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Abstract 

This dissertation describes new techniques that can be used in a sign language recog- 

nition (SLR) system, and more generally in human gesture systems. Any SLR system 

consists of three main components: Skin detector, Tracker, and Recognizer. The skin 

detector is responsible for segmenting skin objects like the face and hands from video 

frames. The tracker keeps track of the hand location (more specifically the bounding 

box) and detects any occlusions that might happen between any skin objects. Fi- 

nally, the recognizer tries to classify the performed sign into one of the sign classes 

in our vocabulary using the set of features and information provided by the tracker. 

In this work, we propose a new technique for skin segmentation using SVM (sup- 

port vector machine) active learning combined with region segmentation information. 

Having segmented the face and hands, we need to track them across the frames. So, 

we have developed a unified framework for segmenting and tracking skin objects and 

detecting occlusions, where both components of segmentation and tracking help each 

other. Good tracking helps to reduce the search space for skin objects, and accurate 

segmentation increases the overall tracker accuracy. 

Instead of dealing with the whole sign for recognition, the sign can be broken 

down into elementary subunits, which are far less in number than the total num- 

ber of signs in the vocabulary. This motivated us to propose a novel algorithm to 



model and segment these subunits, then try to learn the informative combinations 

of subunits/features using a boosting framework. Our results reached above 90% 

recognition rate using very few training samples. 



Chapter 1 

Introduction 

1.1 Introduction 

In daily life, human beings communicate with each other and interact with computers 

using gestures. As a kind of gesture, sign language (SL) is the primary communi- 

cation media for deaf people. Everyday, millions of deaf people all over the world 

are using SL to get useful information and exchange ideas. Therefore, in recent 

years, SL recognition has gained a lot of attention and a variety of solutions have 

been proposed. Sign gestures might be treated as a composition of hand shape, mo- 

tion, position, and facial expression. Thus, SL recognition requires knowledge of all 

of these. Generally, a SL recognition system should contain three major modules: 

skin segmentation and tracking (SST), feature extraction, and recognition. The first 

module is to acquire and locate hands and face across the video frames. The purpose 

of the second module is to prepare useful features for classification. 

Fig. 1.1 demonstrates a general system architecture overview for a SLR system. 

Based on segmented hands and face, we can extract the hand shape, orientation, and 

facial expression features. Through analyzing the tracked skin objects, we obtain the 

hand motion trajectories, hand position, and lip movement. Finally, classifiers are 

trained to recognize the signs. 



I Hands and face detection I 

Tracking + 
Hand shape, position, motion, 
occlusion status, . . . etc 

output 
Recognition 

Figure 1.1: System architecture 

1.2 Device vs Vision approach to SLR 

According to the means of capturing features, SL recognition techniques can be clas- 

sified into two groups: glove-based and vision-based. The former group of approaches 

requires users to wear data or colour gloves. The glove enables the system to avoid or 

simplify the segmentation and tracking task. However, its disadvantages are appar- 

ent. On the one hand, users have to carry a hardware device, which makes them feel 

uncomfortable. Sometimes, they cannot perform accurate gestures with the gloves. 

On the other hand, the glove-based methods might lose the facial expression infor- 

mation, which is very important for the SL recognition as well. 

In comparison, the vision-based methods rely on computer vision techniques without 

needing any gloves, which is more natural for users. However, one difficulty is how 

to accurately segment and track hands and face. SST plays an important role in 

vision-based SL recognition. Only after skin objects have been acquired, useful de- 

scriptions such as hand shape, motion, and facial expression, and further recognition 

are possible. In other words, SST is the cornerstone of SL recognition. In order to 

produce high quality SST, two techniques must be developed: a powerful skin colour 

model and a robust tracker. The skin colour model offers an effective way to detect 

and segment skin pixels. It should be able to handle illumination and human skin 

variations. The tracker is responsible for locating skin objects. For SL recognition, 

it should be capable of predicting occlusions that frequently happen in real world SL 



conversations. The purpose of occlusion detection is to keep track of the status of 

the occluded parts, which helps to reduce the search space in the recognition phase. 

1.3 Overview of the proposed SLR system 

This work aims to provide an SST framework for SL recognition, then given that we 

can acquire the required useful features we propose a novel solution for SLR based 

on boosting SL subunits. To achieve precise skin segmentation, we introduce a novel 

skin colour model integrating SVM active learning and region segmentation. This 

model consists of two stages: a training stage and segmentation stage. In the train- 

ing stage, first, for the given gesture video, a generic skin colour model is applied 

to the first few frames, which obtains the initial skin areas. Afterwards, a binary 

classifier based on SVM active learning is trained using obtained initial skin areas 

as the training set. In the segmentation stage, the SVM classifier is incorporated 

with the region information to yield the final skin colour pixels. The contribution 

that distinguishes the proposed model from other existing skin colour algorithms is 

twofold. First, the SVM classifier is trained using the training data automatically 

collected from the first several video frames, which does not need human labour to 

construct the training set. More importantly, the training is performed for every 

video sequence. It is adaptive to different human skin colours and lighting condi- 

tions. The skin colour model can also be updated with the help of tracking to deal 

with illumination variation. Second, region information is adopted to reduce noise 

and illumination variation. Moreover, active learning is employed to select the most 

informative training subset for the SVM, which leads to fast convergence and better 

performance. 

As for the tracker, we extend the previous work of our group in three ways. First, in 

the previous work they used the colour glove to avoid the segmentation issue. In this 

work, we are more interested in improving SL recognition in natural conversation. 

Three features, skin color, motion, and position, are fused to perform accurate skin 

object segmentation. Additionally, the previous work tracked two hands wearing 



color glove only. However, the proposed work can segment and track two hands 

and face. The obtained face information definitely could facilitate the recognition. 

Second, we apply a Kalman filter (KF) to predict occlusions in the same way as the 

previous work. Nevertheless, our KF is based on the skin colour instead of colour 

glove. Third, in the proposed work, tracking and segmentation tasks are approached 

as one unified problem where tracking helps to reduce the search space used in 

segmentation, and good segmentation helps to accurately enhance the tracking per- 

formance. 

Despite the great deal of effort in SLR so far, most existing systems can achieve good 

performance only with small vocabularies or gesture datasets. Increasing vocabulary 

inevitably incurs many difficulties for training and recognition, such as the large 

size of required training set, signer variation and so on. Therefore, to reduce these 

problems, some researchers have proposed to decompose the sign into subunits. In 

contrast with traditional systems, this idea has the following advantages. First, the 

number of subunits is much smaller than the number of signs, which leads to a small 

sample size for training and small search space for recognition. Second, subunits 

build a bridge between low-level hand motion and high-level semantic SL under- 

standing. In general, a subunit is considered to be the smallest contrastive unit in a 

language in the field of linguistics. A number of researchers have provided evidence 

that signs can be broken down into elementary units. However, there is no generally 

accepted conclusion yet about how to model and segment subunits in the computer 

vision field. 

This work investigates the detection of subunits from the viewpoint of human motion 

characteristics. We model the subunit as a continuous hand action in time and space. 

It is a motion pattern that covers a sequence of consecutive frames with interrelated 

spatio-temporal features. In terms of the modelling, we then integrate hand speed 

and trajectory to locate subunit boundaries. The contribution of our work lies in 

three points. First, our algorithm is effective without needing any prior knowledge 

like the number of subunits within one sign and the type of sign. Second, the tra- 

jectory of hand motion is combined so that the algorithm does not rely on clear 



pauses as in some previous related work. Finally, because of the use of an adaptive 

threshold in motion discontinuity detection and refinement by temporal clustering, 

our method is more robust to noise and signer variation. 

After segmenting the SL subunits, we attempt to develop an effective SLR system 

using the AdaBoost algorithm which tries to learn informative subunit and fea- 

ture combinations needed to achieve good classification performance. To our best 

knowledge, very little work has been done using Adaboost in SLR. We present two 

variations for learning boosted subunits. In the first case, we train the sign classes 

independently, and in the second case, we train the classes jointly, which permits the 

various classes to share the weak classifiers to increase the overall performance. 

The presented work enables us to efficiently recognize SL with a large vocabulary 

using a small training dataset. One important advantage of our algorithm is that 

it is inspired by human signing behaviour and recognition ability so it can work in 

a manner analogous to humans. Experiments on real-world signing videos and the 

comparison with classical HMM-based weak classifiers demonstrate the superiority 

of the proposed work. 

In this thesis, we aimed to provide new different techniques that can be applied 

in SLR applications. Our goal was to contribute to research in skin segmentation, 

hand and face tracking, modelling and recognizing signs efficiently based on human 

behaviour in performing and recognizing signs using informative subunits of the signs. 

1.4 Overview of the Thesis 

The next chapter introduces the reader to the literature review of the different SLR 

systems proposed by different research groups to solve the problem of SLR. 

Chapter 3 gives a review of current skin segmentation techniques and discusses 

our proposed skin segmentation algorithm with various evaluation results. 

Chapter 4 introduces our proposed SST system and provides some experimental 

results for skin segmentation and tracking. 

Chapter 5 introduces the subunit modelling and segmentation algorithm and ends 



with some evaluation experiments. 

Chapter 6 introduces our SLR system based on learning boosted subunits and 

presents the experimental results of the classification. 

Chapter 7 concludes with a summary, and gives some future work directions. 



Chapter 2 

Sign Language Recognition 

Literature review 

2.1 Introduction 

In taxonomies of communicative hand/arm gestures, Sign Language (SL) is often 

considered as the most structured form of gesture, while gestures that accompany 

verbal discourse are described as the least standardized. SL communication also in- 

volves non-manual signals (NMS) through facial expressions, head movements, body 

postures and torso movements [Ong and Ranganath 051. 

