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Abstract

Considerable research is being carried out in the area of wide band gap semiconductor materials for 

light emission applications in the UV/Blue (300-400 nm) spectral range. This project explores the 

novel use of the Copper Halides (CuHa), specifically γ-CuCl and γ-CuBr, I–VII wide band gap 

mixed ionic–electronic semiconducting materials with light emitting properties suitable for novel 

UV/blue light applications. 

This project details novel research carried out towards achieving single crystal growth of γ-CuCl 

from solution via Liquid Phase Epitaxy (LPE) based techniques. LPE growth runs are undertaken 

using an alkali halide flux compound (KCl) to depress the liquidus temperature of CuCl below its 

solid phase wurtzite-zincblende (β → γ) transition temperature for solution based epitaxy on lattice 

matched Si substrates (lattice constant  of γ-CuCl (0.541 nm) is closely matched to that of Si (0.543 

nm). Results show that the resulting KCl flux-driven deposition of CuCl onto the Si substrate has 

yielded superior photoluminescence (PL) and X-ray excited optical luminescence (XEOL) 

behaviour relative to comparatively observed spectra for GaN or polycrystalline CuCl. The 

resulting deposited material is a textured CuCl/K2CuCl3 polycrystalline intermix, with strong broad 

luminescence and novel luminescent characteristics not previously observed in CuCl. Difficulties 

inherent to LPE with CuCl/KCl melts, particularly  with the CuCl/KCl eutectic system and the 

CuCl/Si surface reaction, are detailed.

The use of γ-CuBr for thin film based blue light emitting devices is investigated. Its structural and 

physical properties allow for vacuum deposition on a variety  of substrates and herein we report on 

the deposition of γ-CuBr on Si, glass and indium tin oxide coated glass substrates via vacuum 

evaporation with controllable film thickness from 100 to 500 nm. Temperature dependent 

v



photoluminescence characteristics of these γ-CuBr films on Si substrates reveal familiar Zf and I1 

excitonic features. Work towards the development of a thin film electroluminescent device using a 

γ-CuBr active layer is outlined. 

Recently, dramatic improvements in the luminescent intensity of CuBr generated by the chemical 

interaction between CuCl films and KBr substrates have been demonstrated. The potential 

improvements in excitonic PL that can be gained from novel approaches to film preparation 

involving KBr and existing CuBr deposition techniques is promising. We report on the one such 

novel approach, the vacuum deposition of KBr spots (~30 µm radius) onto similarly deposited γ-

CuBr epitaxial layer on a Si substrate. Post-deposition annealing of the samples at 220 °C in 

conjunction with a small CuBr flux from a target source leads to the formation of intermixed CuBr/

KBr microdots. PL characterisation reveals enhanced UV-Blue excitonic emission centered on the 

Zf free exciton peak at ~418 nm, far superior to Zf emission from γ-CuBr films deposited previously. 

An overview of the deposition process involving shadow masks to lay down an ordered array of 

KBr spots onto a γ-CuBr vacuum evaporated layer is presented, and the samples are characterised 

using XRD, EDX and spatially resolved room temperature PL.
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Chapter 1 - Introduction

1.1 Introduction

The use of semiconductor devices in society is undisputedly pervasive and their effects are 

profoundly far reaching. Society’s technological progress is arguably  driven by leveraging the 

scientific and engineering capacity  of semiconductor materials, whether for further iteration of 

established technologies or for entirely new areas of application. Solid state lighting, the application 

of light emitting semiconductor devices for efficient light emission, is poised to have a considerable 

impact on energy  usage due to the direct  transfer of electrical energy into light via light emitting 

diodes (LEDs) [1]. Similarly, laser diodes (LDs) based on semiconductor materials such as InGaN 

and GaAlAs exemplify the iterative effect on established technologies; InGaN is most notably now 

used for Blu-ray™ DVD players and GaAlAs based lasers have been used from homeostasis of 

blood in medicine to the humble optical computer mouse [2, 3].

Figure 1.1 - The revolutionary blue LED

The market for LDs and LEDs has continued to grow and is widely  expected to continue to do so as 

economies of scale and further processing improvements lead to greater affordability and as new 

utilizations for LEDs/LDs are envisioned. Figure 1.2 illustrates the rising adoption of these 

semiconductor devices as evidenced by their growing market valuations.
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Figure 1.2 - Worldwide LD and US solid state lighting market valuations in US Dollars ($). 

Source: Strategies Unlimited Market Research.

A number of recent advances in semiconductors, most notably  the GaN ‘revolution’ heralded by 

Nichia Corporation’s pioneering work with blue light emitting GaN devices [4], are behind the 

upsurge in value - with the realization of blue LEDs along with existing red and green LEDs, solid 

state lighting is close to becoming a pervasive reality  [5]. The ascendancy of GaN shows the impact 

of a novel material brought to full development. This thesis focuses on another such semiconductor 

material group, the Copper Halides (CuHa), and their application to the field of wide band gap 

optoelectronics for potential light emitting and lasing applications.

1.2 Wide Band-gap Materials

A semiconductor band-gap refers to the difference in energy  from the top  of the valence band to the 

bottom of the conduction band, as measured in electron volts (eV). The exact threshold for the 
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determination of what constitutes a wide band-gap  material is not well defined, being dependent on 

the application envisioned for the material (optical or power based devices), however it can usually 

be ascribed to materials with band-gap energies in excess of 1.7 eV.

Optoelectronic devices operating beyond the 3 eV range have drawn considerable interest from 

researchers owing to the wealth of enabling devices that are envisioned. Such devices have 

considerable technical properties allowing for applications in environmental contaminant 

decomposition [6], UV lasers and sensors [7], novel optical storage media and violet-blue-green 

LEDs. UV/blue LEDs and LDs are of particular interest and a wide range of materials has been 

identified as having desirable properties for such devices. Table 1.1 contains some properties of a 

selection of major wide band-gap materials (with Si and GaAs as reference).

Material Eg (eV) Exciton Binding Energy (meV) Lattice Constant (Å) Unit Cell

GaN 3.4 23 4.53 Wurtzite

ZnO 3.44 63.1 3.249 Wurtzite

γ-CuCl 3.399 190 5.41 Zincblende

γ-CuBr 3.072 108 5.677 Zincblende

Si 1.12 - 5.431 Diamond

GaAs 1.43 - 5.653 Zincblende

Table 1.1 - Selection of characteristics for various semiconductor materials [8]

The leading materials group for such applications are the III-Nitrides, where the aforementioned 

GaN and its alloys, with Al and In, are now in commercial production [9]. High brightness UV, blue 

and green LEDs as well as blue LDs are now becoming increasingly  commonplace. Their large 

direct band-gap, high electron velocities and thermal stability make them ideal for high-frequency 
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control devices, as well as for white LEDs. GaN and its alloys, however, could not be fabricated as 

single wafers until recently, where a modified autoclave system and a proprietary ammonia-thermal 

growth method developed by Ammono [10], have yielded commercially available wafers with 

diameters of approximately 50mm. Initially with GaN though, deposition was carried out via metal 

organic chemical vapour deposition (MOCVD) of p-type and n-type (GaAlIn)N resulting in the 

formation of epitaxial layers on sapphire substrates [11].

One of the major obstacles to the successful fabrication of these III-N devices has been the large 

dislocation densities present within the crystals produced via this method. In the case of GaN, it has 

been found that MOCVD epilayers have dislocation densities as high as 108 - 1010 cm-2, and take 

the form of threading dislocations [12]. These dislocations are primarily the result of the lattice 

mismatch between the GaN epilayers and the substrate utilized (primarily 6H-SiC and Al2O3). 

ZnO, with a room temperature band-gap  of 3.37 eV and an exciton binding energy of ∼60 meV, is 

an attractive candidate material for efficient room temperature ultra-violet LEDs. However, the 

difficulty of growing reproducible, low-resistivity p-type ZnO has limited the development in this 

arena [13]. P-type ZnO growth is usually characterized by film instability and poor hole mobility 

and concentrations [14, 15]. Epitaxial growth for ZnO photonic applications has focused mainly on 

pulsed laser deposition (PLD), molecular beam epitaxy (MBE) and MOCVD type processes [15]. 

The situation is similar for the other Zn based materials; however in spite of these difficulties II-VI 

compound semiconductors (ZnO, ZnS, ZnSe, etc) continue to progress with proven applications in 

flat panel displays, AC driven thin film electroluminescent devices (TFELDs) [16] as well as lasing 

applications [17].
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1.3 Issues with Existing Materials

With both the III-Nitrides and II-VI materials there still exist a number of device limiting and 

production problems. For GaN, the lack of large high quality, cheap single crystal wafers is an 

issue. This has retarded efforts towards a homoepitaxial approach and instead forced the practical 

necessity of heteroepitaxial growth. Current GaN devices are fabricated on foreign expensive 

substrates of different  material type (predominantly Al2O3 for LEDs). The inherent lattice mismatch 

between GaN and the substrate leads to dislocation generation; mismatch between the wurtzite 

phase GaN and the underlying hexagonal Al2O3 substrate can be as high as 13.9% [10]. The 

predominant defects, threading dislocations rising vertically from the substrate, seem to have little 

effect on the electroluminescent properties of GaN, but result in large leakage currents when under 

reverse bias [ref5p2]. A number of novel epitaxial techniques have been applied to GaN, such as 

epitaxial lateral overgrowth (ELOG), with the aim of reducing these defect densities. Growth runs 

carried out via ELOG have helped reduce defect density  to values nearing 106 cm-2 [18]. It is the 

use of this technique that has allowed the fabrication of GaN devices with lifetimes of  >10,000 

hours. High intensity blue and green LEDs and low power laser diodes are now commercially 

available based on this fabrication process [4].

Substrate materials with a closer lattice match to GaN, such as γ-LiAlO2 [19] and β-LiGaO2 [20] 

were also investigated, with the hope that the reduced mismatch (approximately  2%) would 

mitigate the high defect densities. However it was found that unintentional contamination as well as 

rough growth substantially reduced the quality of the GaN epilayer. Regardless, the ideal of a single 

crystal GaN that can be cleaved into wafers remains. The high pressure, high temperature 

prerequisite for ingot-type growth of GaN is a cost limiter relative to Si and GaAs – both readily 

grown from their stoichometric melts. Hydride Vapour Phase Epitaxy  (HVPE) of free standing GaN 
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substrates and high-pressure liquid phase epitaxy (LPE) have shown some promise towards this 

goal [10, 21].

II-VI materials, such as ZnO, are also heavily  researched with a similar aim. They have advantages 

relative to GaN due in part to availability in bulk, single-crystal form and their larger exciton 

binding energies (e.g. ∼60 meV for ZnO compared to ∼25 meV for GaN). The issue of reliable 

doping is still relevant, however. N-type conduction is relatively  easy to obtain, in part due to the 

intrinsic n-type nature of undoped ZnO. Hole conduction remains difficult and is currently a 

limiting factor for ZnO – alternate methods such as heteroepitaxy of n-type ZnO on p-type 

substrates to form p-n heterostructures have led to the development of high-intensity UV emission 

from n-ZnO/p-AlGaN [22]. 

1.4 Short Wavelength Optoelectronics on Silicon

Silicon is undeniably the most dominant material used within the semiconductor industry due to its 

electronic properties, low price compared to other substrate materials, as well as established 

processes for Si and large wafer sizes which are readily available. Unsurprisingly, research has been 

undertaken into combining III-N as well as II-VI material with Si.

Investigations have shown that GaN-based materials on Si are of a lesser quality than such materials 

grown on sapphire and on SiC, mainly due to the large lattice and thermal mismatches between 

GaN and Si. In spite of this, however, the development of UV emitting GaN LEDs on Silicon 

<111> via molecular beam epitaxy (MBE) has been achieved [23]. However, the quality of the 

fabricated device was poor owing to the highly  defective microstructure as a result of the large 

mismatch between the epilayer and substrate of 17%. 
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Research has also been carried out with regard to deposition of ZnO on Si substrates. This has been 

achieved via the reactive e-beam evaporation technique [11], although the issue of a highly 

mismatched substrate remains. A low pressure MOCVD technique was used to deposit ZnO onto Si 

<111>, albeit  with the use of a 6H-SiC buffer layer. This SiC layer was used to better alleviate the 

mismatch between the ZnO and the Si. Layers produced by this method had improved crystal 

quality and improved UV emission [24]. 

The weakness in these approaches to LED and LD fabrication remains: growth on highly  lattice 

mismatched substrates (for example, growth of GaN on SiC or sapphire) invariably  results in 

dislocations and sub-optimum crystallinity, in turn affecting device performance. 

1.5 Liquid Phase Epitaxy (LPE)

LPE is the precipitation of a material from a liquid phase solution onto a underlying substrate such 

that the crystallinity  of the substrate layer is replicated onto the grown epilayer. From early work in 

1836 by  Frankenheim [25], LPE did not fully develop until Nelson et al. [26] in 1963 when it was 

used to grow high quality  GaAs laser diodes and Ge tunnelling diodes. The growth from near 

thermal equilibrium between substrate and liquid phase melt results in high structural perfection and 

epilayers possessing lower dislocation densities than the substrate upon which they were grown 

[27]. Subsequent to Nelson’s seminal work, considerable work was carried out on the application of 

LPE to III-V materials. Single crystal layers of compound semiconductors such as InP, InGaAsP, 

GaAs, GaAlAs and GaP have been achieved and many applied commercially [28, 29, 30, 31]. LPE 

can yield single crystal layers of specified composition and thickness for well established material 

solutions - in part due to the controllable nature of the growth parameters, namely substrate type, 

solution composition, temperature, cooling rate and growth time of the melt on the substrate.
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Although developed most thoroughly for III-V growth, LPE has been used for other novel systems 

including group IV and II-VI materials, such as single crystal Silicon for photovoltaic applications 

[32, 33], HgCdTe for IR photodiode arrays [34] as well as for the growth of magnetic garnets [35] 

for optoelectronic and magnetic bubble devices. A number of configurations exist for LPE. The 

work reported herein was performed primarily using a horizontal sliding boat type system. The 

experimental setup  used can be seen in Figure 1.3. Further details regarding epitaxy, the LPE 

process and apparatus itself shall be discussed within chapter 3.

Figure 1.3 - Conventional horizontal sliding boat type Liquid Phase Epitaxy system

1.6 Liquid Phase Epitaxy for Wide Band-gap Semiconductors

For II-VI compounds such as ZnO (as well as ZnSe, ZnTe and ZnS), LPE has been used to grow 

these materials albeit with limited success [36]. Low resistivity p-type epilayers of ZnSe have been 

grown with carrier concentrations of ∼ 1018 cm-3 comparable to similarly  produced samples via 

MOCVD and MBE [37]. Direct homoepitaxial growth via LPE of ZnO from a LiCl-ZnCl2-K2CO3 

flux has been achieved, with a high degree of structural perfection in the resulting epilayers 

[38].The remaining difficulty with ZnO is the issue of stable p-type doping. The fact that the melt 
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will invariably  contain some degree of included impurities that can effect  doping does not help this 

issue and also effects the reproducibility  of ZnO LPE. A large number of solutes have been 

investigated for II-VI based LPE growth (namely Bi, Sn, Te and Se [39, 40]). Their high melting 

points, ionicity and the necessity for detailed solubility and phase diagram information have made 

LPE of II-VI materials technically difficult. 

GaN has experienced some success with LPE growth on sapphire, LiGaO2 and LiAlO2 substrates 

[41], although a hybrid homoepitaxial approach using a HVPE seed layer of GaN on sapphire upon 

which the subsequent LPE GaN growth was carried out proved most successful by neatly avoiding 

the substrate mismatch issue. The challenging problems with regards to growth from high-

temperature solutions and the particular issue of suitable solvents remain (owing to the issue of the 

poor solubility of Nitrogen in Gallium) and progress with GaN grown via MBE and MOCVD still 

eclipses the slow progress from LPE. The considerable problem of the misfit between GaN on 

sapphire and GaN on SiC substrates remains unresolved (with misfits of 8.4% and 2.5% 

respectively) [42].

With respect to the III-Nitrides and II-VI materials, there exists a driving force for the development 

of cheap, controllable and efficient light emitting materials which can be readily deposited on well-

known substrate materials (e.g. Si). It is clear that there exists an opportunity for a material that 

would be lattice matched to Si substrates which also possesses the qualities of wide bandgap 

materials. As can be seen from figure 1.4, the Copper Halides (CuCl and CuBr) tentatively meet 

these criteria.
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Figure 1.4 - Band-gap energy of different semiconductor compounds as a function of lattice 

constant [8]

1.7 Copper Halides

The Copper Halides have received considerable attention in the 1960s and 1970s, primarily  for their 

excitonic properties but also due to their potential applications to optoelectronics. Owing to their 

interesting band structure and excitonic features, theoretical studies on CuCl and CuBr were 

performed [43, 44]. CuCl and CuBr nanocrystals embedded in NaCl were also studied for a better 

understanding of diffusion and nucleation of CuHa within the NaCl eutectic system [45, 46] , 

leading to spectroscopic studies of the CuHa/NaCl exciton peaks for quantum confinement effects.

For optoelectronics, CuCl in particular was examined. With transparency ranging from infrared to 

ultraviolet (0.4µm - 20µm [47]), large refractive index and possessing a large Pockels effect, CuCl 

based electro-optic modulators were envisioned. This drove the need for the growth of CuCl single 
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crystals. Various growth techniques were applied: growth by the traveling heater method [48], 

Czochralski growth [49], vertical Bridgeman and top seeded solution [50] growth as well as gel 

growth [51]. In some cases, the necessity for transitioning through the solid phase transition 

temperature for CuCl (zincblende γ-CuCl transitions to wurtzite β-CuCl at temperatures above 407 

°C, below the CuCl melting point  at 422 °C) required the use of a fluxing material in order to 

depress the melting point  below the zincblende to wurtzite phase change temperature. Failure to 

avoid the solid state phase transition with a flux material results in highly strained crystals, with a 

high degree of random birefringence, which is of no practical use for optical modulators. 

Both CuCl and CuBr have received attention for their potential application as gas sensors. CuCl has 

been used to create a CO sensor - deposition of CuCl mixed with tetraethylorthosilicate and terpinol 

onto gold interdigitated electrodes yielded an electrical resistance based sensor [52]. CuBr has also 

been used for sensors, wherein it displays an exploitable molecular recognition of NH3. CuBr films 

for this purpose have been prepared via magnetron sputtering as well electrochemical oxidization of 

copper in the presence of Bromine gas [53].

More recently, CuCl has been investigated as a potential material for UV/Blue light emission, 

particularly in part due to its close lattice match with Si. Deposition on Si via magnetron sputtering 

[54] as well as vacuum evaporation [55] have resulted in polycrystalline γ-CuCl on Si with notably 

strong UV excitonic emission. CuCl on Si and GaAs has also been demonstrated via MBE [56] 

wherein single crystal CuCl was grown. These films were stoichometric and stable at  room 

temperature. O’Reilly  et al. [57] have developed a structured electroluminescent device (ELD) 

based on γ-CuCl and reported light emission at  380 nm and 387 nm. One issue surrounding CuHa 

materials is their susceptibility  to degradation in ambient atmosphere, with CuCl and CuBr both 

degrading and forming oxyhalide complexes, though CuBr is notably more stable in ambient 
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atmosphere for longer periods, as will be reported in this thesis. For CuCl, work on encapsulation to 

prevent decomposition has been successfully carried out with the use of polysilsesquioxane (PSSQ) 

or cyclo-olefin copolymer (COC) capping layers [58].

Both CuCl and CuBr, with their wide band-gaps, large exciton binding energies and the possibility 

of thin film growth using a variety  of techniques have numerous potential applications. Their 

emission in the near-UV and blue wavelengths is desirable, as this introduction outlines. CuCl, with 

its relatively close lattice match with Si ( < 0.4% mismatch) and ready ability to form flux melts 

with a number of compounds opens the way for growth experiments using LPE. CuBr, with its 

improved stability relative to CuCl and its luminescent properties is also enticing and its 

development as a candidate for electroluminescence studies would be entirely novel.

1.7.1 CuBr Devices

Predominant attention has been given to γ-CuCl as a candidate material for Si based UV devices. As 

presented in figure 1.4, γ-CuCl has a desirable combination of a large band-gap and exciton binding 

energy as well as a compatibility  with Si substrates via a near lattice match. However, the structural 

stability  of γ-CuCl when exposed to ambient atmosphere for extended periods has been shown to be 

poor, becoming unstable and resulting in the formation of oxyhalides and a degeneration of the 

luminescent properties [59].

From a reactivity perspective, moving from the more reactive CuCl to the more stable CuBr group 

material could prove fruitful. Apart from the aforementioned use of CuBr as a gas sensor materials 

candidate, only fundamental spectroscopic and theoretical studies of the excitonic transitions of 

CuBr have been carried out. The improved stability of a CuBr thin film over existing CuCl 

deposited films is desirable - the potential application in optoelectronics owing to its high efficiency 
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light emitting mechanism is perhaps somewhat lessened owing to the reduced band gap energy 

(3.07 eV) and exciton binding energy (108 meV). 

To the author’s knowledge, no fundamental work has been carried out in attempting to make a 

device structure using a γ-CuBr active layer.

1.7.2 Solid State Chemical Interaction of CuHa and KHa Materials

Recently, it has been shown that the interaction of alkali-halide flux materials with the Copper 

Halides can lead to dramatic improvements in the excitonic PL emission of these films. It  has been 

shown that CuBr films generated by a simple CuCl-film/KBr substrate reaction exhibit 104 times 

brighter excitonic PL than conventional CuBr films [60]. Similarly, work by Lucas, Cowley, et al. 

[61], in which the behavior of co-evaporated CuCl/KCl films was investigated, shows that the 

addition of ~5% molar flux of KCl can lead to substantial improvements in excitonic luminescence 

relative to normal γ-CuCl thin films. This improvement is achieved by exploiting the vacancy rich 

nature of CuHa relative to the vacancy free KHa crystals, and will be discussed in further detail in 

this thesis.

1.8 Thesis Objective

The fundamental objective of this work has been the investigation of CuHa material for novel 

applications in optoelectronic devices such as LEDs and LDs. Within this mandate, the feasibility  of 

growth of single crystal γ-CuCl epilayers on Si substrates using LPE processes was examined 

utlizing the horizontal sliding boat method (and later, a modified tipping boat method). The use of 

an appropriate flux material was investigated in order to form a CuCl melt  so as to avoid the 

wurtzite-zincblende phase change by sufficiently depressing the phase change temperature. An LPE 

system was built and commissioned specifically  for this work with CuHa material. Analysis of 
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grown layers was carried out via X-Ray diffraction (XRD), EDX, photoluminescence (PL) and x-

ray enhanced optical luminescence (XEOL).

Fundamental work on electroluminescence of γ-CuBr on transparent substrates, hitherto unreported, 

was also undertaken. Growth via vacuum evaporation physical vapour deposition (PVD) on Si, 

Glass and Indium Tin Oxide (ITO) coated substrates was examined via XRD and AFM. The 

luminescent properties of γ-CuBr were examined via PL, UV-Vis and electroluminescence (EL). 

Comparative work using ultra-violet visible spectroscopy (UV-Vis) absorption measurements with 

deposited γ-CuCl samples was carried out in order to quantify stability of CuBr thin films relative 

to CuCl films over a period of time. Finally, a prototype device structure for an AC thin film 

electroluminescent device (ACTFELD) is proposed with a γ-CuBr active region and examined 

using electroluminescence (EL).

The potential improvement in excitonic PL that can be gained from novel approaches to film 

preparation involving alkali halides and existing CuBr deposition techniques is promising, as 

outlined in Kondo’s review [62]. This thesis details an approach taken to form highly  luminescent 

micron sized arrays of intermixed CuBr/KBr ‘microdots’ using vacuum evaporation and specifically 

machined vacuum evaporation shadow masks. Using this novel approach, vacuum deposition of an 

array  of KBr spots (~30 µm radius) onto similarly deposited γ-CuBr epitaxial layer on a Si substrate 

is carried out. Post-deposition annealing of the samples at 220 °C in conjunction with a small CuBr 

flux from a target source leads to the formation of the intermixed CuBr/KBr microdot with 

substantially  improved excitonic luminescence relative to previously observed PVD deposited γ-

CuBr thin films.
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It is hoped that from this work, a greater understanding of the applicable growth methods and 

luminescent properties of CuHa material has been derived. The development of a process for LPE 

of CuCl on Si has been reported and tested, with conclusions and recommendations reached. The 

move from γ-CuCl thin film process to the more stable γ-CuBr process has been outlined and its 

potential demonstrated with work towards the development of an ELD. Additionally, the continuing 

investigation of the interaction of alkali halide compounds with CuHa materials is furthered with 

the formation of CuBr/KBr microdot arrays.

1.9 Layout of Thesis

Chapter 1 outlines the background and rationale for the project, discussing the importance of wide 

bandgap  materials for optoelectronics, the existing research behind the most significant III-N and 

II-VII materials (GaN and ZnO) as well their shortcomings. LPE is highlighted as a means for 

growth of highly crystalline epilayers and a review of the existing wide bandgap materials growth 

processes involving LPE is presented. Finally, the Copper Halides are identified as a potential 

candidate materials system for blue/UV (λ ~380 - 410 nm) optoelectronic devices, their history  is 

reviewed as is that of CuBr thin film devices. The objective of the project  is identified as well as the 

characterization techniques to be employed.

Chapter 2 outlines the fundamental theory for semiconducting materials, optical processes for light 

emission as well as outlining the various characterization techniques and equipment used during the 

project.

Chapter 3 details epitaxial growth methods used for this work, including detailed information on 

LPE and its application to CuHa growth as well as the PVD process used for thin film deposition.
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Chapter 4 reports on the Copper Halide materials, outlining fundamental structural, electrical and 

optical properties as well as reported single crystal growth using flux methods for these materials.

Chapter 5 details the results for LPE growth of CuCl on Si including the experimental methodology, 

characterization and conclusions.

Similarly, Chapter 6 describes the work carried out on the PVD of γ-CuBr thin films, their 

characterization, stability and details the progress towards the development of a prototype 

ACTFELD γ-CuBr based device. 

