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Abstract
The topic of this thesis is lifelogging, the automatic, passive recording of a person’s

daily activities and in particular, on performing a semantic analysis and enrichment

of lifelogged data. Our work centers on visual lifelogged data, such as taken from

wearable cameras. Such wearable cameras generate an archive of a person’s day taken

from a first-person viewpoint but one of the problems with this is the sheer volume of

information that can be generated. In order to make this potentially very large volume

of information more manageable, our analysis of this data is based on segmenting each

day’s lifelog data into discrete and non-overlapping events corresponding to activities

in the wearer’s day. To manage lifelog data at an event level, we define a set of

concepts using an ontology which is appropriate to the wearer, applying automatic

detection of concepts to these events and then semantically enriching each of the

detected lifelog events making them an index into the events. Once this enrichment

is complete we can use the lifelog to support semantic search for everyday media

management, as a memory aid, or as part of medical analysis on the activities of

daily living (ADL), and so on. In the thesis, we address the problem of how to select

the concepts to be used for indexing events and we propose a semantic, density-

based algorithm to cope with concept selection issues for lifelogging. We then apply

activity detection to classify everyday activities by employing the selected concepts

as high-level semantic features. Finally, the activity is modeled by multi-context

representations and enriched by Semantic Web technologies. The thesis includes an

experimental evaluation using real data from users and shows the performance of

our algorithms in capturing the semantics of everyday concepts and their efficacy in

activity recognition and semantic enrichment.
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Chapter 1

Introduction

The idea of recording our everyday lives is not new to us. The writing diary is one

way we used to record the experiences of individuals and the diary has been handed

down from generation to generation for centuries. With the pervasive application of

computing technology, the form we use to record our daily experiences is changing.

Digital blogging is an example of a new form of diary which has become very popular

recently. While the traditional diary is usually private and intended for our own

use, blogging is the opposite in that it is usually open to the public and used for

sharing one’s experiences, feelings, opinions, comments and so on. Blogging is a type

of on-line-based recording of experiences/memories intended for sharing and reliving

where everyday activities can be shared. Most blogging today is text only although

some are posted with multimedia information such as digital photos and video clips.

With diaries and blogging, these can only record or document a small part of one’s

activities by manual selection and editing of content whereas the idea of automatic

life recording tries to record every detail of our everyday lives. Can we efficiently

record the aspects of our lives with the advanced sensing devices? Can we efficiently

access the content of such recordings and find useful information from a large volume

of life logs? The current research area of lifelogging is trying to answer these two

1



questions.

1.1 Introducing Lifelogging

The earliest motivation behind automatic generation of personal digital archives can

be traced back to 1945 when Bush expressed his vision [32] that our lives can be

recorded with the help of the technology and the access can be made easier to these

‘digital memories’. This new way of autobiography generation has become more and

more realistic recently, with the advances of lightweight computing devices and highly

accurate sensors. Mobile devices are approaching a more capable computing ability,

dwarfing the most powerful computers in the past. The low price and the embedded

nature of smaller and lightweight sensors (cameras, GPS, Bluetooth, accelerometers,

etc.) make computing devices portable or even wearable to enable life recording to

be done unobtrusively. The large volume of data storage and high speed wireless

networks needed for this help the mobile platform to turn into people-centric sen-

sors capturing multidimensional sensory inputs besides spatial and temporal data.

Lifelogging is the term describing this notion of digitally recording aspects of our

lives, where the recorded multimedia content is the reflection of activities which we

subsequently use to obtain the meaning of daily events by browsing, searching, or

querying.

1.1.1 Lifelogging Based on Context-Sensing

To build a mapping between the real world and the digital world, various contexts

can be recorded for the capture of the true meaning of daily activities. Here, con-

texts refer to the information which can be used to characterize a situation. A large

variety of contexts can be used in lifelogging such as textual information, photos,

audio and video clips, environment information (light, temperature, pressure, etc.),

2



bio-information (heart rate, galvanic response, etc.) and spacial information (loca-

tion, acceleration, co-presence, etc.). These contexts are changing dynamically and if

captured then they can be used as cues to our activities and thus help with accessing

information in our personal digital libraries.

To develop this further, a large number of digital devices with sensors can be

applied to capture the above-mentioned contexts. Among all the devices emerging,

the digital camera is the most widely-used lifelogging device. Within the lifelogging

community, cameras are often used as wearable devices to record still images [148] or

videos [77, 110, 27]. Audio-based capture devices are also employed in some research

like [165], [27] and [164]. In order to reduce the listening time spend trying to find a

relevant segment of sound, in [164], the authors conducted an experiment combining

speech recognition transcripts and time-compressed audio without sacrificing user

comprehension.

Though location is not sufficient to fully reflect the semantics of events, it still at-

tracts much interest in research like that reported in [13], [70], [71] and [60], to name a

few. Among the tools used for location-awareness, Global Positioning System (GPS)

is preferred as the first choice due to its accuracy and independence from infrastruc-

ture. Besides, GPS offers a wider range of location sensing than other fixed sensors

which are infrastructure-dependent such as UbiSense 1. To deal with the problem

of GPS dropout when satellite signals are not visible such as when inside buildings,

WiFi-based and GSM-based localizations have also been introduced. An alternate

location scheme is used in [60], by combining different ways of localization to solve

the application issue of energy consumption. [55] fused information from cell tower

and discovered Bluetooth IDs to support localization for both outdoors and indoors.

In addition to indoor localization, friendly names and MAC addresses of Bluetooth

devices are often used as a context of people in proximity. [36] employed Bluetooth
1http://www.ubisense.net
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devices to measure event similarity by analyzing Bluetooth presence, duration and

familiarity. The experiment was carried out in MIT, using Bluetooth-enabled mobile

telephones to identify the deep social patterns in user activities [55].

The accelerometer is another popular sensor which can easily be embedded in mo-

bile devices to sense part of our physical contexts. [27] uses two triaxial accelerometers

worn on the left side of the hip and the wrist of the dominant hand respectively, for

activity classification. A similar application of accelerometers is carried out in [16].

In [133], activity classification is done using lower sampling rate accelerometer only,

at the frequency of 1 Hz to facilitate longer battery usage.

Besides the sensors we mentioned above, some other sensing devices are also avail-

able for capturing user context such as heart rate, galvanic skin response and core

body temperature. BodyMedia is an off-the-shelf device from BoydMedia Inc.2 and

ActiHeart from Cambridge Neurotechnology has the sensing capability of the combi-

nation of heart rate and motion 3.

In terms of the deployment of sensing devices, modern lifelogging can be catego-

rized roughly into in-situ lifelogging and wearable lifelogging. In-situ lifelogging can

also be simply described as lifelogging in instrumented environments. This means

the activities can only be captured through installed sensors in the local infrastruc-

ture, therefore the recording is highly dependent on instrumented environments [116].

In wearable lifelogging, the sensing devices are portable and carried by the wear-

ers. This is usually done by harnessing the wearers with head-mounted cameras

[77, 110] or cameras mounted in front of chests [27, 148]. It’s not hard for us to

notice that, using digital cameras or camera-enabled mobile devices forms the main

stream of this kind of lifelogging. This is because visual information contains more

semantics of events which can be used to infer other contextual information like

‘Who’, ‘What’, ‘Where’ and ‘When’. Visual lifelogging is the term used to describe
2http://www.bodymedia.com
3http://www.camntech.com/
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both image-based and video-based lifelogging. Example visual lifelogging projects are

Steve Mann’s WearCam [108, 109, 110], the DietSense project at UCLA [136], the

WayMarkr project at New York University [30], the inSense system at MIT [27] and

the SenseCam [74, 148] developed at Microsoft Research Cambridge. Though these

projects use various mobile devices for digital logging, they have the common feature

of using cameras to capture still images or videos, to resemble the views of wear-

ers. Note that camera-embedded mobile phones are employed in both the DietSense

and WayMarkr projects for diet monitoring and experience recall. The SenseCam

device is a sensor-augmented wearable camera designed to capture a digital record of

the wearer’s day by recording a series of images and capturing a log of sensor data.

SenseCam has two of the main components of its operation which are sensing its

environment and using a built-in still camera to record images. It has been shown

recently to be effective in supporting recall of memory from the past for memory-

impaired individuals [148]. Due to its advantages of sensing capabilities, light weight

and unobtrusive logging with long battery life, we employ SenseCam as the visual

recording device in our work, as shown in Figure 2.1. More details about SenseCam

will be given in Section 2.2, Chapter 2.

1.1.2 Typical Applications of Lifelogging

Due to its various advantages, lifelogging may be needed in many areas to satisfy

the needs of different groups. The typical applications of lifelogging, especially visual

lifelogging can be summarized as an automatic diary, a tourism guide, a memory aid,

for diet monitoring, for ADL analysis, or for work-related recording and so on. The

details on some of these are as follows:

Digital diary: As we described above, in traditional diary writing or blogging,

the documentation is usually carried out manually and involves material choices. The

selection of contents and inclusion of value choices need to be considered to decide
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what is important and worth recording in the diary. An efficient lifelogging recording

and summarizing tool could fulfill this task automatically, in addition, with heteroge-

nous multimedia data. To deal with the very large personal data collection, intelligent

techniques are necessary for structuring, searching and browsing of this collection for

locating important or significant events in a person’s life. In [96], three stages are

identified for the construction of a digital diary as the processes of capturing and

structuring SenseCam images, for example, and then displaying them to an end user

to review. In [61], an animated slideshow composed of SenseCam images is presented

as a form of a lightweight story telling, along with associated location information

recorded by GPS. The main challenges and considerations are also discussed in [35]

to archive meaningful autobiographical digital information from lifelog collections. In

[47, 53], image features are explored in conjunction with sensor readings such as ac-

celerometer data to cluster a day’s worth of SenseCam images into meaningful events

allowing quick digital diary browsing.

Tourism Guide: Lifelogging technologies can be adopted in tourism applications

as many lifelogging systems have enabled the capability of location sensing. Real-time

location tracing can be used to provide many services depending on the recognition

of wearer’s context semantics. [60] presented an architecture and implementation of

a mobile system, called Micro-Blog, for global information sharing, browsing, and

querying. A scenario is also illustrated in [60] for the interaction with the system in

the application of tourism, by playing audio-visual experiences shared by tourists. In

[172], the area of tourism for SenseCam is highlighted, which is then followed by [26],

in which museum experience enhancement is explored with museum artifact images

taken by SenseCam.

Memory aid: Memory aid is a potential medical benefit which can be supported

by lifelogging technologies. By recording various aspects about our recent daily ac-

tivities, lifelogging will offer an approach for wearers to re-experience, recall or look
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back through recent past events. In [74], a user study with a patient suffering from

amnesia is conducted with SenseCam images and highlights the usefulness of these

images in reminiscing about recent events by the patient. In [148], evidence is found

that SenseCam images do facilitate people’s ability to connect to their recent past.

The authors argued that lifelogging systems capture a set of cues (data) which can

trigger the remembering of human experience, rather than capture the human experi-

ence. In [65], the challenges faced with an extensive period of Human Digital Memory

(HDM) generation (2 years and 2 million images) are presented and architectural re-

quirements for managing such archives are also illustrated. Similar applications of

turning lifelogging into a short-term memory aid can also be found in [23], [165] and

[164].

Diet monitoring: Diet monitoring is another application of lifelogging for med-

ical purposes. Though dietary patterns have been proved as a critical contributing

factor to many chronic diseases [136], traditional strategies based on self-reported in-

formation do not fulfill the task of accurate diet reporting. More usable and accurate

ways to analyze dietary information about an individual’s daily food intake are badly

needed. Visual media like images and videos provide hugely increased sources of sen-

sory observations about human activities among which food intake can be monitored

for diet analysis. The application of visual lifelogging in diet monitoring can support

both patients with obesity and health care professionals analysing diets. DietSense

[136] is an example of such a lifelogging software system using mobile devices to sup-

port automatic multimedia documentation of dietary choices. The captured images

can be post facto audited by users and researchers with easy authoring and dissem-

ination of data collection protocols [136]. Professional researchers can also benefit

in performing diet intake studies with the help of lifelog browsing and annotation

tools. Both audio recorders and cameras are combined in [82]. Their usual practices

suffer from under-reporting because some subjects were not confident with the use of
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a tape recorder and camera. Other research into diet recording by employing camera-

equipped mobile devices, such as personal digital assistants (PDAs) or mobile phones,

can be found in [166], [57], [88], etc.

ADL analysis: The analysis of activities of daily living (ADL) is another appli-

cation of lifelogging. More concerns is now being shown in modern society about the

individual health and well-being of everyday life. However, any long-term investiga-

tion into daily life comes across lots of difficulties in both research and the medical

treatment area. Occupational therapy aims to analyze the correlation between time

spent and our actual health, and there is a growing body of evidence indicating the

relationship [94, 111]. Observational assessment tools are needed to correctly estab-

lish care needs and identify potential risks. Long-term daily routines and activity

engagement assessments are necessary to evaluate the impact on activities of daily

living caused by diseases or old age, hence to provide a proper programme towards

the needs of each patient. While traditional self-reporting or observational measures

are time-consuming and have limited granularity, lifelogging can provide an efficient

approach to providing broader insights into activity engagement. Lifelogging is a tech-

nology to automatically record everything happening to us, hence it can provide an

accurate way to measure activity engagement and affecting factors. Project IMMED

[112] is a typical application of lifelogging to ADL, the goal of which is assessing

the cognitive decline caused by dementia. Audio and video data of the instrumented

activities of a patient are both recorded in [112] and indexed for medical specialists’

later analysis. In [84], a wearable camera is used to capture videos of patients’ activ-

ities of daily living. A method for indexing human activities is presented for studies

of progression of the dementia diseases. The indexes can then be used for doctors to

navigate throughout the individual video recordings in order to find early signs of the

dementia in everyday activities. The same rationale is also reported in [113].

Besides the above described areas, lifelogging can also be applied in others areas
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like education [17, 58], work-related task observation [33, 91], accessibility within

business [85], and so on. The main challenge of applying lifelogging to all above

areas is how to access and manage everyday activity media, that is how to build

an efficient index for activity retrieval and interpretation. This is discussed in the

following sections.

1.2 Research Questions

The application of lifelogging, especially visual lifelogging, in activity analysis im-

poses challenging problems to multimedia data retrieval due to the large volume of

lifelogging data. In addition, a large part of the data are repetitive due to the na-

ture of activity engagement with repeated images of the same or nearly the same

thing. Undersampled visual images such as traditional stills camera images have the

drawback that the resulting photographs may end up being quite staged rather than

forming a simple record of events as they happened [74]. While digital video can be

applied in lifelogging for activity recording, continuously recording of digital video

will come up with more issues like large data volume and privacy problem. Unlike a

regular digital camera, SenseCam has a number of different electronic sensors built

in, which can be used to automatically trigger a photograph to be taken when certain

changes in sensor readings are detected. The internal timer will also be used to trig-

ger photograph capture at the rate of every 30 seconds. This rate helps to decrease

data volume while the details of activity engagement can also be recorded. More

important, more interesting changes in the wearer’s environment like a significant

change in light level, or the detection of body heat in front of the camera can be used

to trigger the capture. This capturing rate has been demonstrated to be efficient in

various application such as memory aid [148, 23], life trait analysis [52], etc. and we

will also employ this capturing rate control mechanism. It is important to realize
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that to record every activity at this rate will also generate a large amount of data

for a single typical day, not to say for a longer term, for example, a month or even a

year. Here, a typical day’s digital log means to record every activity the wear carries

out on that day, for example, from going to work until before preparing to go to bed.

Without efficient indexing and retrieval tools, the user might have to look through

these images one by one, just to find the event of interest ! Definitely, nobody can

afford such a huge and tedious effort. Besides, the movement of the wearer and the

resulting poor quality visual data make it difficult to automatically categorize and

index the media.

Text retrieval is a large branch of information retrieval and traditional text-based

searching principles have been well founded since they started in the early 1960s.

The task of text-based retrieval is to match the user query against a set of free-text

records, which are organized as documents like newspaper articles, web pages, video

manuscripts and so on. The very successful technologies in text retrieval like term

weighting [8], the Vector Space Model [146], the Language Model [131], PageRank

for assigning importance based on links [126], to name a few, are adopted in many

applications. Furthermore, text retrieval has been proved to be efficient on a large

scale by current Web search engines such as Google 4, Yahoo! 5, Baidu 6, Bing 7, etc.,

in which text-based retrieval is the fundamental basis. In multimedia retrieval, image

or video data is still indexed by text fields which are called metadata. One way to add

metadata is by user manual annotation. However, this approach is not realistic for

large volumes because it is tedious and time consuming. Besides, consistent manual

annotation for unstructured daily media is impossible and the text-based retrieval

technologies can not provide search engines with high quality for multimedia data.

Another way to add metadata is to associate textual descriptions with the multimedia
4http://www.google.com
5http://search.yahoo.com
6http://www.baidu.com
7http://www.bing.com

10



content by automatic approaches such as recognition and classification, automatic

speech recognition (ASR), closed captions, and text in video (using optical character

recognition) OCR text. However, for lifelogging, these indexing technologies can not

be directly applied or at least can not perform as well as in the TV news broadcasting

domain for example, when the multimedia data are not well edited and are affected

by poor image quality and high visual diversity. Therefore, the textual metadata

extracted from multimedia is usually scarce and noisy, and so is far from being enough

to satisfy the retrieval use in lifelogging.

Due to the explosion of multimedia quantities such as archived TV broadcast

videos, various multimedia resources released on the Internet, intense work in multi-

media retrieval domain has aimed to provide efficient and accurate functionality for

users to access the desired information. Content-based multimedia retrieval utilizes

the low-level perceptual features for multimedia queries. These low-level features

used can be extracted from different modalities, for example, textual features [29, 7]

obtained from closed captions, speech recognition which can be applied to videos, or

images features [62, 105, 24] like color, texture, edges, etc. In content-based multi-

media retrieval, these low-level features are extracted from multimedia objects and

mapped directly to user queries. The notion of concepts is handled implicitly in

content-based retrieval as described by [156]. The semantic gap between low-level

features and user expectation still exists and turns out to be the focus of concept-

based multimedia retrieval. In concept-based retrieval, a set of concepts are first

detected by statistical approaches which build mappings between low-level features

and concepts. Then the detected concepts are fused for more complex retrieval topics

[37, 124, 156].

The performance of automatic detection of concepts in image and video data has

been improved to a satisfactory level for some generic concepts like indoor, outdoor,

faces, etc. on high quality data from broadcast TV or movies. The progress in
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the development of semantic concept detection for videos has been witnessed in the

annual TRECVid benchmark [152]. Every year, TRECVid benchmark activities not

only provide a large set of annotated video samples, but also provide an evaluation

campaign in which dozens of research groups can measure the performance of their

retrieval systems using the same metrics and data collection. As reported in [99],

the automatic detected concept in the TV news broadcasting domain can already be

scaled to 1000+, for which 101 concepts are defined in [159] and 834 in [119]; 491

concepts are detected in [157], 374 in [39] and 311 in [99].

However, the large effort in the news broadcasting domain can not be applied

directly, at least not very well, to the everyday activity retrieval domain. Among

the above mentioned semantic lexicons, the Large-Scale Concept Ontology for Mul-

timedia (LSCOM) is the most comprehensive taxonomy developed for standardizing

multimedia semantics in the broadcast TV news domain [119]. The construction

of LSCOM tries to answer the question: What set of semantic concepts should the

community focus on as it explores new automated tagging techniques ? [119] In the

concept selection procedure, the LSCOM consortium tried to bring together experts

from multiple communities like multimedia, ontology engineering and others with

domain expertise. Multiple criteria are also considered which are utility, coverage,

feasibility, and observability [119]. As a framework, the LSCOM effort also produced

a set of use cases and queries along with a large annotated data set of broadcast news

video. But many of the LSCOM concepts, for example weapon, government leader,

etc., are never useful or even encountered in the lifelogging domain so while the hier-

archical structure of LSCOM might have been useful, the actual concepts were not.

This gives rise to our first research question in this thesis.

(RQ1) What concept ontology needs to be defined to satisfy the needs for indexing

everyday multimedia in lifelogging ?

Modern multimedia retrieval approaches index data with a predefined lexicon and
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enable semantic reasoning on the concept set to facilitate high-level user queries. To

bridge the sensory gap between raw data and user expectations, a set of concept

detectors is usually developed to represent the high-level metadata. In the retrieval

procedure, user’s query is broken down into a group of concepts which can reflect the

query semantics. A ranked list of results, for example shots for news broadcasting,

are returned based on the confidence of the concept detector. In order to provide

satisfactory retrieval performance, we need to solve the problem of mapping ambiguity

between everyday activity and concepts. This leads us to another research question:

(RQ2) How can we automatically select proper concepts for a given activity

topic ? How can we perform semantic reasoning in the lifelogging domain ?

It is important to realise that a single lifelog event such as sitting on a bus,

walking to a restaurant, eating a meal, watching TV, etc. consists of many, usually

hundreds, of individual SenseCam images. In the case of sitting on a bus, where

there is little movement by the wearer, most SenseCam images are the same whereas

cooking, for example, where the wearer is moving around, generates a larger range of

dissimilar images. This is very different from pre-edited multimedia such as broadcast

TV news video or movies for which the frames in the same shot are visually very

similar. The visual diversity of lifelog media gives rise to the difficulty of accurate

concept detection, and furthermore the burden of activity detection and semantic

representation. The corresponding research question which frames this is:

(RQ3) How can we classify different activities and represent them when there are

severe visual diversities ?

The semantics we can infer from lifelog media is usually limited compared to the

proliferation of online knowledge resources such as Wikipedia, Facebook and Flickr

to name a few. The development of modern Semantic Web technologies makes it

easier to use the large amount of online data repositories. The Resource Description

Framework (RDF) is the Semantic Web formalization language optimized for infor-
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mation sharing and interchange. RDF models each statement as a triple consisting

of three parts: subject, predicate, and object. While the web is extended with a data

commons by publishing various open datasets as RDF on the Web and by setting

RDF links between data items from different data sources, by September 2010, these

datasets consisted of over 25 billion RDF triples, which were interlinked by around

395 million RDF links. The standardized data representation could facilitate the

enrichment of lifelogging activities. Before we build efficient semantic enhancement

application, we have to address another research question:

(RQ4) How can we enhance the semantics of lifelogging activities using Semantic

Web technologies ?

These four research questions help us to formulate an overall hypothesis for our

work, namely that “Semantic Web technologies can support the interpretation of

event semantics in lifelogging”. This hypothesis reflects the notion that we will use

Semantic Web technologies in our work of mining lifelog event semantics. However,

this does not mean we will only use the technologies from the Semantic Web domain

to address our research questions. On the contrary, Semantic Web technologies will

be assimilated with other multimedia retrieval technologies in our work. We use the

word ‘support’ in our hypothesis with the meaning that Semantic Web technologies

can be brought into the process of event analysis in lifelogging and achieve satisfactory

performance in semantic interpretation.

1.3 Thesis Structure

The above proposed four research questions and overall hypothesis are addressed in

the following chapters in the thesis. The thesis expands the research questions with an

overview of current research methodologies on lifelogging and multimedia information

retrieval. Then the development of new algorithms and the modeling of research
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problems are described in detail as well as the demonstration of our experiment

results and application performance.

Chapter 2 gives a brief background description of state-of-the-art methodologies in

lifelogging research and multimedia retrieval. The prevailing semantic indexing and

annotation procedures are discussed to illustrate the potential benefit of concept-

based multimedia retrieval applied to lifelogging. In addition, the difference between

the lifelogging domain and traditional multimedia are compared to realize the new

challenges in lifelogging retrieval. The hypothetical semantic interpretation hierarchy

underlying our research is also briefly introduced at the end of the chapter.

Chapter 3 first investigates everyday activities and elaborates the selection of tar-

get activities for our lifelogging semantic analysis. Then a density-based semantic

concept selection algorithm is introduced to utilize concept similarity reasoned from

ontologies. The concepts are then re-ranked with candidate concepts selected by ag-

glomerative clustering, used as seeds. In this chapter, semantic reasoning on prevalent

lexical and contextual ontologies are also discussed.

Chapter 4 elaborates our user experiment to generate a set of concepts in regard

to everyday activities, and then demonstrates experiments on semantic density-based

concept selection algorithm. Various ontological similarity measures are compared

based on the performance of concept selection. The evaluation is first carried out on

everyday concept selection in lifelogging. To test the generality of our algorithm, we

also assessed the performance on a concept set defined in the TRECVid benchmark,

which focuses on the TV news broadcasting domain. The efficacy of our algorithm

in semantic reasoning by ontologies and selection of relevant concepts, is shown by

experiment results.

Chapter 5 addresses the issues of everyday activity detection and event-level con-

cept fusion. A concept-based activity detection algorithm is proposed in this chapter,

modeling the temporal dynamics of concept appearance with a HMM-based approach.
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The performance of our activity detection algorithm is demonstrated by assessing on

concept detectors with various levels of detection accuracy. To utilize the concept

relationships for semantic fusion, the ontological multi-concept classification is also

explored, followed with the interestingness-based concept aggregation for events. Se-

mantic concept interestingness is calculated by fusing image-level concepts which are

then exploited to select a representation for the semantic event correlated to various

event topics. The efficacy of our algorithm is shown in fusing semantics at the event

level, and in selecting event representations in visual lifelogging.

Chapter 6 starts with the modeling of events as an ontology in a multi-context

point of view. Each event is modeled as an instance of event ontology and formalized

with prevailing ontologies to incorporate context semantics extracted from raw sensor

readings. Event semantic enhancement in this chapter is based on this lifelogging

event model to query most relevant semantics from online knowledge repositories of

linked open data through Semantic Web technologies. The enriched event semantics is

demonstrated and evaluated in this chapter to show the efficacy of this enhancement

methodology.

Chapter 7 ends this thesis with some conclusions as well as future avenues for

later research.

16



Chapter 2

Background to Semantic

Interpretation of Lifelogging

2.1 Introduction

It has become more and more practical for researchers to investigate the underlying

patterns of our daily lives following the development of computer networks, large vol-

ume databases, machine learning technologies and the wide deployment of computing

devices. Especially, many lightweight devices such as the mobile phone are endowed

with sensing capabilities through built-in cameras and other heterogeneous sensors.

These widespread mobile devices have already formed an infrastructure to gather

data and allow us to mine the patterns of human life and social characteristics.

The vision of using technology to record everything that happens to us is called

lifelogging. Steve Mann is a pioneer who tried to capture what he saw through

video cameras mounted on his head [108] and these have evolved from ‘chunky’ head-

mounted cameras to discreet recorders built into eyeglasses. Microsoft Research in

Cambridge have used the SenseCam to capture everyday life and have evidence that

these images can improve peoples’ memory abilities [148]. In MIT, an experiment
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was carried out using Bluetooth-enabled mobile telephones to measure information

context in order to identify the deep social patterns in user activities [55]. In [164],

Vemuri and Bender presented a memory re-finding use of lifelogging which is called

“iRemember”. In their research they recorded audio clips as the main information used

to navigate memory. In [127] this kind of technology is also employed to provide real-

time transportation information to individuals with mild cognitive disabilities and

improve efficiency and safety as well. Mobile phones and other kinds of digital devices

are very popular nowadays and form a large computing resource and an ubiquitous

infrastructure for our digital life. The DietSense project [136] at UCLA makes use

of a mobile phone with a camera embedded to capture pictures automatically. The

images collected as the log of a wearer’s mealtimes are used to analyze the diet intake

in order to give feedback and to improve diet choices. The WayMarkr project at New

York University also makes use of a mobile phone affixed to a strap to take pictures

automatically [30]. Furthermore, social dynamics are studied in [55] by using mobile

Bluetooth as the measure in lifelogging. Although they are successful in solving some

design considerations, the algorithm for detecting contexts lacks flexibility which can

not adapt to the semantics of contexts dynamically with the limited use of context-

awareness. Context information is not fully used to receive more flexible approaches

of context classification and recognition for labeling the semantic meaning of the user

events.

What all this literature points to is a very active community in lifelogging, explor-

ing a range of techniques and using a variety of lifelogging devices. Yet lifelogging

needs to be about more than just the capture technology used to capture the lifelogs,

it needs to be about the techniques used to analyse the lifelogs and provide search

and browsing and navigation through those lifelogs. Thus indexing and retrieval are

just as important as the lifelog capture devices.

In order to manage accumulated lifelogs we need clever information management,
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and much of the related work has been done in multimedia retrieval where low-level

feature-based multimedia queries using image features such as color, texture, edges

and other attributes have been studied extensively. However, there is no means to

reflect the coincidence between features extracted from visual data and the inter-

pretation that they have for the user in a given situation [154]. Bridging the gaps

between different levels of semantics is the challenge for researchers in content-based

information retrieval. In multimedia information retrieval, state-of-the-art techniques

use statistical approaches to map low-level features to concepts which are then fused

to relate to high-level query topics [156]. The whole task is generally broken down

into two steps: the detection of a set of concepts and the association of concepts with

queries. This modern methodology facilitates an understanding of topic queries and

low-level features by analyzing the mapping in a semantic way. To build a large-scale

ontology and lexicon for semantic gap filling, large efforts are done for activities like

LSCOM (Large-Scale Concept Ontology for Multimedia) [119, 6], TRECVid [152]

and MediaMill’s 101 concepts [159]. According to the TRECVid benchmark [152],

acceptable results have been achieved already in many cases particularly for concepts

where there exist enough annotated training data. Based on concept detection, en-

couraging improvement has been reported showing the efficiency and the effectiveness

of concepts for higher level retrieval [156, 124].

Semantic Web technologies have developed in recent years with the goal of mod-

eling the semantics in a machine understandable approach. Due to the standardized

format and capacity of efficient semantic description, ontology modeling is employed

in providing a concrete semantics for information retrieval. In [117], conceptual model

and annotation ontology are used for video representation and retrieval. A large-scale

concept ontology has been developed for standardizing multimedia semantics in the

broadcast news domain. As a framework, the LSCOM effort also produced a set

of use cases and queries along with a large annotated data set of broadcast news
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video [119]. In topic-related retrieval, Yang [179] has tested different measures in

video shot retrieval. The results shows that difference in topics/tasks can vary the

measured performance. The concepts detected by classifiers are usually fused for

topic-related filtering. However, the accuracy of detection will affect the utility of

filtering which shows the high demand from classification accuracy [43]. In [104] and

[75], an ontology for video retrieval is addressed while an image retrieval ontology is

investigated in [167]. As a hierarchical ontology database, WordNet is used in [76] and

[75] to couple image analysis and concept detection in the real world by creating links

between visual and general concepts. The entities in WordNet are thus extended with

image properties to build a mapping of perceptual elements and concepts. Ontolo-

gies which contains visual information can then be formed to facilitate annotation for

broad domain requirements. Similarly, Snoek [156] tries to build a direct link between

generic concept detectors and WordNet synsets. Besides general purpose ontologies

like WordNet, some specific domain ontologies have also been built and show effect in

representing domain concepts and relations in a formalization of a semantic network.

The usefulness is also investigated in image or video retrieval by importing domain

ontologies into information matchmaking which involves the combination of text de-

scription and image features [167]. In [104], a domain-dependent concept ontology

is built to enable multi-level modeling of semantic video concepts for medical video

retrieval.

What all this work represents is a considerable effort in building and using on-

tologies in the task of (visual) multimedia information search. Mostly, ontologies

have been useful assets in the search task but their drawbacks are in the large efforts

needed in constructing them, and the fact that there isn’t a single best way to use

them in retrieval.

In the rest of the thesis, we will provide details of our work in developing our

approaches to lifelogging and dealing with such issues as concept selection, concept
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detection, semantic event interpretation as well as enhancement of user events. During

the description, state-of-the-art technologies will be compared and our further working

plans are also discussed in company with details for experiments and evaluation.

2.2 Multimodal Context-Awareness

As an integrated part of our lives, our contexts are changing dynamically and if we can

capture some parts of these contexts then these can be used as cues for our activities.

By ‘contexts’ we mean the features of where we are, who we are with, what we are

doing and when we are doing it. Since the context includes various aspects of the

environment in which the user interacts with digital devices, the plurality of context

can be applied intelligently to detect meaningful changes in the environment. The

increasing adoption of sensors for mobile phones makes it possible to gather more

context information on handset devices which is important raw material for creating

an automatic diary for example. This kind of application of heterogenous sensors in

context sensing is named as multimodel context-awareness. Based on the collection

of low-level sensor information we can infer cues about the host and the environment.

The contexts can then be derived from cues to compose the diary.

To present a meaningful reflection of daily life, we must detect and interpret

implicit semantics of lifelogging data from heterogeneous contexts. To determine

contexts, a large body of information is needed. We believe that the location is not

sufficient in the analysis of a dairy because it can not fully explain the Who, What,

Where and When questions which is the common form of everyday events. We adopt

the four primary types of context information raised by Dey et al. [49] as the funda-

mental information to generate a diary, namely location, identity, time and activity.

This four-dimensional context structure can well depict the Who, What, Where and

When application of the diary. Additionally, a more detailed understanding of a
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situation can be retrieved or generated by integrating these contexts.

Motivated by the above issues, we use SenseCam (shown in Figure 2.1) as the

main wearable device in our research. SenseCam is a lightweight passive camera with

several sensors built-in. It captures the view of the wearer with its fisheye lens which

helps to capture more in the view than the normal lens. The pictures are taken at the

rate of about one every 50 seconds without the trigger of other sensors. The onboard

sensors can help to trigger the capture of pictures when sudden changes are detected

in the environment of the wearer.

Figure 2.1: The Microsoft SenseCam (right as worn by a user).

