
A Framework for Change Impact Analysis of

Ontology-driven Content-based Systems

Yalemisew M. Abgaz1, Muhammad Javed2, Claus Pahl3

Centre for Next Generation Localization (CNGL),
School of Computing, Dublin City University, Dublin 9, Ireland

{yabgaz1|mjaved2|cpahl3}@computing.dcu.ie

Abstract. The trend in content-based systems (CBSs) is shifting to-
wards the use of ontologies to semantically enrich the content and in-
crease its accessibility. The growing need of semantically rich content
becomes a driving force for building ontology-driven content-based sys-
tems (ODCBSs). The building blocks of ODCBSs are ontologies, content
and annotations, forming a layered information model. In most ODCBSs,
changes in the content, in the ontology or in the annotation are inevitable
and are observed on a daily basis. Any change on one layer of the archi-
tecture has an impact within the layer and on the other layers. Impact
analysis in large multi-ontology CBS is a manual, time consuming and
labour intensive process. It is done only when it is necessary. Based on
observation and empirical analysis, we propose a conceptual framework
for dependency-based impact analysis and identify the possible impacts
and their causes, the dependency among entities, their severity and fac-
tors affecting impact analysis process in ODCBSs.
Keywords: Ontology evolution, Change impact analysis, Content-based
systems, Ontology-driven content-based systems.

1 Introduction

Ontologies became ubiquitous and standard means of embedding semantic in-
formation in most of the existing content-based applications [1]. In such appli-
cations, ontologies are used to semantically enrich content and services. Many
applications are integrated with ontologies using semantic annotation to identify
information, process them and reason about subjects of interest. Content-based
systems (CBSs) become dependent on ontologies to provide a better service for
developers, designers and end-users of such systems. This is achieved by using
ontologies to annotate the target content so that both human and computer
systems can understand what meaning is exactly conveyed in it [2]. This process
leads to the emergence of ontology-driven content-based systems (ODCBSs).

Despite the promising benefits, ODCBSs face challenges. One of the major
challenges is the changing nature of content and thus the dynamic evolution of
the ontologies that support the ODCBS [3][4]. The interdependence between the
content and the ontologies further aggravates the challenge in that, a change
in one layer affects entities in the given layer and in all dependent layers. For



relatively large ODCBSs, determining the impacts of a single change operation
is difficult, time consuming and often doesn’t guarantee a complete solution. To
solve this problem, we propose a conceptual framework for dependency-based
analysis of impacts of changes in ODCBSs to identify impacts, affected entities
and to determine the severity of the impacts. The framework is used to pro-
vide terminological and formal guidance for analytical and operational change
support. In this context the determination of change impact is a crucial first
activity. We used graphs for the formalization of the ODCBS layers to facilitate
the dependency analysis and impact determination process.

The term impact refers to the effect of change of entities due to the ap-
plication of a change operation on one or more of the entities in the ODCBS
[5][3][4][6]. By impact analysis we mean the process of identifying and determin-
ing the impacts of a requested change operation on the ODCBSs layers.

Impact analysis identifies the impacts of a change operation before it is per-
manently implemented. Due to frequent changes in the content and continuing
evolution of the ontologies, impact analysis becomes an important step in the
evolution of ODCBSs. The core contribution of this paper is a conceptual frame-
work for dependency-based impact analysis using empirical identification of:

– the possible impacts and their categorization.
– the causes of impacts in the content, ontology and annotation layers.
– the dependencies and the types of dependencies that exist between a chang-

ing entity and other entities.
– the severity of each of the impacts on the ODCBS and dependent systems.

For a given change request, the knowledge of the above discovered inputs
ensures earlier visibility of impacts and smooth evolution by automatically iden-
tifying the affected entities and impacts. It guarantees accurate execution of
nothing but the desired changes with minimum impacts and it reduces risk on
dependent systems by taking prior preventive measures to reduce the impacts.

