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Abstract

Greater temporal and spatial sampling allows environmental processes and the well-
being of our waterways to be monitored and characterised from previously unob-
tainable perspectives. It allows us to create models, make predictions and better
manage our environments. New technologies are emerging in order to enable remote
autonomous sensing of our water systems and subsequently meet the demands for
high temporal and spatial monitoring. In particular, advances in communication
and sensor technology has provided a catalyst for progress in remote monitoring of
our water systems. However despite continuous improvements there are limitations
with the use of this technology in marine environmental monitoring applications.
We summarise these limitations in terms of scalability and reliability. In order to
address these two main issues, our research proposes that environmental monitoring
applications would strongly benefit from the use of a multi-modal sensor network
utilising visual sensors, modelled outputs and context information alongside the
more conventional in-situ wireless sensor networks. However each of these addi-
tional data streams are unreliable. Hence we adapt a trust and reputation model
for optimising their use to the network.

For our research we use two test sites - the River Lee, Cork and Galway Bay -
each with a diverse range of multi-modal data sources. Firstly we investigate the
coordination of multiple heterogenous information sources to allow more efficient
operation of the more sophisticated in-situ analytical instrument in the network, to
render the deployment of such devices more scalable. Secondly we address the issue
of reliability. We investigate the ability of a multi-modal network to compensate for
failure of in-situ nodes in the network, where there is no redundant identical node
in the network to replace its operation. We adapt a model from the literature for
dealing with the unreliability associated with each of the alternative sensor streams
in order to monitor their behaviour over time and choose the most reliable output at
a particular point in time in the network. We find that each of the alternative data
streams demonstrates themselves to be useful tools in the network. The addition
of the use of the trust and reputation model reflects their behaviour over time and
demonstrates itself as a useful tool in optimising their use in the network.
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Chapter 1

Introduction

The demand from various scientific and management communities for reliable mon-

itoring of our coastal and inland waters has increased. We wish to investigate issues

such as climate change, the impact of human activities on ecosystems and water

quality and the overall state and well-being of our rivers, lakes and coastal zones.

These resources represent vital assets on many levels playing a key role in many

environmental processes and supporting a range of commercial and recreational

activities. In these environments an array of biological, chemical, geological and

physical processes occur over a range of temporal and spatial scales. These are dy-

namic environments affected by a range of anthropogenic factors as well as naturally

occurring processes. Water quality can be affected by a variety of factors such as

recreational and commercial activities, runoff from the local watershed, runoff from

urban areas or industrial output and in the case of coastal zones, discharge from

rivers in the catchment or environmental catastrophes such as oil spills.

The need to continuously protect, regulate and monitor these environments is

being recognised with the introduction of a growing body of legislation such as

the EU Water Framework Directive1. The introduction of legislation such as this

is increasing the need for advanced technologies to manage water quality. All EU

Member states must now achieve good status in all waters and maintain that status.

1http://www.wfdireland.ie
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The establishment of this EU directive has led to the need for water managers to

adopt a new approach to managing their waters. They are under increasing pressure

to monitor inland waters and coastal zones in relation to a variety of water quality

variables. In recent years there have been investigations into streamlining marine

environmental monitoring with in-situ wireless sensor networks (WSNs) proposed as

an effective tool for continuous real time monitoring at greater temporal and spatial

scales.

While there have been huge advances, there are a number of limitations with the

use of these technologies for achieving the scale of sensing required for monitoring

widespread locations. This research proposes that marine environmental monitoring

applications would strongly benefit from the use of a multi-modal sensor network

utilising visual sensors, modelled outputs and context information alongside the

more traditional in-situ wireless sensor networks. Additionally this research proposes

the use of a trust and reputation framework to deal with the inherent unreliability

associated with these alternative sensing modalities and modelled outputs in order

to optimise their benefits to the network. Throughout this thesis the formal ‘We’

and ‘Our’ is used to refer to the work completed by the author in carrying out the

research required to complete this body of work.

1.1 Motivation

Field measurements for coastal or river environments involves costly, time and

labour-intensive on-site sampling and data collection, transportation to laborato-

ries for analysis, and then subsequent evaluation. This type of sampling is too

limited on temporal and spatial scales to adequately monitor the quality of water

bodies on a long term basis, to model and understand key environmental processes,

or to capture dynamic events which may pose a threat to the environment or human

health. In the past this type of sampling has also introduced various data quality

issues through inadequate quality-control and quality assurance protocols such as
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extended holding times before analysis and the use of non-standardised methodolo-

gies (Glasgow et al., 2004).

New technologies are helping to streamline the water quality monitoring process

and are enabling the collection of more data from more places, and more cost effec-

tively than in the past. In recent years, the use of in-situ WSNs for monitoring our

aquatic systems has been investigated to allow continuous real-time remote monitor-

ing of these environments at greater temporal and spatial scales. This provides an

opportunity for long-term data collection at scales and resolutions that are difficult

or impossible to obtain otherwise. The data collection process is streamlined with a

minimisation of human errors and time delays increasing the quantity and quality of

data on temporal and spatial scales with a possibility of real-time alert notifications

of harmful marine events (Glasgow et al., 2004). Data can also be accessed remotely

which negates the need for data collection in sometimes hazardous or hard to reach

environments.

1.1.1 The Importance of High Spatial and Temporal Moni-

toring

Greater temporal and spatial sampling allows environmental processes and the well-

being of our waterways to be monitored and characterised from previously unob-

tainable perspectives. Many important environmental processes demonstrate high

frequency spatial variation and are extremely heterogeneous. Observing these pro-

cesses with high fidelity allows us to create models, make predictions and better

manage our environments (Estrin, 2007). Undersampling on a temporal scale can

result in masking the variability caused by processes occurring at higher frequencies

than the sampling rate (Johnson et al., 2007). Sampling at a limited number of

points spatially in the environment can mask the dynamics or trajectory of a phe-

nomenon. It also leads to incomplete understanding of our aquatic environments

and the natural or anthropogenic factors influencing processes in that environment.
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From an operational perspective, high spatial and temporal monitoring allows the

development of rapid detection and response systems to deal with environmental

threats such as flooding, harmful algal blooms (HABs), pollution or oil spills (Glas-

gow et al., 2004).

For example one phenomenon frequently highlighted as causing problems in

coastal and river systems is that of eutrophication (Smith et al., 1999; McGarrigle

et al., 2010). Eutrophic waters are those having relatively large supplies of nutri-

ents with eutrophication referring to “the process by which water bodies are made

more eutrophic through an increase in their nutrient supply” (Smith et al., 1999).

This over-enrichment of nutrients can stimulate excessive plant growth which can

have serious effects on an aquatic ecosystem. These include issues such as increased

biomass of freshwater phytoplankton which in some cases can be toxic, elevated pH

and oxygen depletion, and an increased probability of fish kills among others (Smith

et al., 1999; Mainstone and Parr, 2002; McGarrigle et al., 2010). In a recent report

published by the Environmental Protection Agency of Ireland on water quality in

Ireland, eutrophication is outlined as being of major concern in aquatic systems

(McGarrigle et al., 2010). The eutrophication status of Irish inland and coastal wa-

ters is assessed with recommendations on issues that will need to be addressed for

improving water quality e.g. identifying and tackling sources of diffuse pollution,

infrastructural investment in new wastewater treatment plants etc.

High spatial and temporal monitoring is necessary to characterise rapid processes

occurring in relation to nutrient loading of aquatic environments (e.g. (Donohue

et al., 2005), (Moscetta et al., 2009)). Phosphorous and nitrogen are key nutrients

that contribute to the eutrophication process (Smith et al., 1999). Although these

nutrients occur naturally there are many human activities that lead to excessive

amounts being found in our waters (Smith et al., 1999; Mainstone and Parr, 2002).

In particular we can distinguish between point and diffuse sources of pollution with

point sources typically attributable to outputs from sewage treatment works and

diffuse sources mainly attributable to run-off such as that from agriculture (Smith
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et al., 1999; Mainstone and Parr, 2002). Diffuse sources of pollution can be hard to

identify and thus more difficult to address as shown by McGarrigle et al. (2010).

Measurements of nutrients in natural waters are often carried out through man-

ual collection of samples, followed by laboratory analysis. Not only is this labour

intensive, but it provides limited information about spatial and temporal distribu-

tion of these nutrients throughout a water system. Increased monitoring may help

to identify sources of pollution or offending parties.

1.1.2 Technologies for Marine Environmental Monitoring

New technologies are emerging in order to enable remote autonomous sensing of our

water systems and subsequently meet the demands for high temporal and spatial

monitoring. In particular, advances in communication and sensor technology has

provided a catalyst for progress in remote monitoring of our water systems (Glasgow

et al., 2004). In recent years the concept of wireless sensor networks (WSNs) has

been the focus of research. The concept is relatively new and involves a diverse

range of technologies and disciplines while impacting a wide variety of application

sectors (Diamond et al., 2008a). The demand for continuous assessment of nutrient

concentrations in coastal and inland waters has also lead to the development of novel

analytical instruments using newly emerging technologies (Moscetta et al., 2009;

Diamond et al., 2008a). Despite continuous improvements there are limitations

with the use of this technology in marine environmental monitoring applications.

These monitoring applications essentially require large-scale low-cost sensor net-

works that can operate reliably and autonomously over extended periods of time.

However there is a significant gap between the current state of the art in both in-situ

wireless sensor networks and analytical instruments and what is needed to realise

this vision. Aquatic environments can be harsh environments for sustaining in-situ

instrumentation. Also in times of extreme events such as flooding, such instrumenta-

tion is prone to failure. Sophisticated analytical instrumentation such as chemo-bio

sensors are currently not suitable for scaled-up deployments over many months or
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years in terms of sustainability, reliability or cost (Diamond et al., 2008a).

A more in depth analysis of this topic is provided in Chapter 2, however the two

main issues are scalability and reliability.

• Scalability: The current state of the art in in-situ wireless sensor networks

or analytical instruments is not suitable for scaled up deployments suitable to

meet the demands of certain marine environmental monitoring applications.

• Reliability: Marine environments can be quite aggressive and sensor nodes

are subject to failure or damage, especially when not maintained regularly.

Failure of in-situ sensor networks may result in faulty data or gaps in coverage.

1.2 A Multi-Modal Sensor Network

In order to address the two main issues with using WSNs in an aquatic environment,

our research proposes that environmental monitoring applications would strongly

benefit from the use of a multi-modal sensor network utilising visual sensors, mod-

elled outputs and context information alongside the more conventional in-situ wire-

less sensor networks. Multiple heterogeneous information sources provides increased

information, more effective decision making and the more efficient use of sensing

technologies in the network.

For the purposes of our work we consider the use of two forms of visual sensors.

These are satellite sensors and off-the-shelf webcam type CCTV devices. Webcam-

type CCTV devices can provide continuous daylight data for periods extending to

decades at a very low cost. They can effectively quantify coastal and river parameters

with high resolution in space and time. Unlike point sensors, they can have a view

over a wide spatial area. Multiple cameras may be deployed and left for years.

Therefore an abundance of data on a wide variety of parameters can be collected

over long periods of time without human intervention at a scale which wouldn’t be

possible with in-situ sensor networks. They can also provide surrogate measurements

6



for parameters otherwise obtainable with sophisticated in-situ instrumentation e.g.

a change in depth may indicate run-off which may indicate nutrient loading etc.

Remote sensing from satellite or airborne sensors has proved to be a tremendous

tool for studying our environment at large spatial scales and at a much higher

frequency than was previously possible without the use of such technology. It offers

unique large scale synoptic data to capture the range and variability of many complex

processes, essentially providing high scale resolution data that would be economically

and technically unfeasible with point sensors at such a resolution.

Despite the advantages associated with each of these data sources, they have their

limitations. For example, the coarse spatial and temporal resolution of satellite re-

mote sensing and issues with radiometric calibration (i.e. linking pixel intensities

to a physical parameter), limited field of view and outdoor maintenance of web-

cams can be limiting factors. We are not proposing that these data sources should

replace a conventional in-situ sensor network but rather a system than uses these

in a complementary fashion can greatly benefit from each of their strengths for a

comprehensive environmental event detection system. By the terms “multi-modal”

and “heterogeneous” we also refer to the use of models in our network incorporating

data from heterogeneous in-situ nodes in the network for the prediction of values

of alternative in-situ nodes in the network. If our in-situ nodes are unreliable, and

we do not have redundant in-situ nodes in the network available to us, we need to

somehow optimise the technology in our multi-modal network to compensate for

these deficiencies, and lead to a more efficient and effective use of technology in the

network. This leads us to the two key research objectives of this thesis.

1.3 Research Objectives

Our research proposes that the coordination of multiple heterogeneous informa-

tion sources can allow more efficient performance of the more sophisticated in-situ

analytical instruments in the network, subsequently elongating their lifespan and
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rendering them more cost efficient and reducing maintenance requirements. This

may subsequently render the deployment of such devices more scalable, which is

one of the two main issues with WSNs in marine monitoring. Here we propose to

develop a model using rainfall radar information and in-situ depth information to

provide information that can be used by an in-situ analytical instrument to perform

more optimally and efficiently.

The second objective of our research relates to the issue of reliability. As nodes

in in-situ sensor networks are subject to failure, we investigate the ability of a multi-

modal network to compensate for such failure, where there is no redundant identical

node in the network to replace its operation. We investigate the use of models to

predict the values of alternative in-situ sensor nodes. In other words if an in-situ

sensor node fails and we have no redundant node available as backup, we investigate

how well we can replicate its behaviour from other data in the network, and estimate

values for the missing data. In the literature, trust and reputation systems have

been proposed as a tool to monitor the behaviour of nodes in a wireless sensor

network where all the nodes are homogenous and in order to address the issue of

data reliability and make in-network decisions. We adapt a model from the literature

known as RFSN2 (Ganeriwal et al., 2008) for dealing with the inherent unreliability

associated with each of the alternative sensor streams in order to optimise their

benefits to the network and choose the most reliable output at a particular point

in time. More formally we state these research objectives in terms of the following

hypotheses and research questions below.

2Reputation-based Framework for Sensor Networks
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1.3.1 Hypotheses

1. The use of multiple sensing modalities including visual sensors, context infor-

mation and modelled outputs will enhance the use of an in-situ sensor network

in marine environments.

2. A trust and reputation model adapted for use in a multi-modal sensor network

will help to deal with the unreliability associated with the visual sensor streams

and modeled outputs in the network and optimise their use by choosing the

most reliable output at a particular point in time.

1.3.2 Research Questions

In order to evaluate our hypotheses the following research questions need to be

addressed:

1. What information can be extracted from a low-cost off the shelf camera for

complementing the in-situ sensors located at the deployment site? Can we

develop models for classifying the relevant features in these images?

2. Can satellite earth observation data be used in the context of an operational

multi-modal network where it is required to produce data at high temporal scales

to complement and enhance in-situ sensors, so that in times of in-situ node

failure it can act as an appropriate substitute?

3. Can multi-modal context information in the form of rainfall radar images and

in-situ depth data be effectively modelled to produce outputs that can improve

the efficiency of a more sophisticated in-situ node in the network?

4. Can alternative in-situ nodes in the network be modelled to replicate the be-

haviour of an alternative in-situ node for use in the situation where that node

has failed?
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5. Can a trust and reputation model developed for use in a network where all nodes

in the network are homogeneous and there is multiple redundancy be effectively

adapted for use in a multi-modal network where all nodes are heterogeneous

and there are no redundant nodes?

6. Can this trust and reputation model help to address the unreliability associated

with the visual sensors, satellite sensors and the modelled outputs and produce

the most reliable output in the network at a particular point in time that best

replicates the behaviour of the failed in-situ node?

1.4 Overall Contributions

While the specific contributions of this thesis are outlined in the final conclusions

chapter, it is important to point out that this research represents a significant and

novel piece of work in relation to coastal and river environmental monitoring net-

works. It adopts novel and unique techniques for integrating a wide variety of

technologies for more efficient and effective low-cost monitoring. It investigates the

potential of a variety of sensing modalities for improving the effectiveness of environ-

mental monitoring networks while also investigating techniques for optimising their

use in the network. These investigations result in very interesting and promising

results and provide a number of avenues for further progress and development. This

work also involved the development of significant pieces of technology and a number

of research publications which are outlined in Appendix A and Appendix B.

1.5 Thesis Outline

Chapter 1: In this current chapter we introduce the need for high spatial and

temporal monitoring of inland and coastal waters, technologies that are helping

to meet these needs and their limitations. This provides the motivation for this

research and we subsequently introduce our research objectives, hypotheses and
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research questions.

Chapter 2: This chapter provides an an overview of some key concepts from

the literature in relation to environmental sensor networks, highlighting the difficul-

ties with the current state of the art in achieving reliable large-scale autonomous

sensor networks required for environmental monitoring applications. This chapter

also provides an overview of trust and reputation models, along with a detailed

outline of the model to be adapted for use in our research.

Chapter 3: In this chapter, we introduce our two test sites - the River Lee and

Galway Bay and the multi-modal data sources available for incorporation into our

network at these particular sites, along with the issues with these data sources.

Chapter 4: This chapter relates to research question 1. Here we demonstrate

the use of a visual sensor (camera) in a river environment and how it can be used as

a complimentary sensing modality to an in-situ environmental sensor network. The

focus of this particular study is on the estimation of depth from the camera images

since this particular parameter can be tied in with the in-situ sensor network. Depth

is also quite an influential feature at the site and effects the values of other water

quality parameters. We develop and evaluate classifiers for four features that can

provide an estimation of depth.

Chapter 5: This chapter relates to research question 2 where we investigate

the use of satellite imagery as a tool in a multi-modal sensor network that requires

near real time cooperation between the remote and in-situ sensor streams, so that

in times of node failure it can act as an appropriate substitute for an in-situ sensor.

We provide an overview of the literature in this area, while outlining our reasoning

for our choice of data streams. We also describe how we extract information from

these data streams for use in the network.

Chapter 6: This chapter relates to research questions 3 and 4. The first part

of this chapter investigates the development and evaluation of a model to predict

average freshwater levels at the River Lee using rainfall radar images and in-situ

depth data. These predictions can subsequently be used to control the operation of
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a more sophisticated node in the network and improve its efficiency. We present a

methodology for integrating pixel information from rainfall radar images and in-situ

depth data into an ANN for predicting average freshwater levels. We investigate a

number of issues such as the most effective way to present rainfall radar information

extracted from a digital image to the network, the effects of rainfall from different

points of catchment on the model, the effect of differing lag times on the model, and

the effect effect of rainfall and water level information on the model. The second

part of this chapter develops and evaluates models incorporating information from

a variety of different combinations of heterogeneous sensor nodes for the prediction

of an alternative in-situ node in the network in order to investigate if these models

would provide a suitable substitute data stream in time of node failure.

Chapter 7: This chapter relates to research question 5. In this chapter we

adapt the trust and reputation framework outlined in (Ganeriwal et al., 2008) to a

multi-modal sensor network and examine its performance in three diverse application

scenarios. In the first application scenario we examine its use for determining the

most reliable model for replicating the actions of the in-situ sensor node in question.

In the the second application scenario we examine its use for determining the most

reliable satellite remote sensor data stream for reflecting the readings of the in-situ

sensor node. In the third application scenario we examine its use for determining

the most reliable visual data stream, while also using it to evaluate the use of an

algorithm for relating visual features to the in-situ depth data.

Chapter 8: This chapter relates to research question 6. Here we examine

the performance of the network from an applications perspective. We examine the

type of performance that can be obtained from a multi-modal network if an in-situ

sensor node were to fail, aware however that the needs of different applications vary

in terms of the precision required. Then we carry out a case study evaluating the

performance of the multi-modal network in detecting depth events at the River Lee

test site. Subsequently we equip the network with a trust and reputation model

and evaluate if this brings about improved performance in optimising the use of the
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modelled outputs and visual sensor streams in the network.

Chapter 9 We summarise the outcomes of each of the chapters and present our

overall conclusions in relation to our research hypotheses. Following this we reflect

on the studies carried out and possible directions for future research.
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Chapter 2

Overview

In this chapter we provide an overview of some key concepts from the literature

in relation to environmental sensor networks. As outlined in Chapter 1 environ-

mental monitoring applications require reliable data sampled at high spatial and

temporal scales. However the following highlights a number of difficulties with the

current state of the art in environmental sensing technology in achieving this. This

overview provides the foundation for the motivation behind this research. It es-

sentially highlights the issues with regards to sensor reliability and the need for

developing innovative solutions for smarter, more efficient and effective sensor net-

works.

2.1 Wireless Sensor Networks

In the last two decades networking technologies have revolutionised the manner in

which individuals and organisations exchange information and communicate. This

technology is providing a foundation for a new wave of developments that involves

observation and control of the physical world (Cerpa et al., 2001). Wireless sensor

networks are a significant technology that has emerged as part of this new wave

of developments. The advancements in this area have resulted in the development

of low-cost, small, low-power multifunctional sensor nodes that consist of sensing,
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data processing and communication components (Akyildiz et al., 2002). Chong and

Kumar (2003) highlighted how these “cheap, smart devices with multiple onboard

sensors, networked through wireless links and the Internet and deployed in large

numbers” provide numerous opportunities in a number of application domains, such

as in the home, cities and the environment and are a key technology for the future.

Sensor networks essentially provide a gateway through which the digital world

can sense and respond to changes in the real world. The introduction of chemo/bio-

sensing extends this to sensing the real world at the molecular level (Diamond et al.,

2008a). The WSN concept envisages a world of ubiquitous sensing through large

scale deployments of self-sustaining WSNs, linked to digital communications contin-

uously monitoring our environment and instantly detecting and reporting changes

in the quality of our environment. Internet enabling of these devices essentially

leads to internet scale sensing and actuating systems (Diamond, 2004). Envisaged

are hierarchical layers of autonomous sensors working collaboratively to monitor

specific target parameters, adapting to the detection of specific events and sending

personalised information back to the relevant destination.

2.2 Sensor Networks: Issues

Environmental monitoring applications generally require high spatial and temporal

sampling. However analytical systems capable of some degree of scale up in the

marine environment need to be small, portable, environmentally compatible, ro-

bust, inexpensive to own and operate, and capable of providing reliable analytical

information over extended periods of autonomous operation (Bowden et al., 2002).

Diamond (2004) layers analytical devices into a hierarchy in terms of sophistica-

tion, capabilities, operational costs and degree of autonomy, outlining a significant

correlation between these factors and density of distribution. The key challenge

is outlined as driving devices towards the more densely distributed layers by low-

ering cost while maintaining their reliability and data quality. The most densely
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distributed layer is dominated by the use of physical transducers, such as pressure

and temperature sensors. While transducer-based WSNs are very important, it is

the introduction of chemo-/biosensing that will really lead to the vision outlined

earlier. However the current state of the art in this technology is not ready for large

scale deployments. These devices need to provide reliable analytical measurements

while matching less sophisticated sensors such as physical transducers in terms of

cost, power and ruggedness (Byrne and Diamond, 2006) which is a huge challenge

for the materials and analytical science community.

Physical transducers are generally low cost, rugged, reliable and consume very

little power. They are generally encased within a rugged encapsulant and can

continue to function from within this environment. On the other hand chemo-

/biosensing involves much more complex processes than the type of sensing carried

out in transducer-based deployments. It invariably involves liquid handling (espe-

cially in the marine environment) and intimate binding events or reactions to occur

either in solution (e.g. with reagent-based systems) or at the surfaces of sensing

devices. This means they are prone to degradation as they depend on active ma-

terials and surfaces that interact with the sample. The operating characteristics of

these active materials or surfaces may change over time and thus require frequent

re-calibration for generating a reliable signal. Chemo-/biosensors generally consume

considerably more energy in carrying out these complex processes and are generally

quite expensive (Diamond et al., 2008a).

Diamond et al. (2008a) highlights significant challenges for the chemo-/biosensor

research community to deliver sensing platforms that are appropriate for integration

into scaled-up deployments in terms of reliability, cost and sustainability. These plat-

forms need to be able to operate autonomously and reliably over extended periods of

time without requiring maintenance and at a low cost. Diamond et al. (2008a) sug-

gest some medium-term solutions along with possible avenues for further research,

some of which is addressed in Section 2.3.

Even without the challenges of chemo/bio-sensing there are a number of chal-
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lenges associated with large scale sensing in the environment. Deployments of other

such networks are generally limited in number due to issues related to network,

power and data handling and they are almost entirely restricted to transducers

for detecting physical parameters (e.g. temperature, pressure, light, vibration etc.)

(Byrne and Diamond, 2006). Deployments of these devices are still relatively small

and there are difficulties in relation to optimising power consumption and commu-

nications capabilities (Diamond et al., 2008b). They are also prone to data faults

and node failure. Xu et al. (2011) remarks a number of reasons for WSN failure

such as hardware or software failures and malfunctions, radio interference, battery

depletion or malicious damage. In particular data faults are a key issue in sensor

network research if this data is to be beneficial in arriving at meaningful conclusions

in a particular application domain. Deployment experiences have shown this to be a

major issue that requires further analysis (Ni et al., 2009). Ni et al. (2009) provides

a systematically characterized taxonomy of common sensor data faults outlining the

most commonly used features to model both data and faults.

2.2.1 Issues with Sensor Networks in the Marine Environ-

ment

Even without the issues outlined above, deployment of a sensor network in the ma-

rine environment poses unique challenges. Sensors are subject to harsh conditions

and often require greater levels of device protection. It is also quite a vast environ-

ment and energy consumption can be quite high since it often necessary to cover

large distances and communications signals may be attenuated due to the constant

motion of the water. Nodes can also be moved around by the tide or waves caus-

ing further difficulties. There may also be logistical problems associated with the

deployment and maintenance of sensors and the need for additional devices in the

marine environment e.g. flotation and mooring devices. The cost of the instru-

mentation is also often significantly higher than for a land-based WSN (Albaladejo
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et al., 2010).

The reliable and successful operation of sensors in a marine environment brings

with it a whole range of issues including obvious problems such as the possible effect

of salt on the sensors but there also exists other issues that need to be addressed

such as that of biofouling. Biofouling, the growth of nuisance or unwanted biofilms

on surfaces, is a significant problem in marine environmental sensing. It limits data

quality and deployment periods of instruments (Manov et al., 2004). Much research

is focused on anti-fouling strategies for sensors in coastal or inland marine environ-

ments with a number of strategies proposed in the literature e.g. (Manov et al.,

2004; Whelan and Regan, 2006; Sullivan and Regan, 2011). The significant atten-

tion this subject receives demonstrates the severe consequences this phenomenon

has on autonomous marine sensor networks.

The marine environment can be quite vast and with the cost of marine envi-

ronmental sensors, there are significant limitations to the spatial coverage that can

be achieved with single point sensors with varying degrees of reliability. Marine

monitoring applications often require high spatial coverage, hence techniques for

increasing the efficiency of deployed sensors and the adoption of alternative sensing

modalities such as visual or satellite sensors is worth exploring.

2.3 Sensor Networks: Opportunities for Progress

We now highlight some avenues for progress in order to achieve higher scale chemo/bio-

sensing and also smarter, more efficient and effective sensor networks. Higher scale

chemo-bio sensing would allow high frequency measurements from multiple points

of our aquatic environments, as opposed to intermittant measurements from a very

limited number of spatial areas. This would greatly improve our understanding

of the spatial and temporal dynamics of various environmental processes, and our

ability to capture dynamic and potentially harmful events.
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2.3.1 Autonomous Chemo-/Biosensing with Potential for

Scale-Up

Diamond et al. (2008a) examine developments in wireless sensor platforms that are

helping deliver reliable autonomous chemo-/biosensing capable of some degree of

scale up. We are still a considerable distance away from low cost, reliable, self-

sustaining chemo/bio sensing devices (Diamond et al., 2008a,b; Diamond, 2004;

Byrne and Diamond, 2006) but many of the interim solutions would benefit from a

smarter more adaptive approach, whereby they operate with an awareness of their

environment and changes to that environment. The following provides an overview

of some these interim solutions and how they may benefit from a smarter more

context-aware approach.

According to (Diamond et al., 2008a), the concept of ‘micro-total analysis sys-

tems’ or µTAS was introduced by (Manz et al., 1990) around 1990 and became

known as lab-on-a-chip (LOAC). In principle LOAC devices, offer a route to incor-

poration of sophisticated chemo-/bio processing in a compact, low-power platform

(Diamond, 2004). They offer a compromise between existing lab-based instruments

and completely self-sustaining miniaturised sensors capable of massive scale up. As

outlined in (Diamond et al., 2008b), the key component of such a device from an

analytical perspective is the microfluidic manifold through which samples are ac-

cessed, reagents are added, measurements are made, and calibration is performed

(Reyes et al., 2002). In its ultimate manifestation, this concept provides a route to

the generation of field- deployable micro-dimensioned analytical instruments that

could operate autonomously over relatively long periods of time.

However these devices can only store a limited amount of reagent and they

generally require a lot of power (Diamond et al., 2008a). Thus they only have a

limited number of samples before maintenance is required. If these samples could

be used more effectively it would improve the efficiency of the device in terms of

reagent consumption, power, maintenance, etc. Such a device has been developed
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by the CLARITY research centre at Dublin City University (DCU) for monitoring

phosphate levels in water (lakes, river, treatment plant outlets etc.) (Slater et al.,

2010). Its portability, small size and potential low cost renders it very promising

for some degree of scale up in the marine environment. Our work seeks to improve

the efficiency of such a device by controlling the sampling rate based on contextual

information from other sensing modalities in the environment. The possibilities

associated with adaptive sensing are explored further in Section 2.3.3.

2.3.2 Alternative Sensing Modalities

Since the cost base is still quite high for autonomous analyser platforms, other

mechanisms are also being proposed in the literature. However some of these other

mechanisms involve completely alternative sensing modalities such as visual sensing.

For example Fay et al. (2010) presents an approach using a robotic fish with an

integrated low-power wireless video camera to provide information on water quality.

The robotic fish is used in conjunction with low cost, dispersed colorimetric sensors.

When a sensor has been located, the camera ‘interrogates its condition’ reporting

the result via a wireless link. The authors state how this single low power robotic

platform can provide analytical information at multiple locations using very low cost

sensors.

Visual sensing sensing has been proposed as an alternative sensing modality in

a variety of contexts throughout the literature, and not just in relation to chemical

or biological sensing. By the term visual sensing we are referring to sensing from

cameras or satellite-based imaging instruments. For example in previous studies,

coastal video systems have been identified as effective tools for coastal monitoring.

A prime example of this is a major European research project entitled CoastView

(Davidson et al., 2007). This focused on the development of video systems in sup-

port of coastal zone management utilizing Argus technology. Argus stations consist

of optical systems developed for nearshore sampling (Holman and Stanley, 2007).

The CoastView project demonstrates the use of fixed video remote sensing systems
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to partially ameliorate some of the problems associated with in-situ measurements

of waves, currents, and morphological change. Davidson et al. (Davidson et al.,

2007) refers to some of the research carried out investigating algorithms for the

quantitative extraction of geophysical signals from image data including morphol-

ogy (Aarninkhof et al., 2005), flows (Chickadel et al., 2003) and wave parameters

(Holman and Chickadel, 2004) and refers to the scientific literature that has tested

and reviewed the reliability, accuracy and versatility of coastal video systems. How-

ever despite the benefits there are also some drawbacks with the use of these types

of systems. For example they need to be weather proofed and they also need to have

sufficient power and network transmission speeds for continuing to operate and to

relay back data. Data quality can also be affected by weather and illumination

conditions, and can they can only provide data during hours of daylight.

Satellite remote sensing is also continuously evolving with the launch of new

satellites and improved processing algorithms. There is much literature which fo-

cuses on the validation of earth observation data through match-ups with in-situ

observations e.g (Nightingale et al., 2008; Wimmer et al., 2008; Barker et al., 2008).

Its use has been investigated in the context of diverse applications in the marine

and land environment e.g (Hansen et al., 2008; Ruddick et al., 2008; Stefouli et al.,

2008; Brodsky, 2008; Pedrazzani et al., 2008). Its applicability to climate studies

has also been addressed with particular emphasis on its role in the investigation of

climate change (Knorr et al., 2008).

While visual and satellite sensing poses a number of opportunities in a wide

variety of contexts, there are also a number of drawbacks with using this type of

data. These issues are addressed further on in the thesis. However they represent a

very valuable sensing modality for complementing the use of in-situ sensor networks,

and we subsequently examine their use in the context of this research.
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2.3.3 Smarter Networks

Diamond et al. (2008b) note how future sensor networks will be heterogeneous in

nature, constructed from layers of sensing devices of similar complexity. These

may range from very simple, low cost physical/chemical transducers to much more

sophisticated devices like that described in Section 2.3.1. At the lowest level of

complexity will be the most densely deployed devices consisting of relatively simple

sensors which will feed information to the more sophisticated levels of sensing which

are less densely distributed due to their cost and maintenance requirements. The less

reliable but more abundantly deployed low cost devices will be used for providing

early warning information of events to modify the operating characteristics of the

more sophisticated nodes (e.g. increase sampling frequency, or wake up). These more

reliable nodes can subsequently confirm or dispute the information coming from the

less sophisticated layer (Diamond et al., 2008b). This can help to reduce the duty

cycle of the more sophisticated nodes reducing the energy required and their overall

efficiency and lifetime in the field, whilst also achieving high resolution sensing.

The more sophisticated nodes may also provide a mechanism against which the

more densely distributed but dumber devices can be remotely calibrated (Diamond,

2004).

Group behaviour strategies may be used to identify anomalous signals, device

malfunction and also may provide information about the source, dynamics, tra-

jectory and area of effect of an event. Diamond (2004) notes how in a densely

distributed network that monitors water quality for example, it is unlikely an event

will be detected on one device only. This event will normally be detected on a

number of devices clustered in a particular region, and the temporal development of

the signal pattern can be used to follow the dynamics of the event. An autonomous

mobile device could subsequently be deployed to that region for locating and vali-

dating the event. Corresponding with this line of thought Estrin (2007) highlights

that the power of embedded sensor network technology “derives from embedding

measurement devices in the physical world and networking them to achieve intelli-
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gent, adaptive, coordinated sensing systems”. Estrin outlines that their approach

to achieving scalable and robust systems is through exploiting heterogeneity and

hierarchy in their designs, providing a number of examples of deployments using

multi-layer actuated systems. Ganeriwal et al. (2008) interestingly notes how sen-

sor nodes are implemented using inexpensive hardware components that are highly

unreliable, however these barriers will not disappear with advances in technology

since the driving force in sensor networks is the quantity of nodes as opposed to the

quality of each individual sensor. This comment appears to have been made more in

the context of large-scale transducer based networks. While marine sensor networks

generally consist of a limited number of sophisticated nodes, as outlined above this

may move towards a larger number of unreliable devices which can control the place-

ment and the operational characteristics of the more sophisticated devices.Hence we

need to understand the limits of these unreliable technologies and operate within

these constraints.

Based on experiences in the field there are a number of notable comments made

by Estrin (2007) regarding lessons learned and future research. These comments are

mainly based around the theme of heterogeneity, hierarchy, and data quality which

are central to this research. She states how it is not just about enabling the largest

number of smallest, lowest power devices to create fully autonomous systems but

it is about optimising the end to end heterogeneous system. She also outlines how

rather than minimising energy use and bits transmitted, that its about minimising

uncertainty. Consequently they have focused on the development of architectures

and algorithms that optimise across components that include power on demand

platforms, sensing modalities that combine physical and image sensing devices, and

mobile and static sensor nodes, with mobility outlined as being key to addressing

the issue of undersampling with static sensors. Another critical theme outlined by

Estrin (2007) is that of data quality and system integrity. In-network processing

algorithms and statistical techniques are being used as initial tools for calibration,

self-test and validation.
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The work carried out in our research is very much focused on optimising the

technology available to us in the network to achieve a more efficient and effective

sensor network. It is specifically focused on optimising a heterogeneous multi-modal

sensor network for prolonging the operation of sensor nodes in the network, pro-

viding redundancy in the network in the case of node failure and addressing the

issues of data quality in these modelled outputs. Key issues in environmental sensor

networks are sensor reliability and scale of sensing. Incorporating redundancy in the

network is often not an option in marine environmental monitoring due to cost and

maintenance issues. Hence we need to investigate methodologies in how we can use

available technology in the network more intelligently whilst also considering the

use of alternative sensing modalities in the network such as visual sensing, to help

to address these issues. The following provides an overview of some sensor network

deployments from the literature that reflect some of the issues previously outlined.

2.4 Sensor Network Deployments

Example deployments of mote-based wireless sensor networks for environmental

sensing cover a wide variety of applications contexts. Tolle et al. (2005) presents a

case study of a WSN deployed across a 70-metre tall redwood tree at a resolution

of 2 metres to monitor its microclimate. Another widely cited deployment is that

of the use of wireless sensor networks for habitat monitoring at Great Duck Island

(Mainwaring et al., 2002; Szewczyk et al., 2004). The aim was to monitor the occu-

pancy of underground nesting burrows by sea birds and the role of factors relating to

microclimate in their habitat selection. Another deployment described in (Cardell-

Oliver et al., 2004) monitors soil moisture, adaptively adjusting the frequency of

measurements to monitored rainfall. In (Werner-Allen et al., 2006b), the deploy-

ment of 16-wireless sensor nodes equipped with seismoacoustic sensors over 3 km on

a volcano in northern Ecuador is described. An evaluation on the performance of

this sensor network in terms of its effectiveness as a scientific instrument is carried
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out in (Werner-Allen et al., 2006a). A number of issues were experienced during

many of these deployments. For example some experienced problems with battery

performance, problems with data delivery, data quality etc. As previously outlined

data quality is an issue that requires huge attention in sensor network research if

data from these devices are to be used for scientific analysis.

Estrin (2007) highlights deployments from four applications domains - seismic,

terrestrial ecology, aquatic and contaminant transport. Many of these deployments

are composed of multi-modal (includes sensors, cameras, actuators etc.) and multi-

scale actuated sensing technologies. One particular technology that is employed

is a robotic sensing node known as NIMS (Pon et al., 2005). Pon et al. (2005)

highlights some of the limitations of conventional sensor network deployments to

properly characterise environmental phenomena to a high level of fidelity citing

issues such as spatiotemporal sampling, sensing uncertainty and their ability to

effectively operate over long periods of time. Insufficient spatiotemporal sampling

can lead to uncertainties in characterising what has been sensed. They also note

that compact, low power, in-situ sensors are not available for monitoring many

phenomena, and that it may be more suitable to have samples collected from a

mobile device and analysed away from the environment. They introduce the NIMS

method where robotic devices are deployed on cable way systems. These systems

have been deployed in a wide range of contexts such as microclimate and solar

radiation mapping and for measurement of water quality in the Los Angeles area

watershed.

2.4.1 Marine Environmental Sensor Networks

Over the last ten years, there has been increased scientific interest in monitoring of

the marine environment with the instruments used ranging from small-scale sensor

networks such as WSNs to highly complex observation systems. Albaladejo et al.

(2010) provide a systematic review of all high quality research evidence relevant to

the use of WSNs in oceanographic monitoring. They distinguish two broad cat-
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egories of marine wireless networks based on the data transmission medium that

they use – WSNs based on radio frequency (RF) aerial communications (A-WSNs)

and Under-Water Acoustic Sensor Networks (UW-ASNs). They note how most of

the deployments reviewed cover relatively small marine areas (not more than 20km)

with the distance between nodes in a range of 100-250m. Data was sampled in most

deployments every 5 to 10 minutes. This is in contrast to coastal oceanographic

observatories where the spatial resolution is in kilometres and the time resolution is

in hours or days, however they often cover much larger areas.

A number of challenges are indicated that will need to be overcome to enable

large-scale implementations of this type of network. These include reducing the costs

of sensors which can account for up to 70 per cent of the total initial investment,

incorporating efficient power supply systems to cover the duration of the deployment,

continued improvements of communication systems, incorporation of components

that guarantee appropriate levels of insulation and corrosion proofing, and buoy

design which considers maintenance issues and eventual dismantling.

Johnson et al. (2007) provide an overview specifically of chemical sensor de-

ployments. They outline how great progress has been made towards autonomous

chemical sensing capabilities in the past decade by the marine and aquatic chemistry

communities and that a variety of chemical sensing systems are now continuously

deployed in marine environments, even through they are still not at the same level

of cost or reliability as physical sensors. They outline the issues associated with

undersamping of the marine environment and the need for sustained, large-scale,

high-frequency observations which is not realistically possible through field sampling

programs. However, there are no examples of chemical sensor networks operating

at global scale, with some operating at smaller scales.

There are limited examples of chemical sensors that can operate autonomously

for long time periods producing reliable measurements. In their review Johnson et al.

(2007) describe chemical sensors that have been deployed in the marine environment

and have data records of at least a few months. They then go on to describe examples
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of networks that use these sensors or analysers. The majority of these deployments

are based on sophisticated platforms, which demonstrates the lack of large-scale low

cost chemical sensor deployments.

2.5 Trust and Reputation Systems

Trust and reputation systems are generally built around similar principles to that

which are used in traditional social situations. For example we tend to only interact

with those we consider as having a good reputation. This represents our opinion

of another person and it may be based on our own direct experience with that

individual, our observations of others experiences involving that individual or on

reports of experiences from other trustworthy individuals.

There are a variety of descriptions of trust and reputation provided in the liter-

ature. In their survey of trust and reputation systems for online service provision

Jøsang et al. (2007) note how trust is challenging to define due to the fact it ‘mani-

fests itself in many forms’. They highlight two common definitions of trust – reliabil-

ity trust and decision trust and differentiate between reputation and trust through

postulating reputation as a more global measure based on the ratings of members of

a community, with trust being a more subjective notion based on various factors or

evidence. Roman et al. (2009) states that while there is no consensus on the defini-

tion of trust that it is usually defined in terms of a trustor and trustee – the trustor

is “the subject that trusts an entity or a service” and the trustee is “the entity being

trusted”. It is noted that there are several definitions for reputation highlighting one

definition of reputation as “an expectation about an individual’s behaviour based

on information about or observations of its past behaviour” (Abdul-Rahman and

Hailes, 2000). Similarly Aberer (Aberer and Despotovic, 2001) describes reputation

as “a measure that is derived from direct or indirect knowledge on earlier interac-

tions of agents and is used to assess the level of trust an agent puts into another

agent”. Ganeriwal and Srivastava (2004) defines reputation as “the perception that
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a person has of another’s intentions” and trust as “the expectation of one person

about the actions of others”. The notion of trust and reputation that will be used in

this research is described further on when we are describing the trust and reputation

model to be adapted in this work.

The manner in which a system discovers, records, and utilises reputation to

form trust, and subsequently uses this trust to influence behaviour and decisions is

referred to as a reputation and trust-based system (Srinivasan et al., 2006a). The use

of reputation and trust to facilitate decision making has been studied in the context

of a variety of diverse domains such as e-commerce, ad-hoc wireless networks, and

peer-to-peer networks through various trust frameworks and reputation systems.

The following provides an overview of the use of reputation and trust-based systems

in these environments. This will provide a basis for an in-depth overview of the

model proposed in Ganeriwal et al. (2008) which is the framework from which this

research will be based.

2.5.1 E-Commerce and P2P Systems

The Internet has created new opportunities for the buying and selling of goods and

services. However this often involves interacting with strangers without trusted third

parties and subsequently a certain amount of risk is involved. The mechanisms from

which trust is traditionally created are often not available in such an environment

(Resnick et al., 2000; Resnick and Zeckhauser, 2002). The use of a reputation

system has emerged as a method for fostering trust among strangers in e-commerce

transactions (Resnick et al., 2000; Jøsang and Ismail, 2002; Patton and Josang,

2004). A reputation system collects, distributes, and aggregates feedback about

participants’ past behaviour (Resnick et al., 2000; Patton and Josang, 2004). It

seeks to help people decide whom to trust, to encourage trustworthy behaviour, and

also to deter participation from dishonest parties (Resnick et al., 2000). In order to

understand how these systems can foster trust in such an environment, Resnick et al.

(2000) examines how trust builds naturally in long-term relationships. They refer
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to an effect called the “shadow of the future” by political scientist Robert Axelrod

(Axelrod, 1984) which translates into an expectation that people will consider each

other’s past in future interactions. However strangers do not have knowledge of

one another’s past histories and no prospects of interacting in the future. To some

degree, their ‘good name’ is not at stake since they are not subject to a network

of informed individuals that will use their past interactions as a basis for future

decisions. Therefore the temptation to act deceptively may outweigh the incentive

to cooperate. The use of a reputation system seeks to reinstate the “shadow of the

future” to transactions in an e-commerce environment by creating an expectation

amongst users that their past behaviour will affect their future interactions (Resnick

et al., 2000).

Online auction sites such as eBay.com were the first web-sites to introduce repu-

tation systems (Jøsang and Ismail, 2002; Patton and Josang, 2004). In fact eBay’s

reputation system is one of the earliest and best known Internet reputation systems

(Resnick and Zeckhauser, 2002). After a transaction is completed, the buyer and

seller have the opportunity to rate each other and leave comments, therefore cre-

ating a public history of transactions from which future buyers or sellers can base

their decisions. Yahoo! Auction, Amazon, and other auction sites also feature sim-

ilar reputation systems to that used by eBay with some variations (Resnick et al.,

2000). Reputations systems are also used by internet sites other than auction sites

such as Bizrate.com, Expertcentral.com, and epinions.com.

Despite their usefulness and importance in an internet environment, reputation

systems encounter significant challenges. Problems arise in eliciting, distributing

and aggregating feedback (Resnick et al., 2000). For example some people may

not bother to provide feedback at all, it can be difficult to ensure that feedback

is honest, and it is relatively easy to change one’s identity and start over. There

are also issues in relation to aggregating and displaying feedback. Some simple

numerical ratings may fail to convey important information from previous online

interactions as shown by Resnick et al. (2000). A number of reputation systems,

29



have been proposed in the literature for online environments and agent systems (Yu

and Singh, 2000; Zacharia et al., 2000). Some of these have attempted to address

the various issues and challenges associated with these systems. For example Chen

and Singh (2001) and Dellarocas (2000) attempted to address the issue of quality of

the feedback.

According to Jøsang and Ismail (2002), there are two fundamental aspects for

consideration in relation to internet reputation systems. Firstly, an engine which

calculates the value of the users’ reputation ratings and secondly a propagation

mechanism which allows entities to obtain reputation values. Jøsang and Ismail

(2002) outline how reputation engines proposed in the literature range from quite

simple ones which simply accept numerical values and add them together (e.g. eBay)

to those which perform more complex mathematical equations e.g (Yu and Singh,

2000). Two approaches are available for user reputation propagation - centralised or

decentralised. In the centralised approach reputation values are stored in a central

server (e.g. eBay) whereas in the decentralised approach individuals manage the

reputation of others themselves (Zimmerman, 1995; Yu and Singh, 2000). Jøsang

and Ismail (2002) propose a new reputation engine known as the beta reputation

system. This reputation system has a firm basis in the theory of statistics and is

based on the beta probability density function. Here they describe a centralised

approach, however it can also be used in a distributed environment. The beta

distribution has since been the foundation for other reputation systems in diverse

domains such as mobile ad-hoc networks and wireless sensor networks including the

reputation system outlined in Ganeriwal et al. (2008) which we adapt for use in our

research further on in the thesis.

Jøsang et al. (2007) published a survey in relation to developments of trust and

reputation systems for online service provision. They provide an overview of various

principles used for computing reputation and trust measures such as summation

or average of ratings, Bayesian systems, discrete trust models, belief models, fuzzy

models and flow models, and describe the most well-known applications of online
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reputation systems. All of these have a centralised architecture (as opposed to

distributed) and use a simple summation or average for computing ratings apart

from two systems which use a flow model e.g. Google’s web page ranking system.

They highlight problems with these systems and propose some possible solutions.

Reputation based trust management systems have also been studied specifically

in the context of P2P systems, with the publishing of many well known models

in the literature. A widely cited algorithm for reputation management in P2P

environments known as EigenTrust is outlined in Kamvar et al. (2003). Other well

known models include PeerTrust (Xiong and Liu, 2003, 2004) and a model proposed

by Aberer and Despotovic (Aberer and Despotovic, 2001).

2.5.2 Mobile Ad-hoc networks (MANETs)

Recently efforts have been made to model MANETs as trust and reputation based

systems. Many of the issues that arise when unknown entities seek to transact

in an e-commerce domain or a P2P system can translate to this environment. A

MANET is a self-configuring system of mobile nodes connected by wireless links

(Srinivasan et al., 2006b). The nodes are free to move randomly which means

the network’s topology can be changed rapidly and unpredictably. All network

activities are carried out by nodes themselves and since there is no infrastructure

to guarantee correct behaviour, the cooperation of all the nodes is required for the

efficient functioning of the network. Even a few misbehaving nodes can have a

severe impact on the network throughput. A node may agree to forward packets

and then fail to do so. This may be for a variety of reasons. For example, a

selfish node may not want to spend battery life, CPU cycles, or available network

bandwidth to forward packets which are not of direct interest. However it will expect

other nodes to forward packets on its behalf. A malicious node may deliberately

drop packets to launch a denial of service attack on the network (Marti et al.,

2000). Through modelling a MANET as a reputation and trust based system nodes

can make reputation and trust guided decisions. For example a node may avoid
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forwarding packets through any routes which contain misbehaving nodes or may

refuse to forward packets for any nodes that it has ‘blacklisted’ as noncooperative.

