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Abstract

Recent proof-of-concept research has appeared highlighting the applicability of using Brain

Computer Interface (BCI) technology to utilise a subjects visual system to classify images.

This technique involves classifying a users EEG (Electroencephalography) signals as they

view images presented on a screen. The premise is that images (targets) that arouse a

subjects attention generate distinct brain responses, and these brain responses can then

be used to label the images. Research thus far in this domain has focused on examining

the tasks and paradigms that can be used to elicit these neurologically informative signals

from images, and the correlates of human perception that modulate them. While success

has been shown in detecting these responses in high speed presentation paradigms, there

is still an open question as to what search tasks can ultimately benefit from using an EEG

based BCI system.

In this thesis we explore: (1) the neural signals present during visual search tasks

that require eye movements, and how they inform us of the possibilities for BCI applica-

tions utilising eye tracking and EEG in combination with each other, (2) how temporal

characteristics of eye movements can give indication of the suitability of a search task to

being augmented by an EEG based BCI system, (3) the characteristics of a number of

paradigms that can be used to elicit informative neural responses to drive image search

BCI applications.

In this thesis we demonstrate EEG signals can be used in a discriminative manner to

label images. In addition, we find in certain instances, that signals derived from sources

such as eye movements can yield significantly more discriminative information.
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Chapter 1

Introduction

Computing technology is now a fundamental enabler for many forms of entertain-

ment. From gaming to movies, much of these forms of entertainment are based

around using images and video. In a similar way, much of the development of sci-

ence in recent decades has been enabled by computing technology and has also been

based around image and video information, from astronomy to x-ray imaging. In

fact most of our society is now supported and enhanced by computing technology,

from space exploration to social networking. Again, the use of image and video is

central. Computing technology has enabled the creation, storage, transmission and

rendering of image and video data, but we struggle to develop computational ap-

proaches to actually managing image and video data. At our fingertips are billions

of images and millions of hours of video. The greatest challenge, however, is in

searching, browsing and finding the right media at the right time. The area of mul-

timedia retrieval/browsing, especially of visual media, remains the focus of a large

research effort. Progress in this research has been slower than the rate at which this

media is growing in volume. Recent proof-of-concept research has appeared showing

the applicability of Brain Computer Interface (BCI) technology to detect and label

images. The premise is that detectable responses occur in the brain in response

to stimuli such as pictures. While a user may not explicitly express that there is

anything significant about a particular event, such as seeing a picture of a loved one
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or finding a key piece of information in a document, their brain signals can indicate

otherwise in a way which is outside the user’s control. By placing EEG (Electroen-

cephalography) sensors on the scalp, we can monitor electrical signals generated by

the brain so as to identify those that may allow us to label such events (such as look-

ing at an image) as significant, emotionally/attentionally arousing, or unexpected.

Traditionally, the problems approached by BCI systems have focused on restoration

of functionality and/or communication to people with a variety of impairing disor-

ders such as stroke or brain damage. These systems tended to be cumbersome and

the cost of acquisition, set-up, and maintenance were justified by the sheer neces-

sity of the basic communication facilities they could assist in restoring. Recently,

however, systems of this type are becoming cheaper and more accessible to the con-

sumer, with research exposing potential applications in domains such as media and

entertainment. In this thesis we are concerned with the utilisation of EEG signals

in response to the detection of targets in images. An example of this might be

searching a fast-paced stream of images displayed on a computer screen for those

containing bridges, or searching an image to see if it contains one or more people.

Other applications spaces where we might expect this research to be applicable are

those involving situations or tasks wherein a subject does not vocalise or explicitly

state meaning of events such as in sports, military combat, air flight, and so on.

1.1 Motivation

Research examining the use of EEG BCI for assisting in image search has thus far

focused on examining the tasks and paradigms that can be used to elicit and detect

neurologically informative signals using images. While success has been shown in

detecting these responses in high speed presentation paradigms, there is still an open

question as to what search tasks can ultimately benefit from using an EEG-based

BCI systems. In this thesis we examine the hypothesis that EEG and Eye Tracking

can be used to improve the effectiveness in searching for certain types of targets
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in images. EEG BCI systems have been demonstrated in being able to augment

the speed and proficiency of those engaged in tasks of explicit image labelling, such

as intelligence analysts sorting through satellite imagery searching for intelligence

related content (Huang et al., 2011). This is useful in an instance such as this as only

an intelligence analyst or human may be capable of detecting this type of content.

To date, however, little research has been done in examining how these signals can

be combined with eye movements to unveil neural correlates of target detection on

a fixation by fixation basis. This thesis conducts investigatory work in this regard.

In addition to this, we explore with a number of experiments a set of pertinent

questions surrounding the application of EEG BCI such as whether or not we can

use a reduced number of sensor channels.

This thesis and the content within is shaped by four questions:

1. What neural signals are present during visual search tasks that require eye

movements, and how do they inform us of the possibilities for BCI applications

utilising eye tracking and EEG in combination with each other?

2. How do the temporal characteristics of eye movements give indication of the

suitability of a search task to being augmented by an EEG based BCI system?

3. What are the characteristics of paradigms that can be used to elicit informative

neural responses to drive image search BCI applications?

4. Can we use a reduced number of EEG channels in EEG BCI search?

1.2 Thesis Structure

In this thesis we explore a number of research questions in conjunction with a central

hypothesis to understand how EEG and eye tracking can be utilised in image search

applications. We primarily do this with a number of experiments where subjects

are required to engage in a variety of search tasks. These experiments and search

tasks are intended by their nature to allow us to expose and study the signals that
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may occur in application spaces. They are in themselves not applications though,

and in this thesis we do not develop any final application.

Similarly, it is important to note that we are not augmenting or assisting the

human in these experiments. We are primarily concerned with the signals and

behaviours surrounding target detection in search tasks from the subjects. Although

we explore strategies that may allow a subject to search a body of images or annotate

them in a more efficient manner than conventional means, we are not augmenting the

subject in a way where they do not need to detect targets for them to be ultimately

detected by the system. Any target detected by the system is first detected by the

subject. Although this is the case, other research has explored how EEG systems like

this may be combined with computer vision algorithms that incorporate strategies

wherein the computer aids in the detection and prioritisation of targets utilising

the neural signals to ultimately decide on the classification of an image. We do not

use such computer vision approaches in this thesis, as we focus primarily on what

signals are detected from the subject.

Chapter 2 While EEG represents a single sensor source of activity that can be

detected from the brain, it nonetheless contains a rich variety of signals displaying

modulations affected by states such as sleep or periods of high levels of concentration.

Not only do these signals display indicators of state, but they also show perturbations

surrounding events like the presentation of a stimulus, displaying sensitivities to

stimulus parameters such as brightness, and in addition, to the content and meaning

of the stimulus. These signals are utilised in a variety of paradigms to enable EEG

BCI systems. In Chapter 2 I give an overview of EEG, and explain how these signals

are utilised in both conventional BCI systems and newer BCI application spaces. In

the final section of this chapter having established the scope for this work, I outline

a central hypothesis and a set of research questions through which we examine this

hypothesis in the thesis.
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Chapter 3 Stereotyped EEG responses known as ERPs (Event-Related Po-

tentials) are known to occur in response to the presentation of a stimulus such as

an image. Similarly, another class of responses known as FLERPs (Fixation Locked

Event Related Potentials) are known to occur relative to the time of eye movements.

In Chapter 3 we examine the signals present with regard to eye movements during a

variety of search tasks, and examine how we can utilise these signals to aid in target

detection.

Chapter 4 In Chapter 4 we explore how we can combine eye tracking and

EEG signals to improve search performance. Here we show that it can be optimal

to combine both signal sources as they are complimentary. We also show that eye

tracking signals tend to demonstrate better discriminative activity than EEG signals

to assist in target search.

Chapter 5 In Chapter 5 we explore a number of related questions that con-

tribute to the support of our hypothesis. Firstly, we examine what advantages are

realised by using a button press response in combination with EEG signals, and how

this effects using a reduced number of EEG channels. Secondly, we explore whether

some images have inherent characteristics in a search task that lend them to being

correctly labelled/mis-labelled. Thirdly, we examine the effect of presentation speed

on our ability to discern target images from EEG signals.

Conclusions The final chapter summarises the contributions of each of the

chapters within the thesis and discusses the outcome of this work. We retrospectively

discuss our research questions and central hypothesis here. Following this, we discuss

future work and speculate on further research questions and application spaces that

this work can help direct.

Appendices In addition to these chapters, we have included a number of Ap-

pendices in the thesis. Appendix A provides an equipment overview, outlining details
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of the EEG systems and eye tracking technology that we used for the experiments

described in this thesis. Additionally, it outlines the software processing techniques

used on the raw signals such as clean-up and digitization. Appendix B outlines some

conventions used within the thesis, along with algorithmic parameters not pertinent

for discussion within the chapter bodies but necessary for the interested reader to

get a full and complete picture of our work. Appendix C provides additional data

to supplement the experiments outlined in Chapter 3 and this data is included for

the interested reader who may wish to pursue a deeper exploration into our results.

Appendix D provides additional data to supplement the experiments outlined in

Chapter 5. Appendix E provides documentation on university ethics approval, and

other miscellaneous materials.

6



Chapter 2

Overview of EEG Brain Computer

Interfaces: Trends and Methods

It has been long since known that the brain generates electric signals and that

changes in these signals can reflect aspects of cognitive and sensory processing.

Over the past century from the initial discovery of these signals in humans, their

detection has provided a mechanism for us to glean insight into ongoing processes

within the brain. Berger (1929) was the first to show that these neurally generated

electrical signals existed in humans, and displayed regularities across subjects with

respect to behaviours such as closing ones eyes. It was here the process of record-

ing these signals acquired its name Electroencephalography (EEG). Sutton et al.

(1965) later revealed that not only did these signals display characteristic patterns

indicative of mental states like arousal, but they also showed consistent patterns of

deflections in response to sensory stimuli. More interestingly, these deflections could

be modulated by events like the presentation of a stimulus as an exception to what

was anticipated by the subject. While the study of these signals provided further

insights into cognition, Vidal (1973) demonstrated that they could be used to allow

direct communication with a computer, calling such systems BCIs (Brain Computer

Interfaces). Traditionally the problems approached with BCI systems have focused

on providing restoration of functionality and/or communication to people with a
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variety of impairing disorders such as stroke or brain damage. A question posed

by the emergence of brain-computer interface technology is what scope exists for

applications that could bring benefit to healthy users. Obviously for the most part

enabling an able bodied subject to communicate a sentence or word through a cum-

bersome and slow interface without needing to move brings no real benefit. In the

first section of this chapter we give an overview of BCI systems and the signals and

paradigms on which they rely. Following this, we describe an emerging trend in us-

ing BCI for applications outside of those to assist disabled users. In the penultimate

section, we overview some of the modern computational methods used to investigate

EEG signals.

2.1 BCI Systems and their signals

In recent years the potential of using EEG signals to augment able bodied users

have become more apparent. Gerson et al. (2006) were the first to demonstrate

that EEG signals generated in response to images could be used to assist in sorting

them, and that by using these signals they could sort images at a faster rate than

say using a button press alone. Blankertz et al. (2010) further outlines a number

of application scenarios that can benefit from the use of an EEG BCI including

performance and mental state monitoring, as well as in augmenting media and game

applications. Although strong distinctions exists between each of us, a commonality

is observed in how our brain responds to sensory events and how mental states

present idiosyncratic indicators on an EEG. For instance, EEG signals can be seen to

change preceding movements. It is this fundamental level of similarity which enables

generalized techniques within mainstream BCI to be utilised on nearly anybody. In

this section we give an overview of BCI, and describe the neurological phenomena

that are utilised by such systems.
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2.1.1 EEG Signal Sources

EEG signals are generated by the summation of the post synaptic potentials of

thousands of neurons with conducive spatial alignments that in time periods of

synchronised firing give rise to potential differences on the scalp. Pyramidal neu-

rons are thought to be the primary contributors to these detected potentials (Luck,

2005). The signals generated are typically small in the order of 0-100µv, and heav-

ily susceptible to noise. They typically display a number of oscillatory components

referred to by their frequency bands: delta rhythm (1-3 Hz), theta rhythm (5-7 Hz),

alpha rhythm (8-12 Hz), beta rhythm (13-30 Hz), gamma rhythm (above 30 Hz),

and mu rhythm (8-13 Hz). Facets of the neural networks responsible for producing

certain patterns of these synchronised firings have been implicated in functions such

as motor preparation, which for instance shows modulations of the mu-rhythm over

sensorimotor areas (Pineda et al., 2000). Additional to these patterns of activity

are perturbations within the EEG signals related to specific cognitive and sensory

events. Of particular interest to us are those related to sensory events whose timing

and content can be controlled, i.e. an image presented on a computer screen. Anal-

ysis of the EEG signal in the time domain with respect to the time of display of a

particular stimulus is more commonly known as an Event Related Potential (ERP)

study (Luck, 2005). Two different types of signal features are often used for BCI

systems. Features from oscillatory activity can be extracted by examining ampli-

tudes of sinusoidal components of the EEG signal at particular scalp points, and how

they vary referentially and over time (for instance the mu-rhythm over sensorimotor

areas). Evoked potentials on the other hand are stereotyped spatio-temporal EEG

responses induced by the presentation of a stimulus such as displaying an image on

a computer screen to which we measure a response.
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2.1.2 Types of BCIs

Of interest to the BCI community is EEG due its relatively low cost, ease of set

up, and reliable results. Multiple paradigms are used to allow communication with

an EEG BCI based system. These can generally be divided into 2 categories: syn-

chronous and asynchronous BCI. Asynchronous BCI systems are driven by for ex-

ample a user’s ability to modulate the amplitude of a particular frequency band

(i.e. mu rhythm) in a particular set of sensors placed on the scalp. These mod-

ulations are achieved often through imagining acts such as moving a left or right

hand, or perhaps mentally visualizing the rotation of an object within one’s mind.

These communication paradigms often necessitate some behavioural training. In an

asynchronous BCI the user is the driver of a signal, which upon detection carries

some explicit intention on behalf of the user for an action to be implemented by

the system (display a letter on the screen, select an option, turn on/off a switch,

etc). In this sense an asynchronous EEG BCI system is self-paced as users should be

able to spontaneously control the system without needing to adhere to a fixed com-

munication cycle. Synchronous BCI systems in contrast measure a user’s response

to a provided stimulus, wherein a subject is locked into a communication cycle and

may only be able to communicate in defined time frames. One popular instantiation

of this is the P300 speller system as described by Farwell and Donchin (1988). In

this system a 6 x 6 matrix is displayed on screen composed of the alphabet along

with other symbols. The rows and columns intensify in a random order (at a rate

of 8 intensifications per second). The user is instructed to pay attention to when

the letter (or symbol) which he intends to target intensifies regardless of whether it

done as part of a row or column intensification. A number of these intensifications

will occur, and upon each relevant intensification of the intended letter an electri-

cal signal in response to this will be detectable on the person’s scalp through the

EEG apparatus. Due to the low SNR (signal to noise ratio) of these responses, it

is required within this paradigm for multiple elicitations of this signal to be pro-

duced, and then with averaging, the result is that the intensifications relevant to a
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particular letter will have displayed a differentiated EEG signal relative to the other

letters present on the screen. The elicitation of features in the EEG signal allowing

communication in this way are facilitated by a priori knowledge of the existence of

an underlying attentive mechanism that can be controlled by the user in such a way

as to give rise to these differentiating signals that convey intent.

2.1.3 ERPs (Event Related Potentials)

In this thesis we are primarily concerned with the analysis of EEG signals time-locked

to events such as image presentations, button presses and eye movements. Besides

the ongoing oscillatory patterns of EEG activity, there are well-known stereotypical

responses to stimuli called ERPs (Event Related Potentials). A time window of

these ERP responses is composed typically of a number of positive and negative

voltage deflections following a stimulus presentation that adheres to a stereotyped

time, amplitude and spatial signature. The earliest of these ERP components are

typically involved with sensory processing, with the later occurring components

implicated in reflecting higher cognitive processes such as recognition (Johnson and

Olshausen, 2003).

Due to the low signal to noise ratio (SNR) of these potentials, a number of

signal time windows (epochs) are typically averaged to mitigate noise and reveal

the underlying ERP components. Doing this allows us to reveal stable patterns

of EEG activity following a stimulus, and by doing so reveal differences in the

amplitude or timing of components with regard to various stimulus conditions. A

number of ERP components are typically elicited with the presentation of visual

stimuli such as the P1, N1, P2, N2 and the P3. The P/N prefix indicates the

direction of the voltage deflection as being positive or negative, while the number

is a shortened representation of the number of milliseconds the component typically

occurs at (i.e. P100 shortened to P1). These component identifiers are not wholly

strict in adherence to the exact timing of a component, and serve more so to act

as identifiers to the general phenomena of a deflection occurring with a particular
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spatio-temporal signature in the context of, say, a visual image presentation.

For example, the visual N1 generally occurs around anterior sites of the scalp

first and then posterior sites, but differs in latency and amplitude from task to task

and from person to person (Makeig et al., 1999). Although the earlier of these ERP

components can display different timing/amplitude characteristics across people and

tasks, these effects tend to be more accentuated for the later occurring components.

For instance, the P3 component as identified by Sutton et al. (1965) can occur in

much later time windows up to 1000ms after a stimulus presentation. Typically in

such instances the component may be referred to as a LPC (late positive complex),

or as a P3b, which refers to a particular subcomponent of the P300 phenomena.

The nature of reference and how the component is identified is often dependent on

the nature and effects of interest of the experimental paradigm involved with its

elicitation.

Although superficially these components may appear with a characteristic spatio-

temporal signature, recent advances in computational methods have revealed that

they can often be composed of a multitude of overlapping subcomponents sharing

similar time and spatial characteristics. The P300, being one such class of ERP com-

ponent, has had numerous subcomponents identified, and with each being implicated

as being involved with different cognitive processes including target recognition and

response selection (Makeig et al., 2004). The less spatially and temporally entan-

gled of these components such as the P3a and P3b have a long history of study, and

have been shown to be invokable in a number of experimental paradigms sharing a

set of common characteristics involving detection of a target stimulus or detection

discontinuation of a trend in a series of stimuli (Polich, 2007).

The P3 ERP is typically elicited using the oddball paradigm. This entails us-

ing two stimuli with one being less frequent (target) and the other more frequent

(standard). In the case of visual stimuli these could be for example the letters X

and O respectively. If we were to randomly shuffle the order of these visual stimuli,

and present them in a RSVP stream to a subject, we would expect the less frequent
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target stimuli to elicit an oddball P3. RSVP (rapid serial visual presentation) is

the presentation of a sequence of stimuli in a consistently timed fashion. There

exists a three-stimulus variation of this paradigm where an additional distractor

stimulus that the subject is instructed to ignore is introduced. Although the dis-

tractor stimulus in this sequence can be ignored, it nevertheless elicits another P3

subcomponent (P3a). The P300 has been observed in other paradigms involving for

instance concealed information tests where subjects are told to conceal any explicit

signs of recognition of a stimulus such as a familiar face (Meijer et al., 2007).

Treder and Blankertz (2010) have shown that the P300 speller although initially

thought to use only P3 activity as its major source of differentiated activity has

recently been shown to utilise time periods of differentiating activity that corre-

spond with other component such as the N2. Steffensen et al. (2008) highlight that

differences exist in ERP averages between males and females with regard to the

processing of target and distractor stimuli, and purport that these reflect differ-

ences in the allocation of attentional resources in response to task demands between

males and female. Interestingly in their target search experiment they identify a

late occurring negativity typically peaking at 800ms that additionally identifies the

target along with the P3. Luck and Hillyard (1994) similarly implicate additional

ERP components that differentiate between target and non-target stimuli involving

similar array search such as the visual N2pc known to be present when a target item

is discriminated in the presence of competing distractors.

A number of studies have shown that depending on the task requirements, a

variety of ERP components may be present, and further modulated by attentional

strategies to allow differentiation between target and non-target stimuli. It is im-

portant to note that while stereotyped ERP responses can be expected to occur in

particular experimental paradigms, they can often be accompanied by additional

components depending on the task demands. In this thesis we highlight the occur-

rence of such phenomena with regard to our own experiences.

In addition to these components that can be modulated by recognition and target
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detection, there exists other earlier visual components such as the N170 that is

known to be enhanced in amplitude for the presentation of faces. Although face

stimuli may appear without any intended distinction made about their appearance

in the context of a task, they will nonetheless elicit this response. Shenoy and Tan

(2008) have demonstrated that such signals generated in response to faces can be

used to drive a BCI intended to find face images where the subjects are not searching

for face targets and are unaware of the true purpose of the task. Furthermore, this

N170 component and others show modulations related to the perceived emotional

expression of this face such as to whether it is angry (Blau et al., 2007). Olofsson

et al. (2008) provide an overview of a number of a studies of ERP phenomena also

known to be modulated by affective picture processing involving image sets that

differ in valence (unpleasant-to-pleasant) and arousal (low-to-high).

ERP phenomena are also known to be modulated by effects like recognition of

familiar objects (Miyakoshi et al., 2007). Shapiro et al. (2009) describe an effect

known as the attentional blink where detection of a target may cause lapses of

attention in which subsequent targets fail to be detected. Interestingly, it has been

shown while certain targets fail to be reported, patterns of differentiating EEG

activity occurs in response, indicating they undergo processing but fail to reach

consciousness (Luck et al., 1996) What is important to note from this subsection is

the wide variety of ERP signals that can be utilised by a BCI system. Some of these

signals are the result of the recognition of a target, while on the other hand some

are in response to stimuli displaying particular properties.

2.1.4 EEG BCI for Image Search

Sajda et al. (2010), Poolman et al. (2008), and Bigdely-Shamlo et al. (2008) all

demonstrate a newer trend emerging in using BCI for image search where such sys-

tems assist subjects in search for images. All of these authors demonstrate the

capability of using EEG signals to drive image search applications across a vari-

ety of search tasks encompassing in some cases learned skills of visual recognition,
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namely intelligence analysis of satellite imagery. While the general technique has

been demonstrated to work on numerous image sets, other work has endeavoured to

assess whether greater efficiencies can be achieved when combining the detection of

EEG signals with behavioural responses (Huang et al., 2007). Kapoor et al. (2008)

show the complementary nature between using computer vision algorithms and EEG

signals in tandem. Their work demonstrates that certain visual discriminative in-

formation while not adequately captured by the computer vision algorithms can be

perceivable to the subject, and thus register responses in the EEG signals. Other

work has investigated the use of pupillary features such as TEPR (task-evoked pupil-

lary response) wherein changes in pupillary dilation can be indicative of events such

as the detections. Qian et al. (2009) proposes the use of such signals. Pohlmeyer

et al. (2011b) describes an enhanced application scenario of using EEG-BCI for tar-

get search where a subject’s neural responses are used with an adaptive computer

vision system wherein images detected as being visually similar to those that arouse

the strongest neural responses are prioritised to be viewed. In this way images of a

target nature are more efficiently converged on within a database. In work of our

own, we have shown that eye movements synchronised with presentation of images

can index time periods of EEG signals. We have shown that EEG activity offset to

the time of eye fixations on target objects can reveal pattern of ERP-like activity

that can be used for a BCI (Healy and Smeaton (2011a)). In other work, we have

shown that a reduced number of EEG channels can be used in combination with

an overt behavioural response in image search applications ((Healy and Smeaton,

2011b)). Finally, we have also examined the EEG signals present in experts and

non-experts in a task involving complex stimuli to which the expert was familiar

and accustomed (Izzo et al., 2009a).