Chapter 7 is given over to the work carried out in the formation of mixed CuBr/KBr microdots and 

details the fabrication process for the formation of these novel structures.

Finally, chapter 8 concludes this thesis by  providing an overall summary of the work and outlines 

recommendations for future work based on the findings of this thesis.
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Chapter 2 - Theory & Characterization Techniques

2.1 Introduction

This work makes use of a number of characterization techniques in order to investigate the structure 

and properties of the CuHa semiconductor group. An outline of these semiconductor materials and 

some of their specific properties is presented, and the background theory and characterization 

techniques used and encountered throughout the project are described in this chapter.

2.1.1 Semiconductors

Isolated atoms that are brought together in a crystal structure give rise to overlapping periodic 

potentials as their electron wave functions overlap due to shorter inter-atomic spacing. Since Pauli’s 

exclusion principle states that no two electrons can possess the same quantum state, this leads to the 

broadening of the discrete electron states into ‘bands’, separated by a forbidden region. Thus in 

semiconductors we have the valence band (the highest filled band) and the conduction band (the 

next highest band above the valence). The distance between these bands through the forbidden band 

is called the band-gap, Eg, of the material. Crystalline solids are classified as metals, insulators and 

semiconductors based on the band-gap energy and the position of the Fermi energy, relative to their 

valence and conduction bands. Materials where the Fermi energy is inside the conduction or 

valence band (or these respective bands overlap) are classified as metals. If the Fermi energy is 

between the conduction and valence bands, the material is a semiconductor or possibly an insulator, 

depending on the magnitude of the band gap energy. Illustrative band structures for the three cases 

are shown in figure 2.1.
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Figure 2.1 - Representative energy band structures for metal, insulators and semiconductor 

materials.

2.1.2 Energy-Band Theory of Solids

As mentioned, the energy band structure for materials arises due to the behaviour of electrons in 

periodic potentials. A theoretical description involves the treatment of the Schrödinger equation in 

conjunction with Bloch’s theorem. The Schrödinger equation for a free particle needs to be 

expanded to provide for the potential U(r) and can be expressed as

The elimination of the time parameter, t, gives the time independent Schrödinger equation as shown 

above. The potential, U(r), can be said to have the same periodicity as the underlying Bravais 

lattice:

 

R = n1a1 + n2a2 + n3a3
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Hψ nk (

r ) = −
2

2me

∇2 +U(r )
⎡

⎣
⎢

⎤

⎦
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where ni are integers and ai are vectors describing the edges of the base unit cell. This gives a 

periodic potential function:

for all R of the appropriate Bravais lattice vector. Using a nearly free electron approximation, 

whereby the interaction between electrons is dismissed, allows for solutions to the Schrödinger 

equation using Bloch’s theorem [1], which states that a wave function can be written as a plane 

wave multiplied by a function with the periodicity of the lattice.

where unk(r) can be written in terms of the previously defined periodic potential function, i.e.

The energies at various indices, n, vary with wave vector k and form an energy band for that index. 

A change in k will lead to a continuous variation of the eigenvalues En since for a different k  there 

exist many solutions to the Schrödinger equation with different eigenvalues En and as a continuous 

function En(k), they form bands with a band index n. Since this function is periodic, each band will 

have an upper and a lower range of energies. In order to visualize the energies for En(k), the lines of 

high symmetry, illustrated for a face centered cubic system in figure 2.2, are considered through the 

Brillouin zone and are graphed as a schematic representation known as a band diagram.

 U(
r ) =U(r +


R)

 ψ nk (
r ) = eikrunk (

r )

 unk (
r ) = unk (

r +

R)
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Figure 2.2  - Brillouin zone for face centered cubic (FCC) lattice illustrating the points of high 

symmetry

From the band diagram, should a minimum in the conduction band and a maximum in the valence 

band occur at  the same position within k-space, direct electron transition to the conduction band can 

take place without momentum change, as shown in figure 2.3. Materials where this direct transition 

at k = 0 (i.e, Γ symmetry  point) is allowed are known as direct band gap semiconductors, and direct 

optical excitation with photons at Eg = hv can occur. From figure 2.3, indirect transitions from the 

valence to conduction band require the creation of a phonon quasiparticle in order to satisfy energy-

momentum conservation.

Energy band diagrams for both CuBr and CuCl can be found in Chapter 4, wherein it can be clearly 

seen that they exhibit a direct band gap at k = 0, and are thus considered direct band gap materials.
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Figure 2.3 - Illustrative band structure for direct and indirect gap semiconductors.

2.2 Photoluminescence in Semiconductors

Photoluminescence is the process whereby a material absorbs electromagnetic radiation (i.e. 

photons) and then radiates photons back out (i.e. emission). In a semiconductor, this process of 

absorption creates excess carriers beyond what the material would usually possess at thermal 

equilibrium. These excess carriers are ultimately resolved by a recombination process. As illustrated 

in figure 2.3, understanding the nature of the recombination process requires that the material be 

classified by its band gap, i.e. whether the material is a direct band-gap  material or an indirect band-

gap material. Figure 2.4 illustrates schematically  the basic recombination transitions that excess 

carriers in a semiconductor undertake.
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Figure 2.4 - Basic recombination transitions found in semiconductors - Ec, Ev, Eg, Ed, Ea, Ez are the 

conduction band, valence band, energy band gap, donor traps, acceptor traps and excitonic 

recombination, respectively. Reproduced from [2].

From Figure 2.4, the transitions can be detailed as follows. The transition (A) is the inter-band 

transition between the conduction and valence bands, corresponding closely to the energy  band-gap 

of the material. Transitions (B), (C) and (D) originate from chemical impurities or defects within the 

crystal. By way  of example, transition (B) originates from the conduction band to an acceptor just 

above the valence band. Similarly, transition (C) originates from a donor near the conduction band 

while transition (D) represents a donor-acceptor transition. Transition (E), excitonic recombination, 

requires a treatment of the subject of excitons, which is discussed below.

2.2.1 Excitons

In a direct band-gap semiconductor, when light with a photon energy in excess of the band-gap 

illuminates a sample, electrons are excited to the conduction band. The vacated electrons leave 

holes in the valence band, which via Coulombic attraction, can form an exciton. For CuHa material, 
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these excitons can be described as Wannier-Mott type pairings [3, 4], in which the electron and hole 

are only weakly bound due to the large screening potential of the valence band electrons and are 

thus separated by a number of interatomic spacings, d. As a bound electron-hole pair, an exciton is 

analogous to that of a Hydrogen atom, and has a correlated movement and an effective mass 

approximation equal to that of the two particles moving with the effective masses of the valence 

and conduction band. Thus the excitons can be investigated from this assumption, starting with an 

unbound electron with wavevector ke in the conduction band, expressed as [5]

where Eg is the band-gap, and me is the electron’s effective mass. Similarly, an unbound hole with 

wavevector kh in the valence band can be expressed as

where mh is the effective mass of the hole. Bloch functions can be used to represent the electron and 

hole, ψke(re) and ψkh(rh), respectively. The wavefunction for the exciton can then be expressed as the 

combination of the electron and hole wavefunctions.

Owing to the hydrogenic nature of the exciton, the Rydberg constant for an exciton can be 

expressed as [5]

 

where µ is the reduced mass of the system, given by
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and εo is the permittivity. Since this will always equate to a positive number, the effect of the 

Coulomb attraction places the exciton energy states below the conduction band. 

As explained for excitons, the recombination of the electron-hole pair  results in the emission of a 

photon with energy lower than that of the band-gap  energy. The energy difference corresponds to 

the binding energy of the exciton and is called the free exciton energy, Ef. The difference between 

the free exciton energy and the band-gap energy is the binding energy of the electron-hole pair, Ex:

where Eg is the band-gap energy and Ex the energy of the exciton. Trapping of excitons near 

impurities and defect states within the crystal will also lower the binding energy  of the exciton. For 

most semiconductor materials, excitonic recombination is only observable at low temperatures, 

where kT is less than the binding energy  of the exciton (k being the Boltzmann constant).  However, 

the CuHa are notable for having large exciton binding energies (~190 meV and ~108 meV for CuCl 

and CuBr, respectively, see table 1.1) and are thus directly observable at room temperature (i.e., kT 

~26 meV). Excitonic states for the Copper Halides used in this work are discussed in further detail 

in Chapter 4.

2.2.2 PL Experimental Setup

Room temperature PL measurements were carried out using a 325 nm UV He–Cd excitation laser. 

The PL was measured by a liquid Nitrogen cooled CCD detector in conjunction with a 40 x UV 

objective lens on a JY Horiba LabRam 800 Raman-PL spectroscopy  system. For temperature 
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dependent measurements, a standard closed circuit liquid Helium cryostat was used. Excitation was 

provided by a 244 nm laser, supplied by the frequency doubling of the 488 nm line from an Argon 

ion laser using a BBO (β-BaB2O4) crystal.
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Figure 2.5 - Experimental setup for room temperature PL measurements using He-Cd laser.

2.3 Electroluminescence (EL)

Electroluminescence is an optical emission process in which an electrical potential is converted by a 

luminescent material into photons. Similar to photoluminescence, it is the result of radiative 

recombination of electrons and holes within the semiconductor, however the process is achieved via 

electrical potential rather than optical excitation with a laser as is the case with PL. A typical 

ACTFEL device structure is illustrated in figure 2.6 below.

With the application of a sufficiently large voltage to such a device, electrons are injected from the 

electrode into the active layer region. These ‘hot’ electrons are accelerated under the influence of 

the electric field and can, after sufficient energy has been supplied, interact with the luminescent 

centre of the material within the active layer to excite an electron of the active layer material from 

valence to conduction band. This process is known as impact excitation [7].
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Figure 2.6  - Standard MISIM (metal-insulator-semiconductor-insulator-metal) device structure, 

reproduced from [6]

Subsequently, the luminescent centre will relax back to the ground state via a de-excitation process. 

This can either be a radiative, light emitting event (i.e. photon produced) or a non-radiative process. 

Figure 2.4 previously showed the radiative transitions that can occur from this process that can 

result in light emission. Non-radiative relaxation will result in the production of a phonon - the 

structural quality  of the active layer is an important factor in these events as crystal defects, grain 

boundaries, interstitials and vacancies can all act as non-radiative recombination centers which can 

adversely effect the quality of emission from the ELD. Figure 2.7 below shows a schematic of the 

sequence of processes leading to a radiative emission event.
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Figure 2.6 -Schematic of the four fundamental process in a ELD which can result in light emission, 

(1) Injection of charge carrier into the active layer, (2) acceleration of charge carriers, (3) impact 

excitation of luminescence centers by the ‘hot’ electrons and finally the radiative relaxation back to 

the ground state. Reproduced from [6]

2.3 UV-Vis Spectroscopy (UV-Vis)

In a UV-Vis system, an incident photon of known energy excites an electron within the material 

from a lower to a higher energy state as the atoms within a material will undergo electronic 

excitation via absorption of this light energy. By measurement of the changes in the resulting 

absorption from the excitation it is possible to examine the transitions undertaken by the electron 

[8]. The spectrometer measures the intensity of light from the sample (referred to as I), and 

compares it to the intensity  of the incident light before hitting the sample (Io). The relationship 

between I and Io is defined as a ratio, which is called the transmittance. 
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The measured absorbance of a material, A, is related to the transmittance thus:

In this work, the UV-Vis technique is used to examine the absorption charateristics of CuHa 

materials from an excitonic and band-to-band point of view. Absorption spectra were taken using a 

Perkin Elmer Lambda 40 UV-Vis spectrometer, as seen in figure 2.7 below. 

Figure 2.7 - (a) Perkin-Elmer Lambda 40 UV-VIS spectrometer and (b) schematic of UV-Vis 

spectrophotometer
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A Deuterium lamp is used to generate the UV component of the light while a Tungsten lamp is used 

for the visible spectrum. The UV-Vis spectral range is approximately 190 nm to 900 nm and the 

system has a given spectral resolution of 1 nm.

Absorption based spectroscopy can also be used to estimate the band-gap of a material [9], and can 

be used to determine the compositional makeup of wide band-gap  semiconductor alloys such as 

AlGaN, as illustrated in figure 2.8. However, in the case of materials with excitonic processes close 

to the band-gap  edge, such an estimation of the band-gap is not possible due to interference of said 

processes with band-gap mediated absorption processes (although the observed absorption edge is 

an approximate indicator of the location of the band-gap). This is the case for the CuCl and CuBr 

material. 

Figure 2.8 - Illustration of means of determining band-gap energy of material from UV-Vis 

absorbance measurement.
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2.4 X-Ray Diffraction (XRD)

X-rays are part of the electromagnetic spectrum with photons of suitably  short wavelengths for use 

in diffraction studies of crystallographic materials. XRD is a non-destructive and versatile technique 

for revealing information on the crystallographic structure of a material as well as the chemical 

make-up and physical properties thereof. The technique stems from the interplay  of fundamental 

aspects of the crystal lattice and constructive interference from a diffracted crystal as elucidated by 

Bragg’s Law [10]. A  crystal is fundamentally a regular, three dimensional ordering of atoms in 

space forming a series of planes. These planes are parallel to one another but separated by  a 

distance, d. This parameter is known as the inter-planar distance and varies depending on the nature 

of the material, since each crystalline material potentially has a differing atomic structure. 

Figure 2.9 - Illustration of Bragg diffraction from a series of lattice planes

When a monochromatic x-ray with beam wavelength λ is directed onto a crystal structure at a 

specific angle, θ, diffraction can occur should it satisfy Bragg’ Law:
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Such diffraction resulting from the interaction of x-rays and a three-dimensional lattice structure is 

known as Bragg diffraction, but is often colloquially  called a reflection and is illustrated in figure 

2.9. By varying the Bragg angle θ, solutions exist for different inter-planar spacings in crystal and 

polycrystalline materials. By calculating and plotting the angular positions and diffraction peak 

intensities produced from the monochromatic x-ray  beam, a characteristic pattern is produced for a 

sample that yields information regarding the composition and crystallographic orientation of a 

sample.

An XRD diffractometer system allows for precise control of the incident beam and the resultant 

diffracted beam. The diffractometer motors are used to bring the diffraction planes (i.e. described by 

<hkl> indices), which are orientated in a characteristic way within the sample, into the diffraction 

condition of Bragg’s Law - i.e to align the resulting normal of the <hkl> planes parallel to the 

diffraction plane. Diffraction measurements for this work will be taken with the use of a Bruker 

AXS D8 Advance x-ray  diffractometer [11]. The X-Ray generator is a Cu target that is excited by 

electrons accelerated by  a 40kV voltage. The  Cu Kα wavelength of the x-ray generator is given as λ 

= 0.154 nm. The D8 system makes use of what is known as the parallel beam geometry - this 

arrangement of the x-ray source, sample and detector allows for the sample to be rotated at a 

specified angular speed such that the angle of the incident x-ray varies as the detector is rotated at 

twice the relative angular speed of the sample. This geometry can be seen in figure 2.10 below.

Using this geometry, as the incident x-ray  beam is moved around the sample (via the indicated 

focusing circle), the detector is correspondingly  maintained at twice the incident x-ray angle (i.e., 

2θ). The detector can measure the relative strength of the reflection occurring across a range of 2θ 

values and plot it against the incident angle via the supplied D8 software.
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Figure 2.10 - The parallel beam geometry used with the D8 Advance XRD system

 

2.4.1 Glancing Incidence X-Ray Diffraction (GIXRD)

For thin surface adjacent films, such as those deposited via PVD as will be discussed in Chapter 6, 

the XRD measurement of specific properties such as crystallite orientation in polycrystalline 

samples is possible by using small angles of incidence for the x-rays relative to the sample surface. 

By ‘glancing’ the x-rays in this manner across the sample, the sampling volume of the x-rays is 

reduced to a small volume at the surface since the penetration depth is much reduced. This in turn 

leads to higher resulting diffracted intensities from the surface region than with a conventional 

XRD scan.
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2.4.2 Crystallite Size Calculation using Scherrer Formula

The Scherrer formula is a commonly used statistical approach to estimate the size of crystallites 

found in polycrystalline thin film samples. It is given by the expression [12]:

where d is the nano-particle size, θ is the angle of the Bragg reflection, w is the broadening width of 

a 2θ range, K is a constant and λ is the wavelength of the incident radiation. The parameter, w, 

represents the corrected FWHM, that is:

where winstrument is estimated from the width of a single Si Bragg peak. For this work, K was set as 

0.9. Using this approach, the average crystallite size for the thin film samples used during this work 

was estimated.

2.5 Atomic Force Microscopy (AFM)

AFM allows for the imaging of nanometre scale surface features, and is a valuable tool for 

morphological studies of thin films. An AFM  system consists of a cantilever and attached tip  that 

can be rastered across a sample surface in order to generate an image of the scanned area. The tip is 

brought into close proximity  of the surface of the sample where forces between the sample and the 

tip  result  in a deflection of the cantilever as described by Hooke’s Law [13]. Forces that can affect 

the cantilever and thus are measurable by  the AFM  include van der Waals forces, capillary forces, 

chemical and electrostatic forces as well as mechanical pressure. For the AFM  used in this study, 

the deflection on the cantilever caused by  the force feedback is measured by  a laser that is focused 

onto the cantilever top, which is fed into a control system (e.g. computer software). For this work, a 

Pacific Nanotechnology AFM 9000 was used, operating in contact mode.
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Figure 2.11 - Annotated image of the Pacific Nanotechnology 9000 AFM system

2.6 Scanning Electron Microscope (SEM)

Scanning electron microscopy is a widely used tool for surface analysis and characterization. It 

makes use of a high energy, well controlled beam of electrons,which is raster scanned across the 

sample surface. The interaction of the beam of electrons with the surface produces a number of 

signals, namely backscattered electrons, secondary electrons, characteristic x-rays (which is used 

for energy dispersive x-ray analysis, detailed further on), as well as electron induced luminescence 

(cathodoluminescence). The SEM tool is designed to detect  these signals and using the imaging 

software, can generate an image of the surface of the sample, detailing the topology  down to 

nanometer scale resolution. Due to the collimated nature of the beam, SEM images have a high 

degree of depth of field, giving an intuitive, three dimensional image of the sample

Figure 2.12 shows a schematic of a typical SEM column. Electrons originate from the electron gun 

(generated from a tungsten hairpin filament) and are then collimated using the electromagnetic 

condenser lens and the objective lens before reaching the sample. A secondary electron (SE) 
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detector as well as a back-scattered electron detector (BSE) are used to collect the sample 

information. Samples are maintained under 10-5 mbar vacuum conditions in the specimen chamber. 

For this work, a Carl Zeiss EVO SEM was used.

Figure 2.12 - SEM column schematic for a typical SEM system

2.6.1 Energy Dispersive X-Ray Spectroscopy (EDX)

Energy Dispersive X-Ray Spectroscopy   is an analytical technique used to determine the chemical 

composition of a sample under investigation. As each element has a unique atomic structure of 

orbital electrons and nucleus, it provides each element with a unique fingerprint. EDX relies on 
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characterizing a sample from the analysis of X-rays emitted by directing the beam from the SEM 

column at the sample and causing the ejection of an electron from the sample atoms shell. The now-

excited atom will relax to a ground state, and the re-configuration of the electron shell structure will 

result in the emission of an x-ray photon, returning the sample atom to its lowest energy state. In the 

SEM instrument, generated X-rays can be detected with an energy dispersive spectrometer which 

will measure the number and energy  of the emitted X-rays. The energy  of these X-rays can be 

related back to specific elements as stated by  Moseley’s law [14], allowing for the elemental 

classification of the sample.

2.7 X-Ray Enhanced Optical Luminescence (XEOL)

Synchrotron radiation has led to the development of many novel material characterization 

techniques. Synchrotron facilities utilize a particle source, booster and storage ring to generate and 

hold the accelerated electrons [15]. High energy electrons are created and accelerated to near 

relativistic speeds using a linear accelerator. Accelerated particles are then directed to and stored in 

an ultra-high vacuum ring without any further acceleration, known as a storage ring. In this storage 

ring, the electrons are subjected to magnetic fields created by powerful bending magnets and as the 

electrons pass along the storage ring and are accelerated by  the bending magnets, they emit 

synchrotron radiation, which with appropriate design is much more intense than conventionally 

generated x-rays. The synchrotron radiation is projected from the storage ring tangentially and 

captured by beamline stations, where the experimental apparatus is set up (see figure 2.13).
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Figure 2.13 - Schematic of synchrotron storage ring at ANKA, Karlsruhe [17].

One synchrotron-based optical characterization technique is known as XEOL [16]. The sample 

under investigation is subjected to high flux synchrotron radiation at a beamline station. The 

absorption of the incident x-ray photons produces a large amount of electrons within the sample, 

which in turn causes further excitation and ionization. This energy leads to the creation of holes in 

the valence band as well as excess electrons in the conduction band, and the resulting 

recombination of electron-hole pairs results in photoemission. The experimental setup for XEOL is 

illustrated in figure 2.14 below.

XEOL measurements were undertaken at the ANKA Synchrotron, Karlsruhe, Germany [17] using 

the TopoTomo beamline. The storage ring nominally  operates at an energy of 2.5 GeV at 200mA 

and following an injection, has a lifetime of approximately 20 hours.
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Figure 2.14 - Experimental setup for XEOL measurements

Similarly, at HASYLAB-DESY, Hamburg, Germany [18], XEOL experiments were undertaken at 

the F-1 beamline at the Doris III storage ring. This ring operates at a positron energy of 4.450 GeV 

with beamline currents of 80-150 mA. Post injection lifetime is approximately 10-80 hours. XEOL 

spectra were acquired using an Ocean Optics USB 2000 Spectrometer, with a detector spectral 

acquisition range from 200 nm to 1100 nm.

2.8 Secondary Ion Mass Spectrometry (SIMS)

SIMS allows for compositional analysis of a thin film surface by sputtering the surface with a 

focused ion-beam and collecting and analyzing the generated secondary ions via a mass 

spectrometer. Measurements are undertaken under high vacuum (greater than 10-6 mbar) in order to 

ensure that the secondary ions do not collide with background chamber gases en route to the mass 

spectrometer as well as avoiding issues with adsorption of chamber gases into the sample during the 

measurement. By  successive scanning of the same location on a sample, layers of the region under 

test are successively etched away giving access to deeper levels and allowing for the compositional 

characterisation of these levels. This gives a compositional profile of the thin film and is known as 

depth profiling. Figure 2.15 below illustrates the technique.
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Figure 2.15 - Depth profiling of a compositionally varied thin film sample. As the SIMS 

measurement proceeds, successive layers are exposed for characterisation, generating an elemental 

profile vs depth. 

SIMS measurements of as deposited γ-CuBr thin film samples were undertaken with the 

collaboration of Dr. Richard Morris at the Department of Physics, University of Warrick. The SIMS 

system used is known as a uleSIMS (ultra low energy SIMS) - the specific apparatus used was an 

Atomika 4500 Ultra-Shallow SIMS which allows for depth measurements and profiling at nano-

scale resolution (~0.9 nm) [19].
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Chapter 3 - Epitaxial Methods

3.1 Introduction

As outlined in Chapter 1, epitaxy of semiconducting materials is of considerable importance in 

modern electronics, whether for crystal epilayers for LEDs or the increasingly important growth of 

self organized nano-structures [1]. A subset of epitaxial techniques used in this project towards the 

development of novel methodologies for CuHa growth, and their underlying principles, are outlined 

herein.

3.2 Epitaxy

Epitaxy, the ordered deposition of a crystalline material on to a single crystal substrate, has been 

observed since the 19th century. The name, derived from the Greek words ‘epi’ and ‘taxis’ (which 

translates to ‘to be arranged upon’) is also indicative of its 19th century  pedigree. Though studied 

for its insights into crystallography, it has not been until the advent of the semiconductor industry 

that epitaxy has become an essential process for industrial application. For materials such as GaN, 

GaAs, InP to name but a few, epitaxial methods are the only cost effective means to achieve high 

quality crystal growth of these materials [2-5]. This work involved a number of forms of epitaxy, 

most notably  LPE and PVD type processes, and a review of the fundamentals and driving forces of 

epitaxy and their specific methods as applied is presented.

As with all forms of crystal growth, epitaxy is fundamentally a controlled phase transition from a 

precursor state (solid, liquid or gas phase) into a solid, crystalline state. The growth of an epilayer 

represents a relationship  between the underlying single crystal material (i.e. the substrate) and the 
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nascent crystalline phase that is being grown from its precursor state. Figure 3.1 shows a time lapse 

diagram of a typical epilayer growth. 

Figure 3.1 - Illustration of nucleation and growth from a liquid phase of an epitaxial layer. 

Reproduced from [7].

From a systemic point of view, epitaxy can be reduced to a number of driving processes. Since 

crystalline layers are typically  ‘grown’, the ‘fuel’ used to drive this growth is a consideration. The 

phase transition between the solid, liquid or gas precursor phase into the growing epilayer is a rate 

limited reaction. Though the reaction type varies across the different epitaxial methods, it  can be 

summarized as relating to the mass transport  of the constituent material species from the precursor 
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phase towards the growth front of the crystal. This growth front is known as the crystallization 

interface. In order to maintain the growth of the epilayer, the ‘fuel’ supply must be maintained via a 

local supersaturation of the growth constituents at the interface. 

The relationship between the substrate and the grown layer is also important - most notably, the 

alignment of the crystal lattice structure between the epilayer and substrate. In homoepitaxial 

situations, where the substrate and the epilayer are the same material, this is not an issue, due to the 

shared crystal structure. For heteroepitaxial growth, the misalignment of the substrate’s crystal 

structure with that of the epilayers is known as misfit, and can be expressed as a percentage thus:

where as is the lattice constant of the substrate material and af is the lattice constant of the epilayer 

material. Epitaxially grown layers usually  contain many  crystalline defects such as dislocations, 

point defects, etc., and the density of such defects is usually dependent on the misfit and the 

resultant growth mode. If the misfit is small, defects primarily  arise due to the loss of coherency 

between the substrate and epilayer during growth, whereas with large misfit  the defects arise from 

the lack of an exact lattice registry between the nucleating islands [6].

