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Abstract 

Growth and Characterisation of Thin Films of CuCl and Related Materials 

Barry Foy 

CuCl thin films grown on (100) Si by thermal evaporation are studied by 
means of low temperature photoluminescence (PL) and reflectance spectroscopies. 
Spatially and wavelength resolved room temperature cathodoluminescence (CL) 
imaging of the surface of the CuCl samples in a scanning electron microscope (SEM) 
has also been performed.  

Investigation of the effect of mixing KCl with the CuCl has been performed. 
The samples produced by the liquid phase epitaxy (LPE) machine use this element to 
lower the boiling point of CuCl so it is important to understand the effect they have on 
the resultant thin films. P-type doping has also been performed with oxygen. 

Characterisation of these doped and undoped γ-CuCl samples has been 
performed. Reflectance and X-ray diffraction measurements show the effect the oxygen 
doping has on the structural and optical properties of the material. The exciton 
positions in the undoped samples have been repeatable, but deteriorate as oxygen 
doping levels increase. A suitable capping method for use in x-ray diffraction has been 
found. Nail varnish applied to the samples was shown to prevent structural decay of the 
CuCl thin films due to their hygroscopic nature. 

Cathodoluminescence work on undoped and doped samples (doped with both 
oxygen and KCl) has been performed showing the effect of these techniques on the 
electrical properties. Digital CL has also been performed, but with limited results due to 
the low resolution of the digital CL camera. 

EDX has been used to analyse the atomic structure of the thin film samples. 
Traces of K were found in the KCl-CuCl samples with little change in the Cl levels. 
This gives further credence to the idea that the K+ atom within the material is 
responsible for the increase in conductance produced by KCl doping. 

The Reflectance of the various CuCl samples was tested at different angles of 
incidence using a Deuterium light source. The reflectance spectra are modelled using a 
dielectric response function with various models involving dead layers and reflected 
waves in the thin film and the exciton-polariton structure obtained is compared to other 
studies of CuCl. The modelling is shown to match the experimental data quite well with 
the dead layer having little effect on the modelled spectra. KCl-CuCl samples prove to 
have a consistently higher reflectance signal than undoped CuCl. 

Photoluminescence (PL) tests of doped CuCl reveal the emergence of an 
unknown peak centred at 3.187 eV. This peak has not been previously identified to the 
best of our knowledge and steadily increases to become the maximum in the PL 
spectrum as doping levels are increased. A combination of PL and reflectance scans 
have been used to locate an ideal doping level which provides p-type doping attribute 
of CuCl without a corresponding significant decrease in the optical properties. This 
ideal region is between 3-4 minutes of exposure at the settings detailed herein. 
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1.1 Introduction 

Recent years have seen the use of semiconductor devices in society expand 

thanks to the utilisation of both new applications and new materials. Wide band gap 

materials have been studied extensively for a range of applications such as UV light 

emitting diodes, diode lasers and detectors [1]. Light-emitting diodes (LEDs) have 

driven the progress in this area due their low-cost, the low-energy required to operate 

and their increasingly ubiquitous presence throughout modern society. Everything 

from home lighting to televisions now incorporates some form of LED technology. 

Similarly the pursuit of laser diodes (LDs) operating at energies of > 3 eV is an 

important one as the density of optical storage in optical disc systems increases as the 

wavelength of laser light is decreased [2]. To date LDs using semiconductor materials 

such as InGaN and GaAlAs have been implemented in technology as diverse as Blu-

ray DVD Players, laser printers and even in medicine for soft tissue procedures 

involving homeostasis of the blood [3, 4].  

This implementation of GaN material across multiple devices is the model to 

which competing materials aspire. ZnO in particular has seen a large level of research 

as one of the potential replacements for GaN, with one recent development being the 

increase in LED brightness by up to 400% through the use of ZnO nanowires [5]. 
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This thesis concerns another semiconductor material, CuCl, and contains a 

detailed exploration of the properties of thin film samples of CuCl deposited to (100) 

Si substrates and the effects of doping on these characteristics. Unlike the other 

semiconductor materials mentioned, there is an absence of completed semiconductor 

devices using CuCl. The research is at an earlier stage due to a lack of interest until 

recent years and discussed further within this chapter. The key advantage CuCl offers 

compared to GaN, ZnO and other materials is its close lattice matching with Si. This 

causes a more uniform growth to occur at the Si-CuCl boundary leading to a reduction 

in the number of defects present. In optoelectronic devices defects effect the output 

from the circuit causing unexpected conductivity levels and affecting the light 

emission [6]. Therefore lower defect levels will lead to more reliable devices with 

reproducable results and ultimately an end product which is both cheaper and easier to 

manufacture. 

Having completed a brief overview of the current optoelectronic research 

state and identified the main competing materials (GaN, ZnO and CuCl), this chapter 

will continue with a more detailed examination each of the competing wide band gap 

materials. In particular their physical properties and advantages/disadvantages as 

optoelectronic devices. This is followed by a detailed discussion of the previous 

research performed on CuCl before delving into the theory in the form of the physical 

and electronic properties of CuCl itself. Finally the chapter concludes with a summary 

of the thesis structure, briefly outlining each of the awaiting chapters of this work. 
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1.2 Wide Band Gap Materials 

In this area of semiconductor research, most of the research to date has 

focused on III-nitride and II-VI material systems, with the former being the most 

productive for applications thus far. This section examines the forerunners for each of 

these systems, GaN for the III-nitride and ZnO for the II-VI. For comparison and 

reference, some of the key physical properties of each of the materials under 

discussion are shown in table 1.1. 

A fundamental problem with the III-nitride system of GaN is the large lattice 

mismatch (~ 13% [7]) between GaN epitaxial layers and suitable substrates (e.g. SiC, 

α-Al2O3). This results in high levels of defect densities, in particular threading 

dislocations (TDs) of the order 108 cm-2 [8]. These dislocations and other defects have 

a drastic effect on the lifetime and performance of any prospective devices and stem 

from the residual biaxial compression caused by the lattice mismatch [9]. For 

comparison, homoepitaxially grown GaAs typically has a TD density of the order 102 

– 104 cm-2 and homoepitaxial Si almost none [10].  

Several different growth techniques have helped to reduce the dislocation 

density in GaN and related materials systems. Epitaxial lateral overgrowth (ELOG) 

[11], pendeo-epitaxial growth [12] and slight variations on these two procedures 

provide the most successful route to reduction of the density of TDs in GaN (on its 

most favourable substrate Al2O3) to date. ELOG is a two-step growth process where 

the highly dislocated GaN within the initial buffer layer is covered with a dielectric 

mask and selective area epitaxy performed on the uncovered area. This ensures the 

dislocated GaN cannot propagate within further layers which grow laterally over the 

mask and can reduce the TD density to the order of 107 cm-2 [13, 14]. Pendeo-epitaxy 
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Properties CuCl ZnO GaN 

Optical Band Gap (eV) 3.399 3.44 3.503 

Exciton Binding Energy (meV) 190 63.1 26 

Lattice Constant (nm) 0.541 0.3249 0.319 

Mismatch to Si (%) < 0.4 15 17 

Structure Zincblende Hexagonal Hexagonal 

Melting Point (°C) 422 1975 > 2500 

Boiling Point (°C) 1490 2360 N/A 

Table 1.1 Some of the characteristics of various wide band gap semiconductor 

materials [15] 

is an extension of this where the substrate itself is employed as a pseudo-mask with 

growth beginning in the sidewalls of microstructures etched into the surface of an  

initial GaN seed layer. This growth is continued until there is a consolidation of the 

material above these walls resulting in low defect density material as it is building 

upon a solid base of low defect material. The density is similar to that produced by 

ELOG, but pendeo-epitaxy is a simpler process [12]. Whilst these processes continue 

the reduction of the presence of TDs it still remains of the order 107 cm-2. Although a 

significant figure, this has not prevent the production of GaN LDs, merely effected 

their performance and lifespan. The additional steps taken to reduce TDs also 

significantly increase the cost of the substrates and growth processes, limiting the 

appeal of such material and paving the way for a cheaper more reliable alternative. 

One potential replacement is ZnO. This material is II-VI type and has some 

significant advantages over GaN such as its availability in bulk, single-crystal form 

and its larger binding energy (63.1 meV compared to GaN’s 26 meV) and its wide 

direct band gap of 3.44eV [15]. In the last ten years there have been significant 
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improvements in the quality and the control of bulk and epitaxial ZnO which has 

increased the interest in the use of this material in the optoelectronics industry with its 

wide bandgap making it a candidate host for solid state blue to UV optoelectronics, 

including laser development. It has been demonstrated that the bandgap of ZnO is 

tunable down to ~3.0 eV by Cd substitution and up to ~4.0 eV by Mg substitution [16]. 

However to date homoepitaxial growth on ZnO bulk substrates has proved quite 

difficult and for hetero-epitaxy, similar to the problems of GaN, the lattice mismatch 

of ZnO with the target substrates leads to a significant number of threading 

dislocations within the ZnO thin films [17].  These problems are compounded by the 

fact that it has been impossible to achieve reproducible p-type doped ZnO samples 

[18]. Each of these factors contributed to the earlier production and proliferation of 

GaN optoelectronic devices. 

This brings us to CuCl a I-VII type material. CuCl is in possession of some 

very competitive material properties and does not suffer from the same issues of lattice 

mismatch and thus offers the possibility of lattice-matched and TD-free growth on Si 

without the need for techniques such as ELOG and pendeo-epitaxy to reduce TD 

presence. Furthermore, CuCl is closely lattice-matched to both Si and GaAs and is an 

ideal candidate for the development of hybrid electronic-optoelectronic platforms. The 

optical properties of CuCl thin films, their detailed understanding and optimization, are 

therefore key to realizing the potential uses of this material in optoelectronic devices 

and comprise the main content of this thesis. 
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1.3 Previous research on CuCl 

In the 1960’s, 1970’s and early 1980’s the optoelectronic properties of CuCl 

were studied as part of a general broad-based effort in the study of potential lasing 

materials [19-24]. This work set the stage in terms of the underlying material 

properties for further work in the more recent past. As we can see from figure 1.1, 

there was somewhat of a stagnation or lull in activity (or at least rate of increase of 

activity) on CuCl after the early to mid-1980s as attention switched to III-V materials 

and quantum well structures.  

Figure 1.1 also shows in the last twenty years a renewed interest in CuCl and 

related materials emerged and much of the more recent research on copper halides has 

focussed on a number of different areas due to interest generated in the late nineties by 

the large excitonic binding energies (190 meV for CuCl and 108 meV for CuBr) 
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Figure 1.1 Graph showing the number of publications per year under the topic CuCl 

or Copper Chloride [25] 
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compared to those of group III-V and II-VI semiconductors [26]. Binding energies of 

such magnitude further lead to advantages in the observation of multi-exciton effects 

under intense excitation due to the high stability of the exciton itself. The formation of 

exciton molecules or biexcitons is a phenomenon typical of intense excitation effects 

meaning that the copper halides are ideal for investigations into the behaviour of e.g. 

biexcitons. Spectroscopic and theoretical studies of this excitonic behaviour and the 

band structure in the copper halides have been undertaken using a simpler method of 

band structure calculation [27] and applying different methods of characterisation to 

analyze the lattice modes within CuCl and CuBr at both high and extremely low 

temperatures [28]. 

Due to the quantum size effect on electrons and holes, semiconductor 

quantum dots are expected to show distinctive optical properties such as super-

radiance and enhancement of optical nonlinearities which may have application in 

optical devices [29]. Studies performed in 2000 on CuCl quantum dots on both glass 

matrices [29, 30] and NaCl [31, 32] discovered many interesting properties: a blue 

shift in the positions of the Z1,2 and Z3 excitons, the first observation of 

photostimulated luminescence (PSL) in CuCl quantum dots, the temperature 

dependence of the broadening of the homogenous exciton spectral linewidth and the 

formation of nonlinear layers attributed to the migration of the Cu+ and Cl- ions. 

Experiments with CuCl quantum dots had been previously performed in the late 1980s 

and the optical properties investigated [33, 34], particularly the aforementioned exciton 

linewidth broadening [35, 36]. However some of these samples were prepared by a 

liquid-phase synthesis where the CuCl is dissolved in molten glass or NaCl which 

allows surface atoms of the microcrystals to react with impurities which can hinder the 
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validity of the intrinsic optical properties of the CuCl material itself due to the 

interference from the impurities in question. 

Surface studies of the growth mechanisms involved in the heteroepitaxy of 

CuCl single crystals on a number of different substrates such as MgO (001) and CaF2 

(111) [37] and the reconstructed surface of α-Fe2O3 (0001) haematite [38] were also 

performed in this period. These studies showed the preferential epitaxial growth with 

(111) texture of the CuCl layer which matched previous studies using the molecular 

beam epitaxy (MBE) method of growth on MgO (001) [39]. Heteroepitaxial growth of 

CuCl on both Si and GaAs structures was also examined by one group of researchers 

in 1995 [40] by MBE. Rather than pursue the possible use of CuCl as a light emitter or 

for other applications, this study focussed on the fundamental physics of the island 

growth processes and the nature of the interfacial bonding at the CuCl/GaAs and 

CuCl/Si interfaces. 

There has been relatively little previous work on growth of CuCl on Si 

substrates. One group of researchers, Inoue et al [41], found that in a growth 

containing CuCl and KCl the precipitation of CuCl out of the melt occurred below the 

phase transition temperature. This was an important development for the evaporation 

of CuCl on Si as there is a known reaction between CuCl and Si at 250˚C [42] and the 

melting temperature of CuCl is 422˚C [15] so for any kind of liquid phase epitaxy 

(LPE) to occur the melting temperature issue would have to be dealt with. However at 

the time this opportunity for LPE growth was never explored in detail.  

Doping of CuCl to influence its properties has also not received much 

attention from researchers prior to the work of our group in DCU. Previously, the main 

focus was the doping of KCl films with Cu to determine the off-centre position of Cu+ 

ion impurities within the lattice of alkali halides [43, 44], to examine their potential 
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development as ultra-violet (UV) absorbing optical filters [45] and to investigate the 

band structure changes, density and liquid phase properties of KCl-CuCl melts [46].  

The proposal for CuCl growth on Si and its possible use in optoelectronics in 

2005 [47] and associated recent papers published by the group within DCU on n-type 

doping  [48] and LPE growth systems both concerning thin films on Si [49] appear to 

be the first of their kind. Because of the very recent development and interest in such 

thin film CuCl samples on Si and their potential for doping, and the lack of much 

previous work, there is consequently an element of open-ended exploration involved in 

this research topic. This is manifested within this work by the structure of this thesis, 

discussed in the next section. Much of these techniques and methods have already been 

previously explored for other semiconductor materials, but this is not the case with 

CuCl due to the previous low level of interest in this material. Investigating previously 

pursued avenues of research with updated techniques and characterisation methods 

applied to this new material allows us to build upon existing knowledge in this 

previously less popular field which is the principle the majority of work in this thesis is 

based upon.  

 

1.4 Physical Properties of CuCl 

CuCl is a cuprous halide and a wide, direct bandgap (energy gap between the 

valence and conduction band at 2K is 3.3990eV [15]) highly ionic I-VII compound 

(compared to other materials already mentioned, e.g. GaN, ZnO and the other copper 

halides) with a cubic zinc-blende lattice structure at room temperature. As temperature 

is increased the zinc-blende structure undergoes a phase transition to the wurtzite 

structure. This transition occurs at ~407˚C [47] slightly before the material’s melting 
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Figure 1.2 (a) Diamond structure of Si. (b) Cubic Zincblende Lattice structure of 

CuCl. The red atoms represent Cu, the white Cl [50] 

 

point. The cubic zinc-blende lattice is comprised of two interpenetrating face-centred-

cubic (FCC) unit cells occupied by Cu and Cl. As we can see in figure 1.2, the 

structure is equivalent to that of the diamond-like structure of Si except that Si has the 

same atom at each lattice point. Each of the atoms in the lattice is surrounded by a 

tetrahedron consisting of four atoms of the other element in the compound (i.e. Cu is 

surrounded by four atoms of Cl, whilst Cl is surrounded by four atoms of Cu). The 

distance between these atoms is ௔√ଷ
ସ

 where a is the lattice constant. The difference 

between the lattice constant of CuCl (0.541 nm) and Si (0.543 nm) is only ~0.4% at 

room temperature [40]. This is much closer to Si than other compounds used in 

optoelectronic devices such as GaN (with a mismatch of ~17%, see table 1.1 for a 

comparison of other values).   

It is hoped that by using this low lattice mismatch one may avoid the high 

dislocation densities which reduce the emission lifetime and reliability problems of 

Group III nitrides on Si. However, there is a large difference in the coefficients of 
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thermal expansion of CuCl and Si (these being 13.8 × 10-6 K-1 [51] and 2.6 × 10-6 K-1 

[52], respectively at room temperature). This difference might cause difficulties for 

stress-free lattice-matched growth, but the potential effect of this difference on the 

heteroepitaxial growth of CuCl on Si is reduced due to the aforementioned low melting 

point of CuCl, which limits the possible range of growth temperatures for epitaxial 

growth.  

Furthermore, the melting point of CuCl is ~422 ºC and its boiling point is 

~1490 ºC [53] while the melting point of Si is 1414 ºC. In liquid phase epitaxy (LPE), 

if the melting point of the material being deposited is close to the melting point of the 

substrate this can lead to warping effects in the resultant thin films. But with such a 

significant difference between their melting points it would appear that CuCl is an 

excellent candidate for deposition on Si via LPE (LPE is discussed in more detail in 

Chapter 2.1.2). Thus CuCl appears in many respects to be a strong candidate with 

potential for LPE lattice-matched growth on Si substrates. 

As well as a wide direct bandgap CuCl also has a large exciton binding 

energy (190 meV for the Z3 exciton) which is much larger than those of III-V (e.g. 

GaN = 26 meV [15]) and II-VI (e.g. ZnO = 63.1 meV [15]) semiconductors [26]. Such 

a large exciton binding energy means that excitonic species (including free and bound 

excitons) will be stable at room temperature and above. Excitonic transitions are 

efficient radiative transitions compared to band to band transitions due to the strong 

overlap of electron and hole wavefunctions in the bound pair state and thus the 

interaction of CuCl with photons (absorption and emission) is expected to be very 

strong up to room temperature and beyond. Furthermore, the stability of the free 

exciton also influences the stability and hence the observation of multi-exciton 

molecules (e.g. so-called biexcitons, the binding energies of which in CuCl are 
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34meV) and these species are of interest for e.g. quantum computing and photon 

entanglement experiments [54, 55].  

Oxidation of CuCl occurs at a similar rate to that of Cu, with the Cu and Cl 

having oxidation numbers of +1 and -1 respectively. However, instead of oxygen 

exposure the main practical materials drawback of CuCl is its strongly hygroscopic 

nature [56]. The material will degrade in an atmosphere containing water vapour (i.e. 

in normal ambient) and this degradation proceeds via the formation of hydrated 

oxyhalides of Cu++ which can be recognized by the greenish colour of the Cu++ ions. 

This degradation of the sample can have a drastic effect upon the structure of the thin 

film with a large change observed in optical and other properties (e.g. a decrease in the 

intensity of optical reflectance and cathodoluminescence (CL) signals and changes in 

structural properties as evidenced by X-ray diffration (XRD) scans) for any samples 

left exposed in ambient for a significant length of time. It is therefore imperative that 

raw CuCl powder and thin film samples of CuCl are stored inside an evacuated 

chamber or a chamber filled with a dry gas other than natural air (i.e. helium) or that 

the surface is treated in order to prevent this effect. For example, most of the CuCl 

powder used in the thin film deposition process to be described later was transported to 

DCU inside a glass ampoule which was shattered to access the powder within, thus 

ensuring an airtight seal during transit. 

 

1.5 Electronic Properties of CuCl 

The electronic band structure of CuCl is quite unique in comparison to other 

semiconductor compounds. As CuCl is a I-VII semiconductor, the valence bands 

originate from the full d10 shell of the positively charged metal ions and the s2p6 gas 
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configuration of the negatively charged halogen ions [22, 57]. We can see this from the 

electronic configurations of the constituent atoms; Cu is [Ar] 3d10 4s1 and Cl [Ne] 3s2 

3p5. In III-V and II-VI compounds the valence bands also originate from a s2p6 

configuration but with metal d-levels of much lower energy meaning a much smaller 

interaction with the s2p6 valence levels which dominate the topmost valence bands. 

This is in contrast to CuCl and other I-VII compounds where the energy range of the d-

level is quite large and much closer to the p-levels of the halogen (Cl). This has the 

effect of hybridising the p-levels of Cl with the d-levels of Cu in the upper valence 

bands which significantly alters the electronic and other properties of these 

compounds. In more detail, upon CuCl bond formation, the loosely bound s orbital 

passes from Cu to the Cl atom. This leaves the Cu with a completely filled outer d 

shell and the chloride with a noble gas configuration. This behaviour is illustrated in 

 

 

Figure 1.3 The energy band diagram of CuCl [22] 
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figure 1.3, where the degeneracies of each band are shown also. There are nine 

occupied valence bands (due to the Cl s & p levels and the Cu d levels, grouped as VB 

1, VB 2, VB 3 and VB 4) occupied by 18 electrons. Each of these bands are 

characterised by the different spin orbitals attributed to each. The lowest band, VB 1, 

almost entirely originates from the 3s Cl orbital, VB 2 is largely derived from the 3p 

Cl orbitals with the highest bands VB 3 and VB 4 both characterised by the 3d 

electrons of Cu [58]. The conduction band CB 1 is defined by the 4s Cu orbital.  

This process is illustrated in figure 1.4. Column (a) shows the relevant atomic 

states of copper and chlorine prior to incorporation in the compound. Once the crystal 

field of tetrahedral rotational symmetry is applied, the Cu d orbital levels and Cl p 

orbital levels hybridise and split into two Γ5 levels and one twofold degenerate Γ3 level 

as shown in column (b). This hybridization of the d and p orbital levels increases the 

 

 

Figure 1.4 Schematic derivation of the conduction and valence bands at the Brillouin 

Zone Centre Γ in CuCl. Energies given are the derivated values. The numbers in 

brackets indicate the level of degeneracy of the corresponding state. [59] 
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top of the valence band relative to the Cl p-level which in the absence of the Cu d-

orbital would determine the valence band maximum [59]. This effect is the same for 

all copper halides and causes the band gap to be much smaller than expected if the 

sequence of group IV (Ge 0.67eV), III-V (GaAs 1.43eV) and II-VI (ZnSe 2.7eV) 

semiconductor materials is extrapolated for I-VII materials (CuCl 3.399eV) [15]. 

Another sign of the importance of the Cu d-levels is that the p-levels of the halides Cl, 

Br, and I differ by about 2 eV but the band gaps of CuCl, CuBr and CuI differ by less 

than 0.3 eV. This shows that the anions have only a small influence on the band gap 

[60].  

When the spin-orbit interactions are taken into account as shown in column 

(c), the p and d orbital mixed Γ5 states split into levels of Γ7 and Γ8 symmetry. The d-

states contribution to the spin-orbit splitting is of opposite sign to the p-orbitals which 

causes the Γ7 states to be higher in energy than the Γ8 states which results in a reversal 

of the order of uppermost valence states in CuCl [60-62]. This effect does not occur for 

CuBr and CuI as the increase in atomic weight causes an increase in the splitting of the 

atomic p orbitals which leads to the regular zinc-blende splitting scheme to be 

observed. 

The coupling of the lowest conduction band state Γ6 to both the holes in the 

uppermost levels Γ7 and Γ8 gives rise to the Z3 and Z1,2 edge excitons respectively. Due 

to the reversal of the order of the valence states Γ7 and Γ8 the Z3 exciton appears at a 

lower energy than the Z1,2 exciton. This was shown by an examination of the energy of 

the exciton peaks as a function of concentration in the CuBr-CuCl system [61]. The 

energy values and temperature dependencies of these peaks will be studied throughout 

this thesis. 
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1.6 Structure of Thesis 

This thesis describes experimental and modelling work on the characterization 

of CuCl and related thin films for possible optoelectronic applications. The methods of 

characterization used previously in our laboratory for ZnO thin film characterization 

were applied to analyse the behaviour of CuCl thin films on Si. Due to the low level of 

previous interest in the development of CuCl thin films the characterization of this 

material using updated equipment and methods should provide a wealth of previously 

undocumented information about their properties and prospective uses. The other 

sections in this thesis begin with a section for a theory and literature review of each of 

the methods of characterization with further chapters divided by the method of analysis 

in question so that the results obtained from each method can be focussed upon. Each 

of these chapters begins with a brief introduction and concludes with a summary of the 

key points discussed. 

 

Chapter 2 provides a comprehensive detailing of the theory behind each of the 

experimental methods used throughout our research and a summary of the previous 

papers published relating to CuCl in each field. This literature overview is intended to 

provide a reference point for knowledge in each of the methods used leaving later 

chapters free to focus on the results obtained and how they have contributed to and 

extended the existing research in each field. This chapter also contains a thorough 

description of each of the system parameters of the actual experimental systems used 

to characterize the CuCl samples; reflectance, cathodoluminescence (CL), x-ray 

diffraction (XRD), scanning electron microscopy (SEM) imaging, energy dispersive x-

ray spectroscopy (EDX) and photoluminescence (PL). The equipment used and the 
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procedure of analysis for each will be discussed. The cleaning procedure and method 

of preparation of the samples are also detailed in this chapter. 

 

Chapter 3 contains detailed results from our XRD analysis of the structural properties 

of our nominally undoped CuCl on Si thin films samples, our doped CuCl samples 

which were doped with both oxygen and potassium, and CuCl samples surface coated 

to protect them from degradation in air. The information this supplies us about the 

crystallinity and preferred orientation of the growth of the samples is then discussed. 

 

Chapter 4 contains the results obtained by SEM imaging, energy-dispersive X-ray 

spectroscopy (SEM-EDX) and cathodoluminescence (CL-SEM), focusing on the 

electrical properties of the material and the information the excitonic spectra provide 

about the thin films. This is accompanied by data and analysis of doped CuCl samples 

and a comparison of how the doping affected the electrical properties and atomic 

structure of the samples. 

 

Chapter 5 begins with the results of our reflectance and photoluminescence (PL) 

experiments which provide a more detailed analysis of the exciton-polariton behaviour 

within CuCl and the optical properties of the material. To aid the analysis of our 

reflectance data, a MATLAB simulation using Maxwell’s equations, with suitable 

electromagnetic and additional required boundary conditions (ABCs, specifically the 

Pekar ABC’s including dead layers) was developed. This allows us to obtain further 

information about the thin films by matching the shape of the simulated plot with our 

experimentally obtained data. Each of our CuCl/Si thin film samples was analysed 
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using this method with a focus on the influence of altering fit parameters on our 

sample optical properties. 

 

Chapter 6 is the final chapter and contains the conclusions that can be drawn from our 

work as well as outlining further avenues for future research on this subject.  
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Chapter 2  

 

Methods of Characterisation  
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2.1 Introduction 

During our research many different experimental techniques were utilized to 

characterize the CuCl samples which were grown. This chapter contains the details of 

the sample preparation, a summary of each of the types of characterization, the theory 

behind them and the information about the CuCl substrates that each of these methods 

provide. We begin with the sample preparation, then the structural analysis provided 

by x-ray diffraction, followed by the microscopic and other aspects of analysis using 

the SEM with various attachments and finally the optical properties of the material 

obtained by reflectance and photoluminescence. This will provide an understanding of 

the core principles in each of these areas and specifically their use in relation to CuCl. 

 

2.2 Sample Preparation 

The CuCl and related thin films studied in this thesis are grown on Si 

substrates with (100) surface orientation approximately 2 cm by 1.5 cm in size cut 

from a 4 inch silicon wafer. These wafers are single-sided, polished, p-type boron-

doped (100) silicon with a resistivity in the range of 0 – 20 Ω cm. Prior to deposition 

the substrates are degreased using Decon neutral (Decon Laboratory Ltd.) solution and 
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organic solvents. This involves placing the substrates in the Decon solution inside an 

ultrasonic bath for 7 minutes. Upon completion the substrates are rinsed with deionised 

water and then Decon directly applied using cotton buds. This is rinsed once more 

using deionised water and the substrates are then placed into an ultrasonic bath with 

deionised water for a period of 20 minutes. Finally they are removed from the water 

and dried using a hairdryer.  

The native silicon oxide is then removed using a diluted hydrofluoric acid 

solution which it is immersed in for a period of 1 minute. This procedure passivates the 

surface with H and creates a long-term stable oxide-free Si surface [63]. In time an 

alternative etch, called a dash etch, was used as this generated smoother, cleaner 

samples to the extent that the difference is visible to the naked eye. The substrates are 

dipped in an acidic solution comprised of 50 ml nitric acid, 30 ml hydrofluoric acid 

and 30 ml acetic acid for 30 seconds. Following this the substrate is immersed in 2 

beakers of deionised water sequentially, one containing acetone and one with 

isopropyl, each for 30 seconds. Finally the substrates were stored in methanol for up to 

10 minutes whilst the remaining samples in the batch completed the dash etch process. 

 

2.2.1  Thermal Evaporation Deposition 

Once the sample cleaning and etch processes are completed, the substrates are 

dried off and placed inside the vacuum chamber of an Auto 306 Edwards evaporation 

system. This is an automated thermal resistance evaporation system which is a form of 

physical vapour deposition. The system has a base pressure of 1 × 10-6 mbar and an 

evaporation pressure of ~3.0 × 10-6 mbar. An FTM6 thickness monitor works in 

tandem with a water-cooled crystal holder to output the nominal thin film thickness as 

the evaporation is performed. CuCl powder with 99.999% purity (Alfa Aesar) is placed 
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inside a quartz crucible. Throughout the course of this work these were in powder and 

beaded form arriving in both sealed ampoules and sealed glass jars. No significant 

difference was recorded between these configurations and once this was established 

glass jars were used from that point on as a means of convenience. This is evaporated 

by resistive heating of the crucible and results in CuCl deposition onto the substrate. 