Quite different from traditional video and image processing, processing lifelogged

data involves numbers of sensors which can generate a large amount of heterogeneous

data. Take SenseCam for example, temperature and acceleration are sensed and

stored together with the images captured by the built-in camera. Using SenseCam one

can collect up to 2,500 images in a typical day. With a detection frequency of 0.1Hz,

each user could gather about 6,000 GPS records and 3,000 Bluetooth detections each

day, as well as about 16,000 accelerometer records. This large amount of multi-source

data poses a challenge to detect more important and interesting events in life. Besides,

different sensor data reflect different aspects of a user’s life and the low-level characters

do not have an explicit relationship with high-level event semantics. How to fuse the
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contexts to get a meaningful representation of daily events is a challenge. Moreover,

in lifelogging, devices and sensors continuously capture and store the context of the

wearer, making event detection more difficult. In a SenseCam for instance, visual

information for a user will be collected every about 30 seconds without interruption

after the device is on. This is quite different from common personal digital photos

taken by ordinary cameras. Using an ordinary digital camera, the time gap or long

physical distance between consecutive photos can often be used as an indication of a

new event, which works very well in work by Platt et al. [130] and by Naaman [118].

However, these kinds of cues are scarce in lifelogging.

2.3 Multimedia Semantic Retrieval

Due to the generally unstructured characteristics of multimedia data, there are more

challenges in returning satisfactory result according to a user’s expectation. Annota-

tion and indexing are both necessary for flexible retrieval. One efficient way of adding

information that describes the semantics of multimedia objects, is to use information

metadata [25]. Rather than searching the raw media, searching on the metadata using

standardized word-based retrieval makes thing much easier. Besides, the storage of

metadata is much reduced compared to, say raw video.

In lifelogging, there are two ways to obtain descriptive metadata for everyday

logged media: manual annotation and automatic indexing. Manual annotation is

an non-automatic way to add textual information for media. Considering the fact

than there might be up to 2,500 SenseCam images captured in a single day, it is

not possible for a user to annotate such a large volume of data. In addition, manual

annotation also suffers from it subjectivity, inconsistency and incompleteness, making

it’s later usage difficult and unpredictable. The automatic construction of metadata

for multimedia is quite desirable and is now described.
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2.3.1 Feature Extraction and Representation

In the multimedia domain, features are used to derive metadata from raw media

data. The process to capture features from a multimedia object is called feature

extraction [25]. Feature extraction and derivation of metadata from features are

often carried out automatically, therefore are preferred in our semantic interpretation

of lifelogging. Two levels of features are usually distinguished to reflect the extent

to which the feature is related to media semantics, namely low-level features and

high-level features.

2.3.1.1 Low-Level Features

Generally speaking, low-level features refer to data patterns and statistics which con-

tain less meanings than textual description about media content. Because low-level

feature extraction is a totally mathematical computation, it can be done automat-

ically. Take text documents for example, where low-level features can be derived

from the frequency of each word appearing in the documents, removing stop words

like ‘the’, ‘a’, ‘it’, etc., which do not contribute to expressing the semantics of the

document. The equivalent widely used low-level features for image and video in-

clude average energy, zero crossing rate ZCR, and silence ratio, etc. for audio; color,

texture, shape, etc. [25].

Although low-level features are not usually directly used for retrieval, more mean-

ingful features can be built on top of them by further analysis. The advantages using

low-level features can be summarised as:

• they are representative: Compared to raw image input, the low-level features

can represent aspects of the characteristics of image more accurately.

• they require lower storage: The storage of already extracted low-level features

requires much less space than that of raw image pixels.
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• they could be used for dimensionality reduction: The extraction of low-level

features can help to reduce the computational dimensionality since the pro-

cessing of raw image pixel array is usually high-dimensional. Meanwhile, some

other technologies like Latent Semantic Indexing (LSI), Principle Component

Analysis (PCA), etc. can also be applied on top of extracted features to assist

dimensionality reduction.

• they have less computational expense: The reduction on dimensions allows the

comparison of two feature values much easier and quicker.

Image media is the most important source for SenseCam-based lifelogging and we

now elaborate on the kind of features used in image representation.

Color Features

Each image is constructed from a specific number of pixels. As each pixel has a

color value (gray-scale for black-white image) within a range of color, color features

[62] can characterize the content of images.

Color Histogram: Color Histograms reflect pixel distribution across discrete color

values. The histogram is calculated by simply counting the number of pixels

having a color value within a given set of color ranges. Color histograms are

widely used for distinguishing images by visual similarity.

Scalable Color: Scalable Color is another descriptor which measures color distribu-

tion over an entire image. The color space is fixed to HSV to calculate Scalable

Color, quantized uniformly to 256 bins, including 16 levels in H, four levels in

S, and four levels in V. The histograms of Scalable Color are encoded based on

Haar-transform in order to reduce the large size of this representation, while

allowing scalable coding [160].

Color Layout: Like Colour Histograms and Scalable Colour, Color Layout is de-

signed as an MPEG-7 visual descriptor to capture the spatial distribution of
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color in an image or an arbitrary-shaped region. It is a compact and resolution-

invariant color descriptor defined in the YCbCr color space. Color Layout uses

representative colors on an 8 × 8 grid followed by a DCT and encoding of the

resulting coefficients. A few low-frequency coefficients are selected using zigzag

scanning and only 6 coefficients for luminance and 3 for each chrominance are

kept, forming a 12-dimensional vector for Color Layout [160, 107].

Texture Features

Similar as color features, texture features are another kind of low-level descrip-

tors for image search and retrieval which can be extracted automatically. Texture

descriptors consider an image as a mosaic of different texture regions [106], and the

image features associated with these regions are then used for image search. Three

texture descriptors are considered in MPEG-7, which are Texture Browsing, Homo-

geneous Texture and Edge Histogram respectively. As described in [107], all of these

descriptors are calculated when there exist patterns such as homogeneous regions,

dominant orientations, etc. in an image.

Shape Features

Image shapes are usually represented by a set of point samples extracted from

shape contours for example about 100 pixel locations sampled from the output of an

edge detector. No special requirements are needed for these representative points,

that is, they are not necessarily required to be landmarks or curvature extrema,

etc [20]. Shape-based features utilize shape boundary or entire shape regions to

capture local geometric characteristics within an image. A Fourier descriptor is a

representative of a boundary-based shape feature while moment invariants use region-

based moments which are invariant to transformations [143]. Shape context is another

shape descriptor used to describe the coarse distribution of the rest of shape points

with respect to a given point. It has been adopted recently in such applications as

human action recognition [46], trademark retrieval [144], etc. The comparison of two
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shapes can then be extended to finding sample points with similar shape contexts

from both shapes.

2.3.1.2 High-Level Features

High-level features refer to features which are semantically meaningful for the end

user. While low-level features are never readable by the end user, high-level features

can express the semantics of media in a more acceptable way as ‘concepts’, such as

‘indoor’, ‘outdoor’, ‘vegetation’, ‘computer screen’, etc. These features can provide a

meaningful link between low-level features, and user expectations. The extraction of

high-level features demands filling the gap between low-level features and high-level

features, which is called the semantic gap in multimedia retrieval.

Semantic concepts are usually automatically detected in a mathematical way by

mapping low-level features to high-level features. The state-of-the-art approach is to

apply discriminative machine learning algorithms such as Support Vector Machines

(SVMs) to decide the most likely concepts given the extracted features [156]. Com-

pared to a discriminative model which is more task-oriented, generative statistical

models such as Markov model try to analyze the joint probability of variables, which

are also proposed in concept annotations [98]. Both generative and discriminative

approaches have their own pros and cons. A generative model is a full probabilistic

model of all variables whereas a discriminative model has limited modeling capa-

bility. This is because a discriminative model provides a model only for the target

variable(s) conditional on the observed variables hence can not generally express more

complex relationships between the observed and target variables. However, discrim-

inative models are often easier to learn and perform faster than generative models.

Besides, it has been shown that discriminative classifiers often get better classification

performance than generative classifiers with large training volume (usually including

positive and negative samples). Among these machine learning algorithms, SVM is
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an efficient discriminative approach with strong theoretical foundations and excellent

empirical successes in many tasks like handwritten digit recognition, image retrieval

and text classification, etc. [97] It has been demonstrated to be an efficient framework

by many research groups in concept detection [99, 38, 157] and we will also employ

SVM as the base classification algorithm to perform the task of concept indexing. The

learning for classification models using these technologies always involve a large cor-

pus of annotated datasets. It is impossible to build concept detectors for all possible

concepts and it is still challenging to build detectors which can cross application do-

mains. Current solutions for multimedia content retrieval focus on specific domains.

For instance, the LSCOM concept ontology and MediaMill’s 101 concept detectors

mentioned earlier in Section 2.1 are all focused on the TV news broadcasting retrieval

domain. In this thesis we will analyze high-level features needed in an everyday visual

recording domain, for example SenseCam images.

2.3.2 Content-based and Concept-based Retrieval

Since low-level features can be extracted automatically from media objects, the com-

parison between media objects based on these features leads to content-based re-

trieval. Using a content-based query, a multimedia system handles the notion of con-

cepts implicitly. The low-level features are assumed to correspond to the semantics of

the query while the mapping is not modeled. Color, texture, shape, etc. are the fea-

tures widely employed for content-based retrieval [62, 105, 24]. For video retrieval, the

text features from spoken dialogue, closed captions, etc. [29, 7, 171, 44, 176, 123, 87]

are also employed in combination with image features for content retrieval.

More recently, much research has shown the limitations of content-based retrieval

which fails in conquering the semantic gap purely using low-level features. The intro-

duction of high-level features shows the advantages in filling, or at least reducing the

semantic gap. Retrieval based on high-level features is called concept-based retrieval.
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Concept-based retrieval handles the notion of concepts explicitly by expressing user

queries in terms of high-level concepts rather than low-level features [156].

There are two categories of high-level feature detections, namely dedicated ap-

proaches and generic approaches. Dedicated approaches aim to grasp the direct

mapping from low-level features to high-level concepts specifically used in differ-

ent domains [90, 155, 142]. These approaches are rule-based, hence for a new con-

cept a new mapping rule needs to be developed. The diversity of too many spe-

cific methods or dedicated approaches is addressed by adopting generic approaches

[120, 12, 56, 158, 162]. A pool of concept detectors can be learned for concept-based

retrieval as lexicons enriched with general-purpose vocabularies such as WordNet or

domain-specific ontologies. Satisfactory results have been reported in research using

the generic machine learning paradigm, particularly for parts of concepts and related

tasks when there exist enough annotated training data [152]. Based on high-level fea-

tures, retrieval has been proved to be successful in recent research through the correct

description of user query with the appropriate concept detectors, which is also called

concept selection [156, 124].

2.3.3 Query Expansion / Concept Selection

Query expansion is an approach to searching which is well developed in the applica-

tion of document retrieval. The intuition of query expansion is to improve retrieval

performance by adding more words to the query thus making it more explicit. In

concept-based multimedia retrieval, a similar intuition holds, namely that by auto-

matically expanding the set of concepts which are detected in a video clip or query

through adding more which are “about” the same material, the expansion usually

results in a more precise representation. In theory, the query-concept mapping is

responsible for translating user expectation to a set of concepts, in a process called

concept selection. Though recent trends show that the generic methods can learn
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concepts from a large manually annotated corpus, it is still unrealistic to build a

group of concept detectors which have a comparable number to human vocabularies.

Textual approaches [156] and collection-based statistical methods [101, 69] can be

used for concept selection while recent research shows favoring ontologies to select

relevant concepts [156, 169]. More details about the selection of concepts will be

given in Chapter 3.

2.3.4 TRECVid vs. Lifelogging

In analyzing concept classifiers to be constructed, attempts have been made to deal

with the issue of classifier scalability. LSCOM [6] was developed as a popular mul-

timedia ontology for concept classifiers in the TV news video domain. In [6], the

concepts were narrowed down to a set of 449 unique concepts to construct a lexicon

for multimedia. The concepts selected cover events, objects, locations, people, and

programs. In [121], Naphade et al., the LSCOM concepts are broken down into a

7 orthogonal dimensional space. Finally 39 concepts are chosen in this lightweight

lexicon known as LSCOM-lite. They are selected by analyzing their utility in tasks

such as searching and detection. The searching terms are mapped to the WordNet

hierarchy to find the proper nodes with the right balance of specificity and general-

ity [121]. Concluding from the above mentioned literature, the ontology selection by

LSCOM mainly considers the following four requirements [119]:

• Utility: The concepts selected should have high practical value in supporting

tasks such as semantic searching and queries;

• Coverage: The overall semantic space of interest should be covered by the

selected concepts;

• Feasibility: In defining LSCOM, concept feasibility is examined technically to

make sure the concepts can be extracted automatically;

30



• Observability: There must be a large amount of training samples for the se-

lected concepts i.e. a high occurrence frequency of semantic concepts is needed.

In TRECVid, the LSCOM lexicon and ontology is used for the evaluation of

the high-level feature (concepts) detection task. Christel et al. [42] investigated

using oracle selection which means ideal selection approach (manual selection by user

experiment) for concept-based strategies and showed its utility for retrieval for topics.

In their work, 39 LSCOM-lite concepts and 24 TRECVid 2006 topics were examined

based on pooled truth data. Due to the limited number of LSCOM-lite concepts

used, more concepts related to specific topics did not work any better than a baseline

while non-related concepts were selected for some topics. Only 2 among the 24 topics

benefitted from incorporating more than 2 concepts in the retrieval process [42] due

to the lack of a sufficient ontological framework and what this shows is the need for

more than just a flat set of concepts, i.e. a need for a concept structure.

Though the lexicon defined by LSCOM is efficient for concept classification in the

video domain, it is still different from the concepts needed in the lifelogging domain,

due to the following reasons:

1. Data structure: In video processing, each shot is usually represented by a

keyframe. The concepts within the specific shot are also detected by classify-

ing the keyframe, as is usually done in the TRECVid evaluation. Compared

with video shots, lifelog visual media such as SenseCam image streams are less

structured. To make the SenseCam image streams more manageable, auto-

matic event segmentation [53] can be applied first before further indexing of

large chunks of SenseCam images. Here we simply define lifelogging event as

the occurrence in real world at specific time and place and more detailed def-

inition of event will be given in Chapter 5. By applying event segmentation

algorithm proposed in [53], a particular event might be represented by a series

of images with longer time intervals between them since on average about 30
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seconds elapse between images when using a SenseCam.

2. Visual diversity: Compared to frames in a video shot, the successive images

in visual lifelogs have greater dissimilarity for many events in terms of visual

features. The sets of concepts detected from successive images might therefore

have significant differences so the event concepts can not easily be detected just

by the keyframe.

3. Semantic focus: While the ontology used in video classification is focused on

TV news or sports etc., the semantics of lifelogging should be more related to

the activities from which we construct our life experience, such as the activities

of meeting, shopping, socialising and even travelling.

4. User Context: Different users will have different notions in interpreting their

event semantics due to the different contexts and users’ experiences. There

will be more disagreement on semantics in lifelogging than in TV videos for

example. Besides this, users will have different preferences, different lifestyles,

different activities, which also imposes difficulties on the selection of concepts for

lifelogging. One semantic interpretation might not make sense for a particular

user if his context is unknown.

2.3.5 Difficulties in Lifelogging Retrieval

For lifelogging, we describe the architecture overview of the semantic retrieval task as

in Figure 2.2, from raw data collected for lifelogging events. To generate the high-level

concepts for events, the classifiers are employed in the pipeline for context/concept

extraction from multimodal data. Many statistical and discriminative models are pro-

posed to seek accurate multimedia information annotation and organization, among

which SVMs [31] might be the most popular machine learning algorithm especially

within the multimedia community. Even though the classifiers built by machine learn-
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ing algorithms gain satisfying results in the TV news broadcasting domain, they do

have the following limitations:

Figure 2.2: Pipeline overview of semantic fusion.

• Classifier Learnability : Before providing satisfactory label recommendations

it is still sometimes difficult to find many positive training instances for each

concept classifiers. Even given lots of positive instances, these must then be

highly visually diverse, making the classifiers difficult to construct well if they

are to faithfully detect all the wide variety of visual instances for a given concept.

Insufficient data/annotation for concepts restricts the classifiers in having good

learnability.

• Classifier Scalability : To detect a large number of concepts many classifiers are

needed, which is not only computationally expensive but also leads to difficult

model training problems. Concept selection can help to find the most useful

concepts to reduce and minimize the concept set. It is analyzed to deal with

the issue of number of useful classifiers.

• Classifier Disambiguation: Besides the large amount for concept classifiers, even

one concept has multiple meanings which users might use under different con-

text. In [149], disagreement among users on concepts consistency is observed
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especially on abstract concepts. This also makes the concept selection and

classification difficult.

2.4 Event-Centric Media Processing

It’s widely accepted that events are the basic and elementary units for humans to

organize our memories [170]. Recent research on personal photo organization also

show that people often think of their own photos in terms of events corresponding

to a certain loosely defined theme such as a wedding, vacation, birthday, etc. [59],

[141], also [118]. In modern multimedia processing, events are represented using

different presentation forms such as text, images, videos and even some other sensor

readings. Across all of these, there is no common model of what makes up an event

which is accepted across the field, though it is receiving attention. For example, the

ACM International Workshop on Events in Multimedia (EiMM09) which is held in

conjunction with the ACM Multimedia conference each year.

Events play an important role in lifelogging because our daily lives are organized

as events in our memories, and in addition we also plan and foresee our future life in

the form of events. A consistent event model and an event-centric notion in lifelogging

are needed to serve as a guide in processing lifelogs and in semantic interpretation of

those lifelogs.

In a traditional diary, we write down the meaningful or significant activities or

comments from our lives for later review. To generate a digital diary reflecting aspects

of users’ lives, the main events and especially the most interesting or the most unusual

events should be detected and represented as parts of the diary. Harnessed through

wearable sensors, data can be used not to only record the main activities in each day

but also such data can cover details of events such as the location, people around

and the images from the event allowing a reconstruction of the most important of
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the events in our lives. The reliable and accurate detection and understanding of

everyday events and event boundaries can also facilitate better event management

and retrieval in a digital dairy.
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Figure 2.3: Event model and layered structure.

We present our view of lifelogging events and their media contents in the form of

a layered structure as depicted in Figure 2.3. The structure includes three layers:

• Semantic layer: This represents the semantic meaning of data. In the semantic

layer, concept semantics such as objects, activities, event topics and relationship

semantics such as temporal/spatial relationships, equivalence and subsumption

etc. are interpreted into higher understanding.

• Context layer: This layer includes the contexts which represent facets associated

with events. The temporal and spatial aspects are the basic physical contexts

in describing events, i.e. events are spread over the temporal and spatial axes.

These two contexts are related to the temporal property and to location aware-

ness in lifelogging. The people involved and the entities related to events and

further information about these events are also included in the context layer

to answer “Who, What, Where and When” questions about the event together

with spatial and temporal contexts.
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• Media layer: The physical and formal contents are represented in this layer, such

as pixels, sensor data values and coding mechanisms etc. Although semantic

meaning exists independently beyond any kind of media, rich media documents

are necessary for users to explore a series of events in their lifelogs.

The media layer and the context layer emphasize the sensing and syntactic aspects

in lifelogging. However, the semantic layer represents the meaningful aspects which

are suitable for our understanding of a logged life. In Figure 2.3, knowledge (depicted

by horizontal span) covers all three layers in the model to represent the importance

of knowledge content and reasoning in each layer. It is not hard to notice that

the amount of knowledge decreases when going from the top to the bottom of the

model. The semantic layer on top of the model is richest in knowledge which is

reflected by broader knowledge span in Figure 2.3. This means that the semantic

layer contains more concepts and relationships inferred from explicit ones. Semantics,

abstracted from context, are more decisive than the original pieces of context in

understanding the user’s situation. These three layers are associated together to

provide the structural and experiential needs in generating a digital event lifelog. We

can conclude that, to obtain rich semantics for event understanding, the fusion of

contexts detected from the media layer is the crucial step and we base the rest of our

processing of lifelog data on this premise.

2.5 Summary

In this chapter we present a high-level knowledge background for multimedia infor-

mation retrieval as well as its application to lifelogging. The overview of aspects for

lifelogging is also discussed in this chapter together with related work. As a new form

of multimedia, lifelogging media has it own characteristics compared to traditional

media such as broadcast TV, in modality, image quality, visual diversity, etc. We also
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take SenseCam as an exemplar lifelogging device and we analyzed the corresponding

difficulties induced by lifelogging retrieval. Finally, our layered event interpretation

conceptual model is proposed for context-aware lifelogging retrieval to be used later

in the thesis.

In the next chapter we will further elaborate how semantic concepts contribute to

understanding events in lifelogs and in particular how the combinations of concepts

and the density of those combinations can be used to index events.
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Chapter 3

Semantic Density-based Concept

Selection

Traditional content-based methodologies for retrieval of image or video try to map

low-level features to high-level semantics without bridging the semantic gap. This

kind of approach has limitations because of lack of coincidence between low-level

features and query semantics as we saw in Chapter 2. This makes concept-based high-

level semantic reasoning an attractive solution to satisfy user expectations. Recent

research tries to bridge low-level features and semantics with the fusion of concepts to

provide better understanding of user expectations, which is known as a concept-based

approach to multimedia indexing. In this approach, concepts are first detected by

a mapping from low-level features using generic methods from training data. The

concepts are then fused together to reason or deduce the final set of concepts which

may be used as user query or a representation for multimedia information, whatever

the application. The concept-based retrieval framework is illustrated in Figure 3.1.
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Figure 3.1: Framework for concept-based retrieval

3.1 State-of-the-Art Concept-based Retrieval

Concept-based information retrieval has received much interest from among the mul-

timedia retrieval community due to its potential in filling the semantic gap and its

semantic reasoning capability. In concept-based video retrieval, for example, there

are methods to expand query terms into a range of concepts and user judgments and

feedback can be used to reveal the correlation between concepts. In concept-based

retrieval, subjects can be asked to choose the concepts they think are relevant to

specific queries. This kind of approach, however, is time-consuming and difficult for

a user. It is fine to test on a small number of concepts and queries as is the case

in work by Christel et al. [41] for which two collections including 23 queries and 10

concepts together with 24 queries and 17 topics are used. Furthermore, the approach

tends to suffer from low inter-annotator agreement, as depicted in [41] and [124].

The main automatic approaches to selecting appropriate concepts for semantic

querying fall into two categories: lexical approaches and statistical approaches [122].

Lexical approaches leverage the linguistic relationships between semantic concepts in

deciding the most related and most useful concepts for the particular application.

Statistical approaches apply occurrence patterns from a corpus to reveal concept

correlations. Statistical approaches also make use of specific, collection-specific asso-
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ciations driven by the corpus set while lexical approaches depend on global linguistic

knowledge. These approaches can be summarised as follows:

Lexical approaches Semantic similarity is used as a measurement to rank the rele-

vance of concepts to a given query text. WordNet is one popular source of such

a lexical knowledge base. One straightforward solution to this is selecting the

concepts based on minimizing the semantic distance between the concepts and

query terms. WordNet-based semantic similarity between query terms and con-

cepts are calculated as the weight of concepts using semantic similarity scores

and some of the work in the area goes back many years, e.g. [139] and [137].

In more recent work, the Lesk-based similarity measure [15] [128] is demon-

strated as one of the best measures for lexical relatedness and is employed in

[67] for lexical query expansion. WordNet-based concept extraction is also in-

vestigated in [68] to evaluate the effectiveness of high-level concepts used in

video retrieval. [68] shows the algorithm achieved comparable results to user

created query concepts. The issue with concept selection when using a lexicon

ontology such as WordNet is that the local similarities across branches are not

uniform. This could lead to incomparable similarity values obtained from local

ontology branches, as argued in [169]. In [156], Information Content is used to

calculate similarity in order to deal with the problem of similarity inconsistency

caused by non-uniform distances within the WordNet hierarchy. In [11], the

names and definitions of concepts as well as relevant Wikipedeia articles are

aggregated to generate the text collection for IR system whose output scores

are later used in determining the probability of concepts given relevance.

Statistical approaches A large amount of manual annotation effort in the annual

TRECVid benchmarking activity for video retrieval [125], and in LSCOM [1] the

concept ontology for broadcast TV news, enables the analysis of static patterns

for video retrieval. The groundtruth of hundreds of individual concepts and
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dozens of query annotations is used in comparing retrieval systems as well as

selecting and analyzing the relevant concepts associated with particular queries.

Mutual information (MI) is used effectively in feature selection especially for

choosing discrete-valued features. MI is used in [101] for choosing concepts

with high utility in retrieval from the information-theoretic point of view. The

probability of a shot being relevant to a query is calculated given the prior

probability of the shot already being relevant to the concept.

More recent work by Wei and Ngo [169] proposed an ontology-enriched semantic

space model to cope with concept selection in a linear space. The ontological space

is constructed with a minimal set of concepts and plays the role as a computable

platform to define the necessary concept sets used in video searching. This linear

space guarantees the uniform and consistent comparison of concept scores for query-

to-concept mapping [169]. We call this concept selection approach an ontological

space approach.

Besides the above-mentioned concept selection strategies, “oracle” selection is also

investigated in [42] to select the concepts which are most suitable for TRECVid

topics. Two benchmarks for concept selection are presented in [78] for video retrieval

systems, which are either created by a human association of queries to concepts or

are generated from a tagged collection. A user assessment is performed to validate

the reliability, captured semantics and retrieval performance and mutual information

is used as a measure for ranking the concepts according to their retrieval contribution

[78].

3.2 Event Semantic Space (ESS)

A limitation for building classifiers is for them to reveal the higher level semantics

of images when they have multiple concepts with high correlation. The concepts
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involved in lifelogging cover numerous aspects of our daily lives and the choice of

concepts is very broad. According to the statistics in our investigation into Sense-

Cam images which is described in more detail later, about 40 concepts have high

frequency appearing in lifelog images which typify more than 10 significant high level

activities. The detection of all concepts not only increases computational expense

but also reduces the annotation accuracy. Meanwhile, the large number of concepts

to be annotated incurs a large annotation effort. The interpretation of lifelogging

events thus demands a strategy which helps to select the most useful concepts for

event representation rather than just using all possible concepts.

3.2.1 Everyday Activities: Exploring and Selection

It’s believed that there exists a relationship between everyday activity engagement

and well-being for individuals. For a long time research has already shown increasing

evidence indicating the association of personal health with activity engagement for

various age groups [94, 111]. Everyday activity patterns are investigated in different

areas such as occupational therapy, diet monitoring, etc., to improve subjects’ physical

and mental health by understanding how they use their time with various activity

occupations. A lot of investigations and surveys have shown that most of time is

spent on some of the activities such as sleeping and resting (34%), domestic activities

(13%), TV/radio/music/computers (11%), eating and drinking (9%), which almost

count for nearly 70% of the time in a typical day.

In [83], the most frequently-occurring everyday activities are explored to rate

the enjoyment when people experience these activities. The 16 activities are listed

in Table 3.1, ordered decreasingly by enjoyment rating. The impact of everyday

activities on humans’ feelings of enjoyment will also affect human health, which makes

these activities important in well-being analysis and lifelogging.

Similar patterns of activity are also shown in [2], [3] and [40] with sleeping being
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Table 3.1: Everyday activities from [83] in decreasing order of enjoyment
1 2 3 4

Intimate relations Socializing Relaxing Pray/worship/meditate
5 6 7 8
Eating Exercising Watching TV Shopping
9 10 11 12
Preparing food On the phone Napping Taking care of Children
13 14 15 16
Computer/Internet Housework Working Commuting

the most dominant activity followed by other activities like housework, watching

TV, employment/study, etc. [2] and [3] also show that time distribution on activities

varies with age groups. However, some activities achieve high participation agreement

among all people investigated in the survey. High agreements across all age groups

are obtained on activities such as sleeping, eating and drinking, personal care, travel,

etc.

In our interpretation of lifelogging events, we select our target activities from the

candidates with the following criteria:

• Time dominance: As described above, a small number of activities occupy a

large amount of our time. The analysis of these activities can maximize the

analysis of the relationship between time spent and human health. The selected

activities should cover most of the time spent in a day.

• Generality: Even though the time spent on activities varies from age group to

age group, there are some activities that are engaged in by different age groups.

The selection of activities with high group agreement will increase the generality

of activity analysis in lifelogging. Therefore, the output can be suitable for a

wider range of age groups.

• High frequency: This criteria helps to select the activities which have enough

sample data in lifelogging records. High sample frequency can improve the de-
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tection and other processing qualities, such as classification and interpretation.

The activities with high time dominance are not necessarily have high frequency.

For example, ‘sleeping’ covers a large part of time in a day but its frequency is

low.

With these criteria in mind, we combined the activities investigated in literatures

like [83], [2], [3], etc. and selected the following activities as targets for our further

analysis. They are listed in Table 3.2. Note that these activities listed in Table 3.2 are

still far from covering all activities in daily life analysis but we believe that they are

representative and can be applied for further activity of daily living analysis. These

activities will be used in testing the ideas and algorithms later in this thesis. Besides,

the selection of activities and our algorithms to be proposed are generic. When more

activities are chosen for various purposes of analysis, our algorithms can be applied

in similar manner without loosing capabilities of generality.

Table 3.2: Target activities for our lifelogging work
1 2 3 4

Eating Drinking Cooking Clean/Tidy/Wash
5 6 7 8
Washing clothes Using computer Watching TV Children care
9 10 11 12
Food shopping General Shopping Bar/Pub Using phone
13 14 15 16
Reading Cycling Pet care Going to cinema
17 18 19 20
Driving Taking bus Walking Meeting
21 22 23
Presentation (give) Presentation (listen) Talking

3.2.2 Topic Related Concepts

As accepted in the multimedia retrieval community, the term ‘topic’ is used to rep-

resent a given query task which has higher level semantic meaning. Similarly in our
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work, we use the term ‘topic’ to refer to a specific event type, i.e. an ‘activity’ in

lifelogging. Without specific discrimination, an ‘event’ can refer to a specific case of

an everyday ‘activity’ and vice-versa.

How to decide the possible concepts related to the event topics above is still an

issue in our work. In state-of-the-art everyday concept detection and validation [34],

concepts are suggested by several SenseCam users after they have gone through and

studied several days’ lifelogged events of their own. Then, being more familiar with

their own lifestyles through reviewing their lifelogs, the concepts are discussed and

filtered according to the criterion that the concept can be detected with satisfying

accuracy. During this procedure, the concepts are not selected in a way the related

event topics are considered. Some concepts are selected but they might not be helpful

in interpreting specific event semantics. In addition, some concepts which might be

of great help in recognizing and interpreting a specific event type may be ignored in

the selection procedure. This limits the performance of event detection and semantic

interpretation especially when particular concepts relevant to the event are missed.

Given the fact that concept detection is not perfect, it is still a problem when a non-

relevant concept is selected to be used in a query. The non-relevant concept here will

reduce the performance by incurring high noise in the query step.

To find a set of candidate concepts related to each of the activities described in

Section 3.2.1, we carried out user experiments on concept selection where candidate

concepts related to each of the activities above were pooled based on user investiga-

tion. Although individuals may have different contexts and personal characteristics,

the common understanding of concepts that is already socially constructed and allows

people to communicate according to [92] and [78], also makes it possible for users to

choose suitable concepts relevant to activities. User experiments were carried out

to find out candidate concepts which potentially have high correlation with activity

semantics. Details of the experimental methodology will be described in Chapter 4.
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The user experiments give us a set of candidate concepts with regard to the

activities we explored in Section 3.2.1. These concepts are used to construct an event-

based semantic space for every activity engagement being logged. The concept space

is expanded by each concept as one dimension, as shown in Figure 3.2 and events

are represented by groups of images which have their own concept vectors. One

group of images has the same topic describing the event. The semantic interpretation

makes full use of the concept vectors of images constructing the event to infer higher-

level semantics. Compared to current algorithms of concept selection, we propose a

semantic density-based concept selection algorithm to find the most useful concepts

in the following sections. While existing algorithms are not a good match for the

particular problems of detecting the most appropriate semantic concepts for lifelog

events and are not tested in lifelogging lexicons, our algorithm has the advantage of

selecting concepts from a global point of view and is tested to be effective for everyday

concept selection and ranking. A preliminary experiment is described to illustrate the

algorithm.

3.2.3 Constructing the Event Semantic Space (ESS)

To select concepts to represent the semantics for events, we need to define the concept

space. Intuitively, every concept representing any event should be one dimension, and

the projection of an event onto the concept space is the co-occurrence information in

between. However, different concepts have different impacts on event interpretation.

Concepts which are neither too general nor too specific should be selected in the

semantic space to reduce dimensionality and noise for concept detection. In a nutshell,

we should include topic-related concepts with decent frequency, and exclude general

and over-specific senses.

The Event Semantic Space (ESS) is defined as a linear space with a set of concepts

as the basis as depicted in Figure 3.2. In order to ensure high coverage of the space, we
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Figure 3.2: Concept space and event concept vector.

elaborate the selection of a minimum concept basis set according to the generalization

of entities in the semantic space. Ideally, any semantic query can be represented as

a coordinate in the semantic space. According to Wei and Ngo, [169], “The basis

concepts provide a high coverage of semantic space, and are probably the ones that

should be developed if they are feasible to be built with the current technology.”

We denote the semantic space as S spanned by a set of concept bases {c1, c2...cN},

where ci ∈ S is a basis concept. Then, the semantic space is constructed as:

c1 × c2 × ...× cN → S

Let us assume that a concept detector di can be learned from low-level features

for concept ci. We will have a concept detector set D = {d1, d2...dN} available to

transform from the low-level feature space L to the semantic space S. Then the

relation between two spaces can be represented by:

D(·)⊗ L → S

where D(·) = {d1(·), d2(·)...dN(·)} is the corresponding transformation of concept

detector set D.
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3.3 Investigating ESS Concept Relationships

3.3.1 Definitions

An ontology is used to represent the concepts and concept relations within a domain.

