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Abstract 
This research examines the photocatalytic degradation of 3 active pharmaceutical ingredients 

(APIs) Famotidine (FAM), Tamsulosin Hydrochloride (TAM) and Solifenacin Succinate (SOL) 

using TiO2 and UV light. Photocatalytic degradation studies were monitored with individual 

HPLC-PDA methods which were developed and validated. The optimum concentration of TiO2 

to treat 0.32 L of 0.083 mM drug solution was found to be 0.1 g or 0.2 g, and all three 

pharmaceuticals could be appreciably degraded within the 3 hour irradiation period (100% FAM 

and TAM, and ~80 % of SOL). Various parameters were also investigated on the process such 

as pH, oxidant addition etc. pH was not found to significantly affect the photocatalytic 

degradation process, although there was notably more adsorption of the drug to the TiO2 surface 

at more alkaline pHs. This increase in adsorption of the drug at alkaline pH, in the case of SOL, 

did not lead to an enhanced photocatalytic degradation as is often reported by other authors. 

 

Various intermediates (or degradation products) were observed in LC traces of photocatalytic 

studies and the addition of hydrogen peroxide to the TiO2/UV process was found to hinder the 

formation of these intermediates and eliminate them completely within the allotted irradiation 

time. Concentration studies examined the robustness of the proposed TiO2/UV process to 

varying concentrations of drug solution. These indicated that the process can completely 

eliminate concentrations up to 0.2 mM of FAM and TAM, and determined that in the case of 

SOL only low concentrations of drug can be completely eliminated (0.02 mM). 

 

The intermediates of the optimised photocatalytic degradation experiments were analysed 

initially by DI-MS, allowing some initial intermediates being proposed. This data was later 

corroborated with LC-MS/MS data from photodegradation experiments and various 

intermediates were further proposed based on the masses and fragments obtained from this 

analysis. Including isomers, over 80 intermediates were discovered between the 3 APIs. Routes 

of degradation have also been postulated based on the intermediates proposed. 

 

Further to this, composite materials based on TiO2 and dye molecules have been developed in 

the hope of developing solar/visible light activated photocatalysts. A visible light sensitised 

photocatalyst based on the porphyrin tetra-(4-carboxyphenyl)porphyrin was successfully 

developed. This composite was prepared by a simple adsorption method of preparation and was 

compared in activity to a harsher literature reflux method. Other composites based on novel 

metallated and metal free phthalocyanine dyes (MPc and Pc) were also prepared and 

characterised by UV spectroscopy (solution and solid-state) and FT-IR spectroscopy. The 

photoactivity of these composites was examined with our pharmaceutical targets. These are the 

first composite materials, to our knowledge, to be tested with actual pharmaceuticals. The 



XV 
 

porphyrin/TiO2 composite showed good photoactivity in the degradation of FAM, although LC 

traces indicated that this degradation could merely be a selective conversion to an 

oxidised/reduced form of FAM. Tests with the other pharmaceuticals further indicated this 

selectivity toward FAM, as no degradation occurred with either TAM or SOL. MPc/TiO2 and 

Pc/TiO2 composites were also tested with Famotidine, however these exhibited a 

poor/negligible degradation compared to the porphyrin/TiO2 composite.  
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1.0 Pharmaceuticals in the Environment 
In recent years, the presence of pharmaceuticals and personal care products (PPCPs) in the 

environment has become a serious cause for concern and the problem is continuing to grow with 

the on-going development of more potent and more metabolically resistant drugs. PPCPs are 

defined by other authors as “a diverse group of chemicals comprising human and veterinary 

drugs…X-ray contrast media…..and other consumer chemicals such as cosmetics, fragrances 

and sun-screen agents as well as inert ingredients or excipients used in PPCP formulations and 

manufacture”.1 Even within these, there are many classes of pharmaceuticals which include 

analgesics, anti-depressants, contraceptives, antibiotics and also veterinary medicines and 

pesticides used in agriculture. Endocrine disrupting chemicals (EDCs) are another class of 

compounds causing further alarm and these chemicals include not only hormones and 

contraceptive drugs but also a number of phenolic compounds, dioxins and polychlorobiphenyls 

(PCBs) amongst others.2,3,4 All of these chemicals through various sources end up eventually in 

our environment and the effects of these bioactive molecules are, as of yet, still unknown.  

 

There are a number of point-sources for the entry of drugs to the environment.5 At home, routes 

of entry include direct flushing of unused/ out-of-date pharmaceuticals down the toilet. In the 

majority of cases, while on drug therapy, pharmaceuticals pass through our bodies. These drugs 

can undergo transformations in the body such as oxidation, reduction etc. or end up in a 

conjugated form of the original drug. In some cases though, drugs can be mostly un-metabolised 

and thus, entry through human waste (urine and faeces) is another route of entry to the 

environment.139,152,153 Drugs that are discarded in household rubbish will inevitably end up in 

landfill and can leach into soil. Pesticides and veterinary drugs that are used in plants and 

animals respectively can be found in streams and soil. Un-metabolised drugs in animals are also 

a major issue and regular testing is sought to determine the quantities retained in their tissues to 

prevent harm through consumption by the public. Their additional excretion via animal faeces 

can result in the release of these compounds, in manure which is often used as a fertiliser, so 

entry in this manner is also possible. 

 

Wastewater treatment plants and sewage treatment plants alike, potentially face the task of 

treating some of the discarded, transformed/conjugated and un-metabolised waste from each of 

these sources. Many studies worldwide have found that current treatment methods from these 

plants are insufficient in destroying these pharmaceuticals. The consequence of this is exposure 

of these potent chemicals to aquatic animals and they have the potential to reach drinking water. 

Many prescribed antibiotics such as ampicillin and ciprofloxacin have been detected in hospital 

effluents and their presence has provoked concern regarding bacterial resistance to these drugs.6 

There are also worries concerning the effects on aquatic animals, particularly with the presence 
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of EDCs which can mimic or block certain hormones and potentially disrupt regular bodily 

functions. This is of huge concern as inhibition of regular reproductive cycles can occur in both 

aquatic and terrestrial organisms and thus can limit the numbers or deform the offspring of these 

animals.  

  
Multiple studies across the United States, Canada and Europe have found traces of ‘cocktails’ of 

these pharmaceuticals in drinking water at relevant concentrations of μg/L.7,8,9,10,11 In 2007 

Esplugas et al. reported the effects of EDCs in humans to cause increased incidence in testicle 

and prostate cancer in males along with a reduction in sperm count.12 Other effects documented 

in a report by the Commission of the European Communities ((CEC) (also mentioned in this 

review) included the increased incidence of breast tissue in men and endometriosis. Various 

research groups worldwide are currently trying to tackle this issue and there are a number of 

projects that are looking into both the detection of pharmaceuticals and also at the degradation 

of pharmaceuticals using various treatment methods. There are a number of approaches to this 

problem, some of which are outlined in the next section (Section 1.1). These approaches are 

non-destructive and simply involve removal of the pollutants via various filtration or osmotic 

processes. It should be highlighted that there are also a number of destructive techniques which 

can be applied to remove these pollutants. These techniques involve the use of Advanced 

Oxidation Processes, which give rise to an unselective degradation of the pollutant until 

complete mineralisation is reached.  

 

Mineralisation is the total conversion of the pharmaceutical and its intermediate compounds into 

products already abundant in our environment such as CO2, NO3
-, SO4

2- and H2O. Complete 

mineralisation of PPCPs is desirable as while less is known about the ecotoxicity of these 

compounds once released into the environment, even less is known about their intermediate 

products. In photocatalytic studies, compounds undergo multiple oxidation and reduction 

reactions, so in cases where incomplete mineralisation occurs (i.e particularly stable 

intermediate compounds are formed) the potential lies therein for these compounds to bio-

accumulate in the environment. The environmental implications of this are still largely unknown 

and can only be speculated to have numerous adverse effects not only to the environment 

(sorption to soil and sludge), but also to terrestrial/aquatic biota as is the case with parent 

pharmaceuticals.13,14,15 While some studies do exist to determine the toxicity of PPCPs and their 

intermediate products on organisms such as Vibrio fishceri and Daphnia magna, more studies 

are required to not only identify intermediate products from PPCPs and EDCs, but to also 

determine exactly their degree of toxicity in the environment to multiple organisms.155,16 
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In the following review, various water treatment processes for the removal of pharmaceuticals 

are examined. The first section contains a brief background on current technologies in 

wastewater treatment, and evaluates their potential in the removal of pharmaceuticals. Section 

1.2 describes the various Advanced Oxidation Technologies which exist to tackle environmental 

contaminants. Section 1.3-1.5 discusses the process of heterogeneous photocatalysis, its 

mechanisms, potential for solar applications, defines the characteristics for the ideal 

photocatalyst and also current methods to optimise the photocatalytic process. Finally, section 

1.6-1.8 presents the chemical properties and current research involving the pharmaceuticals 

examined in this thesis and outlines the proposed research, its aims and this thesis chapter by 

chapter. 

 

1.1 Current and Potential Methods for Removal of Pharmaceuticals 
There have been a number of proposed methods to remove pharmaceuticals from wastewater 

and there are numerous processes already in place to treat raw wastewater. These methods 

comprise a number of filtration techniques, chlorination and advanced technologies which can 

be both destructive (i.e they completely decompose compounds present/disinfect the 

wastewater) or non-destructive (whereby the hazardous pollutants and organic matter are 

removed by either filtration or adsorption onto an adsorbent). The following is a list of these 

processes, their methodologies and their effectiveness in water treatment and in the removal of 

PPCPs among other micro-pollutants. 

 

Removal methods (non-destructive) 

1.1.1 Active Carbon Filtration:  

This involves filtration of the contaminated water through activated carbon or charcoal. 

Activated carbon is highly porous and pollutants contained in the contaminated water can be 

effectively adsorbed onto its surface. However, like ozone and other removal methods, there are 

selectivity issues and more hydrophilic compounds have been found to de-sorb back into the 

water.17 

 

1.1.2 (River)Bank Filtration/ Slow sand filtration 

Bank Filtration is a technique which has existed in Europe since the 1870s. Bank Filtration 

involves digging wells in sandy sediment beds which are adjacent to a river or ground water 

source. Water is then extracted from these water sources by the wells, and in the process is 

filtered through the fine sandy sediments, leading to water of a much higher quality than from 

the original source. While this technique has been found to completely remove PPCPs such as 

antibiotics, oestrogens, cholesterol lowering drugs (bezafibrate) and NSAIDs such as 

indomethacin, other compounds such as carbamazepine were readily transported by bank 
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filtration.18 Slow sand filtration is a similar technique to bank filtration but works on a much 

smaller scale, about 1-2 metres in depth and is considered as both a chemical and a biological 

process due to the presence of algae, bacteria and other micro-organisms in the schmutzdecke 

which can digest organic material in the raw water. 19,20,21 There are few disadvantages to this 

technique however, like other biological processes, it can be disrupted under certain conditions 

i.e certain climates such as very cold weather which may induce freezing and hence can affect 

the quality of the purified water. It is also important that the algae present are not upset by the 

presence of other toxic forms of algae which can cause ‘choking’ of the filtration device, and 

regular cleaning would be required.21 

 

1.1.3 Membrane filtration: Nanofiltration (NF) and Reverse Osmosis(RO) 

Nanofiltration (NF) and reverse osmosis (RO) are two membrane based techniques which are 

widely employed in wastewater treatment, and in drinking water treatment both in the 

developed and the developing world. In both NF and RO, the polluted water is forced through a 

narrow pore membrane at very high pressures, which forces only pure water through the 

membrane, with the contaminants retained on the membrane. NF is considered to lie somewhere 

between Ultrafiltration and Reverse Osmosis in terms of filtration capacity. 22,23 RO can be 

considered more appropriate for complete removal of pollutants, however, purification comes at 

a high energy cost. The more contaminated the water the more pressure required. Activated 

carbon filters are also required to remove certain residual factors such as odour and taste and it 

is therefore a high maintenance system.   

 

1.1.4 Soil Aquifer Treatment 

Soil aquifer treatment (SAT) is a treatment method consisting of physical, chemical and 

biological processes. Like bank filtration, SAT is filtered by the earth. It comprises 3 main 

stages24:  

(i) Infiltration of the partially treated water through a biologically active infiltration 

interface at the soil/water boundary. 

 

(ii) Percolation through a vadose zone (10-100ft in depth),  

 

(iii) Storage/Transport in the underlying aquifer. Once it is required, recovery wells pump 

the recharged water for supply.25 

 

Conditions such as flooding can be detrimental to SAT and anaerobic conditions which can 

adversely affect the efficiency of purification. Additionally, the efficacy of this treatment to 

remove trace organic pollutants, EDCs and PPCPs is still unknown.26 
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Destructive 

1.1.5 Ultra-Sound/Sonic Treatment 

Although still in its infancy, ultrasound treatment has recently emerged as a new alternative to 

other wastewater treatment technologies. 27 , 28 , 29Ultrasound/Ultrasonic treatment is similar to 

other destructive advanced oxidative processes, in that hydroxyl radicals are generated which 

can degrade pollutants. Its method of activation is the formation of bubbles which resemble 

‘microreactors’. The ‘microreactors’ form, grow, pulsate and then collapse. The bubbles which 

are formed (adiabatically) contain extremely high temperatures (2000°C) and pressures (200 

atm) and can be referred to as ‘hot nuclei’. Pollutants can either enter within these bubbles and 

hence will be completely dissociated, or they can be indirectly dissociated via a hydroxyl radical 

based mechanism. Hydroxyl radicals are formed within the bubble by water and oxygen 

dissociation. In general, this process can be more effective in mineralising pollutants when used 

in combination with other treatment systems such as UV or Fe salts.29 

 

1.1.6 Chlorination 

Chlorination is a standard method of disinfection in swimming pools, and is still employed in 

current wastewater treatment facilities. Chlorination is extremely effective in the elimination of 

micro-organisms such as bacteria and viruses, and thus prevents the spread of disease. It is, 

however, considered to be a non-green method. There are common drawbacks with evidence of 

its reaction with organic compounds to form lethally toxic intermediates.30,31 Thus, chlorination 

can be considered as a technique which should be only used exclusively for disinfection and not 

for the degradation of pharmaceuticals.  

 

1.2 Advanced Oxidation Processes  

An advanced oxidation process (AOP) is one where hydroxyl radicals are continuously 

generated: these hydroxyl radicals will then unselectively degrade pollutants. Research 

recognises a number of AOPs. In the following sections, a select number of unary, binary, 

ternary and quaternary systems are discussed which have been used in the degradation of 

pollutants. 

 

1.2.1 Unary Processes 
Ozonation, O3 

Ozonation is the most common advanced oxidation treatment currently employed in wastewater 

treatment although it is more common in the disinfection of drinking water. Ozone is mainly 

employed in wastewater treatment to assist in the mineralisation of organic compounds. Ozone 

has been shown to efficiently degrade organic compounds that possess amines, activated 
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aromatic rings such as phenols, alkyl aromatics and olefinic moieties.32 It has also been shown 

to degrade antibiotics (ciprofloxacin), antiepileptics (carbamazepine), oral contraceptives (17R-

ethinylestradiol), tranquilizers (diazepam) and anti-phlogisitcs (diclofenac).33,34,35,36 However, 

there are a number of disadvantages to employing this technique in wastewater treatment:  

 

(1) Formation of Bromate, (BrO3
-): In the treatment of bromide containing water, this is a 

particular concern with Ozonation. Bromate is a suspected human carcinogen and in recent 

years contamination by this anion has led to extreme measures being taken. For example, in the 

Silver lake and Elysian reservoirs in California, 600 million gallons of water had to be drained 

due to bromate formation in the water and in one case in the United Kingdom, it managed to 

reach bottled water.37,38 

 

(2) Poor solubility: Relative to other oxidants.  

 

(3) Selectivity Issues: Since it is an electrophile and only favours the mineralisation of 

compounds with the moieties listed above.39 

 

Oxidation using ozonation may undertake two pathways of degradation. Either direct reaction of 

the ozone with the pollutant, or indirectly with the reaction of radicals generated from the ozone 

with pollutants (below).40 

O3 + HO-  O2
 + HO2

-  

O3 + HO2
-  O2

-● + ●OH + O2 

O2
-● + pollutant  oxidation/disinfection 

 

Although proven to be very effective as a unary process, ozonation is found to be enhanced 

when used with other advanced oxidation processes such as UV or H2O2 which help accelerate 

the formation of ●OH radicals and thus increase its unselectivity towards pollutants. 

 

UV – UV Irradiation 

UV irradiation is also classed as photochemical degradation/ direct photolysis / homogeneous 

degradation. UV irradiation can be an effective treatment in water remediation studies however 

it is largely subjective to the pollutant studied and the configuration system employed. In studies 

which employ UV along with other AOPs, UV alone is always examined to determine its 

contribution to degradation. 41  In the majority of cases, it has been found to be inferior to 

combinatory processes although this can be substrate dependant and also depends on the light 

source used e.g. UV/A, UV/C etc.41, 42,43 The emission spectrum for a typical medium pressure 

mercury lamp is shown in Figure 1.1 with most of the emissions arising between 250-315 nm. 
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Figure 1.1: Wavelength Emissions from a Medium Pressure Lamp reproduced from Pereira 2007.51 

 

Studies by Shemer et al. 2006 (degradation of Metronidazole) determined that UV alone is not 

effective in the elimination of pharmaceuticals and more favourable results can be achieved in 

combination with other AOPs. 44 Despite this, UV irradiation has been found to be extremely 

useful for waters which are infested with bacteria such as cryptosporidium and e.coli. 

 

1.2.2 Binary Processes 
UV/TiO2 – Heterogeneous Photocatalysis 

This technique is one of the most common AOPs for pharmaceutical abatement in the 

environment and will be discussed in more detail later. TiO2 is an effective photocatalyst and is 

cheap, non-toxic, safe and regularly used in the pharmaceutical and cosmetic industries.45 It can 

be employed both in a suspended form, but also in an immobilised form. There are advantages 

and disadvantages to both configuration systems. Although this process is quite effective alone, 

it is usually used in conjunction with an auxiliary oxidant to ensure complete mineralisation. 

Countless literature articles exist documenting its efficient degradation of organic compounds 

from dyes to antibiotics and NSAIDs to EDCs.88, 123 

 

 H2O2/ Fe2+ -Fenton Process with Hydrogen Peroxide  

The Fenton Process is an AOP process which incorporates Ferrous salts along with hydrogen 

peroxide to generate hydroxyl radicals. The advantage is that it is very effective and only small 

concentrations of reagents are required. It has efficiently degraded pharmaceuticals including 

Penicillin, Metronidazole (antimicrobial agent) and Gemfibrozil (lipid-regulator) and many 

textile dyes.46,47,48 However, its efficiency is consistently compared to the Photo-Fenton process 

(see p10) which is more efficient again, producing both a higher degradation rate and a higher 

degree of mineralisation. 

 

O3/H2O2 – (Peroxone process) 

The mechanism for formation of hydroxyl radicals with O3 and H2O2 is by reaction of the two 

species together by a radical chain mechanism similar to the H2O2 process discussed later (see 
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1.5.4). In a study by Ternes in 2003 this binary system was found to be much more effective 

than sole ozonation.54 An enhancement in the removal efficiency was found in all cases for 

iomeprol, diatrizoate, iopromide and iopamidol.  Similarly, a study by De Witte et al. 2009, 

showed an enhanced degradation with the addition of peroxide. They also observed that at 

higher concentrations of peroxide, degradation can be inhibited by the scavenging of hydroxyl 

radicals. 

 

UV/H2O2  

Hydrogen Peroxide cannot be employed by itself as it is a poor oxidant for many organic 

pollutants. In all oxidation processes, it is part of a binary or ternary system with either UV 

light, metal salts or ozone.49 In order for hydrogen peroxide to efficiently photolyse, UV light 

below 400 nm must be employed. UV/H2O2 has been studied in the degradation of ibuprofen, 

diphenylhydramine, phenazone, phenytoin with removal of < 40 % in all cases at relatively 

higher concentrations of H2O2 and low concentrations of pharmaceuticals (5 µM).50 A similar 

study with carbamazepine, naproxen, clofibric acid and iohexol achieved removal efficiencies 

between 20-50 % with medium pressure lamps (see Figure 1.1 for wavelengths) at 100 

mJ/cm3.51 It would appear that decomposition of pharmaceuticals with this process is very much 

substrate-dependant, and it can be seen to be inferior when compared to other AOPs such as 

Ozonation.52 

 

UV/O3  

The Ozonation process combined with UV improves the formation of unselective hydroxyl 

radicals by the decomposition of ozone. This AOP has been found to improve the standard O3 

process but not in all cases has it been found to mineralise more efficiently.53,54 An interesting 

study by Rivas et al. in 2009 compared the effects of a number of AOPs including UV/O3 with 

TiO2/UV in the removal of bisphenol A, a well-known EDC.55 They found promising results 

with both processes. However, with an economic consideration of employing either AOP, it can 

be found that TiO2 would be a far more feasible option with the stipulation that the 

photocatalyst could be regenerated and reused. 

 

1.2.3 Ternary Processes 
UV/ H2O2/O3  

This method combines UV/H2O2 with Ozone and has been reported to be more efficient than 

either the UV/H2O2 or the UV/O3 process. This is due to the increased flux of hydroxyl radicals 

from H2O2 and the additional effects of mineralisation by ozone. Most work with this method 

has been done on an industrial scale owing to its effectiveness, and very promising results have 

been obtained in terms of complete mineralisation after 1-2 h of very toxic substances such as 
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trichloroalkanes.73 This method is considered as both the fastest and most efficacious of all the 

current processes in relation to industrial water treatment and is potentially the most 

employable.  

 

UV/H2O2/ Fe3+ - Photo-Fenton Process  

The photo-Fenton process is similar to Fenton, however light is incorporated along with iron 

(III) salts which are photo-active (Iron (II) can also be employed). Typical iron complexes 

which are used are FeCl3, FeSO4.7H2O, and Fe(NO3)2. Numerous pharmaceuticals have been 

degraded using this process with very promising mineralisation efficiency with diclofenac, 

dipyrone, tetracycline, amoxicillin and gemfibrozil to name but a few.56,57,58,59,48 This process has 

great potential with regard to solar applications since the ferric-oxalate complex ([Fe(C2O4)3]3
-) 

allows more visible-light induced photocatalysis. In the majority of studies where solar light has 

been harnessed, oxalate complexes are utilised. As with the Fenton, major obstacles exist to its 

application in full scale water treatment including: the cost of required oxidant (H2O2), 

controlled pH to solubilise the iron salts and additionally, in this case, light is required.60 Along 

with these drawbacks, the photocatalyst cannot be retained. On the contrary, very small amounts 

of iron salts (in some cases as low as 2 mg/L) can be used to achieve complete mineralisation.57 

 

1.2.4 Quaternary Processes 
UV/O3/H2O2/Fe3+  

This process was used by Beltran-Heredia et al. in 2001 to degrade p-hydroxybenzoic acid.60 

They found that this was the best method among those tested (see Figure 1.2).  

 
Figure 1.2: AOP Processes examined in the degradation of p-hydroxybenzoic acid.  

 

The system of UV/O3/H2O2/Fe2+ was determined predominantly to be a radical based 

mechanism of degradation. This process was found to be the most efficient ozone consumer 

with respect to the degradation achieved. Among the other processes examined by this group, 

various synergisms were noticed among the different combinatory processes, however, the 
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Fentons reagent (Fe2+/H2O2/O3) was found to have inhibitory effects on the action of ozone. No 

other reports of this system have been found in relation to the decomposition of organic 

compounds, however the combined effects of various AOPs in this study can be seen to be very 

efficacious in organic pollutant removal. 

 

1.3 Heterogeneous Photocatalysis 

1.3.1 Introduction 

In recent years, the use of AOPs in the treatment and disinfection of wastewater has grown. 

Many countries including Canada (Figure 1.3), Germany, Ireland and other parts of Europe are 

now employing tertiary treatment steps to provide a higher quality of water. 63, 61 The most 

popular AOP employed is UV, which has been found to efficiently disinfect water and can 

effectively remove micro-pollutants depending on the lamp used. UV is one of the easiest 

treatments to integrate as it can be retrofitted into existing chlorine contact chambers and with 

the use of certain lamps, is only slightly greater in cost and more efficacious in disinfection than 

the chlorination/ dechlorination processes.62 

 
Figure 1.3: Lethbridge, Alberta’s additional UV-treatment step to its water treatment facility, reproduced 

from environmental science and engineering magazine (ESEM).63 

 

At present, the application of photocatalytic AOPs (heterogeneous and homogeneous) in water 

treatment is still a work in progress despite hundreds of literature articles published every year 

documenting its efficiency for the elimination of various organic compounds. There are also 

numerous research centres worldwide which have large scale solar photocatalytic equipment 

namely the PSA in Spain, however it may be sometime before systems like these are introduced 

into actual water treatment facilities worldwide.  
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1.3.2 Heterogeneous Photocatalysis 

IUPAC defines Heterogeneous catalysis, as catalysis “in which the reaction occurs at or near 

an interface between phases”.64 The only difference with heterogeneous photocatalysis is that 

the catalyst is activated not by thermal methods but by photonic methods.69 At present, there is 

no current definition by IUPAC for heterogeneous photocatalysis although it has been aptly 

described by authors as ‘photo-induced molecular transformations or reactions which take place 

at the surface of a catalyst’.65 

 

1.3.3 Descriptions and Applications 

Heterogeneous photocatalysis is generally employed because of its versatility in that it can be 

carried out in both gas and aqueous or organic liquid phases.69 Photoinduced redox reactions 

were sparked by Fujishima and Honda with the discovery of water splitting by a single crystal 

TiO2 electrode. 66  Nowadays, heterogeneous photocatalysis can be used in various organic 

reactions: (oxidations, reductions, oxidative cleavages, polymerisations). TiO2 also has potential 

uses in environmental decontamination: with the destruction of organic pollutants and the 

treatment of wastewater, furthermore TiO2 also features in current solar cell models and self-

cleaning window applications among other commercial uses.  

 

1.3.4 Photocatalytic Materials 

TiO2 is the leading semiconductor photocatalyst in water detoxification studies. Some of its 

other metal chalcogenides such as ZnO, ZnS and CdS have been used in comparative studies 

alongside TiO2 however, these semiconductors are generally less active under similar conditions 

and in some cases can be less stable under illumination.67 

 

1.3.5 Solar Light Harvesting of TiO2 

TiO2 has a band gap energy, Eg, of 3.2 eV which corresponds to absorption in UVA/B and C 

regions of the electromagnetic spectrum. Table 1 below shows the wavelengths in the UV/vis 

regions that can be employed with TiO2 photocatalysis and their corresponding energies in eV. 

The sun emits all energies i.e gamma, x-ray, UV-vis, however the light that reaches the earth is 

above 300 nm. 68  Since the majority of photocatalytic studies employ Pyrex glassware that 

contains a light filter (< 300 nm), these conditions can be considered to be optimum for solar 

heterogeneous photocatalysis.     

 

Spectral Sub Category Wavelength Range (nm) E (in eV) 
UV-A 400-315 3.09-3.93 
UV-B 315-280 3.93-4.42 
UV-C 280-100 4.42-12.39 

Table 1.1: UV categories and corresponding energies in eV. 
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1.3.6 Fundamentals of Heterogeneous Photocatalysis  

The fundamental processes of heterogeneous photocatalysis can be described by the classical 

heterogeneous catalysis process. The classical process consists of five stages. 

The first stage comprises the transfer of the reactants to the surface of the semiconductor 

photocatalyst. 

In the second stage, adsorption of at least one of the reactants or the sorbate occurs. 

The third stage in classical heterogeneous catalysis is simple reaction of the adsorbed products, 

however in heterogeneous photocatalysis this stage is much more complex, and involves  

(i) the simultaneous absorption of photons by the semiconductor and also reaction in 

the adsorbed state,  

(ii) the creation of electron-hole pairs and  

(iii) various redox processes including radical propagation, charge neutralisation and 

radical recombination.   

The fourth stage involves desorption of the products. 

The final stage encompasses the removal of the products from the interface region.69 

 

1.3.7 Mechanism of Heterogeneous Photocatalysis 

The basic principle of photocatalysis is the promotion of an electron from the valence TiO2 band 

to the conduction band which is initiated by photon absorption. In order for this to occur, a 

photon with energy of 3.2 eV (in the case of TiO2) or greater must be absorbed by the 

semiconductor.  

 
Figure 1.4: Irradiation of a TiO2 particle reproduced from Herrmann 2004. 69 

 

Upon promotion of an electron, a charged separated state is formed as shown in Figure 1.4 

above, with an electron (e-) in the conduction band and a hole (h+) in the valence band. This can 

be referred to as an electron-hole pair. There are numerous processes which can then occur.70 
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 The electron can fall back down to refill the valence band hole with the subsequent 

release of heat, known as recombination.  

 The electron-hole pair can migrate and become trapped on the surface in meta stable 

states.71 

 The electron-hole pair can react with adsorbed donors and acceptors such as H2O and 

O2, surface hydroxyls, H2O2 or pollutant molecules. 

 

Electrons are powerful reductive species (-0.2 V), and likewise, holes are powerful oxidative 

species (+3.0 V). Figure 1.5 below shows the various band gap widths for a range of 

semiconductors with their corresponding redox potentials in Volts for electrons and holes in the 

valence and conduction bands.72 Comparatively, the oxidation potential of a hydroxyl radical 

(•OH) is 2.8 V relative to the normal hydrogen electrode (NHE). The potentials of other 

oxidative substances used for water disinfection are listed: Fluorine (3.03 V) Ozone (+2.07 V), 

H2O2 (+1.78 V), HOCl (+1.49 V) and chlorine (+1.36 V).73 

 
Figure 1.5: The band gaps of TiO2 rutile and anatase amongst other semiconductors (reproduced from 

Mills et al.. 1997).72 

 

Of the possible pathways listed above, the most studied is the reaction of the electron-hole pair 

with donor and acceptor molecules on the semiconductor surface and the ensuing redox 

reactions that can occur. The equations below show the possible reactions of various donors and 

acceptors with h+ and e-: 

(1) SC(h+) + RXad SC + RXad
+● 

The above equation (1) shows the reaction of a positive hole on a semiconductor with an 

adsorbed substrate i.e an organic compound. The result is the transfer of an electron from the 

adsorbed substrate to the semiconductor valence band generating a charged radical species 

which can then further react or dissociate. 
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(2) SC(h+) + H2Oad  SC + HOad
● + H+ 

As seen in the previous equation, equation (2) shows the reaction of a hole with an adsorbed 

water molecule generating an adsorbed hydroxyl radical and a proton. 

(3) SC(h+) + HOad
-
  SC + HOad

●  

If the semiconductor is irradiated under basic conditions, whereby an abundance of HO- species 

are present, these can adsorb to the semiconductor surface and reaction with holes can yield 

further hydroxyl radicals (3).  

(4) SC(e-) + O2 SC + O2
-● 

(5) SC(e-) + H2O2 SC + HO● + HO- 

Reaction of an electron with oxygen or hydrogen peroxide can generate highly reactive 

superoxide anions and hydroxyl radicals respectively. These can then react with adsorbed 

pollutants and unselectively degrade them. Since all of the above reactions can effectively 

happen simultaneously, combination reactions can occur to further generate additional radical 

species. An example of this would be the following: 

(6) H+ + O2
-● HO2

● 

Combination of a proton and a superoxide anion gives rise to a hydroperoxyl radical. These can 

also be formed by the reaction of hydroxy radicals with an oxidant such as hydrogen peroxide. 

However, formation in this manner can be expected to be low since the predominant reactions 

of H2O2 are shown in equation (5) and (7).129 

(7) H2O2 + hv  HO● + HO● 

The powerful redox chemistry associated with electron-hole pairs is the focal point of research 

in heterogeneous photocatalysis and its environmental application. The degradation of 

pollutants through direct oxidation via holes or indirectly via radicals (generated by electron-

hole pairs) is still a subject of debate.74   

 

1.3.8 Characteristics of the Ideal Photocatalyst 

The properties that an ideal photocatalyst must display for the unselective degradation of 

pharmaceuticals in the environment are listed below. TiO2 can be seen as a good candidate for 

the ideal photocatalyst, and is currently the benchmark to which other photocatalysts are 

compared.75  

 

Stability and sustained photocatalytic activity: The photocatalyst should be chemically inert 

and should be uniform in its performance, it should also be stable upon illumination and have a 

high turnover frequency (molecules reacting per active site in unit time).64 

 

Good overlap of absorption cross-section with solar spectrum: In order to make use of more 

sustainable resources such as solar energy, the ideal photocatalyst should absorb a significant 
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portion of the solar spectrum. Although absorption in the visible range is not crucial, it is 

preferable so that a larger proportion of the suns radiation can be converted.  

 

High conversion efficiency and quantum yield: Conversion of photons to chemical energy 

needs to be an efficient process in photocatalysis, and a high quantum yield should be 

envisaged. 

 

Ease of Recovery: For commercial applications of heterogeneous photocatalysis, 

immobilization is generally a preferred format, particularly in terms of cleaning, recovery and 

reuse. However, there are generally sacrifices made for this in terms of the photocatalytic 

efficiency and surface area. On the contrary, suspended systems are also recoverable, however 

further steps such as cleaning, centrifugation or filtration are required along with further 

illumination to rid the material of any remaining adsorbed contaminants. Whether the material 

is to be re-used or not, recovery of the material is a very important consideration. 

 

Recycling: The whole principle of photocatalysis and catalysis in general is the potential for 

continuous reuse of the material. From a commercial viewpoint, continuous recycling of the 

photocatalyst is favourable rather than continual replacement. This is especially the case in 

terms of more expensive photocatalysts which use rare metals or are doped with expensive 

materials.  

 

Low cost: In cases where the photocatalyst is non-recyclable, cost efficiency is another concern. 

Photocatalysts which use rare metals can be expensive, and obviously are in low abundance. 

Where photocatalysts are recyclable, it would be ideal for the process of retrieving and cleaning 

to be inexpensive.75 

 

Safety: Materials employed in wastewater treatment facilities should be non-toxic, therefore 

proposed photocatalytic materials should not be cytotoxic and should not accumulate in the 

environment if released. In cases where a material may bio-accumulate, the material in question 

should be filtered/settled from the wastewater prior to discharge and should be recycled or 

disposed of safely. 

 

1.4 Titanium Dioxide  
1.4.1 Semiconductor Profile 

TiO2 exists as three natural allotropes: brookite, anatase and rutile. Anatase and rutile have been 

proven as the most effective photocatalysts, with anatase showing a higher photocatalytic 
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efficiency over rutile. 76  Unit cells of both rutile and anatase are shown in Figure 1.6. 

Formulations of TiO2 generally contain either a mixture of both rutile and anatase or just pure 

anatase. Two of the most common formulations now remain as standards in the field of 

heterogeneous photocatalysis: these are Degussa (now Evonik) P25 and Sachtleben’s Hombikat 

UV100. These two formulations are widely used in photocatalytic degradation of organic 

compounds and have even competed with lab-prepared formulations in some cases. The 

photocatalytic activity of TiO2 is dependent on both the particle size and the crystalline form it 

is in.77 Anatase and brookite can be converted to rutile upon heating. 

 

 
Figure 1.6: A 3-D image of rutile titania (Left) and Anatase titania (Right): in grey are Ti atoms and in red 

are oxygen atoms.78,79 

 

1.4.2 Sachtlebens Hombikat UV100 and Degussa P25 

Sachtlebens formulation is 100 % of the anatase allotrope with a surface area of >250 m2/g and 

a particle size of 5 nm. Several studies have proposed that this particular TiO2 has a greater 

tendency to degrade aliphatic species.80 Degussa’s P25 has a formulation of roughly 3:1 anatase: 

rutile with a surface area of 50 m2/g and a particle size of 20 nm. It has been postulated that this 

titania favours the destruction of aromatic and olefinic species unlike the Hombikat.80 

 

Since the majority of drugs on the market have an aromatic or heterocyclic ring within their 

structure, and/or olefinic components, it comes as no surprise that P25 is more widely 

applicable. Many studies have been conducted comparing both of these formulations, however 

more in depth studies which compare single versus mixed phase titania using ESR have been 

conducted. These studies have examined the benefits of mixed formulations and why. 

 

One study by Hurum and Agrios compared P25 with anatase and rutile and concluded that 

mixed formulations of the two allotropes showed a greater photoeffectiveness based on three 

quintessential factors.81 

1. Rutile, served to extend absorption into the visible region due to its slightly smaller 

band gap 3.0 eV. 
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2. Recombination of electron transfer processes was significantly controlled in P25 due to 

stabilisation of the charge separation from rutile to anatase.  

3. The small size of the rutile crystals facilitate in electron transfer and create ‘catalytic 

hotspots’ at the rutile/anatase interface. 

 

These results are evidence to the apparent synergistic relationship between anatase and rutile in 

mixed formulations and its efficacy in photocatalytic degradation of pharmaceuticals. 

 

1.4.3 Limitations of Employing the TiO2-Photocatalytic Process 

There are two major challenges that face the field of TiO2 photocatalysis and currently these 

issues can hamper its application in wastewater treatment. 

 

(1) The first challenge is immobilisation of TiO2 such that the material can be easily removed 

and recycled. Many immobilisation substrates are possible, although achieving the same 

removal rates and efficiency as suspended TiO2 is the overall goal. 

 

(2) The second challenge is the development of visible light sensitised photocatalytic materials 

such that cheaper visible light sources or solar light can be harnessed. Currently, UV light is 

required which heightens the cost of the process significantly. Achieving visible light sensitised 

photocatalysts can be done in many ways such as doping with metals, or coating with dyes.  

 

Overcoming these drawbacks is the present focus of research in TiO2 photocatalysis and some 

of this research is discussed in the following sections of this review.  

 

1.4.4 Immobilisation on surfaces. 

TiO2 can be configured in either a suspended form or an immobilised form. There are obvious 

disadvantages to configuration in an immobilised form such as a decreased surface area, 

however there are notable advantages such as the prevention of light scattering, ease of removal, 

and easy reuse. TiO2 has been immobilised on various stationary surfaces such as thin films, 

reticulated foam monoliths, fiber glass, glass/ceramic rings (Raschig rings), sand, glass beads, 

glass wool, silica fibres, titanium alloys, quartz, stainless steel and Pyrex glass tubes containing 

scratched polymeric fibres (to enhance the availability of light). 82,83,84,85,86,87,129,88,89,90 There are 

other immobilisation substrates which are possible; however these have not been applied for the 

interest of water remediation and will therefore  not be discussed. There are numerous methods 

for immobilisation of TiO2 on surfaces and they all depend on the application required. 

Different immobilisation techniques include: dip coating, sol gel and electrophoretic coating, 

thermal, and aerosol powder coating among others.82, 89, 91 
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1.4.5 TiO2 doping with metals 

Many studies have been performed in relation to metal or ion doping in order to enhance the 

photophysical properties of the semiconductor in heterogeneous photocatalysis. Doping with 

metals such as the Lanthanides, Fe, Pt, Ag and other noble metals may effectively enhance the 

photocatalytic efficiency.92,93,94 It has been postulated that doping the titania surface with various 

metals can reduce recombination processes by effectively trapping electrons and additionally 

extending absorption into the visible region (Figure 1.7).70 It can also enhance the rate of the 

photocatalytic reaction, enhance the yield of a particular product or change the reaction 

products.93 

 
Figure 1.7: The electromagnetic spectrum of light showing the visible region.95 

 

One of the major challenges with TiO2 photocatalysis has been electron-hole recombination as 

generally this process competes with photodegradation: doping with metals provides a solution 

to this problem. It prevents this process with migration of the electron to the metal, by the 

alignment of the Fermi levels of both the metal and the semiconductor. This not only suppresses 

the process but also the decrease in electron density causes an increase in hydroxyl acidity 

which affects the photocatalytic process. The major drawback with adding a dopant is that it 

heightens the cost of the process particularly when metals such as Ag or Pt are applied. 

 

Selective oxidation/reduction can also be achieved by doping. Depending on the compound, 

TiO2-mediated photocatalysis can either preferentially oxidise or reduce the contaminant. In a 

study undertaken by Choi et al. they found that doping with Vanadium (IV) accelerated the 

oxidation of chloroform, and doping with Ruthenium accelerated the reduction of carbon 

tetrachloride. Doping with other species such as Silica-tungstic acid can effectively inhibit one 

of these processes also resulting in a potentially ‘selective’ decomposition.96 
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1.4.6 Sensitisation of TiO2 with visible light absorbing molecules 

In recent years, TiO2 has been coated with visible light sensitised materials that enable the 

harnessing of visible/solar light in photocatalysis. Research which has gained considerable 

momentum is the sensitisation of TiO2 with various conjugated conducting polymers. 

Depending on the number of units, the absorbance of these polymers can be further red shifted, 

and modification of TiO2 by these polymers allows sensitisation by visible light.  Thusfar, these 

polymer modified TiO2 materials show considerable promise in photo voltaic cells, and recent 

work by Qui et al., Xu et al. and Liao et al. (opal crystal-polymer hybrid) have shown its 

potential for photocatalytic degradation of textile dyes and phenol.97,98,99 No literature yet exists 

on their potential for photocatalysis of pharmaceuticals. Other sensitising materials which have 

been considered are organic dyes such as methylene blue, rhodamine B, Chryosidine G and also 

macrocyclic sensitising molecules such as phthalocyanines and porphyrins.100,101,102  

                       
Figure 1.8: Structures of the simplest porphyrin (left) and phthalocyanine (right). 

 

Porphyrins and phthalocyanines are well-known for their use as photosensitising molecules and 

their application stretches from PDT, photovoltaic cells, contrast/imaging agents, to non-linear 

optics.103,104 Structures of the simplest porphyrin and phthalocyanine are shown in Figure 1.8. In 

terms of their photo-sensitising ability, generally metal phthalocyanines and metal porphyrins 

are employed due to their higher stability and improved photocatalytic activity over the metal 

free form.105 Attachment of sensitisers of this type to TiO2 has been done in many ways via 

chemisorption, physisorption and covalent binding.111 Thusfar, their use with TiO2 in 

photocatalytic degradation has been limited to the degradation of various nitrophenols and 

chlorophenols, organic dyes and lignins.105, 106, 107, 108, 109 

 

1.4.7 Linkers for attachment of sensitising molecules to TiO2 

One strategy to covalently link a dye molecule to the surface of TiO2 is to use a linking 

molecule that is initially bound to the TiO2 surface. Many options exist for anchoring molecules 

to metal oxide surfaces and some of the most stable and commonly used linkers are discussed 

below. Figure 1.9 shows a schematic of a metal oxide with a dye attached via a linker composed 
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of an anchoring group and a bridging molecule. Work by Anderson et al. demonstrated the 

effects of longer bridging molecules with carboxylate anchoring groups. 110  The longer the 

bridge (units of CH2) length the shorter the injection time of electrons to the metal oxide 

surface, in this case SnO2. 

  
Figure 1.9: Metal Oxide (MO) with linker composed of an anchoring group (A) and a bridging group (b) 

to attach sensitising molecules. Reproduced from Galoppini 2004.111 
 

 Carboxylates (COOH) 

In the most efficient DSSCs, Ruthenium complexes are anchored to TiO2 via carboxylic acid 

groups which bind to surface hydroxyl groups on the TiO2 surface (chemisorption).112 These 

carboxylate anchors can bind in a variety of modes (Figure 1.10) from mono dentate to bi-

dentate, ionic, hydrogen bonding and ester linkages. While these linkages are shown to exhibit a 

high stability in most anhydrous organic solvents their binding to TiO2 is reversible and dyes 

can be easily desorbed in basic conditions (> pH 9).111,113  

 
Figure 1.10: The six different possible binding modes of carboxylate groups on titanium dioxide.114 

 

 Phosphonate (PO3H2) 

The highly oxophilic phosphonic acid group has been reported to provide a strong chemical 

attachment, most probably because of its affinity to hard acid metals such as Ti(IV) in TiO2. 

Phosphonate along with carboxylate are the most common linkers for binding sensitisers to 

metal oxide films. Work by Hupp et al. in 2007 compared phosphonate linked Ruthenium and 

Rhenium dyes with carboxylate linked onto TiO2 films.113 Amongst their findings they 

discovered that phosphonate anchors facilitate faster electron injection and stronger electronic 

coupling (computer-modelled) with a CH2 spacer group. 
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 Silanes (SiOEt3) 

Silane groups have been successfully grafted onto TiO2 particles. Lin et al. in 2001 successfully 

grafted these groups onto silica gel and TiO2 particles with the silane agent 3-glycidoxypropyl 

trimethoxy silane (GPS).115 A higher grafting percentage was found on Silica gel due to its 

higher H content. The grafting of GPS on TiO2 was found to be 0.95% compared to 16% on 

Silica. They further grafted the Xanthene dye Rhodamine B onto the GPS modified silica gel. 

Other work in silane modified TiO2 particles has been done by Ye et al. who successfully 

modified the metal oxide surface with APTS and further attached a biomolecule.116 

 

 Acetylacetonate ACAC: 

Heimer et al. in 1996 investigated the use of acetylacetonate (acac) as a linker for Ru(bpy) 

complexes to TiO2.117 This linker has been found to be stable to hydrolysis over a range of pH’s. 

In 2008, McNamara et al. reported a Mn-based catalyst bound to P-25-TiO2.163 Results showed 

an improved stability in water of the acac catalyst and also a good resistance to oxidation with 

oxone over a period of 24 h. They concluded that acac shows great potential in providing a 

versatile and robust linkage between metal oxide particles and sensitising molecules.  

 

 Toluene diisocyanate (TDI) 

TDI has been employed by Jiang et al. as both a linker and a sensitising molecule in the surface 

modification of TiO2.100 ,118 The TDI modified TiO2 was found to be superior over P-25 TiO2 in 

the degradation of Methylene Blue. In later work, they further attached a dye (chryosidine G) 

which proved to be a better photocatalyst and showed great reproducibility upon recycling. 

Chen et al. in 2009 later adopted their TDI modified photocatalyst in the degradation of 

chlorophenol and a number of other organic molecules.119 

 

 Diols/Boronic Acids 

Notestein et al. in 2007 sensitised Hombikat TiO2 with different derivatives of ‘cone’ 

calixarenes.120 The calixarenes they employed were functionalised with diols which served to 

anchor the structures to the TiO2 surface. Altobello et al. recently employed boronic acids as 

anchors in Ruthenium based DSSCs.121 These anchors can adsorb to the metal oxide surface like 

carboxylic acids. They demonstrated the potential of these acids as linkers, however they have 

since adopted phosphonic and carboxylic acid anchors in Ruthenium and Osmium based 

DSSCs. 
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1.5 Optimising the Photocatalytic Process 
TiO2 has been reported to successfully degrade contaminants all across the broad spectrum of 

pharmaceuticals. To achieve the most efficient degradation of pollutants, various parameters 

must be optimised. Numerous studies have employed TiO2 under conditions such as varying 

pH, anion effects, concentration of catalyst, concentration of pollutant, lamp type, lamp 

intensity, addition of various oxidants etc. These parameters will be discussed in the next 

section and also the effect with which these parameters have on the photocatalytic process.  

 

1.5.1 Anion Effects: CO3
2- SO4

2- Cl- 

Various anions have been reported to be radical scavengers in the photocatalytic process, and 

many studies have shown an inhibited degradation by TiO2 with the addition of these anions in 

solution.122,123 A study by Pujara et al. 2007, found that sulfates (SO4
2-, chlorides (Cl-) and 

carbonates (CO3
2-) had detrimental effects on the degradation of phenol-4-sulfonic acid. A 

significant decrease in mineralisation efficiency was reported by this group for this compound 

and they attributed not only radical scavenging but potential competitive adsorption to these 

effects.124 It has also been thought that these compounds can filter light (inner filter effects) 

reaching the target analyte, and can therefore also competitively absorb light. These anions 

naturally appear amongst the flora and fauna of surface and ground waters and can be released 

in the photocatalytic process by compounds being studied in degradation. Studies into the 

effects of these anions on the degradation of pharmaceuticals can provide a more realistic 

evaluation of efficiency and robustness of degradation.   

 

1.5.2 pH Effects 

pH is another parameter which can be optimised in heterogeneous photocatalysis. TiO2 has a 

point zero charge (pzc) or an isoelectric point at ~ pH 6.4 which gives rise to either a positive 

charge at acidic pHs and a negative charge at more alkaline pHs on the surface of the TiO2 

particle. This can potentially have an enhanced effect or a detrimental effect on the adsorption 

of the organic compounds and also on the rate of photocatalytic degradation.125 The surface 

charge of TiO2 or the zeta potential is largely affected by the pH and the ionic strength of the 

solution as work by Jiang et al. 2009 shows. Also, agglomeration of particles is found to be 

enhanced by an increase in pH close to the pzc for TiO2.126 

 

1.5.3 Oxidants 

TiO2 is usually used in conjunction with some sort of oxidant to achieve complete 

mineralisation of all pollutants. Mineralisation refers to the complete conversion of the pollutant 

into components or substances naturally abundant in the environment (i.e CO2, O2, nitrates, 
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sulfates and carbonates etc.) Oxidants generally employed are ozone (O3), oxygen, potassium 

peroxydisulfate and hydrogen peroxide.  

 

1.5.4 Hydrogen Peroxide-H2O2 

Hydrogen Peroxide is the most common oxidant due to its solubility, and to its high generation 

of hydroxyl radicals. The role of hydrogen peroxide in the photocatalytic degradation of organic 

compounds is two-fold. 

 

1) Upon electron excitation to the conduction band hydrogen peroxide accepts the photo-

generated electron, promoting charge separation. 

 

2) Hydroxyl radicals can also be formed from reaction with superoxide anions which can 

then unselectively degrade contaminants. See equations below:127 

 

1) H2O2 + e-  OH- + OH. 

2) H2O2 + O2
-  OH- + OH. + O2 

 

Appropriate concentrations of H2O2 can considerably enhance degradation and mineralization of 

compounds.128 Hydroxyl radicals unselectively degrade pollutants due to their high oxidation 

potential of 2.8 V.49 They are extremely unstable species and are continuously produced 

throughout radical propagation and chain reaction mechanisms. Their mechanism of 

degradation of organic contaminants occurs either by a H-abstraction in the case of 

alkene/olefinic or alcohol functionalities. In the case of aromatic species, the general case is 

hydroxylation of the phenyl ring, and perhaps subsequent displacement of EWGs such as 

halides. In general, reactions of hydroxyl radicals can be summarized into H-abstraction, 

electrophilic addition and electron transfer.73 

 

In the majority of studies, only one of the oxidants mentioned above is selected and used. If 

more than one is used or ‘too much’ is used, various inhibitory processes come into play and the 

efficiency of degradation is somewhat compromised. This is realised in reported studies by 

Adan et al. 2006 and Kaniou et al. 2005 where degradation efficiency decreases once a 

threshold of H2O2 is reached. Adan et al. 2006 performed studies using TiO2 immobilised on 

Silica fibres with various oxidants.129,71 They found that after 300 mins irradiation 38% salicylic 

acid is removed using H2O2 at 29 mmol, and after 300 mins irradiation using oxygen 33% 

salicylic acid is removed. At this concentration Adan reported that various recombination 

processes start to compete with degradation. They also reported that the degradation rate limits 
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due to recombination of hydroxyl radicals with various other radical species such as 

hydroperoxyl radicals and peroxide.  