The substrate is positioned approximately 10 cm above, held firmly in place by metal 

clasps coated with aluminium foil. To ensure an even deposition the substrate remains 

covered (but not in-contact) with a layer of metal coated in aluminium foil which 

masks the substrate until the rate of evaporation stabilizes. The schematic of this is 

shown in figure 2.1. 

 

Figure 2.1 Schematic diagram showing the growth of CuCl thin films using the 

vacuum evaporation technique [64] 

 

The thickness of the deposited CuCl is calculated using the measured crystal 

resonant frequency, the deposition material density and tooling factors as follows:  
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௖ܶ =
௤ܦܨ ௤ܰ൫ ௤ܲ − ଺ܲ൯

௘ܦ
 

      Eqn. 2.1 

where Tc is the calculated thickness, F is the tooling factor, Dq is the density of quartz, 

Nq is the frequency constant of quartz, Pq is the period of a loaded crystal, De is the 

density of the deposition material and P6 is the period of a 6 MHz crystal used in the 

thickness monitor. The density of the film material is calculated from: 

௘ܦ = ௔ܦ
௜ܶ

௠ܶ
 

          Eqn. 2.2 

where Da is the accepted value of the density of the deposition material (which for 

CuCl is 4.136 g cm-3 [15]), Ti is the thickness measured by the thickness monitor and 

Tm is the average actual thickness. Tm is determined by depositing several different 

samples and determining their thickness through experimentation. The tooling factor F 

is calculated by dividing the average actual thickness by the thickness measured by the 

thickness monitor, 

ܨ = ௠ܶ

௜ܶ
 

          Eqn. 2.3 

This is used to compensate for the difference in the distance of the substrate from the 

source compared to the distance of the crystal from the source. A tooling factor of 3.13 

was previously calculated for the CuCl samples [65] indicating that the substrate 

receives a larger deposit than the crystal, which is to be expected due to its placement 

directly above the evaporation source. 

The CuCl was evaporated from within the crucible at a rate ~0.5 nm s-1 via a 

current of ~2.5 A passing through the resistively heated part of the crucible containing 
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the powder. This rate was chosen as previous work in our group has shown 0.5 nm s-1 

to be optimum for sample quality and reproducibility with faster rates causing 

particulates on the surface of the film and slower rates resulting in a non-uniform 

deposition and providing no justification for the increase in time required [65]. 

Typically layers of ~500 nm of CuCl were deposited with some small 

variance due to the nature of the equipment as it was observed that the CuCl film is not 

uniform in its distribution across the surface of the substrate. Directly above the 

crucible shows the thickest CuCl deposition with a decrease in thickness as the 

distance from this centre point is increased. The thicknesses quoted in the thesis thus 

are in all cases an average or “nominal” deposit thickness. This can be observed 

visually by the different colours present on the substrate and interior of the evaporation 

chamber illustrated by the picture in figure 2.2 of the CuCl thin film surface. 

 

  

Figure 2.2 Digital CCD image of the surface of a freshly deposited 500 nm thin film 

sample showing the variation in the colour across the surface of the sample. The 

region in the bottom right is due to clamps holding the sample in place during 

deposition 

 

Due to the hygroscopic nature of CuCl commented upon earlier, upon 

removal from the deposition vacuum system it is essential that some form of capping 
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layer is applied if the samples are not to degrade very quickly (without such a layer the 

samples decay noticeably in 1-2 days as detailed in later chapters). For samples to be 

tested via X-ray diffraction, a protection layer of long-lasting nail varnish is applied to 

prevent the decay of the samples [66]. The nail varnish is an amorphous coating and so 

has no effect on the x-ray diffraction measurements and to show this a comparative 

study is detailed in the results section for reference (see chapter 3). This brand was the 

only one tested as there was no need to change this once a working solution was found. 

However, for samples where optical measurements such as PL, CL and 

reflectance are intended, the capping layer caused some problems. Exposure to low 

temperatures as part of PL or reflectance measurements at cryogenic temperatures, 

caused the entire thin film (including the CuCl deposit) to delaminate from the 

substrate. Since this didn’t happen with uncapped samples it is clear that it was caused 

by the varnish, probably associated with differential thermal expansions giving rise to 

a bimetallic strip type of effect. In addition, the results of some room temperature PL 

measurements showed that the capping layer significantly lowered the intensity of the 

UV bandedge emission signal. Since the wavelength of the CL emission is essentially 

identical to that of the PL emission (around 385 nm at room temperature) this would 

affect these measurements as well. Samples were thus left uncapped for the 

reflectance, PL and CL measurements as these take place in a helium filled chamber 

(reflectance and PL) and a vacuum chamber (CL), which ensures that the samples do 

not decay as in all cases there is no significant water vapour present.  

 

2.2.2  Oxygen Doping of CuCl thin films 

To improve the electronic conductivity of some of the samples of CuCl, 

oxygen was introduced as a p-type dopant once the samples had been grown by 
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evaporation. This doping was carried out by plasma treatment in an Oxford 

Instruments Plasma Lab Plus 80 Reactive Ion Etcher (RIE). Oxygen and argon were 

pumped in via dedicated channels with flowmeters at flow rates of 80 sccm and 20 

sccm; the RF power was 300 W, while the chamber pressure was held at 50 mTorr. 

The argon was present to aid the penetration of the oxygen into the samples. Different 

durations of treatment were performed for different samples, with times of exposure 

ranging from 30 seconds to 4 minutes to compare the effects of the treatment. Upon 

completion of this treatment the samples were handled in the same manner as the 

undoped samples, i.e. they were taken for immediate characterization, sealed with 

varnish or placed within a sealed vacuum chamber for storage until use. 

 

2.2.3  Liquid Phase Epitaxy 

DCU has recently completed the construction of a liquid phase epitaxy (LPE) 

growth system [49]. LPE can be used to grow a single crystal semiconductor layer on a 

substrate. In this technique, CuCl powder and a solvent are heated until melted and a 

eutectic solution of semiconductor material is formed. The silicon substrate is also 

heated but to a slightly lower temperature and then brought into contact with the 

semiconductor material. The solution and the substrate are then cooled below the 

eutectic temperature to deposit a layer of the semiconductor material onto the silicon. 

After a predetermined interval, the silicon and the solution are separated from each 

other and allowed to settle. 

CuCl undergoes a transition from zincblende to wurtzite structure when the 

temperature is increased above 408 ºC [67] and prior to the melting point at 422 ºC. As 

temperature is increased there is also an exothermic CuCl-Si reaction which occurs 

once the temperature is increased above 250 ºC [42]. To avoid the influence of these 
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factors on the deposited samples the addition of a salt to the melt must be used to 

reduce the mixture eutectic. There are several candidates for this, such as potassium 

chloride (KCl), strontium chloride (SrCl2) and barium chloride (BaCl2) [65]. Of these 

candidates KCl seemed the best because it possesses the lowest eutectic temperature 

[68]. While my work was not centred on single crystal LPE growth, I was involved in 

growing samples of KCl/CuCl alloy thin films on CuCl films using thermal 

evaporation to study the properties of such alloys which are likely to form in the LPE 

system and thus support the LPE growth efforts. 

Firstly, a 450 nm layer of CuCl was deposited as previously described, after 

which a 50nm layer of KCl-CuCl alloy (with a molar ratio of KCl to CuCl of 20:80) 

was deposited. The KCl-CuCl powder mixture used in the crucible of the thermal 

evaporator is measured with an electronic mass balance to ensure the ratio is accurate 

and the powders mixed and ground with a mortar and pestle until a suitable 

consistency is achieved. The ratio was chosen to encourage formation of the random 

 

 

Figure 2.3 Phase diagram for KCl – CuCl [69] 
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alloy mixture K2CuCl3 which, as shown in figure 2.3, forms below 245ºC when the 

ratio is 20:80 with CuCl [69]. The evaporation temperature of the K2CuCl3 was not 

considered an issue due to the similarity of KCl and CuCl’s individual evaporation 

temperatures (1420 ˚C and 1490 ˚C) i.e. the temperature of the system will be 

sufficient to evaporate KCl, CuCl and the K2CuCl3 compound if formed inside the 

quartz crucible used in the deposition process. The results of the characterization of 

this material are shown in Chapter 3. In later experiments a complete 500 nm layer of 

CuCl mixed with KCl in the 20:80 ratio was used instead and will be discussed as such 

in future chapters. The preparation method was similar to that described above. 

 

2.3 Structural Analysis – X-ray 

Diffraction 
 

Because of the similarity of the wavelength of x-rays (~0.1 nm) to interatomic 

spacings in most crystals (~0.5 nm), it was realised rather early on in the development 

of x-ray science and technology that x-ray diffraction might enable scientists to map 

the atomic structure of a molecule or crystal. This was discovered as early as 1912 by 

Max von Laue [70]. In the same year W. H. Bragg and his son W.L Bragg analysed 

von Laue’s experiment and were able to express the necessary conditions for 

diffraction in a considerably simpler form than that used by von Laue. The following 

year they used these conditions to solve the structures of NaCl, KCl, KBr and KI, all 

hexagonal in nature, which were the first complete crystal-structure determinations 

ever made [71]. It will be noticed that these crystals are all I-VII compounds similar to 

CuCl and KCl, and this makes a nice historical link to the present research work. 
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A Bruker Advanced X-Ray Solutions D8 X-Ray Thin Film Texture 

Diffractometer was used for our studies of the crystal structure of our samples, which 

is available in the National Centre for Plasma Science and Technology (NCPST) 

laboratories in DCU. All x-ray generation tubes work on a similar principle, i.e. using 

a source of electrons accelerated through a high voltage incident on a metal target to 

generate characteristic x-rays of the target material [72]. The metal target in the D8 

Diffractometer is a Cu target which acts as the anode and the filament source of the 

electrons as the cathode. The anode is held at a 40 keV potential difference to the 

cathode and a current of 40 mA is passed through the filament which heats the 

filament and releases electrons by thermionic emission, and these electrons are then 

accelerated towards the target leading to the emission of characteristic x-rays of 

wavelength 0.15406 nm and 0.15444 nm, i.e. the Cu Kα1 and Cu Kα2 respectively. The 

source has some filtering using e.g. Ni films to remove other characteristic x-ray lines 

(Cu K) and the underlying bremsstrahlung continuum emission. 

When the x-rays are incident on the atoms in the sample they are scattered in 

all directions. In some of these directions the scattered beams are completely in phase 

and reinforce each other to form diffracted beams. Figure 2.4 demonstrates this 

technique. If we examine the rays 1 and 1a it is clear that they strike the atoms K and P 

in the first plane. In the directions 1' and 1a' the beams scattered from the plane are 

completely in phase. This is because the difference in the length of path between the 

two wavefronts is equal to:  

ܭܳ − ܴܲ = ܭܲ cosߠ − ܭܲ cosߠ = 0         Eqn. 2.4 

due to the symmetrical nature of the scattering (equal incidence and reflection angles). 
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Figure 2.4 Diffraction of x-rays by a crystal [73] 

 

This is true for rays scattered from all atoms along the first plane, they emerge 

in phase and add their contribution to 1'. From the second layer of atoms the path 

difference for rays 1 and 2 which are scattered from K and L is given by: 

ܮܯ + ܰܮ = ݀′ sin ߠ + ݀′ sin  Eqn. 2.5        ߠ

The scattered rays will be in phase if the path difference is equal to a whole number of 

wavelengths. This relation was first formulated by W.L. Bragg in 1913 and is known 

as Bragg’s Law [74]. It is the requirement which must be met if diffraction is to occur 

and is: 

ߣ݊ = 2݀′ sin  Eqn. 2.6         ߠ

where d' is the distance between the planes, n the order of diffraction and θ the angle 

of incidence of the x-ray beam.  

The basic setup of the diffractometer is the parallel beam geometry mode 

(also referred to as the θ/2θ scan mode) shown in figure 2.5. The sample is rotated at a 

set angular velocity representing θ with the detector rotating at twice the velocity thus 

maintaining 2θ. The x-ray beam strikes the sample and each time the Bragg condition 

is met the x-rays are diffracted onto the detector. The electronics inside the detector 
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measure the intensity of the diffracted beams and uploads the data to an attached 

computer so that the diffraction patterns can be digitally recorded.  

 

Figure 2.5 Parallel beam geometry setup for the Bruker D8 Advance Diffractometer 

 

To control the quality of the results a series of slits along the x-ray beam’s 

path can be altered with different slides provided by the manufacturer. An aperture 

slide is placed in front of the beam to control the area of the sample exposed to the x-

rays. Starting from the sample, there are 3 slits; the first to block any undesired 

scattered radiation, the second to reduce the intensity of any Cu Kβ rays reflected by 

the sample and the third to align the x-rays with the detector. The thickness of the slide 

blocking the Cu Kβ rays can be adjusted depending on the results of the scans. 

Typically it is removed completely once the θ/2θ scans are started but it is useful in 

aligning the beam with the detector upon initial setup. 

For a sample of normal incidence, as is the case in the θ/2θ scans, the 

penetration depth of the x-rays is defined by 1 ⁄ߤ , where μ is the attenuation 

coefficient. These are typically in the range of 104 – 105 m-1 with the 

corresponding 	1 ⁄ߤ , values in the 10 – 100 μm range. Since our samples are 
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considerably thinner than this, in order to eliminate interference from the CuCl/Si 

boundary and Si substrates and obtain information from purely the upper layer of the 

thin films, glancing angle x-ray diffraction is occasionally used (GAXRD).   

To perform this, the angle of the incident x-ray beam is set to a very shallow 

angle. With the angle of the beam held at this fixed glancing angle, the diffraction 

profile is recorded using a detector-only scan. The resulting diffracted and scattered 

signals arise mainly from a limited depth beneath the surface of the material and arise 

from misoriented crystallites at the film surface. The setup for GAXRD is shown in 

figure 2.6. 

 

Figure 2.6 Glancing Angle X-ray Diffraction schematic 

 

Using glancing angles, refraction at the surface of the sample can be described 

by cos߰ = ݊ cos߰ଵ	where ψ1 is the glancing angle inside the material. When the 

angle of incidence (ψ) of the x-ray beam decreases, so that the refractive index is less 

than unity, total external reflectance of the x-rays occur below the critical angle of 

incidence (ψc) [75]. The critical angle required for total external reflection is defined 

by cos߰௖ = ݊, where n is the refractive index. According to James [76], the refractive 

index can be determined from: 
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݊ = 1 −
ଶߣ௘௟ݎ

ߨ2 ෍(ܼ௜ + Δ ௜݂)
௜

௜ܰ = 1 − ߜ −  ߚ݅

         Eqn 2.7 

where rel = 2.818 x 10-13 cm is the classical electron radius, λ is the x-ray wavelength, 

Zi the atomic number of the atom i, Ni the number of atoms i per unit volume, δ and β 

represent the real and imaginary parts of the complex quantity (1 − ݊)	and ߂ ௜݂ =

߂ ௜݂
ᇱ + ߂݅ ௜݂

ᇱᇱ which is the dispersion correction of the atomic scattering factor for zero 

scattering angle. Values for the dispersion correction can be found in the International 

Tables for X-Ray Crystallography [77]. However if we approximate the equation by 

neglecting the dispersion, the real part of the refractive index can be expressed as: 

ߜ =
ଶߣ௘௟ݎ

ߨ2 ߩܰ
∑ܼ௜
௜ܣ∑

= 2.70 × 10ଵ଴ߣଶߩ
∑ܼ௜
௜ܣ∑

 

                      Eqn. 2.8 

with N representing Avogadro’s number, ρ the density, and Ai the atomic weight of the 

atom i. This can be solved for CuCl using the known values for each of the quantities, 

ρCuCl = 4.136 g cm-3, ACuCl = 98.999 g/mol, giving a value of δ = 12.32 x 10-6. Since ψ, 

δ ≪  1 the relation between them can be written as 	߰௖ = ߜ2√ . This allows us to 

calculate the value of ψc which comes to 0.28° for CuCl. This is the point of total 

external reflection within CuCl, ideal for GAXRD. However, the x-ray beam 

divergence angle of the equipment in DCU is too broad to set an angle this shallow. 

The penetration depth for an incidence above the critical angle can be determined from 

the absorption coefficient, μ, in the following manner: 

௣ݐ =
ඥ߰ଶ − ߰௖ଶ

ߤ2  

                     Eqn. 2.9 
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where tp is the penetration depth. μ for CuCl can be calculated from the x-ray 

diffraction beam intensity.  

The particle size of the crystallites measured by x-ray diffraction can be 

determined from the θ/2θ scans and the GAXRD scans by examining the width of each 

of the diffraction curve peaks. These widths increase as the crystallite size of the 

deposit decreases because the angular range increases as the order of diffraction 

decreases [73]. The width is usually measured in radians at an intensity equal to half of 

the maximum peak intensity, referred to as the full width at half maximum (FWHM). 

If we approximate the shape of the diffraction peaks to be triangular we can take half 

the distance between the two angles for which the intensity is zero to be the FWHM. 

The relation between crystallite size and the experimentally measurable values known 

as the Scherrer formula is given by: 

ݐ =
ߣ0.9

ܤ cosߠ஻
 

                         Eqn 2.10 

where we let B represent the FWHM and θB the Bragg angle. In deriving this 

relationship we let θ1 and θ2 be the angles of zero intensity. Expressing the FWHM in 

terms of the zero intensity angles gives us: 

ܤ = ଵ
ଶ

ଵߠ2) − (ଶߠ2 = ଵߠ −  ଶ                 Eqn 2.11ߠ

If we write the path-length difference for these angles, similar to the Bragg Law 

equation already shown in equation 2.6, but relating it to the entire thickness of the 

crystal we get: 

ݐ2 sin ଵߠ = (݉ +  Eqn 2.12             ߣ(1

and 

ݐ2 sin ଶߠ = (݉−  Eqn 2.13        ߣ(1
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By subtracting each of these we get 

sin)ݐ ଵߠ − sin (ଶߠ =  Eqn 2.14         ߣ

ݐ2 cos൬
ଵߠ + ଶߠ

2 ൰ sin ൬
ଵߠ − ଶߠ

2 ൰ =  ߣ

    Eqn 2.15 

Since θ1 and θ2 are almost equal to θB we can approximate: 

ଵߠ  + ଶߠ = ஻ߠ2          Eqn 2.16 

and similarly 

sin ൬
ଵߠ − ଶߠ

2 ൰ = ൬
ଵߠ − ଶߠ

2 ൰ 

                 Eqn 2.17 

So substituting these into the previous equation gives us:     

ݐ2 ൬
ଵߠ − ଶߠ

2 ൰ cosߠ஻  

                   Eqn 2.18 

ݐ =
ߣ

ܤ cosߠ஻
 

               Eqn 2.19 

A more exact treatment of this problem gives us the aforementioned Scherrer formula: 

      

ݐ =
ߣ0.9

ܤ cosߠ஻
 

                    Eqn 2.10 

The 0.9 factor is based on refined assumptions made for the shape of the 

crystals and of the diffraction peaks themselves [78]. The Scherrer formula was used to 

estimate the crystal size of the CuCl samples measured by both GAXRD and θ/2θ 

XRD. To confirm epitaxial growth of the samples a φ scan is used by setting the 

sample to a fixed Bragg angle and to a fixed χ angle to bring one of the equivalent 
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(0,1,2) planes into the path of incidence of the x-rays. This is shown in figure 2.7 with 

the sample position represented by the imposed square section. 

The sample is then rotated about its φ axis and the diffraction peaks will be 

detected at fixed intervals if the crystal is symmetrical or just a uniform signal if there 

is no plane order at all. For example if the structure exhibits four-fold symmetry then 

the signal should occur every 90º, if it exhibits hexagonal symmetry every 60º etc. In 

the case of the CuCl thin films, both CuCl and Si exhibit four-fold symmetry so two 

signals from each of the layers separated by 90º are expected. The overlap between the 

two layers will be investigated in Chapter 3. 

 

 

Figure 2.7 X-ray diffractometer display showing the motion and orientations 

of the ω, φ and χ angle x-ray diffraction scans [79]. Square in the centre represents 

the sample position. The sample should be considered to be facing the ф direction in 

this graph 

 



37 
 

2.4  Optical Properties 

2.4.1   Photoluminescence 

Photoluminescence (PL) can be defined as the emission of light from a 

material illuminated by photons. Luminescence emission involves radiative transitions 

between electronic energy levels in an excited material with the resulting photonic 

emission characteristic of that material.  

The transition originates in an excited electronic level within the material and 

after the emission of a photon a lower electronic level is occupied. This process is non-

contact and generally non-destructive and therefore extremely useful in semiconductor 

characterisation. The cause of the initial excitation determines the term given to the 

luminescence. Luminescence excited by a bombardment of electrons is termed 

cathodoluminescence and luminescence excited by electromagnetic radiation is termed 

photoluminescence. These are the two types of luminescence used to analyse CuCl 

throughout the course of this work.  

 

The three key processes involved in luminescence are: 

 Excitation 

 Energy transfer and thermalisation 

 Radiative transition of the carriers 

 

The incident photons will normally be of a higher energy than the band gap as 

this will result in a large number of free electron-hole pairs being generated. In 

semiconductor materials the absorption of photons of higher energy than the bandgap 

results in the creation of free electrons and holes, a non-equilibrium distribution of the 
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Figure 2.8 Schematic diagram of the general process of luminescence. (a) Excitation 

by external source (b) thermalisation and relaxation to create metastable e-h pairs 

denoted as excitons (c) recombination which can be of two types; radiative (τR) and 

non-radiative (τNR). The emission of a photon due to radiative recombination is known 

as luminescence 

 

electron-hole (e-h) pairs. These will quickly thermalise (~5 ps) to reach thermal 

equilibrium amongst themselves, thus reaching the quasi-thermal equilibrium 

described by quasi-Fermi levels in a short time compared to that taken for e-h 

recombination (typically > 200 ps). This thermalisation creates a population of 

electrons and holes close to the conduction and valence band edges, respectively. At 

low temperatures in relatively pure materials, where the effect of the stray electric field 

effects is minimal, the Coulomb attraction between the electron and hole causes their 

motion to be correlated. The resultant Coulombically bound e-h pair is known as an 

exciton. 

(b) Thermalisation and 
relaxation (metastable state) 

Electrons 

Holes 

(c) Radiative and non-
radiative recombination 

ћω (a) Excitation 

Conduction 
Band 

Valence 
Band 

τNR 

τR 
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Figure 2.9 Exciton showing the electron and hole Coulombic attraction. The centre-

of-mass motion of the exciton is indicated by the arrow pointing to the right [80] 

 

Due to the exciton being a bound electron and hole pair, the formation energy 

is slightly less than that for an unbound electron and hole pair. This excitonic particle 

can be considered as an electron and hole pair orbiting around a common centre-of-

mass and bound together in a Bohr atom-like fashion as shown in figure 2.9. This  

means the binding energy, Bohr radius and other factors of the exciton can be 

calculated using the Bohr model equations, taking into account the effective masses of 

the particles and the dielectric constant of the semiconductor. 

There are two main types of exciton, the Frenkel exciton and the Mott-

Wannier exciton. Frenkel began the study of these excitations in 1931 when he 

proposed the model of this quantum of excitation propagation in insulating crystals 

[81]. His type of excitons is tightly bound with a small radius. When the dielectric 

constant is very small in a material, the Coulomb interaction between electron and hole 

becomes very strong. This causes the exciton radius to be quite small, of the same 

order as a unit cell. As a result of this the electron and hole can be viewed as 

occupying the same cell, allowing the exciton to hop from cell to cell. The typical 

binding energy of this Frenkel exciton is of the order 1.0 eV. These excitons are 

typically realized in alkaline halide crystals and in many crystals of aromatic organic 



40 
 

molecules. So for the Frenkel exciton in an alkaline halide or strongly ionic insulators, 

the excitation dimension is limited to a single atom or molecule. 

The Mott-Wannier exciton model deals with insulators and semiconductors 

possessing larger dielectric constants. This means the exciton radius is much larger 

than in the Frenkel model and the electron can be considered to orbit many unit cell 

distances from the hole. These excitons have a much larger radius than the lattice 

spacing meaning the electron and hole are separated by a large degree of interatomic 

spacing. The larger dielectric constant in these materials reduces the Coulomb 

interaction between the electrons and holes. This means the effect of the lattice 

potential can be incorporated into the effective masses of the electron and hole. 

Because of the lower masses and the screening of the Coulomb interaction the binding 

energy is much less than the Frenkel exciton, being typically of the order 0.1 eV or 

below. There also exists a charge-transfer exciton, being the intermediate form 

between the Frenkel and Mott-Wannier exciton models. 

For CuCl the exciton binding energy is 190 meV and the Bohr radius is 0.7 

nm. These factors mean it can be considered a Mott-Wannier exciton. In a pure 

material at sufficiently low temperatures (where kT < exciton binding energy), the 

exciton is a stable particle and will not become thermally disassociated.  

In an intrinsic semiconductor free of any defects or impurities, the exciton 

centre-of-mass is free to move within the material and is known as a free exciton (FE) 

[82]. Most materials contain finite quantities of defects and impurities. Disruption of 

the periodicity of the lattice may either destroy the exciton or localize it. This can be 

caused by a number of factors including: impurities, vacancies, dislocations and even 

large scale defects such as the surface of the material. The localization of Mott-
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Wannier excitons on impurities was predicted by Lambert in 1958 and observed by 

Haynes in 1960 in the form of narrow peaks below the free exciton level in Si [83].  

The impurities can trap the FE, binding the exciton to the defect location with 

a certain and impurity specific localization energy. These trapped excitons are known 

as bound excitons (BE). The localization energy is dependent on the nature of this 

defect; factors such as the chemical identity, symmetry, defect charge state, etc. can 

affect it. The localization energy of the exciton on an impurity, measured from the FE 

line, is usually a fraction of the ionization energy of the impurity which localizes the 

exciton. At low temperatures most of the FEs in real materials are trapped and bound 

at defects due to the thermalisation effects. As the temperature is increased these are 

gradually released to form FEs once more.  

The quantum mechanical states between which the main transitions studied in 

this thesis occur are the conduction and valence bands. In the first instance we will 

consider the case of a pure crystal with no impurities and with no electron-hole 

interaction.  

The transition process is generally described by showing the valence and 

conduction bands on an E-K diagram. When the valence band maximum and the 

conduction band minimum in a material are at the same value of the wave vector k 

such materials are referred to as direct gap semiconductors (symmetry considerations 

often constrain the value of k at which this occurs to be at the centre of the Brillouin 

zone, k = 0, and we assume this in further discussions). When the valence band 

maximum and the conduction band minimum are at different values of k, the material 

is an indirect gap semiconductor. CuCl is a direct gap semiconductor, so the 

illustration in figure 2.10 (a) will apply. 
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Figure 2.10 Part of the E versus k curves for (a) direct semiconductors and (b) 

indirect semiconductors. The band gap transitions are indicated by the arrows. 

 

Because the k-vector of the photon (2/ with  ~ 350 nm, yielding a value of 

approximately 2 × 107 m-1) is so much smaller than the dimensions of the Brillouin 

zone (/a, with a ~ 0.5 nm, yielding a value of approximately 6 × 109 m-1) the 

conservation of k-vector required in the matrix element for the conduction band to 

valence band transitions means that (when viewed on the scale of the Brillouin zone) 

that transitions involving photons only correspond to vertical “jumps” on an E-k 

diagram, as shown in figure 2.10 (a). Thus transitions from the valence band maximum 

to the conduction band minimum can occur involving only a photon of appropriate 

energy and thus are strongly allowed. Direct bandgap materials such as GaAs, GaN, 

ZnO and CuCl tend to be strong optical absorbers and emitters close to the bandgap 

energy and are thus useful for device applications.  

By contrast, in an indirect gap material such as Si the transition between the 

valence band maximum and the conduction band minimum requires another particle to 

conserve k-vector and thus is less strongly allowed due to the three-body nature of the 

process (electron, photon and phonon). Hence the quantum mechanical matrix element 

(a) (b) 
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for transitions in indirect gap materials is reduced compared to direct gap materials and 

becomes dependent on the phonon population.  The radiative transition probability for 

indirect gap materials is far less than direct gap materials and competing non-radiative 

transitions are much more prominent. This means indirect bandgap materials are less 

efficient optical emitters and absorbers and a poor choice for device applications. 

The discussed k-vector conservation applies to free electron, free hole and FE 

transitions and also to transitions of loosely BE or carriers, possessing wavefunctions 

similar to FE or free carriers. Tightly bound species result in a relaxation of the k-

vector conservation rules, but these transitions are not the focus of this thesis. 

Indirect band gap semiconductors are typically used as the material substrate 

onto which direct band gap semiconductors are deposited by various methods. Si and 

Ge are good examples of this, with CuCl and ZnO being good examples of direct 

bandgap semiconductors. The strong exciton binding energy of CuCl combined with a 

direct bandgap means it is a very efficient optical emitter and absorber as these factors 

create a strong e-h wavefunction overlap and thus a large quantum mechanical optical 

transition matrix element. 

Impure materials, such as doped material or one possessing lattice defects, can 

acquire new states in the forbidden gap. Carriers can relax or be trapped in these states 

with a recombination dominating the luminescence spectra at low temperatures. 

