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Abstract—This work is investigating the use of a multi-modal
sensor network where visual sensors such as cameras and
satellite imagers, along with context information can be used to
complement and enhance the usefulness of a traditional in-situ
sensor network in measuring and tracking some feature of a river
or coastal location. This paper focuses on our work in relation
to the use of an off the shelf camera as part of a multi-modal
sensor network for monitoring a river environment. It outlines
our results in relation to the estimation of water level using a
visual sensor. It also outlines the benefits of a multi-modal sensor
network for marine environmental monitoring and how this can
lead to a smarter, more efficient sensing network.

I. INTRODUCTION

Water quality monitoring is an important part of monitoring

our natural environment and includes monitoring the quality

of both coastal and inland marine locations. It covers the

detection of pollution and monitoring the development of

harmful algal blooms as well as tracking coastal features

and wave patterns. For many years water managers relied on

field measurements for coastal monitoring and water quality

evaluation. This involves costly, time and labour-intensive on-

site sampling and data collection, transportation to laboratories

for analysis, and then subsequent evaluation. This type of

sampling is also too limited on temporal and spatial scales

to adequately monitor the quality of water bodies on a long-

term basis or to address the development of events such as

harmful algal blooms and fish kills.

New technologies are helping to streamline the water quality

monitoring process. In recent years, the use of in-situ wireless

sensor networks (WSNs) for marine environmental monitoring

has been investigated to allow continuous real-time remote

monitoring of the marine environment at greater temporal

and spatial scales. This provides an opportunity for long-term

data collection at scales and resolutions that are difficult or

impossible to obtain otherwise. Important indicators of water

quality can be continuously monitored with the possibility of

real-time alert notifications of harmful marine events. Greater

temporal and spatial sampling also allows environmental pro-

cesses and the well-being of our waterways to be monitored

and characterised from previously unobtainable perspectives.

The last ten years have seen the emergence of a variety

of initiatives from very simple WSN deployments to highly

complex coastal observation systems which make physical,

chemical and biological measurements. However the current

state of the art in this technology still poses many challenges

for environmental monitoring applications [1]. In particular

the more sophisticated of these sensing devices - chemo- and

bio-sensors - which are really of utmost importance in envi-

ronmental monitoring applications, are not particularly suited

to the large-scale long-term deployments that are required by

environmental monitoring applications. Many of these devices

have a limited deployment lifetime (e.g. samples) before they

begin to experience signal drift and require maintenance.

They are also high in cost and require significantly more

energy than their less sophisticated counterparts [1]. What in

essence is required is adaptive sensing environment whereby

these sensors can sample more efficiently and be placed more

effectively in pollution hotspots.

There is also an issue with data reliability. Maintaining con-

tinuous reliable signals from sensors deployed in the marine

environment can prove very challenging and failure of sensing

devices is not uncommon. It is also the case that in the future

large-scale deployments of chemo-bio sensor platforms will

more than likely consist of low-cost unreliable devices that

will be used to modify the operating characteristics of the

more sophisticated platforms which are less densely distributed

[2]. Therefore future challenges now lie in understanding how

sensors can be used collaboratively in a hierarchical network

ranging from relatively low-cost dumb devices to the more

expensive sophisticated platforms.

Other issues also arise in relation to the deployment of

sensor networks for marine environmental monitoring. In-situ

sensors can improve the scale of sensing but only up to a

point. They have limited spatial resolution as they are in

effect single point sensors and often the region of interest

in a marine environment may be quite vast. Furthermore,

due to the expense and logistical difficulties often associated

with the deployment of an in situ sensor network in marine

environments, it may be difficult to monitor a wide area over

long periods of time. Certain environments may not even be

suited to monitoring by an in-situ WSN e.g the turbulent

nature of the surf zone often makes it difficult to successfully

maintain in-situ instrumentation [3]. Finally certain events may

occur that may not necessarily be immediately detected by in-

situ instrumentation. For example if there is pollution floating

on our water, water managers may not be automatically alerted

by readings from the in-situ observations. However it may be

vital that this is attended to immediately.

Our work is investigating the use of a multi-modal sensor



network where visual sensors such as cameras and satellite

imagers, along with context information can be used to com-

plement and enhance the usefulness of a traditional in-situ

sensor network in measuring and tracking some feature of a

river or coastal location. Multiple sensing modalities provide

increased information, the characterisation of an environment

from multiple different perspectives, greater spatial resolution

and the otherwise unobtainable detection and early warning

of certain marine events. It also leads to a smarter network

whereby different modalities can be used to control the op-

erating characteristics of the more sophisticated nodes in the

network which improves efficiency.

This paper focuses on our work in relation to the use of an

off the shelf camera as part of a multi-modal sensor network

for monitoring a river environment. It outlines our results in

relation to the estimation of water level using a visual sensor.

It also outlines the benefits of a multi-modal sensor network

for marine environmental monitoring and how this can lead to

smarter, more efficient sensing network.

