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Investors are constantly asking whether beating the market on a consistent basis 

is possible. There is probably no definitive answer to the question of how to  make a 

guaranteed profit (or return) because index prices can fluctuate at  any time. The aim 

of most investors, therefore, is to  predict the stock market return and the volatility, 

(a measure of investment nsk) and this requires an understanding of stock mar- 

ket behaviour. In this research, diierent techniques, both previously existing and 

newly developed here (and associated specifically with the discrete wavelet trans- 

form (DWT)), are applied to  study the behav~our of global stock market indices 

We consider type of memory, mterrelationships between stock markets, market re- 

action to  crashes and events, and the best indicators of market types (short-term, 

long-term or mixed). 

The unifylng aim is to  provide a baseline set of characteristic features which 

typify behaviors of given market type Principal remarks include the fact that 

the DWT, alone or with other methods, can succeed in providing an in-depth view 

of these data, in particular when confronted with non-stationary, non-normal and 

noisy characteristics. The approach provides an important method for the aual- 

ysis and interpretation of financial market time series. Our principal findings on 

volatility measures, moreover, show strong evidence of long-term memory effects, 

which are not evident in the returns themselves. Emerging and Mature markets are 

found to deal differently with crashes and events with the latter taking a shorter 

time to  recover from crises on average, compared to the former. Furthermore, we 

conclude that this binary classification is too simple and stock markets can now be 

demonstrated t o  fall into more than two groups, with the designation L'emerging" 

("developing") and "mature" ("developed") proving imprecise. Additionally, and 

in the context of the global market, from Chapter 5, we note that international 

co-movements and volatility (or n s k )  have increased markedly since the middle of 



the 2oth century and that cloclnuzse transmtssion between global stock markets is 

observed, i.e from Asaa to h o p e  to Amerzca back to Asia). The combination of 

~nternal dependencies and external influences provide the impacts for stock market 

volatility. The ultimate goal, of course, would be to anticipate these Impacts to be 

able t o  make the rlght ~nvestment decision. 



1.1 Motivation 

A stock market (or stock exchange) offers investors the opportun~ty to  buy and 

sell stocks, bonds and other securities Colloquially, a bear market reflects prices 

which are currently going down, while a bull market indicates that prices are rising 

in value. 

The stock market is important, both for individual investors to  make profits (or 

returns) and companies to ralse finance through the market by issuing new securities, 

which traders will be able to buy and sell. In a financial market, underlying assets, 

such as shares, bonds, commodities and foreign currencies and their derivatives1 are 

traded. 

Nowadays, more people are interested in financ~al markets and have money, e.g 

their savings or retirements, invested, usually through unit trusts such as pension 

fund, hedge fund or other investment advisers. This makes trillions of dollars avail- 

able to be invested In stock markets around the world which are subject to stock 

market fluctuations. The stock market is a complex system and is affected by do- 

mestic and global information (positive or negative news). Misunderstanding and 

'A derlvat~ve is a common term for specific types of investments from whch payoffs ovel time 
are derived from the ~erformnnce of assets aud there axe foru main tvves of denvatives, namelsr 
Options, Futures, Forwards and Swaps. 



misdealing (e.g panic, over-reactions or under-reactions), with this information may 

cause a market crash, resulting in bankruptcies of some companies, people losing 

their sanngs or pensions and increases the market volatility2 (or risk). 

Trading in the stock market is non-trivial because of its unpredictability. A ques- 

tion which investors are constantly asking is whether the market can be "beaten" to 

make a profit (or gain a return) No definitive answer is possible since the prices can 

fluctuate at  any time. No return can be gained without facing a certain degree of 

risk, so the overall aim of most traders 1s the prediction of stock market return and 

assessment of the volat~lity. These predictions require an understanding of stock 

market behaviour. In order to ach~eve this, two important factors should be taken 

into consideration. The first is the presence of memoly in the market and the sec- 

ond is noise or randomness, arising from local and global changes (e.g. news) which 

influences stock market movements. 

1.2 Objectives 

The purpose of the research presented here is to examine in detail the signal com- 

ponents which comprise a number of international stock markets and t o  assess the 

predictability of their behaviours. The statistical and econophysics techniques em- 

ployed are combined with the discrete wavelet transform (DWT), which a s  a de- 

convolution approach offers significant advantages to that of more commonly-used- 

known approaches in signal promsing, such as the Fourier Transform [Lee (2002) 

and Raihan et a1 (2005)l. 

The properties that we wish to  investigate using both established and novel 

methods, are memory types (short, long or m~xed), interrelationships between stock 

markets and market reaction to  crashes and events. Ultimately, we aim t o  find some 

type of 'Lbest measure" for the development of a stock market. In order to  achieve 

'l\rolat~lity is a statistical measure of the tendency of a market or security to rise or fall sharply 
w ~ t h ~ n  a ye~iod of time and it is used as a measlue of investment risk. 



this, we set up the following objectives: 

1. To examine long-term memory properties by employing the discrete wavelet 

t~ansform (DWT) as a new investigative method. The DWT is capable 

of prov~ding time and frequency information together, deals well with non- 

stationary and noisy time serles and provides a clear picture of the movements 

(short-term, long-term or mixed) in the data series. 

2. To examine the scahng properties of global stock markets by formalising the 

generalwation of the Detrended Fluctuation Analys~s (DFA) t o  scale and time 

dependencies, and to study the behaviour of the Hunt  exponent (H) In d~f-  

ferent t ~ m e  periods and scale level 

3.  To study the evidence of global co-movements among worldwide stock mar- 

kets, in Europe, the Americas and Asia. In particular, we are mterested in 

examining (i) whether co-movements are direct (clockwise only) or indirect, 

impacting on nearest-neighbour (continental grouping) and ( ~ i )  whether there 

is global absorption of major events or large changes in worldwide markets. 

4. To investigate how Emergmg and Mature markets deal with diierent crashes 

and events and also to study which eigenvalues of the Variance-Covariance 

matrices of the return series contain useful information about market move- 

ments. To achleve t h ~ s  by employing the dzscrete wavelet transform (DWT) 

combined with eigenanalysis to study the behavlour of the t h r e e  largest (A1, 

Xz, AS) e~genvalues of the Variance-Covariance matrices and their ratios. To 

examine behavionr of these series for sliding wndows of equal wzes and in- 

vestigate whether Xz and A3 contain useful information in addition to that 

described by A1 alone. 

5 To classify as precisely as possible from available data and in addition to the 

above analyses, the stock market degree of development. This, through intro- 

duction of a new algorithm, based on the discrete wavelet transform (DWT) 



and fractional Gaussian noise3 (fGn) is assessed for different values of the 

Hurst exponent4 H 

1.3 Outline of Thesis 

This thesis is organized as follows: Chapter 2 gives the theoretical background to 

stock market properties studied, while the Methodological approaches, which have 

been used or developed in this research, are described in Chap t e r  3. 

Chap t e r  4 discusses the investigation of the existence of long-term memory 

properties in the daily returns of five Irish Stock Exchange (ISEQ) indices and 

thew volatility measures (namely absolute and squared returns) by using a novel 

approach, based on the discrete wavelet transform, (DWT), and three different 

established tests, (namely Rescaled Range (R/S), its modified form, and the semi- 

parametric method (GPH )). We further propose a time-scale extension of Detrended 

Fluctuation Analysis (TSDFA), to study the Hurst exponent behaviour a t  different 

time periods and scale levels for diierent stock markets. 

Chap t e r  5 reports on an investigation of the price interdependence between 

seven international stock markets, namely Irish, UK, Portuguese, US, Brazilian, 

Japanese and Hong Kong, using a new wauelet-based testing method, suggested by 

Lee (2002) It also considers the importance of historical transmissions by studylng 

co-movements between Portuguese and Brazilian markets in three different periods 

using Lee's method. 

In Chap t e r  6, we report on attempts to  ascertain whether the subdominant 

eigenvalues (Xz, AS) hold information on stock market risk and also on the recov- 

ery time for the Emerging and Mature stock market classifications. The approach 

combines the dascrete wavelet transform with ezgenanalyszs t o  study the behaviour 

of the first three eigenvalues (XI, Xz ,  XQ) and ratios for covariance matrices of the 

'see Section 3.1. 
'The Hmst exponent is used to mewme the degree of long-term memory propelty 



return series, (thirteen emerging markets and fourteen mature on-). We also in- 

troduce a novel wavelet-based algorithm (or indicator) of stock market development 

to investigate whether i) an emerging market is still evolving , (ii) whether it has 

achieved mature status, and (iii) the behaviour of different market types for diier- 

ent tlme intervals w t h  different volatility levels Chapter 7 provides an overall 

summary of the work, our conclusions and directions for future research 



2.1 Introduction 

Predicting Stock Market behaviour, even one or two time points ahead, is non-trivial 

due to  the fluctuation of stock prices and highly unpredictable direction of their 

movement. The overall aim of most investors is to  forecast where the stock market 

IS going next week, next month, or next year, because stock market predictions are 

the key to successful investing. 

Clearly, all investors would like to  make money in the stock markets, but it is 

impossible to  gain a return (or ~rofit)  without facing a certain amount of risk, so 

investment is concerned with about balancing return and risk (measured typically 

by volatility1). The ability to make suitable investment decisions and forecast the 

stock market requires an understanding of stock market behaviour. 

In this chapter, we examine previous work on long-term memory, interrelation- 

ships between stock markets, their reaction to  major events, e.g. crashes and stock 

market classification. 

'See footnote number 2 m page 2 



2.2 Importance of Wavelet Transform 

For some years the Fourier transform has been the most widely-used approach for 

many problems in signal processing (see e g. Polikar (1994)), but it runs into prob- 

lems dealing with signals which are not only localied in frequency but also in time 

or space or if the time serles is uon-stationary (see e.g P o l i i  (1994)) I t  is for 

thls reason that time-frequency representations have been adapted recently as very 

powerful and useful tools for analysing non-stationary signals (or time series) in 

many areas, such as engineering, medical sciences, geology, etc. The wavelet trans- 

form (WT) is a mathematmal tool that has been introduced to  solve t~me-frequency 

problems [Strang (1993), Polikar (1994) and Tsai (2002)l. 

The W T  has been applied to many applications in signal analys~s [e.g. Mallat 

(1989) and Daubechies (1990), Li (1997) and Bremaud (2002)], image processing 

[e.g. Antonini et al. (1992), Calway (1993) and Drorl and Lichinski (2003)], but, 

relatively few papers so far have paid any attention to its application (or appropri- 

ateness) for financial time series analysis [e g. recently only, see Ramsey and Zhang 

(1997), Gonghui et al. (1999), Capobianco (2001) and Lee (2002)). A particular 

strength of the dzscrete wavelet transform (DWT) is that it splits data series into 

components of different frequency, so that each component can be studied separately 

to investigate the data series structure in depth. For more detail on the wavelet 

transform see: Hijmans (1993), Bruce and Gao (1996), Jensen (1997) and key details 

in Section 3.5.1, Chapter 3 of this thesis] 

Most stock market data exhibit noise disturbance [e g. Black (1986) and 

Komiromi (2002)], whlch may be caused by d~fferent factors, such as Crashes and 

Events, etc. Thus, using nolsy series to  model stock market movements is highly 

unreliable. However, using DWT enables us to improve the predictability of the s* 

ries by buildlng a model based on the true slgnal, after removal of noise, providing, 

of course, we can identify the true signal from nolse 



2.3 Long-Term Memory 

2.3.1 Definition 

There is no unique definit~on of long-term memory processes [first identified by Hurst 

(1951)], which measure long-range dependence between time series observations. 

Also described as the "Joseph effect2" by Mandelbrot and Wallis (1968), such a 

process a generally defined as a series having a slowly declining autocorrelation or, 

equivalently, an infinlte spectrum at zero frequency [Granger and Ding (1996)l. 

Beran (1994) stated that a stationary process with long memory has the following 

qualztatzve features. 

1. Certain pasistmce effects are exhibited. This means that in some periods the 

observations tend to stay at high levels and low in others. 

2 During short time periods, there seem to  be periodic cycles in the stationary 

process. However, over the whole process, no apparent periodic cycles can be 

identified. 

In the time domain, a stationary process {yt) with mean p is said t o  have long 

memory if the autocovariance y3 between yt and ~ t + ~ ,  y3 = E[(yt - p)(ytC3 - p)], 

decl~nes slowly as 3 mcreases. More specifically, 

where H is fixed and less than one (0 < H < I) ,  k a constant and H the so-called 

Hurst exponent [e.g Lo (1991), Crato (1994) and Wright (1999)l Thls leads to  

three cases 

o If H E (i, 1) t h ~ s  strictly represents the long memory case (or ~emistence) 

?Joseph 1s the prophet who foretold of the seven years of plenty followed hy the seven years of 
funme that, Egypt was to experience [Lo (1991)) 



o If H < 4 the situation is that of the anti-persistent case (or intermediate 

memory). 

o If H = 4 this represents short memory or the weakly-dependent case 

However, in the frequency domain, the process {yt) is said to  have long memory if 

the spectral density function f (6) can be approximated for a positive constant c as 

follows: 

f (6) = ~ 6 ~ - ~ ~  (2.3.2) 

where H takes the same values as above [see e g Lobato and Savin (1998)) 

2.3.2 Background 

The existence of long-range dependence in financial markets has been an important 

subject of both theoretical and empirical research (see for example, Mandelbrot 

(1971), Geweke and Porter-Hudak (1983), Lo (1991) and Dlng et al. (1993)). A se- 

ries displays long-term memory, or long-range dependence, if  it exhibits significant 

autocorrelation between observations widely separated in time. Since these obser- 

vations are not independent over time, the remote past could, on this basis and in 

theory, help predict the future. 

A number of studies have tested the long-memory hypothesis for stock markets 

using diierent methods and found strong evidence of long memory in stock market 

returns [Lee et al. (2001), Sadique and Silvapulle (2001) and Assaf and Cavalcante 

(2005)). Others, in contrast, have shown that there is elther no evidence or at 

best weak evidence of long-term dependence [Lo (1991), Cheung and La1 (1995), 

Jacobsen (1996), Hiemstra and Jones (1997) and Berg and Lyhagen (1998)l. 

Ding et a1 (1993) investigated the existence of long memory in daily returns 

and absolute returns of the S&P500 index. The authors found higher correlation 

between absolute returns than between the returns themselves, while the power 

transformation of absolute values also exhibited long memory behaviour Crato 



(1994), however, applied the semi-parametrmc method3 (GPH), as well as classical 

and modified Rescaled Range (R/S) methods to mnvestigate the long-range depen- 

dence in the mnternational stock index returns of the G-7 countries from the first 

week of 1950 to the first week of 1998 and found no evidence of long memory in 

these sermes with the exception of that for the W. German index. Further, Barkoulas 

and Baum (1996) applmed the Spectral Regression Method to test for long-range d c  

pendence in the returns of ten U.S, (i.e. three stock indices, seven sectoral stock 

Indices), as well as returns of t h i i y  firms included in the Dow Jones Industrial In- 

dex. Their results showed no evidence of long memory in these returns, as a whole, 

but some evidence for persistence in five companies and anti-persmstence mn three 

others Further to this, Lobato and Savin (1998) used a Lagrange Mult~plier (LM) 

procedure t o  test for the presence of long memory in the S&P500 index and reported 

that long memory exists in the squared rcturns but not in the returns themselves 

More recently, Lee et al. (2000) examined the volatilmty process of the returns 

for the Korean stock index (KOSPI200) using the FIGARCH4 approach in order 

to test for long-rangc dependence and also to check possible spuriousness of long 

memory They found that this index has a long memory property and also found 

that results were nemther spurious, nor affected by time aggregation nor by cross- 

sectional aggregatmon5 of data. In addition, Elekdag (2001) applied GPH methods 

to the index returns and volatility measures (squared and absolute) of a large data 

set of emerging markets6 and found strong evidence for long memory in these series. 

T h ~ s  evmdence was robust t o  various volatility measures, specifically the absolute 

and modified log-squared returns7. Further, Sibbertsen (2002) applmed the classical 

%ee Sect~on 3 2.3. 
4FIGARCH stands for FtactionaUy Integrated Generalized Autore~essive Condltiondy Het- 

eioskedastic and was lnt~oduced by Baillie ct al. (1996) m order to account fox the long-memory 
effects observed m volatility of most financial tlme series. 

'The tlme agaegatlan is d h e d  in terms of data type, 1.e. daily, weekly, monthly data, ete and 
t,he crass-sect,ional aggregation is defined in terms of different series, i e. market index dat.a and 
data of Melent stocks in this index. 

6They considered a large number of countries, such as Argentma, Austraha, Cmada, Mexlco, 
Netherlands, Portngd, Russia and Singapore. 

7Absolute, Squared or Log-squared Returns are used to measure the depee of market volatlllty 



and the tapered GPH-estimatoms to test for long-term memory in the volatilities, 

measured by absolute returns, of several German stock returns. Thelr results showed 

that there is very significant evidence of long-term memory in all these series 

Several articles, in particular, lend support to the view that emergangg capital 

markets are more likely to have long-range memory than mature capital markets 

[Bekaeri and Harvey (1995), Wrlght (1999), Barkoulas et al. (2000), Nath (2001), 

Henry (2002) and Tolvi (2003)l. 

To sum up, from the literature, therefore, it can be seen that many different 

methods (such as classical and Modified R/S, GPH, LM, the FIGARCH, FARIMAi0 

and others) have been used to detect the possibility of long-range dependence in 

stock market returns and their volatil~tles and, generally, there IS mixed evidence 

for the presence of long memory in these data, 

We think that possible reasons for this controversy may include. 

o Testing methods, used by researchers, are generally not able to  distinguish 

properly between long-run and short-run memory. 

o The null hypothesis for these tests IS that weak dependence or short memory 

is equivalent to  the Hurst exponent (H)= 112, while the alternative, strong 

dependence or long memory is equivalent to  H # 112. Thii is unreliable as a 

basis for testing as we will show later. 

4 The nature of stock market data, such as non-stationary, non-normal and noisy 

series, and also type of data or data graining (e.g. intradaily, daily, weekly or 

monthly), as well as length of time series may affect the test decision. This 

(or nsk). 
'A modification of the GPH method, which uses tapered periodogram Instead of the standard 

periodoaam for estimating the spectral density, providing more robustness agalnst trend and struc- 
tural breaks in the data 

'The International Fmance Corporation (IFC) uses income per capita and ma~ket capitalization 
relative to GNP lor classifying eqwty mmarkets If either (1) a market resides in a low- or middle- 
income economy, or (2) the ratio of investable -lei capitalization to GNP 1s low, then the IFC 
classifies the market as emergmg otherwise IFC classfies it as mature. 

'OFARIMA stand for Fractionally Autoregressive Integrated Movng Average and was introduced 
by Beran (1994) 



~mplies inconsistency in test estimators because spurious results can be easily 

produced by e g non-stationarity, structural changes and aggregation. 

2.4 International Co-movements 

It is known that  stock markets are not only dependent on their own history, but 

also on external influences from other markets, especially demonstrated e.g af- 

ter "Black Monday" (date 21st October 1987). Several studies, which have inves- 

tigated the relationships between international stock markets, have indicated that 

co-integrations (or co-movements) among stock markets increase the possibility that 

national markets are influenced by changes in foreign ones. For example, Eun and 

Shim (1989) investigated relationships among nine major stock markets (Australia, 

Canada, France, Germany, Hong Kong, Japan, Switzerland, the UK and the US) 

using the Vector Autoregressive (VAR) model and reported that news begznning 

in the US market has the most influence on the other markets and that most of 

responses t o  a shock are completed within two days. Lin et a1 (1994) studied the 

interdependence between the returns and volatility of the Japanese and US market 

indices using daytime (open-to-close) and overnight (close-to-open) returns. The 

results indicated that daytime returns in each market (US or Japan) are linked with 

the overnight returns in the other 

In addition, Kim and Rogers (1995) used GARCHll to study the co-movements 

between the stock markets of Korea, Japan, and the US and their results indi- 

cated that the spillovers from Japan and the US have increased since the Korean 

market became open for outsiders to own shares. Further, Booth et al. (1997) ap- 

plied EGARCH12 t o  investigate the transmission among four Scandinavian stock 

markets (Danish, Norwegian, Swedish and Finnish) and reported that significant 

such effects13 exist among these markets. Additionally, the Securities and Exchange 

- . . 
I3It means the influence from one market to another wbich affect the prlce dynam~~s of that 



Commssion of Brazil, CVM (1998) investigated the existence of an iduence from 

Asian markets on the Brazilian (Bovespa) (as representative of the Latin American 

region during 1997). They found that there is evidence of impact from Asian mar- 

kets on the Brazil~an during this year, w ~ t h  this spillover effect starting on July isth 

with the Thai Baht currency crisls, but not clearly observed until after October 2 3 ~ ~  

(the Hong Kong crash). In a more recent study, Ng (2000) constmcted a volatility 

spillover model to  investigate the return and volatility spillover effects from Japan 

(regionwide) and the US (worldwide) stock markets on six Pac~fic-Basin markets, 

namely those of Hong Kong, Korea, Malaysia, Singapore, Taiwan and Thailand. 

The author found sign~ficant spillover effects from Japan and the US stock markets 

on the Pacific-Bas~n markets, implying the Importance of both regional and global 

impacts on these markets. 

In order to study international transmission effects of this type, a new testing 

technique based on the wavelet transform, was developed by Lee (2002) and applied 

to three developed markets (US, Germany and Japan) and two emerging markets 

m the MENA14 region, namely Egypt and Turkey. The author reported that move- 

ments from the developed markets affected the develop~ng markets but not vice 

versa. 

In addition, Bessler and Yang (2003) combined an error correction modells 

(ECM) and Dirccted Acycl~c Graphsl"DAG) to investigate the interdependence 

among nine mature markets, namely Japan, US, UK, fiance, Smtzerland, Hong 

Kong, Germany, Canada and Australia. Their results showed that both changes 

in European and Hong Kong markets influenced the US market, while this was 

also affected by internal events. Moreover, Brooks and Negro (2003) studied the 

relationship between market co-integration and the degree to which companies op- 

market 
'"MENA stands for the Middle East and North Africa 
''An er101-correction model a a dynamic model in which the movement of the vaaiables in any 

periods is related to the previous period's gap hom long-run equilibrium 
"Directed Acyclic Graphs (DAG) are drrected graphs with no directed cycles, meanmg that, for 

any vertex v, there is no nonempty d~rect,ed path st,arting and ending on v.  



erate internationally. They considered three factors (global, country-specific and 

industry-specific) and found that the importance of the international factor has in- 

creased since the 1980's while that of the country-specific factor has decreased on 

all markets. 

Strong evidence of international transmission from the US and Japanese markets 

to Korean and Thai markets during the late 1990's was presented by Wongswan 

(2003), while most recently, Antouiou et al. (2003) applied a VAR-EGARCH model 

to  study the relationships among three EU markets namely Germany, France and the 

UK and the results showed some evidence of co-integrat~on among those countries. 

2.5 Reaction to Crashes: Covariance and Correlation 

Covariance (or Correlation) matrix17 of financial asset returns are an important ~ss~ ic  

for financial risk management, (with a large bibliography on the subject, see for a 

synopsis, Meric and Meric (1997), Galluccio et a1 (1998), Laloux et al. (1999), Plerou 

et al. (1999) and Laloux et al. (2000)). Several studies have applied the concepts 

and methods of statistics to the areas of economics and finance, particularly to the 

study of the covariance (or correlation) matrices between pnce changes (returns) of 

different stocks. 

Meric and Meric (1997), for example, applied the Box M method1' and Principal 

Component Analysis (PCA)" to test whether or not the correlation matrlces b e  

fore and after the international crash in 1987 were significantly diierent. This was 

done in order to  investigate the changes in the long-term co-movements of twelve 

EuropeanZ0and US equity markets Their results showed that there are significant 

alterations in the co-movements of these markets and that the benefits of interna- 

"Covariance matrix measures the variance of two time series, considering the volatility of these 
series while, in correlation matrix, the variance (or volatihty) 1s normillised out. 

"Box's M 1s the most w~dely used method for checklug equakty of covariance matrices. 
"Principal Component Analys~s (PCA) IS the techmque whlch tau be used to reduce the number 

of data dimensions, without much loss of iuformatlon. 
"The authors considered stock markets of Austr~a, Belgium, Denmark, Flance, Germany, Italy, 

Netherlands, Norway, Spain, Sweden, Switzerland and UK. 



tional diversification for the European markets decreased markedly after this crash. 

