
A POLICY BASED GOVERNANCE FRAMEWORK FOR

CLOUD SERVICE PROCESS ARCHITECTURES

MingXue Wang

BSc Computing Science

MSc Software Engineering

A Dissertation submitted in fulfilment of the

requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

Faculty of Engineering and Computing

Supervisor: Dr. Claus Pahl

November, 2011

I hereby certify that this material, which I now submit for assessment on the programme

of study leading to the award of Doctor of Philosophy is entirely my own work, that I have

exercised reasonable care to ensure that the work is original, and does not to the best of my

knowledge breach any law of copyright, and has not been taken from the work of others

save and to the extent that such work has been cited and acknowledged within the text of

my work.

Signed:

Student ID No.: 56210716

Date: 17 Nov 2011

ii

Contents

Table of contents ii

Abstract viii

Acknowledgements ix

List of Figures x

Acronyms xi

I Foundations 1

1 Introduction 2
1.1 Overview . 2
1.2 Research issues and contributions . 5
1.3 Thesis outline . 7

2 Background and related work 10
2.1 Introduction . 10
2.2 Service-Oriented Architecture . 10

2.2.1 SOA elements . 11
2.2.2 SOA style . 11
2.2.3 SOA reference architecture . 14
2.2.4 SOA specification and architectural framework 17
2.2.5 Other related work . 18
2.2.6 Discussion . 19

2.3 Service based business processes . 20
2.3.1 Service composition . 20
2.3.2 WS-BPEL . 23
2.3.3 Process adaptation . 26
2.3.4 Business processes in cloud computing 28
2.3.5 Discussion . 31

2.4 Policy based service computing . 32

iii

2.4.1 Autonomic computing . 32
2.4.2 SOA governance . 33
2.4.3 Policy modelling and approaches 34
2.4.4 Other related work . 41
2.4.5 SPL and Variability descriptor . 42
2.4.6 Discussion . 42

2.5 Transaction and coordination . 45
2.5.1 Coordination . 45
2.5.2 Business transaction . 46
2.5.3 OASIS WS-TX specifications . 47
2.5.4 Other related work . 49
2.5.5 Discussion . 50

2.6 AOP and service computing . 51
2.6.1 Aspect-Oriented Programming . 51
2.6.2 Related work . 53
2.6.3 Discussion . 55

2.7 Conclusion . 55

II Designing an architectural style 56

3 Problem statement as an architecture problem 57
3.1 Introduction . 57
3.2 A purchase order checkout business process scenario 58
3.3 Process as a service . 61

3.3.1 The need from process consumers 61
3.3.2 The need from process providers 63

3.4 Business process governance . 64
3.4.1 SOA governance for business process 64
3.4.2 Business process delivery in cloud 64

3.5 A new architectural style and framework 66
3.5.1 The need of a new architectural style 66
3.5.2 The need of new architecture framework 67

3.6 Conclusion . 68

4 Service Process Architecture style 69
4.1 Introduction . 69
4.2 SPA basic concepts and elements . 70
4.3 SPA principle . 72

4.3.1 Process governability . 73
4.3.1.1 Governability explained 73
4.3.1.2 Profiling the principle 74
4.3.1.3 Measure of governability 74
4.3.1.4 Type of process governability 76

iv

4.3.2 Governability and process design 77
4.3.2.1 Process design and development 77
4.3.2.2 Governability with impact on SOA principles 78

4.4 Roles and activities for business process automation 81
4.5 Case study . 81
4.6 Discussion of related work . 85
4.7 Conclusion . 86

III Designing an architecture framework 89

5 Policy model 90
5.1 Introduction . 90
5.2 The information model . 92
5.3 The language model . 93

5.3.1 Rule categorisation . 94
5.3.2 Rule . 97

5.3.2.1 Objects . 98
5.3.2.2 ActivityStates . 101
5.3.2.3 Conditions . 102
5.3.2.4 Actions . 103
5.3.2.5 FaultHandler . 108
5.3.2.6 Obligations . 109

5.3.3 Policy . 109
5.3.4 PolicySet . 110

5.4 Related algorithms . 111
5.4.1 Semantic matching algorithm . 111
5.4.2 Sequencing algorithm . 111
5.4.3 Policy combining algorithms . 112

5.4.3.1 Constraint combining algorithm 113
5.4.3.2 Remedy combining algorithm 117

5.5 Case study . 121
5.5.1 Objective . 121
5.5.2 Approach . 121

5.5.2.1 Case 1: configuration on service references of activities . 121
5.5.2.2 Case 2: configuration on flow logic and resource message 125
5.5.2.3 Case 3: protection aspect 128
5.5.2.4 Case 4: optimization and healing aspect 129

5.6 Discussion with related work . 132
5.6.1 The primary requirements . 133
5.6.2 The language model complexity 135
5.6.3 The fault handling ability . 136

5.7 Conclusion . 137

v

6 Coordination 139
6.1 Introduction . 139
6.2 Coordination model . 140

6.2.1 The model . 140
6.2.2 Coordination context . 142

6.2.2.1 CoordinationContext 143
6.2.2.2 Cache . 144
6.2.2.3 Example . 145

6.2.3 Coordination cache mechanism 145
6.3 Process activity protocol . 149

6.3.1 Protocol message schema . 150
6.3.2 FSM of protocol . 151

6.3.2.1 FSM of COORc and COORp 152
6.3.2.2 FSM of protocol design for runtime governance 157

6.3.3 Cache of process activity protocol 168
6.4 Coordination implementation with BPEL 169

6.4.0.1 The wrapper service template 171
6.4.1 The process template . 173

6.5 Case study . 176
6.5.1 The effectiveness on the coordination framework 176

6.5.1.1 Objective . 176
6.5.1.2 Approach . 176
6.5.1.3 Result and discussion 180

6.5.2 The performance overhead on coordination framework 181
6.5.2.1 Objective . 181
6.5.2.2 Approach . 182
6.5.2.3 Result and discussion 187

6.6 Discussion with related work . 188
6.7 Conclusion . 191

7 AOP Enhanced policy framework 192
7.1 Introduction . 192
7.2 Policy AOP motivation and concept . 194

7.2.1 AOP motivation and capabilities 194
7.2.2 Policy aspect model . 196

7.3 Policy aspect specification . 198
7.3.1 Join point model . 198
7.3.2 Pointcut language . 199
7.3.3 Advice Specification . 201

7.3.3.1 Advice type . 201
7.3.3.2 Advice language . 202
7.3.3.3 Advice template . 203
7.3.3.4 Aspect and lifecycle . 204
7.3.3.5 Fault handling . 205

vi

7.4 Aspect deployment and weaving . 206
7.4.1 Aspect deployment . 207
7.4.2 Aspect weaving . 210

7.5 Case study . 212
7.5.1 Objective . 212
7.5.2 Approach . 212

7.5.2.1 Case 1: extension with high level policy for time windows 212
7.5.2.2 Case 2: extend with Jess rule for rule reasoning 215

7.5.3 Result and Discussion . 217
7.5.4 Comparison with related work . 218

7.6 Conclusion . 222

8 Conclusion 223
8.1 Work summary . 224
8.2 Future work . 225

Bibliography 228

Appendix 242

vii

Abstract
In today’s environment, the day to day business operations of organisations heavily

rely on the automated business processes from enterprise IT infrastructures. The dynamic
business environment and the problems with the long time implementation, high cost, etc.
of process development and maintenance, are pushing organisations as process consumers
to look for ready to use and shared business processes from IT providers for on demand
requirements. This is manifest in the rising of Cloud Computing and Business Process
Outsourcing with the development of the new concept of (business) Process as a Service.

Service-Oriented Architecture (SOA) is an architectural style commonly adopted for
enterprise IT infrastructures and the implementation of service based business processes.
However, the SOA style and current specifications do not intend for the case of business
processes sharing with cross organisational consumers, since various requirements or the
business policies of different organisations, are unmanageable to meet on a business process
at the same time.

In this thesis, we present an architectural solution to address the above issues for the
Process as a Service. It consists of a Service Process Architecture (SPA) architectural style
designed to extend the SOA style, and a supported architecture framework designed for
the specific style. The proposed SPA style has a defined principle for the goal of process
customizability and adaptability on process design and development with providers. The
supported architecture framework consists of three main parts: a policy specification entails
expressing business policies or the requirements of consumers regarding business processes
in the cloud; a coordination framework aim to enforce expressed policies on process exe-
cutions with adaptive business processes for different consumers; finally, an AOP enhanced
extension is responsible for the extensibility of the framework to satisfy consumers’ possi-
ble additional requirements.

Our SPA style could extend the SOA style, and has an impact on the SOA principles.
With the supported architecture framework, we provided a complete architectural solution
for the Process as a Service.

Acknowledgements
Firstly, I would like to thank my supervisor, Dr. Claus Pahl, for the invaluable time time

you have spared for me over the last few years. I have not only gained from your impeccable

instruction and helps but, more than that, your attention to detail, professionalism, patience,

even with my foolish arguments, and the many other abilities I have tried to learn from you

will prove invaluable in my further work and life .

Also, I would like to extend a big thanks to all of my colleagues in DCU with whom

I worked or had a good time. You are (in alphabetical order): Aakash, Darren, Declan,

Edmond, Haiying, Jie, Kosala, Javed, Maurice, Mark, Michal, Murat, Oisin, Paul, Pooyan,

Ronan, Veronica, Yalemisew. It was a great benefit for me to be able to learn from their

multi-cultural experiences.

I would like to thank all people who gave comments to my work, including the anony-

mous paper reviewers, and my transfer report examiners (Dr. Markus Helfert and Dr. David

Sinclair). Also, the authors of works I have read include that have not been referenced in

the thesis, it would have been impossible for me to have completed my work without the

comments and knowledge you have contributed to it.

Finally, I am forever indebted to my family members.

List of Figures

1.1 The high level of contribution . 5

2.1 SOA operational model of SOA style . 11
2.2 S3 or OpenGroup SOA-RA [1] . 15
2.3 CCOA diagram [2] . 19
2.4 A BPEL example . 24
2.5 Business rule approach with BPEL development 38
2.6 A coordinator of WS-Coordination framework [3] 48

4.1 Process governability related to the SOA principles 79
4.2 Application architecture diagram . 83

5.1 Information model and framework elements 92
5.2 Core components of the policy language model 94
5.3 Rule categorization related to process execution 95

6.1 The schematic coordination example . 142
6.2 COORcontext : CoordinationContextType 143
6.3 Message flow diagram . 152
6.4 Transition graph . 155
6.5 Transition graph . 156
6.6 Activity life cycle . 158
6.7 Pattern graphs . 159
6.8 Exception situation description . 172
6.9 Activity scope BPEL template . 174
6.10 Process scope BPEL template . 175
6.11 Screen shot of coordination log . 178

7.1 Policy based governance framework stack 195
7.2 Aspect deployment and weaving . 207
7.3 Aspect : AspectType . 208

x

Acronyms
ACID Atomicity, Consistency, Isolation, Durability
AOP Aspect-Oriented Programming
AOSD Aspect-Oriented Software Development
BAM Business Activity Monitoring
BPM Business Process Management
BPO Business Process Outsourcing
BPMN Business Process Modelling Notation
BRMS Business Rule Management System
BTP Business Transaction Protocol
CEP Complex Event Processing
EAI Enterprise Application Integration
ECA Event Condition Action
ESB
KPI
LRT
MTBF
PCD
QoS
RA
RBAC
REST
SaaS
SBVR
SLA
SCA
SOA
SOAP
SPL
UDDI
WFM
WS-AT
WS-BA
WS-BPEL/BPEL
WS-TX
WSDL
XACML
XPath

Enterprise Service Bus
Key Performance Indicator
Long Running Transaction
Mean Time Between Failures
Pointcut Designator
Quality of Service
Reference Architecture
Role Based Access Control
Representational State Transfer
Software as a Service
Semantics of Business Vocabulary and Business Rules
Service Level Agreement
Service Component Architecture
Service-Oriented Architecture
Simple Object Access Protocol
Software Product Line
Universal Description Discovery and Integration
Workflow Management
Web Services Atomic Transaction
Web Services Business Activity
Web Services Business Process Execution Language
Web Services Transactions
Web Services Description Language
eXtensible Access Control Markup Language
W3C XML Path language

Part I

Foundations

1

Chapter 1

Introduction

1.1 Overview

Business processes are considered as the centre of the business of organisations [4]. A

business process is a collection of interrelated tasks or activities, which are designed to

deliver a particular result or complete a business goal [5]. A business process could be

broken down into several sub-processes mapping to activities of the overall process.

Today, business processes of organisations are generally automated or supported with

advanced workflow management (WFM) or business process management (BPM) systems

[6]. Business reactions to ever changing market conditions normally need changes to exist-

ing business processes, or the development of new processes for current systems. Conse-

quently, this results in substantial IT projects on business process development, which lead

to long implementation time, high costs, etc., often inhibiting rapid reactions in a highly

dynamic business environment [7].

As a consequence, organisations, from process consumer perspective would benefit

from ready to use business processes from IT providers for on demand requirements. On the

other hand, from a provider perspective, organisations have developed business processes

that can be shared with others to reduce the operational cost or gain profit. This exactly

2

falls in the concept domain Software as a Service under the scope of Cloud Computing [8]

[9], which is about delivering IT services to clients over the Internet. More specifically,

Process as a Service in this case. It is increasingly required by the Service outsourcing [10]

or Business Process Outsourcing (BPO) business paradigms.

Service-Oriented Architecture (SOA) is a business-centric IT architectural style [11]

[12], which aims to use services as basic building blocks to rapidly construct low-cost ap-

plications. It reuses developed services, which may come from different service providers

when a new business process arises, also as a way of business collaboration between organ-

isations.

Because of various requirements such as monitoring, security, etc, on a micro service

level of business processes, or different business requirements or policies of organisations

with regard to business processes, business processes generally are scoped and resided

within one organisation [9] [13]. Service consumers themselves are concerned with de-

veloping and hosting business processes based on services from service providers [1] [13].

Business processes are not available for sharing between cross-organisational service con-

sumers in SOA.

Business policies describe business requirements that are expressed in formal policy

statements and are focused in the domain of SOA governance in SOA reference archi-

tectures [1] [14]. Since it is based on the SOA paradigm above, current work such as

WS-Policy [15], in the SOA governance domain only addresses policies with regard to

services or task services for cross-organisational consumers. SOA treats policies of busi-

ness processes as an internal organisational problem. With related work such as [16] [17]

[18], processes only comply with single party policies, and are not applicable for sharing

processes hosted outside organisations with multi-tenancy capability for cloud computing.

Multi-tenancy means different tenants or organisations could have isolated and customized

behaviours on shared software resources [19] [20], or business processes in this case.

In our conceptualisation, we leverage SOA and with the cloud computing concept, lift

3

up software artefacts as the building blocks for cross-organisational collaboration in SOA

from a micro service level to a process level. The business processes are expected to be

available from process providers for sharing with consumers with on demand needs and

for self-service. The business policies regarding business processes would be addressed by

on-the-fly process customization through runtime governance.

The goal of this PhD work is to design an architectural style that promotes sharing of

business processes for cross organisational consumers or tenants in process development,

particularly on service processes in SOA styles with a supported architecture framework.

The central hypothesis of this thesis is that business processes can be shared for on-demand

requests from cross-organisational consumers for self-service. The main research questions

derived from the central hypothesis are:

1. Can the SOA architectural style be adapted or extended to accommodate the needs of

process sharing for multiple tenants?

2. Can a supporting architecture framework for the style be developed? And what com-

ponents, protocols, etc., are needed?

This thesis introduces,

1. An architectural style with a defined principle - process governability, to extend the

SOA style to guide software engineers in service process and infrastructure design to

address the problem of sharing business processes.

2. And an architecture framework that will support engineers implementing applications

in the style to demonstrate the feasibility of our concept.

The architecture framework consists of three main parts to address the requirements on

business processes as a policy based process runtime governance problem.

1. First, we provide a policy model specification to allow process consumers to express

their own business policies or requirements with regard to business processes.

4

Adaptive business process (BPEL)
(with designed/instrumented services)

Coordination protocol

Policy based governance

Service

XML Policy model

Policy AOP

Process Provider(s)

Process consumer(s)

Service Provider(s)

Contribution 5

Contribution 2

Contribution 3

Contribution 4

Contribution 1

Figure 1.1: The high level of contribution

2. The policies will be enforced on process execution by process providers for con-

sumers through a coordination protocol. The coordination framework implementa-

tion will form the second part.

3. The last part, an AOP (Aspect-Oriented Programing) specification is introduced as

an extension for advanced requirements of process consumers with regard to process

governance.

1.2 Research issues and contributions

In the following subsections, we briefly describe the key research issues and main contri-

butions. Figure 1.1 summarises our contributions to give a larger picture.

• An architectural style to extend the SOA style for Process as a Service

The main problem of the SOA style is that the current principles are defined with lit-

tle consideration for the service customization for multi-tenancy cloud applications. This

makes orchestrated task services or business processes in SOA almost impossible to be

5

shared across organisations if different business policies apply to the processes. Hence, the

development of business processes is more of a concern for service consumers than service

providers. A solution at an architectural level is needed to address the problem of sharing

business processes across organisations. The style would extend the SOA style to offer

(Business) Process as a Service.

Contribution 1: The architectural style consists of a principle focusing on the adaptation

and customization of business processes, and a study of the principle with regard to SOA

principles for service design with business processes.

• A policy model specification for business process governance as customization

Business processes might be customized to address the business policies of consumers

regarding the processes. Policies defined by consumers would act as customization meta-

data of business processes by means of policy based process governance. A policy specifi-

cation for process governance is desired, as most current Web service policy specifications,

such as [15] [21] [22], neglect the business processes. The issue is how a policy can be

facilitated for process consumers on shared business processes.

Contribution 2: A policy specification is defined for formalizing different categories of

business policies as customization metadata of business processes of providers.

• Coordination model and protocol

Defined policies of processes consumers must be enforced on process execution when

consumers consume the processes. For reason such as policy centralization, privacy con-

cerns of cloud consumers [23] [24], governance directly from process consumers needs a

coordination protocol as a base for a service contract between providers and consumers to

address the governance need.

Contribution 3: A coordination model and protocol serve as the base of the distributed

and multi-tenant and process runtime governance.

6

• Adaptive BPEL process development

Since each process consumer might have its own policy requirements in a business

process, consumers need to be served by the process at the same time but without interfering

with each other. For sake of the process providers with a multi-tenancy requirement, the

process should not require redevelopment and redeployment for enforcing policies for each

consumer, since the process is shared by multiple consumers. The implementation of such

a coordination framework is a challenge.

Contribution 4: A BPEL template is presented for governance enhanced BPEL process

development implementing the coordination protocol to handle arbitrary policies of process

consumers. The approach is platform independent.

• An AOP specification for extendible policy model

An extendible policy model will provide an advantage on extendibility and advanced

requirements needed in process governance or customization. Other policy models and

frameworks could be adopted and integrated with our framework. Process consumers would

have more opportunities to utilize shared processes to fulfil their requirements.

Contribution 5: An AOP enhanced policy framework to address additional features that

might be required for process runtime governance by consumers. A policy based AOP

specification is defined on top of the policy model for extensibility.

1.3 Thesis outline

Our research falls in the category of design science [25], which addresses research through

the building and evaluation of artefacts designed to solve the identified problems. We use

one chapter (3) to state the main problem we identified with a scenario through analysis,

which also is part of our design. The four following chapters (4, 5, 6, 7) show our design

of solution components for different sub-problems of the main problem. An evaluation is

7

placed at the end of each of four chapters, using a case study based on the described scenario

to demonstrate how the sub-problem of each chapter is addressed.

The remainder of the thesis consists of background and related work, two main parts,

and a conclusion.

In Chapter 2, we present the necessary background knowledge and related work.

The first main part is designing the architecture style. We describe the design process

of the architectural style.

1. In Chapter 3, we present the problem statement of the SOA architectural style. Through

a basic scenario, we show that the business processes in current SOA cannot be shared

or used by any consumers outside the organisations since a restriction regarding busi-

ness policies. Current approaches do not fully solve the problem.

2. In Chapter 4, we present an architectural style as an abstract solution to address the

problem. One principle - process governability is defined in the architectural style to

extend the SOA style. We give a detailed discussion of the principle in particular and

also in relation to SOA principles.

The second part is designing the architecture framework. We describe the concrete

solution as a framework of the architectural style.

1. In Chapter 5, we present a policy model for formally expressing business policies

regarding business processes. The language model and related algorithms on seman-

tic matching, sequencing, and combining will be detailed. A case study will follow

at the end of the chapter to demonstrate the policy model covering various business

policies.

2. In Chapter 6, we first describe the coordination model and protocol (process activity

protocol) in detail. The protocol design will be illustrated in detail. Also, the business

8

process development for a platform independent coordination framework implemen-

tation will be described. Finally, effectiveness and performance of implementation

will be evaluated and discussed.

3. In Chapter 7, we firstly explain the motivation scenarios of the need of extensibility

of our framework. Then we describe an AOP framework, which is located on top of

our policy model. Process consumers can adopt other policy models or frameworks

on top of our policy model, which will be illustrated with a case study to demonstrate

the extensibility our framework.

The last chapter of the thesis (Chapter 8) contains conclusions and an outlook.

9

Chapter 2

Background and related work

2.1 Introduction

In this chapter, we give a discussion of related work with the necessary background.

The necessary background knowledge, such as SOA elements, styles, service composi-

tion, BPEL, cloud computing, etc., will be described.

We will describe in detail related research work, which has been recognised as standards

and influenced our work, such as OpenGroup SOA-RA, XACML, WS-BA. Other related

work also will be briefly described.

In following, we describe the background and related work in relation to different do-

mains as sections (Section 2.2 Service-oriented architecture, Section 2.3 Service based busi-

ness processes, Section 2.4 Policy based service computing, Section 2.5 Transaction and

coordination , Section 2.6 AOP and service computing), and will give a short discussion

with regard to our research at the end of each domain.

2.2 Service-Oriented Architecture

Software architecture is concerned with software systems development to assure the sat-

isfaction of systems’ requirements [26]. As noted by [27], software architecture could be

10

Service
registry

Service
consumer

Service
provider

Publish

Interact

Find

Figure 2.1: SOA operational model of SOA style

defined in different forms, such as elements, styles, etc. Consequently, we describe the SOA

architecture with respect to different forms.

2.2.1 SOA elements

A software architecture can be defined by a configuration of architectural elements - com-

ponents, connectors, and data constrained in their relationships in order to achieve a desired

set of architectural properties [27].

The SOA triangular operational model (Figure 2.1) [13] or the conceptual model of

the SOA architectural style [28] describes the basic SOA elements. The building blocks of

SOA are business tasks, or services, which are self-contained, self-describing, and platform-

independent computational components. These business services realized as Web services

are described and published by service providers, can be discovered and invoked by service

consumers through standard Web protocols.

2.2.2 SOA style

An architectural style is a coordinated set of design principles, and constraints that dictate

how architectural elements can be composed, behave, and communicate [29] [27] [30].

Architectural styles are identified to be used for guiding the design of software systems

[31]. The SOA style is defined as a set of flexible principles, which are basic generalizations

that are accepted as true and that can be used as a basis for SOA system design. As a

consequence, it allows to make a balance between different principles of service design, and

11

differs from many architectural styles, such as REST [27] which contains a set of constraints

that must be satisfied.

SOA is defined as an architectural style, consisting of a set of design principles used

for service-oriented development for SOA systems. Many SOA vendors have specified

different principles, such as [32]. Here, we reference the commonly accepted and widely

referenced eight principles from published research by Thomas Erl [33] [11].

1. Scandalized Service Contract - Services in compliance with the same contract design

standards within a service inventory. A service contract can consist of a group of ser-

vice description documents, which includes technical documents (such as WSDL)

and non-technical documents. The goal of a scandalized service contract is en-

abling service interoperability within a service inventory and to increase service in-

terpretability and predictability.

2. Service Loose Coupling - Dependencies between the surrounding environment of ser-

vices themselves and their consumers are only limited to conformance to the service

contract. Services are loosely coupled to programming languages, technology imple-

mentation, outside software components, etc. reflected on service contract indepen-

dent from service implementations. The goal of the service loose coupling is enabling

service and consumers to be adaptively evolved with minimal impact between each

other.

As basic example, the service provider can move the service host machine from Win-

dows to Unix for security seasons, i.e., adaptively evolve the service as long as the

host machine is not defined in the contract.

3. Service Abstraction - Only essential information is published in service contracts,

and is the only information visible to the outside world of service. More informa-

tion published outside causes consumers-to-contract coupling to become deeper, and

affords less space to evolve the service over time. The goal of service abstraction

is preventing the publication of unnecessary service information and balancing with

12

other principles, such as service discovery which emphasizes publishing more service

information.

The information can be any information regarding to services, such as which devel-

oper developed the service or where the service is hosted.

4. Service Reusability - Services are designed with agnostic logic 1 as a potential reusable

enterprise resource. Reusable services have capabilities useful for more than one

purpose. It opens the door to increase the ROI. However, requirements of multiple

purposes increase complexity, cost, etc. to deliver the service. The goal of service

reusability is increasing ROI, rapid fulfilment of future requirements, and more ag-

nostic services.

More than one purpose is necessary. For example an operation getPerson() could be

used to get a person name, get the age, or get an address. Reusable could mean only

to be used more frequently, but not necessary for multiple purposes.

5. Service Autonomy - Services have governance over their underlying runtime execu-

tion environment, and are not dependent on other services for it to execute its gover-

nance. The more independent a service is from unpredictable outside influences, the

more reliable it will be. The goal of service autonomy is increasing runtime reliabil-

ity, performance, predictability and increasing the amount of control over the runtime

environment.

6. Service Statelessness - A service should be designed to a maximum of statelessness,

deferring the management of state information if necessary. A service constantly con-

suming computation resources for processing and retaining state information could

drain the system resources when numerous service instances exist concurrently. The

goal of service statelessness is increasing service scalability and supporting agnostic

service logic for improving service reuse.

7. Service Discoverability - Services are supplemented with description meta data al-

lowing it to be effectively discovered and interpreted by machines or humans. Dis-
1without need to know the service logic

13

covery is a process that searches and finds suitable services for given criteria. It is

important for making decisions that if solutions exist or need to be developed. The

goal of service discoverability is emphasizing and clearly expressing the service pur-

pose and capability, and as a high discoverable enterprise resource.

8. Service Composability - Services are effective composition participants, allowing

logic to be represented at different levels of granularity. Software composition en-

ables decomposability solution logic to be recomposed into a new configuration for

various problems. Service reuse is realized by service effectively and repeatedly com-

posed by others. The goal of service composability is to increase service reusability

and allow extensions for future business requirements.

2.2.3 SOA reference architecture

A Reference Architecture (RA) is developed to provide a conceptual framework for describ-

ing architectures and showing how components are related to each other [27].

SOA-RA extends the fundamental SOA principles, provides a worked design of an

enterprise-wide SOA implementation, with detailed architecture diagrams, etc. There are

a number of SOA-RAs that have been developed. Here, we describe two SOA-RAs from

standardisation bodies (OpenGroup and OASIS).

OpenGroup SOA-RA

IBM research published a layered SOA-RA named S3 (Figure 2.2) [1], which was

adopted as the OpenGroup draft standard for SOA-RA [34]. The S3-RA is a layered ar-

chitecture from a consumer and provider perspective. There are five horizontal layers that

are more functional in nature and relate to the functionality of the SOA solution.

The lower layers (services, service components, and operational systems) are provider

concerns,

1. Operational Systems Layer - captures the new and existing organization infrastruc-

14

12 IT Pro May ❘ June 2007

W E B 2 . 0

not so much. Some organizations might be entirely con-
sumers; others, entirely providers. S3 is flexible enough to
accommodate any of these scenarios—from a tightly inte-
grated consumer-provider relationship to one that is
entirely decoupled.

THE LAYERS
In creating S3, we made several assumptions about

the nine layers.We assume the existence of a set of serv-
ice requirements that are both functional and nonfunc-
tional and collectively establish the SOA’s objective.
Nonfunctional service aspects are security, availability,
reliability, manageability, scalability, latency, and the
like.

We also assume that a single layer or some combination
of layers can fulfill any service requirement and that for
each layer, the service requirements use a specific mecha-
nism to influence that layer.

Finally, we assume that identifying service requirements
and mapping them to the appropriate S3 layer is a critical
part of developing an SOA.

S3’s nine layers are operational systems, service compo-
nent, services, business process, consumer, integration,
QoS, information architecture, and governance and poli-
cies.There is no separate layer for business rules and poli-
cies. Rather, business rules cut across all layers: The

business process and governance layers intersect in defin-
ing the rules and policies for the business process, and the
input and output transformations from and to the con-
sumer layer must abide by some business rules.

1. Operational systems
This layer includes all application assets running in an

IT operating environment that supports business activi-
ties, whether custom, semicustom, or off the shelf. Because
the layer consists of existing application software systems,
implementing the SOA solution leverages existing IT
investment.This in turn can lower the overall implemen-
tation cost and free up some of the overall budget for
newer initiatives and the development of business-
critical services. Software systems in the operational sys-
tems layer include

• existing monolithic custom applications, including Java2
Enterprise Edition (J2EE) and .Net applications;

• legacy applications and systems;
• existing transaction processing systems;
• existing databases; and
• existing package applications and solutions, including

enterprise resource planning (ERP) and customer rela-
tionship management (CRM) packages, such as those
from SAP or Oracle.

Services
atomic and composite

Existing Application Assets

Service Components

Consumers

Business Process
Composition; choreography;
business state machines

Service Consumer

QoS

-

Channel B2B

Packaged
Application

Custom
Application

OO
Application

Services

Operational systems

Service components

Consumer

Business process

Channel Business to business

Packaged
application

Custom
application

OO
application

• Composition
• Choreography
• Business state machines

• Atomic
• Composite

G
o

ve
rn

an
ce

 a
n

d
 p

o
lic

ie
s

Se
rv

ic
e

co
n

su
m

er
Se

rv
ic

e
p

ro
vi

d
er

Q
u

al
it

y
o

f
se

rv
ic

e
(s

ec
u

ri
ty

, m
an

ag
em

en
t,

 a
n

d
 m

o
n

it
o

ri
n

g
 in

fr
as

tr
u

ct
u

re
 s

er
vi

ce
s)

In
te

g
ra

ti
o

n
(e

n
te

rp
ri

se
 s

er
vi

ce
s

b
u

s)

In
fo

rm
at

io
n

 a
rc

h
it

ec
tu

re
(m

et
am

ed
ia

 a
n

d
 b

u
si

n
es

s
in

te
lli

g
en

ce
)

Figure 2. Logical layers in S3.

The nine layers are relatively independent, which lets the organization choose the degree of consumer-
provider integration. An SOA solution might exclude a business process layer, for example, and have the
consumer and service layers interact directly. Services are, of course, part of both consumer and provider
views. The lower layers (services, service components, and operational systems) are provider concerns,
while the upper layers (services, business processes, and consumers) are consumer concerns.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on March 16,2010 at 12:26:13 EDT from IEEE Xplore. Restrictions apply.

Figure 2.2: S3 or OpenGroup SOA-RA [1]

ture, including those involving actors, needed to support the SOA solution. A number

of existing software systems are part of this layer.

2. Service Components layer - contains software components, each of which provides

the implementation or operation of a service; hence the name Service Component.

3. Services Layer - consists of all the services defined within the SOA. The service layer

contains the service descriptions (service contracts) and the container for implement-

ing the services.

The upper layers (services, business process, and consumer) are consumer concerns.

4. Business Process Layer - In this layer, the organization composes the services ex-

posed in the services layer into composite services as business processes, which pro-

vide significant business applicability.

5. The Consumer Layer - handles interaction with the user or with other programs in

the SOA ecosystem. It provides the capability to quickly create the front end of the

business processes and composite applications.

The four vertical layers are non-functional requirements (NFRs) in nature and support

15

various cross-cutting concerns of the architectural building blocks and principles that sup-

port the realizations of SOA.

6. Integration Layer - is a key enabler for a SOA as it provides the capability to mediate,

transform, route and transport service requests from the service consumers to the

correct service provider. It also provides the support of a common business rules

capability.

7. Quality of Service Layer - provides the service SOA solution lifecycle processes with

the capabilities required to ensure that the defined policies and NFRs (such as avail-

ability) are adhered to.

8. Information Architecture Layer - includes stored metadata content. It captures all the

common cross industry and industry-specific data structures, and business protocols

for exchanging business data, etc.

9. Governance Layer - ensures that the services and SOA solutions within an organi-

zation adhere to the defined policies, guidelines and standards that are defined as a

function of the objectives, strategies and regulations applied in the organization.

OASIS SOA-RA

OASIS documents the SOA-RA [14] from a service ecosystem perspective rather as

a complex system. A service ecosystem is a space which people, machines and services

inhabit in order to further both their own objectives and the objectives of the larger commu-

nity. It describes architecture in terms of models, views, and viewpoints.

A View is a representation of the whole system from the perspective of a related set of

concerns. The reference architecture has three main views:

1. Service Ecosystem view which focuses on the way that participants are part of a SOA

ecosystem;

2. Realizing Services view which addresses the requirements for constructing a Service

Oriented Architecture;

16

3. Owning SOA view which focuses on the governance and management of SOA-based

systems.

A Viewpoint is a specification of the conventions for constructing and using a view.

1. The Service Ecosystem viewpoint is intended to capture what using a SOA-based

system means for people using it to conduct their business.

2. The Realizing SOAs Viewpoint focuses on the infrastructure elements that are needed

to support the construction of SOA-based systems.

3. The Owning SOAs Viewpoint addresses the issues involved in owning a SOA as op-

posed to using one or building one.

A Model is an abstraction or representation of some aspect of a system. Each archi-

tectural model is developed using the methods established by its associated architectural

viewpoint. UML class diagram is used to represent a visual model depiction in the docu-

ment.

2.2.4 SOA specification and architectural framework

SOA is only an architectural style itself that does not specify or provide any methodology

and framework to create services. An Architecture Framework is a software that helps

application developers to correctly implement applications in a particular or a family of

architectural styles [29].

Heterogeneous SOA frameworks developed or chosen from different vendors by or-

ganisations would cause interoperability problems between different organisations without

common standards. Thus, there are a set of common Web service specifications (such

as SOAP, WSDL.) that have been established by standardization bodies (such as W3C,

OASIS.) to form open standards. Different frameworks (such as Apache Axis22, Apache

CFX3.) are developed based on these standards by SOA vendors or communities.
2Apache Axis2, available at http://axis.apache.org/axis2/java/core/
3Apache CFX, available at http://cxf.apache.org/

17

http://axis.apache.org/axis2/java/core/
http://cxf.apache.org/

The service is referred to as the W3C SOAP Web service [35] specification in general,

also in our work. Other technical specifications on service developments for the SOA style,

such as CORBA, will be not discussed in our work.

There is a large amount of Web service specifications which cover various features

needed for enterprise SOA systems, such as security, reliable messaging, and transactions.

Specifications may complement, overlap, and compete with each other. For example, WS-

Security, WS-SecureConversation, XACML, are all in the security domain for Web services

systems.

A framework might only focus or cover a certain number of specifications, but could

be integrated as a module of large frameworks or SOA solutions. For example, the Apache

Axis2 Web service engine (with most current version 1.54) implements such as SOAP,

WSDL, WS-Security specifications, but not the WS-Coordination, WS-Discovery specifi-

cations. Our architectural framework is also only implementing the specifications or the

problems we addressed in this thesis.

2.2.5 Other related work

The Service Component Architecture (SCA) [36] provides a set of specifications which de-

scribe a model for composing applications that follow SOA principles. It is developed by

IBM, Oracle and others, and submitted to OASIS. Apache Tuscany 4 is an example of a sup-

porting architecture framework. Service components in business applications is the main

concern of SCA, such as what components are; how they connected and communicated; and

policies applied to each of the components. In contrast, BPEL is concerned with business

logic and tasks of business processes. SCA could work together with BPEL as an extension

of SOA [37], but SCA and SCA variants, such as [38] [39], do not address our problem.

IBM research proposed a Cloud Computing Open Architecture (CCOA) [2] by formally

adopting the SOA and virtualization technologies. It consists of seven architectural princi-
4Apache Tuscany, available at: http://tuscany.apache.org/

18

http://tuscany.apache.org/

can be enabled in the cloud vendor’s dashboard. In the
backend, solution design and development activities, or

hosting environment are used to support the frontend’s
operations.

C
lo
u
d
 P
a
rt
n
e
r
D
a
s
h
b
o
a
rd

(P
o
rt
a
l
o
r
p
ro
g
ra
m
-b
a
s
e
d
 a
c
c
e
s
s
 i
n
te
ra
c
ti
o
n
s
)

C
lo
u
d
 E
c
o
s
y
s
te
m
 M
a
n
a
g
e
m
e
n
t

(O
n
b
o
a
rd
in
g
 a
n
d
 m
e
m
b
e
rs
h
ip
 m
a
n
a
g
e
m
e
n
t)

C
lo
u
d
 Q
u
a
lit
y
 a
n
d
 G
o
v
e
rn
a
n
c
e

(Q
o
S
,
m
o
n
it
o
ri
n
g
,
m
e
te
ri
n
g
,
b
ill
in
g
,
e
x
c
e
p
ti
o
n
 h
a
n
d
lin
g
)

Cloud Client Dashboard

(Portal or program-based access interactions)

Cloud Vendor Dashboard

(Portal or program-based access interactions)

Service-Orientation: Common Reusable Services & Composite Services

Cloud Horizontal Business

Services (CRM, ERP)

Cloud Vertical Business

Services (Industry-specific services)

Cloud Core: Provisioning and Subscription Services

Cloud Ecosystem

Cloud Provisioning Service

(provisioning process, roles, notification)

Cloud Subscription Service

(subscription process, roles, notification)

C
lo
u
d
 I
n
fo
rm
a
ti
o
n
 A
rc
h
it
e
c
tu
re

(u
n
if
ie
d
 r
e
p
re
s
e
n
ta
ti
o
n
 o
f
c
lo
u
d
 r
e
s
o
u
rc
e
s
 &
 e
x
c
h
a
n
g
e
d
 m
e
s
s
a
g
e
)

Virtualization: Hardware and Software

Cloud IT Infrastructure Management

(Management of Hardware, software, and legacy applications)

Cloud Core Infrastructure

(Hardware, software, and legacy applications)Mainframe Servers

Cloud Offerings: Business Solutions

Cloud Value Added Services or Offerings

(Infrastructure As A service, SaaS, Application As A Service, Business Process As A Service)

Data

Center

1

1C

1B

1A76

5

4

3

2

1D

Figure 1. Cloud Computing Open Architecture Overview Diagram

Since most of the cloud vendors do not work alone
anymore, they need to collaborate with their partners [7]
in the value chain of Cloud Computing environment. In
this regard, a partner dashboard is needed for the
participating partners to interact with the cloud vendors
and clients. For example, if the cloud partners serve as
component suppliers for the cloud vendors, architectural
building blocks for interacting with vendors and
collaboration policy manager are keys to the value chain
integration.

Clients or end users of Cloud Computing can be
grouped into two classes: enterprise and consumer users.
The cloud client dashboard provides a focal point for all
kinds of users to interact with Cloud Computing services
or offerings. This focal point provides a unified
framework for users to consume cloud services via
multiple channels such as Web portal, program-based
business to business collaboration channel, or phone-
based customer representative channel. There are
opportunities to explore a converging software and
services architecture for enterprise and consumer users
based on various pricing strategies, security enablement,
and other features of software and services. Since
enterprise users or consumer users are co-existing role
players in the service ecosystem, an enterprise user may
have multiple consumer users. In the end, they are just
consumers of Cloud Computing resources at different
levels.

Putting all those dashboards together, the Cloud
Computing ecosystem management layer (1A) provides
an integrated on-boarding process and common utilities to

support the seamless collaboration and message
exchanges among cloud vendors, partners, and clients.
For example, the onboard progress covers the registration
of business entities and users. The business entities
include cloud vendors, cloud partners, and enterprise
cloud clients. The user entities are end users within a
certain business entity (e.g. an employee of a company, or
a member of a registered community like a social
network), or consumer users in the open Internet space.

Principle 2: Virtualization for Cloud Infrastructure

There are two basic approaches for enabling
virtualization in the Cloud Computing environment. The
first approach is hardware virtualization that is to manage
hardware equipments in plug-and-play mode. Hardware
equipments can be added or removed without affecting
the normal operations of other equipments in the system.
Of course, performance or storage spaces may be
dynamically changed due to those add and remove
actions.

The second approach is software virtualization, i.e., to
use software image management or software code
virtualization technology to enable software sharing.
Specifically, software images can be created based on the
degree of reusability of a set of software systems
including operating system, middleware, and applications.
The other software virtualization technology is dynamic
code assembly and execution. In this case, there are no
software images. Code elements will be dynamically
copied from repositories and pasted in right places based

609

Figure 2.3: CCOA diagram [2]

ples and derives ten interconnected architectural modules (Figure 2.3), which are derived

from the layered S3 or OpenGroup SOA-RA. The CCOA proposes an integrated collabo-

ration framework for cloud vendors and consumers to work together based on seven princi-

ples.

[40] [41] specified an Enterprise Cloud Service Architectural style (ECSA) by merging

the SOA style with the cloud computing concept. ECSA specifies the vocabulary of ECSA

architectural elements and constraints of the elements and their relationships. The ECSA

architectural elements are modelled by a 7-tuple: service, consumer, data element, infras-

tructure, management, process, and quality attributes. ECSA constraints focus on quality

constraints such as performance, transaction, which the architecture must satisfy during the

design.

2.2.6 Discussion

For consumers outside of organisations of service providers, there are different percep-

tions regarding services and business processes, as they sit in different layers defined in

OpenGroup SOA-RA [1] [34], or have different viewpoints defined in the OASIS SOA-RA

[14]. Service consumers share services, but not business processes in the SOA architecture.

19

Business processes are concerns of consumers themselves. How can business processes be

shared for consumers outside of provider organisations? The SOA style, currently defined

RAs which extend the principles of the SOA style, and SCA specifications leave this aspect

and protocol details undefined, inhibiting the sharing of business processes. The cloud ar-

chitectures, such as CCOA, give high level guidelines on a cloud infrastructure, but without

detailing the problem of sharing business processes with SOA.

Software architectures use a number of commonly-recognized ’styles’ to guide their

design of system structures [26]. Each of these is appropriate for some classes of problems,

but none is suitable for all problems. We address our problem as a need of an architectural

style. The style defines an additional principle to extend the SOA style for service process

design as a solution of the above problem. More discussion about the problem and style

will be presented in a later chapter.

2.3 Service based business processes

Business processes are defined by service composition in SOA. In following, we describe

the background of service composition and WS-BPEL, and also related work for adaptive

processes and process delivery in the cloud.

2.3.1 Service composition

The service composition is a key concept in SOA. It realizes the business process by com-

bining individual business services in composite services. It also realizes business collabo-

ration through composite services from different business partners.

Service Orchestration and Choreography Composite Web services for creating busi-

ness processes can be described in two perspectives [42] [43]:

1. Orchestration represents control from one party’s perspective. The process may use

20

both internal and external Web services. The process is described in term of message

exchange and execution order.

2. Choreography tracks the message sequences among multiple parties and sources

rather than single party execution. The process is described as interaction between

multiple parties involved in the process.

The primary difference between orchestration and choreography is execution and con-

trol within a single party and multiple parties, i.e., if the business process is described with

a centralized execution and control. A choreography can be implemented as an orchestra-

tion for each party involved in it [42]. The BPEL is an orchestration language. Service

composition for business processes in our work is addressed only from the orchestration

perspective.

Composition implementation types There are three types of implementation approaches

for service composition [44].

1. Programmatic implementation of composite service - It uses a general purpose pro-

gramming language to composite services. WS-CAF [45] is a framework example for

supporting such implementation. It is a straightforward approach, but suffers from

many drawbacks. The hard-coded orchestration is very inflexible to maintain and

change. Implementation could be complex for aspects such as service conversational

requirements and supporting service context.

2. Service interaction through Publish/Subscribe - A Pub/Sub engine is an intermedi-

ary between service consumers and providers. An event sent by a service or service

consumer will be delivered through the pub/sub engine to a set of services that have

subscribed to this event. A service might also send an event for handling a received

event. This sequence of events effectively creates a composite service. ESB (Enter-

prise Service Bus) products are examples.

21

3. Service composition through an orchestration engine - In this case, an orchestration

language such as BPEL is used instead of a general programming language for service

composition implementation. Visual designers are available for building composition

logic with orchestration languages, and deployment in an orchestration engine.

The orchestration engines provide built-in capabilities for asynchronous invocations,

compensation support, etc. for service process development. Our work is focused on this

type of composition, i.e., BPEL service processes.

Composition method types Depending on human involvement in composition processes,

there are three types of composition methods:

1. Manual composition - Users need to program the composition logic. Desired business

processes or goals are translated to programs manually. Various tools or frameworks

from SOA vendors could be used to support this manual implementation, WS-CAF

and BPEL designer are such examples.

2. Automatic composition - In this case, processes are produced by the machines with

AI technology. The composition process could be regarded as an AI planning prob-

lem, which is solved by situation calculus [46] or hierarchical task network [47] plan-

ners. The planner will find a plan as a process containing a set of actions that, when

performed starting in the initial state, will terminate in a goal state.

3. Semi-automatic composition - Instead of giving a complete process by an automatic

approach, semi-automatic composition requires or asks human users’ decisions in

the middle steps of compositions. For example [48], available service choices are

automatically discovered by semantic annotated Web services and presented to the

user at each step by the composer when a user creates a process.

Our work focuses on manual composition, the problem that might occur in automatic

and semi-automatic composition will not be discussed.

22

Composition binding types There are two types of service processes that could result

from composition processes.

1. Abstract service process - It contains the interaction protocol between services which

are composed, but without covering the concrete service details which are needed for

execution.

2. Concrete service process - In contrast to the abstract service process, it covers service

details. A concrete service process can be directly executed.

A concrete service process can be viewed as instantiation of an abstract service process.

It requires binding concrete services for every service in an abstract process. And it results

two types of compositions depends on the binding approaches.

1. Static binding composition - The composition process is with concrete services to

provide a concrete service process directly.

2. Dynamic binding composition - The composition process is with abstract services to

have an abstract process first, and then bind concrete services based on additional

requirements.

The dynamic service composition has the potential to realize flexible and adaptable

applications by selecting the concrete services based on the user request, especially in the

context of QoS requirements. [49] [50] [51] are works focussed on services selection with

QoS constrains on business processes.

2.3.2 WS-BPEL

BPEL is an industry standard language for expressing business processes with Web services

[52] [53]. It has rich and comprehensive semantics to address the complex requirements

for service solutions. BPEL has strong roots in traditional workflow models [54], plus

23

Service providers/
business partners

Service providers/
business partners

Business processBusiness process

receivereceive

<process>
 <receive createInstance="yes" />
 <sequence>
 <invoke name="orderInspection" />
 <if>
 <condition> result == ture </condition>
 <invoke name="processOrder" />
 </if>
 </sequence>
 <reply variabele="purchaseOrder" />
</process>

Order
inspection

Order
inspection

Process orderProcess order

replyreply

ifif

Order
inspection

service

Order
inspection

service

Process
order

service

Process
order

service

Figure 2.4: A BPEL example

many concepts from structured programming languages. It is developed based on several

composition languages from different SOA vendors (IBM, etc.), and finally became an

OASIS standard. The latest BPEL version 2.0 specification is published by OASIS in 2007

[52]. BPEL is a type of XML language. Figure 2.4 shows a simplified process diagram and

code.

The BPEL specification includes the following key concepts:

Variables: BPEL variables are XML elements declared within processes that store mes-

sages and hold state information of BPEL business processes during runtime. The Name of

a variable has to be unique in its own scope. Messages stored in variables could come from

and are sent to business partners. For example, sending a purchase order information to a

shipping company, then getting a message back with shipping free.

Activities: BPEL has two types of activities: basic and structured. Structured activities

can contain other activities and define the business logic between them. In contrast, basic

activities do not include other activities. The important basic activities are <receive>,

<invoke>, <reply>. They are used for message exchange between business partners (Web

services). Other basic activities include such as <waiting> (waiting an amount of time or

deadline), <empty> (No-op instruction),<throw> (signalling faults). Structured activities

are such as <sequence> (sequential execution), <if> and <switch> (specify conditional

behaviours), <scope> (split the process up into several parts).

24

Message correlation: When a set of process instances of the same business process

run concurrently, it’s important to make sure that each process instance always exchanges

messages with the right instance of a service. BPEL addresses this problem by making

use of a message correlation mechanism. Key variables of message exchanged, such as

purchaseOrderId, buyerId, between a business process and outside world, are marked as

correlation variables in the service interface and the BPEL process to uniquely identify a

process instance. When the process is invoked, these variables make sure messages are

processed in the right process instance.

Fault handling: BPEL offers fault handlers <faultHandlers> that can be attached to

a scope, define a set of fault handling activities. A <faultHandlers> can have a set of

<catch> constructs to catch specific faults and maximally one <catchAll> construct to

catch any unspecific fault. Any unhandled fault in a process scope will be thrown to the

parent scope.

Compensation handling: There is no guarantee that every process instance can reach

the end point to complete the business transactions. There is a need to roll back activities

which were successfully completed at the point where the problem occurs. For example,

a payment needs to be refunded to a buyer, if a seller cannot send a receipt. The BPEL

compensation handler is able to define a set of activates that have to be executed to rollback

a process scope. A <compensate> activity causes all immediately enclosed scopes to be

compensated and <compensateScope> activities to compensate specific immediately en-

closed scopes in a Default Compensation Order. The default order follows two rules: If a

successful scope B has a control dependency on successful scope A, the compensation on

scope A will start after the completion of the compensation of scope B; scopes A and B

cannot have cycles in a peer-scope dependency relation.

Event handling: An event handler can specify what to do when certain events happen.

There are two types of events: <onMessage> and <onAlarm> event. Message events

point to Web service send and receive messages. The alarm event has a specified point in

25

time or a time interval.

2.3.3 Process adaptation

An adaptive system means the system can be changed for user requirements or fulfil the

same requirement in changing environments [55]. Process adaptation is closely related to

policy systems (which we will detail in the next subsection), as changing of processes is

normally realized by enforcing policies. More specifically, business process adaptation is

needed for the following reasons in [56] [16]:

1. Configuration - to add/remove/replace activities specific to business processes [57]

[58].

2. Correction - to handle faults or exceptions occurred during the process execution [59]

[17] [60].

3. Optimization - to improve extra-functional (usually performance) issues noticed dur-

ing execution, and it might be addressed through the correction [61] [62] [60].

