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Abstract

The design and synthesis of economically viable homogeneous and heterogeneous transition
metal complexes for photocatalytic hydrogen generation using visible light irradiation and as
OLED’s are under intense investigation. Transition  metal complexes are drawing great interest
as they offer highly efficient room temperature phosphorescence. In particular iridium (III)
complexes are considered to be the most promising since they exhibit: (1) good photo and
thermal stabilities, (2) high phosphorescence quantum efficiency, (3) very large values for
excited state lifetimes, (4) facile colour tuning through ligand structure control and (5) large
cross section for exciton formation. Such characterstic features are attributed to the efficient
spin-orbit coupling provided by the Ir metal as well as the strong structural or electronic
interactions between the Ir metal and ligands.

Chapter 1 starts up with the general introduction to various technologies used at present for H2

production followed by its storage, distribution and utilisation. Basic mechanism for natural
photosynthesis is described along with different artificial photosynthetic systems giving special
attention to intermolecular and intramolecular photocatalyts. Effort has been taken to include
most of the recent publications in these catagories. This is followed by a complete insight into
the iridium chemistry starting with the iridium complexes using (N^N) co-ordinating ligands and
multimetal complexes derived from it followed by Ir complexes with the cyclometallating
ligands which then moves along the synthetic aspects and photophysics of the tris complexes and
then to the importance of iridium terpyridine complexes. A brief history on the basic excited
state properties of iridium metal complexes is described after that. The chapter ends up with the
application of the iridium complexes mainly concentrating on the OLED’s.

Chapter 2 details the basic synthetic procedures and instruments employed in the studies
presented in later chapters. Various techniques used for the characterisation of the complexes
including 1D and 2D Nuclear Magnetic Resonance Spectroscopy (NMR), Mass Spectroscopy,
Elemental Analysis (CHN), High Performance Liquid Chromatography (HPLC), Absorption and
Emission spectroscopy, Time Corelated Single Photon Counting (TCSPC), Laser Flash
Photolysis and Gas Chromatography (GC) are briefly described in this chapter.

Chapter 3 deals with the synthesis of iridium polypyridyl complexes with various
cyclometallating ligands used for intermolecular and intramolecular photocatalytic H2 generation
from H2O. A series of heteroleptic iridium monomers and hetrodinuclear Ir-Pt/Pd dimers, which
are potential candidates for photocatalytic H2 generation, are described along with preliminary
photophysics measurements and photocatalytic H2 production results as Turn Over Numbers
(TON’s) measured using gas chromatography.
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Chapter 4 describes the detailed excited state photophysics of novel iridium complexes.
Absorption and emission spectra of these novel complexes are taken in different solvents in order
to examine any solvatochromic effects. Deaeration was done using freeze pump thaw method in
order to remove any oxygen present in the samples that can cause quenching. Temperature
dependent emission measurements were carried out in temperature range 77 K to 298 K in every
10 K temperature interval. Temperature dependent lifetime measurements were also carried out
in temperature range 77 K to 298 K in every 10 K temperature interval using TCSPC and a
cryostat.

Chapter 5 gives an account on the novel high yield synthesis, characterisation, reaction
mechanism and excited state photophysics of Ir(polypyridyl)2Cl2 complexes and their deuteriated
analogous. Taking [Ir(bpy)2Cl2]PF6 as the standard complex significant effort has been made to
figure out the synthetic mechanism of the reaction with the aid of NMR and HPLC done in a
concomitant way. This section also explains the novel synthetic method for removing the inner
sphere chlorides as triflate complexes and binding the triflate intermediates to other polypyridyl
ligands. Detailed study has been carried out on probing the excited state photophysics of these
complexes. Excited state lifetimes measured using both TCSPC and laser flash photolysis which
provided promising evidence on the effect of deuteriation on lifetimes and the role these
complexes can play in OLED applications. Effort has taken in order to study intermolecular
photocatalysis with these complexes.

Chapter 6 gives an overview of all the work that has been carried out up to date and a future
research plan is also included.
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Chapter I

Introduction

In this chapter areas relevent to the studies done in the remaining chapters will be

introduced. Firstly various approaches for H2 production are discussed along with natural

and artifical photosynthesis and various photocatalytic complexes reported in the literature

for intramolecular and intermolecular photocatalysis. Secondly discussion focuses on the

developments with respect to the synthesis and characterisation of Ir (III) polypyridyl

complexes with particular emphasis on photophysics. Other areas, which have specific

relevance to individual chapters, will be introduced in those chapters.



Chapter 1 - Introduction

2

1.1 Introduction

Energy affects all aspects of modern life. Energy is an essential commodity for increasing

productivity in both agriculture and industry. The world’s energy requirements have been

increasing due to a growing world population, technological development, and higher living

standards. Due to world population growth and the advance of technologies that depend on fossil

fuels, reserves of fossil fuel eventually will not be able to meet the energy demand. The most

important property of any energy source is its environmental compatibility. Our current energy

infrastructure is dominated by fossil fuel use, which leads to greenhouse gas emissions. One of

the major challenges facing humanity is to develop a renewable source of energy to replace our

dependence on fossil fuels. Ideally, this new source should be abundant, inexpensive,

environmentally clean, and widely distributed geographically. Different renewable alternatives

have been considered which may provide potential solutions to the current environmental issues.

Renewable energy should be a clean or inexhaustible energy like hydrogen energy, solar energy,

wind energy, biomass energy, hydropower energy, geothermal energy and tidal energy. The most

important benefit of renewable energy systems is the decrease of environmental pollution.1,2

Of the few potential energy sources that might meet these criteria, sunlight is the most attractive.

The sun delivers energy to the earth’s surface at an average rate which is about four orders of

magnitude larger than the current rate of worldwide technological energy use. Although practical

methods for conversion of sunlight to electricity exist, solar generated electricity currently does

not compete successfully with that from fossil fuels. The diurnal nature of solar radiation, the

fluctuation of sunlight intensity at the earth’s surface as a function of the season and weather

conditions, and the diffuse nature of solar energy, makes it impractical for powering land

vehicles. This in turn will necessitate either great advances in batteries or other devices for

storing electricity, or generation of fuels from sunlight. For example, generation of hydrogen

from water using sunlight and using it as a fuel.3

Hydrogen is potentially an ideal energy carrier, as it is nonpolluting and gives up both its

electrons upon oxidation to form only water. Although it is the most abundant element in the

universe, elemental hydrogen is not present in great quantities on earth; most of the hydrogen

present in earth is bonded to oxygen in the form of water. A number of challenges must be
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overcome for hydrogen to be used widely as a sustainable energy source. In order to achieve the

full environmental benefit of hydrogen as an energy carrier, low carbon intensive, low polluting,

and lower cost processes for producing hydrogen from renewable energy sources need to be

developed. Scientific advances are needed to develop more energy-efficient and cost-effective

methods for purification and delivery, and storage of hydrogen systems, especially for vehicular

on board storage, and to enable more durable fuel cells for converting hydrogen into electrical

energy. The development of heterogeneous catalytic systems for hydrogen production from

water under irradiation has been investigated during last three decades. Intramolecular

photocatalysts, however, are very attractive in the sense that their chemical and photochemical

properties can be understood and tuned at the molecular level. Moreover, intramolecular catalytic

system may be covalently bound to photosensitiser, which leads to more efficient electron

transfer. Molecular devices for water splitting based on such systems are of great interest.4

1.2 Solar hydrogen - fuel for the future

Hydrogen can be obtained from diverse resources, both renewable (hydro, wind, wave, solar,

biomass and geothermal) and non-renewable (coal, natural gas and nuclear). It can be stored as a

fuel and used in transportation and distributed heat and power generation systems using fuel

cells, internal combustion engines or turbines, with the only by-product at the point of use being

water. Hydrogen can also be used as a storage medium for electricity generated from

intermittent, renewable resources, such as solar, wind, wave and tidal power; it thereby provides

the solution to one of the major issues of sustainable energy, namely the problem of

intermittency of supply. The ability of hydrogen to replace fossil fuels in the transportation

sector could address one of the world’s major environmental problems.5 The importance of

hydrogen as a potential energy carrier has increased significantly over the last decade, owing to

rapid advances in fuel cell technology. Fuel cells, operating using hydrogen or hydrogen-rich

fuels, have the potential to become major factors in catalysing the transition to a future

sustainable energy system with low carbon dioxide emissions. Figure 1.1 illustrates the central

role of hydrogen as an energy carrier linking multiple hydrogen production methods and various

end-user applications. One of the principal attractions of hydrogen as an energy carrier is

obviously the diversity of production methods from a variety of resources. Hydrogen can be

produced from coal, natural gas and other hydrocarbons by a variety of techniques, from water
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by electrolysis, photolytic splitting or high-temperature thermochemical cycles, from biomass

and even municipal waste. Such a diversity of production sources contributes significantly to the

security of energy supply.

Figure 1.1 Hydrogen as an energy carrier linking multiple hydrogen production methods,
through storage to various end-users.14

The conversion of solar energy into electricity or other forms of energy is a very promising way

to solve the energy crisis problem. Since the total solar energy that reaches the earth surface

exceeds our total energy consumption by a factor of thousands, an attractive solution would be

large scale conversion of solar energy to electricity and fuel. Many attempts were made to

convert solar energy into electricity, especially after the discovery of new devices capable of

utilising sunlight, i.e. dye-sensitised solar cells. Another way to utilise solar energy is water

splitting with production of molecular hydrogen and oxygen. Molecular hydrogen is an ideal fuel

because the only product of combustion is water, when combustion is made in pure oxygen. 6,7

Many studies on visible light-driven water splitting, into hydrogen with either heterogeneous or

homogeneous systems have been reported since late 1970s.8,9,10 The key components of these

photochemical H2 evolving systems are usually a light-harvesting photosensitiser, a sacrificial

electron donor, and a proton-reduction catalyst. With the aim of developing light driven H2
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evolving devices, several photoinduced molecular devices for homogeneous hydrogen generation

were constructed in recent years.11,12 Solar energy stored in hydrogen is available at any time and

at any place on Earth, regardless of when or where the solar irradiance (or the hydropower,

biomass, ocean energy or wind energy) was converted. The fundamental discrepancies in the

times and places of solar energy supply and human energy demands can be overcome using

hydrogen. Solar hydrogen combines the advantages of hydrocarbons with the advantages of solar

energy (ecological acceptability, renewability and low risk).

A typical energy chain for hydrogen will comprise hydrogen production, distribution and

delivery through hydrogen storage and ultimately its utilisation. The energy chain for sustainable

hydrogen energy will involve the harvesting of sunlight or other energy sources to yield

hydrogen as the energy carrier, and the storage and distribution of this energy carrier to its

utilisation at an end device centered on either fuel cells or combustion where it is converted to

power. The ultimate realization of a hydrogen-based economy could potentially confer enormous

environmental and economic benefits, together with enhanced security of energy supply.

Perhaps, the most telling argument for a sustainable hydrogen economy is the potential (globally)

to drastically reduce carbon emissions. However, the transition from a carbon-based (fossil fuel)

energy system to a hydrogen-based economy involves significant scientific, technological and

socioeconomic barriers to the implementation of hydrogen as the clean energy source of the

future.13

1.3 Main Approaches for Hydrogen production

Hydrogen is the third most abundant chemical element in the Earth’s crust, but it is invariably

bound in chemical compounds with other elements. It must, therefore, be produced from other

hydrogen-containing sources using energy, such as electricity or heat. At present, hydrogen is

produced in large quantities from fossil fuels by steam reforming of natural gas and partial

oxidation of coal or heavy hydrocarbons.14 These methods can take advantage of economies of

scale and are currently the cheapest and most established techniques for the large-scale

production of hydrogen. They can be used in the short to middle term to meet hydrogen fuel

demand and enable the production and testing of technologies related to hydrogen production,

storage, distribution, safety and use. However, in the long term, it is clearly unsustainable that
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the hydrogen economy is driven by hydrogen derived from hydrocarbons. However, to achieve

the benefits of a truly sustainable hydrogen energy economy, hydrogen has to be produced from

non-fossil resources, such as water.15,16,17 Hydrogen can be produced by splitting water through

various processes, including electrolysis, photo-electrolysis, high temperature decomposition and

photo-biological water splitting. The commercial production of hydrogen by electrolysis of water

achieves an efficiency of 75 % but the cost is currently several times higher than that produced

from fossil fuels. Electricity derived from renewable energy resources (e.g. wind, wave, tidal)

might provide local hydrogen needs, but it will not meet the volumes of hydrogen required

globally for its widespread use as the new energy source.18

Among the different approaches, photocatalysis has received much attention as a possible

method for photochemical conversion and storage of solar energy. Photosynthetic bacteria

represent a method with appreciable efficiency for hydrogen evolution using solar energy. The

various renewable pathways for H2 production from solar energy are shown in figure 1.2 below.

Figure 1.2 Renewable pathways for hydrogen production.47
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Achieving low-cost and efficient solar energy production of hydrogen requires the development

of innovative materials, emerging physical phenomena, novel synthetic techniques and new

design concepts. Some of the main technologies used for hydrogen production and their status of

development are summarised below.

1.3.1 Electrochemical processes

Water electrolysis is one of the most important industrial processes for hydrogen production

today, and is expected to become even more important in the future. The three major

technologies currently under consideration for electrolytic hydrogen production are classified as

alkaline, polymer membrane and ceramic oxide electrolyte. Developments of solid electrolytes

for water electrolysis at intermediate temperatures are also important.19 A principal focus of

modern research in hydrogen production by electrolysis is to discover electrode materials that

exhibit good electrochemical stability and show interesting activity for the typical

electrochemical reactions. It is also desirable that these materials be inexpensive, abundantly

available, easy to manipulate and nonpolluting.

1.3.2 Concentrating solar power Technologies (CSP)

Concentrating solar power (CSP) systems use large mirrors to focus direct solar radiation onto a

small absorber area, in order to generate heat at temperatures ranging from 200 0C to 1000 0C.

CSP plants offer possibilities to convert solar radiation on a large scale into a solar chemical fuel

such as hydrogen (figure 1.3). Chemical fuels have the advantages of being storable and

transportable. Various new concepts were recently developed for solar thermal hydrogen

production.20 The majority of those are solar thermochemical cycles, solar steam reforming of

natural gas and methane cracking. Moreover, the high temperature electrolysis can also produce

hydrogen by using electricity and heat from solar thermal power plants.
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Figure 1.3 Principle of solar fuel production.149

1.3.3 Photochemical processes

Hydrogen production by solar energy is direct photochemical reduction of water. Of the various

possible methods, nature provides a blueprint for converting solar energy in the form of chemical

fuels.21 A leaf is a synergy of elaborated structures and functional components in order to

produce the highly complex machinery for photosynthesis in which light harvesting,

photoinduced charge separation, and catalysis modules combine to capture solar energy and split

water into oxygen and ‘‘hydrogen’’ efficiently. In artificial photocatalytic systems the

photosensitiser is excited by visible light and can thereafter effect redox reactions, yielding

electrons for the water reduction. One of the benefits of this system is that several sensitisers

with different absorption characteristics can be used simultaneously, leading to higher quantum

yields per unit area. Thus, the design of efficient, cost-effective artificial systems by the coupling

of leaf like hierarchical structures and analogous functional modules under the guidance of the

key steps of natural photosynthesis would be a major advance in the development of materials

for energy conversion. Further details are given in section 1.7 and section 1.8.

1.3.4 Photocatalytic H2 Production

Photocatalytic water splitting employs light and semiconductors to split water. The

photocatalytic water splitting will be advantageous for the large-scale application of solar
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hydrogen production because of its simplicity. Water splitting using light energy has been

studied for a long time using powder and electrode systems since the Honda–Fujishima effect

was reported.22,23 There is no doubt that photocatalytic water splitting will contribute to green

sustainable chemistry. The final target of this research field is to achieve artificial photosynthesis

and solar hydrogen production from water. Figure 1.4 shows the main processes in a

photocatalytic reaction. The first step (i) is absorption of photons to form electron–hole pairs.

The second step (ii) in Figure 1.4 consists of charge separation and migration of photogenerated

carriers and the final step (iii) in Figure 1.4 involves the surface chemical reactions.

Figure 1.4 Main processes in photocatalytic water splitting.150

Water splitting proceeds on heterogeneous photocatalysts with semiconductor properties as

schematically shown in Figure 1.5. Semiconductors have the band structure in which the

conduction band (CB) is separated from the valence band (VB) by a suitable band gap.

Irradiation results in generation of electrons and holes in the CBs and VBs, respectively. The

photogenerated electrons and holes cause redox reactions similarly to electrolysis. Water

molecules are reduced by the electrons to form hydrogen and are oxidised by the holes to form

oxygen (for overall water splitting). Important points in the semiconductor photocatalyst

materials are the width of the band gap and energy levels of the CBs and VBs. The bottom level

of the CB has to be more negative than the redox potential of H+/H2 (0 V vs. NHE), while the top

level of the VB has to be more positive than the redox potential of O2/H2O (1.23 V). Therefore,

the band gap should be wider than 1.23 eV.
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Figure 1.5 Principle of water splitting on semiconductor photocatalysts.150

1.3.5 Photobiological H2 Production

Photosynthetic green algae and cyanobacteria provide a promising pathway for generating

hydrogen on a large scale. Green algae and cyanobacteria can use solar energy to convert water

into hydrogen gas, an energy carrier whose use does not emit greenhouse gases.24 Hydrogen

production by these microorganisms depends on the availability of plentiful resources, namely

water as a substrate and solar energy as the energy source. Moreover, the oxygen and hydrogen

that such cells produce could be used in a fuel cell to generate electricity (Figure 1.6).

Figure 1.6 Photobiological H2 production and its utilisation in a H2 fuel cell taken from
Ref : http://www.microbemagazine.org/309-photobiological hydrogen production
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Green algae and cyanobacteria absorb light through pigments that are associated with two

photosystems, photosystem I (PSI) and photosystem II (PSII). The absorbed light energy is

transferred from the antenna pigments to chlorophyll reaction center molecules where charge

separation occurs, yielding oxidants and reductants. PSI generates a reductant that eventually

reduces the iron-sulfur protein ferredoxin, which plays several roles. Its main function is to

provide electrons to generate NADPH via ferredoxin-NADP oxidoreductase. NADPH, along

with ATP, is needed for fixing carbon dioxide and for producing carbohydrates. However, in the

absence of carbon dioxide and under anaerobic conditions, reduced ferredoxin or NADPH

reduces protons to yield hydrogen gas, a reaction catalysed by hydrogenase. Ferredoxin links

photosynthetic electron transport directly to hydrogen production in green algae, whereas

NADPH is the likely electron donor to hydrogenease in cyanobacteria.

1.4 Technologies for hydrogen storage, distribution and utilisation

1.4.1 Hydrogen Storage

Viable hydrogen storage is considered by many as one of the crucial and the most technically

challenging barriers to the widespread use of hydrogen as an effective energy carrier.25 Hydrogen

contains more energy on a weight-for-weight basis than any other substance. Unfortunately,

since it is the lightest chemical element of the periodic table, it also has a very low energy

density per unit volume. The hydrogen economy will require two types of hydrogen storage

systems; one for transportation and another for stationary applications. Both have different

requirements and constraints. The transportation sector is believed to be the first high-volume

user of hydrogen in the future hydrogen economy. The hydrogen storage requirements for

transportation applications are far more stringent than those for stationary applications. There are

four technologies available today to store hydrogen aboard vehicles

 Liquefied hydrogen used by NASA and considered for airliners.

 Metal hydrides used for example by Mazda and by Daimler-Benz in passenger cars.

 Compressed hydrogen gas used on urban transport buses built by Ballard.

 Carbon sorption yet to be used on vehicles.

A serious downside of these methods is the significant energy penalty, up to 20 % of the energy

content of hydrogen is required to compress the gas and up to 30 % to liquefy it. Another crucial
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issue that confronts the use of high-pressure and cryogenic storage centers, is public perception

and acceptability associated with the use of pressurised gas and liquid hydrogen containment.

This clearly represents a particularly challenging set of credentials for designing the ideal storage

material.

The most promising stationary hydrogen storage materials are a class of ionic–covalent hydrides

formed by light elements, such as lithium, boron, sodium, magnesium and aluminium. Hydrogen

absorption/desorption in these materials usually involves high-temperature solid-phase

transitions. However, much more fundamental research is required to understand the physical

and chemical processes governing the hydrogen storage and release and to improve the hydrogen

absorption/desorption characteristics in this class of materials to meet hydrogen storage

requirements.

1.4.2 Hydrogen Distribution

The current transportation system for delivering conventional fuels to consumers cannot be

easily transformed for use with hydrogen. The present options for transporting hydrogen include

compressed gas (200 bar) in steel tube cylinders, liquid hydrogen tanks and a few examples of

local networks of hydrogen pipelines. 26 All these options are expensive and contribute

significantly to the cost of hydrogen for end-users. New concepts will be needed to reduce

delivery costs while retaining high safety standards from the point of production through to

refueling end-users. The basic components of a hydrogen delivery infrastructure therefore need

to be developed. The construction of a new hydrogen network would require significant

investment accompanied by research and development of new materials, low-cost compressor

technology, seals, sensors and controls, as well as new refilling stations. In those areas where

natural gas is not available, hydrogen could be best produced on-site from water, methanol or

ammonia, via electricity ideally from renewable energy sources, e.g. wind or solar, or from

biofuels. Localised hydrogen production might fit better with accessible fuel distribution. When

high penetration rates of hydrogen in energy sector are reached, the ideal long-term option for

hydrogen distribution will be a grid of hydrogen pipelines connecting centralised hydrogen

production facilities with stationary users and mobile filling stations.
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1.4.3 Hydrogen Utilisation

The widespread use of hydrogen as an energy carrier will depend significantly on the availability

of efficient, clean and economic techniques for its utilisation and conversion to electricity/heat.

The synergistic complementarity of hydrogen and electricity represents one of the most

appealing routes to a sustainable energy future, and fuel cells provide, arguably, the most

efficient conversion device for converting hydrogen and other hydrogen-bearing fuels into

electricity.27 A fuel cell is a device similar to a continuously recharging battery; a fuel cell

generates electricity by the electrochemical reaction of hydrogen and oxygen from the air. An

important difference is that batteries store energy, while fuel cells can produce electricity

continuously as long as fuel and air are supplied. Several types of fuel cells operating on a

variety of fuels and suitable for different energy applications have been developed, but all share

the basic design of two electrodes (anode and cathode) separated by a solid or liquid electrolyte

or membrane (Figure 1.7). Hydrogen (or a hydrogen-containing fuel) and oxygen are fed into the

anode and cathode of the fuel cell and the electrochemical reactions assisted by catalysts take

place at the electrodes. The electrolyte or membrane enables the transport of ions between the

electrodes while the excess electrons flow through an external circuit to provide electrical

current.

Figure 1.7 Schematic of a fuel cell.147
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Because fuel cells are not subject to the intrinsic limitations of the Carnot cycle, they convert

fuel into electricity at more than double the efficiency of internal combustion engines. In

transportation, hydrogen fuel cell engines operate at an efficiency of up to 65%, compared to

25% for present-day petrol driven car engines. When heat generated in fuel cells is also used in

combined heat and power (CHP) systems, an overall efficiency in excess of 85% can be

achieved. Unlike internal combustion engines or turbines, fuel cells demonstrate high efficiency

across most of their output power range. This scalability makes fuel cells ideal for a variety of

applications from mobile phone batteries through vehicle applications to large-scale centralised

or decentralised stationary power generation. Hydrogen fuel cells emit only water and have

virtually no pollutant emissions, even nitrogen oxides, because they operate in the temperature

range of 60 0C – 120 0C, which is much lower than the normal operating temperature of internal

combustion engines. Hydrogen-powered fuel cell vehicles provide a route, in theory, to real (i.e.

complete life cycle) zero emissions if the hydrogen fuel could be sourced from renewable

routes.28

1.5 Natural Photosynthesis

Nature has created a process which is capable of harvesting the solar energy that reaches our

planet and to use it to sustain life. This process is called photosynthesis and the chemical

reactions within it are probably the most important reactions taking place on earth.29 It is the

photosynthesis in cyanobacteria, certain algae and higher plants that produce the oxygen we

breathe, most of our food and much of our raw materials. If mankind could understand and

mimic the basic principles of photosynthesis, an endless and non-polluting energy source would

become accessible.

Photosynthetic organisms capture sunlight very efficiently and convert it into organic molecules.

These molecules are the building blocks of all living organisms and without photosynthesis life

on our planet would not have evolved in the way that we know. At the heart of the

photosynthetic process, is the splitting of water by sunlight into oxygen and ‘hydrogen’. The

oxygen is released into the atmosphere where it is available for us to breathe and to use for

burning fuels to drive our technologies. The ‘hydrogen’ is not normally released into the

atmosphere but instead is combined with carbon dioxide to make sugars and other organic
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molecules of various types. When fuels are burnt (fossil, biomass and other biofuels) to release

energy, the ‘hydrogen’ stored in these organic molecules are combined with atmospheric oxygen,

so completing a cycle that started millions of years ago. Similarly, energy is also released from

the organic molecules which constitute our food, when they are metabolised within our bodies by

the process of respiration. Thus in the biological world, photosynthesis brings about the splitting

of water into oxygen and ‘hydrogen’ while respiration is the reverse, combining oxygen and

hydrogen in a carefully controlled and highly efficient way so as to create metabolic energy.

Therefore, from an energetic view, the synthesis of organic molecules represents a way of storing

hydrogen and therefore storing solar energy in the form of chemical bonds (Figure 1.8).

Figure 1.8 A diagrammatic representation of energy flow in biology. The light reactions of
photosynthesis (light absorption, charge separation, water splitting, electron/proton transfer)
provides the reducing equivalents in the form of energised electrons (e) and protons (H+) to
convert carbon dioxide (CO2) to sugars and other organic molecules which make up living
organisms.(taken from the review of James Barber)151

1.5.1 Basic Mechanism of Natural Photosynthesis

The protein complexes of the photosynthetic machinery are located in the thylakoid membrane

of the chloroplasts. This machinery includes light harvesting proteins, reaction centers, electron

transport chains and ATP synthase (ATP = adenosine triphosphate). The initial step in

photosynthesis is the absorption of light by the light harvesting complex II (LHC II). LHC II

consists of an antenna system that absorbs light and transfers the energy to the reaction centre

(P680) of photosystem II (PS II). The excited P680 reduces a nearby pheophytin (pheo) to form a

primary charge separation (eq 1.1).
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P680 pheo                   P680+ pheo- (1.1)

The negative charge is transferred through an ingenious chain of electron acceptors via the

cytochrome bf complex to photosystem I (PS I). In PS I another reaction centre (P700) is

responsible for providing the reducing power for the conversion of NADP+ to NADPH. In

plants, light-dependent reactions occur in the thylakoid membranes of the chloroplasts and use

light energy to synthesise ATP and NADPH. The light-dependent reaction has two forms: cyclic

and non-cyclic. In the non-cyclic reaction, the photons are captured in the light

harvesting antenna complexes of photosystem II by chlorophyll and other accessory pigments.

When a chlorophyll molecule at the core of the photosystem II reaction center obtains sufficient

excitation energy from the adjacent antenna pigments, an electron is transferred to the primary

electron-acceptor molecule, pheophytin, through a process called photoinduced charge

separation. These electrons are shuttled through an electron transport chain, the so called Z

scheme shown in figure 1.9 that initially functions to generate a chemiosmotic potential across

the membrane.30

Figure 1.9 A simplified Z-scheme of the light reactions of photosynthesis (taken from
http://en.wikipedia.org/wiki/Photosynthesis)

An ATP synthase enzyme uses the chemiosmotic potential to make ATP during

photophosphorylation, whereas NADPH is a product of the terminal redox reaction in the Z

scheme. The electron enters a chlorophyll molecule in Photosystem I. The electron is excited due

to the light absorbed by the photosystem. A second electron carrier accepts the electron, which

hʋ
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again is passed down lowering energies of electron acceptors. The energy created by the electron

acceptors is used to move hydrogen ions across the thylakoid membrane into the lumen. The

electron is used to reduce the co-enzyme NADP, which has functions in the light-independent

reaction. The cyclic reaction is similar to that of the non-cyclic, but differs in the form that it

generates only ATP, and no reduced NADP (NADPH) is created. The cyclic reaction takes place

only at photosystem I. Once the electron is displaced from the photosystem, the electron is

passed down the electron acceptor molecules and returns to photosystem I, from where it was

emitted, hence the name cyclic reaction.

1.6 Artificial Photosynthesis

1.6.1 Introduction

The conversion of solar energy into fuel by artificial photosynthetic systems is certainly one of

the most challenging goals in chemistry.31,32,33,34 For solar fuel production to be economically

and environmentally attractive, the fuels must be formed from abundant, inexpensive raw

materials such as water and carbon dioxide. Water should be split into molecular hydrogen and

molecular oxygen, and carbon dioxide in aqueous solution should be reduced to ethanol with the

concomitant generation of dioxygen.6 From many points of view, the most attractive fuel-

generating reaction is the cleavage of water into hydrogen and oxygen as given in eqn 1.2.

2H2O + 4hʋ 2H2 + O2 (1.2)

Such a process, of course, has to be sensitised as water cannot be electronically excited by

sunlight.35 Combustion of molecular hydrogen, H2, with oxygen produces heat and water, and

combination of molecular hydrogen and oxygen in a fuel cell generates electricity, heat, and

water. Once obtained, hydrogen can also be used to obtain methanol, a liquid fuel. Clearly, if

hydrogen could promptly replace oil, both the energy and the environmental problems of our

planet would be solved. Clearly, clean hydrogen can only be obtained by exploiting renewable

energies, and this can be done, in principle, by photochemical water splitting or through the

intermediate production of electricity (e.g. by wind or photovoltaic cells) followed by water

electrolysis.
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1.6.2 Components of an Artificial Photosynthetic System

A possible way to construct artificial photosynthetic systems for practical solar fuels production

is that of mimicking the molecular and supramolecular organization of the natural photosynthetic

process: light harvesting should lead to charge separation, that must be followed by charge

transport to deliver the oxidizing and reducing equivalents to catalytic sites, where evolution of

oxygen and hydrogen should separately occur. Therefore, a plausible artificial photosynthetic

system should include the following basic features (Figure 1.10)7 1) an antenna for light

harvesting, 2) a reaction center for charge separation, 3) catalysts and 4) a membrane to provide

physical separation of the products.

Figure 1.10 Schematic representation of photochemical water splitting (artificial
photosynthesis). Five fundamental components can be recognised - an antenna for light
harvesting, a charge-separation triad D-P-A, a catalyst for hydrogen evolution, a catalyst for
oxygen evolution, and a membrane separating the reductive and the oxidative processes.7

The achievement of efficient conversion of light into chemical energy requires the involvement

of supramolecular structures with very precise organization in the dimensions of space (relative

location of the components), energy (excited states energies and redox potentials), and time

(rates of competing processes). Such an organization, which in natural systems comes as a result
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of evolution and is dictated by intricate intermolecular interactions, can be imposed in artificial

systems by molecular engineering exploiting covalent or non-covalent bonding.36

Molecular photocatalytic systems can be either intermolecular or intramolecular. The former one

relies on the collision induced electron transfer between the different species involved which has

low catalytic efficiencies due to the presence of various reaction intermediates. The

intramolecular system consisting of a light harvesting unit and a catalytic centre which are bound

together using a proper bridging ligand is based on the fundamental biological construction

principles and allows more efficient light driven reactions such as oxidation and reduction of

water.

1.7 Intermolecular Photocatalytic Systems

1.7.1 Systems based on light-induced hydride transfer

In organic photochemistry, benzophenone is a widely used photosensitiser which, in its excited

state and in the presence of a platinum catalyst, is capable of oxidizing secondary alcohols to

give ketones and hydrogen.37,38,39 The addition of methyl viologen (MVZ+; 1,1'-dimethyl-4,4'-

bipyridinium dication), acting as an electron relay compound, increases the quantum yield of

light-induced hydrogen formation.

However, one great disadvantage of these systems is that benzophenone does not absorb in the

visible light region and therefore its practical application for conversion of solar energy is

limited. Several other dyes of the benzophenone type (fluorenone and its derivatives,

pyrrolizinone, etc.) have been investigated with respect to a bathochromic shift of the absorption

(maximum) and to light-induced H2 formation.40 It was shown that suitable modifications of the

structure of polycyclic aromatic ketones give stronger absorbances and a bathochromic shift of

the lowest energy absorption band. However, although compounds possess higher absorption

coefficients in the visible light region, (efficient) visible light-induced hydrogen formation could

not be achieved.
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1.7.2 Systems based on light-induced electron transfer

Classical intermolecular systems commonly employ [Ru(bpy)3]2+ as a light-harvesting complex.

[Ru(bpy)3]2+ and its derivatives therefore have a long and rich history in inorganic chemistry and

photochemistry. The parent compound, first prepared in 1936,40 was later obtained by a more

practical synthesis,41 thus opening the way for Adamson’s first use of the [Ru(bpy)3]2+ excited

state as a photochemical reductant in 1972.42 The potential of this excited state for water splitting

was quickly noted by other authors,43,44 and the numerous attempts to realise this reactivity

directly grew into the field of three component catalysis. The first reports using [Ru(bpy)3]2+ for

“water splitting” focused on the hydrogen half-reaction, using a modified photosensitiser that can

be cast into films.45,46 Though the H2 generating properties of the systems were ill defined, this

work was the predecessor of three component systems composed of a [Ru(bpy)3]2+ as sensitiser,

colloidal Pt as a H2 production catalyst, and methylviologen (MV2+) as a mediator.47 Brown et.

al. 48 described the mechanism of the formation of dihydrogen from the photoinduced reactions

of [Ru(bpy)3]2+ and [Rh(bpy)3]3+. They found that visible irradiation of aqueous solutions of

[Ru(bpy)3]2+ and [Rh(bpy)3]3+ containing TEOA/TEOAH+ (pH 8.1) and K2PtCl4 yielded

dihydrogen as the end product of a series of electron transfer reactions. Irradiation with visible

light gives rise to *[Ru(bpy)3]2+ which in turn is oxidised by [Rh(bpy)3]3+ to produce

[Ru(bpy)3]3+ and [Rh(bpy)3]2+.  TEOA reduces [Ru(bpy)3]3+, and Rh(II) in the presence of

platinum can either disproportionate or yield dihydrogen or in the absence of platinum

disproportionates to give Rh (III) and Rh (I).49

Figure 1.11 Outline of reaction pathways leading to the production of H2.49
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After excitation of a photosensitiser S, charge separation takes place: D is the electron donor and

R is the electron relay

S + hʋ → S* (1.3)

S* + D → S- + D+ (1.4)

S* + R → S+ + R– (1.5)

The photosensitiser in its excited state, is both a stronger oxidant and reductant than in its ground

state because of its higher energy content. The light-induced charge separation can result either

in a reduced S- or in an oxidised photosensitiser S+.50 Whether oxidative quenching Eq. 1.4 or

reductive quenching Eq. 1.5 takes place, depends on the redox potentials of the species involved.

In both cases the light-induced electron transfer reaction results in a pair of products (S+ + R- or S
- + D+) which possess higher energy content and can undergo further reactions (Figure 1.12).

Figure 1.12 Energy diagram for light-induced charge separation: S, photosensitiser; R,
electron relay (electron acceptor) ; kq, rate constant for quenching reaction; kb, rate constant for
back electron transfer reaction; kf, rate constant for forward reaction (proton reduction ).152

When the "molecular electronegativity" ΔME of a compound is maximum then that compound

acts as an electron acceptor. ΔME is defined as the sum of the oxidation and reduction potentials,

i.e. ΔME = E°(M/M+) + E°(M-/M).51 Light induced intermolecular electron transfer reactions are

usually fast ( eg: for [Ru(bpy)3]2+* (S) quenched by viologens (R), kq = 109Lmol-1s-l) and thus in

solutions they are limited by diffusion processes.57 Fast electron transfer (quenching) reactions
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are necessary, since the photosensitiser’s excited state lifetime is usually short (eg: for

[3Ru(bpy)3]2+*, τ = 0.64 μs). By thermal back reaction (kb in Fig. 2) the initial state (S + R) is

reached, producing heat. During the lifetime of the charge separated state (S+ + R-) (usually less

than 1μs), other reactions (e.g. proton reduction and hydrogen formation; kf in Figure 1.13) can

occur.52

(a) (b)

Figure 1.13 Reaction schemes for (a) light-driven cyclic water splitting and (b) light-induced
"sacrificial" hydrogen formation: S, photosensitiser; R, electron relay (electron acceptor; e.g.
MV2+); D, "sacrificial" electron donor (e.g. EDTA, TEA); Pt, colloidal platinum catalyst; RuO2,
colloidal ruthenium oxide catalyst.152

In the case of cyclic water splitting (Fig. 1.13(a)) the reduced electron acceptor R- (or

photosensitiser S+ in the case of oxidative quenching according to Eq. (1.6)) should reduce

protons to hydrogen (in the presence of a suitable catalyst, e.g. Pt, RuO2, Pd or Ni)53 and the

oxidised sensitiser S+ (or electron donor D+) should oxidise water to oxygen, Eq. 1.7.

R-/S- + H+ → R/S + 1/2H2 (1.6)

2D+/S+ + H2O → 2D/S + 2H+ + 1/2O2 (1.7)

This also requires a suitable catalyst (e.g. RuO2 or IrO2) and still has to overcome additional

drawbacks, e.g. RuO2 is subject to corrosion (oxidation to the inactive RuO4).54 Moreover, cyclic

water splitting requires catalysts which are selective for the forward reaction (i.e. H2 and O2

formation) and which do not increase the rate constants of back reactions. The overall reaction
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would be cyclic light-induced water splitting with oxygen and hydrogen as desired products. In

order to study the hydrogen evolution, a "sacrificial" electron donor was introduced several years

ago,55 mimicking the oxygen evolution process and reducing the oxidised sensitiser (see Fig.

1.13(b)) and thus diminishing the back electron transfer. EDTA (ethylenediaminetetraacetic acid)

and TEA (triethanolamine) were the mostly used "sacrificial" electron donor substances. With

such "sacrificial systems", quantum yields (ϕH2) up to 18% can be achieved. The components S

and R are not consumed during this cyclic reaction but may be destroyed as a result of different

competing and consecutive processes. For example, oxidation and degradation of TEA may be

represented as follows (Scheme 1.1). In these processes, different radical and cationic species are

involved, and they, together with products from their decomposition, can potentially influence

the structures and reactivities of photosensitisers and catalysts.

Scheme 1.1 Proposed reactions of TEA as a sacrificial electron donor in hydrogen photo-
production systems.

1.7.3 Iridium and Rhodium based intermolecular water reduction catalysts (WRCs)

It was found that the emission energy of ruthenium(II) tris-diimine complexes cannot be adjusted

through ligand modification due to the presence of a low lying triplet metal centered (3MC)

excited state.56 The detrimental effect of this very short-lived and accessible 3MC state is further

compounded by the fact that its populated anti-bonding, eg* like molecular orbital (MO) weakens

the metal ligand bond, promoting photosensitiser degradation through ligand dissociation. In an

effort to alleviate the constraint of the 3MC state, third row transition metals such as iridium and

platinum have been targeted as more tunable photosensitisers, since their greater ligand field

splitting allows for a broader range of populated/unpopulated MO gap energies. Additionally, the

absolute energies corresponding to the highest populated and lowest unpopulated MOs of
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heteroleptic iridium complexes incorporating 2-phenylpyridine (ppy) and bpy can be adjusted

independently of each other through chemical substitution on the peripheries of the ppy and bpy

ligands, respectively.57 This ability to selectively tune the critical MOs may prove indispensable

in reuniting the PS with a pair of optimised catalysts. A reductive quenching mechanism is

exclusively available to the iridium complexes which was substantiated through DFT

calculations (Figure 1.14) resulting in higher photocatalytic efficiency compared to the

ruthenium analogues. The lowest singly occupied molecular orbital (LSOMO) is exclusively

metal centered in [Ru(bpy)3]2+ (95 percentile), while the analogous orbital of the Ir(III) complex

exhibits mixed metal-based 5d and ppy-based π character. The highest singly occupied molecular

orbitals (HSOMO) of both complexes are exclusively localised on the bpy ligands.

Figure 1.14 Frontier orbitals of [Ru(bpy)3]2+ (left) and [Ir(ppy)2(bpy)]+ (right) in the triplet
excited state obtained through DFT calculations.153

To advance the discipline of water splitting, the Bernhard group has synthesised a variety of

heteroleptic iridium (III) complexes of the general structure [Ir(C^N)2(N^N)]+ that exhibit a

broad range of photocatalytic properties with [Co(bpy)3]2+ as shown in Figure 1.15 below (C^N

= cyclometalating ligand and N^N = neutral diimine ligand).58,59
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Figure 1.15 Heteroleptic iridium photosensitisers used by Bernhard’s group.58,59

These heteroleptic iridium complexes were found to be superior to ruthenium polypyridine

derivatives. On comparing the TON results, the turnovers are up to 920 based on the iridium

photosensitiser [Ir(F-mppy)2(bpy)]+ (F-mppy = 5-methyl-2-(4-fluoro)phenylpyridine) and 18

based on [Co(bpy)3]2+, while it is 580 turnovers based on [Ru(dmphen)3]2+ and 12 turnovers

based on [Co(bpy)3]2+.11 The relative quantum yields of hydrogen determined in this work are 3

to 7 times as high as the results obtained with [Ru(dmphen)3]2+ as photosensitiser.65 With

introduction of the CF3 group to the difluorophenylpyridine ligand and the t-butyl groups to the

bipyridine ligand, both the lifetime and the reducing power of the excited iridium photosensitiser

(A, Figure 1.15) are apparently enhanced, resulting in an increase in hydrogen production

efficiency. The quantum yield of hydrogen at 465 nm with the modified iridium complex as

photosensitiser is 14 times as high as that obtained with [Ru(dmphen)3]2+ as a light-harvesting

unit.12

Tris-(2,2′-bipyridine)Rh(III), [Rh(bpy)3]3+, is an ideal candidate for the WRC (water reduction

catalyst) component in homogeneous systems because it accumulates two electrons at a suitable

potential for water reduction and is known to form hydrides.60 Additionally, the one-electron

reduction product, [Rh(bpy)3]2+, is kinetically unstable and rapidly disproportionates to form the



Chapter 1 - Introduction

26

doubly reduced species, eliminating the need for a concerted two-electron reduction by the

photosensitiser.61 Sutin and co-workers reported the use of the rhodium complex [Rh(bpy)3]3+ for

photoinduced hydrogen formation in 1981.60 This complex, in combination with [Ru(bpy)3]2+

and TEOA, can be reduced under irradiation with 450 ± 20 nm light to give rhodium(I) and

hydrogen. The quantum yields of hydrogen evolution (up to 0.11) were found to be dependent on

pH and concentrations of Rh and Ru complexes. It was recently found by Bernhard and co

workers that the systems composed of cyclometallated iridium (III) complexes as

photosensitisers and tris-2,2’-bipyridyl rhodium (III) complexes as catalysts are efficient in

production of hydrogen from water.62 The effectiveness of these systems is impressive: turnovers

greater than 5000 with quantum yields up to 34 % can be achieved. Authors noted that the

photoreaction conditions, such as solvents and sacrificial reductants, dramatically influence the

performance of the catalytic systems. Triethylamine was found to be the most efficient sacrificial

reductant, and a water/THF (80 %) mixture is optimal as a reaction medium.

The photocatalytic water reduction process reported above involves three critical components:

the PS, the SR, and WRC. In the catalytic light cycle, the PS is responsible for the absorption of

visible light to provide the energy necessary for the endothermic water reduction process to

occur. In the catalytic dark cycle, the WRC collects the high-energy electrons from the light

cycle and protons from water to produce hydrogen. The SR provides the electrons necessary for

water reduction by replenishing the lowest singly occupied molecular orbital of the PS* or PS+,

depending on the mechanism of quenching. In the case of cyclometallated iridium complexes the

reaction is operating predominately through a reductive quenching mechanism, where the highly

reactive [Ir(N^C)2(N^N)]0 species reduces the WRC components as outlined in scheme below.

Figure 1.16 General reaction scheme for photocatalytic hydrogen production by TEA-Ir-Rh
system.62
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1.7.4 Bio-inspired iron based intermolecular photocatalytic systems

Recently, Moore and co-workers reported photoinduced hydrogen production catalysed by

[FeFe]-hydrogenase ([FeFe]H2ase) in a photoelectrochemical bio-fuel cell. 63 Although

hydrogenases are more active and selective compared to reported hetero and homogeneous

catalysts, they are not ideally suited for large-scale and long-term use because the reaction

conditions are limited.64 Among the several kinds of hydrogenases ([FeFe], [NiFe], and [Fe]-

hydrogenases), [FeFe]H2ases, depicted in figure 1.17,65 seem to be more involved in the proton

reduction to molecular hydrogen than other two kinds of hydrogenases. The catalytic activity of

[FeFe]H2ases can reach 6000–9000 molecules H2 s-1 per site under optimal conditions.66

Figure 1.17 The structure of the active site (H-cluster) in [FeFe]H2 ases.65

Hydrogen was generated from the three-component system of [Ru(bpy)3]2+, ascorbic acid, and an

all CO diiron complex 1 (figure 1.18) in action of light with λ > 400 nm, in which ascorbic acid

acts as a proton source and its ascorbate anion functions as a reductive quencher for

*[Ru(bpy)3]2+ to generate [Ru(bpy)3]3+.67

Figure 1.18 The Fe-based homogeneous catalytic systems with ruthenium-polypyridine as
photosensitiser for hydrogen generation.67
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The total amount of hydrogen evolved was 0.8 turnovers based on complex 1.67 One of the

reason for relatively low activity is that the all CO diiron complex 1 (Figure 1.18) was gradually

decomposed under irradiation. A special phosphine ligand, tris(N-pyrrolyl)phosphine (P(Pyr)3),

was introduced to the diiron complexes to improve the photo-stability of diiron complexes. The

reduction potentials of complexes 2 and 3 for the FeIFeI/Fe0FeI process match the

thermodynamic requirement for intermolecular electron transfer from [Ru(bpy)3]2+ to the diiron

complex.68 With 2 and 3 as catalysts in a 1 : 1 CH3CN–H2O solution, the total turnovers for

hydrogen evolution are 4.3 based on 2 and 86 based on [Ru(bpy)3]2+ in a 3 h photolysis, and for

the system with P(Pyr)3 disubstituted complex 3, the turnovers are 1.7 based on 3 and 34 based

on [Ru(bpy)3]2+. The photostabilities and catalytic activities of 2 and 3 are higher than that of the

all-CO analogue 1. These results indicate that CO-displacement of the all-CO diiron complex by

P(Pyr)3 ligand(s) improves the photostability and the catalytic activity of [2Fe2S] model

complexes to a certain extent in the photocatalysis reaction.

1.7.5 Cobalt based intermolecular photocatalyst systems

Some cobaloxime complexes have been found to be very efficient for hydrogen evolution.69

Cobaloximes are considered as good catalytic candidates for photochemical hydrogen

production. Lehn and co-workers pioneered the studies on homogeneous photogeneration of

hydrogen using [Co(dmgH)2(OH2)2] (1, dmgH = dimethylglyoximate, figure 1.19) as catalyst

with [Ru(bpy)3]2+ as photosensitiser and TEOA as sacrificial electron donor in the DMF

solution.154 The turnover based on the cobaloxime is 16 after 1 h irradiation. Addition of 6 to 15

equivalents of the dmgH2 (dimethylglyoxime) ligand was found to be necessary to prevent

complex 1 (figure 1.19) from dissociation and to replace the hydrogenated ligand formed by side

reactions. Dissolution of CO2 in the reaction solution resulted in an increase of the hydrogen

production efficiency to about twice that observed in the absence of CO2. It was proposed that

this increase may be mainly a pH effect since CO2 dissolution was expected to decrease the

apparent “pH” of the medium.154
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Figure 1.19 Structure of the cobaloxime complex [Co(dmgH)2(OH2)2](1)

Recently, Eisenberg and co-workers developed an efficient three-component system with the

cobaloxime [Co(dmgH)2(py)Cl] 2 (Figure 1.20) as catalyst, platinum terpyridylphenylacetylide

complex 3 (Figure 1.20) as photosensitiser, and TEOA as electron donor.70 On increasing the

concentration of electron donor (TEOA) to 2.4 (104-fold to that of the platinum-based

photosensitiser) turnovers of 1000 based on platinum and 28 based on the cobalt catalyst were

achieved after a 10 h irradiation (λ > 410 nm) in CH3CN–H2O solution.

Figure 1.20 The cobaloxime catalyst and the platinum photosensitiser used by Eisenberg’s
group.70

The cobaloxime complex [Co(dmgBF2)2(OH2)2] 4 (figure 1.21) containing two BF2-bridges was

found to be highly efficient for photo-generation of hydrogen with a rhenium complex

[Re(CO)3Br(phen)] 5 (figure 1.21) (phen = phenanthroline) as photosensitiser in the presence of

excess amounts of Et3N and Et3NH+BF4
- in acetone under irradiation (λ = 380 nm).71 The

maximum turnover is 273 based on both photosensitiser and catalyst using 600 equiv. of both

Et3N and Et3NH+BF4- after 15 h irradiation. The quantum yield of hydrogen was 0.16 at 412 nm.

The catalytic activity and stability of this multicomponent catalyst system can compete with
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some previously reported platinum based systems.72 Similar systems, based on the cobalt catalyst

[Co(dmgH)2] and rhenium photosensitiser [Re(CO)3Br(bipy)], are recently described. 73 The

quantum yield of hydrogen is 26 ± 2 %. The rate of hydrogen evolution was found to be

dependent on the photon flux (a linear dependence) and the concentration of cobalt catalyst (a

quadratic dependence).

Figure 1.21 The cobaloxime catalyst and the rhenium photosensitiser used by Fontecave’s
group.71

1.8 Intramolecular Photocatalysis

Since the photolysis of water requires the transfer of redox equivalents, and typically light

absorption is separated from the actual catalysis centre, there has been a considerable amount of

recent work invested in linking a photosensitizing unit to a water reduction catalyst. Such

bridged systems allow for increased electron transfer rates, while the adjustment of orbital

energies and overlap allows for a long-lived charge-separated state. Connecting the

photosensitiser to a water reducing catalyst may prove to be advantageous, but knowing for

certain the nature of the active catalyst can be difficult. Since several recent examples of bridged

systems use Pt2+ or Pd2+ based catalysts for proton reduction, the formation of a metallic colloid

by reduction of the catalytic site is plausible.74 While the catalytic activity of the molecular

species cannot be ruled out, the formation of a potentially more efficient colloidal catalyst must

be considered. In addition, the active state of such bridged catalysts could actually be a

dissociated form of the precatalyst, thus functioning as a bimolecular system. Therefore, such

systems must be studied in detail with carefully selected comparisons to determine the nature of

the catalytic species.
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1.8.1 Platinum and palladium based intramolecular photocatalytic systems

Sakai and co-workers reported the synthesis of heterobinuclear Ru–Pt complex 1 (Figure 1.22).75

Under irradiation (λ ≥ 390 nm) a water solution of this complex, in combination with EDTA as

sacrificial electron donor, led to the evolution of hydrogen with a TON of 4.8.

Figure 1.22 A platinum (II) complex covalently bound to a ruthenium photosensitizer.75

At the same time, Rau and co-workers reported the synthesis and catalytic properties of Ru–Pd

complexes 2 and 3 (Figure 1.23). 76 A bridging ligand between the metals was

tetrapyridophenazine. A turnover number of 56 was achieved when a water solution of the

complex containing triethylamine was irradiated with 470 nm light. The formation of zero-

valent metals in the reduction is probably one of the reasons for low stability of platinum and

palladium-based catalysts. It was also found that binuclear Ru–Pd complexes of this type can

catalyse the selective reduction of tolane to cis-stilbene under the same conditions.

Figure 1.23 Palladium(II) complex covalently bound to the ruthenium photosensitiser.76
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Another binuclear Ru–Pd complex 4 (Figure 1.24), active as a photocatalyst for hydrogen

production, was reported by Hammarstrom’s group.77 Hydrogen evolution was monitored upon

irradiation (λ ≥ 475 nm) of the complex in ACN–TEA. No hydrogen was detected in the dark;

maximal turnover number was 30. Authors investigated the potential formation of colloidal

palladium in this system by using transmission electron microscopy and X-ray photoelectron

spectroscopy. On the basis of these measurements, the formation of colloidal palladium was

confirmed. The appearance of the colloid correlates in time with hydrogen evolution. In

conclusion, authors do not rule out that binuclear complex can function as homogeneous catalyst,

but metallic palladium plays a major role. These important results indicate that great care should

be taken when interpreting the mechanism of hydrogen production catalysed by supramolecular

systems.

Figure 1.24 A binuclear Ru–Pd complex reported by Hammarstroms group.77

1.8.2 Iron based based intramolecular photocatalytic systems

Several ruthenium diiron dyads (5–8) were reported (figure 1.25), where the [2Fe2S] model

complexes of the [FeFe]H2ase active site are attached to [Ru(bpy)3]2+ by different linkers.78 The

initial motif is to build photoactive catalysts for hydrogen production, however, the diiron

catalytic centers in these ruthenium diiron dyads cannot be directly reduced by the excited

photosensitiser, which was quenched either by energy transfer or by unwanted reductive

quenching from the diiron moiety. It is mainly because the reduction potentials of the diiron

complexes are more negative than the oxidation potential of the excited state of the ruthenium

complex, making the direct electron transfer from the excited photosensitiser to the catalyst

thermodynamically unfavourable.
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Figure 1.25 Diiron complexes covalently linked to the ruthenium-polypyridine photosensitiser.78

In addition to ruthenium-polypyridine complexes, a phenylsubstituted porphyrin and zinc-

porphyrin complexes were also used as photosensitisers in the photoinduced electron transfer and

hydrogen generation studies. Song and co-workers successfully prepared and well-characterised

two light-driven dyad models (9 and 10, Figure 1.26), in which the photosensitiser, either a

tetraphenyl porphyrin (TPP) or a zinc-porphyrin complex (ZnTPP), is coordinately bonded to a

diiron complex.79 Although it is possible that the marked quenching of the fluorescence bands of

9 and 10 in the steady-state emission spectra relative to those of their reference compounds TPP

and ZnTPP is mainly due to the intramolecular electron transfer from the photoexcited porphyrin

or metalloporphyrin-type moiety to the coordinately bonded diiron complex, the proposed

electron transfer processes are not experimentally verified by time-resolved spectroscopy.

Recently, a non-covalent assembly 11 (Figure 1.26) of a pyridyl functionalised hydrogenase

active site model and a zinc tetraphenylporphyrin was obtained and characterised. 80 The

photoinduced intramolecular electron transfer from the excited singlet state of the porphyrin to

the diiron center was well verified by the fluorescence spectra and the laser flash photolysis

technique. Because the two units, the zinc-porphyrin and the diiron complex, in the coordinately

self-assembled dyad are able to separate from each other after the intramolecular electron

transfer reaction, this dyad can effectively reduce the charge recombination and energy transfer

5 6 7 8
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as compared to covalently linked ruthenium diiron molecular dyads. Visible light-driven

dihydrogen generation was observed from the zinc-porphyrin diiron dyad 11.

Figure 1.26 Diiron complexes covalently or coordinately linked to the porphyrin
photosensitiser.79, 80

Although the turnover number (TON) is relatively low (0.2), the zinc porphyrin diiron catalytic

system is attractive because (i) no noble metal is involved in the catalytic system; (ii) both

catalyst and photosensitiser are based on bio-inspired mimics; and (iii) it is the first photoactive

hydrogenase model for successful light driven dihydrogen generation using a self assembling

principle.

1.8.3 Cobalt based catalyst systems

By replacing one of the axial H2O ligands of the cobaloxime with pyridine-functionalised

ruthenium-polypyridine complexes, Fontecave and Artero et al. built a series of Ru–Co and

Ir–Co heterobinuclear photocatalysts (12–16, Figure 1.27) for photochemical hydrogen

generation from Et3NH+BF4
-.69,81 The Ru–Co dyads are more efficient in hydrogen production

than their corresponding multicomponent systems under the same condition. Complex 13

containing the BF2-bridged Co(II) center is superior to 12 with the H-bridged Co(III) center

because the Co(II) state in 13 is more easily reducible and more resistant towards the side

9 10 11
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reactions, such as acidic hydrolysis and hydrogenation. The supramolecular photocatalyst 13

with the [Ru(bpy)2(L-pyr)]2+ (L-pyr =(4-pyridine)oxazolo[4,5-f]phenanthroline) unit as

photosensitiser performs up to 103 turnovers in the presence of 100 equiv. of both Et3N and

Et3NH+BF4
- in acetone during a 15 h irradiation (λ >350 nm).81 The systems based on 12–14 are

almost inactive under visible light irradiation. Substitution of dmphen ligands for bpy in the

ruthenium unit makes the Ru–Co supramolecular catalyst (15) active using visible light (λ > 380

nm), but the turnover remains low. A significant enhancement in catalytic activity was observed

when the ruthenium-based photoactive moiety was replaced by the heteroleptic iridium unit.

Turnover number reaches 210 based on 16 in the presence of 600 equiv. of both Et3N and

Et3NH+BF4
- following 15 h irradiation, which is higher than those reported for the other noble

metal-based supramolecular systems such as the Ru–Pt, Ru–Pd, and Ru–Rh photocatalysts. In

comparison, the maximum turnover for the corresponding Ir–Co multicomponent system is 165

under the same conditions and the quantum yield of hydrogen is 0.12. In common with the Ru–

Co system reported by Lehn and co-workers,82 the photocatalytic activity of the dyads decreased

by a third upon addition of water to the reaction medium.

Figure 1.27 Photosensitiser-cobaloxime supramolecular catalysts reported by Fontecave’s
group.81

12 1613.R=Me
14.R=Ph

15
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A promising approach to the hydrogen photo-evolution was developed by Nocera’s group.83 This

approach is based on the use of two-electron mixed-valence coordination complexes of the

general formula Mn–Mn+2. Dirhodium 17 (Figure 1.28) and diiridium complexes with different

bridging ligands are capable of generating hydrogen from HCl or HBr under irradiation. It was

found that dirhodium compounds can also function as a photocatalysts.84 Thus, the photocatalytic

production of hydrogen from THF–HCl solution was observed upon irradiation with UV-vis

light (λ ≥ 338 nm). Activation of the Rh–Cl bond and photochemical instability of Rh0–RhII

intermediates involved in the catalytic cycle play crucial roles in this system.

Figure 1.28 A dirhodium mixed-valence cluster reported by Nocera’s group.83

1.9 History and Occurrence of Iridium Complexes

Iridium was discovered and named by a British scientist, Smithson Tennant. This metal had for

some time been known to dissolve almost completely in aqua regia, but a small black residue

always remained and was for a time thought to be graphite. In 1803 Tennant began a study of

this material which ultimately resulted in the identification of both osmium and iridium. Iridium

is a precious metal. Iridium is hard, fragile and can be easily worked between 1200 0C and

1500 0C. Tennant chose the name iridium, from the Greek iris, rainbow, "from the striking

variety of colors which it gives while dissolving in marine acid". Iridium always occurs

associated with other metals from the platinum group. The major source are the nickel-

copper ores of Canada. Generally, iridium is regarded as a “catalytic” metal or as a useful metal

centre for reactivity and model studies related to homogeneous catalysis. Effort has been made to

portrait through the literature review section that iridium is more than that. In particular, some of

17



Chapter 1 - Introduction

37

its complexes display promising photophysical and photochemical properties. This section aims

to provide an overview of iridium (III) polyamine complexes.

1.10 Families of Ir (III) polyamine complexes

As a third-row transition metal, iridium (III) is characterised by the great inertness of its

coordination sphere, requiring harsh reaction conditions to substitute the classical chlorine

ligands of the starting iridium salts. It is noteworthy that iridium (III) is capable of forming a

large range of complexes, including mono-, bis- and tris-cyclometallated complexes (the last is a

unique feature among all polyamine complexes of transition metals),85 and that many more

complexes are known with bidentate ligands than with terdentate ligands.

Two classes of complexes can be distinguished, depending on the extent to which the ligands

contribute to the electron density at the metal centre. When some ligands are anionic (chloride,

cyclometallating ligand), the emitting excited states have metal-to-ligand charge transfer

(MLCT) character and there is sufficient charge compensation for the metal-centered oxidation

to proceed. In contrast, when the ligands are neutral and donate less charge density to the metal,

emission is ligand centered (LC) and no metal-based oxidation is observed. For both classes of

complexes for which reduction processes have been investigated, these are exclusively ligand

centered.

1.10.1 [IrL2Cl2]n+ complexes [L = bidentate ligand, (N^N) species]

In 1969 DeSimone et al. reported the preparation of [Ir(bpy)2Cl2]Cl by fusing K3IrCl6·3H2O and

bpy in the absence of any solvents at 270 0C for 15 min,86and unambiguously demonstrated the

cis-configuration of the complex using NMR spectroscopy. From the literature it is clear that

phenanthroline has been used much more often than bipyridine. This is due to the greater

difficulty of obtaining pure samples of complexes with bpy ligands. cis-[Ir(phen)2Cl2]Cl was first

described in 1964 by Chiswell et al.,87 prepared in 27 % yield by heating K3IrCl6 with 1,10-

phenanthroline at 220 0C for 14 h. In 1971 Broomhead et al. reported a different synthesis.88 In a

first step [Ir(phen)Cl4]-[phenH]+ was prepared in 90 % yield from (NH4)3IrCl6·2H2O and phen by

reflux in acidic water for 2 h. The second step consisted of heating the phenanthrolinium salt in

refluxing glycerol for 1 min, and gave cis-[Ir(phen)2Cl2]Cl as a yellow solid. These early
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examples reflect the synthetic difficulties usually encountered when preparing simple iridium

(III) complexes.

In 1990 Brewer et al. reported the preparation of various complexes of the type cis-[IrL2Cl2]+ (L

= bidentate chelate, figure 1.29) following a slightly modified procedure.89

Figure 1.29 Representation of [IrL2Cl2]+ complexes [L = bidentate (N^N) chelate].89

In contrast to related RhIII complexes, in which the first reduction is metal centered, in these

[IrL2Cl2]+ complexes the first two reduction steps are ligand based. The ligands bpm, dpp, dpq,

and dpb (figure 1.28) are all easier to reduce than bpy, and the first reduction potential for these

[IrL2Cl2]+ complexes is clearly related to the extent of electronic delocalisation over the ligand.

After uptake of two electrons by the ligand system, a subsequent two-electron metal centered

reduction takes place which leads to expulsion of the chloride ligands, generating a four-

coordinate IrI complex [eqns. (1.8)–(1.11)].89,90

[IrIIIL2Cl2]+ + e- [IrIIILL-Cl2] (1.8)

[IrIIILL-Cl2] + e- [IrIIIL- L-Cl2]
- (1.9)

[IrIIIL- L-Cl2] + 2e- [IrIL- L-Cl2]3- (1.10)

[IrIL- L-Cl2]3- [IrIL- L-]- + 2Cl- (1.11)
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A noteworthy feature of the above reduction pattern is that the reduced two-electron [IrL- L-Cl2]-

species are stable. This is one reason why multielectron reduction schemes are feasible based

either on the monometallic complexes of the series in figure 1.29 or on multimetallic complexes.

The mononuclear complexes described above have been extended to polynuclear mixed-metal

systems with the ability to undergo intercomponent electron-transfer processes on irradiation.

[IrL2Cl2]+ (where L is the dpb ligand) was reacted with two equivalents of [Ru(bpy)2Cl2] to give

a diastereomeric mixture of the corresponding trinuclear complexes in 85–90 % yield after

heating at reflux in EtOH–H2O for 3 days.90 The trinuclear complexes prepared by Brewer and

coworkers (figure 1.30(a)) demonstrate rich electrochemistry. The two ruthenium (II) centres are

oxidised simultaneously and there is also a series of one-electron reductions leading to the

storage of four electrons in the bridging ligands before the peripheral bpy ligands are

reduced.91,92

Figure 1.30 (a) [Ru(bpy)2(dpb)IrCl2(dpb)Ru(bpy)2]5+ and (b) Photoinduced two-electron
uptake by the bridging ligands.104

For [(bpy)2RuII(dpb)IrIIICl2(dpb)RuII(bpy)2]5+, sequential reductions of the bridging ligands

(BLs) occur at -0.12, -0.26, -0.90 and -1.22 V (vs Ag/AgCl).91,92 The first two reduction

processes in this trinuclear complex are easier than the analogous processes in the mononuclear

precursor [Ir(dpq)2Cl2]+. This can be ascribed to the stabilising effect of the Ru (II) centres

towards reduced states involving iridium containing fragments. As a consequence of this

remarkable electrochemical behaviour, an extension to systems driven by light was proposed.91
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Figure 1.30(b) provides an illustration of a trinuclear complex containing the dpb ligand which

can store multiple electrons. Irradiation of the peripheral Ru (II) centres leads to the transfer of

two electrons to the BLs, following which the Ru (III) donors are re-reduced by the sacrificial

electron donor (dimethylaniline). This basic photochemical device has potential future

applications in one-step two-electron delivery to a substrate. Two years later, a similar trinuclear

system was prepared using a different bridging ligand, bpm, which now can take up two

electrons (four electrons are collected before the first bpy-localised reduction),92 according to a

reduction pattern of the type seen above (figure 1.30b). This reaction proceeded with a 60%

isolated yield by heating the starting materials [Ru(bpy)2Cl2] and [Ir(bpm)2Cl2]+ to reflux in

EtOH–H2O for 5 days. Further detailed photophysics on complexes of the type [IrL2Cl2]n+ is

considered in detail in chapter 5.

1.10.2 [IrL3]n+ complexes (L = bidentate (N,N) ligand)

In 1958 [Ir(bpy)3]3+ was first described by Martin et al., as an orange solid, obtained by fusing

K3IrCl6 and bpy for 20 min.93 The lack of precise characterization available at that time led

Chiswell et al. to attempt the preparation of [Ir(phen)3]3+ in 1964 under similar conditions.87 Pale

yellow complexes were obtained, although some uncertainty remains regarding their purity. In

1974, the procedure described by Demas et al. was much more precise.94 K3IrCl6.3H2O was first

converted into a halide free sulfate upon treatment with K2S2O8 and KHSO4 in boiling water,

evaporation to dryness, and fusion in air above 250 0C for 30 min. After cooling, it was mixed

with bpy and fused under CO2 at 230 0C for 6 h. A laborious work-up led to [Ir(bpy)3]3+ in a

good 50 % yield (figure 1.31).

Figure 1.31 Representation of (a) [Ir(bpy)3]3+ (b) [Ir(phen)3]3+ and (c) [Ir(dmbpy)3]3+.



Chapter 1 - Introduction

41

The metal-centered oxidation of [Ir(bpy)3]3+ occurs at a rather high potential, +2.17 V, while

reduction (ligand centered) occurs at -0.76 V (vs NHE).85,95 Its low temperature luminescence

(77 K), which has a lifetime of 80 μs, has LC characteristics. At room temperature it exhibits a

lifetime, τ = 2.4 μs, suggesting emission has some MLCT character (less than 20–30%).85,96

From the onset of the emission spectrum, the energy level of the lowest-lying excited state,

[Ir(bpy)3]3+, is estimated to be 2.81 eV. According to these electrochemical and spectroscopic

data, [Ir(bpy)3]3+ is a good oxidizing agent.

From the reaction between IrCl3 and bpy in glycerol at 180 0C for 2 h, performed in 1977 by

Watts et al., a complex was isolated, which was identified at that time as [Ir(bpy-N^N)2(bpy-

N)(H2O)]3+, a complex with one monodentate bpy in which the sixth coordination site is

occupied by a water molecule.97 Four years later using X-ray crystallography, Serpone et al.

demonstrated that it was in fact [Ir(N^N-bpy)2(NH,C3-bpy)]3+, the monocyclometallated and N-

protonated analogue of [Ir(bpy)3]3+. 98 Further published work confirmed this conclusion in

subsequent years. Treatment of cis-[Ir(bpy)2Cl2]+ with trifluoromethanesulfonic acid in o-

dichlorobenzene led to cis-[Ir(bpy)2(OSO2CF3)2]+ in 95 % yield, as reported by Meyer et al. in

1984. 99 This trifluoromethanesulfonato complex proved to be an excellent precursor to

[Ir(bpy)3]3+, the substitution proceeding in 80 % yield by heating with bpy in ethylene glycol for

5 h.

1.10.3 [IrL2Cl]2 complexes [L = cyclometalating ligand, (N^C) species]

In 1984, Watts et al. prepared dichloro-bridged IrIII dimers in 72 % yield using Hppy or

benzo[h]quinoline as N^C cyclometallating ligands, by refluxing iridium trichloride hydrate with

the ligand in 2-ethoxyethanol:water for one day (figure 1.32a).100 Nonoyama and coworkers had

developed another synthetic strategy in which the cyclometallating ligand (e.g. phenylpyridine,

benzoquinoline, 2-phenylbenzothiazole, etc.) is reacted with IrCl3.nH2O in 2-ethoxyethanol

under an inert atmosphere giving the corresponding air-stable μ-chloro bridged precursor

material. 101 Although this procedure is used widely, alternative protocols performing the

cyclometallation reaction in trimethyl phosphate at significantly lower temperatures have been

reported. 102 Six years later, by reacting potassium hexachloroiridium (IV) and potassium

hexachloroiridium (III) with bpy in EtOH–H2O, the Watts group obtained a dichloro-bridged
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dimer in which each iridium centre is surrounded by one N,N-coordinated bpy and one N,C-

coordinated bpy (figure 1.32b).103

Figure 1.32 Representation of cyclometallated dichloro-bridged dimers.

1.10.4 [IrL3]n+ complexes (L = (N,C), (N,Si) and (N, S) ligands), homoleptic and heteroleptic

The interest in iridium compounds (iridium (I) and iridium (III) species) has especially been

boosted by the different fields of application ranging from very efficient catalysts to important

emitter materials in OLEDs. Although the catalytic activity of iridium complexes has been well-

known for a significant period of time,104 a new era of utilisation has commenced its rapid

development with the first reports on electrophosphorescent devices.105 In particular, the very

desirable material properties such as reversible electrochemistry, appropriate triplet lifetimes,

synthetic versatility, colour tuning of the emission wavelengths by ligand modifications and the

robust nature of many iridium (III) complexes render these compounds ideal candidates for the

fabrication of highly efficient phosphorescent OLEDs.106,107,108 Neutral electrophosphorescent

iridium (III) compounds are definitely the most common phosphorescent dopants in OLEDs

distinguishing two classes, namely homoleptic compounds containing three cyclometalating

ligands and heteroleptic iridium complexes with two cyclometalating ligands and an ancillary

ligand. Despite intense studies on neutral iridium complexes being a topic of worldwide

scientific efforts, charged derivatives also receive more and more attention due to possible

applications in light-emitting electrochemical cells (LECs). 109 The general synthetic methods

followed at present for the synthesis of homoleptic iridium complexes is summarised in

Scheme 1.2.
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Scheme 1.2 General synthetic pathways followed for homoleptic tris iridium complexes.

1.10.4.1 Homoleptic Complexes

The first report on homoleptic tris-cyclometallated iridium (III) compounds was published in the

early 1980’s being observed as a byproduct of the synthesis of di-μ-chlorotetrakis(κ2(C2,N)-2-

phenylpyridine) diiridium (III). Since that time and enforced by the excellent electroluminescent

properties of e.g. Ir(ppy)3 (ppy = phenylpyridine) as well as the possibility of efficient colour-

tuning by simple changes or modifications of the cyclometallating ligand, numerous optimised

protocols have been presented giving tris-cyclometallated complexes in acceptable yields.

Among them, ligand exchange reactions starting from Ir(acac)3, solvent-free procedures or

approaches conducted at high temperatures of 170 - 195 0C in the presence of silver triflates have

been proposed.108 However, the harsh reaction conditions, comparably low yields and the

number of byproducts110 are considered to be significant drawbacks of homoleptic iridium

complexes.

Additionally, the rate of formation of the facial and meridional isomer was found to be

influenced by the reaction conditions. fac-[Ir(ppy)3] was reported as a side-product in the

preparation of [Ir(ppy)2Cl]2 by Watts et al. in 1985, which was isolated soon afterwards in low

yield from washing filtrates.111 Subsequently, other complexes containing substituted ppy were

prepared in good yields (40-75%) by reaction of [Ir(acac)3] with Hppy in refluxing glycerol for

10 h.112 The facial arrangement of the ligands can be explained by the strong trans-effect of Ir–C

bonds: after coordination of a first ppy, the oxygen atom (from acac) located trans to the Ir–C

bond is labilised and this vacant coordination site is filled by the nitrogen atom of another ppy. In
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this way a series of tris-cyclometallated complexes was obtained by Watts et al., which proved to

be strong photoreductants.111,112

The first tris (N^Si) ligated metal complex was reported the following year, by Watts et al.113 It

was obtained in 60 % yield by reaction of [Ir(PPh3)3(CO)(H)] with (8-quinolyl)dimethylsilane in

refluxing toluene for 24 h (figure 1.33). A different procedure was later used by Güdel et al. for

the preparation of fac-[Ir(thpy)3].114 In this case, [Ir(thpy)2Cl]2, excess Hthpy and silver triflate

were heated at 110 0C for one day to give the desired orange complex in 58 % isolated yield

(figure 1.33).