Further, Kwapien et al. (2002) investigated the distribution of eigenvalues of 

correlation matrlces for equally-separated time windows in order to study, quantita- 

tively, the relatlon between stock price movements and properties of the distribution 

of the corresponding index movement (w.r.t. German DAX). They reported that 

the importance of a matrix eigenvalue is related to the correlation strength of differ- 

ent stocks whose weights are given by the corresponding eigenvector, which means 

that the more aggregated the market behauzour, the larger the maxzmum ezgenvalue, 

(Al l  
Keogh et al (2003) took as measure of the change in the markets aggregate 

perception of risk the change in the maximum eigenvalue (XI) from day t o  day, 

~ e .  Xt/Xt-l. The authors showed that periods exist in market sector data from 

the Dow Jones EURO-STOXX zndex, whlch are linear over time. These results 

supported an implied relationship between volatility and the change in magnitude 

of the dominant eigenvalue and also showed that epochs seem to exist in all market 

sectors although to different degrees More recently, Kwapien et al. (2004) analysed 

tick-by-tlck returns data ranging from seconds up t o  48 hours from the NYSE and the 

German markets. The authors compared the magnitude of the dominant eigenvalue 

of the correlation matrices for the same group of securities on various tlme scales. 

Their results indicated that wllectzue market behauzmr has appeared at szgnzficantly 

shorter time scales in recent times. Paka and Kondor (2002) examined the effect 

of noisy covariance matrlces on the portfolio optimisatlon problem and found that 

the uolatzlzty (or risk) of the optzmal po~tfolzoZ1 zn the presence of nozse zn these 

matrzces zs 5-15% hagher than zn the absence of nozse, indicating that the decrease 

in efficiency of the optimal portfolio is actually much less dramatic. 

According t o  the findings of [Galluccio et al. (1998), Laloux et al. (1999), Plerou 

et al. (1999), Laloux et al (2000), Plerou et al. (2001), Wilcox and Gebbie (2004) 

"The increase 1n this volatility is measured by the ratio of the portfoho valiance (Cr,=, q,a,,q,) 
m present of nolse to that without noise. 



and Sharifi et al. (2004)], the correlation (or covariance) matrices of financial time 

series, apart from a few large eigenvalues and their corresponding eigenvectors, ap- 

pear to contain such a large amount of noise that their structure can essentially be 

regarded as random. This means that only a few of the larger eigenvalues might 

carry collective information. However, most previous studies [Gopikrishnan et al. 

(2001), Kwapien et al. (2002) and Kwapien et al. (2004)l have focused on the largest 

eigenvalue with no attention paid to the others If we are to  presume that, as with 

any PCA analysis of data, there are several principal components that are signifi- 

cant, then it should be worth examining lesser order components to  see if they can 

provide addit~onal information for investment strategies. References m the liter- 

ature to  the role of higher order eigenmodesa2 in Investment strategy are scarce, 

but, recently Wilcox and Gebbie (2004) have examined the composition of all the 

eigenmodes of ten years of the Johannesburg Stock Exchange using Random Matrix 

Theory (RMT). The authors concluded that ' the leading [I e. first three] eigenmodes 

may be interpreted m terms of independent trading strategies with long range cor- 

relations" indicating a role not just for XI but also for a small number of the other 

dominant eigenvalues. 

To date, the magnitude of the mazzmum ezgenvalue (XI) of the correlation (or 

variance-covariance) matrices has predominantly been studied with no attention 

paid to  the other eigenvalues and it has been reported that  there is relationship 

between the X I  and the market movements However, m this thesis, we will study 

the behaviours of three ezgenvalues (Xi, Xz and X3) and their ratiosz3 in order to 

investigate whether or not Xz and X3 carry additional information 

22The eigenmades of a dynarmcal system define a set of independent activity states for the system, 
if a set of orthonormal solutions to the equat~ans of motion for a system can be found, then observed 
behaviour can be decomposed into superpositiol~s of these modes. 

'3Normalizat~on methods, such a s  X i /  C,_, A,, X 2 / C , _ ,  A. and Aa/ A,, produce little effect 
for mature markets while, in the case of emerg~ng markets, the scale of the additional terms is such 
t h t  more information is derived from calculating the addrtional ratio components directly. We 
have also looked at A,/ Ex-, A, hnt found that the ratios reported here are mole informative. 



2.6 Difference between Emerging and Mature Markets 

After looking at the historical dependence of stock markets on their own behaviour 

patterns, external influence between global stock markets and internal structure of 

these markets in Sections (2.3.2, 2 4 and 2.5) respectively, we now need to  look at  

their fundamental type or nature. 

Several studies have made comparisons between Emerging and Mature markets, 

axcording to  different characteristics, and these generally have reported that Emerg- 

ing markets consistently behave differently to Mature ones with regard to crashes. 

Pate1 and Sarker (1998) studied eight maturez4 and ten developingz5 markets from 

1970 to 1997 and found important differences in the characteristics of stock mar- 

ket crises between major and emerging markets. They also found that, for emerging 

markets, the decline in prices, following crises, is larger than that for mature markets, 

and the recovery time is longer. Further, Fuss (2002) used Discriminant Analysis 

(DA) to investigate if emerging and mature markets behave differently according to  

different financial aspects (such as market pricing, market size and market activity) 

and stated that the dierence between these two market types has increased since 

the end of the 1990s. He also stated that the reason for this diierence could be 

found in financial crashes of 1994 in Mexico, 1997/1998 in Asia, 1998 in Russia and 

1999 in Brazil, indicating that emerging and mature markets deal dierently with 

crashes and crises. 

Recently, Salomons and Grootveld (2002) studied the equity rlsk premium26 

in thirty-one global stock markets using a standard statistical measures approach, 

(based on Skewness, Kurtosis, Standard Deviation and Wilcoxou test for medians), 

and found that emerging markets carry a higher equity risk premium than mature 

ones, meaning that emerging markets are riskzer than mature markets. However, 

24Switzerland, Canada, F'rance, Germany, Italy, UK and US. 
asIndonesia, South Korea, Malaysia, the Philippmes, Taiwan, Thailand, Argentma, Chile, B r a d  

and Mexico 
26Equity risk premum is the extra rcturn that the stock mhlket provides over the risk hee rate 

to compensate For market risk. 



Wooldridge et al. (2003) considered the changes in the links between emerging and 

mature markets according to capltal flows, the investor base and the changing char- 

acter of global banks In contrast to Salomons and Grootveld, their results showed 

that emerging and mature markets are more zntegrated nowadays than before. It 

is evident that there is less consensus than might be expected and hence a need to  

carry out further investigations in order to clarify this issue. 

2.7 Stock Market Classification 

There is no precise set of cnteria which clearly distinguishes between different stock 

market types. Different institutions use dierent  criteria to group countries (or stock 

markets) by their so-called development level. The World Bank, for example, classi- 

fies stock markets into emergzng and mature depending on thelr national economies 

using GNP per capita2'. Thls classification is, however, unsatisfactory for several 

reasons, not least the fact that most developed countries are still undergoang deuel- 

opment and some countries, still considered as "developing" , have graduated to a 

further stage over time 

Measurement  of t he  level of development of a stock market  There is 

neither a common concept nor a common indicator agreed by Economists. For ex- 

ample, Demeirgii-Kunt and Levine (1995) compared many different developmental 

measures, including market size, liquidity, concentration, volatility, institutional de- 

velopment and international integration, across forty-one countries. Their findings 

on average can be summarized as: 

1. Small stock markets are less liquidz8, more volatile and less internationally 

integrated than larger markets. 

?'The World Bank refer to loar-income (GNP per capita of $765 or less) and mdde~ucome 
(GNP of $9,385 or less) countlies as "developing" aud to Ilighmncome countries ($9,386 or more) 
as "developed" (Sheram and Souhhotuia, 2000) 

'%!iarket liquidity is an economics t m  that reiers to the abihty to easily buy or seU securities 
without causing a s i d c a u t  movement iu the price 



2. Richer countries, generally, are more developed than poorer ones. Exceptions 

include some stock markets defined as "developing" on the basis of national 

economy, (e.g. those of Republic of Korea, Malaysia and Thailand). These 

show indications of maturity stronger than many "mature" markets (e.g. those 

of Australia, Canada and many European countries). 

Recently, Di Matteo et al. (2003 and 2005) studied the scal~ng properties 

of d'ierent global stock market indices by using the generalized Hurst approach. 

They found in particular that deviations from pure Brownian motion behaviour are 

associated with the degree of the market's development and also that the generalized 

Hnrst exponent H(q)  is a powerful tool in dlstinguishing between the degree of 

development of stock markets with emerging and mature markets having H > 0.5 

and H < 0.5 respectively. 

Impor tance  of classifying stock markets Investors are interested in knowing 

the market type in order to make the right investment decisions, because, as we 

shall show below, emerging and maturn markets consistently behave differently (see 

Section 2.6). Moreover, for foreign investors, emerging markets are more attractive 

because of their investment opportunities for making higher returns. For example, 

there is often less competition for global companies in emerging markets than m 

mature markets and the expectation of more attractive pricing. However, they are 

riskier and more volatlle due to some of their structural issues, such as foreign debt 

and political instability, while, mature markets tend to  be safer, more solid and 

more stable. Therefore, the investors' goal is to find a nsk-return balance which 

generates acceptable returns (or profit) with acceptable risk. 

2.8 Chapter Summary 

In this chapter, we have presented a summary of some important previous work, 

which has stimulated this research into market characterisation, with several aspects 



of stock market behaviour requir~ng classification or more detailed interpretation. 

We have also endeavoured to  indicate the importance to investors of this charac- 

terisation and the need to understand what drives market behaviour. In the next 

Chapter, the methods, which are used, newly implemented, and/or developed to  

achieve the goals of this work, will be described in detad. 



A number of different statistical and econophysics techniques are used to study stock 

market behaviour in what follows, some well-known (or modified), others newly de- 

veloped here, and most associated with the dzscrete wavelet t r a n s f o n  (DWT) The 

focus on DWT methods is based on their abiity to  highlight those specific features of 

interest, such as long-term memory, international co-movements, reaction to  crashes 

(and events) and stock markets classfication, as we discussed in Chapter 2. 

3.1 Fractional Gaussian Noise (fGn) and the Hurst Ex- 

ponent (H) 

In order to understand some of the methods which are used or developed in the the- 

sis, we need first to define fractional Gaussian noise (fGn) and the Hurst Exponent 

H The fGn series {X, , i  > 1) is a self-similar process1 that  is indexed by the Hurst 

exponent H (where 0 < H < 1). It is the increment of fractional Brownian motion 

(fBm)2, namely 

'Self-Similar Process is a stochastic plocess that is invariant in distiibution with surtable scaling 
of time w d  space. These piocesses are typically used to model random processes with long lange 
dependence 

'It efibits complex but Linear long-term dependencies and is characterized by Hurst exponent 
(a E IO,II) 



with zero mean, where the auto-covariance function yj = E(X,Xi+,) is given by 

Importantly, ^/J satisfies Equation (2.3.1), where k = H(2H - 1) for fractional 

Gaussian noise. The special case of fGn with H = i corresponds to Gaussian 

white noise, representing randomness and implying that values are uncorrelated. 

For H < i, fractional Gaussian noise (fGn) indicates antz-persistent behaviour, 

where implies that  if senes values are going down in one period then these are more 

likely to rebound (go up) in the next period For fGn with H > i, long m e m o w  or 

persistent behaviour is indicated. If, for example, the values of a series are declining 

in a certain period, then it is likely that in the next period this behaviour will be 

sustained. (For more details see, Paxson (1997) and Koutsoyiannis (2002)) 

3.2 Testing for Long-Term Memory 

In this section, we dlscuss the most widely used methods for testing the presence of 

long-term memory (introduced in Chapter 2). These are (i) the classical Rescaled 

Range (R/S) statistic introduced by Hurst (1951) and refined by Mandelbrot (1971), 

(ii) R/S modificat~on constructed by Lo (1991) and (lii) the Semi-parameteric pro- 

cedure suggested by Geweke and Porter-Hudak (1983), (hereafter GPH). 

3.2.1 The Classical Rescaled Range Method (R/S) 

The R/S statistic developed by Hurst (1951), IS the range of partial sums of devi- 

ations of a time series from its mean, rescaled by its standard dewation. &ven a 

series yl, yz, . . . , y, where n is a sample size, the classical R/S is defined as %IS, 

where 



1 1 

max Z(Y, - 9) - min X ( Y ,  - 5) R" = l s l sn  
2=1 

l s l sn  
2=1 

Humt (1951) found that E[R,JSn] = knH, (k a constant and H the so-called 

Hurst exponent as before), which can be estimated from the following regression by 

the ordinary least squares (OLS) method 

where H takes the values mentioned in Section 3.2. This method, established to  

detect long memory or "strong" correlation, has two disadvantages which are that 

the distribution of its test statistic is not well-defined and that it is sensitive t o  

short-range dependence and heterogeneities of the data series [see Lo (1991)l. 

3.2.2 The Modified Rescaled Range Method 

Lo (1991) found in addltion that the R/S statistic was not well-designed to  distin- 

guish between short-term and long-term memory, so suggested a modification to  

ensure robustness in the former case, deriving its limiting distribution under both 

long and short memory The modified R/S is given by 



where w3(q) = 1 - 3/ (q  + 1)  , q < n and e: and y3 are the usual sample 

variance and autocovarlance estimators of y3 respectively The weights wj(q)  are 

those suggested by Newey and West (1987) and always yield a positive &2(q). Lo 

showed that his test was sensitive to the choice of q. Various authors such as Lo 

and MacKinlay (1989), and Andrew (1991), have used Monte Carlo (MC) studies 

to show that when q becomes large relative to the sample size n, the finite sampling 

distribution of the estimator can be radically different from its asymptotic limit. 

However, q cannot be made too small since the antocovanance, beyond lag q, may 

be substantial and should be Included In the weighted sum Thus, the truncation 

lag choice is strongly dependent on the data available, [as noted, Lo (1991)l. 

Andrew (1991) suggested a data-dependent formula to enable choice of q where 

this is given by 

where [A,] denotes the largest integer less than or equal to A, and is the estimate 

of the first-order autocorrelation coefficient of the data. I t  is also possible to use the 

Following formula suggested by Schwert (1989) to  choose the value of q 

3.2.3 The Semi-parametric Method (GPH) 

Geweke and Porter-Hudak (1983) suggested a semi-parametr~c procedure to  obtain 



an estimate of the fractional paramete$ (d )  based on spectral regression. Let I ( E )  

be the periodogram of yt at frequency [ defined as 

Then the regression equation is given by 

where t j  = 27rj ln , V = 1,2,.  . . , n- 11, n is the length of series yt and m = g(n)  << 

n and the assumptions on m and n are : 

The estimate of d a the negative of the OLS estimate of the slope (PI) in Equa- 

tion (3.2.9) assuming regrasion error variance is 7r2/6. Empirical studies [such as 

Robinson (1995), Hurvich et a1 (1998) and Tolvi (2003)j provided suggestions for 

the following formula to choose m 

where 0 < u < 1 

3.2.4 Other Testing Methods for Long-Term Memory 

Besides the methods we described previously, there are others whlch can be used to  

detect the long-range dependence, such as the Lagrange Multiplier (LM) [e.g. Lo- 

bat0 and Savin (1998) and Zaffaroni (2003)], Tapered Log-Periodogram Regression 

3The fractional psrameter d is equal to H mules half (d = H - $), where H is the Hurst 
exponent. 



Estimators [e.g. Hurvich and Ray (1995), Velasco (1999) and Sibbertsen (2002)], 

FIGARCH [e.g. Lee et a]. (2000) and Dark (2004)l and FARIMA [e.g Cheung 

(1993) and Barkoulas and Baum (1996)l. 

3.3 An Extension of Detrended Fluctuation Analysis. 

The Detrended Fluctuation Analysis (DFA) technique has recently become a com- 

monly used tool in analyses of scaling properties of noisy non-stationary time series 

It consists in dividing a random variable sequence (or time series) X(t), of length n, 

into n / r  non-overlapping boxes (or wlndows) of size r. Then, the h e a r  local trend 

z(t) = at + b in each box is defined to he the standard linear least-square fit of the 

data points in that box. The detrended fluctuation function F is then defined by. 

This equation is applied to "disjointed" intervals of size 7; for example, if n = 6 and 

7 = 2 then it will be applied to intervals [1,2], [3,4] and [5,6]. 

If the observations X(t) are random uncorrelated variables or short-range cor- 

related variables, the behaviour is expected therefore to  be a power law 

Where (F( r ) )  is the average of F( r )  over the n / r  intervals and H is the Hurst 

exponent taking values as before (Sect~on 3.1). 

Instead of calculating a single Hurst exponent for the whole return series of the 

Portuguese PSI20 index, Matos et al. (2004) applied the DFA to  calculate the Hurst 

exponent, H(r,6),  for this data for sliding windows of size r, but with fixed scale 

6 = 1, (8=number of trading days). The window sizes used were 100, 200 and 

400 cormponding roughly to 6 months, one year and two years respectively. Their 



results showed that the financial data exhibits multzfracta14 behaviour and that the 

Hurst exponent depends on time length (may also depend on scale as well). 

3.3.1 Time-Scale of Extension of Detrended Fluctuation Analysis 

We propose and develop a novel Time-Scale extens~on of DFA, which we call TS- 

DFA, to compute the Hunt exponent, H(r ,  B), for different time period T and scale 

(or number of trading days) 8 for the interval [ r  - :,T + $1. From the condition on 

time r and scale B specified, we know that $12 + 1 5 r 5 n - 012 Realistically, 

however, the maximum scale in addition that we consider is 0 = n/4, as for large 

scales we are essentially recovering the Hurst exponent for the whole serles. A major 

concern m this modification is to  guarantee that exponents obtained through DFA 

are meaningful. We control the "goodnlss'' of the linear least squares fits of the 

regression coeffic~ents to  be near unity for all markets studied to ensure that the fit 

is significantly linear since, if the regression coefficient is low, the scaling behav~our 

does not hold 

3.3.1.1 Example of TSDFA Method 

In order to clarify how r and 8 are chosen, a simple example is given as follows. 

Let us assume that X(t) is a tlme series of length six (n=6) 

t date X(t) 

1 01/01/2002 1.23 

if 8 = 2 then 2 5 r 5 5, so we have subintervals of size [ r  - 812, T + 8/21 

4Multikactality means that the knctal dimension of tlme serles is changeable over time 



Then for 

. .T = 2 =+ X[1,3]=1 23, 120. 

.r = 4 + X[3,5]=1.20, 1.24. 

3.4 The Variance-Covariance Matrix and its Estimation 

It is well-known that high profits cannot be generated without accepting a corre- 

sponding high risk, so investors have to balance anticipated profits with estimated 

risks. Achieving this balance requires examination of the measures of volatility and 

correlation (or more precisely, the covariance) of the return series, where these reflect 

risk fluctuation and relationships between series values. Thus, empirical variance- 

covariance (or correlation) matrices are very important for risk management and 

understanding the behaviour patterns of assets returns. There are several esti- 

mation methods available to compute these matrices, but little agreement among 

authors on an optimal cholce [see e.g Litterman and Winkelmann (1998) and Pafka 

et a1 (2004)]. We have chosen the following formula from Litterman and Winkel- 

mann (1998) because it uses weighted historical data to  account for the empirical 

irregularities of financial time series (such as the fact that volatility and correla- 

tion vary over time and that these series have "Fat Tail" distributions5). Then the 

covariances can be  calculated using 

where r , , ~  is the return on the zth market at  time N and where w ~  is the weight that 

is applied at  N over horizon M. There are many possible choices for the weights w ~ ,  

for example, w ~  can be chosen to be equal for every observation in the sample, = 

&, for all N observations However, in this work, the weights w ~  has been chosen 

'If the distribution is leptokurtic, it is called fat-tazled (or peaked), indicating that it cannot be 
Normdl7 distributed 



to be a declining function of time as suggested by Litterman and Winkelmann. Thus, 

more recent observations are given more welght than observations that occurred in 

the more distant past, with 100% weight given to  the most recent week and where 

each week in history receives 90% of the weight of the following week, then WN = 1.0, 

w ~ - ~  = 0.90, W N - ~  = 0.81, etc. [For more details see Litterman and Winkelmann 

(1998)]. 

3.5 Wavelet-Based Approaches 

In Section 2 2, we showed that the wavelet transform is a valuable tool for decom- 

position of a signal (or time ser~es) into different frequency components, providing 

time and frequency information szmultaneously. It is particulary useful in handling 

a variety of non-stationary and noisy signal processes (or time series), so is partic- 

ularly appropriate for financial data. Within financial analysis, the W T  can also 

be applied, alone or combined with other methods, to  diierent levels of problem, 

such as auto-correlation within a market and co-relationship or dependency between 

different markets, etc. 

3.5.1 Definition of Wavelet Transform 

The W T  is a mathematical tool that has many applications, image analysis, and 

signal processing (see Section 2.2). In particular, the discrete wavelet transform 

(DWT) divides the data series into components of diierent frequency, so that each 

component can be studied separately to investigate the data serles in depth and 

enable identification of further features. Wavelets have two types, father wavelets 4 

and mother wavelets $ where 



The smooth and low-frequency parts of a signal are described by using the fa- 

ther wavelets, while the detail and high-frequency components are described by the 

mother wavelets. Orthogonal wavelet families are of four dierent types which are 

typically applied in practical analysis, namely, the haar, daublets, symmlets and 

colfdets, (see Figure (3.1)). 

The following is a brief synopsis of their features. 

o The haar is a square wave and is a compactly supported orthogonal wavelet 

which, unlike the others is symmetnc but which is not continuous. 

o The daublets are continuous orthogonal wavelets with compact support. 

a The symmlets and wzfiets are built to  be nearly symmetric and are compactly 

supported orthogonal wavelets. They are capable of perfect reconstruction. 

Figure 3 1. Wavelet Fmihes 

A two-scale dilation equation%sed to  calculate father b(t) and mother G ( t )  

'Also called two difference equation 



wavelets, is defined, respectively by 

where ek and tik are the low-pass and h~gh-pass coefficients given by 

The orthogonal wavelet series approximation to a signal f (t) is defined by 

where J  is the number of multiresolution levels (or scales) and k ranges from 1 to 

the number of coefficients in the specified components (or crystals). The coefficient 

sj,k,dj,k,. .,dl,k are the wavelet transform coefficients given by 

Their magnitude gives a measure of the contribution of the corresponding wavelet 

function t o  the signal. The functions 4 j,k(t) and h,k(t)  [j = 1,2,. . . , J ]  are the 

wavelet functions approximating for the signal and generated from 4 and 111 through 

scaling and translation as follows 



3.5.1.1 T h e  Discrete Wavelet Transform (DWT) 

The DWT is used t o  compute the coefficient of the wavelet series approxima 

tion in Equation (3.5.5) for a discrete signal fi, . . . , fn of finite extent. The 

DWT maps the vector f = (fl,fi, . , f,)' t o  a vector of n wavelet coefficients 

w = (wl, wa, . . , w,)' which contains both the smooth coefficient S J , ~  and the detail 

coefficients d3,k ij = 1 , 2 , .  . . , Jl. The sj,k describe the underlying smooth behaviour 

of the signal at coarse scale 2' while the dJYk describe the coame scale deviations 

from the smooth behaviour and the dJ-l ,k , .  . . , dl,k provide progressively finer scale 

devlations from the smooth behaviour d$,k, .  . , d:,k and s $ , ~  are the amounts of 

energy of the original signal which are explained by the detailed and the smooth 

wavelet components respectively. 

For n d~visible by 2 J ;  there are n/2 observations in dl,k a t  the finest scale 2' = 2 

and n/4 observations in d2,k at the second finest scale 22 = 4. Likewise, there are 

7 ~ 1 2 ~  observations in each of d ~ , ~  and S J , ~  where 

The multiresolution decomposition of a signal (or time series) can be defined as 

follows: 

S J ( ~ )  = s ~ , k h , l c ( t )  (3.5.10) 
k 

D J ( ~ )  = C d ~ , k + j , k ( t )  for 3 = 1 , 2 , . .  ., J. (3.5.11) 
k 

The funct~ons 3.5.10 and 3.5.11 are called the smooth signal and the detail sig- 

nals respectively, which constitute decomposition of the original signal into different 

components. Now, the original signal can be expressed in terms of these signals: 

f ( t )  = S J ( ~ )  + D J ( ~ )  + D J - ~ ( t )  + . . . + D t ( t )  (3.5.12) 



3.5.1.2 How The DWT works 

The DWT for (3 levels) ~s applied to a time series with n daily observations and 

the results are given in Figure 3 2 which shows that the analysis gives four different 

frequency components dl,d2,d3 and s3 At the &st level, the DWT will smooth a 

half of the signal (or time series) giving the first detailed component (dl)> (which has 

n/2l observations and 2' coefficients), and component (sl), which has n/2' observa- 

tlons. At the second level, the half of sl (or a quarter of the original signal) will be 

smoothed giving the second detailed component (dz ) ,  (which has n/22 observations 

and 22 coefficients), and component (sa), which has 7112~ observations. At the last 

level (third), half of sz will be smoothed giving the third detailed component (d3), 

(which has n/z3 observations and Z3 coefliclents), and the smoothest component 

(s3), which has n/23 observations. As the observations of the or~ginal series are 

daily, so the detailed components dl, dz and d3 represent 2' days, 2' days and 23 

days data senes respectively. 

