
SYMMETRIC REARRANGEABLE

NETWORKS AND ALGORITHMS

By

Amitabha Chakrabarty

THESIS DIRECTED BY:

DR. MARTIN COLLIER

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF ELECTRONIC ENGINEERING

DUBLIN CITY UNIVERSITY

I hereby certify that this material, which I now submit for assess-

ment on the programme of study leading to the award of Doctor

of Philosophy is entirely my own work, that I have exercised

reasonable care to ensure that the work is original, and does not

to the best of my knowledge breach any law of copyright, and has

not been taken from the work of others save and to the extent that

such work has been cited and acknowledged within the text of my

work.

Signed:

ID number: 57113807

Date: 28/09/2011

ABSTRACT

A class of symmetric rearrangeable nonblocking networks has been consid-
ered in this thesis. A particular focus of this thesis is on Beneš networks
built with 2 × 2 switching elements. Symmetric rearrangeable networks

built with larger switching elements have also being considered. New appli-
cations of these networks are found in the areas of System on Chip (SoC) and
Network on Chip (NoC). Deterministic routing algorithms used in NoC applica-
tions suffer low scalability and slow execution time. On the other hand, faster
algorithms are blocking and thus limit throughput. This will be an acceptable
trade-off for many applications where achieving ”wire speed” on the on-chip
network would require extensive optimisation of the attached devices. In this
thesis I designed an algorithm that has much lower blocking probabilities than
other suboptimal algorithms but a much faster execution time than determinis-
tic routing algorithms. The suboptimal method uses the looping algorithm in its
outermost stages and then in the two distinct subnetworks deeper in the switch
uses a fast but suboptimal path search method to find available paths. The worst
case time complexity of this new routing method is O(N logN) using a single pro-
cessor, which matches the best known results reported in the literature.

Disruption of the ongoing communications in this class of networks during
rearrangements is an open issue. In this thesis I explored a modification of the
topology of these networks which gives rise to what is termed as repackable net-
works. A repackable topology allows rearrangements of paths without intermit-
tently losing connectivity by breaking the existing communication paths momen-
tarily. The repackable network structure proposed in this thesis is efficient in its
use of hardware when compared to other proposals in the literature.

As most of the deterministic algorithms designed for Beneš networks imple-
ment a permutation of all inputs to find the routing tags for the requested input-
output pairs, I proposed a new algorithm that can work for partial permutations.
If the network load is defined as ρ, the mean number of active inputs in a par-
tial permutation is, m = ρN , where N is the network size. This new method
is based on mapping the network stages into a set of sub-matrices and then de-
termines the routing tags for each pair of requests by populating the cells of the
sub-matrices without creating a blocking state. Overall the serial time complex-
ity of this method is O(N logN) and O(mlogN) where all N inputs are active and

with m < N active inputs respectively. With minor modification to the serial
algorithm this method can be made to work in the parallel domain. The time
complexity of this routing algorithm in a parallel machine with N completely
connected processors is O(log2N). With m active requests the time complexity
goes down to (logmlogN), which is better than the O(log2m + logN), reported in

the literature for 2
1
2
[(log2N−4logN)

1
2 −logN] ≤ ρ ≤ 1. I also designed multistage sym-

metric rearrangeable networks using larger switching elements and implement a
new routing algorithm for these classes of networks.

The network topology and routing algorithms presented in this thesis should
allow large scale networks of modest cost, with low setup times and moderate
blocking rates, to be constructed. Such switching networks will be required to
meet the bandwidth requirements of future communication networks.

ACKNOWLEDGEMENTS

I would like to express my thanks to everyone who helped me throughout my

PhD journey. But above everyone, my sincere gratitude goes to my supervisor,

Dr. Martin Collier, without whom this journey would not have been possible.

Thanks go to him for providing me with the right mix of freedom and guidance

throughout my period in DCU.

I wish to thank Prof. Barry McMullin, Prof. Noel O’Connor, Dr. Conor McAr-

dle and Dr. Eugen Schenfeld for serving on my doctoral committee and for their

comments and suggestions.

Thanks go to all the faculty members of School of Electronic Engineering, es-

pecially Dr. Noel Murphy for his kindness towards me. Thanks should also go to

the members of the Switching and Systems Laboratory for making my stay at the

lab such a pleasant experience.

I would like to thank all my friends in Dublin for being there with me always.

Thanks go to my elder brother, Dr. Debasish Chakraborty and his family for their

continuous support throughout. Lastly and most importantly thanks go to my

parents for allowing me to study outside Bangladesh for my degree and to stay

away from them for so long.

LIST OF PUBLICATIONS

• A. Chakrabarty, M. Collier, Symmetric Rearrangeable Networks: A New
Routing Algorithm and Emerging Applications, International Journal of
Electronics and Communications (Elsevier) (Submitted).

• A. Chakrabarty, M. Collier, Optimum Cost Multistage Symmetric Repack-
able Networks, International Journal of Grid and High Performance Com-
puting (IJGHPC),IGI Global.(In press)

• A. Chakrabarty, M. Collier, And S. Mukhopadhyay, Adaptive Routing
Strategy for Large Scale Rearrangeable Symmetric Networks , International
Journal of Grid and High Performance Computing (IJGHPC),IGI Global,
2010.

• A. Chakrabarty, M. Collier, Efficient Implementation of Symmetric Multistage
Repackable Networks . Proceeding of the International Conference on Com-
putational Intelligence and Communication Networks (CICN-2010). IEEE
Computer Society Press, 2010.

• A. Chakrabarty, M. Collier, And S. Mukhopadhyay, Symmetric Rearrange-
able Networks: Algorithms and Rearrangement Limits . Proceeding of the 7th
International Conference on Information Technology : New Generations.
IEEE Computer Society Press. Las Vegas, Nevada, USA, April 12-14, 2010.

• A. Chakrabarty, M. Collier, And S. Mukhopadhyay, Matrix-Based Routing
Algorithm for Benes Networks . Proceeding of the International Conference
on Future Computational Technologies and Applications (FUTURE COM-
PUTING 2009). IEEE Computer Society Press. Athens, Greece, November
15-20, 2009.

• A. Chakrabarty, M. Collier, And S. Mukhopadhyay, Dynamic Path Selec-
tion Algorithm for Benes Networks. Proceeding of the IEEE International con-
ference on Computational Intelligence, Communication Systems and Net-
works (CICSyN2009). IEEE Computer Society Press, 2009.

CONTENTS

List of Publications

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Contribution . 4

1.2.1 Problem Statement . 4
1.2.2 Solutions . 4
1.2.3 Methodology . 6

1.3 Summary of Contributions . 6
1.4 Outline of the Thesis . 8

2 Switching Techniques 10
2.1 Multiplexing . 10

2.1.1 Frequency Division Multiplexing 11
2.1.2 Time Division Multiplexing 12
2.1.3 Wavelength Division Multiplexing 12

2.2 Switching . 13
2.2.1 Circuit Switching . 14
2.2.2 Packet Switching . 15
2.2.3 Multi-Rate Circuit Switching 17
2.2.4 Virtual Cut-Through Switching 18
2.2.5 Wormhole Switching . 19

i

CONTENTS

2.2.6 Optical Burst Switching . 19
2.3 Communication Networks . 20

2.3.1 Interconnection Networks . 21
2.3.2 Networks Overview . 24

2.4 Bidirectional Multistage Interconnection Networks 29
2.5 Summary . 31

3 Rearrangeable Networks 32
3.1 Clos Networks . 32
3.2 Beneš Network . 37
3.3 Preliminaries . 39
3.4 Blocking Probabilities: The Lee and Jacobaeus Method 42
3.5 Beneš based Networks . 46
3.6 Overviews on Beneš networks Routing Algorithms 51
3.7 Application Domain of Beneš Networks 58

3.7.1 On Chip Communication Applications 59
3.7.2 Digital Subscriber Loop Applications 61
3.7.3 Optical Domain Applications 63

3.8 Summary . 64

4 Symmetric Multistage Repackable Networks 66
4.1 Introduction . 66
4.2 Repackable Networks Overview . 67
4.3 Preliminaries . 68
4.4 General Rearrangement Scenario . 70
4.5 Principle of Repackable Networks 71

4.5.1 Network Architecture . 72
4.6 Crosspoint Requirements . 77
4.7 Hardware Structure of the Bypass links 81
4.8 Summary . 83

5 Hybrid Routing Algorithm 85
5.1 Preliminaries . 85
5.2 A Formal Description of the Looping Algorithm 88

5.2.1 Example . 89
5.3 Random Routing . 90
5.4 Adaptive Routing . 93

5.4.1 Forward Routing Phase . 94
5.4.2 Reverse Routing Phase . 97

ii

CONTENTS

5.4.3 Example . 100
5.5 Simulation Results . 101
5.6 Hybrid Routing . 102
5.7 Simulation Results . 104
5.8 Time Complexity Analysis . 111
5.9 Summary . 113

6 Matrix Based Routing Algorithm 116
6.1 Introduction . 116
6.2 Conceptual Basis of the Algorithm 118

6.2.1 Preliminaries . 119
6.3 Symmetric Rearrangeable Networks Routing 122

6.3.1 Basic Routing Algorithm . 122
6.3.2 Example . 123

6.4 Simulation Results . 125
6.4.1 The Routing Tag and Its Validity 127
6.4.2 Example . 128
6.4.3 Reconfiguration Cost . 130

6.5 Complexity Analysis . 132
6.6 Routing in Optical Domain . 136
6.7 Networks with Large Switching Elements 140

6.7.1 Reducing Network Depth . 140
6.8 Networks with 3 × 3 Switching Elements 143
6.9 Routing Algorithm . 146
6.10 Simulation Results . 148
6.11 Summary . 148

7 Conclusion and Future Work 152
7.1 Contributions . 152
7.2 Future Work . 154

Bibliography 156

iii

LIST OF FIGURES

2.1 General multiplexing technique. 11
2.2 Frequency division multiplexing. 11
2.3 Time division multiplexing. 12
2.4 (Dense)Wavelength division multiplexing. 13
2.5 Circuit switching. 15
2.6 Space division switching. 16
2.7 Packet switching. 17
2.8 Virtual circuit routing. 17
2.9 Datagram routing. 18
2.10 Communication with and without switching system. 20
2.11 Processor memory communication using an interconnection network. 22
2.12 dedicated-path networks. 23
2.13 Single stage and multi stage networks. 25
2.14 General view of a self routing network. 25
2.15 Common networks . 27
2.16 Bidirectional butterfly network . 30
2.17 Fat tree with 16 nodes . 31

3.1 Clos network. 33
3.2 Recursive Clos network. 37
3.3 A 16 × 16 Beneš network . 38
3.4 Possible settings for switching elements. 40
3.5 Routing using the generated conflict free routing tags. 42
3.6 Conflicting state inside the switch. 43
3.7 N × N Cantor network. 47
3.8 16 × 16 K-Beneš Network. 48

iv

LIST OF FIGURES

3.9 Modification to the inner stage networks. 51
3.10 Path setup using looping algorithm. 53
3.11 A full binary tree of CRP’s. 56
3.12 2 − Colored connected graph. 58
3.13 Architecture of partial parallel LDPC decoder. [1] 62
3.14 Typical DSL configuration. 63

4.1 A network having a chain with length 4 69
4.2 Two isolated links from inputs 6 and 7 70
4.3 Symmetric repackable network for simultaneous reswitching. . . . 73
4.4 Repackable network with 2 bypass links. 73
4.5 Blocking state in the network for request 4 → 1. 74
4.6 Repackable network with one bypass link. 77
4.7 (a). 4 × 4 rearrangeable network. (b). 4 × 4 crossbar 79
4.8 16 × 16 Beneš network with 4 × 4 crossbar in the middle stage . . . 79
4.9 Mixed bypass links repackable network. 81
4.10 Logical representation of bypass links. 81
4.11 Hardware structure of 2 bypass links. 82

5.1 Forward and reverse routing . 86
5.2 Switching element settings in stage 0 and (2logN − 2) 92
5.3 Blocking probability for random routing. 93
5.4 Network setup using adaptive method for P(0:7) = (5 1 7 4 3 2 0 6). 101
5.5 Probability of blocking using random and adaptive routing 102
5.6 Execution time for adaptive and the looping algorithm. 103
5.7 Performance of three different methods for full input occupancy. . 105
5.8 50% input occupancy graphs for three methods 105
5.9 75% input occupancy graph for three methods. 106
5.10 Path search graph for a full occupancy network. 106
5.11 Path search graph for a 50% input occupancy network. 107
5.12 Path search graph for a 75% input occupancy network. 107
5.13 Execution time for full occupancy network. 108
5.14 Execution time for a 50% input occupancy network. 109
5.15 Execution time for a 75% input occupancy network. 109
5.16 Probability of blocking for hybrid routing with k = 1 and k = 2. . . 110

6.1 Sub-matrices format for a 16 × 16 Beneš Network. 120
6.2 One circuit with length 11, where gray boxes represents NULL value.121
6.3 (a) Balanced Columns. (b) Balanced Matrix. 123

v

LIST OF FIGURES

6.4 Sub-matrices status after execution of the algorithm. 127
6.5 Balanced matrices. 128
6.6 Routing tags and status matrix for a given permutation 129
6.7 Reconfiguration cost. 131
6.8 Execution time for Looping and Matrix based algorithm. 131
6.9 Reconfiguration cost per input for different sizes of network. 132
6.10 Matrix status for permutation P0:15 = (5 7 1 x 2 x 13 10 x 11 9 12 15 0 4 8) 133
6.11 Routing tag matrix for stage 0. 139
6.12 Space dilated Optical Beneš network. 140
6.13 A 16 × 16 symmetric network built with 4 × 4 switching elements . 141
6.14 A 27 × 27 symmetric network build with 3 × 3 switching elements 144
6.15 Different states of a 3 × 3 switching elements 145
6.16 Execution of algorithm . 147
6.17 The Routing tags obtained for the permutation P0:26 148
6.18 Maximum reconfiguration cost for different sizes of network 149
6.19 Reconfiguration cost per input for different size of networks 149

vi

LIST OF TABLES

3.1 Number of crosspoints for crossbar and 3-stage Clos networks. . . 34
3.2 Summary of Routing Algorithm Complexities 60
3.3 Complexity of different switching fabrics. 62

4.1 Path map for input-output request. 71
4.2 Path map for input-output requests after reswitching. 75
4.3 Worst case chain length. 76
4.4 Crosspoints requirement per input for various size of networks. . . 83

6.1 Comparison of network depths. 142
6.2 Crosspoint count for networks with heterogenous switching elements143
6.3 Crosspoint for networks using 2 × 2 switching elements 144
6.4 Crosspoint count for networks for 3 × 3 switching elements 145

vii

LIST OF ALGORITHMS

1 : Algorithm Looping . 89
2 : UPDATEPERM(k) . 90
3 : ROUTELOOP(i, k) . 91
4 : Algorithm Adaptive . 94
5 : FORWARD (ik, k) . 95
6 : BITFRD (ik, M(ik)) . 96
7 : CONFLICTFRD(ik) . 97
8 : REVERSE (Ok, k) . 98
9 : BITREV (Ok, M(Ok)) . 99
10 : CONFLICTREV(Ok, k) . 100
11 : Algorithm Matrix . 124
12 : ROUTING(i) . 124
13 : CONFLICTROW(R′, C ′, B1, i) . 126
14 : CONFLICTCOLUMN (R′, C ′, B2, i) 126

viii

CHAPTER 1

INTRODUCTION

T he telecommunication standardization sector of ITU (International Telecom-

munications Union) defines switching as:

”The establishing, on demand, of an individual connection from a desired input to a

desired output within a set of inputs and outputs for as long as is required for the

transfer of information”.

In its early days switching only involved connecting two communicating par-

ties for telephone service. In recent days switching devices are required to han-

dle much more than voice service. Switches must support high speed data and

video communication, LAN to LAN communication, large file transfers and ca-

ble TV transmissions. A recent report1 shows that file sharing consumes 25% of

the global internet traffic and video (such as streaming video, Flash, and Inter-

net TV) consumes 26% percent. Over one-third of the top 50 sites by volume are

video sites. VoIP services such as Skype traffic grew by over 40%2. It is estimated

that around 70% or more of broadband bandwidth is consumed by downloads

1http://gigaom.com/2010/10/26/why-broadband-changes-everything/
2http://technews.tmcnet.com/voip-software/topics/voip-software/articles/132217-skype-

grows-global-traffic-40-percent-2010.htm

1

Introduction

of music, games, video, and other content3.Considering the increasing demand

it is not possible to connect all the users with direct communication links as the

cost grows exponentially. Hence various switch and switching mechanisms are

in place to reduce the communication cost and increase the reliability of commu-

nication.

1.1 Motivation

Switching network architectures in use in recent communication networks may

be catagorised as blocking or nonblocking. Nonblocking networks can be fur-

ther classified into three different classes, strict sense nonblocking networks, wide

sense nonblocking networks and rearrangeable nonblocking networks. Among these

classes, rearrangeable nonblocking networks have the best scaling properties and

are the subject of this thesis.

The properties of symmetric rearrangeable networks have been studied exten-

sively in the literature, initially in the context of possible applications in telecom-

munication and subsequently for use in high-performance computing. The lat-

ter community has explored the use of parallel routing algorithms for such net-

works since they expected them to be deployed in support of parallel computing

systems. New applications for such networks recently emerged for which these

routing algorithms are unsuitable. The need for automatic deployment of digi-

tal subscriber line (DSL) technologies requires a capability for analog switching of

perhaps thousands of subscriber loops. Secondly, increasing chip density is giv-

ing rise to Network on Chip (NoS) and System on Chip (SoC) solutions where the

switching requirements are such as to make fully-connected or crossbar solution

inefficient. Report4 shows that big telecommunication companies are moving to-

wards the use of NoC applications. Parallel routing solutions are unsuitable in

3http://www.cisco.com/en/US/prod/collateral/ps7045/ps6129/ps6133/ps6150/prod-
white-paper0900aecd8023500d.html

4http://www.arteris.com/customers.php

2

Introduction

such devices. This thesis explores the optimal design of multistage switching

systems for analog and on-chip applications.

Possible blocking in a rearrangeable network is overcome by rearranging the

state of the network. For time slatted operations this can be achieved in between

the time slots, but for analog communication this will lead to disruption of the

ongoing transmission. To overcome this issue use of extra bypass paths has been

illustrated in the literature. The proposed extra paths in the network that act as

bypass paths in an event of state change in the network. This type of rearrange-

able network is called a repackable network. This thesis investigates the design

of large scale repackable networks that require minimum hardware cost when

compared to the existing proposals in literature.

Suboptimal algorithms for symmetric rearrangeable networks suffer from high

blocking probabilities as the network size increases. At the same time optimal al-

gorithms suffer from being less scalable as they require complex computation

that increases with the size of the network. There is a need for an algorithm that

can provide low blocking probability with low computational complexity. This

thesis investigates the possibilities of constructing a feasible algorithm that meets

these criteria and scales better than existing proposals.

Many optimal or deterministic routing algorithms reported in the literature

are designed for full permutation, in other words, all inputs request an output.

Also algorithms designed for 2 × 2 switching elements cannot be scaled to work

for other symmetric rearrangeable networks built with larger switching elements.

This thesis studies a new routing algorithm that can address these issues. Further,

an investigation is focused to determine the possibilities of designing symmetric

rearrangeable networks built with larger switching elements.

3

Introduction

1.2 Thesis Contribution

1.2.1 Problem Statement

The focus of this thesis can be categorized in two broad classes:

Architecture: The contribution on the architectural domain of the rearrange-

able networks can be categorized into two subclasses:

• To study the large scale repackable topology and the design of a minimum

cost repackable network;

• To design new symmetric rearrangeable networks built with switching ele-

ments having more than two input output ports and without compromising

the zero blocking probability.

Routing: Contribution on the routing algorithm domain of the rearrangeable

networks can be categorized into two subclasses:

• To design a new suboptimal routing algorithm that can provide lower block-

ing probabilities and faster execution time than that of the other determin-

istic routing methods;

• To design a new deterministic parallel routing algorithm that works for par-

tial permutations both in electrical and optical domain.

1.2.2 Solutions

A repackable network offers performance potentially indistinguishable from that

of a strictly non blocking network, in that a free path through the repackable

network is always available, provided that sufficient time has elapsed since the

last connection request for the network to the repacked (i.e. to be reconfigured so

that a free path is available between any pair of idle inlet and outlet). Therefore,

as a solution extra bypass paths have been used to build these network using

4

Introduction

rearrangeable networks as base networks. The minimum hardware cost has been

achieved by using the minimum number of bypass links in the innermost stage

of these networks.

The purpose of designing a suboptimal routing algorithm is to reduce the

required computational processing overhead. The processing required to imple-

ment existing routing methods limits their scalability. Thus, the new method

proposed herein considers good scalability properties and can route a partial per-

mutation.

A new deterministic algorithm is designed in this thesis that works for partial

permutations. Most available algorithms only work when all the input-output

pairs are active, or when dummy requests are set for inactive input-output pairs.

The algorithm proposed in this thesis successfully determines the routing paths

without the need for dummy requests to fill out partial permutations. A modifi-

cation of the new method is carried out to make it work in the parallel domain.

With ever increasing demand of optical domain communications, routing algo-

rithms need to be feasible to map into the optical domain. The new method also

works in generating semi permutation for planar optical rearrangeable networks.

With only minor modifications this method generates semi permutations that en-

sures crosstalk free routing in optical domain.

The modification of rearrangeable network topology addresses the issue of re-

ducing network depth by using larger switching elements and at the same time

realising all possible permutations and also reduces the required hardware cost.

The routing decision on networks using these larger switching elements is always

very challenging, as binary decision making is no longer valid. The deterministic

algorithm proposed in this thesis has been modified for routing on these net-

works.

5

Introduction

1.2.3 Methodology

The solutions to the problems stated above have been validated by simulation for

various sizes of network. In the simulator the traffic load is uniformly distributed

across the network inputs and outputs, for various loads of occupancy of the net-

work. The simulation results obtained have been compared with those of other

routing algorithms. All the simulators have been tested in an Intel(R) Core(TM)

2 Quad 2.40 GHz CPU computer with a memory of 8GB.

Hardware complexity is an important issue in deploying any switching sys-

tem. Crosspoint count has been used as a measurement of hardware complexity

in this thesis. Hence the relative cost of using various switching element sizes has

been investigated.

1.3 Summary of Contributions

The contributions presented in this research are listed below:

• I did a detailed study of symmetric rearrangeable networks in this thesis.

Various design proposals have been studied and are shown to be derived

from Beneš based networks. A literature review has been presented on rout-

ing algorithms for symmetric rearrangeable network using both serial and

parallel processing domains. The reason for choosing rearrangeable net-

works as a topic for this research has also being discussed.

• A new repackable topology has been proposed in this thesis. The new pro-

posal has a reduced hardware cost compared to existing proposals reported

in the literature.

• A suboptimal routing algorithm, termed the hybrid routing algorithm has

been proposed. This new method achieves quick routing by trading off

blocking probability against execution time. Simulation studies have been

carried out to compare its performance with that of other similar methods.

6

Introduction

The proposed new method gives a faster execution time than the looping

algorithm and a better blocking performance than random routing. Mathe-

matical complexity analysis shows that the overall complexity of the routing

algorithm is O(N logN) using a uni-processor system, where N is the num-

ber of inputs. The method does not fully support parallel implementation,

but work in two inner subnetworks can be divided among four processors

to reduce the execution time of the algorithm.

• A new deterministic routing algorithm has been proposed in this thesis.

This method is designed to work for partial permutations without the need

for dummy requests. It is always desirable to minimise the required math-

ematical processing associated with any algorithm. The network stages are

abstracted as a set of sub-matrices to generate the conflict free routing tags.

This method has better execution time than that of other existing methods.

The time complexity for routing a partial permutation (m < N), where m

is the number of connections to route, has a better upper bound than other

similar methods. Also when routing a full permutation its time complexity

matches that of other proposals reported in the literature. This proposed

algorithm also works in optical Beneš networks having planar topologies

with necessary modifications.

• Rearrangeable networks built with large switching elements have been de-

signed in this thesis. In the network depth is reduced without compromis-

ing the zero blocking probability by using switching elements of larger size

than the 2× 2. A new routing algorithm for this modified class of networks

has been proposed in this thesis as binary decision making is no longer valid

for these networks.

7

Introduction

1.4 Outline of the Thesis

This thesis is organised as follows:

Chapter 2 An overview of available switching methods is presented, followed

by a brief description of various transmission techniques. This chapter

describes general network structures used in communication. Two broad

classes of networks are highlighted. One is the class of self routing blocking

networks and the other is the class of nonblocking networks. Three differ-

ent types of nonblocking networks are also been discussed in this chapter

.

Chapter 3 Details of rearrangeable networks are given in this chapter, with a

focus on popular rearrangeable networks. Different constructions of Clos

networks are presented. This chapter also describes 2 × 2 symmetric rear-

rangeable networks, also known as Beneš networks. A detailed study of

networks derived from Beneš networks are presented with their permuta-

tion realisability characteristics. Overviews of Beneš network routing algo-

rithms, both in serial and parallel domain, are discussed in this chapter. A

discussion is given showing the time complexity of the algorithms proposed

in the literature for this class of networks.

Chapter 4 Repackable topologies which allow rearrangement without disturb-

ing existing communication links, are studied in this chapter. A new repack-

able structure is designed that requires fewer crosspoints than that of the

other proposals reported in the literature.

Chapter 5 This chapter presents a new routing algorithm termed as, hybrid rout-

ing algorithm for rearrangeable networks. Its performance has been com-

pared to that of existing algorithms using simulation results. A mathemat-

ical complexity analysis has been executed. The analysis shows that, even

in the worst case situation, the hybrid routing algorithm is bounded by the

8

Introduction

upper limit reported in the literature. The simulation results show that this

method has better performance metric than deterministic and other subop-

timal algorithms, hence making it a better choice for SoC and NoC applica-

tions.

Chapter 6 A new routing algorithm with zero probability of blocking has been

designed in this chapter. This method uses a matrix based abstraction for

generating the routing tags, rather than using a complex mathematical model

to determine the switching element settings. It has been shown in this chap-

ter that the new algorithm is capable of routing requests for partial permu-

tations. A complexity analysis shows that for serial implementation this

algorithm matches the scalability in time of the state of the art. For paral-

lel implementation and partial permutations this algorithm has complexi-

ties lower than that of other comparable methods. The designed algorithm

in this chapter also works in the optical domain after minor modification.

This chapter also addresses the issue of designing a symmetric rearrange-

able network with larger switching elements. The algorithm proposed for

networks built with 2×2 switching elements has been extended to work for

modified such symmetric rearrangeable networks.

Chapter 7 This chapter summarises the overall thesis and explores suggestions

for possible future work arising from this research.

9

CHAPTER 2

SWITCHING TECHNIQUES

Switching and multiplexing techniques play a vital role for the effective uti-

lization of the communication channels. Multiplexing techniques are di-

vided into two categories: Frequency Division Multiplexing (FDM) and Time Di-

vision Multiplexing (TDM). Similarly, switching techniques are divided into two

broad classes: Packet Switching and Circuit Switching. This chapter will provide

an overview of various multiplexing techniques followed by common switching

techniques that are in current use in communications systems.

2.1 Multiplexing

Multiplexing is the method of sharing a common medium by two or more com-

munication channels. This makes better use of the available bandwidth of the

common medium, that to dedicate that medium for a single channel. In com-

munication systems, transmission mediums such as fibre, coaxial or microwave

have been shared by multiple channels for transmitting data simultaneously [2].

Fig. 2.1 illustrates the principle of multiplexing.

10

Switching Techniques

Figure 2.1: General multiplexing technique.

Figure 2.2: Frequency division multiplexing.

2.1.1 Frequency Division Multiplexing

Frequency division multiplexing (FDM) [3–5] is the oldest form of multiplex-

ing technique for communication systems. Utilization of the entire bandwidth

of communication link is carried out in this technique by modulating multiple

signals into different career frequencies. In that way more than one signal(each

with a bandwidth less than the link bandwidth) can be transmitted at the same

time using a single communication link. This multiplexing works in the analog

domain even if the individual signals are digital. An example of an FDM system

is broadcast FM radio. Each FM station receives its own frequency band for trans-

mission within the VHF FM band. There are multiple FM channels that broadcast

their transmissions at the same time without interference. Fig. 2.2 illustrates the

principle of dividing total bandwidth F among multiple signals f1 . . . fn.

11

Switching Techniques

Figure 2.3: Time division multiplexing.

2.1.2 Time Division Multiplexing

Time division multiplexing (TDM) [6, 7] allows each signal to use the entire band-

width of the transmission link for a short duration. In this way, TDM allows all

the signals to use the entire channel capacity in turn. There are two kinds of

TDM commonly used: Synchronous Time Division Multiplexing and Statistical

Time Division Multiplexing. In a synchronous system, the system can be un-

der used because the connected sources are active most of the time but they are

not transmitting any data. Statistical TDM dynamically allocates the transmis-

sion link on demand. Statistical TDM can make better use of the transmission

link than synchronous TDM, since bandwidth is not reserved for possible idle

sources. Statistical TDM is associated with packet switching as discussed in 2.2.2.

Fig. 2.3 illustrates a synchronous TDM link where time slots T1 . . . Tn use the full

bandwidth in turn.

2.1.3 Wavelength Division Multiplexing

Communication in the optical domain offers increased bandwidth. The equiva-

lent of FDM in the optical domain is termed as wavelength division multiplexing

12

Switching Techniques

Figure 2.4: (Dense)Wavelength division multiplexing.

(WDM) [8, 9]. In WDM transmission , multiple optical rays of different wave-

lengths are transmitted through an optical link [10–12]. It was first demonstrated

in Bell Labs in 1997 [13]. Their range of the transmitted wavelengths are in the

nanometer range. This method creates a number of virtual fibres inside a single

fibre, which can transmit light of different wavelengths.