4. Prevention - to prevent future faults or extra-functional issues before they occur [62]

[17].

[57] utilizes the event handling ability available in BPEL <eventHandlers> and pro-

vides adaptation by performing predefined actions if certain events occur. They introduce a

new namespace-qualified element<cc ns:alt activity> to extend BPEL. The element allows

specifying a choice of actions that could be performed on receiving an event. Similarly, in

[63] a BPEL onMessage-clause is added into BPEL eventHandlers to catch exceptions, and

generate process exception events.

[59] [64] proposes a Service Relevance and Replacement Framework (SRRF). SRRF

modules include a SRRF pre-processor, which analyses its input BPEL scenario to identify

invocations of web services and arranges for complementing invocations. A pre-processor

26

will create a SRRF-aware BPEL scenario. Firstly, the pre-processor adds the appropriate

declaration of partnerLinkType in BPEL for the new Alternate WS Service Locator binding

within the partnerLinks construct. Then, the pre-processor uses a scope construct to pro-

vide the appropriate fault handlers for each service invocation within the BPEL scenario.

Scopes are employed to enable the definition of different fault handlers for different activi-

ties. When a system fault occurs, the handlers generated by the SRRF pre-processor invoke

the alternate WS locator module to retrieve a list of services which can replace the failed

one.

The Dynamo project [17] developed a supervision framework for the ActiveBPEL en-

gine. The framework provides a Callback(eventHandler, input) operation that allows direct

access to the internal state of the process. This action allows complex logic, embedded

in the process by means of an event handler (<eventHandlers>). The event handler exe-

cutes in an independent thread with respect to the main business process, which meanwhile

continues to remain synchronously blocked by the supervision framework. Once the event

handler thread completes, the supervision framework is warned to unblock the main busi-

ness process.

[65] offers a TWSO (Transactional Web Service Orchestrations) framework that ad-

dresses process transactions. The framework provides TWSOL (Transactional Web Ser-

vice Orchestration Language) as an extension for orchestration languages. It can be used

describe transaction logic in addition to BPEL processes. The defined TWSOL is bound to

orchestration languages by utilizing a built-in extension mechanism. A transaction monitor

is attached with the BPEL engine for monitoring the transaction states of process execution

and handles the TWSOL language as well.

[60] [51] defines a flexible process as one that can change its behaviour dynamically

according to variable execution contexts, such as QoS constraints. They offer a PAWS

(Processes with Adaptive Web Services), a framework for flexible and adaptive execution

of managed service-based processes. The ActiveBPEL engine is extended for managing

27

adaptive actions. There are also a number of similar frameworks such as [66] [67] [68] [56]

that extend a BPEL engine for process adaptation.

2.3.4 Business processes in cloud computing

Cloud computing is a newly emerging trend in the IT industry about delivering hosted IT

services (hardware and software resources) to clients over the Internet. One great advantage

is that the clients can purchase IT services on demand in real time with a pay-per-use model,

and without having to worry about hardware and software hosting. There are challenges and

opportunities by combining the two computing paradigms: service-oriented computing and

cloud computing [9].

Cloud service categories

The services provided by the cloud can be broadly divided into three categories [69]:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service

(SaaS). With regard to BPEL processes:

1. IaaS offers basic infrastructure to clients, such as a hardware environment for a BPEL

engine. Common cloud services, such Amazon EC2 5, GoGrid6, etc., are in this

category.

2. PaaS offers a deployment platform, such as a BPEL engine for business processes of

clients. Sample work [70] introduces a BPEL engine compliance interface that allows

enterprises to gather process evidence from a BPEL engine as well as enforcing rules

on the process. The compliance interface includes signalling, runtime monitoring,

enforcement, and assessment services. The Apache ODE BPEL engine is extended

for the implementation.
5Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/
6GoGrid cloud infrastructure service, http://www.gogrid.com/

28

http://aws.amazon.com/ec2/
http://www.gogrid.com/

3. SaaS offers a software product to clients, such as a payment business process. It can

be a front-end ready Web based application, or a Web service as a software compo-

nent, etc. In this category, the Cafe project [71] [72] [73] [74] [7] is an example,

which proposes a composite application based BPEL delivery, where the BPEL pro-

cess is wrapped in an end user based application. QoS configuration in its case is

made available by process variability descriptors, where application clients or pro-

cess consumers can customize the application according to their needs.

Multi-tenancy capability

In the SaaS model, software applications might require some degree of isolation for dif-

ferent customers. This is discussed in terms of multi-tenancy [20] in software engineering.

The essence of multi-tenancy in a software system is about sharing and isolate resources

between different tenants, or application users. Multi-tenancy applications could have dif-

ferent level of sharing. For example, a data architecture [75]: it could have shared schemas,

separated schemas, or event separated databases for each tenant. [20] defines multi-tenancy

applications in four maturity levels. Higher numbers indicate higher levels of resource shar-

ing. Table 2.1 describes the SaaS maturity level with regard to business processes.

Multi-tenancy capability in SaaS architecture generally means the level 4 maturity. It

gives great benefits to SaaS vendors [76] [20] [77]. For example, supporting more tenants

on fewer hardware components; quicker and simpler on application updates, etc. These

benefits will trickle down to the tenants, in the form of lower service fees, quicker access

to new functionality, etc. Many SaaS vendors have pointed out that multi-tenancy is a

requirement of any SaaS system [76].

Currently, the multi-tenancy capability of BPEL processes is achieved by the Web ser-

vice components dynamically bound to the different process instances, resulting in different

QoS behaviours for different tenants. [78] [77] present the WSO2 Business Process Server

based on this idea. The extended Axis2 Web service engine will intercept and inject the

message into the extended ODE BPEL engine runtime, which takes care of creating the

29

SaaS maturity level Description

2

3

4

61
3

4

51 2

3

51

Level 1 provides a customized software
instance per tenant. It is similar to the
traditional application service provider
(ASP). In this case, each process con-
sumer has its own customized version
of a BPEL process developed by the
process provider.

2

3

4

51 2

3

4

51 2

3

4

51

2

3

4

61

3

4

51 2

3

51

Level 2 provides a set configurable in-
stance clone for tenants. A single ver-
sion of BPEL process is hosted in mul-
tiple isolated instances for process con-
sumers, i.e., the same BPEL process is
deployed separately for each consumer
with configuration options.

2

3

4

51

Level 3 runs a single instance that serves
all tenants. A single BPEL process
is deployed to serve all process con-
sumers. General Web services are in
this case.

2

3

4

51

2

3

4

61

3

4

51 2

3

51

Level 4 enables level 3 to scale up by
running multiple instances for unique
user experience by configurable meta-
data, e.g., a single version BPEL pro-
cess is offered, but process execution
behaviours would be very different for
each process consumers, such as QoS
proprieties.

Table 2.1: SaaS maturity level with regard to business processes

30

necessary process instances or routing the message to an already running instance.

2.3.5 Discussion

Business or BPEL processes could be offered as services for consumers in the SaaS model.

Higher levels of resource sharing gives more economy of scale for SaaS providers, so con-

sumers could have the best cost saving services. Our work tries to provide multi-tenancy

capability business processes, falling in the category of level 4 maturity. A single version

BPEL process is offered and deployed for all process consumers, but customization func-

tionality is also offered at the same time to offer a unique experience for process consumers.

Related work such as [70] is trying to solve the problem in the PaaS layer, provides a

BPEL engine rather than BPEL processes for consumers. process consumers still need to

find or develop their own business processes in that case. In the SaaS layer, the Cafe project

[71] [72] [73] [74] [7] offers the composited end user application for process consumers

rather than software components. Business processes as software components should be

free to be integrated with the end user application or as sub-processes by process consumers

just as Web services.

Business policies might cover a wide range of requirements on business processes,

rather than common QoS properties addressed in current work on multi-tenant business

processes, which include the WSO2 and the Cafe project discussed. Adaptive processes are

needed, so that process can be changed to meet the various change requirements of process

consumers, i.e., various business policies of process consumers, as the base of customiza-

tion. However, the multi-tenancy problem needs to be addressed, and it is not covered in

the current adaptive process approaches, such as [17] [59], we discussed.

31

2.4 Policy based service computing

Policies play a key role in autonomic computing and SOA governance. We will first briefly

describe the two domains (autonomic computing and SOA governance) to give the back-

ground context of our work within both domains, then consider related work. Software

product line (SPL) also will be discussed in this section, as we look at variability descrip-

tors of SPL as a kind of policy.

2.4.1 Autonomic computing

The goals of autonomic computing are to let systems manage themselves according to an

administrator’s goals, thus minimize human intervention in system administration [79] [80].

The fundamentals of autonomic computing revolve around self-governing or self-managing

components. IBM frequently cites the following four aspects for self-managing components

[80]. We consider these aspects as possible consumer requirements in our work.

1. Self-configuration - Components of the system automatically configure themselves

according to high level policies. For example, Web services from trusted business

partners are assigned for process execution.

2. Self-healing - The system automatically detects, diagnoses, and repairs fault occur-

rences. For instance, a non-response failure of Web service in a process is notified

and remedied.

3. Self-optimization - Components automatically seek opportunities to improve system

performance and efficiency. For example, skipping a redundant activity in a process.

4. Self-protection - A system automatically applies measures against malicious attacks

or cascading failures. It refers to security aspects. For instance, cancel the business

process if the buyer information is incomplete or unknown.

32

Policy based computing has been recognised as a core technology to achieve self-

management for autonomic service computing [81]. These aspects are similar to common

functional areas which have been discussed in policy based distributed system management

[16] [82]: Configuration management, Fault management, Performance management, Se-

curity management. It also similar to the four reasons needed in adaptive business process

development discussed: Configuration, Correction, Optimization and Prevention. So, the

four autonomic aspects are a main concern with our policy modelling, since the same prob-

lems are defined in different related domains of software engineering.

2.4.2 SOA governance

Organizations need a consistent way to manage SOA to enable solutions to their business

problems, to ensure it gives the results the enterprise envisions [83] [14]. The topic of

SOA governance applies it, which might include decision rights, measurement, policy and

control mechanisms, all placed around the services lifecycle [83].

SOA governance has been defined as a key part and given definitions in both OpenGroup

and OASIS SOA-RAs, and policy is a key word in SOA governance. With OpenGroup,

SOA governance is a vertical layer (governance layer) of the SOA-RA we described. SOA

Governance ensures that the services and SOA solutions within an organization are adhering

to the defined policies, guidelines and standards that are defined as a function of the objec-

tives, strategies and regulations applied in the organization [84]. In addition, OpenGroup

published a separated draft technical standard on SOA Governance Framework in 2009

[85]. The Framework covers: The SOA Governance Reference Model (SGRM) establishes

a foundation of understanding, and is utilized to expedite the process of tailoring the SOA

Governance Regimen for an organization; The SOA Governance Vitality Method (SGVM) is

a process that starts with the SOA Governance Reference Model and then follows a number

of phased activities to customize it for the organization’s variants.

In the OASIS standard [14], the SOA governance model is described under the owning

33

SOA view. Governance is the prescribing of conditions and constraints consistent with

satisfying common goals and the structures and processes needed to define and respond

to actions taken towards realizing those goals. Governance expressed through policies,

which are the formal characterizations of the conditions and constraints that governance

deems as necessary to realize the goals. Goals are expressed by the participants within the

organisations.

The description of SOA governance in these technical standards provides context and

definitions to enable organizations to understand and deploy SOA governance. The gov-

ernance activities and approaches described are at a high corporate level. The detailed

approach at a software system level in our work is not targeted and covered in these spec-

ifications. And our view of governance is not restricted to ’within an organization’ (with

OpenGroup) or ’owning SOA’ (with OASIS) as per these concepts or specifications.

SOA governance could involve a wide range of SOA activities in the lifecycle of SOA

governance [86]. SOA Governance is viewed as the application of Corporate Governance,

IT Governance and Enterprise Architecture Governance to SOA [85] [14]. In our work, we

focus on the governance approach and technology on service processes or BPEL processes

at software system level.

Policies in SOA governance technology can be separated into two types (design-time,

runtime) [85]: Design-time policies ensure that the service registry/repository contains only

approved, standards-compliant services. Runtime policies govern the service executions.

Our work is restricted to runtime policy governance for on-the-fly customization by process

consumers.

2.4.3 Policy modelling and approaches

Policy in general

[87] introduced a unified framework for defining autonomic computing policies that are

based on the notions of states and actions, and is used in our policy modelling. In general,

34

a state represents a system component or characteristics at a given moment, and can be

described as a vector of attributes. A policy will directly or indirectly cause an action to

be taken, the result of which is that the system or component will make a deterministic or

probabilistic transition to a new state. These types of policies can be modelled within the

framework [87]:

1. Action Policies - describe actions that should be taken in a given state, such as, if

condition, then action; ECA rules. Our policy model falls into this category.

2. Goal Policies - describe the desired state of a system. The system will decide to

transit from a current state to a desired state.

3. Utility Function Policies - Objective function that expresses the value of each possible

state.

Organisations generally have different administrative levels, such as managers, opera-

tors. Policies might be defined for different levels especially for security aspects. Many

works on policies address this problem with a Role-Based Access Control (RBAC) model

[88], which is also adopted for the BPEL process [89]. In RBAC, different access or exe-

cution rights are assigned to roles which represent the administrative positions in an organ-

isation. Users are assigned to roles to have different access or action rights.

Various logic languages also have been developed or adopted for formalizing business

policies, such as business rules [90] and ontological policies [81]. Business rules encode

business policies with If-Then statements in pseudo natural language. Business developers

can easily understand and edit the business rules. Ontology allows a formal representation

of knowledge as a set of concepts, so they can be machine reasoned.

In many BPMs, policies include descriptions of the monitoring activities on processes,

which are associated with the goal state of policies. Business process monitoring can be

generally divided into Technical Monitoring and Business Activity Monitoring (BAM).

Technical monitoring provides information about if technical requirements are met, such

35

as Web service mean time between failures (MTTF) report. BAM intends to provide a real-

time summary of business activities to operations managers and upper management to help

enterprises overcome IT blindness [91]. It used for tracking and to assure the progress of

business processes with key performance indicators (KPIs) on dash boards, predicting vi-

olations of KPIs, etc. Technical monitoring could also be an underlying part or a support

of BAM. In such cases, a high-level description of goals is associated with KPI values in

policies. It makes it easier for non-technical people and business users to define technical

monitoring requirements.

Business rules and approach

Business rule statements are commonly used for expressing business policies of busi-

ness processes in SOA governance, incorporated into business processes to support business

process agility [90] [92] [93]. According to the Business Rules Group [94], a rule statement

must be either a term or fact (described below as a structural assertion), a constraint (de-

scribed below as an action assertion), or a derivation. A large majority of business rules are

expressed using the If-Then format [92] [90], for example, if an order amount with a total

over 200 euros, then we give 5% discount on the order. In production systems, formal rule

languages of business rules, such as Jess rules [95], are executed in rule engines included

in the Business Rule Management System (BRMS) solutions. Some business rule formal

languages have natural English language syntax, such as the OMG standard on Seman-

tics of Business Vocabulary and Business Rules (SBVR) [96] and IBM ILOG JRules [97],

which gives advantage to business analysers and policy developers without programming

knowledge. Business rules can be classified in different types. Table 2.2 shows studies for

business rule classification.

For a business rules approach for business processes, rules are in a form that is used by

and does not have to be embedded in a business process. The business rules approach for

BPEL process development is shown in Figure 2.5 [101]. The basic steps for both new and

36

Classification schemas Re.
Derivation rule: a statement of knowledge that is derived from other knowledge in the business.
Structural assertion rule: a defined concept or a statement of a fact that expresses some aspect
of the structure of the enterprise. This encompasses both terms and the facts assembled from
these terms.
Action assertion rule: a statement of a constraint or condition that limits or controls the actions
of the enterprise.

[94]

Constraint rule: a statement that expresses an unconditional circumstance that must be true or
false.
Action enabler rule: a statement that tests conditions and upon finding them true, initiates an-
other business event, message, or other activity.
Computation rule: a statement that provides an algorithm for arriving at the value of a term.
Inference rule: is a complete statement that tests conditions and upon finding them true, estab-
lishes the truth of a new fact.

[90]
[98]

Derivation rule: represents a statement of knowledge that is derived from other knowledge by
an inference or a mathematical calculation.
Integrity rule: represents an assertion that must be satisfied in all evolving states.
Reaction rule: causes a constructive action when a certain event occurs and/or when a certain
condition is met.

[99]
[100]

Table 2.2: Classification of business rules

upgrade process development are: 1.Develop business rules. 2.Generate rule tasks services.

3.Develop or modify BPEL processes. Rules are wrapped in rule task Web services. These

rule task services will be integrated in BPEL processes.

In this case, since the part of process logic defined in business rules is separated from

BPEL processes, processes could be continually refined and updated by changing the rules,

but without changing or redeploying the BPEL processes.

OASIS XACML

The security policy of a large enterprise has many elements and many points of en-

forcement. XACML stands for eXtensible Access Control Markup Language [21]. It is a

XML based security policy language for access control. IBM published its initial research

in 2000, proposed a security policy language based on XML language [102]. It became an

OASIS standard in 2003 by continue development from such as IBM, Sun Microsystems,

and the latest version XACML 3.0 is published by OASIS in late 2010 [21]. The basic

concepts of the latest version of the XACML policy system architecture are:

• Access Request - An access request consists of attributes that describe an operation on

37

Rules

Rule task
services

1.develop

2.generate

BPEL process

3.Develop/deploy
use

3.Modify/redeploy

(process upgrade
development)

1.develop

2.generate

use

(new process
development)

Figure 2.5: Business rule approach with BPEL development

a resource. These attributes provide information about the subjects (the information

of a user who requests access), resources (e.g., a medical data record), and actions

(type of access that is being requested e.g., read, write, delete).

• Access response - A decision action about the access request based on defined poli-

cies. A final decision (effect) is either ‘Permit’ or ‘Deny’.

• Policy Administration Point (PAP) - The system entity that creates and manages poli-

cies, which are defined in XACML.

• Policy enforcement point (PEP) - The system entity that performs access control, by

making decision requests and enforcing policy decisions. The access requests are

generated by a PEP.

• Policy decision point (PDP) - The system entity that evaluates an applicable policy

and renders an authorization decision. The PDP finds the applicable policy out of all

of the policies created at PAP. The PDP then evaluates the access request against the

policy, makes a decision, and informs the PEP.

• Policy information point (PIP) - The system entity that acts as a source of attribute

value. The information needed to evaluate an access request at PDP, are as attribute

queries sent to PIP. PIP responds to the attribute queries to provide the information

for PDP.

38

The key concepts of latest version of XACML policy language model include:

PolicySet, Policy, and Rule: XACML is structured into three levels of policy elements.

A PolicySet can contain a set of policies. Multiple rules can be associated to a policy. This

nested policy structure allows more accurate policy definition with enterprise hierarchical

administrative levels. For example, there could be organisation level policies, and depart-

ment (HR, finance, etc.) level policies on a same resource. All three level elements also

contain Target elements, which define the relative scope of policies. OASIS also defines an

additional specification [103] with an XACML profile for the RBAC model.

Target, condition, effect: Each rule is composed of (a target, a condition, an effect).

The target defines the set of requests to which the rule is intended to apply in the form of

a logical expression on attributes in the request. Conditions are statements about attributes

that upon evaluation access request return either True, False, or Indeterminate. Effect de-

fines the consequence of the rule for access response. It can either be Permit or Deny.

Policy-combining algorithm: Since multiple rules and policies in nested policies may

return different results when evaluated against the same request, there must a technique

to solve the conflicts to determine a final authorization decision for an access response.

XACML offers combining algorithms which are to be used for combining multiple deci-

sions if that is the case. The XACML specification defines several standard rule combining

algorithms, including ’deny-overrides’ (return ’deny’ if any decisions evaluate to ’deny’)

and ’permit-overrides’ (return ’permit’ if at least one decision evaluates to ’permit’). Other

possible decisions that might result in middle of policy evaluation are also handled by com-

bining algorithms, such as Indeterminate (an error occurred or some required value was

missing, so a decision cannot be made) or Not Applicable (the access request can’t be an-

swered by this service).

W3C WS-Policy

The Web Services Policy Framework (WS-Policy) [15] is a W3C recommendation,

39

which provides a general purpose model and corresponding syntax to describe the policies

of Web Services. WS-Policy defines a base set of constructs that can be used and extended

by other Web services specifications to describe a broad range of Web service requirements

and capabilities, for example, required security tokens, supported encryption algorithms,

and privacy rules. The following shows a simple policy:

1 <wsp:Policy xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

2 <wsp:ExactlyOne>
3 <sp:WssUsernameToken10 />
4 <sp:WssUsernameToken11 />
5 </wsp:ExactlyOne>
6 </wsp:Policy>

The basic concept of WS-Policy includes:

Policy alternative: A policy is a collection of policy alternatives. A policy alternative

is a logical construct for combining a collection of policy assertions. The policy alternatives

are defined by policy operators: <All> defines a policy alternative,<ExactlyOne> defines

a collection of policy alternatives. Policy operators may be recursively nested.

Policy assertion: A policy assertion represents a requirement (or capability) of a pol-

icy subject on Web services. A consumer could define service requirements for service

providers. Service providers could publish service capabilities as service contracts. WS-

Policy allows nested policies. Any policy assertion may contain a nested policy expression.

For example, a QoS assertion of a policy defines a security requirement. Other WS-* spec-

ifications could be used as assertion languages for defining the policy assertion. For ex-

ample, using WS-SecurityPolicy for security requirements, such as authentication tokens,

encryption, a digital signature.

The key concept of WS-Policy is the policy alternative, so that it allows the negotiation

between service providers and service consumers. For example, only one QoS assertion

will be satisfied each time, either a high performance or a heavy encryption algorithm.

40

2.4.4 Other related work

The semantics of XACML is designed for general purposes rather than a particular applica-

tion or environment. Still, it has been largely applied in Web service systems [104] [105].

Moreover, the Web Services Policy Language (WSPL) is introduced [22] [106] to cover var-

ious aspects and features that can be controlled or described for Web services. The syntax of

WSPL is a strict subset of XACML. WSPL can specify a wide range of policies, including

authorization, QoS, reliable messaging, privacy, and application-specific service options.

Many works such as [63] [107] [68] and the Oracle SOA fault management framework

[108] only focus on policies with self-healing aspect of BPEL processes. The theory behind

all these works in policy modelling is the Event-Condition-Action (ECA) paradigm. A fault

as an event of the system will trigger a remedial action defined in the policy.

The Dynamo project [17] [109] [110] proposes the WSCoL assertion language and

WSReL recovery language for BPEL processes. The WSCol mixes typical propositional

logic constructs with XML-based technology. The WSReL is designed by following the

ECA paradigm. Both languages use a Java like programming language to enhance the

language construction power.

[16] [111] introduce the WS-Policy4MASC language as an extension of WS-Policy,

which developed for the specification of monitoring and adaptation policies for Web ser-

vices and business processes. WS-Policy4MASC includes four types (Goal, Action, Utility,

Meta influenced by [87]) of policy assertions for WS-Policy operators (e.g.,<ExactlyOne>).

The policy assertions may reference a <When> element to specify further conditions to be

satisfied before a policy assertion should be processed. Policies can target a service opera-

tion (e.g. GetStockPrice operation) or an execution event (e.g., ProcessDeployed, Before-

SendRequest, a set event generated by the MASC middleware).

41

2.4.5 SPL and Variability descriptor

Software Product Line (SPL) refers to software engineering approaches for developing a

collection of similar software systems from a shared set of software assets, so that cost,

time, etc., can be reduced on individual software production [112]. One core approach

is providing customized software systems based on a software platform for different con-

sumers [113] [114]. The customization is done by configuration of the Variability Point

developed for the software platforms. The variability points of software platforms could be

modelled as variability descriptors to allow to describe the need of customization [115].

We view variability descriptors as a kind of policy in the sense of configuration descrip-

tion of system or user requirements for the goal of software flexibility. Variability mod-

elling generally defines the possible changes of software systems. In contrast, the policy

modelling generally defines the needs of changes.

In the context of BPEL as the software platform of SPL, several variability descriptor

frameworks and associated frameworks have been proposed. [116] [115] introduces the

VxBPEL BPEL extension. It includes constructs, such as <VPChoice> and <BpelCode>

that extend BPEL elements allow to redefine the fragment of an original BPEL process or

codes.

[117] developed a locator and alternative variability descriptor constructor. The locator

declares the variability point of BPEL processes. The alternative specifies one or more

possible values for a variability point, such as a service reference of a BPEL invoke activity.

In SaaS approaches, such as the Cafe project [7] we mentioned before, the SCA assem-

bly model specification [118] is directly adopted as a variability descriptor for customizing

composite applications [72] [117].

2.4.6 Discussion

Policy based computing becomes one of our key research domains for two main reasons.

Firstly, a policy language specification allows consumers to define their requirements in-

42

dependently from providers’ implementations. Secondly, consumers can update policies

at runtime without pre-notifying and effecting providers’ implementations, as policies are

interpreted by a policy engine at runtime. The reasons are fundamental for our work to

achieve the multi-tenancy capability.

Policies play a key role in autonomic computing and SOA governance. The four au-

tonomic aspects are a main concern with our policy modelling. Our work only focuses on

runtime governance in the context of SOA governance.

Policies express requirements which includes monitoring and control. The business

rules approach can expose those parts of the process, which contain decisions that change

often in a rule language, to increase the capacity for change and the flexibility of the over-

all process. However, business rules and processes are tightly coupled in the approach.

Business processes are the last step of the development life cycle with integrated rule task

services. As a consequence, the general business rules approach is not applicable in our

case, in which business processes are produced from providers at the start. Additionally,

the business rule approach assumes an organisation owns the business process. It is not

designed for multi-tenancy cloud environments; the business processes can not deal with

different business rules from different tenants.

Business rule formal languages can be used to express business policies. However, these

might be too general, and do not cover the necessary syntax for different aspects of business

process governance, such as self-healing. Many policy specifications such as XACML do

not cover completely the four automatic aspects of requirements. So we define our own

policy language. Still, our policy model allows other rule languages on top of our policy

language model. The details will be described in a later section.

The study of policy languages for Web services can be classified in two categories: The

first category is self-understanding policies. The defined policies by a service consumer

or provider are not necessary to be understood by each other, such as business rules and

XACML. The second category is mutual-understanding policies. These policies focus on

43

defining the formal service contracts between service consumers and providers as Service

Level Agreement (SLA). As in WS-policy, agreements could be established between a ser-

vice provider and a consumer on mutually acceptable policy if all assertions match. Other

work, such as WS-agreement [119] and [120] that focus on service agreements and con-

tracts are also in the second category.

Our policy model falls into the first category, as process providers are not expected

to see the concrete policies to support the process consumers’ privacy and flexibility. The

agreement negotiation mechanism centralized in WS-Policy is also not needed in our policy

model.

Our policy model is influenced by XACML, as our policy needs cover self-protection

or constraint aspects of business processes and also cover the requirements of policies that

might be defined in different administrative levels of organisations. Still, firstly, XACML

and also WS-Policy are not process centric policy languages. They only deal with indepen-

dent Web services. Secondly, they do cover the complete four autonomic aspects we need.

Thus we developed our own policy language for expressing business policies for process

consumers.

Business rule classifications (described in Section 2.4) only show different types of for-

mal expression of business rules. The purpose of these classifications is to help rule devel-

opers to discover, analyse, and design business rules [90], which are derived from business

policies. The final goal is formulating these business policies in a formal rule language for

rule engines. These classifications do not give any concrete meaning to business processes.

To develop our own policy language, we need a classification to find a common connection

between policies (rules) and processes that can be used for our policy and process develop-

ment later on. After the rules are categorized at high level, our policy language could be

designed for process consumers to define the concrete policies with different categories of

rules.

44

2.5 Transaction and coordination

Business transactions for web services are specified with coordination specifications or ser-

vice process specifications. In following, we describe the background of coordination and

business transactions, and related work for web service coordination specifications.

2.5.1 Coordination

Coordination is the act of the coordinator disseminating information to a number of partic-

ipants or system parts for a variety of reasons, e.g., to reach consensus on a decision, or

guarantee that all participants obtain a specific message. It is a fundamental requirement in

distributed systems that many applications use either explicitly or implicitly, e.g., workflow,

transactions, caching, security, auctioning, and business-to-business activities [121].

A general service coordination framework comprise the following key players [121]

[122] [3] [123] [124]:

1. Participant: The service operation or operations that are performed as part of a coor-

dination conversation.

2. Coordinator: The coordinator is responsible for communicating the participants in a

coordination conversation based on a coordination model.

3. Coordination protocol: Defines the behaviour of a coordination conversation for a

specific coordination model.

A successful coordination is based on an agreement between participants or coordina-

tion protocols. Coordination protocols are usually realized as a state machine to define the

system behaviour of coordination conversation [125] [126]. The implementation of coordi-

nation frameworks [121] [3] applies the Context Object pattern [127], propagates additional

information with state as (coordination) context to the participants. In a coordination frame-

work [3], the coordination context defines the message communication between coordinator

and its participants. A coordination framework [3] might be decoupled from coordination

45

protocols [128] [126]. In this case, the coordination context is relaxed and can extend to

support a number of coordination protocols.

2.5.2 Business transaction

A business transaction is a consistent change in the state of the business that is driven by a

well-defined business function [129].

Two kinds of business transactions for business applications are proposed [123] [129]:

1. Atomic transactions - follow ACID (Atomicity, Consistency, Isolation, Durability)

[130] semantics and therefore assume that resources are locked for the transaction’s

duration and guarantees that all participants will see the same outcome (atomic). In

case of a success, all services make the results of their operation durable (commit).

In case of a failure, all services undo (roll-back) operations that they invoked during

the transaction.

2. Long-running transactions (LRT) - typically occur in business-to-business interac-

tions, they do not necessarily have a common outcome to avoid locks on non-local

resources. They are potentially aggregations of several atomic transactions and have

the behaviour of open nested transaction scopes [131]. The compensation that re-

stores the original state in LRT is business-specific in contrast to the roll-back of

ACID transactions. For example, the compensation of a flight booking (cancel a

flight booking) will only refund half of the original payment.

There are a number of published specifications for business transactions with Web ser-

vices, such as WS-TX [132] or BTP (Business Transaction Protocol) [133] .

Business transactions always involve a recovery process when exceptions or faults oc-

cur, where the transactions cannot be completed as default or as expected. In general,

potential failure sources of business processes comprise [134]:

46

1. Process engine failure - breakdown of process engine leads to an abnormal termina-

tion of business process execution.

2. Activity failure - comprises failures within an activity, such as invalid responses from

a Web service for an activity execution.

3. Communication failure - frequent problems of network based distributed systems. A

down or slow network causes unresponsiveness in the message exchange.

Two types of recovery models on business processes are introduced [129]:

1. Backward recovery - A business process will return to the consistent state that ex-

isted before the execution, or cancel the effect made by the process after execution,

which includes the subprocesses of the process if any. The business processes require

defining the compensation logic that will cancel the effects of the failed transaction.

2. Forward recovery - which comprises backward recovery and forward execution and

is used in LRT only [134]. The consistent state is stored from a transaction state, and

its execution can continue past the point of failure.

2.5.3 OASIS WS-TX specifications

OASIS Web Services Transactions (WS-TX) specifications are the outcome of R&D by

IBM and others. The recent version 1.2 is completed and approved by the OASIS WS-TX

Technical Committee in 2009 [132], defining three protocol specifications for coordinating

the outcome of distributed application actions:

• WS-Coordination [3]

• WS-AtomicTransaction (WS-AT) [128]

• WS-BusinessActivity (WS-BA) [126]

47

Figure 2.6: A coordinator of WS-Coordination framework [3]

The WS-Coordination specification defines an extensible framework for coordinating

activities using a coordinator and set of coordination protocols. The coordination protocols

are provided in additional specifications (WS-AT, WS-BA).

The WS-Coordination framework consists of these component services (Figure 2.6): an

Activation service, a Registration service and protocol specific services.

These component services define three forms of interactions between a coordinator and

its participants:

1. Activation - A participant requests a coordinator to create a coordination context.

When a participant wants to initiate a coordination conversation, a new coordination

context is created, for example, initiating an atomic transaction.

2. Registration - A participant registers with a coordination protocol in a coordination

conversion. By registering, the participant will be notified for participation in corre-

sponding steps in a coordination conversation as defined by the protocol. For exam-

ple, a web service can be registered with an atomic transaction.

3. Protocol specific interaction - The coordinator and its participants exchange mes-

sages that are specific to a coordination protocol. For example, a commit message is

sent by a coordinator to its participants in an atomic transaction.

The WS-AT specification defines a set of protocols for atomic transactions that follow

ACID semantics for short duration transactions. These protocols in this coordination type,

are executed in sequence or in alternative depending on what must be done during the

48

different phases of a distributed transaction [122]. These protocols include: Completion:

The completion protocol initiates commit processing to complete a transaction. Two-Phase

Commit (2PC): to verify the outcome of the transaction and ask participants for a commit

or abort decision, to reach an agreement on the outcome. Two variants of the 2PC protocol

are Volatile 2PC and Durable 2PC.

The WS-BA specification defines a set of protocols for LRTs without having to lock

resources. All participants inform the coordinator about the status of their execution (such

as Exited, Faulted). The coordinator responds with a Close, Complete, etc., event to all

the participants. Two protocols are defined in this coordination type based on the above

business agreement. BusinessAgreementWithParticipantCompletion: A participant knows

when it has completed all work for a business activity. BusinessAgreementWithCoordina-

torCompletion: A participant relies on its coordinator to tell it when it has received all

requests to perform work within the business activity.

2.5.4 Other related work

Since the WS-Coordination framework is extendible with other coordination protocols, an

auction coordination protocol [125] for a coordinated distributed activity is introduced that

fits with WS-Coordination. An auction represents a market institution, which is based on

competition between its participants. The auction coordination protocol between the client

and the coordinator is similar to the completion protocol of WS-BA. It gives the client the

opportunity to start or terminate the auction and defines the messages returned to the client

after the coordination, which provides the client with the outcome of the auction.

Coordination protocols, such as WS-BA, assume that a transaction has an initiator and

that this initiator is also the one who is able to decide on the closure of a transaction. i.e., the

participant initiating the process maintains a controlling position throughout the lifetime of

the process. However, [124] argues that the initiator of a process is not always the one who

is able to decide whether to commit or cancel a transaction in some scenarios. It extends the

49

WS-BA by enabling defining a set of rules to decide who and when decides the transaction

process closure.

WS-BA is designed for Web service transactions, but no WS-BA based interaction be-

tween a process and contained services is assumed. It is not possible for a BPEL process to

participate in a WS-BA coordination. [135] proposes WS-BA4BPEL which extends WS-

BA to allow parts of a BPEL process to participate in a coordination. The modified BPEL

engine supports the WS-BA4BPEL, which allows a BPEL scope registered as a participant

and response for a coordination activity of BPEL sub-scopes.

2.5.5 Discussion

Since most business processes often involve long-running computations, loosely coupled

systems, and components that do not share data, location, or administration [123] [122], and

compensation mechanism of BPEL specification under the open nested transaction model

supports LRT [131], our work on coordination and transaction focuses on LRTs. The data-

centric ACID transactions are mainly used within task services, and are not considered in

our work. Moreover, forward recovery will be addressed for transaction failures in our

work, and it is critical to the fault policies of process consumers.

The WS-Coordination, WS-BA and extended works, such as [123] [124] [125], are

about transactional activity control with distributed Web services. They are not designed

for transactions of BPEL processes and contained services. However, without standard pro-

tocols, it is impossible to coordinate a transaction with various processes distributed in one

or many different providers. Still, different aspects of policies as requirements needs a more

comprehensive protocol rather than those that only deal with transaction management. Such

work on coordination with policy enforcement for consumers and process providers is still

lacking, but is needed for business process sharing in the cloud paradigm. Additionally, the

multi-tenancy capability needs to be taken care of in coordination framework implementa-

tion. This problem needs to be addressed in our coordination implementation, but has not

50

been focused on in current work.

2.6 AOP and service computing

AOP has been widely applied in service computing to address the technical or crosscutting

concerns in a flexible and modular way, including concerns or policies on business pro-

cesses. In our case, we utilize AOP for the extensibility of our framework, allowing other

policy models and frameworks to be adopted and integrated.

In the following, we give the background of AOP, and describe the related work with

web service systems.

2.6.1 Aspect-Oriented Programming

Enterprise applications need to address many crosscutting functionalities: transaction man-

agement, security, SLA monitoring, error handling and so on. Code tangling7 and Code

scattering8 are the problems with conventional implementations, such as OO or functional

programming, with crosscutting concerns [136]. Core and crosscutting concerns are tan-

gled in each module. Each crosscutting concern is scattered in many modules. AOP [136] is

a programming paradigm that specifically targets the management of crosscutting concerns.

AOP encapsulates crosscutting concerns in a special type of class or module, called

Aspect. The fundamental concepts of aspects are:

• Join points - There are a number of identifiable points during the execution of the

system. These may include the execution of methods, creation of objects, or throwing

of exceptions. Such identifiable points in the system are called join points.

• Pointcut - Implementing a crosscutting concern requires selecting a specific set of

join points. For example, the fault handling aspect will be applied on a point of
7Code tangling is caused when a module is implemented to handle multiple concerns simultaneously.
8Code scattering is caused when a single functionality is implemented in multiple modules.

51

throwing of exceptions. The pointcut construct selects any join point that satisfies the

criteria. A pointcut may use another pointcut to form a complex selection.

• Advice - After a pointcut selects join points, additional or alternative behaviour needs

to be defined to address the crosscutting concern. This facility is provided by an

advice construct in AOP.

• Advice type - Different types of behaviours can be added with regard to join points,

such as adding behaviour before, after the selected join points. These types are advice

type. Common advice types are: the Before advice executes before the join point,

whereas the After advice executes after it; the Around advice surrounds the join point

execution and may execute it zero or more times.

These implemented crosscutting concerns as aspects will be combined with core con-

cerns in order to form the final system, and is called Weaving in AOP. Different weaving

mechanisms are available depending on the AOP frameworks, such as compile time weav-

ing [137] or runtime time weaving [138] [139].

To support Aspect-oriented software development (AOSD) [140] for different program-

ming languages, systems or purposes, differed AOP frameworks, such as [136] [141] [142],

are developed. These frameworks might have different AOP specifications under the fun-

damental concepts of AOP for their own purposes. Two core parts are needed in a full AOP

specification.

1. Aspect specification - specify how to implement the individual concerns for the target

system.

2. Weaving specification - specify how to combine the implemented concerns in order

to form the final system.

52

2.6.2 Related work

[143] argues that non-functional features, such as security, routing, reliability, and trans-

actions, which are implemented with a SOAP context handler approach, cannot be defined

once for all when developing or deploying an application. This makes traditional mid-

dleware usually developed as monolithic and non-evolvable entities, resulting in a lack of

flexibility and interoperability. The approach describes the non-functional requirements as

policies, and implements aspects for the policies. The policy engine selects the appropriate

aspects depending on the policies deployed.

[144] aims to minimize middleware participation in non-functional properties man-

agement. It describes how aspect-oriented techniques can be used in conjunction with

WS-Policy to achieve the aim. The approach uses WS-Policy for the description of non-

functional properties of Web services, and aspects for the implementation of the mentioned

properties in WS-policy. The approach allows non-functional properties for Web services

to be completely decoupled at description and implementation level. As a result, it pro-

vides a modularized, standardized and reusable way of describing and implementing the

non-functional properties within a Web Service environment.

[145] discusses the significance of business rules segregation for responding to ever

changing business requirements in shorter cycles. They propose segregation of business

rules from other business aspects like business entities and business processes for dynamic

process management. A practical Aspect-Oriented Framework is developed for rule-based

business process management where business rules can be defined and managed dynami-

cally.

Both [146] and [147] have discussed problems with the business rules approach. The

problems can be traced down to the lack of modularity in the implementation of business

rules with business process. [146] explains how to describe business rules in aspects. [147]

demonstrates how to implement business rules in BPEL processes with their AO4BPEL

framework as a separated module.

53

[148] [149] provides an AOP based Web Services Management Layer (WSML). This

layer decouples Web Services from client applications and enables hot-swapping between

semantically equivalent Web Services based on availability to address reliability and flexi-

bility of service systems.

[150] uses AOP to deal with Service Domain adaptation based on context for a BPEL

process. Three modules are contained in its framework: Context Manager Module (CMM),

Service Orchestration Module (SOM) and finally an Aspect Activator Module (AAM). An

aspect defines the adaptation behaviours of a BPEL process. CMM is used to catch context

information changes. Aspects are activated by the AMM according to the context change.

Different from the above work which applies AOP for system implementations, AO4BPEL

and A4B are two AOP frameworks specially designed for BPEL processes.

AO4BPEL [141] is an AOP framework which treats BPEL as the target programming

language. Aspect and weaving specification is based on the specification of BPEL to ob-

tain an aspect-oriented workflow language. BPEL elements, such as <invoke>, <scope>,

<reply> activities are used to model the join point of AO4BPEL. BPEL itself acts as an

advice language.

A4B [58] is an extension of the WS-Policy framework with respect to BPEL processes.

The join point model is expressed in terms of events the BPEL engine needs to generate and

notify, such as ActivityReady or Link Evaluated. Advices are mapped to WS operations.

The association of aspects to process models or instances is described in WS-Policy attach-

ments. An AOP broker is added between BPEL engine and ESB. It uses WS-Notification

for publishing events to the AOP broker, which is able to weave the aspect with business

processes, i.e., invoking WS operations defined in an advice before, after, or instead of the

activity in the business processes.

54

2.6.3 Discussion

AOP aims to increase modularity by allowing the separation of crosscutting concerns. Many

works have applied AOP with policy systems on Web services, such as [142] [144] [143]

and business processes, such as [147] [16] [145] to leverage the advantages of AOP.

Current research has shown that AOP can be applied for policy enforcement. Aspects

implement policies, and are weaved into business processes to address the policy enforce-

ment in a modular way. The approach also is suitable for our policies in the policy frame-

work. However, further research still is needed for some questions to be answered: how

process consumers are able to use other policy models or frameworks, such as business

rules, with our policy model and framework together; how policies defined in various pol-

icy models can be integrated without conflicts. Simply translating policies to aspects does

not answer the questions. Our work will address the problems as an extensibility problem

of our policy framework into an AOP enhanced policy framework.

2.7 Conclusion

In this chapter, background and related work including existing standard specifications were

investigated. Several domains of software engineering including such as software architec-

ture, business process systems, policy based computing, with regard to service computing

and related with our work have been taken into account. The related issues of current work

concern to the goal of our research is discussed.

55

Part II

Designing an architectural style

56

Chapter 3

Problem statement as an architecture

problem

3.1 Introduction

In this chapter, we analyse the problem we observed, and identify it as a software architec-

ture problem in need of an architectural style and framework.

There are many business processes which could be used across many application do-

mains and organisations. For example, a purchase order business process could be used in

supply chain systems, online retail applications, etc. A recruitment business process could

be used for many recruitment agents or HR departments of many organisations. As a conse-

quence, many business processes have a high potential to be shared by many organisations.

In this chapter, we introduce a purchase order business process scenario. The scenario

describes a service process offered from process providers for the checkout process. We

assume that some organisations as process consumers are looking for the business process.

However, different business policies of organisations make it difficult to share any business

processes or large Web services for any process consumers outside of the organisation.

Based on the scenario storyline, we will study some examples. From that, we can

57

observe that our work, which offers Process as a Service in the cloud paradigm, is needed

for an organisation as either a process provider or a process consumer. Process governance

can act as a way to address various policies for business processes. However, through our

analysis, we will show that many critical issues arise in current cloud solutions, such as

policy centralization.

The essential problem we identified and abstracted is as an architecture problem of the

SOA style. That problem is how business processes can be shared by many organisations

or tenants with different requirements regarding processes. The solution is proposed as an

architectural style for the problem, and an architecture framework for the style.

This chapter is organized as follows. In Section 3.2, we describe the purchase order

checkout business process scenario. In Sections 3.3 and 3.4, we show the need for our work

and the issues with current work. In Section 3.5, we explain the architectural style and

framework as our solution. Finally, we present a conclusion (Section 3.6).

3.2 A purchase order checkout business process scenario

In this section, we describe a general purchase order business process scenario [151] , which

commonly appears in the e-commerce domain for our case study. This scenario will be used

throughout the case study sections in the following chapters of the whole thesis for proving

the concept. The description is in two parts, the first part is about processes from process

providers, then about potential process consumers with business policies.

In the following, we briefly describe concrete BPEL processes using the BPMN notation

(Table 3.1). In this case, orchestrated task services are BPEL composite services for BPMN

sub-process activities, and task services are atomic services for the BPMN task activities.

All these BPEL processes are general Web services available on the Internet, and belonging

to different organisations as service/process providers. For example, the purchase order

checkout process could be from Salesforce, the shipping process could be from FedEx.

58

Activity
Purchase order

Checkout

Buyer checks out an purchase
order

Process 1

Process orderOrder inspection

From: provider 1
Order inspection sub process refers to process 2.
process order sub process refers to process 3

Activity

Order inspection

Inspect buyer information. Can-
cel the checkout process if buyer
information is not validated

Process 2

Verify postcode

Verify credit card

From provider 1
Activity

Process order

Processing the order

Process 3

payment Receipt

From provider 1
Payment sub process refers to process 6
Process 4

Payment ReceiptShipping

From provider 2
Shipping sub process reference to process 5

Activity

Shipping

Add shipping cost to the order

Process 5
Get normal

shipping rate

Get express
shipping rate

Select shipping
method

From Provider 2
Activity

Payment

Transfer money for buyer’s
credit card account to seller’s
merchant account.

Process 6

Process Visa

Process
MasterCard

From provider 3

Table 3.1: Processes of providers

59

Consumer 1 Business policies:

• Receipt needs be issued to buyers for every checkout.

• Shipping needs to be calculated for before payment.

• Retry the Web service for card processing if it fails, but no more 5 times in the
last minute, and no more 30 times in the last 5 minutes.

• Free parcel shipping for orders with a total over 2000 euro.

• Customer account information is not allowed to be passed to business partners
that have low security (>3).

• Credit card processing should be completed quickly (expected less than 700 ms)
without fault).

• Average time cost for purchase order inspection activity executed in the last hour
for each order should less than 5 seconds.

• Item partNumber’32541’ is a hazard item. Item partNumber’1234’ is a hazard
item. Sellers with an Irish address are in a controlled area for selling. Buyers
with a UK address are in a controlled area for buying. Any hazard item in any
controlled area is a controlled transaction. The transaction will be approved if it
is not a controlled transaction.

Consumer 2 Business policies:

• All payment transactions should be processed by Bank of Ireland.

• Cancel all transactions for orders outside the Republic of Ireland and N.Ireland.

•

Table 3.2: Policies of consumer

In the following, we briefly describe some organisations as service/process consumers

who require a purchase order business process for their systems. They expect that the busi-

ness process can be used as software components in form of Web services. The process can

either be a sub-process of parent processes or for their consumer applications. However,

the process must meet the business policies defined in their organisations. The business

policies regarding the process for the process Consumer 1 covers different aspects (auto-

nomic aspects) described in Table 3.2. Other consumers could have different policies. Some

examples are given in the example of Consumer 2.

60

3.3 Process as a service

As we discussed, the SOA style and RAs are not designed for the scenario of sharing busi-

ness processes. Business processes are the concerns of consumers, who should develop

their own processes by utilizing available services. In this section, we briefly describe the

benefits of our work from a software process [152] aspect.

3.3.1 The need from process consumers

Even if the checkout process is available for process consumers, it might not meet the

business policies of Consumer 1 in the example, with the exception of the first two business

policies. Since the process consumer that cannot find a suitable checkout process as a

Web service from processes offered by service providers, this requires these organisations

who are consumers to develop their own BPEL processes. They might utilize some sub-

processes from the providers. However, self-development is not always a good option for

organisations.

Time constraint

A time constraint deals with the time necessary to complete a business process devel-

opment. A time constraint is a common restriction for a software project. In many cases,

there is an absolute deadline. Failing to deliver software on time is not only costly, it also

could crash the whole software project or damage the organisation.

For various reasons, the time scheduled for business process development might be just

inadequate. These reasons could result from business decisions, or from unforeseen events.

For example, Consumer 1 needs to complete the business process before next week, so the

business can start summer holiday sales. Such examples could result in self-development

failing to meet the requirement of time-to-market. By using shared business processes avail-

able from providers for on-demand needs, we could expect the time required on business

process development to be reduced.

61

Cost constraint

Cost represents the resources required for completing the business process develop-

ment. It includes many elements, such as labour cost, software cost, etc. In many organisa-

tions, the cost is considered as the top priority factor.

The same as the time constraint, the cost of self-development might be too much for

many organisations. For example, the old version of the BPEL developing tool is not sup-

ported, Consumer 1 must pay an expensive license for a new version to start the BPEL

development. In this case, the organisations might not have enough budget for the cost of

self-development. By sharing business processes available from providers with a pay-per-

use-model, we could expect the cost to be reduced for individuals.

Investment containment

There are inevitable costs associated with business process development. It is import

to protect the investment of organisations in business process development. As business

and technology continues to change at a faster and faster rate, protecting investment for

software or processes development is difficult.

Organisations must respond to the fast changing trend of business and technology to

successfully keep profit and manage risks. This might require organisations dropping cur-

rent business and starting business in a new area, or completely redeveloping the business

process with new process technology. Accordingly, old business processes might be dis-

carded. For example, Consumer 1 decides to drop the online selling process after few

months, as the performance is not as expected. Investment in process development by

the organisations suddenly vanishes in this example. With large investments in the complex

process development, this will be a significant loss. By sharing business processes available

from providers, the organisations could simply have pay-per-use-model business processes.

62

3.3.2 The need from process providers

Even if process providers have offered the checkout processes for consumers, because of

different business policies with different organisations, it is of little use for process con-

sumers. In fact, it is hard to find large services shared in the real world. Because of the large

process logic inside the checkout process, it is difficult to satisfy another organisation. Such

processes are generally only developed for self-use purpose within organisations’ SOA in-

frastructure.

Increase ROI for self-use

Return on investment (ROI) of automated solutions is a critical factor in determining

just how cost effective a given application or system actually is [11]. Organisations would

benefit more with a greater return from the process development and maintenance. How-

ever, a self-use only process would only erode the budget and profit of the organisations. By

having business processes fulfil the self-need and favour other organisations would increase

financial returns.