Figure 3.2. Tree showing application of DWT for t,hree levels of decoinposition. 

3.5.2 A Technique to Test Co-movements 

As one of our major interests is the study of inter-dependency in stock markets, 

we also need to  look at  predictive or regression type models to investigate inter- 

national co-movements between these markets. Given that inherent characteris- 



tics of financial time series are non-stationarity, non-normality and noisiness, Lee 

(2002) suggested a new testing method, also based on the DWT, to study these 

inter-relationships among stock markets. This method (or wavelet-based regression 

analys~s) is described by the following steps: 

1. Apply the DWT to divide the return series into diierent components with 

different frequencies in order to examine the time-scale properties of the  return 

series. 

2. Use the DWT to  reconstruct the return series from the first wavelet component 

(dl) and from the first two wavelet crystals (dl and dz) together, to  examine 

the relationship between h~gh-frequency fluctuation in these returns. 

3 Estimate simple regression and reverse regression models between each pair of 

stock markets, (estimating Y = a&alX+~and X = b0+blY+& respectively), 

using three different series, (raw returns series and those rebuilt from dl only 

and from (dl & d2) together), to ensure that we obtain a real indication of the 

relationships between the returns at different frequency levels. 

4 Test the significance of slopes of these models and that of the values of R2. 

Thus testing Ho : a1 = 0 us. HI : a1 # 0 and Ho : bl = 0 us. HI : bl + 0, 

for simple and reverse regression models respectively, leads to rejection of Ho 

when the p-value of the slope is greater than 5%. Similarly, the values of R2 

measure the amount of variation in the dependent variable, which is explained 

by the estimated regression model. 

Lee also investigated the effects of using different wavelet farrnlies, (e.g. haw and 

symmlet) and found that choice of wavelet families has no effect on this method. 

3.5.3 New Classification Algorithm 

Severalstudies (such as: Di Matteo et al. (2003 and 2005) and Sharkasi et al. (2006)) 

conclude that  emerging and developed markets exhibit persistent (H > 0.5) and 



anti-pe~scstent (H < 0.5) behaviour respectively, indicating that the development 

of a stock market is associated with the change or crossover in its behaviour at 

the perscstencelantz-perszstenee threshold (H = i) Based on this idea, we have 

developed a novel extended DWT technique, which is described by the following 

steps: 

1. A set of a hundred series, (where choice of 100 ensures sufficient confidence in 

the corresponding average energy percentages), of fractional Gaussian noise7 

(fGn) is generated for each H E {0.3,0.4,0.5,0.6,0.7), giving five sets of 100 

series. 

2. For each set, the DWT IS applied to compute the energy percentage explained 

by each wavelet component for these 100 generated series These percentages 

are then averaged. The DWT is also used to  estimate the energy percentage 

for the return series of stock market indices. 

3. The logarithm8 to base two of the energy percentages, (logz(energy%)), ex- 

plained by the first six wavelet (detailed) components (dl - d6), are calculatedg. 

4. The llnear fit1' of the return series is compared with that of the fGn series, 

(for diierent values of H), in order t o  group stock markets, based on their 

degree of development. 

'FGn was simulated using the Splus function SznxuLate.FARIMA(0, d, 0). where d = H - 
'The base-two logauthm was calculated because there are 2) coefficients in the jt" wavelet 

compoueut, where j = 1,2, ., 6 
gReceutly, we havo come across work by In and Kim (in press) where they have platted the 

natural logarithm of varianca. of wavelet components against the wavelet components and their 
work is limited to the studying of the correlatmon between the Australman stock and future markets 
However, we beheve that our method, developed mudependently, s superior as it serves as a general 
classifie~ of stock markets. 

"We focus on the linear model for the return series in older to ensure cleaser comparmson The 
logarithm of all fGn gives straight hes .  



3.6 Chapter Summary 

This chapter has given details of different statistical and econophysics techniques, 

some well-known, others newly developed here, that were employed to  study diierent 

stock market properties in order to understand the dynamic nature of these markets. 

The results of applying these techniques and the implications of the analyses will 

be described in the next three chapters for long-term memory in a given market, 

co-movement between markets and for the remtion of different stock markets to  

major events respectively. 



In this chapter, we discuss results for the detection of long-term memory, (slowly 

decaying autocorrelation or long-range dependence), in stock market returns and 

volatilities; the Irish (ISEQ) market is taken as an example. Also both time and 

scale dependency of the Hwst exponent are investigated for individual markets, (ai 

diierent levels of development), in order to measure their disorder (or entropy1). 

4.1 Long-Term Memory for the Whole Series 

As noted, Chapter 3, many different methods have been used to detect the possibility 

of long-range dependence in stock market returns, but the evidence in general is 

mixed for the presence of long memory in these data [Lo (1991), Cheung and Lai 

(1995), Berg and Lyhagen (1998), Jacobsen (1996), Hiemstra and Jones (1997), 

Lee et al. (2001), Sadique and Silvapulle (2001) and Assaf and Cavalcante (2005)j. 

To our knowledge the use of the discrete wavelet transform (DWT) proposed here 

is novel and has not previously been discussed in the literature. The DWT and 

three dierent  tests, (namely Rescaled Range (RJS), its modiied form, and the 

semi-parametric method (GPH)), are applied to  the daily returns of five Irish Stock 

Exchanges (ISEQ) indices in order to invettigate the long-term memory property. 

'Entropy is a meamre of the disorde~ or landonmess m a system 



These example data have been chosen for two reasons: (i) because the Irish market 

has been one of the most significantly developing markets in the last five years, (ii) 

to reffect local interest in the research base. These methods have also been applied 

to the volatility measures (namely absolute and squared returns) in addition to  the 

returns themselves. The case for the existence of long-term memory properties in 

the Irish data 1s discussed. 

4.1.1 Data Description 

In order to investigate the long-term memory property, for the Irish Stock Exchange 

(ISEQ) example, we considered dally closing prices of five indlces, namely Overall, 

Financial, General (from 4/1/1988 to 30/9/2003), Small Cap (from 4/1/1999 to 

30/9/2003) and ITEQ2 (from 4/1/2000 to  30/9/2003). The daily returns of all 

these indices are calculated by using the following formula3 

Daily Returns = rt = ln(Pt/Pt-1) (4.1.1) 

where Pt and Pt-1 are the index prices at time t and t - 1 respectively. 

The statistical summaries of all ISEQ indices are reported in Table (4.1) which 

shows that the sample means are positive for all indices apart from the ITEQ index. 

The skewness and kurtosis of all return series are significantly diierent from zero, 

meaning that not all serles can be regarded as Normally distributed. This is to  be 

expected, as it is well known that return series has a "Fat-Tail" distribution, [as 

mentioned in, e.g. Mandelbrot (1963), Lux (1998) and &chmond (2001)l. 

'ITEQ is the Technology Market of the Ir~sh Stock Exchange. 
'The Log return, formally the lognlithmic leturn or continuously compounded retlun, is widely 

used in fincia1 and economic researches The continuously compounded return is asymmetric 
thus clearly indicating that up and down retmm are not equal. 



Table 4.1 Descriptive statistics of the ISEQ indices daily returns serles 

4.1.2 Results 

4.1.2.1 Classical and Modified R/S a n d  GPH 

The R/S [Hurst (1951)l and Lo's R/S [Lo (1991)l methods, (described in Section 3.2), 

are applied to the return series and thelr volatility measures of ISEQ Indices 

The V-test [Lo (1991)l a applied to these two methods in order to test the null 

hypothesis: The sertes ezhzbzts short-term memory (against the alternative one. 

It shows long-term memory). The null hypothesis cannot be rejected at a% level 

lor 5% or 1%, if V-test value lies inside the interval [0.809,1.8623 or [0.721,2.098] 

respectively. From Table (4.2), it can thus be seen that no emdence of a long 

memory property exists m any of returns series themselves, since the V-test values 

for these series lies Inside both intervals (from both methods). However, there is 

agreement between V-test values for both R/S (and the modification of R/S due 

to Lo (1991)), that strong evzdence exists for long-range dependence in the absolute 

and squared returns of Overall, Financial and General indices and in the absolute 

returns of ITEQ index. There is also agreement that no evidence of long memory 

e found in the Small Cap index. This is due probably to the characteristics of the 

Small Cap Index which represents an asset class of the smaller companies. Thls type 

of class offers potential for growth which may not always be seen in larger entities. 

It a also more representative of national economic performance compared to  the 





ISEQ Overall Index and also has a different volatility profile due to  both liquidity 

and constituent weighting. However, for the sqzcared returns of ITEQ index classical 

R/S indicates that there is a strong evidence of long memory in this series, whereas, 

Lo's R/S shows no such evzdence. This disagreement is found probably because the 

characteristics of this index do not relate closely to the others and the focus is on 

the Technology companies of which there are only four in total. We note also that 

the number of observations is lowest for ITEQ and Small Cap. 

Table 4.2: Results of the R/S analys~s and Lo's modified R/S test 

Note V-tests are calculated as Vn = W,/Jii where W,, 1s RIS or Lo's R/S calculated by 
uslng Equatlon(3 2 7) The acceptance or IeJectlon of the null hypothesis a t  a% level for 
5% or 1% is detenmned by wwhether or not Vn L., contamed m the Interval [O 809,l 8621 or 
[0 721,2 0981 respectively Thus * and ** mlcatc  stat~st,lcal s~gn~ficance a.t the 5% and 1% 
respect~vely 

The spectral regression procedure (GPH), [see Section 3.2 3 and Geweke and 

Porter-Hudak (1983)], is also applled to estimation of the fractional differencing 

parameter (d), t o  test the null hypothesis: The senes exhzbzts short-term memory 

(or d = 0) against the alternative one: It shows long-tern memory (or d f 0) for 

index returns and their volatilities. We report the GPH test for different values of u 

V-test of Lo's R/S 
1.4776 
4 3492** 
3 2941** 

ISEQ iildex 

Overall 

No of Observatioil 
3948 
3948 
3948 

Series 
Returns 
Absolute 
Sollased 

V-test of R/S 
1 7469 
7 2223** 
5 OOOlf* 



=0.45, 0.50, 0.55, 0.60 in order to measure the sensitivity of this test to the choice 

of m truncated length of subseries or size of subset [Equation (3.2.10)l. A two- 

sided t-test is constructed (with the theoretical variance of the spectral regression 

error equal to  7r2/6), to test the stated hypotheses. The acceptance or rejection of 

the null hypothesis at 5% or 1% is determined by whether or not the t-statistic is 

contained in the interval [-1.96,1.96] or [-2.576,2.576] respectively. The results of 

this calculation are reported in Table (4.3). 

Fmm Table (4.3), it can be seen that no evidence for long-term memory exlsts 

m any of the returns series, since t-test values for these series are within one of the 

acceptance intervals {[-1.96,1.96] & [-2.576,2.576]}. It can also be seen that there is 

strong indication of persistence in the absolute and squared returns of all indices, 

(except that of Small Cap) and in the squared returns of General index. In contrast 

to both R/S tests, the GPH method shows that the squared returns of the General 

index have no long memow behaviour. 

From the previous results, it can be seen that R/S, its modified form and GPH 

methods sometunes show mixed evidence for the presence of long memory. Dfierent 

plausible reasons mclude: 

o the nature of the stock market data series; non-stationary, non-normal and 

noisy series as well as the length of data series 

o Insensitivity of the test bases. Modern markets may exhibit different memory 

types (long, intermediate and short-term), so that it is unrelzable t o  test only 

short memory or weak dependence (H = i) against long memory or strong 

dependence (H # i ) .  

o From the results, It can be concluded that methods, such as R/S tests, GPH, 

etc, are no longer adequate to determine memory effects, especially, in rapidly 

responsive (or less traditional) markets. 



Table 4.3: GPH estimation of fractiollal diierepcing parameter d for daily returns 
of Irish 

Ndte The d est-tes corie?pond to ,G<H fol levt(liLv.(see Eq".a!ion,i(3 2 .10)).j8T)ie t-tests 
of hypothesis [Ho d = 0 vs HI d $: 01 are pven ~n~,parentl~eses, constructed based on n2/6 
as the error var~ance Thus * and ** udcate statistical s~gn~ficance f o ~  t-test at the 5% and 
1% s~ginfica~lce le,vel respectively 

. . -. . ~ 

Stock 

Index] 

Overall 

Financial 

General 

Small Cap 

ITEQ 

Exchange(1SEQ) 

Serias 
Returiis 

Ahsolute 

Squared 

Retlirns 

Absolute 

Squared 

Returns 
' 

Absolute 

Squared 

Returns 

Absolute ' 

Squared 

Returns 

~ b s o l u t e  

' , 
SquaFed : 

.. 

~ndices 

" .  

i 0 45 ' ,  ' 0:50' 0.55 060  ., a 

0 0528 0.0519 0.0428 0.1197 
(0 452) (0 5'71) (0.599) (1 697) ' 
0.506 0.438- 0.400 0,365 
(4 371)** (4 810)** (5.&0)** ( $ 3  7)** 
0 3853 0.3333 0 2966 0.2663 
(3 256)** (3 664)** (4.150)** (4.665)** 
0!0019 0:1096 0$1,151 0.1289 
(0.016) (1 205) (1 309) (1.742) 
0.5313 0.4720 0.3617 0.3384 
(4.5%)" (5.189)** (5060)** (5926)** 
0 3925 0 3754' 0.3250 0 3065 
(3 388)" (4.127)** (4548)** (5.368)** 
0 028 0 0508 0.0696 00972 - 
(0.242) (0.558) (0974) (.l."r03) 
0.3959 0 3615 0.3127 0,3098 
(3.417)*" (3.974)** (4_375)** (5 426)** 
0.2188 0.09G9 Or9551 0,0877 

, , 
(~:889) (i ,o~6) (o:?71) ' , ~ ~ 5 3 7 )  
0 0874 00787 0.0377 0.1369 
(0 543) (0.607) (0.362) (1 611) 
0.0189 0.1261 0 1647 0.1586 
(0:118) (0.972) (1579) (1.867) 
0.1143 0 0209 0.0278 0.0153 
(0.710) (0 5 ~ 1 )  (0,267) (0.180) 
0 1011' O'Qfj09 0.0P92 =-0 0729 
(0 576) (0.436) (0.170) (0 786) 
0 5370 0 4723 014081 0.3169 
!(3:0_61)** :(313~:1)f*~ ,,@%62!);~*:,*~(3 413)*:, 
0.41'61 0:34Xj 0L2989 0;2316 ' - 

(2 372)* (2 @5)* (2.651)** (2.495)* 
. - . ~ 

, 



4.1.2.2 Results of t h e  Discrete Wavelet Transform (DWT) 

While such conventional analyses are useful, sewing to  contrast the Irish market 

data w ~ t h  that from other markets, the novel use of the dlscrete wavelet transform 

(DWT) lies in its ability to analyse the volatil~ty more directly. To our knowledge, 

while the DWT has been used to measure the Hurst exponent, [Abry and Veitch 

(1998) and Simonsen e t  al. (1998)], it has not been used to study the memory 

structure itself of the data series In this work, we compute the DWT for 6 levels 

(~ca les )~  for daily returns series and their volatility measures (namely squared and 

absolute returns) of all Irish indices in order to investigate the memory property 

of these serles. The DWT provides a more detailed breakdown of the contribution 

to the serles energy from the high and low frequencies in the follow~ng manner. 

Table (4.4) (a, b and c) displays the energy percentages for wavelet components 

(crystals) of the returns, (squared and absolute), of Overall, Fmancial, General, 

Small Cap and ITEQ indices respectively. These percentages indicate the amount 

of variatron in these series explained by each wavelet component, Equatlon (3.5.5). 

Table 4 4 Amount of "Energy", explained by each wavelet coinponent (or crystal), 
for Lrish indices (ISEQ). The total energy is equal to one, c:=~ d* + sc = 1 

a: The dally ret,urn series 

4The smoothest component s is obtained at the 6'" level, giving six detailed components d l ,  ..., ds 
and the smootliest one ss, so it a meaningless to go higher 
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b: The squared return series. 

c The absolute return series. 

From Table (4 4) (a), it can be seen that the high-frequency crystals (dl, dz, 

d3, d4 and ds) have much more energy than the lowest frequency one ( ~ 6 )  and this 

means that movements in the returns are mainly caused by short-term fluctuations, 

confirming that there 1s little euzdenee of long memory in the returns series Ta- 

ble (4.4) (b) shows that the lowest frequency component (66) of the squared returns 

of each of the Overall, Financial and ITEQ indices has more energy than the second 

high-frequency component (or crystal) (dz) but less energy than the first crystal 

(dl), indicating that  there is some evldence of long-term memory in these series. 

This supports the previous analysis, Section 4.1.2.1, on memory but adds further 

detail, since it provides an in-depth view of ranked contributions to  variation in the 

data series and a real Indication of structure in memory effects. These results imply, 

therefore, that movements in these squared returns are caused by both short-term 

and long-term fluctuations. The lowest frequency component (ss) of the squared 

returns of the General index has lower energy [0.122] than the second highest fre- 

quency (dz) [0.188] but higher energy than that  of the third highest component (d3) 



[0.116], indicative of a weak long memory effect in these squared returns. However, 

the energy of the lowest frequency component (s6) [0.116] of the squared returns of 

Small Cap index is even lower than that of the d3 component [0.217] and this clearly 

implies that the movements of this series are mostly caused by short-term fluctua- 

tions with no significant evidence of long-term memory. Table (4.4) (c), in contrast, 

illustrates a situation where the lowest frequency component (86) has much more 

energy than both the first two high-frequency components (dl and d2)  together, 

which is strong evidence of long-range dependence in the absolute returns series 

m th  movements in these series mostly caused by long-term fluctuations. From the 

overall wavelet analysis, it IS clear that frequency patterns are demonstrably diier- 

ent for the respective series where large energy percentages, (associated with high 

frequency components), imply short-term memory dominance and uzce versa 

4.1.3 Long Memory: In Summary 

In this section, the discrete wavelet transform (DWT) was compared to  three clas- 

sical methods to test for the presence of long memory in five Irish Stock Exchange 

(ISEQ) indices. In agreement with findlngs for indices derlved for other markets, 

[e.g. Lee et al. (2000), Elekdag (2001) and Sibbertsen (2002)], there is little evidence 

of long memory for returns series, while for squared and absolute returns, such a 

property does appear to  exst. The exception, interestingly, is the Small Cap index 

for the Irish data, which shows no significant evidence of long-term dependence for 

any returns series due presumably to the characteristics of this index. The DWT 

analysis, however, ~rovides additional insight on the series breakdown, in particular, 

providing a way to  study the sensitivity of the series to Increases in amplitude of 

fluctuations as well a s  changes in frequency as we can see from the distributions 

of energy percentage, (Table (4.4)), in relation to actual, squared and absolute re- 

turns The results also show that the absolute returns exhibit hzgher degree of 

long memory property than squared returns, with the indication of such property 



in the absolute series quite consistent for all methods. This would suggest that the 

absolute return is a more reliable measure of volatility than the squared. Finally, 

we can conclude that there is strong zndicatzon for persistence in the volatilities, 

(particularly absolute values), of the emerging stock market returns for the Irlsh 

data. 

4.2 Time-Scale Behaviour of the Hurst Exponent (Mul- 

tifractality) 

From the previous Section, movements in the returns seem to be mainly caused by 

the short-term fluctuations even though, as has been noted, returns series of stock 

markets are expected to exhibit multifractal (multiscahng) behaviour Inriel  and 

Perez-Vicente (2003), Matia et al. (2003), Los and Yalamova (2004) and Oswiec- 

irnka et al. (2005)l. In this Section, therefore, we report results for a new Timescale 

extension of Detrended Fluctuation Analysis (TSDFA), (described in Section 3.3), 

to study the behaviour of the Hurst exponent (H) over different time periods and 

number of trading days, for stock price fluctuations (or returns) in order to  investi- 

gate their multifractal property 

4.2.1 Data Description 

The list of worldw~de stock market indices and the statistical summaries of the~r  

daily returns are glven m Tables (4.5) and (4.6) respectively Table (4.6) shows that 

the sample means of the returns of all indices are positive except for that of the 

Nikkei 225 index. We also test the normahty of these series by testing whether or 

not their skewness and kurtosis are dierent from zero. The results show that these 

return series are signficantly negatively skewed except those for the Hang Sang, 

IPC, Straits Times and FTSElOO indices, which are not significantly different from 

zero. However, the returns series of all ~ndices are leptokurtzc and this means that 



the  daily returns of all these indices can not be regarded as normally distributed. 

Tablc 4.5: List of International Stock Market Indices considered here. 

Table 4.6 Descript~ve statlstlcs of the daily returns of the stock market index series 

I Measure+ I Min 1 M a x  I Mean I Std.Dev I Skewness ( Kurtosis 1 

4.2.2 Results 

T~me-scale extension of Detrended Fluctuation Analysis (TSDFA) (Section 3.3) is 

applied t o  the daily returns of these stock markets and results are given in Figure 4.1, 



represented in colour shading for the Hurst exponent H E [0.3,0 91, e.g. light yellow 

for H = 0.9, black for H = 0.3, etc: the full key is given on the diagram 

The Australian, (All Ordinaries), market TSDFA, Figure (4.1) (a), displays 

different memory types that span both persistent ( H  > 0.5) and anti-persistent 

(H < 0.5) behavionr over time For example, the market exhibits anti-persistence, 

with H < 0.5, during the period from 2003 to 2004, (unexpected since this mar- 

ket is classified as mature). Figure (4.1) (b) shows that the Canadian (S&P/TSX 

Composite) market also exhibits diierent memory types, with pre-1997 behaviour 

persistent (H  > 0.5), and subsequently mlxed, i.e. persistent (H > 0.5) for some 

intervals and anti-persistent ( H  < 0.5) for others, (agmn unexpected from a market, 

classified by the World Bank as mature). Figure (4.1) (c) shows that the German 

market displays anti-persistence (H < 0 5) for most time periods and scale lev- 

els (Number of trading days) Figure (4 1) (d and e) give TSDFA for Hong Kong 

(Hang Sang) and Singapore (Straits Times) markets respectively, showing that these 

markets exhibit persistent behaviour, with H > 0.5, in some time periods and for 

different number of trading days. In others, notably, they exhibit anti-persistent 

behavionr (H < 0.5) From Figure (4.1) (f, g and h), which give TSDFA for Itlsh 

(ISEQ Overall), Portuguese (PSI20) and Mexican (IPC) markets respectively, it can 

be seen that these markets show signs of persistence (H > 0.5) over almost all time 

periods and scale levels. TSDFA for the Japanese market, (Nikkei 225), is given in 

Figure (4.1) (i) and Indicates that thls market exhibits anti-pers~stence ( H  < 0.5) 

for most time periods and scale levels: this is as expected from a mature market. The 

results for UK, (FTSElOO), market are given in Figure (4.1) (J) and it can be seen 

that the Hurst exponent H has been decreasing over time, with recent values< 0.5. 

This is what we expect from a mature market Fkom Figure (4.1) (k), it can be seen 

that the Hurst exponents for the US market < 0 5 (or antz-perszstence) for most 

time periods and scale levels. In contrast, this market shows perszstent behaviour 

(H > 0.5) in 1997 and 2001 due to the Asian and 9/11 crashes respectively. 



(a) Australian Market. (b) Canadian Market. 

(c) German Market. (d) Hong Kong Market. 

(e) Singapore Market. (f) Irish Market. 



(g) Mexican Market. (h) Portuguese Market. 

(i) Japanese Market. 6) UK Market. 

(k) US Market. 

F i e  4.1: Hurst exponent values over time and for different scale levels calculated 
by Time-Scale Detrended Fluctuation Analysis (TSDFA). 



In summary, Figure (4.1) in particular highlights the following features: 

o The Hunt exponent H(r,8) seem to  be dependent on both time and scale 

(number of trading days), indicating that stock markets are multzfiaetal in 

character. This property has been suggested, Turiel and Perez-Vicente (2003), 

Matia et al. (2003), Los and Yalamova (2004) and Oswiecimka et al. (2005), 

relatively recently. However, our analysis provides a clear illustration of this 

and moreover, provides a basis for quant~fication as well as a useful basis for 

comparison in the visual sense. 

o Classification of global stock markets as either emerging or mature is an over- 

s~mplification. I 

4.2.3 Time-Scale Behaviour: In S u m m a r y  

Time-Scale extension of Detrended Fluctuation Analysis (TSDFA) has been applied 

to eleven worldwide stock markets and results clearly imply that the behaviour of the 

Hurst exponent is dependent on both time and scale, indicating that stock market 

returns show multifractal behaviour. The results obtained empirically also indicate 

that the designation of the Hurst by H(r, 8) is more appropriate, where d i r e n c e s  

between global stock markets can not be reduced to  a distinction between emerging 

and mature markets only On the contrary, these findings support the theoretical 

argument for the new method, but also indicate that some markets are inconsistent, 

i e. swltch from one regime (or type) to another frequently or under less stimulus 

than others In recent years, in particular, the Hunt  exponent evidence indicates 

that markets move to developed positions more rapidly than was traditionally the 

case. It seems clear that bi-classification of stock markets is inadequate and that a 

more ~nformative new classification is needed. 