The actual growth of the epilayer is driven by nucleation of the constituent material onto the 

underlying substrate at the interface. Nuclei, embryonic atomic/molecular clusters of the material, 

coalesce and begin to form islands. Providing the growth conditions are maintained, these islands 

will enlarge and eventually agglomerate to form a continuous layer, driven by a specific growth 

mode.
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Classically, it is understood that five modes of epitaxial growth exist; Volmer-Weber (VM), Frank-

Van der Merwe (FM), Stranski-Krastanov (SK), Columnar growth (CG), and Step Flow (SF). The 

VM, FM, SK and Columnar growth modes are illustrated in Figure 3.2. In VM growth, the nuclei 

are more attracted to each other than to the surface, and nucleate around each other to form islands - 

as more of the nuclei coalesce on existing islands, they begin to dominate the overall film structure 

[7, 8]. For FM  growth, a stable monolayer forms on the surface prior to any  further layer growth 

and results in a smooth film [9]. In the SK growth mode, a layer by layer film will grow until stress 

builds up in the film and the mode switches to a 3-dimensional island growth as in FM growth 

mode. The free surfaces on these islands can deform to locally relieve accumulated layer strain. 

Step flow (SF) growth mode is also similar to the layer by layer FM  mode, however the layers in 

this mode form as a series of planar steps which can lead to a terrace like epilayer [7, 10]. The last 

growth mode is the columnar growth mode, which is similar to VM and SK combined - merging 

islands coalesce and form an underlying structure that can propagate upwards throughout the 

epilayer.

Which mode is expressed during the epilayer formation depends upon the lattice misfit between the 

epilayer and substrate, the flux/supersaturation of the growth material, temperature of the 

constituent species during growth and the interaction between adhesive/cohesive energies of the 

epilayer and substrate. 

As mentioned previously, growth proceeds from the crystallization interface. The stability  of the 

interface is thus an important step  in realizing epilayer growth. Chemical reactions between the 

growth material and the substrate can be deleterious to successful epitaxy - this is particularly the 

case for LPE.
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Figure 3.2 - Illustration of the various growth modes: Frank van der Merwe, Stranski-Krastanov, 

Volmer-Weber and Columnar type growth. Reproduced from [10].

3.3 Liquid Phase Epitaxy

LPE has been widely used for the past  five decades to successfully grow epitaxial layers, most 

notably of III-V compound semiconductors for optoelectronic devices [11-15]. The most notable 

advantage of LPE over other growth techniques is the high crystalline quality  of the epilayers 

produced. The near-equilibrium based growth conditions result in low densities of point  defects and 

the segregation of impurities into the liquid phase results in low background impurities in a properly 

conducted growth run [16]. Its basis on phase equilibria allows a much wider range of materials to 

be used for growth, thus allowing for investigations into novel materials such as those investigated 

in this project.

Fig. 7. (a) Phase diagram of KTa
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).

Fig. 8. The three classical growth modes (top) and four recently
de"ned [27] growth modes in successive epitaxial growth stages
(schematic cross section).

striations. In order to prevent harmful optical in-
homogeneities (refractive index changes, strain bi-
refringence), the variation of concentration
x should be less than 10"%. This requires a temper-
ature stability better than 0.013C, as indicated in
Fig. 7a. As a consequence striation-free KTN crys-
tals can only be grown by slow-cooling of a quasi-
isothermal solution. This will cause an inherent
concentration gradient within the crystal which can
be minimized if a small crystal is grown from
a large mass M of a solution, or when the solution
is replenished by double-crucible or similar tech-
niques. The nomogram of Fig. 7b shows the crystal
volume < with the concentration variation x

!
}x

$
which can be grown by cooling a melt of mass M by

the temperature interval ¹
!
}¹

$
[23]. One could

consider this as a scienti"c approach to determine
the size of the required crucible. Based on this
theoretical study, on ultra-precise temperature con-
trol [24], and by using ACRT for melt homogeniz-
ation [25], large striation-free crystals of KTN
could be grown for the "rst time [23,26]. These
experimental results prove that hydrodynamic
changes as such do not cause striations, but that the
origin of thermal striations is temperature #uctu-
ations.

Epitaxy is an area where the understanding of
the growth modes and of the role of the growth
parameters could lead to high-quality layers of
GaN and of high-¹

!
superconductors as needed

for the development of the highest performance
devices. Based on numerous observations, four
further epitaxial growth modes have been de"ned
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The LPE growth process can be broken up into three steps:

• Formation of nuclei at the substrate.

• Surface attachment of the nuclei and the initiation of a growth mode (e.g. FM) leading to 

the formation of macroscopic features. This forms the crystallization interface.

• Transport of solute to the crystallization interface to continue growth by diffusion of solute 

species in the melt.

Fundamental to the LPE process is the understanding of the phase diagram - a graph indicating the 

conditions for which thermodynamically  distinct phases can exist in equilibrium. This graph is 

based on Gibb’s phase rule, which states that the degrees of freedom in a system is given by

where C is the number of components and p the number of phases in thermodynamic equilibrium. 

LPE growth conditions are carried out at approximately 1 atm and thus pressure can be ignored, 

giving F = C - p + 1. For binary (e.g, Ga-As), ternary (e.g, In-Ga-As) and quaternary (e.g, Ga-Al-

As-Sb), the degrees of freedom for the phases would be 1, 2 and 3 respectively. The phase rule 

informs the phase diagram, with ternary and quaternary  phase diagrams having more complexity 

compared to binary  systems like CuCl-KCl and Ga-As. The phase diagram for the KCl-CuCl 

system is presented in figure 3.3 below.

From this diagram, consider a composition of KCl(20)CuCl(80) . This melt composition is subjected to 

an isothermal heating regime in order to enter the liquid phase. Once the equilibration of the 

solution is complete, the temperature of the furnace is slowly lowered  and the melt will move from 

the liquid phase into the liquid and CuCl (solid) stage, shaded green.
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Figure 3.3 - Binary phase diagram of the KCl-CuCl system. Highlighted region shows the 

parameter space for precipitation of CuCl out of the liquid as a solid. Reproduced from [17].

When the solution is cooled through the liquidus curve the solid phase CuCl will begin to 

precipitate out  of the liquid phase. Should a substrate be present  during the precipitation of the 

material from its liquid phase, then the epitaxial deposition can occur of this compound onto the 

substrate. This is the essence of LPE, though grossly simplified for illustrative purposes.

While theoretically simple, it is not such an easy process to master and there exists a large matrix of 

parameters that must be precisely controlled and accounted for relative to each LPE system and its 
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constituent parts and melt choices. Isothermal conditions for the melt  during the growth phase, 

wetting between the melt and the graphite boat and maintenance of a contaminant free system are 

but a sampling of these parameters - a considerable body of LPE literature is given over to the 

determination of experimental parameters that affect growth [18, 19, 20].

Exposing the melt to the substrate is also an important experimental parameter - a large number of 

methods have been developed for contacting the melt to the substrate when growth is to be started. 

Methods include tipping [21], sliding boat [22], rotary slider [11], dipping [23], and piston slide 

boat [24]. The most commonly used LPE technique for III-V growth is the horizontal sliding boat 

system. Specific problems with the horizontal slide-boat LPE technique include poor wipe-off and 

the issue of abrasive scratching. Droplets from the melt can sometimes remain on any epitaxial 

layer grown from that melt  after the slider has been moved to remove excess melt. LPE can often 

produce poor quality surfaces, frequently rough and blemished. The surface can be rough because 

the excess melt droplets can dissolve the underlying layer/substrate, resulting in dissolution pits. 

The surface scratching is a result of the sliding-boat movement over the grown epilayer, although 

this is only an issue if the growth was carried out for too long a period of time (i.e., resulting in the 

overgrowth of the epilayer beyond the recess and putting the epilayer in the path of the wipe-off 

mechanism). 

LPE is advantageous with regards to dopants. The nature of the solution growth means that 

essentially  any element introduced into the melt can be incorporated in the epilayer to some degree. 

This opens up a huge range of choices for potential doping research. The multi-bin structure of the 

conventional sliding-boat system also allows for the use of multiple solutions and thus the 

fabrication of multi-layer samples. Alternatively, the multiple bins can be used to hold solutions 

chosen to prepare the substrate such as a precursor Gallium melt  for etching purposes [25]. Relative 
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to other crystal growth techniques, the machinery  for LPE growth can be procured and maintained 

relatively cheaply  compared to the more expensive molecular beam epitaxy (MBE) or metal organic 

chemical vapor deposition (MOCVD) systems.

3.3.1 LPE Process & Equipment

A number of experimental geometries exist to expose the melt to the substrate for LPE growth - the 

two used for this project are the tipping system and the conventional sliding boat system. In all 

cases for this project, the pieces were machined from high quality  graphite (POCO grade [26]) 

which has exceptional thermal properties - necessary for the isothermal conditions needed for LPE. 

One disadvantage of using graphite, however, is its porous nature. When exposed to air, the graphite 

will absorb atmospheric gases, which can affect the purity and behaviour of a melt in a graphite 

boat [27]. Care when handling boats is therefore important - storage of boats in non-contaminating 

environment (e.g. vacuum) was an impractical solution for this work. Instead, boats that had been 

recovered from previous LPE growths would be cleaned, dried and then stored in clean-room 

quality cloth and placed into sterile boxes. Best possible care was given while handling the boats 

outside of the LPE system and stringent pre-growth baking was undertaken for each boat prior to 

loading of the melt. Details of the bake-out procedure is given in the experimental details of chapter 

5.

3.3.2 Tipping System

Tipping systems were the first used for LPE as shown by  [21]. When the time for the melt to be 

exposed to the substrate is reached, the assembly  containing the melt  is rotated or tipped, such that 

gravity moves the melt into contact with the substrate and growth can commence. This setup is 

simple, and removes any damage that can be caused by  abrasion of graphite pieces with the 

epilayer. It is limited to a single melt, however. 
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The tipping system usually involves either a rotation of a boat or the tipping of the whole LPE 

assembly, as per Hsieh [28]. Since direct tipping of the furnace and LPE system was unfeasible for 

this project, a solution was engineered that used the existing sliding boat mechanics to move a 

wedge under a suspended boat. Moving the wedge out would lower the back side of the boat and 

allow the melt to run onto the substrate, while pushing the wedge back in would tip the melt off the 

substrate at the end of the growth run. The melt bin was designed to be sufficiently large to 

accommodate the 5g melt size commonly used. The substrate recess dimensions were 18mm x 

16mm. The engineered boat system can be seen in figure 3.4 below.

Figure 3.4 - Custom tipping boat design, illustrating the push block moved by the quartz glass rod 

attached to the pushing block.
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3.3.3 Sliding Boat

The sliding boat system is more complex but allows for multiple growth solutions and thus, multi-

layer structures. Even for single melt regimes, however, the multi bin sliding boat has advantages 

over a tipping system, namely being that the empty bins can be useful in removing excess melt 

during wipe off. The melt bins can have a graphite lid placed to reduce contamination from the gas 

flow.

Figure 3.5 - Sliding Boat system; (a) Parametric CAD outline of sliding boat arrangement, (b) boat 

held in quartz glass boat holder (push rod can be seen to the right) (c) Actual machined graphite 

boat (POCO graphite) with melt bin caps displayed.
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Figure 5. Machined sliding boat used with N.P.L’s L.P.E system as well as various 

sundry graphite melt caps and blocks.

Figure 4 shows the fundamental features of the horizontal sliding boat system, while 

figure 5 shows an actual machined graphite sliding boat. With the exception of the 

quartz-glass push rod, the assembly is made entirely out of two pieces of machined high 

grade graphite; the boat and the melt bin slider. On the boat there is a small machined 

groove in which the substrate is placed prior to growth. The melt bin assembly is used 

to hold the solution materials during the growth process. A computer controlled stepper 

motor is used to drive a transmission system that directly results in horizontal force 

being applied to a quartz-glass push rod, allowing forward and backward movement at a 

specified rate. The individual melt bin cells can be closed off using similarily machined 

graphite caps.

Heat is supplied by a 3 zone tube furnace (based on resistive heating) with a cylindrical 

bore through which is fed the tube containing the slider boat mechanism. The furnace is 

regulated via a Eurotherm 3500 P.I.D. controller block. The two end zones are 

calibrated so as to provide a flat temperature profile over the length of the slide boat. 

The P.I.D. uses type K thermocouples slaved to each zone of the furnace as input and 

regulates output via three 0-10v DC outputs directly to the thyristor blocks, stored 

externally in large ground seated control units. These thyristor blocks are used to drive 
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A number of different sized sliding boats were available for this work, usually with varying melt bin 

sizes and substrate dimension requirements. The most commonly used boats had a melt bin capacity  

sufficient for the 5g melt used and had substrate dimensions of approximately 18mm x 14mm. 

Smaller graphite pieces were used to raise the substrate up so that the clearance between the 

substrate and the sliding boat would be ~20 µm, sufficiently large to accommodate for any growth 

but also to ensure that mechanical jamming of the boats does not occur.

3.4 LPE Growth Techniques & Theory

Generating the required supersaturation in a liquid is the basis for LPE growth and a number of 

growth conditions can be utilized in order to achieve this. The three most commonly used 

conditions are ramp cooled growth, step  cooled growth and super cooled growth, and they are 

illustrated in figure 3.6.

For ramp cooling, once the melt is in contact with the substrate, the temperature of the melt is 

lowered at a rate R (°C min-1) from the liquidus temperature. This was the original growth condition 

used for LPE by Nelson [21]. It was found experimentally  that the surface morphology and 

thickness uniformity were inferior compared to those epilayers grown by  the step  cooled growth 

[28, 29]. Step cooled growth involves lowering the temperature by an amount, ΔTs, below the 

liquidus and then exposing the substrate while maintaing this temperature. The supercooling step 

enhances the nucleation by increasing the supersaturation and the constant temperature profile over 

growth can help with impurity incorporation during growth. The final approach is supercooled 

growth, which mixes ramp cooling and step  cooling, and gains the benefit of the enhanced 

nucleation as well as faster layer growth.
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Figure 3.6 - Temperature profiles for LPE growth, illustrating; (a) Ramp cooling, (b) Step cooling 

and (c) Supercooling. Reproduced from [29].

For all these growth modes, diffusion limited growth theory has been used to describe the LPE 

growth as well as to determine the growth rates and layer thicknesses. The basis is that the rate 

limiting step for growth is the diffusion of solute species to the crystallization interface.

The one-dimensional diffusion equation can be stated as [29]:

which is essentially Fick’s second law of diffusion combined with a growth velocity element, v. C is 

the solute concentration as a function of time t, D is the diffusion coefficient for solute C in the 

(A)

(B)

(C)

ΔC
Δt

= D Δ2C
Δx2

+ v ΔC
Δx
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liquid solution and x is the position from the crystallization interface in a direction normal to the 

solid-liquid phase boundary. This expression can be visualized in figure 3.7.

Figure 3.7 - Solute concentration profile at crystallization interface during growth, with z-axis 

denoting the growth direction, reproduced from [29]

A number of assumptions  and boundary  conditions have been made to explain the state of the LPE 

system in terms of diffusion limited growth.  Growth is carried out under isothermal conditions, the 

solution is considered infinite (i.e., the solution surface is not reached), the growth velocity at  the 

crystallization interface is negligibly slow and the solution depth is small enough to disregard 

convection within the solute [28, 29]. This gives the solution for the diffusion equation to be

for position x at time, t. The thickness of a grown layer can be determined for a specified time, as 

shown here:

ΔC(x,t)
Δt

= D Δ2 (x,t)
Δx2
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Additional boundary conditions are applied for the different growth conditions. For ramp growth, 

the temperature is reduced linearly with a known rate. Further assumptions are made regarding the 

liquidus composition behaving as a linear function and there being a uniform concentration of the 

solute, which gives the ramp cooled thickness to be

where α is the cooling rate and m the slope of the liquidus curve nearing the crystallization 

interface. Similar thickness calculations have been derived for the step  cooling growth and the 

supercooled growth [30, 31].

3.4.1 Wetting

Consideration of the wetting relationship between the melt, substrate and graphite crucible is also 

an important growth. Wetting is the relationship between a liquid and a solid brought into contact. 

The degree to which wetting (see figure 3.8) occurs is dependent on the  surface energies of the two 

components and the measure of this interaction is known as the contact angle (or wetting angle).

 Figure 3.8 - Examples of wetting behavior. A poorly wets the surface, S, while B and C have 

progressively improved wetting behaviour, respectively [32].
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Thomas Young proposed that  the interaction between the forces of cohesion and adhesion would 

determine whether or not wetting would occur. He derived the following equation [33]:

Here, YSL , YLG, and YSG are the interfacial tensions between the liquid and the solid, the liquid and 

the ambient gas and the solid and the gas respectively. θ is the contact angle the drop makes with 

the flat surface.

Figure 3.9 - The various components making up a contact angle. Sample illustrated represents a 

liquid droplet on a solid surface [32].

The relationship  between the melt and the graphite is important as it is a factor in the passing of 

contaminants from the porous graphite into the melt and thus the epilayers grown. Interaction 

between the graphite walls of a melt bin, the melt and the substrate can also affect the mechanical 

stress present in any grown epilayer and thus dislocation densities [27]. Also, a small contact angle 

between the graphite and the melt  material increases the chance of the melt creeping under the 

slider-boat compartment walls, which leads to issues with carry  over in multi-bin solution runs and 

general wipe off and post-growth crucible cleaning problems. 

YSL +YLG cosθ = YSG
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A small contact angle between the substrate and the melt  is also important as a low wetting 

angle is necessary for uniform growth [34]. The melt will behave as a liquid on the substrate 

and will be subject to the same forces of adhesion and cohesion due to varying surface 

energies as outlined by  Young. These surface and interfacial energies have a large impact on 

growth. They are also used for determining the nucleation rate of the melt onto the substrate.

3.5 LPE Apparatus Development

Construction of our LPE system for this project began in October 2006. The inventory  of initial 

parts provided by  Dr. Andreas Danilewsky of Freiburg University, Germany, included the 3 zone 

tube furnaces, a number of quartz glass furnace tubes and sundry  graphite pieces and sliding boats. 

The initial objective was to operate and control the tube furnaces, however much of the existent 

control system for the tube furnaces was antiquated and without the original micro-controller unit, 

and was not directly operational without beginning significant software development of an interface 

software layer to communicate with the legacy Analog Devices uMacBASIC control boards. It was 

decided to bypass the existing components and directly control the furnace. The original control 

blocks were therefore removed and a direct control system using the furnace thermocouples (K-

type) and the thyristor control block was envisioned and developed. Control of the furnace would 

be driven by  a proportional-integral-derivative (PID) device, which would use the existing 

thermocouples and feed back to the thyristor unit. A Eurotherm PID controller was obtained and 

integrated into the system - since the furnace had not been operated in some time, a number of ramp 

heating experiments were carried out to allow the furnace to equilibrate and help  tune the PID unit. 

Eventually, the three zones were calibrated to ensure a flat temperature profile across the middle 

zone of the furnace, where the graphite slide boat/tipping system would be positioned.
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A vacuum system also had to be added to the LPE system - a standard rotary vane backing pump 

with oil trap provides the roughing while a turbo-molecular pump provides the backing. The system 

supports a high-vacuum capability (10-5 mbar) as well as high purity Argon and Hydrogen 

(99.99995%) gas flow. Figure 3.10 below shows the LPE system assembled as of December 2007.

Figure 3.10 - DCU’s LPE system assembled as of December 2007

DCU’s custom built LPE apparatus utilizes the sliding boat & tipping approach, as outlined 

previously. A quartz push rod, driven by a computer controlled stepper motor, is used to drive the 

sliding boat melt bins over a second graphite piece containing the substrate material at a 

predetermined time during the cooling process. This push rod also controls the tipping system when 

that setup is being used.
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The graphite pieces are supported within a quartz glass tube, which sits into the cylindrical bore, 3-

zone tube furnace. The furnace can be rolled back on tracks to allow visual observation of the melt 

in situ during an applied temperature regime. Figure 3.11 shows the layout of the LPE system 

components.

Figure 3.11 - Annotated schematic illustration of the LPE setup

3.6 Physical Vapour Deposition (PVD)

Physical Vapour Deposition is used for many  types of epitaxial deposition, namely vacuum 

evaporation (or deposition), ion plating and sputter deposition [35]. This work makes use of the 

vacuum evaporation process for CuHa deposition, which is a relatively simple material to work 

with for PVD.

Material that is to be deposited is placed into a thermal boat (of which a number of geometries 

exist: dimple boat, wire, quartz crucible to name but a few), and is subjected to thermal vaporization 

while under vacuum. Predominantly, this is done via resistive heating of the boat, which also 
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controls the evaporation rate of the material. Thus the growth rate can be readily controlled via the 

current supplied to the boat. When carried out under vacuum, the ejected evaporated material can 

reach the substrate with very few collisions from other gas molecules present, and can then nucleate 

and grow on the substrate to form the thin film. 

Application of adsorption kinetics allows for the rate of adsorption of a molecule onto a surface to 

be described. This rate is defined by the flux of arriving molecules to the substrate and the 

proportion of those molecules which undergo adsorption to the surface. Simply stated, 

where the rate, R is the product of the incident flux, Γ,  and the probability  of attachment to the 

surface, known as the sticking probability, S [35]. The flux is given by the Hertz-Knudsen equation,

where k  is Boltzman’s constant, P is the gas pressure, T the absolute temperature and m the mass of 

the vaporized species. The sticking probability  is related to substrate and, as a probability, lies 

between zero and one. It  is dependent upon the cleanliness of the substrate as well as existing 

coverage of adsorbed species. The mass of vaporized species per unit area, however, is dependent 

on the geometry of arriving vaporized material, as can be seen in figure 3.11.

R = S × Γ

Γ =
p

(2πmkT )1/2
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Figure 3.11 - Distribution of evaporated material from an evaporation point on a flat surface above 

the source, reproduced from [35].

This can be expressed in terms of a cosine deposition distribution, given as

where E is the total evaporated mass, r the distance from substrate to source, ϕ is the angle of the 

normal to the substrate and θ the angle of the source to substrate. Clearly, from fig 3.11, uniformity 

can be a problem, but this can be alleviated by judicious placement of the substrate such that

and the source-substrate distance is

 

dm
dA

= (E /πr2 )cosφ cosθ

cosφ = cosθ

d = 2Rcosθ
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Thus deposition can be kept uniform for any  point on the circumference of circle R. Successful 

deposition is dependent upon the cleanliness of the substrate as well as the cleanliness of the 

evaporator system itself. Secondary evaporation of unwanted contaminants can be an issue, 

depending on their vapour pressure and evaporation temperature relative to the evaporated material. 

Likewise, use of a clean, non-reactive boat is important. For single compound evaporations such as 

the CuHa, vaporization is very straightforward. However, for some of this work evaporation of a 

CuHa(1-x)KHa(x) mixture is undertaken. As per Raoult’s Law, this results in a concentration gradient 

in the substrate as each evaporant is selectively  vaporized. This co-evaporation of CuHa(1-x)KHa(x) 

will be discussed further in chapter 4.

          

Figure 3.12 - Edwards E306 Vacuum Evaporator.
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For this work, an Edwards Auto E306 thermal resistance evaporator was used [36] and can be seen 

in figure 3.12. All evaporations were carried out under vacuum conditions (~5 x 10-6 mbar) and the 

system is serviced by a roughing rotary  pump and a backing diffusion pump pairing. The E306 has 

a FTM6 water cooled thickness monitor which can be used to determine the thickness of deposited 

films. This monitor needs to be calibrated to different materials prior to deposition, as each material 

affects the thickness monitor quartz crystal differently. A number of material specific parameters 

need to be calculated in order to correctly  calibrate the thickness monitor for different materials. 

Once known, the film thickness, Tc,  is given by the equation,

 where Dq is the density of quartz, Nq is the frequency constant of quartz, Pq is the loaded crystal 

period, P6 is the period of the 6 MHz crystal used by the monitor, De is the density  of the deposition 

material and F is the tooling factor. Both De and F are calculated thus:

where Tm is the average thickness and Ti the thickness measured by the FTM6 system. Resistively 

heated tungsten dimple boats were used as holders. A value of 3.16 was previously calculated as the 

tooling factor for CuCl [37] and a similar calculation for CuBr yields a tooling factor of 2.8. A 

schematic of the evaporator system and dimple boat can be seen in figure 3.12.

Tc =
FDqNq (Pq − P6 )

De

De = Da
Ti
Tm

F =
Tm
Ti
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Chapter 4 - Copper Halides

4.1 Introduction

The Copper Halides (CuHa) are I-VII materials, and consist of CuCl, CuBr, CuI and their alloys. As 

outlined in Chapter 1, the CuHa materials have been the focus of much research during the 1960s 

and 1970s for prototype applications arising from their optical non-linearity [1] as well as micro-

crystal type growth [2]. CuHa materials have also driven more fundamental studies arising from 

their unique properties: exciton polariton dispersion in CuCl [3], and various studies on the 

electrical characteristics of CuHa at their high pressure phases [4, 5] among many others. The focus 

of this project is on a subset of the CuHa group, CuCl and CuBr, and their relevant structural, 

optical and electrical properties are presented herewith.

4.2 Structural Properties

Both CuCl and CuBr exhibit many similarities in structure and chemistry.  Both of these halides are 

ionic compounds and crystallize naturally at room temperature in the zincblende structure, as 

illustrated in figure 4.1.

From figure 4.1, each group VII atom (Cl-, Br-) is surrounded by a regular tetrahedron constructed 

from four atoms of Cu+, forming its next neighbours at a distance of (a 3 4) , where a is the lattice 

parameter. The next nearest Cu+ neighbours are at a distance of (a 2 2) and number twelve in all.
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Figure 4.1 - (a) Representative unit cell of cubic zincblende γ-CuCl and γ-CuBr, (b) Face centered 

cubic (FCC) crystal structure of Si.

