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Abstract

Over the past 30 years HIV has infected over 60 million people, with almost half suc-

cumbing to AIDS related illnesses. While antiretroviral therapy, used to significantly reduce

within-host HIV replication, was available within 10 years of the discovery of HIV/AIDS, it

is only within the last 10 years that it has become truly effective and universally accessible.

However, there are problems with this therapy, not least that it must be administered indef-

initely but is expensive and highly toxic. Furthermore, as therapy reaches more resource

limited regions continual access can not be guaranteed, resulting in therapy interruptions.

This, coupled with a significant cost reduction by systematically interrupting therapy, means

a set of models which can account for both treatment events need to be developed, as numer-

ous models exist for therapy introduction, but those for therapy removal are limited. Thus

a set of delayed differential models are designed, which account for previously overlooked

important features of intracellular delay and HIV latency. Incorporation of these features

requires additional model components, leading to a rapid increase in complexity. To combat

this complexity issue dimensional analysis is introduced, as a novel method of identifying

key components to model function, thus allowing significant reduction in parameter space.

Based on these developed models a number of existing and potential treatment interruption

regimes are investigated, with a best practice regime suggested.
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Chapter 1

Introduction

1.1 Background

Acquired immune deficiency syndrome (AIDS) has spread from a handful of cases to a

worldwide pandemic in three short decades [4, 5]. Although a reduction of 19% in new
human immunodeficiency virus (HIV) infections has been seen in 2010, compared to their

peak in 1999, new infections still remain unacceptably high [6, 7]. There are currently 33.3

million people living with HIV/AIDS, of which 2.5 million are children. The majority of

these cases are within one region, sub-Saharan Africa which is responsible for 68% of the
global total (22.5 million) [8]. As access to therapy increases there has been a corresponding

decrease in deaths due to AIDS related illnesses, namely 1.8 million in 2009 compared with
2.1 million in 2004 [6]. Unfortunately, due to the large numbers of HIV positive people the

pandemic is expected to continue to grow into the foreseeable future [9].

There is currently no cure or vaccine for HIV/AIDS. However, significant international
efforts in treating those infected and controlling the spread of HIV have reduced both new

infections and those dying of AIDS related illnesses [5, 10, 11]. Nevertheless, there is a
US$10 billion gap between current funding and what is needed to improve access to therapy

and preventative measures [9]. Furthermore, due to current fiscal constraints, recent annual
funding levels have not risen for the first time in HIV/AIDS history, remaining at 2008

levels of US$15.9 billion [6]. This is despite projected estimates that funding levels will
need to rise to US$35 billion annually by 2031 to maintain current treatment levels [9]. This

indicates that the funding gap will widen in the future, emphasising that the limited money
available will need to be spread more thinly and will motivate the sourcing of cheaper

solutions to controlling HIV/AIDS.
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Primarily there are two methods of controlling HIV/AIDS; (i) reducing the number of

new infections and (ii) treating those infected with HIV, thus delaying the onset of AIDS or
AIDS-related illness, e.g. opportunistic infections (OIs). Reduction in the number of new

infections requires significant behavioural changes, which take time. However, increased
education and wider access to condoms have been observed to produce positive results. This

is shown by the fact that in sub-Saharan Africa, with 22% of annual AIDS spending on HIV
prevention in recent years, new infection rates have dropped by more than 25% over the last

10 years [6, 7]. Furthermore, by increasing access to therapy, to 5.2 million, (a 30% increase
from 2008), AIDS-related deaths have decreased in sub-Saharan Africa by 20% from 2004

[8]. It is estimated that, since the introduction of antiretroviral therapy (ART) in 1996,
approximately 14.4 million life-years have been added to those living with HIV/AIDS [11].

Some places, like Brazil, where access to therapy is greater, report an estimated 1.2 million
life-years gained. As a result part of the United Nations (UN) Millennium Development

Goals is providing access to therapy for all who need it, currently estimated at 15 million
people, [12, 6].

The drive for universal access to ART has highlighted the problems associated with
maintaining successful regimes for this therapy. This treatment controls but does not pro-

vide a cure for HIV [13, 14]. As such it must be administered indefinitely, but this is difficult
to maintain due to complex pill regimes and build up in toxicity levels due to continual use.

This poor adherence to treatment regimes can result in therapy failure, primarily due to
development of drug-resistant mutations (DRMs) [15]. These mutant viruses can evade

specifically-targeted drug types and replicate unchecked, thus making whole drug types in-
effective and requiring changes to therapy regimes [16]. If enough different DRMs develop,

thus blocking numerous drug types, then effective therapy becomes difficult to devise and
there is little that can be offered to the patient. This is extremely important in develop-

ing countries where only primary therapy, (based on an initial drug combination), may be
available [17]. Thus, accurate understanding of viral replication, during drug-induced viral

suppression, is needed, which can be used to indicate why therapy fails and under what cir-
cumstances it can be stopped/resumed. This research develops new mathematical models

which can be used to answer these questions.
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1.2 Mathematical modelling

Since the early days of HIV/AIDS a number of methods have been used to increase our un-
derstanding of the way in which infection progresses. Mathematical modelling has played a

vital role in this process and a subset of these models are utilised here to identify what hap-
pens when therapy stops or fails. These models use ordinary differential equations (ODEs)

to track changes in the levels of key cells associated with HIV infection, i.e. target cells,
infected cells and virus level. However, to achieve an accurate representation of drug-

induced viral suppression, seen under successful ART, existing ODE models need to be
modified, specifically to include the time between a cell becoming infected and producing

virions, (intracellular delay). This delay plays a crucial role in delaying viral rebound seen
upon removal of therapy and has not being fully investigated to date. Thus current ODE

models are modified to include intracellular delay, resulting in a set of delay differential
equation (DDE) models. These adapted models can then be used to investigate viral growth

from low viral loads, thus allowing modelling of therapy failure or removal, and gives im-
portant insight to when therapy may be stopped/resumed and under what circumstances.

Furthermore, this allows detailed investigation of structured treatment interruptions (STIs)
analysing why these have failed in the past and what needs to change for future success.

Successful STIs can reduce the time on ART, thus providing health and cost benefits.
Developing any model involves a trade-off between complexity and available data.

Within the context of the DDE models developed here, data are limited to treatment tran-
sitions, which generally occur infrequently. Furthermore, the transition necessary to fully

validate the developed models is therapy removal, which is not part of current treatment
regimes. As such the approach taken here is to investigate the impact of intracellular delay

on models and parameters already published, which are then validated using viral half-life
and doubling time. Also a slightly different perspective of dimensional analysis (DA) is

introduced as a method of limiting the number of parameters to be estimated. The objective

is to focus on key parameters, which determine model function. This produces a model
which is both as simple and accurate as possible, which can be used for both treatment

events, allowing STI regimes to be evaluated, at least in theory. This also allows potential
STI regimes to be designed for resource-limited regions, where continuous access to ther-

apy can not be guaranteed, and treatment interruption is inevitable. Furthermore, there is
a cost saving associated with interrupting therapy, which will become increasingly more

important as need continues to outstrip HIV funding.
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1.3 Thesis structure and scope

This thesis is split into a number of chapters, each chapter building on the previous, to pro-
vide the set of DDE models which are capable of modelling treatment events, thus allowing

investigation of STI and therapy failure. The chapters are summarised as follows:

Chapter 2 gives a general background to HIV/AIDS, including the global cost, both hu-
man and financial, of the HIV/AIDS pandemic to date. It also covers HIV trans-

mission and how this can be controlled. Finally, the biological background neces-
sary to develop the mathematical models is given, including how HIV progresses

within-host, how ART blocks replication and the treatment strategies used to delay
progression to AIDS.

Chapter 3 covers HIV/AIDS research, starting out with a general overview and then fo-

cusing on mathematical modelling of HIV/AIDS, with the modelling of within-host
HIV progression discussed in detail. The deterministic ODE models used as the basis

for the remainder of the research are then introduced and their limitations detailed.

Chapter 4 is the start of original research and addresses the limitations of the ODE models

discussed in the previous chapter, by adapting these to include intracellular delay and
HIV latency. As these are newly developed models, the rationale for these updates is

discussed and evaluated. These DDE models form the basis for the treatment event
analysis discussed in chapter 6.

Chapter 5 continues the novel material by using dimensional analysis to develop a dimen-

sionless representation of the DDE models developed in chapter 4, such that the key
parameters can be identified. The relative importance of each dimensionless param-

eter is determined by varying each separately and determining the effect this has on
model function. The biological meaning behind these key parameters is then dis-

cussed, determining why they are important to model function.

Chapter 6 concludes the new work by using the models developed in the previous chapters

to analyse treatment events, determining why STIs have failed in the past and what
is necessary for future success. These DDE models are then used to design potential

STI regimes for future testing.

Chapter 7 provides an overall summary and discussion of the impact that these new DDE
models have on HIV/AIDS understanding. Future work is then identified. Finally an

overall conclusion of the research is given.
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Chapter 2

AIDS pandemic and HIV infection
progression

HIV/AIDS has spread from a mere handful of cases in the early 1980’s to the present day

where over 60 million cases have been reported worldwide, of which over 25 million have
died due to AIDS related illnesses [6]. While this pandemic1 is thought to have peaked in

the late 1990’s there is a large number of people living with HIV, meaning the pandemic
will continue into the foreseeable future. Although the spread has been exceedingly rapid it

has not been uniform with some regions carrying the main burden. Sub-Saharan Africa, for

example, accounts for approximately 60% of overall infection but only accounts for 10%
of world population [8, 6]. Even within regions some groups are at greater risk than others;

for example, within the USA over half new infections are within the ‘men who have sex
with men’ (MSM) group.

This chapter gives the main mechanisms responsible for the transmission of HIV, how
it progresses to AIDS and what can be done to reduce the pandemic. This information is

set in context by giving an overview of the scale of the pandemic and the efforts to control
current and new infections. The biology of target cell infection is also covered, indicating

how disruption of each replication steps occurs, as this forms the basis for a large part of the
work in this thesis. This disruption delays the onset of AIDS by reducing HIV replication,

and thus the amount of virus present in an individual. The therapeutic strategies for delaying
onset of AIDS are then discussed.

1Pandemic: wide spread of an infectious disease within a human population across multiple countries or,
as in the case of HIV, worldwide.
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2.1 HIV/AIDS overview

Currently the HIV/AIDS pandemic is estimated at more than 33 million people living with
HIV/AIDS with more than 25 million lives lost due to AIDS related illnesses [6]. In the

process this has created over 16 million AIDS orphans, children who have lost one or
more parents to AIDS. With 2.5 million children living with HIV/AIDS the number of

HIV/AIDS infected people is expected to remain unacceptably high for the foreseeable fu-
ture. Although there have been significant progresses in treatment and prevention over the

last decades there is still a need for new strategies to target the reduction of pandemic size
[4, 9].

2.1.1 Current HIV/AIDS pandemic

Over the last thirty years HIV/AIDS has moved from a single reported infection cluster

[18] to the current world wide pandemic [6]. While new infection levels are thought to
have peaked at 3.2 million in 1997 they still remain extremely high, at 2.6 million just over

ten years later, a 19% reduction [6]. The increase in the total infected population is set
to continue, as new infections are added to the 33.3 million already infected. With nobody

cured, and an estimated 1.8 million dying due to AIDS related illness, 0.8 million are added

to the total infected annually. This increase is bolstered by a population increasing globally.
However, the transmission rate of HIV/AID is not universal, and can be geographically split

in developed and developing countries:

2.1.1.1 Developed countries

The original cases, of what would be later known as AIDS, were first identified in a specific

group in the USA [18]. The majority of early diagnosed cases were confined to this initial
group, defined as MSM [19]. This group still makes up over 50% of new infections in

the USA [1, 20, 21]. The other primary group to initially report high incidence were IDU
(intravenous drug users)[19], and this group also still makes up a significant portion of the

overall infection in the USA [1, 20], as can be seen in Fig. 2.1. Given the relatively small
number of individuals in each of these respective groups, compared to the population at

large, infection incidence is disproportionately large, creating ‘at-risk’ groups. This trend is
followed in most other developed countries, e.g. in 2010 Ireland’s 331 new HIV infection

were 37.2% heterosexual, 40.5% MSM, 6.6% IDU, 11.2% unknown [2], Fig. 2.1. The

trend can be generalised across the developed world, where a small number of ‘at-risk’
groups make up a disproportionate amount of new HIV infections [6].
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Figure 2.1: New HIV infections USA and Ireland: Typical break down of new infection
for developed countries, USA and Ireland in 2009 and 2010 respectively. Based on data
from [1, 2]

Figure 2.2: New HIV infections South Africa: Break down of new infection for a typical
developing country, South Africa from 2009. Also shown is the percentage of children
orphaned due to AIDS, at least one parent lost due to an AIDS-related illness. Based on
data from [3]

2.1.1.2 Developing countries

In parallel with the first cases being reported across the developed world, in the early 1980’s,

a new disease, known locally as ‘slim disease’ was also seen in parts of Africa [22]. This
disease resembled the AIDS seen in developed countries closely, but had different trans-

mission patterns, being predominately transmitted by heterosexual sexual intercourse. This
pattern is still true for most developing countries, where transmission is mainly among the

heterosexual population. Furthermore, the majority of new HIV infection is in the develop-
ing world, for example sub-Saharan Africa accounts for 68% (22.5 million) of all people

living with HIV/AIDS and 72% (1.3 million) of those who died from an AIDS related
illness [6]. New infection distribution for a typical developing country, South Africa, is

shown in Fig. 2.2. This figure also highlights the large proportion of children orphaned due
to AIDS, (at leat one parent lost due to AIDS-related illness), compared with the general

orphaned population.
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2.1.1.3 HIV therapy

There is currently no cure for HIV; the accepted strategy is to delay progression to full-
blown AIDS or AIDS related illness by therapeutic means. Therapy comes in the form

of anti-retroviral therapy (ART), which blocks within-host HIV replication and lowers the
amount of virus in the body. It is thought that high viral levels continually stimulate the

immune system, slowly damaging key immune components, eventually leading to AIDS

[14]. While ART has been widely available in the developed world, since the mid 1990’s,
it is only now reaching the wider global population, specifically in developing countries,

with the World Health Organisation (WHO) objective being access to all in need by 2015

[23]. Although major strides have been made in this direction, with access to treatment in

developing countries increasing by 30% between 2008 and 2009 [6]; it is still significantly
less than required. Across the world only 35% of those eligible for treatment have access.

However, a recent change in the WHO therapy guidelines, advocating earlier initiation of
therapy in the HIV life cycle, has increased the number eligible for therapy by 4.5 million

[23].

2.1.1.4 HIV/AIDS funding

There is a significant cost associated with therapy: for example in the developed world

the monthly cost for ART is in the region of US$1, 000. This is a cost which current
global HIV/AIDS funding levels can not match. The 2009 global HIV/AIDS budget of

US$15.9 billion is only 60% of what is required, leaving a funding gap of US$10 billion

[9]. Furthermore, the increase in ART eligibility has significantly added to the funding
shortfall seen in developing countries [23]. In the future this gap is expected to grow,

due to contraction of the world economy, the projected additional demand for therapy and
increasing world population. Based on this, and future shortfalls, there is a need to allocate

the limited funds more efficiently, by developing more cost effective solutions for treating
HIV infection. This is seen in the drive for generic drugs and simpler combination therapy

which are continually reducing costs [17]. Furthermore, given the different demographics
in transmission, a universal treatment strategy is not possible and must be tailored to each

situation, thus increasing the expenditure [17, 13, 24].
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While delaying the onset of AIDS decreases the mortality and morbidity observed, it

can not reduce the overall pandemic alone. Approximately 20% of the annual budget to
fight HIV/AIDS is spent on increasing awareness and promoting less risky sexual practices

[6]. While having an impact on future HIV infection numbers, through increasing public
knowledge of HIV and how it is transmitted, a significant behavioural change is required,

and this is something which happens slowly. While some positive results have been seen,
there have also been significant setbacks, e.g. infection levels are actually rising in USA

among MSM [20, 1, 21].

2.1.2 Origin of HIV/AIDS

The first reports of AIDS were in the early 1980’s when 5 cases of pneumocystis pneumonia

(PCP) were reported in the Los Angeles region of the USA between October 1980 and May

1981 [18]. These cases stood out because PCP normally only affected severely immuno-
suppressed patients, and these were relatively healthy young homosexual men. Shortly after

this Kaposis sarcoma was used as primary indication of what was subsequently described
as AIDS [25]. HIV was then identified as the underlying cause of AIDS, in the mid 1980s

[26, 27, 28, 29].
It is widely accepted that HIV originated in Africa and had been present for a number of

years before identification of AIDS [30]. There are two distinct viral strains of HIV known
today:

HIV-1 is the prevalent strain throughout the world and also the most virulent. Most cases

progress to AIDS, and death due to AIDS-related illnesses, within ten years, if un-
treated. HIV-1 has been shown to have originated in sub-Saharan regions of Africa

around the 1930’s [31] with the earliest HIV-1 sequence coming from the Democratic
Republic of Congo in 1959, (then Belgian Congo), [32]. As HIV-1 accounts for virtu-

ally all HIV infection, it is the focus of most research and drug trials. As such HIV-1
is the subject of the mathematical models discussed in this research.

HIV-2 is confined to West Africa and is less virulent than HIV-1 [33]. Most infected in-
dividuals show few symptoms and generally do not progress to full-blown AIDS as

fast [34, 35]. As it only infects a small number of people, compared to HIV-1, it
does not form the basis of much HIV/AIDS research. The exception is comparison

of differences with HIV-1 and what can be learned about its slower progression to
AIDS.

These types are further split into a number of groups. For HIV-1 there are 4 primary

groups (M,N,O and P) [36]. As more than 90% of HIV-1 infection is confined to group M
this is again the primary focus of research. HIV-1 group M is subdivided into subtypes (or
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Figure 2.3: HIV sub-type distribution: Distribution of HIV sub-types in
2002. (Image obtained from public domain: http://en.wikipedia.org/wiki/File HIV-
1 subtype prevalence in 2002.png)

clades): A, B, C, D, F, G, H, J and K. As each subtype is generally confined to a geographi-

cal location, as shown in Fig. 2.3, therapy can be tailored to individual subtypes. However,
there is a risk of cross-subtype infection, which can produce new hybrid virus [15]. If

these survive they are called CRFs (circulating recombinant forms), the most prominent
being CRF AE. The presence of CRFs significantly increase the difficulty in treating HIV,

as some of these CRFs can produce a viral strain which is resistant to particular therapy
regimes [37]. This means that, for effective therapy to be administered, knowledge of the

potential HIV viral strain, or strains, involved in infection of an individual is required. As
individual testing is not economically viable in the developing world, knowledge of the

geographical location of the above subtypes becomes very useful.
HIV has been shown to have developed from primates [38, 30]. In particular, an ex-

ample is provided by the Sooty Managabey monkeys (Cercocebus atys), prevalent in sub-
Saharan Africa, where a similar virus SIV (Simian Immunodeficiency Virus) has been iden-

tified [30, 39]. SIV is present in more than 20 African Primate species, but each has their
own built-in viral immunity and the virus does not appear to universally progress to AIDS,

as it does for humans. However, when different SIV viral strains are introduced, this spe-
cific immunity is lost, and the virus, yet again, is likely to prove fatal [40]. The possible

reason for this specific immunity is that it is built up over a number of years by survival of
the fittest i.e. only those able to fight the virus survive [30], an observation which obviously

can not be accepted for humans.
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2.1.3 HIV progression to AIDS

HIV is an infection which, with the help of co-infections2, depletes a key part of the immune
system, leading to AIDS, and possible death due to AIDS-related illnesses [14, 41, 42].

How this depletion occurs is still not fully understood, but is widely accepted to involve a
number of factors that combine to disrupt natural immune system function [43, 44, 45]. One

important factor is the continual activation of the immune system, suggesting exhaustion

over a long period of time. This is consistent with other research, e.g. investigation into
severe cold on the immune system [46]. Currently the only way to delay progression to

AIDS is to significantly reduce HIV replication, thus allowing the normal immune function
to return.

The natural progression from HIV to AIDS, (i.e. without therapeutic intervention),
takes approximately ten years from initial infection to the terminal stage of death, due to

AIDS-related illnesses [47]. However, this progression can be much shorter, depending
on how infection was transmitted, the presence of co-infections, individual age and access

to palliative care in treatment of opportunistic infections. On the other hand, advances in
therapeutic intervention, to reduce virus levels, can delay the time between infection and

terminal stages significantly [13]. In consequence, HIV is now considered a chronic illness,
given access to therapy, whereby death may occur from non-HIV related cause [48].

HIV is a very complex infection undergoing a number of stages before it eventually
culminates in AIDS. Thus is only possible to give an overview of progression here, for a

fuller description the reader is referred to [14, 49], also HIV replication is covered in detail
in Section 2.2. The natural progression of HIV infection, shown in Fig. 2.4, follows the

three stages described below:

2.1.3.1 Acute phase

After primary infection, when HIV first enters the body, the immune system initiates a re-
sponse to fight against the new invader. As HIV has a very high replication rate, producing

about 1010 − 1012 new virions (complete viral particles) per day, the viral load (amount of
virus in the body) grows faster than the immune system can respond [14, 49]. This period,

which last a number of weeks, shows a peak in viral load before the immune system recov-
ers and starts to reduce and control the amount of virus present. Thus the immune response

is reasonably successful at controlling the initial virus attack. However, key components of
the immune system, namely the CD4+T cells which orchestrate immune response, are sig-

nificantly diminished. A healthy person can expect to have about 1, 000 CD4+T cells/µL

2Co-infection: Simultaneous infection with more than one virus, bacterium, or other micro-organism at a
given time, which may increase the severity and duration of one or both. Significant HIV co-infections include:
tuberculosis (TB) and hepatitis B and C
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of plasma and these drop by about 50%, to around 500cells/µL. Common symptoms of

acute infection are fever, nausea and malaise [42].