Figure 1.33 Representation of tris-cyclometallated complexes with (N,C), (N,Si) and (N,S)
ligands.

1.10.4.2 Heteroleptic Iridium Complexes

The difficulties in preparing tris-cyclometallated iridium complexes is overcome by

incorporating ancillary ligands such as acetylacetonates, picolinates, triazolates, tetrazolates or

quinolinolates.115,116,117 Although the preparation of heteroleptic iridium (III) compounds starts,

again, from the corresponding μ-chloro bridged precursor materials, the subsequent bridge-

splitting step is clearly facilitated giving the products in better or even quantitative yields. Colour

tuning is usually achieved by changing the nature of the cyclometallating ligand but, on the other

hand, requires the synthesis of different precursors.108,118 Despite this being considered to be a

significant drawback of this approach, many heteroleptic iridium complexes bearing ancillary

ligands exhibit very desirable material properties such as high quantum yields even at room

temperature or good thermal stabilities providing the possibility of vacuum deposition processes.
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As a consequence, they are frequently used as phosphorescent dopants in OLEDs.119,120 Some

frequently used cyclometalating and ancillary ligands are shown in figure 1.34.

Figure 1.34 Commonly used a) cyclometallating and b) ancillary ligands for homo and
heteroleptic iridium(III) complexes.

1.10.5 [IrL2]n+ complexes (L = terdentate ligand)

1.10.5.1 IrLCl3 species

In 1937, working on the coordination chemistry of terpy and various metals, Morgan and

Burstall reported in a historic paper the preparation of [Ir(terpy)Cl3] by reaction of Na3IrCl6 and

terpy in water.121 Fifty five years later, Brewer et al. prepared [Ir(tpp)Cl3] in 45 % yield by

reacting IrCl3 : 13H2O and tpp in refluxing ethylene glycol for 25 min.122 A dinuclear complex

was also synthesised, using tpp as bridging ligand: [(terpy)Ru-(tpp)IrCl3]2+ was obtained in 62 %

yield from [Ir(tpp)Cl3] and [Ru(terpy)Cl3] after heating at reflux in DMF–EtOH for 4 h (figure

1.35). For this complex, the emission is of Ru→ tpp CT nature, irrespective of the excitation

wavelength.113

Figure 1.35 Representation of the Ir-Ru dimer with ligand tpp, [(terpy)Ru(tpp)IrCl3].
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1.10.5.2 [IrL2]3+ complexes ((N^N^N) species)

In 1990, Demas and co-workers reported the first synthesis of Ir(terpy)2
3+ following the initial

stage of the procedure they had used in 1974 for the synthesis of Ir(bpy)3
3+.123 The iridium

sulfate (prepared in situ from K3IrCl6) was reacted with terpy in refluxing ethylene glycol for a

few minutes, and at 150 0C for 6 h. Tedious workup and purification were necessary to isolate

the desired complex (figure 1.36).

Figure 1.36 Representation of bis-terpyridine complexes.

In 1999 a different method was reported,124 based on the stepwise coordination of two terpy

ligands under milder conditions. Depending on the solubility of the ligand, the first coordination

required refluxing EtOH or heating at 160 0C in ethylene glycol. After isolation of the

[Ir(terpy)Cl3] intermediate, the second chelation was achieved in ethylene glycol, at temperatures

between 140 0C and reflux (196 0C). Purification proceeded either by crystallisation or by

column chromatography on silica gel. Isolated yields were 10 - 25 % with respect to IrCl3.

Iridium bis-terpyridine complexes are luminescent at room temperature, with λem= 458 nm for

unsubstituted terpy and 506 nm for 4'-arylterpys. The emission is a ligand phosphorescence,122

possibly with some MLCT character for 4-arylterpys.123 This gives highly energetic excited

states with a lifetime on the microsecond timescale, in striking contrast to the ruthenium (II)

analogues. With a reduction potential of +1.6 V/SCE, the excited state is also a powerful

oxidant. More recently, Williams et al. used the same synthetic pathway to prepare bis-terpy
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complexes bearing pH-sensitive groups (phenol and pyridine, figure 1.36).125 [(tterpy)Ir(terpy-

py)]3+ is luminescent at pH > 6, but its luminescence intensity drops by about one order of

magnitude for pH < 4. This complex constitutes a potentially useful pH sensor. The authors

ascribe the pH-dependence of the luminescence to a change from predominantly LC emission at

higher pH to predominantly MLCT emission at lower pH values, as a consequence of

protonation of the appended pyridine site.125

1.11 Multinuclear iridium complexes

Reaction of [Ir(ppy)2Cl]2 with HAT in refluxing CH2Cl2–MeOH gave the orange complex

[Ir(ppy)2(HAT)]+ in 80 % yield (figure 1.37a).126 Irradiation of this complex with visible light

leads to luminescent states. At room temperature, [Ir(ppy)2(HAT)]+ emits at λ > 770 nm (τ < 10

ns) while at 77 K it has dual-emission properties. The two states responsible for the low-

temperature behavior, which are not thermally equilibrated at 77 K, are identified as MLCT and

sigma-bond-to-ligand CT (SBLCT) states (figure 1.37c), with lifetimes of 1.5μs and 3μs.126

Figure 1.37 (a) Representation of Ir(ppy)2(HAT)+, (b) Energy transfer in [Ru(bpy)2(HAT)
Ir(ppy)2]3+ and (c) Ground and excited states.

The synthesis of a dinuclear complex incorporating Ru (II) and Ir (III) centers linked via the

bridging ligand HAT was reported by Kirsch-De Mesmaecker et al. [(bpy)2Ru(HAT)Ir(ppy)2]3+
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(figure 1.37b) was obtained by reacting [Ru(bpy)2(HAT)]+ with [Ir(ppy)2Cl]2 in refluxing

CH2Cl2–MeOH for 6 h.127 In this dinuclear complex, the emission is identified as Ir-centred,

SBLCT in nature (λmax = 760 nm, τ < 10 ns), consistent with Ru → Ir energy transfer.128

A different dinuclear complex, [(bpy)2Ru(bpt)Ir(ppy)2]2+, was synthesised by Reedijk et al. by

reacting [Ru(bpy)2(bpt)]+ and [Ir(ppy)2Cl]2 in refluxing 2-methoxyethanol for 2 days.129 In this

complex (figure 1.38), the two metal centres are linked via a bridging ligand containing a

monoanionic triazole unit. Because of this electronic feature, the MLCT states localised on the

two moieties involve the peripheral ligands and not the bridging ligand (as is usual for most

dinuclear complexes). In [(bpy)2Ru(bpt)Ir(ppy)2]2+, emission is only observed from the Ru based

unit and the direction of intercomponent energy transfer is Ir → Ru, i.e. in the opposite direction

from that observed for [(bpy)2Ru(HAT)Ir(ppy)2]3+.

Figure 1.38 Energy transfer in [Ru(bpy)2(bpt)Ir(ppy)2]2+.

Continuing the series from mono and dinuclear complexes to multinuclear compounds led

Serroni, Campagna et al. to investigate tetranuclear heterometallic complexes.130 These were

obtained as a mixture of diastereoisomers by the reaction of [Ir(ppy)2Cl]2 with M(dpp)3
2+ (M =

Ru (II), Os (II)) in refluxing CH2Cl2 for 2.5 h, in 73 % and 70 % yields respectively (figure

1.39). Using similar reaction conditions (CH2Cl2–MeOH, 2 h reflux) Neve, in collaboration with

the same group, prepared [Ir(ppy)2L]+ complexes where L is a substituted 6'-phenylbipyridine.131

The emission is ascribed to MLCT states with partial SBLCT character.



Chapter 1 - Introduction

49

Figure 1.39 Representation of {M[(dpp)Ir(ppy)2]3}5+ (M = Ru (II), Os (II)).

The coordination chemistry of iridium (III) was originally carried out under harsh reaction

conditions. The more recent use of milder conditions has opened the way to the use of ligands

bearing chemically sensitive groups.124 This synthetic approach has led to the preparation of

porphyrinic arrays built around an Ir(terpy)2
3+ core, with appended electron donors and acceptor

units (figure 1.40).124,155,156 In this triad, excitation of the free-base porphyrins with visible light

yields, with 50% efficiency, a charge separated state which has a lifetime of 3.5 ns at room

temperature.156

Figure 1.40 A porphyrinic molecular triad which undergoes photoinduced charge separation.156
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1.12 Photophysical properties of iridium (III) complexes

Most of the experiments were carried out on iridium polypyridyl complexes. These are

octahedral complexes of Ir (III) possessing a center of symmetry. The symmetry selection rule

states that it is a necessary condition for a transition to be "allowed" and that the electron moves

from an orbital that is even with respect to inversion through the center of symmetry, to an

orbital that is uneven with respect to inversion. Since all d orbitals in an octahedral complex are

even with respect to inversion, d-d transitions are "forbidden". Under visible irradiation these

complexes undergo strong intra ligand charge transfer transitions (ILCT). What is called a

charge transfer is nothing but a transition with a very large transition dipole moment. In the case

of transition metal complexes in addition to ligand-based transitions, electron density can be

transferred from d or n orbitals localised on the metal ion to a π* orbital on the ligand. If the

lowest unoccupied molecular orbital (LUMO) is located on the metal ion, the opposite charge

transfer (LMCT) is observed.145,157,158

Figure 1.41 Charge transfers in a transition metal complex

Tuning of the photophysical properties of iridium (III) complexes has received considerable

attention because of a series of practical applications such as flat-panel displays. Even though

numerous organo iridium compounds have been reported to give efficient electroluminescence in

the red, green and blue spectral region,132,133 further scientific efforts are necessary to provide a

general toolbox for synthesizing iridium compounds with absorption and emission characteristics

tailored towards particular needs.134 In this context, not only numerous reports on the synthesis

and photophysical characterization of novel iridium (III) complexes have been published, but

also quantum mechanical calculations are becoming more and more important in the design of
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phosphorescent emitter materials. 135 , 136 , 137 The absorption and emission spectra of these

phosphorescent metal complexes are in general influenced by various parameters such as the

valence electron configuration at the metal, the type of the electronic transitions or the

correlation among lower lying electronic excited states. Similar to fluorescent small molecules

also the photophysical behavior of transition metal complexes can be properly described with

molecular orbitals, however, the performance of accurate quantum mechanical calculations is far

more complicated. Nevertheless, it has been shown that frontier molecular orbitals are not

equally delocalised in heavy metal complexes resulting in different electronically excited

states.159

Among them, metal centered (MC) excited states are typically present in metal complexes with

partially filled d shells at the metal center. The corresponding d-d transitions are Laporte-

forbidden and, consequently, exhibit very low transition probabilities. Metal-to-ligand charge-

transfer (MLCT) states involve electronic transitions from metal based d orbitals to a ligand

centered π* antibonding orbital. Emissive MLCT states are particularly observed in d6 and d8

transition metal complexes and play, therefore, a major role in the photophysics of iridium (III)

compounds. Intraligand (IL) π-π* excited states originate from electronic transitions of the

ligand. If the metal perturbation upon coordination is minimised, their spectral properties often

closely resemble the free ligand states. Finally, ligand-to-metal charge transfer (LMCT) excited

states are occasionally observed in complexes with metal atoms in high oxidation states or in d10

complexes. All these transitions determine the photophysical properties of transition metal

complexes and can be used for the interpretation of experimentally observed spectra or

prediction of absorption and emission characteristics of novel compounds.157,158,159 Hence, this

elementary knowledge of the described processes is necessary to rationalise the impact of ligand

modifications on the photophysical properties of phosphorescent dyes or to design highly

efficient materials for photocatalysis and OLED applications. Along these lines, the absorption

spectra of classical phosphorescent iridium (III) complexes typically display absorption bands

with extinction coefficients between approximately 50000 and 6000 L mol-1 cm-1. The weak

absorption features between 400 and 500 nm can be attributed to spin-allowed and spin-

forbidden metal-to-ligand charge-transfer (MLCT) transitions, while the strong absorption bands

peaking in the UV-region usually originate from intraligand (IL) π-π* transitions.
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After excitation of the iridium complex, the strong spin-orbit coupling induced by the metal

center gives the formally forbidden triplet to singlet ground state transition a significant

allowedness.138 In this context, the energies of the lowest excited states play a major role as they

can be tuned by adjusting the metal and ligand orbitals through substituent effects or via

changing the ligand structures. In other words, chemical modifications or complete alterations of

the cyclometallating or ancillary ligands pave the way to very efficient emission color tuning but

also provide the possibility of tuning the corresponding absorption characteristics towards

particular needs.158,159

Tremendous emission colour-versatility has been achieved with iridium (III) luminophores

applying the above described tuning procedures giving materials with a broad range of excited

state lifetimes (from nanoseconds to microseconds; here it should be noted that a long lifetime

will increase the probability of excited state quenching processes and increases diffusion of the

excited state, which will in turn call for efficient concepts to confine the excitation in the

emissive layer) and quantum yields approaching 100%.105,118,135 As a consequence,

phosphorescent iridium complexes have emerged as the most promising class for practical

OLED applications and the number of new phosphorescent dyes with emission wavelengths

covering the entire visible spectrum is still growing.139,141 Some selected examples of

organoiridium complexes emitting in the blue, green and red spectral region are depicted in

figure 1.42. Detailed photophysics of cyclometallated iridium complexes are also discussed in

chapter 4.

Figure 1.42 Selected examples of phosphorescent iridium complexes with emission maxima in
the blue, green and red spectral region.118,119
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1.13 Iridium complexes as OLED’s

Research on organic light-emitting diodes (OLEDs), has been focused on devices composed of

thin films containing organic/organometallic molecules that directly convert electricity into light

(figure 1.43). 139 Heavy metal organometallic complexes have recently gained tremendous

research interest for fabricating highly efficient phosphorescent OLEDs by taking advantage of

the 1:3 exciton singlet/triplet ratio predicted by simple spin statistics.135 These phosphorescent

emitters are mainly derived from the family of the third-row transition metal (ReI, OsII, IrIII and

PtII) complexes,140 although examples with some second-row transition metals such as RuII are

also known. The three key electronic processes are, (i) charge injection, (ii) charge transport, and

(iii) electron-hole recombination (i.e. exciton formation). Efficiency must be separately

optimised in order to improve the overall OLED performance. The basic Organic Light-Emitting

Diode (OLED) structure typically consists of an organic, light emitting layer between a

transparent anode and a metallic cathode. In the more advanced structure the organic layers

comprise a hole-injection layer, a hole-transport layer, an emissive layer, and an electron-

transport layer to optimise the light output. When an appropriate voltage is applied to the cell, the

injected positive and negative charges recombine in the emissive layer to produce

electroluminescent light. When used to produce displays, the OLED technology produces self-

luminous displays that do not require backlighting. These thin compact displays have a wide

viewing angle of up to 160 degrees and require very low voltage, only 2-10 volts.

Figure 1.43 A simple OLED structure (ref: http://www. hwsands.com).
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The pioneering work by Forrest and Thompson based on the utilisation of triplet emitters rather

than of singlet emitters was a breakthrough in tackling the recombination efficiency issue,141 and

has since triggered a substantial amount of research activities on phosphorescent molecules with

much success. This strategy enhances light emission efficiency by efficient

electrophosphorescence. The advantage of triplet emitters over the singlet emitting counterparts

is that they can capture energy from both singlet and triplet excited states, lifting the upper limit

of the internal quantum efficiency of the usual fluorescent dopant based devices from 25 % to

nearly 100 %. Phosphorescent emitters with heavy metal ions allow for circumvention of this

limitation if the excitons generated by hole-electron recombination reside at a site where efficient

spin orbit coupling leads to efficient singlet triplet state mixing which eliminates the spin

forbidden nature of the radiative relaxation of the triplet state. Of all the systems investigated to

date, [Ir(ppy)3] and [Ir(ppy)2(acac)] (Hppy = 2-phenylpyridine, Hacac = acetylacetone) are the

most well-studied compounds in this area.119 Neutral iridium (III) cyclometallated complexes

have been widely employed as phosphorescent dyes in high-efficiency OLEDs with external

quantum efficiency of up to 19 % using the multilayered device structure. 142 The

phosphorescence colour tuning capability of these metallophosphors proceeded via relevant

modifications of the ligand structures and has been well documented for important applications

in full-colour displays.115,143

Cyclometallated iridium (III) complexes with various peripheral chelating ligands are of major

interest due to their high quantum yields, short lifetimes, or color-tunability. Chelating ligands

play an important role in organic light-emitting diodes (OLEDs)144 and other electroluminescent

technologies.105,106 For the purpose of design and synthesis of luminescent complexes,

cyclometallated aromatics have been commonly used,145 the success of which is attributed to the

following factors. Firstly compared with other organic ligands, aromatic cyclometallates tend to

form the strongest bonding interaction with transition metal elements. Secondly the stronger

metal ligand bonding should increase the d–d energy gap and afford less radiationless quenching

due to the suppressed population to the higher lying, repulsive d–d excited state. This is

particularly true for the third row transition metal elements. Finally the occurrence of close lying,

ligand centered π–π* electronic transitions allows facile tuning of emission wavelength.
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OLEDs may revolutionise display technologies in the scientific community. The key advantages

of OLEDs for flat-panel display applications are their self-emitting property, high luminous

efficiency, full color capability, wide viewing angle, high contrast, low power consumption, low

weight, potentially large area color displays and flexibility.105,135,160 Unlike liquid crystal displays

(LCDs), OLEDs display can be printed on to a surface using an inkjet or even screen printing

technology. They are also more energy efficient and are generally lower in cost than LCDs. In

view of this, the rapidly growing market for OLED technology is driving both the academic and

industrial communities towards the development of new functional materials for advanced

manufacturing technologies.
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Chapter 2

General introduction to synthesis, purification,
physical techniques and measurements

The following chapter describes in detail the basic synthetic procedures that were

followed throughout the course of this thesis. The instrumentation that was used in the

characterisation of the complexes has been detailed. Also included are the methods by

which data were analysed and conventions which were followed in the presentation of

data throughout this thesis. For selected techniques a bief summary of theoretical basis

is included.
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2.1 General synthetic procedures and considerations

The reagents employed during the course of all experiments were purchased from Sigma-Aldrich

and used without further purification. All solvents used for HPLC analysis are of HPLC grade

and spectroscopic grade solvents were used for photophysical measurements. Deuteriated

bipyridine (d8bpy), phenanthroline (d8phen), 4,4'-dimethyl-2,2'-bipyridyl (d12dmbpy) and 4,4'-

ditertiarybutyl-2,2'-bipyridyl (d24dtbpy) were synthesised according to the procedure reported

before.1 The bridging ligands employed 2,2':6',2''-terpyridine (tpy) and 2,2'-bipyrimidine (bpm)

were purchased from sigma aldrich and was used directly. The ligands 2,2'-bipyridyl (bpy), 1,

10-phenanthroline (phen), 4,4'-dimethyl-2,2'-bipyridyl (dmbpy), 4,4'-ditertiarybutyl-2,2'-

bipyridyl (dtbpy), 4,4'-diphenyl-2,2'-bipyridyl (dpbpy) and 4,4'-diphenyl-1,10-phenanthroline

(dpphen) were purchased from Sigma-Aldrich and used directly.

2.1.1 Deuteriation of ligands

The deuteriation of ligands was carried out in general purpose dissolution Bomb P/N 4744 from

Scientific Medical Products, which included a Teflon cup and cover and was done in basic D2O

(1M NaOD/D2O solution were prepared in situ by addition of 460 mg of sodium to 20 cm3 of

D2O). After 3 days in the bomb, it was found that approximately 90 % atom deuteriation had

been achieved. This percentage improved only slightly with increased reaction times. However,

following a repeat of the procedure, i.e. another 3 days in the bomb with fresh reagents it was

found that atom deuteriation of >99 % was achieved. The percentage of deuteriation was

calculated by 1H NMR spectroscopy. A known mass (and hence number of moles) of the non

deuteriated ligand was dissolved in a known volume of solvent (d6-dmso). The ratio of the peak

integration of the ligand to the peak integration of the solvent was found. After obtaining a

spectrum of the same amount of the deuteriated ligand in the same volume of solvent, a second

ratio was obtained. Comparison of the ratios led to a measurement of the percentage of the atoms

which have been successfully exchanged. The 1H NMR spectra of the deuteriated 2,2’-bipyridyl

ligand is shown in figure 2.1. The size of the solvent peak relative to the size of the 2,2’-

bipyridyl ligand peaks should be noted. It is the ratio of the peak integration of these peaks that

allow the second ratio to be calculated.
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Figure 2.1 1H NMR of d8bpy in d6-dmso.

2.1.1.1 Deuteriation of bpy, phen, dmbpy, dtbpy

Deuteriation of the ligands were done using basic D2O (20 ml of 1M NaOD/D2O) and carried out

in a sealed steel container with a teflon liner at 200 0C for 6 days.1,2 The percentage of H/D

exchange and the percentage yield are summarised below.

[d8]-2,2'-bipyridine (% H/D exchange = 99 %, % Yield = 90 %)

[d8]-1,10-phenanthroline (% H/D exchange = 98 %, % Yield = 92 %)

[d12]-4,4'-dimethyl-2,2'-bipyridyl (% H/D exchange = 98 %, % Yield = 96 %)

[d24]-4,4'-ditertiarybutyl-2,2'-bipyridyl (% H/D exchange = 97 %, % Yield = 93 %)

2.1.2 Synthesis of ester substituted phenyl pyridine ligands

2.1.2.1 Synthesis of (ppy-COOH), 4-(pyridin-2-yl)benzoic acid

AgNO3 (0.974 g, 5.7311 mmol) was taken in a 100 ml round bottom flask and stirred with 5 ml

water at room temperature to which NaOH (0.447 g, 11.189 mmol) was added dissolved in 5 ml

water. A brown semi-solid residue was formed. The reaction mixture was then placed in an ice

bath to which 4-(pyridine-2-yl)benzaldehyde (0.500 g, 2.729 mmol) was weighed, powdered and

added slowly part by part and kept for stirring at room temperature for 30 min. The black silver
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suspension was removed by suction filtration and was washed with several portions of hot water.

The cold combined filtrate and washings were acidified with concentrated hydrochloric acid, the

precipitate began to form at pH 7 and maximum precipitate was obtained at pH 4 which was

vacuum filtrated and dried. (Yeild: 0.468 g, 94 %). 1H NMR (400 MHz, DMSO),  (ppm): 7.43

(t, 1H), 7.92 (t, 1H), 8.07-8.04 (m, 2H), 8.2 (d, 2H), 8.72 (d, 1H), 13.19 (s, 1H).

2.1.2.2 Synthesis of ppy-COOCH2CH3

4-(pyridin-2-yl)benzoic acid (0.114 g, 0.5722 mmol) was weighed in an R.B to which 2 ml of

conc. H2SO4 and 30 ml Ethanol was added and refluxed at 90 0C overnight. The reaction mixture

was poured into ice water and stirred to which 25 % NaOH (25 g in 100 ml) was added drop

wise and the ester precipitated after the neutralisation was complete, filtered, washed with

deionised water and dried. (Yield 0.103 g, 90.34 %). 1H NMR (400 MHz, DMSO),  (ppm): 1.35

(t, 3H), 4.35 (q, 2H), 7.43 (m, 1H), 7.94 (m, 1H), 8.08 (d, 1H), 8.25 (d, 1H), 8.72 (d, 1H).

2.1.2.3 Synthesis of ppy-COOCH3

4-(pyridin-2-yl)benzoic acid (0.300 g, 0.0014 mmol) was weighed in an R.B to which 4 ml of

conc. H2SO4 and 30 ml Methanol was added and refluxed at 90 0C overnight. The reaction

mixture was poured into ice water and stirred to which 25 % NaOH (25 g in 100 ml) was added

drop wise until the neutralisation was complete, which was then extracted with DCM and the

solvents were removed to get the ester pure. Yield (0.245 g, 82 %). 1H NMR (400 MHz,

DMSO),  (ppm): 3.89 (s, 3H), 7.44 (m, 1H), 7.95 (m, 1H), 8.08 (d, 1H), 8.25 (d, 1H), 8.727 (d,

1H).

2.1.3 Synthesis of Bridging Ligands

2.1.3.1 BPP (2-(6-(pyridin-2-yl)pyridin-3-yl)pyridine)

In a dried two neck round bottom flask 0.299 g (0.258 mmol) of Pd(PPh3)4 and 2 g (8.44 mmol)

of 2,5-dibromopyridine was taken under nitrogen atmosphere. During the addition of 38.7 ml

(16.8 mmol) of 2-pyridylzinc bromide to the reaction mixture, the temperature was kept at 0 0C.

The reaction mixture was then stirred overnight at room temperature under nitrogen atmosphere.

A white precipitate was formed. The reaction mixture was poured in a saturated aqueous solution

of EDTA/Na2CO3 until the precipitate dissolves and yellow flakes come. The aqueous solution
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was then extracted with dichloromethane and dried over MgSO4. The dichloromethane was dried

in air and crude product was purified by alumina column using hexane/ethyl acetate (9:1). The

second spot in TLC is the desired product. Yield (1.57 g, 6.75 mmol, 80 %). 1H NMR (400 MHz,

DMSO),  (ppm): 7.2 (t, 1H), 7.3 (t, 1H), 7.78 (m, 2H), 7.8 (t, 1H), 8.44-8.37 (m, 2H), 8.5 (d,

1H), 8.7-8.65 (m, 2H), 9.3 (s, 1H). Elemental analysis for ligand BPP, C15H11N3; (calculated) : C

: 77.23, H : 4.75, N : 18.01;  (found) : C : 77.25, H : 4.71, N : 17.98.

2.1.3.2 dpp (2,5-di(pyridin-2-yl)pyrazine)

Step 1. Synthesis of oxime

10 g acetylpyridine (82.54 mmol, M=121, 14 g/mol), 5.73 g hydroxylamine hydrochloride

(82.54 mmol, M=69.49 g/mol) and 8 g potassium acetate (81.9 mmol, M=98.3 g/mol) were

dissolved in 100 ml water and stirred for 30 minutes at 40 °C yielding white precipitate. After

that the mixture was stirred for another 30 minutes at room temperature. The precipitate was

filtered off, washed with water and recrystalised from an ethanol-water mixture (3:1) to give

white crystals. Yield (9.1 g, 66.8 mmol, M=136.15 g/mol, 80 %), 1H NMR (400 MHz, CDCl3), 

(ppm): 2.43 (s, 3H), 7.29 (m, 1H), 7.71 (m, 1H), 7.84 (d, 1H), 8.65 (d, 1H), 9.91 (1H, s).

Step 2. Synthesis of Tosyl ester

10.798 g toluenesulphonylchloride (1.1 eq., 56.639 mmol, M=190.65 g/mol) was dissolved in 15

ml pyridine. After that 7.011 g acetylpyridine-oxime (51.49 mmol) was added slowly, forming a

brownish gel. After stirring overnight at room temperature, the mixture was poured into ice water

forming a white precipitate, which was filtered off, washed with water and recrystalised from an

ethanol-water mixture (3:1). Yield (7.804 g, 26.91 mmol, M=290 g/mol, 52 %), 1H NMR (400

MHz, CDCl3),  (ppm): 2.46 (s, 6H), 7.35 (m, 3H), 7.7 (m, 1H), 7.81 (d, 1H), 7.95 (d, 2H), 8.61

(d, 1H).

Step 3

The tosylester 7.804 g (26.91 mmol, M=290 g/mol) was dissolved in ethanol and reacted with

freshly developed potassium ethanolate (1.58 g, 1.5 eq, 40.363 mmol solved in 150 ml ethanol).

Potassium tosylate was filtered of and diethylether was added to the filtrate to get more tosylate,

which was filtered off again. The filtrate was extracted with 2M HCl thrice. The aqueous phase
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was intermixed with NH4OH in excess and stirred for 36 hours. The orange precipitate was

filtered off and recrystalised from an ethanol-water mixture (3:1). Yield (449 mg, 1.917 mmol,

M=234.26 g/mol, 17 %), 1H NMR (400 MHz, CDCl3),  (ppm): 7.45 (t, 2H), 7.94 (t, 2H), 8.50

(d, 2H), 8.79 (d, 2H), 9.75 (s, 1H). Elemental analysis for ligand dpp, C14H10N4; (calculated) : C :

71.78, H : 4.30, N : 23.92;  (found) : C : 71.82, H : 4.29, N : 23.95.

2.1.4 Synthesis of cyclometallated iridium precursors

2.1.4.1 Synthesis of [Ir(ppy)2Cl]2

Iridium trichloride hydrate (1 g, 2.8 mmol) was combined with 2-phenylpyridine (1.76 g, 11.3

mmol), dissolved in a mixture of 2- methoxyethanol (75 ml) and water (25 ml), and refluxed for

24 h. The solution was cooled to room temperature, and the yellow precipitate was collected on a

glass filter frit. The precipitate was washed with ethanol (60 ml) and acetone (60 ml) and then

dissolved in dichloromethane (75 ml) and filtered. Toluene (25 ml) and hexane (10 ml) were

added to the filtrate which was then reduced in volume, and cooled to give crystals of

[Ir(ppy)2Cl]2 . (Yield 1.12 g, 74 %). 1H NMR (400 MHz, DMSO),  (ppm): 5.64 (d, 1H), 6.23 (d,

1H), 6.67 (t, 1H), 6.74 (t, 1H), 6.82 (t, 1H), 6.88 (t, 1H), 7.43 (t, 1H), 7.55 (t, 1H), 7.71 (d, 1H),

7.77 (d, 1H), 7.99 (t, 1H), 8.07 (t, 1H), 8.16 (d, 1H), 8.24 (d, 1H), 9.51 (d, 1H), 9.78 (d, 1H). 1H

NMR (400 MHz, CDCl3),  (ppm): 5.89 (d, 1H), 6.53 (t, 1H), 6.74 (m, 2H), 7.45 (d, 1H), 7.70 (t,

1H), 7.84 (d, 1H), 9.20 (d, 1H). Elemental analysis for complex [Ir(ppy)2Cl]2, C44H32Cl2Ir2N4;

(calculated) : C : 49.29, H : 3.01, N : 5.23;  (found) : C : 49.38, H : 3.00, N : 5.22.

2.1.4.2 Synthesis of [Ir(thpy)2Cl]2

Iridium trichloride hydrate (0.5 g, 1.4 mmol) was combined with thienylpyridine (0.9186 g, 5.6

mmol), dissolved in a mixture of 2- methoxyethanol (35 ml) and water (15 ml), and refluxed for

24 h. The solution was cooled to room temperature, and the brown precipitate was collected on a

glass filter frit. The precipitate was washed with ethanol (60 ml) and acetone (60 ml) and then

dissolved in dichloromethane (75 ml) and filtered. Toluene (25 ml) and hexane (10 ml) were

added to the filtrate which was then reduced in volume, and cooled to give crystals of

[Ir(thpy)2Cl]2 . (Yield 0.59 g, 78 %). 1H NMR (400 MHz, DMSO),  (ppm): 5.64 (d, 1H), 6.11 (d,

1H), 7.22 (t, 1H), 7.32 (d, 1H), 7.35 (t, 1H), 7.51 (d, 1H), 7.63 (d, 1H), 7.74 (d, 1H), 7.88 (t, 1H),

7.94 (t, 1H), 9.30 (d, 1H), 9.63 (d, 1H). Elemental analysis for complex [Ir(thpy)2Cl]2,
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C36H27Cl2Ir2N4S4; (calculated) : C : 39.34, H : 2.48, N : 5.10;  (found) : C : 39.35, H : 2.12, N :

5.11.

2.1.4.3 Synthesis of [Ir(ppy-CHO)2Cl]2

Iridium trichloride hydrate (0.5 g, 1.4 mmol) was combined with 4-(pyridin-2-yl)benzaldehyde

(0.9186 g, 5.6 mmol), dissolved in a mixture of 2-ethoxyethanol (35 ml) and water (15 ml), and

refluxed for 24 h. The solution was cooled to room temperature, and the brown precipitate was

collected on a glass filter frit. The precipitate was washed with ethanol (60 ml) and acetone (60

ml) and then dissolved in dichloromethane (75 ml) and filtered. Toluene (25 ml) and hexane (10

ml) were added to the filtrate which was then reduced in volume, and cooled to give crystals of

[Ir(ppy-CHO)2Cl]2. (Yield 0.52 g, 72 %). 1H NMR (400 MHz, DMSO),  (ppm): 6.12 (d, 1H),

6.73 (d, 1H), 7.40 (d, 1H), 7.44 (d, 1H), 7.64 (t, 1H), 7.73 (t, 1H), 8.01 (d, 1H), 8.05 (d, 1H),

8.15 (t, 1H), 8.24 (t, 1H), 8.38 (d, 1H), 8.47 (d, 1H), 9.58 (d, 2H), 9.64 (s, 1H), 9.87 (d, 1H).

Elemental analysis for complex [Ir(ppy-CHO)2Cl]2, C48H32Cl2Ir2N4O4; (calculated) : C : 48.69, H

: 2.72, N : 4.73;  (found) : C : 48.78, H : 2.41, N : 4.65.

2.1.4.4 Synthesis of [Ir(ppy-COOH)2Cl]2

Iridium trichloride hydrate (0.05 g, 0.14 mmol) was combined with 4-(pyridin-2-yl)benzoic acid

(0.09186 g, 0.56 mmol), dissolved in a mixture of 2-ethoxyethanol (3.5 ml) and water (1.5 ml),

and refluxed for 24 h. The solution was cooled to room temperature, and the brown precipitate

was collected on a glass filter frit. The precipitate was washed with ethanol (30 ml) and acetone

(30 ml) and then dissolved in dichloromethane (45 ml) and filtered. Toluene (15 ml) and hexane

(5 ml) were added to the filtrate which was then reduced in volume, and cooled to give crystals

of [Ir(ppy-COOH)2Cl]2. (Yield 0.112 g, 75 %). 1H NMR (400 MHz, DMSO),  (ppm): 6.28 (d,

1H), 6.84 (d, 1H), 7.40 (d, 1H), 7.44 (d, 1H), 7.58 (t, 1H), 7.66 (t, 1H), 7.85 (d, 1H), 7.92 (d,

1H), 8.08 (t, 1H), 8.18 (t, 1H), 8.30 (d, 1H), 8.30 (d, 1H), 9.54 (d, 1H), 9.83 (d, 1H), 12.52 (b,

2H). Elemental analysis for complex [Ir(ppy-COOH)2Cl]2, C48H32Cl2Ir2N4O8; (calculated) : C :

46.19, H : 2.58, N : 4.49;  (found) : C : 46.35, H : 2.44, N : 4.53.
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2.1.4.5 Synthesis of [Ir(ppy-COOCH3)2Cl]2

Iridium trichloride hydrate (0.05 g, 0.14 mmol) was combined with methyl 4-(pyridin-2-

yl)benzoate (0.09186 g, 0.56 mmol), dissolved in a mixture of 2-ethoxyethanol (3.5 ml) and

water (1.5 ml), and refluxed for 24 h. The solution was cooled to room temperature, and the

brown precipitate was collected on a glass filter frit. The precipitate was washed with ethanol (30

ml) and acetone (30 ml) and then dissolved in dichloromethane (45 ml) and filtered. Toluene (15

ml) and hexane (5 ml) were added to the filtrate which was then reduced in volume, and cooled

to give crystals of [Ir(ppy-COOCH3)2Cl]2. (Yield 0.112 g, 74 %). 1H NMR (400 MHz, DMSO), 

(ppm): 3.63 (3H, s), 3.65 (3H, s), 6.28 (d, 1H), 6.86 (d, 1H), 7.42 (d, 1H), 7.45 (d, 1H), 7.61 (t,

1H), 7.71 (t, 1H), 7.89 (d, 1H), 7.95 (d, 1H), 8.13 (t, 1H), 8.22 (t, 1H), 8.33 (d, 1H), 8.42 (d, 1H),

9.56 (d, 1H), 9.85 (d, 1H). Elemental analysis for complex [Ir(ppy-COOCH3)2Cl]2,

C52H40Cl2Ir2N4O8; (calculated) : C : 47.89, H : 3.09, N : 4.30;  (found) : C : 47.48, H : 3.11, N :

4.28.

2.1.4.6 Synthesis of [Ir(ppy)2(CH3CN)2]CF3SO3

[Ir(ppy)2Cl]2 (0.0566 g, 0.05289 mmol) and CF3SO3Ag (0.0299 g, 0.11637 mmol were added to

a 50ml RB to which 15ml ACN was added and stirred at ambient conditions (room temp) for 1

hour after which was filtered through a celite bed made in ACN, washed several times with

ACN. The filtrate and washings were reduced to volume of 1ml to which diethyl ether was added

resulting in the precipitation of the product which was vacuum filtered, washed with diethyl

ether and pentane and dried to yield the desired product. (Yield: 0.048 g, 84 %). 1H NMR (400

MHz, DMSO),  (ppm): 6.12 (d, 1H), 6.75 (t, 1H), 6.90 (t, 1H), 7.41 (t, 1H), 7.62 (d, 1H), 7.93

(m, 2H), 9.15 (d, 1H). Elemental analysis for complex [Ir(ppy-COOCH3)2Cl]2, C26H22IrN4;

(calculated) : C : 53.59, H : 3.81, N : 9.62;  (found) : C : 53.72, H : 3.49, N : 9.85.

2.2 Results and Discussion

2.2.1 Ligand Preparation

Considering the synthesis of the ligand bpp (2-(6-(pyridin-2-yl)pyridin-3-yl)pyridine), the

reaction was done between pyridyl zinc bromide and 2,5-dibromopyridine in a 2:1 molar ratio.

The product was supposed to form by two catalytic cycle in the same reaction flask, in first

catalytic cycle it forms 5-bromo bipyridine as the two position of 2,5-dibromo is more
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favourable to couple and in second catalytic cycle 5-bromo bipyridine acted as an aryl halide and

it reacted with the excess pyridyl zinc bromide to form the final product. The synthetic reaction

pathway is shown in figure 2.2. The 1H NMR spectrum of the ligand bpp (2-(6-(pyridin-2-

yl)pyridin-3-yl)pyridine) in d6 DMSO is given in figure 2.4 (a)

Figure 2.2 General reaction pathway for the synthesis of BPP.

Considering the synthesis of the ligand dpp (2,5-di(pyridin-2-yl)pyrazine) the published

procedure consists of a three step reaction process,3 starting with the preparation of the oxime,

later on converting that to the tosyl ester and to the bridging ligand. The first two steps gave very

high yields, but when coming on to the final step the yield was much reduced to less than 10 %

which is similar to the ones reported. The procedure was modified by making changes in the

final step, ie instead of stirring with NH4OH, the ethanol solution after adding 2M HCl was left

for two weeks which resulted in the precipitation of ligand as pure orange-red crystals with an

increased yield of 17 %. The synthetic reaction scheme leading to the preparation of the ligand is

shown in figure 2.3. The 1H NMR spectrum of the ligand dpp (2,5-di(pyridin-2-yl)pyrazine) in d6

DMSO is given in figure 2.4 (b)

Figure 2.3 General reaction pathway for the synthesis of dpp.
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Figure 2.4 1H NMR Spectrum of bpp (a) and dpp (b) taken in d6 DMSO.

2.2.2 Cyclometallated iridium precursor synthesis

Iridium metal precursors with the cyclometallated ligands are all chloro bridged homo bimetallic

dimers with general formulae [Ir(L)2Cl]2 where L is the cyclometallating ligand (eg: phenyl

pyridine (ppy), thienyl pyridine (thpy), ppy-CHO, ppy-COOH, ppy-COOCH3). The syntheses of

these complexes were done following the reported procedure developed by Watts and co

workers4 as shown in figure 2.5, but necessary modifications have been done on the type of

solvents, reaction temperature, reaction time and work up, based on different cyclometallated

ligands. With phenyl pyridine the reaction was quite straight forward in ethoxyethanol and in

methoxyethanol refluxed between 120 0C - 130 0C for 24 hours. The yellow precipitate formed at

the end of the reaction is filtered and washed with diethyl ether and water many times, the nmr

looks fine but the CHN was not fully correct, so the traditional Watts procedure of collecting the

precipitate in a glass filter frit and washing it with ethanol and acetone first then dissolving the

yellow precipitate left behind in DCM and precipitated by adding toluene and hexane was

followed.5 The reaction can also be successfully done in ethanol at normal reflux temperature.

7.07.27.47.67.88.08.28.48.68.89.09.29.49.69.8 ppm

7.
41
5

7.
41
7

7.
42
7

7.
42
9

7.
43
4

7.
43
6

7.
44
6

7.
44
8

7.
45
5

7.
47
0

7.
47
4

7.
47
7

7.
48
6

7.
48
9

7.
94
5

7.
94
9

7.
96
4

7.
96
9

8.
11
5

8.
11
7

8.
12
0

8.
13
7

8.
42
8

8.
43
1

8.
43
3

8.
44
8

8.
45
1

8.
45
3

8.
48
4

8.
48
6

8.
50
5

8.
50
7

8.
58
6

8.
59
1

8.
60
7

8.
61
2

8.
70
0

8.
70
1

8.
70
4

8.
70
6

8.
71
1

8.
71
3

8.
71
6

8.
71
9

8.
72
1

8.
72
3

8.
72
6

8.
73
1

8.
73
3

8.
73
5

9.
36
8

9.
36
9

9.
37
3

9.
37
5

2.
06

2.
08

1.
02

1.
03

1.
04

1.
03

2.
03

1.
00

7.57.67.77.87.98.08.18.28.38.48.58.68.78.88.99.09.19.29.39.49.59.69.7 ppm

7.
53
1

7.
53
4

7.
54
3

7.
54
6

7.
55
0

7.
55
3

7.
56
2

7.
56
5

8.
00
2

8.
00
7

8.
02
2

8.
02
6

8.
04
1

8.
04
6

8.
39
8

8.
40
1

8.
42
0

8.
76
6

8.
76
8

8.
77
0

8.
77
2

8.
77
7

8.
78
0

8.
78
1

8.
78
3

9.
61
2

1
.0
8

1
.0
9

1
.0
6

1
.0
5

1
.0
0

(a)

(b)



Chapter 2 - Synthetic procedures and physical measurements

73

Effort has been done to separate the tris iridium phenyl pyridine, [Ir(ppy)3] in between the

reaction, but was only partially successful.

Figure 2.5 Reaction scheme for the synthesis of cyclometallated iridium precursors taking the
example of 2- phenylpyridine.

These complexes were completely characterised using 1H NMR, 13C, COSY, HMQC, HMBC,

mass spectrometry and elemental analysis. The 1D and 2D NMR data are given in appendix B. It

was quite interesting to see the behaviour of this chloro bridged dimer complexes when their

NMR was taken in different solvents. In CDCl3 they give a neat spectrum of 8 proton signals

coming from one phenyl pyridine, the same complex when taken nmr in DMSO gave 16 proton

spectrum which suggests that the chloride bridge got ruptured and DMSO is coordinated in

between resulting in the loss of symmetry of the entire complex, ie the two phenyl pyridine

ligands are in two different planes and are different from one another. Similar behaviour is

observed with other ligands. The NMR spectrums were shown in figure 2.6. In all these

complexes, a doublet at about δ 5.9 and a triplet at δ 6.7 are assigned to the two protons of the

phenyl ring ortho and meta to the metalated carbon atom, respectively. These assignments are

consistent with previous assignments of high-field resonances in ortho-metalated bpy

complexes.5 Protons ortho and meta to the metalated C atom experience the largest shielding of

any of the ligand protons.The nmr spectrum of complexes [Ir(thpy)2Cl]2 and [Ir(ppy-CHO)2Cl]2

in d6 DMSO are given in appendix B.
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Figure 2.6 (a) 1H NMR Spectrum of [Ir(ppy)2Cl]2 in d6 DMSO. (b) 1H NMR Spectrum of

[Ir(ppy)2Cl]2 in CDCl3 and (c) 1H NMR Spectrum of [Ir(ppy)2(ACN)2] in d6 DMSO.

The actual aim consists of binding the entire photocatalytic system to the surface of a

semiconductor and thereby replacing the sacrificial electron donor completely. For these type of

systems to work properly the electron has to move from the semiconductor to the photocatalytic

metal center for this the light absorbing unit (here the iridium center with the cyclometallated

ligand) has to be attached to the surface of the semiconductor. For this some acid or ester

functionality is required on the cyclometallated ligand by which the photo center can be easily

binded to the surface. The phenyl pyridine ligand with carboxylic acid functionality was

synthesised succesfully and protected by esterification into both ethyl and methyl esters. The 1H
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NMR and COSY data for these ligands are given in appendix B. The schematic representation of

the synthetic scheme is given in figure 2.7 below.

Figure 2.7 General reaction pathways for the synthesis of ester phenyl pyridines.

Also the reaction with the cyclometallating ligand ppy-COOH and its ethyl and methyl ester

were not going satisfactionary in methoxyethanol but went fine in both ethanol and

ethoxyethanol. In these cases the reaction went completely successful in pure ethanol itself since

the acid and ester groups can be destroyed and a lot of side products are obtained when done in

conventional solvents for this reactions. The NMR spectra for these complexes are shown in

figure 2.12 and are discussed in chapter 3.

Figure 2.8 (a) 1H NMR Spectrum of [Ir(COOH-ppy)2Cl]2 in d6 DMSO. (b) 1H NMR Spectrum of
[Ir(COOCH3-ppy)2Cl]2 in d6 DMSO.
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2.3 Chromatographic techniques

2.3.1 HPLC Measurements

High-Performance Liquid Chromatography (HPLC) was carried out using a Varian ProStar

(model 335.71) photodiode array Detector, HPLC conjunction with Varian Star software, a

Varian (model 210) pump, a 20 μl injector loop and a strong cation exchange Luna SCX 100A

column (25 cm X 4.6 mm) provided by phenomenex . The column is packed with 5 μm particles

and the operating pH range is between 2 and 8. The mobile phase for this work was 80:20

CH3CN: H2O: containing 0.1 M KNO3. Filtered and degassed prior using the flow rate ranged

1.5 and 2 cm3/min-1. The monitoring wavelength used was 280 nm. The HPLC measurements

were done with the help of Dr.Hamid M. Y Ahmed

2.3.2 Column Chromatography

Column chromatography was carried out on activated alumina (Al2O3, 150mesh) using

acetonitrile or methanol as eluent or on silica gel (80/20, (v/v %) CH3CN/H2O). For the

purification of [Ir(bpy-N^N')2(bpy-C^N')]2+, sephadex LH20 resin was used with methanol as

solvent. Alumina and silica TLC plates used during the purification processes were purchased

from Aldrich and used as received.

2.4 Nuclear Magnetic Resonance Spectroscopy

NMR spectroscopy is an invaluable tool not only in the identification of compounds but also in

the monitoring of reactions and the determination of purity. It is used extensively throughout this

thesis and where practical full assignment of 1H and 13C NMR spectra have been made using a

combination of two dimensional techniques.6

2.4.1 1H, 13C and 1H COSY Spectroscopy

All 1H NMR (400 MHz & 600 MHz), 13C (100 MHz), COSY, HMQC, HMBC and DEPT-135

spectra were recorded on a Bruker AC400 (400 MHz) NMR spectrometer and Bruker Avance:3

(600 MHz) instrument. The chemical shifts were recorded relative to TMS and spectra were

converted from their free induction decay (FID) profiles using XWIN-NMR software. All

measurements were carried out in (CD3)2SO, CDCl3 or (CD3)2CO for ligands and CD3CN or

(CD3)2CO for complexes. Peak positions are relative to residual solvent peaks. For 1H COSY
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Ha

H6

H5
H4

Hc

H3

Hb

experiments 256 FID’s, each of 8 scans, consisting of 1K data points were accumulated. After

digital filtering using a sine bell squared function, the FID’s were zero filed in the F1 dimension.

Acquisition parameters were F1 = 500 Hz, F2 = 1000 Hz, t1/2 = 0.001 s and the recycle delay was

1.5 s.

As an example of the potential of both 1D and 2D experiments in the elucidation of 1H and 13C

NMR spectra, the following example is described in some detail. The compound 2-thiophen-2-

yl-pyridine (thpy) contains a pyridyl and a thienyl moiety. The higher electron density of the

pyridyl ring, and hence the larger ring current, results in a greater downfield shift of its

resonances when compared with the thienyl proton resonances. The H6 resonance of the pyridyl

ring is shifted downfield, with respect to the H4 and H5 protons, due to the proximity of the H6

with the electron withdrawing nitrogen atom of the pyridyl ring. 1H COSY NMR spectroscopy

(figure 2.12) shows as to the correlation between resonances using the “box” relationship. This

allows for assignment of all peaks.

Figure 2.9 Structure of pyth (2-Thiophen-2-yl-pyridine). δ in ppm

Figure 2.10 1H NMR spectra (400 MHz) of pyth in (CD3)2SO
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Figure 2.11 13C NMR spectra (400 MHz) of pyth in (CD3)2SO

Figure 2.12 1H COSY NMR spectra (400 MHz) of pyth in (CD3)2SO

120125130135140145150 ppm

1
18
.5
99

1
22
.2
92

1
25
.1
85

1
28
.3
35

1
28
.3
71

1
37
.1
15

1
44
.5
20

1
49
.3
20

1
51
.7
87

ppm

7.17.27.37.47.57.67.77.87.98.08.18.28.38.48.58.68.78.8 ppm

7.0

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8.0

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

C4

C8C2



Chapter 2 - Synthetic procedures and physical measurements

79

2.5 Electronic Spectroscopy

Electronic spectroscopy is principally concerned with the absorption of electromagnetic radiation

resulting in direct excitation of molecules to higher electronic energy states. Such transitions

may, in the case of gaseous samples of simple molecules, result in very sharp well-defined

spectra. However in condensed phases the bands observed are considerably broadened. This

broadening arises primarily from three sources: doppler broadening, rotational energy level

transitions and vibrational energy level transitions. Perturbation of energy levels by solvation

adds to this broadening significantly.7 A detailed discussion of these effects is beyond the scope

of this thesis, however the area has been dealt with in detail by several authors.8 Despite this

electronic spectroscopy is an invaluable tool in the characterisation of the elctronic properties

and excited state processes of molecules and, in the case of this thesis, of the iridium polypyridyl

complexes.9

2.5.1 Absorption Spectroscopy

Absorption spectroscopy measures the transition of atoms and molecules between different

electronic states. As the name suggests, the technique relates to the absorption by molecular

species of light with wavelength between 200-800 nm. It is generally assumed that radiation in

the infrared and microwave regions of the radiative spectrum are too low in energy to cause

significant perturbations of the electronic structure of the species. The most important equation

in absorption spectroscopy is the Beer-Lambert law, defined in equation 2.1 below.10 It relates

absorbance (the intensity of the light absorbed) to the path length of the light, l, and the

concentration of the species in the solution, c.

= = Equation 2.1

Io and It are the incident and transmitted light intensities, respectively. ε is referred to as the

molar extinction coefficient, and is a measure of the strength of the transition between the ground

state and the excited state. A large value of ε indicates that the transition is almost fully allowed,

such as the Metal to Ligand Charge Transfer (MLCT) process in [Co(NH3)5Br]2+, where εmax at

250nm = 20,000 M-1cm-1. In order to put this value in perspective, ϵmax of the ligand field

transition for the same complex at 550 nm is just 50 M-1cm-1 and is considered as a spin
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forbidden process.10 The transition metal can sometimes affect the electronic structure, in such a

way that certain transitions that are formally forbidden actually occur, with reasonably high

molar extinction coefficients. In order for the measurement to be accurate, the absorbance should

not be too low, as this makes it difficult to distinguish the actual peak from the baseline noise.

However if the absorbance value is too high, this indicates that all the light has been absorbed by

the sample and therefore the amount of light available for the measurement is not enough for a

statistically accurate measurement to be made.

The UV measurements presented throughout this work were recorded on a Agilent 8453 UV-Vis

Spectrophotometer, the spectra were obtained in the wavelength range 200 to 800 nm. Samples

were measured in quartz cuvettes with a 1.0 cm path length. All the solvents were spectrometric

grade and used without further purification.

2.5.2 Emission Spectroscopy

Emission spectroscopy is the investigation of the radiative relaxation processes which a complex

may undergo during the transition between its excited state and its ground state. The excited state

is formed via the absorption of light, followed by the relaxation to the thermally equilibrated

(THEXI) state. The life time of the THEXI state can range from ns to ms, and its formation

occurs on sub-nanoseconds timescale.11 Steady state emission spectroscopy is used to investigate

this steady state, via the intensity and energy of the emitted light.

It is important to note that sample preparation and concentration are just as important in emission

spectroscopy as they are in UV-Vis absorption spectroscopy. Samples that are too highly

concentrated have been observed to re-absorb the emitted light, leading to an overall decrease in

the intensity of the emission. This is known as the inner filter effect. The other possibility is that

samples that are too weakly concentrated have such low signal intensity that the signal to noise

ratio becomes a major issue, and the error in the measurement becomes more apparent. Most of

the samples for which the life time data was obtained were measured in four solvents, usually

ACN, DCM, MeOH and CHCl3. The reason for the use of these solvents was to investigate

effect of solvent on the emission energy and intensity which helped us in assigning the various

excited state from which emision occurs in the case of Ir (III) complexes. The solvent can
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sometimes play a key role in the stabilisation of the excited state of the complex, and this can

affect the energy of the emission. The solvent generally affects the charge transfer states such as

MLCT and LMCT to a greater degree than it affects the metal (d-d) and the ligand centered

(π-π*) states. This is due to the large change in dipole upon the formation of the excited state,12

which does not occur to the same amount in the MC and LC states, as the electron is not

displaced as much.

All emission spectra were recorded using a Perkin Elmer LS50B Luminescence

spectrophotometer, which was interfaced with an Elonex-466 PC via Windows 3.1 based

fluorescence data manager software, FL Winlab, and a Varian UV Fluorimeter, using Cary UV

software. Excitation and emission slit widths were usually set to 10 nm and 15 nm, but 5nm slits

were also used, depending on the condition required. For low temperature measurements sample

solutions in a pyrex tube were mounted in an Oxford Instruments Liquid Nitrogen PE1704

cryostat as shown in figure 2.13. An Oxford Instruments Intelligent Temperature Controller ITC

601 was used to adjust the temperature of the sample to the desired value. The excitation

wavelength was 360 nm for both the room temperature and the low temperature measurements.

Room temperature measurements were performed at 293K and low temperature measurements

were carried out from 77 K to 280 K. The emission wavelength for the solution based samples

varied with each sample, as required.

Figure 2.13 Instrumental arrangement for measuring low temperature emission using cryostat
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2.5.3 Deaeration using freeze pump thaw method

Degassing is done very efficiently using the freeze pump thaw method using the apparatus

shown in figure 2.14. The sample solution was first taken in a glass apparatus having a cuvette at

one end and a glass bulb attached to it. The solution was kept in the glass bulb which is

connected to the apparatus. A bowl of liquid N2 was placed under the glass bulb in order to

freeze the solution. The freeze pump thaw procedure was repeated 3 times, so that all dissolved

gases were removed.

Figure 2.14 Apparatus for freeze pump thaw method of deaeration

2.5.4 Emission Quantum yield measurements

Quantum yield measurements were carried out by the optically dilute method13 by comparison

with [Ru(bpy)3](PF6)2
14 in aerated/deaerated acetonitrile. Emission spectra were obtained at a

wavelength where the absorption by [Ru(bpy)3](PF6)2 and the sample under examination are

equal. The area under the emission spectrum (A) of each sample was calculated using the

spectrometer supplied software and the quantum yield was calculated from Equation 2.2:

Φunkown/Φ[Ru(bpy)3](PF6)2
=   Aunkown/A[Ru(bpy)3](PF6)2 Equation 2.2

Where Φ is the quantum yield and A is the area under the emission spectrum. As all quantum
yield measurements were carried out in acetonitrile, compensation for refractive indices is
unnecessary.
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Several factors must be accounted for in the determination of quantum yield values.

Measurements must be carried out at the same temperature (preferably in a thermostatic bath

when a large temperature dependence of emission intensity is observed). Quenching of emission

is another problem and can arise from one or more sources eg: dissolved gasses 3O2, electron

transfer agents (eg. Methyl-viologen), concentration quenching (inner filter effects) and the

presence of impurities such as water and protic solvents. Another common error is that of over

concentrated samples. To avoid this, sample and standard are prepared in such a way that their

optical densities at the overlapping point in absorption spectra should be approximately of 0.05.

2.6 Time  Correlated Emission

This technique measures the lifetime of the excited state of the molecules. The method of

operation of single photon counter (SPC) is discussed in detail below. Briefly the molecules are

excited by N2 flash lamp or an LED lamp of proper wavelength, and the emission of the sample

is detected. The time difference between the emission of the initial lamp photon and the photon

emitted by the excited state molecule is measured.

Time resolved emission measurements were performed on various Iridium and Ruthenium

polypyridyl based complexes, bearing various conjugated polycyclic moieties, and modified

pyridine ligands. These measurements were performed to compliment steady state measurements

such as quantum yields and fluorescence, discussed in more detail in chapters 3, 4 and 5. The

measurements are closely related and this relationship is described in equation 2.3 below.

ISS = ∫ = Equation 2.3

where I0 is the illumination intensity, τ is the lifetime of the excited state, and ISS is the intensity

of the steady state emission. It is possible to extract further information regarding the excited

state processes of the system using time resolved emission techniques, as the lifetime and the

number of decays are both valuable pieces of information. For low temperature (77 K)

measurements sample solutions in a pyrex tube were mounted in an Oxford Instruments Liquid

Nitrogen PE1704 cryostat. An Oxford Instruments Intelligent Temperature Controller ITC 601



Chapter 2 - Synthetic procedures and physical measurements

84

was used to adjust the temperature of the sample to the desired value. The excitation wavelength

was 360 nm. The emission wavelength for the solution based samples varied with each sample,

as required.15

2.6.1 Time Correlated Single Photon Counting (TCSPC) Techniques, Nanosecond Time

Resolved Single Photon Counting Measurements.

The life time measurements were carried out using an Edinburgh Instruments Single Photon

Counter (TCSPC), with an LED excitation source of wavelength 360 nm as shown in figure 2.15

below. Spectrometric grade solvents were used for measurements. Deaeration was done using

freeze-pump-thaw method.

Figure 2.15 TCSPC apparatus used for the lifetime measurements

A schematic diagram of the SPC system is shown in figure 2.16. The system is comprised of two

main components, the excitation source and the detection system. The excitation source is an

EPLED - 360 LED source.

The method of operation of Single Photon Counter is described as follows. A photon of light is

emitted from a nano flash lamp and travels via an optical cable to the START detector. When

this photon is detected by the START detector the TAC (Time to Analogue Converter) initiates a

voltage ramp. Simultaneously, another photon passes the excitation monochromator, which is set

to the appropriate excitation wavelength. This photon is then absorbed by the sample. The re-
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emitted photon then passes through the filter and also through an emission monochromator,

which has been set to the desired emission wavelength of the sample.10,13

Figure 2.16 Schematic diagram of TCSPC apparatus

The voltage ramp is stopped when the STOP detector receives a photon of light from the sample.

Both the START and the STOP detector contain signal amplifiers, which may be varied to adjust

the sensitivity of the instrument. The signal amplifiers are related to the potential bias applied to

the photomultiplier tubes, and therefore the lifetime of the tubes may be reduced if too high

voltage is applied. The time range is split into 1024, 2048, and 4096 channels, depending on the

settings chosen by the operator. Each of these channels is assigned a range of voltages

corresponding to a certain time range. The Multi Channel Analyser (MCA) records the number

of times a specific voltage is obtained in each of the channels. A spectrum of voltages and

therefore time differences is produced by the MCA memory and the experiment is terminated

λex

λem
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when a sufficient number of counts are collected. The number of counts collected depends on a

number of factors.

 The signal to noise ratio

 The number of decays in the sample

 The presence of scatter from the sample

It is sufficient in most experiments to obtain 1000 counts in order to get a good quality fit after

data analysis, a process which will be discussed later. The detector contains a red sensitive

S900-R photomultiplier. It has a working range of 160-870 nm, due to the quartz glass in its side

window. This detector is generally operated within Peltier element cooled housing at 50 K below

ambient temperature, so as to reduce dark counts. It is still necessary to perform some

measurements in the dark, if emission arm filters are removed.

2.6.2 Analysis of TCSPC Data

There are two methods by which the data from the decay of the excited state, which is obtained

from the lifetime measurement, can be analysed using the F900 program Version 6.24 namely,

Reconvolution Fit and Tail Fit. Reconvolution Fit takes into account the finite nature of the

excitation pulse, and the possibility that the sample decay is convoluted with the excitation pulse.

The convolution integral (Equation 2.4) shows the mathematical relationship between the sample

response function (X(t)), the instrument response function (E(t)) and the sample decay model

(R(t)):16 X(t) = ∫ E(t) R(t − t′)dt′ Equation 2.4

Reconvolution fit can be used to completely describe the data, apart from noise. It will fit the rise

of the signal, the initial part of the decay, and the tail. The second data analysis method within

the software is the tail fit. In this method X(t) is considered to be equal to R(t), and the

instrument response is considered negligible. Since this is the case with most of the

measurements described in this work, this is the method of analysis used unless otherwise stated.

Once the method of fit has been chosen, the lifetime value is calculated by fitting the

experimental decay to the equation 2.5;
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R(t) = A + B e τ Equation 2.5

Where R(t) is the sample decay model, Bi is the pre-exponential factor, τi is the characteristic

lifetime and A is an additional background. The Marquardt-Levenberg algorithms used to search

for the best values of Bi and τi.14,17,18 The quality of the life time data is assessed by two criteria,

the reduced Chi-squared χ2, and the nature of the residuals data. The χ2 value is obtained by

dividing the goodness of fit χg
2, which itself is ultimately found by Marquardt-Levenberg

algorithms, by the number of free parameters, n, (which is approximately the number of fitted

points divided by the number of lifetime parameters used in the fit) and is shown in equation 2.6

below. The data follows a Poisson distribution, and therefore the χ2 has a theoretical limit of 1.0.

values above indicates a bad fit of the data and the values below 1.0 are the result of poor choice

of the fitting range.10,14 The F900 program also displays the residuals in the graph of residual

value aganist time(ns). This is inspected visually to ensure that the residuals are more or less

random in nature, and to ensure the absence of peaks or tails of peaks at the beginning of the

trace. These peaks would suggest the presence of a very short lifetime, in addition to a longer

decay, and can also indicate other processes such as energy transfer.

χ2 = ∑ [ ] Equation 2.6

A common property found for many of the iridium (III) complexes examined in this thesis is that

emission decays biexponentially and the long lived and short lived components behave

differently. The percentage of the short lived and long lived components are clearly given for

each decay. The χ2 values, which are known as the fitting parameter, determine fine fit for the bi-

exponential decay and are found to be ~1 and the average lifetime (τav) is calculated using the

equation 2.7.19

τav = α1τ1
2 + α2τ2

2

α1τ1 + α2τ2

Equation 2.7
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where α1 and α2 are the pre-exponential factors, which give the abundance of each emissive state

and τ1 and τ2 are the lifetime values of the two emissive states. All the measurements were done

at two different time ranges in order to make sure that the value for the lifetimes are accurate, all

the datas for normal and deuteriated ones in different time ranges are plotted with the decay fit.

2.7 Laser flash photolysis for lifetime measurements

A schematic diagram of the laser flash photolysis instrumentation is given in figure 2.17.  The

excitation source is a neodymium yttrium aluminium garnet (Nd:YAG) laser, which operates at a

frequency of 1064 nm.  The host YAG crystals are implanted with Nd atoms of approximately

one part per hundred. The main advantage of the YAG host material is its relatively high thermal

conductivity which removes wasted heat, thus allowing these crystals to operate at high

repetition rates of many pulses per second. Using non linear optics, the fundamental frequency

of 1064 nm can be doubled, tripled or quadrupled to generate a second, third or fourth harmonic

frequency at 532, 355 or 266 nm respectively.  This allows specific excitation pathways within a

system to be selected.  Amplification of the laser power can be carried out by varying the voltage

across an amplifier flash tube.  At a frequency of 355 nm, the energy generated is typically 35 mJ

per pulse and the lifetime of the laser pulse approximately 10 ns.

The circular laser pulse is diverted via a Pellin Broca prism through an optical trigger (which

prepares the transient digitiser) onto the sample cuvette. The transient digitiser (a Hewlett

Packard HP 54510A oscilloscope) detects the transient species. A Hamamatsu 5 stage

photomultiplier operating at 850 V is situated at the exit slit of the monochromator.  Following

activation of the optical trigger the transient digitiser (oscilloscope) measures changes in the

emission via a variable load transistor.
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Figure 2.17 Schematic diagram of laser flash photolysis instrumentation.

2.8 Gas chromatography for measuring H2 from Supramolecular Photocatalysts

2.8.1 Principles

Chromatography is a very important analytical tool because it allows the chemist to separate

components in a mixture for subsequent use or quantification. Most samples that chemists want

to analyze are mixtures. If the method of quantification is selective for a given component in the

mixture, separation is not required. However, it is often the case that the detector is not specific

enough, and a separation must first be performed. There are several types of chromatography

depending on the type of sample involved.  In this experiment, gas chromatography was used.

The gas chromatograph makes it possible to separate the volatile components of a very small

sample and to determine the amount of each component present. The essentials required for the

method are an injection port through which samples are loaded, a "column" on which the

components are separated, a regulated flow of a carrier gas which carries the sample through the

instrument, a detector, and a data processor. In gas chromatography, the temperature of the

injection port, column, and detector are controlled by thermostatic heaters.

2.8.2 Injection Port

The sample to be analyzed is loaded at the injection port via a gas tight syringe.  The injection

port is heated in order to volatilize the sample.  Once in the gas phase, the sample is carried onto

the column by the carrier gas, in our case nitrogen.  The carrier gas is also called the mobile
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phase. The gas chromatographs are sensitive instruments. Typically samples of fifty micro litres

or less are injected on the column.20

2.8.3 Column

The column is where the components of the sample are separated. The column contains the

stationary phase. The gas chromatography columns are of two types - packed and capillary.

Capillary columns are those in which the stationary phase is coated on the interior walls of a

tubular column with a small inner diameter. The stationary phase in our column is a polysiloxane

material. The basic structure of the polymeric molecules is shown below (figure 2.18), where n

indicates a variable number of repeating units and R indicates an organic functional group.  In

our columns, 5 % of the “R’s” are methyl groups (-CH3) and 95 % of the “R’s” are phenyl

groups (-C6H5).20

CH3 Si O

CH3

CH3

Si

R

R

O Si

CH3

CH3

CH3

Figure 2.18 Polysiloxine material used in our columns

This polymeric liquid has a high boiling point that prevents it from evaporating off the column

during the experiment.

The components in the sample get separated on the column because they take different amounts

of time to travel through the column depending on how strongly they interact with the stationary

phase. As the components move into the column from the injection port they dissolve in the

stationary phase and are retained. Upon re-vaporization into the mobile phase they are carried

further down the column. This process is repeated many times as the components migrate

through the column. The components that interact more strongly with the stationary phase spend

proportionally less time in the mobile phase and therefore move through the column more

slowly. As described above, the rate at which compounds move through the column depends on

the nature of the interaction between the compound and the stationary phase. Other variables that

affect this rate are column temperature and carrier gas flow rate.

n
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2.8.4 Detector

If the column conditions are chosen correctly, the components in the sample will exit the column

and flow past the detector one at a time. There are several different types of detectors common to

gas chromatography instruments. The choice of detector is determined by the general class of

compounds being analyzed and the sensitivity required. Our gas chromatographs are equipped

with thermal conductivity detector (TCD) and flame ionization detectors (FID). The FIDs, see

figure 2.19 – are the most widely used detectors for organic samples. FIDs use an air/hydrogen

flame to pyrolyze the effluent sample.  The pyrolysis of the compounds in the flame creates ions.

A voltage is applied across the flame and the resulting flow of ions is detected as a current.  The

number of ions produced, and therefore the resulting current, depends on the flame conditions

and the identity of the molecule in question. In other words, the detector shows a different

response to each compound.  For this reason, separate calibrations were performed for each

compound analyzed. The FID is extremely sensitive with a large dynamic range, its only

disadvantage is that it destroys the sample.20

Figure 2.19 Schematic of Flame Ionization Detector.20
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A TCD, see figure 2.20 consists of an electrically-heated wire or thermistor. The temperature of

the sensing element depends on the thermal conductivity of the gas flowing around it. Changes in

thermal conductivity, such as when organic molecules displace some of the carrier gas, cause a

temperature rise in the element which is sensed as a change in resistance. The TCD is not as

sensitive as other detectors but it is non-specific and non-destructive. Two pairs of TCDs are

used in gas chromatographs. One pair is placed in the column effluent to detect the separated

components as they leave the column, and another pair is placed before the injector or in a

separate reference column. The resistances of the two sets of pairs are then arranged in a bridge

circuit.

Figure 2.20 Schematic of a bridge circuit for TCD detection.20

The bridge circuit allows amplification of resistance changes due to analytes passing over the

sample thermo conductors and does not amplify changes in resistance that both sets of detectors

produce due to flow rate fluctuations.

2.8.5 Integrating Recorder

The output of the detector (converted from current to voltage) is sent to an integrating recorder

that plots, stores, and analyzes the data.  A typical chromatogram is shown in Figure 2.21. The

detector voltage (y-axis) is plotted as a function of time (x-axis). Each peak corresponds to a

separate component. The time it takes for a given peak to appear after injection is called the

retention time. If the column conditions are kept constant, the retention time for each component

is quite reproducible from one sample and injection to the next. The identity of each peak can be

determined by injecting pure samples of the individual components of the mixture and noting

their retention times.  The voltage from the detector is proportional to the number of molecules

passing through the detector at any given time.



Chapter 2 - Synthetic procedures and physical measurements

93

Figure 2.21 Sample chromatogram 20

For well-separated peaks, the total number of molecules of each component reaching the detector

is then proportional to the area under the peak. The recorder determines the area of each peak by

integration and reports this in the results table. The proportionality factor between area and

amount must be determined by a calibration experiment.20

2.8.6 TONs Calculations

TON for hydrogen and oxygen are calculated by the below mentioned equation,

TON = [(vol. of gas) x atm. pressure x (ppm of gas / 106)] / Gas constant x Temperature

Mass of complex / Mol. Weight of complex

Volume of the gas = in Litre,

Pressure = 1 atm,

Temperature = in Kelvin,

Gas constant = 0.082 L atm / K mol

Mass of the complex = gm,

Molecular weight = gm / mol.

The ppm of a particular gas is calculated by the area under the particular peak in the gas

chromatogram in mVolt/sec. Then afterward area is changed to ppm by standard gas equation.
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Figure 2.21 Sample chromatogram 20
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Mass of complex / Mol. Weight of complex

Volume of the gas = in Litre,

Pressure = 1 atm,

Temperature = in Kelvin,

Gas constant = 0.082 L atm / K mol

Mass of the complex = gm,

Molecular weight = gm / mol.

The ppm of a particular gas is calculated by the area under the particular peak in the gas

chromatogram in mVolt/sec. Then afterward area is changed to ppm by standard gas equation.
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Figure 2.21 Sample chromatogram 20

For well-separated peaks, the total number of molecules of each component reaching the detector

is then proportional to the area under the peak. The recorder determines the area of each peak by

integration and reports this in the results table. The proportionality factor between area and

amount must be determined by a calibration experiment.20

2.8.6 TONs Calculations

TON for hydrogen and oxygen are calculated by the below mentioned equation,

TON = [(vol. of gas) x atm. pressure x (ppm of gas / 106)] / Gas constant x Temperature
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Temperature = in Kelvin,

Gas constant = 0.082 L atm / K mol

Mass of the complex = gm,

Molecular weight = gm / mol.

The ppm of a particular gas is calculated by the area under the particular peak in the gas
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2.8.7 Photo catalytic experiments

The photo catalytic hydrogen production experiments were performed under argon atmosphere

as follows. For the photolysis reaction in acetonitrile, the septa capped deoxygenated photolysis

reaction vial (5ml full volume) containing 2 ml of the reaction solution containing the metal

complexes (5x10-5M), electron donor triethylamine (sacrificial agent) (16.6 % (v/v)  and water

(3.3% (v/v)) was used. The solutions were photolysed using blue light (470 nm) and UV light

(350 nm) LED light array shown in figure 2.22. After 18 h photolysis time, the amount of

hydrogen produced was measured by gas chromatography using gas tight syringe. Samples of the

syringe (20 µL) were injected into a series CP-3800 Gas Chromatograph equipped with a 5 Å

molecular sieves column and polymer supported silica column purchased from Varian Inc (UK)

using ultra-high purity nitrogen as the carrier gas. The signals were amplified with a Varian Star

Workstation chromatography Data system. The system was calibrated for hydrogen signal

sensitivity by hydrogen standard measurements. The total amount of hydrogen produced in a

photolysis experiment was obtained by the sum of hydrogen found in the gas phase as well as the

hydrogen in the solution. The amount of hydrogen in the solution was calculated according to

Henry’s law using the reported solubility of hydrogen in acetonitrile as 1.78 x 10 -4 (mole

fraction). 21

Figure 2.22 This photography shows the reactor where the catalytic solutions were irradiated

by blue LEDs (470 nm wavelength, 8000 mcd illumination capacity).