Radiative recombination from such levels cause a photon with an energy level equal to 

that of the difference in energy between the initial and final states to be emitted. This 

emitted photon is detected as PL light. 

There are many different types of radiative recombination processes. Figure 

2.11 shows the electron-hole radiative recombination processes across the band gap. 

Each of these transitions will result in a photon being emitted from the substrate. These  
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Figure 2.11 Electron-hole pair recombination processes across the band gap where C 

is the conduction band, V is the valence band, E is the exciton position, D is neutral 

donors, A is neutral acceptors, DD is deep donors and DA is deep acceptors [84] 

 

transitions are: 

C → V processes. Transitions from the conduction band to the valence band 

within the material. These are typically seen at high temperatures, sometimes at room 

temperatures as well. 

E → V processes. Exciton decay which is only seen in very pure materials 

and at low temperatures when kT is less than the exciton binding energy. There are two 

types of decay which can occur, decay of free excitons and the decay of excitons 

bound to impurities. For free excitons it is the polariton states which decay. Polariton 

states occur when there is an interaction between the radiation and the free exciton 

which causes these resonant states to couple together.  Two states are formed, slightly 

separated in energy, each of which contains some exciton characteristics and some 

photon characteristics. Each of these states has two levels which are slightly separated 
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in energy and in the energy of the emitted photon upon decay. Bound excitons occur if 

an exciton stays localized in the vicinity of an impurity. The energy will be less than 

the energy of the free exciton by the amount of the binding energy of the exciton to the 

impurity. This is typically quite small of the order of 0.001 eV and can be determined 

by the energy gap between the emitted photon and the free exciton position. 

D → V processes. This transition takes place when the loosely bound electron 

on a neutral donor recombines with a hole in the valence band. The energy of such a 

transition is the band gap energy minus the donor energy (Eg – ED). Transitions on 

donors with large ionization energies will occur well below the energy of the band gap 

and are illustrated as DD → V processes in figure 2.11. 

C → A processes. An electron in the conduction band of the semiconductor 

drops to an acceptor atom, ionizing the acceptor. Similar to the previous process, the 

energy of such a transition is the band gap energy minus the acceptor energy (Eg – EA). 

Transitions from the conduction band to deep acceptor centres will occur well below 

the band gap and are illustrated by the C → DA processes in figure 2.11. 

D → A processes. Provided both donors and acceptors are present within the 

material at sufficient quantities, it is possible for transitions to take place where an 

electron leaves a neutral donor and moves to a neutral acceptor. After this transition 

both the donor and the acceptor will be ionized and the binding energy will be related 

to the Coulombic interaction between donors and acceptors in the following manner 

[84]:  

௕ܧ = −
݁ଶ

ݎ଴ߝௌߝ
 

                   Eqn 2.20 

where r is the distance between the donor and acceptor, e is the magnitude of the 

electric charge, ε0 is the permittivity in a vacuum and εS is the dielectric constant of the 
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semiconductor. The energy of this transition will be	ܧ௚ − ஽ܧ − ஺ܧ − ௕ܧ . There will be 

different allowed values of r which should result in a series of several sharp lines, 

sometimes with phonon sidebands accompanying these transitions. These 

characteristic features will be discussed in the results section for PL in chapter 5. 

In addition to the radiative recombination processes there is another type of 

recombination known as non-radiative (NR) recombination. NR recombination 

consists of the excited state energy being converted to the vibrational energy of lattice 

atom, i.e. phonons. This causes the electron energy to be converted to energy forms 

other than light at the desired photon energy. NR processes are not desired for 

photonic applications and have two common causes, defects in the crystal structure 

and multi-phonon emission. Defects include unwanted foreign atoms, native defects, 

dislocations and any complexes of such defects. Each of these may cause one or more 

energy levels to form in the forbidden gap of the semiconductor. If close to the middle 

of the gap, these energy levels can be efficient NR recombination centres. These deep 

levels can result in luminescence quenching [81]. At higher temperatures trapped 

excitons/carriers are thermally released from defects and become mobile. They can 

diffuse through the crystal and encounter various defects, each of which increase the 

probability of NR recombination at such defects. Thus at higher temperatures the 

material’s optical emission efficiency generally reduces. 

 

2.4.2 Fourier Transform Equipment 

To observe the photoluminescence spectroscopy (and the reflectance 

discussed in the next section) of the CuCl thin films, the samples were cooled for 

several hours from 300 K to 20 K in a Janis CCS-500 closed-cycle cryostat. The 

temperature was controlled using an Oxford Instruments ITC-4 controller, resistive 
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heater and a 27 Ω rhodium-iron resistance sensor located on the sample holder. The 

source of excitation is the 325 nm HeCd line of a Kimmon IK Series laser with a 

power level of ~40 mW left unfocused on the sample. Photon detection was provided 

by a Bomem DA8 FT spectrometer which was previously fitted with a Hamamatsu 

R1913 photomultiplier (PM) tube and the PM output subsequently matched to the 

spectrometer using a Bomem variable gain preamplifier. 

The spectrometer is a Fourier Transform (FT) spectrometer based on a 

Michelson Interferometer. Unlike prism or grating spectrometers, FT spectroscopy 

does not spatially disperse different wavelengths. As shown in figure 2.12, from the 

entrance aperture the light is split into two beams by a beamsplitter. A fixed mirror is 

used to reflect one beam and the other beam is reflected by a moving mirror to produce 

a phase difference between the beams. When the two beams recombine at the 

beamsplitter the resultant interference pattern caused by the phase difference is 

detected as a function of mirror position.  

 

 

Figure 2.12 Michelson interferometer setup used inside the FT spectrometer 

Detector 

Beamsplitter 

Moving Mirror 

Fixed Mirror Light source (entrance 
aperture) 
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For a monochromatic light source, after passing through the beamsplitter the 

electric field of the separated light waves can be described by: 

ଵܧ = ଴ܧ sin(݇ݔ −  Eqn 2.21         (ݐ߱

ଶܧ = ଴ܧ sin(݇ݔ − ݐ߱ + ߶)        Eqn 2.22 

where ߶ is the relative phase of the two waves, ܧ଴ is the electric field amplitude and k 

is the wavenumber related to λ by: 

݇ =  Eqn 2.23           ߣ/ߨ2

ω can be expressed as 2πf where f is the frequency of light. If we refer to the position 

of the moving mirror A, relative to the fixed mirror B, as D/2 and define D/2=0 when 

the path lengths are equal (known as the Zero Path Difference (ZPD) point), the 

number of additional wavelengths travelled by the light in path A as the mirror is can 

be expressed as:  

ܰ =
ܦ2
ߣ  

                    Eqn 2.24 

To convert this to a phase angle in radians, we multiply by 2π, and obtain the phase 

angle in terms of D as: 

߶ =
ܦ.ߨ2
ߣ =  ܦ.݇

                         Eqn 2.25 

Addition of the two light beams given by the equations 2.21 and 2.22 gives us the 

equation of the electric field of the resultant wave and can be expressed as: 

்ܧ = ଵܧ +  ଶܧ

்ܧ = ݔ݇)଴[sinܧ − (ݐ߱ + sin݇ݔ − ݐ߱ + ߶] 

்ܧ = ଴ܧ2 sin ൬݇ݔ − ݐ߱ +
߶
2൰ cos ൬

߶
2൰ 

Eqn 2.26 
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By taking the time average of the electric field squared the light intensity can be 

obtained: 

ܫ = 〈ଶ்ܧ〉 = ଴ଶܧ + ଴ଶܧ cos(݇.ܦ)             Eqn 2.27 

where the phase ߶ has been converted to k.D as in equation 2.25. This shows us that 

the detector intensity varies in a cosinusoidal manner as a function of mirror 

movement D with a period determined by the wavelength of the source (through k).  
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Figure 2.13 (a) Example of the interferogram of CuCl thin films at 20 K (b) Spectrum 

obtained from (a) by performing FT on the interferogram 
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The plot of detector intensity versus the mirror position is called the 

interferogram. We can see an example of this in figure 2.13 (a) for quasi-

monochromatic light. If the light source contains more than one monochromatic light 

output then each of the wavelengths will produce a cosinusoidal signal in the 

interferogram with each having characteristic periods as the mirror moves. Hence the 

total interferogram is obtained by adding or integrating each of the cosinusoidal 

contributions over the entire source spectrum, all of which add coherently.  

So for a continuous wavelength distribution in the source across the spectrum 

we obtain:  

(ܦ)ܫ = න (݇)ܫ
ାஶ

ିஶ
(1 + cos(݇ܦ))d݇ 

Eqn 2.28 

where I(k) represents the source spectrum. Decomposing this interferogram into its 

cosinusoidal signal will give us the source spectrum. By using FT we can decompose 

an arbitrary interferogram into its cosinusoidal components.  If we perform FT on the 

varying section of equation 2.28 we obtain: 

(݇)ܫ = න (ܦ)ܫ cos(2ܦ.݇ߨ)
ାஶ

ିஶ
dܦ 

                    Eqn 2.29 

This equation will decompose the interferogram into its constituent cosinusoids and 

give the original spectrum, an example of which is shown in figure 2.13 (b). 

In the above description it is assumed that the limits of the FT integral extend 

from −∞ to +∞ i.e. that mirror A has an infinite range of motion. Practically however 

this is impossible and so the integral must be confined and is performed over the actual 

range the mirror can travel. As a result the minimum resolvable linewidth the 
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instrument would yield when illuminated by an ideal monochromatic source is given 

by:  

Δ݇ ≅
ߨ

௠௔௫ܦ
 

                    Eqn 2.30 

with Dmax being the maximum distance the mirror can move.  

As computing technology has progressed, the systems available are capable of 

calculating the resulting FT spectra in mere seconds. The data is stored in digital form 

with different functions offered by the attached software. The user can choose to 

record multiple interferograms of a given sample which are then averaged to increase 

the signal to noise ratio of the resultant spectra. Crucial throughout this process is the 

dynamic alignment of the mirrors. The fixed mirror must remain parallel, to within a 

fraction of the wavelength of light under study, to the moving mirror as it is scanned. 

At wavelengths typical of semiconductor luminescence, a separate light source must be 

used for alignment. In this equipment this is a single mode He-Ne red laser of 633 nm 

wavelength. The interference pattern of the laser is incident on a photodiode array with 

the signal from this array used to control two servo motors. These in turn adjust the 

angle of the fixed mirror to maintain system alignment throughout the scan.  

The instrument must also determine the zero path difference (ZPD) position. 

To accomplish this, a broadband ‘white’ light source is used and introduced along a 

similar optical path as the external light, though it is detected separately. Although this 

broadband light source will theoretically introduce a virtually infinite number of 

cosinusoidal patterns to the interferogram, each with a different period due to the 

different wavelengths entering the spectrometer, at the ZPD position all wavelengths 

will undergo constructive interference. This is caused by the path lengths from each 
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arm of the interferometer being identical. A burst of signal will be detected at the ZPD 

point enabling its location to be established with a high level of accuracy. 

Since reflectance spectra are obtained by shining a high intensity light source 

onto the sample and collecting the reflected light through the spectrometer, high 

intensity input will cause the ZPD position to be lost. This can be overcome by 

limiting the range of wavelengths incident using an optical filter, but this in turn limits 

the spectral range capable of being detected by the equipment. Throughout the course 

of the reflectance testing a Xe light source was used for reflectance. The high intensity 

this emitted caused the ZPD to be lost frequently and eventually proved unworkable as 

the optical filters required to obtain spectra using this light source restricted the range 

of detectable light to the extent that detail at lower energy values was being omitted, 

specifically the Fabry-Perot fringes discussed in later sections. A lower intensity 

Deuterium light source was used instead, with no filters required. 

The system does have some key advantages over dispersive or grating 

monochromators. The multiplex advantage means the entire spectrum can be observed 

throughout the measurement of the FT spectrum, with only a fragment of this capable 

of being measured in a normal monochromator. This is because the detector samples 

all of the wavelengths of emission simultaneously, whilst scanning dispersive 

techniques sample one signal channel at a time. This also gives the FT spectrum a 

signal-to-noise advantage of √ܰ  for spectra with N spectral elements if only noise 

other than the photon noise is considered in the detector. Although photon noise can be 

significant, the ability to quickly take a snapshot of the spectra can be very useful, 

especially if measuring the exciton positions as temperature is changing.  

Another advantage of the system is the throughput advantage which means 

the solid angle of collection for the interferometer is much larger than that for a 
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monochromator of the same spectral resolution. This is because the width of the 

entrance slit must be two to three orders of magnitude smaller than the diameter of the 

aperture used in the interferometer to obtain the same high spectral resolution.  

Other advantages of the system include the ease of calibration and use. A 

broad spectral range can be measured, the machine has a high degree of spectral 

accuracy and a high level of resolution. Each of these settings can be changed within 

the software or gauges on the device with no other setup required. This allows multiple 

spectra focussing at different wavelength positions and at varying resolutions to be 

recorded with a minimum of configuration changes, ideal for fine tuning spectrum 

output to a high standard. 

The setup used to record PL data is shown in figure 2.14 with the method of 

illumination in this case being the 325 nm HeCd line of a Kimmon IK Series laser with 

a power level of ~40 mW unfocused on the sample. The aperture shown in front of the 

laser itself is for safety purposes only, closing upon room entry if a security code is not 

entered. The laser is reflected onto the sample via a mirror but is otherwise uninhibited 

until contact with the sample. At the exit window of the cryostat a collimating lens is  

 

 

Figure 2.14 Experimental arrangement for photoluminescence spectroscopy 
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in place to collect the luminescence with a parabolic mirror bringing the light into 

focus at the spectrometer entrance aperture. The sample is positioned at such an angle 

that the effect of directly reflected laser light is negated. Samples were tested from 

room temperature down to approximately 20 K. 

 

2.4.3  Reflectance 

Reflectance spectroscopy is another useful technique in the study of thin films 

as it allows one to deduce exciton energies, resonant damping/broadening parameters 

and understand the effects of strain and other perturbations [85]. The dielectric 

constant of semiconductor films varies strongly close to the free exciton energies and 

thus can lead to characteristic reflectance anomalies. These effects are of major 

importance in characterising the CuCl samples and determining their suitability as 

optoelectronic devices.  

Figure 2.15 shows the experimental setup for the reflectance spectroscopy 

measurements. The intensity of the light from the Xenon lamp is controlled by the 

adjustable aperture placed in front of the light source. To concentrate the intensity to a  

 

 

Figure 2.15 Experimental arrangement for reflectance spectroscopy 
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small area on the sample a focussing lens with a short focal length is used. The 

reflected light is collected by the collimating lens and a parabolic mirror brings the 

light into focus at the aperture of the entrance to the spectrometer.  

To examine the exciton region of CuCl which has photon energies 

corresponding to wavelengths of around 380 nm an ultraviolet bandpass glass filter (in 

this case UVG-5) was used for scans using the high intensity Xe lamp. This restricted 

the wavelength of the light incident on the entrance aperture to the region of 

importance. Due to the 45º angle of incidence, both transverse and longitudinal sample 

modes affect reflections from the sample. Although this complicates the analysis of the 

spectra, there is enough separation between the transverse and longitudinal resonances 

in CuCl that they can be clearly distinguished on the resultant graphs. The use of 

focussing optics further increases the signal to noise ratio. 

The cryostat sample holder can hold up to three samples at once provided the 

samples are either cut or grown to a width of 5 mm as this is the width of the triangular 

holder the samples are affixed to. This enables each of the three samples to be tested 

with the same optical (and other) conditions. The holder is not perfectly central in the 

cryostat and thus there are small misalignments upon changing samples meaning that 

the reflected light may not be focussed onto the entrance slit of the spectrometer. 

Provided the relative distance between the aperture in front of the Xe light source, the 

focussing lens and the collimating lens remains unchanged, the reflected light can be 

steered by making minor adjustments to the horizontal and vertical positions of each of 

lenses to ensure the maximum signal is incident on the entrance aperture. Upon 

running several scans at different horizontal and vertical lens positions it was found 

that the exciton energy positions remained unchanged with the only variance being the 

signal to noise ratio and reflected intensity. 
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The spectral characteristics of the Xenon light source are similar to that of the 

internal white light source used by the spectrometer to locate the zero path difference 

(ZPD) of the system. The PM tube is easily saturated by the high intensity of the light 

coming from the Xe lamp. A bandpass filter is used to limit the range of the 

wavelength of light entering the machine which alters the spectral characteristics 

enough so that it won’t cause any interference, but the level of intensity can still be too 

great for the machine to cope with. The variable apertures in front of the source and at 

the entrance to the spectrometer are used to attenuate the signal. A voltmeter is 

attached to the spectrometer to display the current intensity entering the spectrometer 

as the adjustments are made. A suitable level on the voltmeter was found so that the 

optical signal will not saturate the PM tube cross leakage with the ZPD source requires 

constant vigilance and attention. To combat these issues, in later work the xenon light 

source was replaced with a deuterium source which has a similar spectral range. This 

operates at a much lower intensity but still sufficient to produce the reflectance 

spectrum with the required signal to noise ratio.  

When reflectance is to be performed using the deuterium lamp, adjustments 

must be made to the setup to account for the reduction in intensity. Instead of an 

aperture being used to limit the light incident on the sample, the light source is placed 

much closer to the cryostat and a focusing lens used to maximize the intensity further. 

The collimating lens at the exit slit must be adjusted quite carefully to ensure the signal 

remains as high as possible. The filter used for the Xe lamp was removed to maximize 

the intensity of the reflected deuterium light. The important features of the spectra of 

CuCl could still be determined with a similar resolution and scan number used for all 

samples once these alterations were made. 
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Figure 2.16 Experimental arrangement for reflectance spectroscopy at normal 

incidence 

 

For comparison scans were also performed at normal incidence using the setup 

shown in figure 2.16. After impinging on the sample, the light is reflected back 

towards the source but at a slight angle, hitting a mirror positioned slightly off-centre 

(~5˚). This mirror reflects the light through a collimating lens and onto another mirror. 

The light is then directed towards the parabolic mirror which focuses the light through 

the aperture and into the spectrometer. Despite the addition of several mirrors to the 

setup, intensity was not an issue and spectra of similar quality to those obtained from 

the 45˚ setup were obtained. 

 

2.5  Electrical Properties 

2.5.1  Scanning Electron Microscopy 

The scanning electron microscope (SEM) functions by directing a beam of 

electrons at the specimen and observing the various outputs from the sample and their 

spatial variation as the beam scans, which is used to build the image. The SEM is 
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primarily used to study the surface, or near surface structure of bulk or thin film 

specimens. The technique is suitable for thin film analysis as the accelerating voltage 

of the incident electrons can be altered to restrict the penetration depth to the film and 

not the host material.  

The electron source is usually of the tungsten filament thermionic emission or 

lanthanum hexaboride type. The electrons are accelerated to energy between 1 keV and 

30 keV which is considerably lower than the other major category of electron 

microscopy, transmission electron microscopy (TEM), which typically uses electrons 

with energies in the range of 100 – 300 keV. Several condenser lenses demagnify the 

electron beam until it hits the specimen with a spot size of diameter 2 – 10 nm, which 

can be altered by the user within certain bounds. 

As shown in figure 2.17, this incident electron beam causes a variety of 

different signals to be outputted from the specimen. Incident electrons may be 

backscattered from the sample with little or no energy loss or they may lose some 

 

Figure 2.17 – Schematic diagram of the types of signal resulting from an electron 

beam interacting with a solid [86] 
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Figure 2.18 Energy distribution of electron emission from Ag. Es represents the 

secondary electron peak, Ei (B) the inelastically scattered near surface emissions such 

as Auger electrons and Ee (B) the elastically scattered (backscattered) energies [87]  

 

energy and produce secondary electrons by knocking out electrons from atoms in the 

sample. These secondary electrons are characterized by their relatively low energy in 

comparison with the incident electron energy and the energy of the backscattered 

electrons. As a general rule electrons are classed as secondary electrons if their energy 

is less than about 50 eV. The scale of these energies is shown in figure 2.18 for Ag, but 

is of a similar scale for CuCl and other materials as well. 

The excess energy introduced by primary electrons into the material may also 

lead to electronic excitation, including inner shell excitations and excitations across the 

bandgap. The former mode of excitation leads to the emission of characteristic X-rays 

which allow the material chemical composition to be studied by energy dispersive x-

ray spectroscopy (EDX), detailed in section 2.5.3. The latter mode of excitation results 

in the generation of electron-hole pairs and the subsequent emission of photons in the 

ultra-violet, infrared and visible spectral ranges and is commonly known as 
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cathodoluminescence (meaning luminescence generated by a cathode ray, i.e. 

electrons, CL) and is detailed in section 2.5.2. Different detectors are used to record 

the signals from secondary electrons, backscattered electrons, CL etc.  

The most common imaging mode of the SEM uses the secondary electrons 

emitted from the sample, and is an imaging mode used routinely in this work. The 

secondary emission yield for a solid is characterized as the ratio of secondary electron 

current to primary electron current as defined by:  

ߜ =
ௌܫ − ஻ܫ
ைܫ − ஻ܫ

 

                Eqn 2.31 

where IS is the secondary emission current, IB is the backscattered electron current and 

IO is the primary electron current. The secondary electrons originate from the top few 

nm of the sample surface due to their low energy and consequent small escape depth of 

the < 50 eV electrons. The secondary emission yield depends almost solely on the  

 

Figure 2.19 Secondary electron image showing the detailed surface topography of an 

imaged sample 
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primary electron energy, the density and, most importantly the sample surface 

topography (and to a lesser extent the crystallography of the emission surface as the 

work function changes). Thus, for a single scan across a reasonably homogeneous 

surface under constant primary beam energy, the secondary electron imaging mode 

depends mainly on local surface topography. An example of this is shown in figure 

2.19. The other main mode in which the SEM system was used in the present work is 

the CL-SEM mode, as discussed next. 

 

2.5.2  Cathodoluminescence SEM (CL-SEM) Imaging 

This technique involves the analysis of photon emission from a luminescent 

material excited by a beam of high energy electrons due to bandgap excitations of 

excited electron hole pairs. This can provide both lateral, spatially resolved 

information due to the small electron spot size and scanning modality and also depth-

resolved information on the structure of the solid by varying the primary electron beam 

energy and thus the penetration depth of the primary electrons in the material and the 

excitation volume. Various properties of a material can be investigated with a spatial 

resolution down to 1µm or less such as (a) the composition of the compounds, (b) the 

location of the luminescent centre concentrations, (c) electronic properties such as 

surface recombination velocity and carrier diffusion length via the dependence of 

cathodoluminescence (CL) intensity on electron beam voltage and related properties 

such as minority carrier lifetime using time-resolved CL measurements and (d) 

extended defects such as dislocations from CL maps of the surface of the material. As 

well as being used to characterize the properties of the material, CL gives a good 

indication of the overall luminescence efficiency of the material and thus the viability 

of the material as a component of light emitting devices. 



62 
 

 

Figure 2.20  Schematic showing the layout of an SEM with CL equipment attached 

[88] 

The technique of CL imaging may in principle be performed in a variety of 

electron microscopes, including scanning electron microscopes (SEMs), scanning 

transmission electron microscopes (STEMs), or transmission electron microscopes 

(TEMs) equipped with CL detecting systems. There are however significant 

differences between SEM, STEM and TEM-based systems due to the nature of the 

electron lens configurations and ease of optical access to the sample. For this reason 

the majority of CL systems are based on SEM instruments due to the larger sample 

chambers of such systems and the ease of installing larger optical collection systems. 

The CL of the samples discussed in this report was performed using an SEM with a 

mirror and monochromator attached to collect the outputted CL signal [86]. A 

schematic diagram of this setup is shown in figure 2.20. 

The number of electron-hole pairs generated per incident beam electron is 

given by the generation factor [89]: 
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ܩ =
௕(1ܧ − (ߛ

௜ܧ
 

                    Eqn 2.32 

where Eb is the primary electron beam energy, Ei is the ionization energy and γ 

represents the fractional electron beam energy lost due to the generation of 

backscattered electrons or other excitations in the crystal such as inner shell 

excitations. Eb can be adjusted in the SEM software, Ei is typically 3.395eV at 4K for 

CuCl [26] and γ is ~0.66. [89]. Using these known parameters it is clear that the 

number of electron hole pairs generated is dependent on the beam voltage present in 

the electron beam as the other factors will remain constant for each sample. 

The second aspect of the CL emission which is strongly affected by the 

primary beam voltage is the region from which the emission is generated, due to the 

varying penetration depth of the beam with beam voltage. A general equation for the 

penetration depth as a function of primary beam voltage was derived by Kanaya and 

Okayama [90] and found to agree well with experimental results for the penetration 

depth of the electron beam into a variety of materials. This equation is: 

ܴ௘ = ൬
ܣ0.0276
଴.଼଼ଽܼߩ ൰ܧ௕

ଵ.଺଻(݉ߤ) 

                    Eqn 2.33 

where Eb is the primary electron beam energy in keV, A is the atomic weight in g/mol, 

ρ is in gcm-3, and Z is the atomic number. The atomic weight is 98.99 g/mol for CuCl, 

ρ is 1.90 gcm-3 (which was also used for the tooling factor as described in section 

2.2.1), Z is the total atomic number which for CuCl is 46. The shape of the generation 

volume within the material is dependent on the atomic number, varying from a pear 

shape for a material with a low atomic number, to a spherical shape for 15 < Z < 40 

and a hemispherical shape for higher atomic numbers. With an atomic number of 14 Si 
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corresponds to a situation between the pear and spherical shapes, whilst with an atomic 

number of 46 CuCl should be better described by a hemispherical shape. This is quite 

difficult to see from the simulations below however, even when substrates of pure Si 

or CuCl are selected. CL emission occurs from the entire interaction volume of the 

electron beam with the sample, unlike the secondary electron or backscattered electron 

signal [91]. 

From these two equations we can see that the SEM can be used for depth-

resolved CL studies as the penetration depth of the electron beam (Eb) and intensity of  

the CL signal can be varied by adjusting the charge of the electron beam. This allows 

changes in optical properties of the material to be probed as a function of distance 

from the surface.  

Figure 2.21 shows the results of a Monte Carlo simulation program [92] for a 

500 nm thin film of CuCl on a Si substrate using the density of 1.90 gcm-3 which is 

taken as previously mentioned. The primary electrons are represented by the blue lines 

in the material and the backscattered electrons by the red lines with the penetration 

depth calculated using the aforementioned Kanaya and Okayama equation. For 500nm 

of CuCl on Si the Eb required to fully penetrate the 500 nm was calculated to be 4.0778 

KeV. The simulations, from (a) to (d), show the gradual increase and spread of the 

electrons within the surface of the thin film until they reach the boundary between 

CuCl and Si at 500 nm. The penetration depth from the Kanaya-Okayama equation 

represents the greatest extent of the interaction volume into the material. The 

simulation shows reasonable agreement with the equation. As the electron beam 

energy is further increased up to 15 KeV, we can see that most of the electron energy 

is deposited within the Si layer rather than the CuCl. At the higher beam energies the 

electrons are mostly bypassing the CuCl layer entirely to deposit in the Si substrate.  
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Figure 2.21 Monte Carlo simulations for electron trajectories onto a 500nm CuCl 

sample at increasing accelerating voltages (keV); (a) 2 keV, (b) 3 keV, (c) 4 keV, (d) 5 

keV (e) 5 keV, (f) 7.33 keV, (g) 11.67 keV, (h) 15 keV. The dotted line shows the border 

between CuCl and Si with the CuCl at the top. The total depth of the (a) – (d) is 600 

nm and (e) – (h) is 2000 nm. [92] 

(e) (f) 

(g) (h) 

(a) (b) 

(c) (d) 
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For the CL scans this will not affect the measured spectrum as there is a very 

low CL signal from Si (due to its indirect bandgap nature) and thus the measured 

emitted photons will still arise entirely from the CuCl layer as desired. However as the 

beam energy is increased, the broader interaction volume will degrade the resolution 

for imaging and thus generally the lowest possible beam energy which excites the 

entirety of the film is used to study CuCl thin films. 

CL scans were performed at room temperature using a LEO Stereoscan 440 

SEM with an attached CL mirror and micrometer shown in figure 2.22. The samples 

were excited with the electron beam set to < 15keV (chosen depending on the sample 

details) and a probe current of typically 1.1 nA.  

 

 

Figure 2.22 CCD image of the SEM system used for measurement. The attached CL 

and EDX equipment can be seen on the left side of the picture 
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The CL mirror placed inside the vacuum chamber is parabolic in shape with a 

1mm hole in the top which allows the electron beam to pass through. The electrons 

impinging on the sample excite luminescence and whilst some of this escapes through 

the entrance hole, the mirror has a large solid angle of collection and thus a high 

collection efficiency of ~75% [93]. The focal length of the mirror is also 1 mm so great 

care is taken when aligning it with the substrate to prevent contact with the SEM lens 

pole-piece. Once the photons are collected by the mirror they are transferred via 

optical fibre bundle to the Gatan MonoCL monochromator with a 1200 lines/mm 

grating and photomultiplier tube which captured the spectra. The resolution of this 

monochomator is approximately 1 nm. The samples analyzed using the SEM in DCU 

were all made using the deposition technique described in section 2.2.  

