, by (i) and (ii), x is a solution of (0.1.6).

Moreover it is the unique continuous solution of (0.1.6). As f is increasing and ψ is

increasing, x must be increasing and so x(t)→ L′ as t→∞ where L′ ∈ (ψ(0), δ) ⊂ [−δ, δ].
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Now since x is continuous

L′ = lim
t→∞

x(t) = lim
t→∞

(Ωx)(t) = lim
t→∞

(
ψ(0)−

∫ 0

−τ
f(ψ(s)) ds+

∫ t

t−τ
f(x(s)) ds

)
= ψ(0)−

∫ 0

−τ
f(ψ(s)) ds+ τf(L′) = ΨL′

where

Ψx = ψ(0)−
∫ 0

−τ
f(ψ(s)) ds+ τf(x).

We claim that Ψ : M → M where M = ([−δ, δ], | · |) and | · | is the standard absolute

value function on R. Let x ∈ [−δ, δ]. As f is increasing, f(−δ) ≤ f(x) ≤ f(δ). Note also

that f(0) ≤ f(ψ(t)) ≤ f(δ/2). Thus,

f(−δ)− f(δ/2) ≤ f(x)− f(ψ(s)) ≤ f(δ)− f(0).

Now |f(δ)− f(0)| ≤ Kδ|δ − 0| = Kδδ. Also,

|f(−δ)− f(δ/2)| ≤ Kδ| − δ − δ/2| = Kδ| − 3δ/2| = Kδ3δ/2.

Thus,

Ψx = ψ(0) +

∫ 0

−τ
(f(x)− f(ψ(s))) ds

≤ ψ(0) +

∫ 0

−τ
Kδδ ds

= ψ(0) +Kδτδ < δ/2 + δ/2 = δ.

Also,

Ψx ≥ ψ(0) +

∫ 0

−τ
−Kδ3δ/2 ds

= ψ(0)−Kδτ3δ/2

> ψ(0)− 3δ/4 > −3δ/4 > −δ.

Therefore Ψ : M →M . Now suppose that |x|, |y| ≤ δ. Then

|Ψx−Ψy| = τ |f(x)− f(y)| ≤ τKδ|x− y| <
1

2
|x− y|.

Thus Ψ is a contraction and therefore must have a unique fixed point in M . This is the

number L in (2.2.6). Since ΨL′ = L′, we have that L′ = L. Therefore limt→∞ x(t) = L.
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Proof of Theorem 2.2.3 Since ψ is positive and continuous, there exists δ > 0 such

that

0 < ψ(t) ≤ δ, t ∈ [−τ,−τ/2].

Since g is continuous there is gδ ≥ 0 such that gδ := maxx∈(0,δ] g(x). Since f is increasing

and f obeys (2.2.1), we have that f(x)→∞ as x→∞. Therefore (f(x)− gδ)/f(x)→ 1

as x→∞. Also, because f is increasing, we have f(x)− gδ > 0 for all x > f−1(gδ), so by

(2.2.1) for any δ′ > f−1(gδ) we have∫ ∞
δ′

1

f(x)− gδ
dx < +∞.

Therefore ψ(0) > f−1(gδ) can be chosen sufficiently large so that∫ ∞
ψ(0)

1

f(u)− gδ
du <

τ

2
. (2.8.4)

Since f is in C1(0,∞), and g is continuous, (2.2.7a) has a solution on [−τ, Tψ). Let

us assume that there is no explosion on (0, τ/2]. Therefore x′(τ/2) is finite. Now for

t ∈ [0, τ/2], x(t− τ) = ψ(t− τ) ∈ (0, δ], so 0 < g(x(t− τ)) ≤ maxx∈(0,δ] g(x) = gδ. Hence

x′(t) ≥ f(x(t))− gδ, t ∈ [0, τ/2]; x(0) = ψ(0).

We now prove that there exists Tψ < τ/2 such that limt→T−ψ
x(t) = ∞. Since x(0) >

f−1(gδ), x
′(0) > 0 and x is increasing at 0. Moreover, if there exists a minimal t′ ∈ (0, τ/2)

such that x′(t′) = 0, then x(t′) > x(0) > f−1(gδ) and so 0 = x′(t′) ≥ f(x(t′)) − gδ > 0, a

contradiction. Therefore x is increasing on [0, τ/2]. Therefore

x′(t)

f(x(t))− gδ
> 1, t ∈ [0, τ/2].

This implies ∫ x(t)

ψ(0)

1

f(u)− gδ
du =

∫ t

0

x′(s)

f(x(s))− gδ
ds ≥ t, t ∈ [0, τ/2].

By assumption x(t) is finite for all t ∈ [0, τ/2]. Therefore there exists x∗ ∈ (ψ(0),∞) such

that x(τ/2) = x∗. Thus∫ x∗

ψ(0)

1

f(u)− gδ
du = lim

t→τ/2−

∫ x(t)

ψ(0)

1

f(u)− gδ
du ≥ τ

2
.

By (2.8.1) we have

τ

2
>

∫ ∞
ψ(0)

1

f(u)− gδ
du >

∫ x∗

ψ(0)

1

f(u)− gδ
du ≥ τ

2
,

a contradiction. Therefore there exists Tψ < τ/2 such that limt→T−ψ
x(t) =∞, as claimed.
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Proof of Theorem 2.2.4 We have x′(0) = f(ψ(0))− g(ψ(−τ)). Since ψ is decreasing

and g is increasing, −g(ψ(−τ)) < −g(ψ(0)). Hence x′(0) < f(ψ(0)) − g(ψ(0)) < 0 by

(2.2.9). Suppose there exists a minimal t1 > 0 such that x(t1) > 0 and x′(t1) = 0;

therefore x is decreasing on [−τ, t1). Therefore as −g(x(t1)) > −g(x(t1 − τ)) we have

0 = x′(t1) = f(x(t1))− g(x(t1 − τ)) < f(x(t1))− g(x(t1)) < 0

a contradiction. Therefore x is decreasing on [−τ, t2) where t2 = inf{t > 0 : x(t) = 0}.

Suppose first that x(t) > 0 for all t > 0. Therefore either x(t) → L > 0 as t → ∞

or x(t) → 0 as t → ∞. If the former is true, then x′(t) → f(L) − g(L) < 0 as t → ∞.

Therefore x(t)→ −∞ as t→∞, a contradiction. Therefore either x(t)→ 0 as t→∞ or

there is a minimal t2 > 0 such that x(t2) = 0. In the former case, we have (2.2.10) with

L = 0.

In the latter case, we have x′(t2) = f(x(t2))−g(x(t2−τ)) = −g(x(t2−τ)) < 0. Suppose

now that there is a minimal t3 ∈ [t2, t2 + τ) such that x′(t3) = 0. Then x′(t) < 0 for

t2 ≤ t < t3 and hence x(t) < 0 for t ∈ [t2, t3]. Hence

0 = x′(t3) = f(x(t3))− g(x(t3 − τ)) = −g(x(t3 − τ)),

so g(x(t3 − τ)) = 0. But t3 < t2 + τ implies t3 − τ < t2, so x(t3 − τ) > 0 and therefore

g(x(t3 − τ)) > 0, a contradiction. Therefore x is decreasing on [t2, t2 + τ). Moreover

x(t) < 0 for t ∈ (t2, t2 + τ ]. We claim that x(t) = x(t2 + τ) for all t ≥ t2 + τ . To see this,

let y(t) = x(t2 + τ) for t ≥ t2 + τ and y(t) = x(t) for t ∈ [t2, t2 + τ ]. Then for t > t2 + τ

we have y′(t) = 0 and y(t − τ) = x(t − τ), so g(y(t − τ)) = g(x(t − τ)) = 0, because

x(t− τ) < 0 for t > t2 + τ . Hence for t > t2 + τ we have

y′(t)− f(y(t)) + g(y(t− τ)) = −f(x(t2 + τ)) + g(x(t− τ)) = 0,

so y′(t) = f(y(t))− g(y(t− τ)) for t > t2 + τ and y(t) = x(t) for t ∈ [t2, t2 + τ ]. Therefore

x(t) = y(t) = x(t2 + τ) for t ≥ t2 + τ . Thus we have (2.2.10) with L = x(t2 + τ) < 0.

Proof of Lemma 2.4.1 Define R(x) = f(x)
φ(x) for x > 0. By (2.2.3), R(x)→ 1 as x→∞.

Therefore there exist R,R ∈ (0,∞) such that for x > 0

Rφ(x) ≤ f(x) ≤ Rφ(x). (2.8.5)
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Therefore for x > 0

1

R

1

φ(x)
≥ 1

f(x)
≥ 1

R

1

φ(x)

and (2.2.1) holds if and only if
∫∞

1
du
φ(u) < ∞. Since xn > 0 for n ≥ 0, by (2.8.5) we have

for n ≥ 0

1

R

1

φ(xn(∆)
≥ 1

f(xn(∆))
≥ 1

R

1

φ(xn(∆))

So
∑∞

j=0
∆

f(xn(∆)) <∞ if and only if
∑∞

j=0
∆

φ(xn(∆)) <∞.

Proof of Theorem 2.4.1 Notice that (2.3.4) and (2.3.5) imply for n ≥ 0 that

xn+1(∆) = xn(∆) + ∆ +
∆

f(xn(∆))
g(X̄∆(tn(∆)− τ)) > xn(∆) + ∆.

Hence

xn(∆) ≥ ψ(0) + n∆, n ≥ 0, (2.8.6)

so xn(∆) → ∞ as n → ∞. Next as (tn(∆))n≥0 is an increasing sequence, we notice that

there exists T∆ ∈ (0,∞] such that

T∆ := lim
n→∞

tn(∆).

Since X̄∆(t) ≥ xn(∆) for all t ∈ [tn(∆), tn+1(∆)), we have

lim
t→T−∆

X̄∆(t) =∞.

Moreover, by (2.3.8c) and (2.4.3), the domain of definition of X̄∆ is [−τ, T∆), X̄∆ is

continuous on [−τ, T∆) and X̄∆ is increasing on [0, T∆).

It remains to show that T∆ < +∞. By (2.3.4), we have that

tn+1(∆) =

n∑
j=0

∆

f(xj(∆))
, n ≥ 0. (2.8.7)

Define kn(∆) for n ≥ 0 by

kn+1(∆) =

n∑
j=0

∆

φ(xj(∆))
, n ≥ 0. (2.8.8)

Now by (2.4.2), tn(∆) is summable if and only if kn(∆) is summable. Moreover

T∆ =

∞∑
j=0

∆

f(xj(∆))
≤ 1

R

∞∑
j=0

∆

φ(xj(∆))
.
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Since φ is monotone, by (2.8.6) we have that

φ(xj(∆)) ≥ φ(ψ(0) + j∆), n ≥ 0.

Hence

T∆ ≤
1

R

∞∑
j=0

∆

φ(ψ(0) + j∆)

=
∆

Rφ(ψ(0))
+

1

R

∞∑
j=0

∆

φ(ψ(0) + (j + 1)∆)
.

Next note that since φ is monotone, for j ≥ 0

∆

φ(ψ(0) + (j + 1)∆)
≤
∫ ψ(0)+(j+1)∆

ψ(0)+j∆

1

φ(u)
du.

and so summing over j ≥ 0 obtains

T∆ ≤
∆

Rφ(ψ(0))
+

1

R

∫ ∞
ψ(0)

1

φ(u)
du.

Proof of Theorem 2.5.1 From (0.1.6), (2.3.7) and Remark 2.3.1 we have that

x(t) = ψ(0) +

∫ t

0
f(x(s))ds+

∫ t

0
g(x(s− τ))ds, (2.8.9)

X̄∆(t) = ψ(0) +

∫ t

0
f(X∆(s))ds+

∫ t

0
g(X∆(s− τ))ds. (2.8.10)

Notice moreover that

X̄∆(t) = X̄∆(tn(∆)) +

∫ t

tn(∆)
f(X∆(s))ds+

∫ t

tn(∆)
g(X∆(s− τ))ds. (2.8.11)

The method of the proof is to develop a Gronwall-like inequality for

supt∈[0,ρM∧ρ̄2M (∆)]

∣∣x(t)− X̄∆(t)
∣∣, and then take the limit as ∆→ 0.

Now, subtracting (2.8.9) from (2.8.10) gives for any t ∈ [0, ρM ∧ ρ̄2M (∆)],

∣∣x(t)− X̄∆(t)
∣∣ =

∣∣∣∣∫ t

0
(f(x(s)) + g(x(s− τ))− f(X∆(s))− g(X∆(s− τ))) ds

∣∣∣∣
≤
∫ t

0
(|f(x(s))− f(X∆(s))|+ |g(x(s− τ))− g(X∆(s− τ))|) ds.
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This implies that

sup
t∈[0,ρM∧ρ̄2M (∆)]

∣∣x(t)− X̄∆(t)
∣∣

≤
∫ ρM∧ρ̄2M (∆)

0
(|f(x(s))− f(X∆(s))|+ |g(x(s− τ))− g(X∆(s− τ))|) ds

≤
∫ ρM∧ρ̄2M (∆)

0

( ∣∣f(x(s))− f(X̄∆(s))
∣∣+
∣∣g(x(s− τ))− g(X̄∆(s− τ))

∣∣
+
∣∣f(X̄∆(s))− f(X∆(s))

∣∣+
∣∣g(X̄∆(s− τ))− g(X∆(s− τ))

∣∣ )ds.
From (0.1.7) and (0.1.8), recall that f and g are locally Lipschitz. That is for all M > ψ∗

there exists cM such that |f(x)− f(y)|, |g(x)− g(y)| ≤ cM∀x, y ∈ [0,M ]. Therefore

sup
t∈[0,ρM∧ρ̄2M (∆)]

∣∣x(t)− X̄∆(t)
∣∣ ≤ c2M

(∫ ρM∧ρ̄2M (∆)

0

∣∣X̄∆(s)−X∆(s)
∣∣ ds

+

∫ ρM∧ρ̄2M (∆)

0

∣∣X̄∆(s− τ)−X∆(s− τ)
∣∣ ds)

+

∫ ρM∧ρ̄2M (∆)

0
c2M

(∣∣x(s)− X̄∆(s)
∣∣+
∣∣x(s− τ)− X̄∆(s− τ)

∣∣) ds. (2.8.12)

In order to apply our integral inequality, we develop an estimate for the first two integrals

on the r.h.s. of (2.8.12), which can be achieved by estimating |X̄∆ − X∆|. Given s ∈

[0, ρM ∧ ρ̄2M (∆)) let n be the integer for which s ∈ [tn(∆), tn+1(∆)). Then, because X∆

is piecewise constant, by (2.8.11) we get

∣∣X̄∆(s)−X∆(s)
∣∣

=

∣∣∣∣∣X̄∆(tn(∆)) +

∫ s

tn(∆)
f(X∆(u))du+

∫ s

tn(∆)
g(X∆(u− τ))du−X∆(tn(∆))

∣∣∣∣∣
=

∣∣∣∣∣
∫ s

tn(∆)
f(X∆(tn(∆)))du+

∫ s

tn(∆)
g(X∆(u− τ))du

∣∣∣∣∣
≤
∫ s

tn(∆)
|f(X∆(tn(∆)))| du+

∫ s

tn(∆)
|g(X∆(u− τ))| du

≤ (s− tn(∆)) |f(X∆(tn(∆)))|+
∫ s

tn(∆)
g(X∆(u− τ))du,

since g is positive. Now since xn(∆) ≥ ψ(0) for n ≥ 0, we have that

inf
n≥0

f(xn(∆)) ≥ inf
x≥ψ(0)

f(x) =: L(f, ψ) > 0

by assumption and so tn+1(∆) − tn(∆) = ∆/f(xn(∆)) ≤ ∆/L(f, ψ). Note that if f is

monotone this implies L(f, ψ) > 0. Using this and the fact that f is locally Lipschitz, we
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have ∣∣X̄∆(s)−X∆(s)
∣∣

≤ ∆

L(f, ψ)
|f(X∆(tn(∆)))− f(ψ(0))|+ |f(ψ(0))|+

∫ s

tn(∆)
g(X∆(u− τ))du

≤ ∆

L(f, ψ)
(c2M |X∆(tn(∆))− ψ(0)|+ f(ψ(0))) +

∫ s

tn(∆)
g(X∆(u− τ))du,

since ψ(0) ≤ ψ∗ < M < 2M and as tn(∆) ≤ s ≤ ρM ∧ ρ̄2M (∆), by (2.5.2) we have

0 < X∆(tn(∆)) = X̄∆(tn(∆)) ≤ 2M.

Hence for s ∈ [tn(∆), tn+1(∆))∣∣X̄∆(s)−X∆(s)
∣∣

≤ ∆

L(f, ψ)
(2Mc2M + f(ψ(0))) +

∫ s

tn(∆)
g(X∆(u− τ))du. (2.8.13)

Next we estimate the integral on the right hand side of (2.8.13). Firstly∫ s

tn(∆)
|g(X∆(u− τ))| du ≤

∫ tn+1(∆)

tn(∆)
|g(X∆(u− τ))| du

≤ (tn+1(∆)− tn(∆)) max
tn(∆)≤u≤tn+1(∆)

|g(X∆(u− τ))|

= (tn+1(∆)− tn(∆)) |g(X∆(rn(∆)− τ))|

where rn(∆) ∈ [tn(∆), tn+1(∆)) and we have used the fact that by Remark (2.3.2), X∆(s−

τ) can only assume finitely many distinct values for s ∈ [tn(∆), tn+1(∆)]. Since g is

Lipschitz continuous and rn(∆)− τ < ρ2M , we have∫ s

tn(∆)
|g(X∆(u− τ))| du ≤ ∆

L(f, ψ)
|g(X∆(rn(∆)− τ))− g(ψ(0)) + g(ψ(0))|

≤ ∆

L(f, ψ)
(2Mc2M + g(ψ(0))) . (2.8.14)

Combining (2.8.13) and (2.8.14) gives an estimate for the first integral in (2.8.12), which

is ∫ ρM∧ρ̄2M (∆)

0

∣∣X̄∆(s)−X∆(s)
∣∣ ds

≤ (ρM ∧ ρ̄2M (∆))
∆

L(f, ψ)
(4Mc2M + f(ψ(0)) + g(ψ(0)))

≤ ρM
∆

L(f, ψ)
(4Mc2M + f(ψ(0)) + g(ψ(0))) . (2.8.15)

64



Chapter 2, Section 8 Explosions

For the second integral in (2.8.12), we have∫ ρM∧ρ̄2M (∆)

0

∣∣X̄∆(s− τ)−X∆(s− τ)
∣∣ ds =

∫ ρM∧ρ̄2M (∆)−τ

−τ

∣∣X̄∆(s)−X∆(s)
∣∣ ds

To evaluate this integral, we need to consider two distinct cases. Firstly if ρM ∧ ρ̄2M (∆)−

τ ≤ 0 then there exists m ∈ {−N∆,−N∆ +1, . . . ,−1} such that tm(∆) ≤ ρM ∧ ρ̄2M (∆)−τ

and tm+1(∆) > ρM ∧ ρ̄2M (∆)− τ , and so∫ ρM∧ρ̄2M (∆)−τ

−τ

∣∣X̄∆(s)−X∆(s)
∣∣ ds

=
m−1∑

j=−N∆

∫ tj+1(∆)

tj(∆)

∣∣X̄∆(s)−X∆(s)
∣∣ ds+

∫ ρM∧ρ̄2M (∆)−τ

tm(∆)

∣∣X̄∆(s)−X∆(s)
∣∣ ds

=
m−1∑

j=−N∆

∫ tj+1(∆)

tj(∆)
|ψ(s)− ψ(tj(∆))| ds+

∫ ρM∧ρ̄2M (∆)−τ

tm(∆)
|ψ(s)− ψ(tm(∆))| ds,

where we have used the fact that X̄∆(s) = ψ(s) for s ≤ ρM ∧ ρ̄2M (∆) − τ ≤ 0 and

X∆(s) = ψ(tj(∆)) where tj(∆) ≤ s < tj+1(∆).

Now since |tj+1(∆) − tj(∆)| = tj+1(∆) − tj(∆) < 2∆/f(ψ(0)), for s ∈ [tj(∆), tj+1(∆))

we have for every j ∈ {−N∆,−N∆ + 1, . . . ,−1}

sup
tj(∆)≤s≤tj+1(∆)

|ψ(s)− ψ(tj(∆))| = sup
0≤s−tj(∆)≤tj+1(∆)−tj(∆)

|ψ(s)− ψ(tj(∆))|

≤ sup
0≤s−tj(∆)<2∆/f(ψ(0))

|ψ(s)− ψ(tj(∆))|

≤ sup
s,u∈[−τ,0]:0≤s−u<2∆/f(ψ(0))

|ψ(s)− ψ(u)|

= ωψ (2∆/f(ψ(0))) .

where ωψ is a modulus of continuity of the continuous function ψ.

Hence for ρM ∧ ρ̄2M (∆)− τ ≤ 0∫ ρM∧ρ̄2M (∆)−τ

−τ

∣∣X̄∆(s)−X∆(s)
∣∣ ds

≤
m−1∑

j=−N∆

(tj+1(∆)− tj(∆))ωψ (2∆/f(ψ(0))) + (tm+1(∆)− tm(∆))ωψ (2∆/f(ψ(0)))

=
m∑

j=−N∆

(tj+1(∆)− tj(∆))ωψ (2∆/f(ψ(0)))

≤ 2N∆∆

f(ψ(0))
ωψ (2∆/f(ψ(0)))

≤ 2τωψ (2∆/f(ψ(0))) . (2.8.16)
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Secondly if ρM ∧ ρ̄2M (∆)− τ > 0 then∫ ρM∧ρ̄2M (∆)−τ

−τ

∣∣X̄∆(s)−X∆(s)
∣∣ ds

=

∫ 0

−τ

∣∣X̄∆(s)−X∆(s)
∣∣ ds+

∫ ρM∧ρ̄2M (∆)−τ

0

∣∣X̄∆(s)−X∆(s)
∣∣ ds.

The argument used to establish (2.8.16) yields∫ 0

−τ

∣∣X̄∆(s)−X∆(s)
∣∣ ds ≤ 2τωψ (2∆/f(ψ(0))) ,

and because (2.8.15) holds we get∫ ρM∧ρ̄2M (∆)−τ

0

∣∣X̄∆(s)−X∆(s)
∣∣ ds

≤
∫ ρM∧ρ̄2M (∆)

0

∣∣X̄∆(s)−X∆(s)
∣∣ ds

≤ ρM
∆

L(f, ψ)
(4Mc2M + f(ψ(0)) + g(ψ(0))) .

Together they give the estimate for ρM ∧ ρ̄2M (∆)− τ > 0∫ ρM∧ρ̄2M (∆)−τ

−τ

∣∣X̄∆(s)−X∆(s)
∣∣ ds

≤ 2τωψ (2∆/f(ψ(0))) + ρM
∆

L(f, ψ)
(4Mc2M + f(ψ(0)) + g(ψ(0))) . (2.8.17)

Note by combining (2.8.16) and (2.8.17) we get a bound that covers both cases for

ρM ∧ ρ̄2M (∆)− τ :∫ ρM∧ρ̄2M (∆)−τ

−τ

∣∣X̄∆(s)−X∆(s)
∣∣ ds

≤ 2τωψ (2∆/f(ψ(0))) + ρM
∆

L(f, ψ)
(4Mc2M + f(ψ(0)) + g(ψ(0))) . (2.8.18)

Defining

ω(∆, 2M) := c2Mωψ (2∆/f(ψ(0)))

K2M := 2c2M
1

L(f, ψ)
(4Mc2M + f(ψ(0)) + g(ψ(0)))

and by inserting (2.8.18), (2.8.15) into (2.8.12) we obtain

sup
t∈[0,ρM∧ρ̄2M (∆)]

∣∣x(t)− X̄∆(t)
∣∣

≤ ∆ρMK2M + 2τω(∆, 2M)

+

∫ ρM∧ρ̄2M (∆)

0
c2M

(∣∣x(s)− X̄∆(s)
∣∣+
∣∣x(s− τ)− X̄∆(s− τ)

∣∣) ds.
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Now, let e∗(s) := sup−τ≤t≤s |x(t)− X̄∆(t)| and note that

e∗(ρM ∧ ρ̄2M (∆)) = sup
−τ≤t≤ρM∧ρ̄2M (∆)

|x(t)− X̄∆(t)|

= sup
0≤t≤ ρM∧ρ̄2M (∆)

|x(t)− X̄∆(t)|.

Therefore

e∗(ρM ∧ ρ̄2M (∆))

≤ ∆ρMK2M + 2τω(∆, 2M) +

∫ ρM∧ρ̄2M (∆)

0
c2M (e∗(s) + e∗(s)) ds

≤ ∆ρMK2M + 2τω(∆, 2M) + 2c2M

∫ ρM∧ρ̄2M (∆)

0
e∗(s)ds.

Now, by Gronwall’s inequality

e∗(ρM ∧ ρ̄2M (∆)) ≤ (∆ρMK2M + 2τω(∆, 2M))e(ρM∧ρ̄2M (∆))2c2M

≤ (∆ρMK2M + 2τω(∆, 2M))eρM2c2M .

Since ωψ is a modulus of continuity of ψ, limδ→0 ωψ(δ) = 0 and so

lim∆→0 ω(∆, 2M) = 0. Hence taking limits as ∆→ 0 yields the desired result.

Proof of Lemma 2.5.1 First we show that there exists a ∆1(M) such that

ρ̄2M (∆) ≥ ρM for ∆ < ∆1(M).

Given any ∆ ∈ (0, τf(ψ(0))), either

X̄∆(ρ̄2M (∆)) ≤ x(ρ̄2M (∆)) or X̄∆(ρ̄2M (∆)) > x(ρ̄2M (∆)).

In the former case, this implies that ρ̄2M (∆) ≥ ρ2M > ρM .

Now if X̄∆(ρ̄2M (∆)) > x(ρ̄2M (∆)),

X̄∆(ρ̄2M (∆))− x(ρ̄2M (∆)) ≤ sup
0≤t≤ρ̄2M (∆)

∣∣∣X̄∆(t)− x(t)
∣∣∣,

and using the techniques of Theorem 2.5.1, it can be readily shown that since X̄∆(t) ≤

2M on t ∈ [0, ρ̄2M (∆)],

sup
0≤t≤ρ̄2M (∆)

∣∣∣X̄∆(t)− x(t)
∣∣∣ ≤ (∆ρ̄2M (∆)K2M + 2τω(∆, 2M))eρ̄2M (∆)(cf2M+cg2M ).

67



Chapter 2, Section 8 Explosions

Now since X̄∆ is increasing, ρ̄2M (∆) < T∆. Hence

sup
0≤t≤ρ̄2M (∆)

∣∣∣X̄∆(t)− x(t)
∣∣∣ ≤ (∆T∆K2M + 2τω(∆, 2M))eT∆(cf2M+cg2M ).

By (2.4.6), given any ∆ > 0 there exists C > 0 such that T∆ < C. Thus

sup
0≤t≤ρ̄2M (∆)

∣∣∣X̄∆(t)− x(t)
∣∣∣ ≤ (∆CK2M + 2τω(∆, 2M))eC(cf2M+cg2M ),

and since ω(∆,M) → 0 as ∆ → 0, sup0≤t≤ρ̄2M (∆)

∣∣∣X̄∆(t) − x(t)
∣∣∣ → 0 as ∆ → 0 for any

M > ψ∗. Therefore for any M > ψ∗ we can choose ∆1 := ∆1(M) such that

X̄∆1(ρ̄2M (∆1))− x(ρ̄2M (∆1)) ≤M.

Since we have X̄∆1(ρ̄2M (∆1)) = 2M , we have x(ρ̄2M (∆1)) ≥M and so ρ̄2M (∆1) ≥ ρM .

Now for any ∆ < ∆1, either X̄∆(ρ2M ) ≤ x(ρ2M ), which implies ρ̄2M (∆) ≥ ρ2M > ρM ,

or X̄∆(ρ2M ) > x(ρ2M ). In the latter case, we have

sup
0≤t≤ρ̄2M (∆)

∣∣∣X̄∆(t)− x(t)
∣∣∣ ≤ (∆CK2M + 2τω(∆, 2M))eC(cf2M+cg2M )

< (∆1CK2M + 2τω(∆1, 2M))eC(cf2M+cg2M )

≤M,

since ωψ is a modulus of continuity of ψ and is non-decreasing, hence ω(∆,M) is non-

decreasing in ∆. Combining both cases, we see that for any M > ψ∗ we can find ∆1(M) >

0 such that

ρ̄2M (∆) ≥ ρM for all ∆ < ∆1(M). (2.8.19)

We can similarly show that there exists a ∆2(M) such that ρ2M ≥ ρ̄M (∆) for ∆ <

∆2(M). Given any ∆ ∈ (0, τf(ψ(0))), either x(ρ2M ) ≤ X̄∆(ρ2M ) or x(ρ2M ) > X̄∆(ρ2M ).

In the former case, this imples that ρ2M ≥ ρ̄2M (∆) > ρ̄M (∆).

Now if x(ρ2M ) > X̄∆(ρ2M )

x(ρ2M )− X̄∆(ρ2M ) ≤ sup
0≤t≤ρ2M

∣∣∣x(t)− X̄∆(t)
∣∣∣

Using Theorem 2.5.1 it can be readily shown that since x(ρ2M ) > X̄∆(ρ2M ) implies

X̄∆(ρ2M ) < 2M and hence X̄∆(t) < 2M on t ∈ [0, ρ2M ],

sup
0≤t≤ρ2M

∣∣∣x(t)− X̄∆(t)
∣∣∣ ≤ (∆ρ2MK2M + 2τω(∆, 2M))eρ2M (cf2M+cg2M ),
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and since ω(∆,M) → 0 as ∆ → 0, sup0≤t≤ρ2M

∣∣∣X̄∆(t) − x(t)
∣∣∣ → 0 as ∆ → 0 for any

M > ψ∗. Therefore for any M > ψ∗ we can choose ∆2 := ∆2(M) such that

x(ρ2M )− X̄∆2(ρ2M ) ≤M.

Hence ρ2M ≥ ρ̄M (∆2).

Now for any ∆ < ∆2, either x(ρ2M ) ≤ X̄∆(ρ2M ), which implies ρ2M ≥ ρ̄2M (∆) >

ρ̄M (∆), or x(ρ2M ) > X̄∆(ρ2M ). In the latter case, we have

sup
0≤t≤ρ2M (∆)

∣∣∣x(t)− X̄∆(t)
∣∣∣ ≤ (∆ρ2MK2M + 2τω(∆, 2M))eρ2M (cf2M+cg2M )

< (∆2ρ2MK2M + 2τω(∆2, 2M))eρ2M (cf2M+cg2M )

≤M,

Combining both cases, we see that for any M > ψ∗ we can find ∆2(M) > 0 such that

ρ2M ≥ ρ̄M (∆) for all ∆ < ∆2(M). (2.8.20)

Taking ∆(M) = min(∆1(M),∆2(M)) yields the desired result.

Proof of Theorem 2.6.2 By Lemma 2.6.1, for every ε ∈ (0, 1) there exists L1(ε) > 0

such that

(1− ε)j∆ < xj(∆) < (1 + ε)j∆, j > L1(ε). (2.8.21)

Also by condition (2.2.3), given any ε ∈ (0, 1) there exists xε > 0 such that

(1− ε)φ(x) < f(x) < (1 + ε)φ(x), x > xε,

and therefore as xn(∆)→∞ as x→∞ there exists L2(ε) > 0 such that

(1− ε)φ(xj(∆)) < f(xj(∆)) < (1 + ε)φ(xj(∆)), j > L2(ε). (2.8.22)

Combining (2.8.21) and (2.8.22) and using the monotonicity of φ we have

(1− ε)φ((1− ε)j∆) < f(xj(∆)) < (1 + ε)φ((1 + ε)j∆), j > L3(ε),

where L3(ε) := max(L1(ε), L2(ε)) and so

1

(1− ε)
∆

φ((1− ε)j∆)
>

∆

f(xj(∆))
>

1

(1 + ε)

∆

φ((1 + ε)j∆)
, j > L3(ε). (2.8.23)
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Now let n > L3(ε). Since

T∆ − tn(∆) =

∞∑
j=0

∆

f(xj(∆))
−
n−1∑
j=0

∆

f(xj(∆))
=

∞∑
j=n

∆

f(xj(∆))

we have

1

(1− ε)

∞∑
j=n

∆

φ((1− ε)j∆)
≥ T∆ − tn(∆) ≥ 1

(1 + ε)

∞∑
j=n

∆

φ((1 + ε)j∆)
.

By the monotonicity of φ on [(1− ε)j∆, (1− ε)(j + 1)∆], we have

(1− ε)∆ 1

φ((1− ε)j∆)
≥
∫ (1−ε)(j+1)∆

(1−ε)j∆

1

φ(x)
dx ≥ (1− ε)∆ 1

φ((1− ε)(j + 1)∆)
.

Thus for n > L3(ε), we get

(1− ε)
∞∑
j=n

∆

φ((1− ε)j∆)
≥
∫ ∞

(1−ε)n∆

1

φ(x)
dx ≥ (1− ε)

∞∑
j=n

∆

φ((1− ε)(j + 1)∆)
.

Define Φ̄(x) :=
∫∞
x 1/φ(u) du. Now for n > L3(ε) + 1 we have

Φ̄((1− ε)(n− 1)∆) ≥ (1− ε)
∞∑
j=n

∆

φ((1− ε)j∆)
≥ (1− ε)2(T∆ − tn(∆)). (2.8.24)

In a similar manner we obtain

(1 + ε)2(T∆ − tn) ≥ (1 + ε)
∞∑
j=n

∆

φ((1 + ε)j∆)
≥ Φ̄((1 + ε)n∆). (2.8.25)

Combining (2.8.24) and (2.8.25) we get

1

(1− ε)2
Φ̄((1− ε)(n− 1)∆) ≥ T∆ − tn(∆) ≥ 1

(1 + ε)2
Φ̄((1 + ε)n∆), n > L3(ε) + 1.

(2.8.26)

By (2.8.21) and the monotonicity of Φ̄ we get

1

Φ̄((1− ε)n∆)
≤ 1

Φ̄(xn(∆))
≤ 1

Φ̄((1 + ε)n∆)
. (2.8.27)

Using the first member of (2.8.27) and the second of (2.8.26) gives

T∆ − tn(∆)

Φ̄(xn(∆))
≥ T∆ − tn(∆)

Φ̄((1− ε)n∆)
≥ 1

(1 + ε)2

Φ̄((1 + ε)n∆)

Φ̄((1− ε)n∆)
.

By (2.2.3) and L’Hôpital’s rule we have

lim
x→∞

Φ̄(x)

F̄ (x)
= 1, (2.8.28)
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and since F̄ is in RV∞(β), we have that Φ̄ is in RV∞(β), since

lim
x→∞

Φ̄(λx)

Φ̄(x)
= lim

x→∞

Φ̄(λx)

F̄ (λx)

F̄ (λx)

F̄ (x)

F̄ (x)

Φ̄(x)
= λβ, for all λ > 0.

So we obtain

lim inf
n→∞

T∆ − tn(∆)

Φ̄(xn(∆)
≥ 1

(1 + ε)2
·
(

1 + ε

1− ε

)β
.

Letting ε→ 0+ yields

lim inf
n→∞

T∆ − tn(∆)

Φ̄(xn(∆)
≥ 1.

Thus by (2.8.28),

lim inf
n→∞

T∆ − tn(∆)

F̄ (xn(∆)
≥ 1 (2.8.29)

Similarly, using the second member of (2.8.27) and the first of (2.8.26) gives

T∆ − tn(∆)

Φ̄(xn(∆))
≤ T∆ − tn(∆)

Φ̄((1 + ε)n∆)
≤ 1

(1− ε)2

Φ̄((1− ε)(n− 1)∆)

Φ̄((1 + ε)n∆)

=
1

(1− ε)2

Φ̄((1− ε)n∆− (1− ε)∆))

Φ̄((1− ε)n∆)

Φ̄((1− ε)n∆)

Φ̄((1 + ε)n∆)
.

Since Φ̄ is regularly varying, the second term on the right-hand side as limit equal to unity

as n→∞. The third term has limit ((1− ε)/(1 + ε))β as n→∞. Therefore

lim sup
n→∞

T∆ − tn(∆)

Φ̄(xn(∆))
≤ 1

(1− ε)2

(
1− ε
1 + ε

)β
.

Letting ε→ 0+ yields

lim sup
n→∞

T∆ − tn(∆)

Φ̄(xn(∆)
≤ 1.

and so by (2.8.28),

lim sup
n→∞

T∆ − tn(∆)

F̄ (xn(∆)
≤ 1. (2.8.30)

Combining (2.8.29) and (2.8.30) gives (2.6.9), as required.

Given that (2.6.9), we prove (2.6.10). We have xn(∆) ≤ X̄∆(t) ≤ xn+1(∆) for t ∈

[tn(∆), tn+1(∆)]. Since Φ̄ is decreasing, for tn(∆) ≤ t ≤ tn+1(∆) we have

T∆ − tn+1(∆)

Φ̄(xn(∆))
≤ T∆ − t

Φ̄(xn(∆))
≤ T∆ − t

Φ̄(X̄∆(t))
≤ T∆ − t

Φ̄(xn+1(∆))
≤ T∆ − tn(∆)

Φ̄(xn+1(∆))
. (2.8.31)

Since xn(∆)→∞ as n→∞,

xn+1(∆) = xn(∆) + ∆ + εn(∆)
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and εn(∆)→ 0 as n→∞, the fact that Φ̄ ∈ RV∞(β) implies that

lim
n→∞

Φ̄(xn+1(∆))

Φ̄(xn(∆))
= 1. (2.8.32)

By (2.8.32), (2.6.9) and (2.8.28) we have

lim
n→∞

T∆ − tn+1(∆)

Φ̄(xn(∆))
= 1 and lim

n→∞

T∆ − tn(∆)

Φ̄(xn+1(∆))
= 1.