SLR therefore requires observing these features simultaneously together with their 

synchronization, and information integration. As a result, SLR is a complex task 

and understanding it involves great efforts in collaborative research in machine 

analysis and understanding of human action and behaviour; for example, face and 

facial expression recognition [Kong et al. 04, Pantic and Rothkrantz 001, tracking 

and human motion analysis [Gavrila 99, Wang et al. 031, and gesture recognition 

[Pavlovic et al. 971. 

As non-SL gestures often consist of small limited vocabularies, they are not a useful 

benchmark to evaluate gesture recognition systems. However, SL on the other hand 

can offer a good benchmark to evaluate different gesture recognition systems because 

it consists of large and well-defined vocabularies, which can be hard to disambiguate 



by different systems. 

In real life, we can imagine many different useful applications for SLR such as: 

sign-to-textlspeech translation system or dialog systems for use in specific pub- 

lic domains such as airports, post offices, or hospitals 

[McGuire et al. 04, Akyol and Canzler 021. 

In video communication between deaf people, instead of sending live videos, 

SLR can help to translate the video to notations which are transmitted and 

then animated at the other end to save bandwidth [Kennaway 031. 

SLR can help in annotating sign videos [Koizumi et al. 021 for linguistic anal- 

ysis to save a lot of human labour manually in ground truthing the videos. 

SL gesture data is mainly acquired using cameras (vision-based) or sensor devices 

(glove-based) [Sturman and Zeltzer 941. We are interested here in the vision-based 

approach as the glove-based approach has the limitation of being an unnatural way of 

performing signs. However, it can simplify a lot the tasks of segmentation (especially 

in the presence of occlusions) and tracking. But it ignores the fact that we need 

the facial expression as an important feature. In the next sections, we will try 

to summarize the related work done by different research groups in SLR. We will 

cover the three main tasks of hand detection and tracking, feature extraction and 

classification. 

2.2 Hand detection and tracking 

In almost all SLR systems, the hand(s) must be detected in the image sequence, and 

this is usually based on features like colour, motion, and/or edge. The colour cue is 

used by skin colour detection or using colour gloves such as in [Sweeney and Downton 96, 

Sutherland 96, Bauer and Kraiss 02, Assan and Grobel 97, Bauer and Kraiss 011. 

When skin colour is used, the user is usually required to wear long sleeves to avoid 

the skin colour of the arm area. Skin colour was combined with a motion cue in 



[Akyol and Alvarado 01, Imagawa and Igi 98, Yang et al. 021 and with edge infor- 

mation in [Terrillon et al. 021. Different assumptions were used to distinguish the 

hands from the face such as that the head is relatively static compared to the hands 

[Akyol and Alvarado 01, Imagawa and Igi 981 or that the head is bigger than the 

hands [Yang et al. 021. 

A common requirement for the motion cue, is that the hand must be continuously 

moving as in [Huang and Jeng 011 where the hand was detected by logically AND- 

ing difference images with edge maps and skin-color regions. In [Cui and Weng 00, 

Cui and Weng 991 a hierarchical nearest neighbour decision rule was used to map 

partial views of the hand to previously learned hand contours to obtain an outline 

of the hand. 

In [Huang and Huang 981 the hands were detected assuming that it is the only object 

moving against a stationary background and that the head is relatively stationary. 

In [Ong and Bowden 041 they used a boosted cascade of classifiers to detect hand 

shapes, where dark backgrounds were used and signers were asked to wear long- 

sleeved dark clothing. Other related work also tried to localize body parts such as 

the body torso [Bauer and Kraiss 02, Assan and Grobel 971, or elbow and shoulders 

[Hienz et al. 961 along with the hands and face, based on the body geometry and 

colour cues. This helps to reference the position and movement of the hands to the 

signer's body. 

Hand tracking can be done either in 2D or 3D. In 2D tracking, approaches can be 

classified to boundary-based [Huang and Huang 98, Cui and Weng 001, view-based 

[Huang and Jeng 011, blob-based [Tanibata et al. 02, Imagawa and Igi 981, and match- 

ing motion regions [Yang et al. 021. One of the hard problems in tracking is occlu- 

sion. Generally speaking, in most systems that are based on skin colour, occlusion 

handling is poor and not satisfactory. Some systems try to predict the hand location 

based on the model dynamics and previous frame positions with the assumption of 

small constant hand motion [Starner et al. 98, Imagawa and Igi 981. 

In [Starner et al. 981 they subtracted the face region from the merged face/hand 

blob, but unfortunately this method only can handle small overlaps. In [Imagawa 001 



they applied a sliding observation window over the merged blob of facelhand and 

the likelihood of the window subimage was calculated to classify it to one of the 

possible hand shape classes. The overlapping hands and face were distinguished in 

[Tanibata et al. 021 by using hand and face texture templates. This method is not 

robust to change in hand shape, face orientation, or large change in facial expres- 

sion. 

Another interesting approach that does not track the hands and face separately 

[Zieren et al. 02, Sherrah 001, but rather applies probabilistic reasoning (such as 

heuristic rules [Zieren et al. 021 or Bayesian networks [Sherrah 001) for simultane- 

ous assignment of labels to the possible handlface regions, assuming that the skin 

blobs can only be assigned to the hands, thus not allowing for other skin regions 

in the background. This allows more robust tracking that can deal with high over- 

lapping and fast hand movement, along with complex hand interactions. Multiple 

features were used such as motion, colour, orientation, size and shape of blobs, dis- 

tance relative to other body parts, and Kalman filter prediction. 

In [Assan and Grobel 97, Bauer and Kraiss 02, Huang and Huang 981 uniform back- 

grounds were used to simplify the constraints. However, a few systems such as in 

[Chen et al. 031, allow complex cluttered background that include moving objects 

and apply background subtraction to extract the foreground under the assumption 

that the hand is constantly moving. In contrast to the above approaches, there are 

some systems that use 3D models [Vogler and Metaxas 97, Downton and Drouet 921 

by using multiple cameras to estimate the body parts and/or avoid occlusions but 

of course with a great computational cost. 

As skin segmentation is one of the main research areas that we will address in this 

work, the next section reviews the major techniques used to detect skin pixels in 

images or videos. 

2.2.1 Skin segmentation review 

In general, skin detection methods [Vezhnevets et al. 031 can be classified into two 

groups. Pixel-based methods that classify each pixel as skin or non-skin indepen- 



dently from its neighbours, and Region-based methods that take into considera- 

tion the spatial arrangement of skin pixels [Kruppa et al. 02, Yang and Ahuja 98, 

Jedynak et al. 021. This survey concentrates on Pixel-based methods, as it is the 

most commonly used among existing skin segmentation techniques. In the past 

few years, a number of comparative studies of skin colour pixel classification have 

been reported. The first large skin database, the compaq database, was created by 

[Jones and Rehg 021 and used to compare three different techniques namely, thresh- 

olding the redlgreen ratio, colour space mapping with 1D indicator, and RGB skin 

probability map [Brand and Mason 001. Gaussian and Gaussian Mixture Models 

(GMMs) were compared across nine chrominance spaces in [Terrillon 001. A compar- 

ison of five colour spaces and two non-parametric skin-modelling methods (lookup 

table and Bayes skin probability map) has been provided in [Zarit et al. 991. In 

[Lee and Yoo 021 the single Gaussian and GMM have been compared in different 

chrominance spaces and a new model is proposed. 

2.2.2 Colour representations 

Many colour spaces exist with different properties and many of them have been used 

in skin segmentation. There has been no agreement on whether to use only the pixel 

chrominance ignoring the luminance or not. We will briefly review the most popular 

colour spaces used in the image-processing field [Foley et al. 901: 

RGB: The three primary colours red (R), green (G), and blue (B). 

HSV: The hue (H), saturation (S), and intensity value (V), which are the three 

attributes in human perception of colour. 

YCbCr: The luminance (Y) and chrominance (Cb and Cr channels). 

In our skin segmentation approach, we adopt the RGB colour space. We think that 

by using only the chrominan information we might be losing information, so we try 

to cope with the original colour 3D features. 



2.2.3 Skin segmentation classification algorithms 

The objective of the classification algorithms is to build a decision rule that will 

discriminate between skin and non-skin pixels. This is usually done by building a 

metric that measures the distance of the pixel to the skin colour. The type of this 

metric is defined by the skin colour modelling method [Vezhnevets et al. 031. We 

can categorize skin modelling methods into three main categories: explicit decision 

rules, non-parametric modelling and parametric modelling. 

2.2.3.1 Explicitly defined skin region 

An obvious method to build a skin classifier is to define empirically some decision 

rules for skin clustering in some colour space. Algorithm 1 shows a particularly 

widely used rule [Peer 031 that is developed for RGB colour space. 

Algorithm 1 (R,G,B) is classified as skin if: R>95 and G>40 and B>20 and 
max{R,G,B) - min{R,G,B)>15 and IR-G1>15 and R>G and R>B 

The advantage of this method is the simplicity of the decision rules, which makes 

it very fast and easy to implement. The disadvantage of this method is the need 

for a suitable colour space and adequate decision rules (tested on a representative 

dataset) that result in reasonable classification accuracy for a particular application. 

2.2.3.2 Nonparametric skin distribution modelling 

The key idea here is to use the training data to estimate the skin colour distribu- 

tion without defining an explicit model of the skin colour [Brand and Mason 001. 

Many variations exist in the literature from histogram based modelling to the Self 

Organizing Map (SOM) based on neural networks. 