2.1.3.2 Chronic phase or clinical latency

After the initial immune response a viral load ‘set-point’ is reached, with HIV replicating

at a relatively constant level [14, 49]. This period can last a number of years, and while not
immediately harmful, the number of CD4+T cells are slowly depleted, generally without

any outwardly-observable change to patient health. As a result many patients present in the
final stages of AIDS, without knowing they are infected. This asymptotic period led original

researchers to identify HIV as a latent virus, laying dormant and waiting to be reactivated,

similar to other viruses, e.g. herpes simplex virus [50, 51]. However, as knowledge of
HIV and AIDS increased, it was shown that a large amount of free virus was continuously

replicating with the immune system barely keeping it in check [52, 53]. This stage is now
also described as the ‘clinical latency’ period, referring back to the original identification

of HIV.
The introduction of therapy, in the form of ART blocking HIV replication, means vi-

ral load can be reduced significantly [13]. Under continual administration of therapy, viral
load drops below detectable levels, and the progression towards AIDS is halted [13]. Nev-

ertheless, there is still some virus present, as HIV does have true latent reserves in other
cells which therapy can not reach, e.g. in the brain and lymphatic nodes [54, 55]. If ther-

apy is removed, or fails, the viral load rebounds quickly, re-stimulating disease progression
towards AIDS [56]. However, if the therapy regime can be maintained indefinitely, then

HIV becomes a chronic infection, never progressing to AIDS [48]. Current ART can be
administered indefinitely and, with the escalation of access to therapy, it is hoped to make

HIV/AIDS a universal chronic infection. Furthermore, while on successful therapy, viral
load drops significantly, thus reducing transmission rates [57, 58].

2.1.3.3 AIDS

This equilibrium situation, of viral replication being kept in check by the immune system,

can be sustained for a number of years, (approximately 10 years), without therapeutic inter-
vention [14]. Eventually the numbers of CD4+T helper cells are depleted and the immune

system can no longer even orchestrate a token response to opportunistic infections, (OIs)
[59]. OIs are a number of infections associated with AIDS, such as PCP (pneumocystis

pneumonia), TB, candidiasis, herpes zoster and many others [51, 42]. It is the presence
of these OIs that give an indication that a patient has progressed to the AIDS stage. The

inability to fight off an OI is the general cause of AIDS-related death, not the actual HIV
infection itself. It is because of one of these OIs that HIV/AIDS first came to light [18].
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Figure 2.4: Natural HIV progression: Natural HIV/AIDS life cycle, from initial infection
to AIDS. Note: no therapy is shown, if included this would prolong the Clinical Latency
period by reducing the viral load to undetectable levels (< 50copies/µL).

2.1.4 HIV transmission

HIV exists outside of host cells, which it needs to replicate, as tiny roughly spherical parti-

cles (virions) about 120nm in size. These virions can not survive outside the body, meaning
the passage from individual to individual must take place through bodily fluids i.e. direct

contact between a mucous membrane or the bloodstream and blood, semen, preseminal

fluid, vaginal fluid or breast milk. Furthermore, HIV has a relatively low transmission rate3

(1 : 1000 to 1 : 100), which is 1/10 that of hepatitis C and 1/100 that of hepatitis B [42].

The primary transmission routes are:

Sexual Intercourse Passage of bodily fluids through unprotected sexual intercourse is the

main method of HIV infection and accounts for the majority of new infections [60].
The probability of infection depends on the type of intercourse, with receptive anal

intercourse (0.82%) significantly greater than vaginal intercourse (0.05%) [42, 61,
38].

Intravenous Drug Users The use of unsterilised injection equipment by intravenous drug

users (IDU) puts them at great risk of contracting HIV. If this equipment has previ-
ously used by an infected person the chance of infection is 20%, compared with 0.5%

for accidental needle pricks from contaminated needles [42, 62].
3Transmission rate: The rate at which an infectious agent is spread between individuals
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Mother to Child (vertical) Vertical transmission, either during pregnancy, during birth or

via breast feeding, has a 25% probability of HIV infection. However, this can be
reduced to less than 1% by introducing ART to lower the mother’s viral load [42].

Much research has been done in this area resulting in a significant reduction in trans-
mission rates [63, 64].

Blood Products Exposure to contaminated blood products is one of the fastest ways in

which progression of infection occurs, because of the relatively large amount of the
virus introduced to the body, coupled with a naturally active immune system re-

sponse. However, virtually all blood products are routinely screened for HIV and
other diseases, with reduced screening levels in developing countries.

2.2 HIV replication

After primary infection HIV must locate and enter target cells to replicate [65]. Depending

on the initial amount of virus that enters, an infection may or may not establish itself, as the
immune system utilises a number of tools to fight any infection [14]. However, once the

infection is established the immune system alone can not clear it. HIV uses CD4 receptors
to bind to target cells and while, in general, the virus itself does not directly kill these

cells, it does have adverse affects on the immune system [14]. The primary targets for HIV
replication are CD4+T helper cells [66]. Further, it is the depletion of these cells that results

in AIDS, although the exact depletion process is not yet fully understood [38].
Generally, after initial infection the target cells migrate to the regional lymphoid tissue

within 3 to 5 days. The increased activation of CD4+T cells results in a large increase in
viral replication within the first 2 weeks, as locally induced inflammatory responses actually

facilitate replication. In 40 − 90% of cases this response may result in flu-like symptoms,

which may last as long as two weeks, but some infections may not show any symptoms
within the first few years [38, 42]. At this stage the immune system is mounting only a

relatively inefficient response, thus allowing the virus to replicate unchecked. Patients are
highly infectious at this stage, but the common HIV test does not produce a positive result,

as it based on presence of HIV antibodies and there are none to detect. This lack of a
definite result, coupled with laboratory abnormalities that may alter infection status, make

it necessary to carry out several tests over time, after a suspected infection event, to get an
accurate result [38, 42]. Furthermore, the possibility of cross-reaction with other infections,

along with the expense of testing multiple times, means HIV testing in developing countries
is not as frequent as desired [6].
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2.2.1 Immune system

The immune system play a vital role in HIV replication, both fighting infection and provid-
ing the necessary target cells needed for HIV replication. The immune system can be split

into two broad response types:

Innate immune response is a non-specific immune response which is the first line of de-

fence against infection [49].

Adaptive immune response is a pathogen and antigen-specific response which develops
in response to an infection. This is a slower but more specific response which also

retains memory of specific infections allowing for faster activation upon reinfection.
It is by this process that vaccination is possible, e.g. by exposure to an attenuated

vaccine which triggers an adaptive immune response but not actual infection. Unfor-
tunately, vaccination is not possible for HIV infection at the moment.

Both responses are triggered by HIV infection and, as described above, provide some con-
trol of HIV replication leading to the chronic phase. Furthermore, the responses are reduced

with successful therapy, as the amount of virus in the system is greatly reduced, but are
stimulated if therapy stops or fails.

2.2.2 HIV target cells

HIV targets cells presenting CD4 receptors, which are used to bind the virion to the target

cell. There are a number of cells presenting this receptor:

T helper cells are a sub-group of lymphocytes, a type of white blood cell, which help
establish and control an immune response [67]. They do not kill infected cells but

direct other immune system cells to do so.

Regulatory T cells help suppress the immune response, thus preventing an excessive im-
mune response [68].

Monocytes move to sites of infection and differentiate into macrophages and dendritic
cells to elicit an immune response [66].

Macrophages are white blood cells produced by the differentiation of monocytes in tissues

[69]. Their role is to engulf and then digest cellular debris and pathogens. They can
also stimulate other immune cells.

Dendritic cells are antigen-presenting cells processing antigen material and presenting it

on the surface to other cells of the immune system [70, 66].
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The population, and accessibility, vary with each cell type but T helper cells are the

primary target for HIV replication. The slow depletion of these leads to AIDS, as already
stated, because they control immune responses. Furthermore, these target cells produce

virus at different rates and react differently to ART, meaning that they have to be incorpo-
rated separately in models, as discussed in detail in Chapter 3.

2.2.3 HIV replication in target cells

HIV, as shown in Fig. 2.5, is a retrovirus and must use a host cell to produce new virus.

A retrovirus is single-stranded chain of nucleotides, ribonucleic acid (RNA). These nu-
cleotides are the building blocks of nucleic acids used as a blueprint for all life. This single

stranded RNA must be converted to deoxyribonucleic acid (DNA), using a host cell’s built
in replication processes, to allow HIV to replicate. As a retrovirus must first enter a cell

before replication, target cells are chosen based on an affinity for particular receptors. For
example, human T-lymphocytes virus type I, (HTVL-I), targets T and B cells as it has

an affinity for the glycoprotein 46 (gp46). However, HIV has the most specific targeting
system of this type [71]. HIV specifically targets cells presenting CD4 receptors because

HIV contains the glycoprotein 120, (gp120), which has a strong affinity for CD4 receptors.
HIV’s main targets are CD4+T helper cells, due to their relative abundance, but other cells

like Lymphocytes in plasma and Glial cells in the brain are also targeted [42]. Each stage
of the replication process is a potential therapeutic target, by blocking the interactions. The

stages, as shown in Fig. 2.6, are:
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Figure 2.5: Diagram of HIV virion: The 120nm virion contains two
copies of single-stranded RNA containing vital proteins and enzymes nec-
essary for HIV replication. Also shown are the glycoproteins neces-
sary for binding to target cells. (Image obtained from public domain:
http://en.wikipedia.org/wiki/File:HIV Virion-en.png)
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Binding To facilitate entry the gp120 of the virion binds to the CD4 receptors on the target

cell surface. While CD4 is the main receptor other receptors may be utilised but to a
much lesser extent. As a result HIV can bind to any cell presenting the CD4 receptor,

but the majority are CD4+T helper cells. In addition to using CD4 to bind to the
target cell a number of co-receptors are required before it is possible to enter the cell.

While there are potentially over 200 co-receptors the most common are CXCR4 and
CCR5, named after the natural chemokines that bind to them [42].

Entry After binding HIV RNA is injected into the cell where it will use the cell’s own

chemistry for replication.

Integration The single stranded RNA genome is converted to a DNA molecule using RT
(reverse transcriptase), an enzyme that transcribes single-stranded RNA into double-

stranded DNA. This DNA molecule is then transported into the cell nucleus where

it is integrated into the host cell’s genome by another viral enzyme called integrase.
This integration creates a provirus, i.e. a virus genome that is integrated into the

DNA of a host cell. Once integrated, this provirus may remain dormant, awaiting cell
activation, or immediately start replicating.

Transcription Viral replication happens by transcribing the integrated provirus into mRNA

(messenger RNA), which is a RNA molecule with the blueprint for proteins. This
mRNA is spliced into smaller parts and exported from the nucleus to where they are

translated into proteins and packaged into new virus particles.

Budding HIV protease then cleaves the new virus particles into individual functional HIV
proteins and enzymes. These proteins are then assembled to produce a mature HIV

virion which slowly buds from the host cell. However, sometimes the cell dies re-
leasing a number of virions at once (lysis). The budded virions are then able to infect

another cell.

It is estimated that this replication cycle takes in the region of 24 hours from cell infec-
tion until it starts producing virions [72, 73, 74, 75, 76, 77, 78]. However, only active cells

produce virions, which allow HIV to remain hidden in inactive cells. These inactive cells

may eventually become active and start producing virions, creating latency [54, 79, 80, 55].
Each of the above steps is a potential target for invasive therapy, described in detail in

Section 2.3.2.
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Figure 2.6: HIV infection process: Diagram showing HIV infection process,
from binding through replication to budding. (Image obtained from public domain:
http://en.wikipedia.org/wiki/File:HIV gross cycle only.png)
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2.2.4 Viral production types

The rates at which virions are produced depend on the cell type and its activity. This rate is
an important aspect which needs to be incorporated accurately into mathematical models.

There are three main rates at which virions are produced:

Acute infection is generally how most virus is produced. These are infected active cells

that start producing virions immediately, after the infection process has finished, and
at a high rate, e.g. via lysis. As these infected cells are short-lived the introduction

of therapy, to stop new infections, rapidly reduces the number of these cells. This
creates the first phase seen in the bi-phasic drop in viral load after introduction of

therapy.

Chronic infection occurs in active cells, which are infected, but not over-stimulated and
hence produce a lower level of virus over a longer period of time than acute infection.

Upon therapy introduction the second phase of viral load drop is seen as these cells
die naturally, reducing the total infection produced by this pool.

Latent infection is due to cells, which have the provirus fully integrated but not activated.

These cells remain infected but do not produce virus unless activated. Furthermore,
these cells can reproduce, allowing the provirus to live indefinitely. Effectively this

means HIV can not be eradicated from an infected individual unless these cells can
be eliminated. This group is primarily responsible for viral rebound when ART is

removed after long periods of viral suppression.

The introduction of ART reduces both productive and chronic infected cells but can not

truly access latently infected cells. When therapy was first introduced it was hoped that
HIV could be eliminated as an individual’s the viral levels dropped very fast. However,

even after years of undetectable viral load some latent virus remains to re-stimulate viral
growth if therapy is removed. It is because of this latency that therapy must be administered

indefinitely.

2.2.5 Viral mutations

HIV is unique among infectious diseases because of its extremely high rate of viral muta-
tion. As HIV is a retrovirus it needs to reverse the normal genetic flow when replicating.

Thus replication, using RT to convert RNA to DNA, allows a significant number of errors to
be produced in the copied DNA, as the RT enzyme does not possess any in-built correction

mechanism. As a result ≈ 0.2 errors per genome per replication cycle are produced [30].
This high mutation rate is compounded by the high replication rate of HIV, about ≈ 1010

20



replications per day [81]. The combination means that many variants of the virus are pro-

duced each day, some of which may be more virulent or able to escape specific therapy.
Furthermore, when an individual is infected with more than one sub-type, these can com-

bine to produce recombinant forms, which can be more difficult to treat [16, 82]. As a result
these mutations can prove a significant problem in maintaining successful therapy regimes.

Also, the selective pressure applied by sub-optimal therapy means drug resistant mutations
can develop [15, 16]. These drug resistant mutations generally occur when a therapy regime

is not fully adhered to, allowing some virus to replicate. In general these drug resistant viral
stains can develop:

Within-host: mutations which evade specific therapy types and develop under the selective

pressure of a sub-optimal therapy regimes, where a significant amount of virus is
produced despite the presence of ART.

Between-host (super-infection): when a drug resistant viral strain is passed from one in-

dividual to another by re-infection through the standard transmission mechanisms
[83, 84].

Whatever the source of mutation, the result is the same; whole classes of drugs can

become ineffective, as will be seen in Section 2.3.2 which consider individual drugs. Fur-
thermore, it was thought that if the selective pressure of sub-optimal therapy was removed,

HIV would revert to its original ’wild type’ form. Unfortunately this has been shown not
to be the case as drug-resistant mutations are only masked by the large amount of wild

type virus. When therapy is reintroduced, these drug-resistant viruses re-emerge and evade

suppression.

2.3 Treating HIV/AIDS

Prolonging the life of a HIV infected individual involves combating the reduction of CD4+T
cells and fighting the opportunistic infections, if and when these occur. Since the introduc-

tion of ART, AIDS survival has increased dramatically [11]. Before ART, survival was
measured in weeks to months, now, with multi-drug regimes widely available, this is mea-

sured in years [4]. Introduction of ’salvage therapies’ for treatment-experienced individuals,
with no therapy options left, produced ’Lazarus’ like results [85, 42]. As a result of new

treatment options opportunistic infections are now rare [13]. Overall, already mentioned, it
is estimated that 14.4 million life-years have been gained because of ART [11]. This section

focuses on ART, constituent drugs types, and how these are combined to create treatment
strategies.
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Controlling HIV replication using ART is complicated, as it is necessary to decide when

to start, stop and/or change drug combinations. This is achieved by measuring the level of
a number of key cells, specifically the CD4+T cells and virus present. Furthermore, there

is no universal consensus as to the stage at which infection therapy should be initiated; this
varies by individual case. However, it is the general consensus that once therapy is started

it should not be stopped and should be monitored closely for failure [86]. ‘Failure’ status is
based on viral load and a number of other clinical indicators, but once viral load increases

dramatically drug combinations should be changed quickly, before drug resistant mutations
can develop and eliminate future therapy options. A primary cause of therapy failure is

a reduction in adherence to a therapy regime, leading to virus not being fully suppressed.
Also some patients are known to take ’drug holidays’, without clinical supervision, which

can quickly lead to development of resistant strains. However, ART drugs are highly toxic
and it may be necessary to stop therapy due to a build up of toxicity [15, 42]. The need

for such interruptions is being gradually brought under control, due to new drugs and drug
combinations, and can be performed under clinical supervision.

2.3.1 Therapy monitoring

To determine therapy strategies it is necessary to monitor HIV progression. Currently there

are two main systems of identifying the stages of HIV progression:

CDC Classification System The CDC (U.S.A. Centers for Disease Control and Preven-
tion) system is primarily based on CD4+T cell levels, in combination with viral load

and previously diagnosed HIV related conditions. This is primarily used in the de-

veloped world and was last revised in 2008 [87]

WHO clinical staging of HIV/AIDS This is used in developing countries where resources
are limited and key cell levels may not be readily available. Devised for resource

limited countries it was last revised in 2007 and is primarily based on clinical obser-
vations [88].

Knowing the stage of infection, regardless of staging system, allows a more appropriate

treatment regime to be developed.

22



2.3.2 Anti-retroviral therapy

ART began in 1987 with the introduction of mono-therapy, a single drug to block HIV
replication. Since then, over 25 drugs have been licensed, across 5 different drug classes,

with new or refurbished drugs coming on the market all the time [24]. The replication steps
targeted by the five main classes of drugs, which are combined to make up a multi-drug

cocktail to diminish the development of drug resistant mutations, are:

Integrase inhibitors block entry of virion into target cell. To enter a target cell HIV must

bind to the CD4 receptor, attach a co-receptor and then fuse with the cell [89]. En-
try of HIV in a target cell can be blocked by interfering with either the binding or

fusion process. Based on this there is potential for three classes of drug; attachment
inhibitors, co-receptor antagonists and fusion inhibitors. While, in theory, each step

is a target, only one drug has been licensed so far, T-20 [89, 24], which blocks the
fusion process.

Reverse transcriptase inhibitors, (RTIs), block transcription of viral genome. Transcrip-

tion of the viral genome is blocked by inserting false nucleotides to abort DNA syn-
thesis [90]. The drug first used in mono-therapy, AZT, is of this type and is still in

use today. RTIs have major problems with cross-resistance and severe long-term side
effects but do not interact with other drugs and have a relatively low pill burden, (1

per day). There are two classes of nucleoside analogues, (NRTIs or ‘nukes’) [91], and
non-nucleoside reverse transcriptase inhibitors, (NNRTIs) [92]. There is a very high

risk of cross-reaction, as a single point mutation can eliminate this entire drug class,
making NNRTI regimes very vulnerable. These drugs are relatively easy to take and

have few side effects, thus they are an important part of therapy regimes.

Protease inhibitors, (PIs), block cleaving of viral genome to create non-functional viri-

ons. These drugs compromise the protease enzyme, which builds the functional viri-
ons, thus effectively producing non-infectious virions [93]. These have a high pill

burden (6 per day), severe long term side effects and a high chance of cross-resistance,
but are still crucial to many ART regimes, especially for treatment-experienced pa-

tients.

Refurbished old drugs: With the rapid increase in providing therapy across the develop-
ing world old drugs are being combined into easier-to-administer regimes [15, 24].

This helps reduce the pill burden and increases adherence to therapy, which is es-
sential for success. Furthermore, some drugs are being manufactured under license,

which reduces the cost significantly.
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2.3.3 Treatment strategies

Over the years they have been a number of treatment strategies designed to control HIV
replication. From the initial single drug therapies late 1980’s [94], treatment strategies have

evolved, as newer drugs and better understanding has being gained [5, 10, 48]. The current
strategies can be split into:

Mono-therapy is still used in developing countries to reduce vertical transmission, (mother
to child), where other options are not available [95]. Not recommended for long term

use due to rapid development of resistance, as seen in the late 1980’s and early 1990’s
when it was the only option [96, 97, 94].

Highly active ART (HAART) generally involves at least 3 drugs from two classes. These

were introduced in the mid 1990’s and produced the first effective way of delaying
progression to AIDS [98, 99]. This is still the main therapy in use today, especially

for treatment-naive individuals. Newly developed drugs allow pill burden to be re-
duced significantly, along with reduced long term toxicity. Successful HAART can

be maintained for years, possibly even decades.

Mega-HAART sometimes known as giga-HAART [100]. This generally involves five or
more drugs from a number of classes. Used in treatment-experienced individuals,

who have few remaining therapy options.

Salvage therapy defined here as involving nine or more drugs. This is used to salvage

an individual who has become resistant to most of the current drug combinations,
making conventional therapy ineffective. Combining a number of drug classes, with

newly developed drugs, allows numerous DRM to be suppressed.

Treatment interruptions will always occur, due to limited availability of therapy, poten-
tial benefits to therapy strategies, development of toxicity, or requests for ‘drug hol-

idays’. However, the case of elite controllers, and specifically the ‘Berlin patient’
leading to structured treatment interruption, with the aim of bolstering the immune

system to a level, where it can control HIV replication alone [101]. However, despite
numerous studies this approach has yet to be substantially argued [56]. There is po-

tential for a significant cost reduction to be achieved if therapy was required for only
a portion of the time, after full suppression.

These therapies are the main method of controlling HIV replication, but given the asso-

ciated difficulties it has become increasingly apparent that a further alternative is required.
Investigating these strategies, using a mathematical model of low level viral replication,
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forms a large part of this research. Specifically investigated is the case for structured treat-

ment interruptions, which is still controversial as, in the majority of cases when therapy is
removed, viral load rebounds almost instantaneously.

2.4 HIV/AIDS future

A number of ways exist of reducing the number of new HIV infections. The simplistic view

of the HIV/AIDS pandemic suggests that the key to reversing the spread of HIV is to reduce
the rate at which it spreads. In a general viral epidemic, vaccination, (i.e. building immu-

nity to a particular infection so individuals are no longer susceptible), is the main method
of preventing infection. Equally simplistically, if people do become infected they either

recover or die. However, no vaccine exists for HIV/AIDS, as yet, and reducing the spread
of infection involves changing the culture of those susceptible, a non-trivial behavioural

impact. The majority of the annual 2.6 million new infections could be prevented by sig-
nificant changes in people behaviour and circumstances. While only gradual behavioural

changes are taking place these have seen the number of new infections drop 19% in ten
years [6]. Furthermore, there are a number of other strategies currently available, even in

the absence of a cure or vaccine, which can reduce new infections further:

Increase knowledge of HIV infection: A reduction in the transmission rate can be achieved
by seeking out, and testing, those who are at risk of HIV infection more often. Cur-

rently the majority of infection is transmitted by individuals who do not know that
they are infectious. Testing also makes people more aware of the risks involved.