 

2.5.3 Energy Dispersive X-ray Spectroscopy 

Similar to CL, this technique involves the analysis of emissions from the 

surface of the substrate when an electron beam is focussed upon it such as within an 

SEM. In this case however, we are monitoring the characteristic x-rays emitted from 

the material rather than the UV/visible light monitored for CL. These x-rays are 

characteristic of the material they are emitted from and can thus be used to identify the 

element source. As shown in figure 2.23, the X-rays emitted from the sample come 

from the entire interaction volume, similar to CL and different from secondary 

electrons and thus there may be a large signal from the substrate, in many cases larger 

than from the thin film itself. Once again, similar to CL, in our case this does not cause 

difficulties because the elemental composition of the thin films does not overlap with 

that of the substrate, and the characteristic x-rays from the thin film have distinct 

energies/wavelengths. 
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Figure 2.23 The interaction volume and the regions from which secondary electrons, 

backscattered electrons and X-rays may be detected [94] 

 

The setup used for energy dispersive X-ray spectroscopy (EDX) was a 

scanning electron microscope and a Princeton Gamma Tech energy dispersive X-ray 

analyser with a silicon (Li) detector. The Li window covering the Si detector absorbs 

low energy X-rays and therefore light elements such as hydrogen cannot be detected 

by this technique. The high efficiency of the EDX detector coupled with the relatively 

large collection angle means that data can be collected quite rapidly at low beam 

currents, typically within only a minute or two.  

There are a couple of disadvantages with this technique, one being that the 

energy resolution of the detector is quite poor, meaning that each X-ray line is not 

detected as a sharp line, but rather as a broad peak typically 100-200 eV wide. This 

makes it almost impossible to resolve closely spaced lines and sometimes results in 

quite a low peak to background ratio. Also, under certain circumstances erroneous 

peaks in the spectrum can be produced. The most common of these effects is the sum 

peak and the silicon escape peak. The sum peak is a result of two identical photons 

entering the detector simultaneously resulting in a single peak of their combined 
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energy being recorded instead of two counts of their actual energy. The silicon escape 

peak is due to an incident X-ray knocking out a K-shell electron within the silicon in 

the detector crystal. The original X-ray photon loses 1.74 keV in energy (the energy of 

the SiKα X-rays) and a peak 1.74 keV below the actual X-ray peak is produced. 

However as long as the user is aware of these effects and considers them in subsequent 

analyses, this technique can be used to characterize the material structure of the 

samples quite effectively.  

 

2.6  Summary 

Throughout this chapter we have discussed the different types of deposition 

performed and the various methods of analysis used to characterise the resultant 

samples. Although both thermal evaporation deposition and LPE are detailed, each of 

the samples used for analysis in the following chapters were produced using the former 

technique. The LPE setup proved problematic with the CuCl melt failing to adhere to 

the surface in a uniform manner and instead forming globular clusters of material 

across the surface. For this reason the setup was not used for sample deposition but the 

KCl doping used by the process to lower the melting point of CuCl was investigated as 

initial experiments on the addition of the KCl salt showed an increase in the measured 

intensity at each of the exciton locations [95].  

The theory behind the methods of characterisation used in the following 

chapters was also discussed. The X-ray diffraction process allows us to analyze the 

orientation and size of the CuCl crystallites within our thin films and to look for the 

presence of KCl material, either in KCl form or as part of the K2CuCl3 compound. 

Glancing angle scans can also be used to examine the polycrystalline nature of our 
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samples. The main disadvantage with this technique is the exposure of the material to 

the atmosphere throughout the process. Due to the hygroscopic nature of CuCl, the 

structural properties will be deteriorating as the scans are performed. A capping layer 

was found and will be discussed in the following chapter, but this effects the optical 

properties of the material and limits the testing of a single sample across multiple 

methods of characterisation.  

The theory involved in the optical properties of CuCl follows this section. 

This includes both photoluminescence and reflectance, both of which are performed in 

the same low temperature cryostat setup using a Fourier transform spectrometer to 

record the resultant spectra. Both of these methods allow the values of the exciton 

energies to be measured. the distinction being that PL also records the biexciton 

positions which allows the binding energy to be calculated, whilst the reflectance 

process only records the main exciton peak values, but allows various exciton 

parameters to be calculated (damping, splitting, etc.) once the spectral shape has been 

modelled. Taking place within a controlled low temperature environment, the optical 

analysis should be non-destructive by nature. However, long-term exposure to the laser 

used in the PL measurements results in a visible scarring on the surface of the samples 

as well as a deterioration in luminescence intensity. Reflectance however is completely 

non-destructive. The results for this section are presented in chapter 5.  

Finally the theory behind the analysis of the electrical properties is reviewed. 

Each of the methods used in this section involve the interaction of the CuCl thin films 

with the focussed electron beam within the SEM. Like the optical analysis, this occurs 

within a controlled environment, but remains at room temperature. This process 

provides us with a more detailed look at the surface structure of our samples in the 

secondary electron images and EDX imaging. SE shows us the physical structure with 
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the EDX supplementing these images by allowing us to determine the atomic structure 

of the regions imaged. CL allows us to record the Z3 exciton location and the 

distribution of defects across the surface of the samples. Variance of the beam 

penetration depth allows us to determine whether these defects stem from the air-CuCl 

or CuCl-Si boundaries. This process is destructive due to the electron beam interaction, 

but the effects of this are confined to relatively small areas on the surface of the 

samples. The results of each of the methods used in this section are presented in 

chapter 4. This is prior to the optical property results because the SEM was also used 

for physical thickness analysis to confirm the reflectance modelling at the end of 

chapter 5.  
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Chapter 3 

 

Structural Properties 
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3.1   Introduction 

Our characterisation of the CuCl thin films begins with the structural and 

morphological properties which can be determined from x-ray diffraction (XRD) scans 

of the surface material. First we breakdown the constituents of the samples and the 

scanning process, showing the θ/2θ XRD spectra of the base plate, pure CuCl beads, 

KCl powder and Si samples of (100) orientation. Knowing the growth orientation of 

each of the components prior to their combination during the deposition process allows 

us to observe the alterations in their crystallography due to their interactions with each 

other. This also provides a more appropriate frame of reference than the ICDD 

database since the ICDD diffraction patterns are the result of scans of powder samples, 

rather than textured films. Consequently, samples of CuCl on Si are compared to these 

initial scans immediately after growth and again once time has passed to illustrate the 

deterioration of the structure due to the hygroscopic nature of CuCl. This step was 

repeated for a number of samples to confirm the reliability of the deposition process 

before proceeding. To combat the fast deterioration of the sample and thus of the XRD 

peaks, a capping layer was required. Nail polish [66] was applied to each of the 

samples prior to XRD analysis. It was confirmed by various measurements that the 

varnish had negligible effects on the XRD pattern. Prior to doping, the analysis of 
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samples which had decayed due to the presence of both oxygen and moisture was 

performed to illustrate the difference between the decayed and doped samples.  

With the reliability of the deposition and a method to preserve structural 

orientation established, analysis of the doping of CuCl with KCl and O could be 

performed. Each of the angular values and relative intensities are compared to their 

measured values from powder diffraction according to the International Centre for 

Diffraction Data (ICDD) provided by the XRD manufacturer. Various alternative 

setups and scan modes are also used to analyse particular aspects of the crystal 

structure. Glancing Angle X-Ray Diffraction (GAXRD) is used to diminish the 

influence of the Si layer on the XRD spectra, with various glancing angles used to 

investigate the structure at different depths within the specimen. Rocking curve scans 

show the favourable orientations of key diffraction peaks and φ scans the crystal 

symmetry of the CuCl layer.  

 

3.2     XRD Measurements on the System 

Base Plate  

There are some unavoidable factors with the XRD equipment which may 

contribute their own diffraction peaks and interfere with the analysis of our results. 

Due to our use of thin film samples, the base plate to which the sample is attached and 

the tape affixing it in place must be recorded and their characteristic diffraction 

patterns taken into account when examining our samples. Figure 3.1 shows the results 

of a locked coupled scan of the base plate, with no sample in place. A locked coupled 

scan is similar to a 2θ/θ scan except it does not take any differences in the θ positions 
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into account, i.e. if θ is set to 10˚ then 2θ will be at 20˚ rather than any slight fraction 

above or below to account for slight alterations in crystal orientation (i.e. a 2/ scan). 

By using this scan all the diffraction peaks from the base plate were imaged with no 

bias in orientation. We can see that there are 4 significant sharp peaks at 38.3˚, 44.6˚, 

64.9˚ and 78.1˚ with a smaller peak at 74.4˚. If these peaks appear on any of our 

subsequent scans and do not match the expected XRD patterns for the materials used 

they can be ascribed to the base plate and eliminated from our analysis. 
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Figure 3.1 Locked Coupled scan of the XRD machine’s base plate 

 

With the base plate diffraction pattern established, we can add the additional 

elements which will be in the path of the X-ray during the analysis of our thin film 

samples and observe how they affect the base plate pattern. Figure 3.2 shows the effect 

of the double-sided tape on the base plate diffraction pattern. The four sharp peaks are 

unchanged, but there is an increase in the overall background reading at angles below 

the peak at 64.9˚ and a large broadband structure between approximately 15˚ and 27˚. 
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This broadband feature is quite prominent but does not directly cover the area of 

interest of our samples, given that the first CuCl peak of importance is at 28˚. This 

confirms that aside from the base plate, there will be no additional diffraction peaks 

formed by the tape in the region of interest so any peaks observed will be from the 

samples themselves. 
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Figure 3.2 Locked Coupled scans of the XRD machine’s Base Plate with and without 

double-sided tape. An offset of 1 degree has been applied to distinguish the peaks. The 

increase in the background level is due to the samples being recorded at different 

exposure times. The exposure time was found to have a negligible effect on these peak 

values 

 

3.3     CuCl Sample Composition  

To show the effect of the deposition process on the CuCl crystal structure, the 

constituent elements of the samples were examined separately. The source of CuCl 

used for deposition comes in miniscule pellet form, approximately 1 mm in diameter. 
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Several of these were attached to the stage using double-sided tape (the XRD pattern 

of which can be seen in figure 3.2) which will be used to attach all other samples 

unless otherwise stated. The diffraction pattern of the CuCl pellets was analysed using 

the parallel beam geometry setup in 2θ/θ mode and is shown in figure 3.3.  

This graph clearly shows that the preferred orientation of the CuCl pellets is 

(111) which matches the orientation of peak intensity for powder samples recorded in 

the ICDD Diffraction Database. A comparison of the ICDD values with our recorded 

values is shown in table 3.1. The measured intensity percentage was calculated from 

the (220) peak as the (111) peak is of such a high intensity that the ratios of the other 

peaks are several orders of magnitude too small for a worthwhile comparison to be 

made with the ICDD values. For this reason they have been re-normalised to the (220) 

peak. The difference between the measured values and the ICDD values is probably 
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Figure 3.3 θ/2θ XRD Diffraction Pattern for CuCl pellets. CuCl orientations are 

marked, with the known peaks from the base plate marked as B. 
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Plane 

(hkl) 

ICDD 2θ 

(degrees) 

CuCl 

Pellet 2θ 

(degrees) 

Diff (Exp 

– ICDD) 

% 

Intensity 

ICDD 

% 

Intensity 

Exp. 

Crystallite 

Size (nm) 

111 28.594 28.566 -0.028 N/A N/A 62.4 

100 33.027 33.094 +0.067 14 5 26.3 

220 47.561 47.401 -0.16 100 100 46.1 

311 56.441 56.401 -0.04 55 307 60.2 

400 69.543 69.469 -0.074 11 10 67.4 

331 76.813 76.603 -0.21 18 6 85.9 

Table 3.1 Expected positions and ratios of the CuCl diffraction peaks visible in figure 

3.3 and their actual values. 

 

due to the quality of the material and the preparation involved. The ICDD diffraction 

values were performed on pure powdered samples. For best adhesion to the base plate 

the CuCl samples have been left in pellet form and not crushed into a powder. This 

could be a contributing factor to the disparity in these values as well as the inherent 

limitations of equipment accuracy.  

From figure 3.3 and these calculations we can see that the (220) peak is of 

lower intensity than the (311) peak which disagrees with the expected ICDD values. 

This indicates a bias in the pellet structure, but should not affect the CuCl thin films 

once evaporation takes place. Of the remaining CuCl peaks there is a similar 

disagreement in the experimental intensity ratios between the (400) and (331) peaks.  

There is one peak of note that remains unaccounted for. The peak at 58.9˚ is 

an anomaly and seems specific to the CuCl pellets themselves as it does not appear in 

scans of any other material, possibly related to impurity phases introduced during the 
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manufacturing process of the CuCl beads. It is also worth noting the presence of the 

reflected x-rays of Cu Kβ that haven’t been entirely filtered out to the left of the CuCl 

(111) peak. These are present in all of the θ/2θ scans to the left of the peak of 

maximum intensity no matter what material is being scanned. The higher energy value 

of the Cu Kβ x-rays causes their appearance at lower degrees. Typically this intensity is 

expected to be 17% of the Kα energy [96] but in this case it is only 0.1% due to the 

filtering of the Kβ in the x-ray source used. This indicates that it is highly unlikely Cu 

Kβ x-rays will be detected for any other peaks. Overall the 2θ positions of the 

orientations are within 0.2˚ of the expected ICDD values indicating that the pellets are 

not significantly strained (the diffractometer angular resolution is ~ 0.1˚). The 

properties of the CuCl pellets can be compared to the values of our resulting thin film 

samples to show how the Si substrate effects the orientation of the CuCl material. 

One of these properties that can be measured using these scans is the texture 

factor of the material. This can be used to quantify the orientation of a particular peak 

in the crystal structure when compared with the ICDD intensities. A value of 1 

indicates complete agreement, higher values showing a degree of preferential growth 

and lower values a lack of preferential growth in the chosen orientation. In this case we 

shall calculate the texture factor for the peak of highest intensity, the (111) peak. This 

is calculated using the following formula:  

௖ܶ(௛௞௟) =
(௛௞௟)ܫ ⁄଴(௛௞௟)ܫ

1 ܰ⁄ ൣ∑ (௛௞௟)ܫ ଴(௛௞௟)⁄ேܫ ൧
 

                           Eqn 3.1 

where Tc(hkl) is the texture coefficient of the (hkl) plane, I the measured intensity, I0 the 

corresponding recorded ICDD intensity and N the number of preferred growth 

directions [97]. In this case N is 6 as the orientations (111), (100), (220), (311), (400) 

and (331) are all visible in figure 3.3. The texture factor is calculated to be 5.775 for 
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this peak. Future samples can be compared using this method to ascertain which has 

the most preferred orientation in the (111) plane.  

The crystallite size (or more exactly the out of plane coherence length) of the 

orientations of CuCl orientations can be estimated by using the Scherrer formula: 

ݐ =
ߣ0.9

ܤ cosߠ஻
 

                         Eqn 2.10 

where t is the crystallite size in nm, λ is the wavelength of the incident x-ray (in this 

case 1.5405 Å), B is the full width at half the maximum height (FWHM) and θB is the 

diffraction angle (i.e. the θ angle instead of the 2θ angle). This formula is discussed in 

more detail in chapter 2. The size of the crystallites is such that the contribution of 

particle-size broadening will be too low to impinge on the accuracy significantly of 

this calculation. Similarly instrumental broadening due to the slit width and penetration 

depth can also be ignored since for the (111) peak of maximum intensity at 28˚ the Kα2 

peak cannot be distinguished from the Kα1 peak meaning that the broadening due to 

this effect cannot be accounted for in the FWHM value. This effect will be constant for 

all samples so the crystallite size may be slightly larger than the calculated values but 

more importantly the changes in crystallite size throughout the different samples can 

be measured. Our values for the crystallite size are shown previously in table 3.1. 

There are notably 2 peaks of extremely low intensity, the (100) peak at 33˚ 

and the (331) peak at 76˚. If the crystallite size of these peaks is excluded (due to their 

low intensity, the percentage error will be higher) we can see that for the CuCl pellets 

the crystallite size determined from the different XRD peaks remains rather consistent, 

varying between ~46 and 67 nm. The peak we’re most concerned with is the (111) 

peak at 28˚ as this is the preferred orientation of the CuCl on the Si substrate. This 

value is estimated to be 62 nm for the CuCl pellets. 



81 
 

3.4     KCl Sample Composition  

During the KCl-CuCl deposition, it is thought that the K2CuCl3 compound is 

formed and evaporated onto the surface. The phase diagram of KCl – CuCl is shown 

once again in figure 3.4. As the deposited material cools, it will go through the phases 

indicated there, along a vertical line resulting in a deposition of CuCl and K2CuCl3 due 

to the molar ratio used in the starting material (KCl 25% CuCl 75%). Even so it is 

likely that there would be some amount of pure KCl present in the resultant thin film 

and certainly the properties and preferred orientations of this source KCl material will 

have an effect. The source of KCl used for deposition in our KCl-CuCl samples was 

commercially available 99.99% purity (Sigma-Aldrich) and came in a fine powder 

form. A layer of this was attached to the tape in the same fashion as the CuCl pellets 

and the subsequent diffraction pattern recorded by parallel beam geometry setup in  

 

 

Fig 3.4 Phase diagram for KCl – CuCl  
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2θ/θ mode is shown in figure 3.5. As previously with the CuCl pellets, the angular 

positions are within 0.2˚ of the expected values and the intensity ratios are quite 

different from the expected ICDD values as can be seen in table 3.2. A lack of 

powdered samples is not the cause in this case, instead it is probably due to the 

exposure of the KCl material to moisture and oxygen itself. Although stored in a 

sealed plastic container, the KCl material was not freshly acquired. To combat this the 

powder was baked on a hot plate inside a glass container for several hours to reduce 

the levels of moisture and oxygen present before testing.  

The most prominent KCl peak is the (200) peak. This has a similar angular 

position to the strongest CuCl pellet peak (differing by only ~ 0.25˚) but is of a 

different orientation to the (111) CuCl peak. If this peak was present in the KCl – CuCl  
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Figure 3.5 2θ/θ XRD Diffraction pattern for the KCl pellets. The orientations of each 

of the peaks are marked and peaks ascribed to the base plate are labelled as B. 
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thin films it is likely it will be indistinguishable from the CuCl (111) peak due to the 

accuracy of the instrument. Despite this being the peak of highest intensity, 

calculations of the KCl peaks show that the (400) peak has a texture factor of 5.221 

greater than the (200) texture factor of 1.124. The crystallite size seems to vary, 

especially if we focus on the peaks of relatively large intensity ranging from 58 to 149 

nm for the (200), (400) and (420) peaks. However the (400) and (420) Kα2 peaks could 

be determined from the Kα1 peaks meaning that the FWHM value was reduced and the 

calculated crystallite size increased. Therefore the actual (200) crystallite size is 

probably between 70 and 80 nm if we allow for the Kα2 peak.  

 

 

Plane 

(hkl) 

ICDD 2θ 

(degrees) 

KCl 

Pellet 2θ 

(degrees) 

Diff 

(Exp – 

ICDD)  

% 

Intensity 

ICDD 

% 

Intensity 

Measured 

Crystallite 

Size (nm) 

200 28.346 28.334 -0.012 100 100 58.0 

220 40.508 40.45 -0.058 37 0.301 46.0 

222 50.170 50.05 -0.12 10 0.314 49.8 

400 58.642 58.59 -0.052 5 24.210 112.0 

420 66.383 66.307 -0.076 9 4.941 149.5 

422 73.735 73.664 -0.071 5 0.202 92.5 

Table 3.2 Expected ratios of the KCl diffraction peaks visible in figure 3.5 and their 

actual values 
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3.5   Protective Varnish Layer 

Since the XRD scans are performed in an open atmosphere, to prevent very 

rapid deterioration of the CuCl structural properties the samples must be protected by a 

capping layer. A suitable capping layer must have certain qualities; be amorphous to 

prevent interference with XRD studies of the crystal structure in CuCl, have little to no 

effect on the structural properties of the material and protect the surface from moisture 

and oxidation. To test the suitability of clear varnish as a sealant it was applied to a 

series of different surfaces and diffraction analysis performed to confirm the varnish is 

not crystalline in nature. The addition of the varnish to the tape affixed to the base 

plate did produce any supplementary diffraction peaks. As figure 3.6 shows, there is 

little change in the addition of the varnish to distinguish the two, with a slight decrease  
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Figure 3.6 Locked Coupled scans of the XRD machine’s Base Plate with tape and with 

both tape and varnish. Scans were both recorded in increments of 0.1 degrees with 1 

second at each. An offset of 1 degree has been applied to distinguish the peaks. 
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in the intensity between 10˚ and 15˚ (but being outside the expected range of our CuCl 

and KCl peaks, this should not interfere with the diffraction analysis) and also in the 

intensities of the 44.6˚ and 78.1˚ peaks being the only alterations. This shows that the 

varnish does not have its own crystalline structure but is instead an amorphous surface 

which is one of the qualities a capping layer must possess. 

To show how the clear varnish affects CuCl material it was applied to the 

CuCl pellets tested previously in section 3.3. Figure 3.7 shows the effect of the varnish 

on the 2θ/θ CuCl diffraction spectrum. The angular positions of the CuCl peaks are 

unaffected, but there is a slight decrease in their intensity. These two scans were 

performed on different setups to counter oxidising effects of the CuCl, with the varnish 

applied to the pellets as soon as they were affixed to the tape. This accounts for the 

increase in the broadband region around 20˚ as we have shown this to stem from the  
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Figure 3.7 2θ/θ XRD Diffraction pattern for the CuCl pellets with and without varnish. 

An offset of 1 degree has been applied to the diffraction patterns for clarity. 
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tape rather than the samples themselves. Only the orientations of CuCl that showed a 

large signal to noise ratio were compared in table 3.3 to maximise the accuracy of our 

results. The overall difference in the intensities can be accounted for by the change in 

setup but the (311) peak at 56˚ shows a distinct change, deteriorating greatly from the 

unvarnished scan in both shape and intensity. This deterioration is quantified in table 

3.3 by the crystallite size difference calculation which shows a decrease of almost 50% 

when compared with the values obtained in table 3.1. 

Since the overall ratio of the peak intensities remains unchanged it is clear that 

the varnish does not have a large effect on the crystallinity of the CuCl material, but 

attention must be paid to the (311) peak to see if this deterioration is prevalent in all 

future scans. The final test of the influence of the clear varnish on the crystallinity of 

the materials, is to apply it to the thin film substrate (100) Si. Figure 3.8 shows the 

results for the (100) Si samples. Similar effects to the CuCl pellets were observed, the 

varnish causes a slight decrease in the intensity of the diffraction peaks and an overall 

increase in the background intensity. However the varnish has introduced a broadband 

region around 20˚ which we have previously observed to stem from the double-sided 

tape. It appears this is a feature common to both surfaces as no change to the setup 

 

Plane 

(hkl) 

CuCl Pellet 

2θ (˚) 

Varnished 

CuCl Pellet 

2θ (˚) 

Difference 

(Varnished – 

CuCl) 

FWHM 

CuCl (˚) 

FWHM 

Varnished 

CuCl (˚) 

Crystallite 

Size Diff (nm) 

(Var – CuCl) 

111 28.56571 28.43792 0.12779 0.14498 0.14404 0.33 

220 47.39688 47.40955 -0.01276 0.25452 0.23342 4.18 

311 56.42044 56.2242 0.19624 0.23858 0.44896 -28.37 

Table 3.3 Comparison of the diffraction peaks for CuCl prior to and after varnish 

application 
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occurred between scans and is likely due to some degree of short range order with long 

periodicity in both systems. Whilst this affects the signal to noise ratio of the samples, 

it does not affect the angular position of the diffraction peaks. Therefore, when reading 

the FWHM of the diffraction peaks, the sides of the peaks could manually be extended 

to the background level prior to application of the varnish. This can be found by 

running the scan at the required settings on an unvarnished sample and recording the 

background level. These samples will then have significantly decayed, but since these 

levels were found to be consistent across multiple samples other samples need not be 

sacrificed in a similar fashion. 
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Figure 3.8 θ/2θ scans of one Si sample. First untreated and then after the sample was 

coated with varnish. The spectrum of the varnished sample has been shifted to the 

right by one degree for clarity. The broad peak visible around 20˚ was sometimes 

found in both samples so is not specific to the varnish  
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Once the capping layer was shown to have no significant effect on Si, further 

CuCl thin film samples were coated immediately upon completion of deposition when 

they were intended for XRD analysis. The resulting behaviour of the peaks was similar 

in effect to the pellet samples and can be seen in the next section. Application of the 

varnish layer did cause a slight shift in the rocking curve position for the (111) peak at 

28˚ and a small decrease in intensity indicating that some kind of effect was taking 

place, or interference with the x-ray signal. However the optical and electrical methods 

of characterisation detailed in Chapters 4 and 5 require no barrier to be present 

between the CuCl thin film and atmosphere for reliable results to be obtained. Also in 

the process of oxygen doping our thin film samples, repeated doping of the same 

sample was found to yield more reliable results. This of course is not possible if there 

is a capping layer present, so this layer was used primarily for characterisation of the 

undoped 500 nm CuCl and KCl-CuCl thin film samples detailed in the following 

sections. 

 

3.6   CuCl Thin Film Samples 

To identify the crystalline nature and structural parameters of the deposited 

CuCl films the symmetrical reflections produced by θ/2θ scans of the samples were 

studied. Several clearly defined Bragg peaks can be seen in figure 3.9 which show the 

polycrystalline nature of the films. The data is shown unprocessed to illustrate the 

differing diffraction positions of the Cu Kα1 and Kα2 peaks. The Kα1 and Kα2 peaks at 

28˚ were too close to distinguish both visually and through processing so the values 

used are estimates. 2θ values of the diffraction peaks are in good agreement with the 
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accepted values of the International Centre for Diffraction Data (ICDD) powder 

diffraction database and are compared in table 3.4. 

The first feature on the left of the scan is the large hump which has been 

shown to stem from the sellotape used to attach the substrate to the base plate of the 

XRD. This has a slightly crystalline structure with aligned long chain molecules, and 

can be ignored. Aside from the main (400) Si peak at 69º, the peak of highest intensity 

is at ~33º. These two peaks have been previously seen in our Si sample scans (figure 

3.8) and the high intensity at these angular positions is due to the Si substrate rather 

than the CuCl layer.  
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Figure 3.9 2θ-θ scan for a varnished 500nm CuCl sample 
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When the resolution of the peaks is increased two distinctive peaks can be 

seen. These are present for each of the diffraction peaks and can be attributed to the 

Kα1 and Kα2 reflections. Looking specifically at the enlarged (200) Si reflection in 

figure 3.9, we can see Kα1 and Kα2 peaks present at 32.687º and 32.766º. The (200) Si 

peak is normally forbidden due to the structure factors of the crystal, but as shown by 

this scan, multiple diffraction has occurred in the thick substrate from various planes of 

the single crystal resulting in the diffracted Si (200) beam shown [98]. It should be 

noted that the CuCl (200) peak cannot be distinguished from the Si (200) peaks. This 

peak would be quite small relative to the other diffraction peaks and since the position 

of this peak is extremely close to the Kα2 (200) Si peak, the Si peak overshadows it 

entirely.  

 

Diffraction 

Peak 

Kα1 Kα2 

XRD 

Experime-

ntal Value 

ICDD 

Value 

Δ Kα1 XRD 

Experimen-

tal Value 

ICDD 

Value 

Δ Kα2 

CuCl (111) 28.268 28.545 0.277 28.309 28.594 0.285 

Si (200) 32.687 Forbidden 32.766 Forbidden 

CuCl (220) 47.200 47.476 0.276 47.298 47.561 0.263 

CuCl (311) 56.065 56.338 0.273 56.182 56.441 0.259 

Si (400) 68.912 69.132 0.220 69.112 69.327 0.215 

CuCl (331) 76.393 76.590 0.197 76.674 N/A N/A 

Table 3.4 Comparison between the experimental and accepted diffraction peak values 

for both the Kα1 and Kα2 x-ray values taken from figure 3.9. All values are 2θ degrees. 

The CuCl (331) Kα2 value was absent from the system’s ICDD database 
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The same effect occurs at the Si (400) peak which is of much higher intensity. 

It has been shown previously on Si (111) that CuCl growth matching the orientation of 

the substrate results in a broadening of the rocking curve at this diffraction angle rather 

than having any noticeable effect on the peaks themselves in the 2θ-ω scans [99]. This 

is due to the polycrystalline growth of the CuCl in this orientation indicating a slight 

misalignment with the Si. This is not the case with Si (100) although it could be due to 

the lower intensities of these diffraction peaks (as indicated by the ICDD values and 

our scans of the powder material) not being significant enough to be detected rather 

than a lack of growth in the substrate’s orientation.  

Upon performing φ-scans on the Si (100) peak, it was found to be heavily 

dependent on the φ angle used. A series of sharp diffraction peaks in four-fold 

rotational symmetry are found as shown in figure 3.10 (a). Each of these peaks are 

numbered, with 1A, 1B, 1C and 1D being symmetrical peaks and the same rule applies 

for 2, 3 and 4. Figure 3.10 (b) shows an enlarged 90˚ section showing the identification 

of each of the multiple diffraction peaks confirmed to stem from the Si substrate. 

There is no evidence of any extra diffraction peaks, or unexplained variations in 

intensity that could signify the presence of CuCl. This pattern repeats every 90˚ and 

very closely matches the previous results for the φ pattern of (100) Si at 33˚ from 

which the peaks are identified [98]. 