2.1.5 Conclusions

In this section we have introduced a number of EEG BCI paradigms whilst describing

the signals and phenomena on which they rely. What is evident is that while these
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phenomena are utilised in traditional BCI applications to enable communication

in those with a variety of impeding disorders, there exists a wealth of additional

information in these EEG signals that can be utilised to assist in tasks such as

labelling images, and perhaps providing further degrees of semantic and emotional

interpretations of the user in response to these stimuli.

2.2 EEG BCI Methods

In this section we delve into the methods used to analyse and extract meaningful

information from EEG signals in order to enable applications such as image search.

2.2.1 Analysing EEG Signals

A number of methods have been developed for the analysis of EEG signals. For

instance techniques like FFT (Fast Fourier Transform) analysis have been used to

reveal changes in frequency oscillations surrounding events like real and imagined

movements, with techniques of this type used to drive BCI systems. In this thesis,

however, we are primarily interested in the signals that occur relative to timed

events such as image presentations, and hence our discussion regarding analysis of

these signals will converge primarily to those used in this regard. Traditionally,

ERP components were revealed by averaging epochs of EEG signal offset to the

time of a stimulus presentation to reveal signal perturbations otherwise obscured

by ongoing unrelated EEG activity and noise, to elucidate those that differ between

conditions of stimuli, so as to disentangle and study the cognitive phenomena that

give rise to them. In Figure 2.1 we show an example of such an ERP average.

While the ERP averaging method has a long history of use, it has some inherent

limitations like failing to adequately reveal cortical dynamics that may have complex

temporal-spatial relationships. To mitigate some of these issues, techniques like the

ERP image and ICA (independent component analysis) have gained widespread use

(Jung et al., 2001) (Makeig et al., 2004). Recently, however, methods using machine
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learning principles have been demonstrated as being able to elucidate temporal and

spatial relationships in EEG activity that differentiate between tasks conditions

(Gerson et al., 2005). Methods such as these can capture trial-to-trial variability

of components in order to provide regressors for fMRI analysis (Sajda et al., 2009)

allowing the study of neural phenomena otherwise obscured by temporal smearing.

2.2.2 Single Trial Detection

Much research has been done with ERP phenomena and the relative paradigms sur-

rounding eliciting such signals for the purpose of BCI, along with detecting these

signals in what is known as single-trial detection. In single-trial detection we seek to

classify signals as belonging to a particular class without directly relying on methods

such as epoch averaging. A number of machine learning methods have been eval-

uated for the single-trial analysis of EEG data with many having a primary focus

on EEG BCI. Bashashati et al. (2007) provide a thorough overview of the process-

ing algorithms used to extract features of EEG signals that can be used to drive

BCI. Lotte et al. (2007) furthermore provide a review of the classification algorithms

used in BCI. Amongst the most popular methods for single-trial detection are what

are known as linear classification methods. Proponents of these methods argue that

they are suitable due to the simplicity of their mechanism, which aids for instance in

their use in BCI applications requiring near instantaneous classification (Blankertz

et al., 2011), (Clay et al., 2005). These classification schemes belong to a broader

scope of methods known as supervised machine learning methods. Supervised ma-

chine learning methods require the input of class labelled data along with feature

vectors. The labelled classes in our case are generally target and non-target stimuli.

The feature vectors are the time-varying EEG signal values concatenated across all

channels surrounding timed events such as the presentation of an image. In this

way, we can train a machine learning model with examples of EEG responses, and

then use this model to label unseen examples. By being able to construct models

that give prediction accuracies on unseen data we can demonstrate regularities in
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Figure 2.1: Example of ERP average

signals that can differentiate between defined classes. In this thesis, we utilise a

machine learning method known as SVM (Support Vector Machine) (Chang and

Lin, 2011). SVM has been shown to outperform a number of other methods for the

classification of EEG data (Huang et al., 2011). We use cross-validation as part of an

evaluation method in this thesis to evaluate whether signals contain discriminative

information to allow us to differentiate between classes such as target or non-target.

Cross-validation methods rely on a strategy of splitting a collection of labelled in-

stances from 2 or more classes into a non-overlapping training and test sets. On

each iteration of this process, a model is trained using the training set, and then

evaluated on the test set. With each iteration of this, a score is derived of how well

the model performed. These scores are then averaged to give an indicative measure

of the level of discriminative information that exists between the instance classes.

Largely we use ROC-AUC as the accuracy measure of choice in this thesis as it is

insensitive to differences in class imbalances and hence derives a good measure of

class separability (Fawcett, 2006).

Further details regarding the preparation of EEG signals for machine learning

analysis are outlined in Appendix B.
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2.3 Hypothesis and research questions

This thesis has a central hypothesis that we set out below, and explore with a number

of research questions that we address in our experiments later in the thesis. This

gives our work a focus and structure that allows us to clearly define its contribution

in respect of the related work of others.

In this thesis we examine the hypothesis that EEG and Eye Tracking can be

used to improve the effectiveness in searching for certain types of targets in images.

In subsection 2.1.4 we outlined work investigating the application of EEG BCI

for image search. There are still questions as to what tasks may be fundamentally

be possible with this image search methodology. A number of application scenar-

ios have been exemplified highlighting how using EEG signals can not only allow

more efficient image annotation, but that they may also allow the capture of more

informative signals reflecting subtleties of interpretation.

A central aim underlying our work is to develop faster and more reliable single

trial detection mechanisms to progress the goal of high throughput search. In or-

der to do this we must firstly direct our questions at what image sets we intend to

utilise this technique upon and what information we intend to extract. Applications

of this technique have already been shown in proof of concept scenarios through

to specialised applications where the underlying image set is domain specific and

requires an expert with specialist image analyst skills. We have a difficulty in iden-

tifying which image sets this technique is applicable to, and how we can refine these

image sets towards making them suitable to being used with this technique.

There are limits to the speed at which we can process information. For instance

Thorpe et al. (1996) has shown that some forms of image processing can take place in

less than 150ms. Additionally, some tasks require visual search, where targets may

not be saliently detected (Treisman and Gelade, 1980). Eye movements may also be

necessitated meaning limits on presentation speeds may need to be imposed to allow

time for the deployment of fixations. Conversely, some image types can be rapidly
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categorised by gist (Oliva and Torralba, 2006). Other effects like the attentional

blink must be accounted for too (Shapiro et al., 2009). Research of this kind implies

that we are capable of a wide variety of visual search and target detection tasks,

but also that constraints exist indicating how this might be optimally done.

Outlined below are a number of research questions that we use to explore our

hypothesis as there is no particular experiment with which we can prove or disprove

it.

Research question 1

What neural signals are present during visual search tasks that require eye move-

ments, and how do they inform us of the possibilities for BCI applications utilising

eye tracking and EEG in combination with each other?

Research question 2

How do the temporal characteristics of eye movements give indication of the suit-

ability of a search task to being augmented by an EEG based BCI system?

Research question 3

What are the characteristics of paradigms that can be used to elicit informative

neural responses to drive image search BCI applications?

Research question 4

Can we use a reduced number of EEG channels in EEG BCI search?

We return to these research questions again in Chapter 6, and discuss them

further with respect to the experiments and analysis within the thesis.
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2.4 Conclusions

In the first section of this chapter we gave an overview of BCI systems and the

signals and paradigms on which they rely. Following this we described an emerging

trend in using BCI for applications outside of those to assist disabled users. In the

section after this we overviewed some of the modern computational methods used

to investigate EEG signals.

In penultimate section we outline our hyptothesis and research questions.
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Chapter 3

Neural Correlates of Search

Involving Eye Movements

A great variety of visual search tasks exist where we seek to detect something present

within an image. Some of these tasks are understood to be easy as a target may

be obvious in that we know before we look that it is a target. An example of

this might be finding a face in an image. On the other hand, its detection may

require searching a complex image using visual cues and other information within

the image to guide attention to an optimal location in which to search. An example

of this would be a radiographer searching through x-ray images looking for possible

tumours where detection may require discriminating between subtle features in tone

and texture at various locations within the image. These search behaviours may even

be further influenced by factors like expertise and expectation. Efforts to understand

the mechanisms that govern the deployment of gaze and visual attention on images

in search scenarios like these are ongoing and models to predict the search behaviours

are continually evolving as new evidence presents itself (Ehinger et al., 2009).

For instance, it has long been known that a number of basic object features exist

that allow for a target item in an image to be efficiently detected (parallel search)

from an array of distractor objects (Treisman and Gelade, 1980). By confirming that

additional distractor items in these arrays do not effect a subject’s reaction time in

22



detecting the target, we can conclude a target object in an image is perceived and

detected through a parallel visual mechanism. The authors also contrast this with

the case where target detection may require fixations upon individual items in the

array (serial search). Experiments of this sort have allowed us to understand the

contribution of basic visual features in visual perception, and how they are processed

in the visual system.

This style of experiment though has been criticised in that it fails to capture the

nature of the environment in which our visual system has evolved to perform within.

Torralba et al. (2006) highlights that not just local information within an image can

be used for target detection, but typically in real world search, global information

such as scene statistics are used too.

Many real world search tasks involve an array of high level cognitive faculties.

The integration of both bottom-up visual features coupled with the top-down de-

ployment of attention often manifests itself in visual search scenarios as a number of

fixations and eye movements on parts of an image. Previous research into the neuro-

logical correlates present during eye movements have typically focused on the early

visual components present in EEG for events like eye fixations. These eye move-

ments are known as saccades, where each saccade is a transition from one point of

fixation to another on an image.

What has been shown is that there are EEG components offset to the time of

these fixations called FLERPs (Fixation Locked Event Related Potentials) (Baccino

and Manunta, 2005), also referred to as EFRPs (Eye Fixation Related Potentials)

and SRPs (Saccade Related Potentials). Many of the scalp and timing characteristics

of these components have been shown to be present across people regardless of the

task being completed just so long as it involves eye movements (Ogawa et al., 2005).

Eye fixations generate a distinctive pattern of neural activity with EEG com-

ponents that show consistent temporal-spatial characteristics in the same way that

a visual or audio stimulus does. A lot of similarity has been drawn between these

EFRPs and the early visual ERPs. For instance, they both display similar neural
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generators for an early positive component known as the lambda potential/visual

P1 (Kazai and Yagi, 2003). Other such comparisons can be made with components

like the N1, and P2 due to the similarity of their spatio-temporal onsets to those of

the visual ERPs. Similarities can be drawn between ERP and EFRP components

extending to later occurring activity too. The P300 for instance has been shown

in attention orientation, and is known to be modulated by effects like expectation

and surprise. Later occurring components like these are commonly claimed to be in-

volved with semantic processing of stimuli, the initiation of behavioural responses,

along with the detection that a particular stimulus has violated expectation of a

trend (Olofsson et al., 2008); (Comerchero and Polich, 1999). It has been shown

these components can also be present in EFRPs (Healy and Smeaton, 2011a). What

differentiates the nature of neurological activity surrounding events like eye fixations

to image presentations is that a subject is understood to be in control of their eye

fixations. In an experiment employing an RSVP paradigm, a user has no control of

the display time of an image, and hence no control over the timing of information

availability.

This means that for visual search tasks, a user might have deployed their gaze

at a location because it displayed a salient quality typically indicative of a target in

an image, or global scene information or the previous fixations provided information

to guide them to that location. The neural activity offset to eye fixations within an

image being searched may not be independent of each other in the way that images

are in an RSVP paradigm. This chapter explores what EEG activity is present both

after and before fixation related events in a variety of visual search tasks involving

eye movements. The primary investigation here is to understand the neural signals

present in visual search and whether we can better leverage and assess the scope of

applications for BCIs that may be driven by them. This chapter will also extend

upon previous work by employing an information theoretic approach to quantify

and compare these signals using state of the art machine learning techniques.
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3.1 Brain Signals of Eye Fixations in Serial Search

The early work by Treisman and Gelade (1980) on visual search revealed that in

certain instances a number of basic object features can be modulated to allow the

efficient detection of target objects (parallel search) from distractor objects when

displayed in array configurations. Similarly shown were object features that neces-

sitated a user to search the array to find the target, and in such cases the task was

said to require a serial search. In this section we show that discriminating EEG

activity is present in serial search tasks and that it is locked to the time of fixation.

In serial search we can examine a scenario where a target may only be detectable

when a fixation is deployed on or near it. By elucidating EEG signals for these

fixations we show that signal phenomena present in other ERP eliciting paradigms

are similarly present, namely the P300. We can draw similarity here with RSVP

paradigms in that the availability of the information allowing discrimination is offset

to a temporal event. In the case of a RSVP paradigm this is the time an image is

displayed whereas with eye movements it is the time of an onset fixation.

To this aim we conducted an experiment which is described below that required

subjects to perform a search task on-screen while their EEG and EOG activity were

simultaneously recorded. The object images used were constructed to be balanced

in feature similarity between their target and non-targets. Using the same subjects

in a follow-on experiment, we found that the target stimuli used when presented

amongst arrays of increasing sizes of distracters did require longer times to detect,

and that detection performance deteriorated when presentation time limitations

were imposed. This further verifies that the target stimuli used could not be detected

until the time of fixation.

3.1.1 Experiment Outline

In the first part of the experiment, a subject was required to search each of the 4

corners of a 24 inch (1680x1050) screen where either a target or a non-target object
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Figure 3.1: Search pattern followed to detect stimuli

was present. The experiment was designed so that when the subject’s gaze remained

fixed on the central fixation cross (Figure 3.1), they would remain unaware as to

whether any of the objects were a target until the time of fixation. The target object

to be detected and counted was a broken circle with 2 lines, while the non-targets

were broken circles with 3 lines. Examples of these are illustrated in Figure 3.2. By

using such stimuli we were able to restrict detection of the target item to the time

of fixation. Subjects also confirmed whilst staring at the central fixation cross that

they were unaware as to whether any of the corner objects were indeed targets.

The experiment was broken into 16 blocks, with each block containing 16 frames.

Preceding each block, a search pattern was presented on-screen for 10 seconds with-

out the object stimuli to indicate the route to be followed to examine the objects

for that block (shown by the arrows in Figure 3.1). A white circle then appeared

in the centre of the screen to indicate that a fixation cross would appear in 500

milliseconds after which the subject was to follow the given search pattern. At the

end of a block, a subject then reported the total number of targets observed. Each

frame was displayed for 2,500 milliseconds. Within that time, the subject was ex-
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Figure 3.2: Examples of the object stimuli. Targets are shown on
top, non-targets on the bottom.

pected to view all 4 corner objects following the outlined pattern, and to then return

their focus to the central fixation cross. This central fixation cross would then be

replaced by the warning white circle where after 500 milliseconds the fixation cross

would reappear, indicating the next frame was about to appear.

The search pattern within each block was kept consistent, but changed from

block to block. The arrows used to indicate the search pattern were superimposed

over all frames for that block so that the subject would not forget the pattern.

With A,B,C,D referencing each corner (Figure 3.1) on the screen (and E as the

central fixation) we permuted this sequence to create 8 distinct search sequences,

each consisting of 5 movements. 32 frames, each containing 4 corner stimuli, were

then generated for that sequence. The probability of any one object stimulus being

a target was kept to 0.125. Each of these 8 populated sequences were then cut in

half to create the 16 blocks. In this way the target count per block could not be

predicted. The order of these blocks for each subject was randomised.

3.1.2 Data collection

For data recording, we used the KT88-1016 EEG system. Signals were recorded

from channels F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, Oz.

A 2 channel pendant EEG device was used to record vertical and horizontal EOG

(Electrooculography) signals. Subjects were seated 1.2m away from the screen. This
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meant each object stimulus was perceivable within 0.72 degrees.

A total of 7 subjects, 4 males and 3 females were recruited from the postgraduate

and staff population with an average age of 27.3, and a standard deviation of 4.7.

One of these was left-handed. Ethics approval certificate attached in Appendix E.

3.1.3 Methods

By using the EOG channels, namely VEOG (vertical) and HEOG (horizontal) we

were able to find the time indexes of fixations on the object stimuli. Eye movements

along one plane (i.e. horizontal) generate signals more prominently on one channel

than the other, and the voltage deflections are sensitive to the direction of eye move-

ment. Eye movements in any direction are typically characterised by either positive

or negative voltage deflections on both channels. Since search patterns were consis-

tent within blocks, the EOG patterns remained fairly consistent in that they always

displayed a stereotyped sequence of deflections, other noisy EOG components were

often present though. An example of a subject’s eye movement search pattern for

one such frame is shown in Figure 3.3. With 8 basic eye movements used across the

blocks, we could detect the fixations in the EOG signals using a simple scheme of

matching these deflection patterns to the movement most likely to have generated

them. Deflections present in the EOG signals not conforming to the stereotyped

sequence for that block were discarded. In the case of two consecutive eye move-

ments occurring in the same direction, the second peak was taken as the fixation

upon the object (the first assumed to be upon the arrow). The time at which the

EOG signal(s) peaked were taken as the index time from which to extract EEG

activity. The peak times were detected by finding zero-crossings of the first deriva-

tive of the signal. To mitigate against noise in the EOG signals, we disregarded eye

movements where the combined absolute value of the peak height(s) fell below 2

standard deviations for that movement.

In ideal circumstances we should have been able to extract 128 target fixations,

and 896 non-target fixations in total for each subject. In practice, for each subject
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Figure 3.3: EOG Channels: HEOG (horizontal) on top and VEOG
(vertical) on the bottom. Shown are peaks related to
saccadic eye movements.

(1 to 7) respectively we extracted the following target/non-targets counts: 111/778,

107/768, 117/825, 109/772, 113/761, 118/838, 114/794.

Using these labelled time indexes of fixations, we extracted windows of the EEG

signal starting post-fixation 0ms to 1000ms for each of the 16 channels. These were

then combined to form a feature vector of length 640 which was then normalised

to the range [-1,1]. No distinction was made to the eye movement associated with

each target and non-target, only that that feature vector represented a target or

non-target fixation.

3.1.4 Results

Both early visual EFRP and later discriminating components are visible in the grand

average scalp plots shown in Figure 3.4. The first notable component is the fixation

lambda potential (Kazai and Yagi, 2003) (related to the visual P100) which peaks

at occipital sites at 80ms (visible on the grand average of channel Oz in Figure

3.5). Oz corresponds to an EEG sensor placement location over the occipital region
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of the brain. At this time a negative component was also present at frontal sites

which subsequently peaked around 120ms, where it then followed a wide spatial and

temporal spread continuing to 200ms. Early frontal negativities have been shown to

occur in combination with the lambda potential following this time-course (Rama

and Baccino, 2010), while the latter activity is consistent with the visual N1. A

posterior negative component was seen across subjects typically peaking between

250ms and 350ms, and occurring later and more generally enhanced in amplitude

for target objects across subjects. This activity is consistent with a posterior visual

N2 in a feature discrimination task (O’Donnell et al., 1997). A positivity was seen

far frontally between 280ms and 400ms peaking typically at 320ms for both object

classes, and was diminished across users for targets. This diminished activity may be

due to the an earlier counterpart anterior negativity related to posterior N2 activity

observed for targets.

Figure 3.4: Grand average scalp plots – target plots shown on top,
non-target plots shown on bottom

Differentiating activity between the detection of the target and non-target ob-

jects could be seen emerging at 250ms for most subjects, but prominent differences

appear on the grand average scalp maps at 500ms with the presence of a widely

distributed positive component present over occipital and parietal regions, which is

consistent with P3b activity expected to occur with an oddball task such as this

(Comerchero and Polich, 1999). This posterior positivity began for most subjects

at 460ms and continued on to 600ms. A frontal negativity emerged for subjects

for the target objects at typically 600ms (starting as the p3b activity diminished)

and continued for up to 1000ms typically diminishing with a parietal distribution.
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Previous work examining target detection in search tasks have shown a similar late

occurring component with target detection (Sajda et al., 2010). This component

may be reflective of a self-monitoring process.

Figure 3.5: Grand average plots for channel Oz across all subjects

To examine and to derive a set of measures of the detectability of the EEG

signal (P300) associated with the target fixations, we used a support vector machine

(SVM) with radial basis function. A fuller account of the ML strategy described

here is outlined in Appendix B. Using 20-fold cross-validation for each subject, we

randomly sampled a training set of 80 target and 80 non-target examples, and then

used these to train an SVM model. An independent testing set of 27 target and

27 non-target examples were randomly sampled from the remaining feature vectors.

The SVM models’ gamma and cost parameters were found by using a gridsearch

approach on the training data only. The test sets used to generate final results

were always kept seperated from the training set. For each iteration of the cross-

validation, an ROC (Receiver Operating Characteristic) curve was generated and

its AUC (Area Under Curve) calculated. These AUC values were then averaged

and are displayed in Table 1 for each subject. The AUC measure provides a ratio

independent measure of the general discriminative capability of the constructed

classifier. We also formed another 3 separate feature vectors, the first using only

signals from anterior nodes (F7, F3, Fz, F4, F8, VEOG, HEOG), the second using

posterior nodes only (T5, P3, Pz, Oz, P4, P6) and the third using signals from

all 16 channels but only extracting 600ms pre-fixation. We wanted to confirm that
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Subject AUC-All AUC-Posterior AUC-Anterior AUC-PreFix

1 .74 .67 .58 .49
2 .81 .73 .56 .51
3 .79 .73 .66 .51
4 .85 .75 .66 .50
5 .74 .66 .58 .51
6 .68 .68 .55 .48
7 .68 .61 .48 .52

Average .76 .69 .58 .5

Table 3.1: AUC results from classifiers in Serial Search experiment

the discriminative information learned by the classifier was not largely derived from

the EOG activity alone (anterior sites), and that this activity only appeared after

fixation. The AUC averages for these are displayed in Table 3.1.

Bootstrapping a significance AUC value for this evaluation process reveals the

probability of obtaining an accuracy of .538 being <1% (p <.01). This would confirm

a number of our results to be strongly significant as they are above this threshold.

This bootstrapping procedure is further outlined in Appendix B.