Using these limits in conjunction with (2.8.31) and (2.8.28) gives

lim
t→T−∆

Φ̄(X̄∆(t))

T∆ − t
= 1. (2.8.33)

and using (2.8.28) in conjunction with (2.8.33) yields (2.6.10).

Proof of Theorem 2.6.3 We note that (2.8.26) in the proof of Theorem 2.6.2 can be

deduced without making any assumptions concerning the regular variation of F̄ . Recall

that (2.8.26) reads

1

(1− ε)2
Φ̄((1− ε)(n− 1)∆) ≥ T∆ − tn(∆) ≥ 1

(1 + ε)2
Φ̄((1 + ε)n∆), n > L(ε) + 1.

The first member of this implies (1 − ε)(n − 1)∆ ≤ Φ̄−1((1 − ε)2(T∆ − tn(∆))) for n >

L(ε) + 1. Now,

xn(∆)

Φ̄−1(T∆ − tn(∆))

=
xn(∆)

(1− ε)(n− 1)∆
· (1− ε)(n− 1)∆

Φ̄−1((1− ε)2(T∆ − tn(∆)))
· Φ̄−1((1− ε)2(T∆ − tn(∆)))

Φ̄−1(T∆ − tn(∆))
. (2.8.34)

We now look to show F̄−1(x)/Φ̄−1(x)→ 1 as x→ 0+ and so Φ̄−1 ∈ RV0(0). Recall that

by (2.2.3), given any ε ∈ (0, 1) there exists xε > 0 such that

(1− ε)φ(x) < f(x) < (1 + ε)φ(x), x > xε.

For t > 0 define z′(t) = f(z(t)) and z(0) = z0 > xε. As f is positive we have z(t) > xε for

all t > 0 and therefore by (2.2.3)

(1− ε)φ(z(t)) < f(z(t)) < (1 + ε)φ(z(t)), t > 0.

Since z′(t) = f(z(t)), by (2.2.1) it is easily shown that z(t) = F̄−1(T − t), t ∈ (0, T ) where

T = F̄ (z0). Thus with Φ̄(x) :=
∫∞
x 1/φ(u) du we have

(1− ε)(T − t) < Φ̄(z(t)) < (1 + ε)(T − t), t > 0,
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and since Φ̄ and therefore Φ̄−1 are decreasing,

Φ̄−1(1 + ε)(T − t) < F̄−1(T − t) < Φ̄−1(1− ε)(T − t), t > 0.

Putting x = (1 + ε)(T − t) and x = (1 − ε)(T − t) for the first and second inequalities

respectively we obtain

F̄−1((1− ε)−1x) < Φ̄−1(x) < F̄−1((1 + ε)−1x), x ∈ (0, T ). (2.8.35)

Thus,

F̄−1((1 + ε)−1x)

F̄−1(x)
<

Φ̄−1(x)

F̄−1(x)
<
F̄−1((1− ε)−1x)

F̄−1(x)
, x ∈ (0, T ),

and so

lim inf
x→0+

Φ̄−1(x)

F̄−1(x)
≥ lim inf

x→0+

F̄−1((1 + ε)−1x)

F̄−1(x)
=

(
1

1 + ε

)0

= 1,

lim sup
x→0+

Φ̄−1(x)

F̄−1(x)
≤ lim inf

x→0+

F̄−1((1− ε)−1x)

F̄−1(x)
=

(
1

1− ε

)0

= 1.

Combining these two equations we have

lim
x→0+

Φ̄−1(x)

F̄−1(x)
= 1, (2.8.36)

and since F̄−1 ∈ RV0(0) and

lim
x→∞

Φ̄−1(λx)

Φ̄−1(x)
= lim

x→∞

Φ̄−1(λx)

F̄−1(λx)

F̄−1(λx)

F̄−1(x)

F̄−1(x)

Φ̄−1(x)
= 1, for all λ > 0,

this implies that Φ̄−1 ∈ RV0(0).

So for (2.8.34), using the facts that Φ̄−1 ∈ RV0(0) and xn(∆)/n → ∆ as n → ∞, we

have

lim sup
n→∞

xn(∆)

Φ̄−1(T∆ − tn(∆))
≤ 1

1− ε
· 1 · ((1− ε)2)0 =

1

1− ε
.

Letting ε→ 0+ yields

lim sup
n→∞

xn(∆)

Φ̄−1(T∆ − tn(∆))
≤ 1.

Thus by (2.8.36),

lim sup
n→∞

xn(∆)

F̄−1(T∆ − tn(∆))
≤ 1. (2.8.37)

The second member of (2.8.26) can be rewritten as Φ̄−1((1+ε)2(T∆−tn(∆))) ≤ (1+ε)n∆

for n > L(ε) + 1. Since

xn(∆)

Φ̄−1(T∆ − tn(∆))

=
xn(∆)

(1 + ε)n∆
· (1 + ε)n∆

Φ̄−1((1 + ε)2(T∆ − tn(∆)))
· Φ̄−1((1 + ε)2(T∆ − tn(∆)))

Φ̄−1(T∆ − tn(∆))
,
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Φ̄−1 ∈ RV0(0), and xn(∆)/n→ ∆ as n→∞, we have

lim inf
n→∞

xn(∆)

Φ̄−1(T∆ − tn(∆))
≥ 1

1 + ε
· 1 · ((1 + ε)2)0 =

1

1 + ε
.

Letting ε→ 0+ yields

lim inf
n→∞

xn(∆)

Φ̄−1(T∆ − tn(∆))
≥ 1,

and by (2.8.36),

lim inf
n→∞

xn(∆)

F̄−1(T∆ − tn(∆))
≥ 1, (2.8.38)

Combining (2.8.37) and (2.8.38) yields (2.6.11).

Given that (2.6.11), we prove (2.6.12). We have xn(∆) ≤ X̄∆(t) ≤ xn+1(∆) for t ∈

[tn(∆), tn+1(∆)]. Since Φ̄−1 is decreasing, for tn(∆) ≤ t ≤ tn+1(∆) we have

Φ̄−1(T∆ − tn(∆)) ≤ Φ̄−1(T∆ − t) ≤ Φ̄−1(T∆ − tn+1(∆)).

Hence

xn+1(∆)

Φ̄−1(T∆ − tn(∆))
≥ X̄∆(t)

Φ̄−1(T∆ − tn(∆))
≥ X̄∆(t)

Φ̄−1(T∆ − t)
≥ X̄∆(t)

Φ̄−1(T∆ − tn+1(∆))

≥ xn(∆)

Φ̄−1(T∆ − tn+1(∆))
(2.8.39)

Since xn(∆)/n→ ∆ as n→∞, xn+1(∆)/xn(∆)→ 1 as n→∞. Using this fact, (2.6.11)

and (2.8.36) implies that

lim
n→∞

xn+1(∆)

F̄−1(T∆ − tn(∆)
= 1 and lim

n→∞

xn(∆)

F̄−1(T∆ − tn+1(∆))
= 1.

Using these limits in conjunction with (2.8.39) yields (2.6.12).

Proof of Proposition 2.7.1 We first prove that

Tξ =

∫ ∞
ξ

1

f(x)
dx < +∞.

To see this, write∫ ∞
ξ

1

f(x)
dx =

∫ ξ+∆0/2

ξ

1

f(x)
dx+

∞∑
n=1

∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

f(x)
dx.

By (2.7.4), we have∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

f(x)
dx =

∫ ξ+n∆0−2εn∆0

ξ+(n−1/2)∆0

1

η(x)
dx+

∫ ξ+n∆0−εn∆0

ξ+n∆0−2εn∆0

1

l−(x)
dx

+

∫ ξ+n∆0+εn∆0

ξ+n∆0−εn∆0

1

θ(x)
dx+

∫ ξ+n∆0+2εn∆0

ξ+n∆0+εn∆0

1

l+(x)
dx+

∫ ξ+(n+1/2)∆0

ξ+n∆0+2εn∆0

1

η(x)
dx.
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By the monotonicity of η and θ and (2.7.3), we notice that l+(x) ≥ θ(x) and l−(x) ≥ θ(x)

on their domains, so

∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

f(x)
dx ≤

∫ ξ+n∆−2εn∆0

ξ+(n−1/2)∆0

1

η(x)
dx

+

∫ ξ+n∆0+2εn∆0

ξ+n∆0−2εn∆0

1

θ(x)
dx+

∫ ξ+(n+1/2)∆0

ξ+n∆0+2εn∆0

1

η(x)
dx,

and since η is positive, we have∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

f(x)
dx ≤

∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

η(x)
dx+

∫ ξ+n∆0+2εn∆0

ξ+n∆0−2εn∆0

1

θ(x)
dx.

Using the monotonicity of θ and the fact that εn < 1/4, for x ∈ [ξ + n∆0 − 2εn∆0, ξ +

n∆0 + 2εn∆0], we have

θ(x) ≥ θ(ξ + n∆0 − 2εn∆0) ≥ θ(ξ + n∆0 −∆0/2).

Hence∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

f(x)
dx ≤

∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

η(x)
dx+ 4εn∆0

1

θ(ξ + (n− 1/2)∆0)
. (2.8.40)

Using the monotonicity of θ, for n ≥ 1, we also have the estimate∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

f(x)
dx ≤

∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

η(x)
dx+ 4εn∆0

1

θ(ξ + 1/2∆0)
.

Since 1/η ∈ L1(0,∞) and (εn)n≥0 is summable, it follows that

∞∑
n=1

∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

f(x)
dx < +∞,

and therefore that Tξ is finite.

On the other hand, if we consider

lim
n→∞

∞∑
n=0

∆0

f(ξ + n∆0)
,

we see from (2.7.4) that f(ξ+n∆0) = θ(ξ+n∆0) for n ≥ 1. However, since
∫∞

1 dx/θ(x) =

+∞ and θ is increasing, we have that

lim
n→∞

tn(∆0) =
∆

f(ξ)
+

∞∑
n=1

∆

θ(ξ + n∆0)
= +∞,

as desired.
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Proof of Proposition 2.7.2 We will establish

lim
x→∞

∫∞
x

1
f(u) du∫∞

x
1

η(u) du
= 1. (2.8.41)

Since x(t)→∞ as t→ Tξ, and∫ ∞
x(t)

1

f(u)
du = Tξ − t, t < Tξ,

we have

lim
t↑Tξ

H̄(x(t))

Tξ − t
= lim

t↑Tξ

∫∞
x(t)

1
η(u) du∫∞

x(t)
1

f(u) du
= 1,

using (2.8.41), and completing the proof.

We now turn to the proof of (2.8.41). Since f(x) ≥ θ(x) we obtained (2.8.40), that is∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

f(x)
dx ≤

∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

η(x)
dx

+
∆0

n+ 2

1

η(ξ + n∆0 + ∆0/2)

θ(ξ)

θ(ξ + (n− 1/2)∆0)
.

Since θ is increasing, for n ≥ 1 we have θ(ξ + (n− 1/2)∆0) ≥ θ(ξ), so∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

f(x)
dx ≤

∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

η(x)
dx+

∆0

n+ 2

1

η(ξ + n∆0 + ∆0/2)
.

Now η(x) ≤ η(ξ + n∆0 + ∆0/2) for x ∈ [ξ + (n− 1/2)∆0, ξ + (n+ 1/2)∆0], so∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

η(x)
≥ ∆0

η(ξ + n∆0 + ∆0/2)
.

Thus ∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

f(x)
dx ≤

(
1 +

1

n+ 2

)∫ ξ+(n+1/2)∆0

ξ+(n−1/2)∆0

1

η(x)
dx, n ≥ 1. (2.8.42)

We now obtain an estimate for∫ ξ+(n+1/2)∆0

x

1

f(u)
du in terms of

∫ ξ+(n+1/2)∆0

x

1

η(u)
du

for x ∈ [ξ + (n− 1/2)∆0, ξ + (n+ 1/2)∆0].

For x ∈ [ξ + n∆0 + 2εn∆0, ξ + (n+ 1/2)∆0]∫ ξ+(n+1/2)∆0

x

1

f(u)
du =

∫ ξ+(n+1/2)∆0

x

1

η(u)
du. (2.8.43)

For x ∈ [ξ + n∆0 + εn∆0, ξ + n∆0 + 2εn∆0], we have∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤

∫ ξ+n∆0+2εn∆0

ξ+n∆0+εn∆0

1

θ(u)
du+

∫ ξ+(n+1/2)∆0

ξ+n∆0+2εn∆0

1

η(u)
du
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using the fact that f(x) ≥ θ(x). Therefore∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤ εn∆0

1

θ(ξ + n∆0 + εn∆0)
+

∫ ξ+(n+1/2)∆0

ξ+n∆0+2εn∆0

1

η(u)
du,

so as θ is increasing, using the definition of εn we have

∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤ 1

4

1

n+ 2

θ(ξ)

η(ξ + (n− 1/2)∆0)η(ξ + (n+ 1/2)∆0)
∆0

+

∫ ξ+(n+1/2)∆0

ξ+n∆0+2εn∆0

1

η(u)
du.

For x ∈ [ξ + n∆0 + 2εn∆0, ξ + (n+ 1/2)∆0], we have

η(x) ≤ η(ξ + (n+ 1/2)∆0).

Hence as εn < 1/12, we have∫ ξ+(n+1/2)∆0

ξ+n∆0+2εn∆0

1

η(u)
du ≥ ∆0(1/2− 2εn)

η(ξ + (n+ 1/2)∆0)
≥ ∆0/3

η(ξ + (n+ 1/2)∆0)
.

Therefore as θ(ξ) ≤ η(ξ + (n− 1/2)∆0), we have

1

4

1

n+ 2

θ(ξ)

η(ξ + (n− 1/2)∆0)η(ξ + (n+ 1/2)∆0)
∆0 ≤

3

4

1

n+ 2

∆0/3

η(ξ + (n+ 1/2)∆0)
,

and so

1

4

1

n+ 2

θ(ξ)

η(ξ + (n− 1/2)∆0)η(ξ + (n+ 1/2)∆0)
∆0 ≤

3

4

1

n+ 2

∫ ξ+(n+1/2)∆0

ξ+n∆0+2εn∆0

1

η(u)
du.

(2.8.44)

Thus ∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤

(
1 +

3

4

1

n+ 2

)∫ ξ+(n+1/2)∆0

ξ+n∆0+2εn∆0

1

η(u)
du.

Now since x ∈ [ξ + (n+ εn)∆0, ξ + (n+ 2εn)∆0] we have∫ ξ+(n+1/2)∆0

x

1

η(u)
du ≥

∫ ξ+(n+1/2)∆0

ξ+n∆0+2εn∆0

1

η(u)
du,

so

∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤

(
1 +

3

4

1

n+ 2

)∫ ξ+(n+1/2)∆0

x

1

η(u)
du,

x ∈ [ξ + (n+ εn)∆0, ξ + (n+ 2εn)∆0]. (2.8.45)
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For x ∈ [ξ + n∆0 − εn∆0, ξ + n∆0 + εn∆0], we have∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤

∫ ξ+n∆0+εn∆0

ξ+n∆0−εn∆0

1

θ(u)
du+

∫ ξ+(n+1/2)∆0

ξ+n∆0+εn∆0

1

f(u)
du,

using the fact that f(x) ≥ θ(x). By (2.8.45), we have∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤

∫ ξ+n∆0+εn∆0

ξ+n∆0−εn∆0

1

θ(u)
du

+

(
1 +

3

4

1

n+ 2

)∫ ξ+(n+1/2)∆0

ξ+n∆0+εn∆0

1

η(u)
du.

Next, as θ is increasing, we have∫ ξ+n∆0+εn∆0

ξ+n∆0−εn∆0

1

θ(u)
du ≤ 2εn∆0

1

θ(ξ + n∆0 − εn∆0)
.

Since θ is increasing, by the definition of εn we have∫ ξ+n∆0+εn∆0

ξ+n∆0−εn∆0

1

θ(u)
du ≤ 2

1

4

1

n+ 2

θ(ξ)

η(ξ + (n+ 1/2)∆0)η(ξ + (n− 1/2)∆0)
∆0.

Therefore by (2.8.44) we have∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤ 2

3

4

1

n+ 2

∫ ξ+(n+1/2)∆0

ξ+n∆0+2εn∆0

1

η(u)
du

+

(
1 +

3

4

1

n+ 2

)∫ ξ+(n+1/2)∆0

ξ+n∆0+εn∆0

1

η(u)
du,

or ∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤

(
1 +

9

4

1

n+ 2

)∫ ξ+(n+1/2)∆0

ξ+n∆0+εn∆0

1

η(u)
du, (2.8.46)

Now since x ∈ [ξ + (n− εn)∆0, ξ + (n+ εn)∆0] we have∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤

(
1 +

9

4

1

n+ 2

)∫ ξ+(n+1/2)∆0

x

1

η(u)
du,

x ∈ [ξ + (n− εn)∆0, ξ + (n+ εn)∆0]. (2.8.47)

For x ∈ [ξ + n∆0 − 2εn∆0, ξ + n∆0 − εn∆0], we have∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤

∫ ξ+n∆0−εn∆0

ξ+n∆0−2εn∆0

1

θ(u)
du+

∫ ξ+(n+1/2)∆0

ξ+n∆0−εn∆0

1

f(u)
du,

using the fact that f(x) ≥ θ(x). By (2.8.46), we have∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤

∫ ξ+n∆0−εn∆0

ξ+n∆0−2εn∆0

1

θ(u)
du

+

(
1 +

9

4

1

n+ 2

)∫ ξ+(n+1/2)∆0

ξ+n∆0−εn∆0

1

η(u)
du.
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Next, as θ is increasing, we have∫ ξ+n∆0−εn∆0

ξ+n∆0−2εn∆0

1

θ(u)
du ≤ εn∆0

1

θ(ξ + n∆0 − 2εn∆0)
.

Since θ is increasing, by the definition of εn we have∫ ξ+n∆0−εn∆0

ξ+n∆0−2εn∆0

1

θ(u)
du ≤ 1

4

1

n+ 2

θ(ξ)

η(ξ + (n+ 1/2)∆0)η(ξ + (n− 1/2)∆0)
∆0.

Therefore by (2.8.44) we have∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤ 3

4

1

n+ 2

∫ ξ+(n+1/2)∆0

ξ+n∆0+2εn∆0

1

η(u)
du

+

(
1 +

9

4

1

n+ 2

)∫ ξ+(n+1/2)∆0

ξ+n∆0−εn∆0

1

η(u)
du,

or ∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤

(
1 +

12

4

1

n+ 2

)∫ ξ+(n+1/2)∆0

ξ+n∆0−εn∆0

1

η(u)
du,

and since x ∈ [ξ + (n− 2εn)∆0, ξ + (n− εn)∆0] we have∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤

(
1 +

12

4

1

n+ 2

)∫ ξ+(n+1/2)∆0

x

1

η(u)
du,

x ∈ [ξ + (n− 2εn)∆0, ξ + (n− εn)∆0]. (2.8.48)

For x ∈ [ξ + (n− 1/2)∆0, ξ + (n− 2εn)∆0], we have∫ ξ+(n+1/2)∆0

x

1

f(u)
du =

∫ ξ+(n−2εn)∆0

x

1

η(u)
du+

∫ ξ+(n+1/2)∆0

ξ+(n−2εn)∆0

1

f(u)
du.

Therefore by (2.8.48), we have∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤

∫ ξ+(n−2εn)∆0

x

1

η(u)
du

+

(
1 + 3

1

n+ 2

)∫ ξ+(n+1/2)∆0

ξ+(n−2εn)∆0

1

η(u)
du.

Hence∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤

(
1 + 3

1

n+ 2

)∫ ξ+(n+1/2)∆0

x

1

η(u)
du,

x ∈ [ξ + (n− 1/2)∆0, ξ + (n− 2εn)∆0]. (2.8.49)

Combining (2.8.43), (2.8.45), (2.8.47), (2.8.48) and (2.8.49), we have that∫ ξ+(n+1/2)∆0

x

1

f(u)
du ≤

(
1 + 3

1

n+ 2

)∫ ξ+(n+1/2)∆0

x

1

η(u)
du,

x ∈ [ξ + (n− 1/2)∆0, ξ + (n+ 1/2)∆0]. (2.8.50)
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Thus for x ∈ [ξ + (n− 1/2)∆0, ξ + (n+ 1/2)∆0], by (2.8.42) and (2.8.50), we have∫ ∞
x

1

f(u)
du =

∫ ξ+(n+1/2)∆0

x

1

f(u)
du+

∫ ∞
ξ+(n+1/2)∆0

1

f(u)
du

≤
(

1 + 3
1

n+ 2

)∫ ξ+(n+1/2)∆0

x

1

η(u)
du+

∫ ∞
ξ+(n+1/2)∆0

1

f(u)
du

≤
(

1 + 3
1

n+ 2

)∫ ξ+(n+1/2)∆0

x

1

η(u)
du

+

(
1 +

1

n+ 2

)∫ ∞
ξ+(n+1/2)∆0

1

η(u)
du

≤
(

1 + 3
1

n+ 2

)∫ ∞
x

1

η(u)
du.

Therefore we have

lim sup
x→∞

∫∞
x

1
f(u) du∫∞

x
1

η(u)

≤ 1.

On the other hand, we have that f(x) ≤ η(x) for all x ≥ 0 so∫ ∞
x

1

f(u)
du ≥

∫ ∞
x

1

η(u)
du.

Combining these inequalities yields (2.8.41).

Proof of Theorem 2.7.1 For all z ∈ [wn(∆) + (1− ε)∆, wn(∆) + ∆] and by (2.7.10b),

we have

1

f(z)
≥ min

z∈[wn(∆)+(1−ε)∆,wn(∆)+∆]

1

f(z)
=

1

f(wn+1(∆))
.

Therefore ∫ wn(∆)+∆

wn(∆)+(1−ε)∆

1

f(z)
dz ≥ ε∆

f(wn+1(∆))
.

Also, as ε ∈ (0, 1/2), we have wn+1(∆) ≥ wn(∆) + (1 − ε)∆ > wn(∆) + ε∆. Therefore

wn+1(∆) + (1− ε)∆ ≥ wn(∆) + ∆. Hence∫ wn+1(∆)+(1−ε)∆

wn(∆)+(1−ε)∆

1

f(z)
dz ≥

∫ wn(∆)+∆

wn(∆)+(1−ε)∆

1

f(z)
dz ≥ ε∆

f(wn+1(∆))
.

Therefore we have∫ wn(∆)+(1−ε)∆

ψ(0)+(1−ε)∆

1

f(z)
dz =

n−1∑
j=0

∫ wj+1(∆)+(1−ε)∆

wj(∆)+(1−ε)∆

1

f(z)
dz ≥

n−1∑
j=0

ε∆

f(wj+1(∆))
.

Taking the limit as n→∞ and using (2.2.1) now establishes that

∞∑
j=0

∆

f(wj+1(∆))
< +∞.
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By (2.7.11), we see that ln ≤ ∆/f(wn(∆)) for n ≥ 0. Therefore we have

sn(∆) =
n−1∑
j=0

lj(∆) ≤
n−1∑
j=0

∆

f(wj(∆))
,

and so lim supn→∞ sn(∆) < +∞. Since (sn(∆))n≥0 is an increasing sequence, we have

that limn→∞ sn(∆) exists and is finite, as required.
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Chapter 3

Replicating Rates of Highly Explosive Equations

3.1 Introduction

In the previous chapter, we noted that the numerical method described in Section 2.3 did

not replicate the exact rate of explosion for equations for which F̄−1 ∈ RV0(0) where F̄

is defined by (0.1.12). That is, the numerical approximation X̄∆ given by (2.3.7) obeyed

X̄∆(t)/F̄−1(T∆ − t)→ 1 as t→∞ whereas the unique solution x to the delay differential

equation (0.1.6) obeyed F (x(t))/(T − t) → 1. Note that if F̄−1 ∈ RV0(0), then f is

growing more rapidly than regularly varying (see e.g., Beirlant and Willekens [9]). This

result indicated that an alternative discretisation is needed in order to pick up the exact

asymptotics. In this chapter, we illustrate how to refine our state–dependent method

for the purpose of precisely replicating the explosion rates of equations which grow more

rapidly than regularly varying.

Theorem 2.6.2 showed the explosion rates of regularly varying equations could be mim-

icked precisely by a mesh proportional to 1/f . It is therefore natural to assume that a

mesh which will recover the exact asymptotics of rapidly varying equations will involve an

extra factor in the denominator.

In this section, we modify the step-size of the state–dependent method given in Sec-

tion 2.3 to

tn+1(∆) = tn(∆) +
∆

f(xn(∆))θ(xn(∆))
, n ≥ 0 (3.1.1)

where ∆ > 0, (xn(∆))n≥0 is defined by (2.3.5),

f ∈ C1((0,∞); (0,∞)), f ′(x) > 0 for all x > 0 (3.1.2)

and f obeys (2.2.1) and

lim
x→∞

F̄ (x)

1/f ′(x)
= 1, (3.1.3)

and θ is given by

θ(x) =
(f ′(x))2

f(x)
, x > 0. (3.1.4)
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3.2 Auxiliary Functions and Discussion of Hypotheses

We now provide some commentary on above assumptions.

Introduce the function

Θ(x) =
1

F̄ (x)
, x > 0. (3.2.1)

Since f is non-zero, F̄ (x) > 0 for all x > 0, and so Θ is well–defined and positive. By

(0.1.12) and (3.1.2), it follows that Θ ∈ C2((0,∞); (0,∞)). Similarly, θ is well-defined and

positive by (3.1.2).

We note, even for relatively complicated functions f , that θ is computable in closed

form, contingent of course on f being continuously differentiable. On the other hand, an

explicit formula for Θ may be complicated, or even impossible to obtain, because such a

formula is unavailable for F̄ even though asymptotic information about F̄ (and hence Θ)

can often be readily ascertained. Therefore, when constructing a state–dependent mesh for

the solution of the delay differential equation, it can be appropriate to use f ′ to determine

the step size, but sometimes not F̄ .

Example 3.2.1. If f(x) = ex
2/2 for x > 0, we have that f ′(x) = xex

2/2, but no closed

form formula is available for F̄ (x). However, by l’Hôpital’s rule we can compute

lim
x→∞

F̄ (x)

1/x · e−x2/2
= lim

x→∞

−1/f(x)

−1/x2 · e−x2/2 − e−x2/2
= 1.

On the other hand, if f(x) = ex for x > 0, we have that f ′(x) = ex and F̄ (x) = e−x, so

both functions are computable.

3.2.1 Assumption on asymptotic behaviour of F̄

In Example 3.2.1, the functions f considered grow rapidly (and in particular grow more

rapidly than any regularly varying function), we notice that F̄ (x) ∼ 1/f ′(x) as x → ∞.

In order to cover the case of very rapidly growing f , we assume throughout that

lim
x→∞

F̄ (x)

1/f ′(x)
= 1. (3.2.2)

This condition appears restrictive, but as our discussion now shows, it covers many rapidly

growing functions like f(x) = ex
η

for η > 0, f(x) = expn(x) where expn is the n-th fold
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composition of exponential functions. Note that by l’Hôpital,

lim
x→∞

F̄ (x)

1/f ′(x)
= lim

x→∞

(f ′(x))2

f(x)f ′′(x)
, (3.2.3)

which under the additional assumption that f ∈ C2, gives a condition that in practice is

much more easily verified than (3.2.2), since the second derivative of f is generally more

straightforward to obtain than F̄ .

Remark 3.2.1. We now show that if log f is a smoothly regularly varying function with

index η > 0, and f satisfies (2.2.1), then (3.2.2) holds. Notice that f(x) = ex
η

for η > 0

is an example of such a function.

This hypothesis on f implies that φ(x) := log f(x) obeys

lim
x→∞

xφ′(x)

φ(x)
= η, lim

x→∞

xφ′′(x)

φ′(x)
= η − 1,

in contrast to standard regularly variation which only assumes the existence of a function

asymptotic to log f which obeys these limits. Since we require that f(x)→∞ as x→∞,

this forces φ(x)→∞ as x→∞. Therefore

φ′′(x)

φ′(x)2
=
xφ′′(x)

φ′(x)
· φ(x)

xφ′(x)
· 1

φ(x)

tends to 0 as x → ∞. Notice that f(x) = eφ(x). Then f ′(x) = φ′(x)eφ(x). Thus, if φ is

increasing, we have that f is increasing. By l’Hôpital’s rule we have

lim
x→∞

F̄ (x)

1/f ′(x)
= lim

x→∞

∫∞
x e−φ(u) du

1/φ′(x) · e−φ(x)

= lim
x→∞

e−φ(x)

e−φ(x) + φ′′(x)/φ′(x)2e−φ(x)

= lim
x→∞

1

1 + φ′′(x)/φ′(x)2
= 1,

which is (3.2.2), as required.

Remark 3.2.2. Moreover if log2 f is a smoothly regularly varying function with index

η > 0 and f satisfies (2.2.1), then (3.2.2) holds. Indeed if logn f , n ≥ 2 is a smoothly

regularly varying function with index η > 0 and f satisfies (2.2.1), then (3.2.2) holds.

This family of functions include the n-th fold composition of exponential functions such

as f(x) = exp(exp(exp . . . exp(xη))) for η > 0. The proofs are deferred to Appendix A.
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Remark 3.2.3. In the case when log f is smoothly regularly varying at infinity with index

η = 0, if we assume f grows faster than any regularly varying function in such a manner

that

lim
x→∞

xf ′(x)

f(x)
=∞, (3.2.4)

that is f is rapidly varying, then once again f obeys (3.2.2).

The condition (3.2.4) implies that xφ′(x)→∞ as x→∞. The smooth regular variation

of φ = log f ensures

lim
x→∞

xφ′′(x)

φ′(x)
= −1.

Therefore

φ′′(x)

φ′(x)2
=
xφ′′(x)

φ′(x)
· 1

xφ′(x)
→ 0 as x→∞.

The argument above in Remark 3.2.1 now guarantees that f obeys (3.2.2). Similarly if

logn f , n ≥ 2 is smoothly regularly varying at infinity with index η = 0 and f obeys

(3.2.4), then (3.2.2) holds.

Remark 3.2.4. We note now that (3.2.2) does not hold if f is a smoothly regularly varying

function of index β > 1. If this is the case, then

lim
x→∞

xf ′(x)

f(x)
= β,

and since 1/f ∈ RV∞(−β), and β > 1, we have

lim
x→∞

∫∞
x

1
f(u) du

1
β−1

x
f(x)

= 1.

Therefore

lim
x→∞

F̄ (x)

1/f ′(x)
= lim

x→∞

1
β−1

x
f(x)

1
β

x
f(x)

=
β

β − 1
, (3.2.5)

so f does not obey (3.2.2). We notice however, that as β → ∞ (in other words, as we

consider regularly varying functions which grow more rapidly to infinity), then f comes

“closer” to satisfying the condition (3.2.2), in the sense that the right hand side of (3.2.5)

tends to unity, the right hand side of (3.2.2). This suggests that (3.2.2) is a condition

associated with very rapidly growing functions f .
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3.2.2 Asymptotic properties of Θ

We now deduce some useful asymptotic properties of Θ. Notice that

Θ′(x) =
1

f(x)F̄ (x)2
> 0,

so by (3.2.2), we have

lim
x→∞

Θ′(x)

θ(x)
= lim

x→∞

1/f(x)
F̄ (x)2

f ′(x)2/f(x)
= 1. (3.2.6)

Analogously, we have

Θ′′(x) =
1

f(x)2F̄ (x)2

(
−f ′(x) +

2

F̄ (x)

)
,

and so it follows from (3.2.2) that

lim
x→∞

Θ′′(x)
1

f(x)2F̄ (x)3

= 1. (3.2.7)

One implication of this limit is that

There exists x∗ > 0 such that Θ′′(x) > 0 for all x ≥ x∗. (3.2.8)

We now show that these hypotheses lead to

lim
x→∞

θ(x) = +∞. (3.2.9)

This fact leads to our new discretisation being more computationally intensive than the

method introduced in Chapter 2, and it is this, we conjecture, that more readily enables

us to demonstrate that our new method recovers the precise rate of growth of solutions of

(0.1.6).

To prove (3.2.9), first note that (3.2.8) implies Θ′ is increasing on (x∗,∞) and therefore

we have that Θ′(x) tends to a limit L ∈ (0,∞] as x→∞. Therefore, by (3.2.6), we have

that θ(x)→ L ∈ (0,∞]. Suppose L ∈ (0,∞). Then f ′(x)2/f(x)→ L ∈ (0,∞) as x→∞.

Since f ′(x) > 0 by hypothesis, we have f ′(x)/f(x)1/2 →
√
L as x → ∞. Hence for every

ε ∈ (0, 1), there exists x(ε) > 0 such that

√
L(1− ε) ≤ f ′(x)

f(x)1/2
≤
√
L(1 + ε), x ≥ x(ε).

Integrating on both sides of the inequality over [x(ε), x] yields

√
L(1− ε)(x− x(ε)) ≤ 2(f(x)1/2 − f(x(ε))1/2) ≤

√
L(1 + ε)(x− x(ε)), x ≥ x(ε).
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Thus
√
L(1− ε) ≤ lim inf

x→∞

2f(x)1/2

x
≤ lim sup

x→∞

2f(x)1/2

x
≤
√
L(1 + ε),

and letting ε→ 0 yields

lim
x→∞

f(x)

x2
=
L

4
. (3.2.10)

Since f ′(x)/f(x)1/2 →
√
L as x→∞, we have

lim
x→∞

f ′(x)

x
= lim

x→∞

√
Lf(x)1/2

x
=
L

2
. (3.2.11)

Now by l’Hôpital’s rule and (3.2.10), we have

lim
x→∞

F̄ (x)

1/x
= lim

x→∞

∫∞
x

1
f(u) du

1/x
= lim

x→∞

1
f(x)

1/x2
=

4

L
.

Therefore by this limit and (3.2.11), we have

lim
x→∞

F̄ (x)

1/f ′(x)
= lim

x→∞

4
L

1
x

2
L

1
x

= 2,

which contradicts (3.2.2). Therefore, we must have L =∞, and so (3.2.9) holds.

3.3 A Refined Mesh

Let ∆ ∈ (0, τf(ψ(0))), and define N∆ ∈ N so that

N∆
∆

f(ψ(0))
≤ τ, (N∆ + 1)∆

f(ψ(0))
> τ.

Now define t−N∆
(∆) = −τ and

tn(∆) =
n∆

f(ψ(0))
, n = −N∆ + 1, . . . , 0.

Note that ∆ < τf(ψ(0)) ensures that N∆ ≥ 1, that is we have at least one mesh point on

the initial interval [−τ, 0]. Define (tn(∆))n≥0 by (3.1.1), xn(∆) by (2.3.1) and (2.3.5), X∆

by (2.3.2) and (2.3.6) and X̄∆ by (2.3.3) and (2.3.7). The sequence tn(∆) is well-defined

and increasing, because f and θ are positive functions on (0,∞). Thus xn, X∆ and X̄∆

are well-defined.

We remark that the existence of the scheme relies on f being differentiable; moreover,

in order for the scheme to be implemented in practice, it is necessary to have a formula
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for θ, and therefore for f ′. However, this does not amount to a serious limitation in most

cases of interest.

If we compare this scheme with that outlined in Chapter 2, we see that the new step

size tn+1(∆)− tn(∆) is modified by a factor 1/θ(xn(∆)). It is instructive to compare the

asymptotic relative size of the step size

hnew :=
∆

f(x)θ(x)
=

∆

f ′(x)2
,

with that in the (old) scheme in Chapter 2, which is given by

hold :=
∆

f(x)
.

If the solutions for the two schemes were extended by one step when both solutions lie at

the same level x, we see that the ratio of the step lengths are:

hnew

hold
=

1

θ(x)
→ 0 as x→∞

by (3.2.9). Thus, the new scheme requires (asymptotically) a much finer mesh than the

scheme in Chapter 2, because the new step size becomes asymptotically negligible in

relation to the old step size.

3.4 Explosions of Rapidly Varying Equations

We are now in a position to state our main result of this chapter. Notice that our hy-

potheses on f and g lead to the solution x of (0.1.6) obeying

lim
t→T−

x(t) =∞ for some T ∈ (0,∞) (3.4.1)

and

lim
t→T−

F̄ (x(t))

T − t
= 1. (3.4.2)

Theorem 3.4.1. Suppose that f obeys (3.1.2) and (2.2.1), g is a positive and continuous

function and let τ > 0 and ψ obey (0.1.9). Further suppose that f obeys (3.2.2). Let

∆ ∈ (0, τf(ψ(0))) and let the sequences xn(∆), tn(∆) be as defined by (3.1.1), (2.3.1),

(2.3.5) and the functions X∆ and X̄∆ be as defined by (2.3.2), (2.3.6) and (2.3.3), (2.3.7).

Then there exists T∆ := limn→∞ tn(∆) > 0 such that

T∆ <∞, lim
n→∞

xn(∆) =∞.
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and if F̄ is the function defined by (0.1.12), then

lim
n→∞

F̄ (xn(∆))

T∆ − tn(∆)
= 1.

Moreover,

lim
t→T−∆

X̄∆(t) =∞

and

lim
t→T−∆

F̄ (X∆(t))

T∆ − t
= 1.