5.1 Background 

In thls Chapter, the investigation of the price ~nterdependence between seven in- 

ternational stock markets, namely Irish, UK, Portuguese, US, Bradhan, Japanese 

and Hong Kong is discussed. A wavelet-based method, Lee (2002), not previously 

implemented, is used to determine the direct~on and influence of global changg 

The new approach is also used to investigate the importance of legacy (or histori- 

cal) transmlss~ons, by studying the co-movement between Portuguese and Brazilian 

markets' in three d8erent periods. 

5.2 Data Description 

The data used in investigating the global co-movement consists of the daily prices 

of stock market indices for seven markets, [Irish (IRL), UK, Portuguese (P), US, 

Brazilian (BR), Japanese (JP) and Hong Kong (HK)], during the period from Jan- 

uary 1993 t o  September 2003. We considered the indices ISEQ Overall (IRL), FTSE 

All Share (UK), PSI20 (P), S&P500 (US), Bovespa (BR), N~kkei 225 (JP) and Hang 

Seng (HK) to  be representatwe of these markets. 

l%ad~t~onaUy, these countlles have close economic links, with companies hsted on both maskets. 



Note: as  each market uses its local currency for presenting the index values, 

we use the daily returns instead of using the daily preces, where Equation (4.1.1) 

applies. Some daily observations have been deleted because the markets we studied 

have different holidays. In other words, if one market closed on a given day, we 

consider the others to  close on the same day as well, (as suggested by Lee (2002)). 

Table (5.1) represents the trading hours of each of these markets in GMT and 

shows that the Japanese, together with the Hong Kong market, open first on a 

given date. The Japanese market closes two hours before the European (1.e. Irish, 

UK and Portuguese) markets open at 8:00 am, while Hong Kong closes forty-five 

minutes after the European opening. The last to open are the American (US and 

Brazilian), two hours prior to closure of the European markets. Thls ~mplies that 

the starting point for market opening and closing trading hours is Asia, followed by 

Europe, then America 

The statistical summaries of the daily returns of all stock market indlces are 

reported in Table (5.2), which shows that the sample means of the returns of all 

indices are positive except for those of the Nikkei 225 and Hang Seng indices. We test 

whether or not the skewness and kurtosis of all these series are different from zero in 

order to  test the normality of these series. The results show that the returns series 

of ISEQ Overall, PSI20 and FTSE All Share indices are significantly negatively 

skewed. Both Bovespa and Hang Seng lndlces have significant positive skewness, 



while S&P500 and Nikkei225 are not significantly dierent  from zero in this sense. 

However, the returns series of all indices are leptokurtic and this means that the 

daily returns of all indices can not be regarded as normally distributed. 

Table 5.2: Descript.~ve statist~cs of the daily returns of the stock market ~ndices 

Note ** denotes the statistically significant at  1% level 

In order to  investigate trends in the prices of ISEQ Overall, FTSE All Share, 

PSI20, S&P500, Nikkei 225 and Hang Seng indices separately, we plot the daily 

prices of these indices in their local currencies. Figure (5 1) (a) to  (e) represent the 

daaly przces of ISEQ Overall, FTSE All Share, PSI20 and S&P500 indices respec- 

tively It can be seen that the prices of these indices increased until the beginning of 

1998, corresponding to  a long-term period of growth. After that, the prices became 

unstable due to international events such as the global crash in October 1998, "dot- 

com" in March 2000 and September l l th ,  2001. While the prices of the Bovespa 

index show an upward trend until the begin of July 1997, they then became unstable 

due to the Thailand crisis in July, 15th, 1997 following by the Hong Kong crash in 

October 23th, 1997 and other global crashes. Key points and features for individual 

series are flagged in the Figure 
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(f) N~kkei 225 index (g) Hang Seng mdex 

Flgure 5 . 1  Daily prices from May lSt, 1993 to September 3oth, 2003. 

Figure (5.1) (f and g) represent the prices of Nikkei 225 and Hang Seng indices 

respectively. These demonstrate that the Japanese market is very sensitwe, possi- 

bly because companies who have shares in the Japanese stock market tend to be 

exposed internationally, and so price index levels respond to changes both directly 

and indirectly. 

The Hong Kong market is noticeably unstable with a disproportionately large 

number of reglonwide crashes (possible due to serial crises. Bird Flu, SARS, etc) 

The Asian financial crisis had strong direct effects on the Hong Kong market but, 

interestingly, affected Japan's economy only weakly since only 40 % of Japan's 

exports go to Asia In addition, Japan was going through its own ongolng long-term 

economic difficulties, which seen to have been more dominant in term of affecting 

the n.arket at that time. 

From the above, there are clear indications of influences on international markets 

from regionwide markets as well a s  from worldwide markets and this picture become 

more detailed when we look at the results of the wavelet analysis. For the daily 

returns of seven market indices, the energy percentages, (which tell us how much 

variation is carried by each wavelet component), are given in Table (5.3). Thls 

shows that more than 65% of variations (or energy) of the daily returns of all these 



ser is  are explained by the first two high frequency crystals (dl & dz), while the low- 

frequency component s~ explains less than 6%. Further, dl and dz represent short- 

term variations occurring within (2' = 2) two and (2' = 4) four days respectively, 

~mply~ng that movements are mamly caused by short-term fluctuatzons 

Table 5.3. Percentages of energy by wavelet crystals for the daily returns of indices' 

I Index I I I I I I I I I 

Figure (5.2) (a) to (g) represents Information from the  discrete wavelet decom- 

pos~tions of the daily returns of Irish, UK, Portuguese, US, Brazilian, Japanese and 

the Hong Kong stock market indices respectively corresponding to wavelet compo- 

nents in Table (5.3). The volatility in these markets is clearly shown by the high 

frequency components, such as dl, dz and d3 and has increased in the recent years 

(a) ISEQ Overall index @) FTSE all share index. 



(c) PSI20 lndex (d) S&P500 index 

(e) Bovespa d e w  (f) Nikke~ 225 mndex. 

(g) BSI index. 

Figure 5.2. Discrete wavelet transform (DWT) of daily returns us. Time The top 
graph in eacli case (idwt) 1s the daily return series, which can be reco~lstructed by 
using Equation (3 5 12) 



5.3 Results 

Tradrtionally, we might expect strong co-movements between nearest-neighbour 

stock markets, such as those of Ireland and the UK or between Japan and Hong 

Kong, while also reflectlug the still strong historical links among international mar- 

kets, for example, between Brazil~an and Portuguese markets. However, as we shall 

see below, the results are more complicated than thls. 

5.3.1 Global Interdependence 

In order t o  determine the domlnant factors In such inter-relationships among all 

seven stock markets and examine if expectations are realiied, simple and reverse 

linear regresslon models have been used t o  estimate co-movement between each 

pair, using three different series: original returns (or raw-returns) series, the returns 

rebuilt from the first wavelet component (dl) and those rebuilt from the first two 

wavelet crystals (dl and dz) together. This means that ordinary least squares fitting 

IS applled twice, interchanging the Independent and dependent var~ables the second 

tlme, but not always at the same calendar day (due t o  global tlme zones) For 

example, t o  investigate the cumovement between Irish and US markets, we first 

start with a simple regresslon of Irish returns on US returns of the preuzous day2 

Secondly, we preform a slmplc regression of the US market on the Irish market on 

the same calendar day The reasons for reconstructing returns series are twofold; 

firstly, t o  Isolate key information that may not observed in the raw data. Secondly, 

to investigate whether or not co-movement3 effects are "spunous". Unfortunately, 

we can not directly apply multlple regression (using forward or backward stepwise) 

to study the co-movements between the stock markets for two main reasons firstly, 

'The Irish market, closes shortly ait,er US market opens; thus if there is infhlence from the I1S 
market, the h ~ h  market will response to this news on the next trading day. 

3The infl~~ence of X market on Y IS inferred by looking at the "slope" and "R'" values of 
the ~egrssion models of Y on X at throe diimeut levels. If all these values are significant; this 
indicates that X afkc ts  Y However, if the estimates are not siguificant and/or glve wroug slgus, 
t h ~ s  demonstrates little or no consistent Impact from market X market on market Y. 



multicollinearity problems are eqected due to the relationships between the markets, 

secondly, we do not know the direction or order of the spillover effects. 

The results of a regression analysis between each pair of return series of stock 

market indices are given in Table (A.l) in the Appendix. To take an example 

(Table (5.4)), from the values of the coefficient of determination (R2) and P-values 

of slopes4, which are given in bold, it can be seen that: 

o R2 and highly significant P-values for simple regression of Ireland (dependent 

vanable) on the UK (zndependent variable) for three diierent return series 

(raw, reconstructed from dl and reconstructed from (dl & dl)) , are (0.323, 

O.OOO), (0.222, 0.000) and (0.251, 0.000) respectively. These imply that the 

regression models of Irish markets on the UK Market for all these different 

series arc significant, meaning that the UK market has impact on the Irish 

market. 

0 R2 and highly significant P-values for regression of UK market (dependent 

variable) on Irish market (andependent uarzable) for three different series, are 

(0.323, 0.000), (0.222, 0.000) and (0.251, 0 000) respectively, indicating that 

the UK E influenced by Ireland. 

o The previous points, taken together, show that there is strong evidence of 

interrelationship between these two markets. 

Where the notations for Tables (5 4) and (5 5) are given as follows: 

o P-values of t-tests are given in parentheses. 

o Return 1s an indicator of the raw daily returns series 

o Return.Dl and Return.Dl.2 are indicators of the returns reconstructed from 

the first wavelet crystal and those reconstructed from the first and the second 

wavelet crystals together respectively. 

'In this analysis, we are Interested in investigat~ng whether or not there is significant evidence 
of tbe inRuence from one market to mother, but not how much the lnffuence is 



Table 5 4. Simple and reverse regression analyses between the daily returns of Irish 
and UK stock market indices. 

Overall, from the illustrative table and the complete results (Appendix A.), it 

can be concluded that there are strong w-movements between each two of the Irish, 

UK and Portuguese markets, while the Irish market is also influenced by the US, 

Japan and Hong Kong. The UK and Portuguese markets are affected by both 

Japan and Hong Kong, while these are impacted upon by the US and Brazihan 

markets Further, the UK and Portuguese markets influence the US and Brazil. 

Table (A.l) also shows that there 1s co-movement between US and Brazilian and 

also between the Japanese and Hong Kong markets (nearest-neaghbours). No inter- 

relationships apparently exist between the Brazilian and either the Irish or Japanese 

markets, but the Brazil~an market itself is significantly affected by that of Hong 

Kong This ~mplies that there is also an inner loop of "spillover effects" between 

Asian and American markets with~n the global circle, (southeast Asla t o  the Latin 

Americas). In other words, the US market affects those of Asia, (Japanese and Hong 

Kong), which in turn impact on Brazil. The co-movement directions are given in 

Figure (5 3) 



Figure 5 3. Direction of international co-movements (external influence) is indicated 
by the arrows, where the markets inside each circle have co-movement between each 
other. 

5.3.2 Historical Interrelationship: Case Study, Portugal (PSI20) 

and Brazil (Bovespa) 

In order to get a clear picture of the historical linkage between Portuguese and 

Brazilian markets, we d~vided the whole period of the individual series into three sub- 

periods (1993-1996, 1997-2000 and 2001-2003) and obtained the regression model 

estimates between these markets uslng the three different return measures The 

results are given in Table (5.5) (a, b and c) and Figure (5.4). They show no co- 

movement between Portugal and Brazil in the first period because PSI20 index 

(Portugal) was established in 1993. However, there is significant evidence of c o  

movement between these markets from 1997 to 2000, (I e. supporting historical 

linkage with markets effectively acting together). However, m the third period, the 

results show that there are spzllove~ effects from the Portuguese market on to the 

Brazilian market, but not vzce versa, i e. the implication here is that Portugal is now 

"leadmg" (as part of the set of European markets). This implies that the importance 

of ~nternational transmission has been increased while that of historical linkage has 

been decreased since the last quarter of the 20th century 



Table 5.5: Regression Analysis between Portuguese aild Brazilian Markets using 
three d~fferent series. 

a: h o m  1993 To 1996 
I Regression-, I I 1 

Seriesl 
Return 

~ 4 ~ "  o n  Mt-lBR 
Constant I Slope ( R2 
5.313-04 1 1 363-02 1 0.001 

A4tBR o n  ~ t "  

Constant  I Slope I R" 
2 753-03 1 5.543-02 1 0,001 



Figme 5.4. Example of historical co-movements. Direct~on of arrows rndicate nature 
of co-dependence or influence. 

Finally, from both parwise and historical regression analyses reported m this 

Section, it seems clear that directional Influence IS globally clockwese starting with 

Asian markets influencing European, European impacting on the Americas and 

the circle completing with American market changes impacting on those of As~an. 

Interestingly, only the Japanese market demonstrates nnxed z7~fl.uences. Possible 

explanations for these findings on global inter-dependence and circular spillover 

effects between the stock markets in different Continents, are as follows: 

a Many firms with shares in these stock market rndices are International in- 

vestors5 

a Different time-zones mean that trading is concluded in Asla prior to opening 

in Europe and similarly for Europe to America and back again to Asia. These 

50ne poss~billty for future research is evidently to look at the granuianty, I e. to investigate the 
behav~our of ~ndiv~dual stock (or company) In thls work, we have focused on the whole market, 
rather than d~fferent firms or company type 



spillover effects are noticeable on the markets which open next, but become 

less-marked for the next global cohort. 

5.4 Conclusion 

The alm in this Chapter is to look a t  external effects or influences by investigating 

the co-movements between seven international stock markets, (namely the Irish, UK, 

Portuguese, US, Brazilian, Japanese and Hong Kong), based on daily returns. A 

new testing method suggested by Lee (2002) has been applied and our results show 

that there are significant co-movements between each European paw separately, 

between the US and Brazilian markets and also between the Japanese and Hong 

Kong markets. In addition, the indications are that there are significant spillover 

effects from the UK and Portuguese markets onto the US and Brazilian markets 

which themselves in turn, influence the Asian markets. In turn, Japan and Houg 

Kong impact on Europe. Finally, we can summarize our results by the following 

statements: 

1 There are co-movements between regionwide markets (nearest-neighbour or 

intra-contcnental relationships). 

2 There are clockwzse transmissions between worldwide markets (mter- 

contznental relationships). 

3 There is an increase in importaace of global co-movements among worldwide 

stock markets, in particular since the end of the 20th century. As we have 

seen, this is demonstrated by studying the historical link between Brazil and 

Portugal, (Subsection 5 3.2), and is probably due to the advent of modern com- 

munications in term of increasing the globalisation of stock markets However, 

m-depth studies of other historical linkage would also be required t o  provide 

further evidence. 



In Chapters (4, 5), we have lnvestlgated long memory within and co-movements 

between global stock markets. However, both internal structure and external influ- 

ences may change and evolve over time, so that market behaviour will also evolve 

or switch between recognised categories (1.e emerging or mature). Further, in a 

climate where the volume and rapidity of information exchange is constantly ex- 

pandmg, there is a need to investigate whether these categories are sufficient to  

characterise observed differences in international stock market behaviour. 

6.1 Reaction to Crashes and Events. 

It has been known for some time [e g. Meric and Meric (1997), Kwapien et al. 

(2002), Keogh et al. (2003) and Kwapien et al. (2004)l that, as well as providing 

information about how assets move with respect t o  each other, the largest eigenvalue 

(A1) of the covariance matrix of asset measures (e.g. returns) contains information 

on the risk associated mth those particular assets. Here we examine whether the 

subdomznant ezgenvalues (Xz, X3) hold additional information on the stock market 

risk and also can be used to measure the recovery time from "shocks" for emerging 

and mature markets. Explicitly, we study the behaviour of the first three eigenvalnes 



(XI, Xz, X3) and their ratios [(Xl/Xz), (Xl/X3), (X2/X3)l1 for the covariance matrices 

of the original return series, in addition to those rebuilt from wavelet components 

for emerging and mature markets (Methodology as described in Section 3.4). 

6.1.1 Data Description 

In this analysis, we use weekly returns2, calculated using Equation (4 1.1), of a set of 

thirteen emerging market indices and a set of fourteen developed3 market indices 

during the period from the second week of January 1997 to  the third week of March 

2004, as given in Table (6.1). The Covariance matrices for these two sets of indices 

have been calculated (Equation (3.4.1)), where, here, maxlmum value of i = 13 & 14 

for emerging and mature markets respectively and N has been chosen to be 20 for 

both. 

'We look at the first three eigeuvalurs to determine if significant absolute contributions are 
observed in ad&tlon to that of the first, which reflects the overall market movement. We also 
investigate the eigenvalue ratios, to see if relativc contributions are important. 

'The reasons for usiilg weeh-ly data hero are twofold (i) the stock market is expected to take 
longer than a day to respond to major events (li) Litterman and Winkelmanu (1998) found that 
using k-days returns, e.g. weekly, to estimate- the covariance matriv seems t o  reduce the impact of 
effects that persist far only s short penod, i.e daily leturns 

3Classified in accordance with the Inte~natioual Finance Coiporation (IFC) defimtion footnote 
number 9, page 11 



6.1.2 Results 

Note: The aim here is to study the behaviour of eigenvalues of covariance matrices 

for emerging and mature markets separately, not to  compare directly between these 

two types of markets. The dierent scales in the in this section are not, 

therefore, relevant to the discussion. 

6.1.2.1 Dealing with  crashes and events: Emerging vs. Mature .  

Figures (6.1, 6.2, 6.3 and 6.4) show the distributions of eigenvalues (relative sue 

and rank) of the Covariance matr~x for overlapping windows4, before and after the 

Asian Crisis in July 1997, the Global Crisis in October 1998, the Dot-Com Crash 

m March 2000 and the September the llth Crash in 2001, for a group of Emerging 

markets and a group of Mature ones 

Figure (6.1) (a and b) show that, for markets, classified as emerging by IFC 

criteria, the magnitude of the maximum eigenvalue XI increased after the Asian 

Crisis but did not change for developed markets. We take from this that the crisis 

mainly affected energzng markets but not mature ones. From Figure (6.2) (a and 

b), we can see that the Global Crisis in 1998 affected emerging and mature markets 

comparably in the same week. 

However, F~gure (6.3) (a and b) shows that the Dot-Com Crash affected mature 

markets but not emergzng ones. F~gure (6.4) (a and b) show that the value of 

XI after the September llth crash, (which was not anticipated, occurring without 

obvious warning signs), hugely increased for both emerging and mature markets. 

This implies that stock markets around the world were hit very hard and that the 

markets moved zn coordination to make a recovery after falling so sharply or being 

oversold 

These remarks also highlight the fact that the nature of the event may influ- 

40verlapping here means that elements in common between different perlads u e  shifted along 
the length of the series. Window numbers are 336 and 345 for emerging and mature groups respec- 
tlvely. 



ence how different categories of market respond. It is reasonable to  postulate-that 

'predictability" of the event, nature of investment (or sectoral composition) of the 

market and inner and outer loops of global co-movements may all be factors in 

response amplitude and time for a specific market. 

(a) Emerging markets (b) Mature markets 

Flguce 6 1. Distribution of the eigenvalues of ihe aovariance matrices before (Solid 
line) and after (Dashed line) Asian Crisis, July 1997. 

(a) Emerging markets (b) Mature markets 

F~gure 6.2. Distribution of the eigenvalues or the covariance matnces before (Solid 
line) and after (Dashed line) Global Crisls, October 1998. 



(a) Emerging markets (L) Mature markets 

Figure 6.3: Distr~bution of the eigenvalues of the covariance matrlces before (Solid 
line) and after (Dashed line) Dot-Com Crash, March 2000 

(a) Emerging markets (b) Mature markets 

F~gure 6.4. Distribution of the eigenvalues of the covariance matrlces before (Solid 
line) and after (Dashed line) September the l l th  Crash, 2001. 

6.1.2.2 Reaction t o  crashes and  events: Emerging vs. Mature. 

The variation in the ratio of the two Largest eigenvalues (X1/X2) of the Covariance 

matrices was examined for equal period overlappzng time windows of the original 

returns series for the emerging and mature market groups Results are shown in 

Figure (6.5) (a and b) respectively and demonstrate a qualitative difference in the 

way emerging and mature markets deal with crashes and events 



We also plot the ratio of X1/X3 versus window number to see how pervasive the 

reaction is to different crashes and events for different market types. The variation 

in these ratios is plotted in Figure (6 6) (a and b) 

(a) Emerglng markets. (b) Mature markets 

Figure 6.5 Changes in ratio of Domznant (XI) to Subdomznant (X2) eigenvalues 
(X1/X2) for original return series. 

(a) Emergmg markets. (b) Mature markets 

Figure 6.6: Changes in ratio of the Fzrst Largest (Xi) to the Thzrd Largest (X3) 
eigenvalue for original return series. 

It can be seen that the mature markets have reacted to events more strongly 

than emerging markets, especially after the 9/11 crash, it seems, investors in mature 

markets are happier to presume that a market is oversold than those in emerging 

markets. This means that mature markets effectively become antz-perszstent, while 



emerging markets are perszstent (Section 4.1) in agreement with the findings of Di 

Matteo et al. (2003 and 2005) which indicate that emerging markets have Hurst 

exponent H > 0.5, while mature markets have H < 0.5. 

The complementary ratio Figure 6.7 (a and b), was also plotted in order 

to see if the behaviour for Xz and X3 reflects different contributions for emerging 

and mature markets. 

(a) Emerging markets. (h) Mature markets. 

Figure 6 7. Changes in rat,to of the Second La,rgest (Az) to the Th~rd Largest (X3) 
eigenvalue (Xz/X3) for original return series. 

We thus investigated whether or not Xz carries additional Information about 

these diierent market types. Figure (6.7) (a and b) suggests that the ratio Xz/X3 

for emerging markets is more variable than that for mature markets, leading us to 

infer that subdominant (Xz), as well as dominant (XI)  eigenvalues, do contribute 

m describing the behaviour of emerging markets while the behavlonr of mature 

markets is described predominantly by XI only, since subsidiary ratios contain little 

add~tional information. 

In comparing the ratio (Xi/Xz), (shown in Figure (6.5) (a and b)), for emerg- 

ing and mature markets, it can be seen that for the latter, there are three highly 

significant points in the ratlo variation which are for window numbers 120, 219 

and 345 respectively. Window 120 starts from week 120 to week 139 which is the 



third week of October, 1999 (the 12th anniversaq of October 19, 1987 crash5). The 

last week in mndow 219 is week 238 which is the second week of September, 2001 

(9/11 crash) and window 345 starts from week 345 to week 364 which is the third 

week of March, 2004 (Madrid Bomb). However, for emerging markets, there is only 

one highly significant point which is for window 212, where the last week in this 

window is the second week of September, 2001 (9/11 crash). We suggest that these 

highly significant ratio points have the following implications: 

1 rncreaslng the value of the largest eigenvalue (A1) while the second largest 

eigenvalue (Xz) remains stable, indicates that X i  alone describes the move- 

ments of stock markets. 

2. Decreasing the value of X2 while the value of X i  does not change. This implies 

that only X2 explains the behavionr of stock markets, wh~le X i  does not carry 

any information. 

3. Increasing the value of X i  while decreasing the value of X2, (or in other words, 

A1 and X2 moving in opposite directions), shows that both XI and A2 are 

important in explaining thc behaviour of stock markets. 

The absolute changes in X 1  and A2 are plotted in Figure (6.8) (a and b) for 

emerging and mature markets respectively. For mature markets, (in order to exam- 

ine likely causes), we compared the values of X I  and Xz of the covariance matrix for 

selected windows 120, 219 and 345 with the values of the previous windows, while 

for emerging markets, we compared the values of XI and X2 for window 212 with the 

values of the prevlous windows We found that the third (combination) effect above 

causes peaks in emerging markets while it is the first combination which governs (or 

influences) movements in the mature markets. 

'TIk was the last October iu 20'" century and October is always hard month for stock markets 
so, w~th  the end of the century as well, a crash in October was anticipated but did not happen 
This, not least becanse, 'Th,e wodd r1~arket.s were actually sent znto t,urmocl b y  a speech by Alan 
Gveenspen, and the Dow Jones for the first tzme srnce Apnl 6, 1999 dzpped below 10.000 on October 
15 and 18, 1999. Howeuer, the ma~ket  dad not crash and tnatead quzeUy ~eeovemd and later started 
a ~ n e w e d  and strengthened bullsh phase", (Sornette. 200'2) 



(a) Emerging markets (b) Mature ma-lket,~. 

F~gure G 8: Changes in the Domznanl (XI) (Upper line) and the Su.bdomnanl. (Xz) 
(Lower line) eigenvalue for orlginal return series. 