2.9 Mass Spectrometry

Mass spectra were recorded with a Bruker-Esquire LC-00050 electrospray ionisation mass

spectrometer at positive polarity with cap-exit voltage of 167 V. Spectra were recorded in the

scan range of 50-2200 m/z with an acquisition time of between 300 and 900 μs. Each spectrum
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was recorded by summation of 20 scans. Spectra were collected by constant infusion of the

analyte dissolved in acetonitrile, with a positive ion polarity. Samples were prepared by

dissolving ~2 mg of sample in 1 mL of acetonitrile.  50 μL of this solution was then taken and

diluted by the addition of 1ml of acetonitrile and this solution was then used to acquire the mass

spectrum.

2.10 Elemental Analysis

Carbon, hydrogen and nitrogen (CHN) elemental analyses were carried out on an Exador

Analytical CE440 by the Microanalytical Department, University College Dublin. The CHN

analyzer used an Exador analytical CE440. It should be noted that when calculating the overall

mass of deuteriated complexes the additional mass of the deuterium was included but when

calculating the percentage of hydrogen and deuterium in the sample all protons and deuterons

were treated as protons.
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Chapter 3

Synthesis, characterisation, photophysics and
photocatalysis of novel cyclometallated iridium (III)

complexes

This chapter deals with the synthesis, characterisation, photophysics and

photocatalysis of a range of mononuclear, homodinuclear and heterodinuclear

cyclometallated iridium (III) complexes. All of these complexes proved to be

potential candidates for H2 generation. Intramolecular photocatalysis proved to be

more effective than intermolecular photocatalysis and 470 nm irradiation produced

more H2 than 350 nm irradiation.
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3.1 Introduction

The photoinduced cleavage of water using visible light is under intense investigation with the

aim to develop an efficient method for converting solar radiation into a convenient and

sustainable fuel. Out of the various methods available at present to harness renewable clean

energy from sustainable sources, hydrogen is a promising candidate. Direct conversion of

solar energy to chemical energy in the form of hydrogen is an attractive goal that can be

accomplished by photosynthetic means from one of earth’s most plentiful resources, water.

Through the efficient spliting of water into hydrogen and oxygen, a major leap forward in our

global energy situation can be achieved. As shown in figure 3.1 hydrogen and oxygen are

produced using solar energy, and burnt them in heat engines, with useable heat released from

the enthalpy of combustion, or in a fuel cell with electrical power generation.1,3,8,15

Figure 3.1 The cycle of sustainable fuel production.

There are numerous approaches to achieving this goal, including the use of photovoltaic cells

to drive electrolysis,1 semiconductor based charge separation techniques,2,3 thermochemical

disproportionation,4 and the use of catalytic systems that include light harvesting transition

metal complexes. Transition metal complexes have a distinct advantage over their

semiconductor counterparts as their photophysical properties can be “tuned” through ligand

modifications. Aided by this versatility, researchers have devised a variety of catalytic

systems capable of performing the reduction half reaction of water cleavage, in which the

excited state of the transition metal complex is quenched by charge transfer to an electron

relay. Early work reports the successful use of [Ru(bpy)3]2+ (bpy-2,2ꞌ-bipyridine) as a

photosensitiser, in combination with an electron relay species, and employing a platinum

catalyst.5,6 More recent variations involve the attachment of a photosensitiser to TiO2
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supported platinum particles,7,8 as well as the use of different photosensitisers such as ZnII

porphyrins,9,10,11 Mg chlorophyll-a from Spirulina, and cyclometallated [Ir(C^N)2 (N^N)]+

complexes.12,13

3.1.1 Mononuclear iridium complexes for intermolecular photocatalytic H2 generation

As a consequence of greater ligand field stabilisation energy (LFSE), the use of

cyclometallated Ir (III) complexes avoids the thermal population and subsequent nonradiative

decay from, the dissociative 3MC state observed with tris diimine Ru (II) complexes.14 In

addition, the greater energetic requirements for the population of the 3MC state allow a larger

range of excited state energies by altering the ligand architecture.15 The “tuning” of the

[Ir(C^N)2(N^N)]+ complexe’s excited state properties is further facilitated by the formation of

a mixed excited triplet state associated with metal to ligand charge transfer (MLCT), ligand

centered (LC) transitions and ligand to ligand centered transitions (LLCT) respectively.16,17,18

To facilitate the transfer of reducing equivalents, an electron relay such as methyl viologen is

typically employed. The choice of an electron relay is generally crucial to the success of a

system; a good relay oxidatively quenches the excited photosensitiser, thereby creating

charge separation. Numerous relays have been used in place of methyl viologen, including a

variety of quaternary bipyridines19 as well as several cobalt20,21,22 and rhodium23,24,25

complexes. Other alternatives include bridged systems where a photosensitiser is covalently

linked to hydrogen evolving metal complex.26,27 Aside from net energy loss, the use of an

electron relay allows charge separation at the expense of simplicity, which is compounded by

the presence of a sacrificial electron donor that allows hydrogen evolution without concurrent

water oxidation.

The first mononuclear iridium based intermolecular catalytic system described by Bernhard

and co-workers that uses only a molecular photosensitiser (PS), colloidal metal catalyst,

sacrificial reductant (SR), and visible light to evolve substantial amounts of hydrogen in the

absence of an electron relay species is shown in figure 3.2 below.12,13,82
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Figure 3.2 General reaction pathways for mononuclear intermolecular catalytic

systems.(PS-photosensitiser, SR-sacrificial reductant)12

The systems that do not have an electron relay, while advantageous, are uncommon in the

literature.28 It has been reported previously that unlike [Ru(bpy)3]2+, heteroleptic

cyclometallated iridium (III) complexes, such as the [Ir(ppy)2(bpy)]PF6 (ppy = 2-

phenylpyridine) photosensitiser used are directly quenched by sacrificial electron donors like

TEA and TEOA.12 Bernhard and co-workers have found that quenching of the PS creates an

activated reduced species capable of independently reducing protons or delivering reducing

equivalents to a catalytic center to evolve hydrogen.13,82 Such a system that avoids an electron

relay is inherently simpler. In addition, energy losses and back reactions associated with the

electron transfer to the relay are eliminated, while coupling of the PS to the water redox

couple is facilitated.

3.1.2 Binuclear iridium complexes for intramolecular photocatalytic H2 generation

The central processes in natural photosynthesis are light driven electron transfer from the

special pair chromophores to the primary acceptor, and the subsequent charge separation to

enable the reduction of substrates. The transfer of these design principles to artificial systems

has led to the development of catalytic multicomponent systems for the photocatalytic H2

production6 and CO2 reduction.29 In these systems, active metal complexes and catalysts are

used to facilitate directed photoinduced electron transfer. For example, Gratzel et al. showed

that heterogeneous photocatalytic systems can be used for the generation of hydrogen,30 and

Currao et al. reported the photochemical31 splitting of water with a system consisting of a

photoactive silver/silver chloride anode and a silicon solar cell acting as a cathode. However,

in these heterogeneous systems, the electron transfer processes depend on many interfacial

parameters that are difficult to influence. Intermolecular systems, consisting of a photoactive

Ru or Ir complex and an electron relay of Co or Pd complexes,12,13 which generate H2 have
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also been described in detail in chapter 1. Their effectiveness is limited by the instability of

the reduced photocatalysts.

Figure 3.3 General reaction pathway for a heterodinuclear intramolecular photocatalytic

system, S = sacrificial agent.

In an intramolecular photocatalyst it should be easier to control vectorial photoelectron

transfer by precise tuning of the physical properties and orientation of the molecular

components. If it were also possible to slow down charge recombination processes, efficient

photocatalytic systems may become feasible. A range of intramolecular photocatalysts were

reported in the literature but most of them use Ru metal center as the light absorbing unit,

with only a few examples of Ir intramolecular systems reported so far, including the Ir-Co

system by Fontecave32,33,34 and the self assembled Ir-Co systems by Sakai35 which are

described in detail in chapter 1, in addition to other intramolecular systems reported. For the

reported intramolecular iridium systems the efficiency is relatively low, with TON’s less than

50. This shows the need for improved systems with this metal using different peripheral

ligands, bridging ligands and catalytic centers. A series of heterodinuclear Ir-Pt/Pd systems

with various peripheral ligands and bridging units were made. All of them proved to be more

efficient in producing H2 compared to the conventional Ru-Pt/Pd systems presently

available.27,38 The heterodinuclear Ir–Pt/Pd photocatalyst consists of the following three

components as shown in figure 3.3.

An iridium (III) fragment acting as the light absorber,36

A PtCl2/PdCl2 unit which, when coordinated at the other end of the assembly, acts as

a catalytic center,

A bridging unit (bpp, dpp, tpy, bpm etc) connecting the two metal centers through a

conjugated reducible π-electron system.37

e-e-hυ

Ir Pt/Pd

2H+

H2S
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In the first step of the photocatalytic process the iridium moiety is excited using both visible

(470 nm) and UV (350 nm) light. To facilitate efficient electron transfer to the Pt/Pd center,

the electron donor triethylamine (TEA) was utilised to re-reduce the photochemically formed

IrIV center. The electron reaching the Pd/Pt catalytic center reduces the proton to form

hydrogen (figure 3.3).

3.1.3 Role of bridging ligand

The ligand chosen to bridge the two metal centers is of vital importance because, as has been

discussed previously, electronic communication is fundamental for the intramolecular

photocatalyst to function properly. The ligands chosen here are (2-(6-(pyridin-2-yl)pyridin-3-

yl)pyridine) (bpp) and 2,5-di(pyridin-2-yl)pyrazine (dpp), 2,2ꞌ:6ꞌ,2ꞌꞌ-terpyridine (tpy) and 2,2ꞌ-

bipyrimidine (bpm) as shown in figure 3.4 below. These ligands are good starting blocks as

their electronic communication between different metal centres such as Ru-Pt/Pd, Ru-Os, Ru-

Ru, has been extensively studied.38,39,40

Figure 3.4 Depicts the structures of the bridging ligands employed in this chapter.

3.1.4 Iridium (III) polypyridine complexes as chemical and biological probes

In the past few years, a number of luminescent iridium (III) polypyridine complexes have

been studied as molecular sensors as they usually display intense and long lived emission in

the visible region and the emission energy can be controlled using various mono, bi and

tridentate ligands, resulting in drastically different excited state characteristics.41,42,43 The

orgin of emission for common ruthenium (II), osmium (II) and rhenium (I) polypyridine

complexes is confined to triplet metal to ligand charge transfer (3MLCT) states.44,45,46

However, whereas the emissive states of many iridium (III) polypyridine complexes are
3MLCT and triplet intra ligand in character,47,48 triplet states of ligand to ligand charge
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transfer (3LLCT) and sigma bond to ligand charge transfer (3SBLCT) have also been

identified in some systems.49,50,51

In general, the triplet intra ligand emission for these Ir (III) complexes is more intense and

longer lived than the 3MLCT emission, and an interplay between these two states can result in

pronounced changes in emission properties. Licini and Williams reported iridium (III) bis-

terpyridine complexes, which display long lived pH sensitive luminescence.56 The pyridine

appended complex [Ir(ttpy)(tpy–py)]3+ displays long lived triplet intra ligand

(π→π*)(tpy) emission in aerated neutral aqueous solution, but both the lifetime and intensity

are reduced by about 8 fold when the pH is lowered to 2. These significant changes have been

attributed to the increasing 3MLCT character in the excited state upon protonation of the

appended pyridine nitrogen, which can promote deactivation and thereby shorten lifetimes

and reduce intensities. In fact, the effects of the iridium (III) center on the spectroscopic

properties of polypyridine ligands can be utilised in pH sensing. For example, the complex

[Ir(tpy-C6H4-OH)2]3+ with pendant phenolic groups is pale yellow in aqueous solution at pH

6 but becomes deep orange upon increasing the pH to 10, and the electronic absorption

spectra show a new low energy band at 468 nm upon deprotonation.

In another study by Williams and coworkers, a series of iridium (III) bis-terpyridine

complexes [Ir(tpy-R1)(tpy-R2)]3+ as shown in figure 3.5 below has been incorporated with

pendant pyridyl groups at the 4ꞌ-positions of the terpyridine ligands.52 In aqueous solution,

the homoleptic complexes display structured emission bands resembling that of unsubstituted

[Ir(tpy)2]3+, with emission lifetimes suggestive of triplet intra ligand state. The heteroleptic

analogues give broader and red shifted emission bands, similar to that of [Ir(ttpy)2]3+,

indicating that the emission originates primarily from a lower energy excited state associated

with the 4ꞌ-tolyl-terpyridine ligand. The emission of most of the heteroleptic complexes is

sensitive to the protonation state of the pendant pyridyl group.
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Figure 3.5 Schematic representation of the iridium terpyridine complexes synthesised by

Williams and coworkers.57

Goodall and Williams have made use of the mixed 3IL/3MLCT emission properties of

luminescent iridium (III) complexes for anion sensing.53 The isomeric complexes

[Ir(ttpy)(tpy–py–Me)]4+ with a meta or para N-methylpyridinium substituent at the 4ꞌ-position

of terpyridine display long lived emission in aqueous solution. The lower emission quantum

yield and shorter lifetime of the para isomer is ascribed to the direct conjugation of the

alkylated pyridine nitrogen with the terpyridine, which makes the ligand more electron

deficient and hence lowers the energy of the 3MLCT state, promoting mixing with the

emissive triplet intra ligand state.

Complexes equipped with more than one reactive functional group may function as cross-

linkers for biomolecules. For example, luminescent cyclometalated iridium (III) complexes

containing two aldehyde groups [Ir(pba)2(N^N)]+ (N^N = bpy, phen, Me4-phen, Ph2-phen)

(pba = ppy-CHO) have been synthesised and characterised.54 The two aldehyde moieties are

able to react with the primary amine of biomolecules to form stable secondary amines after

reductive amination. L-Alanine and avidin, respectively, have been cross-linked by these

complexes to form luminescent bioconjugates. The emissive states of the free complexes and

cross-linked conjugates are 3IL (π → π*) (pba) and 3MLCT (dπ(Ir) - π*(N^N)) in character,

respectively. The structures of the complexes reported by Zhu and co-workers are given in

figure 3.6 below.55
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Figure 3.6 Schematic representation of the iridium bipyridine complexes synthesised by Zhu
and coworkers.59,60

This chapter focuses on the synthesis and characterisation of a range of iridium precursor

complexes, mononuclear iridium complexes, novel heterodinuclear Ir-Pt/Pd complexes and

homodinuclear Ir-Ir complex. Detailed studies on the excited state photophysics were carried

out. The lifetimes of all the complexes were measured using both TCSPC and laser flash

photolysis and a comparative study of the results using both instruments gave a clear

indication of the accuracy of the results obtained. Deuteriation was used as a tool to probe the

excited states of some of the complexes. The effect of deuteriation on photocatalytic

hydrogen generation was also studied, and this represents the first measurements with

deuteriated analogues. This chapter also discusses different cyclometallated iridium

photosensitiser units which were successfully employed for the catalytic generation of H2

from H2O by both intermolecular and intramolecular photocatalytic processes using visible

light (470 nm) and UV light (350 nm). The Ir-Pt/Pd heterodinuclear systems discussed in this

chapter are the only systems reported to date based on an iridium attached to either a Pt or Pd

metal center. From all the results obtained it is clear that for good photocatalytic activity a

range of conditions must be optimised, including the nature of peripheral ligands, bridging

ligands, catalyst employed, concentration of the solution, excitation wavelength used etc.

Maximum effort has been taken to optimise the conditions with different photocatalyts in

order to get better results.

Schematic representation of the entire range of complexes discussed in this chapter is given

in figure 3.7 below.
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3.2 Experimental

3.2.1 Synthesis of [Ir(ppy)2(N^N)]PF6 type complexes, [(N^N) → bpy, d8bpy, phen,

d8phen, dmbpy, d12dmbpy, dtbpy, d24dtbpy]

The synthesis of the dichlorobridged Ir precursor complexes is given in chapter 2.

a) Method I

The dichlorobridged dimer (0.1 mmol) was treated with the appropriate neutral ligand (0.2

mmol) in ethylene glycol (5.0 ml) under reflux (150 0C) with constant stirring for 15 h. Upon

cooling to room temperature, the mixture was transferred to a separating funnel with water

(3×30 ml) and washed with diethyl ether (3×50 ml). The aqueous layer was heated to 70 0C

for 5 min using a heat gun to remove residual organic solvents. The vessel was then placed on

ice, and 10 ml of aqueous ammonium hexafluorophosphate solution (1.0 g in 10 ml of

deionised water) was slowly added to the reaction mixture, yielding a coloured suspension.

The precipitate was collected by vacuum filtration and allowed to air dry overnight. This

product was recrystallised by acetonitrile : diethylether vapor diffusion and dried to yield the

pure product, [Ir(C^N)2(N^N)]PF6 (Yield 70 - 80 %).

b) Method II

The dichlorobridged dimer (0.1 mmol) was reacted with the appropriate neutral ligand (0.22

mmol) in DCM : MeOH (2:1) under reflux (80 0C) with constant stirring for overnight. The

reaction mixture was cooled, solvents were completly removed using a vacuum rotary

evaporator. The yellow residue obtained was dissolved in water and filtered in order to

remove any unreacted polypyridine ligand. To the filtrate a saturated aqueous KPF6 solution

was added resulting in the precipitation of the complex as yellow precipitate which was

allowed to settle and filtered using vacuum suction and dried. The yellow residue obtained

was then dissolved completely in acetone and reprecipitated by adding diethyl ether. This is

filtered and recrystallised from acetone : H2O to yield the pure complex, (Yield 70 - 80 %).

3.2.1.1 [Ir(ppy)2(bpy)]PF6 (1)

[Ir(ppy)2Cl]2 (0.050 g, 0.0407 mmol), 2,2ꞌ-bipyridyl (bpy) (0.0139 g, 0.0895 mmol), Yield

(0.072 g, 0.0898 mmol, 75 %). 1H NMR (400 MHz, DMSO),  (ppm): 6.17 (d, 1H, 6ꞌ (ppy)),

6.89 (t, 1H, 5ꞌ (ppy)), 7.01 (t, 1H, 4ꞌ (ppy)), 7.14 (t, 1H, 4 (ppy)), 7.60 (d, 1H, 3 (ppy)), 7.68

(t, 1H, b (bpy)), 7.85 (d, 1H, a (bpy)), 7.92 (m, 2H, 5, 3ꞌ (ppy)), 8.26 (m, 2H, c (bpy), 6
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(ppy)), 8.88 (d, 1H, d (bpy)). Elemental analysis for complex (1), C32H24F6IrN4P; (calculated)

: C :47.94, H :3.02, N :6.99; (found) : C :47.38, H :2.91, N :6.87.

3.2.1.2 [Ir(ppy)2(d8bpy)]PF6 (2)

[Ir(ppy)2Cl]2 (0.050 g, 0.0407 mmol), deuteriated 2,2ꞌ-bipyridyl (d8bpy) (0.0146 g, 0.0895

mmol), Yield (0.069 g, 0.08521 mmol, 72 %). 1H NMR (400 MHz, DMSO),  (ppm): 6.17

(d, 1H, 6ꞌ (ppy)), 6.89 (t, 1H, 5ꞌ (ppy)), 7.01 (t, 1H, 4ꞌ (ppy)), 7.14 (t, 1H, 4 (ppy)), 7.60 (d,

1H, 3 (ppy)), 7.68 (resd. s, b (d8bpy)), 7.85 (resd. s, a (d8bpy)), 7.92 (m, 2H, 5, 3ꞌ (ppy)), 8.26

(resd. s, c (d8bpy) 1H, d, 6 (ppy)), 8.88 (resd. s, d (d8bpy)). Elemental analysis for complex

(2), C32H16D8F6IrN4P; (calculated) : C :47.42, H :2.96, N :6.91; (found) : C :47.12, H :2.95, N

:6.64.

3.2.1.3 [Ir(ppy)2(phen)]PF6 (3)

[Ir(ppy)2Cl]2 (0.100 g, 0.0934 mmol), 1,10 phenanthroline (0.037 g, 0.2054 mmol), Yield

(0.145 g, 0.1755 mmol, 69 %). 1H NMR (400 MHz, DMSO),  (ppm): 6.27 (d, 1H, 6ꞌ (ppy)),

6.95 (m, 2H, 4ꞌ, 5ꞌ (ppy)), 7.04 (t, 1H, 4 (ppy)), 7.43 (d, 1H, 3ꞌ (ppy)), 7.85 (t, 1H, 5 (ppy)),

7.93 (d, 1H, 3 (ppy)), 8.03 (dd, 1H, b (phen)), 8.18 (d, 1H, a (phen)), 8.24 (d, 1H, 6 (ppy)),

8.37 (s, 1H, d (phen)), 8.88 (d, 1H, c (phen)). Elemental analysis for complex (3),

C34H24F6IrN4P; (calculated) : C :49.45, H :2.93, N :6.78; (found) : C :49.38, H :2.91, N :6.47.

3.2.1.4 [Ir(ppy)2(d8phen)]PF6 (4)

[Ir(ppy)2Cl]2 (0.100 g, 0.0934 mmol), deuteriated 1,10 phenanthroline (d8phen) (0.038 g,

0.2054 mmol), Yield (0.133 g, 0.1595 mmol, 62 %). 1H NMR (400 MHz, DMSO),  (ppm):

6.27 (d, 1H, 6ꞌ (ppy)), 6.95 (m, 2H, 4ꞌ, 5ꞌ (ppy)), 7.04 (t, 1H, 4 (ppy)), 7.43 (d, 1H, 3ꞌ (ppy)),

7.85 (t, 1H, 5 (ppy)), 7.93 (d, 1H, 3 (ppy)), 8.03 (resd. s, b (d8phen)), 8.18 (resd. s, a

(d8phen)), 8.24 (d, 1H, 6 (ppy)), 8.37 (resd. s, d (d8phen)), 8.88 (resd. s, c (d8phen)).

Elemental analysis for complex (4), (C34H16D8F6IrN4P)H2O; (calculated) : C :47.90, H :2.81,

N :6.57; (found) : C :48.03, H :2.83, N :6.41.

3.2.1.5 [Ir(ppy)2(dmbpy)]PF6 (5)

[Ir(ppy)2Cl]2 (0.050 g, 0.0467 mmol), 4,4ꞌ-dimethyl-2,2ꞌ-bipyridine (dmbpy) (0.0172 g,

0.1027 mmol), Yield (0.060 g, 0.0723 mmol, 83 %). 1H NMR (400 MHz, DMSO),  (ppm):

3.32 (s, 3H), 6.17 (d, 1H, 6ꞌ (ppy)), 6.88 (t, 1H, 5ꞌ (ppy)), 7.00 (t, 1H, 4ꞌ (ppy)), 7.15 (t, 1H, 4
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(ppy)), 7.50 (d, 1H, b (dmbpy)), 7.60 (d, 1H, 3 (ppy)), 7.66 (d, 1H, a (dmbpy)), 7.91 (m, 2H,

5, 3ꞌ (ppy)), 8.25 (d, 1H, 6 (ppy)), 8.74 (s, 1H, d (dmbpy)). Elemental analysis for complex

(5), (C34H28F6IrN4P); (calculated) : C :49.21, H :3.40, N :6.75; (found) : C :49.26, H :3.39, N

:6.77.

3.2.1.6 [Ir(ppy)2(d12dmbpy)]PF6.H2O (6)

[Ir(ppy)2Cl]2 (0.050 g, 0.0467 mmol), 4,4ꞌ-dimethyl-2,2ꞌ-bipyridine (d12dmbpy) (0.0201 g,

0.1027 mmol), Yield (0.051 g, 0.0605 mmol, 80 %). 1H NMR (400 MHz, DMSO),  (ppm):

3.32 (resd. s), 6.17 (d, 1H, 6ꞌ (ppy)), 6.88 (t, 1H, 5ꞌ (ppy)), 7.00 (t, 1H, 4ꞌ (ppy)), 7.15 (t, 1H, 4

(ppy)), 7.50 (resd. s, b (d12tbpy)), 7.60 (d, 1H, 3 (ppy)), 7.66 (resd. s, a (d12tbpy)), 7.91 (m,

2H, 5, 3ꞌ (ppy)), 8.25 (d, 1H, 6 (ppy)), 8.74 (resd. s, d (d12tbpy)). Elemental analysis for

complex (6), (C34H16D12F6IrN4P)H2O; (calculated) : C :47.45, H :3.26, N :6.51; (found) : C

:47.63, H :3.26, N :6.57.

3.2.1.7 [Ir(ppy)2(dtbpy)]PF6 (7)

[Ir(ppy)2Cl]2 (0.050 g, 0.0467 mmol), 4,4ꞌ-ditertiarybutyl-2,2ꞌ-bipyridine (dtbpy) (0.027 g,

0.1027 mmol), Yield (0.067 g, 0.0733 mmol, 75 %) 1H NMR (400 MHz, DMSO),  (ppm):

1.38 (s, 9H), 6.16 (d, 1H, 6ꞌ (ppy)), 6.89 (t, 1H, 5ꞌ (ppy)), 7.00 (t, 1H, 4ꞌ (ppy)), 7.17 (t, 1H, 4

(ppy)), 7.60 (d, 1H, b (dtbpy)), 7.70 (d, 1H, 3 (ppy)), 7.75 (d, 1H, a (dtbpy)), 7.93 (m, 2H, 5,

3ꞌ (ppy)), 8.26 (d, 1H, 6 (ppy)), 8.86 (s, 1H, d (dtbpy)). Elemental analysis for complex (7),

C40H40F6IrN4P; (calculated) : C :52.57, H :4.41, N :6.13; (found) : C :52.88, H :4.03, N :6.21.

3.2.1.7 [Ir(ppy)2(d24dtbpy)]PF6.H2O (8)

[Ir(ppy)2Cl]2 (0.050 g, 0.0467 mmol), deuteriated 4,4ꞌ-ditertiarybutyl-2,2ꞌ-bipyridine

(d24dtbpy) (0.030 g, 0.0934 mmol), Yield (0.058 g, 0.0618 mmol, 72 %) 1H NMR (400 MHz,

DMSO),  (ppm): 1.38 (s, 9H), 6.16 (d, 1H, 6ꞌ, (ppy)), 6.89 (t, 1H, 5ꞌ (ppy)), 7.00 (t, 1H, 4ꞌ

(ppy)), 7.17 (t, 1H, 4 (ppy)), 7.60 (resd. s, b (d24dtby)), 7.70 (d, 1H, 3 (ppy)), 7.75 (resd. s, a

(d24dtby)), 7.93 (m, 2H, 5, 3ꞌ (ppy)), 8.26 (d, 1H, 6 (ppy)), 8.86 (resd. s, d (d24dtby)).

Elemental analysis for complex (8), (C40H16D24F6IrN4P)H2O; (calculated) : C :50.26, H :4.19,

N :5.86; (found) : C :50.65, H :3.83, N :6.07.
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3.2.2 Synthesis of mononuclear and heterodinuclear (Ir-Pt/Pd) cyclometallated iridium

complexes with ligand bpp

3.2.2.1 Synthesis of [Ir(ppy)2(bpp)]PF6 (9)

The ligand bpp (0.050 g, 0.2146 mmol) was weighed and transferred to a 100 ml round

bottom flask (R.B) to which 10 ml of solvent, DCM: EtOH (2:1) was added and stirred at

60 0C for 20 minutes. The dichlorobridged dimer, [Ir(ppy)2Cl]2 (0.115 g, 0.1072 mmol)

dissolved in 20 ml of solvent was added slowly over an hour. The reaction was heated at

reflux (90 0C) for 7 hours. The reaction mixture was cooled and the solvent was removed by

vacuum rotary evaporation, 10 ml of deionised water was added and saturated aqueous

NH4PF6 (1 g in 10 ml of deionised water) was added resulting in the precipitation of the

product as [Ir(ppy)2(bpp)]PF6 which was recrystallised from acetone : H2O (2:1), vacuum

filtered and dried. Yield (0.149 g, 0.1695 mmol, 79 %). 1H NMR (600 MHz, DMSO), 

(ppm): 6.21 (d, 1H, 6ꞌꞌ (ppy)), 6.25 (d, 1H, 6ꞌ (ppy)), 6.94 (m, 2H, 5ꞌ, 5ꞌꞌ (ppy)), 7.05 (m, 2H,

4ꞌ,4ꞌꞌ (ppy)), 7.16 (m, 2H, 5,5ꞌꞌꞌ (ppy)), 7.43 (m, 1H, b (bpp)), 7.66 (d, 1H, 6 (ppy)), 7.71 (t,

1H, c (bpp)), 7.78 (d, 1H, 6ꞌꞌ ꞌ (ppy)), 7.86 (d, 1H, d (bpp)), 7.90 (d, 1H, 3ꞌꞌ (ppy)), 7.94 (m,

4H, 4, 4ꞌꞌ ꞌ, 3ꞌ (ppy), e, f (bpp)), 8.27 (m, 3H, k (bpp), 3,3ꞌꞌꞌ (ppy)), 8.55 (d, 1H, a (bpp)), 8.63

(s, 1H, g (bpp)), 8.85 (d, 1H, i (bpp)), 8.98 (d, 1H, j (bpp)), 8.99 (d, 1H, h (bpp)). Elemental

analysis for complex (9), (C37H27F6IrN5P); (calculated) : C : 50.57, H : 3.10, N : 7.97; (found)

: C : 50.92, H : 3.10, N : 7.98.

3.2.2.2 Synthesis of [(ppy)2Ir(bpp)PtCl]2(PF6)2.H2O (10)

Equimolar amounts of [Ir(ppy)2(bpp)]PF6 (0.05 g, 0.0689 mmol) and K2PtCl4 (0.023 g,

0.0689 mmol) were added together in an RB containing methanol (10 ml) and refluxed for 24

hours, the dimer complex precipitated from solution and was filtered, washed with diethyl

ether, hexane and vacuum dried. The product was recrystallised from acetone: diethylether

(2:1), vacuum filtered and dried. Yield (0.082 g, 0.0366 mmol, 54 %). 1H NMR (600 MHz,

DMSO),  (ppm): 6.23 (d, 1H, 6ꞌꞌ (ppy)), 6.30 (d, 1H, 6ꞌ (ppy)), 6.91 (t, 1H, 5ꞌꞌ (ppy)), 7.03

(dd, 2H, 4ꞌꞌ, 5ꞌ (ppy)), 7.11 (dd, 2H, 4ꞌ, 5ꞌꞌꞌ (ppy)), 7.18 (t, 2H, 5 (ppy)), 7.66 (d, 1H, 6 (ppy)),

7.73 (m, 2H, b, i (bpp)), 7.82 (s, 1H, g (bpp)), 7.88 (d, 1H, d (bpp)), 7.90 (d, 1H, a (bpp)),

7.94 (m, 5H, 4, 4ꞌꞌ ꞌ, 3ꞌ, 3ꞌꞌꞌ (ppy), c (bpp)), 8.25 (m, 5H), 8.24 (m, 3H, 3, 3ꞌꞌꞌ (ppy)), 8.25 (m,

1H,), 8.34 (d, 1H, 6ꞌꞌꞌ (ppy)), 9.51 (d, 1H, h (bpp)), 9.54 (s, 1H, e (bpp)). Elemental analysis

for complex (10), (C74H52Cl2F12Ir2N10P2Pt2)H2O; (calculated) : C : 39.77, H : 2.44, N : 6.27;

(found) : C : 39.47, H : 2.38, N : 6.09.
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3.2.2.3 Synthesis of [(ppy)2Ir(bpp)PdCl]2(PF6)2.3H2O (11)

Equimolar amounts of [Ir(ppy)2(bpp)]PF6 (0.05 g, 0.0689 mmol) and (NH4)2PdCl4 (0.015 g,

0.0689 mmol) were added together in an RB containing methanol (10 ml) and refluxed for 24

hours, the dimer complex was precipitated from solution and filtered, washed with diethyl

ether, hexane and vacuum dried. The product was recrystallised from acetone : diethylether

(2:1), vacuum filtered and dried. Yield (0.087 g, 0.0415 mmol, 62 %). 1H NMR (600 MHz,

DMSO),  (ppm): 6.22 (d, 1H, 6ꞌꞌ (ppy)), 6.26 (d, 1H, 6ꞌ (ppy)), 6.88 (t, 1H, 5ꞌꞌ (ppy)), 6.94

(m, 2H, 5ꞌ (ppy), d (bpp)), 7.0 (t, 1H, 4ꞌꞌ (ppy)), 7.06 (t, 1H, 4ꞌ (ppy)), 7.15 (m, 2H, 5, 5ꞌꞌ ꞌ

(ppy)), 7.53 (t, 1H, c (bpp)), 7.63 (t, 2H, 4,4ꞌꞌꞌ (ppy), 7.64 (s, 1H, g (bpp)), 7.80 (d, 1H, 3ꞌꞌꞌ

(ppy)), 7.85 (d, 1H, 3 (ppy)), 7.90 (m, 5H, 3ꞌ, 3ꞌꞌ, 6, 6ꞌꞌꞌ (ppy), k (bpp)), 8.07 (t, 1H, b (bpp)),

8.23 (m, 3H, j, a, i (bpp)), 8.46 (d, 1H, h (bpp)), 9.09 (s, 1H, e (bpp)). Elemental analysis for

complex (11), (C74H52Cl2F12Ir2N10P2Pd2)3H2O; (calculated) : C : 42.82, H : 2.72, N : 6.75;

(found) : C : 42.31, H : 2.78, N : 6.45.

3.2.2.4 Synthesis of [Ir(ppy-COOCH3)2(bpp)]PF6.H2O (12)

The ligand bpp (0.046 g, 0.1972 mmol) was weighed and transfered to a 100 ml round

bottom flask (R.B) to which 10ml of solvent, DCM: EtOH (2:1) was added and stirred at

60 0C for 20 minutes to which the dichlorobridged dimer, [Ir(ppy-COOCH3)2Cl]2 (0.1287 g,

0.0985 mmol) dissolved in 20 ml of solvent (DCM) was added slowly in about 3 hours. The

reaction was heated at reflux (80 0C) overnight. The reaction mixture was cooled and solvents

were all removed by vacuum rota evaporator, 10 ml of deionised water was added and

saturated aqueous KPF6 (1 g in 10 ml of deionised water) was added resulting in the

precipitation of the product, filtered, washed with water and diethyl ether and was

recrystallised from acetone : H2O (2:1), vacuum filtered and dried. Yield (0.150 g, 0.1480

mmol, 77 %). 1H NMR (600 MHz, DMSO),  (ppm): 3.67 (s, 6H), 6.79 (d, 2H,  6'', 6' (ppy-

OMe)),7.31 (m, 2H, 5''', 5 (ppy-OMe)),   7.40 (m, 1H, b (bpp)), 7.67 ( m, 2H, 4''', 4' (ppy-

OMe)), 7.73 (t, 1H, f (bpp)), 7.81 (d, 1H, 6 (ppy-OMe)), 7.88(d, 1H, g (bpp)), 7.92 (m, 3H,

6''' (ppy-OMe), d, c (bpp)), 8.053 (m, 4H, 4'', 4, 3'', 3' (ppy-OMe)), 8.31 (t, 1H, e (bpp)), 8.42

(m, 2H, 3''', 3 (ppy-OMe)), 8.50 (d, 1H, a (bpp)), 8.58 (s, 1H, k (bpp)), 8.88 (d, 1H, j (bpp)),

8.98 (m, 2H, i, h (bpp). Elemental analysis for complex (12), (C41H31F6IrN5O4P)H2O;

(calculated) : C : 48.62, H : 3.28, N : 6.91; (found) : C : 48.68, H : 3.10, N : 6.61.
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3.2.2.5 Synthesis of [(ppy-COOCH3)2Ir(BPP)PtCl]2(PF6)2.3H2O (13)

Equimolar amounts of [Ir(ppy-COOCH3)2(bpp)]PF6 (0.050 g, 0.05025 mmol) and K2PtCl4

(0.019 g, 0.04774 mmol) were added together in an RB containing methanol (10 ml) and

refluxed for 48 hours, the dimer complex get precipitated out in solution and was filtered,

washed with diethyl ether, hexane and vacuum dried. The product was recrystallised from

acetone : diethylether (2:1), vacuum filtered and dried. Yield (0.081 g, 0.0323 mmol, 66 %).
1H NMR (600 MHz, DMSO),  (ppm): δ (ppm): 3.68 (d, 6H), 6.80 (s, 1H, 6'' (ppy-OMe)),

6.85 (s, 1H, 6' (ppy-OMe)), 7.17 (d, 1H), 7.31 (m, 2H, 4''', 4' (ppy-OMe)), 7.61 (dd, 2H), 7.66

(m, 3H), 7.73 (dd, 2H), 7.84 (s, 2H, g), 8.00 (d, 1H, 3' (ppy-OMe)), 8.05 (dd, 2H, 3''' (ppy-

OMe)), 8.10 (m, 3H), 8.23 (t, 2H), 8.31 (dd, 2H), 8.37 (t, 2H), 9.49 (d, 1H, h (bpp)), 9.57 (s,

1H, e (bpp)). Elemental analysis for complex (13), (C82H60Cl2F12Ir2N10O8P2Pt2)3H2O;

(calculated) : C : 39.35, H : 2.66, N : 5.60; (found) : C : 39.89, H : 2.79, N : 5.10.

3.2.2.6 Synthesis of [(ppy-COOCH3)2Ir(bpp)PdCl]2(PF6)2.5H2O (14)

Equimolar amounts of [Ir(ppy-COOCH3)2(bpp)]PF6 (0.05 g, 0.05025 mmol) and (NH4)2PdCl4

(0.014 g, 0.04774 mmol) were added together in an RB containing methanol (10 ml) and

refluxed for 48 hours, the dimer complex get precipitated out in solution and was filtered,

washed with diethyl ether, hexane and vacuum dried. The product was recrystallised from

acetone : diethylether (2:1) mixture first and then in acetone : water (2:1) mixture, vacuum

filtered and dried. Yield (0.096 g, 0.0406 mmol, 84 %). 1H NMR (600 MHz, DMSO), 

(ppm): 3.66 (d, 6H), 6.78 (s, 1H, 6'' (ppy-OMe)), 6.81 (s, 1H, 6' (ppy-OMe)), 7.02 (d, 1H, b

(bpp)), 7.26 (m, 2H, 4''', 4' (ppy-OMe)), 7.53 (t, 1H, 3'' (ppy-OMe)), 7.59 (t, 1H, 3' (ppy-

OMe)), 7.64 (m, 4H), 7.73 (d, 1H), 7.80 (d, 1H, f (bpp)), 7.93 (d, 1H, e (bpp)), 8.04 (m, 6H,

3''', 3 (ppy-OMe), g (bpp)), 8.23 (t, 1H), 8.40 (t, 2H), 8.47 (d, 1H, h (bpp)). Elemental

analysis for complex (14), (C82H60Cl2F12Ir2N10O8P2Pd2)5H2O; (calculated) : C : 41.70, H :

2.99, N : 5.93; (found) : C : 40.36, H : 2.86, N : 6.39.

3.2.3 Synthesis of mononuclear and heterodinuclear (Ir-Pd) cyclometallated iridium

complexes with ligand tpy

3.2.3.1 Synthesis of [Ir(ppy)2(tpy)]PF6.CH2Cl2 (15)

The ligand tpy (0.044 g, 0.1869 mmol) was weighed and transfered to a 100 ml round bottom

flask (R.B) to which 10 ml of solvent, DCM: EtOH (2:1) was added and stirred at 60 0C for

20 minutes to which the dichlorobridged dimer, [Ir(ppy)2Cl]2 (0.100 g, 0.0934 mmol)
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dissolved in 20 ml of solvent was added slowly in an hour. The reaction was refluxed (90 0C)

for 7 hours. The reaction mixture was cooled and solvents were all removed by vacuum

rotary evaporator, 10 ml of deionised water was added and saturated aqueous NH4PF6 (1 g in

10 ml of deionised water) was added resulting in the precipitation of the product which was

recrystallised from acetone : H2O (2:1), vacuum filtered and dried. Yield (0.120 g, 0.1245

mmol, 67 %). 1H NMR (600 MHz, DMSO),  (ppm): 5.39 (d, 1H, 6'' (ppy)), 5.82 (d, 1H, 6'

(ppy)), 6.30 (t, 1H, 5'' (ppy)), 6.62 (t, 1H, 4'' (ppy)), 6.78, (d, 1H, g (tpy)), 6.80 (t, 1H, 5'

(ppy)), 6.99 (t,1H,f (tpy)), 7.03 (t, 1H),7.16 (t, 1H, b (tpy)), 7.25 (t, 1H), 7.35 (t, 1H, c (tpy)),

7.52 (d,1H, 3' (ppy)), 7.57(d, 1H, a (tpy)), 7.66 (m, 3H, 5, 5''' (ppy)), 7.87 (d, 1H, e (tpy)),

7.96 (t, 1H, c (tpy)), 8.03 (t, 1H, d (tpy)), 8.16 (d, 1H, d (tpy)), 8.19 (d, 1H), 8.29 (d, 1H, k

(tpy)), 8.36 (m, 2H, 4''', 4 (ppy)), 8.85 (b, 1H, h (tpy)), 8.93 (t, 2H, 3''', 3 (ppy)). Elemental

analysis for complex (15), (C37H27F6IrN5P)CH2Cl2; (calculated) : C : 47.86, H : 3.03, N :

7.27; (found) : C : 48.00, H : 2.98, N : 7.34.

3.2.3.2 Synthesis of [(ppy)2Ir(tpy)PdCl]2(PF6)2.H2O.CH2Cl2 (16)

Equimolar amounts of [Ir(ppy)2(tpy)]PF6 (0.06 g, 0.06827 mmol) and (NH4)2PdCl4 (0.018 g,

0.06485 mmol) were added together in an RB containing methanol (10 ml) and refluxed for

24 hours, the dimer complex was precipitated from solution which was filtered, washed with

diethyl ether, hexane and vacuum dried. The product was recrystallised firstly from DCM :

hexane (5:2) and secondly from acetone : diethylether (2:1), vacuum filtered and dried. Yield

(0.094 g, 0.0438 mmol, 62 %). 1H NMR (600 MHz, DMSO),  (ppm): 5.62 (d, 1H, 6'' (ppy)),

6.22 (d, 1H, 6' (ppy)),  6.67 (t, 1H, 5'' (ppy)), 6.74 (t, 1H, 5' (ppy)), 6.82 (t, 1H, 4'' (ppy)),

6.87 (t, 1H, 4' (ppy)), 7.433 (t, 1H, 4''' (ppy)), 7.552 (t, 1H, 4 (ppy)), 7.71 (d, 1H, 3'' (ppy)),

7.77 (d, 1H, 3' (ppy)), 7.87 (m, 2H, c (tpy)), 7.99 (t, 1H, 5''' (ppy)), 8.07 (t, 1H, 5 (ppy)), 8.16

(d, 1H, 6''' (ppy)), 8.24 (d, 1H, 6 (ppy)), 8.45 (m, 2H, b (tpy)), 8.62 (m, 5H), 8.72 (dd, 2H, e,

d (tpy)), 9.51 (d, 1H, 3''' (ppy)), 9.78 (d, 1H, 3 (ppy)). Elemental analysis for complex (16),

(C74H52Cl2F12Ir2N10P2Pd2)H2O.CH2Cl2 ; (calculated) : C : 40.98, H : 2.62, N : 6.29; (found) :

C : 40.82, H : 2.44, N : 6.87.

3.2.3.3 Synthesis of [Ir(ppy-COOCH3)2(tpy)]PF6.CH2Cl2 (17)

The ligand tpy (0.048 g, 0.2036 mmol) was weighed and transfered to a 100 ml round bottom

flask (R.B) to which 10 ml of solvent, DCM: EtOH (2:1) was added and stirred at 60 0C for

20 minutes to which the dichlorobridged dimer, [Ir(ppy-COOCH3)2Cl]2 (0.133 g, 0.1018
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mmol) dissolved in 20 ml of solvent was added slowly in an hour. The reaction was refluxed

(90 0C) for 7 hours. The reaction mixture was cooled and solvents were all removed by

vacuum rota evaporator, 10 ml of deionised water was added and saturated aqueous NH4PF6

(1 g in 10 ml of deionised water) was added resulting in the precipitation of the product

which was recrystallised from acetone : H2O (2:1), vacuum filtered and dried. Yield (0.145 g,

0.1342 mmol, 66 %). 1H NMR (600 MHz, DMSO),  (ppm): 3.60 (s, 3H), 3.68 (s, 3H), 5.93

(s, 1H, 6' (ppy-OMe)), 6.79 (b, 1H, g (tpy)), 6.81 (m, 1H, 4'' (ppy-OMe)), 7.17, (m, 3H, 4', 3'',

4''' (ppy-OMe)), 7.43 (t, 1H, 4 (ppy-OMe)), 7.49 (d, 1H, a (tpy)), 7.59 (m, 5H, e, f (tpy), 6''',

6, 3' (ppy-OMe)), 7.99 (m, 2H, c, b (tpy)), 8.11 (t, 2H, 5''' (ppy-OMe), k (tpy)), 8.28 (d, 1H, d

(tpy)), 8.36 (m, 3H, i, j (tpy), 5 (ppy-OMe)), 8.90 (m, 2H, 3''', 3 (ppy-OMe)), 9.05 (b, 1H, h

(tpy)). Elemental analysis for complex (17), (C41H31F6IrN5O4P).CH2Cl2 ; (calculated) : C :

46.72, H : 3.08, N : 6.49; (found) : C : 46.55, H : 3.18, N : 6.36.

3.2.3.4 Synthesis of [(ppy-COOCH3)2Ir(tpy)PdCl]2(PF6)2.H2O.CH2Cl2 (18)

Equimolar amounts of [Ir(ppy-COOCH3)2(tpy)]PF6 (0.07 g, 0.0702 mmol) and (NH4)2PdCl4

(0.019 g, 0.0667 mmol) were added together in an RB containing methanol (10 ml) and

refluxed for 48 hours, the dimer complex was precipitated from solution and was filtered,

washed with diethyl ether, hexane and vacuum dried. The product was recrystallised firstly

from DCM : hexane (5:2) and secondly from acetone : diethylether (2:1), vacuum filtered and

dried. Yield (0.103 g, 0.0433 mmol, 63 %). 1H NMR (600 MHz, DMSO),  (ppm): 3.60 (s,

3H), 3.62 (s, 3H), 6.24 (s, 1H, 6'' (ppy-OMe)), 6.82 (s, 1H, 6' (ppy-OMe)), 7.39 (d, 1H, 4''

(ppy-OMe)), 7.44 (d, 1H, 4' (ppy-OMe)), 7.60 (t, 1H, 4''' (ppy-OMe)), 7.680 (t, 1H, 4 (ppy-

OMe)), 7.88 (m, 4H, 3'',3' (ppy-OMe), c, f(tpy)), 8.12 (t, 1H, 5''' (ppy-OMe)), 8.19 (t, 1H, 5

(ppy-OMe)), 8.30 (d, 1H, 6''' (ppy-OMe)), 8.39 (d, 1H, 6 (ppy-OMe)), 8.45 (t, 1H, b (tpy)),

8.59 (m, 5H, a (tpy)), 8.74 (dd, 2H, d, e (tpy)), 9.52 (d, 1H, 3''' (ppy-OMe)), 9.83 (d, 1H, 3

(ppy-OMe)). Elemental analysis for complex (18), (C82H60Cl2F12Ir2N10O8P2Pd2) H2O.CH2Cl2

;(calculated): C : 41.02, H : 2.70, N : 5.70; (found) : C : 41.17, H : 2.65, N : 5.79.

3.2.3.5 Synthesis of [Ir(ppy-CHO)2(tpy)]PF6 (19)

The ligand tpy (0.039 g, 0.1686 mmol) was weighed and transfered to a 100 ml round bottom

flask (R.B) to which 10 ml of solvent, DCM: EtOH (2:1) was added and stirred at 60 0C for

20 minutes to which the dichlorobridged dimer, [Ir(ppy-CHO)2Cl]2 (0.100 g, 0.0843 mmol)

dissolved in 20 ml of solvent was added slowly in an hour. The reaction was refluxed (90 0C)
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for 7 hours. The reaction mixture was cooled and solvents were all removed by vacuum rota

evaporator, 10 ml of deionised water was added and saturated aqueous NH4PF6 (1 g in 10 ml

of deionised water) was added resulting in the precipitation of the product which was

recrystallised from acetone : H2O (2:1), vacuum filtered and dried. Yield (0.130 g, 0.1390

mmol, 83 %). 1H NMR (600 MHz, DMSO),  (ppm): 5.80 (s, 1H, 6'' (ppy-CHO)), 6.24 (s,

1H, 6' (ppy-CHO)), 6.71 (b, 1H, g (tpy)), 6.81 (m, 1H, 4 (ppy-CHO)), 7.08 (d, 1H, 4'' (ppy-

CHO)), 7.17 (t, 1H, 3 (ppy-CHO)), 7.25 (t, 1H, 4''' (ppy-CHO)), 7.481 (m, 2H, b, (tpy) 4'

(ppy-CHO)), 7.61 (m, 4H, e, f, c (tpy), 3''' (ppy-CHO)), 7.74 (d, 1H, 3'' (ppy-CHO)), 8.05 (t,

1H, 5''' (ppy-CHO)), 8.12 (m, 3H, a (tpy), 3', 5 (ppy-CHO)), 8.32 (m, 3H, d, k (tpy), 6''' (ppy-

CHO)), 8.44 (d, 1H, 6 (ppy-CHO)), 8.92 (t, 2H, i, j (tpy)), 9.09 (b, 1H, h (tpy)), 9.42 (s,

1H,CHO ), 9.585 (s, 1H, CHO). Elemental analysis for complex (19), (C39H27F6IrN5O2P)

;(calculated): C : 50.11, H : 2.91, N : 7.49; (found) : C : 49.88, H : 2.93, N : 7.21.

3.2.4 Synthesis of mononuclear and heterodinuclear (Ir-Pd) cyclometallated iridium

complexes with ligand bpm

3.2.4.1 Synthesis of [Ir(ppy)2(bpm)]PF6.H2O (20)

Bipyrimidine ligand (bpm) (0.0221 g, 0.1402 mmol) was weighed into a 100 ml R.B to which

20 ml of solvent, DCM: MeOH (2:1) was added and heated at 60 0C for 15 min at room

temperature in N2 atmosphere. The dichlorobridged dimer, [Ir(ppy)2Cl]2 (0.05 g, 0.04673

mmol) was dissolved in 20 ml of DCM and was added dropwise in 2 hours to the reaction

mixture. The colour of the solution changes from yellow to wine red. The reaction mixture

was refluxed (70 0C) for 6 hours, cooled to room temperature, solvents were all removed and

the residue was dissolved in deionised water and filtered. To the filtrate 5 ml of saturated

KPF6 (1 g in 10 ml) was added and kept in fridge overnight resulting in the precipitation of a

orange-yellow product which was recrystallised from acetone : H2O (1:1), vacuum filtered,

washed with diethyl ether and dried to get the product [Ir(ppy)2(bpm)].PF6 pure. Yield (0.062

g, 0.0754 mmol, 55 %). 1H NMR (400 MHz, DMSO),  (ppm): 6.14 (d, 1H, 6ꞌ (ppy)), 6.89 (t,

1H, 5ꞌ (ppy)), 7.02 (t, 1H, 4ꞌ (ppy)), 7.14 (t, 1H, 4 (ppy)), 7.91 (m, 4H, 3ꞌ, 3, 5 (ppy), b

(bpm)), 8.08 (d, 1H, a (bpm)), 8.26 (d, 1H, 6 (ppy)), 9.31 (d, 1H, c (bpm)). Elemental

analysis for complex (20), (C30H22F6IrN6P)H2O ;(calculated): C : 43.85, H : 2.94, N : 10.23;

(found) : C : 43.97, H : 2.79, N : 9.80.
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3.2.4.2 Synthesis of [(ppy)2Ir(bpm)PdCl2]PF6.2H2O.CH2Cl2 (21)

[Ir(ppy)2(bpm)]PF6 (0.05 g, 0.0622 mmol) was heated with 1.2 equivalents of Pd(ACN)2Cl2

(0.019 g, 0.0746 mmol) in acetonitrile for 6 hours under reflux. In this process, the colour of

the solution changed to dark green. After filtering the solution, the solvent was allowed to

evaporate and to which acetone was added and the green precipitate was dissolved

completely to which diethyl ether was added resulting in the precipitation of a green

complex, which was recrystallised from DCM:Toluene (3:1) mixture, vacuum filtered and

dried to get the pure product. Yield (0.055 g, 0.0499 mmol, 90 %). 1H NMR (400 MHz,

DMSO),  (ppm): 6.05 (d, 1H, 6'' (ppy)), 6.11 (d, 1H, 6' (ppy)), 6.92 (m, 2H, 5'', 5' (ppy)),

7.04 (t, 1H, 4'' (ppy)), 7.093 (t, 2H, 4', 4''' (ppy)), 7.28 (t, 1H, 4 (ppy)), 7.96 (m, 6H, 3''', 3'', 3',

5''' (ppy), e, b (bpm)), 8.10 (t, 2H, 5, 3 (ppy)), 8.28 (m, 4H, f, a (bpm), 6''', 6 (ppy)), 9.30 (d,

1H, d (bpm)), 9.33 (d, 1H, c (bpm)). Elemental analysis for complex (21),

(C30H22Cl2F6IrN6PPd) 2H2O.CH2Cl2 ;(calculated): C : 33.79, H : 2.56, N : 7.63; (found) : C :

33.47, H : 2.20, N : 7.35.

3.2.4.3 Synthesis of [(ppy)2Ir(bpm)PtCl2]PF6 (22)

[Ir(ppy)2(bpm)]PF6 (0.050g, 0.0622 mmol) was added to an RB dissolved in DCM.

Pt(dmso)2Cl2 (0.0262g, 0.0622mmol) was also added dissolved in DCM. The mixture was

refluxed for 24 hour, after which hexane was added resulting in precipitation of the product

as grey powder, washed with diethyl ether and dried. Yield (0.036 g, 0.0336 mmol, 55 %). 1H

NMR (400 MHz, DMSO),  (ppm): 6.06 (d, 1H), 6.16 (d, 1H), 6.91 (t, 2H), 7.04 (t, 2H), 7.17

(m, 2H), 7.95 (m, 4H), 8.11 (m, 2H), 8.27 (t, 2H), 8.34 (d, 1H), 9.34 (m, 2H), 9.70 (d, 1H),

9.78 (d, 1H). The CHN was out of range for this complex

3.2.4.4 Synthesis of [(ppy)2Ir(bpm)Ir(ppy)2](PF6)2 (23)

2,2ꞌ Bipyrimidine (bpm) (0.010 g, 0.0632 mmol) ligand was added to 10 ml of DCM: MeOH

(2:1) mixture taken in an R.B and heated with continuous stirring for 15 minutes at 50 0C to

which [Ir(ppy)2Cl]2 (0.0676 g, 0.0632 mmol) was added slowly and stirred at reflux for 7

hours after which the reaction mixture was cooled, filtered and aqueous KPF6 was added to

the filtrate resulting in the precipitation of the complex which was recrystallised from acetone

: water (1:1) mixture and vacuum dried. Yield (0.013 g, 0.0089 mmol, 20 %). 1H NMR (400

MHz, DMSO),  (ppm): 6.10 (d, 1H, 6' (ppy)), 6.94 (m, 1H, 5' (ppy)), 7.05 (t, 1H, 4' (ppy)),

7.29 (t, 1H, 4 (ppy)), 7.919 (d, 1H, 3' (ppy)), 7.99 (t, 1H, 5 (ppy)), 8.12 (m, 2H, a (bpm), 3
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(ppy)), 8.28 (m, 2H, b (bpm), 6 (ppy)). Elemental analysis for complex (23),

(C52H38F12Ir2N8P2); (calculated): C : 43.09, H : 2.64, N : 9.73; (found) : C : 43.97, H : 2.79, N

: 9.80.

3.2.4.5 Synthesis of [Ir(ppy-COOCH3)2(bpm)]PF6.CH2Cl2 (24)

[Ir(ppy-COOCH3)2Cl]2 (0.030 g, 0.02297 mmol) dissolved in 20 ml DCM was added to a

refluxing solution of bpm (0.0072 g, 0.04594 mmol) in a solvent mixture of DCM : MeOH

(2:1) dropwise slowly taking around 2 hours. The reaction mixture was kept at reflux

overnight. The solvents were removed, water was added, filtered and to the filtrate saturated

aq KPF6 was added resulting in the precipitation of the complex which was vacuum filtered ,

washed with water and diethyl ether and dried to obtain pure product. Yield (0.023 g, 0.0228

mmol, 90 %). 1H NMR (400 MHz, DMSO),  (ppm): 3.69 (s, 3H), 6.76 (s, 1H, 6' (ppy-

OMe)), 7.32 (t, 1H, 4' (ppy-OMe)), 7.62 (dd, 1H,4 (ppy-OMe)), 7.87 (t, 1H, b (bpm)), 8.03

(d, 1H, 3' (ppy-OMe)), 8.12 (m, 3H, 3, 5 (ppy-OMe), a (bpm)), 8.44 (d, 1H, 6 (ppy-OMe)),

9.35 (d, 1H, c (bpm)). Elemental analysis for complex (24), (C34H26F6IrN6O4P)CH2Cl2;

(calculated): C : 41.84, H : 2.81, N : 8.36; (found) : C : 41.70, H : 2.73, N : 8.05.

3.2.5 Synthesis of mononuclear cyclometallated iridium complexes with ligand dpp

3.2.5.1 Synthesis of [Ir(ppy)2(dpp)]PF6.2H2O (25)

The ligand 2,5-dpp (0.064 g, 0.2733 mmol) was weighed and transfered to a 100 ml round

bottom flask (R.B) to which 20ml of solvent, DCM: MeOH (2:1) was added and stirred at

70 0C for 20 minutes to which the Acetonitrile complex derived from dichlorobridged dimer

[Ir(ppy)2Cl]2 (0.100g, 0.13665mmol) dissolved in 20 ml of solvent (DCM) was added slowly

in about 4 hours dropwise. The reaction was heated in reflux (80 0C) overnight. The reaction

mixture was cooled and solvents were all removed by vacuum rota evaporator, 10 ml of

deionised water was added, filtered and to the filtrate saturated aqueous KPF6 (1 g in 10 ml of

deionised water) was added resulting in the precipitation of the product [Ir(ppy)2(2,5-

dpp)]PF6 , which was filtered , washed with water and diethyl ether and was recrystallised

from acetone : H2O (2:1), vacuum filtered and dried. Yield (0.078 g, 0.0851 mmol, 66 %). 1H

NMR (400 MHz, DMSO),  (ppm): 6.315 (d, 1H, 6'' (ppy)), 6.371 (d, 1H, 6' (ppy)), 6.95 (m,

2H, 5'', 5' (ppy)), 7.07 (m, 4H, 4'', 4', 4''', 4 (ppy)), 7.49 (t, 1H, b (dpp)), 7.78 (t, 1H, 3'''

(ppy)), 7.83 (d, 1H, 3 (ppy)), 7.94 (m, 5H, 6, 6''', 3'', 3' (ppy), d, c (dpp)), 8.13 (m, 2H, 5'''

(ppy)), 8.23 (t, 2H, h (dpp)), 8.36 (t, 1H, c (dpp)), 8.42 (d,1H, g (dpp)), 8.54 (d, 1H, a (dpp)),
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9.06 (d, 1H, j (dpp)), 9.10 (s, 1H, f (dpp)), 10.07 (s, 1H, e (dpp)). Elemental analysis for

complex (24), (C36H26F6IrN6P)2H2O; (calculated): C : 47.21, H : 3.30, N : 9.18; (found) : C :

47.01, H : 2.90, N : 8.88.

3.3 Results and Discussion

3.3.1 Synthesis

For the synthesis of the iridium mononuclear complexes given in section 3.2.1, two different

reaction methods were used and both of them worked well. One method involved refluxing

the dichlorobridged dimer [Ir(ppy)Cl]2 with the N^N ligands (bpy, d8bpy, phen, d8phen,

dmbpy, d12dmbpy, dtbpy, d24dtbpy) in ethylene glycol at 150 0C, precipitation with KPF6 and

purification by recrystallisation. The second method involved refluxing [Ir(ppy)Cl]2 with the

N^N ligands in a DCM : EtOH (3:1) mixture, precipitation by KPF6 and purification by

recrystallisation from a acetone : water mixture. The synthesis of the mononuclear and

heterodinuclear (Ir-Pt/Pd) iridium complexes with ligand bpp was explained in section 3.2.2.

The synthesis of the mononuclear complexes were carried out in DCM : EtOH (3:1) mixture.

Care was taken in adding the dichlorobridged dimer complex to the ligand (the precursor

dissolved in the same solvent mixture was added dropwise in 2 hour time interval). For the

heterodinuclear Ir-Pt complexes the mononuclear iridium complexes (9) and (12) were

reacted with K2PtCl4 in methanol. This reaction has to be done carefully with a minimum

amount of solvent and the reaction temperature of 105 0C has to be kept constant throughout

the entire reaction. The reaction for (10) requires 24 h for completion and (13) requires 48 h

after which the complex which forms is filtered, washed with excess methanol and

recrystallised from an acetone : diethylether (2:1) mixture 2-3 times. The same method was

used for the reaction of these monomers with (NH4)2PdCl4.

The synthesis of the mononuclear and heterodinuclear (Ir-Pt/Pd) iridium complexes with the

ligand tpy is given in section 3.2.3. The mononuclear complexes (15), (17) and (19) were

synthesised according to the same method as explained above. The reaction was carried out

in a DCM : EtOH (3:1) mixture. Care was taken in the addition of the dichlorobridged dimer

complex to the ligand. The product was recrystallised from an acetone : water (2:1) mixture.

The reaction of these mononuclear complexes with K2PtCl4 was tried using a similar method

as explained for complexes (10) and (13). But unfortunately even by changing the reaction

conditions (solvent, temperature and reaction time) the reaction did not work. One reason

might be the steric strain as the tpy ligand has one pyridine ring attached to the 6 position of
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the middle pyridine ring which might be causing some problem for complexation of Pt. But

both the monomers undergo reaction with (NH4)2PdCl4 and it was possible to isolate the

products completely pure. For complex (16) the reaction time was 24 h at a temperature of

105 0C whereas for complex (18) the reaction time was 48 h at a temperature of 105 0C.

The synthetic details of the mononuclear, homodinuclear (Ir-Ir) and heterodinuclear (Ir-

Pd/Pt) iridium complexes (20), (21), (22), (23) and (24) with the bpm ligand are shown in

section 3.2.4. Synthesis of the mononuclear complexes (20) and (24) uses the same procedure

as explained above for bpp and tpy ligands. The only change made was the solvent mixture,

MeOH was used instead of EtOH. Care has to be taken in adding [Ir(ppy)2Cl]2 dissolved in

DCM to the bpm ligand dissolved in a DCM : MeOH (2:1) solvent mixture as the possibility

of dimer formation is very high for these complexes. For the Ir-Pd dinuclear complex (21) the

the mononuclear complex (20) was reacted with [Pd(ACN)2Cl2] in acetonitrile. The reaction

was complete in 6 h following reflux at 70 0C. Precipitation by adding diethylether after

dissolving in acetone resulted in a pure complex which was vacuum filtered and dried. For

the Ir-Pt dinuclear complex (22) the mononuclear complex (20) was reacted with

[Pt(dmso)2Cl2] in DCM. The complex precipitated from solution and was vacuum filtered,

dissolved in acetone and reprecipitated by adding hexane and diethylether. For the

homodinuclear Ir-Ir complex (23) rather than taking 2 equivalents of the bridging ligand, a

1:1 mixture of the dichlorobridged precursor and bpm ligand was reacted in a DCM : MeOH

(2:1) mixture, and heated at a reflux temperature (90 0C) for 7 hours after which solvents

were removed and the residue was dissolved in water which was filterd to remove any excess

bpm ligand. To the filtrate a saturated aq. KPF6 solution was added resulting in precipitation

of the PF6
-complex which was then recrystallised from acetone : water (2:1) and dried. The

synthesis of the mononuclear iridium complex with the ligand dpp is explained in section

3.2.5. The method used is exactly the same as that explained above for the other mononuclear

complexes. Sufficient care has to taken while adding the dichlorobridged iridium precursor

complex, slowly drop by drop in a time interval of 4 hour. After the reaction solvents were

removed, dissolved in water and filtered to remove any excess amount of dpp and the

complex is precipitated by counter ion exchange by adding saturated aq.KPF6. The product

was recrstallised from acetone : water and dried.
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5,3ꞌ

3.3.2 1H NMR spectroscopic charecterisation

The structure of complexes (1) to (8) with the 1H NMR assignments is given in figure 3.8

below.

Figure 3.8 Structural representation with the 1H NMR assignments for complexes (1) to (8).

The 1H NMR spectra for complex [Ir(ppy)2(bpy)]PF6 (1) and [Ir(ppy)2(d8bpy)]PF6 (2) along

with the peak assignments are given in figure 3.9 below.
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Figure 3.9 1H NMR Spectrum of (a) [Ir(ppy)2(bpy)]PF6 (1) and (b) [Ir(ppy)2(d8bpy)]PF6 (2)
in d6 dmso using 400 MHz instrument.

From the above figure 3.9 it is quite clear that deuteriation of the bpy ligand results in the

disappearence of NMR peaks (a, b, c and d) corresponding to the bpy ligand as shown in

figure 3.8. Similarly the NMR spectra for complexes [Ir(ppy)2(phen)]PF6 (3) and

6ꞌ4 4ꞌ 5ꞌd 6, c 3
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[Ir(ppy)2(d8phen)] PF6 (4) are given in figure 3.10 below in which the peaks corresponding to

the 1,10-phenanthroline (phen) ligand (a, b, c and d) as shown in figure 3.8 are clearly seen in

the NMR for the protonated complex (3) (figure 3.10(a)) but are absent in the NMR for the

deuteriated complex (4) (figure 3.10(b)). Detailed tabulated data with all the peaks are given

in table 3.1.
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Figure 3.10 1H NMR Spectrum of (a) [Ir(ppy)2(phen)]PF6 (3) and (b) [Ir(ppy)2(d8phen)]PF6

(4) in d6 dmso.

From the above figure it is evident that the doublet at δ 8.88 corresponding to proton c of the

phen ligand (figure 3.8) seen in figure 3.10 (a) disappears for the deuteriated complex (4) as

given in figure 3.10 (b). Similar is the case with protons numbered a, b and d, the peaks

corresponding to these protons disappeared in the spectra for the deuteriated complexes.

The 1H NMR spectra for complexes [Ir(ppy)2(dmbpy)]PF6 (5) and [Ir(ppy)2(d12dmbpy)]PF6

(6) along with the peak assignments are given in figure 3.11 below. As given in figure 3.8 the

peaks corresponding to the protons of the dmbpy ligand are a, b and d. Since the methyl

group is substituted at position c in the dmbpy ligand, the peak corrsponding to c for complex

(1) and (2) are absent in this case. From the figure 3.11 (a) and (b) it is clear that the peaks

corresponding to protons a, b and d are absent in the deuteriated complex (6). The NMR

spectra for complexes [Ir(ppy)2(dtbpy)]PF6 (7) and [Ir(ppy)2(d24dtbpy)]PF6 (8) are given in

6ꞌ

(a)

(b)
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appendix B. The tabulated values for the 1H NMR shifts for all these complexes are given in

table 3.1 below.
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Figure 3.11 1H NMR Spectrum of (a) [Ir(ppy)2(dmbpy)]PF6 (5) and (b) [Ir(ppy)2(d12dmbpy)]
PF6 (6) in d6 dmso.

Complex 3ꞌ 4ꞌ 5ꞌ 6ꞌ a b c d
(1) 7.92 7.01 6.89 6.17 7.85 7.68 8.26 8.88
(2) 7.92 7.01 6.89 6.17 resd. s resd. s resd. s resd. s
(3) 7.43 6.95 6.95 6.27 8.18 8.03 8.88 8.37
(4) 7.43 6.95 6.95 6.27 resd. s resd. s resd. s resd. s
(5) 7.91 7.00 6.88 6.17 7.66 7.50 - 8.74
(6) 7.91 7.00 6.88 6.17 resd. s resd. s resd. s resd. s
(7) 7.93 7.00 6.89 6.16 7.75 7.60 - 8.86
(8) 7.93 7.00 6.89 6.16 resd. s resd. s resd. s resd. s

Table 3.1 Tabulated 1H NMR shift values for complexes (1) to (8) done in d6 dmso.

The structural representation along with the numbering of protons for mononuclear

cyclometallated iridium complexes with ligands bpp, tpy, bpm and dpp are given in figure

3.12 below.

6

d

(a)

(b)
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Figure 3.12 Structural representation with the 1H NMR assignments of cyclometallated
iridium complexes with ligands bpp, tpy, bpm and dpp.

The 1H NMR spectra for complexes [Ir(ppy)2(bpp)]PF6 (9), [Ir(ppy)2(bpp)PtCl]2(PF6)2 (10)

and [Ir(ppy)2(bpp)PdCl]2(PF6)2 (11) are given in figure 3.13 below.

Figure 3.13 1H NMR Spectrum of (a) [Ir(ppy)2(bpp)]PF6 (9) and (b) [Ir(ppy)2(bpp)PtCl]2

(PF6)2 (10) and (c) [Ir(ppy)2(bpp)PdCl]2(PF6)2 (11) in d6 DMSO.

The NMR spectrum for all the three complexes are on the same scale in figure 3.13. From

figure 3.13, if the 1H NMR spectra of the monomer (green) is compared with the Ir-Pt dimer

(red) and Ir-Pd dimer (blue) it is clear that there are prominent shifts in the δ values. Pt and

(a)

(b)

(c)
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Pd are attached to the ligand in a cyclometallated way as given in figure 3.12. The 1H NMR

chemical shift values for some of the protons are given in table 3.2 below. For both dinuclear

complexes the peak corresponding to proton f is absent, as the Pt or Pd binds at this position.

Since both these metals cause shielding, the signals are shifted downfield for both the dimers.

The proton NMR spectrum of the ester analogous complexes are given in appendix B where

the substitution of ester group is at the 5ꞌ position.

Complex 6' 6 5' 5 a e f h

(9) 6.25 7.66 6.94 7.16 8.55 7.94 7.94 8.99

(10) 6.30 7.66 7.03 7.18 7.90 9.54 _ 9.51

(11) 6.26 7.90 6.96 7.15 8.23 9.09 _ 8.46

Table 3.2 Tabulated 1H NMR shift values for complex (9), (10) and (11) in d6 dmso.

The 1H NMR spectra for complexes [Ir(ppy)2(tpy)]PF6 (15), [Ir(ppy)2(tpy)PdCl]2(PF6)2 (16)

[Ir(ppy-COOCH3)2(tpy)]PF6 (17), and [Ir(ppy-COOCH3)2(bpp)PdCl]2(PF6)2 (18) are given in

figure 3.14 below. The figure suggests that complexation of Pd leads to shifting of the NMR

peaks for both (15) and ester containing complex (17). Figure 3.14 (a) gives the NMR for the

mononuclear complex [Ir(ppy)2(tpy)]PF6 (15), the Pd dimer complex of

[Ir(ppy)2(tpy)PdCl]2(PF6)2 (16) is given in figure 3.14 (b). By comparing these two NMR

spectra, complexation with Pd resulted in a greater downfield shifts in NMR peaks. Important

is the disappearence of peak corresponding to proton g for the dimer complex (figure 3.14 (b)

and table 3.3). This is due to the complexation of Pd in a cyclometallated manner to the

middle pyridine ring at position g. The peak for the proton at position h of the tpy ligand

(figure 3.12 (a)) in the mononuclear complex at δ 8.85 ppm was shifted to 8.60 ppm as a

result of complexation. The prominent shifts observed for some of the protons are given in

table 3.3 below, the rest are included in appendix B. The NMR spectrum of the complex

[Ir(ppy-COOCH3)2(tpy)]PF6 (17) is given in figure 3.14 (c). Comparing this with the NMR

spectra of complex (20) the effect of electron withdrawing ester groups is evident in the

downfield shift of the protons. Also the ester group is substituted at the 5ꞌ position of ppy

ligand therefore the peak at 5ꞌ postion is absent in both the monomer (17) and dimer (18). The

NMR spectra of the ester Ir-Pd dimer complex [Ir(ppy-COOCH3)2(bpp)PdCl]2(PF6)2 (18) is

given in figure 3.14 (d). By comparing figure 3.14 (c) and (d) the effect of Pd complexation is

clear, there is a downfield shift in the NMR peaks. The peak corresponding to the proton at



Chapter 3 – Novel cyclometallated iridium (III) complexes

125

position g in the monomer is absent in the dimer complex as a result of cyclometallated

binding to the Pd metal. Also the broad peak corresponding to proton h of the tpy ligand

(figure 3.12) was shifted from δ 9.05 to δ 8.71 ppm. The NMR spectra for the aldehyde

substituted complex [Ir(ppy-CHO)2(tpy)]PF6 (19) is given in appendix B. The proton NMR

shifts for some of the main peaks for complexes (15), (16), (17), (18) and (19) are given in

table 3.3 below. NMR’s were carried out in d6 dmso.