At 28.268º we see the CuCl (111) peak. This is the largest intensity of the 

solely CuCl peaks and agrees with previous studies which have shown (111) CuCl to 

be the preferred orientation of CuCl growth on amorphous glass substrates and Si 

substrates of various orientation [47, 100-102]. At 47.177º the CuCl (220) is shown as  

the (220) Si peak is forbidden and the (311) CuCl peak is visible at 57.065 for 

the Kα1 and at 57.182 for the Kα2. Each peak was shown to stem from CuCl in our 
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Figure 3.10 (a) φ-scan of a 500nm CuCl sample on Si (100) with the 2θ angle set to 

33˚. The numbers are constant for each position of symmetry, i.e. 1A, 1B, 1C and 1D 

are symmetrical. (b) φ-scan of the same sample truncated to show the section of 

symmetry  
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composition scans as there were no peaks visible at these orientations for the Si wafer 

scans. The Kα1 and Kα2 values at each of these orientations are almost 

indistinguishable from each other except for the slight shoulder on the right-side of the 

peak corresponding to the slightly weaker Kα2 peak. This is enough for the peak 

positions to be obtained through data processing. 

The variation from the expected intensity of these peaks according to the 

ICDD values is quite dependent on the quality of the deposition and the level of decay 

of the samples. With this in mind the closest matching ratios obtained were for a 

different sample to that shown in figure 3.9. The percentage intensities relative to the 

(111) peak of the (220) and (311) orientations are 60% and 27% which is an 

acceptable variation from the ICDD values of 55% and 30% respectively. Multiple 

samples showed that whilst there was some variation in the ratios obtained, they were 

all much closer to the ICDD values than those obtained from the CuCl pellet scans. 

This could be due to the material relaxing to its natural orientation as the distance from 

the Si surface is increased and with no inherent restriction on the material due to the 

manufacturing process.  

The presence of a number of clear CuCl XRD peaks discussed indicates that 

the CuCl film is not epitaxially grown on the substrate, however the samples do show a 

degree of preferential alignment or texture [72]. It would appear from the scans that 

preferential growth of CuCl occurs in the (111) direction on the (100) Si substrate due 

to the level of intensity of this peak and that it stems solely from the CuCl deposited. 

Whilst clearly the (200) peak is of greater intensity, the contribution of CuCl to this 

peak is relatively minor as discussed previously. The degree of alignment or texture is 

best illustrated by the texture factor and for the CuCl thin film sample illustrated in Fig 

3.9 the texture factor of the (111) peak is ~1.6. Across multiple CuCl samples this was 
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typically in the region of ~1.35 – 1.65 which is notably far less than the CuCl pellets, 

but still shows a bias towards the (111) peak. 

The crystallite size of the (111) peak obtained from the FWHM value is found 

to be 55.3 nm. Across multiple samples the size was found to vary between 50 – 55 nm 

with the samples with larger texture factors having a smaller crystallite size in the 

(111) plane.  

The (111) peak is shown more clearly in the following section on glancing 

angles as the x-ray does not penetrate deeply into the thin film and the Si (200) peak 

intensity is removed by the nature of the technique. When characterising the CuCl 

samples it is important to distinguish between the peaks reflected from the substrate 

and those reflected from CuCl. As the lattices are very closely matched, there is only a 

small difference in the angle of the diffracted peaks. There is a more significant 

difference in their intensity, with the peaks stemming from the silicon substrate being 

much larger and masking the CuCl signal. 

 

3.7     Glancing Angle X-Ray Diffraction 

The X-ray diffraction pattern of thin films deposited onto a substrate can be 

dominated by the substrate itself. To minimise the contribution from the Si substrate 

and focus on the surface layer of the CuCl thin film samples glancing angle x-ray 

diffraction was used. This method was described previously in section 2.3. 

Several different glancing angles were tested and are shown in figure 3.11. At 

angles up to 10˚ shown in particular by scans (b) – (e) from figure 3.11, the signal to 

noise ratio is such that the CuCl peaks can be clearly discerned from the background 

signal. However at angles greater than 10˚, the influence of the CuCl surface begins to 
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wane, the peak intensity dips and the influence of the underlying Si material masks the 

CuCl signal, as seen in (f) from figure 3.11. Similarly as the glancing angle approaches 

4˚, through scans (a) – (c) from figure 3.11, the intensity of the CuCl peaks increases 

and attains maximum intensity. From the region of maximum intensity between 4˚ and 

10˚ degrees, 5˚ was chosen as the glancing angle for all subsequent scans.  
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Figure 3.11 Glancing Angle scans of CuCl recorded at (a) 0.5˚, (b) 2.7˚, (c) 4˚, (d) 6˚, 

(e) 10˚ and (f) 24˚. Each of these is offset by 100 counts for clarity and all scans were 

recorded from the same sample and setup  

 

To further understand the penetration depth within our samples of this 

glancing angle, figure 3.12 shows the attenuation length of the x-rays within CuCl and 

Si as the glancing angle is increased. Using this graph we can see our 5˚ glancing angle 

has an attenuation length of ~ 3 μm through CuCl. Since our CuCl layer is 500nm 

thick, the remainder of the x-ray intensity will pass through the Si layer.  

Using an exponential scale the x-rays will have lost 60% of their intensity in 

the CuCl layer when they reach the Si and all diffraction peaks will have to emerge 

once again through the surface further decreasing the Si signal. Due to these factors the  
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Figure 3.12 Glancing Angle of the X-ray diffraction plotted against the Attenuation 

length of the X-ray within both CuCl and Si 

 

diffraction at a glancing angle should stem mainly from the CuCl thin film layer, with 

little to no contribution from the Si layer underneath. 

In practice this proves to be the case. The scan shown in figure 3.13 was 

recorded at a glancing angle of 5º and shows that the technique has eliminated any 

reflection from the silicon substrate itself as there are no Si peaks visible, just CuCl. 

There is still however some influence of the base plate and tape as shown by the region 

between 10˚ and 20˚. The shallow angle used and the spread of the beam itself makes 

it difficult to remove the influence of these signals from the glancing angle scans so it 

is important to note their source. The three CuCl peaks prominent in the θ/2θ scans can 

also be clearly seen in the glancing angle scan, the (111), (220) and (311) peaks. The 

(331) and (100) peaks were also seen in some scans but not consistently and always at 

a low intensity. For the (331) peak this intensity is similar to the θ/2θ scans but for the 

(100) peak it shows how small the contribution of CuCl growth is at this orientation. 
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Figure 3.13 Glancing Angle scan of a CuCl thin film sample performed at a glancing 

angle of 5˚ 

 

The glancing angle setup will only allow diffraction peaks from 

polycrystalline grains within the material to be detected. Due to the range of different 

peaks present at orientations different to that of the Si substrate beneath, it is clear that 

CuCl exhibits polycrystalline growth as the distance from the Si substrate is increased. 

The texture factor of the (111) peak shows a significant increase at the glancing angle 

orientation when compared to the θ/2θ setup, changing from ~1.6 to ~2.1 for most 

CuCl samples tested. Whilst this value varied across different batches of samples, the 

increase was always ~0.4. Since the pellet scans of CuCl showed a texture factor of 5.7 

for the (111) peak it’s clear that the polycrystalline growth of CuCl is more relaxed 

towards the orientations present in the pellet form prior to deposition. The FWHM of 

the glancing angle scans is broadened by the nature of the technique, leading to a much 

smaller value of the crystallite size to be estimated. However, changes in this value can 

be measured and will be used in the section on oxygen doping to show how the doping 
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effects the polycrystalline formations within the CuCl and KCl-CuCl thin film 

samples. 

 

3.8 CuCl - KCl Samples 

During the CuCl/KCl deposition, it is thought that a K-Cu-Cl liquid mix is 

being formed during the melting of the CuCl/KCl growth mixture due to the 

concentrations of CuCl and KCl. In turn the deposited film, if it follows the source 

material stoichoimetry, should form a phase-separated mixture of CuCl and K2CuCl3 

as it cools according to the phase diagram shown in figure 3.4. Thus we expect the 

deposited film to be a 500 nm film of CuCl containing K2CuCl3 crystallites and CuCl 

crystallites in the molar ratio 1:7 K2CuCl3:CuCl to match the stoichiometry of the 

original mixture (2:8 ; KCl:CuCl). The K2CuCl3 crystallites are expected to be (a) very 

small ~62.5nm and (b) to constitute a small fraction of the overall material.  The ICDD 

pattern for K2CuCl3 shows 197 reflections beginning at 2θ = 10.191º and occurring at 

irregular intervals after this up to 2θ = 80.809º. Given the fact that the K2CuCl3 

crystallites are expected to be very small one would expect a Debye-Scherrer 

broadening and the overlap of these broadened, closely spaced, low intensity peaks 

should have a negligible effect, with maybe a slight influence on the overall 

background signal.  

We can see when examined using the θ/2θ scan as seen in figure 3.14, the 

KCl-CuCl sample discussed in section 2.2.3 doesn’t appear to be much different from 

the CuCl, maintaining a slightly higher background signal but possessing similar peaks 

throughout. Both scans show the CuCl (111), (200), (220) and (311) peaks become 

more pronounced as the resolution of the scan is increased. The cause of the cluster of 



99 
 

peaks around 56˚ is not confirmed, but can be seen sporadically in both the CuCl and 

KCl-CuCl samples. One theory is that it stems from the wurtzite phase of CuCl formed 

between 681 and 703 K [67]. As production and testing continued these peaks became 

more pronounced with time. The only change to the deposition process was a slower 

rate of temperature increase to counter a bubbling effect as the CuCl liquidised with 

the KCl. To keep results for both types of sample consistent, this slower rate was also 

used for unaltered CuCl samples. These peaks are not present at glancing angles 

indicating they stem from beneath the surface possibly coming from a formation of the 

wurtzite CuCl at the Si substrate interface.  
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Figure 3.14 2θ-ω scans comparing a 500 nm CuCl to a 500 nm KCl-CuCl sample 

 

The two other peaks unaccounted for in the KCl sample at 38.3˚ and 44.6˚ 

have been previously shown to stem from the base plate in section 3.2. However, 

previous studies on CuCl have shown that the orthorhombic η-Cu3Si compound 

observed as the result of the reaction between CuCl and Si at temperatures greater than 
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250˚C is also present at 44.6˚ [49]. Peaks of Cu are enhanced by the formation of this 

compound and can also be found at 38.3˚ [103]. As was the case with the peaks around 

6˚, they are not present at glancing angles indicating they stem from the Si substrate 

interface or the base plate beneath. 

Scans performed using the glancing angle on the KCl-CuCl samples setup 

show little variation from the scans of CuCl as shown in figure 3.15. The main peaks 

present are the CuCl (111), (220) and (311) peaks with little change to the background 

level or relative peak intensity. At higher resolutions the CuCl (331) peak at 76˚ can 

also be seen but at very low intensity as was the case with the CuCl samples. 

The texture factor of the KCl-CuCl peaks is also similar to the pure CuCl 

samples ranging from ~1.6 to ~1.8 with a similar increase at glancing angles up to ~2.1 

due to the low intensity of the (331) peak at 76˚ in the glancing angle scans. Crystallite 

size of the (111) CuCl peak is also comparable to the regular CuCl samples, measuring 

an average of 50 nm.  
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Figure 3.15 Glancing Angle Scans of 500 nm samples of CuCl and KCl-CuCl 

normalised to the highest peak at 28˚ 
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3.9     Decayed samples of CuCl and KCl 

Deterioration of the structural properties of the CuCl and KCl-CuCl thin film 

samples occurs due to interactions with moisture and oxygen naturally present in air. 

This causes hydrated oxyhalides of Cu++ to be formed mainly consisting of numerous 

different isomers in the atacamite group of minerals which have the common chemical 

formula of Cu2(OH)3Cl. These isomers have several diffraction peaks in common 

leading to amplification of these peaks, in particular the peak at 16˚ visible in both the 

KCl and CuCl samples in figure 3.16. This peak is an indication of the level of 

oxidation of the samples. Several more peaks are present at 33˚, but as with the fresh 

CuCl samples this is masked by the Si substrate underneath. There is also a visible 

difference in the decayed samples tested, with a greenish hue on the surface and a 

more visible powder-like structure on the surface rather that the smooth rainbow-like  
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Figure 3.16 2θ/θ scans of 500nm samples of CuCl and KCl-CuCl focussing on the 

area of the main CuCl peaks. Scans are offset by 1˚ for clarity. 
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effect seen in freshly deposited thin films. 

More detailed scans of the oxidation peak and CuCl peaks at 28˚, 47˚ and 56˚ 

confirm that there is a large decrease in the intensities of the CuCl peaks compared to 

the fresh samples, a decrease of between 65-85% for each peak. If we look at the 

relative intensities of the peaks there is a decrease for the 47˚ of ~14% with the other 

peaks reducing in tandem with the 28˚ peak. The crystallite sizes are slightly increased 

by around 10-15% probably due to the incorporation of the new elements and their 

bonding within the thin film. Texture factor values are slightly at the lower end of the 

scale, but well within values recorded for numerous fresh CuCl and KCl-CuCl 

samples, being between 1.1 and 1.6 with an increase to between 1.9 and 2.1 at glancing 

angles. The oxidation peak at 16˚ has a crystallite size of between ~36 and 39 nm 

across both CuCl and KCl-CuCl samples. The importance of these tests is to 

distinguish the change in features due to interaction with both oxygen and moisture 

and from the introduction of pure oxygen in the doping tests detailed in the following 

section. 

 

3.10 Oxygen Doping of CuCl 

To understand the effect of oxygen plasma treatments on the range of CuCl 

thin film samples, XRD measurements were taken before and after plasma treatments 

for all samples. The samples were treated for up to 900 seconds to chart the effect on 

the structural properties. The difference in the XRD proved to be extremely slight, 

having little to no effect on the intensities for up to 300 seconds of doping and a  
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Figure 3.17 2θ-θ intensities of the peaks present at 47˚, 56˚ and 76˚ normalised to the 

28˚ peak intensity. These were recorded on two different CuCl samples, one at 60 

second doping intervals after an initial 90 second dope, the other after 0, 450 and 900 

seconds of doping.  

gradual decline in the intensity of the majority of the peaks after this point. 

Figure 3.17 shows this slight decline in the relative peak intensities of the 

various CuCl orientations. The (111) peak at 28˚ was used to normalise the other peaks 

as it remained the peak of maximum intensity throughout with signal deterioration 

notable only after 900 seconds of doping. The (220) peak at 47˚ peak remains at a 

relatively constant level throughout the entire process but the (311) peak at 56˚ and the 

(331) peak at 76˚ show a significant decline. This is distinct from the decayed samples 

measured in the previous section which showed a significant deterioration in the (220) 

47˚ peak indicating that this decay was caused by the presence of both oxygen and 

moisture. The peak intensities remain constant at glancing angles indicating that the 

detrimental structural effect of the plasma treatment is most prevalent on the CuCl 

forming ordered growth in alignment with the Si substrate. The KCl samples however, 
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showed a relative decline for all of the peaks compared to the (111) peak at 28˚ which 

increased in intensity at doping levels of up to 300 seconds and decreased after this 

point. The relative glancing angle intensities remained constant for the KCl doped 

samples as well. 
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Figure 3.18 Texture factors of the (111) peaks for CuCl and KCl samples doped for 90 

seconds and then 60 second intervals up to 510 seconds. 

 

The deterioration of the peaks of orientations other than the (111) peak is best 

illustrated by the changes in the calculated texture factor. As we can see from figure 

3.18, there is a linear relationship between the texture factor and the length of the 

doping process. This was found to be common across multiple samples with the initial 

texture factor value being the only variance. This shows that the other peaks are 

deteriorating at a faster rate than the (111) peak. The stability of the (220) peak at 47˚ 

is further shown by the crystallite size calculations shown in figure 3.19. We can see 

that for both the CuCl and KCl samples the (311) peak at 56˚ shows a significant 

decrease in crystallite size as doping is increased. This peak possessed the lowest  
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intensity of all the diffraction peaks recorded and the highest initial crystallite size. So 

rather than indicating an isolated crystallite size reduction, the universal effect of the 

doping process is more pronounced at this diffraction peak. 

0 100 200 300 400 500

50

55

60

65

70

75

80
 CuCl 28 Peak
 CuCl 47 Peak
 CuCl 56 Peak
 KCl 28 Peak
 KCl 47 Peak
 KCl 56 Peak

C
ry

st
al

lit
e 

S
iz

e 
(n

m
)

Doping (seconds)
 

Figure 3.19 Calculated crystallite sizes of the diffraction peaks at 28˚, 47˚ and 56˚ for 

CuCl and KCl samples doped for 90 seconds and then 60 second intervals up to 510 

seconds. 

 

3.11 Summary 

The X-ray diffraction studies performed in this chapter show that preferential 

growth for the undoped CuCl samples occurs in the (111) direction, with diffraction 

peaks at (220) and (311) orientations clearly distinguishable as well demonstrating the 

zincblende lattice structure of CuCl. The presence of the (100) CuCl peak was 

investigated with the φ scan at the (100) position of pure Si and our thin film samples 

compared. No trace of separate (100) CuCl diffraction was found. The glancing angle 

scans differentiate between the polycrystalline CuCl diffraction peaks and those 
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aligned with the (100) Si substrate. These showed the polycrystalline nature of the 

CuCl thin films on the Si substrates and once again a distinct lack of the (100) CuCl 

peak. There is still the possibility of perfect lattice-matching with the Si substrate 

material, but it seems extremely unlikely seeing as the CuCl (100) peaks are unable to 

be distinguished in either of the XRD scan methods used. 

The influence of the KCl salt on the structural properties proved to be 

indistinguishable from the CuCl samples themselves. Oxygen doping of the samples 

produced a decrease in the measured crystallite size determined from each of the 

diffraction peaks and an increase in the texture factor of the CuCl (100) peak for both 

CuCl and KCl-CuCl samples. There was an overall decrease in the peak intensity of 

each of the measured diffraction peaks as doping was increased indicating a 

deterioration of the structural properties of the material. This seems to indicate a 

reduction in the quantity of CuCl material present after oxygen doping has taken place. 

Due to the dominance of the (100) CuCl peak throughout the XRD analysis, 

any prominent features discussed in the following chapters are likely to stem from 

CuCl material at this orientation. This will be especially true for highly doped material 

due to the increasing texture factor seen. 
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Chapter 4 

 

CL and EDX Imaging in the 

SEM  
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4.1   Introduction 

This section reports on the analysis of photons and x-rays from our thin film 

material when an electron beam is focused on the surface of the samples in the SEM 

system. We begin by detailing the CL results for the undoped CuCl thin films and 

discussing the distinctive features of these spectra. These consist of the FWHM and 

relative intensity ratios of the peaks detected, and their variance as the probe current is 

increased. Low-resolution digital CL images combined with images from the SEM in 

secondary electron mode are used to illustrate changes in CL beneath the surface of the 

sample topographically.  

With the CuCl undoped sample properties and expected values established, 

the KCl-CuCl sample properties were investigated in a similar manner before moving 

on to our oxygen-doped samples of both CuCl and KCl-CuCl. The alterations in the 

characteristic properties of the CuCl and KCl-CuCl thin films as the doping is 

increased are described in this section, showing their fluctuations and establishing an 

ideal doping level to maximise both the luminescence properties and the conductivity 

of the samples.  

EDX scans were used to complement the results obtained from the CL scans. 

These ascertained the atomic percentages of both our undoped samples before plotting 
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their variation as the levels of doping are increased. This allows us to attribute notable 

changes in the CL spectra to any corresponding factors at the atomic level within the 

material.  

Finally SEM images recorded in secondary electron mode are used to show 

the effect of the doping process on the surface of the samples themselves. This allows 

us to see structurally how the effects responsible for the changes detected in the CL 

and EDX scans may also manifest themselves in the surface topography of the 

samples. A short discussion on the how the properties of atmospherically decayed 

samples of CuCl and KCl-CuCl compare to our oxygen doped samples concludes the 

chapter. 

 

4.2   Cathodoluminescence Results 

Studies on nominally undoped CuCl thin films using the CL technique (at 

room temperatures) provided useful information, with a clearly defined peak around 

385 nm or 3.224 eV (which closely matches the Z3 exciton of 3.204 eV [104] once the 

shift to room temperature is taken into account) and a large broad band of blue-green 

emission centred at 520 nm due to defects within the material [105] as shown in figure 

4.1. For this scan a probe current of 500 pA was used combined with a magnification 

of 1000× and a beam energy of 15 keV. These settings ensure results will stem from a 

relatively large area on the surface but sample damage due to high current density 

should also be minimal. This spectrum also shows the 2nd order of the 385 nm peak 

around ~772 nm due to the diffraction grating. The range of the scans was set to 

between 350 and 700 nm to remove this peak from all future spectra. 
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Figure 4.1 CL spectrum for an undoped CuCl 500nm sample 

 

A consistency test was performed using this technique to verify the reliability 

of the results and the deposition itself. Several batches of samples were made using the 

same powder and under the same conditions. CL scans were then performed on the 

samples using 15keV for the electron beam and a probe current of 500 pA. Each 

sample was tested in turn with the remaining samples from each batch held in an 

evacuated desiccation jar which was continuously pumped down to maintain the 

vacuum within. This ensured minimal decomposition of the samples due to natural air. 

A fresh batch of samples was produced upon the completion of testing of the previous 

batch. Since the thickness of the deposition layer varies depending on its position from 

the centre-point of evaporation, readings were taken from different positions on each 

sample tested, at opposite ends of the samples themselves. 

From figure 4.2 we can see that a small discrepancy between the peak 

intensities of the 385 nm and 520 nm peaks is present. When the scans are normalised 

to the position of maximum intensity of the 385 nm peak (figure 4.3) the difference  
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Figure 4.2 Full spectra recorded for a selection of undoped 500 nm thickness CuCl 

samples. Background signal has been subtracted. 
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Figure 4.3 Normalised (with respect to peak at ~ 385 nm) spectra recorded for a 

selection of undoped 500 nm thickness CuCl samples. Background signal has been 

subtracted. 
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between the peak positions in various samples is still evident but also quite small. The 

shape of the 520 nm band is similar for all of the samples with some variation of up to 

10 nm in the central peak location due to the slight variance in defect content within 

the different sample. This could be due to thin film interference effects and slight 

differences in the sample thickness, as previously observed in samples of ZnO with the 

effect becoming more pronounced as thin film thickness is increased [106]. The same 

variance is not present in the Z3 peak at 385 nm, varying by as little as 2 nm 

throughout. This is mainly because unlike the defect region, the Z3 exciton location is a 

physical property of the CuCl material itself and thus should display minimal variance.  

If we examine the area under the curve for the 385 nm and 520 nm peaks the 

relationship can consistently be approximated to 2:1. This relationship remains 

somewhat constant throughout multiple samples. However if we determine there to be 

a number of different peaks superposed as appears to be the case, the area under the 

curve becomes less reliable without separating out each of these peaks. This indicates 

that the peaks present in this region are not gaussian in nature and for this reason the 

peak intensity value was used instead of the area beneath the curve. The increasing 

intensity recorded at 700 nm for the turquoise scan is due to the system overheating, an 

inherent problem with the SEM CL attachment itself and present in numerous other 

samples not shown here. The values recorded prior to this position were the expected 

readings for the regions under inspection and once the system is allowed to cool, 

values become within expected bounds once more. 

Another way to examine the repeatability of the scans is by measuring the full 

width at half maximum (FWHM) of the 385 nm peak. For each of the samples a 

Gaussian fitting profile was used, which fit the data well and the FWHM was extracted 

from the output of the fit. The resultant graph is shown in figure 4.4 alongside one of 
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the Gaussian fits to show the accuracy. As we can see from this, the FWHM fluctuates 

only slightly, varying in width between 15.4 nm and 17.9 nm. The resolution of the 

Gatan MonoCL monochromator is approximately 1 nm and is shown by the error bars 

on the graph. This suggests that the 385 nm peak width does not depend on the 

deposition run. In fact it was found to depend heavily upon the micrometer setting of 

the equipment itself. This setting controls the slit width for light incident on the 

internal CL mirroring equipment and detector. For the doped samples and some 

undoped samples upon increasing this setting from 5 mm up to 10 mm a corresponding 

increase of approximately 10 nm in the FWHM was recorded.  

Deep level defect emission at photon energies below the band edge region is a 

useful tool for judging material quality. An example of such emission is the 520 nm 

band in CuCl as seen in figure 4.1. A comparison of the ratio of the 520 nm band to the 
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Figure 4.4 (a) Variance in the full width at half maximum values derived from a 

Gaussian fit recorded for each of the undoped CuCl 500 nm thickness samples (b) said 

Gaussian fit of one of the CuCl peaks  
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385 nm band is shown in figure 4.5. Although there is a variance of 0.2, the ratio is 

consistently between 0.075 and 0.275 for each of the undoped samples. In combination 

with the data in figures 4.2, 4.3 and 4.4, this indicates that the deposition process for 

undoped material is reproducible in terms of the room temperature optical properties 

measured by CL. This allows us to accept these values as typical of the undoped 

properties of the material and any alterations to these values when measured on doped 

samples will be due to the effect of the added material. These values were also the 

lowest measured across all the different sample types suggesting that the both the 

oxygen doping and KCl mixture increases the presence of defects within the CuCl thin 

films. 
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Figure 4.5 Ratio of the 520 nm peak intensity to the 385 nm peak intensity for a 

selection of undoped CuCl 500 nm thickness samples. Minimum background intensity 

has been subtracted from these samples prior to calculations.  
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Figure 4.6 Ratio of the 520 nm peak to the 385 nm peak as the electron beam energy is 

increased. Test was performed on undoped CuCl samples of 500 nm thickness at a 

constant current of 1100 pA.  

Figure 4.6 shows the effect of the beam energy on the CL output of this 520 

nm band, which allows us to judge the depth at which defect contributions become 

prominent in the samples. The sample used for this test was an undoped CuCl 500 nm 

thickness sample after atmospheric exposure of an hour to develop a 520 nm signal 

significant enough to be measured accurately across the range of keV values.  

The small maximum in the relative intensity between 1-2 keV is due to the 

overall CL at these energies being of extremely low intensity and may be ignored. As 

the beam energy was increased to 4 keV, there was a clear increase in the intensity 

emitted from the surface. Using a Monte Carlo simulation of the sample at this energy 

[92] previously shown in Chapter 2, the penetration depth was found to be over 140 

nm. This appears to be a crossover point within the material for a high level defect 

emission CL signal to be observed. Similarly between 20-30 keV (and presumably 

beyond, although the limit of this SEM is 30 keV) we can see a levelling off of the 

relative 520 nm intensity. This can be attributed to both finite thickness of our sample 
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and the recombination and re-absorption effects within the material that will inhibit 

deep level emission as the depth is increased.  

Previous studies [107] and our own observations have shown that the Si 

substrate does not contribute to the 520 nm or other emission bands. Therefore, the 

luminescence observed above this beam energy comprises luminescence from within 

the entire CuCl layer and no further changes in the band edge to deep level emission 

are seen, as expected.  

In figure 4.7 (a) and (b) we can see the increase in the beam energy has 

allowed us to image defects from beneath the surface of the material. The white shapes 

in (b) were not present in the 4 keV CL image or in the SEM image (a). Their position 

within the material can be ascertained by varying the beam energy and recording the 

 

 

 (a)   (b) 

Figure 4.7 Comparison images of the same area using (a) Secondary Electron 

imaging and (b) the subtraction from each other of two CL images recorded in 

polychromatic mode at 4 keV and 30 keV. Differences between the beam energy 

images are clearly seen with the brighter material stemming from the deeper scan of 

30 keV.  

100μm 100μm 
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 CL spectra at various beam energies. Combined with the penetration depth of the 

beam energy this would allow their depth within the material to be ascertained. Several 

different samples have been tested with similar outcomes. The sample of highest 

quality (in terms of integrated PL intensity detailed in previous work [99]) was chosen 

for the scans displayed here. Due to the inherent spatial resolution limitations of the 

digital CL equipment, this technique was unable to directly image the sources of 

luminescence at the grain level within the material as originally intended. Deep level 

defect detection represents an alternative use for the technique, mapping the 

luminescence beneath the surface of the material which is distinct from each of the 

other luminescent techniques discussed in this work. 

 

4.3   KCl Samples 

The CL spectra of the undoped KCl-CuCl sample shown in figure 4.8, 

matches the general shape of the CuCl spectra with one notable addition, an 

accentuation of the 520 nm defect band at smaller wavelengths than previously seen. If 

we treat the defect band as containing two separate broad peaks, the existing 520 nm 

peak is supplemented by another broadband peak centred at 490 nm. The cause of the 

490 nm peak is not known at present as it can appear in CuCl samples but is 

consistently present in all KCl-CuCl samples. Aside from this peak the spectra of the 

undoped KCl-CuCl samples appears to match the undoped CuCl samples with a 

similar slight variance of the central peak at 385 nm between samples. 

(b) 
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Figure 4.8 CL spectrum for an undoped sample of KCl-CuCl in the mixture ratio 

20:80. Beam energy was set to 15 keV with a probe current of 500 pA. 

 

This 490 nm peak is further demonstrated in figure 4.9 which shows a range 

of CL spectra for different undoped KCl-CuCl samples each containing this peak at 

different levels of intensity. These spectra also illustrate the repeatability of the KCl-

CuCl samples, with the FWHM of the Z3 exciton peak remaining consistent and the 

variance of the intensity ratio of the 520 nm peak to the Z3 exciton peak shown in 

figure 4.10. The gridlines show the variance in the values with the ratios remaining 

between 0.24 and 0.36 which is an increase of 0.1 over the CuCl undoped samples. 