With the growth of new high bandwidth consumer applications and the in-

creasing demand in the use of Internet over the last decade, standard WDM dose

not provide enough capacities. Current communication demands requires the

use of Dense Wavelength division Multiplexing (DWDM) [14, 15]. DWDM al-

lows more virtual optical fibres inside a single optical fiber than standard WDM,

leaving small gaps between the virtual paths [16]. A common DWDM system

uses two fibers, one as a transmission link and other one as a receiving link with

amplifiers in between those cables. Fig. 2.4 shows the general block diagram of a

(D)WDM system where λ1 . . . λn are signals of different wavelengths.

2.2 Switching

To transmit data from source to destination, an effective and efficient switching

mechanism is required [17]. There are two broad classes of switching: Circuit

Switching [18, 19] and Packet Switching [20–22].

13

Switching Techniques

2.2.1 Circuit Switching

The basic concept of circuit switching [23, 24] is the establishment of dedicated

communication paths from source to destination or in the reverse direction. The

conventional telephone system is a good example of circuit switching. Once the

calling party is connected to the called party, a circuit is established between the

two parties. Until one of the parties hangs up , the circuit is occupied by that

call. Fig. 2.5 shows the general concept of circuit switching. Circuit switching

allows each channel to use fixed and dedicated bandwidth for the duration to the

connection. A circuit connection has three phases:

Circuit Establishment: Before starting actual communication between parties,

an end-to-end circuit needs to be established. This process checks the avail-

ability of a suitable path as well as the status of the calling party. If any one

of these two is unavailable or busy, the circuit cannot be established.

Transmission of Data: After the establishment of the connecting path between

the calling and called parties, it is possible to exchange information between

the two parties.

Circuit Disconnect: Once the period of information exchange has ended, the

connection is terminated, so that other parties can use the released resources.

Circuit switching can be of two different types: Space Division Switching [25–

27] and Time Division Switching [17, 28]. Space division switching basically

means establishing the actual physical paths between source and destination.

This is achieved by setting collection of crosspoints in active state which are con-

nected by connecting links. These crosspoints remain dedicated for the commu-

nication till the duration of the communication. Fig. 2.6 shows space division

switching inside a switching Network.

Time division switching (TDS) brakes incoming low speed signals into pieces

and creates a frame combining multiple pieces from the incoming singals and

14

Switching Techniques

Figure 2.5: Circuit switching.

transmits through a high speed transmission link. Time slots and Time Slot In-

terchanger (TSI) [29, 30] are associated with TDS. Time slots makeup transmitted

frames, where each frame can have N time slots. Each slot is dedicated to each

transmitting links, which are transmitting at a bit rate for example b. So a shared

link capable of supporting a bit rate of N can have a frame of N/b time slots. In-

formation will occupy different time slots in the incoming and outgoing frames.

This needs change in the time slots and the process is called Time Slot Interchange

(TSI). TSI works like a buffer containing m time slots where input information are

stored sequentially. Output frames are constructed by reading the buffer, where

the values in the input buffer construct that output time slots. TDS is performed

using TSI, where TDM creates the frame stored in the TSI buffer. TSI then in-

terchanges the time slots according to the given permutation. Circuit switching

in the optical domain establishes dedicated light paths between communicating

optical devices [31, 32], which can carry multiple large bandwidth connections

using DWDM.

2.2.2 Packet Switching

Circuit switching systems were mainly used for long distance telephone systems.

This allows two connected parties to communicate information without any in-

15

Switching Techniques

Figure 2.6: Space division switching.

terruption with a fixed bandwidth. But these systems are inefficient for transmit-

ting data, because a dedicated path for transmitting data keeps the path unused

some of the time.

Packet switching [33] allows long messages to be broken into small pieces

called packets which are transmitted through the communication networks. Indi-

vidual packets belonging to the same message might take different paths to reach

the same destination. A packet contains a header with different fields inside it,

such as source addresses and destination address, as well as the payload or ac-

tual information. Fig. 2.7 shows the principle of packet switching. In this figure,

station A sends a message DATA to station B, but in the actual communication

network this message is broken into four packets to be transmitted to station B.

Station B rearranges the received packets to reconstruct the original message.

Packet switching has two different switching methods: Virtual Circuit rout-

ing [34–36] and Datagram routing [36–38]. A virtual circuit network is like packet-

oriented circuit switching. Similarly to circuit switching, a virtual circuit once es-

tablished, produces a dedicated logical path for transmitting packets from source

to destination. Each virtual circuit has its own identifier and each packet has

a virtual circuit identifier associated with it. Fig. 2.8 a illustrates virtual circuit.

16

Switching Techniques

Figure 2.7: Packet switching.

In the datagram routing each packet belonging to the original message may get

routed through a different path from the source to the destination since they are

routed independently. Fig. 2.9 illustrate datagram routing.

Figure 2.8: Virtual circuit routing.

2.2.3 Multi-Rate Circuit Switching

As explained Section 4.1, circuit switching can support a fixed data rate for all

channels. Modified form of circuit switching communication is the multi-rate cir-

17

Switching Techniques

Figure 2.9: Datagram routing.

cuit switching [39], which allows transmission of signal as a multiple of a fixed

data rate. The efficiency of this mechanism depends on the choice of base data

rate. The downside of this method is that it might not provide similar perfor-

mance for high or low data rates signaling. Intergraded Service Digital Net-

works(ISDN) [40] uses base bit rate of 64Kb/s for transmission of signals.

2.2.4 Virtual Cut-Through Switching

In packet switching method entire packet is stored in the node buffer before been

transferred to the next node. For a long packet, some times it is not possible to

transfer the entire packet in one cycle because of the bandwidth of the channel.

As a result it requires multiple cycle to transfer the entire packet. Lets assume

three nodes A, B and C involved in the transmission process. Where A is the

source node and C is the destination node. When node A starts transmitting a

packet to node C through intermediate node B, B must receive the entire packet

from A before it can send it to C. This process requires the buffering time even

if the transmitting channel for free. To overcome this delay, transmission should

start as soon as header of the packet is received in node B and decisions have

been made. This process followed by transmitting the data part of the packet.

18

Switching Techniques

This switching method is called virtual cut-through switching [41, 42]. Without

any channel blocking, the delay experienced by the header in this method is the

switching and transmission delay. Rest of the packet is transmitted in a pipelined

fashion.

2.2.5 Wormhole Switching

Virtual cut-through switching required buffers to store the packets in an event

of channel blocking. Requirements of large buffers are eliminated in wormhole

switching [43–45]. In wormhole switching, messages packets are broken in to

small pieces called flits (flow control digits)and the buffers at a the routers are

large enough to store few flits. Similar to the virtual cut-through switching ,

packets are also pipelined in flits level in wormhole switching. In an event of

channel blocking, message flits are stored in several router’s buffer. In wormhole

switching, header flits contains all the necessary switching information and all

the data flits follows the header flit to reach the destination. Difference between

virtual cut-through and wormhole switching is that for virtual cut-through unit

of message flow is in packets, but for wormhole it is in flits.

2.2.6 Optical Burst Switching

Conventional routing struggles to cope with the increasing demands of Inter-

net traffic. The introduction of optical circuit switching with the help of WDM

allows multiple optical paths to be established between communication parties

hence giving almost unlimited transmission bandwidth [46, 47]. However, alter-

native to the optical circuit switching is the optical packet switching, which al-

lows packet based transmission of data in the optical domain. But optical packet

switching is not commercially viable. A new switching method has been pro-

posed which is optical burst switching [48–50]. In this method of switching, dif-

ferent incoming data streams are aggregated and then transmitted across the op-

19

Switching Techniques

Figure 2.10: Communication with and without switching system.

tical network as a burst of data. At the receiving end the burst gets separated in to

the individual data streams for delivery to their respective destinations. To save

the optical-electrical-optical switching cost, control signals are transmitted in a

separate wavelength compare to the corresponding burst data. This allows the

data burst to be processed entirely in optical domain, but without the technical

challenges and cost of packet switching at optical routes.

2.3 Communication Networks

The easiest way to connect two communicating parties is to have a dedicated

communication link between the two parties. This is a simple solution as long as

the number of communicating parties is limited. With a total of N communicat-

ing devices, a total of N(N − 1)/2 line is require using this dedicated method ,

which is not very efficient. Fig. 2.10(a) shows such a directly connected network.

Avoiding this huge number of connecting links requires the use of switching

systems to connect the devices.

A switching system provides following functionalities:

Signalling: The signaling function monitors the activities on the incoming lines

and passes the appropriate control information to the control unit.

20

Switching Techniques

Control: The control section processes incoming information to set up paths ap-

propriately.

Switching: The switching function provides the switching matrix for establish-

ing a communicating path. The switching section is made of sequential ar-

rangement of rows and columns with basic building blocks, called Switch-

ing Elements(SEs). The connection patterns between these switching ele-

ments define the interconnecting networks.

2.3.1 Interconnection Networks

The topologies, operation modes, control strategies and switching methodologies

of interconnection networks have been surveyed extensively in [51–55]. Telecom-

munication motivated much of the initial research in interconnection networks.

An increasing need for processing power has led to interconnection networks

being also found in high performance computing systems [56]. Concurrent pro-

cessing of data is a priority requirement for monitoring real-time events, such as

weather system, where gigaflop (109 floating point operations/second) was the

speed requirement, interconnection networks were the obvious choice. Fig 2.11

shows a basic model of concurrent processing using interconnecting networks,

with P1 . . . PN processors and M1 . . .MM memory modules.

The following sections provide a general overview of interconnection net-

works used in communication systems. In this thesis the left side of the switch

is consider as the input side and the right side as the output. A practical switch

is usually symmetric and bidirectional. The latter property is often achieved by

use of adjacent unidirectional networks. A switch will be consider to be unidirec-

tional in this thesis unless otherwise stated.

2.3.1.1 Classification of Interconnection networks

21

Switching Techniques

Figure 2.11: Processor memory communication using an interconnection network.

The topological description is an important specification of an interconnection

network as defined below:

Dedicated-path networks regular static networks with dedicated paths for each

processing elements which cannot be changed are called dedicated-path

networks. Fig 2.12 shows examples of dedicated-path networks. Even

though there are dedicated paths for each processing module, these net-

works are less scalable and they have different memory access time because

of physical separation between processing elements.

Dynamic Networks networks where paths can be changed dynamically by con-

figuring the network switching elements. Dynamic networks which have

the capabilities of establishing communicating paths between any two pro-

cessing elements, have three different classes according to their switching

stages.

22

Switching Techniques

Figure 2.12: dedicated-path networks.

Single stage networks where data before reaching the destination recircu-

lates inside the network to find the appropriate destination. For a gen-

eral point of view, a single stage network contains N input selectors to

go with N output selectors.

Crossbar these networks allow processing elements to communicate simul-

taneously without the need of recirculation [54]. In this network input-

output paths are established by activating appropriate crosspoints in

the network that connect requesting parties. Fig 2.13 shows single

stage and crossbar network structure. On the other hand, networks

having stages of switching elements connected by connecting links be-

tween stages are called

Multistage Interconnection Networks where the switching elements set-

tings determine which paths a request will follow to reach a desired

output. Details of multi stage interconnection networks are given in

the next section.

23

Switching Techniques

2.3.1.2 Multistage Interconnection Networks

Multistage interconnection networks(MINs) have the following characteris-

tics:

• Switching elements (SEs) are arranged in stages

• Generally numbered from 0, 1, 2 . . . , from left to right

• Switching element outputs in stagei are connected to switching element in-

puts stagej with a fixed permutations, where i > j (typically j = i + 1)

In this thesis all the log mentioned are base 2 unless otherwise stated and n = logN

and N is the total number of inputs. The notations used in to describe intercon-

nection networks are generalized form of the patterns used in [57]. Multistage

interconnection networks can be either blocking or nonblocking [53, 58]. Block-

ing networks cannot establish paths for all input-output requests, whereas non-

blocking networks will always find a path for any valid request. Banyan net-

works [59] have been proposed for distributing loads among processors. Omega

networks [60] are an example of banyan networks. They have a shuffle-exchange [61]

link pattern between adjacent stages. Omega network has self-routing capabili-

ties. A general view of a self routing networks is given in Fig 2.14, where the

routing is controlled by the routing tags which are the binary bits of the outputs

requested by inputs. Data coming to the network is transmitted serially with a

prifix of an n-bit representation of the requested output (bn−1 bn−2 . . . b1 b0) and

an activity bit.

2.3.2 Networks Overview

This section provides a brief description of some common networks built using

2 × 2 switching elements used as connecting network between communication

parties. These networks have (n − 1) stages of switching elements and n stages

of link patterns. Each link is represented an n bit binary representation of their

24

Switching Techniques

Figure 2.13: Single stage and multi stage networks.

Figure 2.14: General view of a self routing network.

25

Switching Techniques

decimal value from top to bottom, where bit 0 is the least significant bit (LSB)

and bit (n − 1) is the most significant bit (MSB). Similarly switching elements are

numbered with (n−1) bits with bit 0 being the LSB and bit (n−2) being the MSB.

The overall switch is a 2n × 2n network.

Baseline Networks [62] The have a straight through pattern at stage 0 and

stage n. The baseline networks uses inverse perfect shuffle link patterns [61]. The

inverse perfect shuffle is cyclic shift right operation of least significant bit of the

input port. Fig 2.15 (a) shows an 8×8 baseline network. The link patterns between

switching stages can be given by the following equation where 0 ≤ k ≤ (n − 2)

and l = (n − 1):

βk(bn−1 bn−2 . . . b0) = (bl . . . bl−k−1 b0 bl−k . . . b1) (2.1)

Reverse Baseline Networks [62] have the same number of inputs and out-

puts as the baseline networks. These networks have a perfect shuffle connection

pattern between adjacent switching stages. The perfect shuffle is a cyclic left op-

eration on the binary representation of the input port numbers. Fig 2.15 (b) shows

an 8 × 8 reverse baseline network. The link patterns are given by the following

equation where 0 ≤ k ≤ (n − 2) and l = (n − 1):

β−1
k (bn−1 bn−2 . . . b0) = (bl . . . bk+2 bk bk−1 . . . b0 bk+1) (2.2)

Omega Networks [60] use perfect shuffle link patterns at each stage of the

network except the last stage which follows a straight through pattern. Fig 2.15 (c)

shows an 8×8 omega network. The link patterns at each switching stage is given

by the following equation:

Ω(bn−1 bn−2 . . . b0) = (bn−2 . . . b0 bn−1) (2.3)

26

Switching Techniques

Figure 2.15: Common networks

Butterfly Networks [53] have three different link patterns in their construc-

tion. Link stage 0 follows inverse perfect shuffle (IPS) pattern, which is a cyclic

right shift, from stage 1 to stage (n − 1) a swap pattern (SP) and is used the last

stage follows a straight through pattern. Fig 2.15 (d) shows an 8 × 8 butterfly

network. The mathematical presentation of the IPS and SP patterns is as follows:

IPS0(bn−1 bn−2 . . . b0) = (bn−1 . . . bn−2−kb0bn−1−k . . . b1) (2.4)

SPi(bn−1 bn−2 . . . b0) = (bn−1bn−2 . . . bib0bi−2 b1bk−1) (2.5)

where 1 ≤ i ≤ (n − 1) and 0 ≤ k ≤ (n − 2)

The networks described above are all blocking networks. In other words these

networks cannot establish paths for all input- output requests. These networks

have only a single path each output from each input. As a result blocking occurs

as multiple request try to use the same link to go to the desired output port.

27

Switching Techniques

2.3.2.1 Nonblocking Networks

The networks in the previous section have blocking characteristics. Modifications

to make the network non-blocking can be by adding extra paths with switching

elements of higher degree [63], adding extra stages to the existing network [64–

66] or even adding multiple networks in parallel [67, 68]. Nonblocking intercon-

nection networks [69–71] can be of three different types:

Strict sense nonblocking [72] networks can establish connecting paths for any

input-output request. The large implementation cost and the required number of

crosspoints increases rapidly with networks size. Let us assume that A be the set

of inputs and B be the set of outputs and a ⊆ A and b ⊆ B be the inputs and

outputs that are busy. Then for strict sense nonblocking networks, an input from

the set (A − a)⊆A can connect to an output (B − b)⊆B, without disturbing the

already established connections. The required crosspoints count for this kind of

network can be calculated using the following equation [73]:

For a single stage network:

C(1) = N2; (2.6)

For a 3 stage network:

C(3) = 3N
3
2 − 3N ; (2.7)

For a 5 stage network:

C(5) = 16N
4
3 − 14N + N

2
3 ; (2.8)

With k = 2t + 1 where t = 0, 1, 2 . . . and k is the number of stages(odd)in

the network and N = nt+1 is the number of inputs, the general equation for any

network can be given as:

C(2t + 1) =
n2(2n − 1)

n − 1
[(5n − 3)(2n − 1)t−1 − 2nt] (2.9)

Wide sense nonblocking networks were proposed by Beneš [73]. A network

28

Switching Techniques

can be called wide sense nonblocking if using a routing algorithm A, the network

is always in a safe state. In other words, the algorithm can establish paths for

new requests without rerouting existing connections. Later Smyth [74] proposed

method to determine how the safe states can be achieved for a routing algorithm

A. According to the proposed method, algorithms for these networks first iden-

tify the safe state of the network. If a network has a total of S state and there

is a set of S ′ which will result in putting the network into blocking state, the re-

maining states (S − S ′) are safe. Wide sense nonblocking networks require fewer

of crosspoints than strict sense nonblocking networks , but they need complex

algorithms to achieve this performance [71, 75–78].

Rearrangeably nonblocking networks [79–82] can connect every input-output

pair. To set the network might need to re-route existing connections in order to

establish the new request. One of the most common rearrangeable network is the

Beneš [73] network. Because of the interesting path setup characteristic and low

hardware complexities, more details on rearrangeable nonblocking networks are

discussed in detail in Chapter 3.

2.4 Bidirectional Multistage Interconnection Networks

This section will briefly describe another class of networks called bidirectional

networks [19, 83, 84]. These networks are used in areas such as wormhole switch-

ing [44]. In a bidirectional network each switching element port has two unidi-

rectional channels for communication in both directions. This helps transmitting

simultaneous information in both directions. These networks support three types

of communications forward, reverse and turnaround. Lets assume that all the

nodes are attached to the left hand side of the network. So in this case, forward

communication is the process of going from left to the right of the network. Sim-

ilarly reverse is coming from right towards the left of the network. And going

from left to right and then reversing back from right to left side of the network

29

Switching Techniques

Figure 2.16: Bidirectional butterfly network
[84]

together called turnover process. Fig. 2.4 shows a bidirectional butterfly network

and routing paths between source S and destination D. In forward direction

routing there can be multiple paths similar to the unidirectional networks , but

in reverse direction there can be only one path from source to destination. If the

requested node is in the other half of the node list, directional networks faces

worst case scenarios. In those cases the signal travels (2logN − 1) stages, which

is similar to the Beneš [73] network routing. This is why a bidirectional baseline

network can be termed as folded Beneš network.

A bidirectional butterfly network can be terms as a Fat tree [85, 86]. In a fat

tree network nodes are located at the leaves, and intermediate node connecting

these leaves are switches. As these networks goes towards the root, network

bandwidth gets increased as the links associated with nodes at each stage in-

crease. In a binary fat tree for each node at the leave has two unidirectional links

in both direction. This trend continues for the switching nodes, as for a switch-

ing node with two processors attached to it has four links going out and coming

into it. Similar to the bidirectional butterfly network, in worst case signal travels

(2logN − 1) nodes before reaching the destination, which is again similar to the

30

Switching Techniques

Figure 2.17: Fat tree with 16 nodes
[84]

Beneš networks. Fig 2.4 shows a binary fat tree.

2.5 Summary

This chapter overviews various multiplexing techniques and switching networks.

TDM shows better use of the available bandwidth compare to the FDM. But im-

plementation of TDM requires complex hardware than FDM, as it has to deal

with time slots and frames. In optical domain, use of (D)WDM shows consider-

able improvement on the used bandwidth because of their ability to create mul-

tiple fibre environment inside a single fibre. From switch structure point, dif-

ferent multistage switching structure have been discussed. Multistage switching

networks have less hardware complexities than compare to crossbar networks.

Rearrangeably nonblocking networks have less hardware cost compared to strict

nonblocking networks or crossbar. These networks structure show the promise

for further investigations because of their low hardware cost and zero blocking

performance.

31

CHAPTER 3

REARRANGEABLE NETWORKS

T his chapter contains detailed descriptions of some common rearrangeable

nonblocking networks, with an analysis of their strengths and weaknesses.

3.1 Clos Networks

Clos networks [87] are constructed with three switching stages, an input stage,

a middle stage and an output stage. A common notation to describe a Clos net-

work is the triple(m,n, r), where n is the number of inputs for each switching

element at the input(respectively output) stage, m is the number of outputs for

each switching element at input (respectively output) stage and r is the number

of switching elements both in the input and output stages. Each input switching

element has a connection to each middle stage switching element. Similarly each

middle stage switching element has a connection to each output switching ele-

ment. Fig 3.1 shows a diagram of a Clos network. A network with r switching

elements in the input stage, has m, r × r switching elements in the middle stage.

Clos networks can be of three different types:

32

Rearrangeable Networks

• Strict-sense Nonblocking

• Wide Sense Nonblocking

• Rearrangeably Nonblocking

Clos networks where m ≥ (2n−1), are strict-sense non blocking networks. Ta-

ble 3.1 [73] shows the required number of crosspoints for strict-sense nonblocking

Clos networks and networks built using crossbar switches. If m ≥ n the networks

are rearrangeably nonblocking (Slepian-Duguid [88, 89]). They also proved that

no more than (2r − 2) rearrangements are required to unblock a blocked request.

Paull extended the result given by Slepian-Duguid to reduce the upper bound on

the total number of rearrangements to (r− 1) [90]. Beneš [73]later proved that for

(2, 2, r) network, maximum number of required rearrangement is also (r − 1).

Figure 3.1: Clos network.

The proof that the upper bound is (r−1) given in [91] is as follows. A (2, r, r)

switch will have N = 2r inputs and outputs. When establishing a path for a

new request, at most there can at most (2r− 1) active connections in the network.

There is then only one free link from the input stage switching element to a single

33

Rearrangeable Networks

Table 3.1: Number of crosspoints for crossbar and 3-stage Clos networks.

N Crossbar Networks 3-stage Clos Networks
4 16 36
9 81 135

16 256 336
25 625 675
36 1,296 1,188
49 2,401 1,911
64 4,096 2,880
81 6,561 4,131

100 10,000 5,700
....

1,000 1,000,000 186,737
10,000 100,000,000 5,970,000

middle stage switching element as well as one free link from that middle stage

switching element to some output switching element. Thus, in this particular

state of the network, there is only one middle stage switching element having one

free input and output link. This middle stage switching element is subsequently

linked to a single input stage switching element and a single output stage switch-

ing element with free input or output port respectively. Since these are the only

available links at this particular state of the network, so a new request between

these two free ports is possible. The network experiences a blocking state when

there are already (2r − 2) active requests in the network and a free input is re-

questing for an available output but no paths are available to route the request

from the input stage to the output one. Under such a circumstances, the path for

the new request can only be established by rearranging the already established

requests.

As mentioned in the blocked state there can be a maximum of 2r − 2 active

requests, and they form two loops. A loop can be defined as a set of paths where

connecting paths starting from one input(output) switching element terminates

in the same input(output) switching element respectively or in a switching ele-

ment where terminating paths is the only active link. Let’s assume the length of

34

Rearrangeable Networks

these paths can be P , which contains the number paths in a sequence or in other

words length of the loop. Since there are two available inputs in two different

input switching elements, so there can only be two loops of links available in

this case. Suppose P1 and P2 are lengths of two loop and either of them can be

rearranged to find path for new request. So:

P1 + P2 = 2r − 2 (3.1)

If the values of P1 and P2 are the same:

P1 = P2 = r − 1 (3.2)

If they have different values then it can be assumed that P2 > P1:

P1 < r − 1 and P2 > r − 1 (3.3)

Since P1 contains fewer paths, it makes sense to rearrange P1 which is upper

bounded by r−1. Hence even in the worst case, it is always be possible to unblock

a network with at most (r − 1) rearrangements.

The comparison of the implementation cost of rearrangeable networks to that

of strict-sense nonblocking Clos network can be approximated using Eqn 3.4.

Let’s assume for a given strict-sense non-blocking Clos network with m = 2n− 1.

Then the implementation cost C(n, r) for the network is given :

C(n, r) = n(2n − 1)r + r2(2n − 1) + (2n − 1)nr

= 4n2r − 2nr + 2nr2 − r2 (3.4)

Substituting N = nr, where N denotes the number of inputs, Eqn 3.4 becomes:

C(n, r) = 4Nn − 2N + 2
N2

n
−

(N

n

)2

(3.5)

35

Rearrangeable Networks

Differentiation of Eqn 3.5 with respect to n gives:

d

dn
C(n, r) = 4N − 2N2

n2
+

2N2

n3
(3.6)

To find the value of n, lets simplify Eqn 3.6 as:

4N − 2N2

n2
+

2N2

n3
= 0

⇒ 2N

n2
− 2N

n3
= 4

⇒ 1

n2
[1 − 1

n
] = 2

N

Which in turn gives Eqn 3.7:

n ≈
√

N

2
(3.7)

Substituting Eqn 3.7 in Eqn 3.4 gives the approximate minimum number of cross-

points required for an N × N strict-sense nonblocking Clos network:

C(n, r)min = 4
√

2N1.5 − 4N (3.8)

For a rearrangeable Clos network the corresponding figure is:

C(n, r)rea = 2n2r + nr2 (3.9)

The overall crosspoint requirement can be reduced considerably by using a

recursive topology in building the network. The large middle stage switching

elements can be implemented as three stage subnetworks with smaller switching

elements. This principle can be applied to the recursive construction of a Clos

network as shown in Fig 3.2. This creates a network which is symmetric about

the middle stage.

36

Rearrangeable Networks

Figure 3.2: Recursive Clos network.

3.2 Beneš Network

A Beneš network is a recursively constructed Clos network built with 2×2 switch-

ing elements [35, 79, 92]. Waksman showed that it acts as a permutation net-

work [93], which means it can realize all N ! possible patterns of input-output

requests, with N = 2logN inputs (outputs) and total stages k = (2logN − 1) [94–

96]. The Beneš network may be regarded as the concatenation baseline network

and its reverse network. The concatenation of two logN -stage networks form a

2 log N -stage network with a straight through link pattern between the two mid-

dle stages. Merging the two middle stages gives rise to a (2logN − 1) stage Beneš

network.

Link pattern for the Beneš network described by the following equations [97]

37

Rearrangeable Networks

Figure 3.3: A 16 × 16 Beneš network

is generalized form of the link patterns presented in [62] .

L0:(2logN−2) =

(bl . . . bl−k+1 b0 bl−k . . . b1, 0 ≤ k < logN − 1)

(blbl−1...bk+2bkbk−1...b0bk+1), logN − 1 ≤ k < 2logN − 2)

(3.10)

where the binary representation of Ok, which is the output O for switching ele-

ment bO/2c at stage k, is (bl bl−1 . . . b0) and l = logN − 1.

For a 16 × 16 network with l = 3 the link patterns between stages 0 and 2 are

as follows:

stage 0 : b0b3b2b1

stage 1 : b3b0b2b1

stage 2 : b3b2b0b1

The link patterns for stages (logN − 1) to (2logN − 3) are given by:

L(logN−1):(2logN−3) = (blbl−1...bi+2bibi−1...b0bi+1) (3.11)

where 0 ≤ i ≤ (logN − 1), and l = logN − 1.

38

Rearrangeable Networks

The link patterns for the remaining stages of the 16 × 16 network can thus be

given by:

stage 3 : b3b2b0b1

stage 4 : b3b1b0b2

stage 5 : b2b1b0b3

Fig 3.3 shows such a 16 × 16 Beneš network. The overall required number of

crosspoints in this network is given by Eqn. 3.12. This specific class of rearrange-

able network built with 2× 2 switching elements will receive particular attention

in the remainder of this thesis due to its low hardware complexities as well as for

the capabilities of being able to realize all N ! permutation.

CBenes = 4N logN − 2N (3.12)

3.3 Preliminaries

Input Permutation is the set of one to one requests between the switch inputs

and outputs. In more mathematical term, a mapping of an input to an output

is an element in the input permutation. Let us assume that P0:(N−1) is a given

permutation such that, P0:(N−1) = {xi|xi ∈ {0 . . . (N − 1)}}, where xi 6= xj, and

0 ≤ (i, j) ≤ (N − 1). The mapping P : i → xi indicates that input port i is

requesting for the output port xi.

P0:7 =

0

7

3

2

4

1

5

6

39

Rearrangeable Networks

For example, an 8 × 8 network with an input permutation P0:7 : (0 7 3 2 4 1 5 6),

maps 0 → 0, 1 → 7 and so on. A binary representation of these permutation

for given by the above permutation matrix, where each row number corresponds

to an input port and bits correspond to the requested output port, which can be

used to expressed in binary the switching element settings.

Routing Tags they comprise an appropriate sequence of control bits per net-

work stage, and optionally, an activity bit to indicate that a valid tag is present.

In a Beneš network, some (2logN − 1) bits required to specify a route from source

to destination. The first (logN − 1) bits may be freely chosen subject to the con-

straint that the resulting path is non-blocking. The remaining logN bits are for

the bit controlled part of the network, i.e. the logN stages through which only a

single path is available to the destination. Therefore, determining the last logN

bits of the tag is straight forward, as they are the logN bits binary representation

of the requested output port.

Figure 3.4: Possible settings for switching elements.