Figure 3.14 1H NMR Spectrum of (a) [Ir(ppy)2(tpy)]PF6 (15), (b) [Ir(ppy)2(tpy)PdCl]2(PF6)2

(16), (c) [Ir(ppy-COOCH3)2(tpy)]PF6 (17) and (d) [Ir(ppy-COOCH3)2(bpp)PdCl]2(PF6)2 (18)
in d6 DMSO.

Complex 6' 5' 4' 3' a e g h
(15) 5.82 6.80 7.01 7.52 7.57 7.87 6.78 8.85
(16) 6.22 6.74 6.87 7.77 8.61 8.72 - 8.60
(17) 5.93 - 7.17 7.59 7.49 7.59 6.79 9.05
(18) 6.82 - 7.44 7.88 8.59 8.74 - 8.71
(19) 6.24 - 7.48 8.12 8.12 7.61 6.71 9.09

Table 3.3 Tabulated 1H NMR shift values for complex (15), (16), (17) and (18) in d6 dmso.
The 1H NMR spectra for complexes [Ir(ppy)2(bpm)]PF6 (20), [Ir(ppy)2(bpm)PdCl2]PF6 (21),

[Ir(ppy)2(bpm)Ir(ppy)2](PF6)2 (23) and [Ir(ppy-COOCH3)2(bpm)]PF6 (24) in d6 dmso is given

in figure 3.15 below.

(a)

(d)

(c)

(b)
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Figure 3.15 1H NMR spectra of (a) [Ir(ppy)2(bpm)]PF6 (20), (b) [Ir(ppy)2(bpm)PdCl2]PF6

(21), (c) [Ir(ppy)2(bpm)Ir(ppy)2](PF6)2 (23) and (d) [Ir(ppy-COOCH3)2(bpm)]PF6 (24) in
d6 dmso.

The mononuclear complex [Ir(ppy)2(bpm)]PF6 (20) has an axis of symmetry. This is

confirmed from the NMR as the total number of protons integrated was 11 confirming this.

All the peaks is assigned as shown in the experimental section 3.2.4. Some of the main peaks

with their chemical shift values are tabulated in table 3.4. The NMR spectra for the dinuclear

complex [Ir(ppy)2(bpm)PdCl2]PF6 (21) is given in figure 3.15 (b). Comparing this NMR

spectrum (figure 3.15(b)) with the mononuclear complex (figure 3.15(a)) above it is clear that

complexation with Pd results in loss of symmetry. It is interesting to compare these NMR

with the NMR of the homodinuclear complex [Ir(ppy)2(bpm)Ir(ppy)2](PF6)2 (23) (figure

3.15(c)). The latter complex has two symmetry axis, as shown by the integration value for all

the peaks given in figure 3.12 (c) which integrate for only 10 protons. The peak at the very

high ppm value of δ 9.31 for the mononuclear complex is not seen in this homodinuclear

complex as is evident by comparing the spectra (a) and (c) in the above figure. Finally the

NMR spectra for the ester analogous complex [Ir(ppy-COOCH3)2(bpm)]PF6 (24) is given in

figure 3.12 (d). There is a considerable downfield shift as a result of substitution of the

(a)

(b)

(c)

(d)
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electron withdrawing group at the 5ꞌ position. Also the peak at δ 6.89 corresponding to the

proton at 5ꞌ position for complex (20) is not present for complex (24) due to the ester

substitution. Some of the prominent NMR shifts for the above mentioned complexes are

tabulated in table 3.4 below. The NMR spectra for the Ir-Pt dinuclear complex

[Ir(ppy)2(bpm)PtCl2]PF6 (22) is given in appendix B.

Complex 6' 5' 4' 3' a b c
(20) 6.14 6.89 7.02 7.91 8.08 7.91 9.31
(21) 6.11 6.92 7.093 7.96 8.28 7.96 9.33
(23) 6.10 6.94 7.05 7.92 8.12 8.28 -
(24) 6.76 - 7.32 8.03 8.12 7.87 9.35

Table 3.4 Tabulated 1H NMR shift values for complex (20), (21), (23) and (24) in d6 dmso.
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Figure 3.16 1H NMR spectra of [Ir(ppy)2(2,5-dpp)]PF6 (25) in d6 acetone.

The 1H NMR spectra for complex [Ir(ppy)2(2,5-dpp)]PF6 (25) measured in d6 acetone is

given in figure 3.16 above. Assignment of peaks are given in detail in the synthetic section

3.2.5.

3.3.3 Excited state photophysics

Cationic cyclometallated heteroleptic Ir (III) complexes have been studied in detail56,57,58 of

which the complex [Ir(ppy-N^C)2(bpy-N^N)]+ (where bpy is 2,2ꞌ-bipyridine and ppy is 2-

phenylpyridine) is one of the standard complexes whose photophysics is well discussed.59,60,61

Watts et al. observed dual emission with maxima at 520 and 560 nm for the mixed

chelate/orthometallate complex, [Ir(ppy)2bpy]+, which they attribute to low lying 3MLCTppy

and 3MLCTbpy states.62,63,64,65,66 These two states have an undifferentiated lifetime about 5.0

μs at 77 K and 0.35 μs in room temperature. Recently Chen et al. studied the emission

mechanism for the above mentioned complex using time resolved spectroscopy, and

according to them three basic transition processes are commonly encountered, namely ligand
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centred (LC) transitions, metal to ligand charge transfer transitions (MLCT), and ligand to

ligand charge transfer (LLCT) transitions.60,67,74

3.3.3.1 Absorption measurements

The absorption spectra for complexes (1) to (8) measured in spectroscopic grade ACN at

room temperature are given in figures 3.17 and 3.18. The bands were assigned by comparing

the absorption spectra obtained in this study with the previous published results.60-67
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Figure 3.17 (a) Absorption spectra of [Ir(ppy)2(bpy)](PF6) (1) and [Ir(ppy)2(d8bpy)](PF6)(2)
(b) Absorption spectra of [Ir(ppy)2(phen)](PF6) (3) and [Ir(ppy)2(d8phen)](PF6) (4). All
measurements were done in aerated ACN (298 K) at a conc. of 6×10-5M

The absorption features in the range of 250-350 nm are assigned to intra ligand charge

transfer transitions which include ppy(π)→ppy(π*) and bpy(π)→bpy(π*) transitions. The

absorption features between 350-400 nm are assigned to ligand to ligand charge transfer

(LLCT) transitions ie. [ppy(π)→bpy(π*)]. The absorption bands in the range 400-500 nm are

assigned to 1MLCT and 3MLCT transitions, with the lowest energy transition involving the

substituted bpy ligand in all cases as expected. The deuteriation of the neutral chelating N^N

ligand does not have any effect on the position of absorption bands as can be seen from the

absorption spectra given above, both the protonated and deuteriated complexes showed

similar absorption bands, and this is also observed for the other similar complexes. The

absorption spectra for complexes (5) to (8) are given in figures 3.18 (a) and 3.18 (b).
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Figure 3.18 (a) Absorption spectra of [Ir(ppy)2(dmbpy)](PF6) (5) and
[Ir(ppy)2(d12dmbpy)](PF6) (6) (b) Absorption spectra of [Ir(ppy)2(dtbpy)](PF6) (7) and
[Ir(ppy)2(d24dtbpy)](PF6) (8). All measurements were done in aerated ACN (298 K) at a
conc. of 6×10-5M

The absorption properties of the complexes [Ir(ppy)2(bpp)](PF6) (9),

[Ir(ppy)2(bpp)PtCl]2(PF6)2 (10) and [Ir(ppy)2(bpp)PdCl]2(PF6)2 (11) are discussed in detail in

chapter 4. The absorption spectra of the ester complexes [Ir(ppy-COOCH3)2(bpp)](PF6) (12),

[Ir(ppy-COOCH3)2(bpp)PtCl]2(PF6)2 (13) and [Ir(ppy-COOCH3)2(bpp)PdCl]2(PF6)2 (14) are

given in figure 3.19 below. Introduction of the electron withdrawing ester group on the

peripheral cyclometallating ppy ligand results in a red shift for the absorption bands

compared to the non ester complexes (figure 4.28, chapter 4).
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Figure 3.19 Absorption spectra for complex [Ir(ppy-COOCH3)2(BPP)]2(PF6) (12) along
with complex [Ir(ppy-COOCH3)2(BPP)PtCl]2(PF6)2 (13) and [Ir(ppy-COOCH3)2(BPP)
PdCl]2(PF6)2 (14) measured in aerated ACN at room temperature (298 K) (concentration -
6×10-5M). (MLCT region is expanded inside).
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Figure 3.19 shows that for the dinuclear complexes (13) and (14), 3MLCT absorption bands

were red shifted (MLCT region is enlarged in the box inside graph) compared to the

monomer complex (12). This is attributed to the complexation of either Pt or Pd metal to the

bpp ligand. The tabulated absorption data and extinction coefficients for all the three

complexes measured in ACN are given in appendix B. The absorption spectra for complexes

(15) to (19) are given in figure 3.20 (a) and 3.20 (b) below.
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Figure 3.20 (a) Absorption spectra of [Ir(ppy)2(tpy)](PF6) (15), [Ir(ppy-
COOCH3)2(tpy)](PF6) (17) and [Ir(ppy-CHO)2(tpy)](PF6) (19) (b) Absorption spectra of
[Ir(ppy)2(tpy)PdCl]2(PF6)2 (16) and [Ir(ppy-COOCH3)2(tpy)PdCl]2(PF6)2 (18). All
measurements were done in aerated ACN (298 K) at a conc. of 1×10-5M, (MLCT region is
expanded inside).

From figure 3.20 (a) it is evident that substitution of the phenyl pyridine ligand with either an

aldehyde or ester group resulted in changes in the absorption spectrum compared to the

unsubstituted complex. For both the substituted ppy complexes (17) and (19), a peak at

around 320 nm is prominent which was reduced to a shoulder for the unsubstituted complex

(15). Comparing the absorption spectra (figure 3.20) with reported results60-67 the band at 320

nm is tentatively assigned to an intraligand charge transfer transition (ILCT) based on the ppy

ligands. Substitution of ppy by electron withdrawing groups (like CHO and COOCH3)

resulted in a prominent change to these absorption bands. Figure 3.20 (b) gives the absorption

spectra of two Ir-Pd dimers [Ir(ppy)2(tpy)PdCl]2(PF6)2 (16) and [Ir(ppy-COOCH3)2(tpy)

PdCl]2(PF6)2 (18) with the ligand tpy. Comparing these absorption spectra with the

monomers (figure 3.20 (a)) showed the difference in the bands both in the LC and MLCT

regions as a result of Pd complexation. The absorption spectra for complexes (20), (21) and

(22) are given in appendix B.
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3.3.3.2 Emission measurements

All of the iridium polypyridyl complexes reported here exhibit luminesence in the region of

500 nm - 650 nm at room temperature in acetonitrile solution. The lowest triplet state, which

is responsible for phosphorescence emission for cyclometallating Ir (III) complexes

according to Kasha’s rule,68,69 is either a 3MLCT transition state or 3LC transition state.

Generally, phosphorescence originating from the LC transition state can be distinguished

from that of the MLCT transition state in terms of spectral shape, phosphoresence lifetime

(τp), rigidochromic and solvatochromic behaviours.70 The low temperature emission spectra

for these complexes are blue shifted in comparison to the room temperature emission which

is a characteristic property for the emission from an MLCT excited state. The emission of the

starting material, the iridium dichloro bridged dimer, [Ir(ppy)2Cl]2 was attributed to a metal

to ligand charge transfer (MLCT) excited state formed by transfer of charge from Ir (III) to

the cyclometallated ppy ligand (MLCTppy).71,72 When the bridging chlorides of [Ir(ppy)2Cl]2

are replaced by a π acceptor neutral chelating (N^N) ligand like bpy, the Ir (III) metal center

will become a poorer electron donor and the (MLCTppy) state will move up in energy.71,72

Thus the emission will then takes place from the low lying (MLCTN^N) excited state. Excited

state absorption studies69 of samples of [Ir(ppy)2(bpy)]+ and [Ir(bzq)2(bpy)]+ in fluid solutions

at room temperature confirms emission from a MLCTbpy excited state which is the lowest

excited state in room temperature solutions where equilibration of the two MLCT excited

states occurs. In the present work a series of four similar complexes with the deuteriated

(N^N) ligands were prepared, ([Ir(ppy)2(N^N)]PF6, where N^N ≡ d8bpy, d8phen, d12dmbpy

and d24dtbpy) and the effect of deuteriation on the excited state properties were compared

with the protonated complexes which provided further evidence for coupling between the
3MLCT excited states present in these types of cyclometallated Ir (III) complexes.

The emission spectra for [Ir(ppy)2(bpy)]PF6 (1) and its deuteriated analogue

[Ir(ppy)2(d8bpy)]PF6 (2) are given in figure 3.21 (a). Both complexes showed a broad

absorption band at 590 nm which is assigned to a 3MLCT excited state, based on previous

reports.60-74 Figure 3.21 (b) shows the emission spectra for complexes [Ir(ppy)2(phen)]PF6 (3)

and its deuteriated analogue [Ir(ppy)2(d8phen)]PF6 (4). The emission spectra for complexes

[Ir(ppy)2(dmbpy)]PF6 (5), [Ir(ppy)2(dtbpy)]PF6 (7) and their deuteriated N^N analogous

complexes (6) and (8) are given in appendix B.



Chapter 3 – Novel cyclometallated iridium (III) complexes

132

450 500 550 600 650 700 750 800
0

10

20

30

40

50
Lu

m
in

es
en

ce
 In

te
ns

ity

Wavelength (nm)

 [Ir(ppy)2(bpy)](PF6)
 [Ir(ppy)2(d8bpy)](PF6)

590 nm (3MLCT)

450 500 550 600 650 700 750 800
0

10

20

30

40

50

Lu
m

in
es

en
ce

 In
te

ns
ity

Wavelength (nm)

 [Ir(ppy)2(phen)](PF6)
 [Ir(ppy)2(d8phen)](PF6)

581 nm (3MLCT)

(a)                                                                                         (b)

Figure 3.21 (a) Emission spectra for [Ir(ppy)2(bpy)]PF6 (1) and [Ir(ppy)2(d8bpy)]PF6 (2) (b)
Emission spectra for [Ir(ppy)2(phen)]PF6 (3) and [Ir(ppy)2(d8phen)]PF6 (4). All the
measurements are done in aerated ACN at 298 K (Conc. 6×10-5M).

The emission spectra for the iridium mononuclear complex with the ligand bpp,

[Ir(ppy)2(bpp)]PF6 (9) and the two heterodinuclear Ir-Pt and Ir-Pd dimers,

[Ir(ppy)2(bpp)PtCl]2(PF6)2 (10) and [Ir(ppy)2(bpp)PdCl]2(PF6)2 (11) are given in figure 3.22

(a) below. The detailed excited state photophysical measurements including solvatochromic,

rigidochromic and temperature dependent emission and lifetime measurements for these three

complexes along with the assignments of the emission bands are studied in detail in chapter

4.
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Figure 3.22 (a) Emission spectra for complexes [Ir(ppy)2(BPP)]PF6 (9),
[Ir(ppy)2(BPP)PtCl]2(PF6)2 (10) and [Ir(ppy)2(BPP)PdCl]2(PF6)2 (11) in aerated ACN
(1×10-5M) at 298 K (b) Emission spectra for complexes [Ir(ppy-COOCH3)2(BPP)]PF6 (12),
[Ir(ppy-COOCH3)2(BPP)PtCl]2(PF6)2 (13) and [Ir(ppy-COOCH3)2(BPP)PdCl]2(PF6)2 (14)
in aerated ACN (6×10-5M) at 298 K.
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The emission spectra for the iridium ester complexes with the bpp ligand, [Ir(ppy-

COOCH3)2(bpp)]PF6 (12), [Ir(ppy-COOCH3)2(bpp)PtCl]2(PF6)2 (13) and [Ir(ppy-

COOCH3)2(bpp)PdCl]2(PF6)2 (14) are given in figure 3.22 (b). From the emission spectra it is

clear that complexation with Pt and Pd centres resulted in a considerable decrease in the

emission intensity. This shows the probability of charge reaching the Pt and Pd centres for the

dimer complexes which are in thermal equilibrium with the 3MC state at room temperature

resulting in quenching of emission. A larger decrease in emission intensity was observed for

the ester Ir-Pt and Ir-Pd complexes (figure 3.22 (b)) compared to the non ester complexes

(figure 3.22 (a)). This may be due to the electron withdrawing ester groups on the peripheral

phenylpyridine ring which results in an increase in the energy of the 3MLCT excited states

from which the charge is expected to be going to the Pt/Pd excited state. This increase in

energy can be clearly seen by comparing the emission maxima for the non ester and ester

analogues (for the ester analogues complexes there is prominent blue shift in the emission

maxima compared to the non ester complexes). The emission maxima for the non ester

mononuclear complex (9) at 617 nm (2.01 eV) was blue shifted to 568 nm (2.19 eV) in the

ester complex (12). Emission bands were observed at 605 nm (2.05 eV) and 546 nm (2.27

eV) for the Pt dimer complex (10), and these were blue shifted to 573 nm (2.17 eV) and 530

nm (2.34 eV) for the ester analogue (13). An emission band was observed at 615 nm (2.02

eV) for the Pd complex (11), and this was blue shifted to 577 nm (2.15 eV) in the ester

analogue (14). Based on the detailed photophysical measurements carried out on the non ester

complexes in chapter 4 along with published results,60-74 the energy of the low lying 3MLCT

excited states in the ester complexes increases which leads to the thermal population of

charge to the excited states of Pt/Pd metals thereby resulting in a more extensive quenching

of emission compared to the non ester analogues. Further evidence in support of this

explanation can be obtained from the photocatalytic H2 production activity of these two

different sets of complexes (non esters and esters). The ester complexes gave almost double

the amount of hydrogen compared to the non ester complexes under similar conditions

(section 3.3.3.2) which clearly shows that the lowest lying excited states for the ester

complexes are more easily accessible to the Pt/Pd excited states at room temperature.

The 77 K emission curve for [Ir(ppy-COOCH3)2(bpp)]PF6 (12) along with the 298 K

emission is given in figure 3.23 below. The room temperature emission maxima at 568 nm is

assigned to a 3MLCT excited state. This assumption is made on the basis of the spectral shape

(broadened spectrum), rigidochromic shift on going to 77 K (as shown in figure 3.23),
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lifetime value (118 ns) corresponding to the decay from a typical MLCT excited state and by

comparing the results obtained for the analogous non ester complex (9) discussed in detail in

section 4.2.2 of chapter 4. As discussed at the beginning of this section for complexes (1) to

(8) the emission takes place from a lowest excited state which is an equilibrated state of
3MLCTppy and 3MLCTbpp (due to the strong coupling between these low lying excited states).
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Figure 3.23 Emission spectrum for [Ir(ppy-COOCH3)2(bpp)]PF6 (12) at 298 K (in aerated
ACN) and 77 K (in 4:1 EtOH:MeOH glass)

The 77 K emission spectra for complex (12) is structured with three prominent emission

bands. Comparing this spectrum with the 77 K emission spectrum for the non ester complex

(9) (figure 4.9 in chapter 4), the presence of the electron withdrawing ester group resulted in a

blue shift of 36 nm (for complex 9 at 77 K the emission maxima was at 540 nm and was not

structured). This clearly shows that ester substitution resulted in an increase in the energy of

the excited state (energy increased by 0.16 eV). Due to the limitation of time it was not

possible to complete the temperature dependent lifetime measurements for the ester

complexes. So assignments of the peaks were made by comparing these values with the data

of similar non ester complexes studied in detail in chapter 4 (sections 4.2.2, 4.3.2 and 4.4.2).

The emission peak at 504 nm is assigned to a 3LLCT excited state, and the emission peak at

544 nm to a mixed 3LLCT/3MLCT excited state and the lowest energy peak at 590 nm to a
3MLCT excited state emission. However these are tentative assignments and further studies

are required to confirm this assignment. The low temperature (77 K) emission spectra
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together with the room temperature emission spectra (298 K) for  complexes [Ir(ppy-

COOCH3)2(bpp)PtCl]2(PF6)2 (13) and [Ir(ppy-COOCH3)2(bpp)PdCl]2 (PF6)2 (14) are given in

appendix B. Low temperature (77 K) emission curves for both complexes (13) and (14)

showed a prominent blue shift in comparison to the non ester complexes (10) and (11), due to

the electron withdrawing ester group, which results in a shift of the excited states to higher

energy.

The emission spectra for three cyclometallated iridium (III) complexes with the tpy ligand

(2,2ꞌ:6ꞌ,2ꞌꞌ-terpyridine) having two different electron withdrawing substituents (COOCH3 and

CHO) on the ppy ligand ([Ir(ppy)2(tpp)]PF6 (15), [Ir(ppy-COOCH3)2(tpp)]PF6 (17) and

[Ir(ppy-CHO)2(tpp)]PF6 (19)) are shown in figure 3.24. It can be seen from the emission

spectra that substitution by electron withdrawing groups resulted in a considerable increase in

the energy of the lowest MLCT excited states as is evident from the extent of blue shift for

complexes (17) and (19) compared to complex (15) (normalised emission spectra are given in

inset).
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Figure 3.24 Emission spectrum for [Ir(ppy)2(tpy)]PF6 (15), [Ir(ppy-COOCH3)2(tpy)]PF6 (17)
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For the unsubstituted complex (15), the emission maximum at 600 nm (2.07eV) is assigned to

a 3MLCT excited state based on the emission data for the standard complex (1) given in

figure 3.18 and with the published results.60-74 The lifetime decay curve for complex (15)

(appendix B) was single exponential with a value of 35 ns, characteristic of a decay from an

MLCT excited state. Here as for complex (1) the two low lying 3MLCT excited states

(3MLCTppy and 3MLCTtpp) are strongly coupled and is difficult to differentiate between them.

As explained at the beginning of this section, when the bridging chlorides of [Ir(ppy)2Cl]2 are

replaced by a π acceptor neutral chelating (N^N) ligand like tpy, the Ir (III) metal center

becomes a poorer electron donor and the (3MLCTppy) state will move up in energy. This

effect is enhanced by having elecron-withdrawing groups on the phenyl ring of the ppy

ligand. Substitution of the ppy ligand by an ester group resulted in an increase in energy and

also in splitting of the two low lying 3MLCT excited states. The emission spectra has two

bands, one at higher energy of 514 nm (2.41 eV) assigned to a 3MLCTppy excited state which

showed an increase in energy of 0.34 eV. The lower energy band at 547 nm (2.27 eV) is

assigned to a 3MLCTtpy excited state which showed an increase in energy of 0.2 eV compared

to the unsubstituted complex (15). The aldehyde substituted complex (19) also showed a

prominent increase in energy of the emission band and similar to the ester complex the

electron withdrawing group substituted on the ppy ligand resulted in an increase in the
3MLCTppy state to a higher energy than the 3MLCTtpy state. The emission band at 535 nm

(2.32 eV) is assigned to a 3MLCTppy excited state and the emission band at 570 nm (2.18 eV)

is assigned to a 3MLCTtpy state. The former showed an increase in energy of 0.25 eV while

the latter one showed an increase of 0.11 eV. All these assignments are based on results for

the standard complex (1) and with the previous published results.61-74

Eventhough the lowest lying excited state for all the 3 complexes explained above with the

tpy ligand (which can be considered as a substituted bipyridine ligand, having a pyridine

substitution at the 6ꞌ position) is considered as a 3MLCTtpy state in view of the low lying π*

orbitals of the diimine ligand, however this state may be mixed (3MLCTtpy and 3MLCTppy)

based on the results with a similar complex having a phenyl substituent on the 6ꞌ position of

the bipyridine ligand.73 The low reversibility of the oxidation waves of the complexes

(appendix B) suggests the involvement of covalent Ir-C bond character in the HOMOs of the

complexes. The possibility of a triplet σ bond to ligand 3SBLCT [σ(Ir-C) → π*(diimine)]

emissive state or simply 3LLCT excited state thus cannot be totally ignored.74,75,54 Confirming
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this hypothesis can only be made by carrying out further measurements like resonance

Raman which are beyond the scope of this thesis and will be done in future.

It is interesting to note that the emission for the two Ir-Pd complexes with the tpy ligand,

[Ir(ppy)2(tpy)PdCl]2(PF6)2 (16) and [Ir(ppy-COOCH3)2(tpy)PdCl]2(PF6)2 (18) is completely

quenched in comparison to the analogous complexes (11) and (14) containing the bpp ligand.

Both these bridging ligands (bpp and tpy) can be considered as substituted bipyridines, bpp

having a pyridine ring substituted at the 5ꞌ position and tpy having having a pyridine ring at

the 6ꞌ position. The π* level on the tpy ligand is at higher energy compared to that of the π*

level on bpp ligand. The reason for this is the lack of coplanarity of the pyridine ring with

respect to the bipyridine due to steric hindrance when the pyridine ring is substituted at the 6ꞌ

position which is explained for a similar complex having phenyl substitution at 6ꞌ position.76

Due to this reason the low lying excited states are increased in energy (the mononuclear

complex [Ir(ppy)2(tpy)]PF6 (15) has an energy of 0.06 eV higher than that of the

corresponding bpp complex [Ir(ppy)2(bpp)]PF6 (9) as is clear from the emission spectra given

in figures 3.22 and 3.24). This results in population of the Pd excited state at room

temperature, and in quenching. For the Ir-Pd complex with the bpp ligand, substitution of the

pyridine ring at the 5ꞌ position does not cause steric hindrance and the substituted pyridine

ring will be coplanar to the bipyridine, which will result in extended π conjugation, this

results in lowering of the energy of the excited states in comparison with complex containing

the tpy ligand, thus emission at room temperature occurs from the lowest 3MLCT excited

states (explained in detail in chapter 4).

3.3.3.3 Lifetime measurements

Excited-state lifetimes of the complexes can provide evidence as to the nature of excited

states of transition metal complexes. The instrumental procedures and conditions that were

used to carry out the excited state lifetime measurements using TCSPC and laser flash

photolysis were detailed in chapter 2. It should be noted that all excited state lifetimes

reported here have an error of ± 5 % and two methods were used for analysing the quality of

the data acquired a) χ2 goodness of fit test and b) analysis of the residual plots. A χ2 value as

close as possible to 1 is ideal and all the data reported in this chapter have χ2 value close to 1.

Based on the previous reports64,77,78 for Ir (III) cyclometallated complexes, at room

temperature (298 K) the excited states are in thermal equillibrium and the lifetimes will be in
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the nano second time range, decaying from the lowest excited state which is 3MLCT in

nature. It is very difficult to differentiate between the two 3MLCT states (3MLCT(N^C) and
3MLCT(N^N)) at room temperature. Detailed excited state photophysics of the complex

[Ir(ppy)2(bpy)](PF6) and its analogous complexes having different substituents on the

bipyridine (bpy) and phenyl pyridine (ppy) ligands have been already studied in detail61-69

and it is concluded that at room temperature emission takes place from the lower energy
3MLCTbpy excited state, but the possibility of emission occuring from an equillibrated
3MLCTppy/3MLCTbpy excited state cannot be ignored. In the present study a series of Ir (III)

complexes, including deuteriated N^N ligands were synthesised and the emission lifetimes

were measured for both the protonated and deuteriated complexes using TCSPC and laser

flash photolysis, and the results are tabulated in table 3.5 below which shows good agreement

between the two data sets.

Complex

Emission

Wavelength

λem, (nm)

Lifetime

(TCSPC)

(ns)

Lifetime

(Laser)

(ns)

[Ir(ppy)2(bpy)](PF6) (1) 590 64 64

[Ir(ppy)2(d8bpy)](PF6) (2) 590 65 66

[Ir(ppy)2(phen)](PF6) (3) 581 58 58

[Ir(ppy)2(d8phen)](PF6) (4) 581 57 57

[Ir(ppy)2(dmbpy)](PF6) (5) 572 60 61

[Ir(ppy)2(d12dmbpy)](PF6) (6) 572 61 63

[Ir(ppy)2(dtbpy)](PF6) (7) 570 63 63

[Ir(ppy)2(d24dtbpy)](PF6) (8) 570 64 63

Table 3.5 Tabulated lifetime data for the complexes using TCSPC and laser flash photolysis.
All the measurements were obtained in aerated ACN at room temperature (298 K).

From the previous published results the lowest excited state for complexes of the type

[Ir(N^C)2(N^N)](PF6) is always assigned to a 3MLCTN^N excited state. Hence deuteriation of

the N^N ligands should influence the lifetime of the excited state based on previous

reports.64,65,66
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Figure 3.25 (a) Lifetime decay plots for complex [Ir(ppy)2(bpy)](PF6) (1) (b) Lifetime decay
plots for complex [Ir(ppy)2(d8bpy)](PF6) (2) measured in aerated ACN (298 K) using
TCSPC.

The emission decay curves along with the fit for [Ir(ppy)2(bpy)](PF6) (1) and

[Ir(ppy)2(d8bpy)](PF6) (2) measured at a timebase of 500 ns along with the residual plots are

given in figures 3.25(a) and 3.25(b). Details regarding emission wavelength, timebase,

lifetime and χ2 value for each complex are given inside the plots itself. Interestingly in all the

above cases deuteriation of N^N ligands did not result in any change for the lifetime. This

can be due to the strong coupling of the two close lying 3MLCT excited states (3MLCTN^C

and 3MLCTN^N)79 thereby the vibrational effects as a result of deuteriation do not have any

significant effect in these cyclometallated Ir (III) complexes. Such a deuteriation effect study

on these complexes has not been reported previously. The decay curves for the remaining

complexes are given in table 3.5, and the residual plots are given in appendix B.

The detailed excited state lifetime measurements including solvent dependent and

temperature dependent lifetimes for the three complexes, [Ir(ppy)2(bpp)]PF6 (9),

[Ir(ppy)2(bpp)PtCl]2(PF6)2 (10) and [Ir(ppy)2(bpp)PdCl]2(PF6)2 (11) are explained in detail in

chapter 4. The lifetime data obtained for the methyl ester iridium (III) complexes containing

the bpp ligand, [Ir(ppy-COOCH3)2(bpp)]PF6 (12), [Ir(ppy-COOCH3)2(bpp) PtCl]2(PF6)2 (13)
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and [Ir(ppy-COOCH3)2(bpp)PdCl]2(PF6)2 (14) using both TCSPC and laser in aerated ACN

at room temperature are given in table 3.6 below.

Complex
Emission

Wavelength
λem, (nm)

Lifetime
(TCSPC)

(ns)

Lifetime
(Laser)

(ns)

[Ir(ppy-COOCH3)2(bpp)]PF6 (12) 568 118 120

[Ir(ppy-COOCH3)2(bpp)PtCl]2(PF6)2 (13) 573 134 137

[Ir(ppy-COOCH3)2(bpp)PdCl]2(PF6)2 (14) 577
τ1 – 23 (67 %)
τ2 – 87 (33 %) 88

Table 3.6 Tabulated lifetime data for the complexes measured with TCSPC and laser. All the
measurements were obtained in aerated ACN at room temperature (298 K).

From the above table it is evident that complexation of Pt to the mononuclear complex

resulted in a slight increase in the emission lifetime as shown similarly by the non ester Ir-Pt

complex (10). The lifetime increased from 118 ns to 134 ns. The lifetime decay curve for

both complexes, (12) and (13) was monoexponential as shown in figure 3.26 below.

Interestingly for the Ir-Pd dimer complex (14) the lifetime decay curve was biexponential

with one component of 23 ns (with a relative percentage of 67 %) and a long lived

component having a relative percentage of  33 %. The average lifetime calculated gave a

value of 87 ns which is almost half the lifetime of what was obtained for the monomer

complex (12) clearly indicating quenching effect of the Pd center (figure 3.22(b)). This

quenching effect for the ester Ir-Pd complex is much more prominent than for the Ir-Pt

complex (13). Further evidence in support of the above explained behaviour of the Ir-Pd ester

complex is obtained from the photocatalytic H2 production results explained in section 3.3.3.

The ester Ir-Pd complex (14) produced more H2 than the Ir-Pt complex (13) which supports

the emission and lifetime quenching results (as the electron reaches the Pd center more

efficiently than to the Pt center). But in the case of the non ester complexes, the Ir-Pt complex

(10) is more efficient than the Ir-Pd complex (11) which is in agreement with the

photophysical data. Details regarding this comparison are given in the next section.
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Figure 3.26 (a) Lifetime decay plots for complex [Ir(ppy-COOCH3)2(BPP)]PF6 (12) (b)
Lifetime decay plots for complex [Ir(ppy-COOCH3)2(BPP)PtCl]2(PF6)2 (13) measured in
aerated ACN (298 K) using TCSPC.

The emission decay curves along with the fit for both [Ir(ppy-COOCH3)2(BPP)]PF6 (12) and

[Ir(ppy-COOCH3)2(BPP)PtCl]2(PF6)2 (13) along with the residual plots are given in figures

3.26 (a) and 3.26 (b). The decay fit curves for the Ir-Pd complex (14) with the residual plots

are given in appendix B.

The lifetime measurements for the three mononuclear complexes of iridium with the ligand

tpy, [Ir(ppy)2(tpy)]PF6 (15), [Ir(ppy-COOCH3)2(tpy)]PF6 (17) and [Ir(ppy-CHO)2(tpy)]PF6

(19) measured using both TCSPC and laser flash photolysis are given in table 3.7 below.

From the table it is clear that the lifetime values obtained using both instruments are

comparable, showing the accuracy of the values obtained. The lifetime value for the Ir-Pd

dimer complexes with the tpy ligands, [Ir(ppy)2(tpy)PdCl]2(PF6)2 (15) and [Ir(ppy-

COOCH3)2(tpy)PdCl]2(PF6)2 (17) could not be measured as the emission was completely

quenched in both the cases following Pd coordination.
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Complex Emission
Wavelength

λem, (nm)

Lifetime
(TCSPC)

(ns)

Lifetime
(Laser)

(ns)
[Ir(ppy)2(tpy)]PF6 (15) 600 35 36

[Ir(ppy-COOCH3)2(tpy)]PF6 (17) 514, 547 82, 81 83, 82

[Ir(ppy-CHO)2(tpy)]PF6 (19) 535, 570 341, 341 347, 348

Table 3.7 Tabulated lifetime data for the complexes measured with TCSPC and laser. All the
measurements were obtained in aerated ACN at room temperature (298 K).

The unsubstituted ppy complex [Ir(ppy)2(tpy)]PF6 (15) gave a lifetime value of 35 ns. The

substitution of ppy ligand with the electron withdrawing COOCH3 and CHO groups resulted

in an increase in the lifetime. For the ester complex (17) the lifetime increased to 82 ns from

35 ns. The lifetime for complex (17) was measured at two different emission wavelengths

(514 nm and 547 nm) as given in the emission spectra for complex (17) (figure 3.24). The

lifetime values at both these emission bands were equal which indicates a similarity in the

nature of both excited states (ie 3MLCT). Similar results were found for the aldehyde

substituted complex (19), the emission spectra (figure 3.24) showed two peaks, and the

lifetime at both these emission wavelengths were exactly the same. For complex (19)

substitution of CHO group to the ppy resulted in a 10 fold increase in the lifetime value (341

ns) compared to the mononuclear complex (35 ns). The increase in lifetime obtained for the

substituted ppy complexes (17) and (19) can be explained by taking into consideration the

emission spectra (figure 3.24). Substitution of these electron withdrawing groups resulted in

an increase in the energy of the excited states compared to the unsubstituted complex as

explained in section 3.3.2.2. This might be a reason for the longer lifetime values shown by

the substituted ppy complexes which decays from a higher energy state with respect to the

unsubstituted complex.

The emission decay curves along with the fit for [Ir(ppy-CHO)2(tpy)]PF6 (19) at two different

emission wavelengths (535 nm and 570 nm) along with the residual plots are given in figures

3.27 (a) and 3.27 (b). The decay fit curves for the complexes (15) and (17) with the residual

plots are given in appendix B.
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Figure 3.27 Lifetime decay plots for complex [Ir(ppy-CHO)2(tpy)]PF6 (19) (a) at an emission
wavelength of 535 nm (b) at an emission wavelength of 570 nm. All measurements were
obtained in aerated ACN (298 K) using TCSPC.

3.3.3.4 Effect of substitution on bpy and ppy ligands on emission energy of complex

[Ir(ppy)2(bpy)](PF6)

In the previous sections 3.3.2.2 and 3.3.2.3 excited state photophysical measurements

including absorption, emission and lifetime measurements of Ir (III) cyclometallated

complexes has been explained on the basis of substitution to different bridging ligands and to

other metal centres like Pt and Pd. In this section the dependence of emission data as a

function of various substituents on bpy and ppy ligands is discussed. Given in figure 3.28

below are the different iridium complexes in this study.
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Figure 3.28 Schematic representation of cyclometallated iridium (III) complexes having
various substituted bpy as the chelating ligand

The emission maxima for all these complexes together with the excited state energies in eV,

and the corresponding lifetimes are tabulated in table 3.8 below.

Complex
Emission

Wavelength,
λem, (nm)

Energy
(eV)

Lifetime
(298 K)

ns
[Ir(ppy)2(bpy)](PF6) (1) 590 2.10 64

[Ir(ppy)2(dmbpy)](PF6) (5) 572 2.17 60

[Ir(ppy)2(dtbpy)](PF6) (7) 570 2.18 64

[Ir(ppy)2(bpp)](PF6) (9) 617 2.01 72

[Ir(ppy)2(tpy)](PF6) (15) 600 2.07 35

[Ir(ppy-COOCH3)2(bpp)](PF6) (12) 568 2.19 118

[Ir(ppy-COOCH3)2(tpy)](PF6) (17) 514, 547 2.41, 2.27 82, 81

[Ir(ppy-CHO)2(tpy)](PF6) (19) 535, 570 2.32, 2.18 341, 341

Table 3.8 Tabulated data for emission and lifetime measured in aerated ACN at room
temperature

From the above table 3.8, the variation in emission energy as a result of various substitutions

on the bipyridine ligand and also on the nature of the cyclometallated phenyl pyridine (ppy)

ligand are given. Substitution at 4 and 4ꞌ positions of bpy by methyl or tertiary butyl groups

results in an increase in the emission energy from 2.10 eV to 2.17 eV for the dmbpy complex

(5) and from 2.10 eV to 2.18 eV for the dtbpy complex (7) in agreement with the previously

published results for the same complexes.70,80,81 Complexes (9) and (15) are two isomers
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where the pyridyl substituent is bound at the 5ꞌ or 6ꞌ position of the coordinated bpy moiety.

The substitution of the pyridine ring resulted in a decrease in the emission energy as can be

seen from table 3.8. The emission energy for the unsubstituted bpy complex (1) at 2.10 eV,

decreased to 2.01 eV for [Ir(ppy)2(bpp)](PF6) (9) and to 2.07 eV for [Ir(ppy)2(tpy)](PF6) (15).

This is due to the extended π conjugation present in both complex (9) and (15) which results

in lowering of the energy of the π* orbital and consequently a decrease in the emission

energy. From the above data it can be noted that the pyridine ring substitution at the 5ꞌ

position in complex (9) resulted in a greater decrease in energy than substitution at 6ꞌ position

for complex (15). This might be due to some steric reasons for complex (15), as the pyridine

ring is not coplanar with the bipyridine ligand as can be seen from the structure itself given in

figure 3.28 above. This lack of coplanarirty limits the extension in conjugation resulting in an

increase of the π* energy level. Due to this reason not much change in the emission energy is

seen between complex (1) and complex (15). For complex (9), the pyridine ring at 5ꞌ position,

is coplanar with the bipyridine which results in extended π conjugation and thus lowering of

the emission energy as given in table 3.8 above.

These results show that the effect of substitution of the cyclometallated ppy ligand resulted in

greater changes to the emission energy than substituting the bipyridine ligands. By careful

synthesis the emission may be tuned over the entire range of the visible spectrum which has

further applications in the field of OLED’s and other light emitting devices for which

cyclometallated Ir (III) complexes are efficient.55,61,65,77 All the above mentioned results are

based on photophysical measurements. Nevertheless, more detailed studies such as MO

calculations and resonance Raman spectroscopy are required to obtain a clearer picture of the

excited state nature of these complexes.

3.3.4 Photocatalytic H2 production experiments

Luminescent iridium (III) transition metal complexes are very appealing because of the

synthetic modifications possible for the ligands, which allows manipulation of the

photophysical and electrochemical properties of these complexes for various applications,

including photocatalysis.12,13,58,82 An examination of the various iridium photocatalysts

reported now were given in the introduction chapter 1 (section 1.7.3). The details regarding

the experimental conditions used for photocatalysis are given in chapter 2. Almost all of the

cyclometallated iridium complexes reported in this chapter showed good photocatalytic

activity. In this section the difference in photocatalytic properties between the iridium
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complexes as a function of the bridging ligands, bpp, tpy and bpm will be described. In some

cases experiments were carried out at four different water percentages (0  %, 5 %, 10 % and

15 %), of which the 5 % composition was found to be the most effective for hydrogen

production. The effect of ester groups on the photocatalytic activity was also considered. All

the measurements were carried out at two different excitation wavelengths UV light (350 nm)

and visible light (470 nm). Intramolecular photocatalysis were carried out using the novel

Ir-Pt/Pd systems which are the first of its kind of heterodinuclear iridium complexes.

Intermolecular experiments were carried out for all the mononuclear iridium complexes using

two different catalysts [Pt(ACN)2Cl2] and [Pd(ACN)2Cl2]. In all the photocatalytic

experiments carried out in this chapter TEA (triethylamine) was used as the sacrificial agent,

ACN (acetonitrile) was used as the solvent and water as the proton donor.

3.3.4.1 Intermolecular photocatalysis of [Ir(ppy)2(N^N)]PF6 complexes.

The strong reducing strength of the excited state of iridium cyclometallated complexes

enables effective catalysis of the reduction of H2O to H2. The [Ir(ppy)2(bpy)] PF6 complex

and various analogues having substituents on both the ppy and bpy ligands have been studied

by Bernhard and coworkers in the past few years.12,13,58,82 In the present study photocatalysis

was investigated for the above mentioned complexes by making changes to the structure of

the photosensitiser and varying the conditions which include; (1) investigating the impact of

synthetic modification on photosensitiser performance as a result of deuteriation of N^N

ligand (2) using two different Pt and Pd catalyts [Pt(ACN)2Cl2] and [Pd(ACN)2Cl2] rather

than the conventional K2PtCl4 and K2PdCl4 salts and (3) by the photocatalytic irradiation

using two different wavelengths of light – visible light (470 nm) and UV light (350 nm).

Figure 3.29 given below gives an idea regarding the amount of H2 formed expressed in

TON’s for the eight complexes, following irradiation under both visible light (470 nm) and

UV light (350 nm). A set of 8 complexes with the cyclometallated ppy ligand were prepared,

having protonated and deuteriated N^N ligands. The effect of deuteriated N^N analogues on

photocatalysis has not previously been studied. Bernhard has shown that the use of bulkier

N^N ligands minimises solvent access to the iridium center, which presumably stabilises the

photosensitiser by hindering ligand substitution.12,13,58,82 Figure 3.29 and table 3.9 shows that

the amount of H2 produced for the deuteriated N^N analogoues complexes of iridium were

reduced considerably. Comparing this result obtained with the previous reports it is assumed
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that the deuteriated N^N ligands decompose more readily than the protonated complexes thus

resulting in a decrease in the TON values.
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Figure 3.29 Schematic representation of the photocatalytic TON values for complexes (1) to
(8) obtained in ACN for both visible light (470 nm) and UV light (350 nm) irradiation.
Irradiation time is 18h, sacrificial reagent used TEA, Conc. of PS and Pt catalyst is 6×10-5M.

The tabulated TON values for intermolecular photocatalysis with [Pt(ACN)2Cl2] along with

the areas obtained using gas chromatographic measurement for both visible light (470 nm)

and UV light (350 nm) are tabulated in table 3.9 below. Previous reports of photocatalysis

using conventional Pt and Pd salts (K2[PtCl4] and K2[PdCl4])12,13 showed Pd catalysts to be

more efficient than Pt catalysts. Interestingly when [Pt(ACN)2Cl2] and [Pd(ACN)2Cl2]

complexes were used as catalysts, only Pt led to the production of hydrogen. The data

presented shows that the nature of the catalyst plays a crucial role in determining the

efficiency of the photocatalysis. It has been reported that molecular platinum and palladium

species are reduced to form a colloidal catalyst under similar conditions to those applied in

the present study.12,13,20,21,32 However after 18h photolysis no precipitate was observed for Pt

but when Pd was used as catalyst there was some precipitation (appendix B). This suggests

aggregation of the Pd colloids at an earlier stage of photocatalysis resulting in decomposition

of the Pd catalyst and decreasing the catalytic activity. Confirmation of this can only be made

by carrying out SEM or TEM measurements.
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Complex (6x10-5 M)
+

Pt(ACN)2Cl2

(6x10-5 M)

H2O
%

470 nm 350 nm

Area
(mV/s)

TON
(average)

Area
(mV/s)

TON
(average)

[Ir(ppy)2(bpy)](PF6)

(1)
5%

1) 88
2) 91
3) 85

51
1) 15
2) 17 9

[Ir(ppy)2(d8bpy)](PF6)

(2)
5%

1) 58
2) 50
3) 52

31
1) 47
2) 45 26

[Ir(ppy)2(phen)](PF6)

(3)
5%

1) 70
2) 66
3) 66

39
1) 5
2) 7 3

[Ir(ppy)2(d8phen)](PF6)

(4)
5%

1) 30
2) 25
3) 26

16
1) 7
2) 8 4

[Ir(ppy)2(dmbpy)](PF6)

(5)
5%

1) 86
2) 88
3) 85

50
1) 14
2) 16 9

[Ir(ppy)2(d12dmbpy)](PF6)

(6)
5%

1) 57
2) 60
3) 62

34
1) 54
2) 55 31

[Ir(ppy)2(dtbpy)](PF6)

(7)
5%

1) 89
2) 84
3) 88

50
1) 16
2) 17 10

[Ir(ppy)2(d24dtbpy)](PF6)

(8)
5%

1) 61
2) 59
3) 61

35
1) 37
2) 35 21

Table 3.9 Tabulated TON values with their respective areas obtained from GC for complexes

(1) to (8) (deuteriated ones are shown by shaded region).

3.3.4.2 Intramolecular and intermolecular photocatalysis of iridium complexes with the

bpp ligand

Photocatalysis of the six novel cyclometallated iridium complexes, [Ir(ppy)2(bpp)](PF6) (9),

[Ir(ppy)2(bpp)PtCl]2(PF6)2 (10), [Ir(ppy)2(bpp)PdCl]2 (PF6)2 (11), [Ir(ppy-COOCH3)2(bpp)]

(PF6) (12), [Ir(ppy-COOCH3)2(bpp)PtCl]2(PF6)2 (13) and [Ir(ppy-COOCH3)2(bpp)PdCl]2

(PF6)2 (14) are discussed in this section. The intramolecular and intermolecular photocatalysis

of complexes (9), (10), (11), (12), (13) and (14) were carried out with the help of Mr.

Gurmeet Singh Bindra.
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(a) Intramolecular photocatalysis using visible light (470 nm)

Many challenges exist in designing a complete homogeneous water splitting system. Once

compatible PS and WRC components are found, the electron transfer processes must be

perfected for optimal performance. The catalyst systems must efficiently quench the

photoexcited PS complex, and a long lifetime for the charge separated state is required. The

natural photosynthetic machinery fulfills these requirements by precise control of spatial

organization, electronic coupling, and relative redox energies of the adjacent components,

giving the systems directional charge transfer character. To accomplish these requirements in

the laboratory, the components can be linked using multidentate bridging ligands that

orchestrate electron transfer by providing optimal spatial separation and electronic coupling.

A series of ruthenium intramolecular systems in which a Ru light absorbing unit is attached

to different catalytic metals such as Pt, Pd, Co, Rh and Mn have been studied, and these

systems showed good catalytic efficiency for H2 production.27,32,38 In the case of iridium

complexes, most photocatalysis reported were intermolecular using mononuclear complexes.

The only intramolecular photocatalysts reported to date are by Fontecave,33,34 based on an Ir-

Co system and Sakai used an Ir-Co self assembly system.35 This shows the importance of the

four novel Ir-Pt/Pd complexes discussed here.

The results obtained following 18 hours irradiation, using visible light for the four novel

heterobimetallic Ir-Pt/Pd complexes, [Ir(ppy)2(bpp)PtCl]2(PF6)2 (10), [Ir(ppy)2(bpp)PdCl]2

(PF6)2 (11), [Ir(ppy-COOCH3)2(bpp)PtCl]2 (PF6)2 (13) and [Ir(ppy-COOCH3)2(bpp)PdCl]2

(PF6)2 (14) are given in figure 3.30, which gives a three dimensional plot of TON at four

different percentages of H2O.
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Figure 3.30 Three dimensional representation of the photocatalytic TON values for H2
production for complexes (10), (11), (13) and (14) in ACN using visible light (470 nm)
irradiation. Irradiation time, 18h, sacrificial reagent used TEA, Conc. of PS and catalyst is
6×10-5M.

Photocatalysis was carried out using four different H2O percentages (0 %, 5 %, 10 % and 15

%). For both non ester complexes (10) and (11), the maximum yield of H2 was obtained with

5 % H2O. At greater percentages of water the TON for H2 decreased slowly. Both complexes

showed photocatalytic activity, at 0 % of water as shown in figure 3.30 (there is the

possibility that H2 may be formed by the decomposition of TEA as explained in chapter 1).

On comparing the two non ester complexes [Ir(ppy)2(bpp)PtCl]2(PF6)2 (10) and

[Ir(ppy)2(bpp)PdCl]2(PF6)2 (11), the Ir-Pt complex (10) proved to be more efficient than the

Ir-Pd complex (11). A possible explanation for this behaviour is based on the photophysical

measurements described in chapter 4. Compared to the mononuclear complex

[Ir(ppy)2(bpp)](PF6) (9) the energy of the low lying excited states are increased for both Ir-Pt

(10) and Ir-Pd (11) complexes due to complexation of the iridium monomer with Pt/Pd. This

is in the emission spectra given in figure 3.22. In the case of the Pt complex (10), the energy

of the 3MLCTppy state increased by 0.26 eV, whereas for the Pd complex (11) there was only

a slight increase of 0.01 eV. The net effect is that for the Ir-Pt complex the 3MLCTppy excited
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state is increased in energy and populates the Pt excited state at room temperature thus

resulting in more efficient photocatalysis. Such an increase in the energy of the excited state

was not seen for the Ir-Pd complex (11), which might be the reason for the decrease in

catalytic efficiency compared to the Ir-Pt system. Further evidence in support of this

hypothesis is obtained from the results shown in figure 3.22 for the analogous ester

complexes (in which the photocatalytic activity almost doubled) and also by comparing TON

to those obtained for the intermolecular photocatalytic experiments (figure 3.32) (which gave

only half the value to that obtained by the intramolecular system).

The analogous ester complexes [Ir(ppy-COOCH3)2(bpp)PtCl]2 (PF6)2 (13) and [Ir(ppy-

COOCH3)2(bpp)PdCl]2(PF6)2 (14) showed significantly higher catalytic activity compared to

the non ester analogous, as can be clearly seen from figure 3.22. The ester Pt complex (13)

showed maximum catalytic activity in solutions containing 5 % and 10 % of H2O. At higher

percentages of water catalytic activity decreased. The ester Pd complex (14) showed

maximum catalytic activity at 10 % H2O. The ester complexes are much more efficient for H2

formation than the non ester complexes. A possible explanation for this behaviour can be

attributed to the photophysics explained in section 3.3.3.2. Substitution of peripheral phenyl

pyridine ligand by ester groups resulted in an increase in the energy of the low lying excited

states as demonstrated in the emission spectra (in figure 3.22). For the ester Pt complex (13)

there was an increase of 0.12 eV in the energy of the lowest excited state compared to the non

ester complex (10). For the ester Pd complex (14) there was an increase of 0.13 eV in the

energy of the lowest excited state compared to the non ester complex (11). This increase in

energy promotes electron transfer to the Pt or Pd centre more effectively, thus increasing the

catalytic activity. The Pd ester complex, Ir-Pd complex (14) shows greater catalytic activity

than the Ir-Pt complex (13), the non ester Ir-Pt complex (10) was more photocatalytically

efficient than Ir-Pd complex (11). From the emission energies the two ester complexes

showed almost the same energy as is evident in the emission spectra given in figure 3.22 (b).

When emission spectra for complexes (9)-(14) are compared the Ir-Pd complex (14) showed

more quenching, which suggests that electrons reach the Pd center more efficiently which

results in a higher TON value. Further detailed studies are required to explain fully the

possible mechanism for the results presented here. The detailed tabulated results for all these

four complexes including the area obtained from GC are given in appendix B.
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(b) Intramolecular photocatalysis using UV light (350 nm)

Intramolecular photocatalysis for the above mentioned four novel Ir-Pt/Pd complexes was

also carried out using UV light (350 nm). All compounds have greater extinction coefficients

at 350 nm (20-30 times) compared to 470 nm. The amount of H2 produced was considerably

less (in some cases no H2 itself is produced) using this irradiation wavelength. A three

dimensional reperesentation of the results for the four complexes, with four different

percentages of H2O are given in figure 3.31 below.
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Figure 3.31 Three dimensional representation of the photocatalytic TON values for
complexes (10), (11), (13) and (14) in ACN using UV light (350 nm) irradiation. Irradiation
time is 18h, sacrificial reagent used TEA, Conc. of PS and catalyst is 6×10-5M.

The above figure clearly shows a decrease in TON on moving to 350 nm from 470 nm (figure

3.31) irradiation for all complexes. Only complex (13) produced H2 at 0 % H2O. Complexes

(10) and (11) produced small amount of H2 at 10 % H2O which is almost 1/5th of what was

obtained under similar conditions using visible light (470 nm). Similarly to the studies carried

out using visible light the Ir-Pt complex (10) was more efficient than Ir-Pd complex (11). The

ester complexes ((13) and (14)) show maximum efficiency at 5 % of H2O and at higher

concentrations of H2O TON values decreased. Similarly to the behaviour observed using
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visible light, UV irradiation leads to greater catalytic activity for the ester Ir-Pd complex (14).

Visible light (470 nm) is far more efficient than the UV light (350 nm) and a possible

explanation for this can be given on the basis of the excited state measurements. From the

excited state studies carried out with these complexes, a low lying 3MLCTppy state are

thought to be responsible for populating the Pt and Pd excited states. For the ester complexes

substitution of the peripheral ppy ligand by the electron withdrawing ester groups results in

an increase in energy of the 3MLCTppy excited state, as is evident by analysing the emission

spectra of the non ester and ester complexes given in figure 3.22. The results for

intermolecular photocatalysis for these four complexes, including the area obtained from GC

are given in appendix B.

(c) Intermolecular photocatalysis using visible light (470 nm) and UV light (350 nm)

Intermolecular photocatalysis was carried out with the mononuclear complex

[Ir(ppy)2(bpp)](PF6) (9), using both visible (470 nm) and UV light (350 nm), with two

different percentages of H2O (5 % and 10 %) in the presence of [Pt(ACN)2Cl2] and

[Pd(ACN)2Cl2]. The results obtained are shown in figure 3.32. The TONs are slightly higher

for the solutions containing 5 % H2O compared to those containing 10 % H2O. Visible light

(470 nm) produced more hydrogen than the UV light (350 nm) which is in agreement with

the intramolecular photocatalysis.

When the TONs for H2 production for complex (9) (figure 3.32) are compared to the two

dimer complexes (10) and (11) (figure 3.30), using visible light intramolecular photocatalysis

is more efficient than intermolecular photocatalysis. However, when UV light is used

intermolecular photocatalysis is more efficient than the intramolecular photocatalysis (figure

3.31). The photophysical data may provide an explanation. In the case of intramolecular

photocatalysis, low lying 3MLCT states are populated and from here the excited state of Pt or

Pd are populated at room temperature, when the system is in thermal equillibrium. From the

absorption spectra it is quite clear that these 3MLCT excited states show absorption bands in

the range of 400 nm – 500 nm. Thus excitation of these systems using 470 nm results in

direct population of the 3MLCT levels from where an electron easily moves to Pt/Pd. But

when the wavelength is changed to 350 nm the higher energy ligand to ligand charge transfer

excited states (LLCT) are populated which for the heterobimetallic Ir-Pt/Pd complexes is

much higher in energy than the excited Pt and Pd excited states so direct population of Pt/Pd

excited states from this state is not as efficient as from the 3MLCT states. This might be one
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possible explanation why intramolecular photocatalysis is more efficient using visible light

compared to UV light.
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Figure 3.32 Three dimensional representation of intermolecular photocatalytic TON values
for complex (9) in ACN using visible light (470 nm) and UV light (350 nm). Irradiation time,
18h, sacrificial agent used, TEA, Conc. of PS and catalyst is 6×10-5M.

For the intermolecular systems studied here one possible electron transfer mechanism may be

as follows: after excitation the electron moves from the ground state to singlet ligand centered

excited states from where it decays to the triplet ligand to ligand excited state. For

intermolecular photocatalysis this 3LLCT state plays the major role in populating the Pt and

Pd centers. This assumption was made on the basis that for intermolecular photocatalysis

irradiation with 350 nm led to the formation of more H2 than the intramolecular experiments.

For these type of cyclometallated complexes the 3LLCT absorption band is reported to occur

at around 350 nm.67 Further detailed studies are required to fully explain the differences

observed. Based on the results presented here, these complexes may undergo photocatalysis

through a reductive quenching mechanism as shown below.

PS + hν → PS* (1)

PS* + SR → PS- + SR+ (2)

PS- + H+ → PS + 1/2H2 (3)
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Interestingly the analogous non ester Ru complexes containing the bpp ligand which was

synthesised within the group82 gave lower amounts of H2 than the iridium counterparts.

(d) Time dependent intramolecular and intermolecular photocatalysis using visible light

Time dependent intramolecular photocatalysis using visible light (470 nm) was carried out

using [Ir(ppy)2(bpp)PtCl]2(PF6)2 (10) and [Ir(ppy)2(bpp)PdCl]2(PF6)2 (11). Photocatalysis was

performed in ACN, and using TEA as the sacrificial agent. The graphical representation of

the TON’s obtained every hour for a period of 8 hours is given in figure 3.33. From this

figure it appears that initially the Ir-Pt complex (10) showed greater catalytic activity than the

Ir-Pd complex (11). The Ir-Pt complex (10) gave a TON value of 630 after 7 hours, and then

begins to decrease (figure 3.33). After 18 h irradiation the TON value obtained is 364. This

decrease in the amount of H2 formed after 8h may possibly be due to leakage, or

decomposition of the catalyst. For the Ir-Pd complex (11) no H2 was produced up to 2h

(figure 3.33) thereafter the amount of H2 produced increases consistantly and reaches a TON

value of 245 after 8h irradiation. As shown in figure 3.30, after 18h (11) a TON of 249 was

observed. From these TON values it appears for the Ir-Pd complex the amount of H2

produced remains constant after 8h irradiation.
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Figure 3.33 Graphical representation of time dependent intramolecular photocatalysis using
470 nm visible light in 5 % H2O ACN solution, sacrificial reagent used is TEA.
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Time dependent intermolecular photocatalysis were carried out with [Ir(ppy)2(bpp)](PF6) (9)

under similar conditions, but using two different catalysts [Pt(ACN)2Cl2] and [Pd(ACN)2Cl2].

The graphical representation of the TON’s obtained every hour for a period of 8 hours is

given in figure 3.34. From the figure it is quite clear that in both cases the amount of H2

produced increases constantly from 1h to 8h. Thus the photocatalysis is efficient, as both the

PS and catalyst are not decomposing over this time period.
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Figure 3.34 Graphical representation of time dependent intramolecular photocatalysis using

470 nm light in a 5 % H2O ACN solution, sacrificial reagent used is TEA.

On comparing figures 3.33 and 3.34 it is clear that intramolecular photocatalysis is more

efficient than intermolecular photocatalysis. Furthermore for the intramolecular

photocatalytic experiments the Ir-Pt complex (10) showed better photocatalytic efficiency

than the Ir-Pd complex (11). In the case of the intermolecular photocatalytic experiments

using [Pt(ACN)2Cl2] and [Pd(ACN)2Cl2] there was very little difference between the two

catalytic centers (figure 3.34).

3.3.4.3 Intramolecular and intermolecular photocatalysis of iridium complexes with the tpy

ligand using visible light (470 nm) and UV light (350 nm)

Photocatalysis of five novel cyclometallated iridium complexes containing the tpy (2,2ꞌ:6ꞌ,2ꞌꞌ-

terpyridine) ligand is discussed in this section. The three mononuclear complexes are
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[Ir(ppy)2(tpy)](PF6) (15), [Ir(ppy-COOCH3)2(tpy)](PF6) (17), [Ir(ppy-CHO)2(bpp)PtCl]2

(PF6)2 (19) and two dinuclear Ir-Pd complexes [Ir(ppy)2(tpy)PdCl]2(PF6)2 (16) and [Ir(ppy-

COOCH3)2(tpy)PdCl]2(PF6)2 (18). Photocatalysis was carried out in ACN containing 5 %

water and using TEA as the sacrificial agent. The results following 18 hours irradiation for

both irradiation wavelengths are given in figure 3.35. It is interesting to note that both

heterobimetallic dinuclear Ir-Pd complexes [Ir(ppy)2(tpy)PdCl]2(PF6)2 (16) and [Ir(ppy-

COOCH3)2(tpy)PdCl]2(PF6)2 (18) did not produce H2. The results obtained however for the

intermolecular photocatalytic experiments using complexes (15), (17) and (19) in conjunction

with [Pt(ACN)2Cl2] and [Pd(ACN)2Cl2] gave varied results.
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(15) + Pt(ACN)2Cl2

(15) + Pd(ACN)2Cl2
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N

Figure 3.35 Three dimensional representation of intermolecular photocatalytic TON values
for complexes (15), (17) and (19) in ACN using visible light (470 nm) and UV light (350 nm)
irradiation. Irradiation time is 18h, sacrificial reagent used TEA, Conc. of PS and catalyst is
6×10-5M.

The unsubstituted ppy complex (15) formed H2 only in the presence of [Pt(ACN)2Cl2] as

catalyst and no H2 when [Pd(ACN)2Cl2] was used. UV irradiation produced marginally more

H2 than the visible light. This is in contrast to the ester substituted complex (17), which in the

presence of [Pt(ACN)2Cl2] gave almost the same amount of H2 for both visible and UV light

irradiation. The use of [Pd(ACN)2Cl2] as catalyst, resulted in a very large TON when visible
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light was used but no H2 was produced using UV light. The analogous non ester Ru

mononuclear complexes83 with the tpy ligand produced no hydrogen in the intermolecular

photocatalytic experiments clearly indicating the higher efficiency of iridium metal

photocatalyts. For the intramolecular systems, neither Ir nor Ru showed any H2 production

activity.82

3.3.4.4 Intramolecular and intermolecular photocatalysis of iridium complexes containing

the bpm ligand using both visible (470 nm) and UV (350 nm) light

Photocatalysis of three novel cyclometallated iridium complexes containing the bpm ligand

are discussed in this section. The complexes includes two mononuclear complexes

[Ir(ppy)2(bpm)](PF6) (20), [Ir(ppy-COOCH3)2(bpm)] (PF6) (24) and one dinuclear Ir-Pd

complex [Ir(ppy)2(bpm)PdCl2](PF6) (21). The results obtained for both intermolecular and

intramolecular photocatalysis using both visible (470 nm) and UV (350 nm) light in ACN

solution containing 5 % H2O, TEA, and either a Pd or Pt catalyst are given in table 3.10.

Complex (6x10-5 M)
470 nm 350 nm
TONH2 TONH2

[Ir(ppy)2(bpm)](PF6) (20)
+ Pt(ACN)2Cl2

20 8

[Ir(ppy)2(bpm)](PF6) (20)
+ Pd(ACN)2Cl2

3 2

[Ir(ppy)2(bpm)PdCl2](PF6) (21) 39 7

[Ir(ppy-COOCH3)2(bpm)](PF6) (24)
+ Pt(ACN)2Cl2

3 5

[Ir(ppy-COOCH3)2(bpm)](PF6) (24)
+ Pd(ACN)2Cl2

3 5

Table 3.10 Tabulated TON values for complexes (20), (21) and (24) in ACN using using
visible light (470 nm) and UV light (350 nm). Irradiation time is 18h, sacrificial reagent used
TEA, Conc. of PS and catalyst is 6×10-5M.

The TON values obtained for these complexes are lower than the values obtained for the

iridium complexes discussed in the last section. Interestingly the Ir-Pd dinuclear complex

showed better photocatalytic activity than the intermolecular photocatalytic systems.
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3.4 Conclusion

Iridium metal complexes have been extensively studied as chromophores for light to

chemical energy conversion as they have large spin orbit coupling which results in long lived

triplet excited states. In this chapter a range of mononuclear, homodinuclear and

heterodinuclear cyclometallated iridium (III) complexes are studied including the detailed

synthesis, characterisation, photophysics and photocatalysis. Novel iridium complexes

containing either Pt or Pd metal centers, with three different bridging ligands (bpp, tpy and

bpm) are reported. Deuteriation was used as a probe to study the nature of the lowest lying

triplet excited states in iridium (III) complexes of the type [Ir(N^C)2(N^N)]PF6. By varying

the substituents at the peripheral phenylpyridine ligand and also by substituting the neutral

N^N bipyridine ligand of these complexes it was possible to tune the emission. It is quite

clear from the emission spectra, that complexation with Pt or Pd results in decrease in

intensity of emission.

Both intermolecular and intramolecular photocatalytic experiments were carried out in ACN

using TEA as the sacrificial agent. Intramolecular photocatalysis proved to be more efficient

than intermolecular photocatalysis. Also two different excitation wavelengths were used. The

photocatalytic results showed that 470 nm irradiation produced more H2 than the 350 nm

which suggests that the low lying 3MLCT excited states of iridium play a major role in

populating the Pt/Pd excited states. Also the ester complexes were more efficient

photocatalysts than the non ester analogues. A possible reason for this behaviour is attributed

to an increase in the energy of the 3MLCT states as a result of substitution with the electron

withdrawing ester group on the peripheral ppy ligand. The ester complexes studied here will

be bound to NiO surfaces thereby the use of sacrificial agents can be eliminated, thus making

environment friendly photocatalytic systems for the production of hydrogen.
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Chapter 4

Excited state photophysics of novel Ir-Pt/Pd complexes

This chapter deals with the solvent and temperature dependent excited state photophysics of

three novel Ir (III) cyclometallated complexes, which includes the mononuclear

[Ir(ppy)2(bpp)]PF6 and two heterodinuclear dimers - [Ir(ppy)2(bpp)PtCl]2(PF6)2 and

[Ir(ppy)2(bpp)PdCl]2(PF6)2. Comparing the results obtained with those reported for other

cyclometallated iridium (III) complexes yields an understanding of the possible electronic

transitions taking place in these complexes.



Chapter 4 - Excited state photophysics of novel Ir (III) complexes

165

4.1 General introduction to photophysics

Transition metal complexes have attracted a great deal of interest in recent years particularly due

to their photochemical and photophysical properties.1,2,3,17 The development of various bridging

ligands has allowed for the creation of numerous polynuclear complexes which have been used

in the study of electron transfer processes, in attempts to mimic photosynthesis and in the

development of molecular devices.4,33,48 If a photon of light, be it from the visible or the

ultraviolet region, is absorbed by a metal complex, the metal complex will be transformed into

an electronically excited state from where it will decay to the ground state by either radiative or

by nonradiative means. Possible pathways are fluorescence or phosphorescence or a chemical

pathway followed in which the complex is converted to products. It should be noted that

fluorescence is the radiative deactivation pathway between states of the same multiplicity

whereas phosphorescence involves states of different multiplicity.5,6,63

With respect to theoretical models, the first theory of electronic structure to be developed was

crystal field theory. In crystal field theory a ligand lone pair is considered as a single point

negative charge (or as the partial negative charge of an electric dipole) that repels electrons in the

d orbitals of the central metal ion. Upon coordination, the energies of the d orbitals of the metal

ion are raised but it should be noted that considering the geometry of the d orbitals of the central

metal ion, those d orbitals that are directed toward the ligand (the eg set) are repelled more than

those directed in between the ligands (t2g set).7,8 This means that not all of the d electrons are

destabilised to the same extent and this difference in the destabilisation energy, known as Δ0

(where the subscript O stands for octahedral), gives rise to splitting of the d orbital energies.

Whereas crystal field theory provides a simple and easy theory of electronic structure, ligand

field theory focuses on the role of the d orbitals on the metal ion and their overlap with ligand

orbitals.7,8 When attempting to develop a composite electronic model to describe a complex

using ligand field theory it is necessary to take all of the electrons involved in bonding, localised

both on the metal ion and on the ligand into consideration in two separate sets. Based upon this it

is then possible to combine the molecular orbital diagrams of both the metal and the ligand to

create a model representative of the system as a whole.
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4.1.1 Charge transfer in transition metal complexes

Symmetry selection rules state that for a transition to be "allowed" the electron that moves from

an orbital that is even with respect to inversion through the center of symmetry, to an orbital that

is uneven with respect to inversion (or vice versa). Since all d orbitals in an octahedral complex

are even with respect to inversion d-d transitions are "forbidden". Under visible irradiation these

complexes undergo strong metal to ligand charge transfer transitions (MLCT) and ligand

centered (LC) transitions. In the case of transition metal complexes in addition to LC and MLCT,

if the lowest unoccupied molecular orbital (LUMO) is located on the metal ion, the opposite

charge transfer (LMCT) is also observed.9,10

Figure 4.1 a) d orbitals in octahedral field; b) orbital description of MC, MLCT and LC
transitions, S is a substituent group capable of exerting electron withdrawing or releasing effects
(resulting in stabilisation or destabilisation, respectively, of the energy level of the filled d and π
orbitals); c) electronic transitions involving MC, MLCT and LC excited states.11
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The Ir (III) trication is a 5d6 center and the electronic properties of its polyimine complexes share

several features with those of other well known octahedral complexes of Fe (II), Ru (II) and Os

(II), whose metal centers are 3d6, 4d6, and 5d6 respectively. Figure 4.1 depicts useful orbital

energy diagrams outlining possible electronic transitions taking place in polyimine complexes of

such d6 metal centers. As shown in figure 4.1 (a), the degenerate d orbitals of the Fe (II), Ru (II),

Os (II) and Ir (III) cations are destabilised and split in an octahedral (Oh) ligand field, by an

amount Δ0. The amount of Δ0 depends also on the field strength exerted by the ligands that can

be ordered along a spectrochemical series. It is likely that in this series, a cyclometallated ligand

like ppy occupies a position among those causing the strongest effect.11

It should be noted that in all cases discussed here, light absorption is associated with electronic

transitions from the ground state (GS) to, mostly, singlet levels of various nature and electronic

localisation, ligand centered (1LC), ligand to ligand centered (1LLCT) and metal to ligand

centered (1MLCT). In addition, ligand to metal centered transitions (1LMCT) can in principle be

involved. On the contrary, emission is always from triplet levels, such as 3MLCT or 3LC. Studies

done by Scandola and coworkers11,12 and Williams and coworkers13,14,15 have shown that for the

cyclometallated Ir (III) complexes there is a prominent contribution from the LLCT (ligand to

ligand intermolecular charge transfer) states along with the MLCT excited states. All these

transitions determine the photophysical properties of transition metal complexes and can be used

for the interpretation of experimentally observed spectra or prediction of absorption and emission

characteristics of novel compounds. Hence, this knowledge of the described processes is

necessary to rationalize the impact of ligand modifications on the photophysical properties of

phosphorescent dyes or to design highly efficient materials for various applications.

4.1.2 Excited state evolution

The fate of an excited species is usually depicted in a Jablonski diagram (figure 4.2). The

kinetics of the different transitions illustrated in this picture are of major importance since any

photochemical reaction will have to compete with these processes. The time for absorption is

similar to the optical cycle of the incident light and is thus very short (few fs). The timescales for

the different processes are given in figure 4.2. The values vary over several orders of magnitude

and these differences give information about the photochemical behavior of the compounds.