Usually ontologies are considered as graphs, where nodes represent concepts and edges

represent relations between concepts. In much of the research dealing with discrete

objects and binary relations, a graphical representation of the objects and the binary

relations between them is a very convenient form of representation which can use

well-established graph theory for algorithms to manipulate them [135]. As part of

domain knowledge, an ontology structure contains the semantics of concepts, such

as a child/descendant concept being a sub-concept of its parents/ancestors, which

is reflected in an hierarchical ontology. The structure also decides the heritage of

concept properties. For example, a car will inherit the features of its superordinate,

probably a vehicle. Ontology-based similarity or relatedness measures can exploit the

ontology structure or additional information to quantify the likeness or correlation

between two concepts. To show the difference between similarity and relatedness,

let’s see an example of three concepts, teacher, professor and school. In this example,

teacher and professor are similar concepts whereas professor and school are related

to each other. In different application domains, similarity and relatedness might be

treated separately.

3.3.2 Lexical Similarity Based on Taxonomy

Concepts are clustered according to their distribution in the semantic space. With a

lack of features or coordinates in this semantic space, concepts can only be clustered

in terms of their ontology relationships between each other. As a popular English

lexical ontology, WordNet [115] is widely used as a semantic knowledge base. Synsets

are basic elements in WordNet representing the sense of words. The current version
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(3.0) of WordNet contains 155,327 words grouped into 117,597 synsets. The is-a rela-

tionship is modeled as hypernymy in WordNet where one concept is more general than

another. Hyponymy represents the characteristic that one concept is more specific

than another. The meronymy/holonymy connection is the semantics representing a

part-of relationship. This comprehensive coverage and explicit representation of con-

cept relationships make WordNet useful in analyzing the concepts relationship within

the semantic space.

Path-based Methods Semantic similarity has been explored in previous research

to define a matric for concept relationship analysis. Rada [135] was first to

develop the basis for edge-based measures for concept similarity by defining

the distance in a semantic network as the length of the shortest path between

the two concept nodes. Richardson and Smeaton [139] built on the work of

Resnik, reported in the survey article in [138] to further refine the similarity

measures. The Hirst and St-Onge [73] similarity measure, takes path direction

into account and the idea is that the concepts are semantically close if their

WordNet synsets are connected by a short path which does not change direction

too often. Another similarity definition is proposed in [174] by Wu and Palmer

for verb similarity calculation since most of the other work is built upon noun

concepts, and applied in machine translation. The formula extended by Leacock

and Chodorow [95] is also a path-based similarity algorithm which determines

similarity with regard to the maximum depth of the taxonomy.

Information-based Methods Semantic similarity based on information content is

also an important branch in lexical relationship analysis. This kind of approach

relies on the hypothesis that the more information two concepts share, the

more similarity they have. The informativeness of a concept is quantified by

the notion of its Information Content (IC), which is calculated based on the

occurrence probability of concepts in given corpus. IC is obtained by negative
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likelihood of encountering a concept in a given corpus [137]. The basic intuition

of using negative likelihood assumes that the more likely a concept appears in

a corpus the less information it conveys.

Based on the IC formula, the concept will contain less information if the prob-

ability of its occurrence in a corpus is high. The advantage if using information

content is that, once given a properly constructed corpus, the information con-

tent can be adapted in different domains because the information content is

included in a statistical way according to occurrences of the concept, its sub-

concepts and sub-sumers.

In [138], Resnik applied information content to semantic similarity calculation

by the information of Most Specific Common Abstract (msca(c1, c2)) as the

amount of information that concepts c1 and c2 have in common. In this ap-

proach, only the ‘is-a’ relationship is applied because only the information of

the sub-suming concept of the two concepts being compared, is used. In [153],

this similarity measurement is also employed by Quigley and Smeaton to com-

pute word-word similarity in image caption retrieval. Jiang and Conrath in [79]

and Lin in [100] also both extended Resnik’s measure by taking even more fac-

tors into account. Table 3.3 summarizes these semantic similarity relationships.

Hybrid Methods Some hybrid methods also attracted a spate of research interest

recently, which try to make use of the WordNet hierarchy and IC measure to

calculate semantic similarity. In [147], authors proposed similarity measures in

taxonomy that use Information Content. However, the IC value is concluded

from WordNet taxonomy hierarchy rather than deriving statistics from given

corpus. Experiments tested on human judgements showed that it performs well

compared to prevailing semantic measures. The measure is easier to calculate

with the application of an ontological hierarchy in IC obtaining. [129] extends
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the intrinsic information content and take into account the whole set of seman-

tic relations defined in ontology to conclude a new framework of relatedness

calculation. The framework, which is called FaITH (Feature and Information

THeoretic), maps the feature-based model of similarity into the information

theoretic domain and also considers ontology link structure in its relatedness

calculation [129].

Table 3.3: List of concept similarity matrices
Similarity measures Function definition Path-

based
Infor.-
based

Rada sim(c1, c2) = 1/len(c1, c2)
√

×
Hist & St-Onge rel(c1, c2) = C − len(c1, c2)− k × d

√
×

Wu & Palmer sim(c1, c2) =
2·depth(LCS)

len(c1,c2)+2·depth(LCS)

√
×

Leacock & Chodorow sim(c1, c2) = −log len(c1,c2)
2D

√
×

Resnik sim(c1, c2) = −logp(LCS) ×
√

Jiang & Conrath sim(c1, c2) =
1

2·logp(LCS)−(logp(c1)+logp(c2))
×

√

Lin sim(c1, c2) =
2·logp(LCS)

logp(c1)+logp(c2)
×

√

3.3.3 Contextual Ontological Similarity and Relatedness

WordNet is a small ontology of primarily taxonomic semantic relations. ConceptNet

extended WordNet to include a richer set of relations appropriate to concept-level

nodes [102]. In the version of ConceptNet we use later, the relational ontology consists

of 20 relation types falling into categories like K-lines, Things, Agents, Event, Spatial,

Causal, Functional and Affective [103].

In ConceptNet, all concepts are linked with the above-mentioned relations which

can reflect the correlations between concepts. We apply a link-based relatedness mea-

sure to maximize the concept relations in measuring concept correlation. This differs

from WordNet which uses mainly taxonomic relationships, while ConceptNet employs

more context relationships. While WordNet similarities only consider subsumption
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relations to assess how two objects are alike lexically, relatedness takes into account

a broader range of relations which can be measured using ConceptNet.

According to [135], superordinate (is-a) links are assigned high importance tags

in Quillian’s model of semantic memory in which concepts are represented by nodes

and relationships by links. When an ontology contains is-a links only, short paths

will significantly contribute to positive evidence of similarity by applying spreading

activation. Meanwhile, the correspondence between semantic distance (shortest path

length) and semantic relatedness (conceptual distance) will also be strong.

The relations between concepts reflect the semantic correlation between two con-

cepts. We assume that semantic relations are transitive so the more related two

concepts are, the shorter paths they will have. The relatedness between two con-

cepts varies inversely with the length of the shortest path between the two concepts.

Conceptual relatedness is a monotonically decreasing function of path distance. Our

approach takes into account the length of paths between two concepts. In Concept-

Net, because the edges between concepts are directional, we combine the length of

the path between concept c1 and c2 as well as path between c2 and c1. The similarity

between two concepts are defined as:

SCN(c1, c2) = max(ActivationScore(c1, c2), ActivationScore(c2, c1)) (3.1)

where ActivationScore(c1, c2) represents the activation score of c2 starting from c1,

and vice versa. Here, we use activation score to represent the correlation of two

concepts. ActivationScore is performed by spreading activation in ConceptNet to

find the most similar concepts with regard to a starting concept. The starting concept

is initialized with activation score 1.0 and then the nodes connected with the starting

concept with one link path, two links path, etc. are activated. The activation score
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of connected node b with original node a is defined as:

ActivationScore(a, b) =
∑

c∈Neighbor(b)

ActivationScore(a, c)× d× w(c, b) (3.2)

where d is a distance discount (d < 1) to give the concepts far from the original

concept a lower weight and w(c, b) is the relation weight of the link from c to b. In

this thesis, we apply the same relation weight for ActivationScore. For any given

concept b, the activation score related to a is the sum of scores of all nodes connected

to it.

3.4 Concept Selection Based on Semantic Density

Our measure of semantic density relies directly on the semantic distance between

concepts. If the distance measured between concepts is small, then the concepts have

high density. The semantic distance is used as a measure by which the concepts are

clustered to represent event semantics, as shown in Figure 3.3. In Figure 3.3, each

triangle stands for one particular event. The concepts representing the events are

illustrated by dots inside each event. In our semantic topic-related concept selection,

we deal with the research question by means of identifying the similarity between

concepts as a linguistic problem. The processing consists of text pre-processing, word

similarity and phrase similarity calculations.

3.4.1 Text Pre-Processing

Concepts are represented in the form of textual descriptions and these descriptions are

usually not normalized. In order to obtain more appropriate concept similarity, before

concept similarity can be calculated all concept descriptions need to be normalized.
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Figure 3.3: Event semantic density.

• Tokenization: Tokenization is applied to break the queries or descriptions into

each separated word.

• POS Tag: Not all words in descriptions are useful in comparing their semantics.

A parts-of-speech (POS) tag is a process to mark up the words in a text as

corresponding to a particular part of speech, based on both its definition, as

well as its context. The context includes the relationship with adjacent words

at either a phrase or sentence level.

• Stopword Removal: stopwords are removed as part of the normalization of

texts. Commonly occurring words are inspected and removed using the SMART

stoplist [145].

• Lemmatization: In order to return proper result from the lexicon dictionary,

the words need to be in their original form. After stopwords and punctuation

are removed, lemmatization is the process of converting different inflected forms

of a word to their original form so they can be analyzed as a single item. All

lemmatized words are also converted to lowercase.
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3.4.2 Conjunctive Concept Similarity

As we described earlier, an arbitrary document or query is represented as a vector of

term weights for similarity comparison in an information retrieval system. The term

vector can be regarded as a new distinct compound concept. The concept reflected

by a document is best described by ANDing the concepts represented by its index

terms [135], which facilitates the documents being treated as conjunctive concepts.

When concepts have several disjunctive meanings in WordNet synsets, we apply

‘disjunctive minimum’ [135] to obtain the similarity between the two concepts. That

is, when a concept has alternative synsets because it is polysemous, we calculate

the minimum conceptual distance between the synsets and the other concept as the

final distance between the two concepts. Assume that we have two concepts c1 and

c2 and c1 has three disjunctive synsets syn1, syn2, syn3. In terms of ‘disjunctive

minimum’, the conceptual distance between c1 and c2 will be given by: d(c1, c2) =

min [d(syn1, c2), d(syn2, c2), d(syn3, c2)].

In calculating conjunctive concept similarity, we take into account all elementary

concepts in the conjunctive concept. [135] specified that:

“When conjunctive concepts are compared, we must take into account the

conceptual distances among elementary concepts.”

We regard the comparison of the similarity of two conjunctive concepts as finding

the best assignment for a bipartite graph. In both sides of the bipartite graph, the

nodes represent elementary concepts. As with solving the best matching problem, we

apply the Hungarian algorithm to decide the maximum similarity matching between

the two conjunctive concepts. Note that the Hungarian algorithm is prohibitively

computationally expensive especially for long sentences or documents. An alternative

approach is to perform conjunctive concept similarity which is more computationally

efficient and can be defined as [153]:
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sim(c1, c2) =
1

M ·N

M∑
i=1

N∑
j=1

sim(ei, fj) (3.3)

where c1 and c2 are the compound concepts being compared and ei and fj are el-

ementary concepts for c1 and c2 respectively. In this formula, the sum of pairwise

elementary concept similarities is normalized by the product of the length of conjunc-

tive concepts to reduce the bias of the number of elementary concepts [135]. Thus

the more elementary concepts a compound concept has, the less (relatively) a path

through an elementary concept will account for similarity. Some other approaches to

conjunctive concept similarity calculation can also be found in [153].

3.4.3 Density-based Concept Selection

In the concept set, each concept stands for a semantic entity in the semantic space.

The pairwise relationship can be determined by their semantic similarity, which is

represented as an n× n matrix M . The similarity matrix M is a symmetric matrix,

each row or column of which stands for the similarity values of corresponding concepts

with regard to all concepts. The most similar concept group can represent a subspace

in the semantic space within which the concepts have high correlations.

Principle Component Analysis (PCA) is a useful tool in pattern recognition in

high-dimensional spaces to reduce the number of dimensions without losing much

of the information/variance represented by the data. With PCA, a feature vector

can be selected with higher eigenvalues of the covariance matrix, retaining most of

the information. The reduction of dimensions can help to compress data as well

as reducing noise induced by too many dimensions. Although PCA can ensure the

orthogonality of the bases, the representation of original data in terms of feature

vectors is difficult to interpret and embed with it semantics, which is also agreed by

Wei and Ngo in [169]. However, subsets of concepts which are clusters in semantic
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space represent specific domain semantics representatively. They should be as disjoint

as possible to be selected as the bases in semantic space. Therefore, the number of

clusters, that is also the number of bases selected by clustering, should be consistent

with the number of feature vectors selected by PCA.

We apply PCA in helping to find the most appropriate number of clusters in

density-based concept selection. The total number of clusters is decided by consid-

ering the inconsistency coefficient and PCA. The inconsistency coefficient value was

used to decide the appropriate number of clusters in the dendrogram. The inconsis-

tency coefficient value is defined to compare the height of a link in a cluster hierarchy

with the average height of links below it. This value can be used to identify the groups

of concepts which are densely packed in certain areas of the cluster dendrogram. The

lower, the more similar the concepts are under the link.

To demonstrate how the approach works, we take ConceptNet contextual similar-

ity as an example, which is described in Section 3.3.3. Figures 3.4, 3.5 and 3.6 are all

demonstrated using the typical concept set (85 concepts) we will investigate in Sec-

tion 4.3 as shown by Table 4.4, in italics. In Figure 3.4 (left), the number of clusters

formed when inconsistent values are less than a specified inconsistency coefficient is

shown. According to PCA, the cumulative energy content for the top k Eigenvectors

is shown in Figure 3.4 (right). As described above, the number of orthogonal vectors

represent disjoint semantics in semantic space. We hope to group as many similar

concepts as possible which leads to less orthogonal bases in the space. Finally, the

trade-off between PCA inconsistency coefficient is used to find a proper number of

clusters for agglomerative algorithm. As shown in Figure 3.5, the intersection of PCA

(blue) and inconsistency coefficient (green) curves is selected to decide the number

of clusters. The cluster number at the trade-off point can still keep the cumulative

energy higher than 90% while the inconsistent coefficient is at a relatively low level.

The dendrogram generated by hierarchical clustering is illustrated in Figure 3.6.
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Figure 3.4: Inconsistency coefficient and PCA.
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Figure 3.5: Number of clusters.

In the dendrogram, semantically related concepts are linked together within a cluster.

For example, ‘food’, ‘table’, ‘people’, ‘drink’ and ‘plate’ are grouped together, from

which it is not hard for us to understand that these concepts are more related to

the activity ‘eating’ (shown as a dashed circle in Figure 3.6). More examples can be

shown in Figure 3.6, such as ‘milk’, ‘water’, ‘cup’ are clustered for ‘drinking’ while

‘sky’, ‘path’, ‘tree’, ‘road sign’ and ‘road’ are clustered for ‘walking’. The semantic

clustering facilitates the selection of topic-related concepts. As a concept, a given

topic is also an instance which can be clustered in the concept space. Therefore, the

concepts within the same cluster of a given topic can be the concept candidates.
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Figure 3.6: Relationship dendrogram for concepts.

3.5 Leveraging Similarity for Concept Ranking

In the previous section we described a method for selecting candidate concepts in

similarity matching based on clustering concepts in a semantic space. Although the

selected concepts have high correlation with the given activity topic, there may still

be other concepts missing which might be related to the topic. This is because the

clustering algorithm only considers the local distance in the semantic space. Since the

selected concepts have high correlation semantically with the given topic, they can

be used as seeds in finding other related concepts. To leverage the concept similarity

in a global view, we employed the random walk model which has been shown to be
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efficient in many applications.

3.5.1 Concept Similarity Model

Random walk is a widely used algorithm which uses links in a network to calculate

global importance scores of objects which are connected in the network. Random walk

allows us to compute the probability of a random walker being located in each vertex

through time series. This is performed as a discrete Markov chain characterized by

a transition probability matrix. Its application as PageRank [126] has shown great

success in web searching. The intuition of PageRank views web pages as a connected

graph by forward and backward hyperlinks. In PageRank, a web page is important

if there are also important pages which link to it.

We model concept similarity as a graph G = (C,E), where V is the concept

set and E is a set of edges that link concepts. Each edge is assigned with a given

similarity value describing the probability that a random walker jumps among the

concepts. As is shown in Figure 3.7, the concept sets and given topics can both be

viewed as vertices in the graph, connected by similarity links. In last section, the

concepts that were similar to the given topic are selected as candidates, shown as the

shaded concepts in Figure 3.7. However, the concepts which are similar to candidate

concepts but have no direct similarity link with the given topic, are ignored. The

random walk model is employed to rank the concepts with candidate concepts as

seeds from a global similarity view.

3.5.2 Similarity Rank

In this model, we can consider the process as a Markov chain where the states are

concepts and transitions are similarity links between them. A random walker will

start with a prior probability and surf on the graph by following the similarity links.

The similarity random walk is based on mutual reinforcement of concepts, that is,
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the score for concept relative to a given topic influences, and is being influenced by,

the score of other concepts. We formulate the calculation of the score for ci as:

x(ci) =
n∑

j=1

Simijx(cj) (3.4)

where Simij is a normalized similarity value between ci and cj. Following the PageR-

ank algorithm, we update the score of concepts by:


x1

...

xn

 = α


Sim11 . . . Sim1n

... . . . ...

Simn1 . . . Simnn




x1

...

xn

+ (1− α)


d1
...

dn

 (3.5)

where (d1 . . . dn)
T is prior score vector, and α is decay factor. The equation can be

formalized in a compact matrix form as:

x = αTx + (1− α)d (3.6)
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In this formula, x stands for the score vector and T is the similarity matrix with

the sum of each column normalized to 1. For each concept ci, there is xi =
∑n

j=1 α ·

Simijxj + (1− α) · di for the score. To solve Equation 3.6, we can convert it to:

x = α(T+ (1− α)/α · d · 1)x (3.7)

If we assume A = α(T + (1 − α)/α · d · 1), then x will be the Eigenvector of A.

Although this leads to a direct solution for the formula, the iterative calculation

converges fast enough and is usually employed. In our experiment to be described in

Chapter 4, the iteration starts with x initialized as 0.

3.6 Summary

In this chapter, the selection of everyday activities and concepts for analysis of lifel-

ogging data are investigated. To facilitate the indexing and retrieval of lifelog media,

a semantic density-based concept selection algorithm is proposed which can utilize

the semantic similarity obtained from ontologies. The prevalent ontological similarity

based on WordNet and ConceptNet are investigated and used in this thesis to ob-

tain pairwise concept similarity. The algorithm applies agglomerative clustering to

select densely relevant concepts as candidates based on a similarity score. The final

concept list is then ranked in a PageRank-like algorithm, which we call similarity

rank. Both the clustering algorithm in concept space and similarity rank try to han-

dle the concept similarity globally by applying pairwise concept relationship reasoned

from ontologies. While the clustering in concept space can return the most relevant

concepts, similarity rank returns the final list of concepts ordered according to their

relevance to the given activity. For example, by employing ConceptNet similarity,

concept ‘cycle lane’ is first selected as a potential concept for activity ‘driving’. By
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applying similarity ranking, a list of concepts are ranked and returned as ‘cycle lane,

window, people, car, inside car, glass, traffic light, road, tree, road sign, sky...’. More

relevant concepts like ‘car’, ‘inside car’, ‘traffic light’, ‘road’, ‘tree’, etc. are ranked

on the top of the final list.

We now progress to assessing the density-based concept selection algorithm and

the impact of ontological similarity measures in a set of experiments reported in the

next chapter.
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Chapter 4

Evaluating Concept-based Similarity

and Selection

In Chapter 3 we introduced a mechanism for computing similarity between objects

such as a concept and a lifelog event type, based on the structure of semantic concepts

within ontologies and the relative frequencies of occurrence of those same concepts

elsewhere in a collection. Also considered in this similarity measure was the “dis-

tance” between concept pairs in terms of the navigation distance between them in

a pre-constructed ontology. In this chapter we report a set of experimental results

which assess the effectiveness of the proposed methods. Note that we still inherit the

terminology we used in Chapter 3 and refer to ‘topic’ as a type of everyday ‘event’ or

‘activity’.

4.1 User Experiment

Our experiments first started with a user investigation to find out the set of possible

concepts involved in interpreting lifelog events. The respondents in our experiments

are chosen from among the researchers or students in our own research group, most

of whom are working in computer science and some of them are also logging their
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everyday life with SenseCam so the group are sympathetic to and familiar with the

idea of indexing visual content by semantic concepts.

In total, 13 respondents took part in our user experiment, for whom the demo-

graphic information and experience with SenseCam are shown in Table 4.1.

Table 4.1: Demographic information of participants
User ID Gender Age Group Ever Used SC Working on SC

1 Male 26-30 Yes Yes
2 Female 21-25 No No
3 Male 36-40 Yes Yes
4 Male 26-30 Yes Yes
5 Male 26-30 No No
6 Male 26-30 No No
7 Female 26-30 Yes Yes
8 Male 26-30 Yes No
9 Male 31-35 Yes Yes
10 Male 21-25 Yes No
11 Female 21-25 Yes No
12 Female 26-30 No No
13 Male 31-35 No No

Among the 13 participants, there are 9 males and 4 females, whose ages are all

in the range of 20 – 40 years old. About half of the participants (7 in 13) are in the

age group of 26 – 30 while 3 are in 21 – 25 and another 3 are over 30. There are 8

participants who are familiar with SenseCam and have worn it for various periods. 5

participants are currently doing research using SenseCam and are engaged in different

tasks like visualization, concept detection, medical therapy, etc.

In our user experiment, participants were shown SenseCam images for samples of

activities and were then surveyed by questionnaires based on their common under-

standing of SenseCam activity images as well as the relevant concepts occurring in

those SenseCam images. The experiment was organized into three phases: a study

phase, pooling phase and rating phase. In the study phase, target activities were first

described to the respondents to get them familiar with the activity concepts. Exem-
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plar image streams for each activity listed in Table 3.2 were shown to the group and

we asked them to inspect the SenseCam images. In the pooling stage, participants

were asked to go through images collected individually to list the possible concepts

they thought might be helpful in order to retrieve the activities. The aim of the

second phase is to determine a large concept set that might be helpful in analyzing

SenseCam images in order to detect activities. In the final rating phase, the number

of subjects who thought a concept was relevant to the given activity is calculated,

for all target activities. Then the higher number of “votes” the concept gets and the

greatest agreement among all subjects, the more relevance we give to the concept for

that activity, in the experiment.

Table 4.2: Experimental data set for pooling
Topics Eating Drinking Cooking Clean/Tidy/Wash Wash clothes

Events 5 5 5 5 2
Images 260 66 398 125 127
Topics Watch TV Child care Food shop-

ping
General Shop-
ping

Bar/Pub

Events 5 5 5 5 5
Images 70 146 161 269 758
Topics Reading Cycling Pet care Going to cinema Driving

Events 5 2 1 1 5
Images 148 92 2 728 227
Topics Walking Meeting Presentation

(give)
Presentation
(listen)

Use computer

Events 5 2 2 1 5
Images 93 81 164 256 226
Topics Use phone Taking

bus
Talking

Events 5 5 17
Images 241 226 704

To make the user experiment more efficient and to optimally mine the users’

social experience and knowledge, the subjects were asked to list as many concepts

associated with each event topic of interest, in the pooling stage. The application
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for inspecting the SenseCam images was built with a controlled browsing speed to

help the subject look through SenseCam images at a comfortable rate. Details of

the data used in the pooling stage are shown in Table 4.2. Taking ‘eating’ event

for example, there are totally 5 event samples for ‘eating’ as shown in Table 4.2

and these 5 sample streams consist of 260 SenseCam images in all. Note that the

activities listed in Table 4.2 are all from the everyday activities we investigated in

Section 3.2.1, as shown in Table 3.1. To provide cues for participants to find relevant

concepts, the images depicting different activities were shown. In our later experiment

on evaluating concept selection, Section 4.4, we will use the concept set obtained from

the user experiment. The concepts investigated include 171 concepts in total whose

details will be given in Section 4.3. The large set of concepts and concept diversity

also reflect the functionality of SenseCam images in associating with concepts. Some

typical concepts related and their corresponding activities are shown in Table 4.3:

Table 4.3: Examples of everyday concepts
Activities Concepts

Eating food, plate, cup, table, cutlery
Drinking cup, glass, table
Cooking hands, sink, fridge, microwave
Use computer keyboard, table, hands
Watch TV TV, remote control
Care for Children pram/buggy, child, toy
... ...

4.2 Experimental Evaluation Methodology

Two baselines were employed to evaluate our concept selection algorithm, namely

the user experiment as the “oracle” result and the mutual information based concept

selection (to be described in this section) output. In the user experiment, the ranked

concepts are analyzed to select the best set of agreed ones which are decided unani-
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mously for the evaluation. The annotated dataset will be analyzed to select relevant

concepts by calculating the mutual information value. Generally speaking, the seman-

tic density-based concept selection and mutual information (MI) based approaches

are both automatic approaches compared to the manual user experiment.

To give a brief description of MI and how it is used in concept selection, we follow

the formalizations by [101] in video retrieval as: I(R;C) =
∑

r,c P (r, c)log P (r,c)
P (r)P (c)

,

where the R and C are both binary random variables. R stands for the relevance

of a video shot for which the instance r ∈ {relevance, irrelevance} while C repre-

sents the presence or absence of a concept in a video shot for which the instance

c ∈ {presence, absence}. MI reflects the contributing of knowledge about C in re-

ducing the entropy of R using maximum likelihood estimates, so concepts can be

ranked according to MI. After removing the concepts with the suggested thresh-

old of 1%, the negatively helpful concepts are also filtered out by the criterion that

Ip(absence, relevance) of a concept is greater than Ip(presence, relevance), where

Ip(r, c) is pairwise mutual information, defined by Ip(r, c) = log P (r,c)
P (r)P (c)

.

Note that no algorithm is perfect in concept selection. Each algorithm has its pros

and cons which depends on the application. Even the “oracle” user experiment also

has the problem of finding broader concepts compared to the MI-based approach. The

MI based algorithm, however, tends to select some non-relevant concepts but which

co-occur with the event topic often. Event segmentation which can also have errors,

and erroneous annotation can also introduce artifacts leading to poor performance

for the MI-based approach. The MI-based approach also suffers from the lack of

representative events in the annotation sets. The benchmarks are introduced here to

evaluate the algorithms from different performance points of views. These viewpoints

are group consistency, set agreement and rank correlation [78].

Group consistency:

In order to assess the clustering result of our algorithm, we define group consis-
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tency to measure the degree of semantically related concepts to be clustered. When

two related concepts are grouped in the same cluster by our algorithm, this should

give a positive contribution to the overall consistency value, otherwise, a negative

contribution should be given to overall consistency. To determine whether two con-

cepts should be grouped together is a subjective decision hence the results of human

experiments are used as an oracle evaluation. We formalize the notion of human

judgement on concept group consistency as a binary function O:

O(ci, cj) =


1 if ci and cj are under the same topic

0 if ci and cj are not under the same topic
(4.1)

Similarly, we define another binary function G to reflect the grouping result of two

concepts by clustering as:

G(ci, cj) =


1 if ci and cj are in the same cluster

0 if ci and cj are not in the same cluster
(4.2)

Note that these two binary functions are both symmetric which means O(ci, cj) =

O(cj, ci) and G(ci, cj) = G(cj, ci). Generating a set C of ordered pairs C = {(ci, cj), 1 ≤

i, j ≤ |C|, i ̸= j} from concept set C, the overall group consistency for C is defined

based on these two functions and is formalized as:

GC =
|C| −∑

(ci,cj)∈C IC(O,G, ci, cj)

|C|
(4.3)

where
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IC(O,G, ci, cj) =


1 if O(ci, cj) ̸= G(ci, cj)

0 if O(ci, cj) = G(ci, cj)
(4.4)

Group consistency reflects the performance of similarity-based clustering in a form of

pairwise grouping result. The ratio is computed as the fraction of the pairs for which

the semantic clustering algorithm gives the same output as the user experiment. If

there are no cases in which semantic clustering mis-groups a concept pair, GC is equal

to 1. Conversely, GC is equal to 0 when no concept pairs are correctly grouped.

Set agreement: Set agreement is used to compare two concept sets without

considering the ranking measurement. It defines the positive proportion of specific

agreement between two sets [78]. The score of set agreement is equal to 1 when the

two sets C1 = C2, and 0 when C1
∩
C2 = ϕ.

Rank correlation: Rank correlation is used here to study the relationships be-

tween different rankings on the same concept set. We employ the Spearman’s ranking

correlation coefficient to measure the final score. According to the definition of Spear-

man’s ranking correlation coefficient, the score is equal to 1 when agreement between

the two rankings are the same, and -1 when one ranking is the reverse of the other.

4.3 Evaluation Setup

We recruited 13 persons to be involved in the user experiment for concept recom-

mendation. Diverse concepts are suggested by our subjects as shown in Figure 4.1.

As we can see from the figure, the number of concepts increases significantly when

less agreement is achieved, from 13 votes to 2 votes. Concepts with only 1 vote are

ignored in our experiment because one subject’s suggestion means very little in terms

of a common understanding of concept selection.
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Figure 4.1: Concept number vs. agreement.

We first concentrate on a smaller concept set in which most concepts are selected

with agreeement ≥ 50%. When too few concepts are selected for a topic, more con-

cepts with a smaller agreement will also selected in order to make each topic have at

least 5 concepts selected. In this concept set, there are a total of 85 concepts selected

for our evaluation experiment. The whole group of concepts are shown in Table 4.4 as

a universal set organized into general categories of objects, scene/setting/site, people

and events, from which the 85 concepts with high relevance rating are highlighted in

italics.

To test the robustness of different similarity measures used in our density-based

concept selection algorithm, we also carried out experiments on a larger concept

set. This concept set involves concepts selected with less agreement among users

(vote ≥ 2), forming a broader set of 171 concepts.

The distribution of all 171 concepts across activities is depicted in Figure 4.2.

As shown in Figure 4.2, most activities have a number of concepts between 10 and

20 and the overall average concept number for all 23 activities are 15. Among all

activities, ‘Cooking’ has more relevant concepts selected as more visual concepts

are involved and are helpful to identify the activity, such as various kitchen items

and food which are very specific. Activities like ‘Using phone’, ‘Reading’, ‘Pet care’
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Table 4.4: Experimental concept sets

Objects

plate, cup, cutlery, bowl, glass, bottle, milk, drink, fridge, microwave,
cooker, water, cloth, clothes, glove, soap, hanger, screen, keyboard,
monitor, TV, remote control, basket, trolley, plastic bag, mobile phone,
phone screen, book, newspaper, notebook, paper, handle bar,
steering wheel, car, bus, bicycle, pet, road sign, traffic light, cat,
yellow pole, chair, laptop, projector, pram/buggy
advertisement, back mirror, back of seat, bag, bar code, bin, bucket,
cabinet, candle, chopping board, chopstick, coaster, computer,
cupboard, dashboard, kettle, kitchen items, knife, label, lamp,
light, menu, milk bottle, mirror, mouse, napkin, pan, pen, pot,
press, product, seat, sign, sofa, speaker, spoon, street light, wire,
sun, table cloth, tap, tea pot, tile, tissue, towel, view mirror

Scene / Set-
tings / Site

indoor, outdoor, office, kitchen, table, sink, basin, toys, shelf, cashier,
door, building, fruit, vegetable, deli, food, road, path, cycle lane, sky,
tree, dark, window, inside bus, shop, inside car, projection,
bright, ceiling, colorful, colorful light, corridor, counter, fridge inside,
fridge outside, furniture, grass, home, house, kitchen counter,
living room, park, queue, restaurant, stage, stair, street, wall

People
face, people, group, child, hand, finger,
back of people, back of person’s head, crowd, cyclist, head,
people sitting, presenter, staff

Event

hand washing, hanging clothes, hand gesture, finger touch,
page turning, presentation, taking notes
holding cup, laughing, peeling, pouring, shaking hand, sitting,
standing, typing, walking, walking child, washing

and ‘Going to cinema’ tend to have relatively similar images within one single event

sample, therefore have less concepts recommended.

To measure semantic similarity, we employed both taxonomic similarity and con-

textual similarity using the ontologies of WordNet and ConceptNet, respectively. For

taxonomic similarity, we also compared 5 mainstream similarity measures which are

those of Wu and Palmer (W&P ), Leacock and Chodorow (L&C), Resnik (Res),

Jiang and Conrath (J&C), Lin all of which were introduced and described earlier

in Section 3.3.2. Contextual similarity is obtained by spreading activation through

ConceptNet links. After normalising by textual processing, the word-word seman-

tic similarity is first calculated and then combined to get phrase-level similarity for

conjunctive concepts composed of multi-words.
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Figure 4.2: Concept distribution.

Figure 4.3: Average number of concepts selected per event topic.