Marti et al. (2000) proposed two techniques that improve throughput in an ad

hoc network, where there are a certain number of nodes that agree to forward pack-

ets but fail to do so. Dynamic Source Routing (DSR), a protocol developed for

routing in mobile ad-hoc networks, is complemented with a Watchdog component

that identifies misbehaving nodes and a pathrater that helps routing protocols to

avoid these nodes. This resulted in increased throughput in the network. However,

using this approach, malicious nodes that do not cooperate are not punished. They

are simply relieved of the burden of forwarding packets for others while their mes-

sages are forwarded by the non-misbehaving cooperative nodes. Also, the nodes rely

on their own watchdog exclusively and do not exchange reputation information with

other nodes in the network. Although this means that nodes are robust against false

praise and false accusations from other malicious or colluding nodes in the network,

the detection of malicious nodes may be slower.

Other protocols were proposed which aim to make misbehaviour unattractive

through detecting and isolating misbehaving nodes and hence providing an incentive

for cooperation. Ratings from other nodes in the network are also considered in order

to speed up detection time. However this may render the system vulnerable to false

accusations or false praise.

The CONFIDANT protocol proposed in (Buchegger and Boudec, 2002) seeks

to find misbehaved nodes and isolate them so that misbehaviour will not pay off.

Malicious nodes are detected through observing other nodes in the neighbourhood

and from shared experience of malicious behaviour reported from other nodes in

the network. It updates the reputation accordingly and if the reputation rating is

bad, action is taken in terms of their own routing and forwarding and other nodes

are informed by sending an ALARM message. CONFIDANT consists of a monitor,

reputation system, path manager and trust manager. The aim of the monitor is

to detect events or attacks. The trust attributed to warnings from second-hand
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observations is controlled by the trust manager. The trust manager controls how

incoming and outgoing second-hand reports are handled. The goal of the reputation

system is to create knowledge based on these first and second hand observations.

Unlike the approach described in Marti et al. (2000), this approach learns from

reported malicious behaviour from other nodes which decreases the detection time of

a misbehaving node when compared to relying exclusively on first hand observations.

However, this renders the system vulnerable to false accusations where a trusted

node makes wrong accusations or a sufficient number of nodes collude to make a

wrong accusation. Also CONFIDANT relies solely on negative information; positive

observations do not influence the rating.

Michiardi and Molva (2002) propose a generic mechanism based on reputation to

enforce node cooperation. This mechanism called CORE is based on a collaborative

monitoring technique where each network entity keeps track of other entities’ col-

laboration using reputation. Reputation is calculated and updated through direct

observations and through information provided by other nodes. However this scheme

defines three types of reputation which are weighted for a combined reputation value

- subjective reputation (direct observations), indirect reputation (positive reports by

others) and functional reputation (task-specific behaviour). This combined reputa-

tion value is subsequently used to make decisions on whether to cooperate with a

node or to gradually isolate it. As noted above the indirect reputation only takes

positive values by other network entities to prevent malicious broadcasting of neg-

ative ratings for legitimate nodes. The potential from learning from the negative

experience made by other network entities goes unused, making a similar trade-off

between robustness and detection speed as the system proposed by Marti et al.

(2000). This system is still also subject to false praise and may result in a good

reputation for false nodes.

Buchegger and Boudec (2003a,b,c, 2004) propose a reputation system that makes

systems such as CONFIDANT, robust against false accusations or false praise while

retaining the benefit of using both positive and negative second hand information.
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This reputation system formulates the problem in the realm of Bayesian analytics.

RFSN (Ganeriwal et al., 2008), the model which will form the basis for the system

developed in our research is developed using a similar Bayesian formulation. We

will now provide an overview of this system.

2.5.3 Reputation-Based Framework for High-Integrity Sen-

sor Networks

RFSN (Ganeriwal et al., 2008; Ganeriwal and Srivastava, 2004) is the first reputation

and trust based system designed and developed exclusively for WSNs. Ganeriwal

et al. (2008) examine the use of a trust and reputation based system for providing

data reliability in a WSN. They propose that mechanisms in sensor networks to

ensure the reliable relaying of data between trusted parties should also account for

the accuracy and trustworthiness of the data itself. In (Ganeriwal and Srivastava,

2004) they argue that cryptography alone is not sufficient to counteract some of the

misbehaviours encountered in WSNs. Subsequently they propose the integration

of tools from various domains such as economics, statistics and data analysis with

cryptography for developing trustworthy sensor networks.

Through the RFSN framework, network entities (i.e. sensor nodes) maintain

reputation for other entities in the network. These reputation metrics are continu-

ously built up over time from monitoring the behaviour of other nodes and rating

them as being cooperative or non-cooperative. An entity uses this reputation to eval-

uate the trustworthiness of another entity and the data it provides, and to predict

future behaviour. Based on this evaluation, decisions can be made and behaviours

can be changed. The terms cooperative and uncooperative may adopt a different

meaning depending on the system under consideration. Cooperation entails that a

node should behave as expected in the network. In this work however the actions of

interest are sensor readings and the level of confidence that can be associated with

a data reading for a given sensor node.
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RFSN borrows some design features from other works in the literature such

as eBay (Resnick and Zeckhauser, 2002), CONFIDANT (Buchegger and Boudec,

2002), CORE (Michiardi and Molva, 2002), and peer-to-peer networks (Xiong and

Liu, 2003). However as a complete system it differs from each of these. For example

these may be limited in scope – e.g. they may only counteract routing selfish misbe-

haviour attacks; differ in architecture - e.g centralised versus distributed; assume a

deterministic model for representing reputation or portray a very high level picture

of the probabilistic framework based on debatable heuristics. As previously outlined

reputation systems were proposed for MANETs which formulate the problem in the

realm of Bayesian analytics e.g. (Buchegger and Boudec, 2004, 2003b,a,c). RFSN

is developed using a similar Bayesian formulation which has a strong foundation in

statistics and can counter any arbitrary misbehaviour of nodes.

The main properties of a reputation system are the representation of reputation,

how the reputation is built and updated and how the ratings of others are con-

sidered and integrated (Buchegger and Boudec, 2004). RFSN employs a Bayesian

formulation, specifically a beta reputation system, for the algorithmic steps of rep-

utation representation, updates, and integration and trust evolution. Jøsang and

Ismail (2002) provide a detailed analysis about reputation systems based on beta

distributions. The two key components of RFSN are Watchdog and Reputation.

Watchdog

The Watchdog monitors the actions of other nodes and classifies these actions as

being cooperative or non-cooperative. As previously explained, in the context of this

work cooperation is determined by the quality of the actual sensor readings. The

Watchdog both collects these observations and carries out the characterisation. Its

objective is to detect the presence of invalid data resulting from compromised and

faulty nodes. Instead of simply carrying out a binary classification i.e. cooperative

or non-cooperative, a level of confidence or probability (any real number between

(0,1)) can also be associated with the sensor reading.
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The Watchdog is designed as a library of outlier detection protocols which allows

easy integration of customized protocols for specific scenarios. A set of data readings

is input to the watchdog and a level of confidence that can be associated with each

data reading is output as a rating in the range (0,1). Ganeriwal et al broadly classify

outlier detection protocols as either model-based or consensus based. Model-based

outlier detection looks for data readings that deviate from a specific model where

each data reading is evaluated independently against the model. A priori knowledge

of this data model is required. Consensus-based outlier detection protocols generally

look for consistency among data readings in a set and assign a level of confidence

to a data reading proportional to its deviation from the consensus. These protocols

require the readings for their functionality (i.e. they do not require any further data

models than the readings), however the rating depends on other readings in the set.

In (Ganeriwal et al., 2008), Ganeriwal et al. use consensus or consistency-

based outlier detection. More specifically, RFSN uses the density-based approach to

consistency-based outlier detection. The prototype implementation of RFSN uses

Local Outlier Factor, or LOF (Breunig et al., 2000) the simplest version of density-

based outlier detection. For more details on this approach, see Breunig et al. (2000).

Reputation

The Reputation component maintains the reputation of a node. It manages reputa-

tion representation, reputation updates based upon the new observations made by

the Watchdog, reputation integration based on other available information, reputa-

tion aging, and the creation of an output metric of trust. Reputation is maintained

as a probabilistic distribution; therefore nodes are not constrained by discrete levels

of reputation as with some e-commerce systems previously described such as eBay

or Yahoo! Auctions. It is used to statistically predict the future behaviour of other

nodes.
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Reputation representation

RFSN uses a beta distribution to represent the reputation of a node. This has a

strong foundation in statistics and it is indexed by two parameters (α, β). It can be

expressed using the gamma function as:

P (x) =
Γ(α + β)

Γ(α)Γ(β)
x(1−x)β−1∀0 ≤ x ≤ 1, α ≥ 0, β ≥ 0 (2.1)

The variable x is a probability variable. The mean of a beta distribution with

parameters (α, β) is α
α+β

and its variance is αβ
(α+β)2(α+β+1)

.

Reputation updates based on direct observation

Bayes theorem is used to calculate the probability of a belief given an observation

whereby normalization is a step whereby the numbers are turned into probabilities

by normalizing them so that they sum to one.

P (Belief/Observation) =
P (Observation/Belief) ∗ P (Belief)

Normalization
(2.2)

In RFSN, belief can be considered to represent the reputation of a node and

the observation represents the direct observations made by a node about the other

node. Therefore when node i receives output from its watchdog based on a direct

observation of node j (Dij), it updates the reputation of node j, Rij, as follows:

Rij =
P (Dij/Rij) ∗Rij∑
P (Dij/Rij) ∗Rij

(2.3)

If a node rates the behaviour of another node on a binary scale (cooperative (1),

non-cooperative (0)), a classical beta-binomial framework for estimating reputations

is adopted by RFSN. Letting θ denote the reputation of node j held by node i, a prior

distribution p(θ) is assigned to θ which reflects the uncertainty about the behaviour

of node j before any transactions take place with node i. The beta distribution

with parameters (α, β) is used to represent the reputation of a node. Without any
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prior information, θ is uniformly distributed over the measurement space, (0,0).

Thus p(θ) = uni (0,1) = Beta (1,1). If node i subsequently interacts with node j

in m+n events: out of which it characterises m+n interactions to be cooperative

and non-cooperative, given this information, node i wants to predict the behaviour

of node j (cooperative/non-cooperative), θ, for the next event - these interactions

are modelled using a binomial distribution. Then the posterior distribution of θ is

calculated as:

P (θ) =
Bin(m+ n,m) ∗Beta(1, 1)

Normalization
= Beta(m+ 1, n+ 1) (2.4)

The posterior distribution is also beta. The reputation of node j maintained at node

i is subsequently represented by:

Rij = Beta(αj + 1, βj + 1) (2.5)

αj+1 and βj+1 represents the cooperative and non-cooperative interactions between

node i and j respectively. Without any prior observations αj and βj both equal zero,

hence Rij = Beta(1, 1). A reputation table RTi at node i contains a tuple of the

form (αj, βj) for every node j that i maintains a reputation metric for. If node i has

built up some reputation for node j (Rij) and it again interacts with node j for r+s

more events (r cooperative and s non-cooperative), the new reputation of node j can

be updated as:

P (θ) =
Bin(r + s, r) ∗Beta(αj + 1, βj + 1)

Normalization
....or....Rij = Beta(αj +r+1, βj +s+1)

(2.6)

Therefore the reputation update is equivalent to just updating the value of the two

parameters αj and βj as follows:

αnew
j = αj + r; βnew

j = βj + s; (2.7)
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If interval ratings are used as opposed to binary ratings, and so are assigned

some value in [0, 1], Ganeriwal at al describe a more elaborate framework involving

Dirichlet processes (Ferguson, 1973). However a detailed discussion in Ganeriwal

et al. (2008) demonstrates that the two parameters α, and β can be maintained

and that we replace the Bayesian update step with an identical bookkeeping step.

Therefore after a single transaction, if the assigned probability of cooperativeness

were p ∈ [0, 1], the beta parameter updates would be:

αnew = α+ p; βnew = β + p− 1 (2.8)

Trust

Given a reputation metric Rij, the trust metric Tij is defined as node i’s prediction of

the expected future behaviour of node j. It is the subjective expectation a node has

about another node’s future behaviour. It is obtained by taking a statistical expec-

tation of this prediction. Unlike reputation which is maintained as a probabilistic

distribution, the trust metric is simply a number.

Tij = E[Rij] = E[Beta(αj, βj)] =
αj

αj + βj

(2.9)

This metric can be used by a node in several ways for example in data fusion, node

revocation and for decision making e.g. if there is a particular service from some

other node in the network, Tij can be used as a decision making criterion for choosing

the best node or for choosing whether to cooperate with another node or not.

Reputation Integration and Ageing

As well as building up reputation from direct observations about other nodes in the

neighbourhood, in RFSN nodes can also learn about other nodes through the expe-

riences of other nodes in the neighbourhood. Ganeriwal et al classifies these indirect

observations as evidence and this step as reputation integration. For reputation in-
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tegration, they use an approach proposed in Jøsang and Ismail (2002), based on the

concept of belief discounting (Jøsang, 2001). In their evaluation they do not evaluate

this part of the framework and it is also not relevant in the context of this research.

Hence no further description is provided here and readers are referred to (Ganeriwal

et al., 2008) for further details. Similarly an aging mechanism is also incorporated

into RFSN so that a node’s trustworthiness is re-evaluated continuously. However

this is also not relevant in the context of our research so is not described any further

here.

2.5.3.1 Why RFSN ?

As previously outlined RFSN is described as being the first reputation and trust

based system designed and developed exclusively for WSNs. While work has been

carried out in relation to trust and reputation systems in areas such as P2P and

Ad-Hoc Networks, the work in this area in the domain of WSNs is still in a rel-

atively early stage. However Lopez et al. (2010) notes how this research area is

becoming quite active, highlighting surveys that have been produced in recent years

i.e. ((Aivaloglou et al., 2008; Fernandez-Gago et al., 2007; Roman et al., 2009)).

Lopez et al. (2010) in fact attempts to derive trust management best practices in

the context of WSNs and analyses the compliance of the current state of the art

with these.

There are a number of reasons why the RFSN model was chosen for our research.

Firstly, the model is based on the beta reputation system. Jøsang and Ismail (2002)

outline how the beta reputation system has a firm basis in the theory of statistics,

unlike many other reputation systems which are intuitive and ad hoc. In (Jøsang

et al., 2007) the advantage of Bayesian systems is further re-enforced with the au-

thors stating how they provide a theoretically sound basis for computing reputation

scores. Secondly, in (Ganeriwal et al., 2008) it is noted that these Bayesian sys-

tems can counter any arbitrary misbehaviour of nodes and RFSN is described as a

generalised and unified approach for countering all types of misbehaviour (Ganer-
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iwal and Srivastava, 2004). Also in (Ganeriwal et al., 2008) RFSN is specifically

investigated with regards to providing a generalised and unified approach for pro-

viding information about the data accuracy in sensor networks. Data accuracy is

the focus of our research, hence choosing a model which focuses on this aspect of the

network as opposed to another aspect of the network such as data routing is more

appropriate. Thirdly, while RFSN is proposed as a distributed reputation system

for sensor networks, it is flexible and can also be run in a centralised manner, which

also suits the needs of the application context of our research. Finally, unlike many

other models presented in the literature, the authors outline a detailed framework

of application and RFSN has been developed as a middleware service on motes and

simulated using real data sets. The evaluation carried out in (Ganeriwal et al., 2008)

demonstrates its applicability in identifying misbehaving nodes for a variety of fault

scenarios identified from previous deployments.

Trust and reputation models have since been implemented in sensor networks in

a variety of application scenarios. In the literature they are often proposed from a

security perspective due to the fact that nodes are susceptible to malicious attacks

from adversaries due to the nature of their distributed deployment. Shaikh et al.

(2006) note how trust is a prerequisite of any security implementation and that

they are both highly interdependent. There are many reasons why these models are

not suitable in the context of our research. Some are proposed in the context of

a very different application scenario e.g. (Hu et al., 2011; Srinivasan et al., 2006b;

Krasniewski et al., 2005), others are only specifically suitable really in the context

of a WSN as opposed to the multi-modal sensor network proposed in the context

of our research e.g. (Shaikh et al., 2006; Zia, 2008; Boukerch et al., 2007; Crosby

et al., 2006), or suitable especially in the context of dense networks e.g. (Srinivasan

et al., 2006b; Zhang et al., 2006). Others have a simplified or unsuitable method of

recording and updating reputation e.g (Srinivasan et al., 2006b; Shaikh et al., 2006;

Zia, 2008). Other proposed models address issues with RFSN that are not relevant

in the context of our research, for example the fact that the Watchdog might be
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compromised, or an adversary might be able to use the outlier detection scheme to

their advantage, or a Bayesian system may be unsuitable if there is latency in the

network e.g. (Chen et al., 2008; Zhang et al., 2006; Probst and Sneha, 2007). Other

models address issues related to memory overhead e.g. (Probst and Sneha, 2007;

Boukerch et al., 2007), while others look at context specific trust e.g. (Probst and

Sneha, 2007) or are focused on a very specific problem like data aggregation e.g.

(Zhang et al., 2006). Also in most of the proposals there is no real implementation

that has been tested on a real network with real data.

2.6 Summary

As outlined in (Estrin, 2007), the basic hardware and software buildings blocks are

now in place for wireless sensing systems and their associated applications. While

there will continue to be research and innovation in relation to the basic build-

ing blocks of WSNs, progress to date has opened up a whole new set of research

questions. For marine environmental monitoring applications the key issues that

need to be addressed are reliability and scale of sensing. While there is much work

being done in the sensor network and materials science communities, we need to

investigate innovative ways to optimise technologies that are available to us. Many

authors suggest that we need to investigate how we can use a dense number of low

cost unreliable devices in a hierarchical network that contains sophisticated nodes for

validation purposes. Diamond et al. (2008b) notes that the realisation of a “densely

deployed heterogeneous sensor network requires significant effort to understand the

level of information content that can be acquired from relatively dumb sensors used

in a collaborative manner”. We also need to consider how alternative sensing modal-

ities such as visual sensing can contribute to our network, investigating innovative

techniques to optimise a heterogeneous hierarchical system.

In line with this theme, our work is specifically focused on optimising a hetero-

geneous multi-modal sensor network for prolonging the operation of sensor nodes
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in the network, providing redundancy in the network in the case of node failure

and addressing the issues of data quality in these modelled outputs. This chap-

ter has presented a review of work related to marine environmental sensing. We

first covered wireless sensor networks and the issues with using them in a marine

environment. We then focus on autonomous chemo-/biosensing and the potential

for scale-up of such sensing in a marine environment. One of the central issues in

this area is building up a quantified treatment of trust and reputation of sensing

in an environment like the marine and to address this we introduce and describe

the RFSN model for wireless sensor networks, and show how it can form the basis

for a trust and reputation model for sensing in a marine environment. With this

background and related work described, we now move on to the core work in the

thesis. In the following chapter we introduce our test sites and data sources.
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Chapter 3

Test Sites and Data Sources

3.1 Introduction

In order to investigate multimodal sensor networks we need to choose at least one

site which has available to it as diverse a range of environmental sensor modalities as

possible. Working with the Marine Institute, we have identified two such sites which

are very different. One is a river at the point that it flows into the sea, through a

city centre location, the River Lee at Cork city. The other is a large seawater bay

on the west coast, Galway Bay.

The diversity of these sites and the range of sensors available to us at each of

them are described in the following sections in this chapter. We begin with the

River Lee and present a site overview in Section 3.2, followed by a description of

sensor data sources and issues with these in Section 3.3. In Section 3.4 we present

an overview of the Galway Bay site and in Section 3.5 we describe the sensor data

and the issues with that data that are available to us from that site.

3.2 River Lee – Site Overview

The River Lee represents one of the largest rivers in the southwest of Ireland. It

and its main tributaries – Rivers Sullane, Laney, Dripsey, Bride and Shournagh –
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Figure 3.1: Lee catchment Source: Office of Public Works (2008)

Figure 3.2: Lee catchment. Source: Office of Public Works (2008)

drain a catchment area of approximately 1,100km2 upstream of Cork City (Office

of Public Works, 2008). This catchment known as the ‘Lee Catchment’ drains into

Cork Harbour and is shown in Figure 3.1.

The River Lee and its extended catchment area, including the Glashaboy, Owen-

nacurra, and Owenboy rivers, represents an area with a high level of flood risk with a
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number of significant incidents having occurred in the past. One of the more recent

of these events took place in November 2009, where significant flooding occurred

from the River Lee around Cork city and its hinterland. Information on past flood

events for the catchment can be found on the Irish Office of Public Works (OPW)

National Flood Hazard Mapping web site1. Fluvial, tidal and pluvial flooding where

surface water cannot escape due to high river or tide levels all pose threats in the

catchment. One of the worst fluvial floods occurred in August 1986, however most

of the flood events have occurred in the winter season, especially during the month

of November.

In August 2006, the Irish Office of Public Works commissioned a Lee Catchment

Flood Risk Assessment and Management Study (Lee CFRAMS). This is outlined

as a pilot flood risk assessment and management study in Ireland that will set a

framework for future similar studies in other catchments across the country (Office

of Public Works, 2008). The main objectives of the study include assessing and

mapping the spatial extent and degree of flood hazard and risk in the catchment,

examining future issues that may lead to an increased risk of flooding e.g. land

use and climate change, building the information repository necessary for making

decisions in relation to managing flood risk, and developing an economically, socially

and environmentally appropriate long-term strategy for managing flood risk. Our

description of the River Lee and its catchment is obtained from the hydrology report

commissioned as part of this study (Office of Public Works, 2008)

For hydrological assessment and hydraulic modeling, in (Office of Public Works,

2008), the catchment was broken down into nine sub-catchment areas shown in

Figure 3.2. These were further broken down themselves to provide detailed hydro-

logical analysis and detailed hydrological inputs into the hydraulic model for each

sub-catchment area. A significant amount of data was collected in undertaking the

hydrological assessment including topographical, hydrometric, meteorological, tidal,

mapping and historical data. However a lot of this data is not publicly available.

1(http://www.floodmaps.ie
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Figure 3.3: Upper Lee catchment broken into sub-catchments for the
Lee CFRAMS study. Source: Office of Public Works
(2008)

Our study is mainly concerned with the River Lee as opposed to the Lee catch-

ment. In (Office of Public Works, 2008) the Upper Lee catchment is said to en-

compass an area of 790km2 extending from the Inishcarra Dam westwards to the

Shehy mountains (See Figure 3.3). The main rivers in the Upper Lee catchment

include the Lee, Sullane, Foherish, Laney and Dripsey. The catchment uplands con-

sist primarily of exposed rock and sandstone till subsoils, with the majority of the

catchment consisting of deep, well-drained mineral soils with areas of peaty topsoil

and blanket bogs which can be found in the uplands. Agricultural activities consist

mainly of forestry and hill grazing. In the hydrology report it also states how the

peat uplands and steep topography give a slightly elevated runoff potential. Based

on their analysis of meteorological data, the annual average rainfall (AAR) for this

part of the catchment is 1450mm. As discussed further on, there are two dams on

the river Lee controlling the flow from the upper Lee catchment. These are the

Carrigadrohid dam and the Inishcarra dam, with the Glengariff river and Dripsey

river the two main rivers along this reach discharging to the dam reservoir. Approx-

imately 0.3% of the upper Lee catchment is made up of urbanised areas with the
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Figure 3.4: Lower Lee catchment broken down into sub-catchments
for the Lee CFRAMS study. Source: Office of Public
Works (2008)

majority of these being located along the primary watercourses.

In (Office of Public Works, 2008), the sub-catchment area outlined as the Lower

Lee extends downstream of the Inishcarra dam to Cork Harbour over an area of ap-

proximately 420km2 (See Figure 3.4). This is drained by a number of watercourses,

however the main river draining this sub-catchment is the River Lee. It is stated how

the River Lee flows primarily in a west east direction from downstream of Inishcarra

dam through Cork City where it then discharges into Cork Harbour. The tidal cycle

in Cork Harbour also greatly influences water levels of the River Lee in Cork City.

The catchment mainly consists of sandstone till overlain by well drained acid brown

earths. The report outlines how the geology and topography of the catchment re-

sults in a a lower runoff potential than the upper Lee catchment. The area has an

Annual Average Rainfall (AAR) value of 1100 mm. This sub-catchment area is said

to consist of good agricultural land mainly used for pasture grazing. Approximately

6% of the lower Lee catchment consists of urban areas, which can lead to increased

runoff of rain.
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3.2.1 Hydroelectric Dams

As previously outlined, the Carrigadrohid and Iniscarra hydroelectric dams owned

by the ESB are located on the River Lee. The Iniscarra dam is located approximately

13 km west of Cork City (with Carrigadrohid Dam a further 14 km upstream) and

it is used to generate electricity when there is demand. There are no specific times

for releasing water from the dams, they are run to maximise electricity generation

which is dependent on the availability of water, flow rate, daily electricity demand,

etc. Control of water levels is also dependent on the season in question. During a

flood event, the dam is operated according to the Regulations and Guidelines for

the Control of the River Lee (Office of Public Works, 2008). However the operation

of these dams have proved problematic in the past, with the controversial release

of the Iniscarra dam in November 2009 contributing to major flooding in Cork city.

One of the outcomes of the study carried out in (Office of Public Works, 2008) is

a review of the operation of the hydroelectric dams before or during flood events.

Real-time data streams and future predictions of water levels could greatly improve

the operation of these dams during high-risk periods.

3.3 River Lee Data Sources

In this section some of the sources of river data we use in our experiments are

outlined. These include in-situ sensor data from the DEPLOY project, visual data

from a camera and context data from rainfall radar.

3.3.1 The DEPLOY Project

DEPLOY2 (O’Flynn et al., 2010) is a technology demonstration project showing an

implementation of state of the art technology for continuous, real-time monitoring

of a river catchment. This demonstration project began collecting data from five

sites on the River Lee at 10-15 minute intervals from April 2009 until May 2010.

2http://www.deploy.ie
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Figure 3.5: DEPLOY sites on the river Lee. Source: DEPLOY -
Google Earth and www.wfdvisual.com

The project was co-funded by the Irish Marine Institute and the Environmental

Protection Agency (EPA) and was seen to be a step towards the realisation of a

wide area network of autonomous sensors for monitoring the temporal and spatial

distribution of various water quality and environmental parameters.

The monitoring sites for DEPLOY are located in four zones representative of

varying conditions along the river and shown in Figure 3.5. One station is near the

source of the river at Gougane Barra, two stations are in the Inniscarra Reservoir,

one station is in the main channel of the river (Lee Road) and the final station is in

Cork City where the river has entered the estuary (Lee Maltings). This location on

the river is tidal and partially saline. This was the site chosen for our study and for

the rest of this thesis it is referred to as the Lee Maltings. These zones are considered

typical of significant river systems, with stations situated at the source, reservoir,

main channel, and an estuary (Lawlor, 2010). Each of the stations were equipped

with a number of sensors which are described further in the following section.
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3.3.1.1 Lee Maltings

The Lee Maltings site is located on the north channel of the river Lee at the Tyndall

National Institute near the upper end of the estuary on a left hand bend of approx-

imately 70◦ (DEPLOY, 2010). As previously outlined, the site is tidal with a tidal

range of approximately 4m. During the Summer months large sections of the river

bed tend to dry, however from October this rarely happens. At the site, a pump

is situated on the quay side above the high water mark and water is pumped to a

sampling tank at fixed intervals. Instruments deployed at this site include off-the-

shelf commercial sensors for monitoring conductivity3, chlorophyll-a-fluorescence,

dissolved oxygen, temperature and water depth. We requested data from the project

and received data for each of the above parameters from the end of April 24, 2009

to June 04, 2010.

There were a number of reasons for choosing the Lee Maltings site as the location

for our study. Firstly, this site is located at the Tyndall National Institute which

forms part of the CLARITY research collaboration. Tyndall provide facilities which

allows us to instrument the site with other sensing modalities such as a camera

sensor network. Secondly, the Lee Maltings site represented the only site with a

reliable depth sensor for most of the study. Finally, the Lee Maltings represents

an interesting and very challenging site to monitor due to the dynamics at the site

caused by the tide and the dam further upstream, and its position on the river (at

a bend where the river enters the sea).

The site is also historically important as it was used by the mathematician George

Boole in his book “An Investigation of the Laws of Thought on which are Founded

the Mathematical Theories of Logic and Probabilities”, published in 1854, as a

worked example to illustrate how to combine probabilities of independent events

(Boole, 1854). In a footnote on page 256 Boole says “Opposite the window of the

room in which I write is a field, liable to be overflowed from two causes, distinct,

3i.e. the ability of water to conduct electric current which can provide information regarding
substances present e.g. dissolved salts can significantly increase the conductivity of water
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but capable of being combined, viz., floods from the upper sources of the River Lee,

and tides from the ocean.” Thus the first attempt to predict water levels at this site

go back over 160 years.

3.3.1.2 Other DEPLOY sites

The following provides a brief overview of the four other DEPLOY sites as a com-

parison to the Lee Maltings site. The Lee road site is situated approximately 500m

upstream of where the river becomes estuarine and tidal. The station is powered by

a small solar panel and includes sensors for monitoring conductivity, temperature,

pH, chlorophyll-a and water turbidity. The Iniscarra Pumphouse station is located

on the northern shore of Inniscara Reservoir which is situated approximately 10

km from where the River Lee enters the estuary. The system is physically located

in the intake tower of Cork County Council’s water treatment plant which is ap-

proximately 2km upstream of Inniscarra Dam. The sensors deployed here monitor

conductivity, pH, chlorophyll-a, dissolved oxygen and water temperature. The Inis-

carra Reservoir station consists of a buoy which is moored in approximately 20m of

water upstream of the pumphouse station. The Gougane Barra monitoring station

is located approximately 3km downstream of Gougane Barra lake at the source of

the river Lee. Different dynamics are experienced at each site with the Lee Road

experiencing almost immediate effects from the release of the dam (Lawlor, 2010),

eutrophication has been a concern at the Iniscarra Reservoir and the rapid rise of

water levels is a dynamic experienced at Gougane Barra (DEPLOY, 2010).

3.3.2 SmartCoast

Prior to the DEPLOY project, an in-situ wireless sensor monitoring system was

deployed in the River Lee at the Lee Maltings site as part of the SmartCoast project4

(O’Flynn et al., 2007). This project was launched in June 2005 as a building block

towards a coastal monitoring programme based on sensor technologies capable of

4http://www.tyndall.ie/projects/smartcoast/
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monitoring the spatial and temporal distribution of important environment param-

eters prioritised by the European Water Framework Directive (WFD). The project

ceased uploading data to the SmartCoast web site in January 2009 however there

were issues with the sensing devices long before this date. SmartCoast was an ap-

plied R&D Project, co-funded by the Irish Marine Institute and the EPA. Among

its aims were the development of a WSN featuring plug and play sensor platform,

novel sensors and low power consumption communications for enabling in-situ chem-

ical and physical measurements and subsequently allowing this data to be view in

real-time on the Internet.

During the SmartCoast project lifetime key water, environment, and system

parameters were measured approximately every 15 minutes, relayed back to a central

server and accessed from a portal page. These parameters included turbidity, water

temperature, pH, conductivity, water depth, air temperature, relative humidity and

daylight level, received signal strength (RSS) and battery voltage.

3.3.3 Issues with In-Situ Data Sources – River Lee

Figure 3.6: Water depth from the SmartCoast depth sensor on July
19, 2008

Despite the numerous benefits provided by the in-situ deployments as part of

SmartCoast and DEPLOY, there have been issues which have been highlighted

throughout the lifetime of both projects. Firstly there appears to be gaps in the

sensing, other problems include irregularities with the actual sensor data itself. This
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Figure 3.7: Water depth from the SmartCoast depth sensor on July
03, 2008

may be due to the fact that the sensors needed to be maintained more regularly or

may have suffered from the harsh conditions that are often associated with deploying

sensors in a marine environment. Biofouling is often a major problem especially

during the warmer Summer months.

Figure 3.8: Water depth from the SmartCoast depth sensor on July
22, 2008

To demonstrate some of the issues with a marine environmental sensor network,

an analysis was carried out on the data collected from the SmartCoast water depth

sensor for the month of July 2008. The Lee Maltings site is tidal meaning that

the depth data should essentially be periodical, following the sort of pattern similar

to that displayed in Figure 3.6 which shows sampled data from the water depth

sensor for July 19th, 2008. Sometimes the sensor would intermittently produce

erroneous data which indicates a problem with the sensor. Figure 3.7 shows data
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Figure 3.9: Water depth from the SmartCoast depth sensor on July
22, 2008

collected from the water depth sensor on July 3 2008. In this graph it can be seen

that the sensor is working correctly until approximately 4:30 - 5:00 am after which

it appears to start giving incorrect readings. It then seems to start performing

correctly again approximately after 8:30 am. However the sensor starts to produce

erroneous negative values again from approximately 3pm onwards for the rest of the

day. Figure 3.8 shows data from the SmartCoast depth sensor for July 22nd, 2008.

The sensor is reporting depth values of approximately 30 feet and sudden drops in

water level. Similarly other sensors also produced erroneous values for periods. For

example, Figure 3.9 shows data from the SmartCoast pH sensor for July 22nd that

are completely off-scale.

While it is not ideal, this behavior is typical of occasional sensor data errors

which are outside our control but with which we have to deal with. Indeed this

provides part of our motivation for investigating multimodal sensing in this thesis.

Intermittently erroneous data is a fact of life for real word sensing. Some of these

sensors had been deployed since 2005 and were perhaps coming to the end of their

life or perhaps maintenance was not as rigourous as needed. As previously outlined

the project ceased uploading data to the SmartCoast web site in January 2009 and

the sensors were taken out of the water. The DEPLOY project then followed on

from SmartCoast with deployments at five points along the river, with one of these

being the Lee Maltings site.
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Even though this was a new project with new state of the art technologies,

some of the difficulties with deploying and maintaining an in-situ sensor network in

a marine environment remained, as will usually be the case in such situations. In

(Lawlor, 2010), it is outlined how there were periods where data was not transmitted

to the web server. This was as a result of sensors being taken offline for maintenance

but also due to issues such as power failure or as a result of technical issues with

the sensors. Lawlor (2010) outlines how the frequency of maintenance was gener-

ally governed by the fouling rate of the sensors which depends on location, sensor

type, the hydrologic environment and the season. However, maintenance visits were

reduced towards the end of the project and this became apparent in the data.

Figure 3.10: Data from the Lee Maltings site of DEPLOY during
a period of flooding Source: DEPLOY

Another issue is problems with the sensor technologies themselves. For example

on the Lee Road site, a pressure transducer was installed for monitoring depth

which was later removed from the site (DEPLOY, 2010). Also in November 2009,

there was a flooding event at the Lee Maltings site where the river Lee burst its

banks. This resulted in the depth sensor along with other in-situ sensors going offline

demonstrating that in-situ sensor nodes often cannot withstand extreme events.
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Figure 3.10 shows data from the temperature, conductivity and depth sensors during

this time period (DEPLOY, 2010). The depth can be seen to continually rise during

this period of increasing depth. It subsequently goes offline. By the time the sensor

is back online again water levels have subsided.

All of these issues outlined lead to the conclusion that multiple sensing modalities

are desirable in such a marine environment. For example during periods of extreme

events such as flooding, a camera overlooking the water will continually collect data

whereas as we saw with the DEPLOY project, in-situ sensors may break down.

Thus it provides a back-up sensing modality in the network. It can also be used

to dispute or validate in-situ readings from a sensor network whereby it is unclear

whether events are ‘real’ or due to errors with the in-situ sensor node. It is also

apparent that for continuous datasets redundancy in the network is required as it

is not only during extreme events that sensors go offline or produce erroneous data.

Frequently this may also occur due to technical issues, power failure or the fact that

the site is due a maintenance visit and sensors need to be cleaned etc. However it is

often not within the budget of projects to deploy a number of sophisticated sensors

each monitoring the same parameter. Hence we need to investigate other manners in

which redundancy can be provided in the network through sophisticated modelling

techniques and the use of multiple sensing modalities for more efficient and effective

sensing.

3.3.4 Visual Data Source - Camera Network

An AXIS PTZ Network camera was deployed overlooking the banks of the river

Lee at the Tyndall Research Institute, Cork, Ireland, as described in (O’Connor

et al., 2008). It is controlled remotely from a desktop PC at Dublin City University

(DCU). A software application was developed within the CLARITY research centre

to interface with the camera, since these camera models had been used for previous

research projects. Every minute this application moves the camera to four different

positions and saving images at pan-right-zoom (ca−wall), pan-left-zoom (ca−trees),
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Figure 3.11: The angle of the images captured by the camera - la-
belled as follows - ca − trees, ca − wall, ca − sky,
ca− centre

pan-up-zoom (ca− sky) and finally a full zoom-in (ca− wall) on the water. These

are shown in Figure 4.3. The images from the camera are stored on a server at

DCU for further analysis. Initially the application interfaced with the camera at

ten minute intervals but it soon became apparent that a greater sampling frequency

was required. This was due to the fact that there was often great changes between

the images and missed events with the lower sampling rate. For example, because

the site is tidal there could be great changes in depth in a ten minute interval.

The camera was fully deployed and linked up to the network at the Tyndall Re-

search Institute from May 14 2008. Due to initial problems with camera positioning

and camera stability, usable data is available for analysis from July 2008. Figure

3.12 presents examples of some of the challenging data taken from the same camera

position that we are using demonstrating disparate appearance due to varying river

and lighting conditions. Nonetheless, as we explore later, camera data can be a good

complement to other in-situ sensors.
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Figure 3.12: Examples of the challenging image data we are us-
ing, demonstrating disparate appearance due to varying
river conditions.

3.3.5 Contextual Data - Rainfall Radar

The Irish meteorological service provides an image sampled every 15 minutes dis-

playing rainfall radar data on their web site5. These images display rainfall intensity

on a scale from 0 (no rain) to 5 (heavy rain), each pixel area being colour-coded

and overlaid on a map of Ireland. Within our research group we continually retrieve

and store these images for analysis. Processing these images determines clouds of

rainfall along with their location, intensity, speed and direction. This rainfall radar

data provides information for us on the rainfall within the catchment areas of our

rivers and coastal regions by combining rainfall radar with hydrological maps of the

areas. This provides contextual information about likely rises in water levels within

the rivers. Rainfall radar data has been gathered by us continuously dating back to

5http : //www.met.ie/latest/rainfallradar.asp accessed on May 24 2011
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May 2007.

Despite the benefits and potential applications of this data source, there are

also some issues with its use. On the web page displaying the rainfall radar image,

Met Éireann notes how at longer ranges (generally over 100km), that the accuracy

reduces due to the curvature of the earth. The radar may not detect rain at long

ranges or report rain at high altitudes that never reaches the ground. Sometimes

echoes returned from the ground can also appear on images. The images produced

by Met Éireann are a composite of data from two radars - one at the east of the

country at Dublin airport and the other in the south-west of the country at Shannon

airport. Using a JPEG image as the data source also means that we are not using

specific rainfall radar values but rather a selection of 5 classes of rainfall types. The

resolution of each pixel is 1.5 km2, which can also mean a low spatial resolution

when trying to estimate rainfall for a particular site or catchment. Further details

on this data source and its use in the River Lee catchment are provided in Chapter

6.

3.4 Galway Bay – Site Overview

Ireland’s ocean territory constitutes approximately ten times its land mass with

approximately 220, 000, 000 acres of underwater territory granted by the United

Nations Convention on the Law of the Sea. It is generally considered to be one of

Ireland’s greatest natural resources with resources such as oil and gas, aquaculture,

marine transport and shipping, coastal tourism, wind and wave renewable energy etc.

all being present (Smeaton, 2010). In 1999 the Irish National Seabed Survey (INSS)

was launched which represented one of the largest marine mapping programmes

ever undertaken anywhere in the world (Geological Survey of Ireland, 2011b). The

successor to the INSS programme was the INtegrated Mapping FOr the Sustainable

Development of Ireland’s Marine Resource (INFOMAR) also funded by the Irish
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Figure 3.13: The Real Map of Ireland Source: The Marine Institute

Government through the National Development Plan, 2007-20136 . This mapping

has resulted in what’s often commonly referred to as ‘The Real Map of Ireland’

(shown in Figure 3.13). The main focus of the INSS survey was deep water mapping,

whereas INFOMAR concentrates on nearshore surveys (Geological Survey of Ireland,

2011a). During an extensive stakeholder exercise conducted between 2002 and 2005,

26 priority bays and three priority areas were delineated for mapping in the first 10

years of INFOMAR (INFOMAR, 2011b), with one of these bays being Galway Bay.

Galway Bay is located on the west coast of Ireland. The south of the bay is

bordered by Co. Clare and it is bordered by Co. Galway to the north. According to

(INFOMAR, 2011a) Galway Bay is 62 km long from the Brannock Islands (situated

just north west of the Aran islands) in the west to Oranmore in the east. The

mouth of the bay is 22km wide from Doolin to Lettermullan, however it narrows

at Black Head to 10km. An image of Galway Bay in the context of the British

6http : //www.infomar.ie accessed on May 24 2011
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Figure 3.14: Galway Bay in the context of the British Isles. Source:
Bing Maps

Figure 3.15: Galway Bay, close up. Source: Bing Maps

Isles can be seen in Figure 3.14 and a more close-up view can be seen in Figure

3.15. According to (INFOMAR, 2011a), the main rivers entering the bay are the

River Corrib at Galway and the Owenbolisly River at an Spidéal. Along the south

coast of Galway Bay there are many minor freshwater inputs, as well as submarine

freshwater sources due to drainage patterns associated with the Burren, a karst-

landscape region in northwest Co. Clare.

Galway Bay is quite an important resource and supports a full range of mar-
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itime activities including environmental monitoring, shipping, inshore and offshore

fishing, marine leisure and tourism, aquaculture, and research and development in

relation to aquaculture and also research and development in relation to ocean en-

ergy. Many research institutes and organisations use Galway Bay as the basis for

research programmes and projects, most notably the Irish Marine Institute7 located

in Oranmore, Co. Galway. This is the national agency responsible for Marine

Research, Technology Development and Innovation (RTDI). The Marine Institute

is the lead implementation agency in Sea Change - Ireland’s marine research and

innovation strategy (Marine Institute, 2006a,b). This was adopted by the Irish Gov-

ernment in February 2007 and aims to drive the development of marine resources

in Ireland in a way that contributes to the knowledge economy. It was developed

as an integral part of the Irish government’s Strategy for Science, Technology and

Innovation.

The operational programmes of the Marine Institute have included integrated

marine exploration, deep sea research, marine climate change, oceanography, phyto-

plankton monitoring, shellfish microbiology, ocean energy and many more. Galway

Bay provides a testbed for many programmes most notably for the Wave Energy

Test Facilities and SmartBay which is a national test and demonstration platform

facilitating the development of innovative approaches to distributed sensing, commu-

nication and data management. SmartBay is a flagship research project for Galway

Bay arising from Sea Change and it is also a specific deliverable on the National

Strategy for Science, and Innovation (Marine Institute, 2010). All this background

combined deem Galway Bay a suitable test site for carrying out our own research

since it provides a variety of options with regards to in-situ data sources, it repre-

sents an interesting site from a research perspective, and it has been delineated as a

test bed for a number of innovative new technologies. It is data from the SmartBay

buoys that is used for the experiments conducted in our work. Hence the following

provides an overview of SmartBay and the available sensor data.

7http://www.marine.ie
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3.5 Galway Bay Data Sources

3.5.1 SmartBay

Figure 3.16: SmartBay, Galway. Source: Marine Institute

Figure 3.17: SmartBay Pilot Project buoy locations. Source: Ma-
rine Institute

The Marine Technology Programme is part of Sea Change which as previously

outlined is Ireland’s marine research and innovation strategy (Marine Institute,

2006a,b), and SmartBay is a significant requirement in support of this programme.

SmartBay is a test and demonstration platform for development of innovative prod-

ucts and services for the global maritime sector. On completion, the SmartBay

system will consist of a network of seafloor cables, buoys, and infrastructure sup-

porting a range of sensors, information systems, telemetry and other communication

technologies, providing the basis for in-situ, real-time monitoring (Marine Institute,

2008), as shown in Figure 3.16.
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In 2007, the SmartBay pilot infrastructure was established by the Marine insti-

tute (MI) and the Environmental Protection Agency (EPA). This pilot infrastructure

consists of a suite of commercially available technology platforms including sensor

hardware, communication systems and a network of buoys against which new tech-

nologies can be validated. It can be accessed by industrial and academic research

groups for test and demonstration purposes.

In Summer 2008, The Marine Institute deployed two SmartBay buoys at Mid

Bay, east of the Aran islands, and at an outer bay location – Mace Head, near

Carna in Connemara. These locations can be seen in the map shown in Figure 3.17.

Each buoy supports an array of advanced sensors for monitoring various oceanic

parameters and transmitting real-time information on current conditions.

Figure 3.18: Mace Head Buoy at Galway Bay and sample data.
Source: Marine Institute

These SmartBay buoys and existing sources of information provide an integrated

network of information within Galway Bay. The buoys were equipped with an

array of sensors including water quality monitors, wave monitors, weather stations

and devices for measuring current. A request made to the Marine Institute in

September 2010 for water quality data from the SmartBay buoys returned data for

the following water quality parameters for both the Mace Head and the Mid-Bay

buoys: chlorophyll, dissolved oxygen, turbidity, pressure, salinity, and temperature.

From the SmartBay portal page8 it is only the Mace Head buoy that appears to be

8http://www.marine.ie/home/publicationsdata/data/IMOS/erdfbuoys.htm, accessed Jan 8,
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deployed as shown in Figure 3.18. However the last available data appears to date

back to July 26 2011.

In addition to the SmartBay sensors, other marine monitoring platforms have

also been deployed in Galway Bay providing real-time information on various weather

and sea conditions. The Integrated Marine Observations page provides real time

data from the National Tide Gauge network and the Irish Marine Weather Buoy

Network along with data from other sensors and instruments managed by the Ma-

rine Institute 9. Ireland has one of the richest wave energy climates in the world

and the Irish Marine Institute is also promoting research into wave and tide energy.

In association with the Sustainable Energy Authority Ireland (SEAI), the Marine

Institute established the Galway Bay Wave Energy Test site 10 for testing scaled

prototypes of wave energy devices in Galway Bay.

3.5.2 Issues with In-Situ Data Sources – Galway Bay

Similar to the issues outlined in Section 3.3.3 on in-situ sensors on the River Lee,

there are gaps in the data from some of the in-situ data sources in Galway Bay

which are persistent but irregular in their occurrence as all sensing resources may

not be continuously in operation. There also may in an issue with data quality

especially in the water quality sensors of the SmartBay pilot project. This was

noted by Marine Institute personnel, who noted issues such as significant biofouling

between maintenance visits. Often budgetary requirements reduces the number of

maintenance operations that can be carried out on the buoys which results in a

reduction in data quality. This is because unlike sensors in the River Lee, the

Galway Bay buoys are remote and inaccessible and require professional seafarers

even to travel to their locations. Again this re-enforces the need for innovative

solutions for more efficient and effective sensing and a smarter environmental sensor

network, along the lines of the multi-modal approach we are taking.

2012
9http://www.marine.ie/home/publicationsdata/data/IMOS/, accessed May 23, 2011

10http://www.marine.ie/home/aboutus/organisationstaff/researchfacilities/Ocean+Energy+Test+Site.htm
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3.5.3 Galway Bay Visual Data

For the purposes of our research into multi-modal sensor networks for environmental

monitoring and to include as diverse a range of sensor sources as possible, the visual

data network in Galway Bay consists of satellite imagery. Remote sensing from

satellite and airborne sensors has proved to be a tremendous tool for studying our

environment at large temporal and spatial scales. It offers unique large scale synoptic

data to capture the range and variability of many complex processes. Sophisticated

satellite sensors are very effective for monitoring many parameters such as sea surface

temperature (SST), sea surface height, ocean currents, turbidity, and chlorophyll

pigment concentration (which can subsequently be used to determine the amount

of algal growth in the water) along with other water quality parameters such as

mineral suspended sediments and yellow substance. A number of such sensors are

orbiting the earth on various satellite platforms with differing spatial and temporal

resolutions.

Unfortunately the resolution of this data is not particularly suitable for monitor-

ing a relatively small point on the river Lee such as Lee Maltings, hence this type of

information was not incorporated into our network for the river Lee study. However,

for a larger, open water body such as Galway Bay, satellite imagery offers a very

suitable sensing modality for our study. In Chapter 5 we discuss the issues in rela-

tion to satellite remote sensing, the products we have chosen for use in our research

and the reasoning behind the choice of these products with the specific application

context in mind i.e. reliable daily data to enhance the use of an in-situ sensor net-

work. We see that the difficulties with remote sensing data mean that reliable daily

satellite information for Galway Bay is difficult to achieve but it is however still

desirable for the purposes of our research which concentrates on multi-modal sensor

networks, of which satellite images are just one modality.
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3.6 Conclusion

In this chapter we have presented site overviews of two diverse locations each with

their own challenges. The first is the river Lee, a freshwater river at its tidal point

where it enters the sea. This site presents a real challenge in environmental monitor-

ing because of the effects of the tide, a nearby hydro-electric power dam and the fact

it is a location susceptible to regular flooding. We also outlined the catchment area

of the River Lee, some parts of which has more runoff potential than others. This

point is quite important when it comes to analysing the outcome of our experiments

in Chapter 6, where we provide a novel analysis of a catchment’s response to rainfall

using rainfall radar images and in-situ depth data.

We described in-situ data sources available on the River Lee through the DE-

PLOY project. We focus specifically on the Lee Maltings site from an environmental

and practical perspective. It represents a very dynamic and difficult site to monitor,

and it also provides a suitable infrastructure for the deployment of a camera. Also

it is the only site of the five DEPLOY sites along the river that has a depth sensor

as part of its range of in-situ sensor nodes.