 

Kaniou et al. found, in the photocatalytic degradation of sulfamethazine, that concentrations 

above 200 mg/L resulted in a decrease in the reaction rate. This particular study examined both 

TiO2 and ZnO on the degradation of sulfamethazine. Addition of H2O2 to ZnO, interestingly had 

no effect positive or negative on the reaction rate. Kaniou and co-workers explained this in 

relation to the negligible adsorption of H2O2 on the surface of ZnO which was also noticed by 

Carraway et al. in 1994 and Kormann et al. 1988.130,131 The adsorption of H2O2 on TiO2 is much 

more photocatalytically favourable due to an increase in the reduction by photogenerated 

electrons of H2O2 and therefore a reduced e-/h+ recombination rate. All in all, optimum 

concentrations must be realised for the most efficient degradation.  

 

1.5.5 Potassium peroxydisulfate K2S2O8 

Potassium Peroxydisulfate is commonly used in organic chemistry oxidations particularly the 

Elbs persulfate oxidation. Potassium Peroxydisulfate works in a similar fashion to hydrogen 

peroxide. It generates reactive sulfate radial ions SO4
-●, comparable to hydroxyl radicals. The 

equations given below show the generation of the sulfate radical ions from the peroxydisulfate 

ion.132 

(1) S2O8
2- + eCB

- SO4
2- + SO4

-● 

The nature of radical chemistry is that once one radical species is formed, this can then undergo 

various chain reactions or propagation stages which inherently generate further species of 

radicals. Equation 1, will thus undergo propagation to generate hydroxy radicals as follows: 

(2) SO4
-● + H2O HO. + SO4

2- + H+ 

1.5.6 Ozonation-O3 

Ozone is considered an effective pollutant treatment method by itself and is one of the advanced 

oxidation processes mentioned in other sections. In some cases it has been used in conjunction 

with TiO2 and has shown to be effective, although there are some drawbacks to its utilisation.  

 

Ozone can be generated from either oxygen or regular lab air with the initial irradiation of UV 

light or electrical discharge.49 It is then passed into the reaction chamber via a porous diffuser 

and is then solubilised within the water. Using ozone as an oxidant requires a high energy input 

and the resulting yield of pure ozone is low comparatively. It also is much less soluble in water 

than conventionally used (cheaper) oxidants such as hydrogen peroxide. The nature of ozone is 

such that it cannot be stored and must be generated and kept in close proximity to the reaction 

set up. 
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1.6 Literature Concerning the Pharmaceutical Targets in this Work 
The three APIs examined in this work are Famotidine, Tamsulosin Hydrochloride and 

Solifenacin Succinate. All three are manufactured by Astellas Pharmaceutical Ltd in 

Damastown, Dublin and have varying therapeutic action. 

 

Famotidine:  

Otherwise known as Pepcid, Famotidine is a histamine H2-receptor antagonist. 133  It is 

commonly used in the treatment of peptic ulcer disease (or gastrointestinal ulcer prophylaxis) 

and functions in inhibiting stomach acid production. In 2010, Famotidine was the 3rd (Pepcid 

Complete) and 4th (Pepcid AC) most popular antacid with sales of over $105 million.134 In the 

last decade it has also appeared recurrently within the top 200 over the counter health care 

products annually (See Table 1.2). In patients that use Famotidine, it has been documented that 

65-70% of the drug is recovered unchanged in the urine, thereby rendering this drug as one of 

the many that is released into the environment on a day-to-day basis.135 Recent studies in Spain 

and Cyprus have also indicated that it is frequently present in both wastewater treatment plant 

influent and effluent and is only partially degraded.136,137,138  
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Figure 1.11. Famotidine: (3-[2-(diaminomethyleneamino)thiazol-4-ylmethylthio]-N-

sufamoylpropionamidine). 

 

Much of the work done on this drug has been done with relevance to a medical or a 

synthetic/patentability application/benefit. To our knowledge, no comprehensive study has been 

done on the degradation of this compound by photolytic or photocatalytic degradation with TiO2 

in solution. One study by Kakinoki et al. examined the effect that TiO2 had in formulation with 

Famotidine in the solid-state.139 This study examined compacts of Famotidine and TiO2 and 

found discoloration with irradiation of these compacts. They also found that Famotidine was 

quite photo-stable for the wavelengths tested (300-450 nm). Another study more recently 

examined Famotidine degradation using the photo-Fenton process.140 Other work that has been 

done (with relevance to this work) involves stability studies by Wu et al. who found that in 

comparison to other similar drugs Famotidine resulted as the least stable in aqueous solutions at 

pH 2.0 at 25°C. 141  Its stability was also found to be independent of exposure to light 

(fluorescent) and the presence of other drugs in the system did not influence its stability. It was 

apparent during the study that pH was the dominant factor contributing to the degradation of all 

drugs present. Famotidine was the most stable at pH 4.0 and the least at pH 2.0. Other work 



27 
 

includes identification of acid/base hydrolysis products for Famotidine oxidation (see Figure 

1.12) and metabolite studies and various papers on High Performance Liquid Chromatography 

(HPLC)/ Liquid Chromatography tandem Mass Spectrometry (LC-MS/MS) methods. 142,  143 

 

Famotidine (Pepcid AC)  Retail Sales ($) OTC/HBC ranking of 200  

Mol. Wt. g/mol 337.44 2007 60,894,330 (111th) 

pKa 6.9 2006 72,251,510 (46th) 

Log P -0.4 2003 81,392,744 (31st) 

Log D7.4 -1.02 2001 105,497,120 (37th) 

Table 1.2: Properties of Famotidine including sales data and product rank amongst other over the counter 

health and beauty care products.134,144 
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Figure 1.12: Famotidine and its reported acid and base hydrolysis products according to Junnarkar and 

Singh.142,143 

 

Tamsulosin Hydrochloride: 

Tamsulosin HCl is an antagonist of alpha 1-adrenoreceptors and relieves the symptoms of 

benign prostatic hyperplasia.145 Its structure is shown in Figure 1.13 and it is marketed under the 

name Flomax and is reported to be continually placed in the top 200 drugs in the last 4 years.146 

Sales figures and rankings are presented in Table 1.3 along with various properties for 

Tamsulosin including Log P, Log D etc. Of the administered dose of Tamsulosin, 75% is 

excreted as metabolites in the urine, with 10% excreted as the parent structure.147 As with 

Famotidine, the majority of studies concerning Tamsulosin are its detection in human plasma 

and serum using various HPLC and LC-MS/MS methods.148,149 It has been used as an internal 

standard in other studies.150 Currently, no work has been done in relation to photodegradation 

studies with this compound and likewise, no studies yet exist which show its presence in the 

environment.  



28 
 

N
H

O

O

SO2NH2

MeO

HCl.
 

Figure 1.13. Tamsulosin: ((-)-(R)-5-[2-[[2-(o-Ethoxyphenoxy)ethyl]amino]propyl]-2-

methoxybenzenesulfonamide, monohydrochloride). 

 

Tamsulosin (Flomax)  Retail Sales ($000)/Ranking of 200 
  

Mol. Wt. g/mol 444.98 2010 486,106 (69th) 

pKa 
8.4 (secondary amine), 

10.2 (sulfonamide) 2009 1,556,273 (17th) 

Log P 2.24 2008 1,236,963 (27th) 

Log D7.4 0.79 2007 1,002,163 (36th) 

Table 1.3: Properties of Tamsulosin including retail sales figures and ranking amongst other drugs.144,146 

 

Solifenacin Succinate: 

Solifenacin succinate is an anticholinergic muscarinic receptor antagonist used in the treatment 

of overactive bladder.151 Its structure is shown in Figure 1.14 and it is marketed under the name 

Vesicare and like Tamsulosin, has been amongst the top 200 drugs sold annually in the past 4 

years.146 These data along with Log P, Log D and pKa values for Solifenacin can be found in 

Table 1.4. Pharmacokinetic studies have found that Solifenacin is completely orally bioavailable 

and of the administered dose, 50% is excreted renally unchanged.152,153 Of all three compounds, 

this has the least amount of studies found in the literature, although HPLC and LC-MS/MS 

methods have been reported for its detection in plasma. 154 ,151 Thusfar no photodegradation 

studies have been performed with this pharmaceutical. Similarly, no studies exist which have 

reported its presence in the environment.  
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Figure 1.14 Solifenacin: ((+)-(1S,3’R)-quinuclidin-3’-yl 1-phenyl-1,2,3,4-tetrahyroiso quinoline-2-

carboxylate monosuccinate. 
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Solifenacin (Vesicare)  Retail Sales ($000)/Ranking of 200  
Mol. Wt. g/mol 480.55 2010 440,862 (82nd) 

pKa 8.5 2009 379,283 (98th) 

Log P 3.7 2008 299,147 (115th) 

Log D7.4 2.07 2007 205,637 (152nd) 

 Table 1.4: Properties of Solifenacin including retail sales figures and ranking amongst other drugs 144,146. 

 

1.7 Project Proposal  

The aim of the following work, in conjunction with the Astellas pharmaceutical plant in 

Damastown Dublin, is to develop photochemical methods to degrade 3 active pharmaceuticals 

from this plant: Famotidine, Tamsulosin Hydrochloride and Solifenacin Succinate. All 3 

pharmaceuticals are regularly prescribed drugs and thus far, few studies are available on each 

and none in relation to their photocatalytic degradation. Total mineralisation of these 

compounds is envisaged, using current advanced oxidation processes which have been 

successfully applied in water treatment of pharmaceuticals. 

 

Two photochemical methods will be examined; (1) direct photochemical degradation (the 

absence of a photocatalyst) and (2) heterogeneous photocatalysis. Homogeneous photocatalysis 

will be undertaken by a separate analyst in a similar project. Heterogeneous photocatalysis will 

comprise the use of TiO2, while homogeneous photocatalysis will comprise the use of Fe-salts. 

The photochemical methods, in this work, will be compared in terms of their practicality, cost, 

and more importantly their degradation efficiency. All these factors will determine the 

feasibility of its commercial application. 

 

Further comparisons will also be made regarding heterogeneous photocatalysis: Two commonly 

used standard TiO2 formulations will be compared to see which is the most photocatalytically 

efficient: Sigma-Aldrich TiO2 (Hombikat UV100 could not be obtained) and Degussa’s P25 

TiO2. Various other conditions which will be optimised include pH, and concentrations of an 

oxidant. While the success of the degradation of the 3 pharmaceuticals is paramount to this 

project, identification of the intermediate products formed and the pathways of degradation are 

just, if not equally, as important. In some cases, the intermediate products formed in degradation 

can be more harmful than the initial pharmaceutical. LC-MS/MS analysis will be employed 

once the photodegradation studies have been optimised to determine the number and nature of 

the intermediates formed. From this analysis, mechanisms of degradation will then be proposed 

for each pharmaceutical. 
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In addition to this work, attempts will be made to develop visible light sensitised photocatalysts 

which can be used either indoor using cheap halogen lamps (or Laser Emitting Diodes (LEDs)) 

or outdoor using solar light. These will incorporate TiO2 and will be applied in a suspended 

form. These novel photocatalysts will be characterised using various techniques such as Fourier 

Transform Infrared Spectroscopy (FT-IR), UV-vis Spectroscopy (UV-vis), Scanning Electron 

Microscopy (SEM), and Energy-Dispersive X-ray Spectroscopy (EDX). Their photocatalytic 

efficiency will then be tested on a model pollutant and compared against conventional P-25 

TiO2, currently the most efficient commercially available photocatalyst.  

 

1.8 Thesis Outline 
This section outlines this thesis chapter by chapter and describes in brief the research content 

within each chapter as follows:  

 

Chapter 1 has presented the existing and potential methods used to eliminate pharmaceuticals 

(APIs) and discussed in detail the TiO2 photocatalytic process, its mechanism of action, 

limitations and the current and future research in the field. Chapter 2 contains the detailed 

experimental procedures and methods for all research work contained within this thesis. 

  

Chapter 3 focuses on the photolytic and photocatalytic degradation studies of the 3 

pharmaceuticals.  Initial UV-vis profile studies of each API are shown including studies at 

different pHs to determine any arising effects on the APIs. Preliminary photolysis studies with 

various lamps and reactors of different scales and configurations are also discussed. Chapter 3 

also presents studies investigating the effect of various parameters on each API such as (i) TiO2 

concentration (using the titanium dioxide with the most superior performance), (ii) varying pH 

(iii) addition of hydrogen peroxide at various concentrations and (iv) varying concentrations of 

initial API to test the method robustness. These studies have been analysed using individual LC 

methods developed on a HPLC-PDA system.   

 

Chapter 4 examines comprehensively the intermediates generated from the APIs in 

photodegradation studies. LC-PDA methods used in previous studies were adjusted and 

transferred to an ESI-LC-MS/MS instrument. These methods were used to detect and identify 

intermediate compounds generated from the APIs in the optimized photolytic and photocatalytic 

reactions. Intermediate structures were determined from analysis of the combined DI-MS and 

LC-MS/MS data attained in photolytic and photocatalytic studies. This data has been 

corroborated with a predictive oxidation analysis and further confirmed by the characterisation 

of their respective fragment ions. Degradation pathways are also presented showing the route of 

each pharmaceutical to these intermediate compounds.  
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Chapter 5 describes the development of new visible light sensitised photocatalytic materials. 

The most stable and popular linkers from those discussed in Chapter 1 were selected to anchor 

dyes to TiO2. Various sensitising molecules (phthalocyanines and porphyrins) were then 

selected to attach to these linkers and to TiO2. These composite materials were then 

characterised and their photoactivity was evaluated with our target APIs.  

 

Finally, Chapter 6 presents the overall conclusions from the research discussed in this thesis and 

suggests future work which could be undertaken based on these conclusions.  
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Chapter 2 - Experimental  
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2.1 General  

2.1.1 Materials and Instrumentation 

Famotidine, Tamsulosin Hydrochloride and Solifenacin Succinate were donated by Astellas 

Ireland Pharmaceutical Limited (Dublin, Ireland). Millipore Milli-Q water was used in all 

experiments. HPLC and LC-MS/MS analysis were undertaken with respective HPLC grade and 

LC-MS grade solvents purchased from Fischer Scientific Ltd. Formic acid was mass 

spectrometry grade and purchased from Sigma Aldrich. FIXANAL buffers were purchased from 

Sigma-Aldrich and were comprised of citric acid, sodium tetraborate, potassium dihydrogen 

phosphate, disodium hydrogen phosphate, NaOH, HCl, NaCl depending upon the pH. P-25 

TiO2 was kindly donated by Degussa. Sigma Aldrich TiO2 was purchased from Sigma Aldrich 

99.8% Anatase. Hydrogen peroxide (27.5%) and sodium bisulfite were used as purchased from 

Sigma-Aldrich Chemicals. Nylon membrane filters were purchased from Millipore (Ireland) and 

used in filter housings to filter samples from photocatalytic experiments. Mobile phases were 

filtered with Pall nylon filters (0.2 μm pore size, 47 mm diameter) and for LC-MS/MS analysis 

regenerated cellulose filter membranes (0.2 μm pore size, 47 mm diameter). UV absorption 

profiles for the pharmaceuticals were undertaken using a UV-vis spectrophotometer (Cary 50 

UV-vis, Varian). Chromatographic separations were performed on a ‘reversed-phase’ HPLC 

column: Phenomenex PFP (Luna) C18 150 mm x 4.6 mm 5 μm particle size for HPLC-

UV(PDA), and 150 mm x 2.1 mm (5 μm) for LC-MS/MS analysis. Analysis of samples were 

performed on two HPLC systems: (1) a Varian Prostar HPLC-PDA (Varian Inc, Palo Alto, 

USA) with a Varian Prostar Solvent Delivery system(model 230), PDA detector (model 330) 

autosampler (model 410), (2) a Varian HPLC-UV (Varian Inc, Palo Alto, USA) with a Varian 

Inert 9012 Tertiary Pump system, Varian 9050 Variable wavelength UV-vis detector, and 

Rainin Dynamax auto-injector model AI-200. LC-ESI-MS/MS analysis was performed on an 

Agilent 1100 series high performance liquid chromatograph with a vacuum degasser, binary 

pump, ALS autosampler, and diode array detector. This LC was coupled to a Bruker Daltonics 

Esquire ESI-ion trap mass spectrometer. Agilent Chemstation version A.09.03 (Agilent 

Technologies, USA) and Bruker Daltonics esquire control version 4.0 (Bruker Daltonics, UK) 

were employed to control the system and data analysis was performed using Bruker Daltonics 

Data Analysis 3.0 (Bruker Daltonics, UK).  

 

2.1.2 UV-vis Analysis Experimental Procedure 

Dilutions of 1 mM stock solutions were undertaken and the most appropriate concentration for 

absorption was determined. These concentrations were also adopted in photocatalytic studies 

(0.028 g/L Famotidine, 0.037 g/L Tamsulosin), which can be found to be optimum for 

photocatalytic drug studies in literature (5-50 mg/L).155, 156  A 1 in 12 dilution (0.083 mM) 
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displayed an appropriate UV-vis profile for Famotidine and Tamsulosin. For Solifenacin a 

concentration of 1 mM was employed. 

 

2.1.3 pH Effects Experimental Procedure 

4 mL of each drug solution was prepared with 50:50 buffer: drug solution. Buffers were 

previously diluted with Millipore water in a 500 mL volumetric as per manufacturer’s 

instructions. The final concentration of drug/buffer solution used in these studies was 50 μM for 

Famotidine, 83 μM for Tamsulosin and 500 μM for Solifenacin. Solutions were then analysed 

by UV-vis spectroscopy.  

 

2.2: Chromatographic Methods 

2.2.1 Method Development Part II HPLC-UV Experimental Procedure 

Stock solutions of 100 μM were prepared in Millipore distilled water and dilutions were made 

with Millipore water with laboratory auto-pipettes. Mobile phases were filtered and sonicated 

prior to use. (Varian Prostar HPLC-PDA) Mobile Phase A: 100% MeOH 0.1% Formic Acid. 

Mobile Phase B: 100% H2O 0.1% Formic Acid. Table 2.1 contains method development 

conditions with the methanol solvent phase system which were optimized from methods 

developed by A. Deegan.157 See Table 2.2 for final methods. 

 

API Wavelength nm Mobile Phase Inj. Vol. Run Time (mins) tR 
(mins) 

FAM 265 25% MeOH: H2O (0.1% F.A.) 50 μL 10 4.0 
TAM 280 65% MeOH: H2O (0.1% F.A.) 50 μL 10 4.7 
SOL 220 70% MeOH: H2O (0.1% F.A.) 50 μL 10 7 

Table 2.1: Chromatographic Conditions with Methanol on Varian-UV-vis instrument. 

 

2.2.2 Method Development Part III HPLC-PDA Method Development 

Stock solutions of 100 μM were prepared in Millipore distilled water and dilutions for samples 

were made with Millipore water with laboratory auto-pipettes. Analysis was performed on the 

Varian Prostar HPLC-PDA previously described. See Table 2.2 for final methods and Table 2.3 

for theoretical plate calculations, retention factor, and tailing and asymmetry factors. 

 

API Wavelength 
nm Mobile Phase Inj.Vol. 

μL 
Run Time 

(mins) 
tR 

(mins) 
Famotidine 265 9% MeOH:H2O 0.1% F.A 20 15 10.5 
Tamsulosin 223 40% MeOH:H2O 0.1% F.A 20 20 13.1 
Solifenacin 220 30% ACN:H2O 0.1% F.A 20 20 14.2 

Table 2.2: Final methods on Varian HPLC-PDA system for analyte and intermediate detection 
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API Tf  As  N  k'  HETP 
Famotidine 0.94 0.92 3582  4.18   0.0418 
Tamsulosin  1.08 1.2   2342  5.88  0.064 
Solifenacin  1.1  1.23  3125  5.86 0.0479  

Table 2.3: Tailing, asymmetry and capacity factors for the three pharmaceuticals along with column 

efficiency, and HETP values.  

 

2.2.3 LC-MS/MS Method Transfer and Re-optimisation 

Standards for each pharmaceutical and samples from a previous photocatalytic experiment were 

employed such that the retention times of intermediates could be adjusted. See Chapter 4 Table 

4.1 for final methods. Table 2.4 shows the MS conditions for each pharmaceutical. 

Settings Famotidine Tamsulosin  Solifenacin 
Capillary, V - 4500 -4500 -4451 

End Plate Offset, nA - 500 -1200 -752 
Nebuliser, psi 50 50 50 

Dry Gas, L/min 8 8 8 
Dry Temp, °C 325 325 325 

Skim 1, V 15 19.2 31.7 
Skim 2, V 8.1 6.2 15 

Cap Exit, V 65 76.2 81.7 
Cap Exit Offset, V 50 95.4 50 

Octopole, V 5 2.51 2.64 
Octopole Δ, V 2.05 1.93 2.05 
Oct RF, Vpp 177.1 201.6 205.7 

Lens 1, V - 2.2 -4.1 -4.7 
Lens 2, V - 49.5 -46.1 -50.7 
Trap Drive 50.1 38.4 38.5 

Table 2.4: ESI-MS method conditions for each pharmaceutical. 

 

2.3: Chapter 3: Photolytic and Photocatalytic Degradation Studies with 

Famotidine, Tamsulosin and Solifenacin 

 

2.3.1 Quartz Photolysis General Experimental Procedure 

The MP Hg Lamp set-up was employed (Figure 2.1) and experiments were performed using a 

TQ-150 MP Hg lamp and under static flow conditions (unless otherwise stated). The reactor 

volume was 300 mL. The solution was cooled using a quartz immersion well and all solutions 

were irradiated for 1 h with samples taken at 5 minute intervals. Sample concentrations of 0.083 

mM, (Solifenacin 1 mM) were used, and were monitored by UV-vis spectrophotometry.  
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Figure 2.1: MP Hg Lamp Set-Up (Vol. 320 mL) schematic (left) and photograph (right). 

 

2.3.2 Pyrex Photolysis Experimental Procedure 

The general procedure was followed as outlined previously (2.3.1) with the incorporation of a 

Pyrex immersion well instead of Quartz. Irradiations were 1 h or 5 h. The reactor volume was 

also 320 mL in this case.  

 

2.3.3 Enviolet Reactor Experimental Procedure 

5 L of 0.083 mM drug solution (or 1 mM Solifenacin) was placed into the reactor (Figure 2.2). 

A 0 minute sample was taken at this point after pumping the solution through for 1minute with 

no irradiation. Residual water can be left in the pumping system after cleaning and this sample 

represents the actual concentration in the reactor. The MP Hg lamp (600 W) was turned on and 

allowed to irradiate for 300 minutes. A cooling jacket in the main reservoir ensured the sample 

did not overheat. Samples were taken regularly at 0, 30, 60 minutes and every hour for 5 h and 

were monitored by UV-vis spectrophotometry. 

 
  

Figure 2.2: Custom built Enviolet Photoreactor for wastewater treatment. 
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2.3.4 Low Pressure Hg Lamp Experimental Procedure 

Photolysis experiments were performed using a TQ-150 low pressure Hg lamp. The reactor 

volume was 800 mL. The solution was irradiated for 5 h using a quartz inner tube encasing the 

lamp with a Pyrex vessel (see Figure 2.3) to ensure filtration of light below 300 nm outside of 

the vessel. Samples were taken every 30 mins for one hour and then hourly after that. Sample 

concentrations of 0.083 mM were used (Solifenacin 1 mM), and were monitored by UV-vis 

spectrophotometry.  

 
Figure 2.3: Schematic of the LP Hg Lamp Set-Up (Vol. 800 mL). 

2.3.5 Pyrex and Quartz Photolysis with HPLC Analysis Experimental Procedure 

The general procedure was followed (2.3.1 & 2.3.2). The concentration of pharmaceutical in 

each experiment was 0.083 mM. Analysis was undertaken with the final methods previously 

outlined (section 2.2.2). Degradation profiles are graphed with reaction (illumination) time on 

the x-axis (in minutes) and concentration is plotted on the y-axis in the form: Ct/C0 where Ct is 

the concentration of pharmaceutical at time (in minutes) divided by the concentration of 

pharmaceutical at 0 minutes, C0. Degradation graphs are plotted thereafter in this manner. 

 

2.3.6 Adsorption Experimental Procedure (orbital shaking experiments) 

The adsorption experiments were performed with a varying substrate concentration of 0, 5, 10, 

20, 50, 100 µM. A TiO2 concentration of 0.25 g/L was applied to 50 mL volumes of drug 

solution in 250 mL conical flasks. Conical flasks were placed in an Orbital Mixer which was 

used to agitate and equilibrate the samples overnight in the absence of light (using tinfoil) unless 

otherwise stated. The following equation determined the amount of drug adsorbed by TiO2. pH 

experiments were conducted with buffers previously described. 

 

 

 

q = drug adsorbed(mg) per (g) of TiO2 

Cf = Concentration post-adsorption (mg/L) 

Ci = Concentration pre-adsorption (mg/L) 

)(
)(2

LVol
gTiO
CC

q if 



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Vol = Volume (L) 

TiO2 = Concentration of TiO2 (g) 

 

2.3.7 Heterogeneous Photocatalysis (Quartz) Experimental Procedure:  

320 mL of drug solution was placed into the immersion well reactor at a concentration of 

0.083mM (or 1mM for Solifenacin). A 0 minute sample was taken at this point. 0.05 g of TiO2 

(P25 or Sigma Aldrich) was then added into the reactor with washings from the solution in the 

reactor to ensure the entire amount was added. The lamp (TQ-150 Hg lamp) was turned on and 

allowed to illuminate for 60 minutes. A quartz immersion well ensured the sample mixture did 

not overheat. 5 mL samples were taken regularly at 0, 5, 10, 20, 30, 40 and 60 minutes.  

 

2.3.8 Heterogeneous Photocatalysis (Pyrex) Experimental Procedure 

The procedure, as previously outlined (2.3.7), was followed with the exception that a Pyrex 

immersion well was employed.  

 

2.3.9 TiO2 Optimisation (and general) Experimental Procedure 

320 mL of solution (0.083 mM) was placed into the immersion well reactor. A 0 minute sample 

was taken at this point. TiO2 (P25 or Sigma Aldrich) was then weighed out (0.1 g, 0.2 g, 0.4 g, 

0.6 g) and added into the reactor with washings from the solution in the reactor to ensure the 

entire amount was added. The suspension was allowed to stir with a magnetic stirring bar and 

equilibrate for approximately 0.5 h without illumination. Once the equilibration time was 

reached, the lamp (TQ-150 Hg Lamp) was turned on and allowed to illuminate for 180 or 300 

minutes. A Pyrex immersion well was used in all experiments to cool the sample mixture. 

Samples were taken regularly for the first hour and then hourly after this. Results were 

monitored using UV-vis spectroscopy and/or HPLC-UV/PDA instrumentation with methods 

previously described (2.2.2). Table 2.5 contains data relation to the physical and chemical 

properties of the two titanias used in photocatalytic studies. 

Property P-25 TiO2 SA-TiO2 

Wt. Ratio (Anatase:Rutile) 80:20 100 
Average Particle Size (nm) 21 130 

Content 
Al2O3 0.3%, SiO2 

0.2%, Fe2O3 0.01%, 
HCl 0.3% 

0.2% trace metals 

Specific Surface Area (m2/g) 50±15 8.6 
Moisture % 1.50 N/A 
pH 3.5-4.5 N/A 
Tapped Density (g/L) 130 N/A 
Ref 158 159,160 

Table 2.5: Characteristics of the two Titanias employed in photocatalytic studies. 
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2.3.10 pH Studies Experimental Procedure: 

Stock solutions were prepared (0.083 mM) of each drug, and the pH adjusted accordingly with 

acids and bases to the appropriate pH (3, 5 or 8). In the case of Famotidine, a more extensive 

study was undertaken (pH 3-10). The solution was then made up to the mark and the pH 

measured with a pH meter. The pH of the solution was measured again post adsorption and 

readjusted if necessary. The general procedure, as outlined previously (2.3.9), was then 

followed.  

 

2.3.11 Oxidant Addition Experimental Procedure: 

The quantities of hydrogen peroxide doses used were 0.1 mM, 1 mM, 5 mM, 50 mM. Hydrogen 

peroxide was added prior to irradiation of the drug solution and post the 30 minute adsorption 

period. Stock solutions were prepared at concentrations taking into account the dilution factor 

from the hydrogen peroxide addition such that once added, the concentration of drug solution 

was 0.083 mM. The peroxide in each sample was quenched with 2 drops of sodium bisulfite 

(40% w/v, 3.84M).161 The general procedure, as outlined previously (2.3.9), was then followed. 

The final concentration of peroxide for each initial concentration added is given in Table 2.6. 

 

[H2O2]init added (mM) Vtotal Dilution Factor [H2O2]Final (mM) 

0.1 320 3.75 x 10-5 3.75 x 10-6 
1 320 3.75 x 10-4 3.75 x 10-4 
5 320 1.875 x 10-3 9.375 x 10-3 

50 320 1.875 x 10-2 9.375 x 10-1 
Table 2.6 Final vs. initial concentration values for H2O2 addition experiments 

 

2.3.12 Controls Experimental Procedure: 

Control experiments were performed with a drug concentration of 0.083 mM. The control 

experiments which were conducted were as follows: (i) TiO2 alone, (ii) H2O2 alone, (iii) UV 

alone, (iv) UV/TiO2 (v) H2O2/TiO2 (vi)UV/H2O2. Hydrogen peroxide and TiO2 concentrations 

were the optimum concentrations as determined in experiments. The general procedure, as 

outlined previously (2.3.9), was then followed. 

 

2.3.13 Concentration Variation Experimental Procedure: 

A stock solution was prepared of each pharmaceutical at 1mM. Dilutions were made from this 

stock to prepare 320 mL of 20 µM and 200 µM solution for irradiation experiments. A 1000 µM 

experiment was also performed. The general procedure, as outlined previously (2.3.9), was then 

followed. Table 2.7 shows the concentrations used in these studies in mg/L and µM. 

 



40 
 

µM [FAM]mg/L [TAM]mg/L [SOL]mg/L 

1000 337 444 480 
200 67 88.8 96 
83 28 37 40 
20 6.7 8.88 9.6 

Table 2.7: Concentrations employed in concentration variation studies in µM and mg/L. 

 

2.3.14 Sodium Bisulfite Studies Experimental Procedure 

UV-vis experiments were conducted with samples of API and API plus 2 drops of bisulfite per 

4 mL of API solution. UV-vis analysis was conducted every minute for 10mins and then every 

10 mins for 1 h. Further analysis was undertaken 19 h later. 1H NMR experiments were 

performed in deuterated water and between 0.005-0.010 g of each API. 0.011 g of sodium 

bisulfite was added to each NMR tube. A further 0.030 g was added to each tube to see the 

effect of additional bisulfite. HPLC analysis of the effect of sodium bisulfite was undertaken on 

100 µM samples of each API. 2 drops of sodium bisulfite were added per 4 mL of sample and 

the samples were then analysed via replicate injections on a HPLC as previously outlined in 

section 2.2.2. 

 

2.3.15 Alternative Quencher Studies using Ethanol Experimental Procedure 

1 mL solutions of Famotidine/H2O2 were quenched with varying amounts of ethanol (0mL, 0.1 

mL, 0.25 mL, 0.5 mL, 1 mL, 1.25 mL, 1.5 mL) as a quencher. The ethanol was cooled in a 

freezer to -18ºC prior to use. Samples were taken after 5 mins and 10 mins reaction with H2O2. 

Follow-up studies were performed with 0.5 mL ethanol as a quencher with solutions of 

Famotidine/H2O2 with varying H2O2 concentrations. Samples were taken at 0mins, 0mins (after 

addition of H2O2) and 1 mins. The ethanol was cooled on ice prior to use and kept on ice as the 

sample was taken. As a control, 2 samples were not cooled on ice. The results from all 

experiments were analysed by HPLC as previously outlined in section 2.2.2. 

 

2.3.16 Famotidine Hydrolysis Studies Experimental Procedure 

UV-vis analysis was undertaken on 4 solutions: 2 of Famotidine (adjusted to pH 2, and an 

unadjusted sample) and 2 of Millipore water (adjusted to pH 2, and an unadjusted sample). 

0.011 g of TiO2 was added to 20 mL of each solution, and the solution filtered with Nylon filter 

membranes. UV-vis analysis of the resulting solutions was then undertaken. Sodium hydroxide 

was added to both original solutions of Famotidine (pH 2 and no pH adjustment) until a pH of 

11 was obtained and the UVs were obtained and compared. 
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2.3.17 Adsorption of Pharmaceuticals to Immersion Reactor Experimental Procedure 

320mL solutions of each pharmaceutical (0.083mM) were prepared and placed into the reactor 

which was stirred with a magnetic stirring bar for 3h. Samples were taken at regular intervals 

and analysed with UV-vis spectroscopy. Uv-vis profiles of samples were then compared to the 

UV-vis profile of the stock solution. 

 

2.4: Chapter 4: Intermediate Analysis and Elucidation of Degradation Mechanism 

for Famotidine, Tamsulosin and Solifenacin 

 

2.4.1 DI-Mass Spectrometry Studies  

LC-MS/MS instrument details can be found in section 2.1.1 of this chapter. 100 μL of each 

sample from a photolytic/photocatalytic experiment was placed in a glass syringe fitted to an 

automatic syringe pump. This sample was then slowly infused into the mass spectrometer at a 

rate of 300 μL/h. For Famotidine and Tamsulosin, the optimised TiO2 photocatalytic experiment 

was analysed with an initial drug concentration of 0.083 mM, and for Solifenacin, a photolysis 

experiment at 1 mM was analysed. Samples were run in positive mode only. MS/MS analysis 

was also employed on the parent ions of each pharmaceutical to establish and identify the 

daughter ions.  

 

2.4.2 Follow up DI-Mass Spectrometry Studies 

The same procedure as above was followed, however all samples were from photocatalytic 

experiments and were performed at much higher concentrations of 1 mM and with the 

optimised TiO2 concentration for 0.083 mM experiments. Samples for these experiments were 

filtered with cellulose acetate syringe filters to prevent interferences. Cellulose acetate syringe 

filters (RC membrane, 0.2 µm, 15 mm) were purchased from Phenomenex. The compound 

stability parameter was adjusted to 10%, 50% and 100% such that any additional unstable 

intermediates would arise.  

 

2.4.3 LC-MS/MS Analysis Studies 

Instrumentation and methods used can be found in sections 2.1.1 and 2.2.3 of this chapter. The 

optimised TiO2 photocatalytic experiment for each drug was analysed at the optimum 

concentration of 0.083 mM and at 1 mM (with a 1 in 2 dilution pre-analysis). In addition, 3 

further experiments were performed: photolysis experiments with Quartz and Pyrex (0.083 mM) 

and the optimised photocatalysis/H2O2 experiment with the optimum amount of peroxide. 

Experiments were run in positive mode only.  
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2.4.4 Control Experiments 

Two control experiments were performed to ensure all ions detected in LC-MS/MS runs were 

from intermediates generated by each pharmaceutical. Control experiment 1: (Photolysis) 

Irradiation of 300 mL of pure Millipore water with quartz glassware and a medium pressure 

mercury lamp for 1 hour. Control experiment 2: (Photocatalysis) Irradiation of 320 mL of pure 

Millipore water with Pyrex glassware, and a medium pressure mercury lamp and 0.1 g TiO2 for 

1 h. Photocatalytic samples containing TiO2 were filtered with cellulose acetate syringe filters. 

Samples were taken at least every 10 minutes. Samples were analysed by LC-MS/MS with a 

mobile phase of 40:60 MeOH: H2O 0.1% Formic Acid, 10 µL injection volume and a run time 

of 70 mins.  

 

2.5: Chapter 5: Development and Characterisation of Visible Light Sensitised 

Photocatalytic Materials and Evaluation of their Photocatalytic Activity with 

Famotidine 

 

2.5.1 NMR Spectroscopy 

NMR spectra were recorded on a Bruker 4- UltrashieldTM instrument (Bruker Daltonics, UK) 

(400 MHz for 1H: 100 MHz for 13C). NMR spectra were recorded using Sigma Aldrich grade 

deuterated solvents. 

 

2.5.2 IR- Spectroscopy 

IR Spectra were recorded on a Perkin-Elmer Spectrum (Massachusetts, USA) 100 FT-IR 

spectrophotometer using ATR (diamond) or an FT-IR Perkin Elmer (GX –FTIR) with 

preparation using KBr discs. 

 

2.5.3 SEM Imaging/EDX Spectroscopy 

SEM images were obtained on a Hitachi S3400n Tungsten system (Tokyo, Japan). Accelerating 

voltages of 10 or 20 keV were applied for all samples. 

 

2.5.4 Mass Spectrometry 

See section 2.1.1 of this chapter for full instrument details. Mass spectra were recorded in both 

positive and negative ion mode. 

 

2.5.5 Diffuse Reflectance Spectroscopy 

UV-vis profiles of coated TiO2 materials were attained using a Jasco V-670 UV/Vis/NIR 

Spectrophotometer (Essex, UK) with a diffuse reflectance integrating sphere. Samples were 
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prepared into discs with KBr, and the scan range was between 200-900 nm. The reflectance was 

converted to absorbance using the software (Spectral Analysis), and plotted as the inv of % 

Reflectance. 

 

2.5.6 Preparation of surface coated TiO2 with TDI (toluene diisocyanate) 

 
Reaction Scheme 1: Synthesis of TDI-TiO2 

Procedure 

A procedure from Jiang et al. 2008 was followed for the synthesis of TDI-TiO2.
100 TiO2 (1.6 g, 

0.02 mol) was dispersed into CH2Cl2 under magnetic stirring and a white suspension was 

formed. TDI (1 mL, 0.007 mol) was then added drop wise into TiO2/CH2Cl2 suspension under 

nitrogen. The suspension gradually turned yellow. The suspension was continually stirred for 2 

h and subsequently filtered to obtain a yellow TDI-TiO2 solid. The sample was washed 3 times 

with CH2Cl2 and left to vacuum dry. Analysis by FT-IR and UV-vis spectroscopy. 

FT-IR: ν, cm-1, 3300, 2280, 1644, 1600. 

UV-vis (DR): nm, 408, 429 (λmax), 470. 

 

2.5.7 Aminosilanisation of TiO2 particles. 

 
Reaction Scheme 2: Synthesis of 3-aminopropylsilane-TiO2 

Procedure  

A procedure from Ye et al. was followed for the aminosilanisation of TiO2 particles.162 A 500 

mL round bottomed flask was degassed with N2 and charged with TiO2 (0.3 g). Anhydrous 

DMSO (210 mL) was then added. The particles were then dispersed into the anhydrous DMSO 

using ultrasonication for 10 min. APTS (1.5 mL) was then added into the flask. After stirring at 



44 
 

85˚C for 16 h the solid particles were deposited by centrifugation and washed with anhydrous 

DMSO (3x180 mL). The TiO2 particles were again dispersed in anhydrous DMSO (100 mL) 

using ultrasonication for 10 mins and were stirred under a nitrogen stream at 120˚C for 20 h. 

The coated TiO2 was then filtered once more and washed with anhydrous DMSO (3x180 mL). 

The product was then left to vacuum dry for 72 hours. Analysis was performed by FT-IR and 

EDX spectroscopy. 

FT-IR: ν, cm-1, 2937, 1666, 1138, 1055, 956 (Si-O-Ti). 

EDX: keV, Si 1.8 keV, Ti 4.6, 5 keV.  

 

2.5.8 Acetylacetonate linker synthesis  

O O

COOH

I

COOH

O OH
Acetylacetone 4-Iodobenzoic Acid

CuI
L-Proline

K2CO3

 
Reaction Scheme 3: Synthesis of Acetylacetonate Linker 

Procedure  

A procedure from McNamara et al. was followed for the synthesis of the acetylacetonate 

linker.163 Iodobenzoic Acid (0.372 g, 0.0015 mol), acetylacetone (0.44 mL, 0.0045 mol), K2CO3 

(1.036 g, 0.0075 mol), CuI (0.0285 g, 0.00015 mol) and L-Proline (0.0345 g, 0.003 mol) were 

dissolved in DMSO (15 mL) and heated at 90˚C in a N2 atmosphere for 24 h. The cooled 

solution was poured into 1 M HCl and extracted with ethyl acetate. The organic layer was dried 

over MgSO4 and the solvent was removed under vacuum. The product was then purified using 

column chromatography with hexane: ethyl acetate (1:2) as eluant. The product eluted in the 

first 3 fractions. 

Yield: Act (0.197 g, 60% Yield), Lit (0.205 g, 62%) 

Appearance: Brown wax. 

Mass Spec Analysis: 

ESI positive mode: Molecular Ion at m/z = 221(M+H), 

ESI Negative mode: Molecular Ion at m/z = 219 (M-H) 
1H NMR: ppm 

Lit. 16.65 (s, 1H, OH) 8.08, (d, 3JH-H) 8 Hz, 2H CHAr) 7.25, (d, 3JH-H) 8 Hz, 2H CHAr) 1.84 (6H, 

CH3) in CDCl3 

Act. 7.95 (d, 3JH-H= 8.3 Hz, 2H CHAr) 7.3, (d, 3JH-H = 8.2 Hz, 2H CHAr) 1.75 (6H, CH3) in 

(CD3)2CO 

C13 NMR: ppm 
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Lit. 190.7 (C-OH), 171.7 (COOH), 142.8 (CAr), 131.4 (CHAr), 130.8 (CHAr) 128.6 (CAr), 114.5 

(CEnol), 24.2 (CH3). 

Act. 191.58 (C-OH), 167.4179 (COOH), 142.78 (CAr), 132.34 (CHAr), 130.8391 (CHAr), 127.36 

(very weak, CAr) 115.2917(CEnol), 24.2117(CH3) in (CD3)2CO 

 

2.5.9 Determination of Loading Capacity Experimental Procedure 

The loading capacity of the sensitiser onto TiO2 in each composite was determined by the 

collection of the repetitive washings with solvent of each of the materials. In cases where 

exhaustive washings did not eventually become clear, a soxhlet extraction was undertaken. The 

material was placed inside an extraction thimble, and placed inside the extraction chamber of a 

soxhlet apparatus. The temperature was set to 30ºC above the boiling point of the extraction 

solvent ie. chloroform, methanol etc. The soxhlet extraction was complete once the solvent in 

the extraction chamber was completely clear. The thimble was removed and left to dry and the 

soxhlet extracted material removed from the chamber. The residual dye material in the extracted 

solvent was then rotary evaporated to dryness and the yield determined and added to the yield 

determined from washings. This total yield was then subtracted from the amount of material 

used in preparation of the composite. This amount was then determined to be the loading 

capacity for the composite and is quoted as g(dye)/g TiO2. 

 

2.5.10 Preparation of Tetraphenylporphyrin-TiO2 (TPP-TiO2). 

N

HN

N

NH
TiO2 P-25

CHCl3
TPP-TiO2

Tetraphenylporphyrin TPP  
Reaction Scheme 4: Synthesis of TPP-TiO2 

Procedure 
Tetraphenylporphyrin (0.038 g, 0.063 mmol) was added to a 100 mL round bottomed flask with 

a stirring bar. Chloroform (50 mL) was then added, along with TiO2 (1 g). The solution was 

stirred at r.t for 4 h (foil covered). The product was filtered and washed with chloroform until 

washings ran clear. The product was additionally dried under vacuum overnight. The 

appearance of the product was a white solid powder, indicating that none of the TPP had been 

coated onto the TiO2. No further analysis was conducted. 
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2.5.11 Preparation of Tetra(4-carboxy)phenylporphyrin-TiO2 -A (TCPP-TiO2-A) 

 
Reaction Scheme 5: Synthesis of TCPP-TiO2 via adsorbed method 

Procedure 

Methanol (50 mL) was added to a 100 mL round bottomed flask with a stirring bar. 1 g of TiO2 

was then added and the solution sonicated for 10 mins. 0.05 g of tetra(4-

carboxy)phenylporphyrin was then added. The solution was stirred at room temperature for 4 h 

(foil covered). The product was then filtered and washed with copious amount of methanol until 

the washings ran clear. The colour of the composite was purple, however once ground via pestle 

and mortar, the appearance was a purple/brown powder.  

TCPP 

FT-IR: ν, cm-1, 3014, 1685, 1604, 1400, 1222, 1174, 1099, 963. 

UV-vis: nm, 416(Soret), 512, 547, 589, 643.  

TCPP-TiO2-A 

FT-IR: ν, cm-1, 3740, 3391, 2923, 1614, 1383, 1263, 1176, 1110, 1054, 967, 636. 

UV-vis (DR): nm, 408 (Soret), 523, 560, 597, 654. 

 

2.5.12 Preparation of Tetra(4-carboxy)phenylporphyrin-TiO2 -B (TCPP-TiO2-B) 

 
Reaction Scheme 6: Synthesis of TCPP-TiO2 via bound method. 
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Procedure 

DMF (50 mL) was added to a 100 mL round bottomed flask with a stirring bar. TiO2 (1 g) was 

then added along with tetra(4-carboxy)phenylporphyrin (0.05 g, 0.63 mmol). The solution was 

sonicated for 10 mins and then heated to reflux for 5 h. The product was then filtered and 

washed with DMF. The filtrate remained pale pink after countless washings. Soxhlet extraction 

was then performed overnight with methanol as the extraction solvent. The product was then 

left to dry under vacuum and the product was collected. The appearance, as with the composite 

A was purple post-reaction, after grinding, it was a purple/brown colour. 

TCPP 

FT-IR: ν, cm-1, 3014, 1685, 1604, 1400, 1222, 1174, 1099, 963. 

UV-vis: nm, 416(Soret), 512, 547, 589, 643.  

TCPP-TiO2-B 

FT-IR: ν, cm-1, 3743, 3410, 2925, 1621, 1383, 1263, 1176, 1111, 1055, 966, 667.  

UV-vis (DR): nm, 410 (Soret), 523, 561, 598, 655. 

 

2.5.13 Preparation of Zn-Hexadecafluorophthalocyanine-TiO2 

The procedure (2.5.11) was employed with the following changes. Chloroform (50 mL) was 

employed as solvent and Zn-Hexadecaflurorophthalocyanine (0.047 g, 0.054 mM) was 

employed as the sensitiser which was previously synthesized by B. Murphy in our group.  Prior 

to immobilisation, the ZnHFphthalocyanine was analysed with TLC (hexane: ethyl acetate 6:1), 

UV-vis spectroscopy (in dichloromethane) and FT-IR. The ZnHFpc-TiO2 product underwent a 

soxhlet extraction post reaction with chloroform. A further soxhlet extraction was performed on 

0.42 g of the material with acetone as solvent. The ZnHFPc-TiO2 product was analysed by FT-

IR, and UV-vis spectroscopy. 

ZnHFpc 

TLC: Rf = 0  

FT-IR: ν, cm-11491, 1313, 1266, 1144, 958. 

UV-vis: nm, (B-bands) 349, (Q-bands) 643, 677. 

ZnHFpc-TiO2 

FT-IR: ν, cm-11612, 1490, 1401, 1313, 1266, 1144, 958, 739. 

UV-vis (DR): nm, (0.002 g/g TiO2) (Q-bands) 647, 682.  

              (0.034 g/g TiO2) (Q-bands) ~650, 689. 

 

2.5.14 Preparation of 1,4-(tetrabenzaldehyde)phthalocyanine -TiO2 

The procedure (see 2.5.11) was employed with the following changes. Chloroform(50 mL) was 

employed as solvent and 1,4-(tetrabenzaldehyde)phthalocyanine (0.033 g, 0.054 mM) was 

employed as the sensitiser which was previously synthesized by V. Peters in our group. UV-vis 
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analysis of the phthalocyanine was conducted before use. The product was soxhlet extracted 

post reaction with chloroform. The photocatalyst product had a loading of 22 mg/1 g TiO2. 

Analysis of the product was undertaken with FT-IR and diffuse reflectance UV-vis 

spectroscopy. 

1,4-(tetrabenzaldehyde)phthalocyanine: 

FT-IR: ν, cm-1 1720, 1601, 1506, 1237, 1165, 1094, 1014. 

UV-vis: nm, (B-band) 329, (Q-bands) 666, 702. 

1,4-(tetrabenzaldehyde)phthalocyanine -TiO2: 

FT-IR: ν, cm-1 1653, 1237, 1168, 1055, 679 

UV-vis (DR): nm, (Q-bands) 638, 681, 709. 

 

2.5.15 Alternative preparation of 1,4-(tetrabenzaldehyde)phthalocyanine -TiO2 

The same product as mentioned in 2.5.14 was prepared, although a method by Lu et al. 2010 

was followed.164 TiO2 (1 g) was added to a 100 mL round bottomed flask along with chloroform 

(30 mL). 1,4-(tetrabenzaldehyde)phthalocyanine (0.006 g, 6 µM or 0.008 g, 8 µM) was then 

added and the reaction sonicated for 5 mins. The reaction solution was allowed to stir for 5 h, 

after which the solvent was removed under vacuum. The resulting product had a loading of 

either 6 mg/1 g TiO2 or 8 mg/1 g TiO2. 

 

1,4-(tetrabenzaldehyde)phthalocyanine: 

FT-IR: ν, cm-1 1720, 1601, 1506, 1237, 1165, 1094, 1014. 

UV-vis: nm (B-band) 329, (Q-bands) 666, 702. 

1,4-(tetrabenzaldehyde)phthalocyanine -TiO2: 

FT-IR: ν, cm-11650, 1237, 1167, 1116, 1096, 1056, 1015, 670. 

UV-vis (DR): nm (Q-Bands) 621, 675, 708. 

 

2.5.16 Synthesis of Cobalt Phthalocyanine 

 
Reaction Scheme 7: Cobalt Phthalocyanine synthesis via condensation reaction. 
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Procedure 

Octanol (2 mL) and Li (0.3 g) were added to a carousel synthesizer and heated to 90ºC for 0.5 h 

until the solution became cloudy. Phthalonitrile was then added and the solution was purged 

with N2 for 5 mins. A green/blue solution was obtained after addition of the phthalonitrile. The 

reaction mixture was allowed to stir under N2 overnight. CoCl2 (0.2 g) was then added and the 

temperature was set to 60ºC and left for 3 h. An extraction of the product was attempted 

although it was not organic soluble, and the product was filtered and collected. No UV-vis 

analysis was conducted due to the insolubility of the phthalocyanine in any solvents. The 

product was then donated to another group for use.  

 

2.5.17 General Procedure for Photocatalytic Reactions 

Photocatalytic reactions were performed on aqueous solutions of Famotidine (100 mL) at a 

concentration of 0.083 mM. The solution was added to a schlenk flask (Figure 6.1) along with a 

previously weighed amount of photocatalyst (0.031 g) (or none for photolysis experiments). 

Prior to irradiation the reaction solution was sonicated for 10 mins, and the reaction was placed 

in a photochemical fume cupboard at a distance of 28 cm from a 500 W Halogen lamp (IQ 

Group). The irradiance spectrum for the halogen lamp can be found in the appendices (6A-2). 

The reaction was clamped to a stirring plate and a cooling cold finger inserted. Samples (2 mL) 

were taken regularly for the first hour and then hourly for 3 hours. Samples from all 

photocatalytic reactions were filtered using Nylon filter membranes straight into vials for HPLC 

analysis. Post reaction, the photocatalyst was recovered from the reaction solution via a 

centrifuge chamber. Once all the photocatalyst was collected from the reaction solution, it was 

washed with water (3 x 10 mL) and methanol (3 x 10 mL) to remove any impurities. Any 

remaining solvent was removed by rotary evaporator. HPLC analysis was employed on the 

samples taken from the photocatalytic experiments using methods detailed in section 2.2.2 of 

this chapter. 