As suppliers in a cloud supply chain

Cloud Supply Chain (CS-C) [153] or the value chain [2] concept has been advocated

as a new business model in enterprise computing. Hardware, database storage, applications

and other IT resources could be obtained from different suppliers for end-user systems in

the cloud with short development circles. A standard such as ebXML [154] could be a basis

for process development. An organisation or process provider might not need the business

processes for themselves, but offering the processes to others as suppliers in the supply

chain could be a great business opportunity.

63

3.4 Business process governance

In this section, we analyse current approaches in cloud computing for processes sharing.

Related work has been described in the Chapter 2.

3.4.1 SOA governance for business process

Work regarding SOA governance ([155] [147], etc.) has addressed the problem of busi-

ness policies and processes. However, SOA governance is only about governing business

processes within organisations, i.e., an organisation is not only the process consumer, but

also the provider of the process. It is also from the owning SOA viewpoint defined in the

SOA-RA [34]. Business policies are tightly coupled with business process development

and infrastructure within organisations, such as the business rule approach. We are not talk-

ing about reuse or governing pre-developed business processes from an inter-organisational

process repository. In our case, process consumers belong to many different organisations.

Processes are shared across enterprise boundaries in the cloud environment.

3.4.2 Business process delivery in cloud

Current approaches such as the Cafe project [156], and industry SaaS vendors such as

salesforce.com for business process delivery in the cloud are built on top of provider side

SOA governance approach. A configuration database is added on top of SOA governance

for different tenants. Each registered tenant/process consumer could login to a user control

panel to configure or define policies or descriptors. However, the problems are:

• A pre-registered account is required for all process consumers

To create separate configuration data for a process, each process consumer must be a

registered user to keep a unique account ID in the configuration database. This registration

procedure limits the open accessibility of business processes. It is impossible for many

scenarios for service applications, such as dynamic process discovery and invocation [157].

64

• Policy enforcement completely relies on process providers

Registered tenants could configure the business process by setting configured data in the

configuration database. After consumers set their policies in the configuration database, the

policy enforcement completely relies on the process provider, as process consumers have

no monitoring or control of processes any more. This means the process provider has to be

fully trusted, without a satisfactory verification preferred by many businesses [158].

• Problems with policy centralization and reuse

Policies should be centralized in a SOA management system to avoid redundancy and

inconsistency problems for policies with multiple services and processes [23]. However,

saving policies at process providers reintroduces this problem. Especially, a company might

have many different providers for different processes. In addition, each process provider

may have a different policy or descriptor models for the configuration. This means that

existing policies of process consumers might need to be re-formalized for each of the pro-

cess providers, making it is very difficult to change process providers. This is also a vendor

lock-in problem of cloud computing, which is feared by many organisations [24] [159].

• Concerns over privacy with business policies

Business policies contain confidential information, which might concern the competi-

tive advantage of an organisation. Storing or exposing these policies to process providers,

i.e., outside the organisation, raises privacy concerns [159]. Also, the business partner re-

lationships might change in dynamic business situations. A process provider as a business

partner may be trusted today, but might become a competitor tomorrow. Some business

policies details may be forbidden to be exposed to process providers.

65

3.5 A new architectural style and framework

In the last section, we presented the problem which has driven our motivation. In this

section, we abstract the problem from service based business processes to generic programs

or applications in the cloud environment as a software architecture problem. We outline the

requirements needed from an architecture level approach. We identify requirements as a

need of a new architectural style and framework for a systematic solution. Additionally, we

could extend our contribution, not only restricted to Web service systems, but also to other

types of application development in the cloud trend.

3.5.1 The need of a new architectural style

Architectural styles (described in Section 2.2) can be organized by their key focus areas

[160], [31], i.e., the contribution area of software engineering. For example, SOA and

Message Bus focus on the communication of software. Client/Server, 3-tiers and N-tiers

focus on the deployment of software. Component-Based and Object-Oriented focus on

the structure of software. A large software application development often adopts several

architectural styles to meet all requirements.

One architectural style may be developed or derived from other architectural styles to

address a new problem that emerges in the software engineering or business world. In some

cases, two architectural styles may look similar, but should not be mixed as their focus or

contribution areas are different. For example, the SOA style is derived from Component-

Based and distributed computing [13]. The building blocks of SOA are not arbitrary com-

ponents or distributed objects [13]. Instead, they are reusable contracted services accessible

from the Internet or services registries. Services in SOA are focused on providing a schema

and message-based interaction with an application through interfaces that are application

scoped, and not component or object-based [160]. An SOA service should not be treated as

a component-based service provider [160].

The SOA style can package business processes into composite services and expose them

66

to process consumers. However, how the business process can be an interoperable process

for consumers with different policies is not addressed by SOA, or any other architectural

style. The essential problem is that when a scoped program or application, such as a service

process, contains large process logic, it becomes very difficult to meet various consumers’

requirements at the same time. This is a distinctive software engineering problem related to

the multi-tenant character of cloud applications.

The new architecture style needs focus on governing developed applications at runtime

for application tenants’ various requirements or policies, but also addresses the issues with

current approaches we observed. More specific to business processes and SOA, the archi-

tecture style focuses on governance of the service process for process consumers’ business

policy requirements. Although our study and framework developed are made for service

processes or BPEL, the programs should not be restricted to BPEL. The business policies

are only our form of representing application tenant requirements. The architectural style

could be applied to other types of software application design, for example Java programs

in the cloud. The architectural style will be described in the next chapter.

3.5.2 The need of new architecture framework

The SOA style only contains a set of principles for service design, but not a framework

for creating running services. The architecture framework that brings the SOA to reality

is a set of open standards and software components, thus software developed by different

languages and organisations can be integrated and collaboration between organisations can

be built. Apache Axis [161] and JBossWS [162] are examples of software frameworks

which implement the standards for service development within the SOA style. It enables

interoperability and integration of complex software systems [13]. Without support from

the SOA architecture frameworks, the SOA style applications cannot be implemented.

Similarly, we need a new architecture framework for software implementation for the

new architectural style. The framework will include one or more proposed standards and

67

software components for the new style. In general, standards are not required for an ar-

chitecture framework. Like the SOA style, our new architectural style emphasizes collab-

oration between multiple organisations. Some standards or protocols must be established

between these organisations. Software components will implement the standard for our

prototype development. The architecture framework will be described in later chapters.

3.6 Conclusion

In this chapter, we described the problem using a purchase order business process scenario,

which will also be used as a case study scenario in the following chapters. We observed and

identified the problem as a software architecture problem. The problem is a need for a new

architectural style to guide the software design and the supporting architecture framework

for software development.

68

Chapter 4

Service Process Architecture style

4.1 Introduction

This chapter discusses a Service Process Architecture (SPA) architectural style that aims

at sharing business processes with multiple tenants who have various business policies re-

garding the processes.

How business processes can be delivered in the cloud environment is gaining attention

in academia recently [69]. The SOA style or RAs are not designed for solving this prob-

lem. Some work related to critical concerns in cloud computing communities, has been

discussed in the last chapter. The SPA is an architectural style defined for sharing large

programs or processes for multiple tenants who might have various requirements regarding

the programs, to offer a solution of process as a service for software design.

We introduce the SPA architectural style to extend SOA as a solution for the above

problem. The basic concept will be introduced in this chapter. As an architectural style

to guide software design for software engineers, we define a principle of SPA - Process

Governability. It extends the SOA style to enable the process as a service in the cloud. The

SPA principle itself and its connection to principles of the SOA style will be discussed in

this chapter.

69

The overall organisation of this chapter is as follows. In Section 4.2, we introduce the

basic concepts and elements of SPA. Then, we describe in detail the process governability

principle in Section 4.3. In Section 4.4, we describe the roles and activities of process

consumers in on-demand self-service business process automation. In Section 4.5, we give

a case study in application architecture. In the remaining Sections (4.6 and 4.7), we compare

with related work and give some conclusions.

4.2 SPA basic concepts and elements

SPA is a style for distributed computing that promotes sharing of large programs or service

processes for different tenants. Service processes are the programs in our context. One

objective of the SPA style is an attempt to provide a plug and play EAI solution for business

processes for enterprise-wide collaboration. The design of SPA is derived from the notion

of code mobility [163] and SOA principles.

The code mobility styles define a general principle that the code segment, the execution

state, and the data space of computing units might be relocated to different computation

environments [163]. It addresses a wider range of needs and requirements, such as service

customization, dynamic extension of application functionality, fault tolerance, etc. A set of

architectural styles fall under the concept, such as remove evaluation [163] [27], code on

demand [163] [27]. SPA is under the scope of the code mobility concept, allowing reloca-

tion of the computing units which are available for process governance to the computation

environments external to the process consumers’ side. It defines a principle -Process gov-

ernability to advocate this relocation for business processes of providers on system design.

Moreover, it has its own characteristics which differ from other architectural styles [163]

[27] under the code mobility concept and also the SOA style.

Components are the primary building blocks of architectures. SPA identifies two differ-

ent basic computational components based on behaviours and responsibilities for programs

70

and tenants in different computation environments for governance, i.e., process provider

and process consumers in the context of business processes. It is modelled as a tuple:

SPA =<< BP,PG >,CP >, where,

• bp ∈ BP is a SOA service process or subprcess component in the cloud

Process components on the process provider side offer business processes. They

execute business activities within the process logic to serve a particular goal, and

hold process runtime information resource need for policy evaluation or weaving.

• PG = PGe ∪ PGi,

pge ∈ PGe is a process governance component external to the provider of

a bp, or owned by external consumers

pgi ∈ PGi is a process governance component internal to the provider of

a bp

Governance components govern processes runtime for process consumers. They hold

the policies of process consumers and evaluate or weave the policies.

• cp ∈ CP is a coordination protocol

A coordination protocol within a service or process contract defines the connectors

and behaviour between any process and governance components. The protocol will

be described in a later chapter within the architecture framework design.

Process components send process runtime information resources to the governance

components for a governance request as is defined by the contract. Governance compo-

nents respond with guidance actions or decisions which are defined by the contract to gov-

ern process execution after policy weaving. The governance components could be viewed

as autonomic managers which have the functions of Sensors and Effectors from the per-

spective of an autonomic computing architecture [53]. The process components are not tied

to any governance components but comply with coordination protocols. One governance

71

component is responsible for one process consumer that has a separate set of policies. The

connections from any governance component to any process component are dynamic on

demand through coordination protocols to offer a mess architectural topology [26] between

components. It supports three different implementation patterns for meeting various busi-

ness scenario needs:

1. pg ∈ PGe: Consumer driven pattern - The policies are implemented by external

process consumers. Each consumer freely defines their own policies for the business

process.

2. pg ∈ PGi: Provider driven pattern - The policies are implemented by the process

provider. The process provider defines policies for different process consumers. For

example, in a scenario with internal consumers of a large organisation, several policy

models for different regional branches have different policies.

3. pg1 ∈ PGe ∧ pg2 ∈ PGi: Hybrid (Consumer & Provider) driven pattern - The

policies are implemented by both consumers and providers. For example, in addition

to applying the process internally, the process also provides this service for external

customers.

4.3 SPA principle

In SPA, the processes are the central focus. This is unlike architecture approaches such as

the SOA style and the SCA framework, where the services as process components are the

focus so that applications rely on available services to facilitate business processes [13].

In SPA, the process micro level is focused on rather than the service micro level. In other

words, orchestrated task services or processes are our core concerns. It concentrates on a

sequence of business activities within a defined process logic rather than a single activity.

SPA defines one principle - Process governability, which extends the SOA to enable

Process as a Service. The whole architecture is formed by the fusion of SOA and SPA to

72

offer shared service processes. While the SPA principle serves its own goal, similar to the

SOA style, the SPA contains a flexible principle rather than constraints defined in many

architecture styles [27] [29]. It gives flexibility for software engineers incorporated in other

SOA principles. They could balance between different principles with the final goal of the

service or process design. In the following section, we study the SPA principle and also in

connection with SOA principles defined by Thomas Erl [11].

4.3.1 Process governability

4.3.1.1 Governability explained

Governability in abstract

Governability represents the ability for external monitoring and control as governance

of multiple consumers. The governance involvement has the control to make guidance,

decisions on processes based on observations form external of the processes.

If a software program is in a governance runtime state, the consumer of the process is

capable of observing and influencing the behaviour or affect what the process is carrying

out. If monitoring and control is desired from external of the process to govern the process

at runtime, the more monitoring and control of the process is offered to external, then the

more governability the process can achieve. To achieve greater governability requires that

the process implementation are more open and flexible in its internal states and components

to increase the levels of governability. The result of achieving enhanced governability in

software programs or processes is increased customizability and adaptability due to the

increased external control available in which the programmes operate.

Origins of governability

Customizability is the ability for software to be changed by the user [164]. Adaptability

is the ability for software changes to fit to the environment or requirements [55]. Govern-

ability is a combination of customizability and adaptability for the multi-tenancy capability.

73

It is the ability that software changes fit the changes required from outside of the software

by the same or different aspects from multiple users, and also provides the observation of

the software execution. The change represents the result of control of governability. The

observation represents the result of monitoring of governability for needs of the control or

general business monitoring.

The more governability of software is available, the more requirements on the software

could be made from different tenants or groups of tenants for their own needs, the the more

customizability that it will be for individual tenants. The more adaptability it has, the better

software is able to change to fit to the changes needed by multiple tenants. Customizability

and adaptability are two key factors to make governability a principle of the SPA architec-

tural style.

4.3.1.2 Profiling the principle

For cloud services, more tenants with various requirements are desired to use or share the

programs of providers. Customizability and adaptability need to be offered for consumers

to tailor and adjust processes for their own needs. To provide this, processes must be gov-

ernable for tenants. This requires processes to give a significant degree of monitoring and

control to external of the processes, for tenants or their delegates. Table 4.1 describes the

principle profile.

4.3.1.3 Measure of governability

The measure of governability as the result of an ability of software on software design, can

help process developers to set their goals of process design in relation to customizability

and adaptability, also can help process tenants to discover and select their processes. The

measure of governability can from tenants’ viewpoint, the level of governability as the

degree of possible requirements of tenants achieved through program governance. The

measure could be from different perspectives:

74

Short
definition

Processes are governable

Long definition A high level of monitoring and control over the underlying process
and runtime environments is available for tenants or consumers
externally.

Goals • To attract the potential tenants with requirements.

• To increase the process customizability and adaptability for
individual tenants and multiple tenants.

Design
Characteristics

• Process has a contract that expresses a well-defined process
behaviour and governability for tenants.

• Governability should be comprehensive, and governance
from tenants could be applied on demand with self-service.

• Process behaviour instances and governance actions are iso-
lated for individual tenants.

Implementation
Requirements

• A data model design for the process and process behaviour
control depending on the need of governability. Extra pro-
cess logics or data attributes might be developed for a pro-
cess to support a great level of governability.

• An infrastructure capable of supporting distributed gover-
nance environment for direct governance available for ten-
ants.

• A multi-tenant infrastructure capable of supporting process
and governance behaviour for multiple tenants without in-
terfering with each other.

Table 4.1: Principle Profile

75

From a technical software engineering perspective, requirement analysis [165] [166]

can be applied to the measure. The governability could be classified into aspects such as

functional, non-Functional requirements, and domain specific requirements.

From a business analysis perspective for business processes, business requirements or

business policies could apply to the measure. With our rule of policy categorization (will

be described later), the governability could be classified based on availability of enforcing,

such as flexibility rules or constraint rules.

However, the comprehensive metrics and approaches for measuring process governabil-

ity require more research, and we note it as our future work.

4.3.1.4 Type of process governability

In this section, we discuss two primary forms of governability: Process component and flow

governability regarding service processes. They have different primary objectives, but share

the same goal. The more governability is offered by processes, the more opportunities the

processes can be governed to meet various or future requirements. This also means more

monitoring and control needs to be supported by the process or infrastructure.

1. Process component governability

Component governability means that the monitoring and control is available for compo-

nents of the process. In generally, components are service component for service processes,

but could also be workflow language specified components, e.g., BPEL scope as BPEL

component. The primary objective of offering component governability for process con-

sumers is to

− Meet the non-functional requirements for processes or individual business activities,

such as performance and security.

Control on components could be of different types: assigning parameters of compo-

nents, such as specifying a performance requirement in a WS-Policy expression for a ser-

76

vice; allocating more CPU resources for a component; replacing a component, like replac-

ing a service reference with a trusted service.

2. Process flow governability

Process flow governability refers to the monitoring and control available for the flow of

the process, which includes data flow and control flow. The primary objective of offering

flow governability for process consumers is to

− Meet the functional requirements for business process automation

Control on process flow also could occur in different types for a business process, such

as allowing to decide on an execution path, skipping or adding an activity in the process

flow.

Both components and flow governabilities have overlapping concerns in their objec-

tives. For example, skipping an unnecessary activity in a process flow also could improve

the performance and cost, which are non-functional requirements. Replacing a service ref-

erence with a different logic also changes the process flow of the overall process.

4.3.2 Governability and process design

Architecural styles are used to guide the software design. In this section, we discuss the

governability principle in connection with process design and also the SOA style.

4.3.2.1 Process design and development

Governability is one principle that is applied to the analysis design of processes in addition

to the physical development design. In this section, we discuss the relationship between

governability and process design and development.

The governability of a process could be offered by the underlying infrastructure with

frameworks. Hence, a certain level of governability is automatically added to processes by

77

frameworks. However, for some reasons such as platform-independence, a restriction of

frameworks in many cases processes might need to be especially developed to offer a cer-

tain level of governability. For example, processes are specially developed with integrated

control logic to enable alternative replacement [57] [117], proxy services are required for

processes to enable validation logic [167]. In this case, the final level of governability is

highly dependent on the process development.

As we discussed, more governability directly increases process capability for meeting

various requirements of process consumers. The governability is also closely related to

process design. For example, alternative process control flow is allowed to be decided by the

governance of consumers and should be designed in the process logic. The process design

is also related with the supported framework of governance. For example, the process

design does not have credit card number validation logic before a payment activity, and

only a skipping activity action is offered by the framework for process governance. This

process would be less capable, as most process consumers in most cases would like to add

the validation logic before the payment activity. In the same way, if only adding activity

is allowed in process governance, then adding many unnecessary or uncommon activities

could also decrease the capability. Hence, process governability highly affects the process

design.

4.3.2.2 Governability with impact on SOA principles

Business processes are composite services in SOA, and the governability and SOA princi-

ples have different goals in service design. In the following, we discuss the connection with

SOA principles (which are described in Section 2.2), see Figure 4.1.

Governability and standardized service contract

Governability could be viewed as added functionality to increase the capability of orig-

inal services for process consumers. Therefore, a process contract should include the base

78

Process

governability

Standardized

service contract

Influence the content

and design standards

Service

reusability

Service

discoverability

Service

composability

Increase the potential of

Service

abstraction

Influence the level of

Service

automony

Need balance the against with

cross
organisational

Figure 4.1: Process governability related to the SOA principles

information about governability that enables process consumers to govern the process. The

original contract structure is impacted by technology, logic, etc., which is related to the

governance approach offered. Both the content of the contract and the contract design will

be directly influenced.

Governability and service abstraction

This principle gives emphasis to the need for exposing more process internal informa-

tion to process consumers. This directly provides available and adequate information to

enable process consumers to judge and govern the process behaviours. More information

might need to be exposed to the outside for increasing the governability required. While ser-

vice abstraction always looks for hiding information from others to minimize the contract

coupling.

Governability and service autonomy

Service autonomy defines services exercising a high level of control over their underly-

79

ing runtime execution environment. Two primary benefits of raising the level of autonomy

within a program are to increase its reliability, performance and behavioural predictability

[11], as autonomy services are independent from external influences. A pure autonomy

level service has an isolated and dedicated underlying logic and data resources from other

parts of the enterprise [11]. The governability has an emphasis on transferring the con-

trol from self-governance by process itself to consumer-governance. As a consequence,

process consumers could improve reliability, performance and predictability through gov-

ernance. For example, a governance action that makes a service replacement within the

process to an alternative service which is dedicated for the process only. However, it is dif-

ficult to achieve a high level autonomy without influences from other process consumers,

since the primary character of cloud computing is sharing of resources to reduce the cost

to individuals, underlying logic and data resources of processes are expected to be shared

with other users with other processes, autonomy could be treated as second class in an SPA

style architecture.

Governability and service discoverability, reusability, composability

The primary purpose of emphasizing process governability is also to support service

reusability, but with across organisations. Therefore, when pursuing the application of this

principle, we need to remain aware of the ultimate impact that effective process governabil-

ity will have on realizing service process reuse in the cloud.

By increasing the governability, the demands of process consumers are easy to match

in process discovery. Governability enlarges the coverage of the capability contract of the

process, as additional goals can be achieved through governance. Increased discoverability

can be realized on improved reusability and composability [11].

80

Role Description
Business analyst Determining the business policies or policies

and processes needed for the business goals.
Developer Implements the policies determined by the busi-

ness analyst.

Table 4.2: User roles involved on process consumers

4.4 Roles and activities for business process automation

In the following section, we briefly describe roles and activities involved in the approach

for business process automation under the SPA concept for process consumers in our vision

for general cases. The governance in our case is policy based. The business policies are

deployed in the governance components.

In general, there are two different types of roles that are involved at the consumer side

(Table 4.2).

The basic activities of the roles involved are represented graphically in Table 4.3. The

process could be customized by defined policies from process consumers. The policies also

define the adaptations needed at process runtime. Other activities may also be included

if needed. For example, a process verification activity [168] [169] is added before process

integration. However, the process development, modification, re-/deployment activities will

never be involved. It is clear that this approach is different from the business rules approach

or policy first approaches with SOA governance (described in Figure 2.5).

4.5 Case study

In this section, we show a case study of the SOA application architecture applied to the SPA

style.

The objective is to illustrate that the SPA style architecture offer process as a service in

the cloud for multiple consumers with different requirements or policies. Also the issues of

current approaches we observed (described in the problem statement chapter) are overcome.

81

Policy
development/
modification

Process discovery

Policy deployment

Process integration

Process
customization

Activity Description
Process discovery Responsible: Business analyst

Find a business process that meets the business
goal, possible through the governance or de-
fined policies. The dynamic process discovery
might also apply.

Policy
development
/modification

Responsible: Business analyst, Developer
Developing or modifying policies for the pro-
cess, to meet the business goal.

Policy
deployment

Responsible: Developer
Deploy policies for hot testing or production
environment.

Process
integration

Responsible: Developer
Integrate the business process into production
systems.

Table 4.3: Activities for automate a business process

82

O
rgan

isatio
n

 3

O
rgan

isatio
n

 2

O
rgan

isatio
n

 1

O
rgan

isatio
n

 4
Dynamic on demand
through coordination

protocol defined in
contract

Dynamic on demand
through coordination

protocol defined in
contract

PolicyPolicy

PolicyPolicy

PolicyPolicy

Business process

Governance

Governance

Business process
Business process

Business process

Governance

Business process

Figure 4.2: Application architecture diagram

We draw an SPA application architecture diagram of the case study, then we analyse the

diagram and demonstrate how the objective can be achieved.

This a generic scenario that involves different organisations which are process providers

and/or consumers (Figure 4.2). The architecture elements are described in Section 4.2. We

assume a standard coordination protocol is used for all organisations. All business processes

are service processes with the process governability principle applied. SOA principles still

apply, so the coordination protocol for governability for consumers is defined in the service

contract.

From Figure 4.2, we can see these business processes are shared across organisations.

In addition:

• The process governance will be associated with process requests from the process

consumers dynamically on demand. The governance through protocols is defined

in service contracts between providers and consumers. Process consumers could dis-

cover and request processes without pre-registration required to create a configuration

database.

83

• Governability is described in the contract, but governance is the responsibility of

process consumers. Process consumers govern the processes on their own. In our

approach, policy compliance can be verified by consumers themselves.

• Process consumers freely define their own forms of policies on the consumer side.

Defined policies of a consumer will be enforced in organisation wide processes,

which include processes within organisations, and processes from external organi-

sations. Policies are centralized and not process vendor specific.

• The policies stay inside of process consumers, hidden from process providers or

any other parties. Only necessary controls or governance actions are sent to process

providers through a protocol, but policies are not exposed to providers. For example,

a provider is asked to cancel a process as a policy decision, but the provider does

not know anything about the policies or the reason for cancelling. This maintains the

privacy of policies.

From the above analysis, we can see the SPA style application architecture extending

the SOA style offers process sharing in the cloud and overcomes the issues of current ap-

proaches we discussed (Chapter 3.4).

However, we assume the framework is built on standardized protocols to avoid vendor

lock-in. As a consequence, the challenge might not only come from the technical side, but

also from the business side in protocol standardization. In fact, an amount of draft specifica-

tions for cloud open standards are published in late 2010, for example specifications1 from

the OpenGroup. Moreover, there could be different degrees of governability offered by dif-

ferent process providers, so there are possible restrictions for process consumers switching

processes from high governability processes to low governability processes.
1details at http://www.opengroup.org/cloudcomputing/

84

http://www.opengroup.org/cloudcomputing/

4.6 Discussion of related work

In this section, we discuss work related to architectural styles. We also compare actual ap-

plication architectures with policy based service systems, since our application architecture

has similar characteristics to other policy approaches.

There are 21 network-based architectural styles in 5 categories which have been iden-

tified and studied by Roy Fielding [27]. To focus and narrow the scope, we only study

styles under the code mobility concept, as they are network based architectural styles able

to provide a degree of customizability for software architectures [163] [27]. These styles

[163] include remote evaluation, code on demand, and mobile agent. The styles are distin-

guished in terms of interaction patterns that define the relocation and coordination among

the components needed to perform a service, and give design paradigms for fundamental

component interaction in distributed computing. In terms of component interactions from

the view of distrusted computing, SPA is similar to remote evaluation, or might be viewed

as policy based remote evaluation. However, all these styles just extract from the applica-

tion scenarios, but do not define any principles of service and process design, like SOA or

our work on SPA. The SPA style does not only add a remote governance component for a

scenario of distributed computing. What is more important is that we define and profile the

principle in connection with principles of the SOA style.

[2] [40] [41] as we discussed earlier do not detail the problem of process sharing with

SOA. The FP7 NEXOF-RA 2 specification development [170] adds Service quality in ad-

dition to the original eight principles as basic principles for enterprise SOA architecture

design. Service quality defines a principle for service design with respect to quality char-

acteristics in addition to functional requirements. Governance means services management

which is mentioned in the RA as a factor that should be considered, but is not defined as

a principle and is not analysed. The FP7 SOA4All project 3 [171] extends the eight SOA
2The NEXOF Reference Architecture http://www.nexof-ra.eu/
3Service-Oriented Architectures for All (SOA4All) http://www.soa4all.eu/

85

http://www.nexof-ra.eu/
http://www.soa4all.eu/

principles for the problem of services accessible for third-party usage in a global, dynami-

cally changing environment. They define five additional principles (distributed, openness,

interoperability, user-centric and semantic principles) to enhance the SOA style, which are

different from the principle we defined.

Since our actual application architecture addresses the problem by means of policy

based computing, we also compare it with policy enforcement application architectures in

service systems. Table 4.4 shows the application architectures of XACML [21], business

rules and other related work [172] [16] [173] [174] for policies of business processes, WS-

Policy [15], and our policy approach.

We can see that with both XACML and the business rules approach, the policies are

defined by process providers. The policies do not represent the requirements of external

process consumers or multiple consumers. With WS-Policy approaches, only mutually

accepted policies will be enforced on the provider side. Moreover, WS-Policy only focuses

on policies with service components rather than business processes. In our approach, the

external process consumers could define their own policies on business processes. The

provider could also define policies for internal consumers. The details of a policy model in

our approach will be described in the next chapter.

4.7 Conclusion

We presented the SPA architectural style with a principle - process governability aimed

at enabling Process as a Service in the cloud. The principle is for the goal of attracting

potential tenants with various requirements, and to increase the process customizability

and adaptability for individual tenants and multiple tenants. Process consumers could use

pre-defined processes, customize and adapt the processes according to the consumer needs

through runtime governability, and remotely execute the processes in the cloud. SPA ex-

tends the SOA style on service process design. As a consequence, the process governability

86

Policy
approach

Application architecture Policy
focus

Policy
by con-
sumers

Policy
by
providers

Policy
mutual
under-
standing
required

XACML

Service
Consumer 2

Service
provider

XACMLXACML

Service
Consumer 1

service Not
available

Available Not
required

Business
rule and
others

process
consumer 2

Process
Provider

Business ruleBusiness rule
process

consumer 1

process Not
available

Available Not
required

WS-
Policy

Service
consumer 1

Service
provider

Ws-PolicyWs-Policy

Ws-PolicyWs-Policy

Mutual accepted policyMutual accepted policy

Service
consumer 2

Ws-PolicyWs-Policy Mutual accepted policyMutual accepted policy

service Available Available Required

Our
SPA ap-
proach Process

consumer 1

Process
provider

Own-PolicyOwn-Policy

Process
consumer 2

Own-PolicyOwn-Policy

process Available Available Not
required

Table 4.4: Comparing policy frameworks in Web service system

87

principle will affect orchestrated task services design with regard to SOA principles which

have different goals.

88

Part III

Designing an architecture framework

89

Chapter 5

Policy model

5.1 Introduction

This chapter presents a policy model for process consumers to formalize business policies

as a customization of business processes of process providers.

With the Process as a Service approach, the business policies are defined after busi-

ness processes are ready for process consumers. This makes the policy-first process devel-

opment approach for internal organisational processes, such as the conventional business

rules approach, not applicable. We need a new policy model for consumers to formalize the

business policies in pre-developed business processes. The new policy language could be

viewed as a customization language of prepared business processes. The customization is

achieved by means of runtime governance of business processes.

The defined policies are enforced in business processes of providers for the consumers.

This is a superficial process level contract between process consumers and providers. The

mechanism for process providers to carry out the superficial contract is a real contract defin-

ing the process governability. Hence the development of the policy model is based on a

coordination protocol for runtime governance between process consumers and providers to

achieve on-the-fly customization. The policy model is an approach for consumers in our

90

architectural framework. However, this is not a protocol which all consumers and providers

must comply with.

The core of the policy model is providing a language model for process consumers to

express business policies for existing business processes of providers as process customiza-

tion metadata. Since XML is generally used in SOA to structure data [173], the language

model is defined as a XML schema like other SOA specifications to enforce the syntax and

format. It is used by business analysts and developers of process consumers (described in

Chapter 4.4) to express different rule categories of policies in the XML language. In the

first main part of this chapter, we are going to present the policy language model. This

will introduce the rule categorization and the core components of the model, such as rule,

policy. and the language syntax for each component of the model.

The policy language model provides features for policy developers for goals such as

defining nested policies, defining policy sequences and resolve conflicts of multiple poli-

cies. This allows policy developers to express complex business policies, such as policy

hierarchies. The implementations behind these features are a set of algorithms defined in

the policy model. A section of this chapter will describe the related algorithms in the policy

model.

This chapter also includes a case study section for the policy language model. In this

section, we use the policy model to define the business policies of process Consumer 1 (as

described in the problem statement chapter). The case study will demonstrate how various

business policies are expressed in concrete policy languages.

This chapter is organized as follows. In Section 5.2, we introduce the basic information

model and framework of the policy model. In Section 5.3 and 5.4, we describe the policy

language model and related algorithms. Section 5.5 details the case study. In the remaining

Sections (5.6, 5.7), we compare with related work and give conclusions.

91

PG component

Process instance graphProcess instance graph

Policy weaving
component

1. WeavingRequest

3. queries
activity

information

6.WeavingResponse

PoliciesPolicies

Activity
information
component

2. policies

4. query
responses

5. information
update

ProviderAction
history

Service profile User logs

Activity
State
 n-1

Activity
State

 n

Activity
State
 n+1

action action

Figure 5.1: Information model and framework elements

5.2 The information model

Before we describe the language model of the policy, we first would like to describe the

basic information model. Figure 5.1 shows the information model. This also describes the

basic elements of the framework with a policy weaving of a process governance component

pg.

◦ Process instance graph - It is a process runtime execution instance derived from

an activity based process instance graph defined by the coordination protocol. The

protocol will be detailed in a later coordination chapter. It sends a weaving request

weavingrequest ∈ Weavingrequest to the policy weaving component at governance

states of activities.

92

◦ Policies - The requirements or customization of processes are described in policies,

which will be carried out by both the process consumer and provider through a coor-

dination framework.

◦ Policy weaving component - It weaves defined policies of the process consumer at

process runtime in governance states of activities of the process. The weaving re-

sponse weavingresponse ∈ Weavingresponse as a part of a policy decision is sent

back to the process instance as a part of a contract which needs to be carried out by

the provider of the business process.

◦ Activity information component - It operates on information sources of activities for

policy weaving.

◦ Service profile SP - It is an information source, providing service information of

activities. It includes a service endpoint reference and service context information.

The context information covers subcategories such as QoS or Platform.

◦ Weaving history WH - It is an information source, stores the Weavingresponse his-

tory of policy weaving.

◦ User logs UL - It is an information source, stores which relevant information created

by user log actions.

5.3 The language model

Our policy model is influenced by the XACML specification, which also influenced many

other proposed SOA policy models, such as [174] [173] [22]. The influence is especially

with the three level structure (Rule, Policy, PolicySet) to support nested policies for different

administrative levels, which would be a required feature of many organisations in policy

development. Still, the XACML only focuses on the access control security aspect, and

93

PolicySet Rule

1

0..*1

0..*

Policy

1

1..*

Figure 5.2: Core components of the policy language model

also extended work such as [22], are not process aware policy language as we discussed.

The core components of our policy model are shown in Figure 5.2

These core components are described in the following subsections. The following two

prefixes will be used in the policy language syntax description (more details in Appendix

A).

spap is a prefix for policy schema namespace:

xmlns : spap = http : //www.computing.dcu.ie/mwang/spap

xsd is a prefix for W3C XML schema [175] namespace:

xmlns : xsd = http : //www.w3.org/2001/XMLSchema

5.3.1 Rule categorisation

Since the rules are used as the basic policy elements of the policy model, our policy mod-

elling starts with different categories of rules needed for different aspects of business poli-

cies.

Business policies can be formalized as business rules for SOA governance. Business

rule classifications (described in Chapter 2.4) only show different types of formal expres-

sions of business rules. The purpose of these classifications is helping rule developers to

discover, analyse, and design business rules [90], which are derived from business poli-

cies. The final goal is formulating the business policies in a formal rule language for a rule

engine. These classifications do not give any concrete meaning to a business process. To

develop our own policy language, we need a classification to find a common connection be-

94

2

3

3 4 5 6 71

5

7

Acceptable

Inacceptable

8

Flexibility rule

Outside

safe boundary

Within

safe boundary

Safe boundary

Constraint rule
Fault rule Default

Governed

9

Utility rule

Figure 5.3: Rule categorization related to process execution

tween rules and processes that can be used for our policy model and coordination protocol

development later on.

Based on aspects of autonomic computing [80] and state-action policy modelling [87],

we have developed a categorization schema that allows us to categorise rules for processes

into four different categories based on the safe boundary of a business process execution.

The safe boundary is defined in terms of rules, derived from business regulations and re-

quirements which the business must conform to. Figure 5.3 is used to explain the rule

categories. It shows an execution example of a process which has nine execution steps. The

circles represent the steps of process execution in different domains of the rule category.

The numbers represent the sequenced numbers of steps.

We define RU = RUflexiblity ∪RU constraint ∪RUfault ∪RUutility, where

1. ruflexiblity ∈ RUflexiblity is a flexibility rule in the policy model

Flexibility rules are for business within the safe boundary - This rule category expresses

the business decisions within the safe boundary of the execution. The execution steps con-

tinue forward after the decisions are made. It is used to specify variable business decision

logic for various expected business scenarios such as different customer types, different

types of post method use or frequently changing strategies (e.g., different discount rate over

95

times).

The business dynamics is the driving force. The purpose of this rule category is config-

uring business operations for business versatility and different business conditions.

2. ruconstraint ∈ RU constraint is a constraint rule in the policy model

Constraint rules are for the business safe boundary - this rule category defines the safe

boundary of the process execution to restrict business behaviours. Constraint rules that

specify assertions that must be satisfied in all steps of the process execution, e.g., the avail-

ability of the payment service must be above 99%.

The purpose of this rule category is to make sure that the business complies with rele-

vant laws, regulations, and agreements, etc.

3. rufault ∈ RUfault is a fault rule in the policy model

Fault rules are for business outside the safe boundary - this type of rule defines the sys-

tem responses when the process crosses the safe boundary, i.e., the constraints are violated.

The business needs to decide what remedial strategy is required to avoid potential subse-

quential failure of the business goal. Since the constraint violations are viewed as ’faults’ of

process executions, this rule category is also known as the fault rule. The fault rule can be

further divided for acceptable and unacceptable business cases outside the safe boundary.

The purpose of a fault rule is handling the violations of business regulation compliance

that may have occurred.

4. ruutility ∈ RUutility is a utility rule in the policy model

The Utility rule is the last category of rule that does not control or affect the process

execution. It defines the additional or utility actions that might need to be associated with

process execution.

The purpose of utility rules are, such as in the case of data collection for BAM, event

notification.

96

After rules are categorized at a high level, our policy model can be modelled based on

different categories of rules.

5.3.2 Rule

A Rule element ru ∈ RU specifies the actual conditions under which defined governance

actions are allow to be performed. It follow the ECA paradigm like other policy models

[63] [107] [68] [111] [172]. Each rule contains applicability predicates and/or condition

predicates as conditions to determine whether governance actions defined in the rule will

be performed for a weavingrequest.

Rules are building blocks of a policy. They must be encapsulated in a policy. A rule is

made up of the tuple < os, ss, cs, acs, fh, rui, pr, de >.

The main elements of a rule are:

◦ An Objects element os ∈ OS and an ActivityStates element ss ∈ SS define the

applicability predicates of the rule, i.e., the E part of the ECA.

◦ A Conditions element cs ∈ CS defines the condition predicates of the rule, i.e., the

C part of the ECA.

◦ If either the applicability predicates or the condition predicates evaluate to false or

fault, the governance actions contained in the Actions element acs ∈ ACS of the ru

will not be performed, i.e., the A part of the ECA.

◦ A fault handler element fh ∈ FH which contains actions when faults occur during

rule weaving, will be described later.

In addition to the main elements, a ru is defined and has the following attributes and

elements.

◦ RuleId ruid - a string identifies this ru.

◦ Priority pr - a positive integer denotes the priority weight of the ru. Default and

minimal value is 0.

97

◦ Description de ∈ DE - a description of this ru from policy developers.

5.3.2.1 Objects

An Objects element os ∈ OS defines the governance targets of the business process. It

specifies what the rule applies to. os = {(os′k, sma)|k = 1, ..., n; os
′
k ∈ OS

′
; sma ∈

SMA}, where,

sma ∈ SMA is a SemanticMatchingAlgorithm element, which will be described later.

os
′
k ∈ OS

′
is a disjunctive sequence element ObjectsAnyOf. os

′
k = {os′′k , sma|k =

1, ..., n; os
′′
k ∈ OS

′′
; sma ∈ SMA}, where,

os
′′
k ∈ OS

′′
is a conjunctive sequence element ObjectsAllOf. os

′′
k = {on, sma|k =

1, ..., n; on ∈ O , sma ∈ SMA}, where,

An Object element on ∈ O represents a fundamental process element as a

single governance target. O = A ∪ P ∪R ∪ V , where,

◦ An Activity a ∈ A is an implementation of a business task through a Web service

and defined by a tuple < na, sma >. An a is identified by its name na. With

sma ∈ SMA as above.

◦ A Process p ∈ P contains a set of activities executed in a specific sequence and

defined by a tuple < wso,wsa, sma >. A p is implemented by a composite service,

which is identified by the WSOperationwso and/or the WSAddresswsa of the service

reference of the process. sma ∈ SMA as above.

A process itself could be an activity, not different from other activities. But in our

policy language modelling, it is used to specify the policy scope. A p specific policy

will only apply to the process p itself, but not to subprocesses of p.

◦ A Resource r ∈ R is a business object in a process for transferring data between

business partners or activities, and defined by a tuple < na, sma >. A resource is

identified by the Name na of the business object. sma ∈ SMA.

98

◦ A Violation v ∈ V is an occurrence of violating constraints, and defined by a tuple <

tp, sma >. A violation is identified by the constrained aspect of a business process,

i.e., tp ∈ TP . sma ∈ SMA.

TP = V T ∪ EV T is the Type of violation, and is defined as an extensible enumera-

tion list:

– The violation V T is defined as a set of predefined violation types in a policy

model for general business domains. These predefined violation types cover

Functional, Quality of Service, Domain, and Platform context violation.

∗ Functional: describes the violations of operational features of Web ser-

vices. It is grouped into Syntax, Effect and Protocol violation.

1. Syntax violation: includes violation of input/output parameters that

define the operations’ messages and the data types for the parameters

for invoking the service.

2. Effect violation: includes faults in terms of pre-conditions and post-

conditions on service semantics, i.e. functional failure during an oper-

ation execution.

3. Protocol violation: refers to faults related to the consistent exchange

of messages between services involved in a service composition to

achieve their goals.

∗ QoS: violation of end-to-end quality in service compositions including lo-

cal services and global processes. It is grouped into QoS runtime, Finan-

cial/Business, Security, and Trust violation.

1. QoS runtime violation: violation of properties related to the execution

of a service. This includes Performance, Reliability and Availability

violations.

2. Financial/business violation: violation relates to the financial context

99

which allows the assessment of a service from a financial or business

perspective. This includes Cost, Reputation and Regulatory violations.

3. Security violation: violation of security requirements. This includes

Integrity, Authentication, Nonrepudiation and Confidentiality viola-

tions.

4. Trust violation: violation refers to failed establishment of trust rela-

tionships between a client and provider.

∗ Domain: refers to application domains that need specific requirements to

be met for services. It is grouped into semantic, linguistic, measures and

standard violation.

1. Semantic violation: violations related to the semantic framework (i.e.

concepts and their properties) in terms of vocabularies, taxonomies or

ontologies.

2. Linguistic violation: violation related to the language used to express

queries, functionality and responses.

3. Measures and standards violation: violation relates to locally used

standards for measurements, currencies, etc.

∗ Platform: violation related to the technical environment a service is ex-

ecuted in (includes classical technical platform faults). It is grouped into

Device and Connectivity violation.

1. Device violation: refers to violations regarding the computer/hardware

platform on which the service is provided.

2. Connectivity violation: refers to violation regarding the network in-

frastructure used by the service to communicate.

∗ Unknown: Violation is not determined. This could be defined by policy

developers or results from constraint combining algorithms at runtime. The

combining algorithms are described in a later section.

100

– The ExtendViolationTypeStringPattern EVT is defined as a free extendible vio-

lation type for policy developers. Extended types allows for late binding of new

violation types, or further specifies the above predefined violation types from

policy developers for special application requirements.

The Abstract syntax is shown in the following string pattern [176]: pattern =

Extend:\S.*

5.3.2.2 ActivityStates

An ActivityStates element ss ∈ SS defines the governance states of activities of the busi-

ness process. ss = s1 ∨ ... ∨ sn for sk ∈ Sg and k = 1, ..., n is a disjunctive set of

ActivityState element. Sg = Sflexibility
g ∪ Sconstraint

g ∪ Sfault
g , where,

◦ Sflexibility
g = {smanprevalpre , smanprevalpost , smanpostvalpre , smanpostvalpost}, a set of

governance states for the RUflexibility ∪ RUutility.

◦ Sconstraint
g = {svalidatingpre , svalidatingpost}, a set of governance states for theRU constraint∪

RUutility.

◦ Sfault
g = {shandlingpre , shandlingpost , scancelling}, a set of governance states for the

RUfault ∪RUutility.

Where,

1. Validating-Pre/Post svalidatingpre / svalidatingpost is a state of an activity execution for

a pg component which enforces constraint rules defined for the activity. A Pre and

Post denote the kind of validation that happens before and after the activity execution.

2. Manipulating-Pre/Post-Validating-Pre/Post smanprevalpre / smanprevalpost / smanpostvalpre /

smanpostvalpost is a state of an activity execution for a pg component which enforces

101

the flexibility rules defined for the activity through message manipulation. It con-

tains a condition, Pre and Post denote that the manipulation happens before and after

a validating pre/post state.

3. Handling-Pre/Post shandlingpre / shandlingpost is a state of an activity execution for a

pg component enforcing the fault rules defined for the activity when violations occur.

Pre and Post denote handling violations occurring at the svalidatingpre /svalidatingpost

states.

4. Cancelling scancelling is a state of an activity execution for a pg component enforcing

the fault rules defined for the process if cancels its previous execution effect.

There are a number of states defined by the coordination protocol for an activity in busi-

ness processes. Sg comprises the nine governance states involved with PG components. It

is a core concept of our policy modelling. The remaining activity states of the protocol are

also involved with policies, but processes do not interact with the PG components in the

remaining states. More details of the states will be described in a later coordination chapter

on the coordination protocol.

5.3.2.3 Conditions

A Conditions element cs ∈ CS defines additional conditions for triggering actions on

business processes. cs = ce1 ∧ ... ∧ cen for cek ∈ CE and k = 1, ..., n is a conjunctive

sequence element.

A ConditionExpression element ce ∈ CE is an XPath expression specifying a condition

requirement on a data source ds ∈ DS. It returns a Boolean value on its evaluation. ds =<

weavingrequest, SP, UL,WH >.

The XPath Expression complies with XPath 2.0 query syntax and should return a Boolean

value. Boolean values result from utilizing XPath implicit conversion and specific Boolean

expressions.

102

5.3.2.4 Actions

An Actions element acs ∈ ACS defines a sequence of final actions on business processes

for governance. acs = {ack|k = 1, ..., n; ack ∈ {CA ∪ PA}; #{ack|ack ∈ PA} ≤ 1}.

An Action element ac ∈ AC defines a type of governance action. An ac can be either a

consumer action CA or provider action PA, but at most one provider action for an acs.

Consumer action

A ConsumerAction element ca ∈ CA is defined as an action performed within PG

components or available on the consumer side for governance without directly controlling

process executions. They are needed for RUutility of policies. For example, it is used to

collect data required for subsequence control or monitoring. All consumer action elements

as direct children of the acs will be weaved and executed immediately within a pg com-

ponent when the rule is weaved. CA = CAlog ∪ CAsuspend ∪ CAalert is a set consumer

actions supported by the framework and included in the policy language model.

◦ A log action calog ∈ CAlog is to store information from a weaving request to the user

log UL. The log level is an attribute to specify how much information needs to be

stored.

◦ A suspend action casuspend ∈ CAsuspend is to suspend the current service for the pro-

cess consumer through updating the ActiveTime of the service of the service profile

SP .

The Time attribute t ∈ casuspend specifies a suspending time from the current time

for the service. If currentT ime+ t ≤ ActiveT ime, then casuspend will be ignored.

◦ An alert action caalert ∈ CAalert is to notify a relevant stakeholder of the processes

about the current situation. It has a MailTo attribute specifying an email address of

the stakeholder.

103

Provider Action

A ProviderAction element pa ∈ PA is defined as an action in the policy model

to directly control process executions on the provider side for governance requirements.

They are needed for RUflexiblity, RUconstraint, and RUfault of policies. For the policy

framework, it also includes provider action types PA
′

resulting from policy combination or

weaving. but they are not available in the policy language model for policy developers.

Both PA and PA
′

are defined based on and comply with the coordination protocol.

The following gives the details of PA and PA
′

respectively:

PA contains a set of different provider action types in the policy model that are designed

for different rule categories, thus are expected for different activity states. The activity states

with rule categories are described above. The following table defines expected provider

actions for PA from policy developers and their weaving in relation to activity states.

Sg expected PA

Sflexibility
g PAmanipulate

Sconstaint
g PAvalidate ∪ PAviolate

shandlingpre ∈ Sfault
g PAignore ∪ PAreplace ∪ PAcancel ∪ PAskip

shandlingpost ∈ Sfault
g PAignore ∪ PAreplace ∪ PAcancel ∪ PAretry ∪ PAcompensate

scancelling ∈ Sfault
g PAcompensate

These provider action elements are described as follows:

◦ pamanipulate ∈ PAmanipulate - is a manipulate action to manipulate the Resource

data r ∈ weavingrequest for the message adaptation requirement of the flexibil-

ity rules. The pamanipulate will be executed immediately during the rule weaving

with the consumers, but the manipulated resource will be sent back to the process

providers.

It contains a set of Copy operations that will be executed in an all or none man-

ner. Exceptions caused by pamanipulate will trigger the fault handler, which will be

described later.

104

Each copy operation can modify a single node element of resource data as a destina-

tion, which is specified by a query attribute of a To element of a Copy operation. A

query attribute is an XPath 2.0 expression with a Resource as an input data source.

The From element of a Copy can be either a Literal or an XlstTrans element. The

Literal element allows giving a literal value to replace the destination node. The Xslt-

Trans allows doing more complex data transformations or manipulations by utilizing

the XSLT language [177].

◦ pavalidate ∈ PAvalidate - is a validate action defined for constraint rules to allow

process execution steps to continue forward, if the current process instance is within

the business safe boundary.

◦ paviolate ∈ PAviolate - is a violate action defined for constraint rules to guide the pro-

cess execution into a violated state, if current process instance is outside the business

safe boundary.

A paviolate contains a set of child elements, which denote a set violation types TY of

the current process being violated. This has been described previously.

◦ paingore ∈ PAingore - is a remedial action defined for fault rules to guide the current

process instance back to the business safe boundary without additional recovery. It

ignores specified faults which do not affect the overall business goal.

◦ pareplace ∈ PAreplace - is a remedial action defined for fault rules to guide the pro-

cess instance to replace the service reference of the current activity by an alternative.

pareplace =< io, scs >, where the InstanceOnly io attribute is a Boolean value

denoting two types of replace action, which are the Temporarily and Permanently

replacement.

– Temporarily replace (InstanceOnly=true) is a process instance adaptation ac-

tion for the activity instance of the current process instance, and is the default.

105

The service replacement is only applied for current activity in the current exe-

cution instance.

– Permanently replace (InstanceOnly=false) is a process adaptation action for

continuous process improvement. The activity replacement is applied for the

current instance and the following request instances in the current process.

The ServiceConditions scs element is used to specify a service reference for the ac-

tivity implementation. scs ∈ SCS will be described later.

◦ pacompensate ∈ PAcompensate - is a remedial action defined for fault rules to guide

the current process instance to take a compensation action for the current activity by

executing a compensate activity. A scs ∈ pacompensate is used to specify the service

reference for the compensate activity.

Services are implementations of activities that must be assigned for every activity. A

service should be specified with PAreplace or PAcompensate action type which con-

tains service references of activities. A service selection mechanism in the language

model is used to specify a service through the ServiceConditions SCS element.