The second site we use is Galway Bay on the west coast of Ireland. This bay

faces the Atlantic Ocean along a rugged coastline and the Bay hosts a diverse range

of commercial and leisure interests, from fishing to sailing. Galway Bay represents

an interesting site from a research perspective and it has been delineated as a test

bed for a number of innovative new technologies. It is data from the SmartBay

buoys that is used conducting the experiments in this thesis.

For each of the sites we have a range of sensors, quite diverse in nature and

sometimes not all operational. In this chapter we have highlighted some of the

issues which cause periodic faults with sensor data and having to work with such

data provides us with a very real testbed on which we can explore multi-modal

sensing. These sites and issues lead to very exciting prospects and novel applications

for multi-modal sensor networks and how they can be optimised. In the next chapter
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we begin examining the use of these multi-modal data sources by investigating the

use of a visual sensor in a river environment. This is followed in the next chapter by

an examination of the use of remote sensing data in the context of a multi-modal

sensor network in a coastal location. Subsequent chapters then present novel studies

with very promising results for integrating these diverse data sources and optimising

their use to the network for more efficient and effective monitoring of such diverse

and challenging environments.
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Chapter 4

Extraction of Information from

Camera Images

This chapter demonstrates the use of a visual sensor (camera) in a river environment

and how it can be used as a complimentary sensing modality to an in-situ environ-

mental sensor network. The focus of this particular study is on the estimation of

depth from the camera images at the Lee Maltings since this particular parameter

can be tied in with the in-situ sensor network. Depth is also quite an influential

feature at the site and affects the values of other water quality parameters. The

focus of this chapter is on the development of models to detect various features in

the image which through their detection can provide an estimation of depth. In

Chapter 7 we move on to investigating the use of these models in the context of a

multi-modal network whereby we report methods of relating these features back to

the in-situ depth data. Subsequently in Chapter 8, we evaluate the performance of

this sensing modality in the detection of high and low depth events. The analysis

presented here relates back to research question 1 of the research questions presented

in Chapter 1.

Image sensing or what has been termed as ‘near-surface’ remote sensing by some

authors e.g. (Richardson et al., 2009), provides unique perspectives when used in

environmental monitoring applications. It can provide high frequency data at a low
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cost and use different view angles for increased spatial resolution. They have been

used in a variety of contexts in environmental monitoring applications and in the

following section we provide an overview of some of the main application scenarios.

4.1 The Use of Cameras in Environmental Mon-

itoring applications

Coastal video systems have been identified as effective tools for coastal monitoring.

A prime example of this is a major European research project entitled CoastView

(Davidson et al., 2007). This focused on the development of video systems in support

of coastal zone management utilizing Argus technology. Argus stations consist of

optical systems developed for nearshore sampling (Holman and Stanley, 2007). The

CoastView project demonstrates the use of fixed video remote sensing systems to

partially ameliorate some of the problems associated with in-situ measurements of

waves, currents, and morphological change. Davidson et al. (2007) refers to some

of the research carried out investigating algorithms for the quantitative extraction

of geophysical signals from image data including morphology (Aarninkhof et al.,

2005), flows (Chickadel et al., 2003) and wave parameters (Holman and Chickadel,

2004) and refers to the various scientific literature that has tested and reviewed the

reliability, accuracy and versatility of coastal video systems.

Goddijn-Murphy et al. (2009) explore the possibilities of employing a conven-

tional digital camera, as an alternative low-cost technique to satellite imagers or

multi-spectral radiometers, to estimate water composition from optical properties

of the water surface. This paper presents the method that was used to acquire digital

images, derive RGB values and relate measurements to water quality parameters.

Measurements were recorded in Galway Bay and in the North Atlantic. Both yel-

low substance and chlorophyll concentrations were successfully assessed using this

method. Iwahashi et al. (2006) investigates detecting water level using a land water

boundary. However their work is using a a video signal as opposed to still images.
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Also they aim to classify pixels as land or water, where they are assuming that the

land region contains solid objects with fine texture full of high frequency compo-

nents. This is not always the case with the land region in the images in this study,

which under certain conditions can partially appear visually similar to water.

Other studies have investigated the use of cameras not only in the context of

monitoring a marine environment but also in other forms of environmental moni-

toring applications. In (Ahmadian et al., 2007), a scalable end-to-end system for

vision-based monitoring of avian behaviour during a nesting cycle is presented. The

manual collection of phenological data can prove to be labour intensive and thus

requires the use of innovative new methodologies such as the use of digital cameras.

Graham et al. (2009) investigate the use of visible light digital cameras in determin-

ing the dynamics of expanding leaf area for Rhododendron occidentale, a deciduous

understory shrub. Richardson et al. (2007) explored whether digital webcam images

could be used to monitor spring green-up in a deciduous northern hardwood forest.

They concluded that webcams offer an inexpensive means by which phenological

changes can be quantified. In (Richardson et al., 2009), they build on previous work

to demonstrate the use of networked digital cameras to document spatial and tem-

poral variation in the phenology of forest canopies. Bradley. et al. (2010) outlines

the benefits of a multi-modal approach and outlines their development of a web

application which incorporates digital camera data and satellite data. They present

two cases studies demonstrating its use for looking at cloud duration and height and

plant phenology time series.

The work described in the following sections follows on from previous work we

carried out which is described in (O’Connor et al., 2009), which also focuses on esti-

mating river water level using visual sensing. The approach described in this chapter

again uses the land water boundary in order to determine water level. However it

adopts a more sophisticated classification approach and a different camera angle

that contains more distinct features. It also takes into account difficulties that were

encountered in the work reported in (O’Connor et al., 2009) where it was difficult
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to model pixels as water or land due to the varying lighting conditions. It attempts

to overcome these difficulties and to take a more adaptable approach that can easily

be applied to a variety of images from different camera angles.

4.2 Visual Sensing System

As previously outlined an AXIS PTZ Network camera was deployed at the Tyn-

dall Institute overlooking the banks of the River Lee at the Lee Maltings. Data

is available from July 2008. Each minute the camera automatically pans to four

different positions in order to save images from the camera at four different angles.

A visual based sensing system was subsequently developed with the objective of

complementing and enhancing the use of the in-situ sensor network at the site.

4.2.1 In-Situ and Visual Sensing Parameters

The in-situ parameters measured at the Lee Maltings site include conductivity,

chlorophyll, temperature, dissolved oxygen and depth. The images from the camera

were then analysed in order to highlight image features that could be used to com-

plement the information being retrieved from the in-situ sensor network. Analysing

outdoor data is challenging due to the wide-range of environmental conditions and

their rapid changes. Varying river and weather conditions, extreme changes on

lighting and reflections on the water are representative of some of the challenges

presented. Examples of the challenging image data were previously shown on page

59.

Previous studies where cameras were used to estimate water colour were carried

out using much more specialised circumstances and not in the case where a camera

is just placed in a building overlooking the water e.g. (Goddijn-Murphy et al., 2009).

However the purpose of this work is to examine how we can use a relatively low cost

off-the-shelf webcam type device for complementing in-situ sensor networks.

Depth can give us an indication of a variety of conditions at the Lee Maltings
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Figure 4.1: The relationship between depth and various in-situ pa-
rameters at the Lee Maltings site. The conductivity data
also illustrates dilution in the River Lee due to dam re-
leases from the Iniscarra reservoir .

site such as temperature, dissolved oxygen and conductivity readings. Figure 4.1

demonstrates the influence of depth on a variety of the in-situ sensor readings. While

it is difficult to quantify this relationship due to the influence of site characteristics,

in Chapter 6, we attempt to model the relationship between these parameters in

order to predict the values of missing parameters if one of the in-situ nodes fails.

The conductivity data also illustrates dilution in the River Lee due to dam releases

from the Iniscarra reservoir. Therefore the estimation of depth from the camera

images is a really important indicator of conditions at the site.

Our visual sensing system also undertook the detection of other image features

such as objects floating on the water, boats, water turbulence etc. However it is

really only the extraction of depth that can be linked up with the in-situ sensor

readings which is the prime focus of this research. The detection of objects such

as boats or floating objects is also an example of how a visual sensor can comple-

ment and enhance the use of an in-situ sensor network, as these are objects that

cannot be detected or immediately detected by an in-situ sensor network. Figure

4.2 demonstrates images where a boat and some material can be seen floating on

the top of the water.
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Figure 4.2: A boat on the river and scum floating on the top of the
water. Our visual sensing system can detect objects such
as these floating on the top of the water

However the focus of this chapter is on estimating water depth using a visual sen-

sor at the Lee Maltings site. As well as providing an indication of present conditions

at the site, continuous monitoring of water level is important for flood warnings and

also for navigational and recreational safety.

4.3 Estimation of Water Depth using a Visual

Sensor

Changing depth is a feature of almost any inland waterway. If the water-land bound-

ary is visible, visual imaging is a practical means for determining the water-level.

As previously outlined the camera deployed overlooking the river at the Lee Malt-

ings site, pans to four different angles every minute - pan-right-zoom (ca − wall),
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Figure 4.3: The angle of the images captured by the camera - la-
belled as follows - trees, wall, sky, centre

Figure 4.4: Visual sensor analysis tool - enables the analysis of vi-
sual data alongside in-situ sensor readings in order to
examine features and relationships between features and
in-situ sensor data.

pan-left-zoom (ca− trees), pan-up-zoom (ca−sky) and finally a full zoom-in on the

water (ca− centre). These four camera angles can be seen in Figure 4.3

In order to analyse the relationship between the sensor readings and features in

the images, we developed a software tool to specifically enable the visualisation of

the images and the nearest in-situ sensor reading that corresponds to the time that
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Figure 4.5: The features highlighted in the image become visible in
order with changing depth.

image was captured (See Figure 4.4). From analysis of the images from ca − wall

along with the in-situ depth readings, it is apparent that certain features in the

images become visible in a certain order as water levels are decreasing and can thus

provide an estimation of water level at the site. This can be clearly seen in Figure

4.5.

As the depth of the water decreases, the first feature to becomes visible is the

appearance of rocks beneath the trees in the far left of the image (feature 1 - rocks

at trees). The second feature to become visible is the appearance of rocks in the

far right of the image (feature 2 - rocks at far wall). The third feature to become

visible is the appearance of rocks in the near right of the image (feature 3 - rocks

at near wall) and finally the final feature to become apparent that indicates depth

is the appearance of a small island in the middle of the water (feature 4 - island).

Thus if each of these features can be accurately detected, then this can provide a

very good indication of water levels at the site. Each of these features are used to

delineate a certain type of water level e.g. the appearance of feature 1 denotes water

level 1, the subsequent appearance of feature 2, denotes water level 2, and so forth.
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As previously outlined in Chapter 7 we present methods for relating these features

back to the in-situ depth data. Then in Chapter 8 we evaluate the performance of

these models in detecting a series of depth events.

Previous work demonstrated the difficulty with accurately detecting the bound-

ary of such a feature due to colour changes in the image (O’Connor et al., 2009).

Thus an approach which allows the detection of such a feature or a series of features

appears to be more robust to these conditions. The following section outlines the

approach and results for the detection of each of these features.

4.4 Methodology - Detection of Depth Features

The detection of these features in the image is far from trivial due to the huge lighting

changes of the water. Sometimes the water can appear almost black mid-day due

to reflections on the water and the appearance of rocks at each of the individual

features is unclear even to the human eye. This therefore renders it difficult for

an image processing algorithm to accurately detect the appearance of each of the

features.

4.4.1 Data

As previously outlined an image is captured approximately every minute by the

visual sensor network. This leads to over 25, 000 per week being captured for one

camera angle alone if operations are running correctly. Thus for 4 camera angles,

there are over 100, 000 images captured per week. Future work may involve methods

to deal with this data volume. For example following our determination of the

relevant features required to capture events in the image, it may be the case that

only this information needs to be stored. Images are currently stored as JPEGs.

For the development of the models, images from May 15-27 2009 were chosen due

to the clear display of a number of events associated with changes in depth. This

data was manually annotated four times over in order to have a set of ground-truth
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images for each of the features outlined above.

For each feature, the images were annotated as follows: 1 - feature present,

2 - no feature present, 3 - intermediate. The third annotation is used where the

annotation of the image is slightly ambiguous. The feature is at an intermediate

stage of appearance whereby it is beginning to appear but not as apparently as

when annotated as ‘present’. This is due to intermediate changes in the water level.

These images were given their own class so that it could be decided when carrying out

classification whether it is better to have three-way classification for these features

or two-way classification whereby images where the feature is annotated as being

intermediate are just classified simply as ‘present’ or ‘not present’.

4.4.2 Classes

Two types of classification are examined in this study - 2-way classification (positive,

negative) and 3-way classification (positive, negative, intermediate). For two-way

classification, we build a model using only images annotated as positive or negative.

These are the extremes we are mainly interested in and it is important that the

classifier learns these extremes. It is not really of due concern whether images where

the feature is is at an intermediate stage of appearance are annotated as positive or

negative. For the 3-way classifier the model is built using sample images across the

positive, negative and intermediate ground-truth datasets.

4.4.3 Image Analysis - Feature Sets

The Matlab image processing toolbox (Version R2009A) was used for processing

images and extracting relevant image features. For each of the depth features to be

detected (i.e. depth features 1-4) a set of image features were extracted from the

images at the relevant region of interest using the four sets of ground truth data. A

variety of features were extracted including colour features such as average hue, hue

histogram, average saturation, saturation histogram, average value, value histogram,
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texture features such as average entropy, entropy histogram, edge features such as

edge histogram, number of pixels marked as an edge in feature area, percentage of

pixels marks as an edge in mask area, number of pixels marked as an edge in mask

area after a fill operation, percentage of pixels marked as an edge in mask area after

a fill operation and other features such as average brightness, brightness histogram,

average luminance, luminance histogram. Various feature sets were examined for

the detection of each depth feature.

For 2-way classification, feature sets were extracted for 2000 (1000 positive in-

stances, 1000 negative instances) images across the ground truth datasets available

for each of the depth features from May 17-27 2009, apart from feature 4 - is-

land. Due to the limited number of instances occurring in the ground truth dataset,

feature sets were then extracted for 1300 (650 positive instances, 650 negative in-

stances) images across the ground truth dataset. Thus when all the depth features

are considered a total of 7300 images are analysed in this part of the study.

For 3-way classification, feature sets were then extracted for 2340 (780 positive

instances, 780 negative instances, 780 intermediate instances) images sampled across

the ground truth datasets available for each of the depth features from May 17-27

2009, apart from feature 4 - island. Again, due to the limited number of instances

occurring in the ground truth dataset, feature sets were then extracted for 750

(250 positive instances, 250 negative instances, 250 intermediate instances) images

sampled across the ground truth dataset. This leads to a total of 7770 images used

for this part of the analysis.

These feature sets were then input into a Support Vector Machine (SVM) clas-

sifier which is detailed more below. After initial testing the feature sets outlined in

Table 4.1 were the most successful for detecting each of the depth features outlined

above. The features in the first row of the table are the features used in all the fea-

tures sets, with the features in the following rows outlining those that are specific to

a particular feature set. Following initial evaluation, there were no great differences

between feature sets 1-5. However feature set 5 seemed to perform marginally better
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All Feature Sets average hue, hue histogram,
average saturation, satu-
ration histogram, average
value, value histogram, av-
erage entropy, entropy his-
togram

Feature Set 1 + edge histogram
Feature Set 2 + edge histogram, percent-

age of pixels marked as edge
in feature area after a fill op-
eration

Feature Set 3 + percentage of pixels
marked as edge in feature
area after a fill operation

Feature Set 4 + edge histogram, average
brightness, brightness his-
togram

Feature Set 5 + edge histogram, lumi-
nance histogram

Table 4.1: Various feature sets examined in the study. All feature
sets contain the features outlined in row 1 in addition to
the features outlined in their specific rows.

in many cases, hence this feature set is used in the remainder of this study.

4.4.4 Support Vector Machine (SVM) - Classification

Support Vector Machines (SVMs) work well with large feature sets and after training

they are very quick to classify new observations. With the correct parameters, they

are known to work as well or better than most classification methods (Segaran, 2007).

Initially a simple thresholding approach was attempted for classifying the presence

of the various depth features. However this involved manually testing and setting

thresholds for image features for each depth feature under investigation. With an

SVM, features can be extracted for the location of interest in the image, formatted

and input into an SVM for training or classification. This is a much more efficient

and successful approach to classification of each of the depth features.
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4.4.5 SVM Parameters

LibSVM1, an integrated software for Support Vector Classification, is used in the

Weka2 data analysis environment for classification of the presence of the various

depth features. The official implementation is described in (Chang and Lin., 2011).

Normalisation of features is carried out in the Weka environment and classification

is carried out using two different kernel parameters - an RBF and linear. Kernel

methods enable a linear classifier to be turned into a nonlinear classifier as long as it

uses dot-products for comparisons. Since SVMs use dot-products they can be used

with kernels to perform nonlinear classification. The ‘kernel trick’ involves replacing

the dot-product function with a different function that transforms the data to a

higher dimensional space and returns what the dot-product would have produced

if the data had been transformed before it was applied. There are a number of

transformations with the radial-basis function often recommended (Segaran, 2007).

The RBF kernel can handle a nonlinear relationship between class labels and

attributes, however it also may be the case that if the number of features is large,

performance may not be improved from mapping data to a higher dimensional space.

Default parameters in the Weka environment were used for both kernel parameters.

However future work may involve optimising these. However satisfactory results were

found without optimisation, thus this process was not carried out in the context

of this study. Ideally optimisation of the (C, γ) space would be carried out for

SVMs using an RBF kernel (SVM-rbf ) and of the C space for SVMs with a linear

kernel parameter (SVM-linear). The gamma parameter (γ) used by SVM-rbf can be

adjusted in order to improve the linear separation for a dataset . The cost parameter

(C) is the penalty parameter of the error term. In this study a C value of 1 and

a γ value of 0 was used for SVM-rbf and a C value of 1 is used for SVM-linear.

10-fold cross validation is used for evaluation of the model. This is a standard

technique used in the machine learning literature and involves dividing the dataset

1http://www.csie.ntu.edu.tw/ cjlin/libsvm/
2http://www.cs.waikato.ac.nz/ml/weka/
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into 10 parts where each part is held out and the learning scheme is trained on the

remaining 9 parts and evaluated on the holdout set. The resulting 10 error estimates

are averaged to produce an overall error value (Witten et al., 2011). It is found that

SVM-linear performs better and it is these results that are reported here. However

optimisation of parameters for SVM-rbf could result in an increase in performance.

4.5 Results - - Evaluation

As previously outlined, certain features in the images become visible in a certain

order as water levels are decreasing and can thus provide an estimation of water

level at the site. Thus if each of these features can be accurately detected, then this

can provide a very good indication of conditions at the site. The following outlines

our results in relation to detection of each of these depth features in the images.

For each of the depth features, two types of models are developed. We developed

a 3-way classification model using positive, negative and intermediate images and

a 2-way classification model consisting of positive and negative images. The 3-way

classification model was developed in order to examine the ability of a classifier to

distinguish between the three classes if needs be.

Figure 4.6 shows an image where none of the features are present. It also demon-

strates the challenges in terms of processing these images. Reflections of the build-

ings on the water can be seen in this image and in general lighting conditions and

reflections on the water vary greatly between images depending on weather con-

ditions. In the following sections, for each classification approach the feature set

that produced the most accurate results, the accuracy, the F-measure and the area

under an ROC3 Curve are reported. The F-measure represents the harmonic mean

3This acronym stands for emphreceiver operating characteristic, it is a term used to characterise
the trade off between hit rate and false alarm over a noisy channel in signal detection Witten et al.
(2011)
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Figure 4.6: Image where none of the depth features are present. It
also demonstrates huge image processing challenges with
reflections on water and changes in lighting.

of precision and recall and is calculated using the following formula:

F =
2 ∗ precision ∗ recall
precision+ recall

(4.1)

The area under an ROC curve represents the discrimination ability of the classifier,

with a perfect result being 1. The F-measures and ROC areas reported here are the

weighted average of the values for each of the individual classes in question for each

of the classification scenarios.

4.5.1 Depth Feature 1 - rocks at trees

Figure 4.7 (a) shows a sample image where rocks are appearing under the trees and

Figure 4.7 (b) shows an image where rocks are only beginning to appear under the

trees (i.e. annotation 3 - intermediate) . From the results shown in Table 4.2, it can

be seen the the 2-way classification produces a very high classification accuracy of

93.1%. From the confusion matrix (Witten et al., 2011) outlined in Table 4.3 it can

be seen that the model incorrectly classifies 70 positive instances as being negative
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Figure 4.7: a) Rocks at trees b) Intermediate rocks at trees

Class Accuracy TP Rate FP Rate F-measure ROC Area
2class 93.1 0.931 0.069 0.931 0.931
3class 77.01 0.77 0.115 0.77 0.828

Table 4.2: Results for each of the classification scenarios for the de-
tection of rocks at the trees

2 class rocks no
rocks

rocks 930 70
no rocks 68 932

3 class rocks no
rocks

inter.
rocks

rocks 646 24 110
no rocks 32 613 135
inter.
rocks

90 147 543

Table 4.3: Confusion matrices for the results of the 2class and 3class
classification for depth feature 1 - rocks at trees

and 68 negative instances as being positive. It produces a true positive and false

positive rate of of 0.93 and 0.069 and a large ROC area of 0.931 demonstrating a

strong ability to discriminate between the classes. The 3-way classification produces

a classification accuracy of 77.01% and an ROC area of 0.828 which is much lower

than that achieved by the 2-way classification model. From the confusion matrix

outlined in Table 4.3, it is clear that many of the images denoted as having no rocks

are being classified as an intermediate detection of rocks and vice versa. This is not

surprising since it can be difficult even for the human eye to distinguish between

these classes, for various reasons such as lighting.
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4.5.2 Depth Feature 2 - rocks at far wall

Figure 4.8: a) Rocks at far wall b) Intermediate rocks at far wall

Class Accuracy TP Rate FP Rate F-measure ROC Area
2class 95.15 0.952 0.049 0.951 0.952
3class 82.56 0.826 0.087 0.828 0.869

Table 4.4: Results for each of the classification scenarios for the de-
tection of rocks at the far wall

2 class rocks no
rocks

rocks 957 43
no rocks 54 946

3 class rocks no
rocks

inter.
rocks

rocks 617 2 161
no rocks 18 661 101
inter.
rocks

73 53 654

Table 4.5: Confusion matrices for the results of the 2class and 3class
classification for depth feature 1 - rocks at the far wall

Figure 4.8 (a) shows a sample image where rocks are appearing at the far wall

and Figure 4.8 (b) shows an image where rocks are only beginning to appear at

that point in the image. From the results shown in Table 4.4, it is clear that there

is improved performance in both classification scenarios compared to the detection

of depth feature 1 - rocks at trees. From visual analysis of the images, it is clear

that the visual distinction of the classes is more apparent than for depth feature 1.

Therefore these results are consistent with this observation.

The 2-way classification produces a very high classification accuracy of 95.15%,

with a true positive rate of 0.952, a false positive rate of 0.049 and a very high ROC
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area of 0.952. From the confusion matrix (Table 4.5) it can be seen that the model

incorrectly classifies 43 positive instances as being negative and 54 negative instances

as being positive. The ROC area demonstrates a strong ability to discriminate

between the two classes. The 3-way classification produces a classification accuracy

of 82.56% and an ROC area of 0.869 which is quite promising. From the confusion

matrix (Table 4.5) it is apparent that many of the incorrectly classified positive and

negative instances are being classified as intermediate.

4.5.3 Depth Feature 3 - rocks at near wall

Figure 4.9: a) Rocks ar near wall b) Intermediate rocks ar near wall

Class Accuracy TP Rate FP Rate F-measure ROC Area
2class 97.75 0.978 0.023 0.977 0.978
3class 84.36 0.844 0.078 0.844 0.883

Table 4.6: Results for each of the classification scenarios for the de-
tection of rocks at the near wall

2 class rocks no
rocks

rocks 983 17
no rocks 28 972

3 class rocks no
rocks

inter.
rocks

rocks 723 7 50
no rocks 17 587 176
inter. rocks 39 77 664

Table 4.7: Confusion matrices for the results of the 2class and 3class
for depth feature 3 - rocks at near wall

Figure 4.9 (a) shows a sample image where rocks are appearing at the far wall

and Figure 4.9 (b) shows an image where rocks are only beginning to appear at that
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point in the image. From analysis of the images, this feature is more visually more

distinguishable than the other two depth features previously considered and this is

apparent from the results presented in Table 4.6.

The 2-way classification produces a very high classification accuracy of 97.75%.

From the confusion matrix (Table 4.7) it can be seen that the model incorrectly

classifies 17 positive instances as being negative and 28 negative instances as being

positive. It produces a true positive and false positive rate of of 0.978 and 0.023

with an ROC area of 0.978, which is extremely satisfactory. The 3-way classification

produces an accuracy of 84.36% and an ROC area of 0.883. From the confusion

matrix (Table 4.7), it is apparent that many of the negative instances are being

incorrectly classified as intermediate.

4.5.4 Depth Feature 4 - island

Figure 4.10: a) island feature present b) island feature only interme-
diately present

Figure 4.10 (a) shows a sample image where an island like feature can be seen

in the middle of the water and Figure 4.10 (b) shows an image where this feature

id only beginning to appear. The results for the 2-way and 3-way classification can

be seen in Table 4.8. The 2-way classification again produces a high accuracy of

96.15% for this depth feature. From the confusion matrix in Table 4.9 it can be

seen that 22 positive instances are incorrectly classified as negative and 28 negative

instances are incorrectly classified as positive. It produces a large ROC area of
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Class Accuracy TP Rate TN Rate F-measure ROC Area
2class 96.15 0.962 0.038 0.962 0.962
3class 82.8 0.828 0.086 0.83 0.871

Table 4.8: Results for each of the classification scenarios for the de-
tection of the island feature

2 class rocks no
rocks

rocks 628 22
no rocks 28 622

island no is-
land

inter.
island

island 213 4 33
no island 5 203 42
inter. island 14 31 205

Table 4.9: Confusion matrices for the results of the 2class and 3class
for depth feature 4 - island

0.962. Table 4.8 shows that the accuracy of the 3-way classification is quite good at

approximately 82.8% and an ROC area of 0.871. From the confusion matrix (Table

4.9) it is apparent that the majority of incorrectly classified positive and negative

instances are classified as intermediate.

4.5.5 Relationship between visual and in-situ parameters

Figure 4.11: Histogram showing the distribution of water levels for
the various depth features

89



It also needs to be examined how information from our visual sensors can be

linked to the in-situ depth data. Figure 4.11 shows a histogram demonstrating the

relationship between the appearance of the various depth features and water level

readings from theDEPLOY water depth sensor. The curve representing no-features

shows the normalised distribution of water depth values when there are no depth

features present in the images from the training set. The curve entitled trees shows

the normalised distribution of values when depth feature 1 - rocks at trees is present

or intermediately present and none of the other three depth features are present (i.e

depth feature 2 - rocks at far wall, rocks at near wall and island). The curve wall-

nearwall shows the normalised distribution of values when depth feature 2 - rocks at

far wall or depth feature 3 - rocks at near wall is present and depth feature 4 - island

is not present. Finally the curve island shows the normalised distribution of depth

values when depth feature 4 - island is present. It is clear from this histogram that

there is a clear distinction between the distribution of water depth values output by

the depth sensor for the varying appearance of the four depth features.

4.6 Evaluation – Testing

The models developed in Section 4.5 based on data sampled across the period of

May 15-27 2009 were tested on data from both similar and alternative times of

the year. Firstly the models were evaluated on data from May 1-7 2009. Secondly

data was combined from November 8-20 2009, January 8-12 2010, and February 3-7

2010 and tested on the models. The data from November, January and February

demonstrated very different lighting conditions and very little samples of the various

lower depth features, hence the reason for combining data from a variety of time

periods. For the sake of brevity and clarity, this dataset is referred to as novjanfeb

in subsequent parts of this thesis.

For the 2-way classification, the model for each feature is evaluated using test

data containing an equal number of positive and negative instances. In the case of
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‘intermediate’ instances, it is not preferred that the model classify these instances as

positive or negative since they are quite ambiguous images at an intermediate stage

of an event, however it is preferred that the model be consistent in its classification

of these images, allowing the model ultimately to decipher which class these should

take on. Thus we evaluate each model using a test set consisting only of intermediate

instances under two different scenarios - firstly where we consider all intermediate

instances to be positive and secondly where we consider all intermediate instances to

be negative and ultimately see how the model performs. For the 3-way classification,

the model for each feature is evaluated using test data containing an equal number

of positive, negative and intermediate instances.

For the testing period of May 1-7 2009, 400 instances were sampled across the

ground truth dataset for each class for each feature. However for depth feature 4 -

island for testing on the 3-way classification model only 100 instances of each class

were used due to a limited number of instances in the ’intermediate’ ground truth

dataset.

For the testing period using combined data from November, January and Febru-

ary, there were a very limited number of instances of many of the lower depth

features, hence only a limited number of instances could be used for testing. For

depth-feature 3 - rocks at near wall and depth-feature island 120 instances of each

class were sampled across the ground truth datasets. However there were no in-

stances available of the class intermediate for depth feature 4 island. For depth

feature 1 - rocks at trees and depth feature 2 - rocks at far wall 250 instances of each

class were sampled from the ground truth dataset.

4.6.1 Depth Feature 1 - rocks at trees

For the 2-class model there is an accuracy of 89.25% with an ROC area of 0.893 for

test data from May. For the test data from novjanfeb, the accuracy is reduced to

57.6% with an ROC area of 0.576 (Table 4.10). From the confusion matrix for the

May test data (Table 4.11) it appears that many of the incorrect classifications are
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Class Accuracy TP Rate FP Rate F-measure ROC Area
May testing
2class 89.25% 0.893 0.108 0.892 0.893
3class 70.58% 0.706 0.147 0.7 0.779
novjanfeb
testing
2class 57.6% 0.576 0.424 0.533 0.576
3class 39.6% 0.396 0.302 0.34 0.547

Table 4.10: Depth feature 1 - trees - Results for the 2-class and 3-
class models on test data from May and novjanfeb

Class No. output as
Pos.

No. output as
Neg.

Accuracy

May testing
positive 385 15 96.25%
negative 71 329 90%
intermediate pos 233 167 58.25%
intermediate neg 233 167 41.75%
novjanfeb testing
positive 220 30 88%
negative 182 68 27.2%
intermediate pos 206 44 82.4%
intermediate neg 206 44 17.6%

Table 4.11: Depth feature 1 - trees - Confusion matrix for the 2-class
model on test data from May and novjanfeb

for negative instances. It classifies 96.25% of the positive instances correctly and

only 90% of the negative instances correctly. However this is apparent from looking

at the images where the reflection of the trees and the lighting at that point in the

image can often make it visually difficult to differentiate a negative instance from

a positive one. For the novjanfeb test data, there is an overall accuracy of 57.6%.

It classifies 88% of the positive instances correctly and performs quite poorly on

the negative instances only classifying 27.2% correctly. In terms of the intermediate

instances, in both test sets the classifier performs better when these are considered

as positive. However the margin is much greater for the novjanfeb test set. For the

May test set 58.25% are classified as positive, where as for the novjanfeb test set

82.4% are classified as positive (Table 4.11).
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Class No. output as
Pos.

No. output as
Neg.

No. output as
Intermediate

Accuracy

May testing
positive 373 9 18 93.25%
negative 22 224 154 56%
intermediate 113 37 250 62.5%
novjanfeb testing
positive 208 30 12 83.2%
negative 124 64 62 25.6%
intermediate 187 38 25 10%

Table 4.12: Depth feature 1 - trees - Confusion matrix for the 3-class
model on test data from May and novjanfeb

When we tested the 3-class model, there is a reduced overall accuracy for both

the May test data and the novjanfeb test data. The accuracy and the ROC area

for the novjanfeb test data is quite poor at 39.6% and 0.547 (Table 4.10). Again

however this test data contains a reduced number of instances. From the confusion

matrices, it can be seen that it is mainly the negative and intermediate instances that

are being incorrectly classified (Table 4.12). The model achieves a 93.25% accuracy

on positive instances for the May data and a 83.2% accuracy on positive instances

from the novjanfeb data. However it only classifies 56% and 62.5% of the negative

and intermediate images correctly from the May data and 25.6% and 10% of the

negative and intermediate images correctly from the novjanfeb data. In the case of

the May test data, negative images are mostly incorrectly classified as intermediate,

in the case of the novjanfeb test set, most negative images are incorrectly classified

as positive. The incorrectly classified intermediate images are mainly being classified

as positive for both test sets.

4.6.2 Depth Feature 2 - rocks at far wall

For the 2-class model there is an accuracy of 85.38% and an ROC area of 0.854 for

test data from May. For the test data from novjanfeb there is a poorer accuracy of

79.6% with an ROC area of 0.796. (Table 4.13). However it is an improvement on
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Class Accuracy TP Rate FP Rate F-measure ROC Area
May testing
2class 85.38% 0.854 0.146 0.854 0.854
3class 74.42% 0.744 0.128 0.75 0.808
novjanfeb
testing
2class 79.6% 0.796 0.204 0.796 0.796
3class 64.67% 0.647 0.177 0.637 0.735

Table 4.13: Depth feature 2 - rocks at far wall - Results for the 2-
class and 3-class models on test data from May and
novjanfeb

Class No. output as
Pos.

No. output as
Neg.

Accuracy

May testing
positive 358 42 89.5%
negative 49 351 87.75%
intermediate pos 272 128 68%
intermediate neg 272 128 32%
novjanfeb testing
positive 198 52 79.2%
negative 50 200 80%
intermediate pos 125 125 50%
intermediate neg 125 125 50%

Table 4.14: Depth feature 2 - rocks at far wall - Confusion matrix for
the 2-class model on test data from May and novjanfeb

results achieved for the first depth feature. From the confusion matrix for the 2-class

model (Table 4.14) it appears to be classifying positive and negative instances almost

equally as well for both sets of test data. In relation to the intermediate instances,

for the May test data 68% accuracy is achieved when these images are regarded

as being positive. For the novjanfeb test data, an equal amount of intermediate

instances are classified as being positive and negative.

For the 3-class model, similarly to depth feature 1 - rocks at trees, there is a

reduced overall accuracy for both test sets. A 74.42% accuracy and an ROC area

of 0.808 is reached on the May test data. This is reduced to a 64.67% accuracy and

an ROC area of 0.735 on the novjanfeb test data (Table 4.13). From the confusion
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Class No. output as
Pos.

No. output as
Neg.

No. output as
Intermediate

Accuracy

May testing
positive 272 3 125 68%
negative 21 315 64 78.75%
intermediate 87 7 306 76.5%
novjanfeb testing
positive 201 43 6 80.4%
negative 48 179 23 71.6%
intermediate 96 49 105 42%

Table 4.15: Depth feature 2 - rocks at far wall - Confusion matrix for
the 3-class model on test data from May and novjanfeb

matrix (Table 4.15), it appears that it is mainly the positive instances that are being

incorrectly classified in the case of the May test data, with many being classified as

intermediate. In the case of the novjanfeb test data it is mainly the intermediate

images that are being incorrectly classified mostly as positive instances.

4.6.3 Depth Feature 3 - rocks at near wall

Class Accuracy TP Rate FP Rate F-measure ROC Area
May testing
2class 98.625% 0.986 0.014 0.986 0.986
3class 85.17% 0.852 0.074 0.849 0.889
novjanfeb
testing
2class 94.5833% 0.946 0.054 0.946 0.946
3class 60.28% 0.603 0.199 0.584 0.702

Table 4.16: Depth feature 3 - rocks at near wall - Results for the
2-class and 3-class models on test data from May and
novjanfeb

For the 2-class model there is an excellent accuracy of 98.625% with an ROC

area of 0.986 for the test data from May. For the test data from NovJanFeb an

almost equally impressive accuracy of 94.58% is achieved with an ROC area of 0.946

(Table 4.16). These results are much improved on results for the previous two depth

features. From the confusion matrices (Table 4.17), and the classification results,
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Class No. output as
Pos.

No. output as
Neg.

Accuracy

May testing
positive 400 0 100%
negative 11 389 97.25
intermediate pos 173 227 43.25%
intermediate neg 173 227 56.75%
novjanfeb testing
positive 119 1 99.17%
negative 12 108 90%
intermediate pos 84 36 70%
intermediate neg 84 36 30%

Table 4.17: Depth feature 3 - rocks at near wall - Confusion matrix
for the 2-class model on test data from May and nov-
janfeb

it is clear that the model classifies both positive and negative instances quite well.

In relation to the intermediate instances, for the May test data 56.75% accuracy is

achieved when these images are regarded as being negative. For the novjanfeb test

data the majority are classified as being positive (70%).

Class No. output as
Pos.

No. output as
Neg.

No. output as
Intermediate

Accuracy

May testing
positive 398 0 2 99.5%
negative 12 280 108 70%
intermediate 39 17 344 86%
novjanfeb testing
positive 117 1 2 97.5%
negative 23 54 43 45%
intermediate 73 1 46 38.33%

Table 4.18: Depth feature 3 - rocks at near wall - Confusion matrix
for the 3-class model on test data from May and nov-
janfeb

For the 3-class model, an accuracy of 85.17% with an ROC area of 0.889 is

achieved on the May test data. A lower accuracy of 60.28% with an ROC area of

0.702 is achieved on the novjanfeb test data (Table 4.16). In the case of the May

test data it only incorrectly classifies two instances of the positive test instances
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(Table 4.18). It achieves the poorest accuracy on the negative instances (70%),

mostly incorrectly classifying these instances as being intermediate. In the case

of the novjanfeb test data, it only incorrectly classifies 3 of the positive instances,

however it achieves quite a poor accuracy on the negative (45%) and intermediate

(38.33%) images mainly incorrectly classifying the negative as intermediate and

mainly incorrectly classifying the intermediate images as positive.

4.6.4 Depth Feature 4 - island

Class Accuracy TP Rate FP Rate F-measure ROC Area
May testing
2class 79.25% 0.793 0.208 0.792 0.793
3class 65.33% 0.653 0.173 0.654 0.74
novjanfeb
testing
2class 53.75% 0.538 0.463 0.464 0.538
3class 39.17% 0.392 0.388 0.331 0.502

Table 4.19: Depth feature 4 - island - Results for the 2-class and
3-class models on test data from May and novjanfeb

Class No. output as
Pos.

No. output as
Neg.

Accuracy

May testing
positive 309 91 77.25%
negative 17 383 95.75
intermediate pos 5 95 5%
intermediate neg 5 95 95%
novjanfeb testing
positive 20 100 16.67%
negative 11 109 90.83%

Table 4.20: Depth feature 4 - island - Confusion matrix for the 2-
class model on test data from May and novjanfeb

For the 2-class model, an accuracy of 79.25% with an ROC area of 0.793 is

produced on the test data from May. For the test data from novjanfeb, there is

a lower accuracy of 53.75% with an ROC area of 0.538 (Table 4.19). From the
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confusion matrix for the May test data (Table 4.20) it appears that it is mainly

the positive instances that are being incorrectly classified. The model performs

extremely poorly on the positive instances from the novjanfeb test data achieving

an accuracy of only 16.67%. For the May test data, it classifies 95% of intermediate

images as negative, meaning that the classifier clearly performs better when these

are considered to be negative instances. There are no test images for the class

intermediate for the test set from novjanfeb.

Class No. output as
Pos.

No. output as
Neg.

No. output as
Intermediate

Accuracy

May testing
positive 198 18 184 49.5%
negative 18 336 46 84%
intermediate 0 35 65 65%
novjanfeb testing
positive 2 79 39 1.67%
negative 14 92 14 76.67%

Table 4.21: Depth feature 4 - island - Confusion matrix for the 3-
class model on test data from May and novjanfeb

For the 3-class model, it achieves an overall accuracy of 65.33% with an ROC

area of 0.74 on test data from May. It achieves a very poor accuracy of 39.17%

on the novjanfeb test data with an ROC area of 0.502 (Table 4.19). For the May

test data, the model mainly incorrectly classifies positive (accuracy - 49.5%) and

intermediate images (accuracy - 65%), mainly incorrectly classifying the positive

images as intermediate and the intermediate images as negative. For the novjan-

feb test data it only classifies 1.67 percent of the positive images correctly, mainly

classifying them as negative (Table 4.21).

4.6.5 Discussion

Since it is really only of interest to detect positive and negative instances in the

context of this research, the 2-class model is the best option as it produces the

highest accuracies in relation to detecting each of the depth features. From the
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evaluation of the 2-class models on the test data is is clear that depth feature 1 -

rocks at trees, depth feature 2 - rocks at far wall and depth feature 3 - rocks at near

wall are detected to the highest accuracy for the May test data, with depth features

2 and 3 being detected to the highest accuracy for the novjanfeb test data.

The 3-class model performs quite well in certain cases considering the difficulty in

distinguishing between these classes even visually due to extreme changes in lighting,

weather conditions and water colour (due to reflections on the water or changes in

the characteristics of the water e.g. increased turbidity due to runoff or release of the

dam further upstream etc). It mainly incorrectly classifies intermediate images as

positive for depth features 1,2 and 3 for both test sets. Negative instances are mainly

incorrectly classified as intermediate for all depth features except for the novjanfeb

data where the majority of incorrectly classified negative instances are classified

as positive for depth features 1 and 2. Positive instances are mainly incorrectly

classified as intermediate for the May test data and mainly incorrectly classified as

negative for the novjanfeb test data.

In the majority of cases the 2-class and 3-class models perform the best on

positive instances except for depth feature 4 - island. Also the 3-class model performs

better on negative instances for May test data for depth feature 2 - rocks near

wall. This better performance on the positive instances may be due to the fact

that they display a much more distinguishable visual signature than the negative

instances, whose visual signature tends to vary much more across different images

in the dataset.

As previously outlined it is not preferred that the 2-class model classify the

intermediate instances as positive or negative, but ultimately that it be consistent

in its decisions. We investigated how each model classifies these types of images

in order to ultimately let it decide what they should be considered as. Many of

the classification results did not produce as clear of a distinction as we had hoped,

and some models classified these intermediate classes mainly as positive and others

classified them mainly as negative. Therefore when carrying out the classifications

99



for experiments further on in the thesis, we decided to use a 2-class model where

all intermediate instances are considered to be negative. Since there is no clear

distinction, we decided to only detect each feature when it is fully visible in the

image, since this provides an indication of a clear event at the site. Despite the

fact that these intermediate instances are regarded more as positive instances by

the classifiers for some depth features and test sets, we decided to keep a consistent

approach in our consideration of these types of instances.

Figure 4.12: February Data - a) Rocks at trees b) Intermediate rocks
at trees

Figure 4.13: February Data - a) No Island b) Island

The models generally perform poorer on the test data from novjanfeb. This

is understandable considering the data for these months demonstrates a different

visual signature. This is especially apparent for depth feature 1 - rocks and trees

and depth feature 2 - rocks at island. Figure 4.12 shows an image where rocks are

beginning to appear at the trees (i.e. intermediate) and an image where rocks are
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present at the trees. Both of these images are from February 2010. Figure 4.13

shows an image where no island is present and an image where an island is present

in November. There are no sample images from the annotated test set where an

island is intermediately present. The island seen in this image is visually quite

different to the sample from May which is green due to the time of year. There are

only a very limited number of ‘island’ sample images in the test set and even at that

there are none which are representative of what we see in May. It is this feature

which is the most visually different from the May training data and this is apparent

in the classification results for test data from novjanfeb for depth feature 4 - island.

Class Accuracy TP Rate FP Rate F-measure ROC Area
rocks at trees
2class 89.6 0.896 0.104 0.896 0.896
3class 66.27 0.663 0.169 0.665 0.747
rocks at far
wall
2class 97.2 0.972 0.028 0.972 0.972
3class 87.2 0.872 0.064 0.871 0.904
rocks at near
wall
2class 96.25 0.963 0.038 0.962 0.963
3class 91.67 0.917 0.042 0.917 0.938
island
2class 91.25 0.913 0.088 0.912 0.913

Table 4.22: Models developed for each of the depth features using
the novjanfeb data and evaluated using ten-fold cross
validation

Some of the classification results suggest it may be more appropriate to develop

a model for different seasons. Table 4.22 shows the results of a model built for each

of the depth features using the test data from novjanfeb and evaluated using 10-fold

cross validation. These results demonstrate that much higher accuracies are possibly

achievable building separate models for use during different time periods. Thus for

experiments further on in the thesis, we develop a separate model using data from

November, January and February for classifying data from winter/early spring. In

fact future work way involve the development of a number of seasonal models.
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However it must be noted here also that the evaluation of the models on the

novjanfeb test data included a lower number of instances and thus cannot be directly

compared. In fact the overall test sets used here are much smaller to the datasets

initially used in the evaluation in Section 4.5. The evaluation carried out here is

to provide a snapshot of performance on unseen test data. Overall this was quite

satisfactory for the 2-class model, except for perhaps depth feature 1 - trees and

depth feature 4 - island on the novjanfeb test data.

While overall very satisfactory performance was achieved in relation to the de-

tection of each of the depth features, these classifications may be further improved

by using data from another camera on the network and viewing features from an-

other angle. In fact when the camera pans to other angles, this also provides an

alternative view of certain features. In certain cases this may alleviate some of the

problems caused by reflections or limited vision from a particular angle. When there

are uncertainties regarding a particular classification, the algorithm could refer to

data from an alternative camera angle. Examining data from an alternative angle

also enables us to capture events at the site from multiple different perspectives.

The aim of this work is to examine what can be achieved from deploying a low-cost

camera overlooking a site without having to make any modifications to the site,

adding another camera to the network would still render the deployment very cost

effective while increasing knowledge about events at the site.

4.7 Alternative Features

In this study we have looked at four depth features as a proof of concept on the

how we can use features in the image that can correspond to changes in water depth

for providing an estimation of depth. However there are other features that could

also be investigated. For example it may be worthwhile investigating into the use of

another feature to give an indication of when higher waters levels are changing. A

sample feature might be to use different patterns delineated on the wall depending on
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Figure 4.14: Features on the wall showing changes in higher water
levels

how much of the wall was showing. Three different levels can generally be depicted

by these colours. Figure 4.14 shows three images - the first image demonstrates

when three lines of colours are visible due to a lower water level, the second image

demonstrates when two lines of colours are visible due to a higher water level and

the third image demonstrates a really high water level when only the top colour of

the wall is visible.

low
water

middle
water

high
water

low water 628 165 7
middle water 149 589 62
high water 1 41 758

Table 4.23: Models developed for each of the depth features using
the November January and February data and evaluated
using ten-fold cross validation

We developed a model using 800 samples of each class from the novjanfeb dataset

since it contained images with a larger number of sample instances of the higher
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water levels. We then used ten-fold cross validation in order to evaluate if the

model has the ability to different between these different appearances of the wall

depending on the water level. The model achieved an accuracy of 82.29% and an

ROC area of 0.867. This is very satisfactory and as can be seen from the confusion

matrix in Table 4.23, the model was especially accurate in classifying the higher

water levels which is the most important considering this could indicate a flood

alert.

4.8 Conclusion

Our objective here was to demonstrate the use of a visual sensor for providing an

estimation of depth from the camera images. Here we described four depth features

that correspond well to readings from the in-situ depth sensor and to different water

levels at the Lee Maltings. We subsequently developed and evaluated four models

for classifying these features with very promising results.

We evaluated the fours models on two unseen datasets - one containing data from

May and the other combining data from November, January and February (novjan-

feb). For the 2-class model, accuracies of 89.2%, 85.38%, 98.63% and 79.25% were

achieved on the May test data. The results were slightly poorer for the combined

test data - NovJanFeb, with accuracies of 67.08%, 79.6%, 94.58% 53.75%. From

visual inspection of the data, the time period of the second test set displayed very

different visual signatures to that of the May test set. An evaluation carried out

on data from this time period suggests that better accuracies may be achieved by

training models with data specific for this time period. This is subsequently the

approach adopted when using these models at a later stage in our study. Also for

further experiments, we decided based on our analysis to use a 2-class model where

intermediate appearances of a feature would be considered as a negative classifica-

tion.

Future work may involve improving our analysis of events at the site from looking
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at the information from alternative camera angles or even from another camera

deployed at the site. Also in this study we have looked at the classification of four

depth features as a proof of concept on how image features can be used to provide

an estimation of parameters at the site, and linked in with data from an-situ sensor

network. However further studies may also investigate the classification of other

features at the site. For example, as previously outlined, it may be worthwhile

investigating into the use of another feature to give an indication of when higher

waters levels are changing.

As previously outlined, the overall objective of this work is to investigate how

alternative sensor modalities such as visual sensors can complement the use of an

in-situ sensor network, for example as a backup sensing modality in times of node

failure. Now that we have developed classifiers for the four depth features, in Chapter

7 we investigate ways of relating these features back to the in-situ depth data.

We examine a variety of methods resulting in a number of visual sensor streams.

Following this we examine a unique approach for helping us to decide which of these

is the most reliable for replicating the work of the in-situ sensor in times of node

failure. More specifically we adapt a trust and reputation framework for determining

the most reliable data stream at a particular point in time. In Chapter 8, we move

on to evaluate the actual effectiveness of this sensing modality for detecting high

and low depth events in order to examine its effectiveness as a back-up sensor in the

network. However in the following chapter we investigate the role of visual sensing

in a coastal region in the form of satellite remote sensing data.
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Chapter 5

Satellite Remote Sensing Data

5.1 Introduction

Sophisticated satellite sensors are very effective for monitoring many ocean and

coastal parameters such as sea surface temperature, sea surface height, ocean cur-

rents, and chlorophyll pigment concentration (which can subsequently be used to

determine the amount of algal growth in the water) along with other water qual-

ity parameters such as mineral suspended sediments and dissolved organic matter

(Miller et al., 2007). A number of these sensors are orbiting the earth on various

satellite platforms with different spatial and temporal resolutions.