             
Figure 6.1: Indoor photocatalytic reaction set-up with Schlenk flask, and inserted cooling finger situated 

over a stirring plate with irradiation by a Halogen lamp. 
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2.5.18 Solar Photocatalytic Reactions Experimental Procedure 

The general procedure (2.5.17) for photocatalytic reactions was followed and after sonication 

for 10mins the reaction was taken outside. In the case of these reactions the reaction set-up was 

the same with irradiation from sunlight instead of a halogen lamp. A lux meter recorded the 

intensity of the solar light throughout the reaction and was rotated frequently in line with the 

suns rotations to allow for an accurate reading. 

 

2.5.19 Photocatalytic Reactions (Air Purged) Experimental Procedure 

The general procedure (2.5.17) for photocatalytic reactions was followed. Air purging was 

undertaken with standard air pumps throughout the reaction (Hagen Elite aquarium pumps). A 

sparger at the air inlet allowed generation of a consistent flow of small air bubbles. These 

reactions were performed with a reduced volume of reaction solution (50 mL) to prevent 

overflow. The amount of photocatalyst was also halved in this case (0.0155 g). Air purged 

controls were also performed with no photocatalyst.  

 

2.5.20 Controls Experimental Procedure (TCPP-TiO2) 

The general procedure (2.5.17) for photocatalytic reactions was followed. The control 

experiments performed were: (1) TCPP (0.001 g) with no TiO2, and (2) both TCPP (0.001 g) 

and TiO2 (0.031 g) together (3) No photocatalyst i.e photolysis (4) dark experiment with TCPP-

TiO2 (adsorption only). 

 

2.5.21 Evaluation of TCPP-TiO2 with Tamsulosin and Solifenacin Experimental 

Procedure 

The general procedure (2.5.17) was followed with the pharmaceutical Tamsulosin or 

Solifenacin at a concentration of 0.083 mM. Control experiments were also performed: (1) 

photolysis and (2) TiO2 alone. 
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Chapter 3 – Photolytic and Photocatalytic 

Degradation Studies of Famotidine, 
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3.1 Introduction 
Preliminary photodegradation tests with sole irradiation must first be performed in any 

pharmaceutical photodegradation study. This should give an indication of the light sensitivity of 

each compound and also serve as a comparative control for photocatalytic experiments. The 

emission spectrum for a typical medium pressure (MP) mercury lamp is shown in Figure 3.1. It 

emits moderately at 254 nm. It also emits at many wavelengths between 250 nm and 320 nm, 

and also has some intense but scarce emissions between 400 nm and 600 nm. Low pressure 

mercury lamps emit exclusively at 254 nm (Figure 3.1). Depending on the lamp employed, the 

type of glassware used should be considered. The importance of using different types of 

glassware is shown in Figure 3.2. Pyrex has a cut off filter at 300 nm, which Quartz glassware 

does not. Employing Quartz glassware allows light below 300 nm into the reaction solution. 

 

    
Figure 3.1: Typical emission spectrum of a medium pressure Hg lamp (left) and a low pressure Hg 

lamp (right).165,166 

 

The effects of different lamps and reactors have been examined in this chapter. Photolysis 

experiments were conducted with both low and medium pressure lamps and also with two types 

of immersion wells (Pyrex or Quartz). The typical set-up for photolysis and photocatalytic 

experiments is shown in the experimental chapter (section 2.3.1). In addition to the photolysis 

studies with different lamps and glassware, studies were conducted with a variety of reactor set-

ups: 0.32 L immersion well vs. 0.8 L batch reactor vs. 5 L Enviolet reactor (10 L capacity, see 

section 2.3.2). Since all the compounds absorb light below 300 nm, irradiation with low 

pressure lamps should provide sufficient excitation to dissociate each of the pharmaceuticals 

leading to complete elimination. 
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Figure 3.2: Transmittance spectrum of Quartz glassware >250 nm (left) and Pyrex glassware >300 nm 

(right).167 

 

Also in this chapter, the heterogeneous photocatalysis using TiO2 of each of the three APIs is 

examined. Adsorption has been considered by many research groups to be an important 

prerequisite to photocatalytic degradation by titanium dioxide. 168,125 However, there is some 

evidence to suggest that photocatalytic degradation can occur with little or negligible adsorption 

to the surface of the photocatalyst.169,170,171  Adsorption of the pharmaceuticals onto the surface 

of TiO2 is also discussed. 

 

Photocatalytic experiments conducted in this chapter involve the use of two types of Titania, (P-

25 and Sigma-Aldrich) and a medium pressure lamp. Photocatalytic experiments were 

conducted with both Pyrex and Quartz glassware to determine the importance of the penetration 

of light below 300 nm in the case of Quartz. Various other parameters on the photocatalytic 

degradation have been investigated such as: 

 

(i) varying the concentration of TiO2 to determine the optimum concentration required.  

(ii) the effect of pH,  

(iii) the effect of the addition of an oxidant to see if both a faster rate of degradation could be 

achieved and if intermediates generated from the APIs could be mineralised within the 

irradiation period, 

(iv) concentration variation studies to test the robustness of the photocatalytic method over 

different concentration ranges of the pharmaceuticals.  

(v) various control experiments were also performed to confirm that light is required for 

activation of TiO2 and to see the effect of hydrogen peroxide alone on each of the drugs.  
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3.2 Results and Discussion 

Heterogeneous Photocatalysis Part I: Famotidine  

3.2.1 UV-vis Studies 

Figure 3.1 shows the UV-vis absorbance profiles for Famotidine at 100 µM. Famotidine has 

absorbances at 208 and 265-280 nm (λmax) depending on the pH of the solution (see pH studies). 

In water, Famotidine has a pH within the range of 7.5-7.7 and the UV-vis profile below, Figure 

3.1, corresponds to this pH range. The molar extinction coefficient for Famotidine was 

calculated in standard curve experiments to be 10,000 M-1cm-1 at 267 nm at pHs 3-6. However 

at pH 7.5 and above, it has a 33% higher value as reported by Anzenbacherova et al. in 2003.173 

 
Figure 3.1: UV-vis analysis of of Famotidine 100 µM (pH 7.5-7.7). 

 

Famotidine’s absorption profile is affected by pH as seen in Figure 3.2. (Under conditions of 

STP and at pH 2 it is very unstable.141) A hypsochromic shift is observed on going from alkaline 

pH (8) where the λmax is 285 nm to pH 6 where the λmax is 265 nm. This type of shift is common 

for compounds possessing heterocyclic rings.172 

205 

285 
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Figure 3.2: UV-vis analysis of Famotidine at different pHs (pH 2-8). 

 

This change in pH also gives rise to a 33% decrease in the molar extinction coefficient as 

determined in the work by Anzenbacherova et al. in 2003.173 They successfully manipulated this 

observation by developing a method to detect Famotidine using HPLC-UV at a wavelength of 

285 nm in an alkaline mobile phase and developed a much more sensitive method. Absorbances 

below 250 nm can be ignored in these profiles as these are contributions by the different buffer 

components. Two other studies were performed with pH adjustment by NaOH and HCl (no 

buffers). In these studies, slight fluctuations were noticed which were due to a subtle dilution in 

the adjustment to each required pH. Nonetheless, the shifts obtained with the buffered studies 

were also observed in these studies.   

 

3.2.2 Quartz Glassware: Photolysis Studies  

Photolysis of Famotidine showed a steady decomposition of the absorbance at 260 nm and 210 

nm even after only 1h of irradiation (Figure 3.3). A strong smell of sulfur compounds was 

noticed during sampling after approximately 10 minutes of irradiation. This was a clear sign of 

the evolution of gaseous sulfur compounds and thus indicated the dissociation of the molecule.  
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Figure 3.3: UV-vis spectroscopic analysis of the photodegradation (photolysis) of Famotidine with Quartz 

glassware. [FAM] = 0.083 mM, Time = 1 h. 

 

3.2.3 Quartz Glassware: Photocatalysis Studies  

TiO2 can utilize both UV-A and UV-B light and also some UV-C light. In these studies the 

effects of TiO2 with Quartz glassware are investigated using small amounts of TiO2. All of the 

compounds absorb between 200-300 nm with the main absorbances occurring between 222-280 

nm. Quartz photolysis studies had quite an effect on the compounds, because of this fact and 

also the effect of transmission of light above 250 nm, so TiO2 addition should accelerate the rate 

of decomposition of the compound. Photocatalytic degradation with both Titanias (P25 and 

Sigma Aldrich) and Quartz glassware seemed to produce similar UV-vis degradation profiles 

although when the UV-vis data was plotted in degradation profile graphs, differences between 

the two titanias were observed (Figure 3.4). When comparing these profiles of either titania to 

photolysis with quartz, the results are quite poor indicating no real contribution to the 

photodegradation of Famotidine by photocatalysis. It is well known that photolysis and 

photocatalysis both occur to achieve the decomposition of any pharmaceutical. The only way to 

examine the effects purely contributed by photocatalysis is to cut off the effects by photolysis. 

This can be done with the use of Pyrex glassware which will then allow for a proper 

examination of the contribution by photocatalysis to degradation of the pharmaceutical.  

Decrease in absorbance 
at λmax 
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Figure 3.4: UV-vis degradation profiles showing the photocatalytic degradation of Famotidine with 

Quartz and SA and P-25 TiO2 (0.05 g/320 mL) vs. Photolysis Quartz. 

 

3.2.4 Alternative Reactor Studies 

Additional Studies were conducted with different reactor set-ups, namely the Enviolet Reactor 

(5 L) and the Low Pressure mercury Lamp set up (800 mL). Larger scale studies in the Enviolet 

reactor showed a poorer result than was expected and the configuration of the lamp modules 

was attributed to this i.e solutions passing to and from the lamp modules and not experiencing 

consistent irradiation. In addition, some fundamental flaws were found with this reactor 

including the rise in temperature of the reaction solution which was found to be due to the rather 

ineffective cooling set-up. The larger volume employed may have given rise to the slower rate 

of degradation which can be the case in large scale studies. Further studies with the Enviolet 

reactor will be abandoned as this reactor was also considered to be unsuitable for photocatalysis 

due to the potential for build-up of residual TiO2 over time throughout the reactor. The design of 

this reactor also makes cleaning an arduous process, and damage could occur to the reactor. 

Studies with the Low pressure lamp set-up were conducted to demonstrate the effects of 254 nm 

irradiation on each pharmaceutical. Since all of the pharmaceuticals absorb in this region, total 

destruction of all pharmaceuticals occurred within less than an hour. However, similar problems 

occurred with this reactor as with the Enviolet, with the lack of temperature control potentially 

affecting results. Experiments conducted with these reactors are presented in the Appendices for 

all APIs (3A-10 - 3A-11). 
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3.2.5 Pyrex Glassware: Photolysis Studies 

The results of the photolysis using Pyrex are shown in Figure 3.5. It is evident that removing 

wavelengths below 300 nm shows a marked decrease in the degradation observed. Famotidine’s 

maximum absorbance tails just over the 300 nm mark, so it is not surprising that some slight 

degradation is observed. 

 

 
Figure 3.5: UV-vis spectroscopic analysis of the photodegradation (photolysis) of Famotidine for 5 h. 

[FAM] = 0.083 mM, Time = 5 h. 

 

Lengthening of the illumination time to 5 h did not achieve a notable enhancement on 

Famotidine degradation although a rather interesting hypsochromic shift was observed which is 

due to a pH change in the solution over irradiation. Any slight decomposition of a 

pharmaceutical could give rise to organic acid formation which can result in a decrease of the 

pH of the solution. This observation has been reported in other photolysis studies and in 

photocatalytic studies of other pharmaceuticals and EDCs.174,175,176 

 

Although poorer degradation is achieved by using Pyrex glassware, from an application view-

point it can be integrated more easily into an industrial photochemical water treatment reactor 

due to its low maintenance requirements and its inexpensiveness relative to quartz glassware. 

 

3.2.6 HPLC Analysis of Photolysis Studies 

Once suitable methods had been developed, HPLC analysis was then undertaken of the 

photolysis experiments for Famotidine. Both Quartz and Pyrex photolysis studies were analysed 

and the results are shown in Figure 3.6. As predicted, photolysis with quartz can eliminate 

Famotidine within an hour. Previous quartz photolysis studies conducted and analysed with UV-
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vis spectroscopy (Figure 3.3) showed a small absorbance still at the λmax so it is clear that 

despite the total elimination shown by HPLC analysis, photodegradation products may persist. 

In the case of photolysis with Pyrex, Famotidine showed more than 25% elimination in these 

studies after 3 h. 

 
Figure 3.6: HPLC Analysis of photolysis experiments with Quartz and Pyrex glassware for Famotidine. 

[FAM] = 0.083 mM, Time = 3 h. 

 

3.2.7 Famotidine Heterogeneous Photocatalysis: Pyrex 

In the following experiments, the effects of the addition of TiO2 were examined on the 

photocatalytic degradation of Famotidine. The Pyrex filtration effect allows for the examination 

of the effects of photocatalysis only. Initial photocatalytic studies with Famotidine, TiO2 and 

Pyrex after 1 h did not significantly improve the degradation of Famotidine when compared to 

photolysis studies. Low amounts of TiO2 were used in these studies (0.050 g/320 mL). Results 

are shown in Figure 3.7 and show a poor degradation of Famotidine for both titanias relative to 

photolysis. P-25 shows the most superior performance of the two although it is evident from 

these studies that the concentration of photocatalyst is too low. 
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Figure 3.7: UV-vis degradation profile for Pyrex photocatalysis studies with SA and P-25 TiO2 vs. 

Photolysis with Quartz and Pyrex.  

 

3.2.8 Famotidine Heterogeneous Photocatalysis: TiO2 Optimisation 

In order to determine the optimum concentration of the photocatalyst, TiO2, experiments were 

performed with varying concentrations of TiO2. The aim of the following experiments was to 

determine the optimum concentration of titanium dioxide in the immersion well reactor system. 

All results analysed in this section were analysed by HPLC analysis or in early experiments 

where HPLC analysis could not be employed, UV-vis analysis was used to determine the 

optimum TiO2 concentration. Table 3.1 below shows a list of experiments performed, their 

conditions and degradation achieved. 
 

API C0 mM TiO2 
Phase TiO2 g/320 mL Irradiation 

Time h 
100% reached 

HPLC 
UV 
Data 

Famotidine 0.083 Sigma 0.05 1 N/A 17 

  Sigma 0.1 3 60 mins 90 

  Sigma 0.2 3 60 mins 90 

  Sigma 0.4 3 60 mins 91 

  Sigma 0.6 3 60 mins 92 

  P-25 0.05 1 N/A 35 

  P-25 0.1 5 N/A 94 
  P-25 0.2 5 N/A 33 
  P-25 0.4* 5 N/A 91* 

*400W Lamp       

 Table 3.1 List of conditions used in Famotidine TiO2 optimisation photocatalytic degradation experiments 

 

A titanium dioxide range of 0.05-0.6 g/320 mL was studied in these experiments. The results of 

HPLC analysis for Sigma TiO2 are shown in Figure 3.8. Optimisation of P-25 TiO2 

concentration was undertaken with UV-vis analysis and degradation profiles using this data are 
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shown in Figure 3.9. In UV-vis analysis studies doubling the concentration from 0.05 g/320 mL 

to 0.1 g/320 mL for P-25 gave rise to a 96% elimination based on the At/A0 ratio after 300 mins. 

Sigma TiO2 similarly showed a marked increase, with 88% elimination based on the At/A0 ratio.  

 

In further studies, 0.1 g/320 mL was found to be the optimum concentration for Degussa P25. 

HPLC analysis used for the Sigma Aldrich studies confirmed that for Sigma TiO2, 0.1 g/320 mL 

was also superior over other concentrations used 0.2-0.6 g/320 mL. By increasing the 

concentration of TiO2 in the photocatalytic process should, in theory, double the rate of 

degradation. However, realistically this cannot be a linear relationship as many factors come 

into account from the further addition of more catalyst. In degradation studies with 0.4 g – 0.6 

g/320 mL, a ‘saturated’ effect could be seen, whereby TiO2 could be seen to deposit around the 

top of the reactor. There are also other factors, whereby if there is too much photocatalyst 

present, enhanced light scattering occurs and light penetration into the reactor becomes more 

difficult. Since photocatalysis is essentially a radical generating process there effectively 

becomes a point where the degradation rate competes with the radical recombination rate, which 

is also the case for oxidant addition.129 Figure 3.10 shows the UV-vis profile of degradation for 

the optimised P-25 TiO2 photocatalytic reaction with 0.1 g TiO2/320 mL, with Figure 3.11 

showing LC traces of this reaction also. The chromatogram shows other peaks more polar than 

Famotidine eluting early in the chromatogram which are intermediate products of the 

photocatalytic reaction. These intermediates are seen to be in quite low concentrations relative 

to the Famotidine peak and are identified later in Chapter 4. 
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Sigma-Aldrich TiO2 

 
Figure 3.8: HPLC analysis of the photocatalytic degradation of Famotidine with varying SA-TiO2 

concentrations. [FAM] = 0.083 mM, TiO2 = (0.1-0.6 g), Time = 3 h. Analysis undertaken with methods in 

appendices (2A-1). 

 

Degussa P25 TiO2 

 
Figure 3.9: UV-vis degradation profiles of the photocatalytic degradation of Famotidine with varying 

amounts of P-25 TiO2. [FAM] = 0.083 mM, TiO2 = 0.05 g – 0.4 g/320 mL, Time = 1 h/5 h.  
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Figure 3.10: UV-vis spectroscopic analysis of the photocatalytic degradation of Famotidine with 0.1 g P-

25 TiO2. [FAM] = 0.083 mM, TiO2 = 0.1 g, Time = 5 h. 
 

 

 

 
Figure 3.11: HPLC chromatogram of Famotidine with TiO2/UV at 0mins, 0mins Pads, 5, 10, 20, 30 and 40 

mins. [FAM] = 0.083 mM, P-25 TiO2 0.1 g/320 mL. 

 

3.2.9 Famotidine pH Adjustment Studies  

Photocatalytic degradation at various pHs was undertaken to examine whether this parameter 

had a positive or negative effect on the disappearance of the analytes. Buffers have been known 

to cause interferences with photocatalysis and the pH was adjusted using acids and bases in a 

procedure used by many other research groups.177,178 The pH range of 3-8 was adopted based on 

the PFP column selection (pH 2.5-8). In the case of P-25 TiO2, photocatalysis at pH 9 and pH 

10 were also examined, which were monitored by UV-vis spectroscopy only. pH changes were 
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monitored throughout degradation and were found to decrease upon irradiation. The following 

studies incorporated the conditions listed in Table 3.2. UV-vis analysis was used to analyse all 

pH photodegradation experiments. HPLC analysis was employed only in P-25 TiO2 

photocatalytic experiments. 
 

API C0 mM TiO2 
Phase pH TiO2 

g/320mL 
Irradiation 

Time h 
100% reached 

HPLC 
UV data % 
Degradation 

Famotidine 0.083 P-25 3 0.1 5 40mins 95 
    P-25 4 0.1 5 N/A 88 
    P-25 5 0.1 5 60mins 93 
    P-25 6 0.1 5 N/A 81 
    P-25 7.4 0.1 5 60mins 96 
    P-25 8 0.1 5 40mins 98 
    P-25 9 0.1 5 N/A 95 
    P-25 10 0.1 5 N/A 94 
    Sigma 3 0.1 3 N/A 69 
    Sigma 4 0.1 3 N/A 62 
    Sigma 5 0.1 3 N/A 67 
    Sigma 6 0.1 3 N/A 85 
    Sigma 7.4 0.1 3 N/A 90 
    Sigma 8 0.1 3 N/A 60 
Table 3.2 List of conditions used in Famotidine pH photocatalytic degradation experiments 

 

Sigma-Aldrich TiO2 

Degradation profiles of the UV-vis data for Sigma Aldrich TiO2 pH photocatalytic degradation 

experiments are presented in Figures 3.12. No change in pH (Figure 3.13) was found to be 

superior over experiments conducted with a pH change. Additional UV monitoring graphs from 

these experiments can be found in the appending data. These data showed varying results in 

relation to the initial adsorption of Famotidine onto TiO2. Little or no adsorption was attained 

for pH 3 and a greater deal of adsorption was attained for pH 8. Despite these differences, both 

achieved poor degradation with the most superior degradation occurring for the unadjusted 

photocatalytic experiment.  
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Figure 3.12 UV-vis degradation profiles of the photocatalytic degradation of Famotidine with 0.1 g SA 

TiO2 at various pHs. [FAM] = 0.083 mM, TiO2 = 0.1 g, Time = 3 h, pH = 3-10. 

 
Figure 3.13 UV-vis spectroscopic analysis of the photocatalytic degradation of Famotidine with 0.1 g SA 

TiO2. [FAM] = 0.083 mM, TiO2 = 0.1 g, Time = 3 h, no pH adjustment. 

 

P-25 TiO2 

Figure 3.14 shows the results obtained for P-25 TiO2 photocatalysis pH studies with 

Famotidine. Results showed that Famotidine degradation with this TiO2 was enhanced in all 

cases by a change in pH. The most efficient degradation occurred at pH 8, followed closely by 

pH 3. The experiments shown in Figure 3.14 were repeats conducted by C. Saurel and the trend 

observed in earlier studies was also observed in these repeats. With both P25 and Sigma Aldrich 

TiO2, a decrease in the pH of the solution was observed throughout degradation as found with 
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non-adjusted pH degradation. The final pH observed for pH photocatalytic experiments (3-8) 

was between pH 3 and 4. A graph of the pH variation can be seen in Figure 3.17. 

 
Figure 3.14: HPLC-UV analysis of Famotidine photocatalytic degradation with P-25 TiO2 at varying pHs. 

[FAM] = 0.083 mM, P-25 TiO2 = 0.1 g/320 mL, pH = 3,5,7.4,8, Time = 3, 5 h. Performed and analysed 

by C. Saurel. 

 

Most of the pH decline occurred within the first hour of the photocatalytic experiment, which 

makes it consistent with the degradation of Famotidine. The pH tended to level off after the first 

hour in all cases. This would indicate that acidic intermediates are being generated from the 

degradation of Famotidine. These will occur via multiple oxidations of Famotidine, and an 

example of this already mentioned is with the hydrolysis products of Famotidine Mw = 259 

g/mol and 260 g/mol. Figures 3.15 - 3.16 show the UV-vis monitoring for Famotidine 

degradation for pH 3 and 7 for Degussa P-25. Additional graphs of UV-vis monitoring at other 

pHs can be found in the appendices section (3A-4 - 3A-7).  
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Figure 3.15: UV-vis analysis of the photocatalysis of Famotidine using P25 TiO2 at pH 3. [FAM] = 0.083 

mM, P-25 TiO2 = 0.1 g/320 mL, pH = 3, Time = 5 h. 

 

 
Figure 3.16: UV-vis analysis of the photocatalysis of Famotidine using P25 TiO2 at pH 7. [FAM] = 0.083 

mM, P-25 TiO2 = 0.1 g/320 mL, pH = 7, Time = 5 h. 
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Figure 3.17: pH monitoring post photocatalysis for pH experiments showing the consistent decrease in 

pH throughout irradiation for Famotidine. 

 

UV-vis Analysis  

It was noticed that at acidic pHs i.e 3-5, a new absorbance was found to emerge at 320 nm  (see 

Figures 3.15 and 3.18) which was thought to be hydrolysis products of Famotidine (already 

mentioned in Chapter 1 section 1.6) and was only found with P-25 TiO2. This was later found to 

be due to the nylon filter membranes which are unstable at low pHs. Figure 3.18 shows the UV-

vis studies which were performed with Famotidine at pH 2, Famotidine no pH adjustment and 

controls (Millipore water) at pH 2 and no pH adjustment. Of the three samples which were 

filtered (FAM pH 2, FAM no pH adjust, and Control pH 2), there is significant changes in the 

UV-vis for those samples at pH 2: a broad absorbance stretching as far as 320 nm. For 

unfiltered samples no such absorbance at 320 nm is observed, and the control sample, which 

was not pH adjusted and was filtered demonstrated that the filters show good stability at neutral 

pH. Further analysis was also undertaken to determine the stability of Famotidine at pH 2.  
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Figure 3.18: UV-vis spectroscopic analysis of the effect of instability of Nylon membrane filters at pH 2. 

 

Figure 3.19 shows UV-vis experiments conducted with Famotidine at pH 2, no pH adjustment 

and controls (Millipore water) at pH 2 and no pH adjustment. After the UV-vis experiments 

were carried out at pH 2, the pH of the Famotidine solutions (pH 2 and non-adjusted) were 

adjusted with NaOH to pH 11. The two UV-vis profiles shown at pH 11 are identical aside from 

a slight decrease in the solution adjusted from pH 2, which required the addition of more base 

for adjustment to pH 11. It was concluded from these experiments that Famotidine is more 

stable than initially thought. In addition, this experiment proves that the shifts observed in the 

Famotidine UV-vis spectra are due to the protonation/deprotonation of the molecule and that 

protonation is a reversible process.  

 
Figure 3.19: UV-vis spectroscopy analysis of the effect of the stability of Famotidine at pH 2. Controls = 

Millipore water at pH 2. 

New Absorbance 
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3.2.10 Famotidine Hydrogen Peroxide Addition: P-25 TiO2 

Hydrogen peroxide was employed as an oxidant in photocatalytic studies to enhance the 

degradation of Famotidine and its intermediates. In these studies, radicals are continually 

generated from the peroxide during the photocatalytic reaction, and can also continue to 

generate radicals from residual peroxide in the sample taken post reaction. The residual 

peroxide is usually quenched with a quenching agent and in our hydrogen peroxide studies 

sodium bisulfite (40% w/v) was used to quench the reaction. However, when a Famotidine 

photocatalytic experiment with H2O2 (quenched with bisulfite) was re-analysed at a later date, it 

was noticed that no Famotidine remained in any samples even at 0 minutes. This led us to 

believe that perhaps the sodium bisulfite was not an inert quencher and that it continued to 

degrade residual Famotidine in the samples post analysis. Various control tests were conducted 

to examine the effect of sodium bisulfite on Famotidine and on the other two pharmaceuticals. 

These included UV-vis analysis, HPLC analysis and 1H NMR analysis. 

 

UV-vis Analysis 

UV-vis analysis of the effects of bisulfite was undertaken on Famotidine over the course of 1h 

and follow-up analysis after 19 h. The results are shown in Figure 3.20 including the UV-vis of 

bisulfite in water alone. Bisulfite absorbs in the same region as Famotidine, and upon addition 

of the bisulfite there is a significant hypsochromic shift and increase in absorbance. After 19 h 

there was a further increase in absorbance. Since the UV-vis of bisulfite interfered somewhat in 

a region where all three APIs absorb no solid conclusions could be drawn from this study, 

except the fact that over the course of time, some effect was occurring.  

 
Figure 3.20: UV-vis spectroscopic analysis of the effect of sodium bisulfite (NaHSO3) on Famotidine. 

 

 



71 
 

1H NMR Analysis 
1H NMR analysis was performed on Famotidine in D2O. NMRs were obtained of Famotidine 

alone in D2O and with the addition of sodium bisulfite (0.011 g/2.5 mL). If any sort of 

oxidation/reduction is occurring in the reaction of sodium bisulfite with the APIs, there will be 

significant changes in the 1H NMR spectrum.  

 

The 1H NMR spectra for Famotidine and Famotidine plus bisulfite are shown in Figure 3.21. 

Four types of proton exist in Famotidine (non-exchangeable) and these protons are highlighted 

in colour in Figure 3.22. Shifts arise in the Famotidine plus bisulfite spectrum for the 

heterocyclic proton (red) and the CH2S protons (green). No significant shifts are observed for 

the two triplet signals at 2.4 ppm and 2.65 ppm which concludes no significant changes have 

occurred to their environment. The shifts observed for the other two types of proton, would 

indicate a change to the heterocyclic ring in Famotidine. The downfield shift observed would 

indicate a modification to the thiazole ring. 

1.01.52.02.53.03.54.04.55.05.56.06.5 ppm 

1.01.52.02.53.03.54.04.55.05.56.06.5 ppm 
Figure 3.21: 1H NMR in D2O of Famotidine (Top) versus the addition of sodium bisulfite (Bottom) with 

analysis at approximately 25 mins. Coloured arrows relate to the coloured protons shown in Figure 3.22. 
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Figure 3.22: Structure of Famotidine with assigned protons highlighted in different colours. 

 

HPLC Analysis 

HPLC analysis of the effects of bisulfite were undertaken with repeat injections of Famotidine 

and Famotidine plus bisulfite. The results are shown in Figure 3.23 and show a consistent 

decrease in Famotidine for the first set of injections (every 0.5 h) and then a later injection 

approximately 48 h later shows a further decrease of Famotidine. This study along with 

previous 1H NMR studies confirmed that the sodium bisulfite quencher was degrading 

Famotidine. Considering this, an alternative quencher was sought. An experiment was 

performed with various concentrations of ethanol (0.1 mL – 1.5 mL) and they were then used to 

quench 1mL samples of a FAM/H2O2 reaction. However, upon HPLC analysis of the samples, it 

was noticed that the ethanol was causing considerable effects to the Famotidine peak shape. 

This effect was most noticeable at concentrations of ethanol above 0.5 mL. A further 

experiment was conducted with a number of concentrations of peroxide and sampling straight 

after addition of peroxide. These reactions were all quenched with 0.5mL of ethanol. The results 

were analysed and then re-analysed 24 h later. The results showed ethanol to be an ineffective 

quencher for peroxide. 

 
Figure 3.23: HPLC analysis with repeat injections of samples of Famotidine and Famotidine plus 

bisulfite. 
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A suitable quencher could not be found for Famotidine. The hydrogen peroxide photocatalytic 

experiments shown in Figure 3.24 were conducted prior to the testing of the effects of bisulfite 

and ethanol as a quencher. Despite the fact that bisulfite does indeed have an effect on 

Famotidine, the reaction is quite slow with approximately 15% eliminated after 48 h. It should 

also be considered that sodium bisulfite quenches hydrogen peroxide, and they do in essence 

quench one another. No equation could be found for the reaction of hydrogen peroxide with 

sodium bisulfite although hydrogen peroxide is known to oxidise sulfites to sulfates. 179 So 

products of this reaction would be likely to be: 

 

2NaHSO3 + 2H2O2 Na2SO4 + 2H2O + H2SO4 

 

So in reality the 15% elimination is possibly much less than this value in the experiments below. 

Experiments shown below contain analysis information in the legend stating the time elapsed 

between implementation of the experiment and follow-up analysis by HPLC of that experiment. 

While it is acknowledged that these experiments do not represent fully accurate information on 

the effect of different concentrations of H2O2 on Famotidine, valuable information can still be 

derived from them anyway, particularly in relation to intermediate formation, and intermediate 

elimination/ mineralisation. Figure 3.25 presents control experiments conducted with 

Famotidine including with TiO2 in the absence of UV light, photolysis, with peroxide in the 

dark and with peroxide and TiO2 in the absence of UV light. Control experiments with UV light 

alone have already been discussed. In the absence of UV light, adsorption of Famotidine to TiO2 

is hardly 15%, and no further adsorption is seen over the remainder of the experiment.  

 
Figure 3.24: HPLC analysis of the photocatalytic degradation of Famotidine with varying additions of 

H2O2. P-25 TiO2 0.1 g/320 mL, [H2O2] 0.1 mM-50 mM, [FAM] = 0.083 mM. (p/a= performed/analysed, 

sd = same day). 
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Chromatograms from two of the experiments in Figure 3.24 are shown in Figures 3.26 - 3.29. 

The chromatograms show the effect of 50 mM of hydrogen peroxide versus 5 mM hydrogen 

peroxide on the TiO2/UV process. A number of intermediates can be seen early in the 

chromatogram and in the case of 50 mM H2O2, after the addition of peroxide to the reaction 

solution there is complete disappearance of the Famotidine peak prior to any irradiation of the 

sample (Figure 3.26) and significant quantities of intermediates are now present. This is shown 

more clearly in Figure 3.27 whereby only the later samples (60 – 180 mins) are shown with the 

initial samples (0 Mins, 0 Mins Pads). The significant quantities of the 2 main intermediate peaks 

would indicate that the 50 mM hydrogen peroxide is initially completely oxidizing Famotidine 

(at one or numerous positions). Subsequent samples shown in Figure 3.26 then show a reduction 

in the quantities of these intermediates and the development of more intermediates, which 

would imply that oxidation of the two principle intermediates is then occurring (since no 

Famotidine remains from 0 mins Pads).  

 
Figure 3.25: HPLC analysis of control experiments for Famotidine. P-25 TiO2 = 0.1 g/32 0mL, H2O2=50 

mM, [FAM] = 0.083 mM. (p/a= performed/analysed, sd = same day). 
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Figure 3.26: HPLC chromatogram of Famotidine with TiO2/UV/H2O2 (50mM) at 0 mins, 0 mins Pads, 5, 

10, 20, 30 and 40 mins. [FAM] = 0.083 mM, H2O2 = 50 mM, P-25 TiO2 0.1 g/320 mL. 

 

Later samples (60-180 mins) show the complete disappearance of the initial intermediates and 

their oxidation products with remnants of oxidation products which may potentially not be able 

to undergo further oxidation or are simply more recalcitrant compounds. The chromatograms 

shown in Figure 3.28 - 3.29 are from the lower concentration of peroxide photocatalytic 

experiment (5 mM H2O2). These chromatograms tell a slightly different story to the previous 

ones and a very different degradation pathway can be observed. 

 
Figure 3.27: HPLC chromatogram of Famotidine with TiO2/UV/H2O2 (50 mM) at 0 mins, 0 mins Pads, 60, 

120 and 180 mins.  [FAM] = 0.083 mM, H2O2 = 50 mM, P-25 TiO2 0.1 g/320 mL. 

Famotidine Intermediates 

Intermediates 
Famotidine 
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Figure 3.28: HPLC chromatogram of Famotidine with TiO2/UV/H2O2 (5 mM) at 0 mins, 0 mins Pads, 5, 

10, 20, 30 and 40 mins.  [FAM] = 0.083 mM, H2O2 = 5 mM, P-25 TiO2 0.1 g/320 mL. 

 

The lower concentration of peroxide in this case, shows obviously a slower photocatalytic 

degradation of Famotidine and the development of large quantities of the two initial 

intermediates is not observed in the first case with the higher concentration of peroxide (50 

mM). Low quantities of these intermediates are seen and in general the quantities of all 

intermediates present appear to be lower in this case. This scenario would be preferred, as 

assuming intermediates are toxic, low quantities would be thus desired. 

 
Figure 3.29: HPLC chromatogram of Famotidine with TiO2/UV/H2O2 (5 mM) at 0 mins, 30, 40, 60, 120 

and 180 mins.  [FAM] = 0.083 mM, H2O2 = 5 mM, TiO2 P-25 0.1 g/320 mL. 

 

3.2.11 Adsorption Studies: Glassware and TiO2 

Further control experiments were conducted to investigate whether adsorption to the reactor 

glassware was potentially a large influence in photodegradation studies. Control experiments 

indicated that over the typical irradiation period studied of 3 h, 0.9% of Famotidine adsorbed to 

the reactor glassware (reactor, immersion well and stirring bar).  

Famotidine 
Intermediates 

Famotidine 
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Some adsorption isotherm experiments were conducted at an early stage with Famotidine and 

with SA-TiO2 which has a surface area of 8.6 m2/g.160 These studies are presented in the 

Appendices section (3A-12 – 3A-15) and showed that Famotidine gave relatively poor 

adsorption: 3 mg FAM /g TiO2 after 16 h and 8 mg FAM /g TiO2 after an extended contact time 

of 48 h.  This clearly represents very little adsorption by Famotidine onto the TiO2 surface. A 

contact time of 48h, even though a greater adsorption is achieved, is not a feasible option for 

photocatalysis in the application for industry. In photocatalytic degradation experiments, 30 

mins stirring time was allowed prior to irradiation for contact of the drug solution with the TiO2. 

This was in accordance with results of control experiments and literature procedures, which can 

leave up to a maximum of 1 h for adsorption equilibrium to be obtained.80 

 

Despite the minimal adsorption achieved with these experiments, efficient photocatalytic 

degradation is seen to occur which indicates that perhaps a great amount of adsorption of drug 

to TiO2 is not required for photocatalytic degradation to occur. Data from UV-vis spectroscopy 

studies of pH photocatalytic studies presented in the appendices also (3A-14) show bar chart 

graphs of the maximum adsorption of Famotidine reached after 0.5 h at various pHs along with 

the contribution by photocatalysis. In the case of acidic pH degradation experiments performed 

with Degussa TiO2, adsorption after 30 mins resulted in higher absorbances than the 0 min 

sample so these results could not be comparatively evaluated. These problems were later found 

to be due to nylon filter membranes employed (see pH degradation section and appendices). 

Despite these problems, a general trend was observed with the maximum adsorption occurring 

at pH 7-8 for both titanias. 

 

Adsorption at acidic pHs would be predicted to be unfavourable since Famotidine can be 

protonated and the surface of TiO2 is also positively charged at this pH which would lead to an 

electrostatic repulsion. Famotidine has a pKa of ~7 and TiO2 has a pzc (point of zero charge) at 

~6.4.195 So adsorption can theoretically be presumed to be favoured at a pH above the pzc, and 

below the pKa whereby the TiO2 is negatively charged and Famotidine is positively charged. 

This is certainly the case in terms of Sigma-Aldrich TiO2. In the case of P25, there is a similar 

adsorption observed at the natural pH of Famotidine (can vary dependent on Millipore water 

pH). However the max adsorption was achieved at a pH of 8. It should be noted that in lower 

pH experiments (pH 3 etc) it was observed that a good suspension was not obtained initially 

after adding the TiO2 (although overcome after a period of stirring). At normal pH/no pH 

adjustment, a good suspension was always obtained initially. This effect was considered to be 

due to the zeta potential effect of TiO2.  
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Jiang et al. found for their formulations of TiO2, an increase in the ionic strength of the solution 

was proportional to a decrease in the zeta potential corroborating with an increase in the particle 

size. Their work also found that at pHs close to the isoelectric point (pzc) of TiO2 that the zeta 

potential was found to tend to zero, with a simultaneous increase in hydrodynamic diameter. 

Optimum conditions based on their research for TiO2 with a small hydrodynamic diameter 

would be low ionic strength (0 - 10-3M), and low or high pH (3-4, 8-9). In addition to the effects 

found on the suspension formed, hydrodynamic size and zeta potential effects may also be 

contributing to the adsorption of the analytes on the TiO2 surface. In reality, a combined effect 

of surface charge (on the TiO2 and the API), and zeta potential/hydrodynamic size is most 

likely. 

 

3.2.12 Famotidine Concentration Variation Studies 

Concentration variation experiments were performed to determine the robustness of the 

proposed photocatalytic method for Famotidine. Four different concentrations were studied in 

these experiments 20 µM, 83 µM, 200 µM and 1000 µM. (Dilutions were undertaken of higher 

concentrations so as not to overload the column.) These experiments were performed with TiO2 

alone. The results are shown in Figure 3.30.   

 
Figure 3.30: Concentration Variation Experiments for Famotidine. P-25 TiO2 = 0.1 g/320 mL, [FAM] = 

20 µM, 83 µM, 200 µM, 1000 µM. Dilutions of 1 in 2 for 200 µM and 1 in 10 for 1000 µM were 

undertaken for analysis. 

 

Complete removal of Famotidine was seen after 20 mins in the case of 20 µM (6.7 mg/L) and 

even under increased concentrations of 200 µM (67 mg/L) complete degradation is seen at 120 

mins. An additional experiment at 1000 µM (337 mg/L) was performed showing a much slower 

degradation profile due to Famotidine ‘saturation’. Realistically, concentrations of Famotidine 
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in the environment would be in the order of µg/L-ng/L, however, these experiments show that in 

situations where there may be a possibility of higher concentrations i.e from pharmaceutical 

production wastewater plant facilities, the method would be robust enough to be applied.  

 

3.2.13 Famotidine Heterogeneous Photocatalytic Degradation Conclusions 

Famotidine can be successfully degraded by TiO2-photocatalysis as all of the above studies 

under the various conditions have shown. It is a pharmaceutical which is stable to light >300 nm 

as proven by the minimal degradation achieved in control studies with UV alone (photolysis). 

Additional control experiments showed that light is required to photocatalytically degrade 

Famotidine and that a ‘thermal degradation’ does not occur. Some adsorption to TiO2 does 

occur, although this was found to be rather minimal in orbital shaking experiments, and was not 

greater than 15% in dark control experiments. It is particularly sensitive to pH changes, and the 

drop in pH throughout photocatalysis causes a shift in its absorption profile as shown in UV-vis 

monitoring studies.  

 

P-25-TiO2 was shown to be the superior formulation in all studies over the Sigma Aldrich TiO2. 

pH photocatalytic degradation studies determined the best pHs for Famotidine degradation to be 

pH 3 or pH 8. HPLC analysis of Famotidine photocatalytic experiments showed the presence of 

numerous intermediates in chromatograms. These are identified via LC-MS/MS analysis in the 

next chapter. These intermediates were found to be effectively mineralised with the addition of 

hydrogen peroxide to the photocatalytic process. Also, it was found in examining HPLC 

chromatograms that depending on the concentration of peroxide employed different 

mechanisms of intermediate formation and thus degradation are observed. In addition to these 

studies, concentration variation studies showed that the TiO2-photocatalytic process is still very 

effective for elimination of Famotidine at much higher concentrations (200 µM), and can 

eliminate 50% of 1000 µM concentrations after 180 mins proving the robustness of the process. 

 

Heterogeneous Photocatalysis part II: Tamsulosin  

3.2.14 UV-vis Studies 

The UV-vis spectrum of Tamsulosin has 3 major absorbances in the UV region of the spectrum 

at 200 nm, 223 nm (λmax) and 280 nm (Figure 3.31). Tamsulosin also decomposes with light and 

predictably should respond well to both photolysis and photocatalysis. The molar absorptivity 

coefficient calculated from standard curves was found to be 15000 M-1cm-1 at 223 nm.  
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Figure 3.31: UV-vis analysis of Tamsulosin (100 µM). 

 

Tamsulosin is unaffected by changes in pH. The variations in the UV-vis spectra shown in 

Figure 3.32 around 235 nm are due to various components of the buffers used. No shifts or 

changes in the absorbance at 280 nm were observed at different pHs which would indicate that 

Tamsulosin is relatively stable at varying pHs. Two initial studies were performed with pH 

adjustment by HCl and NaOH  which corroborated well with these buffered studies. 

 
Figure 3.32: UV-vis analysis of Tamsulosin at different pHs (pH 3, 5, 8). 

 

3.2.15 Quartz Glassware: Photolysis Studies 

Photolysis of Tamsulosin with Quartz shows a clear step-wise degradation. This is shown with 

the obvious decrease in intensity of its 3 main absorption peaks in Figure 3.33. Also shown are 

the changes in shape and resolution of each peak with respect to time. This is thought to be due 

223 

280 
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to the conversion of Tamsulosins’ parent structure and its transformation into secondary 

reaction products and intermediates. A slight yellow tinge could be observed from the 

Tamsulosin reaction mixture which could be due to the formation of coloured intermediate 

product(s). This would explain the shape shifting and stretch above 300 nm. 

 
Figure 3.33: UV-vis spectroscopic analysis of the photodegradation (photolysis) of Tamsulosin with 

Quartz glassware. [TAM] = 0.083 mM, Time = 1 h. 

 

3.2.16 Quartz Glassware: Photocatalysis Studies  

The effects of both P25 and Sigma TiO2 are almost equivalent with respect to degradation with 

Quartz (Figure 3.34). Considering the small amount of TiO2 added and the time of only 1h 

irradiation, the results for decomposition of Tamsulosin are exceptional. It should be considered 

that the enhancement in degradation by photocatalysis was only ~30%. It should also be noted 

that photocatalysis with Quartz glassware comprises both photolysis and photocatalysis. It could 

be argued that with the presence of TiO2, there are transparency and light scattering issues 

which could affect the degradation achieved by photolysis. In any case, the switch from Quartz 

to Pyrex glassware should eliminate most of the effects of direct photolysis, and allow for an 

evaluation of degradation purely by the photocatalytic process.  

Decrease in 
absorbance at λmax 
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Figure 3.34: UV-vis degradation profiles showing the photocatalytic degradation of Tamsulosin with 

Quartz and SA and P-25 TiO2 (0.05 g/320 mL) vs. Photolysis Quartz. 

 

3.2.17 Pyrex Glassware: Photolysis Studies 

Photolysis using Pyrex showed slightly poorer results compared to quartz, although some 

decomposition of Tamsulosin was achieved as shown in Figure 3.35. An increase in the 

absorbance was observed in some samples and a change in peak shape was observed in the UV-

vis spectrum. Larger scale studies in the Enviolet also showed a straw-yellow coloured solution 

being produced, which was also detected in these studies. Yellow organic compounds tend to 

absorb below 400 nm and it is in this region that Tamsulosins’ intermediates products are 

absorbing.  

   
Figure 3.35: UV-vis spectroscopic analysis of the photodegradation (photolysis) of Tamsulosin with 

Pyrex for 5 h. [TAM] = 0.083 mM, Time = 5 h. 
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3.2.18 HPLC Analysis of Photolysis Studies 

HPLC analysis was then undertaken of the photolysis experiments for Tamsulosin. Both Quartz 

and Pyrex photolysis studies were analysed and the results are shown in Figure 3.36. As 

predicted, photolysis with quartz can eliminate Tamsulosin within 30 mins. Previous quartz 

photolysis studies conducted and analysed with UV-vis spectroscopy (Figure 3.33) showed  

absorbances remaining at the λmax after 1 h, so it is clear that despite the total elimination shown 

by HPLC analysis, photodegradation products may persist. In the case of photolysis with Pyrex, 

Tamsulosin showed a complete elimination also in these studies after the total 3 h irradiation 

period. Despite this intermediates may also be remaining as after 5 h of photolysis (Figure 3.35) 

absorbances still remain. Quartz glassware photolysis studies (including those of the Enviolet 

and LP studies in appendices 3A-10 - 3A-11) with Tamsulosin generated significant quantities 

of coloured intermediates which is obviously not a desirable result as these intermediates 

appeared to be quite photo-stable. The effect of photocatalysis of Tamsulosin will be interesting 

to examine, as an alternative route of degradation may prevent the formation of these 

intermediates.  

 
Figure 3.36: HPLC Analysis of photolysis experiments with Quartz and Pyrex glassware for Tamsulosin. 

[TAM] = 0.083mM, Pyrex or Quartz glassware, Time = 3 h. 

 

3.2.19 Tamsulosin Heterogeneous Photocatalysis: Pyrex 

Preliminary photocatalytic studies were conducted with concentrations of TiO2 at 0.05 g/320 

mL. The UV-vis degradation data obtained in these studies is shown in Figure 3.37. 

Determining the At/A0 value using UV223nm spectroscopy showed a contribution by photolysis of 

~10%, and contributions by photocatalysis to be 35% and 45% with P-25 and Sigma TiO2 

respectively. Neither SA-TiO2 or P-25 TiO2 achieved superior results compared to photolysis 
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studies with quartz. It can therefore be determined from these studies that 0.05 g/320 mL (0.15 

g/L) is clearly a low amount of photocatalyst and a higher concentration is needed.  

 
Figure 3.37: UV-vis degradation profiles showing the photocatalytic degradation of Tamsulosin with 

Pyrex and SA and P-25 TiO2 (0.05 g/320 mL) vs. Photolysis Quartz and Pyrex. 

 

3.2.20 Tamsulosin Heterogeneous Photocatalysis: TiO2 Optimisation 

API C0 mM TiO2 
Phase 

TiO2 
g/320 mL 

Irradiation 
Time h 

100% reached 
HPLC 

UV data % 
Degradation 

Tamsulosin 0.083 P-25 0.05 1 N/A 32 

  P-25 0.1 3 120mins 71 

  P-25 0.2 3 60mins 68 

  P-25 0.4 3 120mins 63 

  P-25 0.6 1 N/A 62 

  Sigma 0.05 1 N/A 43 

  Sigma 0.1* 3 N/A 67* 

  Sigma 0.2* 5 N/A 72* 

  Sigma 0.4* 5 N/A 75* 
*400 W Lamp       

 Table 3.3 List of conditions used in Tamsulosin TiO2 optimisation photocatalytic degradation 

experiments 

 

Degussa P-25 TiO2  

For P-25 TiO2 optimisation experiments, the best concentration was determined as 0.2 g/320 

mL (0.6 g/L) by HPLC-UV analysis (see Figure 3.38) with 100% disappearance after 1 h. There 

did not appear to be an exceptional difference between the concentrations studied shown in the 

HPLC analysis. The initial rate was the same for all three, however after 30 mins irradiation, 

there is noticeable differentiation between the optimum 0.2 g/320 mL and 0.1 and 0.4 g/320 mL. 

This was also apparent in the UV-vis monitoring profiles for each experiment even though the 

concentration was effectively doubled each time. 
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Figure 3.38: HPLC-UV analysis of photocatalysis of Tamsulosin with varying TiO2 amounts. Order of 

degradation achieved: 0.2 g> 0.1 g> 0.4 g/320 mL. [TAM] = 0.083 mM, Time = 3 h, P-25 TiO2 = 0.1-0.4 

g/320 mL. Analysis undertaken with methods in appendices (2A-1). 

 

Sigma-Aldrich TiO2 

Sigma TiO2 optimum was determined by UV-vis analysis and the results are shown in Figure 

3.39. The following order was determined 0.2 g = 0.4 g> 0.1> 0.05 g/320 mL with 0.2 g/ 320 

mL being determined as the optimum amount in these studies. 0.4 g /320 mL achieved an 

almost identical degradation profile to 0.2 g/320 mL however ideally the least amount of 

photocatalyst is ideal for cost effectiveness.  

 
Figure 3.39: UV-vis degradation profiles showing the photocatalytic degradation of Tamsulosin with 

varying amounts of TiO2. [TAM] = 0.083 mM, SA-TiO2 = 0.05 - 0.4 g/320 mL, Time = 5 h (*400 W 

Lamp). 
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3.2.21 Tamsulosin pH Adjustment Studies 

API C0 
mM 

TiO2 
Phase pH 

TiO2 
g/320 
mL 

Irradiation 
Time h 100% reached HPLC UV data % 

Degradation 

Tamsulosin 0.083 P-25 3 0.1 3 92%(180 mins) 28 
  P-25 5 0.1 3 120mins (96%(60 mins)) 76 
  P-25 8 0.1 3 120mins (99%(60 mins)) 82 
  Sigma 3 0.1 3 N/A 53 
  Sigma 5 0.1 3 N/A 72 
  Sigma 8 0.1 3 N/A 82 
 Table 3.4 List of conditions used in Tamsulosin pH photocatalytic degradation experiments. 

P-25 TiO2   

Only pHs 3, 5 and 8 were examined with Tamsulosin as this drug is formulated as a 

hydrochloride salt and only acidic, moderately acidic and alkaline pHs were chosen to be 

examined. The order of the most efficient degradation with different pHs can be seen in Figure 

3.40 and was as follows: pH 8> pH 5 ≥ no pH adjust > pH 3. Degradation at pH 8 with 

Tamsulosin was far superior over other pHs, even the UV-vis spectroscopic profile Figure 3.41 

shows an excellent degradation over time.  

