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Abstract 

Chapter one presents a detailed literature survey on dithienylcyclopentene switches, 

describing their synthesis, properties and applications.  The photochromic and 

electrochromic effects of functionalising such switching units with metal complexes, 

is then discussed.  Finally, an introduction to cobalt carbonyl complexes is given, with 

an outline of the photochemical and electrochemical properties of such carbonyl 

complexes, as described in the literature.   

 

Chapter two describes the synthetic procedures employed to prepare a number of 

dithienyl-perhydro- and perfluoro-cyclopentene switches, substituted with thienyl and 

ferrocenyl moieties.  The methods used to generate their corresponding Co2(CO)6 and 

Co2(CO)4dppm complexes are also described.  
1
H, 

13
C, 

19
F and 

31
P NMR techniques 

were employed to analyse the resulting products.  Elemental analysis and infra-red 

spectroscopy were also utilised, where applicable, to further characterise the final pure 

compounds and the results are detailed in this chapter. 

 

Chapter three describes the photochemical properties found for the thienyl-based 

dithienylcyclopentene switches and their corresponding cobalt carbonyl complexes.  

The photochromic properties of the thienyl-based switches were monitored in the UV-

vis absorption spectra and the 
1
H NMR spectra.  Their thermal stability, fatigue 

resistance and fluorescent properties were also investigated.  Furthermore, the effects 

of incorporating cobalt carbonyl moieties onto these thienyl-based switches, on their 

photocyclisation processes, are reported in this chapter.  

 

Chapter four reports the photochromic behaviour of the ferrocenyl-based 

dithienylcyclopentene switches, as observed in the UV-vis and 
1
H NMR.  

Investigations into the thermal stability, fatigue resistance and fluorescent properties 

of these switches were carried out.  The effects on the photochromic properties of the 

ferrocenyl-based switches, following the introduction of Co2(CO)6 and 

Co2(CO)4dppm moieties, are also described in this chapter. 
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Chapter five focuses on the electrochemical properties of the thienyl-based 

dithienylcyclopentene switches.  Electrochemically induced cyclisation/ 

cycloreversion processes were investigated through cyclic voltammetry and UV-vis 

spectroelectrochemistry techniques.  Similar experiments were carried out for the 

cobalt carbonyl derivatives in order to examine the effects of the presence of the metal 

carbonyls on the oxidative ring-closing/opening abilities of the thienyl-based switches.  

The effects of the oxidation processes on the cobalt carbonyl centres were also studied 

by monitoring the changes of the carbonyl stretches in the infra-red spectra. 

 

Chapter six details the electrochemical behaviour of the ferrocenyl-based 

dithienylcyclopentene switches.  The oxidative and reductive processes of these 

switches were monitored in the cyclic voltammograms and UV-vis spectra of these 

switches in order to investigate if ring-opening/closing can be induced by 

electrochemical means.  Their Co2(CO)6 and Co2(CO)4dppm complexes were also 

subjected to similar experiments in order to determine the effects of introducing such 

metal carbonyl complexes on the electrochemical switching behaviour of these 

ferrocenyl-based switches.  IR spectroelectrochemical techniques were employed to 

examine the effects of oxidation processes on the cobalt carbonyl centres. 

 

Chapter seven presents an overall conclusion of the results obtained, with an emphasis 

on a comparison between the effects of the thiophene substituents and the ferrocene 

units, and the prospects of future work in this area is discussed.  All publications are 

presented in the appendix.  
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Introduction 

Dithienylcyclopentene switches are compounds which can undergo structural changes 

from their open-ring to their closed-ring isomers, and vice versa, by photochemical 

and electrochemical means.  The switching behaviour of such molecules induces 

changes in their electrical and optical properties such as: UV-vis absorption; 

luminescence; IR; and oxidative/reductive potentials.  Such switches have applications 

towards the development of optoelectronic devices, in particular read/write memory 

devices with non-destructive read-out capabilities, due to their excellent fatigue 

resistance and thermal stability properties.   

 

The basis of this thesis is to examine the effects of the central cyclopentene atoms (i.e. 

H vs. F), and the substituents attached to the thiophene units, on dithienylcyclopentene 

switches, on their photochemical and electrochemical properties.  Furthermore, the 

influence of incorporating organometallic moieties, on the properties of the switches, 

is explored. 

Dithienyl-perhydro-cyclopentene switches, and its perfluoro analogues, were 

appended with 3-ethynylthiophene and phenyl-3-ethynylthiophene moieties in order to 

investigate the effects of increasing the π-conjugation of the system on the 

cyclisation/cycloreversion processes, induced optically and electrically.  The thermal 

stability and fatigue resistance of these switches were also analysed as such properties 

are highly important towards the development of practical applications.  Their 

luminescent behaviour, in the open and closed-ring forms, was investigated as a 

possible non-destructive read-out method. 

Incorporating organometallic complexes onto molecular switches can result in unique 

excited state reactivity, and hence significantly affect the photochromic and 

electrochromic properties of such switches.  Ferrocene is an organometallic compound 

which is known for its excited state quenching ability, and its excellent 

electrochemical properties, due to its reversible oxidation process.  Hence, the 

perhydro- and perfluoro-derivatives of the dithienylcyclopentene switches were 

substituted with ethynylferrocene and phenyl-ethynylferrocene moieties in order to 

examine, what was expected to be, the considerable influence of the ferrocene units on 



 4 

the photochemical and electrochemical properties of the switches, in comparison to 

the properties found for the organic thienyl-based switches. 

A number of transition metal complexes have been introduced onto molecular 

switching units in order to tune the properties of such systems.  Cobalt carbonyl 

complexes are photochemically and electrochemically-active transition metal 

complexes, and to date, have not been integrated onto such switching systems.  Hence, 

novel cobalt carbonyl compounds were synthesised by incorporating Co2(CO)6 

moieties onto the alkynyl units on both sides of the thienyl-based, and ferrocenyl-

based, dithienylcyclopentene switches described above, with the aim of investigating 

the influence of these metal carbonyl complexes on the photochemical and 

electrochemical ring opening/closing processes of these switches.  Further to this, 

cobalt carbonyls exhibit sharp, intense bands in the CO region of the IR spectrum, 

hence, we extended our investigation to study the effects of the photochemical and 

electrochemical processes on the carbonyl IR bands, with the intention of examining 

IR spectroscopy as a possible non-destructive read-out method for data storage 

devices. 

The introduction of electron-donating phosphine ligands onto cobalt carbonyl 

complexes increases the electron density on the Co-Co bond, thus stabilising these 

complexes.  Hence, bis(diphenylphosphino)methane {dppm} ligands were substituted 

onto the Co2(CO)6 switches described above, generating the corresponding cobalt 

tetracarbonyl complexes {Co2(CO)4dppm}, with the intention of stabilising these 

metal complexes during photochemical and electrochemical processes.  The influence 

of the Co2(CO)4dppm complexes on the electro- and photo-cyclisation processes of 

the dithienylcyclopentene switches was investigated. 

 

This thesis is divided into seven chapters.  The synthetic methods and characterisation 

results of the dithienylcyclopentene switches, and their cobalt carbonyl complexes, are 

described in chapter two.  The photochemical properties of the thienyl-based switches 

and metal complexes, and of the ferrocenyl-based switches and metal complexes, are 

discussed in chapters three and four respectively.  Subsequently, chapters five and six 

detail the electrochemical properties of the thienyl and ferrocenyl-based systems, 

respectively.  Finally, in chapter seven, an overall conclusion of the results, and the 

potential for future work in this area, is discussed.  First and foremost, however, 

chapter one presents a detailed literature survey of dithienylcyclopentene switches, 
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and their corresponding organometallic complexes, followed by the photochemical 

and electrochemical properties of cobalt carbonyl complexes.  
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Chapter one presents a detailed literature survey of the synthetic methods 

employed to synthesise the perhydro- and perfluoro-derivatives of 

dithienylcyclopentene switches, and to further functionalise these switches 

with a variety of substituents.  The photochemical and electrochemical 

properties of these switches are described, with a comparison between the 

hydrogenated and fluorinated cyclopentene unit, followed by a description 

of how their switching properties can be utilised for a number of 

applications.  The effects of combining organometallic complexes and 

dithienylcyclopentene switches into the same system are described in 

detail, with a comprehensive review of the results reported in the 

literature.  Finally, the photochemical and electrochemical properties of 

cobalt carbonyl complexes are discussed.  
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1.1 Dithienylcyclopentene Switches 

 

Photochromic molecular switches refer to compounds that can undergo reversible 

photo-induced transformation between two forms which have distinguishably different 

absorption spectra.
1,2

  Following the photocyclisation process, after irradiation with 

light, the ring-opened form transforms to the ring-closed form.  Apart from changes in 

the UV-vis spectra, other changes in various physical and chemical properties of the 

switch can result, such as, the refractive index,  redox potential, polarity, fluorescence 

etc.
3,4,5

  Photochromic switches are of much interest due to their reversibility, short 

response times, clean and tuneable energy input, and their ability to convert optical 

input into a number of useful output signals.
3
  These properties can lead to a variety of 

applications in non-destructive optical data recording and storage,
1,3,6-9

 molecular 

wires,
6,7

 molecular switches,
6-9

 filters
1,3

 and polarisers.
1,3

      
 

 

There are a number of different types of switches reported in the literature,
3,10

 for 

example, spiropyrans, azobenzenes, fulgides and diarylethenes.  Diarylethenes are one 

of the most promising switches for application as switching units, as they display 

excellent photochromic properties:
1,2,4,8-10

 short response time, high quantum yields, 

excellent fatigue resistance, thermally irreversible, high reactivity in solid state, and 

large changes in the absorbance spectra between the two isomers.  The most 

commonly used diaryethenes are diarylmaleic anhydrides, diarylmaleimides and 

diarylperfluorocyclopentenes.
1,6,7

   

 

 

 

Figure 1.1: General structures of diarylmaleic anhydrides, diarylmaleimides and diarylperfluoro-

cyclopentenes switches. 
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However, diarylmaleic anhydrides and diarylmaleimides are both sensitive to acidic 

conditions and have been found to degrade in the presence of air.
1,7

  On the other 

hand, diarylperfluoro-cyclopentene switches have demonstrated photochromic 

stability in air, even at temperatures over 80ºC,
1,7

 and therefore have attracted much 

attention in recent years, particularly those bearing two thiophene derived groups.  

Thus, the remainder of this review will focus on the synthesis, photochromic and 

electrochromic properties of dithienylcyclopentene type switches. 

 

 

1.1.1 Synthesis 

 

A number of methods have been reported for the synthesis of dithienylcyclopentene 

switches, and some of these are described briefly in the following section. 

 

 

• Dithienylperfluorocyclopentene 

 

Method 1: 

Irie et al
11

 described the synthesis of dithienylperfluorocyclopentene by a lithiation 

reaction, followed by a double substitution reaction with octafluorocyclopentene 

(scheme 1.1). 

- Firstly, they prepared 3,5-dibromo-2,4-dimethylthiophene (1), via a 

bromination reaction of 2,4-dimethylthiophene, by adding it to a solution of 

acetic acid, containing bromine, at 0ºC.   

- This was followed by a lithiation reaction, where 1 was dissolved in ether and 

n-butyllithium was added at -60ºC.  Water was subsequently added at room 

temperature to replace the lithium at the 5-position, thus yielding 3-bromo-2,4-

dimethylthiophene (2).   

- 2 was then subjected to another lithiation reaction, in THF.  N-butyllithium 

was added at -60ºC, followed by perfluorocyclopentene at the same 

temperature, yielding 1,2-bis(2,4-dimethylthiophen-3-yl)perfluorocyclo-

pentene (3).   
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Scheme 1.1: Synthesis of 1,2-bis(2,4-dimethylthiophen-3-yl)perfluoro-cyclopentene (3). 

 

 

Method 2: 

Synthesis of dithienylperfluorocyclopentene by method 1 has a number of 

disadvantages:
6,7

 

- The yields are moderate, as a large amount of the monosubstituted product is 

formed. 

- Octaperfluorocyclopentene is difficult to work with as it is very volatile (bp. 

26-28ºC). 

- Also, octafluorocyclopentene is very expensive and not readily available. 

Therefore, Lucas et al
6
 developed a different synthetic route with cheaper starting 

materials that are easier to handle and produce higher yields. 

 

Firstly, they attempted a Friedel-Crafts acylation of 2-methyl-5-chlorothiophene with 

hexafluoroglutaryl dichloride and AlCl3 in benzene or toluene, which has been 

described previously in the literature.
12

  However, this reaction was not successful, 

which was probably due to the strongly electron-withdrawing fluorine atoms 

interfering with the formation of the acylium intermediate. 

 

Their second approach was to generate diethyl hexafluoroglutarate, by a standard 

acid-catalysed esterification of hexafluoroglutaric acid,
13

 in order to obtain the 

corresponding diketone (6) (illustrated in scheme 1.2).  

A number of considerations had to be taken into account.  Acylation must occur at the 

3-position, however, 2- and 5-positions on the thiophene molecule are the most 
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reactive (positions 2 to 5 are illustrated in scheme 1.2 on compound 4).  Therefore, it 

is necessary to use only a thienyl group which is substituted at positions 2 and 5.  It is 

also important to incorporate functionality in the final dithienylcyclopentene 

compound, in order for further derivatisation to be employed.  The addition of a 

halogen group on the methyl thienyl compound can provide this function.  However, it 

has been found that when bromothiophenes are employed, acylation occurs at the 2-

position and the bromine substituent is shifted to the 3-position.
14

  Iodine is known to 

react in a similar way therefore Lucas et al
6
 used a chlorine substituent.  2-methyl-5-

chlorothiophene (4) was synthesised by reacting 2-methylthiophene with N-

chlorosuccinimide, in benzene and acetic acid.
6,7

  To obtain the dithienyl-1,5-diketone 

(6), 5-chloro-2-methylthiophene  underwent a bromination reaction at the 3-position, 

using Br2 in chloroform, yielding 5-chloro-3-bromo-2-methylthiophene (5).  

Compound 5 was synthesised in order to ensure that the following lithiation reaction, 

in diethyl ether at -78ºC using n-BuLi, resulted in lithium/halogen exchange of the 

bromine at the 3-position, rather than at the chlorine in the 2-position.  Once 5 was 

lithiated, diethyl hexafluoroglutarate was added to the reaction mixture at the same 

temperature, yielding 1,5-bis(5-chloro-2-methyl-3-thienyl)pentaflurodione (6).  

McMurry coupling followed, to achieve ring closure, by adding 6 to a solution of THF 

containing zinc and TiCl3(THF)3, at 40ºC.  After purification by column 

chromatography, 1,5-bis(5-chloro-2-methyl-3-thienyl)cyclopentene (7) was obtained.
6
    

 

 
 

 
 

Scheme 1.2: Synthesis of 1,5-bis(5-chloro-2-methyl-3-thienyl)perfluorocyclopentene (7).  Positions 2 

to 5 on the thiophene molecular are illustrated on compound 4. 
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• Dithienylperhydrocyclopentene 

 

 

Due to the problems described above for the synthesis of dithienylperfluoro-

cyclopentene, namely the expensive, volatile reagents required and the small scale 

reactions producing low yields, Lucas et al,
6,7

 decided to synthesise a new class of 

diarylethenes, consisting of a perhydrocyclopentene structure bearing two thiophene 

groups.  They reported the synthesis of dithienylperhydrocyclopentene by generating 

a 1,5-dithienyl-1,5-diketone group via a Friedel-Crafts acylation reaction, followed by 

a ring-closing step of the diketone, via a McMurry reaction, to form the central 

perhydrocyclopentene ring. 

 

1,5-dithienyl-1,5-diketone can be synthesised by a Friedel-Crafts acylation of a 

methylated thienyl group to a 1,5-dinitrile, 1,5 diester or a 1,5-dicarboxylic dichloride, 

the latter being the preferred choice as it saves one step in the reaction process.  

Therefore, 2-methyl-5-chlorothiophene (4) was subjected to a Friedel-Crafts reaction 

with AlCl3 and glutaryl dichloride, in CS2 at 0ºC, yielding 1,5-bis(5-chloro-2-methyl-

3-thienyl)pentadione (8) (scheme 1.3).
6,7

 

The final step to achieve the cyclopentene switch is ring closure via a McMurry 

reaction.  Dechlorination of aromatic chlorides using Grignard reagents have been 

reported before,
15

 therefore, 8 was refluxed in a solution of THF containing TiCl4 and 

zinc (zinc is a milder reducing agent than Mg), and the desired 1,5-bis(5-chloro-2-

methyl-3-thienyl)cyclopentene (9) was obtained (scheme 1.3).
6,7

 

 

 

Scheme 1.3: Synthesis of 1,5-bis(5-chloro-2-methyl-3-thienyl)cyclopentene (9). 

 



 12 

• Functionalisation of Dithienylcyclopentenes 

 

 

The synthetic methods described above, by Lucas et al,
6, 7

 focused on the generation 

of dithienylethene switches containing chlorine substituents.  However, these methods 

can be varied slightly to generate 1,2-bis(2,5-dimethylthien-3-yl)cyclopentene or 1,2-

bis(2-methylthien-3-yl)cyclopentene.  The former merely requires the use of 2,5-

dimethylthiophene in place of compound 4, in schemes 3 and 4.
6,7

  The latter can be 

obtained by using Mg, rather than zinc, in the final McMurry ring-closing reaction, as 

it is a stronger reducing agent, hence, resulting in dechlorination of the thienyl 

groups.
6,7

  However, synthesising the dithienylcyclopentenes (perfluoro & perhydro), 

with chlorine atoms at the 5-poition of the thienyl groups, is the preferred method as it 

allows for functionalisation of the switches in a relatively easy manner by a variety of 

different reactions, as described below: 

 

1) Lithiation Reactions 

 

Compounds 7 and 9 can undergo a straightforward lithiation reaction, where 

chlorine/lithium exchange takes place at room temperature.  Introduction of different 

reagents can yield a number of different functionalised products,
6
 as illustrated in 

scheme 1.4, for example: 

- Quenching the lithiation reaction with DMF, results in formation of the 

dialdehyde (10).
6,7

   

- The addition of CO2 to the lithiation reaction can form the diacid directly 

(11).
6
  

- The addition of iodine to the doubly lithiated compound results in 

lithium/iodine exchange.  This results in an iodine substituent at the 5-position 

on each thienyl group (12).  Iodine is more reactive than chlorine, and so it can 

be employed in further reactions, such as Sonogashira reactions, to introduce a 

variety of substituents onto the switch.
16
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Scheme 1.4: Lithiation reactions of dithienylcyclopentene compounds to form: (i) dialdehyde 

derivative 10, (ii) diacid derivative 11, (iii) di-iodide derivative 12.  

 

 

2) Cross-Coupling Reactions 

 

There is a lot of interest in increasing the aromatic character of the dithienyl-

cyclopentene switches.  There are a number of cross-coupling reactions that can be 

employed for this purpose, such as Negishi coupling, Kumada coupling, Suzuki 

coupling and Sonogashira coupling.  Literature results using such methods are 

described below:  

 

- Negishi Coupling 

Irie at al
11

 synthesised a benzene derivative of a dithienylperfluorocyclopentene 

switch by firstly substituting the thiophene molecule with a benzene ring, followed by 

synthesis of the diarylperfluorocyclopentene compound, as demonstrated in scheme 
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1.5.  A Negishi coupling reaction was used to generate the 5-thienyl-phenyl 

substituent.  2,4-dimethylthiophene and N,N,N’N’-tetramethylthiophene (TEMED) 

were dissolved in ether, and BuLi was added at ambient temperature, followed by the 

addition of zinc chloride.  After 4 hours of stirring this reaction mixture was added to 

a flask containing a THF solution of iodobenzene and Pd(PPh3)4, and the reaction was 

heated.  The resulting 2,4-dimethyl-5-phenylthiophene compound (14) was then 

iodinated, at the 3-position of the thiophene, by adding it to a solution of acetic acid, 

carbon tetrachloride, iodic acid and iodine.  The resulting 3-iodo-2,4-dimethyl-5-

phenylthiophene compound (15) was then subjected to a lithiation reaction, followed 

by a double substitution reaction with octafluorocyclopentene, to produce 1,2-bis(2,4-

dimethyl-5-phenylthiophen-3-yl)per-fluorocyclopentene (16). 

 

 

Scheme 1.5: Synthesis of 1,2-bis(2,4-dimethyl-5-phenylthiophen-3-yl)per-fluorocyclopentene (16) 

by a Negishi reaction. 

 

- Kumada Coupling  

Lucas et al
6
 attempted a Kumada coupling reaction where the substituent was coupled 

directly onto the dithienylcyclopentene compound.  1,5-bis(5-chloro-2-methyl-3-

thienyl)perhydrocyclopentene (9) was reacted with 2-thienylmagnesium bromide (17) 

in diethyl ether, under reflux conditions, using Ni(dppp)Cl2 as the catalyst.  This 

resulted in only a monosubstituted product (18).  Increasing the amount of catalyst did 

not improve the result, so a different catalyst [Ni(PPh3)2Cl2], often employed in 

Kumada coupling reactions, was used.  The disubstituted compound was obtained, but 

only when a 1 equivalent amount of this catalyst was used.  As the percentage amount 

of the catalyst was decreased, the yield of the desired product decreased.  The problem 
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incurred here is most likely due to the lower reactivity of the chloride, in comparison 

to bromides or iodides.
6
  However, in the same year Peters et al

17
 reported the 

successful disubstitution of 2-thiophene groups onto the dithienylperfluorocyclo-

pentene switch (20).  In contrast to Lucas’ method, they substituted the chlorine atoms 

for bromine atoms on the diaryethene structure (19) first, used a different catalyst 

[Pd(dppf)Cl2], and the reaction was carried out at 0ºC.  Both of these reactions are 

illustrated in scheme 1.6 below:     

 

S S S SClClCl
S

S MgBr

+

[Ni(PPh3)2Cl2]

Diethyl ether,
reflux

S S S SBrBr
SS MgBr

+
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0oC
S
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H6
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H6
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19

18

17 20

17

 

 

Scheme 1.6: Kumada Coupling: (i) Lucas’ method
6
; (ii) Peters’ method

17
, where dppf = 1,1'-Bis-

(diphenylphosphino)ferrocene. 

 

 

- Suzuki Coupling  

Tsivgoulis et al
18

 reported the functionalisation of a diarylcyclopentene by varying the 

Suzuki coupling reaction conditions.  1,2-Bis-(2'-n-hexylthiophene-3'-yl)-perfluoro-

cyclopentene (21) was converted into the boronic acid, by dissolving it in diethyl ether 

and adding n-butyllithium, followed by the addition of B(nOBu)3.  The resulting 

boronic acid was kept in solution, as isolation can result in loss of boron, or the 

formation of anhydrides.  Therefore, it was added directly to a second reaction flask 

containing a solution of 2-bromothiophene, Pd(PPh3)4, ethylene glycol and aq. 

Na2CO3, in THF, under reflux.  This synthetic method was successful in yielding the 

desired 1,2-Bis-(2'-n-hexyl-5’-(thiophen-2-yl)- thiophene-3'-yl)-perfluorocyclopentene 

product (22). 

Later this method was used by Lucas et al
6,19

 in order to functionalise 1,5-bis(5-

chloro-2-methyl-3-thienyl)perhydrocyclopentene (9) with two thiophene groups at the 
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5-position.  Firstly they attempted a Suzuki coupling of the cyclopentene thienyl 

chloride compound with arylboronic acids, which was deemed unsuccessful.  This 

was most likely due to the low reactivity of the chloro-thienyl bond, in comparison to 

aryl bromides and iodides, which are more commonly used in such a reaction.  

Therefore, instead of using the diarylcyclopentene compound as the aryl halide, they 

converted it into a boronic ester intermediate, and followed the same procedure as 

described by Tsivgoulis et al.
18
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Scheme 1.7: The Suzuki Coupling method reported by Tsivgoulis et al.

18
 

 

 

- Sonogashira Coupling 

Launay et al
16

 described the addition of two ethynylferrocene units to dithienyl-

cyclopentene (perfluoro & perhydro) switches via a Sonogashira reaction.  Before 

addition of the substituents, the two chlorine atoms present in 1,2-bis(1,5-bis(5-

chloro-2-methyl-3-thienyl)cyclopentene (9) were replaced with iodine via a lithiation 

reaction described above in scheme 1.4.  Then a Sonogashira reaction was employed 

to add ethynylferrocene substituents to the 5-poisiton of the thiophenes.  Standard 

Sonogashira conditions were applied which involved adding ethynylferrocene to a 

mixture of THF, diisopropylamine, CuI and Pd(PPh3)2Cl2.  After stirring at room 

temperature for 72 hours, a low yield of the product was obtained, accompanied by a 

large amount of crude product which made the purification process very difficult.  

Therefore, a different method was employed which involved the generation of the 

catalyst in situ from Pd2(dba)3 with a bulky tris(2,4,6-trimethylphenyl)phosphine 

ligand and CuI.  DMF and diisopropylethylamine were used as the solvents, and an 

excess of tetrabutylammonium iodide was also added.  This new procedure allowed 

the reaction to start at -20ºC, followed by stirring at room temperature, and the pure 

product was obtained successfully in a much higher yield (90%).
16
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Scheme 1.8: The Sonogashira coupling method reported by Launay et al.
16
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1.1.2 Photochromism 

 

Photochromism is a term used to describe light-induced reversible transformation of a 

molecule between two isomers.
10

  In the case of diarylethene compounds, irradiation 

with UV light of the colourless open-ring isomer, results in photocyclyisation to form 

the coloured closed-ring isomer.  This is a reversible process, with subsequent 

irradiation, with visible light, resulting in a cycloreversion process from the closed to 

the open form,
1
 as illustrated in scheme 1.9.   

 

Scheme 1.9: Photochromic behaviour of dithienylcyclopentene switch.  Irradiation with UV light 

results in ring-closure, whilst irradiation with visible light results in ring-opening. 
 

The open-ring isomer is non-planar as free rotation is possible between the ethene 

moiety and the aryl group, and the π-electrons are localised in the two aryl groups.
2
  

Upon irradiation with UV light, photochemical conrotatory 6π-electrocyclisation of 

the 1,3,5-hexatriene moiety takes place, due to steric congestion, forming a 

cyclohexadiene structure.
2,20

  Therefore, the closed isomer has a C2-symmetrical 

helical structure, resulting in extension of the π-conjugation over the entire 

molecule.
3,9,20

  This photoreaction takes place according to the Woodward-Hoffmann 

rule,
2
 and results in changes in the physical and chemical properties between the two 

isomers, the most important of which are the changes in colour, and hence in their 

UV-vis spectra.  Once the switch is exposed to visible light (λ > 420 nm) this 

photochemical process is reversed, and the open-ring isomer is regenerated.   
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• Conformational Isomers 

 

The quantum yield obtained for the cyclisation process is largely dependent on the 

structure of the open-ring dithienylethene molecule.  The open-ring form can exist as 

two conformational isomers:
1,2,4,9,10

 a parallel conformation in which the two thienyl 

rings are in mirror symmetry, and an anti-parallel conformation with the rings in C2 

symmetry (scheme 1.10).  These conformers exchange at room temperature and are 

present in almost equal amounts.  The parallel conformers are photochemically 

inactive, as only the anti-parallel conformers can undergo photocyclisation, upon 

irradiation with UV light, according to the Woodward-Hoffmann rule.  Therefore, the 

ratio of these two conformers defines the quantum yield obtained for the 

photocyclisation reaction, which is usually about 50% seen as the conformers 

generally exist in a 1:1 ratio.
1
  However, replacing the inner substituents on the thienyl 

rings with larger molecules, such as isopropyl groups, or bridging the thiophene rings 

at the 2- and 4-positions, have been shown to increase the ratio of anti-parallel 

conformers, hence increasing the quantum yield for the photocyclisation reaction.
1,21

 

 

 

 

Scheme 1.10: Parallel and anti-parallel conformational isomers of open form dithienylethene switches.  

The parallel form is photochemically inactive.  Only the anti-parallel conformers can undergo 

photocyclisation.  Also, position 4 on the thiophene rings is illustrated here. 
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• NMR 

 

The two conformations of the open-ring were distinguished by 
1
H NMR theoretical 

studies, carried out by Nakamura et al.
8
  The relative positions of the two thiophene 

moieties have a strong effect on the chemical shift of the methyl group protons 

attached at the 2-position.  In the case of the anti-parallel conformer, the two methyl 

groups face the ring hence a high magnetic field is induced onto the methyl protons by 

the ring current, resulting in the presence of a peak at ~1.7 ppm in the 
1
H NMR 

spectrum.  In the case of the parallel conformer, this magnetic field affect is not 

applicable therefore the peak representing the methyl protons is shifted downfield to 

~2.16 ppm.
8
  However, for most diarylethene switches, the parallel and anti-parallel 

isomers fluxuate between each other on a very fast time-scale, hence, even at -90ºC, 

1
H NMR analysis shows only one set of time-averaged signals.

22
  There are exceptions 

where sterically demanding substituents are attached to the dithienylethene moiety, 

which hinders the rotation of the thienyl groups, resulting in two sets of 
1
H NMR 

signals for the two open-ring conformers, as described previously by Irie et al.
11

    

 

The photocyclisation reaction of the switches, from the open-ring to the closed-ring, 

can be detected by 
1
H NMR.  Ring-closure induces a chemical shift in the peaks 

representing the thiophene proton at the 4-position (scheme 1.10) and the methyl 

group protons.  Due to the loss of their aromaticity, the thienyl protons are shifted 

upfield by about 0.4 - 0.8 ppm, but splitting or doubling of the peaks was not 

observed.  The methyl protons are shifted downfield, but only very slightly (~0.03 - 

0.27 ppm).  These changes are characteristic of the C2 symmetry of the closed form.
6,23
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• Thermal Stability 

 

As mentioned previously, one of the main advantages of using diarylethene molecules 

as photo-switching units is their thermal stability.
1,2,4,8-10

  Irie et al
24,25

 explained the 

factors affecting the thermal stability properties of diarylethene switches, after 

theoretical studies were carried out.  They reported that diarylethene derivatives 

bearing heterocyclic rings only undergo cyclisation and cycloreversion processes, 

between the open and closed forms, when irradiated with light and not when heat is 

applied.  However, when phenyl rings are substituted in place of the heterocyclic 

rings, the cycloreversion process can be triggered by heat as well as light.  This 

demonstrates that the closed form of the six-membered ring is much more unstable in 

comparison to the five-membered ring.  To investigate this result further, they carried 

out theoretical calculations in order to examine the differences in energy between the 

ground-states of the open and closed ring isomers.  A correlation diagram was 

constructed which suggested that the ground-state difference correlates with the 

energy barrier of the cycloreversion reaction i.e. the larger the ground-state energy 

difference between the open and closed forms, the smaller the reaction energy barrier 

for cycloreversion to occur.  A large ground-state energy difference was calculated for 

the phenyl ring switch, with a correlating small reaction energy-barrier, therefore 

cycloreversion is expected to occur readily.  However, the ground-state energy 

difference of the diarylethene moiety decreased when the phenyl groups were replaced 

by furyl groups, and further decreased when replaced with thienyl groups, 

accompanied by a growing increase in the reaction energy-barrier.  Therefore, the 

closed-ring isomer of the thienyl group derivative is more stable than the open isomer, 

and a thermally induced cycloreversion reaction is not expected to occur readily.
24 

The differences in the thermal stability of these diarylethene derivatives can be 

explained in terms of the aromatic character of the substituent.  The highly aromatic 

phenyl group produced the greatest ground-state energy difference.  This energy 

difference decreased when five-membered rings, with lower aromatic character, 

replaced the phenyl groups, as a result of conjugated electron migration.  Upon 

cyclisation to produce the closed-ring isomer, destabilisation occurs, due to the 

destruction of the aromatic ring, increasing the ground-state energy.  Therefore, 

introducing aryl groups that have low aromatic stabilisation energy can increase the 

thermal stability of diarylethene switches.
24,25
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• UV-vis Spectra 

 

The open-ring isomer is generally colourless, while the closed ring isomer can exhibit 

a number of different colours, such as yellow, red, blue etc., depending on the 

molecular structure of the diarylethene switch.
2,9

  Therefore, the absorption bands of 

the open rings generally appear in the UV region at wavelengths between 240 nm and 

350 nm approximately, whilst the strongly coloured closed isomers result in the 

appearance of new absorption bands in the visible region.     

Non-zero absorption in the UV spectral region of the closed form indicates that both 

ring-closing and ring-opening takes place following photoexcitation.  Therefore, in all 

cases a photostationary state (i.e. equilibrium situation) is achieved, which is 

determined by the quantum yields of ring opening/closing.
6,23

  However, it can be 

assumed that the photostationary state represents the closed isomer as quantum yields 

recorded for diarylethenes showed that the cyclisation (ring-closing) is a more 

efficient process than the cycloreversion process (ring-opening).
6
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1.1.3 Electrochromism 

 

In conjunction with their photochemical properties, diarylethene molecules can also 

undergo switching from the open to the closed form, and from the closed to the open 

form, by means of electrochemical oxidation/reduction processes.  A combination of 

the photo- and electrochromic properties of these switches can be used for the 

development of non-destructible write-read-erase memory devices.
26,27,28

  Therefore, 

investigations into the driving force and the tenability of their electrochemical 

processes has attracted much interest in recent years. 

 

Oxidation of diarylethene compounds is followed by one of two possible reactions:  

oxidative cyclisation, involving transformation of the open-ring isomer to the closed-

ring isomer, or oxidative cycloreversion, where the closed-ring isomer transforms to 

the open-ring isomer.  This process is evident when comparison between the cyclic 

voltammograms of the open and closed forms, after a few redox cycles are performed, 

shows the presence of similar oxidation/reduction waves.
17

  The reaction that takes 

place depends on the stability of the radical cations of the relative open and closed 

forms.
5,27

  In other words, cyclisation reactions occur when the radical cations of the 

closed-ring isomers are more stable than the open-ring isomers but, when the radical 

cations of the open form are more stable than the closed form, an oxidative 

cycloreversion process takes place.
27,29,30

 

  

 

• Oxidation of the open-ring to the closed-ring 

 

According to data recorded in the literature,
5,17,26-28,30,31

 oxidation of open-ring isomers 

of dithienylethene derivatives generally result in an irreversible oxidation process, at 

more anodic potentials than in the closed state.  This is deemed to be characteristic of 

thiophene oxidation chemistry.
30

  However, for some of these dithienylethene 

derivatives, a cyclisation reaction follows, producing the closed-ring isomer.  This 

process is evident in the return cycle, after the initial irreversible oxidation peak, when 

two new reduction processes are observed at potentials coincident with those of the 

closed form.  Browne et al
30

 described the occurrence of an electrochemical 

cyclisation process of the open-ring isomer of compound 1H upon oxidation.  The 
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structure and the cyclic voltammograms of the open and closed-ring forms, of 

compound 1H, are illustrated in figure 1.2.  The first oxidation wave of the open-ring 

isomer 1Ho takes place at a high potential, and represents an irreversible two-electron 

redox process, forming the dication radical 1Ho
2+.  Immediately following the 

formation of the open-ring radical dication (1Ho
2+), a cyclisation process takes place, 

forming the dication radical of the closed-isomer (1Ho
2+

 → 1Hc
2+

).
26,28

  The closed-

ring dication radical is then reduced to its mono-cation radical (1Hc
2+

 → 1Hc+
), and 

finally to its neutral species (1Hc+
 → 1Hc).  This dication radical is stable enough to 

give rise to two characteristic reduction waves, and corresponding reversible oxidation 

waves.
26

  The high stability of the cationic radical of the closed-ring isomer is due to 

the delocalisation of the positive charge along the conjugated system.
3,4,9,26

  
 

1Hc 1Hc+ 1Hc2+

1Ho+ 1Ho2+ 1Hc2+

S S

1Ho

H6

S S

1Hc

H6

 
Figure 1.2: The cyclic voltammogram of compound 1H, shown here, was obtained by Browne et al.

30
  

The CV shows the electrochemical ring-closing process of compound 1H, upon oxidation of the open-

ring isomer 1Ho. 
 

Colour changes in the electrochemical solution have been observed upon oxidative 

ring closure, and subsequent irradiation with visible light (λ > 450 nm) resulted in 

regeneration of the open-ring colour solution (usually clear).
5,27

  Hence, the ability to 

electrochemically produce the closed-ring isomer, and photochemically produce the 

open-ring isomer, along with the clear difference in oxidation potentials between the 

open and closed forms, suggests that diarylethene derivatives have great potential for 

use as an electrochemical switch.
5
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• Oxidation of the closed-ring to the open-ring 

 

Oxidation of dithienylethene closed-ring isomers generally leads to the presence of 

one or two reversible redox processes below ~0.8 V (which is demonstrated in figure 

1).  This reversible redox behaviour is not very obvious for open-ring isomers, which 

is probably due to the extended conjugated system obtained upon ring-closure, which 

helps to stabilise the electrochemically produced radical cations on the main backbone 

of the diarylethene unit.
3,4,9,26

  However, some dithienylethene derivatives in their 

closed form can undergo a cycloreversion process, to produce their open-ring form, 

upon oxidation.
17,26,27,30,32

 

Moriyama et al
27

 described the occurrence of an electrochemical cycloreversion 

process of the closed-ring isomer of compound 2 upon oxidation.  The structure and 

the cyclic voltammograms of the open and closed-ring forms, of compound 2, are 

illustrated in figure 1.3 below.   

 

S N

F6

H3C
2o

2c+ 2o+

2o 2o+

S N

F6

H3C
2c

 

Figure 1.3: Illustrates the diarylethene structure of compound 2, synthesised by Moriyama et al.  Also 

shows the cyclic voltammograms of oxidation of the open-ring isomer 2o (black) & oxidation of the 

closed ring isomer 2c (red).
27

 

 

During cyclic voltammetry experiments of the closed-ring isomer (2c), an irreversible 

oxidation peak at 0.92 V was observed, resulting in the loss of an electron, and the 

subsequent formation of the corresponding thermally unstable closed-ring radical 

cation (2c+
).  This radical cation quickly undergoes a cycloreversion reaction, forming 
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the radical cation of the open-ring isomer (2c+
 → 2o+

).  In general, dithienylethene 

open-ring isomers require a substantially more positive potential to undergo oxidation, 

in comparison to the closed-ring isomers.  Hence, the open-ring radical cation (2o+
) 

removes an electron from another closed-ring molecule (2c), resulting in the neutral 

form of the open-ring isomer (2o), and regeneration of the original closed-ring radical 

cation (2c+
).  This closed-ring radical (2c+) then quickly undergoes cycloreversion to 

the open-ring isomer (2o
+
), which removes an electron from another closed-ring 

molecule, and so on.  Due to the fact that this oxidative cycloreversion process is a 

chain reaction, only a small amount of the closed-ring cation radical produced by 

electrochemical oxidation at the start is necessary, as the following oxidise/ring-

open/reduce cycle will continue until the ring-closed form is completely converted to 

the ring-open form.
32
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1.1.4 Substituent Effects 

 

Perfluorocyclopentene-based switches have been widely studied as switching units 

due to their thermal stability and fatigue resistance properties.  However, as mentioned 

earlier, their problematic synthetic routes led Lucas et al to synthesise cyclopentene 

systems,
6,7

 where the fluorine atoms were replaced by hydrogen atoms.  A number of 

comparative tests were carried out to examine if the perhydrocyclopentene derivatives 

demonstrated the same important properties as the perfluorocyclopentene system,
6,23

 

and to study the effects of these alternative cyclopentene switches on their 

photochromic and electrochromic properties.
23,30,31

  

 

• Fatigue resistance/ thermal stability 

 

According to Irie,
25

 the photostability of these switches is limited, and the main 

pathway for decomposition reactions to occur is from the excited state of the closed 

form.  Studies show that the perhydro-based switch shows good fatigue resistance 

after a number of photocyclisation and photocycloreversion processes were carried out 

consecutively, however the photostability of the perfluoro-based molecules was found 

to be 2-3 times greater, in comparison.
6,23

 

Thermal stability properties were investigated by heating the closed-ring perhydro- 

and perfluoro- derivatives at high temperatures (~80ºC to 100ºC) for prolonged 

periods of time eg. 14 hours.  The closed-forms of the perhydrocyclopentene switches 

showed excellent thermal stability, however thermal conversion of the closed-ring 

form to the open-ring occurred before that observed for the perfluorocyclopentene 

derivatives.  It should be noted that this thermal conversion process is clean, as no 

sign of decomposed product was evident.
6,7,23

 

Overall, the perhydrocyclopentene-based switches show good fatigue resistance and 

thermal stability properties.  However these properties are improved when perfluoro- 

derivatives are employed, therefore they are better suited for applications which are 

highly dependent on these properties, such as date storage.
23
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• Switching processes 

 

 

One of the most interesting effects of substituting the fluorine atoms for hydrogen 

atoms on the cyclopentene structure of these switches is the changes observed in their 

electronic and redox properties.  Incorporating different substituents onto the C5 

position of thienyl rings can also have a significant effect on their photochemical and 

electrochemical processes.  This is of great advantage as it allows for the generation of 

dithienylethene compounds with tuneable properties.     

 

1) Photochemical properties 

Feringa et al
23

 reported the synthesis of the perfluoro- and perhydro- derivatives of 

1,2-bis(2’-methyl-5’-phenylthien-3’-yl)cyclopentene.  They further derivatised these 

compounds with methoxy and cyano substituents at the para position of the phenyl 

groups (see figure 1.4).   

 

S S

R R

H6/F6

3H: R=H
3F: R=H

4H: R=OMe
4F: R=OMe
5H: R=CN

5F: R=CN

5 5

 
 
Figure 1.4: Perfluoro- and perhydro- derivatives of 1,2-bis(2’-methyl-5’-phenylthien-3’-yl)-

cyclopentene, and their corresponding methoxy and cyano substituted derivatives.
23

  Also, the C5 

position on the thiophene rings is illustrated here. 

 

The absorption peaks recorded in the UV-vis spectra of both the open and closed form 

of these compounds are listed in table 1.1 below.  Comparison of the results obtained 

for the open-ring isomers of the perhydro- derivative (3H) and the perfluoro- 

derivative (3F) shows that there is quite a modest difference in the absorption bands 

recorded.  However, upon ring-closure of 3H and 3F, a more pronounced difference 

between the new absorption peaks recorded in the visible region is observed, as is 

evidenced from the bathomochromic shift of 40 nm for the perfluorinated 

cyclopentene derivative.  This is due to the electron-withdrawing effect of the fluorine 

atoms, in contrast to the electron donating ability of the hydrogen cyclopentene ring, 

on the switch.
23,30,31
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Table 1.1: Absorption spectroscopic data recorded (in hexane) for the open and closed ring isomers of 

the compounds shown in figure 1.4.
23

   

 

Compound R λmax Open λmax Closed 

3H H 277 529 

3F H 279 569 

4H OMe 279, 309 529 

4F OMe 290, 316 580 

5H CN 295, 332 570 

5F CN 271, 313 588 

 

Substituting the para position of the phenyl groups, with electron-donating methoxy 

groups, barley affects the electronic properties of the perhydro-derivative (4H), 

whereas the λmax of the perfluoro analogue (4F) is bathochromically shifted by 11 nm, 

both in the open and closed forms.   The presence of the electron-withdrawing cyano 

groups, in place of the methoxy groups, has a more pronounced effect on both the 

perhydro and perfluoro switches.  The λmax of the open-ring isomer 5F is blue-shifted 

by 8 nm, with respect to 3F, whereas the open form of the perhydro-derivative 5H is 

bathochromically shifted by 18 nm, in comparison to 3H.  An even greater influence 

of the cyano groups is found for the ring-closed isomers of 5F and 5H, as both are 

bathochromically shifted by 19 nm and 41 nm, respectively.  The fact that altering the 

substituents on the phenyl groups induces significant changes in the electronic 

properties of these switches indicates good communication between the central 

cyclopentene unit and the phenyl substituents.
23,30,31 

 

 

 

2) Electrochemical properties 

The switching behaviour of dithienylethene derivatives, induced by electrochemical 

means, is highly dependent on the central cyclopentene unit atoms (H vs. F), and the 

nature of the substituents at C5 of the methyl-2-thiophene rings.  The substituents 

employed have been found to have a much greater influence on the electrochemical 

properties of dithienylethene switches, in comparison to their photochemical 

properties.
26,30,31

 

Feringa et al
30,31

 investigated the electrochemical properties of the compounds 

described in figure 1.4.  The most obvious difference in the electrochemical properties 
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of the perhydro- and perfluorocyclopentene unit is the strong anodic shift, observed in 

the cyclic voltammogram of the perfluoro derivative (~200-800 mV), in comparison 

to the perhydro derivative, due to their electron-withdrawing and electron-donating 

abilities, respectively.
26,31

  This anodic shift is evident in the oxidative potentials of 

these molecules listed in table 1.2.   

 

Table 1.2: Oxidation potentials recorded for the open and closed ring isomers of compounds 3H, 3F, 

4H & 4F illustrated in figure 1.4:
30

  irr (irreversible); qr (quasi-irreversible); r (reversible). 

 

Compound R Epa (open) Epa (closed) 

3H H 1.16 (irr) 0.67, 0.43 (r) 

3F H 1.59 (irr) 0.85 (qr) 

4H OMe 0.99 (irr) 0.45,0.32 (r) 

4F OMe 1.20 (irr) 0.67 (r) 

 

The ability of the bridging cyclopentene moiety to stabilise various radical cationic 

species can be described as the driving force for either the ring-opening or ring-

closing process to occur.
26,30,31

  Therefore the central cyclopentene groups, although 

they are redox-inactive, significantly affect the switching properties of the 

diarylethene derivatives.  Electron-donating moieties have been found to encourage 

oxidative ring-closure, where as electron-withdrawing groups favour ring-

opening.
26,30,31

 

In order for ring-closure to proceed following the oxidation process of the open-ring 

isomer, stabilisation of the radical cation through delocalisation of the charge is 

required.  However, although delocalisation of the charge may increase the stability of 

the radical cation, the stability of the thienyl rings decreases due to loss of aromaticity.  

Therefore, the presence of the electron-donating perhydrocyclopentene group 

increases the electron density on the central alkene group.  This helps to facilitate 

communication between the two thiophene rings, and hence, to further stabilise and 

increase the lifetime of the radical cation of the closed-ring isomer.  Therefore, upon 

oxidation of the open-ring isomer, a cyclisation reaction from the open-ring form, to 

the closed-ring form, is thermodynamically allowed.  When the perfluorocyclopentene 

derivatative is present, stabilisation of the radical cation of the ring-closed isomer by 

delocalisation of the charge is counteracted by the electron-withdrawing effect of the 

fluorine atoms, which decreases the electron density on the alkene group.  Therefore, 
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ring-opening of the closed-ring cation, with localisation of the charge on the thiophene 

rings, results.
26,30,31

  This phenomenon was reported by Feringa et al when they 

studied the electrochemical behaviour of the open- and closed-ring forms of 

compounds 3H and 3F (figure 1.4).  They observed that oxidation of the open-ring 

isomer of 3H resulted in a cyclisation process (3Ho→3Hc), whereas oxidation of the 

closed-ring isomer of 3F resulted in a cycloreversion process (3Fc→3Fo).
30,31

               

 

The nature (donor/acceptor) of the substituents at C5 of the thiophene rings can also 

have a significant effect on the direction of electrochromic switching of the 

dithienylethene rings.
26

  Feringa et al
30,31

 studied the electrochemical effects of 

introducing electron-donating methoxy groups onto the parent compounds 3H and 3F 

(figure 1.4).  The oxidation potentials obtained for these derivatives (4H, 4F) are 

listed in table 1.2.  These results show clearly that the presence of the methoxy groups 

have decreased the first oxidation waves of 4H and 4F to lower potentials, in 

comparison to the parent compounds.  This is a result of increased stability of the 

radical cations formed due to the electron-donating properties of the methoxy groups.   

Also, interesting results were found for the electrochemical switching processes of 

these derivatives.  A cyclisation process, upon oxidation of the open-ring isomer, to 

the closed-ring isomer occurred for the perhydrocyclopentene derivative 4H, as 

expected.  However, an oxidative cyclisation process was also observed for the open-

ring isomer of the perfluorocyclopentene derivative 4F, which is in contrast to the 

cycloreversion process observed for the parent compound 3F.  This result 

demonstrates the significant effect of incorporating the electron-donating methoxy 

group onto the switch.  However, following spectroelectrochemical analysis of the 

oxidation process of 4F, Feringa et al deduced that the effect on the switching 

direction of 4F is not simply due to the electron-donating ability of the methoxy 

group, but in fact it is a result of an intramolecular electron-transfer process 

subsequent to initial oxidation of the methoxyphenyl groups.
30

          

 

Overall, it is clear that the nature of the cyclopentene units, and the C5 thiophene 

substituents, on the dithienylethene derivatives, can have a profound affect on the 

switching processes of the compound.  Hence, these switching molecules can be 

modified according to the desired properties, which is a great advantage for future 

applications. 
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1.1.5 Applications 

 

The short response time, fatigue resistance and thermal stability of the switching 

behaviour of diarylethene compounds are promising features for application in 

molecular switches, molecular wires, single-molecule fluorescence and non-

destructible high density data storage systems.
1,2,4,7,8,20,23

  The switching behaviour of 

these compounds results in significant changes in the data obtained from the following 

analytical techniques:  UV-vis spectroscopy, fluorescence spectroscopy, infra-red 

spectroscopy and oxidative electrochemistry.  Some examples of how these 

diarylethene switches can be utilised in the design of such applications, using the 

analytical tools described, are presented here. 

 

• UV-vis 

 

The changes recorded in the UV-vis spectra, when ring-open diarylethene derivatives 

are transformed to the closed state following irradiation with UV light, can be used as 

the “read-out” event in memory media.  Diarylethene compounds are a good choice 

for this application due to the large changes in the UV-vis spectra, and hence colour, 

observed upon switching processes. However, the absorption bands observed for the 

two photochromic states are the same absorption bands that induce the ring-

opening/closing reactions.  Therefore, sampling near these absorption bands induces 

cyclisation/cycloreversion processes of the photoactive compound, hence erasing the 

stored information.
1,2

 

 

• Fluorescence 

 

Some diarylethene molecules show strong fluorescence emission when they are in the 

open-ring form.  However, upon irradiation with UV light, it has been recorded that 

the fluorescence intensity begins to decrease.
9,33,34

  This suggests that the ring-closed 

isomers are fluorescently quenched.  Therefore, the open-ring isomer can be described 

as being in the “ON” state, whilst the closed-ring isomer is in the “OFF” state.  This 

difference in the fluorescence intensity of the open and closed forms is reversible, as 

once the closed form is irradiated with visible light, the open-form is regenerated, or 
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the “OFF” state is turned back “ON”.  The advantage of this process is that 

monochromatic visible irradiation can be used to induce the fluorescent behaviour, 

therefore limiting the occurrence of cyclisation/cycloreversion processes, hence 

minimising the destruction of the recorded information.  Reversible changes in 

luminescence are of great interest due to their sensitivity, resolution and high contrast, 

making them very suitable for non-destructive optical read-out systems.
1,2

 

 

• Infra-Red 

 

Diarylethene molecules which display infra-red (IR) or near-field IR spectral changes 

between their open-ring and closed-ring isomers have also been reported.
1,8

  These IR 

bands can be used as read-out light, with non-destructive properties, as their energy is 

too low to cause photochemical switching,   High signal/noise ratio is desired so it is 

important that the open-ring isomer IR bands are well separated from the closed-ring 

isomer IR bands.   

 

• Electrochemistry/Photochemistry 

 

A combination of photochemical and electrochemical switching processes between 

the open and the closed diarylethene switches can be applied to data memory systems 

with a write/read/erase function.  The information can be “written” by photo-

chemically or electrochemically transforming the open-ring isomer to the closed 

isomer.  Monitoring the first reversible oxidation of the closed form, at a potential 

where the open-form is electrochemically inert, allows for the information to be “read-

out” in a non-destructive manner.  The stored information can be then be erased by 

photochemically or electrochemically converting the closed-ring isomer back to the 

open-form.
28

  

Photochemical or electrochemical switching of diarylethene molecules between the 

open and the closed forms can be used to control electrical conductivity in molecular 

wires.  Upon ring-closure, the π-conjugated length of the system is increased, 

therefore increasing the conductivity of the system.  This conductive effect can be 

controlled by reverting back to the open form.
4,6
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1.2 Dithienylcyclopentene Switches Substituted 

with Organometallic Complexes 

 

Organometallic complexes are defined as compounds consisting of organic ligands 

bound to a transition metal.  The bonding involved in such a complex results in new 

low-lying excited states, which can be populated by optical irradiation in the near-

infrared, visible and ultraviolet region.  Upon excitation, absorptions attributed to 

various excited states can be observed:
35,36

 

- Intraligand (IL); the ligand has low-lying transitions involving orbitals which 

are centred on atoms not directly bonded to the metal, leading to absorptions 

similar to those of the free ligand. 

- Metal to ligand charge transfer (MLCT); these transitions occur when the 

central metal atom or ion can act as a reducing agent, and if the attached 

ligands have orbitals with low enough energy to accept the electron i.e. when 

the metal acts as a donor group and the ligand acts as an acceptor group. 

- Ligand to metal charge transfer (LMCT); these transitions occur when the 

ligand acts a donor group and the metal acts as an acceptor group. 

  

Incorporating transition metals into organic ligands can result in unique excited-state 

reactivity and photochemical properties.  For example, changes in electronic states can 

be controlled; facilitated intersystem crossing can be used to tune excited-state 

energetics, lifetimes, emissions and efficiencies; and intersystem crossing from the 

singlet excited state to the triplet state can result in the occurrence of processes such as 

electron and energy transfer.
37

   

 

Photochromic switching molecules can be used in a variety of applications, as 

mentioned previously, due to their switching ability from open- to closed-ring 

isomers, with strong colour changes and extended π-conjugated systems taking place 

in the process.
1,2,8

  Incorporating dithienylethene units and metal complexes into the 

same system can lead to a number of advantages, with regards to the properties and 

applications of both entities.    
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Using a dithienylethene switch as a bridging molecule between two metal complexes 

can enhance the performance of these complexes in a number of applications.  

Molecular photonic and electronic devices are based on the idea of manipulating 

electrons and photons at the molecular level.  The molecules can function as wires, 

switches, diodes, transistors, and light-absorbing/emitting centres.
37

  The advantage of 

using metal centres in such applications is the ability to tune the energy levels, excited 

state lifetimes and the redox properties of the system by changing the central metal 

atom.
38

  The ability to transfer electrons intramolecularly between the two metal 

centres is important. By incorporating a photochromic switch as the bridging ligand 

between the two organometallic complexes, the electronic coupling between the two 

metallic centres is preserved, but more importantly the conductivity of the molecular 

wire can be controlled due to the change in π-conjugation of the system upon opening 

and closing of the ring.  That is switching between the open-ring form and the closed-

ring form can control the communication between the metals from the “ON” and 

“OFF” state, respectively.
38-44

  

 

Attaching organometallic substituents onto the thiophene rings of dithienylethene 

compounds can significantly affect the photophysical and electrochemical properties 

of these photochromic molecules and tuning these properties can be achieved by 

changing the metal centres, leading to a number of advantages for the applications of 

dithienylethene switches.
42,45

   

As mentioned previously, the dithienylethene structure can exist as two conformations 

in the open form: a parallel and an anti-parallel conformation.  Only the anti-parallel 

conformer can undergo cyclisation reactions.  These two conformers interconvert 

rapidly, so generally the quantum yield expected for the cyclised product is 0.5.  

However, it has been found that by incorporating bulky metal complexes onto the 

dithienylethene structure, the anti-parallel conformation is favoured, due to the steric 

repulsion between the substituents.  Hence, the quantum yield for the cyclisation 

reaction increases as a result.
22,38,40,46,47

   

One of the main applications for dithienylethene switches is the creation of an 

information storage system with non-destructible read-out properties.  Stored 

information is readily lost during light driven read-out processes, as the light can 

electronically excite the photochromic switch.  Non-destructive read-out processes, 

such as, locking the system in one state, or observing changes in electrochemical 
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properties, emission, or infra-red absorption are possible solutions.  The photo- and 

electrochemical properties of metal complexes could be used to achieve this.
22, 38, 48

  

Incorporating metal complexes into dithienylethene switches can result in significant 

changes in the emission of the metal centre, or the electronic coupling between the 

two metal centres, upon photocyclisation processes.  Changes in these properties can 

be utilised as non-destructive read-out functions.   

Another possibility is for the metal complexes to function as photosensitisers for the 

photochromic process i.e. inducing the switching process through the triplet metal-to-

ligand-charge transfer (
3
MLCT) excited states, hence shifting the wavelength at which 

the cyclisation process can be triggered into the visible region.
22,38

  

 

Although metal complexes can have a number of advantages on the photo- and 

electrochromic properties of the dithienylethene switch, they can also completely 

extinguish these properties.
38,39

  If the electronic coupling between the photochromic 

core and the metal centres is too strong, the properties of the photochromic unit may 

change to such an extent that photoreactions can no longer occur.  The coupling also 

depends on the nature of the spacer.  If the conjugated spacer is extended too much, 

the redox groups and the additional conjugated parts can act as energy sinks, thereby 

suppressing the photochromic reactions. Therefore it is important to achieve a good 

balance of electronic interaction between the switching unit and the metal complexes.  

By using different spacers to connect the metal units to the photochromic core, the 

level of interaction in the system can be altered i.e. strongly or weakly interacting 

systems.  Combinations of ethynyl units and aromatic groups have been reported as 

efficient electron transfer spacers, and therefore prevent a full electronic 

delocalization (upon excitation) on the system.
38,39 

 

 

 

 

 

 

 

 

 

 

 

 



 37 

1.2.1 Photochromic Properties 
 

Incorporating dithienylethene switches and metal complexes into the same system can 

have a significant effect on the photocyclisation process, from the open to the closed-

ring isomer, of the dithienylethene unit and on the emission properties of the metal 

complexes.  The photochromic properties of such systems, and the effect of different 

metal centre substitutes, have been reported in the literature and some examples are 

discussed here. 

 

• Bipyridine Metal Complexes 

 

 

 
 
Figure 1.5: De Cola et al

38,43,47
 reported the synthesis of a compound containing two metallated 

tris(bipyridine) substituents attached to 1,2bis(2-methylthiophene)-perfluorocyclopentene unit via a 

phenyl linker.  The metal centres were substituted with bisruthenium (1), bisosmium (2), and ruthenium 

and osmium (3). 

 

De Cola et al
38,43,47

 reported the synthesis of three metal complexes containing two 

metallated tris(bipyridine) substituents attached to 1,2bis(2-methylthiophene)-

perfluorocyclopentene unit via a phenyl linker.  Compound 1 was substituted with 

homonuclear ruthenium metal centres, compound 2 was substituted with diosmium, 

and a third heteronuclear complex (3) was synthesised with two different metal 

centres, ruthenium and osmium.  These complexes are represented in figure 1.5.  

Photochemical processes were carried out and some interesting results were obtained. 

 

Upon UV irradiation of the Ru(II) complex 1 into the singlet state (
1
IL), localised on 

the dithienylperfluorocyclopentene unit, photocyclisation of the switch occurred, 

evidenced by a colour change from yellow to green and the appearance of a new 

absorption peak at 614 nm in the UV-vis spectrum.  Upon irradiation into the singlet 

metal-to-ligand charge transfer (
1
MLCT) state at 458 nm, localized on the Ru(bpy)3 
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part, the higher energy 
1
IL state was not populated.  Instead intersystem crossing took 

place to the triplet MLCT state (
3
MLCT), which was followed by energy transfer into 

the lower energy triplet state of the ligand (
3
IL), resulting in ring-closure of the 

photochromic unit.
38,47

  This process is illustrated in the qualitative energetic scheme 

of the Ru(II) complex 1, in scheme 1.11 below.   Almost identical, high quantum 

yields for the photocyclisation processes were obtained for both methods.
38,43

  

However, it was found that the quantum yield for the cyclisation reaction occurring 

from the 
3
IL state significantly decreased in the presence of dioxygen, whereas 

cyclisaton reactions for the free ligand from the lowest 
1
IL state were insensitive to 

oxygen quenching.  Also, the 
3
MLCT and 

3
IL states are close in energy, so 

equilibrium exists between them, resulting in a competition between the emissive and 

reactive processes.  Therefore, photocyclisation reactions from the triplet state take a 

few nanoseconds, where as reactions from the singlet state occur on the picosecond 

time scale.
38,47

  Ring-opening was achieved slowly by irradiation with visible light in 

the region 600-750 unit.  A shorter wavelength would overlap with the MLCT band at 

458 nm and full photocyloreversion would not occur.
47

 

1MLCT
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Scheme 1.11: Qualitative energetic scheme presented by De Cola et al
38

 for the efficient sensitized 

photocyclisation of Ru(II) complex 1. 

 

In comparison to the Ru(II) complex 1, the Os(II) complex 2 did not demonstrate such 

an efficient photocyclisation process. Due to the fact that the 
1
MLCT state of the 

Os(II) complex is in a lower-lying energy compared to the Ru(II) one, irradiation into 

the 
1
MLCT band did not result in energy transfer from the excited metal centre to the 
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photochromic unit, hence the photocyclisation reaction did not occur.  Photoexcitation 

into the higher-energy 
1
IL state of the dithienylethene moiety did result in the ring-

closing process, with a new band at 550-700 nm in the absorption spectrum, but with a 

lower yield, in comparison to 1, due to energy transfer into the lower-lying 

luminescent 
3
MLCT state of the Os(II) complex 2.

38,43,47
  Photocycloreversion, of the 

closed form to the open form, also occurred for the Os(II) derivative after irradiation 

with visible light (>550 nm).  However this was a slow process and some 

decomposition of the complex resulted.
43,47

   

Upon excitation into the 
1
IL and 

1
MLCT states of the open form of the Ru(II) 

complex, efficient energy transfer occurred to the 
3
MLCT state resulting in light 

emission at 619 nm.  The intensity of the emission was found to be much lower 

compared to Ru(bpy)3 complexes with no photochromic unit attached, due to the fact 

that either there is a direct pathway from the emissive state to the reactive state, or 

both reactions occur from the same state.  It was also reported that the emissive 

properties were quenched upon photocyclisation to the ring closed form due to energy 

transfer to the photochromic unit excited states, which are at lower energy than the 

metal centre excited states in the closed form.
38,47

    

Photoexcitation of the open-form Os(II) complex resulted in light emission at 730 nm, 

with an almost identical intensity to that obtained for an [Os(bpy)3]
2+

 complex without 

a photochromic unit attached.  However, photocyclisation to the closed form 

quenched the emission of the Os(II) complex in a similar manner to the corresponding 

ruthenium complex.
38

    

 

A heterodinuclear metal complex (3) containing Ru(II) and Os(II) was synthesised by 

De Cola et al in order to examine energy transfer processes between the two different 

metal centres, depending on the state of the photochromic unit (open or closed).
43

  The 

excited states of the two metal centres differ in energy and so intramolecular processes 

between the Ru(II) complex, acting as the donor (or sensitiser), and the Os(II) 

complex, acting as the acceptor, were studied.
43,47

  

The photocyclisation process was observed for this complex upon irradiation into the 

singlet state 
1
IL of the photochromic unit at 334 nm in good yield (90%).  Irradiation 

into the 
1
MLCT state at 450 nm also resulted in ring closure, however the quantum 

yield was found to be only half of that obtained following irradiation at 334 nm.
43
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The absorption bands observed in the UV-vis for complex 3 were found to be average 

of the bands obtained for the bisruthenium (1) and bisosmium (2) complexes, which 

indicated that only weak interactions occur between the Ru(II) and Os(II) metal 

centres.  A driving force for energy-transfer from the high-lying Ru(II) complex to the 

lower-lying Os(II) complex was induced by irradiation into the 
1
MLCT band, 

resulting in light emission at two different wavelengths, 630 nm and 730 nm 

respectively.
43,47

  The occurrence of an energy-transfer process was evident by the fact 

that the emission intensity of the Ru(II) complex largely decreased in comparison to 

the homodinuclear complex, whilst a major increase in the Os(II) emission intensity 

was observed.
43,47

    

The state of the dithienylethene photochromic unit (open or closed) has a significant 

effect on the energy-transfer processes between the two metal centres on the complex.  

In the open-form, efficient energy-transfer was observed from the excited Ru(II) 

donor unit to the Os(II) acceptor unit.  However, upon ring closure, the energy level of 

the photochromic unit drops significantly below the energy levels of the two metal 

centres, hence quenching the emissions.  Therefore the closed switch acts as trap for 

both the excited metal complexes.
43,47

  

This system is not applicable for an energy/information transfer system due to the fact 

that the excitation energy at 450 nm induces energy transfer as well as the ring-closing 

process, and because the closed switch influences both metal centres.  It is important 

to be able to photochemically induce photocyclisation and energy-transfer processes 

in a separate manner.
47

  

 

 

Figure 1.6: Ruthenium metal complex with a bridging photochromic unit (4) synthesised by Launay et 

al.
39
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Launay et al
39

 investigated a similar system with bisruthenium metal centres.  The 

only difference in the structure of complex 4 (figure 1.6), in comparison to complex 1 

(figure 1.5), is that the phenyl spacer group was replaced by an ethynyl moiety.  

Photocyclisation upon UV irradiation, and photocycloreversion upon irradiation at λ > 

600 nm, were observed for this Ru(II) complex (4), which agreed with the results for 

complex 1, reported by De Cola et al.
38

  Irradiation into the 
1
MLCT band was not 

reported by Launay and co-workers.  The only difference observed in the absorbance 

spectrum of complex 4 was a bathochromic shift of the λmax of the closed-ring isomer 

(670 nm), in comparison to that of complex 1 (619 nm).  This is possibly due to the 

effect of the ethynyl linker employed in 4, in comparison to the phenyl spacer unit in 

complex 1.   

 

 

Figure 1.7: Abruna et al
42

 synthesised four different metal complexes with a bridging photochromic 

unit. Complexes 5 to 8 were substituted with different metal centres: Ru(II), Os(II), Fe(II), and Co(II) 

respectively.  

Abruna et al
42

 also reported the photochromic properties of metal complexes similar to 

those studied by Launay
39

 and De Cola
38,47

.  However, two major structural 

differences were employed, as illustrated in figure 1.7: the perfluorocyclopentene unit 

was replaced by a perhydrocyclopentene unit; and the metallated trisbipyridine 

complexes were substituted with metallated bisterpyridine groups.  Four homonuclear 

derivatives were synthesised with different metal centres: bisruthenium (5), 

bisosmium (6), bisiron (7) and biscobalt (8) complexes.  Upon UV irradiation into the 

excited state 
1
IL of the photochromic unit, the photocyclisation reaction did not occur 

for the bisruthenium, bisosmium or bisiron complexes.  Each of these complexes 

displayed an MLCT band in the visible region of the UV-vis spectrum and Abruna et 
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al deduced that possible quenching of the excited state 
1
IL took place, preventing the 

occurrence of the cyclisation reaction.  The biscobalt complex only displayed a very 

weak MLCT band in the UV-vis spectrum, and upon photoexcitation, ring-closure 

took place, although the photocycloreversion reaction, from the closed to the open 

form, was unsuccessful.  

 

Abruna et al
41

 performed further studies on dithienylcylopentene metal complex 

systems.  This time they used a trisbipyridine metal complex in the centre of the 

system and attached three dithienylperhydrocyclopentene units via phenyl linkers 

(figure 1.8).  Three different metal centre atoms were employed {Ru(II), Fe(II), 

Co(II)}, and the photochromic properties of the three derivatives were investigated.   
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Figure 1.8: Abruna et al
41

 synthesised a trisbipyridine metal complex with three photochromic units 

attached. Complexes 9, 10 and 11 were substituted with different metal centres: Fe(II), Co(II) and 

Ru(II) respectively.  

Irradiation of the Fe(II) complex, into the excited state 
1
IL of the photochromic unit, 

resulted in ring-closure (~70%) after 8 hours, evidenced by a new broad absorption 

band between 440 and 700 nm present in the UV-vis spectrum.   

Photocyclisation also occurred for the Co(II) complex upon irradiation into the singlet 

excited state of the photochromic unit, after 10 minutes.  Almost all of the open form 

was converted to the closed form, indicating that all three dithienylcyclopentene units 

were photoactive.  Upon irradiation with visible light (470 nm), only partial 
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photocycloreversion back to the open form occurred (~30%).  The fast 

photocyclisation process for the cobalt complex (10 mins), compared to the slow 

process reported for the Fe(II) complex (8hrs), is due to the fact that the Co(II) 

complex has no intense MLCT band in the visible region.  In contrast, the Fe(II) 

complex displays an MLCT band at 543 nm and upon irradiation, energy-transfer 

occurs from the photochromic unit to the low-energy 
3
MLCT state.   

The photocyclisation reaction of the Ru(II) complex was found to occur upon 

irradiation into the singlet excited state 
1
IL of the dithienylethene units, and also upon 

irradiation into the 
1
MLCT band at 470 nm.  This is in contrast to the Fe complex, as 

photocyclisation could not be triggered through irradiation into the MLCT band 

(probably because of its low-energy 
3
MLCT state).  Analysis of the PSS reached for 

the ruthenium complex showed that only 67% of the open-form was converted to the 

closed form.  The emission of the Ru(II) complex was completely quenched upon 

ring-closure due to intramolecular energy transfer from the 
3
MLCT to the 

dithienylethene-centered triplet state 
3
IL, which corresponds to the results reported for 

the Ru(II) complex 2 (figure 1.5) by De Cola at al.
38

 

 

Overall, the results described from literature studies show that the photochromic 

properties of these systems are significantly influenced by the type of metal complex 

employed, the central metal atom used, and the spacer unit employed to attach the 

photochromic unit to the metal complex.  A general pattern that emerged from these 

results is that Co(II) metal centres allow for efficient photocyclisation processes to 

occur from the 
1
IL state; Ru(II) metal centres display ring-closing processes from 

irradiation into the 
1
IL and the 

1
MLCT states; Os(II) metal centres demonstrate 

photocyclisation processes from irradiation into the 
1
IL but not from the 

1
MLCT 

states; Fe(II) metal centres result in slow cyclisation processes from the 
1
IL state only.  

Also observed was good cyclisation processes from metallated trisbipyridine 

complexes, but not from biterpyridine metal complexes, and substitution of a phenyl 

linker, by an ethynyl linker, resulted in absorption of the closed-ring isomer at lower 

energy.  Emission processes for ruthenium and osmium complexes were observed for 

the open-ring isomers, but were quenched upon cyclisation to the closed-ring isomers.   
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• Metal carbonyl and phosphine ligand complexes 

 

 

 
 
Figure 1.9: Liu et al

44
 synthesised a number binuclear ruthenium vinyl complexes with dithienylethene 

units, with different ancillary ligands attached to the Ru metal (complexes 13 to 16).  The unmetallated 

compound 12 was used for comparison purposes.  

 

As illustrated in figure 1.9, Liu et al
44

 synthesised a series of ruthenium based metal 

complexes (13-16), with a bridging dithienylcyclopentene switch containing perhydro 

(H) and perfluoro (F) -cylopentene units, and different ancillary ligands were attached 

to the ruthenium metal centre.  All of the binuclear ruthenium vinyl complexes 

underwent photo-cyclisation/cycloreversion processes.  For the free ligand 12, the 

quantum yield obtained for cyclisation of the perhydro complex was found to be 

higher than that of the perfluoro complex.  However, upon attaching metal groups to 

the photochromic unit, the quantum yields of the perhydro complexes 13H-16H 

decreased, whilst in the case of the perfluoro metal complexes 13F-16F, the quantum 

yields for the ring-closing process increased.  Also, the perhydro metal complexes 

turned a dark red colour, with new absorption peaks appearing in the region of 530-

548 nm upon irradiation with UV light, whereas the perfluoro complexes turned a 

dark blue colour, with significant bathochromic shifting of their closed-ring 

absorption peaks to 622-642 nm, upon photocyclisation.  It is also worth noting that 

the metal complexes reached the photostationary state more efficiently than the free 

ligand.  In contrast, the photocycloreversion process, to the ring opened form, was 

much slower for the metal complexes than for the free ligand.  This indicates that 
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metallation increases the stability of the ring-closed isomers.  However, in the case of 

13F, ~40% of the complex had decomposed after 10 repeated cycles of the ring-

opening/closing process, which was assigned to degradation of the CO ligands. 

Overall, these results demonstrate the effects of the central switching unit and the 

metal ligands on the photochromic behaviour of these complexes with regards to the 

quantum yields, efficiencies and absorption spectra obtained. 
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Figure 1.10: Akita et al
40, 46

 synthesised a number of metal complexes with a bridging dithienylethene 

unit , with different metal centres and ancillary ligands (complexes 17 to 22).  

 

 

Akita et al
46

 investigated the photochemical effects of attaching metal complexes, to a 

photochromic bridging unit, with different metal centres and ancillary ligands (figure 

1.10).  The photochemistry results showed that cyclisation processes occurred more 

efficiently for the ruthenium metal centred complexes, in comparison to the iron metal 

centred complexes.  With regards to the ancillary ligands, it was found that the 

efficiency of the photocyclisation reaction was reduced upon introduction of 

phosphine ligands.  In fact, the ring-closing process was completely inhibited for the 

Fe-dppe derivative (21).  However, when the cyclopentadiene ring attached to the Fe 

core was replaced with a pentamethylcyclopentadiene ring, and an ethynyl spacing 

unit was incorporated between the photochromic unit and the Fe-dppe metal complex 

(22), photocyclisation/cycloreversion processes were observed.
40
  

 



 46 

S S

N N

S S

N N

ReCO

OC CO

Cl

23

24  
 

Figure 1.11: Yam et al
22

 synthesised a rhenium(I) tricarbonyl diimine complex with a photochromic 

unit attached (24), and its corresponding free ligand (23).  

 

 

Yam et al
22

 described the photocyclisation processes of the free ligand 23 and 

metallated rhenium(I) tricarbonyl diimine complex 24, illustrated in figure 1.11.  

Upon UV irradiation the open-form of the free ligand 23 cyclised to the closed form, 

with new absorption bands appearing at 510 and 540 nm.  The metal complex 24 also 

underwent photocyclisation following UV irradiation into the singlet excited state 

(
1
IL) of the photochromic unit, and the absorption bands of the closed form were red-

shifted to 546 and 580 nm, in comparison to the free ligand, which was attributed to 

perturbation of the transitions by the metal centre in the metal complex.  The quantum 

yields obtained for the ring-closing process were higher for the metal complex than 

the free ligand.  A photocyclisation process was also observed for the metal complex 

upon irradiation into the 
1
MLCT band at ~400 nm, with even higher quantum yields.   

Photocycloreversion, from the closed to the open forms, was observed for the free 

ligand and metal derivative, although, the quantum yields obtained for the ring-

opening process were lower than the quantum yields obtained for the ring-closing 

process, for both compounds.  In contrast to the cyclisation process, the quantum 

yields for the cycloreversion process were higher for the free ligand compared to the 

metal complex.  These results indicate that the addition of the metal complex to the 

free ligand stabilised the ring-closed isomer.  However subsequent thermal studies 

showed that the closed form of the free ligand was more stable to heat than the metal 

complex, suggesting that the closed form of the free ligand was more stable than that 

of the metal complex.    

The emission spectra of the free ligand 23, and metal complex 24, changed 

significantly between the open-ring isomers and the closed-ring isomers.  Upon 
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photoexcitation (λexc = 300 nm) of the free ligand in its open-form, an emission band 

was observed at 385 nm.  However, following ring-closure, the emission band was 

red-shifted to 644 nm (λexc = 400 nm), which was attributed to the increase in the 

extent of π-conjugation in the closed-form.  Photoexcitation of the 
1
MLCT band of the 

metal complex (open form) at λexc = 400 nm resulted in an emission band at 595 nm, 

which was shifted to 620 nm in its closed form.  The change in the emission origin, 

depending on the state of the photochromic unit (open or closed), can be assigned to 

the relative positions of the 
1
MLCT and 

1
IL excited states.  In the open-form the 

MLCT state is lower lying than the 
1
IL state, therefore energy transfer occurs from the 

1
MLCT state to the 

3
MLCT state, resulting in phosphorescence from the 

3
MLCT state.  

However, in the closed-form, the 
1
IL state is lower in energy than the 

1
MLCT state, 

resulting in emission from the 
1
IL state. 
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Figure 1.12: Lehn et al

48
 synthesised a dithienylperfluorocyclopentene switch with pyridine groups 

attached to the thiophene units as the parent compound (25).  The compound was derivatised with 

different metal complexes (26-28).  

 
Lehn et al

48
 reported that the tungsten and rhenium carbonyl complexes, 26 and 27 

respectively (figure 1.12), displayed photocyclisation reactions upon UV irradiation at 

λ = 312 nm, and subsequent photocycloreversion processes following irradiation with 

visible light.   

The closed form of the tungsten carbonyl complex 26 displayed a strong emission 

when excited in the region 200-400 nm, however much weaker fluorescence was 

observed for the open-ring isomers.  In contrast, the rhenium complexes 27 displayed 

stronger emission when present in their open-form, than in their closed form isomers.  

This fluorescence discrimination between the open and the closed forms is triggered 
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upon photoexcitation at a wavelength that has low photochemical activity, thus, the 

state of the system (open or closed) is hardly affected.  Therefore, these complexes 

show promising functions for use in optical data storage systems with non-destructive 

read-out properties.     

 

Lehn et al
48

 also reported the synthesis of a chemical locking system for use in non-

destructive read-out applications.  During attempts to photocyclise the open form of 

the ruthenium complex 28 (28o) (figure 1.12) by irradiation with UV light, they 

observed only decomposition for the complex.  Therefore, to obtain the closed-ring 

isomer of this complex (28c), they began with a photocyclisation reaction of the 

parent complex 25 (25o to 25c), followed by addition of the ruthenium metal complex 

on the two pyridyl groups.  Subsequent irradiation of 28c with visible light (λ > 600 

nm) did not result in photocycloreversion to the open form 28o.  Lehn et al concluded 

that the open and closed forms of complex 28 could not be photointerconverted and 

could only be prepared from their parent ligands 25o and 25c.  Therefore, the parent 

ligand 25 could be used for storage information by interconversion between the open 

and closed forms by photochemical means.  Upon complexation with Ru(II), yielding 

complex 28, the stored information could be read-out in a non-destructive manner 

using visible light.  Hence, generation of complex 28 can be deemed as chemically 

locking the stored information.  

 

Overall, some interesting results were obtained for photochromic units attached to 

metal carbonyl and phosphine derivatives.  In general, reports in the literature have 

shown that incorporation of the metal complexes onto the photochromic unit increased 

the efficiency of the photocyclisation process but decreased the efficiency of the ring-

opening process.  Therefore, metal complexes appear to stabilise the ring-closed form.  

Akita et al
40,46

 demonstrated the effect of metal centres, ancillary ligands, and spacer 

units on the photochromic properties.  They concluded that introducing an iron metal 

centre, in place of ruthenium, and phosphine ancillary ligands resulted in less efficient 

ring-closing processes.  However, introduction of an ethynyl spacer unit was found to 

induce photochemical ring opening/closing processes to a compound that was unable 

to undergo either process previously.  Attaching carbonyl ancillary ligands to two 

ruthenium metal centres, separated by a dithienylethene moiety (13F), was described 

by Liu et al
44

 and decomposition resulted upon UV irradiation, due to the presence of 
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the CO ligand.  This was probably due to the dissociation of CO molecules, which is 

known to take place upon irradiation.  On the other hand, most of the complexes 

mentioned here contain CO ligands but no other decomposition reactions were 

reported in the literature.    