In the preface to their text on Remote Sensing of Coastal Aquatic Systems, Miller

et al. (2007) outline the importance of coastal systems, their complexity and the

need for more sophisticated sampling techniques such as that provided by satellite

remote sensing. They are dynamic environments affected by a range of factors, both

naturally occurring and of anthropogenic influence. They can often be subject to

large-scale pollution through discharge from the local watershed, runoff from local

areas or industrial output.

However in our work the focus is specifically on satellite remote sensing data that

can enhance the use of the in-situ sensor nodes in an operational multi-modal sensor

network and provide a form of redundancy in the network. The key objective here is
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to investigate the availability of satellite data at an appropriate spatial resolution to

provide measurements that can most accurately coincide with data from the in-situ

sensor node. This data also needs to be available at a sufficient temporal resolution

so that if the in-situ sensor node were to fail, we can still avail of high frequency

data. The objectives of this work thus require near real-time cooperation between

the two sensor streams. The site and the in-situ data sources of interest here are

Galway Bay and data from the SmartBay environmental monitoring buoys.

The satellite remote sensing parameters that are complementary to data from

the SmartBay buoys can be divided into two main categories – ocean colour mea-

surements and sea surface temperature (SST) measurements. Hence the discussion

proceeds from here according to these two categories of remote sensing data, outlin-

ing their issues and applications. Based on this, we outline the satellite data sources

chosen for use in this research and the extraction of information from these data

sources for use in the network. The analysis provided here forms part of our analysis

in relation to research question 2 of our research questions presented in Chapter 1.

Due to the large number of acronyms used in this chapter, a glossary is provided

at the end of the thesis in order to provide the full terms for satellite sensors and

organisation names that have been abbreviated.

5.2 Ocean Colour

In this section we provide an outline of the parameters that can be obtained from

ocean colour measurements, a range of satellite sensors used for carrying out ocean

colour measurements, issues in relation to choosing an ocean colour sensor and

limitations in relation to satellite remote sensing of ocean colour in coastal zones.

This highlights the difficulties in relation to satellite ocean colour sensing and in

obtaining a suitable data stream in the context of the objectives of our research.
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5.2.1 Ocean Colour Parameters

In the Ocean Colour literature the reflectance or optical properties of water are

mainly attributed to suspended sediments, phytoplankton, and dissolved organic

matter otherwise known as ‘yellow substance’ or gelbstoff as described in (Dareckia

et al., 2003; Hellweger et al., 2004; Darecki and Stramski, 2004; Zimba and Gitelson,

2006; Gitelson et al., 2008). Satellite sensors can correlate the amount of solar

radiation reflected by surface water at various wavelengths to estimate water quality

parameters such as these.

Chlorophyll is outlined as being one of the most important parameters observable

from satellite imagery. Chlorophyll can provide an indication of the phytoplankton

content of the water and thus can help detect the occurrence of algal blooms (Rast

et al., 1999). Yellow substance or ‘gelbstoff’ was introduced earlier and consists of

decayed organic material (from plants and animals) that has been dissolved in marine

waters. It is said to consist of mostly organic molecular polymers and it is usually

transported to the sea by rivers (Rast et al., 1999). Finally suspended matter is

described in (Rast et al., 1999) as “all suspended particles in water without particular

algal pigments and of a size larger than 0.47 µm”. It is said to consist mainly of

sediments and is an important indicator for marine turbidity studies. Even in low

concentrations, it is said to dominate the water colour for wavelengths up to 670nm

in coastal waters. In (European Space Agency, 2006) suspended matter is described

as being a combination of inorganic particles and detritus (particulate material

that enters into a marine or aquatic system), present due to re-sedimentation and

advection processes, atmospheric inputs and dead material such as plankton.

5.2.2 Ocean Colour Sensors

In (European Space Agency, 2006), an overview is provided of the history of ocean

colour monitoring through satellite sensors where it is outlined that the first obser-

vations of ocean colour through satellite remote sensors were carried out by Coastal
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Zone Colour Scanner (CZCS) aboard NASA’s Nimbus-7 satellite from 1978 to 1986.

From 1986 to 1996, there was a subsequent absence of an operational satellite sensor

for the production of ocean colour data. In March 1996, India launched the Ger-

man sensor MOS which provided useful data despite not providing global coverage.

In August 1996, the Japanese sensor OCTS and the French sensor POLDER was

launched by Japan on the ADEOS mission. This operated until June 1997 when

failure of the satellite’s solar panel ended the mission. Then in August 1997, the

SeaWiFS was launched by the USA. This was to operate as a follow-on sensor to

the CZCS which had finished operating in 1986 and it only finished collecting data

in December 2010.

Following the launch of SeaWiFS, a number of other ocean colour sensors also

began operations and started providing ocean colour data to the Earth Observation

community. A selection of sensors in operation that are used for monitoring ocean

colour are outlined in Table 5.1. They they are described under various headings

such as spatial, temporal and spectral resolution, etc . The range of ocean colour

sensors available provides an indication of the range of activity and importance that

is being attributed to remote sensing of ocean colour.
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While some of these sensors were developed specifically for monitoring ocean

colour, land-observing satellite sensors such as IKONOS, Landsat ETM+, and

SPOT are also listed in the table as they have also been used for estimating ocean

colour parameters, particularly due to their high spatial resolution. However these

types of sensors sometimes do not have as high a radiometric sensitivity which is

often required for the accurate retrieval of various water quality parameters in op-

tically complex waters (Hellweger et al., 2004; Kutser et al., 2005). There are also

issues in that some of these sensors may have a low temporal resolution. These sen-

sors were not developed specifically for measuring ocean colour parameters and thus

may not directly produce estimates of geophysical quantities such as chlorophyll-a,

TSM etc. However algorithms may be applied to reflectance data in order to esti-

mate these parameters (e.g. (Hellweger et al., 2004; Kutser et al., 2005)). Other

satellites such as the AVHRR which are normally used for sea surface temperature

mapping have also been used in a variety of studies for observing ocean colour.

Hellweger et al. (2004) provide an overview of the spatial, spectral and temporal

resolution of satellite sensors commonly used for water quality studies. They also

provide a review of the literature and point out the various sensors that have been

used for measuring water quality in inland, estuarine and near-shore waters. They

note a predominant use of high spatial resolution sensors (e.g Landsat ETM) in

inland waters and low spatial resolution sensors (e.g. AVHRR) in near shore ocean

waters. However Landsat ETM would have a lower spectral and temporal resolution

and AVHRR would have a lower spectral resolution than ocean colour sensors such

as MODIS or MERIS. However it would have quite a high temporal resolution. It

should be noted that much of the literature reviewed here is from the 1980’s, 1990’s

and early 2000’s. Sensors such as MERIS and MODIS-Aqua were not launched until

2002.

As outlined in Darecki and Stramski (2004) building upon the heritage of the

CZCS, significant efforts were made to develop ocean colour sensors with improved

spectral and radiometric performance and improved spectral and spatial coverage.
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SeaWiFS (Hooker and McClain, 2000) and MODIS (Esaias et al., 1998) were the

result of these efforts in the USA. MERIS (Rast et al., 1999; European Space Agency,

2006) was the result of European efforts for developing a sensor more suitable for

monitoring ocean colour. The use of data from each of these sensors is investigated

by many studies throughout the literature. Data from these three sensors are also

used in the satellite data products used in this work which are described in Section

5.4.1.

5.2.3 Choosing an ocean colour sensor

As can be seen from Section 5.2.2 there are a variety of ocean colour sensors and

land-observing satellite sensors that can provide data which could be of use to us

in our research. However the choice of sensor is very application-specific as sensors

differ in factors such as spatial, temporal and spectral resolutions.

Hellweger et al. (2004) outlines how there is a range of satellite sensors suitable

for estimating water quality parameters, however there is a tradeoff in spectral,

spatial and temporal resolution and the best combination depends on the intended

use. They state that no single sensor can have a high spectral, spatial and temporal

resolution. Thus the selection of sensors is application-dependent. As outlined in

Section 5.2.2 they compiled a list of sensors based on a literature review of satellite

measurements of water quality in inland, estuarine and near-shore ocean waters.

They outline the spectral, spatial and temporal resolution of each of these sensors

and point to a series of studies from the literature highlighting the sensors chosen

for these applications.

Differing applications have different requirements. For example a high spectral

resolution is generally required to differentiate between substances (e.g. suspended

sediments vs. chlorophyll-a). Sensors designed for this like MODIS generally have

a lower spatial resolution. Many land applications however require a high spatial

resolution. Sensors designed for such purposes such as Landsat-ETM or IKONOS

have a high spatial resolution but a lower spectral resolution. MERIS is highlighted
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as an example of a sensor that provides a combination of medium spectral, spatial

and temporal resolution with MODIS being highlighted as an example of a sensor

that provides a range of spatial resolutions.

In the study reported by Hellweger et al. (2004), they are seeking to choose

a suitable sensor for observing water quality in New York Harbour. Hence they

require a sensor satellite sensor with a high spectral resolution because they are

concerned with characterizing water quality. Because the study has taken place in

coastal waters this is even more desirable considering these waters are often very

optically complex. They require a high spatial resolution and need to deal with

issues such as interference from non-water features. A high temporal resolution is

also desirable as the New York harbour area which is the target area, is dominated

by the tide and the water quality can change in hours. However none of the sensors

listed can achieve the temporal resolution required for monitoring such a dynamic

so they chose two sensors spanning a range of spectral and spatial resolutions for

their study – the Landsat ETM sensor (low spectral/high spatial resolution sensor)

and the MODIS sensor (high spectral/low spatial resolution with the 1km spatial

resolution) with mixed results.

Other studies also demonstrate very site-specific requirements in relation to their

choice of satellite imager. For example Kutser et al. (2005) investigate the use

of satellite remote sensing for investigating Coloured Dissolved Organic Material

(CDOM) in lakes over large geographic areas. Their study is based in Southern

Finland and Southern Sweden. They outline the high CDOM absorption in many

boreal lakes requires high radiometric sensitivity due to low reflectance and that the

lake size is often small compared to the 1km pixel resolution associated with most

aquatic satellite sensors. However the spatial resolution of ocean colour sensors such

as SeaWiFS, MERIS, and MODIS is described as being inadequate for most lake

measurements despite their high radiometric sensitivities and global coverage. They

outline the spatial resolution of land-observing satellites such as IKONOS, Landsat

ETM, and SPOT as being desirable for boreal lake measurement, however their
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radiometric sensitivity is deemed to be problematic for the scenario in question.

Instead they investigated the use of a land observation sensor known as Advanced

Land Imager(ALI) with improved spectral, spatial and radiometric resolution. The

results of their study indicated that CDOM content in lakes over a wide range of

concentrations could be mapped using ALI data.

Finally, in another study carried out by Simis et al. (2005), they investigate the

use of remote sensing for the detection of the pigment phycocyanin (PC) which can

indicate blooms of cyanobacteria. In this study they choose the MERIS sensor due

to the availability of a band deemed suitable for the detection of PC, and its 300m

resolution being suitable for the moderately sized lakes which were under consid-

eration in the study. Matthews et al. (2010) also choose MERIS for a observing a

lake - Zeekoevlei, a small hypertrophic freshwater lake in Cape Town, South Africa

which is dominated by cyanobacteria. They outline the sensor specifications, fre-

quent data acquisition, 300m pixel resolution, high signal-to-noise ratio and number

and position of spectral bands make MERIS suited to regular/real-time monitor-

ing applications. However in the introduction to their work the authors note that

MERIS is not very well suited to observing lakes smaller than 1km2 which represents

a significant number of the world’s lakes.

From this outline it is clear that there are a number of issues to consider when

choosing a satellite remote sensor and it is very specific to the application in question.

The application context of our research is monitoring the coastal zone where we

require high temporal measurements that also produce reliable measurements. In

the study outlined by Hellweger et al. (2004) none of the sensors considered could

achieve the temporal resolution required. This may also may be an issue for the

needs of our research. The following section highlights some of the limitations with

regards to the use of satellite remote sensing in a coastal zone.
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5.2.4 Limitations of Satellite Remote Sensing for Ocean Colour

Monitoring in Coastal Zones

Rast et al. (1999) states that when detecting biological constituents that dominate

the optical properties on the surface layer of marine waters, two classes of water

are distinguished. These are commonly referred to in the literature as Case 1 and

Case 2 waters. They describe Case 1 water as comprising blue, oligotrophic waters

(with pigment concentration below 0.1 mg m−3), biologically active waters (with

pigment concentration around 1 mg m−3) and green, eutrophic waters (with pigment

concentration as high as 10 mg m−3). Case 2 waters are described as consisting of

the constituents found in case 1 waters along with particles from runoff, suspended

sediments, dissolved organic matter and other dissolved substances originated from

anthropogenic influx into the water system. This water type is outlined as occurring

mostly in coastal zones with high fluvial runoff, estuaries and shallow offshore zones.

Dareckia et al. (2003) outline how it was Morel and Prieur (1977) who initially

classified marine waters in terms of variability of optical properties and coined the

terms Case 1 and Case 2 waters. Darecki and Stramski (2004) describe Case 1

waters as waters where substances other than phytoplankton are either optically

insignificant or correlated with phytoplankton (also deemed to be somewhat an

over-simplification of things), whereas Case 2 waters typically include coastal and

inland water bodies where materials such as suspended inorganic matter and/or

dissolved organic matter make a significant contribution to the optical properties

and vary independently of phytoplankton and each other.

Based on these descriptions, Galway Bay would be classified as Case 2 waters.

The reason for providing this description here is due to the fact that the optical

complexity of Case 2 waters often renders remote sensing algorithms for estimating

ocean colour parameters unreliable in coastal zones and many studies outline the

need for improved algorithms for differing water types e.g. (Zimba and Gitelson,

2006; Darecki and Stramski, 2004; Stumpf et al., 2003). For example, Stumpf et al.
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(2003) use ocean colour imagery from SeaWiFS as part of their study for monitoring

harmful algal blooms (HABs). They process imagery data using coastal-specific

algorithms stating how the NASA global chlorophyll algorithm over-estimates in

the region.

The potential inability of the satellite sensor to distinguish between the various

water quality parameters has been pointed out as a limitation with satellite remote

sensing in a variety of studies e.g (Hellweger et al., 2004) and there are numerous

studies in the literature investigating and validating models for the estimation of

these parameters, especially chlorophyll-a, in Case 2 waters e.g. (Gitelson et al.,

2008; Yang et al., 2010). In (Dareckia et al., 2003), they determine the application

of a single remote sensing algorithm for Case 2 waters to be infeasible. Other

studies have found more promising results. Gons et al. (2002) adapt a chlorophyll

retrieval algorithm for use with MERIS for inland and coastal waters. They claim

their study demonstrates that this algorithm can be used to retrieve moderate to

high concentrations of chlorophyll-a in different water bodies without region-specific

calibration.

There also are other limitations with satellite remote sensing for monitoring

coastal zones. Ocean colour sensors often have a spatial and temporal resolution

often not sufficient for monitoring small-scale features or highly dynamic environ-

ments. For example the resolution of satellite ocean colour sensors such as SeaWiFS,

MODIS and MERIS is outlined in Kutser et al. (2005) as often inadequate for mea-

surements of many lakes. Hellweger et al. (2004)) find the spatial resolution of the

1km MODIS data water pixels to present a high risk of contamination from non-

water features in the site under investigation (New York Harbour). Spatial accuracy

of the land-mask and bottom reflection in near-shore shallow waters are also high-

lighted as issues. They also state how none of the arrays of sensors they had listed

have the temporal resolution to resolve the dynamics of a tidally dominated system

where water quality can change within hours.

Ocean colour measurements are also hampered by cloud cover and sun glint,
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therefore even if a sensor has a re-visit time of three days, this does not always mean

there will be data available at this temporal scale. Gregg and Woodward (1998)

outline how due to the fact that ocean colour sensors detect upwelling radiances

in the visible and near-infrared portions of the spectrum, that they can be limited

by atmospheric processes that obscure ocean viewing, such as clouds and sun glint.

Investigations have often found it difficult to get coincident satellite and ground

observations for investigating the use of satellite remote imagery at a particular site

or the development and evaluation of the accuracy and precision of ocean colour

chlorophyll algorithms e.g. (Hellweger et al., 2004; O’Reilly and Maritorena, 1998).

To summarise, despite the potential benefits of satellite remote sensing data,

there are also a number of limitations. These limitation relate mainly to difficulties

for accurately estimating ocean colour parameters in the coastal zone, limited spatial

and temporal resolution for monitoring small scale features and highly dynamic

environments, and a further hampering of the temporal resolution due to issues

such as sun glint and cloud cover. Subsequently with Galway Bay being a coastal

zone and a location that is frequently covered by cloud, a satellite remote sensing

stream that meets the needs of our application context and can produce data at very

high temporal scales is difficult to achieve. However like many application contexts

in the literature it may be very beneficial from a contextual point view in providing

data that can help to design ground sampling programs. It can provide an overview

of dynamics in the bay over a large spatial area that are difficult to obtain otherwise,

and subsequently lead to better management decisions for the bay and in the use of

the in-situ instrumentation, and a better understanding of environmental processes.

The following provides a brief overview of some of the application scenarios for ocean

colour data in the literature.

5.2.5 Applications of Sensing Ocean Colour

There are numerous applications for ocean colour data highlighted in the literature.

One of its primary uses is monitoring the spatial extent and duration of harmful
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algal blooms (HABs) and the environmental conditions surrounding them. Negative

effects of these HABs events include discoloration of the water, surface scum, the

covering of beaches with biomass or foam, and the depletion of oxygen levels through

excessive respiration and decomposition which can affect marine life and lead to fish

kills (Sellner et al., 2003). Some phytoplankton blooms can also contain toxin-

producing species. For example Karenia Brevis, a toxic dinoflagellate has been

known to cause neurotoxic shellfish poisoning, fish and marine mammal deaths,

and human respiratory irritation (Stumpf et al., 2003). Research has been carried

out into satellite image analysis techniques to specifically detect toxic species or to

distinguish between toxic and other species (e.g. Amin et al. (2009), Stumpf et al.

(2003), Astoreca et al. (2009), Kutsera et al. (2006), Simis et al. (2005), Kahru and

Mitchell (1998), Millie et al. (1997), Staehr and Cullen (2003), Cannizzaroa et al.

(2008) and Matthews et al. (2010)). Some studies are also investigating the use of

satellite imagery and in-situ field measurements to predict the occurrence of algal

blooms in order to mitigate their effects in a timely fashion, for example NOAA’s

Harmful Algal Bloom Operational Forecast System (HAB-OFS)1.

Ocean colour data has also been used to monitor river plumes e.g (Baban, 1995;

Froidefond et al., 2004; Mertes and Warrick, 2001). This is an interesting phe-

nomenon that can be observed when a river discharges into the sea. Knowledge of

river plumes is critical in regional oceanography. Rivers may carry excessive sed-

iment to the coastal ocean which increases the turbidity of the water and hence

affects water quality. Excessive sediment load can have an impact on coastal ecosys-

tems and can lead to the transport of pollution pathogens and toxic phytoplankton

(Muller-Karger et al., 2007). Satellite remote sensing data often allows the spatial

characterisation and dynamics of a river plume to be monitored in a manner which

would be difficult or impossible to achieve with a field sampling program.

These examples highlight some of the applications of ocean colour data and pro-

vide us with a flavour of the possibilities. However there are many more applications

1http://tidesandcurrents.noaa.gov/hab/
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with important environmental impacts such as monitoring pollution or tracking the

progress of oil spills. The dynamics of such events can be quickly detected and mon-

itored aiding the management and deployment of rapid mitigation strategies. Use

of satellite data in this manner is the focus of many operational marine monitoring

programs. For example there are many European Union led initiatives that are

investigating a capacity for the use of earth observation data for operational moni-

toring needs such as these e.g. the Global Monitoring of Environment and Security

(GMES) programme 2.

5.3 Sea Surface Temperature (SST)

A similar analysis to that provided for Ocean Colour is provided here in relation to

SST satellite remote sensing data.

5.3.1 Satellite Sensors for SST Observation and Constraints

Sea surface temperature (SST) has been routinely observed using thermal infrared

data from space-borne sensors for many years. A number of these thermal infrared

sensors are outlined in Table 5.2 and described under various headings. Satellite

instruments such as AVHRR, MODIS and ATSR have the ability to derive satellite

SST measurements with accuracies of a few tenths of a degree (Noyes et al., 2006).

High accuracy SST measurements are essential for climate research and other studies

and the ATSR radiometers were designed with these requirements in mind. The first

ATSR, an experimental instrument, was launched on board ERS-1 in 1991. In 1995

ATSR-2 was launched onboard ERS-2. These were followed by the Advanced ATSR

(AATSR) launched onboard Envisat in March 2002.

Donlon et al. (2007) provide an overview of the different types of sensors and

platforms for measuring SST, outlining the sampling characteristics and absolute

accuracy levels. These include infrared and microwave radiometers with varying

2http : //www.gmes.info accessed October 21 2011
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characteristics. A 3-10km spatial resolution is available from infrared radiometers

on satellites with a geostationary orbit. These have a revisit time of approximately

30 minutes. However they have a limited field of view and thus only provide regional

coverage. A dual-view infrared radiometer on a polar orbiting satellite provides

global coverage but only every three days. It has a spatial resolution of 1-2km

and a high absolute accuracy which can be used to standardize the bias errors of

other sensors. An infrared wide swath radiometer on a polar orbiting satellite has

a spatial resolution of 1-4km, global coverage every 12 hours but a lower absolute

accuracy than an infrared dual view radiometer. All infrared radiometers fail over

cloud and the infrared wide swath radiometer also fails in the presence of atmospheric

aerosol. A microwave radiometer on a polar orbiting satellite has a spatial resolution

of 25-50km, global coverage every 1-2 days, a lower accuracy than some infrared

radiometers but it can still obtain measurements through cloud cover. It is however

affected by rain.

The constraints of IR sensors highlighted by authors include the fact that their

observations are affected by clouds and aerosols e.g. (Wentz et al., 2000; Chelton

and Wentz, 2005). Microwave radiometry offers a solution to these two main con-

straints. Microwaves at frequencies below approximately 12 GHz can provide a clear

view of the sea under all weather conditions except rain and at these frequencies

atmospheric aerosols have no effect. Wentz et al. (2000) provide a brief history of

satellite microwave sensing stating that the first microwave radiometers operating at

these low frequencies were launched in 1978 on SeaSat and Nimbus-7. The Tropical

Rainfall Measuring Mission (TRMM) was launched in November 1997 with a mi-

crowave imager TMI. Wentz et al. (2000) state that this sensor is the first satellite

sensor capable of accurately measuring SST through clouds.
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They outline the major limitation of microwave SST retrievals to be the rel-

atively coarse resolution (on TMI, the spatial resolution is approximately 50km),

compared to infrared SST retrievals which generally have a higher resolution. Also,

as previously outlined, SST retrievals may not be accurate when rain is present

and so are discarded. Other limitations of the TMI noted by Chelton and Wentz

(2005) include an accuracy of approximately 0.5◦C, an inability to measure SST

near land, a restriction of measurements to the latitude band of 40◦S-40◦N, and a

degraded accuracy of retrievals of SST below approximately 10◦C. AMSR-E which

orbits the earth on NASA’s Aqua satellite addresses some of these limitations This

sensor began sampling the global ocean in June 2002 with 89% coverage each day

and 98% coverage every two days. Again the resolution of this instrument would not

be as high as some of the IR sensors, however it leads to improved global sampling

through greater coverage.

The launch of WindSat on the Coriolis satellite3 in January 2003 brought about

a new generation of satellite remote sensing instruments (Brown et al., 2007). Mea-

surements over the ocean are used as input to NWP models of the U.S. Navy, NOAA,

and the UK Met Office4. Despite all of this, microwaves are several orders of magni-

tude larger in wavelength than the visible portions of the spectrum. Thus the spatial

resolution of typical microwave radiometer observations is coarse. They have limited

capabilities for monitoring coastal regions, and precipitation in the atmosphere can

severely limit the retrieval of certain geophysical parameters (Brown et al., 2007).

Scientists are investigating the best combination of tools from satellite observa-

tions, in-situ measurements, and numerical models for global SST analysis as dis-

cussed in (Donlon et al., 2001). This seeks to build on the complementary aspects

of various satellite instruments by merging data to provide information of increased

quality and resolution. Since we require a satellite data stream with high temporal

and spatial resolution for use in the context of this work, an SST analysis created

3Coriolis mission is jointly sponsored by the DoD Space Test Program and the U.S. Navy
(SPAWAR PMW-180)

4http://www.nrl.navy.mil/WindSat, accessed June 1 2011
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from incorporating a number of satellite data sources (and perhaps in-situ data

sources) is used in this study. In Section 5.2.4 constraints associated with the use

of satellite ocean colour data in coastal zones was highlighted. Similar constraints

in relation to spatial and temporal resolution exist in relation to using individual

SST satellite data streams. Hence a combined analysis is more appropriate for the

requirements of our research. The following provides a brief overview of some of the

applications of satellite SST measurements.

5.3.2 Applications of Sea Surface Termperature Measure-

ment

SST measurements are fundamentally important to a number of studies and appli-

cations including forecasting systems, tourism and fisheries research. Glenn et al.

(2000) point out the potential applications for real-time observation and forecasting

systems in the coastal environment including safe and efficient navigation and marine

operations, efficient trajectory prediction for oil and hazardous material spills, moni-

toring, predicting and mitigating coastal hazards, aiding search and rescue missions,

prediction of HABs or other water quality phenomena and for scientific research. Sea

surface temperature data is very important to most forecasting models.

Many studies have highlighted the necessity of satellite SST data for creating

data sets with the required coverage. For example, Donlon et al. (2007) highlight

the need for earth-observing satellite instruments stating that in situ measurements

from buoys, ships of opportunity, and voluntary observing ships are inadequate for

providing frequently sampled SST maps with the high spatial resolution and global

coverage required for input into ocean forecasting models.

Many studies from the literature also highlight the importance of SST observa-

tions. Reynolds et al. (2007) outline sea surface temperature to be an important

variable for better understanding interactions between the ocean and the atmo-

sphere. They outline purposes for SST analyses including climate monitoring and
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prediction and feature tracking. Donlon et al. (2001) outline how SST products are

required by operational ocean analysis and prediction systems to “properly constrain

the upper-ocean circulation and thermal structure” and that SST is a key param-

eter in other oceanographic fields such as coastal oceanography and monitoring of

biological resources. It is required as an input to numerical models which form the

basis for operational ocean forecasting systems. These systems are being used by

governments, industries, fisheries etc. and thus serve a wide variety of needs. It is

also extremely important in operational coastal monitoring applications as it can

have a large effect of ecosystem function e.g. changes in water temperature can

result in increased algal growth in the water (Sellner et al., 2003; Elliott and May,

2008) and can changes the solubility of oxygen e.g.(Vega et al., 1998). It may also

be indicative of other events such as increased freshwater inflow which may indicate

nutrient loading etc.

Many studies investigate the production of SST analysis products which com-

bines data from infrared and microwave sensors along with also possibly in-situ mea-

surements in order to produce high resolution SST estimations e.g. (Beggs et al.,

2011). The Global Ocean Data Assimilation Experiment (GODAE) established the

GODAE High Resolution SST Pilot Project (GHRSST-PP) which is described in

more detail in Section 5.4.2. However one of the key outcomes of this project is the

creation of satellite data products in a common format which can be easily ingested

into various analysis systems.

For example the UK Met Office developed a new global, operational, high resolu-

tion, combined sea surface temperature (SST) and sea ice analysis system (OSTIA).

It outputs a daily global coverage combined SST and sea ice concentration product

(approximately 6km resolution), which is generated in near-real time. This system

takes advantage of the data provided by GHRSST-PP and aims to meet the needs

of applications requiring high resolution space-time scales including global numeri-

cal weather prediction (NWP) and operational ocean models. It incorporates both

in-situ data and remote sensing data from a variety of instruments. This system
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is described in Stark et al. (2007). Due to the high temporal coverage that can be

achieved by such analysis products, these types of products are examined for use in

our research.

5.4 Satellite Data Products for Use in the Galway

Bay Network

While there are numerous benefits to satellite remote sensing data products in many

application contexts, in our work the focus is specifically on high temporal satellite

remote sensing data that can enhance the use of the in-situ sensor nodes in an

operational multi-modal sensor network and provide a form of redundancy in the

network. Following the previous analysis it is clear that relying on a singular satellite

sensor for this type of data is not suitable in the context of this work.

Therefore based on this, the satellite data products chosen for incorporation into

this network are mainly products that produce an analysis based on the combination

of many satellite and in some cases in-situ data streams. These products can often

achieve a higher accuracy with increased spatial and temporal resolution through

exploiting the various characteristics of a number of satellite sensors.

In Chapter 3, a description of the in-situ data sources in Galway Bay was pro-

vided. Due to the fact that the SmartBay Buoys contain a number of water quality

sensors, we chose to align satellite data streams to this in-situ sensor network. Data

is available from the SmartBay Buoy at Mace Head from July 16 2008 until March

03 2010. Data from the SmartBay Buoy at MidBay is available from July 16 2008

until December 07 2010. These are the start and end dates for the data sets pro-

vided by the Marine Institute upon request. However this does not mean that data

is available continuously from each sensor from these start times, there are temporal

gaps.

Satellite data products for ocean colour and sea surface temperature (SST) were

downloaded for similar time periods to the in-situ measurements. Data was ex-
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tracted from these sources using Beam5 – an open-source toolbox and development

platform for viewing, analysing and processing of remote sensing raster data. It was

first developed by Brockmann Consult6 in 2002 under a contract with the Euro-

pean Space Agency and has undergone many release cycles since and has become

an accepted platform for the analysis and processing of Earth Observation Data.

The Mace Head SmartBay Buoy is at latitude-longitude location of (53.3327, -

9.9324). The MidBay SmartBay Buoy is at a latitude-longitude location of (53.1136,

- 9.51083). When extracting information from the satellite data products, the Java

Beam API was used to select the pixels that best represented the locations of the

SmartBay buoys. Due to the proximity of the buoys to the bay, the spatial res-

olution of the data products and the fact they were mainly analysis products as

opposed to individual satellite data products, this appeared to be the best approach

for selecting a corresponding value from the satellite data product for use in each of

the networks (i.e. the Mace Head and MidBay networks). The following describes

the satellite data analysis products used in our Galway Bay multi-modal sensor

networks. However it should be noted that the purpose of this research is not to

provide a thorough analysis on the use of all available analysis products, but rather

to highlight some of the benefits and issues with using a selection of these in such

an application context.

5.4.1 Ocean Colour Data

Data from satellite sensors normally occurs in different formats which generally

vary in terms of of processing that has been carried out. For example the MERIS

Product Handbook European Space Agency (2006) describes three processing levels

for MERIS data described as follows:

• level 1B - images resampled on a path-oriented grid, with pixel values having

been calibrated to match the Top Of Atmosphere (TOA) radiance.

5http://www.brockmann-consult.de/cms/web/beam/
6http://www.brockmann-consult.de
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• level 2 - images deriving form the level1B products, with pixel values having

been processed to get geophysical mesurements.

• level 3 - a synthesis of more than one MERIS product (and possibly external

data) to display geophysical measurements for a time period.

The level 1B products consist of radiance values, the level 2 products consist of

geophysical products such as chlorophyll-a, TSM etc. produced by processing the

radiance values from the level 1B data using a standard algorithm, and level 3 prod-

ucts incorporate a number of MERIS products sometimes along with external data

to produce perhaps weekly or monthly data. The different MODIS data products

are described similarly7. A level 4 data product is also outlined which is described

as being model output or results from analyses of lower level data (such as variables

derived from multiple measurements). They outline for example “Ocean primary

Productivity”8 as an example of a level 4 product.

Initially we had considered using level 2 data from MERIS or MODIS. These

satellite sensors produce data with a moderate to high spatial resolution. MERIS

is thought to be particularly suited to coastal zones and MODIS has quite a high

temporal resolution with a re-visit time of approximately 1 day. As part of this

research, we developed a system for the efficient browsing, searching and analysis

of MODIS chlorophyll data described in (O’Connor et al., 2010). This system was

based on searching and analysing the data using the JPEG summary image of the

source data. The pilot system was based on images ranging from May 31 2008 to

October 28 2009. It was clear from browsing these images and analysing the pixel

colours of the summary images that there is a very limited amount of data available

from these single sensor products for Galway Bay, mainly due to cloud cover. Two

screen shots from this system can be seen in Figure 5.1. Therefore data sources

produced through a combined analysis of ocean colour data using information from

a combination of sources were considered to be more appropriate in the context of

7http://oceancolor.gsfc.nasa.gov/PRODUCTS/product level desc.html
8http://www.science.oregonstate.edu/ocean.productivity/
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Figure 5.1: Satellite image analysis system developed for this work

our application. We selected two different sources - GlobColour products and an

Ifremer product - that produce a combined analysis. These are described in the

following sections.

5.4.1.1 GlobColour

GlobColour is a project initiated and funded by the European Space Agency (ESA)

to develop a satellite-based ocean colour data service to support operational oceanog-

raphy and global carbon-cycle research (ACRI-ST, 2008). It was initially a three year

project that began in November 2005 under the leadership of ACRI-ST (France).

Globcolour has been involved in merging data from SeaWiFS, MODIS, and MERIS.

For our work, data was downloaded for the GlobColour data portal9. Figure

9http://hermes.acri.fr/ accessed on May 23, 2011
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Figure 5.2: Options available on GlobColour data portal

5.2 shows the various options available. Products are provided at varying temporal

resolutions - daily, weekly, monthly. Products are also produced at varying spatial

resolutions - 1km (DDS only), 4km, 25km, 100km. There are a variety of product

parameters available to the user. When searching for available data, the criteria

used was - daily 4km Chlorophyll-a data - (CHL1 - chlorophyll-a Case 1 waters and

CHL2 - chlorophyll-a Case 2 waters (only available from MERIS)).

These search criteria resulted in a variety of products. The GlobColour merged

products are generated using using a variety of merging techniques (simple averag-

ing, weighted averaging, and the GSM (Garver, Siegel, Maritorena) model). The

production of the CHL1 derived using the different merging techniques are described

in ACRI-ST (2011). CHL2 is only available from the MERIS instrument. A number

of products are produced using a varying combination of the three instruments or

all three, and differing merging methods. The details can be delineated from the

product names.
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Based on available files, three data products were selected for use in our analy-

sis, all of which were daily 4km resolution products - the merged MERIS-MODIS-

SeaWiFS CHL1 data product using two different merging techniques - weighted

average and GSM, and the averaged MERIS CHL2 product.

5.4.1.2 Ifremer Data

CERSAT (French ERS Processing and Archiving Facility) which is part of IFRE-

MER (French Research Institute for Exploitation of the Sea) produces a gridded

product for the Atlantic region named EUR-L4-CHL-ATL-v01. It produces daily

analyses and is a product that is used by the Irish Marine Institute. Again it is

a merged MODIS, MERIS, SeaWiFS product. We downloaded this data from the

CERSAT ftp site, and then extracted information from the pixels of interest.

5.4.2 SST Data

The SST data chosen for the analysis in this study is from the Global Ocean Data

Assimilation Experiment High-resolution Sea-Surface Temperature Pilot Project

(GHRSST-PP). An overview of this pilot project can be found in Donlon et al.

(2007) or from theGHRSST-PP project page10. These data products were chosen

since a high resolution diagnostic dataset site (HRDDS) was set up as part of our

research.

5.4.2.1 GHRSST-PP Data Products

The GHRSST-L2P product provides all SST data from various agencies and dif-

ferent sensors in a common format, with the addition of ancillary information to

assist interpretation. This additional information allows users more flexibility in

deciding if a given SST observation is suitable for a particular purpose. It allows

the easier evaluation of satellite SST observations against in-situ measurements and

10http://www.ghrsst-pp.org
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other satellite data, and the easily assimilation of alternative data products into

operational forecasting systems, with minimal code change.

The GHRSST-L4 products produce an analysis based on several complementary

inputs to provide merged, gridded, and gap-free SST datasets. These products

exploit the synergy from using SST from in-situ, satellite microwave and satellite

infrared sensors and use all data available in the 24 hour time-period before the

analysis. The objective of these products is to provide the best available estimate of

SST from a combined analysis of all available L2P and other available sources of SST

data. Donlon et al. (2007) note how several L4 production systems are currently

operational. These use different analysis methods e.g. Reynolds and Smith (1994),

Guan and Kawamura (2004), Murray et al. (1998), and Lorenc (1981). They note

that while SST analysis methods predate the initiation of the GHRSST Pilot Project,

the availability of L2P data has greatly facilitated their operation and allowed them

to exploit more sources of SST.

The High Resolution Diagnostic Data Set (HRDDS)11 is a service within GHRSST-

PP to allow users to interactively compare, analyse and view SST data prod-

ucts, ocean models datasets and auxiliary datasets from the various streams within

GHRSST. The HR-DDS system consists of regularly gridded subsets of all available

GHRSST SST (Donlon et al., 2007). These are resampled if necessary to a common

grid within pre-defined sites. The HR-DDS system examines each GHRSST file

(L2P and L4) and an HR-DDS file is produced. These files are subsequently made

available via FTP. Approximately 200 of these sites are distributed globally. Two of

these sites were established in the context of our work – one at Galway Bay and the

other in Dublin Bay. Based on available files, seven of these HRDDS data products

from the Galway Bay site were selected for use in our analysis.

11http://www.hrdds.net
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5.5 Conclusion

In this chapter we investigated satellite remote sensing data products suitable in

the context of our research. In our work the focus is specifically on high temporal

satellite remote sensing data that can enhance the use of the in-situ sensor nodes

in an operational multi-modal sensor network and provide a form of redundancy

in the network. The site and the in-situ data sources of interest here are Galway

Bay and data from the SmartBay environmental monitoring buoys. The satellite

remote sensing parameters that are complementary to data from the SmartBay

buoys are divided into two main categories - ocean colour measurements and SST

measurements.

We outlined the parameters that can be obtained from ocean colour measure-

ments and the various ocean colour sensors currently being used to capture these

parameters, along with some of their characteristics. We also highlighted a number

of considerations when choosing an ocean colour sensor for a specific application

scenario and the limitations with the use of this type of data in the coastal zone.

However, despite the limitations, there are a number of applications where this type

of data is of significant benefit.

Similarly we outlined a range of sensors available for providing SST measure-

ments, differentiating between thermal infrared and microwave radiometers. While

microwave radiometers provide data during cloud cover, they often do not achieve

the resolution of a thermal infrared radiometer. We also outlined a number of ap-

plications of SST measurements.

In terms of our investigation into the availability of high temporal data for use

in the context of this research. It appears that a single satellite data product does

not meet these requirements. This is mainly due to issues with cloud cover. While

airborne sensors may provide a method to overcome this, it still does not provide

data at the temporal scale required in the context this work. Hence we have chosen to

evaluate satellite products that produce a combined analysis based on the integration
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of a variety of data sources. Following this we described the products chosen for

use in this research and the extraction of data from these. In Chapter 7 we perform

a novel analysis where we investigate the use of a trust and reputation framework

for determining the most reliable analysis product to be used at a specific moment

in time in the network for complementing the in-situ sensors. Similarly to how

an integrated approach can prove very beneficial in the context of satellite remote

sensing data, in the following chapter we investigate the integration of data sources

at the River Lee site for use in our river environmental monitoring network.
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Chapter 6

Integration of Data Sources

In the first part of this chapter we investigate the use of heterogeneous information

sources to provide context information to allow the more efficient operation of the

more sophisticated in-situ analytical instrument in the network. More specifically

we present a methodology for the incorporation of rainfall radar imagery data and

water depth data into an Artificial Neural Network (ANN) model for predicting

average freshwater levels at the River Lee site for potentially controlling the opera-

tion of an in-situ phosphate sensor. The main contributions are a methodology for

incorporation of pixel information from rainfall radar images and in-situ depth data

into an ANN and the subsequent use of this network to predict average freshwater

levels at a tidal point of a river. In carrying out this task we also analyse a number

of important issues which could be pertinent to future flood monitoring activities.

In the second part of this chapter we are investigating the ability of the network

to optimise the use of its in-situ sensor nodes to compensate for the intermittant

failure of a node where there is no redundant identical node in the network to

replace its operation. More specifically we investigate the development of models

incorporating information from different combinations of in-situ sensor nodes for

the prediction of values of an alternative node in the network. In this chapter we

address research questions 3 and 4 of the research questions outlined in Chapter

1. Overall in this chapter we are investigating the integration a variety of sensing
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modalities for optimising an environmental monitoring network. These studies are

quite novel and produce very promising results.

6.1 Combining Heterogeneous Sensing and Con-

text Information for More Intelligent sam-

pling

In Chapter 2 we described how the current state of the art in wireless sensor networks

poses many challenges for environmental monitoring applications. In particular we

discussed how the more sophisticated sensing devices such as chemical and biologi-

cal sensors are not suitable for large-scale long-term deployments (Diamond et al.,

2008a). An intermediate solution may involve investigating how these devices can

be used more intelligently and cost-effectively in an environmental sensor network.

This part of our work seeks to investigate the effects of combining rainfall radar

and water depth information as a means for providing contextual information to

control the operation of a chemical sensor at the Lee Maltings site in the River Lee,

Cork. If a chemical sensor such as the one here can sample more intelligently than

just at blind regular intervals, then this leads to improved event detection and a

longer lifetime for the sensor.

6.1.1 Study Overview

We investigate the use of an Artificial Neural Network (ANN) for predicting fresh

water levels at the site for a given day. The ANN incorporates information from

the DEPLOY water depth sensor and rainfall data extracted from rainfall radar

images provided by the Irish meteorological service. ANN’s have been widely used in

the literature for modelling various non-linear hydrological processes. Conventional

models require a number of parameters such as catchment topography, river network,

soil characteristics and antecedent moisture. ANNs can help to by-pass this due to
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their ability to generalize results from unseen data and their suitability to modelling

dynamic systems on a real-time basis. We provide an analysis on the output of the

ANN for a variety of input models, investigating issues such as:

• the most effective way to present rainfall radar information extracted from a

digital image – as opposed to raw data values extracted from rain gauges in a

catchment – to the network.

• The effects of rainfall from different points of catchment on the model;

• The effect of rainfall and water level information on the model and the effect

of differing lag times on the model;

• The accuracy of the ANN in predicting freshwater levels.

The chemical sensor in consideration is a phosphate nutrient analyser developed

as part of CLARITY (Slater et al., 2010). If there is heavy rainfall run-off from

further up in the river catchment area leading to a subsequent increase in freshwater

level at the Lee Maltings, then this type of sensor should increase its sampling

frequency. Rainfall and subsequent run-off may indicate the influx of nutrients into

the water especially if the catchment area consists of land mainly used for pasture

grazing or cultivation (Anderson et al., 2002; Pote et al., 1999). Thus if a significant

change in fresh water level can be predicted then the phosphate sensor should be

instructed to increase its sampling frequency in anticipation of a possible pollution

event. However during periods with little likelihood of phosphate pollution events,

the sensor should remain at a lower sampling frequency. This allows the sensor to

operate more intelligently and to prolong its lifetime.

6.1.2 Artificial Neural Networks (ANNs)

An Artificial Neural Network (ANN) is a mathematical model that consists of a

network of interconnected elements known as neurons. Signals are presented to the

ANN through input units which are then propagated and transformed through the
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network towards the output neurons(s). Each neuron has a number of input arcs

(coming from other neurons or from outside the network) and a number of output

arcs. The output of a neuron is based on the weighted sum of all its inputs, that is

then transformed by an activation function. The output of a neuron is then prop-

agated to subsequent neurons, and onwards. Depending on the type of network

and training algorithm employed, the activation function may be logistic sigmoid,

linear threshold, Gaussian or hyperbolic tangent functions, and can introduce non-

linear behaviour to the network. Most studies use the logistic sigmoid or hyperbolic

tangent functions. (Dawson and Wilby, 2001; de Vos and Rientjes, 2005; Haykin,

1994)

Figure 6.1: Image: (Dawson and Wilby, 2001) The structure of a
feed-forward artificial neural network

In feed-forward ANNs, connections flow in one direction between neurons from

the input layer, through one or more hidden layers, to an output layer (see Figure

6.1). In the literature two types of feed-forward network are often used in modelling

processes similar to rainfall-runoff: the multilayer perceptron (MLP) and the radial

basis function network (RBFN) (Dawson and Wilby, 2001). There are many issues

that need to be considered and a number of decisions that need to be made in ap-

plying ANNs to a problem such as ours. Texts such as Bishop (1995) or Haykin

(1999) provide detailed discussions on network types and training algorithms. Com-

prehensive reviews of the application of ANNs to hydrology have been carried out,
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outlining a framework for the development of ANN prediction models in hydrology,

along with the options available e.g. (Maier and Dandy, 2000; Dawson and Wilby,

2001). The approach adopted in our work is adapted from the framework outlined

by (Dawson and Wilby, 2001) for the application of ANNs to rainfall modelling and

flood forecasting.

6.1.3 The use of Artificial Neural Networks in Hydrological

Modelling

One of the main research challenges in hydrology is the development of compu-

tational models that are able to accurately simulate the response of a catchment

to rainfall. These computational models are categorised according to the approach

used and de Vos and Rientjes (2005) outline two main categories – knowledge-driven

modelling and data-driven modelling. Techniques involved in data-driven modelling

are outlined as mainly originating from the field of statistics and artificial intelli-

gence (e.g. time series, empirical regression, fuzzy rule-based systems and ANN

modelling), where as knowledge-driven modelling aims to reproduce the real-world

hydrological system along with its behaviour in a physically realistic manner. Draw-

backs with physically-based models are that they have excessive data requirements,

over-parameterisation effects, parameter redundancy effects and large computational

demands. Data-driven approaches do not suffer many of the disadvantages associ-

ated with knowledge-driven models, however they do have other drawbacks. For

example, the range of applications may be limited due to the fact that they are

developed from a set of records used for model calibration and thus may not extrap-

olate well into future situations.

The use of Artificial Neural Networks as a technique has gained significant at-

tention from hydrologists in recent years for modelling water level patterns in a river

system. Many authors have highlighted their benefits e.g. (Maier and Dandy, 1996;

Thirumalaiah and Deo, 1998; Hsu et al., 1995; Dawson and Wilby, 2001; Dawson
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et al., 2002). They do not pre-suppose a detailed understanding of a catchment’s

physical characteristics or require extensive data preprocessing, and they are also

noted to be quite effective for handling incomplete, noisy and ambiguous data.

Zealand et al. (1999) highlights their capability for constructing complicated non-

linear models for multivariate time-series. They also note issues in relation to the

statistical distribution and stationarity of the data. To optimally fit an ARMA-type

model to to a time-series, the data must be stationary and follow a normal distri-

bution. On the other hand it is outlined that when developing ANN models, the

statistical distribution of the data does not have to be known and that the internal

structure of the ANNs implicitly account for non-stationarities in the data, such as

trends and seasonal variations. Good generalization capability is also outlined as an

advantage of ANNs as unlike ARMA-type models they are relatively insensitive to

noisy data and they they have the ability to determine the underlying relationship

between model inputs and outputs.

In the literature, ANNs have been demonstrated as a tool capable of modelling

various nonlinear hydrological processes. Coulibaly et al. (2000) points to various

studies which have demonstrated that they may offer a promising alternative for

rainfall-runoff modelling, streamflow prediction, and reservoir in-flow forecasting.

They have been demonstrated to outperform traditional statistical models and pro-

duce comparable results to conceptual models e.g. (Hsu et al., 1995). Comprehensive

reviews on the application of ANNs to hydrology can be found in Govindaraju and

Rao (2000) and Maier and Dandy (2000).

6.1.4 Using Artificial Neural Networks for Predicting Changes

in Freshwater Levels at the Lee Maltings

In contrast with many other studies in the literature which investigate the use of

ANNs in hydrological modelling applications, our objective is not to predict water

levels or flow at the site in question, but to predict average freshwater level at a site
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which is influenced by the tide and hydroelectric dam further upstream. Predicting

average freshwater level for the current day is considered sufficient as it allows the

operation of the sensor to be alerted in sufficient time to modify its operating char-

acteristics in order to capture the dynamics of any impending event. The following

describes the methodology we used followed by a presentation and discussion of our

results which relate to the issues presented in Section 6.1.1.

6.1.5 Methodology

The methodology we applied is adapted from the framework outlined by Dawson and

Wilby (2001) for the application of ANNs to rainfall-runoff modelling and flood fore-

casting. This framework consists of seven stages and the methodology is described

under the following headings:

1. Data gathering

Depth data for the Lee Maltings site was gathered from a water depth sensor de-

ployed as part of the DEPLOY project. Data from this sensor is available from

April 24, 2009 to June 04, 2010. The sampling rate is approximately once every

10 minutes which results in approximately 144 samples per day. Rainfall data was

provided by rainfall radar images downloaded from the Met Éireann web site. These

images were gathered from May 15, 2009 until June 30, 2010. They are updated

every 15 minutes resulting in approximately 96 images gathered per day. It should

be noted that for each of these sensor streams there are some gaps in the data due

to issues with the sensor or issues with the data scraping application.