Using the full features from all channels we obtained an average AUC of .76

across subjects. Using only signals from the frontal nodes we still obtained an

above-chance classification rate, however, this lowered rate confirms that a major-

ity of the discriminative information learned by the classifier came from posterior

positioned nodes. This behaviour fits with the typical scalp topography of the P3b.

No discriminative information was learned in the EEG signals pre-fixation, further

confirming object detection was offset to the time of fixation.

3.1.5 Conclusions on EEG signals related to serial search

In this section we demonstrated that eye fixations are accompanied by distinct pat-

terns of EEG activity with signal perturbations related to the processing of visual

stimuli, with temporal and spatial components that can differentiate between target

and non-target objects. The focus of this section was on the signals present during a

search task where the visually discriminative features of the target were not percep-

32



tible until the time of fixation. This experiment demonstrated that signals related

to target detection offset to the time of eye fixations can be detected, and further-

more on a single-trial basis using machine learning techniques. By being able to do

this on a single-trial basis, we can annotate cognitive activity to the granularity of

individual fixations.

This is confirmatory evidence of our hypothesis that EEG and Eye Tracking

can be used to improve the effectiveness in searching for certain types of targets in

images.

In the following sections we will extend upon what was learned in this experiment

to examine the EEG signals under conditions where target stimuli are present in

complex natural scenes.

3.2 Fixations in Search

While models of search are continually updated to incorporate new empirical find-

ings, the highly diversified nature of visual search often restricts the generalisability

of these models. For instance, it has been shown that subjects can learn to pre

attentively detect objects with feature configurations initially implicated in necessi-

tating serial search (Sireteanu and Rettenbach, 2000). The adaptability of the visual

system in task specialisation has also shown to be modulated by factors like exper-

tise and practice in tasks such as airport security screen (McCarley et al. (2004))

and X-Ray screening (Ericsson and Lehmann (1996)). What has been found from

such research is that these increased search performances are often accompanied by

more efficient search patterns of fixations.

In order to examine a wider spectrum of signals present in visual search we

designed an experiment where subjects were required to search an array of pictures

displayed on-screen for those containing people while an EEG and an eye-tracker

were used to monitor their behaviour and reaction. In this experiment the subjects

were unrestricted in the order they searched the images (free viewing paradigm),
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hence allowing them to employ their own search strategy. This task was designed

using a natural image dataset so that it would encompass a wide variety of visual

properties and scene configurations across the target and non-target examples.

In this section we describe this experiment and present results from the eye

tracker. In Section 3.3 we evaluate the neural signals present around these events.

3.2.1 Experiment Outline

Subjects were required to search a screen for pictures containing people. In total

each person viewed 528 frames, where each frame contained 4 pictures. Of these

frames 240 contained a single target image, 268 zero target images, and 24 two tar-

get images. The experiment was broken into 24 blocks, with each block containing

22 image frames. An example of a frame is shown in Figure 3.6. All images were

sampled from the SUN dataset (Xiao et al., 2010), a 100,000 image dataset contain-

ing images annotated across a variety of categories. Target and non-targets were

randomly selected from this dataset in an unbiased fashion by selecting an equal

number of targets and non-targets from each category. A random sampling of 240

targets and 1,680 non-targets were taken to be used as the sampling for frames con-

taining no targets, and for frames containing one target. Another random sampling

of 48 targets and 48 non-targets were taken to be used for the frames containing 2

targets.

Each subject viewed the same 2,112 images, however, the order in which they

were displayed was randomised for each subject.

Prior to the start of each block, a countdown timer for 4 seconds appeared.

During this time the subject was instructed to fixate centrally on the screen. After

this a central white circle appeared centrally on the screen for 0.5 seconds, which

was followed by an image frame. Subjects were instructed upon the appearance of

the image frame to search and count those images containing people, and to try and

do so in an optimal fashion. After 2.5 seconds, the images disappeared, the white

circle reappeared, where the subject would redeploy their gaze to the centre of the
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screen and await the next frame.

Prior to the experiment a number of test runs were performed where a subject

was allowed to practice the task. Throughout the length of the experiment, no

subject ever viewed the same image twice.

Figure 3.6: Example of a frame where a user would search for an
image containing a person

3.2.2 Data collection

For data recording, we used the KT88-1016 EEG system. Signals were recorded

from channels F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, Oz.

Subjects were seated between 0.5 and 0.7 metres from the screen. Eye tracking

signals were also recorded using the Tobii eye tracker system. Further detail of the

eye tracking system used can be found in Appendix A.

A total of 8 subjects, 5 males and 3 females were recruited from the postgraduate
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and staff population with ages in the range of 23 to 45. All of these were right-

handed.

3.2.3 Methods

Since this was a free viewing search task a number of significant events and pa-

rameters needed to be accounted for from the eye tracking data. These included

eye blinks, the onset times of fixations onto images, the offset fixation times from

images, whether an image was revisited, and whether the subject began and ended

the frame staring at the central fixation cross.

Frames where a user failed to fixate on any image were discarded from the data.

3.2.4 Eye Tracking Results

Shown in Table 3.2 are the total image view counts across subjects. These results

indicate that for the most part subjects were able to view all the images within the

presentation time.

While subjects viewed the majority of images, there were other significant events

that needed to be captured from the data:

• The subject’s gaze was already deployed at the location of the image when it

appeared

• The subject’s gaze remained deployed at the location of the image when it

disappeared

• The subject entered the image while blinking

• The subject blinked during the viewing of the image

• The subject blinked leaving the image

We present the total image count across subjects excluding these events in Table

3.3.
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Subject Total 1-T 1-NT NT 2-T 2NT

1 2069 238 703 1037 48 43
2 2049 238 682 1035 48 46
3 2089 239 706 1051 48 45
4 1808 237 572 915 47 37
5 2105 239 715 1055 48 48
6 1094 208 271 563 39 13
7 2040 232 671 1042 48 47
8 2064 239 692 1043 48 42

Table 3.2: Breakdown of the number of images viewed across the
frame types. 1-T is target view counts from single target
frames, 1-NT is non-target view counts from single tar-
get frames, NT is non-target view counts from non-target
frames only, 2-T is target counts from frames containing 2
targets, and 2-NT is non-target view counts from frames
containing 2 targets

Subject Total 1-T 1-NT NT 2-T 2NT

1 1844 215 617 934 45 33
2 1741 186 588 892 40 35
3 1935 224 630 1001 42 38
4 1416 208 398 749 35 26
5 1942 224 651 982 43 42
6 1019 196 251 524 36 12
7 1749 200 549 922 43 35
8 1907 218 622 996 41 30

Table 3.3: Breakdown of the number of images viewed across the
frame types without noise. 1-T is target view counts from
single target frames, 1-NT is non-target view counts from
single target frames, NT is non-target view counts from
non-target frames only, 2-T is target counts from frames
containing 2 targets, and 2-NT is non-target view counts
from frames containing 2 targets
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Subject 1st 2nd 3rd 4th 5th 6th 7th Total

1 81 85 40 20 0 0 0 226
2 87 59 44 19 2 0 0 211
3 163 40 16 8 0 0 0 227
4 137 55 11 10 0 0 0 213
5 145 50 22 18 0 0 0 235
6 132 43 16 7 0 0 0 198
7 65 97 38 20 1 0 0 221
8 139 51 23 11 0 0 0 224

Table 3.4: Breakdown of the order in which target images were
viewed on frames containing one target excluding noisey
events

In Table 3.4 we show the number of targets viewed across the order the images

were viewed. Similarly, we show the same for the non-target images in Figure 3.5.

What can be seen from these results is that subject are more likely to fixate on a

target than a non-target with their first image fixation. While these results suggest

subjects fixated on salient targets in preference, there is evidence that a search

strategy was followed by subjects. In Table 3.6 we show the total counts of first

fixations to each of the 4 locations on the screen. In Table 3.7 we recalibrate these

values as proportions of the total number of frames in which images were viewed.

Here we can see on average almost 50% of the time subjects fixated on the upper

left corner as their first fixation. This is not a bias introduced by the locations of the

target images in the frames as can be seen in Table 3.8. This evidence suggests that

subjects employed a search strategy of following a set search path of the images,

unless an image was saliently detected early in the process. Subjects were not given

any particular strategy to follow, although the evidence suggests they all followed a

similar search strategy.

Although subjects may have followed a search strategy part of the time, there

were common target images looked at first between the subjects. These are shown in

Table 3.9. This suggests there existed salient target images, and subjects may have

known before fixation they were targets. Examples of these are shown in Figure 3.7.

While trends exist in which images were looked at first, little difference exists

38



Figure 3.7: (a) Example of one of the lowest ranked targets, and (b)
Example of one of the highest ranked targets

in the times to the deployment of gaze on these images from the frame onset time.

In Figure 3.8 we summarise these results across subjects with a histogram, and

additionally show an AUC measure of discrimination possible between these two

distributions.

In Figure 3.9 we show that differences were more clearly evident for the distri-

butions of time spent on the image between target and non-target cases (AUC=0.8,

by bootstrapping a significance value we find that an AUC=0.537 has less than a

1% likelihood of chance occurrence - i.e. p <0.01).

Similarly, in Figure 3.10 we show a similar analysis using the distribution of

times from the frame onset to the time gaze transferred from the image (AUC=0.82,

similarly with bootstrapping a significance value we find with an AUC=0.537 with

a p <0.01).

While most subjects followed a similar search strategy, Subject 6 employed a

search strategy where they did not scan all locations, and only looked at those

where they felt confident a target may lie. This is the reason for reduced images

viewed count for this subject.
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Figure 3.8: Collective histogram across subjects showing the time to
the first image fixation for targets and non-targets

Subject 1st 2nd 3rd 4th 5th 6th 7th Total

1 129 142 175 160 36 4 0 646
2 138 161 161 134 14 0 0 609
3 70 179 207 159 17 4 0 636
4 91 129 122 59 2 1 0 404
5 93 174 190 179 27 4 0 667
6 85 90 53 24 1 0 0 253
7 149 128 155 122 34 12 3 604
8 95 178 191 165 8 0 0 637

Table 3.5: Breakdown of the order in which non-target images were
viewed on frames containing one target excluding noisy
events
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Figure 3.9: Collective histogram across subjects showing the time
spent on the first image fixated upon for targets and
non-targets

Subject Location 1 Location 2 Location 3 Location 4 Total

s1 350 80 56 38 524
s2 339 76 69 41 525
s3 203 118 116 89 526
s4 231 110 103 83 527
s5 236 123 80 87 526
s6 158 55 151 124 488
s7 359 66 52 42 519
s8 159 153 107 107 526

Table 3.6: Count of image locations visited first by subjects across
all frames
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Figure 3.10: Collective histogram across subjects showing the time
from frame onset to the time of fixation offset for the
first image looked at for both targets and non-targets

Subject Location 1 Location 2 Location 3 Location 4

s1 0.67 0.15 0.11 0.07
s2 0.65 0.14 0.13 0.08
s3 0.39 0.22 0.22 0.17
s4 0.44 0.21 0.20 0.16
s5 0.45 0.23 0.15 0.17
s6 0.32 0.11 0.31 0.25
s7 0.69 0.13 0.10 0.08
s8 0.30 0.29 0.20 0.20

Average 0.49 0.19 0.18 0.15
Standard Dev. 0.16 0.06 0.07 0.07

Table 3.7: Proportions of image locations viewed first across all
frames
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Subject Location 1 Location 2 Location 3 Location 4
s1 70 73 63 82
s2 82 72 71 63
s3 83 74 58 73
s4 65 83 68 72
s5 77 73 73 65
s6 82 58 74 74
s7 56 81 87 64
s8 68 80 64 76

Average 72.88 74.25 69.75 71.13

Table 3.8: Distribution (random) of target image locations across all
frames

Shared viewers Count
8 5
7 19
6 33
5 41
4 57
3 37
2 31
1 14
0 3

Table 3.9: Counts of the number of targets visited in common on
first fixation for frames containing one target
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3.3 Discriminative Signals Present During Search

In this section we explore the neural signals present with eye fixations during the

visual search task outlined in 3.2.1.

3.3.1 Analysis techniques used to identify brain signals

Recently there has been a growing interest in using machine learning techniques to

analyse EEG and other neural data to understand and identify significant channels

and time portions of the signal (Gerson et al., 2005) and (Philiastides et al., 2006).

In a search task necessitating eye movements there are a variety of signals and

timing events which we can analyse the EEG signals in relation to. For the experi-

ment described in Section 3.2 we might analyse EEG signals offset to the time the

frame appeared on screen, the first fixation within an image, or the offset time of

the saccade when the subject left the image. Furthermore, the signals generated in

relation to one event may be present in the other, creating dependencies.

Additionally, eye movements can create artifacts in EEG signals creating a situa-

tion where it can be difficult to disentangle what activity comes from neural sources,

and what comes from EOG sources. This is especially the case for frontal recording

sites. Methods have been proposed to overcome some aspects of these limitations

such as using tools like ICA (Independent Component Analysis). ICA is a case of

blind source separation, and uses statistical properties of a set of signals to derive a

new set of signals that are maximally independent of each other in a first and higher

order statistical sense. Here, derived ICA signals implicated in eye movements can

be removed, and the ICA signals can be projected back to their original space with

the infringing signals removed. While ICA might be able to identify component

signals of the EEG related to eye movements, the infringing signals may still remain

entangled with their neural counterparts due to their time-dependent nature. In

this thesis since we can obtain quantitative measures of discriminative power to aid

in disentangling these signals we use a machine learning analysis alone rather than
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an ICA based approach.

3.3.2 Machine learning on EEG and the eye tracking signal

With the wide variety of events captured, we need a way of identifying the presence

of discriminating neural signals that can occur in combination with electrical activity

introduced into the EEG signal by eye movements. Differences in the distribution

for dwell times on targets in comparison to non-targets exist that in turn introduce

artefacts related to eye movement activity into the EEG signal.

In Figure 3.11 we show a combination of graphs offset to the same time index that

can be used to identify time regions of discriminative activity and their potential

sources in the EEG and eye tracking signals. Here we are looking at the discrim-

inative activity present between targets and non-targets at the first deployment of

gaze in frames containing one target. Shown in the first graph is the timeline of

discriminative activity present that be detected using a SVM with a linear kernel

using all the EEG signals. An overlapping sliding window approach was used, where

on each iteration a 200ms time window was extracted from the available target and

non-target example signals. A testing set containing 20 examples of each class was

made, and the remaining examples were used to train the SVM model. For each of

these iterations an AUC (Area Under Curve) measurement was taken of the ROC

(Receiver Operating Characteristic) curve as the performance of the model on the

test set, indicating the separability of the classes in this time region. An average of

these iterations is shown on the second graph. Additionally shown on the second

graph are the AUC values using the same outlined process, but for using anterior

(frontal) channels: F3, F4, F7, Fz, F8 and posterior (back) channels: P3, P4, T5,

Oz, T6.

On the third graph we show an average distance signal for target and non-target

image fixations. Here the raw signals that are averaged are derived by measuring

the distance between the successive measured points of gaze over time. In this way

saccades that are time aligned will average to create deflections indicating periods
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of eye movement. On the second graph we also show a SVM analysis like that

performed on the EEG signal for these eye movements signals (Eye signal).

On the fourth graph we show a pair of histograms plots. In this case they

display the first time of fixation relative to the frame start time for the target and

non-target cases. Similarly on the fifth graph we show a pair of histograms, but here

we are looking at the fixation offset time from the first image viewed relative to the

onset time. Expressing the data in this fashion allows us visualise the sources and

strengths of differentiating activity present in the EEG and eye tracking signals.

Using the same technique we can visualise patterns of discriminatory activity

when the signals are aligned to the time of the image fixation (Figure 3.12). In

this case, however, differentiating activity may be present before the onset time.

Shown on the fourth graph are the frame onset times, with the fifth graph showing

the fixation offset times for this image. Figure 3.13 shows a similar analysis for the

same dataset, but aligned to the time of the first image fixation offset. Shown on

the third graph are the frame onset times, while shown on the 5th are the fixation

onset times for the image.
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Figure 3.11: Temporally aligned discrimination example graph cen-
tred on the frame onset time showing differentiating
activity related to target image detection compared to
non-target image detection
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Figure 3.12: Temporally aligned discrimination example graph cen-
tred on the fixation onset time showing differentiating
activity related to target image detection compared to
non-target image detection
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Figure 3.13: Temporally aligned discrimination example graph for
subject 4 centred on the fixation offset time showing
differentiating activity related to target image detection
compared to non-target image detection
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EEG Anterior Posterior Eye
Subject Time AUC Time AUC Time AUC Time AUC

s1 0.45 0.69 0.5 0.74 0.5 0.66 0.4 0.67
s2 1 0.73 0.525 0.68 1 0.76 0.45 0.71
s3 1.625 0.59 0.075 0.56 0.95 0.6 1.4 0.63
s4 0.95 0.76 0.7 0.63 0.375 0.62 0.45 0.74
s5 1.05 0.77 0.825 0.65 1.075 0.7 0.75 0.62
s6 1.175 0.64 1.1 0.6 1.175 0.6 0.5 0.84
s7 0.65 0.6 0.575 0.69 0.375 0.57 0.4 0.62
s8 0.95 0.73 1.275 0.69 0.7 0.73 0.5 0.75

Average 0.98 0.69 0.70 0.66 0.77 0.66 0.61 0.70
Standard Dev. 0.35 0.07 0.37 0.06 0.32 0.07 0.34 0.08

Table 3.10: Subject’s peak discrimination times from signal sources
within -2,2 seconds locked to the frame onset time.
Shown are peaks for anterior EEG channels, posterior
EEG channels, all EEG channels, and eye tracker signal

3.3.3 Sources of Discriminative EEG activity

In the previous section we showed the discriminative activity present between targets

and non-targets at the first deployment of gaze in frames containing one target.

Here we will extend this by showing the time points of the EEG signal that have

EEG discriminative activity. In Tables 3.10, 3.11 and 3.12 we summarise the peak

times of discriminative activity within the signal sources. The temporally aligned

discrimination graphs from which these figures are derived are shown in Appendix

C for all subjects, and alignment times.

Across all subjects we can see the accuracy of discriminative EEG activity is

highest around the time of the offset of fixation. In Table 3.14 we show that there

is a greater dwell time on target images compared to non-target images, implicat-

ing motor response initiation as a source of this discriminative activity in the EEG

signal. Makeig et al. (2004) provides a decomposition of the EEG signals related to

decision making processes occurring in tandem with behavioural responses. Using

blind source separation techniques they show that a number of underlying compo-

nents are present in the EEG signal, but can be masqueraded and seen only as one

component due to their overlapping time periods of activity. Using a paired two-
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EEG Anterior Posterior Eye
Subject Time AUC Time AUC Time AUC Time AUC

s1 0.25 0.73 0.25 0.73 0.375 0.71 0.25 0.72
s2 0.4 0.77 0.3 0.77 0.4 0.78 0.25 0.76
s3 0.35 0.66 1.525 0.59 0.325 0.7 0.35 0.8
s4 0.65 0.81 0.275 0.65 0.4 0.75 0.25 0.83
s5 0.325 0.69 1.675 0.66 0.725 0.66 0.5 0.6
s6 0.8 0.66 1.425 0.64 0.9 0.66 0.275 0.87
s7 0.55 0.68 0.35 0.72 0.3 0.66 0.25 0.72
s8 0.625 0.81 1.05 0.68 0.525 0.74 0.3 0.83

Average 0.49 0.73 0.86 0.68 0.49 0.71 0.30 0.77
Standard Dev. 0.19 0.06 0.63 0.06 0.21 0.05 0.09 0.09

Table 3.11: Subject’s peak discrimination times from signal sources
within -2,2 seconds locked to the first image fixation
onset time. Shown are peaks for anterior EEG chan-
nels, posterior EEG channels, all EEG channels, and
eye tracker signal

EEG Anterior Posterior Eye
Subject Time AUC Time AUC Time AUC Time AUC

s1 0.05 0.8 -0.15 0.7 -0.15 0.75 -0.2 0.65
s2 0.175 0.78 -0.175 0.69 0.175 0.76 -0.225 0.72
s3 -0.125 0.74 -0.025 0.57 -0.125 0.7 -0.25 0.77
s4 0.15 0.88 -0.05 0.7 0.15 0.74 -0.225 0.82
s5 0.175 0.8 0.2 0.68 0.2 0.79 0.05 0.53
s6 0.2 0.81 0.075 0.53 0.15 0.8 -0.2 0.83
s7 -0.125 0.75 0.025 0.72 -0.15 0.77 -0.25 0.72
s8 0.175 0.84 0.225 0.73 0 0.79 -0.225 0.75

Average 0.08 0.80 0.02 0.67 0.03 0.76 -0.19 0.72
Standard Dev. 0.14 0.05 0.15 0.07 0.16 0.03 0.10 0.10

Table 3.12: Subject’s peak discrimination times from signal sources
within -.25,.25 seconds to the first image fixation offset
time. Shown are peaks for anterior EEG channels, pos-
terior EEG channels, all EEG channels, and eye tracker
signal

51



Subject Targets Non Targets All

1 0.21 0.18 0.195
2 0.28 0.26 0.27
3 0.52 0.56 0.54
4 0.31 0.3 0.305
5 0.41 0.41 0.41
6 0.32 0.28 0.3
7 0.24 0.22 0.23
8 0.28 0.27 0.275

Average 0.32 0.31 0.32
Standard Dev. 0.10 0.12 0.11

Table 3.13: Average time to first image fixation across subjects bro-
ken down by target, non-targets and total counts

Subject Targets Non Targets All

1 0.56 0.29 0.425
2 0.42 0.24 0.33
3 0.63 0.35 0.49
4 0.43 0.27 0.35
5 0.56 0.46 0.51
6 0.54 0.25 0.395
7 0.6 0.35 0.475
8 0.68 0.35 0.515

Average 0.55 0.32 0.44
Standard Deviation 0.09 0.07 0.07

Table 3.14: Average time on first image fixation across subjects bro-
ken down by target, non-targets and total counts

Subject Targets Non Targets All

1 0.77 0.47 0.62
2 0.7 0.5 0.6
3 1.15 0.91 1.03
4 0.74 0.57 0.655
5 0.97 0.87 0.92
6 0.86 0.53 0.695
7 0.84 0.57 0.705
8 0.96 0.62 0.79

Average 0.87 0.63 0.75
Standard Deviation 0.15 0.17 0.15

Table 3.15: Average time from the frame onset toe the first images
fixation offset across subjects broken down by target,
non-targets and total counts
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Subject Target counts Non Target counts

s1 45 129
s2 54 138
s3 84 70
s4 76 91
s5 83 93
s6 77 85
s7 35 149
s8 79 95

Average 66.625 106.25

Table 3.16: The number of fixation related events for target images
viewed first in common with at least 5 other people as
their first fixation also, shown with the count of non-
target images viewed first from frames containing one
target

tailed t test on the AUCs of the posterior and anterior channels (Table 3.12), we

show discriminative activity was greater across subjects at the posterior channels

with t(7)=3.6056, p=0.0087. This further indicates that the sources of discrimina-

tive information learned at this time are from neural sources and not purely EOG

related signals.