Cure a proportion of infected: While a true cure, i.e. complete eradication of all infec-
tion, for HIV is beyond current capabilities, suppression of viral replication below

detection levels can be achieved for long periods, thus reducing the chance of pass-
ing on infection.

Prevent new HIV infection: The wider use of preventative measures can reduce the risk

of a new infection greatly.

All of these are interdependent on each other; e.g. knowledge of HIV status will allow
informed choices about HIV prevention and therapy if necessary. Furthermore, the amount

of virus present while on successful ART is significantly lower (reduced from 64, 000 to
less than 50copies/µL). As a result the chance of spreading infection greatly deceases.

Another significant achievement has been the reduction in vertical transmission, whereby a
mother passes HIV to her baby. Without therapy the infection rate is 25% but this is reduced

significantly using therapy. As a result the number of vertical transmissions have greatly
reduced in the developing countries where this is a major issue.
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Currently access to ART is widely available in developed countries and is increasing in

developing countries, with a drive to get as many people on ART as become newly infected.
As access to ART increases this will help decrease the numbers of new infections, which

will help decrease the overall pandemic of HIV/AIDS. Current strategies allow therapy to
be administered over very long periods, (decades). As a result there is increased chance of

drug resistance developing, as adherence levels can drop in the light of no virus for long
periods of time. In consequence, there is a great need for developing new therapy options

and understanding how infection levels are affected. Furthermore, the cost of ART makes
it difficult for developing countries to meet universal access, but generic drugs allow more

people to start therapy for a fraction of the cost. This coupled with the drive from the WHO
and other world organisations mean soon the numbers starting therapy will exceed those

becoming infected, the first step in combating this pandemic.

2.5 Summary

This chapter gave an overview to the HIV/AIDS pandemic and how this can be managed
in the future. Also given is the biology of HIV replication and how drugs can be used

to interfere with its replication. The next chapter demonstrates how this biology is used
to develop models of within-host HIV progression. These models then form the basis of

the research which follows, developing a model capable of accurately predicting treatment
interruption regimes.
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Chapter 3

HIV/AIDS Research

Over the past 30 years our understanding of HIV/AIDS has progressed faster than for any

other new infection, almost keeping pace with the spread of HIV/AIDS itself [4, 5]. Within
only a few years of its initial discovery, in early 1980’s, a diagnosis of AIDS and HIV as the

underlying infection was reported [26, 102, 103]. In less than 10 years an initial treatment
was provided, using mono-therapy to block HIV replication, albeit with limited success

[96, 97, 94]. Over the next 5 years this treatment became more potent and changed the
course of HIV infection, delaying the onset of AIDS significantly [98, 99]. Before 20 years

had passed the number of new infections were dropping and the pandemic levelling out,
with HIV regarded as a chronic infection [6]. Despite this unprecedentedly rapid knowledge

scale-up and drive to control HIV/AIDS, the number of those living with HIV/AIDS is now
over 30 million, with the pandemic expected to continue for many years to come [11].

While Chapter 2 gave an overview of the biology and global effects of HIV/AIDS,
this chapter gives an overview of the tools used to produce such significant advances in

HIV/AIDS research, with those employed for this research focused upon in much greater
detail. The three broad categories, in vivo1, in vitro2 and in silico3 analysis, are intro-

duced to give the research context [104]. The area of in silico analysis is expanded upon
and distinctions drawn between mathematical model functions. A subset of these models,

which are the focus of this research, is then discussed in greater detail. These are specifi-
cally top-down deterministic differential equation models of within-host HIV progression.

Modifications and analyses are included in the following chapters.
1In vivo (Latin: within the living) experimental biology using the original organism in its own environment.

This is generally the final stage of experimentation used to determine a concept’s accuracy
2In vitro (Latin: within glass) experiments performed using part of the organism, isolated and performed

under controlled conditions, e.g. within a lab environment. These generally provide specific biological infor-
mation not available in vivo.

3In silico (Pseudo Latin) generally accepted to mean by simulation, which is generally performed using
mathematical and or numerical models analysed using a computer.
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3.1 Overview of HIV/AIDS research

The rate at which HIV/AIDS research has advanced has been extremely fast, with focus of
new research continually shifting. Originally research focused on identifying the underlying

cause of AIDS [26, 28, 29] . With HIV identified as its cause the emphasis shifted to HIV,
its cause, spread and progression to AIDS [105, 106, 107, 108, 109, 110, 111].

To identify, develop and test new ideas a general process can be to perform simulations,
in silico, as a proof of concept. This concept is then tested under controlled conditions, in

vitro, to access safety and verify in silico results. Finally, if the previous two steps prove safe
and true, the concept can be tested in the real environment, in vivo. Each step is discussed

in detail below.

3.1.1 In vivo analysis

Ideally, the best method of analysis is to observe, and/or test, the subject involved in its
own environment. This generally takes the form of clinical trials, where as many external

influences are known and, if possible, controlled. In the case of HIV/AIDS the use of clin-
ical trials are strictly controlled, due to the ethics involved in dealing with human subjects.

The strict conditions imposed, which are closely monitored, e.g. against control groups,

can lead to premature ending of trials, due to adverse effects. For example, some treatment
interruption trials were stopped early, as the trial either showed no benefit or was worse

than the control group [112, 113]. There have been a number of successful trials, e.g. male
circumcision in significantly reducing the probability of HIV transmission [114, 115, 116].

The use of animals, as substitutes for the actual subject being investigated, is also possi-
ble. As HIV is a lentivirus4 a number of other animals are susceptible to similar infections.

This is especially useful in those other animals that exhibit similar disease manifestation or
share species characteristics. As a result these animals can be used to act as human substi-

tutes and progression of their version of HIV closely monitored. For example, SIV-infected
macaque monkeys allows analysis of an adequate numbers of hosts, which has been espe-

cially useful in HIV vaccine research [117, 118]. However, the problem with using animals
as substitutes for humans is that while HIV and SIV are similar, they are still different

viruses, so everything must be verified using clinical trials, as mentioned above. This prob-
lem has been somewhat overcome by using chimeric mice5, which can support human cells

and thus be infected with HIV, to mimic the complex human immune system [119]. These
mice are extremely important as they can be bred in the large quantities necessary for sta-

4Lentivirus: a family of retrovirus that can infect across species. The HIV family has been shown to infect
a number of different primates, along with other animals, cats having a similar progress time scale to AIDS as
humans

5Chimeric mice: mice that are composed of different populations of genetically distinct cells, i.e. they can
contain human cells which can be used for HIV infection
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tistically meaningful results. A similar infection, FIV (feline immunodeficiency) exhibits

progression to an ‘AIDS-like illness’ which takes 6-8 years, similar to HIV progression
[120]. However, this slow infection progression also means lengthy delays in obtaining

results. Studies of chimpanzees (infected with HIV) are both costly and of limited value,
given that disease complications differ from those of humans [121, 122].

3.1.2 In vitro analysis

This is the technique of performing a given procedure under a controlled environment out-

side of a living organism, but they fail to replicate the precise cellular conditions of the
given organism [123]. Thus, results based on in vitro analysis alone, though more readily

reproducible, are intrinsically less accurate than those based on in vivo or a combination
of both. This low cost molecular biology technique has caused a shift away from in vivo

research, which is more idiosyncratic and expensive. The identification of HIV was based
largely on in vitro research [26] and all new drugs are first developed in vitro before being

tested in vivo.

3.1.3 In silico analysis

In 1989, Miramontes defined in silico as biological experiments carried out using only a

computer. As mathematical models form the basis of most computer simulations, it is in

silico analysis that makes up the remainder of this research. To develop these in silico

models it is necessary to observe in vivo or in vitro interactions, which provide the overall
model function. Thus in silico models are only as accurate as their in vivo and in vitro

studies allow. Furthermore, they should ideally be verifiable using both in vivo and in

vitro analysis. Although all models need verification, there is a time and cost saving by

developing models, which can be altered quickly to increase accuracy, which can form the
basis for downstream in vivo and in vitro analysis.

3.2 Mathematical modelling of HIV/AIDS

Mathematical modelling of complex systems can be used to understand many diverse sys-

tems, from natural science though engineering to economics [124, 125]. If a mathematical
model can be accurately defined for a complex system, then detailed analysis can be per-

formed. This is especially useful if the system can not be easily subjected to physical tests
or experimented upon. The approach to developing these models can be either [126, 127]:
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Top-down essentially breaks down a system into smaller component parts. Each of these

components is then defined in more detail until the required level of system detail can
be described. Models of this type aim at representing the overall system as simplis-

tically as accuracy allows. Examples include the differential equation models, which
this research is based on [128, 129, 62].

Bottom-up builds up the overall system from detailed knowledge of its most basic com-

ponents which are then combined together with their interactions. Examples include
agent based systems and neural networks [130, 131].

Furthermore, these two modelling frameworks can be combined to produce a hybrid

approach. Broad model classes are:

Deterministic models are generally used for top-down frameworks, where models have an
output that is a direct result of the input. These are built up of a number of modelled

components, which also have a direct input-output relationship, and as such they pro-
ducing an exact closed form result, through analytical, numerical or semi-analytical

techniques. These tend to be very static methods of modelling physical systems,
which inherently include variation, as they produce snapshot results, whereby, given

a set of initial conditions and parameters, the simulation gives the same end result. In
general, solutions are rapidly obtainable and are readily scalable.

Stochastic models are best suited for bottom-up frameworks and are ideally suited to rep-
resenting biological systems, as they inherently include the stochastic interaction be-

tween cells. Computer simulations are typically run over a number of iterations, to
produce a convergent result. With faster processing and increased computing power,

larger scale models are now routinely feasible, though representation of fully-detailed
system elements is non-trivial.

In hybrid form, stochastic elements are added to deterministic models, with both ba-

sic model types and hybrids been utilised in HIV/AIDS modelling [132]. Initial modelling
aims focused on HIV/AIDS epidemiology, but emphasis has also shifted to HIV pathogen-

esis, to understand the spread of HIV within the host. Although both epidemiological and
pathogenetic models are discussed below, it is pathogenetic models, specifically top-down

deterministic models, which make up the core of this research.
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3.2.1 Epidemiology models

Epidemiological studies are predominantly concerned with the distribution and spread of
disease, or other health-related problems, with an aim to control and further understand the

spread of disease [133, 134]. Within this, descriptive epidemiology characterises the dis-
ease spread, while analytic epidemiology focuses on the underlying cause of disease. In the

context of HIV/AIDS, initial models were formulated in the early 1980’s and focused on

the then ‘at risk’ groups of MSM and IDU [135]. These were based on limited information
on AIDS spread, but subsequently model focus has diversified to include heterosexual pop-

ulations and vertical transmission [136, 137, 138]. Both model frameworks are currently
used to describe the HIV/AIDS pandemic, using such methods as deterministic differential

equations [139, 138], and stochastic network techniques [140]). Also, large health organ-
isations have purpose-developed software to predict the spread of infection, particularly in

the developing world [141, 142]. Formulating a realistic model to a given set of conditions
is, nevertheless, complicated by the slow progression to AIDS, delayed even further by in-

troduction of therapy. Such epidemiological models are used to predict future spread of
HIV/AIDS and assess the success of current efforts to control this.

3.2.2 Pathogenesis models

As detailed in Chapter 2 the pathogenesis of HIV is extremely complex. After 30 years of

research it is still not known exactly how or why CD4+T cells are depleted slowly over time
and why this leads to AIDS [14, 49]. Similar to the epidemiological case, these pathogenesis

models can be split into two groups:

Bottom-up pathogenesis models focus on cell interactions, modelling how the immune
system interacts with the invading virus. These models are inherently suited to con-

struction using stochastic processes, as cell interactions are random. There are a
number of key cells that must be modelled (CD4+T cells, B cells, macrophages etc.),

while other cell types can be included to improve biological realism. These models
are generally based on a matrix of interactions between each cell using a cellular au-

tomata (CA) approach [143, 144, 145, 146, 147, 148, 149, 150, 151]. As the size of
the matrix of cells increases the required amount of computing power also increases

so scalability can become an issue. Furthermore, each simulation must be run over a

number of iterations, to obtain statistically viable results.

Top-down pathogenesis models focus on modelling aspects that can be directly measured
within the body, e.g. CD4+T cell counts or viral levels [62, 129, 128]. The primary

cells involved are those closely associated with HIV infection, CD4+T cells and viral
particles, but other cells can also be included to increase biological realism. As these
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models operate on a ‘cell count’ level they are generally deterministic, lacking the

low level biological detail of the stochastic models above. However, they are more
scalable and produce a single solution, given a set of initial conditions and parame-

ters.

Depending on the system aspect under investigation a particular model type may be
more appropriate. For example, to investigate why HIV slowly depletes CD4+T cells, thus

leading to AIDS, bottom-up pathogenesis models are generally used. As these models op-
erate on a cell level they have the necessary resolution to model individual immune cells

interactions. However, this research focuses on therapy events, as such a higher level mod-
elling approach is more appropriate. Thus, top-down deterministic models of within-host

HIV progression are selected. These models, (specifically differential equation models),
are better suited to modelling therapy events, as they are based on cell counts rather than

individual cell interactions. As a result only this subset of HIV models, (Section 3.3), are
discussed in detail, in what follows.

3.2.3 Estimation of parameters

Regardless of model framework, or type, the information base is crucial, with every model
requiring some knowledge of data key for estimation of parameters, establishing initial

conditions, and assessing overall form. Data for bottom-up models are limited due to the
difficulty in obtaining low level, (cell to cell interactions), detail. In our case, top-down

models require specific information, which is seldom or, at best, partially available, due
to the small number of treatment transitions actually measured for individual patients, as

therapy is generally continuous once initiated.

3.2.3.1 Limitations of data

Top-down models are based on changes in CD4+T cell count and viral loads over time.
With the course of HIV infection taking years, or tens of years with successful therapy,

considerable data per patient is collected, as these cell counts and viral loads are routinely
measured at every 3 month check-up. However, much of this data is similar, with these

counts remaining static for long periods of time, (e.g. during the ‘clinical latency’ period
already discussed in Section 2.1.3). As a result, data from these periods, although both

accurate and detailed, do not add much to model development. If therapy is introduced, or
removed, the CD4+T cell count and viral load change significantly [152, 81, 52]. It is during

these ‘therapy event’ periods that most usable data can be extracted for model design. Over
the course of infection these changes occur infrequently, as therapy is typically continuous

once initiated, unless drug resistant mutations develop [86, 15, 42]. This produces only
one therapy event over the whole course of infection, making data very limited. There are
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cases when therapy is stopped, e.g. due to build up of toxicity or other side effects, but

these are also infrequent [15, 42]. Structured treatment interruptions, (STIs), where therapy
is removed and reintroduced, also produce therapy events, and give the largest source of

relevant data, but these are restricted to trials evaluating their useability, (Section 2.3.3).
Therapy can also fail, but this is generally recorded after the event and does not record

exact transition data [86, 15, 42]. Thus, while overall HIV cell count data and viral load
data are widely available, a limited subset only is useful in designing and testing the models

discussed in the next section (Section 3.3).

3.2.4 Reducing model complexity using dimensional analysis

There is always a trade-off between model complexity and its overall function, whereby the
simplest form of a model that describes function accurately is preferable, the well known

Occam’s razor6. Thus increasing biological realism, achieved by inclusion of extra param-
eters, may not increase overall model usefulness, and is ideally validated by available data.

Consequently, focusing on estimation of parameters, which are key to overall model func-
tion, ensures that limited data are best utilised. To achieve this, the sensitivity of a model

to each parameter must be identified, e.g. through semi-relative sensitivity analysis [128].
Dimensional analysis (DA) offers another method of highlighting the key parameters and is

pursued here, (Chapter 5).
DA is described in detail in a seminal work by Bridgman [153]. It has been utilised

frequently, with examples taken from the ancient Greeks to Einstein to the present day, for
a review see [154]. However, in the context of HIV analysis is use is new and provides

a novel aspect of this thesis, (Chapter 5). Put simply, DA aims to scale models such that

their parameters can be clearly compared, with their significance to overall model opera-
tion clearly shown. To allow for accurate comparison each parameter is made ‘dimension-

less’ (i.e. each scales to unity), in terms of the dimensional variables for mass, length and
time. By removing parameters that are insignificant, (based on their dimensionless values),

a complex model can be simplified, resulting in less complex analysis. Furthermore, as
model complexity can grow, with further aspects of HIV progression being identified and

included, DA offers a way of retaining model tractability, by systematic simplification of
new developments. Additional data needs for new parameter estimation are also controlled.

The use of DA also allows a model to be adapted more readily to individuals, requiring
knowledge of fewer parameters. The approach is elaborated by example in Chapter 5.

6Occam’s razor: implies that, all things being equal, simpler explanations are generally preferable to more
complex ones
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3.3 Deterministic modelling of within-host HIV progression

From the initial discovery of HIV as the underlying cause of AIDS, the modelling of its
progression has produced significant advances in our understanding and has helped de-

velop future strategies. The differential equation models introduced in this section are top-
down deterministic models, which build systematically to include further biological detail

or adding necessary overall model function. The models have progressed from pre-1995
models, when HIV was thought to be latent with zero viral replication, to single-target-cell

linear models of continually replicating virus [62, 52, 53, 81, 155, 156], to multi-target-cell
non-linear models including chronic infection [129] or detailed immune response [128].

Thus, as understanding of HIV progression has advanced, limitations in previous model
forms have become increasingly more apparent.

All the models discussed below follow the classic SIR model framework, whereby the
population is split up into susceptible, infected and removed individuals. Specifically, the

differential equation models that follow have one, (or more), susceptible population, which
can be infected. There is not, however, a separate removed population as cell death and

clearance are included within the susceptible and infected populations. Thus each popula-
tion, or compartment, has a source, an infected and removed term which combines to rep-

resent the change in that compartment. As will be seen, each compartment is inter-reliant
on each other to produce the system which predicts cell levels.

3.3.1 Pre-1995 models

The initial assumption of HIV latency, (little viral activity expected to take place in a 10

year period), was consistent with known biology at the time [157, 158, 159]. Other viruses

showing this dormant phase include herpes, which normally resides in the nerve ganglia and
only becomes active for brief periods. Consequently a number of models were developed

based on this assumption.
Very early differential equation (DE) models focused on the immune system’s inter-

action with HIV. Reibnegger et al. developed a model based on infected CD4+T cells
presenting a target for the immune system [160]. These infected cells were taken to be

killed systematically thus leading to their depletion and eventually to AIDS.
Perelson et al. developed a compartmental DE model involving various CD4+T cells,

(virgin, active and memory), which were interacting with the HIV virus [161, 162]. These
models assumed that only active cells reproduced the virus but memory cells could become

active if stimulated. Although based on low replication rates, this is similar to what is
expected today during therapy, with a small number of latent cells able to renew an infection

when therapy is stopped.
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Work by Nowak et al. used high mutation rates as a basis for a threshold in antigenic

diversity, below which the immune system was able to control the infection [163, 164, 165,
166, 167, 168, 169]. When this threshold was breached it led to viral strains that the immune

system could not control, (escape mutants), leading ultimately to the onset of AIDS. This
was contrary to the idea that antigenic diversity was a symptom not a cause of AIDS. The

underlying assumption was that the earlier treatment was started the more beneficial it
would be, as it would reduce the potential of these mutant viral strains developing [164].

While all early DE models were reasonably consistent with available data, these data
were not detailed enough for adequate validation of conjectured theory. As accurate mea-

surement of viral load became possible, the model focus changed drastically [170, 171,
159], in particular when HIV was shown not to exhibit latency but to be continuously repli-

cating [170, 53, 52]. This focused mathematical modelling attention on incorporating this
feature. The initial goal was to accurately evaluate key parameters, like viral production

and clearance rates. The work of Perelson et al. (1993) formed the basis for the models
which followed, (discussed below).

The Nowak models [163, 164, 165, 166, 167, 168, 169], which initially focused on a
high replication error as the source of mutations, were also updated to include continuous

replication [172]. It was now this high replication rate that was expected to be the driving
force behind the escape mutants, and not merely the replication error [173, 174, 156, 175,

176, 177, 178]. This signified that for long term modelling the parameters, (rates of clear-
ance, infection, and death etc.), must change over time as the virus adapts. However, for

short term models these could be taken to have a fixed value.

3.3.2 Single-target-cell models (STC)

The development of new protease inhibitor (PI) drugs in the mid 1990’s, administered in

combination with existing drugs, achieved effective halting of viral replication. This al-

lowed the decay rate of virus to be accurately measured for the first time. In 1995 Wei
et al. and Ho et al. showed that the virus was continuously replicating at extremely high

rates, higher than previously expected [53, 52]. Minimum estimates, based on 100% effi-
cient drugs, set viral production at ≈ 108 new virions produced per day, and infected cell

life span of approximately 2 days [53]. While these established minimum estimate bounds
only, they could be used as the basis for more detailed models. This high production rate

also explained the rapid resistance to mono-therapy which was seen at the time, since wild-
type virus was being replaced with drug-resistant virus in only two weeks [53].

This new information led to modelling focusing on the short-term dynamics of in-
fection. An early short-term model, developed by Perelson et al., [81], built on their

earlier compartmental models [161]. A more general version of this basic model is de-
scribed here (Eqn. 3.1), in order to explain the model function and underlying assumptions
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[81, 125, 155, 62]. The specific aim of this model is to describe introduction of therapy

to a stable system. As such the assumption is that pre-treatment viral levels are constant,
i.e. a ‘clinical latency’ period is expected, and that these models are accurate only for the

short periods of time while viral load drops, (days to weeks) [128, 129, 156, 179]. The STC
model is composed of compartments, used to describing the ‘rate of change’ of four key

cells or viral loads as described below:
STC: single-target-cell model

dTp(t)

dt
= λp − δpTp(t)− (1− ϵrt)kpVi(t)Tp(t) (3.1a)

dT ∗
p (t)

dt
= (1− ϵrt)kpVi(t)Tp(t)− δT ∗

p (t) (3.1b)

dVi(t)

dt
= (1− ϵp)NT δT

∗
p (t)− cVi(t) (3.1c)

dVni(t)

dt
= ϵpNT δT

∗
p (t)− cVni(t) (3.1d)

This, (identified here as the STC model, Eqn. 3.1), a top-down deterministic model.