A scs ∈ SCS, scs = {scek|k = 1, ..., n; sce ∈ SCE} is defined as a conjunctive

sequence of conditions, which a service needs to satisfy for the activity to be exe-

cuted. A sce ∈ SCE is a ServiceConditionExpression, sce =< ex, foc > is defined

as a single condition on a service. The expression attribute ex is an XPath 2.0 expres-

sion with the service profile SP as the data source. The Force attribute foc indicates

if this condition is mandatory for a service selection. The default value is true.

◦ pacancel ∈ PAcancel - is a remedial action defined for fault rules to govern a current

process instance to cancel the process execution.

◦ paretry ∈ PAretry - is a remedial action defined for fault rules to wait an amount

of time before retrying the current fault causing activity. It has a waitFor attribute

106

complying with BPEL time expressions, which denotes the amount of time to wait

before continuing the current activity execution. Immediate retry without waiting can

be achieved by setting zero as the waiting time of a paretry.

The following shows that provider action types of PA
′

are not defined in the policy

language model, but can be result from policy/rule combination and weaving. The reason

is the coordination protocol taking composite provider actions and additional provider ac-

tions for a cache mechanism and the fault handling. More detail will be provided in the

combining algorithms and coordination descriptions.

◦ pacom+ign ∈ PAcom+ign is a composite provider action which is composed of a

pacompensate and a paignonre action in a sequence.

◦ pacom+rep ∈ PAcom+rep is a composite provider action which is composed of a

PAcompensate and a pareplace action in a sequence.

◦ paundefined ∈ PAundefined indicates no Policy/Rule defined for the related activity

state of an activity on the policy weaving, i.e. all policies or rules fail on an activity

state evaluation for a weavingrequest

◦ paunexpected ∈ PAunexpected indicates defined policies or rules which do not have

any expected provider action in policy weaving. Thus, all specified provider actions

in the defined rules or policies are not expected for a weavingrequest. A paunexpected

becomes the result provider action for a weavingrequest on policy weaving in this

case.

◦ paundetermined ∈ PAundetermined indicates a situation which cannot determine be-

tween paundefined, paunexpected and expected provider actions for a weavingrequest.

107

5.3.2.5 FaultHandler

A FaultHandler element fh ∈ FH specifies what should be done if exceptions occur when

evaluating a Conditions element cs ∈ CS, or executing a pamanipulate ∈ PAmanipulate

action of a rule. Since these elements involve XPath and XSLT expressions defined by

policy developers, exceptions may occur during rule weaving when that are mistakes in

these expressions. If exceptions occur, the fault handler will be called and involves the

current rule weaving.

A fault handler contains the Actions element acs ∈ ACS which specifies a set of

actions for fault handling on policy weaving. acs = {ack|k = 1, ..., n; ack ∈ {CA ∪

PAfh},#{ack|ack ∈ PAfh} ≤ 1}, where PAfh ⊂ PA. The following table defines

the expected provider actions for fault handling with regard to different activity states of a

weaving request.

Sg expected PAfh

Sflexibility
g ∪ Sconstraint

g PAvalidate ∪ PAviolate

shandlingpre ∈ Sfault
g PAignore ∪ PAreplace ∪ PAcancel ∪ PAskip

shandlingpost ∈ Sfault
g PAignore ∪ PAreplace ∪ PAcancel ∪ PAretry ∪ PAcompensate

scancelling ∈ Sfault
g PAcompensate

A provider action of a fault handler of a rule is expected to be in the same rule category

as the provider action of the rule, exceptRUflexibility. PAmanipulate can not be defined in a

fault handler. For handling exceptions for PAmanipulate of a rule, PAvalidate or PAviolate

is expected in a fault handler.

If the fault handler is Absent, or an Expected provider action pafh is not included in the

defined fault handler of a rule, a paundetermined will be the provider action of the rule when

the exceptions occur, i.e., a paundetermined is the default expected provider action of a fault

handler.

108

5.3.2.6 Obligations

An Obligations element obs ∈ OBS contains a set of obligations. obs = {obk|k =

1, ..., n; obk ∈ OB}.

An Obligation element ob ∈ OB, ob = {(cak, pa t)|k = 1, ..., n; cak ∈ CA; pa t ∈

{typeOf(PA\PAmanipulate)}} is specified as a set of consumer actions, which will only

be executed on the consumer side when a type of provider action will be executed on the

provider side for a weaving request on policy weaving. The type attribute pa t specifies a

type of provider action which the obligation is associated with. The provider actions are

described in a previous section.

For a rule component, it should only have at most one obligation, as a rule can have only

at most one provider action. It can not be associated with PAmanipulate provider actions as

they are executed on the consumer side on policy weaving.

The obligation elements might be merged when a Rule/Policy/PolicySet is weaved for

a weaving request. When a type of provider action is finally decided for a weaving request

for the provider, all obligation elements associated with the provider action will be selected

and merged, then executed. For example, if two obligations defined for logging details

when a process instance is cancelled, the details will only be logged once when the process

is cancelled.

5.3.3 Policy

A Policy element po ∈ PO is made up of the tuple< os, ss,RU, obs, sa, cca, rca, poi, pr, de >.

os ∈ OS is an Objects element, ss ∈ SS is an ActivityStates element, RU is a set of Rule

element, obs ∈ OBS is an Obligations element, sa ∈ SA is a SequencingAlgorithm ele-

ment, cca ∈ CCA is a ConstraintCombiningAlgorithm element, rca ∈ RCA is a Remedy-

CombiningAlgorithm element, poi is a string identifying the policy, pr is a positive integer

denoting the priority weight of the policy, with a default and minimal value of 0. de ∈ DE

is a description element.

109

The RU and the other elements have been described before. We briefly describe the

three algorithm elements in the following. More detail will be provided in the later algo-

rithms section (Section 5.4).

◦ A sa ∈ SA specifies the weaving sequence of Rule/Policy/PolicySet components

within a Policy/PolicySet.

◦ A number of policies or rules contain constraint rules may applicable for a single

weaving request. A cca ∈ CCA specifies a procedure for combining possible multi-

ple provider actions into a single provider action for the process provider in a weaving

response.

◦ The rca ∈ RCA specifies the combining algorithm for combining multiple provider

actions defined for fault rules resulting from multiple Rule/Policy components to a

single provider action on a weaving request.

5.3.4 PolicySet

A PolicySet element pos ∈ POS is used to combine separate policies into a single com-

bined policy. It allows policy developers to have nested policies. A policy set pos ∈ POS

is made up of the tuple < os, ss, PS, POS, obs, sa, cca, rca, posi, pr, de >, os ∈ OS is

an Objects element, ss ∈ SS is an ActivityStates element, PS is a set of Policy elements,

POS is a set of PolicySet elements, obs ∈ OBS is an Obligations element, sa ∈ SA is a

SequencingAlgorithm element, cca ∈ CCA is a ConstraintCombiningAlgorithm element,

rca ∈ RCA is a RemedyCombiningAlgorithm element, poi is a string identifying the policy

set, pr is a positive integer denoting the priority weight of the policy set, with a default and

minimal value of 0. de ∈ DE is a description element. All elements have been described

before.

110

5.4 Related algorithms

There are a set of algorithm elements defined in the policy model. They allow policy de-

velopers to specify or configure the weaving behaviours. These algorithms are described in

the following.

5.4.1 Semantic matching algorithm

The SemanticMatchingAlgorithm element sma ∈ SMA specifies the algorithms used for

semantic similarity measurements between policy objects and attributes of a weaving re-

quest. A policy can target a wide range of objects without matching the exact identification.

The reason behind this is that, some policy objects, such as activities, could have similar

or same semantics, but not the same identification with different process providers. Through

a semantic matching configuration, the policy can easily apply to interesting objects of

all processes from different providers. For example, a new policy would be applied on

‘payment’ related activities. A semantic matching configuration could easily apply the

policy on ‘process payment’, ‘pay’, or ‘repayment’ named activities.

A sma =< ty, de >, where ty denotes the type of built-in algorithms, and de denotes

the matching degree. The simple Levenshtein distance [178] is a built-in algorithm in our

policy framework. Other algorithms which have such as a better accuracy on semantic

similarity, performance, also could be used within the framework. However, defining and

developing such algorithms is not in the scope of our work.

5.4.2 Sequencing algorithm

The SequencingAlgorithm element sa ∈ SA specifies the weaving sequence on a collec-

tion of Rule/Policy/PolicySet components within a Policy/PolicySet component. Thus, this

allows policy developers to specify an action execution sequence in a governance state of

policy weaving.

111

A sa ∈ SA has a type attribute indicating the type of build-in algorithms for sequenc-

ing. Ordered and PriorityBased-QuickSort are two basic build-in algorithms in our policy

framework.

◦ The Ordered specifies a collection of Rule/Policy/PolicySet components within a Pol-

icy/PolicySet that are weaved in the order they are listed in a component.

◦ The PriorityBased-QuickSort specifies a collection of Rule/Policy/PolicySet compo-

nents within a parent component that are weaved from a priority order with high

priority coming first. The priority order is determined by the quicksort algorithm

based on the priority attribute of each component. Components with same priority

are weaved in the order they are listed by the quicksort algorithm.

5.4.3 Policy combining algorithms

In the case of multiple policies developed in different time periods, or developed by different

policy developers, and nested policies, a potential problem is conflicting provider action

types from multiple rules on a weaving request for process providers. As a consequence,

we need policy combining algorithms to combine multiple provider actions into a single

provider action for process providers on a weavingrequest as a final decision.

The following defines the combining algorithms with regard to different activity states

for actions .

Sg Defined combining algorithm

Sflexiblity
g n/a

Sconstraint
g CCA

Sfault
g /scancelling RCA

scancelling ∈ Sfault
g default

The combining algorithm defined in a PolicySet/Policy will be simply ignored for an

unrelated activity state of a weaving request.

112

Two policy combining algorithms are defined in the policy language model for con-

straint and fault rules respectively. These combining algorithms require policy developers

involved to specify a type of combining algorithm. One way to solving policy conflicts is

to assign explicit priority values to policies to define a precedence ordering [179]. This is

done by a set of designed combining algorithms in XACML. The approach is also used in

our policy model. The policy combining algorithms allow policy developers to give priority

to different types of provider actions regarding constraint and fault rules.

The combining algorithm is not required for Sflexiblity
g , as PAmanipulate actions will

be executed immediately when weaving the rules.

For the scancelling state, since there is only one type of a provider action (PAcompensate)

that is expected, a simple default combining algorithm is assigned without policy developer

involvement. It does not combine different types of actions, but merges the same type

of actions. In this case, the combination is based on the union of the child elements of

PAcompensate actions. Similarly, consumer actions of obligations are also merged and exe-

cuted when a provider action is decided for a weavingresponse.

In the following subsections, we describe the CCA and RCA.

5.4.3.1 Constraint combining algorithm

The ConstaintCombiningAlgorithm cca ∈ CCA element is defined for combining provider

actions with constraint rules. A cca has a type attribute that denotes the type of built-in

algorithms which have different behaviours resulting in different combining conclusion. A

cca is defined to be one of following types in our framework:

1. Pa-Violate-Override-Through-All

2. Pa-Validate-Override-Through-All

3. Pa-Violate-Unless-Pa-Validate-Through-All

4. Pa-Validate-Unless-Pa-Violate-Through-All

113

These types are described in the following subsections.

Pa-Violate-Overrides-Through-All

The Pa-Violate-Override-Through-All gives priority toPAviolate actions overPAvalidate

actions. The Through-All means that all of the rules or policies are weaved, even when the

type of provider action has been decided. The purpose is

1. Gathering complete violation information which is needed for violation handling.

2. Making sure all necessary consumer actions are weaved.

The formal algorithm behaviour is defined in Algorithm 1.

Algorithm 1: Pa-Violate-Overrides-Through-All
input : a list of provider actions PA
output: a provider action pa

1 V ← ∅;
2 Onevalidate, Oneundetermined, Oneunexpected ← false;
3 foreach pa ∈ PA do
4 if pa ∈ PAviolate then V ← V ∪ getV iolations(pa);
5 if pa ∈ PAvalidate then Onevalidate ← true;
6 if pa ∈ PAundetermined then Oneundetermined ← true;
7 if pa ∈ PAunexpected then Oneunexpected ← true;

8 if V 6= ∅ then
9 new paviolate;

10 setV iolations(paviolate, V);
11 return paviolate;

12 if Onevalidate = true then return new pavalidate;
13 if Oneundetermined = true then return new paundetermined;
14 if Oneunexpected = true then return new paunexpected;
15 return new paundefined;

Informative description of the algorithm behaviour:

1. If any provider action is of PAviolate type, then the result is a paviolate with merged

violation elements of all PAviolate type actions.

114

2. Otherwise, if any provider action is of PAvalidate type, then the result is a pavalidate.

3. Otherwise, if any provider action is of PAundetermined type, then the result is a

paundetermined.

4. Otherwise, if any provider action is ofPAunexpected type, then the result is a paunexpected.

5. Otherwise, the result is a paundefined.

Pa-Validate-Overrides-Through-All

The Pa-Validate-Overrides-Through-All is intended for those cases where a PAvalidate

action should have priority over a PAviolate action. It is similar to Pa-Violate-Overrides-

Through-All, but gives priority to a PAvalidate action.

The algorithm behaviour is similar to Pa-Violate-Overrides-Through-All and is defined

in Algorithm 2.

Algorithm 2: Pa-Validate-Overrides-Through-All
input : a list of provider actions PA
output: a provider action pa

1 V ← ∅;
2 Oneundetermined, Oneunexpected ← false;
3 foreach pa ∈ PA do
4 if pa ∈ PAvalidate then return pa;
5 if pa ∈ PAviolate then V ← V ∪ getV iolations(pa);
6 if pa ∈ PAundetermined then Oneundetermined ← true;
7 if pa ∈ PAunexpected then Oneunexpected ← true;

8 if V 6= ∅ then
9 new paviolate;

10 setV iolations(paviolate, V);
11 return paviolate;

12 if Oneundetermined = true then return new paundetermined;
13 if Oneunexpected = true then return new paunexpected;
14 return new paundefined;

Pa-Violate-Unless-Pa-Validate-Through-All

The Pa-Violate-Unless-Pa-Validate-Through-All is intended to give a strict final deci-

sion with PAviolate as the default. The Through-All makes sure that all rules or policies are

115

weaved, even if the type of provider action has been decided.

The formal algorithm behaviour is defined in Algorithm 3

Algorithm 3: Pa-Violate-Unless-Pa-Validate-Through-All
input : a list of provider actions PA
output: a provider action pa

1 V ← ∅;
2 foreach pa ∈ PA do
3 if pa ∈ PAvalidate then return pa;
4 if pa ∈ PAviolate then V ← V ∪ getV iolations(pa) ;

5 new paviolate;
6 if V = ∅ then V ← vunknow ∈ V T ;
7 setV iolations(paviolate, V);
8 return paviolate;

Informative description of the algorithm behaviour:

1. If any provider action is of PAvalidate type, then the result is a pavalidate .

2. Otherwise, if any provider action is of PAviolate type, then the result is paviolate with

merged violation elements of all PAviolate actions.

3. Otherwise, the result is a paviolate, with an Unkown type violation.

Pa-Validate-Unless-Pa-Violate-Through-All

The Pa-Violate-Unless-Pa-Validate-Through-All is intended to give a strict final deci-

sion with PAvalidate as default.

The formal algorithm behaviour is similar to the Pa-Violate-Unless-Pa-Validate-Through-

All. It is defined in Algorithm 4.

116

Algorithm 4: Pa-Validate-Unless-Pa-Violate-Through-All
input : a list of provider actions PA
output: a provider action pa

1 V ← ∅;
2 foreach pa ∈ PA do
3 if pa ∈ PAviolate then V ← V ∪ getV iolations(pa) ;

4 if V 6= ∅ then
5 new paviolate;
6 setV iolations(paviolate, V);
7 return paviolate;

8 return new pavalidate;

5.4.3.2 Remedy combining algorithm

The RemedyCombiningAlgorithm rca ∈ RCA element is defined for combining provider

actions resulting from fault rules. A rca =< ty,DS >, where ty is an attribute denoting

the type of built-in algorithms which have different behaviours resulting from different

combining conclusions. DS specifies a defined sequence of provider actions as an input

parameter of one type of algorithm. A rca is defined to be one of following types in our

framework:

1. Defined-Sequence-Overrides-Through-All

2. Pa-Ignore-Unless-Defined-Sequence-Through-All

3. Pa-Cancel-Unless- Defined-Sequence-Through-All

These are described in the following.

Defined-Sequence-Overrides-Through-All

The Defined-Sequence-Overrides-Through-All gives a priority ranking according to the

sequence of the defined provider action types for fault rules. The first action type in the

sequence has the highest priority. Hence, when a list of remedies is available from defined

related policies, the one with the highest priority will be chosen finally. The Through-All

denotes that all rules or policies are weaved, even if the type of provider action has been

decided.

117

The formal algorithm behaviour is defined in Algorithm 5.

Algorithm 5: Defined-Sequence-Overrides-Through-All
input : a list of provider actions PA, a sequence of provider actions DS
output: a provider action pa

1 Oneignore, Oneretry, Oneskip, Onecancel, Oneunexpected, Oneundetermined ←
false;

2 CEinstance
replace , CEreplace, CEcomp ← ∅; /* CE denotes ConditionExpressions */

3 TimewaitFor ← 0;
4 foreach pa ∈ PA do
5 if pa ∈ PAignore ∨ pa ∈ PAcom+ign then
6 Oneignore ← true; CEcomp ← CEcomp ∪ getConExpsForCom(pa);

7 if pa ∈ PAretry then
8 Oneretry ← true;
9 if getT ime(pa) > TimewaitFor then TimewaitFor ← getT ime(pa);

10 if pa ∈ PAcomp then CEcomp ← CEcomp ∪ getConExpsForCom(pa);
11 if pa ∈ PAreplace ∨ pa ∈ PAcom+rep then
12 CEcomp ← CEcomp ∪ getConExpsForCom(pa);
13 if isInstanceOnly(pa) then
14 CEinstance

replace ← CEinstance
replace ∪ getConExpsForRep(pa);

15 else CEreplace ← CEreplace ∪ getConExpsForRep(pa);
16 if pa ∈ PAskip then Oneskip ← true;
17 if pa ∈ PAcancel then Onecancel ← true;
18 if pa ∈ PAundetermined then Oneundetermined ← true;
19 if pa ∈ PAunexpected then Oneunexpected ← true;

/* continued with next part on the next page */ ;

Informative description of the algorithm behaviour:

1. If any provider action is the first action type defined in the sequence, the result is an

instance of the type action with merged child elements.

2. Otherwise, checking for the second action type defined in the sequence. It iterates

until the last type of action defined in the sequence.

3. Otherwise, if any provider action is of the type of PAcompensate, the result is a

pacompensate with merged children elements.

4. Otherwise, if any provider action is of PAundetermined type, then the result is a

118

/* continue from the previous page */ ;
20 foreach pa ∈ DS do
21 if pa ∈ PAignore ∧Oneignore then
22 if CEcomp 6= ∅ then
23 new pacom+ign; setConExps(pacom+ign, CEcomp);
24 return pacom+ign;

25 return new paignore;

26 if pa ∈ PAretry ∧Oneretry then
27 new paretry; setT ime(paretry, T imewaitFor);
28 return paretry;

29 if CEreplace 6= ∅ then
30 if CEcomp 6= ∅ then
31 new pacom+rep; setConExps(pacom+rep, CEcomp, CEreplace);

setInstanceOnly(pacom+rep, false);
32 return pacom+rep;

33 new pareplace; setConExps(pareplace, CEreplace);
setInstanceOnly(pareplace, false);

34 return pareplace;

35 if CEinstance
replace 6= ∅ then

36 if CEcomp 6= ∅ then
37 new pacom+rep; setConExps(pacom+rep, CEcomp, CEreplace);
38 return pacom+rep;

39 new pareplace; setConExps(pareplace, CEreplace);
40 return pareplace;

41 if pa ∈ PAskip ∧Oneskip then return new paskip;
42 if pa ∈ PAcancel ∧Onecancel then return new pacancel;

43 if CEcomp 6= ∅ then
44 new pacompensate; setConExps(pacompensate, CEcomp);
45 return pacompensate;

46 if Oneundetermined = true then return new paundetermined;
47 if Oneunexpected = true then return new paunexpected;
48 return new paundefined;

119

paundetermined.

5. Otherwise, if any provider action is ofPAunexpected type, then the result is a paunexpected.

6. Otherwise, the result is a paundefined.

Pa-Ignore-Unless-Defined-Sequence-Through-All

The Pa-Ignore-Unless-Defined-Sequence-Overrides-Through-All is intended to give a

strict final decision with PAignore as default. The algorithm is similar to the Defined-

Sequence-Overrides-Through-All, which gives a priority ranking according to the sequence

of defined actions. The algorithm assigns a paignore as a default provider action. In this

case, if no remedy is found from defined related policies or rules, the violations will be

ignored.

The algorithm behaviour is similar to Algorithm 5. The formal algorithm behaviour is

defined in Algorithm 6.

Algorithm 6: Pa-Ignore-Unless-Defined-Sequence-Through-All
input : a list of provider actions PA, a sequence of provider actions DS
output: a provider action pa

42 ... /* same as Algorithm 5 until line 42 */
43 if CEcomp 6= ∅ then
44 new pacom+ign;
45 setConExps(pacompensate, CEcom+ign);
46 return pacom+ign;

47 return new paignore;

Pa-Cancel-Unless-Defined-Sequence-Through-All

The Pa-Cancel-Unless-Defined-Sequence-Through-All is intended to give a strict fi-

nal decision with PAcancel as default. The algorithm is similar to the Pa-Ignore-Unless-

Defined-Sequence-Overrides-Through-All. The algorithm assigns a pacancel as the default

provider action. Hence, it will cancel the process instance which has violations not covered

by any fault policies or rules.

120

The algorithm behaviour is similar to Algorithm 5. The formal algorithm behaviour is

defined in Algorithm 7.

Algorithm 7: Pa-Cancel-Unless-Defined-Sequence-Through-All
input : a list of provider actions PA, a sequence of provider actions DS
output: a provider action pa

42 ... /* same as Algorithm 5 until line 42 */
43 return new pacancel;

5.5 Case study

In this section, we show some case studies on expressing concrete business policies with

our policy language.

5.5.1 Objective

The objective is to further explain the policy model with examples to demonstrate how

business policies are expressed in our policy language, and evaluating if various aspects of

business policies can be covered.

We use the process Consumer 1 as the case study setup (described in Chapter 3). We

use four different cases to cover configuration, protection, optimization, and healing all four

autonomic aspects requirements that arise from business policies. Using these cases, we can

demonstrate that the policy model can express various aspects of business policies.

The following are policy examples for Consumer 1.

5.5.2 Approach

5.5.2.1 Case 1: configuration on service references of activities

Business policy:

A receipt needs be issued to buyers for every checkout.

121

The discovered BPEL processes logic prepared by process providers has met the re-

quirements of the above business policies as we assumed. Still, we could configure or lock

default settings on Web service endpoint references assigned with activities of the process.

For this case, we express the business policy in a policy set containing two policies. The

first policy contains constraint rules for the correct references of activities. The second

policy contains fault rules for handling the violations of first constraint policy.

Listing 5.1 shows a defined PolicySet orderInspectionLockingPolicySet3 that contains

two policies for this case study. The policy set targets the purchase order inspection activity

with any activity states. We only demonstrate the policies for one activity in this case.

Policies can be defined for other activities in a similar way.

Listing 5.1: orderInspectionLockingPolicySet3
1
2 <p1:PolicySet policySetId="orderInspectionLockingPolicySet3" priority="0">
3
4 <p1:Description>locking provider default setting on a activity</

p1:Description>
5
6 <p1:Objects>
7 <p1:ObjectsAnyOf>
8 <p1:ObjectsAllOf>
9 <p1:Activity>

10 <Name>purchase order inspection</Name>
11 </p1:Activity>
12 </p1:ObjectsAllOf>
13 </p1:ObjectsAnyOf>
14 </p1:Objects>
15 <p1:ActivityStates/>
16
17 <p1:Policy policyId="constraintOrderInspectionPolicy3" priority="0">...</

p1:Policy>
18
19 <p1:Policy policyId="orderInspectionFaultPolicy3" priority="0">...</

p1:Policy>
20
21 <p1:ConstraintCombiningAlgorithm type="Pa-Violate-Override-Through-All"></

p1:ConstraintCombiningAlgorithm>
22 <p1:RemedyCombiningAlgorithm type="Pa-Cancel-Unless-Defined-Sequence-Through

-All">
23 <DefinedSequenceElement>Pa-Replace</DefinedSequenceElement>
24 <DefinedSequenceElement>Pa-Ignore</DefinedSequenceElement>
25 <!-- ... more DefinedSequenceElement ... -->
26 </p1:RemedyCombiningAlgorithm>
27 <p1:SequencingAlgorithm type="Ordered"></p1:SequencingAlgorithm>
28 </p1:PolicySet>

Listing 5.2 shows the first policy - constraintOrderInspectionPolicy3. The policy is

122

restricted to the svalidatingpre state, defines the constraint validation before the activity exe-

cution. Two constraint rules are defined in the policy. There are two ConditionExpression

elements defined as two conditions on the first rule constraintValidateRule3 (line 8). The

first condition checks if the operation name of the service reference is correct (line 10).

The second condition checks if the service address of the reference is correct (line 11).

If both conditions are true, a pavalidate action is expected in this case. The second rule

- constraintViolateRule3 (line 18) defines a Functional:Protocol violation with a paviolate

action as an expected action for incorrect service reference of the activity. Since the policy

is specified with the Pa-Violated-Unless-Pa-Validate-Through-All constraints combining al-

gorithm (line 28), a paviolate will be the final provider action for this policy if the reference

cannot be validated.

Listing 5.2: constraintOrderInspectionPolicy3
1 <p1:Policy policyId="constraintOrderInspectionPolicy3" priority="0">
2 <p1:Objects/>
3 <p1:ActivityStates>
4 <p1:ActivityState>Validating-Pre</p1:ActivityState>
5 </p1:ActivityStates>
6
7 <p1:Rule priority="0" ruleId="constraintValidateRule3">
8 <p1:Conditions>
9 <p1:ConditionExpression>/WeavingRequest/Activity/serviceReference/

Operation=’orderInspection’</p1:ConditionExpression>
10 <p1:ConditionExpression>/WeavingRequest/Activity/serviceReference/Ws

-address=’http://localhost:8080/ws/OrderInspectionService’</
p1:ConditionExpression>

11 </p1:Conditions>
12 <p1:Actions>
13 <p1:Pa-Validate/>
14 </p1:Actions>
15 </p1:Rule>
16
17 <p1:Rule priority="0" ruleId="constraintViolateRule3">
18 <p1:Conditions/>
19 <p1:Actions>
20 <p1:Pa-Violate>
21 <p1:Violation>
22 <Type>Functional:Protocol</Type>
23 </p1:Violation>
24 </p1:Pa-Violate>
25 </p1:Actions>
26 </p1:Rule>
27
28 <p1:ConstraintCombiningAlgorithm type="Pa-Violate-Unless-Pa-Validate-

Through-All"></p1:ConstraintCombiningAlgorithm>
29 <p1:RemedyCombiningAlgorithm type="Pa-Cancel-Unless-Defined-Sequence-

Through-All">

123

30 <DefinedSequenceElement>Pa-Cancel</DefinedSequenceElement>
31 <DefinedSequenceElement>Pa-Replace</DefinedSequenceElement>
32 <!-- ... more DefinedSequenceElement ... -->
33 </p1:RemedyCombiningAlgorithm>
34 <p1:SequencingAlgorithm type="Ordered"></p1:SequencingAlgorithm>
35 </p1:Policy>

Listing 5.3 shows the second policy - orderInspectionFaultPolicy3. It contains a fault

rule to reconfigure the expected service reference of the activity by handling the violation

we defined above. More specifically, handling violations are caused by incorrect service

references before the purchase order inspection activity execution. The fault rule reme-

dyRule3 (line 6) permanently (insanceOnly = false) assigns a correct endpoint reference to

the activity by a pareplace action if the Functional:Protocol violation occurring is caused

by the above constraint policy. The ServiceConditions of the pareplace specifies the correct

endpoint reference.

Listing 5.3: orderInspectionFaultPolicy3
1 <p1:Policy policyId="orderInspectionFaultPolicy3" priority="0">
2 <p1:Objects></p1:Objects>
3 <p1:ActivityStates></p1:ActivityStates>
4
5 <p1:Rule priority="0" ruleId="remedyRule3">
6 <p1:Objects>
7 <p1:ObjectsAnyOf>
8 <p1:ObjectsAllOf>
9 <p1:Violation>

10 <Type>Functional:Protocol</Type>
11 </p1:Violation>
12 </p1:ObjectsAllOf>
13 </p1:ObjectsAnyOf>
14 </p1:Objects>
15 <p1:ActivityStates>
16 <p1:ActivityState>Handling-Pre</p1:ActivityState>
17 </p1:ActivityStates>
18 <p1:Conditions/>
19 <p1:Actions>
20 <p1:Pa-Replace InstanceOnly="false">
21 <p1:ServiceConditions>
22 <p1:ServiceConditionExpression force="true" expression="/

serviceReference/Operation=’orderInspection’"/>
23 <p1:ServiceConditionExpression force="true" expression="/Ws-

address=’http://localhost:8080/ws/OrderInspectionService"/>
24 </p1:ServiceConditions>
25 </p1:Pa-Replace>
26 </p1:Actions>
27 </p1:Rule>
28
29 <p1:ConstraintCombiningAlgorithm type="Pa-Violate-Override-Through-All">

</p1:ConstraintCombiningAlgorithm>

124

30 <p1:RemedyCombiningAlgorithm type="Pa-Cancel-Unless-Defined-Sequence-
Through-All">

31 <DefinedSequenceElement>Pa-Replace</DefinedSequenceElement>
32 <DefinedSequenceElement>Pa-Ignore</DefinedSequenceElement>
33 <!-- ... more DefinedSequenceElement ... -->
34 </p1:RemedyCombiningAlgorithm>
35 <p1:SequencingAlgorithm type="Ordered"/>
36 </p1:Policy>

5.5.2.2 Case 2: configuration on flow logic and resource message

Business Policy:

Free parcel shipping for orders with a total over 2000 euro

This business policy could be implemented with the activity instance and message adap-

tation on the Assign shipping method activity. We defined 4 rules in a policy for this ob-

jective. Listing 5.4 shows the policy - freeShipingPolicy5. The policy has both an Assign

shipping method activity and an Order resource as the policy objective (lines 2-13).

Listing 5.4: freeShipingPolicy5
1 <p1:Policy policyId="freeShipingPolicy5" priority="0">
2 <p1:Objects>
3 <p1:ObjectsAnyOf>
4 <p1:ObjectsAllOf>
5 <p1:Activity>
6 <Name>Assign shipping method</Name>
7 </p1:Activity>
8 <p1:Resource>
9 <Name>Order</Name>

10 </p1:Resource>
11 </p1:ObjectsAllOf>
12 </p1:ObjectsAnyOf>
13 </p1:Objects>
14 <p1:ActivityStates></p1:ActivityStates>
15
16 <p1:Rule priority="0" ruleId="constraintFreeShippingRule5">...</p1:Rule>
17
18 <p1:Rule priority="0" ruleId="skipFreeShippingRule5">...</p1:Rule>
19
20 <p1:Rule priority="0" ruleId="manipulateFreeShippingRule5">...</p1:Rule>
21
22 <p1:Rule priority="0" ruleId="remedyFreeShippingRule5">...</p1:Rule>
23
24 <p1:ConstraintCombiningAlgorithm type="Pa-Violate-Override-Through-All"></

p1:ConstraintCombiningAlgorithm>
25 <p1:RemedyCombiningAlgorithm type="Pa-Cancel-Unless-Defined-Sequence-

Through-All">
26 <DefinedSequenceElement>Pa-Cancel</DefinedSequenceElement>
27 <DefinedSequenceElement>Pa-Skip</DefinedSequenceElement>
28 <!-- ... more DefinedSequenceElement ... -->

125

29 </p1:RemedyCombiningAlgorithm>
30 <p1:SequencingAlgorithm type="Ordered"></p1:SequencingAlgorithm>
31 </p1:Policy>

The first and second rules are shown in Listing 5.5. They are used for activity adapta-

tion - skipping an unwanted activity for some process instances. The constraintFreeShip-

pingRule5 (line 1) specifies a condition on the total amount of the order before the object

activity. If order totals > 2000, then a paviolate action would be executed at the process

provider. In this case, an extend violation type Extend:FreeShipping:Skip is specified for

the paviolate action. The second rule - skipFreeShippingRule5 (line 17) is a fault rule that is

defined for handling the extended violation type with a paskip action. The process instance

is asked to skip the current activity execution.

Listing 5.5: constraintFreeShippingRule5 and skipFreeShippingRule5
1 <p1:Rule priority="0" ruleId="constraintFreeShippingRule5">
2 <p1:ActivityStates>
3 <p1:ActivityState>Validating-Pre</p1:ActivityState>
4 </p1:ActivityStates>
5 <p1:Conditions>
6 <p1:ConditionExpression>//Order/Total>=2000</p1:ConditionExpression

>
7 </p1:Conditions>
8 <p1:Actions>
9 <p1:Pa-Violate>

10 <p1:Violation>
11 <Type>Extend:FreeShipping:Skip</Type>
12 </p1:Violation>
13 </p1:Pa-Violate>
14 </p1:Actions>
15 </p1:Rule>
16
17 <p1:Rule priority="0" ruleId="skipFreeShippingRule5">
18 <p1:Objects>
19 <p1:ObjectsAnyOf>
20 <p1:ObjectsAllOf>
21 <p1:Violation>
22 <Type>Extend:FreeShipping:Skip</Type>
23 </p1:Violation>
24 </p1:ObjectsAllOf>
25 </p1:ObjectsAnyOf>
26 </p1:Objects>
27 <p1:ActivityStates>
28 <p1:ActivityState>Handling-Pre</p1:ActivityState>
29 </p1:ActivityStates>
30 <p1:Conditions></p1:Conditions>
31 <p1:Actions>
32 <p1:Pa-Skip></p1:Pa-Skip>
33 </p1:Actions>
34 </p1:Rule>

126

The third and fourth rules are designed for the message adaptation (Listing 5.6). They

assign free shipping on the Order resource or business object. The manipulateFreeShippin-

gRule5 is a flexibility rule to manipulate the Order resource at the smanpostvalpre state. It

uses an XsltTrans operation to assign the Parcel value to the shipping method, and the 0

value to the shipping fee of the Order resource (lines 8-17). The rule also includes a fault

handler to specify the actions on the fault situation with the rule weaving (lines 18-25). It

will first log the fault detail immediately, and then guide the process instance to a violation

state with a defined extended violation type. The last rule - remedyFreeShippingRule5 (line

28) defines a provider action to handle the extended violation type by cancelling the process

instance.

Listing 5.6: manipulateFreeShippingRule5 and skipFreeShippingRule5
1 <p1:Rule priority="0" ruleId="manipulateFreeShippingRule5">
2 <p1:ActivityStates>
3 <p1:ActivityState>Manipulating-Post-Validating-Pre</p1:ActivityState>
4 </p1:ActivityStates>
5 <p1:Conditions>
6 <p1:ConditionExpression>//Order/Total>=2000</p1:ConditionExpression

>
7 </p1:Conditions>
8 <p1:Actions>
9 <p1:Pa-Manipulate>

10 <p1:Copy>
11 <p1:From>
12 <p1:XsltTrans source="//Order" xslt="assignFreeShipping.xsl"></

p1:XsltTrans>
13 </p1:From>
14 <p1:To query="//Order"></p1:To>
15 </p1:Copy>
16 </p1:Pa-Manipulate>
17 </p1:Actions>
18 <p1:FaultHandler>
19 <p1:Ca-Log level="5"></p1:Ca-Log>
20 <p1:Pa-Violate>
21 <p1:Violation>
22 <Type>Extend:FreeShipping:MessageManipulating</Type>
23 </p1:Violation>
24 </p1:Pa-Violate>
25 </p1:FaultHandler>
26 </p1:Rule>
27
28 <p1:Rule priority="0" ruleId="remedyFreeShippingRule5">
29 <p1:Objects>
30 <p1:ObjectsAnyOf>
31 <p1:ObjectsAllOf>
32 <p1:Violation>
33 <Type>Extend:FreeShipping:MessageManipulating</Type>
34 </p1:Violation>

127

35 </p1:ObjectsAllOf>
36 </p1:ObjectsAnyOf>
37 </p1:Objects>
38 <p1:ActivityStates>
39 <p1:ActivityState>Handling-Pre</p1:ActivityState>
40 </p1:ActivityStates>
41 <p1:Conditions/>
42 <p1:Actions>
43 <p1:Pa-Cancel/>
44 </p1:Actions>
45 </p1:Rule>

5.5.2.3 Case 3: protection aspect

Business policy:

Customer account information is not allowed to be passed to business partners that

have low security (>3)

For the above business policy, we defined a security policy - SecurityAccountPolicy7

(Listing 5.7). The policy is triggered for any activity involved with the CustomerAccount

resource (lines 3-11) before the activity execution (lines 12-14). A constraint rule is defined

in the policy and has a condition to check the security level of the service or process provider

before proceeding with the activity (lines 17-19). A fault handler is defined to violate

the process instance, in the case that security condition checking cannot be executed or

exceptions are caused (lines 23-29).

Listing 5.7: SecurityAccountPolicy7
1 <p1:Policy policyId="SecurityAccountPolicy7" priority="0">
2 <p1:Objects>
3 <p1:ObjectsAnyOf>
4 <p1:ObjectsAllOf>
5 <p1:Resource>
6 <Name>CustomerAccount</Name>
7 </p1:Resource>
8 </p1:ObjectsAllOf>
9 </p1:ObjectsAnyOf>

10 </p1:Objects>
11 <p1:ActivityStates>
12 <p1:ActivityState>Validating-Pre</p1:ActivityState>
13 </p1:ActivityStates>
14
15 <p1:Rule priority="0" ruleId="constraintRule7">
16 <p1:Conditions>
17 <p1:ConditionExpression>exists(//ServiceProfile//ServiceReference[(

child::Ws-address =//WeavingRequest/Activity//Ws-address and

128

child::Operation =//WeavingRequest/Activity//Operation) and
descendant::Security>=3])</p1:ConditionExpression>

18 </p1:Conditions>
19 <p1:Actions>
20 <p1:Pa-Validate/>
21 </p1:Actions>
22 <p1:FaultHandler>
23 <p1:Pa-Violate>
24 <p1:Violation>
25 <Type>QoS:Security</Type>
26 </p1:Violation>
27 </p1:Pa-Violate>
28 </p1:FaultHandler>
29 </p1:Rule>
30
31 <p1:ConstraintCombiningAlgorithm type="Pa-Violate-Unless-Pa-Validate-

Through-All"/>
32 <p1:RemedyCombiningAlgorithm type="Pa-Cancel-Unless-Defined-Sequence-

Through-All">
33 <DefinedSequenceElement>Pa-Cancel</DefinedSequenceElement>
34 <DefinedSequenceElement>Pa-Skip</DefinedSequenceElement>
35 <!-- ... more DefinedSequenceElement ... -->
36 </p1:RemedyCombiningAlgorithm>
37 <p1:SequencingAlgorithm type="Ordered"/>
38 </p1:Policy>

5.5.2.4 Case 4: optimization and healing aspect

Business policy:

Credit card processing should be completed quickly (expected less than 700 ms) without

fault.

In this case, we have three rules in a policy - cardProcessingPolicy10 (Listing 5.8)

for the business policy. The policy targets both Visa and MasterCard Card Processing

activities.

Listing 5.8: cardProcessingPolicy10
1 <p1:Policy policyId="cardProcessingPolicy10" priority="0">
2 <p1:Objects>
3 <p1:ObjectsAnyOf>
4 <p1:ObjectsAllOf>
5 <p1:Activity>
6 <Name>Visa Card Processing</Name>
7 </p1:Activity>
8 </p1:ObjectsAllOf>
9 <p1:ObjectsAllOf>

10 <p1:Activity>
11 <Name>MasterCard Card Processing</Name>
12 </p1:Activity>
13 </p1:ObjectsAllOf>

129

14 </p1:ObjectsAnyOf>
15 </p1:Objects>
16 <p1:ActivityStates/>
17
18
19 <p1:Rule priority="0" ruleId="constraintRule10">...</p1:Rule>
20
21 <p1:Rule priority="0" ruleId="retryRemedyRule10">...</p1:Rule>
22
23 <p1:Rule priority="0" ruleId="replaceRemedyRule10">...</p1:Rule>
24
25
26 <p1:ConstraintCombiningAlgorithm type="Pa-Violate-Unless-Pa-Validate-Through

-All"/>
27 <p1:RemedyCombiningAlgorithm type="Pa-Cancel-Unless-Defined-Sequence-Through

-All">
28 <DefinedSequenceElement>Pa-Retry</DefinedSequenceElement>
29 <DefinedSequenceElement>Pa-Replace</DefinedSequenceElement>
30 <!-- ... more DefinedSequenceElement ... -->
31 </p1:RemedyCombiningAlgorithm>
32 <p1:SequencingAlgorithm type="Ordered"/>
33 </p1:PolicySet>

The first rule is a constraint rule - constraintRule10 (Listing 5.9) to check the service

performance of the two activities. The rule specifies a condition to check if the service

performance for the current activity is less than 700 ms (lines 5-7). If the performance

is slower than expected, a paviolate action is expected to be executed to guide the process

instance to a performance violation state. A casuspend consumer action is also defined. It

will suspend the service to avoid the service to be selected for any activity or process for the

next 5 hours. The rule has a fault handler (lines 16-22) specifying the performance violation

which is expected if condition checking of the rule is faulty, but the casuspend actions will

not be performed, as this is not defined in the fault handler.

Listing 5.9: constraintRule10
1 <p1:Rule priority="0" ruleId="constraintRule10">
2 <p1:ActivityStates>
3 <p1:ActivityState>Validating-Pre</p1:ActivityState>
4 </p1:ActivityStates>
5 <p1:Conditions>
6 <p1:ConditionExpression>exists(//ServiceProfile/ServiceReference[(

child::Ws-address =//WeavingRequest/Activity//Ws-address and
child::Operation =//WeavingRequest/Activity//Operation) and
descendant::Performance>700])</p1:ConditionExpression>

7 </p1:Conditions>
8 <p1:Actions>
9 <p1:Ca-Suspend Time="P0Y0M0DT5H"/>

10 <p1:Pa-Violate>
11 <p1:Violation>

130

12 <Type>QoS:Performance</Type>
13 </p1:Violation>
14 </p1:Pa-Violate>
15 </p1:Actions>
16 <p1:FaultHandler>
17 <p1:Pa-Violate>
18 <p1:Violation>
19 <Type>QoS:Performance</Type>
20 </p1:Violation>
21 </p1:Pa-Violate>
22 </p1:FaultHandler>
23 </p1:Rule>

The second and third rules are fault rules (Listing 5.10), define the remedy actions

for both effect violation and performance violation. The second rule - retryRemedyRule10

targets the Functional:Effect violation (lines 1-18). It specifies a paretry remedial action

for the violation with two conditions. The first condition (line 12) specifies for a current

service that a paretry action is executed less than 5 times on the provider side within the last

minute. The second condition (line 13) specifies for current service that a paretry action

is executed less than 30 times on the provider side within the last 5 minutes. Otherwise,

paretry is not expected. The third rule - replaceRemedyRule10 defines a pareplace for both

Functional:Effect and QoS:Performance violations. The replacement service is defined

with a mandatory condition on the trust context, a weak condition on preferred service

performance for the activity. Hence, a fast performance service is selected, if it is available

as an optimization. The approach for optimization is similar to the protection aspect of the

business policy, but with different remedial actions. An obligation is also defined for the

rule (lines 37-42). It will log the replacement event, if the pareplace will be executed on the

provider side. The remedy combining algorithm of the policy (Listing 5.8 line 27) specifies

that pareplace is the preferred remedy over the paretry, if both remedies are applicable.

Listing 5.10: retryRemedyRule10 and replaceRemedyRule10
1 <p1:Rule priority="0" ruleId="retryRemedyRule10">
2 <p1:Objects>
3 <p1:ObjectsAnyOf>
4 <p1:ObjectsAllOf>
5 <p1:Violation>
6 <Type>Functional:Effect</Type>
7 </p1:Violation>
8 </p1:ObjectsAllOf>

131

9 </p1:ObjectsAnyOf>
10 </p1:Objects>
11 <p1:Conditions>
12 <p1:ConditionExpression>count(//Pa-ActionLog/Pa-Action[@type="Pa-Retry

" and @time > (current-dateTime()- xdt:dayTimeDuration(’PT1M’))
and descendant::ServiceReference])<=5</p1:ConditionExpression>

13 <p1:ConditionExpression>count(//Pa-ActionLog/Pa-Action[@type="Pa-Retry
" and @time > (current-dateTime()- xdt:dayTimeDuration(’PT20M’))
and descendant::ServiceReference])<=30</p1:ConditionExpression>

14 </p1:Conditions>
15 <p1:Actions>
16 <p1:Pa-Retry WaitFor="PT0M"/>
17 </p1:Actions>
18 </p1:Rule>
19
20 <p1:Rule priority="0" ruleId="replaceRemedyRule10">
21 <p1:Objects>
22 <p1:ObjectsAnyOf>
23 <p1:ObjectsAllOf>
24 <p1:Violation>
25 <Type>QoS:Performance</Type>
26 </p1:Violation>
27 </p1:ObjectsAllOf>
28 <p1:ObjectsAllOf>
29 <p1:Violation>
30 <Type>Functional:Effect</Type>
31 </p1:Violation>
32 </p1:ObjectsAllOf>
33 </p1:ObjectsAnyOf>
34 </p1:Objects>
35 <p1:Conditions/>
36 <p1:Actions>
37 <p1:Pa-Replace InstanceOnly="false">
38 <p1:ServiceConditions>
39 <p1:ServiceConditionExpression force="false" expression="/Context

//Performance<700"/>
40 <p1:ServiceConditionExpression force="true" expression="/Context//

Trust>5"/>
41 </p1:ServiceConditions>
42 </p1:Pa-Replace>
43 </p1:Actions>
44 <p1:Obligations>
45 <p1:Obligation Type="Pa-Replace">
46 <p1:Ca-Log level="4"/>
47 </p1:Obligation>
48 </p1:Obligations>
49 </p1:Rule>

5.6 Discussion with related work

In this section we discuss related work on policy models in service computing in comparison

to our policy language model.

132

5.6.1 The primary requirements

Many policy models have been developed. We state the primary requirements of a policy

model needed in our case first. Then, we discuss related work with regard to these require-

ments, also to strengthen the need for our work. Our policy language model is designed to

satisfy two primary requirements for the architecture framework.

• A policy model covers all rule categories.

The policies represent the business policies or requirements of process consumers on

business processes. The primary goal of the policy model is to allow process consumers

to specify comprehensive requirements on business processes, i.e. the policy model should

cover all the types of requirements, identified as four types of rule categories. Addition-

ally, the policy model should be refined to reduce redundancy which is caused by covering

multiple categories.

• A policy model targets on business processes.

A business process is not an autonomic Web service or business activity. A list of

services or activities are connected with the control flow structures in a business process.

Actions or decisions made on a single Web service might result in changing or additional

actions on other Web services. The policy model needs to target business processes, and

consider control flow graphs of business processes rather than only on the Web services.

For example, cancelling an activity and cancelling a process is different.

In the following we present some work on policy modelling in service computing, and

compare it with ours.

WS-Policy[15] and XACML[21] are two major policy models that have matured from

research and have become standard specifications. These policy specifications can be

viewed as in the same family that only focuses on the constraint aspect of Web services.

They do not satisfy both primary requirements we described above. Extended work on

XACML for BPEL processes, such as [89], still only covers the constraint aspect.

133

[63] [107] [68] are different projects that offer fault rules and policies for BPEL pro-

cesses. The theory behind the above work in policy modelling is the ECA paradigm. XML

is used in all policy languages. These only focus on the fault aspect of BPEL processes.

Dynamo and the MASC framework are two works offering the most comprehensive

policy model within our context. The Dynamo project [17] [109] [110] proposes a WSCoL

assertions language and WSReL recovery language for BPEL processes. The WSCol mixes

typical propositional logic constructs with XML-based technology. The WSReL is designed

by following the ECA paradigm. Both languages use a Java like programming language

syntax. The MASC framework [111] [172] [16] proposes a WS-Policy4MASC to extend

the WS-Policy, and follows the ECA paradigm. The policy model covers all rule categories

we defined and has XML syntax. Both these target services or BPEL processes. However,

we still have a very different policy model. Comparing them with our work, we have

following advantages:

Their work intends to ask policy developers to define policies for every single concrete

BPEL process. A policy target or object is a concrete service reference. In our policy model,

the objects of policies are abstract such as business processes and activities. This makes

more sense for policy developers to formalize business policies in a policy language from

a business perspective. Once policies are defined with our model, these policies are still

applicable regardless of service references when the process consumer switches processes

or service providers. This is important for supporting process consumers to discover and

switch process providers at runtime. Also in our policy model, policy developers could

refine the policy objects on any concrete service by utilizing the conditions element of the

policy model.

Their policy models are highly dependent on their policy frameworks which are inte-

grated with the BPEL execution platform, for example, QoS degradation events, configu-

ration actions on the platform, a callback event. Having such policy frameworks tightly

coupled with the execution platform is very difficult for processes with multi-tenancy capa-

134

bility, as the platform is shared with multiple consumers. Our policy model clearly defines

actions available for process control in a process instance graph layer. The policy enforce-

ment operates on the process instance layer rather than any other layers, such as a process

itself or execution environment platform, etc. Our policy model is designed to naturally

support the multi-tenancy environment, which they did not consider.

In addition, our policy model allows to define nested policies, and has the fault handling

capability. These are not available in the Dynamo and MASC policy model.

5.6.2 The language model complexity

A policy language is a formal language for expressing business policies which are in natural

languages, and it acts as customization or configuration metadata of business processes.

It should be a simple high level language for the goal of customization or configuration

of software, rather than a complex low level programming language for the goal of the

software development.

With our policy language model, some policy elements are based on the XPath and Xslt

specifications, such as the Conditions element, which requires XPath expressions. From

the case studies, we can see XPath expressions are involved in many common cases in

the policy development with our policy model. Thus, the XPath programming ability is

required for policy developers. Since the XPath specification itself has a complex syntax,

it adds significant additional complexity to our policy language. Compared to some other

high level policy models, it might be more complex and not straightforward for policy

developers initially, but the advantage of our policy language is that it is more powerful by

utilizing the XPath expressions. It offers more flexibility for policy developers to define

various policies which are not available in other current policy models. For example, the

wait and retry remedy (PAretry) for a type of fault or violation is a remedy available in

most fault policy or rule languages for Web services. [67] only allows policy developers to

define a retry remedy for a fault instance. [180] [17] [68] [63] allow to define a maximum

135

retry times. Policy modelling in [16] [107] has more parameters for the retry remedy. They

allow specifying maximum retry time and waiting time for each retry. In the following, we

show some examples which are only available in our policy language with retry remedies

with XPath conditions.