The notable feature of this configuration is the lack of an inversion or symmetry  centre. The 

structure is also consistent with Cu(I) (or Cu+) forming tetrahedral complexes, crystallizing into a 

zincblende configuration. The asymmetrical nature of CuCl/CuBr cells leads to the existence of the 

aforementioned Pockels electro-optic effect, whereby  a proportional change in birefringence of 

incident light  can be achieved by varying the electric field in an optical material, and was the 

catalyst for much of the early work on CuCl single crystal growth [6, 7, 8].

The Philips scale ionicity, fi , is a measure of the ionic bonding and anti-bonding states separated by 

an energy gap. For CuCl and CuBr the ionicities are given as fi  = 0.746 and fi  = 0.735, respectively 

[9] - the decreasing series of the ionicity also correlates with the ionicity  of the bonds in the CuHa 

family, i.e. CuCl → CuBr → CuI. This high ionicity is close to the critical value (fi  = 0.785) which 

is the boundary  between zincblende and wurtzite type structures. From an epitaxial growth 

perspective on Si substrates, these ionicities represent an extreme of heteroepitaxial growth by 

having an extremely ionic epilayer on a highly covalent substrate.  These properties are summarized 

in table 4.1.
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Molecular Formula CuCl CuBr Si

Molar Mass 98.999 g/mol 143.45 g/mol 28.05 g/mol

Density 4.145 g/cm3 4.71 g/cm3 2.329 g/cm3

Melting Point 426 ˚C (703 K) 492 ˚C (765 K) 1414 ˚C (1687 K)

Boiling Point 1490 ˚C (1760 K) 1345 ˚C (1618 K) 2355 ˚C (2628 K)

Refractive Index (nD) 1.930 2.09 -

Lattice Parameters a = 5.41 (Zincblende) a = 5.6773 
(Zincblende)

5.430

Thermal Expansion 
Coefficient (Volumetric)

5.55 x 10-5 K-1 (@ T = 
295 K)

4.83 x 10-5 K-1 (@T 
= 295 K)

2.92 x 10-6 K-1 
(@T = 293 K)

Phillips Ionicity (fi) 0.746 0.735 0

Table 4.1 - Notable structural properties of the CuHa materials, CuCl and CuBr. Comparative Si 
properties also included [10]

4.2.1 X-Ray Diffraction Characteristics

Using XRD, fundamental structural characteristics of CuCl and CuBr can be discerned from their 

Bragg reflections as detailed in Chapter 2. Deposition of CuCl and CuBr on various substrates and 

their resulting XRD measurement have been carried out, as experimentally detailed in Chapter 2. 

Comparison with known powder diffraction measurements provides an informative basis for further 

structural studies of these materials. These powder diffraction measurements are supplied within a 

software database supplied by the International Centre for Diffraction Data (ICDD) [11] and can be 

accessed using the “Diffrac+ PDFMaint” program supplied by  the manufacturer of the D8 XRD 

system, detailed in Chapter 2. The powder diffraction entries for both CuCl and CuBr are listed in 

table 4.2. Additionally, full powder diffraction entries for CuCl and CuBr can be found in Appendix 

A.
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γ-CuBr Index <h k l> Intensity (%) 2-theta (deg)

111 100 27.123

220 60 45.021

311 35 53.345

γ-CuCl <h k l> Intensity (%) 2-theta

111 100 28.522

220 55 47.437

311 30 56.290

Table 4.2 - Powder diffraction measurements for γ-CuBr and γ-CuCl [11]

For a comparison with these known diffraction values, samples of γ-CuBr and γ-CuCl thin films on 

glass substrates were prepared using vacuum evaporation using commercially available powders 

from Sigma-Aldrich with 99.999% purity. For both experiments, a thin film of ~500 nm was 

deposited on de-greased and cleaned glass substrates. A standard evaporation rate of ~ 0.3 nm/sec 

was used. Deposition was carried out under vacuum conditions (10-6 mbar) at room temperature 

using a standard tungsten boat, resistively  heated using a current between ~2-2.5 A. Sample 

thickness was measured using the correctly tooled thickness monitor. Greater detail of the cleaning 

and evaporation procedure can be found in Chapter 6. The diffraction measurement for both CuBr 

and CuCl on glass is presented in figure 4.2.

From these measurements, it can be seen that both CuBr and CuCl exhibit well defined Bragg peaks 

and share a strong preferential growth along the <111> crystallographic orientation, with secondary 

and tertiary reflections along the <220> and <311> orientations, respectively.
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Figure 4.2 - XRD θ -2θ scans for as deposited (a) γ-CuCl and (b) γ-CuBr on glass substrates, 

showing characteristic Bragg reflections
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The very  weak and broad peak in the ~15° to ~35° range for both samples is attributable to the 

amorphous nature of the underlying glass substrate. Intensities for all three reflections are in good 

agreement for the reported values within the ICDD powder diffraction files. The <111> preferential 

growth is also in line with studies of vacuum deposited CuBr and CuCl on Al2O3 substrates [12]. 

4.2.2 Phase Changes for CuHa

At room temperature and normal pressure, CuHa crystallize naturally in the zincblende structure. 

When subjected to an increase in temperature, new phases are observed. For both CuCl and CuBr, 

at 657 K and 680 K respectively, they undergo a solid phase transition from their zincblende γ-

phase to their wurtzite β-phase. There exist no further phase changes for CuCl under normal 

conditions, as the transition to its liquid state occurs with additional heating (i.e. above 696 K). 

Unique to CuBr and CuI however is a third high temperature super-ionic α-phase, reported as a 

disordered cubic phase [13]. Studies on high pressure phases of the CuHa up to 100 kbar have 

revealed additional phases, including the normally absent cubic α-phase for CuCl as well as 

tetragonal and rhombohedral structures [14]. However these phases cannot be stabilized at normal 

atmospheric conditions and have little direct applicability. A listing of phases relating to CuBr and 

CuCl is presented in table 4.3.

Cu(X) γ-phase
(zincblende)

β-phase
(wurtzite)

α-phase
(cubic)

-Cl 0-680 K 680-696 K -

-Br 0-657 K 657-741 K 741-759 K

Table 4.3 - Various phases for CuCl and CuBr under atmospheric conditions and their 

transformation temperatures.
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4.2.3 Stability

Due to the reactivity and photosensitive nature of CuHa materials, the issue of stability is of 

considerable import. CuHa reactivity with moisture suggests a hygroscopic behaviour; however this 

is not exactly the case [14]: ambient atmosphere (and the inherent moisture present therein) and 

lighting will degrade CuHa material and precipitate the formation of hydrated Cu++ oxyhalides. This 

gives the degradation a classical ‘green’ cupric compound colour and is itself a useful indicator for 

sample quality.

This reactivity for CuHa necessitates a means of preservation for epitaxially  grown films. One 

method that has been shown as suitable for such preservation is via capping - by utilizing an 

encapsulation approach, films can be protected from decomposition in ambient atmosphere. Work 

by previous DCU colleagues has demonstrated the efficacy  of capping layers for CuCl thin films 

[15]. Conventional encapsulation for CuCl using glass and subsequent curing cannot be utilized for 

γ-CuCl on Si substrates, owing to the solid-state reaction between CuCl and Si at temperatures in 

excess of 250 ˚C [16], thus alternate capping materials were investigated. Such capping layers had 

to be dielectric, non-reactive with CuCl, have a low curing or deposition temperature and be 

transparent to CuCl light emission. Cyclo olefin polymer (COC) and polysilsequioxane (PSSQ) 

polymers were identified as candidates, as well as PECVD deposited SiO2. Of these three, COC and 

PSSQ layers successfully encapsulated CuCl epilayers for periods in excess of 28 days. PSSQ was 

demonstrated to slow the oxidation of CuCl, but did not stop oxidation.

4.3 Band Structure & Electronic Properties

The origin for the energy  bands in materials is presented in a general fashion in Chapter 2. As for all 

materials, the electronic properties of the Copper halides are determined by the energy positions of 

the various electron orbitals. The valence band for Copper halides is dependent on both the noble 
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metal component (Cu) and the halide component (Cl, Br), in this case the filled d10 shell of the Cu+ 

([Ar].3d10.4s1) and the rare gas configuration s2p6 halide ions ([Ne].3s2.3p5). As discussed 

previously, the Copper halides crystalize as zincblende structured semiconductors at room 

temperature. The usual bond in a zincblende structure is derived from an sp3-sp3 electronic 

configuration, but with the Copper halides the valence bands are derived from an sp3-sd3 

configuration [17]. The metal Cu d orbitals and the Halide p orbitals are hybdrized (s2p6d10 

configuration), which is in contrast to the isoelectronic III-V materials (themselves typically s2p6 

configuration). This hybridization changes the physical properties of the CuHa compared with other 

semiconductor materials and has made the CuHa a platform for studying hybridized p-d bonds [18]. 

The band structures for CuBr and CuCl are shown in figure 4.3, with the direct band-gap  for both 

illustrated. 
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Figure 4.3 - Energy band diagrams for (a) CuBr and (b) CuCl with k = 0(direct) band-gap marked. 

For reference, model of first Brillouin zone of FCC lattice with symmetry labels is shown in (c) 

[19].
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In the case of CuCl, there is a notable deviation from the regular zincblende spin orbit splitting that 

is observed for CuHa and AgHa materials. This anomalous spin orbit interaction results in the p and 

d orbital states at T15 splitting into separate levels at Γ7 and Γ8 (as shown schematically  below in 

figure 4.4). The Γ7 states are higher in energy than the Γ8 states since d states contribute to the spin-

orbit splitting with opposite sign as compared to p orbitals.

Figure 4.4  - Representation of the conduction and valence states in CuCl due to s, p and d 

electrons at the symmetry point Γ in the cubic crystal field of the zincblende structure.  Bracketed 

numbers indicate the degeneracy of the associated state. Reproduced from [20].
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All CuHa are mixed ionic and electronic conductors at low temperature. Below room temperature, 

the electronic conductivity  is prevalent while at room temperature and higher the ionic conduction 

begins to dominate, becoming superionic conductors (1 Ω-1 cm-1) at phase change temperatures 

[21]. This is understood to result  from the insufficient thermal energy to promote ionic movement 

below a certain temperature, leaving the electronic mechanism as the dominant conduction path. 

Fundamental studies of the electronic conductivity of CuHa were performed by  Wagner and Wagner 

[22], in which the electron and hole conductivity for CuHa was calculated. These measurements 

were carried out using an DC polarization electrochemical technique whereby a cell consisting of 

Cu/CuX/Graphite (where X is Cl or Br) was created. Measurements were carried out under inert 

(Argon) gas flow and within a temperature range of 250 to 450 ˚C. Under an applied voltage, Cu+ 

ions are drawn from the graphite electrode towards the Cu electrode, while electrons move in the 

opposite direction. As the graphite does not contain Cu (i.e., a blocking electrode), a Cu+ deficit  is 

created at this electrode. The current is then carried exclusively by excess electrons or electron/hole 

pairs. Measurement of the CuHa electronic conductivity thus requires the use of specific 

experimental approaches utilizing such blocking electrodes in order to sequester the ionic 

component from any measurement.

For evaporated CuCl thin films, work by Lucas [23] in which ~500 nm thick CuCl samples were 

used, gave an electronic conductivity of approximately 2.3 x 10-7 S/cm for films using irreversible 

electrodes (Au) and a conductivity  of approximately 6.5 x 10-7 S/cm was calculated for reversible 

Cu electrodes at room temperature. This work also verified the distinct mixed electronic-ionic 

character of CuCl, where below ~270 K the electronic conduction mechanism was dominant, while 

the Cu+ ionic mechanism dominates at higher temperatures. CuCl thin films have also shown 
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improved conductivity by treatment with a low pressure plasma system using an Oxygen plasma to 

effectively dope the samples with Oxygen. Substantial improvements in the conductivity  were 

observed from this method owing to the post-treatment inclusion of oxygen within the anionic sites 

of CuCl, creating an acceptor state for conduction.

Improvements in the conductivity of CuHa material have been reported via means of a number of 

dopants and techniques. The large number of eutectic forming materials found in the Alkali Halides 

(as outlined presently for CuCl in table 4.4) has led to investigations on their conductivity effects. 

Reported improvements in CuBr ionic conductivity from the use of the eutectic-forming Cs element 

with CuBr have been shown [24]. Additionally, work involving CuCl and co-evaporated KCl have 

shown that the electrical conductance is dependant  on the amount of evaporated KCl - the 

conductance of CuCl/KCl thin films was observed to increase with respect to the KCl percentage 

used during deposition [25].

4.4 Optical Properties

Optical excitation results in the creation of electrons in the conduction band and holes in the 

valence band of a semiconductor. There exists a Coulombic attraction between the holes and 

electrons, which results in the formation of an electron-hole pair analogous to that of a hydrogen 

atom. This quasiparticle is known as an exciton and was theoretically  discussed previously  in 

Chapter 2.

Radiative emission from an exciton recombination has a much higher transition probability than 

emission from an electron-hole transition, in part due to the highly  correlated movement of the 

electron and hole pair in their exciton form. Thus, materials with excitonic properties are important 

for efficient optical emission. Thermal energy at room temperature can be enough to break the bond 
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between the electron-hole pairs due to the fact that room temperature thermal energy is ~37 meV 

and most excitonic binding energies are of the order of 10 meV or below. However, the excitons in 

CuHa materials have a large binding energy (190 meV for CuCl, 108 meV for CuBr) and this 

allows for a high density exciton state to exist up to room temperature. 

In CuHa, the exciton is of the Wannier-Mott type [26] and owing to the direct band-gap nature of 

CuHa the exciton arises at k = 0 transition. For CuCl, two excitons are observed in the near-

ultraviolet region at 10K - a singlet and doublet, Z3 and Z1,2 respectively [27, 28], corresponding to 

the coupling of the conduction band state Γ6  to the valence band holes Γ7 and Γ8. Additionally, 

further excitonic structures are frequently observed for CuCl, notably the intrinsic impurity  bound 

exciton, I1, and the free biexcitonic molecule, M. I1 has been documented as a neutral acceptor and 

this is ascribed to a Cu+ or Cl- vacancy within the films [29] and is observed at  λ = 389.8 nm (E = 

3.18 eV). The biexciton M, which is comprised of two free excitons and is analogous to a hydrogen 

atom, has been observed in emission spectra at λ = 391.2 nm (E = 3.16 eV).

In CuBr (and CuI) the doublet  exciton Z1,2 band is positioned on the low energy side of the singlet 

Z3, however for CuCl this positioning is inverted, with the Z1,2 on the high energy side of Z3 due to 

the negative contribution of copper in the spin-orbit splitting as mentioned previously  [20]. The 

inversion was also confirmed by Cardona utilizing mixed grading of Cu(BrxCl1-x) solid solutions 

and measuring the absorption intensities for Z1,2 and Z3 at 8 K [28]. As the compositional gradient 

varied from Cl to Br, the exciton intensities were observed to match and then invert - at 

Cu(Br0.23Cl0.77), the Z1,2 and Z3 peak intensities are near equal and the spin-orbit  splitting becomes 

zero.

Investigations determining the energy values for Z1,2 and Z3 excitons have been carried out [27] 

using emission, absorption and reflection spectroscopy for both CuCl and CuBr. From absorption 
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studies of CuHa single crystals, Goto et al. [30] evaluated the exciton energies for CuHa materials. 

For CuCl, Z1,2 and Z3 absorption was determined to be λ = 378.5 nm (E = 3.27 eV) and λ = 387.0 

nm (E = 3.2 eV), respectively, while for CuBr, Z1,2 and Z3 was found to be λ = 417.6 nm (E = 2.96 

eV) and λ = 397.9 (E = 3.11 eV). Emission studies on CuBr reveals two peaks at λ = 418.4 nm (E = 

2.963 eV) and λ = 420.2 nm (E = 2.95 eV), which are attributed to the Zf exciton emission and the 

I1 impurity  bound exciton emission respectively. The λ = 418.4 nm line is found at  the same energy 

as the Z1 absorption, separated from the Z1,2 doublet. This emission is usually forbidden, and was 

assigned as the Zf emission; however it  is commonly  observed within evaporated γ-CuBr 

spectroscopic studies and originates from the emission of the lowest energy triplet exciton.

4.5 Growth of CuHa Materials

The nature of the wurtzite to zincblende phase change makes direct growth of CuHa material from 

the melt difficult, although efforts were undertaken in this regard. CuCl was the target for much of 

these attempts, where the γ → β phase change was close enough to the melting point. Growth using 

the Czochralski [31] and Stockbarger [32] methods was attempted, but the resulting crystals were 

small (5 x 5 x 2 mm3), highly strained and of no value for their targeted optoelectronic applications. 

The addition of a small amount of a second compound to another compound in order to depress the 

melting point of the compound is a well known technique with numerous applications. The strain 

induced from the phase change in CuCl melt growth could potentially be avoided by the use of a 

flux compound to depress the melting point sufficiently. Growth using the Czochralski, Bridgman, 

Stockbarger methods and the top-seeded solution method [33] all resulted in the growth of 

relatively strain free single crystal CuCl using this flux approach. For Czochralski and Bridgman 

growths, the continuous change of the melt composition leads to a point where the growth interface 
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becomes saturated by the flux material and growth ceases, thus limiting the maximum attainable 

size of the CuCl crystal. Improvements using the travelling heater method, whereby  the flux is 

added to the molten zone only, can alleviate this issue [34]. More recently, larger crystals have been 

grown from top  seeded solution growths, where CuCl polycrystals were located at  the bottom of the 

growth crucible, below the CuCl-KCl mixture, in order to maintain a higher concentration of CuCl 

in the solution during the growth.

The use of flux compounds also leads to their inclusion in the grown crystals. For CuCl growths 

using KCl, impurities of Potassium were found to range as high as 0.3% to 1% by weight within the 

flux grown crystals [34], with impurity  inclusion being dependent on growth rate. Schwab et al.[34] 

also noted the potential for dopant inclusion into single crystal growth by the simple addition of 

dopant compounds into the molten melt. Table 4.4 presents the predominant fluxes used 

experimentally for CuCl. Experimental flux growth data for CuBr is not available, although CuBr 

readily fluxes with the Bromide variations of these compounds, e.g. KBr, BaBr2, etc. Schwab 

carried out CuBr single crystal growths using a travelling heater setup  with both KBr and BaBr2, 

producing transparent crystals of ~3 cm3 with no twinning. It was also noted that KBr appeared to 

be the better flux, though criteria for that assessment were not given.

Among the fluxes utilized, predominant attention was given to KCl. Perner has stated that KCl was 

the best flux material in order to grow single crystal CuCl, noting that for their travelling heater 

experiment sufficient KCl to depress the melting point to 390 C° gave the best optical and electrical 

properties [14]. KCl concentration also affected CuCl transparency, whereby a decrease in KCl 

concentration increased the transparency of the resulting ingot [34].
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Flux Material Technique Reference

RbCl Bridgman [34]

NH4Cl Bridgman [14]

KCl Bridgman , Czochralski, THM [34]

SrCl2 Bridgman , Czochralski [33]

BaCl2 Bridgman , THM [33]

PbCl2 Bridgman , Czochralski, [14]

Table 4.4 - Fluxing materials for CuCl
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Chapter 5 - Liquid Phase Epitaxy of γ-CuCl on Silicon

5.1 Introduction

Towards the objective of this study, as outlined in Chapter 1, LPE has been used in order to 

investigate the growth single crystal γ-CuCl on Si substrates. This chapter outlines the methodology 

for LPE growth of CuCl, detailing the parameter space utilized and the reasoning for the choices 

made during experimentation. The results of these experiments are outlined, detailing the structural 

and optical properties of the resulting deposited bulk textured polycrystalline γ-CuCl material. 

Finally, difficulties encountered while working towards the objective of single crystal CuCl growth 

are discussed as well as a number of differing experimental approaches undertaken to overcome 

these problems.

5.2 Methodology

In order to investigate the growth of single crystal γ-CuCl on Si, a large number of growths using 

the LPE system were undertaken. Fundamental to determining the parameter space within which to 

LPE Geometry Conventional Slide Boat, Modified Tipping Boat

Substrate Si <111>, Si <100>

Substrate Thickness 545 µm +-45µm

Liquidus Temperature Range 150 - 250 °C

Saturation Method Ramp Cooled

Growth Temperature Range 210 - 260 °C

Growth Time 20 - 60 mins

Ambient Gas Ar, N, H2

Table 5.1 - Nominal experimental range for growth of CuCl on Si via LPE
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operate is an understanding of the CuCl material as well as the flux selected for the project, KCl.

5.2.1 The CuCl/KCl Eutectic System

The use of a flux material to depress the melting point of CuCl was discussed in Chapter 4. The 

impetus for the γ → β phase change can be described by a model proposed by Rice et al. [1] 

whereby the phase transition takes place with rising temperature when a critical concentration of 

defects in the crystal is reached which the crystal can no longer accommodate. An appropriate flux 

can lower the transition temperature since it  supplies the system with additional defects, depressing 

the phase change temperature. For the desired single crystal LPE growth, avoiding the γ → β phase 

necessitates the use of a flux. In addition, the LPE method requires the precipitation of the desired 

epilayer material from the liquid phase.

Fundamentally, all of these growth runs were informed by the CuCl/KCl phase diagram, from 

which the constituent molar weights of the melt components were derived. The phase diagram also 

provided the temperature where the substrate would be exposed to the melt via the sliding boat 

mechanism, and later, the modified tipping system. This temperature is given by  the intersection of 

the molar composition of the melt with the liquidus curve. 

Highlighted previously in figure 3.3 is the concurrent CuCl and liquid phase. It is clear that only 

melts with a CuCl molar percentage of ~66% or greater would precipitate out CuCl in the solid 

phase at a temperature of approximately 150 °C. Below this CuCl precipitation phase, solidification 

of the liquid occurs, and the melt enters the final sub-solidus K2CuCl3 and CuCl mixed phase. The 

highlighted area forms the area of investigation for the LPE experiments, as the temperature range 
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and molar percentage given is the known boundary  for the precipitation of CuCl from the liquid 

CuCl/KCl melt.

Early experiments were also informed by the known CuCl/Si reaction at ~250 °C, which will be 

discussed in further detail later in this chapter. It was initially  decided to avoid this reaction, since it 

had been previously reported to be deleterious to achieving epitaxial growth [2]. In addition, there 

exists some evidence that decomposition of CuCl can occur at elevated temperatures irrespective of 

the substrate [3] - metallic elemental Cu peaks were detected via XRD studies in CuCl-doped 

nanocrystal glass which were annealed at ~250 °C. 

From the phase diagram above, mixtures comprised of CuCl(66)KCl(44) to CuCl(77)KCl(33) melts 

would initially seem to provide an optimal range for growth experiments and avoid the CuCl/Si 

reaction. In working towards experimental completeness for this work, however, many attempts 

were made at growth outside of the highlighted range, in order to gain a better understanding of the 

melt behaviour and LPE procedure as it relates to the CuCl-KCl system.
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Figure 5.1 - The CuCl/KCl phase diagram, red highlighted section shows the logical experimental 

range for attempted y-CuCl on Si growth. Blue highlighted section indicates the temperature range 

where the CuCl/Si reaction is known to occur.

5.3 Experimental setup for LPE

The experimental setup for the LPE system, detailing its construction and commissioning, was 

detailed in Chapter 3. Prior to a LPE growth run, a number of preparatory  steps were carried out. 

Additionally, prolonged usage of the system necessitates a cleaning protocol, which is detailed in 

this section.
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5.3.1 Materials & LPE System Preparation

The quartz tube of the LPE system is frequently  cleaned in order to minimize contaminants entering 

the system and after any  period of time where the tube has been exposed to ambient atmosphere for 

prolonged periods. Aqua Regia (3:1 HCl/HNO3) is used for this inorganic clean. A stopper is used 

to seal one end of the tube and the acid is poured in and left to sit  for 4 hours. Subsequently, the 

tube is washed down with de-ionised (DI) water and the exterior of the tube cleaned. No organic 

solvents should be used in cleaning the tube so as to avoid contaminants with organics and the DI 

water was from a Millipore Q DI system [4].

The use of graphite for the sliding boat and tipping systems necessitates precursor cleaning and 

preparation steps for their proper use due to their porous nature. In order to remove the melt from a 

used boat, they were bathed in DI water and gently hosed with DI water to remove the immediately 

soluble components. A small amount of HCl was then added and the graphite subjected to ultrasonic 

cleaning. Once the melt has been removed or dissolved, the graphite was cleaned again in DI water. 

Recovered graphite pieces are kept wrapped within cleanroom grade lint-free cloth and stored in 

individual sealable containers between active use.

Prior to use of a graphite boat for LPE, it must be purged of contaminants using a high temperature 

bake-out regime. The boat is loaded into the LPE system and the furnace is ramped up to 900 °C for 

6-7 hours under vacuum (10-6 mbar). A useful visual indicator is the fact that the graphite will turn 

bright orange during this regime. After this bake out, the boat is ready for use, however it should not 

be exposed to the atmosphere to avoid oxygen and water vapor contamination. Ideally, this bake out 

is carried out the day prior to the growth run, so that the boat can be stored under high vacuum 
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within the LPE system itself. When loading the tube, a steady flow of Argon is run in order to limit 

contamination of the ambient atmosphere upstream while the tube is open.

Whenever possible, the highest grade materials were used. Commercially available CuCl beads of 

99.999% quality (Sigma-Aldrich) were used. These beads are stored under vacuum between uses. 

Similarly, commercially available 99.999% KCl (Sigma-Aldrich) was used for the flux. As a salt, 

KCl is hygroscopic and must be baked out separately before use. The KCl was heated at 200 °C for 

8 hours in order to sufficiently dehydrate it prior to use in the melt.

5.3.2 Substrate Cleaning & Preparation

Substrate cleanliness and surface homogeneity is an important consideration for LPE growth. 

Ideally, a flat, uniform, hydrogen terminated Si surface is ideal for growth. Such a surface has had 

its native SiO2 removed via etching resulting in a Silicon surface such that the Si atoms are 

covalently bonded to hydrogen.

Figure 5.2 - PFTE Beakers used for holding cleaning liquids and etchants, arranged as an 

‘assembly line’ leading from one step to the next.