Part (a) of Theorem 3.4.1 shows that the solution of the difference equation inherits the

salient asymptotic properties (3.4.1) and (3.4.2), when suitably interpreted. Part (b) of

the Theorem shows that the continuous extension of the discrete scheme to continuous

time obeys the appropriate continuous–time analogues of (3.4.1) and (3.4.2).

3.5 Proof of Theorem 3.4.1

3.5.1 Preservation of the explosion

In this subsection, we show that there is a finite T∆ > 0 such that

lim
n→∞

tn = T∆.

Since g is a positive function, it follows for n ≥ 0

xn+1(∆) ≥ xn(∆) +
∆

f(xn(∆))θ(xn(∆))
.

Hence (xn(∆))n≥0 is an increasing sequence. Therefore we have xn(∆) → L ∈ (0,∞]. If

L is finite, using the continuity of f and θ, by taking limits we get

L ≥ L+
∆

f(L)θ(L)
,

which implies f(L)θ(L) ≤ 0, contradicting the positivity of f and θ. Hence xn(∆) → ∞

as n→∞.

We define

γn(∆) :=

∫ tn+1(∆)

tn(∆)
g(X∆(s− τ)) ds > 0 (3.5.1)
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Then by (3.1.4) and (2.3.5) we have

xn+1(∆) = xn(∆) +
∆

θ(xn(∆))
+

∆

f(xn(∆))θ(xn(∆))
γn(∆).

Since xn(∆) is increasing and Θ ∈ C2((0,∞); (0,∞)), by Taylor’s theorem there exists

ξn(∆) ∈ [xn(∆), xn+1(∆)] such that

Θ(xn+1(∆)) = Θ(xn(∆)) + Θ′(xn(∆))
∆

θ(xn(∆))
+ Θ′(xn(∆))

∆

f(xn(∆))θ(xn(∆))
γn(∆)

+
1

2
Θ′′(ξn(∆))

(
∆

θ(xn(∆))
+

∆

f(xn(∆))θ(xn(∆))
γn(∆)

)2

.

Recall that Θ′(x) > 0 for all x > 0, so Θ′(xn(∆)) > 0 for all n ≥ 0. Since xn(∆) → ∞

as n → ∞, there exists N∗ > 0 such that xn(∆) > x∗ for all n ≥ N∗. Therefore, as

ξn(∆) ≥ xn(∆), we have Θ′′(ξn(∆)) > 0 for all n ≥ N∗. Since f(xn(∆))θ(xn(∆)) > 0 and

γn(∆) > 0, for n ≥ N∗, we have

Θ(xn+1(∆)) ≥ Θ(xn(∆)) + ∆
Θ′(xn(∆))

θ(xn(∆))
.

Now, recalling (3.2.6), we have

lim inf
n→∞

Θ(xn(∆))

n∆
≥ 1. (3.5.2)

Next, we show that tn → T∆ as n → ∞. Since f is monotone, Θ′(x) ∼ θ(x) as x → ∞

and xn(∆)→∞ as n→∞, it follows that tn tends to a finite limit whenever

τn =

n−1∑
j=0

∆

f(xj(∆))Θ′(xj(∆))

tends to a finite limit. By (3.5.2), it follows that for every ε ∈ (0, 1), we have

Θ(xj(∆)) > (1− ε)j∆, j ≥ j∗(ε)

for some integer j∗. Since Θ is increasing, we have

xj(∆) > Θ−1((1− ε)j∆), j ≥ j∗(ε).

Since f and Θ′ are monotone on (x∗,∞), xj(∆) > x∗ for j ≥ N∗, if we take j2(ε) =

max(N∗, j∗) + 1, then

f(xj(∆))Θ′(xj(∆)) > f(Θ−1((1− ε)j∆))Θ′(Θ−1((1− ε)j∆)), j ≥ j2(ε).
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Therefore, using the monotonicity of x 7→ f(Θ−1(x))Θ′(Θ−1(x)), we arrive at

n−2∑
j=j2(ε)

∫ (1−ε)(j+1)∆

(1−ε)j∆

1

f(Θ−1(x))Θ′(Θ−1(x))
dx

≥
n−2∑

j=j2(ε)

(1− ε)∆
f(Θ−1((1− ε)(j + 1)∆))Θ′(Θ−1((1− ε)(j + 1)∆))

=
n−1∑

j=j2(ε)+1

(1− ε)∆
f(Θ−1((1− ε)j∆))Θ′(Θ−1((1− ε)j∆))

≥
n−1∑

j=j2(ε)+1

(1− ε)∆
f(xj(∆))Θ′(xj(∆))

.

Hence for n ≥ j2(ε) + 1, we have∫ (1−ε)(n−1)∆

(1−ε)j2∆

1

f(Θ−1(x))Θ′(Θ−1(x))
dx ≥

n−1∑
j=j2(ε)+1

(1− ε)∆
f(xj(∆))Θ′(xj(∆))

.

The integral on the left hand side is equal to∫ Θ−1((1−ε)(n−1)∆)

Θ−1((1−ε)j2∆)

1

f(x)
dx.

Since f obeys (2.2.1), we have that

lim sup
n→∞

n−1∑
j=j2(ε)+1

(1− ε)∆
f(xj(∆))Θ′(xj(∆))

< +∞

for every ε ∈ (0, 1). Hence τn tends to a finite limit, and so tn must tend to a finite limit

as n→∞.

3.5.2 Asymptotic analysis of Θ(xn(∆))

Define

γ̃n(∆) :=
1

tn+1(∆)− tn(∆)

∫ tn+1(∆)

tn(∆)
g(X∆(s− τ)) ds.

Since tn(∆)→ T∆ as n→∞, we have that

γ̃n(∆) ≤ sup
t∈[−τ,T∆−τ ]

g(X∆(t)) < +∞,

because X∆(t) is finite on T∆− τ . Hence γn(∆) given by (3.5.1) is finite. Now, by (2.3.5)

we have

xn+1(∆) = xn(∆) +
∆

θ(xn(∆))
+

∆

f(xn(∆))θ(xn(∆))
γn(∆), n ≥ 0.
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Define

∆n = ∆

(
1 +

γn(∆)

f(xn(∆))

)
> ∆, n ≥ 0.

Since γn(∆) is bounded above, and f(xn(∆))→∞ as x→∞, we have that

lim
n→∞

∆n = ∆. (3.5.3)

The definition of ∆n leads to

xn+1(∆) = xn(∆) +
∆n

θ(xn(∆))
, n ≥ 0. (3.5.4)

By Taylor’s theorem, there exists ξn(∆) ∈ [xn(∆), xn+1(∆)] such that

Θ(xn+1(∆)) = Θ(xn(∆)) +
∆n

θ(xn(∆))
Θ′(xn(∆)) +

1

2
Θ′′(ξn(∆))

∆2
n

θ2(xn(∆))
.

Since Θ′(x)/θ(x)→ 1 as x→∞ and xn(∆)→∞, the second term on the righthand side

tends to ∆ as n→∞. Define

ρn =
Θ′′(ξn(∆))

θ2(xn(∆))
.

If ρn → 0 as n→∞, we have that Θ(xn+1(∆)) = Θ(xn(∆))+δn where δn → ∆ as n→∞.

This implies that

lim
n→∞

Θ(xn(∆))

n∆
= 1. (3.5.5)

It remains to show that ρn → 0 as n→∞. Since ξn(∆) ∈ [xn(∆), xn(∆)+∆n/θ(xn(∆))],

xn(∆)→∞ as n→∞ and 0 < ∆n → ∆ as n→∞, it suffices to prove that

lim
x→∞

supc∈[0,2∆] Θ′′(x+ c/θ(x))

θ2(x)
= 0,

recalling that Θ′′(x) > 0 for x > x∗. By (3.2.7), we see that the last limit holds if

lim
x→∞

supc∈[0,2∆]
1

f2(x+c/θ(x))F̄ 3(x+c/θ(x))

θ2(x)
= 0. (3.5.6)

Recalling that f is increasing and F̄ is decreasing means that (3.5.6) is implied by

lim
x→∞

1
f2(x)F̄ 3(x+2∆/θ(x))

θ2(x)
= 0.

By the definition of θ in (3.1.4), this is equivalent to

lim
x→∞

1
F̄ 3(x+2∆/θ(x))

f ′(x)4
= 0,
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and in turn to

lim
x→∞

F̄ (x)4

F̄ 3(x+ 2∆/θ(x))
= 0, (3.5.7)

due to (3.2.2). Since F̄ (x)→ 0 as x→∞, (3.5.7) is implied by

lim
x→∞

F̄ (x)

F̄ (x+ 2∆/θ(x))
= 1, (3.5.8)

for instance.

Since F̄ is decreasing, we have

lim inf
x→∞

F̄ (x)

F̄ (x+ 2∆/θ(x))
≥ 1. (3.5.9)

To prove (3.5.8), note by Taylor’s theorem that for every x > 0 there exists c(x) ∈ [0, 2∆]

such that

F̄ (x+ 2∆/θ(x)) = F̄ (x)− 2∆

θ(x)

1

f(x+ c(x)/θ(x))
.

Since f is increasing, we have

F̄ (x+ 2∆/θ(x)) ≥ F̄ (x)− 2∆

θ(x)

1

f(x)
.

By (3.1.4) and (3.2.2) and the fact that F̄ (x)→ 0 as x→∞, we have that

lim
x→∞

θ(x)f(x)F̄ (x) = lim
x→∞

f ′(x)2

f(x)
f(x)F̄ (x) = lim

x→∞

1

F̄ (x)2
F̄ (x) =∞.

Therefore, for x > 0 sufficiently large, we may write

F̄ (x)

F̄ (x+ 2∆/θ(x))
≤ 1

1− 2∆ 1
θ(x)f(x)F̄ (x)

,

and by taking limits we deduce that

lim sup
x→∞

F̄ (x)

F̄ (x+ 2∆/θ(x))
≤ lim sup

x→∞

1

1− 2∆ 1
θ(x)f(x)F̄ (x)

= 1.

Combining this with (3.5.9), we get (3.5.8), as required. Since (3.5.8) implies (3.5.6), and

therefore in turn that ρn → 0 as n→∞, we have established (3.5.5).

3.5.3 Conclusion of the proof of Theorem 3.4.1

By virtue of (3.5.5), and the monotonicity of Θ, for every ε ∈ (0, 1) there exists an

N(ε) ∈ N such that

Θ−1((1− ε)n∆) < xn(∆) < Θ−1((1 + ε)n∆), n ≥ N(ε). (3.5.10)
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Since tn(∆)→ T∆ as n→∞, and

tn(∆) =
n−1∑
j=0

∆

f(xj(∆))θ(xj(∆))
, n ≥ 1,

we have that

T∆ − tn(∆) =

∞∑
j=n

∆

f(xj(∆))θ(xj(∆))
.

Define

τ̄n :=
∞∑
j=n

∆

f(xj(∆))Θ′(xj(∆))
. (3.5.11)

Then by (3.2.6)

lim
n→∞

T∆ − tn(∆)

τ̄n
= 1. (3.5.12)

We now estimate the asymptotic behaviour of τ̄n as n → ∞. Recall that Θ′′(x) > 0 for

x > x∗. Since Θ−1(x) → ∞ as x → ∞, it follows that Θ−1((1 − ε)n∆) > x∗ for all

n ≥ N1(ε). Let N2(ε) = max(N1(ε), N∗). Then for j ≥ N2(ε), by the monotonicity of f

and Θ′ we have

f(Θ−1((1 + ε)j∆))Θ′(Θ−1((1 + ε)j∆)) > f(xj(∆))Θ′(xj(∆))

> f(Θ−1((1− ε)j∆))Θ′(Θ−1((1− ε)j∆)).

Hence for j ≥ N2(ε), we have

∆

f(Θ−1((1 + ε)j∆))Θ′(Θ−1((1 + ε)j∆))
<

∆

f(xj(∆))Θ′(xj(∆))

<
∆

f(Θ−1((1− ε)j∆))Θ′(Θ−1((1− ε)j∆))
. (3.5.13)

Let c > 0 and define S
(c)
n by

S(c)
n =

∞∑
j=n

∆

f(Θ−1(c∆))Θ′(Θ−1(cj∆))
. (3.5.14)

Then by (3.5.11), (3.5.14) and (3.5.13), we have

S(1+ε)
n < τ̄n < S(1−ε)

n , n ≥ N2(ε). (3.5.15)

The asymptotic behaviour of S
(1±ε)
n will now be ascertained, and hence the asymptotic

behaviour of T∆ − tn(∆), by using (3.5.15) and (3.5.12).
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For every c > 0, there exists N3(c) ∈ N such that Θ−1(cj∆) > x∗ for j ≥ N3(c). Let

j ≥ N3(c). Then, for x ∈ [cj∆, c(j + 1)∆], by the monotonicity of Θ−1, we have

Θ−1(cj∆) ≤ Θ−1(x) ≤ Θ−1(c(j + 1)∆),

so the monotonicity of Θ′ and f then yield

f(Θ−1(cj∆))Θ′(Θ−1(cj∆)) ≤ f(Θ−1(x))Θ′(Θ−1(x)))

≤ f(Θ−1(c(j + 1)∆))Θ′(Θ−1(c(j + 1)∆)), j ≥ N3(c).

Therefore integrating over x ∈ [cj∆, c(j + 1)∆] we get

c∆

f(Θ−1(cj∆))Θ′(Θ−1(cj∆))
≤
∫ c(j+1)∆

cj∆

1

f(Θ−1(x))Θ′(Θ−1(x)))
dx

≤ c∆

f(Θ−1(c(j + 1)∆))Θ′(Θ−1(c(j + 1)∆))
, j ≥ N3(c),

and so, by summing across the inequality for j ≥ n ≥ N3(c), and using (3.5.14), we have

cS(c)
n =

∞∑
j=n

c∆

f(Θ−1(cj∆))Θ′(Θ−1(cj∆))
≤
∫ ∞
cn∆

1

f(Θ−1(x))Θ′(Θ−1(x)))
dx

≤
∞∑
j=n

c∆

f(Θ−1(c(j + 1)∆))Θ′(Θ−1(c(j + 1)∆))
= cS

(c)
n+1.

Since limx→∞Θ−1(x) =∞, by (0.1.12), we have that∫ ∞
cn∆

1

f(Θ−1(x))Θ′(Θ−1(x)))
dx =

∫ ∞
Θ−1(cn∆)

Θ′(u)

f(u)Θ′(u)
du = F̄ (Θ−1(cn∆)).

Thus

cS(c)
n ≤ F̄ (Θ−1(cn∆)) ≤ cS(c)

n+1, n ≥ N3(c).

Since Θ(x) = 1/F̄ (x), we have that F̄ (Θ−1(x)) = 1/x. Hence

c2S(c)
n ≤

1

n∆
≤ c2S

(c)
n+1, n ≥ N3(c). (3.5.16)

Also observe by (3.5.5) and the definition of Θ that we have

lim
n→∞

F̄ (xn(∆))n∆ = lim
n→∞

1

Θ(xn(∆))
n∆ = 1. (3.5.17)

Thus by (3.5.15) and the first member of (3.5.16), we get for n ≥ max(N2(ε), N3(1− ε))

τ̄n
F̄ (xn(∆))

<
S

(1−ε)
n

F̄ (xn(∆))
≤ 1

(1− ε)2

1

n∆F̄ (xn(∆))
,
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and so by (3.5.17)

lim sup
n→∞

τ̄n
F̄ (xn(∆))

≤ 1

(1− ε)2
.

Letting ε→ 0, and recalling (3.5.12) yields

lim sup
n→∞

T∆ − tn(∆)

F̄ (xn(∆))
≤ 1. (3.5.18)

By (3.5.15) and the second member of (3.5.16), we have for n ≥ max(N2(ε), N3(1 + ε))

τ̄n
F̄ (xn(∆))

>
S

(1+ε)
n

F̄ (xn(∆))
≥ 1

(1 + ε)2

1

n∆F̄ (xn(∆))

n

n+ 1
,

and so by (3.5.17)

lim inf
n→∞

τ̄n
F̄ (xn(∆))

≥ 1

(1 + ε)2
.

Letting ε→ 0, and recalling (3.5.12) yields

lim inf
n→∞

T∆ − tn(∆)

F̄ (xn(∆))
≥ 1.

Combining this limit with (3.5.18) yields

lim
n→∞

F̄ (xn(∆))

T∆ − tn(∆)
= 1. (3.5.19)

This completes the proof of part (a) of Theorem 3.4.1.

It remains to prove part (b) of Theorem 3.4.1. Since X̄∆(t) ∈ [xn(∆), xn+1(∆)] for

t ∈ [tn(∆), tn+1(∆)], tn(∆) ↑ T∆ as n → ∞ and xn(∆) → ∞ as n → ∞, we have that

X̄∆ →∞ as t ↑ T∆.

Since X̄∆(t) ∈ [xn(∆), xn+1(∆)] for t ∈ [tn(∆), tn+1(∆)] and F̄ is decreasing, we get

T∆ − tn+1(∆)

F̄ (xn(∆))
≤ T∆ − t
F̄ (xn(∆))

≤ T∆ − t
F̄ (X̄∆(t))

≤ T∆ − t
F̄ (xn+1(∆))

≤ T∆ − tn(∆)

F̄ (xn+1(∆))
.

Therefore for t ∈ [tn(∆), tn+1(∆)], we have

T∆ − tn+1(∆)

F̄ (xn+1(∆))

F̄ (xn+1(∆))

F̄ (xn(∆))
≤ T∆ − t
F̄ (X̄∆(t))

≤ T∆ − tn(∆)

F̄ (xn(∆))

F̄ (xn(∆))

F̄ (xn+1(∆))
. (3.5.20)

Now, notice from (3.5.17) that

lim
n→∞

F̄ (xn+1(∆))

F̄ (xn(∆))
= lim

n→∞

(n+ 1)∆F̄ (xn+1(∆))

n∆F̄ (xn(∆))
· n

n+ 1
= 1. (3.5.21)

Taking limits as t ↑ T∆ is equivalent to letting n → ∞; taking the former limit across

(3.5.20) and employing (3.5.21) yields

lim
t→T−∆

T∆ − t
F̄ (X̄∆(t))

= 1,

as required.
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Chapter 4

Non-explosive Growth in Equations with Strictly

Constrained Delay Coefficients

4.1 Introduction

In Chapter 1, we showed that a uniform step-size Euler discretisation resulted in a numeri-

cal method which underestimated the growth rate of a superlinear, non-explosive differen-

tial equation. This suggested that special meshes are needed to replicate the growth rates

of such equations. In the following chapters we extend the numerical method described in

Chapter 2 (where it was utilised to replicate the behaviour of explosive equations) for the

purpose of constructing continuous–time approximations which inherit the exact growth

rates of superlinear, non-explosive equations.

In this chapter, we begin by verifying that under condition (1.1.1) the solution to the

differential equation grows unboundedly and the state-dependent method described in

Section 2.3 does indeed replicate this behaviour. During this verification, which is featured

in Section 4.2, we make no additional assumptions on f or g outside of what is necessary

and sufficient to ensure that the solutions do not explode. Then, we consider equations for

which the instantaneous feedback function f is both superlinear and dominant, in the sense

that g/f is bounded. This has the effect of ensuring that the growth rate of the solution

to the delay differential equation is determined solely by f . The exact rates of growth of

the solutions to both the continuous and discrete–time equations with constrained delay

coefficients are determined in Section 4.3, and the convergence of the numerical method is

demonstrated in Section 4.4. In later chapters, we determine the asymptotics of equations

for which g/f tends to infinity, investigating what determines the growth rates of the

differential equation and what numerical methods are needed to replicate these rates.
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4.2 Unbounded Growth

Recall that under condition (1.1.1), the solution to the delay differential equation given

by (0.1.6) cannot explode in finite–time. Now, consider the state-dependent discretisa-

tion introduced in Section 2.3. We now show that the function X̄∆ defined by (2.3.7)

cannot explode in finite–time and mimics other properties of the solution x of (0.1.6) (cf.

Theorem 1.1.1).

Theorem 4.2.1. Let f obey (0.1.7), (1.1.1) and

f is non-decreasing on [0,∞), (4.2.1)

g obey (0.1.8), and ψ obey (0.1.9) where τ > 0. Let ∆ ∈ (0, τf(ψ(0))) and X̄∆ be defined

by (2.3.7). Then X̄∆ ∈ C([−τ,∞); (0,∞)) is increasing on [0,∞) and

lim
t→∞

X̄∆(t) =∞. (4.2.2)

Proof. Define

In(∆) =

∫ tn+1(∆)

tn(∆)
g(X∆(s− τ)) ds.

where tn(∆) and X∆ are defined by (2.3.4) and (2.3.6). Notice that (2.3.4) and (2.3.5)

imply for n ≥ 0 that

xn+1(∆) = xn(∆) + ∆ + In(∆) > xn(∆) + ∆.

Hence

xn(∆) ≥ ψ(0) + n∆, n ≥ 0,

so xn(∆) → ∞ as n → ∞. Next as (tn(∆))n≥0 is an increasing sequence, we notice that

there exists T∆ ∈ (0,∞] which obeys (2.4.3), that is

T∆ := lim
n→∞

tn(∆).

Since X̄∆(t) ≥ xn(∆) for all t ∈ [tn(∆), tn+1(∆)), we have

lim
t→T−∆

X̄∆(t) =∞.

Moreover, by (2.4.3), the domain of definition of X̄∆ is [−τ, T∆), and X̄∆ is continuous on

[−τ, T∆). We have already shown in Section 2.3 that X̄∆ is increasing on [0, tn(∆)) for all

n ≥ 0 and therefore X̄∆ is increasing on [0, T∆).
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It remains to show that when f obeys (1.1.1), T∆ = +∞. Suppose the converse is true.

There exists Tn(∆) ∈ [tn(∆), tn+1(∆)] such that g(X∆(s− τ)) ≤ g(X∆(Tn(∆)− τ)) for all

s ∈ [tn(∆), tn+1(∆)]. Therefore

In(∆) =

∫ tn+1(∆)

tn(∆)
g(X∆(s− τ)) ds ≤ (tn+1(∆)− tn(∆))g(X∆(Tn(∆)− τ))

=
∆

f(xn(∆))
g(X∆(Tn(∆)− τ)).

If T∆ <∞, then Tn(∆)−τ ≤ T∆−τ . Since X∆ is finite on [−τ, T∆−τ ], and f(xn(∆))→∞

as n → ∞, it follows that In(∆) → 0 as n → ∞. Therefore, xn(∆)/n → ∆ as n → ∞.

Hence there exists N ∈ N such that

xn(∆) < 2n∆, n > N.

Therefore as f is non-decreasing

∆

f(xn(∆))
≥ ∆

f(2n∆)
, n > N.

By (2.3.4), we have that

tn(∆) =

n−1∑
j=0

∆

f(xj(∆))
, n ≥ 0,

and so for n > N + 1 we get

tn(∆) =
N∑
j=0

∆

f(xj(∆))
+

n−1∑
j=N+1

∆

f(xj(∆))
≥

N∑
j=0

∆

f(xj(∆))
+

n−1∑
j=N+1

∆

f(2j∆)

Therefore T∆ = +∞ provided

∞∑
j=N+1

2∆

f(2j∆)
= +∞. (4.2.3)

(4.2.1) implies for x ∈ [2j∆, 2(j + 1)∆] that

1

f(2j∆)
≥ 1

f(x)
.

Hence

2∆

f(2j∆)
≥
∫ 2(j+1)∆

2j∆

1

f(x)
dx.

Therefore for n > N

n∑
j=N+1

2∆

f(2j∆)
≥

n∑
j=N+1

∫ 2(j+1)∆

2j∆

1

f(x)
dx =

∫ 2(n+1)∆

2(N+1)∆

1

f(x)
dx.

Taking limits as n→∞ and using (1.1.1) establishes (4.2.3), which proves T∆ =∞.
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4.3 Determination of Growth Rates

In this section, we determine the growth rate of the solution to the state-dependent nu-

merical scheme in the case where f is superlinear and g/f is bounded. Firstly, we state

Theorem 1.2.4 from Chapter 1, where we showed that the growth rate to the delay differ-

ential equation given by (0.1.6) grows at a rate consistent with the related ODE given by

y′(t) = f(y(t)).

Statement of Theorem 1.2.4 Suppose that f obeys (0.1.7), (1.1.1) and let f obey

(1.2.19), that is

lim
x→∞

f(x)/x =∞, f ∈ RV∞(1); and

there exists Λ ∈ [0,∞) such that Λ := lim sup
x→∞

g(x)

f(x)
.

Let g obey (0.1.8) and let τ > 0 and ψ obey (0.1.9). Then the unique continuous solution

x of (0.1.6) satisfies (1.2.20), that is

lim
t→∞

F (x(t))

t
= 1,

where F is defined by (1.2.4).

Next, we prove the discrete–time analogue of Theorem 1.2.4 and use this to show that

the continuous–time interpolant of the numerical scheme described in Section 2.3 inherits

the same rate of growth.

Before starting, we state and prove an auxiliary lemma.

Lemma 4.3.1. Suppose f obeys (4.2.1) and (1.2.19). Then

lim
x→∞

f(F−1(F (x)− τ))

f(x)
= 0. (4.3.1)

Proof. Define y by y′(t) = f(y(t)), t > 0 and y(0) = ξ. Then y(t) = F−1(t). Since

f(x)/x → ∞ as x → ∞, we have y′(t)/y(t) → ∞ as t → ∞. Therefore, for every M > 0

there exists TM > 0 such that y′(t)/y(t) > M for all t > TM . Then for t > TM + τ =: T ′M

we have

log

(
y(t)

y(t− τ)

)
=

∫ t

t−τ

y′(s)

y(s)
ds ≥Mτ.
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Hence y(t)/y(t−τ) ≥ eMτ , so y(t−τ)/y(t) ≤ e−Mτ for t > T ′M . Therefore y(t−τ)/y(t)→ 0

as t→∞. Hence

lim
t→∞

F−1(t− τ)

F−1(t)
= 0.

Since F (x)→∞ as x→∞, we have

lim
x→∞

F−1(F (x)− τ)

x
= 0.

Thus for every M > 0 there is an xM > 0 such that

F−1(F (x)− τ)/x < 1/M, x > xM .

Hence F−1(F (x− τ)) < x/M for x > xM . Since f is non-decreasing, we have

f(F−1(F (x− τ)))

f(x)
≤ f(x/M)

f(x)
, x > xM .

Thus as f ∈ RV∞(1), we have

lim sup
x→∞

f(F−1(F (x− τ)))

f(x)
≤ lim

x→∞

f(x/M)

f(x)
=

1

M
.

Letting M →∞ establishes the result.

Theorem 4.3.1. Let f obey (0.1.7), (1.1.1), (4.2.1) and (1.2.19). Let g obey (0.1.8) and

let τ > 0 and ψ obey (0.1.9). Let ∆ ∈ (0, τf(ψ(0))) and suppose tn(∆), xn(∆), X∆ and

X̄∆ are given by (2.3.4), (2.3.5), (2.3.6) and (2.3.7). Then

lim
n→∞

F (xn(∆))

tn(∆)
= 1, (4.3.2)

and

lim
t→∞

F (X̄∆(t))

t
= 1. (4.3.3)

Proof. Note that since f and g are positive, xn+1(∆) > xn(∆) + ∆ and so xn(∆) ≥

ψ(0) + n∆ for n ≥ 0. As F is increasing, using the same arguments used to prove

Theorem 4.2.1 we have

F (xn(∆)) ≥ F (ψ(0) + n∆) ≥
n−1∑
j=0

∆

f(ψ(0) + (j + 1)∆)

=
n∑
j=0

∆

f(ψ(0) + j∆)
− ∆

f(ψ(0))

= tn+1(∆)− ∆

f(ψ(0))
> tn(∆)− ∆

f(ψ(0))
.
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So

lim inf
n→∞

F (xn(∆))

tn(∆)−∆/f(ψ(0))
≥ 1

and as tn(∆)→∞ as n→∞

lim inf
n→∞

F (xn(∆))

tn(∆)
≥ 1. (4.3.4)

If we can prove a similar result for an upper estimate of the solution we will have (4.3.2).

Note that since f obeys (1.2.19b), there exists Λ̄ > Λ

In(∆) =

∫ tn+1(∆)

tn(∆)
g(X∆(s− τ)) ds ≤ Λ̄

∫ tn+1(∆)

tn(∆)
f(X∆(s− τ)) ds.

Since X∆ is non-decreasing on [0,∞), there exists N∗∆ such that for n > N∗∆ and s ∈

[tn(∆), tn+1(∆)) we have X∆(s− τ) ≤ X∆(tn+1(∆)− τ). Therefore for n > N∗∆

In(∆) ≤ Λ̄(tn+1(∆)− tn(∆))f(X∆(tn+1(∆)− τ))

= Λ̄∆
f(X∆(tn+1(∆)− τ))

f(xn(∆))
.

Next define N(n) ∈ N such that tN(n)(∆) ≤ tn+1(∆) − τ < tN(n)+1(∆). This implies

xN(n)(∆) = X∆(tn+1(∆)− τ). So for n > N∗∆

In(∆) ≤ Λ̄∆
f(xN(n)(∆))

f(xn(∆))
.

Clearly N(n) ≤ n as X∆(tn+1(∆) − τ) ≤ xn(∆) in accordance with Remark 2.3.2.

Therefore as xn(∆) is increasing and f is non-decreasing, f(xN(n)(∆)) ≤ f(xn(∆)) and

xn(∆) ≤ ψ(0) + (1 + Λ̄)n∆ for n > N∗∆, thus

f(xN(n)(∆))

f(xn(∆))
≤ f(ψ(0) + (1 + Λ̄)N(n)∆)

f(n∆)
,

=
f(ψ(0) + (1 + Λ̄)N(n)∆)

f(N(n)∆)
· f(N(n)∆)

f(n∆)
, n > N∗∆.

Therefore as f ∈ RV∞(1) and N(n)→∞ as n→∞,

lim sup
n→∞

f(xN(n)(∆))

f(xn(∆))
≤ (1 + Λ̄) lim sup

n→∞

f(N(n)∆)

f(n∆)
. (4.3.5)

Now for any c > 0,

f(N(n)∆)

f(n∆)
=

f(N(n)∆)

f(F−1(F (n∆)− c))
· f(F−1(F (n∆)− c))

f(n∆)
.
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The second factor tends to zero as n→∞ by (4.3.1). For the first factor, note that

tn+1(∆)− tN(n)(∆) =

n∑
j=N(n)

∆

f(xj(∆)

and xn(∆) > n∆, so

n∑
j=N(n)

∆

f(j∆)
≥

n∑
j=N(n)

∆

f(xj(∆)
= tn+1(∆)− tN(n)(∆) ≥ τ. (4.3.6)

Now since f is non-decreasing,

n∑
j=N(n)

∆

f(j∆)
≤ ∆

f(N(n)∆)
+

∫ (n−1)∆

N(n)∆

1

f(u)
du.

and so
n∑

j=N(n)

∆

f(j∆)
≤ ∆

f(N(n)∆)
+ F ((n− 1)∆)− F (N(n)∆).

Now as N(n) → ∞ as n → ∞, there exists nψ > 0 such that N(n)∆ > ψ(0) for n > nψ.

Using this and the fact that f and F are non-decreasing we have for n > nψ,

n∑
j=N(n)

∆

f(j∆)
≤ ∆

f(ψ(0))
+ F (n∆)− F (N(n)∆)

and by (4.3.6),

F (n∆)− F (N(n)∆) ≥
n∑

j=N(n)

∆

f(j∆)
− ∆

f(ψ(0))
≥ τ − ∆

f(ψ(0))
=: c, n > nψ

So F (n∆)−c ≥ F (N(n)∆) and since F−1 and f are non-decreasing, f(F−1(F (n∆)−c)) ≥

f(N(n)∆) for n > nψ. Therefore

lim sup
n→∞

f(N(n)∆)

f(n∆)
≤ lim sup

n→∞

f(N(n)∆)

f(F−1(F (n∆)− c))
· lim sup
n→∞

f(F−1(F (n∆)− c))
f(n∆)

≤ 1 ·0 = 0,

and inserting this into (4.3.5) we have

lim sup
n→∞

f(xN(n)(∆))

f(xn(∆))
= 0.

Therefore for any ε > 0 there exists Nε ∈ N such that f(xN(n)(∆))/f(xn(∆)) < ε/Λ̄ and

xNε(∆) > ψ∗ for n > Nε − 1. Thus

In(∆) ≤ Λ̄∆
ε

Λ̄
= ε∆, n > Nε − 1

and so

xn+1(∆) ≤ xn(∆) + (1 + ε)∆, n > Nε − 1,
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yielding

F (xn(∆)) < F (xNε(∆) + (n−Nε)(1 + ε)∆), n > Nε (4.3.7)

as F (x) is increasing for x > ψ∗. Next for n > Nε + 1,∫ xNε (∆)+(n−Nε)∆(1+ε)

xNε (∆)+∆(1+ε)

1

f(u)
du ≤

n−1∑
j=Nε+1

∆(1 + ε)

f(xNε(∆) + (j −Nε)(1 + ε)∆)
,

≤ (1 + ε)
n−1∑

j=Nε+1

∆

f(xj(∆))
,

= (1 + ε)(tn(∆)− tNε+1(∆)).

Therefore

lim sup
n→∞

F (xNε(∆) + (n−Nε)∆(1 + ε))

tn(∆)− tNε+1(∆)
≤ 1 + ε

and by (4.3.7) we obtain

lim sup
n→∞

F (xn(∆))

tn(∆)
≤ 1 + ε.

Letting ε→ 0+ and combining this result with (4.3.4) yields (4.3.2).

(4.3.3) follows from (4.3.2). Note that for every t > 0 there is an n(t) ∈ N such that

t ∈ [n(t)h, (n(t) + 1)h), so xn(t)(h) ≤ X̄∆(t) < xn(t)+1(h). As F is increasing,

n(t)∆

t

1

n(t)∆
F (xn(t)(∆)) ≤ 1

t
F (X̄∆(t)) ≤ (n(t) + 1)∆

t

1

(n(t) + 1)∆
F (xn(t)+1(∆)).

As n(t)∆/t→ 1 as t→∞, (4.3.2) implies (4.3.3).

4.4 Controlling the Approximation Error

In Section 2.5, we showed that the numerical approximation X̄∆ could be made arbitrarily

close to the true solution x on a compact interval where both X̄∆ and x remain finite.

It was necessary to consider such an interval in order to ensure that both functions were

well-defined, as Theorem 2.5.1 makes no assumptions on the integrability of 1/f and so

must include the possibility of a finite–time explosion. However, if f obeys (1.1.1) and

the solutions to the differential equation and the numerical scheme do not explode, both x

and X̄∆ are well-defined for all t ≥ 0. Therefore if (1.1.1) holds the error can be controlled

on any compact interval.

104



Chapter 4, Section 4 Non-explosive Growth in Equations with Strictly Constrained Delay Coefficients

Theorem 4.4.1. Let f obey (0.1.7), (1.1.1), (4.2.1) and (1.2.19). Let g obey (0.1.8)

and let τ > 0 and ψ obey (0.1.9). Then there exists a unique continuous solution x ∈

C([−τ,∞)) of (0.1.6) which obeys limt→∞ x(t) =∞.

Let ∆ ∈ (0, τf(ψ(0))) and suppose tn(∆), xn(∆), X∆ and X̄∆ are given by (2.3.4),

(2.3.5), (2.3.6) and (2.3.7). Let T > 0. Then

lim
∆→0

sup
t∈[0,T ]

∣∣x(t)− X̄∆(t)
∣∣ = 0. (4.4.1)

Proof. The proof is very similar to the proof of Theorem 2.5.1. However, recall that

Theorem 2.5.1 proved that

sup
0≤t≤ ρM∧ρ̄2M (∆)

|x(t)− X̄∆(t)| ≤ (∆ρMK2M + 2τω(∆, 2M))eρM (cf2M+cg2M ).

The Lipschitz constants cf2M and cg2M were easily determined as given M > ψ∗ both

x, X̄∆ ∈ [0, 2M ] for t ∈ ρM∧ρ̄2M (∆). For this Theorem however, determining the Lipschitz

constants is not quite as straightforward.

For t > 0, x′(t)/f(x(t)) = 1 + g(x(t− τ))/f(x(t)). Now if t ≤ τ ,

g(x(t− τ)) = g(ψ(t− τ)) ≤ max
x∈(0,ψ∗]

g(x) =: ḡψ.

Also since f is monotone and x is non-decreasing on [0,∞), f(x(t)) ≥ f(x(0)) = f(ψ(0)).

Thus

x′(t)

f(x(t))
≤ 1 +

ḡψ
f(ψ(0))

=: 1 + Lψ, t ≤ τ.

If t > τ , since f obeys (4.2.1) and (1.2.19) and x is non-decreasing on [0,∞), by (1.2.19b)

there exists Λ̄ > Λ such that

x′(t)

f(x(t))
≤ 1 +

g(x(t− τ))

f(x(t))
≤ 1 + Λ̄ · f(x(t− τ))

f(x(t))
≤ 1 + Λ̄.

Setting L∗ = max(Lψ, Λ̄) we have x′(t)/f(x(t)) ≤ 1 + L∗ for all t > 0. Integrating over

(0, t] yields

F (x(t)) ≤ F (ψ(0)) + (1 + L∗)t

and so as F−1 is increasing, for any T > 0

x(T ) ≤ F−1(F (ψ(0)) + (1 + L∗)T ) =: M(T ). (4.4.2)
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Since xn(∆) obeys (2.3.5), for n ≥ 0

xn+1(∆) = xn(∆) + ∆ +

∫ tn+1(∆)

tn(∆)
g(X∆(s− τ)) ds

≤ xn(∆) + ∆ + ((tn+1(∆)− tn(∆)) max
tn(∆)≤u≤tn+1(∆)

g(X̄∆(u− τ))

= xn(∆) + ∆ + ∆ · g(X̄∆(rn(∆)− τ))

f(xn(∆))
, rn(∆) ∈ [tn(∆), tn+1(∆)].