3.4 Salience in Search

In Section 3.3 we examined the scope of signals present around eye fixation events in

search. Eye movement patterns existed indicating that some images were salient. In

this section we further observe that this is the case in another search task involving

a subset of the subjects from the experiment in Section 3.2.

3.4.1 Target salience experiment

In Section. 3.2.4 we presented an analysis of subjects’ eye movements showing that

they tended to focus their gaze on target images first. Here we further investigate

differentiating signal activity surrounding deployments of gaze in salient images

using a machine learning analysis similar to earlier in this chapter.
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3.4.2 Experiment Outline

Subjects who participated in the experiment outlined in Section 3.2 were given the

option to participate in a further experiment involving search. Of the 8 participants,

6 expressed interest and agreed to take part. The subjects were required to search

images for those containing people, but unlike the first experiment only one image

was presented at a time. In total each subject viewed 200 images, with 100 images

containing targets (people). The experiment was broken in 10 blocks, with each

block containing 20 images. The image set used for this task was a random sampling

of images containing one target or no targets from the 900 images used in a previous

study investigating fixations in search using natural images (Ehinger et al. (2009)).

Prior to the start of each block a countdown appeared on screen where subjects were

instructed to deploy their gaze centrally on the screen and to prepare to perform the

task. Each image was presented for 2.5 seconds, where a centrally fixated circle then

appeared for 0.5 seconds. Subjects were instructed to redeploy their gaze within this

circle upon its appearance to await the next image. At the end of each block subjects

reported their target counts. The image orders were randomised across all blocks for

each user. While subjects viewed the same 200 images, they did not view them in

the same sequence. No subject viewed the same image twice throughout the length

of the experiment.

The images were comprised of urban scenes of roads with some containing people.

While a number of these images contained elements such as windows, traffic, or other

possible locations for targets, subjects were instructed that targets would always be

obviously exposed and not obscured by elements in the image.

Targets regions were manually annotated and defined within the image as any

point on or within a perimeter drawn around the outline of each target.

Data collection was performed under the same conditions as described in sub-

section 3.2.2 using the same equipment for EEG and eye track recording.

54



Figure 3.14: Target example showing geometric overlay to explain
ratio distance calculation
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3.4.3 Eye Tracking Results

This experiment required a different search strategy from the previous experiment

with a primary difference being that frames only contained one target i.e. purposeful

driven search within the scope of the task ends once the target is detected. We are

primarily interested in the eye behaviour up to the point of the target detection (i.e.

fixation on the target).

Shown in Figure 3.15 is a histogram of the angles of the first deployment of

gaze relative to the target location for target images across all subjects. The first

deployment of gaze is calculated as the first fixation over 40 pixels from the start

point of the image presentation. The target point is defined as the closest point on

the perimeter of the target to the first point of fixation. From this figure we can see

subjects’ first eye movements were towards the target locations. Although this was

the case, some subjects tended to look towards the target in two stages with the

first fixation in the direction of the target, and the second fixation upon the target.

In Figure 3.16 we show the ratio distance left to the target on the first deployment

of gaze across all subjects. Ratio distance is calculated as a translated distance left

to be travelled to the nearest target perimeter point divided by the total distance

to be travelled to the nearest target perimeter point from the originating start gaze

point. In Figure 3.14 we show a geometric overlay with 4 marked points being S

as the gaze start point, E as the first fixation point, T as the closest target point

and I. I is calculated as the point of intersection for the perpendicular line from the

line segment between T and S. Ratio distance to target is then calculated as the

division of line segments TI/TS. This measurement was taken instead of TE/TS as

the latter distance measurement was more sensitive to angle changes.

In Figure 3.17 we further summarise these results on a scatter plot generated us-

ing the angle to target measurement combined with the ratio distance left to target.

Here we can see that while subjects tend look in the direction of the target with

their first eye movement, they often fail to look as far as the target. In Figure 3.18

we show a scatter plot showing the trend between ratio distance and the remaining
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Figure 3.15: Histogram showing the angle of the first deployment of
gaze relative to the target location for target images
across all subjects
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Figure 3.16: Histogram showing the ratio distance left to the target
on the first deployment of gaze across all subjects
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Figure 3.17: Scatter plot showing the trend between angle to target
and ratio distance left to target using data from all
subjects
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Figure 3.18: Scatter plot showing the trend between ratio distance
and the remaining distance left to the target

distance left to the target. In this we can see that an increase in ratio distance has

a counterpart increase in remaining distance left to target. This implies that while

subjects often look in the right target direction first, they are only looking in the

area of where the target is, and then with the subsequent fixations on the target.

In Figure 3.19 we can see a histogram plot showing that the distance left to

target on the first deployment of gaze. From this we can see that subjects were in

the vicinity of the target with the first deployment of gaze. It is the time of this first

fixation we use as the target onset fixation time later when analysing onset time to

the target.

In Figure 3.20 we present a histogram plot showing the distance from the start

point for first deployment of gaze for target and non-targets. Here we can see that

subjects tended to go further with their first fixation in the presence of a target.
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Figure 3.19: Histogram plot showing the distance left to target on
the first deployment of gaze
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Figure 3.20: Histogram plot showing the distance from the start
point for first deployment of gaze for target and non-
targets
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Figure 3.21: Histogram plot showing the time from the start point
for first deployment of gaze for target and non-targets

While this is the case interestingly there are no significant differences in time between

the time to these fixations as show in 3.21.

In Figure 3.22 we compare the distance from the starting point between the first

fixations over 40 pixels in length (Method 1) with the first fixations within 180 pixels

of a target point location for target frames (Method 2). What we can see here is

that there are differences in the distance between these two different methods of

annotating the target onset fixation. In Figure 3.23 we show that there is also a

time difference to what might be considered as the target onset fixation.

3.4.4 Discriminative Signals Present During Search Task

In this subsection we show, using the same machine learning analysis used previously

in Section 3.3, the temporally defined sources of discriminative information in the
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Figure 3.22: Histogram plot showing the difference in distance from
the start point for target fixation between two different
method to assess target onset fixation
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Figure 3.23: Histogram plot showing the difference in the time since
frame start for target onset fixations between two dif-
ferent method to assess target onset fixation
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EEG and eye tracking signals for this experiment. While the analysis technique

used here applies the same parameters and constraints, the method used to extract

the fixation onset time parameter is different from that in Section 3.3. In the former

experiment we had defined spatial regions where a target could exist (i.e. image

boxes) while in this experiment the target may occur at any location within the

image. In the previous subsection we outlined 2 methods of extracting an onset

fixation. To generate the signal discriminative maps and results in this section

we used the time point of the first deployment of gaze as the target/non-target

onset fixation time. A reason for this was to choose a later fixation closer to the

target further confounds what we are assessing since we are introducing a posteriori

knowledge into the process (of where the target is). Additionally, unlike the previous

experiment where we had a defined offset time of when the subject left the image

and deployed their gaze to assess the next image, here we do not. Subjects in

the this experiment displayed various behaviours like lingering on the target, or

investigating other interesting features of the image. With the wide variety of post-

target detection behaviours present, assessing a fixation offset time was difficult as

these behaviours were inconsistent within and across subjects. For this reason we

only investigate differentiating signal activity with regard to the frame onset times

and the first fixation onset times.

Whilst these search pattern behaviours have implications on the meaningful util-

isation and development of systems driven by eye tracking and EEG signals, they

furthermore confirm that discriminative signals are present in the various sensor

modalities.

In Figure 3.24 and Figure 3.25 we show examples of these patterns of discrimi-

native activity mapped in time for the frame onset time, and the first deployment of

gaze for one subject. The remainder of these graphs are in a later Appendix C for

all subjects. In addition we summarise these graphs in Table 3.17 and Table 3.18

respectively.
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Figure 3.24: Temporally aligned discrimination graph example for
subject 4 centred on the frame onset time showing dif-
ferentiating activity related to target detection com-
pared to non-target detection
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Figure 3.25: Temporally aligned discrimination graph for subject 4
example centred on the first deployment of gaze onset
time showing differentiating activity related to target
detection compared to non-target detection
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EEG Anterior Posterior Eye
Subject Time AUC Time AUC Time AUC Time AUC

s2 0.775 0.7 0.6 0.59 0.55 0.73 0.875 0.59
s3 0.8 0.68 1.925 0.57 0.875 0.67 0.25 0.71
s4 0.65 0.8 0.55 0.62 0.675 0.76 0.475 0.76
s5 0.825 0.7 0.025 0.53 0.975 0.58 0.85 0.56
s7 0.325 0.67 0.325 0.64 1.3 0.62 0.225 0.72
s8 0.35 0.77 1.3 0.55 0.35 0.75 0.15 0.81

Average 0.62 0.72 0.79 0.58 0.79 0.69 0.47 0.69
Standard Dev. 0.23 0.05 0.70 0.04 0.34 0.07 0.32 0.10

Table 3.17: Subject’s peak discrimination times from signal sources
within -2,2 seconds locked to the frame onset time.
Shown are peaks for anterior EEG channels, posterior
EEG channels, all EEG channels, and eye tracker sig-
nal.

EEG Anterior Posterior Eye
Subject Time AUC Time AUC Time AUC Time AUC

s2 0.65 0.71 0.15 0.68 0.1 0.73 -0.075 0.71
s3 0.6 0.66 -0.675 0.57 0.45 0.67 0.6 0.72
s4 0.375 0.8 0.1 0.67 0.2 0.78 -0.075 0.76
s5 0.15 0.62 -1.25 0.61 1.4 0.63 1.475 0.67
s7 -1.05 0.63 0.95 0.58 1.8 0.59 -0.05 0.63
s8 0.65 0.75 -0.5 0.68 -0.025 0.76 0.275 0.79

Average 0.23 0.70 -0.20 0.63 0.65 0.69 0.36 0.71
Standard Dev. 0.66 0.07 0.77 0.05 0.76 0.08 0.61 0.06

Table 3.18: Subjects’ discrimination times from signal sources
within -2,2 seconds locked to the onset time of the first
deployment of gaze. Shown are peaks for anterior EEG
channels, posterior EEG channels, all EEG channels,
and eye tracker signal.
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3.5 Neural Signals in Search

In this chapter we have shown the presence of a variety of signals present in image

target search from EEG and eye tracking sensors. The described experiments em-

ployed different paradigms and task constraints but all demonstrated differentiated

patterns of activity from signal sources for target detection involving search with

eye movements.

In the first experiment (Section 3.1 ) subjects were required to visit the targets

in a set order, and had no prior knowledge as to whether the object was a target

until fixation. In the second experiment (Section 3.2) subjects were free to search

the 4 corner images in any order but many choose to follow a set search pattern. In

the third experiment (Section 3.4) there was no set search pattern.

From the temporal discrimination maps presented for these experiments we may

attribute sources of differentiating activity as being driven by a neural source, or by

eye movements alone.

An evident property of these signals is that the discriminative time periods

whether aligned to frame display time, fixation onset, or fixation offset are dif-

ferentiated across subjects. This may be accounted for by differences between the

subject’s attentional strategies and employed search behaviours.

The spatio-temporal presence of ERP phenomena such as the P3 have been

shown to be modulated by task constraints and attentional engagement strategies

(Olofsson et al. (2008)). Similarly, other ERP phenomena are present like the late

posterior negativity in tasks involving increased action monitoring demands (Jo-

hansson and Mecklinger (2003)). Although stereotyped responses are present for

particular experimental paradigms, individual differences in attentional strategy,

where allowed within the task constraints, may be responsible for invoking idiosyn-

cratic EEG phenomena particular to that individual and/or task. For instance in

Experiment 1 we observe a late posterior negativity occurring in relation to targets.

An explanation for this is the task constraint of not being allowed to re-visit an
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object stimuli which causes a subject to call into question whether the previous

object visited was a target, while simultaneously maintaining a the task require-

ment of visiting the other object stimuli. (Pohlmeyer et al., 2011a) observe a late

differentiating component like this in an RSVP search paradigm, and suggested its

presence may be due to the response locked nature of a self-monitoring process (i.e.

the subject is perhaps similarly calling into question whether a previous image was

a target or not).

A number of time regions for Experiment 2 and 3 were implicated as containing

neural sources of discriminative information. In Appendix C we show the average

scalp plots of EEG activity, along with their temporal discrimination maps.

3.6 Conclusion

In this Chapter we have shown the presence of neural signals that occur in com-

bination with eye movements during during visual search. By understanding the

paradigms and scenarios in which these signals can be elicited allows us to make

informed decisions in considering the applications that may be ultimately driven by

them. EEG signals used in this way can allow us to bridge a semantic gap, providing

a way to measure correlates of the implicit and subjective reactions to stimuli that

may be otherwise unavailable.

Although the patterns of brain activity vary across subjects, and between tasks,

differentiable signals exist related to the detection and recognition of targets that

can be used to drive image search applications.

In the next chapter we will evaluate strategies of how these signal sources can

be used in combination with each other.
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Chapter 4

Application of EEG and Eye

Movement signals

In this chapter we show how both EEG and eye tracking signals can be used to

assist the detection of targets as they appear in images. In the previous chapter

we described a number of signals sources which we found contained discriminative

information with respect to events like eye movements that allowed the detection of

targets in and amongst images. Here we examine how we can combine such signals

together into one integrated detection, and we investigate whether the different

signal sources are complimentary when used in tandem.

4.1 Classifying Signal Sources

In the previous chapter we outlined and presented results for 2 experiments (Exper-

iments 2 and 3) involving users in a target search task, in Section 3.2 and Section

3.4. Both EEG and eye tracking signals from our participants in these experiments

demonstrated differentiable activity levels when the users viewed either target or

non-target images and when these signals were locked to a number time points in-

cluding frame onset, target eye fixation onset, and target eye fixation offset. In this

section we present results on the classification of these signals when taken across
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larger time windows than what was used in the previous chapter’s analysis.

4.1.1 Experiment 2 - Further Analysis

In the analysis given in the previous chapter for experiment 2 we focused on elu-

cidating time periods of differentiating signal activity present in respect to various

time events involved with selection and deployments of eye gaze in images. Here we

present results for the classification of these signals when taken when we use wider

time windows to capture discriminative activity.

Although our subjects had varying levels of success in selecting the target image

with their first gaze deployment, some selected the target image second. Thus we

think it useful to additionally present results for the second image viewed across

subjects.

As a number of signal sources and time indices demonstrated discriminative

activity across subjects, we set out to analyse the discriminative information present

in each. In order to do this, we extracted a number of feature vectors with each

offset to a particular event like a frame offset, and to a signal source like EEG. These

are described in Tables 4.1, 4.2 and 4.3. In these tables we summarise the features

extracted showing the signal source and time regions.

In order to classify these signals we used a machine learning algorithm known

as a Support Vector Machine (SVM) with a linear kernel. In Table 4.4 we show

the number of training examples available for this learning process. In order to

measure classification accuracy we used a repeated random sub-sampling validation

approach where on each iteration we randomly sampled a testing set of 10 target

and 10 non-target instances, and then using the remainder of instances we trained

the model with the largest possible equal number of target and non-targets. This

model was then benchmarked upon the test set to obtain a ROC-AUC score. 20

iterations of this process were carried out, and the results were averaged. In Tables

4.5 we show the average of these ROC-AUC scores for the average of these iterations.

Generating a bootstrapped AUC value for p @ .01 for this classification/evaluation
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Feature Name Source Time Region (ms)

f1 frame offset 0,1000
f2 frame offset 0,500
f3 frame offset 0,2000
f4 image onset -1000,0
f5 image onset 0,1000
f6 image onset -500,0
f7 image onset 0,500
f8 image onset -500,500
f9 image onset -1000,1000
f10 image onset 0,2000
f11 image offset -1000,0
f12 image offset 0,1000
f13 image offset -500,0
f14 image offset 0,500
f15 image offset -500,500
f16 image offset -1000,1000
f17 image offset 0,1000

Table 4.1: List of features set names and timing sources taken from
EEG signal

Feature Name Source Time Region (ms)
f19 frame offset 0,1000
f21 frame offset 0,500
f22 frame offset 0,2000
f23 image onset -1000,0
f24 image onset 0,1000
f25 image onset -500,0
f26 image onset 0,500
f27 image onset -500,500
f28 image onset -1000,1000
f29 image onset 0,2000
f30 image offset -1000,0
f31 image offset 0,1000
f32 image offset -500,0
f33 image offset 0,500
f34 image offset -500,500
f35 image offset -1000,1000
f36 image offset 0,1000

Table 4.2: List of features set names and timing sources taken from
Eye signal
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Feature Name Source
f37 Time to fixation onset from frame onset
f38 Time spent on image
f29 Time to fixation offset from frame onset

Table 4.3: List of additional features set names and timing sources
taken from Eye movement data

Subject Targets Non-Targets
1 81 129
2 87 138
3 163 70
4 137 91
5 145 93
6 132 85
7 65 149
8 139 95

Table 4.4: Count of frames available for each subject used for clas-
sification analysis for Experiment 2 Comparison 1

process revealed an AUC=.5745. This would indicate the probability of a selected

AUC result being above this number by chance being at p=.01. This indicates

strongly significant classification results.

Although some subjects performed more poorly than others on the task for

Experiment 2, subjects 1 and 7 had greater counts for finding the target image with

their second deployment of gaze outside of the first image. Using the described

classification analysis applied to the data recorded for the first deployment of gaze,

we similarly applied this analysis to the second image fixated upon (we refer to

this as comparison 2). The results of this are presented in table 4.7. Non-target

examples were extracted from frames containing no target images. The relative

counts of training examples are provided in Table 4.6.

4.1.2 Experiment 3 - Further Analysis

In this subsection we present results from Experiment 3 using the same analysis as

outlined in the previous subsection. To clarify Experiment 3 refers to the experiment
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Feature S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 Average
f1 0.651 0.629 0.468 0.736 0.614 0.593 0.623 0.641 0.619
f2 0.653 0.472 0.497 0.588 0.509 0.596 0.513 0.474 0.538
f3 0.697 0.601 0.465 0.713 0.655 0.591 0.519 0.660 0.612
f4 0.507 0.454 0.496 0.528 0.476 0.560 0.517 0.530 0.508
f5 0.754 0.664 0.649 0.778 0.685 0.689 0.647 0.788 0.706
f6 0.493 0.486 0.466 0.547 0.532 0.483 0.542 0.422 0.496
f7 0.698 0.683 0.518 0.727 0.667 0.710 0.650 0.713 0.670
f8 0.674 0.625 0.529 0.687 0.639 0.473 0.693 0.646 0.620
f9 0.739 0.652 0.572 0.729 0.662 0.506 0.625 0.692 0.647
f10 0.738 0.651 0.591 0.753 0.676 0.578 0.575 0.763 0.665
f11 0.687 0.681 0.702 0.753 0.665 0.655 0.647 0.776 0.696
f12 0.711 0.747 0.692 0.858 0.789 0.785 0.623 0.882 0.761
f13 0.717 0.513 0.746 0.740 0.661 0.679 0.695 0.803 0.694
f14 0.758 0.807 0.595 0.905 0.789 0.810 0.559 0.842 0.758
f15 0.725 0.708 0.735 0.885 0.785 0.784 0.719 0.852 0.774
f16 0.681 0.772 0.711 0.852 0.725 0.732 0.711 0.848 0.754
f17 0.663 0.731 0.653 0.832 0.750 0.687 0.541 0.850 0.713
f19 0.714 0.655 0.503 0.719 0.590 0.839 0.581 0.773 0.671
f21 0.706 0.610 0.500 0.462 0.466 0.724 0.625 0.615 0.588
f22 0.754 0.610 0.560 0.648 0.525 0.822 0.594 0.774 0.661
f23 0.490 0.521 0.556 0.576 0.465 0.483 0.516 0.500 0.513
f24 0.726 0.665 0.781 0.835 0.612 0.889 0.711 0.861 0.760
f25 0.419 0.508 0.587 0.565 0.509 0.454 0.499 0.498 0.505
f26 0.707 0.712 0.848 0.860 0.627 0.899 0.766 0.871 0.786
f27 0.700 0.712 0.807 0.843 0.577 0.889 0.718 0.835 0.760
f28 0.635 0.657 0.733 0.818 0.578 0.851 0.651 0.789 0.714
f29 0.652 0.645 0.665 0.796 0.587 0.863 0.624 0.850 0.710
f30 0.587 0.742 0.782 0.824 0.566 0.892 0.662 0.800 0.732
f31 0.626 0.521 0.579 0.686 0.602 0.568 0.567 0.702 0.606
f32 0.669 0.753 0.730 0.812 0.588 0.865 0.736 0.835 0.748
f33 0.704 0.561 0.610 0.710 0.639 0.603 0.536 0.720 0.635
f34 0.720 0.718 0.695 0.865 0.686 0.824 0.739 0.841 0.761
f35 0.722 0.703 0.735 0.830 0.645 0.832 0.701 0.781 0.743
f36 0.629 0.529 0.683 0.687 0.625 0.556 0.487 0.623 0.602
f37 0.461 0.468 0.447 0.533 0.523 0.472 0.446 0.487 0.479
f38 0.856 0.794 0.861 0.856 0.678 0.917 0.849 0.926 0.842
f39 0.849 0.799 0.687 0.808 0.627 0.861 0.844 0.913 0.798

Max EEG 0.758 0.807 0.746 0.905 0.789 0.810 0.719 0.882 0.774
Max EYE 0.856 0.799 0.861 0.865 0.686 0.917 0.849 0.926 0.842

Table 4.5: AUCs for feature sets across subjects for Experiment 2
using Frame Set 1
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Subject Targets Non-Targets
1 85 248
2 59 254
3 40 250
4 55 246
5 50 241
6 43 164
7 97 255
8 51 259

Table 4.6: Count of frames available for each subject used for clas-
sification analysis for Experiment 2 Comparison 2

carried out in Section 3.4.

In Experiment 3 fixation offset times were not extracted, and subsequently nor

were the counterpart EEG and eye tracking signals for these time points. The

feature vectors extracted use the same parameters as outlined in Tables 4.1, 4.2 and

4.3, with the exception that offset feature frames were not extracted (the former 2

tables), and only the time to gaze deployment was extracted in the latter table. In

Table 4.8 we show the number of instances available for each case for classification.

In 4.9 we present the classification results for each of time locking extraction

points within these signal sources.

4.2 Combining Signal Sources

In the previous section we outlined a number of signal sources that each individually

provide discriminative information in regard to differentiating between target and

non-targets examples in image search. In this section we present and evaluate a

method to combine these signal sources.