An ‘assembly  line’ of cleaned Teflon beakers (see figure 5.2) is used to hold the cleaning liquids 

and the substrates so as to avoid contamination from contact with gloves, tweezers, etc. Post-etch, 
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the substrate is dried off using an inert  Nitrogen gas flow and immediately  placed in the graphite 

boat within the LPE system. The time from the dry off to placement within the LPE system is kept 

as short as possible. With experience, the substrate can be loaded from the final beaker to the LPE 

system in a few seconds. Initially, all substrates are organically cleaned using a strong detergent, 

Decon 90. Substrates were placed in a beaker with the detergent solution and ultrasonically  cleaned 

for 10 minutes. The most commonly used routine for LPE is outlined below:

1. Rinse in Acetone

2. Ultrasonic in Acetone for 3 minutes

3. Rinse in DI water

4. Rinse with IPA (Isopropanol Alcohol)

5. Rinse in DI water.

Acetone is commonly used to remove organic impurities from substrates and can handle greasy and 

oily  contaminants. It has a high evaporation rate which necessitates a subsequent cleaning step, in 

this case IPA, otherwise striations on the substrate can occur. As well as rinsing the acetone away, 

the IPA is also a means for removing additional particles from the substrate surface.

Following the organic cleaning routine, an inorganic preparation and etch procedure was carried out 

as follows:

1. HNO3 (70%) + H2SO4 (96%) (1:3) for 3 minutes

2. Rinse in DI water

3. HF (10%) Dip for 1 minute

4. Rinse in DI water
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5. H2O2 (30%) + H2SO4 (96%) (1:1) for 3 minutes

6. Rinse in DI water

7. HF (10%) Dip for 1 minute

8. Rinse in DI water (this stage can be ignored for situations where the HF etch is used to 

hydrogen-terminate the surface)

9. Dry sample with inert gas

The etching step  is used to remove the native SiO2 oxide present on Si wafers, but also weighs 

heavily in contributing to successful growth. Creating a clean, featureless epi-ready surface for LPE 

is a non-trivial endeavor, and it was only with specific expertise of the University of Freiburg that 

this was achieved. Even nominally ‘epi-ready’ wafers were prepared using the above protocol.

Step 1 is a selective isotropic etch of the SiO2 native layer on the substrate which is commonly used 

in semiconductor fabrication. Step 5 is colloquially  known as a ‘piranha’ etch, cleaning the 

substrate of any residual organic residues. It  also serves to hydroxolate the surface and improves the 

hydrophilicity of the substrate. Of critical importance is the rinse step after each stage. Substrates 

are rinsed by first cleaning them with DI water from a wash bottle. They are then dipped into a 

beaker of DI water and stirred, before being removed and rinsed with the wash bottle again. This 

ensures that any residual solution from the previous step does not transfer into the next PTFE 

beaker. Improper cleaning from stage to stage can lead to residual solutions reacting with the next 

stage solution, most notably  this can be observed in the reaction with the piranha solution where 

bubbles begin to form on the substrate and can cause the substrate to float free from its PTFE 

holder.
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In order to qualitatively assess the cleaning procedure, a Si substrate was prepared using the 

outlined procedure and the surface morphology examined using Nomarski Interference Contrast 

(NIC) microscopy and CCD images of the surfaces were acquired. An un-cleaned Si substrate is 

shown in figure 5.3 below, in which dust particulates and a notable scratch on the substrate can be 

seen. 

Figure 5.3 - Nomarski Interference Contrast (NIC) microscope CCD image of un-treated Si surface 

prior to organic and inorganic cleaning. Foreign surface contaminates (and a notable scratch) 

dominate.

Figure 5.4 shows another Si substrate that has undergone a similar etch procedure but without the 

piranha solution step and during which proper clean off using DI water was not carried out. 

Features such as striations from poor acetone removal, etch pits and hillocks dominate.
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Figure 5.4 - NIC microscope CCD image of imperfectly cleaned Si surface, hillocks, striations and 

etch pits can be clearly seen.

In comparison, figure 5.5 (a) shows a Si substrate that is ready for LPE using the procedure 

outlined. The surface is homogenous and clean of any  imperfections from particulates and etch 

artifacts such as pits and hillocks. Again to show the importance of proper rinsing, figure 5.4 (b) is 

an image of a Si substrate that did not have proper cleaning from step 4 to step 5, leaving residue 

from the previous steps. This caused the formation of distinct etch pits in the substrate. Judicious 

cleaning and rinsing, as outlined, results in a Si substrate that is ready for a growth run.
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Figure 5.5 - (a) LPE ready Si substrate, showing a clean homogenous surface, (b) etch pits on Si 

substrate formed by inadequate cleaning of etch chemicals from step to step.

5.4 LPE growth using CuCl/KCl Eutectic Melts

A typical LPE experiment is detailed using the CuCl-KCl eutectic system. For the melt 

composition, a mixture of CuCl-KCl was prepared in 23:77 ratio, by  molar weight. From the CuCl-

KCl phase diagram, this percentage produces a liquidus temperature of approximately 250 °C. Once 

the melt constituents and substrate were prepared as detailed previously, the furnace was brought 

online and a predetermined heating program was executed.
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Figure 5.6 - Annotated temperature program used by the LPE furnace.

Figure 5.6 illustrates a typical heating regime used for a growth run using a CuCl(77)KCl(23) mixture, 

which would give a liquidus point of ~250 °C. There are two distinct sections, highlighted in the 

above illustration, during the LPE growth. The first stage, highlighted in red, is the pre-heat  and 

preparation of the supersaturated melt and is independent of the growth phase. It is used to prepare 

the melt for the growth. The second phase, highlighted in green, is the growth phase where the melt 

is exposed to the substrate in order to start epitaxial growth, and ends at the lower temperature value 

of the range when the melt is then rolled off the substrate via tipping or pushed off with the slide 

boat setup. After 45 minutes (~ 0.5 °C per minute), the melt would be moved off the substrate and 

the system left  to cool down. During all stages, a steady flow of high purity Ar is maintained and 

measured using an oil bubbler leading from the exhaust of the LPE system.
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Figure 5.7 - Illustration of LPE sliding boat positions during a growth experiment.
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Figure 5.8 - In-situ photograph of the melt with the furnace rolled back; (a) prior to heating,  (b) at 

~450 oC - the constituent KCl and CuCl can be observed to have completely dissolved and the melt 

is transparent.

Figure 5.8 shows images taken of the LPE run at the beginning and then again at the equilibration 

stage. It is difficult to see directly from the image, but the melt becomes transparent albeit  with a 

brownish tinge at 450 °C. It is observed that  this coloration changes to a green tinge below ~400 °C. 

This coloration change is likely resulting from the wurtzite → zincblende phase change.
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During early LPE experiments, as the temperature approached the liquidus value for the eutectic 

mixture, the off-white coloured CuCl/KCl powder would begin to melt, with the melt having a 

notable black colour. This is contrary to previous research carried out by  D.E. Etter et al. [5] in 

which the mixture is described as turning clear. It was later determined that this is due to 

insufficient preparation of the KCl salt. The hygroscopic KCl would trap moisture and cause the 

probable formation of CuO within the melt. It should be noted though that while this CuO 

formation causes a substantial change in the coloration of the melt, during cooling the resulting 

grown layers (and the  remaining melt in the sliding boat melt bin) would revert to a clear white 

colour. Etter noted that  the addition of small amounts of elemental Cu would also return the melt to 

its transparent state. Further LPE experiments were undertaken with baked KCl and the melt 

behavior was subsequently consistently transparent.

5.5 Structural Properties of LPE Deposited Samples

Initial samples grown by the LPE methodology outlined have yielded intermixed CuCl/K2CuCl3 

films on Si substrates, with thicknesses typically  in the range of 5 – 13 µm. The crystalline quality 

of the films was examined using XRD in the parallel beam (θ - 2θ) configuration. Figure 5.8 below 

is indicative of the typical scan carried out and shows a large number of diffraction peaks. It is clear 

that the samples produced are not of the single crystal material desired, but rather of a textured 

polycrystalline nature composed of KCl and CuCl formed compounds.

Analysis of all LPE samples reveals commonly occurring compounds and their respective peaks, however 

run to run reproducibility of samples and thus reproducible θ-2θ scans was unachievable. Figure 5.9 is 

an indicative scan for the growth runs, as it  details the host of peaks consistently observed. 

Indicated are the characteristic γ-CuCl <111>, <220> and <311> peaks, respectively  found at 2θ ≈ 
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28.51°, 47.43° and 56.25°, which are in excellent  agreement with the previously reported values for 

CuCl (detailed in table 4.2 previously).

Figure 5.9 - XRD θ-2θ scan of a typical LPE growth run using a CuCl77KCl23

Additionally, a multitude of peaks can be attributed to the diffraction values given for the 

isomorphic orthorhombic compound K2CuCl3. The formation of this compound is a result of the 

solution growth inherent to LPE and its origins can be seen from the previously detailed CuCl/KCl 

phase diagram, as illustrated in figure 3.3. From the phase diagram, once a CuCl-KCl melt of CuCl 

molar composition greater then ~ 35% drops below the phase temperature line at ~180 °C, the 

remaining melt will solidify  into K2CuCl3 and CuCl. Owing to the orthorhombic crystal structure of 

K2CuCl3, a substantially  large number of reflections are observed (see appendix 1 for a full listing 

of K2CuCl3 and K2CuBr3 diffraction data). For θ-2θ scans from sample to sample, the intensity  of 

the K2CuCl3 reflections is observed to change. This can be understood in terms of the essentially 

random spatial distribution of K2CuCl3 crystallites within the bulk deposition, although it is 
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interesting to note that the observed γ-CuCl reflections follow broadly expected intensity variations, 

i.e. the γ-CuCl <111> is always observed to be the most intense for CuCl, followed by  the <220> 

and <311> reflection.

        

Figure 5.10 - SEM images of the surface morphology of a LPE grown sample using (a) 

CuCl(73)KCl(27) melt, (b) CuCl(75)KCl(25) melt and (c) CuCl(77)KCl(23) melt.

Surface morphology from sample to sample also varies and is further complicated by  the poor 

surface morphology inherent to LPE growth. A number of SEM images of various surface spots 

across a number of samples is presented in figure 5.10. Numerous pits can be seen randomly 

distributed across the surface of the examined samples. In some samples, the topography is defined 
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by rivulets of residual melt, although this was not always consistently observed from run to run on 

identical melt compositions (as can be observed from Fig 5.10 (c)). It  is likely that the random 

fractional crystallization that occurs during the solution cool down of the melt on the substrate 

surface is responsible for the differing topographies. It should also be noted that while <111> Si was 

used as a substrate, some experiments were carried out with <100> orientated Si. There was no 

difference in how these growth runs were carried out, nor any  recognizable variation between using 

<100> in lieu of <111> substrates.

5.5.1 CuCl-Si Interface Reactions

It is well documented that there exists a solid-state reaction between CuCl and Si at elevated 

temperatures [2, 6]. Within the group at DCU, prior work by  O’Reilly  [7], in which thin films of 

PVD deposited CuCl on Si were annealed at various temperatures in order to trigger this reaction, 

showed that the resultant product of these reactions can be detected by XRD. It was found that at 

~250 °C, the CuCl/Si interface would become chemically unstable and the formation of copper 

silicides and chlorosilane complexes would occur. These reactions take the form of successive 

reductions of CuCl by Si, and is summarized in equations (1) and (2), given below:

nSi + 4CuCl → (n - 1)Si + 4Cu + SiCl4 (gas)      (5.1)

3Cu + Si → Cu3Si        (5.2)

The full reaction pathway for Cu3Si is described by Webber et al. [6] and given below in equations 

(3), (4) and (5):

7Si + 12CuCl → 3SiCl4 + 4Cu3Si             (5.3)

9Cu3Si + 8CuCl → 7Cu5Si + SiCl4 (gas)         (5.4)

Cu5Si + 4CuCl → 9Cu + SiCl4 (gas)                (5.5)
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Figure 5.11 - XRD θ-2θ scan of a typical LPE growth run using a CuCl77KCl23 mixture in which the 

melt was exposed to the substrate at 280 °C.

Figure 5.11 shows an XRD θ-2θ scan of a LPE growth run experiment, with a melt comprising of 

CuCl77KCl23 in which the melt was exposed to the substrate at 280 °C. This would be above the 

ideal temperature at which this melt composition should be exposed to the Si substrate, but the 

experiment was intentionally carried out this way  in order to investigate the effect of the CuCl-KCl 

melt on the substrate. In the scan, many features indicative of the CuCl-KCl melt are present, 

namely the characteristic CuCl <111>, <220> and <311> peaks. Many of the smaller peaks 

attributable to the orthorhombic K2CuCl3 are also present. The most notable new feature is the 

presence of new peaks at 2θ ≈ 44.35° and 44.5° which can be explained by comparing the 

diffraction pattern for the Cu3Si copper silicide compound from equation 2. In addition, the peak at 

2θ ≈ 43° can be attributed to the <111> Cu peak position. From the reaction pathway in (4) SiCl4 is 
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also expected, however since the SiCl4 generated in the reaction pathway is gaseous, its presence is 

non-existent in the scan. The formation of Cu and the Cu3Si compound is in good agreement with 

the previous work on the CuCl/Si reaction.

Using our tipping boat LPE geometry, an experiment was devised in order to investigate the Si 

surface after exposure to the CuCl/KCl melt but without attempting growth. A melt mixture of 

CuCl75KCl25 was prepared and heated following the standard heating regime outlined in section 5.4, 

but the substrate was exposed to the melt at ~300 °C. The temperature was held at this point for 30 

minutes before the melt was rolled off. The surface was then examined using SEM, EDX and XRD. 

Figure 5.12 below shows an SEM image of the damaged surface. 

         

Figure 5.12 - (a) SEM image of CuCl reacted Si substrate, post melt roll off, (b) zoomed out SEM 

image of same area

From the image, the homogeneously flat Si substrate surface has been substantially transformed by 

contact with the melt.  This has resulted in the formation of a coarse surface morphology with 

notable cracked protrusions and a number of small triangular crystallites (probably residual CuCl) 

can be seen distributed randomly across the surface. It is clear that the CuCl/Si reaction arising from 
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the presence of the melt has damaged the Si-melt interface substantially. EDX confirmed the 

presence of constituent compounds (Cu, Cl, K, Si), which agrees well with the surface comprising 

of Cu3Si and probable trace CuCl and K2CuCl3 compounds.

Figure 5.13 - Acquired EDX spectra for damaged Si substrate

Figure 5.14 shows the XRD scan for the sample. From the scan, it is clear that the Cu3Si reaction 

dominates, with only trace CuCl quantities being detected. Elemental copper is again observed and 

the smaller peaks can be readily  attributed to K2CuCl3. The doublet peak attached to CuCl at 2θ 

~29.1° is unknown and does not correspond to any of the expected compounds present or arising 

from the melt and the CuCl/Si reaction. The cause of this small peak is currently unknown.
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Figure 5.14 - XRD θ-2θ scan of damaged Si substrate, the notable Cu3Si peak dominates, arising 

from the CuCl/Si solid state reaction

5.5.2 Hybrid Layer Liquid Phase Epitaxy

The deleterious CuCl/Si surface reaction at elevated temperatures presents an opportunity to utilize 

an approach known as hybrid layer LPE. This technique was developed initially  for LPE growth of 

InP/GaAs on Si substrates [8, 9], in which the lattice mismatch is relatively  high (~ 4%) leading to 

high defect levels in resultant epilayers and three dimensional growth. Classically, this approach 

uses an intermediate GaAs ‘buffer’ layer to help offset the lattice mismatch between the desired 

GaAs/AlGaAs epilayer and substrate, as well as protecting the bare substrate from any dissolution 

from the native melt. 
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For CuCl on Si substrates, the lattice mismatch is negligible for this technique, but the side effect of 

buffering the substrate from dissolution (or, specifically for this case, CuCl/Si reactions) is 

beneficial. CVD and MBE processes are used to deposit such hybrid layers, before the actual LPE 

growth stage, however the PVD process may also be used experimentally. The rationale is that the 

buffer layer would be entirely polycrystalline, as XRD confirmed from previous vacuum 

evaporations, but may provide an adequate ‘bridge’ between the substrate and CuCl/Si melt to allow 

for improved wetting on account of identical ionicities, buffer the CuCl//Si reaction and potentially 

improve the growth of γ-CuCl on Si using LPE.

In order to test this approach, a set of experiments was envisioned using PVD deposited γ-CuCl and 

KCl on Si. These substrates were prepared as though for an LPE growth run and then CuCl and KCl 

thin films were thermally  evaporated, respectively. For both these experiments, melt compositions 

of CuCl(80)KCl(20), CuCl(77)KCl(23) and CuCl(73)KCl(27) were used. There was no appreciable 

improvement in the samples deposited by these experiments.

It is clear from the heating regime used for the LPE growth (illustrated in Fig 5.5) that the CuCl 

hybrid layer would not persist until the growth phase, since the thin film would evaporate off the 

substrate as well as react during heating; however the reaction may  ‘prepare’ the substrate and thus 

may prove somewhat beneficial during the growth at ~250 °C. For this approach, however, there 

was no discernible improvement in the resulting growth and the retrieved samples comprised of the 

textured polycrystalline material previously produced.

For the KCl hybrid layer, a similar growth run was executed, but growth was carried out at a higher 

temperature. Unfortunately, this strategy  also did not work since the as-deposited KCl, when 

exposed to the melt during the growth run, would be dissolved and added to the melt and slightly 
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increase the KCl melt  concentration. The higher growth temperature was selected in order to 

minimize the time between the dwell and growth to reduce any desorption of the KCl layer. Also of 

consideration would be the lattice mismatch for these hybrid layers; the CuCl layer would 

essentially  be akin to homoeptiaxy, however the KCl layer, even had it  succeeded, would have a 

mismatch of ~13% and most likely be non-conducive to LPE growth.

Notwithstanding these difficulties, the textured polycrystalline CuCl film that we did succeed in 

growing displayed remarkable optical properties, which will be outlined in the following section.

5.6 Optical Characterization

The aforementioned LPE grown textured CuCl samples were optically characterized using both 

room temperature and low temperature PL as well as XEOL using the experimental setups 

described in chapter 2. Due to the non-uniformity  of the surface of the sample and the highly 

textured K2CuCl3/CuCl nature of the film, sample to sample reproducibility was difficult to 

maintain for PL studies. Instead, a qualitative approach is presented. Within the samples that have 

been studied there exists a large variation of melt compositions, however a number of characteristic 

features are present within the PL spectra obtained across all samples.

Figure 5.15 shows the room temperature PL spectrum for a CuCl77KCl23 melt  sample on a <111> Si 

substrate, prepared using the nominal growth process outlined previously. The spectrum features 

broad emission originating from the bulk textured material. From previous work on PVD deposited 

CuCl thin films [7], at room temperature one expects to observe PL emission from the Z3 exciton 

centered at λ ~ 387 nm. From this figure, it is clear that there are a number of other emission 

mechanisms also occurring.
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Figure 5.15 - Room temperature baselined PL spectra for CuCl77KCl23 LPE produced sample (10 

second acquisition time)

Informed by the CuCl/KCl phase diagram as well as the XRD data, the optical properties of 

K2CuCl3 or its interaction within the CuCl/K2CuCl3 textured samples produced are suspected. Very 

few spectroscopic studies of these alkali Copper halide crystals have been carried out. Most notably, 

the K2CuCl3 band structure has been determined [10] and the fundamental optical absorption bands 

were determined. A main absorption peak around 4.5 eV was reported, and a smaller peak at 3.2 eV 

was also mentioned, but this was ascribed to some decomposition of the K2CuCl3 film rather then 

being an intrinsic property of the crystal itself. This report also confirmed that K2CuCl3 is a direct 

band gap material. However, there was no correlation between reported K2CuCl3 luminescence data 

and the observed broad emission from our LPE grown samples.
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In an attempt to clarify the source of some of the peak structures comprising the spectra, peak 

fitting was undertaken in order to create a simple model to fit the observed spectral acquisitions. 

Using Gaussian fitting, peak positions were identified at approximately λ ~371 nm, λ  ~400 nm, λ 

~405 and λ ~413 nm Additionally, the expected Z3 exciton emission was included at λ 387 nm. 

Figure 5.16 below shows the fitted spectra with these assumptions - the yellow line is the model 

generated from the underlying peaks and is a reasonably close approximation to the line shape of 

the spectra.

Figure 5.16 - Peak fitting of candidate peaks for CuCl77KCl23 LPE sample at λ ~371 nm, λ ~387 

nm, λ  ~400 nm, λ ~405 and λ ~413 nm, drawn in red, with the resulting model given by the yellow 

line. Original PL scan is in green. Peak fitting was performed using the Fityk program [11]

The assumption of these four spectral peak positions in addition to the Z3 position proved to be 

relatively consistent across the PL for the acquired spectral data, and only  the fitting parameters for 

their  half-width at half-maximum (HWHM) and intensities need to be adjusted by the fitting 

program [11]. Complimentary low temperature PL measurements were carried out on the LPE 
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grown samples, as experimentally detailed previously  in chapter 2. Figure 5.17 below shows the 

acquired temperature dependent PL spectra for a CuCl77KCl23 LPE deposited sample.

Figure 5.17 - Low-temperature PL measurement for CuCl-KCl melt produced sample (a) at 12.5 K 

with expected excitonic features I1 and M biexciton and (b) formation of peaks as temperature 

decreases. Inset for (a) shows the room temperature PL data for comparison.
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At 12.5K, the PL measurement of the film reveals four discernible peaks: the M  free biexciton at 

3.190 eV (~391 nm) as well as the I1 bound biexciton occurring at 3.18 eV (~389 nm) [12].The 

newly observed peaks at λ ~370nm and λ ~376nm (labeled X1 and X2) are not related to any known 

CuCl excitonic features, however. Figure 5.17 (b) shows the PL emission at 12.5 K, 50 K and at 

room temperature, approximately  300 K, which shows the development of the identifiable peaks as 

the temperature decreases as well as the blue shifting of the broad emission band observed at room 

temperature. The energies for I1 and M  exciton peaks agree exactly  with previously  reported 

emission measurements for CuCl bulk crystal at 8 K [13] and thin films deposited on Al2O3 

substrates [14].

The peaks X1 and X2 are, as mentioned, not directly  attributable to any known CuCl excitonic 

structures, but their development as a function of temperature is potentially informative. Since 

excitons represent the lowest energy state for electron hole pairs, such states are only usually  seen at 

low temperatures and in sufficiently defect free crystals. Otherwise, local fields can break up  the 

exciton into free carriers [15]. It should be noted also that the ~370 nm peak aligns with a possible 

peak position within the room temperature PL spectrum for CuCl-KCl produced samples, although 

there is no similar correlation with the X2 peak, which remains unattributed to any  known CuCl 

process.

Clearly absent is the free exciton Z3 peak. Possibly  owing to the intermixed nature of the CuCl and 

K2CuCl3 layer, the exciton cannot directly exist, however this is unusual considering the clear 

existence of the biexcitonic molecule, M, which suggests that free excitons are present in the 

material in sufficiently large quantities to form the biexciton. It is also possible that the 

characteristic free exciton Z3 peak is present, albeit drowned out by  the broadening effect seen in 

the spectra. 
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One tentative explanation for the anomalous appearance of the X1 and X2 peaks is a Stark effect 

induced blue shifting of the Z series excitons. The textured nature of the samples grown via our 

LPE process, in which the K2CuCl3 compound exists alongside the y-CuCl, could potentially act as 

a photo-induced electric dipole which in turn could lead to a exctionic blue shift  of the Z1,2 doublet 

or, potentially, a splitting of this exciton, as was observed in reflectance studies of CuCl [16]. 

Irrespective of the underlying mechanism, it is probable that the presence of the K2CuCl3 compound 

plays a critical role in the formation of the X1 and X2 peaks. Owing to the mixed crystal that the 

CuCl and K2CuCl3 crystallites form, in addition to the relatively sparse details on the K2CuCl3 

compound itself, it is difficult to provide a definitive explanation for the origin of these new low 

temperature peaks.

Regarding the room temperature PL emission for the grown samples, it should be noted that the 

recorded intensity is, qualitatively, much stronger then previously observed for CuCl thin films. In 

complimentary  work involving another alkali halide, KBr, and CuBr (which is presented in Chapter 

7), as well as in work involving co-evaporation of KCl and CuCl [17] and work by Kondo et al. 

[18], similar improvements to the base luminescence of the CuHa material in question were 

recorded. Two mechanisms for this improvement which may be applicable in the CuCl-KCl based 

growth are presented. Firstly, the observed luminescence improvement is based on the migration of 

Cu+ and K+ ions within the film, which can be understood by considering the crystal structure of the 

polycrystalline CuCl as made up of vacancies and interstitials [18, 19]. These crystalline 

imperfections can act as recombination centers, trapping electrons and holes and reducing the 

effective carrier concentration for emission processes. The displacement of the Cu+ and K+ ions 

within the polycrystalline sample, driven by  their chemical affinities for negative ions (i.e. the Cl- 

anion), however, free up additional anions which can close some of the vacancies present, thus 

boosting the carrier concentration within the sample and the emission intensity. The unique 
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formation of the samples from the CuCl-KCl melt is also another mechanism - similar to the work 

reported by  Kondo et al., the intermixing of the alkali halide compound with the CuCl could allow 

for the formation of higher optical quality crystallites within the sample, owing again to the 

chemical interaction of the KCl and CuCl, and the potential for the formation of CuCl (or K2CuCl3) 

crystallites free of Cu+ and Cl- ion vacancies.

The highly damaged CuCl-based epilayer grown on Si, shown previously  in figure 5.12, was also 

optically characterized using PL. A very weak PL spectrum is obtained (see figure 5.18) when the 

acquisition time of the spectrometer is adjusted to acquire for 60 seconds. The Z3 excitonic 

emission for CuCl can be observed at λ ~ 387 nm. This would indicate the presence of trace 

amounts of CuCl on the substrate, which is confirmed via the previous XRD scan (see figure 5.14) 

and some likely candidate crystals can be observed in the SEM image (figure 5.12(a)). The 

weakness of the signal relative to the measurements of the sample as shown in figure 5.14 makes 

comparisons difficult, but the comparatively weak reflections attributed to the K2CuCl3 compound 

in the XRD scan and the lack of any of the assumed peaks (i.e., at λ ~371 nm, λ ~387 nm, λ  ~400 

nm, λ ~405 and λ ~413 nm) in this PL spectra would indicate that the unexpected PL peaks 

occurring from the LPE sample are confined to the bulk of the sample
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Figure 5.18 - Room temperature PL measurement (60 second acquisition time) of 300 °C LPE 

grown CuCl based epilayer, with corresponding SEM image appears in Fig 5.12; residual CuCl 

crystallites are observed via SEM and a very weak PL signal is generated.