The concept-concept similarity and topic-concept similarity are both used in our

density-based concept selection algorithm to cluster the most similar concepts in the

same clusters with corresponding event topics. The output concepts from hierarchi-

cal clustering are first analyzed to show the diversity of result concepts by different

semantic similarity measures. The average number of concepts selected per event

topic is depicted in Figure 4.3. Though there is not much difference in the average
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concept number per topic, Lin selected more concepts than the others. On average,

5.0 concepts are selected by Lin, compared to Jiang and Conrath and ConceptNet

which both select 2.6 and 2.5 concepts per topic respectively. The same trend is

shown in Figure 4.4 from which the proportion of selected concepts (for all topics) in

the universal concept set (85 concepts) is shown.

Figure 4.4: Proportion of selected concepts in the concept set.

4.4 Result Evaluation

The experimental results are assessed to compare the performance of applications of

the two prevalent ontologies, WordNet and ConceptNet, for semantic density-based

concept selection in a lifelogging domain. Our density-based concept selection and

re-ranking algorithm involves several steps including similarity calculation, agglomer-

ative clustering, similarity ranking and so on. Therefore, we evaluate the experimental

results in manifolded ways.

4.4.1 Evaluating the Clustering Algorithm

Our algorithm first applies clustering to group semantically related concepts based

on a similarity measurement. Group consistency is first calculated for each ontology

to assess the clustering performance of our agglomerative algorithm in capturing the
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semantic relationships in everyday life events. The comparison of all above referred

ontologies are shown in Figure 4.5.

Figure 4.5: Group Consistency comparison.

The assessment is first carried out on a small concept set (85 concepts) as shown

by blue bars in Figure 4.5. As we can see, ConceptNet-based similarity shows more

consistency compared to the other similarity measures. Using the same concept set

and agglomerative clustering algorithm, this can denote that the similarity values

returned by our spreading activation from ConceptNet are more suitable to reflect

the semantics of everyday activities. We increased the testing concept set by also

applying the larger concept set (171 concepts) as shown by red bars and we found

that ConceptNet still outperforms the other similarity sources.

In Figure 4.6, the precision of selected concepts is compared for each topic on

ConceptNet and Lin. Although ConceptNet selects less concepts for each topic as

shown in Figure 4.3, the precision outperforms Lin on more topics. There are 9 topics

on which the precision for ConceptNet is above 50% while Lin only has 3 topics. Since

ConceptNet is contextual ontology for common sense, it captures more contextual

relations rather than taxonomic relations. Therefore, more context-related concepts

are selected which increases the overall accuracy. For instance, ‘keyboard’, ‘screen’

and ‘monitor’ are all selected by ConceptNet under the topic of ‘Using computer’.
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These concepts are not taxonomically tight enough in WordNet, which can be inter-

preted as a long path between the nodes in the hierarchical lexical ontology. However,

they are tightly connected under the same context of ‘Using computer’ showing that

ConceptNet can more accurately reflect everyday concept relationship.

Figure 4.6: Comparison of precision.

In the larger concept set, the semantic similarity calculation is also performed

first for these 171 concepts and topics and then goes through a hierarchical clus-

tering algorithm which has been shown to be efficient in finding groups of relevant

concepts in the concept space [169]. The output concepts are compared on a topic

basis with the groundtruth pooled in the user experiment. Comparison is done on

SetAgreement and RankCorrelation to evaluate the performance of different similar-
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ity measures. Because the topics are not uniform in assessing the performance, we do

not use the average result over all topics which has no meaning on SetAgreement and

RankCorrelation. The investigation results of our density-based everyday concept

selection are demonstrated in Figure 4.7 and Figure 4.8.

The performance of different similarity measures investigated in our experiment

is compared in Figure 4.7 on the metric of SetAgreement. We find that ConceptNet-

based concept selection has the highest median value and better quartile score than

WordNet-based measures. Among WordNet-based similarities, Leacock performs best

on SetAgreement but does not show advantages on RankCorrelation as shown in

Figure 4.8.
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Figure 4.7: Comparison of Set Agreement.

ConceptNet-based concept selection results in the highest median and quartile

scores on RankCorrelation. Jiang achieves the best performance among WordNet-

based similarities, but is still out-performed by ConceptNet. Finally, we can reach

a conclusion that ConceptNet-based similarity performs the best not only on the

concepts selected (as implied by SetAgreement), but also on the ranking of these

concepts (as implied by RankCorrelation). The contextual ontology is thus more

suitable and efficient in everyday concept selection for the lifelogging domain.
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Figure 4.8: Comparison of Rank Correlation.

4.4.2 Similarity Ranking Assessment

Similar to group consistency, we define pairwise orderedness [66] to evaluate ranking

performance of our algorithm, as the following formula:

PO =
|C| −∑

(ci,cj)∈C IC(O,R, ci, cj)

|C|
(4.5)

where

IC(O,R, ci, cj) =


1 if R(ci) ≥ R(cj) and O(ci) < O(cj)

1 if R(ci) ≤ R(cj) and O(ci) > O(cj)

0 otherwise

(4.6)

O(c) is equal to 1 if concept c is selected as a ground truth concept in user experiment.

Otherwise, O(c) is equal to 0. R(c) is the final score for concept c returned by

the similarity ranking. Concept pair set C has the same definition as given in the

formalization of group consistency in Section 4.2.
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The performance comparison of ontology similarities using pairwise orderedness

is shown in Figure 4.9 on the small concept set (85 concepts). ConceptNet similarity

outperforms the other measures in most cases for which the curve of ConceptNet

(CN) is above all the other curves (activities before ‘cook’). There are only four

cases in which ConceptNet performs worse than WordNet-based similarity measures.

They are ‘cook’, ‘listen to presentation’, ‘general shopping’ and ‘presentation’. We

also analyzed the poor performance of ConceptNet on these activity types to give

explanations. For ‘listen to presentation’ and ‘presentation’, ConceptNet didn’t per-

form well due to the lack of context information for the concept ‘presentation’. By

looking up the ontology structure of ConceptNet, we can find only two concepts that

are contextually connected to ‘presentation’ with high correlation. They are ‘fail to

get information across’ and ‘at conference’ and connected with ‘presentation’ by rela-

tionships ‘CapableOf’ and ‘LocationOf’ respectively. Therefore, it’s hard to quantify

related concepts in our concept set with a high similarity weight. In our experiment,

‘general shopping’ is introduced as a very general concept for which even humans can

find it hard to decide the most related concepts. When concepts are selected in our

user experiment, they usually are loosely connected with this topic. The poor per-

formance on the topic ‘general shopping’ can be explained as the lack of specification

of semantic context.

The evaluation on pairwise orderedness is also carried out on the larger concept

set (171 concepts). As we can see from Figure 4.10, the comparison still shows that

ConceptNet-based semantic similarity performs better than other similarity measures

in most cases. In only three cases, ConceptNet does not perform as well as WordNet-

based similarities, and those three cases are ‘cook’, ‘presentation’ and ‘general shop-

ping’. The reason for poor performance can be explained in the same way as when

we were using the small concept set. Note that in the ‘cook’ topic, more procedures

such as ‘washing’, ‘peeling potatoes’, ‘stir frying’, to name a few, are involved. The
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Figure 4.9: Comparison of Pairwise Orderedness (small set).

contextual diversity also makes it difficult for ConceptNet to return the contextual

similarity correctly.

Figure 4.10: Comparison of Pairwise Orderedness (larger concept set).

Ranked concepts based on semantic similarity are also compared using metrics of

SetAgreement and RankCorrelation. To simplify the comparison, we perform the

evaluation on the smaller concept set with the selection on the Top-5 and Top-10

concepts returned by the similarity rank algorithm. The performance of different
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semantic similarity measurements are shown respectively in Figure 4.11 and Figure

4.12.
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Figure 4.11: Comparison for Top-5 ranked concepts (smaller concept set).

As we can see from Figure 4.11, the advantage of using ConceptNet is more ob-

vious as we select more concepts after similarity rank compared to very few concept

seeds selected by clustering. In Figure 4.11, the ConceptNet-based algorithm out-

performs the others not only in SetAgreement but also in RankCorrelation. The

advantages of ConceptNet when Top-10 concepts are selected as depicted in Figure

4.12 show the robustness of our similarity rank algorithm. The rank algorithm propa-

gates the similarity network and give higher weights to more relevant concepts based

on the selected seeds selected by the clustering algorithm. When better seeds are

selected, as done when using ConceptNet, the ranking algorithm tries to find more

relevant concepts with regard to the already selected seeds.

4.5 Evaluation on TRECVid

The density-based concept selection algorithm was also evaluated on a data set pro-

vided as part of the TRECVid benchmark. We evaluated the performance of our

algorithm with two benchmarks, namely the Human Benchmark and the Collection

Benchmark [78]. The human benchmark is a human-generated concept selection pro-
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Figure 4.12: Comparison for Top-10 ranked concepts (smaller concept set).

cess that participants would consider useful for a query topic. Collection benchmark

is generated from an already annotated corpus with concepts. This benchmark is

usually created according to the relevance of concepts to a query, calculated by e.g.

mutual information as we described in Section 4.2. In this case, a concept can be

mapped to a query if it reduces uncertainty of a potential candidate being relevant

to that query [78].

Using MediaMill video search engine, Snoek et al. manually extended both the

number of concepts and the number of annotations by browsing the training video

shots for TV news broadcast programme. The manual annotation process finally

yielded a pool of ground truth for a lexicon of 101 semantic concepts according to [159].

In [159], the MediaMill team also published a collection of machine-learned detectors

for these 101 concepts. To assess the evaluation on MediaMill’s 101 concepts, we first

ran our algorithm on this lexicon. Then, the results were evaluated on the topics

shown in Appendix A, for which both human benchmark and collection benchmark

results are released in [78]. Figure 4.13 demonstrates the comparison of ontologies in

seed selection by agglomerative clustering on the two benchmarks.

As we can see from Figure 4.13, the performances of different ontologies change

significantly when the application domain is changed from everyday lifelogging activ-

ities to TRECVid TV news broadcasting. ConceptNet does not perform that well
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Figure 4.13: Comparison of Set Agreement (left: human benchmark, right: collection
benchmark) in TRECVid.

compared to how it does in lifelogging activities. For the human benchmark, Lin

performs worst among all WordNet-based ontologies in selecting useful concepts dur-

ing the clustering procedure. The reason for the poor performance can be explained

as due to the poor concept semantic consistency, as reflected by group consistency,

which is shown in Figure 4.14. Group consistency directly reflects the clustering per-

formance carried out based on concept similarity. When concept similarity returned

by reasoning through ontologies like WordNet and ConceptNet can correctly reflect

the pairwise concept relationship, the clustering will achieve better group consistency.

From group consistency, we can see that Lin fails to cluster the semantically similar

concepts together as the similarity scores are not properly returned for these con-

cepts. Though ConceptNet does not show much advantage when assessed in the

human benchmark, it slightly out-performs the others on the collection benchmark.

The collection benchmark tends to select more concepts for each topic [78], introduc-

ing more non-relevant concepts. This probably compensates for the defect that more

concepts are selected as useful by using ConceptNet for TRECVid, even though some

are not that relevant.

In order to test the capability of semantic density-based concept selection and

ranking, assessments on the final ranked concept lists are also carried out. In this
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Figure 4.14: Comparison of Group Consistency (MediaMill 101 concepts).

assessment, the prevailing ontology-based concept selection proposed in [156] is em-

ployed as the baseline. The final results are evaluated on two benchmarks which

are the human benchmark and the collection benchmark, whose results are released

in [78]. The selected concepts in MediaMill’s 101 concepts set are extracted and

compared with automatically-selected concepts.

Figure 4.15 shows the comparison of density-based selection (top) and the base-

line (bottom), on the human manual selection benchmark. We compared the two

approaches each time using the first K concepts in the final selected concept lists for

all topics, named as Top-K in Figure 4.15, to see the change of performance when the

number of selected concepts increases. We remove the effect of similarity measures

on the performance by choosing the same semantic measure as the baseline, which

is Resnik similarity measure. Though there seems to be no significant improvement

by our algorithm at small Top-K values, our approach achieved better results when

K > 7. Because we are using the same similarity measure here, which is Resnik, the

most relevant concepts returned by the measure shouldn’t be too different. Therefore,

the performance of the very top concepts in the final list is similar. However, the sim-

ilarity ranking algorithm applies global similarity relations to ranking concepts. The

useful concepts which might not get high similarity values for the topic are boosted

84



by the concepts with high similarity.
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Figure 4.15: Comparison of Top-K concepts (human benchmark).

The same advantage is shown in Figure 4.16 on the collection benchmark. Our

algorithm achieves higher median values at earlier K values (K = 4) than the baseline

(K = 6). The median and quartile values remain better than the baseline especially

when K has a high value.

Across the two domains we investigated when applying our automatic concept
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Figure 4.16: Comparison of Top-K concepts (collection benchmark).

selection algorithm, the summary points we can conclude from our experiments are

as follows:

• The density-based concept selection utilizes the global similarity of all topics

and concepts in concept selection and ranking. The advantages are shown in

candidates selection and ranking the concept from a global view. The perfor-

mance is better than the baseline in selecting the most relevant concepts for the
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given topic. The algorithm can also be used as a computational platform for

various domains like lifelogging and news video retrieval.

• The candidate concepts selected by clustering depend on grouping consistency.

Usually, the similarity measures which correctly reflect the semantic relationship

between concepts can obtain better group consistency, as demonstrated by the

good performance of ConceptNet similarity in lifelogging.

• Our application of contextual similarity obtained from spreading activation of

ConceptNet performs the best in lifelogging concept selection. ConceptNet

similarity better reflects the semantic relationship of everyday activities and

concepts because they are more contextually relevant in the lifelogging domain.

• Contextual similarity does not show the advantages it has when the application

domain changes from lifelogging to TV news broadcasting. However, most

lexicon similarity obtained from WordNet performs well in capturing semantics

between news topics and concepts.

4.6 Summary

In this chapter, we assessed the performance of various similarity measures using

lexicons in lifelogging domain and TRECVid TV news broadcasting domain. To

answer research questions (RQ1) and (RQ2) we proposed at the beginning of this

thesis, in Chapter 3 we exploited the methodology of automatic concept selection

by applying a density-based selection approach in concept space. Since the premise

of this algorithm is the automatic reasoning on concept ontology, in this chapter

we assessed various ontological similarity reasoning measures on two comprehensive

concept ontologies which are WordNet and ConceptNet. The performance of our

concept selection algorithm is also evaluated to reflect the effectiveness of clustering
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and ranking algorithm using different similarities. The final ranked concept list is

also evaluated on TRECVid benchmark topics and concepts using the prevailing

ontological selection approach as the baseline. Both evaluations on lifelogging and

TRECVid domains demonstrated the efficacy of our algorithms.
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Chapter 5

Fusion of Event Semantics for

Lifelogging

Mobile devices are becoming ubiquitous in everyday life and digital media is prolif-

erating. We find that this is happening not only in online social sharing but also in

lifelogging. Because of the variety of activities that people usually engage in, a wide

range of semantic concepts referred to earlier will appear in visual lifelog media, which

in turn increases the challenges in developing automatic concept classifiers for such a

diverse range. As a demonstration, we took the 85 concepts investigated in Chapter

4 and analyzed the properties of these concepts as reflected in the visual lifelogging

domain. Even though these 85 concepts are far from representing a universal con-

cept set encountered from the lifelogging point of view, they can reflect the common

characteristics of concept semantics. Figure 5.1 shows a histogram of the frequency

of appearance of these 85 concepts based on a manual annotation of a collection of

12,000 SenseCam images collected from within our group. From this figure we can

conclude that:

1. The distribution of concepts is imbalanced. Some concepts’ frequencies are

extremely high while some are much lower. This imposes a burden on automatic
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Figure 5.1: Concept distribution among SenseCam images.

concept classification for which balanced training data is necessary for better

performance. Especially, a reduced frequency of concept occurrence makes it

difficult to develop good detectors due to the absence of enough positive training

instances for the learning machines.

2. The span of concepts is wide which means that many concepts can be involved

in visual lifelogging. This property raises the challenge of high computational

complexity.

3. The contributions of concepts are different in interpreting the semantics of

events and appropriate concepts are needed. Concepts with very low frequency

can incur noise and error easily if used in the concept space. An appropriate

weight for concepts in the new space are needed for later stable representation

or classification of events.

4. Each input image might have more than one concept, which raises the problem

of mapping the low-level features from a single image to multiple concept classes.
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Figure 5.2: Concept distribution – logarithmic scale plot.

It is interesting to see that the distribution of concept frequencies has a good fit with

Zipf’s law. If we plot the frequency and concept rank according to decreasing order of

frequency in logarithmic scale, the curve shows the pattern to be near-linear especially

for concepts with high frequency, as shown in Figure 5.2. The linear relationship shows

a simple relationship with frequency and rank for concepts, though the distribution

of low-frequent concepts seems not to fit Zipf’s Law as well in Figure 5.2. That is

because of the idiosyncratic concept selection we used in our work which is the same

reason as described in [69]. In Figure 5.2, the curve is first fit as power function before

being plotted in logarithmic scale. The linear relationship for concept distribution

yields a line with slope -0.841 which is very close to the theoretical value of -1.

Theoretically, the maximum number of possible concepts in lifelogging, based on

the distribution can be estimated at more than 10,000 (see the intersection of the red

line and horizontal axis). Since it is impractical to build so many concept classifiers

and the effort to annotate that many concepts would be huge, in Chapter 3 we dealt

with research questions (RQ1) and (RQ2) of the selection of concepts which can
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significantly reduce the burden of concept annotation and classifier training. However,

the differences in occurrence frequency poses another challenge which affects accuracy

of the concept detection because of imbalanced positive-negative sample distributions

and visual diversity. This is also shown by Lin and Hauptmann in [101] where,

the authors indicated that frequent concepts and scene-based concepts should be

given higher priority as well as concepts which could benefit most search queries. It

is not hard for us to imagine that the performances of concept detectors can vary

significantly due to the above discussed differences of concept characteristics. The

prior knowledge of concepts which can be modeled in concept ontology can reflect

the inherent property of concepts and relationship between them, hence can be used

to leverage the detection performance of different concept detectors. In this chapter,

we will first discuss the ontological multi-concept classification before we apply the

concept detection result for further event-level processing.

After talking about ontological multi-concept classification, we will turn to the

discussion of event-level concept aggregation and semantic activity detection. Both

of them try to answer the research question of (RQ3) by handling concept diversity

at event-level. Different from each other, our concept aggregation algorithm to be

proposed in this chapter fuses image concepts from a static view without considering

the dynamic patterns of concept appearance. On the contrary, our high-level semantic

activity detection tries to model the time-varying concept patterns from a dynamic

view. As an application of even-level concept aggregation, we apply our algorithm

into the selection of semantic event representation. In the experiment, the proposed

algorithms will be evaluated together with corresponding applications in the last

section of this chapter.
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5.1 Event-based Visual Processing

In our research, visually processed events are the basic unit to be interpreted seman-

tically by modern multimedia retrieval and Semantic Web technologies. Before we

move on to a discussion of visual event processing, it is necessary for us to first have

a conceptual definition of an event. Actually, “events” have been assigned various

definitions in different research domains. As described in [177], an event is defined

as a pattern when it is matched with a certain class of pattern types. This kind of

pattern matching is named as an event in pattern recognition, while in the signal

processing field, when a status changes in the signal this trigger is also viewed as an

event. These categories of events are very similar to the definitions of events in some

information systems, for which certain changes of system states or the occurrences of

pre-defined situations are all regarded as events. Though these definitions are useful

in some event analysis systems, in lifelogging, a definition which reflects an event’s

role in human understanding of everyday experience is needed. In [177], an event is

regarded as a symbolic abstraction for the semantic segmentation of happenings in a

specific spatio-temporal volume of the real world. The spacial and temporal attributes

of events help us to organize our memories of life experience episodically. This has

been shown in the neuroscience area in work such as [180], in which transient changes

in neural activities are detected at event boundaries when participants are shown

video depictions of everyday activities passively or asked to do active segmentation

on them. This notion of an event is also accepted as a fundamental concept in the

multimedia mining field as shown by Xie et al. in [175]. We use a similar definition

of an event as a “real-world occurrence at specific place and time”. Under this defi-

nition, the meaningful structures with spatial and temporal properties in lifelogging,

like “Going to work”, “Watching TV at home”, “Talking with friends”, etc., are all

events.

As a general characterization of event contexts, the maxim of five “W”s and one “H”
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for reporting real-world events in journalism is used to represent the aspects of events,

namely who, what, where, when, why, and how [178, 175]. The pervasive adoption of

computing devices especially mobile devices increases the volume of multimedia data

captured for real-world events. The multimedia resources related to events vary with

the triggering of events in the form of heterogenous data types such as image, video,

text, sensor readings and so on. Among these media data, visual images and videos

contain more information and we call this kind of event processing, “visual event

processing”. These captures of events can reflect the who, what, where and when

aspects of multimedia data and enhance the probability of further interpretation of

event semantics like why and how. However, according to [170], these media are

descriptions of the event rather than the event itself. That is to say, the media

contain partial descriptions of the real-world event and the semantics of an event

needs to be inferred from the captured media [181].

Visual lifelogging is a typical application of visual event processing. In various

adoption fields of lifelogging such as memory aids, ADL analysis, and so on, a full

understanding of events is necessary for better event retrieval and representation.

However, there is still comparatively little metadata labeled on the multimedia data

representing event semantics. Finding desired events with such little metadata is faced

with many difficulties from large amount of media especially long-term lifelogged

data. In visual lifelogging, much work has been done in event segmentation [53],

event representation [51], life pattern analysis [86], event enhancement [50] and so on.

These works still focus on the low-level visual features or raw sensor data processing.

The semantic gap between events capture digitally and the human understanding

of events are now fully bridged. In [34], the idea of semantic concept detection is

explored to detect high-level concepts (such as indoors, outdoors, people, buildings,

etc.) using supervised machine learning techniques. Though often used within video

retrieval, this semantic indexing method has shown its capability in relating low-level
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visual features to high-level semantic concepts for visual lifelogging. Similar work has

also been done by [52] in which the detected everyday concepts are applied into life

pattern analysis. Though current concept detection can index lifelog visual media

with meaningful annotations of concepts, the annotations are still handled at the

image level. Efficient event indexing and management tools can not be provided by

current image-level semantic annotations. In the following sections of this chapter, the

challenges of fusing image-level semantics for event detection and representation are

discussed. Algorithms are proposed to deal with these challenges and the evaluation

is given in the experiment section.

5.2 Multi-Concept Event Semantic Aggregation

In visual lifelogging, successively captured images may have quite different visual

appearances and a variety of concepts detected, unlike traditional video for which

two successive frames within the one shot will be visually very similar. This makes it

impossible to use the concepts from one single lifelogged image to infer the semantics

of a whole event. The concept diversity in lifelogging events not only challenges event

representation but also poses difficulties in multi-concept detection. The problem of

event-level concept aggregation is tackled in this section of the thesis.

5.2.1 Ontology-based Multi-Concept Classification

The accuracy of a concept detector/classifier is always an important factor in pro-

viding satisfactory solutions in multimedia information retrieval, to map low-level

feature to high-level concepts. To interpret the semantics of lifelogging events, ac-

curate concept detectors are needed to extract concepts from image readings which

are the main information sources and can imply more semantics than other sensor

readings in everyday event interpretation. The concept detectors based on the pro-
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cessing of SenseCam images are therefore crucial for efficient lifelogging event-based

organization and retrieval.

To decide on the appearance of concepts in visual media, machine learning ap-

proaches like Support Vector Machines (SVM) [163] are widely used to find a sat-

isfactory separation (usually a hyper plane) between positive and negative concept

instances in a high-dimensional space projected from the low-level perceptual image

feature space, through the transformation of kernels. The result of this classification

is returned as a confidence value to reflect the distance between an instance and the

trained hyper plane. When the confidence of the positive class is high enough, we

can annotate the target instance with the existence of concepts. The goal of multi-

media indexing is then achieved through this mapping from image features to textual

annotations. In concept detection, the applications of machine learning usually make

the common assumption that the classifiers for a set of concepts are independent of

each other, and equally weighted in terms of importance. The intrinsic relationships

between concepts are neglected under this assumption. Eventually, this assumption

ends up with multiple isolated binary classifiers and leads to a result of ignorance of

concept semantics. The notion is likely to suffer from the shortcomings of misclassi-

fication or inconsistency between the detected concepts.

A concept ontology provides a methodology to model concept semantics and im-

prove the one-per-class classification accuracy if the semantics of concepts can be

fused in the detection procedure. In our solution, the lexicon of lifelogging concepts

are constructed as a concept ontology and concept relationships are applied in a top-

down approach to adjust the classifier outputs, making the detected confidence score

reflect the semantic relationships between concepts. In our experiment, the semantic

enriched multi-concept classification algorithm shows added value in improving de-

tection performance despite the diversity of concepts in the lexicon. The detected

concepts can then be fused for activity classification or event representation, which
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we will describe later in Section 5.3.3 and Section 5.4.

The intuitive notion of ontology-based multi-concept classification is to utilize

concept semantics formalized in an ontology in order to improve detection accuracy

by modifying the confidence for each concept in lifelogging. In our approach, we

combined a concept ontology and the multi-class level integration proposed in [97] to

achieve an ontology-based classification solution for multiple concepts. The procedure

involves the following steps: firstly, the class prediction confidence is calculated by an

SVM binary classifier. Each concept is given a confidence to represent the likelihood

for the image to contain the concept. This basic SVM classifier is one-per-class dis-

criminative concept detector without considering concept semantics as we described

above. Secondly, two important relationships between concepts are considered and

then formalized in the ontology, which are Subsumption and Disjointness. Subsump-

tion is a relationship restricting the membership of a concept. Using subsumption,

a taxonomic structure can be created between a concept and other concepts. By

relating two concepts with disjointness, no instance of either class can be an instance

of both classes. In concept detection, disjointness can be interpreted as that the two

disjoint concepts can not co-occur in the same image. Both of the two relationships

have intuitive guidelines we follow in designing our algorithm. Thirdly, the concept

semantics is applied into the adjusting of concept prediction confidence to improve

classification accuracy. This is done by learning the adjusting factor first from the

correlation between detection performance and confidences of relevant concepts.

A snippet of the concept ontology we used in our lifelogging interpretation is

depicted in Figure 5.3 and in Figure 5.4, in which the high level concepts of ‘Indoor’

and ‘Outdoor’ are highlighted respectively.

In Figure 5.3 and Figure 5.4, each concept in our lexicon is represented as one node

of the tree. The subsumption relationships are visualized by arrows pointing from

superclass concepts to subclass concepts. Another semantic relationship modeled
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Figure 5.3: Ontology for multi-concept lexicon (indoor highlighted).

Figure 5.4: Ontology for multi-concept lexicon (outdoor highlighted).

in this ontology is disjointness. As standard Semantic Web languages which can

explicitly specify the term relationships, ontology language OWL [114] and RDFS

[28] vocabulary can be applied here for concept semantic modeling. More details of

ontology construction and semantic description syntax like OWL and RDFS will be
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described in Chapter 6. Here we simply use their semantic modeling functions. A

set of disjoint concepts are related using the owl:disjointWith constructor which

asserts that one concept can not simultaneously appear in the same image together

with a specified other concept. In Listing 5.1, the ‘Outdoor’ concepts is specified as

a disjoint concept of ‘Indoor’. Meanwhile, all of the concepts have the same root and

are derived from the concept ‘Thing’. The subsumption relationship is created by the

property rdfs:subClassOf.

<owl:Class rdf:ID="Indoor">

<rdfs:subClassOf rdf:resource="#Thing"/>

<owl:disjointWith rdf:resource="#Outdoor"/>

</owl:Class>

Listing 5.1: Example of disjointness specification

As modeled in a standardized formulation, ontology-based concept detection uti-

lizes the underlying concept relationships among classifiers to improve the final ac-

curacy. The influence of the ontology on concept classification is performed by ad-

justing the confidence value calculated by the single concept classifier. Literally, the

subsumption influence makes full use of the effects of parent concept nodes while dis-

joint influence considers the effects of disjoint concepts. In Figure 5.3 and in Figure

5.4 the parent nodes are the superclass of children nodes. The hierarchical structure

not only reflects the semantics of concepts but also influences the concept detection

performance of concepts at different hierarchical levels. As demonstrated by Byrne,

Doherty, et al. in [34], the higher level concepts like ‘Indoor’, ‘Outdoor’, etc. have

much better detection performances. One important reason for the performance dif-

ference is that concepts located at the lower levels of the ontology hierarchy tend to

have less positive training data compared to those concepts at the upper levels [173].

As we can see from the ontology structure, only a few concepts have child nodes while
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most concepts are leaves in the tree. However, these leaf concepts are more specific

concepts so that the detectors are less accurate than the more general concepts. With

regard to the disjointness relationship, the disjoint concepts can not co-exist in the

same image.

In determining the adjusted confidence by exploiting the subsumption and dis-

jointness relationships, we define a target concept of an image x as c. The ascendant

concepts and descendant concepts for concept c are denoted as ASC(c) and DES(c).

Similarly, the disjoint concepts explicitly modeled in the ontology are DIS(c). The

confidence of image x belonging to concept c returned by the SVM classifier is repre-

sented as Conf(c|x). Assume we have M classifiers which are one-per-class concept

detectors for M concepts. Without employing the semantic relation of these clas-

sifiers, we directly binarize Conf(c|x) to obtain the appearance of each concept in

image x. From a set of disjoint concepts, the concept with maximum confidence is

usually chosen as the final concept detected as ω = argmax1≤c≤MConf(c|x). The

adjusting of Conf(c|x) with respect to concept semantics is now described in detail.

As we described, most of the concepts in the lexicon are leaf concepts. Though

detectors for these specific concepts usually have lower accuracy than the more general

ones, they also have a greater number of disjoint concepts at the same level or derived

indirectly from other levels, which can be used to improve their accuracy. Aiming

to apply the constructed ontology to multi-concept classification, we introduce the

multi-class margin factor [97] [63]:

Definition 1. Multi-class Margin

tm = Conf(c|x)−maxci∈DConf(ci|x) (5.1)

where D is the universal set of disjoint concepts of c. Note that D ⊇ DIS(c)

because there are also concepts modeled implicitly as disjoint with c in the ontol-
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ogy. Indeed, D includes DIS(c) as well as DES(DIS(c)), which are all descen-

dants of disjoint concepts of c, and disjoint concepts of ascendent concepts above c,

denoted as DIS(ASC(c)). These statements of disjointness can be asserted or in-

ferred. The former is created directly by the ontology to assert the statement (using

owl:disjointWith property). However, for the latter, a semantic reasoner is required

to infer additional disjointness statements logically. Current Semantic Web technol-

ogy already provides reasoners at various levels such as RDFS inference and OWL

inference, to add inference to different application needs. A detailed description of

Semantic Web inference will be given in Chapter 6. In our algorithm, the reasoner is

embedded straightforwardly to leverage explicit statements to create logically valid

but implicit statements.

To demonstrate the effect of the multi-class margin on detection accuracy, we plot

the misclassified and correctly-classified image samples in Figure 5.5, using the ‘In-

door’ concept as an example. The detection confidences of concepts such as ‘Indoor’,

‘Outdoor’, ‘Road’, ‘Sky’, etc. are returned by standard SVM classifiers as we describe

in Section 5.5.3. This figure visualized a data set of about 10,000 SenseCam images

for which the ground truth of ‘Indoor’ concept is annotated manually. The disjoint

concepts used to calculate multi-class margin of ‘Indoor’ are ‘Road’, ‘Sky’, ‘Tree’,

‘Building’, ‘Grass’ and ‘Outdoor’. In Figure 5.5, the x-axis stands for the confidence

of the ‘Indoor’ concept returned directly by the classifier, the y-axis is the multi-class

margin calculated by Equation 5.1. A blue star stands for misclassified images while

a red circle stands for correctly classified images. From Figure 5.5, we can easily find

that there will be fewer misclassified instances when the confidence and multi-class

margin are high. For most misclassified samples, the multi-class margin is lower than

confidence and most misclassifications are located in the region with the multi-class

margin lower than 0.6. Using a multi-class margin has been proved to be effective for

a better separation between two kinds of instances in [97] and [63], achieving reduced
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classification errors. We also use a multi-class margin as a criterion to improve the

classification accuracy in our work.
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Figure 5.5: Concept classification results (Conf vs. Multi-class Margin).

To show how the multi-class margin improves concept detection accuracy, we plot

the distribution of concept accuracy and multi-class margin in Figure 5.6, shown by

blue “+” marks. In the figure, the accuracy-confidence distribution is also plotted for

comparison purpose by blue circle style marks denoted by “◦”. Compared to the in-

tuitive confidence-based classifier, the correlation between classification accuracy and

multi-class margin shows greater advantage in Figure 5.6 for both ‘Indoor’ and ‘Out-

door’ detection. It’s easy to notice that the multi-class margin has higher accuracy

than the original confidence and converges earlier in both graphs.