As can be seen from the flow diagram in Fig. 3.1 it can be explained, based on each
compartment, as follows:

Uninfected CD4+T cells: The change in the number of uninfected CD4+T cells (Tp) with

time is equal to the rate at which they are produced (λp) less the amount that die

naturally, at rate δp, less those that are lost to infection. This allows for recovery of
CD4+T cells, as seen during treatment, but does not include the proliferation term

seen in similar models [62].

Infected CD4+T cells: The change in the number of infected CD4+T cells (T ∗
p ) is based

on those that encounter infectious virus (Vi) at rate kp less those that die at rate δ.

A reverse transcriptase inhibitor (RTI), with effectiveness ϵrt, reduces the amount
of infected CD4+T cells. The delay between a CD4+T cell becoming infected and

producing virions, (intracellular delay), is not included here but is a vital element of
this research, see Section 4.1 for details.

Infectious virus: The rate of change of infectious virus (Vi) is the number of actively-

infected CD4+T (T ∗
p ) producing virus, at rate NT , less those that die naturally, at rate

c.

Non-infectious virus: The production of infectious virus is reduced by the use of PI, with
effectiveness ϵp, thus producing non-infectious virus (Vni). The non-infectious virus

death rate is the same as that for infectious virus. Non-infectious virus, as the name
suggest, can not infect target cells.
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Figure 3.1: STC flow diagram: Flow diagram for single-target-cell model

It is important to note that this is a linear approximation to a non-linear system and
has short-term applications, 2-3 weeks only. Also this model is very dependent on drug

treatment efficiency, as demonstrated by Callaway et al. [129]. The required dependent
variables (Table 3.1) and parameters (Table 3.2) are also given. These are based on val-

ues taken from literature and modified as necessary. Fig. 3.2 shows the effect of therapy
introduction and removal on the key cell types.

A slightly simpler version of this model, based only on PI, led to predictions that 2-3
years of HAART, using 100% effective treatment, would eliminate HIV [155]. This was

clearly unrealistic, as no drug is 100% effective, and no account was taken of latently-
infected cells, which can re-stimulate an infection even after years of successful viral sup-

pression. Latency requires a longer-term model and is not analysed suitably by these specif-
ically short horizon model forms. This aspect is discussed later in Section 4.4.

Variable Units Description
Tp

cells
mL Primary target cells (i.e. CD4+T cells)

T ∗
p

cells
mL Primary target acutely infected cells

Vi
virions
mL Infectious virus concentration

Vni
virions
mL Non-infectious virus concentration

Table 3.1: STC variables: Dependent variables for STC model
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Figure 3.2: Therapy events for STC model: Shown is the effect of therapy introduction
and removal to a stable system for STC model. This gives the effect on the key cells,
specifically target cells (Tp), infected cells (T ∗

p ), infectious virus (Vi and non-infectious
virus (Vni). Clearly shown is how the viral levels (Vi) drop to unrealistic levels when therapy
is introduced, viral levels are thought to maintain a constant low level ≈ 10virions/mL as
discussed in Section 4.4. This unrealistic viral load is a severe limitation of these models.
Also shown is how non-infectious virus remains low under therapy removal, as this models
virus produced by drug intervention alone.
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Parameter Units Value Description
λp

cells
mL day 10, 000 Production source of primary target cells

δp
1

day 0.01 Death rate of primary target cells
ϵrt − 0.8 ∈ [0, 1] Efficiency of RTI in primary target population
ϵp − 0.8 ∈ [0, 1] Efficiency of PI in primary target population
kp

mL
virions day 8× 10−7 Infection rate for primary population

NT
virions
cell 100 No. of virions produced per infected cell

c 1
day 13 Clearance rate of virions

δ 1
day 0.7 Clearance rate of infected cells

Table 3.2: STC parameters: Parameters for STC model

3.3.3 Multiple-target-cell models (MTC)

With the development of more successful therapy regimes, whereby viral load could be
suppressed for terms ranging from months to years, model adaptation to describe long-term

features was required. The above STC short-term single-target-cell models provided the
basis for more advanced models which incorporate more accurate dynamics of T-cells [180],

introduction of new drugs [181] and more detailed aspects of the immune system [128, 182].
While these are still compartmental models, the complexity has greatly increased to include

such features and thus the accurate determination of parameters becomes more difficult.
Also, as time has progressed, the focus of models has shifted to treatment issues, including,

(i) when to start therapy, (ii) what type of ART to use, and (iii) when or if therapy needs
be altered or stopped. The short-term dynamics of STC models can not fully answer these

points.
The increased complexity of the multiple-cell-models comes from; increasing the num-

ber of target cells to allow secondary target cell infection, allowing different viral production
rates, taking into account chronic infection, and increasing detail on the immune system,

and allowing for reduction in viral production rates due to the immune response. Also the
modelling of non-zero viral load is essential to longer-term dynamics, which can be mod-

elled using multiple-target-cells models by permitting different reactions to drug therapy in
the target cells. The dependency on ‘drug efficiency’ is also diminished, which is a major

limitation of STC models [62]. The desired function of each model dictates which extra
compartment terms are included; two such models are discussed in detail here.
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3.3.4 Multiple-target-cell model allowing for chronic infection (MTC-CI)

Even very early papers on HIV modelling identified the issue of a relatively small number
of residual infected cells enabling re-stimulation of high viral replication [53, 155]. The

inability of single-target-cell models to handle this feature, as demonstrated in Fig. 3.2,
motivated development of models with longer-term dynamics [129]. An appropriate model

form is discussed below:

MTC-CI: multiple-target-cell chronic-infection model

dTp

dt
= λp − δpTp − (1− ϵ)kpV Tp (3.2a)

dTs

dt
= λs − δsTs − (1− fϵ)ksV Ts (3.2b)

dT ∗
p

dt
= (1− α)(1− ϵ)kpV Tp − δT ∗

p (3.2c)

dT ∗
s

dt
= (1− α)(1− fϵ)ksV Ts − δT ∗

s (3.2d)

dC∗
p

dt
= α(1− ϵ)kpV Tp − µC∗

p (3.2e)

dC∗
s

dt
= α(1− fϵ)ksV Ts − µC∗

s (3.2f)

dV

dt
= NT δ(T

∗
p + T ∗

s ) +NCµ(C
∗
p + C∗

s )− cV (3.2g)

This model, (identified as MTC-CI here, Eqn. 3.2), is similar to the previous STC model

but allows for inclusion of secondary target cells, defined by subscript ‘s’, (Ts, T ∗
s and C∗

s ).
Furthermore, viral production is either productively infected, producing a larger amount

of virus over short periods of time, (T ∗
p and T ∗

s ), or chronically infected, producing lower
amounts of virus over longer periods of time, (C∗

p and C∗
s ), (Section 2.2.4). Also PI are not

modelled, to remain constant with published models, there is no Vni term. Thus this, and
subsequent models include only one drug type (RTI), (ϵ), and only one type of virus, (V ).

The inclusion of PI is possible using the techniques used for the STC models, (Eqn. 3.1)).
The inclusion, of multiple target cells and chronic infection, allow for non-zero virus

levels even after long periods (years) of successful therapy. This time scale is more real-
istically associated with HIV progression in general, and is not represented by the shorter

periods relating to specific therapy events, i.e. addition or removal of therapy. The addi-
tional variables and parameters necessary are given in Table 3.3 and Table 3.4 respectively.

As before the effect of therapy introduction and removal on the key cell types is shown in
Fig. 3.3.
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Figure 3.3: Therapy events for MTC-CI model: Shown is the effect of therapy intro-
duction and removal to a stable system for MTC-CI model. The effect on the key cells,
specifically target cells (Tp and Ts), productively infected cells (T ∗

p and T ∗
s ), chronically

infected cells (C∗
p and C∗

s ), and virus (V ) is shown. The introduction of secondary target
cells (Ts) and to a lesser extent chronic infection (C∗

p and C∗
s ) allow viral levels to retain

a more realistic values under drug induced viral suppression. This realism overcomes a
severe limitation seen in the STC models.
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Variable Units Description
Tp

cells
mL Primary target cells (i.e. CD4+T cells)

T ∗
p

cells
mL Primary target infected cells

V virions
mL Infectious virus concentration

Ts
cells
mL Secondary target cells (e.g. macrophages)

T ∗
s

cells
mL Secondary target acutely infected cells

C∗
p

cells
mL Primary target chronically infected cells

C∗
s

cells
mL Secondary target chronically infected cells

Table 3.3: MTC-CI variables: Dependent variables for MTC-CI model, additional vari-
ables are shown in bottom half

Par. Units Value Description
λp

cells
mL day 10, 000 Production source of primary target cells

δp
1

day 0.01 Death rate of primary target cells
ϵ − 0.8 ∈ [0, 1] Efficiency of RTI in primary target population
kp

mL
virions day 8× 10−7 Infection rate for primary population

NT
virions
cell 100 No. of virions produced per infected cell

c 1
day 13 Clearance rate of virions

δ 1
day 0.7 Clearance rate of infected cells

λs
cells

mL day 32 Production source of secondary target cells
δs

1
day 0.01 Death rate of secondary target cells

f - 0.34 ∈ [0, 1] Reduction in efficiency of treatment in
secondary population

ks
mL

virions day 8× 10−7 Infection rate for secondary population
Nc

virions
cell 4.11 No. of virions produced per chronically infected cell

α virions
cell 0.195 Ratio of productive to chronic cells

m 1
day 0.7 Clearance rate of chronically infected cells

Table 3.4: MTC-CI parameters: Parameters for MTC-CI model, additional parameters
are shown in bottom half
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3.3.5 Multiple-target-cell model allowing for immune response (MTC-IR)

The above model (MTC-CI) focuses on long-term HIV progression, but a more detailed
short-term model was also needed to replace the initial STC models. This multiple-target-

cell model (MTC-IR) includes refinements of the immune system or immune response (IR),
to allow for a more accurate analysis of therapy removal [128]. The inclusion of more de-

tailed immune system characteristics allows investigation of viral rebound dynamics, when

therapy is removed, which is not possible in either the STC or MTC-CI models described
above. Viral rebound implies that virus replicates virtually uncontrolled manner, allowing

large quantities of virus to be produced. The incorporation of the immune response in one
such model is discussed below:

MTC-IR: multiple-target-cell immune-response model

dTp

dt
= λp − δpTp − (1− ϵ)kpV Tp (3.3a)

dTs

dt
= λs − δsTs − (1− fϵ)ksV Ts (3.3b)

dT ∗
p

dt
= (1− ϵ)kpV Tp − δT ∗

p −mpET ∗
p (3.3c)

dT ∗
s

dt
= (1− fϵ)ksV Ts − δT ∗

s −msET ∗
s (3.3d)

dV

dt
= NT δ(T

∗
p + T ∗

s )−
[
(1− ϵ)ppkpTp + (1− fϵ)psksTs

]
V − cV (3.3e)

dE

dt
= λE +

bE(T
∗
p + T ∗

s )

(T ∗
p + T ∗

s ) +Kb
E −

dE(T
∗
p + T ∗

s )

(T ∗
p + T ∗

s ) +Kd
E − δEE (3.3f)

This is a multi-compartment model very similar to the MTC-CI discussed before. Again

it is based on two cells types susceptible to HIV infection (Tp and Ts), typically CD4+T
cells and macrophages respectively. Although this model uses only two types of target

cell, extra cell types can be included, by increasing the number of compartments used.
The dynamics of these cells are similar to that of MTC-CI but do not include the chronic

production compartment, (C∗
p and C∗

s seen in Eqn. 3.2 above). The key to this model,
however, is detail on immune system components, specifically the removal of infected cells,

(mpET ∗
p and msET ∗

s terms), due to effector cells7 (E), and additional clearance of virus,
(
[
(1− ϵ)ppkpTp + (1− fϵ)psksTs

]
term), due to the immune system.

7Effector cells: Immune component capable of removing infected cells, thus limiting HIV infection
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Variable Units Description
Tp

cells
mL Primary target cells (i.e. CD4+T cells)

T ∗
p

cells
mL Primary target infected cells

V virions
mL Infectious virus concentration

Ts
cells
mL Secondary target cells (e.g. macrophages)

T ∗
s

cells
mL Secondary target productively infected cells

E cells
mL Effector cells

Table 3.5: MTC-IR variables: Dependent variable for MTC-IR model, additional vari-
able shown in bottom part

A primary use of this type of model (MTC-IR) is to determine viral growth after removal

of therapy. This allows investigation of STIs, which were hoped to allow the immune sys-
tem to develop resistance to HIV, and even the possibility of self vaccination. The specific

problem with implementing STIs is the speed of viral rebound, which has the possibility of
allowing drug resistant strains to increase. Again additional variables and parameters are

given in Table 3.5 and Table 3.6, with the effect of therapy introduction and removal shown
in Fig. 3.4.
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Figure 3.4: Therapy events for MTC-IR model: Shown is the effect of therapy introduc-
tion and removal to a stable system for MTC-IR model. Again the effect on the key cells,
specifically target cells (Tp and Ts), infected cells (T ∗

p and T ∗
s ), effector cells (E), and virus

(V ) is shown. The inclusion of secondary target cells (Ts) allows viral levels to remain at
more realistic values under drug induced viral suppression. By incorporating effector cells
(E), a more detailed immune response is modelled. Thus, viral rebound is reduced, as HIV
replication is limited by the immune system.
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Par. Units Value Description
λp

cells
mL day 10, 000 Production source of primary target cells

δp
1

day 0.01 Death rate of primary target cells
ϵ − 0.8 ∈ [0, 1] Efficiency of RTI in primary target population
kp

mL
virions day 8× 10−7 Infection rate for primary population

NT
virions
cell 100 No. of virions produced per infected cell

c 1
day 13 Clearance rate of virions

δ 1
day 0.7 Clearance rate of infected cells

λs
cells

mL day 32 Production source of secondary target cells
δs

1
day 0.01 Death rate of secondary target cells

f - 0.34 ∈ [0, 1] Reduction in efficiency of treatment in
secondary population

ks
mL

virions day 8× 10−7 Infection rate for secondary population
mp

mL
cells day 1× 10−5 Immune induced clearance rate in primary target

ms
mL

cells day 1× 10−5 Immune induced clearance rate in secondary target
pp

virions
cell 1 Average number of virions produced per

primary target infection
ps

virions
cell 1 Average number of virions produced per

secondary target infection
λE

cells
mL day 1 Production rate of immune effectors

bE
1

day 0.3 Max. birth rate of immune effectors
Kb

cells
ml 100 Saturation birth for immune effector

dE
1

day 0.25 Max. death rate for immune effectors
Kd

cells
mL 500 Saturation death for immune effectors

δE
1

day 0.1 Natural death rate for immune effectors

Table 3.6: MTC-IR parameters: Parameters for MTC-IR model, additional parameters
shown in bottom half
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3.4 Summary

This chapter focuses on the three broad areas of in vivo, in vitro and in silico research
from a modelling prospective. In silico models, specifically top-down deterministic models

of within-host HIV progression, have been discussed in detail. The development of these
models, from initial single-target-cell forms (STC), to more advanced multiple-target-cell

forms (MTC-CI and MTC-IR), is traced. However, even the most advanced of these models
has limitations, specifically relevant here is the lack of adequate inclusion of intracellular

delay, i.e. the time between a cell becoming infected and producing infectious virus. The
proposition of this research is that inclusion of the immune response slows viral rebound

significantly, as was seen with the MTC-IR model, while intracellular delay should slow
this rebound further. In the next section these STC, MTC-CI and MTC-IR models are thus

adapted to include intracellular delay.
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Chapter 4

Modelling therapy removal

This chapter uses the previously summarised ideas to develop new models, specifically

focused on therapy removal, one of the novel aspects of this work. Models developed here
focus on viral load rebound, examining the effect of therapy interruption. This rebound is

expected to be inhibited when the time between a cell becoming infected and producing
virus is explicitly accounted for. Incorporation of this intracellular delay, (ID), is thus a

first step in modifying existing models. The next step is to include a minimum viral load,
as current models allow virus levels to drop to unrealistic levels, after therapy is introduced.

This minimum viral load accounts for latently infected cells which can not be eliminated
by conventional therapy and provide the viral pool necessary to initiate viral rebound then

therapy stops or fails.
The models discussed in the previous chapter (STC, MTC-CI and MTC-IR) primarily

focused on therapy introduction, but now both therapy events, (initiation and removal), are
considered. As such, it is essential to incorporate intracellular delay, as this has a significant

impact by increasing doubling-time, thus delaying the time need for virus to rebound from
low viral levels. Intracellular delay, while stochastic in nature, is modelled using a fixed

delay, justified in Section 4.1.3. A simple model of HIV latency is also introduced, achieved
by setting a fixed minimum level viral load during therapy.

4.1 Modelling intracellular delay

For HIV to replicate it must first bind to a target cell and then enter it so that it can use

the cell’s own chemistry for replication. This biological process takes time, at minimum
≈ 24hrs [72, 73, 74, 75, 76, 77, 78], but can take much longer, as seen in latently infected

cells which will not actually produce virus until activated [54, 79, 80, 55].
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From a modelling perspective, incorporating intracellular delay has different impacts on

model function, depending on what aspect of therapy is under investigation. Intracellular
delay has no impact on steady-state levels, as the number of infected cells and viral load

remain relatively constant. Again there is little impact when therapy is introduced, as viral
replication virtually stops. The main pool of virus is from those cells infected before the

introduction of therapy, so the viral load drops exponentially based on pre-treatment viral
levels. However, when therapy is removed, intracellular delay becomes very important, as

viral rebound is significantly reduced due to the fact that each infected cell must wait at
least 24 hours before it can produce virus. Thus intracellular delay is masked for therapy

introduction models, (such as those discussed in Chapter 3), as it has little impact on this
therapeutic event. However, for our research, based on both therapy events, intracellular

delay must be included. Before intracellular delay is incorporated possible modelling ap-
proaches are considered. In the past single-target-cells have been used, to model this delay

for therapy introduction, and these form the basis for what follows [74, 75, 76, 77, 78].
Intracellular delay can be modelled in a number of ways, again either deterministically

or stochastically. For a deterministic approach, a discrete delay, the average time taken
for a cell to start producing virus after becoming infected, is incorporated. However, as

with most biological processes, a mean delay is not necessarily a realistic measure, par-
ticularly where variation in initial viral production time is known to occur. Consequently

a stochastic approach, using a distributed delay, provides better realism. Specifically this
distribution needs to be in a skewed form, as there is a known minimum viral production

time but, effectively, no maximum. However, incorporating a distributed delay function
involves convolution1, between the delay function and cell function, thus increasing model

complexity, but also its potential to mimic the real dynamics. The merits of a discrete or
distributed delay are discussed below.

4.1.1 Distributed intracellular delay

To incorporate a distributed delay, it is necessary to select the most appropriate distribution,
which is accurate and can be estimated from data. Based on work by Mittler et al., [76], a

bell shaped curve is adopted, centred on the mean=nb with variance=nb2 and peak=(n−1)b

with n and b chosen to give the desired delay function [62, 72]. This modifies our target

cell infection equations, for example:

dT ∗
p (t)

dt
= (1− ϵ)kpTp(t)V (t)D(t)− δT ∗

p (t) (4.1)

1Convolution is basically one function integrated over the time period of the other function.
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where D(t) is represented by:

D(t) = Dnb(t) =
t(n−1)

(n− 1)!bn
e

−t
b (4.2)

Based on an average delay of one day, values for n and b were shown to be n = 8 and
b = 0.125 [76]. However, the original Mittler et al. model held the number of target cells,

(Tp), constant, i.e. the original model was:

dT ∗
p (t)

dt
= (1− ϵ)kpTpV (t) ∗D(t)− δT ∗

p (t) (4.3)

Where (Tp) is a constant, and ∗ represents the convolution between the viral function,

(V (t)), and delay function, (D(t)). This turned a relatively simple set of ordinary differ-
ential equations into a set of integro-differential equations, which are much more complex

to solve and analyse. This increased complexity can be combated by converting the model
to the frequency domain, using the Laplace transform, where convolution becomes simple

addition. It was investigations in frequency domain usage which formed initial research
basis, following on from the author’s work during his Masters in Bioinformatics. However

investigation into a fixed delay was adopted, as the method of reducing complexity. Fur-
thermore, there is a sound application reasons, discussed below, to use a fixed delay, though

some loss in biological realism is inevitable.

4.1.2 Discrete intracellular delay

A discrete delay, based on the average time before viral production modifies our target cell

infection equation [75], for example:

dT ∗
p (t)

dt
= (1− ϵ)kpV (t− τ)Tp(t− τ)e−mτ − δT ∗

p (t) (4.4)

Where incorporation of intracellular delay is achieved by delaying, by a fixed time τ ,

the infectious virus, (V ), that target cells, (Tp), encounter. This allows for the average
time taken between a cell becoming infected, (T ∗

p ), and producing virus. Furthermore, as

some target cells die before producing virus, total infected cells are reduced, at rate e−mτ .
The inclusion of this delay changes the original ordinary differential equation models, from

Chapter 3, into delay differential equation, (DDE), models.

50



4.1.3 Justification for selection of discrete intracellular delay

To fully model the delay, between cell infection and viral production, it would be neces-
sary to allow for productive, chronic and latent viral production, with each requiring their

own specific delay function to be incorporated. However, the models discussed here have
separate compartments for each production type and only require the delay between infec-

tion and initial production to be accounted for. As such a discrete delay maximises model

function with minimum complexity overhead, for investigation of the viral rebound feature.
Furthermore, indications are that there is little real difference in introducing either discrete

or distributed delays [77, 72]. However, it should be noted these results were obtained
from therapy introduction models, where intracellular delay has little impact, so it may be

necessary to revisit intracellular delay modelling in the future.