1. Maximum retries 10 times for this service regardless of the business process in the
last 3 minutes.

2. Maximum retries 10 times for this service for a business process in the last 3 minutes.
3. Maximum retries 10 times for this service for a business process instance in the last

3 minutes.
4. Waiting 2 seconds on the first and second retry, waiting 5 seconds on the remaining

retry.

More examples could be listed. Policy developers could utilize the conditions, as above,

for the PAretry action to develop complex remedial strategies for complex business poli-

cies. For example, a smaller number of retries is expected for process instances with large

orders before an instance adaptation to an expensive service.

5.6.3 The fault handling ability

When the policies are enforced at process runtime, the exceptions of policy weaving should

be handled just as exceptions of the process execution. Within the related work we have

studied, the XACML is the only policy language that has the fault handling ability for

runtime exceptions of policies. It can handle exceptions occurring through combining algo-

rithms when a policy is evaluated. A fault will result in an Indeterminate decision between

Permit and Deny decisions. The combining algorithms defined in a policy would give a

Permit or Deny decision for indeterminate decisions.

Our policy weaving does not intend to give one of two final decisions Permit or Deny

as the XACML policy. It contains various consumer and provider actions covering different

rule categories for governance requirements. We take the concept of the combining algo-

rithm from the XACML policy to take care of nested policies and the policy confliction

problem, but our combining algorithms are also differ substantially.

136

The combining algorithms could be used to determine the type of provider actions in

exception situations. Still, there are some limitations. Firstly, the fault handling is not avail-

able at rule level. If a policy developer would define or update a fault handling strategy

for a single rule in a policy which has multiple rules, he must encapsulate the rule in a

new policy regardless of whether it is already in a policy, or analyse the whole policy and

then decide if he needs to update the combining algorithm of the policy. Secondly, only

using combining algorithms, it is difficult to specify a precise fault handling strategy in

undetermined situations. For example, different violation types might need to be specified

for exception situations of policy weaving, even the PAviolation will still be decided by

the combining algorithm. Different consumer or provider actions would need to be per-

formed in exception situations of policy weaving. Thirdly, the combining algorithms are

only suitable for provider actions in the same rule categories. In case of exceptions during

PAmanipulate action execution, it is difficult to apply the combining algorithm concept for

the fault handling.

In our policy modelling, we introduced a FaultHandler for the rule component to han-

dle expected exceptions on Conditions and PAmanipulate elements which are largely based

on the XPath or XSLT expressions. Expected consumer or provider actions for exception

situations can be defined in the fault handler for a rule. However, with our current de-

sign, the fault handler is not intended for exceptions caused by other than Conditions and

PAmanipulate elements in policy weaving.

5.7 Conclusion

Policies are superficial process level contracts correlated with a real contract of process gov-

ernability between the process consumers and providers. Our policy modelling is concerned

with many issues which affect policy modelling, such as different aspects of business poli-

cies or requirements, distributed to consumers with multi-tenancy applications. We showed

137

our policy modelling approach and policy language model. A set of related algorithms with

the policy model have also defined and explained. We used case studies to demonstrate

various aspects business policies that are expressible in our policy language, also discussed

related work.

138

Chapter 6

Coordination

6.1 Introduction

This chapter presents a coordination framework with protocols as real contracts to make

process consumers and providers work together for governance to ensure that defined poli-

cies are enforced.

For a business transaction requested by a process consumer, there are a number of activ-

ities including those from subprocesses within a process that will participate in the transac-

tion. The WS-Coordination specifications such as [126] [128] [3], are designed for transac-

tions of distributed Web services rather than transactions of business processes. However,

the adaptive processes, such as [59] [64] [17], for handling processes transactions lack a

coordination mechanism for our case to guarantee all participants working together in a

unified manner. The coordination framework we designed is a direct response to the above

problems. It includes defined protocols as contracts for all participants for any business

transactions of business processes.

We first develop the coordination model which focuses on message exchange or coor-

dination contexts between participants and coordinators, and also a cache mechanism to

reduce the overhead of coordination conversations caused by message exchange. A coordi-

139

nation protocol for addressing the policy enforcement in business transactions is defined in

the second phase. Then, we design an approach which offers BPEL templates to implement

the protocols with BPEL processes for providers, but also with the multi-tenancy capability.

This chapter also includes a case study section for the coordination framework. In

this section, we continuously use the policies defined in the last chapter to evaluate the

effectiveness and the performance overhead on our coordination framework.

This chapter is organized as follows: In Section 6.2, we show the coordinator model,

and then detail the coordination protocol in Section 6.3. The implementation approach is

described in Section 6.4. A case study is provided in Section 6.5 to evaluate the coordination

framework. In the remaining sections, we compare with related work and give conclusions.

6.2 Coordination model

6.2.1 The model

The coordination model is inspired by the WS-Coordination and XACML policy frame-

work, and is redefined for the specific need of our coordination protocol and mechanism

for policy enforcement. We will detail this later. The coordination model defines two types

of subcoordinators for process consumers and providers (Figure 6.1). Thus, each partici-

pant only interacts with its own type of coordinator. The coordination model is defined as

< COOR,COORcontext >, where

• COOR = COORc ∪ COORp,

coorc ∈ COORc is a coordinator associated with the consumers or PG

coorp ∈ COORp is a coordinator associate with the providers or BP .

• coorcontext ∈ COORcontext is coordinaton context information.

Please note, a coorp∈ COORp is required for all process providers, including the sub-

process providers.

140

A coorc∈ COORc consists of two component services:

1. An Activation service

It has an operation that enables an application to create a coordination instance or

initial context. The coorc may support this activation service.

2. A Protocol service

It is for a specific coordination type which is defined in a separate coordination pro-

tocol. The protocol service allows protocol specific interactions.

A coorp∈ COORp consists of two component services:

1. A Protocol service

It is the same as the one in the coorc .

2. A Cache service

It has operations for accessing and updating the coordination cache. The coorp may

support the cache service.

Figure 6.1 illustrates how a coorc and coorp interact in a coordination conversion. The

protocol X and services Xc and Xp are specific to a coordination protocol. The following

describes the coordination algorithm of Figure 6.1.

1. The process consumer sends a create coordination context request to the activation

service of coorc, getting back an initialized coorcontext (Cc) that contains the iden-

tification, a service reference of the coorc’s protocol service and other information

needed for starting a coordination conversation.

2. The process consumer then sends a process request to the provider or business process

containing the coorcontext.

3. The coorcontext is extracted from the SOAP message and passed to the protocol ser-

viceXp at coorp. At this point, the protocol serviceXc service reference is known by

the protocol service Xp, and the communication between the protocol services can

be established. In addition, Xp can determine if the coordination cache is enabled for

the coordination conversation.

141

Coordinator P

Protocol
Service Xp

Consumer

Coordinator C

2. Process request
Containing Cc

6. Process response

Protocol
Service Xc

1. Create CoordinationContext
 Return Cc

Activation
Service

Cache
 Service

Provider

3.passing Cc

4 . Query and 6. Update
coordination cache

5. Protocol Y

Figure 6.1: The schematic coordination example

4. In case the coordination cache is enabled, the protocol service Xb will send a request

to the cache service of coorp at a point of process execution, getting back a cached

coordination data result for the point of process execution.

5. Depending on the result of cached coordination data, the communication between the

protocol service Xc and Xp may occur at the point of process execution.

6. The protocol cache is updated through the cache service if it is required.

7. The coordination conversation ends with the completion of the process execution or

the business transaction.

It should be noted that several actions (4, 5, and 6) with the above description might be

repeated in a coordination conversation. The operation interface of the activation and cache

service are not defined as a protocol in the coordination model.

6.2.2 Coordination context

The COORcontext defines the data structure of the message exchange in the context of

coordination. All process consumers and providers must understand this information to en-

able coordination conversions. A schema defined for the coordination context is a protocol

between process consumers and providers.

142

Figure 6.2: COORcontext : CoordinationContextType

spac is a prefix for the schema namespace (more details are available in the appendix

B):

xmlns : spap = http : //www.computing.dcu.ie/mwang/spac

6.2.2.1 CoordinationContext

A coorcontext ∈ COORcontext is defined as a tuple < cid, pi, ps, cac, α > (Figure 6.2),

where

• cid - specifies a unique identification of a coordination conversion for a process re-

quest or business transaction instance. It is generated by the Activation service.

• ct - denotes a coordination type specifying a coordination protocol of a coordination

conversation. A coordination protocol is a separate protocol which will be discussed

in the process activity protocol section (Section 6.3).

• ps ∈ PS - denotes a protocol service specifying the service reference of a coorp.

It enables protocol service communication for the specified coordination type. It is

of type EndpointReferenceType from WS-Addressing [181]. The address element of

the endpoint reference is viewed as an identity of coorc for COORp.

• cac ∈ CAC - specifies a cache configuration for the coordination type. It will be

discussed in the next subsection.

• x ∈ ALP - an extension needed for additional context information for the coordina-

143

tion, such as protocol specific messages and necessary message correlations.

The context contains a data field (cid, ct, ps, cac) initialized by the consumer side at

the start of a coordination conversation with a process request. It can only be assigned by a

coorc. For activities as subprocesses in a business process, the above data of coorcontext will

be propagated to participants, i.e., the subprocesses, regardless whether they belong to the

same process provider or different providers. The process providers do not initialize a new

context for subprocesses. This is important as the original source of coorcontext symbolizes

the source of the business policies, i.e., all processes include subprocesses that are governed

by the policies defined by the original process consumers, not by the policies from process

providers. A coorcontext can be initialized by a process provider for subprocesses in a

business transaction, the subprocesses would then be enforced with policies defined by the

process provider. In such a case, the activities within the subprocesses of the overall process

are Web services, i.e., atomic activities for process consumers. This is different compared

with the distributed coordination of WS-Coordination, which is achieved by a chaining

coordination [3]: A subcoordinator B of a coordinator A acts as a proxy responsible for

passing all messages from coordinator C to A.

6.2.2.2 Cache

A cache cac ∈ CAC specifies the configuration of the cache function on coordination con-

versations. The cache function will be described in the next section. If the cache element is

absent in a coorcontext, the coordination cache is disabled for the coordination conversation.

The Scope attribute specifies the cache scope, which is either Global or Process.

1. Global scope is a default scope, specifies that the coordination cache is coorc aware.

Caches are valid for a process request, only if the caches are made from the same

coorc.

2. Process scope specifies that the coordination cache is both coorc and process aware.

Caches are valid for a process request, only if the caches are made for the same coorc

144

and process.

StartDateTime is an element used to specify a coordination cache operation start time.

EndDateTime is used to specify a coordination cache operation end time.

The defined coordination cache time (CacheStart/EndDateTime) will be exactly applied

without awareness of the execution time of process instances, i.e., the cache could be en-

abled after the start time of a process instance, or could be disabled before the end of a

process instance.

6.2.2.3 Example

The activation service provides the operation interface CreateCoordinationContext that is

used to initialize a coorcontext for a process request. Listing 6.1 shows an example of a

coorcontext instance.

Line 3 shows the identification (http://www.computing.dcu.ie/mwang/spaa/sm/cache)

of a coordination protocol, which defines the coordination type of the coordination conver-

sation. This will be described in the next section. Lines 4 to 15 show the protocol service

endpoint reference. In this case, more detail of the endpoint reference is described as a

ServiceReference, defined in the coordination protocol. Lines 16 - 19 shows the cache is

enabled for one month time.

Context propagation is accomplished using an application-defined mechanism. The

context message would be contained in a SOAP message together with an application mes-

sage data sent to participants.

6.2.3 Coordination cache mechanism

The coordination cache mechanism is designed to try to improve coordination efficiency

of the coordination model by trying to reduce protocol message communication between

two types of subcoordinators. It caches message responses of a coordination protocol of

coordination conversations when the coordination cache is enabled. For a coorp, it remem-

145

Listing 6.1: An initialized coordination context example
1 <p1:CoordinationContext xmlns:p1="http://www.computing.dcu.ie/mwang/spac"

xmlns:wsa="http://www.w3.org/2005/08/addressing" xmlns:xsi="http://www.w3.
org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.computing.dcu.
ie/mwang/spac coordination.xsd">

2 <CId>2134</CId>
3 <CoordinationType>http://www.computing.dcu.ie/mwang/spaa/sm/cache</

CoordinationType>
4 <p1:ProtocolService>
5 <wsa:Address>http://localhost:8080/ProcessRequestor1/

RequestorCoordinatorService</wsa:Address>
6 <wsa:Metadata>
7 <p2:ServiceReference xmlns:p2="http://www.computing.dcu.ie/mwang/spaa"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
8 <p2:Address>http://localhost:8080/ProcessRequestor1/

RequestorCoordinatorService</p2:Address>
9 <p2:Operation>Weaving</p2:Operation>

10 <p2:ServiceName xmlns:sere="http://coordinator/">
sere:RequestorCoordinatorService</p2:ServiceName>

11 <p2:PortName xmlns:sere="http://coordinator/">
sere:RequestorCoordinatorPort</p2:PortName>

12 <p2:SOAPAction>http://coordinator/RequestorCoordinator/WeavingRequest<
/p2:SOAPAction>

13 </p2:ServiceReference>
14 </wsa:Metadata>
15 </p1:ProtocolService>
16 <p1:Cache Scope="Global">
17 <StartDateTime>2010-10-10T12:00:00-05:00</StartDateTime>
18 <EndDateTime>2010-11-10T12:00:00-05:00</EndDateTime>
19 </p1:Cache>
20 </p1:CoordinationContext>

bers policy information defined or a final provider action at a particular point of a business

process by consumers, to decide what interaction pattern is needed between a coorc and

coorc at the point. It aims at reducing the number of communications between protocol

services of COORc and COORp in coordination conversations. As a consequence, the

coordination overhead caused by communications would be reduced.

There are three types of interaction patterns defined as the foundation of the cache

mechanism. It results in three default extra transition actions for all coordination protocols:

TAc = {taundefined, taunexpected, taundetermined}. They are mapped to PAundefined,

PAunexpected, PAundetermined in the policy model which are discussed in Section 5.3 of the

policy chapter. Other transition actions resulting from the specific coordination protocols

are also associated with the interaction patterns. The three extra transition actions will

146

Transaction
action

Interaction
pattern

Description

taundefined The protocol service of coorp will not try
to communicate with the coorc on a gov-
ernance state. A mapped transition action
will be applied.

taunexpected The protocol service of coorp will send a
message or weavingrequest to coorc us-
ing a one-way interaction mode on a gov-
ernance state. This makes sure the con-
sumer actions defined in the policies are
executed. A mapped transition action will
be applied.

taundetermined

and others from
specific protocol
TAg

The protocol service of coorp will com-
municate with the coorc and wait for a
provider action from the consumer. The
coordination cache is also updated with
the provider action from the consumer. A
mapped transition action will be applied
if the returned transition action is one of
taundefined, taunexpected, taundetermined.

Table 6.1: Transition actions and interaction patterns

actually be mapped to transaction actions specified in coordination protocol on governance,

which will be detailed in a later subsection. The interaction patterns and association with

transition actions are defined in Table 6.1 for the coordination model.

From the table, we can see the COORp does not interact with the COORc in case of

taundefined. The taunexpected uses a one-way notification interaction mode, process execu-

tion will not be blocked to wait for the consumer to complete the policy weaving. Hence,

we could expect the performance overhead to be reduced in the first two cases. The detail

of governance states, transition actions and provider actions will be described in the process

activity protocol section.

147

The Cache service provides an operation interface for accessing and updating cached

data (getCacheResult, updateCacheResult). A cached data cad ∈ CAD is described as a

tuple < dt, psa, pn, pα, r >, where

• dt - is the time when the cached result is created or updated.

• psa - denotes a protocol service URL, i.e., is an identification of the coorc. It repre-

sents a unique policy source.

• pn - denotes the name of the process.

• α ∈ ALP - is an extended element which specifies additional conditions on using

cached results. This is protocol specific based on the message schema of the coordi-

nation protocol. This is described in the next section.

• r - denotes the result or transition action cached.

The cache function is required to be implemented with the protocol service implemen-

tation to support the coordination cache mechanism. The following Algorithm 8 shows the

cache function algorithm for the protocol service of a coorp.

148

Algorithm 8: Algorithm for Cache function
input : coorcontext ∈ COORcontext

output: ta ∈ TA = {TAc ∪ TAg}
1 Intial ta ∈ TA ;
2 if isCacheEnabledOnCurrentT ime(coorcontext) then
3 Intial cad ∈ CAD ;
4 if getCacheScope(coorcontext) = glabal then
5 cad← getCacheResult(psa ∈ cad, α ∈ cad, true) ;

6 else cad← getCacheResult(psa ∈ cad, α ∈ cad, false);
7 if dt ∈ cad >= startDateT ime ∈ coorcontext then
8 if r ∈ cachedData = taundefined then ta← taundefined ;
9 else if r ∈ cachedData = taunexpected then

10 protocolServiceInvokeOneway(coorcontext) ;
11 ta← taunexpected ;

12 else ta← protocolServiceInvoke(coorcontext) ;

13 else
14 ta← protocolServiceInvoke(coorcontext) ;
15 updateCacheResult(ps, α, ta) ;

16 else ta← protocolServiceInvoke(coorcontext);
17 return ta ;

Depending on the coordination protocol defined for the coordination, a cache mecha-

nism may be implemented in a coorc. In this case, it will not reduce the communication

overhead between the coorc and COORp, but the overhead of policy weaving. Since the

policy weaving is not in the scope of coordination protocols, the cache mechanism in the

COORc is not defined in the coordination model.

6.3 Process activity protocol

The process activity protocol defines a coordination type for coordination conversations. It

relies on the coordination model we described. A coordination conversation of a business

process is established upon coordination of all activities which are within the overall process

and subprocesses for the consumer. The conceptual modelling of the coordination protocol

is activity centric, so it can be applied to any processes regardless of various flow logic, but

149

without losing the aspects related to business processes. This coordination protocol applies

to all activities of business processes to be governed during execution.

A coordination protocol comprises three definitions in its identification (ct ∈ coorcontext).

http : //www.computing.dcu.ie/mwang/spaa

1

/sm

2

/cache

3

1. a protocol message schema

2. a Finite State Machine (FSM) of COORc and COORp

3. a cache function specification of COORp

These are described in the following subsections.

6.3.1 Protocol message schema

The protocol message schema defines the message data structure needed for protocol ser-

vices communication between COORc and COORp for the extension element of the

COORcontext.

spaa is a prefix for the schema namespace (more details are available in appendix C):

xmlns : spap = http : //www.computing.dcu.ie/mwang/spaa

Two main elements defined in the protocol message schema arePAP request andPAP response.

They are the request and the response of the protocol services of coordinators.

A paprequest ∈ PAP request is defined as a tuple < p, a, r, v′, s >, which extends the

COORcontext to form the Weavingrequest, where

• a process p ∈ P contains the process name information, and a service reference

information of the process.

• an activity a ∈ A contains the activity name information, and a service reference

information of the business service which implements the activity.

• a resource r ∈ R constraints the business object involved in the activity for the

current activity state. It is defined as a free extendible element (xsd:any) for any type

of business objects.

150

• a set of violations v′ ⊆ V contains available violation information of the activity.

• a state s ∈ Sg is the current governance state of the activity. The Sg is defined in the

FSM part of the protocol.

A papresponse ∈ PAP response extends theCOORcontext to form theWeavingresponse.

It is defined as < ta >, where

• a transaction action ta ∈ TA is an abstract type of a set of concrete transition actions

mapped to provider actions, which are described in the policy model, and will be

detailed in the next subsection as well.

The Weavingrequest is defined for request messages of protocol services of COORp,

the Weavingresponse is defined for response messages of protocol services of COORc

(Figure 6.3). All messages are wrapped as coordination context information. We have

seen the Weavingrequest and Weavingresponse used for the policy weaver in the policy

chapter. In fact, the coordination protocol message schema definition is derived from our

study of related work in the policy based computing. The policy weaver could be viewed as

an implementation of a protocol service of a coorc depending on the coordination protocol,

because of the difference between the policy model and the coordination message definition.

The PA needs to be transformed to TA as the Weavingresponse before sending out from

the policy weaver. Still, in our case, the policy weaver does not directly communicate with

a coorp, because the FSM of the coordination protocol is divided into two parts. A proxy

service sends a weavingrequest to a policy weaver or a FSM of COORc depending on the

activity state. We will describe this in the next subsection.

6.3.2 FSM of protocol

Because of the FSM of the process activity protocol intends to cover the intricate runtime

governance requirement, we present a complicated FSM, which might not be easy to follow.

This makes it difficult to implement the protocol with BPEL processes, and complicates for

future protocol customisation or improvement. We first present the FSM of protocol, then

151

Coordination protocol

 BP component BP componentPG componentPG component

Coordinator P

FSM of
CoordinatorP

Coordinator C

ProxyPolicy weaver
WeavingRequest

WeavingReponseWeavingReponse

WeavingRequest

PoliciesPolicies

FSM of
CoordinatorCWeavingResponse

WeavingRequest

WeavingResponseWeavingRequest

Figure 6.3: Message flow diagram

we further explain it in the later design subsection.

6.3.2.1 FSM of COORc and COORp

The process activity protocol defines a certain level of runtime governability available from

business processes and the responsibilities of process providers and consumers as a contract.

The governability should satisfy the requirement of all categories of rules in the policy

model. This is formalized as an FSM definition of the coordination protocol. It defines

a completed FSM for every activity in the business processes, and describes the system

behaviours of COORc and COORp on coordination conversations. The essential of the

FSM design is to instrument the governance states into the process flow as these governance

states are core to offer governability of business processes.

A complete FSM is divided into two parts for a protocol, which are responsible for

COORc and COORp respectively. The FSM of COORc is a submachine state of FSM

of COORp. The process providers only follow the part of the protocol which is defined

for COORp. The consumers follow the FSM of COORc. Since the implementation of

the FSM will be executed at the consumer and provider separately, the COORc must have

152

sufficient information about the process execution for its part of the state machine execution,

as the process executes on the provider side. In our design of the entire FSM, the FSM of

COORc defined for the submachine state in FSM of COORp is isolated from the business

process. As a result, the protocol message schema only covers the complete information

about the activity rather than the process state information. The execution of the FSM of

COORc does not require information other than the Weavingrequest, which is defined

in the protocol message schema. The execution of the FSM of COORp does not require

information other than Weavingresponse. The reason behind this design is that, firstly,

the same protocol message schema can be used for different coordination protocols. A

process consumer can customize the FSM of COORc for itself without affecting the FSM

of COORp and other process consumers. Secondly, it avoids possible complexity in state

machine implementation for both sides. One side does not need to know the implementation

details of other side for its own implementation.

The purpose of the two parts design is that it could reduce the number of governance

states in the FSM of COORp, hence reduce the protocol message exchange times required

between COORc and COORp on coordination conversations. The advantage is that it

could reduce the performance overhead caused by communication between the protocol

services. Depending on the network situations between a process consumer and providers,

the message exchange between them could be expensive in some cases. Reducing required

message exchange times could improve the overall coordination efficiency. The disad-

vantage is that it increases the complexity on the consumer side, because of the FSM of

COORc should be implemented by consumers. However, a different protocol can be de-

fined with COORp that has a complete FSM.

In the following, we give the FSM of COORp and COORc respectively.

FSM of COORp

The FSM of COORp specifies the protocol which is responsible for COORp. It is

defined as a 5-tuple (S, sstart, F, TA, δ), where

153

• S = Sg
⋃
S¬g is a set of states. Sg is a set of governance states {sman valpre ,

sman valpost , shandlingpre , shandlingpre , scancelling}, which are directly involved with

process consumers or policies. The S¬g is a set of non-governance states {sstart,

sviolatedpre , sexecuting, sreplacing, swaiting, sskipping, sviolatedpost , scompensating, scom+rep,

scom+ign, scompleted, send}, which are not directly involved with the process con-

sumers.

• sstart ∈ S¬g is an initial state. The activity coordination can only be started by the

process provider, and is not directly involved with consumers.

• F ⊆ S¬g is a set of final states {send}.

• TA = TAg
⋃
TA¬g is a set of input symbols of transaction actions. TAg is a

set of transaction actions {taviolate, tavalidated, taignore, tareplace, taskip, tacancel,

tacompensate, taretry, tacom+ign, tacom+rep}, and are expected from process con-

sumers. TA¬g is a set of transaction actions which are not expected from the process

consumers {0, 1}. The input stream of the FSM regarding TA¬g is decided by the

process providers based on the process state information which is not covered by the

FSM, as the FSM is only activity scoped. More details will follow in a later section

6.3.2.2.

• δ is a transition system δ : S × TA → S, represented as a transition graph (Figure

6.4).

FSM of COORc

The FSM ofCOORp introduces two submachine states: sman valpre before the sexecuting,

and sman valpost after the sexecuting state. They contain the FSM which is responsible

for COORc. It enables message adaptations and constraint validations before and after

sexecuting.

The FSM for the sman valpre submachine state specifies the protocol which is responsi-

ble for COORc. It is defined as a 5-tuple (S, sstart, F, TA, δ), where

• S = Sg
⋃
S¬g is a set of states. Sg is a set of governance states, {smanprevalpre

154

1

1

0

1

Ignore

1

Cancel

Ignore

Cancel

1Skip

1

Retry

1

0

Validated

Validated

1

Compensate

Ingore

Replace

Completed

Skipping

Waiting

Compensat
ing

Replacing

Handling Pre

Handling
Post

Violated
Pre

Violated
Post

Cancelling

Manipulating
Validating

Pre

Manipulating
Validating

Post

Executing

startstart

EndEnd

Compensate+Replace

Violate

Replace

Violate

Compensat
Ing+

Replacing

1

1

Compensate+Ignore

participant generated

coordinator_p generated

participant as activity
of process provider

Figure 6.4: Transition graph

smanpostvalpre , svalidatingpre}. The S¬g is a set of non-governance states {sstart,

sreplacing, sviolatedpre , sexecuting} from the parent FSM.

• sstart ∈ S¬g is an initial state from the parent FSM.

• F ⊆ S¬g is a set of final states {sviolatedpre , sexecuting} from the parent FSM.

• TA = TAg
⋃
TA¬g is a set of input symbols of transaction actions. TAg is a set of

transaction actions {tavalidated, taviolate}, are expected from process consumers or

policies. TA¬g is a set of transaction actions which are not expected from process

consumers TA¬g = {1}.

155

su
b

m
ach

in
e state

Violate

Violate

Violate

1

Validated

Validated

Manipulating
Pre

Validating
 Pre

Violated
Pre

Validating Pre

Manipulating
Post

Validating
 Pre

StartStart

Executing

Validated

coordinator_c generated

participant generated

participant as policy weaver
of process consumer

Figure 6.5: Transition graph

• δ is a transition system δ : S × TA → S, represented as a transition graph (Figure

6.5).

The submachine state consists of three governance states allowing constraint rules val-

idation before sexecuting, and message adaptation before and after svalidatingpre . When a

coorc receives a weavingrequest, indicating an activity of a process is in the sman valpre

state, the proxy service of coorc will enter the submachine of the coorc implementation

defined for the sman valpre state. The FSM of coorc will send its weavingrequest to the

policy weaver. The s of weavingrequest received by the policy weaver will be a governance

state defined in the FSM of COORc. After completing the FSM of COORc, the final

weavingresponse will be sent to the COORp.

The FSM of COORc for sman valpost submachine state is identical to sman valpre , ex-

cept Sg = {smanprevalpost , smanpostvalpost , svalidatingpost}.

FSM Correctness

156

For the current and future updated versions of protocol correctness, the protocol should

be validated to avoid problems during execution, such deadlock. In our case, there must

be a valid sequence of transitions leading to a desired state from a marking state as gover-

nance desires. We say the protocol is validated if it satisfies the reachability and liveness

properties. Our protocol is validated as it satisfies the following properties.

Reachability: The protocol (S, sstart, F, TA, δ) for any type coordinator with a mark-

ing beginning state s0, a marking state sn is reachable from s0 if there exists a sequence of

transitions ω = t0, t1, . . . that transits s0 to sn by s0 × t0 → s1 × t1 → · · · → sn.

Liveness: The protocol (S, sstart, F, TA, δ) for any type of coordinator with a desired

state sn, which is eventually reached from a marking state s0 by inputting transactions

belonging to the protocol.

6.3.2.2 FSM of protocol design for runtime governance

In the following, we give a further description of the FSM of the protocol to prove our

design. We break the FSM into small FSM patterns for small problems we need to address.

We introduce a special state called the place holder state s∗ for FSM patterns. It is an

abstraction of one or multiple concrete states in the FSM. Any concrete state(s) could be

placed in a s∗ state to overwrite it for protocol design.

For each pattern, we only focus on designing the related states for the problem addressed

by the pattern, without considering the concrete states in the s∗. The details to specific

implementations could be left to the final protocol design. The pattern description structure:

1. A name

2. A description of the problem context

3. A state machine (SM) pattern graph

4. The description of the SM template solution

For three categories of rules :

Pattern - Runtime governance

157

StartStart Running EndEndStarted End

Figure 6.6: Activity life cycle

Problem: An activity’s life cycle can be described by the activity states and the tran-

sitions among them. The life cycle of an activity in a business process could simply be

described in three states without runtime governance executed on the provider side (Figure

6.6).

1. a start state sstart: An initial state of every activity in the business process. When an

activity is reached in the process execution of the process flow, the activity is at the

sstart.

2. a running state srunning: After the activity has started, the activity is executed to

complete a task in the business process. The activity is in the srunning for executing.

3. an end state send: After the activity is executed successfully, the activity is in the

send. The life cycle of the activity is completed in the business process. With the

process execution, the next activity placed in the process flow will be reached.

The first problem is that the three category rules which have provider actions. These

rules are not involved.

The rule categories of policies only represent high level requirements. The actual re-

quirements as policy enforcement are defined as a set of concrete actions that need to be

performed with process execution as runtime governance. These actions include consumer

and provider actions as described in the policy model. Before we address these actions,

a primary problem is that these policies are defined at the consumer side and the process

execution at the provider side are not aware of these actions or defined policies. This is the

second problem.

Pattern: Figure 6.7

158

Constraint rules

…

Violated

Flexibility rules

Fault rules EndEnd

StartStart

…

ViolatedEndEnd

StartStart

...

Transition action

Figure 6.7: Pattern graphs

To enforce policies, we need to govern the activity between the sstart and the send.

We expect more states in the activity life cycle to enforce the policies before the end of the

activity life cycle. Through the proposed rule categorization, we can have a simple template

for three rule categories in the first step (Figure 6.7 left). We add a violation state sviolated.

The runtime governance for three rule categories can be described as state transitions

between the activity s∗ and sviolated state.

1. The flexibility rules define the transitions within the s∗ states.

2. The constraint rules define the transitions from the s∗ to the sviolated state.

3. The fault rules define the transitions from the sviolated to the s∗ state.

Then, we introduce a new type of state called a governance state in the second step for

the second problem.

• a governance state sg ∈ Sg: is an identifier for starting available governance. The

activity navigates to the sg. The process consumer is notified that the expected con-

sumer and provider actions of policies can be weaved. The expected provider action

maps to a ta ∈ TAg transitions from the current state of the activity to a governed

state. The consumer actions that have no effect on the business process will not be

considered in the FSM.

In following, we are going to detail templates with the Sg and TAg associated with the

159

three rule categories.

For flexibility rules :

Pattern - Manipulating

Problem: The governance of the data flow and control flow of a process by flexibil-

ity rules are achieved by message manipulation. Message adaptation needs message data

manipulation. Through manipulating process data during process execution, the process

execution path also can be adapted or altered. The problem is the need for message manip-

ulation.

Pattern: Table 6.2

FSM pattern transition action

...
Manipulat

ing

Violated

Violate

Validated
(hasEffect/noEffect)

...

taviolate
tavalidated

Table 6.2: Pattern graph

The process consumers should allow manipulating the resources or business objects

processed by the activities of the process. We define a governance state as follows:

• a manipulating state smanipulating ∈ Sg: indicates that the manipulate action could

be performed. In case message manipulation needs to be applied by consumers, the

activity is navigated to a smanipulating.

We define the following transition actions for the smanipulating:

1. a validated action tavalidated ∈ TAg: indicates message manipulation is completed

(mapped to PAvalidated). It transfers the smanipulating to the next expected state after

all message manipulate actions (PAmanipulate) of the process consumer are executed,

and possible effects are taken by the PAvalidated.

2. a violate action taviolate ∈ TAg: leads the smanipulating to the sviolated (mapped

160

to PAviolate) in the case of faults on message manipulating actions. In the policy

model, PAviolate is defined as an expected provider action in a fault handler for the

PAmanipulate.

For Constraint rules :

Pattern - Validating

Problem: Constraint rules define the safe boundary of business processes. These con-

straints need to be validated through process execution for every business activities. As we

described in the policy model, these constraints with security aspects are significant for the

business.

Pattern: Table 6.3

FSM pattern Transition action

... Validating

Violated

...

Violate

Validated

tavalidated
taviolated

Table 6.3: Pattern graph

All types of constraints could be viewed as Assertions in the business activity lifecycle

that return true or false on validation. The process consumers should be allowed to validate

their assertions before entering the next expected state, more specifically, before and after

the sexecuting. We define a governance state as follows:

• a validating state svalidating ∈ Sg: indicates the constraint validation actions could

be performed. The activity is navigated to a svalidating for constraint validation.

We define the following two transition actions for the svalidating. They are represented

by two possible decisions made from constraint validation.

• a validated action tavalidated ∈ TAg: indicates a decision on the constraint validation

is validated (mapped to PAvalidate). It transitions the svalidating to the next expected

state.

161

• a violate action taviolate ∈ TAg: indicates a decision on the constraint validation

which is a violation (mapped to PAviolate). It will transfer the svalidating to the

sviolated state.

For Fault rules :

Pattern - Handling-Pre

Problem: Fault rules define remedial actions for the sviolated state. These remedial

actions need to be applied on process executions, such as for service adaptation. The re-

medial actions are different and perform differently depending on whether violations occur

before or after the sexecuting in the activity life cycle. The problem needs to be addressed

separately. We first address the problem for violations occurring before the sexecuting state

(sviolatedpre).

Pattern: Table 6.4

162

FSM pattern Transition action

Violated
Pre

Handling
Pre

Executing

Skip

…. …. EndEndCompleted

taskip

Violated
Pre

Handling
Pre

Executing…. …. EndEndCompleted

Ignore

taignore

Replace

Replacing
Violated

Pre
Handling

Pre

Executing…. …. EndEndCompleted

tareplace

Violated
Pre

Handling
Pre

Executing

Cancel

…. …. EndEndCompleted

tacancel

Table 6.4: Pattern graphs

Process consumers should allow to apply remedial actions when violations occur. We

define a governance state as an after state of the sviolatedpre state.

• a handling-pre state shandlingpre ∈ Sg: indicates a remedial action could be per-

formed for a violation occurring before the sexecuting. The activity is navigated to the

shandlingpre from the sviolatedpre state for remedies.

We could define the following transition actions for available remedial actions

163

• a skip action taskip ∈ TAg: will skip the sexecuting of the activity (mapped to

PAskip). The activity is transferred from shandlingpre to an s∗ after the sexecuting

state. With the process, the input message of the service is expected to be copied

to the output message, or a new message is initialized for the output message if it is

required for the transition actions.

• an ignore action taignore ∈ TAg: will ignore the violations of the activity (mapped to

PAignore). The activity is transferred from shandlingpre to sexecuting state. Violations

are considered acceptable, or do not affect the overall business goal achievement in

this case.

• a replace action tareplace ∈ TAg: will replace the service reference of the activ-

ity as service adaptation (mapped to PAreplace). The activity is transferred from

shandlingpre to an s∗ before the sexecuting state. With the process, the alternative ser-

vice reference supplied with (PAreplace) will be used as the replacement service ref-

erence for the current activity performing instance. If the attribute of the provider ac-

tion indicates permanent service adaptation, the replacement service reference would

be assigned for the activity for the coorc or consumer‘s service reference setting in

the process provider.

• a cancel action tacancel ∈ TAg: will cancel the activity and process. This happens

when the cancellation of the process execution is required (PAcancel). The current

activity is transferred from shandlingpre to send, ending the activity life cycle.

Pattern - Handling-post

Problem: This is a continuing problem with fault rules. The problem is that violations

could occur after the service sexecuting state (sviolatedpost). The consumers need to be able

to apply remedial actions for this type of violation.

Pattern: Table 6.5

164

FSM Pattern Transition action

Ignore

Executing…. Completed….

Violated
Post

Handling
Post

EndEnd

taignore

Compensate + Ignore

Executing…. Completed….

Violated
Post

Handling
Post

EndEnd

Compensati
ng

tacom+ign

Executing…. Completed….

Violated
Post

Handling
Post

Retry

Waiting

EndEnd

taretry

Executing…. ….

Violated
Post

Handling
Post

Replacing

Replace

EndEndCompleted

tareplace

Compensate+ Replace

Executing…. ….

Violated
Post

Handling
Post

Compensat
Ing+

Replacing

EndEndCompleted

tacom+rep

Cancel

Executing…. ….

Violated
Post

Handling
Post

EndEndCompleted

tacancel

Table 6.5: Pattern graph
165

We define a governance state as an after state of sviolatedpost .

• a handling-post state shandlingpost ∈ Sg: indicates that a remedy could be performed

for violations occurring after the activity sexecuting. The activity is navigated to

shandlingpost from sviolatedpost for remedying.

We define the following transition actions for available remedial actions.

• taignore ∈ TAg: will ignore violations of the activity. The activity is transferred from

the shandlingpost to the scompleted state.

• a compensate+ignore action tacom+ign ∈ TAg: will compensate the activity before

ignoring violations of the activity. The activity is transferred to the scompensating

state, then ending the activity life cycle. In the scompensating state, the compensation

service of the activity which is supplied by the the PAcom+ign will be executed.

• a retry action taretry ∈ TAg: will wait an amount of time and then retry the activity

(mapped to PAretry). The activity is transferred to the swaiting state, then an s∗

before the sexecuting state. It is mapped to PAretry which defines the waiting time.

• tareplace ∈ TAg: will replace the service reference of the activity. The activity

is transferred from shandlingpost to sreplacing first, then to the s∗. It is same as the

shandlingpre state.

• tacom+rep ∈ TAg: is an extension of tareplace in this case. It will compensate the ac-

tivity, and then replace the service reference of the activity (mapped to PAcom+rep).

It transfers the activity from shandlingpost to a scom+rep state, which has the role of

both scompensating and sreplacing states.

• tacancel ∈ TAg: will cancel the current activity and process. The activity is trans-

ferred from shandlingpost to the scompleted state. All activities with service reference

that have successfully executed, will be transferred from the scompleted to a Can-

celling State (this will be discussed in the following).

Pattern - Cancelling

Problem: Process consumers might want to cancel the current business transactions

166

for some cases with business processes. This is what the tacancel action is designed for.

Cancelling the process does not only cancel the current activity which is executing. All

activities performed in the current process execution (in scompleted state) might need to be

cancelled to compensate for the effects of the activities.

Pattern: Table 6.6

FSM pattern Transition action

Completed

Cancelling

….

Compensat
ing

Compensate

Ignore

EndEnd

tacompensate

taignore

Table 6.6: Pattern graph

We define a governance state called scancelling state to support process cancellation.

• scancelling ∈ Sg: indicates an activity compensation action that can be performed for

compensating the effect. The activity is navigated to scancelling from scompensating

for compensation. The activity might transfer from scompleted to send if no effect was

created, for example, the sexecuting state was skipped.

We define the following transition actions for available remedies.

• a compensate action tacompensate ∈ TAg: will compensate the activity (mapped to

PAcompensate). It transits from scancelling to the scompensating state first before the

end of the activity life cycle. In the scompensating, the compensation service of the

activity which is supplied by the PAcompensate, will be executed.

• taignore ∈ TAg: will ignore activity compensation. The effect is not cared about, or

will be dealt with by the process consumer separately from the current process logic

execution by the provider. The activity will end its life cycle.

167

6.3.3 Cache of process activity protocol

The cache of the process activity protocol defines the cache function specification onCOORp.

It includes a protocol specific data set of cached data (PS ⊂ CAD) and an action mapping

table (TAc → TAg).

As described, PS specifies additional conditions for using cached results. These addi-

tional conditions are relevant to the elements of a request of a protocol message of COORp

(Weavingrequest). In this protocol, a pa ∈ PS is defined as < s > and s ∈ Sg. In other

words, a final provider action resulting from policy weaving is expected to be of the same

interaction types (described in the coordination cache function) for any weavingrequest

with the same s regardless of other elements when the cache is enabled. More conditions

can be added for different types of coordination protocols, such as the activity name or a

service reference for a activity. More conditions could further reduce protocol service inter-

action times on governance states, hence might reduce the performance overhead caused by

blocking of governance states waiting for responses from policy weavers. However, more

conditions would generate more cached data that needs to be handled by the cache service,

and require a more complex algorithm for the policy weaver. This might increase the per-

formance overhead on protocol service interaction each time. A process consumer could

select a protocol with cache specification which suits its needs, depending on policy model,

policy weaving algorithm, or network situation.

In the FSM definition of the protocol, transition actions are explicitly defined for transi-

tions from a governance state to a governed state. However, process consumers could have

three types of extra transition actions TAc (defined in coordination cache function) for the

cache function. They are not included in the TAg defined in the process activity protocol.

Hence, the protocol also defines the mapping (7→) of transition actions from TAc to TAg.

In this protocol, the mapping for COORp is defined as follows:

1. ∀s ∈ {sman valpre , sman valpost}, ta ∈ TAc.∃tavalidated ∈ TAg.(ta 7→ tavalidated)

2. ∀s ∈ {shandlingpre , shandlingpost , scancelling}, ta ∈ TAc.∃taignore ∈ TAg.(ta 7→

168

taignore)

The mapping for COORc is defined as follows:

1. ∀s ∈ {smanprevalpre , smanpostvalpre , smanprevalpost , smanpostvalpost}, ta ∈ TAc.∃tavalidated ∈

TAg.(ta 7→ tavalidated)

2. ∀s ∈ {svalidatingpre , svalidatingpost}, ta ∈ TAc.∃tavalidated ∈ TAg.(ta 7→ tavalidated)

Even the mapping for COORc is defined, but it is not restricted in the protocol for a

consumer, if the coorc is on the consumer side. The process consumer is free to change

the mapping of the coorc for its own implementations at any time, as the process providers

does not need aware of the changes and it will not affect other process consumers either.

6.4 Coordination implementation with BPEL

The defined coordination protocol needs to be implemented to enable coordination. The

difficulty is on the provider side implementation, since all activities within a business pro-

cess need to comply with the protocol during the process or BPEL execution. From our

study with related work on coordinated BPEL services and policy frameworks with adap-

tive BPEL, the implementations could be classified into two categories.

1. The implementation is separate from BPEL processes.

This approach is commonly used for protocols or policies defined for Web services

only. Such as WS-Policy, WS-Coordination and extended protocols [124]. The advantage

is that it maintains the simplicity of the BPEL process. The BPEL designers do not need

to be aware of the protocol for Web services. The protocol is implemented as a wrapper

or middleware for Web services. However, for protocols or policies designed for business

processes, the implementation requires integration with the BPEL engine, such as [68].

The disadvantage of this approach is platform dependence and that a special BPEL engine

is required.

2. The implementation is realized in BPEL processes.

169

In many policy frameworks and adaptive processes implementations, a set of templates

or patterns for BPEL processes is designed, such as [17], [59]. The original BPEL processes

need to be instrumented or developed according to these defined templates. The advantage

of this approach is platform independence. No additional add-on or modification is required

for the BPEL execution environment. However, the disadvantage of this approach is that it

makes BPEL processes large and intricate.

In our approach, we designed a set of templates for BPEL development to avoid plat-

form dependency. In this case, the protocol would be implemented with a BPEL process as

a coorp for activities. The BPEL contains the flow logic to be executed and could be driven

by protocol messages. A process instance, not the BPEL process, is associated with a coor-

dination conversation belonging to a consumer to provide the multi-tenancy capability.

We divide the FSM of COORp of the protocol in two parts. The first part of the FSM is

process independent, i.e., does not require awareness of the states of the business process.

The implementation of this part is wrapped up in a wrap service in the main BPEL pro-

cess. The second part continues the FSM to the end state of activities of the main business

process. The first part could be implemented in BPEL processes but separated from the

main process. Through this hybrid design, we offer a platform independent approach, and

keep the main BPEL relatively simple as well. The disadvantage is that BPEL processes

are protocol specific.

The BPEL transaction scope concept [182] is applied for implementing the protocol

with BPEL for supporting LRTs. LRTs in BPEL are centred on scopes and scopes can be

nested. Nested scopes could be standalone BPEL subprocesses which are business activities

of the parent process. When a fault occurs in a BPEL process, all previous committed

activities either can be compensated within the fault process, or compensated as an activity

in its parent process. This is defined in the BPEL process from process providers and

exposed to process consumers.

170

We designed two templates for BPEL process development to minimise the need for

development effect on protocol implementation. A template defines the program skeleton

of an algorithm from the template method pattern [183]. One or more of the algorithm

steps can be overridden by subclasses to allow differing behaviours while ensuring that the

overarching algorithm or the protocol is still followed.

We extract the first part of FSM as the non-transactional requirement FSM for business

activities of a process. The second part is an extension for business activities to support

process transaction requirement. The FSM is separated in two implementation parts with

two templates: the wrapper service template and the main process template. They are

described in the following subsections.

6.4.0.1 The wrapper service template

The wrapper service is an implementation of the first part of the FSM of COORp that

contains activity states from the sstart to the scompleted or send state. A while loop block

is used in state machine implementation. The wrapper service will not be exited unless the

activity which is in the scompleted or send state, which indicates the activity is able to enter

the second part of the FSM implementation.

According to the protocol, the process or coordinator needs to determine the transition

with sexecuting × 0 → sviolatedpost and sexecuting × 1 → sman valpost . The activity should

be navigated to the sviolated from the sexecuting state when a runtime fault occurs during

service execution for the activity. This is achieved by a ‘Catch’ block for the sexecuting

state in the implementation (Figure 6.8). The exception message (e.g. ‘HTTP status code

404’) will initialize an extended violation type, which could be handled by fault policies.

Hence, the protocol is designed to allow process consumers to define fault policies for both

runtime and business faults.

After exiting the first part of the FSM, the final output message of the service execution

would be returned to the main BPEL process. Still, the necessary context information for

171

catch

1

Violated
(Business

fault)

Validating
Pre

Validating
Post

Executing
Handling

 0

Exception
(Runtime

fault)

Figure 6.8: Exception situation description

the second part of the FSM execution also needs to be passed to the main BPEL. The output

of the main BPEL process is << sere, resp >,< canc, comp >>, where

• sere - the service endpoint reference which is assigned for the activity execution. It

is assigned at the sstart and sexecuting state.

• resp - the service response message after the sexecuting.

The < sere, resp > provides a snapshot of the activity for activity compensation if

needed.

• canc - a Boolean variable that indicates if the current process is in cancelling status

• comp - a Boolean variable that indicates if the activity needs to be navigated to

scancelling if the current process is in cancellation status.

The < canc, comp > provides the process status information, allows the processes to

determine the transitions with scompleted × 0 → scancelling and scompleted × 1 → send.

The following defines the tuple value assignment in state transitions in the wrapper service

template. (� denotes to keep the previous value)

1. {0, 1} ← sstart × 1

2. {�, 1} ← shandlingpre × taskip

3. {1, 1} ← shandlingpre × tacancel

4. {�, 0} ← sexecuting × 0

172

5. {�, 0} ← shandlingpost × tacom+ign

6. {�, 1} ← shandlingpost × taretry

7. {1, �} ← shandlingpost × tacancel

8. {�, �} ← other transitions

6.4.1 The process template

The process template is an implementation of the second part of the FSM containing activity

states from scompleted to the send state. When the business process is in cancelling status,

previous successfully executed activities should be compensated if necessary. The template

is designed with an activity scope and a process scope, respectively.

Figure 6.9 shows the BPEL template for activity scope associated with activity states.

The BPEL template for each activity is an isolated scope. There are two services inside

the template indicated by grey boxes. The first service is the wrapper service for the first

part of the FSM implementation. The necessary variables are passed into the BPEL pro-

cess by a BPEL <assign> activity. With the following BPEL <if> control structure, a

<throw> activity throws a defined fault if the comp variable is set to false. An attached

BPEL <catchAll> handler catches the fault and does nothing, but to mark this scope as a

faulty scope. The BPEL <compensationHandler> attachment would only be triggered by

a successful scope if the process in cancelling status. In that case, such as the sexecuting is

skipped in the first part of FSM, the compensation handler attached to the activity scope will

not be triggered as the scope is marked as faulty. The last <if> control structure will mark

the process in cancelling status, it throws a defined fault and will be caught in a<catchAll>

handler defined in the process scope template. Hence, the <compensationHandler> han-

dler at activity scope would be triggered. The activities of the process would be navi-

gated from the scompleted to the scancelling state if required. A utility service inside the

<compensationHandler> is responsible for transition from the scancelling to the send state

of the activity.

173

CatchAll CompensationHandler

Cancelling

Compensat
ing

Compensate

EndEnd

Ignore

! throw

[] Empty

! throw

comp==0

canc==1

Completed

comp=response/Comp
canc=response/Canc
sere=response/Sere

resp= response/Resource

...

StartStart
A wrapper service

for first part of
FSM

Figure 6.9: Activity scope BPEL template

174

CatchALL

CompensateActivity scope
template

Receive

Reply

Activity scope
template

Completed

Cancelling

Completed

Cancelling

Reply

EndEnd

Compensate 1

EndEnd

Compensate 2

Figure 6.10: Process scope BPEL template

Figure 6.10 shows the BPEL template for the process scope. All activities of the pro-

cess are inside a process scope, which is attached with a <catchAll> handler. If a de-

fined fault for the process cancelling is caught by the handler with the process scope, all

<compensationHandler> handlers of activity templates of fault-free activity scopes are ex-

ecuted in a backward order, which is specified in the process design. Activities in scompleted

will transition to the scancelling state. If this process is a subprocess, after this subpro-

cess cancelling is completed, the activity that represents this subprocess would transition

to sviolatedpost in its parent process depending on constraint policies of the activity. The

consequent violation handling would depend on the fault policy defined for the activity in

the parent process.