This correlation between detection accuracy and multi-class margin can then be

used to adjust the concept detection confidence. We modify the original confidence

value Conf(ω|x) by the formula:

Conf =
√
Conf(ω|x)× g(tm) (5.2)

where function g is the adjusting factor and is calculated by fitting the sigmoid
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Figure 5.6: Correlation of accuracy and confidence/multi-class margin (left: indoor;
right: outdoor).

function of the relationship between classification accuracy and multi-class margin

reflected in Figure 5.6. In Figure 5.6, sigmoid functions are fit according to the

accuracy-confidence/multi-class margin distributions. The curves of multi-class mar-

gin (in red) are located above those of original confidence (in black), achieving better

performance for concept detection. The sigmoid function g(x) we used for fitting the

correlation has the form as follows:

g(x) = A+
B

1 + exp(−C × x)
(5.3)

The details of our implementation of ontology-based multi-class classification is

shown in Algorithm 1. In Section 5.5.2, the evaluation of this algorithm will be

elaborated.
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Input:
O: Concept ontology model built for lexicon
xtraining: Instances for parameter learning
xtesting: Instances for confidence adjusting
Output:
Conf : Adjusted confidences for xtesting by O
Data:
L: Universal concept lexicon
c: Instance of concept
DIS(c): all disjoint concepts of c
Conf(c|x): Original confidence returned by SVM classifier
tm: Multi-class margin
A,B,C: Parameters for sigmoid function
g(tm): sigmoid function value of multi-class margin
begin

O ← ReadOntology(); // Read ontology into model
O ← InferOntology(O); // Perform semantic inference on O
for x ∈ xtraining do

for c ∈ L do
Conf(c|x)← SVMDetector(x, c); // Confidence by SVM

end
for c ∈ L do

DIS(c)← QueryDisjoint(c,O); // All disjoint of c
tm ← MultiClassMargin(x,DIS(c));

end
end
Learn parameters A, B and C from calculated tm ;
for x ∈ xtesting do

for c ∈ L do
Conf(c|x)← SVMDetector(x, c); // Confidence by SVM

end
for c ∈ L do

DIS(c)← QueryDisjoint(c,O) ; // All disjoint of c
tm ← MultiClassMargin(x,DIS(c));
Calculate g(tm) with learned parameters A, B and C;
Conf ←

√
Conf(c|x)× g(tm) ;

end
end

end
Algorithm 1: Ontology-based multi-class classification algorithm

5.2.2 Interestingness-based Concept Aggregation

Concept classification is implemented at image level to extract the potential semantics

reflected by a single image. In event-based lifelogging, it is the semantics of events

rather than single images from events, that is the focus to help a user to understand

what he did, when and where a specific event happened and whom he was with dur-
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ing that period. However, when successively captured images have quite different

visual appearance and a variety of different concepts detected, it’s unrealistic to rep-

resent the semantics of a whole event by the concepts detected from one single image.

Meanwhile, different concepts play different roles in interpreting event topics. For

example, in analyzing concepts for a ‘Meeting’ event, we can detect such concepts

as ‘Indoor’, ‘Office’ and ‘Face’. As ‘Indoor’ is not a unique concept for ‘Meeting’

compared to other events such as ‘Working’, ‘Shopping’ that also have the concept

‘Indoor’ occurring, it should be ranked lower while concepts like ‘Office’ and ‘Face’

are better representations for ‘Meeting’.

5.2.2.1 Event Concept Interestingness

To tackle the above difficulties we are faced with in lifelogging, an interestingness-

based concept aggregation algorithm 1 is proposed in this section to fuse image con-

cepts for appropriate event-level semantic representations. The interestingness-based

concept aggregation is motivated by the notion that the best descriptive concepts for

an event should be the most unique across the collection yet representative, in order

to differentiate a given event from others; meanwhile the concept should also have

relatively high frequency within the event. This is the same rationale as tf × IDF

weighting in standard information retrieval.

In vector-based retrieval systems, the documents and queries are represented by

vector descriptions in which each dimension corresponds to an elementary concept

in the lexicon. In this multi-dimensional space, conceptual similarity can be easily

obtained by measuring the geometric distance between the vectors. Traditional in-

formation retrieval systems apply tf × IDF -like weight to quantify the coordinate of

a vector along a dimension as the relative importance of the corresponding elemen-
1While choosing a proper word to describe the contribution of a concept to the representation of

true event semantics, we had a discussion on the use of ‘influence’, ‘uniqueness’ or ‘specificity’ for
this task. To keep consistency with the terminology referred to in [54, 168], we will inherit the usage
of ‘interestingness’ for the rest of this thesis.
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tary concept for the document (or query). Geometric distance such as Euclidian or

Cosine can easily be applied to return the similar vector for a query. With the same

notion, we extend the research problem as the following task: given a particular event

and all consecutive images representing it and each image has concept appearances

detected, the mission is to identify the best concepts representing the event and rank

them according to their contribution to event semantics. Though some events like a

holiday covers many days and a user’s recall of his holiday might have longer time

span, to reminisce more details of a holiday a user usually interprets events on a daily

basis. To simplify the problem domain, we limit event coverage within the range of

one day. That means we need to find the most representative concepts for an event

with respect to the other events in the same day. The algorithm is generic and can

easily be extended to a week or month basis which has broader time intervals.

With the same terminology as in the previous sections, we have the universe

of concepts C. Let {E1, E2...EN} be the event sets in a specific day. Event Ei is

represented by successive images I(i) = {Im(i)
1 , Im

(i)
2 ...Im(i)

m }. Each image Imi
j might

have several concepts detected, we assume the concepts appearing in image Im
(i)
j

are C
(i)
j = {c(i)j1 , c

(i)
j2 ...c

(i)
jn}. Then the frequency of concept c occurring in event Ei is

calculated in the form of f(c, Ei) =
∑

1≤j≤m 1{c ∈ C
(i)
j }, where 1{·} is the indicator

function.

The weight for each concept c ∈ C for Ei given the above assumption is:

w(c, Ei) =
f(c, Ei)∑

1≤j≤N f(c, Ej) + ξ
(5.4)

The definition above can satisfy the assumptions [54] as follows:

1) Frequently occurring concepts show the semantic consistency within the event

and should be selected as concept candidates for the event.

2) Concepts appearing more during Ei than the other events are more unique and

should have higher weights.
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Concepts detected at the image level are prone to noise and suffer from misclas-

sification due to the limited performance of classification. ξ in the denominator of

Equation 5.4 is used to filter misclassified concepts with very low frequency. How-

ever, the aggregation at the event level can filter the misclassified concepts and only

consistent concepts having higher weight will be selected. We can imagine that event

level aggregation of concepts is more robust than image level and this idea will be

tested and verified in our experiments in Section 5.5.3.

5.2.2.2 Semantic Aggregation of Concepts

In the event segmentation stage, each event is separated from others using sensor

readings from the SenseCam’s onboard sensors [50] and a keyframe is selected as the

best representative image for each event [51]. Though concept detection is easily

affected by noise at the image level, our concept aggregation fuses the dominant

concepts from the event level which shows greater robustness to concept detection

noise. The fusion procedure returns the Top-k concepts for event Ei ranked according

to concept interestingness as {c(i)1 , c
(i)
2 ...c

(i)
k }, where interestingness weight w(c(i)j , Ei) ≥

w(c
(i)
j+1, Ei). The choice of Top-k value can be modified, which will be explored in the

experiments in Section 5.5.3.

The main contribution of concept aggregation is representing events with a vector

of concepts which not only reflects event semantics, but also facilitates event visual

representation, i.e. keyframe selection. Some examples are shown in Figure 5.7 in

which the resulting concepts from the aggregation algorithm are listed. Due to the

disadvantages of the single concept classifier, only those concepts with high confidence

can be regarded as true from each image. Thus some concepts which might be more

relevant at the event level are easily missed. In Figure 5.7 we can see that the keyframe

selected by our SenseCam browser [51] may be visually representative of the event

but we are not sure if it is semantically representative. In Event_1, only two concepts
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Figure 5.7: Event-level concept aggregation.

can be detected from the keyframe, namely ‘Indoor’ and ‘Office’, forming a concept

vector Ckf1 = {Indoor,Office}. From these two concepts there is ambiguity as to the

nature of Event_1. The aggregated method ranks the more unique concepts higher

when their occurrence frequencies are high enough through interestingness weight

vector ve1 = (0.037, 0.034, 0.022, 0.020, 0.011, ...), of which each value represents the

weight for ‘People’, ‘Indoor’, ‘Office’, ‘Hands’, ‘Face’ and so on. These concepts have

higher correlation with event semantics such as ‘Talking’ (‘People’, ‘Face’) and ‘Using

Computer’ (‘Hands’,‘Screen’). These two types of activities reflect the core semantics

of Event_1.

5.2.3 Vector Similarity in Semantic Space

To quantify the relationship between entities in the semantic space, we will discuss the

similarity of concept lists. The tf×IDF weight is used as the most efficient weighting

definition in the Vector Space Model [14] where both documents and queries are
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associated with t-dimensional vectors vj = (w1j, w2j, . . . , wtj), where each dimension

is a weight and t is the size of the lexicon. Traditional vector similarity measures can

be employed to quantify the relevance between two vectors, such as inner product

(vi • vj) or Cosine of the angle among those two vectors as:

sim(vi,vj) =
vi • vj

||vi|| × ||vj||
=

∑t
k=1 wki · wkj√∑t

k=1 w
2
ki

√∑t
k=1 w

2
kj

(5.5)

However, the semantic contribution of each dimension to the vector is ignored by

these measures. Especially, it worsens the case if terms, which are concepts in image

or video retrieval, cannot be detected perfectly. The noise introduced by imperfect

concept detection will degrade the performance. For example, assume we have three

semantic vectors: v1 = (0.1, 0.2, 0.1), v2 = (0, 0.2, 0), v3 = (0.2, 0.1, 0.2), whose

components represent the weight for different concepts representatively. Though Co-

sine similarity sim(v1,v2) is equal to sim(v1,v3), we prefer v2 to approach v1

because they semantically emphasize the same concept. Besides, the low weights in

v1 such as 0.1 are more likely to be affected by noise introduced by concept detection,

making the similarity unstable.

With this motivation, we define the similarity which considers both set agreement

and rank consistency of two concept vectors and apply the measurement in judicious

selection of an event keyframe later in Section 5.4. The similarity is shown as the

following equation:

Definition 2. Concept Vector Similarity

sim(Ci, Cj) =
1

|Ci
∪
Cj|

|Ci|∑
k=1

|Cj |∑
l=1

1{Cik = Cjl}
abs(k − l) + 1

(5.6)

where Ci, Cj stands for two concept vectors aggregated by approaches described in

Section 5.2.2.2, |Ci
∪
Cj| is the cardinality of the set consisting of the union of two

concept sets. abs(k − l) gives the absolute value of ranking difference for the same
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concept in two vectors. The added “1” in the denominator is used to avoid division

by zero.

The concept vectors are regarded as high-level features for interpreting event se-

mantics. To demonstrate the similarity for high level features, let’s revisit the exam-

ples in Figure 5.7. We choose the top 5 concept vectors for Event_1 for simplicity,

which are Ce1 = {People, Indoor,Office,Hands, Face}. According to the definition

above, the similarity of Ce1 and Ckf1 for the keyframe is 0.2 for Event_1. With the

same manner, the semantic similarity between keyframe (Ckf2 = {Indoor}) and event

for Event_2 is 0.028. Event_2 has much lower vector similarity due to the existence

of sub-events with disjoint semantics of ‘Outdoor’ and ‘Indoor’.

5.3 High-Level Semantic Activity Detection

According to research result in the neuroscience area, experiments showed that hu-

mans remember their past experience structured in the form of events [180]. This

poses another need for lifelogging tools to provide high-level topic detection facilities

to categorize events for organization or re-experience use. Besides, the continuing

progress of automatic concept detection for multimedia data like images, videos has

shown satisfactory results, especially for some concepts or in specific domains. This

has raised the probability to apply sophisticated approaches to fuse the detected re-

sults in achieving goals for which traditional methods lose capability. In [72], the

semantic model vector (the output of concept detectors) has already been shown to

be the best-performing single feature for IBM’s multimedia event detection task in

TRECVid. It is important to realize that lifelog events such as sitting on a bus,

walking to a restaurant, eating a meal, watching TV, etc. consists of many, usually

hundreds, of individual SenseCam images. In many cases, where the wearer is moving

around, a large range of dissimilar images are generated. The variety of SenseCam
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images in lifelogging introduces difficulties for event detection when compared to

traditional TV news broadcasting video, for example. The image capture rate also

makes dynamic descriptors, spatial-temporal features like HOG (Histograms of Ori-

ented Gradients) and HOF (Histograms of Optical Flow) descriptors, inapplicable,

which are well adopted in video classification [84, 80, 72].

5.3.1 Problem Description

In our research, the problem for lifelogging event topic detection is also simplified as

a classification problem, that is, to find the most likely event topic from a lexicon set

with regard to the event input.

Suppose we are given an annotated training set {(x(1), y(1)), ..., (x(N), y(N))} con-

sisting of N independent examples. Each of the examples x(i) represents the i-th

event in the corpus. The corresponding annotation y(i) ∈ [1, |T |] is one of the topic

lexicon T . The task for event topic detection can be described as: given the training

set, to learn a function h : X 7→ Y so that h(x) is a predictor with an unlabeled event

input x for the corresponding value of y.

Going through the concept detection procedure, each image is assigned labels

indicating if specific concepts exist in the image or not. Still, if we have the uni-

verse of concept detector set C, event x(i) is represented by successive images I(i) =

{Im(i)
1 , Im

(i)
2 ...Im(i)

m }. The concept detection result for image Im(i)
j can be represented

as an n-dimensional concept vector, as C(i)
j = (c

(i)
j1 , c

(i)
j2 ...c

(i)
jn)

T , where n is equal to the

cardinality of C and c
(i)
jk = 1 if concept k is detected in the image, otherwise c

(i)
jk = 0.

While the SenseCam wearer is performing an activity which requires him/her to

be moving around, his view may be changing over time, though not, for example, if

he/she is watching TV or working in an office looking at a computer. We need to

map time-varying concept patterns into different activities. We find that to classify an

event consisting of a series of images in temporal order is very similar to recognizing a
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phoneme in an acoustic stream, to some extent. The event is analogous to a phoneme

in the stream and every image within this event is analogous to an acoustic frame.

Then the task of temporal activity classification is suitable to be addressed by a

classical Hidden Markov Model (HMM) [134], which has been proved to be efficient

in the speech recognition application. Due to the characteristics of different events,

event lengths vary significantly making the classification difficult. For example, ‘using

computer’ might contain hundreds of SenseCam images while ‘using phone’ might

only have several images representing it when having a short conversation. HMM

can adapt to various lengths of event streams and avoid the effort of dynamic time

warping to account for variations in length. We now elaborate the construction of

HMMs for the solution of the above formalized event topic classification problem.

5.3.2 Vocabulary Construction for SenseCam Images

Concept detection provides us with an efficient way to decide on the appearance

of concepts in images, which can be used as high-level semantic features for later

concept-based retrieval or even further statistical classification. As we can see from

previous sections, concepts play different roles in representing event semantics, and

some of them interact with each other through their ontological relationship. This

means the dimensions in a concept vector C
(i)
j are not independent and some of the

concepts are still similar to each other in meaning. Ignoring concept relationships

will likely degrade the performance of later activity classification.

We deal with the underlying semantic structure using Latent Semantic Analysis

(LSA) [48] in our research. As in the traditional Vector Space Model, LSA also

represents terms and documents by vectors and analyzes the document relationship

in terms of the angle between two vectors. The advantage of LSA is that the terms

and documents are projected to a potential concept space and retrieval performance

is improved by getting rid of “noise” in the original space [48]. In LSA, the similarity
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of meaning of terms is determined by a set of mutual constraints provided by term

contexts in which a given term does and does not appear [93]. The application of

LSA in our research can be described as the following:

Assume that we have n concept detector and a corpus consisting m SenseCam

images. We can construct an n×m concept-image matrix:

X =



x11 x12 . . . x1n

x21 x22 . . . x2n

...
... . . . ...

xn1 xm2 . . . xnm


(5.7)

where each element xij = 1 if concept ci appears in image Ij, otherwise xij = 0. In

matrix X, each row represents for a unique concept and each column stands for an

image.

The LSA is carried out by applying Singular Value Decomposition (SVD) to the

matrix. The concept-image matrix is decomposed into the product of three matrices

as shown:

X = UΣVT (5.8)

where U and V are left and right singular vectors respectively, while Σ is the diagonal

singular matrix of scaling values. Both U and V have have orthogonal columns and

describe the original row entities (concepts) and column entities (images) separately.

By SVD, the matrix X can be reconstructed approximately by less dimensions k < n

in the least squares manner. This can be simply done by choosing the first k largest

singular values in Σ and corresponding orthogonal columns in U and V. This yields
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the approximation as:

X ≈ X̂ = UkΣkV
T
k (5.9)

The reduced matrix not only retains the semantic relationship between original

concepts and images, but also removes “noise” induced by similar concepts. Since

Uk is an orthogonal matrix, it is not hard to calculate the projection of any sample

vector Cj in the new concept space as:

Ĉj = Σ−1
k UT

kCj (5.10)

After the concept vectors are mapped to the new concept space, vector quantiza-

tion is employed to represent similar vectors with the same index. This is performed

by dividing the large set of vectors into groups having a number of points similar to

each other. In this way, the sample vectors characterizing concept occurrences are

modeled only by a group of discrete states which is referred to as vocabulary. Vector

quantization is done by clustering sample sets in an n-dimensional space, to M clus-

ters, where n is the number of space bases (k after LSA), while M is the vocabulary

size.

For vector quantization, we applied a k-means clustering algorithm to categorize

the samples in the k-dimensional space. To avoid local optimization of quantization

error, we carried out 10 iterations of k-means clustering with different randomly

initialized cluster centers. The clustering result with minimum square error is selected

as the final vocabulary. One example of vocabulary construction is shown in Figure

5.8, in which sample points are projected in a 2− d concept space and clustered for

a vocabulary of size 5.
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Figure 5.8: Vocabulary construction example in 2D space.

5.3.3 Concept-Spatial HMM Activity Classification

5.3.3.1 HMM Model Structure

In our activity detection, each lifelog event/activity segmentation is treated as an

instance of an underlying activity type and is constructed by a series of SenseCam

images. A Hidden Markov Model [134] is a very efficient machine learning tool to

model time-varying patterns. In our activity classification the HMM treats the event

instance as mutually independent sets of concepts generated by a latent state in a

time series. The model structure as shown in Figure 5.9 is used in modeling the

temporal pattern of dynamic concept appearances in an activity.

In Figure 5.9, one ‘Cooking’ event is demonstrated by the change of states and

observation sequences, through the time line. The fully connected state transition

model is shown in Figure 5.10:
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Figure 5.9: HMM structure for activity modeling.
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Figure 5.10: Two states transition model.

5.3.3.2 Parameter Training

The choice of k and M which determines the amount of dimension reduction in

concept space and vocabulary size will affect the performance of our algorithm. The

choice of k should be large enough to reflect the real structure in a new concept space,

meanwhile should be small enough to avoid sampling errors or unimportant details

introduced in the original matrix. It is a similar case in selecting a proper value for

M for which the representation of observation and modeling complexity should also

be balanced. Finding proper choices of k and cluster number M in a theoretical way

is beyond the scope of our work and is an open issue in the information retrieval and

machine learning community. In our work, we regard k and M as two parameters and
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test the best combination with the criterion of retrieval performance namely mean

average precision (MAP ).

As an evaluation matric, MAP is often used as a reflection of query performance

in video retrieval. Average precision (AP ) is defined as AP = 1
min(R,k)

∑k
j=1

Rj

j
Ij,

where R is the number of relevant segmentations for a specific event topic, Rj is the

number of relevant segmentations in the Top-j ranked results. Ij = 1 if the video

shot ranked at j − th position is relevant, and Ij = 0 otherwise. MAP is the mean

AP of all event topics for a query.

We trained an HMM model for each activity class, that is, for each activity type

we train the model with multiple observation sequences and find the optimal param-

eters. This is done using the Baum-Welch algorithm which optimally estimates the

probability of the HMM model by iteratively re-estimating the model parameters. In

our experiment we cross-validated the HMM models on training data with leave-one-

out cross validation. After a specific number of iterations, the best initialized HMM

parameters are selected and the HMM model is trained on all training data sets for

the activity type. The models of different activity types are then evaluated on the

final testing data to assess retrieval performance. The detailed model training and

parameter searching will be presented in the experiment evaluation section, Section

5.5.1.

5.4 Semantic Representation: a VSM-Like Paradigm

The large amount of multimedia data collected in lifelogging poses severe difficul-

ties in retrieval and representation for long-term lifelogs. The commonly accepted

approaches for keyframe selection are based on analyzing low-level features. How-

ever, this way of representation selection often fails in properly reflecting higher level
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event semantics. The semantic gap between low-level features and event semantics

needs also be bridged to achieve an event-centric representation. In the algorithm

described below, we employed high level features as the measurement rather than the

low-level features aiming to select the keyframe which is most relevant to the event

semantics. This mechanism of event representation is proposed by leveraging con-

cepts detected from image classification and has been proven to have the advantage

of being informative and is of higher visual quality, as shown later in Section 5.5.3.

As a widely used search model, the Vector Space Model (VSM) [14] is known

as one of the most popular models in information retrieval. In VSM, all entities

including documents, queries and terms, are represented as vectors [150]. Using term

vectors as the basis in vector space, both document and query vectors are built as

linear combinations of the term vectors. The evaluation is then done by analyzing

the correlation between the vectors as the relationship between query and document.

In this section, we employ the VSM model as the representation for events.

Following the algorithm in section 5.2.2.2, event semantics is represented in the

form of high-level features by a concept vector within which the concepts are ranked

according to uniqueness. Assuming that event e = s1, s2...sN has the concept vector

Ce, each image si has concept vector Ci. Both Ce and Ci are ranked in terms of the

methodology in Section 5.2.2.2. Then the keyframe is chosen as satisfying:

s∗ = argmaxsi ∈ e, 1≤ i ≤ N sim(Ci, Ce) (5.11)

where sim(Ci, Ce) is defined in Equation 5.6. The matrix calculates semantic simi-

larities for each image with the event concept vector and then the most semantically

similar image is selected as the keyframe. The advantages of this approach are de-

scribed as follows:

• Semantically representative. The image is selected to be the most similar to the
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event semantics, so it must best represent the meaning of the event.

• Informative. The concept vector is ranked in terms of concept uniqueness. The

concept which is more specific under the event topic is ranked higher. Then the

keyframe must contain the most relevant concepts with the event topic.

• High visual quality. All the concepts are detected directly from the image

by classifiers. The confidences for concepts detected from poor visual quality

images are low. The keyframe with more concepts detected must thus have

good quality.

• Wider visual field. Since SenseCam is worn around the neck by the user while

collecting the data, the lens is often blocked by clothes or even arms; this will

cause images with a narrower visual field. The semantically selected image will

decrease the risk of choosing images that are partially blocked.

Figure 5.11: Semantic representation for events.

To illustrate the advantages of this approach, Figure 5.11 demonstrates examples

from which the keyframes using low-level features (LLFs) employed in [51] and high-
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level features (HLFs) are compared. Six events are randomly selected from one day

based on the automatic segmentation of events [53]. The representations selected by

high-level features have obviously better image quality than the ones selected based on

low-level features, especially for events 1, 5 and 6. Objects are hardly recognizable in

the LLF representation for event 1 and 6 due to motion blur. The images with higher

quality often have more detail and concept information, so they are naturally selected

as better representations using HLFs. In events 2, 3 and 4, the HLF representations

are better than the LLF ones because of wider visual fields. Even during darkness,

the HLF selection approach will choose images with more detail and better quality

as shown for event 5.

5.5 Experiment and Evaluation

This section will describe the detailed experiments for the algorithms we proposed in

this chapter, which are high-level activity classification, ontology-based multi-concept

detection and semantic keyframe selection. All of these algorithms are aiming to deal

with the challenges in indexing or representing the lifelogged data at event level,

by leveraging the concepts detected at image level. The evaluations are carried out

separately to test their performances.

5.5.1 Activity Classification Evaluation

5.5.1.1 Evaluation Data set

In the activity classification evaluation experiment, we carried out the assessment

of our algorithm on data sets using both clean concept annotation and erroneous

concept annotation. The data sets we used in our experiment are event samples of

the 23 activity types we investigated in Chapter 4. Due to the limited number of

positive samples of each activity type, we use the first 50% of each sample as training
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sample and another 50% as testing sample. The event types with more than 5 positive

samples are selected to evaluate our algorithm. This leads to 16 event types which

are shown in Table 5.1 with sample number and number of images contained.

Table 5.1: Experimental data set for activity classification
Activity type Eating Drinking Cooking Clean/Tidy/Wash

Sample number 28 15 9 21
Image number 1484 188 619 411
Activity type Watch TV Child care Food shopping General shopping

Sample number 11 19 13 7
Image number 285 846 633 359
Activity type Reading Driving Use phone Taking bus

Sample number 22 20 12 9
Image number 835 1047 393 526
Activity type Walking Presentation (listen) Use computer Talking

Sample number 19 11 17 17
Image number 672 644 851 704

5.5.1.2 Evaluation on Clean Concept Annotation

The clean concept annotation means the concept annotations on each image for event

samples are error-free. This is done by manually annotating the 85 concepts we pro-

posed in Chapter 4 for the data sets. For annotation purposes, a concept annotation

software tool was developed for users to inspect the SenseCam images and judge if

the concept exists or not. The temporal relationship is kept during annotation by

providing a series of SenseCam images within the same event. This helps to improve

annotation speed for the user by selecting positive image samples and the unselected

samples will be annotated as negative samples. Thus a group of images can be an-

notated in one click and the whole event can be annotated in several clicks for one

concept annotation. The performance of activity classification on clean annotation is

now described.

As we described in Section 5.3.3, the selection of parameters k and M will affect
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the performance of our algorithm. In our experiment, we evaluated the final retrieval

performance with different settings of these parameters. The search graph of param-

eters k and M in order to tune MAP is shown in Figure 5.12, for which 3 states

HMM model is used.

Figure 5.12: Search graph for MAP optimizing (3 states).

The search graph is built by varying k and M in the ranges [10..80] and [10..100]

respectively. The best performances (MAP ≥ 0.9) appear in the range [30..50] and

[80..100] for k and M . When the value of k is increased, the value of M also needs to

be increased to achieve better performance. The worst case happens when selecting

a large k value and small M value, when more ‘noise’ is introduced from the concept

space and the vocabulary clusters can not adapt to the ‘noise’. The situation is better

when k is low enough, say, k = 20, for which most choices of M have MAP above

0.8. Meanwhile, large M values can also complement the choice of k, when M is

large enough (M ≥ 90), most MAP remain at a satisfactory level, even though the

best cases are in the range k ∈ [30..50]. A similar pattern can be seen when choosing

different state numbers, e.g, two states as demonstrated in Figure 5.13.

In our training experiment, we trained and tested different settings of model pa-

rameters including the dimensions of concept space and the vocabulary size. After
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Figure 5.13: Search graph for MAP optimizing (2 states).

testing different combinations, we selected a concept space dimension of 35 and vo-

cabulary size of 80 for further investigation, based on their performance. Different

numbers of hidden states are tried in 5 runs (shown in Table 5.2) and the overall

performance (average MAP ) is considered in choosing the state number.

From Table 5.2, we find that 2 states achieves best overall performance which is

then used to train HMM models for each type of activity. Because each HMM model

can return the likelihood of an observation sequence, we perform activity classification

by selecting the class of activity with highest likelihood for the input observation. The

performance is then evaluated by precision and recall as shown in Table 5.3.

Among all these 16 activities investigated, the ‘Driving’, ‘Food Shopping’, ‘Presen-

tation (listen)’ and ‘Using computer’ have the highest accuracy with both precision

and recall being 1.00. Other activities like ‘Reading’, ‘Taking bus’, ‘Using phone’,

‘Walking’ and ‘Watching TV’ have an F-Score above 0.90. From the statistics re-

flected by Table 5.3, we find that the highest performances are achieved for activities

in which the visual similarity of SenseCam images are high. The stability of concepts

decided by image visual features makes it easier to detect these activities. As to the

activities involving higher concept diversity, such as ‘Child care’, ‘Cooking’, ‘Talk-
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Table 5.2: State number searching (by MAP )
Number Run1 Run2 Run3 Run4 Run5 Average

2 0.87118 0.89034 0.86201 0.89533 0.87118 0.87801
3 0.87089 0.89352 0.85792 0.89515 0.87089 0.87767
4 0.86629 0.88138 0.86006 0.89388 0.86629 0.87358
5 0.86151 0.87677 0.85807 0.89053 0.86151 0.86968
6 0.86989 0.88572 0.84547 0.88051 0.86989 0.87030
7 0.8548 0.88076 0.86071 0.88734 0.8548 0.86768
8 0.86948 0.87188 0.8545 0.8912 0.86948 0.87131
9 0.8482 0.87891 0.86809 0.88786 0.8482 0.86625
10 0.86023 0.87016 0.8559 0.87837 0.86023 0.86498
11 0.86665 0.87512 0.85716 0.87958 0.86802 0.86931
12 0.86299 0.8794 0.84177 0.87469 0.85733 0.86324
13 0.86538 0.87035 0.84766 0.88628 0.8625 0.86643
14 0.87407 0.87917 0.84238 0.87907 0.86712 0.86836
15 0.87063 0.87146 0.84914 0.87404 0.86087 0.86523
16 0.85593 0.86404 0.84667 0.89099 0.85285 0.86210
17 0.86959 0.87397 0.84208 0.89009 0.86399 0.86794
18 0.86947 0.86314 0.83931 0.88093 0.85556 0.86168
19 0.86617 0.86955 0.84656 0.87879 0.85313 0.86284
20 0.85914 0.86739 0.83312 0.87437 0.85962 0.85873

ing’, etc., the overall accuracies are degraded but still remain at an acceptable level.

Only ‘Talking’ and ‘Drinking’ has an F-Score lower than 0.80. Note that similar con-

cept dynamics also introduces more misclassifications for activities like ‘Drinking’ and

‘Eating’. In this evaluation, 1 out of 15 ‘Drinking’ samples are detected as ‘Eating’

while 3 out of 28 ‘Eating’ samples are classified as ‘Drinking’ activities. From Table

5.3, we notice that ‘Talking’ has the lowest recall 0.65. This is because 6 of these

17 ‘Talking’ instances are misclassified as ‘Drinking’ (1 instance), ‘General shopping’

(1 instance), ‘Walking’ (3 instances) and ‘Child care’ (1 instance), due to very sim-

ilar concepts like ‘Face’, ‘Hand gesture’, etc., which are the cues of ‘Talking’, but

also frequently appear in other activities. These examples also show the influence

of mapping ambiguity between activities and concepts on the final performance of

activity classification. Even though in Table 5.3 the results are obtained based on

clean concept detection without errors, the activity detection accuracies are still not
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Table 5.3: Event detection results
Event type Precision Recall F-Score

Child care 0.68 1.00 0.81
Clean/Tidy/Wash 0.86 0.86 0.86
Cooking 0.80 0.89 0.84
Drinking 0.75 0.80 0.77
Driving 1.00 1.00 1.00
Eating 0.95 0.75 0.84
Food shopping 1.00 1.00 1.00
General shopping 0.86 0.86 0.86
Presentation (listen) 1.00 1.00 1.00
Reading 1.00 0.95 0.98
Taking bus 1.00 0.89 0.95
Talking 0.85 0.65 0.73
Use computer 1.00 1.00 1.00
Use phone 0.92 1.00 0.96
Walking 0.86 0.95 0.90
Watch TV 1.00 0.82 0.90

perfect. This is because the mapping ambiguity from concepts to activities still exists

especially for activities like ‘Clean/Tidy/Wash’, ‘Cooking’, ‘Drinking’, ‘Eating’, etc.

When the detections of specific concepts are exactly the cues for activities, the detec-

tion performances of these activities are high. For example, the detection of ‘steering

wheel’ has less uncertainty for ‘Driving’, the accuracy of ‘Driving’ is high based on

the detection of ‘steering wheel’ and other concepts.

As described in Section 5.5.1.1, each event sample is divided into two halves, of

which the first half is used as training data and the other is used as testing data. To

evaluate the effect of this sampling method for training data and testing data, we also

carried out the experiment on another sampling method which we call odd-and-even

sampling to distinguish from half-and-half sampling. That is, in each event sample,

we will use the images with odd number as training data while the images with even

number are used as testing data. The performance comparison of the two sampling

methods on the clean data set is shown in Figure 5.14:

For evaluation purposes, the training and testing are carried out for 10 runs with
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Figure 5.14: Comparison of two sampling methods (clean data).

each of the two sampling approaches. During the procedure, we used the same pa-

rameter settings as above, k = 35, M = 80, and 2 hidden states. The activity

detection AP is calculated for each activity and then averaged on these 10 runs. The

two sampling approaches are compared on the activity basis out of the 16 activities

investigated. In Figure 5.14, the averaged AP for each activity and averaged MAP

are shown. The half-and-half sampling and odd-and-even sampling are represented

as sampling1 and sampling2 respectively in the figure. From Figure 5.14, there is no

obvious difference between two sampling methods for most activities, compared on

AP . Only two activities show obvious performance differences, which are ‘Cooking’

and ‘General shopping’. The drop in performance for odd-and-even sampling shows

that this sampling method can disrupt the intrinsic observation transition, especially

for activities in which the observation of concepts changes frequently like ‘Cooking’.

For those activities in which concepts do not change so significantly, the performances

of two sampling methods are almost the same, like ‘Driving’, ‘Taking bus’, ‘Watch

TV’, etc. The overall performance is also dropped using odd-and-even sampling re-

flected by averaged MAP . The averaged MAP is 0.89 for sampling1 while it drops

126



to 0.86 for sampling2. The performance difference shows that concept observation

patterns can be changed by the odd-and-even sampling method. On the other hand,

this also reflects that our algorithm can capture the pattern of concept dynamics and

apply these patterns in activity classification for better performance. The evaluation

of two sampling methods on erroneous concept detection will now be described.

5.5.1.3 Erroneous Concept Annotation

In order to assess the performance of our activity detection algorithm on automatically

detected concepts which will have some errors in their detection, we carried out the

evaluation by manually controlling the simulated concept detection accuracy, based on

the groundtruth annotation. The simulation procedure is borrowed from [10], in which

Aly et al. use Monte Carlo simulations to generate various accuracy performances for

concept detection.