This shows that the addition of the KCl mix to the CuCl samples leads to an increase 

in the concentration of deep defects compared to the standard CuCl thin film samples 

[65]. This should lead to a decrease in the conductivity of the material but instead leads 

to an increase due to interstitial ionic hopping of K+ in the CuCl crystal matrix which 

more than compensates for the deep defect concentration increase [95]. 
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Figure 4.9 Cathodoluminescence spectra for undoped samples of KCl-CuCl in the 

mixture ratio 20:80 normalised to the peak of maximum intensity at 385 nm. Beam 

energy was set to 15 keV with a probe current of 500 pA. 
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Figure 4.10 Ratio of the maximum intensity of the 520 nm peak to the 385 nm peak 

across a range of undoped KCl-CuCl samples. Dotted lines show the range of the 

values recorded  
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4.4   Oxygen Doping 

Previous studies of the conductivity of CuCl thin films have shown that when 

doped with oxygen there is a decrease in the optical quality of the films, a negative 

thermal quenching effect [108] and an increase in the conductivity [109]. Oxygen is 

incorporated into anion vacancies and thus enhances the density of the holes and 

creates  p-type conductivity in the CuCl thin films [110, 111]. It should be noted that 

reliable conductivity measurements of CuCl thin films on Si substrates have not been 

performed due to the difficulty in applying metal contacts to the surface of the 

material, the referenced increase in conductivity was measured on a bulk sample of 

CuCl.  

To investigate these effects, doping was performed using an Oxford 

Instruments Plasma Lab Plus 800 Reactive Ion Etcher (RIE). This places the specimen 

in a low pressure environment of 50 mTorr and introduces oxygen and argon into the 

chamber at flow rates of 80 sccm and 20 sccm, respectively. The effect of the doping 

on the properties discussed for the KCl and CuCl thin film samples were most apparent 

after the first doping treatment.  

An immediate increase in the 520 nm signal was recorded relative to the 385 

nm peak (figure 4.11). Each of the spectra have been normalised to the position of 

minimum intensity, the undoped value given at 0 seconds. This is to illustrate the 

increase present in each of the samples and also to show that the CuCl samples 

exhibited the largest increase in this region due in part to the KCl samples’ higher 

starting defect band intensity discussed in the previous section. Both the CuCl and KCl 

samples reached a maximum ratio of 0.66 relative to the 385 nm peak at 450 and 900 

seconds. This increase was achieved by the samples doped for longer increments 
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Figure 4.11 Normalised values for the ratio of the 520 nm peak to the 385 nm peak as 

the level of oxygen doping is increased. S1 and S2 denote difference samples. Multiple 

data points at the same doping level represent tests at different points in the sample to 

show variance 

 

indicating the requirement for the oxygen to penetrate deep within the sample to 

increase the 520 nm band relative intensity. 

Distinct differences were measured for the samples, with changes notable in 

the FWHM values, the ratio of the intensity of the 385 nm to 520 nm peaks and the 

maximum intensity of the 385 nm peak itself. 

The FWHM values displayed in figure 4.12 showed an immediate decrease 

once doping began, dropping almost 10% when compared to the undoped values 

present at 0 seconds on the graph. However they slowly increase until around 400 

seconds before dropping off again. Further doping was shown to decrease the FWHM 

more indicating there is no further resurgence in the FWHM signal. As previously 

mentioned the FWHM signal is highly dependent on the micrometer setting for the CL  
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Figure 4.12 Normalised values of the FWHM for the 385 nm peak as the level of 

oxygen doping is increased. Multiple data points at the same doping level represent 

tests at different points in the sample to show variance 

 

equipment which was kept at a constant 10 mm throughout testing. The spectrometer 

resolution is 1 nm and this coupled with the sensitivity of the FWHM to the 

micrometer setting naturally calls the reliability of these results into question. 

However, these results indicate there is an ideal level of plasma exposure to maintain a 

high Z3 exciton intensity coupled with the conductivity increase offered by the doping 

technique itself which is supported further as we continue our analysis by examining 

the maximum peak intensity of the Z3 exciton peak as doping is increased.  

The spectra used to calculate the maximum peak intensity have been 

normalised to the peak of maximum intensity in figure 4.13 but it is notable that this 

maximum is not present at the undoped peak position across all samples. In fact only 

the CuCl S1 sample has the maximum peak intensity at the undoped position, each of 

the other samples achieve maximum intensity in the region around 400 seconds similar 
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to the FWHM graph. These luminescent properties and ideal doping region will be 

examined further in our discussion of the optical properties in Chapter 5. 
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Figure 4.13 Normalised values for the maximum peak intensity of the 385 nm peak as 

the level of oxygen doping is increased. Multiple data points at the same doping level 

represent tests at different points in the sample to show variance 

 

4.5   EDX Imaging 

Energy dispersive x-ray microanalysis was used to chart the change in the 

relative concentrations of atoms present as the samples were doped with oxygen. This 

technique results in the output of EDX spectra with software analysis used to calculate 

the atomic quantity of each material in the area under investigation. Figure 4.14 shows 

the undoped EDX spectra for both CuCl and the KCl-CuCl samples. Although 

dominated by the Si peak, when the percentage values for Cu and Cl are combined the 

CuCl:Si ratio is approximately 60:40 as illustrated in figure 4.15. When comparing the 

CuCl and KCl-CuCl samples, notable differences are the presence of trace elements of 
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K but also significant levels of bromine (Br) within the sample. Br was present at 

significant amounts in every sample of KCl-CuCl measured but only at trace amounts 

in the CuCl samples shown by the peak’s presence left of Si. The addition of KCl to 

the mix didn’t influence the level of Cl which remains unchanged within experimental 

error.  

O was detected at low levels in both samples showing how quickly the decay 

process begins as both samples were tested an hour after deposition. To see if the O 

levels increase at a constant rate, a selection of samples were exposed to the natural 

levels of O present in atmosphere for a further hour and retested. No significant change 

was measured indicating the O presence increases rapidly upon initial atmospheric 

exposure across the surface of the sample, taking longer to penetrate the depths of the 

sample and cause the characteristic decomposition of CuCl in atmospheric conditions.  

The traces of K found were at significantly lower levels than the amount used 

in the deposition process, a ratio of approximately 0.5:99.5 for K and CuCl compared 
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Figure 4.15 Bar Graph showing the atomic percentages for both the CuCl and KCl-

CuCl samples. The values included for CuCl represent the result of the sum of both the 

Cu and Cl contributions.  

 

to the deposition ratio of 20:80 for KCl and CuCl. This indicates that rather than 

forming large amounts of the K2CuCl3 compound on the surface of the material, the 

KCl is only present in limited amounts possibly wherever there are anion Cl- vacancies 

on the surface of the material [49].   

Oxygen doping of the samples leads to an expected increase in the levels of O 

present. Figure 4.16 shows that this increases nearly linearly, with the disparity 

between the S1 and S2 samples possibly due to an accumulation of additional factors; 

oxygen exposure time as a higher number of tests were performed on the S1 series, 

slightly longer plasma exposure due to the beam startup in the machine itself, etc. It’s 

clear that each of the samples displays a linear dependence on the plasma beam 

exposure and remains broadly consistent across multiple tests indicating that O is 

entering the thin film material as intended at a constant rate.  
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Figure 4.16 EDX Atomic percentage for Oxygen as doping is increased 
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Figure 4.17 EDX Atomic ratio for Cu to Cl as doping is increased 
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Since the ratios of CuCl to Si show a high level of variance depending on the 

area of the sample under examination and testing the same area multiple times 

diminishes the signal, the ratio of Cu to Cl was used to illustrate the material change as 

the doping is increased. It was found that as doping increased, the level of Cu 

constantly decreased. This effect was linear for the samples with long plasma exposure 

times, and deviated from linearity for the samples tested routinely every 60 seconds as 

we can see in figure 4.17. The multiple data points at each doping position indicate 

different areas tested across the samples to ensure the surface variance was taken into 

account. Complementing this is a slight increase in the levels of Si recorded, indicating 

that the CuCl film thickness has reduced as the system is able to detect the underlying 

Si substrate more effectively.  

For the KCl-CuCl samples, K values are found to remain unchanged 

throughout the plasma process as seen in figure 4.18. There may be a slight increase in 

their percentage as doping is increased, but the values measured are far too low to  

 

0 100 200 300 400 500 600 700 800 900
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

 KCl S1
 KCl S2

K 
At

om
ic

 P
er

ce
nt

ag
e

Doping (seconds)  

Figure 4.18 EDX Atomic percentages for K in the KCl-CuCl samples as doping is 

increased 
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make any clear conclusions. It is clear that there is no decrease in their values, which 

indicates that they are not reduced in the same manner as Cu. 

Secondary electron (SE) images from the SEM can be used to show the direct 

effect of the plasma process on the surface of the material. It is important to clarify that 

the scarring effect produced by the plasma process in atomic properties and surface 

structure is entirely different from that produced by the oxygen doping process.  

For this reason figure 4.19 shows images of the CuCl and KCl-CuCl samples 

before and after doping and also after decay due to atmospheric conditions. The 

images shown are the same area used for the EDX scans. The undoped KCl-CuCl 

sample was imaged at a higher degree of magnification because the material was 

suited to such analyses, probably due to an increase in the conductivity provided by the 

KCl inclusion. At greater magnification the surface topography is practically identical 

to the CuCl undoped sample pictured in (a). As we can see in (c) and (d), the doping 

process has caused a series of scarring effects across the surface of the samples. 

Further EDX tests at each of these darker sections on the images confirmed a raised 

percentage of Si compared to surrounding areas indicating that this effect is scoring 

away the thin film surface, as commented upon earlier. The raised sections in these 

doped images show similar atomic percentages to the surrounding area. It is possible 

that the plasma treatment is destabilizing the material’s attachment to the substrate 

leading to the presence of these raised regions. The proportion of lighter sections in the 

doped images is the same as our undoped samples. However the decayed samples 

show a significant increase in these lighter areas which further EDX scans revealed to 

be concentrations of CuCl material. This allows us to conclude that the topographical 

effects caused by the oxygen doping and atmospheric decay are entirely distinct, 

probably due to the absence of the moisture reaction in the plasma doping samples. 
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 (a)  (b) 

 

  (c)   (d) 

 

 (e)   (f) 

Figure 4.19 SE images for CuCl (left column) and KCl-CuCl (right column) samples 

showing the change in the surface area as due to doping and atmospheric decay. (a) 

and (b) show the undoped surface for a CuCl and KCl-CuCl sample, (c) and (d) show 

the surface for the same CuCl and KCl-CuCl samples after 900 seconds of plasma 

doping and (e) and (f) show the surface of a CuCl and KCl-CuCl sample after decay 

due to atmospheric exposure. 
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The pattern seen in the decayed KCl-CuCl sample is a feature also visible in 

decayed CuCl samples. Further decay of (e) would result in the production of these 

features. EDX analysis of the darkened region of these features shows a decreased 

ratio of Cu to Cl over the surrounding areas and also when compared to most of our 

doped and undoped samples. The ratio is 1.3 which is comparable to the values of our 

doped samples after 900 seconds as previously shown in figure 4.17. Further scans of 

the wire-like formations at these points recorded at greater magnifications show that 

the Cl percentage actually surpasses that of the Cu, leading to a Cl:Cu ratio of ~0.7.  

The shape of the CL spectra from these decayed sections is indistinguishable 

from those of the oxygen doped samples in all aspects except for a decrease in the 

intensity of the Z3 385 nm peak. The regions of material outside of this darker area 

show high concentrations of CuCl, varying around 1.75. The decayed samples of CuCl 

are similar to this, varying between 1.75 and 1.95, which reaches values significantly 

higher than any of any of the other samples measured. This points to the accumulation 

of Cu material near the surface of the samples as atmospheric decay occurs, with 

further decay leading to a removal of Cu material from the sample itself as visible the 

darkened regions shown in (e). 

 

4.6  Summary 

Within this chapter we saw the use of a digital CL camera to image the deep 

level defects within the material, but proper usage of this technique remained restricted 

due to the poor spatial resolution of the equipment itself. However this technique is 

extremely promising in future studies of CuCl material. By slowly increasing the 

penetration depth of the electron beam and recording digital CL images throughout, a 
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3D map of the defect band locations within the CuCl material can be plotted. This 

would greatly assist with answering some of the outstanding questions regarding the 

source of the defect band, especially if capable of being recorded at high resolutions. 

 The line spectra produced from CL studies of the undoped CuCl samples 

showed the Z3 exciton position and the 520 nm defect band as the main features. The 

ratio of the defect band intensity to the Z3 exciton intensity was shown to be consistent 

across multiple samples allowing a clear increase in this ratio to be discerned for the 

KCl-CuCl samples. This was also the case for the doped samples, with the ratio 

increasing in a similar but more erratic, style. Examination of the FWHM and 

maximum intensity of the Z3 exciton peak fluctuation as doping is increased indicates 

that there is an ideal region for doping. After an initial decrease in both properties, the 

FWHM and maximum intensity increases up to around 400 seconds before decreasing 

once more. This effect was present in both CuCl and KCl-CuCl samples. The lack of 

the emergeance of this region in the XRD section indicates that these are optical 

properties which may also be present in the PL and reflectance analysis. 

EDX imaging allowed us to calculate the atomic percentages for the both the 

CuCl and KCl-CuCl thin film samples. Expected ratios of Cu, Cl, Si and O were found 

in the CuCl samples with the addition of trace elements of K and Br found in the KCl-

CuCl samples. This shows us that despite the inability of the other methods of 

characterization to detect the presence of the KCl salt, the deposition of KCl and CuCl 

on the same Si substrate has been successful, albeit at lower stoichometry levels than 

expected based on the ratio of the mixture used (80:20).  

The SEM images at the close of this chapter show the physical scarring 

effects of the doping process on the surface of the CuCl material in a more tangible 

manner. It is clear this process is etching layers of CuCl material from the surface of 
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the thin films. However the bubbling pattern seen in these images as doping is 

increased remains unexplained. In future works a test could be performed by isolating 

a section of the CuCl thin film for exposure to the plasma and examining the 

interaction of these bubbles with undoped CuCl material. Alternatively multiple high 

resolution SEM images could be recorded of the doped material at various zoom 

levels. The sample could then be cleaved in two and the location of the cut matched 

with the high resolution SEM images. The sample could be rotated and the underneath 

of one of these structures probed with analysis using both the SEM and EDX 

equipment. 
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Chapter 5 

 

Optical Properties 
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5.1   Introduction 

This section reports on the analysis of photons emitted from the near surface 

region of our thin film material when struck by light whilst the samples are contained 

within a low-temperature cryostat system. We begin by detailing the PL results for the 

undoped CuCl thin films and discussing the distinctive features of these spectra. These 

consist of the exciton and bi-exciton spectral positions and the relative intensities of 

each of the peaks detected. The calculation of the exciton binding energy from the 

exciton peak positions is discussed. A brief summary of the temperature dependence of 

the PL spectra and the effects of atmospheric exposure on the PL spectra is also 

discussed before moving on to the KCl-CuCl and doped samples. Alterations to the 

established CuCl exciton positions are described in this section with notable increases 

of PL peaks not previously present in CuCl for the doped samples. 

Reflectance scans were used to record both the Z3 and Z1,2 exciton positions in 

the next section, before a similar summary of the observed properties detailed for the 

PL section. As before, once the CuCl undoped sample properties have been discussed, 

the differences caused by the addition of KCl and oxygen doping to the spectra is 

examined with a notable change in the optical properties recorded once doping 

commences. 
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Finally reflectance modelling of the undoped CuCl samples is used to 

calculate the various parameters affecting the shape of the reflectance spectra 

observed. These include the exciton polariton dispersion curve, exciton energy 

positions, damping, transverse and longitudinal splitting, effective exciton mass, 

thickness of the thin film samples and the dead layers present at the interfaces within 

the samples. These properties are compared to previously recorded values obtained for 

a bulk sample of CuCl. A short discussion on the advantages of this method of 

characterization compared to the others utilized throughout this work concludes the 

chapter. 

 

5.2   Photoluminescence 

5.2.1 Undoped CuCl Photoluminescence 

We have optically characterised CuCl and KCl-CuCl samples on thin films at 

various oxygen-doping durations and etch solutions using temperature dependent 

photoluminescence. The properties of the spectra are best observed at lower 

temperatures, with room temperature scans of the samples failing to produce detectable 

signals due to the low excitation intensity levels used in the excitation process. This is 

best demonstrated by the results obtained by our group from a system of higher energy 

excitation using a low wavelength 244 nm laser setup [99]. This allowed peaks to 

remain visible as room temperature approached and a relatively high level of intensity 

at lower energy values. However in order to ensure testing occurred on the same 

samples for the doping and KCl-CuCl testing as soon as possible, an alternative PL 

setup was required. These measurements (being those used throughout this thesis) 

were recorded using a 325 nm HeCd laser which typically allowed 3 distinctive peaks 
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to be distinguished with the readings recorded at the low temperature limit of the 

cryostat of ~20 K shown in figure 5.1 being one of the few where 4 peaks are visible.  

Each of the peaks present in this spectra and the corresponding photon energy 

values are the exciton and biexciton energies of the CuCl material. Starting from the 

higher photon energy side, we can see the Z3 free exciton peak, typically recorded at 

3.202 eV which closely matches previous results for both thin film (3.203 eV at 10 K 

[26]) and bulk samples (3.208 eV at 6 K [15]) and the values recorded at room 

temperature in the CL results section when temperature shift is taken into account 

(3.202 eV = 387 nm, with the CL peak recorded at 386 nm). The next peak is the peak 

of maximum intensity, the I1 impurity bound exciton doublet peak at 3.180 eV with Cu 

vacancies in the material thought to be responsible for this defect-related emission 

[112].  
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Figure 5.1 PL Spectrum for nominal 500 nm thin film CuCl sample on (100) Si 
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At lower energies are the peaks at 3.165 eV and 3.172 eV ascribed to the free  

longitudinal and transverse contributions of the biexciton M and being the result of 

excitonic molecule recombination [20]. The relative intensity of the longitudinal and 

transverse peaks matches those previously recorded for bulk CuCl [113], with the ML 

values being used for further analysis as they match the accepted M value used in 

binding energy calculations. Finally at the lowest energy of 3.130 eV is the N1 

impurity bound biexciton. The impurities responsible for the N1 and I1 peaks are both 

believed to be from neutral acceptors but these identifications are tentative due to a 

lack of previous observations of PL peaks associated with impurities under ideal 

conditions [26].  

The information obtained from the PL scans can be used to estimate the 

binding energy of the bound exciton I1, the free biexciton M and the bound biexciton  

 

 

Figure 5.2 The Nakayama energy scheme for calculation of the exciton binding 

energies [26]. The left side shows the free states and the right side the bound states. M, 

X and A0 denote the free biexciton, Z3 free exciton and the neutral acceptor. Eb,M and 

Eb,BM denote the binding energy of the free and bound biexcitons. 
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N1. This estimation is based on the corrected bound energy scheme calculation (shown 

in figure 5.2) developed by Nakayama et al. [26] and uses the following equations [26, 

114, 115]: 

ெ஻ܧ = ௓ܧ −  ெܧ

ூ஻ܧ = ௓ܧ − ூܧ  

ே஻ܧ = ௓ܧ2 − ேܧ − ூܧ − ெ஻ܧ        Eqn  5.1 

where EZ, EM, EI and EN are the energies of the free exciton Z3 (3.203 eV), the free 

biexciton M (3.165 eV), the bound exciton I1 (3.180 eV) and the bound biexciton N1 

(3.130 eV) respectively. EB represents the binding energy.  

The estimated binding energies are 23 ± 2 meV for the bound exciton I1, 38 ± 

2 meV for the free biexciton M and 58 ± 2 meV for the bound biexciton N1. The 

binding energies for I1 and M are quite close to those recorded previously for CuCl 

thin film on Al2O3, 22 and 34 meV respectively. However the binding energy of the 

bound biexciton N1 is approximately 12 meV higher than the estimated value recorded 

on Al2O3. However this matches previous results obtained in our group for CuCl thin 

film samples on Si [116] so these values can be considered our baseline for undoped 

CuCl samples. 

The temperature dependence of the PL spectrum of CuCl is shown in figure 

5.3. This shows the large decrease of the I1 peak, dominant at low temperatures and 

visible to the left of the image, but quickly superseded by the Z3 peak to the right. This 

peak also gradually reduces in intensity as temperature is increased, moving to higher 

energy and broadening until it can no longer be distinguished. Shown in this graph at 

low intensity is the biexciton peak M, visible up to 60 K before being lost to 

background noise. The I1 peak remains visible until this temperature is reached as well,  
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Figure 5.3 PL scans showing the variation of the CuCl peaks as temperature is 

increased 

 

but declines at a higher rate due to its relatively high intensity at 20 K compared to the 

M biexciton peak. This is probably due to the thermal dissociation of the bound states 

as the thermal activation energy is ~20 meV [26] which is extremely close to the 

previously obtained binding energy of the bound exciton of ~23 meV, obtained by the 

energy difference between the Z3 free exciton peak and the I1 bound exciton peak. 

The variations in peak energy as the temperature is increased are shown more 

quantitatively by the graph in figure 5.4.  Although the I1 and M values can only be 

measured up to 60 K, over this small range they closely match the shape of the Z3 

graph. After 40 K the Z3 exciton energy is shown to have a linear relationship with 

temperature in the region examined. This matches the observations made previously by 

our group, measuring up to the point before the effect of the ion vibrations causes the 

rate of peak intensity increase to level out [116]. 
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Figure 5.4 Variation of the peak energies for the CuCl thin film samples with 

temperature 

 

To conclude the analysis of the properties of the undoped CuCl thin film 

samples, it is worth comparing the effects of atmospheric exposure on the PL signal. 

Figure 5.5 shows the PL spectra for a fresh CuCl sample and one after 24 hours of 

atmospheric exposure. There is a significant increase in the Z3 exciton peak intensity 

and also a reduction in the peak energies of both the Z3 and I1 peaks, whilst only trace  

elements of the N1 and M peaks are visible. These peaks are masked by a rise in the 

background intensity and this indicates a decrease in crystal quality of the material 

seen previously in our XRD scans in chapter 3. The decrease in energy is not uniform 

for both Z3 and I1 peaks, resulting in a decrease of the I1 bound exciton binding energy 

from ~22 meV to ~18 meV showing the decay in the exciton’s bond with the CuCl 

material. A broad PL band due to impurities, which can usually be observed on the low 

energy side of the I1 band, is not visible in the decayed sample nor any of the samples 
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Figure 5.5 PL spectra of a fresh CuCl sample compared and one after 24 hours of 

atmospheric exposure 

 

measured [117]. This band becomes visible at higher excitation levels using the lower 

wavelength laser excitation setup previously mentioned due to the increased level of 

input energy this setup provides. 

 

5.2.2    KCl-CuCl PL Analysis 

The comparison of the PL spectra for the CuCl and KCl-CuCl samples is 

shown in figure 5.6. Each of the peaks discussed in our analysis of the undoped CuCl 

samples is present with only slight alterations to their positions. This reduction of ~0.2 

meV to the value of both the I1 and Z3 peak positions is probably due to small levels of 

atmospheric exposure (similar to that observed in figure 5.5) rather than the influence 

of the KCl dopant. A notable decrease in the peak luminescence intensity values was 

recorded when comparing the KCl-CuCl sample to the CuCl sample using the same 

setup for both. This is due to the percentage of the KCl dopant being between 15 – 
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20% which is above the 5% threshold to increase luminescence intensity but within the 

key area of increased conductance the optical properties of which are the subject of 

discussion [95]. The close resemblance of this spectrum to the CuCl spectra shows that 

the KCl-CuCl thin films are dominated by the CuCl component, with the KCl 

component distributed throughout the film at far lower percentages than those included 

in the deposition ratio (80:20). No evidence of the K2CuCl3 compound formation on 

the surface has been found. 
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Figure 5.6 PL spectra showing the KCl-CuCl thin film compared with the undoped 

CuCl sample. The spectra have been normalised and are shown on a log-scale to 

ensure the visiblility of all peaks. 
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5.2.3 Oxygen Doping PL Analysis 

The oxygen doping was performed using the same setup and levels of 

exposure as detailed in previous chapters. Most notable was the lack of effect on the 

exciton energy positions the process had, with previous work showing a relatively 

large shift of ~20 meV in the Z3 exciton position and ~10 meV in the I1 position [64]. 

The samples of both CuCl and KCl when doped up to 900 seconds were found to vary 

only by ± 0.5 meV in the Z3 position and ± 0.05 meV in the I1 position, with no 

conclusive trend between the different samples. This could in part be caused by the 

lower level of excitation energy used in the PL system, but this should result in the 

biexciton processes being rendered at reduced intensities and not effect the exciton 

energy position itself. 
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Figure 5.7 Normalised PL intensity for the Z3 exciton peak as oxygen doping levels 

are increased. As per the previous graphs, the intensity values have been normalised 

to the I1 intensity. The S1 and S2 values indicate sets of samples doped at 90 second 

intervals and 450 seconds respectively. 
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Instead of analysing the energy values, we must scrutinise the alterations in 

the recorded relative intensity of the exciton peaks to notice the effects of the doping 

process. Figure 5.7 clearly shows the increase in the intensity of the Z3 peak relative to 

the I1 intensity only becomes prominent at high levels of doping, with the 900 second 

doped samples showing relatively high intensity levels which match results previously 

observed for doped CuCl samples [108]. Rather than point to an increase in the 

visibility of the Z3 exciton peak, these results instead illustrate the deterioration of the 

I1 intensity and the general optical quality of the material as the Z3 peak becomes 

relatively significant without showing any large increase in overall absolute intensity 

when compared with surrounding background values. 

More notable is the significant emergence of the peak at 3.187 eV as doping 

was increased. Shown in figure 5.8, the increase in intensity recorded was only present 

in the CuCl samples and grew to such an extent that it dominated the spectrum at 
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Figure 5.8 Normalised PL intensity for the peak detected at 3.187 eV. Graph has been 

normalised to the I1 intensity. 
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Figure 5.9 Normalised PL intensity for the broad peak detected at 3.182 eV. Graph 

has been normalised to the I1 intensity and illustrates how the I1 peak intensity is 

decreasing relative to the 3.182 eV emissions 
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Figure 5.10 Normalised PL intensity of the 450 second doped samples showing the 

increase in intensity of the peaks at 3.182 eV and 3.187 eV 
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higher doping levels reaching a relative intensity of 1.4 when compared to the I1 

intensity. The emergence of this peak structure can be clearly seen in figure 5.10 which 

shows the normalised peak intensity of the 450 second doping series. These have been 

normalised to the I1 peak intensity. Since it fails to increase during the KCl doping 

process it appears to be inhibited by the K+ atoms in these samples, but not entirely 

blocked. This phenomenon may be related to the relative increase of another broad 

peak centred at 3.182 eV shown in figure 5.9. Once again the increase is only present 

in the CuCl samples. This broad region shoulders the I1 exciton peak and may in some 

way be a secondary peak related to it but at present the cause of the increase remains 

unknown. 

 

5.3  Reflectance Analysis 

5.3.1   CuCl and KCl-CuCl undoped samples 

Reflectance measurements were performed on each of our samples at low 

temperatures using the setup detailed previously in chapter 2. Near-normal incidence 

(~6˚) was used for each of the reflectance scans recorded to minimise the mixing of 

longitudinal and transverse modes and result in the presence of only transverse modes 

in the resultant spectra. Use of these conditions will enable the reduction of the 

boundary conditions to a one-dimensional scalar system of simultaneous equations for 

the purpose of modelling. 

The single crystal samples reported in the literature [118] and used as our 

reference in this section did not include the Fabry-Perot fringes visible in our graph, 

which occur due to multiple reflections from within the CuCl thin films and are 

dependent on the thickness of the material. These fringes are clearly visible at the 
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lower energy levels with the fringes at higher photon energies less visible due to the 

strong excitonic reflection from Si. The parameters for reflectance that cause these 

fringes are best ascertained by using a modelling program based on the exciton-

polariton dispersion relation and boundary conditions and this will be discussed in the 

next section. In this section we will limit our analysis of the reflectance spectra to the 

exciton peak positions and relative intensities for the CuCl, KCl-CuCl and doped 

samples.  

Figure 5.10 shows us these for undoped CuCl. These scans were recorded at 

20 K with a deposited layer of aluminium on Si used as a reflectance reference to 

ensure the reflectance calculated is for CuCl thin film rather than any other factors. We 

can clearly distinguish the Z3 and Z1,2 transverse exciton peak energies at the 

reflectance maxima, with the corresponding longitudinal exciton energies present at 

the intensity minima and at slightly higher energy levels. The values of the Z3 and Z1,2 

transverse energies are determined to be 3.2036 eV and 3.2724 eV respectively which 
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Figure 5.10 Reflectance spectrum for an undoped CuCl 500nm sample 
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closely matches previous results of 3.205 eV and 3.272 eV which were obtained on 

bulk samples of single crystal CuCl [119].  

Reflectance scans were performed on the KCl-CuCl samples and compared to 

our CuCl samples to see if the addition of KCl had any effect on the exciton energies. 

The KCl-CuCl samples were prepared in a similar method to the CuCl samples and 

detailed in chapter 2. Although data was taken from across a broad range of the 

spectrum, data is only shown between 3.15 eV and 3.32 eV, the area of interest for the 

excitons of CuCl and also to avoid the influence of the strong Si reflection beginning 

at 3.35 eV and centred at 3.5 eV. 

As we can see from figure 5.11, there is no shift in the exciton position 

between the 2 samples. There is an increase in calculated reflectance intensity in the 

KCl-CuCl samples of around 0.1 with multiple samples of both CuCl and KCl-CuCl 
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Figure 5.11 Reflectance spectrum for the KCl-CuCl 500nm sample compared to the 

CuCl 500nm sample. Scans have been offset by 0.6 for clarity. 
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confirming the increased response of these optical properties. Also notable is the 

increase in the amplitude of the Fabry-Perot fringes observed. The exciton energies 

compare favourably with previous values recorded for CuCl [119]: Z3 transverse 

energy measured ~3.204 eV, compared to the literature value of 3.205 eV and Z1,2 

transverse energy ~ 3.272 eV, matching the literature value.  