If rn(∆) ≤ τ ,

xn+1(∆) ≤ xn(∆) + ∆(1 + ḡψ), n such that rn(∆) ≤ τ.

If rn(∆) > τ , then t ≥ τ . Since X̄∆ is non-decreasing on (0,∞) and since f is non-

decreasing and obeys (1.2.19),

g(X̄∆(rn(∆)− τ)) ≤ Λf(X̄∆(rn(∆)− τ)) ≤ Λf(X̄∆(tn+1(∆)− τ)).

Since tn+1(∆) > tn(∆) ≥ τ we have f(xn(∆)) ≥ f(ψ(0)). As ∆ < τf(ψ(0)) we get

0 < tn+1(∆)− τ = tn(∆)− τ + ∆/f(xn(∆)) ≤ tn(∆)− τ + ∆/f(ψ(0)) < tn(∆).

Therefore g(X̄∆(rn(∆)− τ)) ≤ Λf(X̄(tn(∆))) = Λf(xn(∆)). Hence

xn+1(∆) ≤ xn(∆) + ∆ + ∆ · g(X̄∆(rn(∆)− τ))

f(xn(∆))

≤ xn(∆) + ∆(1 + Λ), n such that rn(∆) > τ.

Therefore xn+1(∆) ≤ xn(∆) + ∆(1 + L∗) for all n ≥ 0, and so

xn(∆) ≤ ψ(0) + n∆(1 + L∗), n ≥ 0. (4.4.3)

Now since tn(∆) defined by (2.3.4) is increasing, for any T > 0 there exists n∆(T ) > 0

such that

tn∆(T )(∆) ≥ T > tn∆(T )−1(∆).

Note that X̄∆(T ) ≤ xn∆(T )(∆). Thus

X̄∆(T ) ≤ ψ(0) + n∆(T )∆(1 + L∗) =: M∆(T ).
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We wish to bound M∆(T ) uniformly in ∆. Since n∆(T ) is such that T > tn∆(T )−1(∆), f

is non-decreasing and xn(∆) obeys (4.4.3),

T > tn∆(T )−1(∆) =

n∆(T )−2∑
j=0

∆

f(ψ(0) + j∆(1 + L∗))

≥ 1

1 + L∗

∫ ψ(0)+(n∆(T )−1)∆(1+L∗)

ψ(0)

1

f(u)
du

=
1

1 + L∗
(F (ψ(0) + (n∆(T )− 1)∆(1 + L∗))− F (ψ(0)))

=
1

1 + L∗
(F (M∆(T )−∆(1 + L∗))− F (ψ(0))) .

Therefore as F−1 is increasing,

M∆(T ) < ∆(1 + L∗) + F−1((1 + L∗)T + F (ψ(0)))

and so for any ∆0 ∈ (0, τf(ψ(0))),

M∆(T ) < ∆0(1 + L∗) + F−1((1 + L∗)T + F (ψ(0))), ∆ < ∆0.

Thus

X̄∆(T ) < M∆0(T ), ∆ < ∆0. (4.4.4)

Setting M∗(T ) = max(ψ∗,M(T ),M∆0(T )) we have that x(t), X̄∆(t), X∆(t) ∈ [0,M∗(T )]

for t ∈ [−τ, T ] and ∆ < ∆0. Define the Lipschitz constants as cfM∗(T ) and cgM∗(T ). The

rest of the proof is similar to that of Theorem 2.5.1, leading to an error estimate of the

form

sup
t∈[0,T ]

∣∣x(t)− X̄∆(t)
∣∣ ≤ (∆TKM∗(T ) + 2τω(∆,M∗(T )))e

T (cf
M∗(T )

+cg
M∗(T )

)
, ∆ < ∆0.

Taking limits as ∆→ 0 and noting ω(∆,M∗(T ))→ 0 yields the desired result.
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Chapter 5

Instantaneously-Dominated Growth Rates

5.1 Introduction

In the previous chapter, we investigated the growth rate of superlinear delay differential

equations when the delay term is constrained, that is lim supx→∞ g(x)/f(x) < ∞. We

saw in Section 4.3 that the asymptotics of the solution were determined solely by the

instantaneous feedback function f . However if the delay term is no longer constrained in

this manner, things become more complex. Now the magnitude of the delayed feedback g

and the size of the delay τ can be such that the growth rate of the solution is no longer

determined by f , that is the equation will no longer grow at a rate identical to that of the

equivalent ODE given by y′(t) = f(y(t)). In the forthcoming chapters, we will investigate

how the relationships between f , g and τ determine the long-term behaviour of (0.1.6).

Firstly, we determine the conditions under which the equation with unconstrained delay

coefficient does indeed grow at a rate identical to that of the equivalent ODE.

The boundedness of g/f is far from being a necessary condition for an instantaneously–

dominated growth rate of the equation. It is intuitive to conjecture that the size of the

delay term τ is of critical importance. We may indeed have g/f → ∞, but if the delay

term is large enough the contribution of the delayed feedback could be insignificant in the

determining the growth rate of the solution. In Section 5.2, we establish criteria on the

size of g and τ relative to f under which the solution of the delay equation inherits the

rate of growth of the equivalent ODE. We show that the general sufficient conditions we

develop are quite sharp by showing that when they are relaxed, the growth rate changes.

However in the chapter we restrict ourselves to equations for which the rate of growth

is indeed determined by f , albeit perhaps not at the exact rate exhibited by the solu-

tion to the corresponding ordinary differential equation. We refer to such equations as

being “instantaneously-dominated”. A treatment of the cases where the rate is no longer

characterised by f is given in Chapter 7.
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Examples are featured in Section 5.3, and proofs are for the most part deferred to

Section 5.4.

5.2 Criteria for Inheriting the Growth Rate of ODE

Note that the solution of the ODE given by

y′(t) = f(y(t)), t ≥ 0; y(0) = ξ > 0, (5.2.1)

is given by F (y(t)) = t for t ≥ 0 so that

lim
t→∞

F (y(t))

t
= 1. (5.2.2)

We define for θ > 0 the function

fθ(x) = f(F−1(F (x) + θ)), x ≥ 0. (5.2.3)

In our first main result, we show that if the delayed term g is asymptotically dominated by

the instantaneous term f , in the sense that g = o(fτ ), then the solution of (0.1.6) inherits

the asymptotic behaviour of (5.2.1) characterised by the limit (5.2.2).

Theorem 5.2.1. Suppose that f obeys (0.1.7), (1.1.1) and (4.2.1). Let g obey (0.1.8) and

let τ > 0 and ψ obey (0.1.9). Suppose that fτ is defined by (5.2.3), F is defined by (1.2.4),

and x is the unique continuous solution of (0.1.6).

(i) If

lim
x→∞

g(x)

fτ (x)
= 0, (5.2.4)

then

lim
t→∞

F (x(t))

t
= 1. (5.2.5)

(ii) If

there exists Λ > 0 such that lim sup
x→∞

g(x)

fτ (x)
= Λ, (5.2.6)

then

1 ≤ lim inf
t→∞

F (x(t))

t
≤ lim sup

t→∞

F (x(t))

t
≤ 1 + Λ. (5.2.7)
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The results of Theorem 5.2.1 hint that the rate of growth of g = o(fτ ) in (5.2.4) is

close to being “critical”, in the sense that if g grows more rapidly than (5.2.4), the rate

of growth of solutions of (0.1.6) depart from those of (5.2.1). This is because the rate of

growth of g = O(fτ ) allowed for in (5.2.6) leaves open the possibility that x does not obey

(5.2.5), as suggested by the presence of a non-unit upper bound in the right-most member

of the inequality (5.2.7). As we will see in a later example, the growth of g given by (5.2.6)

can lead to the upper bound in (5.2.7) being sharp, so that x does not obey (5.2.5).

Roughly speaking, our next result shows in the general case that g = O(fθ) for θ > τ ,

then x does not obey (5.2.5), justifying the notion that the hypothesis g = O(fτ ) is close

to being sharp.

Theorem 5.2.2. Suppose f obeys (0.1.7), (1.1.1) and (4.2.1). Let g be non-decreasing

and obey (0.1.8). Let τ > 0 and ψ obey (0.1.9). Suppose that fθ is defined by (5.2.3). Let

x be the unique continuous solution of (0.1.6).

(i) If

there exists τ0 > τ and Λ0 ∈ (0, τ0/τ − 1] such that lim inf
x→∞

g(x)

fτ0(x)
= Λ0, (5.2.8)

then x obeys

lim inf
t→∞

F (x(t))

t
≥ 1 + Λ0. (5.2.9)

(ii) If

there exists τ0 > τ and Λ0 > τ0/τ − 1 such that lim inf
x→∞

g(x)

fτ0(x)
= Λ0, (5.2.10)

then x obeys

lim inf
t→∞

F (x(t))

t
≥ τ0

τ
. (5.2.11)

(iii) If

there exists τ1 > τ and Λ1 ≥ τ1/τ − 1 such that lim sup
x→∞

g(x)

fτ1(x)
= Λ1, (5.2.12)

then x obeys

lim sup
t→∞

F (x(t))

t
≤ 1 + Λ1. (5.2.13)
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(iv) If

there exists τ1 > τ and Λ1 < τ1/τ − 1 such that lim sup
x→∞

g(x)

fτ1(x)
= Λ1, (5.2.14)

then x obeys

lim sup
t→∞

F (x(t))

t
≤ τ1

τ
. (5.2.15)

(v) If

there exists Λ > 0 such that lim
x→∞

g(x)

fτ(1+Λ)(x)
= Λ, (5.2.16)

then

lim
t→∞

F (x(t))

t
= 1 + Λ. (5.2.17)

The monotonicity assumption on g is a consequence of the method of proof of the The-

orem. We arrive at our upper and lower estimates of the growth rate using a constructive

comparison principle (see Appleby and Rodkina [2], and Appleby and Buckwar [7]). For

example in the proof of part (iii) we construct a function which grows at the rate consis-

tent with the right-hand side of the inequality (5.2.13). This function is constructed in

order to satisfy a differential inequality closely related to the differential equation, and the

monotonicity of g is sufficient to ensure that it does indeed give an upper bound on x.

The last two theorems highlight the importance of the question : what are the relative

rates of growth of fθ and fτ for θ > τ? Our next result shows that if f is (roughly

speaking) growing sublinearly, then the function fθ has the same asymptotic behaviour

for every θ > 0, growing at a rate asymptotic to f . On the other hand, if f is (roughly

speaking) growing superlinearly, the function fθ (which appears as the denominator in

each of (5.2.8), (5.2.10), (5.2.12), (5.2.14), and (5.2.16)) grows more rapidly than fτ (which

appears as the denominator in (5.2.4)) because in each of these hypotheses θ > τ .

Lemma 5.2.1. Suppose that f obeys (0.1.7), (1.1.1) and (4.2.1) and g obeys (0.1.8).

(i) If f ∈ RV∞(1), limx→∞ f(x)/x =∞, and θ > τ , then

lim
x→∞

fθ(x)/fτ (x) =∞.

If moreover, x 7→ g(x)/f(x) is bounded, then

lim
x→∞

g(x)/fτ (x) = 0.
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(ii) If f ∈ RV∞(α) for α ≤ 1, limx→∞ f(x)/x = 0, and θ > 0, then

lim
x→∞

fθ(x)/f(x) = 1.

(iii) If limx→∞ f(x)/x = a > 0, and θ > 0, then limx→∞ fθ(x)/x = aeθ.

One consequence of part (i) is that Theorem 5.2.2 imposes hypotheses complementary to

those of Theorem 5.2.1, and the asymptotic rates of growth of x given in (5.2.9), (5.2.11),

and (5.2.17) differ from that given in (5.2.5) when f grows superlinearly.

Under the hypotheses that f obeys (0.1.7), (1.1.1) and (4.2.1),

f ∈ RV∞(1), lim
x→∞

f(x)/x =∞, and x 7→ g(x)/f(x) is bounded,

Theorem 1.2.4 showed that F (x(t))/t → 1 as t → ∞. By part (i) of Lemma 5.2.1 and

part (i) of Theorem 5.2.1, we may draw independently the same conclusion.

We now use Lemma 5.2.1 and Theorems 5.2.1 and 5.2.2 to show that the critical rate of

growth of g(x) as x→∞ is fτ (x).

Theorem 5.2.3. Suppose f obeys (0.1.7), (1.1.1) and (4.2.1). Let g be non-decreasing

and obey (0.1.8). Let τ > 0 and ψ obey (0.1.9). Suppose that fθ is defined by (5.2.3). Let

x be the unique continuous solution of (0.1.6).

(i) If

there exists θ > τ such that lim inf
x→∞

g(x)

fθ(x)
> 0, (5.2.18)

then lim inft→∞ F (x(t))/t > 1.

(ii) If limx→∞ g(x)/fτ (x) = 0, then limt→∞ F (x(t))/t = 1.

(iii) If limt→∞ F (x(t))/t = 1, then lim infx→∞ g(x)/fθ(x) = 0 for all θ > τ .

Proof. When the limit inferior is less than or equal to θ/τ − 1, part (i) is a direct con-

sequence of part (i) of Theorem 5.2.2. In the other case when lim infx→∞ g(x)/fθ(x) >

θ/τ−1, part (ii) of Theorem 5.2.2 shows that lim inft→∞ F (x(t))/t ≥ θ/τ > 1. Part (iii) is

a consequence of part (i). Part (ii) follows from Theorem 5.2.1, completing the proof.
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We remark that g(x)/fτ (x) → 0 as x → ∞ implies that g(x)/fθ(x) → 0 as x → ∞ for

all θ > τ , which shows the consistency of the conclusion of part (iii) with the hypothesis

of part (ii).

There are many possible corollaries to Theorem 5.2.2. It is sometimes difficult to apply

(5.2.16) because of the presence of Λ > 0 on both the right and left hand sides. Here is one

example in which the existence of a limit of the form (5.2.16) is posited without asserting

the form of the dependence of the righthand side.

Theorem 5.2.4. Suppose that f obeys (0.1.7), (1.1.1) and (4.2.1). Let g be non-decreasing

and obey (0.1.8). Let τ > 0 and ψ obey (0.1.9). Let x be the unique continuous solution

of (0.1.6). If

there exists τ0 > τ such that lim
x→∞

g(x)

fτ0(x)
= λ > 0, (5.2.19)

then

1 < min(1 + λ, τ0/τ) ≤ lim inf
t→∞

F (x(t))

t
≤ lim sup

t→∞

F (x(t))

t
≤ max(1 + λ, τ0/τ).

Proof. In the case when λ ≤ τ0/τ − 1, by part (i) of Theorem 5.2.2 we get

lim inf
t→∞

F (x(t))

t
≥ 1 + λ = min(1 + λ, τ0/τ).

When λ > τ0/τ − 1, by part (ii) of Theorem 5.2.2 we obtain

lim inf
t→∞

F (x(t))

t
≥ τ0/τ = min(1 + λ, τ0/τ).

The upper bound is found by applying parts (iii) and (iv) of Theorem 5.2.2.

5.3 Examples

We now consider some examples which are motivated by the theorems of the previous

section. Such examples are useful in illustrating the importance of the conditions required

to give the different types of asymptotic behaviour described in the previous section.

Example 5.3.1. We use our first example to demonstrate the sharpness of the hypoth-

esis g = O(fτ ). If f is regularly varying with index α ≤ 1 with limx→∞ f(x)/x = 0,

Lemma 5.2.1 implies for any θ > 0 that

lim
x→∞

fθ(x)

f(x)
= 1.
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If limx→∞ g(x)/f(x) = 0, then limx→∞ g(x)/fτ (x) = 0 so by Theorem 5.2.1,

lim
t→∞

F (x(t))

t
= 1.

If limx→∞ g(x)/f(x) = Λ > 0, by Lemma 5.2.1 we have limx→∞ g(x)/fτ(1+Λ)(x) = Λ.

Thus by Theorem 5.2.2,

lim
t→∞

F (x(t))

t
= 1 + Λ.

This recovers most of Theorem 1.2.1.

When limx→∞ g(x)/f(x) = Λ > 0, we actually have that limx→∞ g(x)/fτ (x) = Λ by

Lemma 5.2.1. This example demonstrates that given a condition of the form

there exists Λ > 0 such that lim
x→∞

g(x)

fτ (x)
= Λ,

we cannot in general conclude that limt→∞ F (x(t))/t = 1, more information is needed.

Notice that this condition assumes a slower growth rate of g than (5.2.16).

Example 5.3.2. Next we recover a known result from linear equations using Theo-

rem 5.2.2. Condition (5.2.16) in part (v) of Theorem 5.2.2 generalises the notion of a

characteristic equation. We see this by showing for linear equations that it generates

the classical characteristic equation associated with a linear delay differential equation.

Suppose that limx→∞ f(x)/x = a > 0 and limx→∞ g(x)/x = b ≥ 0. By Lemma 5.2.1

part (iii) we have for every τ0 > 0 that fτ0(x)/x → aeaτ0 as x → ∞. Therefore

limx→∞ g(x)/fτ0(x) = b/(a exp(aτ0)).

If b = 0, by Theorem 5.2.1 we have F (x(t))/t → 1 as t → ∞, or log x(t)/t → a as

t→∞.

If b > 0, in order to apply Theorem 5.2.2 part (v), we seek Λ > 0 and τ0 > 0 such

that aτ0 = τ(a + aΛ) and b = aΛeaτ0 . If this can be done, then log x(t)/t → a + aΛ

as t → ∞. The existence of such a Λ > 0 is equivalent to the existence of a λ0 > a

for which λ0 = a + aΛ, which in turn is equivalent to the existence of λ0 > a such that

b = (λ0 − a)eτλ0 . In other words, if there exists λ0 > a such that λ0 = a + be−τλ0 , then

log x(t)/t→ λ0 as t→∞. This recovers the asymptotic behaviour of the linear equation

that can be inferred by standard theory.
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5.3.1 An example generation algorithm

We now describe a method for generating test equations with explicit solutions. In practice

checking the condition g/fτ → 0 is difficult, as we cannot in general determine F and

F−1 explicitly. However in our algorithm we introduce an auxiliary function f∗ which

is asymptotic to f , dominates f pointwise and for which the integral of 1/f∗ can be

determined explicitly. It can then be shown that a positive continuous (and if needed,

non-decreasing) function g can be constructed so that there is a unique continuous solution

of

x′(t) = f(x(t)) + g(x(t− τ)), t > 0

which is positive, obeys x(t)→∞ as t→∞, and which has the same growth rate as t→∞

as the ordinary differential equation y′(t) = f(y(t)). Moreover we can now calculate the

asymptotic behaviour of g/fτ and thus check the sharpness of our conditions. In particular,

we will generate an example which illustrates the gap between the necessary and sufficient

conditions for F (x(t))/t→ 1 (cf. Theorem 5.2.3).

The algorithm for generating test equations is now given along with some comments on

its construction.

Construction of examples Let f obey (0.1.7) and (1.1.1). Suppose that f∗ is a con-

tinuous function with the following properties

f∗ ∈ C((0,∞); (0,∞)); (5.3.1)

f(x) < f∗(x), x > 0; (5.3.2)

lim
x→∞

f∗(x)

f(x)
= 1. (5.3.3)

Let c > 0 and define

F∗(x) =

∫ x

c

1

f∗(u)
du, x ≥ 0. (5.3.4)

Under these assumptions, F∗ has the following properties:

F∗ ∈ C1((0,∞); (R)) is increasing; lim
x→∞

F∗(x) = +∞; lim
x→∞

F (x)

F∗(x)
= 1.

Let τ > 0. Since F∗ is increasing, we have that F∗(x) > F∗(0) for all x > 0. Therefore

F∗(x)+τ > F∗(0) for x ≥ 0. Since F∗ is increasing, it is invertible and we have F−1
∗ (F∗(x)+

115



Chapter 5, Section 3 Instantaneously-Dominated Growth Rates

τ) > 0 for all x ≥ 0. Therefore the function u : [0,∞)→ R given by u(x) := F−1
∗ (F∗(x)+τ)

for x ≥ 0 is well-defined and we have u(x) > 0 for all x ≥ 0. Also u ∈ C([0,∞); (0,∞)).

Note that the function g : [0,∞) → R given by g(x) = f∗(u(x)) − f(u(x)) for x ≥ 0 is

well-defined. Since u(x) > 0 for all x ≥ 0 and u is continuous, by (0.1.7), (5.3.1) and

(5.3.2), we have that g ∈ C([0,∞); (0,∞)), where g is given by

g(x) = f∗(F
−1
∗ (F∗(x) + τ))− f(F−1

∗ (F∗(x) + τ)), x ≥ 0. (5.3.5)

Clearly, if f∗ − f is non-decreasing on [0,∞), and since u is increasing, it follows that

g = (f∗ − f) ◦ u is non-decreasing on [0,∞).

The following result shows that we can generate delay differential equations with the

appropriate properties.

Theorem 5.3.1. Suppose that f obeys (0.1.7) and (1.1.1) and that f∗ is a function which

obeys (5.3.1), (5.3.2) and (5.3.3), and let F∗ be the function defined by (5.3.4). Suppose

that 0 < τ < −F∗(ε) for some ε ∈ (0, c) where c > 0 is given in (5.3.4). Let g be the

function defined in (5.3.5). Let ψ be the function defined by

ψ(t) = F−1
∗ (t), t ∈ [−τ, 0]. (5.3.6)

(i) g : [0,∞) → (0,∞) and ψ : [−τ, 0] → (0,∞) are continuous and positive functions.

If moreover, f∗ − f is non-decreasing, then g is non-decreasing.

(ii) The unique continuous solution of (0.1.6) is x(t) = F−1
∗ (t) for t ≥ −τ .

(iii) The solution x of (0.1.6) obeys x(t) → ∞ as t → ∞ and moreover if F is given by

(1.2.4), then

lim
t→∞

F (x(t))

t
= 1.

Proof. The properties of g were established in the paragraph preceding the statement of

this theorem. Since ε ∈ (0, c) we have that F∗(ε) < 0. Because 0 < τ < −F∗(ε), we have

0 > −τ > F∗(ε). Therefore F−1
∗ (−τ) > ε > 0. Since F−1

∗ is increasing, we have that

F−1
∗ (t) ≥ F−1

∗ (−τ) > 0 for all t ≥ −τ . In particular, this means that ψ defined by (5.3.6)

is a positive and continuous function. Also the function y defined by y(t) := F−1(t) for

t ≥ −τ is in C1((−τ,∞); (0,∞)).
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Since ψ is continuous, g is continuous and f is locally Lipschitz continuous, it follows

that there is a unique continuous solution of (0.1.6). We note that with ψ defined by

(5.3.6), we have y(t) = ψ(t) for all t ∈ [−τ, 0]. For t ≥ 0 we have that t− τ ≥ −τ . Hence

y(t− τ) = F−1
∗ (t− τ), so as g is defined by (5.3.5) we have

g(y(t− τ)) = g(F−1
∗ (t− τ))

= f∗(F
−1
∗ (F∗(F

−1
∗ (t− τ)) + τ))− f(F−1

∗ (F∗(F
−1
∗ (t− τ)) + τ))

= f∗(F
−1
∗ (t))− f(F−1

∗ (t))

= f∗(y(t))− f(y(t)).

Since F∗(y(t)) = t for t ≥ 0 we have F ′∗(y(t))y′(t) = 1 for t > 0, or

y′(t) =
1

F ′∗(y(t))
= f∗(y(t)) = f(y(t)) + g(y(t− τ)).

Therefore y is a continuously differentiable solution of (0.1.6) on (0,∞). However, as there

is a unique continuous solution of (0.1.6), we have that x(t) = y(t) = F−1
∗ (t) for t ≥ −τ ,

as claimed.

To show part (iii), we notice that F∗(x)→∞ as x→∞ by (1.1.1), (5.3.3) and (5.3.4),

so F−1
∗ (x) → ∞ as x → ∞. Therefore x(t) → ∞ as t → ∞. Moreover, as (5.3.3) implies

that F (x)/F∗(x)→ 1 as x→∞, and we have that x(t)→∞ as t→∞ we get

lim
t→∞

F (x(t))

t
= lim

t→∞

F∗(x(t))

t
· F (x(t))

F∗(x(t))
= 1,

because F∗(x(t)) = t for all t ≥ 0.

We now give examples of delay differential equations which have a known solution. In

our first example, we verify that f and g obey all the properties that enabled us to use

the theorems that determine the asymptotic behaviour of the equation.

Example 5.3.3. Let τ ∈ (0, log(1/ log(2))). Let α ∈ (0, 1) and suppose that

f(x) = (2 + x) log(2 + x)− (2 + x)α, x ≥ 0

and let g be given by

g(x) = (x+ 2)αe
τ
, x ≥ 0.
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Then the unique continuous solution of

x′(t) = f(x(t)) + g(x(t− τ)), t > 0; x(t) = exp(et)− 2 for t ∈ [−τ, 0]

is given by

x(t) = exp(et)− 2, t ≥ −τ. (5.3.7)

Furthermore, if F is given by (1.2.4), then

lim
x→∞

g(x)

f(F−1(F (x) + τ))
= 0. (5.3.8)

Also, there exists τ1 < τ such that

lim
x→∞

g(x)

f(F−1(F (x) + τ1))
= 0.

We will see in the next chapter that the condition g/fτ1 → 0 for some τ1 < τ is important

for replicating the growth rate in discrete–time. Moreover, if α > e−τ , then

lim
x→∞

g(x)

f(x)
= +∞.

Proof. Let f∗ be given by

f∗(x) = (2 + x) log(2 + x), x ≥ 0.

Note for x ≥ 0 that f(x) > 0 and f∗(x) > 0. Also note that f obeys (0.1.7) and (1.1.1),

and that f∗ satisfies (5.3.1), (5.3.2) and (5.3.3). Let c := e− 2 > 0. Define for x ≥ 0

F∗(x) =

∫ x

c

1

f∗(u)
du =

∫ x

e−2

1

(2 + u) log(2 + u)
du.

Then for x ≥ 0 we have

F∗(x) =

∫ x+2

e

1

v log(v)
dv =

∫ log(x+2)

1

1

w
dw = log(log(x+ 2)).

Therefore, for η := 2 + ε ∈ (2, e) we have −F∗(ε) = − log(log(ε + 2)) = log(1/ log η).

Then θ := 1/ log η ∈ (1, 1/ log 2), so −F∗(ε) = log θ ∈ (0, log(1/ log 2)). Thus if τ ∈

(0, log(1/ log 2)) = (0, 0.3665129 . . .), there exists ε ∈ (0, e − 2) such that τ ∈ (0,−F∗(ε)).

Note also that x = log log(F−1
∗ (x) + 2), so

F−1
∗ (x) = exp(ex)− 2, x > log(1/ log 2).
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Therefore we have that

F−1
∗ (F∗(x) + τ) = exp(eF∗(x)eτ )− 2 = exp(eτ log(x+ 2))− 2 = (x+ 2)e

τ − 2.

Since g(x) = (x+ 2)αe
τ
, we have g(x) = (2 + F−1

∗ (F∗(x) + τ))α for x ≥ 0 and so g obeys

(5.3.5). Therefore f , g and f∗ satisfy all the properties of Theorem 5.3.1, and therefore it

follows that x(t) = F−1
∗ (t) = exp(et)− 2 for t ∈ [−τ,∞) is a solution of (0.1.6).

The proof that (5.3.8) holds involves using f∗ to determine very precise asymptotic

information about F (for which a closed form formula is not known) and therefore F−1.

The analysis is deferred to Appendix B.

In our next example, we demonstrate the gap between the necessary and sufficient

conditions for F (x(t))/t → 1. This shows that condition (5.2.4) is not essential for this

rate of growth, inferring that a condition of the form limx→∞ g(x)/fτ (x) ∈ (0,∞] does

not enable us to conclude directly whether limt→∞ F (x(t))/t = 1 is true or false.

Example 5.3.4. Let τ ∈ (0,− log(log(log(1/2) + e))). Suppose that A = ee/2 and

f(x) = (A+ x) log(A+ x) log2(A+ x)− (A+ x) log2(A+ x), x ≥ 0,

and let g be given by

g(x) = exp(loge
τ
(x+A)) log(loge

τ
(x+A)), x ≥ 0.

Then the unique continuous solution of

x′(t) = f(x(t)) + g(x(t− τ)), t > 0; x(t) = exp(exp(et)))−A for t ∈ [−τ, 0]

is given by

x(t) = exp(exp(et)))−A, t ≥ −τ. (5.3.9)

Furthermore, if F is given by (1.2.4), then

lim
x→∞

g(x)

f(F−1(F (x) + τ))
=∞. (5.3.10)

Again the proof of (5.3.10) is deferred to Appendix B.
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5.4 Proofs

Proof of Theorem 5.2.1 Define z(t) = F (x(t)), t ≥ −τ . Then z ∈ C1((0,∞), (0,∞))

and we have

z′(t) = F ′(x(t))x′(t) = 1 +
g(x(t− τ))

f(x(t))
= 1 +

g(F−1(z(t− τ)))

f(F−1(z(t))
(5.4.1)

for t > 0. Let z0(t) = z(t)− t. Then

z′0(t) = z′(t)− 1 =
g(F−1(z(t− τ)))

f(F−1(z(t))
≥ 0, t > 0.

Therefore for t ≥ τ we have z0(t) ≥ z0(t− τ), or z(t)− t ≥ z(t− τ)− (t− τ). Hence

z(t) ≥ z(t− τ) + τ, t ≥ τ. (5.4.2)

We also have that z′(t) ≥ 1 for all t ≥ 0 so therefore

lim inf
t→∞

F (x(t))

t
= lim inf

t→∞

z(t)

t
≥ 1. (5.4.3)

By (5.2.4), g(x)/fτ (x)→ 0 as x→∞, so it follows that for every ε > 0 there is x1(ε) > 0

such that g(x) < εfτ (x) for all x ≥ x1(ε). By Theorem 1.1.1, we have that x(t) → ∞ as

t → ∞. Thus there exists T (ε) > 0 such that for t > T (ε) we have x(t) > x1(ε). Hence

for t > T (ε) + τ we have x(t− τ) > x1(ε), so

g(x(t− τ)) < εfτ (x(t− τ)) = εf(F−1(F (x(t− τ)) + τ)) = εf(F−1(z(t− τ) + τ)).

Since F−1 is increasing, by (5.4.2) we have F−1(z(t − τ)) ≤ F−1(z(t) − τ) for t ≥ τ .

Therefore for t > T (ε) + τ we have g(x(t − τ)) < εf(F−1(z(t))), so for t ≥ T (ε) + τ we

use (5.4.1) to get the inequality

z′(t) = 1 +
g(x(t− τ))

f(F−1(z(t)))
≤ 1 + ε.

Hence z(t) ≤ z(T (ε)+τ)+(1+ε)(t−(T (ε)+τ)) for t ≥ T (ε)+τ . Hence lim supt→∞ z(t)/t ≤

1 + ε. Letting ε→ 0 we have

lim sup
t→∞

F (x(t))

t
= lim sup

t→∞

z(t)

t
≤ 1. (5.4.4)

Combining (5.4.3) and (5.4.4) yields (5.2.5), as required.
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To prove part (ii), note that the first part of (5.2.7) is a consequence of (5.4.3). To prove

the second part, by (5.2.6), lim supx→∞ g(x)/fτ (x) = Λ, so it follows that for every ε > 0

there is x2(ε) > 0 such that g(x) < (Λ + ε)fτ (x) for all x ≥ x2(ε). By Theorem 1.1.1, we

have that x(t) → ∞ as t → ∞. Thus there exists T2(ε) > 0 such that for t > T2(ε) we

have x(t) > x2(ε). Hence for t > T2(ε) + τ we have x(t− τ) > x2(ε), so

g(x(t− τ)) < (Λ + ε)fτ (x(t− τ)) = (Λ + ε)f(F−1(F (x(t− τ)) + τ))

= (Λ + ε)f(F−1(z(t− τ) + τ)).

Since F−1 is increasing, by (5.4.2) we have F−1(z(t − τ)) ≤ F−1(z(t) − τ) for t ≥ τ .

Therefore for t > T (ε) + τ we have g(x(t− τ)) < (Λ + ε)f(F−1(z(t))), so for t ≥ T2(ε) + τ

we use (5.4.1) to get the inequality

z′(t) = 1 +
g(x(t− τ))

f(F−1(z(t)))
≤ 1 + Λ + ε.

Hence z(t) ≤ z(T2(ε) + τ) + (1 + Λ + ε)(t − (T2(ε) + τ)) for t ≥ T2(ε) + τ , and so

lim supt→∞ z(t)/t ≤ 1 + Λ + ε. Letting ε→ 0 we have

lim sup
t→∞

F (x(t))

t
= lim sup

t→∞

z(t)

t
≤ 1 + Λ,

proving the second part of (5.2.7).

Proof of Theorem 5.2.2 Clearly part (v) is a consequence of parts (i) and (iii) with

τ0 = τ1 = (1 + Λ)τ and Λ0 = Λ1 = Λ. We prove part (iii). By (5.2.12) for every ε > 0

there exists x1(ε) > 0 such that

g(x) < Λ1(1 + ε)f(F−1(F (x) + τ1)), x > x1(ε). (5.4.5)

Since τ1 ≤ (1 + Λ1)τ , we have

τ1 ≤ (1 + Λ1)τ < (1 + Λ1(1 + ε))τ. (5.4.6)

Define Tε > τ so that

(1 + Λ1)(Tε − τ) = F (ψ∗ + x1(ε)). (5.4.7)

and define the function xε so that

xε(t) = F−1((1 + Λ1(1 + ε))(t+ Tε)), t ≥ −τ. (5.4.8)
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Then for t ∈ [−τ, 0] by (5.4.7), we have

xε(t) = F−1((1 + Λ1(1 + ε))(t+ Tε)) ≥ F−1((1 + Λ1(1 + ε))(Tε − τ))

> F−1((1 + Λ1)(Tε − τ)) = ψ∗ + x1(ε) > ψ∗ ≥ ψ(t).

We see for t ≥ 0 that

xε(t− τ) = F−1((1 + Λ1(1 + ε))(t− τ + Tε)) ≥ F−1((1 + Λ1(1 + ε))(Tε − τ))

> F−1((1 + Λ1)(Tε − τ)) = ψ∗ + x1(ε) > x1(ε).

Therefore for t ≥ 0, by (5.4.5) and (5.4.8) we have

g(xε(t− τ)) < Λ1(1 + ε)f(F−1(F (xε(t− τ)) + τ1))

= Λ1(1 + ε)f(F−1((1 + Λ1(1 + ε))(t− τ + Tε) + τ1)

= Λ1(1 + ε)f(F−1((1 + Λ1(1 + ε))(t+ Tε)− (1 + Λ1(1 + ε))τ + τ1)

≤ Λ1(1 + ε)f(F−1((1 + Λ1(1 + ε))(t+ Tε))),

where we have used (5.4.6) at the last step. Therefore for t ≥ 0

g(xε(t− τ)) < Λ1(1 + ε)f(F−1((1 + Λ1(1 + ε))(t+ Tε))) = Λ1(1 + ε)f(xε(t)).

Hence

f(xε(t)) + g(xε(t− τ)) < (1 + Λ1(1 + ε))f(xε(t)), t ≥ 0. (5.4.9)

For t ≥ 0 we have F (xε(t)) = (1 + Λ1(1 + ε))(t+ Tε). Hence for t > 0

x′ε(t)/f(xε(t)) = F ′(xε(t))x
′
ε(t) = 1 + Λ1(1 + ε).

Therefore by (5.4.9), we have

x′ε(t) = (1 + Λ1(1 + ε))f(xε(t)) > f(xε(t)) + g(xε(t− τ)), t > 0.

Since we also have xε(t) > x(t) for t ∈ [−τ, 0], it follows that xε(t) > x(t) for all t ≥ −τ .

Therefore

lim sup
t→∞

F (x(t))

t
≤ lim sup

t→∞

F (xε(t))

t
= lim sup

t→∞

(1 + Λ1(1 + ε))(t+ Tε)

t

= 1 + Λ1(1 + ε).
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Letting ε→ 0, we obtain (5.2.13).

To prove part (iv), in the case when Λ1 < τ1/τ − 1, for every ε > 0 there is an in-

creasing, continuous and positive function γε such that γε(x) > g(x) for all x ≥ 0 and

limx→∞ γε(x)/fτ1(x) = (1 + ε)(τ1/τ − 1) > (τ1/τ − 1). If we define by xε the solution of

x′ε(t) = f(xε(t)) + γε(xε(t− τ)) with xε(t) = ψ(t) + 1 for t ∈ [−τ, 0], then x(t) < xε(t) for

t ≥ 0. Therefore we can apply the result of part (iii) above to get

lim sup
t→∞

F (x(t))

t
≤ lim sup

t→∞

F (xε(t))

t
≤ 1 + (1 + ε)

(τ1

τ
− 1
)
.

Letting ε→ 0 we obtain lim supt→∞ F (x(t))/t ≤ τ1/τ , as required.