This paper is organized as follows: Section 2 describes the layers in ODCBSs
and Section 3 focuses on graph-based representation of each layer of the ODCBS.
Section 4 presents dependencies in ODCBS and section 5 focuses on impacts of
changes. Discussion and related work are given in section 6 and conclusion and
future work in section 7.

2 Ontology-Driven Content-Based Systems

ODCBSs are systems that use ontologies to semantically enrich the content they
provide. The aim of ODCBSs is to facilitate accessibility of content for both
humans and machines by integrating semantics in the content using ontologies.

2.1 Layered Architecture of ODCBSs

The ODCBSs is composed of three different layers. The first layer is the ontology
layer (represented using OWL), the second is the annotation layer (represented



Fig. 1. Layered architecture of ODCBSs

using RDF triples) and the third one is the content layer (set of documents).
The layered architecture is presented in (Fig. 1)

Ontology Layer. Ontology is a specification of a shared conceptualization
of a domain [7]. This means ontologies provide a common ground for under-
standing, conceptualization, representation and interpretation of domain con-
cepts uniformly across different systems, languages and formats. They provide a
representation of knowledge that allows machines to reason about known facts
and generate new knowledge from them.

In our ODCBSs architecture, ontologies become crucial component as many
CBSs are integrating ontologies for semantic annotation. A growing number
of applications use ontologies to the extent that makes ontologies unavoidable
integral parts of the applications.

The ontology layer is subject to change due to a change in specification,
representation or conceptualization of knowledge [8]. New concepts are added,
existing ones deleted or modified. In frequently evolving domains these changes
are numerous and have impact on dependent entities in the ODCBSs.

Content Layer. Content, in this paper, refers to any digital information that
is in a textual format that contains structured or semi structured documents,
web pages, executable content, software help files etc [9][10]. ODCBSs essentially
deal with content in a form of books, web pages, blogs, news papers, software
products, documentations, help files reports, publications etc [9].

Content in ODCBSs is a collection of content documents that change fre-
quently. This means new content documents are produced, existing ones are
modified, edited or deleted frequently to provide up-to-date information. Such
activities have impacts on dependent entities in the overall ODCBS.



Annotation Layer. Annotation is a process of linking content with ontol-
ogy entities to provide better semantics to the content. The aim of semantic
annotation is to explicitly identify concepts and relationships between concepts
in the content [1]. In any application that makes use of ontologies, the target
content which needs to be semantically enriched is required to have an explicit
link, at least to one or more elements in the ontology.

In our ODCBS, the annotation is treated as a separate layer to allow in-
dependence of the annotation data from the content, to achieve visibility and
better impact analysis. The annotation layer is one of the most interactive and
frequently changing layers. There are a number of triples added, modified or
deleted in this layer. This layer is highly dependent on both the content and the
ontology layer. Any change in the other two layers affect the annotation layer
which carries all the semantics related to the content.

In the annotation layer, a document or part of a document is treated as in-
stances of one or more concepts. For example < CNGL : id−19221955.xml, rdf :
type, CNGL : Help F ile > indicates that “CNGL : id − 19221955.xml” is an
instance of the concept “CNGL : Help F ile” (Fig. 2).

2.2 Running Example

We conducted empirical analysis on database systems, univeristy administra-
tion [8] and software help management systems domains [10]. Software help
management systems domain is selected to serve as a running example (Fig. 2).
Suppose we want to find all the impacts of Delete Class(Activity) operation.
The requested operation is deletion and the target entity is concept Activity. To
identify the dependent entities, we need to know if the change is applied in a
cascaded strategy or not [3][11]. If we choose cascade strategy, meaning if the
deletion of the concept Activity, deletes all its subclasses, we should identify all
the subclasses of Activity and their subclasses iteratively, which are { Archiving,
ArchivingEmail, Deleting, DeletingDirectory... } and save them in a list of depen-
dent entities. We further identify all the axioms {(Archiving, subclassOf, Activ-
ity), (Deleting, subclassOf, Activity)...} , instances {CNGL:id-19221955.xml...}
and so on. We identify what kinds of changes are required to each of these de-
pendent entities to make the original change request effective. In the case of
cascade delete strategy, we have a set of cascaded change operations like {Delete
Concept (Adding)..., Delete Instance (CNGL:id-19221955.xml)... Delete Axiom
(Archiving, subclassOf, Activity) ... Delete Class (Activity)}. The set of change
operations on the entities imply their effects. The impacts of these changes, for
example, are the removal of the target entities (section 5.1). Once we get the
impact set, we attach a severity value to each impact (section 5.2).