2. Select predictands

As previously outlined, the application of this model requires the prediction of aver-

age freshwater level at the site for the current day. Our reasoning behind choosing

this as the predictand as opposed to an approximation of freshwater level at a specific

moment in time is explained further in the following section.
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3. Data pre-processing – stage 1

Dawson and Wilby (2001) outline two steps involved in the data pre-processing

stage – data cleansing and the selection of inputs/outputs or predictors/predictands.

However certain authors have suggested that extensive data pre-processing does not

have to be considered when employing ANNs e.g. (Zealand et al., 1999)) and that

it is not considered largely by many studies e.g. (Maier and Dandy, 2000).

Pre-processing of depth data

Initially our approach involved using information from the conductivity sensor de-

ployed at the Lee Maltings site in order to indicate when the tide was out. However

this presented a number of difficulties including the issues demonstrated in Figure

6.2. This demonstrates a scenario whereby despite changing water levels with a

pattern representative of changes caused by the tide, conductivity values are not

changing. This is due to the release of the Iniscarra dam further upstream which is

forming a barrier to the entrance of the tidal waters. Figure 6.3 shows trends over

a longer time period, demonstrating other issues such as gaps in the data.

We found the most reasonable approach to extracting freshwater levels at the

site is to extract the minimum water level from each tidal cycle. Thus for each tidal

period the minimum point of that period is extracted as an input to the ANN model.

This resulted in approximately two water depths per day since there are generally

two tidal cycles occurring within a 24-hour period.

Pre-Processing of Rainfall Radar Images

A system was developed within the CLARITY research centre for the extraction of

rainfall data from rainfall radar images for a given catchment. This system also has

the ability to carry out short-term rainfall nowcasting or rainfall prediction and is

described further in (Wang et al., 2009). The catchment contour for the River Lee

is illustrated in Figure 6.4. We divided this catchment area into five strips, each

increasingly distant from the point where the river flows into the sea, as shown in
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Figure 6.2: A scenario whereby despite changing water levels with
a pattern representative of changes caused by the tide,
conductivity values are not changing due to the release
of water from the Iniscarra dam further upstream

Figure 6.4.

In the rainfall radar images from the Met Éireann website, the map of Ireland

is overlaid with coloured pixels indicating five different levels of rainfall intensity

namely very light, light, moderate, heavy and very heavy. Each of these types

of rainfall/pixel colours are extracted for each of the five strips of the catchment.

Processing of the rainfall radar images produces a dataset with five data points for

each of the five strips of the catchment for each image. Each data point represents

the area of the catchment (in km2) subject to the type of rainfall in question in

that image and each pixel of the catchment represents an area of 1.5km2. These

data points were also converted into millimetres in order to examine if this provides

a better description of rainfall occurring in the catchment for input to the model.

Met Éireann provides the rainfall in millimetres per hour for each rainfall type

represented in the image and this was used to convert the rainfall value from km2

to millimetres for each data point.
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Figure 6.3: Deploy data and conductivity data over a longer time
period

Figure 6.4: Catchment range for River Lee & strips distribution.

This calculation is completed for each of the five rainfall types and aggregated to

give a single figure of rainfall in millimetres for that particular strip of the catchment

for the image in question.
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Aligning the datasets

The rainfall radar dataset is aligned with the water depth dataset for creating a set

of instances for input into an ANN. Because of occasional gaps in the rainfall radar

data, and the differing sampling rates between rainfall (one every 15 minutes) and

freshwater level readings (approximately two per day depending on the tidal cycle),

in order to align the two datasets we calculated an average freshwater level and an

average rainfall value for each day. Two main categories of data sets were produced:

1. For each day, the average fresh water level + average VLIGHT + average

LIGHT + average MODERATE + average HEAVY + average VHEAVY

+ overall average rainfall in km2 (average of all rainfall types), per catchment

strip;

2. For each day, the average fresh water level + rainfall in mm, per catchment

strip.

Selection of input nodes

Maier and Dandy (2000) note how in most ANN applications little attention is given

to this task since ANNs belong to the field of data driven approaches which are

thought to have the ability to determine which model inputs are critical. However

presenting a large number of inputs to an ANN and relying on the network to de-

termine the important model inputs can be problematic (Lachtermacher and Fuller,

1994). Dawson and Wilby (2001) also note the importance of performing some form

of data reduction for the input data if it contains many input variables but few

points as the model will then have more free parameters to establish than samples

to constrain individual parameter values. Suggested techniques include extracting

principal components or more simple techniques such as averaging (e.g. averaging

data from several rain gauges). In the majority of papers reviewed by Maier and

Dandy (2000) input variables were chosen using a priori knowledge. In some cases

they were optimised using a variety of techniques such as correlation analysis, prin-
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cipal components analysis, a trial and error procedure etc. Appropriate lags were

generally using a priori information or a trial-and-error approach or in some papers

they were simply chosen arbitrarily. This study is quite novel in that we are investi-

gating the input of pixel information from a colour coded rainfall radar image to the

network. Hence a variety of configurations were analysed in order to determine the

best input model configuration and to address the other issues outlined in Section

6.1.6.

4. ANN Selection

In this part of the methodology, Dawson and Wilby (2001) outline two tasks – the

selection of a network type and a training algorithm. The network type chosen

for this work is the multilayer perceptron(MLP), introduced in Section 6.1.2, which

comes as part of the WEKA data mining software toolkit1 (Hall et al., 2009). The

MLP provided by Weka can be configured using the associated API or through a

user interface and trained and tested using specific feature sets developed by the

use for the task in question. The MLP is one of the most popular network types

used and it is trained using the error backpropagation algorithm. This training

algorithm operates by iteratively changing the network’s interconnecting weights

so that the overall error is reduced through searching the network’s ’weight space’

or error function (Dawson and Wilby, 2001). Sigmoidal type functions such as

the logistic and hyberbolic tangent functions are the most commonly used transfer

functions (Maier and Dandy, 2000). In our work a sigmoid activation function is

used.

A number of parameters affect the performance of the training algorithm in-

cluding step size (Maier and Dandy, 2000). Generally a trial and error approach

is used in order to optimise this and it is normally a function of a number of net-

work parameters such as learning rate, momentum, error function, epoch size and

the gain of the transfer function (Maier and Dandy, 1998). The epoch size is the

1http://www.cs.waikato.ac.nz/ml/weka/
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number of training samples presented to the network between weight updates, with

the learning rate affecting the size of the steps taken in weight space along with

other parameters such as momentum (can be used to help speed convergence to

an error minimum as outlined by Dawson and Wilby (2001)), the error function

and the type of transfer function used since weight updates are proportional to its

derivative (Maier and Dandy, 2000). Dawson and Wilby (2001) mention choosing

appropriate values for momentum and learning rate within the range 0.01 and 0.9.

Hence we optimised these two parameters which involved evaluating the output of

the network for various combinations of these values across a number of hidden node

values. Otherwise we used the default parameters in the WEKA toolkit. Following

optimisation, we chose a learning rate of 0.1 and a momentum rate of 0.1 as the

network appeared to become quite unstable for higher values.

5. Data Preprocessing (stage 2)

The first step in this part of the methodology involves data standardization or nor-

malization. Dawson and Wilby (2001) states that in general, data are rescaled to

the intervals [-1,1], [0.1, 0.9] or [0,1]. The Weka toolkit automatically normalises

data within the range [-1,1]. The next step is to split the data into training sets and

test sets. Training data ranges from May 15, 2009 until January 31, 2010. However

due to gaps in datasets, there is a limited number of training instances once the data

is aligned and a consecutive number of days of each data source is required for one

instance. The training dataset is composed of 129 instances with instances available

from the months of May (from May 15 onwards), June, September, December, Jan-

uary and more limited instances then available for July, August, October, November.

With limited data availability, a cross-training technique is often adopted (Dawson

and Wilby, 2001). 10-fold cross validation is a standard technique used in in the

machine learning literature for evaluation of models and this is the technique that

is employed in this study. A set of data was also used to test the final model. This

data ranged from Feb 1 to June 4 2009. There were less gaps in the data during
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this time period and it resulted in 118 test instances. However limited data was a

limiting factor in this study.

6. Network Training

This part of the methodology involves specifying the number of hidden layers and

the number of nodes in these layers. There exist various approaches for determining

an appropriate number of hidden nodes in the network. However certain authors

believe the best approach to be via trial and error e.g. (Shamseldin, 1997) and it

is one of the most popular approaches adopted (Dawson and Wilby, 2001). We

adopt a trial and error approach whereby hidden nodes from 2-50 in steps of 2 are

examined using one hidden layer. This range was chosen since initial evaluations

demonstrated that over 50 hidden nodes resulted in quite a slow network producing

lower correlations. Following the examination of results, we chose to report the

results for networks with 2, 12, 22, 32, 42, and 50 hidden node values for each model

evaluation. These values can have a large effect on model output.

7. Evaluation

In order to examine the issues outlined correlation values are reported. For evalua-

tion of the best performing models on test data both correlation and mean absolute

error (MAE) values are reported. These measurement values are appropriate for

the purposes of this study. Other measures that are used in evaluating prediction

of flow rates for example are not relevant in this context.

6.1.6 Results and Discussion

Input models consist of rainfall information and water level information. A number

of different input models were examined which vary in terms of:

• rainfall information – The rainfall information was presented to the network

as individual rainfall classes or as an aggregated value across all rainfall classes.
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Converting the rainfall for catchments into millimetres was found to have no

major impact on network output, hence the results of these models are not

presented here.

• lag times – Different combinations of lag times were examined with up to

5 days of information presented to the ANN (current day and 4 antecedent

days). From the literature this seemed to be an appropriate value and a greater

number would have rendered the number of training instances too small as it

would have required that number of consecutive days of each parameter to be

available throughout the training datasets.

• catchment strips – Input models varied in relation to whether they con-

tained information from one catchment strip or a combination of information

from all catchment strips. Input models with information from one catchment

strip were mainly used to investigate the effect of information from different

catchments on the output of the model.

Input Models 1 and 2 – are used where networks are developed separately for

each strip of the catchment. This is to examine the effect that rainfall information

from each strip of the catchment has on the ANN output. It may become apparent

that information from a particular part of the catchment has more of an influence

on model output than other strips of the catchment.

• Input model 1– Rainfall information from each rainfall type is presented

to the network separately for each day considered i.e. VLIGHT, LIGHT,

MODERATE, HEAVY, and VHEAVY.

• Input model 2 – uses averaged information from all rainfall types so one

rainfall value is presented to the network for each day.

Input Models 3, 4, 5 and 6 – combine information from all strips of the catch-

ment.
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• Input model 3 – is similar to input model 1 but with information from each

strip of the catchment presented to the network for each day considered.

• Input model 4 – is similar to input model 2 but with this value presented

to the network from each strip of the catchment for each day considered.

• Input model 5 – averages the information for each individual rainfall class

across all strips for each day considered.

• Input model 6 – averages the input values from input model 5 so that one

rainfall value is presented to the network for each day considered.

When presenting the results, the number of rainfall days and water level pre-

sented to the network is denoted using the format (rainfall days, water level

days). For example (3,2) means that 3 days rainfall information and 2 water level

information are presented to the ANN. The following presents our analysis in rela-

tion to the issues outlined in Section 6.1.1.

6.1.6.1 Effects of Rainfall from Different Parts of the Catchment on

Model Output

Rainfall Days 1 2 3 4 5
Input Model 1 4 4 4 4 4,1,2
Input Model 2 3,2 4,5 4 3,5,4 5,4,3

Table 6.1: Strips of the catchment generally (not always) producing
the highest correlation coefficients in predicting freshwa-
ter levels at the Lee Maltings site where no water level
information is input to the ANN model.

In order to examine if rainfall from specific parts of the catchment have more

of an effect than others, for this part of the analysis we use input models 1 and

2 comparing the correlations output by the ANN with a varying number of days

of rainfall and water level values for each strip of the catchment. We examined

the output for input models with between one and five days of rainfall information
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Rainfall Days 1 2 3 4 5
Input Model 1 4,1 4,1 1,4 1,4 3
Input Model 2 4,5 5,4 5,4 5,4 5,4

Table 6.2: Strips of the catchment generally (not always) producing
the highest correlation coefficients in predicting freshwa-
ter levels at the Lee Maltings site where 2 days water level
information is input to the ANN model

(1-5) and zero or two preceeding days of water level values (0,2). This allows us to

examine the effect of rainfall from each strip with and without the additional input

of water level information to the ANN. The graphs for this analysis can be found in

Appendix C. Figure C.1 shows the results for input models 1 and 2 consisting of 1

day of rainfall information and two different values of water level information (zero

or one), Figures C.2, C.3, C.4, C.5 shows the same for input models 1 and 2 with

two, three, four and five days of rainfall information. Tables 6.1 and 6.2 summarise

these results, highlighting the catchment strips that generally produce the highest

correlations for each of the input models across different combinations of the number

of rainfall and water level values.

It is clear that strip 4 appears to be a very dominating strip of the catchment

featuring heavily in the results of both input models. For input model 1 the clearly

dominating strips appear to be 1 and 4. For input model 2 the clearly dominating

strips are 4 and 5, with strip 5 generally outperforming strip 4. For input model

1 strip 4 appears to be the overall best performing strip when no water level

information is added to the model. When water level information is added, strips

4 and 1 dominate the results. For input model 2 when no water level information

is added to the model strip 3 appears to also dominate the results. However when

water level information is added it is clearly strips 4 and 5 that dominate the

results. This is a very exciting and interesting outcome considering the description

of the Upper Lee Catchment in Section 3.2 on page 47 outlining a slightly elevated

runoff potential due to the peat uplands and steep topography. Overall it is input

model 2 that is generally producing the higher correlation values.
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It should be noted here also, that on further analysis, there was a slight change in

trend when increased water level information was added to the model most notably

from input model 2. Figure C.6 demonstrates that when 4 days of water level

information is added to the model, it is clear that strip 3 becomes quite prominent

for higher rainfall days in input model 1 and strips 2 and 3 becomes quite prominent

for higher rainfall days in input model 2. Thus this is an area that requires further

analysis and investigation, and possibly examined with more training data.

6.1.6.2 The Most Effective Way of Presenting Rainfall Radar Informa-

tion To The Network

Here we investigate the most effective method to present rainfall radar information

to the ANN through examining the correlations output by the various input models.

As previously outlined these differ in the manner in which this data is presented to

the network. We examine the outputs of the network for combinations of 1, 3, and

5 days of rainfall information and 0 and 2 days of water level information

Input Models 1-2 - strip 4 of the catchment Since strip 4 seemed to be

a dominant strip of the catchment for a variety of scenarios examined in Section

6.1.6.1, we used the results from this part of the catchment for carrying out the

analysis here. Input model 1 presents information from different classes of rainfall

separately to the network while input model 2 averages across these rainfall types

resulting in one rainfall value per day as opposed to five values per day with input

model 1. The graphs displaying these results are shown in Figure C.7 in Appendix

C.

Firstly we examine the output of the models when no water level information

was provided to the network. For 1 day of rainfall information input model 1 per-

forms best, producing a maximum correlation value of just over 0.30. However for

3 and 5 days of rainfall information, input model 2 generally performs best, pro-

ducing correlation values of just over 0.49 for 3 days of antecedent rainfall and 0.58
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for 5 days of rainfall information. Hence it is clear the network is performing better

when the rainfall information is summarised before presenting it to the network.

This is consistent with the recommendations for data reduction outlined in the step

regarding the selection of input nodes when describing the methodology in Section

6.1.5. When water level information is added to the model, for 3 and 5 days of

rainfall information input model 2 performs with a higher correlation, with a max-

imum correlation value achieved with 3 days water level information (0.93). Hence

again it appears the network is performing better when the rainfall information is

summarised.

Input models 3-6 - combination of all strips Input models 3 − 6 which in-

corporated information from all strips of the catchment, were also compared over

these different combinations of rainfall and water level information. The graphs

displaying these results are shown in Figure C.8 in Appendix C. When no water

level information is input to the network, it appears that input model 3 is gener-

ally producing the lowest correlations and input model 6 is generally producing the

highest correlation values, with input model 4 also producing similar correlations for

5 days rainfall information. When water level information is added to the network,

input model 5 outperforms other models for 1 day of rainfall information, produc-

ing a correlation coefficient of just over 0.93. However when 3 or 5 days of rainfall

information is added to the network, this model performs poorer than most. Input

model 3 is generally the poorest performing overall. For 3 and 5 days of rainfall

information, input model 6 overall generally performs with the highest correlation

values, reaching just under 0.92 for 3 days rainfall information and just under 0.91

for 5 days rainfall information. Similar trends could be seen with 4 days of water

level information, and thus are not outlined here.

What we learn from all this it that it is clear that applying many rainfall values

to the network, where a value for each individual rainfall type for each strip of

the catchment is presented to the network, generally results in poor correlation
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coefficents and aggregating these values in some manner appears to improve results.

Following this, our subsequent analysis proceeds using input model 2 for analyses

relating to individual strips of the catchment and input model 6 for analyses relating

to all strips of the catchment.

6.1.6.3 The Effect of Rainfall and Water Level Information on the Model

Here we investigate if rainfall information actually has any impact on the network

outputs or if it is only water level information influencing outputs. The rainfall

radar information can be quite noisy and thus it is interesting to see if it provides

any benefit to the network. We also investigate whether there are any particular

combinations of lagtimes between the two data sources that appear to increase

performance. In conducting this investigation we look at the outputs of input model

2 using rainfall data from strip 5 of the catchment, as this catchment area seemed

to generally produce the highest correlation values in the analysis carried out in

Section 6.1.6.1, and input model 6 which incorporates rainfall information from all

areas of the catchment. The graphs showing these results are shown in Figures C.9

and C.10 in Appendix C.

Firstly while input models consisting of no water level information do not pro-

duce very high correlation coefficients, it is clear the impact that increased rainfall

information has on the output of the network as the greater number of days of rain-

fall input into the model, the higher the correlation coefficient tends to be. Input

model 2 reaches a correlation of just over 0.61 with no water level information and

5 rainfall values, and when water level information is added to the model another

trend becomes apparent, namely that 2 and 3 days of rainfall information seem

to generally produce the highest correlations (produce the highest correlation of

0.938). Adding an increasing amount of water level information to the model does

not seem to effect model output hugely. Similarly for input model 6 while input

models consisting of no water level information do not produce very high correla-

tion coefficients, it is clear the impact that increased rainfall information has on the
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output of the network. Again the addition of water level information after one day

does not appear to have a huge impact on the output of the network. For this input

model 3 days of rainfall information and 3 days of water level information produces

the highest correlation value of 0.9337.

6.1.7 Performance of the ANN for Predicting Average Wa-

ter Level

Figure 6.5: Correlation coefficients and mean absolute error values
for models 2 and 6 with different combinations of 2 and
3 days rainfall and water level information.

From section 6.1.6.3, we see that quite high correlations can be achieved with

the use of an ANN. Based on this analysis, we have chose to concentrate on input

models with 2 days rainfall information and 2 and 3 days water level information and

3 days rainfall information and 2 and 3 days water level information for examining

the overall performance of the ANN for predicting average freshwater levels since

these configurations seemed to be performing well in the previous analysis.

Figure 6.5 shows the correlation (CC) and mean absolute error (MAE) values
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of again predicted versus actual outputs, for input models 2 (strip 5) and 6 with

combinations of 2 and 3 days rainfall and water level information. For input model

2, an input model consisting of 2 days rainfall information and 2 days water level

information (2,2) generally produces the lowest MAE, reaching a lowest value of

just under 0.17. For input model 6, apart from small hidden node values, the MAE

is generally lowest for an input model consisting of 3 days rainfall information and

3 days water level information (3,3), reaching a lowest MAE of 0.1748. For input

model 2, models with 2 days rainfall information are generally producing the highest

correlations with a highest correlation value of 0.938 (2,3). For input model 6, models

with 3 days water level information are generally producing the highest correlations

with model (3,3) producing the highest correlation value of 0.9337. As shown in

Table 6.3, apart from during a event in November where the in-situ sensors went

offline, the range of daily average freshwater levels was from 0.35 metres to 2.48

metres in the training set, hence the performance being produced is very satisfactory,

with error values of just under 0.17 being reached.

Max Min Avg. Stdev
Training Data 4.1* 0.34765 1.0953 0.5641
All Test Data 1.8937 0.51315 0.8068 0.2439
Feb 1.8937 0.68405 0.9547 0.3018
Mar 1.3635 0.6722 0.8336 0.2132
Apr 1.6945 0.51315 0.2508 1.0754
May 0.9366 0.54325 0.653 0.0818

Table 6.3: Statistical properties of the training and test data for
data for average freshwater level, * This value is 2.48 not
including the 3 daily averages for the 3 flood days

Thus for testing our models we chose to use an input model with 2 days rainfall

and water level information for input model 2 and an an input model with 3 days

rainfall and water level information for input model 6. These models were tested

using data from February 1 2009 to June 4 2009, resulting in 118 test instances.

From Figure 6.6, it is apparent that the input models are performing with a lower

CC and MAE on the test data. Input model 2 produces a CC between 0.7572

and 0.7653 and a MAE between 0.0967 and 0.1144. Input model 6 produces a CC
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Figure 6.6: Correlation coefficients and mean absolute errors for in-
put models 2 (2,2) and 6 (3,3) when tested on data from
Feb 1 to June 4 2009

Figure 6.7: Correlation coefficients and mean absolute errors for in-
put models 2 (2,2) and 6 (3,3) when tested on data from
individual months - February, March, April, May

between 0.7517 and 0.7576 and a MAE between 0.1084 and 0.1161. As shown in

Table 6.3, the range of daily average freshwater levels was from 0.51 metres to 1.89

metres in the test set. The range is smaller than that for the training set, which

may explain the reduced correlation but lower error values. However overall the

error ranges described above are again very satisfactory for the application context

in question.

In order to investigate the reduced performance in terms of correlation between
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the actual values and predicted output, the test set was broken down into its com-

ponent months - February, March, April, May. June was omitted since there were

only 4 days data available for this period. Each of these test sets are limited to 18

instances, hence more data would probably be needed in order to carry out a more

thorough investigation. These results can be seen in Figure 6.7.

It is unclear what is causing the reduction in performance in February and March.

It may be due to operations of the dam further up stream whose operation cannot be

predicted or accounted for in the model. It also may be due to lack of training data.

There is a limited amount of training data available to the model and none for the

period of February and March. However it should be noted that this is also a very

limited test set with only 18 instances per month. Despite the reduced performance,

the application of this model is to predict a sufficient change in average fresh water

level to initiate a change in the sampling rate of a sensor and the MAE’s produced

by this model are sufficient to meet this criteria. That particular application does

not require precise measurements of freshwater level. The statistical properties of

the average freshwater level data from which each of the datasets are drawn are

outlined in Table 6.3.

6.2 Using Heterogeneous Sensor Nodes to Pro-

vide Data Redundancy in the Network

In this part of our work we evaluate whether a set of heterogeneous in-situ sensors

can be modelled to predict the value of another in-situ sensor node in a network,

thus providing a form of data redundancy. We now describe the data-filling models

we developed for the Lee Maltings site.

As previously outlined, sensors deployed as part of theDEPLOY project provide

in-situ real-time monitoring of conditions at the Lee Maltings site. Like most in-situ

sensor networks in a marine environment, these sensors can produce noisy data and

are subject to failure. The deployment of multiple sensors to provide redundancy
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in the network is not an option due to budgetary constraints and often there is a

limitation to the types of sensors that can be deployed at each site. As outlined in

Chapter 3, the range of sensors deployed at the Lee Maltings site included sensors for

monitoring conductivity, chlorophyll-a-fluorescence, dissolved oxygen, temperature,

and water depth.

Because of the complex processes in operation at the Lee Maltings site, the site is

predominantly influenced by the effect of the tide and the release of water from the

Iniscarra dam further upstream. Hence there are a number of dynamic processes in

operation which are difficult to account for and to model. However, notwithstanding

that, our aim is to investigate how far an environmental sensing network can get by

using simple input model scenarios with limited data. It is by no means suggesting

that such models with such simple assumptions can account for every scenario at

the site or could replace the activities of a sensor, It is merely an investigation into

how far we can get with limited data resources, into replicating the activity of a

sensor while there may be a possible gap in the data or a fault in the network.

For predicting water quality parameters such as dissolved oxygen, many studies in

the literature use very long datasets e.g. (Shaghaghian, 2010) or complex input

parameters (Areerachakul et al., 2011). The aim of our work is to investigate what

can be achieved from using current (or a limited number of preceding) values of

other simple water quality parameters in the network, without any complex data

pre-processing or complex input models.

6.2.1 Methodology

The following describes the various steps of the methodology involved in developing

models for the prediction of in-situ parameters.

6.2.1.1 Data

DEPLOY data is available from April 24, 2009 until May 30, 2010. A range of

training data was aggregated over this time period for training the models including
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Month Weeks

May 2009 3, 4
June 2009 1, 3, 4
July 2009 2, 3, 4
August 2009 1, 3, 4
September 2009 2, 3, 4
October 2009 1, 3, 4
November 2009 2, 3, 4
December 2009 1, 3, 4
January 2010 2, 3, 4
February 2010 1, 3, 4
March 2010 2, 3, 4
April 2010 1, 3, 4
May 2010 3, 4

Table 6.4: DEPLOY data from which a training set was built for
model development

data from the weeks outlined in Table 6.4. The sampling rate of the DEPLOY

sensors at the Lee Maltings site is approximately once every 10 minutes or approx-

imately 144 samples per day and 1008 samples per week when operating correctly.

Thirty-seven weeks are set aside for training (as outlined in Table 6.4) resulting in

over 37, 000 data points in the training dataset for each of the five sensors in oper-

ation at the site, though as we see in the next section, we used only four of these

five.

6.2.1.2 Feature Sets

For the Lee Maltings site, four parameters were chosen for use in the input models

namely conductivity, dissolved oxygen, depth and temperature. Water depth was

chosen since it is a parameter that is also being monitoring by our on-site camera

and it is an influential parameter because of the tide which affects other water

quality parameters like conductivity, which was also included. There are well known

relationships between temperature and dissolved oxygen (e.g. (Weiss, 1970)), so

these were included also. Chlorophyll-a-fluorescence has a more complex relationship

with the other parameters i.e. the growth of algae in the water depends on, for

example temperature and dissolved oxygen over a long period of time and our models
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Cond Pre-
diction

Depth Pre-
diction

DO Predic-
tion

Temp Pre-
diction

M1 Depth Cond Cond Cond
M2 DO DO Depth DO
M3 Temp Temp Temp Depth

M4 Depth-DO Cond-DO Cond-Depth Cond-DO
M5 Depth-Temp Cond-Temp Cond-Temp Cond-Depth
M6 DO-Temp DO-Temp Depth-Temp DO-Depth

M7 Depth-Temp-
DO

Cond-Temp-
DO

Cond-Depth-
Temp

Cond-Depth-
DO

Table 6.5: Input models evaluation for predicting values of the four
parameters. These models are analysed using 1, 5, 10,
and 20 values of the input parameters to the model.

for data gap-filling are more short term, so we did not include chlorophyll.

Input models for the prediction of each parameter are created using values from

one, two or three of the other parameters. Feature sets are created investigating

the use of one alternative value for the prediction of a parameter, a combination

of two alternative values for the prediction of a parameter, and a combination of

three alternative values for the prediction of a value. These input models are then

investigated again by including not only one value from the parameter(s) being used

in the model but 5 values, 10 values and 20 values, in order to examine their effect

on performance. The input models evaluated for the prediction of each of the four

parameters are outlined in Table 6.5. Ten thousand instances of each feature set were

created from the training set outlined in Section 6.2.1.1 on page 158. Instances were

created using data from across the training set so that the models are representative

of changes that may occur with the time of year.

6.2.1.3 Numerical Model

The Weka Data Mining software (Hall et al., 2009) was again used for carrying out

numerical prediction tasks. At the initial stages of this study a number of numerical

prediction models were evaluated for use. Due to the powerful nature of the ANN

and its ability to capture any non-linear relationships in the data, the use of an
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MLP was examined. Support Vector Machines (SVM), another form of machine

learning, are also known to be a powerful tool for numerical prediction, hence an

SVM regression model using both a linear and a radial basis function (RBF) kernel

were examined (using the LibSVM2 toolkit). Simpler numerical prediction models

such as linear regression were also examined. However none of these numerical

prediction tools performed as high as that of a regression tree for this particular

scenario. A selection of decision trees were examined, however it was the REPTree in

the WEKA toolkit that produced the best performance. REPTree builds a regression

(or decision) tree using information gain/variance reductions. It prunes the tree

using reduced-error pruning. It only sorts numeric attributes values once and it is

optimised for speed (Witten et al., 2011). The standard settings for parameters in

the WEKA toolkit were used. Thus the minimum total weight of the instances in

a leaf was set to 2, the maximum tree depth was set to -1 (i.e. no restriction), the

minVarianceProp was set to 0.0010 (i.e. the minimum proportion of the variance

on all the data that needs to be present at a node in order for splitting to be

performed), the number of folds used for pruning was set to 3, and a seed of 1 was

used to randomise the data. Decision trees have been used in varying contexts in the

literature e.g for determining the limitation factors for phytoplankton (East, 2006),

for the prediction of multiple chemical parameters of river water using biological

information (Blockeel et al., 1999), for the classification of water quality classes in

canals Areerachakul and Sanguansintukul (2010) etc. This research examines their

use in an alternative application context.

In order to boost performance we investigated a machine learning approach which

combines the output of several different models. We investigated a number of en-

semble learning approaches but settled on a meta-classification scheme known as

bagging, which appeared to outperform other approaches. As outlined in Hall et al.

(2009) the termed bagging for “bootstrap aggregating” was introduced by Breiman

who investigated the approach for classification and numeric prediction. For infor-

2http : //www.csie.ntu.edu.tw/ cjlin/libsvm/
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mation on this approach see Breiman (1996). The default parameter settings in the

WEKA toolkit were used. The size of each bag as a percentage of the training set

size is set to 100, the calcOutofBag (i.e. whether the out-of-bag error is calculated)

is set to false, the base classifier is set to REPTree with the parameters outlined

above. The number of iterations is set to 10 and the random number seed is set to

1.

6.2.2 Results

The following describes the results obtained for the prediction of the four parameters

The evaluation was carried out on the datasets of 10,000 instances described in

Section 6.2.1.2 using 10-fold cross validation.

6.2.2.1 One Parameter Prediction

Figure 6.8: Single parameter prediction: Correlation coefficients for
models consisting of information from one water quality
parameter for the prediction of another with a varying
number of input values (1, 5, 10, 20)

Figure 6.8 shows the correlation coefficients (CCs) produced by input models
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Figure 6.9: Single parameter prediction: Mean absolute errors for
models consisting of information from one water quality
parameter for the prediction of another with a varying
number of input values (1, 5, 10, 20)

consisting of one parameter with a varying number of input values (1,5,10,20). Fig-

ure 6.9 shows the mean absolute errors (MAEs).

Conductivity: For the prediction of conductivity, there is no single parameter

that clearly outperforms another. When 1 or 5 preceding values are input to the

model, depth performs with the highest correlation and lowest mean absolute error

(1 − CC = 0.54,MAE = 12.76, 5 − CC = 0.6,MAE = 11.6). However when 10

values are input to the model, dissolved oxygen (DO) produces a similar correlation

and error to depth in predicting conductivity. With 20 input values DO produces

a higher correlation and lower error than the other input parameters (20- CC =

0.69,MAE = 10.19). Adding additional values to the model appears to improve

performance in all cases.

Depth: Conductivity clearly outperforms all other parameters for single param-

eter prediction of depth, with performance improving the more values that are added

to the model. Correlation reaches 0.85 when we input 20 preceding data values into
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the model. (1− CC = 0.66,MAE = 0.67, 20− CC = 0.85,MAE = 0.44).

Dissolved Oxygen: Temperature clearly outperforms all other parameters for

single parameter prediction of dissolved oxygen, with performance improving the

more values that are added to the model (1−CC = 0.81,MAE = 1.37, 20−CC =

0.84,MAE = 1.23). When using only one temperature value to predict DO, a CC

of 0.81 and a MAE of 1.37 can be achieved.

Temperature: Dissolved Oxygen clearly outperforms all other parameters for

single parameter prediction of temperature, with performance slightly improving the

more values that are added to the model (1− CC = 0.82,MAE = 1.8, 20− CC =

0.87,MAE = 1.53). Similarly to the case for DO prediction, these results are quite

good for using only one parameter to predict temperature. Even when only inputting

one value to the model it is producing a CC of 0.82 and a MAE of 1.53. This clearly

reflects the well known relationship between these parameters.

6.2.2.2 Two- and Three-Parameter Prediction

Figure 6.10 shows the correlation coefficients (CCs) produced by input models con-

sisting of two or three parameter with a varying number of input values (1, 5, 10,

20). Figure 6.11 shows the mean absolute errors (MAEs).

Conductivity: All three parameters combined (Depth, Temp, DO) produces

the highest correlation and lowest error. Additional values to the model improve

performance with 1 value producing a correlation of 0.87 and an error of 5.55 and

20 preceding values improving this to a correlation of 0.91 and an error of 4.62. The

best two-parameter model generally appears to be the combination of depth and

DO, again performance increasing with the number of values added to the model

(1− CC = 0.75,MAE = 8.47, 20− CC = 0.85,MAE = 6.17).

Depth: Again, all three parameters combined (Cond, Temp, DO) produces the

highest correlation and lowest error (1 − CC = 0.79,MAE = 0.52, 20 − CC =

0.92,MAE = 0.33). Both two-parameter models incorporating conductivity seem

to perform similarly with conductivity and DO outperforming for higher numbers

164



Figure 6.10: Two- and three-parameter prediction: Correlation co-
efficients for models consisting of information from a
combination of two or three water quality parameters
for the prediction of another with a varying number of
input values (1, 5, 10, 20).

of input values (1− CC = 0.72,MAE = 0.6, 20− CC = 0.9, 20 = 0.35).

Dissolved Oxygen: For predicting missing values of dissolved oxygen, input

models consisting of temperature data way outperform the one model not containing

temperature information (Cond, Depth). When 1 and 5 values are input to the

model, the three-parameter prediction (Cond, Temp, Depth) performs with the

highest correlation between predicted and observed and the lowest error (1−CC =

0.91,MAE = 0.75, 5 − CC = 0.92,MAE = 0.68). A two-parameter prediction

model consisting of conductivity and temperature can reach similar performance

figures when 10 and 20 values are input to the model (10 − CC = 0.91,MAE =

0.76, 20− CC = 0.92,MAE = 0.68).

Temperature: When a higher number of values is input to the model, a two-

parameter combination of DO and depth produces the highest correlation between

predicted and observed (CC= 10 − 0.94, 20 − 0.95) and the lowest error (MAE=

10− 1.1, 20− 0.99) for predicting temperature. Although when 20 values are input
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Figure 6.11: Two- and three-parameter prediction: Mean absolute
errors for models consisting of information from two
or three water quality parameters for the prediction of
another with a varying number of input values (1, 5,
10, 20).

to the model, the three-parameter combination (Cond, Depth, DO) matches the

error of depth and DO. For input values of 1 and 5, conductivity and DO produces

similar correlation and error values to the three parameter combination - Depth-DO

(1 − CC = 0.88,MAE = 1.3, 5 − CC = 0.9,MAE = 1.21) and Cond-Depth-DO

(1− CC = 0.9,MAE = 1.15, 5− CC = 0.91,MAE = 1.12).

6.2.3 Test Data

The weeks of data not used in the training data were tested on a selection of the

models evaluated above. Since the models incorporating three parameters for pre-

diction generally performed the best in terms of CC and MAE, these models were

chosen for evaluation here. 3,000 instances were selected across the test set and eval-

uated on the model. These instances were The resulting correlations and MAE’s

can be seen in Figure 6.12 and summarised as follows:
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Figure 6.12: Three-parameter prediction: Correlation coefficients
and mean absolute errors for models consisting of in-
formation from three water quality parameters for the
prediction of another with a varying number of input
values (1, 5, 10, 20), tested on alternative data to that
used in the training set.

Conductivity Max Min Avg. Stdev
Training
Data

48.02 -0.0780 19.9488 18.9940

Test Data 45.24 -0.07802 20.1514 18.9793

Depth
Training
Data

5.28 0.3412 2.3209 1.098

Test Data 6.916 0.4036 2.2531 1.0754

D.O.
Training
Data

16.64 1.30 8.08730 3.03992

Test Data 15.98 1.01 7.99327 3.05101

Temp.
Training
Data

21.17 2.86 12.0468 4.1227

Test Data 19.44 3.31 11.6904 3.8775

Table 6.6: Statistical properties of the training and test data for data
from the Lee Maltings site

• The prediction of conductivity using depth, dissolved oxygen and temperature

information produces a CC of between 0.7757 and 0.8294 and a MAE between

6.3597 and 7.4311. Increasing the number of input values to the model does

not necessarily result in an increase in performance, with models with 5 and

10 values performing the best.

• The prediction of depth using conductivity, dissolved oxygen and temperature
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information produces a CC of between 0.7168 and 0.8518 and a MAE between

0.4309 and 0.6258. The output of this model appears to benefit from an

increased number of input values.

• The prediction of dissolved oxygen using conductivity, depth and temperature

information produces a CC of between 0.7323 and 0.8104 and a MAE between

1.1073 and 1.164. An increased number of values does not necessarily improve

performance in terms of correlation, however the highest number of input

values does marginally result in the lowest MAE.

• The prediction of temperature using conductivity, depth and dissolved oxygen

produces a CC between 0.7897 and 0.825 and a MAE between 1.5052 and

1.6706. An number of values does not necessarily improve performance in

terms of correlation or MAE, however the highest number of input values does

marginally result in the lowest MAE.

Thus while there is a reduction in performance compared to correlations and

MAE’s achieved on the training set, this performance is very promising for estimat-

ing data at the site when a sensor goes offline or data is missing. The reasons for

a reduction in performance may be due to over-fitting of the model, resulting in a

reduction in generalisation ability. Also as we know, the Lee Maltings site is an

extremely difficult site to monitor with the dynamics of the tide and the release of

the dam further upstream. Furthermore there may be irregularities in the training

or test data that cannot be accounted for along with gaps in the data which are all

real-world problems with all environmental datasets. The statistical characteristics

of the training data and test data are outlined in Table 6.6. If such a model were

applied to a river system without these influences, it may indeed be very powerful

considering the performance that is being achieved here. However the performance

obtained here demonstrates the powerful role these models may play in estimating

missing data in a low cost manner with limited data availability and simplified input

model scenarios that to not require expensive data sources.
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What we can conclude from this analysis is that if our model were used in a

prediction scenario, it is sufficient to estimate missing data values at the site without

providing precise readings. Considering the limited data and simplified notions of

dynamics from the site which we have incorporated into the model, its performance is

quite good, and may provide a powerful tool in a environmental monitoring network.

Post-processing on model output might further improve performance, for example

by examining a window of model outputs. However this model would also need to

be evaluated for the time of year in question before its output was adopted in a

network. In Chapter 7 we attempt to further optimise the use of these models in

a network using a novel and unique approach. We also examine their performance

during different times of year in carrying out this task.

6.3 Conclusion

In the first part of this chapter we investigated a methodology for the use of rainfall

radar information and in-situ depth data to predict average freshwater levels at

the Lee Malting for potentially controlling the operation of an in-situ phosphate

sensor. We investigated a variety of issues, some of which are novel in relation to

the use of rainfall radar data as an input data stream to an ANN for this purpose.

Despite the noisy data, it appears that the rainfall radar information does have an

impact on the network and very interestingly it is determining areas of the catchment

corresponding to those implied in Chapter 3 as influencing runoff more than others

which is a very promising outcome. The evaluation of the model on test data

produced a reduced performance for certain time periods but overall the performance

of the model on test data is very satisfactory for the application context and can be

used for determining a change in the sampling rate of a sensor. With more training

data, it may be worthwhile developing seasonal models and evaluating the issues

here further. Further data may also help to investigate the particular events for

which the models do not seem to be able to capture along with those that they
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respond well to. However overall our study demonstrates that with limited training

data, a system for controlling the sampling rate of the nutrient sensor can be set

up quickly and cost effectively at a deployment and can improve the efficiency of

the more sophisticated nodes of the sensor network. It also has the potential of

providing the basis for an early warning system for a flood prone region.

We also used data from the Lee Maltings site to explore whether we could train

a model to learn missing data values, an inherent characteristic of wireless sensor

networks caused by sensor or network problems. We focused on data values from

conductivity, depth, dissolved oxygen and temperature sensors, also varying the

amount of preceding data used to train the model. Our results found that each

of the four sensors we chose can have missing data predicted using readings from

the other 3 sensors, with correlations between predicted and observed varying from

0.7168 (water depth missing) to 0.8518 (also water depth missing) and small error

rates. These results statistically exploit the dependencies that do exist among these

characteristics of a river, where, for example, the levels of dissolved oxygen depend

on water temperature and also water depth which in turn is related to conductivity

which varies as the tide comes in/out. It it is very promising that we can exploit these

relationships to increase the effectiveness of our environmental monitoring network.

Considering the difficulties in modelling the dynamics at the Lee Maltings site, the

performance obtained here demonstrates the powerful role these models may play

in estimating missing data in a low cost manner with limited data availability and

simplified input model scenarios that to not require expensive data sources. However

from these results it is apparent that some of these models are more effective than

others. With many producing very promising results, we need to somehow explore

how they can be used most effectively in the network. In the next chapter we

investigate a novel approach for optimising the use of these models in the network

through adapting a trust and reputation framework to chose the most reliable model

at a particular point in time.
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Chapter 7

Application of a reputation and

trust based framework to a

multi-modal network

In the preceding chapters we introduced a number of data streams which can be in-

corporated into a multi-modal sensor network for marine environmental monitoring.

These data streams range from in-situ sensor networks incorporating heterogeneous

sensors monitoring a variety of parameters, to visual sensors covering cameras, satel-

lite imagers and rainfall radar images.

In Chapter 4, we modelled the appearance of certain features in the camera

images from the Lee Maltings site that can provide us with an estimation of depth.

In Chapter 5, we outlined our ideal requirements of a satellite remote sensing data

stream with high accuracy at high temporal and spatial scales for near-realtime

cooperation with other sensor streams in the network. The difficulties in achieving

this are acknowledged and the extraction of information from satellite remote sensing

data most suited to the needs of this work are subsequently outlined. In Chapter

6, we developed a model incorporating rainfall radar information and water depth

information for controlling the operation of a chemical sensor at the Lee Maltings.

We also modelled data streams from heterogeneous in-situ sensor nodes and we used
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these models for predicting values of one of the missing in-situ nodes in the network

for times when it becomes unavailable. The extraction of information from the visual

data streams along with these models represents additional sensor streams for use

in our multi-modal sensor network.

However it is apparent from our analysis that each of these sensor streams are in-

dividually unreliable as is the nature of a physical sensor. Our research proposes that

a reputation and trust-based model applied to a multi-modal environmental sensor

network can help to deal with the unreliability associated with these additional sen-

sor streams and optimise their benefits to the network. Our research proposes to

adapt the model outlined in Ganeriwal et al. (2008) for use in a multi-modal sensor

network. This model was described in Chapter 2 and the following describes how

we adapt this model for use in the context of our research. The analysis presented

in this chapter relates back to research question 5 from Chapter 1.

7.1 Differences in applying RFSN to a multi-modal

sensor network

In Chapter 2, we described how Ganeriwal et al. (2008) investigates a generalised

and unified approach for providing information about the data accuracy in sensor

networks through allowing sensor nodes to establish a community of trust. They

developed a Reputation-Based Framework for Sensor Networks (RFSN) where each

node develops a reputation for other nodes in the neighbourhood through assessing

their actions. They subsequently used this reputation value for each of the nodes

to evaluate their trustworthiness when making decisions within the network. The

authors outline how RFSN is not fundamentally different from the reputation sys-

tems outlined in the domain of ad-hoc networks i.e. (Buchegger and Boudec, 2002,

2003a,b; Michiardi and Molva, 2002). Their two main contributions are the appli-

cability of such a reputation system to sensor networks and the development of a

middleware service that can counter the faulty misbehaviour of nodes caused by
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errors in data.

In this chapter, we adapt the RFSN system for use in a multi-modal sensor

network constituting a selection of the data streams outlined earlier. There are

a number of fundamental differences to the use of such a model in the network

considered here as opposed to the type of network scenario described in Ganeriwal

et al. (2008). These include the following:

• The notion of nodes: In our network the notion of a sensor node does not

automatically imply a physical node deployed to monitor a particular physical

phenomenon like water depth or temperature. It can also refer to visual sensor

such as a camera or satellite sensor or a rainfall radar image. It may also imply

a ‘soft sensor’ where the node is not a physical device but a mathematical

model developed to provide estimates of a particular parameter using values

of other parameters monitored in the network.

• Heterogeneity: The network may not consist of an array of homogoneous

sensor nodes monitoring the same phenonomen. The ‘network nodes’ are all

heterogeneous consisting of a variety of sensing modalities and modelled out-

puts. There are no scenarios whereby there are identical nodes monitoring the

same phenomenon in the network e.g. there is only one in-situ sensor moni-

toring depth as opposed to an abundance of in-situ sensor nodes monitoring

depth, etc.

• Limited redundancy: There are no duplicate or homogoneous nodes in the

network, hence there is no redundancy from this perspective. There are hetero-

geneous nodes either directly monitoring or modelled to provide an estimate

of the same phenomenon. However there are a limited number of these with

varying reliability.

• Centralised: In Ganeriwal et al. (2008), RFSN was developed as a middle-

ware service to be run on resource-constrained sensor nodes. The aim was
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to develop a lightweight reputation system for sensor networks that was dis-

tributed and localised, with each node in the network running the software

framework and storing reputation information for nodes in its neighbourhood.

However it is noted that RFSN is flexible and can be run in a centralised man-

ner, which is the manner in which it is used in our work. RFSN is ran on one

‘control’ or ‘abstract node’ which carries out all processing and subsequently

updates reputation values for each node in the network. This node consists

of a program running on a desktop computer, and thus is not subject to the

constraints of resource-constrained motes.

• Application context: With the network and application scenario being

fundamentally different from the previous RFSN model, a variation in the

design of certain aspects of the system is required e.g. the outlier detection

protocols used in the Watchdog. In Ganeriwal et al. (2008), a consensus based

outlier detection protocol was used which relies on the redundancy of sensor

data information in the system. It was evaluated in relation to faults which

were representative of scenarios in existing sensor network deployments. Sce-

narios relating to the current application context are evaluated here. The

application contexts considered in our work are elaborated on further in the

following sections.

Thus the main contribution and objective of this chapter is to adapt the trust

and reputation framework outlined by Ganeriwal et al. (2008) to a multi-modal

sensor network and examine the possible application scenarios. In the following

sections three application scenarios are considered. In Section 7.2 the application

of such a framework for determining the most reliable model for the prediction

of in-situ parameters at the Lee Maltings is considered, in Section 7.3, a similar

application scenario is considered whereby such a framework is used to determine

the most reliable SST satellite remote sensing data product in Galway Bay. Finally

in Section 7.4, its use in determining the reliability of a visual sensing stream is
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considered. The notion of ‘trust’ or ‘reliability’ is application-dependent.

7.2 Application scenario 1 - Modelling heteroge-

neous sensor nodes to provide redundancy in

the network

In Chapter 6 (page 157), it was noted how it is often infeasible or impractical to

deploy an array of homogoneous sensors in a marine environment monitoring the

same parameter, thus if a sensor fails, the network is left with a gap in the data.

Hence we examined whether heterogeneous in-situ sensor nodes can be modelled

to predict the value of other in-situ nodes in the network thus providing a form of

redundancy. However as previously noted there are a number of complex processes

in operation at the Lee Maltings site (e.g. unscheduled release of a dam further

upstream, influence of the tide etc.) which can be difficult to account for and to

model. The aim of this work was to investigate what can be achieved using simple

input model scenarios with limited data in replicating the activity of a sensor whilst

there may be a possible gap in the data or fault in the network.

The output of our investigation resulted in a number of different models with

varying degrees of reliability. Some of these models may produce better results than

others depending on the time of year or particular trends happening at the site. Data

quality may vary between months depending on the frequency of site maintenance

visits for example, which may render one stream more appropriate than another

for a particular time period for predicting the parameter in question. It is often

not clear from a simple visualisation of the model outputs, which model is more

appropriate for the purpose in question.

This raises the issue of which model should be chosen to replicate the in-situ

sensor in cases where there is a sensor failure of some sort. Well known performance

metrics such as correlation and mean absolute error, produced when evaluating the
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various models may not accurately predict how they will behave during a particular

time period representative of varying trends and scenarios. However evaluating

a model’s performance over a particular time period or examining its behaviour

prior to the need for a substitute data source following the fault of a sensor, may

provide a good indication as to which model is the best substitute. Therefore in this

application scenario the purpose of a trust and reputation based framework in the

network is for the purposes of evaluating which model is the most reliable at that

time for replicating the work of the in-situ node in the case of sensor failure. Thus

in this context the notion of ‘trust’ or ‘reliability’ represents the ability of a model

to replicate the work of the in-situ node most effectively.

7.2.1 Framework Design

As previously outlined, the adaptation of the model proposed in Ganeriwal et al.

(2008) for use in a multi-modal sensor network is run in a centralised manner with

one ‘abstract’ or ‘control’ node, collecting data from the in-situ sensor in question

and the models developed to predict values of this particular sensor. This control

node runs the trust and reputation based framework. Similar to the model proposed

in Ganeriwal et al. (2008), this framework consists of a Watchdog component and a

Reputation component.