II. RELATED WORK

The work carried out in this paper follows on from work

carried out in [4] which also focuses on estimating river water

level using visual sensing. The approach described in this

paper again uses the land water boundary in order to determine

water level. However it adopts a more sophistiacted classifica-

tion approach and a different camera angle that contains more

distinct features. It also takes into account difficulties that were

encountered in the work reported in [4] where it was difficult

to model pixels as water or land due to the varying lighting

conditions. It attempts to overcome these difficulties and to

take a more adaptable approach that can easy be applied to a

variety of images from different camera angles.

In other studies, coastal video systems have been identified

as effective tools for coastal monitoring. A prime example of

this is a major European research project entitled CoastView

[5]. This focused on the development of video systems in

support of coastal zone management utilizing Argus technol-

ogy. Argus stations consist of optical systems developed for

nearshore sampling [6]. The CoastView project demonstrates

the use of fixed video remote sensing systems to partially

ameliorate some of the problems associated with in-situ

measurements of waves, currents, and morphological change.

Davidson et al. [5] refers to some of the research carried

out investigating algorithms for the quantitative extraction of

geophysical signals from image data including morphology

[7], flows [8] and wave parameters [9] and refers to the various

scientific literature that has tested and reviewed the reliability,

accuracy and versatility of coastal video systems. Alexander

and Holman [3] used time exposure images from the Argus

Network in the quantification of nearshore morphology and

Chickadel and Holman [10] investigated the use of video tech-

niques for measuring longshore currents. The Argus system

allowed large amounts of data to be gathered over larger spatial

areas for longer time periods than could be achieved with the

in-situ instrumentation.

In [11], Goddijn-Murphy et al explore the possibilities of

employing a conventional digital camera, as an alternative low-

cost technique to satellite imagers or multi-spectral radiome-

ters, to estimate water composition from optical properties

of the water surface. This paper presents the method that

was used to acquire digital images, derive RGB values and

relate measurements to water quality parameters. Measure-

ments were taken in Galway Bay and in the North Atlantic.

Both yellow substance and chlorophyll concentrations were

successfully assessed using this method. In [12], Iwahashi et

al also investigate detecting water level using a land water

boundary. However their work is using a a video signal as

opposed to still images. Also they aim to classify pixels as

land or water, where they are assuming that the land region

contains solid objects with fine texture full of high frequency

components. This is not always the case with the land region

in the images in this study, which under certain conditions can

partially appear visually similar to water.

Other studies have investigated the use of imagers not only

in the context of monitoring a marine environment but also

in other forms of environmental monitoring applications. In

[13], a scalable end-to-end system for vision-based monitor-

ing of avian behaviour during a nesting cycle is presented.

The manual collection of phenological data can prove to be

labour intensive and thus requires the use of innovative new

methodologies such as the use of digital cameras e.g [14], [15].

In [14], Graham et al. investigate the use of visible light digital

cameras in determining the dynamics of expanding leaf area

for Rhododendron occidentale, a deciduous understory shrub.

III. VISUAL SENSING SYSTEM

A visual sensing system has been developed for two marine

locations. The first system is based upon a river environment

situated at the River Lee, Cork Ireland. An in-situ sensor

network was deployed at five locations along the river as part

of the Deploy project 1. As part of this research we deployed

a camera at one of these locations. We gathered contextual

information such as rainfall radar images from Met Eireann 2,

along with in-situ and visual data from the site and a visual

data analysis and data modelling toolkit was developed around

these data streams. Secondly a satellite image analysis system

was developed with a view to analysing and searching satellite

information for the Galway Bay area on the west coast of

Ireland. This site was chosen due to the initialisation of a

national test and demonstration research infrastructure sup-

porting a range of sensing technologies known as SmartBay.

An outline of this system is provided in [16]. However the

focus of this paper will be on the visual based sensing system

developed for the site at the River Lee.

This paper demonstrates our results in relation to the es-

timation of water level at the site. It outlines the benefits of

incorporating multiple sensing modalities into an environmen-

tal event detection system, the parameters that can be identified

1http : //www.deploy.ie
2http : //www.met.ie/latest/rainfallradar.asp



and classified, the difficulties encountered and the benefits of

investigating and modelling the relationships between various

sensor streams.

IV. DEPLOY

Deploy was an eighteen month demonstration project which

was co-funded by the Irish Marine Institute and the Irish

Environmental Protection Agency, running from April 2009

until October 2010. It demonstrates long-term deployment

of a multi-sensor sensor monitoring system at five different

sites on the River Lee. This system provided data which

allows the temporal and spatial variations in water quality

to be examined, and the investigation of issues associated

with deployment of such a system. The demonstration sites

of the Deploy project were chosen at different points along

the River Lee catchment which were representative of varying

conditions along the river. One station was deployed near the

source at Gougane Barra, two stations were deployed in the

Inniscarra reservoir, another station was deployed in the main

channel of the river (Lee Road) and the fifth station was

deployed in Cork City (Lee Maltings) where the river has

entered the estuary, which is tidal and partially saline. This

was the site chosen for this study and for the rest of this

paper will be referred to as Lee Maltings.