5.6.1 XEOL Measurements

Using the synchrotron facilities at ANKA and HASYLAB, as detailed in chapter 2, XEOL 

measurements were carried out on a selection of the LPE grown samples. The images below in 

figure 5.19 shows the experimental mounting of the sample as well as the observed luminescence 

under white-beam synchrotron excitation. Images were captured from the CCD camera within the 

beamline hut. Under synchrotron radiation exposure, it can be seen that the sample displays 

remarkably  bright photoemission. Spectra were acquired using the experimental setup outlined in 

chapter 2.
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Figure 5.19 - CuCl77KCl23  LPE Sample under XEOL measurement; (a) sample is mounted with 

scotch tape, (b) beamline shutter is opened, exposing the sample to the synchrotron radiation and 

(c) same as (b), but with the experiment hut lights turned off.
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Figure 5.19 - (a) XEOL spectrum for CuCl77KCl23 on Si with overlaid GaN spectrum in red 

(magnified within the inset), taken with same experimental conditions and on the same scale 

(acquisition time, 3ms), (b) peak fitting of same spectra (inset showing effect of saturation for 

acquisition times > 3 ms)
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Figure 5.19 (a) shows a typical XEOL spectra for an LPE produced CuCl/KCl sample, 

consistently observed across the nominal growth parameter range for different samples. The 

XEOL spectrum of a nominally undoped single crystal GaN (on Al2O3 substrate) is shown on 

the inset of figure 5.19 (a) for comparison and is equally scaled. The GaN sample was grown 

via the epitaxial lateral overgrowth (ELO) technique and has a thickness ranging between 

5-7µm. Previous PL measurements of the GaN sample show a yellow band emission at λ 

~550nm [20]. The well-known Al2O3 peak at λ ~694nm is also clearly  visible. This spectrum 

was taken under identical experimental conditions. It can be clearly seen that the 

luminescence from the LPE grown CuCl/KCl sample film is considerably brighter by ~ 3 

orders of magnitude compared to that of the GaN sample. It is also approximately an order of 

magnitude brighter than previously observed vacuum deposited CuCl samples studied with 

XEOL.

This luminescence enhancement effect can also be seen clearly in the XEOL spectra in Figure 

5.19, where a strong luminescent peak occurs at  λ ~413 nm. This peak position aligns closely 

with the similar proposed peak found in the room temperature PL scans mentioned previously 

(see figure 5.15). By applying peak fitting to the XEOL spectra, a number of contributing 

peaks can be observed. In figure 5.19 above, the inset shows the same sample but with an 

exposure time of 10 ms, which is sufficient to saturate the detecting spectrometer (as shown 

inset to figure 5.19 (b)). The presence of a shoulder to the right of the main peak can be seen 

near λ ~ 520 nm, which can clearly be distinguished with a higher acquisition time. However, 

this leads to a saturation of the detector (as shown in figure 5.19 (b) inset).

There is one notable correlation between the observed XEOL spectra and the room 

temperature PL measurements and the assumed PL peak positions, which is the 
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aforementioned ~413 nm peak. In the XEOL spectra, this constitutes the primary, most 

intense, observed peak. The assumed fitting analysis of the XEOL spectral output, shown in 

figure 5.19 (b) shows a likely contributing peak to this main ~413 nm emission around the 

~405 nm position, which also corresponds to an assumed peak position for the room 

temperature PL. The absence of the higher energy peak positions and characteristic excitonic 

features seen in room temperature PL and the addition of lower energy shoulder in the ~ 480 - 

500 nm and ~ 520 nm range is difficult to ascribe to any particular process, but was 

consistently observed on all XEOL examined samples.

5.7 Difficulties with LPE

The interaction of substrates with melts in LPE is not unprecedented - Astles et al. [21], 

discussed the degradation of the substrate from rapid in-diffusion of Ga for Ga1−xInxAs (x = 

0.7–0.9) on (111) InAs substrates, and Ga meltback of GaAs LPE growths is also well known 

[22]. However, the reaction observed with CuCl and Si is considerably more damaging to the 

substrate and may essentially preclude the viable epitaxy of CuCl on Si using LPE with melt 

compositions that would require growth above ~ 250 °C. The wetting of the melt  to the 

substrate is also an issue. Figure 5.20 below shows the result of a growth run where the melt 

did not sufficiently wet  the whole substrate, and when the melt was pushed off, exposed only 

a partially wetted substrate. The differing ionicities between the extremely  ionic CuCl and 

KCl constituents and the covalent Si substrate, positioned as they  are at the extreme ends of 

the ionicity range, is a likely reason for the non-optimal wetting.
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Figure 5.20 - Image of Si substrate, post growth wipe off, showing the poor coverage of the CuCl-

KCl melt as a result of poor wetting.

Additionally, the phase diagram for the CuCl-KCl system and the requirement for melt 

composition to precipitate in the CuCl and liquid phase presents some difficulties. Large 

supersaturation of CuCl leads to spontaneous nucleation within the melt  [23]. As mentioned in 

chapter 4, LPE is a semi-limited growth, where the nucleation is dependent on the arrival of 

constituent material at the growth interface. Due to the large saturation of CuCl present in the 

melt, not only  does this result in 3-d growth and thus precipitation within the melt, but it 

would also limit the potential time for the precipitating material to reach the substrate surface 

before being consumed by adjacent crystal growth within the melt.

In addition, the type of LPE growth used in these experiments, being in the range of 220 - 390 

°C is rather low considering the literature on LPE. Within AlGaAs LPE work, it was found 

that low-temperature growth was difficult to achieve due to poor substrate wetting with the 

melt, resulting from the presence of an oxide film ‘skin’ on the surface of the melt. The 
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reactivity of CuCl and its readiness to form oxyhalide compounds is a substantial problem in 

this regard. During the growths when the melt was observed, it  was clear that there was a 

transparent ‘skin’ surrounding the melt. At the high temperature phase of the LPE run, there 

was no readily discernible evidence of the skin. At lower temperatures, closer to the point 

when the substrate would be exposed to the melt, this ‘skin’ effect became more noticeable. 

This may also be a time related issue, since the melt would have been formed for over 4 hours 

by the time growth would commence. It also may be related to the viscosity  of the melt at 

lower temperatures compared to observations at higher temperature.

Discussions with Dr. Zbigniew Zytkiewicz of the Institute of Physics of the Polish Academy 

of Sciences, Warsaw, on the problem of substrate wetting lead to experiments using a 

selection of techniques that could be tried in order to clarify  the problem and find an effective 

solution. These experiments were based on the assumption that an unknown substance was 

covering the substrate or the presence of a skin covering the surface of the melt - in either 

case, the effect would be no direct contact of pure CuCl/KCl melt with the Si substrate. 

The first assumption is that an unknown film, created in the LPE system, covers the substrate, 

prevents wetting by the melt (possibly  caused by a chemical reaction of species present in gas 

phase with the substrate) and thus nucleation and growth on the Si surface. A technique used 

to investigate this assumption is illustrated in Figure 5.21, wherein the sliding boat system has 

been modified to include a small sharp scratching wire. 
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Figure 5.21 - Experimental setup for LPE graphite boats, using a small abrasive wire, 

highlighted in red.

When the slider moves the melt bin into the growth position, the wire will scratch the surface 

of the substrate just before growth, mechanically removing any film before the melt contacts. 

It would be hoped that some growth could be observed where the surface was scratched.  A 

similar experiment using the multi bin sliding boat involved using a Ga precursor melt to 

dissolve the surface prior to the growth melt  moving into place was also carried out. In both 

these cases, however, no improvement to the produced bulk CuCl/KCl films was noted.

Another suggestion would be to apply the mechanical cleaning approach to remove any skin on the 

melt prior to contacting the substrate, using the piston boat LPE technique. This would address the 

second assumption outlined above. The melt is squeezed through a small hole by the use of a piston 

system. This mechanically  strips the skin from the melt  and ensures that only pure melt contacts the 

substrate. This technique has been employed for AlGaAs/GaAs systems previously, wherein the Al 

is known to oxidize and form a skin around the melt surface [24]. Although a full piston system was 

technically  impractical with our LPE setup, the technique was adopted partially  in the modified 
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Graphite Sliding Boat

Chapter 5 Liquid Phase Epitaxy of γ-CuCl on Silicon

128



tipping boat design, illustrated previously in figure 5.22. The narrow channel between the melt bin 

and the substrate holder was envisioned as a means of providing a mechanical way to try  remove 

any melt skin by restricting the flow through the channel and pulling the skin free prior to rolling 

onto the substrate.

Use of H2 flow was also used in order to try minimize the effect of the native SiO2 layer on 

achieving a good epi-ready surface. The native oxide present on the Si substrate is a concern 

for wetting of the melt and substrate, and a considerable amount of research has been carried 

out using H2 flow in oxide reduction [25, 26]. While the aforementioned etch routine would 

remove the native oxide, the inevitable desorption of oxygen and water vapor from the tube 

and graphite coupled with the heating regime used, could lead to further oxidation of the 

silicon. This further highlights the importance of baking out the graphite components prior to 

a growth run. The removal of the oxide is believed to occur from the reaction [26]:

2SiO2 ↔ 2SiO + O2

where the SiO is a volatile by-product, and the H2 flow acts as a catalyst for the process. By 

this reaction, H2 flow has been used for oxide removal providing that  the oxide is not  more 

than 4 nm thick. For our LPE growths, the use of H2 flow was found to be problematic, as the 

Hydrogen was observed to react with the CuCl melt. Figure 5.22 below shows a recovered 

graphite boat with CuCl/KCl melt and Si substrate in place.
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Figure 5.22 - Decomposition of CuCl/KCl melt from use of H2 flow during growth.

There is a clear reaction on the surface of the cooled melt  - this reaction was observed during 

the heating stage of the growth, where it formed and persisted as a thick skin on the surface of 

the liquid melt. The gas flow downstream results in the deposition of this discoloured material 

on the graphite melt bin. It is likely this deposition and discolouration are due to a reaction 

between evaporated CuCl and the H2 flow. The colour of the residue seems suggestive of Cu, 

which may indicate that there is a H2/Cl reaction occurring. Due to the reaction with the melt 

and the cost involved in utilizing hydrogen flow, the use of H2 was not pursued in further 

experiments.
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5.7 Conclusions

The fundamental motivation for this research has been the question of whether it  is possible to grow  

γ-CuCl epilayers on lattice matched Si substrates utilizing the LPE technique. In order to avoid the 

deleterious phase transition, KCl salt is used to depress the liquidus temperature of the melt below 

the β-CuCl to γ-CuCl phase transition point as well as below the known CuCl/Si reaction point. To 

date, samples produced display a textured polycrystalline composition, made up of CuCl and 

K2CuCl3, which can be clearly seen from the XRD data acquired for grown samples.

Optical characterization via photoluminescence studies and XEOL measurements reveal dramatic 

improvements to the luminescence intensity of the samples, likely owing to the presence of KCl and 

the K2CuCl3 compound originating from the LPE growth method. It is speculated that this 

improvement is owed to the filling of the Cl- anion centers in the CuCl crystal by  contributions 

from the KCl and/or the K2CuCl3 present within the deposited material.

The luminescence observed is likely comprised of different emission mechanics compared to 

nominal CuCl emission. Low temperature PL at 12.5 K reveals the presence of some well known 

CuCl excitonic features such as M the free biexciton at 3.190 eV (~391 nm) as well as the I1 bound 

biexciton occurring at 3.18 eV (~389 nm). New peaks at λ ~370nm and λ ~376nm (designated X1 

and X2) are not related to any known CuCl excitonic feature, however. It  is suggested that these 

peaks could be due to the interaction of the CuCl and K2CuCl3 compounds within the grown layer.

A number of difficulties exist when using LPE for γ-CuCl growth, which make this approach a 

technically  challenging one to implement. Notably, LPE growth at these low temperatures, 

necessary  to avoid the phase change and CuCl/Si reaction, represent an extreme in LPE literature. 

The extreme degree of CuCl saturation within the KCL/CuCl system required also leads to a 

Chapter 5 Liquid Phase Epitaxy of γ-CuCl on Silicon

131



preferential nucleation within the melt itself (i.e., 3-d nucleation) rather then on the substrate. It 

should be noted that the understanding of the CuHa eutectic systems acquired during this phase of 

the PhD study would prove fruitful and would inspire the work seen later in this thesis in Chapter 7.
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Chapter 6 - γ-CuBr Thin Films and Electroluminescent 

Devices

6.1 Introduction

In this chapter we will outline the results of our depositions of CuBr thin films on Si, glass and ITO 

coated glass substrates for film thicknesses of between 100 and 500 nm. The preparation and 

fabrication of these thin films will be presented and the structural and optical properties will be 

discussed. The stability and  electrical degradation (as well as degradation in ambient atmosphere, if 

untreated) of these deposited films will also be reported. The development of a novel hot-electron 

electroluminescent device based on γ-CuBr will also be detailed.

6.2 Substrate Preparation and Cleaning

As discussed in chapter 3, the vacuum evaporation PVD process was used to deposit γ-CuBr films 

on Silicon (<100> and <111>) and glass substrates, as well as ITO coated glass for device 

structures. Substrates were thoroughly degreased and cleaned prior to any deposition using the 

following process:

1. Si or glass substrates were washed with DI water from a clean bottle, while being held with 

tweezers.

2. Samples were then subjected to manual cleaning with Decon 90 (Sigma Aldrich) detergent 

solution using cotton buds, with another stage of DI washing subsequently to clear the Decon.
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3. Substrates were then placed into a clean beaker with Decon solution and placed in an ultrasonic 

bath for 20 minutes.

4. Similar to the setup  for the LPE etching routine described in Chapter 5, cleaned PTFE containers 

were filled with Acetone, DI water and Isopropanol. Substrates were then dipped into the 

Acetone, rinsed directly with DI water, submerged and stirred in the DI container, rinsed again 

and finally dipped into Isopropanol and given a final rinse with DI water.

5. For Si substrates, an additional step  is required. Removal of the native oxide layer was carried 

out using a hydrofluoric acid etch (48% ACS reagent grade), diluted 5:1 HF to DI water. Samples 

were gently  stirred in the etch solution for 1 minute before removing. Residual etch solution was 

washed away by a DI rinse.

6. All substrates were dried using a Nitrogen stream and visually inspected for any blemishes before 

being readied and loaded into the vacuum evaporator.

Si substrates used for the PVD process were supplied by University Wafer [1] and were single-side 

polished, p-type boron-doped, with a resistivity in the range of 0 – 20 Ωcm.

6.3 Deposition of γ-CuBr Films

Evaporation of CuBr powder (99.999%, Sigma Aldrich) was carried out in the Edwards Vacuum Coater 

system described in Chapter 3. The evaporation boat was a Tungsten boat supplied by Testbourne Ltd. [2] 

Figure 6.1 - Tungsten boat used for CuBr evaporation within the Edwards Vacuum Coater system.
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Thin films of γ-CuBr of thickness between 100 - 500 nm were thermally evaporated using the 

vacuum evaporator system. The distance from the tungsten boat to the substrate was approximately 

13 cm. Evaporations were carried out at a base pressure of ~4 x10-6 mbar, although pressure would 

increase to 10-5 mbar when evaporation commenced. The rate of evaporation was controlled by 

adjusting the current, thus the resistive load through the tungsten boat. The deposition rate was 

maintained between 0.3-0.5 nm/s by calibration and monitoring of the resonant frequency of the 

crystal within the thickness monitor. It was found that a current flow of between 2 and 2.5 A would 

give the required deposition rate, however the deposition rate had to be closely monitored 

throughout the evaporation in order to avoid the current moving beyond this range and adversely 

affecting the deposition rate. Table 6.1 below summarizes the experimental parameter range used 

during this study

Tool Edwards E306 Auto Evaporator

Substrate Si <111>, Si <100>, Glass, ITO coated Glass

Sample Thickness 100 - 500 nm

Material Cu(I)Br (Sigma Aldrich, 99.999%)

Evaporation Rate 0.3 - 0.5 nm/s

Chamber Pressure 10-6 mbar (base pressure), 10-5 mbar (evaporating)

Table 6.1 - Some experimental parameters for PVD vacuum evaporation of CuBr thin films.

6.4 Structural Properties of Evaporated γ-CuBr Films

Deposition of CuBr on prepared Si and glass substrates via vacuum evaporation was carried out and 

the resulting thin films have been examined using XRD, EDX and SIMS. In order to provide a scan 

representative of as-deposited γ-CuBr and as best practice, samples were prepared on the day of 

measurement or were stored under vacuum conditions prior to measurement.
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From Chapter 4 previously, table 4.2 provides the diffraction data for the principal γ-CuBr 

reflections observed from the samples, namely  the <111>, <220> and <311> peaks. It should be 

noted that  other peaks for CuBr exist, but only  these primary  three reflections were observed within 

our XRD measurements. Figure 6.2 shows a typical XRD scan for ~500 nm γ-CuBr on <100> Si 

deposited via vacuum evaporation. It can be clearly seen that the <111> γ-CuBr peak is the most 

intense, with the smaller <220> and <311> reflections also present. There is a notable discrepancy 

from the reported expected intensities for γ-CuBr peaks at <220> and <311> compared to those 

observed from our XRD scan, which are expected at 60% and 35% relative to the 100% <111> 

peak. Our as-deposited scan shows the <220> and <311> intensity at ~7% and ~3% of reported 

values, respectively. 

Figure 6.2 - XRD θ-2θ scan for ~500 nm γ-CuBr on <100> Si.
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It is clear from the XRD information that <111> is the preferred orientation for epitaxial growth of 

γ-CuBr. One advantage of XRD is the possibility to use this method to estimate the crystallite size 

of the CuBr on the film from measuring the broadening of the XRD reflection by using the Scherrer 

formula [3], outlined previously in section 2.4.2.

Using this approach, the crystallite size of γ-CuBr on Si <100>  across four as-deposited samples 

were calculated as ~75.61 nm. Similarly deposited γ-CuBr on glass substrates were examined via 

XRD and can be seen in figure 6.3.

Figure 6.3 - XRD θ-2θ scan for ~500 nm γ-CuBr on glass substrate.
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Figure 6.4 - XRD θ-2θ scan for ~500 nm γ-CuBr on ITO coated glass substrate, inset XRD θ-2θ 

scan for ~100 nm γ-CuBr on ITO coated glass substrate.

Figure 6.4 shows a ~500 nm CuBr sample on ITO coated glass substrate, where the <222>, <400> 

and <440> reflections are apparent. There is little apparent difference, excepting the CuBr reflection 

intensity) between the ~500 nm sample and a similar ~100 nm sample on ITO, as evidenced by  the 

inset XRD scan in figure 6.4. The crystallite size was also calculated across a range of sample 

thickness (100 to 500 nm) on Si <100>, glass and ITO coated glass substrates, however there was 

little variation in grain size within a range of +/- 10 nm across the thicknesses and substrates.

GIXRD was also used to investigate the deposited γ-CuBr thin films. A glancing angle of 4° was 

used which limits the penetration depth of the x-rays into the CuBr film. Figure 6.5 shows the 

GIXRD scan of a ~500 nm thick CuBr sample on Si <100> substrate. The surface region penetrated 
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by the x-rays reveals the film to be comprised of the distinctive <111>, <220> and <311> 

reflections. Additionally, a small shoulder peak can be observed on the left  of the <100> peak on all 

GIXRD samples. This small peak corresponds with the <100> 25.35° reflection of β-CuBr, and can 

be understood in terms of the evaporation process. As discussed, the deposition rate is controlled by 

the thermal load driven by resistive heating of the tungsten boat, controlled by alternating the 

current source. The resistive heating applied to the boat will fluctuate over the range of 2-2.5 A, 

which can be sufficient to cause a trace amount of the γ-CuBr to undergo the phase change to the 

wurtzite structure. This is not unprecedented in thermally  evaporated CuBr, as reported by  Cardona 

[4]. Similar studies underway within our lab, involving the sputtering of CuBr, have shown no 

traces of β-CuBr in their respective XRD θ-2θ scans, likely owing to the thermally stable, well 

controlled process of sputtering relative to vacuum evaporation.

Figure 6.5 - GIXRD scan at 4 °deg on ~500 nm thick γ-CuBr sample on Si <100> substrate.
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Analysis of the XRD data allows for the calculation of the texture coefficients for the dominant 

<hkl> peaks observed (i.e., the <111>, <220> and <311> peaks). The texture coefficient for each of 

these reflections can be calculated thus [5]:

where TC is the texture coefficient for the specific <hkl> reflection, Io(hkl) is the powder diffraction 

intensities relating to the material, I(hkl) is the measured intensity  of the specific reflection and n is 

the number of recorded experimentally  measured reflections used. From this expression, table 6.2 

shows the texture coefficients for evaporated γ-CuBr samples calculated for ~500 nm γ-CuBr thin 

films deposited on Si, glass and ITO coated glass substrates. The strongest  reflection, corresponding 

to the <111> reflection also has the largest texture coefficient on Si <100>, with a notable decrease 

for glass and ITO coated glass substrates which align closer with the powder diffraction intensities. 

The large variation for γ-CuBr on Si is likely owing to the underlying crystalline substrate, 

compared to the amorphous glass and ITO coated glass substrates.

Si <100> Glass ITO/Glass

<111> 1.32 1.11 1.15

<220> 0.65 0.93 0.87

<311> 0.16 0.67 0.7

 Table 6.2 - Calculated texture coefficients for the primary γ-CuBr reflections on Si, glass and ITO 

coated glass substrates.

Complimentary to the XRD, the surface morphology of deposited γ-CuBr films was examined 

using contact  mode AFM. Figure 6.6 depicts the image of the sample surface. From the image, a 

rough triangular shape of the crystallites can be inferred (illustrated with an aid in Fig. 6.6 (b)). The 
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threefold symmetry of the CuBr crystals can be seen, which correlates well with the XRD data 

which shows that the <111> orientation is the preferred growth direction. 

Figure 6.6 - (a) Contact mode AFM image of as-deposited ~500 nm y-CuBr thin film on Si <100>, 

(b) image processed to clearly show the threefold symmetry of the CuBr crystallites.

Surface roughness analysis was carried out for γ-CuBr on Si <100> and Si <111>, glass and ITO 

coated glass substrates with thicknesses ranging from 100 - 500 nm using the software provided by 

Pacific Nanotechnology. The root mean square (RMS) and roughness average (RA) were calculated 
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and averaged over the thicknesses, and are presented in table 6.3. There was no substantial 

statistical variation in the RMS and RA values across the thickness of the deposited films 

investigated, nor was there any notable variation on the differing Si orientated substrates. From the 

table, it  can be seen that  there is a minor variation depending on the substrate however this 

difference is negligible across the substrates.

RMS (nm) RA (nm)

γ-CuBr/Si <100> 5.71 7.24

γ-CuBr/Si <111> 5.8 7.55

γ-CuBr/Glass 7.12 7.3

γ-CuBr/ITO 8.1 6.41

Table 6.3 - Root mean square (RMS) and Roughness Average (RA) for γ-CuBr films on various 

substrates.

It was generally difficult to produce a SEM image of the surface, owing to charging of the sample 

surface, however a ‘best effort’ image of a ~500 nm γ-CuBr sample on Si <100> is presented in 

figure 6.7 below where some of the crystallite grains can be seen.
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Figure 6.7 - SEM image of surface of a  ~500 nm y-CuBr thin film on Si <100>.

In addition to topographical and structural characterization of deposited films, elementary analysis 

was carried out using EDX. Figure 6.8 shows a typical EDX spectrum acquired for an as-deposited 

~500 nm γ-CuBr thin film on Si. From the spectra, the presence of both Cu and Br atoms is 

confirmed with no other elemental peaks present. An elemental assay  of the results is presented in 

table 6.4. While there is an apparent deviation from a 50:50 stoichometry as would be expected for 

a CuBr film, repeated EDX acquisition on different areas of the sample would often show a Cu 

deficiency and other areas a Br deficiency. However, the deficiency never exceeded 3% in either 

situation and can be reasonably attributed to a systemic margin of error in the EDX measurement.
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Figure 6.8 - EDX spectra for as-depoisted ~500 nm γ-CuBr thin film on Si substrate, showing 

elementary composition of the film.

Element Weight (%) Atomic Presence (%)
Cu 47.23 52.95
Br 52.77 47.05

Totals 100.00

Table 6.4 - EDX elemental assay of as deposited film shown in Fig 6.5.

In addition, low-energy Secondary Ion-mass Spectroscopy (SIMS) was carried out on an as-

deposited ~500 nm γ-CuBr film on Si substrate in conjunction with Dr. Richard Morris at Warrick 

University. In order to investigate the compositional uniformity of our samples, a depth profile 

measurement was carried out and the resulting profile can be seen in figure 6.9. From this, it can be 

clearly  seen that there is no significant compositional variation throughout the film for the Cu and 

Br levels for the duration of the scan (to a depth of ~220 nm, determined post measurement via 

AFM).
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Figure 6.9 - SIMS depth profile of y-CuBr thin film. 

6.5 Optical Properties of Evaporated γ-CuBr Films

Deposited films were optically characterized using UV-Vis, PL and XEOL. A characteristic room 

temperature PL spectrum for a typical as deposited γ-CuBr film, ~500 nm thick, on Si <100> 

substrate is presented below in figure 6.10.

From the spectra, a strong emission is clearly observed, centered at ~417.1 nm (~2.97 eV), which 

corresponds with the free exciton emission, Zf discussed previously in Chapter 4. The deviation 

from the nominal low temperature value of 418 nm reported for Zf emission in CuBr [6] can be 

explained by examining the temperature dependent characteristics of CuBr (presented in section 

6.5.1 below).
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Figure 6.10 - Room temperature PL spectrum for ~500 nm γ-CuBr on Si substrate, 1 second 

acquisition.