Chapter 4 - Excited state photophysics of novel Ir (III) complexes

168

Excited state deactivation can take place in a radiative or non-radiative way. In the latter case,

vibrational relaxation not only depends upon the range of atoms but also upon the surrounding

media (solvent, solid matrix) and ranges over a wide range of timescale.4,5,16

Figure 4.2 Jablonski diagram with various timescales for excited state deactivation.5,9

Radiative deactivation (fluorescence and phosphorescence) takes usually place from the lowest

vibrational level (Kasha’s rule).17 The fluorescence spectrum is approximately the mirror image

of the absorption spectrum. However, the emission peaks are usually shifted because of the

vibrational relaxation in the singlet excited state (Stokes shift). The triplet state is normally

energetically stabilized due to spin correlation and may be readily populated for systems where

high spin orbit coupling is large.
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4.1.3 Excited state photophysics of Ir (III) cyclometallated complexes

Potential applications as OLED’s18,19,20,21 and in flat panel displays22 have led to a significant

interest in iridium (III) complexes with cyclometallating ligands such as phenyl pyridine (ppy)

and benzoquinoline (bzq).23,24,25 The stronger σ-donor character of C- relative to N results in

several important differences between complexes with cyclometallating ligands and those of

polypyridine ligands. One difference is the increased energy of the 3MC states owing to the

greater ligand field strengths of the cyclometallating ligands.17,26 A second difference between

cyclometallated complexes and the corresponding polypyridine complexes is that the strong

donor properties of the cyclometallating ligands increase electron density on the metal center,

resulting in lower energy MLCT states.17,9,27 Consequently, the emissive state of many Ir (III)

complexes with cyclometallating ligands is of 3MLCT or mixed 3LC/3MLCT character.1,28,29

Typically, the 3MC ligand field states for these complexes are too high in energy to serve as an

effective pathway for excited state deactivation. However, excited state deactivation through the

above mentioned emissive states has been implicated in cases where the energy of the emissive

state has been increased by ligand modification.30 Even though reducing the 3MLCT excited state

energy does inhibit activated decay via the 3MC states, the effect is offset by enhanced

nonradiative relaxation directly from the 3MLCT state. Longer lifetimes may still result due to

the relative balance between the two deactivation pathways.17,27,31

Figure 4.3 Absorption spectrum of [Ir(ppy)2bpy]+ in dichloromethane.32
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The absorption spectra of the classical phosphorescent iridium (III) complex, [Ir(ppy)2(bpy)]+

displays absorption bands which include intra ligand charge transfer transitions (ILCT), ligand to

ligand (inter ligand) charge transfer transitions (LLCT) and metal to ligand charge transfer

(MLCT) transitions as shown in figure 4.3

For this compound literature data33,34 suggests that, the bands with maxima in the 260-275 nm

range receive larger contributions from ppy-centered transitions and absorption in the 275-300

nm range receives larger contributions from bpy-centered transitions. The absorption features in

350-400 nm are assigned as ligand to ligand charge transfer (LLCT) transitions. The absorption

features in the range 400-450 nm are assigned to 1MLCT and 3MLCT transitions, with the lowest

energy feature involving the substituted bpy ligand. After excitation of the iridium complex, the

strong spin orbit coupling induced by the metal center gives the formally forbidden triplet to

singlet ground state transition a significant allowedness.35 Importantly the energies of the lowest

excited states play a major role as they can be tuned by adjusting the metal and ligand orbitals

through substituent effects or by changing the ligand structures. In other words, chemical

modifications and alterations of the cyclometallating or ancillary ligands not only pave the way

to efficient emission colour tuning but also provide the possibility of tuning the corresponding

absorption characteristics towards particular needs. Extensive emission colour versatility has

been achieved with iridium (III) luminophores applying the above described tuning procedures,

giving materials with a broad range of excited state lifetimes and emission quantum yields.36

The lowest triplet state, which is responsible for phosphorescence emission for cyclometallating

Ir (III) complexes according to Kasha’s rule,10,37 is either a 3MLCT transition state or a 3LC

transition state. Generally, phosphorescence originating from the LC transition state can be

distinguished from that of the MLCT transition state in terms of (1) spectral shape,

(2) phosphoresence lifetime (τp), (3) rigidochromic and (4) solvatochromic behaviours:38 (1) LC

phosphorescence comprises prominent vibronic structures whereas a MLCT phosphorescence

spectrum is structureless, (2) τp of LC phosphorescence is longer than that of MLCT

phosphorescence, which reflects reduced metal contribution in the LC transition, (3) MLCT

phosphorescence exhibits a hypsochromic shift when the medium becomes rigid (e.g. when

solvent freezes or polymer hosts are left below Tg),39 and (4) MLCT phosphorescence also
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exhibits a similar hypsochromic shift in non polar media.40,41,42 Both (3) and (4) indicate a charge

transfer (CT) character involved in the MLCT phosphorescence because the CT state energy is

strongly affected by the arrangement of electric dipoles of surrounding media.43,44 Apart from

precisely judging which transition (MLCT or LC) state is more responsible for the observed

phosphorescence, it may be the case that the phosphorescent state is a mixed state of MLCT and

LC transition states.45

Recent studies13-17 have shown that in addition to the above mentioned MLCT and LC states,

ligand to ligand charge transfer (LLCT) also plays a prominent role in the excited state

photophysics of cyclometallated Ir (III) complexes.46,47,48 The LLCT proceeds from the occupied

molecular orbitals of one type of ligand to the unoccupied molecular orbitals of other ligands.

Confirmation of LLCT transitions is commonly hampered by the coexistence of other

isoenergetic processes, such as d-d, MLCT (d-π*) and LC (π-π*) transitions. Nevertheless, for

LLCT, the relocation of electron density across different ligands may be associated with large

changes in dipole moment.49,50 As a result, the contribution from LLCT transitions in the lowest

lying excited state of luminescent transition metal complexes may be manifested by the

associated solvent polarity dependent phosphorescence. The mixing of close lying, metal to

ligand charge transfer transitions (MLCT) and ligand centred (LC) electronic transitions makes

the fast singlet to triplet intersystem crossing feasible. Scandola reported13,14 a bis-tridentate Ir

(III) cyclometallated complex exhibiting a very small red shift of the emission band on passing

from low to high temperature, assigning the emission to a 3LLCT state. However, in their case

the charge redistribution in the excited state compared to the ground state was also very small,

due to the particular nature of the ligands involved. This suggests that whereas in general the

extent of a red shift in emission for pure MLCT states is in some way similar in all the

complexes, it can be quite different for LLCT emitters, strongly depending on the specific case.

Cyclometallation has the effect of raising the energies of ligand field (d-d) excited states to very

high levels due to the high position of the cyclometallating ligands in the spectrochemical series.

Furthermore, the strong σ-donor abilities of these ligands tend to promote low energy MLCT

excited states via enhancement of the ease of oxidation at the metal center.51,52,53 This

combination of effects leads to cyclometallated complexes, relative to their [Ir(N^N)2Cl2]+

analogues, having low energy excited states well suited to participate in photoredox chemistry
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and show intense phosphorescence at room temperature.54 A general proposed relaxation

mechanism for the heteroleptic complex [Ir(ppy)2(bpy)]+ given by Chen and coworkers32 is given

in figure 4.4 below.

Figure 4.4 Proposed relaxation mechanism of [Ir(ppy)2bpy]+ after radiation at 355 nm.32

The mechanism of relaxation is explained as follows: after excitation, the 1LLCT(A) (in

parentheses showing the symmetry of the state) is accessed then rapidly relaxes to the triplet

manifold, low lying states 3LLCT, 3MLCTppy, and 3MLCTbpy possibly indirectly via the 1MLCT

states as displayed in figure 4.4. A portion relaxes to a 3MLCT state and then to 3LLCT(A); these

two states are responsible for the blue emission band. A large portion goes to 3MLCT states lying

at lower energies. Under varied polarity of solvent, these states are shifted in energy and are

consequently coupled differently; they emit green and orange light separately. Comparing the

emission spectra at 77 K and near 290 K in various solvents, the 3MLCTbpy has the greatest

rigidochromic shift indicating the greatest variation of geometry. This state also has the greatest

bathochromic shift in agreement with the results from the lifetime measurements.32

4.1.4 Excited state photophysics of cyclometallated Pt and Pd complexes

Cyclometallated complexes of the platinum and palladium group elements have been implicated

as potential photosensitizers,55,56 and in the present section effort has been done to study the
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relevant excited states properties of these complexes in order to compare them with the results of

the novel Ir-Pt and Ir-Pd heterodinuclear complexes studied in detail in this chapter. The

tendency of transition metal salts to undergo cyclometallation with heteroaromatic ligands such

as 2-phenylpyridine (ppy) to give five membered metallocycles has been demonstrated with

numerous metals, including Ir (III), Pt (II) and Pd (II).26,29,57,58,59 These are mostly halo bridged

dimers, although mononuclear cyclometallates of the form [M(C^N)LX] (M = Pt/Pd; C^N =

cyclometallated ligand; L = neutral monodentate ligand such as pyridine and phosphines; X =

halide) are also well documented.60,61,62 A number of cyclometallated complexes of the platinum

group metals are luminescent which is explained in detail in the recent review on luminesence of

Pt (II) complexes by Williams and coworkers.63 An interesting feature of square planar

luminophores is a tendency to display multiple emissions attributed in part to the formation of

ground state oligomers and excimers.64,65

Figure 4.5 Room temperature (298 K) absorption spectrum (left) of [Pt(ppy)(CO)Cl] in CH2Cl2
and the 77 K emission spectra (right) in dilute toluene glass ( ̶ ) and in the solid state (---).66

The UV/vis electronic absorption spectra for the Pt (II) cyclometallated complex,

[Pt(ppy)(CO)Cl] are shown in figure 4.5. The absorption spectrum has intense bands in the UV

region (375 nm) which have been assigned to metal to ligand charge transfer (MLCT)

transitions, and the higher energy bands were assigned to ligand centered transitions.66 This
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complex exhibits relatively long lived structured emissions in the solid state at ambient

temperature and at 77 K in glassy toluene solutions (figure 4.5). These emissions are proposed to

originate from 3MLCT states. Structured emission spectra are commonly observed when the

emitting states are LC or MLCT in character. The criteria generally used to differentiate between

the two different excited states, are drawn from an evaluation of lifetime data and of solvent

effects on the energies, structure, and emission maxima compared to those of the free ligand. The

30 μs lifetime for [Pt(ppy)(CO)Cl] in 77 K toluene glass is shorter than generally expected for

LC emissions but somewhat longer than lifetimes usually associated with emissions from MLCT

excited states in heavy metal complexes. This suggests that there may be some mixing of the LC

and MLCT states as proposed for a Rh (III) 2-phenylpyridine complex67 and in other

cyclometallates.68,69

Photophysical descriptions of several palladium (II) cyclometallated azobenzene complexes70

indicate that the photophysics of these systems is predominantly ligand localised in character.

Luminescence lifetimes of these complexes are short in room temperature fluid solutions (<1 ns)

and are characterised as singlet intraligand fluorescence emissions.72 Photophysical studies

involving rhodium (III), iridium (III), and platinum (II) complexes containing the

orthometallating ligand ppy have been reported previously.39,71,9 Since Pd (II), like Rh (III), is

difficult to oxidize, one might expect to observe MLCT transitions in the absorption spectra of

palladium ppy complexes while the emission may originate from ligand localised states. On the

other hand, Pd (II) being a d8 transition metal may alter the ground state energies enough that

new MLCT states may be observed.72

Watts and coworkers have reported72 four Pd (II) complexes, [Pd(ppy)Cl]2, [Pd(ppy)(bpy)Cl],

[Pd(ppy)(en)]Cl and [Pd(ppy)(CO)Cl], each of which contains the orthometallating ligand

2-phenylpyridinate (ppy). Absorption and low temperature emission data for these four

palladium cyclometallates indicate large contributions to the excited states from transitions

localized on the 2-phenylpyridine ligand. Absorption spectra at room temperature and emission

spectra at 77 K for the dichloro bridged cyclometallated Pd complex, [Pd(ppy)Cl]2 along with

the lifetime values for the rest of the complexes reported by Watts are given in figure 4.6 below.

The higher energy absorption transitions (240-340 nm) are intraligand π-π* transitions localised
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μs

on the 2-phenylpyridine ligand. The low energy features observed in the absorption spectra are

also assigned as ligand localised π-π* transitions of the 2-phenylpyridine ligand. These are

excited states that are formed as a result of interaction between the π orbitals of the heterocyclic

and aryl rings induced by the coplanarity imposed by orthometallation.72

Figure 4.6 Absorption (room temperature, 298 K) and 77 K emission spectra of [Pd(ppy)Cl]2.72

The luminescence lifetime trend for these complexes supports some MLCT contribution to the

excited state. It is apparent from the 77 K emission spectra and the magnitude of the luminescent

lifetimes of these complexes that the emitting state is principally a triplet state that corresponds

in structure to the triplet emission of 2-phenylpyridine at low temperature. Comparison of these

photophysical results to absorption and emission data for [Pt(ppy)2]66 also suggests that the four

palladium complexes reported by Watts and coworkers have ligand centered excited states rather

than the MLCT excited states observed in [Pt(ppy)2]. The lifetimes of the palladium complexes

relative to those of the platinum species coupled with the increased structure and energy of the

emissions indicate a large contribution to the excited state from metal perturbed ligand centered

states.

This chapter deals with the excited state photophysics including absorption, solvatochromic,

rigidochromic, temperature dependent emission (298 K to 77 K) measurements and lifetimes

(solvent dependent and temperature dependent) of three novel cyclometallated iridium (III)

complexes (a) [Ir(ppy)2(bpp)]PF6 (1), (b) [Ir(ppy)2(bpp)PtCl]2(PF6)2 (2) and



Chapter 4 - Excited state photophysics of novel Ir (III) complexes

176

(c) [Ir(ppy)2(bpp)PdCl]2(PF6)2 (3) as shown in figure 4.7 below. Synthesis and characterisation

of these three novel complexes are described in detail in chapter 3.
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Figure 4.7 Mononuclear iridium complex [Ir(ppy)2(bpp)]PF6 (1), dinuclear iridium complexes

[Ir(ppy)2bpp)PtCl]2(PF6)2 (2) and [Ir(ppy)2(bpp)PdCl]2(PF6)2 (3) having peripheral ligand

phenyl pyridine (ppy).

A wide variety of coordination complexes of the second and third row transition metals are now

known to display dual emissions from thermally non equilibrated excited states in rigid

media.73,74,75,76,77 Several organometallic Ir (III) species containing coordinating ligands such as

2,2'-bipyridine (bpy) and 1,l0-phenanthroline (phen) in combination with ortho metallating

ligands such as 2-phenylpyridine (ppy) and benzoquinoline (bzq) were also reported78,10 to

display dual emissions in rigid media. Dual emission from a bimetallic Pd(II)/Rh(III)

orthometallated species has also been reported before.79 Although dual emissions from thermally

nonequilibrated excited states of coordination complexes in low temperature rigid glasses is now

a well established phenomenon, it is by no means a common occurrence. The Ir (III) complexes

studied in this chapter are the only heterodinuclear Ir-Pt/Pd systems reported now which shows

the importance of understanding the excited state properties of these complexes. With the help of

the photophysical measurements carried out it was possible to gain an insight into the electron

transfer process in these novel heterodinuclear complexes. Complex (2) and complex (3) with a

Pt and Pd metal center at the other end of the bridging ligand are efficient intramolecular

photocatalyts as explained in chapter 3. Thus a clear understanding of the excited states helped to

tune it in order to increase the efficiency of these photocatalyts.
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4.2 Results and Discussion

4.2.1 Complex (1) : [Ir(ppy)2(bpp)]PF6

4.2.1.1 Absorption Properties

The absorption and emission properties of Ir (III) cyclometallated complexes have been outlined

in section 4.1.5 but to summarise, these complexes typically have a ligand centered transition in

the region 250 nm to 350 nm and MLCT transition in the region 350 nm to 450 nm. For Ir (III)

complexes the ligand centered transitions can be either intraligand charge transfer transitions

(ILCT), that is transitions ocurring on one cyclometallated ligand or can be interligand or ligand

to ligand charge transfer transitions (LLCT), that is from the π orbital of one cyclometallated

ligand to the π* orbital of another cyclometallated ligand. Also in most cases they have two

MLCT states lying very close to each other. The first one is Ir to cyclometallated ligand charge

transfer MLCT(C^N) transitions and the second is Ir to N^N chelating ligand charge transfer

MLCT(N^N) transitions.27-32 The absorption and emission measurements along with the lifetime

measurements at both room temperature (298 K) and low temperature (77 K) in various solvents

give an indication of the nature of the emitting states in these polypyridyl complexes. The UV

spectra of complex [Ir(ppy)2(bpp)]PF6 is given in figure 4.8 below.
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Figure 4.8 Absorption spectrum for [Ir(ppy)2(bpp)]PF6 in aerated ACN (conc: 1×10-5M).
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The visible electronic absorption spectra for complex (1) consists of a strong absorption band in

the region 250 nm to 320 nm which are assigned to ligand centered (LC), ppy(π)→ppy(π*)

transitions of which the lower energy bands near to 320 nm can be assigned to bpp(π)→bpp(π*)

ligand centered transitions. The bands around 350 nm may be due to interligand

ppy(π)→bpp(π*) charge transfer transitions (LLCT). The bands in the region 370 nm to 430 nm

are assigned to MLCT transitions. There may be two MLCT bands, MLCT(ppy) (Ir to ppy charge

transfer) and MLCT(bpp) (Ir to bpp charge transfer) having similar energies however it is difficult

to differentiate between them based on earlier reports of Ir (III) cyclometallated complexes.23-32

4.2.1.2 Emission properties

All of the iridium polypyridyl complexes reported here exhibit intense luminesence between 500

nm - 650 nm at room temperature in acetonitrile solution. The excitation wavelength used was

420 nm which is considered to be a 3MLCT transition as explained before.32 The low

temperature emission spectra for all these complexes are blue shifted in comparison to the room

temperature emission which is a characteristic property for emission from an MLCT excited

state.

As already stated above cyclometallation has the effect of raising the energies of ligand field

(d-d) excited states to high levels due to the higher position of the cyclometallating ligands in the

spectrochemical series. If the emitting states (either LLCT or MLCT) and MC states lie too close

in energy, they can thermally equilibrate, thereby quenching the emission through fast

radiationless decay through the MC states.31,32,80 Furthermore, the strong σ-donor abilities of

these cyclometallated ligands tend to lower the energy of metal to ligand charge transfer (MLCT)

excited states via enhancement of the ease of oxidation at the metal center.35,36,37,81 When the

bridging chlorides of [Ir(ppy)2Cl]2 are replaced by a π acceptor ligand such as bpp the Ir (III)

metal center becomes a poorer electron donor and the MLCTppy state moves up in energy,

compared to the MLCTbpp state. The room temperature (298 K) and low temperature (77 K)

emission spectra for complex [Ir(ppy)2(bpp)]PF6 are given in figure 4.9 below.
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Figure 4.9 Emission spectrum for [Ir(ppy)2(bpp)]PF6 at 298 K (in aerated ACN) and 77 K (in

4:1 EtOH:MeOH glass)

From figure 4.9 the emission at both 298 K (614 nm) and 77 K (540 nm) is assigned to an MLCT

excited state. Assignment of the lowest energy component in the emission to a MLCT excited

state is based upon previous publications39-45 and a number of other considerations which include

spectral shape, phosphoresence lifetime (τp), rigidochromic and solvatochromic behaviour.22 As

in the room temperature spectrum, the emission spectrum of complex (1) at 77 K is broad and

structureless. This rules out an LC nature of the emission (which would induce prominent

vibrational structure)82 and is consistent with the charge transfer nature of the excited state. It has

already been noticed that cyclometallated complexes with trans Ir-C bonds (e.g., mer-[Ir(ppy)3])

tend to give structureless emissions, probably because of the large excited state distortion

brought about by this geometric arrangement.13 The blue shift of the low temperature (77 K)

spectrum is qualitatively consistent with a 3MLCT assignment, for solvent reorganisation is fast

in fluid solution at room temperature and it stabilises the MLCT states before emission takes

place. This process is hampered at 77 K in a rigid matrix, and under these conditions emission

occurs at higher energy. The extent of the blue shift is related to the degree of real charge
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separation, that is, how much the charge distribution is different between ground and excited

states. For typical MLCT emitters, like the well known [Ru(bpy)3]2+ complex and analogous

compounds, such a blue shift is usually in the range of 1000-2000 cm-1, and it is also in the same

range for Ir (III) cyclometalated compounds, which are reported to be pure MLCT emitters.83,84,51

Further evidence to support the assignment of the excited state is obtained from the concentration

dependent and solvent dependent studies on [Ir(ppy)2(bpp)]PF6 (1) provided in figure 4.10 (a)

and 4.10 (b). The concentration dependent emission spectra for complex (1) does not show any

change in structure on going from low to high concentrations other than the normal increase in

intensity of emission.
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Figure 4.10 (a) Concentration dependent emission for complex (1) in ACN and (b) solvent

dependent emission for complex 1 in four different solvents having conc. 1×10-5M.

Solvatochromism is a potentially important probe in assessing charge distributions in both

ground and excited states.85 Normally MLCT phosphorescence should exhibit a hypsochromic

shift on moving from polar to non polar solvents.40,41 From figure 4.10 (b) and the tabulated

values of emission in table 4.1, it is clear that the band maxima for [Ir(ppy)2(bpp)]PF6 showed a

hypsochromic shift (blue shift) on moving from polar to non polar solvents which supports the

assignment of a 3MLCT state. It can also be seen that the emission intensity for the complex in

non polar solvents (CHCl3 and DCM) is found to be almost three times higher than in polar

solvents. This can be due to the fact that the ground and excited state dipoles orginating in

cyclometallated iridium complexes are stabilised in non polar solvents, which results in an
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emission in higher intensity, and this was seen for the tris cyclometallated species, fac

[Ir(ppy)3].86,35,39

The deaerated emission plots for complex [Ir(ppy)2(bpp)]PF6 in four different solvents are given

in figure 4.11 below. Deaeration experiments were performed using the freeze pump thaw

method (explained in chapter 2).
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Figure 4.11 Aerated and deaerated emission spectra of complex (1) in (a) ACN (1×10-5M), (b)

MeOH (1×10-5M), (c) CHCl3 (1×10-5M) and (d) DCM (1×10-5M).

In all the four cases deaeration resulted in an increase in the intensity of emission to more than

double due to the removal of oxygen which quenches the emission in aerated solutions. Along

with all the above mentioned considerations one of the most important measurements that gives

evidence to the nature of the lowest excited state (to be either LC or MLCT) is the solvent
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dependent lifetime measurements carried out at room temperature (298 K), and the low

temperature lifetime measurements (77 K) which are explained in detail below.

4.2.1.3 Solvent dependent lifetime measurements

Based on the previous reports32,39-45 for Ir (III) cyclometallated complexes, at room temperature

(298 K) the 3MLCT excited states are in thermal equillibrium and the lifetime will be in the nano

second time range. It is difficult to differentiate between the 3MLCT(N^C) and 3MLCT(N^N) states

at room temperature, but at 77 K when there is no thermal equillibrium the decay can occur from

different low lying excited states which can be 3MLCT states, 3LLCT states or a mix of both. If

the excited state is an MLCT state as the solvent polarity decreases the emission lifetime should

increase as given for complex (1) in figure 4.12 below.
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Figure 4.12 Solvent dependent lifetime for complex (1) in four different solvents under aerated

and deaerated conditions (Conc. in all the four solvents is 1×10-5M).

Figure 4.12 clearly shows that as the solvent changes from a polar solvent to a non polar solvent

there is a continuous increase in the lifetime and this effect is more prominent in the deaerated

case since no gases are present in the deaerated sample so quenching caused by oxygen and other

gases are completely removed resulting in a much longer lifetime values. In both cases (aerated

and deaerated) the lifetime values of complex (1) in non polar solvents (CHCl3 and DCM) are

higher than in the case of polar solvents (ACN and MeOH). This supports the data given for

solvent dependent emission measurements for complex (1) in figure 4.10 (b) where the emission
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for complex (1) in non polar solvents (CHCl3 and DCM) is almost 3 times higher than in polar

solvents (ACN and MeOH). As explained before this can be due to the reason that the excited

state metal centered dipoles are better stabilised by the non polar solvents, and have longer

lifetimes than in polar solvents. The tabulated result with the values are given in table 4.1 below.

Solvent
(polarity)

Aerated/
Deaerated

Emission
Wavelength,

λem, (nm)

Timebase
(ns)

Lifetime
ns, (χ2)

ACN
(5.8)

Aerated 617 500 72 (1.072)

Deaerated 617 500 219 (0.989)

MeOH
(5.1)

Aerated 615 500 85 (1.049)

Deaerated 615 500 255 (1.035)

CHCl3
(4.1)

Aerated 609 1000 149 (1.063)

Deaerated 609 1000 360 (1.021)

DCM
(3.1)

Aerated 604 500 181 (1.073)

Deaerated 604 1000 481 (1.030)

Table 4.1 Solvent dependent lifetime values for complex (1) measured using TCSPC under

aerated and deaerated (shaded) condition (Conc. in all four solvents is 1×10-5M, λex = 360 nm).

For complex (1) the lifetime decay curve obtained in aerated ACN at a time base of 500 ns is

given in figure 4.13 (a). From the decay curve it is clear that the decay is monoexponential (the

decay was obtained at an emission wavelength of 617 nm as given in table 4.1). The lifetime of

72 ns is assigned to a decay from a 3MLCT excited state based on the previous considerations

and published results for similar complexes.39-45, 87 The χ2 value for the fit is 1.072 indicating

close fit to experimental data and the residual plot curve given in figure 4.13 (a) also shows the

perfection of the fit. The lifetime decay curve obtained in deaerated ACN at a time base of 500

ns is given in figure 4.13 (b). From the decay curve it is clear that the decay is monoexponential.

The χ2 value for the fit is 0.989 indicating close fit to experimental data and the residual plot

curve given in figure 4.13 (b) also shows the perfection of the fit.
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Figure 4.13 Lifetime decay plots for complex [Ir(ppy)2(bpp)]PF6 (1) in (a) aerated ACN and (b)

deaerated ACN measured at room temperature (298 K) using TCSPC.

The decay curves for complex (1) in the remaining solvents are given in appendix C, all of which

show a single exponential decay. Based on the above considerations given in sections 4.2.1.2 and

4.2.1.3 the lowest excited state from which the emission occurs can be assigned to be a 3MLCT

state. The low temperature lifetime measurement along with the temperature dependent emission

and lifetimes from 77 K to 290 K in every 10 K difference for [Ir(ppy)2(bpp)]PF6 is explained in

detail in the section 4.2.1.4 below which gives an idea of the variation in the nature of the excited

state as a function of temperature.

4.2.1.4 Temperature dependent emission and lifetime measurements

The instrumental procedures and conditions that were used to carry out the temperature

dependent excited state emission and lifetime measurements using a cryostat have been detailed

in chapter 2. The temperature dependent emission for [Ir(ppy)2(bpp)]PF6 in a temperature range

of 77 K to 120 K is given in figure 4.14 and the emission in a temperature range of 150 K to 220

K is given in figure 4.15.
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Figure 4.14 Temperature dependent emission spectra for [Ir(ppy)2(bpp)]PF6 from 77 K to 120

K measured in EtOH: MeOH (4:1) glass.
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Figure 4.15 Temperature dependent emission spectra for [Ir(ppy)2(bpp)]PF6 from 150 K to 220

K measured in EtOH: MeOH (4:1) glass.

From both figures 4.14 and 4.15 it is evident that there is a blue shift in the emission maximum

on going to low temperature which is based on the consideration that MLCT phosphorescence

exhibits a hypsochromic shift when the medium becomes rigid (especially when the solvent
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freezes below Tg = 125 K).39 The explanation for this blue shift on going from room temperature

fluid solution (298 K) to a low temperature (77 K) rigid matrix is explained in section 4.2.1.2.

Solvent reorganisation is fast in fluid solution at room temperature and it stabilises the metal

centered charge transfer states before emission takes place. This process is hampered at 77 K in a

rigid matrix, and under these conditions emission occurs from higher energy.53,81,84 This change

is more prominent below the glass transition temperature (Tg), which can be seen from figure

4.14 and also the variation in lifetime occuring around Tg as shown in figure 4.16.

The lifetime values for complex (1) as a function of temperature (77 K to 298 K) are given in

figure 4.16 which shows that as the temperature decreases the lifetime increases. This can be

explained by considering the difference in the nature of the sample at 298 K, and at 77 K glass

and also the changes taking place in the energy of the excited states from which the emission

takes place as the temperature decreases. In the solution state the molecules are free to move and

will collide with each other resulting in the exchange of energy and sufficient quenching will be

there also from the dissolved gasses such as oxygen, but at 77 K in EtOH:MeOH glass the

molecules are not able to move and the quenching due to collisions and also due to other gases

which are present at 298 K can be completely eliminated thereby higher emission and lifetime

values were obtained compared to those obtained at room temperature in solution. Also from the

temperature dependent emission spectra (figures 4.14 and 4.15) it is clear that as the temperature

decreases the excited state moves to higher energies (ie blue shift occurs) thereby the lifetime

decay from these higher lying states at those lower temperature should be higher than the decay

lifetime at 298 K where the emission takes place from lower lying excited states. The tabulated

data for the lifetimes are given in table 4.2 below.

Temperature
(K)

Lifetime,
τ (ns)

Temperature
(K)

Lifetime,
τ (ns)

Temperature
(K)

Lifetime,
τ (ns)

77 3830 140 530 220 113
90 3120 150 336 240 95

100 2810 160 246 260 79
110 1560 170 213 280 64
120 1430 180 181 293 60
130 737 200 152

Table 4.2 Tabulated temperature dependent lifetime data (shaded columns) for complex (1).
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Figure 4.16 Temperature dependent lifetime plot for [Ir(ppy)2(bpp)]PF6 (1) from 77 K to 290 K

measured in EtOH: MeOH (4:1) glass.

On the basis of all results discussed above in sections 4.2.1.2, 4.2.1.3 and 4.2.1.4 and in

comparison with published reports on similar complexes,27-45 the emission of the lowest excited

state for complex [Ir(ppy)2(BPP)]PF6 at 298 K is assigned to a 3MLCT state. Assignment of the

lowest excited state as an MLCT state is confirmed by various considerations which include

spectral shape, phosphoresence lifetime (τp), rigidochromic and solvatochromic behaviours. The

monoexponential decay for this complex at 298 K led us into the preliminary assumption that

there is no mixing of the 3MLCTppy and 3MLCTbpp states at room temperature (298 K), but based

on the previous reports,26,27 when the bridging chlorides of the starting material, iridium dichloro

bridged dimer, [Ir(ppy)2Cl]2 is replaced by a π acceptor ligand like bpp, the Ir (III) metal center

will become a poorer electron donor and the (MLCTppy) state will move up in energy. Thus the

possibility of emission occuring from a low lying (MLCTbpp) excited state cannot be ignored.

This can be confirmed by doing wavelength dependent emission and further studies, which are

outside the scope of this thesis. At 77 K, considering the emission curves explained in sections

4.2.1.2 and 4.2.1.4 it was concluded that the emission is from a 3MLCT excited state but based

on the recent reports of the excited state photophysics of Ir (III) complexes13-17 and the closeness

of the emission lifetime below Tg (1.4 μs - 3.8 μs) to the published results, the possibility of
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emission from a 3LLCT state also cannot be ignored. However more advanced techniques such

as resonance Raman and computational methods are required. Based on the results obtained in

all of our measurements a general schematic representation of the energy levels and possible

electronic transitions for complex [Ir(ppy)2(bpp)]PF6 is given in figure 4.17 below.

The proposed mechanism for relaxation is as follows: after excitation, the 1LLCT(ppy→bpp) state is

accessed then rapidly relaxes to the 1MLCT through internal conversion (IC), inter system

crossing (ISC) takes place from there to 3LLCT(ppy→bpp) state. Internal coversion follows this,

resulting in the relaxation to the 3MLCT(ppy) and 3MLCT(bpp) excited states with the lower one

being 3MLCT(bpp) state from which emission takes place. There is also a possibility of populating

the lowest excited states 3LLCT(ppy→bpp), 3MLCT(ppy), and 3MLCT(bpp) indirectly via the 1MLCT

states.

Figure 4.17 Schematic representation of the energy levels and possible electronic transition for

complex [Ir(ppy)2(bpp)]PF6 (IC-internal conversion, ISC-intersystem crossing).
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4.2.2 Complex (2) : [Ir(ppy)2(bpp)PtCl]2(PF6)2

4.2.2.1 Absorption properties

The visible electronic absorption spectra for the Ir-Pt dimer complex [Ir(ppy)2(bpp)PtCl]2(PF6)2

along with the absorption spectra for the Ir monomer complex [Ir(ppy)2(bpp)]PF6 are given in

figure 4.18 below. It can be seen from the absorption spectra that complexation of Pt resulted in

shifting of the absorption bands to lower energy (red shift) compared to the mononuclear

complex. The assignments of the absorption bands were made by comparing the results with the

spectrum of complex (1) and the reported spectra27-32 given in section 4.1.5.
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Figure 4.18 Absorption spectra for complex [Ir(ppy)2(bpp)PtCl]2(PF6)2 (    ) along with complex

1 ( ) in aerated ACN (1×10-5M).

From the above figure 4.18 it can be seen that the shifts for the ligand centered bpp(π)→bpp(π*)

transitions are more prominent than the ligand centered ppy(π)→ppy(π*) transitions. This is

attributed to the fact that the Pt metal is directly complexed to the bpp ligand which can result in

an energy change of the excited state based on the bpp ligand resulting in a shift of the

absorption bands. Complexation with Pt resulted in a red shift for the LLCTppy→bpp band at 350

nm for the Ir mononuclear complex (1) to 370 nm in the Ir-Pt dimer complex (2). Both the

MLCT excited states also showed a red shift on complexation with Pt as the bands around 370

nm and 420 nm for MLCT(ppy) and  MLCT(bpp) in complex (1) were red shifted to 420 nm and
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470 nm in complex (2). The absorption spectra of the cyclometallated Pt complexes have intense

bands in the near UV region (375 nm) (figure 4.5) which have been assigned as metal to ligand

charge transfer (MLCT) transitions.66

4.2.2.2 Emission properties

The room temperature (298 K) and low temperature (77 K) emission spectra for complex

[Ir(ppy)2(bpp)PtCl]2(PF6)2 are given in figure 4.19 below. The emission spectra is structured at

both room temperature (298 K) and low temperature (77 K), with the latter having more

prominent structured bands than the former.
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Figure 4.19 Emission spectra for complex [Ir(ppy)2(bpp)PtCl]2(PF6)2 at 298 K ( ) measured

in aearated ACN and 77 K (     ) measured in EtOH:MeOH (4:1) glass.

Assignment of excited states in the emission spectrum at both temperatures is based upon

previous publications39-45 and a number of other considerations as discussed with the Ir monomer

complex (1) in section 4.2.1, which includes spectral shape, rigidochromic and solvatochromic

emission behaviours,22 phosphorescence lifetime (τp) (77 K and 298 K) and effect of solvent
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polarity and temperature dependent lifetimes. The room temperature emissions (at 546 nm and

605 nm) are assigned to be from 3MLCT excited states. This assignment is confirmed by

carrying out detailed lifetime measurements in four different solvents of varying polarities as

explained in section 4.2.2.3. As explained for complex (1), when the bridging chlorides of

[Ir(ppy)2Cl]2 are replaced by a π acceptor ligand such as bpp the Ir (III) metal center will become

a poorer electron donor and the MLCTppy state will move up in energy compared to the MLCTbpp

state. From the emission spectra (figure 4.9) and lifetime measurements (table 4.1) for the

mononuclear complex (1) it is difficult to differentiate between these two close lying 3MLCT

excited states. For complex (2), Pt coordination resulted in a sufficient increase in the energy of

the excited states, together with splitting of the emission band as can be clearly seen from the

emission spectra (figure 4.19, black line). Based on the above consideration the emission band at

546 nm is assigned to a 3MLCTppy excited state and the emission at lower energy to a 3MLCTbpp

excited state.

For the 77 K emission spectra the peak at 528 nm is assigned to a 3LLCT excited state and the

emission at 567 nm is assigned to a mixed 3LLCT-3MLCT excited state. These assignments are

made based on the previous references for Ir (III) cyclometallated complexes39-45 and from the

temperature dependent emission and lifetime data explained in section 4.2.2.4. The

rigidochromic shift for the emission band at 528 nm is higher than that normally seen for pure

MLCT emitters. This may indicate that this is not a pure MLCT state, but rather an LLCT (ppy

to bpy) triplet state in which the donor orbital is the ppy centered one. A relatively large inner

and outer reorganisation is expected to take place in such an excited state, and this would justify

the large blue shift going from high to low temperature.89 Further evidence in support of the

assignment of excited state to a 3MLCT state at room temperature (298 K) is obtained from the

concentration dependent and solvent dependent studies carried out with complex

[Ir(ppy)2(bpp)PtCl]2(PF6)2 as given below in figures 4.20(a) and 4.20(b).
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Figure 4.20 (a) Concentration dependent emission and (b) solvent dependent emission for

complex [Ir(ppy)2(bpp)PtCl]2(PF6)2 in four different solvents having conc. 1×10-5M.

Solvatochromism is a potentially important probe in assessing charge distributions in both

ground and excited states.85 Normally MLCT phosphorescence should exhibit a hypsochromic

shift on moving from polar to non polar solvents.40,41 The normalised emission spectrum for

complex (2) is given in figure 4.21 below.
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Figure 4.21 Solvent dependent normalised emission spectrum for complex [Ir(ppy)2(bpp)PtCl]2

(PF6)2 in four different solvents having conc. 1×10-5M.
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The peak at lower energy underwent a hypsochromic shift on moving from polar to non polar

solvents but the shift was less prominent for the higher energy peak. Based on the assignments

given before for the higher energy excited state to a MLCTppy state, one explanation for the

smaller blue shift for this state which can be due to extensive mixing of the metal and ligand

orbitals for MLCTppy as a result of the the strong σ-donor character of the ppy ligand that leads to

less charge transfer character in the electronic transition and hence a decrease in the

solvatochromic behavior of the transition.85 The tabulated emission values in four different

solvents are given in table 4.3. Along with all the above mentioned considerations one important

measurement that provides evidence on the nature of the lowest excited state is the solvent

dependent lifetime measurements at room temperature (298 K) and temperature dependent

lifetime measurements which are explained in detail in the following sections.

4.2.2.3 Solvent dependent lifetime measurements

The solvent dependent lifetime measurements support the assignments of the excited states

described in the previous sections. Based on published reports39-45 for Ir (III) cyclometallated

complexes and by comparing these results obtained with the iridium mononuclear complex (1)

(explained in section 4.2.1), the lowest excited states for [Ir(ppy)2(bpp)PtCl]2(PF6)2 at 298 K are

assigned to 3MLCT excited states. If the excited state is an MLCT state as the solvent polarity

decreases the emission lifetime should increase since the MLCT states for Ir (III)

cyclometallated complexes are destabilised to a greater extent in non polar solvents than in polar

solvents.85,88 The results obtained for solvent dependent lifetime measurements for

[Ir(ppy)2(bpp)PtCl]2(PF6)2 in four solvents with varying polarity are tabulated in table 4.3 below.

From the solvent dependent emission spectra (figure 4.21), it is clear that the emission for

complex (2) is structured in all the four solvents studied at room temperature (298 K). So the

lifetime was measured at two different emission maxima in all four solvents and the decay

obtained was biexponential in all cases. The average lifetime for each different emission

wavelength was calculated using the equation 2.7 explained in chapter 2, by considering their

relative percentage as given in table 4.3 below. From table 4.3 it is clear that as the solvent

polarity decreases the lifetime for both the peaks increases which supports the assignment that

both the emitting states (one at higher energy and the other at lower energy) for complex (2) at
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room temperature (298 K) are 3MLCT in nature. The above mentioned statement is much more

clearer from the solvent dependent average lifetime plot for complex (2) given in figure 4.22.

Solvent
(polarity)

Emission
Wavelength,

λem

Timebase
(ns)

Lifetime
(ns), (χ2)

Relative
%

Avg.lifetime
τav, ns

ACN
(5.8)

546 500
τ 1 – 5 39.75

69τ 2 – 72 60.25
χ2 – 1.119

605 500
τ 1 – 5 15.15

76τ 2 – 77 84.85
χ2 – 1.017

MeOH
(5.1)

545 500
τ 1 – 14 16.19

75τ 2 – 77 83.81
χ2 – 1.133

608 500
τ 1 – 27 11.39

81τ 2 – 83 88.61
χ2 – 1.085

CHCl3
(4.1)

543 500
τ 1 – 7 36.84

190τ 2 – 194 63.16
χ2 – 1.045

585 500
τ 1 – 7 10.01

220τ 2 – 221 89.99
χ2 – 1.017

DCM
(3.1)

541 500
τ 1 – 8 54.67

195τ 2 – 204 45.33
χ2 – 1.001

583 500
τ 1 – 8 19.26

245τ 2 – 247 80.74
χ2 – 1.006

Table 4.3 Solvent dependent lifetime values for complex [Ir(ppy)2(bpp)PtCl]2(PF6)2 measured

using TCSPC at 298 K (Conc. in all four solvents is 1×10-5M).

Based on the nature of the Ir (III) cyclometallated complexes studied previously23-32 the emission

band observed at higher energy is assigned to 3MLCTppy excited state and 3MLCTbpp excited state

occupies a position lower in energy than the former. Based on this assumption the emission

lifetime for the 3MLCTppy should be higher than that from 3MLCTbpp excited state. From the

lifetime values given in table 4.3 and the solvent dependent lifetime plot for the two different

excited state emissions given in figure 4.22 below it is clear that the lifetime value for the decay

from 3MLCTbpp excited state is higher than the decay from 3MLCTppy excited state.
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Figure 4.22 Solvent dependent lifetime for complex [Ir(ppy)2(bpp)PtCl]2(PF6)2 measured at two

different emission maxima using TCSPC at 298 K (Conc. in all four solvents is 1×10-5M).

This behaviour shown by [Ir(ppy)2(bpp)PtCl]2(PF6)2 is due to complexation of Pt to one end of

the bridging ligand in a cyclometallated manner. As explained in the introduction, based on the

published results55-69 normally cyclometallated Pt (II) complexes like Pt(N^C)Cl2 do not emit at

room temperature. This is attributed to the relatively small energy gap between the lowest lying
3MLCT state and the upper lying 3MC state. At room temperature (298 K), when the system is in

thermal equillibrium population of the 3MC state occurs resulting in quenching of the emission.

Based on this consideration, for complex (2) the emission from Pt based excited states are not

seen at room temperature. The excited state for cyclometallated Pt (II) complexes is assigned to a

mixed (MLCT/LCPt) excited state, dPt/π(NˆC) → π*(NˆC) based on previous reports.61,62,63

Electrochemical measurements and DFT calculations, suggest that the HOMO level in these

complexes comprise contributions from both Pt and ligand orbitals while the LUMO is largely

localised on the N^C ligand.88 Based on the above mentioned considerations for

[Ir(ppy)2(bpp)PtCl]2(PF6)2 the 3MLCTppy excited state is expected to have an energy very close to

Pt excited state. A portion of the charge is transferred from the 3MLCTppy excited state to the Pt

based excited state at room temperature when the system is in thermal equillibrium, which then
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relaxes to the 3MC state. This results in a decrease in lifetime for the 3MLCTppy excited state in

comparison to the 3MLCTbpp excited state. Temperature dependent emission and lifetime

measurements discussed in section 4.2.2.4 gives a much more clearer picture regarding this

electron transfer process. In order to get an exact picture regarding the position of different

excited states further measurements like the transient absorption and excitation wavelength

dependent lifetimes must be carried out, which are beyond the scope of this thesis.

The lifetime decay curves for complex [Ir(ppy)2(bpp)PtCl]2(PF6)2 measured in aerated ACN at

two different emission wavelengths (546 nm and 605 nm) are given in figure 4.23 (a) and 4.23

(b). From the decay curves it is clear that the decay is biexponential at both wavelengths. At an

emission wavelength of 546 nm, both the lifetime values (τ1 and τ2) are assigned to a 3MLCT

excited state. The short lived component has a lifetime of 5 ns (τ1) which contributes 40 % and

the longer lived component has a lifetime of 72 ns (τ2) which contributes 60 %. The χ2 value for

the fit is 1.119 indicating close fit to experimental data and the residual plot curve also shows the

perfection of the fit. Similarly the decay curve obtained at an emission wavelength of 605 nm is

also biexponential as given in figure 4.24 (b). The short lived component has a lifetime of 5 ns

(τ1) which contributes 15 %, the long lived component having a lifetime of 77 ns (τ2) which

contributes 85 %. The χ2 value for the fit is 1.017 indicating close fit to experimental data and the

residual plot curve also shows the perfection of the fit.

The decay curves for complex (2) in the remaining solvents are given in appendix C, all of which

have a biexponential decay. Also the deaerated emission decay lifetimes are also measured for

complex (2) in four different solvents which gave a similar trend to those explained for the

aerated samples. Based on the above (sections 4.2.2.2 and 4.2.2.3) the lowest excited state from

which the emission occurs at 298 K is assigned to a 3MLCT state, and more specifically
3MLCTbpp state. The temperature dependent emission and lifetimes from 77 K to 290 K for

[Ir(ppy)2(bpp)PtCl]2(PF6)2 are explained in detail in the following section.
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Figure 4.23 Lifetime decay plots for complex [Ir(ppy)2(bpp)PtCl]2(PF6)2 in aerated ACN (a) at

an emission wavelength (λem) of 546 nm and (b) λem of 605 nm.

4.2.2.4 Temperature dependent emission and lifetime measurements

The temperature dependent emission spectra for [Ir(ppy)2(bpp)PtCl]2(PF6)2 (2) in a temperature

range of 77 K to 280 K in every 10 K difference of temperature are given in figures 4.24 (a) and

4.24 (b) below.
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Figure 4.24 Temperature dependent emission spectrum for complex 2 (a) from 77 K to 140 K

(b) from 150 K to 280 K, measured in EtOH: MeOH (4:1) glass.
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From both figures it is evident that there is a prominent blue shift (an increase in energy of the

excited states) in the emission maximum on going to low temperatures which is based on the

assumption that MLCT phosphorescence exhibits a hypsochromic shift when the medium

becomes rigid (especially below Tg).39 A possible explanation given on the basis of the

measurements done with complex (2) on the change in emission spectra with changes in

temperature can be explained as follows. At room temperature there are two prominent peaks in

the emission spectra for complex (2). The assignments for these peaks are given by comparing

the results obtained, to those with the previously published results of Ir (III) cyclometallated

complexes.39-45 On this basis the emission maxima at higher energy is assigned to a 3MLCTppy

excited state and the emission maxima at lower energy is assigned to a 3MLCTbpp excited state.

As the temperature decreases the intensity of the emission band at higher energy (3MLCTppy)

decreases and the emission band at lower energy (3MLCTbpp) grows in intensity. At around

200 K the intensity for the lower energy emission band is twice that of the higher energy one. As

the temperature again decreases the emission band at higher energy becomes almost a shoulder

and it disappears completely at 140 K. At this temperature emission only from the lower energy
3MLCTbpp excited state was observed as shown in figures 4.24 (a). The explanation for this

behaviour is given by considering the 3MLCT/LCPt excited state of Pt. As the temperature

decreases the peak at 546 nm corresponding to the 3MLCTppy excited state is blue shifted that is

to higher energy. This results in the 3MLCTppy excited state moving closer to the 3MLCT/LCPt

excited state. This 3MLCT/LCPt excited state which has an energy state close to the 3MC state

resulting in quenching of emission intensity and also the phosphoresence lifetime as temperature

decreases.

Change in the emission spectra in the glass transition temperature range of 120 K to 130 K at

every 1 K difference are given in figure 4.25 below which shows that at the glass transition

temperature one higher energy emission band again started to grow but is slightly blue shifted

compared to the emission maxima at room temperature.
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Figure 4.25 Temperature dependent emission spectrum for complex 2 for each 1 K increase of

temperature from 120 K to 130 K measured in EtOH: MeOH (4:1) glass.

The intensity of this high energy band at ~528 nm increases in intensity as the temperature falls

below the glass transition temperature. At 77 K the intensity of this emission band is higher than

the nearby low energy band as shown in figure 4.24 (a). The lifetime decay curve at this

emission wavelength was monoexponential (3.3 μs), and suggests a decay from the 3LLCT

excited state as reported previously.14-16,32 The emission maxima at 567 nm is assigned to a

mixed 3LLCT/3MLCT excited state as the lifetime decay curve was biexponential at this

emission wavelength with a long lived component of 3.1 μs similar to that of 3LLCT emission,

and a short lived component of 635 ns as observed from the decay in pure 3MLCT excited states.

The lifetime decay values are tabulated in table 4.4 and the detailed values at every 10 K

difference of temperature from 77 K to 290 K are given in appendix C. Also below the glass

transition temperature there was one shoulder at 620 nm which was not seen at higher

temperatures. Based on the previous data and explanations this is assigned to a low lying 3MLCT

state but due to the very low counts obtained at that emission wavelength the exact lifetime, was

not determined. Further advanced measurements are rquired in order to confirm this and also the

proper energy gap of each excited state.
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Temperature dependent lifetime measurements carried out on complex 2 provided supporting

data for the assignments made as discussed with temperature dependent emission on the change

in energy of excited states as a function of temperature. Lifetimes were measured for the higher

energy emission maxima and lower energy emission maxima as shown in the temperature

dependent emission data plots in figure 4.24 for the entire range of temperature from 77 K to

290 K at every 10 K difference. All the decay curves obtained were dual exponential having a

short lived component and a long lived component. The higher energy bands around 528 nm in

the temperature range 77 K to 120 K, showed only monoexponential decays with a lifetime in

the range of 1.9 μs to 3.3 μs clearly demonstrating a similarity with the 3LLCT decay as per

previous reports.14-16,32 The plot for the average lifetime (τav) for both these high energy and low

energy emission maxima as a function of temperature for the entire temperature range is given in

figure 4.26 below.
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Figure 4.26 Average lifetime as a function of temperature for complex 2 for each 10 K increase

of temperature from 120 K to 130 K measured in EtOH:MeOH (4:1) glass.

From figure 4.26 it is evident that at 77 K, the lifetime decay from the higher energy emission

band dominates over the lifetime from the lower energy emission band, but as the temperature
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increases and reaches the glass transition temperature Tg, the lifetime values for both the

emission maxima showed almost the same lifetimes and as the temperature increased further the

lifetime value from the lower energy emission band showed a longer lifetime than the lifetime

from the higher energy emission band. This can be explained by taking into account the

cyclometallated Pt coordination at one end of the complex. Based on the previous reports,55-69

cyclometallated Pt complexes do not emit at room temperature as the energy of the 3MLCT/LCPt

state is very close to the 3MC state. This 3MLCT/LCPt state is expected to have an energy in

between the 3LLCT and 3MLCT states of iridium. After the glass transition temperature when the

system reaches a solution state there is the possibility of populating the 3MLCT/LCPt excited

state from the 3MLCTppy excited state through non radiative transitions. This will result in the

decrease in the emission lifetimes of the decay from the 3MLCT states of higher energy as the

temperature increases above Tg. Also at low temperatures these cyclometalated Pt complexes

show intense emission bands at higher energies in the range of 470 nm – 520 nm, so there is the

possibility of higher emission bands being based on Pt. However this can be clearly ruled out by

analysing the emission decay curves and lifetime values in the temperature range of 77 K to

120 K for the higher energy emission band. The decays were all monoexponential as discussed

before with lifetimes in the range 1.9 – 3.3 μs which is much less than what is expected for an

emission from a 3MLCT/LCPt excited state (30 μs) based on the reported publications.66 Table

4.4 below gives the lifetime data with relative percentage and average lifetime at selected

temperatures.
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Temperature
(K)

Emission
Wavelength,

λem, (nm)

Lifetime
(ns), (χ2)

Relative
%

Avg.lifetime
τav, ns

77K

527 τ = 3322 100 3322
χ2= 1.012

567
τ1= 635 11.57

3066τ2= 3130 88.43
χ2= 1.035

125K
534

τ1= 106.20 20.11
972τ2= 994.77 79.89

χ2= 1.098

572
τ1= 283.20 21.83

1044τ2= 1099 78.17
χ2= 1.138

200K
543

τ1= 34.89 42.78
147τ2= 164.18 57.22

χ2= 1.097

589
τ1= 69.41 25.70

280τ2= 296.89 74.30
χ2= 1.111

290
543

τ1= 12.21 24.71
44τ2= 46.96 75.29

χ2= 1.105

587
τ1= 21.22 25.84

89τ2= 94.21 74.16
χ2= 1.107

Table 4.4 Tabulated data for the lifetimes for [Ir(ppy)2(bpp)PtCl]2(PF6)2 (2) in selected

tempertaures measured in EtOH:MeOH (4:1) glass.

Considering all these aspects a schematic representation for the possible transitions for

[Ir(ppy)2(bpp)PtCl]2(PF6)2 is given in figure 4.27. The proposed mechanism for relaxation is as

follows: after excitation, the 1LLCT(ppy→bpp) state is accessed then rapidly relaxes to the 1MLCT

through internal conversion (IC), then inter system crossing (ISC) takes place to the
3LLCT(ppy→bpp) state. Internal coversion follows this resulting in the relaxation to the 3MLCT(ppy)

and 3MLCT(bpp) excited states (the lower being the 3MLCT(bpp)). At room temperature (298 K)

emission takes place from 3MLCT(ppy) and 3MLCT(bpp) excited states but as the temperature

decreases to 77 K emission from 3LLCT(ppy→bpp) state becomes prominent. At lower

temperatures, below Tg, mixing of the LLCT and MLCT states can take place based on the

results obtained for the temperature dependent lifetime measurements but further detailed

measurements are recommended.
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Figure 4.27 Schematic representation of the energy levels and possible electronic transition for

complex [Ir(ppy)2(BPP)PtCl]2(PF6)2 (2) (IC-internal conversion, ISC-intersystem crossing).
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4.2.3 Complex (3) : [Ir(ppy)2(bpp)PdCl]2(PF6)2

4.2.3.1 Absorption properties

The visible electronic absorption spectra for the Ir-Pd dimer complex [Ir(ppy)2(bpp)PdCl]2(PF6)2

along with the absorption spectra for Ir-Pt dimer, [Ir(ppy)2(bpp)PtCl]2(PF6)2 and the

mononuclear complex [Ir(ppy)2(bpp)]PF6 are given in figure 4.28. It can be seen from the

absorption spectra that complexation of Pd results in a shift of the absorption bands for complex

(3) to lower energy (red shift) compared to the mononuclear complex. The shift in absorption

bands is similar to that of the Ir-Pt complex (2).
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Figure 4.28 Absorption spectra for complex [Ir(ppy)2(bpp)PdCl]2(PF6)2 along with complex

complex [Ir(ppy)2(bpp)]PF6 and complex [Ir(ppy)2(bpp)PtCl]2(PF6)2 measured in aerated ACN

at room temperature (298 K) (concentration - 1×10-5M).

The absorption spectra for [Ir(ppy)2(bpp)PdCl]2(PF6)2 consists of strong absorption bands in the

region of 250 nm to 350 nm which are assigned as intraligand charge transfer transitions

(ILCTppy), ppy(π)→ppy(π*) of which the lower energy bands close to 340 nm are assigned to

bpp(π)→bpp(π*) intraligand charge transfer transitions (ILCTbpp). The bands at 370 nm are

attributed to interligand ppy(π)→bpp(π*) charge transfer transitions (LLCTppy→bpp). The bands in

the region of 400 nm to 500 nm are assigned to 3MLCT transitions. It is possible that two MLCT
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bands, MLCT(ppy) (Ir to ppy charge transfer) and MLCT(bpp) (Ir to bpp charge transfer) have

almost similar energies based on similar reported complexes.23-32 The assignments were made by

comparing the results with the spectrum of complex (1), complex (2) and the reported

publications23-42 explained in section 4.1.5.

From figure 4.28 it is apparent that for the dimer complex (3), the red shift for ILCTbpp

transitions are more prominent than the ILCTppy transitions. This is attributed to the fact that the

Pd metal is directly complexed to one end of bpp ligand which can result in a greater

perturbation of the excited state based on the bpp ligand (ILCTbpp), resulting in a shifting of the

absorption band as explained similarly for Ir-Pt dimer complex (2) in section 4.3.2.1. Similar is

the case with LLCTppy→bpp transition, following complexation of the Pd a red shift for the

LLCTppy→bpp band to 370 nm in Ir-Pd dimer complex (3) as opposed to 350 nm for the Ir

monomer complex (1). Both the MLCT transitions showed red shift on complexation with Pd as

the bands at 370 nm and 420 nm for MLCT(ppy) and  MLCT(bpp) in complex (1) were red shifted

to 420 nm and 470 nm in complex (3). The tabulated absorption data and extinction coefficients

for all the three complexes measured in aerated ACN are given in table 1 in appendix C. The

high energy and low energy bands in the room temperature absorption spectra of cyclometallated

Pd complexes have been assigned as intraligand π-π* transitions.72 Based on this consideration,

complex (3) is expected to have a π-π* intraligand transitions in 250 nm to 450 nm range.

4.2.3.2 Emission properties

The room temperature (298 K) and low temperature (77 K) emission spectra for

[Ir(ppy)2(bpp)PdCl]2(PF6)2 are given in figure 4.29. From the emission spectra it is clear that

there is only one emission maximum at room temperature and low temperature. The emission

observed for the Ir-Pt complex discussed in section 4.2.2.2 exhibits a difference in energy

between the two low lying 3MLCT excited states, whereas for the Ir-Pd complex (3) no splitting

of the 3MLCT states were seen in the emission spectra, thus it appears that the effect of Pd (II)

metal centre on the 3MLCT excited states is less than that for Pt (II) centre.
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Figure 4.29 Emission spectra for complex [Ir(ppy)2(bpp)PdCl]2(PF6)2 (3) at 298 K (   )

measured in aearated ACN and 77 K (     ) measured in EtOH:MeOH (4:1) glass.

Assignment of the excited state in the emission spectra at both temperatures were based on

previous publications39-45 and by comparison with the Ir monomer (complex (1)) and Ir-Pt dimer

(complex (2)) discussed in sections 4.2.1.2 and 4.2.2.2, and also spectral shape, rigidochromic

and solvatochromic emission behaviours,22 phosphoresence lifetime (τp) (77 K and 298 K)

measurements and effect of solvent polarity on lifetimes. At room temperature (298 K) there is

only one emission maxima at 618 nm which is assigned to emission from 3MLCT excited state.

The lifetime measurements showed that the decay at this wavelength is dual exponential in

character with a short lived component of 3 ns and a long lived component of 73 ns. The

measurements were made in aerated ACN at room temperatue, the tabulated results are given in

table 4.5. For the Ir-Pd complex (3), the Pd metal does not appear to influence the 3MLCT

excited states to the same extent as seen for the Ir-Pt complex (2), therefore for the Ir-Pd

complex (3), both the 3MLCT excited states may lie very close in energy giving emission from a

mixed 3MLCTppy/3MLCTbpp state. The blue shift of the emission spectra on going from room

temperature (298 K) to low temperature (77 K) is typical of MLCT states. The room temperature

(298 K) emission band at 618 nm is rigidochromically shifted to 544 nm at 77 K as shown in

figure 4.29. The difference in energy between the two peaks is characteristic of an MLCT



Chapter 4 - Excited state photophysics of novel Ir (III) complexes

207

excited state. Further measurements carried out at 77 K suggests that the emission at 544 nm

takes place from a mixed 3LLCT/3MLCT excited state which is explained in detail in section

4.2.3.4.

Further support for assignment of the excited state (3MLCT at room temperature) is obtained

from the concentration dependent and solvent dependent studies carried out with complex

[Ir(ppy)2(bpp)PdCl]2(PF6)2 as given below in figures 4.30 (a) and 4.30 (b).
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Figure 4.30 (a) Concentration dependent emission and (b) solvent dependent emission for

complex [Ir(ppy)2(bpp)PdCl]2(PF6)2 (3) in four different solvents having conc. 1×10-5M.

Solvatochromism is a potentially important probe in assessing charge distribution in both ground

and excited states.85 It can be seen from figure 4.30 (b) that the emission is influenced by polarity

of the solvent. Normally MLCT phosphorescence should exhibit a hypsochromic shift on

moving from polar to non polar solvents.85,86 For complex (3) as the solvent polarity decreases

there is blue shift as given in table 4.5 but the results are not consistent, as the emission in CHCl3

(587 nm) is blue shifted to a greater extent compared to the less polar solvent DCM (601 nm).

Also the emission in MeOH (622 nm) is red shifted more so than the ACN (615 nm).

4.2.3.3 Solvent dependent lifetime measurements

The solvent dependent lifetime measurements further supports the assignments of the excited

states described in previous sections. Based on the published reports39-45 for Ir (III)

cyclometallated complexes and by comparing the results obtained with those for the iridium
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monomer complex (1) and Ir-Pt dimer complex (2), explained in sections 4.2.1 and 4.2.2, the

lowest excited state for complex (3) at 298 K is attributed to a 3MLCT excited state. The solvent-

dependent lifetime measurements explained in this section provide supporting evidence for this

assignment. If the excited state is an MLCT state as the solvent polarity decreases the emission

lifetime should increase since the MLCT states for Ir (III) cyclometalated complexes are

stabilised to a greater extent in non polar solvents than in polar solvents.85,88 The graphical plot

of avarage lifetime (both aerated and deaerated) in four different solvents is given in figure 4.32

below which shows the solvent effect much more clearly.
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Figure 4.32 Solvent dependent lifetime measurement for complex (3) (aerated and deaerated)

measured at room temperature (298 K) and having a concentration of 1×10-5M.

From the above figure it is clear that as the solvent polarity decreases the lifetime increases for

both aerated and deaerated sample characteristic of the emission from a 3MLCT excited state.

The entire data for the decay with the emission wavelength at which the decay was measured,

relative percentage of each component and the average lifetime calculated are given in table 4.5

below.
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Solvent
(polarity)

Aerated/
Deaerated

Emission
Wavelength,

λem, (nm)

Timebase
(ns)

Lifetime
(ns), (χ2)

Relative
%

Avg.
lifetime
τav, ns

ACN
(5.8)

Aerated 615 500
τ 1 – 3 3.21

73τ 2 – 73 96.79
χ2 – 1.043

Deaerated 615 500
τ 1 – 3 1.32

156τ 2 – 156 98.68
χ2 – 1.012

MeOH
(5.1)

Aerated 622 500 τ 1 – 89 100 89
χ2 – 1.008

Deaerated 622 500 τ 1 – 184 100 184
χ2 – 1.050

CHCl3
(4.1)

Aerated 587 500
τ 1 – 19 3.84

161τ 2 – 162 96.16
χ2 – 1.001

Deaerated 587 500
τ 1 – 33 4.15

334τ 2 – 335 95.85
χ2 – 1.031

DCM
(3.1)

Aerated 601 500 τ 1 – 190 100 190
χ2 – 1.032

Deaerated 601 500 τ 1 – 375 100 375
χ2 – 1.052

Table 4.5 Tabulated results for the solvent dependent lifetime measurement for complex (3) in

both aerated and deaerated ACN measured at room temperature (298 K) and having a

concentration of 1×10-5M (shaded region corresponds to deaerated measurements).

The emission decay for complex (3) in solvents ACN and CHCl3 showed dual exponential

behaviour in aerated and deaerated (shaded portion) conditions as given in table 4.5. For ACN

the short lived component (τ1) has a value of 3 ns and the long lived component (τ2) has a

lifetime of 73 ns The long lived component contributes 98 % of the decay observed. Changing

the solvent polarity effects both components (τ1 and τ2) equally as shown in table 4.5. Both τ1 and

τ2 values increased as the solvent was changed from the ACN (polarity - 5.8) to CHCl3 (polarity -

4.1). τ1 increased from 3 ns to 19 ns and τ2 increased from 73 ns to 162 ns in aerated ACN. The

same trend was seen in the measurements done in deaerated ACN as given by the shaded portion

in table 4.5. Interestingly the lifetime measurements carried out in MeOH and DCM showed only

single exponential decay with lifetimes of 89 ns (MeOH) and 190 ns (DCM) in aerated samples

and 184 ns (MeOH) and 375 ns (DCM) in deaerated samples (shaded portions). These results
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support the assignment of the lowest excited state at room temperature (298 K) to a 3MLCT

state.

The lifetime decay curves for complex (3) measured in aerated ACN are given in figure 4.33 (a)

and 4.33 (b). From the decay curves it is clear that the decay is biexponential. At an emission

wavelength of 618 nm both lifetime values (τ1 and τ2) are assigned to 3MLCT excited state. The

short lived component has a lifetime of 3 ns (τ1) and the long lived component has a lifetime of

73 ns (τ2) which contributes 97 %. The χ2 value for the fit is 1.043 indicating close fit to

experimental data and the residual plot curve given in figure 4.33 (a) also shows the fit.
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Figure 4.33 Lifetime decay plots for complex [Ir(ppy)2(bpp)PdCl]2(PF6)2 (3) in aerated ACN at

timebase of (a) 500 ns and (b) 1 μs measured at room temperature (298K).

The decay curves for complex (3) in the remaining solvents under aerated and deaerated

conditions are given in appendix C. Based on all the above considerations given in sections

4.2.3.2 and 4.2.3.3 the lowest excited state from which the emission occurs at 298 K is assigned

to a 3MLCT state.
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4.2.3.4 Temperature dependent emission and lifetime measurements

The temperature dependent emission spectra for [Ir(ppy)2(bpp)PdCl]2(PF6)2 in the temperature

range 77 K to 290 K for every 10 K difference is given in figures 4.34, 4.35 (a) and 4.35 (b).

From these figures blue shift in the emission maximum on going to low temperatures was

observed which is based on the assumption that MLCT phosphorescence exhibits a

hypsochromic shift when the medium becomes rigid.23
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Figure 4.34 Temperature dependent emission spectrum for [Ir(ppy)2(bpp)PdCl]2(PF6)2 from

77 K to 140 K measured in EtOH: MeOH (4:1) glass.
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Figure 4.35 Temperature dependent emission spectrum for [Ir(ppy)2(bpp)PdCl]2(PF6)2 (a) from

150 K to 210 K (b) from 220 K to 290 K, measured in EtOH: MeOH (4:1) glass.
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The explanation for this blue shift on going from room temperature (298 K) to low temperature

(77 K) in a rigid matrix was explained in section 4.2.3.2. From the emission plots over the entire

temperature range there is no evidence for a decay from two different excited states as seen for

the Ir-Pt dimer complex (2). Also from the nature of the emission spectra (broadened emission),

it is possible that the emission is from a 3MLCT excited state. Further evidence is provided by

the lifetime measurements. Considering the emission decay lifetimes at each of these emission

maxima, decay curves obtained were all dual exponential. A few of the selected values are given

in table 4.6 and the rest are given in appendix C.

As the temperature decreases from room temperature (298 K) to low temperature (77 K) the

lifetimes increased as shown in figure 4.36, which gives a plot of average lifetime (τav) as a

function of temperature from 77 K to 290 K.
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Figure 4.36 Average lifetime as a function of temperature for complex

[Ir(ppy)2(bpp)PdCl]2(PF6)2 (3) for each 10 K increase of temperature from 120 K to 130 K

measured in EtOH:MeOH (4:1) glass.

The lifetime increases slowly as the temperature decreases and as temperature reaches the glass

transition temperature (Tg) there is a notable increase in the lifetime value as seen in the graph.

The lifetime decay curve for all of these temperatures showed dual exponential decays with a
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short lived (τ1) and long lived (τ2) component. The tabulated data for some of the selected

temperatures are given in table 4.6 below. The entire tabulated data including the emission

wavelength, lifetimes (τ1 and τ2), their relative percentage and the average lifetime obtained are

given in appendix C.

Temperature
(K)

Emission
Wavelength,

λem, (nm)

Lifetime
(ns), (χ2)

Relative
%

Avg.lifetime
τav, ns

77 K 544
τ1= 455 4.64

3174τ2= 3193 95.36
χ2= 1.059

120 K 564
τ1= 144.35 2.78

2275τ2= 2279 97.22
χ2= 1.001

130 K 579
τ1= 128.49 2.67

1500τ2= 1503 97.33
χ2= 1.057

140 K 587
τ1= 122.12 32.05

603τ2= 646.24 67.95
χ2= 1.114

200 K 609
τ1= 9.03 0.81

153τ2= 152.63 99.19
χ2= 1.084

250 K 615
τ1= 0.539 0.19

83τ2= 82.54 99.81
χ2= 1.079

290 K 615
τ1= 0.56 2.05

69τ2= 69.63 97.95
χ2= 1.007

Table 4.6 Tabulated data for the temperature dependent lifetime measurement done for complex

[Ir(ppy)2(bpp)PdCl]2(PF6)2 in a temperature range of 77 K to 290 K in (4:1) EtOH:MeOH glass.

By analysing the emission spectra (broadened emission) and each of the lifetime values, and

comparing these results with those previously reported results for iridium (III) cyclometallated

complexes it is clear that all the emission lifetimes recorded above the glass transition

temperature (Tg) occurs from 3MLCT excited states. As the temperature reaches the the glass

transition temperature (Tg) (125 K, λem-564 nm), the value for τ1 is 144 ns suggesting the decay

to be from a 3MLCT excited state and the value obtained for τ2 is 2279 ns, suggesting the decay
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is from a 3LLCT excited state. At 77 K (λem-564 nm) the short lived component (τ1) is 455 ns

characteristic of 3MLCT state decay and the value for the long lived component (τ2) is 3193 ns,

characteristic of a 3LLCT state, based on previous reports.11,12,32 The variation of τ1 and τ2 as a

function of temperature from 77 K to 290 K at 10 K intervals is shown in figure 4.37.
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Figure 4.37 Variation of τ1 and τ2 as a function of temperature for complex

[Ir(ppy)2(bpp)PdCl]2(PF6)2 in a temperature range of 77 K to 290 K in (4:1) EtOH:MeOH glass.

These assumptions are all made on the basis of comparing the lifetime data obtained, with the

results for complex (1), complex (2) and with previously reported publications for

cyclometallated iridium (III) complexes.23-45 Further studies using a wavelength dependent

emission lifetime, different excitation wavelength in order to populate each of these excited

states seperately, transient absorption measurements and advanced techniques like computational

methods etc are required for conformation of the hypothesis presented here.

On the basis of all these assumptions a proposed schematic representation for the possible

transition for complex [Ir(ppy)2(bpp)PdCl]2(PF6)2 is given in figure 4.38. The mechanism for

relaxation is proposed as follows: after excitation, the 1LLCT(ppy→bpp) state is populated, then this

rapidly relaxes to the 1MLCT through internal conversion (IC), inter system crossing (ISC) takes
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3LLCT( ppy → bpp)

1LLCT(ppy → bpp)

Energy

(ns)

GS

Nuclear Position

IC

(ns)

(μs)

3MLCT/LCPd
3MC

1MLCT

IC

place to the 3LLCT(ppy→bpp) state. Internal coversion follows this resulting in the relaxation to the
3MLCT(ppy) and 3MLCT(bpp) excited states, with the lower one being the 3MLCT(bpp). At room

temperature (298 K) emission takes place from 3MLCT(ppy) and 3MLCT(bpp) excited states but as

the temperature decreases to 77 K emission from 3LLCT(ppy→bpp) state also occurs.

Figure 4.38 Schematic representation of the energy levels and possible electronic transition for

complex [Ir(ppy)2(BPP)PdCl]2(PF6)2 (IC-internal conversion, ISC-intersystem crossing).

4.3 Conclusion

Detailed solvent dependent and temperature dependent excited state photophysics of three novel

iridium complexes [Ir(ppy)2(bpp)]PF6 (complex 1), [Ir(ppy)2(bpp)PtCl]2(PF6)2 (complex 2) and

[Ir(ppy)2(bpp)PdCl]2(PF6)2 (complex 3) were caried out. The results were compared with

reported publications on cyclometallated Ir (III) complexes.23-47 Coordination of Pt resulted in an

increase in the energy (increase in energy can be clearly seen from the emission spectra with the

blue shift of the band) of the 3MLCTppy excited state to a position where it can easily populate the

excited state of Pt (MLCT/LCPt). Thus the electron in the 3MLCTppy easily moves on to the Pt

excited state and this increases as the temperature decreases as can be clearly seen from a

IC

3MLCT(bpp)

3MLCT(ppy)

IC

ISC
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decrease in the emission intensity and lifetime value for the high energy 3MLCTppy excited state

when lowering of temperature (figure 4.24 and figure 4.26). Thus the 3MLCTppy excited state

plays a key role in populating the Pt excited state in heterodinuclear complex

[Ir(ppy)2(bpp)PtCl]2(PF6)2. Supporting evidence for this electron transfer process is obtained

from the photocatalytic results reported for these three complexes in chapter 3. Photocatalysis of

complex 2 with UV light (λex – 350 nm) and visible light (λex – 470 nm) demonstrate the role of
3MLCTppy excited state. H2 production following 350 nm excitation was almost zero compared to

the excitation at 470 nm. In the former case the ligand centered charge transfer bands were

excited which do not play any prominent role in the electron transfer process to the Pt (II)

excited state. But in the second case excitation at 470 nm results in direct population of
3MLCTppy state from which the charge moves to the Pt (II) excited state and results in more

efficient catalytic H2 production.