V. SITE

There were two main reasons for choosing the Lee Maltings

site as the location of the study. Firstly this site is located at the

Tyndall National Institute which forms part of the CLARITY

research collaboration. The Tyndall National Institute provides

resources such as network and power which allows the easy

instrumentation of the site with a camera network.

Secondly it must be noted also that the Lee Maltings site

represents a very interesting site to monitor along the River

Lee but also very difficult. The site is positioned on the north

channel of the River Lee at the Tyndall National Institute. It

is located near the upper end of the estuary on a left hand

bend of approximately 70 degrees. Water levels at the site are

influenced by spillage from the Iniscarra dam and the site is

also tidal with a tidal range of approximately 4m.

A. Camera

An AXIS PTZ Network camera was deployed overlooking

the banks of the River Lee at the Tyndall Research Institute,

Cork, Ireland [17]. It is controlled remotely from a desktop

PC at Dublin City University (DCU). A software application

was developed to interface with the camera every minute. Each

minute it moves the camera to four different positions in order

to save images from the camera at four different angles. These

angles are as follows: pan-right-zoom (ca − wall), pan-left-

zoom (ca − trees), pan-up-zoom (ca − sky) and finally a

full zoom-in (ca − wall) on the water . The images from the

camera are stored to a desktop PC at DCU for further analysis.

Initially the application was interfacing with the camera at ten

minute intervals. Following re-evaluation, it became apparent

that a greater sampling frequency was required. Occasionally

large changes in environmental conditions were evident from

one sampled image to the next. Hence the sampling rate was

changed to one minute intervals in order to capture a greater

amount of interesting events at the site. The camera was fully

deployed and linked up to the network at the Tyndall Research

Institute from May 14 2008. Due to initial problems with

camera positioning and stability, data is available for analysis

from July 2008.

B. In-situ and visual sensing parameters

The in-situ parameters measured at the Lee Maltings site by

the multi-sensor in-situ sensing system include conductivity,

chlorophyll, temperature, dissolved oxygen and depth. The

images from the camera were then analysed in order to

highlight image features that could be used to complement the

information being retrieved from the in-situ sensor network.

Analysing outdoor data is challenging due to the wide-range

of environmental conditions and their rapid changes. Varying

river and weather conditions, extreme changes on lighting

and reflections on the water are representative of some of

the challenges presented. The assessment of a feature such

as water colour which can be used to estimate water quality

parameters such chlorophyll and turbidity is difficult if not

impossible under these circumstances. Previous studies where

cameras were used to estimate water colour were carried

out using much in more specialised circumstances and not

in the case where a camera is just placed in a building

overlooking the water e.g. [11]. However the purpose of this

work is to examine how we can use relatively low cost off-the-

shelf webcam type devices for complementing in-situ sensor

networks.

As previously outlined, the Lee Maltings site is tidal. Depth

can give us an indication of a variety of conditions at the

Lee Maltings site such as temperature, dissolved oxygen and

conductivity readings. Figure 1 demonstrates the influence

of depth on a variety of the in-situ sensor readings. The

conductivity data also illustrates dilution in the River Lee due

to dam releases from the Iniscarra reservoir.

Therefore the estimation of depth from the camera images

is a really important indicator of conditions at the site. Our

visual sensing system also undertook the detection of other

image features such as objects floating on the water, boats,

water turbulence etc. However it is really only the extraction

of depth that can be linked up with the in-situ sensor readings

which is the prime focus of this research. The detection of

objects such as boats or floating objects is also an example of

how a visual sensor can complement and enhance the use of

an in-situ sensor network, as these are objects that cannot be

detected or immediately detected by an in-situ sensor network.

Thus the incorporation of a multi-modal sensor network for

monitoring the marine environment leads to the detection of

an increased number of events. Figure 2 demonstrates images

where a boat and some material can be seen floating on the

top of the water. However the focus of this paper will be

on estimating water depth using a visual sensor at the Lee

Maltings site. As well as providing an indication of current



Fig. 1. The relationship between depth and various in-situ parameters at the
Lee Maltings site. The conductivity data also illustrates dilution in the River
Lee due to dam releases from the Iniscarra reservoir .

Fig. 2. A boat on the river and scum floating on the top of the water. Our
visual sensing system can detect objects such as these floating on the top of
the water

conditions at the site, continuous monitoring of water level

is important for flood warnings and also for navigational and

recreational safety.

VI. ESTIMATION OF WATER DEPTH USING A VISUAL

SENSOR

Changing depth is a feature of almost any inland waterway.