6.1.2.3 Recovery t ime from crashes and events: Emerging vs. Mature .  

The aim here was to  measure the recovery time of emerging and mature markets 

from crashes and the length of time for which these markets retain information 

about these events In order to do thls, we introduced a new approach based on the 

discrcte wavelet transform (DWT), together weth ezgenanalyszs. The steps of t h ~ s  

approach are given by. (i) Use the DWT to divide the return series of emerging 

and mature markets into different frequency components. (The DWT then provides 

a more detailed breakdown of the contribution to the series energy from the high 

and low frequencies in the following manner) (ii) Rebuild the returns using each of 

these wavelet components, (dl, dz, ds, etc) and (iii) Study the distribution of the 

ratio (X1/X2) of eigenvalues of the covariance matrices for overlapping windows of 

size 20 for these series. Tables (6.2) and (6.3) display the energy percentages (or 

variance) of each wavelet component (or crystal) of the original returns for emerging 

and mature market indices respectively 

Fkom Tables (6.2) and (6.3), it can be seen in both cases that high-frequency 

crystals ( d l ,  dz and d3), which reflect rapid changes over short time periods, have 

much more energy than the lowest frequency one (s6) implying that movements in 

these serles are mainly caused by short-term fluctuations 



Table G 2: E~nerglng Markets Percentages of energy explained by wavelet compo- 



Figures (6.9) (a, b and c) and (6 10) (a, b and c) show for each window the ratio 

(Xl/Xz) from covariance matrices of the return series, rebuilt from dl, d2 and d3, 

(representing fortnightly, monthly and bi-monthly data respectively), for emerging 

and mature markets respectively. 

Looking a t  the ratio scales in these Figures, we can clearly see two main features; 

firstly, for emerging markets, even bi-monthly return serles, (rebullt from d3), seem 

to carry mformation on crashes and events and this seems to imply that emerging 

markets take up t o  two months to recover from a crash Secondly, for mature 

markets, even though the ratios in Figure (6 10) (b and c) show peaks corresponding 

to additional LLpossible" crashes, these are wrong in sign (i.e. meaningless and due 

to large ratlo scales, indicating that nezther monthly nor bz-monthly data, (rebuilt 

from dz and d3 respectively), reflect information on crises and events. This suggests 

that mature markets take less than a month to recover from crashes 

To sum up, we would say that results appear t o  show that mature and emerging 

markets exhibit anta-perszstent and perszstent behaviour respectively, indicating that 

mature markets take action more quickly than emerglng markets to recover from 

crashes. In other words, the recovery time from cr~sis for developed markets (up t o  

two weeks) is shorter than that for developing ones (up to two months). 



(a) Rebuilt from first wavelet crystal ( d l )  (= fortmghtly) 

t. i_i 
1 10 100 160 200 260 300 360 

Window Nurnb~r 

(b) Rebuilt from second wavelet crystal (dz) (E monthly) 

(c) Rebuilt from thud wavelet crystal (d3) (= hi-monthly) 

Figure 6.9. Emerging Markets Changes in ratio of Domznant (XI) to Subdomznant 
(Az) eigenvalue of covariance matrices for return series. 
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6.1.3 Section Summary 

Our aims here were threefold; firstly, to study the distribution of the eigenvalues 

(At's) of covariance matrlces of overlapping windows for emerging and mature mar- 

ket groups at  known cnsis points. These included the Aszan Crisis in July 1997, 

Global Cnszs in October 1998, Dot-Corn crash zn March 2000 and 9/11 Crash 

in September 2001. Secondly, to study the distribution of the ratios of the first 

three Largest eigenvalues (Xl/Xz, X1/X3 and Xz/X3) of these covariance matrices for 

the origmal return serles for emerging and mature markets by plotting these ratios 

against L L ~ i n d o ~ s "  number, (where a window looks at consecutive values). Thndly, 

we aimed to  study the distribution of the ratio X1/X2 for return series, reconstructed 

from wavelet components (d l ,  dz and d3), in order to isolate signal components. 

In summary, we may say that: 

1 The Asian Crisii in 1997 disproportionately affected emerging markets com- 

pared to  the major ones while the Dot-Com Crash influenced major markets 

but not emerging ones The Global Crisis in 1998 and the September llth 

Crash hit both emerging and mature markets equally. 

2. Differences exist between emerging and mature markets ~n dealing with crashes 

(especially unexpected ones). For major markets, the ratio Xi /Xz  is high at  

three points representing the 12~' annzversary of the October 19 stock market 

crash, 1999, the 9/11 crash, 2001 and the Madrzd Bomb, March, 2004 respec- 

tively. However, for emerging markets, the ratio X1/X2 is high at  one point 

only, representing the 9/11 crash, 2001. 

3. Using the discrete wavelet transform to study the behaviour of stock mar- 

kets provides a clearer vlew on the structure and dynamics of the data sets 

and gives us a good measurement of the recovery time and direction of move- 

ments m these markets. It indicates that emerg~ng markets can take up to  

two months to recover from crashes while mature ones take less than a month 



t o  do so. 

4. Both XI and X2 are needed t o  describe the behaviour of emerging markets 

while XI is adequate alone t o  describe the behaviour of mature markets. Ma- 

ture markets move together in the same direction in response to crises. This 

suggests both that cooperative behaviour applies between such markets, while 

they also demonstrate reduced entropy"or internal disorder) compared to 

emerging ones. In other words, shareholders in these markets appear to have 

similar patterns of selling and buying shares, acting in a fairly coherent fashion. 

Conversely, emerging markets show more internal variation and thus demon- 

strate differing views of shareholders, who take different directions in dealing 

with crashes and unexpected events. 

6.2 Stock Market Degree of Development 

The results, from the prevlous section, indicate that stock markets behave differently, 

especially, at the time of crashes and other events, so that knowledge of market type 

IS important in making the right investment decision. In Section 3 5.3, we introduced 

and designed a new wavelet-based algorithm to classify stock markets based on their 

degree of development and we now look at applying this. 

6.2.1 Data Description 

For this investigation, we consider the daily returns of fourteen worldwide market 

indices, listed in Table (6.4) with their classification by the World Bank. 

1. Emerging. Argentina (MerVal), Czech Republic (PX50), Ireland (ISEQ 

Overall), Mexico (IPC), Portugal (PSI20), Russia (Moscow Times) and Sin- 

gapore (Straits Times). 

'see footnote 1, page 35 



2. Mature:  Australia (All Ordinaries), Canada (S&P/TSX Composite), Ger- 

many (DAX), Hong Kong (Hang Sang), Japan (Nikkei225), the UK 

(FTSE100) and the US (DJI). 

6.2.2 Results 

The algorithm of Section 3.5.3 is deslgned to measure the degree of development of 

the international markets, (based on thew daily return series for the period, January 

1993 t o  December 2004). In brief, the procedure a i m  to compare behaviour of 

fractional Gaussian nolse7 (fGn) generated values with that of the return serles 

of stock market indices It consists of the following steps. (i) The DWT wlth 

syrnmlet 8 wavelet (68) was applied to these return series to obtain the energy 

percentages described by each wavelet component. (ii) One hundred series of fGn 

with R = 0.3 were generated and DWT was applied t o  each of these generated 

series to compute the energy percentages. These were then averaged. (iii) The 

process was repeated for different values of Hc0.4, 0.5,0.6 and 0 7. The percentages 

for all the return series and for simulated fGn series with different values of H 

are glven in Table (6.5). (iv) The base-two logarithms of the energy percentages 

(logz (energy%)), explained by the detailed components ( d l  - d6)  [Table (6.5)], were 

calculated. In order to elaborate on the features illustrated in Figure  B.l in t h e  

Appendix,  we choose three diierent markets, namely Argentinean, Australian and 

UK, as examples, illustrated m Figure (6.11) (a, b and c), and aim t o  explain their 

behav~our 

'FG~, corresponding to difTere11t values of H (0.3, 0 4 ,  0 5,  0 6 and 0.7),  was s~mulated wing 
the S-plus function Sznzdate.FARIMA(0, d, 0) ,  where d = H - $ 

%The base-two logarithm was calculated because there iue 23 coefficients in tlie j" wavelet 
component, where 2 = 1,2, ..., 8 aud 8 is scale level 



Table 6.4: Class~cal and New Classfication of International Stock Markets. 

Market I Index Name I Time Period I No. Observation I Classical Classification a I Our Classification 1 

US 1 DJI 1 1993-2004 1 3024 I Mature I Mature 

Russia 
Singapore 
UIC 

"This 1s the World Bank classification, see footnote number 9, page 11 

Moscow Time 
Straits Times 
FTSEIOO 

1993-2004 
1993-2004 
1993-2004 

2460 
3016 
3031 

Emerglng 
Emerging 
Mature 

Emergil~g 
Intermediate 
Mature 



Table 6 5: Percentages of energy explained by wavelet crystals for the daily returns 
of index series. 

Whore, the auerages of the energy percentages muer 100 jorfGn senes am ghuen zn bold. 

Firstly, we need to understand the following key points: 

a Developzng and Developed markets demonstrate perszstent and antz-perszstent 

behaviour respectively (with correspondingly, H > 0.5 and H < 0.5). The 

expectation, therefore, is that stock market should move from perszstenee to  

anti-persistence side as it develops 

o Our new approach allows for variation in H, (designated Chapter 3, Sec- 

tion 3.2.1 as H(T,@)), but a market will fall on one side or another of the 

well-defined threshold of H = (Gaussian noise) when it is exhibiting clear 

persistent or anti-persistent behaviour. (Note that these are the values of 

H(T, 8), see Section 3.3, with T =length of senes (number of observations) and 

8 =number of trading days= 1). 



o The behaviour of the hnear fit of logarzthms of stock market returns is com- 

pared wlth that of the generated fractional Gaussian noise (fGn) series for 

different values of H. The straight line fit for the fGn log series versus the 

wavelet components ind~cate that the dl  doublet explains the largest percent- 

age of energy, d2 the next largest and so on. 

Comparing with the empirical data, we can see from Figure (6.11) (a, b and c) (and 

Figure B.l in the Appendix) that: 

1. The linear fit of the Argentinean market behaves similarly to fGn with 

H(T, 1) = 0.6 (perszstent), Indicating that it 1s essentially an emerglng mar- 

ket (Szmzlarly, this can be shown for the Czech, Irish, Mexican, Portuguese, 

Russian markets). 

2 The Austrahan market behaves l i e  to fGn with H - 0.5 (or Gausslan noise), 

meaning that thls market has graduated from the emerging group, but is not 

yet in the mature one (Szmzlarly, Canada, Hong Kong and Singapore). 

3. However, the UK market fit is close to that for fGn with H < 0.5 (anti- 

persistent), indicating that it is a mature market (and the same can be shown 

for the German, Japan and US markets). 

In agreement with other studles, it can be concluded that emerging and mature 

stock markets behave m a perszstent (or long memory) and anti-perszstent (or znter- 

medzate memory) manner respectively. However, our classifier indicated that there 

are other stock markets which lie outside these two groups and show short memory 

(or zndependent) behaviour. On this basis, we suggest that stock markets should be 

classified into three different classes or categories, reflecting common characteristic 

and implying that stock markets bi-classification is inadequate [Table (6.4)]. 
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Figure 6.11: Logarithm to base two of the energy percentages (logz(energy%)). 

6.2.3 Section Summary 

A novel wavelet-based algorithm has been applied to the return senes of fourteen 

stock market indices and the results show that stock market characterisation be- 

haviour (perszstent, antz-persistent or short-term) may be determined according to 

the Hurst exponent associated with its degree of development. This degree of devel- 

opment may be rooted in a number of factors, e.g. market size, liquidity, volatility, 

global integration, etc. The approach of using fGn and DWT, in particular, allows 

us to explore the overall behaviour of these markets; Summarising the findmgs of 

this preliminary study, it appears therefore that wavelet-based approaches, in regard 

to stock market evolution/re-classification, also offers considerable potential. The 



implications of our method and the analysis performed are that stock markets can 

be grouped into three  categories designated here as emerging, zntennedzate (or 

young mature) and mature (or filly mature) markets. The properties associated 

with this new classification need to be examined in further detail, but it does seem 

clear that  class 2 is a particularly interesting one due to  the possibility of being 

a new "attractive" stock market type. These markets seem to behave as Gaus- 

sian noise (or a pure random walk) indicating that they are less risky on average 

than emerging markets but also provide more returns than mature ones. Finally, 

in relation to  grouping of the stocks themselves, in term of the market composition 

(Coelho et al. (2006)', for example, found that the new clustering, introduced in 

January 2006, of stocks from the FTSElOO index is more rational than the old one 

because the stocks from the same group (or sector) are now more connected than 

those from the old one). This requirement to reclassify is due to rapid changes in 

individual stocks' behaviour. 

6.3 Stock Market Behaviour for Different Time Inter- 

vals with Different Volatility Levels 

Our previous results show that stock markets show different memory types (persis- 

tent, anti-persistent or short-term dependent) for different time intervals and scale 

levels (number of trading days) They deal differently with major events, with some 

responding faster than others to these events and taking a shorter time to recover 

Previous results (Chapter 5) also show that there strong evidences exists for co- 

movements between stock markets, where these are influenced by both local and 

global information or news (good or bad), causing different levels of volatility (or 

variable risk). Our goal in this sectlon is thus to study the nature of perszstence in 

different stock market types over different time periods with variable volatility levels 

Om press 



and also to  examme szmzlarity (or dzsszmzlarity) between these markets. In order to 

do this, we apply our new wavelet-based algorithm, for disjointedi0 windows of size 

two years from 1993 to 2004, (described in Sectlon 3 5.3), to three different market 

types, namely Irish (ISEQ Overall), Hong Kong (Hang Seng) and UK (FTSE100) 

market as representatives of the emerging, zntennedzate and matare groups respec- 

tively. The results of thls study are plotted in Figures (6.12, 6.13 and 6.14). 

6.3.1 Results 

Rom Flgnre (6.12), it can be seen that the Irish market (ISEQ Overall) shows 

perslstent behaviour (with H -- 0.6) in the period between 1993 and 1994, whlle in 

the next two years (1995-1996), it develops gradually exhibiting behaviour similar 

to fGn with H = 0.5 However, between 1997 and 1998, the market exhibits longer 

memory, wlth EI > 0.6, (most probably due to the impact of Asian Crash in 1997 

follow~ng by Global Crash in 1998) After decreasing the infiuence of these crashes, 

this market behaves as an intermediate market (H = 0.5 short-term memory) 

between 1999 and 2000. In the period 2001-2002, the Irish market exhibits long- 

range dependency, with H =- 0.6, due to the influence from US market durmg the 

9/11 crash in 2001. It also shows persistent behaviour (0.5 i H < 0.6) between 

2003 and 2004 but to a lesser extent, meaning that this market continues to evolve 

but has long memory features. 

The results for Hong Kong Market (Hang Seng) are given in Figure (6.13) which 

shows that this market shifts from being intermediate (H - 0.5) from 1993 to  1994 

to mature (H < 0.5) between 1995 and 1996. From 1997 to 1998, the market would 

be expected to dlsplay persistent behaviour to a number of crashes that happened 

m the region and in the market itself. However, it shows antz-perszstence as we see 

from Figure (6.13) (c). In fact, what we see is an artificial Indication caused by some 

investors, particularly Hedge fund mangers, who took short (selling) positions to 

' ' ~ h s  means that, w~ndows are separated at the joints. 



attempt to drive the currency down, forcing the Hong Kong government to increase 

interest rates, [see Sornette (2002)l. In the periods 1999-2000 and 2001-2002, the 

Hong Kong market then d~splayed persistent (or long memory) behaviour, with 

0.5 < H < 0.6, due to influences from US market during the Dot-Corn crisis in 

2000 and the 9/11 crash in 2001. Between 2003 and 2004, it again behaved as an 

intermediate market (H = 0.5) and this is in general its overall behavior, (as we 

have seen in Flgure (6.11) (g)). 

Figure (6.14) gives the results for UK market and shows that the UK market 

exhibits consistent anti-persistent behavlour wlth different degree of long memory 

in all periods, except between 1997 and 1998 where it shows short-term memory 

(H = 0 5), (due to  the effects of the Asian Crash in 1997 followed by the Global 

Crash in 1998 as we have seen in Section 5.3.1, there is influence from Asia on 

Europe). 

6.3.2 Section Summary 

We applied our new wavelet-based algorithm to three different market types, namely, 

Iriih (emerging), Hong Kong (intermediate) and UK (mature), to  study the memory 

type exhibited by a stock market over time, broken down into crude two years 

intervals" with variable volatility levels. The results ~ndicate that stock markets 

show persstent, antl-persistent or independent behaviour depending on market type 

and absence or presence of crashes in the period analysed This approach clearly 

gives another evidence of multifractalty that i exhibited by stock market returns, 

in agreement with our earlier findings, Section 4.2. 

I'The reason for breaklug down the serles into two year intervals 1s that we want to get as short 
a period as possible; two years is short but stlU reasonable in term of number of series polnts 
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Figure 6.12: Behaviour of Irish market (ISEQ Overall index) over different (two 
year) time periods with different volatility levels. 
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Figure 6.14: Behaviour of UK market (FTSE100 mdex) over different (two year) 
time periods with different volatility levels 



CONCLUSIONS AND FUTURE WORK 

7.1 Goals of this Thesis 

The main goals of this thesis have been to investigate (i) internal effects of markets, 

(the nature of persistence in different tlme frames), (ii) external influences (global co- 

movement) between international stock markets, and (iil) reactions of these markets 

to major events We also examined the conventional classification of Emerging versus 

Mature in the light of modern market influences and global membership. This, in 

particular, in the light of advancing technology and rapid communicat~ons. 

Techniques used to  date have predominantly focused on novel development to 

exploit the strength of the discrete wavelet transform in terms of frequency (or 

energy) decomposition and a novel extension of Detrended Fluctuation Analysis 

(DFA) Frequency decomposition is important because wavelet patterns for long- 

term and short-term signal repeats can be obsenred in high amplitude peaks and 

importantly, can be anticipated for some classes of major events (e.g crashes). 

A market crash, which is a sudden dramatic loss of value of shares, could occur 

in any market causlng the evaporation of trillions of dollars and bankruptcy for some 

companies. This is especially true for unexpected crashes, e.g. September llth in 

2001. Crashes, as we have seen, are driven not just by panic but also by underlying 

stock market factors, such as autocorrelation, co-movement and individual market 



characteristics, such as, degree of development. The effects of such shocks now 

spread rapidly and globally, due to commun~cation advances. 

This work attempts to  provlde new ways of analysing and visualiiing informa- 

t ~ o n  on characteristics of international stock markets through Investigations which 

include 

1. An initial long-term memory study: the Irsh market is taken as an example, 

and results from the DWT are compared wlth other tests, (namely Rescaled 

Range (R/S), its modlfied form, and GPH) 

2 Exploration of the multifractal property of stock market returns by introducing 

and applying a new tzrne-scale edenszon of Detrended Fluctuatzon Analysts 

(TSDFA) to compute the Hurst exponent (H) in different time periods and 

scale levels (trading days). 

3. Analysis of co-movements among different mternatioual stock markets in Asia, 

Europe and Americas by application of the wauelet-based approach suggested 

by Lee (2002) 

4. Examining how stock markets (emerging us. mature) deal with different 

crashes and events and how long they take to recover. This by mvestigat- 

ing the behaviour of the elgenvalues (Xi's) of the covariance matrlces of return 

series for emerging and mature markets at times of crisis Also by studying 

the distribution of the ratio of the first three largest (X,/Xz, Xl /X3  and Xz/X3) 

of these matrices of the original return serles and studying the (noise-free) 

behaviour of the ratio (X1/X2) for return series that  have been rebuilt from 

wavelet components for emerging and mature markets separately. 

5. Searching for a new meaningful classiticatlon of stock markets based on thelr 

degree of development, given the inadequacy of the existlug bi-classification, 

(World Bank). 



7.2 Summary and Conclusions 

We summarise a number of useful findings related to  this work as follows: 

1. The discrete wavelet transform (DWT) has the additional advantage of pro- 

viding an in-depth view of the data sets and this gives us a real indication 

of structure in long memory effects hence enabhng the formulation of a clear 

picture of the movements in the series. 

2. The DWT is a strong method for investigation of long memory because it 

~s able to distinguish clearly between memory types (short-term, long-term 

memory or mlxed) and it 1s not affected by the length of the tlme serles. 

3. The DWT alone or with other methods enables examination of the response 

of financial time series at different resolutions, where these series are well- 

known to be non-stationary, non-normal and noisy and intractable to standard 

methods 

4 Overall, there is a strong evidence of long-term memory in volatility measures 

(Absolute and Squared) but not in returns themselves. Also absolute returns 

exhibit longer memory than squared returns (in agrement with Ding et al. 

(1993), Lee et al. (2000), Elekdag (2001) and Sibbertsen (2002)) However, the 

results of applying TSDFA show that return series, exhibits dlffereut memory 

types (short- and long-term), depending on different time periods and scale 

levels (indicating multifractal behavzour of these series) 

5. International co-movements of stock markets and corresponding volatility (or 

risk) have increased since the middle of 20th century, with strong evidences 

for inter-continental as well as intra-continental price co-movements. There is 

also evidence of cloclnutse transmissions between worldwide markets. 

6 The second largest eigenvalue (Xz) of the covariance matrix (in addition to  the 

largest eigenvalue (XI)) holds information on the behaviour of stock market 



returns, espeezally with wspect to emerging markets in times of c~Gis. Emerg- 

ing and mature markets deal differently with crashes and events (especially 

unexpected ones), e.g. emerging markets may take up to two months longer 

to  recover from a crlsis while major markets take less than a month t o  do so 

[This is in agreement with the findings of Patel and Sarker (1998) and Fuss 

(2002)l. 

7. The new wavelet-based classifier of stock markets, which we have developed, 

offers considerable potential and indicates that stock markets can be grouped 

into t h r ee  categories designated here as emergzng, zntemedzate (or young 

mature) and mature (or very mature), supporting the contention that bi- 

classification of stock markets is no longer sufficient. 

8 The efficient market hypotheslsi (EMH) Peters (1996) has attracted a lot 

of attention and, to some extent, results presented here can be said to raise 

questions about its universality In effect, what we haveshown 1s that disparate 

behaviour can exist in diierent market types, so that the EMH is essentially 

a classical or "mean-field" limiting behaviour. 

7.3 Future Work 

Research on stock market volatility is central for regulation of financial organlsa- 

tions and risk management. There would be huge scope for a model describing 

the structure of dependence in the time-varying conditional variance of available 

observations across several series. This would apply to complex temporal systems 

across many fields, such as finance, t r d c  networks, biomedical, etc. Researchers 

'It asserts that financial markets are "effic~end", or that prices on traded assets. e.g. stocks, 
bonds, or property, already ~eflect all known information and therefole ase unbiased m the sense 
that they rdect the collective beliefs of all investors about future prospects The EMH implies that 
it is not posable to colls~stently outpmform the muket, appropriately adjusted for risk, by uslng 
any mdorrnatlon that the market already knows, except through luck or obtaintug and trading on 
inside information. 



have applied various models to  analyse time series and make predictions for future 

behaviour. However, these models are predominantly based on the prlmary assump- 

tion of stationarity and require transformation of non-stationary and noisy data, (a 

consequence of combined local and global effects). 

As one of most proming applications of wavelet analysis is in the field of pre- 

diction, (1.e to forecast an unknown signal from noisy data), the importance of 

wavelet-based approaches for time series filtering and forecasting has increased in 

recent years Several authors report that wavelet transforms can be used effectively 

for noise-filtering and improving the prediction quality in financial time series [e g. 

Zheng et  al. (1999) and Renaud et al. (2005)]. However, different wavelet transforms 

and models have been used for prediction and there is no single favourable model 

as yet identified. 

Therefore, further invwtigation is required in order to find these improved models 

and t o  develop more efficient techniques to  clean or de-noise financial time series 

with a view to significant improvements in forecasting capability. 



The key notations in Table A.1 a r e  given as follows: 

0 P-values of t-tests are given in parentheses. 

o MIRL, M U K ,  M P ,  Mu', MBR,  M J P  and &IHK are indicators of Irish, UK, 

Portuguese, US, Brazilian, Japanese and the Hang Kong market indices re- 

spectively. 

o Return is an indicator of the raw daily returns senes. 

e Return.Dl is an indicator of the returns series reconstructed by using the first 

wavelet crystal. 

e Return.Dl.2 IS an indicator of the returns series reconstructed by using the 

first and the second wavelet crystals together. 