4.2 Quantifying model accuracy

This chapter aims to develop three new models, by modifying standard models of within-
host HIV progression, to include intracellular delay. However, while this will improve

biological accuracy, and although the base models used, (STC, MTC-CI and MTC-IR),
have already been validated, see [62, 129, 183, 128], it is necessary to quantify the benefit

of including intracellular delay. Possibly one of the simplest, but most powerful evaluation
methods is to compare viral doubling-time and half-life with those seen in vivo, as discussed

below.

4.2.1 Doubling-time and half-life

The definition of viral doubling-time, (in the context of this work), is the time necessary
for a population to double in size, as seen when therapy is stopped of fails. It is calculated

using the following formula:

Td = (t2 − t1)
ln(2)

ln(q2/q1)
(4.5)

Where Td is the doubling-time, t1 and t2 are the time periods over which the growth
(q1, q2) is measured. As the growth rate is based on exponential growth, ln(2) gives the

time necessary for the system to double in size. While exponential growth clearly does not
describe the whole HIV cycle, due to limited supply of target cells, it is applicable for the

initial stages.
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The opposite of doubling-time is half-life, seen when the system decreases in size over

time. This is seen when therapy is introduced and has a similar form as for doubling-time
and can be calculated as:

T1/2 = (t2 − t1)
ln(2)

ln(q1/q2)
(4.6)

With the parameters as before (Eqn. 4.5) but with the ratio of q2/q1 inverted to allow
for system size decrease.

The doubling-time and half-life can easily be determined from data and are used to
describe some of the most basic aspects of the system being measured. It is these measures

that are used to determine the impact of inclusion of intracellular delay for the models
developed here, using both therapy events.

4.3 Incorporating discrete intracellular delay

Intracellular delay has been incorporated into a number of single-target-cell models but it

has not been incorporated into multiple-target-cell models to our knowledge. Including
this element in the models discussed in Chapter 3, specifically those including immune

response, (Eqn. 3.3), is crucial to modelling treatment interruptions, as will be discussed in
Chapter 6.

The delay models discussed here are thus based on the models discussed in Section 3.3,
(STC, MTC-CI and MTC-IR). As such they focus on the variation in levels of a number

of key cells, which can be either directly measured or indirectly calculated. Incorporating
intracellular delay produces three new model variants, (STC-ID, MTC-CI-ID and MTC-IR-

ID), as described below.

4.3.1 STC model including intracellular delay (STC-ID)

The single-target-cell ODE model, (STC), discussed in Section 3.3.2 is one of a number
of variations on single-target-cell models that have been developed over a period of years

[62, 52, 53, 81, 155, 156]. As a result, and to be consistent, a simple illustrative mono-

therapy model is discussed here, [77]. The original, non-delayed, form is achieved by
setting the delay, (τ ), to zero. The delayed form is:
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STC-ID: single-target-cell intracellular-delay model

dTp(t)

dt
= λp − (1− ϵ)kpV (t)Tp(t)− δpTp(t) (4.7a)

dT ∗
p (t)

dt
= (1− ϵ)kpV (t− τ)Tp(t− τ)e−δτ − δT ∗

p (t) (4.7b)

dV (t)

dt
= NT δT

∗
p (t)− cV (t) (4.7c)

This model, (STC-ID, Eqn.(4.7)), has the same characteristic as the STC model dis-

cussed in the previous chapter, (Section 3.3.2). It is based on variation over time in the key
cell types, described in the previous chapter, and has similar structure to the multi-cell mod-

els that follow. Uninfected cells, (Tp), are produced, at constant rate λp, less the proportion
that die, at constant rate δp, and those that are lost to infection. Cells become infected,

(T ∗
p ), by encountering virus, (V ), at a constant rate kp, less those that die, at constant rate

δ. Infectious virus, (V ), is produced from these infected cells, (T ∗
p ), at constant rate NT ,

less infected cells that die, at constant rate δ, and the virus that is cleared, at constant rate
c. The introduction of therapy, in the form of a reverse transcriptase inhibitor, (RTI), blocks

replication and reduces infection rate, with effectiveness ϵ.
As in the discrete delay model above, (Eqn.(4.4)), intracellular delay is allowed for

by delaying the virus, (V ), which target cells, (Tp), encounter, by a fixed time τ . It is

assumed that all infected target cells die at the same rate, allowing cells to die prior to viral
production, at rate e−δτ .

While only RTIs are modelled here PIs can easily be incorporated, by adding a com-
ponent for non-infectious virus, as seen in the original STC model, (Section 3.3.2), and

detailed in various studies [62, 78].
A graphical comparison of including intracellular delay into these models, compared

with the STC model from the previous chapter, (Eqn.(3.1)), is shown in Fig. 4.1. The
value of the variables, Table A.1, and parameters, Table A.2, for this, and the following

models, are given in the appendix. This representation is achieved by numerically solv-
ing the above equations, (Eqn.(3.1) and Eqn.(4.7)), using Matlab’s built in ODE and DDE

solvers, (ODE45, [184], and DDE23, [185]). As both therapy events are shown it is clear
that therapy removal, (Fig. 4.1.A), is markedly more dependent on accurate intracellular

delay modelling than therapy introduction, (Fig. 4.1.B). Specifically, while half-life re-
mains consistent for therapy introduction, (1.30 - 1.24 days), therapy removal shows a 60%

increase in doubling-time, (0.98 - 1.65 days). Furthermore, the viral load for therapy re-
moval, as shown in Fig. 4.2, takes a much longer time to reach viral set-point, from an

initial viral load of 25virions/ml, when intracellular delay is accounted for. This increase
in viral doubling-time is due a reduction in the replication rate due to intracellular delay.

Thus, when analysing treatment interruption, as detailed in Chapter 6, it is essential that
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Plot A: Therapy removal

Plot B: Therapy introduction

Figure 4.1: Effect of intracellular delay on STC models: Comparison between STC and
STC-ID models. Plot A shows therapy removal, from a fixed viral load of 25virions/mL,
accounting for intracellular delay, (ID), increases the viral doubling-time, (Td), from 0.98
to 1.65 days. Plot B shows therapy introduction, with drug efficiency of 0.9, viral half-life,
(T1/2), remains consistent, 1.30 and 1.24 days for zero delay and 24 hour delay respectively.

intracellular delay be accounted for.
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Figure 4.2: Effect of intracellular delay on viral load for STC models: Comparison
between viral load for STC and STC-ID model. Only therapy removal, from a viral load of
25virions/mL, is shown, as it is the main transition affected. The inclusion of intracellular
delay, (ID), increases the viral doubling-time, (Td), from 0.98 to 1.65 days.
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4.3.2 MTC-CI model including intracellular delay (MTC-CI-ID)

As noted, (Section 3.3.3), single-target-cell models are only useful for short term dynamics
of HIV infection, whereas multi-target-cell models are required for longer time scales. A

delayed version of the long-term chronic infection model, (MTC-CI), from the previous
chapter, (Eqn.(3.2)), can be written as:

MTC-CI-ID: multiple-target-cell chronic-infection intracellular-delay model

dTp(t)

dt
= λp − δpTp(t)− (1− ϵ)kpV (t)Tp(t) (4.8a)

dTs(t)

dt
= λs − δsTs(t)− (1− fϵ)ksV (t)Ts(t) (4.8b)

dT ∗
p (t)

dt
= (1− α)(1− ϵ)kpV (t− τ)Tp(t− τ)e−δτ − δT ∗

p (t) (4.8c)

dT ∗
s (t)

dt
= (1− α)(1− fϵ)ksV (t− τ)Ts(t− τ)e−δτ − δT ∗

s (t) (4.8d)

dC∗
p(t)

dt
= α(1− ϵ)kpV (t− τ)Tp(t− τ)e−µτ − µC∗

p(t) (4.8e)

dC∗
s (t)

dt
= α(1− fϵ)ksV (t− τ)Ts(t− τ)e−µτ − µC∗

s (t) (4.8f)

dV (t)

dt
= NT δ(T

∗
p (t) + T ∗

s (t)) +NCµ(C
∗
p(t) + C∗

s (t))− cV (t) (4.8g)

Again this has a similar structure to the single-target-cell models, (STC and STC-ID),

discussed before. It is made up two susceptible cell types, (Tp and Ts), which can be
either acutely infected, (T ∗

p and T ∗
s ), or chronically infected, (C∗

p , C∗
s ). As before, the

incorporation of intracellular delay is achieved by delaying the virus, (V ), which each target
cell encounters. Target cells allowed to die before producing virus, at rate e−δτ for acute

infection and e−µτ for chronic infection, relating to their respective death rates.
As with the STC models above a significant increase in doubling-time is seen, from

1.03 to 1.69 days, for therapy removal when intracellular delay is incorporated, as shown

in Fig. 4.3. Correspondingly this slows viral rebound and increases the time to reach viral
set-point. As before viral half-life for therapy introduction remains consistent and is not

shown.

4.3.3 MTC-IR model including intracellular delay (MTC-IR-ID)

While the previous models, STC and MTC-IC, are accurate for therapy introduction, a more
detailed immune system specification is needed when modelling therapy removal, as viral

growth is reduced by immune effects. The model discussed here is a delayed version of the
MTC-IR models discussed in Section 3.3.5:
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Figure 4.3: Effect of intracellular delay on MTC-CI models: Comparison be-
tween MTC-CI and MTC-CI-ID models. Only therapy removal, from a viral load of
25virions/mL, is shown. The inclusion of the delay increases the viral doubling-time,
(Td), from 1.03 to 1.69 days.
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MTC-IR-ID: multiple-target-cell immune-response intracellular-delay model

dTp(t)

dt
=λp − δpTp(t)− (1− ϵ)kpV (t)Tp(t) (4.9a)

dTs(t)

dt
=λs − δsTs(t)− (1− fϵ)ksV (t)Ts(t) (4.9b)

dT ∗
p (t)

dt
=(1− ϵ)kpV (t− τ)Tp(t− τ)e−δτ − δT ∗

p (t)−mpE(t)T ∗
p (t) (4.9c)

dT ∗
s (t)

dt
=(1− fϵ)ksV (t− τ)Ts(t− τ)e−δτ − δT ∗

s (t)−msE(t)T ∗
s (t) (4.9d)

dV (t)

dt
=NT δ(T

∗
p (t) + T ∗

s (t))− (4.9e)[
(1− ϵ)ppkpTp(t) + (1− fϵ)psksTs(t)

]
V (t)− cV (t) (4.9f)

dE(t)

dt
=λE +

bE(T
∗
p (t) + T ∗

s (t))

(T ∗
p (t) + T ∗

s (t)) +Kb
E(t)− (4.9g)

dE(T
∗
p (t) + T ∗

s (t))

(T ∗
p (t) + T ∗

s (t)) +Kd
E(t)− δEE(t) (4.9h)

Again this has similar structure to that of the MTC-IC-ID model discussed above, but

does not include chronic cell production, as it focuses on reactions immediately after the
therapy event. The immune system response, the effector cells, (E), is specifically mod-

elled, with rates of production and death of cells modelled as in the MTC-IR model, Section
3.3.4. Furthermore, the strength of response is dependent on the amount of virus in the sys-

tem.
As with the previous models there is a significant increase in viral doubling-time, from

0.96 to 1.67 days. Again this delays the time to reach viral set-point. The viral half-life due
to therapy introduction remains consistent and is not shown.

4.4 Modelling HIV latency

As seen previously treatment may need to be interrupted at different stages over the course

of infection. However, due to inherent latency HIV will rebound once therapy is removed.
While intracellular delay, discussed above, plays a role, a finite residual viral load from

which this rebound can take place is necessary. This section considers true HIV latency

[186, 187]. While a number of models of HIV latency have been developed [188, 189, 190],
a simplistic form is used here. A small constant minimum viral load is included to account

for sources of viral production, which can not be eliminated during therapy.
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Figure 4.4: Effect of intracellular delay on MTC-IR models: Comparison be-
tween MTC-IR and MTC-IR-ID models. Only therapy removal, from a viral load of
25virions/mL, is shown. The inclusion of the delay increases the viral doubling-time,
(Td), from 0.96 to 1.67 days.
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Figure 4.5: Effect of setting a minimum viral load on STC-ID model: Impact of setting
a minimum low viral load of 10virions/mL, (STC-ID-MVL), to eliminate unrealistically
low levels seen in original models, (STC-ID). Shown is the difference in viral rebound seen
when therapy is removed, 0-50 therapy introduction, 50-150 therapy removal. The delay in
reaching viral steady-state is highlighted, when viral load is allowed to drop to unrealistic
levels.

4.4.1 STC-ID including a minimum viral load (STC-ID-MVL)

The inclusion of a fixed minimum viral load to represent viral pools, which are inaccessible

to current therapy, gives the following model (STC-ID-MVL):
STC-ID-MVL: single-target-cell intracellular-delay minimum-viral-load model

dTp(t)

dt
= λp − (1− ϵ)kpV (t)Tp(t)− δpTp(t) (4.10a)

dT ∗
p (t)

dt
= (1− ϵ)kpV (t− τ)Tp(t− τ)e−δτ − δT ∗

p (t) (4.10b)

dV (t)

dt
= NT δT

∗
p (t)− cV (t) + Vmvl (4.10c)

This included a fixed viral term, (Vmvl = 10virions/mL), which maintains a residual

viral load, preventing the effect of treatment reducing viral load to unrealistic levels, as
seen in previous STC models. Clearly, as illustrated, the lower the viral load falls, the

longer it takes for virus to rebound to the initial set-point level, (Fig. 4.5). While the viral
rebound time is increased the viral doubling-time nevertheless remains constant, producing

the parallel lines with a corresponding delay in reaching viral set-point.
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Figure 4.6: STC-ID-MVL steady-state: Plot of steady-state for STC-ID-MVL model.
0-200 shows therapy introduction and 200-600 shows therapy removal, values are given in
Table 4.1.

Steady-state Tp(t) T ∗
p (t) V (t)

cells/mL cells/mL HIV RNA/mL

On-treatment 994,794 0 1
Off-treatment 327,227 4,773 25,700

Table 4.1: STC-ID-MVL steady-states: The natural steady-states for STC-ID-MVL
model. These are achieved by allowing the model to run over long periods of time as
seen in Fig. 4.6.

Another important aspect of these models is their natural steady-states, as detailed in

Table 4.1 and shown Fig. 4.6, where both ‘on treatment’ and ‘off treatment’ periods are
shown. These steady-states are measured by allowing the models to run over a long enough

period of time such that their level remain constant, between 500 and 1000 days in this case.
While the viral load on therapy introduction reaches a high percentage of its final level rel-

atively fast, (in approximately four weeks), the number of target cells takes longer to reach
steady-state. Furthermore, when therapy is removed, it takes longer still for the overall

model to reach steady-state, due to inclusion of intracellular delay producing oscillations in
viral load. The levels of these oscillations reduce exponentially over time and converge to

the steady-state level.
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Steady-state Tp(t) Ts(t) T ∗
p (t) T ∗

s (t) C∗
p(t) C∗

s (t) V (t)

On treatment 994,746 3,034 0 1 0 0 8
Off treatment 400,360 17 3,424 18 829 4 18,721

Table 4.2: MTC-CI-ID-MVL steady-states: The natural steady-states for MTC-CI-MVL
model. These are achieved by allowing the model to run over long periods of time.

4.4.2 MTC-CI-ID including a minimum viral load (MTC-CI-ID-MVL)

Incorporating a discrete latent viral term into MTC-CI-ID model produces the following set
of equations (MTC-CI-ID-MVL):

MTC-CI-ID-MVL: multiple-target-cell chronic-infection intracellular-delay minimum-
viral-load model

dTp(t)

dt
= λp − δpTp(t)− (1− ϵ)kpV (t)Tp(t) (4.11a)

dTs(t)

dt
= λs − δsTs(t)− (1− fϵ)ksV (t)Ts(t) (4.11b)

dT ∗
p (t)

dt
= (1− α)(1− ϵ)kpV (t− τ)Tp(t− τ)e−δτ − δT ∗

p (t) (4.11c)

dT ∗
s (t)

dt
= (1− α)(1− fϵ)ksV (t− τ)Ts(t− τ)e−δτ − δT ∗

s (t) (4.11d)

dC∗
p(t)

dt
= α(1− ϵ)kpV (t− τ)Tp(t− τ)e−µτ − µC∗

p(t) (4.11e)

dC∗
s (t)

dt
= α(1− fϵ)ksV (t− τ)Ts(t− τ)e−µτ − µC∗

s (t) (4.11f)

dV (t)

dt
= NT δ(T

∗
p (t) + T ∗

s (t)) +NCµ(C
∗
p(t) + C∗

s (t))− cV (t) + Vmvl (4.11g)

Again this changes the viral term (V ) by including a minimum viral load Vmvl. As can

be seen in Fig. 4.7 the time taken to reach viral set-point is again no longer dependent on
the period for which therapy is successful. However, its impact is not as pronounced as for

STC models, as MTC-CI models inherently include a low level viral term due to the chronic
infected cells.

The steady-states for this model are shown in Table 4.2. The off-therapy steady-states
are different from those for the STC model (Table 4.1) because the same parameter values

are used for both models, but the MTC model includes extra compartments, which change
the dynamics of the model, and thus the steady-state. However, viral doubling-time remains

similar and it is this aspect that is most relevant to modelling therapy events. Further, the
steady-states are not unique to a specific set of parameter values but, for consistency, these

are kept constant across the three models discussed here.
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Figure 4.7: Effect of setting a minimum viral load on MTC-CI-ID model: Impact of
including a minimum viral load, (MTC-CI-ID-MVL), thus allowing for latency. Shown is
the difference between models with and without minimum viral load over two treatment
events, 0-50 therapy introduction, 50-150 therapy removal. Highlighted is the delay in
reaching viral steady-state when viral load is allowed to drop to unrealistic levels.
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Steady-state Tp(t) Ts(t) T ∗
p (t) T ∗

s (t) V (t) E(t)

On treatment 995,346 2,619 2 4 32 12
Off treatment 233,031 8 7,718 32 41,142 26

Table 4.3: MTC-IR-ID-MVL steady-states: The natural steady-states for MTC-IR-MVL
model. These are achieved by allowing the model to run over long periods of time.

4.4.3 MTC-IR-ID including a minimum viral load (MTC-IR-ID-MVL)

The MTC-IR model including a minimum viral load is as follows:
MTC-IR-ID-MVL: multiple-target-cell immune-response intracellular-delay minimum-

viral-load model

dTp(t)

dt
=λp − δpTp(t)− (1− ϵ)kpV (t)Tp(t) (4.12a)

dTs(t)

dt
=λs − δsTs(t)− (1− fϵ)ksV (t)Ts(t) (4.12b)

dT ∗
p (t)

dt
=(1− ϵ)kpV (t− τ)Tp(t− τ)e−δτ − δT ∗

p (t)−mpE(t)T ∗
p (t) (4.12c)

dT ∗
s (t)

dt
=(1− fϵ)ksV (t− τ)Ts(t− τ)e−δτ − δT ∗

s (t)−msE(t)T ∗
s (t) (4.12d)

dV (t)

dt
=NT δ(T

∗
p (t) + T ∗

s (t))− (4.12e)[
(1− ϵ)ppkpTp(t) + (1− fϵ)psksTs(t)

]
V (t)− cV (t) + Vmvl (4.12f)

dE(t)

dt
=λE +

bE(T
∗
p (t) + T ∗

s (t))

(T ∗
p (t) + T ∗

s (t)) +Kb
E(t)− (4.12g)

dE(T
∗
p (t) + T ∗

s (t))

(T ∗
p (t) + T ∗

s (t)) +Kd
E(t)− δEE(t) (4.12h)

Again this is as for the STC and MTC-CI models with a constant viral source included in

the viral term. As can be seen in Fig. 4.8 this produces similar results to before, highlighting
its inclusion when modelling therapy introduction events.

The steady-states are given in Table 4.3. As the parameters used across all three models
were based on this MTC-IR model they produce the desired viral steady-state of approxi-

mately 42,000 HIV RNA copies/mL.
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Figure 4.8: Effect of setting a minimum viral load on MTC-IR-ID model: Impact of
including a minimum viral load, (MTC-IR-ID-MVL), thus allowing for latency. Shown is
the difference between models with and without minimum viral load over two treatment
events, 0-50 therapy introduction, 50-100 therapy removal. Highlighted is the delay in
reaching viral steady-state when unrealistically low viral load are allowed.
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4.5 Summary of inclusion of intracellular delay and latency

This chapter covers the necessary updates to current models such that they can accurately
represent both therapy introduction and removal. To achieve this both intracellular delay

and viral latency must be accounted for.

4.5.1 Intracellular delay

Inclusion of a discrete intracellular delay, into the three models of Chapter 3, is discussed.
This produces a significant increase in viral doubling-time is observed, with a corresponding

increase in the time to reach viral set-point, when therapy is removed, summarised in Table
4.4.

The impact of intracellular delay is more far-reaching, however, implying that viral re-
bound, or viral blips, can not be sustained from low level of virus, even though continuously

replicating, and must come from another source, e.g. a stimulation of the immune response
which releases latent virus [191, 192]. This is supported by [80] whereby the virus is shown

not to mutate, as expected during this replication, but is due to a static viral strain, imply-
ing that it comes from latently infected cells, which only produce virus when stimulated.

Furthermore, the infection delay models discussed here do not include the latter source, so

that when the viral load increases these will also be activated, and will add to the viral pool,
further reducing the delay. This additional source offers and explanation of viral rebound

behaviour and viral blips. Consequently, the requirement is to to think beyond suppression
of the actively-replicating virus and instead to focusing on the influence of the resting virus

pool, (e.g. latently infected cells of the immune system).

doubling-time of virus
Model 0hrs intracellular delay 24hrs intracellular delay
STC 0.98 day 1.65 day

MTC-CI 1.03 day 1.69 day
MTC-IR 0.96 day 1.67 day

Table 4.4: Model doubling-time: Comparison of doubling-time for the three models dis-
cussed
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4.5.2 HIV latency

The inclusion of HIV latency is presented here only in simplistic form, through a constant
minimum level of virus, which is not affect by therapy. Inclusion of this latency term,

nevertheless, is important for viral rebound on therapy removal, as it allows for a residual
base line of infection. As can be seen from Fig. 4.5, Fig. 4.7 and Fig. 4.8 original models

allow virus levels to drop to unrealistic levels without the inclusion of latency.