Normalized lookup table (LUT) 

The histogram-based approach to skin segmentation has been used in several face 

detection and tracking algorithms [Zarit et al. 99, Vezhnevets et al. 031. This ap- 

proach relies on the assumption that skin colours form a cluster in some colour space 



[Jones and Rehg 021. A 2D or 3D histogram is constructed by quantizing the colour 

space into a number of bins, each corresponding to particular range of colour com- 

ponents (pairs or triads). These bins form the lookup table (LUT) and each of them 

stores the frequency of this particular colour in the training skin images. Normaliz- 

ing the histogram bin values converts the histogram values to a discrete probability 

distribution: 

Where skin[c] gives the count in the histogram bin associated with the colour vec- 

tor c, and N is the normalization coefficient, (sum of all bin values [Jones and Rehg 021, 

or maximum bin value [Zarit et al. 991). The normalized values of the histogram bins 

form the likelihood that the corresponding colours are from skin pixels. 

a Bayes Classifier 

Using two histograms; one for skin and one for non-skin, we can use Bayes Theorem 

to choose the most likely hypothesis given the value of a colour vector c. Therefore 

the probability that a given colour c belongs to skin class or non-skin class is given 

by the equations 2.2 and 2.3 respectively: 

N skin[c] 
P(cl - skin) = 

Tn 

Where skin[c] and "skin[c] is the pixel count in bin c of the skin and non-skin 

histograms respectively, and T ,  and T ,  are the total counts in skin and non-skin 

histograms respectively. Then we have from Bayes Theorem: 



This corresponds to Maximum a posteriori (MAP) criterion, where P(slcin) and 

P("slcin) can be estimated from the overall number of skin and non-skin samples 

in the training set [Jones and Rehg 02, Zarit et al. 991. A decision rule can then be 

obtained by comparing equation 2.4 to a threshold. After some manipulations, eq. 

2.4 can be written as [Vezhnevets et al. 031: 

P(c1skin) > O 
P(cl N skin) 

1 - P(skin) 
O = K *  , where K i s  constant 

P (s kin) 

Which is seen to be a Maximum likelihood (ML) detector. It turns out [Zarit et al. 991 

that MAP and ML Bayes classification rules are equivalent with different threshold 

values, this is because the priori probability P(skin) affects only the choice of the 

threshold O. There exist an optimal threshold that minimizes the overall classifica- 

tion cost. These histogram-based methods are also termed Skin Probability Maps 

(SPM) [Brand and Mason 001. 

Self Organizing Map (SOM) 

SOM is one of the most famous and widely used types of unsupervised artificial 

neural network. It has mainly been used to find patterns in and classify high di- 

mensional data, although it works equally as well with low dimensional data. In 

[Brown et al. 011, they trained two SOMs (skin and skin/non-skin). Their results 

have shown that SOM skin detectors performance doesn't change significantly with 

different colour spaces. It has also shown better results than Gaussian Mixture Mod- 

els. According to the authors, the SOM method needs less resources than GMMs 

and histogram-based models using a specialized hardware. 

Nonparametric methods summary 

Two obvious advantages of non-parametric methods are that they are fast in training 

and usage and also they are independent to the shape of the distribution and therefore 



to the colour space. On the other hand, they require much storage space, are unable 

to generalize or interpolate the training data, are not adaptive from one dataset 

to another and also they need a representative dataset to capture accurately the 

distribution. 

2.2.3.3 Parametric skin distribution modelling 

The need for more compact models together with the ability of interpolating the 

training data motivated using parametric techniques such as Single Gaussian and 

Mixture Gaussian Models. 

a Single Gaussian 

An elliptical Gaussian pdf for skin colour distribution can be modelled as: 

Where Ms and Cs are the mean vector and covariance matrix of the skin class 

and d is the dimension of the feature vector. We can use the P(c/skin) probability to 

measure how "skin-like" the c colour is [Vezhnevets et al. 031, or alternatively, the 

Mahalanobis distance can be used as well assuming a uniform distribution of non-skin 

class. So the ML rule in equation 2.5 can be reduced to the following equation: 

Where O is a threshold and the left hand side is the squared Mahalanobis dis- 

tance. 

a Mixture of Gaussians 

Generalizing the single Gaussian, a more advanced model is a mixture of Gaussians. 

The pdf in this case is given by: 



Where K is the number of mixture components, .rri is the contribution of the ith 

Ic component, obeying the normalization constraint Ci=l .rri = 1, and Pi(c/skin) are 

the Gaussians pdfs, each with its own corresponding mean and covariance matrix. 

The Expectation Maximization (EM) algorithm is well-known technique to train 

the model given the number of components k [Jones and Rehg 02, Terrillon 001. By 

comparing the probability P(c/slcin) to a threshold, we can decide the class of the 

pixel. Note that the choice of k is very important so that the model explains the 

training data without over-fitting. 

a Multiple Gaussian Clusters 

The skin colour cluster can be approximated with k 3D Gaussians using a variant of 

the k-means clustering algorithm [Phung et al. 021. Then the Mahalanobis distance 

is measured from the colour vector c to the clusters' centres and classified as skin if 

the distance to the closest model cluster is below a threshold. 

a Parametr ic  methods summary  

Three important advantages of parametric methods are (1) their speed is acceptably 

fast (except for GMMs with many components), (2) they need little storage space, 

and (3) they are able to interpolate and generalize incomplete training data. On the 

other hand their performance depends on the skin distribution shape and therefore 

the colour space. The parameters can change from one image to another if envi- 

ronmental conditions change, and it is hard to determine whether to use a single or 

mixture Gaussian Model and how many components to use in the mixture Gaussian. 

In addition, to capture accurately the distribution, we need a large training dataset 

which in some cases might be very expensive to collect. 

2.3 Feature extraction 

The type of features extracted for classification of signs largely depends on ex- 

actly what type of signs the system aims to classify. For example, for under- 

standing hand signing, usually researchers are interested in hand shape, motion, 



position, orientation, facial expressions. While for finger spelling systems such as 

in [Wu and Huang 00, Birk et a1 97, Handouyahia et a1 991, and [Gupta and Ma 01, 

Deng and Tsui 021 the features mainly describe the hand configuration and orienta- 

tion and the field of view (FOV) for the camera is mainly on the hand alone with 

uniform background. However in more general signing, the FOV has to be on the 

whole upper body to capture the movement of the hands and occlusions. 

A common feature for the hand position is the "centre-of-gravity" of the hand blob 

which can be measured in raw image coordinates [Starner et al. 981, relative to the 

first frame [Cui and Weng 001, or relative to other body parts [Assan and Grobel 97, 

Bauer and Kraiss 02, Tanibata et al. 021. 

Approaches that use multiple cameras to obtain the 3D position of hands and 

other body parts can provide better accuracy but with high computational cost 

[Vogler and Metaxas 97, Matsuo et al. 971. A stereo camera was used to find the 3D 

position of both hands in a body-centered coordinate frame in [Matsuo et al. 971, 

while in [Vogler and Metaxas 971 the orientation parameters and the 3D wrist posi- 

tion coordinates were extracted relative to the signer's spine. In general, these ap- 

proaches might achieve high accuracy in terms of tracking and resolving occlusions 

but they still suffer from problems such as scalability to large vocabulary, signer in- 

dependence, segmenting sign segments from continous signs and not including facial 

features 

With regard to motion features, Yang et a1 [Yang et al. 021 have used hand trajec- 

tories, while in [Min et al. 971 they used the chain code of hand positions to train 

an HMM. Optical flow was used in [Chen et al. 031. 

Hand appearance features can be obtained from segmented hand images, hand blobs 

(silhouettes), or hand contours. Usually, the segmented images are normalized for 

illumination change, size, scale, rotation and translation and techniques like Princi- 

pal Component Analysis (PCA) are used to reduce the dimensionality before further 

processing [Birk et a1 97, Imagawa 001. 

In [Kennaway 03, Cui and Weng 991, they used geometric moments of hand blobs. 

In [Bauer and Kraiss 02, Assan and Grobel 971, sizes, distances and angles between 



coloured fingers were calculated, while Fourier descriptors (FD) were calculated on 

hand contours in [Huang and Huang 98, Chen et al. 031. 

In [Al-Jarrah and Halawani 011, they used the distance between the finger tips and 

hand centroid. In [Huang and Jeng 011 hand contours were represented by Active 

Shape Models. PCA was used in training hand contours in [Bowden and Sarhadi 021. 

Generally speaking, contour-based representations have the advantage of using in- 

variant features to translation, scaling, and 2D rotation. However, different hand 

shapes with similar contours can be very hard to distinguish as their contour-based 

representations (features) become very similar and thus increasing the ambiguity in 

classification. 

2.4 Classification methods 

Two main approaches are used to classify signs. One approach uses a single classifica- 

tion stage using the different features collected, while the other approach tries to clas- 

sify sign components (hand shape, motion, position, ... etc) and then integrate their 

classification results into a final sign-level classification stage. SLR systems are di- 

vided into two groups, one group tries to recognize isolated signs, while the other rec- 

ognizes continuous signs. Neural networks are one of the famous methods for classi- 

fication, especially for hand shapes [Waldron and Kim 95, Vamplew and Adams 98, 

Handouyahia et a1 991. Hand position, movement type and orientation have been 

classified by NNs in [Waldron and Kim 95, Vamplew and Adams 981, while whole 

signs were classified in [Huang and Huang 981. 

Time-Delay NNs that can handle temporal processing but that require standard tem- 

poral length were used by [Yang et al. 021 to classify signs from hand trajectory. A 

fixed temporal length is not required by Recurrent NNs and were used by to classify 

sign words [Murakami and Taguchi 911. 

Due to their popularity in speech recognition to process time series data, HMMs 

have been used in gesture recognition as well. HMMs have the ability to segment 

continuous speech into individual trained words or phonemes which are chained to- 



gether in a tree-like structure. This idea was also used by researchers for recognition 

of continuous signs [Wang et al. 02, Bauer and Kraiss 02, Liang and Ouhyoung 98, 

Gao et a1 001. Some researchers tried to segment the signs into sequential subunits, 

where the HMM states model the subunits for each sign [Bauer and Kraiss 011. This 

idea is very similar to the speech phonetic acoustic models 

In [Bauer and Kraiss 021, the recognition performance of 150 HMM subunits trained 

on 100 isolated signs reached 92.5 percent. In [Vogler 03, Wang et al. 02, Yuan et al. 021, 

they defined subunits from the view-point of linguistics instead of using unsuper- 

vised learning. PCA and Multiple Discriminant Analysis (MDA) were used by 

[Cui and Weng 001. They classified 28 ASL signs by constructing a recursive par- 

tition tree and applied PCA and MDA at the node. In [Deng and Tsui 021, they 

first applied PCA, and then using Gaussian distributions they clustered the data 

by coarse classification before applying MDA locally on each cluster. This gave 

them better results for a larger vocabulary instead of using MDA on the whole 

dataset. Signs were classified based on only the beginning and ending hand shape in 

[Imagawa 00, Deng and Tsui 021. In [Wu and Huang 001, they used MDA to classify 

14 hand shapes by training a classifier on a large unlabeled dataset and small labeled 

dataset modelled by the same mixture density. 