Switching Elements are the basic building blocks of Beneš networks, just as

with any other switching network. In a Beneš network the total number of 2 ×

40

Rearrangeable Networks

2 switching elements is (2logN − 1) × N
2

. Using a matrix notation, a switching

element can be identified by its position [i, j] in the switch,where 0 ≤ i ≤ N
2
− 1

and 0 ≤ j ≤ (2logN − 2). A switching element can be in any of three possible

states, one being a free state, which means the switching element can be set to any

one of the other two possible states in response to input routing tags. The second

is the straight through state, which connects the input ports to the corresponding

output ports. The third state is cross state, which means that signals entering the

upper input port, exit from the lower output port and a signal entering the lower

port exits from the upper output port. These switching elements use a single bit

in the routing tag as a control bit. The control bits for the two inputs have to

be different to avoid any conflict. A control bit of 0 requests transmission to the

upper output port and in case of a 1 it request the lower output port. Fig. 3.4

shows the three possible switching element states and how they are based on the

control bits.

As already mentioned the calculation of the first (logN − 1) bits is the major

concern as it determines a unique middle stage switching element for the path,

that must be chosen to ensure conflict free routing. The matrix R below shows

a sample set of conflict-free routing tag for an 8 × 8 Beneš network. The corre-

sponding routes are shown in Fig 3.5.

R =

00000

10011

01111

11110

11001

01010

00100

10101

The routing tags are processed from left to right, i.e the leftmost bit determines

the next link for a packet in the last stage. An example of a routing with conflicts

41

Rearrangeable Networks

Figure 3.5: Routing using the generated conflict free routing tags.

is shown in the tag matrix Rc. Fig. 3.6 shows the conflicting state inside the net-

work because of this conflicting routing tag matrix.

Rc =

01000

10011

01111

11110

11001

01010

00100

10101

3.4 Blocking Probabilities: The Lee and Jacobaeus Method

This section overviews the blocking probabilities for alternative path networks.

First the Lee method [98] will be described in brief followed by the Jacobaeus

method [99].

A point-to-point communication process in a network is defined by two ter-

minals involved in the communication. Links are the resource set that are shared

42

Rearrangeable Networks

Figure 3.6: Conflicting state inside the switch.

by the communication in the network denoted as Υ. A set of links establish a

path and that set is denoted as πi, where for each request i. For single path net-

works there is at most one πi for each i, for alternative path routing there will be

multiple πi. Lets assume that B be a random variable denoting blocking for any i

and A being the availability of πi, so B = 1 − A. The probability of blocking can

be given as in Eqn 3.13:

PB = E[B] = E[1 − A] = E[1 − ∨π∈M

∏
x∈π

X] (3.13)

Where M is the set of available paths for a request i. For resource x ∈ Υ, a

Bernoulli availability random variable is X , where X = 1 is means resource x

available for X = 0 it is not available. An alternative expression of Eqn 3.13 can

be given as in Eqn 3.14, where it is assumed that all alternative paths for i are not

available :

PB = E[
∏
π∈M

(1 −
∏
x∈π

X)] (3.14)

The Lee approximation assumes that for all x ∈ Υ, the associated X are mu-

43

Rearrangeable Networks

tually independent. Given the independent assumption in the Lee model, the

blocking probability given in Eqn 3.14 becomes:

E[B] = E[
∏
π

(1 −
∏
x∈π

X)] (3.15)

=
∏
π

(1 − E[
∏
x∈π

X)] (3.16)

=
∏
π

(1 −
∏
x∈π

E[X]) (3.17)

With regular structure multistage networks, E[X] can easily be determined.

Networks such as three stages rearrangeable Clos networks are of these class.

Rearrangeable Clos networks can show blocking characteristics if the network is

not allowed to perform necessary rearrangements. Before going into the detail of

derivation lets assumes two assumptions, terminal symmetry and network symme-

try. The terminal symmetry assumes that input terminals are independent and

identical as the network input. Also any input can request any available output.

The network symmetry assumes links in a stage are symmetrical. Considering

these symmetries, an assumption can be made about an occupancy probability pk

for all links at the output stage k, 1 ≤ k ≤ n. Let there are lk outgoing links at each

stage. Since the number of established circuit is equal to the number of occupied

links in each stage, Eqn 3.24 is true:

p0l0 = p1l1 = . . . = pnln (3.18)

Given p0, pk be obtained easily. The probability of blocking is then given as:

44

Rearrangeable Networks

E[B] =
∏
π

(1 −
n−1∏
k=1

(1 − pk)) (3.19)

= [1 −
n−1∏
k=1

(1 − pk)]
R (3.20)

= [1 −
n−1∏
k=1

(1 − p0
lk
l0

)]R (3.21)

where R is the number of routes.

The Lee model assumes that all links within the network are independent.

Which means that using one link in the network will not affect the the usabil-

ity of other links. This gives a higher probability estimation and The Jacobaeus

method improves the Lee model. The Jacobaeus method assumes more accurate

description of the distribution for the number of occupied links at the input or the

output of each switching elements. Probability of blocking using the Jacobaeus

can be given as:

E[B] =
(m!)2(2 − p)2m−rpr

r!(2m − r)!
(3.22)

With recursive application of the Lee method it can be shown that network

with complexity O(N logN) have a blocking probability converging rapidly to a

constant 0 < A < 1. Lets assume that for a 3-stage Clos network, rk links are

coming out from first stage node or going out into each third stage node. For each

of these links, let’s assume link availability isqk = 1−pk and Ak be the probability

that an input-output connection will be made. Applying the Lee assumption,

Ak can be expressed in terms of qk and Ak−1, the connection can be made in the

middle stage.

Ak = 1 −
(
1 − q2

kAk−1

)rk

(3.23)

45

Rearrangeable Networks

Furthermore, following conservation equation also holds:

pkrkmk = T for all k (3.24)

Where mk is the number of switching elements in the first or third stage, and

T in the total traffic through the network. This recursive relation can be use to

calculate blocking probabilities for network with 5, 7, 9 . . . stages. Consequently

assuming rk = r and qk = q for all k will show that for Beneš network it is pos-

sible to establish path for a request with a constant blocking probability A. All

the derivations presented in this section are the generalized form of the deriva-

tion presented in [100]. More general derivation of these methods can be found

in [101].

The assumption of these methods for calculating blocking are that the net-

works are not working as a rearrangeably nonblocking networks, hence there

will the blocking matric associated in setting up path for any new request. Studies

of the networks in this thesis consider that the networks are rearrangeably non-

blocking. As a results non of the above mentioned blocking probability model

will not be referenced in future discussion of this thesis.

3.5 Beneš based Networks

This section draws an overviews on the network topologies derived from Beneš

network structures.

One of the early network designed using the Beneš network as their base is

the Cantor networks [102]. Cantor network was designed to built a strict sense

non-blocking network [103] but with less hardware cost than the Clos networks.

It was designed as a parallel cascading of m Beneš networks, where m = logN

and N is the input to the network. In the network there are N , 1 × logN splitter

in input side of the network and N , logN × 1 in the output side of the network.

46

Rearrangeable Networks

Figure 3.7: N × N Cantor network.

An N ×N Cantor network can be constructed with roughly 4N log2N crosspoints

ignoring the cost of the splitter and there will be 2logN + 1 switching stages in

the network. Input i of the network is connected to inputs i of the parallel logN

networks, similar output j is connected to outputs numbered j in the parallel

networks. Recently use of Cantor network in optical domain as a permutation

network have been demonstrated in [104, 105]. Fig. 3.7 shows an N × N cantor

network.

One of the recent permutation network derived from Beneš network is the KR-

Beneš network [106]. In [106] it is suggested that with little modification to the

regular Beneš network it is possible to design a permutation specific rearrange-

able network. These networks can route those permutation with smaller latency

and control over head than regular Beneš networks. First a K-Beneš was designed

to satisfy K-bounded permutation, which satisfy the condition |P (i) − i| ≤ k, for

all inputs i, 0 ≤ i ≤ N − 1, k is any integer in [0, 1, . . . , N − 1] and K ≤ N is

the smallest power of 2 integer≥ 2. In general there are K!(K + 1)N−K such per-

mutations for K ≤ N
2

. K-Beneš has three logical parts in the network structure,

matching networks, band-exchange network and routing network. There are N
K

,

47

Rearrangeable Networks

Figure 3.8: 16 × 16 K-Beneš Network.

K ≤ N
4

parallel matching networks built with inverse butterfly networks also

same number of inputs and orientations of routing network built with butter-

fly networks. The Band-exchange network constructed with column of switch-

ing elements connected with shuffle exchange link patterns. In the outer half of

the network, switching elements are set using the looping algorithm, and in the

Band-exchange network a matching algorithm is used. Overall depth of these

networks is 2logK + 2. These networks can be used to reduce the hardware com-

plexity when the effective permutation size dose not increase with time. But for

realistic cases the permutation size will increase over time and hence use of Beneš

is the solution in those scenarios. Fig 3.8 shows a 16 × 16 K-Beneš networks with

its logical parts.

KR-Beneš was designed by using K-Beneš as a building block for the network.

It has been demonstrated in [106] that using K-Beneš as building block a 3logN −

3 stages rearrangeable network can be built that is control optimal for specific

permutations compared to regular Beneš networks.

A self routing network with larger depth than Beneš networks using com-

48

Rearrangeable Networks

plementary Beneš has been proposed in [107]. These networks have depth in

O(log3N), and total number of switching elements in O(N log3N). This results

have been improved to a O(log2N) depth and O(N log2N) switching elements

in [108, 109]. In [110], a structure of rearrangeable networks have been presented.

This study used network design similar to the cantor networks, where paral-

lel plane are arranged connected to the input(output) through multiplexer(de-

multiplexes). This work is effective in designing switches for optical domain, as

the signals has to travel less number of stage. Also this can show limited blocking

probability if rearrangement functionality is not used. Each plane contains cas-

cading to two networks one is the Beneš network for first l to l + k − 1 stages and

the second part uses baseline network. With l = 0 and k = logN − 1 this network

transforms into a Beneš network. With k = 1 and L = 2l this network show sim-

ilar properties as parallel delta networks [111, 112] though they are topologically

different.

Lee [113] showed that network built with cascading omega and omega−1 are

topologically equivalent to Beneš networks. She also proposed routing algorithm

that can be used on these equivalent networks where last logN stages can be con-

trolled using bit-controlled routing rather than the recursive looping algorithm.

In [114], a r-truncated Beneš network is proposed. This was designed with a

combination of r truncated stages of Beneš network and cascading of omega net-

work. A randomized routing with r = 1 (one stage of Beneš network) is applied

in this network and overall performance shows improvements compared to a

single omega network of size N . For a network size of N = 1024, an optimal per-

formance can be achieved when 4 × 4 crossbars are used as switching elements

and r is set to 8, which means only one stage of randomized decision making. An-

other network uses r×r switching elements to built 3−stage Beneš network [115],

where N = r2 and r ≥ 2. It uses a self routing technique in the first stage to setup

the switching element hence finds a free middle stage switching elements. One

issue with this method is that when the value of r is big, this will require bigger

49

Rearrangeable Networks

size of switching elements hence making the self routing more complex.

Beneš based networks have been extensively studied for use in optical do-

main [116–119]. A network called N-stage planar optical permutation network is

proposed in [120]. This was designed for optical domain and to reduce optical

cross-talk. In electrical domain the cross-talk between two crossover signals is

very negligible, but in optical communication this has big impact in overall com-

munication. To overcome the cross-talk problem, a planar network is proposed.

The network is designed in such a way that each switching element will have

only one active input at a time. This design requires a total of N(N−1)
2

switching

elements, where N is the total input size for the network.

Network proposed in [118] a cross-talk free optical permutation network is

presented using Beneš. This work uses the concept of semi-permutation pro-

posed by Hall [121]. The idea is to feed each switching element in the network

only one input signal at a time. This process will eliminate cross-talk problem

since only one input will be active at a time in a switching element.In these net-

works generating the partial permutation for each copy is carried out using the

Euler-split technique for coloring bipartite graphs [122]. A partial permutation,

P ′ =
(x0 x1 ... x N

(C−1)
y0 y1 ... y N

(C−1)

)
for an N × N vertically stacked Beneš network, where xi

maps to yi and xi, yj ∈ {0, 1, . . . N − 1} is a cross talk free feasible permutation if:

{bx0

C
c, bx1

C
c, . . . , b

x N
C−1

C
c} = {1, 2, . . . ,

N

C
− 1}

{by0

C
c, by1

C
c, . . . , b

y N
C−1

C
c} = {1, 2, . . . ,

N

C
− 1}

Detail proof of this method can be found in [123]. It has been show in the work

that any permutation can be realized in two passes by avoiding cross-talk in the

network. Another work presented in [1, 124] shows the modification to the gen-

eral Beneš networks, by replacing middle stage with 3×3 structure. Modified net-

works have similar link patters as in general Beneš networks in the outer stages

50

Rearrangeable Networks

Figure 3.9: Modification to the inner stage networks.

but the inner stages are built with 3× 3 and 5× 5 switching networks. Algorithm

proposed in [1, 124] works recursively and follows the classic form of the loop-

ing algorithm. Closer observation shows that the inner 3 × 3 network required

number of total crosspoints are 12, but this could easily be replaced with a 3 × 3

crossbar which requires a total of 9 crosspoints per network. This saves 3 cross-

points per networks then the proposed one. Similarly for 5 × 5 network can be

replaced by 5×5 crossbar than will save 15 crosspoints per network. Fig 3.3 shows

the modifications. With the addition of the crossbar networks in inner stages will

reduce routing complexity also is inner stage will be strict nonblocking.

3.6 Overviews on Beneš networks Routing Algorithms

In this section an overview of Beneš networks routing algorithm will be pre-

sented. This section will cover both the serial and parallel routing algorithms

that have been proposed in the literature.

51

Rearrangeable Networks

An elegant routing algorithm is proposed by Waksman [93] for Beneš net-

works. This method creates a permutation matrix for each permutation feed into

the network. Output requests creating chains are indicated in the permutation

matrix and then routing tags are determine depending on the status of the per-

mutation matrix. Realizability of N ! permutation for Beneš networks is proved

by Waskman. He also showed that Beneš networks are the smallest depth per-

mutation networks built with 2 × 2 switching elements.

One of the most popular routing algorithm for rearrangeable networks is pro-

posed by Opferman and Tsao-Wu [125], called the looping algorithm. This algo-

rithm works for the family of Clos networks with m = 2t where t takes integer

values. For Beneš networks the symmetric structure of the network is used to de-

termine the switching element settings in a recursive manner using the looping

algorithm. The looping algorithm works by setting switching elements in out-

ermost stages of the networks, then it go on set the switching elements in inner

most stages. It has a time complexity of O(N logN) in uni-processor system. This

is the minimum time required for any single processor system reported for non-

blocking routing in Beneš networks. Fig 3.10 shows an example of the strategy

for setting the switching elements in the network. Later, Andersen [126] extended

the looping algorithm for base 2t rearrangeable networks.

A self routing algorithm was proposed by Nassimi and Sahni [127, 128] for

Beneš network. Using parallel processing switch setting time of the algorithm is

O(logN). They used a bit controlled routing technique for all the stages in the

network. In their scheme they used binary equivalent of output request in both

half of the network. Their switching elements setting scheme can be described

by the following equations, where Ui and Li are upper and lower input port of a

switching element and Di is the destination port for input i, where 0 ≤ i ≤ (N−1):

Ui =

D2i, if (D2i)0 = 0

D2i+1, if (D2i)0 = 1

(3.25)

52

Rearrangeable Networks

Figure 3.10: Path setup using looping algorithm.

Li =

D2i, if (D2i)0 = 1

D2i+1, if (D2i)0 = 0

(3.26)

The above two switching element setting schemes suggest that when any

switching elements at any stage receives routing tags it takes decision depend-

ing on whether the input is an upper or a lower input to the switching element.

In case of an upper input and a routing tag of 0 the signal exits from the upper

output port, otherwise it will exit from the lower output port. Similarly for lower

input port, a routing tag of a 0 means signal exit from the upper output port of

the switching element, otherwise the signal will exit from the lower output port.

This proposed method has its limitations in performing a successful permuta-

tion. According to [127, 128], this scheme can only support the permutation class

called bit permute complement described in [129]. For a network of size N this

method can successfully route N × (logN)! permutation compared to the full N !

permutations.

The looping algorithm is designed to work in parallel processing mode with

53

Rearrangeable Networks

completely connected, mesh connected [130],cube connected [131] and perfect

shuffle computer [132] in [133]. The idea was to divide the outputs in two equiva-

lency class, where two outputs in the same class will be routed through the same

middle stage switch. For completely connected computers the algorithm has a

time complexity of O(log2N). This is still the minimum time required to setup a

Beneš network in the literature for full permutation request. For other connected

computers the time complexities are O(N1/2), O(n4) respectively.

Lee [134, 135] introduced the idea of routing partial permutation or incom-

plete assignments in the Beneš network for uni-cast routing. The available algo-

rithm were designed for work for full permutation. This work address the rout-

ing algorithm for O(m) inputs instead of O(N), where m ¿ N . The algorithm

was implemented on two connecting topologies, one is completely connected and

the other one is extended perfect shuffle. This method introduced the concept of

closed chain and open chain. Inputs from same switching elements form two dif-

ferent chains where the status bit for each input have the same value. Lets assume

that (ri, d
i
logN . . . di

0) represents the header for input i, 0 ≤ i ≤ N−1. Bit ri is the ac-

tivity bit that indicate if input i is paired with some other input. It also indicated

the status of the input i.e, if ri = 1 the input is busy and ri = 0 the input is in-

active. Depending of the input pairs, the routing algorithm assigns middle stage

switch to the pairs. This method is applied for first blogmc stages of the network

and then the routing is bit controlled. The overall complexity of this algorithm is

O(log2m + logN) in completely connected network and O(log4m + logmlogN) in

extended shuffle exchange network.

Routing algorithm proposed in [136–138], works for Beneš class of rearrange-

able networks, called inside-out routing. Instead of going form inside towards

the middle stage, this method works from the middle stage towards the outer-

most stage. Serial time complexity for the algorithm is in O(N). But in [139,

140] showed that inside-out routing is not blocking free. Required modifica-

tion to make the algorithm blocking free makes the time complexity approaches

54

Rearrangeable Networks

O(N logN), which is similar to the looping algorithm. Two candidate algorithms

for use as baseline blocking algorithm in the comparisons of Chapter 5 are the

inside-out routing and the random routing [141]. The inside-out algorithm was

not chosen for it’s blocking performance because no simulation results are re-

ported in literature. It has been shown that inside-out algorithm is blocking in

[139, 140], and the required modifications to make it blocking free suggest that

without these modifications the algorithm will give a high blocking rate. Ran-

dom routing has been extensively discussed in the literature and demonstrates

fast execution time with a moderate blocking rate. Hence Random routing was

chosen as the blocking routing algorithm for any blocking rate comparison in this

thesis.

In [142] an O(logN) parallel self routing algorithm has been presented for spe-

cific class of permutations. This work identifies four different class of permuta-

tions and showed that they can be route using self routing in Beneš. Successful

permutations that can be realized using this algorithm is (2logN(2logN(N
2

)−logN) +

(logN)! − 1) from each group. Authors from same group reported a two passes

routing algorithm for faulty Beneš network in [143]. In this method they divide

the permutation in two equal parts and establish paths for request in each path

in one pass.

The algorithm proposed by Lee [144] has similar time complexity as the loop-

ing algorithm, which is O(N logN). But this method divides the networks in to

two parts. In doing so, it is suggested that in original hardware implementation it

will reduce inter-chip information exchange at the time of routing. The networks

are divided into two parts namely NS1 and NS2. NS1 is the first (n − 1) stages

of the network where a binary tree control algorithm is applied. NS2 is the re-

maining n stages which uses bit-controlled routing. The algorithm considers the

incoming permutation as Complete Residue System module m (CSR mod(m))

where m is the number of inputs. Then it divides the CRS into 2N−1 Complete

Residue Partitions (CRP), and this process continues for the first half of the net-

55

Rearrangeable Networks

work. co For an example P0:7 = (1 7 6 3 2 4 5 0) is a (CRS mod(8)) and apply-

ing CPR mod(4) on the CRS gives two permutations (1 7 6 4) and (2 5 3 0) or

(7 5 0 2)and(1 3 4 6) and so on. Applying this process this method generates a full

binary tree as shown in Fig 3.11. In this tree the root node contains the full per-

mutation and child nodes contain partitions of the permutations. This method

dose not require information exchange between switching stages as, this algo-

rithm sets up switching elements stage by stage without requiring information of

other stages. Also the bit controlled part requires less complex hardware as it is a

straightforward operation.

Figure 3.11: A full binary tree of CRP’s.

The algorithm proposed by Lenfant [145] also works for a special class of per-

mutations. This method was designed in such a way that if the presented permu-

tation that does not fall in a special class then their routing is carried out using

some existing algorithm that can realize N ! permutations. According to Lenfant

using such a method saves memory space as well as computation time. The num-

ber of permutations that can be realised using this method is about 22logN rather

than N !.

Parallel routing method proposed in [146, 147] works for Beneš and Clos net-

works. For Beneš networks it determines the forward routing bits, which are the

binary equivalent bits of the output request. Reverse routing bits, are the also

56

Rearrangeable Networks

binary equivalent bits going from the output towards the middle stage. And in-

ternal conflict free constant, which determines that for each input in the switching

elements, have distinct tags to avoid internal conflict. This algorithm can route

partial permutation and has a a parallel processing complexity of (log2N) using

fully interconnected parallel computers.

Work efficient routing algorithm for symmetric rearrangeable network is pro-

posed by Çam [148–150]. This work makes use of the concept of a balanced ma-

trix [151] and graph 2-coloring [152] to determine the setting of switching ele-

ments and uses perfect matching graphs [153] to determine the routing tags for

each input-output request. Graph coloring is used to assign different values to

the connecting nodes so that two connected nodes do not share the same color

or assignment. 2 − coloring is the process of assigning vertices with the values

0 and 1, where two directly connected vertices have different values assigned to

them. Fig 3.12 shows a 2 − colored connected graph. A binary matrix BM is a

balanced matrix if and only if , for all the sequential m columns, 1 ≤ m ≤ n,

every m-bit binary number appears 2(n−m) times in every row. In more general

terms, a matrix with N = 2n rows and k columns, k ≤ n can have a single row

repeated 2(n−k). Matrix B8×3 shown below is a balanced matrix. A graph G is said

to be perfectly matched if all the edges have two end vertices connected to them.

From a balanced matrix point of view, if two rows i and j, 1 ≤ (i, j) ≤ N , are

identical then in a perfect matching graph they are connected by two vertices vi

and vj where (vi, vj) ∈ V and V is the set of vertices.

57

Rearrangeable Networks

Figure 3.12: 2 − Colored connected graph.

B8×3 =

000

100

010

110

001

111

101

011

They have used the Parallel Random Access Machine [154] architecture for

their algorithm. They considered p processors instead of N where 1 ≤ p ≤

N/logN , which allows the algorithm to setup the switch in O(N logN) time. Their

main aim was to find a column vector V for permutation matrices P1:n and iden-

tity matrix I1:logN such that [P2:logN V] and [I2:logN V] are balanced. The proof of

their method can be found in [150]. Tabel 3.2 gives a summary of the algorithms

cited and their serial and parallel time complexities.

3.7 Application Domain of Beneš Networks

This section highlights the scope of the Beneš networks in real world applications.

58

Rearrangeable Networks

3.7.1 On Chip Communication Applications

New applications have emerged for these class of networks in the field of system

on chip (SoC) and network on chip (NoC). SoC is an arrangement of two or more

complex micro electronic components in a single chip [122, 155–157]. Complex

functionalities that required heterogeneous components attached to a PCB are re-

placed by SoCs. Advancements in the silicon technologies allow large functional

unit to be built in a single chip. A typical SoC contains processors, on chip mem-

ories, accelerated functional units, signal processing units, logic circuits etc. The

primary advantages of SoC is low cost, smaller in size and fast performance. Be-

cause of the SoC today’s hand held devices are smaller in size compared to the

bulky old versions.

To communicate between processing and other service provider module in an

SoC it is required to have some form of connection between the units. Easiest

solution to this is to use a bus base architecture that will allow communication

between different parties [158]. But bus base architecture is not scalable as well

as they can not support the required bandwidth for all attached units [159].

Direct point to point links are also easy to design and they can give better

solutions in terms of bandwidth, power uses, latency when they are designed for

a specific purpose. Issue with the point to point links is the increase in number

of links with the increase of the cores, hence it puts impact on required space.

The solution to these approaches is to use integrated switching network in SoC,

which leads to the concept of network on chip (NoC).

NoC overcomes the scalability and performance issues related to the bus based

or point to point communication structure in the SoC [157, 160–162]. The obvious

choice for NoC in an SoC is the crossbar networks as they give superior perfor-

mance than bus base models, but this network also suffers from scalability issue

after a certain input number along with low network utilization [163].

59

Rearrangeable Networks

Ta
bl

e
3.

2:
Su

m
m

ar
y

of
R

ou
tin

g
A

lg
or

ith
m

C
om

pl
ex

iti
es

A
lg

or
it

hm
Ti

m
e

C
om

pl
ex

it
y

A
lg

or
it

hm
s

Se
ri

al
C

om
pl

ex
it

y
Pa

ra
ll

el
C

om
pl

ex
it

y

Bl
oc

ki
ng

N
as

si
m

ie
ta

l.
[1

27
,1

28
]

O
(N

lo
g
N

)
O

(l
og

N
)

D
as

et
al

.[1
42

]
–

O
(l

og
N

)

N
on

bl
oc

ki
ng

N
as

si
m

ie
ta

l.
[1

33
]

–
O

(l
og

2
N

),
O

(N
1
/
2
),

O
(n

4
)

Le
e

et
al

.[
13

4,
13

5]
–

O
(l

og
2
k

+
lo

g
N

),
O

(l
og

4
k

+
lo

g
k
lo

g
N

)
Le

e
et

al
.[

14
6,

14
7]

O
(N

lo
g
N

)
O

(l
og

2
N

)
C

am
et

al
.[

15
0]

–
O

(N
lo

g
N

)
Fe

ng
et

al
.[

13
6–

13
8]

O
(N

)
–

60

Rearrangeable Networks

So the solution to these is multistage interconnection networks having switch-

ing elements arranged in rows and columns and each switching element is con-

nected to the next stage via some fixed link patterns. These networks have better

scalability property along with equal path distance between source and destina-

tion which make then viable for SoC.

Networks under observation in this thesis found their use in wireless com-

munication standard. The efficient error correction capabilities of low-density

parity-check (LDPC) [164, 165] codes have made their application in standard

such as IEEE 802.11n, IEEE,802.16e and DVB-S2. Beneš networks have particular

edge in designing SOC for LDPC in area they requires. Fig. 3.13 shows a gen-

eral block diagram of an LDPC. Table 3.3 shows the comparisons among Beneš,

Clos and Crossbar network for N = 32. This table highlights the number of gates

or multiplexer required for implementing a network with N = 32. These com-

parison shows clear benefit of using Beneš network as the connecting networks

for LDPC decoders. It has been reported that Beneš networks require less fabri-

cation area in designing a turbo decoding architecture [166] compared to other

nonblocking interconnection networks.

Algorithm proposed in [1, 124] works recursively and follows the classic form

of the looping algorithm. But the network they use is an scale down version of

the regular Beneš network that supports specific permutations.

This application domain requires an algorithm that can give faster execution

time than the looping algorithm and lower blocking probabilities than subopti-

mal algorithms. In chapter 5 one such algorithm will be discussed, where a fast

and simple routing solution will be achieved with lower blocking probabilities.

3.7.2 Digital Subscriber Loop Applications

Another new application domain for Beneš networks is in the field of digital sub-

scriber line (DSL) technologies. These technologies work in the analog domain

61

Rearrangeable Networks

Figure 3.13: Architecture of partial parallel LDPC decoder. [1]

Table 3.3: Complexity of different switching fabrics.
[167]

Gates 2-to-1 MUX Control bits
Crossbar 1024 992 160

Clos 896 784 376
Beneš 576 288 144

and manage thousand of subscribers. DSL is a broadband service over ordi-

nary telephone lines. Telephone operators provides broadband service (such as

voice,video and data) along with normal telephone service. Both services oper-

ate in different frequency bands so that there is no chance of any interference.

At the service provider end another device called the DSL access multiplexer

(DSLAM) routes voice request to the exchange and data traffic to the Internet.

Fig. 3.14 shows a typical DSL structure. The DSLAM is no needed for subscriber

lines that are voice-only. To change the subscribers service (for example changing

voice-only service to add data or vice versa) requires managing a huge number

of cables. This manual effort can be automated by using a switching network

that connects the cable to a DSLAM to provide the required service when ap-

propriate [168]. Changing the subscriber line may require a rearrangement in

the analog switching network and cause momentary interruption of the ongoing

communications. This disruption of the communication can be avoided using the

62

Rearrangeable Networks

Figure 3.14: Typical DSL configuration.

technique described in Chapter 4.

Current DSLAM solutions are based on manual patching of connections, with-

out any automation. Automation of this process requires handling thousands of

input-output ports. Having a strict sense nonblocking network to handle such a

large number ports would incur a huge hardware cost. Hence the Beneš network

is the best choice for implementing the automation process, as the hardware does

not grow exponentially in cost in these networks with increasing network size.

3.7.3 Optical Domain Applications

With the increasing demand from the Internet traffic, Dense Wavelength Divi-

sion Multiplexing (DWDM) is being used in the core of large communication net-

works. Many techniques for optical switching are available in the literature such

as interferometre, acoustooptic interaction, thermocapillary effect, electrooptic

materials and microelectromechanical systems (MEMS) [169–174]. 2D MEMS can

offer limited crosstalk, low polarization and wavelength independent, bit-rate

and format transparent and an easy to manufacture solution [170].

The use of rearrangeable structure such as proposed in[73] has been suggested

for high performance optical systems [175–177].These structure provide equal

path lengths for all input-output requests also it has better port-to-port repeata-

bility than a crossbar structure. A rearrangeable optical switch built with 2 × 2

63

Rearrangeable Networks

switching elements, 2D MEMS has N(logN − 1
2
) movable and double sided mir-

rors and has N(logN+1)
2

− 1 fixed and single sided mirrors for an N × N network.