The UV-Vis absorption spectrum for a typical 500 nm y-CuBr/Glass sample is shown in figure 6.11 

below. The spectrum is notable for the evident contribution of the high and low excitonic bands, the 

Z1,2 and Z3 excitons, originating from the coupling of the Γ6 conduction band state to the valence 

band holes Γ8 and Γ7 (as discussed previously in chapter 4). The peak at λ ~ 391 nm (3.17 eV) 

corresponds to the Z3 exciton and the peak at λ ~ 411 nm (3.01 eV) corresponds to the Z1,2 exciton - 

these values are in good agreement with previously reported values [6, 7].

Chapter 6 γ-CuBr Thin  Films

148



Figure 6.11 - UV-Vis absorption spectra for typical 500 nm y-CuBr/Glass structure.

6.5.1 Low-K PL Measurements of γ-CuBr Thin Films

Figure 6.12 below shows the temperature dependent PL measurements for a typical ~500 nm γ-

CuBr thin film on Si substrate. Measurements were taken using the low-K setup outlined previously 

in section 2.2 at Trinity  College, Dublin. Two peaks are clearly evident in the spectra as the 

temperature decreases: Zf and I1 corresponding to the free exciton and impurity bound exciton for 

CuBr, respectively. The inset graph shows the room temperature PL for the same sample.

As previously  discussed in Chapter 4, for CuBr crystals, the free-exciton PL is attributed to the 

lowest energy triplet-exciton state [8]. The bound impurity exciton I1 is attributed to the Cu+ ion 

vacancies in CuBr [7]. In our temperature dependent PL, the peak intensities for the I1 and Zf can be 

seen to change with decreasing temperature with the I1 peak intensity  overtaking the free exciton 

Chapter 6 γ-CuBr Thin  Films

149

Z1,2Z3



peak intensity  near 80–100K. At higher temperatures the Zf peak is dominant, in part due to the 

large excitonic binding energy for CuBr of 108 meV.

Figure 6.12 - Temperature dependent PL measurements of γ-CuBr thin film ~500 nm thick, on Si 

<100> substrate. Inset graph shows RT (~300 K) measurement.

In our films there was no observation of the wide donor–acceptor pair recombination band that was 

observed in previously evaporated  γ-CuBr/Al2O3 films [9], which is attributed to the high quality 

of our deposited γ-CuBr/Si films.

The dominant Zf PL peak can be observed in the room temperature spectrum at ∼416.4 nm, which is 

anomalous considering the well-documented Zf peak at  418 nm (12 K). However, this can be 

explained in terms of an increase in the band gap  energy with the increasing temperature. This 

phenomenon has been previously accounted for in CuCl and is attributed to electron–phonon 
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renormalization of the band gap as described by Garro et al. and Serrano et al. [10, 11]. Garro et al. 

also claim that this explanation should hold for CuBr.

Figure 6.13 -Variation of free exciton (Zf ) energy for ∼500 nm CuBr thin film on Si <100> as a 

function of temperature.

Figure 6.13 shows the energy of the Zf PL peak as a function of temperature. The data clearly shows 

the increasing energy  for the Zf  exciton PL, with a change from a linear slope around the ~80–100 

K region. An Arrhenius plot  of the natural log of the Zf PL emission intensity against the inverse 

temperature is shown in figure 6.14 below. The PL emission intensity can clearly be observed to be 

relatively independent of temperature variation below ~80 K. Above this temperature (i.e. < 100K), 

the intensity is observed to decrease dramatically. This is in good agreement with Garro’s work and 

confirms that the band gap temperature dependence shown with CuCl films extends to CuBr as 

well.
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Figure 6.14 - Arrhenius plot of normalized free exciton intensity (Zf) vs inverse temperature.

6.5.2 XEOL of γ-CuBr Thin Films

Using the experimental setup detailed previously (see Chapter 2), XEOL measurements of 

deposited CuBr thin films on Si substrates were carried out. Figure 6.15 below shows an acquired 

characteristic spectrum for a ~500 nm thick γ-CuBr deposited film on Si substrate. The 

characteristic Zf peak excitonic peak can be clearly seen. The same measurement was taken for 

~100 nm and ~300 nm CuBr thin films, however there was no observed deviation in peak position, 

and apart from a slight broadening of the FWHM (measured as 0.81 nm, 0.109 nm and 0.121 nm 

for 100, 300 and 500 nm thin films, respectively). This broadening can be attributed to the increased 

film thickness. Functionally, however, the CuBr thin film samples examined under XEOL were 

characteristically identical, with a well defined peak at ~416 nm at room temperature.
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Figure 6.15 - XEOL spectra for γ-CuBr ~500 nm thin film on Si substrate.

6.6 Stability of γ-CuBr Thin Films

As mentioned previously, one of the main disadvantages to working with the CuHa material is their 

sensitivity to ambient atmosphere. The family reactivity for the Halides decreases as function of 

their position on the periodic table, i.e. Chlorine → Bromine → Iodine and so forth. Previously, it 

has been observed that vacuum evaporated γ-CuCl samples have a short lifespan when exposed to 

air - rapid formation of oxyhalide compounds (Cu(OH)Cl) is observed on these films when 

purposely left in air to degrade [12]. Thus for γ-CuCl samples, the storage of experimental samples 

in vacuum is standard practice as well as the aforementioned development of capping layers to 

protect samples for application purposes. The case for CuBr from a stability perspective is much 

more compelling, however. Vacuum deposited γ-CuBr on Si and glass substrates were 

experimentally found to have much longer optically  active lifespans without the need for 

Chapter 6 γ-CuBr Thin  Films

153



application of a protective, insulating capping layer. In order to investigate the stability of the 

vacuum deposited γ-CuBr films, a ~500 nm CuBr on glass substrate sample was prepared and 

exposed to ambient atmosphere for a period of one year. The sample was stored in a dark laboratory 

desk drawer and was only removed from storage for measurements.

Figure 6.16 - XRD scan of CuBr film (~500 nm) on glass substrate after exposure to ambient atmosphere 

for 9 months.

Figure 6.16 shows the XRD scan for the sample after one year. Remarkably, the characteristic 

<111>, <220 and <311> γ-CuBr reflections are still present. For previous CuCl samples, significant 

degradation of the samples would take place after two days of exposure and a complete re-

crystallization of the CuCl film would take place within three weeks, as evidenced by XRD [12]. 

However, for CuBr samples, this was not observed to have occurred. It is clear that the CuBr 

degradation occurs with the formation of other compounds such as CuBr2 and Cu2Br(OH)3, which 
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can be evidenced in the XRD measurement, but the main CuBr reflections are still present. There is 

a small peak doublet at ~ 21.5° and ~ 21.9°, however this does not correspond to any known or 

expected CuBr based compound.

The UV-Vis absorbance measurements taken over a year can be seen in figure 6.17 below.

Figure 6.17 - UV-Vis absorbance measurement for CuBr film over 1 year period.

It can be seen that even after a year the deposited sample remains optically active, with the 

excitonic structure seen in CuBr UV-Vis measurements still present, albeit diminished relative to 

the as-deposited case. This is a considerable improvement relative to CuCl, wherein the optical 

quality was observed to rapidly degrade within 3 weeks when kept in similar experimental 

conditions [12].
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As the film ages, the as deposited opalescent appearance begins to cloud though is still reasonably 

transparent. The absorbance is seen to increase over the year long period. There is an initial stable 

period immediately after deposition, before a gradual trend of increasing absorbance takes effect. 

This trend can be seen to slow as time progresses - this may be suggestive of a rate limiting reaction 

occurring.

Figure 6.18 - UV-Vis absorbance as a function of time (expressed logarithmically).

6.6.1 Electrolytic Decomposition of γ-CuBr Film under AC/DC Applied Voltage

Towards development of a γ-CuBr TFELD, an understanding of the behavior of electrodes 

deposited on CuBr is necessary. It has previously been shown that CuCl films with Au contacts 

shows electrolytic decomposition, whereby a polar material (i.e, CuBr) is subjected to a steady state 

voltage which exceeds its decomposition threshold, which is ~0.7 V for CuBr [13, 14]. The high ion 

mobility of Cu within CuBr makes the electrochemical decomposition observable at room 

temperatures. The previous work showed that cathodic decomposition of Cu metal was observed 

when steady state DC voltages of 5 V were applied to CuCl films with similar Au planar contact 
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[12]. A similar experimental setup was used to investigate the electrolytic decomposition of CuBr 

thin films with Au electrodes, and is illustrated below.

Figure 6.19 - Setup for investigation of electrolytic decomposition of CuBr, showing (a) Setup using 

DC bias @ 20 V for 2 hours, (b) setup using AC bias for 2 hours.

A thin film of ~500nm CuBr is deposited on glass and planar Au contacts are subsequently 

evaporated into place using a shadow mask technique. The inter electrode spacing was 0.25 mm. 
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The image of the electrode area seen below in figure 6.20 is a CCD microscope image of the film 

after being subjected to an AC 20 V peak to peak stimulation for 2 hours under light vacuum (~ 10-1 

mbar) conditions. As can be seen there is no sign of any dendritic formation, a clear sign of 

electrolytic decomposition, having taken place.

Figure 6.20 - Optical CCD Image of CuBr film after being subjected to 20 v AC bias for 2 hours.

The captured images shown in figure 6.21, however, are taken of an identical sample under the 

same experimental conditions but exposed to a 20 V DC bias. There is a notable formation of 

dendrites emerging from the cathode into the CuBr region.
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Figure 6.21 - (a) Dendrite formation due to electrolytic decomposition of CuBr film (1 hour @ 20 

V DC) magnified, (b) 2 hour @ 20 V DC.

From the experiments with the 25 mm inter-electrode distance, a growth rate of approximately 0.7 

mm per hour was observed, with a complete bridging of the dendrites to the opposite electrode after 

approximately ~4 hours. EDX measurements on the generated dendrites  were taken which confirm 

the presence of elemental copper (figure 6.22). 

Figure 6.22 - EDX spectra of the cathodic decomposition showing the presence of elemental Cu.
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Additionally, XRD scans were taken of a CuBr film with Au planar contacts before and after the 

applied DC voltage experiment, however there was no sign of Cu within these scans. It  is possible 

that the overall concentration of elemental Cu was too low for detection.

Figure 6.23 - XRD 2θ scan of ~500 nm CuBr on glass substrate with Au planar contacts, post 

exposure to 20 V DC bias for 2 hours.

6.7 Towards a γ-CuBr based EL Device

Using vacuum evaporation to deposit films of γ -CuBr, work has been carried out to develop a 

prototype TFELD based on the structure in figure 6.24 (a) with a CuBr active layer, based on the 

principles outlined in chapter 2. ITO coated glass substrates were obtained from Sigma Aldrich (15–

25 Ω/sq surface resistivity). The ITO substrates had ∼20 nm of SiO2 deposited prior to the growth 

of ∼100 nm γ-CuBr active layer. The SiO2 was deposited by the plasma-enhanced chemical vapour 

deposition (PECVD) technique using hexamethyldisiloxane (HMDSO) and O2 in a capacitively 
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coupled reactor connected to a 13.56 MHz RF generator. The SiO2 thickness was determined via 

ellipsometry measurements and model fitting on a JA Woollam XLS-100 ellipsometer. Further 

details on the growth and characterization of the deposited SiO2 via PECVD have been reported 

previously [15].

For the prototype devices, it was decided to keep  the γ-CuBr layer thin so as to reduce the impact of 

the thickness on conduction of charge into the active layer. For the circular contacts on the ELD 

samples, gold wire from Sigma Aldrich (99.999%) was evaporated using a simple shadow mask. 

The SiO2 layer also helps in insulating the ITO from any potential short circuit after Au contacts are 

deposited via pinholes in the CuBr layer. Contacts to the Au and ITO contacts were made using a 

gallium–indium eutectic melt supplied from Sigma Aldrich (99.99%).

Figure 6.24 - (a) Illustration detailing layers used in prototype CuBr ELD stack structure, (b) 

image of fabricated CuBr ELDs.

For our EL measurements, a variable AC supply generator with an operating frequency of 50 Hz 

was used. At voltages of ∼4–5 V up  to ∼16–17 V (peak to peak) we could observe blue light 

emission. The light was generated from around the Au contact periphery. The emission intensity 
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does tend to dim and flicker but otherwise stays constant for periods up to approximately 10 

seconds. 

ELD Station

CuBr Device (outline)

CuBr Device El Emission

(a)

(b)

Figure 6.25 - (a) Image of ELD experiment station with mounted CuBr device,  (b) with lights off, 

image capture of observed EL from the device.

Figure 6.26 below is a typical EL spectrum acquired for these ELDs. A number of peaks are clearly 

discernible with the ∼418nm potentially attributable to the Zf free exciton emission energy for 

CuBr. However, the other visible peaks cannot be attributed to known CuBr emission and owing to 

the similarity of the peak structure for the ~418 nm emission, it is likely  that  this emission does not 

represent the EL emission for CuBr. For a possible explanation of these peaks, we refer to emission 

studies on copper doped alkali halides and glasses. In these systems, varying emission peaks are 
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observed at similar energies to our own observations, namely at ∼320nm, ∼403nm, ∼410nm, 

∼450nm and ∼590nm. These emissions are thought to correspond to the 3d10 → 3d94s transitions 

of the Cu+ ions and have been previously  reported in the literature for luminescence studies of 

Alkaline Halide materials containing monovalent Cu+ impurities [16–18].

Figure 6.26 - EL spectrum for ~100 nm γ-CuBr ACTFELD, inset shows magnified 400-420 nm region.
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6.8 Conclusions

Building on the previous chapter and the study of CuCl therein, research was begun into the 

deposition of CuBr via PVD processes. The driving motivation was to investigate the possibility of 

utilizing CuBr as the active layer in an ACTFELD structure. Stoichometrically uniform deposition 

of γ-CuBr films has been carried out using vacuum evaporation onto Silicon, glass and ITO coated 

glass substrates. Structural characterization involving XRD observed preferential growth along the 

<111> crystallographic axis, in addition to smaller reflections from the <220> and <311> 

orientations. Using AFM, the threefold <111> symmetry of vacuum deposited thin films on Si could 

be seen and a consistent surface roughness was measured across various sample thicknesses and 

substrates. From the XRD measurements, the texture coefficients were calculated for deposited 

CuBr on the different substrates, with the highest preferential growth observed on Si <100> 

substrates with the <111> CuBr reflection.

Optical investigation of the CuBr thin films reveals a characteristic Zf emission at ~416 nm at room 

temperature. Low temperature PL down to 12.5 K reveal the Zf exciton emission and the I1 impurity 

bound exciton emission, found at ~ 418 nm (~2.96 eV) and ~ 420nm (2.95 eV) respectively, in good 

agreement with prior spectroscopic measurements of CuBr at  low temperatures. A temperature 

dependent shift  of the Zf emission was observed from 12.5 K to room temperature. This effect is 

related to electron-phonon renormalization of the CuBr material as temperature increases.

Additionally, the stability  of CuBr films was investigated by  exposing a ~500 nm thick sample, 

deposited on glass, to ambient atmosphere over the period of a year. UV-Vis measurements show an 

increase in the absorbance of the film and XRD shows the formation of some oxyhalide 

compounds. Remarkably however, the film was still optically  active and the Z1,2 and Z3 excitons 

can still be clearly seen in the UV-Vis measurements a year after deposition, without the aid of any 

Chapter 6 γ-CuBr Thin  Films

164



preservation techniques (e.g. capping layers) which is a substantial improvement over a similar 

study using CuCl.

In order to investigate CuBr for potential application as an active layer in an ELD, CuBr films using 

Au contacts were fabricated and subjected to steady 20 V AC and DC bias over different times. The 

AC biased films showed no evidence of electrolytic decomposition. Films subjected to DC bias, 

however, exhibited dendritic growth - clear evidence of cathodic decomposition.

Using the vacuum evaporation PVD technique we have successfully  fabricated and tested a 

ACTFELD using CuBr as an active layer. The characteristic Zf CuBr excitonic peak as well as 

possible Cu+ emissions were observed. It is suggested, based of previous studies involving Alkaline 

Halide materials containing Cu+ impurities, that these additional peaks correspond to the 3d10 → 

3d94s transitions of the Cu+ ions.
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Chapter 7 - CuBr/KBr Microdots

7.1 Introduction

The potential improvement in excitonic PL that can be gained from novel approaches to film 

preparation involving KBr and existing CuBr deposition techniques is promising. Using a novel 

approach involving a specifically machined shadow mask, the vacuum deposition of KBr spots onto 

similarly  deposited γ-CuBr epitaxial layer on a Si substrate has been investigated as part of research 

into potential new growth mechanisms for γ-CuBr, with the aim of emulating the vapor-liquid-solid 

(VLS) growth mode used for the formation of Si ‘whiskers’ or nanowires [1].  Conventional thin 

films of γ-CuBr have been deposited, as detailed in the previous chapter, and post-deposition 

annealing of the samples in conjunction with a small CuBr flux from a target source leads to the 

formation of intermixed CuBr/KBr microdots. The fabrication process for producing these 

microdots is detailed in this chapter and the structural and optical properties are characterized. A 

potential growth method is proposed based on the well established VLS growth mode.

7.2 General Fabrication

Si substrates are cleaned and prepared as per the process discussed previously in chapter 6. Onto 

these substrates, thin films of γ-CuBr of thickness of 150, 300 and 600 nm were thermally 

evaporated using the vacuum evaporator system. Experimental conditions used for deposition were 

otherwise the same as those used for the thin film work previously (see Chapter 6).

Subsequent to the deposition of the γ-CuBr layer, the evaporator was reopened and a specifically 

machined shadow mask was placed over the film. These masks were made from stainless steel and using a 

proprietary laser percussion drilling technique, micron sized holes were drilled in an array like structure. 

The minimum obtainable hole size was ~3 um in diameter. The machining was carried out by BlueAcre 
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Technology Ltd [2]. Figure 7.1 shows SEM imagery of one of the shadow masks with ~ 10 um diameter 

size holes clearly visible.

Figure 7.1 - SEM images of (a) ~ 10 um feature size laser drilled holes on stainless steel foil, (b) 

wide field view of mask array.

Following the placement of the mask, a second evaporation was carried out with KBr. Similar to the 

use of KCl salt previously for LPE growth, the KBr was baked out prior to use for 8 hours. 

Thickness was not determined using the thickness monitor, and instead the amount of KBr used was 
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weighed out prior to deposition (for all KBr evaporations, a constant amount, 0.5 g was used). 

Evaporation proceeded until the contents of the tungsten evaporation boat was empty. Post 

evaporation measurements using AFM showed that the average height of the KBr spots was 

approximately 30 nm. Figure 7.2 below procedurally illustrates the fabrication process.

Figure 7.2 - Stepwise fabrication procedure for deposition of KBr spots onto y-CuBr/Si substrate 

using shadow mask.

SEM images of the deposited KBr spots on the CuBr film can be seen in figure 7.3. The crystalline 

grains of the deposited KBr are particularly evident. 

   

Figure 7.3 - (a) SEM image of the KBr spot array and (b) magnified region showing detail of the 

KBr crystallites on top of the underlying γ-CuBr film.
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The notable contrast between the KBr spot region and the underlying CuBr film is a result of 

sample charging. This charging effect is caused by the buildup of excess electrons on the surface of 

the sample - with a conductive sample, the majority of the electrons pass into the sample and then 

out through the ground of the SEM sample holder. Vacuum evaporated γ-CuBr however is a poor 

conductor for this process, leading to a general difficulty in using SEM to topologically inspect 

CuBr thin films prepared with this PVD process. The KBr spots are in stark contrast to the 

underlying CuBr film, however, and can be clearly imaged. The apparent ‘aura’ around the spot is 

purely an artifact of the charging discrepancy between the CuBr film underneath and the KBr spot 

on top (see figure 7.4 below).

Figure 7.4 - SEM image of the KBr spot, showing the effect of the electron ‘charging’ effect on the 

sample.

7.2.1 Formation of Intermixed Microdot

Subsequent to the deposition of the KBr using the shadow mask, the sample is then subjected to a 

thermal anneal at 220° C for 30 minutes. In addition, the sample is situated above a small quartz 

glass crucible containing γ-CuBr (Sigma Aldrich, 99.999% purity) - this experimental setup can be 

seen in figure 7.5 below. The setup is within a tube furnace and is carried out under vacuum 
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conditions (10-5 mbar). The CuBr here is intended to act as a flux and is critical to the formation of 

the microdot (section 7.3 details the growth mechanism behind the formation of the microdots). 

Figure 7.5 - Experimental setup for the annealing & CuBr flux within a tube furnace.

Investigation of the samples after this annealing stage shows that the KBr salt has reacted with the 

underlying CuBr layer and formed a eutectic solution, with the addition of the CuBr flux, which 

results in the formation of a distinct microdot feature with a clearance of bare Si around the feature 

after cooling to room temperature. The SEM image in figure 7.6 illustrates one such microdot and 

figure 7.7 shows an array of microdots.
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Microdot
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Figure 7.6 - (a) Microdot feature resulting from eutectic interaction of CuBr layer with the KBr 

deposited via vacuum evaporation using a shadow mask. Image is of microdot formed on a ~300 

nm CuBr under-layer, (b) annotated image.
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Figure 7.7 - Array of CuBr/KBr microdots, arising from the shadow masking process. Image is of 

microdot array formed on a ~300 nm CuBr underlayer.

7.3 Structural Characterization of CuBr/KBr Microdot Arrays

The resulting microdot array is reasonably well ordered consisting of notable demarcation between 

the underlying CuBr and the area encompassed by the deposited KBr, followed by a central cavity 

where the bare Si substrate can be seen. Within this cavity can be found the formed microdot, 

usually isolated but occasionally in contact with the surrounding film and sometimes accompanied 

by a number of secondary, smaller microdots. For samples prepared with underlying film 

thicknesses of ~150 nm and ~300 nm, the central features as shown previously in figure 7.6 were 

commonly observed. Samples prepared with the thicker ~600 nm CuBr underlayer however usually 

displayed much smaller clearance regions around the microdot and an increased chance of finding a 

join between the central dot feature and the surrounding film. In addition, the microdot size was 

usually much smaller than those observed with the 150 and 300 nm samples. It is likely that this is a 
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result of the thicker CuBr underlayer reducing the clearance area around the microdot which in turn 

can also result in linking up of the microdot to the underlayer sidewalls.

Figure 7.8 - SEM image of a microdot prepared on a ~600 nm γ-CuBr underlayer. The micodot is 

approximately ~1.2 μm in size, but is linked to the surrounding thin film.

Most remarkable about the ~150 nm and ~300 nm samples produced using the aforementioned 

fabrication method is the height of the microdot with respect to the surrounding γ-CuBr thin film. 

Figure 7.9 below shows an AFM scan of the microdot region on a ~150 nm thick γ-CuBr sample. 

From the scan it can be seen that the formation of the microdot has a substantial vertical growth 

phase. Additional AFM images are presented in Appendix B.  A number of different microdot 

regions were investigated across the sample via AFM in order to ascertain the median height of the 

grown microdots. For 150 nm and 300 nm thick samples, the height was found to vary substantially 

from site to site that were inspected. Microdot heights with ranges from ~730 nm to ~3.7 μm were 
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observed on both samples, however the microdot sizes for the 600 nm sample were found to be less 

then the film thickness itself, i.e. less then 600 nm and did not exhibit the same vertical growth.

Figure 7.9 - (a) AFM 3-d image of a microdot region on a ~300 nm sample, (b) annotated side 

profile of same region showing height variation relative to underlying CuBr film (inset image shows 

top down view, with red line denoting the profile plane).

There is a general difficulty in using AFM to gather accurate imagery of the microdot side topology 

due to the large vertical incline that the cantilever must traverse, however it is clear that substantial 

vertical growth in excess of the initial CuBr deposition thickness has occurred. Figure 7.10 (a) also 
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shows a number of smaller microdots that have similar, unexpectedly high growth aspect ratios. A 

SEM image analogous to the AFM image can be seen below in figure 7.11.

Figure 7.10 - (a) Annotated AFM scan of a microdot region on a ~150 nm thick sample. Central 

microdot has a vertical dimension of approximately ~1.5 μm, (b) detailed scan of the microdot.
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Figure 7.11 - SEM image of microdot region on ~150 nm thick γ-CuBr sample where the main 

microdot can be seen in addition to smaller secondary dots.

7.4 Growth Mechanics

The approach taken in order to form these microdots has been fundamentally driven by the question 

of whether it is possible to emulate VLS growth with CuHa materials, taking the lessons learned in 

the earlier work on CuCl LPE and the eutectic reaction of the CuCl and KCl salt used therein. 

Owing to the stability improvements found in the work on CuBr (relative to the previously used 

CuCl), it was decided to  approach this question using CuBr and the corresponding eutectic forming 

salt, KBr. The phase diagram for this system is presented in figure 7.12 and shares many similarities 

with the CuCl/KCl phase diagram detailed previously in chapter 3, notably forming a eutectic 

solution at temperatures > ~180 °C.

Since the 1960’s, the use of a eutectic solution (most notably Au) has been used to grow Si 

‘whiskers’ with substantial diameters [4],  and is well understood and iterated upon over the years, 

with readably achievable nanometre scale sizes for a variety of material systems. In the absence of 

single crystal CuHa substrates, an approach using CuBr vacuum deposited on Si substrates was 

devised, leveraging the experiences gained in the earlier CuBr thin film work.
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Figure 7.12 - Phase diagram for the CuBr/KBr system, reproduced from [3].

7.4.1. Conventional Vapor Liquid Solid Growth

VLS type growth has been studied extensively from the 1960’s since the early work of Wagner et 

al. in the growth of Si, micron sized, ‘whiskers’. Over the decades since, the dimensions have 

rapidly shrunk to the nanometre scale and nano-rod type structures can be grown from numerous 

compounds using the VLS approach [1, 4, 5, 6].