Other methods have been used for classification of signs and hand shapes such as 

Template matching [Gupta and Ma 011, nearest-neighbour matching [Kramer and Leifer 871, 

and decision trees [Hernandez et al. 041. In terms of classifying sign components and 

then integrating their classification results, a common approach [Hernandez et al. 04, 

Imagawa 00, Vamplew and Adams 981 is to hand-code lexicons, that define a sign 

from these components, and then classification is performed by comparing the rec- 

ognized components with the ideal lexicon classes. 

In [Vamplew and Adams 981, they employed a nearest-neighbour algorithm to do the 

matching with a heuristic distance measure. HMMs were used to recognize the sign 

components in [Liang and Ouhyoung 981, then Dynamic Programming was used to 

classify the sign. NNs were used in [Gao et a1 001 to classify sign components then 

these labels were used as observations for HMM states that were then used to classify 



the sign word. 

In [Tanibata et al. 021, they modelled each hand with one HMM channel, then com- 

bined the results by multiplying the probabilities for isolated word recognition. NNs 

in [Waldron and Kim 951 were used to combine component-level results. The advan- 

tage of the component-level approach is that fewer classes have to be classified at 

the component level (which means simpler classifiers with fewer parameters). Then 

combining the results of these components can be used to classify a large vocabulary. 

This approach scales well [Hernandez et al. 041. 

2.5 Vision-based imaging restrictions 

In a survey [Ong and Ranganath 051 of the commonly used imaging restrictions and 

constraints in vision-based SLR systems, it has been shown that most systems use 

at least two of the following restrictions: 

Long-sleeved clothing [Assan and Grobel 97, Bauer and Kraiss 021, 

[Huang and Huang 98, Starner et al. 98, Tanibata et al. 021, 

[Imagawa 00, Yang et al. 021. 

Coloured gloves [Assan and Grobel 97, Bauer and Kraiss 021, 

[Matsuo et al. 97, Holden and Owens 001. 

Uniform background [Assan and Grobel 97, Bauer and Kraiss 021, 

[Holden and Owens 00, Yang et al. 021, 

[Huang and Huang 98, Matsuo et al. 971. 

Complex but stationary background 

[Cui and Weng 00, Starner et al. 98, Tanibata et al. 02, Imagawa 001. 

Head is required to have less motion than the hands [Cui and Weng 001, 

[Huang and Huang 98, Starner et al. 98, Tanibata et al. 02, Imagawa 001. 

Hands are moving continuously [Cui and Weng 001. 



Specific initial hand location or fixed body location or pose 

[Starner et al. 98, Tanibata et al. 021. 

Face and/or left hand is excluded from FOV 

[Cui and Weng 00, Huang and Huang 98, Holden and Owens 001. 

Unnatural signs to avoid overlapping with face or occlusion with other hand 

[Cui and Weng 00, Huang and Huang 981. 

The message that we get from these restrictions is that SLR (especially vision-based) 

is still in it's early age of investigation and needs a lot of effort and time to reach a 

mature level of research. Systems need to overcome these restrictions and scale well 

to handle large vocabularies with single and two-hand signs, be independent of the 

signers, and work in a natural environment not just inside academic laboratories. In 

our proposed work, our system can be characterized by the following: 

No restrictions on long-sleeved clothing for tracking, but for recognition we do 

require it to extract the hand shape features from the palm area. 

No colour gloves. 

Background can be non-uniform as far as initially there is no big skin-like areas. 

Initially we require that no other skin-like colours exist other than the signer's 

face and hands. 

Background can be non-stationary during tracking (as we operate inside search 

windows instead of whole frame). 

No restrictions on head and hands movements. 

No specific hand or head positions. 

We detect occlusions but without segmenting occluded objects. 



2.6 Summary 

In this chapter we presented a review of SLR systems from various research groups. 

We reviewed the common methods used in the three main stages for sign classifica- 

tion: Locating and tracking the hands, feature extraction and classification methods. 

Hands detection and tracking is a very important task to enable us to extract the rel- 

evant features like hand shape, position, orientation, motion type. Also, non-manual 

features are considered a necessary channel for useful features although many sys- 

tems ignore them and focus only on the hands. Two major divisions exist in terms of 

hand segmentation: colour-gloves and skin segmentation. Also, two major schemes 

for sign classification exist: either classifying sign components first then integrating 

their results, or classifying directly the sign using all the existing features. In general, 

there is a trade-off between the restrictions and constraints on the imaging environ- 

ment and the vocabulary size. As we restrict more the environmental conditions, 

we can handle more signs and vice-versa. In general, the main technical challenges 

can be summarized as follows: handling large vocabulary (scalability), signer inde- 

pendence, incorporating all relevant features such as facial expressions and spatial 

relationships between them, using the context and grammar in recognition, segment- 

ing sign words from continuous signs, flexible imaging restrictions without decreasing 

the total accuracy. 



Chapter 3 

Skin Segment at ion 

3.1 Introduction 

Skin segmentation has attracted a lot of research interest in recent years. I t  aims to 

detect human skin regions in an image. For example skin detection has been used in 

applications such as speaker recognition and speaker location [Wang and Brandstein 991, 

the detection of pornographic material [Fors~th and Fleck 961 and video data index- 

ing [Hsu et al. 981. I t  is also commonly used in applications for hand gesture anal- 

ysis [Zhu et al. 001, face detection [Hsu et al. 02, Yang and Waibel 961, and objec- 

tionable image filtering [Jones and Rehg 021. In these applications, the skin regions 

detection helps to reduce the search space of skin objects such as faces or hands. 

Also in face and hands tracking algorithms it can give an initial estimate or be used 

as an important clue to the tracking algorithm [Zarit et al. 991. The skin colour as 

a feature is very attractive as it allows fast processing, and it is highly robust to the 

pose of the object. In addition, the characteristic colour of the skin (a particular 

tone that does not vary much with different races of the same colour) makes it easy 

to be recognized by human eyes [Vezhnevets et al. 031. Also, the concentration of 

the skin colour in a small region in the RGB colour space can help us to  develop a 

corresponding colour model. On the other hand, the main challenge that faces skin 

detection algorithms is to make them robust to the large variations in its appearance. 

For example, the skin appearance can change in shape and colour and is often af- 



fected by occlusions and changes in position, intensity, colour of light sources. Other 

objects may cast shadows on skin regions and other image noise regions can appear as 

a skin-like colour. Finally other objects may have skin-like colours e.g. clothes,. . .etc, 

which makes it difficult task to discriminate skin from non-skin regions. 

Recently, a new trend in research into skin colour models, called adaptive mod- 

els, has attracted increasing attention. Technically, it emphasizes how to model 

the skin colour under the condition of varying illumination. In [Yang et al. 98, 

Mckenna et al. 991 and [Wu et a1 001, they firstly formulated the skin colour dis- 

tribution as a GMM. Then, parameters, such as mean and covariance, of the GMM 

were dynamically updated over time by collaborating prediction from the previous 

tracked skin objects with the Maximum Likelihood (ML) algorithm [Yang et al. 98, 

Mckenna et al. 991 or the Discriminant Expectation- Maximization [Wu et a1 001. 

In [Soriano et al. 031, Soriano et al. applied adaptive histogram back-projection to 

update the skin colour model. Another interesting study was published by [Sigal et al. 041. 

It made use of a dynamic Markov model whose parameters could be estimated by 

ML over time, to predict the evolution of the skin colour histogram under the as- 

sumption that objects are performing affine motion. The histogram adaptation also 

required current segmentation results. 

3.2 Proposed skin colour model 

3.2.1 Introduction 

We attempt to develop a skin colour model for SL recognition. If we look at signing 

videos, it is quite easy to observe that one signing video generally only contain very 

few signers and the signers' skin colours keep consistent across the frames. This 

motivates us to train a skin model for every signing video. Thus, it is unnecessary 

to collect a lot of training samples. That is to say, the skin colour model for SL 

recognition might be transferred to a small sample size classification problem. We 

propose to use a Support Vector Machine (SVM) to learn the skin colour because 

of its outstanding performance in dealing with classification with small sample size 



[Vapnik 981. To overcome the problem of imbalance in training data, Active Learning 

is adopted to select the most informative training subset for the SVM, which leads to 

fast convergence and better performance. Finally, region information is incorporated 

to further reduce the noise and illumination variation. Our skin model is learned for 

each new signing video so that it is adaptive to the different human skin types and 

lighting conditions. In chapter 4 after we explain our proposed tracking algorithm, 

we will show that within one video, the proposed skin model can also be updated 

based on the newly predicted training data from the tracking, which works well 

under time-varying illumination. Compared with existing approaches, our model 

automatically constructs the training set from the first several frames which saves 

human labour. 

Fig.3.1 shows the basic architecture of the proposed skin colour model. The 

framework consists of two stages: training stage and segmentation stage. In the 

former stage, first, for a signing video, a generic skin colour model is applied to the 

first several frames, which obtains the training samples. Then, a binary classifier 

based on SVM Active Learning [Wang 031 is trained using the obtained training set. 