Path length is
√

2(N − 1)p in the rearrangeable structure, and as (2N − 2)p for

upper bound in crossbar structure, where p is the pitch or distance between two

nearest mirrors, [178]. Path length is important as for rearrangeable structure

memory access distance is same for ever input-output request, but it varies in a

crossbar structure.

The rearrangeable structure offers a mirror size which is almost 40% less than

the crossbar structure and hence requires smaller fabrication area [179]. An N ×

N OXC proposed in [180] used the Waksman network [93] to build the switch, as

this requires a minimum number of mirrors. The proposal suggested the use of a

lookup table to implement incoming permutation to reduce the setup complexity.

The MEMS-Beneš network (MBN) proposed in [181], is an optical Beneš network

that can support any permutation. This network’s control strategies are similar to

those of a conventional Beneš networks. Straight through switching is performed

by allowing the mirror to stay down that is parallel to the substrate and the cross

operation is performed by configuring the mirror in tilted-up position.

3.8 Summary

This section gives a general discussion on the topics covered in this chapter. This

chapter discussed mainly rearrangeable networks, their structures and routing al-

gorithms. One of the most popular symmetric rearrangeable networks have been

looked into detail in this chapter and that is Beneš network. It has been shown

mathematically that Beneš networks save considerable amount of required cross-

points than compared to the 3−stage Clos networks, by using recursive con-

struction. Extensive literature have been reported in the literature on the Beneš

networks both in the architecture and algorithm domain. Proposals have been

suggested and shown in the literature that modified this network structure by

64

Rearrangeable Networks

reducing the network depth such as r-truncated or KR-Beneš networks. These

modifications were applied to reduce the network latency by compromising the

throughput. It has been described in this chapter, to realize N ! permutation, it is

not possible to design a network built with 2×2 switching element that can work

faster than Beneš networks. On the routing algorithms, Tabel 3.2 summarises all

the cited algorithms. For single processor machine best reported time complexity

is O(N logN) for N input-output Beneš networks. One algorithm has shown that

it can be reduced to O(N), but further studies showed that the algorithm is not

blocking free and to overcome the blocking time complexity becomes O(N logN).

Methods have been proposed in the literature to make the Beneš networks work

as a self routing network, and achieve a parallel routing complexity of O(logN).

But using those methods network can only realize N.(logN)! permutations in

comparison of all N !. Parallel routing algorithm complexity have been shown

to be (log2 N) using completely connected parallel machine with N processors. It

has been shown that the network can work with a complexity of O(log2m+logN),

for active requests O(m) ¿ O(N). But the complexity approaches (log2N) for

large values of m. In recent years suggestions have been made for use of Beneš

networks in optical domain as well as in SoC, NoC and DSL applications. Re-

ported literature shows that using Beneš networks for these applications save

hardware cost in actual implementation. To summarise this chapter it can be

said that Beneš network is the optimum permutation network built with 2 × 2

switching element. Future chapters will focus on these networks unless other-

wise stated.

65

CHAPTER 4

SYMMETRIC MULTISTAGE

REPACKABLE NETWORKS

A ll though rearrangeable networks make efficient use of hardware they have

the disadvantage that they momentarily disrupt the existing communica-

tions during reconfiguration. Path continuity is a major issue in some application

of rearrangeable networks. Using a repackable network [182] is a solution to the

path continuity problem and is discussed in this chapter.

4.1 Introduction

Repackable networks allow the path continuity even though it is built on top of

rearrangeable networks. Basic structure of these networks contain bypass links,

which route requests where paths need to be rearranged of those requests. This

is done one at a time or all together through those bypass links for continuation

of the ongoing communication. After the necessary rearrangements are made,

requests through the bypass links are put back into their new rearranged routes

and hence the term repackable is used for these networks. Addition of bypass links

66

Symmetric Multistage Repackable Networks

increases the hardware cost than a similar sized rearrangeable network but pro-

vides a performance close to a strict-sense nonblocking networks. The following

sections detail the structural and operational principles of these networks.

4.2 Repackable Networks Overview

Most proposal for repackable networks are based on 3-stage Clos networks. Ack-

royed [183] first introduced the concept of repacking for 3-stage networks. He

proposed using one of the middle stage subnetworks for routing all the requests.

This is generally termed as packing. If this packing technique results in blocking,

the other subnetwork is used to route the blocked request. At a later time, that

request is rerouted via the packed subnetwork. Jajszczyk [184] provided the ba-

sic condition for a 3-stage Clos network to be repackable. If n and m being the

input and output for the each input(output) stage switching elements and r is

the number of switching elements in the input (output) stage respectively, then

repackable condition is, m ≥ 2n − dn/(r − 1)e. Jajszczyk [185] explained that it is

always possible to establish connecting paths between an input and output using

a repackable network. His proposed method routes requests from the less used

subnetwork to the most used one before the arrival of a new call.

Schehrer [182, 186] proposed two method of reswitching in a repackable net-

work (i) sequential (ii) simultaneous. The term reswitching is different from rear-

rangement. It means putting requests through the bypass network or paths, and

put back to rearrangeable network once paths have been rearranged and mak-

ing the bypass network or paths free for future use. In sequential reswitching,

paths need to be rearranged are selected sequentially and put through the bypass

paths. Once the paths are rearranged in the rearrangeable network they are put

back to their new routes and then new set of paths are selected for the reswitch-

ing. On the other hand, simultaneous reswitching selects the smallest number of

paths need to be rearranged and then put them to the bypass links or network.

67

Symmetric Multistage Repackable Networks

Once the paths are rearranged in the rearrangeable network, they are put back to

their new routes together.

Schehrer proposed to use a bypass network or bypass links to extend rear-

rangeable networks and make it a repackable network. The sequential method

requires fewer crosspoints than simultaneous switching. Instead of holding the

blocked request, a connecting path is setup for that request using the bypass

paths, connections that need to be rearranged are also transferred to bypass paths.

After finding new paths in the rearrangeable network for all the requests required

rearrangement, they are switched to the rearrangeable network from the bypass

paths or network along with the new request. This makes the bypass part of the

network free for for future reswitching. In this way, path continuity is assured at

the cost of providing the additional bypass capacity.

4.3 Preliminaries

This section presents the notation used throughout this chapter:

Definition 4.3.1 Chain: Chains are used to identify the loop that needs to be broken, i.e

the set of input-output pairs for which the switching element settings need to be changed.

The length of the chain is the total number of paths forming the loop.

If a candidate chain has r paths in it then the length of the chain is r. The length

of the chain determines the number of rearrangement required for each blocked

request. Fig. 4.1 shows an example of such a chain. Input 5 requests a connecting

path to output 6. With the existing switching element state the free links at the

input-output switching elements connect to two different middle stage switching

elements, and so these links cannot be used to establish connecting paths between

input port 5 and output port 6. The solution to this problem is to rearrange the

chain having a loop 0 → 3 ; 2 → 2 ; 3 → 0 ; 4 → 1. Rearranging this chain will

give both blocked switching elements access to a common middle switch.

68

Symmetric Multistage Repackable Networks

Figure 4.1: A network having a chain with length 4

Definition 4.3.2 Blocking State: A blocking state inside a network results when more

than one request is competing for the same output link. This puts the network into a state

where paths rearrangement of ongoing communication are required to bring the network

into a state where it is possible to establish path for the blocked request.

For a 3-stage network blocking state can arise because of unavailability of con-

necting link from one middle stage switching element to the requested output

switching element. For longer depth networks, it can happen because of the fact

that required inner stage link is already occupied by some other request. For ex-

ample in Fig. 4.1, the request by input 5 for connection to output 6 is blocked

because of the current state of the network.

Definition 4.3.3 Isolated Paths: If two inputs from the same switching element in the

input stage are connected to two different output stage switching elements, and they are

the only requests for those switching elements, the two paths concerned are called isolated

paths. Similarly if two inputs of two different switching elements in the input stage are

connected to the same output stage switching element, and they are the only requests from

those switching elements they are called isolated paths.

In Fig. 4.2 two isolated paths are from inputs 6 and 7.

69

Symmetric Multistage Repackable Networks

Figure 4.2: Two isolated links from inputs 6 and 7

4.4 General Rearrangement Scenario

This section describes the blocking scenario and rearrangement process in rear-

rangeable networks. Blocking resolution in a rearrangeable network has two ba-

sic operations. The first one is to identify the chain related to the blocked request

and the other one is to rearrange the chain and setup a path for the blocked re-

quest.

Fig 4.2 demonstrates a blocking scenario for a request from the input 5 and the

output 6. The Network goes into blocking state because input switching element

2 has one free link going to the upper middle stage switching element (U). Simi-

larly, output switching element 3 has one free link coming from the lower middle

stage switching element (L). There are no free links available sharing same mid-

dle stage switching element that can establish a path for the request. To setup a

path for the request the network goes through rearrangement and finds path for

the new request. Table 4.1 explains the input-output path map before rearrange-

ment for the scenario presented in Fig 4.2, where the symbol ”X” indicates input

request is blocked.

Now let’s identify the paths forming chains and also the isolated paths from

the Fig. 4.2. Input-output paths forming the chain are as follows: 0 → U → 3,

70

Symmetric Multistage Repackable Networks

Table 4.1: Path map for input-output request.

Input Before Rearrangement After Rearrangement
Network Output Network Output

0 U 3 U 3
2 L 2 L 2
3 U 0 U 0
4 L 1 L 1
5 X 6 U 6
6 U 7 L 7
7 L 4 U 4

2 → L → 2, 3 → U → 0 and 4 → L → 1, and the existing isolated paths are

6 → U → 7 and 7 → L → 4. To unblock the blocked request 5 → 6, the connecting

paths forming the chain or the isolated paths need to be rearranged. Number

of isolated paths is smaller than exiting chain length, hence they are selected for

the required rearrangement. Once the isolated paths are rearranged, two links

are available that share upper middle stage switching element, hence a path is

established between the input 5 and the output 6. Table 4.1 also shows the paths

map after required rearrangements.

The rearrangement process is carried out by treading off the path continuity

of existing communications. Repackable network is used to overcome this path

continuity issue of rearrangeable networks and discussed in detail in next sec-

tions.

4.5 Principle of Repackable Networks

The complexity of a repackable network is a function of the minimum possible

chain length . This also depends on whether operations are performed on all

effected paths simultaneously, or are performed sequentially which requires in-

telligent selection of paths.

71

Symmetric Multistage Repackable Networks

4.5.1 Network Architecture

Repackable networks that can perform simultaneous reswitching, accommodate

the maximum length of the smallest chain. On the other hand for sequential

reswitching it requires intelligent algorithm to select candidate paths to be reswitched.

Figure 4.3 shows a general block diagram of a symmetric repackable network ca-

pable of simultaneous reswitching. This network has N inputs and outputs and

uses 2 × 3 switching elements and bypass network of size N
2
× N

2
at the outer

most stage. The architecture of the network follows a recursive structure, hence

each subnetworks is built with similar switching elements as well as similar by-

pass structure. The complexity of the bypass networks is O(N2), which is similar

to that of crossbar network of size N . This repackable network is not cost effec-

tive, as the crosspoint count exceeds that of a crossbar network of similar size.

Thus simultaneous reswitching topology is not an efficient repackable structure

for symmetric rearrangeable networks. Hence possible sequential reswitching

structures from symmetric rearrangeable networks will be looked into detail in

this thesis.

4.5.1.1 Sequential Reswitching Structures

Sequential reswitching structure requires intelligent identification of the required

bypass links. The minimum number of bypass links required is repoted in the

literature to be two [186]. In sequential reswitching, the paths in the chain are

reswitched consecutively, so that the bypass network only requires capacity for

two bypass links. Paths in the smallest chain are numbered following a topdown

or bottom up approach. Then paths with the odd numbers are reswitched first

then the even ones or vice versa. Detail of this reswitching algorithm can be

found in [182, 186]. Fig. 4.4 shows a repackable network having two bypass

links. Sequential structure saves considerable number of crosspoints in building a

symmetric repackable network, detail on the number of requirement crosspoints

72

Symmetric Multistage Repackable Networks

Figure 4.3: Symmetric repackable network for simultaneous reswitching.

Figure 4.4: Repackable network with 2 bypass links.

73

Symmetric Multistage Repackable Networks

Figure 4.5: Blocking state in the network for request 4 → 1.

discussed in Section 4.6. The operation of sequential reswitching is illustrated in

the example below:

Example: To start with, let’s considre a network with N = 8 and in a blocking

state as in Fig. 4.5. This particular state of the network has two chains of similar

length:

• 0 → U → 5, 3 → L → 4, 2 → U → 0 and

• 5 → L → 2, 6 → U → 3, 7 → L → 7

The state of the network presented requires rearrangement to find paths for

the new request 4 → 1, as there are no two links sharing a common middle stage

switching element that can be used for the blocked request. In this case the first

chain has been selected for necessary sequential reswitching with repackable net-

work having two bypass links. The paths are numbered and the second path in

the chain is chosen for reswitching and put through the bypass path. This state

of the network can described as below:

74

Symmetric Multistage Repackable Networks

• 0 → U → 5

• 2 → U → 0 and

• 3 → Bypass → 4

Putting the path through the bypass link allows the rearrangeable network to

do the following rearrangements:

• 2 → L → 0 and

• 0 → L → 5

These rearrangements allows reswitching the request 3 → 4 through upper mid-

dle stage switching elements. These set of operations allows two free links that

are sharing upper middle stage switching element, hence a path has been estab-

lished for request 4 → 1. Final path map is described in Table 4.2.

Table 4.2: Path map for input-output requests after reswitching.

Input Network Output
0 L 5
3 U 4
2 L 0
4 U 1
5 L 2
6 U 3
7 L 7

4.5.1.2 Modification to Sequential Reswitching Structures

This section discusses possible modifications to the sequential reswitching struc-

ture in repackable networks. This will highlight the link level modifications that

can reduce the required number of crosspoints in building the networks. This

modification will address the reduction on number of links required in the by-

pass network. Number of bypass links required in a repackable network is di-

rectly related to the maximum length of the smallest chain. Maximum length of a

75

Symmetric Multistage Repackable Networks

chain in a blocking state can be as long as (N−2)
2

. This is due to that fact that there

can be at most (N − 2) active requests in the network to have a blocking state

in the network for any new request. In worst case there will be only two chains

with equal length, discussed in Section 3.1. Table 4.3 shows the worst case chain

lengths for different network size.

Table 4.3: Worst case chain length.

Network Size Length
8 3

16 7
32 15
64 31

128 63
256 127
512 255

1024 511

For a chain length of over 3, reswitching algorithm selects two paths with con-

secutive odd or even numbering from two different switching elements and puts

them through the bypass links. This allows other two paths of those switching

elements to rearrange in the network and then the paths in the bypass links are

put back to their new positions in the rearrangeable network. But with a chain

length of 3, reswitching algorithm has two options, one is to put two even num-

bered paths on the bypass links or put the odd numbered one to the bypass link.

Putting the odd numbered one to one of the bypass links gives other two paths

free links to switch their middle stage switching elements. This process only re-

quires one bypass link rather than two. This shows that networks of size N = 8

give the option to modify the sequential reswitching link structure.

Inner most stages of these networks are built with 8 × 8 subnetworks, as a

result replacing inner two bypass links repackable networks with one will save

considerable number of crosspoints. A network of size 2logN × 2logN , will have

a total of 2(logN−3) subnetworks of size 8 × 8. Fig 4.6 shows repackable network

76

Symmetric Multistage Repackable Networks

Figure 4.6: Repackable network with one bypass link.

build with one bypass link. The next section discusses details on the required

number of crosspoints for different repcakable networks.

4.6 Crosspoint Requirements

Required crosspoints count is not an accurate metric of implementation cost for

today’s communication switches and routes, since components are rarely be im-

plemented as discrete entities. However in the absence of implementation spe-

cific information on cost, crosspoints count requirements are useful indicators of

overall switch complexity. An in-depth study of switch depth and the size of the

building blocks has been presented in [73]. According to that study, an optimal

network should have a depth of (2M−1), where M is the sum of the prime factors

of N (the number of switch inlets). It is also was recommended that the middle

stage should have larger building blocks compared to the other stages. Using a

recursive construction technique to build symmetric rearrangeable networks re-

77

Symmetric Multistage Repackable Networks

quire (4N logN −2N) crosspoints. The required crosspoint count a for strict-sense

nonblocking network is (6N3/2 − 3N). The required crosspoint count per input

varies depending on the switching element size.

Networks built with larger switching elements have stages smaller than net-

works built with 2 × 2 switching elements, this allows the input signals to travel

less number of stages to reach output port. In general a network of input size N

has (2logkN − 1) stages, where k = switching elements input size . This construc-

tion also saves required number of crosspoints per input in the network (but it

increases routing complexity). To understand the required number of crosspoints

comparisons, lets assume a network with N = 2048 built with 2 × 2 switching

elements. This network will have 21 stages in total with a total required cross-

points of 86016, which gives 42 crosspoints per input. A network with N = 2187

constructed with 3 × 3 switching elements will have 13 stages. This network will

require a total of 85293 crosspoints, requiring 39 crosspoints per input. A network

built with 4 × 4 switching elements and N = 4096, will have a total of 11 stages.

This network will require a total of 180224 crosspoints, requiring 44 crosspoint

per input. Another network built with 5 × 5 switching elements and N = 3125

will have a total of 9 stages. This network will consume a total of 140625 cross-

points, requiring 45 crosspoints per input. Detail on networks built with large

switching elements is discussed in Chapter 6.

For symmetric rearrangeable networks built exclusively using 2× 2 switching

elements, the required crosspoints count per input can be reduced by using 4× 4

crossbar switches in the middle stage. This also reduces the network stages by a

factor of 2. A crossbar network equivalent to 4×4 rearrangeable network is shown

in Fig. 4.7. The crosspoint count in Fig. 4.7 (a) is 8× 3 = 24, and in Fig. 4.7 (b) it is

4× 4. Thus 8 crosspoints are saved, i.e, two crosspoints per input. The crosspoint

count per input for a rearrangeable network built from 2 × 2 switching elements

with 2logN input-output is (4N logN − 2N). Each network has a total of 2logN−2

subnetworks built with 4 × 4 rearrangeable networks.

78

Symmetric Multistage Repackable Networks

Figure 4.7: (a). 4 × 4 rearrangeable network. (b). 4 × 4 crossbar

Figure 4.8: 16 × 16 Beneš network with 4 × 4 crossbar in the middle stage

For example, for a network size of N = 16, a recursive construction results

in each input requiring 14 crosspoints, but with (4 × 4) crossbar in the middle

stages this count reduces to 12. Similarly for N = 32, the numbers are 18 and 16

respectively. Replacing middle stage recursive structure with 4× 4 crossbar gives

overall required crosspoints as in Eqn 4.1, and Fig 4.8 shows a modified 16 × 16

network.

Crearr = (4N logN − 2N) − (8 × 2logN−2)

= (4N logN − 2N) − 2logN+1 (4.1)

79

Symmetric Multistage Repackable Networks

Using 2 bypass links for outer subnetworks and one for all 8× 8 subnetworks

and 4 × 4 crossbars to replace the 3 middle stages will require a total number of

required crosspoints, given by Eqn 4.2 and shown in Fig 4.10, these networks will

be called networks with mixed bypass(mb) links. In these networks first (logN −3)

stages will have two bypass links and the following stage will have only one

bypass link. Next three middle stages will be replaced by 4 × 4 crossbars, hence

the equation can be given as:

Cmb = 8N(logN − 3) + 6N + 16 × 2logN−2

= 8N logN − 18N + 2logN+2 (4.2)

The crosspoints requirement for a repackable network with two bypass links

(with rearrangeable middle stages) given by Eqn 4.3:

C2b = 4N(2logN − 2) + 2N

= 8N logN − 6N (4.3)

Crosspoints requirement per input has been given in Table 4.4. In this table

a comparison is made among rearrangeable networks, repackable networks with

mixed bypass which is combination of 2 and 1 bypass links also with repackable

network with 2 bypass links have been carried out. It shows considerable savings

in the required number of crosspoints per input in using mixed bypass method

rather than 2 bypass.

80

Symmetric Multistage Repackable Networks

Figure 4.9: Mixed bypass links repackable network.

Figure 4.10: Logical representation of bypass links.

4.7 Hardware Structure of the Bypass links

Bypass link structures proposed in Section 4.5.1 are logical structure. Actual

physical structure will be different because of the two characteristics fan-in and

fan-out in shared bus architecture. Fan-in is the limit on the inputs that a logic

gate can handle similarly fan-out is the limit on the number of logic gates that

one single gate can drive. A logical equivalent representation of the by pass links

can be given as in Fig. 4.10.

A block diagram for the actual physical structure of the two bypass links in

81

Symmetric Multistage Repackable Networks

the outermost stages is presented in this section. The fan-in and fan-out figure is

technology dependent. The value 256 has been taken as the maximum number

of inputs(outputs) in a concentrators (expanders) for the purpose of illustration

and is representative of the capabilities of fan-in and fan-out at the time of writ-

ing [187–190]. A block diagram of hardware structure for the two bypass links

is given is Fig 4.11. Design of the bypass paths involve placing the concentra-

tors (expanders) arranged in columns. Lets assume that l = 256, so the num-

ber of stages in the bypass structure can be given as 2logN
l

+ 2. Outputs from

stage k drives concentrators in stage k + 1. From the middle stage output from

a single concentrator dives the single expander. This expander output drives the

expanders in next higher stages and so on. Fig 4.11 shows the arrangement of

outermost stage for 2 bypass links repackable network designed for N = 1024

network. Obviously in the innermost stages there will be multiple copies of sim-

ilar structures for implementing inner repackable topologies of smaller sizes.

Figure 4.11: Hardware structure of 2 bypass links.

In the first stage of outermost bypass links implementation there will be N
256

concentrators of size 256 × 2 each. Second stage have N
2×256

concentrators of size

4 × 2, next stage have a configuration of N
4×256

concentrators of size 4 × 2. The

82

Symmetric Multistage Repackable Networks

Table 4.4: Crosspoints requirement per input for various size of networks.

Input Rearrangeable Mixed Bypass 2−bypass
logical 256−constraint logical 256−constraint

16 14 18 - 26 -
32 18 26 - 34 -
64 22 34 - 42 -

128 26 42 - 50 -
256 30 50 - 58 -
512 34 58 62 66 70

1024 38 66 74 74 82

configuration is recursive in the other half of the structure, so that half contains

similar number of expanders with reverse size. Required crosspoints count for

the designed structure in the outermost stage is 4144. In the inner stages of the

network this design unless the subnetwork size reduces to 256. Fig. 4.4 shows the

required crosspoints comparison when the bypass links are implemented in hard-

ware for both mixed bypass and 2−bypass structure. Results in the table show

that mixed bypass require less hardware than 2−bypass repackable networks.

4.8 Summary

Symmetric rearrangeable networks show promise for use in optical crossconnect

(OXC) networks. Suitable switch elements of compact size and low insertion loss

are emerging (e.g., using MEMS technology [191]) and the use of multi-stage tech-

niques has been validated experimentally (e.g., the thermo-optic 32 x 32 matrix

switch [192]). Multi-stage switch architectures have also been proposed in the

related area of on-chip optical interconnection [193]. If these networks are to be

agnostic to the signal format of the data they bear, they must treat all signals as

analog signals, and thus require path continuity. In other words, unless the tim-

ing of a discrete-timed or sampled-data signal being transported through the net-

work is known, there is no safe time at which the signal path can be disconnected

83

Symmetric Multistage Repackable Networks

other than during connection setup and teardown. The techniques described in

this chapter allow the Beneš architecture (which features the minimum known

number of stages for a fully-connected switch) to be modified to feature path

continuity during rearrangement with only a modest increase in network com-

plexity (less than twice to be precise), thus allowing a repackable network to be

constructed at relatively low cost. Such a network provides performance indistin-

guishable from that of a strictly non-blocking network, provided requests arrive

at a rate sufficiently low to allow the computation of the required rearrangement

to repack the network , and for the sequence of switch state changes required to

effect the rearrangement to be executed.

Major findings of this chapter listed below:

• This chapter provides a detail analysis of repackable network topology.

Studies on the increase of required addition hardware have been discussed.

• A new repackable network topology has been presented that requires less

hardware than the methods proposed in the literature. A detail comparison

on the required hardware for various sizes of network have been presented

for both the proposed method and the method in the literature.

• A hardware structure for implementing bypass links in the repackable net-

works.

84

CHAPTER 5

HYBRID ROUTING ALGORITHM

B eneš rearrangeable networks provide multiple paths and allow the network

state to be rearranged to make way for new requests. Deterministic routing

methods that guarantee finding conflict-free routing paths are complex. An alter-

native is to use a routing algorithm that is hybrid in nature. This can reduce the

time complexity of the routing process compared to fully deterministic routing,

but are not guaranteed to be non-blocking. The design of such an algorithm with

acceptable blocking performance is considered in this chapter.

5.1 Preliminaries

Some notation used throughout this chapter to describe the state variables used

in the algorithm code is presented below:.

Definition 5.1.1 (Subnetwork). The subnetwork variable indicates which subnetwork

is the source of an incoming signal. If Subnetwork = 0, the signal is coming from the up-

per subnetwork and for Subnetwork = 1 the signal emerges from the lower subnetwork.

85

Hybrid Routing Algorithm

Definition 5.1.2 (STATE). STATE is an array that holds the state of all the 2×2 switch-

ing elements in the network. A switching element can occupy one of three states. The state

of the switching element at position [j, k] in the network is recorded as STATE[j, k]

where j = b i
2
c where 0 ≤ i ≤ N − 1, and 0 ≤ k ≤ (2logN − 2). If STATE[j, k] =

NULL, the switching element is actually unconfigured. If STATE[j, k] = 0 the switch-

ing element is set to perform straight through switching and when STATE[j, k] = 1 it

will perform a cross operation (i.e. will connect its lower input to its higher output and

vice versa).

Definition 5.1.3 (Forward Routing.) Forward routing is the establishment of a rout-

ing path from an input i , 0 ≤ i ≤ (N − 1) , to the requested output port P (i), where

P is the input permutation. Fig 5.1(a) shows the routing from input i to output P (i),

0 ≤ i ≤ (N − 1), where the nodes represent the switching elements in the input and

output stages, and the path through the stages is represented by a straight line.

Figure 5.1: Forward and reverse routing

Definition 5.1.4 (Reverse Routing.) The establishment of a path from output P−1(i)

to input i, 0 ≤ i ≤ (N − 1), is termed reverse routing. Fig 5.1(b) shows the routing from

output port P−1(i) to input i , 0 ≤ i ≤ N − 1.

86

Hybrid Routing Algorithm

Definition 5.1.5 (Neighbour Port.) The neighbor port Ne(i) to port i is the port ad-

jacent to it in a switching element. Ne(i) = i + 1, if i is even otherwise it is (i − 1).

Evidently:

Ne(i) =

i + 1, if i is even

i − 1, if i is odd

Definition 5.1.6 (Port Mapping.) As a signal passes through the network, its address

changes , in the sense that the port number in a given stage at which the signal is present

differs, starting with address i at the network input, and ending with address P (i) at

the network output. The changes in address can be regarded as due to port mapping.

Two types of port mapping can occur, those caused by the switching elements, and those

caused by the link patterns.

A signal presenting at input ik in stage k will emerge at output Ok where,

Ok =

ik, if STATE[j, k] = 0

Ne(ik), if STATE[j, k] = 1

with j = b i
2
c

In other works the input will mapped to the output with the same address if the relevant

switching element is in the straight configuration, and to its neighbour output if the

switching element performs a cross operation.

The mapping performed by the link patterns differ in the first logN − 1 stages of

the network and the remaining stages, because of the symmetric arrangement of the link

patterns. During the mapping between output port Ok of stage k and the corresponding

input port in stage k + 1 as Mk(Ok) and using a binary representation for the perfect

shuffle and inverse perfect shuffle [62], it follows that:

87

Hybrid Routing Algorithm

Mk(Ok) =

(bl . . . bl−k+1 b0 bl−k . . . b1, 0 ≤ k < logN − 1)

(blbl−1...bk+2bkbk−1...b0bk+1), logN − 1 ≤ k < 2logN − 2)

where the binary representation of Ok is (bl bl−1 . . . b0) and l = logN − 1.

The reverse mapping must be known to perform reverse routing. This maps input

port ik+1 to the corresponding input port in stage k. Evidently this is port M−1(ik+1).

Definition 5.1.7 Port Occupancy. The port occupancy, BOk
k indicates whether output

port Ok in stage k is ”busy”. It is initialized to zero, and is set to one whenever a path is

assigned to it, to indicate that anyother path using that path will result in blocking.

5.2 A Formal Description of the Looping Algorithm

This section documents the general looping algorithm for networks built with

2 × 2 switching elements. The looping algorithm proposed by Opferman and

Tsao-Wu [125], must be applied recursively (logN − 1) times for a network with

(2logN−1) stages and N inputs and outputs. There is no formal representation of

this recursive use of the looping algorithm is in the literature. Any analysis of the

algorithm complexity requires such a description. Hence Algorithm 1 shows the

general looping algorithm using the notation presented in Section 5.1, for a net-

work of size N . Given a permutation P0:(N−1) to be implemented, the algorithm

starts with input 0 and carry on setting all the switching elements between stages

0 and (2logN − 2).

Algorithm 1 starts by setting all the switching elements of the networks in to

NULL state at Line 3. Line 7 calls function UPDATEPERM(), which modifies P

to reflect input at stage k and requested output at stage 2logN − 2− k. In Line 10,

algorithm checks the status of requested switching element for requested output

port P (i) at stage 2logN − 2 − k. If that switching element is in a NULL state,

88

Hybrid Routing Algorithm

algorithm calls function ROUTELOOP() to set the switching elements at stage k

and 2logN − 2− k. An example of the execution of the looping algorithm is given

in Example 5.2.1.

Algorithm 1 : Algorithm Looping
INPUT: Permutation P0:N−1.
OUTPUT: Matrix state of size N

2
× (2logN − 1).