4.2.1 Method to combine signal sources

A number of methods exist to combine classifier and signal sources with the intent

of achieving an information greater than that which could be realised by using these
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Feature S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 Average
f1 0.529 0.477 0.521 0.546 0.461 0.477 0.479 0.509 0.500
f2 0.533 0.525 0.472 0.539 0.487 0.538 0.478 0.520 0.511
f3 0.567 0.503 0.488 0.566 0.507 0.504 0.490 0.553 0.522
f4 0.512 0.572 0.535 0.454 0.493 0.527 0.626 0.494 0.527
f5 0.642 0.668 0.614 0.728 0.656 0.501 0.579 0.841 0.653
f6 0.513 0.489 0.508 0.485 0.589 0.548 0.670 0.429 0.529
f7 0.615 0.643 0.570 0.676 0.538 0.535 0.630 0.774 0.622
f8 0.641 0.534 0.532 0.660 0.562 0.493 0.626 0.691 0.592
f9 0.689 0.652 0.580 0.682 0.691 0.484 0.647 0.720 0.643
f10 0.619 0.673 0.641 0.721 0.661 0.462 0.471 0.785 0.629
f11 0.654 0.583 0.522 0.556 0.630 0.489 0.476 0.702 0.576
f12 0.617 0.634 0.497 0.518 0.696 0.505 0.567 0.737 0.596
f13 0.679 0.509 0.579 0.581 0.622 0.443 0.513 0.727 0.582
f14 0.687 0.635 0.534 0.578 0.718 0.521 0.587 0.725 0.623
f15 0.707 0.635 0.559 0.572 0.701 0.470 0.624 0.766 0.629
f16 0.694 0.628 0.515 0.586 0.701 0.438 0.524 0.733 0.602
f17 0.690 0.555 0.500 0.532 0.598 0.528 0.557 0.684 0.580
f19 0.636 0.607 0.538 0.633 0.475 0.659 0.561 0.678 0.598
f21 0.519 0.481 0.513 0.511 0.500 0.500 0.520 0.633 0.522
f22 0.635 0.497 0.529 0.590 0.674 0.591 0.483 0.695 0.586
f23 0.481 0.508 0.560 0.503 0.480 0.535 0.563 0.580 0.526
f24 0.669 0.651 0.782 0.795 0.902 0.729 0.577 0.882 0.748
f25 0.488 0.496 0.510 0.476 0.420 0.451 0.578 0.630 0.506
f26 0.747 0.724 0.824 0.845 0.921 0.749 0.624 0.883 0.789
f27 0.722 0.658 0.773 0.782 0.900 0.699 0.632 0.906 0.759
f28 0.637 0.575 0.699 0.728 0.837 0.675 0.564 0.850 0.695
f29 0.686 0.529 0.885 0.743 0.783 0.677 0.634 0.849 0.723
f30 0.609 0.738 0.801 0.739 0.847 0.665 0.573 0.889 0.732
f31 0.569 0.441 0.471 0.511 0.480 0.482 0.563 0.513 0.504
f32 0.659 0.731 0.803 0.766 0.859 0.731 0.691 0.883 0.765
f33 0.538 0.481 0.421 0.478 0.497 0.454 0.505 0.457 0.479
f34 0.655 0.671 0.713 0.752 0.816 0.658 0.660 0.870 0.724
f35 0.658 0.622 0.763 0.690 0.754 0.657 0.596 0.818 0.695
f36 0.516 0.455 0.555 0.514 0.542 0.548 0.584 0.484 0.524
f37 0.639 0.512 0.542 0.509 0.482 0.473 0.427 0.520 0.513
f38 0.819 0.839 0.833 0.836 0.923 0.853 0.767 0.930 0.850
f39 0.617 0.598 0.802 0.591 0.795 0.479 0.655 0.813 0.668

Max-EEG 0.707 0.673 0.641 0.728 0.718 0.548 0.670 0.841 0.653
Max-EYE 0.819 0.839 0.885 0.845 0.923 0.853 0.767 0.930 0.850

Table 4.7: AUCs for feature sets across subjects for Experiment 2
using frame set 2
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Subject Targets Non-Targets
s2 100 96
s3 100 96
s4 98 94
s5 98 90
s7 99 96
s8 97 96

Table 4.8: Count of frames available for each subject used for clas-
sification analysis for Experiment 3

Feature S 2 S 3 S 4 S 5 S 7 S 8 Average
f1 0.635 0.647 0.811 0.582 0.608 0.716 0.655
f2 0.610 0.613 0.668 0.478 0.662 0.704 0.626
f3 0.670 0.599 0.792 0.546 0.586 0.684 0.642
f4 0.476 0.507 0.435 0.501 0.467 0.595 0.490
f5 0.711 0.694 0.876 0.566 0.624 0.748 0.694
f6 0.494 0.638 0.572 0.435 0.457 0.695 0.530
f7 0.709 0.575 0.823 0.570 0.553 0.742 0.654
f8 0.629 0.629 0.764 0.559 0.613 0.745 0.647
f9 0.694 0.587 0.796 0.547 0.644 0.784 0.673
f10 0.757 0.623 0.839 0.592 0.502 0.733 0.663
f19 0.593 0.754 0.793 0.494 0.777 0.847 0.703
f21 0.669 0.687 0.708 0.496 0.774 0.721 0.687
f22 0.639 0.758 0.696 0.484 0.728 0.829 0.687
f23 0.506 0.432 0.566 0.519 0.439 0.596 0.500
f24 0.469 0.768 0.631 0.470 0.747 0.815 0.639
f25 0.435 0.544 0.650 0.513 0.480 0.662 0.524
f26 0.437 0.716 0.681 0.540 0.694 0.803 0.625
f27 0.467 0.696 0.740 0.608 0.697 0.803 0.647
f28 0.499 0.759 0.672 0.520 0.759 0.793 0.657
f29 0.484 0.743 0.670 0.500 0.718 0.778 0.636
f37 0.442 0.420 0.444 0.446 0.390 0.379 0.419

Max-EEG 0.757 0.694 0.876 0.592 0.662 0.784 0.694
Max-EYE 0.669 0.768 0.793 0.608 0.777 0.847 0.703

Table 4.9: AUCs for feature sets across subjects for Experiment 3
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sources alone. In our experiments we demonstrated a number of sources which can

discriminate activity from neural and eye movement signals that allowed us, with

varying levels of accuracy, to differentiate between images, or regions of images that

contained a search target. Here we present a method for how these can be combined.

For our approach we used a SFFS (Sequential Forward Feature Selection) scheme

(Somol et al. (1999)). This iterative scheme finds subsets of features which offer an

optimal discriminative capability between two classes, by starting with an empty set

and adding the feature (or features) that provide the greatest increase in accuracy

on each iteration. This algorithm for each forward iteration also evaluates back-

steps by seeing if removing a feature offers an increase in accuracy. In this way local

minima are avoided and optimal subsets are found by this floating search method.

Due to the large number of permutations that would have needed to be evaluated

by the SFFS algorithm if we had included each feature source as a raw vector, we

used a strategy where we jackknifed the classification predictions for each training

example using classifiers trained from the remainder of the training pool. In this

way we transformed an arbitrary length feature vector for each source to a feature

vector containing one element (its predicted value as expressed by classifiers trained

without its inclusion).

This scheme was implemented by generating a predicted score for each instance

example using linear SVM models trained on the remaining training examples. For

each training instance to be evaluated, a random sampling using an equal number

of instances for each case of the remaining training examples was taken and used to

train a linear SVM model. Since in some cases the number of training instances was

low, and in order to bring stabilisation to these values, we repeated this process 5

times and averaged the predicted results for each instance. In this way, each of the

newly-generated features are represented on a scale between the two classes with

their relative accuracy determined by the level of discriminative information learnt

using the models trained on the remaining independent instance examples available

in the pool.
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With this, we can construct a feature vector for each instance comprised of a

single numerical value for each of the information sources (as described in Tables

4.1, 4.2 and 4.3). In order to determine optimal combinations of these features we

used the SFFS algorithm on these features from EEG sources and eye tracking signal

sources.

We determined AUC values for classification accuracy on the selected features

by the SFFS algorithm by applying the algorithm to a training set, and then bench-

marking a model generated from this training set on a testing set. Training and

testing sets were selected by means of repeated random sub-sampling. Test sets

contained 10 instances for each class, with training sets comprised of the maximum

equal number of target and non-target instances remaining. Each iteration of the

SFFS algorithm kept an additional 10 target and 10 non-target examples for testing

each of its feature combinations to be evaluated from the initial training set it was

given. By following this process the feature combinations selected were evaluated

in an unbiased way on each iteration on an unseen testing set. 20 iterations were

carried out for each subject for each profile of features to be evaluated (EEG only,

Eye only, EEG + Eye). On each of these iterations the best combination of EEG

and eye features were combined and evaluated on the test set. The SFFS algorithm

used a linear SVM for all classification.

4.2.2 Results of combined signal sources

In Tables 4.10 and 4.11 we present results comparing the classification accuracy

using the SFFS selected features for each signal source (eye and EEG) with the

respective maximum AUCs that were achieved by applying a classification analysis

using the individual feature sets as profiled in Tables 4.5 and 4.7 respectively for

Experiment 2. We similarly present an analysis like this for Experiment 3 in Table

4.12.

From these results we can see that the SFFS algorithm selects combinations

of features that in some cases have a higher accuracy than what can be achieved
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with a single best feature alone. This can be seen for the EEG feature sets for

Experiment 2 in Table 4.10 comparing SFFS EEG and Max EEG. Here we show

the SFFS algorithm is finding feature combinations that in all cases bring about a

higher accuracy, with SFFS EEG having an AUC=.846 and MAX EEG AUC=.802.

In this same table though we can see that the SFFS eye features do not score

better than the max SFFS features. Although this difference is small (AUC differ-

ence = .002) two additional factors need to be taken into account as to why this

might be the case. Selection of a maximum score from a pool of profiled feature sets

is a biased approach in that what we are selecting might just be larger by random

variance than that of an equal or better feature, with this bias accumulating across

subjects.

Since the SFFS algorithm initially evaluates each feature singly as part of its

permutation exploration, if a single feature did score better than a combination

it would have been selected as the optimal combination. Failing to do this might

indicate a secondary problem with the SFFS algorithms internal mechanism needing

to validate each permutation on a test set, it is utilising a smaller training set for

the evaluation of each feature permutation set.

The small number of training examples available in some cases may be addi-

tionally hindering the performance of the algorithm and thus it is selecting feature

combinations that may be optimal with this restricted number of training examples,

but that perform worse than a single best feature alone with more training examples.

In Tables 4.13, 4.14 and 4.15 we show results for the combined accuracies from

Experiment 2 set 1, Experiment 2 set 2, and Experiment 3 respectively. In the

first columns we show classification scores obtained with SFFS for EEG and Eye

movements. Following this we show the scores for combining the best features from

both sources (as per the method outlined in subsection 4.2.1). The fourth column

show the max value amongst both the EEG and Eye sources.

For Experiment 2 set 1 we can see that in all but one case the merging of the

features selected by SFFS achieve an accuracy greater than either information source

82



Subject SFFS EEG Max EEG SFFS Eye Max Eye
1 0.790 0.758 0.859 0.856
2 0.860 0.807 0.774 0.799
3 0.787 0.746 0.878 0.861
4 0.931 0.905 0.876 0.865
5 0.829 0.789 0.759 0.686
6 0.870 0.810 0.898 0.917
7 0.787 0.719 0.779 0.849
8 0.912 0.882 0.919 0.926

Average 0.846 0.802 0.843 0.845

Table 4.10: Table comparing SFFS AUC scores for eye and EEG
sources with the maximums achieved without SFFS for
Experiment 2 Set 1

alone. Comparing the averaged combined scores across subjects with the average

of their respective maximums shows a greater value (AUC=.879 and AUC=.870

respectively). Merging of the feature sources for Subject 2 failed to demonstrate

an accuracy increase. This may be due in part to an increase in the number of

features used to train the benchmarking model for the combined signal sources,

providing more noise than information gained to the model. Guyon and Elisseeff

(2003) describes issues of this kind in feature selection problems.

For Experiment 2 set 2 we show the average of the AUC for combined signal

sources across subjects being lower than the maximum achieved in either (AUC=.839

and AUC=.845 respectively). This lowered accuracy may be due in part to the

issues we describe in subsection 4.2.1 with having a reduced of training examples

for the algorithm to learn from and correctly benchmark with. We, however, show

demonstrate an increased accuracy with 4 of the 8 subjects.

For Experiment 3 we show the average of the AUC for combined signal sources

across subjects being higher than the maximum achieved in either (AUC=.788 and

AUC=.777 respectively). While this is the case, only 3 of the 6 subjects show display

this increase.
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Subject SFFS EEG Max EEG SFFS Eye Max Eye
1 0.777 0.707 0.824 0.819
2 0.718 0.673 0.820 0.839
3 0.605 0.641 0.881 0.885
4 0.729 0.728 0.814 0.845
5 0.773 0.718 0.940 0.923
6 0.625 0.548 0.768 0.853
7 0.630 0.670 0.781 0.767
8 0.894 0.841 0.932 0.930

Average 0.719 0.690 0.845 0.857

Table 4.11: Table comparing SFFS AUC scores for eye and EEG
sources with the maximums achieved without SFFS for
Experiment 2 Set 2

Subject SFFS EEG Max EEG SFFS Eye Max Eye
2 0.748 0.757 0.606 0.669
3 0.664 0.694 0.845 0.768
4 0.849 0.876 0.810 0.793
5 0.585 0.592 0.589 0.608
7 0.664 0.662 0.750 0.777
8 0.816 0.784 0.883 0.847

Average 0.721 0.727 0.747 0.743

Table 4.12: Table comparing SFFS AUC scores for eye and EEG
sources with the maximums achieved without SFFS for
Experiment 3

Subject EEG Eye Combined Max
1 0.790 0.859 0.872 0.859
2 0.860 0.774 0.834 0.860
3 0.787 0.878 0.902 0.878
4 0.931 0.876 0.946 0.931
5 0.829 0.759 0.840 0.829
6 0.870 0.898 0.905 0.898
7 0.787 0.779 0.808 0.787
8 0.912 0.919 0.928 0.919

Average 0.846 0.843 0.879 0.870

Table 4.13: Table comparing the SFFS scores for EEG, Eye and
same combined for Experiment 2 Set 1
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Subject EEG Eye Combined Max
1 0.777 0.824 0.855 0.824
2 0.718 0.820 0.773 0.820
3 0.605 0.881 0.890 0.881
4 0.729 0.814 0.769 0.814
5 0.773 0.940 0.938 0.940
6 0.625 0.768 0.779 0.768
7 0.630 0.781 0.750 0.781
8 0.894 0.932 0.955 0.932

Average 0.719 0.845 0.839 0.845

Table 4.14: Table comparing the SFFS scores for EEG, Eye and
same combined for Experiment 2 Set 2

Subject EEG Eye Combined Max
2 0.748 0.606 0.744 0.748
3 0.664 0.845 0.837 0.845
4 0.849 0.810 0.898 0.849
5 0.585 0.589 0.618 0.589
7 0.664 0.750 0.744 0.750
8 0.816 0.883 0.885 0.883

Average 0.721 0.747 0.788 0.777

Table 4.15: Table comparing the SFFS scores for EEG, Eye and
same combined for Experiment 3
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4.3 Conclusion

In this chapter we have shown how signals recorded from EEG and eye tracking sen-

sors can be used to allow us to discriminate images or regions there within containing

targets. The results indicate that both of these sensor sources provide discrimina-

tive activity, offset to events including image onset, time to deployment of gaze on

target, and time spent with gaze deployed in one region.

We have shown in many instances combining these signal sources is advantageous

using the SFFS feature selection method to best select features from each source

to be combined. Conversely, we have shown in other instances this fails to be the

case, indicating no detectable gain is attained by including the EEG signal source.

While we failed to detect an increase we highlighted a number of issues such the low

number of training examples in some instances that might be attributable as the

cause of this increased/decreased accuracy.

From the results and analysis given in this chapter we can conclude combining

the signal sources does give an increase in some instances, but in others it may be

more advantageous to use only the features derived from the eye tracking signals

(as these predominantly seemed to be a more reliable source of information). It

should be noted as a point of clarity that where we found that the EEG signals

alone provided the greater accuracy, we in fact are analysing the EEG signals with

respect to information we attain from the eye tracker, so although we may not

use the eye tracking signals directly in classification they are nonetheless needed to

extract the EEG signals offset to events like eye fixations.

In this chapter we have further demonstrated that these signals can be used to

drive image search, thus furthering our hypothesis that, EEG and Eye Tracking

can be used to improve the effectiveness in searching for certain types of targets in

images.
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Chapter 5

Paradigms in EEG Search

In this chapter we examine how a number of factors affect the performance of EEG

augmented target search.

The psychosocial phenomena on which we rely to drive EEG search are known

to be modulated by a number of factors such as attentional strategy, target density

and target difficulty. Furthermore the signals that we are detecting are known to be

generated from a number of neural sources.

We explore a number of related questions in three separate sections in this chap-

ter, each of which contributes to supporting our thesis hypothesis in some way.

Firstly, we investigate the importance of the number of channels used i.e. the num-

ber of nodes placed on the skulls of our subjects, and the accuracies that can be

achieved with their respective placements. This is important because few nodes

means a cheaper setup in terms of computational processing power needed, as well

as reduced inconvenience for the participant. Secondly, we explore whether some

images have inherent characteristics in a search task that lend them to being cor-

rectly labelled/mis-labelled by a subject using an EEG augmented image search

system. This is important to know something about the nature of such images as

we generalise our work to other forms of EEG-augmented image search. Thirdly, we

describe an investigation into the relationship between target presentation speed,

and detection accuracy, which is important in optimising our overall process so as

87



Figure 5.1: Examples of the object stimuli. Targets (18,161,373,455)
are shown on top, non-targets on the bottom.

to maximise the information provided by our participants.

5.1 Channel reduction

In this section we provide description and results of an experiment carried out uti-

lizing EEG signals to drive an image search task. The primary contribution of the

work here is in demonstrating that similar or even better accuracy can be achieved

using fewer EEG channels.

5.1.1 Experimental Outline

Images from the ALOI (Amsterdam Library of Object Images) were used in this

experiment (Geusebroek et al. (2005)). This image set is comprised of 1,000 objects,

each photographed from a number of camera angles and under a number of different

lighting conditions. This image set was chosen because it allowed use of a wide

variety of non-target images which display visually salient and attentional arousing

properties whilst allowing for a large number of different camera angles/lighting

conditions for each object. Our target object was represented by a large number of

different images and examples of some of these target images are shown in Figure

5.1.

Eight participants were shown a number of images of a target object that they
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were to search for prior to starting the experiment. The participants were instructed

to press a button upon noticing the appearance of this target object. In total 4,800

images were shown to each user at a rate of 10Hz. Amongst these images, 60 target

images were randomly distributed accounting for 1.25% of the total. The total du-

ration of the task was thus 8 minutes. Four different targets were randomly selected

from the ALOI dataset, with each target searched for by 2 users. Participants 1 &

5, 2 & 6, 3 & 7, 4 & 8 searched for ALOI targets 161, 455, 18 and 373 respectively.

Each block sequence was constructed by randomly sampling the pool of available

target and non-targets. The images of the target object could be from any of a

number of perspectives or lighting conditions, thus ensuring the actual target image

would always be different.

5.1.2 Data Collection

Recording of EEG signals was done using the KT88-1016 EEG system with a left

mastoid reference and the chin as ground. Ag/AgCl electrodes were used with a

10-20 placement cap at locations 16 locations, namely F7, F3, FZ, F4, F8, T3, C3,

CZ, C4, T4, T5, P3, PZ, P4, T6, OZ. Button presses were recorded on the KT88

apparatus to allow for time-stamping of behavioural responses with the EEG data.

5 males and 3 females were recruited with an average age of 27.5 years with standard

deviation of 4.5 years. One of the males was left handed.

5.1.3 Analysis

The purpose of EEG-augmented image search is to enhance the detection capabili-

ties of a user searching for a target image within a large database. In this regard we

evaluate in this subsection the increased accuracy achieved by using EEG in combi-

nation with behavioural responses (button press), and where various trade-offs exist

between the number of channels used.

To examine the EEG signals and derive a set of measures of their detectability
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we used an SVM (Support Vector Machine) with a linear learning kernel. For each

image in the stream, we extracted the EEG signals from 16 channels for the 1

second following its presentation. We also extracted an additional channel which

recorded the button presses. We set out to examine the effects of using a reduced

number of channels on classification accuracy of the EEG signals and behavioural

responses. To achieve this we used a SFFS (Sequential Forward Feature Selection)

scheme (as described in Section 4.2). This scheme finds subsets of feature sets which

offer optimal discriminative capacity between two classes by starting with an empty

set and adding the feature (or set of features) that provide the greatest increase in

accuracy on each iteration. This algorithm for each forward iteration also evaluates

back-steps by seeing if removing a feature (or set) offers an increase in accuracy.

Using this algorithm in combination with a linear kernel SVM we were able to

find subsets of channels which offered optimal solutions. We did examine the use

of a SVM-RBF kernel with wide gridsearching for cost and gamma parameters, but

this provided little gain at the cost of much increased running times of the SFFS

algorithm so we do not report those details in the thesis.

Using the SFFS algorithm with a linear SVM we employed an approach where

on each iteration a test set of 10/790 and 50/50 non overlapping target/non-targets

were randomly selected from the available pool of samples. The training partition

of 50/50 targets/non-target were fed into the SFFS algorithm that then evaluated

subset combinations of channels. The SFFS algorithm evaluated channel subset

combinations by further partitioning its training set into a test and training set of

sizes 10/10 and 40/40 respectively. On each iteration, the SFFS algorithm produced

a set of the channels for subset sizes 1 to 15 which represent the best found channel

combination for that subset size. These subsets were evaluated on the initially

removed test set of 10/790. The feature vector corresponding to a channel subset

being evaluated was created by combining the EEG signal for those channels.

Additionally a second feature vector was created using only the button press

signal channel. SVM models using these two feature sets were trained on the training
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set of size 50/50, where an additional SVM model to fuse their outputs was created

by using their predictions in a 10-fold cross validation on this set. These two models

were then used on the originally removed testing set of size 10/790 to produce

prediction values for EEG and button presses, where the third model was used

to combine the predictions. These predictions were then evaluated using accuracy

measurements namely P@n and ROC-AUC for each of the 15 channel subsets.