7.2.1.1 Watchdog Component

The Watchdog in Ganeriwal et al. (2008) is designed as a series of outlier detection

protocols. In their evaluation they adopt a type of consensus-based outlier detection

protocol. Specifically they use a version of density-based outlier detection named

Local Outlier Factor or LOF as described by Breunig et al. (2000). Consensus-based

outlier detection protocols rely strongly on the redundancy of sensor information in

the system. However in this scenario, there is only one in-situ sensor node specif-

ically designed to monitor the parameter in question, rendering this approach not

applicable.
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Models developed using information from alternative in-situ sensors in the net-

work are trained using data from this in-situ sensor node. Hence in this application

context this in-situ sensor node is presumed ‘trustworthy’ i.e. presumed to be pro-

ducing accurate data. The goal here is to estimate which model replicates best the

work of this sensor in the case of node failure. Thus the Watchdog assigns a level of

cooperation to each model based on the deviation of its output value to that output

by the sensor. This value is within the range of [0,1], with higher values indicating

greater cooperation. The calculation of this value is described specifically for each

application context in their respective sections of the chapter. As previously out-

lined in this application context the notion of ‘trustworthiness’ represents the ability

of a model to replicate the work of the in-situ node most effectively.

7.2.1.2 Reputation Component

The Reputation component updates the reputation of each of the models based on

the output of the Watchdog. Based on the description provided in Chapter 2, this

consists of two update steps. After a single output or ‘transaction’, if the assigned

probability of cooperativeness is p ∈ [0, 1], the beta parameter updates would be:

αnew = α + p; βnew = β + p− 1 (7.1)

The calculation of this value p is specific to the particular application scenario.

Therefore in our descriptions of the application of the framework to each of the

application scenarios, we explicitly state how we obtain this value p. Reputation

integration or reputation aging are not relevant in our application context. As

previously described in Chapter 2 an output metric of trust can be calculated using

the following formula:

Tij = E[Rij] = E[Beta(αj, βj)] =
αj

αj + βj

(7.2)

Thus based on a node’s prior behaviour, this is the subjective expectation a
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node has about another node’s future behaviour. In the context of this application

scenario, this trust metric can be used by the control node to determine the most

suitable model or ‘node’ to replace the actions of a particular in-situ node in the

network in the case of sensor failure. All nodes begin with an initial trust value of

0.5.

7.2.2 Models

Cond Pre-
diction

Depth Pre-
diction

DO Predic-
tion

Temp Pre-
diction

Model 1 -
M1

Depth Cond Cond Cond

Model 2 -
M2

DO DO Depth DO

Model 3 -
M3

Temp Temp Temp Depth

Model 4 -
M4

Depth-DO Cond-DO Cond-Depth Cond-DO

Model 5 -
M5

Depth-Temp Cond-Temp Cond-Temp Cond-Depth

Model 6 -
M6

DO-Temp DO-Temp Depth-Temp DO-Depth

Model 7 -
M7

Depth-Temp-
DO

Cond-Temp-
DO

Cond-Depth-
Temp

Cond-Depth-
DO

Table 7.1: Models evaluated using a reputation based framework for
the prediction of parameters at the Lee Maltings

In Chapter 6, we investigated the prediction of conductivity, depth, dissolved

oxygen and temperature by developing input models for the prediction of each using

values from one, two or three of the alternative parameters. This was based on using

5 values, 10 values and 20 previous values. In order to investigate the use of a trust

and reputation based framework for determining the most appropriate model in the

network we choose to evaluate all models developed using 20 preceding values of

each input parameter since this often produced better results. Thus in total this

results in 7 models being evaluated (3 single parameter models, 3 double parameter

models and 1 triple parameter model). Table 7.1 presents the models and their input
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parameters for the prediction of each of the four parameters of conductivity, depth,

dissolved oxygen and temperature. So, for example, in Model 1 (M1) we use Depth

to predict conductivity whereas in Model 4 (M4) we use conductivity and dissolved

oxygen to predict depth (these examples are underlined in Table 7.1)

7.2.2.1 Model Training and Testing

Data from five different months - May, June and July 2009, and January and Febru-

ary 2010 - were selected for use in this investigation. Figure 7.1 shows raw data from

the four sensors for each of these time periods. For all months except for June, it is

is the first two weeks of the month that are used for testing. Two different training

datasets are used for training the models used for the prediction of each of the four

parameters.

Generalised Model: Each of the models are first trained using 10,000 instances

created from across the year’s dataset. This dataset consisted of either the first two

weeks or the last two weeks of each month in the year. When selecting these weeks

the content of the data was not considered, they were chosen arbitrarily. Thus even

if there happened to be gaps in the data during the particular two weeks of the

month selected for training, this did not matter.

Monthly Model: Secondly, a more focused training approach was carried out.

In this case predictions to be made within a particular month used a model trained

using data from a similar time period, as opposed to a generalised model. For each

month two weeks of data was set aside for training. This resulted in just over 2,000

instances. Thus each training set was limited to 2,000 instances for consistency

(except for January, where there where gaps in the data and the training set was

not limited to any number but all available data was used for training). The other

two weeks of the month were tested on the models developed using data from that

particular month. For each of the five months apart from June, the first two weeks

of the month were used for testing and the last two weeks of the month were used for

training. Thus for each parameter, seven models were created for making predictions
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for each month, resulting in 35 models altogether for the five months.

There are various reasons for choosing to train models in this manner. In certain

scenarios and for the prediction of certain parameters, monthly models perform

better on the test data. This may be due to the fact that because the training data

is specifically focused on a particular time of year, it may have a similar distribution

and present similar trends (which should be noted is not always the case). It is also

interesting to examine how a model performs with limited training data. However

the monthly model may not be appropriate in certain cases where trends vary greatly

or there is an issue with data quality or gaps in the data for the training period of

the month. Also the generalised model is representative of a larger number and a

wider distribution of data samples.

Whether the generalised model versions of M1-M7 or the monthly model versions

of M1-M7 are used for the prediction of a particular parameter and the subsequent

evaluation of the application of a reputation and trust-based framework is dependent

on the performance on the test data for that particular month. In a real-world

scenario, the benefit of being able to test the data before it actually occurred in

order to decide which model to use, is of course not possible. However the purpose

of this study is not to decide how to choose a training approach but to evaluate the

use of a trust and reputation framework. Hence the set of models which generally

perform best and aid the evaluation of such a framework on the test data are chosen.

The statistical properties of each of the training and test sets is shown in Table 7.2.
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Figure 7.1: DO, Temperature, Conductivity and Depth for May,
June, and July 2009 and January and February 2010.
Source: DEPLOY

181



M
ay
-

te
st

M
ay
-

tr
ai
n

J
u
n
e-

te
st

J
u
n
e-

tr
ai
n

J
u
ly
-

te
st

J
u
ly
-

tr
ai
n

J
an

-
te
st

J
an

-
tr
ai
n

F
eb
-

te
st

F
eb
-

tr
ai
n

A
ll

C
o
n
d
.

M
ax

44
.6

44
.8
7

46
.7
3

44
.1

45
.5
7

45
.7
6

42
.2
2

41
.8
1

42
.9
70

44
.8
2

48
.0
2

M
in

-0
.0
78

0.
01
4

0.
03
3

0.
18

0.
14
3

0.
12
5

0.
01
4

0.
01
4

0.
01
4

0.
06
9

0.
01
4

A
v
g

13
.9
81

17
.8
34

22
.7
63

23
.9
8

18
.7

20
.3
23

24
.5
21

20
.2
39

19
.5
95

30
.2
79

21
.2
97

S
td
D
ev

17
.7
57

19
.2
9

18
.6
43

18
.4
69

19
.1
08

19
.2
36

16
.9
99

18
.0
63

17
.7
31

15
.9
24

18
.8
72

D
e
p
th

M
ax

4.
06
6

4.
13

4.
41
8

4.
18

6.
91
6

4.
54
7

4.
65
7

4.
46
1

4.
69
6

4.
63
1

5.
28

M
in

0.
40
4

0.
42
9

0.
42
3

0.
55
8

0.
53
3

0.
34
1

0.
74
5

0.
72
0

0.
70
9

0.
68
3

0.
34
1

A
v
g

2.
07
6

2.
12
2

2.
15
8

2.
17
8

2.
30
1

2.
21
1

2.
40
9

2.
47
8

2.
25
2

2.
36
3

2.
33
2

S
td
D
ev

1.
08
8

1.
05
7

1.
15
9

1.
08
9

1.
07
4

1.
13
1

1.
07
1

0.
97
4

1.
08
7

1.
14
2

1.
08
8

D
O

M
ax

11
9.
9

10
.6
9

11
.0
3

9.
41
0

10
.6
10

15
.9
80

13
.5
90

11
.6
30

11
.7
10

14
.8

M
in

2.
42

2.
4

1.
5

2.
58

1.
01

2.
05

8.
97
0

8.
63
0

8.
25
0

7.
97
0

2.
05

A
v
g

6.
22
2

5.
74
8

5.
05
2

5.
23
9

5.
52
6

6.
35

12
.7
26

10
.4
17

10
.1
92

9.
77
4

8.
06
9

S
td
D
ev

1.
44
4

1.
28
2

1.
64
1

1.
15
1

1.
87
1

1.
48
4

1.
46

0.
93
2

0.
56
2

0.
64
7

2.
58
8

T
e
m
p
.

M
ax

14
.5
7

17
.1
20

19
.7
3

17
.9
1

19
.6
6

18
.5
6

10
10
.8
9

8.
25
0

7.
91
0

18
.5
6

M
in

11
.1
9

11
.8
9

14
.6
9

13
.1
8

16
.2
2

15
.0
3

2.
86

3.
26

4.
91
0

5.
01

3.
26

A
v
g

12
.2
43

13
.4
87

16
.7
9

15
.2
85

17
.6
38

16
.5
11

4.
57
7

6.
33
1

6.
87
6

6.
94
3

11
.9
22

S
td
D
ev

0.
63

1.
04
9

0.
81
5

1.
00
7

0.
60
4

0.
81
0

1.
03

1.
19
9

0.
73
8

0.
55
9

4.
04
9

T
ab

le
7.
2:

S
ta
ti
st
ic
al

p
ro
p
er
ti
es

of
th
e
d
at
as
et
s
u
se
d
fo
r
tr
ai
n
in
g
an

d
te
st
in
g
p
u
rp
os
es
.

182



7.2.3 Conductivity at the Lee Maltings

The following examines the application of a trust and reputation framework in the

scenario where there are a series of models (M1-M7) designed to predict conductivity

at the Lee Maltings. However firstly the need for a real-time or retrospective analysis

tool is highlighted using the prediction of conductivity from these models as an

example. This highlights the benefits of applying a trust and reputation framework

in such an application context.

7.2.3.1 The need for a real-time or retrospective analysis tool

We now provide a brief overview on some examples of differences in trends. How-

ever it should be noted that this is not a direct comparison of performance between

models. The generalised models use 10,000 training instances, the June and Febru-

ary monthly models use 2,000 training instances and the January models use 637

training instances. There are also a different number of test instances in each month

- May has 1,995, June has 2,305, July has 1,955, January has 926 and February has

1,498. These differences alone render a direct comparison infeasible. However since

our objective is to apply a reputation and trust-based framework, how that particu-

lar model is trained is not relevant. The purpose of the following is to highlight some

differences in trends which highlight the difficulties in estimating the performance of

a model on unknown test data, and hence the need for a tool which allows real-time

evaluation of the performance of a model or retrospective analysis of how a model

performs in different scenarios. Conductivity prediction was chosen for highlighting

some of these difficulties.

For conductivity the generalised model versions of M1-M7 was used for pre-

dictions in May and July. The monthly model versions of M1-M7 was used for

predictions in June, January and February. Table 7.3 demonstrates the results of a

ten-fold cross validation carried out on these models in order to estimate how they

perform (i.e. June, January and February models and then the generalised model

used for carrying out predictions on test data from May and June). Table 7.4 shows
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June Jan Feb General
CC MAE CC MAE CC MAE CC MAE

M1
(Depth)

0.95 2.96 0.84 6.29 0.91 3.50 0.77 8.02

M2
(DO)

0.87 5.83 0.85 6.34 0.65 8.89 0.80 7.67

M3
(Temp)

0.83 6.88 0.84 6.52 0.95 2.55 0.80 8.02

M4
(Depth-
DO)

0.97 2.23 0.90 5.04 0.93 2.88 0.95 3.15

M5
(Depth-
Temp)

0.96 2.71 0.93 3.72 0.98 1.93 0.94 3.53

M6
(DO-
Temp)

0.94 3.90 0.96 2.94 0.96 2.22 0.92 4.38

M7
(Depth-
DO-
Temp)

0.97 2.16 0.96 2.93 0.98 1.76 0.97 2.5

Table 7.3: Results of 10-fold cross validation of each of the training
datasets for conductivity prediction

the performance of these models on test data. As can be seen, it can be difficult to

estimate how a model will perform

For example when looking at the evaluation of the generalised model compared

to its performance on the test data from May and July, the output of the gener-

alised model would suggest that M7 may perform best which is clearly not the case

when the model is used for predictions in May or July. It would also suggest that

dissolved oxygen (DO) or temperature produce a better output at estimating con-

ductivity than depth, which is again not the case when applied to test data from

May. When this model is applied to test data from July however DO does perform

better than depth at predicting conductivity, with a huge drop in the performance

of temperature in predicting conductivity compared to the output of the analysis.

We see models that are producing performances along similar lines in the evaluation

can perform very differently to each other on the test data. A similar scenario can
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May CC MAE RMSE
M1 0.7183 8.411 13.1564
M2 0.625 10.3183 14.5688
M3 0.3127 18.4659 23.6164
M4 0.8902 4.6703 8.5782
M5 0.7217 8.9054 15.291
M6 0.5017 14.8531 20.3492
M7 0.6938 8.5348 15.0045

June CC MAE RMSE
M1 0.9177 4.2657 7.4219
M2 0.2923 14.8692 20.7109
M3 −0.3308 23.4366 28.5563
M4 0.8829 5.1154 8.8103
M5 0.8987 7.7289 8.212
M6 0.0913 17.1897 22.2718
M7 0.8844 5.1089 8.7782

July CC MAE RMSE
M1 0.6817 10.403 13.9772
M2 0.8114 7.7175 11.2423
M3 −0.0339 18.3334 25.4813
M4 0.9037 5.2465 8.353
M5 0.1293 17.1816 24.8577
M6 0.6337 9.2093 15.4598
M7 0.5954 12.3181 18.1068

Jan CC MAE RMSE
M1 0.652 8.9179 13.4423
M2 0.1191 14.4345 18.2036
M3 0.2308 21.7863 26.2124
M4 0.6644 9.7714 13.1314
M5 0.603 15.0295 18.4994
M6 −0.0233 22.3177 26.5591
M7 0.6121 15.4332 18.6943

Feb CC MAE RMSE
M1 0.7058 9.6884 15.7553
M2 0.1711 19.2569 24.2633
M3 0.7523 7.1209 13.6179
M4 0.6706 12.0994 17.4465
M5 0.7906 7.0838 12.8208
M6 0.7482 8.1024 13.6729
M7 0.7892 7.8265 13.0498

Table 7.4: Performance of each of the models when evaluated in the
corresponding test data for the prediction of conductivity

be seen when examining the evaluation outputs of the training models from June,

January and February (Table 7.3) compared to that of the performance of the test

data (Table 7.4). Some models may be performing better than others depending on

the month. For example M3 (Temp) performs quite poorly on the test data in June

and January, but performs much higher in February and outperforms M2 (DO),

which hadn’t been the case in June.

However its not always the case that high performance in the evaluation of the

training model doesn’t reflect high performance on the test data. For example

in June M1, M4, M5 and M7 perform exceptionally well in the evaluation of the

training model, and also perform very well on the test data from June. In February

those that perform higher in the evaluation generally performed higher on the test

data (e.g. M2 produced a lower performance than other models in the evaluation
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period and on the test data, the others were similar and also had similar enough

performances on the test data).

The variation in performance may be due to a range of factors such as a change

in the statistical properties of the test data compared to that of the training data

due to a change in trend, data quality issues such as gaps in the data etc. Issues with

just one data stream or changes in the relationship between one data stream and the

other can affect the performance of associated models. Also as previously outlined

a different number of instances were used in training the generalised, June, January

and February test models. There were also a different number of test instances for

each of the five months. In general lower performance overall is achieved in January

and February. However from Figure 7.1, irregularities such as gaps in the data are

apparent suggesting issues with the sensors, especially in January.

It is apparent from this brief analysis, that it is difficult to estimate how a model

will perform on real unknown test data. Some may perform better than others at

different times of year, during the appearance of difference trends or simply by using

a different training dataset. We cannot always estimate based on the evaluation of

the training model what type of performance will be achieved on the test data. Hence

it is apparent that there is a need for some real-time update on the performance

of a model in order to select which appears to be operating most effectively. It

is also useful for a retrospective analysis purposes also, so that if the sensor went

completely offline in the future, that the performance of each of the models could

be analysed in a variety of scenarios and the best one chosen depending on the

time period in question or a variety of other criteria. If we have models on similar

values of performance metrics such as CC, MAE, Root Mean Squared Error (RMSE

- square-root of the average of the squared errors), etc. during an evaluation, it is

useful to evaluate the most appropriate model based on analysing their performance

during a variety of scenarios.
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7.2.3.2 Application of the Trust and Reputation-Based framework

At each epoch, the Watchdog assigns a level of cooperation to a model based on

the deviation of its output from the output value of the sensor (i.e. p value as

described in Section 7.2.1.2). The calculation of this value is described in Equation

7.3. To calculate this cooperation value for updating the reputation of the model, an

absolute error value is calculated through subtracting the output of the model from

the corresponding sensor output. This error value is normalised to [0-1] by dividing

by the max-min range of the full training set — [48.02-0.014]. This range was chosen

even if the model in question is a monthly model trained on a monthly dataset where

the range did not vary hugely across months as can be seen in Table 7.2. This value

is then subtracted from 1, so that values closer to 1, indicate ‘greater cooperation’.

The Reputation component then uses this output of the Watchdog to update the

reputation of the model (i.e. Equation 7.1 on page 177). The trust metric of a model

is the statistical expectation of the reputation function calculated as described in

Section 7.2.1.2. Unlike reputation which is maintained as a probabilistic distribution,

the trust metric is simply a number (calculated from Equation 7.2 on page 177).

Thus this number is updated after each output of the model. If there is no output

value of the sensor to compare the output value of the model to at a particular

epoch, the reputation and trust information remains unchanged.

p = 1− Abs(ModelOutputV alue− SensorOutputV alue)

Normalisation
(7.3)

7.2.3.3 Results

For demonstration purposes, the output of each of the models for the first two weeks

in May along with the actual values output by the conductivity sensor are shown

in Figures 7.2 and 7.3 . The associated trust values of each of the models at each

epoch is shown in Figure 7.4. At the beginning of May a phenomenon whereby

conductivity levels flatten out (while depth values continue to vary periodically) can

be seen. This is thought to be caused by the undocumented release of water from the
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Figure 7.2: Graphs showing the conductivity values output by M1-
M3 (Depth, DO, Temp) and M4-M7 (Depth-DO, Depth-
Temp, DO-Temp, Depth-Temp-DO) compared to the ac-
tual values output by the conductivity sensor sensor for
May 1-7 2009

dam further upstream. However Figures 7.2 and 7.3 demonstrates that a selection

of the models can somewhat replicate the activity of the conductivity sensor during

this time period.

Of the single parameter models (M1-M3), M2 (DO) seems to perform the best

in relation to detecting this phenomenon, and begins then to slightly disimprove in

performance towards the end of the first week. M1(Depth) continues to fluctuate
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Figure 7.3: Graphs showing the conductivity values output by M1-
M3 (Depth, DO, Temp) and M4-M7 (Depth-DO, Depth-
Temp, DO-Temp, Depth-Temp-DO) compared to the ac-
tual values output by the conductivity sensor sensor for
May 8-14 2009
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periodically and doesn’t seem to pick up on this phenomenon. However when the

conductivity sensor operations returns to normal towards the end of the first week,

it seems to replicate its values quite well. M3 (Temp) appears to be the poorest

performing in terms of replicating the activities of the conductivity sensor and seems

to be extremely unreliable. In the second week (May 8-14), the output of M2 appears

a little unreliable at the beginning of the week but then improves and appears

to output patterns similar to the conductivity sensor. M1 appears to reflect the

patterns of of the conductivity sensor quite well this week, with M3 improving but

still appearing to be the most unreliable of the three.

If we look at the trust values associated with each of these models (M1-M3) in

Figure 7.4, it is clear that they reflect the pattern described above from examining

the output of the models in comparison to the conductivity sensor. It is apparent

that while M2 starts out at being more trustworthy than M1 in week 1 due to its

ability to to accurately reflect the the flattening of the conductivity values, after

this its trust slowly disimproves, while that of M1 improves as the days go on and

surpasses that of M3. The very poor performance of M3 is also reflected in its trust

values which are continuously very low, although after having initially dipped in

performance at the beginning of week 1, its performance does appear to continually

improve. M1 produces a CC of 0.7183 and a MAE of 8.411, M2 produces a CC of

0.625 and a MAE of 10.3183 and M3 produces a CC of 0.3127 and a MAE of 18.4659.

Looking at the performance metrics alone does not provide a clear evaluation of

which model is the most appropriate during different scenarios. It is clear that M2

is most appropriate during a scenario such as that occurring at the beginning of the

first week in May but during so called ‘normal’ operation of the conductivity sensor,

it appears to be M1 that performs the best at replicating its values.

Of the two and three parameter models (M4-M7) it is clear that M4 (Depth-

DO) seems to very accurately detect the phenomenon with the conductivity sensor

at the beginning of May and seems also to accurately replicate the normal operation

of the conductivity sensor towards the end of the week. M5 (Depth-Temp) and M7

190



Figure 7.4: Graphs showing the trust values for M1-M3 (Depth,
DO, Temp) and M4-M7 (Depth-DO, Depth-Temp, DO-
Temp, Cond-Temp-DO) for predicting conductivity for
May 1-14 2009

(Depth-DO-Temp) do not appear to have the ability to detect the phenomenon at

the beginning of the week but appear to operate quite well after this. M6 (Depth-

Temp) somewhat replicates the scenario in place at the beginning of the week,

however during the normal operation of the sensor appears to perform quite poorly.

Again this behaviour is reflected in the trust values shown in Figure 7.4. M4 has

the highest trust ratings overall, the trust ratings of M5 and M7 are reduced at the

start due to their inability to replicate the activities of the conductivity sensor during
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the phenomenon at the beginning of the week. However their trust values improve

following their improved performance during the normal operation of the sensor.

While the trust values of M6 begin quite high due to its somewhat replication of

the phenomenon at the beginning of the week, its trust continually decreases right

into the second week based on its poor performance after this, finishing just above

M3 in the rankings by the end of the second week. From Table 7.4 it is can be

seen that M4 produces the best performance metrics which is apparent from the

analysis carried out here (CC-0.8902, MAE-0.8902, RMSE - 8.5782). M6 produces

the poorest (CC - 0.5017, MAE, 14.8531, RMSE - 15.291), and M5 and M7 produce

very similar performance values (M5 - CC - 0.7217, MAE - 8.9054, RMSE - 15.291,

M7 CC- 0.6938, MAE - 8.5348, RMSE - 15.0045). The patterns of these performance

metrics (i.e. M4 - the highest, M6 - the lowest, M5 and M7 - similar) are reflected

in the trust values which subsequently demonstrates itself as a real-time update tool

for evaluating the performance of a model.

Best Output

CC MAE RMSE
May 0.8902 4.6702 8.5781
June 0.9120 4.2535 7.6663
July 0.9039 5.2310 8.3487
Jan 0.6853 8.8685 12.8167
Feb 0.7711 7.0258 13.0556

Table 7.5: Performance metrics when the output of the most trust-
worthy model is selected at each epoch for conductivity
prediction

For each of the test sets - May, June, July, Jan, Feb - we evaluated the scenario

whereby at each epoch, the value output by the most trustworthy model was selected.

This is referred to as TM (TrustModel). The results of this evaluation can be

seen in Table 7.5. In each case TM produces almost identical or slightly improved

performance metrics to the best performing model for the month. In February

however TM has a slight reduction in performance in terms of CC and RMSE but
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Figure 7.5: Actual v’s predicted values for conductivity when the
value from the most trustworthy model is chosen at each
time epoch for May 1-14 2009

has a slight increase in performance in terms of MAE (May - M4, June M1, July -

M4, January - M1, M4, February - M5). Figure 7.5 shows the conductivity values

from the in-situ sensor plotted against the predicted values for conductivity when

the value from the most trustworthy model is chosen at each time epoch over a

period of time.

7.2.4 Depth at the Lee Maltings

For the prediction of depth the generalised model versions of M1-M7 were used for

predictions in May and July. The monthly model versions of M1-M7 was used for

predictions in June, January and February. The generalised models use 10,000 train-

ing instances, the June and February monthly models use 2,000 training instances

and the January models range from 488 to 2569 training instances (M1, M4, M5,

M7 - 488, M2, M6 - 2550, M3 - 2569). The number of test instances in each month

are - May - 2004, June - 2287, July - 1682, January - 2090, February - 2108. The

performance of the models on the test data is shown in Table 7.6.
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May CC MAE RMSE
M1 0.7803 0.517 0.7352
M2 0.481 0.7837 0.9685
M3 0.1139 1.0564 1.2891
M4 0.7774 0.5261 0.7187
M5 0.8307 0.4948 0.6154
M6 0.3784 0.8561 1.0604
M7 0.79 0.5169 0.6781

June CC MAE RMSE
M1 0.9363 0.3225 0.4118
M2 0.1048 1.1138 1.4498
M3 −0.1537 1.2279 1.4709
M4 0.927 0.3407 0.4387
M5 0.9347 0.3216 0.4183
M6 0.0785 1.1563 1.489
M7 0.9314 0.3271 0.4256

July CC MAE RMSE
M1 0.8405 0.4166 0.6138
M2 0.433 0.776 1.015
M3 0.1455 0.9356 1.1023
M4 0.8591 0.4053 0.5884
M5 0.8422 0.4085 0.5835
M6 0.0401 1.0188 1.2223
M7 0.8594 0.3915 0.5579

Jan CC MAE RMSE
M1 0.3747 0.857 1.0784
M2 0.0518 1.0677 1.3097
M3 −0.1888 1.1905 1.4557
M4 0.3821 0.8853 1.036
M5 0.3886 0.8172 1.0427
M6 −0.0521 1.1268 1.396
M7 0.3745 0.8598 1.0455

Feb CC MAE RMSE
M1 0.6655 0.664 0.8294
M2 0.4612 0.8552 1.0849
M3 0.4263 0.8526 1.102
M4 0.6823 0.6532 0.824
M5 0.6756 0.6574 0.8168
M6 0.5634 0.7126 0.9245
M7 0.6674 0.6622 0.8382

Table 7.6: Performance of each of the models when evaluated in the
corresponding test data for the prediction of depth

7.2.4.1 Application of the Trust and Reputation-Based framework

Similar to the system for conductivity prediction, at each epoch the Watchdog as-

signs a level of cooperation to a model based on the deviation of its output from

the output value of the sensor (See Equation 7.3 on page 187). The deviation of the

error value is normalised to a range of [0-1] by dividing by the max-min range of

the full training set - [5.28-0.34], and this value is then subtracted from 1. Similar

to the case for conductivity prediction, this range was chosen even if the model in

question was a monthly model trained on a monthly dataset considering the range

did not vary hugely across months as can be seen in Table 7.2. Again the output of

the Watchdog is used to update the Reputation component and there is the subse-

quent calculation of trust (See Equation 7.1 on page 177 and Equation 7.2 on page

194



177). Again if there is no output value of the sensor to compare the output value

of the model to at a particular epoch, the reputation and trust information remains

unchanged.

7.2.4.2 Results

Figure 7.6: Graphs showing the depth values output by M1-M3
(Cond, DO, Temp) and M4-M7 (Cond-DO, Cond-Temp,
DO-Temp, Cond-Temp-DO) compared to the actual val-
ues output by the depth sensor sensor for June 15-22
2009

For demonstration purposes, the output of each of the models for the last two
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Figure 7.7: Graphs showing the depth values output by M1-M3
(Cond, DO, Temp) and M4-M7 (Cond-DO, Cond-Temp,
DO-Temp, Cond-Temp-DO) compared to the actual val-
ues output by the depth sensor sensor for June 23-30
2009
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weeks in June along with the actual values output by the depth sensor are shown

in Figures 7.6 and 7.7. The associated trust values of each of the models at each

epoch is shown in Figure 7.8.

Figure 7.8: Graphs showing the trust values for M1-M3 (Cond, DO,
Temp) and M4-M7 (Cond-DO, Cond-Temp, DO-Temp,
Cond-Temp-DO) for predicting depth from June 15-30
2009

Of the single parameter models (M1-M3), it appears that M1 (Conductivity)

replicates the activity of the depth sensor quite well. In the first of the two weeks it

appears to overestimate the value of depth at the peak of the cycle and sometimes

output lower values at the trough of the cycle (See Figure 7.6). At the beginning
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of the second week, it appears to do the opposite, then moving on to output the

maximum and minimum points of the depth cycle better at the end of the week.

M2 (DO) is not very accurate but appears to perform better than M3 (Temp) which

towards the end of the first week and for the second week, is very unreliable (See

Figure 7.7).

This is reflected in Figure 7.8, where the evolution of trust values demonstrates

M1 to be clearly the most reliable, with M2 much lower and M3 lower again in the

first week. A slight peak can be seen in the trust values for M3 which then falls

towards the end of the first week reflecting the pattern mentioned above. The trust

values also can help to pick up patterns which are difficult to see from graphing of

the output values. For example from Figure 7.8 it can be seen that by the second

week M2 and M3 are almost equally unreliable. Of the two and three parameter

models (M4-M7), M4 (Cond-DO), M5 (Cond-Temp), and M7 (Cond-Temp-DO)

appear to reflect the behaviour of the depth sensor most accurately, with M6 (DO-

Temp) appearing to be the most inaccurate. This is again reflected in the trust

values shown in Figure 7.8.

Overall it can be seen that the most trustworthy models are M1, M4, M5, and

M7. From Table 7.6, it can be seen that these clearly produce the best performance

metrics in comparison to the other models (M1 - CC- 0.9363, MAE- 0.3225, RMSE

- 0.4118, M4 - CC- 0.927, MAE- 0.3407, RMSE- 0.4387, M5 - CC- 0.9347, MAE-

0.3216, RMSE- 0.4183, M7 - CC- 0.9314, MAE- 0.3271, RMSE- 0.4256). The clear

differentiation between these models and the others in terms of trust values demon-

strates the ability of this framework to reflect these performance values and presents

a a real-time update tool for evaluating the performance of a model.

Best Output

Again for each of the test sets - May, June, July, Jan, Feb - we evaluated the scenario

wherby at each epoch, the value output by the most trustworthy model was selected.

Again this is referred to as TM (TrustModel). The results of this evaluation can
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CC MAE RMSE
May 0.8315 0.4942 0.6146
June 0.9329 0.3210 0.4223
July 0.8552 0.3890 0.5665
Jan 0.4182 0.8140 1.0258
Feb 0.6870 0.6509 0.8087

Table 7.7: Performance metrics when the output of the most trust-
worthy model is selected at each epoch for depth predic-
tion

Figure 7.9: Actual v’s predicted values for depth when the value
from the most trustworthy model is chosen at each time
epoch for June 15-30 2009

be seen in Table 7.7. Again TM produces either very similar or slightly improved

performance metrics to the best performing models of each of the months (May-

M5 , June- M1 and M5, July- M7, January- M5, and February- M4) with the most

noticeable improvement for the January test data. Figure 7.9 shows the values from

the in-situ depth sensor plotted against the predicted values for depth when the

value from the most trustworthy model is chosen at each time epoch over a period

of time.
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7.2.5 Dissolved Oxygen and Temperature at the Lee Malt-

ings

We applied the trust and reputation framework to the models for the prediction of

dissolved oxygen and temperature. However for the sake of brevity this analysis

can be found in Appendix D. However there are some points to note from this

analysis. For example due to the fact that the range of the dataset seems to vary

more from month to month for dissolved oxygen and temperature than for depth or

conductivity, the deviation of the error value is normalised to a range of [0-1] using

a different range depending on whether a generalised or a monthly model is used.

We demonstrate the difference in the trust values when both types of normalisation

are used. It can be seen that while overall patterns don’t generally change, the

magnitude of difference between models and the height of trust values varies. Using

a smaller range to carry out normalisation results in greater magnitudes of differences

between the models and overall lower trust values (For example, see Figures D.2 and

D.3 which demonstrates the trust values when normalisation using the range of the

full dataset is used and normalisation using the range of the February training set

is used for models predicting DO).

The application of the framework to the models for DO prediction also reinforces

how this framework can inform us of the magnitude of unreliability of one model

in replicating the activities of the sensor in comparison to another, allowing us to

decipher trends which are difficult from a simple plot of the outputs. For example,

in Figure D.1 we see a scenario whereby it is very difficult to determine which model

is most reliable from a plot of the outputs. This is the output of the models for

DO prediction for the first week in February. This is reflected in the output of the

trust model whereby the trust values for each of the models are close but it does

show differences in the level of performance of the models which is difficult from

simply looking at a plot of the outputs (See Figure D.2). We also see the ability of

TM to capture the best performing nodes even in times of noisy output, since the

200



performance of the models here is generally lower than that achieved by the models

for conductivity or depth (See Tables D.1 and D.2).

The output of the framework for temperature prediction demonstrates how the

reputation and trust framework is accurately reflecting the type of method that is

being implemented to determine cooperativeness or reliability, in that models which

correlate highly with the oscillations of the temperature sensor but at a higher range

are deemed to be less reliable than models that do not correlate as well with these

oscillations but produce closer values to the actual output values of the temperature

sensor. Again, it is also apparent here that the trust and reputation model allows

us to pick up trends which are difficult to decipher from simply plotting the data

and also to see the difference in the magnitude of trust between models (See Figures

D.8, D.9 and D.10). The TrustModel matches the best performing models in terms

of MAE’s as opposed to CC’s while sometimes improving CC (See Tables D.3 and

D.4).

7.3 Application scenario 2 - Satellite Sensor In-

formation

Another application of RFSN is for determining the most reliable satellite data anal-

ysis product for incorporation into data fusion from multiple sources at a particular

site. From Chapter 5 it is apparent that there are a number of issues with the use of

satellite remote sensing data such as the reliability of algorithms being site-specific,

the accuracy of estimation of chlorophyll can be difficult in coastal areas, pixels near

land can be contaminated by land borders, temporal or spatial resolution may be

low, cloud cover is a problem for certain sensors, etc.

In Chapter 5, we described the selection of appropriate remote sensing data

products for estimating chlorophyll and SST, for use in this work. We then described

the extraction of data at two sites in Galway Bay, the Mace Head and MidBay test

sites. For chlorophyll, Globcolour data products and an Ifremer data product were
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selected. For SST, a variety of HRDDS products are available for download at a

variety of resolutions. Seven of these were selected for use in this study.

A similar analysis is carried out here to that in Section 7.2 for the Lee Malt-

ings site. In this case, the reliability of the satellite products is estimated in terms

of their closeness to the output values of the in-situ sensors. Hence this is similar

to application scenario one, albeit with different input data streams but is used to

stress the RFSN model. Our analysis could only be carried out on a selection of

the HRDDS SST data products which provided daily satellite readings. Unfortu-

nately there was only one chlorophyll satellite data product which provided regular

estimates (Ifremer) which rendered this data unsuitable for this particular study.

7.3.1 SST at the MidBay and MaceHead Test Sites in Gal-

way Bay

As previously outlined, data for MidBay and MaceHead was extracted from seven

HRDDS data products. In order to align the in-situ and remote sensing datasets, the

in-situ SST values from the Mace Head and MidBay SmartBay buoys were averaged.

Available in-situ and satellite data from each the data products data for 2009 were

subsequently aligned and incorporated into the analysis. From examining the output

of each of the satellite products, three of the products appear to produce regular

data with four of the products regularly producing a value which is indicative in the

product of an erroneous measurement, or no value at all. Hence the three products

that produce regular data are used for the analysis.

7.3.1.1 Application of the Trust and Reputation-Based Framework

The objective here is to examine how much the satellite data products coincide

with the in-situ sensor. Hence we use a similar method of calculating the level of

cooperation for a data product as we did for the in-situ models in Section 7.2. Again

the Watchdog assigns a level of cooperation to each model based on the deviation
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of its output value from the output of the in-situ sensor (i.e. p value as described

in Section 7.2.1.2). The calculation of this value is described in Equation 7.3. This

value is within the range of [0..1], with higher values indicating greater cooperation.

As seen from previous scenarios, normalisation affects the magnitude in difference

of reliability between the different data streams and the height of the trust values.

From examining the outputs of the data streams for 2009, the difference between

the in-situ values and the HRDDS data analysis products may be quite small and

is always under 3 Kelvin. Hence in order to capture the greater magnitude of

differences in the reliability of each of the satellite data streams, the differences were

normalised to a range of [0..1] by dividing by 3. Similar to the previous application

scenario, the output of the Watchdog is used to update the Reputation component

and there is the subsequent calculation of trust (See Equation 7.1 on page 177 and

Equation 7.2 on page 177) . Again if there is no output value of the sensor compared

to the output value of the product to at a particular epoch, the reputation and trust

information remains unchanged. Similar to the previous application scenario the

notion of ‘trust’ or ‘reliability’ is in terms of its correspondence with the in-situ

readings. Also similar to previously, all nodes begin with an initial trust value of

0.5.

p = 1− Abs(DataProductV alue− In− situSensorV alue)

Normalisation
(7.4)

7.3.1.2 Results

In-situ and satellite SST measurements from the three HRDDS data products for

Mid-Bay and MaceHead are shown in Figure 7.10. From both these graphs, HRDDS

product 3 appears to be more closely aligned with values from the in-situ sensor than

products 1 or 2. This is reflected in the output of the trust and reputation model

shown in Figure 7.11 which also demonstrates the magnitude of variation between

the three products and the height of trust assigned to each. While products 1 and

2 seem to produce similar outputs, as reflected in the trust values, product 3 seems
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Figure 7.10: Graphs shwoing the average daily SST values for the
in-situ sensor and for three HRDDS products at the
Mid Bay and Mace Head test sites in 2009
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Figure 7.11: Graphs showing the trust values for the three HRDDS
products at the Mid Bay and Mace Head test sites for
SST outputs in 2009
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to be well differentiated from these.

There are many gaps in the in-situ sensor data from the Mid-Bay SmartBay

buoy in 2009. This can be seen in Figure 7.10 and it is also reflected in the trust

values for the satellite products at Mid-Bay (See Figure 7.11) through a flattening

of the curve (trust values of the products are not updated when there is no output

value of the sensor to compare the output value of the product).

It is also interesting to note that at both the Mid-Bay and MaceHead sites,

there is a dip in SST values from HRDDS products 1 and 2 which is not reflected by

HRDDS product 3 around August-September. This dip in SST values appears to

be slightly more significant at the Mid-Bay site. There is a gap in the in-situ data

at both sites also around this time period. However at the Mid-Bay site, before this

gaps occurs, this reduction in SST values is not reflected by the in-situ SST sensor

resulting in a reduction in the trust values for products 1 and 2 whereas the trust

value for product 3 increases. There is then a subsequent flattening of the trust

values due to the gap in the data from the in-situ sensor.

Mace Head CC MAE RMSE
HRDDS
Product 1

0.9603 0.7683 0.9632

HRDDS
Product 2

0.9618 0.7523 0.9494

HRDDS
Product 3

0.9648 0.6165 0.8403

Table 7.8: Correlation (CC), Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) values for HRDDS products
compared to the in-situ SST sensor at Mace Head

MidBay CC MAE RMSE
HRDDS
Product 1

0.9781 0.407 0.5238

HRDDS
Product 2

0.9808 0.3982 0.5084

HRDDS
Product 3

0.9845 0.3353 0.4719

Table 7.9: Correlation (CC), Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) values for HRDDS products
compared to the in-situ SST sensor at Mid Bay

206



Figure 7.12: Normalised histogram of water levels for depth features
for a selection of images from May 15-27 2009

The relationship between each of the products and the in-situ SST sensor values

from the the Mace Head and Mid-Bay SmartBay buoys in terms of correlation,

MAE and RMSE can be seen in Tables 7.8 and 7.9. These values generally reflect

the analysis above. From examining these products through the Beam Toolbox, it

is clear that product 3 has a higher resolution to the other products reflecting its

increased performance in relation to the in-situ readings.

7.4 Application scenario 3 - Visual Water Depth

Estimation

In Chapter 4, we examined the estimation of water depth using a visual sensor

through the detection of certain features in the image such as rocks at trees, rocks

at the far wall, rocks at the near wall and the appearance of an island like feature

in the middle of the water. As previously outlined, generally as the water depth is

lowering, these features begin to appear in the order provided above. Hence as these

features appear it can provide us with an estimation of water depth. However some

manner in which to relate this information back to the the depth values is required.

Figure 7.12 shows the range of water depth values corresponding to the various
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Accuracy TP
Rate

FP
Rate

F-
Measure

ROC
Area

rocks at trees 85.4% 0.854 0.145 0.852 0.854
rocks at far wall 38.93% 0.389 0.417 0.367 0.487
rocks at near wall 91.76% 0.918 0.019 0.924 0.949
island 94.49% 0.945 0.167 0.947 0.889

Table 7.10: Performance metrics for each of the models for classify-
ing the appearance of the four depth features from May
1-7 2009

features where rocks-trees indicates rocks at trees only rocks-trees-wall indicates

rocks at trees and the far wall but no rocks at the other two features etc. From this

graph it can be seen that there is a distinction between the range of depth values

associated with different depth features, except for the features rocks-trees-wall and

rocks-trees-wall-near-wall which occur in similar ranges. This distinction can be used

along with the application of a trust and reputation framework in order to assess

the performance of our visual sensing tool or our in-situ sensors. The following

describes the methodology, the application of a trust and reputation framework and

the outcome.

7.4.1 Classification of Depth Features

The models developed in Chapter 4 using data from May 15-27 2009 were used for

classifying images from May 1-7 2009. Classifications were carried out by each of

the four models for detecting each of the features on over 5,400 images from this

time period (resulting in approximately 22,000 classifications). The overall results

of these classifications for each of the models can be seem in Table 7.10. These

models performed extremely well except for the model for detecting rocks at the far

wall. From analysing the output it appears that it incorrectly classifies many of the

negative instances as positive. However during this time period, there were often

shadows or a brown reflection on the water which left it very visually indistinct

from when rocks were present. This could possibly explain the poor performance

of the classifier for discriminating between the two classes. When evaluating the
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performance of the classifier in Chapter 4, there is an equal amount of positive and

negative instances. In this scenario there a large majority of negative instances. It

should be noted also that in each of the instances a ‘slight’ detection of any of the

features as described in Chapter 4 is regarded as a non-detection.

7.4.2 Alignment of the Data Streams

Following the classification of each of the images, these then need to be somehow

aligned to data from the in-situ depth sensor. An in-situ depth reading is taken every

10 minutes, where as an image is produced from the camera sensor approximately

every minute. Hence for each in-situ depth reading occurring in the May 1-7 time

period, the images (i.e. the classifications for each of the depth features) that are

within 10 minutes of this reading were aligned with the time of the depth value. Two

approaches were then used in order to decipher the appropriate classification for each

of the depth features for this particular time. In the first scenario a max approach

is used whereby if there were any positive instances at all within the classifications,

then the classification for this time is considered to be positive. In the second

scenario, a majority approach is used whereby the classification for this time for a

particular feature is the majority classification of all the classifications aligned with

this time. It is assumed that the majority approach will be the best considering that

one poor classification in the other approach may result in an error. The output

of this part of the methodology consists of two arrays consisting of the timestamp,

the depth sensor value, and the classification of each of the depth features using the

max approach or the majority approach. For each of these arrays a similar array is

also output where the actual annotations of each of the images is used as opposed

to the classifications when carrying out either of the approaches.

• timestamp, sensor-value, trees-max, rocks-wall-max, rocks-nearwall-max, island-

max

• timestamp, sensor-value, trees-major, rocks-wall-major, rocks-nearwall-major,
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island-major

7.4.3 Application of Trust and Reputation-Based Frame-

work

Following the alignment of the sensor streams, we are left with a sensor value and

classifications for four different depth features, so how do we establish a coopera-

tive relationship between the two outputs for future determination if they are in

agreement and how do we examine how well each of these visual sensor streams are

cooperating with each other? Ideally after the appearance of one feature we should

see the subsequent appearance of the next appropriate feature relevant to whether

depth is moving up or down. Also how do we examine which approach to use when

deciding on the most suitable classification for a particular time or which depth

features are affecting the algorithm?

The application of a trust and reputation framework can help with these issues.

This again involves a Watchdog component and a Reputation component. In this

case the Watchdog carries out a binary rating with regards to ‘cooperation’ as op-

posed to the interval rating using in the previous application scenarios (i.e. in this

case the cooperation value or p value (as outlined in Section 7.2.1.2) receives a value

of 0 or 1 as opposed to a value in the interval [0..1]). A thresholding approach is

used to determine this cooperation value. From examining the training data, it is

apparent that if the water is below or between certain levels, certain features should

be appearing and others not appearing. Two algorithms are used in the Watchdog

– one algorithm incorporates all depth features, the other algorithm leaves out the

rocks at far wall depth feature since the output of its classification is so poor. The

algorithm is quite simple: if there is water between a certain level and the appro-

priate relevant features are detected and there is no detection of the non-relevant

features, then a positive cooperation value of 1 is assigned, or else a negative cooper-

ation value of ‘0’ is assigned to this input. Reputation and trust are updated using
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Figure 7.13: Output of the trust and reputation framework for each
of the visual sensing models

this output as in other application scenarios outlined earlier in this chapter (See

Equation 7.1 on page 177 and Equation 7.2 on page 177). In this context the notion

of ‘trust’ or ‘reliability’ is the cooperation between sensing modalities in terms of

outputs.

7.4.4 Results

Figure 7.13 shows the trust values for eight visual sensing models. These models

are as follows:

• max this is the output of the algorithm used in the Watchdog when the max

approach is used for determining the inputs to the Watchdog component;

• majority is when the majority approach is used for determining the inputs to

the Watchdog component;

• actual-max and actual-major are when the max and majority approaches are

used on the true annotations for the images as opposed to the classifications

(these are used as benchmarks);
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• The next four models are all of the above except evaluation of the appearance

of the depth feature rocks at wall is left out of the Watchdog due to its poor

classification accuracies.

It is apparent that algorithms using the actual values produce maximum trust

values demonstrating that our algorithm in the Watchdog is appropriate in deter-

mining the relationship between the in-situ and visual sensor streams. It is very

promising that our visual model using classifications from our depth feature models

is highly effective when using the majority approach but leaving out the under-

performing depth feature. The incorporation of this feature into the Watchdog

algorithm has a huge impact on establishing a working cooperation between the

outputs of the two sensing modalities. Overall the majority approach appears to be

the most effective for determining input to the Watchdog.

7.5 Conclusion

In this chapter we adapted the RFSN trust and reputation model to deal with the

unreliability associated with the additional data streams to be used in a multi-modal

environmental monitoring network introduced in Chapters 4-6. This is a novel

approach to optimising the use of these additional data streams in the network,

enabling us to choose the most reliable output at a particular point in time, or

during specific events.

We applied the modified RFSN model to three specific application scenarios to

stress test its resilience across three very different applications in environmental

monitoring. In the first application scenario we adapted this framework to deter-

mine the most reliable model for the prediction of in-situ parameters at the Lee

Maltings site. We provided an analysis demonstrating the difficulty in determin-

ing the performance of a model on un-seen test data based on the results on an

evaluation. This demonstrated the need for a real-time update tool for determining

the most appropriate model at a particular point in time or during a specific event.
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The trust values output by the modified RFSN model reflected the varying abilities

of the the different parameter combinations to replicate the activities of the in-situ

sensor in question and captured the most reliable models across time.

In the second application scenario we adapted this framework for determining

the most reliable satellite data analysis product at the Mid-Bay and Mace Head test

sites in Galway Bay. However some of the satellite data products were not suitable

for use within such a framework since it requires regular data readings. Hence only

a selection of the HRDDS SST data products were used for this analysis. There

was only one chlorophyll satellite data product which provided regular estimates,

therefore rendering these data products unsuitable for use within the framework.

However we saw very promising results for the use of this modified RFSN model

for determining the most reliable satellite data products to use at a particular site,

where there are regular estimates produced by the product and the in-situ sensor.

Finally in the third application scenario we applied the RFSN model to the visual

sensing streams. It helped us to demonstrate the appropriateness of our algorithm in

the Watchdog for determining the relationship between the in-situ and visual sensor

streams and subsequently to determine the most reliable algorithm for relating the

two sensing modalities. Subsequently it may also be used to indicate a problem

with the in-situ sensor data or visual sensing tool if there is a lack of correspondence

between the output of the two sensing modalities.