In contrast to the results described above for the bipyridine metal complexes, the 

emission properties reported for these compounds were not quenched upon ring-

closure.  In fact Yam at el
22

 and Lehn et al
48

 observed fluorescence discrimination for 

a number of compounds that are good candidates for non-destructive read-out 

systems.  Also, Lehn et al
48

 reported a novel chemical locking system using a 

compound which does not undergo photochemical cyclisation or cycloreversion 

processes.      
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1.2.2 Electrochemical Properties 
 

Incorporating organometallic moieties onto dithienylethene switches can influence the 

electrochromic properties of the switching unit.  Thus, the electrochemical properties 

of bipyridine metal complexes, and metal carbonyl and phosphine ligand complexes, 

reported in the literature are described here.   

 

• Bipyridine Metal Complexes 

 

 

De Cola et al
38

 performed electrochemical reduction experiments on the open and 

closed forms of the Ru(II) complex 1 (figure 1.5) and of the free unmetallated ligand.  

After reduction of the open form of the free ligand, and complex 1, they concluded 

that electrochemical cyclisation to the closed forms did not occur.  They failed to 

mention if a cycloreversion process occurred or not during their discussions of the 

electrochemical reductive processes of the closed form derivatives.  In a separate 

publication, De Cola et al
43

 reported the oxidative process of the open-form 

Ru(II)/Os(II) heteronuclear complex 3 (figure 1.5).  Their discussion was based on the 

redox waves observed for the oxidation of the metal centres from the II to the III 

oxidation states.  However, once again they failed to mention electrochemical 

cyclisation processes, and also no electrochemical analysis was described for the 

closed-ring forms.  

 

Launay at al
39

 investigated the electrochemical oxidation processes of the dinuclear 

Ru(II) complex 4 (figure 1.6) in the ring-closed and -open forms.  Oxidation of the 

open-ring isomer resulted in a reversible oxidation process of the ruthenium metal 

centres from II-II to their fully oxidised forms III-III.  Oxidation of the closed-ring 

isomer resulted in a photocycloreversion reaction from the closed to the open form, as 

evidenced by the loss in colour of the solution and the decrease of the absorption band 

at 670 nm, characteristic of the closed-ring form.  

    

Abruna et al
42

 investigated the electrochemical oxidation processes of the dinuclear 

metal complexes of Ru(II) (5), Os(II) (6), Fe(II) (7) and Co(II) (8), represented in 

figure 1.7.  A reversible redox wave was observed for the ruthenium complex at 1.35 

V, due to the oxidation of Ru(II) to Ru(III).  Similar redox waves were observed for 
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the other central metal ions at 1.23 V (Fe
II/III

), 0.99 V (Os
II/III

) and 0.39 V (Co
II/III

).  

Upon further investigation, electrochemical cyclisation processes were found to occur 

for the ring-open isomers of the ruthenium (5) and iron (7) complexes, following an 

irreversible oxidation process of the photochromic thienyl units at 1.22 V for both 

complexes.  However, this process was not observed for the corresponding osmium 

and cobalt complexes.  Abruna et al
42

 suggested that the reason for this was that 

oxidation of the metal centres occurred before the oxidation of the thienyl rings, 

preventing electrochemical cyclisation.  

 

Abruna et al
41

 compared the electrochemical oxidation results of the Fe(II), Co(II) and 

Ru(II) trisbipyridine tris(dithienylcyclopentene) complexes 9, 10 and 11 respectively 

(figure 1.8).  The cyclic voltammogram of each complex displayed a reversible redox 

wave, corresponding to oxidation of the central metal ion from their II form to their III 

form, at +1.18 (Fe
ΙΙ/ΙΙΙ

), +0.36 (Co
ΙΙ/ΙΙΙ

), and +1.38 V (Ru
ΙΙ/ΙΙΙ

).  However, upon 

oxidation at potentials higher than their redox waves (1.25 V), cyclisation processes, 

from the open-ring to the closed-ring, occurred for all the complexes.  The 

electrochemical process was also investigated for the free unmetallated ligand which 

also resulted in ring-closure upon oxidation at 1.22 V of the open-ring isomer.  

Therefore, incorporation of a metal centre didn’t effect the electrochemical reactions 

of the compounds, just the potential value at which they occurred.  

 

As mentioned in the previous section 1.1, electrochemical processes of 

dithienylethene units with a perfluorinated cyclopentene structure have generally 

resulted in cycloreversion processes, from the closed to the open-ring form, due to the 

electron-withdrawing effects of the fluorine atoms.  Launay et al
39

 reported an 

oxidative cycloreversion process for complex 4, containing a perfluorinated 

cyclopentene unit, as expected.  Therefore, it is clear that the metal complex attached 

didn’t effect the direction of electrochemical switching for this complex.  In light of 

this, further investigation into the electrochemical switching processes of the closed 

isomers of complexes 1, 2 and 3, reported by De Cola et al,
38,43

 is required as 

oxidative ring-opening seems feasible following the results reported by Launay et al.
39

   

Abruna at al
41,42

 reported the electrochemical processes of metal complexes containing 

perhydrocyclopentene units, represented in figures 1.7 and 1.8.  The hydrogen atoms 

on the cyclopentene unit are expected to induce oxidative ring-closing processes due 
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to their electron-donating abilities.  The results were as expected for the ruthenium 

based complexes, 5 and 11 and iron based complexes, 7 and 9, which underwent 

oxidation cyclisation.  This was not the case for the osmium (6) and cobalt (8) 

complexes, which did not undergo cyclisation reactions by electrochemical means.  

However, the cobalt trisbypridine complex (10), which had three separate dithienyl-

perhydrocyclopentene units attached, did undergo an oxidation ring-closing process.  

Maybe this was due to the extra stability of the closed-ring radical cations provided by 

the three electron-donating photochromic units.   

Overall, it seems that attaching bipyridine metal complexes to photochromic units 

does not have a pronounced effect on the direction of the electrochemical switching 

properties however it can prevent electrochemical switching altogether. 

 

• Metal carbonyl and phosphine ligand complexes 

 

 

Electrochemical methods can be employed to measure the extent of interaction 

between two metal termini separated by a dithienylethene unit.  Liu et al
44

 investigated 

the effect of the state of the photochromic unit (open or closed) on the communication 

between the two metal centres in complex 13F (figure 1.9) by electrochemical means.  

In the open-ring form, oxidation led to one irreversible peak at 0.57 V attributed to a 

one-step 2-electron oxidative process of the two ruthenium centres from their II form 

to their III form, indicating a lack of communication between the metal centres.  

However, upon ring-closure via UV irradiation, two new reversible waves at lower 

potentials (0.02 V and 0.17 V) appeared upon oxidation.  These waves were attributed 

to the oxidation of Ru
II,II

 to Ru
II,III

 and then to Ru
III,III

,  indicating that communication 

between the metal centres exists following ring-closure.  Therefore, UV and visible 

light can be used to switch the communication between two metal centres between 

“ON” and “OFF”.       

The effect of the type of photochromic unit on the electronic properties of the metal 

centres was also reported here.  Higher oxidative potentials, and a greater degree of 

separation between the oxidative waves, were observed for the perflourocyclopentene 

derivatives, due to the fact that the fluorine atoms help to facilitate stronger electronic 

communication between the two metal centres.    
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Liu et al
44

 also reported that electrochemical oxidation, at potentials of 0.6 V and 

greater, led to cyclisation reactions for the perhydro and perfluoro metal complexes 13 

to 16.  In general, it would be expected that the electron-withdrawing properties of the 

perfluorinated cyclopentene derivatives would lead to oxidative cycloreversion 

reactions however, this is not the case.  This is a good example of how the metal 

complexes can significantly affect the properties of the dithienylethene unit.   

 

Akita et al
46

 investigated the cyclisation processes of the ruthenium and iron 

complexes by electrochemical means.  Upon oxidation of the open-form of complexes 

19, 20 and 21 (figure 1.10) a cyclisation reaction took place, resulting in ring-closure.  

It should be highlighted that the iron complex 21 underwent oxidative cyclisation, but 

failed to cyclise by photochemical means. In the cases of the iron complexes 19 and 

21, photocycloreversion back to the open-form was not observed by photochemical or 

electrochemical means.  Therefore, the closed structure can be firmly locked by 

electrochemical means.  

These electrochemical results also demonstrated an increase in communication 

between the two terminal metal complexes from the open to the closed-ring isomers.  

Upon ring-closure, two well defined redox waves were observed, which are not 

present for the open-ring isomers.  The central metal atom, and the electron-donating 

ability of the ancillary ligands, effects the separation between the two redox waves 

(i.e. the communication between the metal complexes).  It was found that the 

ruthenium and phosphine derivatives resulted in greater degrees of separation 

compared to the iron and carbonyl derivatives respectively, with the Fe-dppe 

derivative 21 performing the best.  Therefore, communication between the two metal 

centres can be controlled by electrochemical and photochemical stimuli.  

With regards to the Fe-dppe complex containing the alkynyl spacer, and methylated 

cyclopentadiene ring (22: figure 1.10), Akita et al
40

 did not observe oxidative ring-

closure.  However, an increase in communication between the two metal centres was 

observed.  In the open form only one reversible redox wave was present in the cyclic 

voltammogram, whereas the electrochemistry of the closed-form demonstrated two 

well-separated redox waves, indicating an increase in communication between the 

metal complex termini due to extended π-conjugation in the closed-ring isomer.  

Therefore the communication property of the organometallic wire can be switched 

“ON” and “OFF” by UV and visible light in a reversible manner.  
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Overall, the literature studies of incorporating metal centred complexes, with carbonyl 

and phosphine ancillary ligands, onto a photochromic switching unit have given 

interesting electrochemical results.  In general, the electrochemical results 

demonstrated an increase in communication between the two metal complex termini 

upon ring-closure, due to the increase in π-conjugation across the dithienylethene 

backbone.  It was found that the type of dithienylethene switch, the central metal ion 

and the ancillary ligands employed also affected the communication properties.  

Perfluorinated cyclopentene units, in comparison to perhydrocyclopentene switches; 

ruthenium metal centres, in comparison to iron; and phosphine ancillary ligands, in 

comparison to CO, all facilitated communication between the two metal centres.   

Electrochemical cyclisation reactions were observed for perhydrocyclopentene units, 

but also for their corresponding perfluorocyclopentene units by Liu et al.
44

  Therefore, 

incorporating strongly-donating metal fragments can change the switching direction of 

dithienylethene units by oxidative processes.  

Interestingly, some of the results described in the literature showed that the effect of 

the substituents on the photochromic properties were significantly different to the 

effects on the electrochemical properties, for the switches.  For example, Akita et al
46

 

reported that the presence of phosphine ancillary ligands decreased the efficiency of 

the photocyclisation processes, but increased the communication between the two 

metal termini, as observed by electrochemical studies.  Also, the Fe-dppe complex 21 

(figure 1.10) did not undergo photochemical cyclisation but did undergo 

electrochemical ring-closure
46

, however, its derivative complex 22 (figure 1.10), 

containing ethynyl linkers and a penta-substituted methyl cyclopentadiene ring, was 

found to cyclise by photochemical means but not by electrochemical means.
40

 

             

 

 

 

 

 



 55 

1.3 Cobalt Carbonyl Complexes 

 
Metal carbonyl complexes are one of the most photoreactive transition metal 

complexes.
49

  They have been investigated for their use as carbon monoxide releasing 

molecules, which have applications as medicinal therapeutic agents towards 

combating a variety of diseases.
50-53

  

Incorporating metal complexes and dithienylethene switches into the same system has 

demonstrated some interesting results. We have incorporated cobalt carbonyl 

complexes onto dithienylethene switches to investigate the effect of the photochemical 

and electrochemical properties of such systems, as detailed in chapters 3-6.  

Consequently, a brief discussion about the bonding, photochemical and 

electrochemical properties of cobalt carbonyl complexes, reported in the literature, is 

detailed here.      

    

1.3.1 Bonding in Metal Carbonyls  

 

• Metal-Carbonyl Bonding 

 

The molecular orbitals present in a carbon monoxide (CO) orbital consist of a filled 

sigma (σ) orbital and two filled π-orbitals localised between the carbon and oxygen.  

Two lone-pairs are localised on the carbon and oxygen atoms, but are directed away 

from the molecule, and two π-antibonding (π*) orbitals are present but are directed 

away from the CO internuclear region and are empty in the ground state.
35

  

Upon bonding to a metal ion, carbon monoxide acts as a σ-donar, π-acceptor ligand, 

as represented in figure 1.13.  The carbon monoxide donates electron density to the d, 

s and p-orbitals on the metal from the lone pair present on the carbon atom, in a σ-type 

bond.  The CO molecule accepts electron-density from the metal, as the dπ electrons 

from the metal give rise to π back-bonding into the π* orbital of the CO 

molecule.
35,36,36,49

  Although the σ-bond is stronger, the π-bond weakens the carbon-

oxygen bond to a greater extent as it directly populates the CO π-antibonding orbital.  
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Also, the ability of CO to accept electron-density from the metal results in 

stabilisation of the metal ion, especially those in low oxidation states.
35,49

  

M CO
s

pi

pi

 

Figure 1.13: Represents the sigma (s) and π (pi) bonding orbitals involved in the bonding between a 

metal and a carbonyl group. 

 

 

• Metal-Alkyne Bonding 

 

Metal carbonyl complexes can be incorporated onto an organic compound through 

metal-alkyne bonds.  Alkynes bond to metals in a perpendicular arrangement, with the 

C≡C bond perpendicular to the metal-alkyne bond.  Alkynes posses a σ-bond and two 

π-bonds localised between the two carbon atoms, and two π* orbitals on the two 

carbon atoms, directed away from the triple bond.  Alkynes are considered to be σ-

donor, π-acceptor ligands: alkynes donate electron density to metal atoms in a σ 

fashion, and accept electron density from the d-orbitals of the metal atoms into their 

π* orbitals.  However, their π-accepting ability is much less compared to CO ligands 

due to the low electronegativity of the carbons.  The strength of these bonds can be 

affected by substituents attached to the alkyne.  In general, electron-donating groups 

increase the σ-bonding but decrease the π-bonding.  Electron-withdrawing groups 

have the opposite effect, and have been found to be more effective in increasing the 

overall strength of the metal-alkyne bond due to increased π back-bonding.
35,54

  

Alkynes posses two π orbitals, located at right angles to one another which allow 

alkynes to bond to two metal atoms, in a bridging fashion (figure 1.14).
35,54

   by   

 

 

RC C

Co CoOC

COOC OC
CO

CO

R

 

Figure 1.14: Represents the coordination of dicobalt hexacarbonyl [Co2(CO)6] onto an alkyne, in a 

bridging fashion. 
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1.3.2 Photochemistry 

Photochemistry describes the reactions that take place following photoexcitation, with 

ultraviolet or visible light, into a higher excited state.  Metal carbonyls are extremely 

photoreactive complexes.  Due to the large degree of delocalisation of the central 

metal electrons into the CO ligands, these compounds are highly covalent and 

therefore electronic transitions can lead to significant changes in the bonding of such 

complexes.
35,49

  An important photochemical reaction of metal carbonyl complexes is 

the loss of CO or L (ligand), followed by ligand substitution (Y), upon irradiation with 

light of specific wavelengths.
35,49

 

 

The substitution reaction quantum yield is dependent on the wavelength of light used 

for irradiation.
49

  The entering ligands should be good π-acceptor ligands because the 

loss of CO, to yield stable low-valent complexes, requires substitution with ligands 

that are capable of stabilising the metal centre.
35,49

  Some examples of efficient 

photochemical reactions of dicobalt hexacarbonyl complexes [Co2(CO)6] and the 

resulting photoproducts, reported in the literature, are described here. 

 

Long et al
55

 performed photochemical experiments on an alkynyl cobalt hexacarbonyl 

complex in order to investigate CO loss at a number of different wavelengths.  Firstly 

they used a broadband lamp source with a cut-off filter of λexc > 340nm.  Upon 

photolysis of (µ2-RC2H)Co2(CO)6, in the presence of a trapping ligand L, (L=C5H5N 

or PPh3), infra-red analysis showed that the cobalt pentacarbonyl complex was 

produced, followed by the cobalt tetracarbonyl complex after prolonged irradiation 

times, hence confirming that CO-loss can be achieved by photochemical methods.  

Similar results were obtained with a lower energy light-source λexc > 400 nm but 

longer photolysis times were required.   

Subsequently, they investigated this photochemical process using monochromatic 

light.  Irradiation with λexc = 355 nm did not result in CO-loss.  Instead they found that 
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homolytic cleavage of the cobalt-cobalt bond occurred, followed by rapid 

recombination in an efficient manner.  However, photolysis experiments carried out at 

λexc = 532 resulted in CO-loss and substitution with the trapping ligand PPh3. 

Therefore, the results published by Long et al demonstrate the effect of different 

excitation wavelengths on the photochemical reactions of cobalt hexacarbonyl 

complexes. 

 

Ford et al
56

 reported the formation of a number of photoproducts upon laser flash 

photolysis, with time resolved infra-red (TRIR) spectroscopy, of the cobalt 

hexacarbonyl complex, Co2(CO)6(PMePh2)2 (A).  Following photolysis (with λirr = 

308–365 nm) two photochemical reactions were observed, resulting in the formation 

of two photoproducts, as represented in scheme 1.12: 

1) The loss of a CO molecule resulting in formation of Co2(CO)5(PMePh2)2. 

2) Photo-induced homolytic cleavage of the metal-metal bond to give the 

mononuclear metal-based radicals 
●
Co(CO)3(PMePh2).  

These photoproducts became involved in further reactions, and the resulting products 

were dependent on the conditions of the experiment. 

 

Co2(CO)6(L)2 Co2(CO)5(L)2

hv

A

Co(CO)3L+

 

Scheme 1.12: When A was irradiated with light (L = PMePh2), two photoproducts were initially 

generated by CO loss and homolytic bond-cleavage.   

When Co2(CO)5(PMePh2)2 was photochemically formed, under an atmosphere of CO, 

it recombined with CO to regenerate the initial compound A.  When the experiment 

was carried out in the presence of excess ligand (PMePh2) under an Ar atmosphere, 

the Co2(CO)5(PMePh2)2 intermediate underwent a ligand substitution reaction, 

forming Co2(CO)5(PMePh2)3.  These reactions are illustrated in scheme 1.13. 

 

Co2(CO)6(L)2

Co2(CO)5(L)3

+CO

A

(i)   Co2(CO)5(L)2

+L
(ii)  Co2(CO)5(L)2  

Scheme 1.13: Co2(CO)5(L)2 undergoes further photochemical reactions: (i) under CO atmosphere; (ii) 

in the presence of excess ligand, where L = PMePh2. 
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The radical photoproduct 
●
Co(CO)3(PMePh2) recombined to regenerate the initial 

complex A.  However, this radical species also underwent a number of further 

reactions, yielding a variety of photoproducts, which were dependent on the reaction 

conditions, as illustrated in scheme 1.14:  

- Under an atmosphere of CO, and in a solution of benzene, the 

●
Co(CO)3(PMePh2) radical produced a monocobalt tetracarbonyl species 

[Co(CO)4], accompanied by ligand dissociation.  Co(CO)4 underwent a 

combination reaction with the radical species, generating Co2(CO)7(PMePh2).    

- Under an argon atmosphere and in the presence of excess ligand (PMePh2), the 

radical species underwent ligand substitution to form Co(CO)2(PMePh2)2, 

accompanied by CO loss.  This new product reacted with the radical product, 

forming a third complex Co2(CO)5(PMePh2)3. 

- When the solvent was changed from benzene to dichloroethane (DCE), under 

an atmosphere of argon, another reaction mechanism took place.  Upon 

photolysis, the radical product extracted a chlorine from the chlorinated 

solvent to form a mononuclear product, Co(CO)3(PMePh2)Cl.  It should be 

noted that in the presence of excess ligand, photosustitution pathways can also 

occur.  Ford et al
56

 reported such a result when a solution of A in DCE was 

photolysed at 365 nm, as demonstrated in scheme 1.14 below:  

 

 

(i) [Co(CO)3L]

Co2(CO)7(L)

Co2(CO)6(L)2

A

+[Co(CO)3L]

(ii) [Co(CO)3L] Co(CO)4 + L
+CO +[Co(CO)3L]

Co2(CO)5(L)3
(iii) [Co(CO)3L] Co(CO)2(L)2 + CO

+L +[Co(CO)3L]

(iv) [Co(CO)3L] Co(CO)3(L)Cl
DCE

 

Scheme 1.14: The Co2(CO)3(L) radical undergoes further photochemical reactions: (i) recombines to 

form the initial species A; (ii) under CO atmosphere produces Co(CO)4 and Co2(CO)7L; (iii) in the 

presence of excess ligand produces Co(CO)2(L)2 and Co2(CO)5(L)3; (iv) in dichloroethane (DCE) 

produces Co(CO)3(L)Cl.  L=(PMePh2) and reaction conditions (i) to (iii) were performed in benzene. 
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Overall, Ford et al
56

 reported the photochemical loss of CO and homolytic cleavage of 

the cobalt-cobalt bond, upon irradiation of a dicobalt hexacarbonyl complex, 

corresponding to the results reported by Long et al.
55

  Ford et al
56

 also demonstrated 

the effect of the reaction conditions on the photochemistry of these complexes, such 

as, the presence of CO, excess ligand and chlorinated solvents.   
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1.3.3 Electrochemistry 

 

• Alkynyl Dicobalt Hexacarbonyl Complexes  

 

According to the literature, oxidation of alkynyl dicobalt hexacarbonyl complexes 

(RC2R’Co2(CO)6) generally results in an irreversible cathodic wave at room 

temperature, to form the radical cation [RC2R’Co2(CO)6]
•+

.
57,58

  Upon reductive 

processes, a one-electron reduction to the radical anion [RC2R’Co2(CO)6]
•-
 is expected 

for strong π-acceptor CO ligands, followed by disintegration of the electrogenerated 

radical ion as a result of metal-metal bond cleavage.
57,59,60

  Many disintegration 

substances are formed, however, severe fouling of the electrode occurs during the 

decomposition process making it difficult to fully investigate the decomposed 

products.
57,59,61

  The only positively identified substances are as follows: Co(CO)4
-
, 

RC2R’Co(CO)3, free alkyne
59

 and metallic Co.  Subsequent anodic runs, after the 

primary 1-electron (1e) reduction process, can give rise to oxidation peaks due to the 

presence of some of these disintegration products.  For example, Co2(CO)4
-
 has been 

reported to appear at Epc = +0.12 V
57,62

 and +0.25 V
59

 and E1/2=  -0.08V
61

.  

RC2R’Co(CO)3 has been recorded at -0.56 V or -0.83 V.
61

 

Electronic Coupling 

In a case where two (or more) cobalt carbonyl complexes are substituted onto the 

same system and separated by a bridging unit, electrochemical studies can be used to 

investigate the electronic coupling between the two metal centres.
58,63

  The presence 

of one reduction/oxidation peak in the cyclic voltammogram of such a system 

indicates that no electronic coupling exists between the two metal termini.  However, 

when two separate reduction/oxidation peaks are observed, communication between 

the two metal complexes, separated by a bridging unit, exists.  The higher the degree 

of separation between the two peaks, the greater the interaction between the redox 

centres.
58

  It has also been found that as the degree of electronic interactions increase, 

the redox process becomes energetically more favourable.
63
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The electrochemical properties of cobalt carbonyl complexes can be tuned by 

incorporating ligand substituents onto the metal complex, phosphine ligands being the 

most common, and considering the nature of the organic compounds attached to the 

alkynyl moiety.  Also, the conditions of the experimental setup can also have a 

significant effect on the results obtained. 

 

• Phosphine Ligand Substituted Co2(CO)4 Complexes 

 

The introduction of an electron-donating phospine ligand onto the metal complex 

stabilises the complex by increasing the electron density on the Co-Co bond and hence 

increases the lifetime of the radical cations and anions.  In comparison to the related 

Co2(CO)6 compound, the electron-rich core allows for easier oxidation at lower 

potentials, and increases the reversibility of the oxidative process.  In contrast, higher 

negative potentials are required, in the range of 0.5 to 0.6V, for reduction to 

occur.
57,59,64

   

The basicity of the phosphine ligand employed effects the potential values for 

reduction and oxidation.
57,63,64

  A number of commonly employed phosphine ligands 

are listed in order of decreasing basicity value: dmpm > dppa > dppm.
62

  The higher 

the electron donating ability (i.e. basicity) of the phosphine ligand, the easier the 

oxidation process (more positive E1/2(ox)) and the harder the reduction process (more 

negative E1/2(red)).   

The phosphine ligand employed can also affect the stability of the oxidised/reduced 

species of these compounds. Such an effect was reported by Macazaga et al.
62

  They 

synthesised two cobalt tetracarbonyl complexes with different phosphine ligand 

substituents, dppm and the more basic dmpm.  The electrochemical results showed 

reversible waves in the case of the dppm substituted complex, but only quasi-

reversible waves for the Co2(CO)4dmpm complex, at room temperature, indicating 

that the dppm substituent was better for stabilising the radical cation/anion.  A similar 

result was also described by Marcos et al.
57

  They reported the stabilisation effect, and 

hence complete redox reversibility, of incorporating a dppm ligand into a cobalt 

carbonyl structure, in comparison to the slightly more basic [PPh2Me]2 substituted 

derivative.  
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In the case of disubstituted cobalt carbonyl systems, phosphine ligand substituents 

have been found to affect the electronic coupling between the two metal centres.  As 

mentioned previously, the greater the separation between the two reduction/oxidation 

peaks for such a complex, the greater the interaction between the two metal centres.  

Incorporating phosphine ligands can hinder or improve this interaction, depending on 

the substituent employed.  Macazaga et al
62

 reported that the more basic and less 

sterically demanding dmpm substituents in complex 2 (illustrated in figure 1.15), in 

comparison to the dppm substituents in complex 1, decreased the electronic coupling 

interactions as they hindered efficient mixing between the filled metal fragments and 

polyne-based orbitals.   
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Figure 1.15: Macazaga et al
62

 compared the electrochemistry of two disubstituted cobalt tetracarbonyl 

complexes containing different phosphine ligands: 1 bis(diphenylphosphino)methane [dppm]; and 2 

bis(dimethylphosphino)methane [dmpm].  These complexes are illustrated here.  

 

• Alkynyl Substituents 

 

The redox properties of alkynyl cobalt carbonyl complexes such as 

[RC≡CRCo2(CO)6] can be effected by the substituents directly attached (R), or in 

close proximity, to the alkynyl moiety.  The steric bulk of the substituents (R), 

increase the lifetimes of the radical anions and therefore reversibility of the redox 

wave is more likely.
59,61

  For example, if the capping-group of the alkynyl unit is the 

higher electron-donating subtituent –SiMe3, compared to –H, the oxidation process is 

easier, whilst the reduction process is more difficult.
64

  Also the chemical stability of 

the radical cations/anions formed is enhanced, and therefore the bulkier substituent –

SiMe3 increases the reversibility of the redox processes.
63
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• Experimental Conditions 

 

Besides modifying the molecular structure of the cobalt carbonyl complexes, the 

experimental conditions employed can also have a significant effect on the 

electrochemical processes of such complexes: 

 

Solvent  

The solvent employed can influence the stability of the radical cations/anions, hence 

affecting the redox properties of the cobalt complexes.  Macazaga and Medina et 

al
62,63

 described slow decomposition reactions taking place when electrochemical 

experiments, with Co2(CO)4L (where L = phosphine ligand) containing compounds, 

were carried out in dichloromethane.  However, when dichloromethane was replaced 

by tetrahydrofuran, chemical reversibility in the reduction process was observed at 

room temperature.   

 

Temperature 

It has been demonstrated that electrochemical experiments run at lower temperature  

(-15ºC to -78ºC) can reduce the rate of, and also prevent, decomposition taking place, 

hence resulting in improved reversibility of the oxidation and reduction 

processes.
58,59,61,63

  

 

Scan rate 

As the scan rate increases, the time for decomposition reactions to take place 

decreases, resulting in more reversible oxidation and reduction processes.
61,62

 

 

CO Atmosphere 

Performing electrochemical experiments of a cobalt carbonyl complex 

[(RC2R’)Co(CO)6] under an atmosphere of CO can have a significant effect on the 

results obtained, as reported by Osella et al.
59

  They reported that the radical 

[(RC2R’)Co(CO)3]
•
 was easily produced in the presence of CO gas, which was readily 

reduced to [(RC2R’)Co(CO)3]
-
, and no longer participated in the redox cycle.  Also, IR 

spectroelectrochemical experiments showed that the generation of Co(CO)4
-
 was 

increased, upon reduction, under a CO atmosphere.  Therefore, in the presence of CO 

gas, the reversibility of the redox cycle decreased, and decomposition of the parent 
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complex increased, in comparison to experiments performed under an atmosphere of 

argon.  Similar results were observed by Arewgoda et al,
61

 who also reported the 

formation of Co(CO)4
-
 and R2C2Co(CO)3

-
.
61

 

 

 

Overall, the literature report highlights how cobalt carbonyl moieties are highly photo- 

and electro-chemically active.  Thus, we anticipated that incorporating such metal 

groups onto dithienylethene units may lead to some very interesting effects on the 

ability of the switches to undergo ring-closing/opening processes via photochemical 

and electrochemical means.  The results obtained are described in the following 

chapters.    
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Chapter 2 describes the experimental procedures employed to synthesise 

the following perhydro- and perfluoro-dithienylcyclopentene switches: 1,2-

Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)cyclopentene {1H}; 1,2-

Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)perfluorocyclopentene 

{1F}; 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-methylthien-3’-yl)-

cyclopentene {2H}; 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-

methylthien-3’-yl)perfluorocyclopentene {2F}; 1,2-Bis(5’-ethynylferrocene 

-2’-methylthien-3’-yl)cyclopentene {7H}; 1,2-Bis(5’-ethynylferrocene-2’-

methylthien-3’-yl)perfluorocyclopentene; {7F}, 1,2-Bis(5’-(4’’-phenyl-

ethynylferrocene)-2’-methylthien-3’-yl)cyclopentene {8H}; 1,2-Bis(5’-(4’’-

phenyl-ethynylferrocene)-2’-methylthien-3’-yl)perfluorocyclopentene {8F}.   

These switches were then coordinated with Co2(CO)6, and Co2(CO)4dppm. 

The products were characterised by 
1
H, 

13
C, 

19
F and 

31
P nmr spectroscopy 

and elemental analysis.  The cobalt carbonyl complexes were further 

characterised by infra-red spectroscopy.   
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2.1 Introduction 

 

A number of synthetic methods used to synthesise dithienyl perhydro- and perfluoro-

cyclopentene switches have been described in Chapter 1.  The experimental 

procedures, detailed in section 2.3, to synthesise 1,2-Bis(5’-chloro-2’-methylthien-3’-

yl)cyclopentene switches (with perhydro and perfluoro cyclopentene rings) were 

carried out following the same synthetic methods previously reported by Lucas et al.
1,2

  

These compounds were then further substituted with ethynylthiophene and 

ethynylferrocene moieties, using Sonogashira and Suzuki cross-coupling reactions, to 

produce compounds 1, 2, 7 and 8 (scheme 2.1).  In light of this, a brief overview of 

Sonogashira and Suzuki reactions is given here. 

 

Scheme 2.1: Represents the dithienylcyclopentene switches synthesised using Suzuki and Sonogashira 

cross-coupling reactions. 

 

 

• Suzuki Cross-Coupling Reactions 

 

The formation of carbon-carbon bonds can be achieved through cross-coupling 

reactions of organohalides and transition metal organometallic compounds.
3
  

Sonogashira and Suzuki reactions are among a number of commonly used cross-

coupling reactions.
4
  The majority of these coupling reactions proceed via three 

fundamental steps: oxidative addition, transmetalation and reductive elimination.
3,5,6

           

 

Suzuki cross-coupling reactions (also known as Suzuki-Miyaura reactions) were first 

reported in 1979.
7
  These types of reactions involve the formation of C-C bonds 
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through the palladium-catalysed cross-coupling of organic halides and triflates with 

organoboron derivatives, in the presence of a base.
4
  Suzuki reactions have a number 

of advantages over other cross-coupling reactions
4,6

 such as Kumada or Stille 

coupling, for example, the organoborane reagents are not toxic so the reaction is more 

environmentally friendly and the organoborane reagents are generally easy to prepare.  

The general mechanism of the Suzuki reaction
6,7

 is illustrated in scheme 2.2, and is 

described as follows: 

 

1) The palladium catalyst Pd
0
 A, generated in-situ from the initial palladium 

catalyst added to the reaction, reacts with the organohalide (R-X), via 

oxidative addition, to form the organo-Pd
II
 species B. 

2) The Pd
II
 complex B reacts with base to produce complex C. 

3) The organoboron compound D does not readily undergo transmetalation with 

the organo-Pd
II
 complex C due to the low nucleophilicity of the organic group 

on the boron atom.
6
  However, when the boron is activated with base, forming 

the boron-ate complex E, transmetalation is facilitated to produce the organo-

Pd
II
 species F. 

4) Reductive elimination occurs from the cis-isomer of complex F, forming the 

final compound G, and the Pd
0
 catalyst A is regenerated. 

 

Scheme 2.2: Illustrates the general mechanism for the Suzuki cross-coupling reaction 
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The synthetic procedures detailed in section 2.3 describe the use of Suzuki cross-

coupling reactions in order to substitute dithienylcyclopentene switches with 

bromobenezene substituents.  The reaction conditions employed were the same as 

described previously by Feringa et al.
8
 

 

• Sonogashira Cross-Coupling Reactions 

 

Sonogashira-Hagihara coupling was discovered in 1975
9
 (more commonly known as 

Sonogashira coupling), and involves the coupling of terminal alkynes with aryl and 

vinyl halides, in the presence of copper iodide (as a co-catalyst) and an amino base.
10-

13
  This reaction is believed to take place through two independent catalytic 

cycles,
10,11,14

 as illustrated in scheme 2.3:
 

 

Scheme 2.3: Illustrates the general mechanism for the Sonogashira cross-coupling reaction. 
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Cycle A: The palladium cycle 

1) The organohalide (R-X) undergoes oxidative addition to the palladium catalyst 

Pd
0
L2 A, generated from the initial palladium complex in-situ, to produce the 

Pd
II
 complex B. 

2) The Pd
II
 complex B reacts with the copper acetylide G (produced in the copper 

cycle) through a rate-determining transmetalation step, generating complex C 

and expelling the copper halide CuX. 

3) Trans/cis isomerisation takes place, converting the trans-oriented R and X to 

cis-orientation, giving complex D.  

4) Reductive elimination of complex D results in the formation of the final 

coupled product E, along with regeneration of the Pd
0
 catalyst. 

 

Cycle B: The copper cycle 

1) The base (usually an amine) deprotanates the terminal alkyne, resulting in the 

formation of a copper acetylide G, in the presence of the copper salt.  

However, it has been suggested that because the usually employed amines are 

not basic enough to deprotanate the alkyne, a π-alkyne Cu complex F could be 

involved in the cycle, making it easier for the base to abstract the more acidic 

alkyne proton.
10,14

  

2) The copper acetylide G goes on to react with the Pd
II
 complex B, formed in the 

palladium cycle, producing complex C and the copper halide is regenerated.  

 

The standard reaction procedures utilized for Sonogashira coupling reactions involve 

Pd(PPh3)4 as the palladium catalyst, copper iodide as the co-catalyst and triethylamine 

or diisopropylamine as the base.  However, the success of the oxidative addition step 

is highly dependent on the organohalide involved.
3,10,15

  For example, the barriers of 

oxidative addition of R-X increases in the order of R-I < R-Br < R-Cl.  Also, if 

electron density is reduced on the R-X bond by the presence of electron-withdrawing 

groups, the rate of oxidative addition is increased, compared to those having electron-

donating groups.  Therefore, the reaction conditions and the reagents employed,
3,5,6,10

 

to achieve successful formation of a C-C bond, depend on the organohalide involved.     

Launay et al
16

 reported the synthesis of dithienyl-perhydrocyclopentene switches with 

ethynyl ferrocene substituted onto both sides of the switch.  Standard Sonogashira 

methods were employed initially [THF; diisopropylamine; CuI; Pd((PPh3)2Cl2)], 
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however the required product was accompanied by a large amount of di-1,4-

ferrocenylbutadiyne, resulting in long and difficult purification processes to finally 

isolate the pure product with a 32% yield.  Attaching ethynylferrocene onto the 

perfluorinated switch using the same reaction conditions proved even more difficult.  

In order to alleviate this problem, a different palladium catalyst was used, Pd2(dba)3, 

along with a trimethylphosphine ligand and tetrabutylammonium iodide, which 

drastically improved the yield (92%).  Therefore, the latter reaction conditions, as 

described by Launay et al, were employed here for the purpose of attaching 

ethynylthiophene and ethynylferrocene substitutents onto the dithienylcyclopentene 

switches.  
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2.2 Experimental 

 

2.2.1 Materials 

 

All solvents used for synthesis were purchased from Sigma Aldrich, most of which 

were “ACS reagent” grade, at least: toluene, acetic acid, nitrosomethane, chloroform, 

hexane and heptane.  For lithiation, Sonagashira and Suzuki reactions, all the solvents 

were anhydrous grade: n-butyllithium, tert-butyllithium, DMF and triethylamine.  

THF and diethyl ether were dried by refluxing over benzophenone ketyl and sodium, 

and distilled off freshly before use.  All reactions were performed under nitrogen, N2, 

which was supplied by Air Products Ltd, with the exception of the reactions employed 

to synthesise compounds (i), (ii) and (iv).  All reagents were purchased from Sigma 

Aldrich and used without further purification: 2-methylthiophene, n-

chlorosuccinimide, glutarylchloride, nitrosomethane, aluminium chloride, Zn-dust, 

titanium tetrachloride, bromine, iodine, copper iodide, n-tetrabutylammonium iodide, 

tris(2,4,6-triphenylphenyl)phosphine, tris(dibenzylideneacetone) dipalladium, 1-iodo-

4-bromobenzene, 3-ethynylthiophene, ethynylferrocene, dicobalt octacarbonyl, 

bis(diphenylphosphino)methane, tributyl borate, 1,4-dibromobenzene, tetrakis-

(triphenylphosphine)palladium and ethylene glycol.  Octaperfluoro-cyclopentene was 

sourced from Rijksuniversiteit Groningen, Holland.  Column chromatography was 

performed using neutral silica gel.   

 

2.2.2 Equipment 

 

All glassware used for synthesis was dried in an oven at ~150°C overnight.  
1
H NMR 

spectra were recorded on a Bruker model AC 400 MHz spectrometer.  
13

C and 
31

P 

NMR spectra were recorded on a Bruker Avance III 600 ultrashield spectrometer (at 

150 MHz and 242.9 MHz, respectively).  
19

F NMR spectra were recorded on a Bruker 

model AC 400 MHz spectrometer (at 376.5 MHz).  All NMR spectra were obtained in 

deuterated solvents: CDCl3, (CD3)2SO or (CD3)2CO.  Each spectrum was calibrated 

according to the deuterated solvent peak.  The splitting patterns are designated as 

follows: s (singlet); d (doublet); dd (doublet of doublets); t (triplet); quintet; m 
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(multiplet) and br (broad).  In the case of the 
13

C NMR data, a quaternary carbon is 

denoted by “Cq”.  Infra-red spectroscopy was carried out on a Perkin Elmer 

“Spectrum GX” FT-IR spectrometer.  For the IR data, “sh” denotes a shoulder band.  

Elemental analysis was carried out at Rijksuniversiteit Groningen, Holland.   
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2.3 Synthesis 

 

Dithienylcyclopentene Switches 
 

 

2.3.1 Synthesis of Dithienyl-perhydrocyclopentene Starting Material
1, 2
 

 

 

 
 

Scheme 2.4: Synthesis of dithienyl-perhydrocyclopentene (iii) 

 

 

• Synthesis of 5-Chloro-2-methylthiophene (i): 

 

Toluene (400 mL) and acetic acid (400 mL) were placed into a 2 L round-bottom 

flask.  2-Methylthiophene (100 mL, 1.03 mol) and N-chlorosuccinimide (152 g, 1.13 

mol) were added, and the suspension was stirred at room temperature for 30 minutes, 

before refluxing for 1 hour.  Once the mixture had cooled, a 3 M aq NaOH solution 

(300 mL) was added to the flask.  The organic phase was subsequently washed with a 

3 M aq NaOH solution (3 x 300 mL), dried over Na2SO4, filtered and the solvent was 

removed under vacuum to yield a pale yellow liquid.  The product was purified by 

vacuum distillation (approx. 80°C), resulting in a colourless liquid (100 g, 73%).   

1
H NMR (400 MHz, CDCl3): δ = 2.31 (s, 3H, CH3), 6.39-6.41 (m, 1H, thienyl-H3), 

6.58 (d, J=2.2 Hz, 1H, thienyl-H4) ppm.   
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• Synthesis of 1,5Bis(5’-chloro-2’-methylthien-3’-yl)pentadione (ii) 

 

A solution of 5-Chloro-2-methylthiophene (i) (32.3 mL, 0.3 mol) and glutarylchloride 

(25 g, 0.15 mmol), in nitromethane (300 mL), was cooled on ice.  AlCl3 (48 g, 0.36 

mol) was added in portions to the solution, whilst stirring vigorously, and the reaction 

was stirred at room temperature for 2 hours.  Ice-water was slowly added to the 

reaction mixture.  The water layer was extracted with diethyl ether (3 x 150 mL) and 

then the combined organic phases were washed with water (1 x 100 mL), dried over 

Na2SO4, filtered and evaporated in vacuum to yield a brown tar (46.86 g, 43%).  It 

was not necessary to purify this product for use in the next reaction.  
1
H NMR 

(400 MHz, CDCl3): δ = 1.98-2.12 (m, 2H, CH2), 2.65 (s, 6 H, CH3), 2.86 (t, J=6.8 Hz, 

4H, CH2), 7.19 (s, 2H-thienyl-H4) ppm.       

 

• Synthesis of 1,2-Bis(5’-chloro-2’-methylthien-3’-yl)cyclopentene (iii) 

 

THF (165 mL) and Zn-dust (8.25 g, 0.126 mol) were placed into an oven-dried three-

neck round-bottom flask and stirred under nitrogen.  TiCl4 (20.46 mL, 95.04 mmol) 

was added very cautiously (by a separating funnel, fitted with a tap, connected to a 

neck of the flask) over a period of 30 to 60 minutes.  The solution was refluxed for 45 

minutes and a colour change from grey to dark green/blue was observed.  The reaction 

mixture was cooled in an ice-bath before adding 1,5-Bis(5’-chloro-2’-methylthien-3’-

yl)pentadione (ii) (23 g, 64 mmol) in portions, and then refluxed for a further 2 hours.  

10% K2CO3 (150 mL) was added to quench the reaction.  It was extracted with diethyl 

ether (4 x 50 mL), the combined organic layers were washed with H2O (1 x 75 mL), 

dried over Na2SO4, filtered and the solvent was removed in vacuum.  The dark 

brown/black crude product was purified with column chromatography, using silica 

and 100% pentane.  The pure product was collected as the first fraction and was a 

light brown/cream coloured solid (7.18 g, 34%).  
1
H NMR (400 MHz, CDCl3): δ = 

1.88 (s, 6H, CH3), 2.01 (quintet, J=7.5 Hz, 2H, CH2), 2.71 (t, J=7.5 Hz, 4H, CH2), 

6.57 (s, 2H, thienyl-H4) ppm.  
13

C NMR (150 MHz, CDCl3) δ = 14.31 (s, 2C, CH3), 

23.08 (s, 1C, CH2), 38.47 (s, 2C, CH2), 125.34 (s, 2C, Cq), 126.83 (s, 2C, CH), 133.44 

(s, 2C, Cq), 134.58 (s, 2C, Cq), 134.98 (s, 2C, Cq) ppm. 
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2.3.2 Synthesis of Dithienyl-perfluorocyclopentene Starting Material
2
 

 

 

 

 
 

Scheme 2.5: Synthesis of dithienyl-perflurocyclopentene (v) 

 

 

• Synthesis of 5-chloro-2-methylthiophene (i): 

 

The reaction procedure used to synthesise 5-chloro-2-methylthiophene was described 

in section 2.3.1.  The same batch of product was used for the synthesis of the 

perfluoro-cyclopentene switch.  

 

• Synthesis of 5-chloro-3-bromo-2-methylthiophene (iv) 

 

5-chloro-2-methylthiophene (i) (20 g, 151 mmol) was dissolved in CHCl3 (150 mL) 

and cooled in an ice bath before a solution of bromine (8 mL, 156 mmol), in CHCl3 

(40 mL), was slowly added to the reaction flask.  After the reaction mixture was 

stirred for 2 hours at room temperature, H2O (300 mL) was added to the flask, and the 

water layer was subsequently extracted with CH2Cl2 (3 x 100 mL).  The organic 

extracts were combined, dried over Na2SO4 and filtered.  The solvent was evaporated, 

yielding an orange/brown oil which was purified by vacuum distillation, and a very 

pale yellow oil was obtained (18.06 g, 57%).  
1
H NMR (400 MHz, CDCl3): δ = 2.32 

(s, 3H, CH3), 6.73 (s, 1H, thienyl-H4) ppm. 
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• Synthesis of 1,2-Bis(5’-chloro-2’-methylthien-3’-yl)perfluorocyclopentene (v) 

 

Distilled, dry diethyl ether (400 mL) and 5-chloro-3-bromo-2-methylthiophene (iv) 

(18.06 g, 85 mmol) were added to an oven-dried 1 L reaction flask, under nitrogen, 

and the solution was cooled to -78°C.  n-Butyllithium (53.13 mL of 1.6 M solution in 

hexane, 85 mmol) was added to the flask and the solution was stirred at -78°C, under 

nitrogen, for 30 minutes.  Octaperfluorocyclopentene (5.46 mL, 38.6 mmol) was 

quickly taken from the fridge via a syringe, and slowly added to the reaction flask.  

The reaction mixture was stirred for a further 4 hours at -78°C, then slowly allowed to 

warm to room temperature and left to stir overnight.  The reaction was quenched with 

H2O (250 mL) and extracted with diethyl ether (2 x 100 mL).  The organic extracts 

were combined, dried over Na2SO4, filtered and the solvent was removed under 

vacuum.  A dark orange/brown oil was obtained and was purified on a silica gel 

column, using 100% pentane.  The second fraction was collected from the column and 

was further purified by recrystallisation in methanol and a small amount of CH2Cl2, 

yielding a creamy/yellow solid (7.14 g, 19%).  
1
H NMR (400 MHz, CDCl3): δ = 1.89 

(s, 6H, CH3), 6.88 (s, 2H, thienyl-H4) ppm.  
13

C NMR (150 MHz, CDCl3) δ = 14.29 

(s, 2C, CH3), 124.21 (s, 2C, Cq), 125.65 (s, 2C, CH), 128.18 (s, 2C, Cq), 140.67 (s, 

2C, Cq) ppm (C-F resonances not located). 
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2.3.3 Synthesis of 1,2-Bis(5’-iodo-2’-methylthien-3’-yl)cyclopentene (vi) 

 

 

 
 
 Scheme 2.6: Synthesis of 1,2-Bis(5’-iodo-2’-methylthien-3’-yl)cyclopentene (vi)   

 

 

n-Butyllithium (4.75 mL of 1.6 M solution in hexane, 7.6 mmol) was added slowly to 

a solution of 1,2-Bis(5’-chloro-2’-methylthien-3’-yl)cyclopentene (iii) (1 g, 3.04 

mmol) dissolved in dry, distilled THF (60 mL), and was stirred at room temperature 

under nitrogen.  After 1 hour, Iodine (3.858 g, 15.2 mmol) dissolved in 20 mL of dry, 

distilled THF was added dropwise to the reaction mixture, and it was allowed to stir 

overnight under an inert atmosphere.  The solution was quenched with water (50 mL) 

and extracted with dichloromethane (3 x 80 mL).  The organic layers were combined, 

washed with a 50% aqueous solution of sodium thiosulphate pentahydrate (100 mL) to 

remove the excess iodine, washed with water (150 mL), dried over Na2SO4, filtered 

and dried under vacuum.  The dark brown crude product was purified with column 

chromatography, using silica gel and 100% pentane, to yield a light brown solid 

(1.0283 g, 66%).  
1
H NMR (400 MHz, CDCl3): δ = 1.89 (s, 6H, CH3), 2.02 (quintet, 

J=7.5 Hz, 2H, CH2), 2.72 (t, J=7.5 Hz, 4H, CH2), 6.89 (s, 2H, thienyl-H4) ppm. 
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2.3.4 Synthesis of 1,2-Bis(5’-iodo-2’-methylthien-3’-yl)perfluoro- 

cyclopentene (vii)  

 

 

 
 
 

 Scheme 2.7: Synthesis of 1,2-Bis(5’-iodo-2’-methylthien-3’-yl)perfluorocyclopentene (vii)  

 

 

1,2-Bis(5’-chloro-2’-methylthien-3’-yl)perflourocyclopentene (v) (2 g, 4.57 mmol), n-

butyllithium (7.15 mL of 1.6M solution in hexane, 11.4 mmol) and iodine (5.8 g, 22.9 

mmol) were reacted together under the same reaction conditions as described for (vi), 

with the exception that distilled, dry diethyl ether was used as the solvent instead of 

THF.  The dark brown crude product was purified on a silica gel column, using 100% 

pentane, yielding a yellow/brown solid (1.6423 g, 58%).  
1
H NMR (400 MHz, 

CDCl3): δ = 1.88 (s, 6H, CH3), 7.19 (s, 2H, thienyl-H4) ppm.   
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Thienyl-based Switches 
 

 

2.3.5 Synthesis of 1,2-Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)-

cyclopentene {1H} 

 

 

 
 
Scheme 2.8: Synthesis of 1,2-Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)cyclopentene {1H} 

 

 

Anhydrous DMF (60 mL), anhydrous triethylamine (7 mL) and distilled, dry THF (7 

mL) were added to an oven-dried round-bottomed flask.  1,2-Bis(5’-iodo-2’-

methylthien-3’-yl)-cyclopentene (vi) (0.300 g, 0.586 mmol) was added to the flask, 

and after the solution was purged with nitrogen for 20 minutes, CuI (0.09 g, 0.473 

mmol), tetra-butylammonium iodide (TBAI) (1.704 g, 4.613 mmol) and P((CH3)3Ph)3 

(0.18 g, 0.463 mmol), were also added to the reaction flask.  The mixture was then 

freeze-evacuated three times, followed by the addition of Pd2(dba)3.CHCl3 (0.035 g, 

0.051 mmol) under nitrogen, and was left to stir for 5 minutes at room temperature.  

Subsequently, the flask was cooled to -20°C and 3-ethynylthiophene (0.127 ml, 1.29 

mmol) was added.  The solution was then allowed to warm up to room temperature 

and left to stir for 24 hours, under nitrogen.  The reaction mixture was quenched with 

water, and the solvent was removed by vacuum distillation.  The crude product was 

extracted three times with brine/dichloromethane, the organic extracts were combined, 

dried over MgSO4 and filtered.  The crude product was purified by column 

chromatography, using silica gel, and eluted with 100% hexane followed by a 9:1 
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mixture of hexane:CH2Cl2 respectively.  The pure product was found to be the 4
th

 

band on the column, and a purple solid was obtained (0.2721 g, 98%).  
1
H NMR 

(400 MHz, (CD3)2SO): δ = 1.89 (s, 6H, CH3), 2.01 (quintet, J=7.5 Hz, 2H, CH2), 2.77 

(t, J=7.5 Hz, 4H, CH2), 7.13 (s, 2H, thienyl-H4), 7.24 (dd, J=4.9 Hz, 1.2 Hz, 2H, 

ethynylthiophene-H5), 7.65 (dd, J=4.9 Hz, 3 Hz, 2H, ethynyl-thiophene-H4), 7.90 (dd, 

J=3 Hz, 1.2 Hz, 2H, ethynylthiophene-H2) ppm.  
13

C NMR (150 MHz, CDCl3) δ = 

14.52 (s, 2C, CH3), 23.02 (s, 1C, CH2), 38.71 (s, 2C, CH2), 82.54 (s, 2C, Cq), 87.78 (s, 

2C, Cq), 119.18 (s, 2C, Cq), 122.26 (s, 2C, Cq), 125.50 (s, 2C, CH), 128.63 (s, 2C, 

CH), 129.85 (s, 2C, CH), 133.05 (s, 2C, CH), 134.63 (s, 2C, Cq), 135.87 (s, 2C, Cq), 

137.16 (s, 2C, Cq) ppm.  Anal. calc. for C27H20S4 (%): C 68.60, H 4.26; found: C 

67.59, H 4.36. 
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2.3.6 Synthesis of 1,2-Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)-

perfluorocyclopentene {1F} 
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Scheme 2.9: Synthesis of 1,2-Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)perfluoro- 

cyclopentene (1F) 

 

1,2-Bis(5’-iodo-2’-methylthien-3’-yl)perfluorocyclopentene (vii) (0.300 g, 0.484 

mmol), CuI (0.075 g, 0.394 mmol), TBAI (1.42 g, 3.84 mmol) and P((CH3)3Ph)3 (0.15 

g, 0.386 mmol), Pd2(dba)3.CHCl3 (0.044 g, 0.043 mmol), and 3-ethynylthiophene 

(0.104 mL, 1.06 mmol) were all dissolved in DMF (50 mL), THF (6 mL) and 

triethylamine (6 mL).  The reaction was carried out using the same synthetic method 

as described for 1H.  Purification of the crude product was carried out on a silica gel 

column, using 100% hexane as the eluent, followed by a 9:1 mixture of 

hexane:CH2Cl2.  The 4
th

 band on the column was collected, and the pure product was 

obtained as a blue solid (0.1583 g, 56%).   
1
H NMR (400 MHz, (CD3)2SO): δ = 1.97 

(s, 6H, CH3), 7.28 (dd, J=5 Hz, 1.2 Hz, 2H, ethynylthiophene-H5), 7.39 (s, 2H, 

thienyl-H4), 7.67 (dd, J=5 Hz, 3 Hz, 2H, ethynylthiophene-H4), 7.97 (dd, J=3 Hz, 1.2 

Hz, 2H, ethynylthiophene-H2) ppm.  
13

C NMR (150 MHz, CDCl3) δ = 14.66 (s, 2C, 

CH3), 81.11 (s, 2C, Cq), 89.33 (s, 2C, Cq), 121.60 (s, 2C, Cq), 121.95 (s, 2C, Cq), 

124.93 (s, 2C, Cq), 125.80 (s, 2C, CH), 129.40 (s, 2C, CH), 129.75 (s, 2C, CH), 

131.39 (s, 2C, CH), 143.25 (s, 2C, Cq) ppm (C-F resonances not located).  
19

F NMR 

(376.5 MHz, CDCl3) δ = -110.24 (t, J=5.2 Hz, 4F), -131.81 (quintet, J=5.2 Hz, 2F).  

Anal. calc. for C27H14F6S4 (%): C 55.85, H 2.43; found: C 55.51, H 2.25. 
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2.3.7 Synthesis of 1,2-Bis(5’-(4’’-bromophenyl)-2’-methylthien-3’-yl)-

cyclopentene (viii)
8
 

 

 

Scheme 2.10: Synthesis of 1,2-Bis(5’-(4’’-bromophenyl)-2’-methylthien-3’-yl)-cyclopentene (viii) 
 

An oven-dried flask was charged with a solution of 1,2-Bis(5’-chloro-2’-methylthien-

3’-yl)cyclopentene (iii) (0.754 g, 2.29 mmol), in distilled, dry THF (80 mL), under an 

atmosphere of nitrogen.  n-Butyllithium (3.6 mL of 1.6 M solution in hexane, 5.73 

mmol) was added to the reaction flask, and after 1 hour of stirring, B(OBu)3 (1.85 mL, 

6.87 mmol) was added and the mixture was allowed to stir for a further 1 hour, in 

order to produce a boronic ester intermediate.  In a separate 500 mL round-bottomed 

flask, a solution of 1,4-dibromobenzene (2.59 g, 9.16 mmol), dissolved in THF (200 

mL), was purged with nitrogen.  Pd(PPh3)4 (0.281 g, 0.252 mmol), 2M Na2CO3 (15 

mL) and ethylene glycol (15 drops) were added to the flask, and purging was 

continued for 10 minutes.  Then, the boronic ester intermediate was added dropwise, 

via a syringe, and the reaction was refluxed overnight, under an inert atmosphere.  The 

mixture was extracted with water and diethyl ether, the organic layers were dried over 

MgSO4, filtered and the solvent was removed.  The crude product was purified on 

silica gel, and eluted with hexane, yielding a pale pink/purple solid (0.58 g, 44%).  
1
H 

NMR (400 MHz, CDCl3): δ = 1.99 (s, 6H, CH3), 2.08 (quintet, J=7.5 Hz, 2H, CH2), 

2.83 (t, J=7.5 Hz, 4H, CH2), 7.00 (s, 2H, thienyl-H4), 7.34 (d, J=8.5 Hz, 1.2 Hz, 4H, 

phenyl-H2,6), 7.44 (d, J=8.5 Hz, 3 Hz, 4H, phenyl-H3,5) ppm.  
13

C NMR (150 MHz, 

CDCl3) δ = 14.60 (s, 2C, CH3), 23.17 (s, 1C, CH2), 38.57 (s, 2C, CH2), 120.84 (s, 2C, 

Cq), 124.55 (s, 2C, CH), 126.91 (s, 4C, CH), 132.00 (s, 4C, CH), 133.57 (s, 2C, Cq), 

134.86 (s, 2C, Cq), 135.17 (s, 2C, Cq), 136.95 (s, 2C, Cq), 138.55 (s, 2C, Cq) ppm. 
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2.3.8 Synthesis of 1,2-Bis(5’-(4’’-iodophenyl)-2’-methylthien-3’-yl)- 

cyclopentene (ix) 

 

 

 
 

 

Scheme 2.11: Synthesis of 1,2-Bis(5’-(4’’-iodophenyl)-2’-methylthien-3’-yl)cyclopentene (ix) 
 

 

Distilled, dry THF (20 mL) was placed in a 50 mL oven-dried round-bottomed flask, 

and 1,2-bis(5’-(4’’-bromophenyl)-2’-methylthien-3’-yl)-cyclopentene (viii) (0.4 g, 

0.701 mmol) was added, under an atmosphere of nitrogen.  The reaction flask was 

submerged in a bath of liquid nitrogen and acetone, and cooled to -78ºC.  tert-

Butyllithium (1.03 mL of 1.7 M in hexane, 1.75 mmol) was added dropwise, via a 

syringe, and the solution was allowed to stir for 1 hour, under an inert atmosphere.  In 

a separate 25 mL oven-dried flask, iodine (0.89 g, 3.51 mmol) was added to distilled, 

dry THF (10 mL), under N2.  The iodine solution was added dropwise, via a syringe, 

into the reaction flask, and the mixture was stirred for a further 1 hour at -78ºC.  Then 

the flask was allowed to warm-up to room temperature, and it was left stirring 

overnight under inert conditions.  Water (20 mL) was added to the flask to quench the 

reaction, and it was extracted with dichloromethane (3 x 50 mL).  The combined 

organic layers were washed with a 50% aqueous solution of sodium thiosulphate 

pentahydrate, in order to remove the excess iodine, washed with water, dried over 

MgSO4 and filtered.  The solvent was removed under reduced pressure, and the crude 

product was recrystallised in 4:1 methanol:CH2Cl2 and vacuum filtered, yielding a 

light purple-brown pure product (0.3921 g, 84%).   
1
H NMR (400 MHz, CDCl3) 

δ=1.98 (s, 6H, CH3), 2.08 (quintet, J=7.5 Hz, 2H, CH2), 2.83 (t, J=7.5 Hz, 4H, CH2), 

7.01 (s, 2H, thienyl-H4), 7.22 (d, J=8.5 Hz, 4H, phenyl-H2,6), 7.64 (d, J=8.5 Hz, 4H, 

phenyl-H3,5). 
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2.3.9 Synthesis of 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-methylthien-

3’-yl)-cyclopentene {2H} 

 

 
 

 

Scheme 2.12: Synthesis of 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-methylthien-3’-yl)-

cyclopentene {2H} 

 

 

The same procedure described for 1H was followed, starting from 1,2-Bis(5’-(4’’-

iodophenyl)-2’-methylthien-3’-yl)-cyclopentene (0.392 g, 0.59 mmol), CuI (0.09 g, 

0.473 mmol), TBAI (1.704 g, 4.61 mmol), P((CH3)3Ph)3 (0.18 g, 0.463 mmol), 

Pd2(dba)3.CHCl3 (0.053 g, 0.051 mmol and 3-ethynylthiophene (0.145 mL, 1.475 

mmol).  Anhydrous DMF (60 mL), anhydrous triethylamine (7 mL) and distilled dry 

THF (7 mL) were used as the solvent mixture.  The resulting crude product was 

purified by column chromatography.  Silica gel was used as the stationary phase, and 

the pure product was eluted using 100% hexane, followed by 8:2 hexane:CH2Cl2, 

yielding a purple solid (0.191 g, 52%).  
1
H NMR (400 MHz, (CD3)2SO): δ = 1.91 (s, 

6H, CH3), 2.05 (quintet, J=7.5 Hz, 2H, CH2), 2.85 (t, J=7.5 Hz, 4H, CH2), 7.27 (dd, 

J=5 Hz, 1.2 Hz, 2H, ethynylthiophene-H5), 7.41 (s, 2H, thienyl-H4), 7.51 (d, J=8.4 

Hz, 4H, phenyl-H2,6), 7.60 (d, J=8.4 Hz, 4H, phenyl-H3,5), 7.66 (dd, J=5 Hz, 3 Hz, 

2H, ethynylthiophene-H4), 7.90 (dd, J=3 Hz, 1.2 Hz, 2H, ethynylthiphene-H2) ppm.  

13
C NMR (150 MHz, CDCl3) δ = 14.67 (s, 2C, CH3), 23.16 (s, 1C, CH2), 38.64 (s, 2C, 

CH2), 85.38 (s, 2C, Cq), 89.03 (s, 2C, Cq), 121.66 (s, 2C, Cq), 122.46 (s, 2C, Cq), 

124.64 (s, 2C, CH), 125.15 (s, 4C, CH), 125.52 (s, 2C, CH), 128.70 (s, 2C, CH), 

130.00 (s, 2C, CH), 132.07 (s, 4C, CH), 134.33 (s, 2C, Cq), 134.82 (s, 2C, Cq), 

135.42 (s, 2C, Cq), 137.01 (s, 2C, Cq), 139.13 (s, 2C, Cq) ppm.  Anal. calc. for 

C39H28S4 (%): C 74.96, H 4.52; found: C 74.73, H 4.61. 
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2.3.10 Synthesis of 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-methylthien-
3’-yl)-perfluorocyclopentene {2F}  

 

 

In order to attach benzene-ethynylthiophene substituents onto the perfluoro-

cyclopentene switch, a different synthetic approach was employed, comparing to the 

method used for the perhydrocyclopentene switch, due to the limited amount of 1,2-

Bis(5’-chloro-2’-methylthien-3’-yl)perflourocyclopentene (v) available.  

 

• Synthesis of 1-(3-thienylethynyl)-4-bromobenzene (x) 

 

 

 
 

Scheme 2.13: Synthesis of 1-(3-thienylethynyl)-4-bromobenzene (x) 

 

 

An oven-dried 250 mL round-bottomed flask was filled with anhydrous DMF (75 

mL), anhydrous triethylamine (9 mL) and dry THF (9 mL).  The solvent mixture was 

purged with nitrogen for 20 minutes, followed by addition of 1-iodo-4-bromobenzene 

(0.200 g, 0.707 mmol), CuI (0.113 g, 0.593 mmol), TBAI (2.13 g, 5.766 mmol) and 

P((CH3)3Ph)3 (0.225 g, 0.579 mmol).  The reaction mixture was freeze-evacuated 

three times.  Then, Pd2(dba)3.CHCl3 (0.066 g, 0.064 mmol) was added, and the 

reaction mixture was allowed to stir at room temperature for 5mins.  The flask was 

cooled to -20ºC and 3-ethynylthiophene (0.077 mL, 0.778 mmol) was added.  The 

reaction mixture was then stirred for 24 hours at room temperature, under an inert 

atmosphere.  Water was added to the flask in order to quench the reaction, and the 

solvent was removed by heating under vacuum, at a high temperature (~75ºC).  The 

resulting crude product was extracted with CH2Cl2 and brine.  The organic extracts 

were combined, washed with water, dried over MgSO4 and filtered.  The solvent was 

removed, and the product was purified by column chromatography.  Silica gel was 
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used as the stationary phase, and 100% hexane, followed by 8:2 hexane:CH2Cl2, was 

used as the mobile phase.  A white solid was obtained (0.113 g, 61%).  
1
H NMR (400 

MHz, (CD3)2CO) δ = 7.24 (dd, J=5 Hz, 1.2 Hz, 1H, ethynylthiophene-H5), 7.47 (d, 

J=8.6 Hz, 2H, phenyl-H2,6), 7.57 (dd, J=5 Hz, 3 Hz, 1H, ethynylthiophene-H4), 7.60 

(d, J=8.6 Hz, 2H, phenyl-H3,5), 7.77 (dd, J=3 Hz, 1.2 Hz, 1H, ethynylthiphene-H2) 

ppm.  
13

C NMR (150 MHz, CDCl3) δ = 85.75 (s, 1C, Cq), 87.90 (s, 1C, Cq), 121.79, 

(s, 1C, Cq), 122.10 (s, 1C, Cq), 122.34 (s, 1C, Cq), 125.67 (s, 1C, CH), 129.01 (s, 1C, 

CH), 129.97 (s, 1C, CH), 131.73 (s, 2C, CH), 133.06 (s, 2C, CH).  Anal. calc. for 

C12H7SBr (%): C 54.77,  H 2.68; found: C 54.81, H 2.69. 

   

• Synthesis of 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’- 

methylthien-3’-yl)perfluorocyclopentene {2F}    

 

 

 

Scheme 2.14: Synthesis of 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’- 

methylthien-3’-yl)-perfluorocyclopentene {2F} 

 

1,2-Bis(5’-chloro-2’-methylthien-3’-yl)perfluorocyclopentene (v) (0.1208 g, 0.276 

mmol) was dissolved in distilled, dry diethyl ether (20 mL) in a 50 mL round-

bottomed flask, under a nitrogen atmosphere.  t-Butyllithium (0.41 mL of 1.7M 

solution in hexane, 0.69 mmol) was slowly added to the reaction flask.  After 1 hour 

of stirring at room temperature, B(OBu)3 0.223 mL, 0.828 mmol) was added to the 

flask and the reaction mixture was stirred for a further 1 hour, forming a boronic ester 

intermediate.  In a separate 100 mL flask, 1-(3-thienylethynyl)-4-bromobenzene (0.16 

g, 0.608 mmol) was dissolved in distilled, dry diethyl ether (40 mL) and the solution 
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was purged with nitrogen for 20 minutes.  Pd(PPh3)4 (0.0339 g, 0.03 mmol), 2M 

Na2CO3 (4 mL) and ethylene glycol (4 drops) were then added to the flask and 

purging was continued for a further 10 minutes.  Subsequently, the boronic ester 

intermediate was removed from the 50 mL flask, via a syringe, and added directly to 

this reaction mixture.  The solution was then refluxed overnight, under nitrogen.  The 

mixture was extracted with water/diethyl ether, the organic layers were combined, 

dried over MgSO4 and filtered.  The solvent was removed under vacuum and the 

crude product was purified on a silica gel column, using 100% hexane, followed by a 

solvent mixture of 9:1 hexane:CH2Cl2.  The 2
nd

 blue band was collected from the 

column, and the pure product was obtained as a blue solid (0.07 g, 35%).  
1
H NMR 

(400 MHz, (CD3)2SO): δ = 2.00 (s, 6H, CH3), 7.29 (dd, J=5 Hz, 1.0 Hz, 2H, 

ethynylthiophene-H5), 7.57 (d, J=8.4 Hz, 4H, phenyl-H2,6), 7.62 (s, 2H, thienyl-H4), 

7.67 (dd, J=5 Hz, 2.8 Hz, 2H, ethynylthiophene-H4), 7.70 (d, J=8.4 Hz, 4H, phenyl-

H3,5), 7.93 (dd, J=2.8 Hz, 1.0 Hz, 2H, ethynylthiophene-H2) ppm.  
13

C NMR (150 

MHz, CDCl3) δ = 14.21 (s, 2C, CH3), 85.97 (s, 2C, Cq), 88.71 (s, 2C, Cq), 122.28 (s, 

2C, Cq), 122.82 (s, 2C, CH), 122.96 (s, 2C, Cq), 125.50 (s, 4C, CH), 125.62 (s, 2C, 

CH), 126.16 (s, 2C, Cq), 128.96 (s, 2C, CH), 129.98 (s, 2C, CH), 132.25 (s, 4C, CH), 

133.06 (s, 2C, Cq), 141.73 (s, 2C, Cq), 141.99 (s, 2C, Cq) ppm (C-F resonances not 

located).  
19

F NMR (376.5 MHz, CDCl3) δ = -110.01 (t, J=5.0 Hz, 4F), -131.83 

(quintet, J=5.0 Hz, 2F).  Anal. calc. for C39H22F6S4 (%): C 63.92, H 3.03; found: C 

60.22, H 2.97. 
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Ferrocenyl-based Switches 

 
 

2.3.11 Synthesis of 1,2-Bis(5’-ethynylferrocene-2’-methylthien-3’-yl)- 
cyclopentene {7H}

16
 

 

 

 
 

 

Scheme 2.15: Synthesis of 1,2-Bis(5’-ethynylferrocene-2’-methylthien-3’-yl)cyclopentene {7H} 

 

 

A 100 ml oven-dried round-bottomed flask was filled with anhydrous DMF (40 mL), 

anhydrous triethylamine (5 mL) and distilled, dry THF (5 mL).  1,2-Bis(5’-iodo-2’-

methylthien-3’-yl)-cyclopentene (vi) (0.200 g, 0.390 mmol) was dissolved in the 

solvent mixture, and the solution was purged with nitrogen for 20 minutes.  Following 

the addition of CuI (0.06 g, 0.315 mmol), TBAI (1.136 g, 3.075 mmol) and 

P((CH3)3Ph)3 (0.12 g, 0.309 mmol), the reaction mixture was freeze-evacuated three 

times.  Under nitrogen, Pd2(dba)3.CHCl3 (0.035 g, 0.034 mmol) was added to the 

flask, and the mixture was left to stir for 5 minutes, at room temperature.  The reaction 

flask was cooled down to -20ºC, ethynylferrocene (0.205 g, 0.975 mmol) was added, 

and the mixture was allowed to stir for 24 hrs at ambient temperature, under an inert 

atmosphere.  The reaction was quenched with H2O and the solvent was removed under 

reduced pressure, at a temperature of ~75ºC.  The crude product was extracted three 

times with brine/dichloromethane and the organic layers were washed with water, 

dried over MgSO4 and filtered.  After removal of the solvent, the crude product was 

purified on a silica gel column, using 100% hexane, followed by 8:2 hexane:CH2Cl2.  
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The 4
th

 band on the column was collected, and the pure product was obtained as an 

orange solid (0.175 g, 66%).  
1
H NMR (400 MHz, (CD3)2SO) δ = 1.88 (s, 6H, CH3), 

2.00 (quintet, J=7.3 Hz, 2H, CH2), 2.77 (t, J=7.3 Hz, 4H, CH2), 4.26 (s, 10H, Fc-Cp), 

4.34 (t, J=1.8 Hz, 4H, Fc-H3,4), 4.56 (t, J=1.8 Hz, 4H, Fc-H2,5), 7.07 (s, 2H, thienyl-

H4) ppm.  
13

C NMR (150 MHz, CDCl3) δ = 14.40 (s, 2C, CH3), 22.99 (s, 1C, CH2), 

38.70 (s, 2C, CH2), 67.50 (s, 2C, Cq), 70.49 (s, 4C, CH), 71.62 (s, 10C, CH), 72.22 (s, 

4C, CH), 79.38 (s, 2C, Cq), 91.68 (s, 2C, Cq), 119.77 (s, 2C, Cq), 132.66 (s, 2C, CH), 

134.51 (s, 2C, Cq), 135.60 (s, 2C, Cq), 136.70 (s, 2C, Cq) ppm.  Anal. calc. for 

C39H32S2Fe2 (%): C 69.24, H 4.77; found: C 68.89, H 4.71. 
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2.3.12 Synthesis of 1,2-Bis(5’-ethynylferrocene-2’-methylthien-3’-yl)-
perfluorocyclopentene {7F}

16
 

 

 

 
 

 

Scheme 2.16: Synthesis of 1,2-Bis(5’-ethynylferrocene-2’-methylthien-3’-yl)- 

perfluorocyclopentene {7F} 

 

Anhydrous DMF (50 mL), anhydrous triethylamine (6 mL) and distilled, dry THF (6 

mL), 1,2-Bis(5’-iodo-2’-methylthien-3’-yl)-perfluorocyclopentene (vii) (0.300 g, 

0.484 mmol), CuI (0.075 g, 0.394 mmol), TBAI (1.42 g, 3.84 mmol), P((CH3)3Ph)3 

(0.15 g, 0.386 mmol), Pd2(dba)3.CHCl3 (0.044 g, 0.043 mmol) and ethynylferrocene 

(0.224 g, 1.06 mmol) were all added to an oven-dried round-bottomed flask under the 

same reaction conditions as described for 7H.  Purification of the crude product was 

achieved by column chromatography, using silica gel, and eluted with a solvent 

mixture of 9:1, followed by 8:2, hexane:CH2Cl2.  The 4
th

 fraction of the column was 

collected and the pure product was obtained as an orange solid (0.21 g, 55%). 
1
H 

NMR (400 MHz, (CD3)2SO) δ = 1.96 (s, 6H, CH3), 4.28 (s, 10H, Fc-Cp), 4.37 (t, 

J=1.8 Hz, 4H, Fc-H3,4), 4.60 (t, J=1.8 Hz, 4H, Fc-2,5), 7.32 (s, 2H, thienyl-H4) ppm.  

13
C NMR (150 MHz, CDCl3) δ = 14.69 (s, 2C, CH3), 64.63 (s, 2C, Cq), 69.57 (s, 4C, 

CH), 70.45 (s, 10C, CH), 71.74 (s, 4C, CH), 77.78 (s, 2C, Cq), 93.66 (s, 2C, Cq), 

122.72 (s, 2C, Cq), 124.85 (s, 2C, Cq), 130.65 (s, 2C, CH), 142.66 (s, 2C, Cq) ppm 

(C-F resonances not located).  
19

F NMR (376.5 MHz, CDCl3) δ = -110.19 (t, J=4.9 

Hz, 4F), -131.82 (quintet, J=4.9 Hz, 2F).  Anal. calc. for C39H26F6S2Fe2 (%): C 59.71, 

H 3.34; found: C 59.92, H 3.64. 
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2.3.13 Synthesis of 1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-
yl)-cyclopentene {8H} 

 

 

 

Scheme 2.17: Synthesis of 1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-yl)- 

cyclopentene {8H} 

 

Using the same reaction method as described for 7H, 1,2-Bis(5’-(4’’-iodophenyl)-2’-

methylthien-3’-yl)cyclopentene (ix) (0.300 g, 0.452 mmol) was dissolved in DMF (50 

mL), THF (6 mL) and triethylamine (6 mL), followed by addition of CuI (0.75 g, 

0.394 mmol), TBAI (1.42 g, 3.844 mmol), P((CH3)3Ph)3 (0.15 g, 0.386 mmol), 

Pd2(dba)3.CHCl3 (0.044 g, 0.043 mmol), and ethynylferrocene (0.2374 g, 1.13 mmol).  

The product was purified on a silica gel column, and eluted with a mixture of 9:1, 

followed by 8:2, hexane:CH2Cl2 respectively.  The pure product was obtained as an 

orange solid (0.1747 g, 47%) and was found to be the 4
th

 band collected from the 

column.  
1
H NMR (400 Hz, (CD3)2SO) δ = 1.92 (s, 6H, CH3), 2.05 (quintet, J=7.5 Hz, 

2H, CH2), 2.85 (t, J=7.5 Hz, 4H, CH2), 4.27 (s, 10H, Fc-Cp), 4.35 (t, J=1.8 Hz, 4H, 

Fc-H3,4), 4.58 (t, J=1.8 Hz, 4H, Fc-H2,5), 7.39 (s, 2H, thienyl-H4), 7.46 (d, J=8.4 Hz, 

4H, phenyl-H2,6), 7.55 (d, J=8.4 Hz, 4H, phenyl-H3,5) ppm.  
13

C NMR (150 MHz, 

CDCl3) δ = 14.64 (s, 2C, CH3), 23.20 (s, 1C, CH2), 38.64 (s, 2C, CH2), 66.95 (s, 2C, 

Cq), 69.32 (s, 4C, CH), 70.46 (s, 10C, CH), 71.76 (s, 4C, CH), 85.96 (s, 2C, Cq), 

89.32 (s, 2C, Cq), 122.48 (s, 2C, Cq), 124.51 (s, 2C, CH), 125.12 (s, 4C, CH), 131.95 

(s, 4C, CH), 133.85 (s, 2C, Cq), 134.87 (s, 2C, Cq), 135.24 (s, 2C, Cq) 136.99 (s, 2C, 

Cq), 139.31 (s, 2C, Cq) ppm.  Anal. calc. for C51H40S2Fe2 (%): C 73.92, H 4.86; 

found: C 72.20, H 4.90. 
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2.3.14 Synthesis of 1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’yl)-
perfluorocyclopentene {8F} 

 

A very limited amount of 1,2-Bis(5’-chloro-2’-methylthien-3’yl)perflouro-

cyclopentene (v) was available.  Therefore, an alternative synthetic approach, to the 

method used for the perhydrocyclopentene switch, was employed in order to attach 

benzene-ethynylferrocene onto the perfluorocyclopentene switch. 