 

Although pH 8 can be considered to be mildly alkaline, there would be an additional abundance 

of [-OH] ions present in solution, which can enhance the degradation process as these ions 

provide a source for OH radical generation. Tamsulosin at regular pH is ~pH 5 and has a pKa of 

8.4 (secondary amine) and 10.2 (sulfonamide).180 At pH 8 TiO2 is negatively charged and both 

protonatable sites of Tamsulosin are positively charged, building an electrostatic attraction 

which enhances adsorption and can consequently favour the photocatalytic degradation of the 

molecule. Similar effects have been reported by other authors.181  Tamsulosin also showed an 

effective degradation at pH 3 which would not be expected due to the potential electrostatic 

repulsion between the drug and the TiO2 since adsorption is considered an important process 

and necessary for efficient degradation.   
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Figure 3.40: HPLC analysis of the photocatalytic degradation of Tamsulosin with varying pHs. [TAM] = 

0.083 mM, P-25 0.1 g/TiO2, Time = 3 h, pH = 3-8. Analysis undertaken with methods in appendices (2A-

1) 

   
Figure 3.41: UV-vis spectroscopic analysis of the photocatalytic degradation of Tamsulosin with P-25 at 

pH 8. [TAM] = 0.083 mM, pH = 8, P- 25 TiO2 = 0.1 g/320 mL, Time = 3 h. 

 

Sigma Aldrich TiO2 

Figure 3.42 shows UV-vis data obtained from Sigma TiO2 photocatalytic pH experiments and 

indicate that the following order of  Tamsulosin photodecomposition is achieved pH 8 = pH 5 > 

no pH adjustment > pH 3. UV-vis analysis also showed a good clean disappearance of the 

absorbance at 223 nm for pH 5 and pH 8. pH tended to decrease most in the early stages of 

irradiation (Figure 3.43) and then flattened to a plateau although in some cases, pH did not 

fluctuate that much. 
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Figure 3.42: UV-vis degradation profiles showing the photocatalytic degradation of Tamsulosin with SA 

TiO2 at varying pHs. [TAM] = 0.083 mM, pH = 3-8, SA TiO2 = 0.1 g/320 mL, Time = 3 h. 

 

 

Tamsulosin pH Variation Throughout Irradiation

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160 180
Time (mins)

pH

pH3 P-25 pH 3 SA

pH 5 P-25 pH5 SA

pH 8 P-25 pH8 SA

no pH Adust P-25 no pH adjust SA

 
Figure 3.43: pH monitoring of samples post photocatalysis for Tamsulosin pH experiments showing the 

fluctuation/decrease in pH throughout irradiation. 

 

3.2.22 Tamsulosin Hydrogen Peroxide Addition: P-25 TiO2 

As previously discussed, after hydrogen peroxide additions experiments were conducted, 

experiments were then performed to see the effect of the sodium bisulfite quencher individually 

on each of the pharmaceuticals. UV-vis analysis studies were not conducted in the case of 

Tamsulosin as sodium bisulfite was shown to absorb in the region of the λmax of Tamsulosin 

(223 nm). 
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1H NMR Analysis 

In the case of Tamsulosin, no shifts were seen with the addition of bisulfite (Figure 3.44). In 

fact, there are very little changes to the spectra whatsoever. Signals arising at 4.7 ppm are due to 

solvent peaks and contributions from exchangeable protons. Spectra obtained within hours of 

one another showed no change and two days later again no shifts were observed. An addition of 

more bisulfite with immediate analysis yielded again no significant change in the spectra. This 

study would therefore conclude that sodium bisulfite is an inert quencher in the case of 

Tamsulosin. Predicted multiplicity assignments are shown in Figure 3.45.  

 
Figure 3.44: 1H NMR spectra for Tamsulosin in D2O (Top), Tamsulosin + Bisulfite (2 days) (Middle) and 

with additional bisulfite added (Bottom). 
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Figure 3.45: Tamsulosin, highlighted in colour are all protons which should show in 1H NMR. s = singlet, 

d = doublet, t = triplet m = multiplet, E = exchangeable proton. 

 

HPLC Analysis 

HPLC analysis was conducted with Tamsulosin and bisulfite and the results are shown in Figure 

3.46. No elimination of Tamsulosin was detected by HPLC. Any decrease can be considered to 

be due to the dilution effect of the addition of sodium bisulfite solution to Tamsulosin initially. 

There is no subsequent decrease after 30 h. These results combined with the 1H NMR studies 

show that sodium bisulfite is an inert quencher and can be reliably used in hydrogen peroxide 

studies with Tamsulosin. 

 
Figure 3.46: HPLC analysis with repeat injections of samples of Tamsulosin and Tamsulosin plus 

bisulfite. 

 

Figure 3.47 shows experiments conducted with Tamsulosin and various concentrations of 

peroxide. Control experiments are shown for comparison and additional control experiments 

can be found in Figure 3.48. The optimum concentration of peroxide found for the 

photocatalytic degradation of Tamsulosin was found to be 5 mM. 50 mM also showed a similar 

degradation to 5 mM, although this amount of peroxide combined with 0.2 g TiO2 (0.1 g is the 
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optimum for Famotidine) would perhaps produce significantly more radicals than 5mM. At high 

concentrations of peroxide, as discussed previously, radical recombination can come into effect 

and competes with the photodegradation process. Control experiments showed that peroxide on 

its own has little effect on the degradation of Tamsulosin. It was also evident that peroxide in 

the presence of TiO2 in the dark showed a slight improvement compared to H2O2 alone. It was 

thought that this may just be the combined effect of degradation by peroxide plus the adsorption 

of Tamsulosin to TiO2, however, as indicated by control experiments, Tamsulosin in the 

presence of TiO2 (dark) has no effect/adsorption in this case.  

 
Figure 3.47: HPLC analysis of the photocatalytic degradation of Tamsulosin showing varying additions 

of H2O2. P-25 TiO2 0.2 g/320 mL, [H2O2] =0.1 mM-50 mM, [TAM] = 0.083 mM. 

 

 
Figure 3.48: HPLC analysis of control experiments for Tamsulosin. P-25 TiO2 = 0.2 g/320 mL, H2O2= 50 

mM, [TAM] = 0.083 mM. 
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Control experiments also indicated that UV/H2O2 can efficiently eliminate Tamsulosin. 

However, the TiO2/UV/(5 mM) H2O2 photocatalytic process was superior even to this, 

eliminating Tamsulosin completely in 20 mins. Chromatograms of peroxide additions showed 

fewer intermediates for Tamsulosin (see Figure 3.49). A chromatogram from a photocatalytic 

experiment without peroxide is shown in Figure 3.50 and the presence of intermediates can be 

clearly seen. Intermediates were found to be more prominent in the 280 nm wavelength channel. 

This would be predicted since previous UV-vis monitoring of photolysis studies showed that 

intermediates from Tamsulosin had extended absorption up to 340 nm.  

 
Figure 3.49: HPLC Chromatogram of Tamsulosin at 0Mins, 0mins Pads, 5, 10, 20, 30, 40 mins. TiO2 0.2 

g/320 mL, [H2O2] = 0.1 mM, [TAM] = 0.083 mM, Wavelength = 223 nm.  

 

 
Figure 3.50: HPLC Chromatogram of Tamsulosin at 0Mins 0mins Pads, 5, 10, 20, 30, 40mins. TiO2 0.2 

g/320 mL, [TAM] = 20 µM, Wavelength = 280 nm. 
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3.2.23 Adsorption Studies: Glassware  

Further control experiments were conducted to investigate whether adsorption of Tamsulosin to 

the reactor glassware was potentially a factor to skew any of the results in photodegradation or 

control studies. Control experiments indicated that over the typical irradiation period studied of 

3 h, 0.9% of Tamsulosin adsorbed to the reactor glassware (reactor, immersion well and stirring 

bar). Therefore adsorption of Tamsulosin to the reactor glassware and apparatus was ruled out 

as a factor which may skew any of the results in these studies.  

 

3.2.24 Tamsulosin Concentration Variation Studies 

The results for Tamsulosin concentration studies are shown in Figure 3.51. Complete removal 

of Tamsulosin was seen after 20 mins in the case of 20 µM (8.8 mg/L) and even under increased 

concentrations of 200 µM (88.8 mg/L) almost complete degradation is seen after 3 h. An 

additional experiment at 1000 µM (444 mg/L) was performed showing predictably a much 

slower degradation profile however, almost 50% of Tamsulosin is eliminated after 3 h. These 

experiments show that the TiO2/UV process is quite robust for Tamsulosin. 

 
Figure 4.51: Concentration Variation Experiments for Tamsulosin. P-25 TiO2 = 0.2 g/320 mL, [TAM] = 

20 µM, 83 µM, 200 µM, 1000 µM. Dilutions of 1 in 2 for 200 µM and 1 in 10 for 1000 µM were 

undertaken for analysis. 

 

3.2.25 Tamsulosin Heterogeneous Photocatalytic Degradation Conclusions 

Tamsulosin is a light sensitive pharmaceutical and the effects of photolysis studies in this 

chapter showed this. These studies produced coloured photo-stable intermediates, which would 

be extremely undesirable in water treatment. The photocatalytic studies conducted in this 

chapter show that Tamsulosin can be efficiently degraded with TiO2 and that intermediates 
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generated by this process, can also be eliminated. pH photocatalytic studies showed that pH 8 

(mildly alkaline) or pH 5 gave the best results.  

 

Peroxide addition studies demonstrated that Tamsulosin can be efficiently degraded in 

approximately 20 mins with 5 mM H2O2/TiO2/UV.  No significant quantities of intermediates 

were seen in chromatogram traces with peroxide studies which may indicate that intermediates 

are being efficiently mineralised. Follow-up LC-MS/MS studies with peroxide will conclude 

this. Concentration variation studies also demonstrated the robustness of the photocatalytic 

method at higher concentrations and even at 1000 µM, 50% of Tamsulosin could be eliminated. 

 

Heterogeneous Photocatalysis Part III: Solifenacin  

3.2.26 UV-vis Studies 

The concentration used to attain the profile in Figure 3.52 was 1 mM, much higher than the 

other pharmaceuticals. Solifenacin has a very weak absorption in the UV region with a λmax of 

264 nm.  It has no absorption above 300 nm which may result in poor degradation by photolysis 

when using Pyrex. No literature could be found in relation to an absorptivity coefficient for 

Solifenacin. A UV-vis profile of standards resulted in the lower concentrations dropping below 

the baseline. From single absorbance profiles at concentrations of 1mM, the average molar 

extinction coefficient was found to be 550 M-1cm-1 at 263 nm. 

 
Figure 3.52: UV-vis analysis of Solifenacin Succinate (1 mM). 

 

Solifenacin is formulated as a succinate salt and like Tamsulosin is unaffected by changes in 

pH. Once again, the differences seen between 220-250 nm in Figure 3.53 are due to buffer 

components as a fairly wide range was used (pH 2-8). Results were comparable with those done 

without buffers, using HCl and NaOH. 

264 
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Figure 3.53: UV-vis analysis of Solifenacin at different pHs (pH 2-8).  

 

3.2.27 Quartz Glassware: Photolysis Studies 

Under photolytic conditions, Solifenacin undergoes a rapid transformation into its 

decomposition products, and unlike the other two compounds shows an increase in absorbance. 

Figure 3.54 shows the UV-vis monitoring and absorbance can be seen stretching into the near 

visible region of the spectrum. Irradiation after one hour yielded a solution which was a slight 

straw colour, indicating formation of a coloured intermediate product(s). Other cases in the 

literature have displayed a similar increase in absorbance, but not as drastic. 182This rapid 

increase with Solifenacin can be attributed to its much higher concentration relative to the other 

compounds, in order to analyse its decomposition by UV-vis spectroscopy. Photolysis with 

quartz for all three compounds can be seen to be quite substantial considering no photocatalyst 

is present. 
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Figure 3.54: UV-vis spectroscopic analysis of the photodegradation (photolysis) of Solifenacin with 

Quartz glassware. [SOL] = 1 mM, Time = 1 h. 

 

3.2.28 Quartz Glassware: Photocatalysis Studies 

Photocatalytic studies with quartz and both titanias was undertaken with Solifenacin (1 mM) 

and the results were monitored by UV-vis spectroscopy. As with photolysis studies in the 

previous section, photocatalytic degradation with TiO2 gave rise to intermediates of higher 

molar extinction coefficients than Solifenacin. There is also a clear emergence of a new 

absorbance at ~340 nm also seen in the direct photolysis with Quartz. Photocatalysis with quartz 

compared with photolysis appears to disrupt the effects of photolysis, since a slower increase in 

absorbance is seen in these studies. Initial results would indicate that SA-TiO2 was superior to 

the P-25 formulation in these studies (Figure 3.55-3.56). 

 
Figure 3.55: UV-vis analysis of the photocatalysis of of Solifenacin with quartz glassware and P-25 TiO2. 

[SOL] = 1 mM, Time = 1 h. 
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Figure 3.56: UV-vis spectroscopic analysis of the photocatalytic degradation of Solifenacin with SA TiO2 

and quartz glassware. [SOL] = 1 mM, TiO2 = 0.05 g/320 mL. 

 

3.2.29 Pyrex Glassware Studies 

Photolysis of Solifenacin with Pyrex glassware showed no significant change in the UV-vis 

monitoring even after 300 mins of irradiation as shown in Figure 3.57. This result is in stark 

contrast to the previous results with photolysis using quartz glassware. Since Solifenacin does 

not absorb above 300 nm it can be expected that little or no degradation will be observed as 

seen here. After 5 h there is a slight rise in the absorbance, however photolysis with Pyrex can 

be deemed to be insignificant for the degradation of Solifenacin. 

 
Figure 3.57: UV-vis spectroscopic analysis of the photodegradation (photolysis) of Solifenacin with 

Pyrex for 5 h. [SOL] = 1 mM, Time = 5 h. 
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3.2.30 HPLC Analysis of Photolysis Studies 

HPLC analysis was then undertaken of the photolysis experiments for Solifenacin. It should be 

noted that these HPLC studies were conducted at the concentration relative to the other 

pharmaceuticals i.e 0.083mM. Both Quartz and Pyrex photolysis studies were analysed and the 

results are shown in Figure 3.58. As with the other two APIs, photolysis with quartz can 

eliminate Solifenacin within 30 mins. Previous quartz photolysis studies conducted and 

analysed with UV-vis spectroscopy (Figure 3.54) showed intermediate formation giving rise to 

an increase in absorbance at Solifenacin’s λmax, so it is clear that despite the total elimination 

shown by HPLC analysis, photodegradation products may still be persistent. In earlier studies of 

the photolysis of Solifenacin with Pyrex glassware, very poor results were observed with a very 

small rise in absorbance occurring after the total 3 h irradiation period. HPLC analysis indicated 

that less than 20% elimination occurs in photolysis with Pyrex which would reinforce earlier 

results obtained with sole UV-vis analysis. Similar to Tamsulosin, Solifenacin Quartz glassware 

photolysis studies (and those of the Enviolet and LP studies in appendices 3A-11) generated 

significant quantities of coloured intermediates which appeared to be very photo-stable. The 

effects of the photocatalytic degradation of Solifenacin will be interesting to examine to see if 

both it and its coloured intermediate products can be eliminated.  

 

 
Figure 3.58: HPLC Analysis of photolysis experiments with Quartz and Pyrex glassware for 

Solifenacin.[SOL] = 0.083mM 

 

3.2.31 Solifenacin Heterogeneous Photocatalysis: Pyrex 

The changeover from Quartz to Pyrex glassware showed that photocatalytic degradation of 

Solifenacin was reduced. A slight increase in absorbance was observed indicating slight 

degradation by UV-vis monitoring (Figure 3.59-3.60). In the previous studies with Quartz 
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glassware, there is a large contribution from photolysis due to the lack of a light filter (as with 

Pyrex). It may be the case that 0.05 g/320 mL may be too little an amount of photocatalyst also 

to see an effective result.  

 
Figure 3.59: UV-vis spectroscopic analysis of the photocatalytic degradation of Solifenacin with P-25 

TiO2 and Pyrex glassware. [SOL] = 1mM, TiO2 = 0.05 g/320 mL. 

 
Figure 3.60: UV-vis spectroscopic analysis of the photocatalytic degradation of Solifenacin with SA TiO2 

and Pyrex glassware. [SOL] = 1 mM, SA-TiO2 = 0.05 g/320 mL  
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3.2.32 Solifenacin Heterogeneous Photocatalysis: TiO2 Optimisation 

API C0 mM TiO2 
Phase 

TiO2 g/320 
mL 

Irradiation 
Time h 

100% reached at 
(HPLC) 

Solifenacin 0.083 P-25 0.05 1 N/A 

  P-25 0.1 3 180mins (81%) 

  P-25 0.2 3 180mins (82%) 

  P-25 0.4 3 180mins (86%) 
Table 3.5: List of conditions used in Solifenacin TiO2 optimisation experiments. 

 

In studies thus far with Solifenacin, higher concentrations of the drug have been used compared 

to the other APIs. This was in order to see the effects by UV-vis spectroscopy due to 

Solifenacin’s weak absorption profile. Thus similar concentrations of TiO2 (as with the other 

pharmaceuticals) are not having similar decomposition effects as can be seen from Figure 3.61-

3.62 below. These studies will provide a further insight into later concentration studies where 

concentration of the analyte is varied against the optimum photocatalyst concentration. The 

addition of more SA-TiO2, as shown in these studies, despite the much higher concentration of 

Solifenacin gives rise to an improved degradation profile to that observed previously and there 

is some conversion to intermediate products. P-25 TiO2 gave poorer results compared to SA-

TiO2 with little or no affect even after 5 h.  

 
Figure 3.61: UV-vis Analysis of the photocatalysis of Solifencin with 0.1 g SA-TiO2. [SOL] = 1 mM, 

SA-TiO2 = 0.1 g/320 mL, Time = 5 h. 
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Figure 3.62: UV-vis Analysis of the photocatalysis of Solifenacin with 0.1 g P-25-TiO2. [SOL] = 1 mM, 

P-25 TiO2 = 0.1 g/320 mL, Time = 5 h.  

 
HPLC methods were developed after these initial TiO2 optimisation studies and our studies 

proceeded with only the P-25 TiO2 due to this titania being the literature standard. These studies 

are presented in Figure 3.63. From these studies, it was clear that Solifenacin is not completely 

eliminated by TiO2 photocatalysis with approximately 80% eliminated after the 3 h irradiation 

period. Additional amounts of TiO2 (0.2 and 0.4 g/320 mL) did not improve the degradation of 

Solifenacin. These studies showed the optimum concentration of TiO2 to be 0.1 g/320 mL and 

also concluded that the addition of an oxidant may be required for complete removal of 

Solifenacin. 

 
Figure 3.63: HPLC analysis of the photocatalytic degradation of Solifenacin with varying TiO2 

concentrations. [SOL] = 0.083 mM, P-25 TiO2 = 0.1 g, 0.2 g or 0.4 g/320 mL, Time = 3 h.  
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3.2.33 Solifenacin pH Adjustment Studies 

API C0 
mM 

TiO2 
Phase 

TiO2 
g/320 mL pH Irradiation 

Time h 
100% reached at 

(HPLC) 
Solifenacin 0.083 P-25 0.1 3 3 180mins (84%) 

  P-25 0.1 No pH adjust 3 180mins (81%) 

  P-25 0.1 8 3 180mins (79%) 
Table 3.6: List of conditions used in Solifenacin pH optimisation experiments. 

 

Unlike Famotidine, and like Tamsulosin, Solifenacin is unaffected by pH as shown in earlier pH 

studies with UV-vis analysis. Photocatalytic degradation studies, where pH was adjusted, were 

somewhat inconclusive with Solifenacin. These studies are shown in Figure 3.64.  pH 5 was not 

conducted as the Solifenacin non pH adjusted experiment was already at a pH of 5. There was 

no major enhancement to the photodegradation process by a change in pH. Since no buffers 

were employed, the pH decreased (to pH 5) as with the previous pharmaceuticals for the pH 8 

experiment. For pH 3, the pH tended to vary between pH 3-3.5. pH 8 showed a high adsorption 

initially, however a poor photodegradation followed this, with only 75% elimination achieved 

after 3 h. pH 3 achieved an elimination of 84% which surpassed the non pH adjusted experiment 

albeit only slightly. The plateau that can be seen in these experiments has been reported with 

other drugs, and can be associated with the formation of coloured intermediate products.183 

These products can compete for degradation and for light absorption so inihibition of the 

degradation of the parent compound can occur and seems to be what was observed here with 

Solifenacin. 

  

 
Figure 3.64: HPLC analysis of the photocatalytic degradation of Solifenacin with varying pH. [SOL] = 

0.083 mM, pH = 3, 8, and  no pH adjustment, TiO2 = 0.1 g/320 mL. 
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3.2.34 Solifenacin Hydrogen Peroxide Addition: P-25 TiO2 

Evaluation of the effect of sodium bisulfite with Solifenacin was undertaken. UV-vis analysis 

could not be conducted due to Solifenacin’s poor absorption in the UV-vis as earlier studies 

have shown. 1H NMR and HPLC analysis were chosen to investigate whether bisulfite was 

contributing to Solifenacin degradation.  

 
1H NMR 

Spectra of Solifenacin compared to Solifenacin plus bisulfite show no significant shifts 48 h 

later (Figure 3.65). The addition of further bisulfite appeared to have effects on the shape of 

some signals, although still no shifts, as were seen in the case of Famotidine. The higher 

concentration of bisulfite was a higher amount than that used to quench reactions in peroxide 

experiments. It was concluded that HPLC analysis may provide further information in relation 

to the elimination of Solifenacin by bisulfite.  

 
Figure 3.65: 1H NMR spectra for Solifenacin in D2O (Top), Solifenacin + bisulfite (2 days) (Middle) and 

with additional bisulfite added (Bottom). 

 

HPLC Analysis 

HPLC analysis was conducted with Solifenacin and Solifenacin plus bisulfite, in a manner that 

was identical to the quenching studies with peroxide (Figure 3.66). 4 mL of Solifenacin was 

added to a sample tube with 2 drops of sodium bisulfite solution. Multiple injections of 
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Solifenacin (control) and Solifenacin plus bisulfite were performed. There was no indication of 

any significant degradation effect after 24 h.  

 

 
Figure 3.66: HPLC analysis with repeat injections of samples of Solifenacin and Solifenacin plus 

bisulfite.  

 

Figure 3.67 outlines the studies conducted with varying concentrations of peroxide on the 

photocatalytic degradation of Solifenacin. In these studies a range of 0.1 mM-5 mM of peroxide 

was studied. Control experiments indicated the limited effect of UV alone and TiO2 alone in the 

elimination of Solifenacin. A control experiment with 1 mM H2O2/UV and Solifenacin showed 

a good elimination of Solifenacin but could not eliminate Solifenacin completely within the 

duration of the experiment.  Additional controls included the effect of TiO2/H2O2 in the dark 

and H2O2 in the dark with Solifenacin shown in Figure 3.68. 
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Figure 3.67: Degradation chart for Solifenacin showing varying additions of H2O2. TiO2 (opt)/320 mL, 

[H2O2] = 0.1 mM-50 mM, [SOL] = 0.083 mM. 

 

The most effective concentration of peroxide in the TiO2/UV/H2O2 process was 5 mM, however 

1 mM was also extremely effective even though it was 5 times less concentrated. This 

concentration was selected as the optimum. Few intermediates were observed in chromatograms 

with TiO2/UV/H2O2 experiments, and those that were present were in extremely low 

concentrations (Figure 3.69 (260 nm) - 3.70 (260 nm)).  
 

 
Figure 3.68: Control Experiments performed with Solifenacin. P-25 TiO2 = 0.1 g/320 mL, 1 mM H2O2, 

[SOL] = 0.083 mM. 
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Figure 3.69: HPLC Chromatogram of Solifenacin (14.5 mins) with 0 mins, 0 mins Pads, 5 mins – 40 mins. 

TiO2 0.1 g/320 mL [SOL] = 0.083 mM, H2O2 = 1 mM, Wavelength = 260 nm. 

 
Figure 3.70: HPLC Chromatogram of Solifenacin (14.5 mins) with 0 mins, 0 mins Pads, 30 mins – 180 

mins. TiO2 0.1 g/320 mL [SOL] = 0.083 mM, H2O2 = 1 mM, Wavelength = 260 nm. 

 

3.2.35 Adsorption Studies: Glassware 

Further control experiments were conducted to investigate whether adsorption of Solifenacin to 

the reactor glassware was potentially an influence in photodegradation studies. Control 

experiments indicated that over the typical irradiation period studied of 3 h, 0.3% of Solifenacin 

adsorbed to the reactor glassware (reactor, immersion well and stirring bar). Therefore 

adsorption of Solifenacin to the reactor glassware and apparatus was ruled out as a factor which 

may skew any of the results in these studies.  

 

Solifenacin 
Intermediates 

Solifenacin 

Intermediates 
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3.2.36 Solifenacin Concentration Variation Studies 

The results for Solifenacin concentration studies are shown in Figure 3.71. These studies show 

that the TiO2/UV process is effective only for low concentrations of this drug 20 µM (9.6 

mg/L).  

 
Figure 3.71: Concentration Variation Experiments for Solifenacin. P-25 TiO2 = 0.1 g/320 mL, [SOL] = 

20 µM, 83 µM, 200 µM, 1000 µM. Dilutions of 1 in 2 for 200 µM and 1 in 10 for 1000 µM were 

undertaken for analysis. 

 
The process starts to reach a limit and becomes barely effective with only 84% - 35% 

elimination of Solifenacin after 180 mins for 83 µM (40 mg/L) – 200 µM (96 mg/L) 

respectively. Both Famotidine and Tamsulosin showed at least 90% elimination for 

concentrations of 200 µM after 180 mins irradiation. At even a higher concentration of 1000 

µM (480 mg/L) there is little or no elimination, which is in line with earlier photocatalysis 

studies which were monitored by UV-vis spectroscopy.  

 
3.2.37 Solifenacin Heterogeneous Photocatalytic Degradation Conclusions 

It was initially thought that Solifenacin would be the most challenging of the pharmaceuticals to 

eliminate. UV-vis studies indicated that an increase as opposed to a decrease in its absorbance 

was occurring in photodegradation studies which may indicate formation of stable 

photodegradation products. Photocatalytic studies initially showed poor photodegradation when 

monitored by UV-vis analysis. These studies were undertaken at high concentrations of 

Solifenacin. However, at lower concentrations and with HPLC analysis, Solifenacin was shown 

to be effectively degraded, albeit not completely, achieving approximately 80% removal after 
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the 3h irradiation period. The optimum TiO2 concentration was found to be similar to that of 

Famotidine at 0.1 g/320 mL. 

 

pH photocatalytic studies showed good adsorption at pH 8 for Solifenacin, and both pH 3 and 

pH 8 achieved fast rates for the first 20 mins of irradiation, however a general plateau was 

reached after 40 mins. It was concluded from these studies that the production of intermediates 

was inhibiting complete degradation as seen by other groups with other pharmaceuticals.183 

Peroxide studies were shown to effectively eliminate Solifenacin within 30-40 mins, and very 

few intermediates were detected in these studies. LC-MS/MS analysis will be more conclusive 

in the identification of intermediates and the effectiveness of elimination of these by the 

combined TiO2/UV/H2O2 process. Concentration variation studies showed that the TiO2/UV 

process is limited to eliminating only low concentrations of the drug effectively and 

concentrations above this gave much poorer degradation profiles. 
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4.1 Introduction 
Following our optimised photocatalytic studies for each of the pharmaceuticals, we were 

interested in identifying the intermediates generated from this process. Pharmaceuticals treated 

by advanced oxidation processes (AOP) can undergo various types of reactions to generate 

these intermediates which can include oxidations, reductions, cyclisations, oxidative cleavages, 

reductive cleavages, desmethylations etc.189 Consequently, in the oxidation/reduction reactions 

which these pharmaceuticals can undergo in photocatalysis, toxic intermediates can be formed. 
In certain circumstances, these can be more toxic than the original pharmaceutical. 184 , 185 

Oftentimes, it is also reported by authors that some intermediate products are identical to some 

of the in vivo metabolites excreted by patients and animals administered with these 

pharmaceuticals.57,155 

 

Liquid chromatography coupled to mass spectrometry (LC-MS) is a powerful tool which has 

been used by many authors to characterise intermediate products from photocatalytic 

studies. 186 , 187  LC-MS/MS is often required for full characterisation and high resolution 

instruments with accurate mass measurement can allow the generation of molecular formulae 

for both the parent mass and fragment ions.189,188 

 

This chapters aims are to (i) identify these intermediates, (ii) determine the effectiveness of 

photocatalysis in eliminating these intermediates and (iii) propose a degradation pathway for 

each of the pharmaceuticals. LC-MS/MS, being the instrument of choice in the elucidation of 

intermediate structures in the literature, has been employed and we have corroborated this data 

with DI-MS studies to further confirm the presence of intermediates generated and their 

structures. In addition to this we have performed a thorough literature search on reported phase 

1 metabolites from these pharmaceuticals as these metabolites would predictably be similar to 

those generated from photocatalysis. We have also further predicted what we believe would be 

typical vulnerable sites for photocatalytic oxidation and used these predictions in the analysis 

and interpretation of all data. 

 

4.2 Results and Discussion 

4.2.1 LC-MS/MS Method Transfer and Re-optimisation 

The HPLC methods previously used to monitor and determine the APIs in previous 

photodegradation studies were transferred to a Bruker LC-MS/MS system. These methods were 

also further re-optimised to try to further resolve any intermediates for their identification. 

Longer run times were employed in these studies (up to 1h) and further changes in mobile phase 

composition assisted this. For Famotidine, the methanol phase was reduced to 1%, and for 
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Tamsulosin and Solifenacin an additional mobile phase was prepared consisting of 10% 

methanol and 10% acetonitrile respectively. Varying percentages of each phase were attempted 

in optimisation, and the optimum compositions including a method summary are displayed in 

Table 4.1. 

 

API Famotidine Tamsulosin Solifenacin 

Column PFP 150 mm x 2.1 
mm 5 μm 

PFP 150 mm x 2.1 
mm 5 μm 

PFP 150 mm x 2.1 
mm 5 μm 

Mobile Phase A 1:99 MeOH:H2O 
0.1% F.A 

40:60 MeOH:H2O 
0.1% F.A 

30:70 ACN:H2O 
0.1% F.A 

Mobile Phase B N/A 10:90 MeOH:H2O 
0.1% F.A 

10:90 ACN:H2O 
0.1% F.A 

Injection Volume µL 10 10 10 
Pump Composition (A:B) N/A (75:25) (65:35) 

Wavelengths scanned 
(nm) 

265, 205, 254, 280, 
300 

223, 280, 300, 205, 
254 

215, 220, 205, 254, 
280 

Flow Rate (mL/min) 0.15 0.2 0.2 
Run Time (mins) 63 70 70 

Retention Time tR (mins) 47 37 58 
Table 4.1: Method summary of each API for LC-MS/MS method transfer 

 

MS ion signals were also optimised using the Bruker system software automated optimisation 

function. Optimised parameters include capillary voltage, endplate, skim 1, skim 2 cap exit 

offset, octopole, octopole RF, octopole delta, lens 1, lens 2 and the trap drive. These conditions 

are listed in the experimental section of this chapter. Nebuliser, dry gas and temperature were 

unchanged. A series of standards from 0.1 μM to 100 μM were run with each method and 

standard curves were generated. In general, good linearity was obtained without the 

incorporation of the 100 μM standard, with R2 values of 0.997 for Famotidine and Tamsulosin 

and 0.996 for Solifenacin. Considering the development and validation of a combined method 

by A. Deegan et al. for these three pharmaceuticals, and our use of the LC-MS/MS only for 

qualitative analysis of the intermediates, no further work in validation of these methods were 

carried out.  

 

Figures 4.1 - 4.3 show the EICs (extracted ion current) of standards run on each method and 

also the mass spectra attained from the analytes. The mass spectrum showing the molecular ion 

is displayed and in addition the MS/MS of the parent ion is shown. For Famotidine the 

molecular ion is m/z = 338, with daughter ions m/z = 259 and m/z = 189. For Tamsulosin, the 

molecular ion is m/z = 409 with daughter ions, m/z = 271, 228, 200, and 148. For Solifenacin, 

the molecular ion is m/z = 363, with daughter ions m/z = 236, 193, 153, and 110. 
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Figure 4.1: EIC Chromatogram of Famotidine 50 μM standard inset MS (top) and MS/MS spectra 

(below). 

  
Figure 4.2: EIC chromatogram of Tamsulosin 50 μM Standard, and inset MS (top) and MS/MS spectra 

(below). 
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Figure 4.3: EIC chromatograms of Solifenacin 10 μM standard and and inset MS (top) and MS/MS 

spectra (below). 

 

4.2.2 Molecular Oxidation Analysis 

A molecular oxidation analysis of each of the pharmaceuticals was undertaken to identify 

vulnerable points in each molecule whereby oxidation/hydroxyl radical attack might occur. 

Figure 4.4 shows these points highlighted in red. Since the mechanism of photocatalytic 

degradation typically follows a H-abstraction followed by a hydroxyl radical addition, any 

vulnerable hydrogen atoms will be removed and essentially substituted with a hydroxyl group. 

Good examples of removable protons are the two benzylic carbons in Solifenacin which form 

particularly stable radicals. In Tamsulosin, the ethoxy group (on the second aromatic ring), can 

be predicted to be substituted by a hydroxyl radical in this case. Additional oxidations can be 

predicted on this secondary ring due to the stable radicals that would result from H-abstraction. 

This stability would arise from activation of certain positions due to the electron donating 

groups on this ring. For Famotidine, one of the most predictable sites for oxidation is the 

thioether moiety, which can be readily oxidised to the sulfoxide, and further to the sulfone. In 

addition, carbons alpha to a heteroatom may also be easily oxidised, which can also be seen in 

work by Radjenovic et al. for Ranitidine, a related H2- receptor antagonist (Figure 4.5).189 In 

addition, metabolites are shown for Ebrotidine, a fellow H2- receptor antagonist which is similar 

in structure to Famotidine.190 191 
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Figure 4.4: The three pharmaceuticals showing vulnerable positions for oxidation/hydroxyl radical attack. 

N

S

N
SNH2

NH2

N
H

N
S

Br

O O
O

N

S

N
SNH2

NH2

N
H

N
S

Br

O O
O O

S N
H

N
S

Br

O O
O O

S N
H

N
S

Br

O O
O

NH2
S

Br

O O

N

S

N
SNH2

NH2

N
H

N
S

Br

O O

O
S

N
N
H

N
H

NO2
O

S
N

N
H

N
H

NO2

OHO

O

O
S N

H
N
H

NO2

O

O
S

NH
N
H

N
H

NO2

O
S N

H
N
H

O

NO

Ebrotidine

Ranitidine

 
Figure 4.5: Ranitidine intermediates reported by Radjenovic et al. 2010 and Ebrotidine metabolites found 

by Sentellas et al. and Rozman et al. showing similar sites of oxidation as those predicted for 

Famotidine.189,190,191 

 

4.2.3 Direct Infusion Mass Spectrometry Studies: Famotidine 

Initial direct infusion studies of photo-degradation experiments used quite low concentrations of 

drug (0.083 mM). Increasing this concentration substantially and doing subsequent mass 

spectrometric analysis should result in more pronounced signals for the main intermediates. 

These studies were performed once the photocatalytic degradation process had been completely 

optimised for all 3 pharmaceuticals. Figure 4.6 displays a HPLC-PDA (265 nm) chromatogram 

of a photocatalytic degradation experiment for Famotidine in concentration variation studies. 

The appearance of numerous intermediates can be seen clearly in the chromatogram as well as 

the disappearance of Famotidine. 
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Figure 4.6: Famotidine photocatalytic degradation experiment showing intermediate formation and 

disappearance over time. 0 Mins, 0 Mins Pads, 5 mins, 10 mins, 20 mins, 30 mins, 40 mins. [FAM] = 83 

μM, TiO2 = 0.1 g/320 mL P-25 TiO2. 

 

Mass spectrometric analysis of a photocatalytic degradation experiment of Famotidine was 

undertaken and the appearance of various new masses could be seen after only 10mins of 

irradiation. Nylon membranes were used to filter all samples from photocatalytic degradation 

experiments prior to analysis. A variety of masses were observed in DI-MS spectra which were 

seen to be caused by these filters. These signals were noticeably absent from photolysis 

experiments where these filters were not used. Tran et al. reported interferences in LC-MS 

analysis caused by these filters. 192  In addition, once these filters were replaced with more stable 

filters in later DI-MS studies, these masses were not observed. The signals m/z = 227, 453 and 

679 in Figure 4.9 and 4.10 can be seen to be a contribution by these Nylon filters in each 

spectrum and thus should be ignored.  

 
Figure 4.7: DI-Mass spectrum of a 0 mins Pads sample of a photocatalytic degradation experiment for 

Famotidine. Photocatalysis, [FAM] = 0.083 mM, 0.1 g/320 mL SA TiO2,  
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Figure 4.7 shows the Famotidine mass spectrum at 0mins (post adsorption) and aside from the 

base peak (also the molecular ion in this case) there are some low abundance masses which can 

be seen. m/z 260 is a Famotidine hydrolysis product, the structure of which is identified 

amongst other intermediates in Figure 4.11. The molecular ion of Famotidine is at m/z =338, 

although its molecular weight is 337, so the ion of highest abundance is a protonated form of the 

drug [FAM+H+].  

 

Figure 4.8 shows the fragments of Famotidine’s molecular ion under MS/MS and the structures 

of these daughter ions, the formation of which entails two alpha cleavages for m/z = 242 and 

259 and a basic aliphatic fragmentation of m/z = 189 at the thioether moiety. m/z 259 is the 

most abundant ion due to the resonance stabilisation at the alpha carbon to both amines. The 

positive charge at this site is stabilised by an inductive effect spread over both the C-N bonds. 

Additional minor fragments can also be found, although the structure and formation of these 

fragments was too complex to decipher, and so these fragments are reported here only for 

potential aid in the identification of intermediates later. 

 
Figure 4.8: DI-MS/MS spectrum in a 0Mins Pads sample showing fragments from the Famotidine parent 

molecule: m/z= 259, m/z= 242, m/z=189 (inset) structures.193 Photocatalysis 0.1 g/320 mL TiO2 SA TiO2, 

[FAM] = 0.083 mM 
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Figure 4.9: DI-mass spectrum of a 30 mins sample in a photocatalytic degradation experiment for 

Famotidine. Photocatalysis 0.1 g/320 mL SA TiO2, [FAM] = 0.083 mM. 

 
Figure 4.10: DI-Mass spectrum of a 180 mins sample in a photocatalytic degradation experiment of 

Famotidine (inset) UV-vis spectra showing absorbance at 0mins and 180mins. Photocatalysis 0.1 g/320 

mL SA TiO2, [FAM] = 0.083 mM 

 

Figure 4.9 and 4.10 show the mass spectrum of photocatalysis of Famotidine after 30 mins and 

180 mins using the optimum amount of TiO2 (0.1 g). Figure 4.10 also shows the UV-vis spectra 

after 180 mins of irradiation. The UV-vis spectrum indicates that little or no Famotidine remains 

after 3 h. A significant absorbance remains at ~220 nm which can be due to low molecular 

weight degradation products. The thiazole ring and guanidine functionalities respectively can 

absorb at these wavelengths. From the UV-vis spectra alone, it can be deduced therefore that 

Famotidine is not effectively mineralized by photocatalysis with TiO2 alone. A table of masses 

found and their respective intensities is shown in appendix 4A-1 (Masses highlighted in colour 
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showed up consistently and with high intensities relative to the base peak.). Initially the base 

peak in the spectra is m/z = 338 (Figure 4.7, Figure 4.9), however after 60mins, this changes to 

m/z 340 (Figure 4.10). 
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Figure 4.11: Famotidine and proposed structures for high abundance masses found. 

 

Plausible intermediates have been elucidated based on masses in Table 4A-1 (appendices) of 

Famotidine with Sigma TiO2 (0.1 g) and are shown in Figure 4.11 and Figure 4.12. Many of the 

higher masses could have quite complex fragmentation patterns so further analysis on these 

must be undertaken to confirm or rule out any of the proposed structures. As expected one of 

the main oxidation sites would occur at the thioether moiety. This is in line with an oxidation 

study with KMnO4 on Famotidine by Rahman and Kashif 2003 and is also reported as an in vivo 

oxidation site in phase 1 metabolism. 194, 195 
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Figure 4.12: Proposed structures in initial DI-MS studies for masses in high abundance in mass spectra. 

 

While the guanidine functionality is quite photo-stable it can be predicted that it will undergo at 

least a partial oxidation within the irradiation period of the degradation experiments. 196 

Complete oxidation of guanidine has been determined to be within irradiation periods of 70+ h 

by Calza et al. 2004. Figure 4.13 shows the various transformations steps reported in Calza’s 
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work for the guanidine moiety. Figure 4.14 and Figure 4.15 show the equivalent structures from 

masses found in Famotidine mass spectra and the pathway for this oxidation.  
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Figure 4.13: Guanidine transformation pathway reported by Calza et al. 2004. 

N

S

N S
NH2

N

N
S

NH2

NH2

OO

O

O

H

N

S

N S
NH2

N
H

N
S

NH2

NH2

OO

OH
O

H

N

S

N S
NH2

N

N
S

NH2

NH2

OO

OOm/z = 368

+
+

m/z = 370

+
+

m/z = 368

+

+
-

 
Figure 4.14: m/z = 370 and 368 were found in low abundances in Famotidine mass spectra. 
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Figure 4.15: Masses detected at low intensities and proposed pathway to a partial oxidation of guanidine. 

 
4.2.4 Follow-Up Direct Infusion Mass Spectrometry Studies: Famotidine 

Further direct infusion studies were undertaken using cellulose acetate filters. These studies 

were performed with a much higher concentration of Famotidine (1 mM) and the photocatalytic 

experiment was undertaken with the optimised concentration of 0.1 g/320 mL P-25 TiO2. 

MS/MS analysis was performed for various ions found in this experiment and the compound 

stability parameter (CS) was adjusted to either 10, 50 or 100% to see if any other intermediates 

would appear. Figure 4.16 shows samples 0 Mins (10% CS), 300 Mins (10% CS), 300 Mins 

(50% CS), and 300 Mins (100% CS). The effect of the CS parameter can be seen on m/z = 338 
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which in the case of 100% CS is now less dominant in the spectra. The most dominant ion is 

now m/z = 189 a fragment of m/z = 338.  

 

Aside from this difference, there are some other ions that are merely less intense (m/z = 354) or 

no longer present (m/z = 370) when compared to 300mins (10% CS). Some new ions can be 

seen in 50% CS: m/z = 286 and in 100% CS: m/z = 221. These are most probably the fragments 

of intermediate ions as interestingly, examination of the MS/MS for m/z = 370 showed a 

fragment m/z = 221 (Table 4.2). Ions are shown twice in this table where multiple MS/MS 

analysis of an intermediate ion may have shown additional fragments. Selected mass spectra 

from this study can be found in the appendices (Appendix 4A2 - 4A9). Two fragments of 

Famotidine are also shown along with their respective fragments for reference where an 

intermediate may share some of these ions. The ion m/z = 675, with fragments m/z = 338 and 

259, were found in spectra at 10% CS. This ion indicates that famotidine can dimerise under 

ESI conditions. Although ionisation at 100% CS is enough to significantly reduce the 

appearance of this dimer.  

 
Figure 4.16: Famotidine direct infusion mass spectra at 0 Mins (10% CS), 300 Mins (10% CS), 300 Mins 

(50% CS), and 300 Mins (100% CS). Photocatalysis [FAM] = 1 mM, 0.1 g/320 mL TiO2. 
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DI-MS studies with no interferences from filters and MS/MS analysis allowed some 

intermediate structures to be confirmed at this stage. Figure 4.17 shows the parent and daughter 

ions for m/z = 352 and 171. Figure 4.18 shows the parent ion and daughter ions for m/z = 354 

and m/z = 370. Additional ions were found at this stage (found in Table 4.2) however the 

absence of these masses in LC-MS/MS data meant that structural identification was not 

attempted for these masses.  

 

Mass m/z Fragments m/z Mass m/z Fragments m/z 
675 338, 259 350 333, 271, 189, 155, 138 
403 385, 324, 245 286 207, 150, 137 
402 323, 253, 156, 116 281 264, 239, 211, 194, 169 
392 351, 313, 243, 188, 172, 149 221 156, 114 
392 313, 243, 189, 113 173 155, 144, 138, 129, 102 
370 291, 221, 157 171 155, 154, 129, 113, 102 
370 352, 291, 282, 221, 203, 187, 173, 156, 114 147 113, 88 
365 286, 216, 207, 182, 165, 137, 119 259 242, 189, 155, 138, 113, 102, 85 
354 275, 205, 155 155 138, 113 
352 273, 238, 214, 203, 113     

Table 4.2: Table of masses found in follow-up DI-MS studies and their fragments. (DI-MS/MS). Ions in 

bold and underlined denote the base peak found in that mass spectrum. In grey are two of famotidines’ 

fragments found in this study. 
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Figure 4.17: Intermediate m/z = 352 (Mw = 351) and intermediate m/z = 171 (Mw = 170) and fragments 

based on DI-MS/MS analysis. 



122 
 

S

NNNH2

NH2

S
NH2

NH2

O

S

NNNH2

NH2

SH2

O

S

NNNH2

NH2

S

NNNH2

NH2

S
N

NH2

O S
O

NH2

O

H N

S

N
SNH2

NH O N

NH2

S
NH2

O
O

OH

N

S

N
SNH2

NH O NH2

NH2

OH

N

S

N
SH2

NH2

NH O
OH

N

S

NNH2

NH
OH

H

+

+

+

m/z = 275

m/z = 205

m/z = 155

m/z = 354

+
+

+ +

m/z = 221

m/z = 291

m/z = 370

m/z = 157

+
+

+

MS/MS MS/MS

 
Figure 4.18: Intermediate m/z = 354 (Mw = 353) and intermediate m/z = 370 (Mw = 369) and fragments 

identified by DI-MS/MS analysis.  

 

4.2.5 LC-MS/MS Studies and Intermediate Analysis: Famotidine  

LC-MS/MS analysis of four Famotidine photo-degradation experiments were performed. The 

first experiment was the optimized photocatalysis with 0.1 g/320 mL TiO2 and 0.083 mM 

Famotidine. An additional photocatalytic experiment was performed at a much higher 

concentration of 1mM Famotidine and 0.1 g/320 mL TiO2. (The higher concentration 

experiment was performed in order to see intermediates which may be formed at much lower 

concentrations.) Photolysis experiments with both Quartz and Pyrex were also analysed using 

LC-MS/MS at the optimum concentration of 0.083 mM Famotidine. Tables 4.3 and 4.4 show all 

of the ions found in each chromatogram for each sample in each experiment. At an early stage 

in data analysis some of the ions in these tables were ruled out as intermediates for a number of 

reasons: 1) the ion was present at too low an intensity, 2) the ion was present at a good intensity 

but did not give a successful MS/MS fragmentation or 3) the ion appeared at erratic retention 

times. This was the case for ions detected for each pharmaceutical throughout this chapter. 

Beside each ion in the table is the retention time that ion appears at in the chromatogram. Table 

4.5 and 4.6 summarise all intermediate ions found in these experiments including their 

fragments, retention times, Mol. Wt. and calculated Log P values. Following these tables are 

individual EIC chromatograms for each significant intermediate ion found including their mass 

spectra and the MS/MS for that ion and the proposed intermediate structure. 
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Photocatalysis (0.083mM) Photocatalysis (1mM)
0Mins 338(39.6), 392(10.6) 338(49.7), 392(12.9), 354(13.2), 

0Min P. 338,(47.2) 392(11.3), 129(7.7) 338(49.7), 392(13.1), 354(13.0), 

5Mins
403(25.8), 392(12.7), 365(25.9), 

354(12.4), 338(51), 299(3.9), 
242(10.9) 

338(49.3), 392(13.1), 354(13.0), 366 (2.8), 365 

(27), 403 (26.6), 306 (23.2), 205( 13.3), 356 (13.1) 

10Mins
403(24.6), 392(12.1), 365(24.5), 
354(12.3), 338(48.4), 299(3.9), 
205(12.3), 356(12.1), 117(4.6)

405(27.3), 403(27.1), 392(13.1), 370(4.4), 
365(26.9), 354(13.2), 338(49.2), 336(7.1), 

299(3.9), 286(6.5), 207(3.4), 205(12.9), 356(13.1)

20Mins

403(23.9), 392(11.7), 365(24.2), 
354(11.8), 338(46.6), 299(3.8), 
205(11.7), 173(9.5), 171(12), 

356(11.7), 407(9.2)

405(26.6), 403(26.7),392(13.1), 365(27), 
354(12.9), 338(49.9), 325(7.3), 311(3.9), 299(4.2), 

286(6.5), 242(11.4), 205(12.7), 173(9.9), 
171(12.6), 117(4.9), 356(13)

30Mins

403(23.7), 392(11.3), 366(4.9), 
365(23.5), 354(11.1), 338(44.6), 
336(15.8), 311(6.3), 299(3.8), 

356(6.8)

407 (9.8), 403(26.8), 392(13.5), 365(27.5), 356 
(13.3), 354(13.1), 338(49.9), 336(31.7), 325(15.5), 
324 (14.8), 311(3.9), 306 (pnd), 299 (4) 286(6.4), 
242(11.3), 205(13.3), 173(10), 171(12.9), 117(4.7)

40Mins

403(22.7), 392(11.1), 365(22.5), 

354(11.1), 338(39.7), 336(15.3), 

299(3.7), 356(6.7), 205(11.1), 

117(4.5)

407 (9.6), 405(27.4), 403(27.6), 392(13.2), 
370(4.4), 366(27), 365(27.2), 356(13.4), 

354(13.1), 340(24.3), 338(), 336(32.5), 311(4), 
306(7.2, 17.1), 299(4), 286(6.5), 242(11.5), 

232(4), 205(13.4), 173(9.9), 171(12.2), 117(4.9)

60Mins

403(26), 392(12.3), 365(25.6), 

354(12.2), 338(52.4), 336(17.4), 

299(4.1), 356(7.2)

405(27), 403(27), 392(13.2), 365(27), 356(13.1), 
354(13.2), 340(24.7), 338(50.8), 336(31.9), 325 
(7.1), 311(4.1), 306(7.3, 16.9), 299(4), 286(6.6), 

242(11.4), 205(13.3), 173(pnd), 171(12.7), 
117(4.9)

120Mins

403(26.6), 392(13.4), 365(26.4), 
354(12.9), 338(52.9), 336(18.1), 

325(3.4), 286(6.5), 173(9.6), 
356(7.5)

405(26.6), 403(27.1), 392(13.8), 365(26.8), 
356(7.3, 4.5), 354(13.4), 338(49.5), 336(31.1), 325 

(6.8), 311(4), 306(7.4, 17), 299(4.3), 286(6.5,), 
242(11.8), 205(13), 173(9.5), 171(13.3)

180Mins

403(26.2), 392(12.7), 366(4.9), 

365(26.7), 354(13.1), 338(53.2), 

336(17.7), 299(4), 173(9.5)

407(9.8), 405(26), 403(26), 392(12.8), 370(21.1), 
365(26), 356(6.9), 354(12.5), 338(48.5), 

336(30.1), 325 (6.7), 311(3.9), 306(6.8), 299(4.2), 
286(6.2), 284(32.3), 282(8.1), 242(11.3), 

205(12.6), 173(9.3).  
Table 4.3: Table of Ions present in the LC-MS/MS chromatographic runs of two photocatalytic 

experiments at 0.083 mM and 1 mM. In brackets after each ion is the retention time (in minutes) at which 

this ion was found in each EIC. (pnd= present however not a dominant ion) 
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Photolysis (Quartz) Photolysis (Pyrex)

0Mins 338(43.6), 392(11.4)
338(43.6), 392(pnd), 354(pnd), 306(3.9), 

171(25.7)
0Min P. N/A N/A

5Mins
403(24.1), 392(11.4), 354(11.4), 
338(47.2), 306(14.7, 6), 286(5.6), 

173(8.3), 324(3.5)
338(46), 392(11.4)

10Mins
403(24.9), 392(11.4), 354(11.6), 
338(48), 306(6.2, 14.9), 286(5.6), 

299(2.7), 173(8.5), 324(3.5)
392(11.6), 354(11.4), 338(46.9), 117(4.3)

20Mins
392(11.5), 354(11.2), 306(15.3), 
286(5.6), 324(3.5), 338(47.2), 
299(3.4), 242(10.7), 207 (2.6)

354(11.5), 392(11.4), 338(46.7), 324(20.8)

30Mins
392(11.5), 306(14.5), 173(8.5), 
311(0.6), 207(2.6), 324(3.6), 

338(47.8), 299(3.3)
354(11.5), 392(11.4), 338(46.9)

40Mins
299(3.3), 306(14.9), 366(4.4), 

207(2.7), 324(3.4)
403(23.8), 354(11.5), 173(8.5), 392(11.5), 

338(46.9)

60Mins nothing significant, too much noise 
present

403(24.2), 354(11.4), 173(8.3), 392(11.3), 
338(47.1)

120Mins 299(3.4), 207(2.1), 328(3.7) 403(24.2), 354(pnd), 392(11.4), 338(47.3), 
306(14.7), 365(24.4), 173(8.3)

180Mins 311(3.8), 328(3.7)
407 (8.3), 403(24.6), 354(11.4), 173(8.4), 

392(11.6), 338(47.9), 306(14.5, 6.2), 
365(25)  

Table 4.4: Table of ions present in the LC-MS/MS chromatographic runs of two photolysis experiments 

at 0.083 mM with Quartz and Pyrex. In brackets after each ion is the retention time at which this ion was 

found in each EIC. (pnd= present however not a dominant ion) 
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Name Structure Mass 
m/z 

Daughter 
Ions m/z 

Mol. 
Wt. 

g/mol 

tR 
mins 

cLog 
P 

Famotidine 

 

338 259, 242, 
189 337 43 -0.2 

S-oxide 
Famotidine, 

P354 

 

354 
(392 
K+ 

adduct) 

275, 205 353 13 -1.37 

P311 
N

S
S

N

NH2

S
O O

NH2

OHO

 

311 293, 232, 
214 310 4 -0.11 

P242 

 

242 224, 145 241 11.5 -1.10 

P173 

 

173 155 172 9.5 -1.53 

P171 

 

171 154 170 12.2 -1.75 

P370 

 

370 291, 221 369 4.3 -1.63 
 

P365 

 

365 
(403 
K+ 

adduct) 

286, 207, 
182 364 27.2 0.29 

P352 

 

352 273, 203 351 N/A* -0.72 

P356 

 

356 277, 207 355 7.6 -0.72 

* Found in DI-
MS Studies only      

 

Table 4.5: Table of Famotidine’s confirmed intermediates (degradation products), their fragments, 

retention times, molecular weight and calculated Log P values.197, 198 
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Intermediate m/z = 354 

The ion m/z = 354 was found in each photodegradation experiment analysed and generally 

appeared in the first few samples taken for each experiment. From this we can conclude that it is 

one of the first breakdown products of Famotidine. Additionally, this ion appeared in initial and 

follow-up mass spectrometry studies and can be confirmed as an intermediate. It appears in each 

experiment at a retention time of 11.5 mins although in the higher concentration experiment it 

appeared at 13 mins (seen in the chromatogram in Figure 4.19). This was in line with a similar 

apparent shift in the retention time of Famotidine (49 mins) appearing in other experiments at 

47 mins. This shift was due to the high loading of sample on the column of Famotidine (1mM) 

and its intermediates. The 40 mins sample is shown below, it was at this time period the 

maximum concentration of m/z = 354 was found. This intermediate co-elutes with m/z = 392 

which can be clearly seen in the inset mass spectrum at a lower intensity. This may be an 

indication of a relationship between these two ions. The fragments for m/z = 354 are m/z = 275 

and m/z = 205. This fragmentation is similar to that of Famotidine with a difference of 16 mass 

units between fragments (Famotidine: m/z = 259 and m/z = 189). This, combined with analysis 

of fragments would indicate that oxidation has likely occurred at the thioether functionality. 