If the water-land boundary is visible, visual imaging is a

practical means for determining the water-level. As previously

outlined the camera deployed overlooking the river at the Lee

Maltings site, pans to four different angles every minute -

pan-right-zoom (ca−wall), pan-left-zoom (ca− trees), pan-

up-zoom (ca − sky) and finally a full zoom-in on the water

(ca−centre). These four camera angles can be seen in Figure

3

In order to analyse the relationship between the sensor

readings and features in the images, a software tool was

developed to enable the visualisation of the images and the

nearest in-situ sensor reading that corresponds to the time

that image was captured (See Figure 4). From analysis of the

images from ca−wall along with the in-situ depth readings, it

is apparent that certain features in the images become visible

in a certain order as water levels are decreasing and can thus

provide an estimation of water level at the site. This can be

clearly seen in Figure 5. As the depth of the water decreases,

the first feature to becomes visible is the appearance of rocks

beneath the trees in the far left of the image (feature 1 -

rocks at trees). The second feature to become visible is the

appearance of rocks in the far right of the image (feature 2 -

rocks at far wall). The third feature to become visible is the

appearance of rocks in the near right of the image ((feature 3

- rocks at near wall)) and finally the final feature to become

apparent that will indicate depth is the appearance of a small

island in the middle of the water (feature 4 - island). Thus if

each of these features can be accurately detected, then this can

provide a very good indication of water levels at the site. Each

of these features are used to delineate a certain type of water

level e.g. the appearance of feature 1 denotes water level 1,

the subsequent appearance of feature 2, denotes water level

2, and so forth. Previous work [4] demonstrated the difficulty

with accurately detecting the boundary of such a feature due to

colour changes in the image. Thus an approach which allows

the detection of such a feature or a series of features appears

to be more robust to these conditions. The following section

outlines the approach and results for the detection of each of

these features.

VII. METHODOLOGY - DETECTION OF DEPTH FEATURES

The detection of these features in the image is far from triv-

ial due to the huge lighting changes of the water. Sometimes

the water can appear almost black mid-day due to reflections

on the water and the appearance of rocks at each of the

individual features is unclear even to the human eye. This

therefore renders it difficult for an image processing algorithm

to accurately detect the appearance of each of the features.

A. Data

As previously outlined an image is captured approximately

every minute by the visual sensor network. This leads to over

25, 000 per week being captured for one camera angle alone.

Thus for 4 camera angles, there are over 100, 000 images

captured per week. For this study, one week of images from

May 1-7 2009 was chosen due to the display of a number of

events associated with changes in depth. This week of data

was manually annotated four times over in order to have a

set of ground-truth images for each of the features outlined

above. For each feature, the images were annotated as follows

- 1. feature present 2. no feature present 3. slight feature

present. The third annotation is used where the annotation

of the image is slightly ambiguous. The feature is at an

intermediate stage of appearance whereby it is slightly present

but not as apparently as when annotated as ’present’. This is

due to intermediate changes in the water level. These images

were given their own class so that it could be decided when

carrying out classification whether it is better to have three-

way classification for these features or two way-classification



whereby images where the feature is annotated as being

slightly present are just classified simply as ’present’ or ’not

present’.

B. Image Analysis - Feature Sets

The Matlab image processing toolbox (Version R2009A)

was used for processing images and extracting relevant image

features. For each of the depth features to be detected (i.e.

depth features 1-4) a set of image features were extracted from

the images at the relevant points using the four sets of ground

truth data. A variety of features were extracted including

colour features such as average hue, normalised hue his-

togram, average saturation, normalised saturation histogram,

average value, normalised value histogram, texture features

such as average entropy, normalised entropy histogram, edge

features such as normalised edge histogram, number of pixels

marked as an edge in feature area, percentage of pixels marks

as an edge in mask area, number of pixels marked as an edge

in mask area after a fill operation, percentage of pixels marked

as an edge in mask area after a fill operation and other features

such as average brightness, normalised brightness histogram,

average luminance, normalised luminance histogram. Various

feature sets were examined for the detection of each depth

feature.

These feature sets were then extracted for approximately

1200 (400 positive instances, 400 negative instances, 400

slightly present instances) random images from the ground

truth dataset for each of the four depth features. Therefore

approximately 4800 instances are analysed in this study. How-

ever it should be noted in the case of feature 4- island, there

were not 400 hundred instances available in the dataset for

the class slightly present. Therefore in this case any available

instances were used.

These feature sets were then input into a Support Vector

Machine (SVM) classifier which is detailed more below. After

initial testing the feature sets outlined in Table I were the most

successful for detecting each of the depth features outlined

above. Thus these feature sets are used in the remainder of

the study. The features in the first row of the table are the

features used in all the features sets, with the features in the

following rows outlining those that are specific to a particular

feature set.

C. Support Vector Machine (SVM) - Classification

Support Vector Machines(SVMs) work well with large

feature sets and after training they are very quick to classify

new observations. With the correct parameters, they are known

to work as well or better than most classification methods [18].