Note that the generic skin model has to classify correctly a reasonable amount of 

skin pixels in order for the SVM to work well. This in general is not hard as the 

generic skin model is designed using a huge number of skin training samples, thus 

in most cases it outputs the desired number of skin samples. In the segmentation 

stage, the SVM classifier is incorporated with the region information to produce the 

final skin colour pixels. 

3.2.2 The generic skin model 

In our work, the target of adopting the generic skin model is to collect some training 

data for SVM classifier. The generic skin model is implemented by defining a fixed 

skin colour range in one colour-space. Technically, any generic skin model could be 

used in our work. Because of simplicity, here, we adopted the generic skin model 

presented in [Peer 031, which defined skin pixels in RGB space as follows: 
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Figure 3.1: The basic architecture of the proposed skin colour model 

Algorithm 2 (i) under uniform daylight: 
(R>95) & (G>40) & (B>20) & (max{R,G,B) - min{R,G,B)>15) & (IR-G1>15) & 
(R>G) & (R>B) & (G>B) 
(ii) under flashlight: 
(R>220) & (G>210) & (B>170) & (IR-G1515) & (R>B) & (G>B) 

3.2.3 SVM active learning 

SVMs are learning machines that can perform binary classification and regression 

estimation tasks. Invented by Vapnik [Vapnik 951, they have strong theoretical foun- 

dations and excellent empirical successes. They have been applied to tasks such as 

handwritten digit recognition [Vapnik 981, object recognition [Papageorgiou et al. 981, 

and text classification [Joachims 981. The high performance of SVMs is due to their 

ability to make a good generalization from a limited training dataset. In a binary 

classification setting, given linear separable training set {xl, x2, ..., x,)with their la- 

bels {yl, y2, . .., y,) , yi E {- 1, I) ,  the SVM is trained and the optimal hyperplane is 

yielded, which separates the training data by a maximal margin. Specifically, the 

optimal hyperplane might be found by solving an optimization problem: 

1 
minimize : 0(w)=- 1 )  w 1 1 2  

2 



subject to : yi(w xi + b) 2 1 

Here: 

The optimal hyperplane divides the data points into two groups. Points lying on 

one side are labelled -1, and the other points are marked 1. When a new example is 

inputted for classification, a label (1 or -1) is issued by its position with respect to 

the hyperplane that is: 

f (x) = s i g n ( x  aiyi(xi X)  + b) (3.3) 
Z 

For the case of data that is not linearly separable, the SVM first projects the 

original data to a higher dimensiona1 space by a Mercer kernel function K such as 
/' 

Gaussian RBF kernels and polynomial kernels, and then linearly separates them. 

The corresponding nonlinear decision boundary is: 

f (x) = s i g n ( C  a i y i K ( ~ i  X) + b)  (3.4) 
i 

The SVM can be easily applied as a skin colour model. Given a gesture video, 

the generic skin model is performed on the first several frames so that the training 

set containing skin and non-skin data could be obtained. Afterwards, the SVM 

classifier is constructed using the training set from the previous frames to segment 

the future frames one by one. In practice, one problem is the imbalance in the 

training data: i.e. the number of the negative examples (non-skin pixels) is far 

larger than the number of the positive examples (skin pixels). Fig.3.2 displays the 

fact. The left picture is the original image, and the right one is the segmented 

results. In the right image, the points labelled green are the skin pixels and other 

points are considered as the non-skin pixels. The imbalance of training examples 

may make the learning less reliable. Moreover, it results in a long learning time. 



A feasible way to reduce this limitation is to use Active Learning. Active Learning 

is named in contrast to the traditional passive learning. Most machine learning 

approaches belong to passive learning because they are usually based on the entire 

training set or randomly selected data [Tong and Chang 011. In contrast, Active 

Learning tries to find the most informative data to train the classifier. Its goal is 

to achieve better performance and faster convergence with less training examples. 

Lately, Active Learning has been sl~ccessfully introduced to document classification 

[Schohn and Cohn 001, image retrieval [Tong and Chang 011, and text classification 

[Tong and Koller 011. Whereas, to our best knowledge, very little work has been 

done in the skin segmentation field. 

u 
Figure 3.2: The imbalance of the training examples 

The key idea of Active Learning is to extract the most informative samples from 

all available training data. Tong et al. explain Active Learning from the viewpoint of 

version space theory in [Tong and Chang 01, Tong and Koller 011. The version space 

was defined as a set of all hyperplanes that could classify the given training data 

correctly. To a new-labelled sample, all hyperplanes in the version space were used 

to classify the new data again. Those hyperplanes that made the wrong classification 

were removed from the version space so that the size of version space was reduced. 

The informative samples are able to reduce the size of version space as much as 

possible. Based on this idea, Tong et al. found informative samples are always near 

the hyperplane. In other words, the importance of one instance point depends on 

its distance from the hyperplane. As for our application, we attempt to find the 

small but informative subset of negative examples with a similar size to the training 

set of positive examples. The instances closer to the SVM hyperplane generally 



give a larger influence to the learning so that they are more informative than other 

instances. This motivates us to design a similarity-based sampling strategy to select 

more informative negative examples for our specific application. 

Let F be the training set, F+ and F- are the positive (skin pixel) and the negative 

(non-skin pixel) training set, respectively. F = F+ U F-& F+ n F- = 0. 

We hope to get the small subset of negative examples Faitive by Active Learning. 

Here, FGtiVe c F-. First, a region segmentation scheme JSEG [Deng and Manjunath 011 

is employed to segment F- into different regions, RF-, R:-, . .., RE-, xZ1 R r  = 

F- based on the colour-texture feature. Second, the similarities between each 

RF-and F+are described by the colour histogram based distances. More specifi- 

cally, 

Where H ( o )  is the colour histogram vector. Note that this distance measures 

how close is every region colour to the positive samples, and this is measured across 

all the segmented regions individually. A smaller distance between RF- and F+ in- 

dicates that the region colour is similar to skin colour. In the feature space, the skin 

pixels generally form a cluster. If one negative instance is closer to Ff , it is closer 

to the SVM hyperplane as well. Therefore, it is more likely to be an informative 

example. Finally, we sample the negative examples according to a principle called 

"most similar-highest priority". To be specific, more negative instances are extracted 

from the RF- with smaller distance to Ff, but less negative instances are selected 

from the R:- with the larger distance to F +  The sampled examples construct the 

FaJtive , and its size is approximately equal to the size of F + .  The advantage of 

our similarity-based sampling strategy is that not only can it get more informative 

examples, but also the obtained set FitiV, covers all kinds of negative examples 

from different regions that were considered by the generic skin model to be negative 

examples. In some cases, the generic skin model detects some false positives, but 

this should not have a major effect overall as the SVM can handle some noise in the 



data. In summary, the SVM Active Learning for skin segmentation is fulfilled by the 

following steps: 

1. Apply the generic skin model to the first several frames to obtain F+ and F- ; 

2. Segment F- into different regions RT-, Rf-, ..., ~ 5 - ,  and compute the dis- 

tances between each R:- and F+ in the colour feature space; 

3. Construct the from F- in accordance with similarity based sampling 

scheme; 

4. Train the binary SVM classifier using F+ and FaItive ; 

5. Classify every current frame into skin and non-skin pixels by the trained SVM 

In general, any similarity based sampling scheme can be employed. In our case we 

chosed a simple yet effective way to do the sampling. Let m be the minimum colour 

histogram distance such that: 

m = arg min di, where di = D(R" , F') (3.6) 

we pick from every region RF- a ratio of pixels proportional to its distance to 

F+, we define this ratio r as: 

In a comparison of our sampling scheme to Adaboost sampling principle, we can 

find some differences such as: Adaboost selects training samples using the weights 

updated every iteration based on the classification error, while in our case, we are 

working on the region level where regions can be weighted by their distance to the 

positive samples then samples from regions are selected based on this distance. Ad- 

aboost iterates on this process for a fixed number of iterations, while we do this one 

time only. Adaboost linearly combines weak classifiers each cycle, while we train 

SVM once directly. 



3.2.4 Combining SVM active learning and region information 

Although the performance of SVM Active Learning is outstanding, it cannot produce 

perfect skin segmentation results due to noise and illumination variation. However, 

region information is considerably more robust to noise and illumination variation 

(Fig. 3.3 shows a sample of region segmentation result on one frame). Hence, in 

order to solve this problem, we incorporate region information to further refine the 

segmentation result. First, the JSEG algorithm [Deng and Manjunath 011 is adopted 

to parse the frame into regions. Then, if the majority of pixels of one region Ri belong 

to skin pixels, the whole region is declared as the skin area. To be exact, one region 

satisfying: 

is decided as skin area. Here, NS(&) denotes the number of the skin pixels in the 

region 8, NT(&) refers to the number of pixels in &, and 7 is an empirically 

defined constant. We should note here that 71 is critical for the decision whether 

this region is a skin or not. So, to avoid this limitation we don't combine the region 

information in the tracking part (chapter 4) and substitute it's effect by fusing more 

cues for segmentation. 

Figure 3.3: Region segmentation sample. the left image is the original frame. The 
right image is the corresponding frame after being region segmented 



3.3 Experimental results 

We tested the proposed skin colour model with 8 video sequences from the European 

Cultural Heritage Online (ECHO) database [ECHO] and other signing videos cap- 

tured by ourselves. They were captured with different signers and under different 

lighting conditions. Almost every video sequence from ECHO is over 15 minutes 

long. To quantitatively evaluate our work, we randomly picked 240 frames from 

those test sequences and manually segmented the skin pixels to construct the ground 

truth (Appendix A). An SVM classifier was trained using the first accumulated three 

frames. As in [Phung et al. 051, three metrics, correct detection rate (CDR), false 

detection rate (FDR), and overall classification rate (CR) were employed to measure 

the performance of the techniques. They are described as follows: 

CDR: percent of correctly classified skin pixels; 

FDR: percent of wrongly classified non-skin pixels; 

Ns * 100% , where N, is the number of skin pixels detected both by CR: m a z ( ~ , ~ )  

the algorithm and the ground truth, N: is the number of skin pixels detected 

by the algorithm, and N: is the number of skin pixels detected by the ground 

truth. 