Figure 5.12 shows the temperature variance of the Z1,2 and Z3 exciton 

positions as temperature is increased. The Z3 temperature dependence appears linear to 

180 K before levelling off. The Z1,2 exciton position behaves similarly with a more 

gradual curve effect present throughout. Unlike the PL samples, both peaks remain 

distinguishable up to room temperature but once temperature levels increase above 120 

K features such as the Fabry-Perot fringes are lost to background noise. We can see 

from the region measurable in both techniques that the variance in the Z3 exciton value 

is minimal. 
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Figure 5.12 Temperature variance of the Z1,2 and Z3 exciton positions for 500 nm thin 

film CuCl samples. Also included are the previously measured values for the Z3 

position obtained from PL discussed earlier in this chapter 
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5.3.2 Oxygen Doping of CuCl and KCl-CuCl 

The main effect produced by the oxygen doping, is a deterioration of the 

optical properties of the material. The shape of the exciton peaks themselves are 

increasingly deteriorated as each run of doping takes place. This also causes a slight 

shift in the position of the exciton peaks themselves, and they occur at lower energies. 

This can be seen from figure 5.13 for the Z1,2 exciton peak and figure 5.14 for the Z3 

exciton peak positions. Whilst the shift of only 5 meV for the Z1,2 and 3 meV for the 

Z3 might call this assertion into question, the resolution of the equipment is ~0.4 meV 

and multiple scans have shown the accurate repeatability of the peak locations for 

unmodified samples. The gradual shift of these peaks and erosion of the distinctive 

shape of the reflectance spectra is shown in figure 5.15. A gradual reduction in each of 
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Figure 5.13 Variance of the Z1,2 exciton position in both CuCl and KCl-CuCl samples 

as oxygen doping levels are increased. As in previous graphs, S1 and S2 refer to 

separate series of doping tests, S1 consisted of 90 second doping runs and S2 450 

second 
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Figure 5.14 Variance of the Z3 exciton position as oxygen doping levels are increased 

for both CuCl and KCl-CuCl thin film samples As in previous graphs, S1 and S2 refer 

to separate series of doping tests, S1 consisted of 90 second doping runs and S2 450 

second 
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Figure 5.15 Reflectance spectra of the 450 second doping series. Samples have been 

normalised to the peak of maximum intensity to show highlight the change in spectra 

shape and exciton position as doping is increased 
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the features can be seen, with the Fabry-Perot peak structure retaining a higher level of 

intensity after 900 seconds of oxygen doping. 

This assertion is also demonstrated by figure 5.16 where we can see the 

gradual decrease of the reflected intensity at the exciton positions as doping is 

increased. Previously an ideal doping level was discussed, being somewhere between 

2-4 minutes. These graphs further enforce this idea as whilst there is an immediate 

reduction in the optical quality once doping commences, the exciton peak positions 

stay relatively unchanged within this region and the exciton reflectance intensity 

remains above the lowest levels. In fact an increase is recorded within this region for 

the CuCl samples but not the KCl samples. This matches the increase observed in our 

PL scans where a similar increase was recorded for CuCl at higher doping levels but 

not for the KCl-CuCl samples. As in this previous case, it appears to point to the K+ 

atoms blocking the influence of the oxygen doping on the optical properties of the 

material. 
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Figure 5.16 The reflectance percentage as the oxygen doping levels are increased for 

the Z3 and Z1,2 exciton peaks in both CuCl and KCl-CuCl thin film samples 
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5.4   Reflectance Modelling 

5.4.1 Introduction 

The classical theory of exciton-polariton coupling given by Hopfield and 

Thomas [120] was used to model the reflectance data in MATLAB [121]. Each of the 

experimental scans was performed at near normal incidence to minimize the influence 

of longitudinal exciton bands and allow our spectra to be modelled using a coupled 

two-exciton band model for the CuCl Z1 and Z3 exciton bands. These models combine 

Maxwell’s boundary conditions with a form of additional boundary conditions 

(ABCs). There are various possible ABCs reported but the ‘Pekar ABC’ has proved 

adequate for modelling our spectra. This specifies that the total polarization due to 

each exciton branch disappears at the crystal interface or at a finite distance from the 

interface which gives rise to an exciton dead layer, as detailed elsewhere [122]. 

Exciton-polariton mixed excitation modes are present within the crystal due to photon 

and free exciton coupling. This affects the refractive index close to the exciton 

energies and can thus be probed by reflection.  

Two modes propagating within the material means three boundary conditions 

are needed, due to the reflected field and fields due to each of each these modes as 

seen in figure 5.17 (a). Maxwell’s equations give two boundary conditions so another 

is needed. Pekar ABCs are used for this, which require that the polarization due to a 

particular exciton band vanish at a certain location in the crystal, usually at the surface 

or close to the surface, with the physical meaning that the exciton cannot leave the 

material. For two exciton band material, such as CuCl with the Z3 and Z1,2 exciton 

bands, the situation is more complex. Three propagating modes are present, with four 

boundary conditions required as shown in figure 5.17 (b). Another ABC is required. 
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Figure 5.17 (a) Illustration of the frequency versus the positive real part of the wave-

vector for longitudinal and transverse waves. This shows the 2 modes propagating 

through the film as solutions are valid only along each of the polariton bands shown 

(b) The same illustration but with an additional propagating mode showing the 

additional boundary conditions required 
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Pekar ABCs are used for both exciton polarizations. Each of these modes will be 

labelled by the subscripts in the modelling description following this section.  

The polarizabilities of the following form characterize insulating crystals for a 

given wave vector k and frequency ω: 

(݇,߱)ߙ = ෍
଴௝ߙ ௝்߱

ଶ

௝்߱
ଶ − ߱ଶ + ௝݇ଶߚ − ݅߱Γ௝

 

                        Eqn 5.2 

where α0j are the polarizabilities of each exciton resonance j at ߱ = 0 and ݇ = 0, ωjT 

the transverse resonance frequencies at ݇ = 0 , and Γ௝  the empirical damping 

constants. The influence of spatial dispersion is described by:    

௝݇ଶߚ = ቆ
ℏ ௝்߱

௝ܯ
ቇ݇ଶ 

                         Eqn 5.3 

where Mj is the effective exciton mass of j and ℏ is Planck’s constant divided by 2π. 

The frequencies under examination in this thesis occur near two exciton 

resonances, Z3 and Z1,2. The sum of all these oscillators gives the wave-vector 

independent background polarizability ߙஶ: 

,߱)ߙ ݇) = ஶߙ +
଴஺߱஺்ଶߙ

஺்߱
ଶ − ߱ଶ + ஺݇ଶߚ − ݅߱Γ஺

+
଴஺߱஻்ߙ

ଶ

߱஻்ଶ − ߱ଶ + ஻݇ଶߚ − ݅߱Γ஻
 

                        Eqn 5.4 

The relation ߝߝ଴ܧ = ܧ଴ߝ +  between the electric field E existing in the crystal, the ܧߙ

permittivity of the vacuum ߝ଴, the polarizability α, and the dielectric function ߝ leads to 

(݇,߱)ߝ = ஶߝ +
଴஺ߙ
଴ߝ

߱஺்ଶ

஺்߱
ଶ − ߱ଶ + ஺݇ଶߚ − ݅߱Γ஺

+
଴஻ߙ
଴ߝ

߱஻்
ଶ

߱஻்ଶ −߱ଶ + ஻݇ଶߚ − ݅߱Γ஻
 

Eqn 5.5 
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where ߝஶ is a frequency and wave-vector independent background dielectric constant 

ߝ) = ଴ߝ  for ߱ → ∞). 

The transverse solution of Maxwell’s equation is:  

(݇,߱)ߝ =
݇ଶܿଶ

߱ଶ 	 

݇ଶܿଶ

߱ଶ =  ௥ߤ௥ߝ

                        Eqn 5.6 

This shows the change from the vector to the tensor notation used in the above 

discussion. Substituting equation 5.5 for the dielectric constant into equation 5.6 and 

assuming the magnetic permeability of the crystal is that of free space (i.e. the relative 

permeability ߤ௥ = 1) the transverse solution becomes:  

݇ଶܿଶ

߱ଶ = ஶߝ +
1
଴ߝ
ቆ

଴ߙ) + ଶ)߱଴݇ߚ
ଶ

߱଴ଶ + ଶ݇ߚ − ߱ଶ − ݅߱Γ
ቇ 

                        Eqn 5.7 

When we include both the A and B excitonic resonators, one can simply sum their 

polarizabilities: 

݇ଶܿଶ

߱ଶ = ஶߝ +
஺଴ߙ
଴ߝ

ቆ
߱஺்ଶ

஺்߱
ଶ + ஺݇ଶߚ −߱ଶ − ݅߱Γ୅

ቇ +
஻଴ߙ
଴ߝ

ቆ
߱஻்
ଶ

߱஻்ଶ + ஻݇ଶߚ −߱ଶ − ݅߱Γ୆
ቇ 

Eqn 5.8 

where ߙ஺଴ is the static polarizability for the A exciton, ߙ஻଴ is the static polarizability 

for the B exciton, ωAT and ωBT are the transverse frequencies of the A and B excitons 

respectively, and Γ୅ and Γ୆ are the damping coefficients. In each case the parameters 

refer only to the transverse modes since these propagate at normal angles of incidence. 

The β parameter will be different for both the A and B excitons because it is related to 

the transverse frequency and the effective mass of the exciton. To simplify this, 

equation 5.8 can be expressed as: 
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ଶ݇ܣ = ஶߝ +
ܤ

ܥ + ஺݇ଶߚ
+

ܦ
ܧ + ஻݇ଶߚ

 

                        Eqn 5.9 

where we define A-E as: 

ܣ =
ܿଶ

߱ଶ 

ܤ =
஺଴ߙ
଴ߝ

߱஺்ଶ  

ܥ =
ܤ଴ߝ
஺଴ߙ

−߱ଶ − ݅߱Γ୅ 

ܦ =
஻଴ߙ
଴ߝ

߱஻்
ଶ  

ܧ =
ܦ଴ߝ
஻଴ߙ

−߱ଶ − ݅߱Γ୆ 

Eqns 5.10 

Multiplying by the denominators on the RHS, equation 5.9 becomes 

ܥ)ଶ݇ܣ + ܧ)(஺݇ଶߚ + (஻݇ଶߚ = 

ܥ)ஶߝ + ܧ)(஺݇ଶߚ + (஻݇ଶߚ + ܧ)ܤ + (஻݇ଶߚ + ܥ)ܦ +  (஺݇ଶߚ

Eqn 5.11 

and after multiplying the out the bracketed parameters and collecting terms one obtains 

the expression: 

଺݇(஻ߚ஺ߚܣ) + ஻ߚܥܣ) + ஻ߚܧܣ − ஻)݇ସߚ஺ߚஶߝ + ܧܥܣ) − ஻ߚܥஶߝ − ஺ߚܥஶߝ − ߚܤ −

ଶ݇(ߚܦ − ܧܥஶߝ) + ܧܤ + (ܥܦ = 0  

Eqn 5.12 

This, when re-arranged, leads to an equation cubic in k2 for each value of , 

and thus for each optical frequency there are 3 different modes, with three different k 

values, which we denote by subscripts (ki). These k values may be complex and the 

sign of the k value used (i.e. the positive or negative solution of √k2) is chosen to 
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confirm with physically meaningful boundary conditions (e.g. a solution vanishing far 

from a boundary or the correct direction of energy transfer). Each of these propagating 

modes has an associated refractive index, ni, given by ni =  / ki. To solve for 

reflectance and transmission at various different optical frequencies we need to use a 

matrix approach. 

In doing so, we have modelled four of the different scenarios possible using 

different combinations of dead layers treating the thin layer sample as a bulk sample 

before including the thickness of the material and dead layers at the interfaces (figure  

 

 

Figure 5.18 Photon and polariton modes for (a) Model 1 (b) Model 2 (c) Model 3 

and (d) Model 4. Electric field amplitudes are labelled Ei. Layer thicknesses are 

labelled Li and refractive indices as ni 
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5.18). Model 1 applies Pekar’s ABC at the air-CuCl interface and presumes a sample 

of bulk CuCl. Model 2 applies the same ABC properties at the air-CuCl interface and 

includes the dead layer thickness at the air-CuCl interface as a fitting parameter, 

applying Pekar’s ABC at the dead layer boundary. Model 3 applies the same ABC 

properties at the air-CuCl interface and includes additional parameters for the  

thickness of the thin film layer and the reflection at the Si substrate beneath but with 

dead layers remaining absent. Model 4 is similar to model 3 considering the thin film 

to have a defined thickness with the addition of dead layers at the air-CuCl and CuCl-

Si boundaries.  

The equations and theory behind each of these models will now be discussed. 

Since each of the models has a similar underlying structure, they will be described in 

order with each model building upon the previous.  

 

5.4.2 Model 1 (Air – Bulk CuCl) 

When Maxwell’s equations are combined with the ABC Pekar boundary 

conditions we are left with the following series of simultaneous equations for the 

boundary conditions  

3211 EEEEE R         Eqn 5.13 

332211010 EnEnEnEnEn R         Eqn 5.14 

               0,,, 332211  EkEkEk AAA        Eqn 5.15 

               0,,, 332211  EkEkEk BBB        Eqn 5.16 

where ni represents the refractive index n1, n2 and n3 and α(k,ω) is the polarizability of 

the A or B free excitons as a function of frequency for each of the three solutions for 

the wavevector k1,2,3. Equations 5.13 and 5.14 above correspond to the boundary 
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conditions from Maxwell’s equations and equations 5.15 and 5.16 to the Pekar ABCs 

for the A and B exciton bands, respectively, showing that the polarization due to each 

exciton vanishes, in this case at the surface. Equation 5.13 is represented visually in 

figure 5.18 (a). The polarizability α(k,ω) is defined as:  

஺(݇ଵିଷ,߱)ߙ = ஶߝ)଴ߝ − 1) +
஺଴߱஺்ଶߙ

߱஺்ଶ + ஺݇ଵିଷଶߚ −߱ଶ − ݅߱Γ஺
 

                 Eqn 5.17 

for A excitons with a similar expression for B excitons. ε∞ is the static background 

dielectric constant, αA0  is the static exciton polarizability, ω is the angular frequency 

of the incident radiation, ωAT is the transverse exciton frequency, ΓA is the wavevector-

independent damping parameter of the A exciton and k is the wavevector. The β 

parameter can be expressed in terms of the exciton effective mass as follows [123]: 

஺ߚ =
஺்߱ߟ
݉஺
∗  

                           Eqn 5.18 

where m* is the effective mass (in the case above for the A exciton band). This also has 

a similar expression for B excitons, with separate values for the effective mass being 

used to distinguish the Z1,2 and Z3 excitons. The above boundary conditions can be 

expressed in the matrix form: 

   ൮

−1 1 1 1
1 ݊ଵ ݊ଶ ݊ଷ
0 ஺ଵߙ ஺ଶߙ ஺ଷߙ
0 ஻ଵߙ ஻ଶߙ ஻ଷߙ

൲ቌ

ݎ
ܣ
ܤ
ܥ

ቍ = ൮

1
1
0
0

൲       Eqn 5.19 

where each of the relative field intensities are defined as ݎ = ூܧ/ோܧ ܣ , = ூܧ/ଵܧ , 

ܤ = ܥ ூ andܧ/ଶܧ = ூܧ/ଷܧ . αA1-3 are the frequency dependant polarizabilities defined 

in equation (5) for the A free excitons with wavevectors k1-3 and αB1-3 are the 

corresponding frequency dependant polarizabilities for the B free excitons with 

wavevectors k1-3. The refractive index of air has been set to unity for this model and 
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throughout the rest of the analysis. n1-3 represents the refractive index for each of the 

E1-3 modes. The matrix above takes the form Xy=z. This means by taking the inverse 

of the square matrix Z we can solve for the reflection coefficient r, i.e. y=X-1z so y(1) 

gives us r. Squaring this gives us the reflectance R. The A, B and C values provide the 

relative interface field amplitudes and phases for the propagating polariton modes 

within the structure. These and later matrix operations were performed using 

MATLAB. 

 

5.4.3 Model 2 (Air – DL – CuCl) 

For this model we apply an additional dead layer to the theory of model 1. 

The thickness of this layer is denoted by the fitting parameter L resulting in the 

following solvable matrix set: 

⎝

⎜⎜
⎛

ݎ
ܣ
ܤ
ܥ
ܦ
⎠ܧ

⎟⎟
⎞

=

⎝

⎜
⎜
⎛

−1 1 1 0 0 0
1 ݊஽ −݊஽ 0 0 0
0 ݁ ݁∗ −1 −1 −1
0 ݊஽݁ −݊஽݁∗ −݊ଵ −݊ଶ −݊ଷ
0 0 0 ஺ଵߙ ஺ଶߙ ஺ଷߙ
0 0 0 ஻ଵߙ ஻ଶߙ ⎠஻ଷߙ

⎟
⎟
⎞

ିଵ

⎝

⎜⎜
⎛

1
1
0
0
0
0⎠

⎟⎟
⎞

      Eqn 5.20 

where e represents ݁݌ݔ ቀ݅ ௡ವఠ௅
௖
ቁ  and ݁∗  represents ݁݌ݔ ቀ−݅ ௡ವఠ௅

௖
ቁ . nD represents the 

dead layer refractive index defined as  ݊஽ = ஶߝ√  . The equation is solved for r and 

then squared to obtain the reflectance. 

 

5.4.4 Model 3 (Air – CuCl – Si) 

For the third model, each of the parameters of the first model are included 

with the addition of the thin film nature of the sample and reflection from the CuCl/Si 

interface. The thickness is denoted by L and used as an additional fitting parameter. 
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These additional parameters require the use of further boundary conditions. These are 

applied at each of the interfaces and state that the polarization due to the excitons must 

be zero at the air-CuCl and CuCl-Si interfaces as we are not taking the dead layers into 

account in this model. The two resonances obtained for the A and B excitons at the air-

CuCl interface are: 

ଵܧ]଴஺(݇ଵ,߱)ߙ + [ସܧ + ଶܧ]଴஺(݇ଶ,߱)ߙ + [ହܧ + ଷܧ]଴஺(݇ଷ,߱)ߙ + [଺ܧ = 0      Eqn 5.21 

with α0A representing the polarizability factor for the A exciton and changing to α0B for 

the B exciton resonance equation below: 

ଵܧ]଴஻(݇ଵ,߱)ߙ + [ସܧ + ଶܧ]଴஻(݇ଶ,߱)ߙ + [ହܧ + ଷܧ]଴(݇ଷ,߱)ߙ + [଺ܧ = 0      Eqn 5.22 

Similarly at the CuCl-Si interface the additional boundary conditions obtained 

are: 

଴஺(݇ଵ,߱)ߙ ቂܧଵ݁௜൫௡భఠ
௅ ௖ൗ ൯ + ସ݁ି௜൫௡భఠܧ

௅ ௖ൗ ൯ቃ+ 

଴஺(݇ଵ,߱)ߙ ቂܧଶ݁௜൫௡మఠ
௅ ௖ൗ ൯ + ହ݁ି௜൫௡మఠܧ

௅ ௖ൗ ൯ቃ + 

଴஺(݇ଵ,߱)ߙ ቂܧଷ݁௜൫௡యఠ
௅ ௖ൗ ൯ + ଺݁ି௜൫௡యఠܧ

௅ ௖ൗ ൯ቃ = 0 

   Eqns 5.23 

for the A exciton. The additional B exciton boundary conditions are similar and given 

by: 

଴஻(݇ଵ,߱)ߙ ቂܧଵ݁௜൫௡భఠ
௅ ௖ൗ ൯ + ସ݁ି௜൫௡భఠܧ

௅ ௖ൗ ൯ቃ + 

଴஻(݇ଵ,߱)ߙ ቂܧଶ݁௜൫௡మఠ
௅ ௖ൗ ൯ + ହ݁ି௜൫௡మఠܧ

௅ ௖ൗ ൯ቃ + 

଴஻(݇ଵ,߱)ߙ ቂܧଷ݁௜൫௡యఠ
௅ ௖ൗ ൯ + ଺݁ି௜൫௡యఠܧ

௅ ௖ൗ ൯ቃ = 0 

             Eqns 5.24 

The additional E values are added to our existing boundary conditions given in 

equation 5.13 – 5.16 and expressed in the matrix form. The solvable b=A-1c format is: 
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⎝

⎜
⎜
⎜
⎜
⎛

ݎ
ܣ
ܤ
ܥ
ܦ
ܧ
ܨ
⎠ܩ

⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎛

−1 1 1 1 1 1 1 0
1 ݊ଵ ݊ଶ ݊ଷ −݊ଵ −݊ଶ −݊ଷ 0
0 ଵ݁ ݁ଶ ݁ଷ ݁∗ଵ ݁∗ଶ ݁∗ଷ −1
0 ݊ଵ݁ଵ ݊ଶ݁ଶ ݊ଷ݁ଷ −݊ଵ݁∗ଵ −݊ଶ݁∗ଶ −݊ଷ݁∗ଷ −݊ௌ௜
0 ஺ଵߙ ஺ଶߙ ஺ଷߙ ஺ଵߙ ஺ଶߙ ஺ଷߙ 0
0 ஻ଵߙ ஻ଶߙ ஻ଷߙ ஻ଵߙ ஻ଶߙ ஻ଷߙ 0
0 ஺ଵ݁ଵߙ ஺ଶ݁ଶߙ ஺ଷ݁ଷߙ ஺ଵ݁∗ଵߙ ஺ଶ݁∗ଶߙ ஺ଷ݁∗ଷߙ 0
0 ஻ଵ݁ଵߙ ஻ଶ݁ଶߙ ஻ଷ݁ଷߙ ஻ଵ݁∗ଵߙ ஻ଶ݁∗ଶߙ ஻ଷ݁∗ଷߙ 0 ⎠

⎟
⎟
⎟
⎟
⎞

ିଵ

⎝

⎜
⎜
⎜
⎜
⎛

1
1
0
0
0
0
0
0⎠

⎟
⎟
⎟
⎟
⎞

  

Eqn 5.25 

where ݁௜ = ݌ݔ݁ ቀ݅ ௡೔ఠ௅
௖
ቁ  and ݁∗௜ = ݌ݔ݁ ቀ−݅ ௡೔ఠ௅

௖
ቁ  and nSi represents the refractive 

index of silicon which at 3.2 eV is ~5.5 [15]. As before this equation is solved for the 

amplitude reflection coefficient r which is then squared to obtain the reflectance.  

 

5.4.5 Model 4 (Air – DL – CuCl – DL – Si) 

For the fourth model we include the Si interface theory of the second model 

with the addition of exciton dead layers (DL) at the air/CuCl and CuCl/Si interfaces. 

Each of these dead layers are given fitting parameters of L1 and L3 respectively with 

the thickness of the CuCl layer represented by L2 (figure 5.18 (d)). The boundary 

conditions of the dead layers are added onto the previous matrix resulting and 

rearranged to give: 
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⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

ݎ
ܣ
ܤ
ܥ
ܦ
ܧ
ܨ
ܩ
ܪ
ܫ
ܬ
⎠ܭ

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

−1 1 1 0 0 0
1 ݊஽ −݊஽ 0 0 0
0 −݁஽ଵ −݁∗஽ଵ 1 1 1
0 −݊஽݁஽ଵ ݊஽݁∗஽ଵ ݊ଵ ݊ଶ ݊ଷ
0 0 0 ଵ݁ଶ ݁ଶଶ ݁ଷଶ
0 0 0 ݊ଵ݁ଵଶ ݊ଶ݁ଶଶ ݊ଷ݁ଷଶ
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 ஺ଵߙ ஺ଶߙ ஺ଷߙ
0 0 0 ஻ଵߙ ஻ଶߙ ஻ଷߙ
0 0 0 ஺ଵߙ ଵ݁ଶ ஺ଶ݁ଶଶߙ ஺ଷ݁ଷଶߙ
0 0 0 ஻ଵߙ ଵ݁ଶ ஻ଶ݁ଶଶߙ ஻ଷ݁ଷଶߙ

 

0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0 0
݊ଵ ݊ଶ ݊ଷ 0 0 0
݁∗ଵଶ ݁∗ଶଶ ݁∗ଷଶ −1 −1 0
݊ଵ݁∗ଵଶ ݊ଶ݁∗ଶଶ ݊ଷ݁∗ଷଶ −݊஽ ݊஽ 0

0 0 0 ݁஽ଷ ݁∗஽ଷ −1
0 0 0 ݊஽݁஽ଷ −݊஽݁∗஽ଷ −݊ௌ௜
஺ଵߙ ஺ଶߙ ஺ଷߙ 0 0 0
஻ଵߙ ஻ଶߙ ஻ଷߙ 0 0 0

஺ଵ݁ଵଶߙ ஺ଶ݁ଶଶߙ ஺ଷ݁ଷଶߙ 0 0 0
஻ଵ݁ଵଶߙ ஻ଶ݁ଶଶߙ ஻ଷ݁ଷଶߙ 0 0 0 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

ିଵ

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1
1
0
0
0
0
0
0
0
0
0
0⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

             

Eqn 5.26 

where eij represents ݁݌ݔ ቀ݅ ௡೔ఠ௅ೕ
௖
ቁ  with ni representing the refractive indices as in 

previous models, with the addition of ݊஽ = ஶߝ√  for the dead layers. Lj represents the 

lengths L1, L3 and L2 for the two dead layers at each of the interfaces and the CuCl thin 

layer thickness respectively. Similar to model 2, ݁∗௜௝ represents	݁݌ݔ ቀ−݅ ௡೔ఠ௅ೕ
௖
ቁ. As in 

each of the previous models, the equation is solved for the amplitude coefficient r and 

squared to give the reflectance. 
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5.4.6 Modelling Results 

To aid the fitting procedure, initial values are taken from the experimental 

data for the transverse and longitudinal frequencies of the excitons A and B which can 

be estimated from the maximum and minimum reflectivity at the expected spectral 

regions. The static background dielectric constant can be estimated from the average 

reflection coefficient far from the areas of interest. By varying parameters such as the 

A and B longitudinal and transverse exciton energies, the damping coefficient, exciton 

mass, thin film CuCl thickness for models 3 and 4 and in the case of models 2 and 4 

the dead layer thickness, the fitted reflectance spectra is optimized to the experimental 

data using a least squares procedure. For this we have used MATLAB [121]. 

Figure 5.19 shows the experimental reflectance data plotted alongside the best 

fits for each of the models used of that data. We can see that each of the models quite 

closely matches the experimental data for the Z3 exciton with models 3 and 4 being 

slightly closer to the measured experimental values for the Z3 exciton (3.202 eV) and 

the Z1,2 exciton (3.272 eV). This figure also displays the Fabry-Perot oscillations 

present throughout the spectra as the distance from the exciton positions is increased. 

Figure 5.20 shows the calculated exciton-polariton dispersion curve for CuCl overlaid 

on top of the dispersion curve obtained by previous work [23]. This previous report 

also calculated the three-branch CuCl dispersion curve using a two-oscillator model, 

one for each of the excitons Z3 and Z1,2. The regions above and below the central 

exciton position have a high Fabry-Perot fringe presence, with the central line 

indicating probable Fabry-Perot oscillations between the two exciton peaks as well. 

We can see the shape of our curve matches that from the previous work excellently, 

with only slight differences due to a small difference in the calculated energy position 

of the Z1,2 exciton for our model. In fact, the agreement is so close that it is hard to 
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distinguish between our data and that of reference [23] over large regions of the 

dispersion curves. The comparison of our modelled thin film values and those obtained 

for bulk CuCl are shown in table 5.1 and discussed therein. 
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Figure 5.19 Experimental reflectance plotted against each of the reflectance models. 

Spectra have been offset by 0.6 each for clarity and the position of the Z3 and Z1,2 

excitons shown. The CuCl thin film is shown at its recorded intensity level. The 

included interface layers of each model are as follows: Model 1: Air - Bulk CuCl; 

Model 2: Air – Dead layer – Bulk CuCl; Model 3: Air – Thin film CuCl – Si substrate; 

Model 4: Air – Dead layer – Thin film CuCl – Dead layer – Si substrate 

 

The Fabry-Perot oscillations will be observed when the spatial damping of 

the propagating modes is sufficiently small that the modes can make at least two 

passes through the sample. This also requires the sample thickness to be significantly 

less than L, where L = (ni k0)-1 where ni is the imaginary part of the mode refractive 
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index, k0 the free space wavevector and L the mean free path of an exciton polariton 

[124]. In the regions around the exciton positions the value of L will be increased to 

the order of 1 x 105 so no fringes should be visible at these positions. Correspondingly 

as we move away from the exciton positions, the L value will greatly decrease and 

these fringes will become prominent. This trending is clearly shown in figure 5.11, 

with the Fabry-Perot fringes increasing in amplitude as the distance from the exciton 

position is increased. The fringes are blocked from prominence at the higher energy 

values due to reflection from the Si substrate which produces a broadband reflectance 

centred on 3.5 eV.  