Initially a simple thresholding approach was attempted for

classifying the presence of the various depth features. However

this involved manually testing and setting thresholds for image

features for each depth feature under investigation. With an

SVM, features can be extracted for the location of interest in

the image, formatted and input into an SVM for training or

classification. This is a much more efficient and successful

approach to classification of each of the depth features.

All Feature Sets average hue, normalised hue histogram, av-
erage saturation, normalised saturation his-
togram, average value, normalised value his-
togram, average entropy, normalised entropy
histogram

Feature Set 1 + normalised edge histogram
Feature Set 2 + normalised edge histogram, percentage of

pixels marked as edge in feature area after a
fill operation

Feature Set 3 + percentage of pixels marked as edge in
feature area after a fill operation

Feature Set 4 + normalised edge histogram, average
brightness, normalised brightness histogram

Feature Set 5 + normalised edge histogram, normalised
luminance histogram

TABLE I
VARIOUS FEATURE SETS EXAMINED IN THE STUDY. ALL FEATURE SETS

CONTAIN THE FEATURES OUTLINED IN ROW 1 IN ADDITION TO THE

FEATURES OUTLINED IN THEIR SPECIFIC ROWS.

Fig. 3. The angle of the images captured by the camera - labelled as follows
- trees, wall, sky, centre

D. SVM Parameters

LibSVM 3, an integrated software for Support Vector Clas-

sification, is used in the Weka 4 data analysis environment

for classification of the presence of the various depth features.

Normalisation of features is carried out in the Weka envi-

ronment and classification is carried out using two different

kernel parameters - an RBF kernel and a linear kernel. The

3http : //www.csie.ntu.edu.tw/ cjlin/libsvm/
4http : //www.cs.waikato.ac.nz/ml/weka/

Fig. 4. Visual sensor analysis tool - enables the analysis of visual data
alongside in-situ sensor readings in order to examine features and relationships
between features and in-situ sensor data.



Fig. 5. The features highlighted in the image become visible in order with
changing depth.

RBF kernel can handle a nonlinear relationship between class

labels and attributes, however it also may be the case that

if the number of features is large, performance may not be

improved from mapping data to a higher dimensional space.

Default parameters in the Weka environment were used for

both kernel parameters. However future work may involve

optimising these. However satisfactory results were found

without optimisation, thus this process was not carried out

in the context of this study. Ideally optimisation of the (C, γ)

space would be carried out for SVMs using an RBF kernel

(SVM-rbf ) and of the C space for SVMs with a linear kernel

(SVM-linear). In this study a C values of 1 and a γ value

of 0 was used for SVM-rbf and a C value of 1 is used for

SVM-linear. Ten-fold cross validation is used for evaluation

of the model. It is found that SVM-linear performs better and

it is these results that are reported here. However optimisation

of parameters for SVM-rbf could result in an increase in

performance.

VIII. RESULTS

As previously outlined, certain features in the images be-

come visible in a certain order as water levels are decreasing

and can thus provide an estimation of water level at the site.

Thus if each of these features can be accurately detected, then

this can provide a very good indication of conditions at the

site. The following outlines our results in relation to detection

of each of these depth features in the images. For each of the

depth features, three types of evaluation were performed. As

previously outlined, in certain images there is ambiguity in

whether an image would be classified as having the feature

present or not present as the visibility of the feature is at an

intermediate stage due to changing water levels. Thus it is

examined whether to have 3 way classification - a) feature

present b) feature not present c) feature slightly present or a

2-way classification whereby these images where the feature

is slightly present are classified as a) feature present b) feature

not present. Therefore for the detection of each depth feature

three sets of results are presented where the classifier is

evaluated for three different classification scenarios:

Fig. 6. Image where none of the depth features are present. It also
demonstrates huge image processing challenges with reflections on water and
changes in lighting.

• 3class - 3 way classification - rocks, no rocks, slight

rocks.

• 2classN - 2 way classification negative - rocks, no rocks

- where the images where rocks are slightly detected is

regarded as a non detection.

• 2classP - 2 way classification positive - rocks, no rocks

- where the images where the rocks are slightly detected

is regarded as a detection.

Figure 6 shows an image where none of the features are

present. It also demonstrates the challenges in terms of pro-

cessing these images with huge reflections on the water such

as that of the buildings seen in this image. There is huge

variability among images in terms of reflections and lighting.

In the following sections, for each classification approach

the feature set that produced the most accurate results, the

accuracy, the F-Measure and the area under an ROC Curve

are reported. The F-Measure represents the harmonic mean

of precision and recall and is calculated using the following

formula 1:

F =
2 ∗ precision ∗ recall

precision + recall
(1)

The area under an ROC curve represents the discrimination

ability of the classifier, with a perfect result being 1. The

F-Measures and ROC Areas reported here are the weighted

average of the values for each of the individual classes in ques-

tion for each of the classification scenarios. It should also be

noted that for the 2classN or 2classP classification scenarios

the datasets are merged between slight rocks and no rocks or

slight rocks and rocks. This means there will be more instances

of the merged class in the dataset presented to the classifer.