To prove part (i), note that the condition (5.2.8) implies for every ε > 0 that there exists

x2(ε) > 0 such that

g(x) > Λ0(1− ε)f(F−1(F (x) + τ0)), x > x2(ε). (5.4.10)

Since x(t)→∞ as t→∞, we have that there exists T0(ε) > 0 such that x(t) > x2(ε) for

all t > T0(ε) and x(T0(ε)) = x2(ε). Now since x is increasing, T1(ε) given by

T1(ε) = inf{t > T0(ε) : F (x(t)) = F (x2(ε)) + (1 + Λ0(1− ε))τ} (5.4.11)

is well-defined. In particular, we have

F (x(T1(ε))) = F (x2(ε)) + (1 + Λ0(1− ε))τ. (5.4.12)

Clearly as x is increasing x(t) > x(T1(ε)) > x2(ε) for t > T1(ε). Now define xε(t) by

xε(t) = F−1 ([1 + Λ0(1− ε)](t− T1(ε)− τ) + F (x2(ε)) + [1 + Λ0(1− ε)]τ) ,

t ≥ T1(ε). (5.4.13)

Thus for t ∈ (T1(ε), T1(ε) + τ ], by (5.4.12) we have

xε(t) ≤ xε(T1(ε) + τ) = F−1((1 + Λ0(1− ε))τ + F (x2(ε)))

= F−1(F (x(T1(ε)))) = x(T1(ε)) < x(t).

Therefore

xε(t) < x(t), t ∈ (T1(ε), T1(ε) + τ ]. (5.4.14)
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Also

xε(T1(ε)) < xε(T1(ε) + τ) = F−1((1 + Λ0(1− ε))τ + F (x2(ε)))

= F−1(F (x(T1(ε)))) = x(T1(ε)).

Therefore xε(T1(ε)) < x(T1(ε)). Combining this and (5.4.14) we get

xε(t) < x(t), t ∈ [T1(ε), T1(ε) + τ ]. (5.4.15)

Now by (5.4.13), F (xε(t)) = [1 + Λ0(1− ε)](t− T1(ε)− τ) + F (x2(ε)) + [1 + Λ0(1− ε)]τ

for t > T1(ε) + τ . Therefore for t > T1(ε) + τ we have x′ε(t)/f(xε(t)) = F ′(xε(t))x
′
ε(t) =

1 + Λ0(1− ε). Hence

x′ε(t) = f(xε(t)) + Λ0(1− ε)f(xε(t)), t > T1(ε) + τ. (5.4.16)

Now for t > T1(ε) + τ so xε(t− τ) > xε(T1(ε)) = x2(ε), by (5.4.13). Thus by (5.4.10) for

t > T1(ε) + τ we have

g(xε(t− τ)) > Λ0(1− ε)f(F−1(F (xε(t− τ)) + τ0)).

Now τ0 + F (xε(t − τ)) = τ0 + [1 + Λ0(1 − ε)](t − T1(ε)) − [1 + Λ0(1 − ε)]τ + F (x2(ε)).

Since τ0 ≥ τ(1 + Λ0), we have τ0 − [1 + Λ0(1 − ε)]τ ≥ τ(1 + Λ0) − [1 + Λ0(1 − ε)]τ =

τ (1 + Λ0 − [1 + Λ0(1− ε)]) = τΛ0ε > 0. Therefore for t > T1(ε) + τ we have

τ0 + F (xε(t− τ)) = τ0 + [1 + Λ0(1− ε)](t− T1(ε))− [1 + Λ0(1− ε)]τ + F (x2(ε))

> [1 + Λ0(1− ε)](t− T1(ε)) + F (x2(ε)).

Hence

F−1(τ0 + F (xε(t− τ))) > F−1([1 + Λ0(1− ε)](t− T1(ε)) + F (x2(ε))), t > T1(ε) + τ.

Therefore by (5.4.13) we have F−1(τ0 +F1(xε(t− τ))) > xε(t) for t > T1(ε) + τ . Since f is

increasing we have f(F−1(τ0 + F (xε(t− τ)))) > f(xε(t)) for t > T1(ε) + τ . Therefore for

t > T1(ε) + τ we have

g(xε(t− τ)) > Λ0(1− ε)f(F−1(F (xε(t− τ)) + τ0)) > Λ0(1− ε)f(xε(t)).
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Hence by (5.4.16) for t > T1(ε) + τ we have x′ε(t) = f(xε(t)) + Λ0(1 − ε)f(xε(t)) <

f(xε(t)) + g(xε(t − τ)). By this and (5.4.15) we have that x(t) > xε(t) for all t ≥ T1(ε).

Therefore

lim inf
t→∞

F (x(t))

t

≥ lim inf
t→∞

F (xε(t))

t

= lim inf
t→∞

[1 + Λ0(1− ε)](t− T1(ε)− τ) + F (x2(ε)) + [1 + Λ0(1− ε)]τ
t

= 1 + Λ0(1− ε).

Letting ε→ 0 we obtain (5.2.9).

To prove part (ii), define φ0(x) = f(F−1(F (x) + τ0)). Then by (5.2.10), for every

ε ∈ (0, 1) there exists x2(ε) > 0 such that g(x) ≥ Λ0(1− ε)φ0(x) for all x ≥ x2(ε). Define

γ1(x) = (τ0/τ − 1)(1 − ε)φ0(x) for x ≥ x2(ε). Then g(x) > γ1(x) for x ≥ x2(ε) and γ1

is increasing on [x2,∞). We extend γ1 to [0, x2) so that it is continuous, positive and

increasing on [0, x2], and obeys g(x) > γ1(x) for x ∈ [0, x2). If we define by yε the solution

of y′ε(t) = f(yε(t)) + γ1(yε(t − τ)) for t > 0 with yε(t) = ψ(t)/2 for t ∈ [−τ, 0], then

x(t) > yε(t) for t ≥ −τ . By applying part (i), we see that

lim inf
t→∞

F (x(t))

t
≥ lim inf

t→∞

F (yε(t))

t
≥ 1 +

(τ0

τ
− 1
)

(1− ε).

Letting ε→ 0 gives the desired result (5.2.11).

Proof of Lemma 5.2.1 In each case, we note that the solution of y′(t) = f(y(t)) with

y(0) = ψ∗ is y(t) = F−1(t). Clearly y(t)→∞ as t→∞.

To prove part (i), by (5.2.3), and the fact that F (x)→∞ as x→∞, we have

lim
x→∞

fθ(x)

fτ (x)
= lim

x→∞

f(F−1(F (x) + θ))

f(F−1(F (x) + τ))
= lim

y→∞

f(F−1(F (y)− τ + θ))

f(y)
.

Next, we have limt→∞ y
′(t)/y(t) = limt→∞ f(y(t))/y(t) =∞. Since τ < θ, it follows that

y(t+ θ − τ)/y(t)→∞ as t→∞. Thus we have

lim
y→∞

F−1(F (y)− τ + θ)

y
= lim

z→∞

F−1(z + θ − τ)

F−1(z)
=∞.

Hence fθ(x)/fτ (x)→∞ as x→∞, as required.
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If M = lim supx→∞ g(x)/f(x), then

lim sup
x→∞

g(x)

fτ (x)
≤M lim sup

x→∞

f(x)

fτ (x)
= M lim sup

x→∞

f(x)

f(F−1(F (x) + τ))
.

Since f is in RV∞(1) and F−1(F (x) + τ))/x→∞, we have

lim
x→∞

f(F−1(F (x) + τ))/f(x) = +∞.

Hence g(x)/fτ (x)→ 0 as x→∞, as required.

To prove part (ii), note that limt→∞ y
′(t)/y(t) = limt→∞ f(y(t))/y(t) = 0. Thus

limt→∞ y(t + θ)/y(t) = 1 for any θ > 0. Since f ∈ RV∞(α), we have limt→∞ f(y(t +

θ))/f(y(t)) = 1 for any θ > 0, or limy→∞ f(F−1(y + θ))/f(F−1(y)) = 1. By (0.1.7)

we have F (x) → ∞ as x → ∞, so limx→∞ f(F−1(F (x) + θ))/f(x) = 1, which yields

limx→∞ fθ(x)/f(x) = limx→∞ f(F−1(F (x) + θ))/f(x) = 1 as required.

To prove part (iii), note that limt→∞ y
′(t)/y(t) = a. Let θ > 0. Therefore, as t → ∞,

we get

log

(
y(t+ θ)

y(t)

)
=

∫ t+θ

t

y′(s)

y(s)
ds→ aθ.

Thus limt→∞ y(t+ θ)/y(t) = eaθ. Hence limt→∞ f(y(t+ θ))/f(y(t)) = eaθ, which implies

limy→∞ f(F−1(y + θ))/f(F−1(y)) = eaθ. By (0.1.7) we have F (x) → ∞ as x → ∞, so

limx→∞ f(F−1(F (x) + θ))/f(x) = eaθ, which yields

lim
x→∞

fθ(x)/ax = lim
x→∞

f(F−1(F (x) + θ))/f(x) = eaθ

as required.
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Numerical Approximation of

Instantaneously-Dominated Equations

6.1 Introduction

In the case that g/f tends to a finite limit, we saw in Chapter 4 that the state–dependent

discretisation introduced in Chapter 2 correctly replicated the growth rate of the solution

to the instantaneously-dominated superlinear differential equation. This condition was

critical for the proof of this result, as it was used to facilitate the use of a construction

comparison argument, as we were able to consider an upper estimate on the discrete

equation which inherited its asymptotic behaviour. For equations with unconstrained

delay coefficients however, constructing the upper estimate is more problematic and we

are unable to use a constructive comparison argument to replicate the exact growth rate.

In the chapter, we adopt a different strategy.

Since F (x(t)) → 1 as x → ∞, it follows that the nonlinear transformation z given by

z(t) = F (x(t)) for will obey the differential equation

z′(t) = 1 +
g(F−1(z(t− τ)))

f(F−1(z(t)))
, t > 0; z(t) = F (ψ(t)), t ∈ [−τ, 0] (6.1.1)

Moreover as we have seen in the proof of Theorem 5.2.1, z will grow linearly, so we

will expect a uniform Euler discretisation to reproduce its growth rate. The problem

however, is in constructing the discrete approximation of z. The function F−1 is not

known a priori, so we cannot do this directly. Instead we replace F−1 by F−1
∆ , an auxiliary

function obtained from applying a state–dependent discretisation to the ODE given by

y′(t) = f(y(t)). Once our numerical method is now behaving like that of a linear equation,

constructing the comparison estimates is straightforward.

It is worth noting that the method of “prediscretisation” applies to all instantaneously-

dominated equations. However if f is sublinear, we have seen in Theorem 1.2.1 that

a uniform method will ascertain the correct growth rate, rendering the use of a more
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computationally demanding method somewhat unnecessary. However if f is superlinear,

Theorem 1.2.4 showed that with g/f tending to a finite limit, constant step-sizes will return

an exact rate of growth which will look entirely plausible, but will in fact underestimate the

true rate. Indeed if g/f tends to infinity, uniform discretisations will still underestimate

the growth rate (in that we can determine a lower bound which is incorrect), however in

this thesis we have not attempted to determine the precise nature of this incorrect rate.

In Section 6.2 we construct this auxiliary function F−1
∆ and investigate some of its useful

properties. The transformation is detailed in Section 6.3, and the growth rates of both

the transformed equation and the original equation are determined. Convergence of this

transformed numerical method is featured in Section 6.4 and certain proofs are deferred

to Section 6.5.

6.2 Constructing an Auxiliary Function

In this section we show that a non-uniform discretisation captures the dynamics of the

ODE (5.2.1) as well as constructing auxiliary functions which enable us to develop upper

and lower bounds for the solutions of the DDE (0.1.6).

Let F be given by (1.2.4). Then the solution y of the initial value problem (5.2.1) is

given by

y(t) = F−1(t), t ≥ 0.

Let ∆ > 0. Define now the sequence (rn)∞n=0 by

rn =

n−1∑
j=0

∆

f(ξ + j∆)
, n ≥ 1; r0 = 0. (6.2.1)

Clearly (rn)n≥0 is an increasing sequence. Conditions (1.1.1) and (4.2.1) guarantee that

rn →∞ as n→∞. Define the function H∆ : [0,∞)→ R as follows:

H∆(rn) = ξ + n∆, n = 0, 1, . . . ,

H∆(t) = ξ + n∆ + f(ξ + n∆)(t− rn), t ∈ [rn, rn+1].

It is clear that H∆ is increasing with H∆(0) = ξ; therefore it has an inverse H−1
∆ : [ξ,∞)→
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[0,∞). Define F∆ := H−1
∆ and therefore F−1

∆ = H∆, so that

F−1
∆ (rn) = ξ + n∆, n = 0, 1, . . . , (6.2.2a)

F−1
∆ (t) = ξ + n∆ + f(ξ + n∆)(t− rn), t ∈ [rn, rn+1]. (6.2.2b)

Notice that F−1
∆ is differentiable on (rn, rn+1) for every n ≥ 0 and indeed

(
F−1

∆

)′
(t) = f(ξ + n∆), t ∈ (rn, rn+1). (6.2.3)

Clearly from (6.2.2a) we have

rn = F∆(ξ + n∆), n ≥ 0.

We now record some properties of F∆ and F−1
∆ that will be of use not only in analysing

the asymptotic behaviour of the solution y of (5.2.1) but also of the asymptotic behaviour

of the solution of (0.1.6)

Lemma 6.2.1. Suppose that F∆ is defined by (6.2.2) and F by (1.2.4). Then we have

F∆(x) ≤ ∆

f(ξ)
+ F (x), x ≥ ξ; (6.2.4a)

F∆(x) ≥ F (x), x ≥ ξ; (6.2.4b)

F−1
∆ (t) ≤ F−1(t), t ≥ 0; (6.2.4c)

F−1(t) ≤ F−1
∆

(
t+

∆

f(ξ)

)
, t ≥ 0. (6.2.4d)

Theorem 6.2.1. Suppose that f obeys (0.1.7) and f ∈ RV∞(1). Let ∆ > 0 and let F be

defined by (1.2.4) and F∆ be the function defined by (6.2.2). Let y∆ be given by

y∆(t) = F−1
∆ (t), t ≥ 0. (6.2.5)

If y is the solution of (5.2.1) then

y(t−∆/f(ξ)) ≤ y∆(t) ≤ y(t), t ≥ ∆/f(ξ). (6.2.6)

and

lim
t→∞

F (y∆(t))

t
= 1. (6.2.7)
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Proof. By (6.2.4c) and the fact that y solves (5.2.1) we have for all t ≥ 0.

y∆(t) = F−1
∆ (t) ≤ F−1(t) = y(t).

Suppose that t ≥ ∆/f(ξ). Then by (6.2.4d) we have

y∆(t) = F−1
∆ (t−∆/f(ξ) + ∆/f(ξ)) ≥ F−1(t−∆/f(ξ)),

completing the proof of (6.2.6). It is equivalent to

F−1(t−∆/f(ξ)) ≤ y∆(t) ≤ F−1(t), t ≥ ∆/f(ξ).

Since F is increasing, we have

t−∆/f(ξ) ≤ F (y∆(t)) ≤ t, t ≥ ∆/f(ξ),

from which we can immediately infer (6.2.7).

6.3 Transformed Equation

Suppose that x is the solution of (0.1.6). Let z(t) = F (x(t)) for t ≥ −τ , where F is given

by (1.2.4) with ξ ∈ (0, ψ∗) where

ψ∗ = min
t∈[−τ,0]

ψ(t) > 0.

Then z obeys the differential equation

z′(t) = 1 +
g(F−1(z(t− τ)))

f(F−1(z(t)))
, t > 0; z(t) = F (ψ(t)), t ∈ [−τ, 0]. (6.3.1)

Our idea now is to discretise this differential equation: however, because F−1 is not data,

we cannot do this directly. Instead, we replace F−1 with F−1
∆ given by (6.2.2) for some

suitably chosen ∆ > 0. Moreover, as the instantaneous part of the equation dominates,

we have that F (x(t))/t→ 1 as t→∞, implying that

lim
t→∞

z(t)

t
= 1.

Since z does not grow rapidly, we can expect that a uniform discretisation of (6.3.1) will

recover the appropriate asymptotic behaviour. Also, we should expect that this discreti-

sation will control the error on compact intervals.
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Let

∆ ∈ (0, τf(ξ)). (6.3.2)

Suppose that F∆ is given by (6.2.2). Let N∆ = dτ/∆e ∈ N and define

h∆ :=
τ

N∆
. (6.3.3)

Note h∆ ≤ ∆. Define also

zn+1(∆) = zn(∆) + h∆ + h∆
g(F−1

∆ (zn−N∆
(∆)))

f(F−1
∆ (zn(∆)))

, n ≥ 0 (6.3.4a)

zn(∆) = F∆(ψ(nh∆)), n = −N∆, . . . , 0. (6.3.4b)

Let n(t) = bt/h∆c for t ≥ 0. Hence define the functions Z̄∆, Z∆ by

Z̄∆(t) = zn(t)(∆) +
zn(t)+1(∆)− zn(t)(∆)

h∆
(t− n(t)h∆), n(t)h∆ ≤ t < (n(t) + 1)h∆;

(6.3.5a)

Z∆(t) = zn(t)(∆), n(t)h∆ ≤ t < (n(t) + 1)h∆. (6.3.5b)

Z̄∆(t) = F∆(ψ(t)), t ∈ [−τ, 0];

Z∆(t) = F∆(ψ(nh∆)), nh∆ ≤ t < (n+ 1)h∆, n = −N∆, . . . , 0.

and

x̄∆(t) = F−1
∆ (Z̄∆(t)), t ≥ 0; x̄∆(t) = ψ(t), t ∈ [−τ, 0]. (6.3.6)

Theorem 6.3.1. Suppose that f obeys (0.1.7), (1.1.1) and (4.2.1) and g obeys (0.1.8)

and is non-decreasing. Let τ > 0 and ψ obey (0.1.9). Let F be given by (1.2.4) where

ξ ∈ (0, ψ∗). Suppose also that f and g obey

There exists τ1 < τ such that lim
x→∞

g(x)

fτ1(x)
= 0. (6.3.7)

Suppose that ∆ is so small that

∆ < f(ξ)(τ − τ1). (6.3.8)

Let x be the unique continuous solution of (0.1.6). Let N ∈ N and h = h∆ > 0 be given

by (6.3.3). Suppose that zn(∆) is defined by (6.3.4), Z̄∆ by (6.3.5b) and x̄∆ by (6.3.6).

Then x̄∆ obeys

lim
t→∞

F (x̄∆(t))

t
= 1. (6.3.9)
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(6.3.9) shows that the rate of growth of the approximation x̄∆ is the same as that of

the true solution x under a hypothesis (6.3.7) similar to that required in an earlier the-

orem (namely condition (5.2.4)) about the asymptotic behaviour of the delay differential

equation.

We notice that the condition (6.3.7) implies (5.2.4) because for τ1 < τ

g(x)

f(F−1(F (x) + τ1))
>

g(x)

f(F−1(F (x) + τ))
.

Therefore (6.3.7) is strictly stronger than the hypothesis needed to recover the rate of

growth of x. However, the gap between these hypotheses is very slight, and the asymptotic

behaviour is recovered provided ∆ is chosen sufficiently small. Notice that for any choice

of h > 0 we recover the correct rate of growth of x̄∆. However, we can control the error

on finite intervals only by adjusting h and ∆ appropriately, i.e. by choosing h = h∆. Note

that (6.3.8) implies (6.3.2).

6.4 Control of the Error Estimate

We now show that x̄∆ does indeed approximate the true solution x on any compact

interval. It it worth noting however that the primary use of the method of discretising

the transformed differential equation is to replicate the growth rate of the true solution,

as was demonstrated in Section 6.3. However from the point of view of error analysis this

method is somewhat unnecessary, as we showed in Section 4.4 that the error associated

with the numerical method described in Section 2.3 can be controlled on any compact

interval when (1.1.1) holds. Thus, if we wanted to approximate the true solution with

an arbitrary degree of accuracy, there is no need for pretransformation of the differential

equation, we would simply use the state–dependent scheme. However for completeness

the convergence of x̄∆ is now demonstrated.

Theorem 6.4.1. Suppose that f obeys (0.1.7), (1.1.1) and (4.2.1) and g obeys (0.1.8) and

is non-decreasing. Let τ > 0 and ψ obey (0.1.9). Suppose that fτ is defined by (5.2.3) and

(5.2.4) holds. Let F be given by (1.2.4) where ξ ∈ (0, ψ). Let x be the unique continuous

solution of (0.1.6). Let ∆ ∈ (0, τf(ξ)) and let N∆ ∈ N and h∆ > 0 be given by (6.3.3).

Suppose that zn(∆) is defined by (6.3.4), Z̄∆ by (6.3.5b) and x̄∆ by (6.3.6). Then for any
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T > 0,

lim
∆→0

sup
0≤t≤T

|x(t)− x̄∆(t)| = 0. (6.4.1)

6.5 Proofs

Proof of Lemma 6.2.1 Since f is non-decreasing and positive, we have

∆

f(ξ + j∆)
≥
∫ ξ+(j+1)∆

ξ+j∆

1

f(x)
dx ≥ ∆

f(ξ + (j + 1)∆)
.

Therefore by (6.2.1) and the definition of F we have

rn =
n−1∑
j=0

∆

f(ξ + j∆)
≥

n−1∑
j=0

∫ ξ+(j+1)∆

ξ+j∆

1

f(x)
dx = F (ξ + n∆).

Similarly

rn+1 =
∆

f(ξ)
+
n−1∑
j=0

∆

f(ξ + (j + 1)∆)

≤ ∆

f(ξ)
+

n−1∑
j=0

∫ ξ+(j+1)∆

ξ+j∆

1

f(x)
dx =

∆

f(ξ)
+ F (ξ + n∆).

Hence

rn ≥ F (ξ + n∆), n ≥ 0; rn+1 ≤
∆

f(ξ)
+ F (ξ + n∆), n ≥ 0. (6.5.1)

It is easy now to prove (6.2.4a). By (6.5.1) we have

F∆(ξ + (n+ 1)∆) = rn+1 ≤
∆

f(ξ)
+ F (ξ + n∆).

Since F is increasing, we have F (ξ + n∆) < F (ξ + (n + 1)∆), so (6.2.4a) holds for

x = ξ + (n+ 1)∆ and each n ≥ 0. Now F∆(ξ) = t0 = 0, so

F∆(ξ) = 0 ≤ ∆

f(ξ)
=

∆

f(ξ)
+ F (ξ).

Hence (6.2.4a) holds for all x = ξ+n∆ for n ≥ 0. Now consider x ∈ [ξ+n∆, ξ+(n+1)∆).

Since F∆ and F are increasing we have

F∆(x) < F∆(ξ + (n+ 1)∆) ≤ ∆

f(ξ)
+ F (ξ + n∆) ≤ ∆

f(ξ)
+ F (x).

We now prove (6.2.4d). Let x ≥ ξ. Then y = F−1(x) ≥ 0. Since F−1
∆ is increasing and

(6.2.4a) holds, we have

F−1(x) = y = F−1
∆ (F∆(y)) ≤ F−1

∆ (F (y) + ∆/f(ξ)) = F−1
∆ (x+ ∆/f(ξ)).
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Let y be the solution of (5.2.1). Then y is increasing, so because f is non-decreasing we

have

y(rn+1) = y(rn) +

∫ rn+1

rn

f(y(s)) ds ≥ y(rn) + (rn+1 − rn)f(y(rn)).

Note that y(t0) = ξ. Let yn = ξ + n∆. Then y0 = ξ and for n ≥ 0 by (6.2.1) we have

yn+1 − yn = ∆ =
∆

f(ξ + n∆)
f(yn) = (rn+1 − rn)f(yn).

We now show y(rn) ≥ yn for n ≥ 0. It is clearly true for n = 0. Suppose it is true for

n = k. Then as f is non-decreasing and y(rk) ≥ yk we have

y(rk+1) ≥ y(rk) + (rk+1 − rk)f(y(rk)) ≥ yk + (rk+1 − rk)f(yk) = yk+1,

so by induction we have y(rn) ≥ yn for n ≥ 0, or

F−1(rn) ≥ ξ + n∆ = F−1
∆ (rn), n ≥ 0.

Now, let t > 0 such that t 6= rn. Since rn → ∞ as n → ∞ there exists nt ∈ N such that

t ∈ (rnt , rnt+1). Then (F−1
∆ )′(t) = f(ξ + nt∆). Now by (6.2.2a)

y(rnt) = F−1(rnt) ≥ F−1
∆ (rnt) = ξ + nt∆.

Since f is non-decreasing and y solves (5.2.1) we have

(F−1
∆ )′(t) = f(ξ + nt∆) ≤ f(y(rnt)) ≤ f(y(t)) = (F−1)′(t).

Next F−1
∆ has right derivative f(ξ + nt∆) at rnt . Moreover

(F−1)′(rnt) = f(y(rnt)) ≥ f(ξ + nt∆).

Therefore, as F−1
∆ (rn) ≤ F−1(rn) we have F−1(t) ≥ F−1

∆ (t) for all t ≥ 0, proving (6.2.4c).

Taking inverses gives (6.2.4b).

Proof of Theorem 6.3.1 We first prepare some estimates of us later in the proof. For

any τ2 > τ1 > 0 we have

g(x)

f(F−1(F (x) + τ2))
<

g(x)

f(F−1(F (x) + τ1))
.

By (6.3.8) we have τ −∆/f(ξ) > τ1, so putting τ2 := τ −∆/f(ξ) we have

lim sup
x→∞

g(x)

f(F−1(F (x) + τ −∆/f(ξ)))
≤ lim

x→∞

g(x)

f(F−1(F (x) + τ1))
= 0,

134



Chapter 6, Section 5 Numerical Approximation of Instantaneously-Dominated Equations

so

lim
x→∞

g(x)

f(F−1(F (x) + τ −∆/f(ξ)))
= 0. (6.5.2)

By Lemma 6.2.1 we have

F−1(y) ≥ F−1
∆ (y), y ≥ 0; F−1(y) ≤ F−1

∆

(
y +

∆

f(ξ)

)
, y ≥ 0.

The second member implies

F−1

(
z − ∆

f(ξ)

)
≤ F−1

∆ (z), z ≥ ∆

f(ξ)
. (6.5.3)

If z∆ is given by (6.3.4), we rearrange (6.3.4a) to get

zn+1(∆)− (n+ 1)h = zn(∆)− nh+ h
g(F−1

∆ (zn−N∆
(∆)))

f(F−1
∆ (zn(∆)))

, n ≥ 0.

Therefore n 7→ zn(∆)− nh is increasing for n ≥ 0. Let n ≥ N∆. Then by (6.3.3) we have

zn−N∆
(∆) + τ − nh = zn−N∆

(∆)− (n−N∆)h ≤ zn(∆)− nh.

Hence

zn−N∆
(∆) + τ ≤ zn(∆), for n ≥ N∆. (6.5.4)

Another consequence of the monotonicity of n 7→ zn(∆)− nh is that

zn(∆) ≥ z0(∆) + nh, n ≥ 0. (6.5.5)

Note for n ≥ N∆ that by (6.5.5), (6.2.4b), (6.3.3) and (6.3.2) we have

zn(∆) ≥ z0(∆) + nh ≥ z0(∆) +N∆h

= z0(∆) + τ > F∆(ψ(0)) +
∆

f(ξ)

≥ F (ψ(0)) +
∆

f(ξ)
,

where we have used the fact that ψ(0) > ξ. Using this fact again, we have

zn(∆) >
∆

f(ξ)
, zn(∆) ≥ F (ψ(0)) + τ > τ, for n ≥ N∆.

Hence by (6.5.3) we have

F−1

(
zn(∆)− ∆

f(ξ)

)
≤ F−1

∆ (zn(∆)), n ≥ N∆. (6.5.6)
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For n ≥ N∆, by (6.5.4), (6.2.4c) we have

F−1
∆ (zn−N∆

(∆)) ≤ F−1
∆ (zn(∆)− τ) ≤ F−1(zn(∆)− τ), n ≥ N∆. (6.5.7)

Therefore, for n ≥ N∆ by the monotonicity of f and g and (6.5.6) and (6.5.7) we have

g(F−1
∆ (zn−N∆

(∆)))

f(F−1
∆ (zn(∆)))

≤ g(F−1(zn(∆)− τ))

f
(
F−1

(
zn(∆)− ∆

f(ξ)

)) .
Therefore for n ≥ N∆

zn+1(∆) ≤ zn(∆) + h+ h
g(F−1(zn(∆)− τ))

f
(
F−1

(
zn(∆)− ∆

f(ξ)

)) .
Define

ϕ(z) =
g(F−1(z − τ))

f
(
F−1

(
z − ∆

f(ξ)

)) , z ≥ τ. (6.5.8)

Then with x(z) := F−1(z − τ), we have that x(z)→∞ as z →∞ and

ϕ(z) =
g(x(z))

f
(
F−1

(
F (x(z)) + τ − ∆

f(ξ)

)) , z ≥ τ.

Therefore by (6.5.2), we have ϕ(z)→ 0 as z →∞. By the definition of ϕ we have

zn+1(∆)− zn(∆) ≤ h+ hϕ(zn(∆)), n ≥ N∆. (6.5.9)

Note that zn(∆)→∞ as n→∞, so that ϕ(zn(∆))→ 0 as n→∞. Therefore we have

lim
n→∞

1

n−N∆ + 1

n∑
j=N∆

ϕ(zj(∆)) = 0.

Summing both sides of (6.5.9) over {N∆, . . . , n} and using the last limit, we obtain

lim sup
n→∞

zn(∆)

nh
≤ 1.

By (6.5.5) we have

lim inf
n→∞

zn(∆)

nh
≥ 1,

and therefore we have

lim
n→∞

zn(∆)

nh
= 1. (6.5.10)

By (6.3.4), (z∆(n))∞n=0 is increasing. Therefore by (6.3.5b) we get

zn(t)(∆) ≤ Z̄∆(t) ≤ zn(t)+1(∆), t ≥ 0.
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Therefore by (6.5.10) we have

lim
t→∞

Z̄∆(t)

n(t)h
= 1,

and since n(t)/t→ 1/h as t→∞ we have

lim
t→∞

Z̄∆(t)

t
= lim

t→∞

Z̄∆(t)

n(t)h
· n(t)h

t
= 1.

By (6.3.6) we have

lim
t→∞

F∆(x̄∆(t))

t
= 1.

Finally by applying (6.2.4a) and (6.2.4b) we obtain (6.3.9) as required.

Proof of Theorem 6.4.1 Define for v1, v2 ≥ 0,

%(v1, v2) := 1 +
g(F−1(v1))

f(F−1(v2))
, (6.5.11a)

%∆(v1, v2) := 1 +
g(F−1

∆ (v1))

f(F−1
∆ (v2))

. (6.5.11b)

Then we can rewrite (6.3.1) and (6.3.5a) as

z(t) = z(0) +

∫ t

0
%(z(s− τ), z(s)) ds

Z̄∆(t) = z0(∆) +

∫ t

0
%∆(Z∆(s− τ), Z∆(s)) ds.

Thus

|z(t)− Z̄∆(t)|

= |F (ψ(0))− F∆(ψ(0)) +

∫ t

0
%(z(s− τ), z(s)) ds−

∫ t

0
%∆(Z∆(s− τ), Z∆(s))|

≤ |F (ψ(0))− F∆(ψ(0))|+ |
∫ t

0
%(z(s− τ), z(s)) ds−

∫ t

0
%∆(Z∆(s− τ), Z∆(s))|

≤ ∆/f(ξ) +

∫ t

0
|%(z(s− τ), z(s))− %∆(Z∆(s− τ), Z∆(s))| ds. (6.5.12)

since |F (ψ(0))− F∆(ψ(0))| ≤ ∆/f(ξ) using (6.2.4a) and (6.2.4b).
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Now for v1, v2, w1, w2 > 0,

%(v1, v2)− %∆(w1, w2)

=
g(F−1(v1))

f(F−1(v2))
−
g(F−1

∆ (w1))

f(F−1
∆ (w2))

=
g(F−1(v1))f(F−1

∆ (w2))− g(F−1
∆ (w1))f(F−1(v2))

f(F−1(v2))f(F−1
∆ (w2))

=
1

f(F−1(v2))f(F−1
∆ (w2))

(
g(F−1(v1))

[
f(F−1

∆ (w2))− f(F−1
∆ (v2))

]
+ f(F−1

∆ (v2))
[
g(F−1(v1))− g(F−1(w1))

]
+ g(F−1(w1))

[
f(F−1

∆ (v2))− f(F−1(v2))
]

+ f(F−1(v2))
[
g(F−1(w1))− g(F−1

∆ (w1))
] )
. (6.5.13)

We look to control each term inside the brackets in (6.5.13). To do this, we first need

to determine the Lipschitz constants. If t ≤ τ ,

g(F−1(z(t− τ))) = g(F−1(F (ψ(t− τ)))) = g(ψ(t− τ)) ≤ max
x∈(0,ψ∗]

g(x) =: ḡψ.

Since f is monotone and z is non-decreasing on [0,∞), f(F−1(z(t))) ≥ f(F−1(z(0))) =

f(F−1(F (ψ(0)))) = f(ψ(0)). Thus

z′(t) ≤ 1 +
ḡψ

f(ψ(0))
=: 1 + Lψ, t ≤ τ.

Since g(x)/fτ (x)→ 0 as x→∞ and is continuous and f and g obey (0.1.7) and (0.1.8),

g(x)

fτ (x)
≤ sup

y>0

g(y)

fτ (y)
=: S

Therefore g(x) ≤ Sfτ (x) for all x > 0. Thus

g(x(t− τ)) ≤ Sfτ (x(t− τ)) = Sf(F−1(F (x(t− τ)) + τ)) = Sf(F−1(z(t− τ) + τ)).

Now since z obeys (5.4.2), z(t− τ) ≤ z(t)− τ . Therefore

g(x(t− τ)) ≤ Sf(F−1(z(t)− τ + τ)) = Sf(F−1(z(t))).

Thus for t > τ , z′(t) ≤ 1 +S. Defining S∗ := max(Lψ, S) we have z′(t) ≤ 1 +S∗ for t ≥ 0.

Integrating over [0, t] yields

z(t) ≤ z(0) + t(1 + S∗), t ≥ 0.
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and specifically

z(T ) ≤ z(0) + T (1 + S∗) =: P (T ), t ≥ 0. (6.5.14)

Since zn obeys (6.3.4), for n ≥ 0

zn+1(∆) = zn(∆) + h∆

(
1 +

g(F−1
∆ (zn−N∆

(∆)))

f(F−1
∆ (zn(∆)))

)
.

If n−N∆ ≤ 0, g(F−1
∆ (zn−N∆(∆))) = g(ψ((n−N∆)h∆)) ≤ ḡψ. Also since f is monotone,

f(F−1
∆ (zn(∆))) ≥ f(F−1

∆ (z0(∆))) = f(ψ(0)). Thus

zn+1(∆) ≤ zn(∆) + h∆(1 + Lψ), n ≤ N∆.

If n−N∆ > 0, first note that ϕ defined by (6.5.8) obeys ϕ(z) → 0 as z → ∞. Therefore

since ϕ is continuous,

ϕ(z) ≤ sup
y∈(0,∞)

ϕ(y) =: ϕ∗, z > 0.

Thus ϕ(zn(∆)) ≤ ϕ∗ for n ≥ 0 and

zn+1(∆) ≤ zn(∆) + h∆(1 + ϕ∗), n > N∆.

With R∗ := max(Lψ, ϕ
∗) we have zn+1(∆) ≤ zn(∆) + h∆(1 +R∗) for n ≥ 0 and so

zn(∆) ≤ z0(∆) + nh∆(1 +R∗), n ≥ 0. (6.5.15)

For any T > 0 let n(t) be such that n(t)h∆ ≥ T > (n(t)− 1)h∆. Then by (6.5.15)

Z̄∆(T ) ≤ zn(t)(∆) ≤ z0(∆) + n(t)h∆(1 +R∗)

< z0(∆) + (T + h∆)(1 +R∗)

= F∆(ψ(0)) + (T + h∆)(1 +R∗)

≤ ∆/f(ξ) + F (ψ(0)) + (T + ∆)(1 +R∗) =: P∆(T )

where we have used (6.2.4a) and h∆ ≤ ∆ at the last step. Thus for any ∆0 ∈ (0, τf(ξ)),

P∆(T ) < P∆0(T ) for ∆ < ∆0. Thus

Z̄∆(T ) < P∆0(T ), ∆ < ∆0. (6.5.16)

Setting P ∗(T ) = max(ψ∗, P (T ), P∆0(T )) we have that z(t), Z̄∆(t), Z∆(t) ∈ [0, P ∗(T )] for

t ∈ [−τ, T ] and ∆ < ∆0. Next define M∗(T ) := F−1(P ∗(T )) and define the Lipschitz

constants as cfM∗(T ) and cgM∗(T ).
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We are now in a position to examine the terms inside the brackets in (6.5.13). For

the first term, with v2, w2 ≤ P ∗(T ) and since F−1
∆ is increasing, F−1

∆ (v2), F−1
∆ (w2) ≤

F−1
∆ (P ∗(T )) ≤M∗(T ) by (6.2.4c). Thus

|f(F−1
∆ (w2))− f(F−1

∆ (v2))| ≤ cfM∗(T )|F
−1
∆ (w2)− F−1

∆ (v2)|.

Now for any T > 0 let n be such that F∆(ξ + n∆) ≤ P ∗(T ) < F∆(ξ + (n + 1)∆). Using

(6.2.3), (
F−1

∆

)′
(t) ≤ f(ξ + n∆), t ≤ P ∗(T ).

Therefore since f is non-decreasing,

|F−1
∆ (w2)− F−1

∆ (v2)| ≤ f(ξ + n∆)|w2 − v2|

≤ f(F−1
∆ (P ∗(T )))|w2 − v2|

≤ f(M∗(T ))|w2 − v2|.