For [Ir(ppy)2(bpp)PdCl]2(PF6)2, the results obtained indicate that there is little change in the

energy of the 3MLCT excited states as seen for [Ir(ppy)2(bpp)PtCl]2(PF6)2. Therefore for

complex (3) the electron decays from 1LLCT to 1MLCT state from where it reaches the
3MLCTppy and 3MLCTbpp excited state via the 3LLCT excited state and decays to the ground state

from the low lying 3MLCT excited state (figure 4.27). Thus for the Ir-Pd complex (3) as the

excited state of the Pd lies above the 3MLCT state there is very little possibility of populating the

Pd excited state through 3MLCT excited states. Due to this reason the Ir-Pd system has less

catalytic H2 generation efficiency compared to the Ir-Pt complex. For the Ir-Pd complex 470 nm

irradiation gave better TON values than 350 nm irradiation. This demonstrates the importance of

the 3MLCT excited state for the Ir-Pd system also. Further support of the influence of the
3MLCTppy is obtained from the analysis of the photocatalytic results of the ester substituted Ir-Pt,

Ir-Pd complexes with the non ester derivatives. The ester complexes gave almost double the

amount H2 as did the non ester derivatives. Here the electron withdrawing ester groups on the

peripheral ppy ligand results in an increase in energy of the 3MLCTppy excited state, occupying a

position from where the Pt/Pd excited state can be easily populated at room temperature.
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The excited state photophysical measurements carried out with these complexes gave an idea

regarding the possible electronic transition in the novel Ir-Pt, Ir-Pd intramolecular photocatalytic

systems. Varying the substituents on peripheral ppy ligands and also by using different bridges it

is possible to tune the excited state, which results in more H2 than the conventional

intermolecular photocatalytic systems.
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Chapter 5

Synthesis, characterisation and physical properties of Ir (III)
complexes based on N-N bound polypyridyl ligands

A rapid and efficient synthetic route for the preparation of heteroleptic [Ir(polypyridyl-N,N')3]3+

type complexes is reported. In the first step [Ir(bpy-N,N)2Cl2]+ type precursors such as

[Ir(bpy)2Cl2]+, [Ir(phen)2Cl2]+, [Ir(dmbpy)2Cl2]+, [Ir(dtbpy)2Cl2]+ and their deuteriated analogous

are prepared. The formation of the orthometallated complex, [Ir(bpy-N,N')2(bpy-C,N')]2+ is also

reported. The ratio between this cyclometallated species and the main product [Ir(bpy)2Cl2]+ is

affected by deuteriation of the bpy ligand. The reaction pathway for the formation of these

polypyridyl systems has been investigated using time dependent NMR and HPLC analysis. The

removal of chlorides from these complexes were successfully carried out resulting in the

formation of triflate intermediates and heteroleptic [Ir(polypyridyl-N,N')3]3+ complexes.
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5.1 Introduction

For the last number of years interest in the design of molecular assemblies for application in

sensing,1 molecular electronics,2 photocatalysis,3 solar cells4 and light emitting diodes has

continuously increased.5,6 Many of the approaches taken were based on metal polypyridyl

ligands such as 2,2ꞌ-bipyridine (bpy) and 1,10-phenanthroline (phen).7 This approach has been

very successful in particular for Ru, Os, Rh and Re metal complexes, however for iridium (III)

complexes a different route has been developed based on cyclometallating ligands such as

phenyl pyridines and pyridine triazoles.8 Polypyridyl ligands such as bpy, phen and others have

only seldom been investigated and little work has been reported during the past 20 years on the

chemistry of [Ir(bpy)2Cl2]+ and other similar compounds.9,10 From the early 1970’s many

attempts were made to develop efficient high yield synthetic pathways for the preparation of

N-N bound polypyridyl complexes.  In general it proved difficult to even  prepare complexes

such as [Ir(bpy)2Cl2]+ while the use of such precursors for the preparation of heteroleptic

compounds of the type [Ir(bpy)2(L-L)]+ has not been  developed. The main factors that

prevented its investigation is the multi step synthetic procedures reported before11 resulting in

low yields combined with the formation of a series of side products.12,13,14,15 The ligand 2,2ꞌ-

bipyridine (bpy) has been used extensively due to its rigidity which leads to a high preference for

the bidentate binding mode and ease with which it chelates most transition metal ions.12 Iridium

(III) complexes of 2,2ꞌ-bipyridine (bpy) are difficult to prepare and purify 16 compared to the

isoelectronic and isostructural analogues of RuII and OsII due to its unexplored reaction

mechanism and kinetically sluggish substitution rates.17,18,19,20,21,22

5.1.1 Photophysical properties of iridium (III) bis polypyridyl and tris polypyridyl complexes

- [Ir(L)2(X)2]+ and [Ir(L)3]3+, L = bpy/phen, X = Cl, Br, I

Almost all of the reported publications on [Ir(polypyridyl)2Cl2]+ and [Ir(polypyridyl)3]3+

complexes came in the period of 1960-1980, most of which are included in this chapter.10-54

However the synthesis of these complexes was tedious and involved elaborate work up

procedures. This resulted in complexes with small amounts of impurities and the photophysical

data obtained from these systems are sometimes questionable. By developing an efficient

synthetic procedure and obtaining these complexes in 100 % purity, the excited state

photophysics of these complexes can be investigated in more detail. A brief description of the
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excited state photophysics of iridium (III) polypyridyl complexes is summarised below. These

results and explanations were used to determine excited states of the analogous complexes

reported in sections 5.3.5, 5.3.6, 5.3.7 and 5.3.8.

The ligands 2,2ꞌ-bipyridine and 1,10-phenanthroline form complexes with a large number of

transition metals. In particular, the luminescence of the bis and tris complexes of 2,2ꞌ-bipyridine

and 1,10-phenanthroline with ruthenium (II) have been extensively studied.23,24,25 The

luminescence in these complexes was said to arise primarily from a spin-forbidden triplet charge

transfer (d-π*) transition. Although much less work has been done on the iridium (III) complexes

of these ligands, the luminescence spectra of [Ir(phen)2Cl2]+ and [Ir(bpy)2Cl2]+,10,21(b) have been

reported. The emission of the former ion at 77 K has been assigned by Crosby to a mixture of

charge-transfer (d-π*) and ligand centered (π-π*) transitions.10 Measurements of the quantum

yield and lifetime of the luminescence of the phenanthroline complex at 77 K revealed that

emission occurs with a high efficiency and the radiative lifetime is 14 μs.26 DeArmond and Hil1s
21(b) suggested that these emissions could be labeled as “delocalized molecular’’ due to large

mixing of d and π orbitals. The absorption spectrum of [Ir(bpy)2C12]+ is dominated by Ir (III) to

bpy charge transfer bands (d-π*) in the visible region and internal bpy bands (π-π*) in the

ultraviolet region.21(b),10 It is noteworthy that the band around 400-450 nm also has been reported

in the absorption spectra of [Ir(bpy)3]3+ where it has been assigned as a intra ligand 3π-π*

transition.27 The water coordinated complexes [Ir(bpy)2(H2O)Cl]2+ and [Ir(bpy)2(H2O)2]3+ also

show absorption bands around 360 nm and 352 nm which are also assigned as d-π* transitions

and their progressive movement to shorter wavelengths illustrates the influence of the π-donating

CI- ligand on the energy of d-π* states.21(b) The interpretation of the absorption spectra of the

hydroxo complexes is based upon the same principles that was applied to the aquo complexes

with the following exception; the OH- ligand is a better π donor than C1-, and should therefore

lower the energy of the d-π* bands.28 This influence is apparent in the movement of the 380 nm

d-π* absorption band of [Ir(bpy)2Cl2]+ to 386 nm in [Ir(bpy)2(OH)Cl]+ and to 400 nm in

[Ir(bpy)2(OH)2]+.29 These bands are extremely broad and tail beyond 500 nm.29
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The photophysics of the complex [Ir(bpy)2Cl2]+ has been studied at 77 K in rigid glasses.10,21(b)

Due to the failure of the system to attain thermal equilibrium between the excited d-π* and π-π*

states, luminescence properties are associated primarily with emissions from the higher energy

d-π* states. The emission of [Ir(bpy)3]3+ in ethanol : methanol (4:1) glass at 77 K, has been

assigned as an intra ligand π-π* transition from a 3π-π* state of bidentate bpy27 as shown in

figure 5.1 below, whereas the 77 K emission of [Ir(bpy)2C12]+ has been assigned to a

combination of π-π* and d-π* states, and illustrates that two π donating C1- ligands lower the

energy of d-π* levels below the π-π* states. This effect of π donating ligands on the

luminescence is further illustrated by the chlorohydroxo and dihydroxo complexes.12 The large

red shifts and broadening of the emissions of these complexes relative to the chloroaquo and

diaquo complexes suggest that both emissions are due to d-π* states which are largely influenced

by the strong π donating effect of OH- in the coordination sphere of iridium (III). The emission

maximum of [Ir(bpy)2(OH)Cl]+ is shifted from 530 nm in ethanol : methanol (4:1) glass at 77 K

to 510 nm in methanol : water at 77 K. A shift from 550 to 540 nm is also found in

[Ir(bpy)2(OH)2]+ as expected for d-π* emissions. The emissions of the diaquo complexes are

very similar to the emission of [Ir(bpy)3]3+ in ethanol : methanol at 77 K, which has been

assigned as an intra ligand transition from a 3π-π* of bidentate bpy.27

Figure 5.1 Absorption and luminescence (77 K in ethanol : methanol glass) spectra of

[Ir(bpy)3]3+ 27
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The emission of [Ir(phen)2Cl2]+ was assigned to a predominantly d-π* state with some π-π*

character.21(d) As the solvent polarity is increased, the lower level d-π* state is raised in energy

closer to the π-π* state; the decreased energy gap increases mixing of the π-π* state into the

emitting d-π* state, which increases the ligand character of the emission of [Ir(phen)2Cl2]+ in

polar solvents.30 [Ir(bpy)3]3+ and [Ir(phen)3]3+ complexes are found to have photoproperties that

indicate the existence of several closely spaced low lying excited states of different orbital

percentage.31 Examples of various ordering of metal centered (d-d), ligand centered (π-π*), and

metal to ligand charge transfer (d-π*) excited states are found among complexes of Ru(II),32,33

Rh(III),34,35 Fe(II),36,37 Os(II),38,39 and Ir(III).27,12,40,19

The room temperature (298 K) absorption spectrum of [Ir(phen)3]3+ consists of three major peaks

that are assigned to π-π* transitions by analogy with the [Rh(phen)3]3+ spectra.41 Similar

assignments have been made for [Ir(bpy)3]3+.27 The emission is predominantly π-π*

phosphorescence.41 There is no overlap between the absorption and emission spectra. The

emission shapes are essentially insensitive to different solvents.27(a) The 77 K emission spectrum

of [Ir(phen)3]3+ is also assigned as π-π* phosphorescence The much longer room temperature

lifetime in polar solvents (80 μs in H2O for [Ir(phen)3]3+ compared to 3.7 μs in MeCN) is

explained by an increase in energy of the d-π* level relative to the π-π* level as the polarity of

the solvent increases. Less contribution of the shorter lived d-π* state with the predominantly

longer lived π-π* level increases the lifetime of [Ir(phen)3]3+ in polar solvents. This is similar to

the solvent dependencies reported earlier by Watts.30 The low temperature (77 K) emission

spectrum of [Ir(phen)3]3+ in 4:1 methanol:water published by DeGraff et. al is given in figure 5.2

below.
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Figure 5.2 Low temperature emission spectrum of [Ir(phen)3](ClO4)3 in 4:1 MeOH:H2O 42

In many ways, the photochemistry and photophysics of [Ir(bpy)2Cl2]+ appear to be analogous to

those of [Ir(phen)2Cl2]+, where more detailed photochemical studies20(a),43 have been performed.

Chloride photoaquation of the latter complex has been attributed47 to a π-π* excited state, and

although some debate concerning the energy of this state relative to the d-π* state has

occured,16,44 studies45,46 showed that the π-π* state is the lower of the two. The marked similarity

between the photophysical and photochemical properties of [Ir(bpy)2Cl2]+ and [Ir(phen)2Cl2]+

indicate that chloride photosolvation in the former arises from a π-π* excited state just as it does

in the latter.47

The effect of phenyl substituted 2,2ꞌ-bipyridine (dpbpy) and 1,10-phenanthroline (dpphen)

ligands in iridium (III) complexes excited state photophysics at 77 K was also studied in detail

by Watts and Crossby.10,47 The energy of the lowest lying ligand triplet state is red shifted by the

introduction of the phenyl substituents. Watts suggested that the energy of emitting state of

[Ir(dpphen)2Cl2]+ lies much lower than that of the [Ir(phen)2Cl2]+ complex and this difference is

greater than the energy difference of the emitting states of [Ir(dpbpy)2Cl2]+ and [Ir(bpy)2Cl2]+

complexes. He suggested therefore a higher red shift in emission of the former case to be twice

that of the latter.51 He suggested the occurrence of a strong (d-π*)-(π-π*) configurational

interaction for the complex [Ir(dpphen)2Cl2]+. The luminescence of [Ir(dpbpy)2Cl2]+ was

assigned to a normal d-π* transition, but for [Ir(dpphen)2Cl2]+ they were not able to give a proper
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assignment due to close proximity of the d-π* state with the π-π* state, which can result in an

inversion at 77 K.51

In studies of light emission from heterobischelated complexes of iridium (III) with phen, bpy,

and 5,6-dimethyl-l,10-phenanthroline (5,6-mephen), Watts48 established that multiple emissions

from thermally nonequilibrated states occur in [Ir(phen)(5,6-mephen)Cl2]Cl. However, the very

slight deviation from exponential luminescence decay which was observed for

[Ir(phen)(bpy)Cl2]Cl, indicates that the electronic excited states of this complex may be close to

thermal equilibration. These results suggest that π-π* and d-π* states may be sufficiently

uncoupled to emit independently, but that two d-π* states are coupled strongly enough to

approach thermal equilibration.49 Studies of heteroleptic complexes of Ru (II) appear to confirm

the conclusion that d-π* states undergo rapid thermal equilibration.50 Finally in 1977 Balzani’s

group re-examined the photophysics of phen derivatives16 and concluded that due to the complex

synthetic procedures, very small amounts of by-products which are very difficult to eliminate

resulted in a dual emission for all these systems at 77 K. This really shows the importance of

measuring the excited state photophysics of all these iridium (III) polypyridyl complexes again

which are 100 % pure by confirmation using NMR, CHN and HPLC, showing that other than the

main product no by-products are present in any of these complexes.

5.1.2 Applications of Ir (III) polypyridyl complexes

5.1.2.1 Phosphorescent Ir (III) complexes in OLED applications

During the last two decades, extensive research effort has been focused on the synthesis and

photochemical properties of cyclometalated 4d6 and 5d6 complexes.51,52,53 The major interest

behind these studies is not only to understand the fundamental mechanism associated with the

electron transfer processes but also to apply this knowledge to a variety of applications.54,55,56,57

In particular, iridium complexes have been investigated thoroughly because they can be used as

phosphorescent molecules in the organic light emitting diodes (OLEDs).58,59,60 They possess high

luminescence efficiencies as well as long lived excited states mainly due to the strong spin-orbit

coupling of the iridium (III).61,62 The interest in phosphorescent iridium (III) complexes is

growing rapidly, however, the most outstanding characteristic of this class of complexes might

be the variability of the electro optical properties. Their metal ligand based luminescence
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provides the opportunity to tune the emission colour over the whole visible spectrum by varying

the attached ligands.63,64 All these criteria make iridium (III) complexes highly appealing as

phosphors in multicolor OLEDs.

While common light emitting diodes (LEDs) produce light by electroluminescence of III–V

group mixed crystal inorganic semiconductors, organic LEDs (OLEDs) generate light from

organic or organometallic molecules.64 These devices generally have a multilayer architecture

where a thin film of one or more light emitting materials is sandwiched between two electrodes,

one of which must be transparent to light. Additional layers (e.g. ETL(electron transporting

layer), HBL(hole blocking layer), HIL(hole injection layer), HTL(hole transporting layer)) assist

charge injection and transport from the electrodes to the light emitting film, improving

significantly the device performances. Upon application of a bias voltage to the electrodes,

electrons and holes are injected into the organic stack. They migrate through the respective

charge transporting layers and recombine in the emitting molecules, forming excited states

(excitons) that can generate light by radiative decay.

The most prominent coordination motifs are cyclometallating ligands, available in a wide range.

Triscyclometallated homo and heteroleptic complexes, as well as bis-cyclometallated ones, are

the most common phosphorescent iridium (III) species.68 A variety of so called ancillary ligands

gives additional possibilities to define structure and to tune the properties. Neutral and charged

complexes are accessible, and the ligand design spans from small modifications and

functionalizations over dendritic layouts to polymeric assemblies.65 In particular, polymers

containing iridium (III) complexes are gaining interest, with features of both phosphor and

polymer matrix combined within one material.

5.1.2.2 Phosphorescent Ir (III) complexes in oxygen sensing

The long-lived triplet excited state of luminescent iridium (III) complexes enables the efficient

transfer of energy to the triplet ground state of molecular oxygen, resulting in luminescence

quenching and the generation of singlet oxygen.66 This feature of iridium (III) luminophores can

be utilized as a sensitive oxygen probe in, e.g., medicinal, chemical or environmental

sensors.55,67,68 An experimental array for the measurement of oxygen concentration with respect
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to medicinal applications, i.e., for intraocular measurements, was recently introduced by

Nazeeruddin and co-workers.69

Since the oxygen concentration is in general related to sudden changes in the luminescence of

the iridium (III) complex, new materials with high quantum yields and long excited-state

lifetimes (i.e., up to several microseconds) for reliable, sensitive detection are the focus of

current research.60 Among others, mixed-ligand iridium (III) complexes are highly promising

candidates, due to their well-tunable excited state properties, high durability, and stability

towards the generated singlet oxygen. However, for successful development of solid state

iridium (III) containing sensors, the compatibility of the luminescent dye with the polymer

matrix represents a crucial requirement.70

Beyond the development of novel luminescent probes for molecular oxygen, highly sensitive

systems based on iridium (III) complexes for the sensing of various anions,71 amino acids,72 and

alkali73 as well as heavy transition metal cations74 has been introduced in recent years.

5.1.2.3 Cationic Iridium (III) Complexes in Bioanalytical Applications

Besides the previously discussed chemosensory applications, their electrochemical and

photophysical properties have been made iridium (III) complexes also highly promising

candidates as labeling reagents and probes in biological systems.75 Sensitive, time resolved

detection is enabled due to their intense emission and excited state lifetimes. For applications as

labeling compounds for luminescence imaging in biomaterials, charged iridium (III) complexes

can be bound covalently76 or non-covalently, e.g., by DNA or protein intercalation,77 to

biological substrates. Generally, the bound complexes exhibit luminescence properties that

significantly differ from that of the free substrate, due to changes in rigidity and hydrophobicity

of the surroundings.78 Therefore, the facile monitoring of bioconjunction reactions or the

investigation of binding affinities can be conducted utilizing such luminescent iridium (III)

complexes.
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Figure 5.3 Confocal luminescence (a,d) and brightfield images (b,e) of living HeLa cells
incubated with 20 mM of a green (top) or red iridium(III) emitter (bottom) in DMSO/phosphate
buffer solution.79

The exceeding potential of charged phosphorescent iridium (III) complexes in modern

biomedical research is highlighted by the first example of bioimaging of living cells using such

complexes. Yu et. al. successfully introduced phosphorescent complexes into the cytoplasm of

cervical cancer cells (HeLa) and observed low cytotoxicity and reduced photobleaching,

compared to conventional dyes (figure 5.3).79

5.1.2.4 Iridium (III) N^N polypyridyl complexes for intermolecular photocatalytic H2

generation

Various types of transition metal complexes (e.g., based on RhI, RuII, IrIII or PtII) have been

employed as photosensitizers,80,81,82 but heteroleptic cyclometallated iridium (III) complexes

have gained attraction in this field due to their highly tunable photophysical properties. Bernhard

and co-workers have introduced iridium (III) based sensitizers featuring remarkable

improvements in the production of molecular hydrogen, compared to previously investigated

Ru (II) based systems.3,99,103 But up to now iridium N^N polypyridyl complexes of the type

reported in this chapter have not been used for hydrogen generation. This is the first report based

on intermolecular photocatalysis using visible light (470 nm) and UV light (350 nm) for iridium

(III) N^N polypyridyl complexes and very good Turn Over Numbers (TON’s) were obtained

than the conventional cyclometallated systems, thereby making these complexes potentially

important candidates for future research.
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In this chapter novel high yield synthetic method for making [Ir(polypyridyl)2Cl2]PF6 complexes

and their deuteriated analogues in high purity are discussed. Successfull removal of chlorides

was achieved from these complexes novel tris heteroleptic complexes were synthesised through

triflate intermediates which are also discussed in the synthetic section. The characterisation of

these complexes was achieved using 1D and 2D NMR spectroscopy, mass spectrometry, CHN

analysis and HPLC measurements. The time dependent HPLC and NMR analysis of the reaction

of these complexes provided possible reaction intermediates and side products. Detailed

photophysics of all these complexes were studied which include absorption, emission (298 K and

77 K) and lifetimes (298 K and 77 K) which helped to assign the excited states for these

complexes and to explain the dual emission properties of these complexes at 77 K. The

photocatalytic H2 production experiments for these complexes, carried out at two different

excitation wavelength (470 nm and 350 nm) is discussed in the last section. This is the first

report based on report of H2 production from iridium (III) N^N polypyridyl complexes.

5.2 Experimental

5.2.1 Synthesis of [Ir(bpy)2Cl2]PF6 (I) and [Ir(bpy-N,Nꞌ)2(bpy-C,Nꞌ)](PF6)2 (II)

Iridium trichloride hydrate (0.10 g, 0.3349 mmol) was reacted with 2,2'-bipyridyl (bpy) (0.105 g,

0.6696 mmol) dissolved in 1 cm3 of glycerol. The reaction was heated to reflux temperature (300
0C) for 25 minutes when the colour of the solution has changed from red to straw yellow. The

solution was cooled to room temperature and 5 cm3 of water was added. The mixture was filtered

and washed with 5 ml of diethyl ether. To the filtrate 10 ml of saturated NaCl solution was added

yielding [Ir(bpy)2Cl2]Cl which was filtered and dried. The complex was then dissolved

completely in water to which saturated aqueous KPF6 was added resulting in the precipitation of

complex I, which was filtered, washed with 20 cm3 of deionised water and dried. Complex I was

then dissolved in a minimal amount of acetone and reprecipitated by adding excess diethyl ether

and hexane, the precipitated complex was vacuum filtered, washed with diethyl ether and

hexane. This procedure was repeated 3-4 times in order to remove any traces of glycerol. (Yield:

0.12 g, 0.1665 mmol, 70 %). 1H NMR (400 MHz, DMSO), δ (ppm): 7.51 (t, 1H, H5ꞌ), 7.83 (d,

1H, H6ꞌ), 8.12 (t, 1H, H5), 8.20 (t, 1H, H4ꞌ), 8.52 (t, 1H, H4), 8.82 (d, 1H, H3ꞌ), 8.93 (d, 1H, H3),

9.65 (d, 1H, H6). 13C (100 MHz, DMSO), δ (ppm): 125.1, 128.7, 140.8, 141.4, 151, 157.6. m/z
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expected: 575.49, obtained: 575.03. Elemental  analysis for complex I, C20H16Cl2F6IrN4P;

(calculated) : C :33.34, H :2.24, N :7.78; (found) : C :33.29, H :2.13, N :7.37

The filtrate obtained after precipitating out [Ir(bpy)2Cl2]Cl was concentrated, dried and stirred

with 20 cm3 of DCM, filtered and the process is repeated until all of excess bipyridine and any

remaining fraction I are removed.  The yellow residue was dried and 20 cm3 of dry methanol was

added. The solution was then stirred, filtered, concentrated and chromatographed on Sephadex

(LH : 20) using ethanol to yield [Ir(bpy-N,N')2(bpy-C,N')](Cl)2 in pure form. The complex was

then dissolved completely in water to which saturated aqueous KPF6 was added resulting in the

precipitation of complex II, which was vacuum filtered, washed with deionised water and dried.

(Yield: 0.015 g, 0.0157 mmol, 5 %). 1H NMR (400 MHz, DMSO), δ (ppm): 9.04 (d, 1H, D3),

9.01 (d, 1H, C3ꞌ), 8.96 (m, 2H, E3ꞌ, F3ꞌ), 8.45 (m, 3H, C4ꞌ, E4ꞌ, F4), 8.42 (d, 1H, A6), 8.38 (m,

2H, B3ꞌ, B4ꞌ), 8.21 (t, 1H, D4), 8.01 (d, 1H, D6), 7.91 (d, 1H, D5), 7.90 (d, 1H, C6ꞌ), 7.81 (m,

2H, E6ꞌ, F6), 7.72 (d, 1H, B6ꞌ), 7.67 (m, 3H, C5ꞌ, E5ꞌ, F5), 7.48 (t, 1H, B5ꞌ), 7.08 (m, 1H, A5),

6.58 (d, 1H, A4).

5.2.2 Synthesis of [Ir(d8bpy)2Cl2]PF6 (III) and [IrIII(d8bpy-N,N')2(d8bpy-C,N')](PF6)2 (IV)

These compounds were obtained using the method outlined above. Iridium trichloride hydrate

(0.10 g, 0.3349 mmol) was combined with deuteriated 2,2'-bipyridyl (d8bpy) (0.1153 g, 0.6696

mmol) and dissolved in 1 cm3 of glycerol. (Yield: 0.15 g, 0.2037 mmol, 80 %). 1H NMR (400

MHz, DMSO), δ (ppm): 7.51 (resid. s, H5ꞌ), 7.83 (resid. s, H6ꞌ), 8.12 (resid. s, H5), 8.20 (resid. s,

H4ꞌ), 8.52 (resid. s, H4), 8.82 (resid. s, H3ꞌ), 8.93 (resid. s, H3), 9.65 (resid. s, H6). Elemental

analysis for complex III, C20D16Cl2F6IrN4P; (calculated) : C :32.58, H :2.17, N :7.60; (found) ; C

:32.75, H :2.14, N :7.77.

The filtrate obtained after precipitating out [Ir(d8bpy)2Cl2]Cl was concentrated, dried and stirred

with 20 cm3 of DCM, filtered and the process is repeated until all of excess bipyridine and any

remaining fraction III are removed.  The yellow residue was dried and 20 cm3 of dry methanol

was added. The solution was then stirred, filtered, concentrated and chromatographed on

Sephadex (LH: 20) using ethanol to yield [Ir(d8bpy-N,N')2(d8bpy-C,N')](Cl)2 in pure form. The

complex was then dissolved completely in water to which saturated aqueous KPF6 was added
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resulting in the precipitation of complex IV, which was vacuum filtered, washed with deionised

water and dried. (Yield: 0.010 g, 0.0102 mmol, 3 %). 1H NMR (400 MHz, DMSO), δ (ppm):

9.04 (resid. s, D3), 9.01 (resid. s, C3ꞌ), 8.96 (resid. s, E3ꞌ, F3ꞌ), 8.45 (resid. s, C4ꞌ, E4ꞌ, F4), 8.42

(resid. s, A6), 8.38 (resid. s, B3ꞌ, B4ꞌ), 8.21 (resid. s, D4), 8.01 (resid. s, D6), 7.91 (resid. s, D5),

7.90 (resid. s, C6ꞌ), 7.81 (resid. s, E6ꞌ, F6), 7.72 (resid. s, B6ꞌ), 7.67 (resid. s, C5ꞌ, E5ꞌ, F5), 7.48

(resid. s, B5ꞌ), 7.08 (resid. s, A5), 6.58 (resid. s, A4).

5.2.3 Synthesis of [Ir(phen)2Cl2]PF6 (V)

Iridium trichloride hydrate (0.10 g, 0.2836 mmol) was combined with two equivalents of

1, 10-phenanthroline (phen) (0.102 g, 0.567 mmol) dissolved in 1 cm3 of glycerol. The reaction

mixture was heated at reflux (300 0C) for 25 minutes until the colour of the solution changes

from red to straw yellow. The solution was cooled to room temperature and 5 cm3 of deionised

water was added. The mixture was filtered and saturated aqueous KPF6 was added resulting in

the precipitation of complex V, which was vacuum filtered, washed with 20 cm3 of deionised

water and dried. Complex V was then dissolved in minimal amount of acetone and reprecipitated

by adding excess diethyl ether and hexane, the precipitated complex was vacuum filtered,

washed with diethyl ether and hexane. This procedure was repeated 3-4 times inorder to remove

any traces of glycerol. (Yield: 0.160 g, 0.2082 mmol, 90 %). 1H NMR (400 MHz, DMSO), δ

(ppm): 7.69 (m, 1H, H8), 8.08 (d, 1H, H9), 8.38 (d, 1H, H6), 8.49 (m, 2H, H4, H5), 8.76 (d, 1H,

H7), 9.16 (d, 1H, H3), 9.94 (d, 1H, H2). Elemental analysis for complex V, C24H16Cl2F6IrN4P;

(calculated); C :37.51, H :2.10, N :7.29; (found); C :37.52, H :2.10, N :7.27

5.2.4 Synthesis of [Ir(d8phen)2Cl2]PF6 (VI)

Iridium trichloride hydrate (0.10 g, 0.2836 mmol) was combined with two equivalents of

deuteriated 1,10-phenanthroline (d8phen) (0.106 g, 0.567 mmol) dissolved in 1 cm3 of glycerol.

The reaction mixture was heated at reflux (300 0C) for 25 minutes until the colour of the solution

changes from red to straw yellow. The solution was cooled to room temperature and 5 cm3 of

deionised water was added. The mixture was filtered and saturated aqueous KPF6 was added

resulting in the precipitation of complex VI, which was vacuum filtered, washed with 20 cm3 of

deionised water and dried. Complex VI was then dissolved in minimal amount of acetone and

reprecipitated by adding excess diethyl ether and hexane, the precipitated complex was vacuum
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filtered, washed with diethyl ether and hexane. This procedure was repeated 3-4 times inorder to

remove any traces of glycerol. (Yield: 0.210 g, 0.2677 mmol, 95 %). 1H NMR (400 MHz,

DMSO), δ (ppm): 7.69 (resid. s, H8), 8.08 (resid. s, H9), 8.38 (resid. s, H6), 8.49 (resid. s, H4,

H5), 8.76 (resid. s, H7), 9.16 (resid. s, H3), 9.94 (resid. s, H2). Elemental analysis for complex

VI, C24D16Cl2F6IrN4P; (calculated); C :36.74, H :2.05, N :7.14; (found); C :36.91, H :1.80, N

:7.47

5.2.5 Synthesis of [Ir(dmbpy)2Cl2]PF6 (VII)

Iridium trichloride hydrate (0.10 g, 0.2836 mmol) was combined with two equivalents of 4,4ꞌ-

dimethyl-2,2ꞌ-bipyridyl (dmbpy) (0.1045 g, 0.5672 mmol) dissolved in 1 cm3 of glycerol. The

reaction mixture was heated at reflux (300 0C) for 10 minutes, cooled and the turbid yellow

solution was filtered, washed with 10 cm3 of deionised water and to the filtrate saturated aqueous

KPF6 was added resulting in the precipitation of complex VII, which was vacuum filtered,

washed with 20 cm3 of deionised water and dried. Complex VII was then dissolved in minimal

amount of acetone and reprecipitated by adding excess diethyl ether and hexane, the precipitated

complex was vacuum filtered, washed with diethyl ether and hexane. This procedure was

repeated 3-4 times inorder to remove any traces of glycerol. (Yield: 0.21 g, 0.2704 mmol, 95 %).
1H NMR (400 MHz, DMSO), δ (ppm): 2.56 (s, 3H), 2.76 (s, 3H), 7.32 (dd, 1H, H5ꞌ), 7.59 (d,

1H, H6ꞌ), 7.93 (dd, 1H, H5), 8.66 (s, 1H, H3ꞌ), 8.76 (s, 1H, H3), 9.42 (d, 1H, H6). Elemental

analysis for complex VII, C24H24Cl2F6IrN4P; (calculated) : C :37.12, H :3.12, N :7.21;  (found) :

C :36.79, H :2.87, N :6.99.

5.2.6 Synthesis of [Ir(d12dmbpy)2Cl2]PF6 (VIII)

Iridium trichloride hydrate (0.10 g, 0.2836 mmol) was combined with two equivalents of

deuteriated 4,4ꞌ-dimethyl-2,2ꞌ-bipyridyl (d12dmbpy) (0.111 g, 0.5672 mmol) dissolved in 1 cm3 of

glycerol. The reaction mixture was heated at reflux (300 0C) for 10 minutes, cooled and the

turbid yellow solution was filtered, washed with 10 cm3 of deionised water and to the filtrate

saturated aqueous KPF6 was added resulting in the precipitation of complex VIII, which was

vacuum filtered, washed with 20 cm3 of deionised water and dried. Complex VIII was then

dissolved in minimal amount of acetone and reprecipitated by adding excess diethyl ether and

hexane, the precipitated complex was vacuum filtered, washed with diethyl ether and hexane.
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This procedure was repeated 3-4 times inorder to remove any traces of glycerol. (Yield: 0.26 g,

0.3248 mmol, 98 %). 1H NMR (400 MHz, DMSO), δ (ppm): 2.56 (resid. s, 3H), 2.76 (resid. s,

3H), 7.32 (resid. s, H5ꞌ), 7.59 (resid. s, H6ꞌ), 7.93 (resid. s, H5), 8.66 (resid. s, H3ꞌ), 8.76 (resid. s,

H3), 9.42 (resid. s, H6). Elemental  analysis for complex VIII, C24D24Cl2F6IrN4P; (calculated) :

C :36.00, H :3.02, N :7.00;  (found) : C :36.38, H :2.77, N :7.29.

5.2.7 Synthesis of [Ir(dtbpy)2Cl2]PF6 (IX)

Iridium trichloride hydrate (0.10 g, 0.2836 mmol) was combined with two equivalents of 4,4ꞌ-di

tertiarybutyl-2,2ꞌ-bipyridyl (dtbpy) (0.1522 g, 0.5672 mmol) dissolved in 1 cm3 of glycerol. The

reaction mixture was heated at reflux (300 0C) for 10 minutes, cooled and some amount of

unreacted ligand was filtered. To the filtrate, deionised water was added to which saturated

aqueous KPF6 was added resulting in the precipitation of complex IX, which was vacuum

filtered, washed with 20 cm3 of deionised water and dried. Complex IX was then dissolved in

minimal amount of acetone and reprecipitated by adding excess diethyl ether and hexane, the

precipitated complex was vacuum filtered, washed with diethyl ether and hexane. This procedure

was repeated 3-4 times inorder to remove any traces of glycerol. (Yield: 0.16 g, 0.1693 mmol, 72

%). 1H NMR (400 MHz, DMSO), δ (ppm): 1.36 (s, 9H), 1.543 (s, 9H), 7.48 (dd, 1H, H5ꞌ), 7.62

(d, 1H, H6ꞌ), 8.09 (dd, 1H, H5), 8.83 (s, 1H, H3ꞌ), 8.93 (s, 1H, H3), 9.48 (d, 1H, H6). Elemental

analysis for complex IX, C36H48Cl2F6IrN4P; (calculated) : C :45.76, H :5.12, N :5.93; (found) : C

:45.32, H :5.05, N :5.70

5.2.8 Synthesis of [Ir(d24dtbpy)2Cl2]PF6 (X)

Iridium trichloride hydrate (0.10 g, 0.2836 mmol) was combined with two equivalents of

deuteriated 4,4ꞌ-ditertiarybutyl-2,2ꞌ-bipyridyl (d24dtbpy) (0.165 g, 0.5672 mmol) dissolved in 1

cm3 of glycerol. The reaction mixture was heated at reflux (300 0C) for 10 minutes, cooled and

some amount of unreacted ligand was filtered. To the filtrate, deionised water was added to

which saturated aqueous KPF6 was added resulting in the precipitation of complex IX, which

was vacuum filtered, washed with 20 cm3 of deionised water and dried. Complex IX was then

dissolved in minimal amount of acetone and reprecipitated by adding excess diethyl ether and

hexane, the precipitated complex was vacuum filtered, washed with diethyl ether and hexane.

This procedure was repeated 3-4 times inorder to remove any traces of glycerol. (Yield: 0.81 g,
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0.1822 mmol, 80 %). 1H NMR (400 MHz, DMSO), δ (ppm): 1.36 (resid. s), 1.54 (resid. s), 7.48

(resid. s, H5ꞌ), 7.62 (resid. s, H6ꞌ), 8.09 (resid. s, H5), 8.83 (resid. s, H3ꞌ), 8.93 (resid. s, H3), 9.48

(resid. s, H6). Elemental  analysis for complex X, C36D48Cl2F6IrN4P.2H2O; (calculated) : C

:41.98, H :5.05, N :5.44; (found) : C :42.32, H :5.17, N :5.70

5.2.9 Synthesis of [Ir(dpbpy)2Cl2]PF6 (XI)

Iridium trichloride hydrate (0.20 g, 0.5672 mmol) was combined with two equivalents of 4,4ꞌ-

diphenyl-2,2ꞌ-bipyridine (dpbpy) ligand (0.3495 g, 1.1345 mmol) dissolved in 1 cm3 of glycerol.

The reaction mixture was heated at reflux (300 0C) for 20 minutes, cooled and some amount of

unreacted ligand was filtered. To the filtrate, deionised water was added to which saturated

aqueous KPF6 was added resulting in the precipitation of complex XI, which was vacuum

filtered, washed with 20 cm3 of deionised water and dried. Complex XI was then dissolved in

minimal amount of acetone and reprecipitated by adding excess diethyl ether and hexane, the

precipitated complex was vacuum filtered, washed with diethyl ether and hexane. This procedure

was repeated 3-4 times inorder to remove any traces of glycerol. (Yield: 0.45 g, 0.4390 mmol, 77

%). 1H NMR (400 MHz, DMSO), δ (ppm): 7.65 (m, 6H, Ph(A)), 7.75 (d, 2H, Ph(B)), 7.80 (t,

2H, Ph(B)), 7.92 (d, 2H, H3ꞌ, Ph(B)), 8.25 (d, 1H, H3), 8.37 (m, 2H, H5, H5ꞌ), 8.55 (d, 1H, H6ꞌ),

10.11 (d, 1H, H6). Elemental analysis for complex XI, C44H32Cl2F6IrN4P; (calculated) : C :51.57,

H :3.15, N :5.47; (found) : C :51.48, H :3.19, N :5.42

5.2.10 Synthesis of [Ir(dpphen)2Cl2]PF6 (XII)

Iridium trichloride hydrate (0.20 g, 0.5672 mmol) was combined with two equivalents of 4,4ꞌ-

diphenyl-1,10-phenanthroline (dpphen) ligand (0.3768 g, 1.1345 mmol) dissolved in 1 cm3 of

glycerol. The reaction mixture was heated at reflux (300 0C) for 20 minutes, cooled and some

amount of unreacted ligand was filtered. To the filtrate, deionised water was added to which

saturated aqueous KPF6 was added resulting in the precipitation of complex XII, which was

vacuum filtered, washed with 20 cm3 of deionised water and dried. Complex XII was then

dissolved in minimal amount of acetone and reprecipitated by adding excess diethyl ether and

hexane, the precipitated complex was vacuum filtered, washed with diethyl ether and hexane.

This procedure was repeated 3-4 times inorder to remove any traces of glycerol. (Yield: 0.48 g,

0.4474 mmol, 78 %). 1H NMR (400 MHz, DMSO), δ (ppm): 7.63 (m, 6H, Ph(A)), 7.74 (d, 2H,
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Ph(B)), 7.79 (t, 2H, Ph(B)), 7.90 (d, 2H, H8, Ph(B)), 8.24 (d, 1H, H9), 8.36 (m, 2H, H5, H6),

8.54 (d, 1H, H3), 10.10 (d, 1H, H2).. Elemental  analysis for complex XII, C48H32Cl2F6IrN4P;

(calculated) : C :53.74, H :3.01, N :5.22; (found) : C :53.49, H :3.03, N :4.95

5.2.11 Synthesis of [Ir(bpy)2(OSO2CF3)2]CF3SO3 (XIII)

1,2 dichlorobenzene (15 cm3) was added to a 2 necked round bottom flask. Nitrogen was

bubbled through the solution for 30 min  after which [Ir(bpy)2Cl2]PF6 (0.156 g, 0.2165 mmol)

was added and stirred in N2 for 15 min to which 0.47 cm3 of neat triflouromethanesulphonic acid

was added and stirred for 3 hr at 200 0C . The reaction mixture was cooled and diethyl ether was

added resulting in the precipitation of the product which was filtered and washed with diethyl

ether to get the product in full purity. (Yield: 0.178 g, 0.1870 mmol, 85 %). 1H NMR (400 MHz,

DMSO), δ (ppm): 7.52 (t, 1H, H5ꞌ), 7.69 (d, 1H, H6ꞌ), 8.23 (t, 1H, H5), 8.34 (t, 1H, H4ꞌ), 8.67 (t,

1H, H4), 8.83 (d, 1H, H3ꞌ), 9.02 (m, 2H, H6, H3). Elemental Analysis for complex XIII,

C23H16F9IrN4O9S3 : (calculated) : C :29.02, H :1.69, N :5.89; (found) :C :28.62, H :1.52, N :5.54

5.2.12 Synthesis of [Ir(phen)2(OSO2CF3)2]CF3SO3 (XIV)

1,2 dichlorobenzene (10 cm3) was taken in a 2 necked round bottom flask. N2 was bubbled

through the solution for 30 min. [Ir(phen)2Cl2]PF6 (0.05 g, 0.0650mmol) was added and stirred in

N2 for 15 min to which 0.17 cm3 of neat triflouromethanesulphonic acid was added and stirred

for 2 hr at 200 0C . The reaction mixture was cooled and diethyl ether was added resulting in the

precipitation of the product which was filtered and washed with diethyl ether to get the product

in full purity. (Yield: 0.065 g, 0.0650 mmol, 98 %). 1H NMR (400 MHz, DMSO), δ (ppm): 7.72

(m, 1H, H8), 7.98 (d, 1H, H9), 8.41 (d, 1H, H6), 8.57 (d, 1H, H4), 8.70 (m, 1H, H5), 8.80 (d, 1H,

H7), 9.34 (d, 1H, H3), 9.43 (d, 1H, H2). Elemental  Analysis for complex XIV,

C27H16F9IrN4O9S3.H2O; (calculated) : C :31.86, H :1.78, N :5.50;  (found) : C :31.42, H :1.55, N

:5.87.

5.2.13 Synthesis of [Ir(dmbpy)2(OSO2CF3)2]CF3SO3 (XV)

1,2 dichlorobenzene (10 cm3) was taken in a 2 necked round bottom flask. N2 was bubbled

through the solution for 30 min. [Ir(dmbpy)2Cl2]PF6 (0.102 g, 0.1314 mmol) was added and

stirred in N2 for 15 min to which 0.23 cm3 of neat triflouromethanesulphonic acid was added and
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stirred for 2 hr at 200 0C . The reaction mixture was cooled and diethyl ether was added resulting

in the precipitation of the product which was filtered and washed with diethyl ether to get the

product in full purity. (Yield: 0.108 g, 0.1072 mmol, 82 %). 1H NMR (400 MHz, DMSO), δ

(ppm): 2.61 (s, 3H), 2.79 (s, 3H), 7.32 (d, 1H, H5ꞌ), 7.45 (d, 1H, H6ꞌ), 8.16 (d, 1H, H5), 8.68 (s,

1H, H3ꞌ), 8.79 (d, 1H, H6), 8.85 (s, 1H, H3). Elemental Analysis for complex XV,

C27H24F9IrN4O9S3.H2O; (calculated) : C :31.61, H :2.55, N :5.46; (found) : C :31.23, H :2.26, N

:5.20

5.2.14 Synthesis of [Ir(dmbpy)2(HPhpytr)](CF3SO3)3 (XVI)

1,2 dichlorobenzene (15 cm3) was taken in a 2 necked round bottom flask. Nitrogen was bubbled

through the solution for 30 min to which the ligand Hphpytr (0.0482 g, 0.2183 mmol) was added

and stirred in N2 for 15 min to which [Ir(bpy)2(OSO2CF3)2]CF3SO3 (0.110 g, 0.1091 mmol) was

added & refluxed overnight at 210 0C . The reaction mixture was cooled and diethyl ether was

added resulting in the precipitation of the product which was filtered, washed with diethyl ether

and recrystalised from acetone: water (1:1) mixture to get the product in full purity. (Yield: 0.248

g, 0.2016 mmol, 82 %). 1H NMR (400 MHz, DMSO), δ (ppm): 2.62 (dd, 6H), 2.66 (dd, 6H),

7.37 (m, 3H), 7.45 (d, 1H), 7.50 (d, 1H, H6ꞌ), 7.52 (dd, 1H, H5ꞌ), 7.57 (dd, 1H), 7.61 (m, 2H, H5,

H6), 7.75 (m, 3H), 7.86 (m, 2H, H5ꞌꞌ, H6ꞌꞌ), 7.91 (d, 1H), 8.31 (m, 2H, H5ꞌꞌꞌ, H6ꞌꞌꞌ), 8.82 (s, 1H,

H3ꞌ), 8.84 (s, 1H, H3), 8.88 (s, 1H, H3ꞌꞌ), 8.90 (s, 1H, H3ꞌꞌꞌ). Elemental Analysis for complex

XVI, C40H35F9IrN8O9S3; (calculated) : C :39.02, H :2.87, N :9.10; (found) : C :39.07, H :2.83, N

:9.01

5.3 Results and Discussion

5.3.1 Synthetic Considerations

[Ir(bpy)3]3+ has been prepared by reaction of iridium sulphates with bpy in a halide free

medium.27 It is considerably more difficult to bind three bpy’s to iridium (III) than it is to other

metal ions.83 The synthesis for cis-[Ir(phen)2Cl2]Cl was first described in 1964 by Chiswell et

al.,9 which was prepared in 27 % yield by heating K3IrCl6 with 1,10-phenanthroline at 220 °C for

14 h. In 1971 Broomhead et al. reported a different synthesis.84 These early examples reflect the

synthetic difficulties usually encountered when preparing simple iridium (III) complexes. Our

work focuses firstly on the preparation of [Ir(bpy)2Cl2]+ (I), [Ir(phen)2Cl2]+ (V), [Ir(dmbpy)2Cl2]+
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(VII), [Ir(dtbpy)2Cl2]+ (IX) complexes and their deuteriated analogous in high purity and yield.

Studies were carried out on the effect of deuteriation on formation of [Ir(bpy-N,N')2(bpy-C,N')]2+

(II) along with [Ir(bpy)2Cl2]+ (I). Secondly the removal of inner sphere chlorides from these

complexes forming stable triflate intermediates and coordination of new ligands there by opens a

new synthetic route towards novel homoleptic and heteroleptic tris iridium (III) polypyridyls.

A series of experiments aimed at developing an efficient high yield synthetic method for

[Ir(bpy)2Cl2]PF6 has been carried out. In these studies a variety of solvents including ethylene

glycol, ethanol, methoxyethanol, ethanol : H2O (1:1) were investigated. In addition the reaction

times were varied systematically from 25 min to 3 days.  Reaction was also carried out in the

temperature range 150 0C and 310 0C. The best results were obtained by heating IrCl3.3H2O with

bpy in glycerol at reflux temperature for 25 minutes at 300 0C.  By increasing the reaction

temperature and by using a short reaction time the formation of intermediate species and the

trans isomer were suppressed. With this method the reaction time is reduced considerably and

[Ir(bpy-N,N')2Cl2]+ (I) was obtained in high purity and in a good yield without the employment

of further purification methods such as column chromatography. The method employed has a

yield higher than the microwave synthetic method reported recently.85 A second product, [Ir(bpy-

N,N')2(bpy-C,N')]2+ (II), could be obtained from the reaction mixture by working up the

remaining reaction mixture. For the synthesis of the heteroleptic iridium complex (XVI) the

solvent and reaction temperature play a crucial role, the reaction was attempted in various

solvents but 1,2 dichlorobenzene at a refluxing temperature of 210 0C was successful. The

schematic representation of the general synthetic method followed by taking 2,2'-bipyridyl (bpy)

and 4,4ꞌ-dimethyl-2,2ꞌ-bipyridine (dmbpy) as the polypyridyl ligands are given in figure 5.4.

IrCl3.3H2O 2,2'-bipyridyl IrIII(bpy-N,N')2Cl2 + IrIII(bpy-N,N')2(bpy-C,N')- 2++ +
I II

Glycerol, 25min

300oC

IrIII(bpy-N,N')2Cl2 +

I

CF3SO3H, 2h

1,2-dichlorobenzene, 200oC
IrIII(bpy-N,N')2(CF3SO3)2

+(CF3SO3)

IrIII(dmbpy)2(CF3SO3)2 (CF3SO3)
1,2-dichlorobenzene

12h, 210oC
+ HPhpytr

XIII

XV
IrIII(dmbpy)2(HPhpytr) (CF3SO3)3

XVI

Figure 5.4 Schematic representation of the synthetic method followed.
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Attempts to precipitate the complex (I) directly at the end of the reaction mixture by adding PF6

salts resulted in a mixture of complexes (I) and (II) which was very difficult to purify

afterwards. So the method described here involves the initial precipitation of the complex as its

chloride salt, followed by precipitation of (I) by PF6 was very efficient in getting the complexes

with maximum purity. [Ir(phen)2Cl2]PF6, [Ir(dmbpy)2Cl2]PF6 and [Ir(dtbpy)2Cl2]PF6 were also

obtained in good yield.  It is worth noting that cyclometallation is not possible for these ligands,

since the H4 hydrogen atom has been substituted and only a single product is obtained,

simplifying the synthesis and increasing the yield. The structural representation of the complexes

are given in figure 5.5.

Figure 5.5 Structural representations of complexes

Past studies have shown that the inner sphere chlorides are strongly coordinated to the Ir metal

and that harsh conditions and chlorinated solvents were needed to remove these chlorides. Meyer

has reported17 this previously. His method involes firstly removing the outer sphere chloride,

purifying the resultant product and then reacting with 20 times molar excess of CF3SO3H

forming the triflate intermediate. Formation of the triflate intermediate was achieved in a single

step by using the PF6 analogue of the precursor and heating in reflux temperature for 5h with

triflic acid and precipitating by adding diethyl ether. The product was recrystallised from acetone

: diethyl ether. In the next step the triflate intermediate was heated at reflux temperature with the

polypyridyl ligand in 1,2 dichlorobenzene at 200 0C and the product was precipitated by adding
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anhydrous diethyl ether. The product was washed thoroughly with diethyl ether and hexane and

recrystallised from acetone: water mixture.

5.3.2 Characterisation - 1H NMR spectroscopy

The general numbering scheme for (I) and (II) is shown in figure 5.6 below. The 1H NMR

spectra of the reaction mixture taken directly from the preparation of complex [Ir(bpy)2Cl2]PF6

(I) on completion of the reaction (after 25 min) along with the purified complexes are given in

figure 5.7(A). By comparing the NMR spectrum of the mixture with those obtained for (I) and

(II) (figure 5.7(B) and (C)) it can concluded that apart from these two compounds no side

products were obtained. The 13C NMR spectrum of I is given in Figure 5.7(D). The bis bipyridyl

complex showed ten distinct carbons in the 13C NMR spectrum.
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Figure 5.6 General numbering schemes for the complexes

As shown in Figure 5.7(B) the spectrum of the iridium complex (I) shows the presence of two

different types of bpy rings, in agreement with a cis arrangement of the bpy ligands and the

presence of chloride ligands, similar to that observed for the analogous [Ru(bpy)2Cl2]

complexes.23,86 The 1H NMR spectrum of (II) (Figure 5.7 C) includes a doublet at δ 6.58 ppm

that integrates for 1 proton and this can be assigned to the H4 proton of the C-bonded ring from

the COSY measurements and also considering the fact that the H4 proton is situated immediately

above the pyridyl ring of an adjacent ligand and therefore will experience a high ring-current

shielding which has been shown before for similar complexes using X-Ray diffraction

methods.26 The shift is 2 ppm upfield from the position of the H4 protons in the [Ir(bpy-N,Nꞌ)3]2+
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H3
H3ꞌH6

H4

H4ꞌ
H5

H6ꞌ
H5ꞌ

complex.87 The two distinct high-field multiplets (δ 6.58 ppm and δ 7.08 ppm) are coupled and

to the resonance at δ 8.42 ppm. These three resonances are not coupled to any other resonances,

and each of the three integrates to one proton. These three correspond to protons A4, A5, and

A6. A similar upfield shift of ~2 ppm was also observed in the [Pt(bpy-N,Nꞌ)2]2+ NMR spectrum

where, on going from square-planar to a cis conformation, half of the H6 protons become

shielded by an adjacent aromatic ring.88 The proton NMR shift for complexes (I), (VII), (IX),

(XIII) and (XV) in d6 DMSO is given in   table 5.1.

Figure 5.7 1H NMR spectra (A) directly taken from the reaction mixture for h8bpy containing
complex (I) and (II), (B) [Ir(bpy)2Cl2]+(I), (C) [Ir(bpy-N,N')2(bpy-C,N')]2+(II), (D) 13C NMR of
[Ir(bpy)2Cl2]+(I) carried out in d6 DMSO.
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For complexes (V), (VII) and (IX) it was confirmed from NMR spectra and hplc traces that the

orthometallated tris complex as similar to bpy is not formed due to the steric hindrance caused by

the bulky methyl and tertiary butyl groups present on the C4 position of bipyridine ring and for

phenanthroline there is no free rotation possible. The 1H NMR spectrum of (V), (VII) and (IX)

are given in figure 5.8. The 13C spectrum for (V) and (VII) are given in figure 5.8 (D) and figure

5.8 (E). For complex (V) a total of 8 distinct protons are observed whose splitting patterns can be

clearly identified from the spectra and the peaks are also assigned on the basis of the COSY

spectrum given in figure S8 in appendix D. Similarly for complex (VII) the CH3 group on ring B

gives a 3 proton singlet observed at δ 2.53 ppm. Also the singlet for the CH3 group on ring A is

at δ 2.74 ppm.
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Figure 5.8 1H NMR spectra of (A) [Ir(phen)2Cl2]PF6 (V), (B) [Ir(dmbpy)2Cl2]PF6 (VII), (C)
[Ir(dtbpy)2Cl2]PF6 (IX), (D) 13C NMR of [Ir(phen)2Cl2]PF6 (V), (E) 13C NMR of
[Ir(dmbpy)2Cl2]PF6 (VII) carried out in d6 DMSO.

Considering the NMR of (IX), 3 CH3 groups on ring B are equivalent giving a 9 proton singlet at

δ 1.35 ppm and the 3 equivalent CH3 groups on ring A gives a 9 proton singlet at δ 1.53 ppm.

The rest of the peaks for (V), (VII) and (IX) are assigned in accordance with the 13C, COSY,

HMQC and HMBC spectra which are given in appendix D.

The chemical shifts of protons in [Ir(bpy)2Cl2]PF6, the substituted bipyridyl complexes, (VII),

(IX) and triflate complexes are given in the table 5.1 below

Complex H3 H4 H5 H6 H3ꞌ H4ꞌ H5ꞌ H6ꞌ

[Ir(bpy)2Cl2]PF6 (I) 8.93 8.52 8.12 9.65 8.82 8.20 7.51 7.83

[Ir(dmbpy)2Cl2]PF6 (VII) 8.76 - 7.93 9.42 8.66 - 7.32 7.59

[Ir(dtbpy)2Cl2]PF6 (IX) 8.92 - 8.09 9.48 8.83 - 7.48 7.62

[Ir(bpy)2(OSO2CF3)2]CF3SO3 (XIII) 9.02 8.67 8.23 9.02 8.83 8.34 7.52 7.69

[Ir(dmbpy)2(OSO2CF3)2]CF3SO3 (XV) 8.85 - 8.16 8.79 8.68 - 7.32 7.45

Table 5.1 1H NMR shift for complexes (I), (VII), (IX), (XIII) and (XV) in d6 dmso.

From the table given above it is clear about the shifting of the proton peaks as a result of

substitution of the 4 and 10 positions of bpy by methyl and tertiary butyl groups as the shifting of

H3 and H5 protons are much higher than others for (VII) and (IX) compared to (I). The removal

of the inner sphere chlorides by triflate groups results in considerable shifts to the proton peaks.
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In this case the H6 and H12 protons are influenced more, for (XIII), the H6 proton shifts upfield

to 9.02 ppm from 9.65 ppm and the H12 proton also undergoes an upfield shift to 7.69 ppm from

7.83 ppm compared with complex (I). Similarly, the H6 proton for (XV) shifts to 8.79 ppm from

9.42 ppm and H12 shifted to 7.45 ppm.

The 1H NMR spectrum of the three triflate complexes (XIII), (XIV) and (XV) are given in

figure 5.9 below.

Figure 5.9 1H NMR spectra of (A) [Ir(bpy)2(CF3SO3)2]CF3SO3, (B)[Ir(phen)2(CF3SO3)2]
CF3SO3 and (C) [Ir(dmbpy)2(CF3SO3)2]CF3SO3 carried out in d6 DMSO.
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The 1H NMR chemical shifts for the complex [Ir(phen)2Cl2]PF6 (V) and the triflate complex

[Ir(phen)2(OSO2CF3)2]CF3SO3 (XIV) are given in table 5.2. Substitution of the inner sphere

chlorides with the triflate groups result in significant change in chemical shifts which can be

clearly seen from the table 5.2 below.

Complex H2 H3 H4 H5 H6 H7 H8 H9

[Ir(phen)2Cl2]PF6 (V) 9.94 9.15 8.49 8.48 8.37 8.76 7.69 8.07

[Ir(phen)2(OSO2CF3)2]CF3SO3 (XIV) 9.42 9.33 8.57 8.70 8.40 8.80 7.72 7.97

Table 5.2 1H NMR shift for complexes V and XIV in d6 dmso.

Figure 5.10 1H NMR spectra of (A) [Ir(dmbpy)2Cl2]PF6 (VII), (B)[Ir(dmbpy)2(CF3SO3)2]
CF3SO3 (XV), (C) [Ir(dmbpy)2(HPhpytr)](CF3SO3)3 (XVI), carried out in d6 DMSO.

The 1H NMR spectrum of complexes (VII), (XV) and (XVI) are shown in figure 5.10 above. For

complex (VII) the CH3 group on ring B gives a 3 proton singlet at δ 2.53 ppm. Also the 3 proton
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singlet of the CH3 group on ring A is at δ 2.74 ppm. There is a noticable shift in the proton

signals on moving from complex (VII) to (XVI). The H6 proton at δ 9.42 ppm in (VII)

underwent a upfield shift to δ 8.79 ppm due to the presence of the strong electron withdrawing

CF3SO3 group. The H5 proton in (VII) at δ 7.93 ppm was shifted upfield to δ 8.16 ppm. The

complexation to the triazole ligand resulted in further more shifting as can be clearly seen from

figure 5.10.

5.3.3 HPLC Measurements

HPLC of the sample taken directly from the reaction mixture for [Ir(bpy)2Cl2]PF6 indicates three

peaks (figure 5.11a). Peak 1 with a retention time of 1.69 min, peak 2 with 2.33 min and peak 3

having a retention time of 10.44 min. The peak area counts obtained for the 2nd and 3rd peaks

indicate that the 3rd peak is 34 % of that of the 2nd one. Peak 2 showed an absorption maxima at

282 nm and third peak showed an absorption maxima of 277 nm. By running h8bpy in the HPLC

one peak was obtained with a retention time of 1.69 min which clearly indicates that the first

peak is unreacted bpy. The second peak corresponds to [Ir(bpy)2Cl2]PF6 which is confirmed by

NMR, absorption and emission spectroscopy. HPLC of the purified fraction 1 (figure 5.11b)

indicates only one peak with a retention time of 2.33 min, and an absorption maximum at 282

nm corresponding to [Ir(bpy)2Cl2]PF6. The third peak having a retention time of 10.44 min is

[Ir(bpy-N,N')2(bpy-C,N')]2+ (fraction 2) confirmed by NMR.

HPLC of the sample taken directly from the reaction mixture for [Ir(d8bpy)2Cl2]PF6 indicates

three peaks (figure 5.11c). The first peak has a retention time of 1.67 min corresponding to the

unreacted bpy, the second peak at 2.28 min corresponds to [Ir(d8bpy)2Cl2]PF6 (fraction 1) and the

third peak having a retention time of 10.71 min is that of [Ir(d8bpy-N,N')2(d8bpy-C,N')]2+

(fraction 2). The peak area counts obtained for the 2nd and 3rd peaks indicate that the 3rd peak is

25 % of that of the 2nd one. Peak 2 showed absorption maxima of 282 nm and peak 3 showed

absorption maxima of 276 nm. HPLC of the purified fraction 1 (Figure 5.11d) indicates only one

peak with retention time 2.28 min, an absorption maxima of 283 nm, corresponding to

[Ir(d8bpy)2Cl2]PF6.
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Fig 5.11a.HPLC plot of [Ir(bpy)2Cl2]+directly from Fig 5.11b. HPLC plot of purified [Ir(bpy)2Cl2]+

reaction mixture.

Fig 5.11c.HPLC plot of [Ir(d8bpy)2Cl2]+directly from Fig 5.11d. HPLC plot of purified [Ir(d8bpy)2Cl2]+

reaction mixture.

5.3.4 Time Dependent Study of the reaction mechanism of IrCl3 with h8 bpy using

HPLC and NMR

In the course of the reaction of IrCl3 with 2,2'-bipyridine at 300 0C the formation of two products

[Ir(bpy)2Cl2]+ and [Ir(bpy-N,N')2(bpy-C,N')]2+ was observed. To obtain further information

concerning the reaction pathway as a function of time, HPLC (figure 5.12) and NMR (figure

5.13) data were obtained at 5 min intervals from the reaction mixture starting from 5 min up to

25 min which provides a good insight into the progress of the reaction. The HPLC data are

clearly indicative of the formation of different species and by comparing with the NMR spectrum

for the same time intervals the formation of both complexes (I) and (II) start at 15 min. This can

be clearly distinguished from the peaks obtained for the NMR spectrum. By comparing Figure
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5.12c and Figure 5.12d with Figure 5.13c and Figure 5.13d confirms the formation of the

orthometallated species.

a b

c d

e

Figure 5.12 Time dependent HPLC data for reaction of IrCl3 with h8bpy at different time
intervals ranging from 5 min to 25 min.  a) 5 min b) 10 min c)15 min d) 20 min e) 25 min.
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H5 H4

Figure 5.13 Time dependent NMR data for the reaction of IrCl3 with h8bpy at different time
intervals ranging from 5 min to 25 min. a) 5 min  b) 10 min  c) 15 min   d) 20 min. e)25 min.
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From Figure 5.12 (a) two peaks were identified with retention times of 1.69 min and 2.33 min.

These samples were injected 5 min after the start of the reaction. The former peak is assigned to

bpy and latter to [Ir(bpy)2Cl2]+ (I). The 1H NMR spectra shown in Figure 5.13 supports the

identity of both peaks. After 10 min the intensity of 2nd peak has increased showing that more of

complex I is formed by the reaction of starting materials, and the first peak has become more

structured possibly because of the formation of an intermediate chloro bridged iridium dimer in

which one bpy is complexed to each Ir metal which undergoes cyclometallation,89 which is

evident from the doublet at δ 6.5, multiplet at δ 6.85 ppm and δ 9.75 ppm given in Figure

5.13(b). After 15 min the first peak in HPLC at 1.69 min splits into two, corresponding to the

unreacted bpy and the intermediate species. In Figure 5.12(c) the upcoming 3rd peak at retention

time 10.44 min corresponds to [Ir(bpy-N,N')2(bpy-C,N')]2+ (II) evident from the δ 6.58 ppm H4

proton doublet and δ 7.08 ppm multiplet. At 20 min most of the intermediates get converted into

complex (II) which is evident from HPLC Figure 5.12(d) and NMR Figure 5.13(d), as the peaks

at δ values 6.5 ppm, 6.85 ppm and 9.75 ppm have disappeared on going from 15 min to 20 min.

At 25 min almost all of the bipyridine has reacted and are left with the final two products. The

study was continued up to 1.5 hours which showed that most of the metal was charred at this

high temperature resulting in a decreased yield of 30 %. No side products are formed, as found in

the conventional reaction of Ir metal with bpy, by employing a higher temperature which

resulted in the formation of only two products at the end of the reaction as shown in figures 5.12

and 5.13.

The deuteriation effect study provided promising results on the formation of complex (II)

through an intermediate species. The use of deuteriated bpy (d8bpy), results in a reduced yield of

complex (II) due to the greater bond strength of C-D bond over the C-H bond. The ratio of (I)

and (II) for h8bpy and d8bpy tabulated using HPLC and NMR are given in Table 5.3. The ratio of

the two products can be obtained both from the 1H NMR as well as the HPLC data. For h8bpy

NMR analysis indicates that the ratio of I:II is 67:33, with HPLC ratio of 66:34 is obtained. For

the deuteriated analogues a ratio of 75:25 is determined from HPLC.  This is in agreement with

the increased bond strength of C-D bond over the C-H bond.
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HPLC 1H NMR

I II I II

h8 66 34 67 33

d8 75 25 NA NA

Table 5.3 Ratio of the two products obtained in two different cases calculated from HPLC and
NMR data.

5.3.5 Absorption Properties

The absorption and emission properties of iridium (III) bis polypyridyl and tris polypyridyl

complexes were outlined in section 5.1.1 but to summarise, the tris polypyridyl complexes

typically have a lowest excited state which is classified as being associated with a ligand

localised π-π* transition.27,31,41 The UV absorption spectra of the complexes [Ir(phen)3]3+ and

[Ir(bpy)3]3+ are both π-π* in nature and do not exhibit any clear evidence for d-π* and d-d

bands.31 In the case of bis polypyridyl complexes the energy gap between the π-π* state and d-π*

state is small. At room temperature emission is seen from the lowest lying π-π* state with a

slight contribution from the d-π* state. The absorption and emission measurements coupled with

the lifetime measurements carried out at both room temperature (298 K) and low temperature (77

K) give a clear indication of the nature of  the emitting states in these polypyridyl complexes.

The UV spectra of complex [Ir(bpy)2Cl2]PF6 along with its deuteriated analogue and 2,2ꞌ-

bipyridine (bpy) which are typical of the spectra obtained for the iridium (III) dichloride

complexes discussed in this chapter, are given in figure 5.14 below.

The absorption spectra of (I) and (III) clearly show a red shift compared to the absorption

spectrum of the free ligand as a consequence of complex formation. The visible absorption

spectrum of [Ir(bpy)2Cl2]PF6 (I) consists of a weak band at 380 nm which has been assigned as a

metal to ligand charge transfer d-π* transition. The absorption features in the range of 250-300

nm in these type of polypyridyl complexes are probably due to π-π* transitions. The assignments

are made by comparing the results with the reported publications20,21 explained in section 5.1.1.
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Figure 5.14 Absorption spectra of complexes (I) and (III) along with bpy obtained in
spectroscopic grade ACN (Conc. 1×10-4 mol L-1).

The absorption data for complexes I, II, III and IV are tabulated in table 5.4 below.

Table 5.4 Absorption and extinction coefficients for complexes (I), (II), (III) and (IV) measured
at 298 K in spectroscopic grade acetonitrile.

Figure 5.15 shows the absorption spectra of [Ir(phen)2Cl2]PF6 (V) and [Ir(dpphen)2Cl2]PF6 (XII).

The absorption bands at 265 nm and 275 nm for complex [Ir(phen)2Cl2]PF6 (V) have been

assigned as phen(π)→phen(π*) transitions.20,21 These bands are red shifted compared to the

absorption spectra of the free ligand as a result of complex formation. Also two bands, one at

338 nm, and the second at 390 nm, seen in the absorption spectra of complex (V) are assigned to

a d-π* transition.

Complex Absorption λabs (nm)
ε (LM-1cm-1)x 103

[Ir(h8bpy)2Cl2]PF6 (I) 239(17.90),280(17.99), 302(1.52),380(1.73)

[Ir(h8bpy-N,Nꞌ)2(h8bpy-C,Nꞌ)](PF6)2 (II) 296(1.68), 310(1.50), 357(1.74)

[Ir(d8bpy)2Cl2]PF6 (III) 239(18.12),280(18.67),302(1.15),380(1.62)

[Ir(d8bpy-N,N')2(d8bpy-C,N')](PF6)2 (IV) 304(1.77), 310(1.74), 350(1.50)
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Figure 5.15 Absorption spectra of complexes (V) and (XIII) taken in spectroscopic grade ACN
(Conc. 1×10-4 mol L-1).

For the complex [Ir(dpphen)2Cl2]PF6 (XII) the bands at 290 nm and 330 nm are assigned as

dpphen(π)→dpphen(π*) transitions. For (XII) the band due to d-π* transition is at the lower

energy of 405 nm. The introduction of electron withdrawing diphenyl groups at 4 and 7 positions

resulted in a red shift in the absorption spectra of (XII) compared to (V). The assignments are

made by a comparison of the absorption spectra of [Ir(bpy)2Cl2]PF6 (I) in figure 5.14 and the

previous references.20-30
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Figure 5.16 Absorption spectra of complexes (VII), (IX) and (XI) taken in spectroscopic grade
ACN (Conc. 1×10-4 mol L-1).
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The effect of substitution on the absorption spectra of iridium polypyridyl complexes becomes

clearer from the data given in figure 5.16 which shows the absorption spectra of complexes

(VII), (IX) and (XI). By comparing the absorption spectra in figures 5.14 and 5.15, the

absorption bands for these complexes are also assigned as π-π* in the UV region and d-π* bands

in the visible region. Complex (VII) has a methyl group at the 4 and 4ꞌ position and complex

(IX) has a tertiary butyl group at the 4 and 4ꞌ position of the bipyridine. Interestingly from the

spectra given above substitution of the bipyridine ligand with electron donating groups resulted

in a slight blue shift of the bands in the UV region. The band at 280 nm which is due to

bpy(π)→bpy(π*) transitions (figure 5.12) was slightly blue shifted to 275 nm, due to

dmbpy(π)→dmbpy(π*) transitions in (VII) and 274 nm which is due to a dtbpy(π)→dtbpy(π*)

transition. The rest of the spectrum does not undergo any change as a result of the substitution.

For complex (XI) which has a phenyl group at the 4 and 4ꞌ positions, resulted in a considerable

red shift in the spectrum as can be seen from the graphs above. The π→π* transitions at 280 nm

and 302 nm in (I) was considerably red shifted to 290 nm and 330 nm. The d-π* band at 380 nm

in (I) also red shifted to 405 nm in (XI). The tabulated data for the absorption and extinction

coefficients are given in Table 5.5

Table 5.5 Absorption and extinction coefficients of complexes measured at 298K in
spectroscopic grade acetonitrile.

There is no change in the absorption spectra as a result of deuteriation which can be clearly seen

from the absorption spectra of the deuteriated analogoues of bpy, dmbpy and dtbpy given in

Complex Absorption λabs (nm)
ε (LM-1cm-1)x 103

[Ir(phen)2Cl2]PF6 (V) 265(39.85),275(34.86), 338(5.87),390(2.74)
[Ir(d8phen)2Cl2]PF6 (VI) 265(37.12),275(32.43), 338(4.16),390(1.02)
[Ir(dmbpy)2Cl2]PF6 (VII) 275(13.67),311(8.73), 341(2.38),385(1.39)

[Ir(d12dmbpy)2Cl2]PF6 (VIII) 275(12.36),311(7.85), 341(1.12),385(1.01)
[Ir(dtbpy)2Cl2]PF6 (IX) 274(23.52),308(15.44), 340(3.98),383(2.22)

[Ir(d24dtbpy)2Cl2]PF6 (X) 274(22.32),308(14.19), 340(2.15),383(1.06)
[Ir(dpbpy)2Cl2]PF6 (XI) 290(14.95),330(6.74),405(1.72)

[Ir(dpphen)2Cl2]PF6 (XII) 290(20.49),330(9.13),405(2.33)
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appendix D. The absorption spectra of the deuteriated analogues of bpy, dmbpy and dtbpy gave

exactly the same spectra as those of their proton counterparts.