 

• Synthesis of 1-(ferrocenylethynyl)-4-bromobenzene (xi) 

 

 

 
 

Scheme 2.18: Synthesis of 1-(3-ferrocenylethynyl)-4-bromobenzene (xi) 

 

 

The same synthetic method was employed as described for (x), starting with   

Anhydrous DMF (75 mL), anhydrous triethylamine (9 mL), distilled, dry THF (9 mL) 

and 1-iodo-4-bromobenzene (0.200 g, 0.707 mmol).  Subsequently, CuI (0.113 g, 

0.593 mmol), TBAI (2.13 g, 5.766 mmol) and P((CH3)3Ph)3 (0.225 g, 0.579 mmol),  

Pd2(dba)3.CHCl3 (0.066 g, 0.064 mmol) and ethynylferrocene (0.1638 g, 0.778 mmol) 

were all added to the reaction flask as described previously.  Purification of the crude 

product was carried out by column chromatography, on silica gel, using 100% hexane, 

followed by 9:1, then 8:1 hexane:CH2Cl2, as the eluent, yielding an orange product 

(0.1508 g, 58%).  
1
H NMR (400 MHz, (CD3)2CO) δ = 4.25 (s, 5H, Fc-Cp), 4.32 (t, 

J=1.8 Hz, 2H, Fc-H3,4), 4.52 (t, J=1.8 Hz, 2H, Fc-H2,5), 7.43 (d, J=8.6 Hz, 2H, 

phenyl-H2,6), 7.57 (d, J=8.6 Hz, 2H, phenyl-H3,5) ppm.  
13

C NMR (150 MHz, 

CDCl3) δ = 65.19 (s, 1C, Cq), 69.27 (s, 2C, CH), 70.29 (s, 5C, CH), 71.63 (s, 2C, 

CH), 84.73 (s, 1C, Cq), 89.74 (s, 1C, Cq), 121.73 (s, 1C, Cq), 122.91 (s, 1C, Cq), 

131.52 (s, 2C, CH), 132.83 (s, 2C, CH).  Anal. calc. for C18H13FeBr (%): C 59.13, H 

3.58; found: C 59.04, H 3.68. 
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• Synthesis of 1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-yl)-

perfluorocyclopentene {8F} 

 

 
 

Scheme 2.19: Synthesis of 1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-yl)-

perfluorocyclopentene {8F} 

 

The same reaction procedure was followed as that described for 2F.  1,2-Bis(5’-

chloro-2’-methylthien-3’-yl)perfluorocyclopentene (v) (0.1469 g, 0.336 mmol), t-

butyllithium (0.49 mL of 1.7M solution in hexane, 0.84 mmol) and B(OBu)3 (0.232 

mL, 1.01 mmol) were dissolved in diethyl ether (15 mL) and reacted to form a boronic 

ester intermediate.  The boronic ester intermediate was added into a separate flask 

containing 1-(ferrocenylethynyl)-4-bromobenzene (0.2702 g, 0.74 mmol), Pd(PPh3)4 

(0.0413 g, 0.037 mmol), 2M Na2CO3 (4 mL) and ethylene glycol (4 drops) in diethyl 

ether (40 mL).  Following an overnight reflux, the crude product was worked-up and 

purified on a silica gel column, using a solvent mixture of 9:1, followed by 8:2, 

hexane:CH2Cl2.  Fraction 4 was collected from the column, and the pure product was 

obtained as an orange solid (0.1147 g, 36%).  
1
H NMR (400 MHz, (CD3)2SO) δ = 2.00 

(s, 6H, CH3), 4.28 (s, 10H, Fc-Cp), 4.36 (t, J=1.8 Hz, 4H, Fc-H3,4), 4.59 (t, J=1.8 Hz, 

4H, Fc-H2,5), 7.51 (d, J=8.4 Hz, 4H, phenyl-H2,6), 7.60 (s, 2H, thienyl-H4), 7.66 (d, 

J=8.4 Hz, 4H, phenyl-H3,5) ppm.  
13

C NMR (150 MHz, CDCl3) δ = 14.79 (s, 2C, 

CH3), 65.64 (s, 2C, Cq), 69.45 (s, 4C, CH), 70.51 (s, 10C, CH), 71.84 (s, 4C, CH), 

85.63 (s, 2C, Cq), 90.07 (s, 2C, Cq), 122.77 (s, 2C, CH), 123.56 (s, 2C, Cq), 125.43 

(s, 4C, CH), 126.11 (s, 2C, Cq), 132.08 (s, 4C, CH), 132.51 (s, 2C, Cq), 141.81 (s, 2C, 

Cq) 141.86 (s, 2C, Cq) ppm (C-F resonances not located).  
19

F NMR (376.5 MHz, 

CDCl3) δ = -109.96 (t, J=5.1 Hz, 4F), -131.78 (quintet, J=5.1 Hz, 2F).  Anal. calc. for 

C51H34F6S2Fe2 (%): C 65.40, H 3.66; found: C 63.16, H 3.67. 
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Co2(CO)6 Complexes 

 

The Co2(CO)6 complexes were characterised by 
1
H NMR, 

19
F NMR, IR spectroscopy 

and elemental analysis.  However, accurate 
13

C NMR spectra could not be obtained 

due to the instability of the cobalt carbonyl complexes in deuterated chloroform over 

the time-scale of the 
13

C NMR experiments (hours). 

 

2.3.15 Synthesis of 1,2-Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)-
cyclopentene [Co2(CO)6]2 {3H} 

 

 

 
 

 
Scheme 2.20: Synthesis of 1,2-Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)- 

cyclopentene [Co2(CO)6]2 {3H} 

 

 

A 100 ml oven-dried round-bottomed flask was filled with a solution of 1,2-Bis(5’-

(3’’-ethynylthiophene)-2’-methylthien-3’-yl)-cyclopentene (1H) (0.08 g, 0.169 

mmol), dissolved in hexane (20 mL) and dry THF (15 mL), and the solution was 

purged with nitrogen for 20 minutes.  Co2(CO)8 (0.127 g, 0.372 mmol) was weighed 

out under nitrogen, and added to the flask.  The reaction mixture was allowed to stir 

overnight at room temperature, under an inert atmosphere.  The solvent was removed 

under reduced pressure, and the crude product was purified on silica gel, and eluted 

with 100% hexane, followed by 9:1 hexane:diethyl ether.  A pure brown/black product 

was obtained (0.1432 g, 81%).  
1
H NMR (400 MHz, (CD3)2CO): δ = 2.03 (s, 6H, 

CH3), 2.07 (quintet, J=7.5 Hz, 2H, CH2), 2.84 (t, J=7.5 Hz, 4H, CH2), 7.25 (s, 2H, 

thienyl-H4), 7.36 (dd, J=5 Hz, 1.2 Hz, 2H, ethynylthiophene-H5), 7.62 (dd, J=5 Hz, 3 

Hz, 2H, ethynyl-thiophene-H4), 7.82 (dd, J=3 Hz, 1.2 Hz, 2H, ethynylthiophene-H2) 

ppm.  Anal. calc. for C39H20S4O12Co4 (%): C 44.88, H 1.93; found: C 43.85, H 2.08.  

IR (THF, cm
-1

) νCO = 2089, 2055, 2025.   
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2.3.16 Synthesis of 1,2-Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)-
perfluorocyclopentene [Co2(CO)6]2 {3F} 

 

 

 
 

 
Scheme 2.21: Synthesis of 1,2-Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)- 

perfluorocyclopentene [Co2(CO)6]2 {3F} 

 

 

1,2-Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)perfluorocyclopentene (1F) 

(0.16 g, 0.276 mmol) and Co2(CO)8 (0.207 g, 0.606 mmol) were reacted together in 

hexane (30 mL) and THF (20 mL), under the same conditions as described for 3H.  

Purification of the crude product was achieved by column chromatography on silica 

gel, using 100% hexane as the eluent, yielding a dark brown/black solid (0.1564 g, 

49%).  
1
H NMR (400 MHz, (CD3)2CO): δ = 2.08 (s, 6H, CH3), 7.36 (dd, J=5.1 Hz, 1.4 

Hz, 2H, ethynylthiophene-H5), 7.51 (s, 2H, thienyl-H4), 7.65 (dd, J=5.1 Hz, 2.9 Hz, 

2H, ethynylthiophene-H4), 7.84 (dd, J=2.9 Hz, 1.4 Hz, 2H, ethynylthiophene-H2) 

ppm.  
19

F NMR (376.5 MHz, CDCl3) δ = -110.06 (t, J=5.0 Hz, 4F), -131.79 (quintet, 

J=5.0 Hz, 2F).  Anal. calc. for C39H14F6S4O12Co4 (%): C 40.68, H 1.23; found: C 

39.76, H 1.33.  IR (THF, cm
-1

) νCO = 2092, 2058, 2029.   
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2.3.17 Synthesis of the closed-ring isomer of 1,2-Bis(5’-(3’’-ethynylthiophene)-2’-
methylthien-3’-yl)-perfluorocyclopentene [Co2(CO)6]2 {3bF} 

 

The closed-ring isomer 3bF was synthesised in order to elucidate the photochemical 

and electrochemical results of the open-ring isomer 3F, hence only a small amount of 

this compound was made.  Therefore 3bF was characterised by 
1
H NMR and IR 

spectroscopy only.  The 
13

C NMR, 
19

F NMR and elemental analysis data were not 

obtained for this compound. 
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Scheme 2.22: Synthesis of the closed-ring isomer of 1,2-Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-

3’-yl)-perfluorocyclopentene [Co2(CO)6]2 {3bF} 

 

1,2-Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)perfluorocyclopentene (1Fo) 

(0.01 g, 0.017 mmol) was irradiated with UV light at 313 nm in deuterated acetone, 

and was monitored in the 
1
H NMR until the open-ring isomer converted to the closed-

ring isomer (1Fc).  The solvent was removed, and the closed-ring isomer 1Fc was 

dissolved in a degassed solution of hexane (12 mL) and THF (3 mL) in the dark.  

Co2(CO)8 (0.15 g, 0.043 mmol) was added to the reaction flask, and the mixture was 

stirred overnight, under an inert atmosphere, in the dark.  The crude product was 

purified on a silica gel column (covered with tin-foil), and eluted with 100% hexane, 

followed by 9:1 hexane:CH2Cl2.  A dark blue product was obtained (0.009 g, 45%).  

1
H NMR (400 MHz, (CD3)2CO): δ = 2.30 (s, 6H, CH3), 6.67 (s, 2H, thienyl-H4), 7.36 

(dd, J=5 Hz, 1.4 Hz, 2H, ethynylthiophene-H5), 7.65 (dd, J=5 Hz, 2.9 Hz, 2H, 

ethynylthiophene-H4), 7.87 (dd, J=2.9 Hz, 1.4 Hz, 2H, ethynylthiophene-H2) ppm.  

IR (THF, cm
-1

) νCO = 2094, 2063, 2035.     
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2.3.18 Synthesis of 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-methylthien-
3’-yl)cyclopentene [Co2(CO)6]2 {4H} 

 

 

 
 

 

Scheme 2.23: Synthesis of 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-methylthien-3’-yl)-

cyclopentene [Co2(CO)6]2 {4H} 

 

 

Using the same procedure as described for 3H, 1,2-Bis(5’-(4’’-phenyl-3’’’-

ethynylthiophene)-2’-methylthien-3’-yl)-cyclopentene (2H) (0.100 g, 0.16 mmol) and 

Co2(CO)8 (0.121 g, 0.352 mmol) were reacted together.  The crude product was 

purified on silica gel, with 100% hexane, followed by 9:1 hexane:diethyl ether, 

yielding a black solid as the pure product (0.174 g, 91%).  
1
H NMR (400 MHz, 

(CD3)2CO): δ = 2.05 (s, 6H, CH3), 2.09 (quintet, J=7.4 Hz, 2H, CH2), 2.90 (t, J=7.4 

Hz, 4H, CH2), 7.35 (m, 4H, thienyl-H4 & ethynylthiophene-H5), 7.63-7.69 (m, 10H, 

ethynylthiophene-H4 & phenyl-H2,3,5,6), 7.80 (dd, 2H, J=3 Hz, 1.2 Hz, 

ethynylthiophene-H2) ppm.  Anal. calc. for C51H28S4O12Co4 (%): C 51.23, H 2.36; 

found: C 51.89, H 3.15.  IR (THF, cm
-1

) νCO = 2089, 2054, 2025. 
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2.3.19  Synthesis of the closed-ring isomer of 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynyl-
thiophene)-2’-methylthien-3’-yl)cyclopentene [Co2(CO)6]2 {4bH} 

 

In order to aid the analysis of the photochemical and electrochemical results of the 

open-ring isomer 4H, a small amount of the closed-ring isomer 4bH was synthesised, 

and the resulting compound was characterised by 
1
H NMR and IR spectroscopy.   
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Scheme 2.24: Synthesis of the closed-ring isomer of 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-

methylthien-3’-yl)-cyclopentene [Co2(CO)6]2 {4bH} 

 

 

The open-ring isomer of 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-

methylthien-3’-yl)-cyclopentene (2Ho) (0.01 g, 0.016 mmol) was converted to the 

closed-ring isomer 4Hc following irradiation with UV light (λ=313 nm) in deuterated 

acetone, whilst monitoring in the 
1
H NMR.  4Hc was reacted with Co2(CO)8 (0.014 g, 

0.04 mmol), in a solvent mixture of hexane (12 mL) and THF (3 mL), following the 

same reaction procedure as described for 3bF.  Purification of the crude product was 

carried out on a silica gel column, and eluted with 100% hexane, followed by 9:1 

hexane:CH2Cl2, yielding a dark purple product (0.015 g, 78%).  
1
H NMR (400 MHz, 

(CD3)2CO): δ = 2.09 (s, 6H, CH3), 2.12 (quintet, J=7.4 Hz, 2H, CH2), 2.92 (t, J=7.4 

Hz, 4H, CH2), 6.82 (s, 2H, thienyl-H4), 7.35 (dd, J=5 Hz, 1.2 Hz, 2H, 

ethynylthiophene-H5), 7.65-7.72 (m, 10H, ethynylthiophene-H4 & phenyl-H2,3,5,6), 

7.82 (dd, J=3 Hz, 1.2 Hz, 2H, ethynylthiophene-H2) ppm.   IR (THF, cm
-1

) νCO = 

2089, 2055, 2026.   
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2.3.20 Synthesis of 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-methylthien-
3’-yl)-perfluorocyclopentene [Co2(CO)6]2 {4F} 

 

 

 
 

 
Scheme 2.25: Synthesis of 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-methylthien-3’-yl)-

perfluorocyclopentene [Co2(CO)6]2 {4F} 

 

 

1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-methylthien-3’-yl)perfluoro-

cyclopentene (2F) (0.06 g, 0.082 mmol) and Co2(CO)8 (0.062 g, 0.180 mmol) were 

reacted together using the same method as described for 3H.  Column 

chromatography was used to purify the crude product, using silica gel and a solvent 

mixture of 9:1 hexane:CH2Cl2, yielding a dark brown/black solid (0.0137 g, 13%).  
1
H 

NMR (400 MHz, (CD3)2CO): δ = 2.04 (s, 6H, CH3), 7.35 (dd, J=5 Hz, 1.3 Hz, 2H, 

ethynylthiophene-H5), 7.61 (s, 2H, thienyl-H4), 7.65 (dd, J=5 Hz, 3 Hz, 2H, 

ethynylthiophene-H4), 7.73-7.78 (m, 8H, phenyl-H2,3,5,6), 7.82 (dd, J=3 Hz, 1.3 Hz, 

2H, ethynylthiophene-H2) ppm.  
19

F NMR (376.5 MHz, CDCl3) δ = -110.04 (t, J=5.0 

Hz, 4F), -131.81 (quintet, J=5.0 Hz, 2F).  IR (THF, cm
-1

) νCO = 2090, 2055, 2026. 
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2.3.21 Synthesis of 1,2-Bis(5’-ethynylferrocene-2’-methylthien-3’-yl)-
cyclopentene [Co2(CO)6]2 {9H} 

 

 

 

 
 

 

 
Scheme 2.26: Synthesis of 1,2-Bis(5’-ethynylferrocene-2’-methylthien-3’-yl)- 

cyclopentene [Co2(CO)6]2 {9H} 
 

 

Co2(CO)8 (0.112 g, 0.325 mmol) was added to a flask containing 1,2-Bis(5’-

ethynylferrocene-2’-methylthien-3’-yl)-cyclopentene (7H) (0.100 g 0.148 mmol), 

dissolved in  hexane (30 mL) and dry THF (20 mL), under the same reaction 

conditions as described for 3H.  The crude product was purified by column 

chromatography, on silica gel.  100% hexane was used as the mobile phase initially, 

and the polarity was increased to 9:1 hexane:diethyl ether, yielding a black solid 

(0.149 g, 81%).  
1
H NMR (400 MHz, (CD3)2CO) δ = 2.08 (s, 6H, CH3), 2.15 (quintet, 

J=7.3 Hz, 2H, CH2), 2.95 (t, J=7.3 Hz, 4H, CH2), 4.28 (s, 10H, Fc-Cp), 4.51 (t, J=1.8 

Hz, 4H, Fc-H3,4), 4.575 (t, J=1.8 Hz, 4H, Fc-H2,5), 7.47 (s, 2H, thienyl-H4) ppm.  

Anal. calc. for C51H32S2Fe2O12Co4 (%): C 49.11, H 2.59; found: C 49.16, H 3.01.  IR 

(THF, cm
-1

) νCO = 2086, 2050, 2022.     
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2.3.22 Synthesis of 1,2-Bis(5’-ethynylferrocene-2’-methylthien-3’-yl)perfluoro-
cyclopentene [Co2(CO)6]2 {9F} 
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Scheme 2.27: Synthesis of 1,2-Bis(5’-ethynylferrocene-2’-methylthien-3’-yl)perfluoro- 

cyclopentene [Co2(CO)6]2 {9F} 
 

Using the same procedure as described for 3H, 1,2-Bis(5’-ethynylferrocene-2’-

methylthien-3’-yl)perfluorocyclopentene (7F) (0.1928 g, 0.246 mmol) was reacted 

with Co2(CO)8 (0.1848 g, 0.541 mmol), in hexane (40 mL) and dry THF (30 mL).  

The crude was purified on a silica gel column with 100% hexane, followed by 9:1 

hexane:CH2Cl2, and a black solid was obtained (0.159 g, 48%).  
1
H NMR (400 MHz, 

(CD3)2CO) δ = 2.14 (s, 6H, CH3), 4.28 (s, 10H, Fc-Cp), 4.54 (t, J=1.5 Hz, 4H, Fc-

H3,4), 4.58 (t, J=1.5 Hz, 4H, Fc-H2,5), 7.74 (s, 2H, thienyl-H4) ppm.  
19

F NMR 

(376.5 MHz, CDCl3) δ = -109.88 (t, J=5.0 Hz, 4F), -131.69 (quintet, J=5.0 Hz, 2F).  

Anal. calc. for C51H26F6S2Fe2O12Co4 (%): C 45.20, H 1.93; found: C 46.57, H 2.16.  

IR (THF, cm
-1

) νCO = 2089, 2053, 2026.   
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2.3.23 Synthesis of 1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-
yl)-cyclopentene [Co2(CO)6]2  {10H} 

 

 

 

 

 

Scheme 2.28: Synthesis of 1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-yl)- 

cyclopentene [Co2(CO)6]2  {10H} 

 

1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-yl)-cyclopentene (8H) 

(0.085 g, 0.103 mmol) and Co2(CO)8 (0.0775 g, 0.227 mmol) were reacted together 

under the same conditions as described for 3H.  Column chromatography was used to 

purify the crude product, using silica gel and 100% hexane, followed by 9:1 

hexane:CH2Cl2.  The pure product was obtained as a black solid (0.0945 g, 66%).  
1
H 

NMR (400 MHz, (CD3)2CO) δ = 2.07 (s, 6H, CH3), 2.14 (quintet, J=7.4 Hz, 2H, CH2), 

2.91 (t, J=7.4 Hz, 4H, CH2), 4.25 (s, 10H, Fc-Cp), 4.53 (t, J=1.8 Hz, 4H, Fc-H3,4), 

4.59 (t, J=1.8 Hz, 4H, Fc-H2,5), 7.41 (s, 2H, thienyl-H4), 7.77 (d, J=8.4 Hz, 4H, 

phenyl-H2,6), 7.98 (d, J=8.4 Hz, 4H, phenyl-H3,5) ppm.  Anal. calc. for 

C63H40S2Fe2O12Co4 (%): C 54.06, H 2.88; found: C 51.16, H 3.08.  IR (THF, cm
-1

) 

νCO = 2086, 2050, 2022.   
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2.3.24 Synthesis of 1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-
yl)perfluorocyclopentene [Co2(CO)6]2  {10F} 

 

 

 

 
 

 
Scheme 2.29: Synthesis of 1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-yl)- 

perfluorocyclopentene [Co2(CO)6]2  {10F} 

 

 

The same procedure as described for 3H was followed, starting with 1,2-Bis(5’-(4’’-

phenyl-ethynylferrocene)-2’-methylthien-3’-yl)perfluorocyclopentene (8F) (0.04 g 

0.043 mmol) and Co2(CO)8 (0.032 g, 0.094 mmol).  The crude product was purified 

on a silica gel column using 100% hexane, followed by 9:1 hexane:CH2Cl2, as the 

eluent and a black solid was obtained (0.059 g, 92%).  
1
H NMR (400 MHz, 

(CD3)2CO) δ = 2.11 (s, 6H, CH3), 4.26 (s, 10H, Fc-Cp), 4.54 (t, J=1.8 Hz, 4H, Fc-

H3,4), 4.61 (t, J=1.8 Hz, 4H, Fc-H2,5), 7.67 (s, 2H, thienyl-H4), 7.88 (d, J=8.4 Hz, 

4H, phenyl-H2,6), 8.04 (d, J=8.4 Hz, 4H, phenyl-H3,5) ppm.  
19

F NMR (376.5 MHz, 

CDCl3) δ = -110.02 (t, J=5.0 Hz, 4F), -131.74 (quintet, J=5.0 Hz, 2F).  Anal. calc. for 

C63H34F6S2Fe2O12Co4 (%): C 50.19, H 2.27; found: C 47.72, H 2.37.  IR (THF, cm
-1

) 

νCO = 2086, 2051, 2022.   
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2.3.25 Synthesis of the closed-ring isomer of 1,2-Bis(5’-(4’’-phenyl-ethynyl-
ferrocene)-2’-methylthien-3’-yl)perfluorocyclopentene [Co2(CO)6]2  

{10bF} 

 

In order to elucidate the photochemical results obtained for the open-ring isomer 10F, 

a small amount of its corresponding closed-ring isomer 10bF was synthesised.  Due to 

the limited amount of 10bF available for further studies, this compound was 

characterised by 
1
H NMR and IR spectroscopy only.   

 

 

Scheme 2.30: Synthesis of the closed-ring isomer of 1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-

methylthien-3’-yl)-perfluorocyclopentene [Co2(CO)6]2  {10bF}. 

 

1,2-Bis(5’-(4’’-phenyl-ethynyl-ferrocene)-2’-methylthien-3’-yl)perfluorocyclopentene 

{8F} (0.01 g, 0.011 mmol) was irradiated with UV light at λ = 313 nm, in deuterated 

acetone, in order to induce cyclisation from the open-ring isomer {8Fo} to the closed-

ring isomer {8Fc}.  This process was followed using 
1
H NMR spectroscopy.   The 

corresponding Co2(CO)6 complex {10bF} was synthesised by reacting 8Fc with 

Co2(CO)8 (0.009 g, 0.027 mmol), in a degassed solution of hexane (12 mL) and THF 

(3 mL), and the reaction mixture was stirred under N2 overnight, in the dark.   

Purification of the crude product was carried out on a silica gel column, using 9:1 

hexane:CH2Cl2, followed by 8:2 hexane:CH2Cl2, as the eluent.  A dark blue product 

was obtained (0.005 g, 31%).  
1
H NMR (400 MHz, (CD3)2CO) δ = 2.27 (s, 6H, CH3), 

4.27 (s, 10H, Fc-Cp), 4.56 (t, J=1.8 Hz, 4H, Fc-H3,4), 4.62 (t, J=1.8 Hz, 4H, Fc-H2,5), 

7.09 (s, 2H, thienyl-H4), 7.97 (d, J=8.4 Hz, 4H, phenyl-H2,6), 8.10 (d, J=8.4 Hz, 4H, 

phenyl-H3,5) ppm.  IR (THF, cm
-1

) νCO = 2087, 2052, 2024.   
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Co2(CO)4dppm Complexes 

 
 

2.3.26 Synthesis of 1,2-Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)-
cyclopentene [Co2(CO)4dppm]2 {5H} 

 
 

Scheme 2.31: Synthesis of 1,2-Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)- 

cyclopentene [Co2(CO)4dppm]2 {5H}; and inset, the structure of bis(diphenylphosphino)methane 

 

Bis(diphenylphosphino)methane {dppm} (0.101 g, 0.263 mmol) was added to heptane 

(65 mL) in an oven-dried round-bottomed flask and the solution was purged with 

nitrogen for 20 minutes.  The reaction mixture was heated and, once the solution 

began to reflux, 1,2-Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)-cyclopentene 

[Co2(CO)6]2 (3H) (0.1247 g, 0.119 mmol) was added to the flask.  The solution was 

left to reflux for 40 minutes under an inert atmosphere.  Once the flask had cooled, the 

solvent was removed under vacuum, and the product was purified by column 

chromatography.  It was passed through a silica gel column, with a mobile phase 

consisting of 7:3 hexane:CH2Cl2, and the pure product was obtained as a pink/brown 

solid (0.0662 g, 33%).  
1
H NMR (600 MHz, (CD3)2CO): δ = 1.84 (s, 6H, CH3), 2.03 

(quintet, J=7.5 Hz, 2H, CH2), 2.67 (t, J=7.5 Hz, 4H, CH2), 3.64 (t, J=10.6 Hz, 4H, 

dppm-CH2), 6.82 (s, 2H, thienyl-H4), 7.15-7.44 (m, 46H, ethynylthiophene-H2,4,5 & 

phenyl-dppm) ppm.  
13

C NMR (150 MHz, CDCl3) δ = 14.38 (s, 2C, CH3), 22.82 (s, 

1C, CH2), 34.36 (t, 2C, CH2), 38.94 (s, 2C, CH2), 83.19 (s, 2C, Cq), 88.12 (s, 2C, Cq), 

121.24 (s, 2C, CH), 125.43 (s, 2C, CH), 127.80 (s, 2C, CH), 128.26 (m, 8C, CH), 

128.36 (m, 8C, CH), 129.27 (s, 2C, CH), 129.51 (s, 4C, CH), 129.66 (s, 4C, CH), 

131.50 (m, 8C, CH), 131.97 (m, 8C, CH), 134.38 (s, 2C, Cq), 134.44 (s, 2C, Cq), 

136.19 (s, 2C, Cq), 136.44 (br, 4C, Cq), 136.97 (br, 4C, Cq), 142.17 (s, 2C, Cq), 

143.16 (s, 2C, Cq), 204.43 (br, 4C, CO), 207.51 (br, 4C, CO) ppm.  
31

P NMR 

(242.9 MHz, CDCl3): δ = 37.37 (s, 4P) ppm.  Anal. calc. for C85H64S4O8Co4P4 (%): C 

60.04, H 3.79; found: C 56.03, H 3.94.  IR (THF, cm
-1

) νCO = 2022, 1998, 1971, 1952 

(sh).     
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2.3.27 Synthesis of 1,2-Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)-
perflourocyclopentene [Co2(CO)4dppm]2 {5F} 

 

 

 
 

Scheme 2.32: Synthesis of 1,2-Bis(5’-(3’’-ethynylthiophene)-2’-methylthien-3’-yl)- 

perfluorocyclopentene [Co2(CO)4dppm]2 {5F} 

 

 

Using the same procedure as described for 5H, 1,2-Bis(5’-(3’’-ethynylthiophene)-2’-

methylthien-3’-yl)perflourocyclopentene [Co2(CO)6]2 (3F) (0.1138 g, 0.099 mmol) 

and bis(diphenylphosphino)methane (0.0835 g, 0.217 mmol) were reacted together, 

and the crude product was purified on a silica gel column, with a solvent mixture of 

7:3 hexane:CH2Cl2.  A pink/brown solid was obtained (0.0734 g, 41%).  
1
H NMR 

(400 MHz, (CD3)2CO): δ = 1.87 (s, 6H, CH3), 3.58-3.75 (m, 4H, dppm-CH2), 7.04 (s, 

2H, thienyl-H4), 7.13-7.50 (m, 46H, ethynylthiophene-H2,4,5 & phenyl-dppm) ppm.  

13
C NMR (150 MHz, CDCl3) δ = 14.28 (s, 2C, CH3), 34.29 (t, 2C, CH2), 81.82 (s, 2C, 

Cq), 88.78 (s, 2C, Cq), 121.54 (s, 2C, CH), 124.89 (s, 2C, Cq), 125.62 (s, 2C, CH), 

128.33 (m, 8C, CH), 128.43 (m, 8C, CH), 128.84 (s, 2C, CH), 129.06 (s, 2C, CH), 

129.65 (s, 4C, CH), 129.77 (s, 4C, CH), 131.30 (m, 8C, CH), 131.96 (m, 8C, CH), 

136.04 (br, 4C, Cq), 136.77 (br, 4C, Cq), 141.10 (s, 2C, Cq), 142.80 (s, 2C, Cq) 

145.35 (s, 2C, Cq), 203.46 (br, 4C, CO), 204.81 (br, 4C, CO) ppm.  
19

F NMR (376.5 

MHz, CDCl3) δ = -110.07 (t, J=5.3 Hz, 4F), -131.69 (quintet, J=5.3 Hz, 2F).  
31

P 

NMR (242.9 MHz, CDCl3): δ = 36.90 (s, 4P) ppm.  Anal. calc. for 

C85H58F6S4O8Co4P4 (%): C 56.46, H 3.23; found: C 56.98, H 3.49.  IR (THF, cm
-1

) 

νCO = 2025, 2000, 1974, 1954 (sh).     
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2.3.28 Synthesis of 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’- 
methylthien-3’-yl)-cyclopentene [Co2(CO)4dppm]2 {6H} 

 

 

 
 

Scheme 2.33: Synthesis of 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-methylthien-3’-yl)-

cyclopentene [Co2(CO)4dppm]2 {6H} 
 

1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-methylthien-3’-yl)-cyclopentene 

[Co2(CO)6]2 (4H) (0.113 g, 0.094 mmol) and bis(diphenylphosphino)methane (0.08 g, 

0.208 mmol) were added to a reaction flask and refluxed in heptane (65 mL) under the 

same reaction conditions as described for 5H.  The crude product was purified by 

passing it through a silica gel column, using a solvent mixture of 7:3 hexane:CH2Cl2 

as the eluent, yielding a pink-brown solid (0.096 g, 55%).  
1
H NMR (400 MHz, 

(CD3)2CO): δ = 2.03 (s, 6H, CH3), 2.09 (quintet, J=7.5 Hz, 2H, CH2), 2.89 (t, J=7.5 

Hz, 4H, CH2), 3.58 (t, J=10.4 Hz, 4H, dppm-CH2), 7.02 (s, 2H, thienyl-H4), 7.13-7.49 

(m, 54H, phenyl-H2,3,5,6 & ethynylthiophene-H2,4,5 & phenyl-dppm) ppm.  
13

C 

NMR (150 MHz, CDCl3) δ = 14.72 (s, 2C, CH3), 23.11 (s, 1C, CH2), 34.34 (t, 2C, 

CH2), 38.78 (s, 2C, CH2), 87.58 (s, 2C, Cq), 94.06 (s, 2C, Cq), 121.11 (s, 2C, CH), 

123.63 (s, 2C, CH), 125.41 (s, 4H, CH), 125.60 (s, 2C, CH), 128.25 (m, 8C, CH), 

128.39 (m, 8C, CH), 129.30 (s, 2C, CH), 129.52 (s, 4C, CH), 129.65 (s, 4C, CH), 

129.73 (s, 4C, CH), 131.40 (m, 8C, CH), 131.91 (m, 8C, CH), 132.27 (s, 2C, Cq), 

134.28 (s, 2C, Cq), 134.69 (s, 2C, Cq), 136.03 (br, 4C, Cq), 136.92 (s, 2C, Cq), 

137.10 (br, 4C, Cq), 140.11 (s, 2C, Cq), 142.03 (s, 2C, Cq), 143.28 (s, 2C, Cq), 

204.25 (br, 4C, CO), 205.11 (br, 4C, CO) ppm.  
31

P NMR (242.9 MHz, CDCl3): δ = 

36.92 (s, 4P) ppm.  Anal. calc. for C97H72S4O8Co4P4 (%): C 62.89, H 3.92; found: C 

62.15, H 4.08.  IR (THF, cm
-1

) νCO = 2021, 1996, 1970, 1949 (sh).    

 

*NOTE:  The perfluorocyclopentene derivative of 6H was not synthesised as there 

was not enough of the cobalt hexacarbonyl product (5F) available to carry out the 

synthesis. 
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2.3.29 Synthesis of 1,2-Bis(5’-ethynylferrocene-2’-methylthien-3’-yl)-
cyclopentene [Co2(CO)4dppm]2 {11H} 

 

 

 
 

 
Scheme 2.34: Synthesis of 1,2-Bis(5’-ethynylferrocene-2’-methylthien-3’-yl)-cyclopentene  

[Co2(CO)4dppm]2 {11H} 
 

 

Following the same synthetic method as described for 5H, 2-Bis(5’-ethynylferrocene-

2’-methylthien-3’-yl)-cyclopentene [Co2(CO)6]2 (9H) (0.100 g, 0.08 mmol) was 

reacted with bis(diphenylphosphino)methane (0.068 g, 0.176 mmol).  The crude 

product was purified on a silica gel column, and was eluted with 100% hexane, 

followed by 9:1, and then 8:2, hexane:diethyl ether.  The 3
rd

 band was collected, and a 

dark pink/brown compound was obtained as the pure product (0.119 g, 78%).  
1
H 

NMR (400 MHz, (CD3)2CO) δ = 2.09 (s, 6H, CH3), 2.14 (quintet, J=7.5 Hz, 2H, CH2), 

2.78 (t, J=7.5 Hz, 4H, CH2), 3.60-3.69 (m, 4H, CH2-dppm), 4.10 (s, 10H, Fc-Cp), 4.35 

(t, J=1.8 Hz, 4H, Fc-H3,4), 4.42 (t, J=1.8 Hz, 4H, Fc-H2,5), 7.01 (s, 2H, thienyl-H4), 

7.16-7.43 (m, 40H, phenyl-dppm) ppm.  
13

C NMR (150 MHz, CDCl3) δ = 14.22 (s, 

2C, CH3), 22.47 (s, 1C, CH2), 34.95 (t, 2C, CH2), 39.53 (s, 2C, CH2), 65.41 (s, 2C, 

Cq), 68.29 (s, 4C, CH), 69.50 (s, 10C, CH), 69.93 (s, 4C, CH), 85.46 (s, 2C, Cq), 

90.17 (s, 2C, Cq),  127.57 (s, 2C, CH), 128.19 (m, 8C, CH), 128.28 (m, 8C, CH), 

129.51 (s, 8C, CH), 131.67 (m, 8C, CH), 132.02 (m, 8C, CH), 134.10 (s, 2C, CH), 

134.68 (s, 2C, CH), 136.05 (s, 2C, CH), 136.49 (br, 4C, Cq), 136.92 (br, 4C, Cq), 

143.31 (s, 2C, Cq), 204.13 (br, 4C, CO), 205.12 (br, 4C, CO) ppm.  
31

P NMR (242.9 

MHz, CDCl3) δ = 36.05 (s, 4P) ppm.  Anal. calc. for C97H76S2Fe2O8Co4P4 (%): C 

61.18, H 4.02; found: C 61.35, H 4.25.  IR (THF, cm
-1

) νCO = 2019, 1994, 1968, 1949 

(sh).     
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2.3.30 Synthesis of 1,2-Bis(5’-ethynylferrocene-2’-methylthien-3’-yl)perflouro-
cyclopentene [Co2(CO)4dppm]2 {11F} 
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Scheme 2.35: Synthesis of 1,2-Bis(5’-ethynylferrocene-2’-methylthien-3’-yl)perfluoro- 

cyclopentene [Co2(CO)4dppm]2 {11F} 
 

 

1,2-Bis(5’-ethynylferrocene-2’-methylthien-3’-yl)perflouro-cyclopentene [Co2(CO)6]2 

(9F) (0.0814 g, 0.060 mmol) and bis(diphenylphosphino)methane (0.0508 g, 0.132 

mmol) were refluxed in heptane (65 mL) under the same conditions as described for 

5H.  Purification of the crude product was achieved by column chromatography, using 

a silica gel column and a solvent mixture of 7:3 hexane:CH2Cl2, yielding a dark 

pink/brown solid (0.03 g, 25%).  
1
H NMR (400 MHz, (CD3)2CO) δ = 1.97 (s, 6H, 

CH3), 3.60-3.78 (m, 4H, CH2-dppm), 4.08 (s, 10H, Fc-Cp), 4.37 (t, J=1.8 Hz, 4H, Fc-

H3,4), 4.42 (t, J=1.7 Hz, 4H, Fc-H2,5), 7.15-7.43 (m, 42H, thienyl-H4 & phenyl-

dppm) ppm.  
13

C NMR (150 MHz, CDCl3) δ = 14.68 (s, 2C, CH3), 34.26 (t, 2C, CH2), 

65.99 (s, 2C, Cq), 68.51 (s, 4C, CH), 69.43 (s, 10C, CH), 69.94 (s, 4C, CH), 82.18 (s, 

2C, Cq), 89.67 (s, 2C, Cq),  124.72 (s, 2C, CH), 124.94 (s, 2C, Cq), 128.17 (m, 8C, 

CH), 128.43 (m, 8C, CH), 129.44 (s, 4C, CH), 129.76 (s, 4C, CH), 130.94 (m, 8C, 

CH), 132.37 (m, 8C, CH), 136.24 (br, 4C, Cq), 137.43 (br, 4C, Cq), 141.60 (s, 2C, 

Cq), 146.53 (s, 2C, Cq), 203.37 (br, 4C, CO), 205.76 (br, 4C, CO) ppm (C-F 

resonances not located).  
19

F NMR (376.5 MHz, CDCl3) δ = -109.76 (t, J=5.0 Hz, 4F), 

-131.63 (quintet, J=5.0 Hz, 2F).  
31

P NMR (242.9 MHz, CDCl3) δ = 35.47 (s, 4P) 

ppm.  Anal. calc. for C97H70F6S2Fe2O8Co4P4 (%): C 57.90, H 3.51; found: C 55.79, H 

3.76.  IR (THF, cm
-1

) νCO = 2021, 1996, 1970, 1951 (sh).     
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2.3.31 Synthesis of 1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-
yl)cyclopentene [Co2(CO)4dppm]2  {12H} 

 

 

 

Scheme 2.36: Synthesis of 1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-yl)- 

cyclopentene [Co2(CO)4dppm]2  {12H} 

 

 

The same procedure as described for 5H was followed, starting with 1,2-Bis(5’-(4’’-

phenyl-ethynylferrocene)-2’-methylthien-3’-yl)cyclopentene [Co2(CO)6]2  (10H) (0.14 

g, 0.100 mmol) and bis(diphenylphosphino)methane (0.0846 g, 0.220 mmol).  The 

crude product was purified on a silica gel column, using a mixture of 7:3 

hexane:CH2Cl2 as the eluent, and a dark pink/brown compound was obtained (0.029 g, 

14%).  
1
H NMR (400 MHz, (CD3)2CO) δ = 2.08 (s, 6H, CH3), 2.15 (quintet, J=7.4 Hz, 

2H, CH2), 2.92 (t, J=7.4 Hz, 4H, CH2), 3.55 (t, J=10.7 Hz, 4H, dppm-CH2), 3.94 (s, 

10H, Fc-Cp), 4.32 (s, 8H, Fc-H2,3,4,5), 7.14-7.34 (m, 42H, phenyl-dppm, thienyl-

H4), 7.60 (d, J=8.1 Hz, 4H, phenyl-H2,6), 7.71 (d, J=8.1 Hz, 4H, phenyl-H3,5) ppm.  

13
C NMR (150 MHz, CDCl3) δ = 14.75 (s, 2C, CH3), 23.19 (s, 1C, CH2), 34.71 (t, 2C, 

CH2), 38.84 (s, 2C, CH2), 65.99 (s, 2C, Cq), 68.25 (s, 4C, CH), 69.33 (s, 10C, CH), 

70.27 (s, 4C, CH), 84.33 (s, 2C, Cq), 90.19 (s, 2C, Cq),  123.66 (s, 2C, CH), 125.20 (s, 

4C, CH), 128.24 (m, 16C, CH), 129.51 (s, 8C, CH), 130.33 (s, 4C, CH), 131.80 (m, 

16C, CH), 132.09 (s, 2C, Cq), 134.30 (s, 2C, Cq), 134.75 (s, 2C, Cq), 136.71 (br, 8C, 

Cq), 137.01 (s, 2C, Cq), 140.23 (s, 2C, Cq), 142.98 (s, 2C, Cq), 204.84 (br, 4C, CO), 

205.03 (br, 4C, CO) ppm.  
31

P NMR (242.9 MHz, CDCl3): δ = 36.28 (s, 4P) ppm.  

Anal. calc. for C109H84S2Fe2O8Co4P4 (%): C 63.67, H 4.12; found: C 63.74, H 4.34.  

IR (THF, cm
-1

) νCO = 2018, 1992, 1966, 1947 (sh).     
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2.3.32 Synthesis of 1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-
yl)perfluorocyclopentene [Co2(CO)4dppm]2  {12F} 

 

 

 
Scheme 2.37: Synthesis of 1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-yl)- 

cyclopentene [Co2(CO)4dppm]2  {12F} 

 

 

Under the same reaction conditions as described for 5H, 1,2-Bis(5’-(4’’-phenyl-

ethynylferrocene)-2’-methylthien-3’-yl)perfluorocyclopentene [Co2(CO)6]2  (10F) 

(0.055 g, 0.037 mmol) and bis(diphenylphosphino)methane (0.031 g, 0.081 mmol) 

were refluxed in heptane (65 mL).  The crude product was passed through a silica gel 

column, using 8:2 hexane:diethyl ether, and the pure product was obtained as a dark 

pink/brown solid (0.036 g, 45%).  
1
H NMR (400 MHz, (CD3)2CO) δ = 2.12 (s, 6H, 

CH3), 3.29-3.41 (m, J=10.7 Hz, 4H, dppm-CH2), 3.94 (s, 10H, Fc-Cp), 4.32-4.34 (m, 

8H, Fc-H2,3,4,5), 7.14-7.34 (m, 40H, phenyl-dppm), 7.59 (s, 2H, thienyl-H4), 7.70 (d, 

J=8.3 Hz, 4H, phenyl-H2,6), 7.78 (d, J=8.1 Hz, 4H, phenyl-H3,5) ppm.  
13

C NMR 

(150 MHz, CDCl3) δ = 14.57 (s, 2C, CH3), 34.57 (t, 2C, CH2), 66.95 (s, 2C, Cq), 

68.46 (s, 4C, CH), 69.50 (s, 10C, CH), 70.29 (s, 4C, CH), 83.71 (s, 2C, Cq), 89.36 (s, 

2C, Cq),  121.90 (s, 2C, CH), 125.44 (s, 4C, CH), 126.16 (s, 2C, Cq), 128.24 (m, 16C, 

CH), 129.51 (s, 4C, CH), 129.59 (s, 4C, CH), 130.43 (s, 4C, CH), 130.75 (s, 2C, Cq), 

131.81 (m, 16C, CH), 136.28 (br, 4C, Cq), 137.03 (br, 4C, Cq), 141.05 (s, 2C, Cq), 

142.75 (s, 2C, Cq), 144.34 (s, 2C, Cq), 204.91 (br, 4C, CO), 205.15 (br, 4C, CO) ppm 

(C-F resonances not located).  
19

F NMR (376.5 MHz, CDCl3) δ = -109.88 (t, J=4.9 

Hz, 4F), -131.77 (quintet, J=4.9 Hz, 2F).  
31

P NMR (242.9 MHz, CDCl3): δ = 36.26 (s, 

4P) ppm.  Anal. calc. for C109H78F6S2Fe2O8Co4P4 (%): C 60.49, H 3.63; found: C 

54.96, H 4.06.  IR (THF, cm
-1

) νCO = 2019, 1993, 1966, 1947 (sh).     
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Chapter 3 describes the photochromic behaviour of the perhydro- and 

perfluoro-switches, substituted with ethynylthiophene moieties:  1,2-Bis(5’-

(3’’-ethynylthiophene)-2’-methylthien-3’-yl)cyclopentene {1H}; 1,2-Bis(5’-

(3’’-ethynylthiophene)-2’-methylthien-3’-yl)perfluorocyclopentene {1F}; 

1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-methylthien-3’-yl)-

cyclopentene {2H}; 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-

methylthien-3’-yl)perfluorocyclopentene {2F}.  Photocyclisation to the 

closed-ring isomers, and photocycloreversion to the open-ring isomers, 

was monitored by UV-vis absorption and 
1
H NMR techniques.  The fatigue 

resistance, thermal stability and fluorescence properties of these switches 

were also examined.  The photochemical properties of the corresponding 

Co2(CO)6 complexes {3H,  3F, 3bF, 4H, 4bH, 4F}, and Co2(CO)4dppm 

complexes {5H, 5F, 6H} were investigated using UV-vis absorption and 

infra-red spectroscopy.  
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3.1 Introduction 

 

Photochromic molecules are of much interest due to their potential applications 

towards the development of various optoelectronic devices.
1,2

  As discussed 

previously in chapter 1 of this report, dithienylcyclopentene switches are promising 

candidates for such applications due to their thermal stability and high fatigue 

resistance properties.  Their luminescent properties are also of much interest as 

changes induced in their fluorescent behaviour, following photocyclisation, can be 

employed as a non-destructive readout method for use in such applications.  In light of 

this, such properties of diarylethene switches have been well documented in the 

literature, and a brief summary of the results found are detailed here. 

 

• Fatigue Resistance 

 

Photostability is a very important property of dithienylcyclopentene switches.  High 

fatigue resistant switches can undergo a number of colouring/bleaching cycles 

consecutively, without any sign of degradation of the switch.  Literature studies have 

reported that a large number of diarylethene switches have high fatigue resistance, 

with no degradation recorded after hundreds, or even thousands, of 

colouring/bleaching cycles.
3-5

  However, it is not always possible to monitor such a 

high number of cycles if an automatic setup is not available therefore some literature 

reports have described the results obtained after performing 5-10 consecutive 

cyclisation/cycloreversion cycles.
6-8

  Such experiments can deduce if a switch has 

very low fatigue resistance, as significant degradation can be observed after a few 

switching cycles.  

Lucas and de Jong et al reported the fatigue resistance of compounds 1-8,
6,7,9

 

represented in figure 3.1.  After five consecutive colouring/bleaching cycles they 

found that no degradation was observed for any of the compounds.  Subsequent 

analysis by de Jong et al
6
 revealed that the photostability of the perfluoro switch 1 was 

found to be 2-3 times higher then that of its perhydro-derivative 2.  They also found 

that attaching a dialdehyde group onto the 5-position of the thiophene rings on the 

dithienylcyclopentene switch, in place of the phenyl units, resulted in 8% degradation 
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of the switch after just one cycle, for both the perhydro and perfluoro analogues.
6,7,9

  

These results highlight that both various substituents on the thiophene rings, and the 

atoms on the cyclopentene ring, may effect the fatigue resistance properties of such 

switches.  Increased photostability for the perfluorinated-derivatives was also reported 

by Branda et al.
10

  Substitution of different groups onto the 2-positions of the 

thiophene units can also affect the photostability of such dithienylcyclopentene 

switches, as demonstrated by PU et al.
11

  When methyl groups were attached to the 2 

and 2’-positions of the thiophene rings, the switching molecule was found to degrade 

by 61% after 100 cycles, however, when replacing the methyl groups with n-propyl 

groups and hexyl groups, the percentage degradation decreased significantly to 16% 

and 32%, respectively, after 100 cycles.  Hence the order of increasing photostability 

was found to be CH3 < n-C6H13 < n-C3H7, thus highlighting the fact that by changing 

the alkyl chain length of the substituent at the 2-position of the thienyl rings can 

significantly improve the fatigue resistance character of such compounds.  

Furthermore, Irie et al
12

 demonstrated that the fatigue resistance of compound 1 (as 

illustrated in figure 3.1) was improved by substituting methyl groups at the 4 and 4’ 

positions of the thiophene rings.   

 

 

Figure 3.1: Represents structures of compounds 1-8 presented in the literature.
5-7,9,13,14

  Also illustrated 

here are the 2 and 2’ positions on the thiophene rings. 

 

Supplementary studies were undertaken to investigate this phenomenon, and Irie et 

al
12

 concluded that a decrease in the fatigue resistance properties of the 

dithienylcyclopentene switches is believed to be a consequence of the formation of a 

photochemical by-product during the photocyclisation/cycloreversion processes.  

Generation of this photochemically-induced by-product was later observed by Branda 

et al.
10

  Irie et al found that the formation of this by-product occurs due to 

rearrangement of the thiophene rings, resulting in a condensed system with two six-
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membered heterocyclic rings.
3,12

  The molecular structure of this by-product is shown 

in scheme 3.1.  This by-product forms from the closed-ring isomer, as is evidenced 

from the decrease in the yield of the open form during fatigue resistance 

experiments.
10,12

  Generation of the by-product can be observed by following the 

changes in the UV-vis absorption spectra during irradiation.  The absorption spectrum 

of the by-product is similar to that of the closed-ring isomer due to the similarities in 

the length of the π-conjugation system in both products.
10,12

  Evidence of this by-

product can also be observed in the aromatic region of the 
1
H NMR spectrum.

10
  The 

by-product appears to be photostable as it cannot undergo photobleaching back to the 

open-ring isomer.
10

  Patel et al
15

 performed theoretical calculations to predict the 

mechanism of the by-product formation and found two possible mechanisms based on 

diradical recoupling processes, which occur from the closed isomer.  

 

 
 
Scheme 3.1: Formation of the photostable by-product during UV irradiation processes, as reported by 

Irie at al.
12

  

 

 

• Thermal Stability  

 

The thermal stability of dithienylcyclopentene switches is measured by the rate of the 

thermally-induced cycloreversion process, from the closed to the open-ring isomer, or 

degradation processes if the case may be, at elevated temperatures.  A number of 

literature papers
5-7,9,13,14

 have reported the thermal stability properties of such 

dithienylethene switches, as represented in figure 3.1, and the results are summarised 

in table 3.1.   
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Table 3.1: The half-lives (t1/2) of compounds 1-8, at different temperatures, reported in the literature. 

 

Compound R1 R2 t1/2 at 60°C t1/2 at 80°C t1/2 at 100°C 

1
[a][b][c]

 F6 Ph - - - 

2
[a]

 H6 Ph - - 66 hrs 

3
[a][b][c]

 F6 Ph-OMe - - - 

4
[a]

 H6 Ph-OMe 26 hrs 14 hrs 3 hrs 

5
[a][c]

 F6 Ph-CN - - - 

6
[a]

 H6 Ph-CN 349 hrs 68 hrs 40 hrs 

7
[d]

 F6 CH=C(CN)2 3.3 min N/A N/A 

8
[d]

 H6 CH=C(CN)2 4.27 min N/A N/A 

-  (compound is stable) ; N/A (result at this temperature was not available)  
[a]

 measured in toluene
6, 9

  
[b]

 measured in decalin
5
  

[c]
 measured in toluene

13
  

[d]
 measured in benzene

7, 14
  

 

The literature results presented here show that the perfluoro-derivatives 1, 3 and 5 

were found to be highly stable at elevated temperatures, with < 2% degradation 

observed after 14 hours at 100°C.
5,6,9,13

  On the other hand, the corresponding 

perhydro-derivatives (2, 4 and 6) were found to be less thermally stable in 

comparison.
6,9

  This is not to say that in all cases the perfluoro-analogues are more 

stable then the perhydrocyclopentene switches, as demonstrated by the results 

obtained for compounds 7 and 8, in which the presence of the strongly electron-

withdrawing dicyanoethenyl groups greatly decreased the thermal stability of the 

switches, and to a greater extent for the perfluoro-derivative.
7,14

  These results 

highlight the fact that the thermal stability of these switches is not only dependent on 

the cyclopentene ring substituents (H6 vs. F6), but also on the substituents attached to 

the thienyl moieties.  Further evidence of this fact is realised by the results presented 

by Morimitsu et al.
16

  In comparison to compound 1, represented in figure 3.1, they 

found that introduction of bulky methoxy groups, at the 2 and 2’ positions of the 

thiophene rings on the dithienylcyclopentene switch, resulted in thermal 

cycloreversion at temperatures above 70°C.  The rates of the cycloreversion process 

were found to increase as the size of the substituent groups increased: MeO < EtO < i-

PrO < cyclohexyloxy.  It should be noted that the literature results presented here 

describe the occurrence of thermal conversion from the ring-closed to the ring-open 
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form.  Thermal degradation processes were not observed for these switches presented 

in the literature.
5-7,9,13,14 

 

• Fluorescence 

 

Photochemical switching between the open and closed forms can induce changes in 

the luminescent properties of diarylcyclopentene compounds.  In general, the 

fluorescence of the open-ring isomers of these switches is quenched upon 

photocyclisation to the closed-ring isomers, however, the emission intensity initially 

recorded is recovered following photobleaching back to the open form.  The extent of 

the fluorescence quenching is varied.  Some closed-ring switches have been found to 

fluoresce, albeit at a much decreased intensity level relative to the corresponding 

open-ring isomer.
11,17-21

  In other cases, photocyclisation can result in complete 

quenching of the florescence to the extent that the closed-form is determined to be 

non-emissive.
1,2,22,23

  For example, Xiao et al
17

 reported the fluorescence behaviour of 

two dithienylcyclopentene switches containing imidazo-phenanthroline moieties 

(1.2H and 2.2H), as represented in figure 3.2.   
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Figure 3.2: Illustrates the structures of the switches 1.2H and 2.2H described by Xiao et al,
17

 and the 

switch DABTFO4 described by Jeong et al.
24
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Both switches exhibited fluorescence in their open-ring forms.  However, following 

UV irradiation, the fluorescence of 2.2H was quenched to 7% of its original emission 

intensity recorded for the open isomer.  On the other hand, the fluorescent intensity of 

1.2H only decreased to 54% of its original value, at its photostationary state.  There 

have also been reports on some closed-ring isomers emitting fluorescence at the same 

intensity level, and even higher, than their corresponding open-ring isomers.
24-26

  For 

example, Jeong et al
24

 reported the fluorescent behaviour of a sulfone form of diacetyl 

diarylcyclopentene (DABTFO4), illustrated in figure 3.2, whereby the emission 

intensity was found to significantly increase upon photocyclisation from the open to 

the closed-ring isomer.    

 

Literature reports indicated a trend in the fluorescent behaviour of the diarylethene 

derivatives, which correlated the photocyclisation quantum yield to the fluorescence 

quantum yield of these switches.  In general, it was found that as the cyclisation 

quantum yield increased, the fluorescence quantum yield decreased.
2,11,17-19

  This 

phenomenon was explained by Irie et al.
27

  They took into account the lifetimes of the 

cyclisation reactions (picosecond time-scale) versus the fluorescent lifetimes (several 

hundred picoseconds) and derived two mechanisms to explain the possible correlation 

between the quantum yields and lifetimes of these two processes.  The first 

mechanism is explained by the presence of the two conformations of the diarylethene 

switches, and the second involves competition in the excited state.   

It is known that the open-ring form of diarylethene switches can exist as two 

conformational isomers: parallel and anti-parallel,
28

 as represented in scheme 3.3.  

Only the anti-parallel conformers can undergo photocyclisation to the ring-closed 

form.  Therefore, an increase in the ratio of anti-parallel conformations in the ground-

state would result in an increase in the cyclisation quantum yield.  Irie and co-

workers
27

 assigned the photo-inactive parallel conformers to be the cause of the 

fluorescence emission, as they are expected to have long lifetimes.  Hence, an increase 

in the ratio of parallel conformers, in relation to anti-parallel conformers, would result 

in an increase in the fluorescence intensity and a decrease in the cyclisation quantum 

yield. 

The second mechanism put forward by Irie et al
27

 can be explained in terms of 

competition in the excited state.  Cyclisation is induced following photoexcitation of 

the diarylethene molecules, however, when an excited molecule cannot enter the 
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cyclisation reaction channel, deactivation to the relaxed fluorescence state occurs 

resulting in the emission of fluorescence.  Therefore, an increase in the cyclisation 

quantum yield results in a decrease in the number of unreacted excited molecules, and 

hence a decrease in the fluorescence intensity. 
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Scheme 3.2: Parallel and anti-parallel conformational isomers of open form dithienylethene switches.  

The parallel form is photochemically inactive.  Only the anti-parallel conformers can undergo 

photocyclisation 

 

Chapter 2 described the synthesis of dithienylcyclopentene switches substituted with 

ethynylthiophene moieties (1H, 1F, 2H, 2F).  This chapter provides a discussion of 

the results found following an investigation of their photochromic properties (as 

monitored in the UV-vis absorption and 
1
H NMR spectra), along with their fatigue 

resistance, thermal stability and fluorescent properties.   The synthesis of their 

corresponding Co2(CO)6 complexes (3H, 3F, 3bF, 4H, 4bH, 4F) and Co2(CO)4dppm 

complexes (5H, 5F, 6H) was also described in chapter 2.  The photochemical 

properties of these complexes were investigated using UV-vis absorption and infra-red 

spectroscopy, and the effect of the metal carbonyls on the photochromic behaviour of 

these switches was determined.  The structures of these compounds are illustrated in 

figure 3.3. 
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Figure 3.3: Illustrates the structures of the thienyl-based dithienylperhydro- and perfluoro-cylopentene 

switches 1H, 1F, 2H and 2F discussed in this chapter, and the corresponding Co2(CO)6 complexes 

{3H, 3F, 3bF, 4H, 4bH, 4F} and Co2(CO)4dppm complexes {5H, 5F, 6H}. 
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3.2 Experimental 

 

3.2.1 General Procedures 

 

Photocyclisation/cycloreversion: Solutions of the compounds were made-up in THF 

at a concentration of 1.4x10
-5

 mol/L, placed in a 1 cm quartz cell, and purged with 

nitrogen.  Ring-closing experiments were performed by irradiating the solution with 

monochromatic light at λ = 313 nm and recording the UV-vis absorption spectra at 

specific time intervals.  Irradiation was carried out until the photostationary state of 

the compounds was achieved, or until no more changes were endured in the UV-vis 

spectra.  Following this, ring-opening was induced by irradiation of the same solution 

with broadband visible light (λ > 550 nm) and the absorption spectra were recorded 

over time, until no further changes were observed in the spectra. 

1
H NMR Studies: Solutions of these switches in deuterated acetone were irradiated 

with monochromatic light at 313 nm, under air, in a sealed NMR tube.  The changes 

in the 
1
H NMR spectra were observed over recorded irradiation time intervals.   

Fatigue Resistance:  Solutions of these switches, made-up in THF at a concentration 

of 1.4 x 10
-5

 mol/L, were purged with nitrogen gas and placed in a sealed 1 cm quartz 

cell.  Cyclisation to the ring-closed isomer was induced by irradiation with a 

monochromatic light source at a wavelength of 313 nm, and cycloreversion back to 

the ring-open isomer was carried out using broadband filtered light > 550 nm.  This 

process counted as one cycle, and the fatigue resistance properties were measured 

over five consecutive cycles. 

Thermal Stability:  The switches were irradiated with monochromatic light at λ = 313 

nm, in a solution of toluene, until the photostationary state of the closed-ring isomer 

was reached, as monitored in the UV-vis absorption spectra.  The stability of these 

switches at room temperature was measured by storing the solutions of the closed-

switches under air in sealed glass vials, in the dark.  After 10 weeks, the absorption 

spectra of these compounds were recorded and compared to the spectra measured 

initially.  The stability of these switches was also measured at elevated temperatures 

(60°C, 80°C and 100°C) by placing non-degassed solutions of the closed-forms, in 
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toluene, on a temperature controlled heating mantel and measuring their absorption 

spectra at specific time intervals. 

Fluorescence properties: The emission spectra of these compounds were recorded at 

room temperature in a solution of THF, at a concentration of 4 x 10
-6

 mol/L, in a 1 cm 

quartz cuvette.  The samples were degassed with nitrogen.  The ring-closed isomers 

were produced by irradiating the solutions at λ = 313 nm, until the photostationary 

state was observed in the UV-vis absorption spectra.  Ring-opening was induced by 

irradiating with broadband light at λ > 550 nm.    

Steady-state photolysis:  Solutions of the cobalt carbonyl complexes were made-up in 

spectroscopic-grade THF, and purged with nitrogen for 20 minutes.  The solutions 

were placed in a liquid IR cell, and irradiated with monochromatic light at two 

different wavelengths, 313 nm and 365 nm.  The changes observed in the carbonyl 

stretches in the IR spectrum were recorded.  These experiments were repeated in the 

presence of excess triphenylphosphine (PPh3), which was used as a trapping ligand.    

 

3.2.2 Materials 
 

The solvents used for the analytical experiments, THF and toluene, were purchased 

from Sigma Aldrich, and were of spectroscopic grade.  The deuterated acetone and 

triphenylphosphine were purchased from Sigma Aldrich.  The solutions were 

degassed with nitrogen, which was supplied by Air Products Ltd. 

 

3.2.3 Equipment 
 

UV-visible spectra were recorded on a photodiode-array Agilent 8453 spectrometer, 

in a 1 cm quartz cell.  Photochemical experiments were carried out in a 1 cm quartz 

cell, using a monochromatic 200W Hg lamp (Oriel Instruments, model no.: 68911) 

containing a 313 nm or 365 nm filter, and a broadband lamp (Oriel instruments, model 

no.: 68811) containing a λ > 550 nm filter.  
1
H NMR spectra were recorded on a 

Bruker model AC 400 MHz spectrometer and the peaks were calibrated according to 

the deuterated solvent peak.  Emission spectra were recorded in a 1 cm quartz cuvette, 

using a LS50B luminescence spectrophotometer.  Infra-red spectra were recorded in a 

0.1 mm sodium chloride liquid cell, on a Perkin Elmer “Spectrum GX” FT-IR 

spectrometer.   
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3.3 Results and Discussion 

 

3.3.1 Photochromic Behaviour: UV-vis Absorption 

 

•  Open-ring isomer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4: Absorption spectra of the open-ring isomers of compounds 1H/F and 2H/F in THF solution 

(c=1.4 x 10
-5

 mol/L).  A: 1H (black line), 2H (red line); B: 1F (blue line), 2F (green line). 

 

 

The UV-vis absorption spectra of the open-ring isomers of compounds 1H/F and 

2H/F showed typical π-π* transitions in the near-UV region of the spectrum and no 

absorbance in the visible region.  1H and 1F displayed a broad absorbance band 

between 245 and 345 nm, with λmax at 287 and 306 nm respectively.  Extending the 

conjugation of these compounds, through the addition of a phenyl ring between the 

switching unit and the ethynylthiophene moieties, in 2H and 2F, resulted in both 

hyperchromic and bathochromic shifts (33 nm and 27 nm respectively) as highlighted 

in figure 3.4 and table 3.3. 

 

 

A B 
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• Cyclisation  

 

Photocyclisation from the open-ring isomers of compounds 1H/F and 2H/F, to their 

corresponding closed-ring isomers, was induced by irradiating a degassed solution of 

the compound in THF, with UV light at λ = 313 nm, until no more changes were 

observed in their UV-vis absorption spectra i.e. until the photostationary state was 

reached.  The absorption bands recorded in the UV-vis spectra, for the open and 

closed isomers of these switches, are summarised in table 3.3. 

 

Table 3.3: UV-vis absorption data of the open-ring isomers, and closed-ring isomers (at the 

photostationary state (PSS)), of compounds 1H/F and 2H/F. 

 

Compound
[a]

 Absorption Spectra in THF 

 Open-ring isomer Closed-ring isomer (PSS) 

 λabs [nm] (ε x 10
3
 M

-1
 cm

-1) λabs [nm] (ε x 10
3
 M

-1
 cm

-1)
[b] 

1H 287 (29.6), 310 (28.3)  266 (sh), 317 (28.3), 360 (sh),  

543 (14.8)  

1F 259 (sh), 306 (43.9), 322 (sh) 262, 351 (27.0), 376 (sh), 397 (sh), 

609 (18.2) 

2H 305 (sh), 343 (69.0)  267 (sh), 329 (51.1), 382 (sh),  

562 (29.1) 

2F 262 (sh), 277 (sh), 333 (76.2) 

 

276 (26.5), 362 (40.5), 395 (sh), 

614 (23.3) 

 

[a]
 The open-ring isomer, and the closed-ring isomer at the PSS (following irradiation at λ = 313nm), in 

THF. 
[b] 

The extinction coefficients for the closed forms were determined at the photostationary state.   

The λmax in the visible region of the closed-ring isomers are highlighted in bold. 

(sh) denote a shoulder band. 

 

Irradiation of 1H, in THF, with monochromatic light at 313 nm, resulted in 

photocyclisation of the switch from the open-ring isomer to the closed-ring isomer, as 

illustrated in scheme 3.3.  This was evident from the change in the absorption 

spectrum, as there was a large increase in absorbance in the visible region, with a λmax 

appearing at 543 nm (figure 3.5 and table 3.3), hence resulting in a colour change 

from colourless to purple.  In the UV region, the band at 287 nm decreased 

significantly.  The absorption band at 310 nm decreased slightly, and was red-shifted 

to 317 nm, with shoulders at 266 and 360 nm, however no isosbestic point was 

evident during this process.  The photostationary state (PSS) was reached after 50 

seconds of irradiation.    
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Figure 3.5: Absorption spectra of the cyclisation process from the open-ring isomers to the closed ring-

isomers of compounds 1H and 1F in THF solution (c = 1.4 x 10
-5

 mol/L), following irradiation at 313 

nm.  A: 1H (PSS reached after 50 seconds of irradiation); B: 1F (PSS reached after 20 seconds of 

irradiation). 

 

Upon irradiation of 1F at λ = 313 nm, cyclisation to the closed form was evident from 

the appearance of an absorption band in the visible region, with a λmax at 609 nm, and 

a colour change from colourless to blue.  Dramatic changes were also observed in the 

UV region, as illustrated in figure 3.5, with a large bathochromic shift of the 

absorption band at 306 nm to 351 nm and shoulders at 376 and 397 nm, the 

appearance of a band at 262 nm, and an isosbestic point at 300 nm.   

 

A: 1H 

B: 1F 
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Scheme 3.3: Cyclisation from the open-ring isomer to the closed ring isomer, following irradiation at λ 

= 313 nm, of compounds 1H (R=H) and 1F (R=F). 

 

Comparison of the results obtained show that there is a pronounced difference 

between the new absorption bands recorded for the ring-closed isomers of the 

perhydro- and perfluoro-derivatives.  This is evident from the bathochromic shifts of 

the λmax of 1Fc in the UV region (34 nm) and visible region (66 nm), in comparison to 

1Hc, which can be assigned to the electron-withdrawing ability of the fluorine atoms 

in 1F, in contrast to the electron donating ability of the hydrogen atoms in 1H.  It was 

also found that the photostationary state of the perfluoro-switch was reached after only 

20 seconds of irradiation, less then half the time required for the perhydro-derivative 

(50 seconds).  

 

When 2H was irradiated at λ = 313 nm, the formation of the closed-ring isomer 

(scheme 3.4) resulted in the formation of a new band in the visible region of the UV-

vis spectrum, with a λmax at 562 nm, as shown in figure 3.6.  The band at 343 nm 

decreased in absorption with a hypsochromic shift to 329 nm, upon cyclisation, along 

with the appearance of two shoulder bands at 267 and 382 nm and an isosbestic point 

at 370 nm.  The photostationary state was reached after 30 seconds of irradiation and a 

colour change from colourless to purple was observed. 

 

 

Scheme 3.4: Cyclisation from the open-ring isomer to the closed ring isomer, following irradiation at λ 

= 313 nm, of compounds 2H (R=H) and 2F (R=F). 
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Cyclisation of 2F to the closed-form (scheme 3.4, figure 3.6), at λ = 313 nm, was 

evident by the appearance of a broad absorption band in the visible region of the UV-

vis spectrum with λmax at 614 nm, accompanied by a significant decrease in 

absorbance, and a bathochromic shift, of the band at 333 nm to 362 nm, and a 

shoulder at 395 nm.  The appearance of an absorption band at 276 nm was also 

observed, along with two isosbestic points at 289 and 356 nm.  This cyclisation 

process resulted in a colour change of the solution from colourless to blue, and the 

photostationary state was reached after 15 seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6: Absorption spectra of the cyclisation process from the open-ring isomers to the closed ring-

isomers of compounds 2H and 2F in THF solution (c = 1.4 x 10
-5 

mol/L), following irradiation at λ = 

313 nm.  A: 2H (PSS reached after 30 seconds of irradiation); B: 2F (PSS reached after 15 seconds of 

irradiation). 

A: 2H 

B: 2F 
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Although the UV-vis absorption spectra of the open-ring isomers of 2H and 2F 

showed modest variations in their absorbance bands (table 3.3), the UV-vis spectra of 

the closed-ring isomers of the two derivatives showed marked differences.  In 

comparison to the perhydro-derivative, a bathochromic shift of 33 nm was observed 

for the perfluoro-switch in the UV region, and 52 nm in the visible region.  As 

mentioned for the perhydro and perfluoro-derivatives, 1H and 1F above, this is due to 

the effect of the electron-withdrawing ability of the fluorine atoms.  Similarly, it took 

twice as long for the perhydro-switch 2H to reach the photostationary state in 

comparison to the perfluoro-derivative 2F (30 seconds and 15 seconds respectively).  

 

When comparing the effects of extending the conjugation of the systems, similar 

results were found for both the perhydro- and perfluoro-derivatives in their closed-

ring forms.  The presence of the phenyl groups, between the switching unit and the 

ethynylthiophene moieties, resulted in a bathochromic shift for all the UV-vis 

absorbance bands.  However, increasing the conjugation of the system had a more 

pronounced effect on the perhydro-derivatives, as the absorbance band in the visible 

region of the closed-ring isomer of 2H was red-shifted by 19 nm, compared to that of 

1H, whereas a bathochromic shift of only 5 nm was observed for the closed-form of 

2F, in comparison to 1F.  Also, the time taken to reach the photostationary state, 

following irradiation, was significantly reduced for the extended perhydro-switch 2H 

(30 seconds in comparison to 50 seconds for 1H), and also reduced for the extended 

perfluoro-switch 2F, but to a lesser extent (15 seconds in comparison to 20 seconds 

for 1F). 
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• Cycloreversion 

 

Cycloreversion processes from the closed-ring isomers back to the open-ring isomers 

were performed on each switch using broadband visible light (λ > 550 nm).  The 

perfluoro-switches 1F and 2F returned fully to the open-ring forms after 90 and 180 

seconds of irradiation with visible light, respectively, with absorbance bands in the 

visible region completely disappearing and the original absorbance bands in the UV 

region growing back.  This process is illustrated for compound 2F in figure 3.7.  It is 

clear from these results that the efficiency of the cycloreversion process decreases 

when the π-conjugation of the system increases.  A similar trend was recorded in the 

literature by Irie et al,
3
 which has been attributed to a decrease in the anti-bonding 

nature in the singlet state of the central photogenerated carbon-carbon bond, with the 

extension of the π-conjugation. 
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Figure 3.7: Absorption spectra of the cycloreversion process from the closed-ring isomer to the open-

ring isomer of compound 2F, in a solution of THF (C=1.4 x 10
-5

 mol/L), following irradiation with 

broadband light λ > 550 nm for 180 seconds (red line).  The open-ring isomer recorded at the start of 

the experiment (before any irradiation takes place) is denoted by the black line.  The PSS (green line) is 

the photostationary state of 2F following irradiation with 313 nm light for 15 seconds.   
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The ring-opening process for the perhydro-derivative 2H took 360 seconds to be 

complete, twice as long as its perfluoro-derivative 2F, indicating that the presence of 

the fluorine atoms increases the efficiency of this process.  In the case of compound 

1H, irradiation for 420 seconds results in cycloreversion back to the open-form, but 

not completely, as the presence of the band at 543 nm remains, even after prolonged 

irradiation at λ > 550 nm.  Therefore the ring-closing/opening process is not fully 

reversible for 1H.  This will be discussed in more detail in the following sections. 
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3.3.2 Fatigue Resistance 
 
 

The fatigue resistance properties of compounds 1H/F and 2H/F were investigated by 

performing five consecutive cyclisation/cycloreversion cycles in degassed solutions of 

THF, which is sufficient to determine whether or not these switches have very low 

fatigue resistance.     

 

A solution of 1H, in THF, was irradiated at 313 nm until the photostationary state was 

reached (50 seconds), followed by irradiation with visible light at λ > 550 nm (180 

seconds), and the results were monitored in the UV-vis spectrum.  The absorbance at 

543 nm began to decrease after each colouring cycle, and began to increase after each 

bleaching cycle, as shown in figure 3.10.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Fatigue resistance of 1H in THF.  The absorbance values of the open/closed forms were 

monitored at 543 nm over five colouring/bleaching cycles. 

 

After five consecutive cycles it was found that approximately 10% of 1H degraded 

during these photochemical processes.  Such a result could possibly be due to the 

formation of a photochemical by-product following UV irradiation, which has been 

reported in previous literature studies,
3,10,12

 and described in section 3.1.  Further 
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investigations to confirm this theory were carried out using 
1
H NMR spectroscopy, 

and the results are discussed in detail in the next section.   

When similar experiments were carried out on the perfluoro-derivative, 1F, it was 

found that 4% of the switch had degraded after five photocyclisation/cycloreversion 

reactions.  This result shows a marked improvement in comparison to the result 

obtained for the perhydrocyclopentene analogue, signifying that the fluorine atoms 

help to stabilise the closed-ring isomer, and if not preventing, at least slowing down 

the rate of formation of the photo-induced by-product. 

The colouring/bleaching cycles of 2H were monitored at the λmax of the closed ring-

isomer at 562 nm.  Approximately 1.5% of the switch degraded after five consecutive 

cycles.  In comparison to the result obtained for 1H, it is clear that extension of the 

conjugated system in 2H facilitates the prevention of photodegradation, hence 

increasing the fatigue resistance of the switch. 

Compound 2F showed the highest fatigue resistance, with negligible degradation 

found after five cycles (figure 3.11).  This is most likely due to the advantage of 

having the fluorine atoms centred on the cyclopentene ring, in comparison to its 

perhydro-derivative 2H, combined with the extension of the π-conjugation of the 

switch, in comparison to 1F.  

 

 

  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3.11: Fatigue resistance of 2F in THF.  The absorbance values of the open/closed forms were 

monitored at 614 nm over five colouring/bleaching cycles. 
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3.3.3 Photochromic Behaviour: 1H NMR 

 

Photoswitching between the closed and open forms of diarylcyclopentene compounds 

can be monitored in the 
1
H NMR spectra, as described previously in chapter 1.  Upon 

cyclisation to the closed-ring form, the proton at the 4-position of the thiophene ring 

on the dithienylcyclopentene unit (illustrated in scheme 3.5) undergoes an upfield 

chemical shift due to the loss of aromaticity.  Although the other peaks present in the 

1
H NMR spectrum are also effected upon UV irradiation, the chemical shift of this 

thiophene proton is the most dramatic, hence monitoring the relative integrals of the 

corresponding pairs of proton signals for the two isomers allows for the percentage 

conversion, from the open to the closed form, to be calculated to an approximate 

value.   

 

 

Scheme 3.5: Represents the structural change incurred on the dithienylcyclopentene unit upon ring-

closure, and hence the loss of aromaticity of the thiophene rings.  Also illustrated, the proton at the 4-

position of the thienyl units. 

 

The photocyclisation process was monitored by 
1
H NMR for compounds 1H/F and 

2H/F in deuterated acetone and the chemical shifts (in ppm), and the percentage 

conversion to the closed form, are denoted in tables 3.4 and 3.5 for these compounds.   

 

 

Table 3.4:  
1
H NMR chemical shift data (in ppm) of the proton at the 4-position of the 

dithienylcyclopentene thiophene ring (Th-H), for compounds 1F, 2H and 2F, following irradiation at λ 

= 313 nm for 100 minutes, in deuterated acetone.  Also, the estimated percentage conversion from the 

open to the closed-ring isomers. 

 

Compound δ Th-H open δ Th-H closed % Conversion 

1F 7.36 6.59 > 95 

2H 7.34 6.81 > 95 

2F 7.60 7.04 > 95 
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The 
1
H NMR spectrum of the open-ring isomer of 1F exhibited a singlet peak at 7.36 

ppm, representing the proton at the 4-position of the dithienylethene thiophene ring.  

Following irradiation with monochromatic light at λ = 313 nm, this peak started to 

decrease in intensity, with the appearance of a new singlet peak at 6.59 ppm 

correlating to the formation of the closed-ring isomer.  After approximately 100 

minutes of irradiation, the photostationary state was reached and the ratio of the peak 

intensity at 7.36 and 6.59 ppm was estimated to be 0:1, as shown in figure 3.8.  This 

result indicates that the conversion of the open-ring isomer to the closed ring-isomer 

was greater than 95% for 1F.   

 

 

6.66.76.86.97.07.17.27.37.47.57.67.77.8 ppm 
 

6.66.76.86.97.07.17.27.37.47.57.67.77.8 ppm 
 

Figure 3.8: 
1
H NMR spectral changes of 1F, dissolved in deuterated acetone, upon irradiation at λ = 

313 nm.  A: open-ring isomer of 1F before irradiation; B: closed-ring isomer of 1F after 100 minutes of 

irradiation. 

 

Similar results were obtained for compounds 2H and 2F, as detailed in table 3.4, as 

the conversion between the open and the closed forms at the photostationary state was 

also found to be greater than 95%. 

 

In the case of compound 1H, the 
1
H NMR studies revealed that photocyclisation, to 

the closed form, was accompanied by the formation of a photochemical by-product, 

hence elucidating the low fatigue resistance found for 1H in the previous section.  The 

A 

B 

Th-H 

open 

Th-H 

closed 
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spectral changes observed for 1H are summarised in table 3.5, and the molecular 

structure of the by-product formed is illustrated in scheme 3.6. 

 

 
 

Scheme 3.6: Illustrates the by-product 1Hx formed following continuous UV irradiation of the ring-

closed isomer 1Hc. 

 

The peak representing the thiophene proton at the 4-position appeared at 7.06 ppm in 

the 
1
H NMR spectrum of the open-ring isomer of 1H (1Ho).  Following UV 

irradiation for 30 minutes, a new peak was observed at 6.34 ppm, representing the 

formation of the closed-ring isomer 1Hc, with the percentage conversion from the 

open to the closed form estimated to be 70%.  After 60 minutes of irradiation the 

intensity of the peak at 6.37 ppm had increased, and the peak at 7.06 ppm had further 

decreased, however, a new peak was also observed at 6.53 ppm indicating that a 

photochemical by-product was forming (figure 3.9).   

The ratio of the relative integrals for the three proton signals at 7.06, 6.53 and 6.37 

ppm was found to be 0.13: 0.04: 1, respectively, after 60 minutes of irradiation.  