175

6.5 Case study

In this section we are going to discuss a case study in which our coordination framework

prototype was employed. The case study focuses on evaluating the following two aspects:

1. The effectiveness of the coordination framework

2. The performance overhead in the coordination framework

These are described in the following subsections titled objective, approach, and result.

6.5.1 The effectiveness on the coordination framework

6.5.1.1 Objective

The business process described in the previous section is developed with BPEL templates

for use in this case study. Any limitations of the approach through the case study will be

discussed.

As a primary research objective, we must provide an effective prototype in order to

prove the concept. The effectiveness means that the business process can be governed in

a distributed and multi-tenant environment using our approach, i.e., policies are enforced

in business process executions for multiple consumers at the same time for their business

goals to be achieved. We use a test case approach in this study. We design a number of test

cases to determine whether the system is effective. We expect all cases to be successful to

demonstrate the effectiveness of our approach.

Our study is divided in two stages: firstly, we verify its effectiveness for a single process

consumer; in the second stage, we verify its effectiveness for multiple process consumers,

examining its multi-tenancy capability.

6.5.1.2 Approach

The purchase order checkout BPEL process is developed for the experimental setup. A

small set of alternative services are also developed for test cases related to PAreplace reme-

176

dies. All of the service context information required for constraint validation and service

selection are manually and randomly assigned.

A test case comprises of five parts of information,

1. Process: a target process of this test case. Some test cases are targeted on a sub

process level.

2. Defined input: a section of SOAP message of the business process input that contains

the business object information.

3. Defined policies: policies defined for the business process.

4. Expected process activity log: refers to expected activities and states information log

in a process instance.

5. Expected output: a SOAP message referring to the expected output from the process

instance.

For a target process, each part of the information used in the test case was also defined

for the different process consumers in the second stage of the experiment. The following

table displays a part of an example of the test case script.

When the real result matches with the expected process activity log and expected output

of a test case, we state that the test case is successful. For comparing with the expected pro-

cess activity logs of test cases, the real process execution instance is traced by implementing

our own logging code, and the BPEL engine execution log as taken from the BPEL engine

admin console. Our own logging code records every step of coordination conversations and

policy weaving. The screen shot (Figure 6.11) shows a very small part of logging results.

In the first stage, we developed a total of 21 test cases for Consumer 1 only. These cases

were designed to cover four categories of rules with different scenarios: for example, a test

case with three constraints for validating the security context of activities. Afterwards, we

compared the real process execution and coordination log, following the process execution,

with the expected process activity log to verify whether the validations have occurred. In

177

Figure 6.11: Screen shot of coordination log

178

Process Purchase order checkout
Defined input For Consumer1:

<PurchaseOrder>
<id>1234</id><buyer>...</buyer><seller>...</seller>
<buyerAccount>...</buyerAccount><sellerAccount>...</

sellerAccount>
<item>...</item>...
</PurchaseOrder>

Defined policies For Consumer1:
<p1:PolicySet policySetId="

PurchaseOrderCheckoutPolicySet2010" priority="0">
<p1:Objects>...</p1:Objects>...<p1:Policy policyId="...

" priority="0">...</p1:Policy>...
</p1:PolicySet>

Expected pro-
cess activity
log

ProcessConsumer1: Order inspection : Manipulating-
Validating-Pre

ProcessConsumer1: Order inspection : Manipulating-Pre-
Validating-Pre

...
ProcessConsumer1: Order inspection : Validating-Pre
...

Expected output For Consumer1:
<PurchaseOrder>
<id>1234</id>
...
</PurchaseOrder>

Table 6.7: A test case script example

another similar test case, we manually changed the security context information under the

requirement of a constraint rule. We traced process execution to verify whether the defined

fault rules are weaved, and the final remedy is applied in the process execution. We also

forced the undeployment of service applications, and made them return invalid responses

to generate exceptions and violations.

In the second stage, we developed 10 test cases that involved two consumers (Con-

sumer 1 and Consumer 2). Both consumers had different defined inputs, policies, expected

process activity logs and expected outputs. For these test cases, we made two consumers

continually and simultaneously send a number of process requests to verify if the policies

of each consumer were enforced and whether there was interference between each other.

We also forced the slowdown of the policy weaver on one of the consumers, and on one

process request instance of one consumer, to ensure messages received by BPEL processes

179

did not follow a particular sequence.

6.5.1.3 Result and discussion

Our test cases cover all four types of rules and can be applied in various situations. With the

successful test cases, we can demonstrate that our approach provides an effective coordi-

nation solution for governance in a distributed and multi-tenant environment. The activity

centric process coordination protocol design can be applied to any business process. The

process runtime governance is both process instance and consumer based. In addition, there

was no interference between different consumers sharing a single BPEL process at the same

time, so this highlights its multi-tenancy capability. This provides a great advantage for pro-

cess providers offering business processes to multiple consumers, just like Web services.

Our approach assumes that coordinators and BPEL engines never fail. Failures of co-

ordinators could result in un-handleable exceptions in process execution. With the failures

of BPEL engines, BPEL engine solutions might support the restoration of persistent BPEL

instances after the failure. However, this persistence could add additional overheads to the

coordination and raise security concerns regarding storing information on the provider’s

side.

There needs to be some effort made to implement coordination frameworks on both the

process provider and consumer side in our approach. However, once developed, the policy

weavers andCOORc can be used for any business process. The only question that would be

raised regarding the development is the difficulty of BPEL development with COORp. As

we described, the process activity protocol is implemented with BPEL processes following

the templates. That means additional efforts are required in BPEL development compared

to conventional BPEL development. However, from our own experience with development

for this case study, the effort required is small. The wrapper service development only

requires a few lines of code for a business activity, once the first template is developed. As

well as that, the main BPEL template is relatively simple.

180

Moreover, there is a restriction on BPEL development with our approach to protocol

implementation. A business activity is in an isolated scope in BPEL processes with the tem-

plate we designed. All BPEL activities for calling a service for the business activity must

be placed in the scope, meaning that BPEL <invoke> and <receive> must be grouped

together for asynchronous service calls. Hence, the business activity must be placed in

parallel with other activities in the BPEL design to avoid blocking if it is needed.

6.5.2 The performance overhead on coordination framework

6.5.2.1 Objective

The execution aspect of our approach is inherently time consuming, but a performance

overhead is also expected on coordination conversations. Once the activities of a process

instance are in a governance state, the process would be blocked and wait for a provider

action or policy decision from the process consumer. In this evaluation, we would like

study the exact impact on process performance with coordination.

Our study commences with a single activity rather than a complete BPEL process, yet,

the result still can be aggregated for the BPEL process. The time cost of an activity equals

the duration of that activity’s life cycle, and can be viewed as service execution time plus

coordination time. The service execution time is the time spent in the sexecuting. Both

rest states and transition time are counted as the coordination time required governance.

However, the time cost of during and after the scompleted is not counted as an overhead,

since the process will not block the after activity in the same sequence. This activity would

start without waiting for the previous activity to end. For each process instance, the same

activity can travel through different sequences of states depending on the policies defined

or customization made by the consumer. For example, sviolated only exists when constraint

rules are defined. Hence, our study is divided into two different situations: violation free

and violation occurring situations.

181

6.5.2.2 Approach

For both of these situations, two governance states (sman valpre/post) must be passed for all

activities in the FSM of COORp to reach the scompleted state. These two governance states

are considered to be the coordination overhead in violation free situations.

We used a local machine for an in-lab experiment. The setup used 3.0 GHz single

core process with 1 GB ram Windows XP VMware virtual machine. We used the purchase

order inspection activity as a concrete activity for the case study. Policies involved with

this activity are described in the policy case study section. The figure (Table 6.8 left) shows

the result of 1000 test cases of the activity execution with a time cost of two governance

states when the coordination cache was disabled. (Please note, the periodic peak time that

occurred in test cases is not expected within our framework. It is related to the VMware

VM operations (e.g. garbage collection) in our experiment setup.)

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

Tim
e c

os
t (m

s)

T e s t c a s e s

 M a n i p u l a t i n g - V a l i d a t i n g - P r e
 M a n i p u l a t i n g - V a l i d a t i n g - P o s t

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

Tim
e c

os
t (m

s)

T e s t c a s e s

 M a n i p u l a t e d - V a l i d a t e d - P r e
 M a n i p u l a t e d - V a l i d a t e d - P o s t

Overhead with coordination cache disabled Overhead with coordination cache enabled

Table 6.8

The statistical test results are summarised in the following table,

State Total
test
cases

Mean Standard
devia-
tion

Minimum Median Maximum

sman valpre 1000 129.46 35.59 109 125 610
sman valpost 1000 125.50 26.74 109 125 532

182

From the figure and table in above, we can see that the time costs for both governance

states are similar, with less than 130 ms for the mean value. The time cost of the sman valpost

state is slightly lower in mean value, as the no policy is defined (PAundefined) for the state

of the activity. However, the difference is minimal, less than 4 ms in this case. Hence, for an

activity, the overhead of governance states with no policy involved should not be expected

to be much less compared to governance states which policies are involved.

The figure (Table 6.8 right) shows the result of the same 1000 test cases when the

coordination cache was enabled. The cache is validated for all test cases, as we did not

change any policies during this evaluation.
The statistical test results are summarised in the following table,

State Total
test
cases

Mean Standard
devia-
tion

Minimum Median Maximum

sman valpre 1000 126.86 28.38 109 125 531
sman valpost 1000 0.217 6.38 0 0 201

From the figure and table in above, it is apparent that the time cost for the two gover-

nance states are significantly different. We used in-memory cache design as implemented

by the singleton pattern. The time cost mean value of sman valpre state is similar to when

the cache was disabled, but sman valpre has less than 1 ms overhead in this case. Hence,

the coordination cache function could significantly reduce the performance overhead of

governance states with no policy involved (PAundefined).

To study time cost on different interaction patterns when the cache was enabled, we

temporarily added a policy with a calog action to the activity on sman valpre state. Hence,

the coorc needs to be notified at this state. The figure (Table 6.9 left) shows the result of the

same 1000 test cases.

183

The statistical test results are summarised in the following table,

State Total
test
cases

Mean Standard
devia-
tion

Minimum Median Maximum

sman valpre 1000 22.18 13.32 0 16 125

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Tim
e c

os
t (m

s)

T e s t c a s e s

 M a n i p u l a t i n g - V a l i d a t i n g - P o s t

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

Tim
e c

os
t (m

s)
T e s t c a s e s

 I n s t a n c e a d a p t a t i o n
 I n s t a n c e a d a p t a t i o n (C a c h e e n a b l e d)

Overhead with PAunexpected on sman valpre state Overhead with process instance adaptation

Table 6.9

From the figure and table above, we can see the overhead (22.18 ms) is smaller com-

pared to when the cache was disabled (125.50 ms), even after we added a policy. When

only consumer actions are defined for the governance state of the activity (PAunexpected),

a one way interaction without blocking the process could reduce the performance overhead

on the governance state. In this case, the overhead is reduced 82.33% compared with when

cache was disabled.

In the above study, there is only one policy constraintOrderInspectionPolicy3 involved

with the sman valpre state. Large amounts of policies are expected to be defined by the

process consumers for each activity. We copied multiple constraintOrderInspectionPolicy3

into the orderInspectionLockingPolicySet3 PolicySet in the policy file in order to study the

performance impact related to the number of policies on a governance state. The figure

(Table 6.10 left) shows the results of time cost mean values (1000 test cases) with different

number of copies of the policies.

184

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
1 2 0

1 2 5

1 3 0

1 3 5

1 4 0

1 4 5

1 5 0

1 5 5
Tim

e c
os

t (m
s)

N u m b e r o f p o l i c i e s

 M a n i p u l a t i n g - V a l i d a t i n g - P r e
 L i n e a r F i t (Y = 1 2 5 . 3 3 + 1 . 7 7 X)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
1 2 0

1 2 5

1 3 0

1 3 5

1 4 0

1 4 5

1 5 0

1 5 5

Tim
e c

os
t (m

s)

N u m b e r o f p o l i c i e s

 M a n i p u l a t i n g - V a l i d a t i n g - P r e
 L i n e a r F i t (Y = 1 2 7 . 7 8 + 0 . 3 9 X)

Overhead with related policies Overhead with unrelated policies

Table 6.10

From the figure, it was evident that the time cost increases linearly as the number of

policies increase for an involved governance state. However, the increase is relatively small.

The overhead increases by less than 1.77 ms for every new related policy in this case. Yet,

the result may be different in different cases: for example, when a large number of rules are

defined in a single policy.

We also copied multiple orderInspectionFaultPolicy3 into the PolicySet in the policy

file to study the performance impact for the unrelated governance state. The figure (Table

6.10 right) displays the result of time cost mean value (1000 test cases) with a different

numbers of copies of the policies.

The orderInspectionFaultPolicy3 is a fault policy that is not related to the sman valpre

state, but that also increases the performance overhead. For each fault policy in this case,

0.39 ms overhead was added. This was done because fault rules of the policy will be weaved

and will return paundefined actions in this case. These actions still need to progress through

the policy combining algorithm of the policies and policy sets defined for the smanipulating

and svalidating states, which causes an additional overhead. Hence, the addition of policies

could also increase the performance overhead of unrelated governance states.

185

In the following, we studied performance impact within a violation situation. In such

cases, the shandlingpre /shandlingpost governance states need to interact with the coorc with

the policy weaver, and subsequent states might also block process execution depending on

the provider actions or remedies.

We used the same experiment setup with the same business activity. In this case, we

changed the service reference of the activity on provider’s side to simulate a violation situa-

tion. Since constraintOrderInspectionPolicy3 includes the constraint policy on serviceRef-

erence, a violation situation was expected. The orderInspectionFaultPolicy3 would assign

a correct serviceReference through pareplace action for instance adaptation. The state travel

before scompleted in coorp would be sstart > sman valpre > sviolatedpre > shandlingpre >

sreplacing > sexecuting > sman valpost state. We do not consider it to be a special case (i.e.

exception or violation) at the moment. The performance overhead is considered to be an

aggregation of the above states with the exception of the sexecuting. The difference in per-

formance between the replacement serviceReference and the original serivceReference is

not counted in the coordination overhead. The figure (Table 6.9 right) shows overall time

cost with 500 test cases.
The statistical test result is summarised in the following table,

State Total
test
cases

Mean Standard
devia-
tion

Minimum Median Maximum

sman valpre 500 597.57 54.80 453 579 1328
sman valpost 500 431.44 101.95 188 454 797

From the above figure and table, it is clear that the mean time cost is a little smaller

when the cache was enable, as the sman valpost state can use cached values in this case.

When the cache was disabled, instance adaptation takes an average of 597.57 ms. In the

worst case scenario, it could take more than one second. Other remedies, such as PAignore,

PAskip, and PAcancel are expected to take less or a similar time as this case. However,

when PAretry or PAcom+rep are involved, the time cost could be much higher. This would

186

strongly depend on the wait time and the time for the execution of compensating activity in

each case.

6.5.2.3 Result and discussion

When we added together the times cost of the two governance states, we can see the co-

ordination overhead of the activity was around 245 ms with the cache disabled and around

127 ms with the cache enabled in a violation free situation. The overhead was significantly

reduced in this case with coordination cache enabled. The actual overhead also depends on

the number of policies defined by consumers, as more policies result in a greater overhead.

It is less than 2 ms for a new related policy in this case. The overall overhead can increase

when we apply it in real world networks with consideration of the network latency. How-

ever, we still consider the performance overhead is quite small, as long running business

activities take a few hours or even a few days for execution in a process with LRT. In some

cases with utility services (e.g. email notification), the business activity is expected with an

instant activities response. For example, the average execution time of real world email no-

tification service only takes 854 ms [184]. In this case, our coordination overhead would be

greater than 29.7% with the cache disabled and 14.9% with the cache enabled. Since busi-

ness processes usually are mixed with long running activities for LRTs, the performance

overhead for the overall process again is very small and acceptable.

In a violation situation, the coordination overhead mean value for adaptation is around

598ms with the cache disabled. If we deduct the time cost in a violation free situation, the

overhead on service adaptation itself would be 598-245=254 ms for each process instance.

Yet, it is possible to set a permanent adaptation to avoid remedy overhead on each process

instance. However, the instance adaptation would avoid to store activity service reference

information on the provider side anyway. This might be required for security reasons in

some business activities by the consumer. Still, we consider the overhead to be acceptable

compared with inherent time delays of long running activities. With some remedies, the

187

time cost could be much longer, such as when a compensation service needs to be executed.

However, this is not expected to happen on a regular basis and the overhead is then normally

considered to be the necessary price to pay to fix the problem in such cases [17].

6.6 Discussion with related work

In this section, we discuss the related work in service computing that relates to our coordi-

nation approach.

Our coordination approach satisfies the three following primary requirements for the

architecture framework.

1. Transaction management for business processes

Business processes generally require a transaction feature, i.e., the all or nothing at-

tribute. Business processes are parents of business activities. The changing status of busi-

ness processes affects the states of business activities. Subprocesses are activities of its

parent process. The changing state of activities also affects the status of business processes.

The transaction management for a business process needs to consider both business activity

and processes.

2. Process adaptation for flexible business processes

As a requirement of process consumers, business processes might need to be customized

to satisfy consumers’ needs, such as deleting an activity in a process, which is beyond the

transaction or fault management. This entails that the coordination supports two types of

operations on business processes. The first type of operation allows consumers to adapt

processes, realized as flexible rules. The second type of operation enables consumers to

determine the need for and to verify the adaptation of processes, realized as constraint rules

enforcement.

3. Supporting multi-tenancy requirement

For cloud applications, a single version BPEL process is expected to be shared by mul-

188

tiple consumers with the multi-tenancy capability. Thus, coordination conversations with

process execution instances should be isolated between each of the process consumers. The

process provider offers a unified process interface and description for all consumers, but

consumers’ policies will be addressed and will not interfere with each other.

Now, we compare related work in service computing (detailed in the related work

chapter) with our work regarding the above aspects. Firstly, we discuss the WS-TX and

extension work [125][124], as our approach addresses protocols that are similar to WS-

Coordination related specifications, which are designed for Web service transaction man-

agement. After that, we discuss related work in a larger scope, which involves process

adaptation and policy enforcement frameworks.

In comparison with the WS-Coordination [3] and two additional protocols (WS-AT

[128], WS-BA [126]) that extend the framework and our approach, the differences are:

Firstly, since WS-Coordination only deals with transactions and fault management, the

design of the protocols is separated from concerns of policy enforcement. Regarding poli-

cies, they suggest using a separate policy framework (WS-Policy) for related problems

[128, 126]. However, WS-Policy requires that all participants must mutually agree on a

set of policy standards, and policies are completely exposed in plain text to all service

providers. With our approach, policy enforcement is considered in the coordination proto-

col design. The related information for policy enforcement at each state is given to process

consumers. Subsequently, the process consumers are free to define their own or customize

their own policy specifications, and policies are completely hidden from other participants.

Secondly, the WS-Coordination and extended protocols focus on distributed service

transactions rather than transactions of business process. For example, when a coordinator

is notified that two services or activities are ready to commit, then a commit action no-

tification could be given to both participants or services. By contrast, our work focuses

on process level transactions. The participants of a coordination conversation are a policy

weaver and a set of activities connected to a process and subprocesses. Even the proto-

189

col is designed to be activity centric. Activities are not addressed separately outside the

process scope. Cancelling a process will cancel all executed activities rather than only a

single activity. Since our approach does not solely on transaction management, the protocol

design covers the entire states that are required for the different categories of rule enforce-

ment, such as the manipulating state. to support process adaptation for flexible business

processes. Additionally, our approach defines the cache function as being able to reduce

the coordination overhead and provide BPEL templates for process development, which

are not considered and available within the WS-Coordination framework.

Now, we discuss related work in the field of policy enforcement and adaptive BPEL

process. Regardless different approaches, these works are not aware of the multi-tenancy

problem. These approaches can be classified into two categories.

The first category is located at the BPEL layer, in which our approach falls. BPEL pro-

cesses are specially designed or generated to serve the purpose and to provide a platform

independent approach. [57] and [63] have a similar approach, where the BPEL specifi-

cation itself is extended with a fault policy specification. Exception handling policies are

bound into process schemas as a BPEL extension. The SRRF framework [59][64] gener-

ates SRRF-aware BPEL processes according to the defined policies. However, with these

approaches, binding policies into business processes or static policies are certainly not an

option for our objective, as it impossible to support multi-tenancy capability.

The second category is located at the BPEL engine layer, so the BPEL process is main-

tained to be simplified, but is platform dependent. The disadvantage of the Dynamo project

[17] is that BPEL event handlers must be statically embedded into the process prior to de-

ployment, meaning that the recovery logic is defined once and for all, and that it can only

be personalized through the parametrization of the event handler itself [17]. This approach

does not support dynamic policies and certainly, it does not support a multi-tenancy envi-

ronment. The TWSO framework [65] addresses process transactions. The PAWS frame-

work [60] extends the ActiveBPEL engine to provide a flexible process that can change its

190

behaviour dynamically, according to variable execution contexts. Similar frameworks [66]

[67] [68] [56] also extend the BPEL engine for process adaptation, but without an awareness

of the multi-tenancy requirement.

6.7 Conclusion

This chapter presented a coordinator framework with protocols that ensure defined poli-

cies are enforced during business transactions with business processes for consumers and

providers. We defined the coordination model and protocol for the policy based governance

of business processes on business transactions. The BPEL templates are offered for im-

plementation with business processes. We used case studies to evaluate the effectiveness

and performance overhead of the coordination framework. Our overall approach supports

transaction management, adaptation for flexible processes, and multi-tenancy capability.

Still, there are limitations identified with our approach. BPEL process implementations are

protocol specific. The BPEL activities of a business activity must be placed in a BPEL

scope.

191

Chapter 7

AOP Enhanced policy framework

7.1 Introduction

This chapter defines an AOP enhanced policy framework for the extensibility of our policy

framework, to address additional requirements that might be needed for the process runtime

governance by consumers.

We have provided an XML policy model and a coordination framework based on proto-

cols for a policy based governance framework. We cannot expect our policy framework to

offer process consumers all of the features expected in process governance. In other words,

business policies or consumers’ requirements might not easily be expressed by our policy

model in some cases: for example, predicting supported policy decisions and the complex

sliding time window conditions. This requires different policy modelling approaches for

the policy language model and additional related algorithms for policy weaving using pol-

icy weavers. These features consist of many research domains that are not evident in our

policy model and framework. It would be impossible to cover them all with a single policy

framework. More details regarding the motivation behind our research will be discussed in

this chapter.

The AOP framework is an extension of our policy framework. It is designed to offer

192

policy engineers a programming approach for policy development, so that it is possible to

adopt other policy models or frameworks in addition to our model. Moreover, the advan-

tages of AOP, such as modularity, and reuse, are kept in the overall governance system.

The enhanced policy framework does not depend on AOP, meaning policy developers do

not need to use AOP if they don’t want to or it is not necessary. The AOP enhancement

complements our schema-based XML policy development by providing an alternative and

powerful policy development solution for policy developers.

The contribution comes from two perspectives:

1. Introducing an enhanced policy model with policy aspect extension

The existing policy model will be extended using the policy aspect model. This enables

the adoption of other policy/rule models or frameworks, such as Jess rules, on top of our

existing policy model using the AOP paradigm. This seamless approach allows policy

developers to extend the policy framework for additional features without compromising on

our XML policies, while also providing a master policy model for the overall governance

framework.

2. Introducing a distributed and multi-tenant AOP framework

The aspect model has been developed based on the policy model, which sits on top of

the coordination protocol. An upgraded policy weaver needs to cover the functions of aspect

weaving. The AOP framework supports a distributed and multi-tenancy environment, which

is not discussed and addressed in any other AOP framework to the best of our knowledge.

Our work is derived from a comparison between the policy based system and the AOP

paradigm. The contribution of this chapter lies in the coherent mapping of the aspect con-

cept onto the policy model: the business process is as the target program of aspects, which

are realized as policies. Consequently, effects of aspects weaved in the process logic are

policy decisions. This mapping is described in the first section of this chapter outlining the

concept design of the policy AOP. The overall AOP framework consists of:

• Conceptual policy AOP modelling

193

• A detailed policy AOP specification

This chapter is organized as follows: in Section 7.2, we explain both our motivation

and the concepts; in Sections 7.3 and 7.4, we describe our policy AOP specification, and

aspect deployment and weaving; Section 7.5 details the case study; while in the remaining

sections, we compare our work with related work and draw our conclusions.

7.2 Policy AOP motivation and concept

7.2.1 AOP motivation and capabilities

We provided an XML based policy model based on the coordination protocol. There are

still some issues we can address:

• First, our current policy model and framework has limitations.

Our policy model may be unable to effectively or easily express some business policies.

For example, it struggles to express conditions with time window based queries, results

from logic reasoning of a set of rules. Although, our policy model and framework are

unable to satisfy the requirements that arose in every aspect, we argue that this limitation is

also apparent in any other single policy model or framework.

• Second, an integrated approach for multiple policy models and frameworks is absent.

There are others rule/policy systems, such as Jess rules, that might be required by pro-

cess consumers to cover the limitation of our policy model. Yet, each policy approach has

its own advantages and limitations, so it is difficult to find an all-in-one solution. Process

consumers might directly practice on the coordination protocol to adopt multiple policy

frameworks. However, simply adding multiple policy models on top of the coordination

protocol can cause conflicts in any overlapping aspects. Policies in different subsystems

can result in different decisions or provider actions. It can not be solved by the coordination

protocol, and this causes process consumers to choose one policy approach and drop others

to satisfy one aspect.

194

 Schema based XML policy

 Policy AOP

Jess rules

Coordination protocol

Figure 7.1: Policy based governance framework stack

Different from other joint work of policy and AOP, such as [143] [144], an AOP ap-

proach represents an implementation approach for policy enforcement to address modu-

larity and implementation separation from the target system. The goal of our policy AOP

is to provide an aspect-oriented programming approach on top of our XML policy (Fig-

ure 7.1). A more powerful programming language acts as a policy language syntax in the

policy AOP to extend the XML policy model. Firstly, this allows defining more complex

policies or interaction with additional systems by utilizing the power of the programming

language. Secondly, the policy AOP allows for other policy models to work on top of our

policy model, giving users the flexibility to adopt other forms of formal policies. Our pol-

icy model is underlying, and is extensible with other policy approaches, and functions as

a master policy in the overall policy framework. It differs from the widely used policy

handler chain pipeline approach [56] with multiple policy models on Web services. Each

policy model only addresses one aspect, e.g., security, as a handler in the chain, and as a

result, they acquire policy conflicts that never occur between policies defined in different

models. Using our approach, policy developers could define policies for any aspects within

the adopted policy models. All possible conflicts could be addressed by referring to our

master policy model. For example, both the Jess rule and our XML policy could be used to

define security aspect policies at the same time.

In the following, we describe two additional policy frameworks that might be required

additionally for a governance system in a real world environment. Moreover, our policy

195

AOP is capable of adding these other frameworks into our governance framework for ex-

tensions. These two systems of integration will be examined in our case study in order to

prove the concept.

• High level policy for process monitoring

For both technical and BAM monitoring (described in Chapter 2), the monitoring tools

are similar or the same. The common technology behind the tools is Complex Event Pro-

cessing (CEP) with event processing query languages for process events. However the

logging approach is difficult to handle and provide real-time, or near real-time, conclusions

on large amounts of real-time data [185]. In such cases, the CEP might be added to a pol-

icy framework for high level policies: for example, where there are constraints with time

windows.

• Complex policy with rule reasoning

Although our XML policy model has provided a formal policy model, different ap-

proaches can offer unique advantages, which our policy model does not provide. For ex-

ample, business rules allow reasoning about decisions from a set of asserted facts. Process

consumers might need to adopt logic rule languages to address their problems relating to

complex reasoning. In such a case, other formal languages, such as Jess rules [95] for

business rules, might be required to express business policies.

7.2.2 Policy aspect model

Designs of many dynamic AOP frameworks are influenced by the ECA rule [186] [187].

Dynamic AOP can be achieved regarding a running target program as a series of events that

signal the occurrence of join points. Many works use AOP as an implementation approach

for policy enforcement [143][144], where aspects are integrated into a target program as a

non-intrusive approach for policy injection. All of these works have shown that policies and

aspects have similar concepts in many aspects, especially with the ECA rule based policies,

and this provided the inspiration for our work. In a policy aspect model, an XML policy

196

and an aspect are mapped and provide a unified and consistent policy model. In fact, the

mapping was considered within XML policy model design, thus resulting in a seamless

mapping result.

In the policy aspect model, the requirements of all categories of rules are considered

as crosscutting concerns. An aspect equals a policy as a module of concern. To realize a

aspect as a policy, we defined a mapping pattern between aspect and policy elements in the

policy aspect model (Table 7.1). Firstly, this provides an overall view of the policy model

comprises of the XML based policy and the policy AOP extension. Secondly, it provides

an aspect model for defining AOP specification, as will be described in the next section.

Aspect model XML Policy model

Aspect Policy

Join point Object

Advice type Activity state

Advice1 (Void return) Consumer action(s)

Advice2 (Non-Void return) Provider action with/without Consumer ac-

tion(s)

Table 7.1: Policy Aspect model

1. Join point maps to Object. Interesting points in the target program refer to policy

objects involved in the business processes.

2. Advice is mapped to Action(s) of rules. There are two categories of advices: the first

category has a void return, meaning the rule only contains consumer actions. It does

not expect any effect or provider action on the business processes (i.e., PAunexpected);

the second category has a return value, meaning that one provider action is defined in

the rule.

3. Advice type maps to Activity state. In this case, available advice types depend on

the join point, as not all join points are activity objects. Mapping join point only to

197

activity could fix this issue. However, the policy aspect model will has an inconsistent

view with the XML policy model.

4. Aspect maps to Policy, which packages the rules. Since in a multi tenancy environ-

ment, similar to our XML policy, the ownership of aspects restricts its valid range.

For each process consumer, the valid ranges of aspects are only the process instances

that are created by its own requests.

7.3 Policy aspect specification

There are various AOP frameworks that are developed following the AOP concept. They

generally use standard AOP terminology, which includes pointcut, advice, etc (described

in Chapter 2). The differences between the frameworks are specifications about the termi-

nology. The specifications describe the frameworks that are designed for different target

environments or that have different capabilities. In this section, we describe the policy

aspect specification. Also, the join point, pointcut, etc., in policy aspect specification are

described in the following subsections.

7.3.1 Join point model

A critical part in the design of any aspect-oriented language is the join point model [188].

The join point model provides the common frame of reference that makes it possible to

define the dynamic structure of cross cutting concerns. Our AOP framework supports the

join point model that is identical to the Object element of the XML policy model. As a

consequence, the different kinds of join points are business process execution, business

activity execution, resource/BO request/response, and violation occurrence. They are basic

situations or elements capturing business information in process executions, and have been

described in the Object element of the XML policy section (Section 5.3).

In comparison with other AOP frameworks such as AspectJ and AO4BPEL, that tar-

198

get programming languages, our join point model functions at a high level and does not

cover any program specific join points derived from the program’s code structure. Exam-

ples are constructor call or field get join points in AspectJ or SpringAOP for Java [189]

[190]; invoke activity or sequence activity join points in AOP4BPEL for BPEL [141] Our

join point model remains at a general business process logic level rather than caring about

any workflow or programming language implemented the process logic. Firstly, for a result

of consistency with the XML policies, cross cutting concerns are implemented with aspects

targeting business centric problems resulting from business policies, which are more about

business level information. Secondly, our AOP framework is built on top of the coordination

protocol, which does not specify any context information for any programming language

for business process implementation. Since we are not restricted to any programming lan-

guages, the framework is not limited to BPEL processes. The process provider could use

other workflow languages other than BPEL. However, our work will not discuss problems

and solutions on the providers’ side with regard to other workflow languages.

7.3.2 Pointcut language

In many AOP frameworks, such as AspectJ, pointcuts are designed by built-in Pointcut

Designators (PCDs), which are predicates on join points. A PCD denotes a kind of join

point, such as call(method) and get(field). These fixed, built-in sets of PCDs have some

disadvantages. They are not extensible and fail to provide operations to manipulate or

reason about pointcuts beyond weaving [191]. For this reason, some AOP frameworks [191]

[18] propose a functional query based pointcut language. In this case, the program source

code structure is represented as a data model, for example in an XML data structure. A

query language such as XQuery [192] or XPath [193] is then used as the pointcut language

specification.

We provide an interconnecting approach in our pointcut specification. We offer a set of

fixed PCDs and also support the use of query pointcut. In our approach, the AOP framework

199

Pointcut process(name signature, sma(algorithm signature, pa-
rameter))

Description Select join points whenever the specified business pro-
cess is requested.

Pointcut activity(name signature, sma(algorithm signature, pa-
rameter))

Description Select join points whenever the specified business ac-
tivity is requested.

Pointcut resource(name signature, sma(algorithm signature, pa-
rameter))

Description Select join points whenever the specified business ob-
ject is requested.

Pointcut violation(type signature, sma(algorithm signature, pa-
rameter))

Description Select join points whenever the specified constraint vi-
olation has occurred.

Pointcut query(XPath expression)
Description Select join points whenever the query has returned

true.

Table 7.2: PCDs definition

supports the semantic pointcut with extensible self-defined semantic matching algorithms

with fixed PCDs for join points, and also the ability to utilize the power of standard func-

tional query language for pointcut expressions. We define five PCDs in our approach (Table

7.2).

These PCDs include process, activity, resource, violation. These kinded PCDs match-

ing are based on the kind of a join point. They support the semantic pointcut by assigning a

semantic matching algorithm sma (optional) in pointcut expressions. The semantic match-

ing algorithms would be the same as what we defined for the XML policy model. The policy

developers can define a pointcut without a query language. In the following example, the

pointcut expression refers to all of the process with name ‘order inspection’. Wildcards ’*’

can also be used to match all signatures in pointcut designators.

process(′order inspection′)

200

Additionally, we add a query() designator to offer a query based pointcut language. A

pointcut expression uses XPath2.0 to query the join point information. The data model of

the query source is the same as for the Weavingrequest. However, the context information

is restricted in name and type elements, while the ServiceReferecne is not available in the

query data source. Firstly, as policies, our aspect objects are high level business elements

rather than implementation details. Secondly, this applies to the coordination cache speci-

fication for aspect weaving. Otherwise, we do not know if the result of aspect behaviour is

PAundefined or something else when the pointcut does not match. The following is a query

based example: the pointcut expression refers to all of the activity where the name contains

either ‘pay’ or ‘account’.

query(‘contains(//WeavingRequest/Activity/Name, ‘pay′) or

contains(//WeavingRequest/Activity/Name, ‘account′)′)

We also include the operators and (&&) and or (||) in the framework for the logical

connective of PCDs. Policy developers can connect query and non-query based on pointcut

expressions in a single pointcut expression. In the following example, a pointcut expression

is a combination of two types of pointcut expressions.

process(‘ ′) && query(‘ ′)

7.3.3 Advice Specification

The advice defines the crosscutting relationships within the aspect behaviour and locates

the place in which to inject this behaviour (join point).

7.3.3.1 Advice type

Advice types are in exactly the same activity state of the XML policy model, i.e. the Sg

defined in the coordination protocol, e.g., svalidatingpre, etc. This differs from the advice

types in common AOP frameworks, which include before, after, and around advice types.

201

First, it is consistent with the XML policy model. Second, the traditional advice types do

not satisfy the distributed AOP environment, as the location difference for the execution of

aspects and the target program are not considered. For example, in order to replace a BPEL

invoke activity join point with AO4BPEL, it must use the around advice. Instead of pro-

ceeding with the original invoke, a new invoke activity with the replaced service reference

could be defined in the around advice. With this approach, all replaced business activities

must be executed in a process at the consumer side, as all aspects are deployed on the con-

sumer side with the XML policies. In our case, the business activities that are replaced

would be executed at the process provider side. Still, our AOP framework does support

replaced activities that are executed on the consumer side (PAskip and then executing the

replacement with smanprevalpost advice).

7.3.3.2 Advice language

The behaviour of an advice needs to be described using an advice language. As a program-

ming language is targeted by other AOP frameworks, such as AspectJ, the target program-

ming language naturally becomes the advice language. For example, the advice language

of AO4BPEL is BPEL and the advice language of AspectJ is Java.

Since our distributed AOP approach does not target any specific programming language

and the execution of aspect behaviour execution is separated from the target program ex-

ecution environment, the supported advice language depends on the AOP framework im-

plemented by individual process consumers. In other words, the process consumers decide

their own programming language for implementing aspect behaviours for business pro-

cesses. The advice language could be Java, C#, etc. Both process consumers and providers

are not restricted to any particular programming language, as long as they comply with the

coordination protocol and the policy model. The AOP framework we developed for our

case study currently uses the Java language.

202

7.3.3.3 Advice template

Just having a programming language is not enough for advice development as there are still

some problems that need be solved in order to build a policy AOP framework.

1. First, developing an advice for aspect behaviours often requires context information

regarding the current join point of the target program [141]. For example, log all cus-

tomers who submitted orders in excess of 500 euros to the payment process activity.

The pointcut defined for this advice is the payment process activity. However, with-

out knowing the customer information that is processed by the activity, the advice

cannot be completed.

2. Second, since the join point model is designed for high level business elements only,

the pointcut may not always be able to clearly specify the required place for injecting

the aspect behaviours. For example, an aspect relies on a service reference of a

business activity; an aspect exists only between peak hours (e.g. 8am-5pm). This

requires further filtering of the current join point. We need the same constructor

similar to the Conditions element of the XML policy model.

3. Third, with the traditional AOP approach, such as AspectJ and AO4BPEL, the return

of an advice is either Void, or a Resource/BO, which is the result of the around type

of advices. Since aspects are treated as policies in our AOP concept, the behaviours

of advices are expected to have an identical consequence to the XML policies. An

advice would give a policy decision or a provider action after completion, so that

aspect specification will also comply with the coordination protocol for the multi-

tenancy requirement.

To address the above problems, we define the following advice template for our AOP

framework (Listing 7.1). An advice contains the pointcut and the advice type metadata

regarding advice behaviours, which is defined as a method. Weavingrequest contains con-

text information of the current join point and is defined as the input variable of the advice

method. The advice could contain a conditions method with an if-else control structure to

203

further filter the current joint point. The conditions method is separated from the advice

method, and can thus be reused for other advice methods. The advice behaviour is located

after the conditions method and the advice method could return a Void or an Object as its

behaviour result. The Void return means that is had no effect on the target program, i.e.

only consumer actions are defined in a rule (PAunexpected). There are three cases with the

return Object o, and this will be checked and handled in aspect weaving.

o

= {}

∈ PA\ {PAmanuplate}

∈ R

Case 1, the object has a null value, which is the same as a void return. Case 2, the

object represents a provider action, meaning a decision is given from a policy to the target

program. Case 3, the object is a Resource, meaning the aspect effects on the target program

and needs be taken by process providers. All un-handled exceptions will be thrown to the

parent process of aspect weaving, and will be described in the subsection outlining the fault

handling.

7.3.3.4 Aspect and lifecycle

In our framework, each aspect is either a Java class or bean. The advices of an aspect as

Java methods are defined in the aspect Java class (Listing 7.2). The pointcut and advice type

metadata of an advice are defined as Java annotation and retrieved by Java reflection. An

aspect instance is unique to each advice method call in aspect weaving, i.e., a new aspect

instance is created for each advice call. A singleton class can be defined outside the aspects

when it is required and can be called by the aspects, thus providing a singleton instance that

is shared across all advice calls.

204

Listing 7.1: Advice template
1 void adviceMethod1(WeavingRequest context) throws Exception {
2 if (conditionsMethod(context)) // optional
3 {
4 // behaviours
5 }
6 }
7
8 Object adviceMethod2(WeavingRequest context) throws Exception {
9 if (conditionsMethod(context)) // optional

10 {
11 // behaviours
12 // return behaviours result/null
13 }
14 else {
15 return new PaUndeterminedType();
16 }
17 }
18
19
20 Boolean conditionsMethod(WeavingRequest context) throws Exception {
21 }

7.3.3.5 Fault handling

Contrary to the XML policy model, the FaultHander element is designed in the policy

model for fault handling in policy weaving. The fault/exception of aspect weaving may also

occur, but faults that occur in aspects are expected to be handled by the policy developers

using the advice programs. The policy developers can use fault handling constructors that

are offered by the advice programming language, such as the try{} catch{} block of Java.

For example, a return statement with a pacancel could be found in the catch block for any

exceptions that occur in the advice execution for a fault rule. In such a case, the fault rule

would cancel the process execution in situations of exception during aspect weaving.

Since both aspects and the target program are executed separately on different partici-

pants in our case, the AOP framework considers two types of exceptions that are un-handled

or re-thrown from advice and aspect weaving (Listing 7.3).

1. One type of exception that appears on the target program (ViolationException), or

the violation of business processes. The exception means that the business process

execution has moved outside the safe boundary defined by the constraint rules. The

205

Listing 7.2: Policy aspect
// policy1
@Aspect
public class MyPolicyAspect {

// rule1
@Pointcut(...)
@AdviceType(...)
void adviceMethodOfRule1() {

// ...
}

// rule2
//...

// rule3
//...

}

exception object from the aspect will be converted into a Violation element as a result

of the aspect.

2. The others are the second type of exceptions (Exception). These exceptions do not

directly appear in the target program. Exceptions are indicators of bugs in the aspect

program development from policy developers. They are instances of the Exception

class or subclasses of Exception in the programming language (Java in our case), for

example, NullPointerException, etc. They result in a paundetemined provider action,

which is expected to be handled in the policy combining algorithms.

Please note, ViolationException is itself a subclass of Exception. It extends Exception

on implementation. ViolationException associates with the ViolationTypeType element that

is defined in the XML policy mode.

7.4 Aspect deployment and weaving

In our overall framework, AOP is an extension of our policy model rather than an entirely

separate module and the XML policy still plays a role for aspects deployment (Figure 7.2).

Aspects are treated as policy elements in a set of policies that are defined in a PolicySet

206

Listing 7.3: Fault handling for policy aspects
try {

// handling an aspect
//

} catch (ViolationException ve) {
PaViolateType pa = new PaViolateType();
pa.getViolation().add(ViolationTypeType.fromValue(ve.value));
return pa;

} catch (Exception e) {
return new PaUndeterminedType();

}

element. Deployed aspects will be weaved through the upgraded policy weaver. In the

following subsection, we detail aspect deployment and weaving.

Policy weaver
(upgraded with Aspect

weaving)

reference

Aspect filesAspect filesXML Policies
(upgraded with Aspect policy)

XML Policies
(upgraded with Aspect policy)

Figure 7.2: Aspect deployment and weaving

7.4.1 Aspect deployment

Deploying an aspect is similar to adding a new XML policy element. The Aspect element

is added to the children elements of the PolicySet in addition to the XML Policy element

to provide a choice between XML policy and Aspect in the upgraded policy schema. Fig-

ure 7.3 shows the upgraded PolicySet element in the policy schema with Aspect elements.

207

Please note, unrelated elements and attributes of PolicySet for this section are hidden in the

Figure 7.3 and for full details of the PolicySet refer to the policy model chapter.

Figure 7.3: Aspect : AspectType

Aspect refers to the real aspect file and it has the following attributes and elements.

1. Description - a description of this aspect from the policy developer.

2. policyId - a unique identification of the Policy or Aspect. It refers to the real aspect

class file developed by the policy developers. In our case, Java is used as the advice

language. A completed aspect file results in a Java class file.

3. priority - a positive integer that denotes the priority weight of this aspect in the policy

set. Default and minimal value is 0.

It is evident that aspect deployment relies on XML policies. From the XML policy

point of view, an aspect represents a single policy description which assumes a different

form in the policy set. From a pure AOP development perspective, the XML policy signi-

fies both the aspects deployment and the management configuration file. The Combining

and Sequencing algorithms defined in the PolicySet will still be applied to any deployed

policy aspects. The XML schema based policy approach and the AOP approach are inte-

grated seamlessly into the policy framework, and it is free for policy developers’ choices.

It provides a flexible way for policy developers to choose an appropriate approach. The

following example (Listing 7.4) shows a deployed Aspect, which is integrated with XML

208

policies.

Listing 7.4: Fault handling for policy aspects
<p1:PolicySet ...>

<p1:Objects/>
<p1:ActivityStates/>

<p1:Policy policyId="..." priority="0">...</p1:Policy>

<p1:Aspect policyId="requestor1.policy.aspect.OrderInspectionPolicy4"
priority="0">

<p1:Description>performance constraint policy</p1:Description>
</p1:Aspect>

<p1:Policy policyId="..." priority="0">...</p1:Policy>

...

</p1:PolicySet>

The XML policy as an underlying master policy manages deployed aspects in the fol-

lowing facets.

• Advice precedence

Multiple advices can be defined on the same join point. Advice precedence determines

the aspect weaving sequence [194]. Since different weaving orders can result in programs

that behave in various manners, the weaver must determine the exact weaving order and

the dependencies among the aspects. The XML policy declares the order in which as-

pects and XML policy elements are woven by policy sequence algorithms, e.g., Ordered

or PriorityBased-QuickSort. (Please refer to the algorithms of the policy model chapter).

Within an aspect, advices are woven in the textual order that they appear in the aspect

class file for the same advice type. Advices with different advice types are referred to the

coordination protocol.

• Advice combining

Advices can result in multiple returns when several advices are weaved at the same

join points. In current AOP approaches, this potential problem is countered by using an

atomic group - in ‘all or nothing’ manner [58], or with additional specifications, such as

209

constraints [195]. Since aspects are policies, multiple returns can result in varying policy

decisions. The XML policy asserts that the combination of policy decision with aspects

and XML policy elements are woven together by the policy combining algorithms, e.g.,

Pa-Violate-Override-Through-All, etc. (Please refer to the algorithms of the policy model

chapter, Chapter 5). The combining process depends on the advice types with different

policy combining algorithms.

7.4.2 Aspect weaving

Aspects are required to be integrated into the business process in order to address the sep-

arate concerns implemented by aspects for the business process, i.e. the aspect weaving

mechanism in the AOP concept.

Aspect weaving can be classified into static weaving and dynamic weaving. The static

weaving is done before target program deployment and the aspect code is compiled or built

into the target program [137]. It is similar to binding policies with a BPEL file where the

BPEL process is specialized for policies from a single consumer. This BPEL and policy

coupled approach does not meet our multi-tenancy requirement. The dynamic weaving oc-

curs at runtime [138] [139] and the change and deployed aspects do not affect the deployed

target program. This is an especially important factor in the multi-tenancy environment

where modifying or redeploying the business process is not allowed, as it could affect other

current process consumers. Additionally, it is infeasible to stop an ongoing LRT process

instance for editing aspects, as all previous completed tasks would require compensation

after stopping the process instance [141] [138].

The essential of dynamic weaving is a program interceptor. It is able to find the points

of program execution where an aspect is involved. It is typical for approaches to work on

program execution platforms or engines; for example, an aspect-aware workflow engine for

AO4BPEL [141], a JVM (Java VM) plug-in for a Java AOP [139]. Despite the fact that these

approaches are platform-dependent, there are critical limitations that make it impossible to

210

adapt them for our approach. First, aspects need be delivered to the process providers who

host the execution platforms. Hence, policies are exposed to the process providers which

consumers might object to for security reasons. Second, the platforms are not aware of

the multi-tenancy requirement. They fail to distinguish between the process instances and

the aspects owned by different process consumers. In our case, the aspects of a process

consumer should be exclusively weaved for the consumer only, but should not be involved

with any other process consumers.

Our approach adopts the dynamic weaving for aspect weaving. We use a similar ap-

proach as with our XML policy weaving to address the limitations of the current weaving

approaches we have discussed. Aspect weaving relies on the coordination protocol, as our

AOP model is likewise designed to comply with. The aspect weaving feature is upgraded

into the policy weaver component, and the weaver still remains in process governance com-

ponents due to the multi-tenancy requirement.

The upgraded weaver component takes care of both the XML policies and aspects.

During policy weaving with a policy set, if a policy element is an XML policy element,

the weaving is as we described in the policy chapter. Moreover, a provider action and

obligations are expected. If it is an aspect element, aspect information (such as pointcut)

is retrieved from the aspect class file, and one or more advice methods might be executed.

Once more, a provider action is expected after the aspect weaving. The returned provider

actions from XML policies and aspects are not different and will be combined in the policy

set. After all the policies and aspects are weaved, a final provider action will be returned

to the process providers in the same manner as the XML policies we demonstrated in the

earlier chapter.

211

7.5 Case study

In this section, we outline some case studies on concrete policy aspects as defined with an

AOP extension for the business policies of Consumer 1 (Section 3.2). It provides evidence

of the extensibility of our enhanced framework. Moreover, it allows for the adoption of

other policy languages and frameworks to counter the limitations of our policy framework,

and also the adoption is managed by our XML policy as the master policy.

7.5.1 Objective

The objective is to demonstrate how the AOP enhanced policy framework offers a great

extensibility on the XML based policy model and show that additional policy models could

be seamlessly added on top of our predefined XML policies. Also, adopted policy models

or frameworks can be used to express the business policies which our XML policy model

has difficulty handling.

The approach includes two case studies with two business policy examples as discussed

in Section 7.2 to meet this objective. In the first case, we have a simple high level policy

for slide time windows by utilizing event processing technology. In the second case, the

Jess rule [95] is adopted to express and reason about business policies with complex logic.

We do not argue that the adopted frameworks are the best options as they are only used to

prove our concept in this case study. Through both case studies, we display evidence of the

extensibility of our AOP enhanced policy framework.

7.5.2 Approach

7.5.2.1 Case 1: extension with high level policy for time windows

Business policy:

Average time cost for purchase order inspection activity executed in the last hour for

each order should be less than 5 seconds

212

For the above business policy, we need a constraint rule on activity performance. As

a pre-requirement, we need real-time monitoring of the activity execution events. As we

discussed, it is difficult to express the time windows in our policy model while also handling

large amounts of real-time information with our current framework. In this case, we develop

a parametrized high level policy for performance constraints on the activity by utilizing

event queries. It utilizes an event stream engine called Esper [196] for a policy framework,

which is extended for our policy framework. From this case study, we can demonstrate that

our policy framework is extended with the CEP engine with a simple high level policy for

process monitoring.

Listing 7.5 shows the defined policy aspect. The code for support functions and classes

are not shown here.