The triflate intermediate species show considerable change in the absorption spectra as a result of

substitution of the inner sphere chlorides with the strong electron donating triflate groups. In

figure 5.17 the band at 311 nm in complex (VII) which has been assigned to a

dmbpy(π)→dmbpy(π*) transition, split, to give two bands at 302 nm and 313 nm in (XVI) which

both are assigned as π-π* transitions by comparison with the spectra of similar complexes (in

figure 5.14). The substitution of Cl- with the strong electron donating triflate group inside the co-

ordination sphere can result in an increase in crystal field parameter, Δ0, resulting in the increase

in energy of d-π* bands as reported before.29 This resulted in a blue shift in the absorption

spectra of the triflate complex (XV) compared to the chloride complex (VII). The absorption

spectra of the complexes along with the extinction coefficients are given in table 5.6
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Figure 5.17 Absorption spectra of complexes (VII), (XV) and (XVI) in spectrometric grade ACN
(Conc. 1×10-4 moles/lit).

Table 5.6 Absorption and extinction coefficients of complexes XIII, XV and XVI measured at 298
K in spectrometric grade acetonitrile.

Complex Absorption λabs (nm)
ε (LM-1cm-1)x 103

[Ir(bpy)2(OSO2CF3)2]CF3SO3 (XIII) 252 (20.36), 307 (16.20), 316 (4.78), 355 (1.32)
[Ir(dmbpy)2(OSO2CF3)2]CF3SO3 (XV) 247 (24.25), 303 (7.73), 315 (8.64), 355 (0.62)

[Ir(dmbpy)2(HPhpytr)](CF3SO3)3 (XVI) 253 (29.43), 302 (5.01), 313 (4.92), 355 (1.03)
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5.3.6 Emission Measurements

Compared to ruthenium complexes of the type [Ru(L)3]2+, where L = 2,2ꞌ-bipyridine or 1,10-

phenanthroline whose electronic properties result from metal to ligand (d-π*) transitions, for

[Ir(L)3]3+ complexes, the lowest excited state is classified as a ligand localised π-π* transition at

both room temperature (298 K) and low temperature (77 K).90 But for [Ir(L)2Cl2]+ complexes,

where L = 2,2ꞌ-bipyridine or 1,10-phenanthroline, the energy gap between π-π* and d-π* states is

small and under thermally equilibrated conditions the mixing of states can take place and the

emission can be from both. Previous results suggested that at room temperature (298 K) emission

takes place from an equilibrated (π-π*)-(d-π*) excited state for these complexes.10,20,21,47 The

photophysical properties of iridium (III) bis heteroleptic complexes can be quite intricate with

dual emissions being distinctly possible. Crosby et al. and Watts et al.53,54 observed multiple

emissions for bisheteroleptic iridium (III) complexes [Ir(phen)(5,6-dmphen)Cl2]Cl and

[Ir(phen)(4,7-dmphen)Cl2]Cl, and these multiple emissions are assigned as from thermally

nonequilibrated states of d-π* and π-π*.52,91 Almost all of the complexes detailed in this chapter

exhibited multiple emissions at 77 K. This can be explained much more clearly by considering

the lifetime results obtained for these complexes and their deuteriated analogoues at 298 K and

77 K, which is explained in detail in sections 5.3.7 and 5.3.8.

All of the iridium polypyridyl complexes reported here exhibit luminesence between 450-550 nm

at room temperature in acetonitrile solution. The excitation wavelength for almost all of the

compounds was recorded at 380 nm which is considered to be a d-π* transition as explained

before.52 The low temperature emission spectra for all the complexes are blue shifted in

comparison to the room temperature emission. At low temperature the system forms a glass in

which there will not be any movement possible for the molecules present in the system, so the

quenching occuring as a result of molecular collisons is eliminated, resulting in increased

intensity of emission. The dual emission can originate from a mixture of structural isomers or

from a ground-state association process, and emission originating from a second nonequilibrated

electronic excited state. The absence of evidence of impurities in NMR, CHN and HPLC

analysis and adherence of solutions to Beer-Lambert’s law over the concentration range studied,

suggests that dual emission of these complexes is not due to any impurities but rather due to
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emission from an nonequilibrated excited state. For all of these complexes the emission

maximum is independent of the excitation wavelength.
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Figure 5.18 Normalised emission spectra of complex I at 298 K ( ) measured in spec grade
ACN and 77 K (      ) measured in EtOH : MeOH (4:1) glass. λex=380 nm.

Figure 5.18 given above shows the emission spectra of complex [Ir(bpy)2Cl2]PF6 (I) at room

temperature (298 K) and low temperature (77 K).  This is taken as the standard for comparing the

results obtained for the analogous complexes in this chapter as the assignment of the excited

state for this complex was studied in detail by Watts and Crosby.10,20,21,47 By comparison with the

reported publications for this complex as given in section 5.1.1, the room temperature emission

at 500 nm is assigned to a mixed (π-π*)-(d-π*) excited state. The lifetime measurements carried

out using TCSPC showed a biexponential decay curve at room temperature with one component

having a longer lifetime in the range of 300-500 ns which is attributed to a decay from a π-π*

excited state, and this long lived component almost doubled as a result of deuteriation of the

polypyridyl ligand (table 5.9). The second component is short lived with a lifetime <10 ns and

may possibly be emission from a d-π* state which lies very close to the π-π* state. Deuteriation

of the polypyridyl ligand does not have much influence on this short lived component (table 5.9).

Even though the π-π* and d-π* state exist in very close proximity, the π-π* state has slightly

lower energy than the d-π* state on the basis of the deuteriation effect study on lifetimes of these
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complexes explained in section 5.3.7. The low temperature emission (77 K) spectra for

[Ir(bpy)2Cl2]PF6 (I) is blue shifted and showed two bands at 470 nm and 498 nm. The lifetime

was measured at these two different wavelengths using laser flash photolysis (table 5.15 of

section 5.3.8) and for both of them the decay obtained was monoexponential. The lifetimes

obtained from both excitation wavelengths were similar (11 μs) from which it is assumed that the

nature of the excited state for both these emission bands at 77 K to be quite similar.
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Figure 5.19 Normalised emission spectra of complex V at 298 K ( ) measured in spectroscopic
grade ACN and 77 K (      ) measured in EtOH : MeOH (4:1) glass. λex=380 nm.

The room temperature (298 K) and low temperature (77 K) emission spectra for

[Ir(phen)2Cl2]PF6 (V) are given in figure 5.19 above. The emission spectra are compared with the

results obtained for complex (I) in figure 5.18 along with the lifetime measurements at 298 K

and 77 K which helped in assigning the excited state of this complex. The band at 530 nm

observed in room temperature measurement is assigned to an emission from the mixed

(π-π*)-(d-π*) excited state as it is clear from the lifetime measurements, having a dual

exponential decay with a short lived and long lived components (table 5.10). The low

temperature emission gives two bands one at 473 nm and the second band at 504 nm. The

lifetime measurements at these wavelengths gave similar lifetimes so it is assumed to be from

excited states of similar nature. The lifetime results at 298 K and 77 K are explained in detail in
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sections 5.3.7 and 5.3.8. The room temperature (298 K) and low temperature (77 K) emission of

the deuteriated analogues of the complexes (I) and (V), [Ir(d8bpy)2Cl2]PF6 (III) and

[Ir(d8phen)2Cl2]PF6 (VI) along with complexes [Ir(dmbpy)2Cl2]PF6 (VII) and [Ir(dtbpy)2Cl2]PF6

(IX)  and their deuteriated analogous [Ir(d12dmbpy)2Cl2]PF6 (VIII) and [Ir(d24dtbpy)2Cl2]PF6 (X)

are given in appendix D.

The emission of these polypyridyl complexes can be influenced by the introduction of various

electron donating and electron withdrawing groups thereby tuning the emission spectrum.49,100

The emisson spectrum for [Ir(bpy)2Cl2]PF6 and the corresponding polypyridyl complexes with

various substitution on the 4 and 4ꞌ carbon atoms are given in figure 5.20 (a) below. Complexes

(VII) and (IX) have electron dontaing methyl groups and tertiary butyl groups as the

substituents. Substitution by methyl group doesn’t have an impact on the emission band as there

is no change in the emission wavelength. For complex (IX) which has a more efficient electron

donating tertiary butyl group, a slight red shift was observed.49 Interestingly substitution of the

electron withdrawing phenyl groups on 4 and 4ꞌ position of bpy resulted in considerable red shift

in emission spectrum as the band at 500 nm for complex (I) was red red shifted to 520 nm, which

is just the reverse of the result obtained in the case of phenyl substitution of 1,10-phenanthroline.

For [Ir(dpphen)2Cl2]PF6 a slight blue shift of 10 nm in emission was observed.10

The room temperature emission spectra for the novel Ir (III) tris heteroleptic triazole complex

[Ir(dmbpy)2(Hphpytr)](CF3SO3)3 (XVI) is given in figure 5.20(b). This complex is the first

example of a heteroleptic tris Ir (III) complex, with a triazole ligand. The emission spectra of the

complex (XVI) shows a main peak at 495 nm, and a shoulder at 470 nm which was absent in the

case of the other bis(polypyridyl)2Cl2 complexes. The lifetime was measured at these two

emission wavelengths (table 5.14), and data showed that the decay was biexponential in both the

cases with a short and a long lived component. Based on this result the decay is attributed to a

mixed (π-π*)-(d-π*) excited state.
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Figure 5.20 (a) Emission spectra of complexes I, VII, IX, XI and XII in spec grade ACN, (Conc.

1×10-4 moles/lit), λex=380 nm (b) Emission spectra of complexes VII, XV and XVI in spec grade

ACN, (Conc. 1×10-4 moles/lit), λex=380 nm.

The emission data for all the complexes described in this section at both room (298 K) and low

temperature (77 K) are tabulated, along with the quantum yields in tables 5.7 and 5.8 below. The

quantum yields obtained for these complexes are comparatively less than the cyclometallated Ir

(III) complexes.51,60 It was anticipated that the deuteriated analogous would have a higher

quantum yield than the protonated complexes, but from the result given in table 5.7, quantum

yields for the deuteriated analogous are less than the protonated complexes. Further detailed

measurements are required in order to provide an explanation for this behaviour. Interestingly the

tris heteroleptic complex (XVI) showed a quantum yield much higher than its precursor complex

(VII). The emission spectra for these two complexes, given in figure 5.20 (b) demonstrates that

the tris heteroleptic complex has an intensity 10 times greater than the precursor complex at the

same concentration. This shows the importance of synthesising analogous tris complexes with

different triazole ligands, as it improves the quantum yields for these complexes which makes

their potential application in organic light emitting diodes (OLED’s) more likely.65 The

wavelength dependent emission spectrum for all these complexes were carried out by

considering different bands in the absorption spectra which is given in appendix D. The results

show that emission is independent of the excitation wavelength.
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Table 5.7 Emission (298 K measured in spec grade ACN and 77 K measured in EtOH : MeOH
(4:1) glass. λex=380 nm) and quantum yield (298 K) measured in spec grade ACN using
[Ru(bpy)3]2+ 92 as a standard, all samples had the same absorbance.

Table 5.8 Emission and quantum yield of complexes (XI), (XII), (XV) and (XVI) measured at
298K in spectroscopic grade ACN (λex=380 nm).

5.3.7 Life Time Measurements using TCSPC

The instrumentational procedures and conditions that were used to carry out the excited state

lifetime measurements using TCSPC have been detailed in Chapter 2. Using TCSPC it is

possible to measure excited state lifetimes in the region 1 ns to 10 μs, and laser flash photolysis

was used for measuring lifetimes above 10 μs. It should be noted that all the excited state

lifetimes reported here are ± 5 % and that two methods were used for analysing the quality of the

data acquired a) χ2 goodness of fit test and b) analysis of the residuals plot.  A χ2 value as close

as possible to 1 is ideal and χ2 values between 1 and 1.1 were obtained for all the data reported in

this chapter. When the samples were initially measured all showed some multi-exponential

behaviour.  In order to verify this, the lifetimes were measured in two different time ranges for

Complex
Emission
(298K)

λmax (nm)

Emission
(77K)

λmax (nm)

Quantum
Yield

[Ir(h8bpy)2Cl2]PF6 (I) 500 470, 498 0.057
[Ir(d8bpy)2Cl2]PF6 (III) 500 470, 498 0.052
[Ir(phen)2Cl2]PF6 (V) 530 473, 504 0.047

[Ir(d8phen)2Cl2]PF6 (VI) 530 473, 504 0.039
[Ir(dmbpy)2Cl2]PF6 (VII) 502 470, 502 0.019

[Ir(d12dmbpy)2Cl2]PF6 (VIII) 502 470, 502 0.011
[Ir(dtbpy)2Cl2]PF6 (IX) 508 468, 490 0.030

[Ir(d24dtbpy)2Cl2]PF6 (X) 508 468, 490 0.021

Complex
Emission
(298K)

λmax (nm)

Quantum
Yield

[Ir(dpbpy)2Cl2]PF6 (XI) 520 0.195
[Ir(dpphen)2Cl2]PF6 (XII) 520 0.194

[Ir(dmbpy)2(OSO2CF3)2]CF3SO3 (XV) 450,477,505 -
[Ir(dmbpy)2(HPhpytr)](CF3SO3)3 (XVI) 470,495 0.310
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each complex and the results obtained were comparable at these two different time ranges for

each of the complexes. All the measurements were also carried out with a laser (λex = 355 nm) at

298 K and the results obtained were quite similar to the values obtained using TCSPC. A

difference of ±20 ns between both methods were observed. All the 77 K measurements were

done using the laser flash photolysis.

The application of deuteriation has been discussed in Chapter 2 and also in this chapter in

relation to its contribution in assigning 1H NMR spectra. Deuteriation is a useful tool in

photophysical studies86 in order to assign the lowest excited states from which emission takes

place. Deuteriation has the effect of reducing both the amplitude and the frequency of vibrational

modes and as a result C-D vibrations occur at lower frequency and amplitude than the equivalent

C-H vibrations. Thus the vibrational overlap between two states will be diminished for the same

energy gap and as non-radiative deactivation is less effective in the deuteriated case it results in

an increase in the observed lifetime of the electronically excited state.86 It has been shown that

this observation may be used for the determination of the location of the excited state in

iridium (III) complexes previously studied by Watts.30

From the absorption spectra for the [Ir(polypyridyl)2Cl2]+ complexes it is clear that two

absorption bands, π-π* bands in the UV region and d-π* bands in the visible region were

observed of which the former one dominates with a much higher extinction coefficient than the

latter as per the studies and measurements done with these complexes described in section 5.3.5.

From the emission measurements performed on these complexes, which was explained in detail

in section 5.3.6, at room temperature (298 K) only one emission maximum was observed. This

was assigned to originate in a mixed (π-π*)-(d-π*) excited state. The luminesence lifetime decay

was biexponential for all the polypyridyl complexes studied with the longer lifetime (τ2) assigned

to emission from a π-π* excited state and the shorter lifetime (τ1), orginates from a d-π* excited

state which exist in close proximity to the π-π* state. The lifetime of the deuteriated analogoues

of these [Ir(polypyridyl)2Cl2]+ complexes showed a prominent increase in the longer lifetime

(τ2), which is almost doubled but no change for the shorter lifetime (τ1). This is due to the fact

that deuteriation increases the lifetime of the ligand centered π-π* state but does not affect the
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lifetime of the d-π* state. Eventhough both π-π* and d-π* excited states lies very close in energy,

the lowest lying excited state is the π-π* state from which emission was observed at 298 K.

For the [Ir(bpy)2Cl2]PF6 (I) complex the lifetime decay curve obtained is given in figure 5.21 (a).

From the decay curve recorded at 495 nm, it is clear that the decay is biexponential. The short

lived component has a lifetime of 5 ns (τ1) which contributes 3 % and is assigned to a decay from

a d-π* excited state. The long lived component has a lifetime of 353 ns (τ2) which contributes

97 % and is assigned to a decay from a π-π* excited state. The χ2 value for the fit is 1.010

indicating close fit to experimental data and the residual plot curve given in figure 5.21 (a) also

shows the perfection of the fit.  The average lifetime (τav) calculated is 353 ns.
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Figure 5.21 Lifetime decay plots for complex [Ir(bpy)2Cl2]PF6 (I) (a) at a time range of 500 ns
(b) at a time range of 1 μs in aerated spec grade ACN (298K).

The effect of deuteriation on the excited state lifetime especially on the long lived π-π* excited

state can be clearly seen from the decay curve for [Ir(d8bpy)2Cl2]PF6 (III) (figure 5.22 (a)). From

the decay curve recorded at 495 nm it is clear that the decay is biexponential. The short lived

component has a lifetime of 7 ns (τ1) which contributes <1 % and is assigned to a d-π* excited

state as this value did not change substantially from the protonated one which gave a lifetime of

5 ns. The long lived component has a lifetime of 691 ns (τ2) which contribute 99 % and is
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assigned to a decay from π-π* excited state based on the results obtained for the π-π* excited

state decay for the protonated analogue which was 353 ns. The χ2 value for the fit is 1.083. The

lifetime decay curve obtained for [Ir(d8bpy)2Cl2]PF6 (III) is given in Figure 5.22 (b).

The data including the short lived and long lived lifetimes, their relative percentages and the

average lifetime are given in table 5.9. The deuteriation effect on the excited state lifetimes is

evident from this table. Deuteriation of the peripheral bipyridine ligand resulted in almost

doubling of the lifetime of the complex which shows that the lowest lying excited state for the

complex is π-π* state at room temperature.
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Figure: 5.22 Lifetime decay plots for complex [Ir(d8bpy)2Cl2]PF6 (III) (a) at a time range of 1 μs
(b) at a time range of 2 μs in aerated spec grade ACN solution (298K).
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Complex Wavelength,
λem

Timebase
(ns)

Lifetime
(ns)

Relative
%

Avg.
Lifetime,ns

[Ir(bpy)2Cl2]PF6
(I)

500 500
τ 1 – 5 3

τav - 353τ 2 – 353 97
χ2 – 1.010

[Ir(d8bpy)2Cl2]PF6
(III)

500 1000
τ 1 – 7 0.4

τav - 691τ 2 – 691 99
χ2 – 1.083

Table 5.9 Tabulated lifetiemes and their relative percentage for complexes (I) and (III) at
various time bases.

The luminesence decay lifetimes for complexes [Ir(phen)2Cl2]PF6, [Ir(dmbpy)2Cl2]PF6,

[Ir(dtbpy)2Cl2]PF6 and their deuteriated analogoues [Ir(d8phen)2Cl2]PF6, [Ir(d12dmbpy)2Cl2]PF6,

[Ir(d24dtbpy)2Cl2]PF6 were all measured at room temperature (298 K) using TCSPC. The results

were analysed by taking into consideration the data obtained for complex [Ir(bpy)2Cl2]PF6 and

its deuteriated analogoue described in detail above (figure 5.21, 5.22 and table 5.9). The decay

curves given in figure 5.23 shows that all of these complexes are biexponential with a shorter

lifetime assigned to a d-π* excited state and the long lived component orginating from the π-π*

excited state. Further support of the assignment is obtained from the deuteriation effect shown by

all these complexes. The long lived lifetime almost doubled upon deuteriation which clearly

shows that the lowest lying excited state is the π-π* state, the short component does not show

any difference, thus indicating the possibility of a decay from d-π* excited state. All data

including the short lived and long lived lifetimes, their relative percentages and the average

lifetimes for all these complexes are given in tables 5.10, 5.11 and 5.12.
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Figure: 5.23 (a) Lifetime decay plot for complex [Ir(phen)2Cl2]PF6 (V) at a time range of 1 μs
(b) Lifetime decay plot for complex [Ir(d8phen)2Cl2]PF6 (VI) at a time range of 1 μs (c) Lifetime
decay plot for complex [Ir(dmbpy)2Cl2]PF6 (VII) at a time range of 1 μs (d) Lifetime decay plot
for complex [Ir(d12dmbpy)2Cl2]PF6 (VIII) at a time range of 1 μs (e) Lifetime decay plot for
complex [Ir(dtbpy)2Cl2]PF6 (IX) at a time range of 1 μs (f) Lifetime decay plot for complex
[Ir(d24dtbpy)2Cl2]PF6 (X) at a time range of 1 μs. All measurements were done in aerated spec
grade ACN solution (298K).
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Complex Wavelength
λem

Timebase
(ns)

Lifetime
(ns)

Relative
%

Avg.
Lifetime,ns

[Ir(phen)2Cl2]PF6
(V)

530

500
τ 1 – 17 0.9

τav - 292τ 2 – 292 99
χ2 – 1.083

[Ir(d8phen)2Cl2]PF6
(VI) 2000

τ 1 – 27 0.3
τav - 614τ 2 – 614 99

χ2 – 1.014

Table 5.10 Tabulated lifetiemes and their relative percentage for complexes (V) and (VI)
measured in spec grade ACN at room temperature (298 K).

Complex Wavelength,
λem

Timebase
(ns)

Lifetime
(ns)

Relative
%

Avg.
Lifetime,ns

[Ir(dmbpy)2Cl2]PF6
(VII)

500

500
τ 1 – 2 0.8

τav - 241τ 2 – 241 99
χ2 – 1.018

[Ir(d12dmbpy)2Cl2]PF6
(VIII) 1000

τ 1 – 4 0.9
τav - 461τ 2 – 461 99

χ2 – 1.013

Table 5.11 Tabulated lifetiemes and their relative percentage for complexes (VII) and (VIII)
measured in spec grade ACN at room temperature (298 K).

Complex Wavelength,
λem

Timebase
(ns)

Lifetime
(ns)

Relative
%

Avg.
Lifetime,ns

[Ir(dtbpy)2Cl2]PF6
(IX)

508

500
τ 1 – 12 2

τav - 284τ 2 – 284 98
χ2 – 1.000

[Ir(d24dtbpy)2Cl2]PF6
(X) 2000

τ 1 – 1 2
τav - 592τ 2 – 592 98

χ2 – 1.023

Table 5.12 Tabulated lifetiemes and their relative percentage for complexes (IX) and (X)
measured in spec grade ACN at room temperature (298 K).

The room temperature (298 K) decay curve for complexes [Ir(dpbpy)2Cl2]PF6 and

[Ir(dpphen)2Cl2]PF6 are given in figure 5.24. Both the complexes showed biexponential decays

with the shorter component arising from the d-π* excited state and the longer component arising

from π-π* excited state, based on prior studies.
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Figure: 5.24 (a) Lifetime decay plot for complex [Ir(dpbpy)2Cl2]PF6 (XI) at a time range of 1 μs
(b) Lifetime decay plot for complex [Ir(dpphen)2Cl2]PF6 (XII) at a time range of 1 μs, both are
measured in spec grade aerated ACN solution (298K).

Complex Wavelength,
λem

Timebase
(ns)

Lifetime
(ns)

Relative
%

Avg.
Lifetime,ns

[Ir(dpbpy)2Cl2]PF6
(XI)

520
1000

τ 1 – 8 0.5
τav – 680τ 2 – 680 99

χ2 – 1.052

2000
τ 1 – 7 1

τav - 698τ 2 – 698 99
χ2 – 1.048

Table 5.13 Tabulated lifetiemes and their relative percentage for complex (XI) measured in
spectroscopic grade ACN at room temperature (298 K).

For [Ir(dmbpy)2(HPhpytr)](CF3SO3)3 (XVI) the lifetime decay curves obtained at two different

emission wavelengths, 470 and 495 nm are given in figure 5.25 (a) and 5.25 (b) below. From the

decay curve it is clear that both the decays are biexponential. Figure 5.25 (a) gives the lifetime

deacay curve at 470 nm. The short lived component has a lifetime of 44 ns (τ1) which contributes

7 % , the long lived component has a lifetime of 343 ns (τ2) which contributes 93 %. The χ2

value for the fit is 1.001 indicating close fit to experimental data. The lifetime decay curve

obtained at 495 nm at a time base of 1 μs is given in figure 5.25 (b). From the decay curve it is

clear that the decay is biexponential. The decay was obtained at an emission wavelength of 495

nm. The short lived component is having a lifetime of 48 ns (τ1) which contributes 10 % , the

long lived component is having a lifetime of 338 ns (τ2) which contributes 90 %.
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Figure: 5.25 Lifetime decay plots for complex [Ir(dmbpy)2(HPhpytr)](CF3SO3)3 (XVI) (a) at a
wavelength of 470 nm (b) at a wavelength of 495 nm in aerated spec grade ACN solution (298K).

Complex Wavelength,
λem

Timebase
(ns)

Lifetime
(ns)

Relative
%

Avg.
Lifetime,ns

[Ir(dmbpy)2(Hphpytr)]
(CF3SO3)3

470 1000
τ 1 – 44 7

τav - 340τ 2 – 343 93
χ2 – 1.001

495 1000
τ 1 – 48 10

τav - 334τ 2 – 338 90
χ2 – 1.099

Table 5.14 Tabulated lifetiemes and their relative percentage for complex XVI at various time
bases

5.3.8 Lifetime measurements using laser flash photolysis

The excited state properties of the iridium (III) polypyridyl complexes were measured at 298 K

and 77 K using laser flash photolysis and the results are shown in Tables 5.1. The data were

plotted and analysed with the aid of the software provided in the instrument and in some cases

using sigma plot 8 software. The graphs along with the errors calculated for all the samples are

given in appendix D. The measurements at 298 K for all the complexes measured with TCSPC

was again repeated using the laser flash photolysis at 355 nm and the results obtained were found
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to be in good agreement with the results obtained with the former which shows the accuracy of

the results reported for lifetimes in this chapter. The low temperature (77 K) lifetimes are

measured in EtOH : MeOH (4:1) glasses.

From the emission measurements carried out for all the iridium (III) polypyridyl complexes

described in this chapter the lowest excited state at 298 K is tentatively assigned to a mixed
3(d-π*)-3(π-π*) excited state based on the results obtained from emission and lifetime

measurements at 298 K. The emission curves at 77 K given in section 5.3.6 indicate the

possibility of a dual emission. It can be seen that all the low temperature emission (77 K) curves

are structured having more that one emission maxima. The lifetimes were measured at these two

different emission maxima and in all the polypyridyl complexes studied in this chapter the

lifetime of these two different emission maxima at 77 K had a difference of 1μs-3μs as shown in

table 5.15. By comparing the emission curves and lifetime measurements done at 77 K with the

reported photophysical data10,20,21,23 of similar complexes assignments were made for the excited

states. The long lived lifetime is expected to arise from a π-π* excited state. In order to prove

this, the effect of deuteriation on the excited state lifetimes at 77 K for these Ir (III) polypyridyl

complexes was determined. The deuteriation study on the excited state photophysics of Ru (II)

complexes was extensively studied detail in the group86 which gave the basic platform to extend

the concepts in assigning the excited state of Ir (III) complexes.20d The deuteriated analogues of

all these polypyridyl complexes gave lifetimes greater than the protonated analogous, but the

increase in lifetime at  77 K is not sufficient (1μs-2μs) in order to assign the emission to be from

a pure π-π* excited state. Also if it is from a pure π-π* excited state the lifetime should be in the

range of 80-100 μs as shown by the tris polypyridyl complexes based on previous reports.27,31,41

The lifetime value for all of these complexes came in the range of 10-15 μs which shows the

mixing of the metal centered d-π* state and ligand centered π-π* state. Based on the results

obtained emission is assigned to occur from a mixed 3(d-π*)-3(π-π*) excited state. Further

detailed measurements including solvent dependent and temperature dependent photophysical

measurements along with resonance Raman should be carried out in order to give a clear

conformation regarding the assignments which will be studied in future. The excited state decay

curve for [Ir(d8bpy)2Cl2]PF6 (III) along with the fit curve and the measured errors are given in

figure 5.26 below. The rest of the decay curves are given in appendix D.
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Figure 5.26 Low temperature (77 K) excited state lifetime plot, non linear fitted curve, lifetime
and error calculated for [Ir(bpy)2Cl2]PF6 (I) in spectroscopic grade EtOH:MeOH (4:1) glass.
Excitation wavelength, λex = 355 nm

Complex Lifetime
(298K), ns

Lifetime (77K)(λem)
μs

[Ir(bpy)2Cl2]PF6 (I) 390 10.61(470), 11.26 (498)
[Ir(d8bpy)2Cl2]PF6 (III) 730 10.94(470), 13.79(498)
[Ir(phen)2Cl2]PF6 (V) 363 13.12(473), 16.52(504)
[Ir(d8phen)2Cl2]PF6 (VI) 654 14.29(473), 17.96(504)
[Ir(dmbpy)2Cl2]PF6 (VII) 277 10.93(470), 12.45(502)
[Ir(d12dmbpy)2Cl2]PF6 (VII) 530 12.27(470), 13.98(502)
[Ir(dtbpy)2Cl2]PF6 (IX) 330 6.4(468), 7.08(490)
[Ir(d24dtbpy)2Cl2]PF6 (IX) 603 8.88(468), 11.22(490)

Table 5.15 Lifetimes at 298 K are measured in spectroscopic grade ACN and 77 K are
measured in spectroscopic grade EtOH:MeOH (4:1) glass. Excitation wavelength λex = 355
nm.
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5.3.9 Intermolecular photocatalysis of [Ir(polypyridyl)2Cl2]+ complexes using Visible light

(470 nm) and UV Light (350 nm)

Photoreduction of water into H2 based on solar energy conversion is of great importance in view

of generating alternative energy sources to meet the rising global energy demand. It has been

known since the late 1970s that tris (2,2ꞌ-bipyridine) ruthenium (II) and its derivatives possess

the excited states thermodynamically capable of reducing water into H2 in the presence of a

sacrificial electron donor, an electron mediator and a suitable catalyst.93,94 Intermolecular

photocatalyts with cyclometallated iridium complexes such as [Ir(C^N)2(N^N)]+ are studied to a

greater extent.3,95 As a consequence of greater ligand-field stabilization energy (LFSE), the use

of cyclometalated iridium (III) complexes avoids the thermal population of, and subsequent non

radiative decay from, the dissociative 3MC state observed with tris diimine Ru (II) complexes.96

In addition, the greater energetic requirements for the population of the 3MC state allow a larger

range of excited state energies by altering the ligand architecture.97 Detailed references are given

in chapter 1 and intermolecular photocatalysis of cyclometallated iridium (III) complexes are

reported in chapter 3. There are no reports in the literature where N^N polypyridyl iridium (III)

complexes such as [Ir(polypyridyl-N,N')2Cl2]+ were used for intermolecular photocatalytic H2

genaration using both visible (470 nm) or UV (350 nm) light. These complexes proved to be

much more efficient than the traditional cyclometallated complexes giving very good TON’s.

The intermolecular photocatalysis were all done at 5 % H2O using [Pt(ACN)2Cl2] and

[Pd(ACN)2Cl2] as the catalysts. Triethylamine (TEA) was used as the sacrificial agent in all

these measurements. The details regarding the photocatalytic measurements are discussed in

detail in chapter 2. The intermolecular photocatalysis done for [Ir(bpy)2Cl2]PF6 (I) and its

deuteriated analogue [Ir(d8bpy)2Cl2]PF6 (III) using both visible and UV light are tabulated in

tables 5.16 and 5.17. The results obtained are compared with the standard complex

[Ir(ppy)2(bpy)]PF6 in both visible and UV light. In both the cases it can be seen that the N^N

polypyridyl complex [Ir(bpy)2Cl2]PF6 (I) and its deuteriated analogue (III) proved to be more

efficient than the cyclometallated iridium (III) complex.
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Complex (6x10-5 M)
+

[Pt(ACN)2Cl2],(6x10-5 M)

H2O % Area
(mV/sec)

TON
(average)

[Ir(ppy)2(bpy)]PF6 5%
1) 88
2) 91
3) 85

51

[Ir(bpy)2Cl2]PF6 (I) 5%
1) 132
2) 147
3) 138

80

[Ir(d8bpy)2Cl2]PF6 (III) 5%
1) 50
2) 48
3) 48

28

Table 5.16 Tabulated data for intermolecular photocatalysis using visible light (470 nm) of
complexes (I) and (III) in ACN, sacrificial agent used is TEA (2.15 M), irradiation time - 18h.

Complex (6x10-5 M)
+

[Pt(ACN)2Cl2](6x10-5 M)

H2O % Area
(mV/sec)

TON
(average)

[Ir(ppy)2(bpy)]PF6 5% 1) 15
2) 17

9

[Ir(bpy)2Cl2]PF6 (I) 5% 1) 48
2) 45

27

[Ir(d8bpy)2Cl2]PF6 (III) 5% 1) 28
2) 24

15

Table 5.17 Tabulated data for intermolecular photocatalysis using UV light (350 nm) of complex
(I) and (III) in ACN, sacrificial agent used is TEA (2.15 M), irradiation time – 18h.

(a) (b)                               (c)
Figure 5.27 (a) Photocatalytic solution of complex (I) before irradiation (b) Photocatalytic
solution for complex (I) after 18h irradiation using visible light (470 nm).(catalyst –
[Pt(ACN)2Cl2]) (c) Photocatalytic solution for complex (I) after irradiation using visible light
(470 nm).(catalyst – [Pd(ACN)2Cl2]).
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From table 5.16 complex (I) has a TON of 80 and complex (III) has a TON of 28, deuteriation

thus resulted in a decrease of the amount of H2 produced. The results are quite similar in the case

of UV light irradiation, with complex (I) a TON of 27 and complex (III) shows a TON of 15, so

a decrease in the amount of H2 produced was observed using higher energy UV light. Another

important difference is that the results clearly show that similarly to the cyclometallated

complexes described in chapter 3 these complexes also show a notable decrease in the TON’s on

moving from visible light (470 nm) to UV light (350 nm) which suggest that apart from the π-π*

transitions d-π* transitions play a major role in photocatalysis in these type of complexes. Figure

5.27 (a) shows the photocatalytic solution for complex (I) in 5 % H2O in ACN before irradiation

and figure 5.27 (b) the solutions with [Pt(ACN)2Cl2] as the catalyst after 18h irradiation using

visible light (470 nm). The colour of the solution changed after 18h irradiation from colourless to

pale yellow. There was no visible precipitate present in the solution containing [Pt(ACN)2Cl2] as

the catalyst. But when [Pd(ACN)2Cl2] was used instead of Pt after 18h irradiation a large amount

of black precipitate was formed at the bottom of vials, but there was no hydrogen formed when

[Pd(ACN)2Cl2] was used as the catalyst. From these results it was assumed that in the case of Pt

some colloidal Pt may have formed98 which was not visible, and promoted the catalytic activity.

For Pd these colloidals aggregate to form particles which accumulates at the bottom. In all of the

polypyridyl complexes described in this chapter the results are similiar. Other than the novel tris

heteroleptic complex [Ir(dmbpy)2(HPhpytr)](CF3SO3)3 (XVI) all others gave zero TON when

[Pd(ACN)2Cl2] was used as the catalyst. The photocatalytic results for the novel complex (XVI)

is described in detail at the end of this section. The TON values obtained using both irradiation

wavelengths for all the complexes along with their corresponding peak areas obtained from GC

are tabulated in table 5.18. All the results are compared with the standard complex

[Ir(ppy)2(bpy)]PF6 which was also measured under similar conditions and the results shows the

efficiency of N^N polypyridyl Ir (III) complexes compared to the cyclometallated complex. This

is important since the N^N polypyridyl Ir (III) complexes similar to the Ir (III) cyclometallated

complexes described in detail in chapter 3 has not yet been synthesised. The results shown below

indicates that these N^N polypyridyl ligands if complexed to our bridging ligands might produce

more H2 than the corresponding cyclometallated systems.
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Complex (6x10-5 M)
+

Pt(ACN)2Cl2
(6x10-5 M)

H2O
%

470 nm 350 nm

Area
(mV/s)

TON
(average)

Area
(mV/s)

TON
(average)

[Ir(ppy)2(bpy)]PF6 5%
1) 88
2) 91
3) 85

51
1) 15
2) 17 9

[Ir(phen)2Cl2]PF6 (V) 5%
1) 17
2) 15
3) 18

10
1) 10
2) 11 6

[Ir(d8phen)2Cl2]PF6 (VI) 5%
1) 12
2) 12
3) 13

7
1) 5
2) 7 3

[Ir(dmbpy)2Cl2]PF6 (VII) 5%
1) 60
2) 62
3) 56

34
1) 11
2) 10 6

[Ir(d12dmbpy)2Cl2]PF6
(VIII)

5%
1) 150
2) 157
3) 153

88
1) 33
2) 35 20

[Ir(dtbpy)2Cl2]PF6 (IX) 5%
1) 312
2) 307
3) 306

177
1) 22
2) 25 14

[Ir(d24dtbpy)2Cl2]PF6 (X) 5%
1) 333
2) 339
3) 331

192
1) 76
2) 74 44

[Ir(dpbpy)2Cl2]PF6 (XI) 5%
1) 143
2) 155
3) 156

87
1) 17
2) 16 10

[Ir(dpphen)2Cl2]PF6 (XII) 5%
1) 481
2) 456
3) 489

273
1) 15
2) 19 10

Table 5.18 Tabulated data for intermolecular photocatalysis using Visible light (470 nm) and
UV light (350 nm) in ACN, sacrificial agent used is TEA (2.15M), irradiation time - 18h.

Table 5.18 shows that complex [Ir(dpbpy)2Cl2]PF6 (XI) has a TON of 87 and complex

[Ir(dpphen)2Cl2]PF6 (XII) has a TON of 273. These results indicate that the substitution of an

electron withdrawing phenyl group on the 4 and 4ꞌ positions of bpy did not make a difference in

the amount of H2 produced as the TON increased to 87 for complex (XI) from 78 as obtained for

complex [Ir(bpy)2Cl2]PF6 (I) under similar conditions. For complex (XII) substitution of the

electron withdrawing phenyl group at 4 and 7 positions resulted in an increase in the amount of
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hydrogen produced as the TON increased to 273 for complex (XII) from only a TON of 10 for

the unsubstituted phenanthroline complex [Ir(phen)2Cl2]PF6 (V) (table 5.18). These results

suggest that the substitution with an electron withdrawing group has a larger effect for both

phenanthroline and bipyridine ligands. Comparing complexes (I), (VII) and (IX) in which the

last two have electron donating dimethyl and ditertiary butyl groups on 4 and 4ꞌ positions of

bipyridine, complex (VII) there is a decrease in TON to 34 from 80 but for complex (IX) there is

doubling of TON to 177 from 80. For UV irradiation there is a decrease in TON for both

substituted complexes compared to (I), where the TON decreased from 27 to 6 in case the of

(VII) and 14 in the case of (IX). But interestingly for the deuteriated analogues of these

complexes both the substituted deuteriated complexes (VIII) and (X) produced more H2 than the

deuteriated unsubstituted counterpart (III) as can be seen from tables 5.16, 5.17 and 5.18. No

hydrogen was obtained for all these complexes when photocatalysis was carried out using

[Pd(ACN)2Cl2] under similar conditions. The figures before irradiation and after irradiation for

all these complexes are given in appendix D.

The intermolecular photocatalytic results for the novel green emitting heteroleptic iridium

complex [Ir(dmbpy)2(Hphpytr)](CF3SO3)3 (XVI) in both visible and UV light at two different

percentages of water using [Pt(ACN)2Cl2] as catalyst are tabulated in tables 5.19 and 5.20.

Complex (XVI) shows a TON of 403 using 5 % water as shown in table 5.27, which is the

highest amount of H2 produced by a N^N polypyridyl Ir (III) complex upto now, and shows that

the introduction of a triazole ligand to the iridium metal leads to increased H2 production. The

precursor complex [Ir(dmbpy)2Cl2]PF6 (VII) shows a TON of 34 under the similar condition

(table 5.18) so there is almost 10 fold increase in the amount of H2 produced on complexing with

the triazole ligand. For the UV irradiation experiments the increase in H2 formation for the

heteroleptic complex (XVI) is almost 25 times that of the precursor bis chloride complex (VII),

as the TON increased from 6 to 149. Using both visible and UV light, and 5 % of water proved

to be the optimum condition for photocatalytic activity. For complex (XVI) under visible light

irradiation, moving to 10 % water resulted in a TON of 239 which is almost half the value of the

result obtained at 5 % water. Similarly to the case with UV light irradiation, the TON decreased

to 130 from 149 as the H2O percentage was increased from 5 % to 10 %. As seen in the case of

other polypyridyl complexes the heteroleptic tris iridium (III) complex also showed a prominent
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decrease in the TON on going from visible light to UV light. A solution of complex (XVI) and

[Pt(ACN)2Cl2], before irradiation and after 18h visible light irradiation, is given in figure 5.28.

The colourless solution before irradiation changed to pale yellow coloured solution following

irradiation.

Complex (6x10-5 M)
+

[Pt(ACN)2Cl2]
(6x10-5 M)

H2O % Area
(mV/sec)

H2
(ml)

TON
(average)

[Ir(dmbpy)2(HPhpytr)]
(CF3SO3)3 (XVI)

5%
697 0.5879

403702 0.5921
705 0.5947

10%
435 0.3669

239395 0.3332
415 0.3501

Table 5.19 Tabulated data for intermolecular photocatalysis using visible light (470 nm) for
complex (XVI) in ACN at 5 % and 10 % H2O, sacrificial agent used is TEA (2.15 M), irradiation
time - 18h.

Complex (6x10-5 M)
+

[Pt(ACN)2Cl2]
(6x10-5 M)

H2O % Area
(mV/sec)

H2
(ml)

TON
(average)

[Ir(dmbpy)2(HPhpytr)]
(CF3SO3)3 (XVI)

5%
261 0.2202 149
258 0.2176

10%
230 0.1940 130
223 0.1881

Table 5.20 Tabulated data for intermolecular photocatalysis using UV light (350 nm) of complex
(XVI) in ACN at 5 % and 10 % H2O, sacrificial agent used is TEA (2.15 M), irradiation time -
18h.
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(a) (b)
Figure 5.28 (a) Photocatalytic solution of complex (XVI) before irradiation (b) Photocatalytic
solution for complex (XVI) after 18h irradiation using visible light (470 nm).(catalyst –
[Pt(ACN)2Cl2])

One of the biggest difference showed by this new heteroleptic complex is the catalysis

experiments with [Pd(ACN)2Cl2]. All the iridium (III) polypyridyl complexes reported in this

chapter except complex [Ir(dmbpy)2(HPhpytr)](CF3SO3)3 (XVI) gave no hydrogen when

[Pd(ACN)2Cl2] was used as the catalyst. But complex (XVI) gave good results with respect to

others, but comparitively less than what was obtained with the same complex using a Pt catalyst.

The results are tabulated in table 5.21 and 5.22 below. Complex (XVI) gave a TON of 226 at

5 % water as shown in table 5.21, which is half the amount of H2 produced using Pt as the

catalyst mentioned above. The precursor complex [Ir(dmbpy)2Cl2]PF6 (VII) did not produce

hydrogen under similar conditions so there is almost 200 fold increase in the amount of H2

produced on complexing with the triazole ligand. Using UV irradiation there is also an increase

in the amount of H2 formed. The TON increased from 0 to 70 at 5 % water and from 0 to 2 at

10 % water. Using both blue and UV light, 5% of water proved to be the optimum condition for

photocatalytic activity using [Pd(ACN)2Cl2] as catalyst. As seen in the case of other polypyridyl

complexes and the above mentioned photocatalysis with the Pt catalyst the heteroleptic iridium

complex also showed a notable decrease in the TON on going from visible light to UV light in

this case also.
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Complex (6x10-5 M)
+

[Pd(ACN)2Cl2]
(6x10-5 M)

H2O % Area
(mV/sec)

H2
(ml)

TON
(average)

[Ir(dmbpy)2(HPhpytr)]
3CF3SO3 (XVI)

5%
396 0.3340

226399 0.3366
382 0.3222

10%
231 0.1948

127210 0.1771
223 0.1881

Table 5.21 Tabulated data for intermolecular photocatalysis using visible light (470 nm) for
complex (XVI) in ACN at 5 % and 10 % H2O, sacrificial agent used is TEA (2.15 M), irradiation
time - 18h.

Complex (6x10-5 M)
+

[Pd(ACN)2Cl2]
(6x10-5 M)

H2O % Area
(mV/sec)

H2
(ml)

TON
(average)

[Ir(dmbpy)2(HPhpytr)].
3CF3SO3 (XVI)

5% 123 0.1038 70
120 0.1012

10% 3.32 0.0028 2
3.01 0.0025

Table 5.22 Tabulated data for intermolecular photocatalysis using UV light (350 nm) of complex
(XVI) in ACN at 5 % and 10 % H2O, sacrificial agent used is TEA (2.15 M), irradiation time -
18h.

A photocatalytic solution of complex (XVI) and [Pd(ACN)2Cl2] before irradiation and after 18 h

visible light irradiation is given in figure 5.29 where it appears that the colourless solution before

irradiation changed to pale yellow after irradiation. Comparing figures 5.28 and 5.29 it can be

seen that the latter one has a black precipitate at the bottom of the vial after 18h irradiation which

is absent in the former. A similar precipitate was seen for all other polypyridyl complexes but

none of them gave any hydrogen with Pd.
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(a) (b)
Figure 5.29 (a) Photocatalytic solution of complex (XVI) before irradiation (b) Photocatalytic
solution for complex (XVI) after 18h irradiation using visible light (470 nm).(catalyst –
[Pd(ACN)2Cl2]).

5.4 Conclusion

In conclusion a series of iridium polypyridyl complexes having the general formulae

[Ir(polypyridyl-N,N')2Cl2](PF6) along with their deuteriated analogues have been successfully

synthesised in high yield. The removal of chlorides from these complexes was achieved

successfully using a much shorter and efficient synthetic procedure. The formation of [Ir(bpy-

N,N')2Cl2]+ and [Ir(bpy-N,N')2(bpy-C,N')]2+ has been confirmed by 1H NMR, 13C, HPLC, UV-

Vis and emission studies. The possible mechanistic significance of C coordination for reactions

of iridium (III) bipyridine complexes and the ratio of normal and orthometallated complex

formed was investigated. The time dependent HPLC and NMR data gave promising results as to

the mechanistic pathway for the synthesis of these complexes.

Excited state photophysics for these complexes were studied in detail which includes absorption,

emission (298 K and 77 K), quantum yields and lifetimes (298 K and 77 K). Lifetime

measurements were carried out on two different instruments and the results obtained were

comparable. The deuteriation effect study proved to be very promising as it helped in the

identification of the lowest energy excited states in these systems and interestingly at low

temperatures (77 K) all of them showed dual emission which was tentatively assigned to orginate

from a mixed (d-π*)-(π-π*) state which are very close in energy. The emission wavelength

observed suggests that these materials may be developed in particular for the preparation of

OLED materials. By varying the polypyridyl systems either by substituting the bipyridine or

phenanthroline with electron withdrawing or electron releasing groups, emission can be tuned

through the entire range of visible spectrum, and all of them show long lived excited states.
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(a) (b)
Figure 5.29 (a) Photocatalytic solution of complex (XVI) before irradiation (b) Photocatalytic
solution for complex (XVI) after 18h irradiation using visible light (470 nm).(catalyst –
[Pd(ACN)2Cl2]).

5.4 Conclusion

In conclusion a series of iridium polypyridyl complexes having the general formulae

[Ir(polypyridyl-N,N')2Cl2](PF6) along with their deuteriated analogues have been successfully

synthesised in high yield. The removal of chlorides from these complexes was achieved

successfully using a much shorter and efficient synthetic procedure. The formation of [Ir(bpy-

N,N')2Cl2]+ and [Ir(bpy-N,N')2(bpy-C,N')]2+ has been confirmed by 1H NMR, 13C, HPLC, UV-

Vis and emission studies. The possible mechanistic significance of C coordination for reactions

of iridium (III) bipyridine complexes and the ratio of normal and orthometallated complex

formed was investigated. The time dependent HPLC and NMR data gave promising results as to

the mechanistic pathway for the synthesis of these complexes.

Excited state photophysics for these complexes were studied in detail which includes absorption,

emission (298 K and 77 K), quantum yields and lifetimes (298 K and 77 K). Lifetime

measurements were carried out on two different instruments and the results obtained were

comparable. The deuteriation effect study proved to be very promising as it helped in the

identification of the lowest energy excited states in these systems and interestingly at low

temperatures (77 K) all of them showed dual emission which was tentatively assigned to orginate

from a mixed (d-π*)-(π-π*) state which are very close in energy. The emission wavelength

observed suggests that these materials may be developed in particular for the preparation of

OLED materials. By varying the polypyridyl systems either by substituting the bipyridine or

phenanthroline with electron withdrawing or electron releasing groups, emission can be tuned

through the entire range of visible spectrum, and all of them show long lived excited states.
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Combining these two properties, together with the synthetic method, these complexes were

synthesised in high purity and good yield in a very short reaction opening up new applications

for these complexes.

The removal of chlorides from these complexes was achieved successfully using a much shorter

and efficient synthetic procedure. The coordination of the triflate intermediates to triazolyl

pyridine ligands has not yet been done, which will tell us the importance of the new novel green

emitting [Ir(dmbpy)2(HPhpytr)](CF3SO3)3 complex. This complex proved to be a very efficient

intermolecular photocatalyst giving a TON of 400 following 18h irradiation time using a 470 nm

light source compared to its analogous phenyl pyridine derivative which produced no hydrogen.

Further studies by varying the conditions are under investigation. Transition metal complexes

containing ligands with extended π-systems (eg., pyridine, bipyridine) have generated

tremendous interest because of their potential to participate as photocatalysts in solar driven

artificial photoconversion processes.3,99 Iridium complexes reported here are all potential

candidates for intermolecular photocatalytic hydrogen generation showing higher efficiency than

the corresponding cyclometallated analogues, which can be extended in future to intramolecular

multimetallic systems thereby producing even higher TON’s.
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Chapter 6

Conclusion and Future Work

Having detailed the results of the synthesis and characterisation of a series of novel Ir (III)

mononuclear and novel heterodinuclear Ir-Pt/Pd complexes using cyclometallated and

N^N polypyridyl ligands in previous chapters it is the aim of the following chapter to take

all of the results obtained into consideration and to relate the behaviour exhibited by these

complexes to the photophysics and photocatalytic behaviour and provide some

suggestions for future experiments that could be carried out.
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6.1 Concluding remarks

This thesis focuses on the synthesis and various physical properties of iridium (III) transition

metal complexes. Two different types of complexes were discussed in detail in the thesis.

Firstly iridum (III) metal complexes with cyclometallating ligands of the type

[Ir(NˆC)2(NˆN)]+ where NˆC represents cyclometallating ligands like ppy, ppy-COOCH3,

thpy, etc and NˆN represents neutral chelating ligands like bpy, bpp, tpy, bpm, dpp etc.

Secondly iridium (III) complexes of the type [Ir(NˆN)2Cl2]+ and [Ir(NˆN)3]3+ where NˆN

denotes neutral chelating ligands like bpy, phen, dmbpy etc. In both of the above cases

synthesis, characterisation, photophysical measurements and photocatalysis were studied in

detail.

Deuteriation along with the detailed photophysical measurements were used as a tool to

probe the excited states of many of these iridium (III) complexes which were not studied

before. New heterodinuclear Ir-Pt/Pd complexes were reported with various bridging ligands

that are photocatalytically very efficient for H2 generation. The solvent and temperature

dependent excited state measurements provided an insight into the possible electron transfer

processes taking place in these systems.

In chapter 1, a brief summary on iridium (III) transition metal complexes along with its

application in various fields of chemistry were presented, including reference to the

photocatalytic H2 production systems. The entire chapter is divided into different sections.

The chapter starts with explaining the various methods and approaches currently available for

H2 production along with a range of general storage, distribution and utilisation techniques.

This is followed by a short discussion on natural photosynthetic systems and artificial

photosynthetic systems. The latter one includes both intermolecular and intramolecular

photocatalytic hydrogen production systems using transition metal complexes. Efforts were

made to include the maximum number of references on both intermolecular and

intramolecular photocatalytic systems in this section, but it is not fully complete as in this

field a huge amount of research is presently going on. From these sections it is quite clear that

in the past few years most of the work has been devoted to ruthenium based photosensitisers

but little work has been done on iridium based systems, especially intramolecular

photocatalytic systems. The next section of the chapter gives a brief description of the various

types of iridium (III) polyamine complexes, followed by a brief description of the

photophysical properties and its applications in OLED devices. In chapter 2, a summary of
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the standard synthetic procedures and physical measurements are presented. Wherever it was

required a brief discussion of the basis of the techniques employed and of problems

encountered was included.

Chapter 3 deals with the synthesis, characterisation, photophysics and photocatalysis of some

standard cyclometallated iridium (III) complexes and novel complexes with bridging ligands

bpp, tpy, bpm, and dpp. A small library of 25 cyclometallated iridium (III) complexes were

presented in this chapter. The characterisations of all these complexes were done in full with

the help of 1D and 2D NMR spectroscopy. Deuteriation was used in spectroscopic

characterisation and to probe the excited state electronic structure. Deuteriation studies

included absorption, emission and lifetimes of cyclometallated iridium (III) complexes of the

type [Ir(NˆC)2(NˆN)]+, where deuteriation was carried on NˆN neutral ligands. These types

of deuteriated iridium (III) complexes have not previously been reported. Studies and

measurements showed that  iridium metal complexes can act as excellent catalytic systems

for photogeneration of H2 having efficiencies much higher than the other metals such as

ruthenium. For intramolecular catalytic hydrogen generation, an efficient light absorbing unit,

and bridging ligand which can transfer electrons to the catalyst from the light absorbing unit

are required together with an efficient metal catalyst that can use the electrons in order to

reduce water to produce H2. A series of iridium cyclometallated precursors were synthesised

for using as photosensitisers.

The first of its kind of heterodinuclear Ir-Pt/Pd photocatalytic system is reported in this

thesis. And interestingly these complexes have their second metal (Pt/Pd) attached to the

bridging ligand in a cyclometallated manner. Basic photophysical measurements including

absorption, emission and lifetimes for all these complexes were done, which showed that

with this entire range of cyclometallated iridium (III) complexes it was possible to tune the

emission over the entire range of visible spectrum by varying the substituent’s on the

peripheral ligands, and the neutral chelating ligands. This has potential application for OLED

devices which were not discussed in this chapter and. All of the complexes presented in this

chapter are promising candidates for photocatalytic H2 production, and gave good TON

which are comparatively much higher than that produced by the analogous ruthenium

complexes. Both intermolecular and intramolecular photocatalysis produced H2, but

intramolecular photocatalysis proved to be more efficient than the intermolecular ones. Of the

intramolecular systems, the Ir-Pt systems showed better catalytic activity than the Ir-Pd
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systems which are given a possible explanation on the basis of the photophysical

measurements. Time dependent photocatalysis gave an idea of the efficiency of these novel

photocatalyts. Also the ester complexes produced almost double the H2 than the non ester

complexes in solution. The aim is to finally bind these complexes to NiO surfaces thereby

completely avoiding the use of sacrificial agents like TEA, which clearly shows the potential

of these complexes. One of the interesting studies presented is a comparison of photocatalysis

using visible (470 nm) and UV light (350 nm). The higher efficiency of 470 nm excitation, in

conjunction with the photophysical data suggests that the 3MLCT state plays a crucial role in

intramolecular photocatalysis of Ir-Pt/Pd heterodinuclear complexes.

Chapter 4 deals with the detailed solvent and temperature dependent excited state

photophysics of three novel cyclometallated iridium (III) complexes; [Ir(ppy)2(bpp)](PF6),

[Ir(ppy)2(bpp)PtCl]2(PF6)2 and [Ir(ppy)2(bpp)PdCl]2(PF6)2. As the photophysics of the

complexes presented here (heterodinuclear Ir-Pt/Pd complexes) have not been reported

previously all the assumptions on the excited state assignments are based on the preliminary

photophysical measurements including concentration dependent, solvatochromic and

temperature dependent photophysics. Further detailed excited state experiments such as

resonance raman, transient absorption and DFT calculations have to employed in order to

gain a complete understanding of the nature of excited states which is beyond the scope of

this. Varying the substituent’s on the peripheral ppy ligands and by using different bridges it

was possible to tune the excited state thereby influencing the pathway for the electron to

reach the Pt/Pd centre, and gave more hydrogen.

Chapter 5 focuses on the iridium polypyridyl complexes having the general formula

[Ir(NˆN)2Cl2]PF6 where NˆN represents neutral chelating ligands like bpy, phen, dmbpy etc.

Over the last 30 years very little work has been done on the chemistry of Ir(polypyridyl)2Cl2

type complexes. The main drawback included tedious work up procedures along with the lack

of knowledge on the actual synthetic reaction mechanism of the reaction. A novel synthetic

method for preparing these complexes in high purity and yield is very short time without the

use of any columns and days long workups has been developed. The ligands that were used

for preparing the complexes include 2,2'-bipyridine, 1,10 phenathroline, 4,4'-dimethyl-2,2'-

bipyridine, 4,4'-ditertiarybutyl-2,2'-bipyridine and the deuteriated analogues of these ligands.

The mechanism of the reaction was confirmed using a time dependent NMR and HPLC

study. Purification and characterisation of the products showed the different pathways and
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side products involved in the reaction. However it was possible to control the formation of

the desired product inorder to get the primary product in good yield and purity by tuning the

solvent and reaction temperature.

Detailed excited state photophysical measurements including absorption, emission, quantum

yields and lifetimes for these complexes are included. The deuteriation effect on the excited

state photophysics at room temperature (298 K) and low temperature (77 K) helped in

identifying the lowest excited states of these complexes. The emission wavelengths observed

suggests the possibility of using these complexes for OLED devices. The inner sphere

chlorides were removed successfully by a short and efficient synthetic method which has

opened an entirely new insight into the application of these complexes in various fields of

chemistry. Success was obtained in developing the first tris heteroleptic polypyridyl complex

with the triazole ligand which showed green emission, and good photocatalytic activity for

hydrogen production (TON of 400).

No reports are present in the literature on the photocatalytic hydrogen production activity of

simple [Ir(NˆN)2Cl2]PF6 complexes. Intermolecular photocatalysis was carried out for a range

of these complexes using two different catalysts namely Pt(ACN)2Cl2 and Pd(ACN)2Cl2. The

results were quite interesting, with most giving very good turn over number over 18 hour

irradiation, in acetonitrile using TEA as sacrificial agent. Two different irradiation

wavelengths were used; visible (470 nm) and UV light (350 nm). The visible light irradiation

experiments gave more hydrogen than the UV light, similarly to the cyclometallated iridium

(III) complexes. The use of Pt(ACN)2Cl2 as catalysts produced more hydrogen than

Pd(ACN)2Cl2. Comparing the intermolecular photocatalytic results obtained for these

complexes with the standard cyclometallated iridium (III) complexes it is clear that these

systems are more efficient than the conventional cyclometallated iridium (III) complexes for

photocatalytic hydrogen generation. By developing an efficient and simple method for the

synthesis of these complexes followed by the success in removal of inner sphere chlorides

has opened up an entirely new field itself in chemistry which has far reaching potential

applications in various fields such as photocatalytic hydrogen generation, OLEDs etc.
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6.2 Future Work

The main areas of future work recommended are as follows.

Chapter 3. For all the complexes discussed in this chapter three different peripheral

ligands were used (ppy, ppy-COOCH3 and ppy-CHO). The library should be extended by

employing a range of different substituted and unsubstituted cyclometallating ligands. Also

the mononuclear complex with dpp has been synthesised succesfully with which the

dinuclear Ir-Pt/Pd complexes can be synthesised. This is expected to show much higher

photocatalytic activity than the ruthenium analogous. The Ir-Pt complexes synthesised can be

used as potential candidates in anticancer therapies which has been proved before using

cyclometallated Pt complexes. All of the iridium complexes synthesised can be used on

OLED devices also and also some of the ester complexes as dyes in dye sensitised solar cells

(DSSC’s). Much more detailed photophysics including the solvatochromic and rigidochromic

measurements along with the resonance raman and computational methods (DFT) should be

done in order to gain a clear picture of the excited states of these systems. From the

photocatalysis point of view all the experiments reported here were carried in one solvent

(ACN) and at one particular concentration. Different solvents and different concentrations

should be employed, also different sacrificial agents should be tried. The time dependent

photocatalysis for the remaining molecules should be completed. One of the most important

steps is binding the ester analogous iridium photocatalyts to the NiO sufaces as shown in

figure below.

Figure: Possible electron transfer mechanism in novel Ir-Pt complex binded to NiO surface
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A range of cyclometallated iridium complexes with some of the triazole ligands have been

synthesised succesfully and are given in appendix E. Further studies such as detailed excited

state photophysics and photocatalysis of these systems should be carried out, and the

synthesis of a dinuclear system has to be attempted.

Chapter 4. Solvatochromic, rigidochromic and temperature dependent photophysics must

be completed and, further detailed studies of excited state including temperature dependent

resonance raman, DFT calculaions, transient absorption spectroscopy etc this will confirm the

electronic transitions predicted here for the novel Ir-Pt/Pd complexes explained in this

chapter. Also the similar studies should be extended to the analogous ester complexes which

will give a clear picture regarding the effect of substitution on the excited state photophysics

and therby its influence on the photocatalysis.

Chapter 5. A new efficient and high yield synthesis of Ir(polypyridyl)2Cl2 complexes and

successful removal of inner sphere chlorides has opened up an entirely new area. For the

novel heteroleptic complex [Ir(dmbpy)2(Hphpytr)](CF3SO3)3 dmbpy was used as the

peripheral ligand. Using the same triazole ligand and by changing the peripheral ligands

using other starting materials like, bpy, phen, dtbpy and their deuteriated analogous an entire

range of complexes can be synthesised thereby tuning the visible spectrum which will lead to

the compounds having potential applications in OLED’s, and as efficient photocatalyts.

Similar to the cyclometallated complexes these polypyridyl precursor complexes can be

efficienly complexed to various bridging ligands (bpp, tpy, bpm, dpp etc) thereby

synthesising mononuclear, homodinuclear (Ir-Ir) and heterodinuclear complexes (Ir-Pt/Pd).

Preliminary photocatalytic results showed that the precursor complexes are much more

efficient than the convential cyclometallated complexes. By analysing all these results,

intramolecular complexes made using these N^N polypyridyl peripheral ligands were

expected to show greater photocatalytic activity. The potential of these complexes are really

huge as they can be used for multidisciplinary applications such as OLED’s, bioimaging,

photocatalysis etc.

Altogether a basic platform has been built up for the iridium (III) transition metal complexes,

but further research has to carried out in order to extend the application of these complexes.
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Martin Schulz, Johannes Hirschmann, Appu Draksharapu, Gurmeet Singh Bindra,
Suraj Soman, Avishek Paul, Robert Groarke, Mary. T. Pryce, Sven Rau, Wesley R.
Browne and Johannes. G. Vos, Dalton Trans., 2011, 40, 10545–10552.

3) “The effect of peripheral bipyridine ligands on the photocatalytic hydrogen production
activity of Ru/Pd catalysts”
Gurmeet Singh Bindra, Martin Schulz, Avishek Paul, Suraj Soman, Robert Groarke,
Jane Inglis, Mary T. Pryce, Wesley R. Browne, Sven Rau, Brian J. Maclean and Johannes
G. Vos, Dalton Trans., 2011, 40, 10812–10814.

4) “Novel iridium-Pt/Pd complexes for photocatalytic hydrogen generation from water
using blue light (470nm) and UV light (350nm)”
Suraj Soman, Gurmeet Singh Bindra, Jane Inglis, Avishek Paul, Martin Schulz, Mary T.
Pryce and Johannes G. Vos, (manuscript under preperation)

5) “High yield synthesis for the preparation of heteroleptic Ir (III) polypyridyl complexes”
Suraj Soman, Hamid M. Y. Ahmed, Laura Cleary, Gurmeet Singh Bindra, Wesley R.
Browne, Mary T. Pryce, Johannes G. Vos, (manuscript under preparation)

6) “Effect of peripheral ligand and bridging ligands on intermolecular and intramolecular
photocatalytic H2 generation for novel Ir (III) complexes”
Suraj Soman, Gurmeet Singh Bindra, Mary T. Pryce, Johannes G. Vos, (manuscript
under preparation)

7) “Novel Ru (II) complexes with bpp ligand as efficient H2 generation photocatalysts”
Gurmeet Singh Bindra, Suraj Soman, Martin Schulz, Mary T. Pryce, Johannes G. Vos,
(manuscript under preparation)
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Posters Presented

1) Development of a New Synthetic Strategy for getting [IrIII(bpy-N,N')2Cl2]+ in High Purity
and Yield and the Study of  Deuteriation Effect on the Formation of [IrIII(bpy-N,N')2(bpy-
C,N')-]2+ Complexes
Suraj Soman, Hamid Younis, Mary T. Pryce, Wesley R. Browne and Johannes G. Vos,
10th Annual Symposium on Supramolecular Chemistry in Ireland held on 9 th July 2009 in
Trinity College Dublin, Ireland (Also presented at Annual Conference of SCI in Ireland
held in Dublin City University, Ireland on 15th April 2010).

2) Harvesting Solar Energy for the generation of H2

Suraj Soman, Gurmeet Singh Bindra, Avishek Paul, Danilo Dini, Mary T. Pryce and
Johannes G. Vos, 2010 Annual EPA Conference held at Cork Park, Dublin, Ireland.

3) Novel Iridium-Pt/Pd Photocatalyts for Intramolecular & Intermolecular Catalytic  H2

Generation from H2O
Suraj Soman, Gurmeet Singh Bindra, Avishek Paul, Martin Schulz, Mary T. Pryce and
Johannes G. Vos, Photochemistry and Photochemical Techniques 16-18th May 2011,
University College Dublin, Trinity College Dublin, Ireland.

4) Temperature dependent and solvent dependent photophysics of novel Ir-Pt/Pd dinuclear
complexes
Suraj Soman, Robert Goarke, Gurmeet Singh Bindra, Jane Inglis, Mary T. Pryce and
Johannes G. Vos, Photochemistry and Photochemical Techniques 16-18th May 2011,
UCD, Ireland (also presented in International Symposia on Advancing the Chemical
Sciences: Challenges in Renewable Energy (ISACS4), MIT, Boston, USA, 2011 July).

5) Novel Iridium-Pt/Pd Photocatalyts for Intramolecular & Intermolecular Catalytic H2

Generation from H2O using Blue Light (470nm) & UV Light (350nm)
Suraj Soman, Gurmeet Singh Bindra, Jane Inglis, Avishek Paul, Martin Schulz, Mary T.
Pryce and Johannes G. Vos, International Symposia on Advancing the Chemical
Sciences: Challenges in Renewable Energy (ISACS4), MIT, Boston, USA, 2011 July.

6) Effect of metal centers on spectroscopic and catalytic properties of metal complexes
Robert Groarke, Suraj Soman, Gurmeet Singh Bindra, Martin Schulz, Mary T. Pryce
and Jonannes G. Vos, 19th International Symposium on the Photophysics and
Photochemistry of Coordination Compounds, Strasbourg, France, 2011 July.
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1) “The design of new photocatalytic systems for the generation of hydrogen from water
using solar energy”
Suraj Soman, Annual Conference of SCI in Ireland held in Dublin City University,
Ireland on 15th April 2010.

2) “H2 – Fuel for the future”
Suraj Soman, presented in Prof. Sven Rau’s group during the photocatalytic meeting at
University of Nuremberg, Germany in July 2010.

3) “Novel Ir-Pt/Pd Photocatalyts for Intramolecular & Intermolecular Catalytic H2

Generation from H2O”
Suraj Soman, Photochemistry and Photochemical Techniques held in University College
Dublin, Ireland on 17th May 2011.
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Supplimentary data from chapter 2 and chapter 3
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Synthesis of bridging ligands

The ligands Hpztr, Hpytr, Hbpt and Hbpzt were prepared as previously reported by Hage.1

1) Synthesis of Hpztr (3-(pyrazin-2-yl)-1,2-4-triazole)

To a mixture of 5 g (0.048 mol) of molten 2-cyanopyrazine with an equimolar amount of 2.33

cm3 hydrazine hydrate, 20 cm3 of ethanol was added. The solution was stirred at room

temperature and the yellow crystals that formed where filtered. The pyrazylamidrazone (3.74 g,

0.0267 mol) was dissolved in a 10 fold excess of formic acid while keeping the temperature

below 10 0C. The mixture was stirred at room temperature for 3 hours. After subsequent heating

to dryness the ligand precipated and was then recrystallised from ethanol. Yield (2.5 g, 39 %). 1H

NMR (400 MHz, DMSO),  (ppm): 7.43 (dd), 7.88 (s), 8.02 (dd), 8.20 (d), 8.79 (d).

2) Synthesis of Hpytr (2-(4H-[1,2,4]-triazole-3-yl)-pyridine)

To 15 cm3 (0.26 mol) hydrazine hydrate 20 g (0.19 mol) 2-cyanopyridine was added. The

mixture was stirred at room temperature for 2 hours and then left at 4 0C for 1hr. The

intermediate, 2-pyridylamidrazone, was filtered and washed with diethyl ether. 2-

pyridylamidrazone was dissolved in concentrated formic acid and heated until only a small

amount of solvent was left. The crude product was recrystallised from an ethanol / water mixture

(pH 7). Yield (20.3 g, 61 %). 1H NMR (400 MHz, DMSO),  (ppm): 7.50 (dd, 1H), 7.98 (dd,

14Hz, 1H), 8.15 (d, 1H), 8.75 (d, 1H).

3) Synthesis of Hbpt (3,5-Bis(pyridin-2-yl)-1,2,4-triazole)

(a) (3,5-bis(pyridin-2-yl)-4-amino-1,2,4-triazole)

A mixture of 2-cyanopyridine (8.112 g, 78 mmol) and hydrazine hydrate (5 g, 156 mmol) were

heated at 100 0C for 4.5 hour. The orange precipitate that formed was filtered, washed with cold

EtOH (10 cm3) and diethyl ether (100 cm3). The orange 3,5-bis(pyridin-2-yl)-4-amino-1,2,4-

triazole was dissolved in 2M HCl (120 cm3)and boiled for 30 min. The solution was allowed to

cool to room temperature and then made alkaline by the addition of ammonia. The solution was

cooled to +4 0C for 1 hour and then filtered. The tan precipitate was washed with alkaline H2O

and recrystalised from hot EtOH. Yield (3.98 g, 17.5 mmol, 45 %. 1H NMR (400 MHz, DMSO),

 (ppm): 8.20 (d), 7.43 (t), 7.88 (s), 8.02 (t), 8.79 (d).
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(b) (3,5-Bis(pyridin-2-yl)-1,2,4-triazole)

The tan 3,5-bis (pyridin-2-yl)-4-amino-1,2,4-triazole (3.5 g,  15.7 mmol) was dissolved in

boiling 5M nitric acid (17.5 cm3). The solution was cooled to 0 0C and an aqueous sodium nitrite

solution (10.5 g in 17.5 cm3) was slowly added dropwise with stirring until no further brown

fumes were released. This solution was then boiled for 5 min and cooled to room temperature.

The white product, which crashed out, was washed with alkaline H2O and cold EtOH. The

product was then recrystalised from EtOH. Yield (3.0 g, 13.5 mmol, 85 %). 1H NMR (400 MHz,

DMSO),  (ppm): 7.52 ( 2H, t), 8.05 ( 2H, t), 8.22 ( 2H, d), 8.73 ( 2H, d).

4) Synthesis of Hbpzt (3,5-bis(pyrazin-2-yl)-1,2,4-triazole)

2-Pyrazinecarboxylic acid (8.0 g, 65 mmol) and conc. H2SO4 (2 ml) were heated at reflux in

EtOH for 3 h. Sodium carbonate was added to neutralize the H2SO4 after which excess hydrazine

hydrate (5.05 g, 101 mmol) was added. The solution was stirred at 0 0C for 3 h. The precipitate

was filtered and washed with cold EtOH. 2-Cyanopyrazine (4.2 g, 40 mmol) was converted to 2-

pyrazylmethylimidate by heating it at reflux with Na metal in MeOH for 3 h. The hydrazide from

above was added and the solution heated for an additional 1 h. The yellow precipitate was

filtered and washed with cold EtOH. 3,5-Bis(pyrazin-2-yl)-1,2,4-triazole was obtained by

heating the pyrazine-2-carboxylic acid N’-(imino-pyrazin-2-yl-methyl)-hydrazide at reflux in

ethylene glycol for 1 h. The product was then recrystallised from ethanol. Yield (6.0 g, 27 mmol,

42 %). 1H NMR(400 MHz, DMSO),  (ppm): 8.78 (d), 8.81 (d), 9.35 (s).