Hence the conversion of 1Ho to 1Hc at 6.37 ppm, and to the by-product (1Hx) at 6.53 

ppm, was found to be 85% and 4% respectively (table 3.5).  Further irradiation for 125 

minutes resulted in an increase in the intensity of the peak at 6.53 ppm (11 % 

conversion to 1Hx), whereas the peak at 6.37 ppm seemed to remain the same (85% 

conversion to 1Hc).  However, after 220 minutes of irradiation the peak at 6.37 ppm 

began to decrease (78% conversion to 1Hc) whilst the peak at 6.53 ppm continued to 

increase (18 % conversion to 1Hx).  Interestingly, the intensity of the original peak at 

7.06 ppm, relating to 1Ho, did not change between the spectra recorded at 125 

minutes and 220 minutes of irradiation, therefore signifying that the by-product is 

photochemically induced from the closed-ring isomer. 
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Figure 3.9: 

1
H NMR spectral changes of 1H, dissolved in deuterated acetone, upon irradiation at 313 

nm.  A: open-ring isomer 1Ho before irradiation; B: new peak at 6.37 ppm due to formation of closed-

ring isomer 1Hc after 30 minutes of irradiation; C: new peak at 6.53 ppm due to formation of the by-

product 1Hx after 220 minutes of irradiation, also note that peak at 7.06 ppm representing open isomer 

barely visible; 
 

 

Table 3.5:  
1
H NMR chemical shift data (in ppm) of the thiophene-proton at the 4-position for 

compound 1H, at different irradiation times (λ = 313 nm).  Also, the estimated % conversion from the 

open-ring isomer to the closed-ring isomer, and to the by-product 
 

Irradiation 

Time of 1H 

δ Th-H 

open 

δ Th-H 

closed 

Conversion 

(%) 

δ Th-H 

by-product 

Conversion 

(%) 

30 min 

60 min 

125 min 

220 min 

7.06 

7.06 

7.06 

7.06 

6.34 

6.34 

6.34 

6.34 

70 

85 

85 

78 

- 

6.53 

6.53 

6.53 

- 

4 

11 

18 

 
. 
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3.3.4 Thermal Stability 
 

 

The thermal stability of switches 1H/F and 2H/F were studied to investigate if the 

ring-closed isomers would undergo thermal cycloreversion back to their open-ring 

isomers.  The switches were closed with UV light in a solution of toluene, and whilst 

heated to different temperatures under air, their absorbance spectra were recorded at 

different time intervals.   

The closed switches were found to be thermally stable in the dark at room 

temperature, and after 10 weeks no changes were observed in their absorbance 

spectra.  However, when the closed-switches were heated to 60°C, 80°C and 100°C 

the absorbance bands in the visible region, indicative of the closed-ring isomer, began 

to decrease over time.  The rates of these thermal processes were measured at 60°C, 

80°C and 100°C and the decay curves of the closed-isomers were plotted {ln([c]/[c]0) 

vs. time}, as illustrated in figure 3.12.  The plots were found to be roughly linear, 

indicating first-order kinetics, hence the half-lives of the degrading switches were 

calculated from the equation t1/2=ln2/k (where the reaction rate k was the slope of the 

graphs).  These results are summarised in table 3.6.   

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Thermal Stability of compounds 1H, 2H, 1F and 2F at 80°C for 7 hours. 
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After 70 hours at 60°C, 2F showed no changes in the absorbance spectra, however 

under the same conditions, significant degradation of 1F was observed, with the half-

life calculated to be 147 hours.  The perhydro-derivatives showed the opposite trend to 

their perfluoro analogues, where 1H did result in degradation, with a half-life of 1155 

hours, whilst 2H was found to be the least stable at 60°C, with a half-life of 49.5 

hours.  The thermal stability of the closed-switches was also examined at 80°C (7 

hours), and at 100°C (1-2 hours).  The four switches showed increasing rates of 

degradation with increasing temperature, however, the decreasing order of stability 

was the same as that found for the experiments run at 60°C: 2F > 1H > 1F > 2H. 

 

Table 3.6: Half lives of 1H/F and 2H/F in their closed-forms at 60°C, 80°C and 100°C, in toluene. 

 

Compound t1/2 at 60°C (hr) t1/2 at 80°C (hr) t1/2 at 100°C (hr) 

1H 1155 14 1.5 

1F 147 10.5 1 

2H 49.5 3 0.4 

2F No degradation 23 1 

 

 

The order of stability of these compounds seems to suggest that the atoms in the 

cyclopentene ring and the substituents attached to the thiophene ring strongly affect 

the stability factors, almost to the same extent.  The electron-withdrawing effect of the 

fluorines appear to heavily influence the more conjugated switches, with 2F being the 

most stable and 2H being the least stable.  However, the absence of the phenyl linker 

between the switching unit and the ethynylthiophene moiety seems to have an 

interesting effect on the stability of the switches, with the perhydro-derivative 

performing better then the perfluoro-derivative.  

In comparison to some thermal stability studies described in the literature,
5-7,9,13,14,16

 as 

discussed in section 3.1, compounds 1H/F and 2H/F can be deemed to be reasonably 

thermally stable.   However, although the absorption bands in the visible region of the 

UV-vis spectra, representing the closed forms, decreased during these thermal studies, 

the absorption bands in the UV region, representing the open form, did not re-emerge 

completely.  Hence, contrary to the literature reports, these compounds appear to 

undergo degradation at these temperatures, in-conjunction with thermal 

cycloreversion processes, but further experiments would be necessary to confirm what 

thermal processes are taking place. 
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3.3.5 Fluorescence 

 

The fluorescence behaviour of the switches was investigated at room temperature in 

THF (c = 4.0 x 10
-6

 mol/L), and the results are summarised in table 3.7.  When 1H 

was excited at the λmax in the UV absorbance spectrum (287 and 310 nm) the intensity 

of the emission peak observed at 380 nm was so low (< 15) that the switch was 

regarded as non-fluorescent.  A similar result was found for the perfluoro-derivative 

1F when excited at 306 nm (emission intensity < 10 at 470 nm).  The corresponding 

ring-closed isomers were also found to be non-luminescent.  The concentration of the 

solutions were altered in order to investigate whether the fluorescence intensity would 

increase with increasing concentration (1 x 10
-5

 and 2 x 10
-5

), however no changes 

were observed.   

 

Table 3.7: The fluorescent properties of diarylethenes 1H/F and 2H/F. 

Compound Excitation λ/nm Emission λ/nm 

  Open-ring Closed-ring 

1H 287, 310 380* 380* 

1F 306 470* 470* 

2H 342 398 388 

2F 333 384 384 
* Indicates very weak fluorescence 

 

However, upon the introduction of a π-conjugated system, through the presence of the 

phenyl moieties, fluorescence was observed for 2H.  Following excitation at 342 nm, 

an emission spectrum was recorded with a λmax at 398 nm.  However, excitation at 342 

nm was found to induce ring-closing, and following irradiation of the solution at λ = 

313 nm to produce the ring-closed isomer, a decrease in the emission intensity, and a 

blue-shift in the λmax of the emission band to 388 nm, was observed.  Once the 

photostationary state was reached, 50% of the emission intensity remained, as 

illustrated in figure 3.13.  As described in section 3.1, it is typical for closed-ring 

isomers to cause a decrease in the emission intensity, and in many cases, the 

fluorescence is almost completely quenched upon cyclisation.  Therefore, with 

reference to the theory put forward by Irie et al,
27

 the emission intensity remaining for 

the closed form of 2H may be a consequence of an incomplete cyclisation reaction 

and the existence of parallel conformations of 2H.  Cycloreversion back to the open-
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ring isomer, following irradiation with visible light (λ > 550nm), reproduced the 

original emission spectra.    
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Figure 3.13: Emission spectral changes of 2H, in THF (c = 4 x 10

-6
 mol/L), following irradiation at λ = 

313 nm.  The intensity of the emission decreased when the open-ring isomer cyclised to the closed-ring 

isomer, with 50% of the emission intensity remaining at the photostationary state.   

 

In the case of 2F, fluorescence was observed with a λmax at 384 nm in the emission 

spectrum, following excitation at 333 nm.  In comparison to the perhydro-derivative 

2H, the emission band of 2F appeared at a similar wavelength, however, it was found 

to be approximately 30% less intense than the emission observed for 2H at the same 

concentration (c = 4 x 10
-6 

mol/L).  Excitation at 333 nm was found to induce ring-

closing, as evidenced from a pale blue colour emerging in the solution.  However, 

irradiation of 2F at λ = 313 nm, forming the closed-ring isomer, did not result in a 

decrease in the emission intensity, as was found for the closed form of 2H.  Instead, 

the intensity of the emission marginally increased (~ 6%), as illustrated in figure 3.14.  

A significant increase in the emission intensity of such diarylethene switches, 

following cyclisation to the closed-form, has been reported on a few occasions.
24-26

  

However, in this case it is most likely due to an impurity in the solution of 2F.   
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Figure 3.14: Emission spectral changes of 2F, in THF (c = 4 x 10
-6

 mol/L), following irradiation at λ = 

313 nm.  The intensity of the emission increased slightly (~ 6%) when the open-ring isomer cyclised to 

the closed-ring isomer. 
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3.3.6 Cobalt Carbonyl Complexes: UV-vis Absorption Spectra 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.15: UV-vis absorption spectra of the open-ring isomers {1H, 2H}, and their corresponding 

Co2(CO)6 complexes {3H, 4H} and Co2(CO)4dppm complexes {5H, 6H}, of the perhydro-

cyclopentene compounds, in THF solution (c =1.4 x 10
-5

 mol/L).  A: 1H (green line), 3H (black line), 

5H (red line); B: 2H (green line), 4H (black line), 6H (red line). 

 

The UV-vis absorption spectra of the Co2(CO)6 complexes {3H/F, 4H/F} and the 

Co2(CO)4dppm complexes {5H/F, 6H/F} were recorded in THF.  Incorporating 

cobalt metal complexes onto both sides of compounds 1H/F and 2H/F resulted in a 

significant change in the electronic absorption spectra of these switches, as illustrated 

for the perhydro-derivatives in figure 3.15.  Attaching Co2(CO)6 onto compound 1H, 

forming compound 3H, resulted in a much broader absorbance in the UV region 

between 250 and 400 nm.  The λmax appeared at 252 nm, which is assigned to a ligand 

field “d-d” transition corresponding to the d orbitals on the cobalt atoms, and a 

shoulder appeared at 327 nm, which is due to the intraligand excited state.  Low-lying 

metal-to-ligand charge-transfer (MLCT) bands were also observed in the visible 

region from 420 nm, extending to approximately 640 nm, with a λmax appearing at 462 

and 569 nm.       

In the case of the extended π–conjugated analogue of 3H, a ligand-field “d-d” 

transition and low-lying MLCT bands were also observed for 4H, at 274 nm and in 

the region 430-680 nm, respectively.  However, the intraligand band observed for 4H 

at 341 nm was found to be far more prominent than that of 3H, indicating that 

coordination of the Co2(CO)6 complexes involves relatively small perturbation of the 

electronic structure of the free ligand.  This phenomenon is most likely due to the 

A B 
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presence of the phenyl moieties on either side of the switch, separating the switching 

unit and the alkynyl-bridged cobalt carbonyl units. 

When the 1,2-bis(diphenylphosphino)methane {dppm} ligand was incorporated onto 

the cobalt carbonyl moieties, moderate changes were observed in the electronic 

absorption spectra for the complexes, with only a slight hyperchromic shift observed.  

Similar results were observed for the cobalt carbonyl complexes of the perfluoro-

derivatives, and the results are summarised in table 3.8 

 

Table 3.8: UV-vis absorption data for the open-ring isomers {1H, 1F, 2H, 2F} and the corresponding 

Co2(CO)6 complexes {3H, 3F, 4H, 4F} and Co2(CO)4dppm complexes {5H, 5F, 6H, 6F}, in THF. 

 

 

 

 

 

 

 

 

Absorption Spectra in THF 

Open-ring isomer Co2(CO)6 Complexes Co2(CO)4dppm Complexes 

 λabs [nm]  

(ε x 10
3
 M

-1
 cm

-1
) 

 λabs [nm]  

(ε x 10
3
 M

-1
 cm

-1) 

 λabs [nm]  

(ε x 10
3
 M

-1
 cm

-1
)  

1H 287 (29.6), 310 

(28.3) 
3H 259 (50.8), 327 

(27.4), 462 (3.6), 

569 (2.1) 

5H 260 (46.8), 348 

(23.3), 474 (2.5), 555 

(2.2) 

1F 259 (24.3), 306 

(43.9), 322 (35.3) 
3F 275 (37.3), 326 

(23.2), 452 (2.0), 

555 (1.0) 

5F 272(54.4), 340 (32.1), 

474 (3.2), 555 (2.4) 

2H 305 (46.5),343 

(69.0) 
4H 274 (51.2), 341 

(53.0), 455 (4.7), 

558 (2.4) 

6H 279 (51.2), 351 

(53.2), 474 (4.2), 555 

(3.3) 

2F 262 (22.4), 277 

(25.3), 333 (76.2) 
4F 274, 328, 450, 559  

- 
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3.3.7 Photochromic Behaviour of Cobalt Carbonyl Complexes: 
Perhydro-Switches  

 

 

The Co2(CO)6 (3H and 4H) and the Co2(CO)4dppm (5H and 6H) complexes of the 

perhydro-switches were irradiated with UV light, in a degassed solution of THF, in 

order to investigate the influence of the metal carbonyls on the switching behaviour of 

the dithienylcyclopentene units.  These photochemical experiments were carried out 

using monochromatic light at 313 nm, and a lower energy wavelength at 365 nm, and 

the results observed in the UV-vis absorption spectra are summarised in table 3.9. 

 

 
 
Figure 3.16: Illustrates the cobalt carbonyl complexes of the perhydro-switches (3H, 4H, 5H, 6H). 

 

 

 

Table 3.9: UV-vis absorption data of Co2(CO)6 complexes {3H and 4H) and Co2(CO)4dppm 

complexes (5H and 6H), in THF, in their open-ring forms and following irradiation at 313 nm and 365 

nm. 

 

 
 [a]

 Decreasing absorbance (↓); Increasing absorbance (↑) 

*{isosbestic points} 

 

Cobalt 

Carbonyl 

Complexes 

Absorption Spectra in THF 

 Open-ring isomers 313 nm Irradiation
[a] 365 nm Irradiation

[a] 
 λabs (nm) λabs (nm) λabs (nm) 

3H 259, 327, 462, 569 259(↓), 327, 559(↑) 

{355}* 

259(↓), 327, 462, 569 

{391}* 

5H 260, 348, 474, 555 260(↓), 348(↓), 

474(↓), 555(↓) 

{400}* 

260(↓), 348(↓), 

474(↓), 555(↓) 

{400}* 

4H 274, 341, 455, 558 274(↓), 311(↑), 

341(↓), 561(↑) 

{393}* 

274(↓), 311(↑), 

341(↓), 561(↑) 

{393}* 

6H 279, 351, 474, 555 279(↓), 351(↓), 

563(↑) {370}* 

279(↓), 351(↓), 

563(↑) {417}* 
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• Irradiation of 3H and 5H 

 

When 3H was irradiated with 313 nm light for 8 minutes, the solution changed from a 

pale yellow/brown to a pale purple colour.  The band at 259 nm in the UV region of 

the absorption spectrum decreased significantly, whilst the absorption in the visible 

region increased (λmax = 559 nm), with an isosbestic point present at 355 nm.  This 

result indicates that cyclisation from the ring-open form to the ring-closed form 

occurred, as illustrated in figure 3.17.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: UV-vis absorption spectrum of 3H, in THF (c = 1.4 x 10
-5

 mol/L), following irradiation at 

λ = 313 nm for 8 minutes.  The spectrum recorded at the start of the experiment (before irradiation) is 

denoted by the thick black line.      

 

Cycloreversion back to the open-ring isomer was induced by irradiation with λ > 550 

nm, which resulted in a decrease in the absorbance at 559 nm.   However, following 

17 minutes of irradiation, the absorbance bands in the UV region did not return to the 

same value originally recorded, suggesting that 3H underwent an irreversible 

photochemical process.  This result is most likely a consequence of some cleavage of 

the Co2(CO)6 moieties.   

To further examine the ring-closing process of 3H the absorbance band in the visible 

region of 3H, following λirr = 313 nm, was overlaid with the absorbance spectrum of 

the ring-closed isomer of the free ligand 1H, as shown in figure 3.18.  It is clear that 
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the molar absorptivity of the band in the visible, at the PSS of 1H, is much greater 

then that of 3H, indicating a significant decrease in the amount of the closed-ring 

formed for 3H.  It is also clear from this spectrum that the absorbance bands 

representing the closed-ring isomers have a similar shape, however, the λmax was 

found to be bathochromically shifted for the Co2(CO)6 complex 3H, in comparison to 

the free ligand 1H (λmax = 559 nm and 543 nm respectively).  This suggests that the 

ring-closed isomer of the cobalt carbonyl complex was formed, although possibly 

some of the closed isomer of the free ligand, 1H, was also present in the solution, at 

the PSS, due to cleavage of the metal carbonyl units.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: UV-vis absorption spectrum of 1H (black line) and the corresponding Co2(CO)6 complex 

3H (red line), in THF (c = 1.4 x 10
-5

 mol/L), at the PSS following irradiation at λ = 313 nm.   

 

A lower energy light source was used to induce cyclisation of 3H in an attempt to 

reduce the decomposition processes of the cobalt carbonyl complexes.  Therefore, 3H 

was irradiated with λ = 365 nm, however cyclisation was not observed at this 

wavelength, with the absorption bands in the UV region decreasing, but no increase in 

the visible region.  It should be noted that cyclisation of the free ligand, 1H, did not 

occur at this wavelength either.   

With the intention of introducing photochemical stability onto the cobalt switch, 1,2-

bis(diphenylphosphino)methane {dppm} ligands were substituted onto the cobalt 
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hexacarbonyl complex 3H, forming the tetracarbonyl complex 5H.  However, 

following irradiation at either 313 nm or 365 nm, no evidence was found for 

photocyclisation of 5H, with decomposition of the complex evidenced by a decrease 

in the absorbance bands in the UV region. 

 

• Irradiation of 4H and 6H 

 

When 4H was irradiated at 313 nm for 8 minutes, a colour change from yellow/brown 

to purple was observed.  The appearance of a new absorption band in the visible 

region, with λmax at 561 nm, indicated the presence of the ring-closed form in solution.  

The bands at 274 and 341 nm were found to decrease, with the appearance of a new 

band at 311 nm and an isosbestic point at 393 nm, as shown in figure 3.19.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19: UV-vis absorption spectrum of 4H, in THF (c = 1.4 x 10
-5

 mol/L), following irradiation 

with λ = 313 nm for 8 minutes.  The spectrum recorded at the start of the experiment (before 

irradiation) is denoted by the thick black line.      

 

Subsequent switching back to the ring-open form, following irradiation with λ > 550 

nm, was evident from the decrease in the absorbance band in the visible region (figure 

3.20).  However, the bands at 274 and 341 nm did not recover substantially, but the 

new band at 311 nm continued to increase in absorbance, suggesting loss of the cobalt 

carbonyl moieties.  
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Irradiation with 365 nm light also induced ring-closing in 4H, contrary to its less 

conjugated analogue 3H, however it is worth mentioning that 2H (the free ligand of 

4H) also undergoes cyclisation at 365 nm, unlike 1H (the free ligand of 3H).  

Unfortunately, the Co2(CO)6 complexes were not found to be photochemically stable 

at λirr = 365 nm, as the absorbance bands in the UV region did not return to their initial 

values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: UV-vis absorption spectrum of 4H, in THF (c = 1.4 x 10
-5

 mol/L), following irradiation 

with λ > 550 nm for 6 minutes (red line); 4H open-isomer before any irradiation (black line); 4H at the 

PSS, following irradiation at λ = 313nm (green line).  

 

The Co2(CO)4dppm complex 6H, was found to undergo photocyclisation processes at 

both 313 nm and 365 nm, contrary to its less extended system 5H, which was not 

found to undergo ring-closing at either wavelength.  This could possibly be due to the 

presence of the phenyl moieties acting as spacer units between the central switching 

unit and the alkynyl cobalt carbonyl moieties.  However, the presence of the dppm 

ligands on the cobalt centres was not found to stabilise the cobalt carbonyl moieties as 

originally intended, as although the band in the visible region decreased, the 

absorption bands in the UV region did not recover fully, following irradiation with 

visible light. 
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It was not clear if the ring-closed product of 4H and 6H was that of the cobalt 

carbonyl complex, or in fact the free ligand.  In order to elucidate the results observed, 

the closed-ring isomer of 4H was synthesised by converting the open-ring isomer of 

2H to the closed ring isomer (2Hc), followed by the addition of Co2(CO)6 complexes 

to produce 4bH, as illustrated in scheme 3.7.   

 

 

 

Scheme 3.7: Illustrates the formation of the ring-closed Co2(CO)6 complex 4bH. 

 

Figure 3.21 shows the UV-vis spectrum of the Co2(CO)6 complex 4H, the 

Co2(CO)4dppm complex 6H and the corresponding free ligand 2H, following 

irradiation at λ = 313 nm, overlaid with the closed-ring Co2(CO)6 complex 4bH.  The 

λmax of the closed-ring isomers of 4H (561 nm) and 6H (560 nm), were found to be 

almost identical to that of 2Hc (562 nm), whereas the absorbance band of 4bH in the 

visible region was found to be much broader in comparison, with a λmax = 584 nm.  

Thus, UV irradiation of 4H and 6H appears to produce an absorption spectrum more 

similar to that of the closed-ring isomer of the free ligand, than the closed-ring isomer 

of the Co2(CO)6 complex 4bH.  Hence these results suggests that UV irradiation of 

4H and 6H results in cleavage of the cobalt carbonyl units, and the resulting ring-

closed isomer is the free ligand 2H.  Although, it is possible that some of the closed-

form of the Co2(CO)6 and Co2(CO)4dppm complexes are also present in the solutions 

of 4H and 6H, following irradiation.    
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Figure 3.21: UV-vis absorption spectrum of the free ligand 2H (blue line), the corresponding Co2(CO)6 

complex 4H (red line) and the Co2(CO)4dppm complex 6H (green line), in THF, at the PSS following 

irradiation at λ = 313 nm, overlaid with the absorption spectrum of the ring-closed Co2(CO)6 complex 

4bH (black line). 

 

 

 

 

 

 



 160 

3.3.8 Photochromic Behaviour of Cobalt Carbonyl Complexes: 
Perfluoro-Switches  

 

 

The photochromic properties of the Co2(CO)6 (3F and 4F) and Co2(CO)4dppm (5F) 

complexes of the perfluoro-switches were examined in order to investigate the 

influence of the metal carbonyls on the switching behaviour of the 

dithienylcyclopentene units.  These photochemical experiments were carried by 

irradiating degassed solutions of these complexes, in THF, using monochromatic light 

at 313 nm and 365 nm, while monitoring the changes in the UV-vis absorption 

spectra. The results are summarised in table 3.10 and the structures of the perfluoro 

cobalt carbonyl complexes are illustrated in figure 3.22. 

 

 
 

Figure 3.22: Illustrates the structures of the cobalt carbonyl perfluoro-switches (3F, 4F, 5F). 

 

 

 

Table 3.10: UV-vis absorption data of Co2(CO)6 {3F and 4F) and the Co2(CO)4dppm complex (5F), in 

THF, in their open-ring forms and following irradiation with monochromatic light at 313 nm and 365 

nm. 

 

 
 [a]

 Decreasing absorbance (↓); Increasing absorbance (↑) 

*{isosbestic points} 

 

Cobalt 

Carbonyl 

Complexes 

Absorption Spectra in THF 

 Open-ring isomers 313 nm Irradiation
[a] 365 nm Irradiation

[a] 
 λabs (nm) λabs (nm) λabs (nm) 

3F 275, 326, 452, 555 275(↓), 326(↓), 

603(↑) {345}* 

275(↓), 326(↓), 452, 

555 {358}* 

5F 272, 340, 474, 555 272(↓), 340(↓), 

474(↓), 555(↓) 

{402}* 

272(↓), 340(↓), 

474(↓), 555(↓) 

{428}* 

4F 274, 328, 450, 559 274(↓), 328(↓), 

619(↑) {366}* 
274(↓), 328(↓), 

619(↑) {366}* 
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• Irradiation of 3F and 5F 

 

Following irradiation of 3F with λ = 313 nm, cyclisation to the ring-closed isomer was 

evident by an increase in the visible region of the absorption spectrum, with λmax at 

603 nm and a colour change from pale yellow/brown to light blue.  The 

photostationary state was reached after 4 minutes of irradiation, and an isosbestic 

point was present at 345 nm. However the intensity of this absorption band was not as 

high as that recorded for the free ligand 1F.  Also noted, was a decrease in the band at 

275 nm, and a moderate decrease in the intraligand band at 326 nm, as shown in figure 

3.23. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23: UV-vis absorption spectrum of 3F, in THF (c = 1.4 x 10
-5

 mol/L), following irradiation 

with λ = 313 nm for 4 minutes.  The spectrum recorded at the start of the experiment (before 

irradiation) is denoted by the thick black line.      

 

Following irradiation with λ > 550 nm for 6 minutes, the band at 603 nm decreased 

and the absorbance in the UV region (λmax = 275 nm) increased, but only to about 40% 

of its original value, as shown in figure 3.24.  As observed for its perhydro-derivative 

3H, it is clear that the closed-ring isomer for 3F reverts back to the open-ring isomer, 

following irradiation with visible light (2 minutes), but the cobalt carbonyl complexes 

undergo an irreversible photochemical process during this colouring/bleaching 

process.  Further evidence for cleavage of the metal carbonyl moieties is the 
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appearance of a shoulder at 306 nm following the cycloreversion process, which 

corresponds to the λmax of the free ligand 1F.  However, it should be highlighted that 

following the ring-opening process, the absorbance bands in the UV region of 3F 

recovered to a greater extent compared to 3H (~40% vs. ~8% recovery of the initial 

absorbance values).  This could possibly be an indication that the fluorine atoms have 

a stabilising effect on the Co2(CO)6 complex.  Although, another contributing factor 

could be the decrease in radiation times required to reach the photostationary state (4 

minutes for 3F vs. 8 minutes for 3H).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24: UV-vis absorption spectrum of 3F, in THF (c = 1.4 x 10
-5

 mol/L), before irradiation 

(black line); at the PSS following irradiation with λ = 313 nm for 4 minutes (green line); following 

irradiation at λ > 550 nm (red line) where the band at 275 nm recovered to ~40% of its original value, 

and * indicates the shoulder at 306 nm, similar to that of the free ligand 1F.     

 

Irradiation of 3F with 365 nm did not induce cyclisation, however decomposition of 

the Co2(CO)6 moieties was evident due to a decrease in the absorbance bands in the 

UV region.  1F (the free ligand of 3F), does undergo ring-closing at 365 nm, therefore 

the presence of the cobalt carbonyl complexes appear to inhibit the cyclisation process 

at this wavelength.   

In the case of 5F, incorporating dppm ligands onto the cobalt complex did not 

improve the stability of the metal carbonyl moieties.  In fact, the presence of the 
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phosphine ligands inhibited the cyclisation processes at both 313 and 365 nm, with 

evidence of decomposition of the complex, due to a decrease in the absorbance bands 

in the UV region, at both irradiation wavelengths. 

 

In an attempt to determine if the cyclised photoproduct of 3F contained the cobalt 

carbonyl units, the closed-ring isomer of this complex was synthesised.  The 

corresponding free ligand 1F was irradiated with UV light, and complexed with 

Co2(CO)6 to produce 3bF, as illustrated in scheme 3.8. 

 

 

Scheme 3.8: Illustrates the formation of the ring-closed Co2(CO)6 complex 3bF. 

 

Figure 3.25 displays the absorption spectrum of the Co2(CO)6 complex 3F and the 

corresponding free ligand 1F, at the PSS following irradiation at 313 nm, overlaid 

with the UV-vis spectrum of the closed-ring isomer of the Co2(CO)6 complex 3bF.  It 

is clear from this spectrum that the absorbance band in the visible region at the PSS of 

3F (λmax = 603 nm) is more similar to that of the free ligand 1F (λmax = 609 nm), as 

opposed to the closed-ring isomer 3bF (λmax = 661 nm).  This result indicates that UV 

irradiation of 3F results in cleavage of the Co2(CO)6 moieties from the switching unit, 

and that the absorbance band observed in the visible region of the UV-vis spectrum of 

3F is a consequence of the cyclisation of the free ligand 1F.  Although, it is possible 

that some of the closed-form of the Co2(CO)6 complex was also present in the solution 

of 3F following irradiation.  
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Figure 3.25: UV-vis absorption spectrum of the free ligand 1F (green line), and the corresponding 

Co2(CO)6 complex 3F (red line), in THF, at the PSS following irradiation at λ = 313 nm, overlaid with 

the absorption spectrum of the ring-closed Co2(CO)6 complex 3bF (black line). 

 

 

• Irradiation of 4F 

 

The cyclisation process was also induced for 4F following irradiation at λ = 313 nm, 

as evidenced by the colour change from yellow/brown to blue and the appearance of a 

broad absorption band in the visible region of the  spectrum, with a λmax at 619 nm.  

The photostationary state was reached after 2 minutes of irradiation, and the intensity 

of the absorbance band at 619 nm indicates that the percentage conversion from the 

open to the closed form is significantly less then the corresponding free ligand 2F, but 

nevertheless, is greater then the other Co2(CO)6 complexes described here.  A 

decrease in the bands at 274 and 328 nm was also observed, with an isosbestic point 

presented at 366 nm.  

Photocycloreversion back to the open-form was achieved for this compound following 

irradiation at λ > 550 nm for 5 minutes.  The absorbance bands in the UV region 

began to increase during this photobleaching process, with the bands at 274 nm and 

328 nm almost completely returning to their original absorbance values, as illustrated 

in figure 3.27.  This result suggests that during the photochromic cycle of 4F, a small 
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amount of irreversible changes occurred for the metal carbonyl complex, however to a 

much lesser extent compared to the related Co2(CO)6 complexes, 3H, 3F and 4H. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26: UV-vis absorption spectrum of 4F, in THF (c = 1.4 x 10
-5

 mol/L), following irradiation 

with λ = 313 nm for 120 seconds.  The spectrum recorded at the start of the experiment (before 

irradiation) is denoted by the thick black line.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27: UV-vis absorption spectrum of the closed-ring isomer of 4F, in THF (c = 1.4 x 10
-5

 

mol/L): Open-ring isomer (black line); at the PSS following irradiation at 313 nm for 2 minutes (green 

line); following irradiation at > 550 nm for 5 minutes (red line). 
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Irradiation of 4F with λ = 365 nm also induced formation of the closed-ring isomer, 

and the photostationary state was reached after 2.5 minutes of irradiation.  Irradiating 

4F with this lower energy light source led to similar changes in the UV region as was 

described above for those performed at 313 nm.  The effect of incorporating dppm 

ligands onto the Co2(CO)6 complexes of 4F was not investigated due to the limited 

amount of 4F to produce the tetracarbonyl complex. 

 

Figure 3.28 displays a comparison between the UV-vis spectra of the Co2(CO)6 

complex 4F, and its corresponding free ligand 2F, at the PSS following irradiation at 

313 nm.  Although the shape of the absorbance bands in the visible region are very 

similar, the λmax of 4F (619 nm) is moderately bathochromically shifted by 5 nm in 

comparison to the free ligand 2F (λmax = 614 nm), possibly suggesting that ring-

closure of 4F has occurred with the cobalt carbonyl complexes attached.  More 

convincingly however, is the fact that the colouring/bleaching cycle appears to be 

much more reversible, due to the reforming of the bands in the visible region 

following the cycloreversion process.  This result indicates that it is the Co2(CO)6 

complexed switch that undergoes ring-closure. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.28: UV-vis absorption spectrum of the Co2(CO)6 complex 4F (black line), and the 

corresponding free ligand 2F (red line), in THF, at the PSS following irradiation at 313 nm.  
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3.3.9 Steady-State Photolysis: Infra-Red Spectra 
 
In order to investigate the irreversible changes observed in the UV-vis spectrum 

following irradiation of the cobalt carbonyl thienyl-based switches, the photochemical 

behaviour of a number of the Co2(CO)6 and Co2(CO)4dppm complexed switches were 

monitored using infra-red spectroscopy.   

Degassed solutions of 3H, 4H, 5H and 6H (figure 3.29) were prepared, in THF, and 

placed in an IR liquid cell.  The solutions were irradiated at both 313 nm and 365 nm, 

and the changes in the carbonyl bands were monitored in the infra-red spectra.  These 

experiments were also carried out in the presence of a trapping ligand, PPh3, to trap 

any photoproducts produced.  The resulting photoproducts were assigned according 

the results reported previously in the literature.
29-32

 

 

 

 

Figure 3.29: Illustrates the structures of the Co2(CO)6 {3H, 4H} and the Co2(CO)4dppm complexes 

{5H, 6H}. 

 

 

• Irradiation of 3H and 5H 

 

When a solution of 3H was irradiated with 313 nm and 365 nm light, in THF, the 

Co2(CO)6 carbonyl bands, at 2089, 2054 and 2025 cm
-1

 in the IR, were found to 

decrease.  After 10 minutes of irradiation the parent bands decreased by ~ 10%, and 

after a further 40 minutes of irradiation by ~ 20%.  Although THF is considered to be 

a coordinating solvent, no new bands were observed in the IR spectrum, indicating 

degradation of the metal complex.  In an attempt to trap intermediates, PPh3 was 

added to a solution of 3H, and irradiation was carried out at 313 nm and 365 nm. 

 

Following irradiation at 365 nm for 10 minutes, the original Co2(CO)6 bands of 3H 

(2089, 2054 and 2025 cm
-1

) recorded at the start of the experiment, began to decrease.  
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However, new bands began to grow-in at 2061, 2010 and 1995 cm
-1

, as illustrated in 

figure 3.30.  This result indicates cleavage of a Co-CO bond, followed by substitution 

with PPh3, thus forming the pentacarbonyl species (Switch)Co2(CO)5PPh3.  A band at 

1960 cm
-1

, attributable to the formation of the tetracarbonyl species, was also 

observed. When 3H was irradiated at higher energy (λ = 313 nm) for 10 minutes, 

numerous new bands were observed in the IR spectrum, as shown in figure 3.30.  The 

formation of the pentacarbonyl and tetracarbonyl species can be confirmed from 

reference to the literature:
29-31

 (Switch)Co2(CO)5PPh3 {2061, 2010, 1995 cm
-1

); 

(Switch)Co2(CO)4(PPh3)2 {1973, 1960 cm
-1

}.  However, two new bands were also 

observed at lower wavenumbers {1918 and 1885 cm
-1

}.  These bands are tentatively 

assigned to formation of the tricarbonyl and/or dicarbonyl species, following further 

substitution with the PPh3 ligand.
32

  From the results obtained following irradiation at 

both wavelengths, it was clear that the efficiency of the formation of the 

photoproducts of 3H was greater at 313 nm, than at 365 nm.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.30: The IR difference spectra of the Co2(CO)6 complex 3H, in THF, following irradiation at 

365 nm. (red line) and 313 nm (black line) for 10 minutes, in the presence of PPh3.  Negative bands 

indicate bleaching of the parent bands and the positive bands indicate formation of the photoproducts: 

(Switch)Co2(CO)5PPh3 {*}; (Switch)Co2(CO)4(PPh3)2 {#}; (Switch)Co2(CO)3(PPh3)3 and/or 

(Switch)Co2(CO)2(PPh3)4 {o}. 
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When the Co2(CO)4dppm complex 5H was irradiated at both 313 nm and 365 nm, in 

THF, a decrease in the parent bands at 2021, 1997 and 1969 cm
-1

 occurred, but no 

new bands were observed.  Consequently, PPh3 was added to the solution, and 

following irradiation at λ = 365 nm for 10 minutes, the parent bands decreased, and 

new bands appeared at 1989, 1951 and 1915 cm
-1

, which can tentatively be assigned 

to the formation of the tricarbonyl species (Switch)Co2(CO)3(dppm)(PPh3).  The same 

result was observed following irradiation at 313 nm, however, the intensities of the 

new bands were significantly increased relative to those observed at 365 nm, on the 

same timescale, as shown in figure 3.31. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.31: The IR difference spectra of the Co2(CO)4dppm complex 5H, in THF, following 

irradiation at 313 nm (black line) and 365 nm (red line) for 10 minutes, in the presence of PPh3.  

Negative bands indicate bleaching of the parent bands and the positive bands (marked *) indicate 

formation of the photoproduct, tentatively assigned as (Switch)Co2(CO)3(dppm)(PPh3).    

 

 

• IR Spectra of 4H and 6H 

 

Irradiation of the Co2(CO)6 complex 4H, at 313 nm and 365 nm in THF, resulted in a 

decrease of the parent carbonyl bands at 2089, 2053 and 2025 cm
-1

 (by ~ 10% after 10 

minutes of irradiation), with no new bands appearing, thus indicating that the cobalt 

carbonyl species undergoes photodegradation under these conditions.  To aid the 
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analysis of this process, PPh3 was added to the solution.  Following 4 minutes of 

irradiation of 4H, at 365 nm, bleaching of the parent bands resulted, in conjunction 

with the appearance of new bands at 2060, 2010 and 1995 cm
-1

, signifying the 

formation of the pentacarbonyl species (Switch)Co2(CO)5PPh3, and a band at 1962 

cm
-1

 due to the generation of the tetracarbonyl species of 4H, as shown in figure 3.32.   

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32: The IR difference spectra of the Co2(CO)6 complex 4H, in THF, following irradiation at 

365 nm. (red line) and 313 nm (black line) for 4 minutes, in the presence of PPh3.  Negative bands 

indicate bleaching of the parent bands and the positive bands indicate formation of the photoproducts: 

(Switch)Co2(CO)5PPh3 {*}; (Switch)Co2(CO)4(PPh3)2 {#}; (Switch)Co2(CO)3(PPh3)3,  

(Switch)Co2(CO)2(PPh3)4 and/or (Switch)Co2(CO)1(PPh3)5 {o}. 

 

 

When 4H was irradiated at λ = 313 nm for 4 minutes, in the presence of PPh3, 

photobleaching of the parent bands resulted, with the appearance of new bands at 

lower frequencies, associated with the formation of penta- and tetra-carbonyl 

species:
29-31

  (Switch)Co2(CO)5PPh3 {2060, 2010 and 1997 cm
-1

} and 

(Switch)Co2(CO)4(PPh3)2 {1962 cm
-1

}.  At even lower wavenumbers, further bands 

appeared in the IR spectrum at 1927, 1885 and 1842 cm
-1

.  The assignment of these 

bands to specific photoproducts is more difficult.  They are most likely a consequence 

of further substitution reactions with PPh3, forming the tricarbonyl, dicarbonyl and/or 

monocarbonyl species,
32

 however, further investigations are required to conclusively 



 171 

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

1800185019001950200020502100

Wavenumber (cm
-1

)

A
b

s
o

rb
a
n

c
e

6H 4 min @ 313 nm

6H 4 min @ 365 nm

*

*
*

assign these bands to specific carbonyl photoproducts.  More importantly, by 

comparing the IR spectra obtained at 313 nm and 365 nm, as shown in figure 3.32, it 

was clear that photolysis at 313 nm induced CO loss at a much greater rate.   

 

When the Co2(CO)4dppm complex 6H was irradiated with light at 313 nm and 365 

nm, in THF, depletion of the parent carbonyl bands at 2020, 1996 and 1969 cm
-1

 was 

observed, however no new bands appeared, indicating decomposition of the cobalt 

carbonyl complex.  The sample was irradiated with excess PPh3 at λ = 365 nm, for 4 

minutes, and bleaching of the parent carbonyl bands, along with the appearance of 

new bands at 1987, 1950 and 1914 cm
-1

, was observed.  These bands can tentatively 

be assigned to the formation of the tricarbonyl species (Switch)-

Co2(CO)3(dppm)(PPh3).
32

  Similar results were observed following irradiation of 

complex 6H at higher energy (λ = 313 nm) for 4 minutes.  However, the intensity of 

new bands were higher than those observed at 365 nm, as shown in figure 3.33, thus it 

appears that photolysis of the cobalt carbonyl moieties is more efficient at 313 nm. 

 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.33: The IR difference spectra of the Co2(CO)4dppm complex 6H, in THF, following 

irradiation at 313 nm (black line) and 365 nm (red line) for 10 minutes, in the presence of PPh3.  

Negative bands indicate bleaching of the parent bands and the positive bands (marked *) indicate 

formation of the photoproduct, tentatively assigned as (Switch)Co2(CO)3(dppm)(PPh3).    
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From the steady-state photolysis experiments monitored in the IR, it can be concluded 

that the cobalt carbonyl complexes undergo photochemical Co-CO bond cleavage, 

which occurs more rapidly following irradiation at λ = 313 nm, in comparison to 

irradiation at lower energy (365 nm).  Also, CO loss following photolysis of the 

Co2(CO)4dppm complexes, appeared to be less efficient compared to the Co2(CO)6 

complexes, thus highlighting the increased stability of the cobalt carbonyl moieties 

through the presence of the dppm ligand. 

The cobalt carbonyl moieties on the more-conjugated derivatives, 4H and 6H, were 

found to undergo more efficient photoreactions compared to the shorter chain 

analogues, 3H and 5H.  This phenomenon was particularly evident from the 

experiments of the Co2(CO)6 complexed switches performed at 313 nm.  A number of 

photoproducts were formed following photolysis of 4H on a shorter timescale (4 

minutes) in comparison to 3H (10 minutes), as evidenced by the more intense bands 

observed in the IR spectrum of 4H, as illustrated in figure 3.34.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.34: The IR difference spectra of the Co2(CO)6 complexes 3H (pink line) and 4H (blue line), in 

THF, following irradiation at 313 nm for 10 minutes and 4 minutes respectively, in the presence of 

PPh3.  Negative bands indicate bleaching of the parent bands and the positive bands indicate formation 

of the photoproducts.     
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Overall the steady state photolysis experiments have confirmed that CO loss occurs 

for these cobalt carbonyl moieties.  The efficiency of this photochemical process 

appeared to be reduced by: 1) irradiation at lower energy (λ = 365 nm);  2) the 

presence of dppm ligands on the cobalt centre; 3) changes in the molecular structure 

of the complex i.e. in this case, reducing the length of the carbon chain.  Therefore, it 

is clear that the stability of the cobalt carbonyl moieties can be tuned by a number of 

variants.  In terms of the cyclisation processes described in the previous section, it can 

be deduced that as the switching unit undergoes a ring-closing process, the cobalt 

carbonyl units also undergo CO loss, followed by cleavage of the cobalt moieties from 

the alkynyl units.   
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3.3.10  Cycloreversion of the Closed-ring Co2(CO)6 Complexes 

 

Co2(CO)6 complexes were incorporated onto the closed-ring isomers of 1F and 2H, 

producing the corresponding complexes 3bF and 4bH respectively, as illustrated in 

figure 3.35.  These complexes were initially synthesised in order to aid the analysis of 

the cyclisation processes of the cobalt carbonyl complexes described in section 3.3.7 

and 3.3.8.  However, we later decided to investigate the cycloreversion processes of 

3bF and 4bH, back to their open-forms, in order to examine if the presence of the 

Co2(CO)6 complexes would inhibit the ring-opening process, thus creating a chemical-

locking system, which has been described previously in the literature for an 

organometallic switching complex.
25

  Furthermore, we were interested to examine if 

cleavage of the cobalt carbonyl units would occur following irradiation at longer 

wavelengths.    

 

Figure 3.35: Illustrates the structures of the ring-closed Co2(CO)6 complexes 3bF and 4bH. 

 

 

        

 

 

 

 

 

 

 

 

 

 
Figure 3.36: The UV-vis absorption spectrum of 3bF, in THF, following irradiation at λ > 650 nm.  

The spectrum recorded at the start of the experiment (before irradiation) is denoted by the thick black 

line.      
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Cycloreversion of the ring-closed isomer 3bF was induced by irradiation with 

broadband light, in THF, at λ > 650 nm and the results were monitored in the UV-vis 

absorption spectra, as shown in figure 3.36.  Photobleaching back to the open-ring 

isomer was complete after 70 minutes of irradiation, as evidenced by the colour 

change from blue to colourless and the decrease in the absorption band in the visible 

region (λmax = 661 nm).  The shoulder at 365 nm also decreased in absorbance, 

however, the absorption band at 267 nm only decreased marginally from its original 

value.  The fact that a large decrease was not observed in the UV region following 

irradiation at λ > 650 nm, contrary to the results obtained during the ring-closing 

process of 3F at λ = 313 nm, indicates that the Co2(CO)6 complexes are significantly 

more stable under these irradiation conditions.  It is clear from these results that the 

presence of the Co2(CO)6 complexes did not inhibit the ring-opening process, 

although the efficiency of the cycloreversion process for 3bF (70 minutes) was 

dramatically reduced in comparison to that of the free ligand 1F (1.5 minutes).     

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.37: The UV-vis absorption spectrum of the cycloreversion process of 4bH following 

irradiation at λ > 650 nm.  The spectrum recorded at the start of the experiment (before irradiation) is 

denoted by the thick black line.      

 

The closed-ring isomer 4bH was also found to undergo cycloreversion back to the 

open-form, following irradiation at λ > 650 nm in THF, as evidenced from the colour 

change from purple to colourless, and the decrease of the absorption band in the 

visible region (λmax = 584 nm), as shown in figure 3.37.  However, the ring-opening 
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process took 240 minutes to be completed, therefore the presence of the Co2(CO)6 

complexes considerably reduced the efficiency of the cycloreversion process in 

comparison to the corresponding free-switch 2H (6 minutes).  Also observed was a 

decrease in the bands at 274 and 328 nm, with a new band present at 293 nm.  Figure 

3.38 displays the UV-vis spectrum of 4bH following irradiation with λ > 650 nm, 

overlaid with the corresponding open-ring isomer 4H (synthesised previously); 4H 

following irradiation at 313 nm and subsequent ring-opening at λ > 550 nm (named 

“4H re-opened”); and the open-ring isomer of the free-switch 2H.  It is clear from 

these spectra that some decomposition of 4bH occurred during the cycloreversion 

process, as the resulting absorption band in the UV region is not comparable with that 

of the corresponding open-ring isomer 4H.  In fact the final spectrum recorded is 

somewhat similar to the absorption spectrum of “4H re-opened”, which seems to 

suggest that similar decomposition processes may have occurred for 4bH at λirr > 650 

nm, as for 4H following the colouring/bleaching cycle at 313 nm and > 550 nm 

respectively.  However, there was no significant evidence that cleavage of the 

Co2(CO)6 moieties from 4bH occurred, as an absorbance band at 343 nm, 

corresponding to the λmax of the free-switch 2H, was not observed. 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38: The UV-vis absorption spectrum, in THF, of: the cycloreversion process of 4bH 

following irradiation at λ > 650 nm (red line); the open-ring isomer 4H (black line); 4H following ring-

closing at 313 nm and subsequent ring-opening at λ > 550 nm (“4H re-opened” green line); the free-

switch 2H (--- blue line). 
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In order to elucidate the effects of the irradiation process at the Co2(CO)6 centre, a 

solution of 4bH in THF, in the presence of a trapping ligand (PPh3), was irradiated 

with broadband light at λ > 650 nm and the results were monitored in the IR.  

Following irradiation for a total of 360 minutes, the parent carbonyl bands at 2089, 

2055 and 2025 cm
-1

 were found to decrease, as shown in figure 3.39.  However, new 

bands began to grow-in at 2011 and 1996 cm
-1

, indicative of the formation of the 

pentacarbonyl species, and a band at 1964 cm
-1

, suggesting formation of the 

tetracarbonyl species.  Thus, the IR results verify that CO loss occurs during the 

cycloreversion process of 4bH.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.39: The IR absorption spectrum of 4bH, in THF, following irradiation at λ > 650 nm, in the 

presence of PPh3.  The parent bands (black line) began to decrease, with new bands forming at lower 

frequency (blue lines).  After 360 minutes (red line), new bands indicative of the pentacarbonyl species 

(*) and tetracarbonyl species (#) were present.   
 

From the results obtained here, it was found that the cycloreversion process for 3bF 

was more efficient compared to 4bH.  Although no trapping experiments with PPh3 

were carried out with 3bF, it is possible that CO loss may also occur following 

irradiation with visible light, however, the UV-vis spectra indicated that the cobalt 

carbonyl complex 3bF was more stable than 4bH.  Therefore, it is clear that the 

presence of the fluorine atoms on the cyclopentene ring, and/or the absence of the 

phenyl-ring spacers in 3bF, significantly influenced the cycloreversion process and 

the stability of the Co2(CO)6 switch.   
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3.3.11   Fluorescence: Cobalt Carbonyl Complexes 

 

The effect of complexation with cobalt carbonyl moieties, on the fluorescent 

properties of the switches 1H/F and 2H/F, was investigated.  Solutions of the 

Co2(CO)6 complexes 3H/F and 4H/F, and the Co2(CO)4dppm complexes 5H/F and 

6H, were made-up in THF at a concentration of 4 x 10
-6

 mol/L, and the emission 

studies were performed at room temperature. 

 

As discussed in section 3.3.5, the switches 1H and 1F were found to be non-emissive.  

As expected, the corresponding Co2(CO)6 and Co2(CO)4dppm complexes, 3H/F and 

5H/F respectively, were also found to be non-emissive under the same experimental 

conditions, and no changes were observed following photocyclisation to the ring-

closed forms.  Complexation with metal carbonyls has been described in the literature 

to quench the emission of luminescent compounds, and this phenomenon has been 

attributed to energy transfer.
30,33,34

   

 

The more conjugated perfluoro-derivative, 2F, was found to be fluorescent in both the 

open and closed-ring forms, however incorporating Co2(CO)6 onto the switch, giving 

4F, was found to quench the fluorescence.  Photocyclisation to the ring-closed isomer 

was not found to induce fluorescence, hence indicating that irradiation at 313 nm did 

not result in cleavage of the Co2(CO)6 complex from the switching unit.  This supports 

the results obtained during the colouring/bleaching processes monitored by UV-vis 

spectroscopy, as 4F appeared to be the most stable during photolysis.   

 

As described in section 3.4.5, the more conjugated perhydro-derivative, 2H, was 

found to be fluorescent.  When a solution of the corresponding Co2(CO)6 complex, 

4H, was excited into the intraligand band at 340 nm, an emission band appeared at 

390 nm, albeit much weaker than the free ligand 2H.  The fact that the emission band 

appeared at approximately the same wavelength as that observed for the free switch 

2H (399 nm) indicates that fluorescence from the switching unit resulted, without 

significant contribution from the metal complex.  Although, the intensity of the 

emission was significantly reduced (by ~93%) by introducing Co2(CO)6 moieties onto 

the switch.  However, following irradiation of 4H with UV light, to induce ring-
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closing, the emission began to increase.  Subsequent irradiation with broadband light λ 

> 550 nm, to induce cycloreversion back to the open form, resulted in a further 

increase in the emission intensity, and a shift in the λmax from 391 to 399 nm, as 

illustrated in figure 3.40.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.40: Emission spectrum of the Co2(CO)6 complex 4H, in THF.  Low emission intensity at the 

start (black line).  Irradiation with light at 313 nm, to the ring-closed form, resulted in an increase in the 

emission intensity (blue lines).  Subsequent irradiation with light > 550 nm to induce cycloreversion 

back to the open form resulted in further increase of the emission intensity (red line). 

 

The change in the fluorescence spectra, following irradiation with light, suggests that 

cleavage of the Co2(CO)6 moiety occurs.  This is in agreement with the result 

observed in the UV-vis spectra for 4H (section 3.3.7), where loss of the cobalt 

carbonyl fragments was proposed. 

Incorporating dppm onto the cobalt carbonyl switch, forming the Co2(CO)4dppm 

complex 6H, completely quenched the fluorescence.  Cyclisation to the closed form 

did not result in emission.   

 

The closed-ring Co2(CO)6 complex 4bH was found to have very weak fluorescence.  

However, following irradiation at λ > 650 nm, the fluorescence intensity was found to 

increase, as shown in figure 3.41.  The emission spectrum recorded for 4bH, 
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following visible light irradiation for 190 minutes, corresponds to the emission 

spectrum obtained for the corresponding open-ring isomer 4H.  Thus, the 

cycloreversion process of 4bH, to the open-ring form, induces changes in the emission 

spectrum. 

 

Figure 3.41: Emission spectrum of the Co2(CO)6 ring-closed complex 4bH.  Low emission intensity at 

the start (thick black line).  Irradiation at λ > 650 nm for 190 minutes, to the ring-open form, resulted in 

an increase in the emission intensity. 
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3.4 Conclusion 

 

Dithienyl-perhydro- and perfluoro-cyclopentene switches, with ethynylthiophene and 

phenyl-ethynylthiophene substituents, were synthesised.  The effects of the atoms on 

the cyclopentene ring (H vs. F), and the substituents attached to the thienyl moieties of 

the switching unit, on the photochromic, fatigue resistance, thermal stability and 

fluorescent properties of the switch were investigated. 

Photocyclisation processes were found to occur for the four switches (1H, 1F, 2H, 

2F), with new bands observed in the visible region of the UV-vis spectra (λmax = 543, 

609, 562 and 614 nm respectively), and their photostationary states were reached after 

50, 30, 20 and 15 seconds respectively.  These results show that the presence of 

fluorine atoms on the cyclopentene ring, and the extension of the π-conjugation of the 

system, through the addition of a phenyl-ring between the switching unit and the 

ethynylthiophene moieties, resulted in more efficient photocyclisation processes and 

shifted the absorbance bands in the visible region of the UV-vis spectra further into 

the red.  The times taken for the cycloreversion processes to be completed for 1F, 2F 

and 2H were recorded at 90, 180 and 360 seconds respectively, following irradiation 

with λ > 550 nm.  These results showcase how the presence of the fluorine atoms 

improves the efficiency of the ring-opening process, whereas extending the π-

conjugation of the system reduces the efficiency of this process.  On the other hand, 

the closed-isomer of 1H was not found to undergo complete cycloreversion back to 

the open-ring form.  Analysis of the photochromic behaviour in the 
1
H NMR spectrum 

of 1H showed that a photostable by-product (1Hx) was produced during the 

photocyclisation process, and the results suggested that this by-product was formed 

from irradiation of the closed-ring isomer.  Conversely, the proton NMR studies of the 

perfluorinated-derivatives (1F and 2F) and 2H showed that > 95% of the open-ring 

isomers were converted to the closed-ring isomers, following UV irradiation, with no 

evidence for the formation of a by-product.   

The fatigue resistance experiments showed that the photostability of these switches 

was found to increase in the order of 1H < 1F < 2H < 2F, highlighting the stabilising 

effects of the fluorine atoms and the increased π-conjugation.  The factors affecting 

the thermal stability, on the order hand, were not as straight forward.  The trend 
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observed for the stability of these compounds, at elevated temperatures, was found to 

be 2H > 1F > 1H > 2F, in order of increasing stability.  It is clear from these results 

that the thermal stability of these switches is affected by both the atoms present in the 

cyclopentene ring (H vs. F) and the substituents attached to the thiophene ring.  

Another observation from these experiments was that at elevated temperatures (60–

100°C), the closed-ring switches underwent cycloreversion processes, in conjunction 

with degradation.  It should be noted however, that the closed-ring isomers were 

stable at room temperature, over a ten week period.    

The luminescent studies performed on these switches showed that compounds 1H and 

1F were non-emissive, however an extension of the π-conjugated system resulted in 

fluorescence for the open-ring isomers of compounds 2H and 2F.  Cyclisation to the 

closed-forms was found to quench the emission of 2H by 51%, but had the opposite 

effect for the perfluorinated-derivative 2F, as the emission intensity was found to 

increase marginally when converted to the closed-ring isomer.   

 

Table 3.11: Irradiation times required for the free switches (1H/F and 2H/F), and the corresponding 

Co2(CO)6  (3H/F and 4H/F) and Co2(CO)4dppm complexes (5H/F and 6H), to reach the 

photostationary state (PSS), following irradiation at 313 nm and 365 nm in THF. 

 

Time to reach PPS of closed-ring isomer after irradiation 

Free Switches Co2(CO)6 Complexes Co2(CO)4dppm Complexes 

 
Time at 

λ=313nm 
 

Time at 

λ=313nm 

Time at 

λ=365nm 
 

Time at 

λ=313nm 

Time at 

λ=365nm 

1H 50 sec 3H 8 min - 5H - - 

1F 20 sec 3F 4 min - 5F - - 

2H 30 sec 4H 8 min 9 min 6H 25 min 35 min 

2F 15 sec 4F 2 min 2.5 min    

(-) indicates no cyclisation occurred. 

 

Coordination of cobalt carbonyl complexes onto compounds 1H/F and 2H/F was 

found to have a dramatic effect on the photochromic behaviour of the switches.  

Overall, the efficiencies of the photocyclisation processes for the Co2(CO)6 complexes 

(3H/F and 4H/F) were significantly reduced in comparison to their corresponding free 

switches, following irradiation at λ = 313 nm.  This hypothesis was evidenced by the 

time taken to reach the photostationary state (table 3.11) and the estimated decrease in 

the percentage conversion from the open to the closed form, following analysis of the 
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UV-vis spectra.  This result may be attributed to a second irreversible photochemical 

process occurring for the cobalt carbonyl complexes during photocyclisation, 

involving cleavage of the cobalt carbonyl moieties from the switching unit.  Evidence 

of this was observed in the UV-vis spectra of these complexes, whereby the 

absorbance bands in the UV region decreased during UV irradiation, and failed to re-

emerge following irradiation with visible light.  IR steady-state photolysis 

experiments verified that CO loss was occurring from the cobalt carbonyl complexes 

upon irradiation at λ = 313 nm.  A lower energy light source (λ = 365 nm) was also 

used to induce cyclisation.  The IR results showed a decrease in the rate of CO loss, in 

comparison to those observed at 313 nm.  However, the lower energy light source was 

found to slightly increase the radiation times to form the closed-ring isomer for 4H 

and 4F, and in fact failed to induce any ring-closure for the less-conjugated 

derivatives 3H and 3F.   

In an attempt to stabilise the photo-reactivity of the Co2(CO)6 switches, dppm ligands 

were incorporated onto the complexes, forming the corresponding tetracarbonyl 

Co2(CO)4dppm species, 5H, 5F and 6H.  Analysis of the UV-vis and IR spectra of 5H 

and 5F, during irradiation at 313 and 365 nm, showed photo-induced dissociation of 

CO from the complexes, but the cyclisation process was inhibited.  However, 

photocyclisation to the closed form occurred for 6H, in conjunction with CO loss, 

although, the efficiency of the ring-closing processes was found to decrease even 

further for 6H, as evidenced from the results in table 3.11.  The IR experiments 

indicated that dissociation of CO also occurred for the Co2(CO)4dppm moieties, 

following irradiation at both 313 and 365 nm, although at a slower rate compared to 

the results obtained for the Co2(CO)6 switches.  

In an attempt to further help elucidate the results of the cyclisation processes of the 

cobalt carbonyl complexes, the closed-ring isomers of the Co2(CO)6 complexes 3F 

and 4H were synthesised, forming 3bF and 4bF.  The UV-vis spectra of 3bF and 4bH 

displayed a band in the visible region which was bathochromically shifted by 52 nm 

and 22 nm, in comparison to the closed forms of the free ligands 1F and 2H, 

respectively.  However, UV irradiation of the open-ring cobalt carbonyl complexes 

resulted in the appearance of absorbance bands in the visible region with λmax values 

quite similar to the free ligand.  Such a result suggests that some cleavage of the 

cobalt carbonyl groups occurred during irradiation, followed by cyclisation of the free 

ligand.  
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Incorporating cobalt carbonyl moieties onto 2F and 2H (i.e. 4F and 4H respectively) 

was found to quench the fluorescence of the switches.  Subsequent UV irradiation of 

4F, forming the closed-ring, did not induce fluorescence.  On the other hand, the 

emission intensity of 4H increased following colouring/bleaching processes, 

indicating that some cleavage of the Co2(CO)6 moieties occurred, producing the free 

ligand 2H.  On the other hand, no fluorescence was observed for the corresponding 

Co2(CO)4dppm complex 6H, even after UV irradiation, suggesting that photolytic 

cleavage of the cobalt carbonyl moieties did not occur for 6H, which can be attributed 

to the stabilising effect of the dppm ligand.      

 

Taking all of the results into account, it can be deduced that UV irradiation of the 

cobalt carbonyl complexes resulted in some of the following reactions: 1) cyclisation 

of the cobalt carbonyl switches, and 2) cleavage of the metal carbonyl groups, 

followed by cyclisation of the free ligand.  Incorporating phenyl-rings between the 

switching unit and the alkynyl cobalt carbonyl moieties was found to favour the ring-

closing process for the organometallic complex, with an increased amount of the open 

form converted to the closed form for 4H/F, compared to the shorter chain analogues 

3H/F, as evidenced by the relative intensities of the bands in the visible region of the 

absorption spectra.  Furthermore, the presence of fluorine atoms on the central 

cyclopentene ring was found to increase the stability of these complexes during 

irradiation, as evidenced by the increase in the UV region during the cycloreversion 

process.  The IR studies showed that the cobalt carbonyl moieties were more stable 

towards UV irradiation by 1) the presence of electron-donating dppm ligands on the 

metal centre, and 2) the use of a lower energy light source (λirr = 365 nm).  However, 

these parameters were not found to improve the cyclisation processes.  Therefore, 

overall the results show that incorporating cobalt carbonyl groups onto dithienylethene 

switches have a significant effect on their photochromic properties.  Although the 

reversibility of these systems is an issue, due to the tendency of the cobalt carbonyl 

moieties to undergo photo-decarbonylation, it is clear that these properties can be 

tuned by altering the substituents attached to the switching unit and the cobalt 

carbonyl groups, and the wavelength used to irradiate the samples.    

 

The ‘synthesised’ closed-ring Co2(CO)6 complexes 3bF and 4bF were further 

investigated to establish if these complexes could undergo cycloreversion to their 
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corresponding open-ring forms.  Both complexes were found to undergo ring-opening 

following irradiation at λ > 650 nm, after 70 and 240 minutes respectively.  This result 

shows that the presence of the Co2(CO)6 moieties significantly reduced the efficiency 

of the cycloreversion processes, as the related free ligands 1F and 2H underwent ring-

opening after just 1.5 and 6 minutes, respectively.  Furthermore, the UV-vis results 

indicated that the cobalt carbonyl groups were quite stable during visible light 

irradiation for 3bF, whereas evidence of irreversible photochemical reactions of the 

carbonyl moieties was observed for 4bH, under these conditions.  IR steady-state 

photolysis experiments, carried out for 4bH in the presence of PPh3, indicated that CO 

loss occurred during irradiation at λ > 650 nm.  Therefore, the ability to manipulate 

the photochemical behaviour of these cobalt carbonyl switches, by altering the 

substituents attached to the dithienylethene unit, and the fact that the dissociation of 

CO takes place at low energy radiation (λ > 650 nm), suggests that closed-ring 

dithienylethene Co2(CO)6 complexes may be potential candidates towards the 

development of CO releasing molecules.  Furthermore, the propensity for such 

dithienylethene switches to show fluorescence discrimination between the open and 

closed forms could be utilised as a fluorescent probe within the CORM, thus allowing 

the release of CO to be monitored in situ by an increase in fluorescence.   

 

Overall, it can be concluded that the presence of fluorine atoms on the cyclopentene 

ring, and an extension of the π-conjugation of the system, improves the performance 

of such dithienylcyclopentene switches with regards to their photochromic, fatigue 

resistance and thermal stability properties.   Hence, from the switches presented here, 

2F proved to be the most suitable candidate for the development of various 

optoelectronic properties.  Although, the luminescent properties of 2F are not ideal for 

its application towards a non-destructive readout method for memory media, as there 

is little difference in the emission properties in the open and closed forms. 

Incorporating cobalt carbonyl complexes onto the switching units was not found to be 

advantageous with regards to the use of such compounds for applications towards 

optoelectronic properties, as the efficiency and reversibility of their photocyclisation 

processes was considerably reduced.  However, the presence of these metal complexes 

has led to some very interesting results, and the dual photochemical processes 

occurring simultaneously could find use towards the development of carbon monoxide 
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releasing molecules,
35-37

 as the CO release can be induced by a low energy light 

source, and detected by changes observed in the IR, UV-vis and luminescence spectra. 
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Chapter 4 describes the photochromic behaviour of the perhydro- and 

perfluoro-switches, substituted with ethynylferrocene moieties:  1,2-Bis(5’-

ethynylferrocene-2’-methylthien-3’-yl)cyclopentene {7H}; 1,2-Bis(5’-

ethynylferrocene-2’-methylthien-3’-yl)perfluorocyclopentene {7F}; 1,2-

Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-yl)-cyclopentene 

{8H}; 1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-yl)per-

fluorocyclopentene {8F}.  Photoinduced ring-closing and ring-opening 

processes for these switches were monitored by UV-vis and 
1
H NMR 

spectroscopy, and the fatigue resistance, thermal stability and fluorescence 

properties were also examined.  The photochemical properties of the 

corresponding Co2(CO)6 {9H,  9F, 10H, 10F, 10bF}, and Co2(CO)4dppm 

complexes {11H, 11F, 12H, 12F} were investigated using UV-vis 

absorption and infra-red spectroscopy.  
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4.1 Introduction 

 

Ferrocene is an electron-donating group, which has been widely used in luminescent 

systems due to its photochemical stability.
1
  Ferrocene has been described as a non-

emissive molecule,
1,2

 and in fact is known as an effective excited state quencher.
1,2

  

The quenching processes involved are believed to be due to energy transfer and/or 

electron transfer.
1-4

  If the energy level of the excited singlet state, or triplet state, of 

ferrocene is lower than the energy levels of the excited molecule, then efficient energy 

transfer can take place.  Therefore, the excited molecule (A*) can transfer energy from 

its higher energy level, to the lower energy level of the ferrocene molecule (Fc), which 

may then be followed by thermal relaxation of the excited state to the ground state: 

 

A* + Fc  →  A + Fc*  →  A + Fc + thermal energy 

 

The occurrence of singlet-singlet energy transfer can be indicated by an overlap 

between the emission spectrum of the fluorescent molecule (A), and the ferrocene 

absorption spectrum.
1,3,5

   

The electron transfer process is based on the fact that ferrocene acts as an electron 

donor, therefore the ferrocenium ion (Fc
+
) is formed, followed by the recombination 

of the charges to restore both neutral species to the ground state, accompanied by an 

output of thermal energy:
1
 

 

A* + Fc  →  A
-
 + Fc

+
  →  A + Fc + thermal energy 

 

Some literature reports
6-8

 have described the photochemical effects of incorporating 

ferrocene molecules onto photochromic switching units, the structures of which are 

illustrated in figure 4.1.  Muratsugu et al
6
 reported reversible photochromic properties 

of a dimethyldihydropyrene switch, disubstituted with ethynylferrocene (DHP-1), 

however the fluorescent properties of this switch was not accounted for.  Sun et al
7
 

observed reversible photocyclisation/cycloreversion processes for a 

dithienylmaleimide switch, appended with two ethynylferrocene units (TMF), and 

described some very interesting results regarding the ability of this compound to 
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undergo luminescent switching.  The open-ring form of TMF exhibited no or very 

weak fluorescence, which was attributed to the quenching effect of ferrocene via 

intramolecular electron transfer from ferrocene to dithienylmaleimide.  However, 

following cyclisation to the closed-ring form, the fluorescence intensity was found to 

increase.  The recovered emission was ascribed to the weakened intramolecular 

electron transfer process, and the fact that only a very small spectral overlap existed 

between the emission of the dithienylmaleimide and the absorption of the closed-

isomer of TMF.  In contrast, for the corresponding derivative TM (figure 4.1), with 

Br atoms in place of the ethynylferrocene moieties, the opposite luminescent 

properties were observed, with the fluorescence of the open-ring form decreasing 

upon ring-closing.  This is a perfect example of how the photochemical properties of 

such switches can be tuned by incorporating organometallic complexes onto the 

switch.  

Launay et al
8
 described the cyclisation process, from the open to the closed-form, of a 

dithienylcyclopentene switch, substituted with ethynylferrocene units (Fc-PCH-Fc), 

and its perfluorinated-derivative (Fc-PCF-Fc), as illustrated in figure 4.1.  However, 

no information was reported regarding the cycloreversion process, fluorescence or 

stability of these compounds. 

 

Fc-PCH-Fc: R1=H

Fc-PCF-Fc: R1=F

S S

Fe Fe

R1

N

S SBr Br

CH3

O O

TM

N

S S

Fe Fe

CH3

O O

TMF

Fe

Fe

Fe

Fe

DHP-1 open DHP-1 closed

 

 
Figure 4.1: Structures of molecular switches, substituted with ethynylferrocene moieties, described in 

the literature: DHP-1 open and DHP-1 closed;
6
 TM and TMF;

7
 Fc-PCH-Fc and Fc-PCF-Fc.

8
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We synthesised the ethynylferrocene dithienyl-perhydro-cyclopentene switch (7H), 

and its perfluorinated-analogue (7F), reported previously by Launay et al,
8
 as 

described in chapter 2.  However, a more in-depth study of their photochemical 

properties, then previously described
8
, was carried out and the results are detailed 

here.  Their photochromic properties were monitored using UV-vis and 
1
H NMR 

spectroscopy, and their fatigue resistance, thermal stability and fluorescent properties 

were examined.  The effect of increasing the π-conjugation of the system, on these 

properties, was investigated by incorporating a phenyl ring between the switching unit 

and the ethynylferrocene moieties (8H and 8F).  Also, the corresponding Co2(CO)6 

(9H, 9F, 10H, 10F, 10bF) and Co2(CO)4dppm complexes (11H, 11F, 12H, 12F), of 

these ferrocene-based switches, were generated in order to study the effect of the 

cobalt carbonyl moieties on the switching behaviour of these molecules, and the 

results were monitored using UV-vis and infra-red spectra spectroscopy.  The 

structures of these ferrocene-based switches are illustrated in figure 4.2.     
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Figure 4.2: Illustrates the structures of the ferrocenyl-based dithienylperhydro- and perfluoro-

cyclopentene switches 7H, 7F, 8H and 8F discussed in this chapter, and their corresponding Co2(CO)6 

{9H, 9F, 10H, 10F, 10bF} and Co2(CO)4dppm complexes {11H, 11F, 12H, 12F}. 
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4.2 Experimental 

 

4.2.1 General Procedures 

 

Photocyclisation/cycloreversion:  In a 1 cm quartz cuvette, 1.4 x 10
-5

 mol/L solutions 

of these compounds were made-up in THF and purged with nitrogen.  The solutions 

were irradiated with monochromatic light at λ = 313 nm in order to induce ring-

closing, whilst recording the UV-vis absorption spectra at specific time intervals.  

Irradiation was carried out until the photostationary states of the compounds were 

achieved, or until no more changes were endured in the UV-vis spectra.  Following 

this, the same solutions were irradiated with broadband visible light (λ > 550 nm), in 

order to induce ring-opening, whilst recording the absorption spectra over time, until 

no further changes were observed in the spectra. 

1
H NMR Studies: The switches were dissolved in deuterated acetone and placed in a 

sealed NMR tube.  Compound 8H was dissolved in deuterated benzene due to 

solubility issues in deuterated acetone.  The samples were irradiated with 

monochromatic light at λ = 313 nm and the 
1
H NMR spectra of the samples were 

recorded over time. 

Fatigue Resistance:  Solutions of these switches were made-up in THF (1.4 x 10
-5

 

mol/L), purged with nitrogen and placed in a sealed 1 cm quartz cuvette.  Cyclisation 

to the ring-closed isomer was induced by irradiation at λ = 313 nm, and 

cycloreversion back to the ring-open isomer was carried out using broadband filtered 

light with λ > 550 nm.  This process counted as one cycle, and the fatigue resistance 

properties were measured over five consecutive cycles. 

Thermal Stability:  Solutions of the switches, in toluene, were irradiated with 

monochromatic light (λ = 313 nm) until the photostationary state of the closed ring 

isomer was reached, as monitored in the UV-vis absorption spectra.  The stability of 

the closed switches was measured at room temperature by storing the solutions under 

air in sealed glass vials, in the dark.  After 10 weeks, the UV-vis absorption spectra 

were recorded and compared to the spectra recorded initially.  The stability of these 

switches at elevated temperatures was also measured at 60°C, 80°C and 100°C.  Non-

degassed solutions of the closed-forms, in toluene, were heated using a temperature 
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controlled heating mantel and their absorption spectra were recorded at specific time 

intervals. 

Fluorescence properties:  Solutions of the switches were made-up in THF, at a 

concentration of 4 x10
-6

 mol/L, placed in a 1 cm quartz cuvette and degassed with 

nitrogen.  The emission spectra of these compounds were recorded at room 

temperature.  The solutions were irradiated with UV light (λ = 313 nm) to produce the 

ring-closed isomers, followed by irradiation with visible light (λ > 550 nm) to revert 

back to the ring-open isomers.  

Steady-state photolysis:  Solutions of the cobalt carbonyl complexes, in THF, were 

purged with nitrogen for 20 minutes and placed in a liquid IR cell.  The samples were 

irradiated with monochromatic light at two different wavelengths, 313 nm and 365 

nm, and the changes observed in the carbonyl stretches in the IR spectrum were 

recorded.  These experiments were repeated in the presence of excess 

triphenylphosphine (PPh3), which was used as a trapping ligand.    

 

4.2.2 Materials 
 

The solvents used for the analytical experiments, THF and toluene, were purchased 

from Sigma Aldrich, and were of spectroscopic grade.  The deuterated acetone, 

deuterated benzene and triphenylphosphine were purchased from Sigma Aldrich.  The 

solutions were degassed with nitrogen, which was supplied by Air Products Ltd. 

 

4.2.3 Equipment 
 

UV-visible spectra were recorded on a photodiode-array Agilent 8453 spectrometer, 

in a 1 cm quartz cell.  Photochemical experiments were carried out in a 1 cm quartz 

cell, using a monochromatic 200W Hg lamp (Oriel Instruments, model no.: 68911) 

containing a 313 nm or 365 nm filter, and a broadband lamp (Oriel instruments, model 

no.: 68811) containing a λ > 550 nm filter.  
1
H NMR spectra were recorded on a 

Bruker model AC 400 MHz spectrometer and the peaks were calibrated according to 

the deuterated solvent peak.  Emission spectra were recorded in a 1 cm quartz cuvette, 

using a LS50B luminescence spectrophotometer.  Infra-red spectra were recorded in a 

0.1 mm sodium chloride liquid cell, on a Perkin Elmer “Spectrum GX” FT-IR 

spectrometer.   
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4.3 Results and Discussion 

 

4.3.1 Photochromic Behaviour: UV-vis Absorption 

 

•  Open-ring isomer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 4.3: Absorption spectra of the open-ring isomers of compounds 7H/F and 8H/F in THF solution 

(c = 1.4 x 10
-5

 mol/L).  A: 7H (black line), 8H (red line); B: 7F (blue line), 8F (green line). 

 

Typical π-π* transitions were observed in the near UV region of the absorption spectra 

of the ferrocenyl-based dithienylcyclopentene switches 7H/F and 8H/F.  A weak 

absorption band was also observed in the visible region for each of these switches, 

stretching from approximately 420 to 530 nm, and can be assigned as an MLCT band 

arising from the presence of the ferrocene moieties.
9,10

  7H and 7F show a broad 

absorption band between 245 and 380 nm, with two distinct λmax at 270 and 312 nm, 

and at 270 and 310 nm, respectively.  Introduction of a phenyl ring between the 

switching unit and the ethynylferrocene moieties for compounds 8H and 8F resulted 

in bathochromic and hypsochromic shifts of their absorbance bands in the UV region.  

The λmax of 8H and 8F were bathochromically shifted by 29 nm and 21 nm, in 

A B 
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comparison to their corresponding compounds 7H and 7F, respectively, which can be 

attributed to the effects of the extension of the π-conjugation in these systems.    

 

• Cyclisation  

 

Compounds 7H/F and 8H/F underwent photocyclisation, from their open-ring isomers 

to their closed-ring isomers, following irradiation with UV light at 313 nm.  This 

process was monitored using UV-vis absorption spectroscopy.  Solutions of these 

compounds were prepared in THF and degassed with nitrogen.  Irradiation was 

continued until the photostationary state (PSS) was reached i.e. until no more changes 

were observed in their UV-vis spectra, and the results are summarised in table 4.1. 

 
Table 4.1: Absorption spectroscopy data of the open-ring isomers and at the photostationary state 

(PSS) of compounds 7H/F and 8H/F 

 

Compound
[a]

 Absorption Spectra in THF 

 Open-ring isomer Closed-ring isomer (PSS) 

 λabs [nm] (ε x 10
3
 M

-1
 cm

-1) λabs [nm] (ε x 10
3
 M

-1
 cm

-1)
[b] 

7H 265 (34.0), 312 (28.7), 445 (1.6) 275 (22.5), 314 (25.3), 362 (sh), 

548 (15.8) 

7F 269 (38.5), 310 (37.8), 354 (7.7) 

441 (2.2) 

273 (21.8), 318 (26.7), 354 (sh), 

641 (21.1) 

8H 277 (30.3), 341 (57.1), 441 (3.1) 266 (22.8), 323 (40.2), 384 (sh), 

561 (17.5) 

8F 281 (27.0), 331 (62.4), 442 (2.2) 273 (24.6), 356 (38.7), 399 (sh), 

621 (25.4), 
[a]

 The open-ring isomer, and the closed-ring isomer at the PSS (following irradiation at λ = 313nm), in 

THF. 
[b] 

The extinction coefficients for the closed forms were determined at the photostationary state. 

The λmax in the visible region of the closed-ring isomers are highlighted in bold. 

(sh) denotes a shoulder band. 

 

Following irradiation at 313 nm in THF, 7H underwent cyclisation from the open-ring 

form to the closed-ring form as illustrated in scheme 4.1.  The absorption bands of the 

open-ring isomer at 265 and 312 nm in the UV-vis spectrum began to decrease and 

were red-shifted to 275 and 314 nm, as shown in figure 4.4, and a shoulder at 362 nm 

was observed.  Generation of the closed form was evidenced by a new absorption 

band in the visible region (λmax at 548 nm), and a colour change from pale yellow to 

purple.  The photostationary state was reached after 35 minutes of irradiation, with an 

isosbestic point observed at 337 nm.   
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Figure 4.4: Absorption spectra of the cyclisation process from the open-ring isomers to the closed ring-

isomers of compounds 7H and 7F in THF solution (c = 1.4 x 10
-5

 mol/L), following irradiation at λirr = 

313 nm.  A: 7H (PSS reached after 35 minutes of irradiation); B: 7F (PSS reached after 30 minutes of 

irradiation). 

 

The changes in the UV-vis absorption spectrum of 7F were monitored during 

irradiation at 313 nm.  A new absorbance band appeared in the visible region with 

λmax at 641 nm, and a colour change from pale yellow to blue was observed, verifying 

the occurrence of cyclisation from the open-ring isomer to the closed-ring isomer 

(scheme 4.1).  During this process, the original absorbance bands of the open-ring 

isomer at 269 and 310 nm decreased and were bathochromically shifted to 273 and 

318 nm, with a shoulder at 354 nm and an isosbestic point observed at 331 nm.  The 

A: 7H 

B: 7F 
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photostationary state was reached after 30 minutes of irradiation, as illustrated in 

figure 4.4. 

 

 

Scheme 4.1: Cyclisation from the open-ring to the closed ring isomer, following irradiation (λ = 313 

nm) of compounds 7H (R=H) and 7F (R=F). 

 

Comparison of the changes observed in the UV-vis spectra of the perhydro- and 

perfluoro-derivatives, 7H and 7F respectively, shows that similar changes were 

observed in the UV region of each switch following irradiation, as the absorbance 

bands of the open-ring forms decreased and were moderately red-shifted.  However, a 

considerable difference in the absorbance band of the closed forms in the visible 

region was observed, with the λmax of the perfluorinated switch 7F bathochromically 

shifted by 93 nm relative to its perhydro-analogue 7H.  This result can be attributed to 

the effect of the electron-withdrawing ability of the fluorine atoms on the central 

switching unit of 7F.  It was also found that the photostationary state of 7H was 

reached after 35 minutes of irradiation, whereas the PSS of 7F was reached after 30 

minutes.   