The notion of this simulation is based on the approximation of confidence score

outputs from concept detectors as a probabilistic model of two Gaussians. In other

words, both the densities for the positive and negative classes of a concept are simu-

lated as Gaussian distributions. The concept detector performance is then controlled

by modifying the models’ parameters [10]. The method also assumes that the confi-

dence scores of different detectors for a single object such as a shot are independent

from each other. All concepts are also assumed to share the same mean µ1 and stan-

dard deviation σ1 for the positive class while the mean µ0 and the standard deviation

σ0 are for the negative class. Then the performance of concept detection is affected

by the intersection of the areas under the two probability density curves whose shapes

can be controlled by changing the means or the standard deviations of the two classes

for a single concept detector.

The implementation of the simulation involves the following processes. First, we

simulate the confidence observations of concept detector as N(µ0, σ0) and N(µ1, σ1)
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for negative class and positive class respectively. The prior probability P (C) for a

concept C can also be obtained from the annotated collection. Then the sigmoid

posterior probability function with the form of Equation 5.12 is fit for the generation

of a specified number of S training examples.

P (C|o) = 1

1 + exp(Ao+B)
(5.12)

After parameters A and B are decided, the posterior probability of the concept

is returned using the sigmoid function for each shot with a random confidence score

o drawn from the corresponding normal distribution. A more detailed description of

the simulation approach can be found in [10] and [9].

In setting up the concept detectors with errors in our experiment, we modified the

concept detection performance with the simulation based on the groundtruth anno-

tation described in Table 5.1, for which each image is annotated with the existence

of all concepts. During the simulation procedure, we fix the two standard deviations

and the mean of the negative class. The mean of the positive class is changed in the

range of [0.5 .. 10.0] to adjust the intersection area within the two normal curves,

thus changing the detection performance. For each setting of parameters, we executed

20 repeated runs to avoid random performance and the averaged concept MAP and

averaged activity detection MAP are both calculated.

5.5.1.4 Evaluation on Erroneous Concept Annotation

The evaluation on erroneous concept annotation is carried out by training and testing

the activity detection algorithm described in Section 5.3.3, on the simulated concept

detections with different accuracy. We increased the mean of the positive class µ1

for each concept in our lexicon from 0.5 to 10.0 with step 0.5. For each value of

µ1, we execute 20 simulation runs, and for each run the concept detection MAP is

calculated.
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Figure 5.15: Averaged concept MAP with different positive class means.

In Figure 5.15, the concept MAP for all 20 runs are averaged and plotted with the

increase of positive class mean µ1. The x-axis shows the changes of µ1 with the setting

of the other parameters as σ0 = 1.0, σ1 = 1.0 and µ0 = 0.0. The y-axis depicts the

value of averaged concept MAP for each µ1. From Figure 5.15 we can see that an

increasing of µ1 achieves better concept detection performance. When µ1 reaches the

value 5.5, the concept detectors almost have the same performance with the ground

truth and can be regarded as perfect.

For each run, the simulated concept annotations are analyzed by LSA first and

projected to a new concept space with lower dimensions of k = 35. Vector quanti-

zation is then carried out in the new space by k-mean clustering and representing

every SenseCam image with one observation from the vocabulary constructed. After

vector quantization, the SenseCam image which was formerly represented with a 85-

dimensional vector, is indexed with only the number of the cluster. In this step, we

still choose M = 80 and achieve 80 clusters in the new concept space. The dynamic

pattern of observations is modeled by the HMM model whose parameters are trained

in the same process as described in Section 5.3.3. The testing is performed on the

data set provided in Section 5.5.1.1.

Figure 5.16 depicts the changes of averaged activity detection MAP with respect

to the µ1 values, using the half-and-half sampling method for training and testing
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Figure 5.16: Averaged activity MAP with different positive class means.

data. The x-axis has the same meaning as it has in Figure 5.15 while the y-axis is the

averaged MAP of activity detection over 20 runs. The activity detection performance

increases with the improving of concept detection performance. Note that the activity

detection performance does not drop significantly when the concept MAP is low. The

smooth change of activity detection MAP shows that our algorithm is robust and

tolerant to the errors introduced in automatic concept detection.

Similar to using clean concept annotation data, we also compared two sampling

methods which are half-and-half sampling and odd-and-even sampling on simulated

concept detectors. The concept detection simulation is performed by changing the

mean of positive class µ1 for each concept and 20 runs are carried out for each value

of µ1. For each simulation run, the evaluation procedure involved training and testing

steps which are the same as using clean data and we use exactly the same parameter

setting. Activity detection MAP is calculated in each run and then averaged on

all 20 runs to obtain the overall performance on one simulation configuration. The

performances of two sampling methods are compared and shown in Figure 5.17.

As shown in Figure 5.17, The x-axis shows the configurations of µ1 varying from

0.5 to 10.0. The setting of the other parameters are the same as in Figure 5.15, that is

σ0 = 1.0, σ1 = 1.0 and µ0 = 0.0. The averaged activity detection MAP over 20 runs

is demonstrated in the y-axis. In Figure 5.17, two curves of sampling1 (half-and-
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Figure 5.17: Comparison of two sampling methods (simulated data).

half) and sampling2 (odd-and-even) are the performances of two sampling methods.

The overlap of two curves shows that there is no significant difference between two

sampling methods, especially when µ1 ≤ 5.0, for which the concept detection MAP is

relatively low. While µ1 increases, both of the performances of two samplings increase.

When µ1 is big enough, say, µ1 ≥ 6.5, i.e. the concept detection MAP remains at a

stable level (nearly perfect as shown in Figure 5.15), the curve of sampling1 remains

higher than that of sampling2. This is consist with the comparison using clean data

as described in Section 5.5.1.2. However, when the concept detection is not perfect

(µ1 ≤ 5.0), the erroneous concept appearance will change the underline concept

observation patterns, therefore, two sampling approaches will perform at equal level.

This can be depicted by the overlap of two curves when the value of µ1 is small, as

shown in Figure 5.17 especially when 0.5 ≤ µ1 ≤ 3.0.

5.5.2 Ontology-based Multi-Concept Detection Evaluation

In Section 5.2.1, the motivation for using the semantic relationships among concepts

in automatic detection has been discussed, together with our methodology for ad-

justing the detection confidence. The assessment of ontology-based multi-concept

classification is discussed in this section. As we described in Algorithm 1, the whole
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procedure of the algorithm involves parameter training and confidence adjusting. In

our evaluation, we randomly select one half from the corpus as training instances for

the leaning of parameters A, B and C in Algorithm 1. Another half instances from

the corpus are used for evaluation of ontology-based confidence adjustment.

To assess the effects of more comprehensive concepts on detection performance, we

tested the distributions of accuracy and various multi-class margins. This is carried

out by assigning only one disjoint concept for the target concept at one time. For

evaluation purposes, we first obtained the ground truth of concepts ‘Indoor’ and

‘Outdoor’ for each image by means of user annotation, on a corpus consisting 10,226

SenseCam images. The baseline concept detection is performed by standard SVM

classifiers as we describe in Section 5.5.3, which are also referred to as original one-

per-class classifiers. Our ontology-based classification algorithm is then applied on

the output of the baseline. The results of these two classification methods are both

compared with ground truth annotations to calculate evaluation metrics like accuracy,

AP and MAP whose definition have been given in Section 5.3.3.2.

Figure 5.18 shows the correlation of class-prediction accuracy on ‘Indoor’ concepts

with the multi-class margin when a single disjoint concept is introduced. The disjoint

concepts are modeled in concept ontology with the relationship of disjointness as

described in Section 5.2.1. For example, ‘Outdoor’, ‘Road’, ‘Sky’, ‘Vegetation’, ‘Tree’

and ‘Grass’ are all typical disjoint concepts of ‘Indoor’. These are the disjoint concepts

which can be used in improving ‘Indoor’ detection and their confidences have different

effects on the detection of ‘Indoor’, as shown in Figure 5.18. Among them, ’Outdoor’

has the most significant influence on ‘Indoor’ accuracy while ‘Grass’ has the least

effect. Even though they have influences on ‘Indoor’ to various degrees, they comply

with the same distribution and can be fit by the form of Equation 5.12. The multi-

class margin calculated by Equation 5.1 takes into account the effects from all of these

disjoint concepts and applies them to adjust ‘Indoor’ detection confidence.
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Figure 5.18: Accuracy improvement for ‘Indoor’ concept by single concepts.

Similarly, Figure 5.19 depicts the precision-recall curves for ‘Outdoor’ detection

before and after applying the concept ontology. As we can see, the area under the

precision-recall curve has been obviously increased by adjusted confidence, shown by

the solid red line. The curve of the original confidence (show as blue dash-dot line)

is located much lower under the red curve in the left part of the figure, when recall

is less than 0.5. For example, when precision is at a high level of 0.7 the recall value

is 0.35 for the curve of adjusted confidence, which is much higher than the baseline
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value 0.1. At a high level of precision in Figure 5.19, even when recall increases,

the precision decreases much slower for adjusted confidence than using the original

confidence as a criterion.
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Figure 5.19: Precision-recall curve (‘Outdoor’).

A similar improvement of classification precision and recall can also be seen in

Figure 5.20 for ‘Outdoor’. In Figure 5.20, the x-axis depicts the values of original

and adjusted concept detection confidence. The y-axis stands for the metric values of

precision and recall. In Figure 5.20, we use two blue lines to represent precision and

recall curves for adjusted confidence, while the black dotted line is the recall curve

for original confidence. With the confidence values (including original and adjusted)

increase, the classification precision becomes higher while the recall decreases. The

performance of adjusted confidence is much higher than the baseline, reflected by two

recall curves. After correcting the concept detection confidence by inherent ontological

relationships, the precision of concept detection also remains satisfactory as shown

by Figure 5.20. When the threshold of adjusted confidence values is larger than 0.5,

the precision of ‘Outdoor’ remains above 0.8.

Another group of evaluations was carried out for a large number of target concepts,

using the data set we simulated in Section 5.5.1.3. In this data set, the concept

detectors for 85 concepts at different accuracy levels are simulated by changing the
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Figure 5.20: Effect of adjusted confidence (‘Outdoor’).

mean of positive class µ1 for each concept classifier. The posterior probability of

concept existence is returned as the simulated concept detection output and we use

this value as the original classifier confidence. The purpose of this evaluation is to

learn to adjust this simulated confidence value by employing our ontology model

and then assess the final performance. The ontology we used in this evaluation for 85

concepts is demonstrated in Figure 5.3 and Figure 5.4, in Section 5.2.1. Two semantic

relationships are modeled in this ontology which are subsumption and disjointness.

Both of them are utilized to improve multi-concept detection accuracy.

For any configuration of µ1, our evaluation is carried out with training and testing

components for each run. In a single run, each concept is selected and the correspond-

ing classification output is adjusted by considering the constructed ontology structure.

After the parameter learning and confidence adjusting are finished, we calculate the

AP for each concept. This is repeated for 5 runs on 5 unique data sets simulated in

Section 5.5.1.3. The AP values are averaged over all 5 runs to obtain an evaluation

from an overall point of view. After ontology inference, 52 of 85 concepts have disjoint

concepts and can be adjusted for improved confidence. Out of these 52 concepts, 35

concepts have sample numbers larger than 100 in the corpus. Because enough sam-

ples are necessary to learn the parameters for confidence adjustment as shown in
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Algorithm 1, we will then use these 35 concepts as the final evaluation concept sets.

In Figure 5.21, the improvement of averaged AP is depicted over all these 35

concepts. The positive y-axis value means that the performance is improved after

employing concept semantics modeled in concept ontology while the negative value

means the performance is degraded. As shown in Figure 5.21, most concept instances

are upgraded with their corresponding detectors. Only 6 concepts have decreased

detection performances after applying our algorithm. For concepts like ‘Inside bus’,

‘Inside car’, ‘Road’ and ‘Path’, the improvement reaches as high as more than 20%.

Figure 5.21: AP improvement by Disjoint Confidence Adjusting (DCA).

Beside concept AP , the MAP is also calculated for each run and then averaged.

Figure 5.22 shows the MAP improvement when µ1 is assigned different values varying

from 0.5 to 10.0. Therefore, this figure also reflects the improvement at different

performance levels of baseline concept detectors. When the baseline concept detectors

have lower performance (µ1 < 5), all evaluations show obvious improvement by our

algorithm. When µ1 ≥ 5, i.e. the concept detection accuracy is already high (MAP

nearly 1.0 as shown in Figure 5.15), there is definitely no space for the performance to

be improved. The best improvement appears when µ1 has the value of 1.5, at which

the MAP improvement is higher than 6%. When µ1 has smaller or large values, the
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improvement will become less obvious. This tells us that the ontology-based detection

algorithm performs especially well when the performance of the original detectors is

neither too good nor too poor. In the two extreme circumstances (very good or poor

concept detectors), any added value of concept semantics will not be that significant.

Figure 5.22: MAP improvement by Disjoint Confidence Adjusting (DCA).

5.5.3 Event Representation Evaluation

In order to evaluate the semantic selection of representing events, we built classifiers

for a set of 27 concepts in constructing the concept space in our SenseCam-based

event processing. The evaluation on these 27 concept detectors will not only sim-

plify the assessment problem but also help to reuse the existing annotation efforts in

our group since we already have a large corpus of annotation for these 27 concepts

[34]. These 27 concepts are shown in Table 5.4 organized into categories of objects,

scene/setting/site, people and events. Note that the the semantic keyframe selection

algorithm is generic and can be extended to larger concept sets as well.

Following the state-of-the-art in concept detection, we employed the popular

generic SVM learning algorithm for concept detection. Two MPEG-7 features were

extracted for each image, Scalable Colour (12 bins) and Colour Layout (64 bins)
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Table 5.4: SenseCam concept sets for keyframe evaluation
Objects screen, steering wheel, car/bus/vehicles

Scene/Settings/Site
indoor, outdoor, office, toilet/bathroom,
door, buildings, vegetation, road, sky, tree,
grass, inside vehicle, view horizon, stair

People face, people, hand

Event reading, holding cup, holding phone,
presentation, meeting, eating, shopping

forming 76-dimensional feature vectors. For the results presented in this paper, SVM-

Light [81] was employed with the radial basis function (RBF) as a kernel, K(a,b) =

exp(−γ∥a − b∥2). RBF kernel usually performs better than other kernels and has

been employed in many state-of-the-art multimedia search engines [156, 159, 38] with

it capability in learning nonlinear decision boundaries from a skewed high-dimensional

space. The parameter settings were determined through iterative searching among

parameter combinations. Classification models were trained for different concepts

and work in isolation, yielding a 27-dimensional confidence vector for each image.

As mentioned earlier, SenseCam images have very different visual characteristics to

the video keyframes used in the TRECVid benchmark [151, 152] and so we could not

evaluate the performance of our concept detection on the TRECVid datasets. Thus an

experiment was carried out on 6 participants’ SenseCam image logs. The participants

are all researchers in our lab and have been wearing SenseCam for varying lengths

of time. The effect of interestingness-based semantic keyframe selection is compared

with the baseline which is the selection of the middle image as a representation for

an event, the same technique as is used for keyframe selection in video. Details of

the data are shown in Table 5.5 indicating a total of 1,055 events composed of 96,217

individual images.

Concepts were first detected at the image level, followed by interestingness-based

aggregation to model event semantics. We empirically choose the value ξ = 200 in

Equation 5.4 considering the fact that most events have less than 200 images. Image-
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Table 5.5: Experimental data set
User1 User2 User3 User4 User5 User6

Events 300 248 242 168 70 27
Images 26,062 25,341 19,233 18,085 6,097 1,399

event semantic similarities are calculated to select the most similar image to the event

semantics. In [51], a fusion of the Contrast and Saliency Measures in exploiting image

quality show promising user judgement scores, which are no less satisfactory than

more complicated fusions taking Colour Variance, Global Sharpness or Noise Measure

into account. We employ the Contrast Measure and Saliency Measure from [51] as two

measures to evaluate resulting keyframe quality. The Contrast and Saliency scores

are calculated and normalized on a Max-Min scale respectively. To decrease the effect

of external factors such as life patterns of individuals and characteristics of different

SenseCam lenses, we analyze the results of our algorithm on a per-user basis.

Our semantic similarity measurement is tested on resulting Contrast and Saliency

scores. Figure 5.23 shows the Contrast difference of selected keyframes by semantic

similarity (SS) defined as Equation 5.6 and by Cosine similarity (COS) on one random

user’s dataset. The averaged Contrast scores over all event numbers are 0.477 and

0.459 using SS and COS measures respectively. From Figure 5.23, it is obvious that

keyframes selected by the SS measure have better contrast quality. The same happens

for the Saliency measure as shown in Figure 5.24, where averaged Saliency scores using

the SS measure outperforms the COS measure by 15%. The semantic similarity also

shows significant advantages over other measures like inner product, Euclidean and

so on and we will not elaborate the details here because the comparisons are very

much similar to those as described for Figure 5.23 and Figure 5.24.

In Figure 5.25, the improvement on average values of the Contrast and Saliency

Measures with semantics-based representation are shown for each user. Both mea-

surements are significantly enhanced over the baseline for all participants. Note that
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Figure 5.23: Contrast difference (SS-COS).

Figure 5.24: Saliency difference (SS-COS).

user5 is using an old SenseCam whose lens is scratched and the images blurred yet the

semantics-based algorithm still performs well showing the robustness of our semantic

modeling.

Modeling complexity is modified in our experiments by changing the selection of

Top-k ranking of concept vectors to test the effect of event semantics on the selection

of representative images. Figure 5.26 shows the dependence of keyframe quality on

the semantics of events, by selecting the Top-k concepts. Results are depicted using

an equally-weighted image quality value of Contrast (0.5) and Salience (0.5). For

illustration, we randomly selected three participants’ fused image quality scores and
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Figure 5.25: Contrast vs. Saliency Measure.

compared with their corresponding baseline values. With parameter k decreasing,

the fused quality of semantics-based representation drops after k is less than 10. The

correlation of quality score with choice of k demonstrates the impact of semantics

of events on keyframe selection. When just a little semantics are employed, see

k ≤ 2, the quality score curves intersect with their own baselines, showing no obvious

improvement. This also shows that our similarity measure is appropriate in deciding

the relationship for concept-based semantics.
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Figure 5.26: Correlation of quality with Top-k.

Figure 5.27 compares the number of concepts detected from each selected keyframe.

When more concepts are used, e.g. k = 20 or 10, keyframes tend to contain more se-
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mantics about the events (nearly half have 3 or 4 concepts). Similar to image quality

in Figure 5.26, the number of concepts in the representation decreases with smaller k

values. Meanwhile, the representativeness of keyframes drops and less details about

the represented events are found. When only the first concept is selected from the

event concept vector, say k = 1, the semantics reflected in the semantics-based rep-

resentation is almost the same as the baseline.
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Figure 5.27: Concept number in single representation.

As demonstrated above, the image quality and potential concepts from the keyframe

selected based on semantics shows strong correlation with the choice of k. When more

semantic information is applied (k ≥ 5), our algorithm performs well in selecting

keyframes which are more representative and of better quality. Our interestingness-

based event aggregation not only reflects semantics of events but also provides a

computable platform in comparing semantic relationships such as similarity in the

same concept space.
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5.6 Summary

This chapter started with the discussion of event-level visual processing in lifelog-

ging. Following the definition of a lifelogging event, the issues of adding semantics

to lifelogged media at event level are proposed. To deal with the challenges of fusing

image-level concepts, three algorithms are developed in this chapter. In ontology-

based multi-concept classification, ontology modeling and inference are applied in

order to incorporate concept relationships in multi-concept detection. Diverse con-

cepts detected within events are then utilized for semantic event representation and

high level activity detection. Inspired by traditional tf × IDF term weighting from

the information retrieval field, an interestingness-based event level concept aggrega-

tion approach is proposed and applied in automatic keyframe selection from events.

The semantically selected representation shows the advantages both in image quality

and in semantic richness. An HMM-based activity detection algorithm is also pro-

posed to recognize different activity types from the time-varying concept dynamics.

The algorithm is evaluated on data sets with various performances of everyday con-

cept detection and shown to be promising in indexing lifelogged visual media at the

event level. From the output of these algorithms, we can find the added value based

on concepts. As the high-level features, concepts can be incorporated and fused for

more complex tasks like event classification and representation.
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Chapter 6

Event Modeling and Semantic

Enhancement

As defined in Chapter 5, an event is a transient occurrence of a happening of interest

in the real-world. In lifelogging, this occurrence is observed and recorded within a

computer system and there is much multimedia data collected for each individual

event. One automatic way to help users to find an event of interest is keyword-based

searching on labeled event indices. Since no consumer can afford the tedious effort

of annotation for such a large amount of media data, in earlier chapters we inves-

tigated the selection of a metadata lexicon and automatic annotation of events by

fusing semantic concept detection at event level which dealt with research questions

(RQ1), (RQ2) and (RQ3). Even though this kind of image indexing based on vi-

sual information has shown to be effective to discriminate desired events from large

volume of lifelogging archives, this single-dimensional semantic indexing fails in mak-

ing full use of context information about events to provide more flexible measures.

How to organize lifelogging events with multi-contextual metadata is an important

issue for efficient event-centric retrieval and interpretation of lifelogs. Furthermore,

keyframe-based event representation is the dominant means of multimedia represen-
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tation. For lifelogging, when event captures are very rich in context information, a

multi-dimensional contextual representation method is needed to enhance significant

fractions of event aspects. The enhancement of lifelogging events/activities (RQ4)

are the focus of this chapter.

By now, Semantic Web technologies have reached a sufficient level of maturity in

terms of well-structured online knowledge repositories and semantic query/reasoning

capabilities so that they can be used to enrich our understanding of daily events. In

this chapter, we propose an event model based on a context-awareness application.

We will address the issue of incorporating context semantics in one consistent event

ontology model and we will perform semantic enrichment to make better sense of

lifelogging events.

6.1 Semantic Representation and Model Language

The current WWW is an infrastructure for publishing arbitrary information online

in the form of documents or web pages. This way of document publishing allows us

to access digital resources beyond the physical or technical constraints. However, the

document-based publishing platform fails to provide efficient content access facilities

for newly-needed online services. The lack of standardized semantic description in

documents and the limited meaning of document links make knowledge reuse very

limited on the WWW as it is used currently. As a consequence, the current WWW

is indeed a form of user-centric Web since its content can only be accurately inter-

preted by users rather than computers. Aside from WWW technologies which are

document-driven, the Semantic Web [22] elaborates a data-driven infrastructure for

data sharing and representation. Semantic Web technologies are evolving the ongoing

Web into a more powerful and more reusable infrastructure for information sharing

and knowledge management. By defining web data with meaningful information,
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the Semantic Web is more understandable and more reusable by machines than the

current Web, making interoperation easier between software agents.

We believe that Semantic Web technologies and standards can facilitate the use

of online information to interpret the semantics of lifelog events in the form of mean-

ingful data rather than documents, based on the standardized information model in

machine-readable languages to support data representation and inference. In this

section, we will discuss the standard semantic representation and modeling language

used in the Semantic Web. As we described in earlier sections, it is hard to represent

the content of multimedia data directly due to the characteristics of multimedia data.

Since multimedia data itself is difficult to organize for retrieval by precise matching, in

modern information retrieval, descriptive metadata is extracted to model media con-

tent in a more structured way, hence decreasing the complexity of multimedia. The

metadata is handled in multimedia retrieval systems together with media objects as

a whole package. In another words, metadata is the structured semantics of multi-

media content. When different persons have different understandings of the meaning

of metadata, another question is how to make the applications interoperable. To ad-

dress this issue, the standardized Semantic Web description languages, which define

both syntactic representations and semantic contents, are needed to make metadata

interoperable between applications.

6.1.1 Ontologies

An ontology is the core element of the Semantic Web adopted from philosophy and

aiming to facilitate knowledge sharing and reuse between data consumers including

Web users and machines. It is analogous to a database schema in a relational database

or class diagram in object-oriented software engineering which are used to form an

abstraction of domain knowledge. The difference is that, in the Semantic Web, an

ontology is built up with concepts, relationships, and constraints, defined by state-
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ments. For the definition of an ontology, we quote the widely accepted definition [161]

in the Semantic Web community as:

“An ontology is a formal, explicit specification of a shared conceptualiza-

tion.”

As an abstract structure of domain knowledge, an ontology must be represented

explicitly and concretely by formal logic-based models for machines to understand

each other. This is done by using reserved vocabularies which are collections of

predefined terms. The formal structures of ontologies are stored as documents on the

Web consisting of the following fundamental components:

• Classes: A class is the abstraction of a set of resources that share common

characteristics. For example, ‘Event’ can be a class representing the group of

all events. By adding hierarchical relationships between classes, taxonomies are

constructed in ontologies by specifying class subsumption. In the hierarchy,

a class can subsume or be subsumed by other classes. A class subsumed by

another is called a subclass, of the superclass which subsumes it. By linking

two classes with a subsumption relationship, the properties of the superclass

will be inherited by the subclass. For example, ‘Car’ is a subclass of ‘Vehicle’,

so ‘Car’ has all the properties of ‘Vehicle’, like ‘having motor engine’, ‘having

four wheels’, etc.

• Individuals: An individual is any resource that is a member of at least one

class. Indeed, an individual is a concrete instance of class and can not be

further specified. As the lowest level of abstraction in an ontology, instances

are not necessarily to be included in ontologies. Individuals can be asserted to be

members of classes explicitly in ontologies, though sometimes the membership

can also be inferred indirectly from other assertions defined in ontologies.
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• Attributes: An attribute is used to describe a resource (such as an instance or

a class), by relating them to other instances, classes or data values. An attribute

is also a resource that is used as a predicate in statements to describe subjects.

In the Semantic Web, there are two main attribute types which are object

properties and datatype properties. Just as the name implies, object properties

link the subject described to other resources, and datatype properties link the

subject to literal values.

Note that the statement forms the fundamental block of an ontology. A statement

consists of a subject, predicate, and object which typically form a triple. The subject

in a triple is the resource that is described by the statement, and the subject and

the object are linked by the predicate to describe the relationship between them. For

example, in the statement “Car is a subclass of vehicle”, the subject “car” and the

object ‘’vehicle” are connected by the predicate “a subclass of”. This triple model

naturally forms a directed graph, in which the subject and object in one statement

are represented as nodes while the predicate is an edge starting from the subject and

ending with the object. Though simple, the subject-predicate-object triple model

achieves more flexible expressions by relating one statement to another, so that forms

the web of data constituting the Semantic Web. Thousands, even billions of formal

semantics on the Semantic Web are all aggregated by this triple model. The Semantic

Web standard languages are actually the formalized syntax to assert the statements

modeled by triples.

6.1.2 Resource Description Framework (RDF/RDFS)

The Resource Description Framework (RDF) [89] is the fundamental Semantic Web

data model language formalizing semantics as statements. RDF original from the

XML syntax and intended to represent metadata about Web resources, and was then

developed as a language for expressing statements. Currently, RDF is usually referred
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to as a family of World-Wide-Web Consortium (W3C) specifications.

In RDF, the subject is also represented as resources. The asserted statements

are modeled semantically by RDF about the identifiable resources. The resource

description is actually arbitrary in RDF. Once the resource (an instance or a class) can

be identifiable with its Uniform Resource Identifiers (URI), it can be represented by

a semantic data model for asserting statements. The use of URIs allows us to identify

a network-homed resource. Using the universal URI set of symbols, statements from

different sources can be created to interlink, ultimately forming a graph of statements.

There are various serialization formats for RDF such as RDF/XML [18], N3 [21],

Turtle [19] and N-Triples [64].

The drawback with RDF’s flexible modeling capability and expressiveness is that

the meanings in RDF need to be specified by a vocabulary. RDF Schema (RDFS)

is such a standard vocabulary that explicitly specifies the semantic of terms in RDF

behind descriptions. RDF Schema (RDFS) provides a specific vocabulary for RDF

that can be used to define taxonomies of classes and properties and simple domain

and range specifications for properties. RDFS is itself expressed in RDF and is thus

a member of the RDF specification family. RDF and the schema RDFS are used

together to describe resources on the Web with concrete semantics. The combination

has the the capability of providing vocabularies, taxonomies, and ontologies in the

Semantic Web. Many RDF application will therefore reuse the metadata definitions

by sharing RDF schemata.

As we mentioned above, the RDFS enables the definition of classes and prop-

erties. This is performed by denoting the resources with classes of rdfs:Class and

rdfs:Property. Both rdfs:Class and rdfs:Property are subclasses of rdfs:Resource

which is the most generic class denoting resources. So the classes and properties de-

fined in any domain-specific schema will become instances of these two resources.

The rdf:type property is used to classify the resources with classes or properties
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defined in a schema using RDFS. The definitions of subclass and sub-property hierar-

chies are enabled by rdfs:subClassof and rdfs:subPropertyOf properties offered

by RDFS. More terms defined in RDFS for property domain (rdfs:domain) and range

(rdfs:range) restrictions and other informal descriptions of classes and properties

(rdfs:comment, rdfs:label, rdfs:seeAlso, etc.) can be found in [28].

6.1.3 OWL

OWL is the abbreviation for Web Ontology Language, a language for defining and

instantiating Web ontologies. OWL provides an expressive language for defining on-

tologies that capture the semantics of domain knowledge. It extends the RDFS vocab-

ulary with additional resources that can be used to build more expressive ontologies

for the Web. Developed to augment the RDF and RDFS languages by additional

vocabulary, OWL supports greater semantic interpretability of Web content. OWL

is also syntactically expressed in RDF. As a vocabulary extension of RDF, OWL

introduces extra restrictions aiming to make interpretation and inference more ef-

ficient with respect to the structure and contents of RDF documents. Complying

with the OWL standard, ontology developers can take advantage of reasoning ca-

pabilities based on the classes and properties defined by OWL. Typical properties

initiated and inferred by OWL are transitive properties, functional properties and

inverse functional properties.

Aside from the complete OWL language (called OWL Full), OWL also provides

two specific subsets for various needs by implementors and users. They are OWL Lite

and OWL DL [114], which are described together with OWL Full as follows:

• OWL Full: OWL Full is the full set of OWL language. OWL Full allows free

mixing of OWL with RDF Schema and, like RDF Schema, does not enforce a

strict separation of classes, properties, individuals and data values [114]. The

high flexibility of OWL Full scarifies its computational efficiency. It relaxes
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some of the constraints on OWL DL to make some useful features available,

but violates the constraints of description logic reasoners.

• OWL DL: OWL DL contains the entire vocabulary of OWL Full, but as dis-

tinct from OWL Full, OWL DL puts constraints on the mixing with RDF and

requires disjointness of classes, properties, individuals and data values [114].

The main reason for having the OWL DL sublanguage is that tool builders have

developed powerful reasoning systems which support ontologies constrained by

the restrictions required for OWL DL. These restrictions make OWL DL de-

cidable and provide many of the capabilities of description logic which is an

important subset of first-order logic. That is why this subset of OWL is named

as OWL DL.

• OWL Lite: OWL Lite is a subset of OWL DL that supports only a basic set

of the OWL language features. By providing limited expressivity, OWL Lite

is particularly targeted to support the need of tool builders who want to start

with a simple basic set of OWL language features.

6.2 Contextual Event Enhancement Architecture

In this section, we will elaborate our event enhancement architecture based on a multi-

contextual event model. This notion of multi-contextual awareness is motivated by

current needs for intelligent computing in lifelogging, for which a typical scenario is

first illustrated.

6.2.1 An Illustrative Scenario

The large-scale proliferation of Web 2.0 and Semantic Web technologies provides a

large amount of social media and machine-readable metadata which can be assimilated
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in interpreting event semantics in lifelogs. These kinds of online resources can be

regarded as logical contexts compared to the situational contexts captured by sensor

deployments like SenseCam. To provide a clear notion of how it is useful to encompass

online resources, we consider a scenario in which a lifelogging user attends a conference

presentation in Dublin City University (DCU).

Wearable devices record his locations and visual images. A mobile device would

infer that he is currently in DCU according to the reasoning of spatial relationship

with the university location. Image processing is also applied to detect that he is in a

lecture room and sitting in front of a large projection. It is just lunch time when the

lecture is over. The mobile device would search nearby restaurants and recommend

the restaurant his friends often go to and some favorite dishes from them. After

he orders from the menu, he can re-experience the conference events on his logging

mobile device and he might think the lecture topic is very interesting and helpful to

his current research so he would like to know more about the presenter. The name of

the presenter is then interlinked to the online knowledge base about research expertise

in his area and all the other papers published recently by the same presenter would

be searched from the linked data base.

The above described scenario depicts a situation we often come across. However,

current web applications can not realize this kind of customized service and integrate

all these resources in the way described above. In addition to domain semantic

modeling, well-structured knowledge bases and semantic query engines are also needed

to adapt to multi-dimensional context-awareness.

6.2.2 Event Ontology Based on Multi-Context

Context information can be collected through the deployment of heterogeneous sen-

sory devices in lifelogging. To model lifelogging events, context information should be

contained in one consistent event model and this model should allow each context to
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be processed separately. That is because high uncertainty is often embedded in the

context processing due to the occurrence of data loss (such as GPS signal dropouts)

or detection defects (such as Bluetooth signal quality). To incorporate the above de-

scribed Semantic Web resources and techniques, we introduce an event model based

on a context-awareness application. Because every context contains and represents

concrete concepts, we address our modular event model by incorporating context se-

mantics, as shown in Figure 6.1. The event ontology is built by analyzing both the

abstract conceptualization and relevant existing ontologies.