1: for k = 0 to 2logN − 2 do
2: for j = 0 to N

2
− 1 do

3: STATE[j, k] ←NULL
4: end for
5: end for
6: for k = 0 to logN − 2 do
7: UPDATEPERM(k)
8: for i = 0 to N − 1 do
9: if STATE[bP (i)/2c, 2logN − 2 − k]=NULL then

10: ROUTELOOP(i,k)
11: end if
12: end for
13: end for

5.2.1 Example

Let N = 8 and the input permutation P(0:7) = (0 6 4 5 2 1 3 7). The mapping

between inputs and outputs is thus 0 → 0, 5 ← 1, 6 → 3, and so on. Initially

let’s set STATE[0, 0] = 0, hence Subnetwork = 0 and the requested port is even,

so it follows that [(P (0) mod 2) ⊕ Subnetwork] = 0, and STATE[0, 4] will be 0 or

straight through. Because STATE[0, 4] = 0, the signal goes through the lower

subnetwork from output port 1 at SE[0,4] to input port 5 at SE[2,0]. The values

for variables set STATE[2, 0] to 0. This process continues for all the ports of the

switching elements at stage 0 and 4. Fig 5.2 shows the switching element settings

in stage 0 and (2logN − 2) , this same process is applied in two sub-networks and

hence a path is established between all input-output ports pairs.

Although the looping algorithm grantees zero blocking probability, it comes

at the cost of a recursive switching element setup. A permutation of size N is di-

vided into two N
2

parts and one part follows forward routing (from input towards

89

Hybrid Routing Algorithm

Function 2 : UPDATEPERM(k)

1: if k = 0 then
2: Return //Noting to do.P is for outermost stages.
3: else
4: for i = 0 to N

2
− 1 do

5: if STATE[b i
2
c, k] = 1 then //Port mapping by SE

6: s(i) ← Ne(i)
7: else
8: s(i) ← i
9: end if

10: s(i) ← Mk((s(i)) //Port mapping by link pattern
11: if STATE[b i

2
c, 2logN − 2 − k] = 1 then

12: d(i) ← Ne(P (i))
13: else
14: d(i) ← P (i)
15: end if
16: d(i) ← M−1

2logN−2−k(d(i))
17: end for
18: for i = 0 to N − 1 do
19: P (s(i)) ← d(i)
20: end for
21: Return
22: end if

the outputs) and the other half does the inverse rooting (from output towards in-

put). Inverse routing takes up most of the time as it requires the algorithm to

determine the available neighbour ports and then determine the corresponding

input port. The increase in execution time with N shows that the routing process

is time consuming, which makes it unscalable. Section 5.7 demonstrates the ex-

ecution time of this algorithm for various values of N . The required execution

time of the looping algorithm motivates looking for an alterative routing method

which might give sub-optimal blocking performance but requires less time to ex-

ecute. Such an alternative method is described in Section 5.3

5.3 Random Routing

Random routing method is proposed in [141], where the decision making is based

for the random probability of setting the switching elements to a straight through

90

Hybrid Routing Algorithm

Function 3 : ROUTELOOP(i, k)

1: STATE[bi/2c, k] ← 0 //Determine Subnetwork
2: home← i
3: if [STATE[bi/2c, k] ⊕ (i mod 2)] = 0 then
4: Subnetwork ← 0
5: else
6: Subnetwork ← 1
7: end if
8: repeat//Until a chain is routed
9: if [(P (i) mod 2) ⊕ Subnetwork] = 0 then

10: STATE[bP (i)/2c, 2logN − 2 − k] ← 0
11: else
12: STATE[bP (i)/2c, 2logN − 2 − k] ← 1
13: end if
14: if S thenubnetwork= 1 //Convert Subnetwork
15: Subnetwork← 0
16: else
17: Subnetwork← 1
18: end if
19: O ← Ne(P (i))
20: i ← P−1(i)
21: if [(i mod 2)

⊕
Subnetwork] ← 0 then //Set input SE state

22: STATE[bi/2c, k] ← 0
23: else
24: STATE[bi/2c, k] ← 1
25: end if
26: if Subnetwork= 1 then
27: Subnetwork← 0
28: else
29: Subnetwork← 1
30: end if
31: i ← Ne(i)
32: until (i=home)

91

Hybrid Routing Algorithm

Figure 5.2: Switching element settings in stage 0 and (2logN − 2)

or cross state. This eliminates the need of using a complex mathematical method

(such as graph theory, matrix manipulation, etc), and does not requires recur-

sive decision making like the looping algorithm. This method provides non-zero

blocking probabilities, but gives a quick routing solution. Fig 5.3 shows the per-

formance of random routing for networks of various sizes.

The simulated results for random routing clearly show that this cannot be

used in any practical application because of poor blocking performance. So this

method of routing can not be considered as an alternative to the looping algo-

rithm. This highlights the need for an algorithm that can provide a lower blocking

probability than random routing but much faster execution time than the looping

algorithm. Such an algorithm is presented in next section.

92

Hybrid Routing Algorithm

Figure 5.3: Blocking probability for random routing.

5.4 Adaptive Routing

This section studies the possibilities of designing an algorithm that can provide

sub-optimal blocking performance, superior than the random algorithm. Also

the execution time is quicker than that of the looping algorithm.

The design of the algorithm follows the looping algorithm, in applying for-

ward and reverse routing. In the distributed part of this algorithm it selects paths

depending on the state of the switching element. If it is in an idle state, it is set

to the straight through state and the signal goes to the next stage. If the switch-

ing elements is already set to a state, the unused output port is used to go to the

next stage. Once the signal finds a middle stage switching element, the rest of

the routing is bit controlled. Any conflict that may occure is resolved by choos-

ing an alternative connecting path. Detail of the routing methods are given in

Section 5.4.1 and 5.4.2

93

Hybrid Routing Algorithm

5.4.1 Forward Routing Phase

The Forward routing part of this algorithm contains number of functions that

work in conjunction. Algorithm Forward initialized all the switching elements in

to a NULL state and call function FORWARD which controls the routing. Variable

ik is the input to switching element SE[bM(ik)/2c, k] at stage k, where M(ik) is

the mapping port of ik at stage k. In line 19, jk holds the temporally physical port

number in the underlying hardware, that ik maps to, in the next stage.

Algorithm 4 : Algorithm Adaptive
INPUT: Permutation P0:N−1

OUTPUT: Matrix state of size N
2
× (2logN − 1).

1: for k = 0 to 2logN − 2 do
2: for j = 0 to N

2
− 1 do

3: STATE[j, k] ←NULL
4: end for
5: end for
6: k ← 0
7: ik ← 0
8: FORWARD(ik, k)

The variables BOk
k in BITFRD or in BITREV set to 1 when output port Ok or

input port jk is already used. If variable R in Line 13 or 18 is TRUE current

loop exists and in Line 25 BITFRD calls function CONFLICTFRD to resolve any

conflict in the switching stages because of the operations in previous stages. In

BITFRD, line 33 randomly selects an unused input at stage 0 if SE[bP (ik)/2c, k]

has no free output port. Variable B is a counter that counts (logN − 1) bits of the

binary digits equivalent to the requested output port number and is decremented

after processing of each stage in the bit controlled part. C stores the binary pre-

sentation of requested the output port number.

CONFLICTFRD (ik) finds alternative path for a request ik that is blocked at

stage k. Once a function call occurred, this function starts searching for an alter-

native path for request ik → P (ik) from stage logN − 2. If it is not successful in

finding an alternative path, it goes back one stage and looks again. If the search

ends up at stage 0, the function drops the request as no alternative path is avail-

94

Hybrid Routing Algorithm

Function 5 : FORWARD (ik, k)
1: if ik = NULL then
2: Exit
3: end if
4: if k = 0 then
5: if STATE[bik/2c, k] = NULL then
6: STATE[bik/2c, k] ← 0
7: jk ← M(ik)
8: else
9: if STATE[bik/2c, k] = 0 then

10: jk ← M(ik)
11: else
12: jk ← Ne(M(ik))
13: end if
14: k ← k + 1
15: end if
16: repeat
17: if STATE[bM(ik)/2c, k] = NULL then
18: STATE[bM(ik)/2c, k] ← 0
19: jk ← M(ik)
20: else
21: if STATE[bM(ik)/2c, k] = 0 then
22: jk ← M(ik)
23: else
24: jk ← Ne(M(ik))
25: end if
26: end if
27: Bjk

k ← 1;k ← k + 1; M(ik) ← jk

28: until (k < logN − 1)
29: if k = (logN − 1) then
30: CALL BITFRD(ik, M(ik))
31: end if
32: end if

95

Hybrid Routing Algorithm

Function 6 : BITFRD (ik, M(ik))

1: B ← (logN − 1)
2: C[logN − 1] ← Binary (P (ik))
3: repeat
4: if STATE[bM(ik)/2c, k] = NULL & [C[B] ⊕ (M(ik) mod 2)] = 0 then
5: STATE[bM(ik)/2c, k] = 0 & jk ← M(ik)
6: else
7: STATE[bM(ik)/2c, k] = 1 & jk ← Ne(M(ik))
8: end if
9: if STATE[bM(ik)/2c, k] 6= NULL then

10: if C[B] ⊕ (M(ik) mod 2) = 1 & STATE[bM(ik)/2c, k] = 0 then
11: Blocking at SE[bM(ik)/2c, k]
12: R ← TRUE
13: Exit Loop
14: else
15: if C[B] ⊕ (M(ik) mod 2) = 0 & STATE[bM(ik)/2c, k] = 1 then
16: Blocking at SE[bM(ik)/2c, k]
17: R ← TRUE
18: Exit Loop
19: end if
20: end if
21: end if
22: B ← B − 1
23: k ← k + 1 & M(ik) ← jk

24: until (B < 0)
25: if R = TRUE then
26: CALL CONFLICTFRD(ik)
27: else Bjk

k ← 1
28: end if
29: if B < 0 then
30: Ok ← Ne(P (i))
31: if BOk

k = 1 then
32: k ← 0
33: ik ← Random(Bik

k 6= 1)
34: Call FORWARD (ik, k)
35: else
36: Call REVERSE (Ok, k)
37: end if
38: end if

96

Hybrid Routing Algorithm

able for that request. Once a request is dropped, the function calls algorithm

FORWARD which starts with another free input at stage 0.

Function 7 : CONFLICTFRD(ik)

1: k ← logN − 2
2: if [M−1(Bik

k) ⊕ Ne(M−1(Bik
k))] = 1 then

3: if STATE[bM−1(ik)/2c, k] = 0 then
4: STATE[bM−1(ik)/2c, k] ← 1
5: else
6: STATE[bM−1(ik)/2c, k] ← 0
7: end if
8: else
9: k ← k − 1

10: if k < 0 then
11: drop the request (ik)
12: ik ← Random (Bik

k 6= 1)
13: Exit Loop
14: end if
15: end if
16: if then(ik = NULL)
17: CALL FORWARD (ik ← Random(Bik

k 6= 1), 0)
18: else
19: CALL FORWARD (ik, k)
20: end if

5.4.2 Reverse Routing Phase

Algorithm REVERSE uses the neighbour port of P (i) that is Ok as an input at

stage 2logN − 2. The basic method is similar to that of algorithm FORWARD, the

only difference being that algorithm REVERSE starts from the output stage and

proceeds towards stage 0. This algorithm checks the status of target switching

element and if it is NULL sets it to the straight through position.

If the switching element is already set, it uses the unused port to reach the

next lower stage. In a conflicting or blocking situation, algorithm REVERSE calls

function CONFLICTREV to overcome any blocking by selecting an alternative

path for the blocked request. As with function CONFLICTFRD, this function

also drops requests where there are no alternative paths.

97

Hybrid Routing Algorithm

Function 8 : REVERSE (Ok, k)
1: repeat
2: if k = (2logN − 2) then
3: if STATE[bOk/2c, k] = 0 then
4: jk ← M(Ok)
5: else
6: jk ← M(Ne(Ok))
7: end if
8: else
9: if STATE[bM(Ok)/2c, k] = NULL then

10: STATE[bM(Ok)/2c, k] ← 0
11: jk ← M(Ok)
12: else
13: if STATE[bM(Ok)/2c, k] = 0 then
14: jk ← M(Ok)
15: else
16: jk ← Ne(M(Ok))
17: end if
18: end if
19: end if
20: BOk

k ← 1;M(Ok) ← jk;k ← k − 1
21: until (k > (logN − 1))
22: if k = (logN − 1) then
23: CALL BITREV(Ok, M(Ok))
24: end if

98

Hybrid Routing Algorithm

Function 9 : BITREV (Ok, M(Ok))
1: B ← (logN − 1)
2: C[logN − 1] ← Binary (P (O−1

k))
3: repeat
4: if STATE[bM(Ok)/2c, k] = NULL & [C[B] ⊕ (M(Ok) mod 2)] = 0 then
5: STATE[bM(Ok)/2c, k] = 0 & jk ← M(Ok)
6: else
7: STATE[bM(Ok)/2c, k] = 1 & jk ← Ne(M(Ok))
8: end if
9: if (M(Ok) mod 2) ⊕ C[B] = 1 & STATE[bM(Ok)/2c, k] = 0 then

10: Blocking at SE[bM(Ok)/2c, k]
11: R ← TRUE
12: Exit Loop
13: else
14: if (M(Ok) mod 2) ⊕ C[B] = 0 & STATE[bM(Ok)/2c, k] = 1 then
15: Blocking at SE[bM(Ok)/2c, k]
16: R ← TRUE
17: Exit Loop
18: end if
19: end if
20: k ← k − 1 & M(Ok) ← jk

21: B ← B − 1
22: until (B < 0)
23: if R = TRUE then
24: CALL CONFLICTREV (Ok, k)
25: end if
26: if B < 0 then
27: ik ← Ne(P−1(Ok))
28: if Bik

k = 1 then
29: ik ← Random(Bik

k 6= 1)
30: CALL FORWARD(ik, k)
31: else
32: CALL FORWARD (ik, k)
33: end if
34: end if

99

Hybrid Routing Algorithm

Function 10 : CONFLICTREV(Ok, k)

1: k ← logN
2: if [M−1(BOk

k) ⊕ Ne(M−1(BOk
k))] = 1 then

3: if STATE[bM−1(Ok)/2c, k] = 0 then
4: STATE[bM−1(Ok)/2c, k] ← 1
5: else
6: STATE[bM−1(Ok)/2c, k] ← 0
7: end if
8: else
9: k ← k + 1

10: if k > (2logN − 3) then
11: drop the request (Ok)
12: Exit Loop
13: else
14: return (Ok, k)
15: end if
16: end if
17: CALL FORWARD (ik ← Random(Bik

k 6= 1), 0)

FUNCTION CONFLICTREV is similar to that of function CONFLICTFRD,

but works in the reverse direction. Also when there us a failure to find an al-

ternative path this function, after dropping the blocked request, calls algorithm

FORWARD to start with any unprocessed input at stage 0.

5.4.3 Example

Fig. 5.4 shows the network setup using adaptive routing method for a permuta-

tion P(0:7) = (5 1 7 4 3 2 0 6) where dotted circles indicate conflict and hence

alternative path search was required. Algorithm FORWARD starts with request

1 → 5, where the routing tags for first 3 switching stages are generated using this

algorithm. Once the algorithm reaches stage 2, hence it calls algorithm BITFRD

for bit controlled routing in the forward direction and reaches switching element

2, hence output port 5. Algorithm REVERSE starts from output port 4 and finds a

path for request 4 → 3. The rest of the routing procedure involves a repetition of

algorithm FORWARD and REVERSE along with the corresponding bit controlled

part. In the reverse routing phase, request 1 → 1 finds a conflict at stage 2, and

100

Hybrid Routing Algorithm

Figure 5.4: Network setup using adaptive method for P(0:7) = (5 1 7 4 3 2 0 6).

hence function CONFLICTREV is called to search for any alternative route, and

so to resolve the conflict. The dotted circle indicates the conflicts in the network.

5.5 Simulation Results

This section illustrates the results for various network sizes using the method

proposed in Section 5.4 and also compares them with the blocking probabilities

of random routing and the execution time of the looping algorithm. All the sim-

ulators have been tested in an Intel(R) Core(TM)2 Quad 2.40 GHz CPU computer

with a memory of 8GB. Simulation studies have been carried in this thesis to

show the performance of the proposed algorithm in this chapter. Fig 5.5 shows

the blocking probability for random routing and adaptive routing. Results show

considerable improvements in the blocking probabilities for the adaptive method.

This suggest the effectiveness of the adaptive routing in preference to random

routing.

Fig 5.6 compares the execution time of the looping algorithm to that of the

adaptive routing. The two graphs shows similar results with the adaptive method

101

Hybrid Routing Algorithm

Figure 5.5: Probability of blocking using random and adaptive routing .

requiring longer than the looping algorithm for larger N . These outcomes point

out that the adaptive method can give better blocking performance than the ran-

dom routing, but it fails to satisfy the need for an algorithm that is faster than

the looping algorithm. This drawback of the adaptive routing requires further

investigation so as to obtain improvements in its execution time. The next sec-

tion proposes some modifications to the method that reduce the execution time

considerably without increasing the blocking performance.

5.6 Hybrid Routing

Further studies on the adaptive method shows that the required number of path

search per input taking up a long time and is the factor that limits its performance

compared to the looping algorithm. This motivates a class of routing algorithm

which combines two approaches:

• An ”outer” algorithm, which is applied to the outermost r stages, 0 ≤ r ≤

(logN − 2), of the network (this will typically be the looping algorithm).

102

Hybrid Routing Algorithm

Figure 5.6: Execution time for adaptive and the looping algorithm.

• An ”inner” algorithm, which is applied in all the remaining stages. This

algorithm trades off performance against execution time.

An obvious choice for the inner algorithm is the random algorithm, but this

gives poor performance as shown in the performance graph in Section 5.3. The al-

gorithm proposed in Section 5.4 shows promising blocking performance but suf-

fers from high execution time. This is due to the fact that for large networks this

method searches all possible alternative paths before dropping a request. One

solution to this is to limit reduce the required number of paths searched by using

the looping algorithm in the outer most stages of the network. This would allow

the inner routing method to search only one subnetwork for possible alternative

paths, and reduces required path search count.

The design of the hybrid algorithm requires modifications to the algorithms

and functions proposed in Section 5.4, and they are listed below:

• Set k ← 1 in Algorithm 5 at Line 6.

• Set B ← (logN − 2) in function 6 at Line 1.

• In function CONFLICTFRD, if k < 1, then the function exits.

103

Hybrid Routing Algorithm

• Set k ← (2logN − 3) in function 8 at Line 2.

• Set B ← (logN − 2) in function 9 at Line 1

• In function CONFLICTREV, if k > (2logN − 3), then the function exits.

5.7 Simulation Results

The performance of the methods described are measured using three different

metrics: blocking probabilities, required path search and setup time. The vari-

able r for hybrid routing is set to 1, which means the hybrid method checks for

possible alternative paths in to stage 1 of the network. The results have been com-

pared with Random routing, Adaptive routing and with the looping algorithm.

Fig 5.7 shows the performance graphs for a full input occupancy network. The re-

sults show that hybrid and adaptive have similar blocking probabilities through-

out the observation window. The blocking probabilities shows little variation for

smaller values of N where hybrid routing has a slight edge over the adaptive

approach. Comparing these two methods with the Random routing shows that

both hybrid and adaptive outperforms Random routing for all values of N by a

large margin. So for full a occupancy network when probability of blocking is the

performance measuring tool, hybrid and adaptive give similar performance with

few exceptions, but overall they are always superior than Random routing.

Fig 5.8 and 5.9 show the performance of the three methods for 50% and 75%

input occupancies. These two graphs show a reduction in the blocking probabil-

ity as the number of active inputs is less compared to full occupancy network.

This opens more unoccupied routes inside the network resulting in less chance of

paths overlapping. The nature of the curve is almost identical to that in fig. 5.7.

As in the full occupancy scenario, Random routing has the highest loss probabil-

ities.

The required number of path searches is another performance analysis met-

104

Hybrid Routing Algorithm

Figure 5.7: Performance of three different methods for full input occupancy.

Figure 5.8: 50% input occupancy graphs for three methods

105

Hybrid Routing Algorithm

Figure 5.9: 75% input occupancy graph for three methods.

Figure 5.10: Path search graph for a full occupancy network.

106

Hybrid Routing Algorithm

Figure 5.11: Path search graph for a 50% input occupancy network.

Figure 5.12: Path search graph for a 75% input occupancy network.

107

Hybrid Routing Algorithm

ric. Only hybrid routing and adaptive have been considered in this analysis as

Random routing does not use alternative path searching in the case of internal

blocking. The path searching count is an important tool to measure algorithm

complexity as it is a measure of the time it takes to configure the network. To

continue with the results, Fig 5.10 shows the curves indicating the average re-

quired number of path searches for both methods for a full occupancy network.

Unlike the blocking probability curves, these two curves show huge differences

in path search count. For example for N = 512, adaptive routing requires almost

two times as many path searches as hybrid routing. Fig. 5.11 and 5.12, shows the

result for various proportional of active inputs.

Figure 5.13: Execution time for full occupancy network.

The execution time of the two methods is another important measure. Here

the execution time of looping algorithm is also taken into consideration. Fig. 5.13

shows the result when the two algorithms applied in a network with full input

occupancy. The figure suggests that for smaller networks (for example N = 64)

there is almost no observable difference in the two routing algorithms. But signif-

icant differences can be seen for larger networks. For example, when N = 1024

the time difference of more than 150 ms. Also the hybrid algorithm takes less

108

Hybrid Routing Algorithm

Figure 5.14: Execution time for a 50% input occupancy network.

Figure 5.15: Execution time for a 75% input occupancy network.

109

Hybrid Routing Algorithm

Figure 5.16: Probability of blocking for hybrid routing with k = 1 and k = 2.

time to execute for larger network than the looping algorithm. Fig. 5.14 and 5.15

show the execution time for 50% and 75% input occupied networks respectively.

According to these graphs there is also no visible timing difference between these

three methods, but for a large input count they show considerable timing differ-

ences.

Hybrid routing is modification in functions CONFLICTFRD and CONFLIC-

TREV to reduce the required path search. In function CONFLICTFRD the condi-

tion k < 0 is changed to k < 2, similarly in function CONFLICTREV condition

k > (2logN − 2) is changed to k > (2logN − 3). These two changes force the

algorithm to to check fewer alternative paths, as it has smaller networks to do

the checking than the original from where it started routing. Fig 5.16 shows the

outcome of these changes to the original one. The result shows increase in the

blocking probabilities. Because of the considerable difference between the block-

ing probabilities, further results (such as execution time, putting partial load to

the network) have not been considered for analysis with the proposed modifica-

tions.

110

Hybrid Routing Algorithm

5.8 Time Complexity Analysis

In this section a detailed complexity analysis of the algorithm is carried out. Hy-

brid routing algorithm uses the looping algorithm and the adaptive algorithm

mentioned in Section 5.4. Main function of this algorithm is FORWARD(). Func-

tion FORWARD() controls the routing by making calls to other supporting func-

tions. In this analysis worst case situation for each function will be identified

first for both forward and reverse routing. For forward routing this algorithm

has three functions that determine the routing paths in forward direction. These

functions are:

• FORWARD(): Function FORWARD() in worst case can run (logN − 2) times

to go from stage 1 to stage (logN − 2).

• BITFRD(): From stage (logN − 1) to stage (2logN − 3) routing is carried out

by BITFRD() which runs for (logN − 1) time for each request. In case of a

conflict in BITFRD() part of the routing, Function BITFRD() exits by making

a call to function CONFLICTFRD().

• CONFLICTFRD(): In the worst case function CONFLICTFRD() runs for

(logN − 2) times, if no available path is found for the request, it is dropped.

Function CONFLICTFRD() exits by making a call to function FORWARD(),

which starts the routing with another request.

Now time complexity for individual functions will be determined. Conflict

free requests are routed using this algorithm as link in self routing method [60].

This is because the decision making is entirely dependent on the status of the

switching elements. A request ends up in a switching element at stage k in the

distributed part of the network takes decision depending on the status of that

switching elements. So no extra computation is required. It is obvious that in

the distributed part of the network, there will be no internal conflict, as there are

multiple paths available for a request. Conflicts will only occur at the bit control

111

Hybrid Routing Algorithm

part, as there are multiple paths available to go to the requested output port, but

only one of them is conflict free. So when a conflict arises in the bit control part

functions CONFLICTFRD() determines the conflict free path. In a situation of

unavailability of path, the request is dropped by CONFLICTFRD().

CONFLICTFRD() function loops for (logN − 2) times in the worst case, hence

its time complexity is in O(logN) for each request, and if there is no alternative

path it drops the request and calls function FORWARD() to start routing with a

new request. If CONFLICTFRD() is successful in finding a new path, it sends

the value of the stage k along with the input number to function FORWARD().

FORWARD() routes the request upto stage (logN −2), then its bit controlled rout-

ing controlled by BITFRD(). BITFRD() itself runs for (logN − 1) times so its an

O(logN) function. Function FORWARD() loops for (logN − 2) time, as a result it

is an O(logN) function for individual request. So for forward routing this algo-

rithm has worst case time complexity of O(logN).

For reverse routing this algorithm has three functions:

• REVERSE(): Function REVERSE() in worst case can run (logN − 2) times to

go from stage (2logN − 3) to stage (logN − 1).

• BITREV(): From stage (logN) to stage 1 routing is carried out by BITREV()

which runs for (logN − 1) times for each request. In case of a conflict in

BITREV() part of the routing, Function BITREV() exits by making a call to

function CONFLICTFRD().

• CONFLICTREV(): CONFLICTREV(): In the worst case function CONFLIC-

TREV() runs for (logN − 2) times, if no available path is found for the re-

quest, it is dropped. Function CONFLICTREV() exits by making a call to

function FORWARD(), which starts the routing with another request.

The time complexity of reverse routing function can determined from their

worst case run time. For all the function in reverse routing time complexity is in

112

Hybrid Routing Algorithm

O(logN). Hence overall time complexity for reverse routing is O(logN) for each

request. So overall time complexity of the algorithm for one request in the for-

ward direction and one in the reverse direction is O(logN) + O(logN) ≈ O(logN).

So for N active requests overall complexity of the algorithm is O(N logN).

This matches the best complexities in setting Beneš network using single pro-

cessor as described in Table 3.2. Reduction on the execution can be achieved by

processing independent operations of the algorithm in parallel. The algorithm

presented in this chapter rely on dependent decision making, hence making it

fully parallel is not possible. But it is possible to assign independent jobs to dif-

ferent processing units.

Once the looping algorithm phase is finished in the hybrid routing algorithm,

the algorithm works within two different subnetworks in the network. Routing in

these two subnetworks is independent of each other and decision making in one

subnetwork dose not affect the decision making in the other subnetwork. In the

adaptive part of hybrid routing, the algorithm searches for appropriate middle

stage switching element and then from middle stage its bit controlled routing.

Once a conflict arises in the subnetwork, the algorithm overcomes the conflict by

searching alternative middle stage switching elements. Instead of using only one

processor, two processors can be assigned for each sub network. One processor

determines the appropriate middle stage switching elements and the other one

can create the record for the switching element status in the network. As a result

four processors can be used to make the algorithm some what parallel. This will

reduce the execution time close to half of a serial routing.

5.9 Summary

This chapter studies the benefits of applying sub-optimal routing algorithms in a

symmetric rearrangeable network. The proposed method is unique in the sense

that it is a hybrid method for routing. Comparing the method with random rout-

113

Hybrid Routing Algorithm

ing shows that proposed algorithm gives much better performance for any num-

ber of active inputs. Also the results of adaptive routing shows that it has similar

blocking probabilities to the hybrid routing, but it requires more path searches

and hence more time to setup the network. Results show that hybrid routing also

gives faster execution time that the looping algorithm. The proposed hybrid rout-

ing has the blocking probabilities associated with it, but this method of routing

is faster than other popular method. In the serial processing, proposed method

has a time complexity of O(N logN) , which is the minimum for Beneš networks

reported in the literature. The hybrid method is thus the best compromise among

all mentioned alternatives. The proposed method is not fully blocking free, but

it’s execution time makes it viable in application where the cost of determining

blocking-free paths is excessive. This is particularly import for SOC application

where the looping algorithm is still preferred as discussed in Section 3.7.

Major findings of this chapter are listed below:

• Unlike the requirement of full permutation availability of other methods

such as in methods [128, 135, 146, 150] this method can realized partial per-

mutations, i.e this method can realize O(m) ≤ O(N) requests. This is always

beneficial when all the inputs and outputs are not busy.

• When there is not internal conflict in the network, this method works in a

way similar to the self routing method.

• Even though to overcome internal conflict this method uses extended path

search, still overall time complexity matches best complexity reported in the

literature.

• With addition of four processor to route requests in two different sub net-

works, this can achieve faster performance than with a uni-processor sys-

tem. This method can give better performance than the parallel routing

algorithm proposed in [150]. In [150] a total of p processors are used, where

114

Hybrid Routing Algorithm

p ≤ N
logN

, and achieves a time complexity of O(N logN) to set up the net-

work. So the method proposed in this chapter is as work efficient as the

work efficient algorithm proposed in [150], while require much less hard-

ware to implement.

• This method can be of particular importance in SOC applications. In SOC,

the looping algorithm or some form of looping algorithm are still in place.

According to the simulation results method proposed in this chapter has

much faster execution time, hence will be of particular interest in SOC ap-

plications. Also this method can be application in digital subscriber loop

applications as mentioned in Section 3.14.

115

CHAPTER 6

MATRIX BASED ROUTING

ALGORITHM

I n this chapter, a new routing algorithm is presented for rearrangeably non-

blocking networks which can work for partial permutations and can give par-

allel time complexity that matches best known upper bound reported in the liter-

ature.