Synthesis of mononuclear iridium complexes

5) Synthesis of [Ir(thpy)2(bpp)]PF6

The ligand BPP (0.0340 g, 0.1459 mmol) was weighed and transfered to a 100 ml round bottom

flask (R.B) to which 5 ml of solvent, DCM: EtOH (2:1) was added and stirred at      60 0C for 20

minutes to which the dichlorobridged dimer, [Ir(thpy)2Cl]2 (0.080 g, 0.0729 mmol) dissolved in

15 ml of solvent was added slowly in an hour. The reaction was heated in reflux (90 0C) for 7

hours. The reaction mixture was cooled and solvents were all removed by vacuum rota

evaporator, 10 ml of deionised water was added and saturated aqueous NH4PF6 (1 g in 10 ml of

deionised water) was added resulting in the precipitation of the product as [Ir(ppy)2(BPP)].PF6

which was recrystalised from Acetone:Toluene:Hexane (2:1:1), vacuum filtered, washed with
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diethyl ether and dried. Yield (0.109 g, 71 %). 1H NMR (400 MHz, DMSO),  (ppm): 6.193 (1H,

d), 6.225 (1H, d), 6.957 (2H, m), 7.446 (1H, t), 7.552 (1H, d), 7.69 (3H, m), 7.777 (5H, m),

7.850 (1H, d), 7.932 (2H, m), 8.288 (1H, t), 8.561 (1H, d), 8.605 (1H, d), 8.869 (1H, d), 8.951

(2H, m). CHN for [Ir(thpy)2(bpp)]PF6, Calcd:  C, 44.49; H, 2.60; N, 7.86., Found: C, 44.38; H,

2.29; N, 6.09.

6) Synthesis of [Ir(ppy)2(pztr)]PF6

The dichlorobridged dimer, [Ir(ppy)2Cl]2 (0.1 g, 0.0860 mmol) and the corresponding

pyrazinetriazole ligand, Hpztr (0.0278 g, 0.1893 mmol) were refluxed in 9 ml of CH2Cl2 and 3

ml of EtOH for 16 hour under nitrogen atmosphere. Upon completion of the reaction (confirmed

by TLC), all solvents were removed under reduced pressure and the resulting yellow-brown solid

was chromatographed on silica gel using CH2Cl2:EtOH (10:1) mixture as eluent and recrystalised

from acetone: water (1:1) mixture to get the complex [Ir(ppy)2(pztr)].PF6 pure. Yield (0.042 g,

27 %). 1H NMR (400 MHz, DMSO),  (ppm): 6.15 (d, 1H), 6.23 (d, 1H), 6.77 (t, 1H), 6.85 (t,

1H), 6.87 (t, 1H), 6.95 (t, 1H), 7.08 (t, 1H), 7.16 (t, 1H), 7.36 (s, 1H), 7.54 (d, 1H), 7.57 (d, 1H),

7.75 (d, 1H), 7.81 (d, 1H), 7.86 (m, 3H), 8.17 (m, 2H), 8.53 (d, 1H), 9.42 (d, 1H).

7) Synthesis of [Ir(ppy)2(pytr)]PF6

A solution of the dichloro-bridged starting material [Ir(ppy)2Cl]2 (0.128 g, 0.12 mmol) in

dichloromethane/ethanol (2:1 v/v) was added slowly to a solution of Hpytr (0.035 g, 0.24 mmol)

in the same solvents. The total amount of solvent was 25 mL in which the reaction mixture was

reuxed for 5 hours. After allowing the mixture to cool down the solvent was removed under

reduced pressure and the product remaining in the RB was dissolved in acetone. A product

precipitated overnight which was green-yellow of color with a total yield of 82 %. Two isomers

formed, which was confirmed by both NMR and HPLC analysis. 1H NMR (DMSO-d6, 400

MHz)  (ppm): 8.72 (s, pytr), 8.66 (s, pytr), 8.45 (m, pytr), 8.23 (m, pytr and ppy), 7.92 (m, ppy),

7.81 (d, ppy), 7.71 (m, pytr and ppy), 7.64 (m, pytr and ppy), 7.59 (m, pytr and ppy), 7.16 (m,

ppy), 7.03-6.78 (m, ppy), 6.20 (d, ppy), 6.14 (d, ppy).
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Novel Neutral Iridium Complexes

8) Synthesis of [Ir(ppy)2(MePhpztr)]

A solution of the dichloro-bridged starting material [Ir(ppy)2Cl]2 (0.218 g, 0.2 mmol) in

dichloromethane/ethanol (2:1 v/v) was added slowly to a solution of HMePhpztr (0.1 g, 0.4

mmol) in the same solvents. The total amount of solvent was 40 mL in which the reaction

mixture was reuxed for 5ve hours. After allowing the mixture to cool down the solvent was

removed under reduced pressure and the product remaining in the RB was filtered and washed

with acetone and water. The final product was yellow in color with a total yield of  26 %. 1H

NMR (DMSO-d6, 400 MHz) δ (ppm): 9.37 (1H, s), 8.56 (1H, s), 8.21 (2H, t), 7.87 (6H, m), 7.77

(1H, d), 7.59 (2H, m), 7.19 (3H, m), 7.11 (1H, t), 6.99 (1H, t), 6.92 (2H, m), 6.79 (1H, t), 6.21

(1H, d), 6.17 (1H, d). Elemental analysis, Ir(ppy)2(MePhpztr) exp. (calc.): C 55.11 (57.05) H

3.69 (3.56) N 11.88 (13.31).

9) Synthesis of [Ir(thpy)2(MePhpztr)]

A solution of the dichloro-bridged starting material [Ir(ppy)2Cl]2 (0.117 g, 0.1 mmol) in

dichloromethane/ethanol (2:1 v/v) was added slowly to a solution of HMePhpztr (0.05 g, 0.2

mmol) in the same solvents. The total amount of solvent was 40 mL in which the reaction

mixture was refluxed for 5 hours. After allowing the mixture to cool down the solvent was

removed under reduced pressure and the solid remaining in the RB was partially dissolved in
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water. This was filtered, but turned out to contaminated. The remaining precipitate in the RB was

washed with acetone and diethyl ether. This final product was orange of color with a total yield

of 8 %. 1H NMR (DMSO-d6, 400 MHz) δ (ppm): 9.31 (1H, s), 8.56 (1H, s), 7.84 (2H, d), 7.71

(2H, m), 7.61 (4H, m), 7.55 (1H, d), 7.46 (2H, m), 7.15 (2H, d), 6.98 (1H, t), 6.86 (1H, t), 6.13

(1H, s), 6.08 (1H, s).

10) Synthesis of [Ir(ppy)2(Mepytr)]

The ligand ( 0.05g, 0.314129 mmol) was first weighed and transferred into an RB which contains

the solvent DCM:EtOH (2:1) & is heated for about 20-30 minutes. The metal [Ir(ppy)2Cl]2

(0.168g, 0.15706 mmol) dissolved in 20 ml of DCM was added dropwise to the reaction mixture

in an hour and the entire system was refluxed for 6 hours. After which the solvents were

removed completly and water was added resulting in the precipitation of the product which was

filtered and washed with water and diethyl ether and recrystalised from acetone : water to get it

completly pure. Yield: 0.147g, 71%

Synthesis of homodinuclear (Ir-Ir) and heterodinuclear (Ir-Ru) Complexes
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11) Synthesis of [(ppy)2Ir(bpt)Ir(ppy)2]PF6

A 0.25 mmol sample of [Ir(ppy)2Cl]2 and 0.4 mmol of Hbpt were heated at reflux for 6h in 50 ml

of CH2C12/EtOH (2:l v/v). After being cooled to room temperature, the solution was evaporated

to 10 ml and added to an excess of aqueous NH4PF6. The crude product was filtered off and

recrystalised from water/acetone (1: l v/v). CHN for {[Ir(ppy)2]2(bpt)}.PF6.acetone Calcd:  C,

49.68; H, 3.15; N, 8.84. Found: C, 49.40; H,3.33; N, 8.91.

12) Synthesis of [(bpy)2Ru(bpt)Ir(ppy)2]PF6

A 0.25 mmol sample of [Ru(bpy)2(bpt)]+ was dissolved in 50 ml of 2-methoxyethanol. A 0.25

mmol sample of  [Ir(ppy)2C1]2 was added, and the mixture was heated to reflux for 48 h. After

being cooled to room temperature, the volume of the filtered solution was reduced by

evaporation to 25 %. The solution was then added to an excess of aqueous NH4PF6. The

precipitate was filtered off, dissolved in acetone and purified by column chromatography (neutral

EtOH as eluent; height of  20 cm; width of column, 2 cm). The product was recrystalised from

water/acetone (1:l v/v). CHN for [(bpy)2Ru(bpt)Ir(ppy)2]PF6.H2O    Calcd  :  C, 44.91; H, 2.91;

N, 10.67. Found :  C, 44.69; H, 2.69; N, 10.40.

13) Synthesis of [(bpy)2Ru(dpp)Ir(ppy)2]3PF6

[Ru(bpy)2(dpp)]2PF6 (0.0151 g, 0.000023297 mmol) was taken in a 50 ml R.B to which 5 ml of

the solvent was added and refluxed at 80 0C to which [Ir(ppy)2Cl]2 (0.0115 g, 0.00001164

mmol), dissolved in 5ml of solvent was added. The reaction mixture was refluxed then for 6

hours, cooled, solvent was removed, dissolved in water and aqueous KPF6 was added in order to

precipitate the product, which is vacuum dried and recrystalised from acetone: water (1:1) and

then with acetone: toluene (1:1) mixture. Yield: 0.020 g

14) Synthesis of [(bpy)2Ru(d10-dpp)Ir(ppy)2]3PF6

[Ru(bpy)2(d10-dpp)]2PF6 (0.0151 g, 0.000023297 mmol) was taken in a 50 ml R.B to which 5 ml

of the solvent was added and refluxed at 80 0C to which [Ir(ppy)2Cl]2 (0.012 g, 0.00001164

mmol), dissolved in 5ml of solvent was added. The reaction mixture was refluxed then for 6

hours, cooled, solvent was removed, dissolved in water and aqueous KPF6 was added in order to
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precipitate the product, which is vacuum dried and recrystalised from acetone: water (1:1) and

then with acetone: toluene (1:1) mixture. Yield: 0.018 g

15) Synthesis of [(ppy)2Ir(dpp)Ir(ppy)2]3PF6

dpp (0.0328 g, 0.0001401 mmol) was taken in an R.B to which 20 ml of DCM: MeOH (1:1) was

added and refluxed at 60 0C for 15 min in N2 atmosphere. [Ir(ppy)2Cl]2 (0.05 g, 0.00004672

mmol) was dissolved in 20 ml DCM and added slowly, dropwise in 30 minutes and the entire

solution was refluxed for 7 hours. The solvent was all removed then, dissolved in water, filtered

and aqueous KPF6 was added resulting in the precipitation of the product which was

recrystalised from acetone: water (1:1) mixture, vacuum filtered and dried to get the pure

product. Yield: 0.043 g

1H NMR Spectra

Figure A1. 1H NMR Spectrum of Hbpt (a) and Hbpzt (b) taken in d6 DMSO.
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Figure A2. 1H NMR spectrum of ppy-COOH in d6 DMSO.

Figure A3. 1H NMR spectrum of ppy-COOCH3 in d6 DMSO
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Figure A4. 1H NMR spectrum of ppy-COOCH2CH3 in d6 DMSO

Figure A5. 1H NMR spectrum of [Ir(thpy)2Cl]2 in d6 DMSO

Figure A6. 1H NMR spectrum of [Ir(CHO-ppy)2Cl]2 in d6 DMSO
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Figure A7. 1H NMR spectrum of [Ir(thpy)2(bpp)]PF6 in d6 DMSO

Figure A8. 1H NMR spectrum of [Ir(ppy)2(pztr)]PF6 in d6 DMSO
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Figure A9. 1H NMR spectrum of [Ir(ppy)2(MePhpztr)] in d6 DMSO

Figure A10. 1H NMR spectrum of [Ir(thpy)2(MePhpztr)] in d6 DMSO

Figure A11. 1H NMR spectrum of [Ir(ppy)2(Mepytr)] in d6 DMSO
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Figure A12. 1H NMR spectrum of [Ir(CHO-ppy)2(tpy)]PF6 in d6 DMSO

Figure A13. 1H NMR spectrum of [Ir(ppy)2(bpm)PtCl2]PF6 in d6 DMSO

Figure A14. 1H NMR spectrum of [Ir(ppy)2(bpt)Ir(ppy)2]PF6 in d6 DMSO
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Figure A15. 1H NMR spectrum of [(bpy)2Ru(dpp)]2PF6 in d6 DMSO

Figure A16. 1H NMR spectrum of [(bpy)2Ru(dpp)Ir(ppy)2]3PF6 in d6 DMSO
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Figure A17. 1H NMR spectrum of [Ir(ppy)2(d8bpy)]PF6 in d6 DMSO

Figure A18. 1H NMR spectrum of [Ir(ppy)2(d8phen)]PF6 in d6 DMSO
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Figure A19. 1H NMR spectrum of [Ir(ppy)2(bpp)]PF6 in d6 DMSO

Figure A20. 1H NMR spectrum of [Ir(ppy)2(bpm)]PF6 in d6 DMSO
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Figure A21. 1H NMR spectrum of [Ir(ppy-COOCH3)2(terpy)]PF6 in d6 DMSO

Figure A22. 1H NMR spectrum of [Ir(ppy-COOCH3)2(terpy)PdCl2]2PF6 in d6 DMSO
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Figure A23. 1H NMR spectrum of [Ir(ppy-CHO)2(terpy)]PF6 in d6 DMSO

Figure A24. 1H NMR spectrum of [Ir(ppy)2(bpm)PdCl2]2PF6 in d6 DMSO
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Complex 3 4 5 6
(1) 7.60 7.14 7.92 8.26
(2) 7.60 7.14 7.92 8.26
(3) 7.93 7.04 7.85 8.24
(4) 7.93 7.04 7.85 8.24
(5) 7.60 7.15 7.91 8.25
(6) 7.60 7.15 7.91 8.25
(7) 7.70 7.17 7.93 8.26
(8) 7.70 7.17 7.93 8.26

Table 3.1 Tabulated 1H NMR shift values for complexes (1) to (8) done in d6 dmso.

Complex 6'ꞌ 6ꞌꞌꞌ 5'ꞌ 5ꞌꞌꞌ 4ꞌꞌ 4ꞌꞌꞌ d b c k i j
(9) 6.21 7.78 6.94 7.16 7.05 7.94 7.86 7.43 7.71 8.27 8.85 8.98

(10) 6.23 8.34 6.91 7.11 7.94 7.94 7.88 7.81 7.94 8.58 7.73 8.45

(11) 6.22 7.90 6.88 7.15 7.0 7.63 6.94 8.07 7.53 7.90 8.23 8.23

Table B1 Tabulated 1H NMR shift values for complex (9), (10) and (11) in d6 dmso.

Complex 6'ꞌ 5'ꞌ 4'ꞌ 3'ꞌ 5ꞌꞌꞌ 4ꞌꞌꞌ 3ꞌꞌꞌ c d k f
(15) 5.82 6.80 7.01 7.52 7.66 8.36 8.93 7.35 8.03 8.29 6.99
(16) 6.22 6.74 6.87 7.77 7.99 7.43 9.51 7.87 8.72 - -
(17) 5.93 - 7.17 7.59 8.11 7.17 8.90 7.99 8.28 8.11 7.59
(18) 6.82 - 7.44 7.88 8.12 7.60 9.52 7.88 8.74 - 7.88
(19) 6.24 - 7.48 8.12 8.05 7.25 7.61 7.61 8.32 8.32 7.61

Table B2 Tabulated 1H NMR shift values for complex (15), (16), (17) and (18) in d6 dmso.

Complex 6 5 4 3 d e f
(20) 8.26 7.91 7.14 7.91 - - -
(21) 8.28 8.10 7.28 8.10 9.30 7.96 8.28
(23) 8.28 7.99 7.29 8.12 - - -
(24) 8.44 8.12 7.62 8.12 - - -

Table B3 Tabulated 1H NMR shift values for complex (20), (21), (23) and (24) in d6 dmso.
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Photophysics
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Figure A25. Absorption spectra for complex [Ir(ppy)2(bpm)](PF6) (20) along with complex
[Ir(ppy)2(bpm)PdCl2](PF6) (21) and [Ir(ppy-COOCH3)2(bpm)](PF6) (21) measured in aerated
ACN at room temperature (298 K) (concentration - 6×10-5M). (MLCT region is expanded
inside).
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Figure A26 (a) Emission spectrum for [Ir(ppy-COOCH3)2(BPP)PtCl]2(PF6)2 (13) at 298 K (in
aerated ACN) and 77 K (in 4:1 EtOH:MeOH glass) (b) Emission spectrum for [Ir(ppy-
COOCH3)2(BPP)PdCl]2(PF6)2 (14) at 298 K (in aerated ACN) and 77 K (in 4:1 EtOH:MeOH
glass)
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Absorption data with extinction coefficients for complexes discussed in chapter 3

Complex Absorption λabs (nm)
ε (LM-1cm-1)x 103

[Ir(ppy)2(bpy)](PF6) (1) 257 (47698), 300 (23947), 350 (7263), 410 (3437),
470 (548)

[Ir(ppy)2(d8bpy)](PF6) (2) 257 (52181), 300 (26523), 350 (8141), 410 (3895),
470 (3888)

[Ir(ppy)2(phen)](PF6) (3) 263 (53053), 350 (7874), 470 (581)

[Ir(ppy)2(d8phen)](PF6) (4) 263 (52427), 350 (8788), 470 (1070)

[Ir(ppy)2(dmbpy)](PF6) (5) 257 (50096), 300 (24864), 350 (8248), 410 (4115),
470 (968)

[Ir(ppy)2(d12dmbpy)](PF6) (6) 257 (46167), 300 (23211), 350 (8323), 410 (3556),
470 (629)

[Ir(ppy)2(dtbpy)](PF6) (7) 257 (44337), 300 (21504), 350 (6851), 410 (3135),
470 (394)

[Ir(ppy)2(d24dtbpy)](PF6) (8) 257 (51390), 300 (25466), 350 (51535), 410 (3918),
470 (704)

Table B4. Absorption data with extinction coefficient values for complexes (1) to (8) measured in
ACN

Complex Absorption λabs (nm)
ε (LM-1cm-1)x 103

[Ir(ppy)2(tpy)]PF6 (15) 257 (53445), 350 (9866), 470 (996)

[Ir(ppy)2(tpy)PdCl]2(PF6)2 (16) 265 (104933), 350 (23492), 470 (290)

[Ir(ppy-COOCH3)2(tpy)]PF6 (17) 264 (56141), 300 (43173), 350 (9646),
470 (993)

[Ir(ppy-COOCH3)2(tpy)PdCl]2(PF6)2 (18) 270 (146928), 350 (26570), 470 (4500)

[Ir(ppy-CHO)2(tpy)]PF6 (19) 270 (49780), 303 (45466), 350 (8847),
470 (264)

Table B5. Absorption data with extinction coefficient values for complexes (15) to (19) measured
in ACN

Complex Absorption λabs (nm)
ε (LM-1cm-1)x 103

[Ir(ppy)2(bpm)]PF6 (20) 252 (68098), 350 (10914), 470 (1874)

[Ir(ppy)2(bpm)PdCl2]PF6 (21) 256 (84616), 350 (12226), 470 (1119)

[Ir(ppy-COOCH3)2(bpm)]PF6 (24) 250 (54990), 350 (9269), 470 (2058)

Table B6. Absorption data with extinction coefficient values for complexes (20), (21) & (24)
measured in ACN



- 22 -

The molar extension coefficient (ε) for all the iridium complexes has been calculated by the

method as follows. Four to five different concentrations of a particular complex is prepared and

absorption spectra is measured, the concentration is kept in such a way as all of them obey beer

lamberts law (O.D kept below 1). In cases where there is huge difference between the

absorbance of visible and UV regions are seen ε was calculated separately at different sets of

concentrations for UV and visible regions in those cases. After that absorbance at a particular

wavelength was plotted against different concentration and the linear fit of the data gave us the

slope which is the molar extinction coefficient data. An example of the absorption against the

concentration for [Ir(ppy)2(bpy)](PF6) at two different wavelengths are shows in figure below.

The rest of all are obtained using the same method.

1.0x10-5 1.5x10-5 2.0x10-5 2.5x10-5 3.0x10-5 3.5x10-5 4.0x10-5

0.00

0.02
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s

Concentration (M)

Equation y = a + b*x
Adj. R-Square 0.99633

Value Standard Error
Intercept -0.02415 0.00288

257 nm Slope 47698 105.05556

Figure : Absorbance, concentration and molar extintction coefficient for [Ir(ppy)2(bpy)](PF6) at 257 nm.

Lifetime decay curves and residual plots

The lifetime decay plots for all of the complexes discussed in chapter 3 along with the decay fit

curve and the corresponding residual plots are given in figures below. All the measurements

were done in spectroscopic grade ACN at room temperature (298 K). The complete details

regarding emission wavelength, time base, lifetime value and χ2 value which determines the

perfection of fit are given inside each of the graphs.
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Figure A27. Lifetime values with decay plots for [Ir(ppy)2(phen)]PF6 in aerated ACN at 298 K.
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Figure A28. Lifetime values with decay plots for[Ir(ppy)2(d8phen)]PF6 in aerated ACN at 298K.



- 24 -

0 100 200 300 400 500

0

1x102

2x102

3x102

4x102

5x102

6x102

7x102

8x102

9x102

1x103

 Decay Curve
 Exp Decay Fit Curve

Emission Wavelength - 575 nm
Timebase - 500 ns
Lifetime - 60.19 ns
2 - 1.083

C
ou

nt
s 

Pe
r S

ec
on

d 
(C

PS
)

Time (ns)

[Ir(ppy)2(dmbpy)].PF6

0 200 400 600 800 1000

0.0

2.0x102

4.0x102

6.0x102

8.0x102

1.0x103 [Ir(ppy)2(dmbpy)].PF6

 Decay Curve
 Exp Decay Fit Curve

Emission Wavelength - 575 nm
Timebase - 1s
Lifetime - 59.14 ns
2 - 1.044

C
ou

nt
s 

Pe
r S

ec
on

d 
(C

PS
)

Time (ns)

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

- 4 x 1 0 0

- 3 x 1 0 0

- 2 x 1 0 0

- 1 x 1 0 0

0

1 x 1 0 0

2 x 1 0 0

3 x 1 0 0

4 x 1 0 0 R e s i d u a l  d a t a  f o r  d e c a y  o f [ I r ( p p y ) 2 ( d m b p y ) ] ( P F 6 )  i n  a e r a t e d  A C N

Re
sid

ua
l V

alu
e

T im e  ( n s )

2 0 0 3 0 0 4 0 0 5 0 0 6 0 0

- 4 x 1 0 0

- 3 x 1 0 0

- 2 x 1 0 0

- 1 x 1 0 0

0

1 x 1 0 0

2 x 1 0 0

3 x 1 0 0

4 x 1 0 0
R e s i d u a l  d a t a  f o r  d e c a y  o f [ I r ( p p y ) 2 ( d m b p y ) ] ( P F 6 )  i n  a e r a t e d  A C N

Re
sid

ua
l V

alu
e

T im e  ( n s )

Figure A29. Lifetime values with decay plots for[Ir(ppy)2(dmbpy)]PF6 in aerated ACN at 298K.
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Figure A30. Lifetime values with decay plots for[Ir(ppy)2(d12dmbpy)]PF6 in aerated ACN at
298K.
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Figure A31. Lifetime values with decay plots for[Ir(ppy)2(dtbpy)]PF6 in aerated ACN at 298K.
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Figure A32. Lifetime values with decay plots for[Ir(ppy)2(d24dtbpy)]PF6 in aerated ACN at
298K.
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Figure A33. Lifetime values with decay plots for[Ir(ppy-COOCH3)2(bpp)PdCl2]PF6 in aerated
ACN at 298K.
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Figure A34. Lifetime values with decay plots for[Ir(ppy)2(tpy)]PF6 in aerated ACN at 298K.
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Figure A35. Lifetime values with decay plots for[Ir(ppy-COOCH3)2(tpy)]PF6 in aerated ACN at
298K.(λem = 550 nm)
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Figure A36. Lifetime values with decay plots for[Ir(ppy-COOCH3)2(tpy)]PF6 in aerated ACN at
298K. (λem = 515 nm)
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Electrochemistry of complexes discussed in chapter 3 - All the measurements were completly
done and tabulated by Jane Inglis

Complex E1/2 ox. (V) Epa-Epc
(mV)

E1/2red.
(V)

Epc-Epa
(mV)

[Ir(ppy)2(bpp)](PF6)
(9)

+1.33 70 -1.21,
-1.73,
-2.27

60,
70,
70

[Ir(ppy)2(bpp)PtCl]2(PF6)2
(10)

+1.89 -
0.94(irr),

-1.35,
-1.82

80,
100

[Ir(ppy)2(bpp)PdCl]2(PF6)2
(11)

+1.43
(irr),
+1.92

130 -0.89,
-1.33,
-1.78

60,
140

[Ir(ppy-COOCH3)2(bpp)]
(PF6), (12)

+1.56 95 -1.16,
-1.70,
-1.86,
-1.99

70,
90,
70,
110

[Ir(ppy-COOCH3)2(bpp)
PtCl]2(PF6)2 (13)

+1.49 70 -1.29,
-1.68,
-1.87,
-2.08

60,
60,
60,
85

[Ir(ppy)2(tpy)](PF6)
(15)

+1.35,
+1.49

Irreversible
100

-1.35,
-1.98,
-2.17

60,
70,
150

[Ir(ppy)2(tpy)PdCl]2(PF6)2
(16)

+1.05
+1.44
+1.94

60
60

Irreversible

-0.78
-1.38
-2.04
-2.30

100
Irreversible

75
75

[Ir(ppy-COOCH3)2(tpy)]
(PF6), (17)

+1.53
+1.62
+1.94

Irreversible
85

100

-0.85
-1.30
-1.78
-2.02

Irreversible
60
70

120
[Ir(ppy-COOCH3)2(tpy)

PdCl]2(PF6)2, (18)
+1.17
+1.58

70
70

-0.76
-1.76
-1.89
-2.09

Irreversible
90
70

100
[Ir(CHO-ppy)2(tpy)](PF6)

(19)
+1.51
+1.73
+1.96

Irreversible
90

110

-0.83
-1.29
-1.57
-1.78
-2.02

Irreversible
60
60

100
150
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[Ir(ppy)2(bpm)](PF6)
(20)

+1.39 80 -0.98
-1.66
-2.05
-2.20

60
60

140
160

[Ir(ppy)2(bpm)PdCl2](PF6)
(21)

+ 1.55 95 -0.36
-0.71
-1.06
-1.79
-2.02
-2.16

50
Irreversible

65
80

120
70

[Ir(ppy-COOCH3)2(bpm)]
(PF6), (24)

+ 1.58 100 -0.85
-0.95
-1.62
-1.82
-1.96
-2.28

Irreversible
50
50
60

100
70

[Ir(ppy)2(dpp)](PF6)
(25)

+ 1.40 60 -0.94
-1.58
-2.24

60
60

110

1. R. Hage, Ruthenium and osmium complexes containing triazole ligands: syntheses, structures,

electrochemical and photophysical properties, Ph.D. Dissertation, Leiden University, The

Netherlands, 1991.
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Appendix C

Supplimentary data from chapter 4
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Photophysics

Complex Absorption λabs (nm)
ε(LM-1cm-1)

Emission, λmax (nm),
λe x (420nm)

Quantum
Yield

ϕF

Avg.
Lifetime
τav, (ns)
298 K

298K
Aerated

77K
(nm)

(a) 256(56197), 291(45699),
318(37498), 350(6848),

420(563), 470(0)

614 540 0.219 72

(b) 262(74679), 303(68770),
350(34111), 420(9210),

470(1973)

546,

605

528,

567

0.052 69,

76

(c) 256(116297), 287(99499),
350(35839), 420(8266),

470(1841)

618 544 0.048 73

Table  S1. Photophysical properties of the complexes [Ir(ppy)2(bpp)]PF6 (a), [Ir(ppy)2(bpp)
PtCl]2(PF6)2 (b) and [Ir(ppy)2(bpp)PdCl]2(PF6)2 (c)

The molar extension coefficient (ε) for all the iridium complexes has been calculated by the

method as follows. Four to five different concentrations of a particular complex is prepared and

absorption spectra is measured, the concentration is kept in such a way as all of them obey beer

lamberts law (O.D kept below 1). In cases where there is huge difference between the

absorbance of visible and UV regions are seen ε was calculated separately at different sets of

concentrations for UV and visible regions in those cases. After that absorbance at a particular

wavelength was plotted against different concentration and the linear fit of the data gave us the

slope which is the molar extinction coefficient data. Some of them are given below the rest are

done in the same way
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Linear  Fit data at four different conc. used for calculating extinction coefficient

Complex (b) : [Ir(ppy)2(bpp)PtCl]2(PF6)2

7.0x10-6 7.5x10-6 8.0x10-6 8.5x10-6 9.0x10-6 9.5x10-6 1.0x10-5

0.60

0.65

0.70

0.75

0.80

0.85

O
.D

Conc.

262
Linear Fit of 262

Equation y = a + b*x
Adj. R-Square 0.99602

Value Standard Error
262 Intercept 0.08287 0.02335
262 Slope 74679 2723.99468

Linear fit at 4 different conc. for complex (b) at a wavelength of 262 nm

7.0x10-6 7.5x10-6 8.0x10-6 8.5x10-6 9.0x10-6 9.5x10-6 1.0x10-5

0.50

0.55

0.60

0.65

0.70

0.75

O
.D

Conc.

303
Linear Fit of 303

Equation y = a + b*x
Adj. R-Square 0.99942

Value Standard Error
303 Intercept 0.02919 0.00823
303 Slope 68770 959.83853

Linear fit at 4 different conc. for complex (b) at a wavelength of 303 nm
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7.0x10-6 7.5x10-6 8.0x10-6 8.5x10-6 9.0x10-6 9.5x10-6 1.0x10-5
0.18

0.20

0.22

0.24

0.26

0.28

0.30

O
.D

Conc.

350
Linear Fit of 350

Equation y = a + b*
Adj. R-Square 0.99746

Value Standard Error
350 Intercept -0.04279 0.00851
350 Slope 34111 992.87814

Linear fit at 4 different conc. for complex (b) at a wavelength of 350 nm

1.0x10-5 1.5x10-5 2.0x10-5 2.5x10-5 3.0x10-5 3.5x10-5 4.0x10-5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
.D

Concentration

420 nm
Linear Fit of 420 nm

Equation y = a + b*x
Adj. R-Square 0.99454

Value Standard Error
420 nm Intercept -0.27323 0.03782
420 nm Slope 9250 381.4587

Linear fit at 4 different conc. for complex (b) at a wavelength of 420 nm
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1.0x10-5 1.5x10-5 2.0x10-5 2.5x10-5 3.0x10-5 3.5x10-5 4.0x10-5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

O
.D

Wavelength (nm)

470 nm
Linear Fit of 470 nm

Equation y = a + b*x
Adj. R-Square 0.9962

Value Standard Error
470 nm Intercept -0.23948 0.02392
470 nm Slope 1982 115.7896

Linear fit at 4 different conc. for complex (b) at a wavelength of 470 nm

Complex (c) : [Ir(ppy)2(bpp)PdCl]2(PF6)2

7.0x10-6 7.5x10-6 8.0x10-6 8.5x10-6 9.0x10-6 9.5x10-6 1.0x10-5
0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

O
.D

Conc.

256
Linear Fit of 256

Equation y = a + b*x
Adj. R-Square 0.99807

Value Standard Error
256 Intercept -0.00684 0.02533
256 Slope 116297 2954.85076

Linear fit at 4 different conc. for complex (c) at a wavelength of 256 nm
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7.0x10-6 7.5x10-6 8.0x10-6 8.5x10-6 9.0x10-6 9.5x10-6 1.0x10-5
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

O
.D

Conc.

287
Linear Fit of 287

Equation y = a + b*x
Adj. R-Square 0.99869

Value Standard Error
287 Intercept -0.04574 0.01782
287 Slope 99499 2078.86195

Linear fit at 4 different conc. for complex (c) at a wavelength of 287 nm

7.0x10-6 7.5x10-6 8.0x10-6 8.5x10-6 9.0x10-6 9.5x10-6 1.0x10-5
0.22

0.24

0.26

0.28

0.30

0.32

0.34

O
.D

Conc.

350
Linear Fit of 350

Equation y = a + b*x
Adj. R-Square 0.99575

Value Standard Error
350 Intercept -0.01947 0.01157
350 Slope 35839 1350.05444

Linear fit at 4 different conc. for complex (c) at a wavelength of 350 nm
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1.0x10-5 1.5x10-5 2.0x10-5 2.5x10-5 3.0x10-5 3.5x10-5 4.0x10-5

0.4

0.6

0.8

1.0

1.2

1.4

O
.D

Concentration (M)

Equation y = a + b*x
Adj. R-Square 0.99826

Value Standard Error
420 nm Slope 8270 205.3258

Linear fit at 4 different conc. for complex (c) at a wavelength of 420 nm

1.0x10-5 1.5x10-5 2.0x10-5 2.5x10-5 3.0x10-5 3.5x10-5 4.0x10-5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

O
.D

Concentration

470 nm
Linear Fit of 470 nm

Equation y = a + b*x
Adj. R-Square 0.99942

Value Standard Error
470 nm Slope 1845 13.8763

Linear fit at 4 different conc. for complex (c) at a wavelength of 470 nm



- 8 -

Complex 1 : [Ir(ppy)2(BPP)]PF6 Photophysics
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Figure C1. Conc. dependent absorption spectrum for complex 1
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Figure C2. Solvent dependant absorption spectrum for complex 1 (conc: 1E-05)



- 9 -

500 550 600 650 700 750 800
0

5

10

15

20

25

30

Lu
m

in
es

en
ce

 In
te

ns
ity

Wavelength (nm)

 1E-05
 2E-05
 3E-05
 4E-05

Figure C3. Conc dependant emission in ACN
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Figure C4. Solvent dependant emission (Conc. 1E-05)
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Figure C5. Excitation wavelength dependant emission in MeOH (Conc. 1E-05)
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Figure C6. aerated & deaerated emission of complex 1 in ACN (1E-05)



- 11 -

500 550 600 650 700 750 800
0

2

4

6

8

10

Lu
m

in
es

en
ce

 In
te

ns
ity

Wavelength (nm)

 Aerated
 Deaerated

Figure C7. aerated & deaerated emission of complex 1 in MeOH (1E-05)
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Figure C8. aerated & deaerated emission of complex 1 in CHCl3 (1E-05)
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Figure C9. aerated & deaerated emission of complex 1 in DCM (1E-05)
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Complex 2 : [Ir(ppy)2(BPP)PtCl]2(PF6)2 Photophysics
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Figure C10. Conc. Dependant abs for complex 2 in ACN
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Figure C11. Solvent Dependant abs for complex 2 (1E-05)
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Figure C12. Conc. Dependant emission for complex 2
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Figure C13. Solvent Dependant emission for complex 2 (Conc. 1E-05)
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Figure C14. Excitation wavelength Dependant emission for complex 2 in ACN (Conc.1E-05)
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Figure C15. aerated & deaerated emsn for complex 2 in ACN (1E-05)
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Figure C16. aerated & deaerated emsn for complex 2 in MeOH (1E-05)

500 550 600 650 700 750 800
0

10

20

30

40

50

Lu
m

in
es

en
ce

 In
te

ns
ity

Wavelength (nm)

Aerated
Deaerated

Figure C17. aerated & deaerated emsn for complex 2 in CHCl3 (1E-05)
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Figure C18. aerated & deaerated emsn for complex 2 in DCM (1E-05)
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Complex 3: [Ir(ppy)2(BPP)PdCl]2(PF6)2 Photophysics
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Figure C19. Conc. Dep abs for complex 3 in ACN
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Figure C20. Solvent Dep abs for complex 3 (conc. 1E-05)
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Figure C21. Conc. Dependant Emsn Spectra of Complex 3 in ACN
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Figure C22. Solvent Dependant Emsn Spectra of Complex 3 (1E-05)
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Figure C23. Excitation wavelength dependant emission for complex 3 in ACN (1E-05)
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Figure C24. Aerated & Deaerated emission for complex 3 in ACN (1E-05)
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Figure C25. Aerated & Deaerated emission for complex 3 in MeOH (1E-05)
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Figure C26. Aerated & Deaerated emission for complex 3 in CHCl3 (1E-05)
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Figure C27. Aerated & Deaerated emission for complex 3 in DCM (1E-05)

Temperature dependent lifetime data for Ir-Pt complex [Ir(ppy)2(bpp)PtCl]2(PF6)2 (2) measured in

a temperature of 77 K to 290 K is tabulated below
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Temperature Wavelength
λ

Lifetime, µs Relative % Avg Life time, ns

77K 527 τ = 3322 100
3322

3066

χ2= 1.012
567 τ1= 635 11.57

τ2= 3130 88.43
χ2= 1.035

90K 527 τ = 2987 100 2987

2746
χ2= 1.124

567 τ1= 552.33 12.75
τ2= 2809 87.25

χ2= 1.184
100K 527 τ = 2776 100

2776

2495

χ2= 1.088
567 τ1= 469.74 11.85

τ2= 2545 88.15
χ2= 1.192

110K 527 τ = 2564 100 2564

2255

χ2= 1.073
567 τ1= 539 15.79

τ2= 2329 84.21
χ2= 1.003

120K 529 τ1= 361.26 9.89
1938

1291

τ2= 1970 90.11
χ2= 1.110

570 τ1= 298.35 12.64
τ2= 1323 87.36

χ2= 1.138
125K 534 τ1= 106.20 20.11 972

1044

τ2= 994.77 79.89
χ2= 1.098

572 τ1= 283.20 21.83
τ2= 1099 78.17

χ2= 1.138
130K 536 τ1= 71.43 35.33 508

747

τ2= 539.91 64.67
χ2= 1.063

576 τ1= 147.54 15
τ2= 767.68 85

χ2= 1.051
135K 579 τ1= 160.64 20.97 734

τ2= 766.34 79.03
χ2= 1.078

140K 582 τ1= 122.57 19.60 679
τ2= 702.93 80.40

χ2= 1.114
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150K 585 τ1= 115.82 19.47 632

575

τ2= 653.71 80.53
χ2= 1.063

160 588 τ1= 106.38 20.40
τ2= 596.14 79.60

χ2= 1.102
170K 544 τ1= 49.73 42.57 256

501

τ2= 283.14 57.43
χ2= 1.146

587 τ1= 103.19 22.11
τ2= 522.75 77.89

χ2= 1.106
180K 543 τ1= 40.02 40.35 198

400

τ2= 217.16 59.65
χ2= 1.137

587 τ1= 78.83 18.81
τ2= 414.10 81.19

χ2= 1.107
190K 543 τ1= 39 41.64 169

334

τ2= 188.40 58.36
χ2= 1.123

589 τ1= 72.83 23.69
τ2= 351.22 76.31

χ2= 1.192
200K 543 τ1= 34.89 42.78 147

280

τ2= 164.18 57.22
χ2= 1.097

589 τ1= 69.41 25.70
τ2= 296.89 74.30

χ2= 1.111
210K 543 τ1= 31.52 40.72 125

252

τ2= 139.77 59.28
χ2= 1.058

589 τ1= 66.58 31.95
τ2= 272.97 68.05

χ2= 1.065
220 543 τ1= 29.13 43.53 117

222

τ2= 131.66 56.47
χ2= 1.055

589 τ1= 64.45 35.23
τ2= 244.36 64.77

χ2= 1.089
230K 543 τ1= 28.49 42.28 101

195

τ2= 114.67 57.72
χ2= 1.085

589 τ1= 61.79 43.86
τ2= 223.66 56.14

χ2= 1.114
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Temperature dependent lifetime data for Ir-Pd complex [Ir(ppy)2(bpp)PdCl]2(PF6)2 (3) measured in

a temperature of 77 K to 290 K is tabulated below

240K 543 τ1= 27 47.33 91

143

τ2= 105.29 52.67
χ2= 1.090

587 τ1= 38.16 30.74
τ2= 154.43 69.26

χ2= 1.117
250K 543 τ1= 24.07 45.57 80

138

τ2= 92.44 54.43
χ2= 1.100

587 τ1= 35.57 38.32
τ2= 152,36 61.68

χ2= 1.069
260K 543 τ1= 18.28 35.67 65

103

τ2= 72 64.33
χ2= 1.042

587 τ1= 25.53 23.48
τ2= 108.57 76.52

χ2= 1.151
270K 543 τ1= 17.56 34.02 63

94

τ2= 68.69 65.98
χ2= 1.046

587 τ1= 22.38 23.39
τ2= 98.80 76.61

χ2= 1.056
280K 543 τ1= 17.41 39.63 60

92

τ2= 67.08 60.37
χ2= 1.083

587 τ1= 21.73 24.54
τ2= 97.47 75.46

χ2= 1.059
290 543 τ1= 12.21 24.71 44

89

τ2= 46.96 75.29
χ2= 1.105

587 τ1= 21.22 25.84
τ2= 94.21 74.16

χ2= 1.107
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Temperature Wavelength
λ

Lifetime, µs Relative
%

Avg Life time, ns

77 K 544 τ1= 455 4.64 3174
τ2= 3193 95.36

χ2= 1.059
90 K 545 τ1= 307.81 3.74 2795

τ2= 2806 96.26
χ2= 1.012

100 K 545 τ1= 223.62 3.38 2572
τ2= 2579 96.62

χ2= 1.000
110 K 555 τ = 169.23 3.45 2496

τ2= 2502 96.55
χ2= 1.064

120 K 564 τ1= 144.35 2.78 2275
τ2= 2279 97.22

χ2= 1.001
130 K 579 τ1= 128.49 2.67 1500

τ2= 1503 97.33
χ2= 1.057

140 K 587 τ1= 122.12 32.05 603
τ2= 646.24 67.95

χ2= 1.114
150 K 601 τ1= 77.75 19.43 433

τ2= 447.63 80.57
χ2= 1.093

160 K 603 τ1= 53.08 13.78 376
τ2= 383.33 86.22

χ2= 1.048
170 K 606 τ1= 35.83 9.98 341

τ2= 344.97 90.02
χ2= 1.109

180 K 607 τ1= 34.00 6.18 274
τ2= 275.85 93.82

χ2= 1.006
190 K 608 τ1= 10.48 2.67 191

τ2= 191.07 97.33
χ2= 1.103
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200 K 609 τ1= 9.03 0.81 153
τ2= 152.63 99.19

χ2= 1.084
210 K 610 τ1= 5.11 1.55 138

τ2= 138.12 98.45
χ2= 1.089

220 K 611 τ1= 1.76 0.96 121
τ2= 120.86 99.04

χ2= 1.112
230 K 614 τ = 1.24 0.46 98

τ2= 97.53 99.54
χ2= 1.072

240 K 615 τ1= 0.62 0.28 88
τ2= 88.34 99.72

χ2= 1.045
250 K 615 τ1= 0.539 0.19 83

τ2= 82.54 99.81
χ2= 1.079

260 K 615 τ1= 0.42 2.17 76
τ2= 76.21 97.83

χ2= 1.042
270 K 615 τ1= 0.34 1 74

τ2= 73.53 99
χ2= 1.075

280 K 615 τ1= 0.52 2.52 70
τ2= 70.06 97.48

χ2= 1.035
290 K 615 τ1= 0.56 2.05 69

τ2= 69.63 97.95
χ2= 1.007
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Temperature dependent emission curves for ester analogous complexes [Ir(ppy-COOCH3)2(bpp)]

(PF6), [Ir(ppy-COOCH3)2(bpp)PtCl]2(PF6)2 and [Ir(ppy-COOCH3)2(bpp)PdCl]2(PF6)2.

(a) Temperature dependent emission curves for [Ir(ppy-COOCH3)2(bpp)](PF6)
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Figure C28. Temperature dependent emission spectrum for [Ir(ppy-COOCH3)2(bpp)](PF6) from
77 K to 150 K in every 10 K difference measured in EtOH:MeOH (4:1) glass.
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Figure C29. Temperature dependent emission spectrum for [Ir(ppy-COOCH3)2(bpp)](PF6) from
160 K to 290 K in every 10 K difference measured in EtOH:MeOH (4:1) glass.
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Figure C30. Temperature dependent emission spectrum for [Ir(ppy-COOCH3)2(bpp)](PF6) from
100 K to 130 K in every 1 K difference of temperature measured in EtOH:MeOH (4:1) glass.
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(b) Temperature dependent emission curves for [Ir(ppy-COOCH3)2(bpp)PtCl]2(PF6)2
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Figure C31. Temperature dependent emission spectrum for[Ir(ppy-COOCH3)2(bpp)PtCl]2(PF6)2

from 77 K to 130 K in every 10K difference of temperature measured in EtOH:MeOH(4:1) glass.
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Figure C32. Temperature dependent emission spectrum for[Ir(ppy-COOCH3)2(bpp)PtCl]2(PF6)2

from 135K to 290K in every 10K difference of temperature measured in EtOH:MeOH(4:1) glass.
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Figure C33. Temperature dependent emission spectrum for[Ir(ppy-COOCH3)2(bpp)PtCl]2(PF6)2

from 140K to 155K in every 1K difference of temperature measured in EtOH:MeOH(4:1) glass.

(c) Temperature dependent emission curves for [Ir(ppy-COOCH3)2(bpp)PdCl]2(PF6)2
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Figure C34. Temperature dependent emission spectrumfor[Ir(ppy-COOCH3)2(bpp)PdCl]2(PF6)2

from 77K to 120K in every 5K difference of temperature measured in EtOH:MeOH(4:1) glass.
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Figure C35. Temperature dependent emission spectrumfor[Ir(ppy-COOCH3)2(bpp)PdCl]2(PF6)2

from 125K to 290K in every 10K difference of temperature measured in EtOH:MeOH(4:1) glass.
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Figure C36. Temperature dependent emission spectrumfor[Ir(ppy-COOCH3)2(bpp)PdCl]2(PF6)2

from 120K to 125K in every 1K difference of temperature measured in EtOH:MeOH(4:1) glass.
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Figure C37. Lifetime decay plots for[Ir(ppy)2(bpp)](PF6) in MeOH and DCM.
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Figure C38. Lifetime decay plots for[Ir(ppy)2(bpp)](PF6) and [Ir(ppy-COOCH3)2(bpp)PdCl]2

(PF6)2 in CHCl3 and MeOH.
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Appendix D

Supplementary data from chapter 5
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Synthesis of [Ir(bpy)3]PF6 (XVII)

10 ml ethylene glycol was taken in a 2 necked RB through which N2 was bubbled , bpy

(0.163 g, 1.05 mmol) was added and stirred to which [Ir(bpy)2(OSO2CF3)2]CF3SO3 (0.05 g,

0.052523 mmol) was added and refluxed for 5 hour. The reaction mixture was cooled, water

was added, filtered and to the filtrate saturated aq KPF6 was added resulting in the

precipitation of the complex as pale yellow white solid which was vacuum filtered , washed

with water and diethyl ether and dried to get the product in full purity. Yield (0.042 g, 72 %).
1H NMR (400 MHz, DMSO), δ (ppm): 7.74 (t, 1H), 7.845 (d, 1H), 8.49 (t, 1H), 9.01 (d, 1H).

Elemental Analysis for complex XVII, C30H24F18IrN6P3; (calculated) : C : 32.89, H : 2.21, N :

7.67; (found) : C : 32.96, H : 2.04, N : 7.95

Synthesis of [Ir(bpy)2(bpm)](PF6)3 (XVIII)

10 ml ethylene glycol was taken in a 2 necked RB through which N2 was bubbled ,

bipyrimidine ligand (bpm) (0.0.083 g) was added and stirred to which

[Ir(bpy)2(OSO2CF3)]CF3SO3 (0.025g, 0.026261mmol) was added and refluxed for 5 hour.

The reaction mixture was cooled, water was added, filtered and to the filtrate saturated aq

KPF6 was added resulting in the precipitation of the complex which was vacuum filtered ,

washed with water and diethyl ether and dried to get the product. The product was not

completly pure as seen from the NMR and the yield was lower. The nmr obtaned is given in

the supplimentary information.

NMR Spectrum of  d8 & (h8+d8) [IrIII(bpy-N,N')2Cl2]+

The nmr specrtrum of complexes are measured in 400MHz instrument using DMSO in which

all of them are completly soluble.

7.57.67.77.87.98.08.18.28.38.48.58.68.78.88.99.09.19.29.39.49.59.69.7 ppm

Figure D1. NMR spectrum of purified d8-[IrIII(bpy-N,N’)2Cl2]+

7.57.67.77.87.98.08.18.28.38.48.58.68.78.88.99.09.19.29.39.49.59.69.7 ppm

Figure D2. NMR spectrum of purified(h8+ d8) - [IrIII(bpy-N,N’)2Cl2]+
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NMR Spectrum of d8 & (h8+d8) [IrIII(bpy-N,N')2(bpy-C,N')-]2+

The nmr specrtrum of complexes are measured in 600MHz instrument using DMSO in which

all of them are completly soluble.

6.66.87.07.27.47.67.88.08.28.48.68.89.09.2 ppm
Figure D3. NMR spectrum of purified d8-[IrIII(bpy-N,N')2(bpy-C,N')-]2+

6.66.87.07.27.47.67.88.08.28.48.68.89.09.2 ppm
Figure D4. NMR spectrum of purified (h8+d8)-[IrIII(bpy-N,N')2(bpy-C,N')-]2+

COSY  Spectrum of h8-[IrIII(bpy-N,N')2Cl2]+ &  h8-[IrIII(bpy-N,N')2(bpy-C,N')-]2+
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Figure D5. COSY spectrum of purified h8-[IrIII(bpy-N,N’)2Cl2]+ taken in deuteriated DMSO.
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Figure D6. COSY  spectrum of purified h8-[IrIII(bpy-N,N')2(bpy-C,N')-]2+ taken in deuteriated DMSO.
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Figure D7. DEPT-135 spectrum of purified [IrIII(phen)2Cl2].PF6 (V) taken in deuteriated DMSO.
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Figure D8. COSY  spectrum of purified [IrIII(phen)2Cl2].PF6 (V) taken in deuteriated DMSO.
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Figure D9. 1H-13C HSQC spectrum of purified [IrIII(phen)2Cl2].PF6 (V) taken in deuteriated DMSO.
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Figure D10. HMBC spectrum of purified [IrIII(phen)2Cl2].PF6 (V) taken in deuteriated DMSO.
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Figure D11. COSY  spectrum of purified [IrIII(dmbpy)2Cl2]+Cl (VII) taken in deuteriated DMSO.
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Figure D12. 13C spectrum of purified [IrIII(dtbpy)2Cl2].PF6 (IX) taken in deuteriated DMSO.
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Figure D13. COSY  spectrum of purified [IrIII(dtbpy)2Cl2].PF6 (IX) taken in deuteriated DMSO.
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Figure D14. 1H NMR spectrum of purified VI, VIII, X taken in deuteriated DMSO.
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Time Dependent Study of the reaction mechanism of IrCl3 with h8 bpy using HPLC and
NMR

a b

c d

Figure D15. Time dependent HPLC data for reaction of IrCl3 with h8 bpy at different time
intervals ranging from 25min to 1.5hour.  a) 25min b) 45min c)1hr d) 1.5hr.
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[IrIII(phen)2Cl2]PF6 (V) (Emission maxima taken, λem = 504 nm)
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[IrIII(dmbpy)2Cl2]PF6 (VII) (Emission maxima taken, λem = 470 nm)
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[IrIII(d12-dmbpy)2Cl2]PF6 (VIII) (Emission maxima taken, λem = 502 nm)
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[IrIII(d24-dtbpy)2Cl2]PF6 (X) (Emission maxima taken, λem = 468 nm)
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Appendix E

Synthesis of [Ru(bpy)2(pztr)]+ Separation of its Isomers and Photophysics

Introduction

Over the last decade the work done by Han Vos Research Group has been focused on the

spectroscopic properties of Ru (II) polypyridine complexes incorporating the strong σ-donor

1,2,4-triazole group. The pH and coordination mode (N2 / N4) dependent photophysical and

photochemical properties have been particular interest. The use of pyridyl and pyrazyl groups

within these complexes has demonstrated their versatility towards synthetic tunability of ground

and excited state properties. The work we done contains the synthesis of pyridyl, pyrazyl and

1,2,4-triazole ligands and complexes and photochemical studies of complexes containing 5-

pyridin-2-yl-4H-[1,2,4]triazoles and 5-pyrazyl-4H-[1,2,4]triazoles.

Synthetic Scheme for [Ru(bpy)2(pztr)]+

To a suspension of EtOH (30 mL) and H2O (30 mL) was added cis-[Ru(bpy)2Cl2].2H2O (185

mg, 0.36 mmol) and Pztr-H (80 mg, 0.54 mmol). After refluxing for 8 h, EtOH was evaporated

and the mixture was left in the fumehood overnight. The crude product was flash

chromatographed on a silica column with 7:3 CH3CN / H2O saturated with KNO3. To each of the

two fractions was added a drop of NH3 solution and NH4PF6 (30 mg, 0.18 mmol). Each mixture

was extracted with dichloromethane (3x20 mL) and the solvent was evaporated. The N2-isomer

(second fraction of silica column) was chromatographed on an alumina column (neutral) with
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CH3CN. After the solvent was evaporated, it was recrystallised with 2:1 MeOH / H2O. The N4-

isomer (first fraction of silica column) was chromatographed on an alumina column (neutral)

with first CH3CN, then 1:20 MeOH / CH3CN, 1:10 MeOH / CH3CN and 1:5 MeOH / CH3CN.

After the solvent was evaporated, it was recrystallised with 2:1 MeOH / H2O. Yield: 51 mg N2-

isomer (0.07 mmol, 41 %), 90 mg N4-isomer (0.13 mmol, 71 %).

1H NMR and COSY Spectrum for N2 and N4 Isomers
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Figure S1 (a) 1H NMR spectrum of [Ru(bpy)2(pztr)]+ containing both isomers taken in d6

DMSO, (b) 1H NMR spectrum of N2 isomer of [Ru(bpy)2(pztr)]+ taken in d6 DMSO and (c) 1H

NMR spectrum of N4 isomer of [Ru(bpy)2(pztr)]+ taken in d6 DMSO.
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HPLC Seperation of N2 and N4 Isomers

High-Performance Liquid Chromatography (HPLC) was carried out using a Varain ProStar

(model 335.71) photodiode array Detector, HPLC conjunction with Varian Star software, a

Varian (model 210) pump, a 20 μl injector loop and a strong cation exchange Luna SCX 100A

column (25cm X 4.6mm) provided by phenomenex . This column is silica- based sorbent

derivatized with benzene sulphuric acid phase. The column is placed with 5 μm particles and the

operating pH range is between 2 and 8. The mobile phase for this work was 75:20:5 CH3CN:

H2O: CH3OH containing 0.1 M KNO3. Filtered and degassed prior using the flow rate ranged 1.5

and 2 cm3/min-1. The detection wavelength was 280 nm where the most intense band in the

adsorption spectra (-), for ruthenium complexes studied in this work. All Samples were

dissolved in the pure acetonitrile HPLC gradient grade ≥99.9 % and filtered through 0.45 micron

filter prior to injection.  All solvents employed were of HPLC grade or better and used as

received unless otherwise stated. These measurements were carried out by Mr. Hamid M. Y.

Ahmed.

[Ru(bpy)2pztr]+

0

0.1

0.2

4.2 5.4 6.6 7.8

Time / min

A
bs

 / 
nm

N2

N4

HPLC separation of N2 / N4 isomers of [Ru(bpy)2(Hpztr)]+ in acetonitrile  (Mobile phase CH3CN: H2O:

CH3OH with volume ratio 75:20:5 0.12 M KNO3). Flow rate: 2.0 cm3 min-1; detection wavelength: 430

nm.



- 5 -

Photochemistry:

Absorption & Emission Spectra for N2 & N4 isomers of [Ru(bpy)2(pztr)]+ and the effect of
adding 100 μl of 1eq CF3COOH to the solution

Absorption Spectra for N2  Isomer

Emission Spectra for N2 Isomer

b

a

b a

Fig S2: a) absorption spectra of  N2  isomer taken in spectroscopic grade ACN having an abs maximum
of 464 nm.  at an optical density of  0.108 b) absorption spectra of  N2  isomer after adding 100 µl of
1equivalent CF3COOH having an abs maximum of  443 nm  at an optical density of  0.108.

Fig S3: a) emission spectra of  N2 isomer taken in spectroscopic grade ACN at an excitation wavelength of
464 nm.   b) emission spectra of  N2 isomer after  adding  100 µl 1eq of CF3COOH taken at excitation
wavelength of  443 nm.
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Absorption Spectra for N4  Isomer

Emission Spectra for N2 Isomer

[Note: In all the graphs the blue line indicates the sample in spectrometric grade ACN and red line
indicates the sample after addition of 100µl 1eq of CF3COOH, the optical densities at the abs]

b

a

b

a

Fig S4: a) absorption spectra of  N4  isomer taken in spectroscopic grade ACN having an abs maximum
of 460 nm at an optical density of  0.107  b) absorption spectra of  N4  isomer after adding  100 µl  1eq
of CF3COOH having an abs maximum of  441 nm  at an optical density of 0.107

Fig S5: a) emission spectra of  N4 isomer taken in spectroscopic grade ACN at an excitation wavelength of
460 nm. b) emission spectra of  N4 isomer after  adding 100 µl  1eq of CF3COOH taken at excitation
wavelength of  441 nm.
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Heteroleptic Ru (II) complexes containing 1,2,4-triazole based ligands have been proven to be

amongst the most photostable Ru (II) diimine complexes known in basic conditions. However, in

acidic conditions these complexes exhibit an extensive and interesting photochemistry, which

includes coordination isomerisation and reversible ligand substitution. The photochemistry of

several complexes of this type are discussed in this section

The photochemical experiments were carried out at room temperature in air-equilibrated solution

in a 1 cm quartz cell using two 9.6 VA and 250-W tungsten lamp, a glass filter (λ > 390 nm) to

prevent UV radiation reaching the sample, and a water filter to prevent any thermal reactions

taking place.
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Appendix F

Photophysics of Ru (II) Complexes
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Lifetime measurements for Ru Monomers & Ru-Pt, Ru-Pd Dimers

All the complexes was given to me for measurement by Mr.Gurmeet Singh Bindra

Measurements were carried out in doubly distilled spectrometric grade ACN. For deaeration

N2 was passed through the solution for 20 min.
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(1), R=H, [Ru(bpy)2(bpp)]2PF6
2(d), [Ru(d8-bpy)2(bpp)]2PF6
(2), R=COOCH2CH3, [Ru(dceb)2(bpp)]2PF6

(3), [Ru(bpy)2(bpp)PdCl]2(PF6)6
3(d), [Ru(d8-bpy)2(bpp)PdCl]2(PF6)6

(5), R=H, [Ru(bpy)2(bis-bpy)]2PF6
(6), R=COOEt,

(7), R=H, X=Pt
(8), R=H, X=Pd
(9), R=COOEt, X=Pt
(10), R=COOEt, X=Pd
(11), R=COOH, X=Pt

(12), R=COOEt (13), R=COOEt, X=Pt
(14), R=COOEt, X=Pd

Figure F1. Schematic representation of the Ru monomers, Ru-Pt and Ru-Pd dimers with
ligands bpp, bis-bpy and dpp
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Complex ID Lifetime (aerated), 298 K Lifetime (deaerated), 298 K

ns Reduced r2

value
ns Reduced r2

value

[Ru(bpy)2(bpp)]2PF6 1 222 0.99047 442 0.98362

[Ru(d8-bpy)2(bpp)]2PF6 1(d) 226 0.99287 521 0.9879

[Ru(dceb)2(bpp)]2PF6 2 440 0.97416 1080 0.90653

[Ru(bpy)2(bpp)PdCl]2(PF6)6 3 79 0.99175 105 1.090

[Ru(d8-bpy)2(bpp)PdCl]2(PF6)6 3(d) 86 0.9872 116 1.048

[Ru(bpy)2(bis-bpy)]2PF6 5 240 0.99363 755 0.96806

[Ru(dceb)2(bis-bpy)]2PF6 6 440 0.96239 825 0.9781

[Ru(bpy)2(bis-bpy)PdCl2]2PF6 7 16 0.98706 17 0.98573

[Ru(bpy)2(bis-bpy)PtCl2]2PF6 8 206 0.98632 331 0.97698

[Ru(dceb)2(bis-bpy)PdCl2]2PF6 9 49 0.99479 53 0.98995

[Ru(dceb)2(bis-bpy)PtCl2]2PF6 10 400 0.96953 534 0.95088

[Ru(dcab)2(bis-bpy)PtCl2]2PF6 11 110 (0.5) 0.87832

[Ru(dceb)2(2,5-dpp)]2PF6 12 564 0.96287 1895 0.91842

[Ru(dceb)2(2,5-dpp)PtCl2]2PF6 13 Life time is < 0.5ns not able to measure using SPC as
its taking long time

[Ru(dceb)2(2,5-dpp)PdCl2]2PF6 14 Life time is < 0.5ns not able to measure using SPC as
its taking long time

Table F1. Tabulated data for lifetimes in aerated and deaerated ACN for Ru monomers, Ru-
Pt dimers and Ru-Pd dimer complexes

77 K measurement done for Ru complexes with ligand dpp in EtOH:MeOH (4:1)
mixture

1) [Ru(bpy)2(dpp)]PF6 - 3.6us
2) [Ru(d8-bpy)2(dpp)]PF6 - 4.1us
3) [Ru(bpy)2(d10-dpp)]PF6 - 4.5us
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Emission at 77 K and lifetimes at both room temperature (298 K) and low temperature
(77 K) with various Ru-Re complexes

All the complexes were given to me for measurement by Mr.Avishek Paul.

Measurements were carried out in doubly distilled spectrometric grade ACN. For Deaeration
N2 was passed through the solution for 20 min.

Figure F2. Schematic representation of the Ru-Re complexes

Complex Emission

(77K),(nm)

Lifetime(298K)

(aerated)

Lifetime

(77K)

[Ru(bpy)2(bis-bpy)Re(CO)3Cl]PF6 (15) 610 217.46ns 6.64μs

[Ru(dceb)2(bis-bpy)Re(CO)3Cl]PF6 (16) 616 355.62ns 1.66μs

[Ru(bpy)2(2,5-dpp)Re(CO)3Cl]PF6 (17) 748 0.532ns 10.23μs

[Ru(dceb)2(2,5-dpp)Re(CO)3Cl]PF6 (18) 706 0.527ns 4.2μs

Table F2. Tabulated emission (77 K) and lifetime (77 K & 298 K) for Ru-Re complexes.
(298K measurements were done in ACN and 77 K measurements in EtOH:MeOH (4:1)
mixture)
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Lifetime decay curves and decay fit curve with results for Ru (II) complexes (1) to (14)

in aerated and deaerated ACN
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 Decay Curve for Complex 1 in aerated ACN

100 200 300 400 500

0

100

200

300

400

500

600

700

800

900

C
ou

nt
s P

er
 S

ec
on

d 
(C

PS
)

Time (ns)

Decay Curve for Complex 1 in Aerated ACN
 Exponential Decay Fit Curve for Complex 1 in Aerated ACN

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.99047
Value Standard Error

Complex 1 y0 -108.86882 3.81152
Complex 1 A1 1138.76909 2.62984
Complex 1 t1 225.55159 2.24657

Figure F3. Decay curve and decay fit curve for complex [Ru(bpy)2(bpp)]PF6 (1) in aerated
ACN
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 Decay Curve for Complex 1 in Deaerated ACN
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Decay Curve for Complex 1 in Deaerated ACN
Exponential Decay Fit Curve for Complex 1 in Deaerated ACN

Equation y = A1*exp(-x/t1) + y0

Adj. R-Squar 0.98362
Value Standard Error

Complex 1 y0 -119.37713 6.12372
Complex 1 A1 1018.00781 4.4218
Complex 1 t1 441.95671 8.24716

Figure F4. Decay curve and decay fit curve for complex [Ru(bpy)2(bpp)]PF6 (1) in deaerated
ACN
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 Exp decay curve in aerated ACN
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 Exp decay curve
 Exp decay fit curve

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.99287
Value Standard Error

D y0 -30.53948 1.02236
D A1 1363.98252 5.53875
D t1 222.22174 1.18723

Figure F5. Decay curve and decay fit curve for complex [Ru(d8-bpy)2(bpp)]PF6 1(d) in
aerated ACN
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 Exp decay curve in deaerated ACN
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 Exp decay curve
 Exp decay fit curve

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.9879
Value Standard Error

D y0 -59.2255 1.49678
D A1 1107.88889 4.92205
D t1 521.64548 3.95319

Figure F6. Decay curve and decay fit curve for complex [Ru(d8-bpy)2(bpp)]PF6 1(d) in
deaerated ACN

0 50 100 150 200 250

0

200

400

600

800

1000

C
ou

nt
s P

er
 S

ec
on

d 
(C

PS
)

Time (ns)

 Decay Curve for Complex 3 in Aerated ACN
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 Decay Curve for Complex 3 in Aerated ACN
 Exp Decay Fit Curve for Complex 3 in Aerated ACN

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.99175
Complex 3 Value Standard Error

y0 11.28546 1.45157
A1 1149.08674 3.45612
t1 68.18907 0.42259

Figure F7. Decay curve and decay fit curve for complex [Ru(bpy)2(bpp)PdCl]2(PF6)6 (3) in
aerated ACN
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 Deacay Curve for Complex 3 in Deaerated ACN
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 Deacay Curve for Complex 3 in Deaerated ACN
 Exp Deacay Fit Curve for Complex 3 in Deaerated ACN

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.98754
Complex 3 Value Standard Error

y0 12.91743 2.28446
A1 980.86642 2.96458
t1 85.43024 0.76444

Figure F8. Decay curve and decay fit curve for complex [Ru(bpy)2(bpp)PdCl]2(PF6)6 (3) in
deaerated ACN
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 Exp decay curve in aerated ACN
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 Exp decay curve
 Exp decay curve fit

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.9872
Value Standard Error

D y0 15.07124 0.78328
D A1 1045.42344 7.18559
D t1 99.23037 0.6945

Figure F9. Decay curve and decay fit curve for complex [Ru(d8-bpy)2(bpp)PdCl]2(PF6)6 (3d) in
aerated ACN
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 Exp decay curve in aerated ACN
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 Exp decay curve
 Exp decay curve fit

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.97061
Value Standard Error

D y0 0.83867 0.95109
D A1 731.54373 6.56371
D t1 204.02677 2.14771

Figure F10. Decay curve and decay fit curve for complex [Ru(d8-bpy)2(bpp)PdCl]2(PF6)6 (3d)
in deaerated ACN
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 Decay Curve for Complex 5 in Aerated ACN
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 Decay Curve for Complex 5 in Aerated ACN
 Exp Decay Fit Curve for Complex 5 in Aerated ACN

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.99363
Complex 5 Value Standard Error

y0 -17.50949 1.19487
A1 1450.75316 5.22275
t1 240.22367 1.2659

Figure F11. Decay curve and decay fit curve for complex [Ru(bpy)2(bis-bpy)]2PF6 (5) in
aerated ACN
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Decay Curve for Complex 5 in Deaerated ACN
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Decay Curve for Complex 5 in Deaerated ACN
Exp Decay Fit Curve for Complex 5 in Deaerated ACN

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.96806
Complex 5 Value Standard Error

y0 -242.76648 12.57073
A1 843.37523 9.46419
t1 754.85784 22.5277

Figure F12. Decay curve and decay fit curve for complex [Ru(bpy)2(bis-bpy)]2PF6 (5) in
deaerated ACN
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Decay Curve for Complex 6
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Decay Curve for Complex 6
Exponential Decay Fit Curve for Complex 6

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.96239
Value Standard Error

Complex 6 y0 -245.49971 16.28579
Complex 6 A1 802.83441 13.47454
Complex 6 t1 439.82606 16.13252

Figure F13. Decay curve and decay fit curve for complex [Ru(dceb)2(bis-bpy)]2PF6 (6) in
aerated ACN
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 Decay Curve for Complex 7 in Aerated ACN
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 Decay Curve for Complex 7 in Aerated ACN
 Exponential Decay fit Curve for Complex 7 in Aerated ACN

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.98706
Complex 7 Value (ns) Standard Error

y0 29.57404 0.70097
A1 976.83074 4.66065
t1 16.23282 0.09699

Figure F14. Decay curve and decay fit curve for complex [Ru(bpy)2(bis-bpy)PdCl2]2PF6 (7) in
aerated ACN
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 Decay Curve for Complex 7 in Deaerated ACN
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 Decay Curve for Complex 7 in Deaerated ACN
 Exponential Decay Curve Fit for Complex 7 in Deaerated ACN

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.98573
Complex 7 Value Standard Error

y0 39.4277 0.77954
A1 966.68121 4.71893
t1 17.1435 0.10815

Figure F15. Decay curve and decay fit curve for complex [Ru(bpy)2(bis-bpy)PdCl2]2PF6 (7) in
deaerated ACN
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 Decay Curve for Complex 8 in Aerated ACN
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 Decay Curve for Complex 8 in Aerated ACN
 Exponential Decay Curve Fit for Complex 8 in Aerated ACN

Equation y = A1*exp(-x/t1) + y0

Complex 8 0.98632
Value Standard Error

y0 -64.61953 2.9833
A1 874.48381 2.46109
t1 205.91939 2.27809

Figure F16. Decay curve and decay fit curve for complex [Ru(bpy)2(bis-bpy)PtCl2]2PF6 (8) in
aerated ACN
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 Decay Curve for Complex 8 in Deaerated ACN
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 Decay Curve for Complex 8 in Deaerated ACN
 Exp Decay Fit Curve for Complex 8 in Deaerated ACN

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.97698
Complex 8 Value Standard Error

y0 -163.09665 8.13518
A1 807.3706 5.7943
t1 331.13338 7.20306

Figure F17. Decay curve and decay fit curve for complex [Ru(bpy)2(bis-bpy)PtCl2]2PF6 (8) in
deaerated ACN
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 Decay Curve for Complex 9 in Aerated ACN
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 Decay Curve for Complex 9 in Aerated ACN
 Exp Decay Fit Curve for Complex 9 in Aerated ACN

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.99479
Complex 9 Value Standard Error

y0 21.52975 0.79046
A1 1432.80093 4.58271
t1 48.99895 0.20349

Figure F18. Decay curve and decay fit curve for complex [Ru(dceb)2(bis-bpy)PdCl2]2PF6 (9) in
aerated ACN
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 Decay Curve for Complex 9 in Deaerated ACN
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 Decay Curve for Complex 9 in Deaerated ACN
 Exp Decay Fit Curve for Complex 9 in Deaerated ACN

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.98995
Complex 9 Value Standard Error

y0 45.27155 1.05541
A1 1200.53718 5.01345
t1 52.77454 0.31496

Figure F19. Decay curve and decay fit curve for complex [Ru(dceb)2(bis-bpy)PdCl2]2PF6 (9) in
deaerated ACN
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 Decay curve for complex 10 in aerated ACN
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 Decay Curve for complex 10 in aerated ACN
 Exp decay fit curve

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.96953
Complex 10 Value Standard Error

y0 -308.57697 18.99047
A1 910.89791 16.20287
t1 400.34396 17.31089

Figure F20. Decay curve and decay fit curve for complex [Ru(dceb)2(bis-bpy)PtCl2]2PF6 (10)
in aerated ACN
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 Decay curve for complex 10 in deaerated ACN
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 Decay curve for complex 10 in deaerated ACN
 Exp decay fit curve

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.95088
Complex 10 Value Standard Error

y0 -696.8718 218.74837
A1 981.73267 215.81126
t1 533.9883 408.04331

Figure F21. Decay curve and decay fit curve for complex [Ru(dceb)2(bis-bpy)PtCl2]2PF6 (10)
in deaerated ACN
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 Decay curve for complex 11 in aerated ACN
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 Decay curve for complex 11 in aerated ACN
 Exp decay fit curve

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.87832
Value Standard Error

E y0 3.25932 0.47516
E A1 148.43243 2.7376
E t1 110.17073 2.58845

Figure F22. Decay curve and decay fit curve for complex [Ru(dcab)2(bis-bpy)PtCl2]2PF6 (11)
in aerated ACN
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 Decay curve for complex 12 in aerated ACN
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 Decay curve for complex 12 in aerated ACN
 Exp decay fit curve

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.96287
Complex 12 Value Standard Error

y0 -373.95646 27.53295
A1 944.52842 24.5948
t1 563.77621 26.30515

Figure F23. Decay curve and decay fit curve for complex [Ru(dceb)2(2,5-dpp)]2PF6 (12) in
aerated ACN
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 Decay curve for complex 12 in deaerated ACN
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 Decay curve for complex 12 in deaerated ACN
 Exp decay fit curve

Equation y = A1*exp(-x/t1) + y0

Adj. R-Square 0.91842
Value Standard Error

E y0 -546.81476 83.95363
E A1 930.41669 80.75452
E t1 1894.81609 228.09723

Figure F24. Decay curve and decay fit curve for complex [Ru(dceb)2(2,5-dpp)]2PF6 (12) in
deaerated ACN
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