 

Upon irradiation of 8H at 313 nm, ring-closing from the open-form to the closed form 

(scheme 4.2) was evidenced from the appearance of a new band in the visible region 

of the absorption spectrum (λmax = 561 nm) and a colour change from pale yellow to 

purple.  Irradiation also led to changes in the UV region, as the absorbance band at 

341 nm decreased and was blue-shifted to 323 nm, with a shoulder at 384 nm, as 

shown in figure 4.5.  The photostationary state was reached after 40 minutes of 

irradiation, and an isosbestic point was observed at 374 nm.   
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Scheme 4.2: Cyclisation from the open-ring to the closed ring isomer, following irradiation (λ = 313 

nm) of compounds 8H (R=H) and 8F (R=F). 

 

Cyclisation of the open-ring isomer to the closed-ring isomer of 8F, as shown in 

scheme 4.2, occurred following irradiation ( λ = 313 nm).  Evidence of this process 

was observed in the UV-vis spectrum, as the absorbance band of the open-ring form at 

331 nm decreased and was bathochromically shifted to 356 nm, with a shoulder at 399 

nm, and the appearance of a new band in the visible region at 621 nm.  In conjunction 

with these changes in the UV-vis spectrum, the solution changed from a pale yellow 

to a blue colour.  An isosbestic point was observed at 354 nm, and the photostationary 

state was reached after 8 minutes of irradiation, as illustrated in figure 4.5. 

 

The ring-closing process led to a number of different changes in the UV-vis spectra of 

8H in comparison to its perfluoro-analogue 8F.  Firstly the absorbance band in the UV 

region was blue-shifted by 18 nm for 8H, but was red-shifted by 25 nm in the case of 

8F, following irradiation.  Secondly, the λmax of the absorbance band which appeared 

in the visible region of 8F upon ring-closing was bathochromically shifted by 60 nm, 

relative to its perhydro-derivative 8H.  These differences can be assigned to the effects 

of the electron-withdrawing ability of the fluorine atoms in 8F.  Another major 

difference between these two switches is the time taken to reach the photostationary 

states i.e. 40 minutes for 8H in comparison to 8 minutes for 8F. 
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Figure 4.5: Absorption spectra of the cyclisation process from the open-ring isomers to the closed ring-

isomers of compounds 8H and 8F in THF solution (c = 1.4 x 10
-5

 mol/L), following irradiation (λ = 313 

nm).  A: 8H, PSS reached after 40 minutes of irradiation; B: 2F, PSS reached after 480 seconds (i.e. 8 

minutes) of irradiation. 

 

When comparing the effects of extending the conjugation of the systems, by 

introducing phenyl-rings onto the molecular structure, as for compounds 8H and 8F, 

opposing results were found for the closed-forms of the perhydro-switches in 

comparison to their perfluoro-derivatives.  In the case of the perhydro-derivatives, the 

absorbance band in the visible region of the closed-ring isomer of 8H was found to be 

13 nm further into the red, in comparison to its less conjugated derivative 7H.  

A: 8H 

B: 8F 
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However, the irradiation time required to reach the photostationary state was increased 

for the more conjugated system 8H, relative to 7H (40 minutes versus 35 minutes 

respectively).  Interestingly, the opposite results were found for the perfluorinated 

switches, as increasing the π-conjugation of the system in 8F resulted in a blue-shift in 

the absorbance band in the visible region by 20 nm, in comparison to 7F.  Also, the 

irradiation times recorded to reach the PSS dramatically decreased for 8F in 

comparison to its less conjugated derivative 7F (8 minutes versus 30 minutes 

respectively).   
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• Cycloreversion 

 

The closed-ring isomers of 7H/F and 8H/F were irradiated with broadband visible 

light (λ > 550 nm) in order to induce a cycloreversion process back to the open-forms.  

The perfluoro-switch 8F underwent a complete cycloreversion process from its 

closed-ring isomer, back to its open-form, following 3 minutes of irradiation with 

visible light, as illustrated in figure 4.6.  Its corresponding less-conjugated derivative 

7F was found to undergo cycloreversion back to its open-form after 7 minutes of 

irradiation, however, the UV-vis absorption spectrum did not return fully to that 

recorded at the beginning of the experiment.     

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Absorption spectra of the cycloreversion process from the closed-ring isomer to the open-

ring isomer of compound 8F, in a solution of THF (c = 1.4 x 10
-5

 mol/L), following irradiation with 

broadband λ > 550 nm light for 180 seconds (red line).  The open-ring isomer recorded at the start of 

the experiment (before any irradiation takes place) is denoted by the black line.  The PSS (green line) is 

the photostationary state of 8F following irradiation with 313 nm light for 8 minutes.   

 

In the case of the perhydro-derivatives 7H and 8H, an incomplete cycloreversion 

process was observed for both switches.  The closed-ring isomer of 8H was found to 

revert back to its open-form, with a decrease in the absorbance band in the visible 

region, and the original bands observed in the UV region of the open-form growing 

back-in.  However, after 7 minutes of irradiation, no more changes were observed and 
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the original spectrum of the open-ring isomer, recorded at the start of the experiment, 

was not obtained, as shown in figure 4.7.   

0

0.2

0.4

0.6

0.8

250 350 450 550 650 750 850

Wavelength (nm)

A
b

s
o

rb
a
n

c
e

Open start

PSS

7min

30min

 

Figure 4.7: Absorption spectrum of 8H, in THF (c = 1.4 x 10
-5

 mol/L): Open-ring isomer (black line); 

the photostationary state (PSS) following irradiation at 313 nm for 40minutes (green line); following 

irradiation at λ > 550 nm for 7 minutes (red line).  Note no further changes observed even after 30 

minutes of irradiation at λ > 550 nm (blue line)  

 

Irradiation with visible light also induced cycloreversion of the closed-form of 7H, 

back to its open-form, but at a considerably slower rate in comparison to its more 

conjugated analogue 8H.  After 45 minutes of irradiation, the absorbance band in the 

visible region at 548 nm decreased by approximately half of its absorbance value 

recorded at the PSS.  The absorbance band in the UV region at 275 nm began to 

increase, but the band at 314 nm barely changed.  These changes continued over time, 

but after a total of 270 minutes of irradiation (λ = 550 nm), no more changes were 

observed, and the original absorption spectrum of the open-ring isomer of 7H, 

recorded at the start of the experiment, was not obtained.  In fact approximately 20% 

of the absorbance at 548 nm remained, as illustrated in figure 4.8. 
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Figure 4.8: Absorption spectra of the cycloreversion process from the closed-ring isomer to the open-

ring isomer of compound 7H, in a solution of THF (c = 1.4 x 10
-5

 mol/L), following irradiation with 

broadband light λ > 550 nm for 270 minutes (red line).  The open-ring isomer recorded at the start of 

the experiment (before any irradiation takes place) is denoted by the black line.  The PSS (green line) is 

the photostationary state of 7H following irradiation with 313 nm light for 35 minutes.   
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4.3.2 Fatigue Resistance 

 
The fatigue resistance of compound 8F was investigated by performing five 

consecutive cyclisation/cycloreversion cycles in a degassed solution of THF, whilst 

monitoring the absorbance at the λmax (621 nm) of the band in the visible region in the 

UV-vis spectrum.  The solution was irradiated with monochromatic light at 313 nm 

until the photostationary state was reached (8 minutes), followed by irradiation with 

visible light > 550 nm (2.5 minutes).  This process was deemed as one cycle, and after 

five colouring/bleaching cycles it was determined that 8F has a high fatigue resistance 

as less than 1% of 8F had degraded, as demonstrated in figure 4.9.  Such a result is 

comparable to high fatigue resistant dithienylethene switches described in the 

literature.
11-13

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Fatigue resistance of 8F in THF.  The absorbance values of the open/closed forms were 

monitored at 621 nm over five colouring/bleaching cycles. 

  

The fatigue resistance of 8H was also investigated in the same manner as that 

described for 8F.  The colouring/bleaching cycles were monitored in the UV-vis 

spectrum at 562 nm, and after five consecutive cycles it was found that 8H underwent 

significant decomposition during these photochemical processes, with a total of 50% 

degradation at the end of the experiment, as illustrated in figure 4.10.  This result 

greatly contrasts to the high fatigue resistance found for its perfluoro-derivative 8F, 
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thus highlighting the significant stabilising effect of the fluorine atoms on the 

switching unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Fatigue resistance of 8H in THF.  The absorbance values of the open/closed forms were 

monitored at 561 nm over five colouring/bleaching cycles. 

 

The fatigue resistance of the less conjugated ferrocenyl-based switches, 7H and 7F, 

were also investigated and both compounds were found to have very low fatigue 

resistance properties.  7F was monitored in the UV-vis spectrum at 641 nm, and it was 

found that the first cycloreversion process, performed after ring-closing, did not 

completely reform the ring-open isomer, as approximately 4% of the absorbance at 

614 nm remained.  The subsequent cyclisation process did not return to the original 

absorbance recorded at 641 nm for the closed-ring isomer.  Approximately 50% of 7F 

had degraded after just one colouring/bleaching cycle.   

In the case of the perhydro-derivative 7H, the first bleaching process performed after 

ring-closing did not completely reform the open-ring isomer, as mentioned in the 

previous section, with ~20% of the absorbance at 548 nm remaining.  The second 

colouring cycle revealed that ~30% of 7H had decomposed.  Although 7F was found 

to degrade by ~50% after one colouring/bleaching cycle, suggesting that 7F is less 

stable than 7H, the fact that ~20% of the absorption remained in the visible region 
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following the first cycloreversion process of 7H, indicates that 7H is less photostable 

than 7F. 

 

Overall, it was found that the fatigue resistance of these ferrocenyl-based switches 

decreased in the order 8F > 8H > 7F >7H.  This trend highlights the fact that 

increasing the π-conjugation of the system and substituting fluorine atoms onto the 

cyclopentene unit, instead of hydrogen atoms, significantly improves the fatigue 

resistance of such switches.  The most probable cause of the low fatigue resistance 

found for compounds 8H, 7H and 7F is the generation of a photochemical by-product 

during the irradiation experiments, which has been reported previously in the 

literature.
14-16

  Hence, the cyclisation processes of these switches were monitored by 

1
H NMR spectroscopy, and the results are detailed in the following section. 
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4.3.3 Photochromic Behaviour: 
1
H NMR 

 

Photocyclisation from the open to the closed-ring isomers can be monitored by 
1
H 

NMR, as described previously in chapter 1 and chapter 3.  Hence, the ring-closing 

process was investigated in the 
1
H NMR spectra for compounds 7H/F and 8H/F, in 

deuterated acetone, following irradiation with monochromatic light (λ = 313 nm).  

Table 4.2 details the chemical shifts (in ppm) of the proton at the 4-position of the 

thiophene ring on the dithienylcyclopentene unit of these switches, which is illustrated 

in scheme 4.3.  The estimated percentage conversions to the closed-forms were also 

calculated for these compounds and are denoted in table 4.2.  

 

 

Scheme 4.3: Represents the structural change incurred on the dithienylcyclopentene unit upon ring-

closure, and hence the loss of aromaticity of the thiophene rings.  Also illustrates the proton at the 4-

position of the thienyl units. 

 

The proton at the 4-position of the thiophene ring on the main switching unit of 

compound 8F, in its open-form, appeared as a singlet peak at 7.59 ppm in the 
1
H 

NMR spectrum.  Following irradiation with UV light at 313 nm, the intensity of this 

peak began to decrease and a new peak was found to appear at 7.03 ppm, which can 

be attributed to the formation of the ring-closed isomer.  After 6 hours of irradiation, 

the ratio of the peaks at 7.59 and 7.03 ppm was found to be 0:1 respectively, as shown 

in figure 4.11.  Hence, the percentage conversion from the open-ring isomer to the 

closed-ring isomer of 8F was estimated to be > 95%. 
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7.07.17.27.37.47.57.67.77.8 ppm 

7.07.17.27.37.47.57.67.77.8 ppm 
 

Figure 4.11: 
1
H NMR spectral changes of 8F, dissolved in deuterated acetone, upon irradiation at λ = 

313 nm.  A: open-ring isomer of 8F before irradiation; B: closed-ring isomer of 8F after 6 hours of 

irradiation. 

 

 

In the case of the perhydro-derivative 8H, which was dissolved in deuterated benzene 

due to low solubility in acetone, UV irradiation at 313 nm also resulted in the 

appearance of a new peak in the 
1
H NMR spectrum.  The initial peak at 7.05 ppm, 

representing the thiophene proton at the 4-position of the open-ring isomer, decreased 

and a new peak appeared at 6.26 ppm, representing the closed-ring isomer.  After 29 

hours of irradiation, the ratio of the peak intensities was found to be 0:1 respectively.  

This result suggests that the percentage conversion between the open and closed forms 

of 8H was approximately > 95%.  There was no evidence for the formation of a 

photostable by-product, as no further new peaks were observed in the 
1
H NMR 

spectrum.  However, noteworthy is the fact that the peaks present at the end of the 

experiment were not as sharp as those recorded at the start and the baseline was quite 

noisy, indicating that some decomposition of 8H possibly occurred during the 

irradiation process.  This theory could explain the results obtained previously for the 

fatigue resistance experiment, where approximately 50% of 8H degraded following 

five consecutive colouring/bleaching cycles. 

 
  
 

 

 

 

 

 

A 

B 

Th-H 

open 

Th-H 

closed 
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Table 4.2:  
1
H NMR chemical shift data (in ppm) of the thiophene-proton at the 4-position of the 

dithienylcyclopentene thiophene ring (Th-H), for compounds 7H/F and 8H/F at different irradiation 

times (λ=313 nm).  Also, the estimated percentage conversion from the open to the closed-ring isomers, 

and the by-products of compounds 7H and 7F.     
 

Irradiation 

Time of 7H 

δ Th-H 

open 

δ Th-H 

closed 

Conversion 

(%) 

δ Th-H 

by-product 

Conversion 

(%) 

6 hrs 

21 hrs 

7.01 

7.01 

6.26 

6.26 

25 

36 

- 

6.47 

- 

11 

Irradiation 

Time of 7F 

δ Th-H 

open 

δ Th-H 

closed 

Conversion 

(%) 

δ Th-H 

by-product 

Conversion 

(%) 

6 hrs 

21 hrs 

40 hrs 

7.30 

7.30 

7.30 

6.49 

6.49 

6.49 

10 

35 

51 

- 

6.63 

6.63 

- 

3 

8 

Irradiation 

Time of 8H* 

δ Th-H 

open 

δ Th-H 

closed 

Conversion 

(%) 

δ Th-H 

by-product 

Conversion 

(%) 

29 hrs  7.05 6.26 >95 - - 

Irradiation 

Time of 8F 

δ Th-H 

open 

δ Th-H 

closed 

Conversion 

(%) 

δ Th-H 

by-product 

Conversion 

(%) 

6 hrs 7.59 7.03 >95 - - 

 

(-) indicates that a peak due to the formation of a by-product was not present. 

NMR spectra were recorded in deuterated acetone, with the exception of 8H, which was recorded in 

deuterated benzene (denoted by *).  

 

The 
1
H NMR studies of 7F, following exposure to UV light (λ = 313 nm), revealed 

that a photochemical by-product was formed, during the cyclisation process from the 

open to the closed-form, as illustrated in scheme 4.4.  Such an occurrence has been 

described previously in the literature.
14-16

  

 

 

Scheme 4.4: Illustrates the by-product 7Fx formed following continuous UV irradiation of the ring-

closed isomer 7Fc. 
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The open-ring isomer of 7F exhibited a peak at 7.30 ppm in the 
1
H NMR spectrum, 

representing the proton at the 4-position of the thiophene ring.  Following UV 

irradiation for 6 hours, the intensity of the peak at 7.30 ppm began to decrease and a 

new peak at 6.49 ppm appeared, due to the formation of the closed-ring isomer (7Fc), 

as shown in figure 4.12.  The percentage conversion from the open to the closed-form 

at this time was found to be ~ 10%.  After 21 hours of irradiation, the peak at 6.49 

ppm increased further and a new peak was observed at 6.63 ppm.  The new peak at 

6.63 ppm can be attributed to the formation of a photostable by-product (7Fx).  The 

percentage conversion from the open to the closed-form (7Fc), and to the by-product 

(7Fx), was estimated as 35% and 3% respectively.  The peaks at 6.49 ppm and 6.63 

ppm further increased, and the initial peak at 7.03 ppm continued to decrease.  After 

an additional 19 hours of irradiation, the percentage conversion to the closed-form 

(7Fc) and by-product (7Fx) was calculated as approximately 51% and 8% 

respectively. 

 

6.56.66.76.86.97.07.17.27.3 ppm 

6.56.66.76.86.97.07.17.27.3 ppm 

6.56.66.76.86.97.07.17.27.3 ppm 
 

Figure 4.12: 
1
H NMR spectral changes of 7F, dissolved in deuterated acetone, upon irradiation at λ = 

313 nm.  A: open-ring isomer 7Fo before irradiation; B: new peak at 6.49 ppm due to formation of 

closed-ring isomer 7Fc after 6 hours of irradiation; C: new peak at 6.63 ppm due to formation of the by-

product 7Fx after 40 hours of irradiation. 
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In the case of 7H, the 
1
H NMR monitored UV irradiation studies demonstrated the 

formation of a by-product for 7H during the cyclisation process.  The thienyl proton at 

the 4-position was found to appear at 7.01 ppm in the 
1
H NMR spectrum of the open-

ring isomer of 7H.  Following 6 hours of UV irradiation the intensity of this peak 

decreased, and a new peak was present at 6.26 ppm, which can be assigned to the 

formation of the closed-ring isomer (7Hc).  The percentage conversion from the open 

to the closed form was estimated to be 25%.  Continued irradiation for 15 hours led to 

further reduction of the peak at 7.01 ppm, with an increase in the peak at 6.26 ppm, 

attributed to the closed-isomer.  However, in-conjunction with the formation of the 

closed-ring isomer, a photostable by-product was also generated, as evidenced by the 

appearance of a new peak at 6.47 ppm, the structure of which is illustrated in scheme 

4.5.  The relative integrals of the three peaks at 7.01, 6.47 and 6.26 ppm were 

calculated to be 1: 0.20: 0.67, respectively.  Hence, after a total of 21 hours of UV 

irradiation, the percentage conversion from the open-form (7Ho) to the closed-form 

(7Hc), and to the by-product (7Hx), was approximately 36% and 11% respectively.     

 

 
 

Scheme 4.5: Illustrates the by-product 7Hx formed following continuous UV irradiation of the ring-

closed isomer 7Hc. 

 

Overall, the 
1
H NMR studies demonstrated that an extension of the π-conjugation of 

the system, in compounds 8H and 8F, increased the photo-stability of the compounds 

in their closed-forms, relative to their less-conjugated analogues 7H and 7F, as the 

generation of photochemical by-products were not found to occur for 8H and 8F.  In 

the case of 8F, this is in good agreement with the fatigue resistance experiments 

discussed in the previous section, as less than 1% of 8F was found to degrade 

following five consecutive colouring/bleaching cycles.  On the other hand, ~50% of 

8H decomposed during the same fatigue resistance experiments, however the 
1
H 

NMR experiment did not show any evidence for the formation of a by-product.  It is 
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possible that the formation of the by-product occurs but the amount produced is too 

low to be observed in the 
1
H NMR spectrum.  As mentioned previously, the 

1
H NMR 

spectrum of 8H was found to be very noisy at the end of the experiment.  Therefore, 

another possibility is that 8H undergoes some decomposition during such 

photochemical processes due to the long irradiation times required to induce ring-

closure. 

 

With regards to the by-products formed for 7H and 7F, during these photochemical 

processes, the results described here suggest that the by-product (7Hx), formed from 

7H, is much more readily produced in comparison to the by-product (7Fx) formed 

from its perfluoro-derivative 7F.  In the case of 7H it was found that after 21 hours of 

irradiation, 36% of the open-ring had converted to the closed-ring, whilst 11% of the 

solution had converted to the by-product.  On the other hand, after 21 hours of 

irradiation of 7F, the percentage conversion of the open-ring isomer to the closed-ring 

isomer, and to the by-product, was found to be 35% and 3% respectively.  This result 

suggests that more of the closed-form of 7F is produced before the by-product is 

formed, in comparison to 7H.  These findings conform to the results of the 

cycloreversion and fatigue resistance studies discussed previously for these switches.  
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4.3.4 Thermal Stability 
 

Solutions of 7H/F and 8H/F, in toluene, were irradiated with UV light in order to 

generate their ring-closed isomers, which were then stored in the dark at room 

temperature, and at elevated temperatures of 60, 80 and 100°C, under air.  The thermal 

stabilities of these switches were studied by recording their absorbance spectra at 

different time intervals, at these temperatures, in order to investigate if thermal 

cycloreversion from the closed-ring to the open-ring forms would occur.   

 

The ring-closed isomers of 7H/F and 8H/F were all found to be thermally stable at 

room temperature, with no changes observed in their absorbance spectra after ten 

weeks in the dark.  Upon heating the closed-switches, to 60°C, 80°C and 100°C, the 

absorbance bands in the visible region of the UV-vis spectra began to decrease.  The 

absorbance values at the λmax in the visible region were monitored over time, and the 

decay curves of the closed-isomers were plotted {ln([c]/[c]0) vs. time}, as illustrated 

in figure 4.9.  The half-lives of the switches were calculated from the equation 

t1/2=ln2/k, as the plots were found to be roughly linear, indicating first-order kinetics, 

hence the slope of the graphs gave the reaction rate k.  These results are detailed in 

table 4.3.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Thermal Stability of compounds 7H, 8H, 7F and 8F at 80°C for 1.5 hours. 
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The absorbance band in the visible region of the UV-vis spectrum of 7F was found to 

steadily decrease over a period of 7 hours at 60°C, with its half-life calculated to be 

128 hours.  Its more conjugated derivative, 8F, was found to behave in a similar 

manner under the same conditions, although slightly less stable, with a half-life of 115 

hours.  Conversely, the thermal stability of the perhydro-switches at 60°C was found 

to be considerably reduced in comparison to their fluorinated derivatives, with a half-

life of 12 hours and 7 hours, calculated for compounds 7H and 8H, respectively.  

Although, a similar trend was observed for the perhydro-switches, as that found for 

their perfluoro-analogues, as extending the π-conjugation of the system marginally 

reduced the thermal stability of 8H, in comparison to 7H.  The thermal stability of 

these switches was also investigated at higher temperatures of 80°C (1.5 hours) and 

100°C (1 hour), and the results demonstrated that as the temperature increased, the 

half-lives decreased (table 4.3).  At all three temperatures, the order of stability 

remained the same: 7F > 8F > 7H > 8H.      

 
Table 4.3: Half lives of 7H/F and 8H/F in their closed-forms at 60°C, 80°C and 100°C in toluene. 

 

Compound t1/2 at 60°C (hr) t1/2 at 80°C (hr) t1/2 at 100°C (hr) 

7H 12 4 0.9 

7F 128 17 6 

8H 7 2 0.6 

8F 115 14 4 

 

Overall the results indicate that extending the π-conjugation of the system reduces the 

thermal stability of the switches, although to a moderate degree, as only a minor 

decrease was found for the half-lives calculated for 8H and 8F, in comparison to their 

less conjugated derivatives 7H and 7F respectively.  A much more significant factor 

affecting the thermal stability properties were the central atoms located on the 

cyclopentene ring, as the presence of the fluorine atoms, in place of the hydrogen 

atoms, resulted in a considerable increase in the half-lives of these switches calculated 

at 60, 80 and 100°C.  It is worth noting however, that the UV-vis spectra recorded 

during these experiments indicate that cycloreversion back to the open-form was 

accompanied by chemical degradation, under these conditions.  Such chemical 

degradation has not been reported in the literature thus far, and only thermal 

cycloreversion processes have been discussed.
11,12,17-19

  Further experiments are 

required to examine the thermal processes that are taking place.    
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4.3.5 Fluorescence 
 

The fluorescence properties of 7H/F and 8H/F were investigated at room temperature, 

in THF.  These ferrocenyl-based switches were not found to be luminescent, and 

subsequent generation of the closed-ring isomers did not induce emission.  This 

phenomenon can be assigned to the quenching effect of the ferrocenyl moieties.  As 

described in section 4.1, ferrocene is known as an excited state quencher, which can 

occur through energy transfer and/or electron transfer processes.
1-4
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4.3.6 Cobalt Carbonyl Complexes: UV-vis Absorption Spectra 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.10: UV-vis absorption spectra of the open-ring isomers {7H, 8H}, and their corresponding 

Co2(CO)6 {9H, 10H} and Co2(CO)4dppm complexes {11H, 12H}, of the perhydro-cyclopentene 

compounds, in THF solution (c ≈ 1.4 x 10
-5

 mol/L).  A: 7H (green line), 9H (black line), 11H (red line); 

B: 8H (green line), 10H (black line), 12H (red line). 

 

The UV-vis absorption spectra of the Co2(CO)6 complexes {9H/F, 10H/F}and the 

Co2(CO)4dppm complexes {11H/F, 12H/F} were recorded in THF.  Significant 

changes were observed in the electronic spectra of the cobalt carbonyl complexes in 

comparison to their corresponding free ligands 7H/F and 8H/F, which is highlighted 

for the perhydro-derivatives in figure 4.10.  Incorporating Co2(CO)6 complexes onto 

compound 7H, forming compound 9H, resulted in a much broader absorbance in the 

UV region, with a λmax present at 262 nm, assigned to a ligand field “d-d” transition 

corresponding to the d orbitals on the cobalt atoms, and a shoulder at 328 nm, 

representing the intraligand excited state.  In the visible region, a low-intensity, broad 

absorption band was observed from 420 to 750 nm, with λmax at 445 and 570 nm.  This 

band can be assigned to a metal-to-ligand charge transfer transition.   

Similar results were found for the extended π–conjugated analogue 10H, with a 

ligand-field “d-d” transition present at 276, and low-lying MLCT bands from 420 nm 

extending to 820 nm, with λmax at 455 and 538 nm.  In contrast to its less-conjugated 

derivative 9H however, the intraligand band (λ = 342 nm) was found to be far more 

prominent for 10H.  This result suggests that addition of the Co2(CO)6 complexes 

B A 
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involves relatively small perturbation of the electronic structure of the free ligand 8H, 

which is most likely due to the presence of the phenyl moieties on either side of the 

switch, separating the switching unit and the alkynyl-bridged cobalt carbonyl units. 

In the case of the Co2(CO)4dppm complexes, only moderate changes were observed in 

the electronic spectra of the complexes in comparison to the hexacarbonyl derivatives, 

as highlighted in figure 4.10.  Incorporating cobalt carbonyl complexes onto the 

perfluoro-switches resulted in similar changes in the absorption spectra as that 

described for the perhydro-analogues, and the results are summarised in table 4.4 

 

Table 4.4: UV-vis absorption data for the open-ring isomers {7H, 7F, 8H, 8F} and their corresponding 

Co2(CO)6 {9H, 9F, 10H, 10F} and Co2(CO)4dppm complexes {11H, 11F, 12H, 12F}, in THF. 

 

 

 

 

 

 

 

 

 

 

 

 

Absorption Spectra in THF 

Open-ring isomer Co2(CO)6 Complexes Co2(CO)4dppm Complexes 

 λabs [nm]  

(ε x 10
3
 M

-1
 cm

-1
) 

 λabs [nm] 

(ε x 10
3
 M

-1
 cm

-1) 

 λabs [nm] 

(ε x 10
3
 M

-1
 cm

-1
)  

7H 265 (34.0), 312 

(28.7), 445 (1.6) 
9H 262 (46.7), 328 

(27.8), 445 (4.3), 

570 (3.0) 

11H 262 (65.5), 291 

(48.6), 351 (26.1), 

511 (3.2) 

7F 269 (38.5), 310 

(37.8), 354 (7.7),  

441 (2.2) 

9F 270 (52.6), 327 

(33.7), 438 (4.3), 

555 (2.5) 

11F 270 (64.5), 291 

(54.2), 355 (28.3), 

555 (3.1) 

8H 277 (30.3), 341 

(57.1), 441 (3.1) 
10H 276 (48.1), 342 

(45.0), 455 (4.7), 

538 (2.5) 

12H 276 (55.6), 347 

(45.3), 490 (3.7) 

8F 281 (27.0), 331 

(62.4), 442 (2.2) 
10F 276 (44.1), 340 

(46.1), 445 (4.3), 

555 (1.9) 

12F 264, 286, 334, 490 
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4.3.7 Photochromic Behaviour of Cobalt Carbonyl Complexes: 

Perhydro-Switches  
 

The perhydro ferrocenyl-based switches were substituted with Co2(CO)6 complexes 

{9H and 10H} and Co2(CO)4dppm derivatives {11H and 12H}, and the effects of the 

cobalt carbonyl complexes on the photochemical activity of the switches were 

investigated.  The complexes were irradiated at two wavelengths: 313 nm and 365 nm, 

and the changes in the UV-vis absorption spectra were monitored.  The results are 

summarised in table 4.5.   

 

9H: M1=Co2(CO)6

11H: M1=Co2(CO)4dppm
10H: M1=Co2(CO)6

12H: M1=Co2(CO)4dppm

S S

M1 M1

S S

M1M1Fe Fe FeFe

H6

H6

 

Scheme 4.7: Illustrates the cobalt carbonyl complexes of the perhydro-switches (9H, 10H, 11H, 12H). 

 

 

 

Table 4.5: UV-vis absorption data for the Co2(CO)6 {9H and 10H) and Co2(CO)4dppm complexes 

(11H and 12H), in THF, in their open-ring forms and following irradiation at 313 nm and 365 nm. 

 

[a]
 Decreasing absorbance (↓); Increasing absorbance (↑) 

*{isosbestic points} 

 

Cobalt 

Carbonyl 

Complexes 

Absorption Spectra in THF 

 Open-ring isomers 313 nm Irradiation
[a] 365 nm Irradiation

[a] 
 λabs (nm) λabs (nm) λabs (nm) 

9H 262, 328, 445, 570 262(↓), 328(↓),  

490-590(↑), {373}* 

262(↓), 328(↓),  

445(↑), 570(↓), 

{373}* 

11H 262, 291, 351, 511 262(↓), 291(↓), 

351(↓), 450(↑), 

{403}* 

262(↓), 291(↓), 

351(↓), 450(↑), 

{403}* 

10H 276, 342, 455, 538 276(↓), 342(↓), 

555(↑), {406}* 

276(↓), 342(↓), 

552(↑), {406}* 

12H 276, 347, 490 276(↓), 347(↓), 

555(↑), {422}* 

276(↓), 347(↓), 

552(↑), {422}* 
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• Irradiation of 9H and 11H 

 

When 9H was irradiated at 313 nm for 60 minutes, the absorbance bands in the UV 

region of the spectrum at 262 and 328 nm began to decrease dramatically.  A slight 

increase in the visible region between approximately 490 and 590 nm was also 

observed, with an isosbestic point at 373 nm, as illustrated in figure 4.10.  However, 

longer irradiation times resulted in a decrease in the absorbance in the visible region.  

Comparing these results to those observed for the free ligand (7H) indicates that the 

presence of the Co2(CO)6 complexes inhibits the photocyclisation process for this 

switch.  Subsequent irradiation with visible light (λ > 550 nm) did not reproduce the 

initial spectrum recorded at the start of the experiment.  Thus, the changes observed in 

the UV-vis spectrum showed that there was little evidence of ring-closure for 9H, and 

only decomposition of the cobalt carbonyl complex occurred.  Similar results were 

obtained following irradiation at 365 nm.   

1,2-Bis(diphenylphosphino)methane ligands were incorporated onto the cobalt 

carbonyl complexes, forming the Co2(CO)4dppm derivative 11H, in an attempt to 

introduce stability.  However, the same results were obtained as that found for 9H, 

following UV irradiation at both 313 and 365 nm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: UV-vis absorption spectrum of 9H, in THF, following irradiation at λ = 313 nm for 60 

minutes.  The spectrum recorded at the start of the experiment (before irradiation) is denoted by the 

thick black line. 



 223 

0

0.2

0.4

0.6

0.8

230 330 430 530 630 730 830

Wavelength (nm)

A
b
s
o
rb
a
n
c
e

45min

40

30

20

10

5

0

• Irradiation of 10H and 12H 

 

Irradiation of 10H at λ = 313 nm resulted in a colour change from yellow/brown to 

purple and a new band was observed in the visible region of the UV-vis spectrum, 

with a λmax at 555 nm.  The changes observed in the UV-vis spectra indicate that 

photocyclisation to the closed-ring isomer occurred, and the photostationary state was 

reached after 45 minutes of irradiation.  In-conjunction with these changes, a decrease 

in the absorbance bands in the UV region resulted, with a new band at 312 nm 

appearing and an isosbestic point at 406 nm, as shown in figure 4.11.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: UV-vis absorption spectrum of 10H, in THF, following irradiation at λ = 313 nm for 45 

minutes.  The spectrum recorded at the start of the experiment (before irradiation) is denoted by the 

thick black line. 

 

Following irradiation with visible light, the band at 555 nm decreased due to 

subsequent ring-opening of the switch however, the bands in the UV region did not 

return to their original absorbance values, as shown in figure 4.12.  These 

experimental results indicate that the Co2(CO)6 moieties underwent some 

decomposition during the irradiation processes.  Similar results were found following 

irradiation of 10H at 365 nm (for 55 minutes), with no sign of reduced degradation of 

the metal carbonyl complexes due to the use of a lower energy light source.   
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Figure 4.12: UV-vis absorption spectrum of 10H, in THF (c = 1.4 x 10
-5

 mol/L): before irradiation 

(black line); at the PSS, following irradiation at λ = 313nm (green line); following irradiation with λ > 

550 nm (blue lines); after 240 seconds at λ > 550 nm (red line).  

 

 

Irradiation of the Co2(CO)4dppm derivative 12H, at both 313 nm and 365 nm, was 

found to induce ring-closing, with a colour change from pale pink to purple and an 

absorbance band appearing in the visible region, with a λmax at 552 nm.  The dppm 

ligands were incorporated onto the cobalt carbonyl complexes in an attempt to 

stabilise the photochemical reactivity at the cobalt centre.  However, 12H was also 

found to undergo photodegradation with a decrease in the bands in the UV region, 

which did not return following the cycloreversion process.  Also noted was a 

significant increase in the irradiation times required to reach the PSS of the band 

attributed to ring-closing at 552 nm, due to the presence of the dppm ligands, in 

comparison to the Co2(CO)6 analogue 10H (100 minutes vs. 45 minutes respectively, 

at λirr = 313 nm).  The corresponding free ligand switch, 8H, reached the PSS after 40 

minutes of irradiation. 

The absorbance bands recorded in the visible region of the UV-vis spectrum, 

indicative of the closed-ring forms, at the PSS of the Co2(CO)6 complex (10H) and the 

Co2(CO)4dppm complex (12H), were found to have similar shapes and λmax values to 

that of the free ligand (8H), as shown in figure 4.13 (λmax = 561, 555 and 552 for 8H, 
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10H and 12H respectively).  Also noted from figure 4.13, was that the intensity of the 

absorbance bands of the cobalt carbonyl complexes, in the visible region, were 

significantly lower in comparison to that of the free ligand, at the PSS.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: UV-vis absorption spectrum of the free ligand 8H (red line), the corresponding Co2(CO)6 

complex 10H (blue line) and the Co2(CO)4dppm complex 12H (green line), in THF, at the PSS 

following irradiation at λ = 313 nm.   

 

Therefore, the results obtained from the irradiation experiments of the cobalt carbonyl 

complexes, 10H and 12H, suggest that cyclisation processes occur for these 

complexes, although the efficiency of this process was reduced in comparison to that 

of the free ligand switch 8H.  In addition, there appeared to be some degradation of 

the metal carbonyl moieties during the photochemical processes.  Therefore, at the end 

of the experiment, it is possible that the solutions of 10H and 12H contained both the 

free ligand switch and the cobalt carbonyl complex switch.  These results are in 

contrast to those observed for the shorter chain Co2(CO)6 and Co2(CO)4dppm 

derivatives (9H and 11H respectively), in which case no cyclisation processes were 

observed.  Thus, it appears that incorporating phenyl rings between the 

dithienylethene unit and the alkynyl cobalt carbonyl moieties allows for ring-closing 

to take place.    
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4.3.8 Photochromic Behaviour of Cobalt Carbonyl Complexes: 

Perfluoro-Switches  
 

The photochemical properties of the fluorinated switches tethered to cobalt carbonyl 

units were also studied.  Solutions of the Co2(CO)6 {9F and 10F} and Co2(CO)4dppm 

{11F and 12F} complexes, in THF, were irradiated at λ = 313 and 365 nm, and the 

changes observed in the UV-vis absorption spectra were monitored.  The results are 

summarised in table 4.6 and the structures of these complexes are illustrated in 

scheme 4.8. 

 

 
 

Scheme 4.8: Illustrates the cobalt carbonyl complexes of the perhydro-switches (9H, 10H, 11H, 12H). 

 

 

Table 4.6: UV-vis absorption data of the Co2(CO)6 {9F and 10F) and Co2(CO)4dppm complexes (11F 

and 12F), in THF, in their open-ring forms and following irradiation at 313 nm and 365 nm. 

 

 
[a]

 Decreasing absorbance (↓); Increasing absorbance (↑) 

*{isosbestic points} 

 

 

Cobalt 

Carbonyl 

Complexes 

Absorption Spectra in THF 

 Open-ring isomers 313 nm Irradiation
[a] 365 nm Irradiation

[a] 
 λabs (nm) λabs (nm) λabs (nm) 

9F 270, 327, 438, 555 270(↓), 327(↓),  

438 (↑), {379}* 

270(↓), 327(↓),  

438 (↑), {379}* 

11F 270, 291, 355, 555 270(↓), 291(↓), 

355(↓), 555(↓), 

{415}* 

270(↓), 291(↓), 

355(↓), 555(↓), 

{415}* 

10F 276, 340, 445, 555 276(↓), 340(↓), 

621(↑), {377}* 

276(↓), 340(↓), 

626(↑), {377}* 

12F 264, 286, 334, 490 264(↓), 286(↓), 

334(↓), 609(↑), 

{430}* 

264(↓), 286(↓), 

334(↓), 626(↑), 

{426}* 
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• Irradiation of 9F and 11F 

 

Irradiation of 9F, at λ = 313 nm, resulted in a decrease in the bands in the UV region 

of the absorbance spectrum, at 270 and 327 nm, with a very small increase in the 

absorbance at 438 nm, and an isosbestic point at 379 nm (figure 4.14).  However, even 

after 30 minutes of irradiation, there was no evidence for photocyclisation of 9F, to 

the closed-ring isomer, in the visible region.  The same result was found for the 

corresponding Co2(CO)4dppm complex 11F.  Irradiation of 9F and 11F at a lower 

energy wavelength (365 nm) also resulted in a decrease in the bands in the UV region, 

with no new band appearing in the visible region.  Hence, it can be concluded that the 

presence of the Co2(CO)6 and Co2(CO)4dppm complexes inhibited the cyclisation 

process of this perfluoro-switch.  The decrease in the UV region of the spectra 

suggests that some degradation of the complexes occurred.  This result corresponds to 

the results obtained for the corresponding perhydro-derivatives 9H and 11H, as 

discussed in the previous section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: UV-vis absorption spectrum of 9F, in THF, following irradiation at λ = 313 nm for 30 

minutes.  The spectrum recorded at the start of the experiment (before irradiation) is denoted by the 

thick black line. 
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• Irradiation of 10F and 12F 

 

In contrast to the results observed for 9F, the more conjugated analogue 10F was 

found to undergo photocyclisation to the closed form following UV irradiation (λ = 

313 nm).  The absorbance bands in the UV region, at 276 and 340 nm, began to 

decrease, with an isosbestic point observed at 377 nm, and a new band appeared in the 

visible region (λmax at 621 nm, figure 4.15).  The photostationary state was reached 

after 16 minutes of irradiation, and a colour change from yellow/brown to blue/green 

was observed, indicative of the formation of the ring-closed isomer.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: UV-vis absorption spectrum of 10F, in THF, following irradiation at λ = 313 nm for 16 

minutes.  The spectrum recorded at the start of the experiment (before irradiation) is denoted by the 

thick black line. 

 

Irradiation of 10F at a lower energy (λ = 365 nm), also resulted in cyclisation to the 

ring-closed form.  However, there were a few noticeable differences in the absorbance 

spectra recorded, in comparison to the changes observed following irradiation at 313 

nm.  Firstly, the intensity of the absorbance band in the visible region at the PSS was 

higher following irradiation at 365 nm, and the λmax was red-shifted from 621 to 626 

nm, in comparison to the results obtained at 313 nm.  However, the PSS was reached 

only after 28 minutes of irradiation at 365 nm, almost twice the amount of time taken 

at 313 nm (16 minutes).  Secondly, during irradiation at 365 nm, the intraligand band 
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at 340 nm decreased to a greater extent than the ligand-field band at 276 nm, as shown 

in figure 4.16, whereas both bands decreased to almost the same extent at 313 nm.  

These differences can be attributed to an increased amount of the closed-ring product 

formed following irradiation at 365 nm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: UV-vis absorption spectrum of 10F, in THF, following irradiation at λ = 365 nm for 28 

minutes.  Also, two dotted lines intersecting the absorbance spectrum at 313 and 365 nm.  The spectrum 

recorded at the start of the experiment (before irradiation) is denoted by the thick black line.    

 

Following irradiation at 313 and 365 nm, subsequent cycloreversion processes were 

induced following irradiation with visible light at λ > 550 nm for 6 minutes, and the 

bands in the visible region of the UV-vis spectra were found to decrease accordingly.  

Interestingly, the bands in the UV region were also found to return towards their 

original absorbance values.  The ligand-field band at 276 nm increased, but did not 

fully return to the initial value recorded, indicating loss of the Co2(CO)6 moieties 

during photolysis.  The intra-ligand band at 340 nm also increased, but, was blue-

shifted slightly to 331 nm, which is indicative of the λmax of the open form of the free 

ligand (8F).  This result suggests that photolysis of 10F at 313 and 365 nm, resulted in 

some cleavage of the Co2(CO)6 moieties, hence giving rise to some of the free ligand.  

This process seemed to occur more readily following irradiation at 365 nm, as the 
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intraligand band at 340 nm increased to higher absorbance than that originally 

recorded, as illustrated in figure 4.17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: UV-vis absorption spectra, in THF, of: the free ligand 8F (red line); the Co2(CO)6 

complex 10F (black line); 10F following ring-closing at 313 nm and subsequent ring-opening at > 550 

nm (blue line);  10F following ring-closing at 365 nm and subsequent ring-opening at > 550 nm (green 

line). 

 

Incorporating dppm ligands onto the Co2(CO)6 complexes of 10F, forming the 

corresponding Co2(CO)4dppm complex 12F, resulted in significant changes to the 

photochromic properties of the switch.  Irradiation of 12F at λ = 313 nm did induce 

cyclisation, with the appearance of a new band in the visible region of the spectrum 

(λmax = 609 nm), but the amount of the closed-ring formed was considerably reduced 

in comparison to 10F.  Irradiation of 12F at λ = 365 nm improved the yield of the 

ring-closed isomer, as evidenced by the intensity of the band in the visible region of 

the spectrum (λmax = 626 nm).  However, in comparison to the cyclisation process for 

10F (Co2(CO)6 analogue) the amount of the closed-ring formed remained less, as 

illustrated in figure 4.18.  It should be noted that the presence of the dppm ligands also 

increased the irradiation times required to reach the photostationary state (20 minutes 

at 313 nm and 45 minutes at 365 nm). 

Subsequent irradiation of 12F with visible light resulted in a decrease in the band in 

the visible region as expected, however the bands in the UV region did not return to 
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their original absorbance values.  In fact only a very small increase in the absorbance 

of the intraligand band at 334 nm was observed, and the band at 286 nm did not 

change during the ring-opening process.  This result suggests that the Co2(CO)4dppm 

moieties underwent some photochemical degradation.   

 

The Co2(CO)6 complex of the closed-ring isomer of 8F was made (i.e. 10bF as shown 

in scheme 4.9) in an attempt to elucidate whether or not the ring-closed products of 

10F and 12F were that of the cobalt carbonyl complexes, or due to the cyclisation of 

the free ligand 8F following photolytic cleavage of the metal carbonyl moieties.  

 

 

Scheme 4.9: Illustrates the formation of the ring-closed Co2(CO)6 complex 10bF. 

 

The UV-vis absorption spectrum of 10bF, in THF, shows a broad absorption band in 

the visible region, with a λmax at 631 nm.  Figure 4.18 displays the absorption 

spectrum of 10bF (black line), overlaid with the closed-ring isomer of the free ligand 

8Fc (red line), and the Co2(CO)6 and Co2(CO)4dppm complexes {10F and 12F 

respectively}, following irradiation at both 365 and 313 nm.  The λmax of the 

absorbance bands in the visible region are presented in table 4.7 below.  Although this 

spectrum does not unambiguously prove that the cobalt complexed switch cyclises, it 

does show that the absorbance bands of 10F and 12F, in the visible region have more 

of a resemblance to 10bF, then the free ligand 8Fc.  Thus, this suggests that the cobalt 

carbonyl complexes cyclise with the metal carbonyls attached, albeit possibly with 

some cleavage of the cobalt carbonyl moieties, and at the end of the experiment the 
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solution contains a mixture of the cobalt carbonyl complexes and the free ligand.  

Furthermore, the UV-vis spectra highlight the reduction in the amount of the closed-

ring isomer formed when irradiated at 313 nm, instead of 365 nm, and when dppm 

ligands are incorporated onto the switch.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: UV-vis absorption spectra, in THF, of: the closed-ring isomer of the free ligand 8Fc (red 

line); the closed-ring isomer of the Co2(CO)6 complex 10bF (black line); the Co2(CO)6 complex 10F 

following irradiation at 365 nm (blue line) and 313 nm (purple line); and the Co2(CO)4dppm complex  

12F following irradiation at 365 nm (dark green line) and 313 nm (light green line). 

 

Table 4.7: UV-vis absorption data of the λmax the closed-isomer 8Fc, and the Co2(CO)6 derivative, 

10bF, in THF.  Also, the λmax of the open-ring Co2(CO)6 {10F} and Co2(CO)4dppm {12F} complexes, 

following irradiation processes.     

   

 

Cmpd λmax [nm] Cmpd λmax [nm] 

(313 nm)
*
 

λmax [nm] 

(365 nm)
*
 

8Fc 621 10F 621 626 

10bF 631 12F 609 626 

 
* indicates the wavelength at which the solution was irradiated 
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4.3.9 Steady-State Photolysis: Infra-Red Spectra 

 

In order to examine the effects of irradiation processes on the Co2(CO)6 complexes, a 

solution of 10F, in THF, was prepared in an IR liquid cell and the changes in the 

carbonyl bands were monitored in the infra-red spectrum following irradiation at 313 

nm and 365 nm.   These experiments were also carried out in the presence of a 

trapping ligand, PPh3, to trap any photodecarbonylation products.  The resulting 

photoproducts were assigned according the results reported previously in the 

literature.
20-23

 

 

 

Figure 4.19: Illustrates the structure of the Co2(CO)6 complex 10F. 

 

Irradiation of 10F, in THF, at 313 and 365 nm resulted in a decrease in the cobalt 

carbonyl bands at 2086, 2049 and 2022 cm
-1

 in the IR spectrum, with no new bands 

growing-in after 20 minutes of irradiation.  This result indicates that the Co2(CO)6 

moieties undergo some decomposition.  In an attempt to “trap” intermediates in this 

photodecarbonylation process, an excess of triphenylphosphine (PPh3) was added to 

the solution of 10F. 

When 10F was photolysed at 365 nm for 5 minutes, the parent bands at 2086, 2049 

and 2022 cm
-1

 began to decrease, with new bands appearing at 2057, 2006 and 1994 

cm
-1

.  This result indicates CO loss, followed by substitution of PPh3, thus generating 

the corresponding pentacarbonyl species, (Switch)Co2(CO)5PPh3 for 10F.
20-22

  After 

20 minutes of irradiation, bleaching of the parent bands continued, whilst the bands 

associated with the pentacarbonyl species continued to increase.  However, new bands 

appeared at 1982 and 1957 cm
-1

, indicative of the formation of the tetracarbonyl 

species (Switch)Co2(CO)4(PPh3)2,
20-22

 as shown in figure 4.20.      
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Figure 4.20: The IR difference spectra of the Co2(CO)6 complex 10F, in THF, following irradiation at 

365 nm for 20 minutes, in the presence of excess PPh3.  Negative bands indicate bleaching of the parent 

bands and the positive bands indicate formation of the PPh3 substituted species.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21: The IR difference spectra of the Co2(CO)6 complex 10F, in THF, following irradiation at 

313 nm for 20 minutes, in the presence of excess PPh3.  Negative bands indicate bleaching of the parent 

bands and the positive bands indicate formation of the substituted species.  
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Irradiation of 10F, at 313 nm, also resulted in the loss of CO from the metal complex, 

followed by substitution with the PPh3 ligands, as shown in figure 4.21.  After 5 

minutes of irradiation, the parent bands began to decrease and new bands appeared, 

which indicated the formation of the pentacarbonyl species (2057, 2006 and    

1994cm
-1

) and tetracarbonyl species (2082 and 1957 cm
-1

) of 10F.  After another 15 

minutes of irradiation, these bands continued to grow-in, as the parent bands 

continued to decrease.  The IR spectra show that CO loss occurs more rapidly 

following irradiation at 313 nm, than at 365 nm.   
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4.3.10   Cycloreversion of the Closed-ring Co2(CO)6 Complex 10bF 

 

Co2(CO)6 complexes were incorporated onto the closed-ring isomer of 8F, producing 

the corresponding complex 10bF, as illustrated in figure 4.22.  The original purpose of 

synthesising this complex was to help in elucidating the photochemical results 

obtained for the cobalt carbonyl complexes discussed previously in section 4.3.8.  

However, the cycloreversion process was also investigated in order to determine the 

effects of the cobalt carbonyl units on this process, and on the other hand, the effects 

of visible light irradiation on the Co2(CO)6 moieties.  The results are described here. 

 

 

Figure 4.22: Illustrates the structure of the closed-ring Co2(CO)6 complex 10bF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.23: UV-vis absorption spectrum of the closed-ring isomer of the Co2(CO)6 complex 10bF 

(black line), in THF, following irradiation at λ > 650 nm for 6 minutes (blue lines), and for 10 and 15 

minutes (red lines). 
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The UV-vis absorption spectrum of 10bF, in THF, displayed bands at 274, 337 and a 

shoulder at 357 nm in the UV region, and a broad absorption band in the visible 

region (λmax at 631 nm).  Irradiation with visible light at λ > 650 nm, for 6 minutes, 

resulted in a colour change from blue to colourless, along with a decrease in the 

absorption band in the visible region.  In the UV region, the intraligand band at 375 

nm increased, and an isosbestic point was observed at 375 nm.  This result indicates 

that the closed-ring isomer underwent cycloreversion back to the open form.  Longer 

irradiation times (after 10 and 15 minutes) resulted in a further decrease in the band at 

631 nm.   However, the intraligand band at 337 nm continued to increase and was 

slightly blue-shifted to 332 nm, the band at 274 nm began to decrease marginally, and 

a clean isosbestic point was no longer observed, as shown in figure 4.23.  In 

comparison to the absorption spectrum of the open-ring isomer 10F, this intraligand 

band had increased in absorption and was similar to the λmax of the free ligand 8F, as 

illustrated in figure 4.24.  This indicates that irradiation at λ > 650 nm resulted in 

some cleavage of the Co2(CO)6 moieties from 10bF, resulting in formation of some of 

the free ligand 8F.  Therefore, the solution of 10bF at the end of the experiment (i.e. 

after 15 minutes at λirr > 650 nm) most likely contained a mixture of the open-ring 

Co2(CO)6 complex (10F) and the free ligand (8F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24: UV-vis absorption spectra, in THF, of: the closed-ring isomer of the Co2(CO)6 complex 

10bF, following irradiation at λ > 650 nm (red line); the open-ring isomer of the Co2(CO)6 complex 

10F (black line); and the open-ring isomer of the free ligand 8F (blue line).  
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4.4 Conclusion 

 

Ethynylferrocene and phenyl-ethynylferrocene moieties were substituted onto 

dithienyl-perhydro- and perfluoro-cyclopentene switches, generating switches 7H, 7F, 

8H and 8F.  Their photochromic, fatigue resistance, thermal stability and fluorescent 

properties were investigated, using absorption/emission and 
1
H NMR spectroscopy as 

spectroscopic tools.  The effects of the atoms located on the central cyclopentene ring, 

and the substituents attached to the switching unit, on these properties were 

determined. 

The absorption spectra recorded for compounds 7H/F and 8H/F, following 

photocyclisation from the open-ring to the closed-ring isomers, showed that the λmax 

of the absorbance bands were shifted further towards the red for the perfluorinated 

switches, in comparison to their perhydro-derivatives.  An extension of the π-

conjugation of the compounds, through the introduction of a phenyl ring between the 

ethynylferrocene moiety and the switching unit, resulted in a bathochromic shift of the 

λmax of the absorbance band in the visible region for compound 8H, relative to 7H.  

Conversely, the opposite effect was observed for the perfluoro-derivatives, with the 

λmax of the closed-form of 7F appearing at the longest wavelength for the four 

switches, at 641 nm.  Also noted was the time taken for each switch to reach the 

photostationary state following UV irradiation, with 7H, 7F, 8H and 8F taking 35, 30, 

40 and 8 minutes respectively.  In the case of the perhydro switches, it appears that the 

cyclisation process is marginally more efficient for the less conjugated switch 7H, in 

comparison to 8H, under the conditions used here.  The presence of the fluorine 

atoms, on the central switching unit, seems to increase the efficiency of this process.  

However, once again, the opposite trend was found for the perfluoro-derivatives, with 

the cyclisation process of the more conjugated switch 8F proving to be considerably 

more efficient then the other three switches.  These results highlight how the 

substituents attached to the switching unit, together with the atoms present on the 

cyclopentene ring, strongly influence the cyclisation process, and the absorption 

spectra, of such switches.   

The cycloreversion processes were found to be more efficient than the cyclisation 

processes for compounds 7F, 8H and 8F, with the ring-open isomers reforming after 
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7, 7 and 3 minutes of irradiation with visible light, respectively.  However, only 8F 

was found to undergo a complete cycloreversion process, whereas 7F and 8H did not 

return fully to the original spectra recorded.  In the case of 7H, the cycloreversion 

process was considerably slower than the other three switches, and only after 4.5 

hours of visible light irradiation were no more changes observed in the spectrum.  At 

this point, ~20% of the absorbance at 548 nm was still remaining, therefore the 

cyclisation process of 7H was found to be somewhat irreversible.   

The fatigue resistance experiments determined that the photostability of these switches 

were found to decrease in the order: 8F > 8H > 7F > 7H.  This result emphasises the 

stabilising effect of the fluorine atoms and, to a greater extent, the increased π-

conjugation character, on the cyclisation/cycloreversion processes. 

The 
1
H NMR studies of the cyclisation processes of the ferrocenyl-based switches 

concluded that UV irradiation of 7F and 7H resulted in the formation of a photostable 

by-product in each case (7Fx and 7Hx), whereas an estimated value of > 95%  

conversion from the open to the closed-ring isomer, with no evidence of by-product 

formation, was observed for 8H and 8F.  These results clarify the poor fatigue 

resistance, and incomplete cycloreversion processes, described for 7F and 7H. 

The thermal stability of the ferrocenyl-based switches was found to increase in the 

order: 8H < 7H < 8F < 7F.  The half-lives calculated for the perfluorinated switches, 

7F and 8F (at 60, 80 and 100°C), were very similar to each other, and the same was 

found for the perhydro-derivatives 7H and 8H.  However, in both cases, the less 

conjugated switches, 7F and 7H, were found to be moderately more stable than their 

corresponding derivatives, 8F and 8H.  On the other hand, the perfluorinated switches 

were found to be considerably more stable then their perhydro counterparts.  Hence, 

the main influencing factor on the thermal stability of these switches was established 

to be the atoms located on the central cyclopentene ring i.e. F vs. H.  However, it 

should be noted that a mixture of cycloreversion, in-conjunction with decomposition, 

was observed for these compounds when heated at elevated temperatures, but all four 

switches were found to be stable in the dark at room temperature.      

 

Overall, it can be concluded that the photochromic, fatigue resistance and thermal 

stability properties were improved by extending the π-conjugation of the compounds, 

and substituting the cyclopentene ring with fluorine instead of hydrogen atoms.  Thus, 

among the four ferrocenyl-based switches described here, 8F was found to be the most 
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promising switch in terms of its potential for use in future applications.  However, one 

of the main requirements of switching compounds is a fast response time.  The fact 

that the photostationary state of the closed-ring isomer of 8F was only reached after 8 

minutes of UV irradiation, indicates that the response time on the molecular level may 

be too slow for a number of applications.  Also, 8F was deemed to be non-fluorescent 

at room temperature, therefore, other avenues would need to be explored in order to 

find an alternative non-destructive read-out method for 8F to have potential use in 

memory media applications. 

 

Incorporating cobalt carbonyl moieties onto 7H/F and 8H/F dramatically affected the 

photochromic behaviour of the switches.  The presence of the Co2(CO)6 and 

Co2(CO)4dppm moieties on the less-conjugated switches 9H/F and 11H/F inhibited 

photocyclisation of the switching units and decomposition of the cobalt carbonyl 

moieties was evident following UV irradiation.  On the other hand, photocyclisation to 

the closed-ring isomers was observed for the more conjugated Co2(CO)6 derivatives 

10H/F, but was also accompanied by photochemical cleavage of the cobalt carbonyl 

units to some extent.  Therefore, the ring-closed product formed at the photostationary 

state is believed to be a mixture of the closed-ring cobalt carbonyl complexes and that 

of the free ligand switch, in each case.  Introducing dppm ligands onto the metal 

carbonyl units, producing the corresponding Co2(CO)4dppm complexes 12H/F, 

reduced the reversibility of the cyclisation process, with a decrease in the amount of 

the closed-ring formed, as evidenced by the relative intensities of the absorbance 

bands recorded at the PSS in the UV-vis spectra.  Irradiation at 365 nm increased the 

amount of the closed-ring formed for the fluorinated derivatives, but not in the case of 

the perhydro switches.  The results obtained indicated that the fluorinated complexes 

generated more of the ring-closed isomer, with an increase in the reversibility of the 

colouring/bleaching cycle, in comparison to the perhydro analogues.  Investigations 

into the effects of irradiation at 313 and 365 nm on the Co2(CO)6 moieties were 

performed on 10F, and the IR results obtained, in the presence of PPh3, indicated that 

CO loss occurs under these conditions.   
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Table 4.8: Irradiation times required for the free switches (7H/F and 8H/F), and their corresponding 

Co2(CO)6  (9H/F and 10H/F) and Co2(CO)4dppm complexes (11H/F and 12H/F), to reach the 

photostationary state (PSS), following irradiation at 313 nm and 365 nm in THF. 

 

Time to reach PPS of closed-ring isomer after irradiation 

Free Switches Co2(CO)6 Complexes Co2(CO)4dppm Complexes 

 
Time at 

λ=313nm 
 

Time at 

λ=313nm 

Time at 

λ=365nm 
 

Time at 

λ=313nm 

Time at 

λ=365nm 

7H 35 min 9H - - 11H - - 

7F 30 min 9F - - 11F - - 

8H 40 min 10H 45 min 55 min 12H 100 min 130 min 

8F 8 min 10F 16 min 28 min 12F 20 min 45 min 

(-) indicates no cyclisation occurred. 

 

In comparison to the free ligand switches 8H/F, incorporating Co2(CO)6 {10H/F} and 

Co2(CO)4dppm groups {12H/F} onto the switch was found to bathochromically shift 

the λmax of the absorbance band in the visible region, following photocyclisation 

processes.  However, the efficiency of the ring-closing process for the cobalt carbonyl 

complexes was found to be reduced, with longer irradiation times required to reach the 

PSS (table 4.8).  Furthermore, lower intensity absorbance bands were observed in the 

visible region at the PSS of the cobalt carbonyl complexes, relative to the free ligand 

switches, indicating a decrease in the amount of the closed-ring formed.  The most 

problematic aspect is the photochemical decomposition reactions of the metal 

carbonyl groups.  As mentioned previously, fatigue resistance properties are very 

important for such switching molecules in terms of their potential use in applications.  

Therefore, the irreversible nature of the photochemical processes of the cobalt 

carbonyl complexes described here is not ideal.  However, the results have shown that 

the presence of the phenyl rings in 10H/F and 12H/F, acting as spacer groups between 

the switching unit and the alkynyl cobalt carbonyl moieties, allows cyclisation 

processes to occur.  Furthermore, the presence of the fluorine atoms on the central 

cyclopentene unit influenced the cyclisation process, with more ring-closing occurring 

for the cobalt tethered complexes, and a more reversible cycloreversion process was 

observed, in comparison to the perhydro-derivatives.  This highlights the ability to 

tune the properties of such cobalt carbonyl complexes by altering the substituents 

attached to the dithienylethene units.  With further investigations into such complexes, 
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there is the potential to improve the photochromic properties to produce more 

“idealistic” switches towards the development of memory media devices.   

On the other hand, the photochemical behaviour of the cobalt carbonyl moieties can 

be utilised towards the development of carbon monoxide releasing molecules 

(CORM’s).  The closed-ring isomer of the Co2(CO)6 complex 10F was synthesised, 

forming 10bF.  The photocycloreversion process of 10bF was examined following 

irradiation with visible light (λ > 650 nm).  10bF was found to undergo ring-opening 

under these conditions however, the UV-vis results showed evidence for cleavage of 

the cobalt units.  Although the photochemical behaviour of the Co2(CO)6 switch was 

not extensively investigated, there is potential for 10bF, or a similar compound, to be 

applied towards the development of CORM’s as a therapeutic agent.
24-26
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Chapter 5 describes the electrochromic behaviour of the perhydro- and 

perfluoro-switches, substituted with ethynylthiophene moieties:  1,2-Bis(5’-

(3’’-ethynylthiophene)-2’-methylthien-3’-yl)cyclopentene {1H}; 1,2-Bis(5’-

(3’’-ethynylthiophene)-2’-methylthien-3’-yl)perfluorocyclopentene {1F}; 

1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-methylthien-3’-yl)-

cyclopentene {2H}; 1,2-Bis(5’-(4’’-phenyl-3’’’-ethynylthiophene)-2’-

methylthien-3’-yl)perfluorocyclopentene {2F}.  The electrochemical 

properties of these switches were investigated using cyclic voltammetric 

and UV-vis/NIR spectroelectrochemical techniques.  The electrochemical 

properties of the corresponding Co2(CO)6 complexes {3H,  3F, 3bF, 4H, 

4bH, 4F}, and Co2(CO)4dppm complexes {5H, 5F, 6H} were also 

examined, using similar techniques, in order to investigate the effects of 

incorporating cobalt carbonyl moieties onto the switches.  IR 

spectroelectrochemical techniques were employed to explore the effects of 

the oxidation processes on the cobalt carbonyl moieties.  
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5.1 Introduction 

 

Dithienylcyclopentene (DTE) switches can undergo electrochemical cyclisation or 

cycloreversion processes, following oxidation of the DTE core, which usually occurs 

at high positive potentials (≥ 1.0 V), which is typical of thiophene oxidation 

chemistry.
1
  The driving force for the process that takes place, is dependent on the 

relative stability of the radical cations of the open and closed forms.
2,3

  In general, it 

has been found that the central cyclopentene groups (i.e. H vs. F), and the substituents 

attached to the dithienylethene unit, greatly affect the oxidative processes, with 

electron-donating groups favouring ring-closure, and electron-withdrawing groups 

promoting the ring-opening process.
1,4,5

  As described in chapter 1, oxidative ring 

opening/closing processes can be detected using cyclic voltammetry methods.  

However, UV-vis spectroelectrochemical methods have also been employed to follow 

the electrochemical ring opening/closing processes, and the cation radicals generated 

in situ, to support the results obtained by cyclic voltammetry, and to help elucidate the 

mechanisms involved in such electrochemical processes.
1,2,4-6

  IR spectro-

electrochemical techniques have also been utilised in order to analyse the effect of 

oxidative/ reductive processes, on specific moieties, in the molecular system.
7-9

    

 

This chapter describes the electrochemical properties found for the thienyl-based 

dithienylcyclopentene switches (1H, 1F, 2H, 2F), using cyclic voltammetric and UV-

vis spectroelectrochemical techniques.  The same methods were employed to 

investigate the effects of incorporating Co2(CO)6 moieties (3H, 3F, 3bF, 4H, 4bH, 

4F), and Co2(CO)4dppm moieties (5H, 5F, 6H) on the electrochromic properties of 

these switches.  The consequence of the oxidation processes on the cobalt carbonyl 

complexes were examined through IR spectroelectrochemical techniques.  The 

structures of thienyl-based switches, and their cobalt carbonyl complexes, are shown 

in figure 5.1. 
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Figure 5.1: Illustrates the structures of the thienyl-based dithienylperhydro- and perfluoro-cylopentene 

switches 1H, 1F, 2H and 2F discussed in this chapter, and their corresponding Co2(CO)6 complexes 

{3H, 3F, 3bF 4H, 4bH, 4F} and Co2(CO)4dppm complexes {5H, 5F, 6H}. 
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5.2 Experimental 

 

5.2.1 General Procedures 

 

Cyclic Voltammetry:  Cyclic voltammetry experiments were carried out in the dark, at 

room temperature, in a closed 10 ml two-neck round-bottomed flask.  Solutions of the 

compound (~ 1 mmol) were made-up in spectroscopic grade dichloromethane, using 

tetrabutylammonium hexafluorophosphate (0.1 M) as the supporting electrolyte.  The 

solutions were degassed with argon, and kept under an inert atmosphere throughout 

the experiment.  A three-electrode system was set-up: glassy carbon was used as the 

working electrode, a platinum wire was employed as the counter electrode and a silver 

wire was used as the reference electrode.  The cyclic voltammograms were obtained at 

a scan rate of 0.1 Vs
-1

. 
 

The reference electrode was calibrated versus the 

decamethylferrocene redox couple (Fc*
+
/Fc*), which has a formal potential E1/2 = -

0.07V versus SCE.
10

     

UV-vis/NIR Spectroelectrochemistry:  Spectroscopic grade dichloromethane was 

used as the solvent and 0.1 M tetrabutylammonium hexafluorophosphate [TBAPF6] 

was used as the supporting electrolyte.  The experiments were carried out, in the dark, 

using a platinum gauze mesh working electrode, in a custom-made quartz cuvette (2 

mm path length) equipped with a solvent reservoir holding a silver wire reference 

electrode and platinum wire counter electrode (separated from the solution using a 

glass tube sleeve).  The solutions were degassed with argon and kept under an inert 

atmosphere throughout the experiment.  Bulk electrolysis was carried out over a 

variety of oxidation/reduction potentials, at room temperature, and UV-vis/NIR 

spectra were recorded until no further changes were observed.  Subsequently, a 

potential of 0 V was applied to the system and spectra were recorded until changes in 

the spectra ceased.  These experiments were typically carried out over a period of 20 

to 40 minutes. 

IR spectroelectrochemistry:  Solutions of the cobalt carbonyl complexes were made-

up in spectroscopic grade dichloromethane, containing tetrabutylammonium 

hexafluorophosphate (0.1 M) as the supporting electrolyte, and measured in an IR 

OTTLE cell.  The cell contained a platinum gauze working electrode, a platinum 
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counter electrode, and a silver reference electrode.  Bulk electrolysis was carried out 

at room temperature, over a variety of oxidation potentials and the changes in the IR 

spectra were recorded.  Subsequently, a potential of 0 V was applied and the changes 

in the IR spectra were recorded.  

Formation of the closed-ring isomers:  The switches were dissolved in deuterated 

acetone and placed in a sealed NMR tube.  With monitoring by 
1
H NMR 

spectroscopy, the solutions were irradiated with monochromatic light, at 313 nm, until 

conversion from the open-ring to the closed-ring was complete, or before the 

photochemical by-products formed.   

 

5.2.2 Materials 
 

The dichloromethane was of spectroscopic grade and was purchased from Sigma 

Aldrich.  The tetrabutylammonium hexafluorophosphate, decamethylferrocene and 

deuterated acetone were all purchased from Sigma Aldrich.  The argon gas was 

supplied by BOC Ltd.   

 

5.2.3 Equipment 
 

Cyclic voltammetry and bulk electrolysis experiments were carried out using a CH 

Instruments Chi600a potentiostat.  The electrodes used for the cyclic voltammetry 

experiments were a glassy carbon (working), silver wire (reference), and platinum 

wire (counter), all purchased from CH Instruments.  UV-vis/NIR 

spectroelectrochemistry experiments were carried out on a Jasco V-670 

spectrophotometer, in a custom-made quartz cuvette (2 mm path-length) equipped 

with a solvent reservoir, which was purchased from Starna Scientific.  The electrodes 

employed were a platinum gauze mesh (working), a silver wire (reference) and a 

platinum wire (counter).  Infra-red spectroelectrochemistry experiments were carried 

out on a Perkin Elmer “Spectrum 65” FT-IR spectrometer, using an electrochemical 

IR OTTEL cell purchased from IDEAS! UvA B.V.  The IR cell contained a platinum 

gauze working electrode, a platinum counter electrode, and a silver reference 

electrode.  Photochemical experiments were carried out using a 200W Hg lamp (Oriel 

Instruments, model no.: 68911) containing a 313 nm filter.  
1
H NMR spectra were 

recorded on a Bruker model AC 400 MHz spectrometer.  
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5.3 Results and Discussion 

 

5.3.1 Thienyl-based Switches: Cyclic Voltammetry  

Electrochemical induced switching, of the thienyl-based switches 1H/F and 2H/F, 

was investigated by cyclic voltammetry.  The open-ring isomers were irradiated with 

UV light (at 313 nm) in order to generate the closed-ring isomers.  Cyclic 

voltammetry experiments were performed on both the open and closed forms, in 0.1 

M solutions of TBAPF6/CH2Cl2, at a scan rate of 0.1 Vs
-1

.  Decamethylferrocene was 

employed as a reference and the results are reported against the ferrocene redox 

couple Fc*
+
/Fc* (E1/2 = -0.07 vs. SCE).  The structures of the open and closed 

switches are illustrated in figure 5.2. 

 

Figure 5.2: Illustrates the structures of the open and closed isomers of compounds 1H/F and 2H/F. 
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• Reduction Process 

 

Reductive electrochemistry was carried out on the open and closed-ring isomers in the 

range from 0 to -2.0 V.  The potential limit of the solvent (CH2Cl2) is -2.0 V, therefore 

experiments were not carried out at lower potential values.  Within this potential range 

no reduction processes were observed for the open-ring isomer 1Fo.  However, the 

closed-ring derivative (1Fc) revealed two irreversible reduction waves at -1.1 V and  

-1.49 V (vs. SCE), as shown in figure 5.3, which can be attributed to the generation of 

the mono- (1Fc
-
) and di-anion (1Fc

2-
) species respectively.  The fact that 1Fc 

underwent reduction processes at > -2.0 V can be ascribed to the extension of the π-

conjugation of the system in the closed-ring isomer, which reduces the HOMO-

LUMO gap, hence allowing reduction processes to occur at less negative 

potentials.
11,12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Cyclic voltammogram of the reduction process of 1Fc, in 0.1 M TBAPF6/CH2Cl2, at a scan 

rate of 0.1 Vs
-1

. 

 

Similar results were observed for 2F.  No reduction waves were observed for the 

open-ring isomer 2Fo below the potential limit of the CH2Cl2 solvent, whereas the 

cyclic voltammogram (CV) of the closed-ring isomer 2Fc displayed two irreversible 

reduction waves at -0.95 and -1.2 V (vs. SCE), representing the formation of the 
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monoanion (2Fc
-
) and dianion (2Fc

2-
) species respectively.  Conversely, no reduction 

processes were observed for the open- or closed-ring isomers of the perhydro 

derivatives 1H and 2H, at potentials higher then -2.0 V.  This can be attributed to the 

ability of the hexafluoro substituents to stabilise the LUMO (i.e. the first reduction 

process) to a greater extent then the hydrogen substituents
1,11,12

, hence resulting in the 

occurrence of reduction processes of the perhydro analogues at more negative 

potentials, beyond the solvent range. 

 

• Oxidation Process 

 

The oxidation processes of the open and closed-ring isomers of 1H/F and 2H/F were 

examined in order to determine whether oxidative cyclisation or cycloreversion 

processes occurred for theses switches.  The oxidation potentials observed in the CVs 

of these compounds are summarised in table 5.1.  

Table 5.1: Redox properties of 1H/F and 2H/F in the open and closed forms. 

Cyclic Voltammetry Oxidation Potentials 

Open-Ring Isomers Closed-Ring Isomers 

 Epa (V) Epc (V) E1/2 (V)  Epa (V) Epc (V) E1/2 (V) 

1Ho 0.65
rc

 

0.95
rc

 

1.55
a
 

0.60
rc

 

0.88
rc

 

- 

0.63
rc 

0.92
rc

 

- 

1Hc 0.65
rc

 

0.95
rc

 

0.55
rc

 

0.85
rc 

0.60
rc

 

0.90
rc

 

2Ho 0.50
rc

 

0.82
rc

 

1.23
a
 

0.42
rc

 

0.75
rc

 

 

0.46
rc

 

0.79
rc

 

 

2Hc 0.56
rc

 

0.88
rc

 

0.42
rc

 

0.74
rc 

0.49
rc

 

0.81
rc

 

1Fo 1.71
a
 - 

- 
1Fc 1.13

b
 0.89

b
 1.01 

2Fo 0.99
rc

 

1.11
rc

 

1.63
a
 

0.92
rc

 

1.07
rc

 

 

0.96
rc

 

1.09
rc

 

 

2Fc 1.04
rc

 

1.17
rc

 

0.92
rc

 

1.07
rc 

0.98
rc

 

1.12
rc

 

 

All values listed are values of potential (V) vs. SCE, recorded in 0.1 M TBAPF6/CH2Cl2. at 0.1 Vs
-1

. 
a
 indicates an irreversible oxidation process  

b
 indicates a quasi-reversible oxidation process  

rc
 indicates peaks assigned to ring-closed species  

 

Electrochemical oxidation of 2Ho resulted in an irreversible oxidation peak at 1.23 V 

(vs. SCE), as shown in figure 5.4.  The returning sweep displayed two reduction 

waves at 0.75 and 0.42 V, and the subsequent oxidation sweep showed two new 
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corresponding oxidation waves at 0.50 and 0.82 V, which were not present before the 

oxidation occurred at 1.23 V.  This result indicates that oxidative cyclisation from the 

open to the closed-ring isomer occurred, as described previously in the literature.
1,2,5,6

  

The large oxidation peak at 1.23 V represents the oxidation of the open-ring isomer 

2Ho to its radical dication 2Ho
2+

, which was immediately followed by cyclisation to 

form the closed-ring dication 2Hc
2+

.  The dication radical was subsequently reduced 

to the monocation radical (2Hc
2+

 → 2Hc
+
) and then to its neutral form (2Hc

+
 → 

2Hc), at 0.75 V and 0.42 V respectively.  The stability of the closed form resulted in 

the oxidation waves observed in the subsequent anodic sweeps.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5.4 Cyclic voltammogram of 2Ho (bottom) and 2Hc (top), in 0.1 M TBAPF6/CH2Cl2, at a scan 

rate of 0.1 Vs
-1

.  The CV of the closed form is offset along the coordinate for clarity.   
 

Oxidation of the corresponding closed-ring isomer 2Hc was manifested in two 

reversible waves at E1/2 = 0.49 and 0.81 V, representing the formation of the 

monocation 2Hc
+
 and dication species 2Hc

2+
 respectively.  These redox waves 

correspond to the two redox waves observed for 2Ho following oxidation at 1.23 V, as 

shown in figure 5.4, hence confirming the oxidative cyclisation of 2Ho.   

 

2Ho → 2Ho
n+

 → 2Hc
2+

 

2Hc
+
 ← 2Hc

2+
 2Hc ← 2Hc

+
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Figure 5.5 Cyclic voltammogram of 1Ho (bottom) and 1Hc (top), in 0.1 M TBAPF6/ CH2Cl2, at a scan 

rate of 0.1 Vs
-1

.  The CV of the closed form is offset along the coordinate for clarity.   

 

Evidence of oxidative ring-closing was also observed for the less conjugated 

derivative 1Ho.  An irreversible oxidation peak at 1.55 V (vs. SCE) was followed by 

two small reduction peaks at 0.60 and 0.88 V.  The subsequent oxidation sweep 

displayed two new corresponding oxidation waves at 0.65 and 0.95 V, which were not 

present before oxidation occurred at 1.55 V.  The CV of the closed-ring isomer 1Hc 

displayed two oxidation waves at 0.65 and 0.95 V, and two corresponding reduction 

waves at 0.55 and 0.85 V respectively, typical of the generation of the monocation 

1Hc
+
 and dication 1Hc

2+
 species, respectively.  The similarities between the CVs of 

the open and closed-ring isomers of 1H (figure 5.5) suggest that 1Ho undergoes 

oxidative ring-closing in a similar fashion to that described for its more conjugated 

derivative 2Ho.  Hence the oxidation peak at 1.35 V can be assigned to the oxidation 

of the open-ring isomer 1Ho, immediately followed by a cyclisation process, forming 

the closed-ring dication species 1Hc
2+

.  Subsequent reduction to the monocation 

(1Hc
2+

 → 1Hc
+
) and neutral species (1Hc

+
 → 1Hc) is denoted by the reduction peaks 

at 0.60 and 0.88 V respectively.   
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Also noted in the CVs of both 1Ho and 1Hc, was an unexpected third reduction peak 

at approximately 0.75 and 0.72 V, respectively.  A corresponding oxidation peak was 

present at 0.78 V in the CV of 1Ho, which was not observed for 1Hc, although it 

could possibly be obscured by the oxidation peak at 0.65 V.  This result suggests that 

oxidation of 1Hc results in the generation of a new species, of unknown structure 

(assigned as 1Hy).  Similar electrochemically-produced by-products have been 

reported previously in the literature,
1,4

 and its formation is believed to compete with 

that of the closed-form, although the structure, and mechanism by which it is formed, 

have yet to be elucidated.  

 

In contrast to the perhydro analogue 1Ho, the perfluoro-derivative 1Fo was not found 

to undergo oxidative cyclisation.  The similarities between the CVs of 1Fo and 1Fc 

indicate an oxidative cycloreversion process takes place for the closed-ring isomer 

1Fc.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Cyclic voltammogram of 1Fo (bottom) and 1Fc (top), in 0.1 M TBAPF6/CH2Cl2, at a scan 

rate of 0.1 Vs
-1

.  The CV of the closed form is offset along the coordinate for clarity.   
 

Oxidation of the perfluoro analogue 1Fo resulted in a large irreversible oxidation peak 

at 1.71 V (vs. SCE), as shown in figure 5.6, assigned to the formation of the dicationic 

species 1Fo
2+

.  In the subsequent sweeps, redox waves indicative of the formation of 



 257 

the mono- and di-cationic species of the closed-form were absent.  However, a small 

reduction wave appeared at 0.72, and a corresponding oxidation peak at 0.82 V, as 

shown in figure 5.6.  These peaks can tentatively be assigned to the generation of an 

unknown electrochemical species (assigned as 1Fy), as already described for 1H.  