We repeated this 20 times, and averaged the P@n and ROC-AUC accuracies as

identified by their channel subset size (i.e. 20 accuracy values for channel subsets

of size 4 were averaged to give an accuracy value for 4 channels). P@n (precision

at n) is the proportion of true positives within the first n elements of an ordered

list. We set n = 10 since our test set contained 10 targets, as this reflects the target

to non-target ratio of the pool data collected (10/790 to 60/4740). This scheme of

keeping independent testing sets was necessary to ensure that subset solutions found

by the algorithm were not simply biased by random relationships in the training data

which did not generalise to the rest of the data. By keeping a test set of size 10/790

separate from the beginning on each iteration, we can ensure the models applied

and evaluated are not biased in this way.

5.1.4 Combined EEG and Button Press Results

Shown in Tables 5.2 and 5.3 are the results for all 8 of our participants. The P@n

accuracies indicate that the inclusion of EEG in all cases brought about a perfor-

mance increase. This was not the case though for all participants when using the

AUC-ROC accuracy. This may well indicate that P@n is a more stable measurement

of accuracy in this situation in comparison to AUC which may be failing to reveal

these performance gains.

In Figure 5.2 we graphically show the increase in accuracy achieved when includ-

ing increasing numbers of EEG channels with the button press response.

We can also see that the inclusion of additional EEG channels in some cases can

reduce detection performance (i.e. Subject 3) albeit not very much. This may be
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Subject Max P@n Button % Increase
(# of channels)

1 .4 (3) .310 29%
2 .665(3) .511 30%
3 .6(3) .375 60%
4 .76 (5) .466 63%
5 .62 (6) .315 97%
6 .414(5) .328 26%
7 .4(3) .287 39%
8 .435 (5) .247 76%

Table 5.1: Increases in accuracy obtained using EEG and Button
press.

due to that fact that additional channels do not provide any further discriminative

information, and only serve to introduce noise. Examining the button press channel

following target presentations it was found that some users failed on occasion to

respond within one second (i.e they missed the target). Participants 7 and 3 missed

9 and 3 targets respectively, with participants 3 and 6 missing 2. This may explain

the lowered accuracy in some cases.

Table 5.1 summaries some of this detail from Figure 5.2 for each subject. In

Column 2 (c1) we show the maximum P@n achieved along with the associated

number of channels. In Column 3 (c2) we show the P@n achieved using only button

presses (x-axis value = 0). In column 4 we show the percentage increase calculated

as ((c1 − c2)/c2) ∗ 100. The average increase by including EEG data was 52.56%

over using only the button press.

Of interest to us in this work is examining the effects that a greater/fewer number

of EEG channels has on performance of signal detection. In Figure 5.3 we show

the average increase across the set of 8 users achieved by adding an additional

channel. We can see that by using 4 channels of EEG we achieve nearly 50% of an

increase compared to using button press responses alone. The optimum seems to be

indicated at 6 channels with a 51.17% increase, but this negligible gain if statistically

significant hardly seems worth introducing 2 more nodes for. In Table 5.4 we show

the data graphically represented in Figure 5.4.
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Comparing the mean P@n accuracies using a paired t-test between all subjects

for using only button press, and using 4 channels, reveals a strong significant differ-

ence between the means further confirming that EEG in combination with button

press provides an accuracy greater than button alone (two tailed t-test, t(7)=5.6255,

p=0.0008).
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Channels Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Average
0 0.311 0.511 0.375 0.466 0.315 0.328 0.287 0.247 0.355
1 0.373 0.605 0.582 0.750 0.510 0.373 0.376 0.300 0.484
2 0.367 0.645 0.588 0.735 0.515 0.370 0.388 0.359 0.496
3 0.400 0.665 0.600 0.745 0.575 0.376 0.400 0.388 0.519
4 0.393 0.660 0.600 0.750 0.605 0.400 0.388 0.429 0.528
5 0.380 0.655 0.600 0.760 0.590 0.414 0.406 0.435 0.530
6 0.400 0.635 0.594 0.750 0.620 0.410 0.406 0.429 0.531
7 0.380 0.635 0.588 0.730 0.610 0.410 0.400 0.429 0.523
8 0.367 0.665 0.600 0.745 0.580 0.404 0.400 0.435 0.524
9 0.373 0.660 0.582 0.745 0.580 0.391 0.371 0.412 0.514
10 0.393 0.655 0.594 0.750 0.595 0.385 0.388 0.400 0.520
11 0.380 0.640 0.606 0.745 0.595 0.372 0.388 0.400 0.516
12 0.387 0.640 0.582 0.750 0.615 0.380 0.388 0.388 0.516
13 0.380 0.645 0.582 0.735 0.610 0.393 0.365 0.406 0.514
14 0.393 0.650 0.576 0.745 0.585 0.392 0.388 0.371 0.513
15 0.393 0.655 0.553 0.735 0.595 0.400 0.376 0.388 0.512
16 0.380 0.660 0.547 0.735 0.585 0.390 0.347 0.371 0.502
max 0.400 0.665 0.606 0.760 0.620 0.414 0.406 0.435 0.531

Table 5.2: P@n accuracies across subjects showing the effect of increased EEG channel count on accuracy when combined
with behavioural response.
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Channels Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Average
0 0.9619 0.9858 0.9638 0.9873 0.9546 0.9577 0.9148 0.9617 0.9610
1 0.9603 0.9944 0.9711 0.9960 0.9722 0.9503 0.8968 0.9741 0.9644
2 0.9582 0.9952 0.9697 0.9963 0.9699 0.9485 0.9014 0.9755 0.9644
3 0.9674 0.9953 0.9731 0.9958 0.9745 0.9456 0.8926 0.9764 0.9651
4 0.9631 0.9952 0.9741 0.9965 0.9736 0.9416 0.8941 0.9784 0.9646
5 0.9687 0.9950 0.9702 0.9964 0.9731 0.9453 0.8961 0.9811 0.9657
6 0.9666 0.9945 0.9724 0.9965 0.9736 0.9454 0.8944 0.9785 0.9652
7 0.9708 0.9944 0.9705 0.9964 0.9731 0.9466 0.8956 0.9788 0.9658
8 0.9638 0.9947 0.9687 0.9965 0.9731 0.9481 0.8974 0.9786 0.9651
9 0.9712 0.9951 0.9704 0.9957 0.9723 0.9492 0.8861 0.9788 0.9648
10 0.9644 0.9946 0.9706 0.9960 0.9724 0.9473 0.8903 0.9774 0.9641
11 0.9623 0.9944 0.9696 0.9959 0.9724 0.9471 0.8846 0.9774 0.9630
12 0.9664 0.9942 0.9700 0.9960 0.9727 0.9483 0.8877 0.9732 0.9636
13 0.9628 0.9946 0.9695 0.9959 0.9730 0.9486 0.8814 0.9771 0.9629
14 0.9615 0.9941 0.9694 0.9957 0.9718 0.9478 0.8896 0.9788 0.9636
15 0.9636 0.9944 0.9689 0.9958 0.9723 0.9537 0.8756 0.9791 0.9629
16 0.9680 0.9947 0.9692 0.9956 0.9727 0.9487 0.8758 0.9783 0.9629
max 0.9712 0.9953 0.9741 0.9965 0.9745 0.9577 0.9148 0.9811 0.9658

Table 5.3: AUC accuracies across subjects showing the effect of increased EEG channel count on accuracy when combined
with behavioural response.
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Figure 5.2: Graph showing P@n accuracies across subjects for in-
creasing EEG channel counts when combined with be-
havioural response.

Figure 5.3: Graph showing P@n accuracies and their percentage in-
crease over button press alone across subjects for increas-
ing EEG channel counts.
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Channels Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 7 Subject 8 Subject 9 Average
1 20.04% 18.40% 55.29% 60.94% 61.90% 13.72% 31.17% 21.46% 35.37%
2 17.90% 26.22% 56.86% 57.73% 63.49% 12.80% 35.27% 45.27% 39.44%
3 28.62% 30.14% 60.00% 59.87% 82.54% 14.63% 39.37% 57.18% 46.54%
4 26.47% 29.16% 60.00% 60.94% 92.06% 21.95% 35.27% 73.85% 49.96%
5 22.19% 28.18% 60.00% 63.09% 87.30% 26.22% 41.42% 76.23% 50.58%
6 28.62% 24.27% 58.43% 60.94% 96.83% 25.00% 41.42% 73.85% 51.17%
7 22.19% 24.27% 56.86% 56.65% 93.65% 25.00% 39.37% 73.85% 48.98%
8 17.90% 30.14% 60.00% 59.87% 84.13% 23.17% 39.37% 76.23% 48.85%
9 20.04% 29.16% 55.29% 59.87% 84.13% 19.21% 29.12% 66.71% 45.44%
10 26.47% 28.18% 58.43% 60.94% 88.89% 17.38% 35.27% 61.94% 47.19%
11 22.19% 25.24% 61.57% 59.87% 88.89% 13.41% 35.27% 61.94% 46.05%
12 24.33% 25.24% 55.29% 60.94% 95.24% 15.85% 35.27% 57.18% 46.17%
13 22.19% 26.22% 55.29% 57.73% 93.65% 19.82% 27.08% 64.32% 45.79%
14 26.47% 27.20% 53.73% 59.87% 85.71% 19.51% 35.27% 50.04% 44.73%
15 26.47% 28.18% 47.45% 57.73% 88.89% 21.95% 31.17% 57.18% 44.88%
16 22.19% 29.16% 45.88% 57.73% 85.71% 18.90% 20.93% 50.04% 41.32%

Table 5.4: P@n accuracies across subjects showing the effect of increased EEG channel count on accuracy when combined
with behavioural response.
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5.1.5 Analysis of channels chosen by SFFS algorithm

For each iteration of the SFFS algorithm (evaluating EEG+button) a score was

kept of how many times each channel was selected for inclusion. These counts for

each channel were then converted to the percentage they accounted for, for that

number of channels being evaluated in that level of the SFFS selection scheme.

This list is shown in Table 5.5. Analysing this table we can for instance see that the

most common single channel selected across subjects when only one was selected

was the Pz channel followed by T5. It should be noted that when more than a

single channel’s score percentage count is being evaluated that these scores represent

the number of times the channel was selected across combinations, and thus fails

to convey information regarding the specific combinations of channels chosen, and

their respective informational relationships. In Figure 5.4 we summarise the extent

to which each channel is included over increasing channel counts, and hence give

indication of the importance of each channel on each successive increment of the

number of channels used.
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Channel Pz Oz Fz Cz C4 P4 P3 F4 F3 C3 T5 T6 T3 T4 F7 F8
# of Channels

1 26.9% 1.9% 3.1% 11.3% 4.4% 1.9% 6.3% 3.1% 3.1% 13.8% 14.4% 6.3% 3.1% 0.6% 0.0% 0.0%
2 15.9% 8.4% 4.4% 12.5% 4.4% 2.8% 9.4% 1.6% 3.1% 7.8% 11.9% 6.6% 4.4% 1.6% 2.2% 3.1%
3 9.8% 10.6% 6.0% 9.2% 4.4% 4.2% 11.0% 1.7% 5.2% 7.9% 9.0% 6.3% 5.6% 2.9% 3.8% 2.5%
4 8.9% 10.2% 4.8% 9.1% 3.9% 5.3% 7.3% 2.5% 5.2% 7.5% 9.5% 7.7% 6.9% 3.1% 3.8% 4.4%
5 8.1% 9.6% 5.1% 8.9% 3.8% 4.6% 7.4% 2.8% 5.5% 7.4% 7.8% 6.5% 8.1% 3.8% 6.1% 4.6%
6 7.4% 8.9% 4.9% 8.5% 4.6% 4.9% 7.1% 3.9% 5.8% 6.8% 6.6% 7.3% 8.3% 4.1% 6.4% 4.7%
7 7.7% 8.6% 4.6% 8.1% 4.7% 5.3% 6.8% 4.6% 5.5% 6.5% 6.5% 7.1% 7.1% 5.4% 6.5% 4.9%
8 7.1% 8.4% 5.5% 7.7% 4.8% 4.7% 6.2% 4.9% 5.5% 6.2% 6.8% 6.9% 7.1% 5.5% 7.3% 5.5%
9 7.0% 7.8% 6.0% 7.4% 5.3% 5.3% 6.4% 4.7% 5.7% 6.8% 6.2% 6.9% 6.5% 5.6% 7.2% 5.3%
10 6.9% 7.3% 5.7% 7.0% 6.1% 5.5% 5.9% 5.2% 5.8% 6.6% 6.4% 6.8% 6.9% 6.1% 6.5% 5.3%
11 6.6% 7.2% 5.5% 6.8% 6.5% 5.7% 5.6% 5.5% 5.9% 6.4% 6.5% 6.4% 7.1% 5.9% 6.7% 5.7%
12 6.1% 6.9% 5.7% 6.8% 6.6% 5.9% 5.5% 5.4% 6.9% 6.7% 6.1% 6.4% 7.0% 5.5% 6.7% 5.8%
13 6.2% 6.8% 5.8% 6.6% 6.6% 5.9% 5.5% 5.8% 6.7% 6.6% 5.8% 6.2% 6.8% 6.1% 6.6% 6.1%
14 6.2% 6.5% 5.9% 6.6% 6.6% 5.9% 5.8% 6.0% 6.6% 6.4% 5.6% 6.3% 6.6% 6.2% 6.7% 6.2%
15 6.3% 6.4% 6.0% 6.5% 6.5% 5.7% 6.2% 6.3% 6.4% 6.3% 5.7% 6.3% 6.5% 6.2% 6.4% 6.3%
16 6.3% 6.3% 6.3% 6.3% 6.3% 6.3% 6.3% 6.3% 6.3% 6.3% 6.3% 6.3% 6.3% 6.3% 6.3% 6.3%

Average 9.0% 7.6% 5.3% 8.1% 5.3% 5.0% 6.8% 4.4% 5.6% 7.2% 7.6% 6.6% 6.5% 4.7% 5.6% 4.8%

Table 5.5: SFFS channel score count percentage representations across subjects
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Figure 5.4: Graph showing channel score percentages over each in-
crement of the number of channel used across subjects.

5.1.6 Analysis of classification using EEG signals only

In this subsection we present classification results when using EEG signals only.

While these signals, when combined with button press responses, provide an increase

in accuracy over using either alone and display effects like trade-offs with the number

of channels to be used, they by themselves present a different accuracy profile with

each increment of the number of channels used. In Tables 5.6 and 5.7 we present

the P@n and AUC accuracies when using these EEG signals in combination with

the SFFS algorithm without the button press. In Figures 5.5 and 5.6 we present the

results of these tables in terms of respective difference from the initial accuracy score

(1 channel) so as to calibrate them to a representation that is comparable between

subjects.

The method used to generate these results is like that outlined in subsection 5.1.3

with the exception that the intermediate classifier used in the previous subsections

to combine the EEG and button press scores is not needed. Here we just use the

EEG classifier directly instead of this combining classifier. All other parameters

such as iteration count and training/testing set sizes are consistent with those in

the previous subsections.
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Channels Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Average
1 0.010 0.265 0.290 0.490 0.230 0.055 0.040 0.195 0.197
2 0.000 0.250 0.290 0.460 0.310 0.060 0.015 0.200 0.198
3 0.005 0.275 0.305 0.505 0.340 0.080 0.040 0.215 0.221
4 0.005 0.270 0.300 0.560 0.350 0.065 0.045 0.235 0.229
5 0.005 0.255 0.275 0.625 0.360 0.125 0.040 0.250 0.242
6 0.000 0.265 0.315 0.615 0.400 0.105 0.050 0.235 0.248
7 0.000 0.295 0.315 0.635 0.400 0.150 0.055 0.245 0.262
8 0.010 0.315 0.310 0.640 0.375 0.135 0.045 0.270 0.263
9 0.000 0.285 0.310 0.635 0.410 0.110 0.065 0.295 0.264
10 0.000 0.300 0.325 0.650 0.400 0.130 0.070 0.290 0.271
11 0.000 0.335 0.325 0.665 0.410 0.130 0.065 0.275 0.276
12 0.005 0.350 0.300 0.655 0.440 0.150 0.065 0.295 0.283
13 0.005 0.335 0.325 0.655 0.420 0.160 0.065 0.305 0.284
14 0.005 0.330 0.350 0.640 0.420 0.135 0.060 0.295 0.279
15 0.000 0.310 0.350 0.635 0.420 0.155 0.065 0.290 0.278
16 0.000 0.355 0.340 0.660 0.405 0.160 0.055 0.305 0.285

Table 5.6: P@n accuracies across subjects showing the effect of increased EEG channel count on accuracy.
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Channels Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Average
1 0.5752 0.9089 0.8755 0.9540 0.8893 0.7455 0.7178 0.8677 0.8167
2 0.6020 0.9171 0.8828 0.9371 0.9219 0.7427 0.7159 0.8625 0.8227
3 0.6398 0.9217 0.8906 0.9538 0.9253 0.7358 0.7232 0.8717 0.8327
4 0.6401 0.9262 0.8836 0.9655 0.9168 0.7329 0.7139 0.8741 0.8316
5 0.6287 0.9292 0.8895 0.9737 0.9218 0.7543 0.7251 0.8762 0.8373
6 0.6289 0.9358 0.8949 0.9751 0.9316 0.7705 0.7235 0.8898 0.8438
7 0.6273 0.9464 0.9018 0.9792 0.9290 0.7793 0.7312 0.8866 0.8476
8 0.6291 0.9489 0.8980 0.9813 0.9330 0.7784 0.7305 0.8947 0.8492
9 0.6138 0.9486 0.8986 0.9805 0.9371 0.7880 0.7327 0.9016 0.8501
10 0.6357 0.9468 0.8975 0.9825 0.9421 0.7970 0.7322 0.9100 0.8555
11 0.6285 0.9484 0.8960 0.9822 0.9448 0.7944 0.7398 0.9047 0.8549
12 0.6287 0.9461 0.8960 0.9827 0.9466 0.7955 0.7416 0.9096 0.8558
13 0.6425 0.9494 0.9001 0.9838 0.9487 0.8025 0.7461 0.9087 0.8602
14 0.5797 0.9512 0.9000 0.9833 0.9504 0.8065 0.7411 0.9126 0.8531
15 0.6068 0.9491 0.9013 0.9831 0.9512 0.8096 0.7442 0.9116 0.8571
16 0.5983 0.9535 0.9006 0.9832 0.9510 0.8129 0.7470 0.9131 0.8575

Table 5.7: AUC accuracies across subjects showing the effect of increased EEG channel count on accuracy.
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Figure 5.5: Graph showing the effect on accuracy of additional EEG
channels as measured by P@n over using one channel.

5.1.7 Conclusions

In this section we have outlined an experiment to assess whether EEG and button

press responses can be used to help label images when presented in a RSVP steam.

What we found is that while both can be used for this purpose — and when combined

provide an accuracy greater than either achieves alone — selecting a subset of EEG

channels to be used in tandem with a button press can provide the same gains

in accuracy but with the cost of fewer EEG channels. These results further lend

support to our hypothesis that EEG and Eye Tracking can be used to improve the

effectiveness in searching for certain types of targets in images.

5.2 Non Repeated Search

We now outline and present results of an experiment where subjects were required

to search an RSVP stream of images for those containing bridges, and to indicate

detection by pressing a button. While this work bears similarity in some regard

to the previous section, it differs both in basic parameters like target density and

presentation speed, but also in the nature and diversity of the target and non target

images used. In previous sections all our target images were single objects with no

distracting background whereas here our subjects have to interpret each image to

see if it contains an actual bridge, so there is some semantic interpretation needed.
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Figure 5.6: Graph showing the effect on accuracy of additional EEG
channels as measured by AUC over using one channel.

5.2.1 Experimental Outline

Subjects were required to signal detection of images of bridges within an RSVP

stream with a behavioural response, normally a button press. The images used were

gathered from the photo sharing website flickr, and subsequently annotated into 6

categories: bridges, churches, fountains, houses, office blocks, and statues. With

each of these images having a different aspect ratio, each was rescaled so that the

greater of its width or height was 500 pixels (fitting each image to a 500x500 pixel

bounding box whilst retaining its original aspect ratio).

The experiment was broken into 2 blocks. 50 target and 780 non-target images

were shown per block totalling 100 targets and 1560 non-targets in all (6̃% targets).

The same target and non-target images were used for subjects, but their order was

randomised for each subject. Images were presented at a rate of 4 Hz.

5.2.2 Data Collection

Following the experiment outlined in subsection 3.1.1 subjects were invited to take

part in an additional experiment. All 7 participants from the first experiment agreed

to take part. Data recording was performed using the same equipment set-up as

described in subsection 3.1.2.
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5.2.3 Analysis Technique

A linear SVM was employed to analyse both the EEG and button press signals.

Feature vectors were extracted from the EEG and button press channel for the 1

second following each image presentation in the stream. In order to generate metrics

of the discriminative capacity of these signals both individually and in combination

with respect to their ability to differentiate between targets and non-targets we used

a linear SVM. For this analysis we used a repeated random sub-sampling validation

approach where on each iteration we selected a training and testing set. The training

set was comprised of 75 examples for each class, with the testing set containing 25

targets and 390 non targets (retaining the original target/non-target ratio). We

repeated this process 40 times, and averaged the scores for each subject to obtain

an ROC-AUC accuracy, along with a P@n accuracy (n=25). The results of this

analysis are shown in Tables 5.8 and 5.9.

In order to combine the information sources (EEG and button), for each of the

training instances we trained a linear SVM model without that instances (using 99

independent randomly selected instances from each class), and then using this model

we generated a predicted score for each of these instances. In this way we establish in

a non biased fashion a score for each of the training examples that can be combined

between both the EEG and button press, where a classification analysis can then be

used to reveal their combined accuracy. With this new feature vector constructed,

we performed a classification analysis using the same parameters as were used on

these signal sources alone (40 iterations, 75 training example from each class, and

a testing set of 25 targets and 390 non-targets). The results of this analysis are

presented in the Merged columns of Tables 5.8 and 5.9.

We also transformed the combined scores using the same process to a single

score. Using these scores and 0 as a cut-off point we calculated the true positive,

false positive, true negative, and false negative counts for the EEG scores, button

press scores, and EEG and button press scores combined. These results are presented

in Tables 5.10, 5.12 and 5.11. A visual rendering is shown in Figure D.1 of the most
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Subject Merged Button EEG
1 0.9362 0.9130 0.8022
2 0.9598 0.9491 0.8464
3 0.9516 0.9443 0.8362
4 0.9475 0.9176 0.8442
5 0.9826 0.9780 0.8819
6 0.9256 0.9228 0.7354
7 0.9179 0.9124 0.7492

Average 0.9459 0.9339 0.8136

Table 5.8: AUC classification accuracies across subjects for EEG,
Button press, and EEG and Button combined.