So

|f(F−1
∆ (w2))− f(F−1

∆ (v2))| ≤ cfM∗(T )f(M∗(T ))|w2 − v2|

=: κ1(T )|w2 − v2|. (6.5.17)

For the second term in (6.5.13), F−1(v1), F−1(w1) ≤M∗(T ) so

|g(F−1(v1))− g(F−1(w1))| ≤ cgM∗(T )|F
−1(v1)− F−1(w1)|.

Recall that y defined by (5.2.1) obeys y(t) = F−1(t) for t ≥ 0. Thus

|F−1(v1)− F−1(w1)| = |y(v1)− y(w1)|

= |
∫ v1

w1

f(y(s)) ds|

≤ |
∫ v1

w1

f(M∗(T )) ds|

≤ f(M∗(T ))|v1 − w1|

as f is non-decreasing and so

|g(F−1(v1))− g(F−1(w1))| ≤ cgM∗(T )f(M∗(T ))|v1 − w1|

=: κ2(T )|v1 − w1|. (6.5.18)
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For the third term in (6.5.13), F−1
∆ (v2), F−1(v2) ≤M∗(T ) so

|f(F−1
∆ (v2))− f(F−1(v2))| ≤ cfM∗(T )|F

−1
∆ (v2)− F−1(v2)| = cfM∗(T )

(
F−1(v2)− F−1

∆ (v2)
)

since F−1 − F−1
∆ is always positive. Now if v2 ≤ ∆/f(ξ),

F−1(v2)− F−1
∆ (v2) ≤ F−1(v2)− F−1

∆ (0) = F−1(v2)− F−1(0) ≤ ∆

f(ξ)
f(M∗(T )).

If v2 > ∆/f(ξ), by (6.2.4d)

F−1(v2)− F−1
∆ (v2) ≤ F−1(v2)− F−1(v2 −∆/f(ξ)) ≤ ∆

f(ξ)
f(M∗(T )).

Combining both cases we have

|f(F−1
∆ (v2))− f(F−1(v2))| ≤ cfM∗(T )

∆

f(ξ)
f(M∗(T )) =

∆

f(ξ)
κ1(T ). (6.5.19)

Analogously for the fourth term,

|g(F−1(w1))− g(F−1
∆ (w1))| ≤ cgM∗(T )

∆

f(ξ)
f(M∗(T )) =

∆

f(ξ)
κ2(T ). (6.5.20)

Next noting that f(F−1(v2)), f(F−1(v2)) ≥ f(ξ), 1/[f(F−1(v2))f(F−1(v2))] ≤ 1/f2(ξ).

Therefore using this and inserting (6.5.17), (6.5.18), (6.5.19) and (6.5.20) into (6.5.13) we

have

%(v1, v2)− %∆(w1, w2) ≤ 1

f2(ξ)

(
g(M∗(T ))κ1(T )

[
∆

f(ξ)
|w2 − v2|

]
+ f(M∗(T ))κ2(T )

[
∆

f(ξ)
|v1 − w1|

])
. (6.5.21)

Putting this into (6.5.12) yields

sup
t∈[0,T ]

|z(t)− Z̄∆(t)| ≤ ∆/f(ξ) +

∫ T

0

1

f2(ξ)

(
g(M∗(T ))κ1(T )

[
∆

f(ξ)
|Z∆(s)− z(s)|

]
+ f(M∗(T ))κ2(T )

[
∆

f(ξ)
|z(s− τ)− Z∆(s− τ)|

])
.

Now |z(t)− Z∆(t)| ≤ |z(t)− Z̄∆(t)|+ |Z̄∆(t)− Z∆(t)| for all t ≥ τ , thus

sup
t∈[0,T ]

|z(t)− Z̄∆(t)| ≤ ∆/f(ξ) + κ3(T )

∫ T

0

(
|z(s)− Z̄∆(s)|+ |Z̄∆(s)− Z∆(s)|

)
ds

+ κ4(T )

∫ T

0

(
|z(s− τ)− Z̄∆(s− τ)|+ |Z̄∆(s− τ)− Z∆(s− τ)|

)
ds (6.5.22)
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with κ3(T ) := 1
f3(ξ)

g(M∗(T ))κ1(T ) and κ4(T ) := 1
f3(ξ)

f(M∗(T ))κ2(T ).

Now given s ∈ [0, T ], note n(s)h∆ ≤ s < (n(s) + 1)h∆. Thus

|Z̄∆(s)− Z∆(s)| =

∣∣∣∣∣
∫ s

n(s)h∆

%∆(Z∆(u− τ), Z∆(u)) du

∣∣∣∣∣
≤ (s− n(s)h∆)|%∆(zn−N∆

(∆), zn(∆))|

= (s− n(s)h∆)

(
1 +

g(F−1
∆ (zn−N∆

(∆)))

f(F−1
∆ (zn(∆)))

)

< h∆

(
1 +

g(M∗(T ))

f(ψ(0))

)
.

and so ∫ T

0
|Z̄∆(s)− Z∆(s)| ds ≤ h∆T

(
1 +

g(M∗(T ))

f(ψ(0))

)
=: h∆κ5(T ). (6.5.23)

Next, ∫ T

0
|Z̄∆(s− τ)− Z∆(s− τ)| ds ≤

∫ T−τ

−τ
|Z̄∆(s)− Z∆(s)| ds

For T − τ < 0, there exists t ∈ [−τ,−h∆] such that n(t)h∆ ≤ T − τ < (n(t) + 1)h∆. Thus

∫ T−τ

−τ
|Z̄∆(s)− Z∆(s)| ds =

n(t)−1∑
j=−N∆

∫ (j+1)h∆

jh∆

|Z̄∆(s)− Z∆(s)| ds

+

∫ T−τ

n(t)h∆

|Z̄∆(s)− Z∆(s)| ds

=

n(t)−1∑
j=−N∆

∫ (j+1)h∆

jh∆

|F∆(ψ(s))− F∆(ψ(jh∆))| ds

+

∫ T−τ

n(t)h∆

|F∆(ψ(s))− F∆(ψ(n(t)h∆))| ds.

Now using (6.2.3), (F∆)′ (t) = 1/
(
F−1

∆

)′
(F∆(t)) ≤ 1/f(ξ), so

|F∆(ψ(s))− F∆(ψ(jh∆))| ≤ 1/f(ξ)|ψ(s)− ψ(jh∆)|

≤ 1/f(ξ) sup
0≤s−jh∆≤h∆

|ψ(s)− ψ(jh∆)|

≤ 1/f(ξ) sup
s,u∈[−τ,0]:0≤s−u≤h∆

|ψ(s)− ψ(jh∆)|

= 1/f(ξ)ωψ(h∆)
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where ωψ is a modulus of continuity of the continuous function ψ. Thus

∫ T

0
|Z̄∆(s− τ)− Z∆(s− τ)| ds ≤

n(t)−1∑
j=−N∆

h∆

f(ξ)
ωψ(h∆) +

h∆

f(ξ)
ωψ(h∆)

≤
−1∑

j=−N∆

h∆

f(ξ)
ωψ(h∆) = N∆

h∆

f(ξ)
ωψ(h∆)

=
τ

f(ξ)
ωψ(h∆), (6.5.24)

and this bound also holds for T − τ = 0 since
∫ 0
−h∆
|F∆(ψ(s)) − F∆(ψ(n(t)h∆))| ds ≤

h∆
f(ξ)ωψ(h∆). Therefore for T − τ ≥ 0,∫ T

0
|Z̄∆(s− τ)− Z∆(s− τ)| =

∫ 0

−τ
|Z̄∆(s)− Z∆(s)| ds+

∫ T−τ

0
|Z̄∆(s)− Z∆(s)| ds

≤ τ

f(ξ)
ωψ(h∆) + h∆(T − τ)κ5(T )

where we have used (6.5.23) at the last step. Combining both cases for T − τ we have∫ T

0
|Z̄∆(s− τ)− Z∆(s− τ)| ≤ τ

f(ξ)
ωψ(h∆) + h∆(T − τ)κ5(T ). (6.5.25)

Thus inserting (6.5.23) and (6.5.25) into (6.5.22) yields

sup
t∈[0,T ]

|z(t)− Z̄∆(t)| ≤ ∆/f(ξ) + h∆κ6(T ) + ωψ(h∆)κ7(T )

+ κ3(T )

∫ T

0
|z(s)− Z̄∆(s)|+ κ4(T )

∫ T

0
|z(s− τ)− Z̄∆(s− τ)|. (6.5.26)

with κ6(T ) := Tκ3(T )κ5(T ) + (T − τ)κ5(T ) and κ7(T ) := κ4(T ) τ
f(ξ) . Now, let e∗(s) :=

sup−τ≤t≤s |z(t)− Z̄∆(t)| and note that

e∗(T ) = sup
−τ≤t≤T

|z(t)− Z̄∆(t)|

= max

(
sup

−τ≤t≤ 0
|z(t)− Z̄∆(t)|, sup

0≤t≤ T
|z(t)− Z̄∆(t)|

)

= max

(
0, sup

0≤t≤ T
|z(t)− Z̄∆(t)|

)

= sup
0≤t≤ T

|z(t)− Z̄∆(t)|.

Therefore

e∗(T ) ≤ ∆/f(ξ)h∆κ6(T ) + ωψ(h∆)κ7(T ) + (κ3(T ) + κ4(T ))

∫ T

0
e∗(s) ds
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and so by Gronwall’s inequality

sup
0≤t≤ T

|z(t)− Z̄∆(t)| ≤ ∆/f(ξ) (h∆κ6(T ) + ωψ(h∆)κ7(T )) eT (κ3(T )+κ4(T ))

Now since h∆ ≤ ∆ and ωψ is nondecreasing.

sup
0≤t≤ T

|z(t)− Z̄∆(t)| ≤ ∆/f(ξ) (∆κ6(T ) + ωψ(∆)κ7(T )) eT (κ3(T )+κ4(T )).

Now note that for all t ≥ 0

|F (x(t))− F (x̄∆(t))| = F ′(ζ(t))|x(t)− x̄∆(t)|,

=
1

f(ζ(t))
|x(t)− x̄∆(t)|, ζ(t) ∈ [x(t), x̄∆(t)].

Thus

|x(t)− x̄∆(t)| = f(ζ(t))|F (x(t))− F (x̄∆(t))|

≤ sup
0≤x≤F (M∗(T ))

f(x)|F (x(t))− F (x̄∆(t))|.

Now since for t ≥ 0

|F (x(t))− F (x̄∆(t))| ≤ |F (x(t))− F∆(x̄∆(t))|+ |F∆(x̄∆(t))− F (x̄∆(t))|,

and using (6.2.4a),

sup
0≤t≤ T

|x(t)− x̄∆(t)| ≤ sup
0≤t≤ T

|z(t)− Z̄∆(t)|+ ∆/f(ξ)

≤ ∆/f(ξ) (∆κ6(T ) + ωψ(∆)κ7(T )) eT (κ3(T )+κ4(T )) + ∆/f(ξ)

Since ωψ is a modulus of continuity of ψ, limδ→0 ωψ(δ) = 0. Taking limits as ∆→ 0 yields

(6.4.1).
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Delay-Dominated Equations

7.1 Introduction

In Chapter 5, we explored the necessary and sufficient conditions for the unique solution x

to the delay differential equation (0.1.6) to grow at a rate characterised by the function F

given by (1.2.4). Roughly speaking, we were able to ascertain that as g increased in relative

asymptotic terms compared to fτ , the rate of growth of x departed from that of (5.2.1).

However because those results considered cases where g grew at a rate asymptotically

equivalent to some fθ where θ > τ , the rate of growth was still determined by F̄ , albeit

with a non-unit normalising constant. It is therefore natural to consider the critical relative

nonlinearity in g at which the solution to (0.1.6) no longer grows at a rate characterised

by the instantaneous component of the equation. We will refer to such equations as being

“delay-dominated”.

Our results recover and extend Chapter 1 in a number of directions. In Section 7.2,

we give general theorems on the growth rate of x in which the delay term in some sense

asymptotically dominates the instantaneous term. In these general theorems the sufficient

conditions which describe this dominance, as well as the rate of growth of solutions,

depend on the existence of an auxiliary function φ obeying certain asymptotic properties:

we do not attempt, in our general results, to demonstrate that such a function exists,

nor do we indicate how it might be constructed. However, in Section 7.2.1, we give some

representative examples for which the auxiliary function can be found, and the exact

asymptotic behaviour determined. The general theorems are obtained by employing a

constructive comparison principle (see [2, 7], for example).

Statements and discussion of the main results, as well as examples, are given in Sec-

tion 7.2, while proofs are deferred to Section 7.3. Specific examples are featured in Sec-

tion 7.2.2.
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7.2 General Comparison Results

Before we state our main results, we first introduce some auxiliary functions. Suppose

that φ : (ψ∗,∞)→ (0,∞) is continuous, and define

Γ(x) =

∫ x

ψ∗

1

φ(u)
du, x > ψ∗. (7.2.1)

Suppose that

lim
x→∞

Γ(x) = +∞. (7.2.2)

Define also for c > 0 the function Γc given by

Γc(x) =
1

c
Γ(x), x > ψ∗. (7.2.3)

In our first main result, we claim that if f is asymptotically dominated by the delayed

term, then the solution of (0.1.6) behaves according to the ordinary differential equation

z′(t) = φ(z(t)).

Theorem 7.2.1. Suppose that f obeys (0.1.7) and (1.1.1). Let g be non–decreasing and

obey (0.1.8) and let τ > 0 and ψ obey (0.1.9). Suppose that there exists a continuous

function φ such that Γ, Γc are defined by (7.2.1) and (7.2.3) respectively, and that Γ obeys

(7.2.2). Suppose also that

lim
ε→0+

η(ε) = η, (7.2.4)

and suppose that

lim
x→∞

f(x)

φ(x)
= 0, (7.2.5)

lim sup
x→∞

g(x)

φ(Γ−1
η(ε)(Γη(ε)(x) + τ))

= η̄ε ∈ [0,∞) for every ε ∈ (0, 1), (7.2.6)

where

sup
ε∈(0,1)

η̄ε =: η̄ < η. (7.2.7)

If x is the unique continuous solution of (0.1.6), then

lim sup
t→∞

Γ(x(t))

t
≤ η. (7.2.8)

This offers an improvement on Theorem 2.2 of Appleby, McCarthy and Rodkina [4]. In

that theorem the condition

lim
x→∞

f(x)

g(Γ−1
η(ε)(Γη(ε)(x)− τ))

= 0, for every ε ∈ (0, 1) (7.2.9)
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is relaxed. In later examples we show that this enables asymptotic estimates to be extended

to a wider class of problems.

We comment briefly on Theorem 7.2.1 and its hypotheses. First, the existence of a

function φ obeying (7.2.6) and (7.2.9) is not assured by the theorem; the existence or

construction of such a function must be achieved independently. However, (7.2.6) describes

an asymptotic relationship between φ and g only, and this is what identifies candidates

for φ. In Section 7.2.1, we give examples of the function g for which a suitable φ can

be chosen. The condition (7.2.9) characterises the fact that the instantaneous term f is

dominated by the delayed term.

We now state a corresponding result which enables us to determine a lower bound on

the rate of growth of solutions. It appeared as Theorem 2.3 in [4].

Theorem 7.2.2. Suppose that f obeys (0.1.7) and (1.1.1). Let g be non–decreasing and

obey (0.1.8) and let τ > 0 and ψ obey (0.1.9). Suppose that there exists a continuous

function φ such that Γ, Γc are defined by (7.2.1) and (7.2.3) respectively, and Γ obeys

(7.2.2). Suppose also that

lim
ε→0+

µ(ε) = µ, (7.2.10)

and that g and φ obey

lim inf
x→∞

g(x)

φ(Γ−1
µ(ε)(Γµ(ε)(x) + τ(1− ε)))

= µ̄ε ∈ (0,∞] for every ε ∈ (0, 1), (7.2.11)

where

inf
ε∈(0,1)

µ̄ε =: µ̄ > µ. (7.2.12)

If x is the unique continuous solution of (0.1.6), then

lim inf
t→∞

Γ(x(t))

t
≥ µ. (7.2.13)

As in Theorem 7.2.1, in which the condition (7.2.6) determines a relationship between

φ and g, in Theorem 7.2.2 there is a corresponding and closely related condition (7.2.11)

which describes the relationship between g and φ.

Contingent on other hypotheses being satisfied, we notice that the lower bound (7.2.13)

and the upper bound (7.2.8) incorporate the same function Γ. Therefore, under certain

conditions we may combine Theorems 7.2.1 and 7.2.2 to arrive at the exact asymptotic

behaviour of x. This is the subject of the next result, which improves on a result in [4].
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Theorem 7.2.3. Suppose f obeys (0.1.7)) and (1.1.1). Let g be non–decreasing and obey

(0.1.8)) and let τ > 0 and ψ obey (0.1.9). Suppose that there exists a continuous function

φ such that Γ, Γc are defined by (7.2.1) and (7.2.3), and that Γ obeys (7.2.2). Suppose

also that there is η > 0 such that µ(ε) → η and η(ε) → η as ε → 0 and that f , g, and φ

obey (7.2.5), (7.2.6) and (7.2.11), where

sup
ε∈(0,1)

η̄ε =: η̄ < η, inf
ε∈(0,1)

µ̄ε =: µ̄ > η. (7.2.14)

If x is the unique continuous solution of (0.1.6), then

lim
t→∞

Γ(x(t))

t
= η. (7.2.15)

Provided that a function φ can be found so that all the hypotheses of Theorem 7.2.3 are

satisfied, the conclusion of Theorem 7.2.3 (viz., (7.2.15)) which describes an exact rate of

growth, is sharp.

7.2.1 Application to regularly varying equations

We consider some cases in which the unknown auxiliary function φ (and therefore Γ) in

Theorems 7.2.1–7.2.3 can be constructed explicitly in terms of g. First we consider the

case where g is in RV∞(β) for β ≤ 1 and g(x)/x→ 0 as x→∞.

Theorem 7.2.4. Let f obey (0.1.7), (1.1.1). Let g obey (0.1.8) be non-decreasing and let

τ > 0 and ψ ∈ C([−τ, 0]; (0,∞)). Suppose g ∈ RV∞(β) for some β ≤ 1, limx→∞ g(x)/x =

0, and limx→∞ f(x)/g(x) = 0. If x is the unique continuous solution of (0.1.6), then

lim
t→∞

G(x(t))

t
= 1 (7.2.16)

where G is defined by (1.2.7). This result is proven using Theorems 7.2.1 and 7.2.2; it

recovers part (ii) of Theorem 1.2.1. Next we consider the case where g is in RV∞(1) but

in which g(x)/x→∞ as x→∞, and use Theorem 7.2.3 to determine the growth rate.

Theorem 7.2.5. Let f obey (0.1.7), (1.1.1). Let g obey (0.1.8) and be non-decreasing.

Let τ > 0 and ψ obey (0.1.9). Suppose g ∈ RV∞(1), x 7→ g(x)/x is asymptotic to a

non-decreasing function, limx→∞ g(x)/x =∞, and

lim
x→∞

f(x)

x log(g(x)/x)
= 0. (7.2.17)
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Define

L(x) =

∫ x

1

1

u log(1 + g(u)/u)
du, x > 1. (7.2.18)

Then the unique continuous solution x of (0.1.6) obeys

lim
t→∞

L(x(t))

t
=

1

τ
. (7.2.19)

With a slightly stronger hypothesis on f we can obtain the same conclusion on the

growth rate, but by an alternative proof.

Theorem 7.2.6. Let f obey (0.1.7), (1.1.1). Let g obey (0.1.8) and be non-decreasing.

Let τ > 0 and ψ obey (0.1.9). Suppose g ∈ RV∞(1), x 7→ g(x)/x is asymptotic to a

non-decreasing function, limx→∞ g(x)/x =∞, and limx→∞ f(x)/x = 0. Then the unique

continuous solution x of (0.1.6) obeys

lim
t→∞

L(x(t))

t
=

1

τ
. (7.2.20)

The case where g grows according to g ∈ RV∞(β) for some β ≤ 1 with g(x)/x tending

to a zero limit is covered by Theorem 7.2.4. The proof of Theorem 7.2.6 is facilitated

by Lemma 1.2.1, which also motivates the choice of φ in Theorem 7.2.5. If g(x)/x tends

to a finite non-zero limit, we are in the standard linear case, but even this is recovered

independently of the standard linear theory by applying Theorems 7.2.1 and 7.2.2.

Theorem 7.2.7. Let C > 0, τ > 0 and suppose that ψ obeys (0.1.9). Let x be the unique

continuous solution of (0.1.6) with f(x)/x → 0 and g(x)/x → C as x → ∞. Then there

is a unique λ > 0 such that λ = Ce−λτ and x obeys limt→∞ log x(t)/t = λ.

In the case when g has a power-like growth faster which is faster than linear, the rate

of growth can be determined by means of Theorem 7.2.3.

Theorem 7.2.8. Suppose that f obeys (0.1.7) and (1.1.1). Let g obey (0.1.8) be non-

decreasing and let τ > 0 and ψ obey (0.1.9). Suppose also that there exists β > 1 such

that limx→∞ log g(x)/ log x = β and

lim
x→∞

f(x)

x log x
= 0.

Then the unique continuous solution x of (0.1.6) obeys

lim
t→∞

log log x(t)

t
=

log(β)

τ
. (7.2.21)
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7.2.2 Examples

We consider representatives example to which Theorem 7.2.3 can be applied. For simplic-

ity, we set f to be identically zero.

Example 7.2.1. Suppose g obeys (0.1.8)) and is non–decreasing, and there exists C1 > 0

and α ∈ (0, 1) such that limx→∞ g(x)/(x exp((log x)α)) = C1, and f(x) = 0 for all x ≥ 0.

Suppose τ > 0 and ψ obeys (0.1.9)). Then the unique continuous solution x of (0.1.6)

obeys

lim
t→∞

log x(t)

t1/(1−α)
=

(
η(1− α)

τ

)1/(1−α)

(7.2.22)

To see this, we note that g obeys all the properties of Theorem 7.2.5. For x > e let

φ(x) = x(log x)α. Then Γ(x) = (log(x)1−α − 1)/(1 − α). By Theorem 7.2.5 we have

limt→∞ Γ(x(t))/t = 1/τ , which rearranges to give (7.2.22)

We remark that the results can be applied to equations in which g grows more rapidly

than a polynomial function; here again is a representative example, which was considered

without supporting calculations in [4].

Example 7.2.2. Suppose g obeys (0.1.8)) and is non–decreasing, and there exists C1 > 0

and α > 1 such that limx→∞ g(x)/ exp((log x)α) = C1, and f(x) = 0 for all x ≥ 0.

Suppose τ > 0 and ψ obeys (0.1.9)). Then the unique continuous solution x of (0.1.6)

obeys limt→∞ log3 x(t)/t = logα/τ .

To justify Example 7.2.2, set φ(x) = (1 + x) log(1 + x) log2(1 + x) for x > ee − 1. With

ψ∗ := ee − 1, we have Γη(x) = log3(1 + x)/η and with λ = eηθ,

Γ−1
η (Γη(x) + θ) = exp((log(1 + x))λ)− 1.

Therefore we have

lim
x→∞

φ(Γ−1
η (Γη(x) + θ))

exp([log(1 + x)]λ)(log x)λ log2 x
= λ.

Define η(ε) = (1 + ε) logα/τ and µ(ε) = logα/(τ(1− ε)2). Then

lim
x→∞

g(x)

φ(Γ−1
η(ε)(Γη(ε)(x) + τ))

= 0

and

lim
x→∞

g(x)

φ(Γ−1
µ(ε)(Γµ(ε)(x) + τ(1− ε)))

=∞.
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Chapter 7, Section 3 Delay-Dominated Equations

Since η(ε), µ(ε) → logα/τ as ε → ∞, from Theorem 7.2.3 we have limt→∞ Γ(x(t))/t =

logα/τ , from which the result follows.

7.3 Proofs

In this section, we give the proofs of the main results from Section 7.2, with the exception

of Theorem 7.2.6, whose proof is strongly based on that of Theorem 8.2.3. The proofs

of these two results, along with Theorem 8.2.4, are given in Section 8.3 of the following

chapter.

Proof of Theorem 7.2.1 By (7.2.6) for every ε ∈ (0, 1) there exists x2(ε) > 0 such that

for x > x2(ε) we have

g(x) < (η̄ε + ε)φ(Γ−1
η(ε)(Γη(ε)(x) + τ)) ≤ (η̄ + ε)φ(Γ−1

η(ε)(Γη(ε)(x) + τ)),

where the last inequality is a consequence of (7.2.7). Since η̄ < η = limε→0+ η(ε), there

exists ε′ ∈ (0, 1) such that for ε < ε′, we have η(ε) > η̄+ ε. Thus for all ε < ε′ < 1 we have

g(x) < η(ε)φ(Γ−1
η(ε)(Γη(ε)(x) + τ)), x > x2(ε). (7.3.1)

By (7.2.5) for every ε ∈ (0, 1) there exists an x1(ε) > 0 such that

f(x) ≤ εη(ε)φ(x), x > x1(ε). (7.3.2)

Define

c(ε) = Γη(ε)(ψ
∗ + x1(ε) + x2(ε)) + (1 + ε)τ, (7.3.3)

and define also

xε(t) = Γ−1
η(ε)((1 + ε)t+ c(ε)), t ≥ −τ. (7.3.4)

This function is well–defined since c(ε) > Γη(ε)(ψ
∗)+(1+ε)τ , so c(ε)−(1+ε)τ > Γη(ε)(ψ

∗),

or xε(t) > ψ∗ for all t ∈ [−τ, 0]. Since c(ε) > Γη(ε)(x1(ε)) + (1 + ε)τ and Γη(ε) is increasing,

Γ−1
η(ε)(c(ε) − (1 + ε)τ) > x1(ε), so xε(t) > x1(ε) for all t ≥ −τ . Therefore by (7.3.2),

f(xε(t)) ≤ εη(ε)φ(xε(t)). Also for t ≥ 0, we have

g(xε(t− τ)) = g(Γ−1
η(ε)((1 + ε)(t− τ) + c(ε)) = g(Γ−1

η(ε)((1 + ε)t− τ − ετ + c(ε)))

< g(Γ−1
η(ε)((1 + ε)t− τ + c(ε))).
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Now, because c(ε) > Γη(ε)(x2(ε)) + τ , we have that the argument of g on the right-hand

side exceeds x2(ε) for all t ≥ 0. Therefore by (7.3.1), we have

g(xε(t− τ)) < g(Γ−1
η(ε)((1 + ε)t− τ + c(ε)))

< η(ε)φ(Γ−1
η(ε)(Γη(ε)(Γ

−1
η(ε)((1 + ε)t− τ + c(ε))) + τ))

= η(ε)φ(Γ−1
η(ε)((1 + ε)t− τ + c(ε)) + τ)

= η(ε)φ(Γ−1
η(ε)((1 + ε)t+ c(ε)))

= η(ε)φ(xε(t)).

Hence for t ≥ 0

f(xε(t)) + g(xε(t− τ)) < (1 + ε)η(ε)φ(xε(t)). (7.3.5)

Now for t > 0, Γη(ε)(xε(t)) = (1 + ε)t + c(ε), so Γ′η(ε)(xε(t))x
′
ε(t) = (1 + ε), or x′ε(t) =

(1 + ε)η(ε)φ(xε(t)). Hence

x′ε(t) = (1 + ε)η(ε)φ(Γ−1
η(ε)((1 + ε)t+ c(ε))), t > 0. (7.3.6)

Thus by (7.3.5) and (7.3.6) for t > 0 we have x′ε(t) > f(xε(t)) + g(xε(t− τ)).

Now as xε(t) > ψ∗, we have xε(t) > x(t) for t ∈ [−τ, 0] and x′ε(t) > f(xε(t))+g(xε(t−τ))

for t ≥ 0. Suppose that there is a t0 > 0 such that xε(t) > x(t) for t ∈ [−τ, t0) xε(t0) =

x(t0). Therefore x′ε(t0) ≤ x′(t0). Then as g is non–decreasing,

x′ε(t0) ≤ x′(t0) = f(x(t0)) + g(x(t0 − τ))

= f(xε(t0)) + g(x(t0 − τ)) ≤ f(xε(t0)) + g(xε(t0 − τ))

< x′ε(t0),

a contradiction. Thus xε(t) > x(t) for all t ≥ −τ . Hence Γη(ε)(x(t)) < Γη(ε)(xε(t)) for all

t ≥ −τ . Hence

Γη(ε)(x(t)) < Γη(ε)(xε(t)) = (1 + ε)t+ c(ε), t ≥ −τ.

But Γ(x(t)) = η(ε)Γη(ε)(x(t)) < (1 + ε)η(ε)t+ η(ε)c(ε). Therefore

lim sup
t→∞

Γ(x(t))

t
≤ (1 + ε)η(ε).

Since ε > 0 is arbitrary, and η(ε)→ η as ε→ 0, we have (7.2.8).
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Proof of Theorem 7.2.2 Suppose first that µ̄ε is finite. Then by (7.2.11) for every

ε ∈ (0, 1) there exists x3(ε) > 0 such that for x > x3(ε)

g(x) > µ̄ε(1− ε)φ(Γ−1
µ(ε)(Γµ(ε)(x) + τ(1− ε))) ≥ µ̄(1− ε)φ(Γ−1

µ(ε)(Γµ(ε)(x) + τ(1− ε)))

> µ(ε)φ(Γ−1
µ(ε)(Γµ(ε)(x) + τ(1− ε))),

where the penultimate inequality is a consequence of (7.2.12), and the last inequality holds

for all ε < ε′, because for such ε we have µ(ε) < (1 − ε)µ̄. This holds for the following

reason.

By (7.2.10), there exists ε1 ∈ (0, 1) such that ε ∈ (0, ε1) implies −ε < µ(ε)−µ < µε. Since

µ < µ̄, it follows that there exists ε2 ∈ (0, 1) such that ε < ε2 implies µ̄ > (1 + ε)µ/(1− ε).

Hence for all ε < ε′ := ε1 ∧ ε2, we have µ(ε) < µ(1 + ε) < (1− ε)µ̄.

Thus for all 0 < ε < ε′ < 1, and x > x3(ε) we have

g(x) > µ(ε)φ(Γ−1
µ(ε)(Γµ(ε)(x) + τ(1− ε))), x > x3(ε). (7.3.7)

When µ̄ε = +∞, because µ(ε) is finite, (7.3.7) is trivial.

Define y3(ε) = Γµ(ε)(x3(ε)) + τ(1 − ε). Then for y > y3(ε), if we define x = Γ−1
µ(ε)(y −

τ(1− ε)), for x > x3(ε) we have that y > y3(ε). Thus by (7.3.7)

g(Γ−1
µ(ε)(y − τ(1− ε))) > µ(ε)φ(Γ−1

µ(ε)(y)), y > y3(ε). (7.3.8)

Next let T0(ε) = inf{t > 0 : x(t) = x3(ε)} and define T1 > T0 such that (1 − ε)τ +

Γµ(ε)(x(T0(ε))) = Γµ(ε)(x(T1(ε))), or (1− ε)τ + Γµ(ε)(x3(ε))) = Γµ(ε)(x(T1(ε))). Define

xε(t) = Γ−1
µ(ε)((1− ε)(t− T1(ε)) + Γµ(ε)(x(T0(ε))), t ≥ −τ. (7.3.9)

Therefore for t ≥ T1(ε) + τ we have

(1− ε)(t− T1(ε)) + Γµ(ε)(x(T0(ε))) ≥ (1− ε)τ + Γµ(ε)(x(T0(ε))) = Γµ(ε)(x(T1(ε)))

= (1− ε)τ + Γµ(ε)(x3(ε))) = y3(ε).

Setting y = (1− ε)(t− T1(ε)) + Γµ(ε)(x(T0(ε))) in (7.3.8) yields

g(Γ−1
µ(ε)((1− ε)(t− T1 − τ) + Γµ(ε)(x(T0(ε)))))

> µ(ε)φ(Γ−1
µ(ε)((1− ε)(t− T1(ε)) + Γµ(ε)(x(T0(ε)))))

153



Chapter 7, Section 3 Delay-Dominated Equations

for t ≥ T1(ε) + τ . By (7.3.9) we have

g(xε(t− τ)) > µ(ε)φ(xε(t)), t ≥ T1(ε) + τ. (7.3.10)

Therefore by (7.3.10) for t > T1(ε) + τ , Γµ(ε)(xε(t)) = (1− ε)(t− T1(ε)) + Γµ(ε)(x(T0(ε))),

we have

x′ε(t) = (1− ε) 1

Γ′µ(ε)(xε(t))
= (1− ε)µ(ε)φ(xε(t))

< µ(ε)φ(xε(t)) < g(xε(t− τ)) ≤ f(xε(t)) + g(xε(t− τ)).

Now for t ∈ [T1, T1 + τ ] we have

xε(t) ≤ xε(T1 + τ) = Γ−1
µ(ε)((1− ε)τ + Γµ(ε)(x(T0(ε))))

= Γ−1
µ(ε)(Γµ(ε)(x(T1(ε)))) = x(T1(ε)) < x(t),

where we used at the last step the fact that x is increasing on [T1(ε), T1(ε) + τ ] ⊂ [τ,∞).

Finally xε(T1(ε)) < xε(T1(ε) + τ) = x(T1(ε)). Therefore we have xε(t) < x(t) for t ∈

[T1(ε), T1(ε) + τ ], and also x′ε(t) < f(xε(t)) + g(xε(t− τ)) for t ≥ T1 + τ .

Suppose that there is a t1 > T1(ε) + τ such that xε(t) < x(t) for t ∈ [T1(ε), t1) and

xε(t1) = x(t1). Therefore x′ε(t1) ≥ x′(t1). Then as g is non–decreasing,

x′ε(t1) ≥ x′(t1) = f(x(t1)) + g(x(t1 − τ)) = f(xε(t1)) + g(x(t1 − τ))

≥ f(xε(t1)) + g(xε(t1 − τ)) > x′ε(t1),

a contradiction. Thus xε(t) < x(t) for all t ≥ T1. Hence Γµ(ε)(x(t)) > Γµ(ε)(xε(t)) for all

t ≥ T1(ε). Hence

Γµ(ε)(x(t)) > Γµ(ε)(xε(t)) = (1− ε)(t− T1(ε)) + Γµ(ε)(x(T0(ε))), t ≥ T1(ε).

But Γ(x(t)) = µ(ε)Γµ(ε)(x(t)) > (1− ε)µ(ε)t+ µ(ε)Γµ(ε)(x(T0(ε))). Therefore

lim sup
t→∞

Γ(x(t))

t
≥ (1− ε)µ(ε).

Since ε > 0 is arbitrary, and µ(ε)→ µ as ε→ 0, we have (7.2.13).
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Proof of Theorem 7.2.4 Suppose that φ(x) = g(x) for x > 0. Thus Γη(x) =

η−1
∫ x
ψ∗ du/g(u). Let z(t) = Γ−1

η (t) for t ≥ 0. Then z′(t) = ηg(z(t)) for t > 0 with

z(0) = ψ∗. Thus z′(t)/z(t)→ 0 as t→∞. Therefore

log

(
z(t)

z(t− θ)

)
=

∫ t

t−θ

z′(s)

z(s)
ds→ 0 as t→∞,

so limt→∞ z(t− θ)/z(t) = 1 for any θ ∈ R. Since g ∈ RV∞(β), we have

lim
t→∞

g(z(t− θ))/g(z(t)) = 1.

Hence limt→∞ g(Γ−1
η (t− θ))/g(Γ−1

η (t)) = 1. Since Γ−1
η (t)→∞ as t→∞, we have

lim
x→∞

g(x)

φ(Γ−1
η (Γη(x) + θ))

= lim
x→∞

g(x)

g(Γ−1
η (Γη(x) + θ))

= 1. (7.3.11)

Since this holds for every η > 0 and θ ∈ R it follows that (7.2.6) and (7.2.11) hold with

η̄ε = µ̄ε = 1. Let ρ ∈ (0, 1). Define µ(ε) = 1 − ρ and η(ε) = 1 + ρ. Then with η = 1 + ρ

and µ = 1− ρ, (7.2.4), (7.2.10), (7.2.7) and (7.2.12) hold. To prove (7.2.5), we note that

lim
x→∞

f(x)

φ(x)
= lim

x→∞

f(x)

g(x)
= 0.

Since all the hypotheses of Theorems 7.2.1 and 7.2.2 hold, we have

lim sup
t→∞

Γ(x(t))

t
≤ 1 + ρ, and lim inf

t→∞

Γ(x(t))

t
≥ 1− ρ.

Letting ρ→ 0, we have limt→∞ Γ(x(t))/t = 1, whence the result.

Proof of Theorem 7.2.5 Before starting, we obtain a preparatory result for use in the

proof.

Lemma 7.3.1. Let c > 0 and suppose z ∈ C1((0,∞); (0,∞)) obeys

lim
t→∞

z′(t)

z(t)
= 0.

Then

max
r∈[0,c]

∣∣∣∣z(t− r)z(t)
− 1

∣∣∣∣ = 0. (7.3.12)

Proof. Since z′(t)/z(t)→ 0 as t→∞, for every ε > 0 there exists T (ε) > 0 such that

−ε < z′(t)

z(t)
< ε, t > T (ε).
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Let r ∈ [0, c] and suppose t ≥ T (ε) + c. Then

−εr <
∫ r

t−r

z′(s)

z(s)
ds < εr,

and so

e−εr ≤ z(t− r)
z(t)

≤ eεr.