However this represents a real-world scenario whereby the two

datasets are not evenly distributed. Although the accuracy of

the classifier may be working off a higher baseline, the ROC

area presents the classifiers ability to distinguish between the

two classes despite this biased distribution of positive and

negative instances..



Fig. 7. a) Rocks at trees b) Slight rocks at trees

Class FSet Accuracy F-Measure ROC Area

3class F2 81.7124 0.819 0.863
2classN F1-F2 92.3525 0.922 0.901
2classP F5 88.3624 0.882 0.858

TABLE II
RESULTS FOR EACH OF THE CLASSIFICATION SCENARIOS FOR THE

DETECTION OF ROCKS AT THE TREES

A. Depth Feature 1 - rocks at trees

Figure 7 (a) shows a sample image where rocks are appear-

ing under the trees and Figure 7 (b) shows an image where

rocks are only slightly appearing under the trees. From the

results shown in Table II, it is clear that the most successful

classification scenario is 2classN where 2-way classification

is used and images where rocks are only slightly appearing at

the trees are classified as a negative detection. This has a high

classification accuracy of 92.35% and and ROC Area of 0.901.

Overall the classification accuracies are extremely satisfactory

considering the difficult data that is being dealt with as can be

seen in previous sample images. The results of the three way

classification 3class are very promising considering it is often

difficult even for the human eye to distinguish between all

three classes. This has a classification accuracy of 81.71% and

an ROC Area of 0.863. From the confusion matrix outlined in

Table III, it is clear that many of the images denoted as having

no rocks are being classified as a slight detection of rocks and

vice versa. This is not surprising since it can be difficult even

for the human eye to distinguish between these classes. It is

also consistent with the fact that doing two way classification

whereby both these sets of images are considered to be the

same class, produces the highest accuracy.

B. Depth Feature 2 - rocks at far wall

Figure 8 (a) shows a sample image where rocks are ap-

pearing at the far wall and Figure 8 (b) shows an image

where rocks are only slightly appearing at that point in the

rocks no rocks slight
rocks

rocks 340 14 47
no rocks 5 319 77
slight rocks 25 52 324

TABLE III
CONFUSION MATRIX FOR THE RESULTS OF THE 3class CLASSIFICATION

SCENARIO FOR DEPTH FEATURE 1 - ROCKS AT TREES

Fig. 8. a) Rocks at far wall b) Slight rocks at far wall

Class FSet Accuracy F-Measure ROC Area

3class F4 86.0349 0.862 0.895
2classN F5 90.6899 0.906 0.888
2classP F5 93.35 0.932 0.906

TABLE IV
RESULTS FOR EACH OF THE CLASSIFICATION SCENARIOS FOR THE

DETECTION OF ROCKS AT THE FAR WALL

image. From the results shown in Table IV, it is clear that the

most successful classification scenario is 2classP where 2-way

classification is used and images where rocks are only slightly

appearing at the trees are classified as a positive detection.

The accuracy produced here is very high at 93.35%, with

an ROC Area of 0.906. This is in contrast to the results

for {emphdepth feature 1 - rocks at trees - where 2classN

produced more accurate results. Again the classification accu-

racies are satisfactory. There is a better accuracy for the three

way classification 3class than was achived for depth feature 1,

with a classification accuracy of 86.03% and an ROC area of

0.895 which is extremely promising. From visual analysis of

the images, it is clear that the visual distinction of the classes

is more apparent than for depth feature 1. Therefore these

result are consistent with this observation. From the confusion

matrix in Table V it can also be seen that there is almost a

consistent number of images of the class slight rocks that are

incorrectly classified as rocks or norocks. Similarly there is

also not much difference in the number of images of class

rocks that are classified as slight rocks and the number of

images of class no rocks that are classified as slight rocks.

C. Depth Feature 3 - rocks at near wall

Figure 9 (a) shows a sample image where rocks are appear-

ing at the far wall and Figure 9 (b) shows an image where

rocks are only slightly appearing at that point in the image.

From analysis of the images, this feature is more visually more

distinguishable than the other two depth features previously

considered and this is apparent from the results presented in

rocks no rocks slight
rocks

rocks 350 2 49
no rocks 10 339 52
slight rocks 28 27 346

TABLE V
CONFUSION MATRIX FOR THE RESULTS OF THE 3class CLASSIFICATION

SCENARIO FOR DEPTH FEATURE 2 - ROCKS AT FAR WALL



Fig. 9. a) Rocks ar near wall b) Slight rocks ar near wall

Class FSet Accuracy F-Measure ROC Area

3class F5 92.8512 0.928 0.946
2classN F2 98.3375 0.983 0.982
2classP F5 93.5162 0.934 0.918

TABLE VI
RESULTS FOR EACH OF THE CLASSIFICATION SCENARIOS FOR THE

DETECTION OF ROCKS AT THE NEAR WALL

Table VI. The accuracy of the 3-way classification 3class is

extremely impressive at 92.85% and with an ROC Area of

0.946 which is higher than that achieved for the results of

3class of any of the previous depth features considered. It is

also interesting to note that from the confusion matrix, it can

be seen that the main problem is the distinction between the

no rocks and slight rocks classes. This is consistent with the

results from 2classN which demonstrates that when these two

classes are merged that a classification accuracy of 98.34% and

an ROC Area of 0.982 can be achieved which is an excellent

result. When the classes rocks and slightrocks are merged the

classification accuracy is lower at 93.52% and a ROC area of

0.918.