Overall each of these application scenarios required a tailoring of the RFSNmodel

but each was faithful to the RFSN model in that each included a Watchdog and a

Reputation component, though the interpretation of what constituted each varied

depending on the application. Additionally the application of this model allowed

us to decipher trends which are difficult to determine otherwise from a simple plot

of the outputs. For example, it can inform us of the magnitude of reliability of one

model in comparison to another. In the next chapter we move on to event detection

where we bring together the outputs of all the sensor sources, plus the execution of

the RFSN model, to detect events in the environment. We examine the usefulness
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of the RFSN model in improving the output of the network through carrying out a

case study in relation to the detection of depth events.
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Chapter 8

Event Detection

In preceding chapters we carried out investigations into the use of a wide range of

sensing modalities for complementing and enhancing the use of an in-situ sensor net-

work. We investigated both the singular and integrated use of a variety of these data

sources with a view to improving the scalability and reliability of an environmental

monitoring network. We also modified the RFSN trust and reputation framework

for optimising the use of a variety of these models in the network, with a view to

selecting the most reliable model at a particular point in time. If an in-situ sensor

fails in the network, this enables the selection of the most reliable model or data

stream to replicate its behaviour at a particular point in time or during a specific

event.

In this chapter we focus on the performance of this multi-modal network from an

applications perspective. Firstly we recognise that the needs of different applications

vary. Some require high precision in relation to output values. Others may only

require a high-level overview of conditions and are much more tolerant of an error

margin. In response to this we carry out an analysis of a variety of the models

and sensor streams in relation to various threshold values of the in-situ sensors. We

examine the percentage of their outputs that are within various margins of the in-

situ sensors in order to capture their possible suitability over a range of application

contexts.
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Following this we carry out a case study in order to examine the effectiveness

of a multi-modal network from a specific applications perspective. In the first part

of this case study we examine the ability of these alternative sensing modalities

including the models developed in previous chapters to compensate for the failure

of a node in the in-situ network. In the second part of the case study, we equip the

network with a trust and reputation framework to select the most reliable model

or sensor stream at a particular point in time and we investigate if this improves

performance.

Our case study relates to the detection of depth events at the Lee Maltings site.

Depth is chosen for two main reasons. Firstly it is an important parameter and

it can provide an indication of overall conditions at the site. Secondly the visual

sensor was modelled to provide an estimation of depth and hence it provides another

sensor stream for analysis. We examine the performance of the in-situ data models

and the visual sensor data streams in detecting a series of high and low depth events

at the site. Following this we carry out an evaluation of the performance of the

network in detecting these events when it is equipped with the modified RFSN

model described in Chapter 7. The analysis carried out in this chapter relates back

to research question 6 in Chapter 1.

8.1 Sensor Stream Performance

We begin by examining the outputs of the models described in Chapter 6 which

use values from heterogeneous in-situ sensor nodes for predicting the value of an

alternative in-situ node in the network. Then we examine the outputs of seven

different HRDDS products providing an analysis of sea surface temperature (SST).

Finally we look at the output of four different products providing an analysis of

chlorophyll – one Ifremer product and three GlobColour products.
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8.1.1 Modelled Outputs at the River Lee

In Chapter 7, we provided various analyses of the performance of these models on

test data from five different time periods. For reference purposes, Table 7.2 on page

182 presents the statistical properties of the datasets used for training and testing

purposes. Table 7.1 on page 178 describes the components of each of the models for

the prediction of the four parameters (Depth, Conductivity, DO, Temperature) and

Tables 7.6, 7.4, D.1 and D.3 on pages 194, 185, 279 and 289 provide the correlation,

RMSE and MAE values produced by these models on the test data from the five

months.

Here we provide an analysis on the outputs of the models predicting depth,

conductivity, dissolved oxygen and temperature for two different times of year (June

and February). The graphs depicting this analysis can be seen in Appendix E, along

with graphs produced for the other months of May, July and January. For models

predicting depth, the graphs shows the percentage of values within an error margin

of 0-5m in steps of 0.01m, for conductivity the error-margin is from 0 to 48 ms/cm in

steps of 0.1 ms/cm, for DO it is from 0 to 10 ppm in steps of 0.02 ppm, and the same

range is used for temperature in degree Celsius. From these graphs it is apparent that

a curve highly skewed towards the upper left-hand corner of the graph is desirable,

indicating the more successful the model is at predicting values within a close range

of the in-situ sensor. The faster the curve can converge on the higher percentage

values the better. Variations can be seen in the performances of the models in this

regard similar to how we saw variations in performance in previous analyses. The

statistical properties of the datasets, which provide a reference point on which to

evaluate performance, for example by showing the maximum and minimum values

of each of the parameters, were previously provided in Table 7.2 on page 182.

Tables 8.1 and 8.2 show the threshold value for which 80% and 95% of model

outputs lie within. Similar to the scenario described in previous chapters, model

performance can vary between months and the overall performance in the prediction

of a parameter can also vary between months. For example for depth prediction in
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Depth M1 M2 M3 M4 M5 M6 M7
May 0.81 1.3 1.82 0.84 0.81 1.39 0.83
June 0.5 2.11 1.96 0.53 0.49 2.13 0.5
July 0.59 1.3 1.46 0.63 0.63 1.64 0.63
Jan 1.48 1.77 1.97 1.41 1.42 1.73 1.36
Feb 1.11 1.44 1.44 1.07 1.08 1.19 1.08

Conductivity M1 M2 M3 M4 M5 M6 M7
May 14.4 18.9 36.6 6.4 15.2 31.5 12.7
June 5.7 33.6 40.3 6.7 6.4 33.9 6.8
July 18.3 12.5 39.1 9 39.6 14.8 27.4
Jan 16.8 30.1 35.5 16.3 25.7 35.6 25.2
Feb 18.1 36.3 8.5 22.5 8.7 8.7 8.8

Dissolved
Oxygen

M1 M2 M3 M4 M5 M6 M7

May 1.72 2.52 2 2.02 1.52 2.28 1.68
June 2.08 3.52 3.28 2.3 2.24 3 2.34
July 2.06 3.54 3.36 1.74 2.1 3.32 2.1
Jan 4.02 3.74 2.32 4 3.56 2.28 3.6
Feb 1.06 0.98 1.14 1.06 1.16 1.08 1.12

Temperature M1 M2 M3 M4 M5 M6 M7
May 1.68 1.58 1.68 1.82 1.64 1.72 1.62
June 2.32 2.68 4.6 2.86 2.28 2.82 2.84
July 1.76 2.1 1.56 1.96 1.74 1.94 2
Jan 3.44 1.58 2.96 2.92 3.66 1.56 2.92
Feb 0.64 1.02 0.76 0.68 0.62 0.88 0.7

Table 8.1: Models - Threshold margin within which 80% of predicted
values lie

May, 80% of values output by M1 are within 0.81 of the range of the value output by

the in-situ depth sensor, whereas in June this value is even better at 0.5 and in July

this value is 0.59. However in January and February this threshold is raised to 1.48

and 1.11. A similar scenario is seen for M4, M5 and M7. Threshold values appear to

be higher across the board for depth prediction in January and February. In the case

of conductivity, temperature and DO, model performance also varies across the five

months. Given that applications vary in their requirements, some of these models

display a very promising performance that would be suitable for many application

contexts. The best performance for each parameter each month is highlighted in

bold and underlined in Tables 8.1 and 8.2. Although threshold values generally

rise for a 95% cutoff point, some impressive performances are notable especially for
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Depth M1 M2 M3 M4 M5 M6 M7
May 1.36 1.64 2.14 1.27 1.07 1.83 1.22
June 0.67 2.57 2.41 0.71 0.67 2.65 0.7
July 0.92 1.68 1.69 0.89 0.89 1.96 0.83
Jan 1.87 2.26 2.49 1.66 1.83 2.45 1.77
Feb 1.4 1.86 1.84 1.42 1.37 1.58 1.43

Conductivity M1 M2 M3 M4 M5 M6 M7
May 25.7 27.8 39.8 12.7 33.8 37.6 35.6
June 9.1 39.1 42.2 14 13.4 37.9 14.2
July 23.3 19.9 40.6 14.1 41.3 33.2 35.8
Jan 26.1 31.1 36.6 24.4 30.7 36.7 29.5
Feb 35.3 39.8 32.1 35.7 28.4 32.7 28.9

Dissolved
Oxygen

M1 M2 M3 M4 M5 M6 M7

May 2.22 3.1 2.78 2.56 1.94 2.84 2.04
June 2.52 4.38 3.98 2.62 2.82 3.58 2.84
July 2.64 4.92 4.36 2.48 2.54 4.44 2.62
Jan 4.6 4.4 2.62 4.68 4.12 2.72 4.08
Feb 1.3 1.2 1.38 1.26 1.34 1.28 1.3

Temperature M1 M2 M3 M4 M5 M6 M7
May 2.06 1.9 2 2.3 1.94 2.02 1.92
June 2.64 3.12 5.4 3.46 2.68 3.46 3.5
July 2.26 2.52 1.88 2.42 2.24 2.38 2.42
Jan 3.82 1.84 3.32 3.3 3.92 1.92 3.3
Feb 0.96 1.32 0.96 0.94 0.88 1.1 0.92

Table 8.2: Models - Threshold margin within which 95% of predicted
values lie

depth and also DO and temperature in February.

8.1.2 HRDDS SST Analysis Products

In this section a similar analysis is carried out on the following HRDDS products

providing an SST analysis:

• HRDDS 1 - AMSRE-JAXA-dcu001

• HRDDS 2 - AMSRE-REMSS-dcu001

• HRDDS 3 - NAR17-SST-EUR-dcu001

• HRDDS 4 - NAR-METOP-A-EUR-dcu001
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• HRDDS 5 - NCDC-L4LR-AVHRR-AMSRE-dcu001

• HRDDS 6 - NCDC-L4LR-AVHRR-dcu001

• HRDDS 7 - UKMO-L4HRfnd-GLOB-dcu001

In Chapter 7, we applied a trust and reputation model to the last three products

listed above. The other four products did not produce regular estimations, hence

they were not included in our analysis. For reference purposes, the relationship

between the estimations of SST provided by these three products and the in-situ

SST sensor values from the the Mace Head and Mid-Bay SmartBay buoys in terms

of correlation, MAE and RMSE are outlined in Tables 7.9 and 7.8 on pages 206 and

206.

Figure 8.1 shows the percentage of outputs that are within various thresholds of

the in-situ SST sensors at Mace Head and Mid-Bay for each of the HRDDS products.

The graphs show the percentage of values within an error margin of 0-5 Kelvin in

steps of 0.01. Similar to previously it is apparent that a curve highly skewed towards

the upper left-hand corner of the graph is desirable. From these graphs we see that

at both the Mace Head and Mid-Bay sites the three products producing regular

outputs perform better than the other four products. These four products fail to

converge on the 100% mark even within an error margin of 5 kelvin. At Mace Head,

HRDDS product 2 (AMSRE-REMSS-dcu001) does not produce any valid output

at that site for the year, hence a continuous value of zero is seen on the graph.

At Mid-Bay, this is the case for both products 1 (AMSRE-JAXA-dcu001) and 2

(AMSRE-REMSS-dcu001). Thus these products are most especially not suitable

for providing an analysis at the site in question.

Tables 8.3 and 8.4 show the threshold value within which 80% and 95% of the

HRDDS values lie compared to that of the in-situ SST sensors at the Mace Head and

Mid-Bay sites. The first four products have no outputs at these cutoff points within

an error margin of 5 Kelvin. What is interesting to note is the lower threshold value

for which 80% and 95% of analyses provided by HRDDS products 5, 6 and 7 at the
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Figure 8.1: HRDDS SST products for 2009 at Mace Head and Mid-
Bay - The percentage of values of values within various
thresholds of the in-situ sensor reading.

Mid-Bay site compared to Mace Head. 80% of analyses at Mid-Bay are within 0.62,

0.61 and 0.51 Kelvin of the in-situ sensor. At Mace Head these values are raised to

1.23, 1.24, and 1.11. 95% of analyses at Mid-Bay are within 0.75, 0.79 and 0.87 of of

the in-situ sensor. At Mace Head these values are raised to 1.76, 1.74, and 1.47. It

is also interesting to note that HRDDS product 7 has the lowest threshold at Mace

Head and Mid-Bay for an 80 % cut-off point. However at a 95% cut off point, it has

the lowest threshold for Mace Head, but not at Mid-Bay, with HRDDS products 5
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SST H1 H2 H3 H4 H5 H6 H7
Mace Head 0 0 0 0 1.23 1.24 1.11
MidBay 0 0 0 0 0.62 0.61 0.51

Table 8.3: SST - Threshold value within which 80% of the HRDDS
values lie compared to that of the in-situ SST sensors at
the Mace Head and Mid-Bay sites

SST H1 H2 H3 H4 H5 H6 H7
Mace Head 0 0 0 0 1.76 1.74 1.47
MidBay 0 0 0 0 0.75 0.79 0.87

Table 8.4: SST - Threshold value within which 95% of the HRDDS
values lie compared to that of the in-situ SST sensors at
the Mace Head and Mid-Bay sites

and 6 having lower thresholds. Thus at Mid-Bay, HRDDS product 7 is slower to

converge on the very high percentage values.

As previously described in Chapter 5, temporal resolution can be problematic in

relation to satellite data products. Hence it is interesting to look at the percentage

of missing values attributed to each of the data products across the year. Table

8.5 presents these values which represent the percentage of days of 2009 where no

valid data reading is available for the pixel which best represents the Mace Head

and Mid-Bay sites. The percentage of days where in-situ data is unavailable is also

provided. From Table 8.5 it is apparent that there are more days with no in-situ

sensor readings in Mid-Bay than Mace Head. HRDDS products 6, 7, and 8 have a

low percentage of days with no valid data reading. Whilst the other products have

a very high percentage, with some even with no valid data reading available for the

pixel which best represents the Mace Head and Mid-Bay sites in 2009.

8.1.3 Ifremer and GlobColour Chlorophyll Analysis Prod-

ucts

In this section a similar analysis is carried out on an Ifremer data product pro-

viding chlorophyll estimations and three GlobColour data products also providing
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In-situ H1 H2 H3 H4 H5 H6 H7
Mace
Head

22.47 92.33 100 73.42 78.9 4.11 2.74 1.64

MidBay 39.18 100 100 84.11 81.64 4.11 2.74 1.64

Table 8.5: SST - Percentage of days where data is unavailable across
2009

chlorophyll estimations. These products are:

• Ifremer - EUR-L4-CHL-ATL-v01

• GlobColour1 - AV-MER-CHL2

• GlobColour2 - AVW-MERMODSWF-CHL1

• GlobColour3 - GSM-MERMODSWF-CHL1

The first GlobColour product is a chlorophyll 2 data product (i.e. algorithm de-

signed for estimation of chlorophyll in Case 2 waters). The other two are chlorophyll

1 data products but differ in the methodology used to combine data from the three

different input satellite data products from MERIS, MODIS, and SeaWiFS.

As described in Chapter 7, the application of a trust and reputation framework

was not particularly suitable for the chlorophyll data products since it is only the

Ifremer product that produces regular data readings. Also the application of the

trust and reputation framework in the context of this research assumes the trust-

worthiness of the in-situ sensor. Chlorophyll sensors can be notoriously unreliable

when not maintained very regularly due to biofouling etc, thus rendering such an

assumption difficult in such a scenario.

Figure 8.2 shows the percentage of outputs that are within various thresholds

of the in-situ chlorophyll sensors at Mace Head and Mid-Bay for each of the four

products. Tables 8.6 and 8.7 show the threshold value within which 80% and 95%

of the Ifremer and GlobColour values lie compared to that of the in-situ chlorophyll

sensors at the Mace Head and Mid-Bay sites. At a first glance it appears that the
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Figure 8.2: Ifremer and GlobColour products for 2009 at Mace Head
and Mid-Bay - The percentage of values of values within
various thresholds of the in-situ sensor reading.

Ifremer data product is the poorest performing. However unlike the case with SST

readings from in-situ sensors which are generally quite stable, we often cannot trust

the values from the in-situ chlorophyll sensor so it may be the case that it is the

Ifremer data product is producing a more accurate analysis. Also even though the

GlobColour data products appear to converge more quickly to the higher percentage

values, if we look at the percentage of days of no valid values in Table 8.8, it is clear

that the Ifremer has an extremely low rate, whilst the other products have extremely
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Chl Ifremer Glob1 Glob2 Glob3
Mace Head 4.26 1.96 4.86 2.22
MidBay 4.34 1.22 2.18 1.46

Table 8.6: Chlorophyll - Threshold value within which 80% of the
Ifremer and GlobColour values lie compared to that of the
in-situ chlorophyll sensors at the Mace Head and Mid-Bay
sites

Chl Ifremer Glob1 Glob2 Glob3
Mace Head 5.5 1.96 4.86 2.22
MidBay 8.42 1.44 6.1 1.68

Table 8.7: Chlorophyll - Threshold value for which 95% of the Ifre-
mer and GlobColour values lie compared to that of the
in-situ chlorophyll sensors at the Mace Head and Mid-Bay
sites

high rates of missing values. The GlobColour products are obviously not particularly

suited to monitoring at this particular point.

8.2 Case Study: Depth Detection

As outlined in the introduction to this chapter, event detection in relation to depth

has been chosen as a case study in relation to our two main research objectives since

it is quite an important parameter at the Lee Maltings site and we also have another

sensing modality in the form of a visual sensor providing estimations of depth.

Before we move to the analysis, it needs to be determined what is meant by an

event or how we classify an event in this context. Research has been carried out in

determining events from time series data, or identifying points in a time series at

which a behaviour change occurs e.g. (Guralnik and Srivastava, 1999). However in

our context we are concerned with a more high-level analysis, and are only concerned

with data readings that require management notification. Consider the case of high

data readings, which may indicate that water levels are sufficiently high that caution

needs to be taken in relation to the release of a dam further upstream. Also with
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In-situ Ifremer Glob1 Glob2 Glob3
Mace Head 22.53 0.55 98.63 99.18 98.90
MidBay 39.29 0.55 95.33 91.76 93.96

Table 8.8: Chlorophyll - Percentage of days where data is unavail-
able across 2009

the case of low data readings, this may indicate a warning for the passing of boats

through this part of the river. Hence in the context of this case study, two types of

events are denoted. A high water event is considered to be any data reading that is

greater than or equal to 3m. A low water event is defined as being any data reading

less than or equal to 1m. We had considered setting these thresholds to 3.5 and

0.5, however due to the fact there are times when the depth sensor rarely went over

or under these values, the thresholds outlined are used in order to enable a better

evaluation.

We first examine how each of these heterogeneous nodes in the multi-modal

network would perform in picking up these events had the in-situ depth sensor failed.

Secondly we examine if using the trust and reputation model to select the most

trustworthy data stream at a particular point can lead to increased performance.

8.2.1 Performance of Heterogeneous Nodes

The performance of the models described in Chapter 6 are evaluated in terms of

their ability to detect both types of events in terms of precision and recall.

Precision is a measure of the percentage of events detected by the system that

are real-events. It is calculated using the following formula:

Precision =
true positives

true positives+ false positives
(8.1)

Recall is a measure of the percentage of ground-truth events that were identified.
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It is calculated using the following formula:

Recall =
true positives

true positives+ false negatives
(8.2)

For example if a model predicts 100 events and only 50 of these events are true

events, it receives a precision score of 50%. On the other hand, if there exists

100 events to be detected and a model only predicts 50 of these events, then it

receives a recall score of 50%. In this scenario, similar to other analysis carried out

in this thesis, we use the in-situ sensor to provide the ground-truth since we are

investigating how well a particular model can replicate its behaviour if it were to

fail.

8.2.1.1 Event 1 - High Water Event

Models

Figure 8.3: Precision and recall values for models M1-M7 in detect-
ing high level water events

Figure 8.3 shows the precision and recall values for models M1-M7 for detecting

high level depth events (i.e. depths greater than or equal to 3m) for each of the five

test months. It is clear that overall performance in January is quite poor which has

been discussed previously. Similar to previous analyses there is a clear difference in

the performance of various models especially in May, June and July.

In terms of precision values, in May, it is M5 and M7 that produce the highest

values of 81.88% and 79.31%. In June and July M1, M4, M5 and M7 all perform

227



very well, with values of 79.92% (M4, June) and 92.88% (M4, July) being achieved.

In January and February it is M7 and M6 achieving the highest precision scores of

71.43% (M7, Jan) and 77.12% (M6, Feb). As can be seen from Figure 8.3 there

is a large discrepancy between the highest and lowest precision values that can be

achieved in a month, with M3 in June achieving zero precision. There is also vari-

ability in the performance of models across months, even though there are generally

four models that stand out in terms of precision values, it is not always the same

model that performs the best each month. This reinforces the notion that real-time

model selection can be quite important.

In terms of recall, a similar scenario is seen whereby is generally models M1, M4,

M5 and M7 producing the highest recall values. However it is interesting to note

that in the lower performing months of January and February, it is the alternative

three models that appear to be producing the highest recall values. The highest

recall values are produced by M1 in May (80.85%), M1 in June (91.37%), M5 in

July (72.97%), M2 in January (60.73%), and M2 in February (61.83%).

Visual Sensor Streams

Figure 8.4: Precision and recall values for visual data streams in
detecting high level water events

Figure 8.4 shows the precision and recall values for the visual sensor streams.

The manner in which it was determined if a high level event had been detected by a

visual sensor stream was if none of the visual features described in Chapter 4 were

classified as being present. At readings great than or equal to 3m, none of these
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features should be visible. In fact this happens somewhere in the over 2m mark. The

different visual streams represent the different algorithms described in Chapter 7 —

the max and majority algorithms. The max-nowall and majority-nowall represent

the output of the two different algorithms but where the outputs for the wall feature

is ignored. As previously outlined, the performance of this feature has been poor

and hence it can corrupt classifications.

From Figure 8.4 it can be seen that in the weeks from May and July, it is the

max and majority algorithms that do not consider the wall feature producing the

highest precision and recall values. For these weeks, it is the max-nowall algorithm

producing the highest precision values of 67%, 81.89% and 85.29% and it is clearly

themajority-nowall algorithm producing the highest recall values of 96.58%, 81.95%,

and 69.11%. In February, the max algorithm produces the highest precision value of

76.92%, and the highest recall value is produced by the majority-nowall algorithm

of 58.44 %, closely followed by the majority algorithm with a recall value of 54.55%.

In the other months, the max and majority algorithms do not really feature at all.

For example, in other months the max algorithm either produced a precision

value of zero, or didn’t produce any valid number since it had not detected any

positive events at all. The poor precision value of the max algorithm makes sense

since if any of the images taken within the timeframe of the in-situ sensor value

were reported as positive, then this would not be detected as a high level event in

this context. During these particular months the precision value of the majority

algorithm is also quite poor, however never as bad as that for the max algorithm.

Recall values for both algorithms are also very poor for these time periods with

the max algorithm producing a recall value of zero for each of the three weeks and

the majority algorithm producing a maximum recall value of 0.85%. Taking the

wall feature out of each of these algorithms greatly boosts their performance with

max-nowall having a greater precision and lower recall than majority-nowall due to

the fact it is probably detecting more features and therefore less events.
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8.2.1.2 Event 2 - Low Water Event

Models

Figure 8.5: Precision and recall values for the models M1-M7 in de-
tecting low level water events

Figure 8.5 shows the precision and recall values for models M1-M7 in detecting

a low level depth event. Similar to the high level event, it is M1, M4, M5 and M7

that appear to be performing the best in terms of precision scores overall. The

highest precision is 89.59% in May (M1), 84.65% in June (M7), 52.67% in July

(M5), 54.96% in January (M5), and 51.9% in February (M4). There are scenarios

in July and January where some models produce a precision score of zero. In terms

of recall it is the same models generally producing the highest recall scores. The

highest recall score achieved is 41.95% in May (M1), 81.73% in June (M5), 56.8% in

July (M1), 62.94% (M1) in January, and 38.34% in February (M1 and M7). These

recall and precision scores are overall not as good as those achieved for the high

level event.

Visual Sensor Streams

Figure 8.6 shows the precision and recall values for the visual streams in detecting a

low water depth event. A low water event is detected by the visual stream if either

the island feature or the near wall feature is detected. Since the wall feature is

not used in this algorithm there is no need for a visual data stream that does not

consider this feature, hence we are left with two visual streams represented by the
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Figure 8.6: Precision and recall values for visual data streams in
detecting low level water events

max and majority algorithms described in Chapter 4

As can be seen from Figure 8.6, these algorithms perform exceptionally well in

terms of recall. However compared to the high level event where at least three fea-

tures had to be classified correctly, only one feature has to be classified correctly

in this scenario. This probably explains the lower precision values. It is the op-

posite scenario also in that it is the max algorithm that is producing higher recall

and lower precision values which is reasonable since this event relies on the visual

streams positively detecting a feature as opposed to not detecting a feature at all

and the max algorithm is more inclined to positively detect a feature. The high-

est precision values for each of the weeks are 75.78%, 67.40%, 33.33%, and 56.10%.

These are all produced by the majority algorithm. The highest recall values for each

of the weeks are 97.12%, 97.76%, 100%, and 87.22%. These are all produced by the

max algorithm, although the 100% recall value in July is matched by the majority

algorithm.

8.2.1.3 Overall Performance of the Models and Visual Sensor Streams

Overall the highest precision and recall values that can be achieved by the models

and the visual sensor streams are very satisfactory for the high level event, with

improvements perhaps desirable in January and February, even though the highest

values achieved may be suitable for many application contexts. The low level event

resulted overall in lower precision and recall scores from the models. However, it
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resulted in higher recall scores from the visual sensor streams at the expense of

precision.

In some cases alternative models or visual streams achieved the best performance

in the lower performing months (i.e. January and February for the models, and

January for the visual streams) compared to those generally producing the best

performance in the higher performing months. In general it is apparent how there

is a clear difference between the highest and lowest performing models and that

this can change between months. Even though there is generally a set of models

that perform best, this can change from month to month along with the model

producing the best score. Hence a real-time update tool on the performance of

models would be quite beneficial. We now address this through investigating the

benefits of incorporating a trust and reputation model for real-time selection of the

most appropriate model.

8.2.2 Addition of a Trust and Reputation Framework

There are some issues that need to be taken into consideration before we incorpo-

rate a trust and reputation model for selecting the most suitable model or visual

sensor stream to replicate the in-situ sensor. Firstly the trust and reputation model

that was described in Chapter 7 was not optimised for the events considered here.

Rather it was optimised to regard the models producing values closest to the in-situ

sensor values to be the most trustworthy. However models largely overestimating

and underestimating the depth curve may produce better event detection results in

this scenario. Hence it is interesting to see how a trust and reputation model not

optimised for the specific task at hand performs in this scenario.

Secondly the time point at which the in-situ sensor fails determines the particular

model that is chosen i.e. the most trustworthy model at that particular point in

time, reflecting its ability to cope with current trends at the site. Hence the analysis

of the performance of the trust and reputation model is sensitive to the particular

time epoch that the most trustworthy model is chosen. Once the in-situ sensor fails,
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June Jan Feb General
CC MAE CC MAE CC MAE CC MAE

M1
(Cond)

0.9755 0.1765 0.9045 0.3338 0.9365 0.2606 0.9305 0.3051

M2
(DO)

0.8425 0.411 0.8484 0.3861 0.7698 0.526 0.6921 0.6104

M3
(Temp)

0.8261 0.4425 0.7679 0.4868 0.8117 0.4943 0.6336 0.6799

M4
(Cond-
DO)

0.9803 0.1581 0.9427 0.2787 0.9462 0.2422 0.9659 0.2141

M5
(Cond-
Temp)

0.9818 0.1477 0.9272 0.2916 0.9393 0.2507 0.9598 0.2293

M6
(DO-
Temp)

0.9202 0.2583 0.9158 0.2785 0.9314 0.2817 0.8291 0.4685

M7
(Cond-
Temp-
DO)

0.983 0.144 0.9555 0.2536 0.946 0.2395 0.9743 0.1845

Table 8.9: Results of 10-fold cross validation of each of the training
datasets for depth prediction

the continued trust can no longer be calculated. Therefore our analysis proceeds as

follows:

Selection of Models: From the results of the cross-validation evaluation carried

out on each of the training datasets for depth prediction, the best performing models

are chosen for use in the two scenarios described below (See Random-model, Random-

value). In a real-world scenario, viewing the performance on test data is not possible

hence models are chosen based on cross-validation evaluation. In Chapter 7 the

generalised model is used for carrying out predictions on test data in May and July

and the monthly models are used for carrying out predictions on test data from

June, January and February. Hence we continue with this methodology here. From

Table 8.9, it is clear that there are five models with correlations over 0.9 for January,

February and June – M1, M4, M5, M6 and M7, and four for the generalised model

– M1, M4, M5, and M7.

Evaluation Measure: In Section 8.2.1 the evaluation metrics of precision and
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recall were used. Here performance is measured in terms of the F-measure which

represents the harmonic mean of precision and recall, since it is desirable to maximise

both. It is calculated using the following formula:

F =
2 ∗ precision ∗ recall
precision+ recall

(8.3)

Models to be Evaluated: We use the term epoch in order to refer to a time

point for which there exists a data reading. For each test set from the five test

months, the evaluation proceeds by selecting a window of 500 classifications at the

first epoch in each test set, from the following different models:

• M1, M2, M3, M4, M5, M6, M7

• Random-model- Randomly selects one of the four or five best performing

models outlined above at the first epoch of the evaluation and continues to use

the values from this model at each epoch for the remainder of the window.

• Random-value- Randomly selects an output from one of the four or five best

performing models outlined above for each of the 500 values at each epoch.

Trust Models to be Evaluated: The trust model is used to select the classifi-

cations output by the most trustworthy model at the start epoch. Based on analysis

of the trust outputs from Chapter 7, it is clear that there are often a number of

models that are the most trustworthy or that have trust values that are quite close.

Hence a second approach takes the classifications of the top four trustworthy models

at the start epoch and fuses their classification outputs in four different ways which

are outlined below. Hence the Trust Models that are evaluated are as follows:

• TM – Selection of the most trustworthy of all 7 models M1-M7 at the be-

ginning of the evaluation window, and subsequent evaluation of that models

outputs across the evaluation window.

• TM-max – Selection of the top four most trustworthy of all 7 models M1-M7

at the beginning of the evaluation window, and selecting the maximum output
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from each of these at each point in the evaluation window for subsequent

evaluation (i.e. if any of the top 4 trustworthy models reports a positive output,

the output is positive at that particular point in the evaluation window)

• TM-min – Selection of the top four most trustworthy of all 7 models M1-M7

at the beginning of the evaluation window, and selecting the minimum output

from each of these at each point in the evaluation window for subsequent eval-

uation (i.e. if any of the top 4 trustworthy models reports a negative output,

the output is negative at that particular point in the evaluation window)

• TM-maj – Selection of the top four most trustworthy of all 7 models M1-M7

at the beginning of the evaluation window, and outputting a positive result at

each point in the evaluation window only if a majority of these agreed on this

classification (i.e. 3 or more)

• TM-maj-equal – Selection of the top four most trustworthy of all 7 models

M1-M7 at the beginning of the evaluation window, and outputting a positive

result at each point in the evaluation window if 2 or more of the models have

output positive.

Evaluation Methodology: As previously outlined, we use the term epoch in

order to refer to a time point for which there exists a data reading and the evaluation

proceeds by selecting a window of 500 classifications at the first epoch in each test

set from each of the models outlined above. An F-measure is calculated for each

of the models based on their classifications. The window then moves forward 1

epoch in the test set and selects the following 500 classifications and subsequently

another F-measure is calculated for each model. This continues until an epoch is

reached in the test set where there are not 500 epochs following. The evaluation

subsequently terminates and results in a series of F-measures for each of the 14

models for each of the test sets. A window of 500 was chosen as this seems to

represent a sufficient amount of time both to contain a large enough number of

events and also to determine the performance of the trust models when the in-situ
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sensor is offline for a long time period and updated trust values subsequently cannot

be calculated. A window of 500 values corresponds to approximately 4 days. The

particular time that an in-situ sensor goes offline determines the model chosen, hence

the evaluation over a series of 500 value windows.

For the visual sensor a similar evaluation is carried out using all four streams

outlined for the high level event in Section 8.2.1.1 and both streams outlined for the

low level event in Section 8.2.1.2. However in this scenario a window size of 150 is

used as there are less values due to the fact that the visual sensor does not produce

estimations at night. However a value of 150 represents approximately two days,

considering hours of darkness are not being evaluated.

8.2.2.1 Models

M1 M2 M3 M4 M5 M6 M7 Rand-
mod

Rand-
val

May 0.7391 0.3492 0.2889 0.7293 0.7222 0.3757 0.7435 0.7342 0.7343
June 0.8405 0.3154 0 0.8213 0.8232 0.3192 0.8243 0.7244 0.7276
July 0.8266 0.4178 0.1672 0.8189 0.8178 0.1964 0.8354 0.8229 0.8266
Jan 0.4045 0.3305 0.2335 0.366 0.308 0.3347 0.1314 0.3062 0.3371
Feb 0.4472 0.4883 0.4827 0.4460 0.4553 0.4945 0.4412 0.4591 0.4604

Table 8.10: Mean F-measure for each of the 7 in-situ data models in
detecting a high water event

TM TM-Max TM-min TM-Maj TM-Eq-
Maj

May 0.7234 0.7785 0.3052 0.6242 0.7516
June 0.8195 0.8259 0.1392 0.8408 0.8272
July 0.78 0.8890 0.2720 0.8097 0.8645
Jan 0.3596 0.4508 0.4565 0.3683 0.4002
Feb 0.4054 0.4514 0.3654 0.4414 0.4407

Table 8.11: Mean F-measure for each of the 5 trust models using
data from the 7 in-situ data models in detecting a high
water event

As previously outlined the evaluation described in the previous section results

in a series of F-measures for each of the 14 models. Subsequently we calculated
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the mean F-measure for each of the models. The mean F-measure is the mean

for 1505 epochs in May, 1788 in June, 1183 in July, 1591 in January and 1609 in

February. Since the evaluation results in a series of F-measures corresponding to the

performance of each model on each window of 500 values, a paired t-test is used to

determine whether the series of F-measures from two models differ from each other

in a significant way. We compare the output for the best performing data model

with that of the best performing trust model, in order to determine that if there is

a difference in the mean F-measure for the best performing trust model, whether

this difference is significant. The null hypothesis in this context is that the mean of

population 1 is equal to the mean of population 2 (i.e. µ1 = µ2) and the alternative

hypothesis is that the mean of population 1 is not equal to that of population 2 (i.e.

µ1 ¡ µ2). We use a two-tailed paired t-test where p ¡ 0.01.

Table 8.10 shows the mean F-measure for each of the models using no trust and

reputation framework in detecting a high water event and Table 8.11 shows the mean

F-measure for each of the models incorporating the trust and reputation framework

in detecting a high water event. Despite not being optimised for this scenario and

a window size of 500 epochs (over 4 days, in other words using the most trustwor-

thy model without regular updates on its performance over 4 days), the trust and

reputation model performs very well. Simply choosing the most trustworthy model

generally performs better than the Random-model or Random-value approach (in 3

out of 5 cases) and produces output among the higher scores achieved by M1-M7

but never the best. However when we adopt a late-fusion approach whereby we

combine the output of the top four trustworthy models, this results in an improve-

ment in mean F-measure over the nine models not incorporating the framework in

all cases except for February (i.e. 4 out of 5 cases). Using a two-tailed paired t-test

as described above, this is a significant difference in all cases highlighted in bold

(May, July and January). While there is an increase in June, this was not shown to

be significant. Adopting a fusion approach increases the performance of the trust

models in all cases. The fusion approach that performs the best is not consistent,
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however TM-max produces the best score in 3 out of 5 cases, amongst the five trust

models.

M1 M2 M3 M4 M5 M6 M7 Rand-
mod

Rand-
val

May 0.4953 0.0185 0.0034 0.4582 0.3578 0.0275 0.3749 0.4233 0.4243
June 0.7975 0.2096 0.2125 0.8148 0.8323 0.2084 0.8267 0.6826 0.7225
July 0.4955 0.0678 0 0.4909 0.5237 0 0.5417 0.5101 0.5070
Jan 0.4154 0 0 0 0.3507 0 0 0.1781 0.2236
Feb 0.2366 0.0481 0.1589 0.2034 0.1560 0.0989 0.1711 0.1761 0.1736

Table 8.12: Mean F-measure for each of the 7 in-situ data models in
detecting a low water event

TM TM-Max TM-min TM-Maj TM-Eq-
Maj

May 0.3578 0.4699 0.3577 0.3040 0.4180
June 0.8179 0.8391 0.1243 0.8087 0.8271
July 0.4513 0.5322 0.1643 0.4954 0.5573
Jan 0.2385 0.3394 0.1826 0 0.2828
Feb 0.1786 0.2186 0.1632 0.1310 0.1746

Table 8.13: Mean F-measure for each of the 5 trust models using
data from the 7 in-situ data models in detecting a low
water event

Table 8.12 shows the mean F-measure for each of the models using no trust and

reputation framework in detecting a low water event and Table 8.13 shows the mean

F-measure for each of the models incorporating the trust and reputation framework

in detecting a low water event. Similar to the previous analysis in Section 8.2.1,

performance is generally poorer for the low water event. Similar to the previous

event, in 3 out of 5 cases simply choosing the most trustworthy model generally

performs better than the Random-model or Random-value approach and produces

scores mostly among the higher scores of M1-M7, however again never producing the

highest score. However a fusion approach again appears to increase performance,

with a trust model producing a better score than any of the models not incorporating

the framework in 2 out of 5 cases. Again using a two-tailed paired t-test as described

above shows that this is a significant difference in both cases. Again adopting a
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fusion approach increases the performance of the trust models in all cases, with

TM-max producing the highest F-measure amoongst the five trust models in 4 out

of 5 cases.

Overall the performance of the trust models are very satisfactory since they have

not been optimised for this purpose. They result in an improvement over models

not incorporating the framework in 6 out of 10 cases, and a significant effect in 5

cases. The fusion approach clearly seems to perform better than simply selecting the

individual most trustworthy model, since it increases the performance of the trust

models in all cases. The fusion approach that performs the best is not consistent,

however TM-max produces the highest F-measure amongst the five trust models in

7 out of 10 cases. Overall it appears that the trust models perform best in months

where a selection of some of the individual models perform better. In January for

example there is an F-measure of 0 for many models.

8.2.2.2 Visual Streams

Max Max-
nowall

Maj maj-
nowall

Rand-
mod

Rand-
val

TM

May1-
7

0 0.6218 0.0294 0.6115 0.3217 0.4334 0.6115

May8-
14

0 0.5585 0.0116 0.7494 0.3174 0.4330 0.7494

July1-
7

0 0.4009 0.0181 0.7518 0.2962 0.3716 0.7518

Feb8-
12

0.1588 0.2092 0.4123 0.3654 0.2894 0.3188 0.3654

Table 8.14: Mean F-measure for each of the 7 visual stream models
and the trust model in detecting a high water event

Table 8.14 and Table 8.15 show the mean F-measure for each of the 7 scenarios

(max, max-nowall, majority, majority-nowall, random-model, random-value, trust-

model) for the high level event and the 5 scenarios (max, majority, random-model,

random-value, trust-model) for the low level event above for each of the test periods.

The mean F-measure is the mean for 417 epochs in the first test week in May, 403
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Max Maj Rand-mod Rand-val TM
May1-
7

0.5306 0.7860 0.6521 0.6247 0.7860

May8-
14

0.5542 0.7117 0.6328 0.6199 0.7117

July1-
7

0.2267 0.4211 0.3179 0.2941 0.4211

Feb8-
12

0.3812 0.3495 0.3605 0.3841 0.3495

Table 8.15: Mean F-measure for each of the 5 visual stream models
and the trust model in detecting a low water event

in the second test week in May, 247 in the July test week, and 126 in the January

test week.

In this case for the high-water event the trust model is initialised with majority-

nowall as the most trustworthy since this is clearly the best performing and there

may be an initialisation situation during darkness where for many epochs all streams

are on the same trust value of 0.5 before they have produced any values. In other

words, if we begin calculating trust values during darkness, the image processing

algorithm will be unable to detect image features and hence all visual streams will

be initialised with the same trust value. Thus when choosing the most trustworthy

model at the beginning of a time window in order to use its values for the rest of

that time window, it won’t necessarily be the most reliable visual stream if we use

a random approach. This could be detrimental to the analysis here, especially if all

visual streams are on the same trust value at the beginning of a series of windows,

which is possible considering that in this analysis the beginning of the next window

moves forward just one epoch each time and the most trustworthy model at this

particular epoch is used to provide the measurements for the rest of the window.

The low-water event is initialised with the majority as most trustworthy.

For both events, in all cases except for one (February) the trust model is consis-

tent with the highest score achieved by the best performing visual sensor stream. It

is clear that the trust model is choosing this best performing visual stream as the
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most reliable at nearly all epochs. The best performing visual sensor stream here is

generally consistent with the best performing in the results from Section 8.2.1.

8.3 Conclusion

In this Chapter we examined the performance of the multi-modal network from an

applications perspective. Firstly in recognising that requirements vary in the context

of different applications, we analysed the output values of a variety of the models

and sensor streams in relation to various threshold values of the in-situ sensors.

Some of the in-situ data models demonstrated excellent performance even within a

95% threshold margin of the in-situ sensors at the Lee Maltings. However there were

variations in how the models performed across the five months the best performing

model for each month varied. Overall each month, some of the models displayed a

very promising performance that would be suitable for many application contexts.

In our analysis on the satellite data products, some of the HRDDS data products

providing SST values also demonstrated excellent performance with 95% of values

within extremely low margins of the in-situ SST sensors at the Mid-Bay and Mace

Head test sites. However other products produced a much poorer performance in

terms of this analysis. These tended to be products that had a low daily data

availability. When analysing the chlorophyll data products, it is clear that the

GlobColour products are not particularly suited to monitoring at this particular

point. Hence incorporation of other products would need to be investigated. As

previously outlined the purpose here is not to carry out a thorough investigation of

all available products but rather to highlight the issues with the use of such products.

It was difficult here to come to any conclusive results regarding the performance of

the Ifremer product. The GlobColour products appeared to converge more quickly

to the higher percentage values, however they had extremely low data availability

compared to the Ifremer data product which had almost daily data availability. The

unreliability of the in-situ chlorophyll sensors made it difficult to determine which
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was the more accurate analysis.

Following this we carried out a case study examining the performance of the

network in order to examine the effectiveness of a multi-modal network in detect-

ing depth events at the Lee Maltings site. In the first part of this case study we

examined the ability of these alternative sensing modalities including the models

developed in previous chapters to compensate for the failure of a node in the in-situ

network. In the second part of the case study, we equipped the network with a trust

and reputation framework to select the most reliable model or sensor stream at a

particular point in time so see if this improved performance.

For the detection of the depth events, overall the highest precision and recall

values that can be achieved by the models and the visual sensor streams is satisfac-

tory in the context of a variety of application scenarios. For the models there is a

poorer performance in general for the low water level event. On the other hand this

event resulted in higher recall scores from the visual sensor streams at the expense

of precision. In general there was a clear difference between the highest and lowest

performing models and changed between months. Even though there was gener-

ally a set of models that performed best, this often changed from month to month

along with the model producing the best score. This demonstrated the benefits of

a real-time update tool on the performance of the models.

Subsequently when we equipped the network with a trust and reputation frame-

work (i.e. the modified RFSN model) we found that it resulted in an improved

performance of the in-situ data models in 6 out of 10 cases with this difference

being significant for 5 of these cases. Adopting a late-fusion approach improved

the performance of the trust models in all cases. TM-max produces the highest

F-measure amongst the five trust models in 7 out of 10 cases. For the visual sensor

streams, for both depth events in all cases except for one (February) the trust model

is consistent with the highest score achieved by the best performing visual sensor

stream. These analyses and results lead us into the final chapter of the thesis, where

we address our overall research conclusions.
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Chapter 9

Conclusions

In this thesis we proposed that marine environmental monitoring applications would

strongly benefit from the use of a multi-modal sensor network utilising visual sen-

sors, modelled outputs and context information alongside the more traditional in-

situ wireless sensor networks. We carried out investigations into the use of a variety

of models and sensing modalities to improve the efficiency and effectiveness of an en-

vironmental monitoring network with very exciting and promising results. However

it was also apparent that each of these alternative data sources can be unreliable

for the detection of certain events. Subsequently we modified a trust and reputa-

tion model from the literature known as RFSN for optimising the use of these data

sources in the network and choosing the most reliable model at a particular point

in time. We evaluated the use of this unique approach for three diverse applica-

tion scenarios. From this it was apparent that the modified RFSN framework could

be used to reflect the behaviour of a model or data source over time. We carried

out a case study in relation to the detection of depth events where we evaluated

the performance of the network both with and without the RFSN framework and

it was shown to improve performance. In this chapter we provide a summary of

each of the chapters of this thesis which leads us into a section dedicated to the

overall conclusions in relation to our research hypotheses. Following this, we reflect

on future avenues of research following the outcomes of our experiments and the
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analysis and research conducted in meeting our research objectives and evaluating

our hypotheses.

9.1 Summary

In our introductory chapter we highlighted the need for high spatial and temporal

monitoring of our water systems and technologies that are helping to streamline

the water quality monitoring process in the form of in-situ wireless sensor networks

and novel analytical instruments. We outlined the limitations with the use of these

technologies summarising the main issues in terms of scalability and reliability. We

proposed the use of a multi-modal sensor network utilising visual sensors, modelled

outputs and context information to enhance the use of a conventional in-situ sensor

network. We also proposed the use of a trust and reputation framework to deal

with the unreliability associated with each of the alternative data streams in order

to optimise their benefits to the network.

In Chapter 2, we provided an overview of some key concepts from the literature

in relation to environmental sensor networks. We highlighted a number of difficulties

with the current state of the art in environmental sensing technology in meeting the

needs of environmental monitoring applications. We then highlighted some avenues

for progress in order to achieve higher scale chemo/bio-sensing and more efficient

and effective environmental monitoring networks. This lead us on to an overview

of trust and reputation systems. We provided a detailed outline of the model to be

adapted for use in our research and our reasoning behind choosing this particular

model.

In Chapter 3 we introduced our two test sites - the River Lee and Galway Bay -

both representative of different water systems and challenging from an environmental

monitoring perspective. For each of the sites we described a range of sensors, quite

diverse in nature and sometimes not all operational. We highlighted some of the

issues with the in-situ sensors and how this provided us with a very real testbed on
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which to explore multi-modal sensing.

Chapter 4 presented our work in relation to research question 1. We demon-

strated the use of a visual sensor (camera) in a river environment investigating how

it could be used as a complimentary sensing modality to the in-situ environmental

sensor network. Since depth could provide us with an indication of a variety of

conditions at the River Lee site and could be tied in with readings from the in-situ

sensor network we chose to estimate depth from the camera images. We investigated

features in the image that correspond to readings from the in-situ depth sensor and

highlighted the appearance of four particular features that coincided well with dif-

ferent changes in water level and different ranges of depth values. We subsequently

developed and evaluated four software classifiers for the detection of each of these

features with very satisfactory results.

Chapter 5 presented our analysis in relation to research question 2. The key

objective here was to investigate the availability of satellite data at an appropriate

spatial resolution to provide measurements that can most accurately coincide with

data from the in-situ sensor node. This data also needs to be available at a sufficient

temporal resolution so that if the in-situ sensor node were to fail, we can still avail

of high frequency data. With a specific focus on ocean colour and SST data our

review on satellite remote sensing data highlighted the difficulties in achieving this.

Following this analysis, we outlined satellite remote sensing data products chosen

for use in our research.

Chapter 6 presented our work in relation to research question 3 and research

question 4. In the first part we presented a methodology for the incorporation of

rainfall radar imagery data and water depth data into an ANN model for predicting

average freshwater levels at the River Lee site for potentially controlling the opera-

tion of an in-situ phosphate sensor. We examined a number of issues including the

most effective manner to present rainfall radar information extracted from a digital

image to the network, the effects of rainfall from different parts of the catchment on

the model, the effect of differing lag times on the model and the benefits or influence
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of rainfall radar data or water depth depth to model output. Our analysis produced

some very interesting results and overall the study demonstrated that with limited

training data, a system for controlling the sampling rate of a sensor can be set up

quickly and cost effectively at a deployment. This system may also have a potential

use as an early warning system for floods. In the second part of the chapter we

developed and evaluated models incorporating information from a variety of differ-

ent combinations of heterogeneous sensor nodes for the prediction of values of an

alternative in-situ node in the network at the River Lee. We investigated what we

could achieve with limited data sources into replicating the activity of a sensor whilst

there may be a possible gap in the data or fault in the network, and whether we

could somewhat estimate the missing data. We developed and evaluated a variety of

models for the prediction of depth, conductivity, dissolved oxygen and temperature

with very promising results. The performance obtained demonstrates the powerful

role these models may play in estimating missing data in a low cost manner with

limited data availability and simplified input model scenarios.

In Chapter 7 we presented our work in relation to research question 5. Following

our analysis in preceding chapters, it was clear that while some of these models

and additional data streams could provide very good performance, some were more

effective than others. Hence we needed to explore how their use could be optimised

in the network. In this chapter we adapted a trust and reputation framework from

the literature for dealing with the unreliability associated with each of the modelled

outputs and the visual sensor streams, in order to improve their benefit to the net-

work. We examined its application in three diverse scenarios. First we demonstrated

the need for a real-time analysis tool to monitor the behaviour and performance of

the various in-situ data models. Subsequently we described our adaptation of the

trust and reputation framework for use in this scenario and examined its use. We

demonstrated its effectiveness in reflecting the ability of the models to replicate in-

situ sensor outputs over time and in providing information that would be difficult to

determine otherwise. In the second application scenario we adapted this trust and
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reputation model for determining the most reliable satellite data analysis product

at the Mid-Bay and Mace Head test sites. We highlighted its unsuitability for use

with the chlorophyll data products but we demonstrated its use for the SST data

products. Finally in the third application scenario we demonstrated it as a tool

for relating visual data stream outputs at the River Lee to the in-situ data and

determining the most reliable models.