4.5.3 Overall model selection based on viral load doubling-time

Both doubling-time and half-life are important system properties. In this context, the first

five days of growth (Fig. 4.9), can be seen to be approximately linear, (log plot). Thus,
from this initial growth phase the doubling-time of HIV can be calculated for each model,

shown in Table 4.4. This is also possible for viral half-life, which is reduced slightly by
incorporation of intracellular delay, (from 1.29 to 1.27 days across all models).

In a recent study of primary HIV infection the average doubling-time is given as 0.65
days (0.56- 0.91 days) [193]. If this is compared with our models, 1.00 days without intra-

cellular delay and 1.67 days with intracellular delay, intracellular delay clearly contributes
markedly in any model used for therapy removal. Furthermore, the rate given by Ribeiro

et al. (2010) is for primary infection, and this increases when the adaptive immune re-
sponse is also included. Some studies put this doubling-time at approximately 1.6 - 2.0

days when active immune response is taken into account, as is the case when therapy is
removal [194, 195, 196, 197]. Thus the significant increase seen with inclusion of intracel-

lular delay is consistent with in vivo studies.

Intracellular delay (day) 0.0 0.5 1.0 1.5 2.0
Doubling-time (Td) (day) 1.03 1.37 1.82 2.26 2.70

Table 4.5: Intracellular delay and doubling-time: The effect of varying intracellular
delay on viral doubling-time, selected values from Fig. 4.10
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Figure 4.9: Effect of intracellular delay across all models: Comparison of inclusion
of intracellular delay across all models, (STC-ID-MVL, MTC-CI-ID-MVL and MTC-IR-
ID-MVL). Plot A shows the effect on viral doubling-time for therapy removal. Specifically
shown is the difference in viral doubling-time between zero intracellular delay (ID = 0hrs,
Td = 1.00days) and an intracellular delay of one day (ID = 24hrs, Td = 1.67days). Plot
B shows there is little change in viral half-life when intracellular delay is accounted for
under therapy introduction, (for ID = 0hrs or ID = 24hrs, T1/2 = 1.28days).
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Figure 4.10: MTC-IR-ID delay effect: The effect of inclusion of intracellular delay on
viral doubling-time. Plot A shows how doubling-time increases as intracellular delay is
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viral doubling-time, whereby the viral doubling time, (Td), is given based on intracellular
delay.

69



4.6 Summary

In modelling treatment interruption it is essential to have a set of models which can ac-
curately model both therapy introduction and removal. While original models, discussed

in Chapter 3, were adequate for therapy introduction, intracellular delay and HIV latency
were introduced to allow for better modelling of therapy removal. Intracellular delay, in

a discrete form, was incorporated, increasing viral doubling from 1.00 to 1.67 days, with
a corresponding increase in reaching viral set-point. HIV latency was also introduced, in

the form of a minimum viral level, to eliminate the unrealistically low viral levels which
original models allowed. Thus, this chapter developed a set of models capable of mod-

elling treatment interruption, discussed in Chapter 6. However, additional complexity was
necessary to achieve this, which the next chapter strives to reduce.
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Chapter 5

Dimensional analysis

The previous chapter demonstrated the importance of intracellular delay and HIV latency

when modelling therapy removal. In this chapter, alternative simplified solutions of these
models are developed by converting them to a dimensionless system. This conversion al-

lows accurate comparison of parameters and initial conditions. Again viral doubling-time
and half-life are used to compare these dimensionless parameters, highlighting those which

are key and providing a basis for reduction of model complexity. Identifying these key
parameters becomes more important as the models become increasingly more complex, al-

lowing retention of only those which have significant impact on overall model function.
Dimensional analysis, (DA), can be used to achieve this reduction of parameter space

[198, 153, 154, 199]. To illustrate the viability of this approach the three models devel-
oped so far are reformed using dimensionless expressions, the converted dimensionless

parameters individually varied and performance indicators, viral doubling-time and half-
life, compared. The results of this analysis are summarised here, with full details given in

Appendix C.

5.1 Model parameter comparison using dimensional analysis

The aim of DA is to facilitate comparison between each of the parameters used to describe
a mathematical model. This comparison allows elimination of unimportant parameters,

promoting simplification. To allow for accurate comparison, each parameter is made ‘di-
mensionless’ (i.e. scaling each to unity). The process for rendering a model dimensionless

also reduces the number of parameters and is described below.
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5.1.1 Dimensionless STC-ID-MVL model (STC-ID-MVL-DA)

To convert the STC model, Eqn. (4.10), each variable and parameter is divided by a factor
such that their dimensions cancel. The dimension of each variable and parameter is given in

Tables A.1 and A.2 respectively, thus, for example, time, (t), has dimension time and is made
dimensionless (t̄) by multiplying it by δ, which has dimension of time−1. The variables,

(Tp, T ∗
p and V,), have dimension length−3, (as these are measured by volume), and can

be made dimensionless by dividing by their initial conditions. Continuing this process,
using the dimensions and values given in Tables A.1 and A.2, the following dimensionless

representation of the STC-ID-MVL can be derived, (STC-ID-MVL-DA):
STC-ID-MVL-DA: single-target-cell intracellular-delay minimum-viral-load dimensional-

analysis model

dT̄p(t̄)

dt̄
= A−BT̄p(t̄)− CV̄ (t̄)T̄p(t̄) (5.1a)

dT̄ ∗
p (t̄)

dt̄
= CV̄ (t̄− τ̄)T̄p(t̄− τ̄)e−D − T̄ ∗

p (t̄) (5.1b)

dV̄ (t̄)

dt̄
= ET̄ ∗

p (t̄)− FV̄ (t̄) +G (5.1c)

where;

t̄ = tδ, τ̄ = τδ, T̄p(t̄) =
Tp(t)

Tp0
, T̄ ∗

p (t̄) =
T ∗
p (t)

Tp0
, V̄ (t̄) =

V (t)

Tp0
(5.2a)

A =
λp

δTp0
, B =

δp
δ
, C = (1− ϵ)

kpTp0

δ
, (5.2b)

D = δτ, E = NT , F =
c

δ
, G =

Vlvl

Tp0
(5.2c)

This dimensionless system is based on both parameter values and initial conditions so

each dimensionless parameter and variable will change, depending on what therapy event
is being modelled. For example, C varies from off-therapy steady state to introduction of

therapy across on-therapy steady state and therapy removal, as seen in Table 5.1, whereas
D remains constant across this spectrum. Thus, when comparing dimensionless parameters

it is necessary to match initial conditions and therapy events.
Converting a model to its dimensionless representation allows detailed sensitivity anal-

ysis of each dimensionless parameter and initial condition. By varying each parameter and
its initial condition, these can be compared accurately, (as parameters are scaled to each

other). Further, individual variation of each parameter, and initial condition, while hold-
ing the remainder constant, makes it possible to determine the impact each has on overall

model function. Table 5.2 gives a summary of the key dimensionless parameters and initial
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Dimensionless Off therapy Therapy On Therapy Therapy
parameters steady-state introduction steady-state removal

A λp

δTp0
0.0621 0.0621 0.0238 0.0238

B δp
δ 0.0143 0.0143 0.0143 0.0143

C (1− ϵ)
kpTp0

δ 0.2629 0.0263 0.0686 0.6857
D δτ 0.7000 0.7000 0.7000 0.7000
E NT 3.4783 3.4783 0.0002 0.0002
F c

δ 18.5714 18.5714 18.5714 18.5714
G Vlvl

Tp0
0.0000 0.0000 0.0000 0.0000

Initial conditions
T̄p0

Tp

Tp0
1.0000 1.0000 1.0000 1.0000

T̄ ∗
p0

T ∗
p

Tp0
1.0000 1.0000 1.0000 1.0000

V̄0
V
Tp0

0.1826 0.1826 0.0000 0.0000

Table 5.1: STC-ID-MVL-DA dimensionless values The values for each of the dimension-
less parameters and initial conditions across both therapy events and steady-states.

conditions, the full set is given in Table C.2. As before, for incorporation of intracellular

delay, model performance is determined by viral doubling-time and half-life. By relating
the dimensionless quantities back to the original model the biological meaning of the key

components can be retrieved:

Viral source: C = (1−ϵ)
kpTp0

δ Changes in this are expected to impact upon viral doubling-
time. As it is significantly reduced by therapy it is less important for viral half-life.

Intracellular delay: D = δτ The impact of intracellular delay has been seen in the previ-
ous chapter, and is possibly the most important factor for these models.

Number of virions produced per cell: E = NT If the number of virions produced per

infected cell changes, so too will the viral doubling-time. Again, its importance is
decreased due to drug therapy, which blocks most viral production.

Viral clearance rate: F = c
δ As for production of virus, clearance changes the amount of

virus present.

Initial target cell concentration: T̄p0 =
Tp

Tp0
Changing the number of cells which HIV

targets also changes the amount of virus produced, as there will be more or less of
these available.
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Therapy removal Therapy introduction
Dim.Less Initial doubling-time (day) Initial half-life (day)

par value Low High % diff value Low High % diff
C 0.03 2.80 2.02 -27.71 % 0.69 1.23 1.25 1.12 %
D 0.70 1.99 2.74 37.83 % 0.70 1.23 1.25 1.94 %
E 100.00 2.79 2.02 -27.61 % 100.00 1.21 1.27 4.77 %
F 18.57 2.01 2.72 35.37 % 18.57 1.24 1.21 -2.67 %

Initial conditions
T̄p0 =

Tp0

Tp0
1.00 2.71 2.06 -23.71 % 1.00 1.21 1.24 1.93 %

Table 5.2: STC-ID-MVL-DA parameter variation effect: Quantification of effect in
variation in initial parameter values and initial conditions based on doubling-time and half-
life of viral growth. Initial values were varied from 90% to 110% of their initial value, with
the resulting change in viral growth shown.

The key components follow the underlying function of this model, i.e. varying either

the source or production and clearance rates of virus will change the viral doubling-time.
The effect of intracellular delay has already been discussed in the previous chapter, and is

clearly shown to have a significant impact. A summary of the effect of variation of the
dimensionless parameters and initial conditions is given in Fig. 5.1, with outlying values

clearly indicated. The full version given in Fig. C.1 and Fig. C.2. As can be seen from any
of these figures, therapy removal is more sensitive to model values than therapy introduc-

tion. These are important considerations when modelling both therapy events, as seen in
Chapter 6.
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Figure 5.1: STC-ID-MVL-DA parameter variation for therapy introduction: Effect
of varying dimensionless parameters and initial conditions for the STC-ID-MVL-DA model
for therapy introduction. The specific values are given in Tables 5.2 and C.2
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5.1.2 Dimensionless MTC-CI-ID-MVL model (MTC-CI-ID-MVL-DA)

Using the same process for making the STC-ID-MVL model dimensionless, and with vari-
ables and parameters given in Tables A.1 and A.2, the following dimensionless representa-

tion of the MTC-CI-ID-MVL model (MTC-CI-ID-MVL-DA) is observed:
MTC-CI-ID-MVL-DA: multiple-target-cell chronic-infection intracellular-delay minimum-

viral-load dimensional-analysis model

dT̄p(t̄)

dt̄
= A−BT̄p(t̄)− CV̄ (t̄)T̄p(t̄) (5.3a)

dT̄s(t̄)

dt̄
= D − ET̄s(t̄)− FV̄ (t̄)T̄s(t̄) (5.3b)

dT̄ ∗
p (t̄)

dt̄
= GV̄ (t̄− τ̄)T̄p(t̄− τ̄)e−H − T̄ ∗

p (t̄) (5.3c)

dT̄ ∗
s (t̄)

dt̄
= IV̄ (t̄− τ̄)T̄s(t̄− τ̄)e−H − T̄ ∗

s (t̄) (5.3d)

dC̄∗
p(t̄)

dt̄
= JV̄ (t̄− τ̄)T̄p(t̄− τ̄)e−K − LC̄∗

p(t̄) (5.3e)

dC̄∗
s (t̄)

dt̄
= MV̄ (t̄− τ̄)T̄s(t̄− τ̄)e−K − LC̄∗

s (t̄) (5.3f)

dV̄ (t̄)

dt̄
= NT̄ ∗

p (t̄) +OT̄ ∗
s (t̄)− PC̄∗

p(t̄)−QC̄∗
s (t̄)−RV̄ (t̄) + S (5.3g)

where;

t̄ = δt, τ̄ = δτ, T̄p =
Tp

Tp0
, T̄s =

Ts

Ts0
, T̄ ∗

p =
T ∗
p

Tp0
, (5.4a)

T̄ ∗
s =

Ts

Ts0
, C̄∗

p =
C∗
p

Tp0
, C̄∗

s =
C∗
s

Ts0
, V̄ =

V

Tp0
(5.4b)

A =
λp

δTp0
, B =

δp
δ
, C = (1− ϵ)

kpTp0

δ
, D =

λs

δTs0
, (5.4c)

E =
δs
δ
, F = (1− fϵ)

ksTp0

δ
, G = (1− α)C, H = δτ, (5.4d)

I = (1− α)F, J = αC, K = µτ, L =
µ

δ
, M = αF, N = NT , (5.4e)

O = NT
Ts0

Tp0
, P = NC

µ

δ
, Q = NC

µ

δ

Ts0

Tp0
, R =

c

δ
, S =

Vlvl

Tp0
(5.4f)
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Therapy removal Therapy introduction
Dim.Less Initial doubling-time (days) Initial half-life (days)

par value Low High % diff value Low High % diff
G 0.55 4.34 2.90 -33.19 % 0.70 1.14 1.17 2.58 %
H 0.70 2.88 4.14 43.56 % 8.57 1.16 1.15 -0.69 %
N 100.00 4.34 2.90 -33.19 % 18.57 1.14 1.17 2.30 %
R 18.57 2.82 4.21 49.50 % 0.36 1.17 1.14 -2.55 %

Initial conditions
T̄p0 =

Tp

Tp0
1.00 4.61 3.01 -34.67 % 1.00 1.14 1.16 2.09 %

Table 5.3: MTC-CI-ID-MVL-DA parameter variation effect: Quantification of effect
in variation in initial parameter values and initial conditions based on doubling-time and
half-life of viral growth. Initial values were varied from 90% to 110% of their initial value,
with the resulting change in viral growth shown.

As before, different therapy events produce different values for the dimensionless pa-

rameters; these are given in Table C.3. Variation in these parameters and initial conditions
produce similar results to that for the STC-ID-MVL-DA model above. These again focus

on viral production (G and N), number of target cells (T̄p0), intracellular delay (H) and vi-
ral clearance rate (R). These results are summarised in Table 5.3, with full results given in

Table C.4. Again sensitivity is focused on therapy removal, as summarised in Fig. 5.2 with
the full version given in Fig. C.3 and Fig. C.4.
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Figure 5.2: MTC-CI-ID-MVL-DA parameter variation for therapy introduction: Ef-
fect of varying dimensionless parameters and initial conditions for the MTC-CI-ID-MVL-
DA model for therapy introduction. The specific values are given in Tables 5.3 and C.4
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5.1.3 Dimensionless MTC-IR-ID-MVL (MTC-IR-ID-MVL-DA)

Again the MTC-IR-ID-MVL model can be made dimensionless, (MTC-IR-ID-MVL-DA),
with Tables A.1 and A.2 giving the necessary variables and parameters:

MTC-IR-ID-MVL-DA: multiple-target-cell immune-response intracellular-delay minimum-
viral-load dimensional-analysis model

dT̄p(t̄)

dt̄
=A−BT̄p(t̄)− CV̄ (t̄)T̄p(t̄) (5.5a)

dT̄s(t̄)

dt̄
=D − ET̄s(t̄)− FV̄ (t̄)T̄s(t̄) (5.5b)

dT̄ ∗
p (t̄)

dt̄
=CV̄ (t̄− τ̄)T̄p(t̄− τ̄)e−G − T̄ ∗

p (t̄)−HĒ(t̄)T̄ ∗
p (t̄) (5.5c)

dT̄ ∗
s (t̄)

dt̄
=FV̄ (t̄− τ̄)T̄s(t̄− τ̄)e−G − T̄ ∗

s (t̄)− IĒ(t̄)T̄ ∗
s (t̄) (5.5d)

dV̄ (t̄)

dt̄
=JT̄ ∗

p (t̄) +KT̄ ∗
s (t̄)− LV̄ (t̄)T̄p(t̄)−MV̄ (t̄)T̄p(t̄)−NV̄ (t̄) + S (5.5e)

dĒ(t̄)

dt̄
=O + P

T̄ ∗
p (t̄) + T̄ ∗

s (t̄)

(T̄ ∗
p (t̄) + T̄ ∗

s (t̄)) +Q
Ē(t̄)− (5.5f)

R
T̄ ∗
p (t̄) + T̄ ∗

s (t̄)

(T̄ ∗
p (t̄) + T̄ ∗

s (t̄)) + S
Ē(t̄)− TĒ(t̄) + UĒ(t̄) (5.5g)

where;

t̄ = δt, τ̄ = δτ, T̄p =
Tp

Tp0
, T̄s =

Ts

Ts0
, (5.6a)

T̄ ∗
p =

T ∗
p

Tp0
, T̄ ∗

s =
Ts

Ts0
, V̄ =

V

Tp0
, Ē =

E

Tp0
(5.6b)

A =
λp

δTp0
, B =

δp
δ
, C = (1− ϵ)

kpTp0

δ
, D =

λs

δTs0
, E =

δs
δ
, (5.6c)

F = (1− fϵ)
ksTs0

δ
, G = δτ, H =

mpTp0

δ
, I =

msTs0

δ
, (5.6d)

J = NT , K =
NTTs0

Tp0
, L =

(1− ϵ)ppkpTp0

δ
, (5.6e)

M =
(1− fϵ)psksTs0

δ
, N =

c

δ
, O =

λE

Tp0δ
, P =, Q =

Kb

Tp0
, (5.6f)

R =
dE
δ
, S =

Kd

Tp0
, T =

δE
δ
, U =

Vlvl

Tp0
(5.6g)
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Therapy removal Therapy introduction
Dim.Less Initial doubling-time (days) Initial half-life (days)

par value Low High % diff value Low High % diff
C 0.04 2.52 1.97 -22.02 % 0.69 1.25 1.30 3.81 %
G 0.70 1.95 2.51 29.21 % 0.70 1.28 1.27 -0.63 %
J 100.00 2.52 1.97 -22.03 % 100.00 1.25 1.30 3.89 %
N 18.57 1.89 2.57 35.79 % 18.57 1.30 1.26 -2.53 %

Initial conditions
T̄p0 =

Tp0

Tp0
1.00 2.46 2.00 -18.96 % 1.00 1.26 1.29 3.11 %

Table 5.4: MTC-IR-ID-MVL-DA parameter variation effect: Quantification of effect
in variation in initial parameter values and initial conditions based on doubling-time and
half-life of viral growth. Initial values were varied from 90% to 110% of their initial value,
with the resulting change in viral growth shown.

The different therapy events, corresponding to the dimensionless parameter values, are

given in Table C.5. As before, changing the parameters and initial conditions produce
similar results. These follow the same pattern as before focusing on viral production (C

and J), number of target cells (T̄p0), intracellular delay (G) and viral clearance rate (N).
A summary of these results is given in Table 5.3, with full set of results given in Table

C.4. Therapy removal is again the main focus, as shown in Fig. 5.2 with the full version
spectrum for therapy introduction, Fig. C.3, and therapy removal, Fig. C.4, also given.
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Figure 5.3: MTC-IR-ID-MVL-DA parameter variation for therapy introduction: Ef-
fect of varying dimensionless parameters and initial conditions for the MTC-IR-ID-MVL-
DA model for therapy introduction. The specific values are given in Tables 5.4 and C.6
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5.2 Summary of sensitivity analysis

This chapter took the models developed in Chapter 4 and converted them to their dimen-
sionless version. This allowed the overall impact on model function of each individual

dimensionless parameter, and initial condition, to be evaluated. When these results were
converted back to their original form, underlying biological function could be evaluated.

Thus when compared over all three models (STC-ID-MVL-DA, MTC-CI-ID-MVL-DA and
MTC-IR-ID-MVL-DA), clear insight on key parameters could be obtained. These key re-

sults can be summarised by identifying that overall model function is determined by:

• Amount of virus produced from target cells

• Amount of target cells available

• Clearance rate of virus

The other contribution to overall model function is intracellular delay, as discussed in Chap-

ter 4. The work of this chapter gives strong indications as to which parameters must be in-
cluded in any viable model form, and which have less impact. These considerations become

increasingly more important as models attempt to incorporate more detailed biological rep-
resentation. Furthermore, while the additional complexity, by including intracellular delay

and minimum viral load, is small, overall model complexity is increasing, e.g. detailed
incorporation of immune function can result in doubling of compartments [200].
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Chapter 6

Modelling treatment interruptions

Over the course of HIV infection there will generally be some interruption of therapy, ei-

ther due to therapy failure or administration issues. However, investigations into structured
treatment interruptions, (STIs), have also been carried out, with a view to reduce the burden

of continual therapy. The results of the majority of these trials have been controversial; the
best are inconclusive and the worst indicate increased mortality [112, 113, 56]. Generally,

however, the treatment interruptions under investigation were large, (weeks to months), as
the primary aim of these trials was to investigate auto-immunity, whereby the immune sys-

tem alone could control HIV replication, as seen in the case of ’elite-controllers’ [101].
Unfortunately, this proved unsuccessful and most patients displayed viral rebound similar

to initial infection with a corresponding drop in CD4+T cells counts. As a result of these
failures STI trials have not been recommended, specifically since the failure of the large

scale SMART trial [112]. Now however, with demand for therapy increasing in resource-
limited and remote regions, there will be more instances of unplanned therapy interruptions,

as continual access to ART can not be guaranteed, (as seen with TB drugs in developing
countries [201]). Furthermore, it may prove necessary to include planned interruptions to

therapy, in an effort to maintain cost-effective regimes. Thus, it is necessary to develop
a safer method of investigating why STIs have failed in the past and whether successful

STI guidelines can be established for the future. This research suggests using mathemati-
cal modelling to investigate this, with the aim of proposing treatment strategies which can

maintain viral suppression during interruptions. If this approach proves successful, a signif-
icant reduction in the cost of therapy, along with improved drug administration schedules,

may be possible, particulary in circumstances where resources are limited.
This chapter used the models, developed in Chapter 4, specifically the MTC-IR-ID-

MVL model, (Eqn.(4.12)), to investigate STI, using interruption combinations of varying
lengths. The MTC-IR-ID-MVL model is selected as it provides the key components neces-

sary to investigate therapy removal, specifically:
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multiple target cells to allow bi-phasic viral reduction during therapy introduction

immune response to account for the reduction in viral load due to the immune system

combating HIV replication

intracellular delay to increase the viral doubling time, thus slowing viral rebound

latency to allow for a minimum viral load under drug induced viral suppression

Based on this a potential STI regime is suggested which controls replication but pro-

vides cost savings.