The CDR metric doesn't capture over-segmentation, as it only measures the true 

positives. So we can get high CDR with the cost of high FDR, while CR is sensi- 

tive to over-segmentation and under-segmentation and can give a good true measure 

for the overall accuracy. Three experiments were constructed to evaluate our skin 

colour model. First we test the performance of Active Learning. We then examine 

the effect of combining region information. Next, comparisons with some traditional 

skin segmentation techniques are reported. 



3.3.1 Testing the performance of active learning 

To demonstrate the performance of SVM Active Learning, we compared the SVM 

classifiers with and without Active Learning using our test data. Fig.3.4 shows one 

set of sample results. The first, second and third image display the original frame, the 

SVM without active learning, and SVM with active learning, respectively. It can be 

seen in this example that when more training samples were taken from the trousers 

region (as its colour is near skin-colour), the results become much more better. Table 

3.1 lists the statistical results including the precision and training time. As can be 

seen from the experimental results, the SVM Active Learning is superior in both 

accuracy and computational complexity. It can enhance the overall accuracy almost 

by 6%, and decrease average training time by 114 seconds. The reduction of the 

training time is due to the selection of a small informative subset from the negative 

samples instead of using all the possible samples, thus the total number of training 

samples decreases which reduces the training time. 

original without AL with AL 

Figure 3.4: Experimental samples with and without Active Learning (AL) 

Table 3.1: The Statistical Precision and Training Time Comparisons with and with- 
out Active Learning 

No active learning 
With active learning 

3.3.2 Evaluation of combining region information 

This experiment is to evaluate the segmentation results with and without region 

information. Fig.3.5 displays some sample results, and Table 3.2 lists the statistical 

CDR (%) 
85.12 
82.83 

FDR (96) 
2.43 
1.39 

CR (%) 
61.97 
67.60 

Training time (s) 

121.14 
7.33 



precision comparisons. In Fig.3.5, the first column shows the original frames, the 

second column shows the segmentation results without region information, and the 

third column shows the results with region information. Clearly, the algorithm with 

region information is better, which can reduce the noise and refine the segmentation 

results. Incorporation of region information enhanced the overall accuracy by 9%. 

original without region with region 

Figure 3.5: Comparison results with and without region information 

. L " 

I The ~ r o ~ o s e d  method with region I 
I r I 

86.34 1 0.96 1 76.77 1 
The ~ r o ~ o s e d  method without region 

Table 3.2: The Statistical Precision Comparisons with and without Region Informa- 
tion 

3.3.3 Comparisons with traditional skin segmentation techniques 

CDR (%) 
82.83 

To demonstrate the effectiveness of the proposed work, we compared the proposed 

model with two existing skin segmentation algorithms, the generic skin model [Peer 03, 

Chai and Ngan 991 and a Gaussian model [Phung et al. 05, Zhu et al. 041. The 

Gaussian models [Phung et al. 051 can be described as follows. They employed the 

Bayesian decision rule: 

to classify the skin and non-skin pixels. Here, P(c1skin) and P(c1nonskin) refer to 

the probability density function (pdf) of skin and non-skin colour, respectively. < is 

FDR (%) 
1.39 

CR (%) 
67.60 



a threshold. The colour pdf could be modelled as a single Gaussian (Eq. 2.6), or 

Gaussian mixture (Eq. 2.8). 

In [Phung et al. 051, Phung proposed two strategies: modelling only skin pixels as 

Gaussian (called one-Gaussian in our experiments) and modelling both skin and non- 

skin pixels as Gaussian (called two-Gaussian in our experiments). In this experiment, 

we implemented these two strategies. Notice we used Gaussian mixture to model 

pdfs. To estimate the gaussians, we used the output of the generic skin model (first 

3 frames). Fig.3.6 shows some results. The segmentation results by generic model, 

one-Gaussian, two-Gaussian, and the proposed approach are displayed in the first, 

second, third, and fourth column, respectively. Table 3.3 lists the statistical accuracy 

comparisons. As we can see from the comparison results, the proposed model has 

the highest overall accuracy with the second lowest false detection rate. Although 

the two-Gaussian model has the best correct detection rate, its false detection rate 

is the worst. This result is not surprising because as the Gaussian try to achieve 

high correct detection rate, it's parameters become more flexible to catch more false 

positives thus increasing the false detection rate. The real challenge is to achieve 

high CDR with low FDR. 

Figure 3.6: Sample results of generic skin model, one-Gaussian model, two-Gaussian 
model, and the proposed model 



Table 3.3: Statistical Accuracy Comparisons of Existing Models and the Proposed 
Model 

I 

The generic skin model 
One-Gaussian model 
Two-Gaussian model 
The proposed model 

3.4 Summary 

In this chapter, a completely adaptive skin segmentation algorithm for gesture recog- 

nition system has been proposed. A binary SVM classifier was trained using the 

training data automatically collected from the first several video frames. More im- 

portantly, Active Learning and region segmentation were combined to further im- 

prove the performance. One important advantage of the proposed work is that it is 

easy to implement and does not need human labour to construct the training set. In 

CR (%) 
65.10 
66.85 
57.06 
76.77 

CDR (%) 
71.51 

, 72.74 
90.88 
86.34 

addition, it may be efficiently incorporated in a gesture recognition system or other 

FDR (%) 
0.79 
1.04 
4.41 --- 
0.96 

human body related applications with the minor revision. The evaluating experi- 

ments on real-world SL videos demonstrated that the proposed work is promising. 



Chapter 4 

Hand and Face Tracking 

4.1 Introduction and literature review 

Skin object tracking is an essential component of an SL recognition system. It  

may provide SL recognition with useful spatio-temporal features such as hand lo- 

cation and trajectory. Many efforts have been devoted into research of skin and 

hand tracking. Generally speaking, there are two streams of scheme proposed to 

solve the problem: device-based and vision-based. The principal idea of a device- 

based tracker is to capture hand motion by asking users to wear gloves or markers 

[Shamaie and Sutherland 05, Gao et a1 001, by using an infrared camera [Sato et al. 001, 

or by using a laser rangefinder as mentioned in [Strickon and Paradiso 981. Obvi- 

ously, some specific devices make the task of hand tracking simple, however, it is 

expensive, even impossible in some applications to use the device examples. Defi- 

nitely, vision-based hand tracking draws more attention. 

In [Yang et al. 021, Yang et al. implemented hand tracking based on region matching 

using affine transformations. The regions were yielded by a multi-scale image seg- 

mentation algorithm. Their hand tracking results finally were incorporated into an 

American SL recognition system. In [Chen et al. 031 and [Huang and Jeng 011, the 

authors combined multiple features like motion, edge, and skin colour to detect and 

further locate the hand. However, one shortcoming is that their approach worked 

well only for a single hand. It is not straightforward to extend their algorithm to 



SL recognition because most signs are two-handed and occlusions among hands and 

face happen very often. 

In [Imagawa and Igi 98, Martin et al. 98, McAllister et al. 021, a related work has 

tried to use a Kalman Filter (KF) to track the hands. Firstly, according to informa- 

tion from the previous frames, a linear KF was built to estimate the motion velocity 

of the hand. Then, the location of hands in the next frame could be predicted using 

the estimated velocity and position in last frame. These trackers worked very fast. 

Unfortunately, they cannot perform accurate hand segmentation. In order to reduce 

the limitation of KF, the CONDENSATION algorithm was proposed by Isard et al. 

[Isard and Blake 981, which used conditional density propagation to track curves in 

clutter. The propagation was based on the fusion of learned dynamical models and 

visual observations. This algorithm was successfully applied to track hand contours. 

In [Black and Jepson 981 Black et al. revised the CONDENSATION algorithm 

to recognize gesture and expressions. In [Mammen et a1 011, they extended the 

CONDENSATION to track both hands simultaneously that can deal with occlu- 

sions. In [Rehg and Kanade 94, Stenger et al. 01, Lu et al. 031 another interesting 

research stream called model-based hand tracking was reported. These algorithms 

required some prior knowledge like 2D or 3D hand shape. In DigitEyes system 

[Rehg and Kanade 941, researchers tracked hands by a 3D hand model with 27 de- 

grees of freedom. They assumed the hand as a collection of 16 rigid bodies and 

modelled them by kinematic chains. In [Stenger et al. 011, Stenger et al. built a 3D 

hand model by truncated quadrics. The Unscented KF (non-linear filter) was ap- 

plied to estimate the hand pose and then track hands. Lately, Lu et al. [Lu et al. 031 

introduced a deformable model for hand tracking. It defined a geometric model to 

represent the shape and structure of hand, which is based on the measurement of 

an average male. The model-based approaches are effective under the assumption of 

known shape. However, in SL, hand shape varies quickly, which might result in poor 

performance in tracking. 

Most of the above works can achieve hand tracking well. However, very few of them 

can perform hand segmentation with the accuracy required to provide SL recognition 



with shape features. In addition, the presence of occlusions makes it challenging to 

track the face and hands. For this reason, some systems avoid signs that include 

occlusions, perform unnatural signs, or choose camera angles that doesn't capture 

occlusions [Ong and Ranganath 051. However, occlusions between face and hands or 

between the two hands occur frequently in many signs in the real world. Occlusion 

detection is necessary because it might help to reduce the search space in the recog- 

nition phase. 

In our work, we aim to deal with the segmentation and tracking problems as one 

unit which simplifies the process of locating the skin objects, unlike other works that 

separate the two tasks of segmentation and tracking. We introduce a method for 

combining colour, motion and position information to segment skin objects. The 

tracking is based on the fusion of KF and blob matching from segmentation results. 