6.1 Introduction

Non blocking routing algorithms for rearrangeable networks give ideal perfor-

mance at the cost of computationally intense mathematical models, which take a

long time to calculate non blocking paths for each input. Section 5.2 contained

discussion of the routing complexities of the looping algorithm. It was shown in

that chapter that the looping algorithm suffers from poor scalability, because of

the recursive switching elements setup method it applies to setup paths.

Algorithm proposed by Çam and Fortes [148–150], claims to be work effi-

cient when it is implemented in a Parallel Random Access Machine (PRAM) ma-

116

Matrix Based Routing Algorithm

chine. PRAM is built with p (where p is very large) processors with each pro-

cessor having its own processor ID. All the processors are exposed to a single

common shared memory and communication is carried in a single instruction

stream, multiple data stream (SIMD) [194, 195] fashion. Each instruction stream

takes unit time in the PRAM structure regardless of the processor’s number and

each processor has a flag that indicates whether the processor is busy or idle. The

PRAM model is not a realistic model of available hardware. One of the biggest

drawbacks with PRAM is its constant memory access time, as this model suggests

p to be a large number, so in the physical implementation these processors will

occupy some physical space and the location of the memory access time cannot

be the same for all processors. Another issue is with the concurrent reads and

writes operation mentioned in PRAM model. With current memory structure,

there is a limit on the number of concurrent read and write, which also suggest

that it is not possible to perform read and write simultaneously by all the pro-

cessors. A third issue is that the shared memory has a capacity of O(N), where

N is the number of network inputs and outputs. If the memory is on a shared

bus, this will limit the speed of execution. If the memory is implemented with an

independent path from each processor to each memory element, the complexity

of the required interconnect equals that of the network to which the routing al-

gorithm is being applied. Since PRAM model is not practical, so the method of

routing in [150] is yet to prove itself to be work efficient.

Another important issue with most of the deterministic routing algorithms is

that they require full permutations to make routing decisions. If full permutation

is not available, inactive request pairs require dummy request so that the routing

algorithm can make decision. Algorithm proposed in [134, 135] introduced the

idea of partial permutations for Beneš networks. It has been reported in the lit-

erature that minimum parallel time complexity for any Beneš networks routing

algorithm is (log2N) as shown in Tabel 3.2. Using algorithms in [134, 135] it is

possible to minimize the time complexity to O(log2m + logN) for active requests

117

Matrix Based Routing Algorithm

m < N . Issues with this algorithm is that it is required to determine open and

close chains before making a blocking free routing decisions. Which increases the

calculation complexity of the overall method.

This chapter contains a description of a new and simpler solution for rear-

rangeable network routing. Simulation results of this method will be used to

compare its performance with that of the looping algorithm. This new method

will be able to make the routing decision in case of inactive pair of request with-

out the need for dummy request. Also a new proposal for routing in optical

domain will also be investigated which was not presented in methods proposed

in [134, 135, 148–150].

6.2 Conceptual Basis of the Algorithm

The state of the network will be represented below by set of matrices and a set

of sub-matrices. The networks under investigation have a recursive construc-

tion [68]. So the target is to formulate a method that can set the switching el-

ements in the outer stages without any blocking, to apply the same method to

the next outermost stages with appropriate modifications to the network size

and link numbering, etc, since the network can then be regarded as comprising

two subnetworks. The network state is recorded using a matrix representation,

where rows represent the input switching elements and columns represents out-

put switching elements. Subnetworks are represented by a matrix of lower di-

mension, applying this representation recursively to reach the inner most stages.

In developing a deterministic routing algorithm, its execution time is always

a major concern. The goal is an algorithm that gives better performance than

the looping algorithm. Developing the algorithm requires that the network is ab-

stracted as a mathematical model such as a matrix or graphical model. A graph-

ical model could use vertices to represent switching elements, while the edges

between the vertices represent the connecting links between switching elements.

118

Matrix Based Routing Algorithm

Alternatively network stages can be represented as a set of matrices, where each

matrix represents each stage and each cell of the matrices determines state of cor-

responding switching elements.The matrix model is more easily adapted to larger

networks, and so was chosen as the abstraction model for this algorithm. This

is so because graphical model can represent the connectivity between stages, it

can not tell us about the relevant routing decision unless some kind of labelling is

used. This model starts by populating the matrix cells corresponding to the input-

output requests with binary values (where a 0 represents the straight through

position and a 1 is the crossover position in actual implementation), starting by

setting the first available switching element to the straight through position. This

method gives rise to temporary blocking states in the sub-matrix, because of the

constraint that there can be only a single 1 in corresponding row and column,

same goes for a value of 0. This is due to the fact that blocking will occur in the

underlying network if any row or column of the sub-matrix contains more than

a single 0 or 1. This blocking is resolved by doing rearrangements of the cell val-

ues. The required reconfiguration cost when a blocking occurs is evaluated in

this chapter. Two rearrangement methods have been tried to optimized the re-

configuration cost (as explained in Section 6.3.1). This chapter contains detailed

descriptions of the proposed algorithms along with simulation results.

6.2.1 Preliminaries

The notation used in this chapter is defined below:

Definition 6.2.1 (Sub-matrix) Stages k and (2logN −2−k) of the switching network

is represented by 2k sub-matrices, where 0 ≤ k ≤ (logN −2). Configuring the switching

element settings at each stage equivalent to putting the values 0 or 1 in the cells of the

sub-matrices. The value(s) at cell[i, j]k, where 0 ≤ i, j ≤ (N
2
−1), determines the routing

tag(s) for input(s) to the switching element,SE
b i
2
c

k,i , where 0 ≤ i ≤ (N − 1), in actual

underlaying hardware.

119

Matrix Based Routing Algorithm

Figure 6.1: Sub-matrices format for a 16 × 16 Beneš Network.

Fig 6.1 shows the sub-matrices for a 16 × 16 network. In the figure each row

represents input stage switching elements and each column represents output

switching elements. For example, at stage k = 0 a set of requests such as 4 →

7 and 5 → 10 would point to CELL[2, 3]0 and CELL[2, 5]0 respectively with values

that set the switching element. Values in these cells determines routing tags for

input to the switching elements, SE2
0,4 and SE2

0,5. Such a matrix is called Paull’s

matrix and details can be found in [100].

Definition 6.2.2 (Blocked Sub-matrix State) Each row and column in every sub-

matrix must contain a single 0 and a single 1. Otherwise the sub-matrix is in a blocking

state. Since routing tags are generated from these sub-matrices, a blocking state inside a

sub-matrix will create a situation in the actual hardware where more than one input will

compte for a single link, and hence a blocking will occur inside the network.

In Fig. 6.2, CELL[6, 2] indicates a blocking state in the sub-matrix indicated

by ”*”. This is because CELL[6, 1] has a 1, as a result CELL[6, 2] can only have a

120

Matrix Based Routing Algorithm

Figure 6.2: One circuit with length 11, where gray boxes represents NULL value.

0. But in CELL[0, 2] there is a 0, which means in CELL [6, 2] either a 0 or a 1 puts

the sub-matrix into a blocking state. In the actual underlaying architecture this

demonstrates a situation where two inputs in a switching element have the same

routing tags. They are thus trying for the same link to reach to the next stage, and

forcing the network into a blocking state.

Definition 6.2.3 (Circuits) Circuits are used to identify the cells where cell values need

to be rearranged, and thus the switching elements settings need to be changed. The length

of a circuit is the total number of cells whose contents must be changed to perform the

rearrangement. If a candidate circuit has r cells in it then the length of the circuit is r.

Fig. 6.2 shows a blocking state by indicating the affected cells with the sign ”*”.

The arrows indicate the circuit that needs to be rearranged. The size of this circuit

(which in general may not be the smallest) is 11. So as to overcome the blocking in

the stage, changes need to made on these 11 cells following the arrows. In other

words, the cells indicated by the arrows have to alter their values either from 1

to 0 or from 0 to 1 as indicated by the ”*”.

121

Matrix Based Routing Algorithm

Definition 6.2.4 (Balanced State) Balanced state is the blocking free state of the net-

work. A binary matrix can be called balanced when it has N = 2logN rows, where each

column has an equal number of 1′s and 0′s and consecutive logN columns form binary

representation of the set {0, 1, . . . , N − 1}. These two different balanced matrices create a

balanced state in the network, which means no two requests are contending for the same

connecting link at the same time in the network, hence no blocking occurs. If Ci, where

0 ≤ i ≤ (logN − 2), are column vectors for the distributed part of the network, then for

a conflict free routing each Ci has to be balanced as well as the matrix created from the

concatenation of the C ′
is.

For example, let C0 and C1 be two binary column vectors as shown in fig. 6.3.

If C0 and C1 are individually balanced then concatenation of C0 and C1 must

be balance for routing tags to be conflict free [150]. This is because having an

unbalanced matrix will create a situation in the actual hardware where two inputs

in a switching element have the same routing tags. This means two inputs will

try to use the same output link, as a result create a blocking in the network. The

concept of neighbour ports as described in 5.1 can be used to explain the routing

tags in a balanced column. Two rows corresponding to two inputs in the same

switching element will have binary values that are the compliment of each other.

So if one input has a 1 in the relevant bit position of its routing tag, its neighbour

input port must have to have a value of 0 in the corresponding position to ensure

a conflict free routing in the network.

6.3 Symmetric Rearrangeable Networks Routing

This section describes the routing method proposed in this chapter.

6.3.1 Basic Routing Algorithm

Variables used throughout this algorithm as follows:

122

Matrix Based Routing Algorithm

Figure 6.3: (a) Balanced Columns. (b) Balanced Matrix.

• Tag[j, k] : A target cell at position [j, k] in a matrix that holds the routing tag

for input i. Where j = b i
2
c and k = bP (i)

2
c.

• B1 : Stores the sum of all the values in the cells of row j. Initially set to

NULL.

• B2 : Stores the sum of all the values in the cells of column k. Initially set to

NULL.

• (R′, C ′) : Variables store temporary row and column numbers.

6.3.2 Example

Let us consider N = 16 and a random permutation P(0:15) = (5 14 11 12 9 2 8 1 13 6 0

10 3 4 15 7). Since the switch size is 16 × 16, there is a single sub-matrix for stage

0 with a size of 8 × 8. For stage 1 there are two submatrices of size 4 × 4, stage 2

123

Matrix Based Routing Algorithm

Algorithm 11 : Algorithm Matrix
INPUT: Permutation P0:N−1

OUTPUT: Column matrix.
1: for k = 0 to 2logN − 2 do
2: for j = 0 to N

2
− 1 do

3: Tag[j, k] ←NULL
4: end for
5: end for
6: i ← 0
7: CALL ROUTING(i)

Function 12 : ROUTING(i)
1: Flag[j] ← NULL
2: Flag[k] ← NULL
3: if i > (N − 1) then
4: Exit
5: else
6: repeat
7: if Flag[j] = Flag[k] = NULL then
8: Tag [j, k] ← 0
9: Flag[j] = Flag[k] ← 0

10: end if
11: if Flag[j] = Flag[k] = 0 then
12: Tag [j, k] ← 1
13: Flag[j] = Flag[k] ← 1
14: end if
15: if Flag[j] = Flag[k] = 1 then
16: Tag [j, k] ← 0
17: Flag[j] = Flag[k] ← 0
18: end if
19: if Flag[j]

⊕
Flag[k] = 0 then

20: CONFLICT at Tag [j, k]
21: R′ ← j
22: C ′ ← k
23: Exit Loop
24: end if
25: i ← i + 1
26: Flag[j] = Flag[k] ← NULL
27: until (i > (N − 1))
28: end if
29: Flag[j] ← B1

30: Flag[k] ← B2

31: CALL CONFLICTROW(R′, C ′, B1, i) & CONFLICTCOLUMN
(R′, C ′, B2, i)

124

Matrix Based Routing Algorithm

has submatrices of size 2× 2, Fig 6.4 shows the sub-matrices and the execution of

the algorithm. According to the given permutation, input 0, which in underlying

hardware is, SE0
0,0, requests connecting path to output switching element, SE2

6,5

in actual hardware. To generate routing tag for this request, Set Tag[0, 2] ← 0 in

sub-matrix for stage 0, which means in actual implementation input 0 will exit

from out put 0 of switching element SE0
0 to go to the next stage, this sets SE0

0 in

straight through state. Similarly for input set Tag[0, 7] ← 1, as 0 or 1 can be used

only once in a row or column, and row 0 already has a 0. Continue this process till

a conflict aries at row 5 of the stage 0 sub-matrix. Row 5 corresponds to input 10

and 11 in the given permutation requesting output port 0 and 10 respectively. The

conflict aries as a result of having a 1 at Tag[5,0], and a 0 at Tag[1,5], which satis-

fies the condition B1

⊕
B2 = 0 in algorithm Matrix. In this conflicting state of the

sub-matrix, the algorithm goes through rearrangements of cell values forming a

circuit. Cells involved in the circuit are identified as Tag[5,0], Tag[3,0], Tag[3,4],

Tag[2,4] and Tag[2,1]. To resolve the conflict, cell values involved in the circuit

have been rearranged. After resolving the conflict, the algorithm starts with in-

put 12, and continue the process to generate a column matrix for stage 0 routing

tags for the given permutation.

At stage 1 this algorithm is applied in two sub-matrices that represent two

subnetworks and hence the generates the routing tag column matrix for stage 1.

Similarly algorithm Matrix is applied to 4 sub-matrices in generate in stage 2 and

routing tags column matrix is generated.

6.4 Simulation Results

This section gathers simulation results from various size of networks. This sec-

tion also discuss the reconfiguration cost of generating conflict free routing tags,

which is column matrix for each switching stages.

125

Matrix Based Routing Algorithm

Function 13 : CONFLICTROW(R′, C ′, B1, i)

1: Tag[R′, C ′] ← B1 (Complement of B1)
2: Flag[R′] ← B1

3: Find column k′ 6= C ′ at row R′ where Tag[R′, k′] = B1

4: Tag[R′, k′] = B1

5: Flag[C ′] ← B1

6: C ′ ← j′

7: Find row r′ 6= R′ at column C ′ where Tag[r′, C ′] = B1

8: Tag[r′, C ′] ← B1

9: Flag[R′] ← B1

10: R′ ← r′

11: Find row r′ 6= R′ for any other B1

12: if no other B1 then
13: i ← i + 1
14: ROUTING(i)
15: else
16: R′ ← r′

17: Goto 1
18: end if

Function 14 : CONFLICTCOLUMN (R′, C ′, B2, i)

1: Tag[R′, C ′] ← B2 (Complement of B2)
2: Flag[C ′] ← B2

3: Find row r′ 6= R′ at column C ′ where CELL[r′, C ′] = B2

4: Tag[r′, C ′] = B2

5: Flag[R′] ← B2

6: R′ ← r′

7: Find column k′ 6= C ′ at row R′ where CELL[R′, k′] = B2

8: Tag[R′, k′] ← B2

9: Flag[R′] ← B2

10: C ′ ← k′

11: Find column k′ 6= C ′ for any other B2

12: if no other B2 then
13: i ← i + 1
14: ROUTING(i)
15: else
16: C ′ ← k′

17: Goto 1
18: end if

126

Matrix Based Routing Algorithm

Figure 6.4: Sub-matrices status after execution of the algorithm.

6.4.1 The Routing Tag and Its Validity

This method allows a submatrix to have only one 0 and one 1 in each row and

each column. The method explained in Section 6.3.1 creates 2i sub-matrices at

each stage where 0 ≤ i ≤ (logN − 2). The values in the sub-matrices created

for stage i, 0 ≤ i ≤ (logN − 2), represents routing tags for the inputs to the

switching elements at that stage. Once a sub-matrix is populated with routing

tags for all the input-output requests it represents in a stage, these tags are used

to set up the switching elements in the stage of the underlying hardware without

any blocking. A sub-matrix is balanced when it has no conflicts, i.e there is no

duplication of values in the same row or column. Since the state inside a sub-

matrix is balanced, so the concatenated matrix having values taken from all the

sub-matrices and having (logN−2) columns and (N−1) rows will always create a

balanced matrix. In the concatenated matrix, column 0 corresponds to the values

127

Matrix Based Routing Algorithm

Figure 6.5: Balanced matrices.

taken from the sub-matrix for stage 0, column 1 from the stage 1 and so on. Each

row will have two values for two inputs of switching elements pointing to the

row number.The values at position (i, j), where 0 ≤ i ≤ (N − 1) and 0 ≤ j ≤

(logN − 2), correspond to the routing tag for input i at stage j.

6.4.2 Example

For a 16 × 16 network the proposed method is used to generate the routing tags

for randomly generated permutation . The generated permutation is P(0:15) =

(1 9 2 5 15 10 7 8 13 0 6 3 11 12 4 14). Fig 6.5 shows three column vectors gen-

128

Matrix Based Routing Algorithm

Figure 6.6: Routing tags and status matrix for a given permutation

erated from sub-matrices between stage 0 and 2. The rows of vector C0 contain

the values used to set the switching elements at stage 0. Similarly, C1 and C2

dictate the settings of switching elements at stages 1 and 2 respectively. All the

column vectors are balanced. The matrix C is constructed by concatenating C0,

C1 and C2. Matrix C is also a balanced matrix. Each row of matrix C gives the

routing tags for the corresponding switching element input. A concatenation of

(logN −1) balanced vector will give rise to a N × (logN −1) balanced matrix. The

binary output matrix CO itself is a balanced matrix since it is one-to-one request

permutation. So C · CO = CT will create a balanced state in the network which is

the condition for a conflict free routing, even though the combined matrix is not

balanced. The sign · indicates a concatenation.

To further verify the correctness of the proposed method, for a random per-

mutation generated routing tags are tested using a tag validator. This validator

takes the generated routing tags and then it works in the reverse direction to gen-

erate the original permutation. First it generates the status matrix of the switching

elements in the switch after a conflict free routing. If the simulator is successful in

generating the status matrix, the next step is to generate the original permutation

129

Matrix Based Routing Algorithm

for the given routing tags. The generated status matrix is then used to generate

the original permutation. If the permutation matches the original permutation, it

proves the correctness of the proposed method. Fig 6.6 shows the routing tags,

the status matrix for these tags and the generated permutation which matches the

original permutation.

6.4.3 Reconfiguration Cost

The reconfiguration cost inside a sub-matrix to unblock a blocked state can be de-

fined as the required number of cell value rearrangements to make a sub-matrix

balanced in the event of a conflict. It is important to know the reconfiguration

cost for various sizes of networks. Using only row-first rearrangement process

may not always be able to select the smallest length circuit for rearrangement. To

investigate the circuit length for a column-first rearrangement also and compare

the result with row-first. If these two rearrangement processes provide two dif-

ferent length of the circuit, then the smallest one is selected for rearrangement.

A counter stores the required circuit lengths using CONFLICTROW and CON-

FLICTCOLUMN, and selects the smallest circuit where cell values need to be

altered.Simulations for networks of various sizes from N = 8 to N = 1024 have

been executed to determine the reconfiguration cost. Since the reconfiguration

cost is directly proportional to the request setup time, it is desirable to keep it

to as minimum as possible. Fig 6.7 shows the results of Algorithm 12 using the

two rearrangement process Algorithm 13 and Algorithm 14 after selecting the

smallest circuit for rearrangement.

The execution time is an important aspect of an algorithm’s performance. The

execution time of the proposed algorithm compared with that of the looping al-

gorithm in Fig. 6.8. The performance difference between the two methods is in

the range of fraction of milliseconds. For larger values of N , such as N = 1024,

the difference in their execution time is significant. This difference is due to the

130

Matrix Based Routing Algorithm

Figure 6.7: Reconfiguration cost.

Figure 6.8: Execution time for Looping and Matrix based algorithm.

131

Matrix Based Routing Algorithm

Figure 6.9: Reconfiguration cost per input for different sizes of network.

fact that the inner stages of the network are collections of smaller subnetworks,

and as a result the proposed method takes less time to generate routing tags for

the inner stages. On the other hand, in the looping algorithm decision making is

uniform and hence it takes longer to setup. Fig. 6.9 shows reconfiguration cost

per input for different sizes of network. It shows reconfiguration cost increases

approximately logogrammatically.

6.5 Complexity Analysis

This section studies the time complexities for both serial and parallel implemen-

tation of the algorithm.

Before going into the detail of complexity analysis, it is first required to show

that this method can work for partial permutations,i.e for request sets where not

all the input output pairs have active requests. To do so lets assume a permutation

P0:15 = (5 7 1 x 2 x 13 10 x 11 9 12 15 0 4 8), where x indicate the inactive requests.

Fig 6.5 shows the matrix status for stage 0 for the given partial permutation P . As

it can be seen that the only conflict occurs for request 15 → 8, and to resolve the

conflict it requires three cells to rearrange their binary values. This shows that the

132

Matrix Based Routing Algorithm

method can determine routing tags for partial permutation. This is an important

feature because most of the Beneš networks routing algorithms only work if all

inputs have an output request.

Figure 6.10: Matrix status for permutation P0:15 = (5 7 1 x 2 x 13 10 x 11 9 12 15 0 4 8)

To do the overall complexity analysis of the algorithm it is required to calcu-

late the complexity of each functions that are involved in the algorithm. Functions

that are involved in routing are:

• ROUTING(): This is the main function that controls the routing algorithm.

Routing runs for N times for each stage in the network for each N inputs.

• CONFLICTROW(): In a situation of conflicting row in a sub-matrix, this

function rearranges the value of the cells in a circuit. In worst case this

function needs to change N
2

cells for a conflict.

• CONFLICTCOLUMN(): In a situation of conflicting column, this function

changes N
2

cell values in worst case.

Determining the tag for each input in ROUTING() takes O(1) time so for N in-

put it is O(N) at every stage. Once there is any conflict in ROUTING(), execution

of the loop ends and it calls two functions CONFLICTROW() and CONFLICT-

COLUMN(). These two functions overcomes the conflict by selecting the smallest

133

Matrix Based Routing Algorithm

circuit. In a worse case situation minimum length of the circuit will be N
2

, hence

these functions will have a time complexity of O(logN). Function ROUTING()

runs for O(log N) stages of the network for each request. This gives an overall

time complexity of the algorithm in O(N logN).

Required execution time can be reduced if parallel implementation is applied.

To make the algorithm work in parallel, minor modification is required in the

algorithm proposed in Section 6.3.1. In Section 6.3.1 algorithm, each conflict is

resolved when they occur in the execution. This makes the algorithm inadequate

for full parallel implementation. So the proposed modification is to do the conflict

resolution after setting the switching elements in the stage and then rearrange the

setting of the conflicting switching elements. This is done by continuing popu-

lating the matrix representing each subnetwork with binary values avoiding col-

umn conflicts(even if this may cause row conflict). This modification eliminates

the need of frequent conflict resolution that may occur. Having N processing el-

ements this algorithm can set up switching elements in each stage with a time

complexity of O(1). As the length of the circuit is N
2

, and length of maximum

cell search will be N
2

. So to search the cells will take O(logN) time with searching

algorithm [196]. Depth of the network is in O(logN), hence overall complexity of

the algorithm will be O(log2N) in a completely connected parallel structure with

N processors. This is the minimum complexity for processing Beneš network

routing in parallel [133, 146, 197] using O(N) processing elements.

The proposed method can also work for m ≤ N requests. Hence for uni-

processor system the overall complexity will be O(mlogN) where m = ρN . I will

consider the case where m < N . This corresponds to a network with a large

number of idle inputs. The complexities of an efficient algorithm will scale in

proportional to m. Also for completely connected parallel machine, for m ac-

tive requests only m processors are needed rather than N . With only m active

requests in the network, maximum length of a circuit will be m
2

, hence m pro-

cessors are enough to break a circuit and rearrange the cell values in each stage.

134

Matrix Based Routing Algorithm

With m active requests in the network, maximum length of a circuit will be bm
2
c,

which gives a search time of O(logm). So with m active requests and completely

connected network with m processors parallel time complexity of the algorithm

is O(logN.logm), which is the minimum upper bound than any other algorithm

reported in the literature for unicast m active requests.

The method of rearranging cell values is similar to that of graph 2 coloring.

Each cell can be considered as a vertex and two neighbour vertices are one cell in

the same row and one cell in the same column. Edges connecting the vertices to

that vertex will have two different colore. This is similar to the routing algorithm

condition of having no duplicate binary values in the same row or column. As

the modified algorithm continues to populate matrix cell with binary(even with

possibilities of row conflict), at the end of the populating process, circuits are

identified. This process will take O(logN) time with a searching algorithm. Then

similar to the graph 2 coloring cells in the circuits are assigned binary values such

that it overcomes the conflict. Using a PRAM computer with N processors and

N nodes graph 2 coloring can be done in logN time [150, 198]. At each stage the

routing algorithm spend O(logN) time to find conflict free routing tags. So with

PRAM machine with N processors and O(logN) stages the proposed algorithm

can be executed in O(log2N) time to determine conflict free routing tags. Similar

arguments can be made for m < N active request pairs, and show that the time

complexity of the algorithm will be O(logm.logN).

O(log2m + logN) in [134] is the best reported complexity in the literature for

Beneš networks using partial permutations in parallel domain. The complexity of

the algorithm proposed in this chapter is less than that of the best case complexity

reported in [134] for a range of values of ρ. Let f(N) = O(logm.logN) and g(N) =

O(log2m + logN). Let’s find the value of ρ for which:

135

Matrix Based Routing Algorithm

f(N) = g(N)

⇔ logm.logN = (log2m + logN)

⇔ log(ρN).logN = (log2(ρN) + logN

⇔ b(a + b) = (a + b)2 + b [where a = logρ , b = logN]

⇔ a2 + ab + b = 0 (6.1)

Eqn. 6.1 has roots:

a =
−b ±

√
b2 − 4b

2
(6.2)

Substituting for a and b in Eqn. 6.2, the crossover point for ρ:

ρ = 2
1
2
[(log2N−4logN)

1
2 −logN] (6.3)

Determining dme and dlogme using Eqn. 6.3 gives the minimum value for

which the proposed algorithm in this chapter outperforms the algorithm in [134].

For large N , ρ approaches to 0.5.

6.6 Routing in Optical Domain

This section will overview the application of matrix based routing algorithm for

the switching in optical domain along with the time complexities of the algorithm

after the necessary modifications.

Routing in optical domain is much more critical than in electrical domain be-

cause of the noticeable crosstalk effect. Crosstalk occurs when two waveguides

transmits part of their signal power to one another. For example, lets assume

that one switching element is set to a cross state and two active inputs carnying

136

Matrix Based Routing Algorithm

signals A and B are in its upper and lower inputs respectively. In a crosstalk situ-

ation certain amount of signal power from A will be coupled to output of B and

output of A will have some signal power of B. When output signal is affected

by the crosstalks taken place in the switching element, it is termed as first order

crosstalk [199, 200], in this thesis the keyword crosstalk will indicate first order

crosstalk.

In order to overcome the crosstalk effect three approaches are in place, space

dilation, time dilation and wavelength dilation. In space dilation approach, concur-

rent switching of two different signals are avoided through a single switching

element [201–203]. In other words only one input is active in each switching ele-

ments in the network at a time. Which requires increase in the number of switch-

ing elements, in general this is done by adding multiple plane of the network.

In time dilation approach input permutation is divided into two half and one

half is routed at a time to avoid crosstalk [181, 204]. Clearly hardware complexi-

ties grows for space dilation and time complexity for time dilation approach. In

wavelength dilation, different wavelengths are used for active switching inputs

are wavelength converters are used in the switching elements [205]. In this chap-

ter, focus will be on the time dilation and space dilation approaches of routing.

Any permutation can be break into two separate permutation by using the

concept of semi permutation described in [121]. It has been shown in [123, 206]

that for an optical Beneš networks, each semi permutation can be realized in one

pass. Graph 2 coloring based approach for generating semi permutation has been

presented in [198]. In that approach it has been ensured that two signals entering

an output or exiting from an input switching element have different colors. Hence

signals with same colors forms a semi permutation. And using time dilation

approach each permutation is routed through the network, hence it takes two

pass to route a complete permutation using time dilation approach.

Using matrix based routing algorithm proposed in this chapter, semi permu-

tation can be generated for an N × N optical Beneš routing in time dilation ap-

137

Matrix Based Routing Algorithm

proach. It has been mentioned in Section 6.3.1, that there can not be any repeti-

tion of binary values in the same row or column when generation routing tags

for input output requests. This method works in stage by stage fashion, i.e after

generating routing tags for stage k, the algorithm goes on to generate tags for

stage k + 1 and so on. Also any conflict in the cell value is resolved using conflict

resolution method once initial value of the routing tags are put in to the matrix

cells. After the conflict resolution, each value in a matrix cell indicates routing

tags for input and output stage for an input output request. It has been shown

in Section 6.5 that with O(N) processors in completely connected parallel com-

puter it takes O(logN) time to generate routing tags for each stage. Two routing

tags at input or output stage switching element will be complement of each other

when there is no conflict in the stage. These two values can be consider as two

colors with the two requests entering or exiting to/from any switching element.

Once the matrix for each stage are configured, two binary values will be used to

generate the semi permutation. Requests having same binary value as routing

tag forms a semi permutation. So request with routing tag 0 will be one set of

semi permutation and another set comprises the requests having 1 as routing tag.

Fig 6.6 shows a matrix for stage 0 for permutation P0:7 = (0 7 3 5 1 4 2 6). From

the matrix two semi permutation will be P1 =
(

0 2 5 7
0 3 4 6

)
and P2 =

(
1 3 4 6
7 5 1 2

)
.

As it is shown in previous section that generating routing tags using matrix

based routing method takes (N logN) serial time and O(log2N) parallel time for

O(N) active inputs having O(logN) depth network with O(N) completely con-

nected processors, hence generating semi permutation for all the stages in the

network will have similar time complexities in both parallel and serial execution.

The matrix decomposition serves two purpose in routing, one it helps generating

the semi permutations and second it also provides the routing tags for each in-

put at each stage. Once the semi permutations are in place, using time dilation

approach, in two passes any N ! permutations can be routed in the network.