Table A.1: Regression Analyses between the dally returns of each pair of the seven 
stock market lndlces 

1. Ireland vs UK 

3 Ireland vs US 

4 Ireland vs. Bra211 

98 



5 Ireland vs. Japan 

6. Ireland vs. Hong I<ong 

7. UI i  v,5 Portugal 

8. UK vs. US 



9 UIC vs. Brazil 

I (0 870) ( (0.250) 1 1 (0.707) I (0.000) 1 
10 UI< vs. Japan 

MtBR on M+"K 
Regression* 

" - I \ / I + " ~  on ~ + _ i ~ ~  

Seriesl 
Return 

Return Dl 

Return.Dl.2 

- -. 0- 
-- 

Seriesl 
Return 

12: Portugal vs. US 

Constant 
-3.383-05 
(0.870) 
-1.12E04 
(0.457) 
-4 763.05 

Return.Dl 

Return.Dl.2 

il.ltUK on MtJP 
Constant ( Slope 1 R' 
1.223-04 1 0.178 1 0.068 

Slope 
3.713-02 
(0.000) 
-1 533-02 
(0.057) 
-1.383-02 

MtJP on ~ t - 1 " ~  

Constant I Slope I RZ 
-3 723-04 1 0 292 ( 0.039 

11. UI< vs Hong ICong 

(0.548) 
-1 193-04 
(0 423) 
-5 033-05 
(0.860) 

R2 
0.011 

0.001 

0.000 

(0.000) 
0 113 
(0.000) 
0.124 
(0.000) 

Constant 
2.423-03 
(0.000) 
3 493-05 
(0 931) 
-1.863-04 

0.030 

0.037 

Slope 
0 659 
(0.000) 
0.503 
(0.000) 
0.265 

(0 214) 
5.733-05 
(0 805) 
2.423-05 
(0 957) 

RZ 
0.054 

0.034 

0.023 

(0.000) 
9.203-02 
(0.003) 
0.119 
(0.018) 

0.003 

0.002 



13: Portugal vs. Brazll 

15 Portugal vs. Hong Iiong 

16 US vs. Brazil 



17. US vs. Japan 

18: US vs. Hong Kong 

19: Brazil vs. Japan 

20: Brazil vs. Hong Kong 





Figure B.l  Logarithm to base two of the energy percentages (logz(energy%)) 
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Abstract In this papel, we investigate the price sp~llover effects among two 
developed makets, (the US and the UK ), and two developing markets, (Irish 
and Portuguese), using a new test~ng method suggest,ed by Lee (2002). We 
find that there are mterrelationships between any two of the Ir~sh, the UK 
and Portuguese markets and that the co-movements between the emelgmg 
maxkets and the US are statistically sign~fi~~ant but weak We also found that 
the US market is slightly Influenced by the UK but not vzce versa. 

1 Introduction 

The relationsh~ps between u~teinational stock markets have been invest~gated 
in several articles, especially after "Black Monday", (October 1987). These 
studies indicated that co-n~ovenlents among stock markets have increased the 
possibilit~es for national markets to be influenced by the changes in intema- 
tlonal ones (1121, [9], 161, [7] and [13]). 

The advantage oi global portfolio dive~slfication has been noted in the 
finance Literature for some t~me .  Several stud~es ([ll], [14] and [2]) showed 
that it IS useful to spread content internationally, ratha than locally, as 
stocks in different markets are less correlated than those wlthin t,he same 
market. Tang [l6] ~nvestigated, for instance, Aaan emerging and mature 
markets and reported that an increase in the correlation between world~mde 
stock markets may cause the reduction of some or all of the d~versificatlon 
benefits and this means that d~vcrsification benefits depend upon the degree 
of the relat~onships among different stock markets. Tang [l'i] found that the 
intertenlporal stabihty of the cor~elat~on niatnx IS xmportant in examining 
the ex-ante diversificat~oil benefits and stock market co-movements The 
potential diversfication effects have decleased and become less important due 
to increase in the mternatlonal co-movement among stock markets, especially 
since the mid 1990's ([I51 and [lfi]). 

More recently, Lee 1101 developed a new testing technique based on the 
wavelet transform, m older to study the international transmission effects be- 
tween three developed markets (the US, Germany and Japan) and two emerg- 
ing markets in the MENA r q o n ,  namely Egypt and Turkey. He documented 
that innovation froni t,he major markets affected the emerging markets but 
the tha,t opposite was not true 

In a,ddit,ion, Bessler and Yang [3] employed an Errol Correction Model 
and Directed Acyclic Graphs (DAG) to study the co-integ~ation among nine 
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major markets namely Japan, the US, the UK, Fkance, Switzerland, Hong 
Kovg, Germany, Canada and Australia. Their results showed that changes 
in the UK, Switzerland, Hong Kong, France and Germany influenced the 
US market, while the US market is affected by its own innovation as well. 
Moreover, Brooks and Negro [4] studied the relationship between market co- 
integlation and the degree to wllich companies operate int,ernationally. They 
considered three factors, (global, count,ry-specific and iudnstry-specific), and 
found that the importance of the international factor has increased since the 
1980s while that of the country-spec~fic factor has decreased. 

Furthermore, \liotlgswan [lil] found strong evidence of ~nternational trans- 
mission from the US and Japanese markets lo Korean and Thai markets 
during the late 1990's Most recently, Antoniou et a1 [I] applied a VAR- 
EGARCH niodel to study the relat~onships among three EU markets nan~ely 
Germany, France and the UK and thei~ results showed evidence of co-inte 
gration among those countries. 

Our goal in this a~ticle 1s to study whether or not there is evidence of 
co-mntegration between four stock markets (Ir~sh, Portugueseas developing 
and the UIC and the US-as mature). To exarrune th~s, we applied a testing 
method, (based on the wavelet transform), suggested by Lee [lo]. 

The remainder of this paper is organized a9 follows III Section 2, a brief 
descr~ption of the testing method is given The data and empirical results 
are described iu Section 3 and our conclusion IS presei~ted In the final section. 

2 Brief description of the testing method 

With the increase in media coverage of world events and a correspondmg 
increase in access by the wider pubhc to this coverge, global transmissions 
of information can be expected to be conlpleted within a sllort perlad of 
time. The wavelet analysis and, m part~cular, the d~scret,e wavelet transform 
(DWT), is very nseful (for more detail see 151) In splitting data series into 
diEerent frequency wavelet crystals and high-frequency components whlch 
explain the short-te~m movements in the serles . A new testing method 
based on wavelet analysis was developed by Lee 1101 and it can be described 
as follows: 

a Reconstiuct the returns series using the Erst and the second high- 
frequency wavelet crystak (dl & d2) separately. 

o Estimn,te the simple regression and revem regression models between 
ewb two usmg three different scales. 

- The row daily returns 

- The returns series ~ebullt form d l .  

- The returns series rebuilt form dl plus that rebmlt fmm dz 

o T a t  the slgnlficani of regression coefficient (slope) and R2. 
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3 Data and empirical results 

The data used in the following analysis consists of the daily prices of stock 
market ~ndices fox two emerging markets, namely Portuguese and I r ~ h  and 
two major markets, (the US and the UK), durlng the period from Jan- 
uary let, 1993 to Sept,ember 3oth, 2003 We cons~dered t,he ind~ces ISEQ 
Overall, PSI20, FTSE All Share and S&P500 to be representatwe of the 
Irish, Portuguese, UK and US niakets respectively. 

As these makets use their local curtencles for presenting tlie values of 
then indices, so we use the daly returns instead of using the daily prices, 
where the former equal the natural logarithm of the ratio between the closmg 
price of iudex at t ~ m e  t and that at tune t - 1 Some daily observations have 
been deleted because the markets we studled have different hohdays and 
closing tradlng days, (as has been done by e.g. [lo]). 

Note.** denotes stat~stically slgmficant at 1% level 

Table 1. Descript~ve statistics of the dally returns of the stoclt markets indices 
serles 

Table 1 represents the descriptive statistics of the st.ock mi~rltet indices 
and shows that tlie sample means of all lndlces are positive. We test whether 
or not the sltewness and kurtosis of all these series are differeut from zero. 
The ~esults show that the returns serles of ISEQ and PSI20 indices have 
significant negative skewness, hut those of FTSE and S&P500 are not s~gnif- 
icantly diflerent from zero. The returns of all ~ndices are leptolturt~c and the 
results of a normal test (Jarque-Bera) also show that all returns senes can 
not be regarded as uormally distnbuted 

Fkom Table 2, It can be seen that hlgh-frequency components have more 
ene ra  than low-frequeucy ones and this imphes that thc movements iu all 
~ndex rettu.ns a e  caused by the shalt-term fluctnations. It also implies that 
the fils1 "dl" and the the second "dz" component,s of the wavelet trausform 
account for more than 60% of t,he enelgy T h ~ s  mdicates that there are no 
long memory effects in tlie returns serles of these ind~ces 

In order to study the ceinovements among those nia~kets, firstly, we built 
simple ~epession models between each of the two European markets on the 
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Table 2: Pelcentages of energy by wavelet crystak for the daily returns of 
indices series. 

same tradmg day and s~milarly for each European market on the US market 
of the prevzous trading day Secondly, we built a simple regression model of 
the US market on each European rnaket on the same trading day and these 
models are est~mated using the three d~ffereut scales mentioned in Sect~on 2. 
The results are glven in Tables 3(A) to 3(F) for each case and clearly show 
that there are s~gmficant levels of inter-correlation between the Insh and UK 
markets and also between the Irish and Portuguese. However, the relationship 
between the Irish and US markets IS weak. Ekom Table 3 (D), (E) and (F), 
we can see that there 1s s~gnificant cwmovement betweell Portuguese and UK 
markets and there are spillover effects from both Portuguese and UK markets 
on the US market but uot vzce versa. 

A ISEQ Overall and FTSE 

B ISEQ Overall and S6LP500 

Regression- 

Scales1 I Constant [ Slope I R2 I Constant I Slope I R1 
Return 1 4.403-04 1 0592 1 0.322 1 -1.583-04 1 0.544 1 0 322 

MtlRL on Mt"Jc M * " ~  on M ~ ' ~ ~  



Interdependence between emerging and major n~arkets  ' 1787 

C ISEQ Overall and PSI20 

D: PSI20 and FTSE 

E PSI20 and S&P500 

F: FTSE and S&P SO0 
P-values of t-tests ale given m palentheses . \mere subscript refers to the day in question and the superscript indrcates 
thc marhc~ (rg. IRL. P air': thc Irdsl, artd Portuguno nlarkela rq,t?uti\~clp) 
Jl.~:tirrn.Dl 1s an indicu~or of t l l r  reulrns sales, rw<)nulructt~l llsllln I L R  f i r t  . 
wavelet crystal ( d l ) .  
Return.Dl.2 is an indicator of the returns series, reconstructed using t h e  first 
and the second wavelet crystals (d l  & d2) 

Table 3: Regression Analysls between each pair of four stock markets using 
three different scales 
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other markets 

Table 4: The Percentages of error variance of the market in the first column 
explamed by innovation in the market in the first row. 

To compare our results wilh one of the common methods, we estimated 
the vector autoreglessive (VAR) model of order 10 of the daily returns of 
these markets The percentages of the decomposition of 5-day, 10-day and 
15-day ahead forecasts of the returns series have been measured1 At 15 days 
ahead, for example, the results, given in Table 4, show that the most of the 
variance in these markets is explaned by their own innovations and that 
the UK is t,he most mfluentlal market while the Irish is t,he most influeuced 
market,. The UI< exl~lans 26.30, 18.83 and 20.45 percent for Irish, Portuguese 
and the US respect~vely and the US explains 12 17, 3 82 and 10.88 percent 
of the variance of Irish, Portugucse and the UK respectively. We also found 
that the forecast error variance is very sensitive to the order of variables for 
orthogonalizat~on and to the stability of these serles and this suggests that 
the new technique, based on wavelet analysis, is more rehable than the VAR 
method 

4 Conclusion 

Our objective in thls paper has been to study the international transmission 
between four markets namely the Irish, Portuguese, UK and US. A new 
testing method suggested by Lee [lo] has been applied to do so. Our results 
show that there are significant inter-correlations between each pair of Irish, 
Portuguese and UK markets separately. In addition, the indications we t,hat 
the US has insign~ficant spillover effects from or on to the other markets We 
can say that t,he emerglng markets have significant spillover e5ects on each 
ot,her but there 1s no c+integration bet,ween the major  market,^. 

ITho  orthagonallzat~ion is orde~ed as the UK, Portugoese, the US and Irish 
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Wavelet analysis 

The Wavelct Transfo~m (WT) has been explained in some detail, (particu- 
larly in 151 and [lo]) and the followiug offers a br~ef exl>lauat~on only The 
WT has two types of wavelets called father a i d  niother wavelets, + aud 1/, re- 
spectively, where J $(t)dt = I and JIJ,(t)dt = 0 Tliae can be computed 
using the following equations 

The orthogonal wavelet serles approxrmation to a given signal f (t) is 
defined by 

where J is the number of multiresoli~t~ion levels, (or crystals), and k ranges 
from 1 to the numbel of coeffic~ents in the specified components (or levels). 
The coefficient S J , ~ ,  dJ ,k ,  . ., dl,k are the wavelet transform coeficlents gven 
by 

The discrete wavelet transform (DWT) computes the coefficient of the 
wavelet se~ies approximation in Eqnation(3) for a discrete signal f l ,  . . . , .Fn 
of h ~ t e  extent The DWT maps the vector f = (fl, f i , .  . . , f,)' to  a vector 
of n wavelet coeffic~ents w = (wl, wz, . , w,)' wh~ch contains the "smootl~" 
coeffiaent S J , ~ .  and "detail" coeffic~ents dj,r [j = 1,2,. . , J ]  The s ~ , k  de- 
scribes the uiiderlying smooth behaviour of the signal at coarsescale 2J whlle 
(IJ,k desclibes t,he coaxsescale deviations from the smooth behav~our and the 

. . , di,k provlde progiess~vely finer-scale deviations from the smooth 
behaviour 
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In this paper, we investigate the price interdependence between seven international stock 
markets, namely Irish, UK, Portuguese, US, Brazilian, Japanese and Hong Kong, using 
a new testing method, based on the wavelet transform to reconstruct the data series, as 
suggested by Lee [Ill. We find evidence of intra-European (Irish, UK and Portuguese) 
market cwmovements with the US market also weakly influencing the Irish market. We 
also find co-movement between the US and Brazilian markets and similar intraAsian c o  
movements (Japanese and Hong Kong). Finally, we conclude that the circle of Impact is 
that of the European mmkets (Irish, UK and Portuguese) on both American markets (US 
and Brazilian), with these in turn impacting on the Asian markets (Japanese and Hong 
Kong) which in turn influence the European markets. In summary, we find evidence for 
intra-continental relationships and an increase in importance of international spillover 
effects since the mid 1990s, while the importance of historical transmissions has decreased 
since the beginning of this century. 

Keywords: Simple regression; volatility; wavelet analysis. 

1. Introduction 

The relationships between international stock markets have been investigated in 
several articles, especially after "Black Monday" (October 1987). These studies 
indicated that co-movements among stock markets have increased the possibilities 
for national markets to be influenced by changes in foreign ones. For example, 
Eun and Shim [7] investigated the relationships among nine major stock markets 
(Australia, Canada, France, Germany, Hong Kong, Japan, Switzerland, the UK 
and the US) using the Vector Autoregressive (VAR) model and reported that news 
beginning in the US market has the most influence on the other markets. Lin et al. 
[12] studied the interdependence between the returns and volatility of Japan and 
the US market indices using daytime and overGght returns. The results indicated 
that daytime returns in each market (US or Japan) are linked with the overnight 
returns in the other. 
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In addition, Kim and Rogers [lo] used GARCH1 to study the co-movements 
between the stock markets of Korea, Japan, and the US and their result indicated 
that the spillovers from Japan and the US have increased since the Korean market 
became open for outsiders to own shares. Further, Booths et al. [3] reported that 
there are significant spillover effects among Scandinavian stock markets (Danish, 
Norwegian, Swedish and Finnish) applying EGARCH.~ Additionally, CVM3 [6] 
investigated the link between the Asian and Brazilian markets as representative of 
the Latin American region during 1997. They found that the spillover effect started 
on July 15 with the Thailand currency crisis. However, this spillover was not clearly 
observed until after October 23 (the Hong Kong crash). In a recent study, Ng [13] 
found significant spillover effects from Japan and the US stock market on six Pacific- 
Basin markets, namely those of Hong Kong, Korea, Malaysia, Singapore, Taiwan 
and Thailand. In order to study international transmission effects of this type, a 
new testing technique based on the wavelet transform, was developed by Lee [ll] 
and applied to three developed markets (US, Germany and Japan) and two emerg- 
ing markets in the MENA~ region, namely Egypt and Turkey. The author reported 
that movements from the developed markets affected the developing markets but 
not vice versa. 

In addition, Bessler and Yang [Z] employed an error correlation model and 
Directed Acyclic Graphs (DAG) to investigate the interdependence among nine 
mature markets, namely Japan, US, UK, France, Switzerland, Hong Kong, 
Germany, Canada and Australia. Their results showed that both changes in 
European and Hong Kong markets influenced the US market, while this was also 
affected by internal events. Moreover, Brook and Negro [4] studied the relationship 
between market co-integration and the degree to which companies operate inter- 
nationally. They considered three factors (global, country-specific and industry- 
specific) and found that the importance of the international factor has increased 
since the 1980s while that of the country-specific factor has decreased on all markets. 

Strong evidence of international transmission from the US and Japanese markets 
to Korean and Thai markets during the late 1990s was presented by Wongswan [14], 
while most recently, Antoniou et al. [I] applied a VAR-EGARCH model to study 
the relationships among three EU markets namely Germany, kance and the UK 
and the results showed some evidence of co-integration among those countries. 

Our goal in this article is to study the evidence of global co-movements among 
seven stock markets, three in Europe (namely Irish, UK, and Portuguese), two in 
the Americas (namely US, and Brazilian) and two in Asia (namely Japanese and 
Hong Kong). In particular, we are interested in whether co-movements are direct 
(clockwise only) or indirect, impacting of nearest-neighbor (continental grouping) 

'Generalized Autoregressive Conditionally Heteroskedastic. 
2Exponential Generalized Autoregressive Conditionally Heteroscedastic. 
3CVM is the Securities and Exchange Commission of Brazil. 
4MENA stands for the Middle East and North Africa. 
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and whether there is global absorption of major events or large changes in worldwide 
markets. 

The remainder of this paper is organized as follows. The method due to Lee [ll] 
and based on the wavelet transform is described in Sec. 2, with data and results 
presented in Sec. 3. Conclusions and remarks form the final section. 

2. Wavelet Analysis 

The wavelet transform was introduced to solve problems associated with the Fourier 
transform, when dealing with non-stationary signals, or when dealing with signals 
which are localized in time or space as well as frequency. The Wavelet Transform 
(WT) has been explained in more detail, particularly in [5 ,  8, 9, 111, and we give a 
brief outline only in the following. 

2.1 .  Definition of wavelet transform 

The wavelet transform (WT) is a mathematical tool that can be applied to many 
applications such as image analysis, and signal processing. In particular, the discrete 
wavelet transform (DWT) is useful in dividing the data series into components of 
different frequency, so that each component can be studied separately to investigate 
the data series in depth. The wavelets have two types, father wavelets qi and mother 
wavelets + where 

I m(t)dt = 1 and +(t)dt = 0. / 
The smooth and low-frequency parts of a signal are described by using the father 
wavelets, while the detail and high-frequency components are described by the 
mother wavelets. The orthogonal wavelet families have four different types which 
are typically applied in practical analysis, namely, the haar, daublets, symmlets and 
cozflets. 

The following is a brief synopsis of their features: 

e The haar has compact support and is symmetric but, unlike the others, is not 
continuous. 

e The daublets are continuous orthogonal wavelets with compact support. 
o The symmlets have compact support and were built to  be as nearly symmetric 

as possible. 
The coiflets were built to be nearly symmetric. 

A two-scale dilation equation used to calculate the wavelets, father 4(t) and 
mother +(t), is defined respectively by 
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where ek and lik are the low-pass and high-pass coefficients given by 

The orthogonal wavelet series approximation to a signal f (t) is defined by 

where J is the number of multiresolution levels (or scales) and k ranges from 1 to 
the number of coefficients in the specified components (or crystals). The coefficient 
S J , ~ ,  dJ , k , .  . . , d l , k  are the wavelet transform coefficients given by 

Their magnitude gives a measure of the contribution of the corresponding wavelet 
function to the signal. The functions 4 ~ , k ( t )  and +j,,(t) [ j  = 1 , 2 ,  . . . , J ]  are the 
approximating wavelet functions generated from 4 and $J through scaling and trans- 
lation as follows 

2.2. The discmte wavelet transform (DWT) 

The discrete wavelet transform is used to compute the coefficient of the wavelet 
series approximation in Eq. (2.5) for a discrete signal fi,.  . . , f, of finite extent. 
The DWT maps the vector f = (fl, fz, . . . , fn)' to a vector of n wavelet coefficients 
w = (wl, wz, . . . , w,)' which contains both the smoothcoefficient s j , k  and the detail 
coefficients d,,k [ j  = 1 , 2 , .  . . , J] .  The s ~ , k  describe the underlying smooth behavior 
of the signal at coarse scale 2 J  while dJ,k describe the coarse scale deviations from 
the smooth behavior and dJ- l , k , .  . . , dl,k provide progressively finer scale deviations 
from the smooth behavior. 

In the case when n divisible by 2 J ;  there are n/2 observations in d l , k  at the 
finest scale 2 l  = 2  and n/4 observations in d2,k at the second finest scale 22 = 4. 
Likewise, there are n / 2 J  observations in each of dJ,k and S J , ~  where 
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3. Data and Results 

3.1. Data description 

The data used in the following analysis consists of the daily prices of stock mar- 
ket indices for seven markets, [Irish (IRL), UK, Portuguese (P), US, Brazilian 
(BR), Japanese (JP) and Hong Kong (HK)], during the period from May 1993 to 
September 2003. We considered the indices ISEQ Overall (IRL), FTSE 
All Share (UK), PSI20 (P), S&P500 (US), Bovespa (BR), Nikkei 225 (JP) and 
Hang Seng (HK) to be representative of these markets. 

As each market uses its local currency for presenting the index values, we use the 
daily returns instead of using the daily prices where the following formula applies: 

Daily Return = Ln(Pt/Pt-l), 

where 

a Pt is the closing price of the index at time t. 
e Pt-1 is the closing price at  time t - 1. 

Note: 

1. We use close-to-close returns here because the closing daily price summarizes 
the local and global changes and influences occurrences within the trading day 
which strongly affect the market. 

2. Some daily observations have been deleted because the markets we studied have 
different holidays. In other words, if one market closed on a given day, we consider 
the others to close on the same day as well. 

Table 1 represents the trading hours of each of these markets in GMT and 
shows that the Japanese together with the Hong Kong markets open first. The 
Japanese market closes two hours before the European (i.e., Irish, UK and 
Portuguese) markets open at  8:00 am, while Hong Kong closes 45 minutes after 
the European opening. The last to open are American (US and Brazilian), two 
hours prior to European markets closure. This implies that the starting point for 
market opening and closing trading hours is Asia, followed by Europe, then America. 

Table 1. Trading hours for each markets in GMT. 

Continental 1 Markets 1 Open Close 

Asia Japanese 0:00 am 6:00 am 
Hong Kong 1:45 am 8:45 am 

Europe UK 8:00 am 4.30 pm 
Irish 7 50 am 4:30 pm 
Portuguese 8:00 am 4:30 pm 

Amerlca US 2:30 pm 9:15 pm 
Brazilian 200 pm 8.45 pm 
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The statistical summaries of the daily returns of all stock market indices are 
reported in Table 2 which shows that the sample means of the returns of all indices 
are positive except for those of Nikkei 225 and HSI indices. We test whether or not 
the skewness and kurtosis of all these series are different from zero and the results 
show that the returns series of ISEQ, PSI20 and FTSE indices are.significantly 
negatively skewed. Both Bovespa and HSI indices have significant positive skewness, 
while S&P500 and Nikkei225 are not significantly different from zero in this sense. 
However, the returns series of all indices are leptokurtic and this means that the 
daily returns of all indices can not be regarded as normally distributed. 

Figures l(a)-l(e) represent the daily prices of ISEQ Overall, FTSE all shares, 
PSI20, S&P500 and Bovespa indices respectively. It can be seen that the prices of 
these indices increased in the first third of the series (1993 to 1996) corresponding to 
a long-term period of growth. After that, the indices became unstable due to global 

Table 2. Descriptive statistics of the daily returns of the stock markets indices series. 

Index- 
Measure1 

Mean 
Std.Dev 
Min 
Max 
Skewness 
Kurtosis 

ISEQ 

0.0004 
0.0102 

-0.0757 
0.0483 

-0.549** 
4.465** 

FTSE 

0.0003 
0 0109 

-0.071 
0.0694 

-0.355** 
5.061** 

Bovespa HSI 

-0.0001 
0.0179 

-0.147 
0.1725 
0 176** 
9.242** 

Note: **denotes the statistically significant at 1% level. 