Figure 6.1: Lifelogging event ontology.

Motivated by heterogeneous lifelogging context collections, like images, GPS records

and so on, we need an ontology to describe events represented by various document

formats or sensor readings with detected contextual properties. The following con-

cepts need to be specified in the context-aware event interpretation domain:

• Event: the occurrence as the intersection of time and space.

• Location: the geographical context of events.

• Time: the temporal context as a recall cue for events.

• Actor: the human who carried out the event, i.e., the lifelogger.
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• Attendee: the human/humans who were present and might be involved in the

event.

• Image: the class abstract for image document.

• Annotation: the class abstract for textual description of events.

:Event rdf:type owl:Class ;

rdfs:subClassOf time:TemporalEntity ,

[ rdf:type owl:Restriction ;

owl:onProperty :hasLocation ;

owl:minCardinality "1"^^xsd:nonNegativeInteger

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :endAt ;

owl:cardinality "1"^^xsd:nonNegativeInteger

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :beginAt ;

owl:cardinality "1"^^xsd:nonNegativeInteger

] .

Listing 6.1: Ontological event class definition

As shown in Figure 6.1, Event is the core class in the ontology. To keep consistent

with the definition of event we presented in Chapter 5 – “the real-world occurrence at

specific place and time”, we explicitly model the event class with spatial and temporal

constraints in terms of OWL cardinality restrictions, as shown in Listing 6.1. The

restriction owl:cardinality is used to confine that one event has exactly one value

for the properties of starting time and ending time. In Listing 6.1, the restriction
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owl:minCardinality is stated on the property :hasLocation with respect to event

class, indicating that any event instance needs to be related to at least one GPS

location. In lifelogging, there are many cases when more than one GPS coordinate is

needed to reflect the spatial characteristics of an event, such as “Walking”, “Driving”

and so on. More details of our event ontology are shown in Appendix B and the

ontology is formalized in Turtle [19].

In the event ontology the contexts are integrated with the event class. Each con-

text is represented with its own domain semantics and can be processed individually.

This makes it flexible to process the whole event that might be represented by multi-

ple media sources. Besides the content of events like event description and concepts,

we can see from the event model that there are three main external contexts which

are spatial context, temporal context and social context. For these contexts, there are

already well established ontologies designed specifically to describe the domain seman-

tics. We investigated the existing ontologies which may be reused and integrated into

our context-aware event ontology and chose the OWL-Time and GeoNames ontologies

to model spatial and temporal contexts respectively. In our architecture, the agents

involved in the event including the actor and attendees are modeled by the FOAF

(Fridend Of A Friend) ontology [5] which describes persons with their properties and

relations. The visual information of events which answers the “What” question about

events is depicted by SenseCam images and in this event model addressed by the

FOAF:Image class.

6.2.3 EventCube: an Enhanced Album of Events

In designing our application for event enhancement, we mimic the behaviors of users

in organizing personal digital photos. Users usually organize their digital photos in the

way of an ‘album’. In [140], users state that the most important feature of a photo or-

ganization tool is to automatically place photographs into albums. As shown in [130],
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albums are suggested to be more desirable for image organization and retrieval. Mo-

tivated by this notion, we propose a multi-contextual event enhancement architecture

– EventCube, to enhance the context profiles of event models defined in Figure 6.1.

Base on this event ontology, an event can be easily defined as a set of triples described

in RDF. The event enhancement task is to find the relevant semantics from online

knowledge repositories and social profiles, to improve the representation and subse-

quent recall of lifelogging events. The architecture of EventCube is demonstrated in

Figure 6.2.

Sensing Devices

Context Sensing

Event

Enhancement

Raw Data

Processing

Semantic Query

Online Profiling

Semantic Alignment

Event Stream

End User

Figure 6.2: Event enhancement architecture.

For the application of this architecture to lifelogging, we employed SenseCam and

Bluetooth-enabled mobile devices plus GPS modules as the context sensing devices.

The processing of raw lifelogged sensor data into enhanced events can be described

in three steps: First, the user uploads sensor readings to database. In this step,

the SenseCam image streams are segmented into chunks and each chunk represents
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an event occurrence. Meanwhile, the keyframe is selected as a thumbnail for a single

event. Second, the recorded GPS coordinates are clustered (to be described in Section

6.3.2) and stored, together with BlueTooth proximity records. In this step, the sensor

readings are synchronized with the segmented events. Third, the online knowledge

bases and social profiles are accessed and combined to retrieve the relevant semantics

with current event contexts. The enhanced contents are provided as links to the end

user for further navigation at his preference.

In contrast with image-based lifelogging which only utilize the visual processing

such as event segmentation and keyframe selecting for event reexperience, EventCube

makes full use of semantics inferred from various contexts to enhance the attributes

of events like “Who”, “What”, “Where” and “When”. Because the facets of events

are handled in a combined event model, we name this multi-contextual enhancement

as EventCube. Our image-based event processing and representation has been dis-

cussed in Chapter 5. Since the SenseCam images contains more information about

“What” aspect of events, like event types, concept occurrences, etc., we address the

encompassment of “Who”, “Where” and “When” facets here. The corresponding three

contextual aspects to be modeled and enhanced in the EventCube architecture in-

clude social context, spatial context and temporal context, which are described in

detail as follows:

• Social context modeling: Social context includes information about event

actor and attendee. The social context is a recall cue of the “Who” aspect for

events. FOAF is an ontology to describe people profiles, their relationships and

the corresponding information about things they create and are involved in. We

will use the FOAF ontology to model the social context in our event ontology.

• Spatial context modeling: Spatial context as modeled in our event ontology

includes the geographical context of event occurrences and plays the role of

the “Where” cue for events. The Geo Vocabulary (World Geodetic System
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1984 (WGS84) Ontology 1) is a spacial RDF encoding widely adopted by many

Semantic Web systems. It defines coordinates as instances of the Point class and

uses predicates like lat, long, and alt to specify a Point’s latitude, longitude,

and altitude settings. It is extended by the GeoNames ontology 2, in which

places are modeled as geographical features for specific coordinates, as well

as types and hierarchies of features. In addition, the GeoNames project also

provides Web services 3 to access instance location features from the GeoNames

database in various supported data format like XML, JSON, CSV, etc. The

GeoNames ontology is employed in modeling spatial context in event ontologies

and applied for latter spatial enhancement.

• Temporal context modeling: The temporal context for events is actually a

span of time decided by the starting and ending time of the event occurrences.

The OWL language supports time representation with standard XML Schema

Definition (XSD) date, time, and dateTime types. But these typed literal

values are too limited for event modeling. In our representation of an event’s

temporal context, we adopted the W3C OWL-Time ontology 4. The OWL-Time

ontology provides a vocabulary for expressing topological relations among tem-

poral entities including instants and intervals, together with information about

durations, and about datetime information. In our event temporal context

modeling, the duration of an event is an instance of the DurationDescription

class, and can also be combined with properties of hasBeginning and hasEnd

to represent the starting and ending time of the event.
1http://www.w3.org/2003/01/geo/wgs84_pos#
2http://www.geonames.org/ontology/
3http://www.geonames.org/export/ws-overview.html
4http://www.w3.org/TR/owl-time/
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6.3 Event Semantic Enhancement and Query

In addition to the semantics we can directly infer from event contexts, more knowl-

edge is also needed by incorporating online information like digital gazetteer, real-time

news, personal calendar, social networks, web pages, to name a few. Before interpret-

ing event semantics using online information, we still need to solve the problem of

accessing the existing semantics. Traditional organization and representations of in-

formation in the WWW pose a challenge for a computer to understand and fuse

semantics from unstructured information. The representation of information in tra-

ditional WWW web pages is user-interpretable rather than computer-interpretable.

In the meantime, lifelogging data is more challenging in terms of enrichment using

external online information because it includes heterogeneous context information like

locations, visual scene tracks, people around, etc.

6.3.1 Linked Open Data (LOD) and SPARQL

In our proposed semantic enrichment approach, the inferred context semantics from

sensor readings are mediated to build a link between raw sensor data and relevant

online semantic resources. The linked data cloud is such a comprehensive external

knowledge repository which we can use to enrich our event interpretation. In our

proposed event semantic enhancement, we will take advantage of the SPARQL query

language which is the state-of-the-art semantic query language to access not only

the local event semantic base but also external linked open data, to maximize the

semantic interpretation of lifelogging events. This section will present a novel way of

generating enhanced event semantics based on structured context metadata associated

with events.
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6.3.1.1 LOD-based Event Enhancement

The linked open data [4] can provide the resource-oriented knowledge base for next

generation web services. It is realized by defining a URI standard for web seman-

tics, through which a user can locate and use the digital resources using the mature

HTTP/URI mechanism. The linked open data has changed the traditional way of

linking documents, and instead, it tries to link the data and arbitrary information

semantics in the formalized format of RDF. URIs are employed to identify any kind of

resource such as object, concepts, properties and so on. Most datasets in the linked

data can provide a domain-related semantic base to satisfy the needs of semantic

interpretation of events in terms of browsing, navigation and semantic query.

In our lifelogging event interpretation application, we will introduce the following

datasets into the semantic logging system:

• DBpedia : As the linked data version of Wikipedia, DBpedia is one of the

most important datasets in the data cloud. The DBpedia data set currently

provides information about more than 3.4 million things consisting of 312,000

persons, 413,000 places, 94,000 music albums, 49,000 films, 15,000 video games,

140,000 organizations and so on.

• Geonames : It is necessary in the system to interpret the semantics of event

location. Geonames can provide information about over 6.2 million places and

geographic features. Each Geonames toponym has a unique URL with a corre-

sponding RDF web service.

• DBLP bibliography : Bibliographic information is structured in DBLP about

scientific papers. The DBLP dataset now contains about 800,000 articles,

400,000 authors, and approximate 15 million triples.

• FOAF profiles: FOAF (Friend Of A Friend) projects provides a machine-

readable ontology describing persons, their properties and relations. This vo-
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cabulary is one of the most widely used ontologies and is applied in modeling

millions of RDF triples on the web. These datasets which are extracted from

FOAF files or exported from other datasets can be used to interpret the Ac-

tor/Attendee information which can answer the “Who” aspect of events.

6.3.1.2 Enable the Semantic Query

To query the semantics constructed in RDF syntax, a semantic query language is

required. SPARQL is a W3C recommendation for the semantic web query language.

It is a recursive acronym for SPARQL protocol and RDF query language. SPARQL

can be used to express queries across diverse data sources, whether the data is stored

natively as RDF or viewed as RDF via middleware [132]. Its efficiency and flexibility

attract wide community support and the linked open data endpoints. In summary, a

large number of datasets provide access services through SPARQL queries and return

results efficiently.

With a syntax similar to SQL, SPARQL is a relatively user-friendly language.

SPARQL is a graph matching query language by which the semantics of interest is

described as a subgraph. The query engine will match the subgraph in the whole

data model (which is also an RDF graph), then the results matched are returned.

SPARQL can also be used to construct new RDF graphs based on information in the

queried graphs.

An example SPARQL query is shown in Listing 6.2, in which the structure of a

SPARQL query can be highlighted. As we can see from Listing 6.2, SPARQL also

allows the namespace abbreviation with predefined prefixes to make queries more

readable. The SPARQL query contains two important components: the SELECT and

WHERE syntaxes. The SELECT syntax defines which variable (or variables) to be re-

turned while the WHERE syntax defines the premises to be satisfied by the required

variables. Actually, the WHERE clause constructs a graph pattern which needs to be
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matched against the RDF repository. The results of SPARQL queries can be results

sets or RDF graphs [132]. Note that specific languages can be indicated by appending

@language to the end of a string. Here in Listing 6.2 we specify that the place name

is described in English, denoted by @en.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?Abstract ?WebSite

WHERE {

?place <http://dbpedia.org/ontology/abstract> ?Abstract.

?place <http://dbpedia.org/property/website> ?WebSite.

?place rdfs:label "Dublin City University"@en.

FILTER langMatches(lang(?Abstract), ’en’)

}

Listing 6.2: SPARQL query example

6.3.2 Location Enhancement

Semantic enhancement of events in lifelogging needs an effective measure to locate

the user because location is one key recall cue of event. Although there are some

alternative measures such as Wifi SSID or GSM cell tower ID to choose from, we

use GPS to record the wearer’s location considering two reasons. First, GPS is more

accurate than others methods. Second, GPS is infrastructure independent which

means we do not need extra devices or support and can detect location anywhere in

the world. One shortfall of GPS is that it does not work inside buildings or other

places in which satellite signals are unreachable. The GPS records are then used

for the enhancement of location context in our application, for which the location

enhancement algorithm consists of location clustering, reverse geocoding and LOD

semantic query.
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Location clustering is first explored on GPS coordinate records using k-means

clustering [13]. We chose 100 meters as clustering radius and the filtering time span is

10 minutes. This is decided according to the fact that the distance between significant

places important to users are usually farther than 100 meters and the dropouts of

GPS signal cased by temporary signal block can be filtered through a 10 minutes time

window. The location clustering can be described as the following steps:

1. Randomly select one GPS coordinate P0(x0, y0) as the original circle center,

with radius r = 100. Choose all recorded GPS coordinates within this circle as

candidates and label them as Pi(xi, yi).

2. Calculate the centroid P (x, y) of all chosen candidates Pi(xi, yi), where x =∑N
i=1 xi/N , y =

∑N
i=1 yi/N and N is the total number of coordinate candidates

located in the current circle.

3. Replace P0(x0, y0) with P (x, y) as the new center of circle, repeat Step 1 and

2 until the distance of successive circle centers is under a predefined threshold

ϵ. Save P (x, y) as one significant event location and remove the coordinates

Pi(xi, yi) within the current circle.

4. Repeat Step 1, 2 and 3 for the remaining GPS coordinates until all coordinates

are removed. Note that the coordinates within the same cluster (in the same

circle) are all regarded as recorded in the same location and the coordinate of

the location is the cluster centroid P (x, y).

One example of location clustering is illustrated in Figure 6.3 using one full day’s

GPS records (Day_4 in Table 6.4). In Figure 6.3, blue dots represent recorded GPS

coordinates while red circles are the clusters as a result of applying our algorithm.

Three significant places are detected from the whole day’s location traces, two of

which are the lifelogger’s living accommodation and lab on the DCU campus (on the
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P0(x0,y0)
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P(x,y)

Figure 6.3: Location clustering diagram (from left to right: shop, accommodation
and lab ).

right) and the other one is a shop nearby (on the left). We can find that location

clustering can detect the places where the lifelogger spent longer time (usually > 10

minutes) while the places where the lifelogger spent little time are not considered as

significant places, such as walking between these places. The diagram illustrating

the procedure for clustering is also shown in Figure 6.3. The clustering starts with

a random selected GPS coordinate P0(x0, y0) (shown as the center of dashed circle)

and moves to a transitive centroid P (x, y) (pointed at with the dashed arrow). The

calculation is iterated to update the centroid coordinate P (x, y) until stable. The

final center of the circle is then regarded as the coordinate of detected place.

Reverse geocoding is necessary because the GPS coordinates contain no meaning-

ful information to end users. No user can have an understanding of something like

the following, “In the morning last Monday you were at (53.3854,-6.2574) and then

went to (53.3884,-6.2564) at 1 pm.”. Reverse geocoding is used herein to translate the

latitude/longitude pairs to human-readable address names. This step is performed

by returning the closest addressable location, though the returned location may be
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some distance from the retrieved latitude/longitude pair. In Listing 6.3, the reverse

geocoding snippet for “Dublin City University” is demonstrated using GeoNames web

service. The returned result is an XML file containing different features of the loca-

tion, such as location name, country name and distance to the retrieved coordinate

(53.384954,-6.256542), etc. Some features have been truncated in Listing 6.3 and the

snippet is abridged for readability.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

- <geonames>

- <geoname>

<toponymName>Dublin City University</toponymName>

<name>Dublin City University</name>

<lat>53.38541</lat>

<lng>-6.25777</lng>

<geonameId>6496673</geonameId>

<countryCode>IE</countryCode>

<countryName>Ireland</countryName>

<distance>0.09593</distance>

</geoname>

</geonames>

Listing 6.3: GeoNames reverse geocoding

After the place name is obtained, we query the relevant semantics in DBpedia’s

RDF repository. This is done through a SPARQL query by specifying the place name,

as shown in Listing 6.2. The example in Listing 6.2 will retrieval the abstract descrip-

tion and web site link of a place specified with the name “Dublin City University”. If

available, the returned results will include the information which can be matched with

the WHERE clause. Results returned for the query example in Listing 6.2 are shown in
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Table 6.1. Since the pre-selected information about the target place might limit the

user’s interest, we query all the semantics (properties and values) in our enhancement

application and provide links for user to navigate the returned RDF graphs with a

browser.

Table 6.1: Example results of SPARQL query (Listing 6.2)
Abstract WebSite

“Dublin City University (abbreviated
as DCU) is a university situated between
Glasnevin, Santry, Ballymun and ...”@en

http://www.dcu.ie/

Current reverse geocoding web services label the given GPS coordinates with

semantic tags by returning the nearest place names. However, due to the accuracy

of GPS and different sizes of places, the nearest place is not guaranteed to be the

right answer for the target event. In such cases, other places near the given GPS

coordinates are also likely to be the right ones, or at least helpful for the user to

recall the geographical information of the region where the event took place. To deal

with this issue, we provide the nearby places as a ranked list for the user and enhance

the selected places at the user’s preference. We rank the place list according to their

popularity analyzed from Flikr social tags. The assumption held for this processing

is that the better known places could be easier for recall when the user reminisces

about an event. In addition, the most popular places are usually a benchmark of the

region, so the user can benefit from it and realize where he was during the event.

6.3.3 Social Context Enhancement

As shown in the event ontology depicted in Figure 6.1, the actor and attendee contexts

together reflect the agent aspect of a lifelogging event. While these two contexts

answer “Who” is carrying out the event and “Who” else is involved, social context

enhancement tries to enrich the social profiles of these agents. In our performing of
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social context enhancement, the FOAF profile and lifelogger’s personal information

in Facebook are combined.

FOAF profiles are datasets in LOD and contain personal information modeled in

RDF. While FOAF profiles contain information about millions of persons including

relevant or irrelevant persons to the event, lifeloggers’ social profiles like Facebook

contain more semantics which have been customized and might have higher correla-

tion with lifelogging events. When a user reexperiences his lifelogging events, social

information can improve the understanding of the “Who” aspect. The combination of

FOAF profiles and Facebook involves the following procedures: First, the XML feeds

from Facebook need to be transformed to a form of RDF. Second, the FOAF profiles

and Facebook are integrated in the same data model for which the same vocabularies

like the FOAF ontology are needed for consistent semantic representations. Third,

the RDF statements are populated to the event model for social context enhancement.

Facebook is one typical social media sharing web site by which registered users

can establish a social networking profiles including shared friend information, pictures,

messages, and so on. A user’s social network information can be accessed through a

web service API to retrieve the XML results as a stream over HTTP. To facilitate

efficient semantic modeling, especially the event ontology we built in Section 6.2.2,

as well as the SPARQL query language, we need to convert the XML-based profile

representation to a more extensible RDF model.

As one form of machine-readable data format XML is used to interchange data

between applications which need to convey information to diverse end users. Due to

its simplicity and flexibility, a large number of data sources are formalized in XML

and many XML processing tools have been developed. From XML, The transformed

RDF model also makes it easier to combine semantics together into a common knowl-

edge model. The output of transformation of Facebook XML results is an RDF/XML

containing the information reflected by the XML source document. The RDF/XML
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file can then be handled as an RDF model and be output to other RDF file format

such as Turtle, N3 and N-Triples. Because the transformed model needs to be inte-

grated with FOAF profiles queried from LOD, we simplify the semantic alignment by

converting the Facebook XML directly to semantics modeled by the FOAF ontology.

The detailed description of semantic transformation for social context enhancement

will be described in Section 6.4.

6.4 Event Semantic Enhancement Experiment

6.4.1 Experiment Setup

The event enhancement experiment is expanded based on the event ontology and

enhancement architecture we described in Section 6.2. The experiment has two main

procedures, which are lifelogging event recording and event semantic retrieval.

6.4.1.1 Event Recording Setup

SenseCam is employed in our experiment to collect images and movement data as

well as temperature and light levels with its on-board camera and sensors. Among

these heterogenous sensor readings collected by SenseCam, we only use images in

our event enhancement application. However, the other sensor readings especially

accelerometer recordings are helpful for SenseCam to decide when to trigger image

capturing, hence are stored together with SenseCam images into our database.

GPS recording and Bluetooth detection are implemented on an Nokia n810 inter-

net tablet with client software built to communicate with an external GPS module.

A GPS data steam is received and recorded every 10 seconds. The nearby Blue-

tooth unique addressea and friendly device names are logged with a time stamp. The

Bluetooth detection time interval is 20 seconds. Note that all these sensor readings

including SenseCam images are recorded with time stamps and then synchronized
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through the same time line when stored in our database.

6.4.1.2 Retrieval Environment Setup

One user in our group has been wearing the above recoding devices for one month

for our event enhancement experiment purpose. We process the storage and retrieval

on a daily basis, which means the user uploads the SenseCam data collection and

GPS plus Bluetooth readings after one day’s continuous recording. The enhancement

on such lifelogged event data involves the combination of semantics from two spaces:

physical space and information space.

For retrieval of physical information recorded by ambient sensing devices such

as SenseCam, GPS and Bluetooth, we apply the SenseCam browser [53] to segment

a whole day’s SenseCam data streams into individual events. The events are also

indexed with relevant images and keyframes are selected for visual representation of

events. Since the SenseCam browser does not provide facilities to deal with spatial or

social contexts collected by GPS and Bluetooth, we process these context recordings

separately with external applications and also upload the results into the database

for later retrieval. The combination of event segmentation, location clustering and

Bluetooth records can form a whereabouts log as shown in Table 6.2.

Event snippets of a typical working day are illustrated in Table 6.2. After loca-

tion clustering, the cluster centroids are used to represent the final coordinates for

significant places as we described in Section 6.3.2. As to ‘Traveling’ events, one single

cluster is not enough to reflect the whole traveling trail. The starting location and

ending location are both used to model such events. This is also applicable to some

events during which GPS signals are lost. In such cases, the location where signal

dropout started and the signal was resumed are recorded as the starting and ending

locations for such events. As shown from Table 6.2, the Bluetooth MAC addresses

have no semantic meaning at all and are of no use for event reminiscence. Mobile
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Table 6.2: The whereabouts log
Event Lat/Long Starting BT MAC Address BT Device Name

79 53.38,-6.26 10:08
00:17:F2:BA:17:F9
00:23:12:5B:B0:99
. . .

Daragh Byrne’ iMac
NeilOHare-MacBook
. . .

80 —– 12:29
00:1B:EE:3F:BE:0F
00:26:5D:F5:CB:AE
. . .

Nokia 7373
SGH-J700I
. . .

81 53.38,-6.25 12:45
00:17:F2:BA:17:F9
00:23:6C:BB:6A:C3
. . .

Daragh Byrne’ iMac
cdvpminiColum
. . .

82 —– 13:20
9C:18:74:EF:15:65
00:16:BC:D5:A7:4A
. . .

Nokia N97
Madge
. . .

. . . . . . . . . . . . . . .

device owners often set their Bluetooth device names in a more friendly way, such

as “Daragh Byrne’ iMac”, “NeilOHare-MacBook” and so on. These friendly device

names are cues for a user to realize “Who” he was with, or “Where” he went, during

the specific event.

Besides the local ambient information access, the retrieval environment also in-

cludes the information space constructed by online semantic repositories and users’

social profiles. The retrieval of online knowledge bases such as datasets in LOD aims

to fulfill the task of enhancing the “Who” and “Where” aspects of events. Most LOD

datasets have provided SPARQL query endpoints for the sharing of domain seman-

tics. In our event interpretation using such query-based data resources, we employ

the SPARQL semantic query language and the data sources are listed in Table 6.3.

In the list, GeoNames, Flickr and Facebook have no SPARQL endpoints provided

and we use their web services for information access. Note that datasets of DBpedia,

GeoNames and DBLP in Table 6.3 are all members of LOD.
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Table 6.3: Online data sources employed
Dataset Web Service Endpoints Event Aspects
DBpedia http://dbpedia.org/sparql Who, Where

GeoNames http://www.geonames.org/export/ Where
Flickr http://www.flickr.com/services/api/ Where

DBLP (Hannover): http://dblp.l3s.de/d2r/ Who
Facebook http://api.facebook.com/1.0/ Who

6.4.2 Aligning Semantics for Social Enhancement

The Facebook web service provides the access to users’ social networking profiles

through XML data streams. However, the FAOF profiles queried from DBpedia

repository are all modeled in RDF. Because RDF/XML is indeed an XML syntax to

describe RDF triples, exposing semantics to RDF from XML can be done by an XML

transformation. Extensible Stylesheet Language Transformations (XSLT) is a XML

processing tool to convert data representation between different XML documents.

XSL includes an XML vocabulary for specifying formatting and specifies the styling

of an XML document by using XSLT to describe how a document is transformed

into another XML document that uses the formatting vocabulary [45]. The XSLT

template rules are used to specify the mapping between the elements of the source

XML document and elements of the output document. Applying an XSLT document

to a source XML document and generating a new XML document is typical XML

processing, and more details about XSLT template rules and XML transformation

can be found in [45].

In our experiment, we apply XSLTs to align semantics between XML-based and

RDF-based data representation. The effectiveness is also shown in our experiment.

For example, Listing 6.4 is the snippet of original XML source feed from the Facebook

web service. After transformation by employing XSLT, the returned RDF-based se-

mantic model is shown in Listing 6.5, in which the statement triples are all formalized

in Turtle. Both Listing 6.4 and Listing 6.5 have been abridged for readability. From
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Listing 6.5 we can find that the information is reformatted in a more readable style.

<?xml version="1.0" encoding="UTF-8"?>

<user>

<uid>692153372</uid>

<affiliation>

<nid>16779809</nid>

<name>DCU</name>

<type>college</type>

</affiliation>

<birthday>June 1</birthday>

<name>Cathal Gurrin</name>

<pic>http://profile.ak.fbcdn.net/...4189469_s.jpg</pic>

</user>

Listing 6.4: XML-based data source (abridged)

@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix foaf:<http://xmlns.com/foaf/0.1/>.

@prefix ec:<http://www.clarity-centre.org/EventCube#>.

<http://www.clarity-centre.org/EventInterpretation#user692153372>

rdf:type foaf:Person ;

ec:hasAffiliation

[ rdf:type foaf:Organization ;

foaf:name "DCU" ] ;

foaf:birthday "June 1" ;

foaf:depiction "http://profile.ak.fbcdn.net/...4189469_s.jpg" ;

foaf:name "Cathal Gurrin" .

Listing 6.5: Aligned semantics in Turtle (abridged)
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While the result shown in Listing 6.5 accurately reflects the information contained

in the XML source document, it is not hard for us to notice that the new represen-

tations of semantics use the prevalent vocabularies such as rdf, and foaf, which are

widely adopted for semantic modeling in DBpedia knowledge base and other FOAF

profiles. The common semantic description also make it easier to combine various

knowledge sources for a more comprehensive event enhancement.

6.4.3 Event-Centric Enhancement Application Overview

In our lifelogging semantic enhancement, the event is still the basic unit for us to

reveal underlying semantics. This notion is also reflected by the event ontology we

built in Figure 6.1. In this section, we apply this notion into an event-centric en-

hancement application tool. The application tool is built for the purpose of event

context enhancement and event semantic visualization. The enhancement tool is a

browser-based application with a SenseCam event viewer, geospatial map and con-

textual enhancement browser embedded, as shown in Figure 6.4.

The event viewer lists event keyframes sequentially allowing the user to view his

events on a day by day basis. The calendar on the left corner of Figure 6.4 provides

the user with the selection of a specific day. After the user selects a target date

he wants to review, the event viewer will list all events which have been segmented

for the day. Event representations are organized in a temporal order for the whole

day to reflect the progress of events. Figure 6.4 illustrates temporal progress when

the lifelogger attended a presentation. The sequence includes starting-up the laptop,

listening to the presentation, taking notes, etc., all of which can be visualized in the

event viewer.

When the user wants to step through the details of event contexts, he can click

the event keyframe and contextual information will be enhanced and visualized in

the geospatial map and contextual information browser. Figure 6.4 demonstrates
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Figure 6.4: Event enhancement interface (left: event viewer; right: map and enhance-
ment browser).

the enhancement and visualization of spatial context for the event of listening to a

presentation. After the user picks the event he is interested in, the corresponding

GPS location is queried and located on the map. The enhanced context information

is acquired through the aforementioned methodology in this chapter. Two categories

of enhanced context are visualized in the information browser, which are location

context and social context. To enhance the location context, the relevant place names

are retrieved according to the event GPS coordinates. The abstract information is

shown in the browser as a brief description for the most relevant named place. The

browser also provides the user with further details of these places through links from

their web pages or RDF triple repositories, as shown in Figure 6.4. Social context

is enhanced and visualized in the same manner with brief information and links to
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external semantics. Social context enhancement also utilizes the DBLP dataset to

allow the user to drill down into more detailed personal information if available, in

addition to DBpedia. The temporal context is visualized with a time stamp indicating

the starting time, ending time and duration of the selected event.

After the mobile devices are carried by user as wearable devices for one month,

we selected 25 consecutive days of lifelogged data to evaluate our methodology of

event semantic enhancement. The final dataset includes 38,026 images, 327,244 GPS

records and 45,898 Bluetooth detections involving 958 unique devices. An excerpt

of three days event enhancement records are shown in Appendix C. For simplicity,

we only demonstrate the top three place names and Bluetooth friendly names in the

table. Detailed results of our enhanced contexts are described in Section 6.4.4.

6.4.4 Assessing Context Enhancement

In enhancing the relevant contexts of events, we first apply the location clustering al-

gorithm described in Section 6.3.2 into finding the significant places. Since SenseCam

images are collected simultaneously together with GPS coordinates, the ground truth

of places where the user stayed for a relatively long time in one day can be judged by

looking through the event keyframe representations. The GPS records for the selected

25 consecutive days are first validated in order to filter the invalid coordinates such

as empty GPS records logged when satellite signals are invisible. Finally, 59,164 GPS

coordinates are selected for location clustering and each day’s locations are clustered

with about 2,400 coordinates on average. The clustered significant places are judged

and shown in Table 6.4.

Clustering and judgement are carried out on a day basis, as shown in Table 6.4.

We define true positive as the number of place clusters detected by our algorithm and

where events actually happened as detected. False positive stands for the number

of clusters detected but no events happened there, false negative is the number of
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Table 6.4: Evaluating location clusters
Day ID Clusters True Positive False Positive False Negative
Day_1 2 2 0 0
Day_2 1 1 0 0
Day_3 1 1 0 0
Day_4 3 2 1 1
Day_5 3 2 1 2
Day_6 1 1 0 0
Day_7 1 1 0 0
Day_8 2 1 1 1
Day_9 3 2 1 1
Day_10 2 2 0 0
Day_11 3 3 0 0
Day_12 2 2 0 0
Day_13 1 1 0 0
Day_14 3 3 0 0
Day_15 2 2 0 0
Day_16 2 2 0 3
Day_17 2 2 0 0
Day_18 1 1 0 0
Day_19 1 1 0 0
Day_20 1 1 0 0
Day_21 4 3 1 0
Day_22 1 1 0 0
Day_23 1 1 0 0
Day_24 2 2 0 3
Day_25 1 1 0 0
Total 46 41 5 11
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undetected clusters but some events turned out to happen there. Because we did

not consider the detection of sublocations, we assume the sublocations within the

same cluster belong to the same place and have the same place name. Under this

assumption, the nearby places (distance less than 100 meters) like different rooms in

the same lab, the meeting room in the same building are all regarded as the same

place.

In total, there are 46 clusters detected for 25 days’ events. According to user

judgement, the precision and recall of our clustering algorithm are 0.891 and 0.788

respectively. The location clustering algorithm has relatively low recall compared

with its high precision. That’s because of the dropouts of GPS signals, especially

in some places surrounded by tall buildings. On Day_16 and Day_24, more places

in Dublin city center are missed by our algorithm because not enough GPS records

are collected for those indoor events. However, the noise caused by GPS accuracy

is handled better by our clustering algorithm which is reflected by low false positive

values. In most cases, the error of GPS location is under 100 meters and can be

filtered by clustering.

Several days of location clustering results are visualized in Figure 6.5 on a map.

The recorded GPS locations are represented with blue dots in Figure 6.5 while the

red circles stand for clustered significant places. To demonstrate the performance of

our place detection algorithm, we illustrate the results with several routine days (on

the left of figure) for Day_1, Day_10, Day_14 and Day_17 in Table 6.4. A more

interesting day when the lifelogger spent the whole day in Dublin city center (Day_5)

is illustrated on the right of Figure 6.5. These sample results show that our location

clustering algorithm works well for a small geographical region and can also be scaled

to broader ranges. The converted human-readable names for detected places in Figure

6.5 are also shown in our enhanced event records, as listed in Appendix C. One more

trial of location clustering is also tested on another researcher in our group who is more
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Figure 6.5: Day samples of place detection. (left: routine working days; right: one
day in city center)

‘active’ in traveling than the lifelogger whose records has been illustrated in Figure

6.5. His one typical day’s GPS logs and detected significant places are demonstrated

in Appendix D.2.