Listing 7.5: OrderInspectionPolicy4
1 package requestor1.policy.aspect;
2
3 import aspect.AdviceType;
4 ...
5
6 // >> Policy
7 @Aspect
8 public class OrderInspectionPolicy4 {
9

10 EPRuntime runtime = Esper.getProvider().getEPRuntime();
11
12 // >> rule 1
13 @Pointcut("activity(’purchase order inspection’)")
14 @AdviceType(ActivityStateType.MANIPULATING_PRE_VALIDATING_PRE)
15 private void monitoringRule1(WeavingRequestType context) throws Exception

{
16
17 ActivityEvent ae = new ActivityEvent();
18 ae.setTimeMs(System.currentTimeMillis());
19 ae.setActivity(context.getActivity());
20 ae.setActivityState(context.getActivityState());
21
22 runtime.sendEvent(ae);
23 }
24
25 // >> rule 2
26 @Pointcut("activity(’purchase order inspection’)")
27 @AdviceType(ActivityStateType.MANIPULATING_POST_VALIDATING_POST)
28 private void monitoringRule2(WeavingRequestType context) throws Exception

{
29
30 ActivityEvent ae = new ActivityEvent();
31 ae.setTimeMs(System.currentTimeMillis());
32 ae.setActivity(context.getActivity());

213

33 ae.setActivityState(context.getActivityState());
34
35 runtime.sendEvent(ae);
36 }
37
38 // >> rule 3
39 @Pointcut("activity(’purchase order inspection’)")
40 @AdviceType(ActivityStateType.MANIPULATING_PRE_VALIDATING_PRE)
41 private Object performanceConstraintRule(WeavingRequestType context)

throws Exception {
42
43 if (ActivityStatus.getInstance().getQoSPerformanceStatus().get("

purchase order inspection")) {
44 throw new ViolationException(ViolationTypeType.QO_S_PERFORMANCE);
45 }
46 return new PaValidateType();
47 }
48 }

The OrderInspectionPolicy4 has three advices and all of them will be trigged by the pur-

chase order inspection activity as defined in the pointcut. The first two advices signify util-

ity rules, which collect the system time for performance calculation. The monitoringRule1

(lines 12-23) sends an activity start event at smanprevalpre state, while the monitoringRule2

(line 15-36) sends an activity end event at smanpostvalpost state. Afterwards, the sent events

will be correlated for each purchase order and the activity in order to create a new activity

performance result event by a defined Esper EPL (Event Processing Language) [197] query.

Another EPL defined in an Esper UpdateListener will query the average performance of the

activity in the last 1 hour time window and update the activity performance violation status

periodically. The sizes of the time window and performance requirement parameter are ad-

justable in a separated file as a simple high level policy, which defines the input parameters

of predefined EPL query. The third validating-pre Advice - performanceConstraintRule

(lines 38-18), will check the performance violation status of the activity. If the violation

status is true, the ViolationException will be thrown. A paviolate with QoS performance

violation will be returned as the policy decision or provider action. The provider action will

then be combined in the PolicySet where the aspect is deployed.

214

7.5.2.2 Case 2: extend with Jess rule for rule reasoning

Business policy:

Item partNumber’32541’ is a hazard item. Item partNumber’1234’ is a hazard item.

Sellers with an Irish address are in a controlled area for selling. Buyers with a UK address

are in a controlled area for buying. Any hazard item in any controlled area is a controlled

transaction. The transaction will be approved if it is not a controlled transaction.

The above business policy defines controlled transactions. This could be achieved by

a policy with a constraint rule before the order inspection activity. The business policy

contains a set of rules for controlled transactions, and one rule also depends on other rules.

Thus, it is complex and difficult to formalise them using our XML policy model. We expect

that the business policy can be expressed in a rule language with reasoning capability and

this also makes it easier to maintain and update the policy for the policy developer, for

example, adding a new controlled area, etc. In this case, we adopt the Jess rule [95] on top

of our constraint policy aspect. The rules of the business policy are described as Jess rules

in a separated rule file and executed by a Jess rule engine. From this case study, we can

demonstrate that our policy framework can be extended with a policy language such as Jess

rule for complex policies and reasoning. The following describes the policy aspect.

Listing 7.6: ControlledTransactionPolicy
1 package requestor1.policy.aspect;
2
3 import jess.Rete;
4 ...
5
6 @Aspect
7 public class ControlledTransactionPolicy {
8
9 // >> rule 1

10 @Pointcut("activity(’order inspection’)")
11 @AdviceType(ActivityStateType.MANIPULATING_PRE_VALIDATING_PRE)
12 public Object constraintRule(WeavingRequestType context) throws Exception

{
13
14 // check conditions for approving transaction
15 if (!controlledTransactionConditions(context)) {
16 return new PaUndeterminedType();
17 } else {
18 return new PaValidateType();

215

19 }
20 }
21
22 // conditions
23 private boolean controlledTransactionConditions(WeavingRequestType context

) throws Exception {
24
25 PurchaseOrder po = getPurchaseOrder(context);
26
27 Rete engine = new Rete();
28 // setup Jess rule engine with controlledTransaction jess rules
29 engine.batch(getRuleFile("controlledTransaction.clp"));
30 // add new facts
31 engine.add(po.getBuyer());
32 engine.add(po.getSeller());
33 engine.addAll(po.getItem());
34 engine.run();
35 // get result
36 Iterator ct = engine.getObjects(new Filter.ByClass(

ControlledTransation.class));
37 if (ct.hasNext()) {
38 return true;
39 } else {
40 return false;
41 }
42 }
43
44 }

The controlledTransactionPolicy has one advice (lines 9-20), which applies the suitable

offers on the purchaseOrder resource before the order inspection activity execution. It will

check the buyer, seller and each item in the resource to decide if it is a controlled transac-

tion as conditions of advices (controlledTransactionConditions, lines 22-42) to approve the

transaction. The decision regarding the controlled transaction is determined by the Jess rule

engine with the controlled transactions rule file (controlledTransaction.clp). The policy will

validate the order if it is not a controlled transaction. The decision will be combined with

other decisions from other policies defined on the process. Listing 7.7 shows a fragment of

the Jess rule file.

Listing 7.7: controlledTransaction.clp
1 (import bo.*)
2 (deftemplate Item (declare (from-class Item)))
3 ...
4
5 (defrule controlled-area-Ireland
6 (Seller {address.country == "Ireland"} (address.country ?area))
7 =>
8 (add (new ControlledArea ?area)

216

9)
10 ...

7.5.3 Result and Discussion

The above policy aspects are deployed in a PolicySet, and are integrated with previous

policies we defined in the policy chapter, so that the above policy aspects are integrated into

and managed by our XML policy model. Any business policies already expressed in our

XML policy model will still apply to business processes. The same test case based approach

is used, and the result shows that all policies are enforced. All policy decisions or provider

actions are combined as managed by our XML policies. From the case study, we can see

that the AOP enhanced policy framework offers great extensibility, as other frameworks and

policy models or rules can be adopted easily by means of aspects. Moreover, other policy

models can be integrated on top of our policy model as united policies by defining policy

aspects. Both XML policies and policy aspects are in a unified policy model.

AOP is a programming paradigm, and an advice language is a type of programming

language. Developing policies with aspects in a programming language which is for sys-

tem development, is certainty more complex than expressing business policies in our XML

policy language which is for system configuration. Still, the AOP is only an extension of

our enhanced policy framework and functions as an alternative to an XML based policy

model for policy developers.

There is a limitation we have identified during the case study. Since policy aspects

are Java classes, deploying aspects also requires to have the compiled .class files and the

referred library files in the application deployed in the application container. We only need

to update the XML policy file to apply a policy on business processes at runtime, where

the class files are already deployed in the application container. However, with new policy

aspects, where class files were not in the application container, we need to redeploy the

application, which means that the process runtime governance is interrupted during the

217

redeployment stage. This problem also applies when the policy developers need to change

the code of aspects.

7.5.4 Comparison with related work

In this section, we discuss work related to AOP in service computing and compare this with

our AOP enhanced policy framework.

Firstly, we discuss the some of the joint work on policies and an AOP approach, as our

work involves both domains. Afterwards, we discuss general AOP frameworks developed

for Web services and business processes.

There is an amount of work [143] [144] [145] that discusses the combination of policy

and AOP. However, we have a very different concept and aim. In the related work, aspects

are used for the policy enforcement implementation of defined policy models, such as for

WS-Policy [144] and business rule [147]. So the policy enforcement could be decoupled

from the target program, i.e., Web service logic implementation. In our concept, aspects

function as as an extension of XML policies, an alternative to XML Policy elements and

coexisting in a policy assembly. It aims to provide a programming approach to define com-

plex policy requirements, or integrate other policies or frameworks on top of our defined

policy model. So our policy model can take advantage of other policies or systems, while

also acting as a master policy model for top layer policies.

Both [146] and [147] have discussed the problems with the business rule approach by

pointing to a lack of modularity. However, the problem we addressed is not only about

adopting a business rule system or any another rule system as a separate module. Instead,

we discuss adopting multiple rule or policy models that might be needed. The critical

problem is how to provide an integrated approach that solves the conflicts between different

policies defined in different rule or policy models for business processes.

In the following, we detail and compare a common Java AOP framework (SpringAOP

[198]), two BPEL specialized AOP frameworks(AO4BPEL [141], A4B [58]) and our policy

218

AOP. The comparison is based on three views: the general concept, AOP specifications, and

special features, to show the differences and advantages of our work.

General concept

Spring AOP AO4BPEL A4B Policy AOP
Target pro-
gram

Java
(OO language)

BPEL
(Workflow lan-
guage)

BPEL
(Workflow lan-
guage)

Business pro-
cess

Spring AOP and AO4BPEL are generic AOP frameworks. A4B is influenced by the

publish/subscribe system. An AOP broker is added between a BPEL engine and an ESB. It

uses WS-Notification for publishing events to the broker, which is able to weave the aspect

onto the BPEL processes. However, our work is built upon a policy based system.

Target program - SpringAOP is a commonly used AOP framework for the Java lan-

guage. We consider some other AOP frameworks we have studied: AspectJ and JbossAOP

[199] are in the same family as SpringAOP, as they target an OO programming language.

In this study, we use SpringAOP to represent all of them. AO4BPEL and A4B are two

frameworks that we have discovered for BPEL processes. Both works relate closely to our

work as BPEL is the de-facto standard language for describing and executing business pro-

cesses. In comparison, our work targets generic business processes without reference to any

concrete workflow languages.

AOP specification

Join point model - SpringAOP and AO4BPEL derive from the target programming lan-

guage perspective. A4B comes from the publish/subscribe system perspective, the join

point model is expressed in terms of the events the BPEL engine needs to generate and

notify, e.g., ActivityReady, Link Evaluated, etc. Our work stems from a policy system per-

spective.

Pointcut - Joint point based PCDs or query based pointcut language have been used in

these frameworks. The syntactic and semantic differences with pointcut languages are not

219

Spring AOP AO4BPEL A4B Policy AOP
Join point
model

Method execu-
tion

Activity (Ser-
vice invoca-
tion),
internal (SOAP
message in/out)

BPEL engine
Event

Policy object

pointcut Joint point
based PCDs

Query based A Joint point
based PCD

Joint point
based PCDs &
query PCD

Advice type Before
Around
After returning
After throwing
After

Before
Around
After

Before
Instead
After

Activity state
types

Advice
language

Java BPEL A4B XML
schema

Java

Advice
return

Exception
Object

Message Object Service refer-
ence

Policy actions

Fault han-
dling

Via advice Via advice - Via advice and
policy combin-
ing algorithm

Aspect
deployment

Spring Configu-
ration XML

Deploy in
BPEL engine

WS-Policy
attachment
XML

Policy XML

Aspect
weaving

Static
Dynamic

Dynamic Dynamic Dynamic

considered in this part of our work in the AOP research domain.

Advice type - Our work has the largest number of advice types, which are derived

from the coordination protocol. Our work does not offer the around or instead advice,

which is common in other frameworks. However, it could be achieved via PAreplace and

PAmanipulating provider actions using our advice types.

Advice language - SpringAOP and AO4BPEL have target programming languages as

the advice language. Advices in A4B only are service invocation notification events for

the ESB. It simply uses its own schema (imports WS-Addressing) to describe the service

reference. Java is used in our case.

Advice return - SpringAOB, AO4BPEL could return an object(BO) to a target program

via the around or instead advice. It could throw an exception to prevent execution proceed-

ing in SpringAOP. A4B returns an event which includes a service reference. In our case,

220

a provider action or policy decision is the returned object. A4B and our work both return

business objects to the target program through event or provider actions execution. In our

work, all thrown exceptions will be converted into a policy decision.

Fault handling - SpringAOP, AO4BPEL and our work all can handle exceptions via

advices by utilizing the fault handler feature of the programming language. Moreover,

our work also could handle exceptions that are not defined in fault handlers of advices by

utilizing the combining algorithms. Fault handling is not discussed in A4B.

Aspect deployment - AO4BPEL deploys aspects as BPEL in an enhanced BPEL engine.

The rest of the approaches use XML files to deploy aspects. In our case, the XML file itself

is a policy file.

Aspect weaving - Spring AOP supports both static (compile time via the AspectJ com-

piler) and dynamic weaving. The other approaches only use dynamic weaving.

Special features

Spring AOP AO4BPEL A4B Policy AOP
Distributed
aspect

Not available Not available Yes Yes

Multi-tenant
aspects

Not available Not available Not available Yes

Multiple
policies
integrations

Not available Not available Not available Yes

Distributed aspect - Spring AOP and AO4BPEL weave aspects into a target program is

under the assumption that they are deployed on the same platform or application container.

A4B uses the event notification mechanism to enable the deployment and execution of

aspect in a remote location, rather than the target program execution platform. Our work

advocates distributed aspects by utilizing the coordination protocol.

Multi-tenant aspect - Multi-tenancy in SpringAOP, AO4BPEL and A4B is not consid-

ered. Our work supports multi-tenant aspects by employing it on top of the coordination

framework. Importantly, because of aspects could be deployed on the process consumers’

221

side, it is possible to hide policies from any other parties.

Multiple Policies integrations - SpringAOP and AO4BPEL are generic AOP and do not

focus on policies. In A4B, aspects as assertions are specified in the WS-Policy attachment

based on the grammar defined in WS-Policy. However, it does not consider or address the

possible conflicts that might occur in different policies. And these conflicts could also occur

between policy assertions defined in the WS-Policy itself. Our unified policy model clearly

addresses this problem.

With the above comparisons, we can see that other AOP frameworks do not target or

deal with the specific requirements needed for our problem. For the extensibility of our

policy framework with the multi-tenancy requirement, we have a uniquely designed AOP

framework.

7.6 Conclusion

In this chapter, we presented an AOP enhanced policy framework to offer a great extensi-

bility to the original policy framework. Aspects are realized as policies of the XML policy

model. As a result, other policy models and frameworks could be adopted, and under

the management of our XML policy model, which acts as the master policy. The AOP

framework provides policy aspect specification which specifies how to implement policy

aspects for business processes, and aspect deployment and weaving specification specifies

how aspects can be developed and weaved with XML policies. Our AOP framework design

addresses the special features, such as multi-tenancy, which are not considered with other

AOP frameworks. We effectively used two case studies to demonstrate our objective with

the extensibility on the policy framework.

222

Chapter 8

Conclusion

Automated business processes are important for organisations’ operations. The SOA style,

RAs and frameworks do not address the problem of business process or service process

sharing between cross organisations consumers, which is significantly highlighted with the

emergence and growing of cloud computing and BPO.

Our work is designed to share business processes as Web services. It is a distinct prob-

lem to be positioned in a different cloud layer compared with the closed work of business

processes or BPEL in cloud computing. They provide BPEL processes as end user applica-

tions or shared BPEL engines, such as the Cafe project, but do not offer BPEL processes as

software components, just as Web services. For business processes as software components

in the form of Web services that are available to be shared on the Internet, the overall archi-

tectural design and development needs a solution, which we have provided. Our solution

consists of an architectural style and a supported architecture framework, which are the two

main parts of this thesis to address the problem. Furthermore, we divided the main parts

into sub-problems, and addressed them in different solution chapters. We used a case study

section in each of the solution chapters to demonstrate and evaluate our solution gradually.

In this chapter, we will provide a work summary (Section 8.1) and also discuss the

potential for future research (Section 8.2).

223

8.1 Work summary

The following conclusions can be drawn from the experiences of this PhD work.

• With the concept of SaaS in cloud computing, the software is not only restricted to

end user applications or simple application APIs, such as task Web services, but is

also possible in other contexts, such as business process or process logic sharing with

the concept of (Business) Process as a Service.

• Business processes are valued assets of enterprises. A shareable process would in-

crease the reuse potential for various consumers and make profits from external con-

sumers with developed business processes. This makes maximum long-term financial

returns for process providers. Process consumers can quickly respond to different

circumstances and continues process improvement, with better control of time, cost

constraints, and investment protection on process development.

• The importance of adaptation and customization for external monitoring and control

is critical for the Process as a Service concept. It is overlooked in the current SOA

style and RAs. A separate architectural SPA style focuses on the issues, defining the

process governability principle to extend the SOA style. This addresses the problem

of process sharing, and can affect the design and development of orchestrated task

services or processes in association with the original principles of the SOA style.

• Consumers’ requirements as business policies regarding business processes could be

expressed in a formal policy language, which acts as a customization metadata of

business processes. We have provided an XML schema based policy specification

to formalize four categories of rules of policies, which we identified from different

aspects related to business process execution (flexibility, constraint, fault and utility

rules).

• Process on-the-fly customization and adaptation can be achieved from process con-

sumers by means of process runtime governance based on process element - business

activity. A coordination framework and protocol could be used for activities within

224

processes or subprocesses from different providers to work together on process exe-

cution for business transitions requested by consumers for the multi-tenancy capabil-

ity. We have provided the coordination framework and protocol correlated with our

policy model, as well as the process design template for implementations.

• In some cases, it may be difficult to address the business policies or requirements

of process consumers in a single policy model or framework, and is also possible

for conflicts regarding policies defined in many policy models to arise. Aspects can

be modelled as policies on top of our policy model, offering extensibility of our

policy model while also complying with coordination protocols. We have provided

an aspect specification for the extensibility of our policy as the master policy in the

overall policy framework.

8.2 Future work

This section describes the ideas for future work that would extend the current work. Each

idea proposes the manner in which the idea of each chapter in this research could be ex-

tended in the future.

• Measuring of runtime governability

The process runtime governability is the key for retaining customizability and adapt-

ability offered to process consumers. A standard approach and specification on runtime

governability measurement is important for evaluating and comparing between different

process designs and service process architectures. Related work could be adapted from

different fields, such as requirement analysis [165], and variability management of SPL

[114]. Inevitably, the compensative metrics and approaches for measuring process runtime

governability require more research.

• Highly level policy modelling and related algorithms

225

High level goal policies are intuitive, and can be easily used to express business policies

or goals for business developers. Some policy frameworks offer goal policy modelling [200]

[201] for directly expressing goals or assuming users without strong technical background.

The models and algorithms inside the policy frameworks, such as cost model, scheduling

algorithms, selection algorithms, guarantee the goals defined in the high level policy are

met during the process executions.

• Enhancements of coordination protocol and framework

The current coordination protocol only involves the process governance at the process

logic level, but could be extended to include other levels, such as governance at process

engine level for consumers. A specific process execution framework is required to be de-

veloped to implement the protocols and with multi-tenancy capability [77]. The coordina-

tion frameworks might be redesigned to support generic BPEL processes without requiring

specific process design using BPEL templates. It is especially important to offer process

consumers more runtime governability, but less complexity on process development for

process providers.

• Scalability of coordination framework

The governance component with a coorc is at the centre of all coordination conver-

sations for a process consumer. With growing of business processes and organisations’

business transactions, an extensive amount of data needs to be transmitted and handled effi-

ciently between coordinators. Thus, it is important to have a scalable data processing ability

to accommodate the growth of businesses and their requirements. Approaches, such as pre-

diction or an improved cache mechanism, could be utilized and developed to improve the

scalability of the coordination framework.

• Enhancements of aspect specification

The aspect specification can be enhanced by supporting other advice types (around,

etc.), or having a workflow like advice language, etc. This will enhance the power of the

AOP framework, and will make it easier for developers who have experience with workflow

226

modelling, etc. The join point model and point cut language could also be extended with

the enhanced coordination protocol.

227

Bibliography

[1] Ali Arsanjani, Liang-Jie Zhang, Michael Ellis, Abdul Allam, and Kishore
Channabasavaiah. S3: A service-oriented reference architecture. IEEE IT Profes-
sional, 9(3):10–17, 2007.

[2] Liang-Jie Zhang and Qun Zhou. Ccoa: Cloud computing open architecture. In IEEE
International Conference on Web Services, 2009.

[3] Oasis web services coordination (ws-coordination), 2009. http://docs.
oasis-open.org/ws-tx/wscoor/2006/06.

[4] Thanh Thoa Pham Thi, Markus Helfert, Fakir Hossain, and Thang Le Dinh. Discov-
ering business rules from business process models. In International Conference on
Computer Systems and Technologies, pages 89–94, 2010.

[5] Mike Havey. Essential Business Process Modeling. O’Reilly, 2005. pages 18.

[6] Paul Grefen, Rik Eshuis, Nikolay Mehandjiev, Giorgos Kouvas, and Georg Weich-
hart. Internet-based support for process-oriented instant virtual enterprises. IEEE
Internet Computing, 13(6):65–73, 2009.

[7] Ralph Mietzner. A Method and Implementation to Define and Provision Variable
Composite Applications, and its Usage in Cloud Computing. PhD thesis, 2009. De-
partment of computer science, electrical engineering and information technology,
Universitt Stuttgart.

[8] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in
the clouds: Towards a cloud definition. ACM SIGCOMM Computer Communication
Review, 39(1), 2009.

[9] Yi Wei and M. Brian Blake. Service-oriented computing and cloud computing: Chal-
lenges and opportunities. IEEE Internet Computing, 14(6):72–75, 2010.

[10] Rik Eshuis and Alex Norta. A framework for service outsourcing using process
views. In IEEE International Enterprise Distributed Object Computing Conference,
2010.

[11] Thomas Erl. SOA Principles of Service Design. Prentice Hall. 2008. pages 110, 113.

228

http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://docs.oasis-open.org/ws-tx/wscoor/2006/06

[12] Marten van Sinderen. From service-oriented architecture to service-oriented enter-
prise. In International Workshop on Enterprise Systems, 2009.

[13] Linang-jie Zhang, Jia Zhang, and Hong Cai. Service computing. Tsinghua university
press and Springer, 2007. pages 29, 90, 108.

[14] Jeff A. Estefan, Ken Laskey, Francis G. McCabe, and Danny Thornton. Oa-
sis reference architecture foundation for service oriented architecture1.0 draft
2, 2009. http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/
soa-ra-cd-02.pdf.

[15] W3c web services policy 1.2 - framework (ws-policy). http://www.w3.org/
Submission/WS-Policy.

[16] Abdelkarim Erradi. Policy-Driven Framework for Manageable and Adaptive
Service-Oriented Processes. PhD thesis, 2008. Computer Science and Engineer-
ing, The University of New South Wales.

[17] Luciano Baresi and Sam Guinea. Self-supervising bpel processes. IEEE Transac-
tions on Software Engineering, 37(2):247 – 263, 2011.

[18] Anis Charfi and Mira Mezini. Ao4bpel: An aspect-oriented extension to bpel. World
Wide Web Journal, 10(3):309 – 344, 2007.

[19] Chang Jie Guo, Wei Sun, Ying Huang, Zhi Hu Wang, and Bo Gao. A framework for
native multi-tenancy application development and management. In IEEE Interna-
tional Conference on E-Commerce Technology and IEEE International Conference
on Enterprise Computing, E-Commerce and E-Services, pages 551–558, 2007.

[20] Frederick Chong and Gianpaolo Carraro. Architecture strategies for catching
the long tail, 2006. http://msdn.microsoft.com/en-us/library/
aa479069.aspx.

[21] Oasis extensible access control markup language (xacml) 3.0,
2010. http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-core-spec-cs-01-en.html.

[22] Anne H. Anderson. An introduction to the web services policy language (wspl).
In IEEE International Workshop on Policies for Distributed Systems and Networks,
2004.

[23] Thomas Erl, Anish Karmarkar, Priscilla Walmsley, Hugo Haas, L. Umit Yalcinalp,
Kevin Liu, David Umit Orchard, Andre Tost, and James Pasley. Web Service Con-
tract Design and Versioning for SOA. Prentice Hall, 2008. pages 486.

[24] Neal Leavitt. Is cloud computing really ready for prime time? IEEE Computer,
42(1):15 – 20, 2009.

229

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf
http://www.w3.org/Submission/WS-Policy
http://www.w3.org/Submission/WS-Policy
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.html

[25] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science
in information systems research. MIS Quarterly, 28(1):75 – 105, 2004.

[26] Mary Shaw and Paul Clements. A field guide to boxology: Preliminary classification
of architectural styles for software systems. In International Computer Software and
Applications Conference, 1997.

[27] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, 2000. Information and Computer Science, Univer-
sity of California, Irvine.

[28] Ali Arsanjani. Service-oriented modeling and architecture, 2004.
http://www.ibm.com/developerworks/webservices/library/
ws-soa-design1/.

[29] Justin Ryan Erenkrantz. Computational REST: A New Model for Decentralized,
Internet-Scale Applications. PhD thesis, 2009. Information and Computer Science,
University of California, Irvine.

[30] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web archi-
tecture. ACM Transactions on Internet Technology, 2(2):115–150, 2002.

[31] Mary Shaw and Paul Clements. Toward boxology: Preliminary classification of ar-
chitectural styles. In International software architecture workshop and international
workshop on multiple perspectives in software development, 1996.

[32] Jr. Rob High, Stephen Kinder, and Steve Graham. Ibm soa foundation:
An architectural introduction and overview, 2005. http://www.ibm.com/
developerworks/webservices/library/ws-soa-whitepaper/.

[33] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall/Pearson PTR, 2005. pages 279-320.

[34] Opengroup soa reference architecture, 2009. https://www.
opengroup.org/projects/soa-ref-arch/uploads/40/19713/
soa-ra-public-050609.pdf.

[35] W3c web services architecture, 2004. http://www.w3.org/TR/ws-arch/.

[36] Oasis open service component architecture (sca). http://oasis-opencsa.
org/sca.

[37] Mike Edwards. Relationship between sca and bpel, 2007. http://osoa.org/
display/Main/Relationship+between+SCA+and+BPEL.

[38] Clement Escoffier, Richard S. Hall, and Philippe Lalanda. ipojo: an extensible
service-oriented component framework. In IEEE International Conference on Ser-
vices Computing, 2007.

230

http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www.ibm.com/developerworks/webservices/library/ws-soa-whitepaper/
http://www.ibm.com/developerworks/webservices/library/ws-soa-whitepaper/
https://www.opengroup.org/projects/soa-ref-arch/uploads/40/19713/soa-ra-public-050609.pdf
https://www.opengroup.org/projects/soa-ref-arch/uploads/40/19713/soa-ra-public-050609.pdf
https://www.opengroup.org/projects/soa-ref-arch/uploads/40/19713/soa-ra-public-050609.pdf
http://www.w3.org/TR/ws-arch/
http://oasis-opencsa.org/sca
http://oasis-opencsa.org/sca
http://osoa.org/display/Main/Relationship+between+SCA+and+BPEL
http://osoa.org/display/Main/Relationship+between+SCA+and+BPEL

[39] Clement Escoffier and Richard S. Hall. Dynamically adaptable applications with
ipojo service components. In International conference on Software composition,
2007.

[40] Longji Tang, Jing Dong, Yajing Zhao, and Liang-Jie Zhang. Enterprise cloud service
architecture. In IEEE International Conference on Cloud Computing, 2010.

[41] Longji Tang, Jing Dong, Tu Peng, and Wei-Tek Tsai. Modeling enterprise service-
oriented architectural styles. Service Oriented Computing and Applications, 4(2):81–
107, 2010.

[42] Chris Peltz. Web services orchestration and choreography. IEEE Computer,
30(10):46–52, 2003.

[43] Claus Pahl and Yaoling Zhu. A semantical framework for the orchestration and
choreography of web services. In International Workshop on Web Languages and
Formal Methods, 2005.

[44] Boris Lublinsky. Service composition, 2007. http://www.infoq.com/
articles/lublinsky-soa-composition.

[45] Oasis web services composite application framework. http://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf.

[46] Sheila McIlraith and Tran Cao Son. Adapting golog for composition of semantic web
services. In International Conference on Principles of Knowledge Representation
and Reasoning, 2002.

[47] Dan Wu, Evren Sirin, James A. Hendler, Dana S. Nau, and Bijan Parsia. Htn planning
for web service composition using shop2. Web Semantics: Science, Services and
Agents on the World Wide Web, 1(4):377–396, 2004.

[48] Evren Sirin, James Hendler, and Bijan Parsia. Semi-automatic composition of web
services using semantic descriptions. In Web Services: Modeling, Architecture and
Infrastructure workshop in conjunction with ICEIS, 2003.

[49] Huiyuan Zheng, Jian Yang, and Weiliang Zhao. Qos analysis and service selection
for composite services. In International Conference on Services Computing, 2010.

[50] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for web services selec-
tion with end-to-end qos constraints. ACM Transactions on the Web, 1(1), 2007.

[51] Danilo Ardagna and Barbara Pernici. Adaptive service composition in flexible pro-
cesses. IEEE Transactions on Software Engineering, 33(6):369 – 384, 2007.

[52] Oasis web services business process execution language (ws-bpel) 2.0, 2007. http:
//docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

231

http://www.infoq.com/articles/lublinsky-soa-composition
http://www.infoq.com/articles/lublinsky-soa-composition
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[53] Rania Khalaf, A Keller, and Frank Leymann. Business processes for web services:
Principles and applications. IBM Systems Journal, 45(2):425 – 446, 2006.

[54] W.M.P. van der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distributed and Parallel Database, 14(1):5–51, 2003.

[55] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Runtime software adap-
tation: Framework, approaches, and styles. In International Conference on Software
Engineering, 2008.

[56] Abdelkarim Erradi, Piyush Maheshwari, and Vladimir Tosic. Policy-driven mid-
dleware for self-adaptation of web services compositions. In ACM/IFIP/USENIX
International Middleware Conference, 2006.

[57] Yunzhou Wu and Prashant Doshi. Making bpel flexible adapting in the context
of coordination constraints using ws-bpel. In IEEE International Conference on
Services Computing, 2008.

[58] Dimka Karastoyanova and Frank Leymann. Bpel’n’ aspects: Adapting service or-
chestration logic. In IEEE International Conference on Web Services, 2009.

[59] Kareliotis Christos, Vassilakis Costas, and Georgiadis Panayiotis. Enhancing bpel
scenarios with dynamic relevance-based exception handling. In IEEE International
Conference on Web Services, 2007.

[60] Danilo Ardagna, Marco Comuzzi, Enrico Mussi, Barbara Pernici, and Pierluigi Ple-
bani. Paws: A framework for executing adaptive web-service processes. IEEE Soft-
ware, 24(6):39–46, 2007.

[61] Girish Chafle, Koustuv Dasgupta, Arun Kumar, Sumit Mittal, and Biplav Srivastava.
Adaptation in web service composition and execution. In IEEE International Con-
ference on Web Services, 2006.

[62] Kareliotis Christos, Costas Vassilakis, Efstathios Rouvas, and Panayiotis Georgiadis.
Qos-aware exception resolution for bpel processes: A middleware-based frame-
work and performance evaluation. International Journal on Web and Grid Services,
5(3):284 – 320, 2009.

[63] Liangzhao Zeng, Hui Lei, Jun-jang Jeng, Jen-Yao Chung, and Boualem Benatallah.
Policy-driven exception-management for composite web services. In IEEE Interna-
tional Conference on E-Commerce Technology, 2005.

[64] Kareliotis Christos, Costas Vassilakis, Efstathios Rouvas, and Panayiotis Georgiadis.
Exception resolution for bpel processes: a middleware-based framework and per-
formance evaluation. In International Conference on Information Integration and
Web-based Applications and Services, 2008.

232

[65] Peter Hrastnik and Werner Winiwarter. Twso - transactional web service orches-
trations. In International Conference on Next Generation Web Services Practices,
2005.

[66] Adina Mosincat and Walter Binder. Transparent runtime adaptability for bpel pro-
cesses. In International Conference on Service-Oriented Computing, 2008.

[67] Gerhard Friedrich, Mariagrazia Fugini, Enrico Mussi, Barbara Pernici, and Gaston
Tagni. Exception handling for repair in service-based processes. IEEE Transactions
on Software Engineering, 36(2):198 – 215, 2010.

[68] Sattanathan Subramanian, Philippe Thiran, Nanjangud C. Narendra, Ghita Kouadri
Mostefaoui, and Zakaria Maamar. On the enhancement of bpel engines for self-
healing composite web services. In International Symposium on Applications and
the Internet, pages 33–39, 2008.

[69] Tobias Anstett, Frank Leymann, Ralph Mietzner, and Steve Strauch. Towards bpel
in the cloud: Exploiting different delivery models for the execution of business pro-
cesses. In IEEE Congress on Services - I, pages 670–677, 2009.

[70] Tobias Anstett, Dimka Karastoyanova, Frank Leymann, Ralph Mietzner, Ganna
Monakova, Daniel Schleicher, and Steve Strauch. Mc-cube: Mastering customiz-
able compliance in the cloud. In International Joint Conference on Service Oriented
Computing, 2009.

[71] Christoph Fehling, Frank Leymann, and Ralph Mietzner. A framework for optimized
distribution of tenants in cloud applications. In IEEE International Conference on
Cloud Computing, 2010.

[72] Ralph Mietzner, Frank Leymann, and Mike P. Papazoglou. Defining composite
configurable saas application packages using sca, variability descriptors and multi-
tenancy patterns. In International Conference on Internet and Web Applications and
Services, 2008.

[73] Ralph Mietzner, Frank Leymann, and Tobias Unger. Horizontal and vertical combi-
nation of multi-tenancy patterns in service-oriented applications. Enterprise Infor-
mation Systems, 4(3), 2010.

[74] Tobias Unger, Ralph Mietzner, and Frank Leymann. Customer-defined service level
agreements for composite applications. Enterprise Information Systems, 3(3):369–
391, 2009.

[75] Frederick Chong, Gianpaolo Carraro, and Roger Wolter. Multi-tenant data
architecture, 2006. http://msdn.microsoft.com/en-us/library/
aa479086.aspx.

[76] George Reese. Cloud Application Architectures - Building Applications and Infras-
tructure in the Cloud. O’ Reilly, 2009. pages 3.

233

http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://msdn.microsoft.com/en-us/library/aa479086.aspx

[77] Milinda Pathirage, Srinath Perera, Indika Kumara, and Sanjiva Weerawarana. A
multi-tenant architecture for business process executions. In IEEE International
Conference on Web service, 2011.

[78] Afkham Azeez, Srinath Perera, Dimuthu Gamage, Ruwan Linton, Prabath Siriwar-
dana, Dimuthu Leelaratne, Sanjiva Weerawarana, and Paul Fremantle. Multi-tenant
soa middleware for cloud computing. In IEEE International Conference on Cloud
Computing, 2010.

[79] Henri Naccache, Gerald C. Gannod, and Kevin A. Gary. A self-healing web server
using differentiated services. In International Conference on Service Oriented Com-
puting, pages 203–214, 2006.

[80] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. IEEE
Computer, 36(1):41–50, 2003.

[81] Steffen Lamparter. Policy-based Contracting in Semantic Web Service Markets. PhD
thesis, 2007. Karlsruhe Service Research Institute, University of Karlsruhe.

[82] Morris Sloman. Policy driven management for distributed systems. Journal of Net-
work and Systems Management, 2(4):333–360, 1994.

[83] Wohl Associates. Soa governance - an ibm white paper, 2006. http:
//www-01.ibm.com/software/solutions/soa/Amy_Wohl_SOA_
Governance_Analyst_White_Paper.pdf.

[84] Opengroup: Service oriented architecture (soa). http://www.opengroup.
org/projects/soa/.

[85] Opengroup soa governance framework, 2009. http://www.opengroup.
org/projects/soa-governance/uploads/40/19263/SOA_
Governance_Architecture_v2.4.pdf.

[86] T. G. J. Schepers, M. E. Iacob, and P. A. T. Van Eck. A lifecycle approach to soa
governance. In ACM symposium on Applied computing, 2008.

[87] Jeffrey O. Kephart and William E. Walsh. An artificial intelligence perspective on
autonomic computing policies. In IEEE International Workshop on Policies for Dis-
tributed Systems and Networks, 2004.

[88] Ravi S. Sandhu, Edward J. Coynek, Hal L. Feinsteink, and Charles E. Youmank.
Role-based access control models. IEEE Computer, 29(2):38–47, 1996.

[89] Federica Paci, Elisa Bertino, and Jason Crampton. An access-control framework for
ws-bpel. International Journal of Web Services Research, 5(4):20–43, 2008.

[90] Barbara von Halle. Business Rules Applied - Business Better Systems Using the
Business Rules Approach. John Wiley and Sons, Inc., New York, 2001. pages 33-35,
15.

234

http://www-01.ibm.com/software/solutions/soa/Amy_Wohl_SOA_Governance_Analyst_White_Paper.pdf
http://www-01.ibm.com/software/solutions/soa/Amy_Wohl_SOA_Governance_Analyst_White_Paper.pdf
http://www-01.ibm.com/software/solutions/soa/Amy_Wohl_SOA_Governance_Analyst_White_Paper.pdf
http://www.opengroup.org/projects/soa/
http://www.opengroup.org/projects/soa/
http://www.opengroup.org/projects/soa-governance/uploads/40/19263/SOA_Governance_Architecture_v2.4.pdf
http://www.opengroup.org/projects/soa-governance/uploads/40/19263/SOA_Governance_Architecture_v2.4.pdf
http://www.opengroup.org/projects/soa-governance/uploads/40/19263/SOA_Governance_Architecture_v2.4.pdf

[91] David Luckham. The beginnings of it insight: Business activity monitoring, 2004.
http://www.ebizq.net/topics/cep/features/4689.html.

[92] Ian Graham. Business Rules Management and Service Oriented Architecture: A
Pattern Language. Wiley, 2006. pages 22, 63-65, 50.

[93] Marwane El Kharbili and Tobias Keil. Bringing agility to business process manage-
ment: Rules deployment in an soa. In IEEE European Conference on Web Services,
2008.

[94] BusinessRulesGroup. Defining business rules what are they really? http://
www.businessrulesgroup.org/first_paper/br01c0.htm.

[95] Jess, the rule engine for the java platform. http://www.jessrules.com/.

[96] Omg semantics of business vocabulary and business rules (sbvr) v1.0, 2008. http:
//www.omg.org/spec/SBVR/.

[97] Ibm ilog jrules. http://www.ilog.com/products/jrules/.

[98] Stijn Goedertier and Jan Vanthienen. Compliant and flexible business processes with
business rules. In Workshop on Business Process Modeling, Development and Sup-
port, 2006.

[99] Florian Rosenberg, Christoph Nagl, and Schahram Dustdar. Applying distributed
business rules - the vidre approach. IEEE International Conference on Services
Computing, 2006.

[100] Florian Rosenberg and Schahram Dustdar. Business rules integration in bpel a
service-oriented approach. In IEEE International Conference on E-Commerce Tech-
nology, 2005.

[101] Harish Gaur and Markus Zirn. BPEL Cookbook Best Practices for SOA-based in-
tegration and composite applications development. Packt Publishing, 2006. pages
67.

[102] Michiharu Kudo and Satoshi Hada. Xml document security based on provisional
authorization. In ACM conference on Computer and communications security, 2000.

[103] Oasis core and hierarchical role based access control (rbac) profile of
xacml v2.0. http://docs.oasis-open.org/xacml/2.0/access_
control-xacml-2.0-rbac-profile1-spec-os.pdf.

[104] Markus Lorch, Seth Proctor, and Rebekah Lepro. First experiences using xacml for
access control in distributed systems. In ACM Workshop on XML Security, 2003.

[105] Tuncay Namli and Asuman Dogac. Using saml and xacml for web service security
and privacy. Securing Web Services: Practical Usage of Standards and Specifica-
tions, pages 182–205, 2008.

235

http://www.ebizq.net/topics/cep/features/4689.html
http://www.businessrulesgroup.org/first_paper/br01c0.htm
http://www.businessrulesgroup.org/first_paper/br01c0.htm
http://www.jessrules.com/
http://www.omg.org/spec/SBVR/
http://www.omg.org/spec/SBVR/
http://www.ilog.com/products/jrules/
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf

[106] Tim Moses, Anne Anderson, Frank Siebenlist, Frederick Hirsch, Ron Monzillo,
and Simon Godik. Oasis web-services policy language use cases and require-
ments, 2003. http://www.oasis-open.org/committees/download.
php/1608/wd-xacml-wspl-use-cases-04.pdf.

[107] Wei Tan, Liana Fong, and Norman Bobroff. Bpel4job: A fault-handling design for
job flow management. In International Conference on Service Oriented Computing,
2007.

[108] Oracle soa suite 10g (10.1.3.3) - fault management framework, 2008.
http://www.oracle.com/technology/products/ias/bpel/pdf/
10133technotes.pdf.

[109] Luciano Baresi and Sam Guinea. A dynamic and reactive approach to the supervision
of bpel processes. In India Software Engineering Conference, 2008.

[110] Luciano Baresi, Sam Guinea, and Pierluigi Plebani. Policies and aspects for the
supervision of bpel processes. In International conference on Advanced information
systems engineering, 2007.

[111] Abdelkarim Erradi, Piyush Maheshwari, and Vladimir Tosic. Recovery policies for
enhancing web services reliability. In IEEE International Conference on Web Ser-
vices, 2006.

[112] Klaus Pohl, Gnter Bckle, and Frank van der Linden. Software Product Line Engi-
neering: Foundations, Principles and Techniques. Springer, 2005. pages 10.

[113] Charles W. Krueger. Easing the transition to software mass customization. Lecture
Notes in Computer Science, 2290:178–184, 2002.

[114] Charles W. Krueger. Variation management for software production lines. Lecture
Notes in Computer Science, 2379:37–48, 2002.

[115] Michiel Koning, Chang-ai Sun, Marco Sinnema, and Paris Avgeriou. Vxbpel: Sup-
porting variability for web services in bpel. Information and Software Technology,
51(2):258269, 2009.

[116] Chang-Ai Sun and Marco Aiello. Towards variable service compositions using
vxbpel. In international conference on Software Reuse, 2008.

[117] Ralph Mietzner and Frank Leymann. Generation of bpel customization processes for
saas applications from variability descriptors. In IEEE International Conference on
Service Computing, 2008.

[118] Osoa service component architecture specifications. http://www.
osoa.org/display/Main/Service+Component+Architecture+
Specifications.

236

http://www.oasis-open.org/committees/download.php/1608/wd-xacml-wspl-use-cases-04.pdf
http://www.oasis-open.org/committees/download.php/1608/wd-xacml-wspl-use-cases-04.pdf
http://www.oracle.com/technology/products/ias/bpel/pdf/10133technotes.pdf
http://www.oracle.com/technology/products/ias/bpel/pdf/10133technotes.pdf
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

[119] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig, Toshiyuki
Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. Open grid forum
web services agreement specification (ws-agreement). http://www.ogf.org/
documents/GFD.107.pdf.

[120] Joe Zou, Yan Wang, and Kwei-Jay Lin. A formal service contract model for ac-
countable saas and cloud services. In IEEE International Conference on Services
Computing, 2010.

[121] Doug Bunting, Martin Chapman, Oisin Hurley, Mark Little, Jeff Mischkinsky,
Eric Newcomer, Jim Webber, and Keith Swenson. Web services coordina-
tion framework (ws-cf), 2003. http://www.jboss.org/dms/jbosstm/
resources/standards/WS-CF.pdf.

[122] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services
Concepts, Architectures and Applications. Springer, 2004. pages 216, 225.

[123] Sanjay Dalal, Sazi Temel, Mark Little, Mark Potts, and Jim Webber. Coordinating
business transactions on the web. IEEE Internet Computing, 7(1), 2003.

[124] Michael von Riegen, Martin Husemann, Stefan Fink, and Norbert Ritter. Rule-based
coordination of distributed web service transactions. IEEE Transactions on Service
Computing, 3(1):60–70, 2010.

[125] Frank Leymann and Stefan Pottinger. Rethinking the coordination models of ws-
coordination and ws-cf. In IEEE European Conference on Web Services, 2005.

[126] Oasis web services business activity (ws-businessactivity), 2009. http://docs.
oasis-open.org/ws-tx/wsba/2006/06.

[127] Deepak Alur, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and
Design Strategies 2nd Edition. Prentice Hall / Sun Microsystems Press, 2003. pages
181.

[128] Oasis web services atomic transaction (ws-atomictransaction), 2009. http://
docs.oasis-open.org/ws-tx/wsat/2006/06.

[129] Michael P. Papazoglou. Web services and business transactions. World Wide Web:
Internet and Web Information Systems, 6(1):49–91, 2003.

[130] Haerder Theo and Reuter Andreas. Principles of transaction-oriented database re-
covery. ACM Computing Surveys, 15(4):287–317, 1983.

[131] Patrick Sauter and Ingo Melzer. A comparison of ws-businessactivity and bpel4ws
long-running transaction. In Paul Mller, Reinhard Gotzhein, and Jens B. Schmitt, ed-
itors, Kommunikation in Verteilten Systemen (KiVS), pages 115–125. Springer, 2005.

[132] Oasis web services transaction (ws-tx) 1.2, 2009. http://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=ws-tx.

237

http://www.ogf.org/documents/GFD.107.pdf
http://www.ogf.org/documents/GFD.107.pdf
http://www.jboss.org/dms/jbosstm/resources/standards/WS-CF.pdf
http://www.jboss.org/dms/jbosstm/resources/standards/WS-CF.pdf
http://docs.oasis-open.org/ws-tx/wsba/2006/06
http://docs.oasis-open.org/ws-tx/wsba/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-tx
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-tx

[133] Oasis business transaction protocol (btp), 2004. http://www.oasis-open.
org/committees/download.php/9836/.

[134] Johann Eder and Walter Liebhart. Workflow recovery. In International Conference
on Cooperative Information Systems, 1996.

[135] Stefan Pottinger, Ralph Mietzner, and Frank Leymann. Coordinate bpel scopes and
processes by extending the ws-business activity framework. In International Con-
ference on Cooperative Information Systems, 2007.

[136] Ramnivas Laddad. AspectJ in Action - Enterprise AOP with Spring Applications.
Manning Publications, second edition, 2010. pages 5.

[137] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of aspectj. In European Conference on Object-
Oriented Programming, 2001.

[138] Carine Courbis and Anthony Finkelstein. Weaving aspects into web service orches-
trations. In IEEE International Conference on Web Services, 2005.

[139] Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic weaving for aspect-
oriented programming. In International conference on Aspect-oriented software de-
velopment, 2002.

[140] Siobhn Clarke and Elisa Baniassad. Aspect-Oriented Analysis and Design: The
Theme Approach. Addison-Wesley, 2005. pages 3.

[141] Anis Charfi. Aspect-Oriented Workflow Languages: AO4BPEL and Applications.
Phd thesis, 2007. Department of computer science, Technischen University at Darm-
stadt.

[142] Mehdi Ben Hmida, Ricardo Ferraz Tomaz, and Valerie Monfort. Applying aop con-
cepts to increase web services flexibility. Journal of Digital Information Manage-
ment, 4(1):37–43, 2006.

[143] Fabien Baligand and Valrie Monfort. A concrete solution for web services adapt-
ability using policies and aspects. In International Conference on Service Oriented
Computing, 2004.

[144] Guadalupe Ortiz and Frank Leymann. Combining ws-policy and aspect-oriented
programming. In Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services, 2006.

[145] Semih Cetin, N. Ilker Altintas, and Remzi Solmaz. Business rules segregation for
dynamic process management with an aspect-oriented framework. In BPM Workshop
on Dynamic Process Management, 2006.

238

http://www.oasis-open.org/committees/download.php/9836/
http://www.oasis-open.org/committees/download.php/9836/

[146] Maria Agustina Cibran, Maja D’ Hondt, and Viviane Jonckers. Aspect-oriented pro-
gramming for connecting business rules. In International Conference on Business
Information Systems, 2003.

[147] Anis Charfi and Mira Mezini. Hybrid web service composition: Business processes
meet business rules. In International Conference on Service Oriented Computing,
2004.

[148] Bart Verheecke, Mara Agustina Cibran, Wim Vanderperren, Davy Suvee, and Vi-
viane Jonckers. Aop for dynamic configuration and management of web services.
International Journal of Web Services Research, 1(3):25–41, 2004.

[149] Mara Agustina Cibrn, Bart Verheecke, Wim Vanderperren, Davy Suve, and Viviane
Jonckers. Aspect-oriented programming for dynamic web service selection, integra-
tion and management. World Wide Web Journal, 10(3):211–242, 2007.

[150] Khouloud Boukadi, Chirine Ghedira, and Lucien Vincent. An aspect oriented ap-
proach for context-aware service domain adapted to e-business. In International
conference on Advanced Information Systems Engineering, 2008.

[151] Selim Aissi, Pallavi Malu, and Krishnamurthy Srinivasan. E-business process mod-
eling: the next big step. IEEE Computer, 35(5):55 – 62, 2002.

[152] Reidar Conradi and Alfonso Fuggetta. Improving software process improvement.
IEEE Software, 19(4):92–99, 2002.

[153] Tariq Ellahi, Benoit Hudzia, Hui Li, Maik A. Lindner, and Philip Robinson. The
enterprise cloud computing paradigm. In Rajkumar Buyya, James Broberg, and An-
drzej Goscinski, editors, Cloud Computing: Principles and Paradigms, pages 97–
118. Wiley, 2011.

[154] ebxml (electronic business using extensible markup language). http://www.
ebxml.org/.

[155] Shuying Wang and Miriam A. M. Capretz. A policy driven approach for service-
oriented business rule management. In IEEE International Conference on Industrial
Informatics, 2007.

[156] Ralph Mietzner, Tobias Unger, and Frank Leymann. Cafe: A generic configurable
customizable composite cloud application framework. In The Confederated Inter-
national Conferences, CoopIS, DOA, IS, and ODBASE 2009 on On the Move to
Meaningful Internet Systems: Part I, pages 357–364, 2009.

[157] Eyhab Al-Masri and Qusay H. Mahmoud. A framework for efficient discovery of
web services across heterogeneous registries. In Consumer Communications and
Networking Conference, 2007.

239

http://www.ebxml.org/
http://www.ebxml.org/

[158] Chad Berndtson. Interop: Cloud computing adopters ready to ’trust, but verify’,
2009. http://www.crn.com/software/221900379;jsessionid=
R1HY3YANN5EL1QE1GHOSKHWATMY32JVN.