In general, the impact varies following the type and the taxonomic position of
the target entity, the type of operation and the change strategy implemented. For
example, the deletion of the concept Activity caused many cascaded operations,
due to its structure and the change strategy. However, if the concept Activity
doesn’t have dependent entities or if the change strategy is different, the final
change operations will be different and so is the impact set.



Fig. 2. An example of ODCBS for software help systems

3 Graph-based Representation of ODCBS

The ODCBS can be represented using graph-based formalism. Graphs are se-
lected for their known efficiency and similarity to ontology taxonomy. In our
ODCBS, the ontology and the annotation are represented as graphs and the
content is represented as a set of documents. The document set serves as a node
(of type instances) in the annotation layer.

An ODCBS is represented as graph G = {Go} ∪ {Ga} ∪ {Cont} where: Go

is the ontology graph, Ga is the annotation graph and Cont is the content set.

An ontology O is represented by a direct labelled graph Go = (No, Eo) where:
No = {no1, no2, . . . , nom} is a finite set of labelled nodes that represent classes,
data properties, object properties etc. Eo = {eo1, eo2 . . . , eom} is a finite set of
labelled edges and eoi = (n1, α, n2) where: n1 and n2 are members of No and the
label of an edge represented by α = {subclassOf, intersectionOf, minCardinal-
ity, maxCardinality...}. The labels may indicate the relationship (dependency)
between the nodes.

A content represented by Cont can be viewed as a set of documents D =
{d1, d2, d3....dn} where: di represents a single document or part of a document
which can be mapped to nodes in the annotation graph.

An annotation Anot is represented by a direct labelled graph Ga = (Na, Ea)
where: Na and Ea are finite set of labelled nodes and edges respectively. An edge
Ea = (na1, αa, na2) where na1 ∈ {Cont} as a subject, na2 ∈ {Cont} ∪ {O} as
an object and αa ∈ {O} as a predicate. The nodes are mapped to a non-empty
string.



The type of any node is given by a function type(n) that maps the node to
its type (class, instance, data property, object property...). The label of any edge
e = (n1, α, n2), which is α , is a string given by a function label(e). All the edges
of a node n are given by a function edges(n). It returns all the edges as (n, α,m)
where n is the target node and m is any node linked to n via α.

4 Dependency in ODCBSs

Dependency analysis is a process of identifying the artefacts that are dependent
on a given entity in an ontology, content or annotation. Dependency analysis
identifies all entities that depend on a target entity. Identifying these dependen-
cies and their types has significant contribution to impact analysis process.

4.1 Types of Dependencies

Using the empirical study, we identified the following dependency types that
play a major role in the impact analysis process in ODCBSs. We also observed
that there is no sharp demarcation between the identified dependency types,
thus, they are not mutually exclusive.

Structural Dependency/Semantic Dependency. Structural dependency
refers to the syntactic dependency between two nodes. When a node changes, it
will have a structural impact on adjacent nodes. Semantic dependency refers to
the semantic relation that exists between two nodes. A change in one node e.g.
Activity, causes a change in the semantic meaning or the interpretation of the
dependent nodes (Archiving and Deleting).