The CV of 1Fc (figure 5.6) displayed similarities to that of the open-ring isomer 1Fo, 

which indicated that 1Fc underwent oxidative cycloreversion to the open-form.  Such 

a process has been detailed in the literature, and is believed to involve a chain reaction 

mechanism.
2,13

  An irreversible oxidation peak at 1.13 V was observed in the CV of 

1Fc, resulting in the formation of the thermally unstable closed-ring radical cation 

(1Fc
+
), which rapidly undergoes a cycloreversion reaction, forming the radical cation 

of the open-ring isomer (1Fc+
 → 1Fo+

).  As described already, the open-ring isomer 

1Fo undergoes oxidation at a much more positive potential (1.71 V), in comparison to 

the closed-ring isomer.  Hence, the open-ring radical cation (1Fo+
) removes an 

electron from another closed-ring molecule (1Fc), resulting in the neutral form of the 

open-ring isomer (1Fo), and regeneration of the original closed-ring radical cation 

(1Fc+
).  Subsequently, this closed-ring radical (1Fc+) then quickly undergoes 

cycloreversion to the open-ring isomer (1Fo
+
), which removes an electron from 

another closed-ring molecule, and so on, thus resulting in a chain reaction.  The 

corresponding reduction peak, at Epc = 0.89 V, can be ascribed to the reduction of a 

small amount of the closed-ring cation 1Fc
+
, which did not take part in the chain 

reaction.  A second reduction peak was observed at 0.64 V, with a small 

corresponding anodic peak at 0.72 V.  A similar redox process was observed in the 

literature reports, but was not assigned to any particular species.     

 

In contrast to 1Fo, its corresponding more conjugated derivative 2Fo was found to 

undergo oxidative cyclisation to the closed-form, as illustrated in figure 5.7.  The CV 

of the closed-ring isomer 2Fc displayed two one-electron redox waves at E1/2 = 0.98 

and 1.12 V (vs. SCE), representing the formation of the monocation radical 2Fc
+
, and 

dication species 2Fc
2+

, respectively.   

The CV of 2Fo displayed a large irreversible peak at 1.63 V, representing a two-

electron oxidation process of the open-ring isomer, rapidly followed by cyclisation to 

the closed-ring isomer, forming the dication radical 2Fc
2+

.  In the returning sweep two 

new reduction waves were observed at 0.92 and 1.07 V, and their corresponding 

oxidation waves appeared at 0.99 and 1.11 V in the consecutive anodic sweep.  
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Therefore, the dication radical 2Fc
2+

 was reduced to the monocation species 2Fc
+
, and 

then to the neutral form 2Fc, at E1/2 = 1.09 and 0.96 V respectively.  These redox 

waves are in agreement with those observed in the CV of 2Fc, as illustrated in figure 

5.7, hence verifying the occurrence of electrochemically induced ring-closure of 2Fo 

to 2Fc.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Cyclic voltammogram of 2Fo in 0.1 M TBAPF6/CH2Cl2, at a scan rate of 0.1 Vs
-1

.  Inset is 

the CV of the closed-ring isomer 2Fc.   
 

A small reduction wave at 0.55 V, and a corresponding oxidation wave at 0.59 V was 

also observed in the CV of 2Fo, following oxidation at 1.63 V, although similar peaks 

were not observed in the CV of the closed form 2Fc.  This indicates that the new 

redox waves are possibly a consequence of a rearrangement process of the 

dithienylethene switching unit during cyclisation processes, from the open to the 

closed form, resulting in a newly formed oxidative by-product (assigned as 2Fy), as 

described previously for 1H and 1F.   

 

The results described here demonstrate the significant effect the atoms on the central 

cyclopentene units (H vs. F) have on the redox properties of the switches.  In the case 

of the less-conjugated derivative 1Fo the oxidation process is anodically shifted by 

160 mV in comparison to its perhydro analogue 1Ho.  This can be ascribed to the 
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ability of 1Ho to stabilise the HOMO (i.e. first oxidation process) to a greater extent 

due to the presence of the electron-donating hydrogen atoms on the central 

cyclopentene core.  The effect of the hydrogen atoms can also be described as the 

driving force for the oxidative ring-closure observed for 1Ho.  In order for ring-

closure to proceed, delocalisation of the charge is required in order to stabilise the 

radical cation, however the stability of the thienyl rings decreases due to loss of 

aromaticity.  The presence of the electron-donating H atoms increases the electron 

density on the central alkene group, thus facilitating communication between the two 

thiophene rings.  Hence, the stability of the radical cation of the closed-ring isomer is 

increased, and therefore oxidative cyclisation, from the open to the closed-ring form, 

is thermodynamically allowed.  On the other hand, the electron-withdrawing fluorine 

atoms on 1Fo have the opposite effect.  Stabilisation of the radical cation of the ring-

closed isomer, by delocalisation of the charge, is counteracted by the electron-

withdrawing effect of the fluorine atoms, which decreases the electron density on the 

alkene group.  Therefore, ring-opening of the closed-ring cation occurs, with 

localisation of the charge on the thiophene rings.  Similar trends have been reported in 

the literature.
1,4,5,13,14

 

 

 

Scheme 5.1: Illustrates delocalised charge across the entire switching unit, and localised charge on the 

individual thiophene rings.  

 

Extending π-conjugation within the switches, through the introduction of phenyl rings 

between the cyclopentene unit and the ethynylthiophene moieties, in the case of 

compounds 2H and 2F, was found to have significant effects on the redox properties 

of the switches.  The first oxidation of 2Ho was cathodically shifted by 400 mV in 

comparison to its perfluoro analogue 2Fo, due to the stabilising effect of the hydrogen 

atoms on the HOMO, as previously described for 1Ho and 1Fo.  The oxidation 

process of 2Ho occurred at a less positive potential in comparison to its less-

conjugated derivative 1Ho, with a cathodic shift of 320 mV.  A similar result was also 
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found for 2Fo, with the oxidation process cathodically shifted by 80 mV relative to 

1Fo.  More importantly, oxidation of 2Fo resulted in a cyclisation process to the 

closed form.  On the contrary, the closed-ring isomer of 1F underwent an oxidative 

ring-opening process.  These results suggest that the electron-rich phenyl groups 

contribute to the stabilisation of the cation radical following delocalisation of the 

charge, hence further stabilising the HOMO, and thus allowing oxidation to occur at 

lower potentials, relative to their less-conjugated derivatives 1H/1F, and 2Fo to 

undergo oxidative ring-closure.   

 

The cyclic voltammetry results also revealed the formation of the unknown species 

1Hy, 1Fy and 2Fy following oxidation processes.  Such oxidation species have been 

described previously by Browne et al.
1,4

  They ascribed the formation of these species 

to a thermally activated rearrangement of the dication radical of the closed-ring 

isomers of similar switches.  They found that such species could be inhibited by 

environmental control, such as the solvent or temperature employed, or by the 

introduction of electron-donating groups.  Interestingly, the only switch described here 

which did not show any evidence for the formation of such an oxidative species was 

2H.  With reference to the results described by Browne et al, this could possibly be 

due to the extra stability provided by the electron-donating ability of the hydrogen-

atoms on the cyclopentene ring, together with the electron-rich phenyl groups.  
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5.3.2 Thienyl-based Switches: UV-vis/NIR Spectroelectrochemistry  

 

The cyclic voltammetry experiments indicated that oxidative ring-closure occurred for 

1H, 2H and 2F, and oxidative ring-opening occurred for 1F.  UV-vis/NIR 

spectroelectrochemistry was carried out on the open and closed-ring isomers in order 

to further investigate the oxidation processes of these switches, and to ultimately 

confirm the results established from the cyclic voltammetry experiments.  The results 

obtained in the UV-vis/NIR are summarised in table 5.2, and were assigned to the 

corresponding oxidation products from reference to results published in the 

literature.
1,2,6

  The structures of the open and closed switches 1H/F and 2H/F are 

illustrated in figure 5.8. 

 

 

Figure 5.8: Illustrates the structures of the open and closed isomers of compounds 1H/F and 2H/F. 

 

 

 

 

 



 262 

Table 5.2: UV-vis/NIR spectroelectrochemistry data for the open and closed-ring isomers of 

compounds 1H/F and 2H/F, following oxidation processes at varying potentials. 

 
Oxidation 

Potential 
λabs (nm) 

 Oxidation 

Potential 
λabs (nm) 

1Ho 

Start 

1.3 V 

1.6 V 

290, 310 

455, 566, 666 

469, 575, 666, 867 
1Hc 

Start 

0.6 V 

0.9 V 

318, 540 

283, 405, 779, > 1100 

448, 568, 674 

2Ho 

Start 

1.4 V 

 

334 

471, 590(sh), 657 

 
2Hc 

Start 

0.6 V 

0.9 V 

326, 560 

442, 781, > 1030 

467, 590(sh), 654 

1Fo 

Start 

1.6 V 

 

305 

237, 345-700 

 
1Fc 

Start 

1.2V 

 

327, 608 

242, 305, 442, 740-960 

 

2Fo 
Start 

1.8 V 

328 

613, 780-1100 
2Fc 

Start 

1.2 V 

286, 353, 613 

328, 810, 1457 

 

The data was recorded in 0.1 M TBAPF6/CH2Cl2 vs. Ag/Ag
+
 

 

Oxidation of 2Hc was carried out at 0.60 V and 0.90 V (the potentials associated with 

the generation of the monocation 2Hc
+
 and dication 2Hc

2+
 species in the CV 

respectively), and the changes in the UV-vis/NIR spectra were recorded.  Oxidation at 

0.3 V, which was increased to 0.6 V, resulted in depletion of the 2Hc absorption 

bands at 326 and 560 nm, in-conjunction with the formation of new bands at 442, 781 

and > 1030 nm, as shown in figure 5.9.  These bands can be assigned to the formation 

of the monocation radical 2Hc
+
.  Increasing the oxidation potential to 0.9 V resulted in 

a decrease in the 2Hc
+
 bands at 781 and > 1030 nm, with a concomitant formation of 

strong absorption bands at 467 and 654 nm, and a shoulder at 590 nm, assigned to the 

generation of the dication radical 2Hc
2+

 (figure 5.10).   

Subsequent reduction, at 0 V to -0.2 V, resulted in a decrease in the bands associated 

with the cation species, however the original spectrum of 2Hc was not recovered.  An 

increase in the absorption band in the UV region was observed, with λmax at 337 nm, 

which lies between the λmax of the closed-ring isomer 2Hc and the open-ring isomer 

2Ho (λmax = 326 and 344 nm respectively).  Thus, the results indicate that the 

oxidation process of 2Hc is not reversible, and in fact, ring-opening of 2Hc occurs.   
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Figure 5.9: UV-vis/NIR spectrum of 2Hc, showing oxidation of 2Hc to 2Hc
+
 at 0.60V, in 0.1 M 

TBAPF6/ CH2Cl2.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: UV-vis/NIR spectrum of 2Hc, showing oxidation of 2Hc+ to 2Hc
2+

 at 0.90V, in 0.1 M 

TBAPF6/CH2Cl2.   
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When bulk electrolysis of the open-ring isomer 2Ho was carried out, at a potential of 

1.4 V, the absorption bands at 334 nm began to decrease, whilst strong absorption 

bands appeared in the UV-vis spectrum (figure 5.11) at 471 nm and 657 nm, with a 

shoulder at 590 nm.  These bands correspond to the absorption bands recorded for the 

dication species of the closed form 2Hc
2+

.  The absence of absorption features 

associated with the monocation species 2Hc
+
 indicates that cyclisation of 1Ho occurs 

following a two-electron oxidation process of the open-ring form, followed by 

cyclisation to the closed dication radical (2Ho → 2Ho
2+

 → 2Hc
2+

).   

Subsequent reduction at 0V (figure 5.12) resulted in a decrease in the bands at 475 and 

657 nm, revealing the formation of bands at 445 and 781 nm, which are associated 

with the monocation species of the closed form 2Hc
+
, and a band at 563 nm, assigned 

to the neutral species of the closed-isomer 2Hc.   The presence of these bands is 

expected, as the reduction of 2Hc
2+

 occurs in two separate one-electron reduction 

steps, firstly to the monocation 2Hc
+
 and then to the neutral species 2Hc, as shown in 

the CV of 2H.  Further reduction leads to the disappearance of the 2Hc
+
 and 2Hc 

bands, with an isosbestic point at 374 nm, and the band in the UV region at 337 nm 

increased.  The final spectrum recorded did not resemble that of the closed-ring 

isomer 2Hc as expected.  Instead, a strong band was present at 337 nm, with weak 

absorptions at 449, 663 and 717 nm, allocated to some decomposition products.  

Therefore, the bulk oxidation of 2Ho was not found to be fully reversible and did not 

result in the generation of the closed-ring isomer.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: UV-vis spectrum of 2Ho, showing oxidation of 2Ho to 2Hc
2+

 at 1.4 V, in 0.1 M 

TBAPF6/CH2Cl2. 
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Figure 5.12: UV-vis spectra for 2Ho, in 0.1 M TBAPF6/CH2Cl2, showing the subsequent reduction of 

the oxidised species 2Hc
2+

 at 0 V (blue lines).  As the absorbance in the visible region decreased, bands 

associated with the monocation species 2Hc
+
, and neutral species 2Hc, of the closed form became 

evident.  The reduction process was not found to be fully reversible as the final spectrum recorded (red 

line) did not match the initial spectrum recorded (black line).   

 

On oxidation of 1Hc, from 0.2 to 0.6 V, the original bands in the absorption spectrum, 

at 318 and 540 nm, began to decrease.  New bands appeared at 283, 405, 779 and > 

1100 nm, as shown in figure 5.13, which can be assigned to the formation of the 

monocation radical 1Hc
+
.  Increasing the oxidation potential to 0.9 V resulted in a 

decrease in the 1Hc
+
 absorption bands, and the appearance of strong absorption bands 

at 448, 568 and 674 nm.  Such changes can be ascribed to the formation of the 

dication species of the closed form 1Hc
2+

.  Reduction at 0 V to -0.2 V, resulted in 

depletion of the 1Hc
2+

 absorbance bands, however, the original spectrum recorded 

was not obtained.  An increase in absorbance was observed at 283 nm, but the bands 

at 318 nm and 540 nm did not return, thus indicating that the oxidation process of 1Hc 

is not reversible, and may result in ring-opening of 1Hc. 

Oxidation of the open-ring isomer 1Ho at 1.3 V, resulted in a decrease in the initial 

absorbance bands at 290 and 310 nm, in concurrence with new bands appearing at 

455, 566 and 666 nm.  In comparison to the results obtained in the UV-vis/NIR 

spectrum of 1Hc, these bands suggest that oxidation of 1Ho results in the formation of 

1Hc
2+

, without out the generation of 1Hc
+
, hence the cyclisation process occurs from 

the dication species of the open form: 1Ho → 1Ho
2+

 → 1Hc
2+

.  The absence of a 
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strong absorption band at ~ 540 nm, following reduction processes at 0 V, showed that 

the cationic species of the closed-ring was not reduced to the neutral species of the 

closed form.  Instead an overall decrease in the absorption bands in the visible region 

resulted, with an increase in the absorbance in the UV region.  The original spectrum 

recorded at the start was not obtained, thereby indicating that some decomposition 

occurred during the bulk electrolysis experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: UV-vis/NIR spectrum of 1Hc (black line) in 0.1 M TBAPF6/CH2Cl2, following oxidation 

at: 0.6 V forming 1Hc
+
 (green line); at 0.9 V forming 1Hc

2+
 (red line).   

 

The UV-vis/NIR spectroelectrochemistry data recorded for the closed-ring isomers of 

the perhydro switches 1Hc and 2Hc, have demonstrated the changes in the absorption 

spectra following oxidative formation of their relative monocation and dication 

species.  Similar changes were observed in the UV-vis spectra of the corresponding 

open-ring isomers, 1Ho and 2Ho, respectively.  Thus, these results, together with the 

results observed in the cyclic voltammograms, confirm that oxidative cyclisation 

processes occur for 1Ho and 2Ho.  However, the CVs of the perhydro switches 

indicate reversible oxidation processes for the closed-ring isomers, and generation of 

the neutral species of the closed form, in the case of the open-ring isomers.  

Conversely, the bulk electrolysis oxidation experiments were not found to be fully 

reversible.  In fact, the UV-vis spectra obtained, following subsequent reduction at 0 

V, indicated ring-opening processes occurred in each case.  Such a result can be 
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ascribed to the considerable increase in the timescale of the UV-vis 

spectroelectrochemistry experiments (minutes), in comparison to the cyclic 

voltammetry experiments (seconds).  Therefore, within the timescale of the bulk 

electrolysis processes, regeneration of the neutral species of the closed form is 

circumvented by a ring-opening process of the cationic species and restoration of the 

open-ring isomer, along with some degradation of the switches under these 

electrochemical conditions.   

 

In the case of the perfluoro-derivative 2Fo, the cyclic voltammetry results indicated 

that oxidative cyclisation to the closed-ring isomer occurred.  The oxidation processes 

for 2Fo was investigated in the UV-vis/NIR spectrum, and following oxidation at 1.8 

V, the initial absorbance band recorded at 328 nm began to decrease.  A new band 

began to grow-in at 613 nm, which is similar to the absorbance band of the closed-ring 

isomer 2Fc, hence confirming the occurrence of oxidative cyclisation.  An increase in 

absorbance in the range 780-1100 nm was also observed, which can tentatively be 

assigned to the generation of the monocation species of the closed form, 2Fc
+
.  The 

subsequent spectrums recorded showed a small increase at 613 nm, however the 

absorbance in the region 780-1100 nm began to decrease, and there was no evidence 

for the formation of the dication species 2Fc
2+

. This is in contrast to the results 

obtained for the perhydro-derivatives 1H and 2H, as there was little evidence for the 

formation of the cation radical species of 2Fc.  Subsequent reduction at 0V resulted in 

a decrease in the band at 613 nm, and the initial band at 328 nm did not return to its 

original intensity.  

Oxidation of 2Fc at 1.2 V resulted in a continual decrease in the absorbance band at 

613 nm.  On closer inspection, the first UV-vis/NIR spectrum recorded, at 1.2 V, 

displayed a low intensity increase in absorbance in the region 750 - 1620 nm, with two 

λmax present at 810 and 1457 nm.  Such spectral features can be attributed to the 

generation of the monocation 2Fc
+
 and dication 2Fc

2+
 species, however, they were 

found to decrease in intensity in the subsequent spectra recorded, as shown in figure 

5.15.  During the oxidation processes, an increase in the absorbance in the UV region 

was also observed, resulting in a single absorbance band at 328 nm, coincident with 

the absorbance band associated with the open-ring isomer 2Fo.  Subsequent reduction 

at 0 V, results in a further decrease at 613 nm, and increase at 328 nm.  This result 
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indicates that oxidation of 2Fc results in a cycloreversion process to the open-ring 

form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: UV-vis/NIR spectrum of 2Fo, in 0.1 M TBAPF6/CH2Cl2, following oxidation at 1.8 V.  

Inset shows the same spectrum between 380 and 1100 nm, showing an increase in the absorbance band 

at 613 nm and at > 780 nm (thick black line). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.15: UV-vis/NIR spectrum of 2Fc, in 0.1 M TBAPF6/CH2Cl2, following oxidation at 1.2 V.  

Inset shows the same spectrum recorded between 430 and 1500 nm, showing a decrease in the 

absorbance band at 613 nm, and an initial low intensity absorption at 810 and 1457 nm (thick black 

line). 
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Overall, evidence of oxidative cyclisation was observed in the UV-vis/NIR spectra of 

2Fo, due to the appearance of an absorbance band at 613 nm, associated with the 

neutral form of the closed-ring isomer.  The generation of some of the cationic species 

of the closed-ring was also observed in the spectra of 2Fo and 2Fc.  However, in 

comparison to the results observed for the perhydro-derivatives, the formation of the 

closed-ring species was in low yield, and ring-opening processes were observed for 

both isomers at the end of the bulk electrolysis experiments.  Such a result can be 

ascribed to the low stability of the closed-ring cationic species of 2F, which in turn, is 

associated with the extent of electronic interaction existing between the two thiophene 

rings on the dithienylethene switch.
1
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Scheme 5.2: General scheme representing the electrochemical processes of dithienylethene switches, as 

described by Browne et al.
1,4

 

 

The extent of electronic communication between the thienyl units can be related to the 

separation between the redox waves of the monocation and dication species of the 
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closed form in the CV’s (∆E).  The value of ∆E is considerably smaller for 2F (ca. 

140 mV), in comparison to the ∆E values found for the perhydro-derivatives, 1H and 

2H (ca. 300 mV and 320 mV respectively).  Browne et al
1,4

 described a resonance 

structure, with delocalised charge over the entire dithienylethene unit, and localised 

charge on the two thiophene rings, as illustrated in scheme 5.2.  The former is 

associated with ring-closing processes, and the later favours ring-opening processes, 

as described previously in section 5.3.1.  The reduced stability of the oxidised species 

of 2F is a consequence of the electron-withdrawing fluorine atoms on the central 

cyclopentene ring, which are poor at facilitating delocalisation of the charge, hence, 

communication between the two thiophene rings on the dithienylethene unit is 

decreased.  Therefore, although 2F does undergo oxidative cyclisation processes, 

within the timescale of the bulk electrolysis experiments, the equilibrium lies heavily 

on the localised side, hence oxidative cycloreversion occurs.    

 

In the case of the perfluoro-derivative 1Fo, the cyclic voltammetry results described 

an irreversible two-electron oxidation process to the dication radical 1Fo
2+

.  The UV-

vis/NIR spectroelectrochemistry experiments, performed on 1Fo at 1.6 V, resulted in a 

decrease in the absorbance band at 305 nm, with a new concurrent band appearing at 

237 nm, and a broad low intensity absorbance in the range 345 - 700 nm (figure 5.16).  

These changes can be assigned to the generation of the 1Fo
2+

 species.  As expected, 

there was no evidence for the ring-closed isomer 1Fc.  Subsequent reduction at 0V 

resulted in a decrease in the absorbance spectrum between 485 to 700 nm, however, 

the initial band at 305 nm did not return to the original intensity due to the irreversible 

nature of the oxidation process. 

The similarities between the CV’s of the open and closed isomers of 1F indicated that 

1Fc underwent oxidative cycloreversion to the open form.  The changes observed in 

the UV-vis/NIR spectrum of 1Fc, following oxidation at 1.2 V, confirmed this result, 

as shown in figure 5.17.  The absorbance band in the visible region at 608 nm, 

indicative of the closed-ring isomer, began to decrease, and a new band appeared in 

the UV region at 305 nm, corresponding to the absorbance band associated with the 

open-ring form.  New bands also appeared at 242 and 442 nm, and a low intensity 

absorbance in the range 740-960 nm.  These bands are tentatively assigned to the 

generation of the cationic species, of either the open or closed form of 1F (i.e. 1Fo
+
 or 

1Fc
+
), or to decomposition products formed during the bulk electrolysis experiments.  
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However, these features cannot be exclusively designated to one particular species due 

to the presence of the band at 608 nm, which may mask further bands.  Subsequent 

reduction at 0V resulted in a decrease in the bands in the visible region, and a further 

increase at 305 nm.  

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5.16: UV-vis spectrum of 1Fo following oxidation at 1.6 V, in 0.1 M TBAPF6/CH2Cl2.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: UV-vis spectrum of 1Fc, following oxidation at 1.2 V, in 0.1 M TBAPF6/CH2Cl2.  The 

absorbance band at 608 nm, recorded in the initial spectrum (thick black line), decreases following 

oxidation at 1.2 V.  The final spectrum recorded is denoted by the red line.   
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5.3.3 Co2(CO)6 Complexes: Cyclic Voltammetry  

A number of literature reports have described the redox properties of alkynyl 

Co2(CO)6 complexes.
15-20

  In this section, the electrochemical reductive and oxidative 

behaviour of the Co2(CO)6 complexes 3H/F and 4H/F are discussed.  The presence of 

organometallic substituents on the dithienylethene switches have been reported to 

influence the electrochromic behaviour of such switches, by inhibiting or inducing 

oxidative cyclisation/cycloreversion processes.
21-23

  Therefore, the oxidation processes 

of the Co2(CO)6 complexes 3H/F and 4H/F were investigated in order to examine the 

effects of the Co2(CO)6 moieties on the ability of the switches to undergo 

electrochemical ring-opening/closing isomerisation processes.   The redox properties 

of the cobalt carbonyl complexes were examined using cyclic voltammetric 

techniques, in 0.1 M solutions of TBAPF6/CH2Cl2, at room temperature, at a scan rate of 

0.1 Vs
-1

.  The results were calibrated against the redox couple of decamethylferrocene 

Fc*
+
/Fc* (E1/2 = -0.07 vs. SCE).  The structures of the cobalt carbonyl complexes 

described here are illustrated in figure 5.18. 
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Figure 5.18: The structures of the open-ring Co2(CO)6 complexes 3H/F and 4H/F, and of the closed-

ring Co2(CO)6 complexes 3bF and 4bH. 
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• Reduction Process 

Alkynyl Co2(CO)6 complexes are known to undergo one-electron reduction processes, 

forming the radical anion [RC2R’Co2(CO)6]
●-

, which subsequently undergoes 

decomposition as a result of metal-metal bond cleavage.  Some of the decomposition 

products have been identified as Co(CO)4
-
, RC2R’Co(CO)3 and free alkyne.

15-19
   

Our studies revealed similar results to those reported in the literature for the Co2(CO)6 

complexes 3H, 3F, 4H and 4F.  In each case, the cyclic voltammograms displayed a 

single bielectronic irreversible reduction peak, in the range of -1.09 V to -1.28 V vs. 

SCE (table 5.3), forming the corresponding dianions 3H
2-

, 3F
2-

, 4H
2-

 and 4F
2-

.  

Hence, the reduction peak represents a one-step two-electron process, due to a one-

electron reduction of each of the two Co2(CO)6 units.  Following the formation of the 

radical anions, disintegration of the Co2(CO)6 units occurred for each complex, as 

evidenced by the appearance of new irreversible oxidation peaks in the subsequent 

anodic sweeps.   

 

Table 5.3: The cyclic voltammetry results of the reduction processes of 3H/F, 4H/F, 3bF and 4bH. 

 

 

 

 

 

 

 

All values listed are values of potential (V) vs. SCE, recorded in 0.1 M TBAPF6/CH2Cl2, at 0.1 Vs
-1

. 
a
 indicates an irreversible oxidation  

b
 indicates a quasi-reversible oxidation  

 

The perfluorinated switches (3F and 4F) underwent reduction processes at less 

negative potentials in comparison to their corresponding perhydro analogues (3H and 

4H).  This can be attributed to the electron-withdrawing ability of the fluorine atoms, 

which help to stabilise the radical anion.  Therefore, the reduction process of 3F 

occurred at the least negative potential (-1.09 V), while the perhydro-derivative 3H 

occurred at the most negative potential (-1.28 V), as shown in figure 5.19.  The phenyl 

groups in 4F and 4H separate the alkynyl cobalt carbonyl unit and the cyclopentene 

switch, hence the influence of the hydrogen and fluorine atoms was decreased.  Thus, 

Compound Epc (V) Epa (V) 

3H  -1.28
a
 -0.83

a
, -0.33ª, -0.22ª, -0.07ª   

4H  -1.20
a 

-0.63
a
, -0.14

a
 

4bH  -1.12
a
 -0.58

a
, -0.08

a
, +0.06

a
 

3F  -1.09
a
, -0.35 -0.57

a
, +0.10

a
 

3bF -0.86
a
, -1.01

b
 -0.90

b
, +0.06

a
 

4F -1.12
a 

+0.06
a
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the reduction of 4F occurred at a lower potential (-1.12 V) when compared to 3F, 

whereas 4H was reduced at a higher potential (-1.20 V) relative to 3H.  There 

appeared to be a greater amount of decomposed products for the fluorinated 

complexes.  This is evidenced by the relative intensities of the oxidation peaks 

attributed to the disintegration products, as illustrated for 3H and 3F in figure 5.19.  

The CV’s of 3H and 4H displayed very small oxidation peaks, following the reduction 

process.  On the other hand, the perfluoro-derivative 3F resulted in a relatively intense 

oxidation peak at 0.10 V, with a corresponding reduction peak at -0.35 V, and another 

oxidation peak present at -0.57 V.  These peaks are tentatively assigned to the 

formation of the Co(CO)4
-
 and RC2R’Co(CO)3 species, from reference to the 

literature.
15-17,19,24

  An oxidation peak was observed at 0.06 V in the CV of 4F, 

following the reduction process, which is also tentatively assigned to the formation of 

the Co(CO)4
-
 species.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: Cyclic voltammogram of the reduction of 3F (bottom) and 3H (top), in 0.1 M TBAPF6/ 

CH2Cl2, at a scan rate of 0.1 Vs
-1

.  The CV of the 3H is offset along the coordinate for clarity.   
 

The reductions of the closed-ring Co2(CO)6 complexes 3bF and 4bH were also 

examined.  A single bielectronic irreversible reduction peak was observed for 4bH, 

which was anodically shifted by 80 mV in comparison to its open-ring isomer 4H.  
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This can be attributed to the extended π-conjugation of the system in 4bH, which 

helps to stabilise the radical anion of the Co2(CO)6 units.  The subsequent anodic 

sweep for 4bH displayed an oxidation peak at 0.06 V, tentatively assigned to the 

generation of Co(CO)4
-
 product.

15-17,19,24
  The closed-ring isomer 3bF was also 

anodically shifted (∆E = 230 mV) in comparison to its corresponding open-ring 

isomer 3F, and an oxidation peak was observed at 0.6 V in the subsequent anodic 

sweep, indicative of the Co(CO)4
-
 species.  Furthermore, in contrast to 3F, two 

monoelectronic reduction waves were observed for 3bF at Epc = -0.86 and -1.01 V, 

separated by ∆E = 175 mV, as shown in figure 5.20.  The reduction peak at -1.01 V 

was found have a corresponding oxidation peak at -0.90 V.  This result suggests that 

the π-conjugated backbone of the closed-ring isomer, 3bF, facilitated stronger 

electronic-communication between the two Co2(CO)6 moieties,
15,20

 compared to the 

open-ring isomer 3F.  Therefore, 3F has the potential to act as a molecular wire, with 

the ability to turn the communication between the metal centres ON (closed-form) and 

OFF (open-form).  Similar results have been reported in the literature for other 

dithienylethene switches substituted with metal carbonyl and phosphine ligand 

complexes.
21,22,25

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20: Cyclic voltammogram of the reduction process of the closed-ring Co2(CO)6 complex 3bF, 

in 0.1 M TBAPF6/CH2Cl2, at a scan rate of 0.1 Vs
-1

.   
 

The fact that a single bielectronic reduction wave was observed for 4bH demonstrates 

that ring-closure of this complex did not increase the electronic interaction between 
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the metal centres.  This is possibly due to the presence of the phenyl rings, thus 

increasing the length of the bridge between the Co2(CO)6 moieties, and hence 

reducing the interaction between the metal centres.
24

  The presence of hydrogen atoms 

on the cyclopentene ring could also be a factor as hexafluoro DTE bridges have been 

found to facilitate stronger electronic communication between two metal centres.
21

   

 

• Oxidation Process 

 

The electrochemistry results of the thienyl-based free ligand switches described 

oxidative cyclisation of 1H, 2H and 2F, and oxidative ring-opening of 1F.  Alkynyl 

Co2(CO)6 complexes are known to undergo one-electron irreversible oxidation 

processes, forming the corresponding cation radical [RC2R’Co2(CO)6]
●+

.  In general, 

oxidation of Co2(CO)6 moieties occur in the range 0.9 – 1.4 V, and severe fouling of 

the electrode surface at higher oxidation potentials has been reported.
15,17,26

  

Therefore, this section focuses on how the oxidative processes of the Co2(CO)6 

moieties influence the electrochromic behaviour of the switching units.     

 

Table 5.4: Cyclic voltammetric data for the Co2(CO)6 complexes 3H/F, 4H/F, 3bF and 4bH, and their 

corresponding free ligands.   

 

Compound Oxidation Processes 

 Epa (V) Epc (V) 

1Ho 0.65
rc

, 0.95
rc

, 1.55
a
  0.60

rc
, 0.88

rc
 

3H 0.59
rc

, 0.78
rc

, 1.21
a
, 1.41

a 
0.50

rc
, 0.70

rc
 

2Ho 0.50
rc

, 0.82
rc

, 1.23
a
 0.42

rc
, 0.75

rc
 

4H 0.55
rc

, 0.84
rc

, 1.23
a
, 1.46

a
 0.47

rc
, 0.75

rc
 

4bH 0.52
rc

, 0.80
rc

, 1.37
a
 0.42

rc
, 0.71

rc
 

1Fo 1.71
a
  - 

1Fc 1.13
b
 0.89

b
 

3F  1.23
a
, 1.75

a
 - 

3bF 0.99
b
, 1.73

a
 0.89

b
  

2Fo 0.99
rc

, 1.11
rc

, 1.63
a
 0.92

rc
, 1.07

rc
 

4F 1.17
a
, 1.58

a
 - 

 

All values listed are values of potential (V) vs. SCE, recorded in 0.1 M TBAPF6/CH2Cl2, at 0.1 Vs
-1

. 
a
 indicates an irreversible oxidation process  

b
 indicates a quasi-reversible oxidation process  

rc
 indicates peaks assigned to ring-closed species  
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The results obtained from the cyclic voltammograms of the Co2(CO)6 complexes 

3H/F and 4H/F are summarised in table 5.4.  The data obtained from the CV’s of the 

corresponding free ligand switches are listed in this table also, for comparative 

purposes.   Oxidation processes of the Co2(CO)6 components on 3H/F and 4H/F were 

found to occur in the potential range from 0.9 to 1.71 V.  Each open-ring complex 

displayed a single irreversible oxidation peak, representing a one-step two-electron 

oxidation process i.e. one-electron oxidation reaction of each of the two Co2(CO)6 

units.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21: Cyclic voltammogram of the oxidation process of the open-ring isomer 4H (bottom), and  

the closed-ring isomer 4bH (top), in 0.1 M TBAPF6/CH2Cl2, at a scan rate of 0.1 Vs
-1

.  The CV of 4bH 

is offset along the coordinate for clarity.   
 

Oxidative cyclisation was found to occur for the perhydro-derivatives 1Ho and 2Ho, 

and was also achieved for their corresponding Co2(CO)6 complexes (3H and 4H, 

respectively).  In the case of 4H, an irreversible oxidation peak was observed at 1.23 

V (vs. SCE), which was followed by two redox waves at E1/2 = 0.51 and 0.80 V in the 

subsequent cathodic and anodic cycles, indicative of the ring-closed isomer.  

Therefore, it can be concluded that oxidative cyclisation to the closed-ring isomer 

occurred for 4H, in the same manner as described previously for the free ligand 2H.  

After a number of consecutive sweeps, the CV was found to be stable, with no 
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significant changes observed in the oxidation waves.  Following oxidation at higher 

potentials, a second irreversible oxidation peak was observed at 1.46 V, as shown in 

figure 5.21, which can be assigned to the oxidation process of the Co2(CO)6 moieties.  

After a number of consecutive sweeps, the oxidation peaks at 1.23 and 1.46 V 

decreased dramatically, indicating disintegration of the Co2(CO)6 units, resulting in 

fouling of the electrode.   

Cyclic voltammetry was also carried out on the corresponding closed-ring Co2(CO)6 

complex 4bH.  Two redox waves were observed at E1/2 = 0.47 and 0.76 V (vs. SCE), 

indicative of the reversible formation of the monocation 4bH
+
 and dication 4bH

2+
 

species, respectively.  At higher potentials, an irreversible oxidation peak was 

observed at 1.37 V, representing the oxidation process of the Co2(CO)6 units (figure 

5.21).  In comparison to the open-ring isomer, the potential at which the cobalt 

carbonyl moieties were oxidised was cathodically shifted by 90 mV, due the 

stabilising effect of the extended π-conjugated system, in the closed-form, on the 

cationic species. 

The separation between the oxidation waves of the monocation and dication species of 

the closed form was found to be ∆E ≈ 280 mV for the open and closed-ring Co2(CO)6 

complexes, 4H and 4bH respectively.  This value is similar to that recorded for the 

free ligand switch 1H (∆E ≈ 300 mV), therefore, the presence of the Co2(CO)6 units 

had little effect on the stability of the complex. 

 

In the case of 3H, an irreversible oxidation process of the Co2(CO)6 moieties took 

place at 1.21 V, followed by an oxidation process at 1.41 V, which can be attributed to 

a two-electron oxidation process of the thienyl units on the dithienylethene switch.  

The subsequent cathodic and anodic sweeps displayed two new redox waves at E1/2 = 

0.55 and 0.74 V, as shown in figure 5.22.  As described previously for the free ligand 

1H, these new redox waves can be attributed to the reversible formation of the 

monocation and dication species of the closed-ring isomer.  Hence 3H underwent 

oxidative cyclisation to the closed form.  The most prominent effect of the Co2(CO)6 

moieties, on the electrochemical behaviour of this switch, was the anodic decrease in 

the potential at which the dithienylethene unit was oxidised, in comparison to the free 

ligand 1Ho (∆E = 140 mV).  It would be expected that the electron-withdrawing 

ability of the oxidised cobalt carbonyl moieties would have the opposite effect, and 

shift the oxidation potential of the switch to higher values.  Therefore, the fact that 
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oxidation of the Co2(CO)6 components and the dithienylethene switch occurred in 

quick succession, may suggest that intramolecular electron transfer from the oxidised 

cobalt carbonyl units to the switching unit occurred.  Thus, a cyclisation process was 

induced, followed by re-oxidation of the metal carbonyls in the consecutive sweeps, 

and so forth.  Also noted, was a decrease in the separation between the oxidation 

waves of the closed-ring cations, with ∆E = 300 mV for the free ligand 1H, and ∆E = 

190 mV for the Co2(CO)6 complex 3H.  This is indicative of a decrease in the stability 

of the cationic species of the closed-ring isomer due to the presence of the cobalt 

carbonyl moieties.  Conversely, the ∆E value recorded for 4H was found to be similar 

to that of its related free ligand 2H.  Therefore, the result obtained for 3H can be 

ascribed to the consequence of the metal groups undergoing oxidation processes prior 

to the switching unit.  Furthermore, after a number of consecutive sweeps, fouling of 

the electrode occurred due to decomposition of the Co2(CO)6 units.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22: Cyclic voltammogram of the oxidation process of the Co2(CO)6 complex 3H, in 0.1 M 

TBAPF6/CH2Cl2, at a scan rate of 0.1 Vs
-1

. 
 

In the case of the perfluoro analogue, 3F, the cyclic voltammogram displayed two 

irreversible oxidation peaks at 1.23 V and 1.75 V (vs. SCE), representing a two-

electron oxidation process of the Co2(CO)6 moieties (i.e. one-electron oxidation of 
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each of the two Co2(CO)6 units), and a two-electron oxidation process of the 

dithienylethene unit, respectively.  There was no evidence of oxidative cyclisation 

occurring in the subsequent sweeps (figure 5.23), which is in-keeping with the result 

obtained for the free ligand 1F, in which case oxidative cycloreversion, from the 

closed to the open form, was observed.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23: Cyclic voltammogram of the oxidation process of the open-ring Co2(CO)6 complex 3F, in 

0.1 M TBAPF6/CH2Cl2, at a scan rate of 0.1 Vs
-1

.  
 

The electrochemical oxidation process of the corresponding closed-ring Co2(CO)6 

complex (3bF) was also investigated.  Following oxidation of 3bF, a quasireversible 

oxidation wave was observed at E1/2 = 0.94 V (ipc/ipa ≈ 0.75).  This oxidation peak 

corresponds with the first oxidation peak of the closed-ring isomer of the free ligand 

1Fc (E1/2 = 1.01 V), as shown in figure 5.24.  Therefore, the redox wave at E1/2 = 0.94 

V, can be assigned to the oxidation of the closed-ring dithienylethene switch, forming 

the monocation species 3bF
+
.  The fact that the oxidation wave of 3bF is more 

reversible then its corresponding free ligand, indicates that the presence of the 

Co2(CO)6 moieties stabilises the closed-ring isomer, and hence prevents/slows down 

the ring-opening process.  At higher potentials an irreversible oxidation wave was also 

observed at 1.71 V.  This is attributed to oxidation of the Co2(CO)6 units.    In 

comparison to the open-ring isomer 3F, the oxidation process of the cobalt carbonyl 
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groups is anodically shifted by 480 mV.  This could possibly be attributed to the fact 

that the first oxidation process makes the second oxidation process more difficult, 

hence higher potential values are required to incur oxidation of the metal centres.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24: Cyclic voltammogram of the oxidation of the closed-ring Co2(CO)6 complex 3bF 

(bottom), and  the closed-ring isomer of the corresponding free ligand 1Fc (top), in 0.1 M 

TBAPF6/CH2Cl2, at a scan rate of 0.1 Vs
-1

.  The CV of the 1Fc is offset along the coordinate for clarity.   

 

In the case of the more conjugated perfluoro-derivative 4F, an irreversible oxidation 

wave was observed at 1.17 V (vs. SCE), which is assigned to the two-electron 

oxidation process of the Co2(CO)6 moieties.  At higher potentials, a second 

irreversible oxidation process was observed at 1.58 V, corresponding to the two-

electron oxidation process of the dithienylethene unit.  The peak at 1.58 V 

corresponds with the oxidation potential found for the free ligand 2Fo (Epa = 1.64 V).  

However, in contrast to the oxidation process of the free ligand 2Fo, oxidative 

cyclisation was not observed for 4F.  This phenomenon may be explained as follows: 

1) Inhibition of the cyclisation process of 4F may be due to the order in which the 

dithienylethene switch and the cobalt carbonyl moieties were oxidised.  In the case of 

4H, the switching unit underwent oxidation at a lower potential than the cobalt 

carbonyl units.  In comparison, oxidation of the Co2(CO)6 components occurred 

before the dithienylethene switch of 4F.  Similar results have been reported for other 
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organometallic switches in the literature,
23

 whereby the electrochromic properties of 

the switch were dependent on the potentials at which the metals were oxidised. 

2) Although oxidation of the Co2(CO)6 moieties occurred prior to the dithienylethene 

unit in the case of 3H, the results indicated that an intramolecular electron transfer 

process, from the metal groups to the switch, induced cyclisation.  However, such a 

process may be inhibited for 4F due to the presence of the phenyl rings, separating the 

cobalt carbonyl moieties and the switch, thus preventing electron transfer through the 

longer carbon chain. 

3) As discussed in the previous section 5.3.2, the closed-ring cationic species of the 

free ligand 2F was found to be much less stable in comparison to the perhydro 

analogues 1H and 2H.  Oxidation of the Co2(CO)6 moieties increases their electron-

withdrawing effect, and therefore, together with the electron-withdrawing fluorine 

atoms on the cyclopentene ring, it is possible that the open-ring cationic species 

becomes more stable than the closed-ring cations, thus preventing ring-closure.  

 

Finally, a common effect of the Co2(CO)6 units on the electrochemical processes of 

the switches was observed.  The CVs of the free ligand switches 1H, 1F and 2F 

displayed redox waves at low potentials which were attributed to the generation of a 

new electroactive species 1Hy, 1Fy and 2Fy.  However, in the CVs of the 

corresponding metal carbonyl complexes (3H, 3F and 4F) such redox waves did not 

appear.  Therefore, it is apparent that the presence of the Co2(CO)6 moieties inhibited 

the electrochemical rearrangement processes of the switches.    
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5.3.4 Co2(CO)6 Complexes: UV-vis/NIR Spectroelectrochemistry  

 

The cyclic voltammetry experiments performed on the Co2(CO)6 complexes showed 

that oxidative cyclisation occurred for the perhydro-derivatives 3H and 4H, but not in 

the case of their corresponding perfluorinated analogues 3F and 4F.  The oxidation of 

the Co2(CO)6 complexes were investigated further using UV-vis/NIR 

spectroelectrochemistry techniques, in 0.1 M TBAPF6/CH2Cl2, vs. Ag/Ag
+
.  The 

structures of the switches discussed in this section are illustrated in figure 5.25, and 

the absorption bands obtained in the UV-vis/NIR spectra, following bulk electrolysis, 

are summarised in table 5.5.  The data obtained from the corresponding free ligand 

switches is also presented in table 5.5 for comparative purposes. 

 

Table 5.5: UV-vis/NIR spectroelectrochemistry data of the free ligand switches 1H/F and 2H/F, and  

their corresponding Co2(CO)6 complexes 3H/F and 4H/F, following oxidation processes at varying 

potentials. 

 

Free Ligand Switches Co2(CO)6 Complexes 

 Ox (V) λabs (nm)  Ox (V) λabs (nm) 

1Ho Start 

1.3 V 

1.6 V 

290, 310 

455, 566, 666 

469, 575, 666, 867 

3H Start 

1.3V 

274, 330, 450-670 

466, 571, 671 

2Ho Start 

1.4 V 

 

334 

471, 590(sh), 657 

 

4H Start 

1.0 V 

1.0.V 

267, 341, 620-650 

481, 576, 655, 778 

472, 576(sh), 655 

2Hc Start 

0.6 V 

0.9 V 

326, 560 

442, 781, > 1030 

467, 590(sh), 654 

4bH Start 

0.6 V 

0.9 V 

262, 323, 577 

323, 459, 807, 1030-1620 

332, 567, 661 

1Fo Start 

1.6 V 

305 

237, 345-700 
3F Start 

1.0V 

275, 330, 410-630 

303 

1Fc Start 

1.2V 

327, 608 

242, 305, 442, 740-960 
3bF Start 

0.8-1.6V 

263, 358, 578, 658 

300, 590 

2Fo Start 

1.8 V 

328 

613, 780-1100 
4F Start 

1.4 V 

273, 323, 430-700 

273↓, 323↓, 430-700↓ 

 

The data was recorded in 0.1 M TBAPF6/CH2Cl2 vs. Ag/Ag
+
 

↓ indicates decreasing of absorbance band 
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Figure 5.25: The structures of the open-ring Co2(CO)6 complexes 3H/F and 4H/F, and of the closed-

ring Co2(CO)6 complexes 3bF and 4bH. 

 

The changes observed in the UV-vis spectrum of the open-ring Co2(CO)6 complex 

4H, following oxidation processes at 1.0 V, are illustrated in figure 5.26.  Bleaching 

of the original bands at 267 and 341 nm was observed, in conjunction with the 

appearance of new bands at 481, 655, 778 nm and a λmax at 576 nm.  Such changes are 

indicative of an oxidative cyclisation process of 4H, as observed for the related free 

ligand switch 2H.  Therefore, these bands can be assigned to the formation of the 

monocation (778 nm), dication (481 and 655 nm) and the neutral (576 nm) species of 

the closed-form.  Overtime, the absorbance bands at 481 and 655 nm increased, which 

is attributed to an increase in the formation of the dication species of the closed form.  

As the bands in the visible region began to decrease, following reduction at 0 V, the 

spectral features of the monocation species 4H
+
 became more apparent, with 

absorption bands present at 444 and 782 nm.  At the end of the experiment, the band 

at 267 nm did not return to its original intensity, suggesting that decomposition of the 

Co2(CO)6 moieties occurred under the electrochemical conditions employed here.  

The original absorbance at 341 nm recovered however, a band corresponding to the 

generation of the neutral form of the closed-ring isomer was not observed in the 

visible region, with a weak absorbance in the region 440 - 665 nm.  Such a result can 

be assigned to the instability of the closed-ring cationic species over the timescale of 

the bulk electrolysis processes, hence resulting in ring-opening.      
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Figure 5.26: The UV-vis spectrum of the Co2(CO)6 complex 4H, following oxidation at 1.0 V: The 

spectrum recorded at the start (black line); the initial increase in absorbance at 481, 655, 778 nm (blue 

lines); further increase in absorbance with λmax =  481 and 655 nm (red lines). 

 

Upon oxidation of the closed-ring Co2(CO)6 complex 4bH, at 0.6 V, the band at 577 

nm depleted as new bands appeared at 459  and 807 nm, with a broad absorption band 

in the NIR region, extending from 1030 - 1620 nm.  These changes are associated 

with the formation of the monocation radical 4bH
+
.  When the oxidation potential was 

increased to 0.9 V, the original band in the UV region at 323 nm increased and was 

red-shifted to 332 nm, whilst the band at 262 decreased marginally.  The new bands at 

459, 807 and > 1030 nm decreased, with concomitant formation of new absorbance 

bands at 567 and 661 nm, corresponding with the formation of the dication species 

4bH
2+

.  These changes are shown in figure 5.27, and are comparable to the results 

obtained for the corresponding free ligand 2Hc.  However, the absorbance at 567 was 

more intense then at 661 nm, suggesting that the dication species 4bH
2+

 was too 

unstable to generate a significant amount.  Also, the band at 567 nm is associated with 

the absorbance band of the closed-isomer of the free ligand, indicating that 

decomposition of the Co2(CO)6 moieties occurred and the free ligand was formed.   

Further evidence of this was found following subsequent reduction processes at 0 V, 

with the band at 332 nm continuing to increase in absorbance.  At 0 V, a decrease in 

the bands in the visible region was also observed.  Hence the oxidation process of 

4bH is not reversible, and appears to result in ring-opening and decomposition of the 
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Co2(CO)6 units, possibly regenerating the ring-open isomer of the free ligand 2H.  

These results are similar to those obtained for the corresponding open-ring isomer 4H.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27: The UV-vis/NIR spectrum of the closed-ring Co2(CO)6 complex 4bH (black line), 

following oxidation; at 0.6 V (green line), resulting in generation of the monocation species 4bH
+
 at 

459, 807 and 1030 - 1620 nm; and at 0.9 V (red line), resulting in generation of the dication species 

4bH
2+

 (660 nm) and the neutral form (567 nm).   

 

Oxidation of 3H at 1.3 V resulted in a decrease in the UV-vis absorption bands at 274 

and 330 nm.  New absorbance bands were found to grow-in in the visible region at 

466, 571 and 671 nm, as shown in figure 5.28.  By comparison to the results obtained 

for the corresponding free ligand switch 1H, these changes can be attributed to the 

generation of the dication species of the closed-ring isomer.  There was no evidence of 

the formation of the monocation, as no new bands appeared at λ > 730 nm.  This could 

possibly be a consequence of the hypothesis proposed from the CV results of 3H, 

whereby intramolecular electron transfer from the Co2(CO)6 moieties induced 

cyclisation.  Such a process would lead to a two-electron oxidation of the switch, 

therefore generation of the monocation would not be expected.  Reduction at 0 V 

resulted in a decrease in the bands in the visible region, and a slight increase in the 

bands in the UV region at 274 and 330 nm.  However, these bands did not return to 

their initial intensity, and no new band, representative of the closed-ring isomer, was 

obvious in the visible region.  Therefore, it can be concluded that although cyclisation 

to the closed-ring isomer occurs for 3H, the cations formed during the oxidation 
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process were too unstable to generate the neutral closed-ring isomer.  Also, 

decomposition of the Co2(CO)6 occurred, as evidenced by the irreversible decrease in 

the bands in the UV region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.28: The UV-vis/NIR spectrum of the Co2(CO)6 complex 3H (thick black line), following 

oxidation at 1.0 V, resulting in a decrease in the UV-region and an increase in the visible region at λmax 

= 466, 571 and 671 nm, due to the generation of the dication species of the closed-ring isomer.  

 

In the case of the perfluoro-derivatives, 3F and 4F, there was no evidence of oxidative 

cyclisation in the cyclic voltammetry studies.  The UV-vis/NIR spectro-

electrochemistry experiments confirmed this result.  In the case of 3F, the UV-vis 

spectrum displayed bands at 275 and 330 nm, and a low-lying absorbance band 

extending from approximately 410 to 630 nm.  Following oxidation at 1.0 V, all of the 

original absorbance bands began to decrease, and a new band began to grow-in at 303 

nm.  This was found to be an irreversible process, with only a further increase in the 

band at 303 nm occurring after a potential of 0 V was applied to the solution.  This 

result suggests that cleavage of the cobalt carbonyl moieties occurred during the 

oxidation processes, and the corresponding free ligand 1F was regenerated, as 

demonstrated in figure 5.29.  A similar result was obtained for the more-conjugated 

perfluoro-derivative 4F.  
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Figure 5.29: The UV-vis spectrum of the Co2(CO)6 complex 3F (thick black line), following oxidation 

at 1.0 V.  The final spectrum recorded at 1.0 V (red line) is similar to the absorbance spectrum of the 

free ligand 1F (green line).   

 

In the CV of the closed-ring isomer 3bF, a quasireversible oxidation wave was 

observed at E1/2 = 0.94 V.  The UV-vis/NIR spectroelectrochemistry experiments 

showed that oxidation at 0.8 V to 1.4 V resulted in a decrease in the absorbance band 

in the visible region (λmax = 578 and 658 nm), indicating 3bF was undergoing a ring-

opening process.  However, a new band appeared to be forming underneath the 

absorbance band in the visible region.  Also noted was a decrease in the absorbance 

values in the UV region, with a new band appearing at approximately 300 nm, as 

shown in figure 5.30.  Subsequent reduction at 0 V, resulted in a further decrease in 

the UV region, and increase at 300 nm, which suggests that decomposition of the 

Co2(CO)6 moieties was taking place.  In the visible region, although the absorbance 

band slightly decreased further, a new λmax appeared to be present at 590 nm, as 

shown in figure 5.30.  This could possibly be due to cleavage of the metal-metal bond 

from the alkynyl unit, thus forming the closed-ring isomer of the free ligand switch, 

1F.   
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Figure 5.30: The UV-vis spectrum of the closed-ring Co2(CO)6 complex 3bF (thick black line).  

Following oxidation at 0.8 to 1.6 V (blue lines) and subsequent reduction at 0 V (red lines).  
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5.3.5 Co2(CO)6 Complexes: IR Spectroelectrochemistry  

The cyclic voltammograms have shown that the Co2(CO)6 moieties undergo 

irreversible oxidation processes.  The results obtained from the UV-vis/NIR 

spectroelectrochemistry experiments have shown an irreversible decrease in the 

absorbance bands associated with the metal carbonyl compounds, and have indicated 

that cleavage of the metal-metal bond from the alkynyl unit occurs.  In order to further 

investigate the effects of the oxidising process on the cobalt hexacarbonyl groups, IR 

spectroelectrochemistry experiments were carried out on the Co2(CO)6 complexes, 

3H/F and 4H/F, in 0.1 M TBAPF6/CH2Cl2 vs. Ag/Ag
+
. 
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Figure 5.31: The structures of the open-ring Co2(CO)6 complexes 3H/F and 4H/F, and of the closed-

ring Co2(CO)6 complexes 3bF and 4bH. 

 

The carbonyl stretches recorded in the IR for the open-ring Co2(CO)6 complexes 3H/F 

and 4H/F, before any potentials were applied, are presented in table 5.6.  Three 

carbonyl IR bands, in the range of 2100 - 2020 cm
-1

, were recorded in each case.  

Noticeably, the IR bands for the perfluoro-derivatives were shifted to slightly higher 

wavenumbers due to the electron-withdrawing effect of the fluorine atoms.  This 

effect is more pronounced for 3F, in comparison to 4F, which can be attributed to the 

presence of the phenyl-ring in 4F, separating the Co2(CO)6 moieties from the 

hexafluoro-cyclopentene ring, hence reducing the effect of the fluorine atoms.   
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When oxidised, at approximately the same potentials at which the oxidation processes 

of the Co2(CO)6 moieties were observed in the CV’s, depletion of the parent bands in 

the IR spectra was observed for each complex, and no new bands were found to 

appear, as shown for 3F in figure 5.32.  When the potential was set back to 0 V, 

bleaching of the new bands occurred and the parent bands began to grow back.  

However, the parent bands only returned to approximately 60% of their original 

absorbance values, indicating that the oxidation processes resulted in some 

decomposition of the complexes.   

   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.32: The IR spectra of the Co2(CO)6 complex 3F, in 0.1 M TBAPF6/ CH2Cl2, following 

oxidation processes (A), and subsequent reduction at 0 V (B).  The parent bands recorded at the start of 

the experiment (i.e. before oxidation) are denoted by the thick black lines.   
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Table 5.6: IR spectral data of the Co2(CO)6 complexes 3H/F, 4H/F, 3bF and 4bH, before oxidation 

(parent bands) and during oxidation processes (new bands). 

 

Compound Parent Bands 

ν(CO) cm
-1

 

New Bands 

ν(CO) cm
-1

 

3H 2089, 2055, 2024 - 

4H 2089, 2055, 2024 - 

4bH 2090, 2055, 2026 2093, 2061, 2037 

2096, 2067, 2043 

3F 2092, 2058, 2028 - 

3bF 2093, 2063, 2035 - 

4F 2090, 2055, 2026 - 

 

The data was recorded in 0.1 M TBAPF6/CH2Cl2 vs. Ag/Ag
+
 

 

In the case of the closed-ring isomer 3bF, the parent carbonyl bands recorded in the 

IR spectrum were present at higher wavenumbers (2093, 2063, 2035 cm
-1

) in 

comparison to its open-ring form 3F (2092, 2058 and 2028 cm
-1

).  This can be 

attributed to the extended conjugation of the system in the closed form, which reduces 

electron-density from the system, hence shifting the carbonyl bands to higher energy.  

Oxidation processes of 3bF also resulted in the depletion of the parent bands in the IR, 

which returned to only approximately 60% of the original absorbance value recorded, 

following subsequent reduction at 0 V. 

Conversely, in the case of the closed-ring isomer 4bH, the IR bands were similar to 

the values recorded for its related open-ring form 4H, as shown in table 5.6.  This can 

be attributed to the presence of the phenyl-rings in 4bH, which act as spacer groups 

between the cobalt carbonyl moieties and the switching unit.  Hence, the influence of 

the conjugated closed switch on the Co2(CO)6 units is reduced, in comparison to 3bF.  

On the other hand, when oxidation potentials were applied to 4bH, new bands 

appeared at higher frequencies in the infra-red spectrum, as shown in figure 5.33.  

These changes have been assigned to the effects of the reversible oxidation processes 

of 4bH, observed at potentials less than 1.0 V in the CV, representing the generation 

of the monocation and dication species.   
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Figure 5.33: The IR difference spectra of the closed-ring Co2(CO)6 complex 4bH, in 0.1 M TBAPF6/ 

CH2Cl2, during oxidation processes: At 0.2 V (green line); at 0.6 V (red line); at 0.8 V (blue line), and 

subsequent reduction at 0 V (black line). 

 

Upon oxidation at 0.2 V, bleaching of the parent bands at 2090, 2055 and 2026 cm
-1

 

was observed, along with the appearance of three new bands at 2093, 2061 and 2037 

cm
-1

.  Such a result can be attributed to generation of the monocation species 4bH
+
.  

Removal of an electron from the complex results in a delocalised charge over the 

entire complex, hence removing electron-density from the Co2(CO)6 moieties, and 

therefore shifting the bands in the IR spectrum to higher frequencies.  When the 

oxidation potential was increased to 0.8 V, depletion of the new bands occurred and 

three new bands appeared at even higher wavenumbers (2096, 2067 and 2043 cm
-1

).  

These bands are tentatively assigned to the formation of the dication species 4bH
2+

.  

The electron density on the cobalt carbonyl units is further reduced following the 

removal of a second electron from the complex hence the carbonyl IR bands are 

shifted to even higher frequencies.  Subsequent reduction processes led to a decrease 

in the new bands and regeneration of the parent IR bands, however, only to 

approximately 78% of the initial intensity recorded.  Therefore, some decomposition 

of the complex also occurs for 4bH during the oxidation processes.   
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5.3.6 Co2(CO)4dppm Complexes: Cyclic Voltammetry  

 

Incorporating phosphine ligands onto cobalt carbonyl moieties increases the electron 

density on the Co-Co core, thus stabilising the metal carbonyl and facilitating 

reversible oxidation processes. As a result, the lifetimes of the radical anions and 

cations are increased, reducing the rate at which disintegration of the cobalt carbonyl 

moieties takes place.
15,17,18,24,26

  1,2-Bis(diphenylphosphino)methane {dppm} ligands 

were incorporated onto the Co2(CO)6 complexes described in the previous section, 

producing the corresponding Co2(CO)4dppm complexes 5H, 5F and 6H.  There was 

an insufficient amount of the fluorinated Co2(CO)6 complex 4F to generate the 

corresponding tetracarbonyl complex.  The redox properties of the dppm derivatives 

were investigated using cyclic voltammetry techniques at room temperature, in 0.1 M 

TBAPF6/CH2Cl2, at a scan rate of 0.1 Vs
-1

, and the data was calibrated against the 

redox couple of decamethylferrocene Fc*
+
/Fc* (E1/2 = -0.07 vs. SCE).  The effects of 

the chelating dppm ligands on the reductive and oxidative processes of the metal 

carbonyl moieties, and on the electrochromic properties of the switching units, are 

described here.  The structures of 5H, 5F and 6H are illustrated in figure 5.34, and the 

cyclic voltammetry results of the oxidation processes are summarised in table 5.7. 

 

 

 

Figure 5.34: The structures of the open-ring Co2(CO)4dppm complexes 5H, 5F and 6H. 
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• Reduction Process 

 

The cyclic voltammograms of the Co2(CO)6 perhydro-derivatives 3H and 4H revealed 

single bielectronic irreversible reduction processes at -1.28 V and -1.20 V (vs. SCE), 

respectively.  In the case of their corresponding Co2(CO)4dppm complexes, 5H and 

6H respectively, reduction processes were not found to occur within the potential 

limits of the CH2Cl2 solvent (i.e. V < -2.0 V).  Such a result can be ascribed to the 

electron-donating ability of the dppm ligand, making the complexes more difficult to 

reduce and therefore more negative potentials are required to form the anionic species.  

This result is consistent with previous literature studies.
15,17,18,24,26

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.35: Cyclic Voltammogram of the reduction process of 5F,  in 0.1 M TBAPF6/CH2Cl2, at a 

scan rate of 0.1 Vs
-1

.   
 

On the other hand, reduction of the Co2(CO)4dppm moieties was observed for the 

perfluoro analogue, 5F, as shown in figure 5.35.  The CV of 5F displayed a single 

irreversible reduction peak at -1.67 V, representing a one-step two-electron reduction 

process, indicating that little electronic communication exists between the two metal 

centres.  The electron-withdrawing ability of the fluorine atoms helps to stabilise the 

anionic species, therefore allowing reduction processes to take place at less negative 

potentials in comparison to the perhydro derivatives.  Although, the reduction peak of 

5F
2-

 was cathodically shifted by 580 mV relative to its corresponding Co2(CO)6 
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complex 3F
2-

, as expected.  Despite the tendency of phosphine ligands to impart 

reversibility onto the reduction processes of such cobalt carbonyl complexes, the 

reduction peak of 5F was not found to be reversible under these conditions (at room 

temperature, at a scan rate of 0.1 Vs
-1

).  In fact the subsequent anodic sweep displayed 

two small oxidation peaks at -0.36 and -0.24 V, due to the formation of unknown 

disintegration products.  Although, the relative intensities of these peaks are lower 

than those observed in the CV of the Co2(CO)6 complex 3F, indicating a reduction in 

the rate of decomposition of 5F, in comparison to 3F.  

 

• Oxidation Process 

 

Introduction of electron-donating chelating phosphine ligands, onto cobalt carbonyl 

compounds, makes the redox centre much more electron-rich, facilitating oxidation 

processes at lower potentials, in comparison to their related Co2(CO)6 complexes.  The 

extra stability on the metal centre also increases the reversibility of the 

electrogenerated cations.  Such results have been described previously in the 

literature,
15,17,18,24,26

 and similar effects were observed in the cyclic voltammograms of 

the Co2(CO)4dppm complexes 5H, 5F and 6H, in comparison to the CV’s of their 

corresponding cobalt hexacarbonyl complexes, as highlighted in table 5.7. 

 

Table 5.7: Cyclic voltammetric data following oxidation of the Co2(CO)4dppm complexes 5H, 5F and 

6H, and the corresponding open-ring free ligand switches (1Ho, 1Fo, 2Ho) and Co2(CO)6 derivatives 

(3H, 3F, 4H). 

 

Compound Oxidation Potentials 

 Epa (V) Epc (V) 

1Ho 0.65
rc

, 0.95
rc

, 1.55
a
  0.60

rc
, 0.88

rc
  

3H  0.59
rc

, 0.78
rc

, 1.21
a
, 1.41

a
 0.50

rc
 , 0.70

rc
 

5H  0.27
rc

, 0.59
dppm

, 0.68
dppm

, 1.35
a
 0.18

rc
, 0.50

dppm
, 0.61

dppm
 

2Ho 0.50
rc

, 0.82
rc

, 1.23
a
 0.42

rc
 , 0.75

rc
 

4H  0.55
rc

, 0.84
rc

, 1.23
a
, 1.46

a
 0.47

rc
, 0.75

rc
 

6H  0.40
rc

, 0.69
dppm

, 0.96
rc

, 1.36
a
 0.30

rc
 , 0.51

dppm
, 0.82

rc
 

1Fo 1.71
a
  - 

3F  1.23
a
, 1.75

a
 - 

5F  0.65
dppm

, 0.75
dppm

, 1.48
a
 0.57

dppm
, 0.67

dppm
 

 

All values listed are values of potential (V) vs. SCE, recorded in 0.1 M TBAPF6/CH2Cl2, at 0.1 Vs
-1

. 
a
 indicates an irreversible oxidation process  

rc
 indicates peaks assigned to ring-closed species 

dppm
 indicates peaks due to oxidation of the Co2(CO)4dppm moieties 
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6H

The oxidation process of 6H resulted in a quasireversible oxidation wave at E1/2 = 

0.59 V (ipc/ipa ≈ 0.7), which can be attributed to a two-electron oxidation process of 

the Co2(CO)4dppm moieties i.e. a one-electron oxidation of each of the two 

Co2(CO)4dppm units.  At higher potentials, an irreversible oxidation peak was 

observed at 1.36 V, representing a two-electron process of the dithienylethene unit.  

The subsequent cathodic sweep displayed two new reduction peaks at 0.82 and 0.30 

V, and two corresponding new oxidation waves at 0.96 and 0.40 V (vs. SCE), as 

shown in figure 5.36.  Such a result could potentially be due to an oxidative 

cyclisation process, with the redox waves at E1/2 = 0.35 and 0.89 V representing the 

formation of the monocation and dication species of the closed form, respectively.  

However, the ∆E value between the two new redox waves in 6H (ca. 690 mV) does 

not correspond with the ∆E values found for the closed-ring cationic species of the 

corresponding free ligand switch 2H (ca. 320 mV) and Co2(CO)6 complex (ca. 280 

mV).  Another possibility is that the presence of the dppm redox wave at E1/2 = 0.60 

V, could be obscuring another new redox wave associated with the ring-closing 

process.  Therefore it can be unambiguously deduced that oxidative cyclisation occurs 

for 6H from the CV results.  Hence, further investigations were carried out in the UV-

vis spectrum in order to elucidate the oxidative processes, and the results are discussed 

in section 5.3.7. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 5.36: Cyclic voltammograms of the Co2(CO)4dppm complex  6H, in 0.1 M TBAPF6/CH2Cl2 at 

0.1 Vs
-1

, following oxidation at 0.96 V (top) and 1.37 V (bottom).  The top CV is offset along the 

coordinate for clarity.   
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5H

Oxidation of the Co2(CO)4dppm moieties on 5H resulted in the appearance of two 

quasireversible monoelectronic oxidation waves at E1/2 = 0.55 and 0.65 V (∆E = 100 

mV), indicating that some electronic communication exists between the metal centres.  

In the case of the longer-chain derivative 6H, only one oxidation wave was observed, 

thus it appears that the shorter bridging carbon chain in 3H promotes electronic 

interaction between the metal carbonyl groups.  Following the first oxidation of the 

cobalt carbonyl moieties, a new redox wave was observed in the subsequent sweeps at 

E1/2 = 0.23 V (figure 5.37).  Oxidation at higher potentials (at 1.4 V) revealed an 

irreversible oxidation peak at 1.35 V, attributed to a two-electron oxidation process of 

the switching unit.  In the subsequent sweeps, a new redox wave appeared in the CV 

at E1/2 = 0.23 V (figure 5.37).  This new redox wave corresponds to that observed 

following oxidation of the cobalt carbonyl moieties, as described above, although the 

relative intensity of the oxidation/reduction peaks increased following oxidation of the 

switching unit.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.37: Cyclic voltammogram of the Co2(CO)4dppm complex 5H, in 0.1 M TBAPF6/CH2Cl2 at 

0.1 Vs
-1

, following oxidation at 0.9 V (top, sweeps 1-4) and at 1.4 V (bottom, sweeps 3-4).  The top CV 

is offset along the coordinate for clarity.        
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This result suggests that cyclisation of 5H begins following oxidation of the 

Co2(CO)4dppm moieties.  The corresponding free ligand (1H) and Co2(CO)6 complex 

(3H) both underwent cyclisation reactions following oxidation of the dithienylethene 

unit, resulting in two new redox waves associated with the closed form.  However, 

only one new redox wave was found for 5H.  It is possible that a second redox wave 

related to oxidation of the switching unit is present but its appearance is obscured by 

the Co2(CO)4dppm oxidation process.  Therefore, in order to elucidate the results 

fully, further investigations were carried out using the UV-vis/NIR spectro-

electrochemistry techniques, and the results are discussed in section 5.3.7. 

 

In the case of the perfluoro-derivative 5F, two closely separated quasireversible 

oxidation waves (∆E = 100 mV) were observed at E1/2 = 0.61 and 0.71 V, as shown in 

figure 5.38.  This redox process can be attributed to the oxidation of the 

Co2(CO)4dppm components, and indicates electronic interaction between the two 

metal centres over the dithienylethene bridge, as described previously for its perhydro-

derivative 3H.  A two-electron oxidation process of the switching unit was observed at 

1.48 V, with no new redox waves appearing in the consecutive sweeps.  Therefore, 5F 

did not undergo electrochemical ring-closing, which is consistent with the results 

observed for its related free ligand (1F) and Co2(CO)6 complex (3F). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.38: Cyclic voltammogram of the Co2(CO)4dppm complex 5F, in 0.1 M TBAPF6/CH2Cl2 at 

0.1 Vs
-1

, following oxidation at 1.1 V. 
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5.3.7 Co2(CO)4dppm Complexes: UV-vis/NIR Spectroelectrochemistry 

 

 The cyclic voltammetry experiments performed on the Co2(CO)4dppm complexes 

indicated that oxidative cyclisation occurred for the perhydro-derivatives 5H and 6H, 

but not in the case of the perfluorinated analogue 5F.  UV-vis/NIR spectro-

electrochemistry techniques were employed to examine the oxidation processes of the 

dppm derivatives in more detail, in 0.1 M TBAPF6/CH2Cl2 vs. Ag/Ag
+
, at room 

temperature.  The structures of the Co2(CO)4dppm complexes are illustrated in figure 

5.39.  The UV-vis/NIR spectroelectrochemistry results recorded for the tetracarbonyl 

dppm complexes are summarised in table 5.8, along with the data obtained from the 

corresponding free ligand switches and Co2(CO)6 complexes, for comparative 

purposes. 

 

 

Table 5.8: UV-vis/NIR spectroelectrochemistry data of the Co2(CO)4dppm complexes (5H, 5F, 6H), 

and the corresponding free ligand switches (1H, 1F, 2H) and Co2(CO)6 complexes (3H, 3F, 4H), 

following oxidation processes at varying potentials. 

 

 

The data was recorded in 0.1 M TBAPF6/CH2Cl2 vs. Ag/Ag
+
. 

↓ indicates decreasing of absorbance band 

 

 

 

 

Free Ligand Switches Co2(CO)6 Complexes Co2(CO)4dppm Complexes 

Ox  λabs (nm) Ox λabs (nm) Ox λabs (nm) 

1Ho 3H 5H 

Start 

1.3 V 

1.6 V 

290, 310 

455, 566, 666 

469, 575, 666, 867 

Start 

1.3V 

274, 330, 450-670 

466, 571, 671 

Start 

0.8 V 

263, 346, 430-630 

432, 640 

2Ho 4H 6H 

Start 

1.4 V 

 

334 

471, 590(sh), 657 

 

Start 

1.0 V 

1.0.V 

267, 341, 420-650 

481, 576, 655, 778 

472, 576(sh), 655 

Start 

1.4 V 

 

276, 351, 430-630 

456, 566, 771 

 

1Fo 3F 5F 

Start 

1.6 V 

305 

237, 345-700 

Start 

1.0V 

275, 330, 410-630 

303 

Start 

1.0 V 

270, 338, 430-630 

270↓, 338↓, 430-

630↓ 

 



 301 

 

 

Figure 5.39: The structures of the open-ring Co2(CO)4dppm complexes 5H, 5F and 6H. 

 

The CV of 6H suggested that cyclisation of the closed-ring isomer occurred following 

oxidation at 1.4 V.  The oxidation processes were followed in the UV-vis spectrum.  

The original absorbance bands in the UV region at 276 and 351 decreased 

significantly, and new bands appeared in the visible region at 456, 566 and 771 nm, as 

shown in figure 5.40.  These bands are associated with the formation of the 

monocation species of the closed-ring isomer.  However, the absorbance bands were 

quite weak in comparison to the results recorded for the free ligand (2H) and 

Co2(CO)6 complex (4H), and as bulk electrolysis continued, they started to decrease.    

Subsequent reduction at 0V resulted in a slight increase in absorbance at 337 nm, and 

the bands in the visible region decreased, with weak bands at 456 and 771 nm 

remaining at the end of the experiment.  Such a result suggests that a one-electron 

oxidation process of the open-form of 6H undergoes cyclisation to the monocation 

closed-form.  Therefore, the oxidation process at E1/2 = 0.35 V in the CV of 6H can 

tentatively be assigned to the generation of the closed-ring monocation radical.  The 

fact that there was no definite evidence for the formation of the dication closed-ring 

species in the UV-vis spectrum, suggests that the redox wave at E1/2 = 0.89 V, in the 

CV of 6H, is not due to the dication of the closed switch.  It is difficult to assign this 

redox wave to a particular species, and unfortunately, insufficient information was 

obtained from the bulk electrolysis experiments to categorically elucidate the 

oxidative processes observed in the CV of 6H.  However, it can be concluded that 

some electrogenerated ring-closing was achieved for 6H, but to a lesser extent then 

previously observed for the related free ligand switch 2H and Co2(CO)6 complex 4H.  

Such a result could possibly be ascribed to the electron-withdrawing effect of the 

oxidation processes of the Co2(CO)4dppm moieties, occurring before the switching 
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unit, hence stabilising the charge on the open-ring isomer of 6H in a localised fashion, 

thus hindering the cyclisation process. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5.40: The UV-vis spectrum of the Co2(CO)4dppm complex 6H (black line), following oxidation 

at 1.4 V (green line), and subsequent reduction at 0 V (red line).  

 

When 5H was oxidised at 0.8 V, a decrease in the bands at 263 and 346 nm was 

observed, accompanied by an increase in the absorbance in the visible region, with 

λmax at 432 and 640 nm (figure 5.41).  These new bands are associated with the 

generation of the dication species of the closed-ring isomer.  Following reduction at 

0V, the bands in the visible region began to decrease.  An increase in the UV region at 

263 and 346 nm was observed, indicating that the Co2(CO)4dppm moieties are quite 

stable under such conditions.  Noteworthy is the fact that generation of the closed-

form dication species occurred at 0.8 V, which corresponds to the potential at which 

the dppm units undergo oxidation processes in the CV.  This suggests that oxidation 

of the cobalt carbonyl dppm units induces the cyclisation process, possibly via an 

intramolecular electron transfer mechanism, as the switching unit undergoes oxidation 

processes at a much higher potential (1.35 V).  These results correspond well with 

those previously observed in the CV of 5H, as a new redox wave (E1/2 = 0.23 V) 

appeared following oxidation of the metal carbonyl groups.   
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Figure 5.41: The UV-vis spectrum of the Co2(CO)4dppm complex 5H (thick black line).  Oxidation at 

0.8 V results in an increase in the visible region, due to the formation the closed-ring dication species.  

 

The oxidation process of the perfluoro-derivative 5F was monitored at a potential of 

0.8 V initially, which was increased to 1.6 V.  At both potential sets, a decrease in the 

original bands recorded at 270, 338 and 430-630 nm was observed, with no new bands 

growing-in.  No changes were incurred following the subsequent reduction process at 

0 V.  Therefore, oxidation of 5F resulted in some decomposition of the 

Co2(CO)4dppm moieties, but did not induce cyclisation of the switching unit. 
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5.3.8 Co2(CO)4dppm Complexes: IR Spectroelectrochemistry 

 

The cyclic voltammograms of the Co2(CO)4dppm complexes showed that 

incorporating dppm ligands, onto the metal carbonyl units, increased the stability of 

the oxidation processes of the cobalt carbonyl complexes, as observed from the quasi-

reversible oxidation waves.  However, the UV-vis/NIR spectroelectrochemistry 

experiments indicated that decomposition of the complexes was occurring during the 

oxidation processes.  Therefore, IR spectroelectrochemistry experiments were carried 

out on these complexes (in 0.1 M TBAPF6/CH2Cl2) in order to examine the effect of 

the oxidation processes on the metal carbonyl units in more detail. 

 

 

Figure 5.42: The structures of the open-ring Co2(CO)4dppm complexes 5H, 5F and 6H. 

 

The Co2(CO)4dppm complexes 5H, 5F and 6H displayed three carbonyl stretches in 

the IR spectrum at considerably lower wavenumbers, in comparison to their related 

cobalt hexacarbonyl complexes.  For example, the IR bands for the Co2(CO)6 complex 

3H were recorded at 2089, 2055 and 2024 cm
-1

, whereas the corresponding dppm 

derivative 5H displayed IR bands at 2022, 1997 and 1969 cm
-1

.  The presence of the 

chelating ligand increases the electron density on the metal carbonyl moiety, due to 

the electron donating ability of dppm onto the cobalt centres, and the fact that there 

are less CO molecules available for back-bonding, thereby shifting the carbonyl bands 

to lower frequencies.  Also noted, from the data listed in table 5.9, was the shift in the 

tetracarbonyl IR bands of 5F to higher frequencies, in relation to the perhydro-

analogues 5H and 6H.  This can be attributed to the electron-withdrawing effects of 

the fluorine atoms.    
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Table 5.9: The IR spectral data of the Co2(CO)4dppm complexes 5H, 5F and 6H, before oxidation 

(parent bands) and during oxidation processes (new bands). 

 

Compound Parent Bands 

ν(CO) cm
-1

 

New Bands 

ν(CO) cm
-1

 

5H 2022, 1997, 1969 2065, 2043, 2022 

6H 2021, 1995, 1968 2067, 2044, 2021 

5F 2025, 2000, 1972 2069, 2047, 2025 

 

The data was recorded in 0.1 M TBAPF6/ CH2Cl2 vs. Ag/Ag
+
. 