For Si, the VLS process is illustrated in figure 7.13 below. Initially, a thin film of Au is deposited 

onto a Si surface by a PVD process. This Au deposition is patterned so as to leave distinct Au 

regions on the surface - the pattern can be applied via various techniques such as lithography. 

Subsequently, the Si substrate is annealed at temperatures higher then the known Au/Si eutectic 

point so as to form Au/Si alloy droplets on the surface. The addition of a Si flux, delivered via 
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chemical or physical vapor deposition, causes the local supersaturation of the Au/Si eutectic 

droplets. Since Si has a higher melting point (~1414 °C) relative to the eutectic temperature of the 

droplet (from the Au/Si phase diagram,  ~363 °C), the precipitation of the Si atoms out of the 

supersaturated eutectic droplet is in the solid phase and occurs at the eutectic droplet/Si substrate 

interface. This in turn forces the droplet upwards, allowing for the vertical growth of the Si whisker. 

The mechanism for the formation of classical Si ‘whiskers’ is illustrated in figure 7.13 below.

Figure 7.13 - (a) Illustration of the growth of Si ‘whisker’ from Si substrate, catalyzed by the use of 

the Au/Si eutectic droplet, (b) route of absorbed materials through the droplet to the growth 

interface. Initial flux arrives (1) and is absorbed into the eutectic droplet (2) - finally, the 

supersaturated droplet precipitates out the Si as a solid at the growth interface (3), giving rise to 

the vertical growth of the Si whisker.

7.4.2 VLS growth of CuBr using KBr

Taking inspiration from traditionally applied VLS growth, an approach using the CuBr/KBr eutectic 

system was envisioned. The fabrication processes was detailed previously in this chapter. The 

proposed growth mechanism for the microdot features is presented below in figure 7.14. There are a 

a number of notable features that are empirically observed via SEM and AFM that are unusual 

Au/Si
Eutectic

Si 

Si flux

Si flux

Vertical
Growth

Eutectic/Si
Interface

(a) (b)
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relative to conventional VLS growth, and are likely characteristics of the unique approach taken in 

using the CuBr thin film as an underlayer in lieu of a single crystal CuBr substrate.

From the SEM and AFM imagery, there is a notable clearance of CuBr material around the 

microdot feature, exposing the underlying Si substrate. This feature can likely be explained by 

considering the behaviour of the eutectic droplet as it forms. Once the experimental temperature 

reaches the eutectic forming range (around 180 °C), the droplet will begin to form at the centre of 

the KBr spot, cannibalizing the underlying CuBr layer.

As this process begins, a central cavity is formed. This was empirically observed by stopping a 

growth run after 15 minutes and measuring the surface morphology via AFM and can be seen in 

figure 7.14 (sample was of a ~300 nm thick CuBr underlayer experiment). This cavity likely 

contains the central eutectic droplet, which will proceed to sink down into the film, absorbing CuBr 

into the eutectic droplet. Once this droplet reaches the Si substrate, it will flatten out and absorb 

surrounding CuBr from the ‘sidewall’ regions, creating the clearance area around the central droplet 

feature. At this point, it is proposed that the droplet switches from downwards movement to that of 

conventional VLS growth. The vertical growth component occurs with the CuBr flux being 

absorbed into the eutectic droplet feature, creating a supersaturation of CuBr and forcing the 

precipitation of solid γ-CuBr and K2CuBr3. This can be evidenced by examining the CuBr/KBr 

phase diagram in figure 7.12.
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Figure 7.14 - Proposed growth mechanism for formation of CuBr/KBr microdots.
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Additionally, XRD scans of microdot samples were taken and a typical scan can be seen in figure 

7.15 below. From this scan, a number of peaks can be observed, not totally dissimilar to the XRD 

data taken for the LPE CuCl/KCl samples. The presence of the orthorhombic K2CuBr3 compound is 

clear in addition to residual KBr and the characteristic γ-CuBr <111>, <220> and  <311> reflections 

discussed previously in chapter 6. The XRD data corroborates well with the likely growth 

mechanism and the information presented in the CuBr/KBr phase diagram.

Figure 7.15 - XRD scan of microdot sample (~300 nm γ-CuBr underlayer) on Si <100> substrate.

As mentioned, microdot growth with the VLS type vertical component were readily observed for 

samples prepared using the ~150 nm and ~300 nm thick γ-CuBr under-layer, however this growth 

aspect was notably absent in the thicker ~600 nm sample. For these samples, the clearance area 

around the microdot was usually much reduced relative to the ~150 nm and ~300 nm samples, and 

linkage of the microdot to the sidewalls was commonly observed. It is proposed that the thickness 
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of the underlying γ-CuBr layer might play a limiting parameter for the formation of distinct 

microdot features. For the 150 nm and 300 nm samples, when the eutectic droplet is moving down 

through the film (cannibalizing it into the droplet), it is argued that any capillary force acting on the 

droplet is small, owing to the relatively thin thickness of the film. For the 600 nm sample however, 

the droplet has a larger distance to travel before it can reach the Si substrate. During this period, the 

likelihood of being drawn into a sidewall (leading to the linkages observed for these samples) is 

greater, which may effect the reduced clearance area around the microdot feature we observe.

Figure 7.16 - SEM image of microdot region on ~300 nm thick γ-CuBr underlayer.

Another notable feature found throughout the series of experiments was the increased grain size of 

the crystallites within the KBr spot region. The SEM image in figure 7.16 above illustrates this 

phenomenon. It is observed that the region encompassed by the diameter of the original KBr spot 

has much larger crystal grain sizes, relative to the underlying γ-CuBr film. It is likely that this 

‘coarsening’ is due to the KBr/CuBr reaction during the annealing stage, with the resulting imaged 
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grains likely being a intermix of K2CuBr3 as well as CuBr. An AFM image taken of a sample that 

was only annealed for 15 minutes can be seen below (figure 7.17), in which this coarsening 

phenomena can be partially observed. Clearly, an in situ observation would be more fruitful since 

the sample must be cooled before measurement, however this AFM is informative in that the central 

cavity can be clearly seen as can some coarsening or grain growth regions within the diameter of 

the original KBr spot.

Figure 7.17 - AFM image of ~ 300 nm sample after 15 minutes - region encompassed by the KBr 

spot can be seen in addition to the coarsening of the film in this area.

7.5 Optical Characterization

In order to examine the optical properties of the microdots, conventional single point PL 

measurements were taken as detailed previously. In addition, the PL intensity  could be spatially 

resolved by raster scan of the sample with the probe laser in order to create a mapping of a 

particular line. For all microdot samples, PL characterization reveals extremely  bright UV-Blue 
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excitonic emission centered on the Zf free exciton peak at ~418 nm, far superior to Zf emission from 

γ-CuBr films deposited previously.  This can be seen in a comparative PL scan below in figure 7.18. 

The room temperature PL spectrum for a microdot feature on a ~300 γ-CuBr underlayer sample is 

given as the blue line, acquired for 0.3 ms. A corresponding PL measurement is taken on a vacuum 

evaporated ~300 nm thick γ-CuBr sample, as detailed in chapter 6. It is clear that there is a 

substantial improvement in the Zf emission relative to the nominal PVD γ-CuBr layer.

Figure 7.18 - Comparative room temperature PL measurement corresponding to the free exciton 

emission intensity for a microdot feature (blue) against a nominal PVD deposited ~300 nm thick γ-

CuBr thin film (red).
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            Figure 7.19 - PL Intensity line scan across microdot feature and surrounding region on 

~300 nm thick sample; (a) CCD capture of region, the horizontal red line denotes the line scan, (b) 

Normalized PL intensity mapped across the spatial positions, with maximum point of intensity 

corresponding to the microdot feature, 0.3 ms acquisition time.

The above PL line scan reveals that the point of maximum intensity corresponds with the microdot 

feature. This characteristic is observed across all measured microdot samples, i.e. the maximum 

point of intensity corresponds with the microdot feature. Additionally, though not always observed 
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or easily mapped, there is usually a correlation between the clearance region and a local minima in 

the line scan, as illustrated in the figure 7.20 below.

Figure 7.20 - Normalized PL line scan of microdot region, showing correlation between reduction 

in luminescence and the bare Si region around the central microdot.

A low level of luminescence persists at these locations, owing to scattered emission from the laser 

spot. The mechanism for the observed brilliance of the emission relative to nominal PVD deposited 

γ-CuBr thin films can likely be attributed to a number of possible explanations. Firstly, as detailed 

previously, the PL enhancement reported in work involving KHa and CuHa [7] can be extended to 

include microdot samples. The necessary use of the KBr salt for the formation of the eutectic 

droplet allows for the inclusion of KBr within the crystal. The additional anions introduced can fill 
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up the Br- vacancies present and boost the peak intensity of the CuBr emission. The luminescence 

enhancement can also be observed in the area surrounding the microdot feature, previously 

encompassed by the KBr salt. This enhancement is relative to the untreated CuBr film region 

(though it is likely that some KBr could have migrated to these regions during the annealing stage). 

The presence of K within the microdot region was confirmed via EDX measurement (figure 7.21 

below).

Figure 7.21 - EDX spectra of central microdot feature.

Assuming VLS growth, the precipitation of intermixed CuBr and, most likely, K2CuBr3, from the 

eutectic droplet during the VLS growth is also a potential source of the enhancement observed (by 
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the aforementioned contribution of anions). It is also possible that the microdots have a higher 

degree of crystallinity relative to their surrounding polycrystalline material, owing to their ordered 

precipitation from the eutectic droplet. 

As has been discussed before, the relatively sparse information available on compounds such as 

K2CuCl3 and K2CuBr3 make it difficult to state exactly how they might contribute to the observed 

luminescence. The observation of the singular Zf peak, as opposed to the host of contributing peaks 

observed in the earlier work with LPE samples involving KCl/CuCl melts, would likely suggest that  

the primary emission mechanism is still driven by the CuBr excitons with a probable enhancement 

owing to the interaction between the Potassium compounds and the CuBr itself.
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7.6 Conclusions

Using a novel approach utilizing shadow masking, the vacuum deposition of KBr spots onto 

similarly  deposited γ-CuBr epitaxial layers on a Si substrate has been carried out. Post-deposition 

annealing of the samples at 220 °C in conjunction with a small CuBr flux from a target source leads 

to the formation of specific, repeatable features, most notably large micron scale dots. A 

considerable vertical growth component of this microdot is observed for thin films with underlying 

γ-CuBr layers of ~150 nm and ~300 nm thicknesses, with observed heights ranging up to ~ 3.7 µm.

Certain features are commonly observed in the formation of these microdots, including a specific 

clearance around the microdot exposing the Si substrate and a coarsening of the grains within the 

region encompassed by the KBr. These features are explained in terms of the eutectic droplet 

forming and cannibalizing the underlying CuBr film. The coarsening of the remaining grains within 

the region out to the KBr diameter is likely due to the KBr interaction with the CuBr at the eutectic 

forming temperature.

The microdot features exhibit  strong blue PL room temperature emission centered around the Zf 

emission at ~ 416 nm. The emission is far more intense then any  previously  observed CuBr thin 

film room temperature emission and it is suggested that this enhancement is due to the optically 

beneficial interaction between the KBr and the CuBr. It  is also possible that the enhancement may 

be due to improved crystallinity of the material owing to the VLS type growth suggested.

It is likely that the observed growth method for the vertical growth is VLS type, which would be the 

first demonstration of VLS type growth of a CuHa material. It is probable that this method can be 

applied to the other CuHa materials using a similar experimental approach and could be scalable to 

a nanometre regime, allowing for potential growth of CuHa nano-wires with further research.
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Chapter 8 - Conclusions & Further Research

The objective of this thesis has been to investigate novel means for the deposition and growth of 

CuHa materials for potential optoelectronic applications. In this chapter, the conclusions of the 

research in the areas of CuCl LPE, CuBr thin films and the CuBr/KBr intermixed microdots are 

presented as well as suggested avenues for further research.

8.1 Liquid Phase Epitaxy

Growth of γ-CuCl on Si was one of the primary  objectives for the work undertaken during this 

project, but achieving single crystal γ-CuCl epilayers proved technically  challenging. While the 

case is seemingly strong for the potential of LPE growth of this material, a number of issues plague 

the CuCl-Si material system that make this difficult to achieve using the LPE setup detailed in this 

work:

• The CuCl-Si solid state surface reaction, as detailed in chapter 5, results in the formation of a 

copper silicide layer. This reaction greatly restricts the potential temperature range within which 

the CuCl/KCl melt can be driven to precipitate out an epilayer and logically  constrains the room 

for LPE experimentation with the CuCl/KCl system to the extreme end of recorded (to the 

author’s knowledge) low temperature LPE.

• The reactivity  of CuCl and its readiness to form a visible skin on the surface, which would be an 

impediment to good wetting of the melt on the substrate.

• The discrepancy in the ionicity of the CuCl/KCl melt  and the covalently bonded Si substrate. The 

differing bonding characteristics between the melt and the substrate make wetting of the melt  and 

the substrate an issue as well as impacting on the potential formation of an epilayer.
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• The nature of the CuCl/KCl eutectic system is also an issue. Ideal solvents for LPE should have a 

high solubility  of the solute of a few percent at a workable temperature and have a temperature 

dependance of the solubility, which allows a precise adjustment of the supersaturation 

temperature. In the case of the CuCl/KCl eutectic system, solubility control is within a workable 

margin, however the large saturation of CuCl required to drive the melt into the CuCl and liquid 

phase (see figure 5.1) makes the melt prone to spontaneous nucleation, i.e. three dimensional 

growth within the melt rather than on the substrate. Unfortunately, the family  of CuHa/AHa 

eutectic phase diagrams all follow a similar structure throughout their series and it is probable that 

these systems would manifest the same problem within their respective melts.

While the direct growth of single crystal γ-CuCl on Si has proven difficult, it should be noted that 

the formation of the intermixed textured polycrystalline CuCl/K2CuCl3 material has revealed many 

novel optical properties, notably the strong, broad room temperature emission under PL 

investigation and the extremely bright emission observed from samples under XEOL measurement.

This work made use of the horizontal sliding boat system as well as a novel modified tipping 

adaptation, however there exist a number of alternate LPE boat and system geometries that have 

been demonstrated and were mentioned in chapter 1. Each of these systems was usually designed so 

as to overcome a specific melt problem (e.g., the piston system was used in order to assist with melt 

skin oxide removal) or to further optimize and improve an existing method. The use of a piston type 

system could alleviate issues with wetting of the melt and substrate, but would require a more 

complicated experimental setup than the current LPE system can support. 

Little is known about the K2CuCl3 (and similarly  with K2CuBr3) compounds outside of their 

structural properties. Their optical properties with respect to luminescence studies are particularly 
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lacking, in part due to the difficulty  in their production for study. It is noted from their phase 

diagrams for both the CuCl and CuBr compounds, that there exists a phase within which K2CuCl3/

K2CuBr3 can be directly precipitated from the melt. While the difficulties for such a growth would 

most likely align closely with those difficulties found with the growth of CuCl from LPE as 

discussed, the potential for a better understanding of these compounds would be worthwhile and it 

may be worth pursuing as future research.

Additionally, the LPE of CuBr has not been investigated previously. It is notable that CuBr and 

GaAs are near lattice matched (aCuBr = 5.6773, aGaAs = 5.65) and their relative ionicities are also 

closer (CuBr ionicity is 0.735 relative to GaAs at ~0.31) than the comparative CuCl/KCl and Si 

materials setup.

8.3 CuBr Thin Films & TFELD

This work provides a benchmark for future work on γ-CuBr thin films by giving an overview of the 

characteristics of vacuum evaporated γ-CuBr on Si, glass and ITO coated glass substrates. Using 

this PVD process, the structural and optical characteristics were examined. The γ-CuBr samples 

exhibited strong room temperature PL emission corresponding to the well known Zf excitonic 

emission. Low temperature PL measurements also showed the Zf exciton and the impurity  bound, 

I1, exciton. These measurements were in excellent agreement with previously reported 

spectroscopic studies of CuBr. 

Structurally, our CuBr samples manifested a preferential growth along the <111> crystallographic 

direction on Si, in addition to smaller reflections at <220> and <311>. This confirmed the textured 

polycrystalline nature of the produced film and was consistent with previous work with γ-CuCl 

deposition.
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Using the vacuum evaporation method, we have fabricated and tested a TFELD using γ-CuBr as an 

active layer. From this structure, Cu+ emissions resulting from an applied potential difference (~20 

V peak to peak) across the device were observed. It is tempting to assign the free exciton emission 

to the observed peak at ~418 nm, however the observed spectral peak shape is not characteristic of 

room temperature EL, where inhomogenously broad features are generally observed.

The general ease of deposition of CuBr via vacuum evaporation opens the possibility of deposition 

of highly crystalline γ-CuBr films on a number of potential substrates for blue optoelectronic 

applications. One area for future work with vacuum evaporation of CuBr is the investigation of 

potential dopants. The future use of a co-evaporation technique could also allow for the doping of 

these CuBr films, which could pave the way for a p–n type light emitting CuBr device.

8.5 CuBr/KBr Microdots

Further work investigating the intermixed CuBr/KBr microdots is also promising - as mentioned, it 

may  be possible to scale the feature growth down to the nanometre range. One possible approach 

would be the use of colloidal nano-lithography as a means to create a shadow mask with nanometre 

sized openings. For example, by depositing colloidal nano-spheres on top of a CuBr underlayer and 

then evaporating KBr into the gaps between the colloids, nanometre resolution could be reached. 

The results shown for the work with the CuBr/KBr interaction and likely VLS growth are quite 

remarkable considering the relatively un-sophisticated experimental setup  used (see figure 7.5). It 

can be seen that both the CuBr flux and the sample itself are thermally  coupled, i.e. it  is not possible 

to alter the temperature for either the flux or the sample independently  within this setup. A more 
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sophisticated setup, whereby the temperature of the two systems are decoupled, would allow for 

higher CuBr fluxes while still maintaining the eutectic temperature at the sample.

8.4 CuHa Optoelectronics

As reported in chapter 1, the growth of CuHa single crystals via numerous growth methods such as 

Czochralski, Bridgeman, etc, has been successfully achieved by previous researchers. To date, 

however, no work has been carried out in investigating the optoelectronic potential for Blue/UV 

light emission of these single crystals. It  is envisioned as a follow on project from this work that a 

simple Czochralski or Bridgeman system could be designed using some of the available furnaces 

and utilizing the experiences learned with the LPE construction during the project. Since much of 

the experimental setup for single crystal growth has been undertaken and reported, it is hoped that 

this work can be replicated and ingots of CuHa material produced and cleaved for potential device 

development or as a substrate material. Coupled with recent work [1-3] in this area involving 

doping studies of polycrystalline, vacuum deposited and sputtered CuHa materials, it is likely  that 

n-type doping using Zn could be incorporated directly into the growth melt. A secondary process 

using immersion in an Oxygen plasma could result in p-type doping, which could form the basis for 

a rudimentary p-n type junction.
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Appendix A - XRD Diffraction Data for CuHa and Related 

Compounds

K2CuBr3

                                                                    
2θ

13.487
Intensity H K L

25 0 2 0
14.205
15.211
19.537
21.394
22.783
25.208
25.652
28.587
28.967
29.258
29.828
30.591
31.555
32.729
34.925
36.071
36.884
37.917
40.991
41.745
45.765
46.713
48.376
48.874

10 2 0 0
30 1 2 0
15 2 2 0
15 1 3 0
35 1 1 1
25 3 2 0
30 1 2 1
15 2 2 1
65 0 3 1
75 4 1 0
100 1 3 1
75 2 4 0
60 4 2 0
30 3 2 1
50 1 4 1
15 4 1 1
70 2 5 0
15 4 2 1
15 4 3 1
50 0 0 2
30 3 5 1
40 3 6 0
20 6 0 1
20 1 7 0

K2CuCl3

 
2θ

10.191
14.102
14.752
15.925
20.463
22.303
22.490
23.322
23.516
25.873
25.944
26.575
26.846
28.424

  Intensity  H K L 
1 1 1 0

297 0 2 0
524 2 0 0
421 1 2 0
95 2 2 0
104 0 1 1
17 1 3 0
82 3 1 0
176 1 1 1
103 2 0 1
95 2 3 0
393 1 2 1
271 2 1 1
24 0 4 0
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29.585
29.757
30.127
30.615
31.055
31.677
32.169
33.070
33.701
34.064
36.363
36.493
36.493
36.787
36.787
37.502
37.745
38.146
38.861
38.861
39.581
40.197
41.618
41.896
42.484
42.484
42.598
42.857
43.038
43.435
44.015
44.651
45.306
45.512
45.738
45.849
45.849
46.170
46.338
47.132
47.132
47.687
47.687
47.918
48.103
48.785
49.112
49.112
49.214
49.519
50.502
50.502
51.060
51.060

528 2 2 1
178 4 0 0
176 0 3 1
186 4 1 0
999 1 3 1
45 3 1 1
303 2 4 0
632 4 2 0
20 2 3 1
212 3 2 1
83 3 4 0
187 1 4 1
187 1 5 0
52 4 0 1
52 4 3 0
16 4 1 1
116 3 3 1
13 5 1 0
208 2 4 1
208 2 5 0
155 4 2 1
22 5 2 0
2 4 4 0
27 0 5 1
143 3 4 1
143 3 5 0
181 1 5 1
81 4 3 1
432 0 0 2
64 5 3 0
79 5 1 1
2 2 5 1
4 6 0 0
21 0 2 2
39 2 0 2
33 5 2 1
33 6 1 0
35 1 2 2
19 2 1 2
2 4 4 1
2 4 5 0

110 5 4 0
110 6 2 0
175 3 5 1
98 2 2 2
162 5 3 1
20 1 3 2
20 3 6 0
26 1 6 1
15 3 1 2
43 6 0 1
43 6 3 0
110 2 6 1
110 6 1 1
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51.201
51.496
52.229
52.385
52.728
52.728
52.979
53.198
53.352
53.352
53.736
53.939
53.939
54.034
54.355
54.733
55.326
55.326
55.525
55.700
56.269
57.430
57.576
57.704
57.956
57.956
58.105
58.576
58.816
58.816
59.005
59.005
59.365
59.365
60.070
60.070
60.348
60.702
60.999
61.413
61.600
61.799
62.072
62.288
62.635
62.802
63.405
63.751
63.751
64.264
64.426
64.426
64.742
64.742

61 3 2 2
14 1 7 0
9 4 5 1
11 0 4 2
9 6 2 1
9 5 5 0
11 1 4 2
42 4 0 2
50 2 7 0
50 4 6 0
47 4 1 2
40 3 3 2
40 7 1 0
19 3 6 1
6 6 4 0
87 2 4 2
199 4 2 2
199 6 3 1
116 7 2 0
24 0 7 1
107 1 7 1
111 5 5 1
86 3 4 2
24 1 5 2
93 2 7 1
93 4 6 1
79 7 3 0
32 7 1 1
21 0 8 0
21 5 1 2
12 6 4 1
12 6 5 0
58 2 5 2
58 1 8 0
8 4 7 0
8 7 2 1
11 5 2 2
70 3 7 1
13 2 8 0
1 4 4 2
5 7 4 0
11 8 0 0
46 3 5 2
27 8 1 0
31 0 6 2
41 5 3 2
56 6 5 1
35 8 2 0
35 1 8 1
3 6 0 2
10 6 6 0
10 4 7 1
4 2 6 2
4 6 1 2
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64.864
65.320
65.899
65.899
66.166
66.166
67.299
67.299
67.576
67.743
67.966
67.966
68.506
68.803
69.136
69.136
69.266
69.266
70.090
70.335
70.335
70.645
70.865
70.865
71.038
71.038
71.191
71.429
71.429
71.607
71.607
72.402
72.726
72.917
73.129
73.129
73.457
73.457
74.589
74.589
74.771
74.973
75.068
75.068
75.219
75.307
75.600
75.600
75.849
76.054
76.054
76.214
76.405
76.553

7 5 7 0
5 2 8 1
30 7 4 1
30 7 5 0
74 5 4 2
74 6 2 2
20 4 8 0
20 3 6 2
16 1 9 0
11 1 1 3
3 3 8 1
3 8 2 1
13 6 3 2
5 2 0 3
13 2 9 0
13 1 2 3
19 2 1 3
19 1 7 2
36 7 5 1
24 8 3 1
24 5 5 2
23 2 2 3
34 2 7 2
34 4 6 2
41 7 6 0
41 9 1 0
23 0 9 1
68 4 8 1
68 1 3 3
36 3 9 0
36 1 9 1
1 9 2 0
12 7 2 2
8 2 3 3
19 3 2 3
19 2 9 1
8 8 4 1
8 8 5 0
12 1 4 3
12 9 3 0
10 4 0 3
27 7 3 2
28 7 6 1
28 9 1 1
17 4 1 3
16 5 6 2
23 0 8 2
23 3 9 1
24 5 8 1
16 2 4 3
16 1 8 2
8 1 10 0
7 9 2 1
13 4 2 3
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76.712
77.226
77.472
77.472
77.668
78.081
78.081
78.260
78.475
78.585
78.585
78.700
78.763
79.014
79.417
79.574
79.870
80.019
80.019
80.308
80.620
80.809

8 4 7 2
2 6 8 0
15 8 5 1
15 2 8 2
23 2 10 0
6 7 4 2
6 0 5 3
8 8 0 2
10 3 4 3
14 1 5 3
14 9 3 1
11 8 1 2
11 4 3 3
10 4 9 1
4 5 9 0
8 5 1 3
6 10 0 0
15 8 2 2
15 3 10 0
8 10 1 0
2 6 6 2
8 7 7 1
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Appendix B - Additional AFM Images of CuBr/KBr Microdots
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Figure B1 - Microdot feature on ~150nm γ-CuBr underlayer.

Figure B2 - Microdot feature on ~300nm γ-CuBr underlayer.
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Figure B3 - Microdot feature on ~150 nm γ-CuBr underlayer. A 
notable tweezer scratch can be seen running horizontally.

Figure B4 - Microdot feature on ~150nm γ-CuBr underlayer.
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Figure B5 - Microdot feature on ~300nm γ-CuBr underlayer.
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