I I 
0 500 1000 1500 2000 2500 

Time 

(a) ISEQ Overall'index 

Fig. 1 The daily prlces from May 1, 1993 to September 30, 2003. 
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(b) FTSE all share index 

I I 

0 500 1000 1500 2000 2500 

Tlme 

( c )  PSI20 index 

Tlme 

(d) S&P500 ~ndex 

Fig. 1. (Contznued) 
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(e) Bovespa index 

(f) Nikke~ 225 index 

0 500 I 000 lsb0 2000 2500 

Time 

(g) HSI index 

Fig. 1. (Contenued) 
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Table 3. Percentage of energy by wavelet crystals for the daily returns of indices 
series. 

Index -+ ISEQ 

0.443 
0.246 
0.145 
0.072 
0.040 
0.031 
0.022 

FTSE 

- 
0.467 
0.260 
0.161 
0.048 
0.032 
0.018 
0.014 

Bovespa 

0.476 
0.234 
0.143 
0.046 
0.025 
0.019 
0.057 

HSI 

- 
0.515 
0.230 
0.133 
0.055 
0.038 
0.016 
0.014 

events such as the Hong Kong crash and Thailand crisis in 1997, "dot-com" in 2000 
and September 11, 2001. Figures l ( f )  and l(g) represent the prices of Nikkei 225 
and HSI indices respectively. These demonstrate that the Japanese market is the 
most sensitive, possibly because companies who have shares in the Japanese stock 
market tend to be exposed internationally and so price index levels respond to 
changes both directly and indirectly. The Hong Kong market is noticeably unstable 
with a disproportionately large number of regionwide crashes (possible due to serial 
crises: Bird Flu, SARS, etc). The Asian financial crisis had strong direct effects on 
the Hong Kong market but it affected Japan's economy only weakly because only 
40% of Japan's exports go to Asia. In addition, Japan was going through its own 
ongoing long-term economic difficulties. 

From the above, there are clear indications of effects from regionwide markets as 
well as from worldwide markets and this picture is more detailed when we look at the 
results of the wavelet analysis. The energy percentages described by each wavelet 
component for the daily returns of seven market indices are given in Table 3 which 
shows that the first two high frequency crystals (dl and dz) explain more than 
65% of the energy of these series, implying that movements are mainly caused by 
short-term fluctuations. Figures 2(a)-2(g) represent the discrete wavelet transform 
(DWT) for the daily returns of Irish, UK, Portuguese, US, Brazilian, Japanese and 
the Hong Kong stock market indices respectively. As mentioned, it can be seen that 
the first and the second wavelet components (dl and d2) together account for most 
of the variations in the returns series. 

3.2. Empirical results 

Traditionally, we might expect strong co-movements between nearest-neighbor mar- 
kets. International stock markets such as those of Ireland and the UK are closely 
related, while there are strong historical links between Brazilian and Portuguese 
markets, for example. 
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Fig. 2. The discrete wavelet transform (DWT) of daily returns versus time 
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0 500 lob0 1500 2000 

(d) S&P500 index 

(e) Bovespa index 

0 500 1000 1500 2000 

(f) Nikkei 225 index 

Fig. 2. (Contznued) 
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I 

0 500 1000 1500 2000 

(g) HSI index 

Fig. 2. (Contznued) 

To investigate the inter-relationships among all seven stock markets, we estimate 
simple regression and reverse regression models between each pair, using three dif- 
ferent scales. These scales are row-returns series, where these are reconstructed from 
the f is t  wavelet component (dl) and the returns series, which are rebuilt from the 
&st two wavelet crystals (dl and da) together. Conversely, we can not apply mul- 
tiple regression (using forward or backward stepwise) to study the co-movements 
between the stock markets directly for two main reasons: firstly, multicollinearity 
problems are to be expected due to the relationships between the markets, secondly, 
we do not know the direction or order of the spillover effects. 

From the results [ R ~  and P-values of slopes] in Table 4, it can be seen that 
there are strong co-movements between each two of the Irish, UK and Portuguese 
markets, while the Irish market is also influenced by the US, Japan and Hong Kong. 
The UK and Portuguese markets are affected by both Japan and Hong Kong, while 
these are impacted upon by the US and Brazilian markets. Further, the UK and 
Portuguese markets influence the US and Brazil. Table 4 also shows that there is 
co-movement between US and Brazilian and also between the Japanese and Hong 
Kong markets (nearest-neighbors). No inter-relationships apparently exist between 
the Brazilian and either the Irish or Japanese markets, but the Brazilian market 
itself is sipScantly affected by that of Hong Kong. This implies that there is also 
an inner loop of "spillover effects" between Asian and American markets within 
the global circle, (southeast Asia to the Latin Americas). In other words, the US 
market affects those of Asian (Japanese and Hong Kong), which in turn impact on 
Brazil. 

In order to get a clear picture of the historical linkage between Portuguese 
and Brazilian markets, we divided the whole period into three sub-periods (1993- 
1996,1997-2000 and 2001-2003) and estimated the regression models between these 
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Table 4. Regression analysis between the daily returns of each pair of the seven stock 
market indices. 

Panel A: IRL vs. UK 

Regression+ MtrRL on Mt "K Mt uK on ~t~~~ 

ScalesL Constant Slope R2 Constant Slope R2 
- - 

Return 3.803-04 0.578 0.323 -1.743-04 0.559 0.323 
(0.029) (0.000) (0.310) (0.000) 

Return.Dl 1.13E04 0.467 0.222 -1.41E04 0.477 0.222 
(0.391) (0,000) (0.289) (0.000) 

Return.Dl.2 1.493.05 0.495 0.251 -4.323-05 0.508 0.251 
(0.951) (0.000) (0.864) (0.000) 

Panel B: IRL vs. P 

Regression+ MtrRL on ~t~ MtP on MtrRL 

Scalesl Constant Slope R2 Constant Slope R2 

Return 3.063-04 0.343 0.135 1.50E04 0.394 0.135 
(0.119) (0.000) (0.477) (0.000) 

Return.Dl 2.643-05 0.359 0.145 7.06E05 0.405 0.145 
(0.849) (0.000) (0.631) (0.000) 

Return D1.2 1.97E05 0.385 0.165 -6.983-05 0.420 0.165 
(0.940) (0.000) (0.801) (0.000) 

Panel C. IRL vs. US 

Regress~on- ~t~~~ on Mt- 1 us Mt " on MtrRL 

Scalesl Constant Slope R2 Constant Slope R2 

Return 3.11E04 0.328 0.129 1.99E04 0.255 0.053 
(0.114) (0.000) (0.378) (0.000) 

Retnrn.Dl 7.06E05 0.154 0.031 2.123-05 7.79E04 0.004 
(0.632) (0.000) (0,900) (0.001) 

Return.Dl.2 -2.373.05 0.217 0.024 -9.023-05 7.753-02 0.004 
(0.933) (0 000) (0.785) (0.001) 

Panel D: IRL vs. BR 

Regression+ ~t~~~ on ~ t - 1 ~ ~  MtBR on MtIRL 

Scalesl Constant Slope R~ Constant Slope R2 

Return 2.79E04 5.473-02 0.023 2.31E03 0.361 0.016 
(0.184) (0.000) (0.000) (0.000) 

Return.Dl 6.063-05 1.673-02 0.001 -3.703-05 0.254 0.008 
(0.685) (0.036) (0.928) (0.000) 

Return.Dl.2 -8 653-06 2.693-02 0 002 -1.983-04 0.122 0.004 
(0.976) (0.023) (0.692) (0,001) 
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Table 4. (Contznued) 

Panel E: IRL vs. JP  

Regression4 MerRL on MtJP Mt JP on Mt-lrRL 

Scales1 Constant Slope R2 Constant Stope R2 

Return 4.773-04 0.181 0.068 -4.063-04 0.127 0.007 
(0.019) (0.000) (0.183) (0.000) 

Return.Dl 5.163-05 0.147 0.052 6.763-05 -8.183-02 0.002 
(0.723) (0.000) (0.771) (0.010) 

Panel F: IRL vs. HK 

Scales1 Constant Slope R2 Constant Slope R2 

Return 4 19E-04 0.183 0.104 -4.91E-05 3.863-02 0.000 
(0 036) (0.000) (0.895) (0.292) 

Return.Dl 4.883-05 0.170 0.097 9.543-05 -0.302 0.028 
(0.731) (0.000) (0.724) (0.000) 

Return.Dl.2 -3.133-06 0.182 0.117 -1.483.05 -0.396 0.018 
(0.991) (0.000) (0.978) (0.000) 

Panel G .  UK vs. P 

Scales1 Constant Slope R2 Constant Slope R2 

Return -7.953.05 0.438 0.228 2.833-04 0.521 0.228 

Panel H: UK vs. US 

Regression4 Mt uK on Mt-I us Mt US on Mt 

Scales1 Constant Slope R2 Constant Slope RZ 

Return -2.033.05 0.251 0.078 2.783-04 0.473 0.178 
(0.919) (0.000) (0.188) (0.000) 
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Table 4. (Contznued) 

Panel I: UK vs. BR 

Regression4 ~t~~ on Mt-lBR ~t~~ on Mt uK 

Scalesl Constant Slope R2 Constant Slope . R2 

Return -3.383.05 3.713-02 0.011 2.423-03 0.659 0.054 
(0.870) (0.000) (0.000) (0.000) 

Panel J: UK vs. JP 

Scalesl Constant Slope R2 Constant Slope R2 

Return 1.21E-04 0.178 0.068 -3.723-04 0.292 0.039 
(0.548) (0.000) (0.214) (0.000) 

Return.Dl -1.193-04 0.113 0.030 5.733-05 9.203-02 0.003 
(0.423) (0.000) (0.805) (0.003) 

Return.Dl.2 -5.033-05 0.124 0.037 2.423-05 0.119 0.002 

Panel K: UK vs. HK 

Regression* MtUK on MtHK MtHK on Mt-1 VK 

Scalesl Constant Slope R2 Constant Slope R2 

Return 6.373-05 0.187 0.112 -5.603-05 0.349 0.038 
(0.745) (0.000) (0.879) (0.000) 

Return.Dl -1.223-04 0.133 0.058 7.073-05 -4.373-02 0.000 
(0.407) (0.000) (0.796) (0.239) 

Return.Dl.2 -4.393-05 0.122 0.050 -3.173-05 -6.803-02 0.000 
(0.877) (0.000) (0.953) (0.257) 

Panel L: P vs. US 

Regression* Mtp on Mt-l Mt on Mt 

Scales1 Constant Slope R2 Constant Slope R2 

Return 2.593-04 0.174 0.031 2.213-04 0.265 0.067 
(0.246) (0.000) (0.323) (0.000) 

Return Dl 9.763-05 3.693-02 0.001 9.363-06 0.174 0.026 
(0.539) (0.055) (0.955) (0.000) 

Return D1.2 -7.643-05 4.113-02 0.000 -7.623-05 0.199 0.033 
(0.801) (0.178) (0.815) (0.000) 
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Table 4. (Continued) 

Panel M: P vs. BR 

Regression+ MtP on Mt-lBR MtBR on MtP 

Scalesl Constant Slope R2 Constant Slope R2 

Return 1.94E04 4.943-02 0.015 2.30E05 0.489 0.035 

Panel N: P vs. JP 

Regression-+ MtP on MtJp MtJP on Mt-lP 

Scalesl Constant Slope R2 Constant Slope RZ 

Return 3.603-04 0.134 0.032 -4.003-04 0.150 0.012 
(0.106) (0.000) (0.188) (0.000) 

Panel 0. P vs. HK 

Regression- MtP on ~ t "  ~t~~ on Mt-lP 

Scalesl Constant Slope R2 Constant Slope R2 

Return 3.193-04 0.168 0.076 -7.773-05 0.143 0.007 
(0.144) (0.000) (0.834) (0.000) 

Panel P: US vs. BR 

Regression-+ Mt " on MtBR ~t~~ on ~t~~ 

Scalesl Constant Slope R2 Constant Slope R~ 

Return -1.853-05 0.132 0,110 2.203-03 0.841 0.110 
(0.933) (0.000) (0.000) (0.000) 

Return.Dl 2.843-05 0.114 0.076 -3.913-05 0.674 0.077 
(0.861) (O.o'Jo) (0.921) (0.000) 

Return.Dl.2 -6.033-05 0.154 0.054 -1.673-04 0.351 0.054 
(0.852) (0.000) (0.732) (0.000) 
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Table 4. (Continued) 

Panel Q: US vs. JP  

Regression* Mt" on ~ t "  MtJP on Mt-1" 

Scalesl. Constant Slope R2 Constant Slope . R2 

Return 3.313-04 7.453-02 0.009 -4.773-04 0.401 0.092 
(0.152) (0.000) (0,101) (0.000) 

Return.Dl 2.923-05 -5.373-02 0.005 8.153.05 0.322 0.056 
(0.862) (0.000) (0.718) (0.000) 

Return.Dl.2 -8.973-05 -5.10E-02 0.004 -8.933-06 0.441 0.041 
(0.991) (0.786) (0.994) (0.000) 

Panel R. US vs. HK 

Regression* Mt " on Mt HK MtHK on Mt-I US 

Scales1 Constant Slope R2 Constant Slope R2 

Return 3.073-04 6.783-02 0.011 -2.013-04 0.541 0.114 
(0.184) (0.000) (0.566) (0.000) 

Return.Dl 2.973-05 -5.503-02 0.007 9.623-05 0.401 0.063 
(0.860) (0 000) (0.719) (0.000) 

Return.Dl.2 -9.25E-05 -5.503-02 0.008 -7.393-05 0.630 0.058 
(0.779) (0.000) (0.888) (0.000) 

Panel S: BR vs. JP  

Regression+ ~t~~ on ~t JP ~t JP on M*- lBR 

Scalesl. Constant Slope R2 Constant Slope R2 

Return -5.343-04 7.333-02 0.019 2.513-03 0.154 0.006 
(0.079) (0.000) (0.000) (0.000) 

Return.Dl 6.063-05 5.793-02 0.009 -2.313-05 2.493-02 0.000 
(0.794) (0.000) (0.955) (0.498) 

Retnrn.Dl.2 2.163-05 7.223-02 0.006 -1.99E-04 4.433-03 0.000 
(0.962) (0.000) (0.691) (0.848) 

Panel T: BR vs. HK 

Regression+ MtBR on ~ t * ~  MtXK on Mt-lBR 

Scalesl. Constant Slope R2 Constant Slope R2 

Return -3.303-04 0.121 0.036 2.463-03 0.142 0.008 
(0.396) (0.000) (0.000) (0.000) 

Return.Dl 6.923-05 9.993-02 0.020 -2.033-5 -1.853-2 0.000 
(0.798) (0.000) (0.961) (0.554) 

Return.Dl.2 -3.033-05 0.126 0.014 -1.993-04 -9.943-03 0.000 
(0.955) (0.000) (0.691) (0.609) 
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Table 4. (Contznued) 

Panel U: JP vs. HK 

Regression* Mt JP on M* HK MtHK on ~t J P  

Scalesl Constant Slope R2 Constant Slope R~ 

Return -3.443-04 0.283 0.119 1.16E04 0.421 0.119 
(0.231) (0.000) (0.741) (0.000) 

Return.Dl 4.093-05 0.284 0.111 4.54E05 0.393 0.111 
(0.852) (0.000) (0.860) (0.000) 

Return.Dl.2 3.063-05 0.297 0.126 -3.943-05 0.424 0.126 
(0.942) (0.000) (0.938) (0.000) 

markets using three different scales. The results are given in Table 5 and show no co- 
movement between Portugal and Brazil in the first period while there is significant 
evidence of cmmovement between these markets from 1997 to 2000. However, in the 
third period, the results show that there are spillover effects from the Portuguese 
market on to the Brazilian market, but not vzce versa. This appears to provide 
supporting evidence for an increase in the international transmission mechanism 
among stock markets. 

Finally, it seems clear from the values of the coefficients for each pair of regres- 
sions that directional influence is globally clockwise starting with Asian markets 
influencing European, European impacting on the Americas and the circle com- 
pleting with American market changes impacting on those of Asian. Interestingly, 
only the Japanese market demonstrates mixed influences. Possible explanations can 
be put forward for these findings on global inter-dependence and circular spillover 
effects between the stock markets in diierent Continents as follow: 

o Many firms with shares in these stock market indices are international investors. 
e Different time-zones mean that trading is concluded in Asia prior to opening 

in Europe and similarly for Europe to America and back again to Asia. These 
spillover effects are noticeable on the markets which open next, but these effects 
become less-marked for the next global cohort. 

s Global investment may imply similar actions on prices throughout. 

4. Conclusion 

The aim of this work was to investigate the inter-relationships between seven inter- 
national stock markets namely the Irish, UK, Portuguese, US, Brazilian, Japanese 
and Hong Kong based on daily returns. A new testing method suggested by Lee 
[ll] has been applied and our results show that there are significant co-movements 
between each European pair separately, between the US and Brazilian markets and 
also between the Japanese and Hong Koag markets. In addition, the indications 
are that there are significant spillover effects from the UK and Portuguese mar- 
kets onto the US and Brazilian markets which in turn. themselves influence the 
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Table 5. Regression analysis between Portuguese and Brazilian markets using three different scales. 

Panel A. From 1993 to 1996 

Regression+ MtP on Mt-lBR MtBR on MtP 

Scaled Constant Slope R2 Constant Slope R2 

Return 5.313-04 1.363-02 0.001 2.753-03 5.543-02 0.001 
(0.000) (0.401) (0.000) (0.430) 

Panel B. &om 1997 to 2000 

Regression+ ~t~ on Mt-lBR MtBR on MtP 

Scales1 Constant Slope R2 Constant Slope R2 

Return 5.283-04 0.272 0.062 1.913-04 0.270 0.085 
(0.222) (0.000) (0.956) (0.000) 

Return.Dl 7.953-07 9.233-02 0.010 -4.773-07 0.136 0.016 
(0.998) (0.002) (0.999) (0.000) 

Return.Dl.2 1.873.06 0.181 0.032 -7.473-07 0.224 0.054 
(0.996) (0.000) (0.998) (0.000) 

Panel C. From 2001 to 2003 

Regression-+ MtP on ~ t - 1 ~ ~  MtBR on MtP 

Scales1 Constant Slope R2 Constant Slope R2 

Return -7.353-04 0.259 0.041 2.403-04 0.212 0.070 
(0.072) (0.000) (0.455) (0,001) 

Return.Dl -2.163-06 -1.953-02 0.000 -4.423-06 0.148 0.032 
(0.994) (0.677) (0.984) (0.000) 

Return.Dl.2 1.803-06 0.164 0.016 -2.103-06 0.184 0.048 
(0.996) (0,001) (0.994) (0.000) 

where 

0 P-values of t-tests are given in parentheses. 
o M'R~, MUK, MP, MUS, MBR, MJP and MHK are indicators of Irish, UK, Portuguese, 

US, Brazilian, Japanese and the Hong Kong market indices respectively. 
o Return is an indicator of the row daily returns series. 
o Return.Dl is an indicator of the returns series reconstructed by using the first wavelet crystal. 
0 Return.Dl f D 2  is an indicator of the returns series reconstructed by using the first and the 

second wavelet crystals together. 

Asian markets. In turn, Japan and Hong Kong impact the Europe. Finally, we can 
summarize our results in the following: 

1. There are co-movements between regionwide markets (nearest-neighbor or intra- 
continental relationships). 

2. There are cloclcrvise transmissions between worldwide markets. 



3. There is an increase in  importance of global co-movements among worldwide 
stock markets, in particular since the end of the 20th century. 

4. The effect of the advent of modern communications can be seen since the mid 
1990s in term of more rapid response and/or damping of effects on global 
patterns. 
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Apples and Oranges: the difference between the 
Reaction of the Emerging and Mature Markets to 
Crashes. 
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Summary. 

We study here the behavior of the eigenvalues of the covariance matrices of 
returns for emerging and mature markets at times of crises. Our results appear to 
indicate that mature markets respond to crashes differently to emerging ones and 
that emerging markets take longer to recover than mature markets. In addition, the 
results appear to indicate that the second largest eigenvalue gives additional 
information on market movement and that a study of the behavior of the other 
eigenvalues may provide insight on crash dynamics. 

keyword. Covariance Matrix, Eigenvalues and Stock Crashes. 

Introduction. 

Recently, several studies have applied the concepts and methods of physics to the 
areas of economics and finance, particularly to the study the covariance (or 
correlation) between price changes (returns) of different stocks [e.g. Meric and 
Meric (1997), Kwapien et al. (2002), Keogh et al. (2003) and Kwapien et al. 
(2004)l. Thus far, the magnitude of the maximum eigenvalue of the correlation (or 
covariance) matrices for different sectors in one stock market index only, has 
predominantly been studied with no attention paid to the other eigenvalues. The 
differences in the current work are twofold; firstly, to highlight the information 
obtained &om the subdominant eigenvalue as well as the dominant eigenvalue and 
study their behaviour. Secondly, to compare this for stock market indices for two 
different classes, namely emerging and mature markets. 

Our objectives in this article are thus; (a) To study the distribution of the 
eigenvalues of the Covariance matrices for equal-intewal sliding windows, 
including the week before the Crisis, together with those of Covariance matrices 
for windows, including both the week of the Crisis and a week after. This, in order 



to see the qualitative difference between emerging and mature markets to crashes 
in term of the eigenvalues (the 1's). (b) To study the distribution of the ratio of- 
the largest to the second largest eigenvalue of the Covariance matrices for sliding 
windows of equal sues. This, we believe, a measure of the degree of agreement 
(or coherence) in agent views of the market. 

The remainder of this paper is organized as follows: The method of estimating the 
Covariance matrices is described briefly below (Section 2), with data and results 
presented in Section 3. Our brief discussion and conclusions form the Gnal 
section. 

Covariance matrix estimation. 

The Variance-Covariance matrix can be computed easily, using the following 
formula, (full details - see Littennan and Wielmann - (1998)): 

I '  

0; ( M )  = (2 T ~ , T - Z  rl.T-s)l(g u T - ~ )  (I) 

Where r ( , ~  E&e return on the i" mark;;% date T and m, is the weight applied 
at date T over horizon M. In our study, we use weekly returns of stock market 
indices (i=13 indices and T=20 for emerging and i=14 indices and T=20 for major 
markets for our data) and each week, previous to the current, receives 90% of the 
weight of the following week (where mT=l) as suggested in e.g. Litterman and 
Winkelmann. 

Data and Results. 

The data used in the following analysis consists of the weekly prices of a set of 
thirteen emerging market indices and a set of fourteen mature market indices 
during the period f?om the second week of January 1997 to the third week of 
March 2003. As each market uses its local currency for presenting the index 
values, we use the weekly returns instead of the weekly prices, where the 
following formula applies: Weekly Return = Ln(Pt/Pt-I), where P, and P,, are 
the closing prices of the index at week t and t-1 respectively. The Variance- 
Covariance matrices for overlapping windows of size 20 weeks have been 
calculated using Equation (1). 

Empirical results. 

Figures 1 and 2, for the emerging and mature markets respectively, show the 
distribution of the eigenvalues of the Covariance matrices for overlapping 
windows of size 20, before and after the Asian Crisis in July 1997, the Global 



Crisis in October 1998, the Dot-Com Crash in March 2000 and the September the 
11" Crashin2001. 
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Fig. 1. The d~strihution of the eigenvalues of the covariance matrices before (Solid line) 
and after (Dashed line) the crash for Emerging markets'. 
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Fig. 2. The distribution of the eigenvalues of the covariance matrices before (Solid line) 
and &er (Dashed line) the crash for Mature markets'. 

' In figures 1 and 2, the Eigenvalues are given on the y-axis while thew Ranks are glven on 
the x-axis 



Figures l(a) and 2(a) show that the value of the maximum eigenvalue (Al) 
increased, for emerging markets, after the Asian Crisis, which began in July 1997- 
in Thailand, but did not change markedly for developed markets. This implies that 
the crisis mainly affected emerging markets but not the mature ones. However, 
Figures l(c) and 2(c) show that the Dot-Com Crash influenced major markets but 
not emerging ones and took longer than a week to show a strong effect. 

From Figures I@) and 2@), we can see that the Global Crisis in 1998 affected 
emerging and mature markets comparably in the same week. 

Figures l(d) and 2(d) show that the value of hl after the September 11" crash, 
which could not have been predicted by most people, hugely increased for both 
emerging and mature markets. This implies that stock markets around the world 
were hit very hard and that the markets moved in coordinatron to make a recovery 
after falling so sharply or being oversold. 

The ratio of the Largest (Al) to the Second Largest (az) eigenvalues of the 
Covariance matrices for emerging and mature markets are shown in Figures 3(a) 
and 3(b) respectively. These show a qualitative dcfference in the way emerging 
and mature markets deal with crises, (especially unexpected ones). For major 
markets, there are three highly significant points in the distribution of this ratio 
representing the third week of October 1999 (the 12' anniversw of the October 
19 stock market crash)}, the second week of September 2001 (9111 crash) and the 
third week of March 2004 (Mndrzd Bomb) respectively. However, for emerging 
markets, there is only one highly significant point representing the second week of 
September 2001 (9/II crash). 