In the previous work of our group [Shamaie and Sutherland 051, they proposed a 

colour glove-based method to detect occlusion between the two hands using KF 

prediction. Here, we extend this by using skin detection techniques and handling 

occlusion between skin objects (face and two hands) in a robust way to keep track 

of the status of the occluded parts. In [Sherrah and Gong 001, the authors propose 

a very related solution for tracking the face and two hands. Their approach is based 

on Bayesian Belief Networks (BBNs) to fuse high-level contextual knowledge about 

the human body with sensor-level observations such as colour, motion and hand ori- 

entation. In the next sections we will explain in detail our proposed system for skin 

segmentation and tracking (SST) . 

4.2 Skin segmentation and tracking system overview 

A block diagram for the system architecture is shown in Fig. 4.1. In general we track 

three objects: the face and two hands. Two main components form the proposed 

algorithm. The first component, skin segmentation is responsible for segmentation 

of skin objects by combining different useful information. The second component, 

object tracking, is responsible for matching the resulted skin blobs of the segmenta- 



tion component to the previous frame blobs. Keeping track of the occlusion status 

of the three objects is done by the knowledge of the occlusion alarms between any 

pair of the objects in addition to the number of the new detected objects. 

Define search windows 7 

Figure 4.1: SST system architecture 

I I 
I 

4.2.1 Skin Segmentation 

4.2.1.1 Colour information 

I 
I I I / 

Predict blob p i t i o n  

We apply the proposed skin colour model as discussed in chapter 3 in small search 

windows around the predicted positions of the face and hand objects and return 

decision values from the SVM representing how likely the pixels are to be skin. As 

the training of the SVM classifier is based on the first few frames, it can miss some 

skin pixels. Therefore, we propose another colour distance metric to take advantage 

of the prior knowledge of the last segmented skin object. This prior knowledge colour 

metric is denoted as dist(Cskin, Xij), where Cskin is the median RGB colour vector of 

the previously segmented skin object, Xij is the current pixel RGB colour vector in 

c 



the search window in row i and column j, and dist is defined as the Euclidean distance 

between the two vectors. Finally, we normalize the values of the SVM classifier P,,,, 

and the prior knowledge colour metric PCol. Fig. 4.2 shows the search window in a 

sample frame surrounding the right hand (a), and after we apply the prior knowledge 

colour metric (b) we can see that high values (more bright pixels) represent the hand 

region while low values (more dark pixels) represent non-skin regions. 

We would like to note here that we are using our proposed slcin colour model without 

combining the region segmentation information as were discussed in chapter 3. This 

is because here we are using other useful features like the motion and position which 

helps a lot without the need of the region information. Using the region information 

can also take some processing time and can be considered as a single point of failure 

for the skin segmentation system because as discussed in chapter 3, the skin areas are 

detected finally by finding the regions with high overlapping skin pixels (classified 

by SVM), so if regions are not segmented accurately, the skin segmentation will not 

precisely represent the true skin objects. Thus depending on more than one feature 

can be more useful in this case. 

Figure 4.2: Demonstration of the colour feature. (a) search window surrounding the 
right hand, (b) the normalized values of the Euclidean distance after being subtracted 
from 1. 

4.2.1.2 Motion information 

Finding the movement information takes two steps. Firstly, motion detection, then 

in the next step, finding candidate foreground pixels. The first step examines the 

local grey-level changes between successive frames by frame differencing: 



where Wi is the ith search window, x, y are pixel locations relative to the search 

window, and Di is the absolute difference image. We then normalize Di to convert 

it to probability values D: = The second step assigns a probability value 

Prn(x, y) for each pixel in the search window to represent how likely this pixel belongs 

to a skin object. This is done by looking backward to the last segmented skin object 

binary image in the previous frame search window OBJiPl and applying the following 

model to the pixels in D:: 

otherwise 

In this way, small values (stationary pixels) in D: that were previously segmented 

as object pixels will be assigned high probability values when subtracted from 1 as 

they represent skin pixels that were not moved, and new background pixels (that 

were previously skin pixels) with high D: will be assigned small probability values. 

So simply, this model gives high probability values to candidate skin pixels and 

low values to candidate background values. Fig. 4.3 demonstrates the process of 

calculating the motion feature between frame i and frame i-t l .  

f ramei f ramei+l D ~ ( x ,  Y) O B  Ji(x, Y) prn(x, Y) 

Figure 4.3: Demonstration of the motion feature for frame i+l  

4.2.1.3 Position information 

To capture the dynamics of the skin objects, we assume that the movement is suf- 

ficiently small between successive frames. Accordingly, a KF model can be used 

to describe the x and y coordinate of the centre of the skin objects with a state 

vector Sk that indicates the position and velocity. The model can be described as 



[Chui and Chen 991: 

where Ak is a constant velocity model, Gk, Vj represents the state and mea- 

surement noise respectively, Zk is the observation, and H is the noiseless connection 

between the observation and the state vector S .  This model is used to keep track 

of the position of the skin objects and predict the new position in the next frame. 

Given that the search window surrounds the predicted centre, we translate a binary 

mask of the object from the previous frame to be centred on the new predicted cen- 

tre. Then the distance transform (spatial distance between every non-object pixel 

and the nearest object pixel) is computed between all pixels in the search window 

and pixels of the mask. The inverse of these distance values assigns high values to 

pixels that are belonging to or near the mask and low values to far away pixels. The 

distance values are then converted to probabilities P, by normalization. Fig. 4.4 

demonstrates calculating the position feature inside the search window, we can see 

that high pixel values surrounds the predicted position of the skin object, while low 

values are assigned to far positions where the skin object is less likely to be located. 

Figure 4.4: Demonstration of the position feature. (a) binary mask in previous frame, 
(b) binary mask centered on predicted position in search window, (c) normalized 
distance transform. 



4.2.1.4 Information fusion 

After collecting the colour, motion and position features, we combine them logically 

using an abstract fusion formula to obtain a binary decision image Fi(x, y): 

1 if ( P ~ ~ ( x , Y )  > 7)OR((Psvrn(x,~)  > y)AND(Prn(z,y) > v )  

Fi(2,Y) = AND (Pp(x, Y) > a ) )  

0 otherwise 

(4.4) 

where Pcol, P,,, , P,, and Pp is the decision probability values of the prior 

knowledge colour metric, skin colour model, motion, and position respectively, and 

7, y , v and u are thresholds where u is determined adaptively by the following 

formula: 

size((Prn(z, y) > V) AND (Pp(x, y) = 1)) 
u = 

size(Prn(x, y) > v) (4.5) 

The threshold a determines the margin that we are searching into around the 

predicted object position. In Eq. 4.5 this is formulated by finding the overlap- 

ping between the predicted object position and the foreground pixels above certain 

threshold value. The other thresholds values are determined empirically. 

4.2.2 Skin object tracking 

The tracking component is responsible for matching the segmented skin blobs of 

the new frame to the previous frame skin blobs while keeping track of the occlusion 

status of the three objects. In general, tracking three objects (face and two hands) 

results in ten different case scenarios as follows: 

1. Face and two hands all exist (3 skin objects). 

2. Non-occluded Face while the two hands are occluded (2 skin objects). 

3. One hand occluded with the face while the other hand is separate (2 

cases, 2 skin objects). 



4. Face and one hand non-occluded, while the other hand is hiding (2 cases, 2 

skin objects). 

5. Face and the two hands are all occluded together (1 skin object). 

6. Face alone, and the two hands are hiding (1 skin object). 

7. Face occluded with one hand, while the other hand is hiding (2 cases, 1 skin 

object). 

In order to match skin objects between successive frames, we have to keep track of 

objects that might occlude in the next frame because this affects our final conclusion 

about what objects exist in the current frame and their occlusion status. In the next 

section we will explain the basic idea of how we detect occlusion between any of the 

skin objects. This step is critical and necessary to achieve correct blob matching 

between previous and current frame skin objects. 

4.2.2.1 Occlusion detection 

A rectangle is first formed around each of the face and two hands. Then, each 

rectangle is modelled by a K F  filter. To be specific, we model each side of the 

rectangles by its position, velocity and acceleration as follows: 

Where S is the position, S' the velocity, S" the acceleration, h > 0 is the sampling 

time, j is the rectangle side index, and k is the time. Combining Eq. 4.3 and Eq. 

4.6, we can get: 



Note that we use 1 0 0 for matrix H as the position is the only observable [ I 
feature for the rectangle sides. Applying Eq. 4.7 for every rectangle side can predict 

the position of the rectangles in the next frame. Accordingly, we check to see if there 

is any overlap between any of the bounding rectangles in the next frame. If there is 

an overlap, we raise an occlusion alarm corresponding to the fact that two bounding 

rectangles are about to overlap. If in the next frame, the number of detected skin 

objects is less than the number in current frame and an occlusion alarm was raised 

previously, we conclude that occlusion happened. 

On the other hand, if the number of detected skin objects decreases and no occlusion 

alarms were raised, then this means that one or more skin objects are hiding. The 

same idea can also be applied between already occluded objects and a new non- 

occluded object as in the case where face and left hand are already occluded and 

then the right hand approaches them so that the all-3 objects become occluded. Fig. 

4.5 demonstrates two samples of an occlusion between the two hands (of a cartoon 

character) and hand and face (of real video). At frame i the predicted positions 

of the bounding boxes in frame i f 1  are not overlapping, so no alarms are raised. 

On the other hand, at frame i+l, the predicted positions are overlapping in frame 

i+2, so an alarm is raised indicating the possibility of occlusion to happen in the 

next frame. In frame i+2, we actually detect only 2 skin objects instead of 3 such 

as in frame i+ l  and also an alarm is already raised, so we conclude that occlusion 

happened between the two skin objects. 



(a) frame i (b) frame i+ l  (c) frame i t 2  

Figure 4.5: Demonstration of detecting occlusions. 

4.2.2.2 Tracking 

As shown in Fig. 4.1, the tracking process takes place by first constructing search 

windows around each of the objects we are tracking. When two or more objects 

are occluded, they are treated as one object and one search window is constructed 

around their position. 