Subject Merged Button EEG
1 0.785 0.721 0.350
2 0.812 0.811 0.450
3 0.775 0.700 0.409
4 0.761 0.690 0.440
5 0.876 0.853 0.463
6 0.747 0.735 0.241
7 0.712 0.683 0.311

Average 0.781 0.742 0.381

Table 5.9: P@n classification accuracies across subjects for EEG,
Button press, and EEG and Button combined.

significant of true positives, false positives, true negatives and false negatives. The

remainder of these are shown in Appendix D.
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Subject TP FP TN FN
1 88 63 1497 12
2 87 38 1522 13
3 88 64 1496 12
4 88 53 1507 12
5 96 26 1534 4
6 87 53 1507 13
7 80 53 1507 20

Average 87.71 50.00 1510.00 12.29

Table 5.10: Confusion Matrix Scores for classification results on
merged EEG and Button sources

Subject TP FP TN FN
1 88 88 1472 12
2 88 48 1512 12
3 89 77 1483 11
4 88 79 1481 12
5 96 31 1529 4
6 89 59 1501 11
7 83 70 1490 17

Average 88.71 64.57 1495.43 11.29

Table 5.11: Confusion Matrix Scores for classification results on but-
ton press

Subject TP FP TN FN
1 74 419 1141 26
2 72 331 1229 28
3 76 382 1178 24
4 79 346 1214 21
5 82 333 1227 18
6 66 501 1059 34
7 68 464 1096 32

Average 73.86 396.57 1163.43 26.14

Table 5.12: Confusion Matrix Scores for classification results on
EEG signals
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Figure 5.7: Ranked images from subject 1 prediction scores. First line is top ranked true positives (descending from
strongest predictions left to right), second line is true negatives (descending from strongest prediction left
to right), third line is false negatives (ascending from worst prediction left to right), and the fourth line in
false positives (ascending from worth prediction left to right)

108



5.2.4 Similarity across subjects

In order to assess similarities across subjects with regard to which images were most

easily detected, and those which were not, we utilised a custom scoring method to

elucidate prediction similarities with regard to individual images. In the previous

subsection we analysed various measures of accuracy with respect to how images were

ranked in terms of their classification with measures like true positive, true negative,

false positive and false negative. In this subsection we demonstrate that statistically

significant similarities exist between the image rankings between subjects, indicating

that some images are more easily detected or mistaken as being a target or non-

target.

We sorted the prediction scores generated with the merged classifier (EEG+button)

for each subject from lowest to highest value, and paired each with an ascending

value from 1 to 100 for targets, and 1 to 1560 for non-targets. These ordinally

ranked lists were then combined across subjects combining scores into a tuple based

on their paired image identity.

On each of these lists we implemented a scoring system to assess whether simi-

larity on rankings existed between subjects. To do this we kept count of the number

of instances with 2 or more subjects having the same image ranked within their top

N or bottom N. For instance if 5 subjects shared an image within their top/bottom

N the score was incremented by 5. By choosing a cut-off such as the top 20 images

from the target list, we can derive a score of how well matched this list was between

subjects. If the set of images exactly matched between all subjects within say the

top 20, this score would be 140 (7*20). If none of these images matched the score

would be 0.

In order to interpret these abstract scores we need a method of assessing to what

degree they may have occurred by chance. To do this we use a bootstrapping method

where we randomise the score orderings and repeat our measurement process on each

iteration whilst keeping account of the maximum and minimum scores achieved with

random orderings over a given number of iterations. By doing this we can discern

109



that a score falling outside the range of the maximum and minimum scores as

calculated through this bootstrapping process has a probability of having occurred

by chance below a particular threshold. This probability threshold is calculated as

p = 1/(number of iterations).

In Table 5.13 we show these values for the target image predictions between

subjects. What we can see here is that all the predicted values fall within the

range of being greater than a probability of 0.01, except the bottom 5% (5 targets)

corresponding to target images with low overall detection rankings, or incorrectly

classified as non-targets. This would indicate common false negatives between sub-

jects.

In Table 5.14 we present an analysis for the non-target image predictions be-

tween subjects. Here we can see that significant ranking similarities occur with the

highest ranked and the lowest ranked prediction scores as evidenced by the com-

puted value falling outside of the range of bootstrapped significance values in all

cases. This would indicate for the top ranked values that there exists significant

commonalities corresponding to true negatives, and similarly for the lowest ranked

values corresponding with false positives.

While this testing procedure is intended to capture ranking relationships that

exist for images across subjects it may be failing to detect these in some cases. The

absence of a significant value may not indicate that there is not one, and may simply

mean a type 2 error has occurred (believing there to be no significant effect when

there is one). This subtlety is important to note.
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Range Value Max Min
Top-5% 12 16 0
Top-10% 31 38 16
Top-25% 94 106 83

Bottom-25% 118 122 99
Bottom-10% 49 51 30
Bottom-5% 24 21 5

Table 5.13: Significance analysis of image ordering between subjects
for targets. Values falling within Max & Min fail to
satisfy a significance of p=.01.

Range Value Max Min
Top-5% 394 174 121
Top-10% 866 571 470
Top-25% 1850 1670 1575

Bottom-25% 1722 1642 1569
Bottom-10% 719 557 459
Bottom-5% 395 175 111

Table 5.14: Significance analysis of image ordering between subjects
for non-targets. Values falling within Max & Min fail to
satisfy a significance of p=.01.
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Figure 5.8: Images in order of most highly ranked as targets (left to right, top to bottom) across subjects for merged
EEG and Button press prediction scores
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Figure 5.9: Images in order of least highly ranked as targets (left to right, top to bottom) across subjects for merged
EEG and Button press prediction scores
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Figure 5.10: Images in order of most highly ranked as non-targets (left to right, top to bottom) across subjects for
merged EEG and Button press prediction scores
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Figure 5.11: Images in order of least highly ranked as non-targets (left to right, top to bottom) across subjects for
merged EEG and Button press prediction scores
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5.2.5 Conclusions

In this section we have shown results of an experiment where subjects were required

to search a stream of images for those containing bridges. Analysing the neural and

behavioural signals recorded we demonstrated that neural and behavioural signals

existed that allowed us to use machine learning techniques to differentiate between

target and non-target images, and also that these signals when combined, provide

an accuracy greater than either one can achieve alone. We also demonstrated that

similarities exist across subjects regarding the prediction scores calculated when

trained on their behavioural and EEG data. This latter observation may allow us to

be aware in the future that while although EEG and button press signals combined

can provide an increase in annotation speed, there exist images which may tend to

be misclassified across subjects.

5.3 Presentation Speed vs. Accuracy

In this section we outline part of an experiment carried out with the ESA (European

Space Agency) to understand the effect of image presentation on discriminative

signal detectability from EEG signals.

5.3.1 Outline

In this experiment, subjects were required to count the number of target items

(plastic models of space shuttles) appearing in a stream of non-target images (rocks).

At the end of each block the user would then input on a nearby keyboard the

number of targets that they counted. In total, 4 subjects completed this phase

of the experiment. Of interest here and under measurement was whether we were

capable of detecting through a subject’s EEG responses whether they viewed a target

or non-target image without any explicit response, and how our capability to detect

this dropped off with faster image presentation speeds.
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(a) (b)

Figure 5.12: Examples of an oddball (a) and non-oddball (b) images
from the Simulated Martian Rocks collection.

Images of rocks (non-targets) with some containing a plastic space shuttle (tar-

gets) were provided by the ESA (Izzo et al. (2009b)), and used at the stimulus

dataset. Examples of each are shown in Figure 5.12.

Each subject completed two repetitions of each of 5 sequences, across four differ-

ent speeds. Totalling the number of target/non-target training examples across each

image presentation speed for each subject this totalled 30/400, 61/670, 164/1330,

230/2000 and 382/4000 for each image presentation speed respectively. These speeds

were 500ms, 300ms, 150ms, 100ms, 50ms. In between each image displayed was a

gray mask (blank screen) for an equal amount of time. This would mean for a

500ms image presentation, it would be followed by a 500ms grey screen before the

next image in the sequence appeared.

5.3.2 Data Collection

Two pendant EEG bluetooth devices were used to record EEG signals in this ex-

periment. The devices were joined by tethering their reference connections, and

similarly for their ground connections. In this way we could convert two, two chan-

nel devices into a 4 channel recording device. Ag (Silver) electrodes were placed at

sites Cz, Pz, P3, P4, with a joint earlobe reference with the chin as ground. Subjects

were aged 23-33.
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5.3.3 Analysis

Analysis was completed using machine learning tools using a radial basis function

SVM kernel.

Feature vectors were constructed of:

• 14 samples are extracted from the signal for the time-window between 220ms

and 810ms relative to the image presentation time, low-pass filtered at a cut-

off frequency of 14Hz. A time resolution of 40ms (inferior to any IDP) is thus

obtained.

• Spectral information –as obtained from the Fast Fourier Transform (FFT)– of the

raw signal (the DC component is previously removed) during the time-window

ranging from 220ms to 620ms. 5 features are extracted for frequencies from 1hz

to 15hz at a spectral resolution of 3Hz, which attempt to capture out differences

in the high frequencies over a short time-frame.

• Additional spectral information of the low frequencies between 1Hz and 5Hz for

the whole signal (time window between 220ms and 1000ms). 5 attributes are

chosen, which thus encode changes at a resolution of 1Hz.

Before classification, samples were normalized into the range [-1,1] using a linear

transformation. Finally, for each stimulus (either oddball or non-oddball) 24 features

were extracted from each dataset. Since the EEG setup consists of 4 channels, an

overall feature vector of 96 features per stimulus was gathered.

We pruned the feature vectors from their original length of 96 attributes to 35

attributes via an SVM attribute evaluator (as implemented in the Weka toolkit ?).

Stratified cross-validation was then performed to iteratively build the classifier,

whereby we instituted an approximate 66/33 split between training and test samples

based upon the number of oddballs. Training was undertaken on a balanced dataset

as constructed by the modified bagging approach.

The cross-validation methodology was constructed out of 30-folds, and for each
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500ms 300ms 150ms 100ms 50ms
Subject 1 0.8254 0.7997 0.7291 0.6702 0.6276
Subject 2 0.8297 0.8164 0.8012 0.7492 0.6114
Subject 3 0.9043 0.7844 0.6593 0.6282 0.6362
Subject 4 0.6946 0.8072 0.7948 0.7207 0.6524
Average 0.8135 0.8019 0.7461 0.6921 0.6319

Table 5.15: AUC Values across subjects for ESA Speed vs Accuracy
Experiment

fold a grid-search optimization was run to determine the best parameters (C,γ) for

the SVM.

5.3.4 Results

We can see from the graphs in Figure 5.13 a clear attenuation in both signals as

the presentation time becomes faster, which indicates that classification accuracy

should similarly deteriorate as the presentation time increases. Presented in Table

5.15 are the AUC values per subject, and the overall averages, whilst Figure 5.13

presents the averaged ROC curves across each of the presentation times.

5.3.5 Conclusions

In this section we have shown using a 4 node EEG system that increased presentation

speed has an effect on classifier detection accuracy when searching for targets with

an explicit indication of detection. In terms of our hypothesis, that EEG and Eye

Tracking can be used to improve the effectiveness in searching for certain types of

targets in images, this work shows that discriminating signals can be detected across

a number of presentation speeds, however, we may need to calibrate the presentation

speed to ensure maximum throughput.

5.4 Conclusions

In this chapter we explored three separate questions. Firstly, we investigated the

importance of the number of EEG channels used, and the accuracies that can be
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achieved with their respective placements on the scalp. Secondly, we explored

whether some images have inherent characteristics in a search task that assist them

in being correctly labelled/mislabelled by a subject using an EEG augmented image

search system. Thirdly, we investigated the relationship between target presentation

speed, and detection accuracy.

In all, these questions and results from experiments support our further hypothe-

sis, that EEG and Eye Tracking can be used to improve the effectiveness in searching

for certain types of targets in images.
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Chapter 6

Conclusions

In this thesis we examined the hypothesis that EEG and Eye Tracking can be used

to improve the effectiveness in searching for certain types of targets in images. We

explored this hypothesis through a number of research questions. In this chapter we

provide a retrospective overview of our chapters, examine our research questions in

light of our experimental results, and discuss future work.

6.1 Chapter Summary

Chapter 1 In Chapter 1 we introduced our thesis, providing a brief overview,

hypothesis, motivation and a list of central questions explored throughout the thesis.

These central questions were:

1. What neural signals are present during visual search tasks that require eye

movements, and how do they inform us of the possibilities for BCI applications

utilising eye tracking and EEG in combination with each other?

2. How do the temporal characteristics of eye movements give indication of the

suitability of a search task to being augmented by an EEG based BCI system?

3. What are the characteristics of paradigms that can be used to elicit informative

neural responses to drive image search BCI applications?
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4. Can we use a reduced number of EEG channels in EEG BCI search?

Chapter 2 Traditionally the problems addressed by BCI (Brain Computer

Interfaces) focused on the restoration of functionality and/or communication with

people suffering from a variety of disorders such as ALS (Amyotrophic lateral scle-

rosis), stroke, and brain damage to name a few. There are many signals detectable

from the brain, and many techniques for capturing these signals which can then

be used to drive these systems. In this thesis we are primarily concerned with the

analysis of EEG signals time-locked to events such as image presentations, button

presses and eye movements. Besides the ongoing oscillatory patterns of EEG ac-

tivity, there are well-known stereotypical responses to stimuli called ERPs (Event

Related Potentials). Here we describe these signals, and give an overview of how they

have been used in conventional BCI systems along with describing their significance

within this thesis.

In Chapter 2 we give an overview of EEG, and explain how its constituent signals

are utilised in both conventional BCI systems and newer BCI application spaces. In

the penultimate section of this chapter we outline a central hypothesis and a set of

research questions through which we examine this hypothesis in the thesis.

Chapter 3 In Chapter 3 we examined the signals present with regard to eye

movements during a variety of search tasks, and examined how we can utilise these

signals to aid in target detection. We showed that although the patterns of brain

activity vary across subjects, and between tasks, differentiable signals exist related

to the detection and recognition of targets that can be used to drive image search

applications.

In the first section we explore these signals when subjects are searching for

targets that are not discriminatingly perceivable until the time of fixation. This

demonstrates that visual search scenarios may exist where a subject does not know

the nature of a stimulus until the time of fixation, and that discriminative EEG

patterns are present following this fixation.
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In the following sections we explore fixations, and the patterns of EEG activity

surrounding these fixations when the targets display salient qualities.

Understanding the paradigms and scenarios in which these signals can be elicited

allows us to make informed decisions in considering the applications that may be

ultimately driven by them. In order to expose these signals, we employ machine

learning methods both analysing EEG signal sources and eye movements signal

sources so as to disentangle the information sources available from each.

In this chapter we confirm that both EEG and eye movements signals contain

discriminative informations that can allow us to identify targets.

Chapter 4 In Chapter 4 we showed how signals recorded from EEG and eye

tracking sensors can be used to allow us to discriminate images or regions therein

containing targets. The results indicate that both of these sensor sources provide

discriminative activity, offset to events including image onset, time to deployment

of gaze, and time spent with gaze deployed in one region.

The results presented in this chapter are pertinent to understanding the value of

using these signal sources in tandem for real world search scenarios.

In this chapter we demonstrate that by combining EEG and eye tracking sig-

nals we can achieve accuracies greater than using either alone. We, however, show

instances where this is not so, but provide reasons as to why this may be the case.

They include lack of a sufficient number of training examples.

Chapter 5 In Chapter 5 we explored a number of related questions that con-

tribute to the support of our hypothesis.

Firstly, we examined what advantages are realised by using a button press re-

sponse in combination with EEG signals in a target search tasks involving images

of objects displayed at high speed. Additionally we explore strategies of using a

reduced number of EEG channels in tandem with the button press, to conclude

that when EEG signals are combined with a button press, it is acceptable to use

a reduced number of EEG channels. Secondly, we explored whether some images
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have inherent characteristics in a search task that lend themselves to being correctly

labelled/mis-labelled. Here we had subjects respond with a button press to the de-

tection of images of bridges displayed in a RSVP paradigm amongst a number of

distractors. What we found were statistically significant relationships between the

images that tended to be labelled/mis-labelled by subjects combined EEG and but-

ton press scores. Additionally, we show that combining button press responses with

EEG signals provides a higher accuracy than using either alone. Thirdly, we exam-

ined the effect of presentation speed on our ability to discern target images from

EEG signals in an RSVP paradigm.

6.2 Analysis and Discussion of Hypothesis

In this thesis we explored our hypothesis that EEG and Eye Tracking can be used

to improve the effectiveness in searching for certain types of targets in images. The

results and respective analysis support this hypothesis, and have exposed a number

of its aspects. In Chapter 2 (Section 2.3) we outlined a hypothesis, and a number of

research experiments with which we could explore this hypothesis. In this section we

examine our research questions in respect to the experimental results in the thesis.

Research question 1

What neural signals are present during visual search tasks that require

eye movements, and how do they inform us of the possibilities for BCI

applications utilising eye tracking and EEG in combination with each

other?

In Chapter 3 and 4 we explore this question by showing across a number of ex-

periments that both EEG and eye tracking sensor signals provide discriminative

information allowing us to differentiate between target and non-target stimuli.

In Chapter 3 (Section 3.1) we explored this question by conducting an experiment

where subjects were required to detect object stimuli in a paradigm whereby they
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could not differentiate between target and non-targets stimuli until the time of de-

ployment of gaze on them. This experiment established not only are there neural

signals present that are sensitive to target/non-target detection offset to the time of

fixation, but that these signals can be detected using machine learning algorithms,

thus indicating they can be used in a BCI. This addresses our first research question,

and provides insight into a task scenario where neural signals that can be used to

drive a BCI involving eye movements are examined.

In Chapter 3 (Section 3.2) we further explored this research question utilising a

more complex image set and task. In this task subjects were instructed to find

images containing people. These images encompassed a variety of visual features,

thus requiring the subject to perform a detection task using a wider diversity of

visual informations. By demonstrating that we could detect differentiable neural

signals during this more complex search scenario, we further address our first re-

search question in showing across a variety of search strategies and images that we

can detect brain activity related to discrimination between targets and non-targets.

This is important as it allows us to know that although people may ultimately utilise

different search strategies, we can still detect important neural signals that allow us

to drive a BCI application.

In Chapter 3 (Section 3.4) we further explored this research question examining

a scenario where we show subjects to be detecting targets as indicated by their high

success rate in looking towards the target with their first eye movements. Here

we similarly show signals that can be used to enable BCI systems, in tasks that

encompass highly similar search behaviour and proficiency across subjects.

These experiments have allowed us to conclude that BCI applications involving

target search are possible, and are applicable in both artificially generated and

natural image stimuli. This evidence evaluated within the context of this research

question further supports our research hypothesis that EEG and eye tracking can be

used to improve the effectiveness in searching for certain types of targets in images.
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Research question 2

How do the temporal characteristics of eye movements give indication of

the suitability of a search task to being augmented by an EEG based BCI

system?

In Chapter 3 we explore how indicators like dwell time on a stimulus like an image

are indicative of effects like high discriminability for identifying those that are or

contain targets. By observing effects like this, we can in part evaluate the gains that

may be achieved by combining measures acquired from non-neural sources with an

EEG BCI system. In Chapter 4 for instance we extend upon this by examining

effects like those observed in Chapter 3 and evaluate them in a more directed way

examining the signals when combined and used in tandem.

In Chapter 3 we additionally identify timed neural responses surrounding events

like image presentation and eye movements. By identifying time periods of activity

like this that provide us with discriminative information, we can discern that there

exists patterns of neural activity for subjects for particular search tasks that can be

utilised to allow us to drive a EEG BCI based system.

These information sources whether reaction time to look at a target, reaction

time to detect a target, time spent processing a stimulus, or time periods of neural

activity offset to events such as stimulus presentation or an eye movement, can all

display indicative measures that can allow us to understand what tasks are suitable

to be augmented by an EEG BCI based system.

Research question 3

What are the characteristics of paradigms that can be used to elicit in-

formative neural responses to drive image search BCI applications?

In Chapters 3, 4, and 5 we identify a number of characteristics of paradigms that

can be used in application scenarios to drive image search BCI applications.

In Chapter 3 we show in the first section that target detection can be offset to the

time of fixation, and that informative neural signals are generated in response to this.
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In Chapter 3 in the latter sections, and in Chapter 4, we show that although effects

like salience may influence eye movements, these behaviours can help to provide

discriminative information to allow us to drive image search BCI applications.

In Chapter 5 (Section 5.2) we demonstrate that button press reactions in com-

bination with EEG signals are indicators that certain images may be likely to be

labelled/mis-labelled as targets or non-targets. Measures derived in this way allow

us to fundamentally understand a task and paradigm at a level where we can assess

its limitations, and ultimately its benefit in the scope of a being augmented by a BCI

system. In Chapter 5 (Section 5.1) we also show that RSVP display paradigms are

suitable for driving image search BCI applications, and in addition button presses

can augment their efficiency.

In Chapter 5 (Section 5.3) we also demonstrate using a reduced number of EEG

channels that a subject does not need to overtly indicate detection of a target stim-

ulus across a variety of speeds, thus demonstrating a variety of paradigm configura-

tions in which EEG BCI allows us to label images by EEG signals.

By understanding the characteristics of paradigms like these, we are more in-

formed to assess and identify what applications exist that can benefit from the use

of an EEG BCI system. By examining this research question we also address a fun-

damental question regarding the scope of the applications that can exist. Ultimately

this furthers our hypothesis that EEG and Eye Tracking can be used to improve the

effectiveness in searching for certain types of targets in images.

Research question 4

Can we use a reduced number of EEG channels in EEG BCI search? In

Chapter 5 (Section 5.1) we analyse the effect of reducing the number of EEG chan-

nels used when in combination with a button press. Analysing the discriminative

EEG signals present without utilising this button press indicates that a reduction in

channels hinders performance. Conversely, however, when combined with an overt

behavioural response (button press) this no longer remains the case. Here we find
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that a reduced number of channels may be utilised, and we give an analysis of what

the implicated channels placements are.

In this thesis we have shown that utilising non-neural sensor sources such as

a button in combination with EEG signals can be conducive in allowing a better

performing system. This further supports our hypothesis.

6.3 Future Work

A number of behaviours serving different motives and encompassing different and

often evolving strategies are referred to as search. In this thesis we have examined

under controlled circumstances a range of these search behaviours in order to both

better understand their behavioural and neural components, and also to understand

how we might provide systems that can enable a user to search in a more efficient

and meaningful way. Although EEG BCI research has shown promise in a multitude

of application scenarios, we focused our efforts in this thesis on evaluating how it

relates to target search in images.