Direct Dependency/Indirect Dependency. Direct dependency is the
dependency that exist between two adjacent nodes(n1, n2). This means, there
is an edge ei = (n1, α, n2). Indirect dependency is a dependency of a node
on another by a transitive or intermediate relationship. There exist a set of
intermediate edges (n1, α, nx)(nx, α, ny)...(nz, α, n2) that link the two nodes. For
example, in Fig. 2 there is a direct dependency between Activity and Deleting
and indirect dependency between Activity and Deleting File

Total Dependency/Partial Dependency. Total dependency refers a de-
pendency when a target node depends only on a single node (articulation node).
Partial dependency refers to a dependency when the existence of a node depends
on more than one node.

4.2 Dependency within and among Layers

Dependency in the Ontology Layer. A change of an entity in one ontology
first affects the dependent entities within the ontology. Identifying the depen-
dencies in this layer is a crucial step. These dependencies are identified based
on the inheritance (such as is-a relationships) association (such as has relation-
ships) and so on. There is also dependency across ontologies. We present one of
the empirically identified dependencies from our case study.



Concept-Concept Dependency: Given two class nodes ci and cj in Go, ci is de-
pendent on cj represented by dep(ci, cj), if there exist an edge ei = (n1, α, n2) ∈
Go such that (n1 = ci) ∧ (n2 = cj) ∧ (label(ei) = “SubclassOf”) ∧ (type(n1) =
type(n2) = “Class”). Concept-concept dependency is transitive.

Dependency in the Annotation Layer. In this layer we have two direc-
tions of dependency. The first refers to the dependency of the annotation on the
content layer (Content-Annotation Dependency). An annotation ai in the anno-
tation layer is dependent on di in the content layer, represented by dep(ai, di),
if there exist an edge ea = {nai, αa, naj} ∈ Ga such that (nai = di)∨ (naj = di).
This means ai is dependent on document di if the document is used as a subject
or an object of the annotation triple.

The second refers to the dependency of the annotation on the ontology
(Ontology-Annotation Dependency). An annotation ai in the annotation layer
is dependent on oi in the ontology layer, represented by dep(ai, oi), if there exist
an edge ea = {nai, αa, naj} ∈ Ga such that (αa = oi) ∨ (naj = oi).

Dependency in the Content Layer. Intra content dependency (Content-
Subcontent Dependency) is a dependency that exists between a document and
its subsections. This includes the dependency of section, title, paragraph, step,
procedure etc on a containing document. Whenever the content in the documents
are updated, for example, deletion of a section, addition of steps etc, affect all
the section and documents related to the document.

5 Impact of Changes in ODCBSs

Changes in ODCBS have diverse impacts on the individual entities of the layers
and on the overall ODCBS. Impact analysis identifies the possible impacts of
proposed changes and determine the severity of the impacts [12][6][13]. Deter-
mining the impacts that exist in the ODCBS and deciding the severity of the
impacts are essential steps for impacts analysis.

5.1 Types of Ontology Change Impact

In ODCBS we can categorize impacts using different criteria. The categorization
paves a way to better understand impacts in ODCBS and makes the analysis
and the determination process understandable and suitable for implementation.

Structural and Semantic Impact. Structural impact is an impact that
changes the structural relationship between the elements of the ODCBS. Struc-
tural changes are the main reasons for structural impacts. Structural changes
include any atomic or composite changes[3] that are applied on concepts, proper-
ties, axioms and restrictions. Structural impact occurs when we request a change
that affects the taxonomy of the existing ODCBS. Semantic impact occurs due
to a change in the interpretation of entities due to structural changes. Structural
and semantic changes are discussed in [5] and the impacts are discussed in [10].

Addition and Deletion Impact. The categorization of impacts of addition
and deletion became visible in the empirical study. In ODCBSs, the impacts of



addition operation are different from the impacts of deletion operation. Further-
more, the complexity of the impacts differ one another. In such situation it is
intuitive to treat the operations and their impacts separately.