Using space dilation in Beneš networks any permutation can be realized in a

138

Matrix Based Routing Algorithm

Figure 6.11: Routing tag matrix for stage 0.

single pass by using multiple plans of the network. Lets assume two semi per-

mutations are P1 and P2, each of these two permutations are feed into two plans

of the space dilated Beneš network where crosstalk free routing is carried out.

These networks contain two copies of the same network, hence compromising

hardware complexities for saving execution time. The structure of the network

requires little modifications than regular Beneš networks. Outermost stages of

these networks have spelters and combiners. In the input stage a total of N 1 × 2

spelters are there to feed the input request at the appropriate plan of the network.

Similarly at output stage the network has a total of N 2 × 1 combiners that com-

bines the output coming from two plans. Having two separate plans for routing

allows crosstalk free routing in optical domain using semi permutation from the

partial permutation at each stage. Fig 6.6 shows a space dilated optical Beneš net-

work. The time complexity of the routing algorithm in optical domain remains

the same as in the electrical domain.

139

Matrix Based Routing Algorithm

Figure 6.12: Space dilated Optical Beneš network.

6.7 Networks with Large Switching Elements

This section investigates possible modifications to classic topology of symmetric

rearrangeable networks built with 2 × 2 switching elements, also such as suing

larger switching elements. The classic topology will be called as Topology A in

rest of this chapter.

6.7.1 Reducing Network Depth

Fig 3.3 shows a Topology A network of size N = 16. This network can be reduced

in depth by using 4 × 4 switching elements in each stage, to obtain a topology B

network. This reduces the total number of stages in the network without increas-

ing crosspoints count.

The depth of the networks for where logN is even can be reduced more than

others. Networks for which logN is odd, will be called Topology C networks.

Table 6.1 shows the network depth using Topologies A, B and C. In the table,

Topology B shows a considerable decrease in the network depth compared to

140

Matrix Based Routing Algorithm

Figure 6.13: A 16 × 16 symmetric network built with 4 × 4 switching elements

the other two topologies. In Topology B, where logN is even (such as N =

16, 64, 256 and 1024) network depth is reduced to less than half that of Topol-

ogy A. Fig. 6.13shows structure of a 16 × 16 symmetric rearrangeable network

using Topology B. The link patterns at stages 0 and 1 of Fig. 6.13 can be denoted

as i → b i
4
c+ 4i mod4, where i is the input number. Networks belonging to Topol-

ogy C, use two different link patterns. In the outermost stages, they have the

same link patterns as Topology A, and in other stages they use the link pattern of

Topology B.

The standard routing algorithms used for Topology A networks will not work

for Topologies B and C. This is because, switching elements larger than 2 × 2

can no longer be controlled by binary bits and require more complex decision

making. For Topology C networks, where the outer stages are built with 2 ×

2 switching elements and the inner stages are made of 4 × 4 elements, routing

through these network requires two different algorithms. One routes in 2 × 2

stages of switching and the other applies for stages built with 4 × 4 switching

elements. An alternative would be to use the looping algorithm, as the operating

141

Matrix Based Routing Algorithm

Table 6.1: Comparison of network depths.

N Topology A Topology B Topology C
8 5 x 3

16 7 3 x
32 9 x 5
64 11 5 x

128 13 x 7
256 15 7 x
512 17 x 9

1024 19 9 x

principle of the algorithm allows it to work for networks with multiple switch

sizes. An other alternative would be to use the algorithm proposed in Section 6.3,

which gives better performance for large Topology A networks than does to the

looping algorithm.

In the case of a heterogenous network, switching stages are built with different

sized switching elements and generally the middle stage should be built with

switching elements larger than in other stages. If the total number of inputs of

the network is N , then N can be given as N =
n∏

i=1

Pi, where {Pi} is the set of

prime factors of N and n is the total factors of N and Pi ≥ Pi−1. This network

can be built with a total of (2n − 1) stages, where stages i = 1 to n use Pi × Pi

switching elements, and where the switching elements sizes in stages (n− i) and

(n+ i) are the same for i = 1 to n−1. The number of switching elements per stage

is N
Pi

, in stages i and (2n − i), and each switching element has a crosspoint count

of P 2
i , 1 ≤ i ≤ n. Hence the overall crosspoint count per input for the network

can be given as 2
n−1∑
i=1

Pi + Pn.

Table 6.2 show an example of a network of size N = 120, built with heteroge-

nous switching elements. In the table it can be seen that smaller middle stage

switching elements(≤ 10) give the minimum crosspoint count. Longer switching

element sizes than 2 × 2 are considered below:

142

Matrix Based Routing Algorithm

Table 6.2: Crosspoint count for networks with heterogenous switching elements

factors, N = 120 crosspoints per input
2,2,2,3,5 2(3 × 2 + 3) + 5 = 23
2,3,4,5 2(2 + 3 + 4) + 5 = 23
4,5,6 2(4 + 5) + 6 = 24
8,15 2 × 8 + 15 = 31

2,5,12 2(2 + 5) + 12 = 26
10,12 2 × 10 + 12 = 32

2,2,5,6 2(2 + 2 + 5) + 6 = 24
2,2,3,10 2(2 + 2 + 3) + 10 = 24
2,2,2,15 2(2 + 2 + 5) + 15 = 27

3,5,8 2(3 + 5) + 8 = 24
2,5,12 2(2 + 5) + 12 = 26
2,3,20 2(2 + 3) + 20 = 30
2,2,30 2(2 + 2) + 30 = 38
2,60 2 × 2 + 60 = 64
3,40 2 × 3 + 40 = 46
5,24 2 × 5 + 24 = 34
4,30 2 × 4 + 30 = 38
6,20 2 × 6 + 20 = 32

6.8 Networks with 3 × 3 Switching Elements

This section considers networks that can be built using 3 × 3 switching elements.

Obviously binary control does not apply in these networks, nor can widely pop-

ular the looping algorithm. One reason for the looping algorithm not being ap-

plicable in these networks is that it works for only networks that have an even

number of middle switches. Networks built with 3 × 3 switching elements have

an odd number of switches in the middle stage and hence the looping algorithm

is not applicable. The routing algorithm proposed in Section 6.3.1 has been ex-

tended below so that it can work for such networks. Fig. 6.14 shows a 27×27 sym-

metric rearrangeable network built with five stages of 3 × 3 switching elements.

Networks build with 3 × 3 switching elements have a total of (2M − 1) stages

where M is the number of prime factors of N [73]. The overall crosspoint count

is then 3N(2M − 1).

143

Matrix Based Routing Algorithm

Figure 6.14: A 27 × 27 symmetric network build with 3 × 3 switching elements

These networks have two major advantages over networks built with 2 × 2

switching elements, one being that they have fewer stages and another that they

reduce the overall crosspoint count. Tables 6.3 and 6.4 show the number of cross-

points for networks built with 2 × 2 and 3 × 3 switching elements respectively.

In general the number of crosspoints required is reduced by a factor of approxi-

mately log2
logk

when a switch is built with k×k switching elements rather than 2×2.

This assumes that all switch inputs are used, i.e N = klogkN .

Table 6.3: Crosspoint for networks using 2 × 2 switching elements

N total stages overall crosspoints crosspoints per input
8 5 80 10

16 7 224 14
32 9 576 18
64 11 1408 22

128 13 3328 26
256 15 7680 30
512 17 17408 34

1024 19 38912 38

A 3× 3 switching element has more possible states than a 2× 2 element. It has

6 different active states where all the inputs are active, and one idle state which

144

Matrix Based Routing Algorithm

Table 6.4: Crosspoint count for networks for 3 × 3 switching elements

N total stages overall crosspoints crosspoints per input
9 3 81 9

27 5 405 15
81 7 1701 21

243 9 6561 27
729 11 24057 33

2187 13 85293 30
6561 15 295245 45

Figure 6.15: Different states of a 3 × 3 switching elements

means all the inputs are idle. There can be other active states in a switching ele-

ment when a fraction of its inputs are active and rest are idle. In this discussion

only switching element states with all inputs active and one idle state will be

taken into consideration. The control inputs can be denoted as (H, M, L) where

the letters indicate the upper,middle and lower output ports respectively.This

control inputs decides the connecting output port for the input port. Control in-

puts connect input to an output port following the rule in Eqn 6.4, where I0 I1, I2

are the input ports to a switching element and O0 O1, O2 are its output ports.

Fig. 6.15 shows various active states of a 3 × 3 switching element.

I0, I1, I2 =

O0, if control input H

O1, if control input M

O2, if control input L

(6.4)

145

Matrix Based Routing Algorithm

6.9 Routing Algorithm

The routing method of section 6.3 requires major modifications so as to adapt it

to networks using 3 × 3 switching elements. Network stages are represented by

a set of sub-matrices. Each row and column representing 3 inputs and outputs

respectively of the underlaying hardware. Each stage is represented by 3k matri-

ces, where k is the stage number and 0 ≤ k ≤ (M − 2). Each matrix is populated

using the control input values (H, M, L). These values must be chosen so that

there is no duplication of values in any row or column. This ensures nonblocking

routing in the actual hardware.

Since there are three choices rather than two in these networks, an order must

be specified to apply in populating the cells. Populating each cells of sub-matrix

is carried out below following the rule in Eqn 6.5

Tag[j, k] =

H, if{Row[j] ∪ Column[k] /∈ H}

M, if{Row[j] ∪ Column[k] /∈ M}

L, if{Row[j] ∪ Column[k] /∈ L}

Where j = bi/3c , k = bP (i)/3c and 0 ≤ i ≤ (N − 1)

(6.5)

In case of a conflict between two cell values between row[j] and column[k], the

algorithm rearranges some of the cell values to overcome the conflict. Two dif-

ferent cell value rearrangements have been carried out to determine the smallest

circuit length. Eqn 6.6 shows the rule for rearranging the values in the row and

Eqn 6.7 shows the rule for rearranging the values in the column first. In these

equations j = bi/3c and k = bP (i)/3c. Depending on the smallest number of

rearrangements cell values are changed. This process is similar to that detailed in

Algorithm 13 and Algorithm 14.

146

Matrix Based Routing Algorithm

Tag[j, k] = {x|x = Row[j] ∩ {H,M,L}} (6.6)

Tag[j, k] = {x|x = Column[k] ∩ {H,M,L}} (6.7)

To further illustrate the method assume that a permutation P0:26 = (0 3 17 24 26

6 13 10 7 20 2 15 16 22 14 12 23 25 18 21 5 8 19 9 11 4 1) is to be routed. Fig 6.16

shows the execution of the algorithm for this permutation. Cells with a (∗) sign

indicate rearrangements, where the initial cell values have been changed to re-

solve a conflict.

Figure 6.16: Execution of algorithm

147

Matrix Based Routing Algorithm

Figure 6.17: The Routing tags obtained for the permutation P0:26

6.10 Simulation Results

This section provides simulation results for various values of N , where the metric

used is reconfiguration cost.

Fig 6.17 shows the routing tags for the permutation used in Section 6.9. Fig. 6.18

shows the reconfiguration cost for the worst case rearrangement. Fig. 6.19 shows

the reconfiguration cost per input for various values of N . This figure shows a

gradual increase in the reconfiguration cost with increasing network size. The

reconfiguration cost is higher than a network built with 2×2 switching elements.

This illustrates the fact that finding conflict free routing paths for networks built

with large switching elements require complex decision making.

6.11 Summary

This chapter proposes a routing algorithm that can provide zero probability of

blocking in symmetric rearrangeable networks. A simple matrix decomposition

148

Matrix Based Routing Algorithm

Figure 6.18: Maximum reconfiguration cost for different sizes of network

Figure 6.19: Reconfiguration cost per input for different size of networks

is used to map the actual network into a mathematical format. Two different re-

arrangement methods have been proposed and simulated. The result shows con-

siderable reductions in the number of rearrangements. The method has almost

similar execution time to that of the looping algorithm for small networks but for

larger networks the proposed method has lower execution time than the looping

algorithm. Parallel version of the algorithm and it time complexities have been

described in detail. A proposal of using this method for optical domain switching

has been described.

149

Matrix Based Routing Algorithm

This chapter also discussed the issues of designing symmetric rearrangeable

networks built with large and heterogenous switching elements. It is shown that

networks built with 2 × 2 switching elements can be reduced in their depth by

substituting 4× 4 switching elements. Networks built with heterogenous switch-

ing elements show that a middle stage built with switching elements size ≤ 10

gives a lower crosspoint count per input than other alternatives. The analysis has

been limited to networks built with 2× 2, 3× 3 and 4× 4 switching elements. The

extension to switching element sizes of grater size is not worthwhile, under the

assumption that the implementation cost of an switching element is proportional

to the square of the number of inputs. More complex modules of switch cost may

justify the use of larger switching element sizes, although routing is much more

complex in such case. This can be seen from the execution time for networks built

with 3×3 switching elements. A network built with 3×3 switching elements gives

the network designer a choice between long execution time and smaller network

depth with limited hardware cost.

Major findings of this chapter are listed below:

• Proposed method dose not uses recursive method as in the looping algo-

rithm, which is the base for all available routing methods reported in the

literature [132, 137, 146, 150, 207].

• This method can work for partial permutation, in other words where some

of the input remain inactive. Without major modifications algorithms such

as the looping can not work for partial permutation and algorithm such

as [128, 135, 146, 150] can only work with full permutations.

• It has parallel time complexity that matches other parallel methods in Ta-

ble 3.2 for N active inputs. For partial permutations it has a time complex-

ity of O(logN.logm) in compared to O(log2m + logN) in [134]. Presented

method can be used to generate semi permutations and used in optical do-

main. With the offered time complexity, this method is of particular interest

150

Matrix Based Routing Algorithm

in large scale optical switch routing for today’s high performance commu-

nication networks.

• Minor modifications in the switching element setting scheme allows this

method to be applicable for network having odd number of middle stage

switching element and non binary decision making. Conventional routing

methods such the general looping algorithm or algorithms such as [128,

132, 137, 146, 150, 207]designed for networks built with 2 × 2 switching

elements can not work on these modified networks as decision making on

these methods are controlled by binary bits.

• In serial processing, proposed method gives theoretical time complexity for

N pair of request that is equal to all the other available routing method and

which is the minimum that can be achieved for Beneš network in any single

processor system. Simulation results also show that for large network it has

better execution time than the looping algorithm.

151

CHAPTER 7

CONCLUSION AND FUTURE

WORK

Switching technologies have changed much over time. Core switching net-

works and methods for routing through these networks play an important

role in current communication networks. A special class of communication net-

works has been considered in this thesis. These are called symmetric rearrange-

able networks. These networks are suggested for use in future communication

networks; especially in the optical domain, system on chip (SoC), network on

chip (NOC) and DSL applications.

7.1 Contributions

The overall contributions of this thesis are summarised below:

• A new design for implementing multistage symmetric repackable networks

of minimum cost;

• A new design of a hybrid routing algorithm for symmetric rearrangeable

152

Conclusion and Future Work

networks;

• A new algorithm for symmetric rearrangeable networks with zero proba-

bility of blocking routing;

• A new deign for symmetric rearrangeable networks built with large switch-

ing elements than 2 × 2.

It is not desirable to break the existing communication links in the process of

finding an alternative path for a blocked request. To address this issue, this thesis

proposed a repackable topology for rearrangeable networks. These repackable

networks will identify the target paths that need to be rearranged and will trans-

fer them to a bypass link before breaking their existing communication paths.

This thesis proposes the minimum bypass links, possible number of link required

to achieve a repackable network.

A hybrid routing algorithm has been proposed for symmetric rearrangeable

networks. The hybrid method uses the looping algorithm in the outermost part

of the network. In the inner part of the network, the routing decision is made log-

ically based on the status of the switching element the signal is passing through.

The execution time of this new method is superior to other popular methods.

Zero blocking probability cannot be achieved with this method, but the blocking

rate is much better for existing suboptimal other blocking algorithms. Mathemat-

ical time complexity shows that worst case time complexity of this algorithm is

bounded by the limit set in the literature.

Deterministic methods suffers from the drawbacks of poor scalability and

high execution time. In this thesis I proposed and implemented a new deter-

ministic routing method that makes the routing decision faster than the looping

algorithm for bigger networks, and gives similar performance to the looping al-

gorithm for smaller networks. This algorithm has also been extended for use in

networks built with bigger switching elements. This method can work for par-

tial permutations without the need for dummy requests. Time complexity of this

153

Conclusion and Future Work

method is bounded by the limit set in the literature for full permutation for both

serial and parallel processing domain. For partial permutation it has complexi-

ties better that other comparable methods. This method can also be used in the

optical domain with networks having planar topologies and uses semi permuta-

tions.

Symmetric rearrangeable network built with large switching elements have

also been considered in this research. It has been shown that networks built with

2 × 2 switching elements can be reduced in depth by using 4 × 4 switching el-

ements. This process does not affect overall crosspoint count. Symmetric rear-

rangeable networks built with 3 × 3 switching elements have been also studied

in this work. Since binary decision making is no longer valid for these networks,

with increase in the size of the switching elements decision making gets more

and more complex. This is due to the fact that with increase in inputs-outputs in

a switching element possible options of routing also increases. Hence takes more

time to make a valid decision.

7.2 Future Work

The research findings presented in this thesis may be extended in a number of

ways, some of which are discussed below. In the hybrid routing algorithm, a

possible extension is to support group addressing. This would make it viable

to generate a new permutation if a request is blocked. The new permutation

would assign the blocked port to a new output in the same group. Once a new

permutation has been identified another attempt can be made to route the new

permutation. Group addressing can be of relevant interest in systems where an

interconnect is used to share resources among processing elements. It will then

be possible to assign an unused resource to a processing element if no route to

the initially assigned resource is available. This would provide an improvement

in the overall blocking performance at the expense of an addition overhead. An-

154

Conclusion and Future Work

other modification can be to implement some of the hybrid routing steps in par-

allel. Obviously in that case major modifications in the path search process of

the algorithm would be required, to minimise the interactions between parallel

routing procedures.

Since decision making in networks with large switching elements is quite

complex, the use of suboptimal routing methods in these networks should be

studied. The hybrid algorithm proposed in this thesis can be applied in such net-

works. In the future, building a switch using large switching elements may cost

considerably less than the square-law model of switch cost indicates, and efficient

methods of routing for such networks will be required.

It would be an interesting challenge to apply the methods proposed in this

thesis to some real world networks. As it is outside the scope of this thesis, only

results from simulation have been presented in this thesis. The destination of

requests modelled in the thesis assumed on equal probability of selecting output

ports, but simulation based on, permutation patterns captured from real world

traffic would allow the network and its routing algorithm to be adapted to real

applications. Any prospect of some collaborative research where there is a chance

to apply these methods in real hardware would be of great interest.

155

BIBLIOGRAPHY

[1] Daesun Oh and Keshab K. Parhi. Low-complexity switch network for re-

configurable ldpc decoders. IEEE Trans. Very Large Scale Integr. Syst., 18:85–

94, January 2010.

[2] William Stallings. Data and computer communications (8th ed.). Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 2009.

[3] S. Weinstein and P. Ebert. Data transmission by frequency-division multi-

plexing using the discrete fourier transform. IEEE Transactions on Commu-

nication Technology, 19(5):628 –634, 1971.

[4] D.T. Harvatin and R.E. Ziemer. Orthogonal frequency division multiplex-

ing performance in delay and doppler spread channels. In IEEE 47th Ve-

hicular Technology Conference, 1997, volume 3, pages 1644 –1647 vol.3, May

1997.

[5] Ivan B. Djordjevic and Bane Vasic. Orthogonal frequency division multi-

plexing for high-speed optical transmission. Opt. Express, 14(9):3767–3775,

May 2006.

[6] C. Antal, J. Biro, T. Henk, and G. Matefi. Performance evaluation of a time

division multiplexing method applicable for dynamic transfer mode net-

156

BIBLIOGRAPHY

works. In Fifth IEEE Symposium on Computers and Communications, 2000.

Proceedings. ISCC 2000., 2000.

[7] D.M. Spirit, A.D. Ellis, and P.E. Barnsley. Optical time division multiplex-

ing: systems and networks. IEEE Communications Magazine, 32(12):56 –62,

December 1994.

[8] Mario M. Freire and Henrique J. A. da Silva. Performance assessment of

high density wavelength division multiplexing systems with dispersion

supported transmission at 10 gbit/s. IEEE Symposium on Computers and

Communications, 0:318, 1997.

[9] M. Koshiba. Wavelength division multiplexing and demultiplexing with

photonic crystal waveguide couplers. Journal of Lightwave Technology,

19(12):1970 –1975, December 2001.

[10] Qianfan Xu, Brad Schmidt, Jagat Shakya, and Michal Lipson. Cascaded sili-

con micro-ring modulators for wdm optical interconnection. Optics Express,

14(20):9431–9435, 2006.

[11] G. Jacobsen and P. Wildhagen. A general and rigorous wdm receiver model

targeting 10-40-gb/s channel bit rates. Journal of Lightwave Technology.,

19(7):966, 2001.

[12] B.G. Lee, B.A. Small, Qianfan Xu, M. Lipson, and K. Bergman. Characteri-

zation of a 4 nbsp; times; nbsp; 4 gb/s parallel electronic bus to wdm optical

link silicon photonic translator. IEEE Photonics Technology Letters, 19(7):456

–458, april1, 2007.

[13] Bell labs innovation briefs. Bell Labs Technical Journal, Spring 1997.

[14] K. Grobe, M. Wiegand, and J. McCall. Optical metropolitan dwdm net-

works an overview. BT Technology Journal, 20:27–44, October 2002.

157

BIBLIOGRAPHY

[15] S. Mysore, R. Villa, and G. Beveridge. Performance of broadband dwdm

networks. In Electronic-Enhanced Optics, Optical Sensing in Semiconductor

Manufacturing, Electro-Optics in Space, Broadband Optical Networks, 2000. Di-

gest of the LEOS Summer Topical Meetings, 2000.

[16] Ashwin Gumaste and Tony Antony. Dwdm network designs and engineering

solutions. Cisco Press, 2002.

[17] S.D. Personick and W.O. Fleckenstein. Communications switchingfrom op-

erators to photonics. Proceedings of the IEEE, 75(10):1380–1403, Oct. 1987.

[18] Youngsong Mun and Hee Yong Youn. Performance modeling and evalua-

tion of circuit switching using clos networks. IEEE Transactions on Comput-

ers., 43(7):854–861, 1994.

[19] M. Gerla, E. Leonardi, F. Neri, and P. Palnati. Routing in the bidirectional

shufflenet. IEEE/ACM Transactions on Networking, 9(1):91 –103, feb 2001.

[20] D. Huynh, H. Kobayashi, and F. F. Kuo. Design issues for mixed media

packet switching networks. In AFIPS ’76: Proceedings of the national com-

puter conference and exposition June 7-10, 1976,, pages 541–549, New York,

NY, USA, 1976. ACM.

[21] P. Kirstein. The early history of packet switching in the uk [history of com-

munications]. IEEE Communications Magazine,, 47(2):18–26, February 2009.

[22] John O. Limb and Dolors Sala. A protocol for efficient transfer of data

over hybrid fiber/coax systems. IEEE/ACM Transactions on Networking.,

5(6):872–881, 1997.

[23] E.W.M. Wong, A.K.M. Chan, and T.-S.P. Yum. Analysis of rerouting in

circuit-switched networks. IEEE/ACM Transactions on Networking, 8(3):419

–427, June 2000.

158

BIBLIOGRAPHY

[24] E.W.M. Wong, A.K.M. Chan, and T.-S.P. Yum. Re-routing in circuit switched

networks. In INFOCOM ’97. Sixteenth Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings IEEE, volume 3, pages

1373 –1379 vol.3, April 1997.

[25] H. Yamada, H. Kataoka, T. Sampei, and T. Yano. High-speed digital switch-

ing technology using space-division-switch lsi’s. IEEE Journal on Selected

Areas in Communications,, 4(4):529–535, Jul 1986.

[26] N. Yamanaka, S. Kikuchi, M. Suzuki, and Y. Yoshioka. A 2 gb/s expand-

able space-division switching lsi and network architecture for gigabit-rate

broad-band circuit switching. IEEE Journal on Selected Areas in Communica-

tions,, 8(8):1543–1550, Oct 1990.

[27] Emil Hopner and Michael Allen Patten. The digital data exchange–a space-

division switching system. IBM J. Res. Dev., 28(4):444–453, 1984.

[28] S. Kikuchi and N. Yamanaka. An expandable time-division circuit switch-

ing lsi and network architecture for broadband isdn. IEEE Journal on Selected

Areas in Communications,, 14(2):328–336, Feb 1996.

[29] H. Inose, Y. Yoshida, Y. Yasuda, and Z. Koono. A time slot interchange

system in time-division electronic exchanges. IEEE Transactions on Commu-

nications Systems, 11(3):336 –345, 1963.

[30] H. Obara. Efficient parallel time-slot interchanger for high-performance sd-

h/sonet digital crossconnect systems. Electronics Letters, 37(2):81 –83, Jan-

uary 2001.

[31] Pablo Molinero-Fernández and Nick McKeown. Performance of circuit

switching in the internet. Journal on Optical. Networking., 2(4):83–96, 2003.

[32] Rajendran Parthiban, Christopher Leckie, Andrew Zalesky, Moshe Zuker-

man, and Rodney S. Tucker. Cost comparison of optical circuit-switched

159

BIBLIOGRAPHY

and burst-switched networks. Journal of Lightwave Technology., 27(13):2315–

2329, 2009.

[33] M. Molle and G. Watson. 100base-t/ieee 802.12/packet switching. IEEE

Communications Magazine,, 34(8):64 –73, August 1996.

[34] D. Russell. Alternative strategies for managing virtual circuit failure and

recovery in local area computer networks. IEEE Transactions on Communi-

cations,, 30(6):1450–1454, Jun 1982.

[35] R.-H. Hwang and J.F. Kurose. On virtual circuit routing and re-routing

in packet-switched networks. In ICC ’91 IEEE International Conference on

Communications Conference Record., 1991., pages 1318–1323 vol.3, Jun 1991.

[36] Emmanouel A. Varvarigos and Jonathan P. Lang. A virtual circuit deflection

protocol. IEEE/ACM Transactions on Networking., 7(3):335–349, 1999.

[37] Lorenzo Aguilar. Datagram routing for internet multicasting. In SIGCOMM

’84: Proceedings of the ACM SIGCOMM symposium on Communications archi-

tectures and protocols, pages 58–63, New York, NY, USA, 1984. ACM.

[38] Louis Pouzin. Virtual circuits vs. datagrams: technical and political prob-

lems. In AFIPS ’76: Proceedings of the national computer conference and exposi-

tion, June 7-10, 1976,, pages 483–494, New York, NY, USA, 1976. ACM.

[39] W. J. Buchanan. The handbook of data communications and networks. Kluwer

Academic Publishers, Norwell, MA, USA, 2005.

[40] J. Kanzow. Berkom-a global b-isdn communication system. In Subscriber

Loops and Services, 1988. Proceedings, ISSLS 88., International Symposium on,

pages 10–13, Sep 1988.

[41] Parviz Kermani and Leonard Kleinrock. Virtual cut-through: A new

computer communication switching technique. Computer Networks (1976),

3(4):267 – 286, 1979.

160

BIBLIOGRAPHY

[42] James W. Dolter, P. Ramanathan, and Kang G. Shin. Performance analysis of

virtual cut-through switching in harts: A hexagonal mesh multicomputer.

IEEE Transactions on Computers, 40:669–680, 1991.

[43] Ronald I. Greenberg and H.-C. Oh. Universal wormhole routing. IEEE

Transactions On Parallel And Distributed Systems, 8(3):56–63, 1993.

[44] Lionel M. Ni and Philip K. McKinley. A survey of wormhole routing tech-

niques in direct networks. Computer, 26:62–76, 1993.

[45] Prasant Mohapatra. Wormhole routing techniques for directly connected

multicomputer systems. ACM Computing Surveys, 30:374–410, 1998.

[46] George N. Rouskas and Lisong Xu. Optical packet switching, 2004.

[47] P. Pavon-Marino, J. Garcia-Haro, J. Malgosa-Sanahuja, and F. Cerdan. Op-

tical packet switching fabrics comparison under scwp/shwp operational

modes. IEEE Symposium on Computers and Communications,, 0:547, 2003.

[48] Farid Farahmand, Jason Jue, Vinod Vokkarane, Joel J. P. C. Rodrigues, and

Mario M. Freire. A layered architecture for supporting optical burst switch-

ing. In AICT-SAPIR-ELETE ’05: Proceedings of the Advanced Industrial Con-

ference on Telecommunications/Service Assurance with Partial and Intermittent

Resources Conference/E-Learning on Telecommunications Workshop, pages 213–

218, Washington, DC, USA, 2005. IEEE Computer Society.

[49] Hossam M. H. Shalaby. A simplified performance analysis of optical burst-

switched networks. Journal of Lightwave Technologyl., 25(4):986–995, 2007.

[50] Rajesh R. C. Bikram and Vinod M. Vokkarane. Tcp over optical burst

switching: To split or not to split? Journal of Lightwave Technology.,

27(22):5208–5219, 2009.

161

BIBLIOGRAPHY

[51] T. Feng. Fault tolerance in rearrangeable networks. In TENCON 90. 1990

IEEE Region 10 Conference on Computer and Communication Systems, pages

399–403 vol.1, Sep 1990.

[52] G. M. Masson, G. C. Gingher, and S. Nakamura. A sampler of circuit

switching networks. Computer, 12(6):32–48, 1979.

[53] H.J. Siegel, W.G. Nation, C.P. Kruskal, and Jr. Napolitano, L.M. Using the

multistage cube network topology in parallel supercomputers. Proceedings

of the IEEE, 77(12):1932 –1953, dec 1989.

[54] Kenneth J. Thurber. Distributed Processor Communication Architecture. IEEE

Computer Society Press, Los Alamitos, CA, USA, 1979.

[55] Masayuki Murata Hideo Miyahara Yuji Oie, Tatsuya Suda. Survey of

switching techniques in high-speed networks and their performance. In-

ternational Journal of Satellite Communications., 9(5):285–303, 1991.