Assessing the benefits of EEG BCI (whether coupled or not) with eye tracking

in search like tasks is difficult. In this thesis we were concerned with searching for

targets in images. We may, however, envision scenarios where the user might not

even be considered to be conventionally searching at all. An example of this would

be somebody watching a television show where they see an attractive actor arriving

on set, or perhaps they find an image amusing while browsing online. Neural signals

may indicate correlates of interest or surprise to such events, but the subject may

ultimately not explicitly express their meaning or significance. EEG signals inter-

preted in the context of these events may provide an additional layer of information.

For instance, to allow a user to summarise the day’s events by their neural responses.

The work in this thesis supports the notion that research into applications with this
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aim may be fruitful.

In the experiments outlined in this thesis, we were able to ascertain the time

of events such as image presentation and eye movements, and using these we could

index the EEG signals in a meaningful way so as to unveil a further information

source. An avenue of future research to build upon this might be to examine whether

informative signals of this type exist when a person is mobile and engaged in daily

tasks, such as shopping in a supermarket.

We would expect a task like this to entail a number of behaviours such as com-

paring a product with another, or perhaps deciding whether the product is worth

the quoted price. Integral to decisions and behaviours of this type are eye move-

ments in assimilating information such as the quantity of the product, its price and

its packaging. Recent technological advances such as a portable eye tracking glasses

(Bulling and Gellersen, 2010) that combine video recordings of not only the wearers

view but also of their eye movements could be used in tandem with a portable EEG

system to enable the capture of neural signals of the wearers as they are engaged

in consumer behaviour. Understanding neural signals with this level of granular-

ity and context may provide an avenue of research to better understand consumer

behaviour.

EEG BCI type systems may not only assist us in goal directed behaviours such

as a search, but they may also allow us to record an additional layer of implicit

information surrounding events as we go about our daily lives in order to later not

only summarise these events, but perhaps to share and communicate them with

others.
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Appendix A

Equipment Overview

The experiments outlined in this thesis used a variety of apparatuses including an

eye tracker, EEG (Electroencephalogram), and EOG (Electrooculogram). In this

appendix we describe how these various pieces of equipment were used together.

A.1 EEG Recording

In order to detect the minute electrical signals generated by the brain we need

specialised equipment to amplify, filter, and digitise these signals.

To record EEG signals we used Ag/AgCl (silver/silver-chloride) electrodes in an

elasticated cap. The electrodes in this cap are arranged into standardised positions

using what is known as the 10-20 placement system as shown in Figure A.1.

The potential difference at each of these electrode sites is then recorded in ref-

erence to a reference site. Typically the earlobes or the mastoid bone is chosen

as a reference site. An additional electrode is typically placed elsewhere on the

body as a ground reference site. For each of the signals recorded across the scalp

in reference to the reference site, we subtracted from these the reading between the

reference and ground site. This is done in order to mitigate noise due to environ-

mental sources such as 50 Hz hum pattern from electrical equipment. These signals

are then digitised and passed to a computer to be timestamped and recorded.
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Figure A.1: 10-20 Electrode placement map

Unless otherwise noted, we used a joint mastoid linked reference, except for the

experiment outlined in Section 5.1, where we used a left mastoid reference.

The KT88-1016 EEG system was used for signal recording in the experiments

outlined with the exception of the experiment described in Section 5.3. In the latter

experiment two 2-channel wireless EEG devices were used sharing a common ground

and reference electrodes.

A.2 Eye tracking Recording

Two methods of recording eye movements were used for the experiments described

in this thesis. In the experiment described in Section 3.1 we used EOG (Electroocu-

logram) signals acquired from VEOG (vertical) and HEOG (horizontal) channels.

To do this we attach electrodes to the lateral canthus on both eyes for the hori-

zontal pair, and above and below the eye for the vertical pair. By using the EOG

channels (VEOG and HEOG) we were able to find the time indexes of fixations on

the object stimuli. Eye movements along one plane (i.e. horizontal) generate signals

more prominently on one channel pair than the other, and the voltage deflections
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are sensitive to the direction of eye movement. Eye movements in any direction

are typically characterised by either positive or negative voltage deflections on both

channels. By examining these voltage deflections we were able to identify the time

of eye movements. The downside to this method although it provides high temporal

accuracy to index the EEG signals is that it is difficult to exactly establish the eyes

location.

For all other experiments requiring eye tracking we used the Tobii x50 Eye Track-

ing System. This system is comprised of a desktop LCD monitor equipped with in-

frared light emitters, and receiving cameras. The basic principle is that the infrared

light accentuates properties of the eye such as the pupils that can be detected by

the cameras to track eye movements and the location of gaze. This system provides

X & Y pixel coordinate values of where on the screen the user’s gaze is located. By

referencing the time of these values against the system clock we can attain the time

of eye movements and fixations, and thus index the EEG signal to reveal related

neural activity. The Tobii x50 samples eye location at 50 Hz.

A.3 EEG Filtering

After EEG signals were received in a digitized from the KT88-1016 apparatus, the

signal windows extracted relative to events such as image presentation or eye move-

ment were bandpassed filtered to 0.1 Hz to 20 Hz. These signals were then re-

sampled at 40 samples per second.
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Appendix B

Analysis Conventions

In this appendix we outline the parameters and methods of a number of conventions

used within the thesis for analysis.

B.1 Machine Learning and evaluation

In this thesis we rely on machine learning to show the presence of discriminating

EEG activity and eye movement patterns. Primarily we utilise SVM (Support Vector

Machine) which belongs to a class of supervised learning methods. Using a set of

training examples, each marked as belonging to one of two classes, an SVM training

algorithm constructs a model that can assign unseen examples into one category

or the other. The effectiveness of the model relies on the presence of adequate

discriminative information being present in the training examples.

Training examples are supplied to the model’s training algorithm as belonging to

one of two classes each assigned a numeric value such as [-1,1]. Each of these training

examples are accompanied by a feature vector. In this thesis our feature vectors are

composed of discrete samples taken from the EEG/Eye tracking signals. After post

processing procedures such as bandpassing have been applied the relevant signals

are re-sampled. These numeric samples are then combined into a feature vector.

These feature vectors are then normalised into the range [-1,1].
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In order to discern the amount of discriminative information present between

two classes we employ a cross validation method. In this thesis we use Repeated

Random Sub-sampling Validation. This procedure involves randomly subsampling

the available instances into testing and training sets. On each iteration a model is

trained using only the training set, and then this model is benchmarked upon the

withheld test set. In this way we can examine the model’s effectiveness by examining

how it classifies unseen examples.

In order to obtain a measure of the effectiveness of the model in correctly dis-

cerning the true classes of the instances in each iteration’s test set, we use a measure

know as AUC (Area Under Curve). AUC is calculated as the area under a ROC

(Receiver Operating Characteristic) curve.

This curve is generated by firstly sorting the numeric output for each instance

of the test set from the model.

Outputs more closely approaching one of the binary numeric labels can be un-

derstood as the model more strongly indicating its belief that the relevant instance

belongs to that class. Iterating across each instance in this ordered list, taking all

instances above this point as belonging to one class and all those below it as belong-

ing to the other class, we can calculate the true positive vs the false positive rate

for each point in this list. The average (area below) this list is the AUC. We finally

average the AUC values obtained by this repeated process of randomly sampling

the available instance pool into training and test sets, and benchmarking the model

trained on the training set upon the test set.

Throughout this thesis we additionally employ bootstrapping methods to verify

that the accuracy obtained from an evaluation procedure was unlikely due to chance.

In order to do this for any of the machine learning evaluation schemes, we simply

randomise the test labels in the test set, and observe over a number of N iterations

of this procedure what the highest accuracy achieved by chance was. Repeating this

procedure N times, we can obtain a p=1/N measure of the highest accuracy achieved

by chance. If we obtain an accuracy from our evaluation scheme on a dataset above
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the accuracy derived using this bootstrapping procedure, we can say probability of

us having obtained our result by chance is below a particular probability threshold.

In this thesis we use the linear/RBF SVM function of the libsvm library (Chang

and Lin, 2011). In the cases where we use a RBF kernel we outline the method by

which we obtain the cost and gamma parameters using the grid search approach.

In the case of us of a linear SVM, we chose the cost parameter at 1 as other values

tended to be at best equal in accuracy, but more often detrimental to it.

B.2 Scalp Plots

We utilise averaged scalp plots throughout this thesis as a visual tool to show pat-

terns of brain activity. These scalp plots are generated by averaging the sampled

patterns of brain activity at their noted times. It is important to note they are

representations of brain activity at that moment only, as activity occurring between

the slices is not accounted for (i.e. we do not average across time window).
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Appendix C

Supplemental material for

experiments outlined in Chapter 3

In this section we provide the temporal discrimination plots obtained for the exper-

iments described in Chapter 3 for experiments 2 and 3. Additionally we provide the

averaged scalp plots. These materials are intended to primarily supplement Section

3.3 and 3.4 respectively.

C.1 Temporal Discrimination Plots for Experi-

ment 2

In this section we present the temporal discrimination plots for experiment 2 outlined

in 3.3.

138



Figure C.1: Subject 1: Temporally aligned discrimination graphs
map centred on the frame onset time showing differen-
tiating activity related to target image detection com-
pared to non target image detection
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Figure C.2: Subject 1: Temporally aligned discrimination graphs
centred on the fixation onset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.3: Subject 1: Temporally aligned discrimination graphs
centred on the fixation offset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.4: Subject 2: Temporally aligned discrimination graphs
map centred on the frame onset time showing differen-
tiating activity related to target image detection com-
pared to non target image detection
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Figure C.5: Subject 2: Temporally aligned discrimination graphs
centred on the fixation onset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.6: Subject 2: Temporally aligned discrimination graphs
centred on the fixation offset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.7: Subject 3: Temporally aligned discrimination graphs
map centred on the frame onset time showing differen-
tiating activity related to target image detection com-
pared to non target image detection
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Figure C.8: Subject 3: Temporally aligned discrimination graphs
centred on the fixation onset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.9: Subject 3: Temporally aligned discrimination graphs
centred on the fixation offset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.10: Subject 4: Temporally aligned discrimination graphs
map centred on the frame onset time showing differen-
tiating activity related to target image detection com-
pared to non target image detection
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Figure C.11: Subject 4: Temporally aligned discrimination graphs
centred on the fixation onset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.12: Subject 4: Temporally aligned discrimination graphs
centred on the fixation offset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.13: Subject 5: Temporally aligned discrimination graphs
map centred on the frame onset time showing differen-
tiating activity related to target image detection com-
pared to non target image detection
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Figure C.14: Subject 5: Temporally aligned discrimination graphs
centred on the fixation onset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.15: Subject 5: Temporally aligned discrimination graphs
centred on the fixation offset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.16: Subject 6: Temporally aligned discrimination graphs
map centred on the frame onset time showing differen-
tiating activity related to target image detection com-
pared to non target image detection
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Figure C.17: Subject 6: Temporally aligned discrimination graphs
centred on the fixation onset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.18: Subject 6: Temporally aligned discrimination graphs
centred on the fixation offset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.19: Subject 7: Temporally aligned discrimination graphs
map centred on the frame onset time showing differen-
tiating activity related to target image detection com-
pared to non target image detection
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Figure C.20: Subject 7: Temporally aligned discrimination graphs
centred on the fixation onset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.21: Subject 7: Temporally aligned discrimination graphs
centred on the fixation offset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.22: Subject 8: Temporally aligned discrimination graphs
map centred on the frame onset time showing differen-
tiating activity related to target image detection com-
pared to non target image detection
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Figure C.23: Subject 8: Temporally aligned discrimination graphs
centred on the fixation onset time showing differentiat-
ing activity related to target image detection compared
to non target image detection

161



Figure C.24: Subject 8: Temporally aligned discrimination graphs
centred on the fixation offset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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C.2 Scalp Plots for Experiment 2

In this section we provide the scalp plots obtained for experiment 2 across all sub-

jects. These materials are intended to primarily supplement Section 3.3.
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Figure C.25: Subject 1: Averaged scalp plots aligned to frame onset
for target frames
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Figure C.26: Subject 1: Averaged scalp plots aligned to frame onset
for non-target frames
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Figure C.27: Subject 1: Averaged scalp plots aligned to fixation on-
set for target frames
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Figure C.28: Subject 1: Averaged scalp plots aligned to fixation on-
set for non-target frames
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Figure C.29: Subject 1: Averaged scalp plots aligned to fixation off-
set for target frames
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Figure C.30: Subject 1: Averaged scalp plots aligned to fixation off-
set for non-target frames
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Figure C.31: Subject 2: Averaged scalp plots aligned to frame onset
for target frames
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Figure C.32: Subject 2: Averaged scalp plots aligned to frame onset
for non-target frames

171



Figure C.33: Subject 2: Averaged scalp plots aligned to fixation on-
set for target frames
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Figure C.34: Subject 2: Averaged scalp plots aligned to fixation on-
set for non-target frames
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Figure C.35: Subject 2: Averaged scalp plots aligned to fixation off-
set for target frames
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Figure C.36: Subject 2: Averaged scalp plots aligned to fixation off-
set for non-target frames
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Figure C.37: Subject 3: Averaged scalp plots aligned to frame onset
for target frames
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Figure C.38: Subject 3: Averaged scalp plots aligned to frame onset
for non-target frames
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Figure C.39: Subject 3: Averaged scalp plots aligned to fixation on-
set for target frames
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Figure C.40: Subject 3: Averaged scalp plots aligned to fixation on-
set for non-target frames
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Figure C.41: Subject 3: Averaged scalp plots aligned to fixation off-
set for target frames
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Figure C.42: Subject 3: Averaged scalp plots aligned to fixation off-
set for non-target frames
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Figure C.43: Subject 4: Averaged scalp plots aligned to frame onset
for target frames
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Figure C.44: Subject 4: Averaged scalp plots aligned to frame onset
for non-target frames
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Figure C.45: Subject 4: Averaged scalp plots aligned to fixation on-
set for target frames
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Figure C.46: Subject 4: Averaged scalp plots aligned to fixation on-
set for non-target frames
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Figure C.47: Subject 4: Averaged scalp plots aligned to fixation off-
set for target frames
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Figure C.48: Subject 4: Averaged scalp plots aligned to fixation off-
set for non-target frames
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Figure C.49: Subject 5: Averaged scalp plots aligned to frame onset
for target frames
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Figure C.50: Subject 5: Averaged scalp plots aligned to frame onset
for non-target frames
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Figure C.51: Subject 5: Averaged scalp plots aligned to fixation on-
set for target frames
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Figure C.52: Subject 5: Averaged scalp plots aligned to fixation on-
set for non-target frames
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Figure C.53: Subject 5: Averaged scalp plots aligned to fixation off-
set for target frames
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Figure C.54: Subject 5: Averaged scalp plots aligned to fixation off-
set for non-target frames

193



Figure C.55: Subject 6: Averaged scalp plots aligned to frame onset
for target frames
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Figure C.56: Subject 6: Averaged scalp plots aligned to frame onset
for non-target frames
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Figure C.57: Subject 6: Averaged scalp plots aligned to fixation on-
set for target frames
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Figure C.58: Subject 6: Averaged scalp plots aligned to fixation on-
set for non-target frames
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Figure C.59: Subject 6: Averaged scalp plots aligned to fixation off-
set for target frames

198



Figure C.60: Subject 6: Averaged scalp plots aligned to fixation off-
set for non-target frames
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Figure C.61: Subject 7: Averaged scalp plots aligned to frame onset
for target frames
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Figure C.62: Subject 7: Averaged scalp plots aligned to frame onset
for non-target frames
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Figure C.63: Subject 7: Averaged scalp plots aligned to fixation on-
set for target frames
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Figure C.64: Subject 7: Averaged scalp plots aligned to fixation on-
set for non-target frames
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Figure C.65: Subject 7: Averaged scalp plots aligned to fixation off-
set for target frames
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Figure C.66: Subject 7: Averaged scalp plots aligned to fixation off-
set for non-target frames
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Figure C.67: Subject 8: Averaged scalp plots aligned to frame onset
for target frames
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Figure C.68: Subject 8: Averaged scalp plots aligned to frame onset
for non-target frames
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Figure C.69: Subject 8: Averaged scalp plots aligned to fixation on-
set for target frames
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Figure C.70: Subject 8: Averaged scalp plots aligned to fixation on-
set for non-target frames
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Figure C.71: Subject 8: Averaged scalp plots aligned to fixation off-
set for target frames
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Figure C.72: Subject 8: Averaged scalp plots aligned to fixation off-
set for non-target frames
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C.3 Temporal Discrimination Plots for Experi-

ment 3

In this section we provide the temporal discrimination plots obtained for experiment

3 across all subjects. This materials are intended to primarily supplement Section

3.4.
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Figure C.73: Subject 2: Temporally aligned discrimination graphs
map centred on the frame onset time showing differen-
tiating activity related to target image detection com-
pared to non target image detection
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Figure C.74: Subject 2: Temporally aligned discrimination graphs
centred on the fixation onset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.75: Subject 3: Temporally aligned discrimination graphs
map centred on the frame onset time showing differen-
tiating activity related to target image detection com-
pared to non target image detection
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Figure C.76: Subject 3: Temporally aligned discrimination graphs
centred on the fixation onset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.77: Subject 4: Temporally aligned discrimination graphs
map centred on the frame onset time showing differen-
tiating activity related to target image detection com-
pared to non target image detection
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Figure C.78: Subject 4: Temporally aligned discrimination graphs
centred on the fixation onset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.79: Subject 5: Temporally aligned discrimination graphs
map centred on the frame onset time showing differen-
tiating activity related to target image detection com-
pared to non target image detection
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Figure C.80: Subject 5: Temporally aligned discrimination graphs
centred on the fixation onset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.81: Subject 7: Temporally aligned discrimination graphs
map centred on the frame onset time showing differen-
tiating activity related to target image detection com-
pared to non target image detection
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Figure C.82: Subject 7: Temporally aligned discrimination graphs
centred on the fixation onset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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Figure C.83: Subject 8: Temporally aligned discrimination graphs
map centred on the frame onset time showing differen-
tiating activity related to target image detection com-
pared to non target image detection
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Figure C.84: Subject 8: Temporally aligned discrimination graphs
centred on the fixation onset time showing differentiat-
ing activity related to target image detection compared
to non target image detection
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C.4 Scalp Plots for Experiment 3

In this section we provide the scalp plots obtained for experiment 3 across all sub-

jects. These materials are intended to primarily supplement Section 3.4.
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Figure C.85: Subject 2: Averaged scalp plots aligned to frame onset
for target frames
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Figure C.86: Subject 2: Averaged scalp plots aligned to frame onset
for non-target frames
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Figure C.87: Subject 2: Averaged scalp plots aligned to fixation on-
set for target frames
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Figure C.88: Subject 2: Averaged scalp plots aligned to fixation on-
set for non-target frames
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Figure C.89: Subject 3: Averaged scalp plots aligned to frame onset
for target frames
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Figure C.90: Subject 3: Averaged scalp plots aligned to frame onset
for non-target frames
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Figure C.91: Subject 3: Averaged scalp plots aligned to fixation on-
set for target frames
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Figure C.92: Subject 3: Averaged scalp plots aligned to fixation on-
set for non-target frames
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Figure C.93: Subject 4: Averaged scalp plots aligned to frame onset
for target frames
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Figure C.94: Subject 4: Averaged scalp plots aligned to frame onset
for non-target frames
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Figure C.95: Subject 4: Averaged scalp plots aligned to fixation on-
set for target frames
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Figure C.96: Subject 4: Averaged scalp plots aligned to fixation on-
set for non-target frames
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Figure C.97: Subject 5: Averaged scalp plots aligned to frame onset
for target frames
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Figure C.98: Subject 5: Averaged scalp plots aligned to frame onset
for non-target frames
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Figure C.99: Subject 5: Averaged scalp plots aligned to fixation on-
set for target frames
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Figure C.100: Subject 5: Averaged scalp plots aligned to fixation
onset for non-target frames
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Figure C.101: Subject 7: Averaged scalp plots aligned to frame on-
set for target frames
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Figure C.102: Subject 7: Averaged scalp plots aligned to frame on-
set for non-target frames
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Figure C.103: Subject 7: Averaged scalp plots aligned to fixation
onset for target frames
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Figure C.104: Subject 7: Averaged scalp plots aligned to fixation
onset for non-target frames
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Figure C.105: Subject 8: Averaged scalp plots aligned to frame on-
set for target frames
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Figure C.106: Subject 8: Averaged scalp plots aligned to frame on-
set for non-target frames
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Figure C.107: Subject 8: Averaged scalp plots aligned to fixation
onset for target frames
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Figure C.108: Subject 8: Averaged scalp plots aligned to fixation
onset for non-target frames
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Appendix D

Supplemental material for

experiments outlined in Chapter 5

In this appendix section we present the supplemental materials to the experiment

described in 5.2.

D.1 Ranked images for subjects - Supplement for

Section 5.2
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Figure D.1: Ranked images from subject 1 prediction scores. First line is top ranked true positives (descending from
strongest predictions left to right), second line is true negatives (descending from strongest prediction left
to right), third line is false negatives (ascending from worst prediction left to right), and the fourth line in
false positives (ascending from worst prediction left to right)
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Figure D.2: Ranked images from subject 2 prediction scores. First line is top ranked true positives (descending from
strongest predictions left to right), second line is true negatives (descending from strongest prediction left
to right), third line is false negatives (ascending from worst prediction left to right), and the fourth line in
false positives (ascending from worst prediction left to right)
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Figure D.3: Ranked images from subject 3 prediction scores. First line is top ranked true positives (descending from
strongest predictions left to right), second line is true negatives (descending from strongest prediction left
to right), third line is false negatives (ascending from worst prediction left to right), and the fourth line in
false positives (ascending from worst prediction left to right)
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Figure D.4: Ranked images from subject 4 prediction scores. First line is top ranked true positives (descending from
strongest predictions left to right), second line is true negatives (descending from strongest prediction left
to right), third line is false negatives (ascending from worst prediction left to right), and the fourth line in
false positives (ascending from worst prediction left to right)
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Figure D.5: Ranked images from subject 5 prediction scores. First line is top ranked true positives (descending from
strongest predictions left to right), second line is true negatives (descending from strongest prediction left
to right), third line is false negatives (ascending from worst prediction left to right), and the fourth line in
false positives (ascending from worst prediction left to right)
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Figure D.6: Ranked images from subject 6 prediction scores. First line is top ranked true positives (descending from
strongest predictions left to right), second line is true negatives (descending from strongest prediction left
to right), third line is false negatives (ascending from worst prediction left to right), and the fourth line in
false positives (ascending from worst prediction left to right)
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Figure D.7: Ranked images from subject 7 prediction scores. First line is top ranked true positives (descending from
strongest predictions left to right), second line is true negatives (descending from strongest prediction left
to right), third line is false negatives (ascending from worst prediction left to right), and the fourth line in
false positives (ascending from worst prediction left to right)
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Appendix E

Miscellaneous materials

258



Figure E.1: University ethics approval
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