Previous studies by other authors confirm the oxidation of thioethers and propose a mechanism 

of oxidation via positive holes on the TiO2 surface.199 The structure proposed for this fragment 

along with its daughter fragments are shown in figure 4.20. 

 
Figure 4.19: EIC of intermediate m/z = 354 in a 40 mins sample at a tR of 13.1 mins. Inset MS (top) and 

MS/MS (bottom) spectra. Photocatalysis, [FAM] =1mM, 0.1 g TiO2/320 mL. 
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Figure 4.20: Structure proposed for m/z = 354 and its daughter ions according to LC-MS/MS data. 

 

Intermediate m/z = 392  

The intermediate m/z = 392 appeared in all experiments analysed, co-eluting with m/z = 354 at 

a tR of 13.5 mins (Figure 4.21). A small amount of this ion was present in the 0 mins sample, 

although it was also seen to develop throughout the experiment. EICs showing the m/z =392 

throughout each sample can be found in Appendix 4A-11 for the 1 mM photocatalytic 

experiment. For experiments at 0.083 mM, the concentration of this ion in the 0mins samples 

was significantly lower than in the 1mM experiment. Fragments from m/z = 392 are m/z = 313 

(loss of 79), m/z = 243 (loss of 149), and m/z = 188 (loss of 204). A similar pattern is observed 

with the parent ion for m/z = 354 with fragments m/z = 275 (loss of 79), m/z = 205 (loss of 

149). The difference of 38 mass units between the parent mass and fragments implies a possible 

adduct of the intermediate m/z= 354 with K+ which has an atomic mass of 39 amu.  Structures 

for the parent ion and daughter ions for m/z = 392 are shown in Figure 4.22. It should be noted 

that the potassium adduct for Famotidine, m/z = 376, was also observed in LC-MS/MS data (see 

appendix 4A-12). This ion was fragmented in DI-MS studies, resulting in m/z = 297 which is 

the potassium adduct for the fragment m/z = 259 of Famotidine. 

 
Figure 4.21: EIC of intermediate m/z = 392 in a 30 mins sample at a tR of 13.5 mins. Inset MS (top) and 

MS/MS (bottom) spectra. Photocatalysis, [FAM] =1 mM, 0.1 g TiO2/320 mL. 
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Figure 4.22: Structure of m/z = 392 and its fragments m/z = 313 and m/z = 243. 

 

Intermediate m/z = 242 

The intermediate m/z = 242 was found in the concentrated 1mM photocatalytic experiment and 

also in the Quartz photolysis experiment from approximately 20mins onwards. Its low signal 

intensity would imply a less favoured fragmentation pathway and thus very little is formed even 

at increased concentration. The alternative to this is that it is a favoured intermediate but is 

however unstable and/or further oxidized to another intermediate quite quickly. The fragments 

for m/z= 242 are m/z= 224 and m/z= 145. m/z = 145 is the most intense fragment (base peak) 

and is therefore the most stable fragment of the two. m/z = 224 is an M-18 fragment which can 

conclusively be assigned as a loss of H2O from the parent structure. The difference between the 

two fragments is 79 mass units. This would indicate the loss of a sulfonamide and based on the 

molecular weight would tell us that the famotidine molecule has been effectively split up, losing 

the thiazole-guanidine moiety. Its appearance quite early in the chromatogram would signify 

that it is quite a polar compound. In figure 4.24, a cyclic intermediate has been proposed for this 

mass. Work by Buth et al. in 2007 examined the products of chlorination of cimetidine in water 

treatment processes.200 One of the products they found in their study was a δ-sultam which was 

formed after chlorination of the cimetidine sulfoxide leading to the cleavage of the imidazole. 

They proposed the formation of a cyclic δ-sultone. Further reaction with hypochlorite led to the 

δ-sultam as an intermediate (see Figure 4.25). 
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Figure 4.23: EIC of intermediate m/z = 242 in a 40 mins sample at a tR of 11.5 mins. Inset MS (top) and 

MS/MS (bottom) spectra. Photocatalysis, [FAM] =1 mM, 0.1 g TiO2/320 mL. 
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Figure 4.24: Structure proposed for m/z = 242 and its daughter ions m/z = 224 and m/z = 145 according 

to LC-MS/MS data.  

 

S

NH

N
CH3

O N
CN

S

NH

N
CN

CH3

O

O

NH
N

S N
H

N
H

NNC

CH3

Cimetidine

Cyclisation
Chlorination 

Sultam

Further Chlorination

Sultone  
Figure 4.25: Proposed cyclic chlorination products for Cimetidine from Buth et al. 2007. 
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Intermediate m/z = 173 

The intermediate at m/z = 173 was found in all experiments analysed and appeared at 8.4mins in 

photolysis experiments and 9.5 mins in photocatalysis experiments. It should be noted that 

photolysis experiments were run on a different occasion to photocatalytic experiments. The only 

fragment found for m/z = 173 was m/z = 155.  This fragment is also a minor fragment for 

famotidine and indicates a split of the famotidine molecule, with the oxidation occurring on the 

thiazole-guanidine region of the molecule. Earlier DI-MS studies (Table 4.2) show that m/z 

=155 fragments to give one mass m/z = 138. This mass was observed in the MS/MS for m/z 

=173 in Figure 4.26 at a lower intensity relative to m/z = 155. What this indicates is that m/z 

=155 is indeed the same structure to the fragment for Famotidine. The proposed structure for 

m/z = 173 and its fragment is shown in Figure 4.27. 

 
Figure 4.26: EIC of intermediate m/z = 173 in a 180 mins sample at a tR of 8.4 mins. Inset MS and 

MS/MS spectra. Photolysis Pyrex, [FAM] = 0.083 mM. 
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Figure 4.27: Structure proposed for m/z = 173 with daughter ion m/z = 155 

 
Intermediate m/z = 311 

The intermediate m/z =311 was found in the Quartz photolysis experiment and also in the 1 mM 

photocatalysis experiment. It appeared in all experiments at a retention time of around 3.8 - 4 

mins.  It was found to appear later in the experiment for quartz photolysis (180 mins), whereas 

in higher concentration photocatalysis, 1 mM, it was detected earlier (20 mins-onwards). Three 

fragments were detected from MS/MS analysis of m/z = 311: m/z = 293 (loss of 18), m/z = 232 
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(loss of 79), and m/z = 214 (loss of 97). A loss of 79 mass units from the parent m/z = 311 as 

with the other intermediates, would indicate possible loss of the sulfonamide. This loss gives 

rise to the fragment m/z = 232, and separately, loss of water from the parent intermediate gives 

rise to m/z = 293. A loss of water in addition to loss of the sulfonamide leads to the fragment 

m/z = 214. Two possible structures have been put forward for m/z = 311. These are structural 

isomers and are indistinguishable based on their fragments. Both structures proposed show that 

numerous oxidations have occurred to the Famotidine molecule through loss of the guanidine, 

and oxidations to the aliphatic chain in the molecule. One of the oxidations on the aliphatic 

chain is to a ketone at the carbon between the thiazole ring and the thioether. A second 

oxidation is proposed along the aliphatic chain neighbouring the amidine group and this 

oxidation is likely on either carbon. Both isomers and their proposed fragments are shown in 

Figure 4.29 and Figure 4.30. In this case, oxidation of numerous moieties and loss of the 

guanidine moiety are likely. 

 
Figure 4.28: EIC of intermediate m/z = 311 in a 40 mins sample at a tR of 4 mins. Inset MS and MS/MS 

spectra. Photocatalysis, [FAM] =1mM, 0.1 g TiO2/320 mL. 
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Figure 4.29: Proposed structure for m/z = 311 and its fragments m/z = 293, m/z = 232 and m/z = 214.  
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Figure 5.30: Proposed isomer for m/z  = 311 with fragments m/z = 293, m/z = 232 and m/z = 214. 

 

Intermediate m/z = 171 

The intermediate m/z = 171 was found exclusively in the 1 mM photocatalytic experiment. We 

believe this is because it is not produced in large quantities and could only be detected at the 

increased concentration. m/z = 171 is closely related to the previous intermediate at m/z = 173 

in that oxidation of the same carbon occurs. It is thought that due to the differing fragments for 

m/z = 173 and m/z = 171 it is likely that the oxidation mechanism for both these intermediates 

are different. Famotidine may first undergo oxidation of the thioether resulting in cleavage of 

the molecule with a resulting radical on the carbon alpha to the sulfur atom. A hydroxyl radical 

may then combine with this radical to give m/z = 173. The fragment from MS/MS analysis of 

m/z =173 (m/z = 155) supports this mechanism (Figure 4.26). m/z = 171 could be formed by a 

slightly different mechanism of H-abstraction and hydroxyl radical attack would result in m/z = 

154 in the case of m/z = 171. Another possible mechanism which is reported in the literature is 

the abstraction of H by a hydroxyl radical and addition of oxygen to give a peroxyl radical.199 

This will decompose to give the resulting ketone, m/z = 171. The structure for m/z = 171 is 

shown in Figure 4.32. The fragments for m/z = 171 could not be proposed, so molecular 

formula are presented in this case. 
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Figure 4.31: EIC of intermediate m/z = 171 in a 40 mins sample at a tR of 12.2 mins. Inset MS (top) and 

MS/MS (bottom) spectra. Photocatalysis, [FAM] =1 mM, 0.1 g TiO2/320 mL. 
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Figure 4.32: Structure proposed for m/z = 171 and molecular formula for m/z = 154, and m/z = 129. 

 

Intermediate m/z = 370 

Intermediate m/z = 370 was found in earlier MS/MS studies and a structure was proposed for 

this ion. However, upon initial examination by LC-MS/MS, this ion was not found. Upon 

further examination of the data, in only one sample (20 mins), did this ion dominate over others 

and was thus detected with subsequent MS/MS analysis. It was found at a retention time of 4.3 

mins after 20 mins of irradiation in the higher concentration photocatalytic experiment. LC-

MS/MS data show only two fragments for m/z = 370; m/z = 291 and m/z = 221. Two structures 

are proposed for intermediate m/z = 370 and its fragments (Figure 4.34). LC-MS/MS data and a 

literature search would indicate that the sulfone is the most likely intermediate (Santellas et al.). 

However, DI-MS studies showed an additional fragment m/z = 157 (Table 4.2, Figure 4.18) 

which is additional evidence for the proposal of the sulfoxide/hydroxylamine intermediate 

(upper structure). 
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Figure 4.33: EIC of intermediate m/z = 370 in a 20 mins sample at a tR of 4.3 mins. Inset MS (top) and 

MS/MS (bottom) spectra. Photocatalysis, [FAM] =1 mM, 0.1 g TiO2/320 mL. 

N

S

N
SNH2

NH O N

NH2

S
NH2

O
O

OH

N

S

N
SNH2

NH O NH2

NH2

OH

N

S

N
SH2

NH2

NH O
OH

H

N

S

N
SNH2

NH2 O N

NH2

S
NH2

O
O

O

N

S

N
SNH2

NH2 O NH2

NH2

O

N

S

N
SH2

NH2

NH2 O
O

H

+

m/z = 221

m/z = 291

m/z = 370

+ +
+

MS/MS

+

m/z = 221

m/z = 291

m/z = 370

+ +
+

MS/MS

Sulfoxide/Hydroxylamine

Sulfone

 
Figure 4.34: Structure of m/z = 370 and its fragments m/z = 291 and m/z = 221. 

 
Intermediate m/z = 365 

Intermediate m/z = 365 was found in both photocatalytic experiments (1 mM and 0.083 mM) 

and found in the photolysis of Famotidine with Pyrex but not with quartz. It appeared at a tR of 

27 mins. Similar to intermediate m/z = 354, it features an ion in its mass spectrum (inset Figure 

5.32) which is 38 mass units higher than m/z = 365. This would imply that a potassium adduct 

is also formed for this intermediate with m/z = 403. m/z = 365 has 3 fragments’, m/z = 286 (loss 

of 79), m/z = 207 (loss of 158) and m/z = 182 (loss of 183). Loss of 79 would imply loss of the 
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sulfonamide. The difference in mass units between m/z = 365 and famotidine m/z = 338 is 27 

mass units. Cyclic structures and various other oxidations on the molecule were predicted 

although a viable structure for m/z = 365 could not be proposed. One structure has been put 

forward in Figure 4.36 which entails the oxidation of numerous carbons on the molecule and a 

loss of -NH2 from the guanidine moiety. This was the only possible structure that fits a mass of 

364 (m/z = 365) and fragment of m/z = 286. EICs showing the development of this intermediate 

throughout samples in the photocatalytic experiment can be found in appendix 4A-10. 

 
Figure 4.35: EIC of intermediate m/z = 365 in a 40 mins sample at a tR of 27.2 mins. Inset MS (top) and 

MS/MS (bottom) spectra. Photocatalysis, [FAM] =1 mM, 0.1 g TiO2/320 mL. 
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Figure 4.36: Proposed structure of m/z = 365 and its main fragment m/z = 286. 

 
Intermediate m/z = 403 

The intermediates m/z = 403 appeared in all experiments analysed (photolysis and 

photocatalysis), co-eluting with m/z = 365 at a tR of 27.6 mins (Figure 4.37). Fragments from 

m/z = 403 are m/z = 324 (loss of 79), and m/z = 245 (loss of 158). A similar pattern to this is 

observed for m/z = 365 with fragments m/z = 286 (loss of 79), m/z = 207 (loss of 158). The 

difference of 38 mass units between the parent mass and fragments again implies a possible 

adduct of the intermediate m/z = 365 with K+.  Structures for the parent ion and daughter ions 

for m/z = 403 are shown in Figure 4.38.  
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Figure 4.37: EIC of intermediate m/z = 403 in a 40 mins sample at a tR of 27.6 mins. Inset MS (top) and 

MS/MS (bottom) spectra. Photocatalysis, [FAM] = 1 mM, 0.1 g TiO2/320 mL. 

N

S

NNH2

H
S

N

NH2

S
O O

NH2

O O

O

N

S

NNH2

H
S

NH

NH2

O O

O

K K

m/z = 403 m/z = 324

MS/MS

+ +
+ +

 
Figure 4.38: Structure of m/z = 403 and its main fragment m/z = 324. 

 

Intermediate m/z = 356 

Intermediate m/z = 356 was only found in the 1mM photocatalysis experiment at a tR of 7.6 

mins and was detected initially after 20 mins of irradiation and was present until 180 mins. Its 

fragment ions are m/z = 277 (loss of 79) and m/z = 207 (loss of 149). This fragmentation pattern 

was also seen for ions m/z = 392, m/z = 338 (Famotidine), m/z= 354 and m/z = 324. The EIC 

for m/z = 356 showed two peaks one at 7.6 mins and one at 13.4 mins. The second peak was 

found at the same retention time of m/z = 354. For this intermediate two possible structures are 

proposed (Figure 4.40). In line with the fragmentation pattern, oxidation must have occurred on 

the thiazole-guanidine fragment of the molecule. 

27101026.D: EIC 403 ±All, Smoothed (1.6,1, GA), Smoothed (1.6,1, GA)

0.0

0.5

1.0

1.5

4x10
Intens.

20 40 60 80 100 120 Time [min]

214.4 281.5

365.1

403.1

490.8 547.8 624.0 713.8

+MS, 27.6min (#1018)

0

1

2

3

4x10
Intens.

100 200 300 400 500 600 700 m/z  

245.3

324.1

+MS2(403.0), 27.2min (#1003)

0.0

0.2

0.4

0.6

0.8

1.0

4x10
Intens.

100 200 300 400 500 600m/z  



137 
 

 
Figure 4.39: EIC for 356 at 40 mins at a tR of 7.6 mins and 13.4 mins. Photocatalysis, [FAM] =1 mM, 0.1 

g TiO2/320 mL. 
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Figure 4.40: Structures proposed for m/z = 356 and its fragments m/z = 277 and m/z = 207. 

 

4.2.6 Ions which could not be Elucidated 

A number of intermediates detected in samples throughout photodegradation experiments could 

not be elucidated. These intermediates are presented in Table 4.6 along with their retention 

times, fragments and the experiments in which they were present. EIC chromatograms are 

presented along with MS and MS/MS spectra in Figures 4.41-4.46. 
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Intermediate m/z Fragments tR (mins) Experiment
324 307(306), 227,  175, 157(158) 3.4 Quartz Photolysis
306 227, 157, 125 6.2, 16 Photocat 1mM
336 273, 202 (319, 257, 238) 15.3, 32.3 Photocat (1mM, 0.083mM)
299 265, 231 4 Photocat (1mM, 0.083mM) Photolysis (Quartz)
286 206, 197, 177, 129 6.6 Photocat (1mM, 0.083mM) Photolysis (Quartz)
325 308, 284, 206, 155 6.6 Photocat 1mM  

Table 4.6 Table of intermediates for which structure could not be proposed. 

 

Although structures could not be elucidated for intermediates m/z = 324 and m/z = 306, we 

believe that these intermediates may be related as they share two common ions: m/z = 227 and 

m/z = 157 and differ only in mass by 18 (a loss of water). Based on the fragmentation pattern, 

we would speculate strongly that oxidation has occurred at the thiazole-thioether moiety. 

Fragmentation of the aliphatic chain would then likely occur with the usual loss of the 

sulfonamide. The intermediate m/z = 286, which has the same mass of one of the main 

fragments of the intermediate m/z = 365, does not indicate that it is in any way related to m/z = 

365. 

 
Figure 4.41: EIC of intermediate m/z = 324 in a 20 mins sample at a tR of 3.5 mins. Inset MS and MS/MS 

spectra. Photolysis Quartz, [FAM] =0.083 mM. 
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Figure 4.42: EIC of intermediate m/z = 306 in a 180 mins sample at a tR of 16 mins. Inset MS and 

MS/MS spectra. Photocatalysis, [FAM] = 1 mM, 0.1 g TiO2/320 mL. 

 
Figure 4.43: EIC of intermediate m/z = 336 in a 180 mins sample at a tR of 32.3 mins. Inset MS and 

MS/MS spectra. Photocatalysis, [FAM] =1 mM, 0.1 g TiO2/320 mL. 
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Figure 4.44: EIC of intermediate m/z = 299 in a 60 mins sample at a tR of 4 mins. Inset MS (top) and 

MS/MS (bottom) spectra. Photocatalysis, [FAM] =1 mM, 0.1 g TiO2/320 mL. 

 
Figure 4.45: EIC of intermediate m/z = 286 in a 40 mins sample at a tR of 6.6 mins. Inset MS (top) and 

MS/MS (bottom) spectra. Photocatalysis, [FAM] =1 mM, 0.1 g TiO2/320 mL. 
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27101026.D: EIC 286 ±All, Smoothed (1.6,1, GA)
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Figure 4.46: EIC of intermediate m/z = 325 in a 180 mins sample at a tR of 6.6 mins. Inset MS and 

MS/MS spectra. Photocatalysis, [FAM] =1 mM, 0.1 g TiO2/320 mL. 

 

4.2.7 Famotidine Proposed Intermediates Structures Conclusions  

A total of 15 intermediates were discovered collectively in LC-MS/MS and DI-MS data for 

Famotidine. Of these 15, structures for 9 intermediates have been proposed, based on molecular 

oxidation analysis, careful study of fragments and corroboration with literature data where 

available. A further two have been analysed and positions of oxidation have been proposed, 

although structures have not. The remaining 4 intermediates could not be assigned structures. 

Structures of intermediates which have been proposed can be found in Figure 4.47 along with 

their molecular mass. A likely degradation pathway is also shown in Figure 4.48. Ion 

monitoring graphs for all ions monitored in each experiment can be found in the appendices 

(4A-13 – 4A-16).  
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4.2.8 Direct Infusion Mass Spectrometry Studies: Tamsulosin  

Figure 4.49 displays a HPLC-PDA (280 nm) chromatogram of a photocatalytic degradation 

experiment for Tamsulosin. The appearance of numerous intermediates can be seen clearly in 

the chromatogram as well as the disappearance of Tamsulosin.  

 

 
Figure 4.49: Tamsulosin photocatalytic degradation experiment showing intermediate formation over 

time. 0 Mins, 0 Mins Pads, 5 mins – 40 mins. [TAM] = 20 μM, TiO2 = 0.2 g/32 0mL P-25 TiO2, 280 nm. 

 

DI-MS analysis of a photocatalytic degradation experiment of Tamsulosin was undertaken and 

the appearance of various new masses could be seen particularly after only 10 mins of 

irradiation. Figure 4.50 shows the mass spectrum of the 0 Mins sample from this experiment. 

The parent ion of Tamsulosin, [M+H]+, is at m/z 409 which can be clearly seen in the spectrum, 

however it has a molecular weight of 444.48 g/mol. The loss of 35 mass units upon ionisation 

means that the chlorine from the hydrochloride salt of Tamsulosin is lost. MS/MS analysis of 

Tamsulosin’s parent ion at m/z 409 yielded the daughter ions listed in Table 4.7. 

 

Generation of these daughter ions is mainly via cleavage at a carbon alpha to any sort of 

heteroatom such as N, S or O. Both m/z = 228 and 271 have very high abundances. In m/z = 

228, the positive charge is stabilised by the secondary carbon and in m/z = 271, the positive 

charge can be considered to be stabilised by the neighbouring olefinic functionality. Structures 

for the molecular ion of Tamsulosin and its daughter ions can be found in Figure 4.51. 
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Figure 4.50: DI-MS of a 0 Mins sample of a photocatalytic degradation experiment showing the parent 

ion of Tamsulosin, m/z= 409. Photocatalysis, [TAM] = 0.083 mM, 0.2 g TiO2/320 mL. 

Parent Ion m/z  Daughter Ion m/z  
409 271 

  228 
  200 
  148 

Table 4.7: MS/MS analysis of Tamsulosin’s parent ion. 
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Figure 4.51: Tamsulosin parent ion m/z =409 and its daughter ions m/z = 271, m/z=228, m/z = 200 and 

m/z = 148. 
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Figure 4.52: DI-MS of a 120 mins sample of a photocatalytic degradation experiment, (inset) UV-vis 

spectra at 0 mins and 120 mins. Photocatalysis, [TAM] = 0.083 mM, 0.2 g TiO2/320 mL. 
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Figure 4.53: Intermediates proposed for m/z = 381 and m/z = 289 ions found in DI-MS spectra. 

 

Mass spectra were attained for several samples of a photocatalytic degradation experiment of 

Tamsulosin. A table of various ions found throughout the course of the experiment and their 

intensities can be found in the appendices 4A-17. Figures 4.53 & 4.54 show structures which 

have been proposed for some of the consistent ions identified in this table. These are plausible 

structures based mainly on the formation of hydroxylated species.  
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Figure 4.54: Tamsulosin proposed intermediates from its in vivo metabolites.201 
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signals in the mass spectrum are due to these contaminants with m/z = 453 and 679. Excluding 

these, there is little else of significant intensity in the spectra. There is a weak peak for 

Tamsulosin (m/z = 409) which is the next most intense peak. Figure 4.54 shows in vivo 

metabolites which were identified by Taguchi et al. in 1997. Since phase 1 metabolism consists 

of hydroxylations similar to the action of photocatalysis, it is highly likely that these compounds 

will be generated in photocatalytic degradation experiments.  

 
 
4.2.9 Follow-Up Direct Infusion Mass Spectrometry Studies: Tamsulosin 

Follow up DI-MS studies were undertaken using cellulose acetate filters and at a higher 

concentration of 1mM. Some additional ions were observed such as m/z = 346, 328 and 285 and 

are listed in Table 4.8. It was noticed that the MS/MS of these ions all contain the common ion 

m/z = 239. Also, m/z = 285 was common to m/z = 346 and m/z = 328, so these ions may be all 

from the same intermediate. The ion m/z = 817 when fragmented yielded the parent ion for 

Tamsulosin (m/z = 409), so it can dimerise under ESI conditions. Numerous other ions were 

observed by DI-MS although these ions were not observed by LC-MS/MS. The intermediate ion 

m/z = 346 was found by LC-MS/MS along with its main fragment ion m/z = 285, which 

corroborates with this data. Previously proposed intermediate ions such as m/z = 381, 395 and 

425 were also confirmed in this study and can be found in the 180 mins mass spectrum shown 

in Figure 4.55. (Isotopes for Tamsulosin can also be seen, m/z = 410 and m/z = 411.) 

 

Mass m/z Fragments m/z Mass m/z Fragments m/z 
817 409, 271 328 285, 271, 239 
447 429, 363, 318, 222, 137 328 285, 272, 239, 176 
447 418, 254 289 271, 228, 200 
431 414, 293, 202 285 271, 257, 239, 227, 211, 196, 183, 148 
425 408, 287, 271, 244, 228, 216, 200, 148 285 270, 257, 239, 211, 179 
425 408, 396,  287, 271, 260, 244, 228, 200, 148 257 239, 229, 214, 197, 183 
425 408, 360, 287, 271, 228, 200 239 224, 211, 196, 183, 179, 172 
425 408, 360, 287, 271, 244, 228, 208, 200, 183, 151  185 153 
394 375, 322, 220, 195, 163, 149 409 271, 228, 200, 148, 392 
394 376, 349, 327, 257, 220, 197, 169, 153 271 228, 200, 148 
346 285, 239, 165, 142 228 200, 148, 117 
346 285, 224, 209, 165 200 169, 120, 104, 92 
346 294, 285, 257, 239, 211, 165, 137 148 133, 117, 91 
330 240, 175, 149, 121     

Table 4.8: Table of masses found in follow-up DI-MS studies and their fragments. (DI-MS/MS). Ions in 

bold and underlined denote the base peak found in that mass spectrum. In grey are Tamsulosin’s parent 

ion and fragments found in this study. 
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Figure 4.55: Tamsulosin direct infusion mass spectra at 0 Mins (10% CS), 180 Mins (10% CS), and 180 

Mins (100% CS). Photocatalysis [TAM] = 1 mM, 0.2 g/320 mL.  

 
4.2.10 LC-MS/MS Studies and Intermediate Analysis: Tamsulosin  

LC-MS/MS analysis of four Tamsulosin photodegradation experiments were performed. Firstly, 

the optimized photocatalysis with 0.2 g/320 mL TiO2 and 0.083mM Tamsulosin. An additional 

photocatalytic experiment was performed at a much higher concentration of 1 mM Tamsulosin 

and 0.2 g/320 mL TiO2. This heightened concentration was performed in order to see 

intermediates at much lower concentrations. Photolysis experiments with both Quartz and Pyrex 

were also analysed using LC-MS/MS at the optimum concentration of 0.083 mM Tamsulosin. 

Two tables 4.9 and 4.10 are presented showing all of the ions found in each chromatogram. 

Beside each ion in the table is the retention time that ion appears at in the chromatogram. Table 

4.11 and 4.12 summarise all intermediate ions found in these experiments including their 

fragments, retention times, Mol. Wt. and calculated Log P values. Following these tables are 

individual EIC chromatograms for each significant intermediate ion found including their mass 

spectra and the MS/MS for that ion and the proposed intermediate structure. 
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Photocat (0.083mM) Photocat (1mM)

0Mins 425(19.1, 12.8), 409(37.4),  289(2.3)
 481(3.4), 473(2.9), 425(5.9, 10.2,11.8, 16.8), 

409(30.5), 381(8.8),  346 (25.5), 289(2.2)

0Min P.
425(19.6, 13.9), 409(38.7),  

381(10.2), 289(2.3), 
425(6.3, 11.8, 16.3), 409(29.6), 289(2.3)

5Mins

441(15.5), 425(11.6, 13.4,18.6), 

423(5.3, 17.9), 409(38.2), 400(7.8), 

395(27.3), 381(10), 289(2.3), 

481(3.4), 479(13.9), 441(2.6, 13.9), 425(10.1, 
11.5, 16, 21.9), 423(4.8, 15.6, 25.7), 413(5.7), 

409(30.3), 400(7.3), 395(23.5), 381(8.7), 
289(2.3)

10Mins

 441(15.5), 425(11.4, 13.5, 18.7), 
423(5, 17.6, 29.9), 409(38.4), 

400(7.9), 396(14, 15.3),  395(27.5), 
381(9.8), 346(33.6), 289(2.3), , 

481(3.3), 479(13.9), 441(13.6), 425(10, 11.4, 
16.1, 21.9), 423(4.8, 15.4, 25.6) 413(5.8), 
409(29.4), 400(7.4), 395(23.2), 381(8.7),  

355(5.9), 346(17.6), 289(2.3),

20Mins

 425(13.1, 18.7), 423(5.1, 17.6, 30.8),  

413(6.2), 409(38.5), 395(27.4), 

381(9.8), 289(2.3), 

 479(3.3, 13.7), 459(4.1), 441(2.7, 13.9),   
425(9.7, 11.4, 15.8, 21.3), 423(4.8, 15.3, 25.3), 

413(5.7), 409(29.3), 400(7.3), 395(23), 
381(8.7),  355(5.9), 346(17.4), 289(2.3)

30Mins

441(2.7), 425(11,13, 18.6), 423(5.2, 

17.6, 30.3) 409(38.8), 395(27.5), 

381(9.7), 318(23.1), 289(2.3)

479(3.3pnd), 441(2.6, 13.1), 425(9.6, 10.8, 15, 
20.5), 423(4.6, 14.6, 24.3), 414 (3.2), 

413(5.3), 409(28.2), 400(7.2), 395(22.1), 
381(8.3), 355(5.7), 346(13.9), 328(17.1), 

289(2.3), 

40Mins

479(3.3), 441(2.7), 425(11.3, 12.9, 
18.6), 423(17.6, 30.7), 409(38.9), 
395(27.6), 381(9.5), 346(32.3), 

289(2.3),  

479(3.3), 473(3.5), 441(14.7, 15.1), 425(10.9, 
12.5, 17.6), 423(4.9, 17, 28.4),  414(3.4), 

409(32.9), 400(7.6), 395(26.2), 381(9.4), 
346(21.1), 328(21.4), 289(2.3)

60Mins

441(2.8), 425(11.1, 12.9, 18.3, 25), 

423(17.3, 30.6), 409(38.9), 

395(27.6), 381(9.8), 289(2.3), 

481(6.2), 479(3.3), 473(3.5),  425(11, 12.7, 
17.9), 423(17.2), 414(3.5)  409(33.8), 

400(7.7), 395(26.5), 381(9.6), 346(29.6), 
328(28.7), 289(2.3)

120Mins

 425(11, 12.7, 18.7, 25.2), 423(17.6), 

409(39), 395(27.9), 381(9.7),  

346(21.6), 318(22.8), 289(2.3),

481(3.9), 479(pnd), 473(3.8), 441(5.8), 
425(12.9, 11.1, 18), 423(29.4, 17.1, 4.1),  414 

(3.4), 409(34.1), 400(5.1,7.8), 395(26.5), 
381(9.6), 346(43.3), 289(2.3)

180Mins

425(11.1, 12.9, 18.9, 24.9), 

423(17.8), 409(38.1), 395(27.4),  

381(9.7), 318(23.1), 289(2.3)

481(4), 425(17.9,12.7, 10.9), 423(17.2),  
414(3.4), 409(34.5), 400(5.4), 395(26.9), 
381(9.7), 346(pnd), 328(30.7), 318(22.3), 

289(2.3)  
Table 4.9: Table of Ions present in the LC-MS/MS chromatographic runs of two photocatalytic 

experiments at 0.083 mM and 1 mM. In brackets after each ion is the retention time (in minutes) at which 

this ion was found in each EIC. (pnd= present however not a dominant ion) 
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Photolysis  (Quartz) Photolysis (Pyrex)
0Mins 409(37.3), 381(10), 289(2.3) 409(34.7), 381(9.1), 289(2.3)

0Min P. N/A N/A

5Mins

479(13.4), 441(15.6, 13.7), 
414(7.9), 409(38.9), 400(2), 

396(3.2, 10.4), 395(27.6), 381(10.2), 
380(3.5, 5.4), 378(4.2, 8.1, 22.9), 

368(11.7), 362(6.1),346(4.8) , 
336(18.2), 318(9.9), 289(2.3), 

479(15.5), 441(15.9), 414(8), 409(36.9),  

396(3.2, 10.6), 395(27.1), 381(9.8), 378(4.1), 

362(6.1),  348(4), 346(45.8), 289(2.3), 

10Mins

479(13.4), 441(15.7, 18.7), 
414(3.8), 409(39.6), 400(1.9), 

396(5.6, 10.5), 395(27.8), 380(3.4, 
7.4, 9.7), 378(4.2, 8, 15.9, 22.9) 

368(11.8), 362(6.3), 336(2.5, 18), 
346(45.2) , 318(9.9), 289(2.3), 

479(13), 441(15.3), 425(12.9, 18), 423(17.4), 

414(7.9), 409(37.5), 400(2),  396(3.2, 10.1), 
395(27.6), 381(9.7), 378(4.2), 368(11.4), 

362(6.1), 348(3.9), 346(44.6), 336(18.1), 

318(9.9), 289(2.3),  

20Mins

409(36.4), 395(26.6), 380(2.8, 5.6), 

378(4.1), 368(11), 348(3.9), 

346(42.7), 289(2.3)

 441(13.6, 15.5), 425(18.1, 25.9), 423(17.3), 
414(8), 409(37.9), 400(1.9), 396(3.2, 10.4), 
395(27.9),381(9.8), 380(3.6), 378(4.3,8.2, 

16.4, 22.8)368(11.4), 362(6.2),  348(4), 
346(45.2), 336(18.1), 318(10), 289(2.3)

30Mins

414(2.1), 396(2.5, 3.4, 8.4), 380(5.9, 

9.8), 378(4.1), 

479(17.9, 21.1, 30.4), 441(18.5, 26.2), 
423(23.9), 414(9.4), 409(54.7), 400(2),  

396(3.4, 13.2), 395(37.4), 381(12.5), 
380(3.9),378(4.9, 10.3, 21.6, 31), 368(15.4), 

318(12.4),348(4.5),  336(6.8, 24.6), 289(2.4),

40Mins  380(9.4), 378(4.1)

 479(18.1),, 441(17.8, 20.4, 25.4, 28.9), 
414(9.5), 409(53.9), 400(2), 396(3.5, 13) 

395(36.9), 381(12.1), 378(4.8, 10, 21.7, 30.3), 
368(15.4), 348(4.5), 346(60.8),336(6.5, 24), 

318(12.1),  289(2.4),

60Mins 396(2.5), 378(4), 

479(18.9, 21.9), 441(22.2, 27.2), 414(5.9, 9.5, 
14.4), 409(60.6), 400(2), 396(3.5, 13.8), 

395(40.4), 381(12.8),  380(3.9, 6.8), 378(4.8, 
10.2, 22.1, 33.1), 348(4.5), 346(67.8), 

336(25.3), 318(12.7), 289(2.4),

120Mins 378(4)

 479(20.1, 24, 29.3), 441(21.2, 23.9, 28.7, 34), 
413(7.2), 409(64.6), 400(2.1),395(43), 

378(5.1, 10.6, 23.5, 35), 368(17), 348(4.8), 
346(67.7), 289(2.4),  , 318(13.9), 336(2.7, 

27.3)

180Mins No significant ions present

441(15.1, 19.3,21.6,29.4), 409(40), 400(1.9), 
396(2.8, 14.3), 395(28.1),  380(3.6), 378(4.2, 
8.2, 15.9, 23.6), 348(34.2), 346(45.9), 336(2.4, 

18.8), 318(10), 289(2.4),  
Table 4.10: Table of ions present in the LC-MS/MS chromatographic runs of two photolysis experiments 

at 0.083 mM with Quartz and Pyrex. In brackets after each ion is the retention time at which this ion was 

found in each EIC. (pnd= present however not a dominant ion) 
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Name Structure Mass m/z Daughter 
Ions m/z 

Molecular 
Weight g/mol tR mins cLog P 

Tamsulosin 

 

409 271, 228, 
200, 148 

444.45 
(hydrochloride 

salt) 
37 3.05 

P381 

 

381 271, 228, 
200 380 10 1.88 

P289 

 

289 271, 228, 
199 288 2.4 0.15 

P395 

 

395 257, 214, 
197, 182 394 22 2.72 

P425 

 

425 
408, 271, 
228, 200, 

148 
424 Numerous 2.53(m-) 

2.59(o-) 

P425 

 

425 408, 264, 
245, 228 424 20.5 2.17 

P473 

 

473 427, 289, 
271, 228, 472 3.6 1.42 

P352 

 

352 334, 238 351 4.8 -0.09 

Table 4.11: Table of Tamsulosin’s confirmed intermediates (degradation products), their fragments, 

retention times, molecular weight and calculated Log P values.197,198 
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Name Structure Mass 
m/z 

Daughter 
Ions m/z 

Molecular 
Weight 
g/mol 

tR mins cLog P 

P346 

 

346 285, 257 345 45.2 3.72 

P423 

 

423 405, 377, 
285, 228 422 4.8 2.79 

P423 

 

423 381, 313, 
271, 228 422 15.3 2.69 

P423 

 

423 377, 285 422 23.3 2.53 

P441 

 

441 395, 271, 
228, 200 440 Numerous 2.37-2.41 

P275 

 

275 257, 214, 
197 274 2.2 1.01 

P378 378 360, 242, 
161 377 Numerous 0.5 

P415 415 271, 228 414 2.8 0.24 

P413 413 271, 228 412 5.7 1.49 

P419 419 271, 229 418 3.7 -0.24 

Table 4.12: Table of Tamsulosin’s confirmed intermediates (degradation products), their fragments, 

retention times, molecular weight and calculated Log P values (continued).197,198 
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Intermediate m/z = 381 

The intermediate m/z = 381 appeared at a retention time of 10 mins, although the retention time 

did tend to vary slightly between 9.6 mins and as high as 12 mins. It was also found in every 

photo-degradation experiment analysed and generally appeared in the first few samples (5 mins 

onwards) taken for each experiment.  From this we can conclude that it is one of the first 

breakdown products from Tamsulosin. This intermediate was also proposed in previous 

preliminary studies where it was found in DI-mass spectra. It was also found in follow-up 

studies where a higher concentration of Tamsulosin was used. The fragment ions for this 

particular intermediate are identical to those for Tamsulosin, so from this we can deduce that 

oxidation takes place on the ethoxybenzene ring with loss of the ethoxy group by attack of a 

hydroxyl radical. This sort of hydroxyl radical attack incurs a break in the aromaticity of the 

phenyl ring, which is restored with the subsequent loss of the ethoxy group. The proposed 

structure and daughter ions are shown in Figure 4.57.  

 
Figure 4.56: EIC of intermediate m/z = 381 in a 5 mins sample at a tR of 10 mins. Inset MS and MS/MS 

spectra. Photocatalysis, [TAM] = 0.083 mM, 0.2 g TiO2/320 mL. 
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Figure 4.57: Structure of Intermediate m/z = 381 and its daughter ions m/z = 271, 228 and 200. 
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(Figure 4.58), and was found to be a persistent intermediate, although in photolysis with Quartz 

it was not observed after 20 mins. Since this intermediate showed identical fragments to 

Tamsulosin we can deduce that oxidation occurs on the carbon β to the secondary amine. The 

proposed structure is shown in Figure 4.59 along with its proposed daughter ions. 

 
Figure 4.58: EIC of intermediate m/z = 289 in a 10 mins sample at a tR of 2.4 mins. Inset MS and MS/MS 

spectra. Photolysis Pyrex, [TAM] = 0.083 mM. 
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Figure 4.59: Structure of Intermediate m/z = 289 and its daughter ions m/z = 271, 228 and 200. 

 

Intermediate m/z = 395 

The ion m/z = 395 was also found in all of the photo-degradation experiments and in 

preliminary work with DI-MS studies. This intermediate was eluted before Tamsulosin 

generally at a tR of 27 mins, although for the higher concentration photocatalytic experiment it 

was eluted earlier at 22 min (Tamsulosin was also eluted earlier in this case). The daughter 

fragments for this intermediate differ from the parent drug Tamsulosin, which would indicate 

that an oxidation has taken place on the methoxy sulfonamide aromatic ring with the loss of the 

methoxy group via hydroxyl radical attack. Proposed structures for the daughter ions are shown 

in Figure 4.61. 
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Figure 4.60: EIC of intermediate m/z = 395 in a 30 mins sample at a tR of 22 mins. Inset MS and MS/MS 

spectra. Photocatalysis, [TAM] =1 mM, 0.2 g TiO2/320 mL. 
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Figure 4.61: Structure of Intermediate m/z = 395 and its daughter ions m/z = 257, 214, 197 and 182. 

 

Intermediate m/z = 425 

The ion m/z= 425 is composed of the Tamsulosin ion (m/z = 409) +16 amu, which results from 

the addition of oxygen indicating that an oxidation has taken place. The EIC for 425 contained 4 

distinct peaks as shown in Figure 4.62 with another 2 peaks co-eluting with Tamsulosin (their 

masses were not dominant enough to be identified). Of the other peaks, 3 had identical 

fragmentation patterns exhibiting the exact fragments of Tamsulosin m/z =271, 228 and 200 

with an additional fragment of 408 which we believe is loss of the hydroxyl group (gained via 

photocatalytic oxidation). The final 4th intermediate had only one of the fragments for 

Tamsulosin, m/z = 228, and other fragments of m/z = 245, 264 and 408.  

 

Single oxidation can take place on the ethoxy phenyl ring (catechol ring) or alpha to the amine. 

In the case of oxidation of the catechol ring, there are four possible sites for oxidation leading to 

four positional isomers (Figure 4.66). In Figure 4.68 an intermediate resulting from oxidation on 
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the aliphatic chain adjacent to the secondary amine is shown although without assignment of the 

other fragments for this intermediate, the exact site of this oxidation cannot be confirmed. 

 
Figure 4.62: EIC chromatogram for m/z = 425 showing four peaks and two additional peaks whose ions 

were not dominant enough in chromatograms to be determined. Photocatalysis, [TAM] =1 mM, 0.2 g 

TiO2/320 mL. 

 
Figure 4.63: EIC of intermediate m/z = 425 in a 30 mins sample at a tR of 9.6 mins. Inset MS and MS/MS 

spectra. Photocatalysis, [TAM] =1 mM, 0.2 g TiO2/320 mL. 
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Figure 4.64: EIC of intermediate m/z = 425 in a 30 mins sample at a tR of 10.9 mins. Inset MS and 

MS/MS spectra. Photocatalysis, [TAM] =1 mM, 0.2 g TiO2/320 mL. 

 
Figure 4.65: EIC of intermediate m/z = 425 in a 30 mins sample at a tR of 15 mins. Inset MS and MS/MS 

spectra. Photocatalysis, [TAM] =1 mM, 0.2 g TiO2/320 mL. 
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Figure 4.66: Structures of possible isomers for m/z = 425, and the common fragments found for each: m/z 

= 408, 271, 228, 200. 

 
Figure 4.67: EIC of intermediate m/z = 425 in a 30 mins sample at a tR of 20.5 mins. Inset MS and 

MS/MS spectra Photocatalysis, [TAM] = 1 mM, 0.2 g TiO2/320 mL. 
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Figure 4.68: Structure proposed for m/z = 425 and proposed structure for two of its fragments m/z = 408 

and 228. 

 

Intermediate m/z = 441 

EICs for the intermediate m/z = 441 contained either one or more peaks depending on the 

photo-degradation experiment analysed. Of the peaks attained, only two appeared in a large 

enough abundance that would allow identification. A m/z of 441 is composed of the Tamsulosin 

ion (m/z = 409) + 32amu, which indicates two sites of oxidation. As was observed for m/z = 

425, at least 4 isomers are possible when oxidation occurs on the catechol ring. This number of 

isomers increases to six when a second oxidation is possible. In addition, oxidation of the 

aliphatic chain is also possible which would lead to further isomers for m/z = 441. The total 

number of isomers possible as a result of oxidation on the catechol ring are shown in Figure 

4.69. Figure 4.72 shows proposed structures for m/z = 441 and its fragments. 

NH2

O

SO2NH2

O

MeO
OH

OH

NH2

O

SO2NH2

O

MeO
OH

OH

NH2

O

SO2NH2

O

MeO
OH

OH

NH2

O

SO2NH2

O

MeO

OH

OH

NH2

O

SO2NH2

O

MeO

OH
OH

NH2

O

SO2NH2

O

MeO

OH

OH

+
+

+

+

+

+

 
Figure 4.69: Possible isomers for m/z = 441, where two oxidations occur on the catechol ring. 
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Figure 4.70: EIC of intermediate m/z = 441 in a 10 mins sample at a tR of 2.7 mins. Inset MS and MS/MS 

spectra. Photocatalysis, [TAM] =1 mM, 0.2 g TiO2/320 mL. 

 
Figure 4.71 EIC of intermediate m/z = 441 in a 10 mins sample at a tR of 13.6 mins. Inset MS and 

MS/MS spectra. Photocatalysis, [TAM] =1 mM, 0.2 g TiO2/320 mL. 
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Figure 4.72: Structure of one of the possible isomers for m/z = 441, and the common fragments found for 

each isomer: m/z = 395, 271, 228, 200. 
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Intermediate m/z = 423 

The intermediate m/z = 423 was found exclusively in both the photocatalytic experiments and 

appeared at three retention times in the chromatogram at tR = 4.8 mins, 15.4 mins, and 25.3 mins 

indicating the presence of three isomers. m/z = 423 is composed of Tamsulosin (m/z = 409) + 

14amu which indicates that oxidation to a carbonyl has occurred and not an alcohol as in 

previous cases. The most likely oxidation sites for oxidation to a carbonyl are any of the sp3 

hybridised carbons located on the aliphatic chains of Tamsulosin since an oxidation of one of 

these carbons will result in the addition of 14 mass units. Oxidation at any of the six sp3 

hybridised carbons on the aliphatic chains in Tamsulosin should result in different 

fragmentation patterns and allow us to distinguish between isomers. Based on the fragmentation 

pattern for m/z = 423 (4.8 mins) an oxidation at the carbon β to the secondary amine has been 

proposed. This site of oxidation is also confirmed in fragments m/z = 285 (Tamsulosin’s m/z = 

271 + 14) and m/z = 228(Tamsulosin fragment).  

 

The proposed structure for m/z = 423 (4.8 mins) and its fragments are shown in Figure 4.74.  

For m/z = 423 (15.4 mins) an oxidation at the peripheral ethoxy group has been proposed. This 

is supported by the fragments m/z = 228 and m/z = 271 which indicate that the main aliphatic 

chain is still intact. m/z = 313 is an addition of 42 mass units to m/z = 271. For this mass we are 

proposing a fragmentation which involves an attack of the newly formed ester functional group 

by the neighbouring secondary amine with the simultaneous loss of the secondary aromatic ring 

and splicing of the main aliphatic chain. The proposed structure for this mass and its’ fragments 

are shown in Figure 4.76. For m/z = 423 (25.3 mins), no original Tamsulosin fragments were 

attained, which would imply that oxidation must occur on the aliphatic chain closest to the 

primary aromatic ring. Only two of the three fragments for this intermediate could be elucidated 

shown in Figure 4.78. 
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Figure 4.73: EIC of intermediate m/z = 423 in a 20 mins sample at a tR of 4.8 mins. Inset MS and MS/MS 

spectra. Photocatalysis, [TAM] =1 mM, 0.2 g TiO2/320 mL. 
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Figure 4.74: Structure proposed for m/z = 423, and fragments m/z = 405, 377, 285, and 228. 