 

The oxidation processes were found to have some intriguing effects on the IR 

carbonyl stretches of these Co2(CO)4dppm complexes.  In the case of 5F, bleaching of 

the parent bands at 2025, 2000 and 1972 cm
-1

 occurred following oxidation at 0.6 V to 

0.8 V.  In conjunction with these changes, two new bands began to grow-in at 2069 

and 2047 cm
-1

, as shown in figure 5.43.  A further band was evident underneath the 

parent band at 2025 cm
-1

, as this band did not decay at the same rate as the other 

parent bands at 2000 and 1972 cm
-1

.  Such a result can be attributed to the formation 

of the dication species.  The loss of an electron from each of the two Co2(CO)4dppm 

moieties results in a decrease in the electron density on the metal, thus shifting the 

carbonyl bands to higher wavenumbers.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.43: The IR difference spectra of the Co2(CO)4dppm complex 5F, in 0.1 M TBAPF6/CH2Cl2,  

during oxidation at 0.6 V.  Negative bands indicate bleaching of the parent bands and the positive bands 

indicate formation of the monocation species. 
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Depletion of the new bands occurred following subsequent reduction processes at 0V, 

whilst the parent bands were found to recover to approximately 85% of their initial 

absorbance values recorded.  This is a marked improvement in comparison to the 

percentage decomposition estimated for the Co2(CO)6 complex 3F (~ 60%).  

Prolonged oxidation processes, and higher potentials, resulted in an overall decrease 

in the carbonyl bands in the IR spectrum.  Therefore, the IR results coordinate well 

with the quasi-reversible oxidation process observed in the cyclic voltammogram, and 

the poor reversibility observed in the UV-vis/NIR spectra.  Similar processes were 

observed for the perhydro-derivatives 5H and 6H, and the results are summarised in 

table 5.9.      
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5.4 Conclusion 

 

The electrochromic properties of the thienyl-based switches were investigated and, 

from the cyclic voltammetry and UV-vis/NIR spectroelectrochemistry studies, it was 

determined that oxidative cyclisation processes, to the ring-closed isomers, were 

observed for 1H, 2H and 2F, whereas oxidative cycloreversion, to the open-ring 

isomer, occurred for 1F.  The results obtained show that the direction of the oxidative 

switching processes (i.e. cyclisation or cycloreversion) depends on the relative 

stability of the open and closed-ring cation radicals.  Similar results have been 

described previously in the literature.
1,4,5

  The atoms present on the central 

cyclopentene units heavily influence these processes.  The electron-donating ability of 

the hydrogen atoms provide extra electron density on the central switching unit, and 

hence stabilise the cation radicals of the closed-ring isomer, which is the driving force 

for oxidative cyclisation to occur.  On the contrary, the electron-withdrawing ability of 

the fluorine atoms removes electron density from the central switching unit, hence 

efficient stabilisation of the cation radicals of the closed form is not achieved, 

resulting in a ring-opening process.   

Incorporating phenyl rings between the dithienylethene unit and the ethynylthiophene 

moieties, in the case of 2H and 2F, were also found to influence the redox properties.  

In both cases, the first oxidation processes were cathodically shifted to less positive 

potentials with respect to their corresponding derivatives 1H and 1F, respectively.  

The presence of the electron-rich phenyl groups also provided extra stability on the 

cation radicals of the closed-form of 2F, hence allowing cyclisation to the closed-ring 

isomer to occur.  Such a result highlights how the redox properties of these switches 

can be tuned by altering the substituents attached to the dithienylethene unit.    

Along with the redox waves associated with the open and closed isomers, the CV’s of 

1H, 1F and 2F, also showed the appearance of redox waves at low potential values, 

which were assigned to the formation of unknown oxidation species (assigned as 1Hy, 

1Fy and 2Fy).  Similar results have been described in the literature, and such species 

are believed to be a consequence of electrochemical rearrangement processes.
1,4
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The electrochemical properties of the cobalt carbonyl complexes were examined from 

two points of view.  Firstly, the oxidation and reduction processes of the cobalt 

carbonyl moieties, and secondly, their influences on the electrochromic behaviour of 

the switching units. 

The Co2(CO)6 complexes 3H/F and 4H/F underwent irreversible reduction processes 

followed by the decomposition of the radical anions.  The substituents attached to the 

alkynyl units, and the atoms present on the cyclopentene ring (H vs. F), had a 

noticeable affect on the reduction potentials of the Co2(CO)6 moieties, with the 

potential values becoming more negative in the order of: 3F < 4F < 4H < 3H.  The 

fact that the reduction processes resulted in single bielectronic waves indicated that 

little electronic interaction existed between the two metal centres on both sides of the 

switching unit.  Furthermore, increasing the π-conjugation of the bridging unit of 4H, 

by producing the closed-ring isomer 4bH, did not increase the electronic 

communication between the two cobalt carbonyl moieties.  On the contrary, in the 

case of 3bF, the increased π-conjugated system of the closed-ring isomer, along with a 

shorter carbon chain bridging unit, was found to increase the electronic 

communication between the metal centres, as evidenced by the presence of two 

monoelectronic quasireversible reduction waves in the CV, and increase the stability 

of the radical anions.  Incorporating electron-donating dppm chelating ligands onto the 

cobalt carbonyl groups was found to drive the reduction processes to more negative 

potentials, with only the reduction process of 5F observed below the potential limit of 

the solvent.  The phosphine ligands were found to stabilise the radical cations, 

resulting in quasireversible oxidation processes for the Co2(CO)4dppm moieties, 

which occurred at less positive potentials in the CV’s, in comparison to the cobalt 

hexacarbonyl units.  Similar results have been reported in the literature for such cobalt 

carbonyl complexes.
15,17,18,24,26

  Moreover, a more pronounced decrease was observed 

in the UV region of the absorbance spectra for the Co2(CO)6 complexes, relative to the 

dppm derivatives, following oxidation processes.  The advantage of a shorter bridging 

unit was also evidenced in the CV’s of the Co2(CO)4dppm complexes 5H and 5F, 

which displayed two monoelectronic waves, in contrast to the single bielectronic 

oxidation wave observed for the longer chain derivative 6H.  Therefore, these results 

highlight the ability to tune the electrochemical properties of cobalt carbonyl 

complexes by the introduction of phosphine ligands onto the metal.  The influence of 

the bridging unit, on the degree of electronic communication between the cobalt 



 309 

moieties, has also been emphasised, with shorter carbon chains and increased π-

conjugated closed-ring systems promoting electronic interaction between the metallic 

centres.  Therefore, the cobalt carbonyl switches described here have the potential to 

be used in the development of molecular wires.  Switching between the open and 

closed isomers has the prospect to control the electronic communication properties 

between the ON (closed-ring) and OFF (open-ring) state, as demonstrated for 3F.  

 

The electrochemical properties of the cobalt carbonyl complexes were also 

investigated in terms of their influence on the electrochromic switching behaviour of 

the dithienylethene units.  In the case of the perhydro-derivative, 2H, oxidative 

cyclisation was also found to occur for the related Co2(CO)6 {4H} and Co2(CO)4dppm 

{6H} complexes.  However, the oxidation processes of the dppm derivative 6H, 

monitored in the UV-vis spectrum, indicated a significant decrease in the amount of 

the closed-ring isomer formed, suggesting that the oxidation of the  tetracarbonyl 

moieties, before the switching unit, reduced the stability of the cationic species 

produced following ring-closure.  In the case of the less conjugated derivative 1H, 

oxidative ring-closing was also observed for the corresponding Co2(CO)6 {3H} and 

Co2(CO)4dppm {5H} complexes.  However, a more prominent effect of the cobalt 

carbonyl moieties was observed for these complexes, which can be affiliated with the 

shorter carbon chain length of this perhydro switch.  In the case of the Co2(CO)6 

complex 3H, the results suggested that cyclisation processes were induced following 

intramolecular electron transfer, from the oxidised metal carbonyl moieties, to the 

dithienylethene units.  A similar result was apparent for the related Co2(CO)4dppm 

complex 5H.  New features appeared in the CV and UV-vis/NIR spectrum of 5H, 

associated with the closed-ring cation species, following oxidation of the 

Co2(CO)4dppm moieties.   Thus, this result suggests that the electrochemical 

cyclisation process of 5H was induced by the oxidised cobalt carbonyl moieties, 

possibly via an intramolecular electron transfer mechanism.  A similar process has 

been described previously by Browne et al,
4
 whereby cyclisation of the 

dithienylethene switch was induced following intramolecular electron transfer from an 

oxidised methoxyphenyl group.   

In contrast to the perhydro analogues, the cyclisation process of 2F was inhibited 

following the introduction of Co2(CO)6 moieties onto the alkynyl units (i.e. for 4F).  

This result can be attributed to the fact that the metal carbonyl units underwent 



 310 

oxidation processes at much more positive potentials in comparison to the switching 

unit, hence providing extra stability for the subsequent formation of the open-ring 

radical cation species.  In the case of the perfluoro-derivative 1F, incorporating metal 

carbonyl moieties did not induce a cyclisation process.  However, in the case of the 

closed-ring isomer 1Fc, a cycloreversion process was observed, the rate of which was 

found to be reduced by the presence of Co2(CO)6 moieties attached to the alkynyl 

linkers, as shown for 3bF.  Furthermore, in all cases, the presence of the cobalt 

carbonyl moieties inhibited the generation of the unknown electroactive species (1Hy, 

1Fy, 2Fy).      

 

The effect of oxidation processes on the cobalt carbonyl moieties was investigated in 

the IR spectra.  In all cases, bleaching of the parent carbonyl bands occurred, 

following oxidation processes.  The parent bands were found to recover to their 

original absorbance values following subsequent reduction processes at 0 V, but not 

completely, due to some decomposition processes.  In the case of the closed-ring 

Co2(CO)6 complex 4bH, and the Co2(CO)4dppm complexes, the carbonyl bands were 

found to shift to higher wavenumbers upon oxidation, and subsequent reduction 

indicated that the reversibility of the electrochemical processes was improved for 

these complexes.  The increased stability of the dppm derivatives, and of the closed-

ring isomer of the Co2(CO)6 complex 4bH, highlights how the properties of the cobalt 

carbonyl complexes can be tuned to increase the reversibility of the system.  

Therefore, such complexes have the potential to utilise infra-red spectroscopy as a 

non-destructive read-out signal in the development of write-read-erase systems.
27,28
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Chapter 6 describes the electrochromic behaviour of the perhydro- and 

perfluoro-switches, substituted with ethynylferrocene moieties:  1,2-Bis(5’-

ethynylferrocene-2’-methylthien-3’-yl)cyclopentene {7H}; 1,2-Bis(5’-

ethynylferrocene-2’-methylthien-3’-yl)perfluorocyclopentene {7F}; 1,2-

Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-yl)-cyclopentene 

{8H}; 1,2-Bis(5’-(4’’-phenyl-ethynylferrocene)-2’-methylthien-3’-yl)per-

fluorocyclopentene {8F}.  Cyclic voltammetric and UV-vis 

spectroelectrochemical techniques were employed to investigate the 

electrochemical properties of the ferrocenyl-based switches, and their 

corresponding Co2(CO)6 complexes {9H,  9F, 10H, 10F, 10bF}, and 

Co2(CO)4dppm complexes {11H, 11F, 12H, 12F}.   The effects of the 

oxidation processes on the cobalt carbonyl moieties were examined using 

IR spectroelectrochemical methods. 
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6.1 Introduction 

 

Ferrocene is known for its exceptional electrochemical properties, due to its reversible 

oxidation process, with the +II state of iron oxidising to the +III state.
1
  Thus, the 

electron-donating form of ferrocene (Fc) is oxidised to its electron-withdrawing 

ferrocenium ion (Fc
+
).  Hence, the redox-activity of ferrocene molecules can be 

utilised in a number of opto-electronic devices, by acting as molecular wires or 

switches.
2-5

   

The electronic communication between ferrocene moieties, in systems containing two 

or more ferrocene molecules separated by a bridging unit, has been explored by cyclic 

voltammetry methods.  For example, Thomas et al
4
 investigated the electronic 

communication between two ferrocenyl moieties, separated by a thiophene spacer 

(FTF), as illustrated in figure 4.1.  They deduced that the presence of a thiophene unit 

increases the electronic communication between the ferrocene moieties, in comparison 

to its phenylene analogues, due to the delocalisation of charge across the molecule.  

This was evidenced by the presence of two separate one-electron redox waves present 

in the cyclic voltammogram. 

The ability of ferrocene molecules to undergo reversible oxidation processes can be 

utilised in the design of fluorescence redox-switchable molecular systems.  For 

example, Martinez et al
5
 reported a dyad (PyFc), consisting of a fluorescent pyrene 

unit and a redox-active ferrocene unit, as illustrated in figure 6.1, the fluorescence 

intensity of which depends on the oxidation state of the ferrocene unit.  The 

fluorescence of the neutral form of PyFc was found to be weak, which was attributed 

to the quenching effect of the ferrocene molecule, occurring via electron transfer or 

energy transfer, from the electron-donating ferrocene unit, to the electron-accepting 

excited state of the pyrene unit.  Oxidation of the ferrocene moiety was induced by 

both chemical and spectroelectrochemical methods.  In both cases, the emission of the 

oxidised PyFc
+
 species was found to increase.  This phenomenon was attributed to the 

formation of the ferrocenium ion Fc
+
.  The ferrocenium ion acts as an electron-

withdrawing group, and the spectral overlap between the absorption spectrum of Fc
+
 

and the emission spectrum of the pyrene unit is small.  Hence, energy transfer from 

the excited state of pyrene to the ferrocenium unit cannot take place efficiently, and so 
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the oxidation of the ferrocene unit to the ferrocenium ion can be considered as turning 

the fluorescence “ON”.  Spectroelectrochemical studies showed that subsequent 

reduction of the ferrocenium ion to, the neutral ferrocene unit, resulted in a decrease in 

the fluorescence intensity (i.e. turning the fluorescence “OFF”), demonstrating the 

reversibility of this switching process. 

 

Fc-PCH-Fc: R1=H

Fc-PCF-Fc: R1=F
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Figure 6.1: Structures of ferrocenyl-based molecules described in the literature: FTF:
4
 PyFc:

5
 DHP-1 

closed;
6
 TM and TMF;

7
 Fc-PCH-Fc and Fc-PCF-Fc.

8
 

 

The electrochromic properties of dithienylcyclopentene switches have been described 

previously in chapter 1.  A number of publications
6-8

 have shown that incorporating 

ethynylferrocene moieties onto molecular switching units affects the electrochromic 

properties of such switches, the structures of which are illustrated in figure 6.1. For 

example, Sun et al
7
 described a dithienylmaleimide switch, appended with two 

ethynylferrocene units (TMF), which underwent an oxidative ring-opening process, as 

evidenced by cyclic voltammetry studies.  Such a process could be ascribed to the 

electron-withdrawing ability of the oxidised ferrocenium ions.   
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Muratsugu et al
6
 reported the electrochemical properties of a dimethyldihydropyrene 

switch, disubstituted with ethynylferrocene moieties (DHP-1).  The cyclic 

voltammogram (CV) of the closed species (1c) demonstrated strong electronic 

communication between the two ferrocene molecules due to the presence of two 

separate redox waves.  Conversely, only one redox wave was observed for the 

ferrocene moieties in the CV of the open-ring form (1o), with no sign of peak 

separation, which is consistent with the less π-conjugated structure of the open-ring 

isomer.  However, the second oxidation scan observed in the CV of the open-form 

indicated that oxidative ring-closing was taking place.  This theory was further 

supported by monitoring the chemical oxidation of the open-ring isomer in the UV-

vis-NIR spectra, and they observed that the absorbance spectra of 1o
+
 and 1o

2+
 

completely matched those of 1c
+
 and 1c

2+
.  In fact, they deduced that the open-form of 

DHP-1 was undergoing redox-assisted ring-closing following oxidation of only the 

ferrocene moieties.   

Launay et al
8
 described the electrochromic properties of dithienylcyclopentene (DTE) 

switches, appended with an ethynylferrocene molecule on either side, with a 

perhydro- and perfluoro-cyclopentene core (Fc-PCH-Fc and Fc-PCF-Fc 

respectively).  Such switches are known to undergo oxidative ring-opening or ring-

closing processes upon oxidation of the DTE core at high potentials (> 1.0 V).  

Following cyclic voltammetry and UV-vis spectroelectrochemical analysis of the 

closed-ring isomers, Launay et al observed oxidative ring-opening processes in both 

cases, with the perhydro-derivative undergoing a faster ring-opening process, in 

comparison to its perfluoro-analogue.  Launay et al concluded that oxidation of the 

ferrocene molecules, to their electron-withdrawing ferrocenium ions, played a major 

role in inducing these ring-opening processes, thus allowing electrochemical 

isomerisation processes to occur at lower potentials, comparing to when direct 

oxidation of the DTE unit is required.   

 

We also synthesised the perhydro and perfluoro-derivatives of the ferrocenyl-based 

dithienylcyclopentene switches (7H and 7F), reported by Launay et al,
8
 as described 

previously in chapter 2.  Their electrochemical properties were investigated by cyclic 

voltammetry and UV-vis spectroelectrochemistry methods, and the results are detailed 

here.  Subsequently, the effect of incorporating a phenyl-ring spacer unit between the 

DTE core and the ethynylferrocene moieties (8H and 8F), on the electrochromic 
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properties, was also examined.  The oxidative and reductive processes of the 

corresponding Co2(CO)6 (9H, 9F, 10H, 10F) and Co2(CO)4dppm complexes (11H, 

11F, 12H, 12F) were monitored by cyclic voltammetry and UV-vis 

spectroelectrochemistry in order to determine if the presence of the metal carbonyls 

would change the electrochemical isomerisation processes of these ferrocenyl-based 

switches.  IR spectroelectrochemical studies were also carried out.  The structures of 

these compounds are displayed in figure 6.2.   
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Figure 6.2: Illustrates the structures of the ferrocenyl-based dithienylperhydro- and perfluoro-

cylopentene switches 7H, 7F, 8H and 8F discussed in this chapter, and the corresponding Co2(CO)6 

complexes {9H, 9F, 10H, 10F, 10bF} and Co2(CO)4dppm complexes {11H, 11F, 12H, 12F}. 
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6.2 Experimental 

 

6.2.1 General Procedures 

 

Cyclic Voltammetry:  Solutions of the compounds (~ 1 mmol) were made-up in 

spectroscopic grade dichloromethane, using tetrabutylammonium 

hexafluorophosphate (0.1 M) as the supporting electrolyte.  The solutions were placed 

into a 10 ml two-kneck round-bottomed flask, degassed with argon and the flask was 

sealed.  The flask was kept under an inert atmosphere throughout the experiment.  A 

three-electrode system was set-up: glassy carbon (working electrode), a platinum wire 

(counter electrode) and a silver wire (reference electrode).  The cyclic voltammograms 

were obtained at a scan rate of 0.1 Vs
-1

, at room temperature, in the dark. 
 
The 

reference electrode was calibrated versus the decamethylferrocene redox couple 

(Fc*
+
/Fc*), which has a formal potential E1/2 = -0.07V versus SCE.

9
 

UV-vis/NIR Spectroelectrochemistry:  An electrolyte solution was prepared using 

tetrabutylammonium hexafluorophosphate (0.1 M) dissolved in dichloromethane.  The 

solutions were placed in a custom-made quartz cuvette (2 mm path length) equipped 

with a solvent reservoir holding a silver wire reference electrode and platinum wire 

counter electrode (separated from the solution using a glass tube sleeve), and a 

platinum gauze mesh was employed as the working electrode.  Bulk electrolysis 

experiments were carried out in the dark at room temperature, under an atmosphere of 

argon.  UV-vis/NIR spectra were recorded as oxidation/reduction potentials were 

applied, and when no further changes were observed, a potential of 0 V was applied to 

the system, and the resulting spectra were recorded.  These experiments were typically 

carried out over a period of 20 to 40 minutes. 

IR spectroelectrochemistry:  Solutions of the cobalt carbonyl complexes were made-

up in a 0.1 M tetrabutylammonium hexafluorophosphate/CH2Cl2 electrolyte solution.  

The samples were placed in an IR OTTLE cell, containing a platinum gauze mesh 

working electrode, a platinum counter electrode, and a silver reference electrode.  

Bulk electrolysis experiments were carried out by applying positive potentials to the 

system.  The oxidation processes were monitored in the IR spectra until no further 
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changes were observed.  Subsequently, a potential of 0V was applied and the changes 

in the IR spectra were recorded.  

Formation of the closed-ring isomers:  Solutions of the switches were made-up in 

deuterated acetone and placed in a sealed NMR tube.  The samples were irradiated 

with monochromatic light at 313 nm, and monitored by 
1
H NMR spectroscopy over 

time.  Irradiation was continued until conversion from the open-ring to the closed-ring 

was complete, or before the photochemical by-products formed.   

 

6.2.2 Materials 
 

The dichloromethane was of spectroscopic grade and was purchased from Sigma 

Aldrich.  The tetrabutylammonium hexafluorophosphate, decamethylferrocene and 

deuterated acetone were all purchased from Sigma Aldrich.  The argon gas was 

supplied by BOC Ltd.   

 

6.2.3 Equipment 
 

Cyclic voltammetry and bulk electrolysis experiments were carried out using a CH 

Instruments Chi600a potentiostat.  The electrodes used for the cyclic voltammetry 

experiments were a glassy carbon (working), silver wire (reference), and platinum 

wire (counter), all purchased from CH Instruments.  UV-vis/NIR 

Spectroelectrochemistry experiments were carried out on a Jasco V-670 

spectrophotometer, in a custom-made quartz cuvette (2 mm path-length) equipped 

with a solvent reservoir, which was purchased from Starna Scientific.  The electrodes 

employed were a platinum gauze mesh (working), a silver wire (reference) and a 

platinum wire (counter).  Infra-red spectroelectrochemistry experiments were carried 

out on a Perkin Elmer “Spectrum 65” FT-IR spectrometer, using an electrochemical 

IR OTTEL cell containing a platinum gauze working electrode, a platinum counter 

electrode, and a silver reference electrode, which was purchased from Specac.  

Photochemical experiments were carried out using a 200W Hg lamp (Oriel 

Instruments, model no.: 68911) containing a 313 nm filter.  
1
H NMR spectra were 

recorded on a Bruker model AC 400 MHz spectrometer.  
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6.3 Results and Discussion 

 

6.3.1 Ferrocenyl-based Switches: Cyclic Voltammetry  

 

Cyclic voltammetric techniques were employed in order to investigate electrochemical 

induced switching, of the open and closed forms, of the ferrocenyl-based switches 

7H/F and 8H/F.  The closed-ring isomers were generated by irradiating the open 

forms with UV light (at 313 nm) until conversion from the open to the closed-ring was 

complete, or before the photochemical by-products formed, as monitored in the 
1
H 

NMR.  Cyclic voltammetry experiments were performed at room temperature, in 0.1 

M solutions of TBAPF6/CH2Cl2, at a scan rate of 0.1 Vs
-1

.  Decamethylferrocene was 

employed as a reference and the results are reported against the ferrocene redox 

couple Fc*
+
/Fc* (E1/2 = -0.07 vs. SCE).  The structures of the open and closed 

switches are illustrated in figure 6.3. 
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Figure 6.3: Illustrates the structures of the open and closed isomers of compounds 7H/F and 8H/F. 
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• Reduction Process 

The reduction processes were carried out on the open and closed-ring isomers, in the 

potential range from 0 to -0.2 V i.e. within the potential limit of the CH2Cl2 solvent, 

and the results are summarised in table 6.1.  Reduction of the open-ring isomers 7Ho, 

7Fo and 8Ho did not result in reduction processes at potentials greater then -2.0 V.  

However, in the case of the longer chain perfluoro-derivative 8F, an irreversible 

reduction peak was observed at -1.85 V (vs. SCE), representing a two-electron 

reduction process, forming the dianion 8Fo
2-

.  Such a result can be attributed to the 

electron-withdrawing ability of the fluorine atoms on the cyclopentene ring, which 

help to stabilise the LUMO (i.e. the first reduction process).
10-12

  A second 

contributing factor is the presence of the phenyl rings, separating the dithienylethene 

unit from the ethynylferrocene moieties, thus reducing the influence of the electron-

donating ability of the ferrocene groups, and hence allowing reduction processes to 

occur at less negative potentials.  

Table 6.1: Redox properties, of the open and closed isomers of compounds 7H/F and 8H/F, following 

reduction processes. 

Open Isomers Closed Isomers 

 Epc (V)  Epc (V) 

7Ho - 7Hc -1.76
a
 

8Ho - 8Hc N/A 

7Fo - 7Fc -1.36
 a
, -1.68

 a
 

8Fo -1.85
 a
 8Fc -1.07

 a
, -1.40

 a
 

 

All values listed are values of potential (V) vs. SCE, recorded in 0.1 M TBAPF6/CH2Cl2. 
a
 indicates an irreversible reduction process. 

- indicates that no reduction peaks were observed at potentials greater than -2.0 V. 

N/A: the results are not available. 

 

In the case of the closed-ring isomers of the perfluoro analogues, two reduction waves 

were detected below -2.0 V, representing the formation of the monoanion and dianion 

species.  This can be attributed to the extended π-conjugation of the systems in the 

closed-form, which reduces the HOMO-LUMO gap, thus allowing reduction 

processes to occur at less negative potentials.
11,12

  For example, there is a marked 

decrease in the reduction potential recorded for the closed-ring isomer 8Fc, in 

comparison to the open-ring form 8Fo (∆E = 450 mV).  In the CV of 7Hc, only a 

single reduction peak was observed within the potential limit, assigned to the 



 323 

-35

-30

-25

-20

-15

-10

-5

0

5

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Potential (V) vs SCE

C
u
rr
e
n
t 
( µµ µµ
A
)

monoanion species.  Producing the closed-form of 8H proved to be difficult, hence no 

reduction process was observed for 8Hc.  Noticeably, a trend emerged among the 

reduction potentials recorded for the closed-ring derivatives, with the potential values 

becoming more negative in the order of: 8Fc < 7Fc < 7Hc.  Such a trend can be 

attributed to the atoms present on the cyclopentene ring (H vs. F), and the effect of the 

substituents attached to the alkynyl units.  As described previously, the electron-

withdrawing fluorine atoms better stabilise the LUMO than the electron-donating 

hydrogen atoms, and the presence of the phenyl units in 8Fc reduce the influence of 

the electron-donating ferrocene molecules.  Thus 8Fc underwent reduction at the least 

negative potential, and 7Hc at the most negative value.   

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Cyclic voltammogram of the reduction process of 8Fc, in 0.1 M TBAPF6/CH2Cl2, at a scan 

rate of 0.1 Vs
-1

. 

• Oxidation Process 

The oxidation processes of the ferrocenyl-based compounds 7H/F and 8H/F were 

investigated, in the open and closed forms, to determine if these switches underwent 

electrochemical cyclisation or cycloreversion processes.  The oxidation potentials 

recorded in the CV’s of these compounds are summarised in table 6.2.  In each case, 

the ferrocenyl moieties underwent a one electron quasireversible oxidation process 
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(ipc/ipa ≈ 0.8), from Fe(II) to Fe(III) (as expected
1,3

), with E1/2 values ranging from 5.7 

V to 6.3 V.  The CV’s of the open and closed-ring isomers displayed a single 

bielectronic redox wave, representing a two electron process i.e. one-electron 

oxidation of each of the two ferrocene moieties separated by the switching unit, thus 

indicating that little electronic interaction exists between the two iron centres.  

Oxidation processes of the switching units occurred at higher potentials, and the 

results suggest that generation of the electron-withdrawing ferrocenium ions (Fc
+
) 

influenced the electrochromic properties of the switches. 

Table 6.2: Redox properties of 7H/F and 8H/F, in the open and closed forms. 

Cyclic Voltammetry Oxidation Potentials 

Open-Ring Isomers Closed-Ring Isomers 

 Epa (V) Epc (V) E1/2 (V)  Epa (V) Epc (V) E1/2 (V) 

7Ho 0.68
Fc

 

0.99
rc

 

1.15
rc

 

1.50
a 

0.54
Fc

 

0.93
rc

 

1.08
rc

 

0.61
Fc 

0.96
rc

 

1.12
rc

 

7Hc 0.65
Fc

 

0.96
rc

 

1.13
rc

 

0.51
Fc

 

0.89
rc

 

1.07
rc

 

0.58
Fc 

0.93
rc

 

1.10
rc

 

8Ho 0.43
rc

 

0.68
Fc

 

0.90
rc

 

1.32
a 

0.37
rc

 

0.48
Fc

 

0.80
rc

 

0.40
rc 

0.58
Fc

 

0.85
rc

 

8Hc 0.44
c
 

0.64
Fc

 

0.88
rc

 

0.39
rc

 

0.51
Fc

 

0.82
rc

 

0.42
rc 

0.58
Fc

 

0.85
rc

 

7Fo 0.73
Fc

 

1.76
a
 

0.52
Fc

 

 

0.63
Fc

 
 

7Fc 0.69
Fc

 

1.26
rc

 

1.37
rc 

0.57
Fc

 

 

0.63
Fc 

 

8Fo 0.64
Fc

 

1.05
rc

 

1.21
rc

 

1.68
a 

0.50
Fc

 

0.98
rc 

1.07
rc

 

0.57
Fc 

1.02
rc

 

1.14
rc

 

8Fc 0.66
Fc

 

1.06
rc

 

1.20
rc

 
 

0.53
Fc

 

0.98
rc 

1.10
rc

 

0.60
Fc 

1.02
rc

 

1.15
rc

 

 

All values listed are values of potential (V) vs. SCE, recorded in 0.1 M TBAPF6/CH2Cl2, at 0.1 Vs
-1

. 
a
 indicates an irreversible oxidation process  

Fc
 indicates peaks due to the redox couple of the ferrocene moieties  

rc
 indicates peaks assigned to the ring-closed species  

 

Electrochemical processes of the open-ring isomer 7Fo resulted in oxidation of the 

ferrocene groups at E1/2 = 0.63 V, followed by an irreversible oxidation peak at 1.76 V 

(vs. SCE) due to oxidation of the dithienylethene unit.  In the subsequent anodic and 

cathodic sweeps, no new redox waves were observed indicating that 7Fo does not 

undergo oxidative cyclisation to the closed-ring isomer.   
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Figure 6.5 Cyclic voltammogram of 7Fo (bottom) and 7Fc (top), in 0.1 M TBAPF6, at a scan rate of 

0.1 Vs
-1

.  The CV of the closed form is offset along the coordinate for clarity.   
 

Following oxidation of the ferrocenyl moieties at E1/2 = 0.63 V, the CV of the 

corresponding closed-ring isomer 7Fc displayed two small oxidation waves at 1.26 

and 1.37 V.  In the subsequent sweeps these redox waves decreased continually, as 

shown in figure 6.5.  Such a result is indicative of an oxidative cycloreversion process.  

Launay et al
8
 also described the occurrence of an oxidative ring-opening process for 

the same compound.  As described previously in chapter 4, irradiation of the open-

ring isomer (7Fo), to the closed-ring isomer (7Fc), is accompanied by formation of a 

photochemical by-product (assigned as 7Fx).  Therefore, 7Fo was irradiated with UV 

light for a shorter time then that required to reach the photostationary state, to produce 

a small amount of the closed-ring form 7Fc, hence why the oxidation processes of the 

closed-ring dithienylethene unit resulted in very small anodic peaks.   

 

In the case of the closed-ring perhydro analogue, 7Hc, oxidation of the ferrocene 

moieties was found to occur at E1/2 = 0.58 V (vs. SCE).  At higher potentials, two 

small redox waves were observed at E1/2 = 0.93 and 1.10 V, which can be attributed to 

the cationic species of the closed-ring isomer.  These redox processes appeared to be 

quite stable after twenty consecutive sweeps, at an oxidation potential of 1.25 V.  
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Such a result suggests that cycloreversion, to the open-ring form, does not occur for 

7Hc.  It should be noted that the solution of 7Hc contained a mixture of the open and 

closed form, as irradiation was stopped before all of the open-ring isomer was 

converted to the closed-ring isomer in order to inhibit the generation of the 

photochemical by-product 7Hx (as described in chapter 4).  This can explain why the 

oxidation processes of the closed-ring dithienylethene unit resulted in small redox 

waves.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Cyclic voltammogram of 7Ho (bottom, sweep 2-3) and 7Hc (top), in 0.1 M TBAPF6, at a 

scan rate of 0.1 Vs
-1

.  The CV of the closed form is offset along the coordinate for clarity 

 

In the case of the open-ring isomer, 7Ho, oxidation of the ferrocene molecules 

occurred at E1/2 = 0.61 V.  Oxidation at higher potentials resulted in an irreversible 

peak at 1.50 V, which can be attributed to oxidation of the dithienylethene unit.  In the 

subsequent cathodic and anodic waves two new redox waves were observed at E1/2 = 

0.96 and 1.12 V, as shown in figure 6.6, which were not present before oxidation of 

the dithienylethene unit took place at 1.50 V.  Therefore, the results suggest that 

oxidation of the dithienylethene unit resulted in cyclisation to the closed-ring isomer, 

and hence the redox waves at E1/2 = 0.96 and 1.12 V are a consequence of redox 

processes of the cationic species of the closed form.   
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This result is in contrast to what has been published previously for the same 

compound, by Launay et al.
8
  They obtained identical cyclic voltammograms for the 

open and closed ring isomers of the perhydro-derivative, with only a single 

irreversible oxidation peak observed at approximately 1.44 V (vs. SCE), associated 

with the switching unit, following the ferrocene oxidation wave.  They did not report 

any evidence of redox waves at potentials in-between these two waves.  Therefore, 

they concluded that an extremely fast ring-opening process of the closed-ring isomer 

took place following the first oxidation process of the ferrocene units.  It is difficult to 

explain why the results described here are different to those described by Launay et al.  

However, it should be noted that Launay et al performed their electrochemical 

experiments under different conditions (i.e. in 0.1 M TBAPF6/acetonitrile at various 

scan rates).  Furthermore, they described the generation of the closed-ring isomer by 

irradiating the open switch with UV-light until no more starting material was detected 

or until the photostationary state was observed, as monitored by UV-vis and 
1
H NMR 

spectroscopy, but they failed to mention anything about the formation of the 

photochemical by-product 7Hx during their studies.   

 

In the case of the extended chain perhydro-derivative 8Ho, the oxidation process of 

the ferrocene molecules was represented by a quasireversible two-electron oxidation 

wave at E1/2 = 0.58 V, as shown in figure 6.7.  An irreversible oxidation wave was 

observed at 1.32 V (vs. SCE), due to oxidation of the dithienylethene unit, and was 

followed by the appearance of two new redox waves at E1/2 = 0.85 and 0.40 V, which 

were not present in the CV before oxidation of the switching unit occurred.  After a 

number of consecutive sweeps, these new redox waves were found to be stable and 

are assigned to the cationic species of the closed-ring isomer.  Hence, a cyclisation 

process, from the open to the closed form, occurred for 8Ho following oxidation at 

1.32 V.  However, noteworthy is the sharp reduction peak in the CV of 8Ho at 0.80 V.  

Such a result may be attributed to passivation of the electrode surface due to the 

formation of an insoluble cation species which covers the surface of the electrode.
13,14

  

It is possible that oxidation of the dithienylethene switch, forming the 8H
4+

 species, 

makes the cation insoluble in CH2Cl2, thus resulting in its precipitation on the 

electrode surface.  In the subsequent cathodic sweep, a surface confined process takes 

place as a result, where the precipitated 8H
4+

 cation is reduced to the more soluble 

species 8H
3+

, thus allowing it to desorb from the surface of the electrode and return to 
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solution.
13

  Such a process is represented by the desorption spike observed at 0.80 V, 

as illustrated in figure 6.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Cyclic voltammogram of 8Ho (bottom) and 8Hc (top), in 0.1 M TBAPF6, at a scan rate of 

0.1 Vs
-1

.  The CV of the closed form is offset along the coordinate for clarity.   
 

Generation of the closed-ring isomer of 8H, at concentrations required for 

electrochemical analysis (~ 1 mmol), proved to be difficult due to some 

decomposition processes taking place.  Therefore, 8Ho was irradiated with UV light 

for a shorter time then that required to reach the photostationary state, to produce a 

small amount of the closed-ring form, 8Hc.  The CV of this solution showed that a 

sufficient amount of the closed-ring isomer was produced, as oxidation waves, 

associated with the closed-ring switching unit, were observed at potentials lower then 

the first oxidation process observed for the open-ring switch (at 1.32 V).  The first 

oxidation wave was observed at E1/2 = 0.42, albeit small, and was obscured by the 

second redox wave, associated with the ferrocene moieties, at E1/2 = 0.58 V, with a 

third redox wave observed at E1/2 = 0.85 V.  Therefore, the redox waves at E1/2 = 

0.415 and 0.85 V, as shown in figure 6.7, can be assigned to the monocation and 

dication species of the closed-ring isomer 8Hc.  The fact that these potential values 

are similar to those recorded for the new redox waves observed in the CV of 8Ho, 
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following oxidation of the switching unit at 1.32 V, confirms that an oxidative 

cyclisation process occurs for 8Ho. 

  

The related closed-ring perfluoro analogue 8Fc, underwent a quasireversible oxidation 

process at E1/2 = 0.60 V (vs. SCE), due to the ferrocene molecules, followed by two 

redox waves at E1/2 = 1.02 and 1.15 V, indicative of two separate one-electron 

oxidation processes of the closed-ring dithienylethene unit.  Twenty consecutive 

sweeps at 1.35 V did not result in much change in the CV, indicating that the closed-

ring isomer did not undergo cycloreversion to the open-ring form. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Cyclic voltammogram of 8Fo (bottom) and 8Fc (top), in 0.1 M TBAPF6/CH2Cl2, at a scan 

rate of 0.1 Vs
-1

.  The CV of the closed form is offset along the coordinate for clarity.   
 

Oxidation of the ferrocene molecules, on the corresponding open-ring isomer 8Fo, 

occurred at E1/2 = 0.57 V (vs. SCE).  At higher potentials, an irreversible two-electron 

oxidation process of the switching unit was observed at 1.68 V.  The subsequent 

cathodic sweep displayed two new reduction peaks at 1.07 and 0.98 V, and the 

following anodic sweep displayed corresponding oxidation peaks at 1.21 and 1.05 V.  

These redox processes were not observed in the CV before oxidation of the switching 

unit took place at 1.68 V, and their potential values coordinate well with the oxidation 

process of the closed-ring isomer 8Fc.  Therefore, it can be determined that oxidative 

cyclisation occurs for 8Fo.  However, a sharp desorption spike was observed in the 
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cathodic sweep in the CV’s of both the open {8Fo} and closed forms {8Fc}, at 1.07 

and 1.10 V respectively.  Such a result indicates that the formation of the 8F
4+

 cation 

species results in passivation of the electrode surface due to solubility issues,
13,14

 

which is desorbed from the electrode following reduction to the 8F
3+

 species, as 

described previously for the perhydro derivative, 8H.   

 

Overall, the cyclic voltammetry results showed that oxidative ring-opening occurred 

for 7F, whereas oxidative ring-closing occurred for 7H, 8H and 8F.  The electron-

withdrawing fluorine atoms, and the electron-withdrawing ferrocenium ions, stabilise 

the cationic species of the open-ring isomer of 7F, and together are the driving force 

for the electrochemical ring-opening process.  On the other hand, the electron-

donating hydrogen atoms on 8H help to stabilise the cationic species of the closed-

ring isomer, and the presence of the phenyl-ring spacer units, between the switch and 

the ferrocene moieties, help to reduce the influence of the electron-withdrawing 

ferrocenium ions, thus allowing oxidative cyclisation to occur.  The results obtained 

for 7H and 8F further highlight the considerable effects of the substituents present on 

the switching unit.   In the case of 7H, oxidative cyclisation was allowed due to the 

electron-rich perhydro-cyclopentene ring, providing extra stability on the closed-ring 

cationic species.  The extended chain perfluoro analogue, 8F, was also found to 

undergo ring-closing via electrochemical means.  This can be attributed to the 

presence of the electron rich phenyl rings, which provided extra stability on the 

cationic species of the closed-form, and also acted as spacer units, thus reducing the 

influence of the ferrocenium ions on the switching unit.  According to literature 

reports,
10, 15, 16

 the presence of hydrogen atoms on the cyclopentene ring are expected 

to promote oxidative cyclisation processes, and substituting the H atoms, with F 

atoms, generally results in oxidative cycloreversion.  Thus the results described here 

highlight the resounding influence of the substituents attached to the dithienylethene 

unit, on the electrochromic properties of such switches. 
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6.3.2 Ferrocenyl-based Switches: UV-vis/NIR Spectroelectrochemistry  

According to the cyclic voltammetry experiments carried out on the open and closed-

ring isomers of the ferrocenyl-based switches, it was determined that oxidative 

cycloreversion occurred for 7F, whereas oxidative cyclisation occurred for 7H, 8H 

and 8F.  In order to confirm these results, UV-vis/NIR spectroelectrochemical 

techniques were carried out on the two isomeric forms of these switches, the structures 

of which are illustrated in figure 6.9.  The results obtained in the UV-vis/NIR spectra 

are summarised in table 6.3, and were assigned to the corresponding oxidation 

products from reference to results published in the literature.
5,8,10,17-19

  

 

7Ho: R=H
7Fo: R=F

8Ho: R=H
8Fo: R=F

S S

Fe Fe

S S

FeFe

R6

R6

7Hc: R=H
7Fc: R=F

8Hc: R=H
8Fc: R=F

S S

Fe Fe

S S

FeFe

R6

R6

 

 

Figure 6.9: Illustrates the structures of the open and closed isomers of compounds 7H/F and 8H/F. 
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Table 6.3: UV-vis/NIR spectroelectrochemistry data of the open and closed-ring isomers of 

compounds 7H/F and 8H/F, following oxidation processes at varying potentials. 

 
Oxidation 

Potential λabs (nm)  
Oxidation 

Potential λabs (nm) 

7Ho Start 

0.6 V 

260, 311, 444 

253, 409, 494 (sh), 960 
7Hc Start 

0.4 V 

260, 312, 548 

256, 448, 959 

8Ho Start 

0.4 V 

0.8 – 1.1V 

0.8 – 1.1V 

342, 441 

295, 424, 930 

251, 441, 614, 777-1120 

251, 441, 646 

8Hc Start 

0.4 V 

1.1 V 

324, 560 

278, 430, 787, 940-1620 

251, 281, 435, 609(sh), 647 

7Fo Start 

0.6 V 

 

267, 309, 442 

267, 369, 867 

 

7Fc Start 

0.4 V 

 

269, 313, 641 

269, 347-520, 750-1000 

 

8Fo 

 

Start 

0.6 V 

332, 442 

255, 317, 418, 870 
8Fc 

 

Start 

0.6 V 

0.6-1.3 V 

267, 342, 619 

260, 336, 423  

237, 317 
 

The data was recorded in 0.1 M TBAPF6/CH2Cl2 vs. Ag/Ag
+
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10:  UV-vis/NIR spectra recorded during the reduction processes of the open-ring isomer 7Fo, 

in 0.1 M TBAPF6/CH2Cl2.  Following oxidation at 0.6 V, subsequent reduction at 0 V resulted in a 

decrease in the absorbance bands associated with the oxidised ferrocene molecules (black lines), and 

the final spectrum recorded (red line) overlaid with the spectrum recorded at the beginning of the 

experiment (green line). 
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Oxidation of ferrocene molecules has been reported to induce changes in the UV-

vis/NIR absorbance spectrum, due to the formation of the corresponding ferrocenium 

ions (Fc
+
).

5,8,19
  Applying an oxidation potential of 0.6 V, to a solution of the open-

ring isomer 7Fo, resulted in an increase in the original absorbance band at 267 nm, 

and the appearance of two new bands at 369 and 867 nm, in the UV-vis/NIR 

spectrum.  These changes can be attributed to the generation of the ferrocenium 

ions.
5,6,20

  Subsequent reduction at 0V resulted in a decrease in the new absorbance 

bands and the original absorbance spectrum, recorded at the start of the experiment, 

re-emerged (figure 6.10), demonstrating the reversible nature of the oxidation process 

of the ferrocene moieties.
 

 

Bulk electrolysis experiments were carried out on the closed-ring isomer 7Fc, at 0.4 V 

(i.e. a potential at which the redox process of the ferrocene molecules was just 

beginning in the CV), and the changes recorded in the UV-vis/NIR spectra are 

presented in figure 6.11.  The band in the visible region of the absorption spectrum at 

641 nm, indicative of the conjugated closed form, began to decrease, indicating that an 

oxidative cycloreversion process, to the open-ring isomer, was taking place.  Also 

noted was an increase in the original band at 269 nm, an increase in absorbance in the 

region 347 - 520 nm, and a low intensity absorbance in the range 750 - 1000 nm.  

These changes are synonymous with the formation of the ferrocenium ions.
5,6,20

  Such 

a result suggests that oxidation of the ferrocene molecules induced a ring-opening 

process however it is difficult to interpret the exact mechanism involved.  Oxidation 

of the electron-donating ferrocene molecules produces the electron-withdrawing 

ferrocenium ions.  Electron-withdrawing substituents tend to destabilise the cationic 

species of the closed-ring form, thus resulting in cycloreversion to the open-ring 

isomer.  Launay et al
8
 also reported similar changes in the UV-vis spectrum of the 

same molecule, associated with the oxidised ferrocene units.  However, in contrast to 

the results described here, they reported that the absorbance band associated with the 

closed-ring isomer (at 641 nm) was stable during oxidation processes at 0.9 V and was 

not found to decrease.        
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Figure 6.11:  UV-vis/NIR spectra of the closed-ring isomer 7Fc (thick black line), in 0.1 M 

TBAPF6/CH2Cl2, following oxidation at 0.4 V.   
 

The UV-vis spectrum of the closed-ring isomer, 8Hc, displayed absorbance bands at 

324 and 560 nm.  Upon oxidation at 0.4 V, the original band in the visible region at 

560 nm began to deplete, with strong absorbance bands appearing at 281, 430, 787 

and between 940 – 1620 nm, as shown in figure 6.12.  The λmax at 281 and 430 nm can 

be assigned to the formation of the ferrocenium ions, whilst the bands at 787 and 

between 940-1620 nm can be assigned to the first oxidation process of the 

dithienylethene ring i.e. the monocation species of the closed-ring switching unit.  

When the oxidation potential was increased to 1.1 V, the absorbance bands at 787 and 

940-1620 nm began to decrease, whilst the bands at 281 and 430 nm continued to 

increase, the later being red-shifted to 435 nm.  Furthermore, new bands started to 

grow-in at 251 and 647 nm, with a shoulder at 609 nm.  Such changes are indicative 

of the formation of the dication species of the closed-ring switching unit.
10,17,18

   

Subsequent reduction at 0 V resulted in a decrease in all of the absorbance bands.  The 

original band recorded in the UV region began to re-emerge however the λmax was 

red-shifted to 335 nm, which is indicative of the open-ring isomer.  In addition, the 

initial absorbance in the visible region at 560 nm did not recover.  Therefore, 

oxidation of 8Hc was found to generate the corresponding monocation and dication 
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species of the dithienylethene switch, however, a ring-opening process occurred 

following subsequent reduction.  This can be attributed to the increased timescale at 

which the bulk electrolysis experiments are carried out, in comparison to the cyclic 

voltammetry experiments (i.e. minutes vs. seconds).  Therefore, the cationic species of 

the closed-form were not stable enough to regenerate the neutral form of the closed-

ring isomer within the timescale of the bulk electrolysis processes.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12:  UV-vis/NIR spectra of 8Hc, at the start (black line), and following oxidation at 0.4 V 

(green line) and 1.1 V (red line), in 0.1 M TBAPF6/CH2Cl2. 

 

In the case of the open-ring isomer, oxidation of 8Ho at 0.4 V resulted in a decrease in 

the original band at 342 nm, with concomitant formation of bands at 295, 424 and 930 

nm, which can be attributed to the oxidation of the ferrocene moieties to the 

corresponding ferrocenium ions.  When higher oxidation potentials (0.8 to 1.1 V) 

were applied to the system, the band at 295 nm decreased and new bands appeared at 

251, 441 and 646 nm, with a shoulder at 614 nm.  These bands were assigned to the 

generation of the dication species of the closed-ring dithienylethene unit, due to the 

similarities with absorbance bands recorded for the closed-ring isomer, 8Hc, during 

oxidation.  The first few spectra recorded at this potential also displayed a broad 

absorbance band between 777-1120 nm, which then began to decrease as the other 

new bands continued to increase, as shown in figure 6.13.  This phenomenon can be 
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attributed to the initial generation of the monocation species of the closed-ring switch, 

which was quickly followed by a second oxidation process, forming the dication 

species in a greater yield.   

When reduction at 0 V was applied, the new bands began to decrease, whilst the band 

assigned to the monocation species, between 777-1120 nm, increased.  This is due to 

the reduction process from the dication to the monocation species.  In the consecutive 

spectra, the absorbance between 777-1120 nm began to decrease however reduction to 

the neutral form did not result at the end of the experiment.  Instead, the original band 

in the UV region at 335 nm began to grow-back, indicating regeneration of the open-

ring switch.  As described previously, such a result can be attributed to the instability 

of the closed-ring cation species within the timescale of the bulk electrolysis 

experiments.    

 

 

 

 

 

 

 

 

 

 
 

Figure 6.13:  UV-vis/NIR spectra of 8Ho at the start (thick black line), and following oxidation at 0.8 

to 1.1 V (final spectrum red line), in 0.1 M TBAPF6/ CH2Cl2. 

 

The CVs of 7Ho and 8Fo showed evidence of ring-closing processes following 

oxidation of the switching unit.  The bulk electrolysis experiments carried out for 7Ho 

and 8Ho (at 0.6 V) resulted in changes in the UV-vis/NIR spectra that can be 

associated with oxidation of the ferrocene units, as detailed in table 6.3 and shown for 

8Fo in figure 6.14 (inset spectrum).  However, when higher potentials were applied, 
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corresponding to the potentials at which oxidation of the switching units was observed 

in the CV, spectral features associated with the formation of the closed-ring cation 

species were not observed in the UV-vis/NIR spectra of 7Ho and 8Ho.  

The CV’s of the corresponding closed-ring isomers 7Hc and 8Fc, displayed redox 

waves associated with the oxidation processes of the closed-ring switching units, 

which were found to be stable over a number of sweeps (~ 20), and there was no 

evidence of cycloreversion processes, back to the open forms.  Thus, it would be 

expected for the spectroelectrochemistry experiments performed on 7Hc and 8Fc to 

show the absorbance bands of the oxidised species of the closed-forms in the UV-

vis/NIR spectra.  On the contrary, however, in both cases the absorbance bands in the 

visible region (associated with the ring-closed forms at 531 and 613 nm, respectively) 

were found to decrease, and only new bands associated with the oxidised ferrocene 

groups were observed, as shown for 8Fc in figure 6.14.   

Therefore, the UV-vis spectroelectrochemistry results, obtained for the open and 

closed isomers of 7H and 8F, indicated that their closed-ring cation species were too 

unstable, within the timescale of the bulk electrolysis experiments (minutes vs. 

seconds in the CV), to incur changes in the absorbance spectra.  Thus, spectral 

features associated with the cationic species of the closed forms were not observed. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14:  UV-vis/NIR spectra of the closed-ring isomer 8Fc (thick black line), following oxidation 

at 1.2 V, in 0.1 M TBAPF6/CH2Cl2.  Inset, the UV-vis/NIR spectra of the open-ring isomer 8Fo, 

following oxidation at 0.6 V. 
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6.3.3 Co2(CO)6 Complexes: Cyclic Voltammetry  

 

A number of literature reports have described the influence of organometallic 

substituents on the electrochromic properties of dithienylethene switches i.e. 

inhibiting or inducing oxidative cyclisation/cycloreversion processes.
21-23

  In this 

section, the electrochemical reductive and oxidative behaviour of the open-ring 

Co2(CO)6 complexes 9H/F and 10H/F are discussed in terms of the redox properties 

found for the Co2(CO)6 moieties, and the effect of the cobalt carbonyl groups on the 

electrochromic switching behaviour of the dithienylethene units.  The cyclic 

voltammetry experiments were performed at room temperature, in 0.1 M solutions of 

TBAPF6/CH2Cl2, at a scan rate of 0.1 Vs
-1

.  The results were calibrated against the 

redox couple of decamethylferrocene Fc*
+
/Fc* (E1/2 = -0.07 vs. SCE).  The structures 

of the cobalt carbonyl complexes described here are illustrated in figure 6.15. 

 

 

Figure 6.15: The structures of the open-ring Co2(CO)6 complexes 9H/F and 10H/F. 
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• Reduction Process 

 

Alkynyl Co2(CO)6 complexes have been reported to undergo one-electron reduction 

processes to form the corresponding anion radical [RC2R’Co2(CO)6]
●-

.  Such 

processes are generally followed by disintegration of the cobalt carbonyl unit, due to 

metal-metal bond cleavage.  Hence, disintegration products are formed, a number of 

which are electroactive, and some have been identified as Co(CO)4
-
, RC2R’Co(CO)3 

and free alkyne.
24-28

   

Similarly, reduction processes of the Co2(CO)6 switches 9H, 9F, 10H and 10F 

resulted in reduction peaks, in the range of -1.13 to -1.30 V (table 6.4), forming the 

corresponding dianion species {9H
2-

, 9F
2-

, 10H
2-

 and 10F
2-

}, due to one-electron 

reduction processes of each of the two Co2(CO)6 groups, substituted onto each switch.  

Disintegration processes of the cobalt carbonyl units were also evident for each 

complex, due to the appearance of new peaks in the anodic and cathodic sweeps, 

following the first reduction process.  The potentials at which these processes took 

place are summarised in table 6.4.  In each case, a sharp oxidation peak was observed, 

in the range from 0.06 to 0.08 V, with a corresponding reduction peak observed at 

approximately -0.40 V, which can tentatively be assigned to the formation of the 

Co2(CO)4
-
 species, with reference to the literature.

24,26-29
  Other smaller oxidation 

waves were observed in all the CV’s and are dedicated to other unknown 

disintegration products.     

 

Table 6.4: The cyclic voltammetry results of the reduction processes of 9H/F and 10H/F. 

 

 

All values listed are values of potential (V) vs. SCE, recorded in 0.1 M TBAPF6/CH2Cl2, and represent 

irreversible redox processes, with the exception of the values marked by 
b
 indicating a quasireversible 

process. 

 

A single irreversible reduction peak was observed for the Co2(CO)6 complexes 9H, 9F 

and 10F, representing a one-step two-electron reduction process,   suggesting that 

little electronic communication existed between the two metal centres.  In the case of 

Compound Co2(CO)6 Moieties Disintegration Products 

 Epc (V) Epc (V) Epa (V) Epc (V) 

9H  -1.22,  - -0.29, -0.13, 0.06 -0.40 

10H  -1.17, -1.30
b
 -1.23

b
 -0.27, 0.07 -0.42 

9F  -1.13,  - -0.18, 0.08 -0.38 

10F -1.15
 

- -0.23, -0.06, 0.08 -0.40 
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the perhydro-derivative 10H, two reduction peaks were recorded at Epc = -1.17 V and 

-1.30 V, as shown in figure 6.16.  The first reduction peak, at -1.17 V, was 

irreversible, whereas the second process at -1.30 V was quasireversible, with a 

corresponding reduction peak observed at -1.23 V.  The separation between the two 

reduction peaks was found to be ∆E = 130 mV.  Such a result may be an indication of 

some electronic interaction existing between the two metal centres, at each end of the 

switch. 

      

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.16: Cyclic voltammogram of the reduction process of 10H (red line) and 10F (black line), in 

0.1 M TBAPF6/CH2Cl2, at a scan rate of 0.1 Vs
-1

. 
 

Furthermore, a comparison of the potentials at which the first reduction processes take 

place for each of the cobalt carbonyl complexes, shows a shift towards more negative 

potential values in the order of: 9F < 10F < 10H < 9H.  Such a trend can be attributed 

to the electron-withdrawing fluorine atoms, which help to stabilise the LUMO to a 

greater extent than the perhydro-derivatives.
10

  Hence the most negative and least 

negative potential values were recorded for 9F (Epc = -1.13 V) and 9H (Epc = -1.22 V) 

respectively.  The presence of the phenyl-rings between the switching unit and the 

Co2(CO)6 moieties in 10H and 10F, reduces the influence of the atoms on the 

cyclopentene ring, hence their reduction values lie in-between those of the shorter 

chain derivatives 9H and 9F. 
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• Oxidation Process 

 

A number of literature reports have described the oxidation processes of alkynyl 

Co2(CO)6 complexes.
26,27,30

  The cobalt hexacarbonyl moieties have been found to 

undergo one-electron oxidation processes, forming the corresponding cation radical 

[RC2R’Co2(CO)6]
●+

, in the range of 0.9 – 1.4 V, followed by severe fouling of the 

electrode surface at higher oxidation potentials.  As detailed in sections 6.3.1 and 

6.3.2, the electrochemistry results of the ferrocenyl-based free ligand switches 

described oxidative ring-opening for 7F, and oxidative cyclisation for 7H, 8H and 8F.  

Therefore, in this section, the effect of the oxidative processes of the Co2(CO)6 

moieties, on the electrochromic behaviour of the switching units, is discussed.     

Oxidation processes of the Co2(CO)6 components on 9H/F and 10H/F resulted in 

single irreversible oxidation peaks, in the potential range from 1.26 to 1.43 V, 

representing a one step two-electron oxidation process i.e. one-electron oxidation 

reaction of each of the two Co2(CO)6 units.  Furthermore, for each complex, oxidation 

of the ferrocene molecules was represented by a single two-electron quasireversible 

redox wave (ipc/ipa ≈ 0.8), appearing at potential values similar to those recorded for 

the free ligand switches (E1/2 ranging from 0.58 V to 0.61 V).  The cyclic voltammetry 

results obtained, following oxidation processes of the Co2(CO)6 complexes 9H/F and 

10H/F, are summarised in table 6.5, along with the CV results of the corresponding 

free ligand switches, for comparative purposes.    

 

Table 6.5: The cyclic voltammetry results of the oxidation processes of the Co2(CO)6 complexes 9H/F 

and 10H/F, and their corresponding free ligands 7H/F and 8H/F.   

 

Compound Oxidation Potentials 

 Epa Epc E1/2 

7Ho 0.68
Fc

, 0.99
rc

, 1.15
rc

, 1.50
a
 0.54

Fc
, 0.93

rc
, 1.08

rc
 0.61

Fc
 

9H 0.51
rc

, 0.66
Fc

, 0.85
rc

, 1.26
a
, 1.48

a
  0.45

rc
, 0.54

Fc
, 0.74

rc
 0.60

Fc
 

8Ho 0.43
rc

, 0.68
Fc

, 0.90
rc

, 1.32
a
 0.37

rc
, 0.48

Fc
, 0.80

rc
 0.58

Fc
 

10H 0.47
rc

, 0.64
Fc

, 0.84
rc

, 1.28
a
, 1.45

a
 0.41

rc
, 0.51

Fc
, 0.76

rc
 0.58

Fc
 

7Fo 0.73
Fc

, 1.76
a
 0.52

Fc
 0.63

Fc
 

9F  0.67
Fc

, 1.43
a
, 1.66

a
 0.49

Fc
 0.58

Fc
 

8Fo 0.64
Fc

, 1.05
rc

, 1.21
rc

, 1.68
a
 0.50

Fc
, 0.98

rc
, 1.07

rc
 0.57

Fc
 

10F 0.65
Fc

, 0.83
rc

, 1.37
a
, 1.68

a
 0.51

Fc
, 0.78

rc
, 0.97

rc
 0.58

Fc
 

 

All values listed are values of potential (V) vs. SCE, recorded in 0.1 M TBAPF6/CH2Cl2, at 0.1 Vs
-1

.. 
a
 indicates an irreversible oxidation process  

Fc
 indicates peaks due to the redox couple of the ferrocene moieties  

rc
 indicates peaks assigned to the ring-closed species  
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Oxidation of 9F resulted in a quasireversible redox wave at E1/2 = 0.58 V, due to 

oxidation of the ferrocene molecules, from the Fe(II) state to the Fe(III) state.  At 

higher potentials, an irreversible oxidation wave was observed at 1.43 V (vs. SCE), 

representing a two-electron oxidation process of the Co2(CO)6 moieties, as shown in 

figure 6.17.  Subsequent sweeps at this potential resulted in a considerable decrease in 

the redox waves, which can be attributed to fouling of the electrode surface following 

oxidation of the cobalt carbonyl groups.  A second irreversible oxidation peak was 

observed at 1.66 V, due to oxidation of the switching unit.  There was no evidence of 

new redox waves in the subsequent sweeps, indicating that 9F did not undergo 

oxidative cyclisation processes, which is in accordance with the result recorded for the 

related free ligand switch 7F. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17 Cyclic voltammogram of the Co2(CO)6 complex 9F, in 0.1 M TBAPF6/CH2Cl2, at 0.1 Vs
-1

, 

following oxidation at 1.55 V.   
 

In the case of the longer chain perfluoro-derivative 10F, oxidation of the ferrocene 

molecules, at E1/2 = 0.58 V (vs. SCE), was followed by a small oxidation peak at 0.83 

V and a corresponding reduction peak was observed in the return sweep at 0.78 V, as 

shown in figure 6.18.  These peaks were not observed in the CV of the free ligand 8F, 

following oxidation of the ferrocene molecules, suggesting that they are associated 

with the presence of the Co2(CO)6 moieties, but it is not clear what oxidation process 

they represent.  At higher potentials, two separate irreversible oxidation peaks, each 

representing a two-electron process, occurred at 1.37 V and 1.68 V, allocated to the 

oxidation process of the Co2(CO)6 moieties and the switching unit respectively.  
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Following the oxidation process at 1.68 V, a small new redox wave was observed at 

0.97 V, which could possibly be due to formation of the cationic species of the ring-

closed isomer.  However, this is not a conclusive result as in the subsequent anodic 

and cathodic sweeps (sweeps 3 and 4), the oxidation peaks at 1.37 and 1.68 V 

decreased considerably, and the reduction peak at 0.97 V disappeared, as shown in 

figure 6.18.  In the consecutive sweeps, all the peaks in the CV decreased and became 

distorted, which can be attributed to severe fouling of the electrode surface following 

oxidation of the cobalt carbonyl units.  Therefore, there was no strong evidence of 

oxidative cyclisation observed in the CV of 10F.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18 Cyclic Voltammogram of the Co2(CO)6 complex 10F, in 0.1 M TBAPF6/CH2Cl2, at 0.1 

Vs
-1

, following oxidation at 1.9 V.  Sweeps 1 and 2 (black line) showed well defined oxidation peaks at 

1.37 and 1.68 V, and a small reduction peak at 0.97 V.  In the subsequent sweeps 3 and 4 (green line), 

these peak decreased considerably.  
 

The CV of the corresponding Co2(CO)6 perhydro analogue 10H showed some 

evidence of an oxidative cyclisation process.  Following the first redox wave at E1/2 = 

0.58 V (vs. SCE), assigned to the formation of the ferrocenium ions, a small oxidation 

peak was observed at 0.84 V, and a corresponding reduction peak was found at 0.76 V 

in the return sweep, as shown in figure 6.19.  A similar small redox wave was 

observed in the CV of the related fluorinated switch 10F, as described previously, but 

the identity of these peaks is unknown.  Oxidation of the Co2(CO)6 moieties was 
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10H

found to occur at 1.28 V, and was represented by a single two-electron irreversible 

peak.  A second irreversible wave was observed at 1.45 V, which can be assigned to a 

two-electron oxidation process of the switching unit.  In the subsequent sweeps, the 

redox wave at E1/2 = 0.80 V increased in intensity, and a very small reduction peak 

appeared at 0.41 V, with a corresponding oxidation wave at 0.47 V, as shown in figure 

6.19.  The two redox waves at E1/2 = 0.44 and 0.80 V, coordinate well with the redox 

waves assigned to the cationic species of the closed-ring isomer in the CV of the free 

ligand 8H.  Therefore, such a result suggests that 10H undergoes an oxidative 

cyclisation process.  In the consecutive sweeps, however, the oxidation peaks began to 

decrease due to fouling of the electrode surface by the oxidised cobalt carbonyl 

moieties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19 Cyclic voltammogram of the Co2(CO)6 complex 10H, in 0.1 M TBAPF6/CH2Cl2, at  0.1 

Vs
-1

, following oxidation at 1.55 V (bottom) and at 0.95V (top), the CV of which is offset along the 

coordinate for clarity.   
 

In the case of the shorter chain perhydro-derivative 9H, the oxidation wave of the 

ferrocene moieties (E1/2 = 0.60 V) was also followed by a small oxidation peak at 0.85 

V, and a related reduction peak at 0.80 V (vs. SCE), as already described for 10H and 

10F.  Following this, oxidation of the Co2(CO)6 groups was observed at 1.26 V, which 

was represented by an irreversible oxidation peak.  At higher potentials, a second 

irreversible oxidation peak was observed at 1.48 V, which can be assigned to 
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9H

oxidation of the dithienylethene unit.  In the subsequent cathodic sweep, a sharp 

reduction peak was observed at 0.71 V, as shown in figure 6.20.  This can be 

attributed to a desorption spike, indicating that passivation of the electrode surface 

occurred
13,14

 following oxidation of the cobalt carbonyl moieties, and switching unit, 

at high potentials.  Such a process was described previously for the free ligand 

switches 8H and 8F.  In the second cathodic sweep, this reduction peak decreased in 

intensity and was anodically shifted to 0.73 V i.e. towards the potential value of the 

reduction peak observed following oxidation of the ferrocene units (at Epc = 0.80 V).  

However, the intensity of this reduction peak, and the corresponding oxidation peak at 

0.85 V, had increased after oxidation at 1.48 V.  Furthermore, after the first oxidation 

process of the switching unit at 1.48 V, a new small reduction peak was observed at 

0.45 V, and a corresponding oxidation peak at 0.51 V.  Therefore, compared to the 

results obtained for 10H, the two redox waves at E1/2 = 0.48 and 0.79 V were 

tentatively assigned to the formation of the cationic species of the closed form of 9H.  

However, these redox waves were obscured by the ferrocene oxidation wave which, 

together with the interference from passivation of the electrode surface (as evidenced 

by the desorption spike at 0.71 V), complicates the analysis of 9H and therefore, it 

was not unambiguously deduced that 9H underwent oxidative cyclisation.  

 

 

 

 

 

 

 

 

 

 

Figure 6.20 Cyclic voltammogram of the Co2(CO)6 complex 9H, in 0.1 M TBAPF6/CH2Cl2, at 0.1    

Vs
-1

, following oxidation at 1.55 V (bottom) and at 1.0V (top), the CV of which is offset along the 

coordinate for clarity. 
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Overall, it was found that incorporating Co2(CO)6 moieties onto the switches did not 

effect the direction of the electrochemical switching processes of these compounds 

(i.e. cyclisation/cycloreversion).  However, the presence of the cobalt carbonyl 

moieties appeared to reduce the stability of the cationic species produced during the 

oxidation processes.  Oxidative cyclisation was not found to occur for the perfluoro-

derivative 9F, which is in-keeping with its corresponding free ligand 7Ho.  The CV of 

the longer chain Co2(CO)6 complex, 10F, did not show strong evidence of a ring-

closing process, which is in contrast to the cyclisation process observed for the related 

free ligand 8F.  However, analysis of the CV of 10F was difficult due to severe 

fouling of the electrode surface following oxidation of the cobalt carbonyl moieties.  

On the other hand, evidence of oxidative ring-closure was observed for the perhydro 

analogue, 10H.  This result is in-keeping with that observed for its free ligand 8H, 

which was also found to undergo cyclisation following oxidation of the switching 

unit.  In the case of the shorter chain Co2(CO)6 complex, 9H, the CV showed some 

evidence of the formation of the closed-ring cation species.  However, passivation of 

the electrode surface following oxidation at high potentials (> 1.2 V), and the masking 

of the new peaks by the ferrocene redox wave, made it difficult to analyse the CV 

results conclusively.  Oxidative cyclisation was also observed for the corresponding 

free ligand 7H.    

Interestingly, there was one common entity observed in the CV’s of 9H, 10H and 

10F, which was not observed in the CV’s of their related free ligand switches.  This 

was the small redox wave observed after the oxidation process of the ferrocene 

molecules, and before oxidation of the cobalt carbonyl moieties and the switching 

unit.  The fact that this wave was not observed in the CV of 9F, which did not show 

any evidence of ring-closure, together with the potential values of this 

oxidation/reduction process coordinating with the values observed for the closed-ring 

cationic species recorded in the CV’s of the free ligands, suggests that this feature 

may be associated with the cyclisation process.   
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6.3.4 Co2(CO)6 Complexes: UV-vis/NIR Spectroelectrochemistry  

The cyclic voltammograms obtained for the Co2(CO)6 complexes, 9H and 10H,   

showed some evidence of oxidative cyclisation processes occurring for these 

complexes.  However, little evidence of such a process was observed in the CV of 

10F, and oxidative ring-closure was not found to occur for 9F.  In order to further 

investigate the electrochemical behaviour of the Co2(CO)6 complexes, UV-vis/NIR 

spectroelectrochemistry experiments were carried out, in 0.1 M TBAPF6/CH2Cl2 

versus Ag/Ag
+
.    The results obtained in the UV-vis/NIR spectra are summarised in 

table 6.6, and the structures of the Co2(CO)6 complexes are illustrated in figure 6.21. 

 

Figure 6.21: The structures of the open-ring Co2(CO)6 complexes 9H/F and 10H/F. 

 

Table 6.6: UV-vis/NIR spectroelectrochemistry data of the Co2(CO)6 complexes 9H/F and 10H/F, 

following oxidation processes at varying potentials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data was recorded in 0.1 M TBAPF6/CH2Cl2 vs. Ag/Ag
+
 

 

 

Absorbance Spectra of the Co2(CO)6 Complexes 

 Oxidation 

Potential 
λabs (nm) 

9H Start 

0.7 V 

263, 327, 442, 568 

449, 931 

10H Start 

1.3 V 

274, 337, 451, 541 

277, 335, 447, 593, 781 (720-1200) 

9F Start 

0.7V 

272, 328, 440, 570 

250, 445 (380-533), 850 

10F Start 

1.4 V 

272, 337, 443, 552 

255, 326, 452, 850 
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Upon oxidation of 9F at 0.7 V, an increase in the absorbance bands in the UV-vis 

spectrum was observed at 250 and 445 nm, along with the appearance of a low 

intensity absorbance band in the NIR region, extending from approximately 700 – 

1200 nm, with a λmax at 850 nm.  These changes are shown in figure 6.22, and can be 

attributed to the oxidised ferrocene moieties, forming the ferrocenium ions.
5,6,20

  The 

new absorbance bands decreased following subsequent reduction processes, although 

the exact spectrum recorded at the start of the experiment was not obtained, which can 

be ascribed to the quasireversible nature of the oxidation process of the ferrocene 

moieties.  When higher oxidation potentials were applied to the system (above 1.0 V), 

the bands in the UV region began to decrease which can be assigned to the irreversible 

oxidation process of the Co2(CO)6 moieties.  Furthermore, new spectral features were 

not observed in the visible/NIR regions therefore, the spectroelectrochemistry 

experiments verified that 9F does not undergo oxidative cyclisation processes, which 

is in accordance with the results obtained in the CV experiments.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.22:  UV-vis/NIR spectrum of the Co2(CO)6 complex 9F (thick black line), in 0.1 M 

TBAPF6/CH2Cl2.  Following oxidation at 0.7 V, there was an increase in the absorbance bands at 250, 

445 and 850 nm.  Inset, the spectrum of 9F zoomed in between 360 and 1200 nm for clarity.    

 

Conversely, when oxidation processes were carried out on 10H (at 1.3 V), an initial 

increase in the absorbance bands was observed at 277, 335 and 447 nm, which can be 
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associated with the oxidation processes of the ferrocene moieties.
5,6,20

  However, new 

absorbance features were also found to appear at 593 nm, and from 720 – 1200 nm 

(λmax = 781 nm), as shown in figure 6.23.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.23:  UV-vis/NIR spectra of 10H, at the start (black line), and following oxidation at 1.3 V 

(green line) and reduction at 0 V (red line), in 0.1 M TBAPF6/CH2Cl2.  Also, the spectrum of the free 

ligand 8H (thin blue line) is displayed for comparative purposes. 

 

On comparing the UV-vis/NIR spectroelectrochemistry results obtained for the 

corresponding free ligand 8H, and from literature reports,
10,17,31

 these bands were 

assigned to the cationic species of the closed-ring isomer.  This result is in agreement 

with the cyclic voltammetry results, which showed oxidation/reduction peaks 

associated with the closed-ring isomer.  Although, in comparison to the results 

obtained for the 8H, these new absorbance bands were quite weak, and began to 

decrease following longer oxidation times.  Therefore, the results confirm that 

oxidative cyclisation, to the closed-ring isomer, does occur for 10H, although the 

closed-ring cations are not very stable and undergo cycloreversion back to the open 

form under these conditions.    Reduction processes, at 0V, resulted in a decrease in 

the new spectral features in the visible region, with a significant increase in the 

absorbance bands in the UV region, to values higher than originally recorded.  The 

final spectrum recorded showed similarities to that of 8H, as demonstrated in figure 
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6.23, indicating loss of the cobalt carbonyl groups, and the formation of the free 

ligand.  

 

In the UV-vis/NIR spectra of 9H and 10F, only spectral changes associated with the 

oxidised ferrocene molecules were observed, with no evidence of absorbance features 

associated with the closed-ring isomers in the spectra.  This result is in agreement with 

the CV of 10F, in which there was no strong evidence to suggest that oxidative 

cyclisation occurred for 10F.  However, in the case of 9H, the CV results showed new 

redox waves, following the first oxidation process of the switching unit, which were 

tentatively assigned to the generation of the closed-ring cations.  The new redox 

waves in the CV of 9H were similar to those recorded in the CV of 10H.  Such 

changes were proven to be associated with the closed-ring cation species, as described 

above for 10H, thus indicating that oxidative cyclisation occurs for 9H.  However, the 

bulk electrolysis experiments occur on a much longer time-scale, in comparison to the 

cyclic voltammetry studies (minutes vs. seconds respectively).  Therefore it is feasible 

that the closed-ring cation species of 9H were too unstable, within this time-frame, to 

display any spectral features in the UV-vis/NIR spectra.   
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6.3.5 Co2(CO)6 Complexes: IR Spectroelectrochemistry  

The cyclic voltammograms have shown that quasireversible oxidation processes of the 

ferrocene molecules were found to occur prior to oxidation of the Co2(CO)6 moieties.  

Therefore, IR spectroelectrochemistry experiments were carried out on the Co2(CO)6 

complexes 9H/F and 10H/F in order to investigate if the electron-withdrawing effect 

of the electrochemically generated ferrocenium ions would effect the carbonyl bands 

in the IR spectrum, and also to examine the changes in these bands when the 

Co2(CO)6 moieties undergo oxidation processes.  These experiments were carried out 

in 0.1 M TBAPF6/CH2Cl2 vs. Ag/Ag
+
, and the structures of the Co2(CO)6 complexes 

are illustrated in figure 6.24. 

 

 

Figure 6.24: The structures of the open-ring Co2(CO)6 complexes 9H/F and 10H/F. 

 

At the start of the experiment, three carbonyl IR bands, in the range of 2100 to 2020 

cm
-1

, were recorded for complexes 9H/F and 10H/F, the values of which are 

presented in table 6.7.  The results highlight how the atoms present on the 

dithienylcyclopentene unit have an effect on the IR stretches of the Co2(CO)6 

complexes, with the presence of the electron-withdrawing fluorine atoms shifting the 

bands to slightly higher energy wavenumbers in comparison to the perhydro 

analogues.  Such an effect is more pronounced for 9F, in comparison to 10F.  This can 

be attributed to the extended distance between the switching unit and the cobalt 

carbonyl moieties, by the presence of the phenyl-rings in 10F, thus reducing the effect 

of the fluorine atoms on the carbonyl stretches.   
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Table 6.7: The IR spectral data of the Co2(CO)6 complexes 9H/F and 10H/F, in 0.1 M TBAPF6/ 

CH2Cl2, before oxidation (parent bands) and during oxidation processes (new bands). 

 

 

Compound Start 

ν(CO) cm
-1

 

Oxidation at 0.6 V 

ν(CO) cm
-1

 

9H 2085, 2050, 2021 2098, 2065, 2039 

10H 2085, 2050, 2021 2098, 2066, 2038 

9F 2088, 2053, 2024 2100, 2068, 2041 

10F 2086, 2051, 2022 2099, 2067, 2039 

 

 

When oxidation potentials between 0.3 and 0.6 V were applied (i.e. at potentials 

coordinating with the beginning of the ferrocene redox processes as observed in the 

CV’s), depletion of the parent bands in the IR spectra was observed for each complex, 

along with three concomitant bands appearing at higher wavenumbers.  For example, 

oxidation of 9F resulted in bleaching of the parent bands at 2088, 2053 and 2024 cm
-1

, 

with three new bands appearing at 2100, 2068 and 2041 cm
-1

, as shown in figure 6.25 

(A).  Similar results were observed for all the complexes, and the resulted are 

summarised in table 6.7.  These new bands can be attributed to the oxidation of the 

ferrocene molecules.  During oxidation processes, the electron-donating ferrocene 

molecules lose one electron, forming the corresponding electron-withdrawing 

ferrocenium ions, which in turn reduces the electron density on the cobalt carbonyl 

moieties, thus shifting the IR bands to higher frequencies.   

When a potential of 0 V was applied, subsequent reduction of the ferrocenium ions 

occurred, thus the newly formed carbonyl bands depleted and the original bands began 

to grow back.  Although the parent bands did not return fully, they were found to 

reach approximately 90 % of their original absorbance values recorded in each case, 

as shown for 9F in figure 6.25 (B).   

 

Oxidation processes at higher potentials, coordinating with the CV results at which the 

Co2(CO)6 moieties were found to undergo oxidation, resulted in a decrease in all of 

the cobalt carbonyl bands in the IR spectrum, with no new spectral features observed.  

Following, subsequent reduction at 0 V, the parent bands began to re-emerge, but they 

did not recover to the same absorbance values recorded at the start of the experiment.  
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Figure 6.25: The IR spectra of the Co2(CO)6 complex 9F, in 0.1 M TBAPF6/CH2Cl2.  (A) shows the IR 

difference spectrum highlighting the generation of new bands, at higher energy wavenumbers, 

following oxidation at 0.6 V.  (B) shows the return of the parent bands, following reduction at 0 V, with 

the last spectrum recorded (thick black line) at ~ 90% of the absorbance value originally recorded at the 

start of the experiment (thin black line).  
 

 

 

A 

B 



 354 

6.3.6 Co2(CO)4dppm Complexes: Cyclic Voltammetry  

 

1,2-Bis(diphenylphosphino)methane {dppm} ligands were incorporated onto the 

Co2(CO)6 complexes 9H/F and 10H/F, described in the previous section, producing 

the corresponding Co2(CO)4dppm complexes, 11H/F and 12H/F respectively, the 

structures of which are illustrated in figure 6.26.  The redox properties of the dppm 

derivatives were investigated using cyclic voltammetry techniques at room 

temperature, in 0.1 M TBAPF6/CH2Cl2, at a scan rate of 0.1 Vs
-1

, and the results were 

calibrated against the redox couple of decamethylferrocene Fc*
+
/Fc* (E1/2 = -0.07 vs. 