The running of our location clustering was also carried out on a whole month’s

GPS records for a single individual. The clustered results are shown in Appendix

D.1. We find that the noise of a longer time span will accumulate and cause more

incorrectly detected significant places, as shown in Appendix D.1. In addition to its

lower accuracy, the detection on a one month time scale is also more computationally

complex than that on the day basis. In our experiment, the average elapsed time for
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Table 6.5: Enhanced samples for places
Place Name Abstract Home Page

Dublin City Univ. a university situated between
Glasnevin, Santry, Ballymun and . . .

www.dcu.ie

Trinity College formally known as the College of the
Holy and Undivided Trinity of . . . www.tcd.ie

Glasnevin a largely residential neighborhood
of Dublin, Ireland . . .

–

Baile Átha Cliath capital and largest city of Ireland . . . www.dublincity.ie

Croke Park
the principal stadium and headquarters
of the Gaelic Athletic Association
(GAA) . . .

www.crokepark.ie

Book of Kells
an illuminated manuscript Gospel book
in Latin, containing the four
Gospels of . . .

–

Westin an upscale hotel chain . . . –

Merrion Square a Georgian square on the southside
of Dublin city centre . . .

–

Leinster House
the name of the building housing
the Oireachtas, the national parliament
of Ireland . . .

–

The Spire a 1964 novel by . . . –

Marino a Northside suburb located
in Dublin . . .

–

processing one day’s GPS data is only 0.695 second but clustering one month’s data

takes 818.196 seconds, tested on a desktop PC (2.66GHz Dual Core Processor, 4.00GB

Memory(RAM)). Though some mis-detected places on accumulated GPS noise can

be filtered by applying sophisticated time constraints, we argue that detection of

significant places using our algorithm on a day basis is more suitable for users to

reminisce about events. Mis-detected places or non-relevant places with respect to the

date picked by the user will only cause confusion to him/her. In our later discussion,

the contexts are still processed and enhanced on a day by day basis.

The enriched location context by DBpedia is shown in Table 6.5, in which the

abstracts (defined by dbpedia-owl:abstract predicate), home pages (defined by

foaf:homepage) are demonstrated for simplicity, if available.
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After applying the SPARQL query, the relevant semantics about various places are

retrieved from DBpedia. Besides abstract and home page, there might be dozens of

properties queried from DBpedia for location enhancement. The relevant properties

about the target place also include the type of the place, the exact geospatial location

information, affiliation, image, etc., which are all provided as links as an enhancement

interface for users to navigate, as shown in Figure 6.4. As reflected by Table 6.5, we did

not apply place name disambiguation before applying the enhancement. “The Spire”

is enhanced as a novel in Table 6.5, which is not the true interpretation of its meaning

as a tourist attraction. However, the dbpedia-owl:wikiPageDisambiguates prop-

erty allows users to navigate various options of resources with the same name “The

Spire” and choose the right one, which is described as “the Monument of Light . . . on

O’Connell Street in Dublin, Ireland”.

Similar to location enhancement, social context enhancement is also performed

and visualized in the enhanced browser shown in Figure 6.4. While most benchmark

locations can be queried from DBpedia datasets, not many persons involved in the

event can be enhanced by DBpedia so we enhance the social context by combining

different resources of DBpedia, DBLP and the lifelogger’s Facebook social profiles.

As illustrated in Appendix C, not all of the Bluetooh records are useful in enriching

the social context of events. In our application, we allow the lifelogger to edit the real

friend names to be mapped to the Bluetooth friendly names. Social context is then

enhanced by querying relevant information from the aforementioned data sources by

interlinking the friend’s name to those data sets.

Table 6.6 shows some samples for enhanced social contexts in Appendix C. For

simplicity, we only illustrate the person abstracts obtained from DBpedia in the table.

The column of DBLP shows the number of records in DBLP datasets reflected by the

number of dc:creator or foaf:maker properties queried from DBLP. The semantics

retrieved from the Facebook data source are obtained by aligning from XML streams
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Table 6.6: Enhanced samples for social context
Bluetooth Name DBpedia DBLP Facebook
Daragh Byrne’s
24inch iMac – 23 –

NeilOHare-
MacBook – 13 Drogheda,

Ireland

Alan Smeaton’s
MacBook Pro

Alan Smeaton is an author and
academic at Dublin City University
. . .

227 –

cdvpmini-
AlansOffice

Alan Smeaton is an author and
academic at Dublin City University
. . .

227 –

cdvpminiColum – 12 –

Pete a British multimedia artist living
in Newfoundland, Canada . . .

23 –

Jiang – 30 Pengxian,
China

Dermot Diamond’s
Computer – 21 –

to RDF models as described in Section 6.4.2. Similarly, for the Facebook column,

we only demonstrate the hometown defined by ec:hasLocation in the aligned RDF

models using our event ontology.

As we can see, our approach to semantic enhancements can utilize the informa-

tion retrieved from various sources by applying SPARQL which is a state-of-the-art

semantic query language, and aligning semantics to standardized RDF model. The

populated personal profiles provide a comprehensive tool for the user to realize the

detailed aspects about the social contexts of events. We believe this kind of seman-

tic enhancement based on various well-structured knowledge could also be a solu-

tion for more complicated and customized services like the scenario we illustrated

in Section 6.2.1. The same problem caused by lack of name disambiguation is mis-

enhancement for some commonly-used names in datasets. For example, the recorded

person ‘Pete’ (Peter as real name), who was a colleague of the lifelogger in the same

lab, is incorrectly enhanced as a British multimedia artist by querying DBpedia. The
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characteristics of Bluetooth also cause another artifact for social context enhance-

ment. Bluetooth has a range of about 10 meters and in some cases it can penetrate

walls. This means that even some Bluetooth devices are not physically proximate,

i.e., should not be regarded as involved in the event, they are still logged as the social

context. In our enhancement experiment, we rank the Bluetooth records in terms

of their frequency during the time span of selected event. In this way, accidentally

logged device proximities can be ranked lower and have less chance to be enhanced.

6.5 Summary

This chapter elaborated our methodology of how to improve the interpretation of

event contexts with external knowledge bases, which is also called event enhancement.

Because more and more semantics are modeled and formalized in LOD datasets by

Semantic Web technologies, we investigated the application of modern Semantic Web

technologies, such as domain semantic ontological modeling, online triple store access-

ment, etc., into our event enhancement. This chapter first discussed the prevailing

technologies for semantic modeling and ontologies, as well as standard languages for

Web semantic representation and sharing. These technologies are then exploited to

build an event ontology for our lifelogging event modeling with multiple contexts

embraced into one consistent model. Based on this model, we also discussed loca-

tion and social context enhancement by accessing semantics from various online data

sources including the Linked Open Data (LOD), social media and lifeloggers’ own

Facebook profiles. In this step, SPARQL was used for efficient data query from LOD

datasets. Finally, in our experiments, we built an application tool for lifelogging event

enhancement to assimilate the aforementioned data sources for event contexts enrich-

ment. For a consistent semantic representation using our event ontology, the semantic

alignment of different data sources was also discussed in the experiment part.
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Chapter 7

Conclusions and Future Work

In this thesis, we tackled the comprehensive area of event processing for visual lifelog-

ging. Aiming to fill in the semantic gap between raw media data and lifelogging users’

expectations, we focused on semantic interpretation of events to build a mapping from

lifelogging data collections to high-level semantics. Our understanding of lifelogging

events is based on the notion that the sensor readings are all descriptions of the event

rather than the event itself. With this notion, we believe that the semantics of events

can be maximally interpreted to provide an efficient tool for use as a memory aid,

medical analysis of activities of daily living (ADL), market research or even future

context-aware web services.

Our methodology is twofold in dealing with semantic interpretation of events.

Our semantic mining comes not only from the visual media such as SenseCam im-

ages which are the direct reflection of event semantics, but also from external online

knowledge repositories which play indirect roles in event interpretation. The essen-

tial elements with regard to semantic interpretation from these two different semantic

sources are as follows:

Visual semantic detection: The task of visual semantic detection is to index local

lifelogged collections such as SenseCam image archives, with human-understandable
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features. We adopted state-of-the-art concept-based multimedia processing for

this task.

• High-level feature detection

• Multi-concept fusion

• Event semantic representation

• Concept-based event classification

Semantic enhancement: Semantic enhancement uses external knowledge bases for

context enrichment of events. To fulfill this task, we employed the linked open

data cloud as the main data sources from the Semantic Web.

• Multi-contextual event modeling

• Semantic query

Our research questions are examined when applying the above tasks to lifelogging

event interpretation. The corresponding research questions derived from these tasks

are now revisited as follows:

(RQ1) What concept ontology needs to be defined to satisfy the needs for indexing

everyday multimedia in lifelogging ?

(RQ2) How can we automatically select proper concepts for a given activity

topic ? How can we perform semantic reasoning in the lifelogging domain ?

(RQ3) How can we classify different activities and represent them when there are

severe visual diversities ?

(RQ4) How can we enhance the semantics of lifelogging activities using Semantic

Web technologies ?

Generally speaking, the research questions (RQ1), (RQ2) and (RQ3) are raised

for the task of visual semantic detection while (RQ4) deals with the semantic en-

hancement task. Before applying concept-based multimedia indexing to lifelogging
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visual images, (RQ1) and (RQ2) need to be answered because the appropriately se-

lected lexicon and automatic reasoning on it are needed to facilitate efficient semantic

description in a given domain. In concept-based information retrieval, a user’s ex-

pectation needs to be mapped to a group of high-level feature detectors. The answer

to question (RQ2) also addresses the automatic mapping between everyday activ-

ity and concepts. While more concepts might be involved in everyday lifelog media

and these concepts are usually not independent to each other, (RQ3) is brought

forward to fuse any erroneous concept detections for further applications of activity

detection and semantic representation. (RQ4) is proposed to deal with the issue

of applying cutting-edge Semantic Web technologies into contextual enhancement of

events. Trying to answer these research questions, different algorithms are developed

and demonstrated to be effective in Chapter 3, Chapter 4, Chapter 5 and Chapter 6,

which are the main contributions of this thesis.

7.1 Main Contributions

A density-based semantic concept selection algorithm was introduced in Chapter 3

for the purpose of topic-related automatic selection. Semantic Web technology has

come to a certain level of maturity for modeling domain semantics as ontology graphs

connected by various concept relationships. Our density-based concept selection al-

gorithm utilizes concept similarity reasoned from these ontologies and applies them

to decreased mapping ambiguity between everyday activity and concepts. In Chapter

4, a user experiment was also carried out to generate a set of concepts with respect

to these activities in the lifelogging activity domain. The effective performance of

automatic concept selection has been demonstrated with two comprehensive ontolo-

gies, which are WordNet and ConceptNet. Various ontological similarity measures

including lexical similarity and contextual similarity, are investigated on these two
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ontologies. The experiments on both lifelogging and TRECVid lexicons show that

density-based concept selection can utilize the global similarity of concepts in con-

cept selection and ranking, then archive satisfactory performance. To the best of our

knowledge, the investigation of comprehensive ontological similarities for lifelogging

domain concepts, as we reported in Chapter 3 and Chapter 4, has never been done

before.

Event-level concept fusion and activity classification are another contribution of

this thesis, addressed in Chapter 5. Since image-level concept detection is prone to be

erroneous and can not reflect the semantics at event level when these images are visu-

ally diverse, an interestingness-based concept aggregation approach is proposed and

has been applied into selection of event keyframes. The better image quality of se-

lected event representations demonstrates the efficacy of concept fusion. Ontological

multi-concept classification is also discussed in Chapter 5. By explicitly modeling con-

cept relationships with a Semantic Web ontology language, the utilization of concept

semantics to concept detection has been demonstrated to be effective in improving

the traditional one-per-class concept detection performance. A HMM-based activity

classification algorithm is proposed in Chapter 5 to make use of image-level concept

appearance patterns, in order to decide the type of activity at the event level. The

performance of this HMM-based activity detection algorithm is assessed on concept

detectors with various levels of detection accuracy. The algorithm is shown to be

robust to concept detection errors and is also shown to be effective in activity classi-

fication based on the learned time-varying concept dynamics.

The third contribution of the thesis is applying external semantic repositories

from the Semantic Web into enhancing the interpretation of lifelogging events. This

is covered in Chapter 6 from a multi-context point of view. Chapter 6 modeled event

class and corresponding contextual semantics in an event ontology with a Semantic

Web description language. In this event model, prevailing ontologies are reused in
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order to incorporate context semantics extracted from raw sensor readings, with ex-

ternal knowledge. Based on this lifelogging event model, event enhancement can be

performed by querying the most relevant context semantics from online knowledge

repositories of linked open data, through Semantic Web technologies. In Chapter 6,

we illustrated our methodology for enhancing location and social contexts of events.

We accessed various Semantic Web datasets like DBpedia and DBLP through state-of-

the-art semantic query language – SPARQL in our enhancement tool. The enhanced

and structured event semantics, derived from raw sensor data like GPS and Bluetooth

records, has demonstrated the effectiveness of Semantic Web technologies in enriching

lifelogging events.

These main contributions tackled the four research questions we just revisited. Se-

mantic Web technologies have been employed in all three contributions, at different

levels of abstraction. Since not one single technology, either Multimedia Retrieval or

Semantic Web, can successfully fulfill the task of semantic interpretation of events in

lifelogging, Semantic Web technologies have been assimilated in our contributions to

address the research questions together with traditional Multimedia Retrieval tech-

nologies like supervised machine learning, unsupervised machine learning, Vector

Space Model (VSM), etc. As answers to the research questions, the contributions

of this thesis have supported our hypotheses formulated at the beginning of thesis,

that is, “Semantic Web technologies can support the interpretation of event semantics

in lifelogging”.

7.2 Future Work

Our algorithms and models have shown their merits to some extent in fulfilling event

semantic interpretation tasks. But not all of them are free of limitations. In Chapter

5, an everyday concept ontology is applied to adjust the confidence values returned
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by traditional binary concept detection. This is carried out by learning concept

correlations by fitting models of sigmoid functions. In this way, concept relationships

are used indirectly for a multi-concept classification purpose. A similar limitation

is also faced with in our algorithm for activity classification, where Latent Semantic

Analysis (LSA) is introduced to project the dataset to a new concept space. The

semantic relationships of concepts has been assumed and then handled implicitly

with a factor analysis approach of Singular Value Decomposition (SVD). This way of

adopting concept semantics is still a data-driven approach, together with the multi-

concept confidence adjusting based on sigmoid-learning. It is not hard for us to

see the possible limitations that are faced with when scaled up to larger datasets.

Since concept semantics can be modeled explicitly in ontologies, an approach directly

applying concept relationships to these tasks will have higher scalability and efficiency.

This kind of knowledge-driven semantic adoption will be part of our future work.

Concept detection is the basis for further processing of event interpretation. The

27 concept detectors have been introduced in our event level semantic fusion and

shown to be effective. Though representative in evaluating our algorithms, these

detectors can not reflect more semantics in real-world application. Experiments on

larger concept detection data sets will be another topic for future work.

In this thesis, we dealt with event interpretation from internal and external as-

pects. Internal semantics are extracted from SenseCam images by our detection and

fusion algorithms, while external semantics are accessed from online knowledge bases.

Both of these two parts of semantics are essential for a better understanding of lifel-

ogging events. What current work still lacks is an effective approach to incorporate

them. Though our event ontology provides a way for representing these semantics,

a more powerful tool is also needed in future work, to validate and link up these

semantics associatively.
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Appendix A

TRECVid Topic Set

ID Topic Description

0149 shots of Condoleeza Rice
0150 shots of Iyad Allawi, the former prime minister of Iraq
0151 shots of Omar Karami, the former prime minister of Lebannon
0152 shots of Hu Jintao, president of the People’s Republic of China
0153 shots of Tony Blair
0154 shots of Mahmoud Abbas, also known as Abu Mazen, prime min-

ister of the Palestinian Authority
0155 shots of a graphic map of Iraq, location of Bagdhad marked - not

a weather map,
0156 shots of tennis players on the court - both players visible at same

time
0157 shots of people shaking hands
0158 shots of a helicopter in flight
0159 shots of George W. Bush entering or leaving a vehicle (e.g., car,

van, airplane, helicopter, etc) (he and vehicle both visible at the
same time)

0160 shots of something (e.g., vehicle, aircraft, building, etc) on fire with
flames and smoke visible

0161 shots of people with banners or signs
0162 shots of one or more people entering or leaving a building
0163 shots of a meeting with a large table and more than two people
0164 shots of a ship or boat
0165 shots of basketball players on the court
0166 shots of one or more palm trees
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ID Topic Description
0167 shots of an airplane taking off
0168 shots of a road with one or more cars
0169 shots of one or more tanks or other military vehicles
0170 shots of a tall building (with more than 5 floors above the ground)
0171 shots of a goal being made in a soccer match
0172 shots of an office setting, i.e., one or more desks/tables and one or

more computers and one or more people
0173 shots with one or more emergency vehicles in motion (e.g., ambu-

lance, police car, fire truck, etc.)
0174 shots with a view of one or more tall buildings (more than 4 stories)

and the top story visible
0175 shots with one or more people leaving or entering a vehicle
0176 shots with one or more soldiers, police, or guards escorting a pris-

oner
0177 shots of a daytime demonstration or protest with at least part of

one building visible
0178 shots of US Vice President Dick Cheney
0179 shots of Saddam Hussein with at least one other person’s face at

least partially visible
0180 shots of multiple people in uniform and in formation
0181 shots of US President George W. Bush, Jr. walking
0182 shots of one or more soldiers or police with one or more weapons

and military vehicles
0183 shots of water with one or more boats or ships
0184 shots of one or more people seated at a computer with display

visible
0185 shots of one or more people reading a newspaper
0186 shots of a natural scene - with, for example, fields, trees, sky, lake,

mountain, rocks, rivers, beach, ocean, grass, sunset, waterfall, ani-
mals, or people; but no buildings, no roads, no vehicles

0187 shots of one or more helicopters in flight
0188 shots of something burning with flames visible
0189 shots of a group including least four people dressed in suits, seated,

and with at least one flag
0190 shots of at least one person and at least 10 books
0191 shots containing at least one adult person and at least one child
0192 shots of a greeting by at least one kiss on the cheek
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ID Topic Description
0193 shots of one or more smokestacks, chimneys, or cooling towers with

smoke or vapor coming out
0194 shots of Condoleeza Rice
0195 shots of one or more soccer goalposts
0196 shots of scenes with snow
0197 shots of one or more people walking up stairs
0198 shots of a door being opened
0199 shots of a person walking or riding a bicycle
0200 shots of hands at a keyboard typing or using a mouse
0201 shots of a canal, river, or stream with some of both banks visible
0202 shots of a person talking on a telephone
0203 shots of a street market scene
0204 shots of a street protest or parade
0205 shots of a train in motion
0206 shots with hills or mountains visible
0207 shots of waterfront with water and buildings
0208 shots of a street at night
0209 shots with 3 or more people sitting at a table
0210 shots with one or more people walking with one or more dogs
0211 shots with sheep or goats
0212 shots in which a boat moves past
0213 shots of a woman talking toward the camera in an interview - no

other people visible
0214 shots of a very large crowd of people (fills more than half of field of

view)
0215 shots of a classroom scene with one or more students
0216 shots of a bridge
0217 shots of a road taken from a moving vehicle through the front wind-

shield
0218 shots of one or more people playing musical instruments such as

drums, guitar, flute, keyboard, piano, etc.
0219 shots that contain the Cook character in the Klokhuis series
0220 grayscale shots of a street with one or more buildings and one or

more people
8001 Military formations engaged in tactical warfare, or part of a parade
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ID Topic Description
8002 Government or Civilian leaders at various locations such as press

conference, indoors, outdoors, meeting other leaders, addressing
crowds, rallies, in parliament or legislative buildings, at photo op-
portunities etc.

8004 Crowds protesting on streets in urban or rural backgrounds with or
without posters/banners etc.

8006 Funeral Procession or Scenes from a funeral or from a cemetery/cre-
matorium/burial site with participants chanting slogans, and/or
armed militia and/or masked people present, people carrying pic-
tures of the dead

8007 People on street expressing sorrow by crying, beating their chests,
chanting

8008 Military vehicles or helicopters
8011 Police firing weapons
8012 People touching a coffin
8016 Armed guards at checkpoints with barricade on roads
8017 Injured or dead people lying on the ground in any location such as

in front of a mosque, on a street, in open grounds, in water etc
8018 Presidential Candidates
8019 Vice-presidential Candidates
8020 Indoor Debate with Speakers at Podium
8021 Town-hall Style Gathering
8022 U.S. Maps depicting the electoral vote distribution (blue vs. red

state)
8027 Indoor scene with speaker addressing audience waving flags and

cheering
8029 Person greeting people or crowd
8030 Two people on stage in a debate
8031 People posing for pictures with cameras flashing
8034 Soldier sniping at target
8036 Armed men on the city streets
8039 Tanks rolling on streets
8040 Tanks rolling in desert
8041 Armed uniformed soldiers walking on city lanes
8047 Cars burning on city streets or in the desert. May also have over-

turned cars by the side of roads
8052 Person People not in uniform firing weapons
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ID Topic Description
8053 Armed Soldiers firing weapons
8059 Person or people not in uniform, firing weapon and hiding behind

wall of house or building
8067 Battles/Violence in Mountains
8070 Armored Vehicles driving through barren landscapes
8074 Refugee Camps with women and children visible
8079 Convoy of several vehicles on makeshift roads
8080 Empty Streets with buildings in state of dilapidation
8087 Man firing shoulder fired missile in air
8091 Armed Guards standing outside large buildings
8093 Protests turning violent with people throwing missiles, burning ob-

jects and clashing with armed military personnel
8094 Military personnel standing guard with shields
8099 Military meeting in an indoor setting with flag visible
8100 Vehicles with flags passing on streets
8101 An open air rally with a high podium and people attending
8103 Rebels with guns on streets or in jeeps
8107 People on the streets being interviewed by a reporter speaking into

a microphone
8109 Scenes of battle between rebels and military in urban setting
8114 Dead uniformed soldiers
8119 Destroyed aircrafts and helicopters
8121 Demonstrators marching on streets with banners and signs against

military brutality
8125 Clashes of demonstrators with police with police using teargas shells

and water guns to push people back
8127 Violence on the streets with crowd pelting stones at police while

running away from the advancing police
8128 Rebels brandishing and firing weapons in the air
8131 Heart wrenching scenes of people who have become extremely weak

due to absence of adequate food, and water
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EventCube Ontology (in Turtle)

#Appl i ca t ion onto logy f o r EventCube , formatted in Turt le

@pre f ix xsd : <ht tp : //www.w3 . org /2001/XMLSchema#> .

@pref ix owl : <ht tp : //www.w3 . org /2002/07/ owl#> .

@pref ix f o a f : <ht tp : //xmlns . com/ f o a f /0 .1/> .

@pref ix t ime : <ht tp : //www.w3 . org /2006/ time#> .

@pref ix xml: <ht tp : //www.w3 . org /XML/1998/ namespace> .

@pref ix r d f : <ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#> .

@pref ix r d f s : <ht tp : //www.w3 . org /2000/01/ rdf−schema#> .

@pref ix geo : <ht tp : //www.w3 . org /2003/01/ geo/wgs84_pos#> .

@pref ix : <ht tp : //www. c l a r i t y−cent r e . org /EventCube#> .

### Annotation p r op e r t i e s

: h a s A f f i l i a t i o n r d f : t yp e owl :Annotat ionProperty .

:hasAnnotat ion r d f : t yp e owl :Annotat ionProperty ;

rd f s :domain :Event ,

:Image ;

rd f s : subProper tyOf rdfs:comment .

220



### Object Prope r t i e s

:beg inAt r d f : t y p e owl :ObjectProperty ;

rd f s :domain :Event ;

r d f s : r a n g e t ime : I n s t an t .

# Used f o r image time

:captureAt r d f : t yp e owl :ObjectProperty ;

rd f s :domain :Image ;

r d f s : r a n g e t ime : I n s t an t .

:endAt r d f : t yp e owl :ObjectProperty ;

rd f s :domain :Event ;

r d f s : r a n g e t ime : I n s t an t .

# Assoc i a t e s an event with ac to r and attendee

# Both r ep r e s en t people and from Facebook/FOAF p r o f i l e s

:hasActor r d f : t yp e owl :ObjectProperty ;

rd f s :domain :Event ;

r d f s : r a n g e f o a f :P e r s on .

:hasAttendee r d f : t y p e owl :ObjectProperty ;

rd f s :domain :Event ;

r d f s : r a n g e f o a f :P e r s on .

: h a s A f f i l i a t i o n r d f : t yp e owl :ObjectProperty ;

r d f s : r a n g e f o a f :O r g an i z t i o n ;

rd f s :domain f o a f :P e r s on .

# Assoc i a t e s an event with images

:hasImage r d f : t y p e owl :ObjectProperty ;

rd f s :domain :Event ;
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r d f s : r a n g e :Image ;

rd f s : subProper tyOf f o a f : d e p i c t i o n .

# Assoc i a t e s an event / image with a l o c a t i o n

:hasLocat ion r d f : t yp e owl :ObjectProperty ;

rd f s :domain :Event ,

:Image ;

r d f s : r a n g e :Loca t i on .

### Data p r op e r t i e s

: c i t y r d f : t yp e owl :DatatypeProperty ;

rd f s :domain :Loca t i on .

: count ry r d f : t yp e owl :DatatypeProperty ;

rd f s :domain :Loca t i on .

# Add annotat ions to event or image i f nece s sa ry

:hasAnnotat ion r d f : t yp e owl :DatatypeProperty .

# This f i e l d i s provided f o r emai l

:hasEmailAddress r d f : t y p e owl :DatatypeProperty ;

r d f s : r a n g e x s d : s t r i n g ;

rd f s :domain f o a f :P e r s on .

# This p r ed i c a t e i s a s t r i n g which d e s c r i b e s the home town

: isFrom rd f : t y p e owl :DatatypeProperty ;

r d f s : r a n g e x s d : s t r i n g ;

rd f s :domain f o a f :P e r s on .

### Clas s e s
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# An event has a s t a r t time , an end time and a l o c a t i o n

:Event r d f : t y p e ow l :C la s s ;

rd f s : subC la s sO f t ime:TemporalEntity ,

[ r d f : t y p e ow l :R e s t r i c t i o n ;

owl :onProperty :hasLocat i on ;

owl :minCard ina l i ty "1"^^xsd :nonNegat ive Integer

] ,

[ r d f : t y p e ow l :R e s t r i c t i o n ;

owl :onProperty :endAt ;

ow l : c a r d i n a l i t y "1"^^xsd :nonNegat ive Integer

] ,

[ r d f : t y p e ow l :R e s t r i c t i o n ;

owl :onProperty :beg inAt ;

ow l : c a r d i n a l i t y "1"^^xsd :nonNegat ive Integer

] .

# L i f e l o g g i n g image

:Image r d f : t yp e ow l :C la s s ;

ow l : e qu i va l en tC l a s s f oa f : Image .

# A l o c a t i o n i s a po int where an event takes p lace

:Loca t i on r d f : t yp e ow l :C la s s ;

rd f s : subC la s sO f geo :Po int .
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Event Enhancement Record

Event ID Location Enhancement Bluetooth Name

61 Dublin City University Kirsty-lvs-davexXx
Glasnevin SGH-S400i
Baile Átha Cliath SGH-X680

62 Mceniff Skylon Annie tigers
Dublin Skylon Hotel W995
Croke Park S5230

63 The Westin Dublin JUN
Book of Kells K750i
Westin Science Gallery Workshop

MacBook (5)
64 Trinity College JUN

Merrion Square
Leinster House

65 Trinity College JUN
Merrion Square Jose
Leinster House

66 Trinity College JUN
Merrion Square McGrovern
Leinster House

67 Trinity College JUN
Merrion Square Zordon
Leinster House SGH-ZV60

68 Trinity College JUN
The Westin Dublin Nokia 6300
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Event ID Location Enhancement Bluetooth Name
Book of Kells

69 Trinity College JUN
The Westin Dublin K800i
Book of Kells

70 Trinity College JUN
The Westin Dublin Nokia 5800 XpressMusic
Book of Kells LG KU990i

71 Trinity College JUN
The Westin Dublin SGH-D908i
Book of Kells Nokia 5800 XpressMusic

72 Trinity College Nokia 2630
The Westin Dublin Lar good lookin
Book of Kells JUN

73 Trinity College Science Gallery Workshop
MacBook (37)

Merrion Square Ciaran Fowley’s Computer
Leinster House ScienceGalleryWorkshop

74 Trinity College JUN
Merrion Square BT-GPS-37E394
Leinster House SGH-D908i

75 Trinity College SGH-D908i
Merrion Square JUN
Leinster House Nokia 6230i

76 Trinity College JUN
Merrion Square K750i
Leinster House SGH-D908i

77 Trinity College JUN
Merrion Square K750i
Leinster House SGH-D908i

78 Trinity College Nokia 6230i
Merrion Square JUN
Leinster House K750i

79 Trinity College K750i
Merrion Square JUN
Leinster House Nokia 6230i

80 Trinity College JUN
Merrion Square K750i

225



Appendix C

Event ID Location Enhancement Bluetooth Name
Leinster House Nokia 6230i

81 Trinity College JUN
Merrion Square Nokia 6230i
Leinster House Nif

82 Trinity College Nif
Merrion Square Ciaran Fowley’s Computer
Leinster House Nokia 6230i

83 Merrion Square Nif
Leinster House Ciaran Fowley’s Computer
Arlington Hotel S5230

84 Merrion Square Ciaran Fowley’s Computer
Leinster House Sparks.Mobile
Arlington Hotel

85 Merrion Square Ciaran Fowley’s Computer
Leinster House Moomoo
Arlington Hotel

86 Merrion Square Ciaran Fowley’s Computer
Leinster House Bananaphone
Arlington Hotel CHUBBS

87 Merrion Square Greener
Leinster House Bananaphone
Arlington Hotel Mine

88 Merrion Square Bananaphone
Leinster House Victorios B.I.G
Arlington Hotel Greener

89 Merrion Square Bananaphone
Leinster House
Arlington Hotel

90 Academy Frederick Walter West
The Spire ZORAN:@MARKOSKI
Lynams Hotel SGH-J700I

91 Dublin City University
Glasnevin

239 Dublin City University Daragh Byrne’s 24inch
iMac

Glasnevin NeilOHare-MacBook
cdvpminiColum
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240 Dublin City University Alan Smeaton’s MacBook

Pro
Glasnevin Daragh Byrne’s 24inch

iMac
cdvpmini-AlansOffice

241 Dublin City University Alan Smeaton’s MacBook
Pro

Glasnevin Pete
Dermot Diamond’s Com-
puter

242 Dublin City University Daragh Byrne’s 24inch
iMac

Glasnevin cdvpminiColum
NeilOHare-MacBook

243 Dublin City University Daragh Byrne’s 24inch
iMac

Glasnevin cdvpminiColum
Jiang

244 Dublin City University Nokia 7373
Glasnevin

245 Dublin City University Nokia 7373
Glasnevin Deco

246 Dublin City University Nokia 7373
Glasnevin

247 Dublin City University Nokia 7373
Glasnevin
Baile Tha Cliath

248 Dublin City University Nokia 7373
Glasnevin Nokia 7610
Baile Tha Cliath

249 Dublin City University Nokia 7373
Glasnevin
Baile Átha Cliath

250 Dublin City University DPS1
Glasnevin Nokia 3120 classic
Baile Tha Cliath Nokia 6288

251 Dublin City University Quacksalot
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Glasnevin Flanders
Baile Átha Cliath SGH-J700I

252 Dublin City University Sandra
Glasnevin Cock with no balls
Baile Átha Cliath Nokia 7373

253 Dublin City University Nokia 7373
Glasnevin Sandra
Baile Átha Cliath Nic phone

273 Dublin City University Daragh Byrne’s 24inch
iMac

Glasnevin cdvpminiColum
Stop lukin at my bluetooth!

274 Dublin City University Daragh Byrne’s 24inch
iMac

Glasnevin cdvpminiColum
275 Dublin City University Daragh Byrne’s 24inch

iMac
Glasnevin cdvpminiColum

N95
276 Dublin City University Daragh Byrne’s 24inch

iMac
Glasnevin cdvpminiColum

N95
277 Dublin City University Daragh Byrne’s 24inch

iMac
Glasnevin cdvpminiColum

278 Dublin City University cdvpminiColum
Glasnevin Daragh Byrne’s 24inch

iMac
279 Dublin City University Daragh Byrne’s 24inch

iMac
Glasnevin cdvpminiColum

Conors fne
280 Dublin City University Bowers2

Glasnevin RAI N95
Baile Átha Cliath LFC2005

Malleerrooo
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281 Mceniff Skylon N95

Dublin Skylon Hotel Yuki
Croke Park Nokia N97

282 Marino N95
Mceniff Skylon RAI N95
Croke Park Yuki

283 Mceniff Skylon N95
Dublin Skylon Hotel Nokia N97
Croke Park RAI N95

284 Mceniff Skylon Yuki
Dublin Skylon Hotel Nokia N97
Croke Park N95

285 Mceniff Skylon Yuki
Dublin Skylon Hotel Nokia N97
Croke Park RAI N95

286 Mceniff Skylon Yuki
Dublin Skylon Hotel Nokia N97
Croke Park Steve

287 Mceniff Skylon Yuki
Dublin Skylon Hotel Nokia N97
Croke Park Up the Dubs

288 Mceniff Skylon Nokia
Dublin Skylon Hotel Anto
Croke Park Nokia CK-7W

289 Mceniff Skylon Anto
Dublin Skylon Hotel Lucyy
Croke Park Nokia 5800 XpressMusic

290 Dublin City University Nokia 7373
Glasnevin
Baile Átha Cliath

291 Dublin City University Nokia 7373
Glasnevin
Baile Átha Cliath
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Location Clustering Examples

D.1 Clustering for a Whole Month of One Lifelogger
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D.2 Clustering on Another User for a Day
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