Therefore −(1− e−εr) ≤ z(t− r)/z(t)− 1 ≤ eεr − 1 for t ≥ T (ε) + c. Thus

max
r∈[0,c]

∣∣∣∣z(t− r)z(t)
− 1

∣∣∣∣ ≤ max
r∈[0,c]

(eεr − 1, 1− e−εr)

= max(eεc − 1, 1− e−εc).

Letting ε→ 0 obtains (7.3.12).

Now to prove (7.2.19). Since g ∈ RV∞(1), it follows that there exists an increasing and

continuously differentiable function δ : [ψ∗,∞)→ (0,∞) with δ(ψ∗) > eψ∗ such that

lim
x→∞

δ(x)

g(x)
= 1, and lim

x→∞

xδ′(x)

δ(x)
= 1.

Define φ(x) = x log(δ(x)/x) for x ≥ ψ∗. Recall Γ(x) =
∫ x
ψ∗ du/φ(u) for x ≥ ψ∗. Since

(g(x)/x)/(δ(x)/x) → 1 as x → ∞, we have log(g(x)/x)/ log(δ(x)/x) → 1 as x → ∞.

Therefore by L’Hôpital’s rule, we have

lim
x→∞

Γ(x)

L(x)
= 1.

Define Γη(x) = Γ(x)/η and δ1(x) = δ(x)/x for x ≥ ψ∗. Since xδ′(x)/δ(x) → 1 as

x → ∞, we have that δ1 is continuously differentiable and xδ′1(x)/δ1(x) → 0 as x → ∞.

Define y(t) = Γ−1
η (t) for t ≥ 0 and u(t) = log δ1(y(t)). Then

y′(t) = ηφ(y(t)) = ηy(t) log δ1(y(t)) = ηy(t)u(t).

Moreover since Γη(x)→∞ as x→∞, we have that y(t)→∞ as t→∞. Thus

lim
x→∞

g(x)

φ(Γ−1
η (Γη(x) + θ))

= lim
x→∞

δ(x)

φ(Γ−1
η (Γη(x) + θ))

= lim
t→∞

δ(Γ−1
η (t− θ))

Γ−1
η (t) log(δ(Γ−1

η (t))/Γ−1
η (t))

,

and therefore we have

lim
x→∞

g(x)

φ(Γ−1
η (Γη(x) + θ))

= lim
t→∞

y(t− θ)δ1(y(t− θ))
y(t) log δ1(y(t))

.
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Since log(y(t)/y(t− θ)) =
∫ t
t−θ y

′(s)/y(s) ds =
∫ t
t−θ ηu(s) ds. Hence

log

(
lim
x→∞

g(x)

φ(Γ−1
η (Γη(x) + θ))

)
= lim

t→∞
{− log(y(t)/y(t− θ)) + u(t− θ)− log u(t)}

= lim
t→∞

u(t)

{
−η 1

u(t)

∫ t

t−θ
u(s) ds+

u(t− θ)
u(t)

− log u(t)

u(t)

}
.

Since δ1, y are continuously differentiable, so is u, and we have

u′(t) = δ′1(y(t))y′(t)/δ1(y(t)) = ηu(t) · y(t)δ′1(y(t))/δ1(y(t)).

Since xδ′1(x)/δ1(x) → 0 as x → ∞ and y(t) → ∞ as t → ∞, we have u′(t)/u(t) → 0 as

t→∞. Now note∫ t

t−θ
u(s) ds/u(t)− θ =

∫ θ

0
u(t− r)/u(t) dr − θ =

∫ θ

0
(u(t− r)/u(t)− 1) dr.

By Lemma 7.3.1,

lim sup
t→∞

∣∣∣∣∫ t

t−θ
u(s) ds/u(t)− θ

∣∣∣∣ ≤ lim sup
t→∞

max
r∈[0,θ]

|u(t− r)/u(t)− 1| = 0.

Thus
∫ t
t−θ u(s) ds/u(t) → θ and moreover u(t − θ)/u(t) → 1 as t → ∞. Also we have

u(t)→∞ as t→∞ and so

lim
t→∞

{
−η 1

u(t)

∫ t

t−θ
u(s) ds+

u(t− θ)
u(t)

− log u(t)

u(t)

}
= 1− ηθ.

Therefore we have

log

(
lim
x→∞

g(x)

φ(Γ−1
η (Γη(x) + θ))

)
=

 −∞ if 1− ηθ < 0

+∞ if 1− ηθ > 0.

Therefore, with η(ε) = (1 + ε)/τ and µ(ε) = (1− ε)/τ , we have

lim
x→∞

g(x)

φ(Γ−1
η(ε)(Γη(ε)(x) + τ))

= 0, lim
x→∞

g(x)

φ(Γ−1
µ(ε)(Γµ(ε)(x) + τ(1− ε)))

=∞.

Since µ(ε), η(ε)→ 1/τ as ε→ 0, and we have η̄ε = 0 =: η̄ < 1/τ and µ̄ε = +∞ =: µ̄ > 1/τ .

Next, note that (7.2.17) implies

lim
x→∞

f(x)

φ(x)
= lim

x→∞

f(x)

x log(δ(x)/x)
= lim

x→∞

f(x)

x log(g(x)/x)
= 0.

Therefore by Theorem 7.2.3, we have limt→∞ Γ(x(t))/t = 1/τ , and due to the fact that

limx→∞ L(x)/Γ(x) = 1, we get limt→∞ L(x(t))/t = 1/τ , as required.
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Proof of Theorem 7.2.7 Set φ(x) = x for x ≥ ψ∗. Then Γη(x) = η−1 log(x/ψ∗),

Γ−1
η (x) = ψ∗eηx, and φ(Γ−1

η (Γη(x) + θ)) = xeηθ. Thus

lim
x→∞

g(x)

φ(Γ−1
η (Γη(x) + θ))

= Ce−ηθ.

Define c(ν) := ν −Ce−ντ . Then c is increasing on [0,∞) and there is a unique λ > 0 such

that c(λ) = 0, or λ = Ce−λτ . Let σ ∈ R and λσ := λ(1 + σ). For σ > 0, c(λσ) > 0 or

λσ > Ce−λστ . Similarly, λ−σ < Ce−λ−στ . Define η(ε) = λσ(1 + ε). Then η(ε) → λσ =: η

as ε→ 0. Also

lim
x→∞

g(x)

φ(Γ−1
η(ε)(Γη(ε)(x) + τ))

= Ce−λσ(1+ε)τ =: η̄ε.

Then supε∈(0,1) η̄ε = Ce−λστ =: η̄. But η̄ = Ce−λστ < λσ = η. Finally, f(x)/φ(x) =

f(x)/x→ 0 as x→∞, and so by Theorem 7.2.1,

lim sup
t→∞

Γ(x(t))

t
≤ λσ,

or

lim sup
t→∞

log x(t)

t
≤ λ(1 + σ).

Letting σ ↓ 0 yields lim supt→∞ log x(t)/t ≤ λ.

Define µ(ε) = λ−σ(1− ε). Then limε→0 µ(ε) = λ−σ =: µ. Also

lim
x→∞

g(x)

φ(Γ−1
µ(ε)(Γµ(ε)(x) + τ(1− ε)))

= Ce−λ−σ(1−ε)τ =: µ̄ε.

Then infε∈(0,1) µ̄ε = Ce−λ−στ =: µ̄. But µ̄ = Ce−λ−στ > λ−σ = µ. Thus by Theorem 7.2.2,

lim inf
t→∞

Γ(x(t))

t
≥ λ−σ,

or

lim inf
t→∞

log x(t)

t
≥ λ(1− σ).

Letting σ ↓ 0 yields lim inft→∞ log x(t)/t ≥ λ, whence the result.

Proof of Theorem 7.2.8 Define φ(x) = (1 + x) log(1 + x) for x ≥ ψ∗. Hence for η > 0

we have

Γη(x) =
1

η
log

(
log(1 + x)

log(1 + ψ∗)

)
, Γ−1

η (x) = exp (log(1 + ψ∗)eηx)− 1.
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Thus φ(Γ−1
η (Γη(x) + θ)) = eηθ(1 +x)e

ηθ
log(1 +x). Also Γ−1

η (Γη(x)− τ) = (1 +x)e
−ητ − 1.

Therefore

lim
x→∞

g(x)

φ(Γ−1
η (Γη(x) + θ))

= e−ηθ lim
x→∞

g(x)

(1 + x)eηθ log(1 + x)
,

lim
x→∞

f(x)

g(Γ−1
η (Γη(x)− τ))

= lim
x→∞

f(x)

g((1 + x)e−ητ − 1)
.

Next, η(ε) := ε+ log(β)/τ . Then limε→0 η(ε) = log(β)/τ =: η, and so

lim
x→∞

g(x)

φ(Γ−1
η(ε)(Γη(ε)(x) + τ))

= 0.

Therefore η̄ε = 0, so η̄ = 0 < log(β)/τ = η. Next, as f(x)/(x log x) → 0 as x → ∞, we

have

lim
x→∞

f(x)

φ(x)
=

f(x)

(1 + x) log(1 + x)
= 0.

By Theorem 7.2.1,

lim sup
t→∞

Γ(x(t))/t ≤ η,

or equivalently lim supt→∞ log log x(t)/t ≤ log(β)/τ . We now obtain a lower bound. Define

µ(ε) = log(β)/τ for ε > 0. Then

lim
x→∞

g(x)

φ(Γ−1
µ(ε)(Γµ(ε)(x) + τ(1− ε)))

= β−(1−ε) lim
x→∞

g(x)

(1 + x)β1−ε log(1 + x)
.

Therefore

lim
x→∞

g(x)

φ(Γ−1
µ(ε)(Γµ(ε)(x) + τ(1− ε)))

=∞,

so µ̄ε = +∞ = µ̄ > µ = log(β)/τ . By Theorem 7.2.2, lim inft→∞ Γ(x(t))/t ≥ µ, or

lim inft→∞ log log x(t)/t ≥ log β/τ , which proves (7.2.21).
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Chapter 8

Uniform Numerics and Delay-Dominated

Equations

8.1 Introduction

In this chapter, we look to obtain discrete–time results analogous to those that were

demonstrated in Chapter 7 for the delay-dominated continuous–time equation (0.1.6). We

showed in Chapters 1, 4 and 6 that for instantaneously-dominated equations, it is the

nonlinearity of f that determines a suitable numerical method for replicating the growth

rate. If f grows sublinearly, a uniform Euler scheme will recover the correct rate, whereas

if f grows superlinearly we must apply a state–dependent discretisation to recover the

instantaneously-dominated rate of growth.

For delay-dominated equations however, a uniform method will determine the correct

rate irrespective of the degree of nonlinearity in the delay coefficient. This is very much

in contrast to the instantaneously-dominated case. As a consequence of this, two different

equations which have the same rates of growth may require different numerical methods

to replicate this rate. We illustrate this in Section 8.2.2 using a representative example.

Section 8.2 shows that the rate of growth of the delay-dominated equation (0.1.6) is

preserved under a uniform discretisation and the application of these results for regularly

varying equations are demonstrated in Section 8.2.1.

8.2 Preservation of Growth Rates under a Uniform Dis-

cretisation

Let N ∈ N, and suppose that h = τ/N . Consider the discretisation of (0.1.6) according

to (1.1.2) and its related continuous–time extension given by (1.2.13).

Theorem 8.2.1. Suppose that f obeys (0.1.7) and (1.1.1). Let g be non-decreasing and

obey (0.1.8) and let τ > 0 and ψ obey (0.1.9). Suppose that there exists a continuous
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function φ such that Γ, Γc are defined by (7.2.1) and (7.2.3) respectively, and that Γ obeys

(7.2.2). Suppose also that (7.2.4) holds and f obeys (7.2.5), and that g and φ obey (7.2.6)

where η̄ε obeys (7.2.7). Suppose finally that φ and f are non-decreasing. If xn(h) is the

unique solution of (1.1.2), then it obeys

lim sup
n→∞

Γ(xn(h))

nh
≤ η. (8.2.1)

Theorem 8.2.2. Suppose that f obeys (0.1.7) and (1.1.1). Let g be non-decreasing and

obey (0.1.8) and let τ > 0 and ψ ∈ C([−τ, 0]; (0,∞)). Suppose that there exists a continu-

ous function φ such that Γ, Γc are defined by (7.2.1) and (7.2.3) respectively, and Γ obeys

(7.2.2). Suppose also that (7.2.10) holds and that g and φ obey

lim inf
x→∞

g(x)

φ(Γ−1
µ(ε)(Γµ(ε)(x) + (τ + h)(1− ε)))

= µ̄ε ∈ (0,∞] for every ε ∈ (0, 1), (8.2.2)

where (7.2.12) also holds. If xn(h) is the unique solution of (1.1.2), then

lim inf
n→∞

Γ(xn(h))

nh
≥ µ. (8.2.3)

8.2.1 Preservation of growth rate for regularly varying equations

In Chapter 1, it was shown that the uniform Euler scheme (1.1.2) and the continuous

time extension (1.2.13) preserve the rate of growth of the underlying continuous equation

(0.1.6) in the case when g is in RV∞(β) for β ≤ 1, and g is sublinear (cf. Theorems 1.2.2

and 1.2.3)

We now demonstrate that for superlinear equations the essential growth rate is preserved

for all h > 0, and that the exact rate of growth is recovered in the limit as h → 0+, in a

sense now made precise. We first consider the discrete analogue of Theorem 7.2.6.

Theorem 8.2.3. Let f obey (0.1.7), (1.1.1). Let g obey (0.1.8). Let τ > 0 and ψ obey

(0.1.9). Suppose g ∈ RV∞(1), x 7→ g(x)/x is asymptotic to a non-decreasing function,

limx→∞ g(x)/x =∞, and limx→∞ f(x)/x = 0. If L is defined by (7.2.18), then the unique

solution xn(h) of (1.1.2) obeys

lim
n→∞

L(xn(h))

nh
=

1

τ + h
. (8.2.4)

Moreover, if x̄h is the linear interpolant given by (1.2.13), then

lim
t→∞

L(x̄h(t))

t
=

1

τ + h
. (8.2.5)
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By comparing (7.2.19) and (8.2.5), it can be seen that the essential growth rate is

recovered by the linear interpolant for all h > 0, and the exact rate is recovered in the

limit as h→ 0+.

The rate of growth is also recovered in the same manner in the case when g grows

polynomially at a superlinear rate, as confirmed by the following discrete analogue of

Theorem 7.2.8.

Theorem 8.2.4. Let f obey (0.1.7), (1.1.1). Let g obey (0.1.8). Let τ > 0 and ψ obey

(0.1.9). Suppose that there exists β > 1 such that g obeys

lim
x→∞

log g(x)

log x
= β,

and limx→∞ f(x)/x = 0. Then the unique solution xn(h) of (1.1.2) obeys

lim
n→∞

log2 xn(h)

nh
=

log β

τ + h
. (8.2.6)

Moreover, if x̄h is the linear interpolant given by (1.2.13), then

lim
t→∞

log2 x̄h(t)

t
=

log β

τ + h
. (8.2.7)

Once again, by comparing (7.2.21) and (8.2.7), we see that the essential growth rate is

recovered by the linear interpolant for all h > 0, and the exact rate is recovered in the

limit as h→ 0+.

8.2.2 Delay-dominant numerics: a comparative example

Firstly, consider Example 5.3.3, where it was shown that if τ ∈ (0, log(1/ log(2))), α ∈

(0, 1),

f(x) = (2 + x) log(2 + x)− (2 + x)α, x ≥ 0,

and

g(x) = (x+ 2)αe
τ
, x ≥ 0,

then the unique continuous solution of

x′(t) = f(x(t)) + g(x(t− τ)), t > 0; x(t) = exp(et)− 2 for t ∈ [−τ, 0]

is given by

x(t) = exp(et)− 2, t ≥ −τ.
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This obeys

lim
t→∞

F (x(t))

t
=

log2 x(t)

t
= 1,

that is, x is instantaneously-dominated. We can see that f and g satisfy the conditions

of Theorem 6.3.1, which demonstrated that a state–dependent discretisation was required

to replicate this growth rate, namely

lim
t→∞

F (x̄∆(t))

t
= 1,

where x̄∆ is given by (6.3.6). But now suppose instead that

lim
x→∞

f(x)

x log x
= 0; g(x) = (x+ 2)e

τ
, x ≥ 0.

Note that f is now growing slower than before and g growing faster. Then in accordance

with Theorem 7.2.8 we have

lim
t→∞

log2 x(t)

t
=

log eτ

τ
= 1,

and using Theorem 8.2.4 we have

lim
t→∞

log2 x̄h(t)

t
=

τ

τ + h
,

where x̄h is given by (1.2.13). Once again we see that the essential growth rate is recovered

for all h > 0, and since τ/(τ + h)→ 1 as h→ 0+ the exact rate is recovered in the limit.

This demonstrates an interesting property of delay differential equations. We see that

the discretisation method required to recover the growth rate of the solution is independent

of the growth rate itself. Even an equation which grows at a very rapid rate, for example

x(t) ∼ exp(exp(exp . . . exp(t))), will not require state–dependent numerics to replicate this

rate provided it is the delayed component of the equation which is generating this growth.

8.3 Proofs

In this section, we give the proofs of results from Section 8.2. We also give the proof of

Theorem 7.2.6, which is greatly facilitated by the proof of Theorem 8.2.3.
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Proof of Theorem 8.2.1 By (7.2.6) for every ε ∈ (0, 1) there exists x2(ε) > 0 such that

for x > x2(ε) we have

g(x) < (η̄ε + ε)φ(Γ−1
η(ε)(Γη(ε)(x) + τ)) ≤ (η̄ + ε)φ(Γ−1

η(ε)(Γη(ε)(x) + τ)),

where the last inequality is a consequence of (7.2.7). Since η̄ < η = limε→0+ η(ε), there

exists ε′ ∈ (0, 1) such that for ε < ε′, we have η(ε) > η̄+ ε. Thus for all ε < ε′ < 1 we have

g(x) < η(ε)φ(Γ−1
η(ε)(Γη(ε)(x) + τ)), x > x2(ε). (8.3.1)

By (7.2.5) for every ε ∈ (0, 1) there exists an x1(ε) > 0 such that

f(x) ≤ εη(ε)φ(x), x > x1(ε). (8.3.2)

Define

c(ε) = Γη(ε)(ψ
∗ + x1(ε) + x2(ε)) + (1 + ε)τ, (8.3.3)

and define also

xε(n) = Γ−1
η(ε)((1 + ε)nh+ c(ε)), n ≥ −N. (8.3.4)

This function is well-defined since c(ε) > Γη(ε)(ψ
∗)+(1+ε)τ , so c(ε)−(1+ε)τ > Γη(ε)(ψ

∗),

or xε(n) > ψ∗ for all n ∈ {−N, . . . , 0}. Since c(ε) > Γη(ε)(x1(ε)) + (1 + ε)τ and Γη(ε) is

increasing, Γ−1
η(ε)(c(ε) − (1 + ε)τ) > x1(ε), so xε(n) > x1(ε) for all n ≥ −N . Therefore by

(8.3.2), f(xε(n)) ≤ εη(ε)φ(xε(n)) for n ≥ 0. Also for n ≥ 0, we have

g(xε(n−N)) = g(Γ−1
η(ε)((1 + ε)(n−N)h+ c(ε)))

= g(Γ−1
η(ε)((1 + ε)nh− τ − ετ + c(ε)))

< g(Γ−1
η(ε)((1 + ε)nh− τ + c(ε))).

Now, because c(ε) > Γη(ε)(x2(ε)) + τ , we have that the argument of g on the right-hand

side exceeds x2(ε) for all t ≥ 0. Therefore by (8.3.1), we have

g(xε(n−N)) < g(Γ−1
η(ε)((1 + ε)nh− τ + c(ε)))

< η(ε)φ(Γ−1
η(ε)(Γη(ε)(Γ

−1
η(ε)((1 + ε)nh− τ + c(ε))) + τ))

= η(ε)φ(Γ−1
η(ε)((1 + ε)nh− τ + c(ε)) + τ)

= η(ε)φ(Γ−1
η(ε)((1 + ε)nh+ c(ε)))

= η(ε)φ(xε(n)).
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Hence

f(xε(n)) + g(xε(n−N)) < (1 + ε)η(ε)φ(xε(n)), n ≥ 0. (8.3.5)

Now for n ≥ 0, Γη(ε)(xε(n)) = (1 + ε)nh+ c(ε), so

Γη(ε)(xε(n+ 1))− Γη(ε)(xε(n)) = (1 + ε)h.

Since Γη is in C1 and (xε(n))n≥0 is an increasing sequence, there exists ξ(n) ∈ [xε(n), xε(n+

1)] such that

Γη(ε)(xε(n+ 1)) = Γη(ε)(xε(n)) + Γ′η(ε)(ξ(n))(xε(n+ 1)− xε(n)).

Therefore we have

(1 + ε)h = Γ′η(ε)(ξ(n))(xε(n+ 1)− xε(n)) =
1

η(ε)

1

φ(ξ(n))
(xε(n+ 1)− xε(n)).

Thus as φ is non-decreasing, as ξ(n) ≥ xε(n), we have

xε(n+ 1) = xε(n) + (1 + ε)η(ε)hφ(ξ(n))

≥ xε(n) + (1 + ε)η(ε)hφ(xε(n)), n ≥ 0. (8.3.6)

Thus by (8.3.5) and (8.3.6) for n ≥ 0 we have

xε(n+ 1) ≥ xε(n) + (1 + ε)η(ε)hφ(xε(n)) > xε(n) + hf(xε(n)) + hg(xε(n−N)).

Now as xε(n) > maxn∈{−N,...,0} ψ(nh), we have xε(n) > xh(n) for n ∈ {N, . . . , 0}.

Suppose that there is a n0 ≥ 1 such that xε(n) > xh(n) for t ∈ {−N, . . . , n0 − 1}

xε(n0) ≤ xh(n0). Therefore xε(n0)− xε(n0 − 1) ≤ xh(n0)− xh(n0 − 1). Since f and g are

non-decreasing,

xε(n0)− xε(n0 − 1) ≤ xh(n0)− xh(n0 − 1)

= hf(xh(n0 − 1)) + hg(xh(n0 − 1−N))

≤ hf(xε(n0 − 1)) + hg(xh(n0 −N))

≤ hf(xε(n0 − 1)) + hg(xε(n0 − 1−N))

< xε(n0)− xε(n0 − 1),

a contradiction.
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Thus xε(n) > xh(n) for all n ≥ −N . Hence Γη(ε)(xh(n)) < Γη(ε)(xε(n)) for all n ≥ −N .

Hence

Γη(ε)(xh(n)) < Γη(ε)(xε(n)) = (1 + ε)nh+ c(ε), n ≥ −N.

But Γ(xh(n)) = η(ε)Γη(ε)(xh(n)) < (1 + ε)η(ε)nh+ η(ε)c(ε). Therefore

lim sup
n→∞

Γ(xh(n))

nh
≤ (1 + ε)η(ε).

Since ε > 0 is arbitrary, and η(ε)→ η as ε→ 0, we have (8.2.1).

Proof of Theorem 8.2.2 Suppose first that µ̄ε is finite. Then by (7.2.11) for every

ε ∈ (0, 1) there exists x3(ε) > 0 such that for x > x3(ε)

g(x) > µ̄ε(1− ε)φ(Γ−1
µ(ε)(Γµ(ε)(x) + (τ + h)(1− ε)))

≥ µ̄(1− ε)φ(Γ−1
µ(ε)(Γµ(ε)(x) + (τ + h)(1− ε)))

> µ(ε)φ(Γ−1
µ(ε)(Γµ(ε)(x) + (τ + h)(1− ε))),

where the penultimate inequality is a consequence of (7.2.12), and the last inequality holds

for all ε < ε′, because for such ε we have µ(ε) < (1 − ε)µ̄. This holds for the following

reason.

By (7.2.10), there exists ε1 ∈ (0, 1) such that ε ∈ (0, ε1) implies −ε < µ(ε)−µ < µε. Since

µ < µ̄, it follows that there exists ε2 ∈ (0, 1) such that ε < ε2 implies µ̄ > (1 + ε)µ/(1− ε).

Hence for all ε < ε′ := ε1 ∧ ε2, we have µ(ε) < µ(1 + ε) < (1− ε)µ̄.

Thus for all 0 < ε < ε′ < 1, and x > x3(ε) we have

g(x) > µ(ε)φ(Γ−1
µ(ε)(Γµ(ε)(x) + (τ + h)(1− ε))), x > x3(ε). (8.3.7)

When µ̄ε = +∞, because µ(ε) is finite, (8.3.7) is trivial.

Define y3(ε) = Γµ(ε)(x3(ε)) + (τ + h)(1 − ε). Then for y > y3(ε), if we define x =

Γ−1
µ(ε)(y − (τ + h)(1− ε)), for x > x3(ε) we have that y > y3(ε). Thus by (8.3.7)

g(Γ−1
µ(ε)(y − (τ + h)(1− ε))) > µ(ε)φ(Γ−1

µ(ε)(y)), y > y3(ε). (8.3.8)

Next let N0(ε) = inf{n > 0 : xh(n) ≥ x3(ε)} and define N1 > N0 such that

(1− ε)(τ + h)Γµ(ε)(xh(N0)) ≤ Γµ(ε)(xh(N1)).
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Define

xε(n) = Γ−1
µ(ε)((1− ε)(n−N1)h+ Γµ(ε)(xh(N0))), n ≥ N1. (8.3.9)

Therefore for n ≥ N1 +N we have

(1− ε)(n+ 1−N1)h+ Γµ(ε)(xh(N0)) ≥ (1− ε)(τ + h) + Γµ(ε)(xh(N0))

≥ (1− ε)(τ + h) + Γµ(ε)(x3(ε))) = y3(ε).

Setting y = (1− ε)(n+ 1−N1)h+ Γµ(ε)(xh(N0)) in (8.3.8) yields

g(Γ−1
µ(ε)((1− ε)(n−N1 −N)h+ Γµ(ε)(xh(N0))))

> µ(ε)φ(Γ−1
µ(ε)((1− ε)(n+ 1−N1)h+ Γµ(ε)(xh(N0)))), n ≥ N1 +N.

By (8.3.9) we have

g(xε(n−N)) > µ(ε)φ(xε(n+ 1)), n ≥ N1 +N. (8.3.10)

Therefore by (8.3.10) for n ≥ N1 +N , and the fact that

Γµ(ε)(xε(n)) = (1− ε)(n−N1)h+ Γµ(ε)(xh(N0)),

we have

Γµ(ε)(xε(n+ 1))− Γµ(ε)(xε(n)) = (1− ε)h.

Hence there is ξ(n) ∈ [xε(n), xε(n+ 1)] such that

xε(n+ 1)− xε(n) = (1− ε)hµ(ε)φ(ξ(n)).

Since φ is non-decreasing and ξ(n) ≤ xε(n+ 1), we have

xε(n+ 1) = xε(n) + (1− ε)hµ(ε)φ(ξ(n))

≤ xε(n) + (1− ε)hµ(ε)φ(xε(n+ 1)).

Therefore by (8.3.10), we get for n ≥ N1 +N

xε(n+ 1) ≤ xε(n) + (1− ε)hµ(ε)φ(xε(n+ 1))

< xε(n) + h(1− ε)g(xε(n−N))

≤ xε(n) + hf(xε(n)) + h(1− ε)g(xε(n−N))

< xε(n) + hf(xε(n)) + hg(xε(n−N)).
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Now for n ∈ {N1, . . . , N1 +N} we have

xε(n) ≤ xε(N1 +N) = Γ−1
µ(ε)((1− ε)τ + Γµ(ε)(xh(N0)))

< Γ−1
µ(ε)((1− ε)(τ + h) + Γµ(ε)(xh(N0)))

≤ Γ−1
µ(ε)(Γµ(ε)(xh(N1))) = xh(N1) ≤ xh(n),

where we used at the last step the fact that xh is increasing on {N1, . . . , N1 + N} ⊂

{N,N + 1, . . .}. Therefore we have xε(n) < xh(n) for n ∈ {N1(ε), . . . , N1(ε) + N}, and

also xε(n+ 1) < xε(n) + hf(xε(n)) + hg(xε(n−N)) for n ≥ N1 +N .

Suppose there is a n1 ≥ N1(ε) +N + 1 such that xε(n) < xh(n) for n ∈ {N1(ε), . . . , n1}

and xε(n1) ≥ xh(n1). Therefore xε(n1)−xε(n1− 1) ≥ xh(n1)−xh(n1− 1). Then as f and

g are non-decreasing,

xε(n1)− xε(n1 − 1) ≥ xh(n1)− xh(n1 − 1)

= hf(xh(n1 − 1)) + hg(xh(n1 − 1−N))

≥ hf(xε(n1 − 1)) + hg(xε(n1 − 1−N))

> xε(n1)− xε(n1 − 1),

a contradiction. Thus xε(n) < xh(n) for all n ≥ N1. Hence Γµ(ε)(xh(n)) > Γµ(ε)(xε(n))

for all n ≥ N1(ε). Hence

Γµ(ε)(xh(n)) > Γµ(ε)(xε(n)) = (1− ε)(n−N1) + Γµ(ε)(xh(N0)), n ≥ N1(ε).

But Γ(xh(n)) = µ(ε)Γµ(ε)(xh(n)) > (1− ε)µ(ε)n+ µ(ε)Γµ(ε)(xh(N0)). Therefore

lim inf
n→∞

Γ(xh(n))

nh
≥ (1− ε)µ(ε).

Since ε > 0 is arbitrary, and µ(ε)→ µ as ε→ 0, we have (8.2.3).

Proof of Theorem 8.2.3 Let j ≥ N . Summing across both sides of (1.1.2a) yields

xh(j + 1) = xh(j −N) + h

j∑
n=j−N

f(xh(n)) + h

j∑
n=j−N

g(xh(n−N)).
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Let ε(τ + h) < 1/2. Since xh(n)→∞ as n→∞ and f(x)/x→ 0 as x→∞, there exists

N1(ε) such that f(xh(n)) ≤ εxh(n) for all n ≥ N1(ε). Hence for j ≥ N1(ε) we have

xh(j + 1) ≤ xh(j −N) + h

j∑
n=j−N

εxh(n) + h

j∑
n=j−N

g(xh(n−N))

≤ xh(j −N) + h(N + 1)εxh(j) + h

j∑
n=j−N

g(xh(n−N))

≤ xh(j −N) + h(N + 1)εxh(j + 1) + h

j∑
n=j−N

g(xh(n−N)).

Hence for j ≥ N1(ε) we have

xh(j + 1) ≤ 1

1− (τ + h)ε
xh(j −N) +

1

1− (τ + h)ε
h

j∑
n=j−N

g(xh(n−N)).

Since g is in RV∞(1), x 7→ g(x)/x is asymptotic to a non-decreasing function, there exists

g0 such that g0 is non-decreasing, g0(x) → ∞ as x → ∞ and g0(x)/g(x)/x → 1 as

x → ∞. Therefore g1 defined by g1(x) := xg0(x) is increasing and is in RV∞(1). Since

xh(n)→∞ as n→∞, for every ε > 0 there exists N2(ε) ≥ N such that g(xh(n−N)) <

(1 + ε)g1(xh(n−N)). Thus for j ≥ N2(ε) we have

h

j∑
n=j−N

g(xh(n−N)) ≤ h(1 + ε)

j∑
n=j−N

g1(xh(n−N))

≤ h(N + 1)(1 + ε)g1(xh(j −N)).

Hence

h

j∑
n=j−N

g(xh(n−N)) ≤ (τ + h)(1 + ε)g1(xh(j −N)), j ≥ N2(ε).

Let N3 = max(N1, N2). Then for j ≥ N3 we have

xh(j + 1) ≤ xh(j −N) +

(
1

1− (τ + h)ε
− 1

)
xh(j −N) +

(τ + h)(1 + ε)

1− (τ + h)ε
g1(xh(j −N)).

Define x∗h(n) = xh(n(N + 1)) for n ≥ 0. Therefore for n ≥ N3 we have

x∗h(j + 1) ≤ x∗h(j) +

(
1

1− (τ + h)ε
− 1

)
x∗h(j) +

(τ + h)(1 + ε)

1− (τ + h)ε
g1(x∗h(j)).

Define

gε(x) =

(
1

1− (τ + h)ε
− 1

)
x+

(τ + h)(1 + ε)

1− (τ + h)ε
g1(x), x > 0. (8.3.11)
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Then gε is in RV∞(1), x 7→ gε(x)/x is positive and non-decreasing, and gε(x)/x → ∞ as

x→∞. Moreover

x∗h(n+ 1) ≤ x∗h(n) + gε(x
∗
h(n)), n ≥ N3(ε).

Next, define

yε(n+ 1) = yε(n) + gε(yε(n)), n ≥ N3(ε); yε(N3) = 2x∗h(N3(ε)).

Since gε is increasing, it follows that x∗h(n) ≤ yε(n) for all n ≥ N3(ε). Define

Jε(x) =

∫ x

1

1

u log(1 + gε(u)/u)
du, x ≥ 0.

Then by applying Lemma 1.2.1 to (yε), we have that

lim
n→∞

Jε(yε(n))

n
= 1.

Since Jε is increasing, and x∗h(n) ≤ yε(n) for all n ≥ N3(ε), we have by the definition of

x∗h that

lim sup
n→∞

Jε(xh(n(N + 1)))

n
= lim sup

n→∞

Jε(x
∗
h(n))

n
≤ lim

n→∞

Jε(yε(n))

n
= 1.

Now by L’Hôpital’s rule and (8.3.11)

lim
x→∞

Jε(x)

L(x)
= lim

x→∞

log(1 + g(x)/x)

log(1 + gε(x)/x)
= lim

x→∞

log(1 + g(x)/x)

log
(

1
1−(τ+h)ε + (τ+h)(1+ε)

1−(τ+h)ε
g1(x)
x

) .
Since g(x)/g1(x)→ 1 as x→∞, we have that

lim
x→∞

log(1 + g(x)/x)

log(1 + g1(x)/x)
= 1.

Therefore limx→∞ Jε(x)/L(x) = 1. Hence

lim sup
n→∞

L(xh(n(N + 1)))

n
≤ 1. (8.3.12)

Suppose j ≥ N + 1. Then there exists an integer n = n(j) ≥ 1 such that n(N + 1) ≤ j <

(n+ 1)(N + 1). Since L is increasing, and (xh(n))n≥0 is increasing, we have

L(xh(j))

jh
≤ L(xh((n+ 1)(N + 1)))

jh

≤ L(xh((n+ 1)(N + 1)))

n(N + 1)h

=
1

τ + h

L(xh((n+ 1)(N + 1)))

n+ 1
· n+ 1

n
.
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By (8.3.12), we have

lim sup
j→∞

L(xh(j))

jh
≤ 1

τ + h
,

which gives the desired upper limit in (8.2.4).

To get a lower bound, since f(x) ≥ 0, we have xh(n + 1) ≥ xh(n) + hg(xh(n −N)) for

n ≥ 0. Since xh(n)→∞ as n→∞, for every ε ∈ (0, 1) there exists N4(ε) ≥ N such that

g(xh(n−N)) > (1− ε)g1(xh(n−N)). Let N5(ε) = max(N4(ε), N1(ε)). Let y
(1)
h be defined

by

y
(1)
h (n+ 1) = y

(1)
h (n) + h(1− ε)g1(y

(1)
h (n−N)), n ≥ N5(ε);

y
(1)
h (n) = xh(n)/2, n = N5(ε)−N, . . . , N5(ε).

Then we have for n ≥ N5(ε) the inequality xh(n + 1) ≥ xh(n) + h(1 − ε)g1(xh(n − N)).

Hence y
(1)
h (n) ≤ xh(n) for n ≥ N5(ε) − N . Clearly (y

(1)
h (n))n≥N5(ε) is increasing and

y
(1)
h (n)→∞ as n→∞.

Let n ≥ N5(ε) +N . Then as y
(1)
h is increasing, we have

y
(1)
h (n+ 1) = y

(1)
h (n) + h(1− ε)g1(y

(1)
h (n−N)) ≥ y(1)

h (n−N) + h(1− ε)g1(y
(1)
h (n−N)).

Therefore for n ≥ N5(ε) +N we have

log y
(1)
h (n+ 1) ≥ log

(
g1(y

(1)
h (n−N))

y
(1)
h (n−N)

)
+ log y

(1)
h (n−N)

+ log

(
h(1− ε) +

y
(1)
h (n−N)

g1(y
(1)
h (n−N))

)
,

and so

log y
(1)
h (n+ 1) ≥ log y

(1)
h (n−N) + log(h(1− ε)) + log g0(y

(1)
h (n−N)).

Define u(n) := log y
(1)
h (n) for n ≥ N5(ε). Then (u(n))n≥N5 is increasing and tends to

infinity as n→∞, and with γ0(x) := log(h(1− ε)) + log g0(ex), we have

u(n+ 1) ≥ u(n−N) + γ0(u(n−N)), n ≥ N5(ε) +N.

Since g0 is non-decreasing, so is γ0, and moreover γ0(x) → ∞ as x → ∞. Since g0 is in

RV∞(0), there is g3 in RV∞(0) which is also in C1 such that g(x)/g3(x) → 1 as x → ∞,
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xg′3(x)/g3(x) → 0 as x → ∞. Clearly for x∗ sufficiently large we have g3(ex) > e for all

x > x∗, and so we may define

G3(x) =

∫ x

x∗

1

log g3(eu)
du.

Then G′3(x) = 1/ log g3(ex) > 0 for x > x∗ and since g3 is in C1 we have

G′′3(x) = − d

dx
log g3(ex) · 1

(log g3(ex))2
= − 1

g3(ex))
g′3(ex)ex · 1

(log g3(ex))2
.