SCE).  Literature reports have described how incorporating phosphine ligands, onto 

cobalt carbonyl groups, helps to stabilise the metal carbonyls, thus promoting 

reversible oxidation processes of such moieties.  This effect can be attributed to the 

electron-donating ability of the phosphine ligands, which increases the electron 

density on the Co-Co core, hence, increasing the lifetimes of the radical anions and 

cations, and thereby reducing the rate at which disintegration processes occur.
25-27,29,30

  

Therefore, the influence of the chelating dppm ligands, on the reductive and oxidative 

processes of the metal carbonyl moieties, was investigated for compounds 11H/F and 

12H/F.  Furthermore, the effect of the Co2(CO)4dppm components on the 

electrochromic properties of the switching units, was also examined, and the results 

are described here.   

 

 

 

Figure 6.26: The structures of the open-ring Co2(CO)4dppm complexes 11H/F and 12H/F. 
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• Reduction Process 

 

The first reduction processes in the CV’s of the Co2(CO)6 complexes of the perhydro 

analogues, 9H and 10H, were observed at -1.17 V and -1.22 V (vs. SCE) respectively.  

Conversely, no reduction processes were observed for their corresponding 

Co2(CO)4dppm complexes, 11H and 12H, within the potential limits of the CH2Cl2 

solvent (i.e. V < -2.0 V).  This result indicates that the dppm derivatives undergo 

reduction process at much more negative potentials than their corresponding cobalt 

hexacarbonyl complexes.  Similar results have been reported in the literature, and are 

ascribed to the electron-donating ability of the dppm ligand, making the complexes 

more difficult to reduce.
25-27,29,30

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.27: Cyclic voltammogram of the reduction process of the Co2(CO)4dppm complex 11F,  in 

0.1 M TBAPF6/CH2Cl2, at a scan rate of 0.1 Vs
-1

.  
 

On the other hand, reduction processes occurred for the Co2(CO)4dppm perfluoro-

derivatives 11F and 12F, at -1.72 V and -1.74 V (vs. SCE) respectively, as shown for 

11F in figure 6.27.  In both cases, a single irreversible bielectronic reduction peak was 

observed, representing a two-electron process, thus indicating that little electronic 

interaction existed between the two metal centres, on both sides of the switch.  An 
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increase in the stability of the anionic species is provided by the electron-withdrawing 

fluorine atoms, therefore allowing reduction processes to take place at less negative 

potentials, in comparison to the perhydro derivatives.  Having said that, the effect of 

the electron-rich phosphine ligands was highlighted by the considerable cathodic shift 

of the reduction waves of the dppm derivatives 11F and 12F, with respect to their 

Co2(CO)6 counterparts {9F and 10F} i.e. ∆E ≈ 590 mV in both cases.  Furthermore, 

the intensities of the oxidation peaks recorded in the subsequent anodic sweeps, at -

0.24 and -0.36 V for 12F, and at -0.21 and -0.36 V for 11F, were found to be 

substantially diminished in comparison to those recorded for the cobalt hexacarbonyl 

complexes.  These peaks are associated with disintegration products, therefore 

indicating that the rate of decomposition of the cobalt carbonyl moieties was 

significantly reduced due to the presence of the dppm ligands.  

 

• Oxidation Process 

 

As described in previous literature studies,
25-27,29,30

 introducing electron-donating 

phosphine ligands, onto cobalt carbonyl compounds, increases the electron density on 

the metal centre, thus promoting more reversible oxidation processes, at lower 

potentials, in comparison to their related Co2(CO)6 complexes.  Similar effects were 

observed in the CV’s of the Co2(CO)4dppm complexes 11H/F and 12H/F, following 

oxidation processes, and the results are summarised in table 6.8.  For comparative 

purposes, the oxidation potentials recorded for the corresponding free ligand 

ferrocenyl-based switches and Co2(CO)6 complexes are also detailed in table 6.8.  The 

results show that incorporating dppm substituents onto the cobalt carbonyl groups 

reduced the potential at which the ferrocene molecules underwent oxidative processes, 

in comparison to the related free ligand and cobalt hexacarbonyl complexes, with ∆E 

≈ 180 mV.  Furthermore, the presence of the chelating phosphine ligands reduced the 

potential at which the cobalt carbonyl units underwent oxidation processes, with E1/2 

ranging from 0.86 to 0.93 V, and introduced reversibility to such processes (ipc/ipa ≈ 

0.3).  There was no evidence of strong electronic interaction existing between the two 

Co2(CO)4dppm moieties as only a single bielectronic wave, representing a one-step 

two-electron oxidation process, was observed in the CV’s of each complex. 
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Table 6.8: The cyclic voltammetry results following oxidation processes, of the Co2(CO)4dppm 

complexes 11H/F and 12H/F, and the corresponding open-ring free ligand switches (7H/F and 8H/F) 

and Co2(CO)6 derivatives (9H/F and 10H/F). 

 

All values listed are values of potential (V) vs. SCE, recorded in 0.1 M TBAPF6/CH2Cl2, at 0.1 Vs
-1

. 
a
 indicates an irreversible oxidation process  

Fc
 indicates peaks due to the redox couple of the ferrocene moieties  

dppm
 indicates peaks due to the redox couple of the Co2(CO)4dppm moeities  

rc
 indicates peaks assigned to ring-closed species  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.28: Cyclic voltammogram of the oxidation process of the Co2(CO)4dppm complex 11F,  in 

0.1 M TBAPF6/CH2Cl2, at a scan rate of 0.1 Vs
-1

.   
 

Oxidation Processes 

 Epa Epc E1/2 

7Ho 0.68
Fc

, 0.99
rc

, 1.15
rc

, 1.50
a
 0.54

Fc
, 0.93

rc
, 1.08

rc
 0.61

Fc
 

9H 0.51
rc

, 0.66
Fc

, 0.85
rc

, 1.26
a
, 1.48

a
 0.45

rc
, 0.54

Fc
, 0.74

rc
 0.60

Fc
 

11H 0.19
rc

, 0.47
Fc

, 0.73
rc

, 0.93
dppm

 0.10
rc

, 0.32
Fc

, 0.63
rc

, 

0.78
dppm

 

0.40
Fc

, 

0.86
dppm

 

8Ho 0.43
rc

, 0.68
Fc

, 0.90
rc

, 1.32
a
 0.37

rc
, 0.48

Fc
, 0.80

rc
 0.58

Fc
 

10H 0.47
rc

, 0.64
Fc

, 0.84
rc

, 1.28
a
, 1.45

a
 0.41

rc
, 0.51

Fc
, 0.76

rc
 0.58

Fc
 

12H 0.49
Fc

, 0.64
rc

, 1.0
dppm

, 1.38
a
 0.33

Fc
, 0.62

rc
, 0.82

dppm
, 

1.08  

0.41
Fc

, 

0.91
dppm

 

7Fo 0.73
Fc

, 1.76
a
 0.52

Fc
 0.63

Fc
 

9F  0.67
Fc

, 1.43
a
, 1.66

a
 0.49

Fc
 0.58

Fc
 

11F 0.49
Fc

, 1.00
dppm

, 1.55
a
 0.34

Fc
, 0.85

dppm
 0.42

Fc
, 

0.93
dppm

 

8Fo 0.64
Fc

, 1.05
rc

, 1.21
rc

, 1.68
a
 0.50

Fc
, 0.98

rc
, 1.07

rc
 0.57

Fc
 

10F 0.65
Fc

, 0.83
rc

, 1.37
a
, 1.68

a
 0.51

Fc
, 0.78

rc
, 0.97

rc
 0.59

Fc
 

12F 0.45
Fc

, 0.60
rc

, 0.95
dppm

, 1.48
a
 0.36

Fc
, 0.57

rc
, 0.86

dppm
, 

1.13
rc

 

0.41
Fc

, 

0.91
dppm
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Oxidation of the Co2(CO)4dppm complex 11F resulted in two quasi-reversible waves, 

at E1/2 = 0.42 V and 0.93 V (vs. SCE), each representing a two-electron process.  The 

first wave is associated with the oxidation processes of the two ferrocene molecules, 

forming the ferrocenium ions Fc
+
.  The second wave is assigned to a one-electron 

oxidation reaction of the each of the two Co2(CO)4dppm moieties.  Oxidation of the 

switching unit was observed by an irreversible oxidation peak at 1.55 V, and no new 

redox waves appeared in the following cathodic and anodic sweeps, as shown in 

figure 6.28.  Thus, 11F was not found to undergo electrochemical cyclisation to the 

closed-form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.29 Cyclic voltammogram of the Co2(CO)4dppm complex 12F, in 0.1 M TBAPF6/CH2Cl2 at 

0.1 Vs
-1

, following oxidation at 1.60 V (bottom, sweep 3 and 4) and at 1.20V (top), the CV of which is 

offset along the coordinate for clarity.   
 

In the case of the extended chain perfluoro analogue, 12F, two quasi-reversible 

oxidation waves, due to oxidation of the ferrocene and Co2(CO)4dppm moieties, were 

recorded at E1/2 = 0.41 and 0.91 V respectively.  Oxidation of the switching unit 

occurred at 1.48 V (vs. SCE), and in the subsequent cathodic sweep a very small 

reduction peak was observed at 1.13 V.  As displayed in figure 6.29, another reduction 

peak appeared between the two quasireversible waves at Epc = 0.57 V, and a 

corresponding barley visible oxidation peak at 0.60 V, neither of which were present 
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in the CV before oxidation of the switching unit occurred at 1.48 V.  Such a result 

may be due to the formation of the closed-ring cationic species of 12F, however, there 

is not enough information from this CV to state this conclusively.  All the redox 

waves remained quite stable following a number of consecutive sweeps (~ 10).  

Therefore, it is clear that incorporating the electron-donating dppm ligands onto the 

cobalt carbonyl moieties increased the stability this complex, in comparison to the 

related Co2(CO)6 complex 10F, where severe fouling of the electrode surface occurred 

after one redox cycle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.30 Cyclic voltammogram of the Co2(CO)4dppm complex 12H, in 0.1 M TBAPF6/CH2Cl2 at 

0.1 Vs
-1

, following oxidation at 1.4 V (bottom), and at 1.2 V (top), the CV of which was offset along 

the coordinate for clarity.   
 

In the case of 12H, oxidation of the ferrocene molecules occurred at E1/2 = 0.41 V (vs. 

SCE).  The Co2(CO)4dppm moieties were found to undergo a quasireversible 

oxidation process at E1/2 = 0.91 V, and in the subsequent cathodic and anodic sweeps, 

small oxidation/reduction peaks were observed at 0.64 and 0.62 V respectively.  At 

higher potentials, another oxidation process was recorded at 1.38 V, which can 

tentatively be assigned to oxidation of the switching unit.  In the returning cathodic 

sweep, a new reduction peak was observed at 1.08 V.  Furthermore, the oxidation and 

reduction peaks, at 0.64 and 0.62 V respectively, increased in intensity, as shown in 
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figure 6.30.  It is difficult to determine whether the new reduction peaks at 1.08 V and 

0.62 V, and oxidation peak at 0.62 V, are associated with the occurrence of an 

oxidative cyclisation process, as they are heavily masked by the redox waves 

associated with the ferrocene and Co2(CO)4dppm oxidation processes.  Therefore, 

further investigation would be required in order to determine conclusively if 12H 

undergoes electrochemically induced ring-closure. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.31 Cyclic voltammogram of the Co2(CO)4dppm complex 11H, in 0.1 M TBAPF6/CH2Cl2 at 

0.1 Vs
-1

, following oxidation at 1.2 V (bottom) and at 0.7 V (top), the CV of which is offset along the 

coordinate for clarity.   
 

In the case of the shorter chain perhydro analogue, 11H, strong evidence of oxidative 

cyclisation was observed in the CV, as shown in figure 6.31.  A quasireversible redox 

wave, associated with the oxidation of the ferrocene molecules, was recorded at E1/2 = 

0.40 V.  A second quasireversible wave was recorded at E1/2 = 0.86 V, which is 

assigned to the oxidation process of the Co2(CO)4dppm molecules.  However, in the 

returning cathodic sweep two new reduction peaks appeared at 0.63 and 0.10 V, and 

two corresponding oxidation waves were present in the subsequent anodic cycle at 

0.73 and 0.19 V respectively.  These new redox waves can be attributed to the closed-

ring cationic species.  The fact that these redox waves appeared before oxidation of 

the switching unit took place indicates that the cyclisation process was induced 

following oxidation of the Co2(CO)4dppm moieties, possibly through an electron 
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transfer mechanism.  The relative intensity of the new redox peaks, assigned to the 

closed-ring cations, indicates that a significant amount of the closed-ring isomer was 

formed.  Further evidence of this was the absence of a large irreversible oxidation 

peak at higher oxidation potentials, corresponding to oxidation of the open-ring 

switching unit.  

  

Overall, the cyclic voltammetry results showed that incorporating dppm ligands onto 

the cobalt carbonyl moieties had an interesting effect on the electrochemical 

properties of these switches.  Firstly, oxidation processes of the ferrocene molecules 

occurred at lower potentials in comparison to their related free ligand and Co2(CO)6 

compounds (∆E ≈ 180 mV).  Secondly, the oxidation peaks representing the cobalt 

carbonyl moieties were more reversible, and cathodically shifted (ca. 300 mV for the 

perhydro-derivatives and ca. 400 mV for the perfluoro analogues), when the 

phosphine ligands were present.  Thirdly, in the case of the perfluoro-switches 11F 

and 12F, the oxidation processes of the dithienylethene units occurred at less positive 

potential values in comparison to their corresponding free ligands, 7F and 8F 

respectively (∆E ≈ 200 mV in each case).  These results are a consequence of the 

electron-donating ability of the dppm ligands, thus stabilising the oxidation processes 

of the switches and hence allowing such processes to occur at lower potential values.   

In terms of the electrochromic properties of the switches, the Co2(CO)4dppm 

compounds on 11F were not found to induce cyclisation processes.  In the case of 12F 

and 12H, there was some evidence in the CV’s to suggest that oxidative cyclisation 

occurred for these complexes, however, this is not a conclusive result and further 

investigations would be necessary to confirm this.  However, for the shorter chain 

perhydro-derivative 11H, the presence of the Co2(CO)4dppm moieties were found to 

have a considerable effect on the electrochromic behaviour of this compound.  

Oxidative cyclisation was found to occur for 11H, following oxidation of the 

Co2(CO)4dppm moieties.  Therefore, it is possible that ring-closing was induced via an 

electron transfer mechanism.  Furthermore, the relative height of the closed-form 

cationic peaks indicated that a significant amount of the closed-ring isomer was 

produced.  This result is in high contrast to the results observed for the related free 

ligand (7H) and cobalt hexacarbonyl compounds (9H), whereby only small 

oxidation/reduction peaks associated with the closed-ring cations, were observed 

following oxidation processes of the switching unit. 
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6.3.7 Co2(CO)4dppm Complexes: UV-vis/NIR Spectroelectrochemistry 

 

According to the cyclic voltammetry studies of the Co2(CO)4dppm complexes, it 

appeared that 11H underwent oxidative cyclisation processes, induced by oxidation of 

the cobalt carbonyl moieties, whereas there was no evidence of such processes in the 

case of the perfluorinated derivative 11F.  Electrochemical ring-closing was not as 

apparent in the CV’s of 12H and 12F, due to the low intensity of the new redox waves 

observed following oxidation of the metal carbonyl groups and the switching units.   

In order to further investigate the oxidation processes of the dppm derivatives, UV-

vis/NIR spectroelectrochemistry experiments were performed on the Co2(CO)4dppm 

complexes, in 0.1 M TBAPF6/CH2Cl2 versus Ag/Ag
+
.  The structures of these 

complexes are presented in figure 6.32, and the results found in the absorbance spectra 

are summarised in table 6.9.   

 

Table 6.9: UV-vis/NIR spectroelectrochemistry data of the Co2(CO)4dppm complexes 11H/F and 

12H/F, following oxidation processes at varying potentials. 

Absorbance Spectra of the Co2(CO)4dppm Complexes 

 Oxidation 

Potential λabs (nm) 

11H Start 

0.4 V 

0.8 V 

0 V 

351, 498 

498, 720-1620 

441, 652,  

437, 634 

12H Start 

0.5 V 

276, 345, 495, 

276, 495, 750-1620 

11F Start 

0.5 V 

270, 355, 486 

270, 486, 750-1620  

12F Start 

0.5 V 

286, 334, 500 

279, 324, 500, 750-1620 

 

The data was recorded in 0.1 M TBAPF6/CH2Cl2 vs. Ag/Ag
+ 
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Figure 6.32: The structures of the open-ring Co2(CO)4dppm complexes 11H/F and 12H/F. 

 

Oxidation of 11F, at 0.5 V, resulted in an increase in the absorbance bands in the UV-

vis spectrum at 270 and 486 nm, and a very weak absorbance extending into the NIR 

region, from approximately 720 – 1620 nm.  These spectral changes are attributed to 

the oxidised ferrocene units.
5,6,20

  Following oxidation processes at higher potentials 

(greater than 1.0 V), an overall decrease in the absorbance was observed, and 

subsequent reduction processes did not regenerate the original spectrum recorded.  

Therefore, the results showed no evidence of an oxidative cyclisation reaction for 11F, 

which is in accordance with the CV, and suggest that some decomposition of the 

Co2(CO)4dppm moieties occurred following oxidation at potentials greater than 1.0 V. 

 

Similar results were observed for the Co2(CO)4dppm complexes 12H and 12F, 

whereby only spectral features associated with the oxidation of the ferrocene 

molecules were observed in the UV-vis/NIR spectrum, during the bulk electrolysis 

experiments, as shown for 12H in figure 6.33.  The CV’s of these complexes showed 

oxidation/reduction peaks, which could possibly be associated with the occurrence of 

an oxidative cyclisation process.  However, these redox waves were very small, 

suggesting that if they were in fact representative of the closed-ring cation species, 

they may not be stable enough to be observed in the absorbance spectra, within the 

timescale of the bulk electrolysis experiments.   
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Figure 6.33:  UV-vis/NIR spectrum of the Co2(CO)4dppm complex 12H (thick black line), in 0.1 M 

TBAPF6/CH2Cl2.  Following oxidation at 0.5 V (black lines), there was an increase in the absorbance 

bands at 276, 495 and 750-1620 nm, and at 1.2 V (red line) there was no evidence of new absorption 

peaks associated with the closed-ring form.  Inset, the spectrum of 12H zoomed-in between 400 and 

1620 nm for clarity.    

 

 

In contrast to the other dppm derivatives, oxidation of 11H was found to generate 

absorbance bands characteristic of the closed-ring cation species.  Oxidation at 0.4 V 

resulted in an increase in absorbance at 498 nm, and a very weak band extending from 

720 to 1620 nm, both of which can be assigned to oxidation of the ferrocene units.  At 

a potential of 0.6 V, the band at 498 nm continued to increase, with a band at 652 nm 

beginning to grow-in.  When the potential was increased to 0.8 V (i.e. corresponding 

the potential at which oxidation of the Co2(CO)4dppm moieties occurred in the CV), a 

significant increase was observed in the visible region of the spectrum, with λmax 

present at 441 and 652 nm, as shown in figure 6.34.  With reference to the literature,
10

 

it can be deduced that these bands are a consequence of the formation of the dication 

species of the closed-ring switching unit.  The fact that these absorbance features 

appeared at the potential value associated with the oxidation process of the cobalt 

carbonyl groups, indicates that the cyclisation process was induced by electron 
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transfer from the Co2(CO)4dppm moieties, to the dithienylethene unit, which is in 

accordance with the results obtained from the cyclic voltammogram of 11H.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.34:  UV-vis/NIR spectra of the Co2(CO)4dppm complex 11H, in 0.1 M TBAPF6/CH2Cl2, at 

the start (black line), and following oxidation at 0.4 V (red line), 0.6 V (green lines) and 0.8 V (blue 

lines).  

 

Subsequent reduction at 0 V resulted in a hypsochromic shift of these bands to 437 

and 634 nm (figure 6.35), which could possibly be an indication of the formation of 

the neutral species of the closed form.  These results show that the presence of the 

Co2(CO)4dppm groups have a stabilising effect on the cationic species of the closed-

ring isomer, in comparison to the corresponding free ligand 7H and Co2(CO)6 

complex 9H.  When the reduction potential was decreased to -0.3 V, a decrease in the 

absorbance bands in the visible region was observed.  However, during this process, a 

new absorbance band appeared, with a λmax = 1000 nm, which subsequently decreased 

over time, as shown in figure 6.35.  This spectral feature could tentatively be assigned 

to the reduction of the dication species of the switching unit to the monocation, or 

possibly to the ferrocenium ions.       
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Figure 6.35:  UV-vis/NIR spectra of the Co2(CO)4dppm complex 11H, in 0.1 M TBAPF6/CH2Cl2, 

showing: the spectrum recorded at the start (black line); the final spectrum recorded after oxidation at 

0.8 V (red line); the hypsochromic shift in the absorbance bands following reduction at 0 V (green 

line); and the decrease in the absorbance bands following reduction at -0.3 V (blue lines), with the 

appearance of the band at 1000 nm (*).  
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6.3.8 Co2(CO)4dppm Complexes: IR Spectroelectrochemistry 

 

IR spectroelectrochemistry experiments were carried out on the Co2(CO)4dppm 

complexes 11H/F and 12H/F (in 0.1 M TBAPF6/CH2Cl2 vs. Ag/Ag
+
), the structures 

of which are illustrated in figure 6.36.  The aim of these experiments was to examine 

the influence of the oxidised ferrocene molecules on the metal carbonyl groups, and to 

investigate the effects of the oxidation processes of the Co2(CO)4dppm moieties in 

more detail.   

 

 

Figure 6.36: The structures of the open-ring Co2(CO)4dppm complexes 11H/F and 12H/F. 

 

The Co2(CO)4dppm complexes, 11H/F and 12H/F, displayed three carbonyl bands in 

the IR spectra, in the range of 2020 to 1960 cm
-1

, as detailed in table 6.10.  In 

comparison to their related Co2(CO)6 complexes 9H/F and 10H/F, the  carbonyl 

stretches recorded for the Co2(CO)4dppm complexes were shifted to much lower 

wavenumbers.  For instance, the IR bands for the Co2(CO)6 complex 9H displayed 

bands at 2085, 2050 and 2021 cm
-1

, whereas IR bands for the corresponding dppm 

derivative 11H were recorded at 2018, 1993 and 1965 cm
-1

.  This phenomenon can be 

attributed to the electron-donating dppm ligand, which increases the electron density 

on the Co-Co core.  Moreover, there are less CO molecules available in the 

tetracarbonyl species for back-bonding, thereby shifting the carbonyl bands to lower 

frequencies.  The IR stretching vibrations for the perfluoro-derivative, 11F, are shifted 

to slightly higher wavenumbers, compared to the other complexes 11H, 12H and 12F.   
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Table 6.10: The IR spectral data of the Co2(CO)4dppm complexes 11H/F and 12H/F, in 0.1 M 

TBAPF6/ CH2Cl2, at the start before oxidation , and following oxidation processes at 0.3 V and 0.8 V. 

 

Compound Start 

ν(CO) cm
-1

 

Oxidation at 0.3 V 

ν(CO) cm
-1

 

Oxidation at 0.8 V 

ν(CO) cm
-1

 

11H 2018, 1993, 1965 2033, 2009, 1981 2064, 2046 

12H 2018, 1991, 1964 2031, 2006, 1978 2074, 2050 (sh), 2034 

11F 2021, 1995, 1968 2033, 2010, 1983 2077, 2053 

12F 2019, 1992, 1964 2031, 2007, 1979 2072, 2052 

 

Oxidation processes were carried out on these complexes, firstly at potential values 

coordinating with the oxidation processes of the ferrocene molecules in the CV’s (~ 

0.3 V), and secondly at higher potentials relating to the oxidation processes of the 

Co2(CO)4dpm moieties (~0.8 V).  In the case of 12H, oxidation at 0.3 V resulted in 

bleaching of the parent bands at 2018, 1991 and 1964 cm
-1

, in conjunction with the 

appearance of three new bands at 2031, 2006 and 1978 cm
-1

, as shown in figure 6.37.  

This result is associated with the oxidation processes of the ferrocene molecules at this 

potential.  As described previously for the Co2(CO)6 complexes, the electron-

withdrawing ferrocenium ions remove electron-density from the metal carbonyl 

groups, thus shifting their IR bands to higher energy. Similar results were found for 

the other Co2(CO)4dppm complexes and the results are summarised in table 6.10.   

In all cases, the new bands disappeared following subsequent reduction of the 

ferrocene molecules at 0 V, as the parent bands grew back to approximately 98 % of 

their original absorbance values.  This is an improvement when compared to their 

Co2(CO)6 complexes, where only 90% of the parent bands re-emerged following 

similar processes.      

 

Following oxidation at higher potentials, associated with the oxidation processes of 

the cobalt carbonyl groups, further new spectral changes were observed.  After 12H 

was oxidised at ~0.3 V, new bands at 2031, 2006 and 1978 cm
-1

 were generated.  

Increasing the potential to ~0.8 V, resulted in bleaching of these new bands and the 

appearance of two bands at even higher wavenumbers, 2074 and 2034 cm
-1

, with a 

shoulder band at 2050 cm
-1

, as shown in figure 6.37.  Such a result can be attributed to 

the oxidation of the Co2(CO)4dppm moieties.  Removing an electron from the cobalt 

carbonyl moieties reduced the electron density on the metal, and thus the carbonyl IR 
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bands were shifted to higher frequencies.  This effect was observed for all the dppm 

derivatives, and the new IR bands observed are recorded in table 6.10. 

In all cases, reduction processes at 0 V resulted in depletion of all the new bands, 

whilst the parent bands re-appeared, but only to approximately 80% of their original 

intensities.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.37: The IR difference spectra of the Co2(CO)4dppm complex 12H, in 0.1 M TBAPF6/CH2Cl2.  

Following oxidation at 0.3 V (A), the parent bands depleted and new bands grew in at 2031, 2006 and 

1978 cm
-1

.  When the oxidation potential was increased to 0.8 V (B), new bands appeared at  2074,  

2050 (sh) and 2034 cm
-1

 (red lines).   
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6.4 Conclusion 

 

The electrochromic properties of the ferrocenyl-based switches were investigated, and 

the results obtained from the cyclic voltammograms of the open and closed-ring 

isomers of the free ligands, 7H/F and 8H/F, demonstrate that it is possible to tune the 

electrochromic properties of dithienylethene switches by altering the substituents 

attached to the thienyl units, and by changing the atoms present on the central 

cyclopentene ring.  Oxidative cycloreversion processes were observed for 7F, whereas 

electrochemical ring-closing was found to occur for 7H, 8H and 8F.  Thus, the driving 

force for the ring-opening process can be assigned to the electron-withdrawing 

fluorine atoms and oxidised ferrocene molecules (i.e. the ferrocenium ions).  

Incorporating phenyl rings, between the ethynylferrocene moieties and the switching 

unit, was found to reduce the effects of the electron-withdrawing ferrocenium ions, 

and electron-donating hydrogen atoms on the cyclopentene unit provides extra 

stability on the closed-ring cations, thus favouring ring-closing processes. 

The results obtained from the CV studies for 7F and 8H were verified from the UV-

vis/NIR spectroelectrochemistry experiments, with efficient ring-opening processes 

observed for the former, and the appearance of absorbance bands in the UV-vis/NIR 

spectrum of the latter, associated with the closed-ring cation species.  However, in the 

case of 7Fc, cycloreversion processes occurred at 0.4 V, a potential at which the redox 

process of the ferrocene molecules began in the CV.  Therefore, these results seem to 

suggest that the ring-opening process of 7Fc was induced by the oxidation process of 

the ferrocene moieties.  The absorbance spectra recorded for the open-ring isomers of 

7H and 8F did not show any spectral changes associated with the formation of the 

closed-ring cations, during the oxidation processes.  The bulk electrolysis experiments 

carried out on their closed-ring forms, 7Hc and 8Fc, were found to induce 

cycloreversion processes in both cases, an event which can tentatively be attributed to 

the unstable nature of the closed-ring cation species within the timescale of the bulk 

electrolysis experiments (minutes vs. seconds in the CV).       

 

Incorporating cobalt carbonyl moieties onto the ethynylferrocene groups was found to 

have more pronounced influences on the electrochromic behaviour of the perhydro-
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derivatives, than their corresponding perfluoro analogues.  In the case of 7F, the 

presence of the Co2(CO)6 {9F} and Co2(CO)4dppm moieties {11F} were not found to 

induce cyclisation processes for the open-ring switching unit.  For the longer chain 

derivative 8F, their was no strong evidence for the formation of the closed-ring cation 

species in the CV’s of the related Co2(CO)6 {10F} and Co2(CO)4dppm {12F} 

complexes.  The unstable nature of the oxidised hexacarbonyl moieties resulted in 

severe fouling of the electrode surface, and the presence of the redox waves associated 

with the ferrocene molecules and Co2(CO)4dppm units obscured the view of the new 

redox waves observed in the CV following oxidation of the dithienylethene switch.  

Thus, it was difficult to analyse the CV results and conclusively determine if 

electrochemical ring-closing occurred for these complexes.  Furthermore, spectral 

features associated with the generation of the cation species of the closed-forms were 

not observed in the absorbance spectra of 10F and 12F, during the UV-vis/NIR 

spectroelectrochemistry experiments. 

In the case of the perhydro-switch 8H, introducing Co2(CO)6 moieties onto the switch 

{10H} did not prevent the oxidative cyclisation process of the switch, although the 

CV and UV-vis/NIR results suggested that the stability of the closed-ring cation 

species was reduced.  In the case of the Co2(CO)4dppm complex {12H}, it was 

difficult to elucidate if electrochemical ring-closure occurred from the CV results, and 

moreover,  cationic species of the closed-ring isomer were not observed in the UV-

vis/NIR spectra during the bulk electrolysis experiments of 12H.  Therefore, the 

results indicate that incorporating cobalt carbonyl groups onto 8H inhibited the 

electrochemical ring-closing processes of the switch.  Interestingly, introducing cobalt 

carbonyl moieties onto the shorter chain derivative 7H, was found to have quite a 

different effect on the electrochromic properties of the compound.  Oxidation 

processes of the Co2(CO)6 complex, 9H, resulted in new redox waves in the CV, 

which were tentatively assigned to the closed-ring cations.  Although, the closed-ring 

cation species of 9H were not stable enough to generate the corresponding absorbance 

bands in the UV-vis/NIR spectra during the bulk electrolysis experiments.  On the 

other hand, the related Co2(CO)4dppm derivative {11H}, was found to undergo 

efficient oxidative cyclisation processes, as evidenced by the intense redox waves 

observed in the CV, together with the strong absorbance bands recorded in the UV-

vis/NIR spectra, associated with the cation radicals of the closed-ring isomer.  

Furthermore, the results indicated that the ring-closing process was induced via an 
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intramolecular electron transfer mechanism, following oxidation of the 

Co2(CO)4dppm moieties.  A similar process has been reported previously by Brown et 

al,
15

 where an oxidative cyclisation process, of an asymmetric dithienylethene unit, 

was induced via electron transfer, from an oxidised methoxyphenyl substituent, to the 

switching unit. 

  

The electrochemical behaviour of the cobalt carbonyl moieties was also studied.  

Substituting dppm ligands onto the cobalt carbonyl groups was found to influence the 

oxidation processes of the metal carbonyl units in the CV’s.  The Co2(CO)6 groups 

underwent irreversible oxidation processes at potentials ranging from 1.26 to 1.43 V, 

whereas the Co2(CO)4dppm moieties were found to undergo quasireversible processes 

at less positive potentials than their corresponding cobalt hexacarbonyl compounds 

(i.e. E1/2 values ranging from 0.86 to 0.93 V).  Such an event can be assigned to the 

electron-donating ability of the chelating phosphine ligands, and similar results have 

been reported in the literature.
25-27,29,30

  The UV-vis/NIR spectroelectrochemistry 

experiments indicated that the metal carbonyl groups underwent some decomposition 

processes during oxidative processes, which was confirmed by the IR 

spectroelectrochemistry results.  However, some intriguing changes were observed in 

the IR spectra of the metal carbonyls during the bulk electrolysis experiments.  It was 

found that the redox processes of the ferrocene units shifted the carbonyl bands of the 

Co2(CO)6 and Co2(CO)4dppm complexes to higher wavenumbers.  This process was 

found to be almost fully reversible for the cobalt hexacarbonyl moieties, with ~ 90% 

of the parent bands recovered.  However, the presence of the dppm ligands increased 

the reversibility of the cobalt tetracarbonyl groups, with ~ 98 % recovery of the 

original bands in the IR.  Furthermore, when potential values associated with the 

oxidation processes of the Co2(CO)4dppm moieties were applied, the carbonyl 

stretches in the IR spectra were shifted again, to even higher frequencies, with 

subsequent reduction processes recovering ~ 80% of the parent bands. 

 

Overall, the results described here have demonstrated some excellent examples of how 

incorporating organometallic compounds, onto dithienylethene units, can allow the 

electrochromic properties of such switches to be tuned.   Ferrocene molecules can be 

employed to control the electrochemical switching of such compounds, at oxidation 

potentials significantly lower than the high potentials normally required to oxidise the 
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dithienylethene unit, as shown for 7F.  A similar advantage can also be utilised by 

incorporating Co2(CO)4dppm groups onto the system, as shown for 11H, whereby the 

presence of the cobalt tetracarbonyl moieties allowed efficient cyclisation processes to 

occur, at potentials less than 1.0 V.  Furthermore, it has been shown how UV-vis/NIR 

and IR spectroscopic methods can be utilised as non-destructive readout devices for 

such processes.  For example, the oxidative cycloreversion processes of 7F, induced 

by oxidation of the ferrocene units, can be monitored by the changes observed in the 

UV-vis/NIR spectra due to formation of the ferrocenium ions.  In the case of 11H, 

electrochemical cyclisation, induced by oxidation of the Co2(CO)4dppm moieties, can 

be detected by the changes incurred in the IR metal carbonyl bands.  Thus, the variety 

of results observed for all the ferrocenyl-based switches described here shows that 

there are a number of factors effecting the electrochemical behaviour of these 

compounds, and so there is much room for further development of such 

organometallic complexes, with the possibility of great potential towards applications 

in molecular devices. 
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Chapter seven presents a summary of the photochemical and 

electrochemical results obtained for the thienyl and ferrocenyl-based 

dithienylcyclopentene switches, and their corresponding Co2(CO)6 and 

Co2(CO)4dppm complexes.   An emphasis is placed on the effects of the 

atoms present on the cyclopentene ring (H vs. F) and the substituents 

attached to the switching unit.  The potential for these switches to be 

utilised in a number of applications, and the need for future work in this 

area, is also discussed, with an overall conclusion presented at the end. 
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7.1 Introduction 

 

The aim of this project was to investigate the photochemical and electrochemical 

properties of some dithienylethene switches in order to determine the effects of the 

substituents attached to the thienyl units and the atoms present on the cyclopentene 

ring (H vs. F).  Dithienyl-perhydro and –perfluoro cyclopentene switches, appended 

with 3-ethynylthiophene and phenyl-3-ethynylthiophene substituents, were 

synthesised, and their cyclisation/cycloreversion processes, fatigue resistance, thermal 

stability, luminescent and electrochemical properties were examined.  The 

corresponding ethynylferrocene analogues were also synthesised in order to study the 

effects of the organometallic substituents on the photo- and electrochemical properties 

of the switching units.  Furthermore, novel cobalt carbonyl complexes were 

synthesised by incorporating Co2(CO)6 and Co2(CO)4dppm moieties onto the thienyl 

and ferrocenyl-based switches.  Cobalt carbonyl complexes are photochemically and 

electrochemically active in their own right.  Therefore, the aim was to investigate the 

effect of the photo- and electrochemical reactions of the cobalt carbonyl moieties on 

the ring-opening/closing processes of the switching units.  The photochemical and 

electrochemical results were described in detail in chapters 3 and 5 respectively, for 

the thienyl-based switches, and in chapter 4 and 6 respectively for the ferrocenyl-

based switches.  In this chapter, a summary of the results observed is discussed, with 

an emphasis on the differences/similarities between the thienyl and ferrocenyl 

derivatives.  A number of applications, for which the switches presented in this thesis 

may have potential, and a list of experiments for further research in this area is also 

discussed, with an overall conclusion provided in the last section. 
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7.2 Summary of Results 

 

7.2.1 Photochemical Properties 

 

• Thienyl- and Ferrocenyl-based Free Ligand Switches 

 

1H/F: R1 = H/F; R2 = ethynylthiophene

7H/F: R1 = H/F; R2 = ethynylferrocene
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R2 R2

R1
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2H/F: R1 = H/F; R2 = ethynylthiophene

8H/F: R1 = H/F; R2 = ethynylferrocene

Short Chain Derivatives

Long Chain Derivatives

 

Scheme 7.1: Illustrates the cyclisation/cycloreversion processes between the open and the closed forms 

of the thienyl and ferrocenyl-based free ligand switches: Short chain derivatives {1H/F and 7H/F} and 

the long chain derivatives {2H/F and 8H/F} i.e. with phenyl-rings present between the switching unit 

and alkynyl moieties. 

 

The following photochemical properties of the dithienylcyclopentene switches 

illustrated in scheme 7.1 have been investigated: Cyclisation/cycloreversion 

processes; fatigue resistance; thermal stability; and luminescence.  The results 

obtained are summarised in table 7.1.  The thienyl and ferrocenyl-based free ligand 

switches were all found to undergo cyclisation processes to the closed-ring isomers 
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following irradiation (λ = 313 nm), as shown in scheme 7.1.  In general, the λmax of the 

absorption band in the visible region of the UV-vis spectrum, associated with the 

closed form, were found to be bathochromically shifted (table 7.1) when: 1) the 

hydrogen atoms on the central cyclopentene ring were substituted with fluorine atoms; 

2) the π-conjugation of the compounds was extended through the introduction of 

phenyl-rings between the dithienylethene switches and alkynyl units; 3) substituting 

ethynylferrocene molecules in-place of the ethynylthiophene units.  An exception to 

this rule was found for the fluorinated ferrocene derivatives, with the λmax of the 

shorter chain closed-ring compound 7F (λmax = 641 nm) red-shifted in comparison to 

the longer chain analogue 8F (λmax = 621 nm).  The pronounced changes in the 

electronic properties of these switches, indicates good electronic communication 

between the central switching unit and the substituents attached to the thiophene rings 

on the dithienylethene unit,
1
 and can be attributed to the electron-donating ability of 

the ferrocene moieties.  These results are in-keeping with literature reports as 

bathochromic shifts in the λmax of closed-ring isomers, due to the presence of fluorine 

atoms on the cyclopentene unit, and electron-donating substituents, have been 

reported previously by Feringa et al.
1-3

   

 

The irradiation times required to reach the PSS of the closed-ring isomers of the 

thienyl-based switches appeared to decrease for the fluorinated compounds and the 

longer chain derivatives, with 2F reaching the PSS in the shortest time (15 seconds).  

Such a straight forward trend was not as obvious for the ferrocene analogues (table 

7.1), although, the longer-chain fluorinated derivative of the ferrocene switches, 8F, 

was also found to undergo cyclisation in the shortest time (8 minutes).  However, the 

efficiency of the ring-closing process was dramatically reduced for the ferrocene 

switches compared to the thienyl derivatives, with the PSS reached after minutes 

rather than seconds.  Long irradiation times (hours) have been reported in the 

literature for similar switches appended with iron substituents,
4-6

 and can be attributed 

to quenching of the excited state by the ferrocene units due to energy/electron transfer 

processes.
7-9
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Table 7.1: Summary of the photochemistry results obtained for the free ligand thienyl {1H/F and 

2H/F} and ferrocenyl-based {7H/F and 8H/F} switches. 

 

Cmpd UV-vis 

Closed-

ring
[a]
 

Cycli-

sation
[a]
 

Cyclorev-

ersion
[a]
 

Fatigue 

Resistance
[a]
 

1
H NMR

[b]
 Thermal 

Stability
[c]
 

 λmax 

(nm) 

Time to 

reach PSS 

Time 

taken 

% degradation 

(5 cycles) 

By-product 

formation 

t1/2 @ 60°C 

1H 543 50 sec 7 min 10% 1Hx 1155 hr 

1F 609 30 sec 1.5 min 4% - 147 hr 

2H 562 20 sec 6 min 1.5% - 49.5 hr 

2F 614 15 sec 3 min < 1% - N/D 

7H 548 35 min 4.5 hrs 30%* 7Hx 12 hr 

7F 641 30 min 7 min 50%* 7Fx 128 hr 

8H 561 40 min 7 min 50% - 7 hr 

8F 621 8 min 3 min < 1% - 115 hr 

 
[a]

 data recorded in THF. 
[b]

 data recorded in deuterated acetone. 
[c]

 data recorded in toluene.  

* percentage degradation after one colouring/bleaching cycle. 

-  indicates no by-product formed.  

N/D: no degradation 

 

Cycloreversion processes of all the free ligand compounds were found to occur within 

1.5 – 7 minutes of visible light irradiation, with the exception of 7H, which was not 

found to fully return to the open-ring isomer, even after 4.5 hours of irradiation.  This 

phenomenon can be attributed to the formation of a photostable by-product, denoted 

as 7Hx, during UV irradiation processes, which was confirmed from the 
1
H NMR 

studies of the cyclisation process.  A similar photoproduct has been reported in a 

number of literature reports,
10-12

 and is believed to generate from prolonged UV 

irradiation of the closed-ring isomer, as shown in scheme 7.2.  The 
1
H NMR spectra of 

1H and 7F also showed evidence of the generation of a by-product during UV 

irradiation, denoted as 1Hx and 7Fx.  No such by-products were observed in the 
1
H 

NMR spectra of the other switches, thus indicating that extending the length of the 

carbon chain can inhibit such a process.  Further examination of the 
1
H NMR spectra 

revealed that the formation of the by-product occurs more rapidly for 7H, followed by 

7F and then 1H.  Therefore, it is apparent that the presence of the ethynylferrocene 

molecules promoted the formation of such a photoproduct.  
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Scheme 7.2: Illustrates the formation of the photochemical by-products 1Hx, 7Hx and 7Fx, following 

prolonged UV irradiation of the related closed-ring isomers. 

 

The fatigue resistance experiments showed that the extended π-conjugated perfluoro-

derivatives 2F and 8F were the most stable following five consecutive 

colouring/bleaching cycles, with < 1% degradation found in both cases.  Increased 

fatigue resistance for perfluorocyclopentene switches, compared to their related H6 

derivatives, has also been reported in the literature.
1,11

  However, in general, it was 

found that the ferrocenyl derivatives had low fatigue resistance compared to their 

related thiophene switches, with the order of stability found to be: 2F = 8F > 2H > 1F 

> 1H > 8H > 7F > 7H.  It should be noted that the % degradation was calculated from 

the decrease at the λmax in the visible region following each cycle, therefore, although 

the values listed in table 7.1 indicates that 7F degraded more so than 7H, the 

degradation observed for 7H, following the first cycloreversion process, was taken 

into account, as discussed in chapter 4. 

 

The thermal stability of the closed-ring isomers were monitored at room temperature 

and at elevated temperatures (60, 80 and 100°C).  All of the free ligand switches were 

found to be stable in the dark at room temperature, over a period of 10 weeks.  

However, at elevated temperatures, the absorbance bands in the visible region of the 

UV-vis spectra, associated with the closed-ring isomers, were found to decrease.  The 

half-life (t1/2) values were calculated and the following trend was observed, in order of 

decreasing stability: 2F > 1H > 1F > 7F > 8F > 2H > 7H > 8H.  In general, this trend 
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shows that the fluorinated switches were found to be more thermally stable than the 

perhydro-derivatives, and introducing ferrocene molecules, in place of the thiophene 

rings, reduced the thermal stability of these compounds.  According to the results 

described in the literature, the presence of fluorine atoms on the cyclopentene ring has 

been found to increase the thermal stability of such switches.
1,13

  However, it has also 

been observed that the substituents present on the thiophene units of the 

dithienylcyclopentene switch can have a significant influence on the stability of the 

closed-ring isomers, at elevated temperatures.
14-16

  Thus, the results presented here are 

in-keeping with the literature reports.  However, a mixture of cycloreversion and 

degradation processes were observed during the thermal stability experiments, for the 

thienyl and ferrocenyl switches described here, whereas only thermal ring-opening has 

been reported in the literature.
1,13-15,17,18

 

 

The luminescent studies of the thienyl-based switches revealed that the shorter chain 

compounds {1H and 1F} were non-emissive, whereas the extended chain derivatives 

{2H and 2F} were found to fluoresce in their open-form.  Cyclisation to the closed-

ring form was found to quench the emission of 2H by 51%, a phenomenon which has 

been well documented in the literature.
19-24

  Conversely, the emission intensity of 2F 

was found to marginally increase following cyclisation.  A few examples of similar 

fluorescent behaviour have been reported in the literature.
25-27

  The ferrocenyl-based 

switches were not found to be fluorescent, in the open- or closed-ring forms.  This can 

be assigned to the quenching effects of the ferrocene molecules which can occur via 

energy/electron transfer processes.
7-9
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• Cobalt Carbonyl Complexes 

 

 

 

Figure 7.1:  Illustrates the Co2(CO)6 and Co2(CO)4dppm complexes of the short and long chain thienyl 

and ferrocenyl-based switches. 

 

Incorporating metal carbonyl complexes had considerable effects on the 

photocyclisation processes of the thiophene and ferrocene dithienylethene switches.  

Cyclisation processes were completely inhibited for the short chain ferrocenyl-based 

Co2(CO)6 complexes {9H and 9F}, at λirr = 313 nm, however, some formation of the 

closed-ring isomers was observed for the thienyl-based analogues {3H and 3F}.  In 

the cases of both the thienyl and ferrocenyl switches, incorporating phenyl-rings 

between the dithienylethene switches and the alkynyl Co2(CO)6 units {4H/F and 

10H/F} allowed for cyclisation processes to occur,  at λirr = 313 nm.  The irradiation 

times required to reach the photostationary states of the cobalt carbonyl moieties were 

significantly increased in comparison to the free ligands, as highlighted in table 7.2.  

Moreover, the amount of the closed-ring isomer formed appeared to have decreased, 

as evidenced by the relative intensities of the absorption bands in the visible region of 

the UV-vis spectra of the Co2(CO)6 complexes, compared to their related free ligands.   
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Table 7.2: The λmax observed in the visible region of the UV-vis spectra, and the time-taken to reach 

the PSS, following UV irradiation (at 313 and 365 nm), in THF, of the free ligand switches {1H/F, 

2H/F, 7H/F, 8H/F}, and their corresponding Co2(CO)6 {3H/F, 4H/F, 9H/F, 10H/F} and 

Co2(CO)4dppm complexes {5H/F, 6H, 11H/F, 12H/F}. 

 

Free Switches Co2(CO)6 Complexes Co2(CO)4dppm Complexes 

 λirr=313nm  λirr=313nm λirr=365nm  λirr=313nm λirr=365nm 

 λmax 
(nm) 

Time 
 

 λmax 
(nm) 

Time 

 

λmax 
(nm) 

Time 

 

 λmax 
(nm) 

Time 

 

λmax 
(nm) 

Time 

 

1H 543 50s 3H 559 8m - - 5H - - - - 

1F 609 20s 3F 

3bF 

603 

661 

4m - - 5F - - - - 

2H 562 30s 4H 

4bH 

561 

584 

8m 561 9m 6H 563 25m 563 35m 

2F 614 15s 4F 619 2m 619 2.5m      

7H 548 35m 9H - - - - 11H - - - - 

7F 641 30m 9F - - - - 11F - - - - 

8H 561 40m 10H 555 45m 555 55m 12H 552 100m 552 130m 

8F 621 8m 10F 

10bF 

621 

631 

16m 626 28m 12F 609 20m 626 45m 

 

1) (-) indicates no cyclisation occurred. 

2) Time in seconds (s) or minutes (m). 

3) λmax of 3bF, 4bH and 10bF are presented in italics to indicate that these closed-ring isomers were 

synthesised, therefore the λmax values presented were not due to irradiation at 313 nm. 

 

Cycloreversion processes occurred for these compounds, following irradiation with 

visible light, however, the absorbance bands in the UV region were not found to 

reform completely.  Thus, it was determined that during the photocyclisation 

processes, some decomposition of the cobalt carbonyl moieties occurred.  IR studies 

confirmed this, as irradiation of the Co2(CO)6 complexes, in THF, resulted in a 

decrease in the carbonyl IR stretches.  Steady-state photolysis experiments were 

carried out, in the presence of PPh3, which resulted in the appearance of new IR bands 

at lower wavenumbers.  Such a result is indicative of CO loss processes, followed by 

substitution reactions with PPh3, forming a number of new photoproducts.  Therefore, 

it is feasible that during the cyclisation processes of the Co2(CO)6 complexes, the 

dissociation of CO molecules occurs, followed by cleavage of the metal carbonyl 

moieties from the switching unit.  Thus, it is possible that the solution of the cobalt 

carbonyl complexes at the PSS, contains the closed-ring isomer of both the free ligand 
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and of the Co2(CO)6 complex.  In an attempt to further elucidate this result, the 

closed-ring Co2(CO)6 complexes 3bF, 4bH and 10bF were synthesised.  A 

comparison of the λmax recorded for these closed-ring complexes, to the λmax of the 

absorbance bands in the visible region for the free ligands, and the open-ring 

Co2(CO)6 complexes  following UV irradiation (as presented in table 7.2), seems to 

support this hypothesis.  Furthermore, subsequent cycloreversion processes of these 

cobalt carbonyl complexes were found to be more reversible for the perfluorinated 

switches 3F, 4F and 10F, particularly in the case of the longer chain derivatives 4F 

and 10F, as the absorbance bands in the UV region of the UV-vis spectra appeared to 

increase back towards the initial values recorded, at the start of the experiments, to a 

greater extent then their corresponding perhydro analogues.  Other metal carbonyl 

switching complexes have been reported in the literature.
5,6,26,28,29

  In general it was 

found that the efficiency of the photocyclisation/cycloreversion processes could be 

tuned by incorporating different metal centres and phosphine ligands onto the metal 

complexes, and only one group reported evidence of decomposition of the metal 

carbonyl complex during the photocyclisation processes.
28

 

 

In an attempt to stabilise the Co2(CO)6 complexes, dppm ligands were introduced onto 

the metal centres, producing the corresponding Co2(CO)4dppm complexes.  However, 

in the case of the shorter chain dppm derivatives {5H/F and 11H/F}, cyclisation 

processes were completely inhibited, at λirr = 313 nm.  Conversely, ring-closing 

processes were observed for the extended chain analogues {6H and 12H/F} at λirr = 

313 nm, however, even longer irradiation times were required to reach the PSS, and 

the results suggested that there was a further decrease in the amount of the closed-ring 

isomers produced, compared to their Co2(CO)6 complexes and free ligand 

counterparts.  Although steady-state photolysis IR studies showed that the dissociation 

of CO appeared to occur at a slower rate for the Co2(CO)4dppm complexes, in 

comparison to their Co2(CO)6 analogues, the reversibility of the cyclisation process, 

following ring-opening with visible light, was found to be reduced for the dppm 

derivatives, compared to the hexacarbonyl complexes, as evidenced by a larger 

decrease in the UV region of the absorbance spectra.    

 

Furthermore, the solutions of the cobalt carbonyl moieties were irradiated at a lower 

energy wavelength (λ = 365 nm), in an attempt to improve the reversibility of the 
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photochemical processes of these metal complexes.  The IR experiments showed that 

CO-loss processes were less efficient at 365 nm, compared to the experiments carried 

out at 313 nm.  The UV-vis studies showed that no cyclisation processes occurred for 

the shorter chain derivatives at this wavelength.  In the case of the longer chain 

analogues (with the exception of 10F and 12F) similar results were obtained as 

observed following irradiation at 313 nm, however, longer irradiation times were 

required to reach the photostationary state, and in the case of the Co2(CO)4dppm 

analogues it appeared that the absorbance bands in the UV region did not decrease as 

much when irradiated at 365 nm.  In the case of the Co2(CO)6 and Co2(CO)4dppm 

complexes, of the phenyl-ethynylferrocene fluorinated switch,  10F and 12F, it 

appeared that conversion from the open to the closed form increased following 

irradiation at 365 nm, compared to 313 nm, as evidenced by the increase in the 

intensity of the absorbance band in the visible region of the UV-vis spectrum, 

associated with the closed-ring isomer.         

 

The cobalt carbonyl complexes of the thienyl and ferrocenyl switches were all found 

to be non-fluorescent.  However, following cyclisation of the Co2(CO)6 complex 4H, 

the emission intensity was found to increase, with a further increase observed 

following irradiation with visible light.  This result indicates that some cleavage of the 

Co2(CO)6 moieties occurred during UV irradiation, and the emission observed was in 

fact due to fluorescence of the free ligand switch 2H.  Irradiation of the corresponding 

Co2(CO)4dppm complex 6H did not induce emission, thus suggesting that cleavage of 

the tetracarbonyl moieties did not occur during such UV irradiation processes, which 

can be attributed to the stabilising effect of the dppm group.  Furthermore, irradiation 

of the related Co2(CO)6 perflouro analogue 4F, did not induce fluorescence, thus 

confirming that irradiation at 313 nm did not result in cleavage of the Co2(CO)6 

moieties from the switching unit.  This supports the theory that the fluorinated cobalt 

carbonyl switches are more stable towards irradiation at 313 nm, than their related 

perhydro derivatives.   

 

The cycloreversion processes of the synthesised closed-ring Co2(CO)6 complexes 

3bF, 4bH and 10bF were investigated in order to determine the effects of the cobalt 

carbonyl moieties on the ring-opening cycle.  Indeed, cycloreversion from the closed 

to the open form was observed for 3bF, 4bH and 10bF, following irradiation with 
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visible light (λ > 650 nm) after 70 min, 240 min and 15 min respectively.  It is clear 

that the efficiencies of the ring-opening processes varied greatly, and were much 

slower in comparison to their related free ligands 1F, 2H and 8F respectively.  The 

results suggest that the presence of the fluorine atoms on the cyclopentene-ring, and 

the ethynylferrocene substituents, increase the efficiency of this process, however 

further studies of the other Co2(CO)6 complexes would be required to conclusively 

determine the substituent effects on the cycloreversion process.  Interestingly, the 

results indicated that the Co2(CO)6 moieties were also photochemically active at this 

low energy wavelength, due to the changes observed in the UV region of the UV-vis 

spectra.  3bF was found to be the most stable during these irradiation processes, 

whereas 10bF appeared to be the least stable, with evidence of some of the open-ring 

free ligand switch present at the end of the experiment, suggesting cleavage of the 

Co2(CO)6 moieties occurred at λirr > 650 nm.  The stability of 4bH was found to be 

somewhere in the middle of 3bF and 10bF.  Steady-state photolysis of 4bH, in the 

presence of PPh3, resulted in CO loss reactions at λirr > 650 nm, with the appearance 

of new IR bands at lower wavenumbers, associated with PPh3 substituted 

photoproducts.  Therefore, it is clear that the closed-ring Co2(CO)6 complexes can 

undergo cycloreversion in-conjunction with CO dissociation processes, and the 

efficiency of these photochemical processes can be tuned by altering the substituents 

present on the dithienylethene switch.  Furthermore, fluorescent studies showed that 

the emission intensity of 4bH increased during cycloreversion processes, thereby 

providing a second method for observing the photochemical reactions of the switch 

and the cobalt carbonyl moieties. 
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7.2.2 Electrochemical Properties 

 

The electrochromic properties of the thienyl and ferrocenyl-based free ligand 

switches, and cobalt carbonyl complexes, were investigated to determine the factors 

influencing the direction of the electrochemically-induced switching process (i.e. 

cyclisation/cycloreversion).  Furthermore, the electrochemical behaviour of the 

Co2(CO)6 and Co2(CO)4dppm moieties in the CV’s were examined, and the effect of 

the oxidation processes on these cobalt carbonyl complexes was studied using IR 

spectroelectrochemistry techniques.  

 

• Electrochromic Properties 

 

Electrochemically induced cyclisation and cycloreversion processes of the thienyl and 

ferrocenyl-based dithienylethene switches were investigated by cyclic voltammetry 

and UV-vis spectroelectrochemistry techniques, and the results are summarised in 

table 7.3.  According to literature reports, the presence of electron-withdrawing 

fluorine atoms on the central cyclopentene unit stabilise the oxidised open-ring form, 

thus oxidative cycloreversion processes are likely to occur for dithienyl-perfluoro-

cyclopentene switches.
2,3,30

  In-keeping with the results observed in the literature, 

oxidative ring-opening was observed for the closed-ring short chain perfluorinated 

switches, 1F and 7F, described here.  In the case of 7F, there was some evidence to 

suggest that the cycloreversion process was induced following oxidation of the 

ferrocene molecules.  Incorporating Co2(CO)6 and Co2(CO)4dppm moieties onto the 

open-ring isomers of these switches did not alter their electrochemical properties, as 

oxidative cyclisation process were not observed for the cobalt carbonyl derivatives.  

Although, the presence of Co2(CO)6 complexes on the closed form of 1F (i.e. 3bF) 

appeared to increase the reversibility of the oxidation process of the switch, and thus 

slow down the ring-opening reaction. 

Extending the π-conjugation of the perfluorinated switches had significant effects on 

the electrochemical properties of 2F and 8F, as oxidative cyclisation processes were 

observed for both compounds.  However, the cationic species of the closed forms 

were quite unstable in both cases, as observed from the UV-vis 

spectroelectrochemistry experiments.  Incorporating cobalt carbonyl complexes onto 
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these switches was found to inhibit the cyclisation processes.  In the case of the 

thienyl-based Co2(CO)6 complex, 4F, there was no evidence of electrochemical ring-

closing in the CV.  New redox waves were observed in the cyclic voltammograms 

obtained for the ethynylferrocene Co2(CO)6 {10F} and Co2(CO)4dppm {12F} 

complexes, following oxidation of the switching unit, which may possibly be due to 

the formation of the closed-ring cations.  However, the intensities of these new 

oxidation/reduction peaks were too weak to determine if they were a consequence of 

ring-closing or not.  Furthermore, the formation of the closed-ring cations of these 

complexes were not observed in the absorption spectra during bulk electrolysis 

experiments. 

 

Table 7.3:  Indicates whether oxidative cyclisation (close) or oxidative cycloreversion (open) processes 

were observed for the open and closed-ring isomers of the thienyl and ferrocenyl free ligand switches
[a]

.  

Also, if oxidative cyclisation (close) was observed for the open-ring isomers 
[b]

 of the corresponding 

Co2(CO)6 and Co2(CO)4dppm complexes. 

 

Oxidative Ring-Opening/Closing Processes 

 
Free Ligands

[a]
 

Co2(CO)6  

Complexes
[b]

 

Co2(CO)4dppm 

Complexes
[b]

 

1H Close 3H Close* 5H Close* 

2H Close 4H Close 6H Close 

7H Close 9H Close (?)
[c]

 11H Close* 

Perhydro- 

Derivatives 

8H Close 10H Close  12H Close (?)
[c]

 

1F Open 3F - 5F - 

2F Close 4F -   

7F Open* 9F - 11F - 

Perfluoro- 

Derivatives 

8F Close 10F Close (?)
[c]

 12F Close (?)
[c]

 

 

-  indicates that oxidative cyclisation did not occur for these open-ring isomers. 

* indicates that electrochromic processes induced via an electron transfer mechanism, and not from 

oxidation of the switching unit. 

(?)
[c]

 The results showed some signs of oxidative cyclisation although the results were not conclusive, 

and further experiments are needed to confirm this. 

 

The presence of electron-donating hydrogen atoms on the cyclopentene ring have 

been found to stabilise the closed-ring cations, and thus promote electrochemical 

cyclisation processes.
2,3,30

  In the case of the perhydro-derivatives described here, 

oxidative cyclisation processes were observed for the long chain free ligand switches, 

2H and 8H.  Their corresponding Co2(CO)6 complexes, 4H and 10H, were also found 
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to undergo oxidative ring-closure, although the stability of the closed-ring cations 

produced for the ferrocene hexacarbonyl complex {10H} was found to be less stable 

compared to its free ligand derivative 8H.  Furthermore, the results obtained for the 

related Co2(CO)4dppm complexes, 6H and 12H, showed some evidence of oxidative 

cyclisation.  However, this is not a conclusive result for 12H as the CV results were 

difficult to interpret due to the presence of the redox waves associated with the 

ferrocene and Co2(CO)4dppm moieties, which obscured the view of the new 

oxidation/reduction peaks, tentatively assigned to the cationic species of the closed-

ring isomer.  On the other hand, the results for 6H were easier to interpret, as the CV 

was not dominated by a ferrocene redox wave, and the changes observed in the UV-

vis/NIR spectra during bulk electrolysis experiments, confirmed the occurrence of an 

electrochemical ring-closing process for 6H.  However, the stabilities of the ring-

closed cations were reduced in comparison to the corresponding Co2(CO)6 complex 

{4H} and free ligand {2H}.   

Oxidation processes of the short chain perhydro switches, 1H and 7H, resulted in 

cyclisation to the closed-ring forms.  However, the cationic species of the closed-ring 

isomers were found to be more stable for 1H, in comparison to its ferrocene-derivative 

7H, as evidenced by the UV-vis spectroelectrochemistry results.  This is most likely 

due to the effect of the electron-withdrawing ferrocenium ions on 7H.  In the case of 

the related Co2(CO)6 complexes, 3H and 9H, there was evidence of oxidative ring-

closure in the CV’s of both, but in the absorbance spectra of 3H only.  Furthermore, 

there was some evidence in the CV of 3H to suggest that the ring-closing process was 

possibly induced following oxidation of the Co2(CO)6 moieties.  Oxidative cyclisation 

was also observed for the Co2(CO)4dppm complexes of both the thiophene {5H} and 

ferrocene {11H} switches.  The presence of the dppm ligands, on the cobalt centres, 

appeared to stabilise the closed-ring cations in both cases, compared to their Co2(CO)6 

complexes.  Furthermore, there was strong evidence that the cyclisation process was 

induced following oxidation of the Co2(CO)4dppm moieties, particularly in the case of 

the ferrocene derivative 11H.  It is probable that an intramolecular electron transfer 

process took place, from the oxidised cobalt carbonyl groups, to the switching unit, as 

such a process was observed previously by Browne at al,
3
 involving a methoxyphenyl 

group.  
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• Electrochemical Behaviour of the Cobalt Carbonyl Moieties 

 

The reduction processes of the Co2(CO)6 complexes resulted in irreversible reduction 

processes of the cobalt carbonyl moieties, followed by some decomposition of the 

radical anions in all cases.  Similar results have been reported in the literature.
31-35

  

The potential values at which the reduction processes occurred were influenced by 

substituents attached to the alkynyl units and the atoms present on the cyclopentene 

ring.  Overall, it was found that the short chain perfluorinated switches were reduced 

at the least negative potential values, and the short chain perhydro derivatives 

underwent reduction at the most negative potentials.  Reduction of the longer chain 

analogues occurred at potential values in between those of the short chain perfluoro 

and perhydro switches, as the presence phenyl-ring spacer units reduced the effect of 

the cyclopentene ring atoms (H vs. F), on the Co2(CO)6 moieties.  In all cases a single 

reduction peak was observed, indicating that little electronic communication existed 

between the two metal centres on either side of the switch.  Substituting the thiophene 

rings with ferrocene molecules was not found to affect the reductive behaviour of the 

metal carbonyl complexes, with the exception of 10H.  Reduction of 10H resulted in 

two reduction peaks.  This could possibly be an indication of electronic 

communication existing between the two Co2(CO)6 moieties, separated by the 

dithienylethene bridging unit.
34,36

  This result can be attributed to the influence of the 

ferrocene groups, as only a single irreversible reduction peak was observed for the 

corresponding thiophene derivative, 4H.    

The extended π-conjugation in the closed-ring isomer was found to increase the 

electronic communication between the Co2(CO)6 moieties
34,36

 for the short chain 

switch 3bF, with two separate reduction peaks observed, in contrast to the single 

reduction peak recorded for the open-ring isomer 3F.  Similar results have been 

recorded in the literature for closed-ring dithienylethene switches appended with metal 

carbonyl and phosphine ligand complexes.
5,6,28

  However, extending the π-conjugation 

of the longer chain Co2(CO)6 perhydro switch, 4H, was not found to increase the 

electronic interaction between the two metal centres, as only one irreversible reduction 

peak was observed in the CV of the closed-form 4bH.   

Incorporating chelating phosphine ligands onto the cobalt carbonyl moieties, 

producing the corresponding Co2(CO)4dppm complexes, was found to shift the 

reduction processes to more negative potentials and the oxidation processes to less 
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positive potentials, compared to the hexacarbonyl moieties, due to the electron-

donating effect of the dppm ligands.  Furthermore, the extra electron-density on the 

Co-Co core stabilises the metal carbonyl and facilitates reversible oxidation processes.  

Thus, irreversible oxidation processes were observed for the Co2(CO)6 moieties, 

whereas quasi-reversible waves, at less positive potentials, were observed for the 

dppm derivatives.  These results are in agreement with the results reported in the 

literature for other cobalt carbonyl complexes substituted with phosphine ligands.
32-

34,37,38
  Furthermore, in the case of the short chain thiophene derivatives, 5H and 5F, 

two monoelectronic redox waves were observed in the CV, indicating that the 

Co2(CO)4dppm moieties on either side of the switch were interacting 

electronically.
32,34,37

  On the other hand, only single redox waves were observed for 

the longer chain analogue 6H, and for all the ferrocene tetracarbonyl complexes.      

    

IR spectroelectrochemistry experiments showed that the oxidation processes of the 

cobalt carbonyl switching complexes had significant effects on the carbonyl stretches 

in the IR spectra.  Oxidation of the ferrocene units was found to shift the carbonyl IR 

bands to higher wavenumbers.  This was attributed to the effect of the electron-

withdrawing ferrocenium ions, removing electron density from the cobalt carbonyl 

centres.  When potentials were applied, corresponding to the oxidation process of the 

Co2(CO)6 moieties, for both the thienyl and ferrocenyl-based complexes, the carbonyl 

bands were found to decrease, with no new bands appearing in the IR.  Conversely, 

oxidation of the Co2(CO)4dppm moieties resulted in a shift in the carbonyl IR bands to 

higher wavenumbers, for both the thienyl and ferrocenyl-based derivatives.  

Furthermore, the reversible oxidation processes of the closed-ring Co2(CO)6 switch 

4bH, was also found to induce changes in the carbonyl IR peaks.  Oxidation to the 

monocation and dication species of the closed-ring switch, at potentials less than 1.0 

V, was found to shift the carbonyl IR bands to higher wavenumbers.  Therefore, the 

results described here demonstrate how the oxidation processes of the cobalt carbonyl 

switches can be monitored by changes in the carbonyl vibrational stretches in the IR 

spectra.  However, some decomposition of the cobalt carbonyl moieties was observed 

during these oxidation processes.  Although, the IR results showed that the oxidation 

processes of the Co2(CO)4dppm moieties were more reversible than the Co2(CO)6 

units.  Thus, the presence of the dppm ligands helps to stabilise the cobalt carbonyl 

groups, which is consistent with the results observed in the CV. 
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7.3 Applications 

 

The photochemical and electrochemical behaviour of the thienyl and ferrocenyl based-

switches described here, and their cobalt carbonyl derivatives, have shown promising 

features which may be utilised towards the development of a number of applications:   

 

1) Write-Read-Erase Memory Devices 

 

A number of the free ligand dithienylethene switches, described in this report, have 

demonstrated photochemical and electrochemical properties suitable for the 

development of write-read-erase memory devices.
10,39,40

  Cyclisation processes can be 

induced either photochemically or electrochemically (write), followed by 

cycloreversion back to the open form by photo- or electro-chemical means (erase).  

The information may be read-out in a non-destructive manner, by monitoring the first 

reversible oxidation process of the closed-form, at a potential where the open-form is 

electrochemically inert.
41

  Fluorescence discrimination between the open and closed 

forms is a common non-destructive read-out method described for such 

switches.
20,21,42

  However, the majority of the switches reported here were found to be 

non-emissive, with the exception of 2H and 2F, in which case the excitation 

wavelengths used to induce fluorescence was found to influence the ratio of the two 

isomers i.e. resulted in ring-closing in each case.  Furthermore, the emission intensity 

of 2F was not found to change much between the open and closed forms.  Therefore, 

the fluorescent properties of 2H and 2F were not found to be useful in terms of a non-

destructive read-out method.  The advantage of amalgamating cobalt carbonyl 

moieties and dithienylethene switches into the same system is the potential to use the 

pronounced infra-red spectral changes of the carbonyl stretches, incurred during 

oxidation processes, as a non-destructive readout signal in the development of such 

read-write-erase systems.  Although, fatigue resistance and thermal stability are very 

important properties for the development of memory devices, therefore, in order to 

utilise the cobalt carbonyl complexes for such applications, further research would be 

required to improve their stability.    
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2) Molecular Wires 

 

Organometallic complexes, separated by a dithienylethene switch as a bridging unit, 

can be used as molecular wires due to the ability of the two metal centres to 

communicate electronically through the bridging group.
6,28,43

  Switching between the 

open and closed-ring forms, can switch the molecular wires between the “ON” 

(closed-form) and “OFF” (open-form) states.  The electrochemical properties of the 

cobalt carbonyl complexes presented here have shown some potential towards the 

development of such molecular wires, eg. the open and closed forms of 3F.  However, 

there are some limitations to the use of such organometallic switches as molecular 

wires, due to some decomposition of the cobalt carbonyl moieties following photo- 

and electro-chemical processes.  However, the results have shown that the stability of 

the cobalt carbonyl complexes, towards photo and electro-chemical processes, can be 

manipulated by altering the substituents attached to the dithienylethene switch i.e. by 

substituting fluorine atoms in place of hydrogen atoms on the cyclopentene ring, and 

incorporating dppm ligands onto the cobalt carbonyl moieties.  

 

3) Carbon-Monoxide Releasing Molecules (CORMs) 

 

The potential use of carbon monoxide in therapeutic applications has been 

established.
44-47

  Carbon monoxide releasing molecules (CORMs) have been identified 

as viable sources of CO, in which CO can be released in a controllable and tuneable 

rate, at specific sites, and a number of literature reports have investigated the use of 

transition metal carbonyl complexes for the development of CORMs.
48-51

  The results 

obtained for the closed-ring isomers of the Co2(CO)6 complexes described in this 

report (3bF, 4bH and 10bF) have shown potential towards the development of 

CORMs.  Photolysing these complexes with low energy visible light (λ > 650 nm), 

was found to result in CO loss reactions, as evidenced by the steady-state IR studies, 

along with cycloreversion processes, back to the open-form.  The photochemical 

reactivity of the cobalt carbonyl moieties varied for each switching complex, as 3bF 

was found to be the most stable whereas some cleavage of the metal carbonyl units 

was evident for 10bF.  Thus, it is possible that the rate of CO loss could be controlled 

by the substituents attached to the switching unit.  Furthermore, dithienylethene 

switches are known to show fluorescence discrimination between the open and closed 
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forms.
20,23,25-27,52

  Thus, irradiating the closed-ring isomers at 650 nm could induce CO 

loss, along with a cycloreversion process back to the open form, thereby inducing or 

quenching the fluorescence of the switch.  Further research into similar Co2(CO)6 

switches, with highly fluorescent substituents attached, could lead to the development 

of CORMs for therapeutic purposes, with a controlled rate of CO release monitored 

via fluorescent changes of the switching unit i.e. the dithienylethene unit may act as a 

fluorescent probe.   

 

 

 

 

 

Scheme 7.3: A representation of how a cobalt carbonyl dithienylethene complex may be utilised as a 

carbon monoxide releasing molecule, whilst monitoring the release of CO by the change in the 

fluorescence properties of the switching unit, following irradiation at λ = 650 nm.  “X” represents a 

substituent which takes the place of a CO molecule, following CO release. 
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7.4 Future Work 

 

In order to advance our understanding of the photochemical and electrochemical 

properties of the dithienylethene switches, and their cobalt carbonyl complexes, 

reported in this thesis, there are a number of experiments that could be completed: 

 

• Synthesis 

 

1) Synthesise and fully characterise the closed-ring isomers of the Co2(CO)6 and 

Co2(CO)4dppm complexes of all the thienyl and ferrocenyl-based switches, as 

already described for 3bF, 4bH and 10bF. 

 

• Photochemistry 

 

2) Record the absorbance spectra of the “synthesised” closed-ring cobalt carbonyl 

complexes, and compare the λmax values in the visible region with those recorded 

for the open-ring cobalt carbonyl complexes following UV irradiation. 

3) Investigate the cycloreversion processes of the closed-ring cobalt carbonyl 

complexes in order to determine the substituent effects on the efficiency of the 

ring-opening process. 

4) Perform theoretical calculations for the cobalt carbonyl complexes, in order to 

determine the relative energy levels of the intraligand and MLCT singlet and 

triplet states, in an attempt to elucidate the mechanisms involved in the ring-

closing process of these metal complexes. 

5) Perform the photochemical studies of the cobalt carbonyl complexes in different 

solvents in order to examine the effects of different solvents on the photochemical 

activity of the switching unit and the cobalt carbonyl moieties. 

6) Investigate if the ferrocene-based switches will fluoresce when the emission 

studies are performed at low temperature.  
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• Electrochemistry 

 

7) Perform the cyclic voltammetry experiments of the dithienylethene switches, and 

their Co2(CO)6 and Co2(CO)4dppm complexes, at various scan rates, different 

solvents and lower temperatures, as it has been shown in the literature that varying 

the conditions of these experiments can increase the reversibility the 

oxidation/reduction processes.
31,32,34,35,37

 

8) Investigate the oxidation processes of the closed-ring cobalt carbonyl complexes, 

by CV and UV-vis/NIR spectroelectrochemistry, in order to help elucidate the 

electrochromic properties of the open-ring cobalt carbonyl complexes. 

9) Investigate the oxidation/reduction processes of the closed-ring cobalt carbonyl 

complexes, by cyclic voltammetry, to examine the extent of electronic 

communication between the two metal centres across the π-conjugated backbone 

of the dithienylethene bridging unit. 

10)  Examine the effect on the emission properties of the ferrocenyl-based switches, 

following oxidation of the ferrocene molecules.  
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7.5 Overall Conclusion 

 

Overall, it was determined that the photochemical properties of these 

dithienylcyclopentene switches, in relation to their cyclisation/cycloreversion 

processes, fatigue resistance and thermal stability, can be improved by substituting 

fluorine atoms in place of hydrogen atoms on the central cyclopentene unit, and 

increasing the π-conjugation of the system, through the presence of phenyl-rings 

between the switching unit and alkynyl moieties, as evidenced for 2F and 8F.  

Furthermore, replacing the ferrocene substituents on 8F, with thiophene substituents, 

significantly improved the photochemical properties of these switches.  Therefore, 2F 

was found to be the most suitable candidate for the development of memory devices.  

Incorporating Co2(CO)6 and Co2(CO)4dppm moieties onto the switches resulted in a 

decrease in the efficiency of the cyclisation and cycloreversion processes, with 

complete inhibition of the ring-closing process in some cases, and decomposition of 

the cobalt carbonyl moieties.  However, the ability to tune the properties of the cobalt 

carbonyl complexes was highlighted, as once again it was found that fluorinated 

cyclopentene rings, and the presence of phenyl-ring spacer groups, improved the 

efficiency and reversibility of the photochromic processes, with the most promising 

results obtained for the Co2(CO)6 complexes 4F and 10F.     

 

In terms of the electrochromic switching behaviour of the dithienylethene switches, it 

has been established that the direction of the switching process (i.e. 

cyclisation/cycloreversion) is heavily influenced by the atoms present on the 

cyclopentene ring (H vs. F) and the substituents attached to thienyl rings of the 

dithienylethene unit.  This can be attributed to their ability to stabilise the cation 

species of either the open-ring or closed-ring forms.  The presence of the fluorine 

atoms on the central cyclopentene unit have been found to promote oxidative 

cycloreversion processes, due to their electron-withdrawing nature (as described for 

1F and 7F).  On the other hand, the electron-donating ability of the hexahydro-

cyclopentene ring has been found to be the driving force for oxidative cyclisation 

processes to occur (as described for 1H, 2H, 7H and 8H).  With regards to the 

substituents attached to dithienylethene units, a number of factors have been found to 
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affect the efficiency or direction of the electrochemical switching processes.  The 

stability of the closed-ring cation species were found to be increased by: 1) the 

presence of the electron-rich phenyl-ring substituents, which allowed oxidative 

cyclisation to occur for the fluorinated switches (2F and 8F), and increased the 

stability of the closed-ring cations for the perhydro derivatives (2H and 8H), in 

comparison to the shorter chain analogues (1H and 7H);  2)  the presence of the 

Co2(CO)4dppm moieties increased the stability of the closed-ring isomer of 11H, in 

comparison to its corresponding Co2(CO)6 complex and free ligand, and 5H in 

comparison to its hexacarbonyl derivative 3H.  Other factors have been established 

which appeared to reduce the stability of the closed-ring cation species: 1) the 

presence of the ferrocene molecules (eg. for 7H and 8H), as they undergo oxidation, 

forming the electron-withdrawing ferrocenium ions, before oxidation of the switching 

unit occurs; 2) the presence of the Co2(CO)6 moieties reduced the stability of the 

closed-ring cations eg. for 3H, 7H, 10H and 10F, and inhibited cyclisation for 4F; 3) 

the presence of the Co2(CO)4dppm moieties were found to reduce the stability of the 

closed-ring cations for the longer chain compounds eg. for 6H, 12H and 12F.  

Furthermore, the ability to utilise the substituents attached to the dithienylethene unit, 

as a “remote control” to induce ring-opening/closing processes, at lower potentials 

than that required to oxidise the switching units, has been established.  From the 

results described here, it appeared that oxidation of the ferrocene molecules on 7Fc 

induced a cycloreversion process, and oxidation of the Co2(CO)4dppm moieties on 

11H and 5H resulted in ring-closing.  This phenomenon is tentatively attributed to an 

intramolecular electron transfer mechanism, from the oxidised substituents, to the 

dithienylethene unit.   

 

Overall, the factors influencing the photochromic and electrochromic switching 

properties of the thienyl and ferrocenyl-based dithienylethene switches have been 

described here in detail.  The ability to tune these properties by altering the atoms 

present on the cyclopentene ring, the substituents attached to the dithienylethene unit, 

and the introduction of organometallic compounds onto the switch has been 

highlighted.  Incorporating cobalt carbonyl moieties onto the switches was found to 

have a considerable effect on these properties.  The effects were not necessarily found 

to be advantageous, in relation to the photochemical cyclisation processes of the 

switching unit, due to the tendency of the cobalt carbonyl moieties to undergo 
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decomposition following UV irradiation.  However, the presence of the cobalt 

carbonyl units was found to increase the efficiency and alter the direction of the 

electrochromic switching processes, in some cases.    Furthermore, the ability to 

increase the stability of these complexes, by altering the substituents attached to the 

switching unit and on the metal centre, has been demonstrated here.  Also, literature 

reports have shown that varying the conditions of the photo- and electro-chemical 

experiments can increase the stability of such metal complexes.
31,32,34,35,37,53,54

  Hence, 

further investigations could improve the stability of such cobalt carbonyl switches, 

and thus increase their suitability towards the development of future applications, such 

as those mentioned in the previous section.  Therefore, in conclusion, this thesis has 

presented a comprehensive study on novel cobalt carbonyl dithienylethene switches 

which has led to some very interesting results, and further research into this area has 

exciting prospects for the future! 
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