6.1 Structured treatment interruption

The delay model (MTC-IR-ID-MVL) and original model (MTC-IR) are compared over
two existing STI regimes. This demonstrates the impact intracellular delay has on model

predictions. A number of contrasting STI regimes are then compared, using only the MTC-
IR-ID-MVL model, allowing selection of a potential STI which combines viral control and

cost savings. A continual therapy regime is also included to provide a base line compari-
son. Logically these regimes follow the weekly period, allowing therapy interruption to be

consistent across days and weeks. It should be noted that the strategies developed generally
do not relate to any specific trials, but are only an indication of potential future trials.

6.1.1 Two-week-on two-week-off strategy (14/14)

A strategy of weeks off-therapy periods is common for STI trials [112, 113, 56]. Demon-

strated here is an illustrative 14 day on and 14 day off regime, although these times can be
varied and produce similar results. Older STI regimes generally involve even longer periods

off therapy, (months), as they strived for auto viral control [101], but as indicated, by the
models already discussed, viral load generally rebounds to set-point within weeks.

As can be seen, (Fig. 6.1), this typical STI strategy will allow a significant average
viral load to develop, (586virions/mL), with peak of 3, 371virions/mL being produced.

When this is compared with an average viral load of only 33virions/mL, for continual
therapy, a shorter period off therapy is indicated. The shorter the period for which therapy

is removed for then the lower the peak vial load, essential to reducing the potential of drug

resistant mutations developing. However, there is a minimum time needed for the body to
metabolise specific ART drugs and thus a minimum time for off-therapy follows, suggested

as a minimum of 2 days.
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Figure 6.1: STI using MTC-IR-ID-MVL model with 14d on and 14d off: This
is an example of an equal on/off therapy STI. This shows an average viral load of
8, 446virions/mL with zero delay and 586virions/mL for 24hr delay, compared with
33virions/mL for continuous therapy. The peak viral loads are 58, 137virions/mL and
3, 371virions/mL respectively.
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Also shown is the same STI regime for a non-delay model, (MTC-IR). As can be seen,

(Fig. 6.1), this produces a higher average viral load (8, 446virions/mL) and significantly
higher viral peaks (58, 137virions/mL). This further emphasis the point made in Chap-

ter 4, that intracellular delay needs to be included in modelling therapy removal. The
plot also shows a continual therapy line for reference, this has an average viral load of

33virions/mL.
A therapy regime like this allows a 50% cost saving, (i.e. therapy is only required for

50% of the time), while limiting replication and allowing target cells to maintain reasonable
levels. However, the relatively high viral peaks, (3, 371virions/mL), mean a higher chance

of developing drug resistant mutations, (DRMs), increasing the chance of therapy failure.
Based on this a shorter cycle regime is suggested.

6.1.2 Five-day-on two-day-off strategy (5/2)

Another trial, shown to suppress viral replication long term, suggests taking treatment Mon-

day to Friday and taking the two weekend days off (Saturday and Sunday), also know as
weekend-off strategy [202, 203]. This involves the shortest logical interruption of two days.

Furthermore, residual drug levels need to well understood, minimising the chance of mono-
therapy events occurring, as these could greatly increase the chance of DRMs occurring.

To avoid potential mono-therapy events occurring specific drugs ideally need to be stopped
at different stages, to allow for their varying metabolising rates, potentially reducing the

off-therapy period.
This shorter STI produces superior viral suppression compared with the 14/14 regime,

(Fig. 6.2), only 412virions/mL average viral load, with a peak of 712virions/mL.

Specifically it is the reduction in peak viral load which is important, only 20% of the 14/14
peak, (3, 371virions/mL reduced to 712virions/mL). The peak viral load is crucial as

this gives a larger viral pool from which to produce mutations.
Based on the 5/2 strategy a cost saving of 29% could be made, when compared with

continual therapy, while maintaining relatively low viral loads. As discussed in Chapter 2,
this could be a method of reducing cost of HIV therapy, specifically in a resource limited

region. Furthermore, this strategy could prove useful if access to therapy is not consistent,
i.e. it may prove better to stop therapy for two days than to reduce overall therapy levels

for limited drug availability. Also based on continuing trials this regime appears to be
reasonable successful producing positive results [202, 203].
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Figure 6.2: STI using MTC-IR-ID-MVL model with 5d on and 2d off: This shorter STI
shows an average viral load of 4, 951virions/mL with zero delay and 412virions/mL
for 24hr delay, compared with 33virions/mL for continuous therapy. Peak viral loads are
lower, 10, 037virions/mL and 712virions/mL respectively.
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6.1.3 Impact of length of varying on/off period

Demonstrated above is the impact that duration of therapy removal has on STI regimes, the
longer the period off-therapy the higher the peak in viral load and thus increased potential

of mutations developing. However, it is not clear what impact the ratio of on-therapy to
off-therapy periods has. Thus three regimes are compared, the 5/2 regime is compared with

a scaled up version of this, 20/8 (20 days on and 8 days off), and longer on period of 26/2

(26 days on and 2 days off). Again a continuous therapy period is given for reference.
When these three regimes are compared, (Fig. 6.3), it is clear that the shorter the time

off therapy the better, as the viral rebound is reduced. Furthermore, the longer the pe-
riod on-therapy the better, as viral load is reduced. This means that the 26/2 strategy

produces the best overall results, but is not a very practical STI regime, as there is little
cost saving, only 7%. Also, the 20/8 is shown to have lower average viral load than 5/2,

(352virions/mL compared to 437virions/mL), but has a significantly higher viral peak,
(over twice, 1, 648virions/mL compared to 756virions/mL). Based on these results a

compromise is needed, whereby therapy is administered for long enough to reduce viral
load but contains sufficient treatment interruptions to make the regime practically viable.

Thus a number of strategies are compared in the next section.

6.1.4 Overall STI regime comparison

The above investigation demonstrated that there is a clear need to balance on/off periods in
order to reduce average and peak viral load while maintaining target cell levels and making

meaningful cost savings. Based on this, a number of potential regimes were compared,
with the results shown in Table. 6.1. As all regimes follow the weekly cycle, thus days

off-therapy are consistent. As can be seen the average viral load remains consistent for like
cost savings, but peak viral load increases with increasing time off therapy. Highlighted are

two potential regimes which balance the trade off between cost and viral suppression, i.e.
the 18/3 and 24/4 regimes.

The 18/3 and 24/4 regimes gives relatively low average viral load, (120−118virions/mL),
and relatively low peak load, (285− 338virions/mL), highlighted in Table. 6.1 and illus-

trated in Fig. 6.3. This allows a 14% reduction in overall cost of therapy while maintaining
control of HIV replication. Although only a slightly better result than the similar 12/2

regimes, it allows extra time for ART to be cleared from the body. Furthermore, although
average viral load is similar for other regimes, (30/5, 36/6 and 42/7), the increase in off-

therapy period results in increasing viral peaks. Thus a 24/4 regime could be argued for, as

it follows both a weekly and monthly cycle, while maintaining viral load. This regime also
maintains target cell levels, necessary to allow the immune system to fight off opportunistic

infections.
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Figure 6.3: Comparison between 5/2, 20/8 and 26/2 STI using MTC-IR-ID-MVL
model: This give a comparison between a number of potential STI; 5/2, a scaled up 5/2 to
give 20d on and 8d off (20/8), and a 26d on and 2d off (26/2). The average viral loads are
437virions/mL, 352virions/mL and 68virions/mL respectively. The peak viral loads
are 756virions/mL, 1, 648virions/mL and 141virions/mL respectively.
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Figure 6.4: Suggested best practice overall STI regime 18/3: This demonstrated a
potential best practice regime of 18 days on and 3 days off. The average viral load is
120virions/mL with a peak of 285virions/mL. The potential cost savings are 17%.
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Strategy on/off average viral load peak viral load % cost savings
(days) (virions/mL) (virions/mL)

5/2 437 756 29
12/2 126 320 14
11/3 209 623 21
19/2 86 171 10
18/3 120 285 14
17/4 168 465 19
16/5 235 751 24
26/2 70 138 7
25/3 92 218 11
24/4 118 338 14
23/5 151 507 18
22/6 201 743 21
21/7 558 1,086 25
30/5 114 408 14
36/6 121 495 14
42/7 117 610 14

Table 6.1: Comparison of STI regimes Potential STI regimes compared based on average
viral load, peak viral load and cost savings. Highlighted are potential regimes which provide
the best trade off between cost and suppression.

6.2 Summary of structured treatment interruptions

This chapter used the models developed, specifically the MTC-IR-ID-MVL model, to in-
vestigate current and potential STIs. It was highlighted how equal period of on/off therapy

could not fully control HIV replication, as viral growth is generally faster than viral clear-
ance, specifically from secondary target cells. Furthermore, a 6/1 ratio was suggested as

best tradeoff between viral suppression and cost saving, thus for every 1 day off therapy 6
days of therapy was needed to reduce viral rebound. Based on this rationale, a 24/4 regime

could be suggested, as it follows a monthly cycle, as a potential cost saving regime for
resource limited areas. This 6/1 ratio can also be used where availability of therapy is not

consistent, i.e. for every day missed 6 days of therapy should be administered to reduce
viral load.
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Chapter 7

Conclusions and future direction

This research focused on a set of deterministic models of within-host HIV progression.

These include published ODE models, adapted to incorporate a more sophisticated set of
disease features, thus producing a set of DDE models, which were then used to investigate

STI. The stages in developing the final DDE model used for STI are summarised below.
Limitations and potential improvements are then discussed, giving a direction for future

research. This is followed by an overall conclusion.

7.1 Summary of findings

This research is based on a set of recognised ODE models, (STC, MTC-CI and MTC-IR),
which are set in context and discussed in detail in Chapter 3. As these ODE models assume

that once a cell becomes infected it immediately starts producing virions it is necessary to
modify them to incorporate intracellular delay, as this is crucial when modelling therapy

removal. Incorporating a fixed time of 24hrs between infection and production, the viral
doubling-time in increased, from ≈ 1 day to ≈ 1.7 day, thus matching published estimates.

It is also shown that viral half-life is relatively unaffected by inclusion of intracellular delay.
When the two types of model are compared, (delay against no-delay), viral rebound is

shown to be significantly slowed in the former case. This demonstrates that inclusion of
intracellular delay is necessary when modelling therapy removal.

Another significant problem of original ODE models is unrealistically low viral load
under drug induced viral suppression. Thus, a minimum low viral load is incorporated,

(STC-ID-L, MTC-CI-ID-L and MTC-IR-ID-L), which allows for latently infected cells as
they are unaffected by conventional therapy. The inclusion of these latent cells is necessary

to maintain a consistent viral rebound and time to viral set-point. Combining this feature
with intracellular delay produces a DDE models which can be used for both therapy intro-

duction and removal, as is needed for investigation of treatment interruptions.
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The complexity of models used to describe HIV progression has increased dramatically,

over the last number of years, as additional features are incorporated. In the context of this
research the original mid 1990’s models, (STC models), have been modified dramatically,

(MTC-CI and MTC-IR), leading to further complexity, due to inclusion of intracellular de-
lay and latency. Dimensional analysis is introduced as method of retaining model tractabil-

ity, under this increased model complexity. By using DA the key parameters of a specific
model can be identified, thus reducing the parameter space. This allows potential adaptation

of these general models to individual patients, not least for targeted therapy. As modelling
of HIV progression develops, DA thus provides a relatively simple method of analysing

individual parameters.
The culmination of this research is modelling treatment interruptions, using the DDE

models developed in Chapter 4, (STC-ID-L, MTC-CI-ID-L and MTC-IR-ID-L). With in-
creased access to therapy required, this becomes a important issue, as there is a need to bet-

ter understand the dynamics of therapy removal. Specifically, in resource-limited regions
continual access to therapy can not be guaranteed, e.g. due to limited drug availability,

(comparable to that seen with TB treatment). A number of alternative potential treatment
regimes are compared, using the MTC-IR-ID-L model, suggesting an interruption regime

of 24/4, (i.e. 24 days on therapy and 4 days off). This regime could produce a cost saving
of 14%, compared with continual therapy, without significantly affecting viral suppression.

Furthermore, this suggests that when ART is limited, it is better to stop therapy for a period
rather than reducing individual drug levels. This cessation reduces the potential to develop

drug-resistant viral mutations, due to increased viral load coupled with selective pressure
seen when reducing continual drug levels.
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7.2 Future direction

The DDE models developed here are based on ODE models, which have been previously
validated. The incorporation of intracellular delay is based on the biological time necessary

to start producing virions and produces results consistent with known viral half-life and
doubling-time. However, these DDE models need to be compared with individual patient

data before the suggested regimes can be implemented. Furthermore, as the specific data
needed to fully validate these models is only available under STI trials, which are tested

under strict ethical conditions, suggested regimes would need to be modified as necessary.
This, coupled with DA tailoring models to individuals could enable development of suc-

cessful STI regimes in the future.
Outside of regime testing and validation, a number of improvements could be incorpo-

rated into these DDE models:

Distributed intracellular delay: Only a fixed intracellular delay has been incorporated to
date, based on findings for STC models. However, these findings were mainly based

on therapy introduction, which has been shown to be unaffected by intracellular delay,
and investigation for a distributed delay should be considered.

Detailed immune response: Viral rebound is limited by the immune response fighting in-
fection; this needs more detailed investigation [200, 204]. For example, the time

needed to activate the adaptive immune response should also be accounted for.

Latent virus The level of latent virus needs to be incorporated in more detail, as this forms
the basis from which viral rebound grows thus changing the time to reach viral set-

point [129, 205].

Once the desired level of model accuracy has been validated a potential next step would

be to optimise the treatment regimes proposed. This can be achieved using optimal control
theory, which is based on a set of differential equations used to minimise a cost function

based on a set of criteria using varying principles [206]. In this case the period on/off
therapy is optimised based on the criteria of minimising viral load based on the limited

treatment available. Furthermore, some aspects of this have been investigated previously,
using different techniques, e.g. feedback control, open-loop control and model predictive

control [207, 208, 209, 210, 183]. However, all these models lacked the inclusion of intra-
cellular delay, which has been shown to decrease viral rebound, so their conclusions need

to revisited.
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7.3 Concluding remarks

In the current climate of limited funding the shortfall between those in need of HIV ther-
apy and those receiving it requires new treatment strategies to be developed. This research

investigates structured treatment interruptions as a potential means of achieving treatment
cost reductions while maintaining successful care, particularly in resource limited regions.

However, the past failures of long-term interruptions has meant new trials are not recom-
mended and another method of analysis was required.

Over the course of the HIV/AIDS pandemic various mathematical models have been
utilised to enhance our understanding. These models are generally developed to investi-

gate specific aspects of disease progression, with some modelling techniques proving better
suited to particular aspects than others. As such, the popularity of individual model types

vary depending on investigation trends. The differential equation models at the core of
this research are particulary suited to treatment interruptions, as they focus on cell counts

and viral loads. While the widespread use of these ODE models peaked in the late 1990’s
they have maintained pace with new developments through numerous additions. However,

further modifications have proven necessary to allow analysis of treatment interruptions;
specifically, the inclusions of intracellular delay, which slows viral rebound, and latency,

which provides a low level of viral load which therapy can not reach. Combined with the
novel use of dimensional analysis, also presented here, a set of models, which could be used

for both treatment events and relatively rapidly adapted to match individuals and situations,
were developed.

Analysis of these treatment interruption models developed suggest therapy should only
be removed for a period of days, from an initial regime of consistent undetectable viral

load. This short interruption period indicates why longer-term interruption regimes have
failed in the past and suggests potential future options to test, e.g. a 24 day-on and 4 day-

off cycle. The combination of these initial regimes with dimensional analysis provide the

potential to design more accurate treatment interruption schedules in the future, based on
individual patient data. Furthermore, by utilising control theory techniques, these regimes

could be refined further. This refinement is necessary as treatment interruption strategies
are likely to grow in popularity, in order to meet increased therapy demand. Thus, it is

hoped that ability of the DDE models developed, here to investigate treatment interruptions
will provide a stimulus to this area of research.

95



Bibliography

[1] Centers for Disease Control and Prevention. Diagnoses of HIV In-
fection and AIDS in the United States and Dependent Areas, 2009.
www.cdc.gov/hiv/surveillance/resources/reports/2009report/

pdf/2009SurveillanceReport.pdf, accessed 24 November 2011, 2009.

[2] Health Service Executive. HIV & AIDS in Ireland 2010. www.drugsandalcohol.
ie/15223/1/HPSC_HIV_AIDS_2010.pdf, accessed 24 November 2011, 2010.

[3] unicef. South Africa Statistics. www.unicef.org/infobycountry/

southafrica_statistics.html, accessed 24 November 2011, 2011.

[4] C.W. Dieffenbach and A.S. Fauci. Thirty years of HIV and AIDS: Future challenges
and opportunities. Annals of Internal Medicine, 154(11):766–771, 2011.

[5] M.S. Cohen, N. Hellmann, J.A. Levy, K. DeCock, and J. Lange. The spread, treat-
ment, and prevention of HIV-1: evolution of a global pandemic. The Journal of
clinical investigation, 118(4):1244–1254, 2008.

[6] UNAIDS. Global report: UNAIDS report on the global AIDS epidemic 2010.
www.unaids.org/globalreport/Global_report.htm, accessed 24 Novem-
ber 2011, 2010.

[7] Henry J. Kaiser Family Foundation. Fact Sheet: The Global HIV/AIDS Epidemic.
www.kff.org/hivaids/upload/3030-15.pdf, accessed 24 November 2011,
2010.

[8] UNAIDS. Global report: Fact Sheet: Sub-Saharan Africa. www.unaids.org/

documents/20101123_FS_SSA_em_en.pdf, accessed 24 November 2011, 2010.

[9] R. Hecht, L. Bollinger, J. Stover, W. McGreevey, F. Muhib, C.E. Madavo, and
D. de Ferranti. Critical choices in financing the response to the global HIV/AIDS
pandemic. Health Affairs, 28(6):15911605, 2009.

[10] E.M. Gardner, M.P. McLees, J.F. Steiner, C. del Rio, and W.J. Burman. The spectrum
of engagement in HIV care and its relevance to test-and-treat strategies for prevention
of HIV infection. Clinical Infectious Diseases, 52(6):793–800, 2011.

[11] M. Mahy, J. Stover, K. Stanecki, R. Stoneburner, and J.M. Tassie. Estimating the
impact of antiretroviral therapy: regional and global estimates of life-years gained
among adults. Sexually Transmitted Infections, 86(Suppl 2):ii67, 2010.

96



[12] UN. The Millennium Development Goals Report 2010. www.un.org/

millenniumgoals/aids.shtml, accessed 24 November 2011, 2010.

[13] T.C. Quinn. HIV epidemiology and the effects of antiviral therapy on long-term
consequences. AIDS (London, England), 22(Suppl 3):S7, 2008.

[14] S. Moir, T.W. Chun, and A.S. Fauci. Pathogenic Mechanisms of HIV Disease. An-
nual Review of Pathology: Mechanisms of Disease, 6:223–248, 2011.

[15] J.B. Nachega, M.J. Mugavero, M. Zeier, M. Vitória, and J.E. Gallant. Treatment
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Appendix A

Variables and parameter values

This section gives the state variables, parameter definitions and estimates for each model.

The tables are divided by dependency on variables and parameters specific to each model,
e.g. Tp, T ∗

p and V are common to all models but E is only relevant to MTC-IR models.

These tables are a summary of those given in Chapter 3, i.e. Tables 3.1, 3.2, 3.3, 3.4, 3.5
and 3.6.

Variable Units Description
Tp

cells
µL Primary target cells (i.e. CD4+T cells)

T ∗
p

cells
µL Primary target acutely infected cells

V virions
µL Infectious virus concentration

Ts
cells
µL Secondary target cells (e.g. macrophages)

T ∗
s

cells
µL Secondary target acutely infected cells

C∗
p

cells
µL Primary target chronic infected cells

C∗
s

cells
µL Secondary target chronic infected cells

E cells
µL Effector cells

Table A.1: All model variables: Dependent variables for all models discussed
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Para. Units Value Description
λp

cells
µL day 10, 000 Production source of primary target cells

δp
1

day 0.01 Death rate of primary target cells
ϵ − 0.9 ∈ [0, 1] Efficiency of RTI in primary target population
kp

µL
virions day 8× 10−7 Infection rate for primary population

NT
virions
cell 100 No. of virions produced per infected cell

c 1
day 13 Clearance rate of virions

δ 1
day 0.7 Clearance rate of infected cells

λs
cells

µL day 32 Production source of secondary target cells
δs

1
day 0.01 Death rate of secondary target cells

f - 0.34 ∈ [0, 1] Reduction in efficiency of treatment in
secondary population

ks
µL

virions day 8× 10−7 Infection rate for secondary population
Nc

virions
cell 4.11 No. of virions produced per chronically infected cell

α virions
cell 0.195 Ratio of acute to chronic cells

µ 1
day 0.7 Clearance rate of chronically infected cells

mp
µL

cells day 1× 10−5 Immune induced clearance rate in primary target
ms

µL
cells day 1× 10−5 Immune induced clearance rate in secondary target

pp
virions
cell 1 Average number of virions produced per

primary target infection
ps

virions
cell 1 Average number of virions produced per

secondary target infection
λE

cells
µL day 1 Production rate of immune effectors

bE
1

day 0.3 Max. birth rate of immune effectors
Kb

cells
µl 100 Saturation birth for immune effector

dE
1

day 0.25 Max. death rate for immune effectors
Kd

cells
µL 500 Saturation death for immune effectors

δE
1

day 0.1 Natural death rate for immune effectors
τ day 1 Intracellular delay

Table A.2: All parameters: Parameters for all models discussed
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Appendix B

Publications / Conferences

2010 3rd International Workshop on Systems Biology (IWSB), Effect of cell infection delay

on treatment interruption models of within-host HIV progression, poster presentation.