Ontology, Annotation and Content Impact. Impacts can further be
divided based on the target layer. This categorization allows us to know which
layers are affected by the change operation. Impacts in the ontology layer include
all impacts on the entities defined in the given ontology. Such impacts need
careful treatment as they further affect the annotation layer. Impacts in the
annotation layer primarily revolve around the triples. However, a triple contains
the subject (usually a reference to the content), the predicate (usually a property
in the otology) and the object (usually a reference to the content or the ontology).
Thus, impact analysis in the annotation layer makes use of these three elements
and tries to find what impacts the change operation will have on them. Impacts
in the content layer concentrate around the documents. The addition, deletion
or the modification of the content or part of the content is treated as an impact
and affects the other two layers.

ABox and T Box Impacts. Impacts of a change operation can be viewed
from the perspective of the kind of statement it affects. Change operations may
have an impact on the ABox or T Box statements. T Box statements are affected
by operations that change the concepts and axioms related to the terminology
in the ontology. The impact of such change operation concentrates around the
satisfiability of the terminologies in the T Box and identifying them helps us to
pinpoint the causes of contradiction. ABox statements are affected by operations
that change the axioms related to annotation instances (individuals) in the as-
sertion box. The impact of operations on the ABox axioms may result invalidity
(unable to interpret a give instance with respect to a given ontology) [5].

Impact analysis is mainly affected by the change strategy implemented at
the time of evolution. The content engineer may choose to delete all orphaned
entities or link them to their parents or to the root class. The different types of
dependencies are crucial at this stage. For example, direct dependency is used
when attach to root strategy is used. Total dependency is used when cascade
delete strategy is used. Partially dependent entities remain intact in the system.

5.2 Severity of Change Impacts

Severity is defined as the extent of impact of a change operation in the ODCBS.
The impact is measured qualitatively using consistency and validity, or quanti-
tatively using number of change operations required, ontology elements affected
and cascaded effect on dependent entities.

The impact can be on the structure or on the semantic, satisfiability or
validity of the existing ontology. We analyzed how different change operations
impact the ODCBS. This gives us a better understanding of which operations
under what condition have a more severe impact. We used Operation Severity
Function (OSF) that maps operations to severity values on a scale of 0 to 100
based on user defined configuration. To indicate the severity as a qualitative
scale, we categorized them into four scales: less impact (0-25), medium impact



(26-50), high impact (51-75) and crucial impact (76-100) [10]. Based on this scale
the user can determine the severity of an impact relative to his ODCBS.

6 Discussion and Related Work

Using a software help management system [10], we tested our approach empir-
ically. From the case study, we found out that the proposed solution is useful
and feasible to analyze impacts of changes in ODCBSs. To our knowledge, there
are few research conducted to analyze the impacts of changes in ODCBSs. But
there are significant research in the area of software change impact analysis in
general [14] [6] [15].

The author in [14] conducted change impact analysis on commercial-Off-The-
Shelf software. They identified different reasons for software change and classify
software impacts as direct or indirect, and structural or semantic impacts. They
further conducted structural analysis and semantic analysis using reachability
graphs by implementing transitive closure algorithms. They focus on the syn-
tactic relationship between software modules where as we focus on structural
and semantic changes with detailed semantics. In [6] the authors presented a
knowledge-based system for change impact analysis on software architecture.
They proposed an architectural software component model on which they de-
fined change propagation process and used graphs to capture architecture el-
ements and their relationships. The authors conducted impact analysis using
rules that define change propagation. Their work is similar to ours but with a
significant difference in the domain and in the impact determination approach.

The work in [5] discusses consistent evolution of OWL ontologies with the
aim of guaranteeing consistency. Their work identifies structural, logical and
user-defined consistency, but focuses on determination of validity of instances,
whereas our work focuses on the overall impact analysis of change operations.