 
Figure 4.75: EIC of intermediate m/z = 423 in a 20 mins sample at a tR of 15.3 mins. Inset MS and 

MS/MS spectra Photocatalysis, [TAM] =1 mM, 0.2 g TiO2/320 mL. 
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Figure 4.76: Structure proposed for m/z = 423, and fragments m/z = 381, 313, 271 and 228. 

 
Figure 4.77: EIC of intermediate m/z = 423 in a 20 mins sample at a tR of 25.3 mins. Inset MS and 

MS/MS spectra. . Photocatalysis, [TAM] =1 mM, 0.2 g TiO2/320 mL. 
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Figure 4.78: Structure proposed for m/z = 423, and fragments m/z = 377 and 285. 

 

Intermediate m/z = 352 

Intermediate m/z = 352 was found exclusively in both of the photolysis experiments at a tR of 

4.8 mins. Two main fragments were observed for this ion, m/z = 334 (loss of 18) and m/z = 238 

(loss of 114). Figure 4.80 shows the structure we have proposed for m/z = 352 and the various 

possible isomers of its fragments m/z = 334. The early elution time of m/z = 352 would indicate 

a highly polar compound, so for this reason we have proposed possible oxidation at numerous 

points in the molecule. No structure could be elucidated for the fragment m/z =238. 
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Figure 4.79: EIC of intermediate m/z = 352 in a 20 mins sample at a tR of 4.8 mins. Inset MS and MS/MS 

spectra. Photolysis Pyrex, [TAM] = 0.083 mM. 
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Figure 4.80: Structure proposed for m/z = 352, and the isomers possible for fragment m/z = 334. 

 

Intermediate m/z = 378 

This ion was found exclusively in both of the photolysis experiments at a tR of 4.9, 10.4, 21.6, 

31 mins. Various fragments were found for each peak and these are presented in Table 4.13. 

The chromatogram of the most intense isomer is shown in Figure 4.82. Only one structure could 

be proposed for one of the isomers, and this structure is presented in Figure 4.83. Two isomers 

of its main fragments are also presented. 
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Figure 4.81: EIC of ion m/z = 378 in a 20 mins sample at retention times of 4.9, 10.4, 21.6, 31 mins. 

Photolysis Pyrex, [TAM] =0.083 mM. 

 
Figure 4.82: EIC of intermediate m/z = 378 in a 20 mins sample at a tR of 4.5 mins. Inset MS and MS/MS 

spectra. Photolysis Pyrex, [TAM] =0.083 mM. 

m/z MS/MS tR 
378 317, 271, 254 4.9 
378 303, 233, 215, 145 10.4 
378 360, 242, 161 21.6 
378 317, 271, 157 31 

Table 4.13: Daughter ions found at different retention times for m/z = 378. Highlighted in grey is the ion 

for which a structure has been proposed. 
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Figure 4.83: Possible Structure proposed for m/z = 378 and two possible isomers for its major fragment 

m/z = 360. 

 

Intermediate m/z = 346 

The intermediate with mass m/z = 346 was found in all experiments carried out, eluting after 

Tamsulosin at a tR of 45.2 mins. Two fragments were observed for this intermediate m/z = 285 

(loss of 61), and m/z = 257 (loss of 89). Considering its close proximity to Tamsulosin in the 

chromatographic run, it was considered that a structure similar to Tamsulosin was likely. Loss 

of the sulfonamide group and replacement with a hydroxyl group yielded a mass of m/z = 346 

although no predictable fragmentation yielded the fragments which were obtained by LC-

MS/MS. However, a search of fragments for this ion found in DI-MS studies yielded two 

fragments which matched this proposed structure, m/z = 165 and m/z =137.  

 
Figure 4.84: EIC of intermediate m/z = 346 in a 20 mins sample at a tR of 45.2 mins. Inset MS and 

MS/MS spectra. Photolysis Pyrex, [TAM] = 0.083 mM. 
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Figure 4.85: Structure proposed for m/z = 346 and fragments found in DI-MS studies m/z = 165 and m/z 

= 137. 

 

Intermediate m/z = 275 

The intermediate m/z = 275 was found in both photocatalytic experiments at a retention time of 

2.2 mins. Three main fragments were discovered for this intermediate, which were similar to 

earlier reported fragments for the intermediate m/z = 395. Considering this relationship with 

m/z = 395, we initially proposed oxidation on the sulphonamide ring with the loss of the 

methoxy group (as with m/z = 395). The low mass of this intermediate would indicate the loss 

of a significant portion of Tamsulosins’ structure through multiple oxidations. We have 

therefore proposed a carbamic acid derivative for this intermediate. This would occur through 

oxidation of the alpha carbon to Tamsulosins’ secondary amine, with further oxidation resulting 

in cleavage of the alpha-beta carbon bond. Loss of H2O through alpha cleavage of the OH group 

results in the fragment at m/z = 257, although the principle fragmentation, m/z = 214, is through 

loss of the entire carbamic acid group. The structure proposed for the intermediate m/z = 275 

and its fragments is shown in Figure 4.87. 

 
Figure 4.86: EIC of intermediate m/z = 275 in a 30 mins sample at a tR of 2.2 mins. Inset MS and MS/MS 

spectra. Photocatalysis Pyrex, [TAM] = 0.083 mM, 0.2 g TiO2/320 mL. 
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Figure 4.87: Structure proposed for m/z = 275 and fragments m/z = 197, m/z = 214 and m/z = 257. 

 
Intermediate m/z = 415 

The intermediate m/z = 415 was found in trace quantities in the 1 mM photocatalytic 

experiment. The only fragments obtained for this intermediate were Tamsulosins’ own 

fragments (m/z = 271 and m/z = 228). We can therefore conclude that oxidations for this 

intermediate occur principally on the catechol ring with the aliphatic chain and the 

sulphonamide ring remaining intact. Oxidation at two positions on the catechol ring, combined 

with a break in aromaticity caused by a photo-reduction would result in the mass of m/z = 415. 

An alternative structure could be a ring opened structure which is often proposed and identified 

in pharmaceutical degradation pathways. These ring openings tend to form after a number of 

hydroxylations have occurred to the aromatic ring. The structures proposed for m/z = 415 and 

its fragments are shown in Figure 4.89. Due to the number of ketone and carboxylic acid 

moieties present more fragments would be expected for the ring opened structure such as loss of 

COOH, CO, and H2O.   

 
Figure 4.88: EIC of intermediate m/z = 415 in a 60 mins sample at a tR of 2.8 mins. Inset MS and MS/MS 

spectra. Photocatalysis , [TAM] = 1 mM, 0.2 g TiO2/320 mL. 
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Figure 4.89: Structures proposed for m/z = 415 and fragments m/z = 271 and m/z = 228. 

 
Intermediate m/z = 473 

The intermediate m/z = 473 was found in trace quantities in the 1 mM photocatalytic 

experiment. The high mass of this intermediate would indicate a series of oxidations have 

occurred. 409 + 64 means that a total of 4 oxidations have occurred on the Tamsulosin structure. 

The fragments obtained for this intermediate included Tamsulosins’ fragments m/z = 271, and 

228 which would indicate that the oxidations are likely to have occurred mainly on the catechol 

ring of Tamsulosins’ structure. In addition to these fragments, m/z = 289 and m/z = 427 were 

also observed more intensely. The fragment at m/z = 289 would indicate a single oxidation on 

the aliphatic chain of Tamsulosin, similar to the previously reported intermediate (intermediate 

m/z = 289). This would mean that the remaining 3 oxidations occur on catechol ring of 

Tamsulosin. The fragment at m/z = 427 is due to the loss of the ethoxy group. The remaining 

fragments as well as the structure for the intermediate m/z = 473 are shown in Figure 4.91. 
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Figure 4.90: EIC of intermediate m/z = 473 in a 40 mins sample at a tR of 3.6 mins. Inset MS and MS/MS 

spectra. Photocatalysis, [TAM] = 1 mM, 0.2 g TiO2/320 mL. 

N
O

O
S

NH2
O

O

O

OH

OH

OH

OH

H

H

N

O
S

NH2
O

O

OH

H

H

N
H

O

O
S

NH2
O

O

OH

OH

OH

OH

N

O
S

NH2
O

O

H

H

O
S

NH2
O

O

+

+

+

MS/MS

+

m/z = 427

m/z = 473

m/z = 271m/z = 289

m/z = 228

+

 
Figure 4.91: Structure proposed for m/z = 473 and fragments m/z = 427, 289, 271 and 228. 

 

Intermediate m/z = 419 

The intermediate m/z = 419 was found in trace amounts in the 1 mM photocatalytic experiment 

at a tR of 3.7 mins. The fragments obtained for m/z = 419 were m/z = 271 and m/z = 228. Since 

the fragments of this intermediate are shared with Tamsulosin, it can be predicted that the 

oxidations which occur are exclusively on the catechol ring. Since this mass is 4 units higher 

than the intermediate m/z = 415, we have proposed a similar structure with 2 photo-reductions 

also occurring. These steps would give rise to a break in aromaticity leading to an aliphatic ring. 

An alternative structure could also be a ring opened structure however further fragmentation 

would be expected in this case. Both structures are proposed in Figure 4.93.  
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Figure 4.92: EIC of intermediate m/z = 419 in a 60 mins sample at a tR of 3.7 mins. Inset MS and MS/MS 

spectra. Photocatalysis, [TAM] = 1 mM, 0.2 g TiO2/320 mL. 
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Figure 4.93: Structure proposed for m/z = 419 and fragments m/z = 271 and m/z =228. 

 

Intermediate m/z = 413 

The intermediate m/z = 413 was found in trace amounts in the 1 mM photocatalytic experiment 

at a tR of 5.7 mins. The fragments obtained for m/z = 413 were m/z = 313, m/z = 271 and m/z = 

228. As with the previous intermediates m/z = 419 and m/z = 415, this fragmentation pattern 

would indicate that the oxidations which have occurred are on the catechol ring of Tamsulosin. 

The structure proposed for m/z = 413 and its fragment ions is shown in Figure 4.95. 
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Figure 4.94: EIC of intermediate m/z = 413 in a 20 mins sample at a tR of 5.7 mins. Inset MS and MS/MS 

spectra. Photocatalysis, [TAM] = 1 mM, 0.2 g TiO2/320 mL. 
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Figure 4.95: Structure proposed for m/z =  413 and its fragments m/z = 271 and m/z =228. 

 

4.2.11 Ions which could not be Elucidated 

For Tamsulosin, there were also a number of intermediates which could also not be elucidated. 

These intermediates can be found in Table 4.14 below along with their retention times, 

fragments and the experiments in which they were present. 

 

Intermediate m/z Fragments tR (mins) Experiment
318 257, 239 10 Photolysis (Pyrex and Quartz)
348 330, 287, 199 3.9 Photolysis (Pyrex and Quartz)
362 301, 227, (181)147 7.6, 8.4 Photolysis (Pyrex and Quartz)
350 332, 322, 187 5.5 Photolysis (Pyrex and Quartz)
414 396, 334, 316, 254, 227 3.6 Photocat 1mM
400 382, 364, 276 7.2 Photocat (1mM, 0.083)  

Table 4.14 Table of Tamsulosin intermediates which could not be elucidated. 
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Of the 7 intermediates which we could not determine structures for, 5 were found exclusively in 

photolysis experiments. Photolysis degradation mechanisms can generate intermediates which 

can be difficult to characterize due to the possible occurrence of photo-oxidation, photo-

reduction and rearrangements occurring at the same site. Figure 4.96 shows the anti-anxiety 

drug Alprazolam and its various photo-transformation products which were identified using 

NMR spectroscopy.202 These products show the level of difficulty of identification of these 

degradation products, the limitations of LC-MS/MS and also the necessity of NMR for full 

characterisation.  
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Figure 4.96: The structure of Alprazolam and its photochemical transformation products. 
 

Although structures for the intermediates in Table 4.10 could not be identified we can derive 

some information about their structures. For the intermediate m/z = 318, its main fragment is 

m/z = 257 which has the same mass as a fragment of a previously determined intermediate (m/z 

= 395 p154). These fragments may be the same, although it is also possible that these fragments 

are structural isomers of one another. The presence of the additional fragment m/z = 239 would 

further support this as it is a loss of 18 mass units from the molecule (H2O). Such a loss is not 

possible from the intermediate m/z = 395 fragment m/z = 257. Unfortunately, there is not 

enough information to determine the loss of the 61 mass units from the parent mass and to 

further identify this intermediate. Interestingly, the intermediates m/z = 348 and m/z = 362 

showed a similar loss of 61 mass units, which may indicate a link between these 3 

intermediates. 
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Figure 4.97: EIC of intermediate m/z = 318 in a 5 mins sample at a tR of 10 mins. Inset MS and MS/MS 

spectra. Photolysis Quartz, [TAM] = 0.083 mM. 

 
Figure 4.98: EIC of intermediate m/z = 348 in a 10 mins sample at a tR of 3.9 mins. Inset MS and MS/MS 

spectra. Photolysis Pyrex, [TAM] =0.083 mM. 
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Figure 4.99: EIC of intermediate m/z = 362 in a 10mins sample at a tR of 8.4 mins. Inset MS and MS/MS 

spectra. Photolysis Pyrex, [TAM] = 0.083 mM. 

 
 

Figure 4.100: EIC of intermediate m/z = 350 in a 20 mins sample at a tR of 5.5 mins. Inset MS and 

MS/MS spectra. Photolysis Pyrex, [TAM] =0.083 mM. 
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Figure 4.101: EIC of intermediate m/z = 414 in a 180 mins sample at a tR of 3.6 mins. Inset MS and 

MS/MS spectra. Photocatalysis [TAM] =1 mM, 0.2 g/320 mL. 

 

 
Figure 4.102: EIC of intermediate m/z = 400 in a 30 mins sample at a tR of 7.2 mins. Inset MS and 

MS/MS spectra. Photocatalysis, [TAM] = 1 mM, 0.2 g TiO2/320 mL. 
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degradation pathway is also shown in Figure 4.104 Ion monitoring graphs for all ions monitored 

in each experiment can be found in the appendices (4A-18 – 4A-21).  
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Figure 4.103 Final structures and molecular masses for intermediates proposed for Tamsulosin. 

Tamsulsoin’s structure is highlighted in the green box. 
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Figure 4.104: Proposed Degradation Pathway for Tamsulosin and intermediates which were detected via LC-MS/MS and DI-MS. 
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4.2.13 Direct Infusion Mass Spectrometry Studies: Solifenacin 

Figure 4.105 displays a HPLC-PDA (260 nm) chromatogram of a photocatalytic degradation 

experiment for Solifenacin. The appearance of numerous intermediates can be clearly seen in 

the chromatogram as well as the disappearance of Solifenacin.  

 
Figure 4.105: HPLC Chromatogram (260 nm) of a Solifenacin photocatalytic experiment showing 

degradation of Solifenacin and appearance of intermediates. Photocatalysis, [SOL] = 0.083 mM 0.1 g 

TiO2/320 mL (pH 3). 

 

DI-MS analysis of a photolysis experiment of Solifenacin was analysed to examine 

intermediates that were formed. Figure 4.106 shows the 0 Mins sample from this experiment. 

The molecular ion of Solifenacin appears at m/z = 363. The molecular weight of Solifenacin is 

480.55 g/mol which means a loss of 117 g/mol from the molecule. Solifenacin, like Tamsulosin, 

is formulated as a salt, and its counter anion is succinate which has a molecular weight of 117 

g/mol. An MS/MS study of Solifenacin showed the daughter ions in Figure 4.107.  

 

Structures for these daughter ions are shown in Figure 4.108. The presence of the carbamate 

moiety in Solifenacin makes fragmentation of the molecule relatively simple; however a further 

break-up of the molecule is less likely due to the high conjugation and stability of the resulting 

fragments. The mass at m/z = 193 is the second most stable fragment in the spectra. A structure 

was elucidated and is based on the formation of a tropylium ion on the peripheral phenyl ring 

and cleavage of the alpha C to the N of the carbamate. 
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Figure 4.106: DI-MS of a 0 Mins sample of a Solifenacin photolytic degradation experiment showing the 

parent ion of Solifenacin, m/z= 363. Photolysis, (Enviolet Quartz), [SOL] = 1 mM. 

 

 
Figure 4.107: DI-MS/MS of m/z = 363 showing the fragment ions for Solifenacin: m/z 236, 193, 154, 

110. 
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Figure 4.108: Solifenacin’s parent ion m/z =363 and its daughter ions m/z = 236, 193, 154 and 110. 

 
Figure 4.109: DI-MS of a 300 mins sample of a photolysis experiment. Showing m/z = 363 (Solifenacin’s 

parent ion) and the intermediate m/z = 379. Photolysis, (Enviolet Quartz), [SOL] = 1 mM. 

 

In the mass spectra of the photolysis of Solifenacin, Figure 4.109, after 300 mins only two main 

signals are in the spectra. The signal at m/z = 363 which is Solifenacin and a structure giving a 

signal at m/z = 379. Both signals are at quite a high intensity and have a high abundance in the 

sample. 379 is the addition of a +16 mass to Solifenacin, which means that at some point on the 

molecule an oxidation has occurred. 
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Figure 4.110: Solifenacin possible hydroxylation sites from photolysis. 
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Figure 4.110 shows two possible hydroxylation sites for Solifenacin which involve oxidation at 

the two benzylic carbons. It can be assumed that the most likely product is 1-(S,R)-hydroxy-

Solifenacin since a hydroxylation at this site will be much more stable due to the extended 

conjugation provided by the two phenyl rings. 4(S,R)-hydroxy-Solifenacin has been determined 

as a well-known metabolite of Solifenacin and was used in work by Yanagihara 2007.151 Since 

enzymes are enantioselective, this is the exclusive metabolite of Solifenacin in vivo however, in 

photocatalysis studies, hydroxyl radicals are unselective species so a mixture of these two 

compounds is expected, however, a much larger amount of the 1-(S,R)-hydroxy is likely. 

 

4.2.14 Follow-Up Direct Infusion Mass Spectrometry Studies: Solifenacin 

Follow-up DI-MS studies were performed using a 1 mM Solifenacin photocatalytic experiment. 

This data was corroborated with later LC-MS/MS data, however due to our suspicions of 

isomers with Solifenacin, these data alone were of limited use. 
 

Mass m/z  Fragments m/z  Mass m/z  Fragments m/z  
469 451, 425, 414, 396, 365, 340, 284 421 403, 362, 315, 251, 193, 128 
467 448, 423, 378 415 397, 362, 317, 288, 252, 226, 154 
461 443, 371, 273, 259 413 395, 379, 363, 353, 329, 307, 250, 224, 154 
454 435, 391, 334, 317 411 393, 377, 342, 285, 254, 128 
454 435, 316, 119, 102, 93 410 400, 365, 229, 75 
454 435, 392, 366, 291, 217, 68, 55 402 365, 58 
451 433,414,  391, 280, 198, 133 400 380, 363, 280, 252 
451 433, 389, 361, 280, 154 395 377, 349, 301, 259, 213, 194, 154, 128 
445 427, 399, 381, 300, 153,   395 377, 351, 301, 268, 209, 154 
439 421, 403, 380, 363, 237 395 377, 362, 349, 268, 224, 154, 142 
436 417, 363, 330, 309, 290, 282, 272, 248 388 380, 369, 350, 327, 285, 180 
435 391, 361, 308, 290, 248, 205, 172, 154, 128 388 379, 369, 217, 154 
431 411, 395, 367, 286, 154 388 411, 369,  274, 154 
426 407, 383, 363, 287, 239 385 381, 366, 184 
423 405, 364, 254 379 363, 361, 252, 209, 154, 110 

Table 4.15: Table of masses found in follow-up DI-MS studies and their fragments. (DI-MS/MS). Ions in 

bold and underlined denote the base peak found in that mass spectrum.  
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Figure 4.111: Solifenacin direct infusion mass spectra at 0 Mins (100% CS), 180 Mins (100% CS), and 

180 Mins (10% CS). Photocatalysis [SOL] = 1 mM, 0.1 g/320 mL TiO2. 

 

4.2.15 LC-MS/MS Studies and Intermediate Analysis: Solifenacin 

LC-MS/MS analysis of four Solifenacin photo-degradation experiments were performed: (1) 

firstly, the optimized photocatalysis with 0.1 g/320 mL TiO2 and [0.083 mM] Solifenacin. (2) an 

additional photocatalytic experiment was performed at a much higher concentration of [1 mM] 

Solifenacin and 0.1 g/320 mL TiO2. This heightened concentration was performed in order to 

see intermediates with higher sensitivity. (3) and (4) photolysis experiments with both Quartz 

and Pyrex were also analysed using LC-MS/MS at the optimum concentration of [0.083 mM] 

Solifenacin. Two tables (Table 4.16 and 4.17) are presented showing all of the ions found in 

each chromatogram for all experiments. Beside each ion in the table is the retention time that 

ion appears at in the chromatogram. Table 4.18 and 4.19 summarise all intermediate ions found 

in these experiments including their fragments, retention times, Mol. Wt. and calculated Log P 

values. Ranges of Log P values are shown where isomers exist and underlined in bold is the log 

P values of the isomer presented. Following these tables are individual EIC chromatograms for 

each significant intermediate ion found including their mass spectra and the MS/MS for that ion 

and the proposed intermediate structure. 
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Photocat (1mM) Photocat (0.083mM)

0Mins 363(47.6), 275(2.4) 363(52.7), 275(2.4)

0Min P. 363(47.6), 275(2.4) 363(53.5), 275(2.4)

5Mins

463(2.5), 445(2.7), 413(3.9), 395(19.1,28.6), 
379(14.8, 18.5, 20.9, 25.1, 38.1) 377(31.3pnd, 

25.6pnd),  363(46.7), 303(3.9 pnd), 301(5.1 pnd), 
275(2.4) 

463(2.4), 445(2.9), 433(2.5), 415(3.4, 26.2), 413(4.8),  411(7.4), 
399(4.3), 397(4.6), 395(6, 7.9, 10.7, 11.6, 19.5pnd, 28.1), 
379(12.2, 14.4,15, 18.7, 20.9, 25.7, 39.2), 377(26, 31.5), 

363(54.1), 343(4.1), 303(3.9), 301(5.1pnd)

10Mins

463(2.5), 445(2.6), 415(25.6pnd,18.8pnd) 
413(3.9pnd), 397(3.9),  395(10.7, 18.9, 28.1, 7.7pnd, 

15.9pnd), 379(12, 14.3, 15, 16.3, 18.4, 20.8, 25, 
38.2) 377(26, 31.2), 363(46.5),  303(3.9pnd),  

301(5.2), 275(2.4)

445(2.6), 433(2.6), 415(3.2, 26.5), 411(7.2),  395(5.9, 7.9, 10.7, 

16.1, 19.1, 27.9),  379(12.1, 14.4, 15, 18.9, 21, 25.4, 39.6), 

377(26.1, 31.8), 363(54.9), 303(4), 301(5.1), 

20Mins

463(2.5), 445(2.7), 429(2.6), 415(3.3pnd, 24.5pnd), 
413(3.6),  397(3.8), 395(7.4,10.2, 15.5, 18.4 25.8, 
21.4), 379(11.6, 14.2, 13.5, 14.2, 15.8, 17.7,19.7, 

23.9, 35.9),377(24.4, 29.5),  363(44.1),  
303(3.9pnd), 301(5.1pnd), 275(2.5)

445(2.9), 433(2.5), 415(3.3, 26.6), 413(3.5), 411(7.1, 8.7), 

399(4.4, 6), 395(4.8, 5.9, 10.8, 28), 379(12.1, 14.3, 15.1, 16.7, 

18.9, 21.2, 25.3, 39.7), 377(26.1, 32), 363(55.2), 343(4.2pnd),  

303(3.9), 301(5)

30Mins

445(2.6, 3.6), 435(26.7), 429(2.5),  415(3.3, 

23.7pnd), 413(3.3),  397(3.4), 395(7.2, 9.9, 25.6), 

363(43), 379(11.4, 13.1, 14, 15.2, 17, 19, 23.7, 

34.7),  377(23.7, 28.5), 303(3.9),  301(4.9), 275(2.4)

445(2.9), 433(2.6), 415(3.4, 26.7), 413(3.2), 411(7.6),  397(3.5), 

395(4.9, 6, 8, 10.8, 28.2), 379(12.1, 14.5, 15.1, 16.8, 18.9, 21, 

25.4, 39.5), 377(26.2, 31.9) 363(55.1), 343(4.2pnd), 303(4pnd), 

301(5.1).

40Mins

445(2.7), 435(20.4, 26.7, 30.8 pnd), 429(2.8), 
415(3.2pnd, 24.3pnd), 413(3.1), 395(7.3, 9.9, 

25.2pnd, 21pnd), 379(11.4, 13, 13.9, 15.2, 17, 18.8, 
23.4, 35),  377(23.8, 28.6), 363(43), 303(3.9pnd), 

301(4.9pnd)

 445(2.9), 433(2.5), 429(2.6), 415(3.3, 26.2pnd), 411(7.4), 

399(4.4), 397(3.5), 395(4.9, 5.8,7.9, 10.9, 27.9), 379(12.2, 14.9, 

15.1, 16.6, 18.9, 21.2, 25.5, 39.5), 377(26.5, 32), 363(55), 

303(3.9), 301(5.1), 243(1.7pnd), 128(1.6pnd)

60Mins

435(5.5pnd, 20.4pnd, 26.9pnd), 429(2.5pnd), 
415(3.1pnd, 23.8pnd), 413(3.2), 397(3.8), 

395(7.3pnd, 9.9 pnd, 14.8pnd, 20.9pnd 24.9pnd), 
379(11.4, 13.1, 13.7, 15.5, 16.9, 19.1, 23.3, 34.5), 

377(24pnd, 28.3), 363(42.8), 303(3.9pnd), 
301(5pnd), 275(2.4)

445(2.9), 433(2.5), 429(2.7), 413(3.2), 411(8.5),  397(3.6), 

395(4.8, 5.9, 7.8, 10.8, 28.3), 379(12.1, 14.3, 15.2, 16.7, 18.9, 

20.3, 21, 25.6, 39.7), 377(26.6, 32), 363(55.3), 303(3.9pnd), 

301(5.1), 243(1.8pnd), 128(1.7pnd). 

120Mins

435(19.2, 25.4), 433(2.5), 415(3.3pnd, 22.7pnd), 
413(3.4),  397(3.6pnd), 395(7pnd, 9.3pnd, 23.5pnd), 

379(11.1, 13.3, 14.9, 16, 17.8 22.1, 32.1), 
377(22.3pnd, 26.2pnd), 363(39.4), 303(3.8pnd), 

301(4.9), 275(2.4)

429(2.6), 415(5.3, 26.2pnd), 413(2.9), 411(7.5), 399(4.5), 

397(3.6), 395(5, 6, 7.8, 11, 28.3), 379(12.3, 14.3, 15, 16.7, 18.9, 

21.1, 25.7, 39.6), 377(26.4pnd, 32.5), 363(56.5), 303(4.1), 

301(5.1), 243(1.9)

180Mins

435(21.6pnd, 24.9pnd, 28.7), 429(2.5), 413(2.9), 
397(3.6pnd), 395(7.6pnd, 10.4pnd), 379(11.8, 14.6, 

16.2, 17.9, 19.4, 20.3, 24.6, 37.2), 
377(25.4pnd,30.3pnd), 363(45.6), 303(4pnd), 

301(5.2), 275(2.4)

429(2.5), 413(2.7), 397(3.5), 395(4.9, 5.7, 6.5, 7.7, 10.5, 27.2), 

379(12, 14.1, 14.8, 16.5, 18.3, 20.5, 25, 38.5), 377(25.7, 31.3), 

363(53.6), 303(3.9),  301(5.1), 128(1.6)  
Table 4.16: Table of Ions present in the LC-MS/MS chromatographic runs of two photocatalytic 

experiments at 0.083 mM and 1 mM. In brackets after each ion is the retention time (in minutes) at which 

this ion was found in each EIC. (pnd= present however not a dominant ion) 
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Photolysis (Quartz) Photolysis (Pyrex)

0Mins 363(53.1), 275(2.4)  363(50.7), 275(2.3)

5Mins
413(2.6), 395(9, 4.7, 23.8), 381(4.7, 29.5, 41.5, 
42.3), 379(25.7, 21.3, 15.4,12.0,14.5), 363(35.7, 

53.9), 128(1.7), 
379(19.3, 24.9), 363(50), 275(2.3)

10Mins

413(2.6), 397(11.1), 395(4.7, 23.7, 7.8, 9.5), 
381(4.7, 29.4, 41.6), 379(39.5(pnd),25.5, 21.1, 

18.8, 14.5, 12.4), 363(54.8, 35.9 63.3), 303(3.9), 
279(2.5), 275(pnd),  243(1.8), 128(1.7)

379, 363(51.1), 275(2.4)

20Mins

397(5.5, 6.9, 8.2, 12), 395(11.5, 23.8), 381(42.3, 
29.6, 4.7), 379(14.3, 15.3, 18.8, 21.2, 25.7, 40.3), 

363(35.9, 56.7, 63.7), 303(4), 243(1.9), 
275(2.4), 128(1.6) 

379(25., 18.8), 363(54), 275(2.4)

30Mins
395(24, 11.4, 5.1, 7.8), 381(42.3, 29.4, 4.7), 

379(40, 25.7, 21.5, 19, 14.7), 363(56.8 64.5), 
303(4.1) , 275(2.4), 243(1.8), 128(1.7)

379(12.2, 15.5,19.3, 21.2), 363(54.5), 445(2.5)

40Mins
381(29.5, 42.7), 379(25.6, 21.1, 19), 363(57.2), 

303(4.1), 243(1.8), 128(1.6),  
395(20.3, 29.7), 379(12.3, 15.2, 19.3, 21.8, 26.1), 

363(54.9), 275(2.4), 303(4.1), 445(3.1)

60Mins 303(4), 275(pnd), 243(1.9), 128(1.7),
445(2.7), 395(29.2), 379(12.3, 15.7, 19.5, 21.6, 26.2, 

40.6), 363(54.4), 431(2.5), 275(2.4)

120Mins  275(2.4), 243(1.8)
395(28.6, 16.1), 379(12.2, 15.1, 18.7, 21.1, 25.9, 39.4), 

363(53.5), 431(2.4), 413(4.9), 411(7.4), 429(2.6), 

303(4), 445(2.8)

180Mins 275(2.4), 243(1.7), 171(2), 128(1.6)

395(11.4, 28.5), 379(12.2, 15, 16.4, 18.8, 21.1, 25.6, 

39.6), 363(53.9), 431(2.4), 415(26.3), 411(7.2), 

275(2.4), 429(3.4), 445(2.9), 303(3.9)  
 Table 4.17: Table of Ions present in the LC-MS/MS chromatographic runs of two photolytic experiments 

at 0.083 mM and 1 mM. In brackets after each ion is the retention time (in minutes) at which this ion was 

found in each EIC. (pnd= present however not a dominant ion. 
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Name Structure Mass 
m/z 

Daughter 
Ions m/z 

Molecular 
Weight 
g/mol 

tR mins cLog P 

Solifenacin 363 236, 193, 
154, 110 480 55 3.37 

P379 379 361, 252, 
154, 128 378 Numerous (2.21)-

(2.57)(2.37) 

P381-A 381 254, 154, 
110 380 4.7 2.40 

P381-B 

 

381 363, 351, 
207, 154 380 29.5 2.04 

P381-C 381 363, 351, 
236 380 41.5 (2.2)-(2.4) 

P395 395 
377, 268, 
250, 154, 

128 
394 Numerous 

(Isomers) 
(1.4)-

(2.1)(1.97) 

P377 377 250, 110 376 31.2 (2.7)-(3.0) 

Table 4.18: Table of Solifenacin’s confirmed intermediates (degradation products), their fragments, 

retention times, molecular weight and calculated Log P values.197,198 Ranges of Log P values are 

shown where isomers exist and underlined in bold is the log P values of the isomer presented. 
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Name Structure Mass 
m/z 

Daughter 
Ions m/z 

Molecular 
Weight 
g/mol 

tR mins cLog P 

P303 303 154 302 4 1.34 

P301 301 154 300 5 1.55 

P429 429 411, 395, 
284 428 2.5 (-0.04) – 

(0.29)(0.05) 

P243 243 154, 128 242 1.7 -0.74 

P128 128 
No 

successful 
MS/MS 

127 1.7 0.05 

P411 411 393 410 7.4 (0.82) -
(1.37)(0.93) 

P397 397 379, 329, 
252 396 3.9 

(1.1) - 
(1.58) 
(1.39) 

Table 4.19: Table of Solifenacin’s confirmed intermediates (degradation products), their fragments, 

retention times, molecular weight and calculated Log P values (continued).197,198 Ranges of Log P 

values are shown where isomers exist and underlined in bold is the log P values of the isomer 

presented. 
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Name Structure 
Mass 

m/z 

Daughter 

Ions m/z 

Molecular 

Weight 

g/mol 

tR mins cLog P 

P445 N

OH

O

N

OH

OH

OH
OH

OH

 

445 
427, 399, 

154 
444 2.8 0.36 

P463 N

OH

O

N

OH

OH

OH
OH

OH

OH

 

463 
445, 427, 

399, 381 
462 2.5 -1.13 

P413 413 
395, 379, 

363, 355 
412 3.9 (0.4)(0.6) 

P399 399 
381, 211, 

184, 154 
398 4.4 0.68(0.93) 

P279 279 
154, 128, 

110 
278 2.5 0.38 

P447 447 
429, 383, 

353, 154 
446 2.4 -0.57 

Table 4.20: Table of Solifenacin’s confirmed intermediates (degradation products), their fragments, 

retention times, molecular weight and calculated Log P values (continued).197,198 Ranges of Log P 

values are shown where isomers exist and underlined in bold is the log P values of the isomer 

presented. 
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Intermediate m/z = 395 

The intermediate m/z = 395 was found in the all experiments analysed at various retention 

times, shown in Figure 4.112, which would indicate that various isomers of this ion are possible. 

Table 4.13 presents the isomers and their observed fragments. Numerous fragments were 

observed for each intermediate ion (presented in Table 4.21) with many of the same fragment 

ions appearing for most of the isomers. The ion m/z = 395 is composed of Solifenacin (m/z = 

363) + 32 amu implying oxidation at two points on the molecule. Figure 4.113 shows the 

Solifenacin molecule with numbered positions where oxidations are possible. Two oxidations 

can generate up to 15 isomers. These isomers are presented in the appendices. Attempts were 

made to assign different isomers based on their fragmentation patterns, however some of these 

isomers have identical fragmentation patterns so it is not possible to distinguish between them. 

Figure 4.114 presents one of the isomers for m/z = 395 and structures for the various proposed 

isomers and their respective fragments. Additional isomers can be can be found in Appendix 

4A-22. MS and MS/MS spectra for one isomer are shown in Appendix 4A-23. 
22111019.D: EIC 395 ±All, Smoothed (2.4,1, GA)
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Figure 4.112: EIC of the intermediates m/z = 395 in 10 mins sample of a Solifenacin photocatalytic 

experiment. [SOL]= 0.083 mM, TiO2 = 0.1 g/320 mL. 

# m/z MS/MS tR (mins) 
A 395 377, 154 4.9 
B 395 377, 154, 128 6 
C 395 377, 250, 154 6.7 
D 395 377, 268, 154, 128 8 
E 395 377, 268, 250, 154, 128 10.8 
F 395 377, 361, 349, 154 19 

G 395 351, 154 28 
Table 4.21: Daughter ions found at different retention times for m/z = 395. 
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Figure 4.113 Structure of Solifenacin showing 6 of the most likely sites for oxidation. Oxidation at two 

positions would result in 15 possible isomers. 

N

OH

O

N

OH

O

OH

N

O

O

N

OH

N

O

O

N

O

N
O

N

O H
HN

O

O

N

OH

OH m/z = 250

+

m/z = 268

+

m/z = 377

m/z = 361

+ +
H

+

m/z = 154

m/z = 128

+

m/z = 395

MS/MS

 
Figure 4.114: One of the isomers of m/z  = 395 and the structures of all fragment ions detected for 

isomers. Additional isomers can be found in Appendix 4A-22. 

 
Intermediate m/z = 379 

The intermediate m/z = 379 was found in the all experiments analysed at various retention 

times, shown in Figure 4.115, which would indicate that various isomers of this ion are possible. 

Numerous fragments were observed for each ion, presented in Table 4.22, with many of the 

same ions appearing for most of the isomers. The ion m/z = 379, as previously discussed, is the 

parent ion of Solifenacin m/z = 363 + 16 implying oxidation at one point on the molecule. 

Attempts were made to assign different isomers based on their fragmentation patterns (although 

some isomers would have the same fragmentation patterns). Some ions presented in Table 4.13 

could not be assigned at all and in general the fragments at each retention time tended to vary 

consistently. Figure 4.116 - 4.119 present structures for the various proposed isomers and their 

respective fragments. MS and MS/MS spectra are presented in the appendices (4A-24) for two 

of these intermediates 
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Figure 4.115: EICs of intermediates m/z = 379 in various samples of the optimized photocatalytic 

reaction. [0.083 mM Solifenacin] 0.1 g/320 mL 

# m/z MS/MS tR (mins) 
1 379 361, 154 11.8 
2 379 361, 252, 154 14.6 
3 379 361, 154 15.9 
4 379 335, 252, 154, 128 17.9 
5 379 375, 252, 154, 128 19.4 
6 379 335, 251 20.3 
7 379 208, 154, 128, 119, 110 24.6 
8 379 387,361, 239, 154, 128 37.2 

 

Table 4.22: Daughter ions found at different retention times for m/z = 379. Highlighted in grey are the 

ions for which structures have been proposed. 
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Figure 4.116: Structures proposed for m/z = 379 # 1 # 2 and #3 with fragments m/z = 361 and m/z = 154. 

The additional fragment which appeared for # 2 is also shown, possible for both. 
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Figure 4.117: Structure proposed for m/z = 379 # 4 with fragments m/z = 154, m/z = 128. 

O

N
ON

O

O

N
OH

N
OOH

MS/MS

m/z = 154

+

m/z = 379 m/z = 252

+

 
Figure 4.118: Structure proposed for m/z = 379 # 5 with fragments m/z = 252 and m/z = 154. 
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Figure 4.119: Structure proposed for m/z = 379 # 7 with fragments m/z = 208, m/z = 154, m/z = 128 and 

m/z = 110. 
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Intermediate m/z = 377 

Intermediate m/z = 377 was found in both of the photocatalytic experiments at two retention 

times of 26 mins and 31.2 mins. m/z = 377 is the parent mass of Solifenacin m/z = 363 + 14, 

which would indicate an oxidation of an sp3 hybridised carbon (in this case a benzylic carbon) 

to an sp2 hybridised carbon (ketone). Fragments for these two peaks tended to vary consistently. 

In some samples, m/z = 154 was the only fragment for the first eluting peak.  For the second 

peak, some fragments were common with m/z = 207 appearing frequently along with m/z = 250. 

The chromatograms below were taken from the sample where this ion was most abundant, and 

the MS and MS/MS spectra were taken from the apex of each peak. Based on these spectra two 

very different fragmentation patterns are shown. For the first eluting peak, the fragments were 

m/z = 319, 230 and 154. For the second peak, the fragments were m/z = 250 and 110. A 

structure for the first eluting peak could not be proposed, however, we would estimate that the 

oxidation must have occurred on the isoquinoline ring based on the fragment m/z = 154. For the 

second intermediate, m/z = 377, two structures have been proposed and are shown in Figure 

4.122. 

 
Figure 4.120: EIC of intermediate m/z = 377 in a 10 mins sample at a tR of 26 mins. Inset MS and 

MS/MS spectra. Photocatalysis, [SOL] = 1 mM, 0.1 g TiO2/320 mL. 
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Figure 4.121: EIC of intermediate m/z = 377 in a 10 mins sample at a tR of 31.2 mins. Inset MS and 

MS/MS spectra. Photocatalysis, [SOL] = 1 mM, 0.1 g TiO2/320 mL. 
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Figure 4.122: Structure proposed for m/z = 377 and its fragments m/z = 250 and m/z = 110. Two 

structures are possible and both are shown.  

 

Intermediate m/z = 303 

The intermediate m/z = 303 was found in both the photolysis and the photocatalytic experiments 

and was found at a retention time of 4mins. Only one fragment ion appeared for this 

intermediate m/z = 154. This would indicate that oxidation must occur on the 

tetrahydroisoquinoline part of the structure. The mass of 303 would also indicate a loss of 

something significant to the molecule. We have proposed hydroxyl radical attack on one of the 

primary benzylic carbons with subsequent loss of the neighbouring phenyl group. Figure 4.124 

shows the structure proposed for intermediate m/z  = 303 and its fragment m/z = 154. 
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Figure 4.123: EIC of intermediate m/z = 303 in a 5 mins sample at a tR of 4.0 mins. Inset MS and MS/MS 

spectra. Photocatalysis, [SOL] = 0.083 mM 0.1 g TiO2/320 mL. 
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Figure 4.124: Structure proposed for m/z =303 and its fragment m/z = 154 

 
Intermediate m/z = 301 

The intermediate m/z = 303 was found in both photolysis and photocatalytic experiments 

analysed and was found at a retention time of 4.9 mins. Similar to the previous intermediate, 

differing only by 2 mass units, this intermediate also had only one fragment ion appearing at 

m/z = 154. This would again indicate that oxidation must occur on the tetrahydroisoquinoline 

part of the structure as with m/z = 303. For this intermediate we have proposed a ketone. Figure 

4.126 shows the structure proposed for intermediate m/z = 301 and its fragment m/z = 154. 
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Figure 4.125: EIC of intermediate m/z = 301 in a 30 mins sample at a tR of 5 mins. Inset MS and MS/MS 

spectra. Photocatalysis, [SOL] = 1 mM, 0.1 g TiO2/320 mL. 
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Figure 4.126: Structure proposed for m/z =301 and its fragment m/z = 154 

 
Intermediate m/z = 429 

The intermediate m/z = 429 was found in the 1mM photocatalytic experiment at a tR of 2.5 mins 

and its early retention time indicates that it is a highly polar compound. Numerous fragments 

appeared for this intermediate m/z = 411, 395, 370, 283, 224 and 172. The mass m/z = 429 is 

the parent ion for Solifenacin m/z = 363 + 66. This would indicate oxidation at four sites and a 

photo-reduction of the carbamate moiety. Only one other isomer is possible for m/z = 429 

which is the oxidation of the alternative tertiary carbon in the quinuclidin ring. Both 

intermediate isomers and four of their fragments have been proposed and can be found in Figure 

4.128.  
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Figure 4.127: EIC of intermediate m/z = 429 in a 30 mins sample at a tR of 2.5 mins. Inset MS and 

MS/MS spectra. Photocatalysis, [SOL] = 1 mM, 0.1 g TiO2/320 mL. 

N

OH

O

N

OH
OH

OH

OH

N

OH

O

N
OH

OH

N

OH

O

N
OH

OH

OH

N
OH O

OH

OH

O

O

N

OH
H

N

OH

O

N
OH

OH

N

OH

O

N
OH

OH

OH

N
OH O

OH

OH

O

O

N

H
OH

N

OH

O

N

OH
OH

OH

OH

MS/MS

m/z= 429

m/z= 395

m/z= 411

m/z= 284

m/z= 172

+

H
++

H ++

H ++

H ++

MS/MS

m/z= 395

m/z= 411

m/z= 284

m/z= 172

+

H
++

H ++

H ++
m/z= 429

H ++

 
Figure 4.128: Structure proposed for the two possible isomers of m/z = 429 and their respective fragments 

m/z = 411, m/z = 395, m/z = 284 and m/z = 172. 
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Intermediate m/z = 243 

The intermediate m/z = 243 was found in the 0.083 mM photocatalysis experiment and in the 

photolysis with quartz. It was present but not a dominant ion in the 1 mM photocatalysis. It was 

found in all experiments very early in the chromatogram at a retention time of 1.8 mins, 

signifying a highly polar compound. The fragments obtained for this intermediate were m/z = 

172, 154 and 110. A structure has been proposed for this intermediate and two of its fragments 

are shown in Figure 4.130. 

 
Figure 4.129: EIC of intermediate m/z = 243 in a 40 mins sample at a tR of 1.7 mins. Inset MS and 

MS/MS spectra. Photolysis Quartz [SOL] = 0.083 mM. 
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Figure 4.130: Structure proposed for m/z = 243 and its fragments m/z = 154 and m/z = 110. 

Intermediate m/z = 128 

The intermediate m/z = 128 was found in both photolysis (quartz) and in photocatalysis (0.083 

mM) experiments at a retention time of 1.7 mins or 1.6 mins. No daughter ions were identified 

due to too low an intensity. This ion was also found in follow-up DI-MS studies. In addition, 

m/z = 128 was also found as a fragment in numerous other intermediates and its low mass 

would indicate an oxidation on the aliphatic amine ring (m/z = 110 + 18). A structure has been 

proposed in Figure 4.132 with the most likely fragment, m/z = 110, resulting from the loss of 

water. 
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Figure 4.131: EIC of intermediate m/z = 128 in a 5 mins sample at a tR of 1.7 mins. Inset MS spectrum. 

Photolysis Quartz, [SOL] = 0.083 mM. 
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Figure 4.132: Structure proposed for m/z = 128 and a proposed fragment m/z = 110. 

 

Intermediate m/z = 381 

The ion m/z = 381 appeared at 3 different retention times 4.7 mins, 29.5 mins and 41.5 mins 

(Figure 4.133). This ion was only detected in the photolysis Quartz experiment. m/z = 381 is 2 

mass units in difference to the intermediates m/z = 379. In addition there is an 18 mass unit 

difference between both parent ions and its main fragment ion (loss of water). A relationship 

between these ions can therefore be predicted. We believe that an identical oxidation to m/z = 

379 is also occurring with m/z = 381 with hydroxyl radical attack of the benzylic carbons, and 

an additional photolysis (photo-reduction) of the sp2 hybridised carbon of the carbamate. This 

photolysis can be initiated by light below 300 nm supplied by the absence of the filter in quartz 

glassware.  

 

For the first eluting intermediate (4.7 mins), no fragment with m/z = 363 was detected, which 

would indicate a loss of water is not possible from the site of oxidation and oxidation at the 

benzylic carbon (tertiary carbon) is proposed (Figure 4.135). A cross sectional analysis of the 

MS/MS for each m/z = 381 intermediate was examined in each sample and additional fragments 

were found for each intermediate, although in general the most intense fragments were always 

observed. For m/z = 381 (4.7 mins), m/z = 363 was observed in some cases and for m/z = 381 
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(29 mins) an additional fragment which appeared at m/z = 128 did not appear in the MS/MS of 

the other fragments. This additional fragment would indicate that an oxidation for this 

intermediate is possible on the quinuclidine ring, the m/z = 363 fragment would further indicate 

that oxidation must allow a loss of water. We have thus proposed oxidation at either of the 

tertiary carbons in the quinuclidine ring which would facilitate a loss of water (Figure 4.137). 

Finally, for m/z = 381 (41.5 mins), we have proposed oxidation at the benzylic carbon 

(secondary carbon), although this or the neighbouring carbon is possible (Figure 4.139). 

Oxidation at the alternative benzylic carbon (tertiary carbon) is unlikely, as a loss of water 

(which is observed with m/z = 363 and m/z  = 236) is not facilitated by this site of oxidation.  

 
Figure 4.133: EIC for m/z = 381 showing 3 peaks at tR of 4.7 mins, 29.5 mins and 41.5 mins. 
 

 
Figure 4.134: EIC of intermediate m/z = 381 in a 5 mins sample at a tR of 4.7 mins. Inset MS and MS/MS 

spectra. Photolysis Quartz, [SOL] = 0.083 mM. 
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Figure 4.135: Structure proposed for m/z = 381 and its fragments m/z = 254, m/z = 154 and m/z = 110. 

 

 
Figure 4.136: EIC of intermediate m/z = 381 in a 5 mins sample at a tR of 29.5 mins. Inset MS and 

MS/MS spectra. Photolysis Quartz, [SOL] = 0.083 mM. 
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Figure 4.137: Structure proposed for m/z 381 (tR = 29 mins) and its daughter ions m/z = 363, mz/ = 154 

and m/z = 128.  
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Figure 4.138: EIC of intermediate m/z = 381 in a 5 mins sample at a tR of 41.6 mins. Inset MS and 

MS/MS spectra. Photolysis Quartz, [SOL] = 0.083 mM. 
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Figure 4.139: Structure proposed for m/z = 381 (tR = 41.6 mins) and its daughter ions m/z = 363, and m/z 

= 236. 

Intermediate m/z = 411 

The intermediate m/z = 411 was found in the photocatalysis and photolysis pyrex experiments. 

It was present but not a dominant ion in the higher concentration experiment due to other more 

dominant ions in the chromatogram at that retention time. The intermediate m/z = 411 is m/z = 

363 plus 48, which indicates oxidation at 3 points in the molecule. Various isomers are therefore 

possible for this mass. Only one fragment was detected for this ion m/z = 393 which is a loss of 

18 mass units (water) from the parent ion. Based on this fragmentation, structures of the various 

possible isomers have been proposed in Figure 4.141. It should be noted that 3 other isomers are 

possible whereby oxidation occurs at the other tertiary carbon on the aliphatic ring in the 

molecule with the other two occurring on the benzylic carbons. These isomers are also shown in 

Figure 4.141. 
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Figure 4.140: EIC of intermediate m/z = 411 in a 40 mins sample at a tR of 7.4 mins. Inset MS and 

MS/MS spectra. Photocatalysis, [SOL] = 0.083 mM, 0.1 g TiO2/320 mL. 
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Figure 4.141: Structures of the isomers possible for m/z = 411 and its fragment m/z = 393. 
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Intermediate m/z = 397 

The intermediate m/z = 397 was detected in both the photocatalytic experiments only at a 

retention time of 3.9 mins. This mass is exactly two units more than the intermediate m/z = 395 

and we believe similar oxidations are likely with this intermediate. m/z = 397 is m/z = 363 + 34 

mass units. We have proposed that oxidation of one of the benzylic carbons and one tertiary 

carbon in the molecule are likely in addition to the photo-reduction of the keto moiety which 

would account for the additional mass units in this case. The fragments from m/z = 397 are m/z 

= 379 (loss of water) and m/z = 252 which is the fragment of Solifenacin m/z = 236 + 16. This 

would signify one oxidation on the tetrahydroisoquinoline ring and one of the tertiary carbons 

on the quinuclidine ring in addition to the photo-reduction. In this case, four isomers are 

possible for this intermediate and all are shown in Figure 4.143 along with the respective 

proposed fragments for each isomer. 

 
Figure 4.142: EIC of intermediate m/z = 397 in a 30 mins sample at a tR of 3.9 mins. Inset MS and 

MS/MS spectra. Photocatalysis, [SOL] = 0.083 mM, 0.1 g TiO2/320 mL. 
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Figure 4.143: Structures of the isomers proposed for m/z = 397 and its fragments m/z = 379 and m/z = 

252. 