[56] Assaf Shacham. Architectures of Optical Interconnection Networks for High Per-

formance Computing. VDM Verlag, Saarbrücken, Germany, Germany, 2008.

[57] M. Collier. A systematic analysis of equivalence in multistage networks.

Journal of Lightwave Technology, 20(9):1664–1672, Sep 2002.

[58] Chwei-King Mok and Nader F. Mir. An efficient interconnection network

for large-scale computer communications applications. Journal of Network

and Computer Applications, 23(2):59 – 75, 2000.

[59] L. Rodney Goke and G. J. Lipovski. Banyan networks for partitioning

multiprocessor systems. SIGARCH Computer Architecture News, 2(4):21–28,

1973.

[60] D. H. Lawrie. Access and alignment of data in an array processor. IEEE

Transactions on Computers., 24(12):1145–1155, 1975.

162

BIBLIOGRAPHY

[61] H. S. Stone. Parallel processing with the perfect shuffle. IEEE Transactions

on Computers., 20(2):153–161, 1971.

[62] Chuan-Lin Wu and Tse-Yun Feng. On a class of multistage interconnection

networks. IEEE Transactions on Computers, C-29(8):694–702, Aug. 1980.

[63] C T A Lea. The load-sharing banyan network. IEEE Transactions on Com-

puters., 35(12):1025–1034, 1986.

[64] G. B. Adams and H. J. Siegel. The extra stage cube: A fault-tolerant in-

terconnection network for supersystems. IEEE Transactions on Computers.,

31(5):443–454, 1982.

[65] A. Hopper and J. Wheeler. Binary routing networks. IEEE Transactions on

Computers., 28(10):699–703, 1979.

[66] K. Padmanabhan and D. H. Lawrie. A class of redundant path multistage

interconnection networks. IEEE Transactions on Computers., 32(12):1099–

1108, 1983.

[67] Manoj Kumar and J. R. Jump. Performance of unbuffered shuffle-exchange

networks. IEEE Trans. Comput., 35(6):573–578, 1986.

[68] C. P. Kruskal and M. Snir. A unified theory of interconnection network

structure. Theory of Computer Science, 48(1):75–94, 1986.

[69] Karanjeet Singh Kahlon. Sandeep Sharma, BansalP.K. On a class of multi-

stage interconnection network in parallel pprocessing. International Journal

of Computer Science and Network Security, 8(5), May 2008.

[70] Fong-Chih Shao and A. Yavuz Oruç. Efficient nonblocking switching net-

works for interprocessor communications in multiprocessor systems. IEEE

Transactions on Parallel and Distributed Systems ., 6(2):132–141, 1995.

163

BIBLIOGRAPHY

[71] Paul Feldman, Joel Friedman, and Nicholas Pippengers. Wide-sense non-

blocking networks. SIAM Journal on Discrete Mathematics., 1(2):158–173,

1988.

[72] Italo Busi and Achille Pattavina. Strict-sense non-blocking conditions for

shuffle/exchange networks with vertical replication. In INFOCOM, pages

126–133, 1998.

[73] V. E. Benes. Mathematical theory of connecting networks. Mathematics in

Science and Engineering, 17, 1965. New York: Academic.

[74] C.J. Smyth. Nonblocking photonic switch networks. IEEE Journal on Selected

Areas in Communications, 6(7):1052 –1062, aug 1988.

[75] Yuanyuan Yang and Jianchao Wang. Wide-sense nonblocking clos net-

works under packing strategy. IEEE Transactions on Computers., 48(3):265–

284, 1999.

[76] F. H. Chang, J. Y. Guo, and F. K. Hwang. Wide-sense nonblocking for multi-

logd n networks under various routing strategies. Theoretical Computer Sci-

ence., 352(1):232–239, 2006.

[77] W. Kabacinski and M. Michalski. Wide-sense nonblocking log2 (n, 0, p)

switching networks with even number of stages. In IEEE International Con-

ference on Communications, volume 2, pages 1058–1062 Vol. 2, May 2005.

[78] G. Danilewicz, W. Kabacinski, M. Michalski, and M. Zal. Wide-sense

nonblocking multiplane baseline switching networks composed of d × d

switches. In IEEE International Conference on Communications, pages 6386–

6391, June 2007.

[79] Yao-Ming Yeh and Tse-yun Feng. On a class of rearrangeable networks.

IEEE Transactions on Computers., 41(11):1361–1379, 1992.

164

BIBLIOGRAPHY

[80] Nabanita Das. More on rearrangeability of combined (2n - 1)-stage net-

works. Journal of Systems Architecture., 51(3):207–222, 2005.

[81] Nabanita Das, Krishnendu Mukhopadhyaya, and Jayasree Dattagupta.

O(n) routing in rearrangeable networks. Journal of Systems Architecture.,

46(6):529–542, 2000.

[82] C. S. Raghavendra and Rajendra V. Boppana. On self-routing in benes and

shuffle-exchange networks. IEEE Transactions on Computers., 40(9):1057–

1064, 1991.

[83] Zhen Chen, Zeng-Ji Liu, and Zhi-Liang Qiu. Bidirectional shuffle-exchange

network and tag-based routing algorithm. IEEE Communications Letters,

7(3):121 – 123, march 2003.

[84] Jose Duato, Sudhakar Yalamanchili, and Ni Lionel. Interconnection Net-

works: An Engineering Approach. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2002.

[85] Charles E. Leiserson. Fat-trees: universal networks for hardware-efficient

supercomputing. IEEE Trans. Comput., 34:892–901, October 1985.

[86] Andr DeHon. Practical schemes for fat-tree network construction. In Ad-

vanced Research in VLSI: International Conference 1991, pages 307–322. MIT

Press, 1991.

[87] C. Clos. A study of non-blocking switching networks. Bell System Technical

Journal, 32:406–424, 1953.

[88] D. Slepian. Two theorems on a particular crossbar switching network. Un-

published memorandum, 1952.

[89] AM Duguid. Structural properties of switching networks. Brown University

Progress Report BTL-7, 1959.

165

BIBLIOGRAPHY

[90] M.C. Paull. Reswitching of connection networks. Bell System Technical Jour-

nal 41, 1962. pp. 833855.

[91] Rudolf G. Schehrer. On non-blocking multi-stage switching networks with

rearrangement or repacking. AEU - International Journal of Electronics and

Communications, 61(7):423 – 432, 2007.

[92] V. E. Benes. Permutation groups ,complexes and rearrangeable connecting

networks. Bell System Technical Journal, 43:1619–1640, 1964.

[93] Abraham Waksman. A permutation network. Journal of ACM, 15(1):159–

163, 1968.

[94] J. Konicek, T. Tilton, A. Veidenbaum, C. Zhu, E. Davidson, R. Downing,

M. Haney, M. Sharma, P. Yew, P. Farmwald, D. Kuck, D. Lavery, R. Lindsey,

D. Pointer, J. Andrews, T. Beck, T. Murphy, S. Turner, , and N. Warter. The

organization of the cedar system. In ICPP, volume I. pp, 1991. 4956.

[95] Ching-Yi Lee and A. Yavuz Oruç. A fast parallel algorithm for routing

unicast assignments in benes networks. IEEE Transactions on Parallel and

Distributed Systems., 6(3):329–334, 1995.

[96] K.Y. Lee. On the rearrangeability of a (2log n-1) stage permutation network.

IEEE Transactions on Computers., 34(5), 1985. pp.412425.

[97] Amitabha Chakrabarty, Martin Collier, and Sourav Mukhopadhyay. Adap-

tive routing strategy for large scale rearrangeable symmetric networks. In-

ternational Journal of Grid and High Performance Computing (IJGHPC), 2(2):53–

63, 2010.

[98] C.Y. Lee. Analysis of switching networks. The Bell System Technical Journal,

34(6):1287 – 1315, Nov. 1955.

[99] C. Jacobaeus. A study on congestion on link systems. Ericsson Technics,

1950.

166

BIBLIOGRAPHY

[100] Joseph Yu Hui. Switching and Traffic Theory for Integrated Broadband Networks.

Kluwer Academic Publishers, Norwell, MA, USA, 1990.

[101] D. K. Hunter. Switching systems. Encyclopedia of Information Technology,

2000.

[102] D. G. Cantor. On non-blocking switching networks. Networks, 1(4):367–377,

1971.

[103] Riccardo Melen and Jonathan S. Turner. Nonblocking multirate networks.

SIAM Journal On Computing, 18:301–313, 1989.

[104] Ren Kaixin and Gu Naijie. Permutation capability of optical cantor net-

work. In Parallel and Distributed Computing, Applications and Technologies,

2007. PDCAT ’07. Eighth International Conference on, pages 398 –404, dec.

2007.

[105] Ning Wang, Liren Liu, and Yaozu Yin. Cantor network, control algorithm,

two-dimensional compact structure and its optical implementation. Appl.

Opt., 34(35):8176–8182, Dec 1995.

[106] Rajgopal Kannan. The kr-benes network: a control-optimal rearrangeable

permutation network. IEEE Transactions on Computers, 54(5):534 – 544, may

2005.

[107] David M. Koppelman and A. Yavuz Oru. A self-routing permutation net-

work. Journal of Parallel and Distributed Computing, 10(2):140 – 151, 1990.

[108] Ching Yuh Jan and A. Yavuz Oruç. Fast self-routing permutation switching

on an asymptotically minimum cost network. IEEE Trans. Comput., 42:1469–

1479, December 1993.

[109] H. Cam and J.A.B. Fortes. A fast vlsi-efficient self-routing permutation net-

work. IEEE Transactions on Computers, 44(3):448 –453, mar 1995.

167

BIBLIOGRAPHY

[110] R. Melen. A general class of rearrangeable interconnection networks. IEEE

Transactions on Communications, 39(12):1737 –1739, dec 1991.

[111] F. Bernabei, A. Forcina, and M. Listanti. On non-blocking properties of par-

allel delta networks. In INFOCOM ’88. Networks: Evolution or Revolution,

Proceedings. Seventh Annual Joint Conference of the IEEE Computer and Com-

muncations Societies, IEEE, pages 326 –333, mar 1988.

[112] F. Bernabei and M. Listanti. Generalized parallel delta networks: a new

class of rearrangeable interconnection networks. In INFOCOM ’89. Proceed-

ings of the Eighth Annual Joint Conference of the IEEE Computer and Commu-

nications Societies. Technology: Emerging or Converging, IEEE, pages 219 –226

vol.1, apr 1989.

[113] Kyungsook Yoon Lee. On the rearrangeability of 2(log n) − 1 stage per-

mutation networks. IEEE Transactions on Computers, C-34(5):412 –425, may

1985.

[114] H. El-Sayed and A. Youssef. Performance of the r-truncated benes networks

under randomized routing algorithms. In Parallel and Distributed Systems,

1997. Proceedings., 1997 International Conference on, pages 104 –108, dec 1997.

[115] Abdou Youssef and Bruce W. Arden. A new approach to fast control of

r2xr2 3−stage benes networks of rxr crossbar switches. In ISCA, pages 50–

59, 1990.

[116] JIANG Xiaohong, HO Pin-Han, SHEN Hong, and HORIGUCHI Susumu.

A class of benes-based optical multistage interconnection networks for

crosstalk-free realization of permutations(fiber-optic transmission for com-

munications). IEICE transactions on communications, 89(1):19–27, 2006-01-01.

[117] Xiaohong Jiang, Hong Shen, M.R. Khandker, and S. Horiguchi. Vertically

168

BIBLIOGRAPHY

stacked benes networks for crosstalk-free permutation. In Cyber Worlds,

2002. Proceedings. First International Symposium on, pages 255 – 260, 2002.

[118] Yuanyuan Yang, Jianchao Wang, and Yi Pan. Permutation capability of op-

tical multistage interconnection networks. Journal of Parallel and Distributed

Computing, 60(1):72 – 91, 2000.

[119] R. Spanke. Architectures for guided-wave optical space switching systems.

IEEE Communications Magazine, 25(5):42 – 48, may 1987.

[120] R. A. Spanke and V. E. Benes. N-stage planar optical permutation network.

Appl. Opt., 26(7):1226–1229, Apr 1987.

[121] Kenneth P. Bogart. Introductory Combinatorics. Halsted Press, New York,

NY, USA, 1986.

[122] Dongwan Shin Junyu Peng Rainer Domer Daniel D. Gajski Andreas Ger-

stlauer, Gunar Schirner. System-on-chip component models. Technical Re-

port,University of California, Irvine, 2006.

[123] Yuanyuan Yang, Jianchao Wang, and Yi Pan. Permutation capability of op-

tical multistage interconnection networks. J. Parallel Distrib. Comput., 60:72–

91, January 2000.

[124] Daesun Oh and Keshab K. Parhi. Area efficient controller design of barrel

shifters for reconfigurable ldpc decoders. In ISCAS, pages 240–243, 2008.

[125] D.C. Opferman and N.T. Tsao-Wu. On a class of rearrangeable switching

networks part i: Control algorithm. Bell System Technical Journal, 50:579–1,

600, 1971.

[126] S. Andresen. The looping algorithm extended to base 2t rearrangeable

switching networks. IEEE Transactions on Communications,, 25(10):1057–

1063, Oct 1977.

169

BIBLIOGRAPHY

[127] David Nassimi and Sartaj Sahni. A self routing benes network. In ISCA

’80: Proceedings of the 7th annual symposium on Computer Architecture, pages

190–195, New York, NY, USA, 1980. ACM.

[128] D. Nassimi and S. Sahni. A self-routing benes network and parallel permu-

tation algorithms. IEEE Transactions on Computers., 30(5):332–340, 1981.

[129] David Nassimi and Sartaj Sahni. An optimal routing algorithm for mesh-

connected parallel computers. Journal of ACM, 27(1):6–29, 1980.

[130] C P Schnorr and A Shamir. An optimal sorting algorithm for mesh con-

nected computers. In Proceedings of the eighteenth annual ACM symposium on

Theory of computing, STOC ’86, pages 255–263, New York, NY, USA, 1986.

ACM.

[131] A. Yavuz Oruç and M. Mittal. Setup algorithms for cube-connected parallel

computers using recursive karnaugh maps. IEEE Trans. Comput., 40:217–

221, February 1991.

[132] S. T. Huang and S. K. Tripathi. Self-routing technique in perfect-shuffle

networks using control tags. IEEE Trans. Comput., 37:251–256, February

1988.

[133] D. Nassimi and S. Sahni. Parallel algorithms to set up the benes permuta-

tion network. IEEE Transactions on Computers., 31(2):148–154, 1982.

[134] Ching-Yi Lee and A. Yavuz Oruç. A fast parallel algorithm for routing

unicast assignments in benes networks. IEEE Transactions on Parallel and

Distributed Systems., 6(3):329–334, 1995.

[135] Ching-Yi Lee and A. Yavuz Oruc. Fast parallel algorithms for routing one-

to-one assignments in benes networks. In Proceedings of the 1993 Interna-

tional Conference on Parallel Processing - Volume 03, ICPP ’93, pages 159–166,

Washington, DC, USA, 1993. IEEE Computer Society.

170

BIBLIOGRAPHY

[136] T.-Y. Feng and S.-W. Seo. A new routing algorithm for a class of rearrange-

able networks. IEEE Transactions on Computers, 43(11):1270 –1280, nov 1994.

[137] Seung-Woo Seo and Tse-yun Feng. A general inside-out routing algorithm

for a class of rearrangeable networks. In ICPP ’94: Proceedings of the 1994

International Conference on Parallel Processing, pages 17–20, Washington, DC,

USA, 1994. IEEE Computer Society.

[138] Tse-Yun Feng and Linjiang Ma. A routing algorithm for modified

omega+omega interconnection networks. In Proceedings of the The 6th Inter-

national Conference on Parallel Interconnects, PI ’99, pages 117–, Washington,

DC, USA, 1999. IEEE Computer Society.

[139] M. K. Kim, H. Yoon, and S. R. Maeng. On the correctness of inside-out

routing algorithm. IEEE Transactions on Computers., 46(7):820–823, 1997.

[140] Dan M. Marom and David Mendlovic. Comment on ”a new routing algo-

rithm for a class of rearrangeable networks”, 1997.

[141] Joseph Yu Hui. Switching and Traffic Theory for Integrated Broadband Networks.

Kluwer Academic Publishers, Norwell, MA, USA, 1990.

[142] Nabanita Das, Krishnendu Mukhopadhyaya, and Jayasree Dattagupta.

O(n) routing in rearrangeable networks. J. Syst. Archit., 46:529–542, April

2000.

[143] Nabanita Das and Jayasree Dattagupta. Two-pass rearrangeability in faulty

benes networks. J. Parallel Distrib. Comput., 35:191–198, June 1996.

[144] T.T. Lee and S.Y. Liew. Parallel routing algorithms in benes-clos networks.

IEEE Transactions on Communications, 50(11):1841 – 1847, nov 2002.

[145] J. Lenfant. Parallel permutations of data: A benes network control algo-

rithm for frequently used permutations. IEEE Transactions on Computers.,

27(7):637–647, 1978.

171

BIBLIOGRAPHY

[146] Tony T. Lee and Soung-Yue Liew. Parallel routing algorithms in benes-clos

networks. In Proceedings of the Fifteenth annual joint conference of the IEEE

computer and communications societies conference on The conference on computer

communications - Volume 1, INFOCOM’96, pages 279–286, Washington, DC,

USA, 1996. IEEE Computer Society.

[147] T.T. Lee and S.Y. Liew. Parallel routing algorithms in benes-clos networks.

IEEE Transactions on Communications, 50(11):1841 – 1847, nov 2002.

[148] H. Cam and J.A.B. Fortes. Frames: a simple characterization of permuta-

tions realized by frequently used networks. IEEE Transactions on Computers,

44(5):695–697, May 1995.

[149] Hasan Çam. Rearrangeability of (2n− 1)-stage shuffle-exchange networks.

SIAM Journal on Computing., 32(3):557–585, 2003.

[150] Hasan Çam and José A. B. Fortes. Work-efficient routing algorithms for

rearrangeable symmetrical networks. IEEE Transactions on Parallel and Dis-

tributed Systems., 10(7):733–741, 1999.

[151] N. Linial and M. Tarsi. Interpolation between bases and the shuffle-

exchange network. Europian Journal of Combinatorics, 10:29–39, 1989.

[152] Fred S. Roberts. Graph theory and its applications to problems of society. Society

for Industrial Mathematics, 1987.

[153] J. C. Fournier. Combinatorics of perfect matchings in plane bipartite graphs

and application to tilings. Theory of Computer Science, 303(2-3):333–351,

2003.

[154] T.M. DuBois, B. Lee, Yi Wang, M. Olano, and U. Vishkin. Xmt-gpu: A pram

architecture for graphics computation. In 37th International Conference on

Parallel Processing, 2008. ICPP ’08., pages 364–372, Sept. 2008.

172

BIBLIOGRAPHY

[155] Steve Furber. ARM System-on-Chip Architecture. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2000.

[156] Drew Wingard. Micronetwork-based integration for socs. In In Proceedings

of the 38th Design Automation Conference, pages 673–677, 2001.

[157] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and

practices of network-on-chip. ACM Comput. Surv., 38, June 2006.

[158] Kanishka Lahiri, Sujit Dey, and Anand Raghunathan. Evaluation of the

traffic-performance characteristics of system-on-chip communication archi-

tectures. In Proceedings of the The 14th International Conference on VLSI Design

(VLSID ’01), VLSID ’01, pages 29–, Washington, DC, USA, 2001. IEEE Com-

puter Society.

[159] Pierre Guerrier Alain and Alain Greiner. A generic architecture for on-chip

packet-switched interconnections. pages 250–256, 2000.

[160] Pierre Guerrier and Alain Greiner. A generic architecture for on-chip

packet-switched interconnections. In Proceedings of the conference on Design,

automation and test in Europe, DATE ’00, pages 250–256, New York, NY, USA,

2000. ACM.

[161] William J. Dally and Brian Towles. Route packets, not wires: on-chip in-

teconnection networks. In Proceedings of the 38th annual Design Automation

Conference, DAC ’01, pages 684–689, New York, NY, USA, 2001. ACM.

[162] L. Benini and G. De Micheli. Networks on chips: a new soc paradigm.

Computer, 35(1):70 –78, jan 2002.

[163] Jiang Xu, Wayne Wolf, Joerg Henkel, Srimat Chakradhar, and Tiehan Lv. A

case study in networks-on-chip design for embedded video. In Proceedings

of the conference on Design, automation and test in Europe - Volume 2, DATE

’04, pages 20770–, Washington, DC, USA, 2004. IEEE Computer Society.

173

BIBLIOGRAPHY

[164] R. G. Gallager. Low density parity check codes. IRE Trans. Inf. Theory, IT-

8(1):21–28, jan 1962.

[165] D. J. C. MacKay. Good error-correcting codes based on very sparse matri-

ces. IEEE Trans. Inf. Theory, 45(2):399431, jan 1999.

[166] Maurizio Martina, Guido Masera, Hazem Moussa, and Amer Baghdadi.

On chip interconnects for multiprocessor turbo decoding architectures. Mi-

croprocessors and Microsystems - Embedded Hardware Design, 35(2):167–181,

2011.

[167] Federico Quaglio Guido Masera and Fabrizio Vacca. Low density parity

check codes. IEEE Transactions On Circuits And SystemsII: Express Briefs,

54(6):542–546, june 2007.

[168] Martin Coiller. Private communications.

[169] L. Y. Lin, E. L. Goldstein, and R. W. Tkach. Free-space micromachined op-

tical switches with submillisecond switching time for large-scale optical

crossconnects. In Wavelength Division Multiplexing Components, page 152.

Optical Society of America, 1999.

[170] Shi-Sheng Lee, Long-Sun Huang, Chang-Jin Kim, and Ming C. Wu. Free-

space fiber-optic switches based on mems vertical torsion mirrors. Journal

on Lightwave Technology, 17(1):7, 1999.

[171] J. Leuthold, Juerg Leuthold, Associate Member, Pierre andre Besse, Emil

Gamper, Marcus Dlk, Stefan Fischer, Georg Guekos, and Hans Mel-

chior. All-optical mach-zehnder interferometer wavelength converters and

switches with integrated data- and control-signal separation scheme. Jour-

nal on Lightwave Technology, 17:1056–1066, 1999.

[172] H. Scott Hinton. An introduction to photonic switching fabrics. Plenum Press,

New York, NY, USA, 1993.

174

BIBLIOGRAPHY

[173] Mistuhiro Makihara, Makoto Sato, Fusao Shimokawa, and Yasuhide

Nishida. Micromechanical optical switches based on thermocapillary in-

tegrated in waveguide substrate. Journal on Lightwave Technology., 17(1):14,

1999.

[174] Victor Li, Chun Yin Li, and P. K. A. Wai. Alternative structures for

two-dimensional mems optical switches. Journal on Optical Networking.,

3(10):742–757, 2004.

[175] De-Gui Sun, Ying Zha, Tiegen Liu, Ying Zhang, Xiaoqi Li, and Xiuhua Fu.

Demonstration for rearrangeable nonblocking 8×8 matrix optical switches

based on extended banyan networks. Optics Express, 15(15):9347–9356,

2007.

[176] Guido Maier and Achille Pattavina. Design of photonic rearrangeable net-

works with zero first-order switching-element-crosstalk. IEEE Transactions

on Communications, 49:1268–1279, 2001.

[177] Gangxiang Shen, Tee Hiang Cheng, Chao Lu, Teck Yoong Chai, and San-

jay K. Bose. A novel rearrangeable non-blocking architecture for 2d mems

optical space switches. Optical Networks Magazine, November-December

2002.

[178] Guomei Zhu and Geng-Sheng (G. S.) Kuo. A novel integrated multistage 2-

d mems optical switch with spanke–benes architecture. Journal of Lightwave

Technology., 26(5):560–568, 2008.

[179] Xiaohua Ma and Geng-Sheng Kuo. A novel integrated multistage optical

mems-mirror switch architecture design with shuffle benes inter-stage con-

necting principle. Optics Communications, 242(1-3):179 – 189, 2004.

[180] Shou-Heng Chen, Kuang-Chao Fan, Tien-Tung Chung, and Yao-Joe Joseph

175

BIBLIOGRAPHY

Yang. A n × n architecture for 2-d mirror-type optical switches. Journal of

Lightwave Technology., 27(14):2843–2851, 2009.

[181] G. Maier and A. Pattavina. Design of photonic rearrangeable networks with

zero first-order switching-element-crosstalk. IEEE Transactions on Commu-

nications, 49(7):1268 –1279, jul 2001.

[182] Rudolf G. Schehrer. On switching networks with rearrangement or repack-

ing. AEU - International Journal of Electronics and Communications, 60(2):103

– 108, 2006.

[183] Martin H. Ackroyd. Call repacking in connecting networks. IEEE Transac-

tions on Computers., 27(3):589–591, 1979.

[184] Andrzej Jajszczyk and Grzegorz Jekel. A new concept-repackable net-

works. IEEE Transactions on Computers., 41(8), 1993.

[185] A. Jajszczyk. Nonblocking, repackable, and rearrangeable clos networks:

fifty years of the theory evolution. IEEE Communications Magazine, 41(10):28

– 33, oct 2003.

[186] Rudolf G. Schehrer. On non-blocking multi-stage switching networks with

rearrangement or repacking. AEU - International Journal of Electronics and

Communications, 61(7):423 – 432, 2007.

[187] M. Alioto and G. Palumbo. Interconnect-aware design of fast large fan-

in cmos multiplexers. IEEE Transactions on Circuits and Systems II: Express

Briefs, 54(6):484 –488, june 2007.

[188] Hsu-Wei Huang, Cheng-Yeh Wang, and Jing-Yang Jou. Optimal design

of high fan-in multiplexers via mixed-integer nonlinear programming. In

Proceedings of the 2004 Asia and South Pacific Design Automation Conference,

ASP-DAC ’04, pages 280–283, Piscataway, NJ, USA, 2004. IEEE Press.

176

BIBLIOGRAPHY

[189] M. Alioto, G. Di Cataldo, and G. Palumbo. Optimized design of high fan-

in multiplexers using tri-state buffers. Circuits and Systems I: Fundamental

Theory and Applications, IEEE Transactions on, 49(10):1500 – 1505, oct 2002.

[190] Ming-Bo Lin. On the design of fast large fan-in cmos multiplexers. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

19(8):963 –967, aug 2000.

[191] Kuang-Chao Fan, Wu-Lang Lin, Li-Hung Chiang, Shou-Heng Chen, Tien-

Tung Chung, and Yao-Joe Yang. A 2x2 mechanical optical switch with a

thin mems mirror. Journal on Lightwave Technology., 27(9):1155–1161, 2009.

[192] S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi.

Silica-based plc type 32 x 32 optical matrix switch. In Optical Communica-

tions, 2006. ECOC 2006. European Conference on, pages 1 –2, sept. 2006.

[193] A.W. Poon, Xianshu Luo, Fang Xu, and Hui Chen. Cascaded

microresonator-based matrix switch for silicon on-chip optical interconnec-

tion. Proceedings of the IEEE, 97(7):1216 –1238, july 2009.

[194] Ujval J. Kapasi, Scott Rixner, William J. Dally, Brucek Khailany, Jung Ho

Ahn, Peter Mattson, and John D. Owens. Programmable stream processors.

Computer, 36(8):54–62, 2003.

[195] A J Krygiel. Synchronous nets for single instruction stream multiple data

stream computers. pages 186–193, 1986.

[196] Thomas T. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction

to Algorithms. MIT Press, Cambridge, MA, USA, 1990.

[197] E. Lu and S.Q. Zheng. Parallel routing algorithms for nonblocking elec-

tronic and photonic switching networks. IEEE Transactions on Parallel and

Distributed Systems, 16(8):702 – 713, aug. 2005.

177

BIBLIOGRAPHY

[198] Enyue Lu. PhD Thesis:Parallel Algorithms For High Performance Switching in

Communication Networks. The University Of Texas At Dallas, August, 2004.

[199] Chunming Qiao, R.G. Melhem, D.M. Chiarulli, and S.P. Levitan. A time

domain approach for avoiding crosstalk in optical blocking multistage in-

terconnection networks. Journal of Lightwave Technology, 12(10):1854 –1862,

oct 1994.

[200] J. Zhou, M.J. O’Mahony, and S.D. Walker. Analysis of optical crosstalk ef-

fects in multi-wavelength switched networks. IEEE Photonics Technology

Letters, 6(2):302 –305, feb 1994.

[201] Yi Pan, Chunming Qiao, and Yuanyuan Yang. Optical multistage intercon-

nection networks: new challenges and approaches. IEEE Communications

Magazine, 37(2):50 –56, feb 1999.

[202] Chunming Qiao. A universal analytic model for photonic banyan net-

works. IEEE Transactions on Communications, 46(10):1381 –1389, oct 1998.

[203] Xiaojun Shen, Fan Yang, and Yi Pan. Equivalent permutation capabilities

between time-division optical omega networks and non-optical extra-stage

omega networks. IEEE/ACM Trans. Netw., 9:518–524, August 2001.

[204] Enyue Lu and S. Q. Zheng. Fast reconfiguration algorithms for ti space, and

wavelength dilated optical benes networks. Int. J. Parallel Emerg. Distrib.

Syst., 22:39–58, January 2007.

[205] J. Sharony, K.W. Cheung, and T.E. Stern. Wavelength dilated switches

(wds)-a new class of high density, suppressed crosstalk, dynamic

wavelength-routing crossconnects. IEEE Photonics Technology Letters,

4(8):933 –935, aug 1992.

[206] Yuanyuan Yang and Jianchao Wang. Optimal all-to-all personalized ex-

178

BIBLIOGRAPHY

change in a class of optical multistage networks. IEEE Trans. Parallel Distrib.

Syst., 12:567–582, June 2001.

[207] Seung-Woo Seo, Tse yun Feng, and Yanggon Kim. Conflict resolutions in

the inside-out routing algorithm. International Conference on Parallel Process-

ing,, 1:0026, 1996.

179