7 Conclusion and Future Work

Based on our empirical analysis, we identified different dependencies that exist
within and among ODCBS layers. We identified dependencies and impacts in a
conceptual framework then further categorized them based on different criteria
that will serve as an input for the impact analysis process. We also investigated
the severity of the impacts.

The contribution of our work is the empirical observation of dependencies
in ODCBS, types of impacts and factors affecting impact analysis. This will
enable us to ensure earlier visibility of impacts of changes prior to their imple-
mentation, automatic capturing and presentation, accurate determination and
reducing their impacts on dependent systems. Our next step will further ex-
tend the work to optimize the implementation of change operations to ensure
minimum and less severe impact.



Acknowledgment. This material is based upon works supported by the Science
Foundation Ireland under Grant No. 07/CE/I1142 as part of the Centre for Next
Generation Localisation (www.cngl.ie) at Dublin City University (DCU).

References

1. Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E.,
Ciravegna, F.: Semantic annotation for knowledge management:requirements and
survey of the state of the art. Web Semantics: Science, Services and Agents on
World Wide Web. 4(1) (2006) 14–28

2. Reeve, L., Han, H.: Survey of semantic annotation platforms. In: SAC ’05: Pro-
ceedings of the 2005 ACM symposium on Applied computing. (2005) 1634–1638

3. Stojanovic, L.: Methods and tools for ontology evolution. PhD thesis, University
of Karlsruhe (2004)

4. Plessers, P., De Troyer, O., Casteleyn, S.: Understanding ontology evolution: A
change detection approach. Web Semantics: Science, Services and Agents on the
World Wide Web. 5(1) (2007) 39–49

5. Qin, L., Atluri, V.: Evaluating the validity of data instances against ontology
evolution over the semantic web. Information and Software Technology. 51(1)
(2009) 83–97

6. Hassan, M.O., Deruelle, L., Basson, H.: A knowledge-based system for change
impact analysis on software architecture. In: Research Challenges in Information
Science (RCIS), 2010 Fourth International Conference on. (may 2010) 545 –556

7. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2) (1993) 199–220

8. Javed, M., Abgaz, Y., Pahl, C.: A pattern-based framework of change operators for
ontology evolution. In: On the Move to Meaningful Internet Systems: OTM 2009
Workshops. Volume 5872 of Lecture Notes in Computer Science. (2009) 544–553

9. Gruhn, V., Pahl, C., Wever, M.: Data model evolution as basis of business process
management. In: Proceedings of the 14th International Conference on Object-
Oriented and Entity-Relationship Modelling. OOER ’95, London, UK, Springer-
Verlag (1995) 270–281

10. Abgaz, Y., Javed, M., Pahl, C.: Empirical analysis of impacts of instance-driven
changes in ontologies. In: On the Move to Meaningful Internet Systems: OTM
2010 Workshops. Lecture Notes in Computer Science. (2010)

11. Haase, P., Stojanovic, L.: Consistent evolution of owl ontologies. In: Proceedings
of the Second European Semantic Web Conference, Heraklion, Greece. (2005)

12. Li, L., Offutt, A.J.: Algorithmic analysis of the impacts of changes to object-
oriented software. In: Proceedings of the International Conference on Software
Maintenance, IEEE (1996) 171–184

13. Arnold, R.S., Bohner, S.A.: Impact analysis - towards a framework for comparison.
In: Proceedings of the Conference on Software Maintenance. ICSM ’93, Washing-
ton, DC, USA, IEEE Computer Society (1993) 292–301

14. Bohner, S.: Extending software change impact analysis into cots components.
In: Software Engineering Workshop, 2002. Proceedings. 27th Annual NASA God-
dard/IEEE. (dec. 2002) 175 – 182

15. Sherriff, M., Williams, L.: Empirical software change impact analysis using sin-
gular value decomposition. In: Proceedings of the 2008 International Conference
on Software Testing, Verification, and Validation, Washington, DC, USA, IEEE
Computer Society (2008) 268–277