Since there u(n) → ∞, there is N6 is such that u(n) > x∗ for n ≥ N6. Let N7(ε) =

max(N5(ε), N6)+N . Then for n ≥ N7(ε) we have G3(u(n+1)) ≥ G3(u(n−N)+γ0(u(n−

N))) and so by Taylor’s theorem, there exists ξn ∈ [u(n −N), u(n −N) + γ0(u(n −N))]

such that

G3(u(n+ 1))

≥ G3(u(n−N) + γ0(u(n−N)))

= G3(u(n−N)) +G′3(u(n−N))γ0(u(n−N)) +
1

2
G′′3(ξn)γ2

0(u(n−N)),

for n ≥ N7(ε). Next, with ηn := g′3(eξn)eξn/g3(eξn)) and using the fact that xg′3(x)/g3(x)→

0 as x→∞, we have that ηn → 0 as n→∞. Define for n ≥ N7(ε) the sequence

δ(n) :=
log(h(1− ε)) + log g0(eu(n−N))

log g3(eu(n−N))
− 1− 1

2
ηn

(
log(h(1− ε)) + log g0(eu(n−N))

)2
(log g3(eξn))2

.

so that

G3(u(n+ 1)) ≥ G3(u(n−N)) + 1 + δ(n), n ≥ N7(ε).

Since ξn → ∞ as n → ∞ and g3(x)/g0(x) → 1 as x → ∞ we have that for every

ε ∈ (0, 1) that there exists N8(ε) such that log g3(eξn) > log(1 − ε) + log g0(eξn) for all

n ≥ N8(ε) and so for n ≥ N9(ε) = max(N8(ε), N7(ε)) +N and so(
log(h(1− ε)) + log g0(eu(n−N))

)2
(log g3(eξn))2

≤
(
log(h(1− ε)) + log g0(eu(n−N))

)2
(log(1− ε) + log g0(eξn))2

.

Since g0 is increasing and ξn ≥ u(n−N) we have log g0(eξn) ≥ log g0(eu(n−N)). Hence(
log(h(1− ε)) + log g0(eu(n−N))

)2
(log g3(eξn))2

≤
(
log(h(1− ε)) + log g0(eξn)

)2
(log(1− ε) + log g0(eξn))2

.

Therefore

lim sup
n→∞

(
log(h(1− ε)) + log g0(eu(n−N))

)2
(log g3(eξn))2

≤ 1,
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and so δ(n)→ 0 as n→∞. Let z(n) = G3(u(n)). Note that z is increasing and z(n)→∞

as n → ∞. Then we have z(n + 1) ≥ z(n − N) + 1 + δ(n). Let j ∈ {0, . . . , N}. Define

z∗j (n) = z((N + 1)n+ j). Then

z∗j (n) = z(Nn+ n+ j − 1 + 1)

≥ z(Nn+ n+ j − 1−N) + 1 + δ(Nn+ n+ j − 1)

= z∗j (n− 1) + 1 + δ(Nn+ n+ j − 1).

Now for n ≥ n′ we have

n∑
m=n′

z∗j (m) ≥
n∑

m=n′

z∗j (m− 1) + n− n′ + 1 +
n∑

m=n′

δ(Nm+m+ j − 1),

so
z∗j (n)

n
≥
z∗j (n′ − 1)

n
+ 1 +

−n′ + 1

n
+

1

n

n∑
m=n′

δ(Nm+m+ j − 1).

Since δ(n)→ 0 as n→∞, we have lim infn→∞ z
∗
j (n)/n ≥ 1. Therefore

lim inf
n→∞

z((N + 1)n+ j)

n(N + 1)
≥ 1

N + 1
, for each j = 0, . . . , N.

Hence

lim inf
n→∞

G3(log y
(1)
h (n))

n
= lim inf

n→∞

G3(u(n))

n
= lim inf

n→∞

z(n)

n
≥ 1

N + 1
.

Since xh(n) ≥ y(1)
h (n) for n ≥ N5(ε)−N , and G3 is increasing, we have

lim inf
n→∞

G3(log xh(n))

nh
≥ lim inf

n→∞

G3(log y
(1)
h (n))

nh
≥ 1

Nh+ h
=

1

τ + h
. (8.3.13)

Now

G3(log x)) =

∫ log x

x∗

1

log g3(ev)
dv =

∫ x

ex∗

1

u log g3(u)
du =: G4(x). (8.3.14)

Since g3(x)/g0(x)→ 1 as x→∞ and each belongs to RV∞(0), we have that

lim
x→∞

log g0(x)

log g3(x)
= 1.

Similarly, as (1 + g(x)/x)/g0(x)→ 1 as x→∞ and g0 is in RV∞(0),

lim
x→∞

log(1 + g(x)/x)

log g0(x)
= 1.

Using these limits and L’Hôpital’s rule, we arrive at

lim
x→∞

G4(x)

L(x)
= lim

x→∞

log(1 + g(x)/x)

log g3(x)
= lim

x→∞

log(1 + g(x)/x)

log g0(x)
· log g0(x)

log g3(x)
= 1.
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Since xh(n)→∞ as n→∞ and (8.3.13) and G4 is defined by (8.3.14), by using the last

limit, we get

lim inf
n→∞

L(xh(n))

nh
= lim inf

n→∞

L(xh(n))

G4(xh(n))

G4(xh(n))

nh
= lim inf

n→∞

G3(log xh(n))

nh
≥ 1

τ + h
,

which is the lower limit in (8.2.4).

In order to prove (8.2.5), notice for any t > 0 that there exists n ≥ 0 such that nh ≤ t <

(n + 1)h. Also as the linear interpolant x̄h defined by (1.2.13), we have xh(n) ≤ x̄h(t) ≤

xh(n+ 1). Therefore

L(x̄h(t))

t
≤ L(xh(n+ 1))

nh
=
L(xh(n+ 1))

(n+ 1)h
· n+ 1

n
.

Therefore by (8.2.4), we have

lim sup
t→∞

L(x̄h(t))

t
≤ 1

τ + h
. (8.3.15)

To get the lower bound, we observe that for nh ≤ t < (n+ 1)h, we have

L(x̄h(t))

t
≥ L(xh(n))

(n+ 1)h
=
L(xh(n))

nh
· n

n+ 1
.

Therefore by (8.2.4), we have

lim inf
t→∞

L(x̄h(t))

t
≥ 1

τ + h
.

Combining this limit with (8.3.15) yields (8.2.5).

Proof of Theorem 7.2.6 Let N ∈ N and set h = τ/N . Let j ≥ N . Integrating over

[(j −N)h, (j + 1)h] yields

x((j + 1)h) = x((j −N)h) +

∫ (j+1)h

(j−N)h
f(x(s)) ds+

∫ (j+1)h

(j−N)h
g(x(s−Nh)) ds.

Let ε(τ + h) < 1/2. Since x(t) → ∞ as t → ∞ and f(x)/x → 0 as x → ∞, there exists

T1(ε) > τ such that f(x(s)) ≤ εx(s) for all s ≥ T1(ε). Let N1(ε) be an integer such that

N1(ε)h > T1(ε). Then for j ≥ N1(ε), and using the fact that x is increasing, we have

x((j + 1)h) ≤ x((j −N)h) +

∫ (j+1)h

(j−N)h
εx(s) ds+

∫ (j+1)h

(j−N)h
g(x(s−Nh)) ds

≤ x((j −N)h) + h(N + 1)εx((j + 1)h) +

∫ (j+1)h

(j−N)h
g(x(s−Nh)) ds

≤ x((j −N)h) + (τ + h)εx((j + 1)h) +

∫ (j+1)h

(j−N)h
g(x(s−Nh)) ds.
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Hence for j ≥ N1(ε) we have

x((j + 1)h) ≤ x((j −N)h) +

(
1

1− (τ + h)ε
− 1

)
x((j −N)h)

+
1

1− (h+ τ)ε

∫ (j+1)h

(j−N)h
g(x(s−Nh)) ds.

Since g is in RV∞(1), x 7→ g(x)/x is asymptotic to a non-decreasing function, there exists

g0 such that g0 is non-decreasing, g0(x)→∞ as x→∞ and g0(x)/g(x)/x→ 1 as x→∞.

Therefore g1 defined by g1(x) := xg0(x) is increasing and is in RV∞(1). Since x(t)→∞ as

t→∞, for every ε > 0 there exists T2(ε) ≥ τ such that g(x(t−τ)) < (1+ε)g1(x(t−τ)) for

all t ≥ T2(ε). Let N2(ε) be an integer such that N2(ε)h > T2(ε). Thus for j ≥ N2(ε) +N

we have jh ≥ N2(ε)h+Nh > T2 + τ ≥ 2τ = 2Nh, so as x is increasing on [0,∞) we have∫ (j+1)h

(j−N)h
g(x(s−Nh)) ds ≤ (1 + ε)

∫ (j+1)h

(j−N)h
g1(x(s−Nh)) ds

≤ h(N + 1)(1 + ε)g1(x((j + 1−N)h)).

Let N3(ε) = max(N1(ε), N2(ε) +N). Then for j ≥ N3(ε) we have

x((j + 1)h) ≤ x((j −N)h) +

(
1

1− (h+ τ)ε
− 1

)
x((j −N)h)

+
(h+ τ)(1 + ε)

1− (h+ τ)ε
g1(x(j + 1−N)h)),

which, as x is increasing, implies

x((j + 1)h) ≤ x((j + 1−N)h) +

(
1

1− (h+ τ)ε
− 1

)
x((j + 1−N)h)

+
(h+ τ)(1 + ε)

1− (h+ τ)ε
g1(x(j + 1−N)h)), j ≥ N3(ε).

Define x∗h(n) = x(nNh) for n ≥ −1. Therefore for n ≥ N3, and since N ≥ 1 we have

x∗h(j + 1) ≤ x∗h(j) +

(
1

1− (h+ τ)ε
− 1

)
x∗h(j) +

(h+ τ)(1 + ε)

1− (h+ τ)ε
g1(x∗h(j)).

The proof now continues as in the proof of Theorem 8.2.3, where τ is replaced by τ + h.

Proceeding in this manner we arrive at

lim sup
n→∞

L(x(nNh))

n
≤ 1. (8.3.16)

175



Chapter 8, Section 3 Uniform Numerics and Delay-Dominated Equations

For every t > 0 there exists n ∈ N such that nNh ≤ t < (n+ 1)Nh. Since L is increasing,

and x is increasing, we have

L(x(t))

t
≤ L(x((n+ 1)Nh))

t
≤ L(x((n+ 1)Nh))

nNh
=

1

τ

L(x((n+ 1)Nh))

n+ 1
· n+ 1

n
.

By (8.3.16), we have

lim sup
t→∞

L(x(t))

t
≤ 1

τ
,

and therefore the desired upper limit in (7.2.20).

To get a lower bound, since f(x) ≥ 0, we have

x((n+ 1)h) ≥ x(nh) +

∫ (n+1)h

nh
g(x(s−Nh)) ds, n ≥ 0.

Since x(t)→∞ as t→∞, for every ε ∈ (0, 1) there exists T4(ε) ≥ τ such that g(x(t−τ)) >

(1 − ε)g1(x(t − τ)). Let N4(ε) be an integer such that N4(ε)h > T4(ε). Let N5(ε) =

max(N4(ε), N1(ε)). Thus for n ≥ N5(ε) we have nh ≥ N5(ε))h ≥ max(T4(ε), τ), so as x is

increasing on [0,∞) we have

x((n+ 1)h) ≥ x(nh) + (1− ε)
∫ (n+1)h

nh
g1(x(s−Nh)) ds

≥ x(nh) + (1− ε)hg1(x(nh−Nh)).

Then with xh(n) := x(nh), we have the inequality

xh(n+ 1) ≥ xh(n) + (1− ε)hg1(xh(n−N)), n ≥ N5(ε).

Let y
(1)
h be defined by

y
(1)
h (n+ 1) = y

(1)
h (n) + h(1− ε)g1(y

(1)
h (n−N)), n ≥ N5(ε);

y
(1)
h (n) = x(nh)/2, n = N5(ε)−N, . . . , N5(ε).

Hence y
(1)
h (n) ≤ x(nh) for n ≥ N5(ε) − N . The proof now proceeds exactly as in Theo-

rem 8.2.3, and we arrive at the analogue of (8.3.13), namely

lim inf
n→∞

G3(log x(nh))

nh
≥ lim inf

n→∞

G3(log y
(1)
h (n))

nh
≥ 1

Nh+ h
=

1

τ + h
, (8.3.17)

where we have used the fact that x(nh) = xh(n). By (8.3.14), we have G3(log x) = G4(x),

so once again we have that limx→∞G4(x)/L(x) = 1. Since x(nh)→∞ as n→∞, (8.3.17)

holds, and G4 is defined by (8.3.14), by using the last limit, we get

lim inf
n→∞

L(x(nh))

nh
= lim inf

n→∞

L(x(nh))

G4(x(nh))

G4(x(nh))

nh
= lim inf

n→∞

G3(log x(nh))

nh
≥ 1

τ + h
.
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Now, for every t > 0 there exists n such that nh ≤ t < (n+ 1)h. Since x is increasing and

L is increasing, we have

L(x(t))

t
≥ L(x(nh))

t
≥ L(x(nh))

(n+ 1)h
=
L(x(nh))

nh

n

n+ 1
.

Therefore

lim inf
t→∞

L(x(t))

t
≥ lim inf

n→∞

L(x(nh))

nh
≥ 1

τ + h
.

Letting h→ 0 yields

lim inf
t→∞

L(x(t))

t
≥ 1

τ
,

which is the lower limit in (7.2.20).

Proof of Theorem 8.2.4 Let j ≥ N . Summing across both sides of (1.1.2a) yields

xh(j + 1) = xh(j −N) + h

j∑
n=j−N

f(xh(n)) + h

j∑
n=j−N

g(xh(n−N)).

Let ε(τ + h) < 1/2. Since xh(n)→∞ as n→∞ and f(x)/x→ 0 as x→∞, there exists

N1(ε) such that f(xh(n)) ≤ εxh(n) for all n ≥ N1(ε). Hence for j ≥ N1(ε) we have

xh(j + 1) ≤ xh(j −N) + h

j∑
n=j−N

εxh(n) + h

j∑
n=j−N

g(xh(n−N))

≤ xh(j −N) + h(N + 1)εxh(j) + h

j∑
n=j−N

g(xh(n−N))

≤ xh(j −N) + h(N + 1)εxh(j + 1) + h

j∑
n=j−N

g(xh(n−N)).

Hence for j ≥ N1(ε) we have

xh(j + 1) ≤ 1

1− (τ + h)ε
xh(j −N) +

1

1− (τ + h)ε
h

j∑
n=j−N

g(xh(n−N)).

Since log g(x)/ log x → β as x → ∞, and xh(n) → ∞ as n → ∞, for every ε > 0 there

exists N2(ε) ≥ N such that g(xh(n − N)) < xh(n − N)β+ε. Thus for j ≥ N2(ε) + N we

have

h

j∑
n=j−N

g(xh(n−N)) ≤ h
j∑

n=j−N
xh(n−N)β+ε

≤ h(N + 1)xh(j −N)β+ε.
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Hence

h

j∑
n=j−N

g(xh(n−N)) ≤ (τ + h)xh(j −N)β+ε, j ≥ N2(ε).

Let N3(ε) = max(N1(ε), N2(ε) +N). Then as 1− (τ + h)ε > 1/2, for j ≥ N3(ε) we have

xh(j + 1) ≤ 2xh(j −N) + 2(τ + h)xh(j −N)β+ε.

Define x∗h(n) = xh(n(N + 1)) for n ≥ −1. Therefore for n ≥ N3(ε) we have

x∗h(j + 1) ≤ xh((j + 1)(N + 1)) ≤ 2xh(j(N + 1)) + 2(τ + h)xh(j(N + 1))β+ε

= 2x∗h(j) + 2(τ + h)x∗h(j)β+ε.

Thus

log x∗h(j + 1) ≤ log 2(τ + h) + (β + ε) log x∗h(j) + log

(
1 +

x∗h(j)

(τ + h)x∗h(j)β+ε

)
.

Thus we have, with u(n) = log x∗h(n), and all n > N5(ε), the inequality

u(n+ 1) ≤ (β + 2ε)u(n).

Thus there exists K(ε) > 0 such that u(n) ≤ K(ε)(β + 2ε)n for n ≥ N5(ε). Thus

1

n
log u(n) ≤ 1

n
logK(ε) + log(β + 2ε).

Therefore

lim sup
n→∞

log2 xh(n(N + 1))

n(N + 1)h
= lim sup

n→∞

log2 x
∗
h(n)

n(N + 1)h
≤ log(β + 2ε)

(N + 1)h
=

log(β + 2ε)

τ + h
.

Letting ε ↓ 0, we arrive at

lim sup
n→∞

log2 xh(n(N + 1))

n(N + 1)h
≤ log(β)

τ + h
. (8.3.18)

Suppose j ≥ N + 1. Then there exists n = n(j) ≥ 1 such that n(N + 1) ≤ j <

(n+ 1)(N + 1). Since (xh(n))n≥0 is increasing, we have

log2 xh(j)

jh
≤ log2 xh((n+ 1)(N + 1)))

jh
≤ log2 xh((n+ 1)(N + 1)))

n(N + 1)h

=
log2 xh((n+ 1)(N + 1)))

(n+ 1)(N + 1)h
· n+ 1

n
.

By (8.3.18), we have

lim sup
j→∞

log2 xh(j)

jh
≤ log β

τ + h
,
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which gives the desired upper limit.

Since f(x) ≥ 0 we have

xh(n+ 1) ≥ xh(n) + hg(xh(n−N)) ≥ hg(xh(n−N))

and since xh(n) → ∞ as n → ∞ and log g(x)/ log x → β as x → ∞, it follows that for

every ε < β there exists N6(ε) such that hg(xh(n−N)) ≥ xh(n−N)β−ε > e for n ≥ N5(ε).

Hence for n ≥ N6(ε) we have

xh(n+ 1) ≥ xh(n−N))β−ε.

Therefore with u(n) = log xh(n), we have that

u(n+ 1) = log xh(n+ 1) ≥ (β − ε)u(n−N).

Therefore, there exists k(ε) > 0 such that u(n) ≥ k(ε)(β − ε)n/(N+1) for n ≥ N6(ε).

Therefore

1

n
log u(n) ≥ 1

n
log k(ε) +

1

N + 1
log(β − ε).

Hence

lim inf
n→∞

log2 xh(n)

nh
≥ log(β − ε)

(N + 1)h
=

log(β − ε)
τ + h

.

Letting ε ↓ 0, we get

lim inf
n→∞

log2 xh(n)

nh
≥ log β

τ + h
.

and so combining this with the other limit we get

lim
n→∞

log2 xh(n)

nh
=

log β

τ + h
,

as required.

The proof that (8.2.7) follows from (8.2.6) is identical in all regards to the proof of

Theorem 8.2.3 that (8.2.5) follows from (8.2.4), and is therefore omitted.
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Appendix A

Proof of Remark 3.2.2

We wish to show that if log2 f is a smoothly regularly varying function with index

η > 0 and f satisfies (2.2.1), then (3.2.2) holds. Define ζ2(x) := log2 f(x) for x > 0.

Note eζ2(x) = log f(x) = φ(x) → ∞ as x → ∞, forcing ζ2(x) → ∞ as x → ∞. Now

ζ ′2(x) = f ′(x)/(f(x) log f(x)), thus

f ′(x)

f(x)
= ζ ′2(x) log f(x).

Therefore

log

(
f ′(x)

f(x)

)
= log ζ ′2(x) + log2 f(x).

Differentiating both sides we obtain

f ′′(x)

f ′(x)
− f ′(x)

f(x)
=
ζ ′′2 (x)

ζ ′2(x)
+

f ′(x)

f(x) log f(x)
.

Therefore since f ′(x)/f(x) = ζ ′2(x)φ(x),

f ′′(x)/f ′(x)

f ′(x)/f(x)
= 1 +

ζ ′′2 (x)/ζ ′2(x)

f ′(x)/f(x)
+

1

φ(x)

= 1 +
xζ ′′2 (x)

ζ ′2(x)
· ζ2(x)

xζ ′2(x)
· 1

φ(x)
· 1

ζ2(x)
+

1

φ(x)
.

Since ζ2 is smoothly regularly varying function with index η, xζ ′′2 (x)/ζ2(x) → η − 1 and

ζ2(x)/(xζ ′2(x))→ 1/η as x→∞. Also φ(x)→∞. Thus

lim
x→∞

f(x)f ′′(x)

(f ′(x))2
= lim

x→∞

f ′′(x)/f ′(x)

f ′(x)/f(x)
= 1,

which verifies (3.2.2).

In general if logn f , n ≥ 2 is a smoothly regularly varying function with index η > 0

and f satisfies (2.2.1), (3.2.2) holds. Now define ζn(x) := logn f(x) for x > 0. Again

eζn(x) →∞ as x→∞, forcing ζn(x)→∞ as x→∞. Now

ζ ′n(x) =
1

logn−1 f(x) logn−2 f(x) . . . log f(x)
· f
′(x)

f(x)
.

Thus

log

(
f ′(x)

f(x)

)
= log ζ ′n(x) +

n−1∑
j=1

logj+1 f(x).
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Appendix A Proof of Remark 3.2.2

Differentiating both sides we obtain

f ′′(x)

f ′(x)
− f ′(x)

f(x)
=
ζ ′′n(x)

ζ ′n(x)
+
n−1∑
j=1

d

dx
logj+1 f(x),

and so

f ′′(x)/f ′(x)

f ′(x)/f(x)
= 1 +

ζ ′′n(x)/ζ ′n(x)

f ′(x)/f(x)
+

∑n−1
j=1

d
dx logj+1 f(x)

ζ ′n(x)
∏n−1
j=1 logj f(x)

.

Now for j ≥ 1,

d

dx
logj+1 f(x) =

1∏j
k=1 logk f(x)

· f
′(x)

f(x)

=
ζ ′n(x)

∏n−1
k=1 logk f(x)∏j

k=1 logk f(x)

=


ζ ′n(x), if j = n− 1,

ζ ′n(x)
∏n−1
k=j+1 logk f(x), if j < n− 1.

Thus

f ′′(x)/f ′(x)

f ′(x)/f(x)
= 1 +

ζ ′′n(x)/ζ ′n(x)

ζ ′n(x)
∏n−1
j=1 logj f(x)

+

∑n−2
j=1 ζ

′
n(x)

∏n−1
k=j+1 logk f(x)

ζ ′n(x)
∏n−1
k=1 logk f(x)

+
ζ ′n(x)

ζ ′n(x)
∏n−1
k=1 logk f(x)

,

which gives

f ′′(x)/f ′(x)

f ′(x)/f(x)
= 1 +

ζ ′′n(x)/ζ ′n(x)

ζ ′n(x)
∏n−1
j=1 logj f(x)

+

n−2∑
j=1

1∏j
k=1 logk f(x)

+
1∏n−1

k=1 logk f(x)
.

This resolves to

f ′′(x)/f ′(x)

f ′(x)/f(x)
= 1 +

ζ ′′n(x)

(ζ ′n(x))2
∏n−1
j=1 logj f(x)

+
n−1∑
j=1

1∏j
k=1 logk f(x)

Since ζn is smoothly regularly varying function with index η, xζ ′′n(x)/ζ ′n(x) → η − 1 and

ζn(x)/(xζ ′n(x))→ 1/η as x→∞. Also φ(x)→∞. Thus

lim
x→∞

ζ ′′n(x)

(ζ ′n(x))2

1∏n−1
j=1 logj f(x)

= lim
x→∞

xζ ′′n(x)

ζ ′n(x)
· ζn(x)

xζ ′n(x)
· 1∏n−1

j=1 logj f(x)
· 1

ζn(x)
= 0

and so since

lim
x→∞

n−1∑
j=1

1∏j
k=1 logk f(x)

= 0,

we have

lim
x→∞

f ′′(x)/f ′(x)

f ′(x)/f(x)
= 1,

which implies (3.2.2).
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Proof of Examples 5.3.3 and 5.3.4

Example 5.3.3 We look to prove (5.3.8) where

f(x) = (2 + x) log(2 + x)− (2 + x)α, x ≥ 0,

g(x) = (x+ 2)αe
τ
, x ≥ 0,

f∗(x) = (2 + x) log(2 + x), x ≥ 0,

and F is defined by

F (x) =

∫ x

e−2

1

f(u)
du, x > 0.

A closed form formula is not available for F or F−1. We establish (5.3.8) by first deter-

mining very precise asymptotic information about F (and therefore about F−1). Since

F (x)/F∗(x) → 1 as x → ∞, it seems reasonable to write F (x) = F∗(x) + F (x) − F∗(x),

and then to determine the asymptotic behaviour of (F − F∗)(x) as x→∞.

Towards this end for x > 0, we note that we have

F (x) = F (x)− F∗(x) + log(log(x+ 2))

= log(log(x+ 2)) +

∫ x

e−2

{
1

f(u)
− 1

f∗(u)

}
du

= log(log(x+ 2)) +

∫ x

e−2

1

(2 + u)2−α log2(2 + u)− (2 + u) log(2 + u)
du.

Since

(2 + u)2−α log2(2 + u)− (2 + u) log(2 + u)

= (2 + u)2−α log2(2 + u)

(
1− 1

(2 + u)1−α log(2 + u)

)
,

for α ∈ [0, 1], the integrand is asymptotic to

1

u2−α log2(u)
as u→∞

and therefore the integral converges to a finite value as x→∞. Define

Iα :=

∫ ∞
e−2

1

(2 + u)2−α log2(2 + u)− (2 + u) log(2 + u)
du.

B1



Appendix B Proof of Examples 5.3.3 and 5.3.4

Then with

ε(x) = −
∫ ∞
x

1

(2 + u)2−α log2(2 + u)− (2 + u) log(2 + u)
du,

we have ε(x)→ 0 as x→∞ and

F (x) = log(log(x+ 2)) + Iα + ε(x).

Now

F (x) + τ = log(log(x+ 2)) + Iα + τ + ε(x) = log(log(x+ 2)) + log(eIα+τ+ε(x))

= log(eIα+τ+ε(x) log(x+ 2)).

Hence

eF (x)+τ = eIα+τ+ε(x) log(x+ 2). (B.0.1)

Similarly we obtain

F (x) = log(eIα+ε(x) log(x+ 2)).

Therefore

ex = eIα+ε(F−1(x)) log(F−1(x) + 2),

which implies

eF (x)+τ = eIα+ε(F−1(F (x)+τ)) log(F−1(F (x) + τ) + 2),

and using (B.0.1) we have

eIα+ε(F−1(F (x)+τ)) log(F−1(F (x) + τ) + 2) = eIα+τeε(x) log(x+ 2).

Define ε1(x) = ε(F−1(F (x) + τ)). Since F−1(F (x) + τ)) → ∞ as x → ∞, we have that

ε1(x)→ 0 as x→∞. Therefore we have

eIαeε1(x) log(F−1(F (x) + τ) + 2) = eIα+τeε(x) log(x+ 2).

Hence

log(F−1(F (x) + τ) + 2) = eτeε(x)−ε1(x) log(x+ 2).

Since ε(x)→ 0 and ε1(x)→ 0 as x→∞, we get

lim
x→∞

log(F−1(F (x) + τ))

log x
= eτ .
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Since f is regularly varying at infinity with index 1, it follows that

lim
x→∞

log(f(F−1(F (x) + τ)))

log x
= eτ . (B.0.2)

Therefore as g(x) = (2 + x)αe
τ
, we have log g(x) = αeτ log(2 + x), so by (B.0.2)

lim
x→∞

log
(

g(x)
f(F−1(F (x)+τ))

)
log x

= lim
x→∞

log g(x)

log x
− log f(F−1(F (x) + τ))

log x

= αeτ − eτ < 0,

because α < 1. Therefore we have

lim
x→∞

g(x)

f(F−1(F (x) + τ))
= 0.

In the same way that we derive (B.0.2), we can show for any τ1 > 0 that

lim
x→∞

log(f(F−1(F (x) + τ1)))

log x
= eτ1 .

Since α < 1, there exists τ1 < τ (specifically τ1 ∈ (log(αeτ ), τ)) Therefore as above we

have

lim
x→∞

log
(

g(x)
f(F−1(F (x)+τ1))

)
log x

= lim
x→∞

log g(x)

log x
− log f(F−1(F (x) + τ1))

log x

= αeτ − eτ1 < 0,

because τ1 > log(αeτ ). Therefore we have

lim
x→∞

g(x)

f(F−1(F (x) + τ1))
= 0,

as required.

Finally, in the case when αeτ > 1 we have that

lim
x→∞

g(x)

f(x)
= lim

x→∞

(2 + x)αe
τ

(2 + x) log(2 + x)− (2 + x)α
= +∞.

Example 5.3.4 We look to prove (5.3.10) where

f(x) = (A+ x) log(A+ x) log2(A+ x)− (A+ x) log2(A+ x), x ≥ 0,

g(x) = exp(loge
τ
(x+A)) log(loge

τ
(x+A)), x ≥ 0,

f∗(x) = (A+ x) log(A+ x) log2(A+ x),
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and F is defined by

F (x) =

∫ x

A

1

f(u)
du, x > 0.

A closed form formula is not available for F or F−1. We establish (5.3.10) by first de-

termining very precise asymptotic information about F (and therefore about F−1). Since

F (x)/F∗(x) → 1 as x → ∞, it seems reasonable to write F (x) = F∗(x) + F (x) − F∗(x),

and then to determine the asymptotic behaviour of (F − F∗)(x) as x→∞.

Towards this end for x > 0, we note that we have

F (x) = F (x)− F∗(x) + log3(x+A)

= log3(x+A) +

∫ x

A

{
1

f(u)
− 1

f∗(u)

}
du

= log3(x+ 2) +

∫ x

A

1

(A+ u) log2(A+ u) log(A+ u)[log(A+ u)− 1]
du.

Therefore the integral converges to a finite value as x→∞. Define

I =

∫ ∞
A

1

(A+ u) log2(A+ u) log(A+ u)[log(A+ u)− 1]
du.

Then with

ε(x) =

∫ ∞
x

1

(A+ u) log2(A+ u) log(A+ u)[log(A+ u)− 1]
du, (B.0.3)

we have ε(x) > 0 for x > 0, ε(x)→ 0 as x→∞ and

F (x) = log3(x+A) + I − ε(x).

Now

F (x) + τ = log3(x+A) + I + τ − ε(x) = log(log2(x+A)) + log(eI+τ−ε(x))

= log(eI+τ−ε(x) log[log(x+A)]) = log(log[loge
I+τ−ε(x)

(x+A)])

= log2[loge
I+τ−ε(x)

(x+A)].

Thus we have

eF (x)+τ = log
(

loge
I+τ−ε(x)

(x+A)
)
. (B.0.4)

Similarly we obtain

F (x) = log(eI−ε(x) log2(x+A)) = log2[loge
I−ε(x)

(x+A)].
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Therefore

eF (x) = log[loge
I−ε(x)

(x+A)],

and so

ex = log[loge
I−ε(F−1(x))

(F−1(x) +A)].

Define ε1(x) = ε(F−1(F (x) + τ)). Since F−1(F (x) + τ)) → ∞ as x → ∞, we have that

ε1(x)→ 0 as x→∞. Using this definition we also obtain

eF (x)+τ = log[loge
I−ε1(x)

(F−1(F (x) + τ) +A)]. (B.0.5)

Combining (B.0.4) and (B.0.5) we have

loge
I+τ−ε(x)

(x+A) = loge
I−ε1(x)

(F−1(F (x) + τ) +A).

Hence

log(F−1(F (x) + τ) +A) = (log(x+A))
eI+τ−ε(x)

eI−ε1(x) = (log(x+A))e
τ+ε1(x)−ε(x)

.

Define θ(x) = eε1(x)−ε(x). This implies

log(F−1(F (x) + τ) +A) = (log(x+A))e
τ θ(x) . (B.0.6)

Hence we also have

log2(F−1(F (x) + τ) +A) = log
(

(log(x+A))e
τ θ(x)

)
= eτθ(x) log2(x+A), (B.0.7)

and

F−1(F (x) + τ) +A = exp
(
{log(x+A)}e

τ θ(x)
)
. (B.0.8)

Next, we note that f(x) = (A+ x) log2(A+ x)[log(A+ x)− 1], so

f(F−1(F (x) + τ))

= (A+ F−1(F (x) + τ)) log2(A+ F−1(F (x) + τ))
(
log(A+ F−1(F (x) + τ))− 1

)
= exp

(
{log(x+A)}e

τ θ(x)
)

log2(A+ F−1(F (x) + τ))
(

(log(x+A))e
τ θ(x) − 1

)
= exp

(
{log(x+A)}e

τ θ(x)
)
· eτθ(x) log2(x+A) ·

(
(log(x+A))e

τ θ(x) − 1
)
.
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Hence

lim
x→∞

g(x)

f(F−1(F (x) + τ))

= lim
x→∞

exp(loge
τ
(x+A)) log(loge

τ
(x+A))

exp
(
{log(x+A)}eτ θ(x)

)
· eτ log2(x+A) · (log(x+A))e

τ θ(x)

= lim
x→∞

exp(loge
τ
(x+A)− loge

τ θ(x)(x+A))

(log(x+A))e
τ θ(x)

= lim
x→∞

exp(loge
τ
(x+A)− loge

τ θ(x)(x+A))

exp(log
(

loge
τ θ(x)(x+A)

)
)

= lim
x→∞

exp
(

loge
τ
(x+A)− loge

τ θ(x)(x+A)− log
(

loge
τ θ(x)(x+A)

))
= exp

(
lim
x→∞

{
loge

τ
(x+A)− loge

τ θ(x)(x+A)− log
(

loge
τ θ(x)(x+A)

)})
.

Therefore

lim
x→∞

g(x)

f(F−1(F (x) + τ))

= exp
(

lim
x→∞

{
loge

τ
(x+A)− loge

τ θ(x)(x+A)− log
(

loge
τ θ(x)(x+A)

)})
. (B.0.9)

Now recall that ε1(x) = ε(F−1(F (x) + τ)). We obtain asymptotic estimates for ε(x) and

ε1(x) as x→∞. By the definition of ε i.e., (B.0.3), we have

ε(x) ∼
∫ ∞
x

1

(A+ u) log2(A+ u) log2(A+ u)
du =

∫ ∞
log(x+A)

1

w2 logw
dw.

Now, we have that

lim
y→∞

∫∞
y

1
w2 logw

dw

1
y log y

= lim
y→∞

1
y2 log y

1
y2 log2 y

(log y + 1)
= 1.

Therefore

lim
x→∞

ε(x)
1

log(x+A) log2(x+A)

= 1. (B.0.10)

Since ε1(x) = ε(F−1(F (x) + τ)), we have

lim
x→∞

ε1(x)
1

log(F−1(F (x)+τ)+A) log2(F−1(F (x)+τ)+A)

= 1.

Inserting (B.0.7) and (B.0.6) and using the fact that θ(x)→ 1 as x→∞, we get

lim
x→∞

ε1(x)
1

(log(x+A))e
τ θ(x)eτ log2(x+A)

= 1.
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Since θ(x)→ 1 as x→∞ and eτ > 1, we therefore have

lim
x→∞

ε1(x)

ε(x)
= lim

x→∞

1

(log(x+A))e
τ θ(x)eτ

1
log(x+A)

= 0. (B.0.11)

Now, let a > 0 be fixed and suppose that h(x) = ax for x > 0. Then h′(x) = ax log(a).

Then for every u, v > 0 there exists an ξ(a, u, v) between u and v such that

au − av = aξ(a,u,v) log(a)(u− v).

Applying this is the case where a = log(x+A), u = eτ and v = eτθ(x), we see that there

exists an ξ(x) between eτ and eτθ(x) such that

(log(x+A))e
τ

− (log(x+A))e
τ θ(x) = log(x+A)ξ(x) log2(x+A)(eτ − eτθ(x)).

Note that ξ(x)→ eτ as x→∞

(log(x+A))e
τ

− (log(x+A))e
τ θ(x)

= eτ log(x+A)ξ(x) log2(x+A)ε(x)
(1− eε1(x)−ε(x))

ε(x)− ε1(x)
· ε(x)− ε1(x)

ε(x)
.

By (B.0.11) and the fact that (1− ey)/y → −1 as y → 0, we have

(log(x+A))e
τ

− (log(x+A))e
τ θ(x) = eτ log(x+A)ξ(x) log2(x+A)ε(x)η1(x)

where η1(x)→ 1 as x→∞. Now we write

(log(x+A))e
τ

− (log(x+A))e
τ θ(x)

= eτ log(x+A)ξ(x) 1

log(x+A)

ε(x)
1

log(x+A) log2(x+A)

η1(x),

so by (B.0.10), we have that η2(x)→ 1 as x→∞ and

(log(x+A))e
τ

− (log(x+A))e
τ θ(x) = eτ log(x+A)ξ(x)−1η2(x).

Thus

(log(x+A))e
τ

− (log(x+A))e
τ θ(x) − eτθ(x) log2(x+A)

= eτ log(x+A)ξ(x)−1η2(x)− eτθ(x) log2(x+A).

Since ξ(x)− 1→ eτ − 1 > 0 as x→∞, and η2(x)→ 1 as x→∞ we have that

lim
x→∞

{
(log(x+A))e

τ

− (log(x+A))e
τ θ(x) − eτθ(x) log2(x+A)

}
= +∞.

Using this limit and (B.0.9), it follows that g and f obey (5.3.10) as claimed.
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