In Chapter 8 we presented our work in relation to research question 6. This

chapter was dedicated to evaluating the performance of a multi-modal network from

an applications perspective. Firstly we analysed the output values of the in-situ

data models and the satellite data products in relation to various threshold values

of the in-situ sensors. Some of the in-situ data models and SST data products

demonstrated excellent performance, however the analysis of the chlorophyll data

products raised many issues. Following this we carried out a case study evaluating

the performance of the multi-modal network in detecting high and low depth events.

We wanted to determine how each of these alternative sensor streams would perform

in picking up these events had the in-situ depth sensor failed. Overall, good precision

and recall scores were achieved. Finally we equipped the network with a trust

and reputation model for real-time selection of the most appropriate output in the

network. Overall we found this brought about improved performance in optimising

the use of in-situ data models and visual sensor streams in the network.

9.2 Conclusions

At this point it is important to refer back to the two main hypotheses of this research

presented in Chapter 1. We first summarise our conclusions in relation to hypothesis

one and then in relation to hypothesis two.

Our first hypothesis states that the use of multiple sensing modalities including

visual sensors, context information and modelled outputs will enhance the use of

an in-situ sensor network in the marine environment. In order to evaluate this
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hypothesis firstly we investigated the use of a camera as an alternative sensing

modality in a river environmental monitoring network. We chose to evaluate the

estimation of depth from the camera images since it is an important and influential

parameter at the site and it can also be tied in with the in-situ depth sensor deployed

at this location. We identified four features that could provide an estimation of

depth. We developed classifiers for each of these depth features which performed very

well considering the challenging data in question. For the 2-class model, accuracies

of 89.2%, 85.38%, 98.63% and 79.25% were achieved on the May test data. The

results were slightly poorer for the combined test data - NovJanFeb, with accuracies

of 67.08%, 79.6%, 94.58% 53.75%, leading us to us training models with data specific

for this time period for further experiments. Since our evaluation determined that

we could successfully detect each of the four depth features, we related these features

back to the in-situ sensor readings and we carried out a case study evaluating the

use of a visual sensor as an alternative sensing modality to the in-situ sensor in

detecting high and low depth events. We wanted to determine whether it would be

possible to use this as a temporary backup sensing modality if the in-situ sensor

went offline.

We used between two and four visual data streams differing in terms of the

algorithm used to determine if an event had occurred, based on the appearance or

non-appearance of certain features. We had found one of the classifiers to perform

very poorly on negative instances which formed the majority of the dataset, hence

configurations of the visual streams were evaluated with and without this feature,

where those without the inclusion of this feature generally performed much better.

Overall we found the highest precision and recall values that can be achieved by

at least one of the data streams to be very satisfactory for the high water level

events. Performance was poorer for the February test data, even though we used a

model trained using a combination of data from November, January and February.

It may be the case that the models need to be improved for this particular time

of year with better training data, and consideration of further features as input to
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the SVM for modelling each of the depth features. The lower water level events

achieved higher recall scores it seems at the expense of precision. However this was

perhaps due to the small number of features that had to be classified correctly for

this event compared to the high water event. Overall however we demonstrated the

effectiveness of a camera as a back-up sensing modality in a river environmental

monitoring network. The depth features could be effectively classified and related

back to the in-situ readings and subsequently used for the detection of depth events.

While it does not replace the use of the in-situ depth sensor in the manner it has

been demonstrated in this context, it has successfully been demonstrated as a tool

that can enhance the use of of an in-situ sensor network in the marine environment.

Secondly, we evaluated the use of satellite remote sensing data to complement

an in-situ sensor network in Galway Bay. Our review on SST and ocean colour

satellite data highlighted many issues and we subsequently chose to use a selection

of SST and chlorophyll data analysis products combining data from a variety of

sources in our study. The SST data products demonstrated mixed performance

and it is apparent that certain data products are not suitable at all for use in the

network. However three of the selected products produced excellent performance

at high enough temporal scales to complement the use of an in-situ sensor, with

these products appearing to have better performance at the Mid-Bay test site than

Mace Head. The chlorophyll data products showed some interesting outputs and

highlighted the need for a closer analysis looking at the percentage of missing data

values. The GlobColour products are obviously not particularly suited to monitor-

ing at this particular point, and the unreliability of the in-situ chlorophyll sensor

subsequently rendered it difficult to come to any conclusions regarding the Ifremer

product. This highlighted the issues with such products and the need for careful

consideration where many alternative products may need to be investigated for their

suitability to the application context. However overall there are many applications

and benefits to using satellite data products in environmental monitoring networks

and they can greatly improve and enhance their operation.
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Thirdly, we evaluated the use of in-situ data models in a river environmental

monitoring network. We developed and evaluated a variety of models for the pre-

diction of depth, conductivity, dissolved oxygen and temperature, with many of these

models demonstrating excellent performance in our initial evaluation. We evaluated

different configurations of the three parameter models on unseen test data as these

had performed very well in our initial evaluation. For the prediction of each param-

eter at least one model configuration reached a correlation of over 0.8. Considering

the difficulties in modelling the dynamics at the Lee Maltings site, the performance

obtained here demonstrates the powerful role these models may play in estimating

missing data in a low cost manner with limited data availability and simplified input

model scenarios. When we evaluated the performance of models for specific time

periods, while it was apparent that very high performance could be achieved from

various model configurations for the detection of each parameter, performance of

specific models varied across months, and it was often difficult to predict how a

model would perform on unseen test data based on its initial evaluation. This fur-

ther reinforced the need for a real-time update tool for evaluating the behaviour of

models over time in the network, allowing us to choose the most appropriate model

at a specific point in time or during a specific event.

We evaluated the performance of these models from an applications perspective

examining the percentage of outputs that are within a particular error margin of the

in-situ sensor with many of the data models displaying a very promising performance

that would be suitable for many application contexts. In the case study analysing

their ability to detect high and low water events, overall the highest precision and

recall values that can be achieved were very satisfactory for the high level event,

with improvements perhaps desirable in January and February. Monthly models

were used for predictions in these months as opposed to the generalised models,

since they achieved better performance. However as previously outlined the weeks

chosen for training the models were chosen arbitrarily from the particular month. It

may be the case that data quality is more of an issue during these months since the
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sensors are longer into the deployment and more susceptible to failure or producing

faulty data. Hence a more focused training approach may be required. The low level

event overall produced lower precision and recall scores from the models. However

overall, it can be concluded that these models demonstrated themselves as effective

and useful tools that can improve the effectiveness and operation of an in-situ sensor

network in environmental monitoring applications.

Finally, we evaluated if context information from alternative modalities can be

used to enhance the efficiency of an environmental monitoring network. Our inves-

tigation into the use of rainfall radar imagery data and water depth data to improve

the operation of an in-situ chemical sensor produced a number of very interesting

results. We found particular parts of the catchment to be more influential on the out-

put of the model than others. Interestingly in many cases this corresponded to parts

of the catchment that had been highlighted as being influential in our catchment

description in Chapter 3. While the water depth data is the dominant influence on

the model output, the rainfall data does appear to have some impact on the network

despite its noisiness. Overall we found that the ANN performed very satisfactorily

for the application context in question. We highlighted specific combinations of

rainfall and water level lag times that appear to produce the best outputs. How-

ever it was also apparent that performance for specific time periods requires more

analysis as our test sets were quite limited. Overall it can be concluded from this

study that with limited training data, a system for controlling the sampling rate

of the nutrient sensor using contextual information can be set up quickly and cost

effectively at a deployment. It also has the potential of providing the basis for an

early warning system for flood monitoring and can bring about great efficiencies to

an environmental monitoring network.

Therefore based on the results of these four studies investigating the use of a

camera, satellite remote sensing data, in-situ data models, and context information,

we can successfully conclude that multiple sensing modalities enhance the use of

an in-situ sensor network in the marine environment. However it was also appar-
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ent from our analysis that each of these alternative data sources can be inherently

unreliable and it is often hard to predict their performance. With many producing

very promising results, an investigation into how to optimise their use in the net-

work was carried out. This leads us to our conclusions in relation to the second

hypothesis of this thesis. The second hypothesis states that a trust and reputation

model adapted for use in a multi-modal sensor network will help to deal with the

unreliability associated with the visual sensor streams and modelled outputs in the

network and optimise their use by choosing the most reliable output at a particular

point in time.

A trust and reputation framework from the literature known as RFSN was

adapted for dealing with the unreliability associated with each of the in-situ data

models and the visual sensor streams. The modified RFSN model was applied to

three specific application scenarios to examine its resilience across three very differ-

ent applications in environmental monitoring. We specifically wanted to evaluate

the ability of the alternative data streams to replicate the output patterns of the

in-situ sensor, and the model was hence tailored to this objective. We demonstrated

the ability of the model to reflect the behaviours of data streams over time in rela-

tion to their ability to produce output patterns in line with the in-situ sensor node.

The model also enabled us to pick up trends that are difficult to decipher otherwise

and to determine the magnitude of difference in reliability in one model compared

to another. However the model was not suitable for use in conditions where regular

data values were not available. For example it was not suitable for use with the

GlobColour data products since data was only intermittently available for the Mace

Head and Mid-Bay sites throughout the year.

In the case study for detecting high and low water events, when we equipped

the network with the trust and reputation framework it produced a very impressive

performance. For the in-situ data models, despite not having been optimised for

the detection of the events outlined, it resulted in an improvement in the output of

the network in the majority of cases, with a significant increase in performance in
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50% of the cases. The performance for the high level events was very satisfactory

with an improvement in the output of the network in all months but one, with

a significant increase in performance in 3 out of 5 of these months. Overall, the

trust models seemed to perform best in months where a selection of some of the

individual models were performing better. When we adopted a late-fusion approach

whereby we combined the output of the top four trustworthy models as opposed to

simply selecting the most trustworthy model, this resulted in an improvement in the

performance of the trust and reputation framework in all cases. For the visual data

streams the trust and reputation framework also performed very well. In all cases

except for one the trust model was consistent with the highest score achieved by the

best performing visual stream, for both events.

Therefore we can successfully conclude that a trust and reputation model helps

to deal with the unreliability associated with the visual sensor streams and modelled

outputs and optimises their benefits to the network. It provides a real-time update

tool reflecting the behaviour of models over time and it has demonstrated itself as

a useful tool in optimising the output of the network in the face of a number of

unreliable sources. We have therefore successfully confirmed our two research hy-

potheses. The following section summarises the main contributions of this research.

Subsequently we explore future avenues for research following the issues that have

been raised while carrying out the studies in this thesis.

9.2.1 Research Contributions

The contributions of this research consist of the following:

• An investigation into the use of a low cost off-the shelf camera as a comple-

mentary sensing modality to an in-situ sensor network and the development

and evaluation of models to classify the chosen parameter.

• A methodology for integrating pixel information from rainfall radar images

and in-situ depth data into an ANN for predicting average freshwater levels
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and an analysis of model outputs.

• The development and evaluation of models consisting of heterogeneous in-situ

information to predict the value of alternative in-situ nodes in an in-situ sensor

network where no redundant nodes are available at times of node failure.

• The adaption of the trust and reputation framework outlined in (Ganeriwal

et al., 2008) to a multi-modal sensor network, an outline of its possible appli-

cation scenarios and an examination of its use in these scenarios

• An evaluation of a multi-modal sensor network from an applications perspec-

tive and an evaluation of the performance of a trust and reputation framework

in a particular application scenario at producing the most reliable output from

multiple unreliable sensor streams in the network.

9.3 Future Work and Reflections

There are a wide range of exciting and novel opportunities for monitoring and char-

acterising our marine environment with the help of a wide variety of sensing plat-

forms. The findings of the research carried out in the context of this thesis have

generally been very positive towards the use of multi-modal platforms, and have

also opened up a whole range of possibilities with regards to future avenues of re-

search. Procurement of knowledge across a range of disciplines and integration of a

wide variety of technologies seems to be a re-occurring theme among many global

and European led initiatives e.g. GMES1, and recently funded European projects

e.g. Seventh Framework Programme (FP7)2. Looking at the individual technologies

evaluated within the context of this research, there are number of exciting opportu-

nities for further research into their use in the context of operational environmental

monitoring networks:

1Global Monitoring for Environment and Security, www.gmes.info
2http : //cordis.europa.eu/fp7/projectsen.html
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• Camera Sensor Networks in a River Environment: Whilst off-the-

shelf low cost cameras might not provide the same precision that an in-situ

sensor can, there are a large number of application opportunities. They have

the benefit of being remote from the environment and so are not subject to

the same issues as in-situ sensors such as biofouling. They are not affected

by extreme events such as flooding, unlike in-situ sensors which may become

unoperational when they are needed most. Essentially they act like a set of

eyes on the water and there are numerous application opportunities. While

in our study we were limited due to issues related to infrastructure and the

types of sensors deployed as part of the in-situ sensor network, there are nu-

merous avenues for future research exploring the use of multiple cameras at

different points along the river. Subsequent research has already begun within

CLARITY to develop a low cost self-powered mobile platform that could be

deployed at any point along the river.

While we evaluated the estimation of depth from the camera since it could

be linked in with the in-situ sensor network, our visual sensing system also

undertook the detection of other image features such as objects floating on

the water, boats, water turbulence etc. However there are a wide range of

further opportunities in this regard. For example, if there are further in-situ

sensors such as flow, turbidity, etc at the test site, this provides a whole new

set of possibilities for providing surrogate measurements from the camera for

a range of potential parameters. At the Lee Maltings site we were limited

with the features that could be linked up to the in-situ sensor network, but

this may not be the case in future deployments or test sites. There are also

other potential features or landmarks that could be evaluated with a specific

application in mind, such as alerting for possible flooding.

• In-Situ Data Models: The performance of the in-situ data models was very

impressive considering the number of complex processes in operation at the

Lee Maltings which are difficult to account for and to model. We aimed to
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investigate what we could achieve using simple input model scenarios with

limited data, so that these could provide a form of redundancy in the network

without the need for any additional technology or data in the case of intermit-

tent node failure. The performance obtained here demonstrates the powerful

role these models may play in estimating missing data in a low cost manner,

and has provided a grounds for future research into further optimising their

outputs. A longer deployment would allow a better development and evalua-

tion of seasonal models where more data would also allow the quality of the

data to be considered before being selected for training purposes. It would

also be very interesting to evaluate the use of such models in a site without

the dynamics of the Lee Maltings and to compare the performance achieved

at both sites.

• Rainfall Radar Information as a Contextual Data Source: Our in-

vestigation into the use of rainfall radar and in-situ depth data in an artificial

neural network with a view to capturing a catchment’s response to rainfall

and predicting freshwater levels at the Lee Maltings, raised some very inter-

esting issues worth further investigation. These especially relate to the effects

of different parts of the catchment on the output of the model or response

times or lag times producing the best outputs. A larger dataset with a longer

deployment would also enable further investigation into the performance of

the model during specific time periods and the evaluation of seasonal models

if required. Further studies could also be carried out in relation to the perfor-

mance of the model during flood events and an investigation into its use as an

early warning system.

• Satellite Remote Sensing Data: Satellite remote sensing data is a power-

ful tool for better understanding our environment and it will play a significant

role in the future into the investigation of issues such as climate change. Its

use in an operational monitoring network has significant potential. However
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looking into the future, it appears that an integrated approach offers more po-

tential especially in areas greatly affected by cloud cover. This in itself opens

up a whole new area of research opportunities. If we can develop products

using satellite remote sensing data in the more difficult regions, they can sub-

sequently be promoted as a tool that can be suitably developed for any region.

The particular satellite data products that we choose to incorporate into our

studies however must also be carefully chosen within the specific context. For

example from our analysis it is apparent that certain products are not particu-

larly suited to monitoring the two test sites in Galway Bay. With the range of

satellite data products becoming available through services such as MyOcean

3, it would be interesting to pursue this analysis further with a varying set of

products. These products could also be further evaluated in a wide range of

application contexts such as predictive systems, rapid detection and response

systems, etc.

• Trust and Reputation Framework: The successful use of a trust and rep-

utation framework for optimising the use of a variety of these alternative data

streams to the network has demonstrated the benefits that the novel use of

such a framework can bring to an environmental monitoring network. It has

also opened the door to a whole new range of research opportunities. For ex-

ample we defined a specific notion of reliability with certain assumptions, this

could be adapted and optimised for use in other application scenarios. There

are also other issues that require further analysis. For example further inves-

tigations may consider how much misbehaviour a node needs to exhibit before

it is deemed more untrustworthy than another node or the actual trust value

of the node may be considered as opposed to simply the most trustworthy.

There are also possible opportunities for the integration of such a model into

other frameworks such as the OCG4’s Semantic Web. Future opportunities

3http :
www.myocean.eu

4Open Geospatial Consortium, http : //www.opengeospatial.org/

257



may lie in the further development of ontologies integrating such a framework

for finding the most reliable data sources within a specific context.

Overall, in evaluating our research questions and hypotheses we have produced

promising results that provide grounds for further investigation into the use of in-

novative methods for optimising our environmental sensor networks. It has also

opened the door to further opportunities for the exploration of multi-modal systems

and their potential applications with a view towards achieving the vision of large

scale detection and response systems in our environment.
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Glossary

AATSR Advanced Along-Track Scanning Radiometer.

ADEOS ADvanced Earth Observation Satellite.

ALI Advanced Land Imager.

AMSR Advanced Microwave Scanning Radiometer.

ATSR Along-Track Scanning Radiometer.

AVHRR Advanced Very High Resolution Radiometer.

CERSAT Centre ERS d’Archivage et de Traitement.

CNES Centre National d’Études Spatiales.

CNSA China National Space Administration.

COCTS Chinese Ocean Colour and Temperature Scanner.

COMS Communication Ocean and Meteorological Satellite.

CZCS Coastal Zone Colour Scanner.

CZI Coastal Zone Imager.

ERS European Remote Sensing Satellite.

ESA European Space Agency.

ETM+ Enhanced Thematic Mapper Plus.
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GHRSST-PP Global Ocean Data Assimilation Experiment High-resolution Sea-

Surface Temperature Pilot Project.

GOCI Geostationary Ocean Color Imager.

IFREMER Institut francais de recherche pour l’exploitation de la mer.

ISRO Indian Space Research Organisation.

KARI Korea Aerospace Research Institute.

KORDI Korea Ocean Research and Development.

MERIS MEdium Resolution Imaging Spectrometer.

MODIS Moderate Resolution Imaging Spectroradiometer.

MOS Modular Optoelectronic Scanner.

MSG Meteosat Second Generation.

NASA National Aeronautics and Space Administration.

NOAA National Oceanic and Atmospheric Administration.

NPP NPOESS Preparatory Project.

OCM Ocean Colour Monitor.

OCTS Ocean Colour and Temperature Scanner.

POLDER POLarization and Directionality of the Earth’s Reflectance.

SeaWiFS Sea-viewing Wide Field-of-view Sensor.

SEVIRI Spinning Enhanced Visible and Infrared Imager.

SPOT Système Probatoire d’Observation de la Terre.
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TMI TRMM Microwave Imager.

TRMM Tropical Rainfall Measuring Mission.

VIIRS Visible Infrared Imager Radiometer.
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Appendix A

Publications

We have published a number of works which have directly contributed to this thesis.

These are as follows:

A.1 Papers

1. Integrating Multiple Sensor Modalities for Environmental Monitor-

ing of Marine Locations

E. O’Connor, A.F. Smeaton, N.E. O’Connor, D. Diamond

In: ACM SenSys 2008 - 6th ACM Conference on Embedded Networked Sensor

Systems, 5-7 November 2008, Raleigh, NC, USA.

2. Views From the Coalface: Chemo-Sensors, Sensor Networks and the

Semantic Sensor Web

J. Hayes, E. O’Connor, J. Cleary, H. Kolar, R. McCarthy, R. Tynan, G.

O’Hare, A.F. Smeaton, N.E. O’Connor, D. Diamond

In: SemSensWeb 2009 - International Workshop on the Semantic Sensor Web,

1 June 2009, Heraklion Crete, Greece.

3. Environmental Monitoring of Galway Bay: Fusing Data from Re-

mote and In-situ Sources

E. O’Connor, J. Hayes, A.F. Smeaton, N.E. O’Connor, D. Diamond
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In: Remote Sensing for Environmental Monitoring, GIS Applications, and

Geology IX, SPIE Europe Remote Sensing, 31 August - 3 September 2009,

Berlin, Germany.

4. River Water-Level Estimation Using Visual Sensing

E. O’Connor, E. O’Connor, C O’Conaire, A.F. Smeaton, N.E. O’Connor, D.

Diamond

In IEEE EuroSSC 2009 - 4th European Conference on Smart Sensing and

Context, 16-18 September 2009, Guildford, U.K.

5. Short-term rainfall nowcasting: using rainfall radar imaging

P. Wang, A.F. Smeaton, S. Lao, E. O’Connor, Y Ling and N.E. O’Connor

In: EuroGraphics Ireland 2009 - 9th Irish Workshop on Computer Graphics,

11 December, 2009, Dublin, Ireland.

6. Image processing for smart browsing of oceancolor data products

and subsequent incorporation into a multi-modal sensing framework

E. O’Connor, J. Hayes, C. O’Conaire, A.F. Smeaton, N.E. O’Connor, D.

Diamond

In: RSPSoc Remote Sensing and Photogrammetry Society Annual Conference

with Irish Earth Observation Symposium, 1-3 September 2010, Cork, Ireland.

7. Image processing for smarting browsing of ocean colour data prod-

ucts: investigating algal blooms

J Hayes, E O’Connor, K.T. Lau, A. F. Smeaton, N.E. O’Connor, D. Dia-

mond

In: Remote Sensing for Environmental Monitoring, GIS Applications, and Ge-

ology IX, SPIE Europe Remote Sensing, 20 September - 23 September 2010,

Toulouse, France.

8. A multi-modal event detection system for river and coastal marine

monitoring
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E. O’Connor, A.F. Smeaton, N.E. O’Connor

In: IEEE Oceans 2011, 6-9 June 2011, Santander, Spain.

A.2 Presentations

1. The Application of Multi-Modal Sensor Networks to the Monitoring

of Coastal and Inland Marine Environments

E. O’Connor, J. Hayes, A.F. Smeaton, N.E. O’Connor

In: 3rd Annual Irish Earth Observation Symposium, 12th - 13th November

2009, Geological Survey of Ireland, Dublin.

2. A reputation and trust based multi-modal sensor network for envi-

ronmental monitoring

E. O’Connor, A.F. Smeaton, N.E. O’Connor, D. Diamond

In: In: Environ 2010: 20th Irish Environmental Researchers’ Colloquium,

17th - 19th February 2010, Limerick, Ireland
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Appendix B

Technologies Developed as Part of

This Research

We have published a number of technologies which have directly contributed to this

thesis. These are as follows:

• Visual Data Analysis Toolkit 1

This toolkit developed in C♯ was developed to provide a number of function-

alities. Firstly it was developed to enable the visualisation of the images and

the nearest in-situ sensor reading that corresponds to the time that image was

captured. This enables the identification of features that correspond to the

in-situ sensor readings. Secondly it was developed to carry out an initial in-

vestigation into a range of image processing techniques to extract information

from the images. For example classification of an image through finding its

closest match in an image database, carrying out background subtraction to

detect change in the image, carrying out various thresholding techniques for

the detection of various features, and the detecting of features such as objects

floating on the water, boats passing.

• Visual Data Analysis Toolkit 2

Following the investigation carried out through using the first visual data

analysis toolkit, it was decided to build specific software for the extraction of
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features for the detection of the four depth features outlined in Chapter 4 of

this research. This was developed in Matlab (Version R2009A). This software

extracts the relevant features from relevant parts of the image for subsequent

incorporation into an SVM at a later stage.

• Feature Set Development Software

Each of the classification and prediction scenarios (i.e. SVM classification for

visual features, ANN prediction for freshwater levels, and regression tree pre-

diction for the in-situ parameters) all required the development of a significant

number of feature sets for training and testing the models and evaluating var-

ious issues e.g. the most important visual features for describing the depth

features, the effect of different parts of the catchment on model output, the

best combination of lag times, the best combination of in-situ parameters for

the prediction of an alternative parameter, etc. Software was developed in

Java for developing feature sets.

• Satellite Image Analysis System

A satellite image analysis System was developed for the efficient browsing,

searching and analysis of MODIS chlorophyll data. This system is described

in O’Connor et al. (2010). The image processing was carried out in Matlab

(Version R2009A) and the user interface was developed using C♯. This system

is based on searching and analysing the data using the JPEG summary image

of the source data. It allows the user to view trends over time from specific

regions of Ireland and to search satellite data based on specific events.It also

allows the user to find similar images to an image of interest in the database.

This technology has been passed over for use to the Marine Institute.

• Satellite Data Extraction Software Software was developed using the

Beam API1 for extracting data HRDDS, GlobColour and Ifremer data prod-

ucts from the relevant pixels.

1http://www.brockmann-consult.de/cms/web/beam/
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• Trust and Reputation Framework Software was developed to apply the

modified RFSN model to the three applications scenarios described in the the-

sis and calculate trust values. Incorporated into this system was also software

for carrying out the experiments where the trust and reputation framework

was applied to a network for detecting depth events described in Chapter 8.
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Appendix C

Graphs for the Analysis of an

Artificial Neural Network

incorporating In-Situ Depth Data

and Rainfall Radar Data for

Predicting Freshwater Levels
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Figure C.1: Correlations for input models 1 and 2 for 1 day rainfall
information and 0 and 2 days water level information
for each strip of the catchment.

Figure C.2: Correlations for input models 1 and 2 for 2 days rainfall
information and 0 and 2 days water level information
for each strip of the catchment.
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Figure C.3: Correlations for input models 1 and 2 for 3 days rainfall
information and 0 and 2 days water level information
for each strip of the catchment.

Figure C.4: Correlations for input models 1 and 2 for 4 days rainfall
information and 0 and 2 days water level information
for each strip of the catchment.
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Figure C.5: Correlations for input models 1 and 2 for 5 days rainfall
information and 0 and 2 days water level information
for each strip of the catchment.
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Figure C.6: Correlations for input models 1 and 2 for 1-5 days rain-
fall information and 4 days water level information for
each strip of the catchment.
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Figure C.7: Correlation coefficients for input models 1 and 2 for 1,3
and 5 days of rainfall information and 0 and 2 days water
level information for strip 4 of the catchment, demon-
strating the input model that produces the highest cor-
relation for each scenario.
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Figure C.8: Correlation coefficients for input models 3-6 for 1,3 and
5 days of rainfall information and 0 and 2 days water
level information, demonstrating the input model that
produces the highest correlation for each scenario.
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Figure C.9: Correlation coefficients for input model 2 for 1 - 5 days
of rainfall information and 0 - 4 days water level in-
formation for strip 5 of the catchment - demonstrating
the effect of rainfall and water level information on the
model
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Figure C.10: Correlation coefficients for input model 6 for 1 - 5 days
of rainfall information and 0 - 4 days water level infor-
mation - demonstrating the effect of rainfall and water
level information on the model
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Appendix D

Application of RFSN to Models

for Dissolved Oxygen and

Temperature Prediction

D.1 Dissolved Oxygen at the Lee Maltings

For the prediction of dissolved oxygen the generalised model versions of M1-M7 were

used for predictions in June and July. The monthly model versions of M1-M7 was

used for predictions in May, January and February. In particular for January and

February, the generalised model appeared to produce quite high MAE’s for certain

models. However Table 7.2 demonstrates that the range of these test sets differed

somewhat more than other months to the generalised dataset.

The generalised models use 10,000 training instances, the May and February

monthly models use 2,000 training instances and the January models range from 488

to 2570 training instances (M1, M4, M5, M7 - 488, M2, M6 - 2531, M3 - 2570). The

number of test instances in each month are - May - 2006, June - 2304, July - 1954,

January - 2089, February - 2108. The performance of the models on the test data

is shown in Table D.1. Overall the results are generally poorer than that achieved

for depth and conductivity. It may be the case that there are more complexities
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involved in the prediction of these parameters compared to that of conductivity

and depth at the Lee Maltings site. It would be interesting to develop models for

an alternative site without the dynamics of the Lee Maltings in order to try and

determine the influences on these parameters. This may provide an indication on

how the modelling could be improved with limited input data.

Future studies may subsequently involve investigating the possible

The use of alternative data values for the prediction of these parameters

may require more complex input parameters or an increased number of input

parameters.

May CC MAE RMSE
M1 0.3714 1.1324 1.4124
M2 −0.2335 1.4548 1.8027
M3 0.1011 1.2575 1.5956
M4 0.2435 1.2599 1.5501
M5 0.5225 0.9909 1.2285
M6 0.1295 1.3043 1.6423
M7 0.4332 1.0603 1.3184

June CC MAE RMSE
M1 0.513 1.3534 1.5852
M2 0.1343 2.4235 2.7759
M3 0.0179 2.1252 2.4892
M4 0.4899 1.4366 1.6715
M5 0.2847 1.4075 1.7235
M6 0.3808 2.0574 2.36
M7 0.4206 1.5209 1.7745

July CC MAE RMSE
M1 0.6191 1.2958 1.5844
M2 −0.0571 2.1543 2.7522
M3 −0.1082 1.8556 2.4176
M4 0.7245 1.1451 1.4233
M5 0.5746 1.287 1.562
M6 −0.1622 1.8775 2.4767
M7 0.6391 1.286 1.5717

Jan CC MAE RMSE
M1 −0.3127 2.4237 2.8355
M2 0.126 2.4286 2.7901
M3 0.457 1.5017 1.7344
M4 −0.1746 2.468 2.8841
M5 −0.1107 2.1347 2.5095
M6 0.4394 1.5071 1.7614
M7 0.0537 2.1904 2.5526

Feb CC MAE RMSE
M1 −0.0032 0.6928 0.8298
M2 0.4347 0.6067 0.7348
M3 −0.1228 0.7064 0.8406
M4 0.152 0.6908 0.8129
M5 −0.1694 0.7369 0.8709
M6 0.3142 0.6567 0.7807
M7 −0.0433 0.7189 0.8452

Table D.1: Performance of each of the models when evaluated in the
corresponding test data for the prediction of dissolved
oxygen

279



D.1.1 Application of the Trust and Reputation-Based frame-

work

Similar to the system applied for the previous two in-situ parameters (i.e. conduc-

tivity and depth), at each epoch the Watchdog assigns a level of cooperation to a

model based on the deviation of its output from the output value of the sensor (See

Equation 7.3 on page 187). Due to the fact the range of the dataset can vary more

from month to month than depth or conductivity, the deviation of the error value is

normalised to a range of [0-1] using a different range depending on the model used.

Since May, January and February predictions were carried out using monthly mod-

els, the range of the training dataset for the model in question was used for carrying

out the normalisation by the Watchdog. For May test data, the error measures were

normalised by dividing by the max-min range of the May training set - [9.9-2.4].

For January test data the max-min range of [13.59-8.63] is used and for February

test data the max-min range of [11.71-7.97] is used. June and July predictions were

carried out using the generalised model, hence the error values were normalised to

a range of [0-1] by dividing by the range of the full training set [14.8-2.05]. Similar

to previous, this value is then subtracted from 1. Again the Reputation component

uses this output of the Watchdog to update the reputation of the model (Equation

7.1 on page 177) and there is the subsequent calculation of trust (Equation 7.2 on

page 177).

Normalising the monthly models with the range of the full training set will not

generally change the patterns found in terms of the reliability of the models. However

it will affect the magnitude of reliability as well as the overall height of trust values.

For example, in February dividing an error by the range of Feb training set will

result in a much harsher cooperation metric than if dividing by the range of the

range of the full dataset. Figures D.3 and D.2 demonstrates the trust values when

normalisation using the range of the full dataset is used and normalisation using the

range of the February training set is used. The prediction outputs for the models
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for this time period are shown in Figure D.1. While overall patterns don’t generally

change, the magnitude of difference between models and the height of trust values

achieved varies. Normalisation using the range of the February training set results

in a greater magnitude of differences between the models and overall lower trust

values. The level of trust values may be important if using an application whereby

a thresholding approach was being implemented as to whether or not to consider

the value of a model.

D.1.2 Results

The output of each of the models for the first two weeks in July along with the actual

values output by the DO sensor are shown in Figures D.4 and D.5. The associated

trust values of each of the models at each epoch is shown in Figure D.6.

Similar to the scenerio with depth and conductivity, the trust values generally

reflect the performance of the model in relation to predicting the values output by

the sensor. Of the single parameter models (M1-M3), it is clear while none of the

models accurately represent the phenomenon at the beginning of the first week that

M1 (Conductivity) appears to produce a pattern more in line with the DO sensor

than the other two models. For the remainder of the first week and for the second

week, it also seems to be producing patterns and outputs that replicate that of the

DO sensor more than the other models. This is reflected in the trust values whereby

M1 is deemed a much more reliable model than M2 or M3. However it can also be

seen there is a slight dip in its trust values at the beginning of week one reflecting

its inability to pick up the event taking place during this time period. However its

trust values increase after this.

A similar scenario is seen for the two and three parameter models (M4-M7),

however in this case it is M4 (Cond-Depth), M5 (Cond-Temp) and M7 (Cond-Temp-

Depth) that are the most accurate in replicating the activities of the DO sensor and

M6 (Depth-Temp) which performs the poorest. These patterns seen in relation to

the trust values are again representative of the performance metrics of M1-M7 on
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Figure D.1: Graphs showing the dissolved oxygen values output
by M1-M3 (Cond, Depth, Temp) and M4-M7 (Cond-
Depth, Cond-Temp, Depth-Temp, Cond-Temp-Depth)
compared to the actual values output by the dissolved
oxygen sensor for Feb 1-7 2010

the test data - with M1, M4, M5 and M7 clearly producing better performances in

terms of CC, MAE and RMSE compared to the other models. M4 outperforms M1,

M5 and M7 with a CC of 0.7245, a MAE of 1.1451, and a RMSE of 1.4233. This is

reflected in the trust and reputation framework where it has the highest trust values

at all times except for a period in the second half of week one.

Sometimes it can be seem from plotting the outputs of the each of the models
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Figure D.2: Graphs showing the trust values for M1-M3 (Cond,
Depth, Temp) and M4-M7 (Cond-Depth, Cond-Temp,
Depth-Temp, Cond-Temp-Depth) for predicting dis-
solved oxygen from Feb 1-7 2010 when normalisation
using the range of the February training set is used

which particular models should generally have the higher trust values in the trust

framework. However this framework can also tell you the magnitude of unreliability

of one model in replicating the activities of the sensor in comparison to another. In

Figure D.1 we see a scenario whereby it is very difficult to determine which model

is most reliable from a plot of the outputs. This is the output of the models for DO

prediction for the first week in February. This is reflected in the output of the trust

model whereby the trust values for each of the models are close but it does show

differences in the level of performance of the models which is difficult from simply

looking at a plot of the outputs (See Figure D.2).

Best Output

Here a similar evaluation is carried out as to that for Conductivity and Depth

prediction. The results of this evaluation can be seen in Table D.2. The TrustModel

(TM) produces very similar outputs to the best performing model(s) on test data

for each month (May- M5, June- M1, July- M4, Jan- M3, Feb- M2).
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Figure D.3: Graphs showing the trust values for M1-M3 (Cond,
Depth, Temp) and M4-M7 (Cond-Depth, Cond-Temp,
Depth-Temp, Cond-Temp-Depth) for predicting dis-
solved oxygen from Feb 1-7 2010 when normalisation
using the range of the full training set is used

CC MAE RMSE
May 0.5211 0.9906 1.2351
June 0.4898 1.3473 1.6009
July 0.7025 1.1423 1.4247
Jan 0.4416 1.5011 1.7499
Feb 0.4360 0.6065 0.7342

Table D.2: Performance metrics when the output of the most trust-
worthy model is selected at each epoch for DO prediction

This outlines the ability of TM to capture the best performing nodes even in

times of noisy outputs. As previously outlined the performance of the models here

is generally lower than that achieved by the models for conductivity or depth. Fig-

ure D.7 shows the values from the dissolved oxygen sensor plotted alongside the

predicted dissolved oxygen values when the value from the most trustworthy model

is chosen at each time epoch, for the last two weeks in June.
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Figure D.4: Graphs showing the dissolved oxygen values output
by M1-M3 (Cond, Depth, Temp) and M4-M7 (Cond-
Depth, Cond-Temp, Depth-Temp, Cond-Temp-Depth)
compared to the actual values output by the dissolved
oxygen sensor for July 1-7 2009

D.2 Temperature at the Lee Maltings

For the prediction of temperature the generalised model versions of M1-M7 were

used for predictions in June. The monthly model versions of M1-M7 was used for

predictions in May, July, January and February. Similar to the case with dissolved

oxygen, the generalised model appeared to produce quite high MAE’s for certain

models in January and February.
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Figure D.5: Graphs showing the dissolved oxygen values output
by M1-M3 (Cond, Depth, Temp) and M4-M7 (Cond-
Depth, Cond-Temp, Depth-Temp, Cond-Temp-Depth)
compared to the actual values output by the dissolved
oxygen sensor for July 8-14 2009

Again the generalised model uses 10,000 training instances, the May, July and

February monthly models use 2,000 training instances and the January models range

from 488 to 2551 training instances (M1, M4, M5, M7 - 488, M2 - 2551, M3, M6 -

2531). The number of test instances in each month are - May - 2006, June - 2305,

July - 1956, January - 2089, February - 2108. The performance of the models on

the test data is shown in Table D.3. The May June and July results are generally
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Figure D.6: Graphs showing the trust values for M1-M3 (Cond,
Depth, Temp) and M4-M7 (Cond-Depth, Cond-Temp,
Depth-Temp, Cond-Temp-Depth) for predicting dis-
solved oxygen from July 1-14 2009

poorer than that achieved for depth and conductivity.

D.2.1 Application of the Trust and Reputation-Based frame-

work

Again at each epoch the Watchdog assigns a level of cooperation to a model based

on the deviation of its output from the output value of the sensor (See Equation 7.3
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Figure D.7: Actual v’s predicted values for dissolved oxygen when
the value from the most trustworthy model is chosen at
each time epoch for July 1-14 2009

on page 187). Similarly to the case with dissolved oxygen, the range of the dataset

can vary greatly from month to month as can be seen in 7.2. In this case monthly

models were used for all predictions except June. Thus for May test data, the error

measures were normalised by dividing by the max-min range of the May training set

- [17.12-11.89]. For July test data, the range of [18.56-15.03] is used. For January

test data the max-min range of [10.89-3.26] is used and for February test data the

max-min range of [7.91-5.01] is used. Then for June test data, where a generalised

model is used for carrying out predictions - a range of [18.56-3.26] - is used. Similar

to previous, these values are then subtracted from 1. The same methodology is

applied as before for updating reputation and trust values (See Equation 7.1 on

page 177 and Equation 7.2 on page 177).

D.2.2 Results

The output of each of the models for the first two weeks in January along with

the actual values output by the DO sensor are shown in Figures D.8 and D.9. The

associated trust values of each of the models at each epoch is shown in Figure D.10.
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May CC MAE RMSE
M1 0.3775 1.14 1.3339
M2 0.0776 1.0545 1.2364
M3 0.3759 1.1171 1.2828
M4 0.3456 1.1898 1.4
M5 0.434 1.1639 1.3261
M6 0.3389 1.1828 1.344
M7 0.4315 1.1321 1.2847

June CC MAE RMSE
M1 0.2466 1.6425 1.8228
M2 −0.0091 1.9302 2.2597
M3 0.172 3.5561 3.8212
M4 0.1215 1.778 2.0979
M5 0.2942 1.6482 1.8215
M6 −0.0109 1.9796 2.253
M7 0.1104 1.8413 2.1409

July CC MAE RMSE
M1 0.2162 1.0685 1.3026
M2 0.1422 1.398 1.5885
M3 0.2134 1.0451 1.2067
M4 0.2566 1.2128 1.4489
M5 0.2167 1.0898 1.3108
M6 0.1858 1.2481 1.4537
M7 0.2603 1.2154 1.4464

Jan CC MAE RMSE
M1 0.5741 2.6865 2.8242
M2 0.1808 0.9273 1.1888
M3 0.0701 1.9394 2.2132
M4 0.773 2.3116 2.4193
M5 0.5488 2.8167 2.9511
M6 0.219 0.8929 1.1559
M7 0.7684 2.3154 2.424

Feb CC MAE RMSE
M1 0.6057 0.4335 0.6006
M2 −0.1081 0.6716 0.8266
M3 0.5234 0.5172 0.6247
M4 0.5829 0.4487 0.6039
M5 0.6376 0.4289 0.5859
M6 0.2767 0.599 0.7275
M7 0.5981 0.4499 0.5945

Table D.3: Performance of each of the models when evaluated in the
corresponding test data for the prediction of temperature

It is clear from looking at the output of the models that for the single parameter

models (M1-M3) that M2(DO) is clearly most in line with the outputs of the tem-

perature sensor compared to the other two models. For the two or three parameter

models (M4-M7), it appears to be M6 (DO-Depth). The flat line of outputs by M1

(Cond), M5 (Cond-Depth) and M7 (Cond-Depth-DO), is most likely due to missing

data in the inputs to the model. It is also interesting to note that while M2 and M6

appear to coincide better with the outputs of the temperature sensor, they are not

really picking up the oscillations taking place at the beginning of week 2. M1, M4

(Cond-DO), M5 and M7 appear to correlate much better with with these oscillations

however at a higher scale. However, the manner in which the cooperation values

are calculated will render M2 and M6 more reliable in this scenario. An alternative

methodology in calculating these value would produce a different result.
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Figure D.8: Graphs showing the dissolved oxygen values output by
M1-M3 (Cond, DO, Temp) and M4-M7 (Cond-DO,
Cond-Depth, DO-Depth, Cond-Depth-DO) compared
to the actual values output by the dissolved temper-
ature sensor for Jan 1-7 2010

There is a slight dip in the trust values of M1 towards the end of the second

week, which is probably caused by the flat line output. This can also be seen for M1

along with M4, M5 and M7 at the beginning of the first week where similar outputs

are seen for each. There is also a dip in trust values for M3, which doesn’t produce

a flat line of outputs, however it is still producing outputs further from the curve

produced by the temperature sensor than it did in the first half of of the week.
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Figure D.9: Graphs showing the dissolved oxygen values output by
M1-M3 (Cond, DO, Temp) and M4-M7 (Cond-DO,
Cond-Depth, DO-Depth, Cond-Depth-DO) compared
to the actual values output by the dissolved temper-
ature sensor for Jan 8-14 2010

The inability of M2 and M6 to pick up the oscillations at the beginning of the

second week is coincided with a reduction in trust values during this time period.

These trust values continue to decrease as even though it it replicating the pattern

produced by the temperature sensor much better towards the end of the week, it it

producing values that are higher than the values of the temperature sensor. It is

interesting to note that these trends coincide with measures of MAE produced by
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Figure D.10: Graphs showing the trust values for M1-M3 (Cond,
DO, Temp) and M4-M7 (Cond-DO, Cond-Depth, DO-
Depth, Cond-Depth-DO) for predicting temperature
from Jan 1-14 2010

M1-M7 on the test data. From table D.3 it can be seen that while M1, M4, M5

and M7 produce by far the highest correlations on the test data which is apparent

from the analysis above, they produce much higher MAE’s than M2 and M6 which

have the by far the lowest MAE’s of all the models and are deemed to be the most

trustworthy by the reputation and trust model. Hence the reputation and trust

framework is accurately reflecting the type of method that is being implemented to

determine cooperativeness or reliability i.e. deviation from the output value of the
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temperature sensor.

Again it is apparent that the trust and and reputation model allows us to pick

up trends which are difficult to decipher from simply plotting the data. From Figure

D.10 it is clear that M2 and M6 are the most reliable in terms of outputting values

close to that of the temperature sensor. It is difficult to tell from plotting the

outputs which of these are most reliable but from the trust values it appears that

M6 has a slight edge. From looking at Figures D.8 and D.9, it appears that M3

would be deemed the next reliable with M5 and M4 the least reliable. However it

is not really clear. However these assumptions are confirmed by the output of the

trust and reputation model. It also allows us to see the difference in the magnitude

of trust between models. For example it reflects that M2 and M6 are similar in

reliability, whereas a large difference can be seen between their trust values and the

trust values of the other models.

Best Output

CC MAE RMSE
May 0.2220 1.0534 1.2485
June 0.3364 1.6411 1.8331
July 0.2133 1.0451 1.2067
Jan 0.2168 0.8927 1.1569
Feb 0.6233 0.4279 0.5745

Table D.4: Performance metrics when the output of the most trust-
worthy model is selected at each epoch for temperature
prediction

Here a similar evaluation is carried out as to that for conductivity, depth and

DO prediction. This results are shown in Table D.4. Here we are seeing cases

where we have models which produce high CC’s but also high MAE’s. However it

is notable here in that TM (TrustModel) matches the best performing models in

terms of MAE’s as opposed to CC’s while sometimes improving correlation.

In terms of MAE and RMSE the best performing model for May is M2, although

it has a poor correlation of 0.0776. Other models are reaching correlations of 0.43,
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Figure D.11: Actual v’s predicted values for temperature when the
value from the most trustworthy model is chosen at
each time epoch for Jan 1-14 2010

but with slightly higher MAE’s and RMSE’s. TM produces an output with a CC of

0.222 and a MAE and RMSE almost identical to that of M2, at 1.0534 and 1.2485.

For June test data, TM produces an output which has an MAE very slightly lower

than the lowest MAE produced by any of the models, with an increased correlation

of 0.3364. In June the best performing models are M1 and M5 with CC’s of 0.2466

and 0.2942, and MAE’s of 1.6425 and 1.6482. For July, TM matches the model with

the lowest MAE and RMSE (M3). M1, M4 and M7 produce slightly higher CC’s

but also slightly higher MAE’s and RMSE’s. As one would expect from the analysis

carried out on the test data from January above, TM produces a very slightly lower

MAE to the lowest achieved by any of the models on test data from January, and a

very similar CC and RMSE. For February, TM achieves a very similar output to M5,

the best performing model for February test data, with a marginally lower MAE and

RMSE. Figure D.11 shows values from the temperature sensor plotted alongside the

predicted temperature values when the value from the most trustworthy model is

chosen at each time epoch, for the first two weeks in January.
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Appendix E

Threshold Margins for Models and

Remote Sensing Data Outputs

E.1 Modelled Ouputs at the River Lee

Figure E.1: Models 1-7 for predicting depth June 2009 - Percentage
of predictions within various thresholds of the in-situ
sensor readings.

E.2 HRDDS SST Analysis Products
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Figure E.2: Models 1-7 for predicting conductivity June 2009 - Per-
centage of predictions within various thresholds of the
in-situ sensor readings.

Figure E.3: Models 1-7 for predicting dissolved oxygen June 2009
- Percentage of predictions within various thresholds of
the in-situ sensor readings.
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Figure E.4: Models 1-7 for predicting temperature June 2009 - Per-
centage of predictions within various thresholds of the
in-situ sensor readings.

Figure E.5: Models 1-7 for predicting depth February 2010 - Per-
centage of predictions within various thresholds of the
in-situ sensor readings.
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Figure E.6: Models 1-7 for predicting conductivity February 2010 -
Percentage of predictions within various thresholds of
the in-situ sensor readings.

Figure E.7: Models 1-7 for predicting dissolved oxygen February
2010 - Percentage of predictions within various thresh-
olds of the in-situ sensor readings.
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Figure E.8: Models 1-7 for predicting temperature February 2010 -
Percentage of predictions within various thresholds of
the in-situ sensor readings.

Figure E.9: Models 1-7 for predicting depth May 2009 - Percentage
of predictions within various thresholds of the in-situ
sensor readings.
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Figure E.10: Models 1-7 for predicting conductivity May 2009 - Per-
centage of predictions within various thresholds of the
in-situ sensor readings.

Figure E.11: Models 1-7 for predicting dissolved oxygen May 2009 -
Percentage of predictions within various thresholds of
the in-situ sensor readings.
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Figure E.12: Models 1-7 for predicting temperature May 2009 - Per-
centage of predictions within various thresholds of the
in-situ sensor readings.

Figure E.13: Models 1-7 for predicting depth July 2009 - Percentage
of predictions within various thresholds of the in-situ
sensor readings.
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Figure E.14: Models 1-7 for predicting conductivity July 2009 - Per-
centage of predictions within various thresholds of the
in-situ sensor readings.

Figure E.15: Models 1-7 for predicting dissolved oxygen July 2009 -
Percentage of predictions within various thresholds of
the in-situ sensor readings.
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Figure E.16: Models 1-7 for predicting temperature July 2009 - Per-
centage of predictions within various thresholds of the
in-situ sensor readings.

Figure E.17: Models 1-7 for predicting depth January 2010 - Per-
centage of predictions within various thresholds of the
in-situ sensor readings.
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Figure E.18: Models 1-7 for predicting conductivity January 2010 -
Percentage of predictions within various thresholds of
the in-situ sensor readings.

Figure E.19: Models 1-7 for predicting dissolved oxygen January
2010 - Percentage of predictions within various thresh-
olds of the in-situ sensor readings.
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Figure E.20: Models 1-7 for predicting temperature January 2010 -
Percentage of predictions within various thresholds of
the in-situ sensor readings.
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Figure E.21: HRDDS SST products for 2009 at Mace Head and Mid-
Bay - The percentage of values of values within various
thresholds of the in-situ sensor reading.
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