Hamilton Institute, National University Ireland Maynooth, Ireland. August 15-18

2010

2009 7th IFAC Symposium on Modelling and Control in Biomedical Systems (MCBMS),
Increasing biological accuracy in models of HIV progress while minimising complex-

ity, contributed paper presentation. Aalborg, Denmark. 12-14 August 2009

2008 2nd International Workshop on Systems Biology (IWSB), Increasing physical real-

ism in models of HIV progress using novel techniques, poster presentation. Hamilton

Institute, National University Ireland Maynooth, Ireland. August 17-20 2008

2006 IRCSET Symposium, The untapped potential of the frequency domain to bring phys-

ical realism to HIV models, poster presentation.
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Appendix C

Full dimensional analysis

Chapter 5 converts the models developed in Chapter 4 into their dimensionless representa-
tion. The key results of the analysis of these dimensionless models are discussed in Chapter

5, but the full tables of results are given here, together with graphical representations of
each of the therapy events.

C.1 STC-ID-L-DA full dimensional analysis

This section gives the full steady states for each therapy event Table C.1. Also given is the
full set of parameters for which sensitivity analysis was performed, with their corresponding

results, Table C.2. These sensitivity results are also representated in graphical form in Fig.

C.1 and Fig. C.2.
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Dimensionless Off therapy Therapy On Therapy Therapy
parameters SS introduction SS removal

A λp

δTp0
0.0621 0.0621 0.0238 0.0238

B δp
δ 0.0143 0.0143 0.0143 0.0143

C (1− ϵ)
kpTp0

δ 0.2629 0.0263 0.0686 0.6857
D δτ 0.7000 0.7000 0.7000 0.7000
E NT 3.4783 3.4783 0.0002 0.0002
F c

δ 18.5714 18.5714 18.5714 18.5714
G Vlvl

Tp0
0.0000 0.0000 0.0000 0.0000

Initial conditions
T̄p0

Tp

Tp0
1.0000 1.0000 1.0000 1.0000

T̄ ∗
p0

T ∗
p

Tp0
1.0000 1.0000 1.0000 1.0000

V̄0
V
Tp0

0.1826 0.1826 0.0000 0.0000

Table C.1: STC-ID-L-DA dimensionless values The values for each of the dimensionless
parameters and initial conditions across both therapy events and steady states (SS).

Therapy removal Therapy introduction
Dim.Less Initial Doubling time (day) Initial Half life (day)

par value Low High % diff value Low High % diff
A 0.06 2.39 2.27 -5.17 % 0.02 1.25 1.26 1.12 %
B 0.01 2.29 2.37 3.40 % 0.01 1.25 1.25 -0.31 %
C 0.03 2.80 2.02 -27.71 % 0.69 1.23 1.25 1.12 %
D 0.70 1.99 2.74 37.83 % 0.70 1.23 1.25 1.94 %
E 100.00 2.79 2.02 -27.61 % 100.00 1.21 1.27 4.77 %
F 18.57 2.01 2.72 35.37 % 18.57 1.24 1.21 -2.67 %
G 0.00 2.33 2.33 -0.05 % 0.00 1.25 1.26 0.55 %

Initial conditions
T̄p0 =

Tp0

Tp0
1.00 2.71 2.06 -23.71 % 1.00 1.21 1.24 1.93 %

T̄ ∗
p0 =

T ∗
p0

Tp0
0.03 2.33 2.33 0.05 % 0.00 1.23 1.25 1.99 %

V̄0 =
V0
Tp0

0.16 2.33 2.33 0.00 % 0.00 1.26 1.26 -0.04 %

Table C.2: STC-ID-L-DA parameter variation effect: Quantification of effect in varia-
tion in initial parameter values and initial conditions based on doubling time and half life
of viral growth. Initial values were varied from 90% to 110% of their initial value, with the
resulting change in viral growth shown.
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Figure C.1: STC-ID-L-DA parameter variation for therapy introduction: Effect of
varying dimensionless parameters and initial conditions for the STC-ID-L-DA model for
therapy introduction. The specific values are given in Table C.2
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Figure C.2: STC-ID-L-DA parameter variation for therapy removal: Effect of varying
dimensionless parameters and initial conditions for the STC-ID-L-DA model for therapy
removal. The specific values are given in Table C.2
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C.2 MTC-CI-ID-L-DA full dimensional analysis

This section gives the full steady states for each therapy event, Table C.3. Also given is the
full set of parameter for which sensitivity analysis was performed, with their corresponding

results, Table C.4. These sensitivity results are also represented in graphical form in Fig.

C.3 and Fig. C.4.

Dimensionless Off therapy Therapy On Therapy Therapy
parameters SS introduction SS removal

A λp

δTp0
0.0621 0.0621 0.0238 0.0238

B δp
δ 0.0143 0.0143 0.0143 0.0143

C (1− ϵ)
kpTp0

δ 0.2629 0.0263 0.0686 0.6857
D λs

δTs0
5.7143 5.7143 0.0229 0.0229

E δs
δ 0.0143 0.0143 0.0143 0.0143

F (1− fϵ)
ksTp0

δ 32.8571 22.8029 59.4857 85.7143
G (1− α)C 0.2116 0.2116 0.2116 0.2116
H δτ 0.7000 0.7000 0.7000 0.7000
I (1− α)F 26.4500 18.3563 47.8860 69.0000
J αC 0.0513 0.0051 0.0134 0.1337
K µτ 0.7000 0.7000 0.7000 0.7000
L µ

δ 1.0000 1.0000 1.0000 1.0000
M αF 6.4071 4.4466 11.5997 16.7143
N NT 100.0000 100.0000 100.0000 100.0000
O NT

Ts0
Tp0

0.0035 0.0035 0.3333 0.3333
P NC

µ
δ 4.1100 4.1100 4.1100 4.1100

Q NC
µ
δ
Ts0
Tp0

0.0001 0.0001 0.0137 0.0137
R c

δ 18.5714 18.5714 18.5714 18.5714
S Vlvl

Tp0
0.0000 0.0000 0.0000 0.0000

Initial conditions
T̄p0 =

Tp

Tp0

Tp

Tp0
1.0000 1.0000 1.0000 1.0000

T̄s0 =
Ts
Ts0

Ts
Ts0

1.0000 1.0000 1.0000 1.0000

T̄ ∗
p0 =

T ∗
p

Tp0

T ∗
p

Tp0
0.0435 0.0435 0.0000 0.0000

T̄ ∗
s0 =

Ts
Ts0

Ts
Ts0

5.6250 5.6250 0.0000 0.0000

C̄∗
p0 =

C∗
p

Tp0

C∗
p

Tp0
0.0000 0.0000 0.0000 0.0000

C̄∗
s0 =

C∗
s

Ts0

C∗
s

Ts0
0.0000 0.0000 0.0000 0.0000

V̄0 =
V
Tp0

V
Tp0

0.2391 0.2391 0.0000 0.0000

Table C.3: MTC-CI-ID-L dimensionless values The values for each of the dimensionless
parameters and initial conditions across both therapy events and steady states (SS).
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Therapy removal Therapy introduction
Dim.Less Initial Doubling time (days) Initial Half life (days)

par value Low High % diff value Low High % diff
A 0.02 3.51 3.32 -5.53 % 0.02 1.15 1.16 0.81 %
B 0.01 3.35 3.47 3.58 % 0.01 1.15 1.15 -0.21 %
C 0.69 3.41 3.41 0.00 % 0.69 1.15 1.15 -0.02 %
D 0.02 3.41 3.41 -0.01 % 0.04 1.15 1.16 0.42 %
E 0.01 3.41 3.41 0.00 % 0.01 1.15 1.15 0.00 %
F 0.29 3.41 3.41 0.00 % 0.17 1.15 1.15 0.00 %
G 0.55 4.34 2.90 -33.19 % 0.70 1.14 1.17 2.58 %
H 0.70 2.88 4.14 43.56 % 8.57 1.16 1.15 -0.69 %
I 0.23 3.41 3.41 -0.06 % 0.02 1.15 1.15 0.00 %
J 0.13 3.42 3.41 -0.41 % 100.00 1.15 1.15 0.03 %
K 0.70 3.41 3.42 0.29 % 0.20 1.15 1.15 -0.02 %
L 1.00 3.41 3.42 0.32 % 0.69 1.15 1.15 -0.12 %
M 0.06 3.41 3.41 0.00 % 0.17 1.15 1.15 0.00 %
N 100.00 4.34 2.90 -33.19 % 18.57 1.14 1.17 2.30 %
O 0.33 3.41 3.41 -0.06 % 0.00 1.16 1.16 -0.09 %
P 4.11 3.42 3.41 -0.41 % 0.43 1.15 1.15 0.03 %
Q 0.01 3.41 3.41 0.00 % 0.00 1.15 1.15 0.00 %
R 18.57 2.82 4.21 49.50 % 0.36 1.17 1.14 -2.55 %
S 0.00 3.42 3.51 2.65 % 0.00 1.15 1.15 0.11 %

Initial conditions
T̄p0 =

Tp

Tp0
1.00 4.61 3.01 -34.67 % 1.00 1.14 1.16 2.09 %

T̄s0 =
Ts
Ts0

1.00 3.55 3.55 -0.08 % 1.00 1.15 1.15 -0.43 %

T̄ ∗
p0 =

T ∗
p

Tp0
0.00 3.55 3.55 0.00 % 0.00 1.15 1.15 -0.29 %

T̄ ∗
s0 =

Ts
Ts0

0.00 3.55 3.55 0.00 % 0.00 1.15 1.15 -0.46 %

C̄∗
p0 =

C∗
p

Tp0
0.00 3.55 3.55 0.00 % 0.00 1.15 1.15 0.00 %

C̄∗
s0 =

C∗
s

Ts0
0.00 3.55 3.55 0.00 % 0.00 1.15 1.15 0.00 %

V̄0 =
V
Tp0

0.00 3.61 3.52 -2.67 % 0.00 1.15 1.15 0.07 %

Table C.4: MTC-CI-ID-L-DA parameter variation effect: Quantification of effect in
variation in initial parameter values and initial conditions based on doubling time and half
life of viral growth. Initial values were varied from 90% to 110% of their initial value, with
the resulting change in viral growth shown.
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Figure C.3: MTC-CI-ID-L-DA parameter variation for therapy introduction: Effect
of varying dimensionless parameters and initial conditions for the STC-ID-L-DA model for
therapy introduction. The specific values are given in Table C.4

120



0 5 10 15 20

10
5.74

10
5.85

T
p

C
el

ls
 / 

m
L

0 5 10 15 20
10

3.26

10
3.37

T
s

C
el

ls
 / 

m
L

0 5 10 15 20
10

−2

10
0

10
2

10
4

T*
p

C
el

ls
 / 

m
L

0 5 10 15 20
10

−4

10
−2

10
0

T*
s

C
el

ls
 / 

m
L

0 5 10 15 20
10

−2

10
0

10
2

C
p
*

Lo
g 

C
el

ls
 / 

m
L

0 5 10 15 20
10

−5

10
0

C
s
*

C
el

ls
 / 

m
L

0 2 4 6 8 10 12 14 16 18 20
10

0

10
1

10
2

10
3

V

V
ira

l R
N

A
 / 

m
L

Time Days

Figure C.4: MTC-CI-ID-L-DA parameter variation for therapy removal: Effect of
varying dimensionless parameters and initial conditions for the STC-ID-L-DA model for
therapy removal. The specific values are given in Table C.4
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C.3 MTC-IR-ID-L-DA full dimensional analysis

This gives the full steady states for each therapy event, Table C.5, and the full set of sensi-
tivity analysis, Table C.6, and a graphical representation, Fig. C.5 and Fig. C.6.
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Dimensionless Off therapy Therapy On Therapy Therapy
parameters SS introduction SS removal

A λp

δTp0
0.0433 0.0433 0.0238 0.0238

B δp
δ 0.0143 0.0143 0.0143 0.0143

C (1− ϵ)
kpTp0

δ 0.3771 0.0377 0.0686 0.6857
D λs

δTs0
3.5165 3.5165 0.0381 0.0381

E δs
δ 0.0143 0.0143 0.0143 0.0143

F (1− fϵ)ksTs0
δ 0.0019 0.0013 0.1190 0.1714

G δτ 0.7000 0.7000 0.7000 0.7000
H mpTp0

δ 4.7143 4.7143 8.5714 8.5714
I msTs0

δ 0.0002 0.0002 0.0171 0.0171
J NT 100.0000 100.0000 100.0000 100.0000
K NTTs0

Tp0
0.0039 0.0039 0.2000 0.2000

L (1−ϵ)ppkpTp0

δ 0.3771 0.0377 0.0686 0.6857
M (1−fϵ)psksTs0

δ 0.0019 0.0013 0.1190 0.1714
N c

δ 18.5714 18.5714 18.5714 18.5714
O λE

Tp0δ
0.0000 0.0000 0.0000 0.0000

P bE
δ 0.4286 0.4286 0.4286 0.4286

Q Kb
Tp0

0.0003 0.0003 0.0002 0.0002
R dE

δ 0.3571 0.3571 0.3571 0.3571
S Kd

Tp0
0.0015 0.0015 0.0008 0.0008

T δE
δ 0.1429 0.1429 0.1429 0.1429

U Vlvl
Tp0

0.0000 0.0000 0.0000 0.0000
Initial conditions
T̄p0 =

Tp0

Tp0

Tp0

Tp0
1.0000 1.0000 1.0000 1.0000

T̄s0 =
Ts0
Ts0

Ts0
Ts0

1.0000 1.0000 1.0000 1.0000

T̄ ∗
p0 =

T ∗
p0

Tp0

T ∗
p0

Tp0
0.0142 0.0142 0.0000 0.0000

T̄ ∗
s0 =

Ts0
Ts0

Ts0
Ts0

1.7692 1.7692 0.0000 0.0000
V̄0 =

V0
Tp0

V0
Tp0

0.0758 0.0758 0.0000 0.0000
Ē0 =

E0
Tp0

E0
Tp0

0.0001 0.0001 0.0000 0.0000

Table C.5: MTC-IR-ID-L dimensionless values The values for each of the dimensionless
parameters and initial conditions across both therapy events and steady states (SS).
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Therapy removal Therapy introduction
Dim.Less Initial Doubling time (days) Initial Half life (days)

par value Low High % diff value Low High % diff
A 0.04 2.24 2.20 -1.75 % 0.02 1.27 1.28 0.48 %
B 0.01 2.21 2.23 1.09 % 0.01 1.28 1.28 -0.15 %
C 0.04 2.52 1.97 -22.02 % 0.69 1.25 1.30 3.81 %
D 3.52 2.22 2.22 0.05 % 0.04 1.27 1.28 0.34 %
E 0.01 2.22 2.22 -0.02 % 0.01 1.28 1.28 -0.16 %
F 0.00 2.22 2.22 -0.01 % 0.17 1.28 1.28 -0.01 %
G 0.70 1.95 2.51 29.21 % 0.70 1.28 1.27 -0.63 %
H 4.71 2.22 2.22 0.00 % 8.57 1.28 1.28 0.00 %
I 0.00 2.22 2.22 0.00 % 0.02 1.28 1.28 0.00 %
J 100.00 2.52 1.97 -22.03 % 100.00 1.25 1.30 3.89 %
K 0.00 2.22 2.22 -0.01 % 0.20 1.28 1.27 -0.29 %
L 0.04 2.21 2.20 -0.24 % 0.69 1.28 1.27 -0.24 %
M 0.00 2.18 2.21 1.25 % 0.17 1.28 1.28 0.10 %
N 18.57 1.89 2.57 35.79 % 18.57 1.30 1.26 -2.53 %
O 0.00 2.22 2.22 0.00 % 0.00 1.28 1.28 0.00 %
P 0.43 2.22 2.22 0.00 % 0.43 1.28 1.28 0.00 %
Q 0.00 2.22 2.22 0.00 % 0.00 1.28 1.28 0.00 %
R 0.36 2.22 2.22 0.00 % 0.36 1.28 1.28 0.00 %
S 0.00 2.19 2.20 0.19 % 0.00 1.27 1.28 0.86 %
T 0.14 2.22 2.22 0.00 % 0.14 1.28 1.28 0.00 %
U 0.00 2.22 2.22 0.00 % 0.00 1.28 1.28 0.00 %

Initial conditions
T̄p0 =

Tp0

Tp0
1.00 2.46 2.00 -18.96 % 1.00 1.26 1.29 3.11 %

T̄s0 =
Ts0
Ts0

1.00 2.18 2.21 1.20 % 1.00 1.28 1.28 -0.33 %

T̄ ∗
p0 =

T ∗
p0

Tp0
0.00 2.22 2.22 0.00 % 0.00 1.28 1.27 -0.63 %

T̄ ∗
s0 =

Ts0
Ts0

0.00 2.22 2.22 0.00 % 0.00 1.28 1.27 -0.29 %
V̄0 =

V0
Tp0

0.00 2.16 2.21 2.60 % 0.00 1.28 1.28 0.13 %
Ē0 =

E0
Tp0

0.00 2.22 2.22 0.00 % 0.00 1.28 1.28 0.00 %

Table C.6: MTC-IR-ID-L-DA parameter variation effect: Quantification of effect in
variation in initial parameter values and initial conditions based on doubling time and half
life of viral growth. Initial values were varied from 90% to 110% of their initial value, with
the resulting change in viral growth shown.
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Figure C.5: MTC-IR-ID-L-DA parameter variation for therapy introduction: Effect
of varying dimensionless parameters and initial conditions for the STC-ID-L-DA model for
therapy introduction. The specific values are given in Table C.6
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Figure C.6: MTC-IR-ID-L-DA parameter variation for therapy removal: Effect of
varying dimensionless parameters and initial conditions for the STC-ID-L-DA model for
therapy removal. The specific values are given in Table C.6
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Glossary

Acquired immune deficiency syndrome (AIDS)

AIDS, final stage of HIV progression when a patient is at risk of opportunistic infec-
tion

Antibody

A protein produced by the body’s immune system that recognises and fights infec-
tious organisms and other foreign substances that enter the body. Each antibody is
specific to a particular piece of an infectious organism or other foreign substance

B cell

Infection-fighting white blood cells that develop in the bone marrow and spleen. B
lymphocytes produce antibodies. In people with HIV, the ability of B lymphocytes to
do their job may be damaged

CD4+ T cell

Also know as T helper-cells. They are a subset of white blood cells which express the
CD4 receptors. These play a vital role in orchestrating the body’s immune system

Co-infection

Infection with more than one virus, bacterium, or other micro-organism at a given
time. For example, an HIV-infected individual may be co-infected with hepatitis C
virus (HCV) or tuberculosis (TB)

Delayed differential equation (DDE)

DDEs are a deterministic way of mathematically describing a system which inher-
ently includes some form of delay

Dendritic cells

A type of antigen-presenting cell that picks up foreign substances from the blood-
stream and ‘presents’ them to other parts of the immune system, activating an im-
mune response against the foreign invader

Deoxyribonucleic acid (DNA)

DNA is a chemical structure that contains the genetic instructions for reproduction
and protein synthesis for all cells and for many viruses
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Dimensional analysis (DA)

DA is used to create a dimensionless system such that each parameter’s overall impact
on model function can be accurately accessed

Doubling-time (Td)

Is the time necessary for a population, or quantity, to double in size

Drug resistant mutations (DRM)

DRM are mutations in HIV viral strain which allow it to evade specific drug types

Elite controllers

Patients who have the ability to control HIV replication at a relatively low level de-
spite the absence of therapy

Enzyme

A protein that helps a chemical reaction happen by decreasing the energy needed for
the reaction to occur

Glycoprotein

A substance composed of both a protein and a carbohydrate (a sugar molecule) joined
together by a chemical linkage

Half-life (T1/2)

Is the time necessary for a population, or quantity, to halve in size

Human immunodeficiency virus (HIV)

HIV is a retrovirus which is the underlying cause of AIDS

Intracellular delay (ID)

The time taken between a cell becoming infected by HIV and starting to produce
virions

Lymphoid tissue

Very small organs of the immune system that are located throughout the body. Lymph
fluid that bathes body tissues is filtered through lymph nodes as it carries white blood
cells to and from the blood

Macrophages

A type of disease-fighting white blood cell that destroys foreign invaders and stimu-
lates other immune system cells to fight infection

Ordinary differential equation (ODE)

ODEs are a deterministic way of mathematically describing a system
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Proteins
Highly complex biological molecules consisting of specific combinations of amino
acids linked together by chemical bonds. Proteins are required for the structure,
function, and regulation of the body’s cells, tissues, and organs, and each protein
has unique functions

Provirus
A DNA version of HIV’s genetic material that has been integrated into the host cells
own DNA

Retrovirus
A type of virus that stores its genetic information in a single-stranded RNA molecule,
then constructs a double-stranded DNA version of its genes using a special enzyme
called reverse transcriptase. The DNA copy is then integrated into the host cells own
genetic material. HIV is an example of a retrovirus

Ribonucleic acid
RNA is a chemical structure that carries genetic instructions for protein synthesis.
Although DNA is the primary genetic material of cells, RNA is the core genetic
material for some viruses

Set-point
The level at which viral load stabilises after acute HIV infection. This is also close to
the point which viral load will return after therapy failure of cessation

Structured treatment interruption (STI)
STIs are intentional interruptions to ART. These aim to reduce the drug burden expe-
rienced by some patients.

T cell
A type of lymphocyte (disease-fighting white blood cell). The ‘T’ stands for the
thymus, where T cells mature. T cells include CD4 cells and CD8 cells, which are
both critical components of the body’s immune system

Transmission rate
The rate at which an infectious agent is spread between individuals

Viral blips
Intermittent episodes of increased viral activity during ART, specifically these are
short-lived peaks which soon return to undetectable viral load

Viral load
Measurement of the amount of viral RNA in the blood system

Virion
A mature virus particle existing freely outside a host cell
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