 

Intermediate m/z = 447  

The intermediate m/z = 447 was found in all experiments analysed except the photolysis quartz 

experiment. m/z = 447 is m/z = 363 + 84 mass units, which would indicate at least 5 oxidations 

and a series of reductions at certain locations. The fragments obtained for this mass were m/z = 

429 (loss of 18), 383(loss of 64), 353 (loss of 94), 282(loss of 165), 204 (loss of 243) and 154 

(loss of 293). m/z = 429 has already been determined as an intermediate with multiple 

oxidations having occurred and we believe that the m/z = 429 fragment for m/z = 447 is an 

isomer of this previously determined intermediate. Although a structure could not be proposed 

for the fragment m/z = 353, its mass would indicate the loss of a monosubstituted phenyl and a 

hydroxyl group. The structure proposed for m/z = 447 and two of its fragments are shown in 

Figure 4.145.  
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Figure 4.144: EIC of intermediate m/z = 447 in a 180 mins sample at a tR of 2.4 mins. Inset MS and 

MS/MS spectra. Photocatalysis, [SOL] = 0.083 mM, 0.1 g TiO2/320 mL. 
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Figure 4.145: Structure proposed from m/z = 447 and its fragments m/z = 429 and m/z = 154. 

 

Intermediate m/z = 445  

The intermediate m/z = 445 was found in all experiments analysed except the photolysis quartz 

experiment. The EIC chromatogram in Figure 4.146 identifies 3 chromatographic peaks which 

elute as one peak and look to be irresolvable. These three peaks are isomers of m/z = 445 

indicating that three isomers of this intermediate ion are formed and have similar polarity to one 

another. The fragments for this intermediate ion were m/z = 427, m/z = 399, m/z = 381 and m/z 

= 226. Similar to the previous mass, m/z = 445 is m/z = 363 + 82 mass units which would 

indicate that at least 5 oxidations and a photo-reduction is occurring. Two structures have been 

proposed in Figure 4.147 along with the respective isomers for the fragment m/z = 427 and the 

fragment m/z = 154. 
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Figure 4.146: EIC of intermediate m/z = 445 in a 5 mins sample at a tR of 2.9 mins. Inset MS and MS/MS 

spectra. Photocatalysis, [SOL] = 0.083 mM, 0.1 g TiO2/320 mL. 
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Figure 4.147: Structures of the isomers proposed for m/z = 445 and its fragments m/z = 427 and m/z = 

154. 

 

Intermediate m/z = 463 

The intermediate m/z = 463 was found in both photocatalytic experiments eluting at a time of 

2.5 mins. The high mass of this intermediate would indicate that again multiple oxidations have 

occurred to the parent Solifenacin structure. m/z = 463 = 363 + 100 which would indicate 6 

oxidations and 2 sites of photo-reduction. Fragments for this intermediate were m/z = 445, 427, 

399 and 381 amongst others. These fragments will result in multiple losses of water from the 

parent intermediate. A structure has been proposed for m/z = 463 and its fragments and is found 

in Figure 4.149. 
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Figure 4.148: EIC of intermediate m/z = 463 in a 5 mins sample at a tR of 2.5 mins. Inset MS and MS/MS 

spectra. Photocatalysis, [SOL] = 1 mM, 0.1 g TiO2/320 mL. 
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Figure 4.149: Structure proposed for m/z = 463 and its fragments m/z  = 445, m/z = 427 and m/z = 409. 

 

Intermediate m/z = 413 

The intermediate m/z = 413 was detected at 3.9 mins in the 0.083 mM photocatalytic 

experiment. The mass m/z = 413 is Solifenacin’s parent ion m/z = 363 + 50 and is also 2 mass 

units more than m/z = 411. This would indicate that oxidation occurs at 3 points in the molecule 

in addition to a photo-reduction which would account for the 2 extra mass units. The two main 

fragments detected for m/z = 413 are m/z = 395 and 379 and two possible structures have been 

elucidated for this mass and its fragments in Figure 4.151. It should be noted that earlier 

numerous isomers were proposed for m/z = 411. However, in the case of m/z = 413 certain 

isomers have been eliminated due to the fragment m/z = 379 which requires two neighbouring 
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hydroxyl groups which, when lost, allow the resulting radicals to combine and form the double 

bond.  

 
Figure 4.150: EIC of intermediate m/z = 413 in a 5 mins sample at a tR of 3.9 mins. Inset MS and MS/MS 

spectra. Photocatalysis, [SOL] = 0.083 mM, 0.1 g TiO2/320 mL. 
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Figure 4.151: Structure proposed for m/z = 413 and its fragments m/z = 395 and m/z = 379 
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Intermediate m/z = 399 

The intermediate m/z = 399 was detected only in the 0.083 mM photocatalytic experiment at a 

retention time of 4.4 mins. The fragments for this ion were m/z= 381, 211, 184 and 154. Since 

one of the fragments for this intermediate is m/z = 381 and another intermediate at this mass 

was determined previously, a relationship between these ions is expected. However, for the 

previous intermediate m/z = 381 a photo-reduction product was proposed, and for m/z = 399, a 

second photo-reduction must occur to achieve a mass of m/z = 399. The only other moieties in 

Solifenacin which can be photocatalytically reduced are the aromatic rings, so two possible 

structures have been proposed which incorporate a further photo-reduction. Both these 

structures can be found in Figure 4.153. 

 
Figure 4.152: EIC of intermediate m/z = 399 in a 20 mins sample at a tR of 4.4 mins. Inset MS and 

MS/MS spectra. Photocatalysis, [SOL] = 0.083 mM, 0.1 g TiO2/320 mL. 
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Figure 4.153: Structure proposed for the isomers possible for m/z = 399 and its fragments m/z = 381 and 

154. 
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Intermediate m/z = 279 

The intermediate m/z = 279 was detected at 2.5 mins in every experiment analysed. The low 

mass of this intermediate would indicate that a loss of something significant has occurred. 

However, the three fragments of this intermediate m/z = 154, 128 and 110, would imply that the 

quinuclidin portion of the structure is relatively intact. The structure proposed in Figure 4.155 is 

due to cleavage of the phenyl group of the tetrahydroisoquinoline ring through a series of photo-

oxidations and photo-reductions. 

 
Figure 4.154: EIC of intermediate m/z = 279 in a 10 mins sample at a tR of 2.5 mins. Inset MS and 

MS/MS spectra. Photolysis Quartz, [SOL] = 0.083 mM. 
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Figure 4.155: Structure proposed for the intermediate m/z = 279 and its fragments m/z = 154, 128, 110. 

 

4.2.16 Ions which could not be Elucidated 

The following chromatograms, Figure 4.156 - 4.158, show ions which were observed in 

experiments however no structure could be proposed for their mass or fragments. The ion m/z = 

275 was detected at 2.4 mins in every experiment and every sample analysed including 0mins 

samples. It was suspected that due to its occurrence in every experiment that this may be a 

22111042.D: EIC 279 ±All, Smoothed (2.4,1, GA) 

0

1

2

3

4

4x10

Intens. 

10 20 30 40 50 60 Time [min]

128.6

279.5

323.3 377.1

433.4

583.2 664.9 762.0

+MS, 2.5min (#65)

0.00

0.25

0.50

0.75

1.00

1.25

5x10
Intens.

100 200 300 400 500 600 700 m/z

54.0 71.4 87.8 97.6
110.7

128.3

154.4

166.6 192.6 210.8
218.3 244.9 271.4

+MS2(279.0), 2.5min (#66)

0

1000

2000

3000

Intens.

50 75 100 125 150 175 200 225 250 m/z



212 
 

contaminant and not an intermediate. m/z = 273 was found exclusively in photolysis 

experiments at a retention time of 10 mins. Fragments obtained for this intermediate were m/z = 

251 and 229. m/z = 433 was observed in both photocatalytic experiments and eluted with a 

number of other very polar intermediates determined earlier. Earlier DI-MS studies found an ion 

m/z = 431 which when extracted from data, overlapped with this intermediate. No structure 

could be proposed for this intermediate however fragment m/z = 154 suggests the quinuclidin 

ring remains intact and multiple oxidations and reductions are likely. 

 

 
Figure 4.156: EIC of intermediate m/z = 275 in a 5 mins sample at a tR of 2.4 mins. Inset MS and MS/MS 

spectra. Photocatalysis, [SOL] = 1 mM, 0.1 g TiO2/320 mL. 

 

 
Figure 4.157: EIC of intermediate m/z = 273 in a 5 mins sample at a tR of 10 mins. Inset MS and MS/MS 

spectra. Photolysis Quartz, [SOL] = 0.083 mM, 0.1 g TiO2/320 mL. 
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22111040.D: EIC 273 ±All, Smoothed (2.3,1, GA)
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Figure 4.158: EIC of intermediate m/z = 433 in a 30 mins sample at a tR of 2.6 mins. Inset MS and 

MS/MS spectra. Photocatalysis, [SOL] = 0.083 mM, 0.1 g TiO2/320 mL. 

 

4.2.17 Solifenacin Proposed Intermediates Structures  

17 different intermediate ions were detected for Solifenacin. Including all isomers, this amounts 

to a total of 36 intermediates for this pharmaceutical. Structures have been proposed for all of 

these ions. A total of 19 structures are presented in Figure 4.159, which also includes the 3 

isomers for m/z = 381. Red coloured atoms and bonds represent where a photocatalytic 

reduction has occurred and blue colour atoms and bonds represent where a photocatalytic 

oxidation has occurred. Figure 4.160 presents likely degradation pathways for Solifenacin. Ion 

monitoring graphs for all ions monitored in each experiment can be found in the appendices 

(4A-25 – 4A-28).  
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Figure 4.159: Final structures and molecular masses for intermediates proposed for Solifenacin. 

Solifenacin’s structure is highlighted in the green box. (Blue atoms/bonds indicate where an oxidation has 

occurred. Red atoms/bonds indicate where a photo-reduction has occurred).  
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Figure 4.160: Proposed Degradation Pathway for Solifenacin and intermediates which were detected in LC-MS/MS and DI-MS studies. 
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4.2.18 Control Experiments 

LC-MS/MS experiments were conducted to ensure that the intermediates which have been 

reported here were as a result of degradation of the pharmaceuticals and not from the Millipore 

water or any other possible source. Two control experiments were conducted, the first was a 

photolysis control in which Millipore water was irradiated using quartz glassware. The second 

experiment was a photocatalytic control whereby Millipore water was irradiated in the presence 

of 0.1 g of P-25 TiO2. Samples from this control experiment were filtered ensuring that they 

underwent the same procedure as photocatalytic samples for each of pharmaceuticals. Both 

experiments were run and the results showed only three ions throughout all samples (m/z = 186, 

m/z = 569 and m/z = 137). These ions were consistent throughout all samples and m/z = 186 

was found also in our previous intermediate studies but was ruled out as an intermediate at a 

very early stage in data analysis. These ions were also noticed in background noise prior to the 

running of samples, and were considered to be instrumental contaminants. All intermediate ion 

masses were extracted from chromatograms, however, none of these ions were present 

concluding that all intermediates proposed therein were generated from the pharmaceuticals. 

 

4.2.19 LC-MS/MS Analysis of the Optimised TiO2/UV/H2O2 Process 

The final intermediate analysis experiments involved examining whether the optimized 

TiO2/UV/H2O2 process for each pharmaceutical eliminated all intermediates generated by the 

optimised TiO2/UV process. In the case of Famotidine, the optimized photocatalytic experiment 

was re-run with the optimized TiO2/UV/H2O2(5 mM) experiment. These experiments were 

conducted more recently after previous intermediate studies and after instrumental downtime 

and replacement of a number of parts on the instrument. Samples run during this period showed 

a lower intensity in chromatograms and the parent ion for Famotidine also differed by 

approximately 0.5 Da. In previous intermediate studies the mass of Famotidine was m/z = 

338.3, whereas in these studies it was m/z = 337.8. In MS/MS analysis, the instrument does not 

consider decimal digits and isolates only significant mass numbers. In these experiments m/z = 

337 was thus isolated instead of m/z = 338. This error was found to vary between 0.3-0.5 Da for 

other intermediate masses in chromatograms. Since the purpose of these experiments was to 

confirm the elimination of all intermediates by the peroxide photocatalytic process, we decided 

to proceed with analysis.  

 

Upon analysis of the data, few ions were present after the addition of peroxide and 5mins of 

irradiation (m/z = 354 was the main ion present). No Famotidine was detected after 10mins of 

the optimised peroxide photocatalytic experiment. The presence of only one peak was dominant 

throughout samples and eluted early in chromatograms. This was identified as sodium bisulfite. 
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Further instrumental problems ensued before work could continue with the optimised peroxide 

photocatalytic process for Tamsulosin and Solifenacin and unfortunately time constraints did 

not allow these analyses to be performed prior to submission of this thesis.  

 

4.2.20 Intermediate Studies Conclusions 

The photodegradation intermediates of Famotidine, Tamsulosin and Solifenacin have been 

identified in this chapter. LC-MS/MS analysis was central to identifying the intermediate 

structures. Tamsulosin and Solifenacin were found to be the toughest to photo-degrade (when 

compared to Famotidine in previous chapters). They are mostly aromatic in nature, so 

oxidations on these rings can result in countless isomers, particularly positional isomers as 

already mentioned.  

 

Although photo-reductions were found in these studies, the dominating degradation mechanisms 

were found to be photo-oxidative with the vast majority of intermediates being found to be 

hydroxylations occurring on aromatic rings. Some examples of oxidative aliphatic C-C bond 

cleavage were observed, and these were shown to occur via a hydroxyl radical based 

mechanism. Other transformations included oxidation to ketones and cyclisations. Ion 

monitoring graphs for all experiments analysed showed that intermediates formed were still 

persistent after the 3 h irradiation period for the optimized photocatalytic experiments at 0.083 

mM. This demonstrates that TiO2 cannot fully mineralize degradation products alone and 

hydrogen peroxide or another oxidant may be required. Unfortunately, instrumental downtime 

did not allow the running of the optimized TiO2/UV/H2O2 process in the case of Tamsulosin and 

Solifenacin, however HPLC chromatograms indicated that a much greater degree of 

mineralization occurs for the intermediates generated by all the pharmaceuticals with this 

combined process.  
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5.1 Introduction 
Recent research involving TiO2 has been focused around the development of visible light 

sensitised photocatalytic materials. Preparation of these materials will allow the use of cheaper 

light sources such as halogen lamps and/or natural sunlight which comes at no expense and is a 

sustainable energy source. The degradation mechanisms for sole TiO2 photocatalysis have been 

well established and have previously been discussed in Chapter 1. The exact mechanism of 

photodegradation via sensitised TiO2 is still unclear. A number of mechanisms have been 

proposed by various authors, which include electron transfer/injection with subsequent 

formation of reactive oxygen species (ROS), or directly via a sensitizer-only generated singlet 

oxygen mechanism.203,210,109 Both mechanisms occur upon absorption of a photon of light (hv) 

and in the case of the singlet oxygen mechanism, intersystem crossing (ISC) occurs from the 

sensitiser singlet state to the triplet state. Both mechanisms are presented in the following 

equations for Sens-TiO2: 

Electron injection and formation of ROS: 

*)]e(TiOSens[]TiOSens[ CB22  hv  

  222CB2 O]TiOSens[O*)]e(TiOSens[  

 APIO2 Intermediate Compounds 

Singlet oxygen mechanism: 

]TiOSens[]TiOSens[ 2
1

2  hv  

]TiOSens[]TiOSens[ 2
3

2
1  ISC  

1
22

3
22

3 O]TiOSens[O]TiOSens[   

 APIO1
2 Intermediate Compounds 

 

Although both mechanisms are possible, electron injection from the sensitizer directly into the 

conduction band of TiO2 is generally the most accepted mechanism.65,204  

 

This chapter concerns itself with the development, characterisation and photoactivity of new 

dye sensitised photocatalytic materials which incorporate TiO2, a sensitiser (or dye) with 

absorption into the visible region and a linker to bind both. Many of the most commonly used 

linkers for binding metal oxides to various dyes have already been detailed in Chapter 1. Of 

these, the following linkers were selected to develop visible light sensitised photocatalytic 

materials: (i) Acetylacetonate, (ii) Toluenediisocyanate, (iii) 3-aminopropylsilane, and (iv) 

carboxylate groups. The sensitising molecules chosen to bind to these linkers include 

porphyrins, phthalocyanines and metallo-phthalocyanines.  
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These composite materials have been prepared using a simple adsorbed method and are 

compared to other current literature methods. Characterisation of these materials was 

undertaken with both IR and UV-vis spectroscopy (DR and solution state). The photocatalytic 

performance of all composite materials have been evaluated with the pharmaceutical 

Famotidine as used in previous studies and in the case of the porphyrin/TiO2 composite, the 

pharmaceuticals Tamsulosin and Solifenacin were also tested.  

 

5.2 Results and Discussion  

5.2.1 Synthesis of TCPP-TiO2 

In our attempts to synthesize visible light sensitised photocatalytic materials TPP was 

considered as a suitable sensitiser. An experiment was performed with non-functionalized TPP, 

to test whether the dye could simply be coated on to the TiO2 and the reaction was simply left to 

stir in chloroform for 4 hours. This experiment yielded a white product indicating that no TPP 

had attached to the TiO2. This demonstrated that functionalization of the dye would be required 

in order to anchor the dye to TiO2. Its tetra acid analogue, TCPP (tetra-(4-

carboxyphenyl)porphyrin) was chosen since it contains carboxylic acid groups which can 

potentially anchor the sensitiser to the TiO2 surface. Two different methods were chosen to 

immobilize TCPP onto TiO2.  

 
Figure 5.1: Structures of TPP, TCPP, and the porphyrin/TiO2 composite. 

 

In the first method, TCPP was immobilized by simple adsorption (reaction scheme 5). This 

method involved mild conditions and the product (A) was predicted to be attached via H-

bonding, electrostatic or Van der Waals forces. The second method of preparation involved a 

reflux in DMF for 4 h, as previously described by Li et al. (reaction scheme 6).205 This method 

used much harsher conditions and was predicted to form a covalently bound product (B) i.e an 

ester linked product. Figure 5.2 shows examples of H-bonding, covalent bonding and 

electrostatic binding to TiO2. Both methods yielded an identical product (a dark purple/brown 

powder, Figure 5.3). Given the previous failed experiment with non-functionalised TPP, it was 
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concluded that based on the product appearance alone that both methods were producing a 

chemically bound product. 

 
Figure 5.2: H-bonding vs. covalent bonding vs. electrostatic attraction of the dye to TiO2. 

 

The synthetic procedures were repeated for both TCPP-TiO2-A and TCPP-TiO2-B with a 

soxhlet extraction performed on both to determine the residual porphyrin content and how much 

was bound to the surface of the TiO2 (ie. the loading capacity). For TCPP-TiO2-A, 0.035 g was 

recovered via soxhlet from the original 0.050 g used in the reaction. This would indicate a 

maximum loading capacity of 0.015 g/1 g TiO2. For TCPP-TiO2-B, a total of 0.025 g was 

recovered from washings. A further soxhlet reaction of this composite generated a porphyrin 

plus contaminants which were believed to be from the DMF solvent used and which could not 

be separated. This was found also in a number of repeat experiments. Some additional 

porphyrin was attained although could not be accurately determined. With this in mind, an 

estimated loading not exceeding 0.025 g/1 g TiO2 was concluded, which is close to that of Li et 

al. (0.021 g/1 g TiO2). 

 
Figure 5.3: Photograph showing the appearance of ground TCPP-TiO2 both bound and adsorbed. 

 

5.2.2 Characterisation of TCPP-TiO2  

IR Spectroscopy 

FT-IR analysis was performed on both TCPP-TiO2 composite samples and also on, TiO2 and 

TCPP alone. Titanium dioxide gave only two bands at 3340 cm-1 signifying the surface OH 

groups and a very broad stretch in the fingerprint region at 600 cm-1 representing the Ti-O-Ti 
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vibration. Stretches for the two composites and the porphyrin alone are shown in the Table 5.1 

below. The major bands have been assigned to their principle functionalities. 

 
        

Functional Group TCPP   TCPP-TiO2-A   TCPP-TiO2-B   

TCPP, C=C-H stretch phenyl 3014 Weak 3740 Weak 3743 Weak 

TiO2, surface -OH groups 

  

3391 Strong 3410 Strong 

 

2524 Weak 2923 Medium 2925 Medium 

TCPP, C=O anchor 1685 Strong 1614 Medium 1621 Medium 

TCPP, C=C  1604 Strong  o 

 

o 

TCPP, C-H bend 1400 Medium 1383 Medium 1383 Weak 

TCPP, C-O stretch 1222 Strong 1263 Weak 1263 Weak 

TCPP, C6H5 substituted 1174 Strong 1176 Weak 1176 Weak 

TCPP, p-subsitituted C6H5 1099 Strong 1110 Weak 1111 Weak 

C-H pyrrole porphyrin ring system o 

 

1054 Weak 1055 Weak 

TCPP, pyrole C-H (rocking) 963 Strong 967 Weak 966 Weak 

TiO2, Ti-O-Ti vibration 

 

636 Strong 667 Strong 

Table 5.1: FT-IR samples for TCPP, TCPP-TiO2-A and TCPP-TiO2-B, o = overlap, stretches referenced 

from work by Thomas et al. and Jiang et al..206,118 Original IRs for these data can be found in the 

appendices  (5A-4 -5A-6). 

 

The v(C=O) band at 1685 cm-1 in TCPP, is shifted to lower wavenumbers at 1614 cm-1 and 1621 

cm-1 for TCPP-TiO2-A and TCPP-TiO2-B respectively. The corresponding v(C-O) band which 

can normally appear at 1210-1320 cm-1, appears at 1222 cm-1, and again shifted with the coated 

TiO2 samples to 1263 cm-1 for both. These shifts were also noticed along with a decrease in the 

intensity of these bands, which is indicative of adsorption to TiO2 according to work by Diaz-

Uribe et al.207 TiO2 bands are also clearly present in the spectra of the composite samples, and 

are now shifted to 3400 cm-1 for v(Ti-OH) and ~650 cm-1 for the v(Ti-O-Ti) stretch.  

 

UV-vis Spectroscopy 

Figure 5.4 shows the UV-vis spectra of TCPP in methanol, where the Soret band can be seen 

clearly at 416 nm and Q bands at 512, 547, 589 and 643 nm. Solid state UV-vis (DR) spectra of 

the prepared photocatalytic materials were also attained. In addition to this we attained the UV-

vis (DR) spectra for uncoated TiO2 and TCPP. All samples are shown in Figure 5.5 and we can 

see that the bands of the porphyrin are not as clear in the diffuse reflectance spectra compared to 

the UV-vis in methanol. Samples were prepared with KBr, and differences in absorbance on the 

y-axis should be ignored due to varying concentrations in disc preparation. This is due to the 

difference in sampling techniques. In diffuse reflectance, the samples are prepared into densely 
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packed discs with KBr, whereas with solution phase UV, very dilute solutions are prepared so 

as to reduce aggregation and achieve well resolved bands.  

 
Figure 5.4: UV-vis spectra of TCPP in methanol with Q bands at 512, 547, 589, 643 nm and the Soret 

band at 416 nm. 

 

TiO2 absorbs in the UV region only below 400 nm, shown by the intense absorbance < 400 nm. 

TCPP-TiO2-A, TCPP-TiO2-B samples show almost identical spectra to each other and show Q 

bands at 523 nm, 560 nm, 597 nm 654 nm for TCPP-TiO2-A and 523 nm, 561 nm, 598 nm and 

655 nm for TCPP-TiO2-B. The visible similarities in these spectra are a very promising sign that 

the much simpler preparation method of TCPP-TiO2-A is just as effective as the TCPP-TiO2-B 

method. As a control, a KBr disc containing TCPP alone was prepared (in Figure 5.5 also) and 

the UV-vis spectrum shows multiple bands both in the UV and visible region, the Q bands can 

be seen much more clearly than the Soret and appear at 523 nm, 560 nm, 596 nm and 654 nm. 

 
Figure 5.5: DR UV-vis Spectroscopy data for TCPP-TiO2, TCPP and TiO2 



224 
 

Table 5.2 contains the wavelengths of the Soret and Q bands for TCPP in methanol, literature 

wavelengths in ethanol and DMF, and those for the coated TiO2 samples including the free 

TCPP. The difference in the intensities of the Q bands and the lack of major shifts compared to 

the coated TiO2 samples was explained with the lack of solvent polarity effects which clearly 

influence the intensity and shifts of both the Soret and Q bands. Work by Diaz-Uribe et al. and 

Cherian et al. described a red shift for the coated TiO2 samples when compared with the UV-vis 

in ethanol of TCPP.207,208 Diaz reported a shift of approximately 8 nm in the Q bands, whereas 

Cherain reported a shift of 5 nm for the lower energy bands and 10 nm for the higher energy 

bands albeit that their work was with coated TiO2 electrodes. Ma et al. reported an average shift 

of 8 nm with their coated TiO2 sample compared with the UV-vis of TCPP in DMF.209 Ma et al. 

also reported a decrease in intensity of the Soret band relative to the Q-bands which is similar to 

what has been observed in this work. 

 
      

Sample UV  Soret Band (nm) 
Q 

bands(nm) 
    

TCPP-TiO2-A Solid 408 523 560 597 654 

TCPP-TiO2-B Solid 410 523 561 598 655 

TCPP Solid 411 523 560 596 654 

TCPP Methanol 416 512 547 589 643 

TCPP Ethanol (lit.) 419 514 548 588 645 

TCPP DMF (lit.) 418 515 549 591 646 

Table.5.2. Shifts in the UV-vis samples for TCPP-TiO2-A, TCPP-TiO2-B, TCPP. 

 

SEM Imaging 

SEM images were attained for both samples Figure 5.6 and Figure 5.7 and also for P-25 TiO2. 

The highly mesoporous nature of the P-25 standard can be seen compared with the prepared 

coated TiO2 samples. The prepared coated samples also show identical textures when compared 

to the P-25 sample. 

   
Figure 5.6: SEM image of TCPP-TiO2 bound (Left) and P-25 TiO2 (Right). 
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Figure 5.7: SEM image of TCPP-TiO2 adsorbed 

           
             

5.2.3 Examination of the Photocatalytic Efficiency of TCPP-TiO2 in Famotidine 

Degradation with Visible Light. 

5.2.3.1 Indoor Experiments 

Both TCPP-TiO2 photocatalysts were employed in the degradation of Famotidine using a 

halogen lamp. Halogen lamps are cheap, commercially available light sources and they emit 

only visible light. Halogen lamps will allow assessment of the photocatalytic efficiency of our 

porphyrin/TiO2 composite. Famotidine is also a perfect candidate for testing of our visible light 

sensitised photocatalyst as it absorbs below 300 nm and is not sensitive to light above this 

wavelength. Figure 5.8 shows experiments in triplicate of each photocatalyst compared with 

controls of TiO2 alone and photolysis (no photocatalyst). The experiments were monitored using 

HPLC analysis. Both photocatalysts show similar degradation profiles, with almost 100% 

elimination of Famotidine after 3 h. Both materials are also significantly better than the P-25 

TiO2, which only achieves 25% elimination after 3 h. This is more than would be expected 

because TiO2 requires light below 400 nm to generate hydroxyl radicals. A slight tail of 

absorption over the 400 nm may be giving rise to this degradation seen by visible light (to 

approximately 425 nm, see UV-vis spectrum for TiO2 Figure 5.5). 
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Figure 5.8: TCPP-TiO2-A and TCPP-TiO2-B photocatalytic experiments and controls with a Halogen 

Lamp for 3 h. [TCPP-TiO2] = 0.031 g, [FAM] = 0.083 mM. 

 

Further work in which a soxhlet extraction of the composite (post-synthesis) was performed, 

indicated that it had almost the same performance as non-soxhlet extracted TCPP-TiO2 (Figure 

5.9). A slightly improved performance by the soxhlet extracted composite could be explained by 

less aggregation affects which would be caused by over loading sensitiser onto TiO2 or residual 

sensitiser on TiO2. This effect was studied in work by Wang et al. 2010.210 

 

Two HPLC chromatograms are shown in Figure 5.10 of a sample at 0 mins vs. 180 mins, 

showing that no Famotidine is detected after 3 h irradiation. In the 180 mins sample early 

eluting intermediates are present in significant quantities. From intermediate studies performed 

on Famotidine (see Chapter 4), the largest intermediate peak in the chromatogram (at tR = 3.2 

mins) is most likely the intermediate m/z = 354 (Mw = 353 g/mol). This intermediate is the S-

oxide of Famotidine. The presence of two to three other intermediates are apparent which may 

be photo-oxidative or photo-reductive intermediates. The large intensity of the S-oxide would 

indicate that the mechanism of degradation using this photocatalyst may be potentially selective 

as further mineralization of the degradation products does not appear to occur. These 

intermediates would need to be further characterized to identify these intermediates and hence 

the exact mechanism. 
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Figure 5.9: TCPP-TiO2-A compared to a soxhlet extracted TCPP-TiO2-A which shows almost identical 

performance. [TCPP-TiO2] = 0.031 g, [FAM] = 0.083 mM. 

 

 
Figure 5.10: HPLC Chromatogram showing Famotidine, at 0 Mins (blue) and after 180 mins (red), in 

photocatalytic degradation by TCPP-TiO2-A. [FAM] = 0.083 mM, TCPP-TiO2-A = 0.031 g. 

 

It was noticed that when placed in water the colour of the photocatalyst went from purple/brown 

to green. Odobel et al. noticed a colour change of the porphyrin from purple to green upon 

adsorption of the porphyrin to TiO2 electrodes and attributed this effect to the interaction of the 

pyrrole nitrogens of the porphyrin with the hydroxyl groups on the surface of the TiO2.211 Upon 

addition to the aqueous drug solution the same effect is occurring between the pyrrole nitrogens 

of the porphyrin and water molecules. This same effect also occurred in the presence of acid. 

Upon removal of water and addition of methanol to the photocatalyst, it reverted back to its 

purple colour.  

 

Famotidine Intermediates 



228 
 

5.2.3.2 Solar Experiments 

A set of solar experiments were also conducted (22 June 2010) using both TCPP-TiO2 

photocatalysts, P-25 TiO2 for comparison and one control experiment (photolysis) where no 

photocatalyst was added. A graph of the light intensity (in footcandles) recorded on a flux meter 

throughout the experiment can be found in the appendices (5A-1). The results shown in Figure 

5.11 below are what would be expected under solar conditions. Both TCPP-TiO2 photocatalysts 

work relatively similar to one another and show a good degradation profile which is improved 

from the indoor experiments. P-25 TiO2 comparatively shows also a good degradation profile 

curve, although it is slower than both of the composite materials, and the control experiment 

with no photocatalyst (photolysis) shows insignificant degradation.  

 
Figure 5.11: Solar reactions performed on 22-06-2010 with TiO2, TCPP-TiO2-A, TCPP-TiO2-B, and 

photolysis. 

 

The spectral irradiance data for a halogen (tungsten) lamp and the solar spectrum is shown in 

Figure 5.12. The spectrum for the halogen lamp used in our experiments can be found in 

appendix 5A-2. For the tungsten lamp, absorbance above 400 nm although minimal can be seen. 

Solar irradiance data covers the UV region unlike the tungsten halogen lamp, and degradation 

by both TiO2 and the TCPP-TiO2 samples can therefore be expected to be significantly 

improved. After 20 mins the composites can achieve 80% elimination of Famotidine, whereas, 

it takes 40 mins for TiO2 to achieve the same elimination. The fact that both TCPP-TiO2 

materials show an improved activity over TiO2 is a promising result as they were both prepared 

in different manners. HPLC traces for each solar experiment are shown in Figure 5.13 - 5.14. 

The presence of a greater quantity of intermediates in the traces of TCPP-TiO2-A, is a testament 

to its better performance over the TCPP-TiO2-B. TiO2 shows a lower quantity of these 

intermediates. It can be noticed in these traces also that 100% degradation is not achieved. 
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Whereas, indoor experiments conducted do show complete disappearance (in the case of TCPP-

TiO2-A). This is possibly due to cloud coverage on the day these experiments were conducted 

which would lead to an inconsistent intensity of light reaching the sample. Despite these 

obvious disadvantages, solar energy is a more sustainable and cost-effective light source which 

has shown to be effective in combination with both prepared visible-light sensitised 

photocatalyst in the elimination of Famotidine. 

 
Figure 5.12 Spectral irradiance profile data for a typical Halogen (Tungsten) Lamp (left) versus the solar 

spectrum (right).212, 213 

 
Figure 5.13: HPLC chromatogram of Famotidine at 0 Mins (blue) and 180 mins (red) showing the solar 

photolysis (control) of Famotidine. 

Famotidine 

Intermediates 
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Figure 5.14: HPLC chromatograms of Famotidine at 0 mins (blue) and 180 mins (red) showing solar 

photocatalysis with TiO2 and TCPP-TiO2-A and TCPP-TiO2-B. 

 

5.2.3.3 Control Experiments 

Figure 5.15 shows a series of additional control experiments which were conducted indoors 

with a halogen lamp. Two control experiments are shown with the sensitiser TCPP alone and 

Famotidine 
Intermediates 

 

Famotidine Intermediates 

Famotidine 
Intermediates 
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also the sensitiser TCPP in the presence of TiO2 (both experiments were conducted in the 

presence of light). These are then compared with the performance of both composite materials. 

The amount of sensitiser used in these control experiments (0.001 g/1 g TiO2) was more than 

double the amount coated onto 0.031 g of the composite. Considering a coating of 0.015 g/1 g 

TiO2 as in TCPP-TiO2-A, in 0.031 g of TCPP-TiO2, there would be less than 0.0005 g of 

sensitiser. The sensitiser alone (TCPP) shows minimal degradation although degradation would 

have been expected due to singlet oxygen generation. TiO2 alone also shows very poor 

degradation whilst in the presence of the senstiser showing that binding of the sensitiser to the 

TiO2 is required for photodegradation and that photodegradation is due to the composite 

material and not its individual components. An additional dark adsorption experiment was 

conducted and analysed with UV-vis spectroscopy and showed an expected initial adsorption 

after sonication and dispersion of the photocatalyst, but no further adsorption up to 1 h later. 

These data can be found in the appendices (5A-3). 

 
Figure 5.15: Indoor control experiments with a halogen lamp showing the degradation of pharmaceutical 

Famotidine with TCPP-TiO2-A, TCPP-TiO2-B, TCPP + TiO2 (1 mg/100 mL) and TCPP (1 mg/100 mL). 

[TCPP-TiO2] = 0.031 g, [FAM] = 0.083 mM. Controls performed by C. Saurel. 

 

5.2.3.4 Recovery of the TCPP-TiO2 materials and Stability 

After solar and indoor experiments, the photocatalytic materials were recovered from the 

reaction solution. In the case of both TCPP-TiO2 photocatalysts, the recovered photocatalysts 

were beige in colour (see Figure 5.16), differing in colour from the starting photocatalytic 

material. This led us to believe that a number of things may be happening, but that the TCPP-

TiO2 photocatalysts were unstable. Experiments were performed in which the reaction solution 

was simply sonicated for 10 min and then recovered the solution, to see if perhaps sonication 

was cleaving the TCPP from the TiO2 prior to irradiation. In the case of both the recovered 
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photocatalysts, sonication had no visible effect on the photocatalyst although after 

centrifugation some residual TCPP was clouding the supernatant of TCPP-TiO2-A, albeit, only 

slightly. The supernatant from TCPP-TiO2-B was clear and thus, soxhlet extraction was clearly 

effective in removing residual porphyrin. Sonication, therefore was ruled out as a potential 

destruction method. Further control photo-degradation tests with the dye and TiO2 separately 

placed in a schlenk flask and irradiated with a halogen lamp concluded that the dye was being 

degraded by TiO2.  

 

 
Figure 5.16: TCPP-TiO2-A and TCPP-TiO2-B post photoreaction. 

 

FT-IR analysis was performed on the photocatalysts post-reaction (Figure 5.17) and there are 

some noticeable differences between the samples. The v(C=O) stretch which appeared at 1614 

cm-1 and 1621 cm-1 for TCPP-TiO2-A and TCPP-TiO2-B respectively are now shifted to 1630 

cm-1 and 1637 cm-1. The three stretches typical of TCPP in the fingerprint region Figure 5.18a 

and 5.18b are also noticeably different in Figure 5.18c and Figure 5.18d. The three bands are 

now overlapped by one principle band at 1062 cm-1 which would indicate significant changes to 

the core π-ring system. 

 
Figure 5.17: FT-IR of both adsorbed and bound TCPP-TiO2 post photoreaction compared with TCPP-

TiO2-B pre-reaction. 
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Figure 5.18: FT-IR showing the fingerprint region for TCPP-TiO2 composites pre/post-photoreaction. 

(A): TCPP-TiO2-A (pre) (B): TCPP-TiO2-B, (pre) (C): TCPP-TiO2-A (post) (D): TCPP-TiO2-B (post). 

 
Figure 5.19: UV-vis analysis of TCPP-TiO2–A and TCPP-TiO2–B post reaction (photo-bleaching) 

compared with the original UV-vis profile for TCPP-TiO2–A. 

 

UV-vis analysis (Figure 5.19) of the coated materials post reaction would indicate that some of 

the sensitiser remains intact on the surface of the TiO2 despite the changes in the FTIR spectra. 

These samples were further used in photocatalytic experiments to examine whether 

photoactivity was retained despite the photobleached product. Considering these findings, it was 
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concluded that dark storage of the photocatalyst would be required (to prevent degradation of 

the porpyrin dye on the TiO2 surface by regular laboratory light or natural daylight sources). 

 

5.2.3.5 Recyclability 

After recovering the photocatalyst post reaction, it was washed, dried, and reintroduced into 

fresh Famotidine solution and the experiment was repeated. The results are shown in Figure 

5.20. The photoactivity is shown to be significantly reduced, although it is still superior over the 

standard P-25 TiO2 photocatalyst (not recycled) and photolysis with approximately 66% 

elimination of Famotidine after 3h for TCPP-TiO2-A and 34% elimination for TCPP-TiO2-B. 

The improved performance of TCPP-TiO2-A was again observed even in recycling.  

 
Figure 5.20: HPLC analysis of TCPP-TiO2–A and TCPP-TiO2-B recovered and reintroduced into fresh 

Famotidine solution compared with controls. 

 

5.2.3.6 Applicability to other Pharmaceuticals (Tamsulosin and Solifenacin) 

Further experiments were conducted with Tamsulosin and Solifenacin to examine the 

applicability of the photocatalyst to other types of pharmaceuticals. The results for Tamsulosin 

are shown in Figure 5.21 and for Solifenacin are shown in Figure 5.22. In the case of both 

pharmaceuticals the performance of the TCPP-TiO2 was not significantly superior over TiO2. 

After sonication and prior to irradiation there is a drop in the concentration of pharmaceutical 

which we believe is due to the dispersion of the photocatalyst and adsorption of the 

pharmaceutical to the photocatalyst. However, at the point of exposure of the reaction solution 

to light irradiation there is no significant drop in concentration which indicates no photo-

degradation is occurring.  
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Solifenacin and Tamsulosin both contain a number of aromatic rings which can be difficult to 

degrade, which may explain why the photocatalyst is superior in the case of Famotidine and not 

in the case of Tamsulosin and Solifenacin. In previous concentration variation studies (Chapter 

3), the TiO2/UV process was shown to be effective for high concentrations of the 

pharmaceuticals in the following order for 200 µM: Famotidine, Tamsulosin, Solifenacin. 

Solifenacin showed the poorest performance at higher concentrations, with Famotidine being 

the best. This may further reinforce the results obtained in these trial studies. Applicability of 

this photocatalyst can thus be considered to be unsuitable perhaps for drugs with significant 

aromatic/phenyl groups, although this would further have to be evaluated in follow-up studies. 

Time constraints did not allow further optimisation of the photodegradation process with all 

pharmaceuticals, although we believe that the process could be further optimised to ensure both 

a longer lifetime and a better performance of the photocatalyst. 

 
 

Figure 5.21 Indoor photocatalytic degradation experiments with TCPP-TiO2 along with controls for 

Tamsulosin. [TCPP-TiO2] = 0.031 g, [TAM] = 0.083 mM. 
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Figure 5.22 Indoor photocatalytic degradation experiments with TCPP-TiO2 along with controls for 

Solifenacin. [TCPP-TiO2] = 0.031 g, [SOL] = 0.083 mM. 

 

5.2.4 Synthesis of Zn-Hexadecafluorophthalocyanine-TiO2 

Phthalocyanines are considered to be better sensitisers than porphyrins due to their intense 

absorption in the visible region (into the near IR) and also their high stability towards de-

metallation and chemical degradation. 214  In light of this and considering the occurrence of 

photo-bleaching in our previous composite and the success of the previous adsorbed method of 

coating sensitisers onto TiO2, we attempted to coat a sensitiser of this nature onto TiO2. Many 

novel phthalocyanine compounds have been synthesized in our group. The Zn-

Hexadecafluorophthalocyanine (ZnHFpc) seen in Figure 5.23 (synthesized by B. Murphy) has 

substituted fluorines on the peripheral phenyl groups which ensure a highly stable species.  

 
Figure 5.23: Structure of the Zn-Hexadecafluorophthalocyanine (ZnHFpc) 

 

The ZnHFpc-TiO2 was prepared in a similar manner to the previous TCPP-TiO2 composite. The 

synthetic procedure was performed this time in chloroform and following adsorption to TiO2, a 

soxhlet extraction in chloroform was then performed. After soxhlet extraction 0.011 g of the 
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original 0.045 g phthalocyanine was recovered leaving a loading of 0.034 g/1 g TiO2. This 

material was dried and half of the material underwent a further soxhlet with acetone which 

removed more of the phthalocyanine resulting in a lighter coated composite (approximately 

0.002 g/1 g TiO2). This was later tested in comparison to the original composite.  

 

5.2.5 Characterisation 

5.2.5.1 UV-vis Spectroscopy 

UV-vis analysis of the ZnHFpc yielded the spectrum shown in Figure 5.24. The λmax at 677 nm 

(Q-band) shows another absorbance at 643 nm. A UV-vis spectrum was obtained at a higher 

concentration (inset) and showed that the ratio of this peak to the main Q-band peak increased 

meaning that this peak is due to co-facial aggregation of the phthalocyanine, a common property 

of phthalocyanine dyes.215 Significant dimerization or aggregation results in Q-band shifts and 

band broadening.216 Solid state UV-vis analysis was performed on the ZnHFpc-TiO2 composites 

and the spectra are shown in Figure 5.25 with some interesting results. 

 
Figure 5.24: UV-vis spectrum of ZnHFpc in DCM showing the Q-band at 677 nm and the B-band at 349 

nm. Inset is the UV-vis spectrum at a higher concentration. 

 

The lighter coated composite showed a red shifted Q-band at 682 nm. Slight shifts can be 

expected due to the differences between UV-vis in the solid state vs. solution state, although this 

Q-band shift was found on both occasions of two separately prepared KBr discs. The order of 

intensity of the Q-bands also changes, with the most intense band now occurring at 647 nm. 

There is also significant band broadening which would signify aggregation of the dye on the 

TiO2 surface. This would be seen as very unlikely as this composite contains a significantly 

lighter concentration of the dye on the surface of the TiO2. The heavier coated sample shows 

even further band broadening and a greater red shift of the Q-band to 689 nm. These results 
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would indicate that the heavier coated composite has a higher degree of 

aggregation/dimerization than the lighter coated composite. Both composites are compared with 

the solid state UV-vis spectrum of TiO2. No absorbance due to TiO2 can be determined with 

these samples as phthalocyanines have a B-band absorbance which occurs at approximately 350 

nm (see UV-vis in Figure 5.24).  

 
Figure 5.25: Diffuse reflectance spectra of the ZnHFphthalocyanine-TiO2 compared to TiO2. 

 

5.2.5.2 IR Spectroscopy 

FT-IR analysis of the coated TiO2 was compared to the free sensitiser. Presentation of the 

normalised spectra in Figure 5.26 (fingerprint region) show that the there is no shift in any of 

the bands of the phthalocyanine once coated onto TiO2. This is indicative of a coating as 

opposed to a bound material. Although it may be difficult to observe with normalized spectra, 

the intensity of the bands also remain proportional to one another, indicating that coating to 

TiO2 does not affect the stretching modes of functionalities within the sensitiser. 
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Figure 5.26: FT-IR spectra for ZnHFphthalocyanine and its TiO2 composite, showing no shift in bands 

indicative of a coating as opposed to a binding. 

 

 

5.2.6 Examination of the Photocatalytic Efficiency of ZnHFphthalocyanine-TiO2 in 

Famotidine Degradation with Visible Light. 

A preliminary photodegradation reaction of Famotidine with the ZnHFphthalocyanine-TiO2 

composite indicated that its photo-efficiency was not comparable to the porphyrin composite 

with some degradation seen, although nothing significant. The material was recovered after this 

3 h photodegradation experiment and appeared to remain intact (Figure 5.27). 

 
Figure 5.27: Photograph showing the ZnHFphthalocyanine-TiO2 pre-photoreaction and post-

photoreaction (3 h).  

 

Although only some degradation of Famotidine was observed, the fact that the material was 

unchanged is a promising result since a more stable material can undergo longer irradiation 

times. Considering this, we decided to further test the composite with longer irradiation times 

and lab air purging. In addition, we attempted an experiment with both conditions 
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simultaneously (extended irradiation and lab air purging). Lab air purging provides oxygen 

necessary for singlet oxygen generation if this is the method of degradation followed by this 

composite. Various controls were also performed in order to ensure any degradation occurring 

was directly from the composite. Initial tests with the material are shown in Figure 5.28. 

 

 
Figure 5.28: Indoor photocatalytic experiments with ZnHFpc-TiO2 for 3 h with air purging compared 

with purged and non-purged control experiments. [ZnHFpc-TiO2] = 0.031 g, [FAM] = 0.083 mM. 

 

The control experiment (Famotidine photolysis) showed no degradation, and TiO2 

photocatalysis showed approximately 20% degradation as would be expected. The 

ZnHFphthalocyanine-TiO2 composite performed slightly worse than TiO2. This would indicate 

that the sensitiser coat may be simply hindering the performance of the TiO2 by quenching any 

hydroxyl radicals generated. A high loading of the sensitiser can also cause aggregation which 

is a recurring problem reported with phthalocyanines caused by their planar structure. This 

problem can be resolved by using phthalocyanines with bulky peripheral substituents that 

sterically prevent aggregation. A short term solution would be to use a lighter coated composite.  

 

The ZnHFphthalocyanine-TiO2 composite which had a much lighter coat was tested in a parallel 

experiment with air purging and showed a slightly better performance than the heavier coated. 

However, the air purged control experiment (photolysis) we performed also showed an 

improved degradation over TiO2 meaning that the lighter coat is only a slight improvement to 

the heavier coat. Further extended irradiation experiments were performed with the original 

composite to investigate the stability of the composite over this longer period, and to see if 

perhaps 100% elimination of Famotidine could be achieved with this material. The results of 

these experiments are shown in Figure 5.29. 
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Figure 5.29: Extended irradiation photocatalytic experiments with ZnHFpc-TiO2 for 7h with air purging 

compared with a non-purged experiment. [ZnHFpc-TiO2] = 0.031 g/100 mL (0.0155 g/50 mL, air 

purged), [FAM] = 0.083 mM. 

 

Even with an extended irradiation of 7 h (420 mins), the total elimination of Famotidine by 

ZnHFphthalocyanine-TiO2 reaches only 55%. Without air purging the total elimination reaches 

42% which is still out-performed by TiO2 which reaches just over 50% after 7 h. Following 

these experiments, we deemed this composite, although photo-stable, to be an ineffective 

photocatalyst. Further to this we have concluded that a lighter loading of the phthalocyanine 

sensitiser showed an improved performance over the heavier coat which may indicate that 

aggregation is a cause for the inefficiencies with this material.  

 

5.2.7 Preparation of 1,4-(tetrabenzaldehyde)phthalocyanine-TiO2 

Two non-metallated phthalocyanines prepared in our group (V. Peters et al.) were also 

considered as sensitisers for preparation of TiO2 based composites. These phthalocyanines 

experience much less aggregation due to the presence of aromatic peripheral substituents. We 

considered first preparing a composite with the β-isomer (Figure 5.30) and if this proved 

successful, further preparation of a composite with the α-isomer. For this non-metallated 

phthalocyanine we decided to adopt a different synthetic strategy which other authors in this 

area have previously reported. Their method involves coating the sensitiser onto the TiO2 by 

stirring for 5h and instead of filtering the composite to remove the solvent, removal under 

vacuum thereby forcing all of the sensitiser onto the TiO2. A recent publication by Lu et al. 

2010 showed that their metallo-porphyrin-TiO2 composites could be recycled as much as six 

times in the degradation of nitrophenol without any dramatic loss in efficiency.164 In the 

synthesis of this phthalocyanine-TiO2 composite we adopted loading concentrations similar to 

Lu et al. (6 µM, 0.006 g/1 g TiO2) and also tested a higher loading (8 µM, 0.008 g/1 g TiO2) and 
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for comparison we also prepared a composite using the method previously adopted in our own 

work with TCPP-TiO2 with a higher loading (0.022 g/1 g TiO2). Photographs of these 

composites can be seen in Figure 5.31. 

 
Figure 5.30: Structure of 1,4-(tetrabenzaldehyde)-phthalocyanine, β-isomer (left) and 1,3-

(tetrabenzaldehyde)-phthalocyanine, α-isomer (right). 

 
Figure 5.31: Photograph showing the β-(tetrabenzaldehyde)phthalocyanine-TiO2 composites with various 

loadings: 0.006 g/1 g TiO2, 0.008 g/1 g TiO2, and 0.022 g/1 g TiO2. 

 

5.2.8 Characterisation 

5.2.8.1 UV-vis Spectroscopy 

The UV-vis spectrum of the β-(tetrabenzaldehyde)phthalocyanine in chloroform is shown in 

Figure 5.32 Also shown is its α-isomer. In non-metallated phthalocyanines the Q-band is split 

into two bands and for the β-isomer are seen at 702 nm and 666 nm, with the B-band arising at 

329 nm. For the α-isomer there is a red shift of the Q-bands to 714 nm and 681 nm, the B-band 

in this case arising at 328 nm. UV-vis DR analysis was also obtained of the composite samples 

and the results are shown in Figure 5.33. 
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Figure 5.32: UV-vis spectra in chloroform of the α-(tetrabenzaldehyde)phthalocyanine and the β-

(tetrabenzaldehyde)phthalocyanine. 

 

Similar to the previous ZnHFphthalocyanine-TiO2 composite materials, significant broadening 

of the bands arises with the solid state UV-vis for the β-tetrabenzaldehydephthalocyanine-TiO2 

composites. The order of the intensity of the bands in the visible region, as seen in the solution 

phase, has also reversed, and the most significant band in the spectrum arises at 638 nm. The 

shifts and broadening of the bands as previously discussed is dimerization/aggregation of the 

phthalocyanine on the surface. These effects appear to be enhanced somewhat in the solid state. 

Similar effects were observed in the solid state by Monahan et al. with Cu (II) phthalocyanine, 

who reported a close correspondence between the solution phase UV-vis of the dimer and the 

solid state spectrum of the dye. 217 More recent work to that for Cu(II)Pc by Seelan et al. 

reported red shifted broad bands with lower absorption coefficients in the solid state compared 

to narrow, sharp well resolved Q-bands in solution.218  
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Figure 5.33: Diffuse reflectance UV-vis spectra of the β-tetrabenzaldehyde)phthalocyanine-TiO2 

 

5.2.8.2 IR spectroscopy 

FT-IR of the composite and the sensitiser alone were obtained and the spectra are compared in 

Figure 5.34. The previous composite ZnHFpc-TiO2 indicated a binding in the IR spectra based 

on identical shifts in the composite and the sensitiser. The spectra for β-

tetrabenzaldehydephthalocyanine-TiO2 show the absence of two stretches 1014 cm-1 and 1094 

cm-1 and the appearance of a stretch at 1055 cm-1.  