D. Depth Feature 4 - island

Figure 10 (a) shows a sample image where an island like

feature can be seen in the middle of the water and Figure 10 (b)

shows an image where this feature can only be slightly seen.

Table VIII shows that the accuracy of the 3-way classification

is quite good at approximately 89.76% and an ROC Area of

0.917. Similar to the accuracies produced for depth feature 2 -

rocks at far wall, the 2classP classification scenario produces

the highest accuracy of 94.31% and a ROC area of 0.94.

When the classes no island and slightisland are merged in

2classN the accuracy is lower at 92.45% and a ROC area of

0.923 . From the confusion matrix produced by the 3class

classification scenario outlined in Table IX it is clear that

the class slight island was as equally inclined to be classified

inaccurately as class island as class no island. Also class island

rocks no rocks slight
rocks

rocks 396 3 2
no rocks 5 351 45
slight rocks 7 24 370

TABLE VII
CONFUSION MATRIX FOR THE RESULTS OF THE 3class CLASSIFICATION

SCENARIO FOR DEPTH FEATURE 3 - ROCKS AT NEAR WALL

Fig. 10. a) island feature present b) island feature only slightly present

Class FSet Accuracy F-Measure ROC Area

3class F5 89.7155 0.896 0.917
2classN F1-F2 92.4508 0.924 0.923
2classP F5 94.3107 0.943 0.94

TABLE VIII
RESULTS FOR EACH OF THE CLASSIFICATION SCENARIOS FOR THE

DETECTION OF THE ISLAND FEATURE

was classified incorrectly as no island more frequently than as

class slight island, with a similar scenario for class no island

where incorrect classifications were more as class island than

slight island. It should be noted here that a limited number

of instances of the class slight island were available to the

dataset, which renders the 3-way classification results more

impressive.

E. Discussion

From these it results it is clear that each of the four depth

featured can be detected to a very high accuracy and the

classifier has a high ability to distinguish between the classes.

The most successful results were for depth feature 3 - near

wall rocks. This is consistent with visual analysis of the

images where it can be seen that this feature is far more

distinguishable throughout an array of lighting conditions than

each of the other features. Three different classification types

were examined - 3-way classification - 3class - where the

ambiguous images in which it was difficult to decide if a

feature was present or not due to intermediate changes in water

level were given a class of their own for each of the features,

2-way classification - 2classN - where these ambiguous images

where the feature was slightly present were regarded as a

non-detection of the feature and merged with the no rocks

or no island class, and finally two-way classification - 2classP

where these images where the feature was slightly present was

regarded as a positive detection and merged with the rocks or

island class. For two of the features - Feature 1 - rocks at

trees and Feature 3 - rocks at near wall the accuracies were

island no island slight
island

island 380 12 8
no island 22 363 16
slight island 18 18 77

TABLE IX
CONFUSION MATRIX FOR THE RESULTS OF THE 3class CLASSIFICATION

SCENARIO FOR DEPTH FEATURE 3 - ISLAND



better for 2classN where these ambiguous images were merged

with the no rocks class. In these scenarios it was also clear

from the confusion matrices of the 3-way classification that

the classifier found it most difficult to distinguish between the

rocks and no rocks classes. For the other two depth features,

2classP produced the highest accuracies. Overall accuracies

were very satisfactory producing over 90% accuracy in many

cases for the best 2-way classification and over 85% in the

3-way classification except for depth feature 1- rocks at trees.

Other metrics such as ROC Area demonstrated the classifier’s

ability to distinguish between the classes with values of over

0.9 for the best 2-way classification and reaching 0.9 for three

out of the four 3-way classifications. Although in many cases

results between feature sets were very similar, it is apparent

that feature sets 2 and 5 seem to produce the highest accuracies

overall. From our analysis feature set 7 appeared to be the most

unstable. Overall these results are very promising considering

it can be difficult at times even to distinguish each of the

features visually with reflection and rapid changes in lighting

conditions at the site.