Table 5.1 shows the best-fit values to our data, determined using model 3, 

alongside previously measured values recorded for bulk CuCl [118].  Sample 1 is the  

 

 

Figure 5.20 The Computed Polariton Dispersion curves for CuCl. The 

overlaid blue, red and black lines are the curves produced from our calculations, with 

the underlying curve previously calculated in literature [23]. The agreement is so close 

that it is hard to distinguish between our data and that of reference [23] over large 

regions of the dispersion curves 
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Parameter Bulk 
sample 
[118] 

Sample 1 Sample 2 Sample 3 

ℏ߸஺்  

(transverse Z3 exciton energy, eV) 

3.202 3.203 3.203 3.202 

ℏ߸஻் 	 

(Z1,2 transverse exciton energy, eV) 

3.266 3.267 3.267 3.266 

ℏ߸஺் − ℏ߸஻்  

(Z3-Z1,2 splitting, meV) 

64 64 64 64 

Δ௅்஺  

(Z3 exciton LT splitting, meV) 

5.7 5.76 4.54 5.41 

Δ௅்஻  

(Z1,2 exciton LT splitting, meV) 

23 23.5 19.1 23.2 

ℏΓ୅ 

(Z3 exciton damping, meV) 

0.9 1.6 1.1 1.1 

ℏΓ୆	 

(Z1,2 exciton damping, meV) 

11.5 8.6 9.9 5.8 

MA 

(multiples of electron mass, Z3) 

2.4 0.36 0.80 0.29 

MB 

(multiples of electron mass, Z1,2) 

0.65 0.083 0.15 0.06 

DL thickness Z3 exciton (nm) 1.4 0 0 0 

DL thickness Z1,2 exciton (nm) 2.8 0 0 0 

Film thickness (nm) N/A 1002.2 746.8 691.1 

Table 5.1 Fitting parameters used for modeling the CuCl thin film samples and the 

bulk sample from the literature for comparison 
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sample used in figure 5.19, with samples 2 and 3 other samples made in the same 

manner to test the reliability of the modelling process. Each of the constants closely 

matches the bulk samples except for the effective mass of each of the excitons. The 

effect of this variable on the shape of the graph is mainly seen in the relative intensity 

of the exciton peaks, the higher this value, the more asymmetric the peaks will 

become. From observation of our modeled spectra, there is a slight difference in the 

peak shape, with our modeled samples being slightly more rounded than the 

experimental peaks, suggesting that a larger exciton mass is required. However the 

limits of MATLAB are ± 1.7977e+308 so as the value of the thickness of the thin film 

is increased, the e1 and e2 parameters present in each of the matrices used in models 3 

and 4 tends to increase above this limit at lower eV levels and produce an error. 

Artificially decreasing the exciton masses keeps these variables within the 

programming limitations but results in inaccuracies in the electron mass value. This 

allows us to model the Fabry-Perot fringes at lower energies and ensure the thickness 

value results in accurate fringe production between the two exciton peaks visible in 

figure 5.19.  

The film thickness modeled to be 1000.2 nm would appear to be significantly 

higher than the deposited nominal 500 nm thin film thickness of the CuCl samples. 

However a number of factors can serve to inflate the thickness above the 500 nm 

intended thickness, position of the Si substrates in relation to the evaporation crucible, 

orientation of the shielding plate to restrict deposition until an ideal rate has been 

reached and the general non-uniformity of the surface of these samples all contribute 

to inflation of the CuCl thickness. Another cause could be an error in the calculated 

tooling factor used in the deposition of the CuCl material itself. Measurements 

performed in a scanning electron microscope (SEM) in cross-sectional geometry on a  
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(a) (b)  
 

 
 
(c) 
 
 

Figure 5.21 (a) Cross-sectional of CuCl thin film sample 2 showing the physical 

thickness. Lines have been slightly shifted for clarity. The debris present on the CuCl 

surface is due to the cleaving process used to prepare samples for the cross-sectional 

SEM measurements and not representative of the CuCl sample surface (b) Tilted SEM 

image of the surface taken at close to 30° of the CuCl thin film sample showing the 

surface roughness (c) Cross-sectional of CuCl thin film sample 3 showing the physical 

thickness. 
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CuCl thin film on Si revealed the actual layer thickness to be ~ 1080 nm, even though 

the nominal deposition thickness was 500 nm, thus validating the accuracy of the fitted 

thickness value for other samples. Further reflectance measurements on samples of 

actual thicknesses ~ 680 nm (as determined by cross-sectional SEM measurements 

shown in figure 5.21 (a)) yielded a best fit thickness of 691.1 nm. The cross-sectional 

image shows the presence of debris on the sample surface. This is mainly due to the 

cleaving process necessary to produce these images as figure 5.21 (b) shows the 

surface of the sample to be somewhat uniform. There is a similar good agreement 

between our modelled thickness and the actual thickness for thin film sample 3, the 

modelled value being 746.8 and the measured ~ 727 nm, further validating the 

accuracy of the fitted film thickness parameter (figure 5.21 (c)). 

The critical dead layer thickness in bulk CuCl has previously been calculated 

to be ~1.4 and 2.8 nm for Z3 and Z1,2 excitons respectively and the authors say that 

above this value the fit of the reflectance spectra is destroyed [118] however this 

wasn’t the case in our model. Dead layer thicknesses below these values have no 

discernible effect on the modelled spectra, shown by models 2 and 4 in figure 5.19. 

The dead layer value was set to the calculated values to try and show the effect of the 

layers and in model 4 a slight flattening of the Z3 exciton peak can be observed while 

model 2 has no discernible differences. Increasing the dead layer value causes a 

decrease in the peak height at each of the exciton positions and a slight change in the 

location of the Fabry-Perot fringes. The lower values used for the exciton effective 

masses already cause the peak heights to be decreased, so the model tends to reduce 

the dead layer thickness to 0 to maintain accuracy at these locations. Using either 

previously calculated or physically plausible values for the dead layer thickness results 

in modelled spectra practically identical to that which negates this factor, i.e. model 1 
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being identical to model 2 and model 3 identical to model 4. The lack of effect of this 

dead layer is probably due to the excitonic radius for CuCl being 0.7 nm [125, 126] 

which is very small when compared to other copper halides, thus requiring a large 

dead layer to produce a notable resonance feature.  

Bulk CuCl would be expected to be under minimal strain. It is feasible that 

any differences in the fitted parameters could be due to strain and stress within the thin 

film. However, the agreement of the fit values with the bulk values, particularly the LT 

splitting parameter, shows the lack of strain in the CuCl thin film, probably due to the 

close lattice matching with the Si substrate underneath [40]. The minor discrepancies 

in the LT splitting and exciton damping parameters occur for the Z1,2 exciton peak 

which is broader compared to the Z3 and thus the features are less sharp and so fitting 

errors will naturally increase. 

Due to the close resemblance of the KCl-CuCl reflectance spectra to the CuCl 

spectra, a significant difference in the fitting parameters would not be expected. 

Identical parameters can be used for both, with the relatively larger reflectance signal 

from the KCl-CuCl and a subtle difference in the Fabry-Perot oscillations due to a 

different film thickness being the only variations. The result is similar for the doped 

samples of CuCl and KCl-CuCl; deterioration of the exciton peak intensity and shape 

as doping is increased effects the samples in a uniform manner, reducing the presence 

of the exciton peak signals and the Fabry-Perot fringes throughout the entire energy 

range.   

This shows us the limitations of the modeling procedure for different types of 

samples, but for CuCl thin films of varying thickness on different substrates it could 

prove a valuable tool due to the non-destructive nature of the process. Long-time 

exposure to the laser used by the PL system leaves a burned or scarred pattern on the 
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surface and results in reduced PL intensities outputted from the surface. SEM usage 

results in a similar type of surface scarring produced by the electron beam on the 

surface of the sample, with the detected signal decreasing and a reduction in the 

secondary electron output as scanning continues. Even the non-destructive process of 

XRD causes the deterioration of the CuCl crystal structure due to the scans taking 

place in an open atmosphere environment and thus failing to inhibit the hygroscopic 

nature of the material. The reflectance modeling process represents the only truly non-

destructive method of characterization utilized in this work which proves invaluable 

for controlling the natural exposure-related decay of the samples and also allowing 

different setups to be tested on samples with known properties. 

 

5.5   Summary 

This chapter further examined the luminescence properties of CuCl material. 

The PL characterization of the CuCl thin film samples has been performed, including a 

variable temperature analysis and a calculation of the exciton binding energies. 

Comparing the KCl-CuCl PL spectra with the CuCl spectra noted no discernible 

differences between samples. Analysis of the doped samples of both KCl-CuCl and 

CuCl showed the formation of an unknown peak at 3.187 eV. This peak production is 

present only in the CuCl samples, suggesting the K+ ions added by the KCl salt inhibit 

the formation of this defect. Similarly the I1 shoulder measured at 3.182 eV is found to 

increase in intensity when doped, with the increase present only in the CuCl samples. 

This is one of the few notable differences between the CuCl and KCl-CuCl samples. 

Further exploration of this formation could be performed in future works, with samples 

exhibiting these features in the PL system tested using the previously discussed 
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methods of characterization for any noticable differences to the previously recorded 

values. 

Analysis of the reflectance spectra for CuCl and KCl-CuCl showed produced 

another noticable difference between the two materials, an increase in the reflected 

intensity for KCl-CuCl when compared to the CuCl samples. This also caused an 

increase in the overall amplitude of the peaks measured at the exciton positions Z3 and 

Z1,2 and at each of the Fabry-Perot fringe positions. Oxygen doping caused a decrease 

in the energy values recorded for each of the exciton positions as well as the measured 

reflectance value for each of the excitons. This decrease was more gradual, reaching a 

minimum at 270 seconds which when combined with our previous values for the ideal 

region of doping from chapter 4, suggests doping of 2-3 minutes will retain most of the 

material’s properties whilst having the desired effect on the material’s conductivity. 

Modelling of the reflectance measurements using the classical theory of 

exciton-polariton coupling given by Hopfield and Thomas rounded off the chapter. 

Four different models using dead layers and thin film properties were plotted and 

compared both the experimental spectra and the bulk values previously acquired for 

CuCl material. Model 3, which includes the thin-film nature of the sample, was found 

to give an accurate fit of the excitonic resonances and the shape of the Fabry-Perot 

oscillations in the reflectance spectra thus providing an accurate determination of the 

film thickness. The influence of the dead layers on the spectra was found to be 

extremely minimal having a negligible effect on the resultant plots and requiring an 

increase to unrealistic levels to become prominent. The polariton dispersion curve for 

CuCl was also calculated from this fitting model and closely matched previous 

calculated values with any differences likely stemming from the damping parameter 
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used in the models as this value showed the largest variance from the bulk sample 

measurements. 
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Chapter 6 

 

Conclusions and Further 

Work 
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6.1  Conclusions 

Recently in DCU the construction of an LPE growth system has been 

completed. This allows for a more controlled and evenly distributed growth (possibly 

of single-crystal CuCl) to be deposited onto the target substrate than the physical 

vapour deposition process. However above 250 ˚C a reaction occurs between the CuCl 

and Si resulting in the formation of SiCl4 gas and metallic Cu. To avoid this 

occurrence in the LPE procedure the melting point of the CuCl material must be 

reduced to ensure the process remains under this critical temperature. One of the ways 

to achieve this involves the addition of a second salt to the CuCl melt. KCl was chosen 

as an 80:20 solution of KCl-CuCl has a melting point of less than 200 ˚C. The 

resulting KCl-CuCl thin films were shown to have an increased level of conductance 

due to the addition of the K+
 ion and an increase in intensity of the optical properties of 

the material compared to the CuCl thin films [95]. A similar increase in conductivity is 

obtained when the CuCl thin films are doped with oxygen to increase the conductivity 

via p-type doping.  

A study of the effects of these processes on the CuCl thin film material 

formed the background motivation for much of the work in this thesis which was 
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performed using various methods of characterization to quantify the different 

parameters and how these processes affect the material. 

To summarise the main aspects of the experiments performed during the 

course of this thesis, textured polycrystalline thin film samples of CuCl were grown on 

(100) Si substrates chosen for the close lattice matching of the two materials. Room-

temperature physical vapour deposition was used to coat the Si substrates to the ideal 

thickness of 500 nm. For half of each batch of samples, KCl was added to the CuCl 

mix and the KCl-CuCl samples produced were characterized in tandem with the CuCl 

samples. Plasma treatment of both sets of samples was then performed at different 

levels of doping exposure with the characterization process repeated for each step of 

doping exposure. This ensures any changes in the properties of the material caused by 

either the KCl addition or the doping procedure will be mapped across different 

samples and be comparable at identical doping levels. 

X-ray diffraction studies show that preferential growth for the undoped CuCl 

samples occurs in the (111) direction, with diffraction peaks at (220) and (311) 

orientations clearly distinguishable as well demonstrating the zincblende lattice 

structure of CuCl. The presence of the (100) CuCl peak was investigated with the φ 

scan at the (100) position of pure Si and our thin film samples compared. No trace of 

separate (100) CuCl diffraction was found. The possibility of a perfect lattice-matching 

with the Si substrate material remains, but it seems extremely unlikely seeing as the 

CuCl (100) peaks are unable to be distinguished. To differentiate between the 

polycrystalline CuCl diffraction peaks and those aligned with the (100) Si substrate a 

series of glancing angle scans were performed. These showed the polycrystalline 

nature of the CuCl thin films on the Si substrates and a distinct lack of the (100) CuCl 

peak.  
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Changes in the structural properties due to the addition of the KCl salt proved 

to be indistinguishable from the CuCl samples themselves. Doping of the samples 

produced a decrease in the measured crystallite size determined from each of the 

diffraction peaks and an increase in the texture factor of the CuCl (100) peak for both 

CuCl and KCl-CuCl samples. There was an overall decrease in the peak intensity of 

each of the measured diffraction peaks as doping was increased indicating a 

deterioration of the structural properties of the material.  

A Digital CL camera was used to image the deep level defects within the 

material, but proper usage of this technique remained restricted due to the poor spatial 

resolution of the equipment itself. The spectra produced from CL studies of the 

undoped CuCl samples showed the Z3 exciton position and the 520 nm defect band as 

the main features. The ratio of the defect band intensity to the Z3 exciton intensity was 

shown to be consistent across multiple samples allowing a clear increase in this ratio to 

be discerned for the KCl-CuCl samples. This was also the case for the doped samples, 

with the ratio increasing in a similar but more erratic, style. Examination of the 

FWHM and maximum intensity of the Z3 exciton peak fluctuation as doping is 

increased indicates that there is an ideal region for doping. After an initial decrease in 

both properties, the FWHM and maximum intensity increases up to around 400 

seconds before decreasing once more. This effect was present in both CuCl and KCl-

CuCl samples. 

EDX imaging allowed us to calculate the atomic percentages for the both the 

CuCl and KCl-CuCl thin film samples. Expected ratios of Cu, Cl, Si and O were found 

in the CuCl samples with the addition of trace elements of K and Br found in the KCl-

CuCl samples. This shows us that despite the inability of the other methods of 

characterization to detect the presence of the KCl salt, the deposition of KCl and CuCl 
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on the same Si substrate has been successful, albeit at lower stoichometry levels than 

expected based on the ratio of the mixture used (80:20). 

PL characterization of the CuCl thin film samples has been performed, 

including a variable temperature analysis and a calculation of the exciton binding 

energies. Comparison of the KCl-CuCl PL spectra with the CuCl spectra noted no 

discernable differences between samples. Analysis of the doped samples of both KCl-

CuCl and CuCl showed the formation of an unknown peak at 3.187 eV. This peak 

production is present only in the CuCl samples, suggesting the K+ ions added by the 

KCl salt inhibit the formation of this defect. Similarly the I1 shoulder measured at 

3.182 eV is found to increase in intensity when doped, with the increase present only 

in the CuCl samples.  

Analysis of the reflectance spectra for CuCl and KCl-CuCl showed an 

increase in the reflected intensity for KCl-CuCl when compared to the CuCl samples. 

This caused an increase in the overall amplitude of the peaks measured at the exciton 

positions Z3 and Z1,2 and at each of the Fabry-Perot fringe positions. Oxygen doping 

caused a decrease in the energy values recorded for each of the exciton positions as 

well as the measured reflectance value for each of the excitons. This decrease was 

more gradual, reaching a minimum at 270 seconds which when combined with our 

previous values for the ideal region of doping suggests doping of 2-3 minutes will 

retain most of the material’s properties whilst having the desired effect on the 

material’s conductivity.   

The classical theory of exciton-polariton coupling given by Hopfield and 

Thomas in conjunction with the Pekar boundary conditions was been successfully used 

to model the reflectance of the thin film CuCl material. Model 3, which includes the 

thin-film nature of the sample, was found to give an accurate fit of the excitonic 
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resonances and the shape of the Fabry-Perot oscillations in the reflectance spectra thus 

providing an accurate determination of the film thickness. The polariton dispersion 

curve for CuCl was calculated from this fitting model and closely matched previous 

calculated values.  

The hygroscopic nature of CuCl and the resulting degradation of the thin film 

features have been examined and compared to the degradation produced by the oxygen 

doping technique. Both were found to have distinctly unique properties for each of the 

methods of characterisation employed. To combat degradation caused by atmospheric 

exposure a capping layer was tested. A common nail varnish (Marie Lluy long-lasting 

nail varnish) was applied to the CuCl thin film samples and the structural properties 

monitored using XRD. An increase in the background intensity was recorded, but no 

distinct peaks were detected showing that the varnish is amorphous in nature and will 

not interfere with the XRD spectra. This prevented the CuCl samples from 

deteriorating during the XRD scans as this is the only method of characterization 

occurring in open atmosphere. 

In summary this thesis has ascertained the material properties and 

reproducibility of these for CuCl thin film samples and investigated the effect on these 

values of doping with both KCl during the deposition and oxygen via plasma treatment 

on these. Minimal differences in the material properties were observed by the addition 

of the KCl salt with a notable increase in the clarity of the reflectance spectra. There 

appears to be no disadvantage to this doping process. The oxygen doping process 

however was shown to cause the deterioration each of the materials properties once an 

exposure level of over 2-3 minutes has been passed. As long as the doping exposure 

remains within this limit the effect on the material properties is sufficiently minimised 

to grant the conductivity benefits without the negative effects becoming too damaging. 
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6.2  Further Work 

Finally there are several outstanding questions that this research has been 

unable to answer. A pair of unidentified PL peaks was detected during the doping 

process. The samples could be tested in an alternative PL setup using a lower 

wavelength laser to see if the emergence of these peaks as doping is increased is 

altered.  

The LPE system discussed at the start of this section failed to produce 

deposition onto the Si substrate due to adhesion problems with the Si layer. However a 

small number of non-uniform samples were successfully produced and characterised 

with large quantities of the K2CuCl3 compound detected [49]. If these samples could 

be reproduced, the effect of doping on the higher levels of KCl within the CuCl thin 

films could be investigated with the behaviour compared to the KCl samples. Also, the 

nature of the vapour phase epitaxy deposition technique prevents films being deposited 

with the exact same stoichometry repeatedly, with slight differences in the material 

thickness present depending on the position of the Si substrates within the deposition 

equipment. Ideally the LPE issues could be resolved and single-crystal CuCl samples 

produced but there are other alternatives. Molecular beam epitaxy (MBE) and atomic 

layer deposition (ALD) also deposit compound semiconductor films with repeatable 

stoichometry. These methods also allow greater control over the spread of doping 

within the thin films resulting in a uniform distribution of the dopant within the 

volume deposited. 

KCl isn’t the only possible dopant for CuCl to lower the melting point; other 

chlorides such as both SrCl2 and BaCl2 could be explored in the same manner as the 

KCl salt throughout this work. Alternative copper halides could also be explored, with 



183 
 

positive initial results recorded for thin films of CuBr [127]. Choosing a different 

copper halide to explore in this manner would also increase the stability of the samples 

as CuCl is the least stable of all the copper halides. The characterisation methods 

detailed in this thesis would be equally effective when applied to CuBr, especially the 

reflectance modelling as CuBr is also a two-band exciton model containing the Z3 and 

Z1,2 excitons [15].  
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Appendix: Modelling Program for Reflectance  
 

This appendix contains the code used in MATLAB 5.3 to model the 

reflectance data in Chapter 5. The code shown is for model 3 with the other models 

requiring alterations to the matrix section only. Lines marked with “%” are comments. 

The initial commented section in the main program is an explanation of each of the 

variables used throughout. The programming format uses a main program called 

funcfit_tfi_model_3 to setup the initial values and then pol_cal_tfi_model_3 is called 

and iterated to acheive the best match with our experimental data. Finally the values 

which provide the best match are sent to ref_disp_tfi_model_3, which is identical to 

pol_cal_tfi_model_3 except for a section at the end which saves the data to a text file. 

 

(a) Main Program 
 

function [fit]=funcfit_tfi_model_3() 
 
B=test_ip(1); 
 
x_data=B(:,1); 
y_data=B(:,2); 
 
h_bar=(6.63e-34/(2*3.1415)); 
 
%w_l_a=input('What is the longitudinal energy of the A exciton 
(eV)....?'); 
%w_l_b=input('What is the longitudinal energy of the B exciton 
(eV)....?'); 
%a=input('What is the LT splitting of the A exciton(eV)....?'); 
%b=input('What is the LT splitting of the B exciton(eV)....?'); 
%c=input('What is the width/damping of the A exciton (eV)....?'); 
%d=input('What is the width/damping of the B exciton (eV)....?'); 
%e=input('What is the thickness of the film (nanometres)....?'); 
%f=input('What is the effective mass of the exciton A (multiples of 
electron mass)....?'); 
%g=input('What is the effective mass of the exciton B (multiples of 
electron 
%mass)....?'); 
%h=input('What is the thickness of the dead layer 
(nanometres)....?'); 
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w_l_a=3.2078; 
w_l_b=3.286; 
a=0.0062617871; 
b=0.02290947; 
c=0.000008470875; 
d=0.005229139; 
e=634.1; 
f=0.400059634; 
g=0.157111; 
 
w_l_a1=(w_l_a*1.6e-19)/h_bar; 
w_l_b1=(w_l_b*1.6e-19)/h_bar; 
 
a1=sqrt((a*1.6e-19)/h_bar); 
b1=sqrt((b*1.6e-19)/h_bar); 
c1=(c*1.6e-19)/h_bar; 
d1=(d*1.6e-19)/h_bar; 
e1=e*1e-9; 
f1=f; 
g1=g; 
h1=h*1e-9; 
 
param=[a1,b1,c1,d1,e1,f1,g1,h1]; 
 
options = optimset('TolFun', 1, 'TolX', 1, 'MaxIter', 100); 
 
best_fit=fminsearch('pol_cal_tfi_model_3',param,options,w_l_a1,w_l_b1
,x_data,y_data); 
 
test=ref_disp_tfi_model_3(param,w_l_a1,w_l_b1,x_data,y_data); 
 
(best_fit(1)^2)*(1/1.6e-19)*h_bar 
(best_fit(2)^2)*(1/1.6e-19)*h_bar 
best_fit(3)*(1/1.6e-19)*h_bar 
best_fit(4)*(1/1.6e-19)*h_bar 
best_fit(5)/(1e-9) 
best_fit(6) 
best_fit(7) 
best_fit(8) 
 
w_o_a=w_l_a-((best_fit(1)^2)*h_bar/1.6e-19) 
w_o_b=w_l_b-((best_fit(2)^2)*h_bar/1.6e-19) 
 
var(1)=(best_fit(1)^2)*(1/1.6e-19)*h_bar; 
var(2)=(best_fit(2)^2)*(1/1.6e-19)*h_bar; 
var(3)=best_fit(3)*(1/1.6e-19)*h_bar; 
var(4)=best_fit(4)*(1/1.6e-19)*h_bar; 
var(5)=best_fit(5)/(1e-9); 
var(6)=best_fit(6); 
var(7)=best_fit(7); 
var(8)=best_fit(8)/(1e-9); 
 
var(9)=w_o_a; 
var(10)=w_o_b; 
 
save var_func_cucl_model_2.out var –ASCII 
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(b) Modelling section 
 
Function 
[error]=ref_disp_tfi_model_3(param,w_l_a,w_l_b,x_data,y_data) 
 
warning off; 
 
spec_range=length(x_data); 
 
h_bar=(6.63e-34/(2*3.1415)); 
m_elec=9.1e-31; 
e_vac=8.85e-12; 
c=2.998e8; 
 
del_a=param(1); 
del_b=param(2); 
gam_a=abs(param(3)); 
gam_b=abs(param(4)); 
d=abs(param(5)); 
m_star_a=abs(param(6)); 
m_star_b=abs(param(7)); 
e_rel_inf=3.7; 
n_si=5.5; 
 
w_o_a=w_l_a-(del_a^2); 
w_o_b=w_l_b-(del_b^2); 
 
m_eff_a=m_star_a*m_elec; 
m_eff_b=m_star_b*m_elec; 
beta_a=h_bar*w_o_a/m_eff_a; 
beta_b=h_bar*w_o_b/m_eff_b; 
alpha_a=e_rel_inf*(e_vac/(w_o_a^2))*((w_l_b^2)-(w_o_a^2))*((w_l_a^2)-
(w_o_a^2))/((w_o_b^2)-(w_o_a^2)); 
alpha_b=e_rel_inf*(e_vac/(w_o_b^2))*((w_l_a^2)-(w_o_b^2))*((w_l_b^2)-
(w_o_b^2))/((w_o_a^2)-(w_o_b^2)); 
n_inf=sqrt(e_rel_inf); 
 
y1=zeros(spec_range,1); 
y2=zeros(spec_range,1); 
y3=zeros(spec_range,1); 
 
ref=zeros(spec_range,1); 
 
sum=0; 
 
for count=1:spec_range 
    
   w=(x_data(count)*1.6e-19)/h_bar; 
    
   term1=(w_o_a^2)-(w^2)-(i*w*gam_a); 
   term2=(w_o_b^2)-(w^2)-(i*w*gam_b); 
    
   coeff=[beta_b*beta_a*(c^2)/(w^2); 
      - (e_rel_inf*beta_b*beta_a) 
+(term2*beta_a*(c^2)/(w^2))+(term1*beta_b*(c^2)/(w^2)); 
      (term1*term2*(c^2)/(w^2))-(beta_b*e_rel_inf*term1)-
(beta_a*e_rel_inf*term2)-(alpha_a*(w_o_a^2)*beta_b/e_vac)-
(alpha_b*(w_o_b^2)*beta_a/e_vac); 
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      -(e_rel_inf*term1*term2)-(alpha_a*(w_o_a^2)*term2/e_vac)-
(alpha_b*(w_o_b^2)*term1/e_vac)]; 
  
   k_values=sqrt(roots(coeff)); 
 
   if imag(k_values(1))>0 
      k_values(1)=-k_values(1); 
   else 
   end 
    
   if imag(k_values(2))>0 
      k_values(2)=-k_values(2); 
   else 
   end 
    
   if imag(k_values(3))>0 
      k_values(3)=-k_values(3); 
   else 
   end 
    
   n_a=k_values(1)*c/w;  
   n_b=k_values(2)*c/w;  
   n_c=k_values(3)*c/w;  
    
   d_a=exp(i*n_a*w*d/c); 
   d_b=exp(i*n_b*w*d/c); 
   d_c=exp(i*n_c*w*d/c); 
    
   d_a_1=exp(-i*n_a*w*d/c); 
   d_b_1=exp(-i*n_b*w*d/c); 
   d_c_1=exp(-i*n_c*w*d/c); 
    
   a_a=(alpha_a*(w_o_a^2)/e_vac)/((w_o_a^2)-(w^2)-
(i*w*gam_a)+(beta_a*(w^2)*(n_a^2)/(c^2)));  
   a_b=(alpha_a*(w_o_a^2)/e_vac)/((w_o_a^2)-(w^2)-
(i*w*gam_a)+(beta_a*(w^2)*(n_b^2)/(c^2)));  
   a_c=(alpha_a*(w_o_a^2)/e_vac)/((w_o_a^2)-(w^2)-
(i*w*gam_a)+(beta_a*(w^2)*(n_c^2)/(c^2)));  
    
   b_a=(alpha_b*(w_o_b^2)/e_vac)/((w_o_b^2)-(w^2)-
(i*w*gam_b)+(beta_b*(w^2)*(n_a^2)/(c^2)));  
   b_b=(alpha_b*(w_o_b^2)/e_vac)/((w_o_b^2)-(w^2)-
(i*w*gam_b)+(beta_b*(w^2)*(n_b^2)/(c^2)));  
   b_c=(alpha_b*(w_o_b^2)/e_vac)/((w_o_b^2)-(w^2)-
(i*w*gam_b)+(beta_b*(w^2)*(n_c^2)/(c^2)));  
    
    
   mat=[-1,1,1,1,1,1,1,0; 
      1,n_a,n_b,n_c,-n_a,-n_b,-n_c,0; 
      0,d_a,d_b,d_c,d_a_1,d_b_1,d_c_1,-1; 
      0,n_a*d_a,n_b*d_b,n_c*d_c,-n_a*d_a_1,-n_b*d_b_1,-n_c*d_c_1,-
n_si;  
      0,a_a,a_b,a_c,a_a,a_b,a_c,0; 
      0,b_a,b_b,b_c,b_a,b_b,b_c,0; 
      0,d_a*a_a,d_b*a_b,d_c*a_c,d_a_1*a_a,d_b_1*a_b,d_c_1*a_c,0;  
      0,d_a*b_a,d_b*b_b,d_c*b_c,d_a_1*b_a,d_b_1*b_b,d_c_1*b_c,0];        
   
   v=[1;1;0;0;0;0;0;0]; 
   inmat=inv(mat);  
    
   v1=inmat*v; 
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   x_data(count); 
    
   r1=v1(1);  
    
   ref(count)=((abs(r1))^2); 
    
   diff=(ref(count)-y_data(count))^2; 
   sum=sum+diff; 
    
end 
 
error=sum/spec_range; 
 
plot(x_data,ref,x_data,y_data); 
 
save refdata_model_3.out ref -ASCII 
 