(a) ffin+g Kla~kets (b) Major h4arkets 

Fig. 3. The dishibut~on of ratio of Dominant (1,) to Subdominant (b) eigenvalues of 
covariance matrices for equal overlapping time windows 

The results also show that the mature markets move together immediately after 
the crash to bounce back faster than emerging markets. In other words, the 
recovery time from crisis for developed markets is shorter than that for developing 
ones. 



Conclusion. 

Our aims were to study the distribution of the eigenvalues of covariance matrices 
for emerging and mature markets at crisis points (namely, the Asian Crisis, Global 
Crisis, Dot-Com Crash and September the 11" Crash). In particular, we wished to 
distill the information 6om the ratio of the Largest to the Second Largest 
eigenvalues of these covariance matrices. Our fmdmgs can be summarized as 
follows: (i) The Asian Crisis in 1997 disproportionately affected the emerging 
markets compared to the major ones while the Dot-Com Crash influenced major 
markets but affected emerging oues far less. (ii) The Global Crisis in 1998 
affected developing markets as much as developed ones in the same week. (iii) 
The September 11' Crash hit both emerging and mature markets very hard 
because it was totally unpredictable. (iv) The distribution of the ratio of hl to h2 
appears to show that emerging and mature markets deal with crashes differently 
especially unexpected ones. This means that mature markets move together 
immediately after the crash to bounce back faster than emerging markets In other 
words, the recovery time 6om crisis for emerging markets is longer than that for 
mature oues. 
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Abstract 

We study here the behaviour of the first three eigenvalues (A,,Az,A3) and their ratios [(A~/A~),(AI/&),(A~/A~)] of the 
covariance matrices of the original return series and of those rebuilt from wavelet components for emermng and mature 
markets. It has been known for some time that the largest eigenvalue (21) contains tnformation on the risk assocrated with 
the particular assets of which the covariance matrix is comprised. Here, we wish to ascertain whether the subdominant 
ergenvalues (Az,A3) hold information on the risk of the stock market and also to measure the recovery time for emerging 
and mature markets. To do this, we use the discrete wavelet iransform which gives a clear picture of the movements in the 
return series by reconstructing them using each wavelet component. Our results appear to indicate that mature markets 
respond to crashes differently to emerging ones, in that emerging markets may take up to two months to recover while 
major markets take less than a month to do so. In additton, the results appears to show that the subdominant eigenvalues 
(&,A31 give additional information on market movement, especially for emerging markets and that a study of the 
behaviour of the other eigenvalues may provide insight on crash dynamics. 
0 2006 Elsevier B.V. All rights reserved. 

Keywords Varianee+mriance matnx; Eigennlues and wavelet analysis 

1. Introduction 

Covariance (Correlation) matrix forecasts of financial asset returns are an important component of current 
practice in financial risk management with a large bibliography on the subject. Meric and Meric [I], for 
example, applied the Box M method and principal component analysis (PCA) to test whether or not the 
correlation matrices before and after the international crash in 1987 were significantly different. This was done 
in order t o  investigate the changes in the long-term co-movements of twelve European and US equity markets. 
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Their results showed that there are significant alterations in the co-movements of these markets and that the 
benefits of international diversification for the European markets decreased markedly after this crash. 

Further, Kwapien et al. [2] investigated the distribution of eigenvalues of correlation matrices for equally 
separated time windows in order to study, quantitatively the relation between stock price movements and 
properties of the distribution of the correspondmg index motion (w.r.t. German DAX). They reported that the 
importance of an eigenvalue is related to the correlation strength of different stocks, which means that the 
more aggregated the market behaviour, the larger A1 (maximum eigenvalue). 

Recently, in Keogh et al. [3], we showed that periods in market sector data from the Dow Jones EURO- 
STOXX index, exist lmearly with time. These results supported an implied relationship between volatility and 
the change in magnitude of the dominant eigenvalue and also showed that epochs seem to exist in all market 
sectors although in different degrees. More recently, Kwapien et al. [4] analysed tick-by-tick returns data 
ranging from seconds up to 48 h from the hTSE and the German markets. The authors compared the 
magnitude of the dominant eigenvalue of the correlation matrices for the same group of securities on various 
time scales. Their results indicated that collective market behaviour appears at significantly shorter time scales 
in recent times. 

Pafka and Kondor [5] examined the effect of noisy covariance matrices on the portfolio optimization 
problem and found that the risk of the portfolio in the presence of noise in these matrices is 5-1 5% higher than 
in the absence of noise, indicating that the decrease in efficiency of the optimal portfolio is actually much less 
dramatic. 

According to the findings of Galluccio et al. [6], Laloux et al. 171, Plerou et al. [8], Laloux [9], Plerou et al. 
[lo], Wilcox and Gebbie [11,12] and Sharifi et al. [13], the correlation (or covariance) matrices of financial time 
series, apart from a few large eigenvalues and their corresponding eigenvectors, appear to contain such a large 
amount of noise that their structure can essentially be regarded as random. This means that a few of the larger 
eigenvalues might carry collective information. However, most previous studies [14] have focused on the 
largest eigenvalue with no attention paid to the others. If we are to presume that, as with any PCA analysis of 
data, there are several principal components that are significant, then it should be worth examining lesser 
order components to see if they can provide additional data for investment strategies. References in the 
literature to the role of hlgher-order eigenmodes in investment strategy are scarce, but, recently Wilcox and 
Gebbie [11,12] have examined the composition of all the eigenmodes of ten years of Johannesburg Stock 
Exchange using random matrix theory (RMT). The authors concluded that "the leading [i.e., first three] 
eigenmodes may be interpreted in terms of independent trading strategies with long range correlations" 
indicating a role not just for A1 but also for a small number of the dominant eigenvalues. In the current work 
we aim, firstly, to highlight the apparent information obtained from the first two subdominant eigenvalues as 
well as the dominant eigenvalue and study its behaviour and secondly, to compare the behaviour of the second 
and third eigenvalues for stock market indices for two different classes, namely emerging and mature markets. 

Several studies have made comparisons between emerging and mature markets,' according to different 
characteristics, and these generally have reported that emerging markets consistently behave differently from 
mature ones. Patel and Sarkar 1151 studied eight mature and ten developing markets from 1970 to 1997. The 
authors found important differences in the characteristics of stock market crises between major and emerging 
markets. They also found that, for emerging markets, the declme in prices following crises is larger than that 
for mature markets, and the recovery time is longer. Further, Fuss [16] used discriminant analysis to 
investigate if emerging and mature markets behave differently according to different financial aspects (such as 
market pricing, market size and market activity) and stated that the difference between these two market types 
has increased since the end of the 1990s. A reason for this could be found in financial crashes of 1994 in 
Mexico, 1997/1998 in Asia, 1998 in Russia and 1999 in Brazil, indicating that emerging and mature markets 
deal differently with crashes and crises. 

Recently, Salomons and Grootveld [I71 studied the equity risk premium in thirty-one global stock markets 
using standard statistical approaches and found that emerging markets carry a higher equity risk premium 

 h he International Finance Corporation (IFC) uses income per capita and market capitalization relative to GNP for classifyng equity 
markets If either (1) a market resides in a low- or middle-mncome economy, or (2) the ratio ofmvestahle market capitalization to GNP is 
low, then the IFC classifies the market as emergmg othemse IFC class~fies it as mature 



than mature ones indicating that they are perceived to be riskier. More recently, Wooldridge et al. [18] 
considered the changes in the links between emerging and mature markets according to capital flows, the 
investor base and the changing character of global banks. Results showed that emerging and mature markets 
are more integrated nowadays than before. This contravenes with the findings of Patel and Sarkar [15], Fuss 
[16], Salomons and Grootveld [17] and Wooldridge et al. [I$], so it is very important to carry out further 
investigations in order to clarify the issue. 

In Sharkasi et al. [19], we studied the behaviour of eigenvalues of the covariance matrices around crashes 
and also studied the ratio of the dominant (11) to the subdominant (Az) for emerging and mature markets. Our 
results showed that mature markets react to crashes in a different way than emerging ones which take longer 
to recover than mature markets. The second largest eigenvalue (12) may thus be expected to provide additional 
information on market movements. 

Our objectives in this article are, therefore as follows: 

1. To study the variation of the ratio series of the largest (11) to the second and third largest (&, 13) eigenvalues 
of the variance-covariance matrices for sliding windows of equal sizes for original return series of stock 
market indices, thus, in order to compare the behaviour of this ratio across windows with different degrees 
of risk (or different crashes and events). 

2. To study the previous point for return series which have been reconstructed using each wavelet component 
separately in order to measure how long the markets take to recover and how long these markets retain 
information about previous crises and events. 

3. To study the variation of the largest and the second largest eigenvalues of these covariance matrices for the 
original return series, and for those rebuilt from wavelet components, in order to see the direction of the 
movements in these markets and also to investigate whether ,I2 contains useful information about these 
movements, in addition to that described by 1 1  alone. 

The remainder of this paper is organized as follows: The methodology used here is described briefly below 
(Section 2), with data and results presented in Section 3. The final section provides discussion and couclusion. 

2. Methodology 

2.1. How to estimate covariance matrices 

There are several methods to compute the variance-covariance matrix but there is no agreement among 
authors on an optimal one. We have chosen the following formula because it uses weighted historical data to 
account for the empirical regularities of financial time series (such as the fact that volatility and correlation 
vary over time and these series have a Fat Tail distribution). 

where r , , ~  is the return on the ith market at date T and OT, which is the weight applied at date T over horizon 
M, has been chosen to be a declining function of time. The more recent observations are given more weight 
than observations that occurred in more distant past, where 100% weight is given to the most recent week and 
each week in history receives 90% of the weight of the following week, then WT = 1.0, UT-I = 0.90, 
OT-2 = 0.81, etc. (For more details see [20]). 

In our study, we use weekly returns of a set of 13 (i = 13) emerging indices and a set of 14 (i = 14) mature 
indices and the variance-covariance matrices for overlapping windows of size 20 (T = 20) weeks for our data 
have been calculated using Eq. (1) in order to study the structure change of stock market for different windows 
with different risk degree (i.e., after including the week of crash). 



2.2. Dejnition of wavelet transform 

The wavelet transform (WT) is a mathematical tool that can he applied to many applications such as image 
analysis, and signal processing. It was introduced to solve problems associated with the Fourier transform, as 
they occur when dealing with non-stationary signals, or when dealing with signals which are localized in time 
or space as well as frequency. The wavelet transform has been explained in more detail, particularly by 
,Hijmans [21], Bruce and Gao [22] and Gonghui et al. [23]. 

In particular, the discrete wavelet transform @WT) is useful in dividing the data series into components of 
different frequency, so that each component can be studied separately to investigate the data series in depth. 
The wavelets have two types, father wavelets 4 and mother wavelets $, where 

/ 4(1)dt = 1 and $(t)di = 0, J 
The smooth and low-frequency parts of a signal are described by using the father wavelets, while the detail and 
high-frequency components are described by the mother wavelets. The orthogonal wavelet families have four 
different types which are typically applied in practical analysis, namely, the haar, daublets, symmlets and 
cozfets. 

The following brief synopsis of their features is relevant to the analysis reported: 

o The haar has compact support and is symmetric but, unlike the others, is not continuous. 
o The daublets are continuous orthogonal wavelets with compact support. 
o The symmlets have compact support and were built to be as nearly symmetric as possible. 
o The coiflets were built to be nearly symmetric. 

A two-scale dilation equation, used to calculate the wavelets, father 4(t) and mother $(t), is defined, 
respectively, by 

+(j) = JZ ek'#'(2f - k), 
k 

(2) 

$(t) = JZ hkb(7-f - k), 
k 

(3) 

where t k  and hk are the low-pass and high-pass coefficients given by 

The orthogonal wavelet series approximation to a signal f (t) is defined by 

where J is the number of multi-resolution levels (or scales) and k ranges from one to the number of coefficients 
in the specified components (or crystals). The coefficient S J ~ , ~ J ~ , .  . . ,dlk are the wavelet transform 
coefficients given by 



Their magnitudes give a measure of the contribution of the corresponding wavelet function to the signal. The 
functions q5J,k(t) and $,,p(t) [ ( j  = 1,2,. . . ,Jl are the approximating wavelet functions, generated from 4 and $ 
through scaling and translation as follows: 

4 ~ & ( t )  = 2-J12~(2-Jt  - k)  = 2-"IZ+[(t - 2"k)/2"], (9) 

The DWT is used to compute the coefficient of the wavelet series approximation in Eq (6) for a discrete 
signal f , , .  . . , f ,  of finite extent. The DWT maps the vector f = ( f l , f 2 , .  . . ,f,)' to a vector of n wavelet 
coefficients w = (wl ,  ~ 2 , .  . . , w,,)' which contains both the smoothing coefficient S J ~  and the detail coefficients 
d,& [ j  = 1,2 , .  . . , f l .  The S J ~  describe the underlying smooth behaviour of the signal at coarse scale 2" while 
d ~ k  describe the coarse scale deviations from the smooth behaviour and dJ_lk, .  . . , dl,k provide progressively 
finer scale deviations from the smooth behaviour. 

In the case when n is divisible by 2"; there are n/2 observations in d lp  at the finest scale 2' = 2 and n/4 
observations in d2& at the second finest scale 2' = 4. Likewise, there are 4 2 "  observations in each of d ~ >  and 
S J ~  where 

We apply the discrete wavelet transform to split the weekly return series for emerging and mature market 
indices into different frequency components to get a clear picture of the movements in these markets. We also 
wish to rebuild the return series using the first three wavelet components (dl ,  d2 and ds) which explain more 
than 80% of energy (or magnitude) of these series2 (see Tables 1 and 2) in order to study the fortnightly, 
monthly and bi-monthly data which are represented by d l ,  dz and d3, respectively. 

3. Data and results 

3.1. Data description 

The data used in the following analysis consists of the weekly prices of a set of 13 emerging market indices 
and a set of 14 mature market indices during the period from the second week of January 1997 to the third 
week of March 2004. These markets are listed in Tables 1 and 2. As each market uses its local currency for 
presenting the index values, we use the weekly returns instead of using the weekly prices, where the following 
formula applies: 

Weekly return = Ln(PI/PI-I) (1 1) 

and where 

o P, is the closing price of the index at week t, 
PI_, is the closing price at week t - 1. 

3.2. Empirical results 

3.2.1. Eigenanalysis for original return series 
The variation of the ratio of the largest (A!)  to the second largest (22) eigenvalues of the covariance matrices 

for equal overlapping time windows of the original return series for emerging and mature markets, are shown 
in Figs. I(a) and 2(a), respectively. These show a qualitative difference in the way emerging and mature 
markets deal with crashes and events. 

We also plot the ratio of A1 to 4 to see clearly the reactions of stock markets to different crashes and 
events. The variation of these ratios is plotted in Figs. 3(a) and @) (Table 3). It can be seen that the mature 
markets have reacted to events more strongly than emerging markets, especially after the 9/11 crash, in order 

''This means that 80% of the ume senes can be reconstructed by using d l ,  dz and d, 



Table 1 
Emerging markets: percentages of energy explained by wavelet components for the anginal returns series 

Market W.Crystals 

dl dz d3 d4 ds d6 S6 

Argentina (Americas) 
Brazil (Americas) 
Ireland (Europe) 
Korea (Asla) 
Malaysia (Asia) 
Mexlco (Americas) 
New Zealand (Panfic) 
Norway (Europe) 
Portugal (Europe) 
Russ~a (Europe) 
Singapore (Asia) 
Taiwan (Asia) 
Turkey (M~ddle East) 

Table 2 
Mature markets: uercentaees of enerw exnlained bv wavelet comvonents for the oneinal returns series 

Market W.Crystals 

Australia paafic) 
Canada (Americas) 
Denmark (Europe) 
France (Europe) 
German (Europe) 
Hong Kong (Asia) 
Italy @ur~pe) 
Japan (Asla) 
Netherlands (Europe) 
Sweden (Eu~ope.) 
Switzerland (Euroue) - .  
UK (Europe) 
US (NASDEQ) (Americas) 
US (S&PSOO) (Americas) 

to regain stability and reduce risk to the markets. This means that mature markets effectively became 
anti-persistent, while emerging markets arepersistent in agreement with the findings of Di Matteo et al. [24,25] 
which indicate that emerging markets have H30.5 ,  while mature markets have H60.5  [H is the Hurst 
exponent]. 

The ratios of A2 to A3, Figs. 4(a) and @), are plotted in order to see if behaviour for lU2 and A3 differs for 
emerging and mature markets. In other words, we want to investigate whether or not 1 2  carries additional 
information about these different market types. Figs. 4(a) and (b) suggest that ratios of to 5 for emerging 
markets are more variable than those for mature markets, implying that subdominant (Al), as well as 
dominant (&) eigenvalues, do play apart in describing the behaviour of emerging markets while the behaviour 
of mature markets is described by A1 only. 

In comparing the ratio (11/A~), Figs. l(a) and 2(a), for emerging and mature markets, it can be seen that for 
latter, there are three highly significant points in the ratio variation which are for window numbers 120,219 and 
345, respectively. Window 120 starts from week 120 to week 139 which is the third week of October 1999 



R g  1 Emerging markets the changes m ratio of dominant (Al) to subdominant (A2) ergenvalues (a) original return anes, (b) return series 
rebuilt from &st wavelet crystal (dl), (c) return senes rebu~lt from second wavelet crystal (dz) and (d) return senes rebuilt from third 
wavelet crystal (ds) 

(the 12th anniversary of 19 October 1987 crash3). The last week in window 219 is week 238 which is the second 
week of September 2001 (9111 crash) and window 345 starts from week 345 to week 364 which is the third 
week of March 2004 (Madrid Bomb). However, for emerging markets, there is only one highly significant point 
which is for window 212, where the last week in this window is the second week of September 2001 (9111 
crash). We suggest that the cause for these highly significant ratio points is one or more of the following 
reasons: 

1. Increasing the value of the largest eigenvalue (111) while the second largest eigenvalue (112) remains stable. 
2. Decreasing the value of 112 while the value of ,I1 does not change. 
3. Increasing the value of A1 while decreasing the value of ,a2, (or in other words, A1 and A2 moving in opposite 

directions). 

The changes in ,I1 and 112 are plotted in Figs. 5(a) and (b) for emerging and mature markets, respectively. 
For mature markets (in order to examine likely causes), we compared the values of 111 and 112 of the 
covariance matrix for windows 120, 219 and 345 with the values of the previous windows, while for 

' T ~ I s  was the last October m 20th century and October is always hardmonth for stock markets. So, wth  the end of thecentury as well, a 
crash m October was annc~pated but dld not happen. Thls, not least because, "The world markets were actually sent into turmoil by a 
speech by Alan Greenspan, and the Dow Jones for the &st time since 8 April 1999 dipped below 10.000 15 and 18 October 1999. However, 
the market &d not crash and instead quickly recovered and later started a renewed and strengthened bullish phase", Sornette [26]. 



(a) Wi~~dows @) Windows 

Windows Windows 

Fig. 2. Mature markets the changes in ratio of domuvlnt (A,) to su6dornmont (2.2) agenvalues: (a) o r i ~ n a l  return senes, (b) return senes 
rebuilt from fist wavelet crystal (dl), (c) return senes rcbmlt from second wavelet crystal (d2) and (d) return senes rebuilt from h r d  
wavelet crystal (d3) 

Ftg 3 The changes m ratio of thefirst largest (A,) to the thrrdlnrgesf (A3) eigenvalues. Original return series f o r  (a) emergmgmarkeu, and 
(b) mature markets 

emerging markets, we compared the values of 4 and ,I2 for window 212 with the values of the 
previous windows. We found that the third reason above causes peaks in emerging markets while it 
is the first driver for change in the mature markets. This implies that both AI and ,I1 are important in 
describing the behaviour of emerging markets while ,I1 is sufficient alone to explain the behaviour of 
mature markets. 



Table 3 
Descript~on of the marks in the Rgs 3(a) and (b) 

Mark W~ndow No. Last week ~ncluded Events 

(a) Emergzng mrke f s  
a1 
a2 
a3 
a4 
a5 
a6 
a7 
a8 

(b) Mature markers 
bl 
b2 

Rrst week of 711997 
Second week of 1111997 
Fouttb week of 811998 
S e m d  week of 1/2000 
S a n d  week of 12/2000 
Second week of 312001 
Sewnd week of 912001 
Fourth week of 1/2002 

Rrst week of 911998 
Fourth week of 1211998 
Third week of 1011999 
Second week of 612000 
Second week of 9/2W)1 
First week of 11/2001 
Second week of 1212001 
First week of 512002 
First week of 10/2003 
First week of 1212003 
Tbrd week of 312004 

Asian crash 
Aslan crash 
Global crash 

Effects of DotCom crash 

September the l l th crash 

Global crash 
Global crash 
Last October in 20th century 
DotCom crash 
September the 11th crash 
Effects of 9/11 crash 
Effects of 911 1 crash 
The stock market downturn 

General threat level raised 
Madrid bomb 

(A) Windows @) Wmdows 

R g  4. The changes m raho of the second lmgesr (&) to the thrrdlarrest (,I3) agenvalues Ongmal return senes for. (a) emerging markets, 
and (b) mature markets. 

F I ~  5 The changes in the d o m h f  (A1) (upper line) and the subdomimr (,I2) (lower line) eigenvalues Original return series for: 
(a) emersng markets, and @)mature markets. 



3.2 2. Eigenanalysis associated with wauelet transform 
The DWT with symmlet 8 wavelet (ss) for 6 levels (scales) is computed for weekly returns series of all indices 

for emerging and mature markets. The DWT provides a more detailed breakdown of the contribution to the 
series energy from the high and low frequencies in the following manner. Tables 1 and 2 display the energy 
(or magnitude) percentages explained by each wavelet component (crystal) of the original returns for emerging 
and mature market indices, respectively. From Tables 1 and 2, it can be seen that high-frequency crystals, 
especially the first three (dl, d2 and d3) have much more energy than the lowest frequency one (~6) implying 
that movements in these series are mainly caused by short-term fluctuations. 

In order to measure the recovery time of emerging and mature markets from crashes and how long 
these markets retain information about crashes, we employed the DWT and eigenanalysis. The steps of this 
process are: (i) Use the DWT to divide the return series of emerging and mature markets into different frequency 
components. (ii) Rebuild the returns using each wavelet components (dl, dz, d3, etc.) and (iii) Study the 
distribution of the ratio (Al/Az) of variance-covariance matrices for overlapping windows of size 20 for 
these series. 

Figs l @ x d )  and 2(b)-(d) show the ratio (A1/A2) from covariance matrices for each window for the return 
series, which are rebuilt from dl, dz and d3, (representing fortnightly, monthly and bi-monthly data, 
respectively), for emerging and mature markets, respectively. Looking at the ratio scales in these figures, we 
can clearly seen two main features; firstly, for emerging markets, even bi-monthly return series, which are 
rebuilt from d3, seem to carry information on crashes and events and this seems to imply that emerging 
markets take up to two mouths to recover from a crash. Secondly, for mature markets, the ratio in Figs. 2(c) 
and (d) are meaningless because the ratio scales are very big and this indicates that neither monthly nor bi- 
monthly data (rebuilt from dz and d3, respectively), seem to have information on crises and events implying 
that mature markets take less than a month to recover from crashes. 

To sum up, we would say that the results appear to indicate that mature markets take actlon more quickly 
than emerging markets to recover from crashes and also that mature markets exhibit anti-persistent behaviour 
while emerging markets show persistent behaviour. In other words, the recovery time from crisis for developed 
markets appears to be shorter than that for developing ones. 

The aims of this work were to study the distribution of the largest (11) and the second largest (Az) 
eigenvalues of covariance matrices for emerging and mature markets and also to study the distribution of the 
ratio of A1 to A2 for the original return series and for those reconstructed from wavelet components (dl, d2 and 
d3). The summary of our results is as follows: 

1. From studying the original return series, we found that differences exist between emerging and mature 
markets in dealing with crashes (especially unexpected ones). For major markets, the ratio is high at three 
points representing the 12th anniversary of the 19 October stock market crash, 1999, the 9/11 crash, 2001 and 
Madrid Bomb, March 2004, respectively. However, for emerging markets, the ratio is only high at one 
point, representing the 9/11 crash, 2001. 

2. Using the DWT to study the behaviour of stock markets provides a clearer view on the structure and 
dynamics of the data sets and gives us a good measurement of the recovery time and direction of 
movements in these markets. It also indicates that emerging markets take up to two months to recover from 
crashes while mature ones take less than a month to do so. 

3. Both 1, and A2 are needed to describe the behaviour of emerging markets while A1 is adequate alone to 
describe the behaviour of mature markets. 

4. Mature markets move together in the same direction to deal with crises and show little internal variation 
which suggests that cooperative behaviour applies both within and between such markets. In other words, 
shareholders in these markets appear to have similar patterns of selling and buying shares. However, 
emerging markets show more internal variation and thus demonstrate differing views of shareholders in 
these markets which take different directions in dealing with crashes and unexpected events. 
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