IX. LINKING PARAMETERS - VISUAL AND IN-SITU

Now that it has been determined that each of these depth

features can be successfully detected, it is clear that our visual

sensor can be used in order to provide an estimation of water

level at the site. However as previously outlined our camera

takes not just one image but four images every minute. It pans

right - ca − wall(these are the images used in the preceding

study), pans left - ca − trees, zooms in on the water - ca −
centre and pans up to the sky - ca − sky. Therefore each

of these images can represent an individual sensing stream in

our environmental monitoring network. However these streams

need to be aligned in some way. Figure 11 shows images from

ca − trees and ca − centre. Clay or rocks begin appearing

under the trees in ca-trees at the same time as the first depth

feature - rocks at trees appears in ca − wall. In ca − centre

the rocks feature begins to appear at the same time as depth

feature - rocks at near wall in ca − wall.

When delineating classes in the images from ca − trees

and ca − centre we don’t have the same situation as we

had with images from ca − wall where the appearance or

disappearance of four different depth features denotes different

water levels. However we can use this information in order

to delineate classes in images from the two other camera

angles. Each of the images are taken within 20 seconds of each

other. Therefore using the image timestamps, we can annotate

images from ca − trees and ca − centre according to our

annotations for ca − wall where the various water levels are

more clearly distinguishable. We can then extract features from

the images grouped into each class and attempt to use a clas-

sifier to delineate between the various classes. Thus we would

have each of the camera angles representing a sensor stream

measuring different classes of water level and this therefore

provides redundancy in the network. This work forms part of

our ongoing research efforts in combining multiple sensing

modalities for marine environmental monitoring applications.

Fig. 11. a) camera angle panned towards trees - ca− trees b) camera angle
zoomed in on water - ca − centre

Fig. 12. Normalised histogram showing the distribution of water levels for
the various depth features

It also needs to be examined how information from our

visual sensors can be linked to the in-situ depth data. Figure

12 shows a normalised histogram showing the relationship

between the appearance of the various depth features and water

level readings from the Deploy water depth sensor. The curve

representing no-features shows the normalised distribution of

water depth values when there are no depth features present

in the images from the training set. The curve entitled trees

shows the normalised distribution of values when depth feature

1 - rocks at trees is present or slightly present and none of

the other three depth features are present (i.e depth feature 2

- rocks at far wall, rocks at near wall and island). The curve

wall-nearwall shows the normalised distribution of values

when depth feature 2 - rocks at far wall or depth feature

3 - rocks at near wall is present and depth feature 4 - island

is not present. Finally the curve islandshows the normalised

distribution of depth values when depth feature 4 - island

is present. It is clear from this histogram that there is a

clear distinction between the distribution of water depth values

output by the depth sensor for the varying appearance of the

four depth features.

X. CONCLUSION

In conclusion, it clear that a visual sensor can be used to

complement the use of an in-situ sensor network in a river

environment. In times of extreme events where an in-situ

sensor may go offline or during times of failure due to stresses

in the environment or failure of components, a visual sensor

can provide an estimation of conditions at the site. The four

depth features utilised in this study can also be extended to



include other types of features such as detecting the amount

of wall that can be seen so a risk of flooding can be assessed.

As previously outlined estimation of depth is extremely useful

at the site since it can provide an indication of a variety of

conditions. Other parameters that can be picked up by the

visual sensing system include the detection objects floating

on the water, weather conditions etc.

The aim of this study is to examine the effectiveness of

incorporating a low cost off the shelf non specialised camera

in an environmental sensing network. Thus there are also

limitations to the use of the visual sensor in the manner that

it is being examined in this study. For example it is difficult

to pick up water colour through extreme changes in lighting

conditions and reflections on the water. However it is clear

that there are huge benefits to incorporating such a device

in a network. It can provide low cost long term sensing that

requires little or no maintenance. It can provide an estimation

of conditions at the site, it has a wider spatial resolution than

a single point sensing device and it can detect events that

cannot always be detect by an in-situ sensor network. Such

a device could be used hierarchically in a network whereby

if it senses change in the site it can send a message to the

more sophisticated nodes in the network to take a measurement

and provide a precise measurement. This the efficiency and

effectiveness of the network can be improved whereby there

may be sensors that only have a limited number of samples

before requiring maintenance.

Finally another objective of this work is to examine how

such a multi-modal sensor network can be used to tackle

data reliability. It may not be viable to deploy a multitude

of sensors monitoring the same parameter and sensors are

can be inherently unreliable when deployed in the marine

environment. In the literature trust and reputation models

have been used for monitoring the trust of in-situ sensor

nodes where there is a multitude of homogenous sensor nodes

monitoring the same parameter (e.g. temperature). The aim of

this work is to adapt such a model [19] to be used in a scenario

where nodes in the network are heterogenous and represent a

variety of sensing modalities. This means that a visual sensing

stream may be able to help determine the trust of an in-

situ node in the network and determine if reported events

are real. It may determine whether their are abnormalities

associated with the readings from the sensor . If abnormalities

are detected then an alert may be sent to the site manager to

carry out maintenance and the data can be flagged as unreliable

so that analysis is not affected.
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