 
Figure 5.34: FT-IR spectra of β-(tetrabenzaldehyde)phthalocyanine-TiO2 compared with the free 

sensitiser. 

 

Shifts are generally indicative of a binding as previously discussed. Arguably, binding is 

possible via H-bonding of the TiO2 surface with the aldehyde oxygen present on the peripheral 

substituents. Analysis of the full spectrum of stretches (see experimental for stretches) indicates 
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that the (C-O) band in the sensitiser, 1720 cm-1, is shifted in the composite to 1650 cm-1. This 

shift, along with the other shifts seen in Figure 5.34 would conclude that there is a binding of 

this sensitiser to the TiO2 surface. 

 

5.2.9 Examination of the Photocatalytic Efficiency of β-(tetrabenzaldehyde)-

phthalocyanine-TiO2 in Famotidine Degradation with Visible Light. 

Photodegradation experiments on the degradation of Famotidine were conducted with the three 

composites with the various loadings. The experiments were conducted for 3 h and were not air 

purged. Figure 5.35 shows the degradation profiles for the three composites along with two 

controls (TiO2 and photolysis). The performance of all 3 composites showed no significant 

degradation of Famotidine after 3 h and similar to the ZnHFphthalocyanine-TiO2 composite, the 

coat may have been a hindrance to photodegradation by TiO2. Of the 3 coats the 8 mg/1 g TiO2 

performed the best, although achieving only 24% elimination of Famotidine.  

 
Figure 5.35: Indoor photocatalytic experiments with β-(tetrabenzaldehyde)phthalocyanine-TiO2 (6 mg/1 g 

TiO2 vs. 8 mg/1 g TiO2 vs. 22 mg/1 g TiO2) for 3 h compared with control experiments. [β-TBpc -TiO2] = 

0.031 g, [FAM] = 0.083 mM. 

 

Unlike the previous sensitiser ZnHFpc, this phthalocyanine has considerably less aggregation 

and showed evidence of a binding to the TiO2 which is desirable for an electron injection based 

photocatalytic degradation mechanism. This photocatalyst also showed considerable stability 

post reaction so it is not fully understood why very little elimination of Famotidine was 

observed. It may simply be the case that carboxylate linkers are more efficient electron transfer 

functionalities than aldehydes. It may be worthwhile to investigate metallated and non-

metallated bulky substituted phthalocyanines with additional carboxylate functionalities present 

for anchorage to TiO2. Extended irradiation experiments were not performed with this 
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composite and based on the results obtained we did not proceed with coating and testing of the 

α-isomer.  

 

5.2.10 Synthesis of Acetylacetonate linker (3-[4-benzoic acid] pentane-2,4-dione) 

In reviewing current literature on linking groups, a recent study by McNamara et al., reported 

the use of an acetylacetonate linker which they attached to TiO2 and then subsequently attached 

this to a manganese sensitiser.163 This linker was synthesized and a 60% yield of product was 

obtained (compared to the literature 62%). Column chromatography as stated in McNamara et 

al. cited a 1:1 Ethyl Acetate: Hexane, however this ratio was re-optimised and we found that 2:1 

gave a more pure product.  

 

5.2.11 Immobilisation onto TiO2 

McNamara et al. reported a high stability to hydrolysis and oxidation when this linker was used. 

Figure 5.36 shows the acetylacetonate linker and the positions at which it binds to the sensitiser 

and TiO2. The carboxylic acid functionality could in theory be bound to the sensitiser or TiO2. 

With this in mind, the linker should first be attached to the sensitiser followed by attachment to 

TiO2. In order to link a sensitiser to this carboxylic acid functionality, functionalised 

porphyrins/phthalocyanines would need to be synthesized and then attached to the linker. 

Unfortunately time restraints did not allow this work to be carried out. We do, however, 

envisage the use of this linker as a potential solution for the current instability problems and 

work of this kind to be an appropriate direction for this project.  

O

O O

OH

Covalently binds 
Sensitiser/TiO2 

Covalently 
binds TiO2  

Figure 5.36 Acetylacetonate linker and its 2 possible linking sites for TiO2 and a sensitiser. 

 

5.2.12 Synthesis of TDI-TiO2 

Jiang et al. 2008 employed TDI (toluene diisocyanate) as a linker to attach a dye molecule to 

TiO2. The synthesis of TDI-TiO2 was very straightforward method involving stirring in DCM 

for 2h under N2. This yielded a pale yellow solid material which was left to vacuum dry and 

collected.  
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5.2.13 Characterisation of TDI-TiO2 

5.2.13.1 IR Spectroscopy 

FT-IR spectroscopy on the TDI-TiO2 showed both stretches for the amide at 3300 cm-1 and 1600 

cm-1, carbonyl moieties at 1644 cm-1 and the isocyanate stretch at 2280 cm-1 indicating that it 

has been coated onto TiO2. 

Sample Wavenumber cm-1 Strength Functional group 
TDI-TiO2 3300 weak N-H amide stretch 

  2280 strong O=C=N Isocyanate Stretch 
  1644 strong C=O  
  1600 strong N-H amide stretch 

Table 5.3: Table of IR stretches and assigned functional groups for TDI-TiO2. 

 

5.2.13.2 UV-vis Spectroscopy 

UV-vis analysis of the linked TiO2 was undertaken and the data shown in Figure 5.37. The TDI 

linker has some conjugation and its yellow colour should predictably give rise to absorbance 

above 400 nm. A large tail of absorbance was found with this sample from 400 nm to as far as 

600 nm indicating its conjugation to TiO2. 

 
Figure 5.37: Diffuse Reflectance spectroscopy of TDI-TiO2 compared with TiO2 

 

5.2.13.3 Immobilisation onto TiO2 

Figure 5.38 shows TDI-TiO2 and the free isocyanate moiety to which a sensitiser can be bound. 

In order to link a sensitiser to this isocyanate moiety, functionalised sensitisers are required. 

Time constraints did not allow this although the use of this linked TiO2 should be considered in 

the development of future visible light sensitised photocatalysts.  
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Figure 5.38: TDI attached to TiO2 with a remaining thiocyanate group for linkage to a sensitiser. 

 

5.2.14 Synthesis of APS-TiO2 

Silane coupling agents are commonly used to couple inorganic materials together with 

organic materials. Typical inorganic materials include metal oxides such as alumina, 

silica and titanium dioxide. Silane coupling agents generally exist as Y-R-SiX3 where Y 

is a functional group such as an amine which can be used to attach various organic 

molecules with mild conditions.162,219 R is the space between the functional group and 

the silane group which can be a range of species but is generally a straight aliphatic 

chain. X is another functional group which can undergo hydrolysis to attach to the metal 

oxide/inorganic material. Silanised TiO2 was prepared via a method by Ye et al. 2007.162 In 

this preparation method they used APTES, however, in our synthetic procedure APTMS was 

used instead. This procedure was also performed by a visiting student. The first product yielded 

a pale grey powder, the second product (synthesized by a visiting student), yielded a very wet 

product, which upon continued washing and vacuum drying did not yield a dry powder product 

similar to the first product. Follow-up analysis was performed on the former sample. Analysis 

for this linked TiO2 included EDX, diffuse reflectance, and FTIR analysis which is described 

below. 

 
5.2.15 Characterisation of APS-TiO2 

5.2.15.1 Energy Dispersive X-Ray Spectroscopy (EDX)  

Energy dispersive X-ray spectroscopy is a technique used in conjunction with SEM and is a 

form of analysis which detects x-rays emitted from the sample which is first bombarded with an 

electron beam. This beam ejects electrons from the sample which are then replaced by higher 

energy electrons from the beam. X-ray energy is then released from the sample in order to 

balance the energy between the two electron states. X-ray beams of various energies are then 

detected (in keV) depending on the element.  

 

EDX is an appropriate technique for solid samples which can be considered comparable to 

elemental analysis. Like elemental analysis it can generate information about the percentages of 

elements in a sample as well as the presence of certain elements. Since EDX is a very sensitive 



249 
 

technique it can only generate accurate results for rarer elements such as Ti, Fe, Si, etc. elements 

such as C, H, O and N cannot be determined. This technique was employed for the silane linked 

TiO2 sample as only this sample has Si atoms.  

 

The spectrum for a control TiO2 sample is shown in Figure 5.39 along with the APS-TiO2 

sample. Ti appears in the spectra at 4.6 and 5 keV in both samples, with silicon appearing at 1.8 

keV. A number of spectra were attained at various points in the sample, giving rise to mean 

values of abundances of certain elements which are found in Table 5.4. The approximate 

abundance found for silicon is 1.71%. A higher percentage of carbon is detected in the second 

sample due to the propyl chains on the linker. Carbon found in the control sample is due to 

contamination and for this reason this technique is only suitable for rarer elements. 

 

 

 
Figure 5.39: EDX spectra for TiO2 and APS-TiO2 showing clear signals for Ti and Si with the appearance 

of a peak for silica. 

 

Atom C O Ti Si S
Sample 1 (TiO2) mean 1.97 40.85 56.76 0 0.42

Sample 2 (APS-TiO2) mean 4.3 47.33 46.6 1.71 0.31  
Table 5.4: Mean values of the percentages of elements in both the control P-25 sample and the APS-TiO2 

sample. 
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5.3.15.3 FT-IR spectroscopy 

Characterisation of the APS-TiO2 linker was carried out via FT-IR spectroscopy (Figure 5.41). 

Stretches for amine, Si and C-H moieties can be found. Most importantly is the weak Si-O-Ti 

stretch at 956 cm-1. Amine stretches are found at 1666 cm-1 and at ~3450 cm-1. C-H stretches are 

also seen at 2937 cm-1 and weaker bands around ~1400 cm-1. Presence of these stretches 

confirm linkage of the aminopropyl silane chain to TiO2. 
 

 
Figure 5.41: FT-IR spectrum of the APS-TiO2, inset is a close up of the Si-O-Ti stretch. 

 

5.2.15.4 Attachment of a sensitiser to APS-TiO2 

Figure 5.42 below shows a typical coupling method of our prepared linker with an acid chloride 

functionalized sensitiser, R. Time constraints did not allow synthesis of an acid chloride 

functionalized sensitiser to coat our prepared linker, although preparation of this type of 

material could be considered a worthwhile venture in the future to develop stable visible light 

sensitised TiO2 materials. 

 
Figure 5.42: Coupling of the synthesized APS-TiO2 linker to a functionalized sensitiser. (R= Sensitiser). 
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5.2.16 Visible Light Sensitised Photocatalyst Development Conclusions 

Porphyrin Sensitised Photocatalysts: TCPP-TiO2 

Our first successfully prepared photocatalyst, TCPP-TiO2, showed an impressive performance 

in the photocatalytic degradation of Famotidine with both indoor and solar light. However, the 

photocatalyst showed instability throughout irradiation and considerable quantities of 

intermediates were shown to be present in chromatogram traces, which may indicate simple 

conversion to an oxidised/reduced Famotidine molecule. UV-vis studies on the photocatalyst 

post-reaction indicated that sensitiser still remains on the TiO2 surface and results have shown 

the possibility for re-use of the photocatalyst and also longer irradiation times which may have 

an effect on the performance of the photocatalyst. Further studies with other pharmaceuticals, 

Tamsulosin and Solifenacin indicated that the photocatalyst was less effective for these 

pharmaceuticals and it is clear that further studies should be performed with other types of 

pollutants to examine the exact nature of compounds which would be suitable candidates for 

this photocatalyst. 

 

Metallated-Phthalocyanine Photocatalysts: ZnHFphthalocyanine-TiO2 

Our metallated Zn-phthalocyanine-TiO2 composites showed a less impressive photodegradation 

of Famotidine compared to the porphyrin/TiO2 composites. Various conditions were tested such 

as air purging, and extended irradiation, however, control studies indicated that air purging 

alone was effective for some removal of Famotidine. Despite the ineffectiveness of the 

photocatalyst it showed a good stability to degradation by light and TiO2. The ineffectiveness of 

this photocatalyst was possibly due to the lack of a link/anchor between the TiO2 and the 

sensitiser (which may explain the success of our previous composite), and it is also possible that 

intense aggregation due to its planar structure may be quenching any photo-excited states of the 

phthalocyanine which are generated. In order to confirm this, a Zn-phthalocyanine possessing 

bulky substituents would need to be developed and tested.  

 

Our studies could not determine the exact mechanism of degradation for this composite as a 

singlet oxygen mechanism would be supported by an improved degradation with air purging. 

The lack of an anchor in the case of this composite may be of importance if a mechanism of 

‘electron injection’ is followed. The presence of a functionality on the peripheral substituents 

may allow anchoring of the phthalocyanine which may then allow an ‘electron injection’ 

mechanism of degradation to proceed. Development of phthalocyanine based sensitisers with 

functionalities such as carboxylic acids, sulfonates and phosphonic acids could be considered, 

along with the presence of additional bulky substituents to prevent aggregation.  
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Work by Reddy et al. 2007, Giribabu et al. 2009 and more recently Mori et al. 2010 reported 

the use of unsymmetrical Znphthalocyanine sensitisers in DSSCs.220,221,222 They reported the 

synthesis of these sensitisers with various bulky perpipheral substituents such as 

dipheynlphenoxys, or t-butyl groups and one acid group to anchor to TiO2 electrodes. They 

reported efficiencies of between 3.0-4.6% which are among the best achieved for MPc based 

DSSCs. Reddy et al. 2007 compared mono acid vs. tetra acid Zn phthalocyanine and found that 

the mono acid gave superior efficiencies due to the bulky t-butyl groups preventing aggregation 

and also creating ‘directionality’ in the excited state for electron injection to the TiO2 

conduction band. The current work by these groups and their respective success in synthesising 

unsymmetrical Zn-phthalocyanines by these various groups is encouraging. 

 

Metal-free Phthalocyanine Photocatalysts: 1,4-(tetrabenzaldehyde)phthalocyanine-TiO2. 

Our characterisation of this composite indicated that the sensitiser was bound to the TiO2 

surface via the aldehyde peripheral substituents. These peripheral substituents reduce 

aggregation between phthalocyanine rings. The results on Famotidine photocatalytyic 

degradation however indicated that no significant elimination was occurring compared to TiO2. 

In the case of all loadings the elimination of Famotidine was less that of TiO2, which would 

indicate that sensitiser immobilisation is inhibiting TiO2 photocatalysis. Given the evidence of 

binding, high photostability and reduced aggregation in this sensitiser the only explanation as to 

why this photocatalyst was not successful is that binding through an aldehyde functionality is 

just not as effective for electron injection as carboxylate anchors. 
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Chapter 6 - Thesis Conclusions/Future Work 
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The key aims of this thesis were four-fold.  

1. To investigate the photolytic degradation of three regularly prescribed pharmaceuticals 

(Famotidine, Tamsulosin Hydrochloride and Solifenacin Succinate) using various light 

sources and reactors,  

2. To examine the photocatalytic degradation of these pharmaceuticals with the 

photocatalyst titanium dioxide(TiO2) and determine the effects of various parameters 

such as pH, TiO2 concentration etc. on the photocatalytic process,  

3. To identify and characterise any intermediates generated from these photodegradation 

studies using LC-MS/MS and determine the degradation pathways to these 

intermediates.  

4. And finally, to develop and characterise new visible light sensitised photocatalytic 

materials such that visible/solar light could be harnassed and evaluate the performance 

of these materials with the 3 pharmaceutical targets.  

 

Photolysis studies in Chapter 3 examined the contribution of light only in the degradation of the 

three target pharmaceuticals. These studies examined a variety of light sources (MP vs. LP Hg 

lamps), glass types (Quartz and Pyrex) and reactor types (Enviolet vs. immersion well). Large 

scale Enviolet photolysis studies showed that significant quantities of intermediates were 

generated for Tamsulosin and Solifenacin. The design of this reactor was also shown to be 

inefficient with issues relating to inadequate cooling, and the potential for build-up of 

nanoparticulate residues throughout the reactor. Pyrex photolysis studies conducted with each of 

the pharmaceuticals in the immersion well set-up indicated that Tamsulosin could be completely 

eliminated within the 3 h period. This can be attributed to its light-sensitive nature. Famotidine 

and Solifenacin showed an elimination of 25% and 20% elimination respectively in photolysis 

studies showing that they are relatively photo-stable.  

 

Chapter 3 also showed the effects of photocatalytic degradation on each the pharmaceuticals. 

Titanium dioxide was employed as a photocatalyst in these studies and results showed that this 

photocatalyst can efficiently eliminate both Famotidine and Tamsulosin with complete removal 

within the three hour irradiation period. Solifenacin was not completely eliminated within the 

allotted irradiation time with approximately 80% removal. This was due to the formation of 

significant quantities of coloured intermediate products which can compete with Solifenacin for 

degradation and for light absorption. pH adjusted photocatalytic degradation studies indicated 

that the adsorption of each pharmaceutical is improved under alkaline conditions, however our 

studies with Solifenacin showed that this does not necessarily indicate a better photocatalytic 

performance as is documented in many literature articles. 
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Concentration variation studies indicated that the optimised TiO2 process can completely 

eliminate relatively high concentrations of Famotidine (200 µM), and Tamsulosin (up to 200 

µM). However, only low concentrations of Solifenacin could be completely eliminated (20 µM) 

with an appreciable 80% removal of concentrations at 83 µM.  These concentrations are of 

course abnormally high and even environmentally relevant concentrations would be at more 

‘treatable’ concentrations in the region of ng-µg/L. Further studies with the addition of 

hydrogen peroxide as an oxidant showed that each of the pharmaceuticals can be eliminated at a 

faster rate, and with effective mineralisation of intermediate compounds. The degradation and 

mineralisation achieved with the combined TiO2/UV/H2O2 process within a relatively short time 

frame, makes it a practical option for the treatment of pharmaceutical compounds in industrial 

wastewater treatment plants. Future work in the field of TiO2 photocatalysis is focused on two 

main aims: enhancing the visible light absorption of TiO2 and the immobilisation of TiO2. 

Immobilisation of the photocatalyst for ease of removal and the potential to recycle the 

photocatalyst would significantly reduce the cost of implementing the process.   

 

Control experiments in Chapter 3 also showed some interesting effects of the reaction of 

Famotidine and sodium bisulfite.1H NMR studies showed shifts which would indicate oxidation 

of the thiazole ring and also showed a complete conversion to this oxidised product. Oxidation 

of thiazole heterocycles are rare and compounds possessing these analogues are of particular 

interest as therapeutic agents.223 These oxidations generally employ harsh conditions, multiple 

steps and long reaction times.224 The effect observed in NMR experiments now warrants further 

study as it could be an alternative synthetic procedure for these analogues.  

 

Chapter 4 investigated the intermediates generated from photo-degradation studies with each of 

the pharmaceuticals. In-house individual methods were developed for each of the 

pharmaceuticals and these methods were initially applied in monitoring the elimination of the 

pharmaceuticals. These methods were then transferred to an LC-MS/MS system for analysis and 

characterisation of intermediate structures. Intermediates from photocatalytic and photolytic 

studies were examined and various structures were proposed based on MS/MS analysis of 

fragments. Identification of these intermediates has further allowed us to understand the 

mechanism and propose routes of degradation for each of the pharmaceuticals. Degradation 

routes were found to be principally photo-oxidative, although photo-reductive mechanisms were 

also apparent. 

 

In Chapter 5 new visible light sensitised photocatalytic composite materials were developed, 

characterised and evaluated with our pharmaceutical targets. These composite materials were 

based on titanium dioxide with porphyrin and phthalocyanine dyes. The performance of these 
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materials was evaluated initially with the pharmaceutical Famotidine and later with Tamsulosin 

and Solifenacin. The porphyrin/TiO2 composite showed significant activity in the degradation of 

Famotidine in indoor experiments when compared to TiO2 and photolysis. In solar studies with 

Famotidine, it outperformed TiO2 once again owing to its absorption in the visible region. 

HPLC chromatograms indicated that the degradation of Famotidine observed with this 

composite could be a relatively selective oxidation or reduction (depending on the mechanism 

i.e singlet oxygen, electron transfer) compared to the mechanism of TiO2 which is unselective. 

Additional studies with Tamsulosin and Solifenacin indicated that the composite was not 

effective for these pharmaceuticals. This may further indicate the selective degradation of 

Famotidine by this composite.  

 

Additional composite materials based on phthalocyanine dyes were prepared and tested. These 

dyes are found to be more stable and absorb into the near-IR. These materials were prepared in 

different manners which were similar to recently adopted methods by other groups. The 

photocatalytic activity of these composites were also evaluated with Famotidine. However, 

these composites showed little photocatalytic activity in the degradation of Famotidine. 

Generally, novel dye sensitised TiO2 materials are tested in the degradation of phenols and 

textile dyes and their elimination is monitored using UV-vis alone. This is the first use, to our 

knowledge, of dye sensitised TiO2 composites to be tested with actual pharmaceuticals and to 

additionally monitor their elimination with HPLC analysis.  

 

Further research with the porphyrin/TiO2 composite should include the addition of additives 

which could aid in the stability and lifetime of the material. A variety of visible light sources 

could also be employed to exclude as much as possible the absorption of TiO2 by the lamp. This 

may prevent photodegradation of the dye by TiO2, however this would need to be done in 

conjunction with the synthesis of new porphyrin molecules which red-shift the Soret band as 

they currently overlap and if lamps are selected which do not irradiate in the region of this band 

absorption of light by the dye could be significantly hampered along with the photocatalytic 

performance of the material. In addition to this, various porphyrins and phthalocyanines should 

be synthesized. These, ideally, should contain additional peripheral substituents to inhibit 

aggregation and also a variety of linkers to attach to TiO2. This should create optimum 

conditions for electron transport to TiO2. Composites which are based on metallated 

porphyrins/phthalocyanines should continue to be employed as these will result in a very stable 

material and could significantly prolong the lifetime of the photocatalyst. Also, considering the 

findings of a possible selective oxidation/reduction with our porphyrin/TiO2 composite, there 

may be potential for the use of this composite in synthetic organic chemistry. Generally 

oxidation and reduction reactions employ harsh and even dangerous reagents. Further work 
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could be done to investigate if this composite could be employed in selective photo-

oxidation/photo-reduction reactions. 
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In order of appearance: 
Chapter 2 Appending Data 

2A-1. Methods adopted for monitoring prior to our method development (developed by A. Deegan 2011) 

2A-2. HPLC Chromatogram of Famotidine Standards 0-100 µM  

2A-3. Standard Curve of Famotidine Standards  

2A-4. HPLC Chromatogram of Tamsulosin Standards 0-100 µM 

2A-5. HPLC Chromatogram of Tamsulosin 10 µM 

2A-6. Standard Curve of Tamsulosin Standards  

2A-7. HPLC Chromatogram of Solifenacin Standards 0-100 µM 

2A-8. Standard Curve of Solifenacin Standards 

2A-9. HPLC Chromatogram of Solifenacin in MeOH 

2A-10. HPLC Chromatogram of Solifenacin Standards in MeOH 

2A-11. Famotidine Standard Curve with Final HPLC-PDA Method 

2A-12. Tamsulosin Standard Curve with Final HPLC-PDA Method 

2A-13. Solifenacin Standard Curve with Final HPLC-PDA Method 

Chapter 3 Appending Data 

3A-1. UV-vis of Photocatalysis of Famotidine at pH3 (Sigma TiO2) 

3A-2. UV-vis of Photocatalysis of Famotidine at pH5 (Sigma TiO2) 

3A-3. UV-vis of Photocatalysis of Famotidine at pH6 (Sigma TiO2) 

3A-4. UV-vis of Photocatalysis of Famotidine at pH5 (P-25 TiO2) 

3A-5. UV-vis of Photocatalysis of Famotidine at pH9 (P-25 TiO2) 

3A-6. UV-vis of Photocatalysis of Famotidine at pH10 (P-25 TiO2) 

3A-7. UV-vis of Photocatalysis of Famotidine at pH4 (P-25 TiO2) 

3A-8. UV-vis of Photocatalysis of Tamsulosin at pH3 (P-25 TiO2) 

3A-9. UV-vis of Photocatalysis of Tamsulosin at pH3 (SA TiO2) 

3A-10. UV-vis degradation profiles showing studies with Famotidine and Tamsulosin in the Enviolet reactor 

vs. Low pressure Hg Lamp Studies vs. Quartz Immersion Well Studies. 

3A-11. UV-vis degradation profiles showing studies for Solifenacin in the Enviolet reactor vs. Low pressure 

Hg Lamp Studies vs. Quartz Immersion Well Studies with Quartz. Profiles are based on the increase in 

absorbance seen in the case of Solifenacin. 

3A-12. UV-vis analysis of an adsorption isotherm for Famotidine after 16 h of shaking (foil-covered). [FAM] 

= 0-100 µM, SA TiO2 = 0.05 g/50 mL, Time = 16 h. 

3A-13. UV-vis analysis of an adsorption isotherm for Famotidine after 48 h of shaking (foil-covered). [FAM] 

= 0-100 µM, SA TiO2 = 0.05 g/50 mL, Time = 48 h. 

3A-14. Charts showing adsorption (0.5 h) relative to degradation for different pHs for Famotidine (pre-

illumination) by Sigma TiO2 at different pHs. 
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3A-15. Charts showing adsorption (0.5 h) relative to degradation for different pHs for Famotidine (pre-

illumination) by P-25 TiO2 at different pHs. 

 

Chapter 4 Appending Data 

4A-1. Table of masses and intensities found in DI-MS studies of a Famotidine photocatalysis experiment 

Most significant and consistent masses in colour. 

4A-2. DI-Mass spectrum of m/z = 352, a Famotidine intermediate found only in DI-MS studies. 

4A-3. DI-Mass spectrum of m/z = 370, a Famotidine intermediate found in DI-MS studies and LC-MS 

studies. 

4A-4. DI-Mass spectrum of m/z = 171, a Famotidine intermediate found in both DI-MS and LC-MS studies. 

4A-5. DI-Mass spectrum of m/z = 173, a Famotidine intermediate found in both DI-MS and LC-MS. 

4A-6. m/z = 350 found in Famotidine DI-MS studies of a photocatalytic experiment. 

4A-7. m/z = 403 found in Famotidine DI-MS studies of a photocatalytic experiment. 

4A-8. m/z = 365 found in Famotidine DI-MS studies of a photocatalytic experiment. 

4A-9. m/z = 392 found in Famotidine DI-MS studies of a photocatalytic experiment. 

4A-10. EIC chromatograms of a photocatalytic reaction showing the development of m/z = 365. 

Photocatalysis [FAM] = 1 mM, 0.1 g/320 mL TiO2. 

4A-11. EIC chromatograms of a photocatalytic reaction showing the development of m/z = 392. 

Photocatalysis [FAM] = 1 mM, 0.1 g/320 mL TiO2. 

4A-12. EIC of a 50 μM standard of Famotidine showing the presence of the potassium adduct at m/z = 376 in 

the MS. Inset MS (top) and MS/MS (bottom) spectra. 

4A-13. Ions detected by LC-MS in the photocatalytic degradation of Famotidine. [FAM] = 0.083 mM, TiO2 = 

P-25 0.1 g/320 mL. 

4A-14. Ions detected by LC-MS in photolytic degradation of Famotidine with Pyrex glassware. [FAM] = 

0.083 mM. 

4A-15. Ions detected by LC-MS in photolytic degradation of Famotidine with Quartz glassware. [FAM] = 

0.083 mM. 

4A-16. Ions detected by LC-MS in photocatalytic degradation of Famotidine. [FAM] = 1 mM, TiO2 = P-25 

0.1 g/320 mL. 

4A-17. Masses between 40-120 mins found in DI-MS of a photocatalytic experiments of Tamsulosin. 

4A-18. Ions detected by LC-MS in the photocatalytic degradation of Tamsulosin. [TAM] = 0.083 mM, TiO2 = 

P-25 0.2 g/320 mL 

4A-19. Ions detected by LC-MS in the photolytic degradation of Tamsulosin with Pyrex glassware. [TAM] = 

0.083 mM. 

4A-20. Ions detected by LC-MS in the photolytic degradation of Tamsulosin with Quartz glassware. [TAM] = 

0.083 mM. 
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4A-21. Ions detected by LC-MS in the photocatalytic degradation of Tamsulosin. [TAM] = 1 mM, TiO2 = P-

25 0.2 g/320 mL 

4A-22. 15 possible structural isomers for m/z = 395. 

4A-23. MS of m/z = 395 at 18.9 mins and respective MS/MS spectra. 

4A-24. MS of m/z = 379 at 11.8 mins and 24.6 mins and their respective MS/MS spectra. 

4A-25. Ions detected by LC-MS in the photocatalytic degradation of Solifenacin. [SOL] = 0.083 mM, TiO2 = 

P-25 0.1 g/320 mL. 

4A-26. Ions detected by LC-MS in the photolytic degradation of Solifenacin with Pyrex glassware. [SOL] = 

0.083 mM. 

4A-27. Ions detected by LC-MS in the photolytic degradation of Solifenacin with Quartz glassware. [SOL] = 

0.083 mM. 

4A-28. Ions detected by LC-MS in the photocatalytic degradation of Solifenacin. [SOL] = 1 mM, TiO2 = P-25 

0.1 g/320 mL. 

4A-29. Table of MS parameters for Famotidine DI-MS and LC-MS Studies. 

4A-30. Table of MS parameters for Tamsulosin DI-MS and LC-MS Studies. 

4A-31. Table of MS parameters for Solifenacin DI-MS and LC-MS Studies. 

Chapter 5 Appending Data 

5A-1. Light Intensity in Footcandles recorded on 22-06-2010 during solar experiments with TPPCOOH-TiO2 

photocatalysts. 

5A-2. Spectral irradiance profile data for our Halogen (Tungsten) Lamp which was used in indoor 

photocatalytic reactions with visible light sensitised materials. 

5A-3. UV-vis profile of the adsorption of Famotidine onto TCPP-TiO2 in the dark. [FAM] = 0.083 mM, 

TCPP-TiO2 = 0.031 g/100 mL, Time = 1 h. 

5A-4. FT-IR analysis of TCPP-TiO2-A composite, inset the fingerprint region. This data is presented in Table 

5.1 in the main thesis. 

5A-5. FT-IR analysis of TCPP-TiO2-B composite, inset the fingerprint region. This data is presented in Table 

5.1 in the main thesis. 

5A-6. ATR-IR analysis of TCPP. This data is presented in Table 5.1 in the main thesis. 

 

API Solvent System Inj. Vol. (µL) Wavelength (nm) tR (mins) R.T. (mins) 

Famotidine 10 % ACN: H2O (0.1% 
ammonium acetate buffer) 50 205 5.2 10 

Tamsulosin 35 % ACN: H2O (0.1% 
ammonium acetate buffer) 50 205 7.5 10 

2A-1. Methods adopted for monitoring prior to our method development (developed by A. Deegan 2011) 
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2A-2. Famotidine Standards 0-100 µM (offset)  2A-3. Standard Curve Famotidine  
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2A-4. Tamsulosin Standards 0-100 µM (offset)  2A-5. Tamsulosin 10 µM standard 

Tamsulosin Standard Curve Area Count vs. Concentration 0-100uM
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2A-6. Tamsulosin Standard Curve   2A-7. Solifenacin Standards (offset) 
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2A-8. Solifenacin Standard Curve with ACN method  2A-9. Solifenacin standards (70:30 MeOH:H2O) 215 nm 
 

  
2A-10. Solifenacin standards (70:30 MeOH:H2O) 260 nm   2A-11. Famotidine Standard Curve Final Method 

 
2A-12. Tamsulosin Standard Curve Final Method       2A-13. Solifenacin Standard Curve Final Method 
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3A-3. FAM Photocatalysis at pH 6 SA-TiO2   3A-4. FAM Photocatalysis at pH 5 P-25 TiO2 

SM073 Famotidine Degradation at pH 9.00
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3A-5. FAM Photocatalysis at pH 9 P-25TiO2  3A-6. FAM Photocatalysis at pH 10 P-25TiO2 
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3A-7. FAM Photocatalysis at pH4 P-25TiO2   3A-8. TAMS Photocatalysis at pH 3 P-25TiO2 
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 3A-9. TAMS Photocatalysis at pH 3 SA-TiO2    
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3A-10. UV-vis degradation profiles showing studies with Famotidine and Tamsulosin in the Enviolet reactor 

vs. Low pressure Hg Lamp Studies vs. Quartz Immersion Well Studies. [FAM], [TAM] = 0.083 mM, Time = 

1 or 5 h. 

 

 
3A-11. UV-vis degradation profiles showing studies for Solifenacin in the Enviolet reactor vs. Low pressure 

Hg Lamp Studies vs. Quartz Immersion Well Studies with Quartz. Profiles are based on the increase in 

absorbance seen in the case of Solifenacin. [SOL] = 1 mM, Time = 1 or 5 h. 
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3A-12. UV-vis analysis of an adsorption isotherm for Famotidine after 16 h of shaking (foil-covered). [FAM] 

= 0-100 µM, SA TiO2 = 0.05 g/50 mL, Time = 16 h. 

 
3A-13. UV-vis analysis of an adsorption isotherm for Famotidine after 48 h of shaking (foil-covered). [FAM] 

= 0-100 µM, SA TiO2 = 0.05 g/50 mL, Time = 48 h. 
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Adsorption and Photocatalytic Contributions to Famotidine 
Degradation at Various pHs
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3A-14. Charts showing adsorption (0.5 h) relative to degradation for different pHs for Famotidine (pre-

illumination) by Sigma TiO2 at different pHs. 

 

 Adsorption and Photocatalytic contributions to Famotidine 
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3A-15. Charts showing adsorption (0.5 h) relative to degradation for different pHs for Famotidine (pre-

illumination) by P-25 TiO2 at different pHs. 
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0 mins p.a. 10mins 20mins 30mins 40mins 60mins 120mins 180mins
m/z Intens % m/z Intens % m/z  Intens % m/z Intens % m/z Intens % m/z Intens % m.z Intens % m/z Intens %
376 3 359 11 359 21 397 10 360 22 360 57 379.4 7 360 3
340 12 338 100 354 21 360 31 360 15 359.5 55 373.6 6 359.4 15
339 11 246 8 340 12 359 34 359 44 355.1 15 370.5 7 351.5 6
338 100 117 2 339 11 354 34 355 24 354.1 28 363.5 10 346.2 3
337 10 77.5 2 338 100 351 11 354 42 351.6 19 360 10 342.5 5
260 2 246 10 341 27 353 10 349.6 9 359.5 10 341.9 5

187 9 340 61 352 17 345.1 9 356.5 6 340.6 100
170 4 339 17 340 82 341.1 44 352.2 6 300.4 7
159 2 338 100 339 27 340.6 100 351.7 7 294.3 3
145 4 246 10 338 100 339.6 8 348.1 9 279.5 3
119 3 187 21 337 16 338.6 8 341.5 21 246.6 4
117 2 117 22 336 10 320.1 8 340.6 100 218.4 3

246 19 246.4 11 338.3 9 175.4 4
223 14 220.6 8 300.5 7 159.4 8
187 39 201.4 17 291.5 6 145.4 4
145 11 191.3 11 234.4 6 143.5 4
119 14 175.4 12 228.3 8 117.4 2
117 28 173.5 11 159.4 11 101.4 2

159.4 14 117.4 5
135.4 8
117.4 39
99.5 9

 
4A-1. Masses in Famotidine mass spectra. Most significant and consistent masses in colour. 

 

 
4A-2. DI mass spectrum of m/z = 352 a Famotidine intermediate found in DI-MS studies. 
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4A-3. DI-Mass spectrum of m/z = 370, a Famotidine intermediate found in DI-MS studies and LC-MS 

studies. 

 
4A-4. DI-Mass spectrum of m/z = 171, a Famotidine intermediate found in both DI-MS and LC-MS studies. 

. 

102.4 113.3

129.3 

155.2

30051057.d: +MS2(171.0)

0 

1000 

2000 

3000 

4000 

5000 
Intens.

50 75 100 125 150 175 200 225 250 m/z

155.3 

221.2 

291.2

30051006.d: +MS2(370.0) 

0 

50

100

150

200

250

300

Intens.

100 200 300 400 500 600 700 m/z



 
 

A14 
 

 
4A-5. DI-Mass spectrum of m/z = 173, a Famotidine intermediate found in both DI-MS and LC-MS  

 
4A-6. m/z = 350 found in Famotidine DI-MS studies of a photocatalytic experiment. 
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4A-7. m/z = 403 found in Famotidine DI-MS studies of a photocatalytic experiment. 

 
4A-8. m/z = 365 found in Famotidine DI-MS studies of a photocatalytic experiment. 
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4A-9. m/z = 392 found in Famotidine DI-MS studies of a photocatalytic experiment. 

 
4A-10. EIC chromatograms of a photocatalytic reaction showing the development of m/z = 365. 

Photocatalysis [FAM] = 1mM, 0.1g/320ml TiO2  
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4A-11. EIC chromatograms of a photocatalytic reaction showing the development of m/z = 392. 

Photocatalysis [FAM] = 1mM, 0.1g/320ml TiO2  

 
4A-12. EIC of a 50μM standard of Famotidine showing the presence of the potassium adduct at m/z = 376 in 

the MS. Inset MS (top) and MS/MS (bottom) spectra. 
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4A-13. Ions detected by LC-MS in the photocatalytic degradation of Famotidine. [FAM] = 0.083mM, TiO2 = 

P-25 0.1g/320mLs 

 

 
4A-14. Ions detected by LC-MS in photolytic degradation of Famotidine with Pyrex glassware. [FAM] = 

0.083mM. 
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4A-15. Ions detected by LC-MS in photolytic degradation of Famotidine with Quartz glassware. [FAM] = 

0.083mM. 

 

 
4A-16. Ions detected by LC-MS in photocatalytic degradation of Famotidine. [FAM] = 1mM, TiO2 = P-25 

0.1g/320mLs. 
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40mins 60mins 120mins
 m/z I I%  m/z I I%  m/z I I%        m/z I I%        m/z I I%        m/z I I%

409.5 26700 100 362.8 2268 8 409.5 18939 100 358.4 2739 14 409.5 18939 100 343.7 2628 14
410.4 7508 28 397.4 2007 8 441.3 7767 41 449.5 2743 14 441.3 7767 41 358.4 2739 14
441.4 7573 28 436.4 2185 8 289.5 7175 38 489.7 2678 14 289.5 7175 38 449.5 2743 14
289.5 7022 26 438.4 2082 8 410.6 6721 35 531.2 2589 14 410.6 6721 35 489.7 2678 14
425.6 6664 25 443.4 2179 8 277.1 5796 31 675.6 2712 14 277.1 5796 31 531.2 2589 14
367.5 4527 17 449.4 2075 8 423.5 5575 29 681.6 2667 14 423.5 5575 29 675.6 2712 14
381.4 4108 15 450.8 2248 8 378.4 5276 28 227.4 2466 13 378.4 5276 28 681.6 2667 14
395.4 4096 15 520.4 2106 8 359.5 4961 26 269.6 2510 13 359.5 4961 26 227.4 2466 13
475.5 3973 15 682 2013 8 455.6 4935 26 303.5 2459 13 455.6 4935 26 269.6 2510 13
332.4 3428 13 275.5 1777 7 228.4 4782 25 396.7 2426 13 228.4 4782 25 303.5 2459 13
355.6 3455 13 327.6 1947 7 381.5 4436 23 426.6 2548 13 381.5 4436 23 396.7 2426 13
368.3 3374 13 345 1832 7 452.7 4370 23 436.6 2436 13 452.7 4370 23 426.6 2548 13
350.6 3075 12 346.5 1888 7 441.7 4231 22 439.4 2536 13 441.7 4231 22 436.6 2436 13
411.4 3179 12 346.7 1796 7 701.5 4005 21 467.6 2449 13 701.5 4005 21 439.4 2536 13
441 3083 12 347.6 1896 7 360.2 3709 20 500.2 2502 13 360.2 3709 20 467.6 2449 13

228.4 2829 11 394.5 1984 7 365.5 3696 20 292.5 2261 12 365.5 3696 20 500.2 2502 13
305.5 2844 11 423.5 1883 7 412.6 3847 20 340.7 2217 12 412.6 3847 20 292.5 2261 12
227.6 2731 10 449.6 1886 7 475.9 3785 20 392.5 2343 12 475.9 3785 20 340.7 2217 12
359.5 2586 10 472.7 1914 7 382.4 3638 19 401.4 2331 12 382.4 3638 19 392.5 2343 12
383.5 2646 10 545.4 1846 7 476.5 3624 19 425.6 2238 12 476.5 3624 19 401.4 2331 12
414.6 2639 10 683.5 1888 7 502.4 3444 18 491.7 2231 12 502.4 3444 18 425.6 2238 12
424.9 2572 10 218.5 1515 6 286.5 3303 17 252.3 2055 11 286.5 3303 17 491.7 2231 12
491.4 2753 10 300.5 1572 6 376.7 3168 17 262.7 2067 11 376.7 3168 17 252.3 2055 11
321.4 2532 9 318.5 1729 6 318.5 3051 16 319.3 2010 11 318.5 3051 16 262.7 2067 11
351.6 2432 9 326.5 1491 6 346.4 2961 16 335.4 2072 11 346.4 2961 16 319.3 2010 11
369.4 2454 9 330.6 1545 6 374.4 2996 16 383.3 2017 11 374.4 2996 16 335.4 2072 11
455.4 2479 9 336.1 1524 6 340 2755 15 413.2 2106 11 340 2755 15 383.3 2017 11
461.5 2276 9 338.5 1590 6 368.4 2878 15 486.2 2007 11 368.4 2878 15 413.2 2106 11
544.3 2310 9 343.3 1583 6 395.5 2902 15 505.3 2173 11 395.5 2902 15 486.2 2007 11
186.5 2064 8 346.1 1664 6 402.6 2883 15 505.7 2020 11 402.6 2883 15 505.3 2173 11
285.5 2140 8 352.1 1543 6 435.6 2837 15 524.2 2160 11 435.6 2837 15 505.7 2020 11
291.4 2032 8 353.1 1700 6 533.3 2847 15 533.3 2847 15 524.2 2160 11
329.3 2101 8 389.4 1730 6 180.5 2739 14 180.5 2739 14

390.5 1726 6 343.7 2628 14  
4A-17. Masses between 40-120mins found in DI-MS of a photocatalytic experiment of Tamsulosin. 

 

 

 
4A-18 Ions detected by LC-MS in the photocatalytic degradation of Tamsulosin. [TAM] = 0.083mM, TiO2 = 

P-25 0.2g/320mLs 
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4A-19. Ions detected by LC-MS in the photolytic degradation of Tamsulosin with Pyrex glassware. [TAM] = 

0.083mM. 

 

 

 
4A-20. Ions detected by LC-MS in the photolytic degradation of Tamsulosin with Quartz glassware. [TAM] = 

0.083mM. 
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4A-21. Ions detected by LC-MS in the photocatalytic degradation of Tamsulosin. [TAM] = 1mM, TiO2 = P-

25 0.2g/320mLs 
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4A-22. 15 possible structural isomers for m/z = 395. 
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4A-23. MS of m/z = 395 at 18.9mins and respective MS/MS spectra. 
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4A-24. MS of m/z = 379 at 11.8mins and 24.6mins and their respective MS/MS spectra. 

 
4A-25. Ions detected by LC-MS in the photocatalytic degradation of Solifenacin. [SOL] = 0.083mM, TiO2 = 

P-25 0.1g/320mLs 
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4A-26. Ions detected by LC-MS in the photolytic degradation of Solifenacin with Pyrex glassware. [SOL] = 

0.083mM 

 
4A-27. Ions detected by LC-MS in the photolytic degradation of Solifenacin with Quartz glassware. [SOL] = 

0.083mM 
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4A-28. Ions detected by LC-MS in the photocatalytic degradation of Solifenacin. [SOL] = 1mM, TiO2 = P-25 

0.1g/320mLs 
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FAM DI-MS FAM LC-MS 

 
FAM DI-MS 

FAM LC-
MS 

MODE 
  

TRAP 
  Mass Range Mode STD/Normal STD/Normal Scan Begin 50 m/z 50 m/z 

Ion Polarity Positive Positive Scan End 800 m/z 800 m/z 
Ion Source Type ESI ESI Averages 5 Spectra 5 Spectra 

Current Alternating Ion Pol N/A N/A Charge Control ON ON 

Alternating Ion Polirity N/A N/A ICC Target 20000 20000 
DETECTOR AND BLOCK VOLTAGES ICC Actual 6278 491 

Multiplier Voltage 1750 V 1850 V 
Accummulation 
Time 1814 µs 50000 µs 

Dynode Voltage 7 kV 7 kV Max. Acc. Time 50000 µs 50000 µs 

Scan Delay 0 µs 0 µs MS/MS MANUAL MODE 
 Skimmer 1 Block 100 V 100 V Fast Calc ON ON 

Skimmer 2 Block 300 V 300 V ISTD OFF OFF 
TUNE SOURCE 

  
MS/MS AUTOMATIC 

 
Trap Drive 32.9 50.1 Auto MS/MS OFF ON 

Skim 1 34.9 V 15 V ROLLING AVERAGING 
 Skim 2 6 V 8.1 V Rolling ON 2cts OFF 

Octopole RF amplitude 150 Vpp 177.1 Vpp COMPRESSED SPECTRA 
 

Octopole delta 2.4 V 2.05 V 
Compressed 
Spectra OFF OFF 

Lens 1 -5 V -2.2 V 
   Lens 2 -60 V -49.5 V 
   OCtopole 2.49 V 5 V 
   Capillary Exit 108.2 V 65 V 
   Cap Exit Offset 73.2 V 50 V 
   

HV endplate Offset -500 V -500 V 
   Current Endplate 237.671 nA 1327.5 nA 
   HV Capillary 4000 V 4500 V 
   Current Capillary 41.605 nA 91.938 nA 
   Dry Temp (measured) 302°C 327°C 

Dry Gas (measured) 5 L/min 8.01 L/min 
   Nebuliser (measured) 15.14 psi 50.5 psi 
    

4A-29. Table of MS parameters for Famotidine DI-MS and LC-MS Studies 
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 TAMS DI-MS TAMS LC-MS  TAMS DI-MS TAMS 
LC-MS 

MODE   TRAP   
Mass Range Mode STD/Normal STD/Normal Scan Begin 50 m/z 50 m/z 
Ion Polarity Positive Positive Scan End 850 m/z 850 m/z 
Ion Source Type ESI ESI Averages 5 Spectra 5 Spectra 
Current Alternating 
Ion Pol N/A N/A Charge Control ON ON 

Alternating Ion 
Polirity N/A N/A ICC Target 20000  20000  

DETECTOR AND 
BLOCK 
VOLTAGES   ICC Actual 16857 350 

Multiplier Voltage 1750 V 1850 V Accummulation 
Time 702 µs 50000 µs 

Dynode Voltage 7 kV 7 kV Max. Acc. Time 50000 µs 50000 µs 

Scan Delay 0 µs 0 µs 
MS/MS 
MANUAL 
MODE   

Skimmer 1 Block 100 V 100 V Fast Calc ON ON 
Skimmer 2 Block 300 V 300 V ISTD OFF OFF 

TUNE SOURCE   
MS/MS 
AUTOMATIC   

Trap Drive 35.9 38.4 Auto MS/MS OFF ON 

Skim 1 38.8 V 19.2 V ROLLING 
AVERAGING   

Skim 2 6 V 6.2 V Rolling ON 2cts OFF 
Octopole RF 
amplitude 150 Vpp 201.6 Vpp COMPRESSED 

SPECTRA   

Octopole delta 2.4 V 1.93 V Compressed 
Spectra OFF OFF 

Lens 1 -5 V -4.1 V    Lens 2 -60 V -46.1 V    Octopole 2.55 V 2.51 V    Capillary Exit 113.7 V 95.4 V    Cap Exit Offset 75 V 76.2 V    HV endplate Offset -500 V -1200 V    Current Endplate 281.33 nA 1147.018 nA    HV Capillary 4000 V 4500 V    Current Capillary 40.679 nA 155.035 nA    Dry Temp 
(measured) 303 L/min 327 L/min    
Dry Gas (measured) 5°C 8.01°C    Nebuliser 
(measured) 15.19 psi 50.51 psi    

 

4A-30. Table of MS parameters for Tamsulosin DI-MS and LC-MS Studies 
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SOL DI-MS SOL LC-MS 

 
SOL DI-MS 

SOL LC-
MS 

MODE 
  

TRAP 
  Mass Range Mode STD/Normal STD/Normal Scan Begin 50 m/z 50 m/z 

Ion Polarity Positive Positive Scan End 2200 m/z 800 m/z 
Ion Source Type ESI ESI Averages 5 Spectra 5 Spectra 
Current Alternating 
Ion Pol N/A N/A Charge Control ON ON 

Alternating Ion 
Polarity N/A N/A ICC Target 20000 20000 

DETECTOR AND 
BLOCK 
VOLTAGES   ICC Actual 13835 485 

Multiplier Voltage 1850 V 1850 V Accummulation 
Time 333 µs 50000 µs 

Dynode Voltage 7 kV 7 kV Max. Acc. Time 50000 µs 50000 µs 

Scan Delay 0 µs 0 µs 
MS/MS 
MANUAL 
MODE   

Skimmer 1 Block 100 V 100 V Fast Calc ON ON 
Skimmer 2 Block 300 V 300 V ISTD OFF OFF 

TUNE SOURCE   
MS/MS 
AUTOMATIC   

Trap Drive 34 38.5 Auto MS/MS OFF ON 

Skim 1 36.3 V 31.7 V ROLLING 
AVERAGING   

Skim 2 6 V 15 V Rolling ON 2cts OFF 

Octopole RF 
amplitude 150 Vpp 205.7 Vpp COMPRESSED 

SPECTRA   

Octopole delta 2.4 V 2.05 V Compressed 
Spectra OFF OFF 

Lens 1 -5 V -4.7 V    
Lens 2 -60 V -50.7 V    
Octopole 2.51 V 2.64 V    
Capillary Exit 110.2 V 81.7 V    
Cap Exit Offset 73.8 V 50 V    
HV endplate Offset -500 V -752 V    
Current Endplate 144.921 nA 1420.181 nA    
HV Capillary 4000 V 4451 V    
Current Capillary 32.488 nA 135.468 nA    
Dry Temp 
(measured) 301°C 328°C    
Dry Gas (measured) 4.99 L/min 8.01 L/min    
Nebuliser 
(measured) 15.14 psi 50.61 psi 

   4A-31. Table of MS parameters for Solifenacin DI-MS and LC-MS Studies 
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5A-1. Light Intensity in Footcandles recorded on 22-06-2010 during solar experiments with TCPP-TiO2 

photocatalysts 

 
5A-2. Spectral irradiance profile data for our Halogen (Tungsten) Lamp which was used in indoor 

photocatalytic reactions with visible light sensitised materials. 



 
 

A30 
 

 
5A-3. UV-vis analysis of the adsorption of Famotidine onto TCPP-TiO2-A(soxhleted) in the dark. [FAM] = 

0.083mM, TCPP-TiO2-A = 0.031g/100mL, Time = 1h. 

 
5A-4. FT-IR analysis of TCPP-TiO2-A composite, inset the fingerprint region. This data is presented in Table 

5.1 in the main thesis. 
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5A-5. FT-IR analysis of TCPP-TiO2-B composite, inset the fingerprint region. This data is presented in Table 

5.1 in the main thesis. 

 

 
5A-6. ATR-IR analysis of TCPP. This data is presented in Table 5.1 in the main thesis. 
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