[159] Aaron Weiss. Computing in the clouds. netWorker - Cloud computing: PC functions
move onto the web, 11(4):16–25, 2007.

[160] Architectural patterns and styles. http://msdn.microsoft.com/en-us/
library/ee658117.aspx.

[161] Apache axis2. http://axis.apache.org/axis2/java/core/.

[162] Jboss ws. http://www.jboss.org/jbossws.

[163] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding code mo-
bility. IEEE Transactions on Software Engineering, 24(5), 1998.

[164] Ralph Mietzner, Tobias Unger, Robert Titze, and Frank Leymann. Combining dif-
ferent multi-tenancy patterns in service-oriented applications. In IEEE International
Enterprise Distributed Object Computing Conference, 2009.

[165] David C. Hay. Requirements analysis: from business views to architecture. Pearson,
2003. pages 143.

[166] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a roadmap. In
Conference on The Future of Software Engineering, 2000.

[167] Gargi Dasgupta, Onyeka Ezenwoye, Liana Fong, Selim Kalayci, S. Masoud Sadjadi,
and Balaji Viswanathan. Design of a fault-tolerant job-flow manager for grid en-
vironments using standard technologies, job-flow patterns, and a transparent proxy.
In International Conference on Software Engineering and Knowledge Engineering,
2008.

[168] Rik Eshuis and Akhil Kumar. An integer programming based approach for verifca-
tion and diagnosis of workflows. Data and Knowledge Engineering, 69(8):816–835,
2010.

[169] Rik Eshuis. Symbolic model checking of uml activity diagrams. ACM Transactions
on Software Engineering and Methodology, 15(1):1–38, 2006.

[170] Piero Corte and Debora Desideri. Nessi open framework reference ar-
chitecture - definition of an architectural framework and principles, 2008.
http://www.nexof-ra.eu/sites/default/files/D7%202%
20Definition%20of%20an%20architectural%20framework%
20and%20principles.zip.

[171] John Domingue, Dieter Fensel, and Rafael Gonzlez-Cabero. Soa4all, enabling the
soa revolution on a world wide scale. In IEEE International Conference on Semantic
Computing, 2008.

240

http://www.crn.com/software/221900379;jsessionid=R1HY3YANN5EL1QE1GHOSKHWATMY32JVN
http://www.crn.com/software/221900379;jsessionid=R1HY3YANN5EL1QE1GHOSKHWATMY32JVN
http://msdn.microsoft.com/en-us/library/ee658117.aspx
http://msdn.microsoft.com/en-us/library/ee658117.aspx
http://axis.apache.org/axis2/java/core/
http://www.jboss.org/jbossws
http://www.nexof-ra.eu/sites/default/files/D7%202%20Definition%20of%20an%20architectural%20framework%20and%20principles.zip
http://www.nexof-ra.eu/sites/default/files/D7%202%20Definition%20of%20an%20architectural%20framework%20and%20principles.zip
http://www.nexof-ra.eu/sites/default/files/D7%202%20Definition%20of%20an%20architectural%20framework%20and%20principles.zip

[172] Abdelkarim Erradi, Piyush Maheshwari, and Vladimir Tosic. Ws-policy based mon-
itoring of composite web services. In IEEE International Conference on Services
Computing, 2007.

[173] Yu Chen Zhou, Xin Peng Liu, Xi Ning Wang, Liang Xue, Chen Tian, and Xiao Xing
Liang. Context model based soa policy framework. In IEEE International Confer-
ence on Web Services, 2010.

[174] Yu Chen Zhou, Xin Peng Liu, Eduardo Kahan, Xi Ning Wang, Liang Xue, and
Ke Xin Zhou. Context aware service policy orchestration. In IEEE International
Conference on Web Services, 2007.

[175] W3c xml schema, 2005. http://www.w3.org/2001/XMLSchema.

[176] Basic xml schema patterns for databinding version 1.0, 2009. http://www.w3.
org/TR/xmlschema-patterns/.

[177] W3c xsl transformations (xslt) 2.0. http://www.w3.org/TR/xslt20/.

[178] Levenshtein VI. Binary codes capable of correcting deletions, insertions, and rever-
sals. Soviet Physics Doklady, 10:707, 1966.

[179] Emil Lupu and Morris Sloman. Conflicts in policy-based distributed systems man-
agement. IEEE Transactions on Software Engineering, 25(6):852 – 869, 1999.

[180] Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Towards self-healing service com-
positions. In First Conference on the Principles of Software Engineering, 2004.

[181] W3c ws-addressing 1.0, 2006. http://www.w3.org/2005/08/
addressing/.

[182] Frank Leymann and Dieter Roller. Business processes in a web services
world - a quick overview of bpel4ws, 2002. http://www.ibm.com/
developerworks/webservices/library/ws-bpelwp/.

[183] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
Elements of Reusable Objected-Oriented Software. Addison-Wesley, 1995. pages
305.

[184] Eyhab Al-Masri and Qusay H. Mahmoud. Discovering the best web service. In
International World Wild Web conference, 2007.

[185] Jiri Kolar. Business activity monitoring. Master’s thesis, 2009. Faculty of informat-
ics, Masaryk University.

[186] Swen Aussmann and Michael Haupt. Axon - dynamic aop through runtime inspec-
tion and monitoring. In Workshop on Advancing the State of the Art in Run-Time
Inspection, 2003.

241

http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/xmlschema-patterns/
http://www.w3.org/TR/xmlschema-patterns/
http://www.w3.org/TR/xslt20/
http://www.w3.org/2005/08/addressing/
http://www.w3.org/2005/08/addressing/
http://www.ibm.com/developerworks/webservices/library/ws-bpelwp/
http://www.ibm.com/developerworks/webservices/library/ws-bpelwp/

[187] Jonas Bonr. Aspectwerkz dynamic aop for java. In Invited talk at International
Conference on Aspect-Oriented Software Development, 2004.

[188] The aspectj programming guide, 2003. http://www.eclipse.org/
aspectj/doc/released/progguide/starting-aspectj.html.

[189] Aspectj. http://www.eclipse.org/aspectj/.

[190] Spring aop. http://www.springsource.org/documentation.

[191] Michael Eichberg, Mira Mezini, and Klaus Ostermann. Pointcuts as functional
queries. In Asian Symposium on Programming Languages and Systems, pages 366–
381, 2004.

[192] W3c xml query (xquery). http://www.w3.org/XML/Query/.

[193] W3c xml path language (xpath) 2.0, 2010. http://www.w3.org/TR/
xpath20/.

[194] Roberto Lopez-Herrejon, Don Batory, and Christian Lengauer. A disciplined ap-
proach to aspect composition. In ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-based Program Manipulation, 2006.

[195] Istvn Nagy, Lodewijk Bergmans, and Mehmet Aksit. Declarative aspect compo-
sition. In ASOD workshop on Software Engineering Properties of Languages and
Aspect Technologies, 2004.

[196] Esper : Event processing for java. http://www.espertech.com/
products/esper.php.

[197] Esper reference documentation. http://esper.codehaus.org/esper/
documentation/documentation.html.

[198] Rod Johnson, Juergen Hoeller, Keith Donald, and Colin Sampaleanu. Spring
framework. http://static.springsource.org/spring/docs/3.0.
x/spring-framework-reference/html/.

[199] Jboss aop framework. http://www.jboss.org/jbossaop.

[200] Vinod Muthusamy, Hans-Arno Jacobsen, Tony Chau, Allen Chan, and Phil
Coulthard. Sla-driven business process management in soa. In International Con-
ference of the (IBM) Centre for Advanced Studies on Collaborative Research, pages
86–100, 2009.

[201] Vinod Muthusamy and Hans-Arno Jacobsen. Bpm in cloud architectures: Business
process management with slas and events. In International Conference on Business
Process Management, 2010.

http://www.eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html
http://www.eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html
http://www.eclipse.org/aspectj/
http://www.springsource.org/documentation
http://www.w3.org/XML/Query/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.espertech.com/products/esper.php
http://www.espertech.com/products/esper.php
http://esper.codehaus.org/esper/documentation/documentation.html
http://esper.codehaus.org/esper/documentation/documentation.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/
http://www.jboss.org/jbossaop

Appendix A

Schema of policy model

xmlns : spap = http : //www.computing.dcu.ie/mwang/spap

1 <?xml version="1.0"?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:spap="http://

www.computing.dcu.ie/mwang/spap" targetNamespace="http://www.computing.dcu
.ie/mwang/spap">

3 <xsd:import namespace="http://www.w3.org/XML/1998/namespace" schemaLocation=
"http://www.w3.org/2001/03/xml.xsd"/>

4
5 <xsd:element name="PolicySet" type="spap:PolicySetType"/>
6 <xsd:complexType name="PolicySetType">
7 <xsd:sequence>
8 <xsd:element ref="spap:Description" minOccurs="0"/>
9 <xsd:element ref="spap:Objects"/>

10 <xsd:element ref="spap:ActivityStates"/>
11 <xsd:choice maxOccurs="unbounded" minOccurs="0">
12 <xsd:element ref="spap:PolicySet"/>
13 <xsd:element ref="spap:Policy"/>
14 <xsd:element ref="spap:Aspect"/>
15 <xsd:element name="PolicySetIdReference" type="xsd:anyURI"/>
16 <xsd:element name="PolicyIdReference" type="xsd:anyURI"/>
17 </xsd:choice>
18 <xsd:element ref="spap:Obligations" minOccurs="0"/>
19 <xsd:element ref="spap:ConstraintCombiningAlgorithm"/>
20 <xsd:element ref="spap:RemedyCombiningAlgorithm"/>
21 <xsd:element ref="spap:SequencingAlgorithm"/>
22 </xsd:sequence>
23 <xsd:attribute name="policySetId" type="xsd:anyURI" use="required"/>
24 <xsd:attribute name="priority" type="spap:PriorityType" default="0"/>
25 </xsd:complexType>
26
27
28 <xsd:simpleType name="PriorityType">
29 <xsd:restriction base="xsd:integer">
30 <xsd:minInclusive value="0"/>
31 </xsd:restriction>
32 </xsd:simpleType>
33
34 <!-- objects -->
35
36 <xsd:element name="Objects" type="spap:Objects"/>
37 <xsd:complexType name="Objects">
38 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
39 <xsd:element ref="spap:ObjectsAnyOf"/>
40 </xsd:sequence>
41 </xsd:complexType>
42
43 <xsd:element name="ObjectsAnyOf" type="spap:ObjectsAnyOfType"/>
44 <xsd:complexType name="ObjectsAnyOfType">
45 <xsd:sequence minOccurs="1" maxOccurs="unbounded">
46 <xsd:element ref="spap:ObjectsAllOf"/>
47 </xsd:sequence>
48 </xsd:complexType>
49
50 <xsd:element name="ObjectsAllOf" type="spap:ObjectsAllOfType"/>

243

51 <xsd:complexType name="ObjectsAllOfType">
52 <xsd:sequence minOccurs="1" maxOccurs="unbounded">
53 <xsd:element ref="spap:Object"/>
54 </xsd:sequence>
55 </xsd:complexType>
56
57 <xsd:element name="Object" type="spap:ObjectType" abstract="true"/>
58 <xsd:complexType name="ObjectType">
59 <xsd:sequence>
60 <xsd:element ref="spap:SemanticMatchingAlgorithm" minOccurs="0"/>
61 </xsd:sequence>
62 </xsd:complexType>
63
64 <xsd:element name="Process" type="spap:ProcessType" substitutionGroup="

spap:Object"/>
65 <xsd:complexType name="ProcessType">
66 <xsd:complexContent>
67 <xsd:extension base="spap:ObjectType">
68 <xsd:sequence>
69 <xsd:element name="Name" type="xsd:string"/>
70 </xsd:sequence>
71 </xsd:extension>
72 </xsd:complexContent>
73 </xsd:complexType>
74
75 <xsd:element name="Activity" type="spap:ActivityType" substitutionGroup="

spap:Object"/>
76 <xsd:complexType name="ActivityType">
77 <xsd:complexContent>
78 <xsd:extension base="spap:ObjectType">
79 <xsd:sequence>
80 <xsd:element name="Name" type="xsd:string"/>
81 </xsd:sequence>
82 </xsd:extension>
83 </xsd:complexContent>
84 </xsd:complexType>
85
86 <xsd:element name="WS-Operation" type="xsd:string"/>
87 <xsd:element name="WS-Address" type="xsd:anyURI"/>
88
89 <xsd:element name="Resource" type="spap:ResourceType" substitutionGroup="

spap:Object"/>
90 <xsd:complexType name="ResourceType">
91 <xsd:complexContent>
92 <xsd:extension base="spap:ObjectType">
93 <xsd:sequence>
94 <xsd:element name="Name" type="xsd:string"/>
95 </xsd:sequence>
96 </xsd:extension>
97 </xsd:complexContent>
98 </xsd:complexType>
99

100 <xsd:element name="Violation" type="spap:ViolationType" substitutionGroup="
spap:Object"/>

101 <xsd:complexType name="ViolationType">
102 <xsd:complexContent>
103 <xsd:extension base="spap:ObjectType">
104 <xsd:sequence>
105 <xsd:element name="Type">
106 <xsd:simpleType>
107 <xsd:union memberTypes="spap:ViolationTypeType

spap:ExtendViolationStringPatternTypeType"/>

244

108 </xsd:simpleType>
109 </xsd:element>
110 </xsd:sequence>
111 </xsd:extension>
112 </xsd:complexContent>
113 </xsd:complexType>
114
115 <xsd:element name="Description" type="xsd:string"/>
116
117 <xsd:element name="Policy" type="spap:PolicyType"/>
118 <xsd:complexType name="PolicyType">
119 <xsd:sequence>
120 <xsd:element ref="spap:Description" minOccurs="0"/>
121 <xsd:element ref="spap:Objects"/>
122 <xsd:element ref="spap:ActivityStates"/>
123 <xsd:choice maxOccurs="unbounded">
124 <xsd:element ref="spap:Rule"/>
125 <xsd:element name="RuleIdReference" type="xsd:anyURI"/>
126 </xsd:choice>
127 <xsd:element ref="spap:FaultHandler" minOccurs="0"/>
128 <xsd:element ref="spap:Obligations" minOccurs="0"/>
129 <xsd:element ref="spap:ConstraintCombiningAlgorithm"/>
130 <xsd:element ref="spap:RemedyCombiningAlgorithm"/>
131 <xsd:element ref="spap:SequencingAlgorithm"/>
132 </xsd:sequence>
133 <xsd:attribute name="policyId" type="xsd:anyURI" use="required"/>
134 <xsd:attribute name="priority" type="spap:PriorityType" default="0"/>
135 </xsd:complexType>
136
137 <xsd:element name="Rule" type="spap:RuleType"/>
138 <xsd:complexType name="RuleType">
139 <xsd:sequence>
140 <xsd:element ref="spap:Description" minOccurs="0"/>
141 <xsd:element ref="spap:Objects" minOccurs="0"/>
142 <xsd:element ref="spap:ActivityStates" minOccurs="0"/>
143 <xsd:element ref="spap:Conditions" minOccurs="1"/>
144 <xsd:element ref="spap:Actions" minOccurs="1"/>
145 <xsd:element ref="spap:FaultHandler" minOccurs="0"/>
146 <xsd:element ref="spap:Obligations" minOccurs="0"/>
147 </xsd:sequence>
148 <xsd:attribute name="ruleId" type="xsd:anyURI" use="required"/>
149 <xsd:attribute name="priority" type="spap:PriorityType" default="0"/>
150 </xsd:complexType>
151
152 <xsd:element name="Aspect" type="spap:AspectType"/>
153 <xsd:complexType name="AspectType">
154 <xsd:sequence>
155 <xsd:element ref="spap:Description" minOccurs="0"/>
156 </xsd:sequence>
157 <xsd:attribute name="policyId" type="xsd:anyURI" use="required"/>
158 <xsd:attribute name="priority" type="spap:PriorityType" default="0"/>
159 </xsd:complexType>
160
161 <!-- Violation type type-->
162
163 <xsd:element name="ViolationType" type="spap:ViolationTypeType"/>
164 <xsd:simpleType name="ViolationTypeType">
165 <xsd:restriction base="xsd:string">
166 <xsd:enumeration value="Functional"/>
167 <xsd:enumeration value="Functional:Syntax"/>
168 <xsd:enumeration value="Functional:Effect"/>
169 <xsd:enumeration value="Functional:Protocol"/>

245

170 <xsd:enumeration value="QoS"/>
171 <xsd:enumeration value="QoS:Performance"/>
172 <xsd:enumeration value="QoS:Trust"/>
173 <xsd:enumeration value="QoS:Security"/>
174 <xsd:enumeration value="Financial"/>
175 <xsd:enumeration value="Security"/>
176 <xsd:enumeration value="Trust"/>
177 <xsd:enumeration value="Semantic"/>
178 <xsd:enumeration value="Linguistic"/>
179 <xsd:enumeration value="MeasuresAndStandard"/>
180 <xsd:enumeration value="Device"/>
181 <xsd:enumeration value="Connectivity"/>
182 <xsd:enumeration value="Unknown"/>
183 </xsd:restriction>
184 </xsd:simpleType>
185
186 <xsd:element name="ExtendViolationStringPatternType" type="

spap:ExtendViolationStringPatternTypeType"/>
187 <xsd:simpleType name="ExtendViolationStringPatternTypeType">
188 <xsd:restriction base="xsd:string">
189 <xsd:pattern value="Extend:\S.*"/>
190 </xsd:restriction>
191 </xsd:simpleType>
192
193 <!-- FaultHandler -->
194
195 <xsd:element name="FaultHandler" type="spap:FaultHandlerType"/>
196 <xsd:complexType name="FaultHandlerType">
197 <xsd:sequence>
198 <xsd:element ref="spap:Action" maxOccurs="unbounded"/>
199 </xsd:sequence>
200 </xsd:complexType>
201
202 <xsd:element name="Actions" type="spap:ActionsType"/>
203 <xsd:complexType name="ActionsType">
204 <xsd:sequence>
205 <xsd:element ref="spap:Action" maxOccurs="unbounded"/>
206 </xsd:sequence>
207 </xsd:complexType>
208
209 <xsd:element name="Action" type="spap:ActionType" abstract="true"/>
210 <xsd:complexType name="ActionType">
211 </xsd:complexType>
212
213 <!-- Conconsumer actions -->
214
215 <xsd:element name="ConsumerAction" type="spap:ConsumerActionType"

substitutionGroup="spap:Action"/>
216 <xsd:complexType name="ConsumerActionType">
217 <xsd:complexContent>
218 <xsd:extension base="spap:ActionType">
219 </xsd:extension>
220 </xsd:complexContent>
221 </xsd:complexType>
222
223 <xsd:element name="Ca-Log" type="spap:Ca-LogType" substitutionGroup="

spap:ConsumerAction"/>
224 <xsd:complexType name="Ca-LogType">
225 <xsd:complexContent>
226 <xsd:extension base="spap:ConsumerActionType">
227 <xsd:attribute name="level" type="xsd:string" use="required"/>
228 </xsd:extension>

246

229 </xsd:complexContent>
230 </xsd:complexType>
231
232 <xsd:element name="Ca-Suspend" type="spap:Ca-SuspendType" substitutionGroup=

"spap:ConsumerAction"/>
233 <xsd:complexType name="Ca-SuspendType">
234 <xsd:complexContent>
235 <xsd:extension base="spap:ConsumerActionType">
236 <xsd:attribute name="Time" type="xsd:duration" use="required"/>
237 </xsd:extension>
238 </xsd:complexContent>
239 </xsd:complexType>
240
241 <xsd:element name="Ca-Alert" type="spap:Ca-AlertType" substitutionGroup="

spap:ConsumerAction"/>
242 <xsd:complexType name="Ca-AlertType">
243 <xsd:complexContent>
244 <xsd:extension base="spap:ConsumerActionType">
245 <xsd:attribute name="mailTo" type="xsd:string" use="required"/>
246 </xsd:extension>
247 </xsd:complexContent>
248 </xsd:complexType>
249
250 <!-- Provider actions -->
251
252 <xsd:element name="ProviderAction" type="spap:ProviderActionType"

substitutionGroup="spap:Action"/>
253 <xsd:complexType name="ProviderActionType">
254 <xsd:complexContent>
255 <xsd:extension base="spap:ActionType">
256 </xsd:extension>
257 </xsd:complexContent>
258 </xsd:complexType>
259
260 <xsd:element name="Pa-Validate" type="spap:Pa-ValidateType"

substitutionGroup="spap:ProviderAction"/>
261 <xsd:complexType name="Pa-ValidateType">
262 <xsd:complexContent>
263 <xsd:extension base="spap:ProviderActionType">
264 </xsd:extension>
265 </xsd:complexContent>
266 </xsd:complexType>
267
268 <xsd:element name="Pa-Violate" type="spap:Pa-ViolateType" substitutionGroup=

"spap:ProviderAction"/>
269 <xsd:complexType name="Pa-ViolateType">
270 <xsd:complexContent>
271 <xsd:extension base="spap:ProviderActionType">
272 <xsd:sequence maxOccurs="unbounded">
273 <xsd:element ref="spap:Violation"/>
274 </xsd:sequence>
275 </xsd:extension>
276 </xsd:complexContent>
277 </xsd:complexType>
278
279 <xsd:element name="Pa-Ignore" type="spap:Pa-IgnoreType" substitutionGroup="

spap:ProviderAction"/>
280 <xsd:complexType name="Pa-IgnoreType">
281 <xsd:complexContent>
282 <xsd:extension base="spap:ProviderActionType">
283 </xsd:extension>
284 </xsd:complexContent>

247

285 </xsd:complexType>
286
287 <xsd:element name="Pa-Skip" type="spap:Pa-SkipType" substitutionGroup="

spap:ProviderAction"/>
288 <xsd:complexType name="Pa-SkipType">
289 <xsd:complexContent>
290 <xsd:extension base="spap:ProviderActionType">
291 </xsd:extension>
292 </xsd:complexContent>
293 </xsd:complexType>
294
295 <xsd:element name="Pa-Retry" type="spap:Pa-RetryType" substitutionGroup="

spap:ProviderAction"/>
296 <xsd:complexType name="Pa-RetryType">
297 <xsd:complexContent>
298 <xsd:extension base="spap:ProviderActionType">
299 <xsd:attribute name="WaitFor" type="xsd:duration" use="required"/>
300 </xsd:extension>
301 </xsd:complexContent>
302 </xsd:complexType>
303
304 <xsd:element name="Pa-Replace" type="spap:Pa-ReplaceType" substitutionGroup=

"spap:ProviderAction"/>
305 <xsd:complexType name="Pa-ReplaceType">
306 <xsd:complexContent>
307 <xsd:extension base="spap:ProviderActionType">
308 <xsd:sequence>
309 <xsd:element ref="spap:ServiceConditions"/>
310 </xsd:sequence>
311 <xsd:attribute name="InstanceOnly" type="xsd:boolean" use="required"/>
312 </xsd:extension>
313 </xsd:complexContent>
314 </xsd:complexType>
315
316 <xsd:element name="Pa-Cancel" type="spap:Pa-CancelType" substitutionGroup="

spap:ProviderAction"/>
317 <xsd:complexType name="Pa-CancelType">
318 <xsd:complexContent>
319 <xsd:extension base="spap:ProviderActionType">
320 </xsd:extension>
321 </xsd:complexContent>
322 </xsd:complexType>
323
324 <xsd:element name="Pa-Compensate" type="spap:Pa-CompensateType"

substitutionGroup="spap:ProviderAction"/>
325 <xsd:complexType name="Pa-CompensateType">
326 <xsd:complexContent>
327 <xsd:extension base="spap:ProviderActionType">
328 <xsd:sequence>
329 <xsd:element ref="spap:ServiceConditions"/>
330 </xsd:sequence>
331 </xsd:extension>
332 </xsd:complexContent>
333 </xsd:complexType>
334
335 <xsd:element name="Pa-Manipulate" type="spap:Pa-ManipulateType"

substitutionGroup="spap:ProviderAction"/>
336 <xsd:complexType name="Pa-ManipulateType">
337 <xsd:complexContent>
338 <xsd:extension base="spap:ProviderActionType">
339 <xsd:sequence>
340 <xsd:choice maxOccurs="unbounded">

248

341 <xsd:element ref="spap:Copy" minOccurs="1"/>
342 </xsd:choice>
343 </xsd:sequence>
344 </xsd:extension>
345 </xsd:complexContent>
346 </xsd:complexType>
347
348 <xsd:element name="Copy" type="spap:CopyType"/>
349 <xsd:complexType name="CopyType">
350 <xsd:sequence>
351 <xsd:element ref="spap:From" minOccurs="1"/>
352 <xsd:element ref="spap:To" minOccurs="1"/>
353 </xsd:sequence>
354 </xsd:complexType>
355
356 <xsd:element name="From" type="spap:FromType"/>
357 <xsd:complexType name="FromType">
358 <xsd:sequence>
359 <xsd:choice>
360 <xsd:element ref="spap:Literal"/>
361 <xsd:element ref="spap:XsltTrans"/>
362 </xsd:choice>
363 </xsd:sequence>
364 </xsd:complexType>
365
366 <xsd:element name="Literal" type="spap:LiteralType"/>
367 <xsd:complexType name="LiteralType" mixed="true">
368 <xsd:sequence>
369 <xsd:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs

="1"/>
370 </xsd:sequence>
371 </xsd:complexType>
372
373 <xsd:element name="XsltTrans" type="spap:XsltTransType"/>
374 <xsd:complexType name="XsltTransType">
375 <xsd:attribute name="source" type="xsd:string"/>
376 <xsd:attribute name="xslt" type="xsd:anyURI"/>
377 </xsd:complexType>
378
379 <xsd:element name="To" type="spap:ToType"/>
380 <xsd:complexType name="ToType">
381 <xsd:attribute name="query" type="xsd:string" use="required"/>
382 </xsd:complexType>
383
384 <!-- following actions for code generation with policy weaver development

only -->
385
386 <xsd:element name="Pa-Undefined" type="spap:Pa-UndefinedType"

substitutionGroup="spap:ProviderAction"/>
387 <xsd:complexType name="Pa-UndefinedType">
388 <xsd:complexContent>
389 <xsd:extension base="spap:ProviderActionType">
390 </xsd:extension>
391 </xsd:complexContent>
392 </xsd:complexType>
393
394 <xsd:element name="Pa-Unexpected" type="spap:Pa-UnexpectedType"

substitutionGroup="spap:ProviderAction"/>
395 <xsd:complexType name="Pa-UnexpectedType">
396 <xsd:complexContent>
397 <xsd:extension base="spap:ProviderActionType">
398 </xsd:extension>

249

399 </xsd:complexContent>
400 </xsd:complexType>
401
402 <xsd:element name="Pa-Undetermined" type="spap:Pa-UndeterminedType"

substitutionGroup="spap:ProviderAction"/>
403 <xsd:complexType name="Pa-UndeterminedType">
404 <xsd:complexContent>
405 <xsd:extension base="spap:ProviderActionType">
406 </xsd:extension>
407 </xsd:complexContent>
408 </xsd:complexType>
409
410 <xsd:element name="Pa-Compensate-Ignore" type="spap:Pa-Compensate-IgnoreType

" substitutionGroup="spap:ProviderAction"/>
411 <xsd:complexType name="Pa-Compensate-IgnoreType">
412 <xsd:complexContent>
413 <xsd:extension base="spap:ProviderActionType">
414 <xsd:sequence>
415 <xsd:element ref="spap:ServiceConditions"/>
416 </xsd:sequence>
417 </xsd:extension>
418 </xsd:complexContent>
419 </xsd:complexType>
420
421 <xsd:element name="Pa-Compensate-Replace" type="spap:Pa-Compensate-

ReplaceType" substitutionGroup="spap:ProviderAction"/>
422 <xsd:complexType name="Pa-Compensate-ReplaceType">
423 <xsd:complexContent>
424 <xsd:extension base="spap:ProviderActionType">
425 <xsd:sequence>
426 <xsd:element ref="spap:ServiceConditions" minOccurs="2" maxOccurs="2

"/>
427 </xsd:sequence>
428 <xsd:attribute name="InstanceOnly" type="xsd:boolean" use="required"/>
429 </xsd:extension>
430 </xsd:complexContent>
431 </xsd:complexType>
432
433 <!-- Obligations -->
434
435 <xsd:element name="Obligations" type="spap:ObligationsType"/>
436 <xsd:complexType name="ObligationsType">
437 <xsd:sequence maxOccurs="unbounded" minOccurs="1">
438 <xsd:element ref="spap:Obligation"/>
439 </xsd:sequence>
440 </xsd:complexType>
441
442 <xsd:element name="Obligation" type="spap:ObligationType"/>
443 <xsd:complexType name="ObligationType">
444 <xsd:sequence maxOccurs="unbounded" minOccurs="1">
445 <xsd:element ref="spap:ConsumerAction"/>
446 </xsd:sequence>
447 <xsd:attribute name="Type" use="required">
448 <xsd:simpleType>
449 <xsd:restriction base="xsd:string">
450 <xsd:enumeration value="Pa-Validate"/>
451 <xsd:enumeration value="Pa-Violate"/>
452 <xsd:enumeration value="Pa-Ignore"/>
453 <xsd:enumeration value="Pa-Replace-InstanceOnly"/>
454 <xsd:enumeration value="Pa-Replace"/>
455 <xsd:enumeration value="Pa-Compensate"/>
456 <xsd:enumeration value="Pa-Cancel"/>

250

457 <xsd:enumeration value="Pa-Retry"/>
458 <xsd:enumeration value="Pa-Undetermined"/>
459 <xsd:enumeration value="Pa-Undefined"/>
460 <xsd:enumeration value="Pa-Unexpected"/>
461 </xsd:restriction>
462 </xsd:simpleType>
463 </xsd:attribute>
464 </xsd:complexType>
465
466 <!-- Service conditions -->
467
468 <xsd:element name="ServiceConditions" type="spap:ServiceConditionsType"/>
469 <xsd:complexType name="ServiceConditionsType">
470 <xsd:sequence>
471 <xsd:element ref="spap:ServiceConditionExpression" minOccurs="0"

maxOccurs="unbounded"/>
472 </xsd:sequence>
473 </xsd:complexType>
474
475 <xsd:element name="ServiceConditionExpression" type="

spap:ServiceConditionExpressionType"/>
476 <xsd:complexType name="ServiceConditionExpressionType">
477 <xsd:attribute name="force" type="xsd:boolean" default="false"/>
478 <xsd:attribute name="expression" type="xsd:string" default="false"/>
479 </xsd:complexType>
480
481 <!-- Rule conditions -->
482
483 <xsd:element name="Conditions" type="spap:ConditionsType"/>
484 <xsd:complexType name="ConditionsType">
485 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
486 <xsd:element ref="spap:ConditionExpression"/>
487 </xsd:sequence>
488 </xsd:complexType>
489
490
491 <xsd:element name="ConditionExpression" type="xsd:string"/>
492
493 <!-- Activity States -->
494
495 <xsd:element name="ActivityStates" type="spap:ActivityStatesType"/>
496 <xsd:complexType name="ActivityStatesType">
497 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
498 <xsd:element ref="spap:ActivityState"/>
499 </xsd:sequence>
500 </xsd:complexType>
501
502 <xsd:element name="ActivityState" type="spap:ActivityStateType"/>
503 <xsd:simpleType name="ActivityStateType">
504 <xsd:restriction base="xsd:string">
505 <xsd:enumeration value="Validating-Pre"/>
506 <xsd:enumeration value="Validating-Post"/>
507 <xsd:enumeration value="Manipulating-Pre-Validating-Pre"/>
508 <xsd:enumeration value="Manipulating-Pre-Validating-Post"/>
509 <xsd:enumeration value="Manipulating-Post-Validating-Pre"/>
510 <xsd:enumeration value="Manipulating-Post-Validating-Post"/>
511 <xsd:enumeration value="Handling-Pre"/>
512 <xsd:enumeration value="Handling-Post"/>
513 <xsd:enumeration value="Cancelling"/>
514 </xsd:restriction>
515 </xsd:simpleType>
516

251

517 <!-- algorithms -->
518
519 <xsd:element name="ConstraintCombiningAlgorithm" type="

spap:ConstraintCombiningAlgorithmType"/>
520 <xsd:complexType name="ConstraintCombiningAlgorithmType">
521 <xsd:attribute name="type" use="required">
522 <xsd:simpleType>
523 <xsd:restriction base="xsd:string">
524 <xsd:enumeration value="Pa-Violate-Override-Through-All"/>
525 <xsd:enumeration value="Pa-Validate-Override-Through-All"/>
526 <xsd:enumeration value="Pa-Violate-Unless-Pa-Validate-Through-All"/>
527 <xsd:enumeration value="Pa-Validate-Unless-Pa-Violate-Through-All"/>
528 </xsd:restriction>
529 </xsd:simpleType>
530 </xsd:attribute>
531 </xsd:complexType>
532
533 <xsd:element name="RemedyCombiningAlgorithm" type="

spap:RemedyCombiningAlgorithmType"/>
534 <xsd:complexType name="RemedyCombiningAlgorithmType">
535 <xsd:sequence>
536 <xsd:element name="DefinedSequenceElement" maxOccurs="unbounded">
537 <xsd:simpleType>
538 <xsd:restriction base="xsd:string">
539 <xsd:enumeration value="Pa-Ignore"/>
540 <xsd:enumeration value="Pa-Retry"/>
541 <xsd:enumeration value="Pa-Replace"/>
542 <xsd:enumeration value="Pa-ReplaceInstanceOnly"/>
543 <xsd:enumeration value="Pa-Cancel"/>
544 <xsd:enumeration value="Pa-Skip"/>
545 </xsd:restriction>
546 </xsd:simpleType>
547 </xsd:element>
548 </xsd:sequence>
549
550 <xsd:attribute name="type" use="required">
551 <xsd:simpleType>
552 <xsd:restriction base="xsd:string">
553 <xsd:enumeration value="Defined-Sequence-Overrides-Through-All"/>
554 <xsd:enumeration value="Pa-Ignore-Unless-Defined-Sequence-Through-

All"/>
555 <xsd:enumeration value="Pa-Cancel-Unless-Defined-Sequence-Through-

All"/>
556 </xsd:restriction>
557 </xsd:simpleType>
558 </xsd:attribute>
559 </xsd:complexType>
560
561 <xsd:element name="SequencingAlgorithm" type="spap:SequencingAlgorithmType"/

>
562 <xsd:complexType name="SequencingAlgorithmType">
563 <xsd:attribute name="type" use="required">
564 <xsd:simpleType>
565 <xsd:restriction base="xsd:string">
566 <xsd:enumeration value="Ordered"/>
567 <xsd:enumeration value="PriorityBased-QuickSort"/>
568 </xsd:restriction>
569 </xsd:simpleType>
570 </xsd:attribute>
571 </xsd:complexType>
572

252

573 <xsd:element name="SemanticMatchingAlgorithm" type="
spap:SemanticMatchingAlgorithmType"/>

574 <xsd:complexType name="SemanticMatchingAlgorithmType">
575 <xsd:attribute name="type" use="required">
576 <xsd:simpleType>
577 <xsd:restriction base="xsd:string">
578 <xsd:enumeration value="LevenshteinDistance"/>
579 </xsd:restriction>
580 </xsd:simpleType>
581 </xsd:attribute>
582 <xsd:attribute name="matchingDegree" type="xsd:float"/>
583 </xsd:complexType>
584 </xsd:schema>

253

Appendix B

Schema of coordination context

xmlns : spac = http : //www.computing.dcu.ie/mwang/spac

1 <?xml version="1.0"?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:spac="http://

www.computing.dcu.ie/mwang/spac" targetNamespace="http://www.computing.dcu
.ie/mwang/spac" xmlns:wsa="http://www.w3.org/2005/08/addressing">

3 <xsd:import namespace="http://www.w3.org/XML/1998/namespace" schemaLocation=
"http://www.w3.org/2001/03/xml.xsd"/>

4 <xsd:import namespace="http://www.w3.org/2005/08/addressing" schemaLocation=
"http://www.w3.org/2006/03/addressing/ws-addr.xsd"/>

5
6 <xsd:element name="CoordinationContext" type="spac:CoordinationContextType"/

>
7 <xsd:complexType name="CoordinationContextType">
8 <xsd:sequence>
9 <xsd:element name="CId" type="xsd:string"/>

10 <xsd:element name="CoordinationType" type="xsd:anyURI"/>
11 <xsd:element ref="spac:ProtocolService"/>
12 <xsd:element ref="spac:Cache" minOccurs="0"/>
13 </xsd:sequence>
14 </xsd:complexType>
15
16 <xsd:element name="Cache" type="spac:CacheType"/>
17 <xsd:complexType name="CacheType">
18 <xsd:sequence>
19 <xsd:element name="StartDateTime" type="xsd:dateTime" />
20 <xsd:element name="EndDateTime" type="xsd:dateTime"/>
21 </xsd:sequence>
22 <xsd:attribute name="Scope" default="Global">
23 <xsd:simpleType>
24 <xsd:restriction base="xsd:string">
25 <xsd:enumeration value="Process"/>
26 <xsd:enumeration value="Global"/>
27 </xsd:restriction>
28 </xsd:simpleType>
29 </xsd:attribute>
30 </xsd:complexType>
31
32 <xsd:element name="ProtocolService" type="wsa:EndpointReferenceType"/>
33 </xsd:schema>

254

Appendix C

Schema of process activity protocol

xmlns : spaa = http : //www.computing.dcu.ie/mwang/spaa

1 <?xml version="1.0"?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:spaa="http://

www.computing.dcu.ie/mwang/spaa" targetNamespace="http://www.computing.dcu
.ie/mwang/spaa" xmlns:spac="http://www.computing.dcu.ie/mwang/spac">

3 <xsd:import namespace="http://www.w3.org/XML/1998/namespace" schemaLocation=
"http://www.w3.org/2001/03/xml.xsd"/>

4 <xsd:import namespace="http://www.computing.dcu.ie/mwang/spac"
schemaLocation="coordination.xsd"/>

5
6 <xsd:element name="WeavingRequest" type="spaa:WeavingRequestType"/>
7 <xsd:complexType name="WeavingRequestType">
8 <xsd:sequence>
9 <xsd:element ref="spaa:Process"/>

10 <xsd:element ref="spaa:Activity"/>
11 <xsd:element ref="spaa:Resource"/>
12 <xsd:element ref="spaa:Violation" minOccurs="0" maxOccurs="unbounded"/>
13 <xsd:element ref="spaa:ActivityState"/>
14 </xsd:sequence>
15 </xsd:complexType>
16
17 <xsd:element name="WeavingResponse" type="spaa:WeavingResponseType"/>
18 <xsd:complexType name="WeavingResponseType">
19 <xsd:sequence>
20 <xsd:element ref="spaa:ProviderAction"/>
21 </xsd:sequence>
22 </xsd:complexType>
23
24 <xsd:element name="Process" type="spaa:ProcessType"/>
25 <xsd:complexType name="ProcessType">
26 <xsd:sequence>
27 <xsd:element ref="spaa:Name"/>
28 <xsd:element ref="spaa:ServiceReference"/>
29 </xsd:sequence>
30 </xsd:complexType>
31
32 <xsd:element name="Activity" type="spaa:ActivityType"/>
33 <xsd:complexType name="ActivityType">
34 <xsd:sequence>
35 <xsd:element ref="spaa:Name"/>
36 <xsd:element ref="spaa:ServiceReference"/>
37 </xsd:sequence>
38 </xsd:complexType>
39
40 <xsd:element name="Resource" type="spaa:ResourceType"/>
41 <xsd:complexType name="ResourceType">
42 <xsd:sequence>
43 <xsd:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>
44 </xsd:sequence>
45 </xsd:complexType>
46
47 <xsd:element name="Name" type="xsd:string"/>
48

255

49 <xsd:element name="Violation" type="spaa:ViolationType"/>
50 <xsd:complexType name="ViolationType">
51 <xsd:sequence>
52 <xsd:element ref="spaa:Type"/>
53 </xsd:sequence>
54 </xsd:complexType>
55
56 <xsd:element name="Type" type="xsd:string"/>
57
58 <xsd:element name="ActivityState" type="spaa:ActivityStateType"/>
59 <xsd:simpleType name="ActivityStateType">
60 <xsd:restriction base="xsd:string">
61 <!-- provider part -->
62 <xsd:enumeration value="Manipulating-Validating-Pre"/>
63 <xsd:enumeration value="Manipulating-Validating-Post"/>
64 <xsd:enumeration value="Handling-Pre"/>
65 <xsd:enumeration value="Handling-Post"/>
66 <xsd:enumeration value="Cancelling"/>
67 <!-- consumer part -->
68 <xsd:enumeration value="Validating-Pre"/>
69 <xsd:enumeration value="Validating-Post"/>
70 <xsd:enumeration value="Manipulating-Pre-Validating-Pre"/>
71 <xsd:enumeration value="Manipulating-Pre-Validating-Post"/>
72 <xsd:enumeration value="Manipulating-Post-Validating-Pre"/>
73 <xsd:enumeration value="Manipulating-Post-Validating-Post"/>
74 <!-- for our code generate purpose only -->
75 <xsd:enumeration value="Executing"/>
76 <xsd:enumeration value="Completed"/>
77 </xsd:restriction>
78 </xsd:simpleType>
79
80 <xsd:element name="ServiceReference" type="spaa:ServiceReferenceType"/>
81 <xsd:complexType name="ServiceReferenceType">
82 <xsd:sequence>
83 <xsd:element ref="spaa:Address"/>
84 <xsd:element ref="spaa:Operation"/>
85 <xsd:element ref="spaa:ServiceName"/>
86 <xsd:element ref="spaa:PortName"/>
87 <xsd:element ref="spaa:SOAPAction"/>
88 </xsd:sequence>
89 </xsd:complexType>
90
91 <xsd:element name="Operation" type="xsd:string"/>
92 <xsd:element name="Address" type="xsd:anyURI"/>
93 <xsd:element name="ServiceName" type="xsd:QName"/>
94 <xsd:element name="PortName" type="xsd:QName"/>
95 <xsd:element name="SOAPAction" type="xsd:string"/>
96
97 <!-- provider action -->
98
99 <xsd:element name="ProviderAction" type="spaa:ProviderActionType" abstract="

true"/>
100 <xsd:complexType name="ProviderActionType">
101 </xsd:complexType>
102
103
104 <xsd:element name="Pa-Validate" type="spaa:Pa-ValidateType"

substitutionGroup="spaa:ProviderAction"/>
105 <xsd:complexType name="Pa-ValidateType">
106 <xsd:complexContent>
107 <xsd:extension base="spaa:ProviderActionType">
108 <xsd:sequence>

256

109 <xsd:element ref="spaa:Resource"/>
110 </xsd:sequence>
111 </xsd:extension>
112 </xsd:complexContent>
113 </xsd:complexType>
114
115 <xsd:element name="Pa-Violate" type="spaa:Pa-ViolateType" substitutionGroup=

"spaa:ProviderAction"/>
116 <xsd:complexType name="Pa-ViolateType">
117 <xsd:complexContent>
118 <xsd:extension base="spaa:ProviderActionType">
119 <xsd:sequence maxOccurs="unbounded">
120 <xsd:element ref="spaa:Violation"/>
121 </xsd:sequence>
122 </xsd:extension>
123 </xsd:complexContent>
124 </xsd:complexType>
125
126
127 <xsd:element name="Pa-Ignore" type="spaa:Pa-IgnoreType" substitutionGroup="

spaa:ProviderAction"/>
128 <xsd:complexType name="Pa-IgnoreType">
129 <xsd:complexContent>
130 <xsd:extension base="spaa:ProviderActionType">
131 </xsd:extension>
132 </xsd:complexContent>
133 </xsd:complexType>
134
135 <xsd:element name="Pa-Skip" type="spaa:Pa-SkipType" substitutionGroup="

spaa:ProviderAction"/>
136 <xsd:complexType name="Pa-SkipType">
137 <xsd:complexContent>
138 <xsd:extension base="spaa:ProviderActionType">
139 </xsd:extension>
140 </xsd:complexContent>
141 </xsd:complexType>
142
143 <xsd:element name="Pa-Retry" type="spaa:Pa-RetryType" substitutionGroup="

spaa:ProviderAction"/>
144 <xsd:complexType name="Pa-RetryType">
145 <xsd:complexContent>
146 <xsd:extension base="spaa:ProviderActionType">
147 <xsd:attribute name="WaitFor" type="xsd:duration" use="required"/>
148 </xsd:extension>
149 </xsd:complexContent>
150 </xsd:complexType>
151
152 <xsd:element name="Pa-Replace" type="spaa:Pa-ReplaceType" substitutionGroup=

"spaa:ProviderAction"/>
153 <xsd:complexType name="Pa-ReplaceType">
154 <xsd:complexContent>
155 <xsd:extension base="spaa:ProviderActionType">
156 <xsd:sequence>
157 <xsd:element ref="spaa:ServiceReference"/>
158 </xsd:sequence>
159 <xsd:attribute name="InstanceOnly" type="xsd:boolean" use="required"/>
160 </xsd:extension>
161 </xsd:complexContent>
162 </xsd:complexType>
163
164

257

165 <xsd:element name="Pa-Cancel" type="spaa:Pa-CancelType" substitutionGroup="
spaa:ProviderAction"/>

166 <xsd:complexType name="Pa-CancelType">
167 <xsd:complexContent>
168 <xsd:extension base="spaa:ProviderActionType">
169 </xsd:extension>
170 </xsd:complexContent>
171 </xsd:complexType>
172
173
174 <xsd:element name="Pa-Compensate" type="spaa:Pa-CompensateType"

substitutionGroup="spaa:ProviderAction"/>
175 <xsd:complexType name="Pa-CompensateType">
176 <xsd:complexContent>
177 <xsd:extension base="spaa:ProviderActionType">
178 <xsd:sequence>
179 <xsd:element ref="spaa:ServiceReference"/>
180 </xsd:sequence>
181 </xsd:extension>
182 </xsd:complexContent>
183 </xsd:complexType>
184
185
186 <xsd:element name="Pa-Undefined" type="spaa:Pa-UndefinedType"

substitutionGroup="spaa:ProviderAction"/>
187 <xsd:complexType name="Pa-UndefinedType">
188 <xsd:complexContent>
189 <xsd:extension base="spaa:ProviderActionType">
190 </xsd:extension>
191 </xsd:complexContent>
192 </xsd:complexType>
193
194 <xsd:element name="Pa-Unexpected" type="spaa:Pa-UnexpectedType"

substitutionGroup="spaa:ProviderAction"/>
195 <xsd:complexType name="Pa-UnexpectedType">
196 <xsd:complexContent>
197 <xsd:extension base="spaa:ProviderActionType">
198 </xsd:extension>
199 </xsd:complexContent>
200 </xsd:complexType>
201
202 <xsd:element name="Pa-Undetermined" type="spaa:Pa-UndeterminedType"

substitutionGroup="spaa:ProviderAction"/>
203 <xsd:complexType name="Pa-UndeterminedType">
204 <xsd:complexContent>
205 <xsd:extension base="spaa:ProviderActionType">
206 </xsd:extension>
207 </xsd:complexContent>
208 </xsd:complexType>
209 </xsd:schema>

258

	Table of contents
	Abstract
	Acknowledgements
	List of Figures
	Acronyms
	I Foundations
	Introduction
	Overview
	Research issues and contributions
	Thesis outline

	Background and related work
	Introduction
	Service-Oriented Architecture
	SOA elements
	SOA style
	SOA reference architecture
	SOA specification and architectural framework
	Other related work
	Discussion

	Service based business processes
	Service composition
	WS-BPEL
	Process adaptation
	Business processes in cloud computing
	Discussion

	Policy based service computing
	Autonomic computing
	SOA governance
	Policy modelling and approaches
	Other related work
	SPL and Variability descriptor
	Discussion

	Transaction and coordination
	Coordination
	Business transaction
	OASIS WS-TX specifications
	Other related work
	Discussion

	AOP and service computing
	Aspect-Oriented Programming
	Related work
	Discussion

	Conclusion

	II Designing an architectural style
	Problem statement as an architecture problem
	Introduction
	A purchase order checkout business process scenario
	Process as a service
	The need from process consumers
	The need from process providers

	Business process governance
	SOA governance for business process
	Business process delivery in cloud

	A new architectural style and framework
	The need of a new architectural style
	The need of new architecture framework

	Conclusion

	Service Process Architecture style
	Introduction
	SPA basic concepts and elements
	SPA principle
	Process governability
	Governability explained
	Profiling the principle
	Measure of governability
	Type of process governability

	Governability and process design
	Process design and development
	Governability with impact on SOA principles

	Roles and activities for business process automation
	Case study
	Discussion of related work
	Conclusion

	III Designing an architecture framework
	Policy model
	Introduction
	The information model
	The language model
	Rule categorisation
	Rule
	Objects
	ActivityStates
	Conditions
	Actions
	FaultHandler
	Obligations

	Policy
	PolicySet

	Related algorithms
	Semantic matching algorithm
	Sequencing algorithm
	Policy combining algorithms
	Constraint combining algorithm
	Remedy combining algorithm

	Case study
	Objective
	Approach
	Case 1: configuration on service references of activities
	Case 2: configuration on flow logic and resource message
	Case 3: protection aspect
	Case 4: optimization and healing aspect

	Discussion with related work
	The primary requirements
	The language model complexity
	The fault handling ability

	Conclusion

	Coordination
	Introduction
	Coordination model
	The model
	Coordination context
	CoordinationContext
	Cache
	Example

	Coordination cache mechanism

	Process activity protocol
	Protocol message schema
	FSM of protocol
	FSM of COORc and COORp
	FSM of protocol design for runtime governance

	Cache of process activity protocol

	Coordination implementation with BPEL
	The wrapper service template
	The process template

	Case study
	The effectiveness on the coordination framework
	Objective
	Approach
	Result and discussion

	The performance overhead on coordination framework
	Objective
	Approach
	Result and discussion

	Discussion with related work
	Conclusion

	AOP Enhanced policy framework
	Introduction
	Policy AOP motivation and concept
	AOP motivation and capabilities
	Policy aspect model

	Policy aspect specification
	Join point model
	Pointcut language
	Advice Specification
	Advice type
	Advice language
	Advice template
	Aspect and lifecycle
	Fault handling

	Aspect deployment and weaving
	Aspect deployment
	Aspect weaving

	Case study
	Objective
	Approach
	Case 1: extension with high level policy for time windows
	Case 2: extend with Jess rule for rule reasoning

	Result and Discussion
	Comparison with related work

	Conclusion

	Conclusion
	Work summary
	Future work

	Bibliography
	Appendix