Given that the search windows are constructed, we segment the skin objects as 

described in section 4.2.1. Next, connected regions are labelled after removing noisy 

small regions. Using the number of detected skin objects and the occlusion alarms 

as discussed in the previous section, we maintain a high-level understanding of the 

status of the current frame with respect to the occlusion status using a set of heuristic 

rules. For example, if we detected one object and an occlusion alarm between the 

face and left hand is raised, then we conclude that the face and left hand are occluded 

and the right hand is hiding. This technique can be extended to handle all 7 case 

scenarios. This technique proved to work well with the following assumptions: 



1. The face cannot be hiding. 

2. Minimum number of skin objects in any frame is 1 (face) and maximum 3 

objects (face and two hands). 

3. Initially, the system must begin by detecting 3 skin objects. 

So, taking assumption number 2 into consideration, we handle 9 different cases of 

transitions between sequential frames as shown in Fig. 4.6. This approach is very 

similar to a Finite State Machine (FSM) except that we don't explicitly execute 

entry and exit actions in each state. We use this model because of its simplicity in 

representing the possible states of skin objects that might occur in any frame, and 

thus the occlusion status. 

Figure 4.6: Skin objects state transitions between sequential frames 

In order to decide the status of the current frame, i.e to know the identity of 

the current skin objects, we designed a simple algorithm to conclude what objects 

are present and what is the occlusion status between them using heuristic rules. 

Algorithm 3 shows the outline of this occlusion status detection process. Note that 

the following terms apply: 

hand-hand occlusion alarm: occlusion alarm between the two hands. 

L-hand-face occlusion alarm: occlusion alarm between the left hand and the 

face. 

R-hand-face occlusion alarm: occlusion alarm between the right hand and the 

face. 



L-hand search window: the segmentation output of the left hand search win- 

dow 

R-hand search window: the segmentation output of the right hand search win- 

dow 

Algorithm 3 Occlusion status detection 
if number of skin objects == 3 then 

objects are: face, left hand, right hand. 
elseif number of skin objects == 2 then 

if hand-hand occlusion alarm is set on AND L-hand-face occlusion alarm 
is set off AND R-hand-face occlusion alarm is set off then 

objects are: face, 2 hands occluded. 
elseif L-hand-face occlusion alarm is set on AND R-hand-face occlusion 

alarm is set off AND hand-hand occlusion alarm is set off then 
objects are: right hand, left hand and face occluded. 

elseif R-hand-face occlusion alarm is set on AND L-hand-face occlusion 
alarm is set off AND hand-hand occlusion alarm is set off then 

objects are: left hand, right hand and face occluded. 
elseif L-hand search window is empty AND R-hand search window is not 

empty then 
objects are: face, right hand, left hand is hiding. 

elseif L-hand search window is not empty AND R-hand search window is 
empty then 

objects are: face, left hand, right hand is hiding. 
elseif number of skin objects == 1 

if face-L-hand-R-hand occlusion alarm is set on then 
object is: face and left hand and right hand are all occluded. 

elseif L-hand-face occlusion alarm is set on then 
object is: face and left hand occluded, right hand is hiding. 

elseif R-hand-face occlusion alarm is set on then 
object is: face and right hand occluded, left hand is hiding. 

else 
object is: face, both hands are hiding. 

We would like to note here that when one of the hands hides, we fix the location 

of the search window to the last position where the hand was visible. Our assumption 

is that the hand will reappear again probably in a location near to the place where 

it disappeared. The advantage of such a technique is its simplicity and speed as 

it consists of just some conditional statements. It performs very well in terms of 

accuracy as it covers all the possible cases that can appear in any given frame. 

The final step in the tracking part is the blob matching. Given that we concluded 



what objects are there in the segmented frame and their occlusion status, we perform 

the matching between the previous frame skin objects and the new frame skin blobs. 

The matching is done using the distance between the objects in sequential frames. 

Here we used the Euclidean distance between the centres of the objects to match the 

corresponding objects. 

4.2.3 Skin colour model adaptive tracking 

One of the challenges of our SST system is that lighting conditions might change over 

time within a video sequence so that the skin colour distribution is not constant. Ap- 

parently, the static skin colour model is incapable to handle the illumination change 

problem. To handle this task, we apply the useful information from tracking to up- 

date the skin colour model to solve the problem. The basic idea for adapting the 

skin colour model is to collect new training data for re-training the SVM classifier 

every frame. 

Specifically, given two consecutive frames ft-l and f t  , we assume their skin colour 

distributions are different due to a lighting change. For the current frame f t ,  we col- 

lect the new skin samples from inside search windows that were constructed already 

around the predicted skin object locations by the tracker using KF. Firstly, we use 

the generic skin colour model as a filter, which offers only the feasible skin colored 

pixels to the new skin training set. Then, the filtered skin pixels (x, y) are decided 

as the new skin samples provided that both the decision probability of motion (in 

Eq. 4.2) and decision probability of position (in Section 4.2.1.3) are large enough, 

say over the empirical threshold. 

Finally, the rest of the search window pixels are considered as non-skin pixels. Hav- 

ing new skin and non-skin samples, we train the SVM classifier for the f t  and then 

apply it to classify the pixels of the search window again. The classifier returns a 

skin colour probability P,,,(x, y), which could be combined with the Pm(x, y) and 

Pp(x, y) to continuously perform the tracking. 

We tested skin colour model adaptation with a number of gesture videos under the 

time-varying illumination. We used a light to simulate the illumination change while 



capturing videos. We controlled the light intensity by moving the light closer to or 

further from the human body, and turning on or off the light. Fig. 4.7 displays some 

skin segmentation results by the updated skin color model. The visually acceptable 

results demonstrate the effectiveness of the proposed method. 

Figure 4.7: Some segmentation results under the condition of time-varying illumina- 
tion 

4.3 Experimental results 

We tested the proposed tracking system on a number of ECHO [ECHO] and self- 

captured signing videos for different SL speakers under different lighting conditions 

and with different occlusion conditions. Fig. 4.8 illustrates several examples of the 

tracked images. We used the rectangles with different colors to represent track- 

ing of the different objects. If some objects were occluded, there rectangles were 

merged to one rectangle. To quantitatively evaluate the performance, we manually 

labelled 600 frames to construct the ground truth of the bounding boxes of the skin 

objects (see Fig. 4.9). Out of 600 frames, 237 frames included occlusions. As in 



[Martin et al. 981, we measure the error in the position (x, y) of the centre of the 

bounding box. Table 4.1 shows the average error in x and y directions respectively 

and the average error of the tracking process, i.e, when skin object is incorrectly 

identified (ex. left hand identified as right hand). As shown in Table 4.1, the algo- 

rithm accuracy is very high as the maximum error is about 6 pixels, and in terms of 

tracking errors, only 39 frames had objects identified incorrectly, where 37 frames of 

them, the error where due to occlusions, and only 2 frames had errors in the absence 

of occlusion. From the results, we can conclude that the tracking is very robust to 

occlusions, as out of about 40% occluded frames, the error percentage was about 

6.5%. In addition, we pluged the proposed segmentation and tracking system into a 

PCA-based gesture recognition system developed by a colleage in our research group 

and replaced the SVM colour feature by the generic skin model. The system worked 

on a standard PC under Matlab environment using non-optimized code and run at 

Table 4.1: The Statistical Accuracy of the Proposed Tracking System 

4.781 
6.236 
6.5% 

Error in X direction (pixel) 
Error in Y direction (pixel) 

Tracking error % 

Face 

1.722 
2.796 
6.1% 

Right hand -- 
1.516 
2.268 
6.5% 



Figure 4.8: Some samples of the proposed tracking system 



Figure 4.9: Sample ground truth frames, different rectangle colours represents oc- 
cluded skin objects 

4.4 Summary 

In this chapter, we presented a complete unified system for segmentation and tracking 

of skin objects for gesture recognition. The algorithm works on skin detection instead 

of using colour gloves. Occlusion detection is handled between any of the face and 

the two hands accurately, which is very important as most of the real-world SL 

video sequences include many occlusions (about 40% as demonstrated in our testing 

data). The tracking process uses the occlusion information to maintain a high-level 

understanding of the occlusion status of all the skin objects and can identify with 

high accuracy and speed the skin objects in the scene based on simple heurestic rules. 

More importantly, tracking and segmentation tasks have been approached as one 

unified problem where tracking helps to reduce the search space used in segmentation, 

and good segmentation helps to accurately enhance the tracking performance. The 

system demonstrates a good compromise or trade-off between the computational cost 

and the overall accuracy. Currently it can run at 10 frames/sec using the generic 



skin model insteacl of the SVM classifier. The system is moduilar and most of the 

used components are very simple in computations (except the SVM colour feature) 

making it easy to  replace more faster/~curat,te components in the filtura. However, 

we don't handle the occlusion segmentation problem to separate different occh~ded 

skin objects, which might be a useful feature in the recognition phase. 



Chapter 5 

Modelling and Segmenting Sign 

Language Subunits 

5.1 Introduction and literature review 

Despite the great efforts in SLR so far, most existing systems can achieve a good per- 

formance with only small vocabularies or gesture datasets. Increasing vocabulary in- 

evitably incurs many difficulties for training and recognition, such as the large size of 

the required training set, signer variation and so on. Therefore, to reduce these prob- 

lems, some researchers have proposed a subunit instead of whole-sign based strategy 

for SLR [Liddell and Johnson 89, Vogler and Metaxas 99, Yeasin and Chaudhuri 00, 

Bauer and Kraiss 01, Fang et al. 041. In contrast with traditional systems, this idea 

has the following advantages. First, the number of subunits is much smaller than 

the number of signs, which leads to a small sample size for training and small search 

space for recognition. Second, subunits build a bridge between low-level hand mo- 

tion and high-level semantic SL understanding. Only after subunits become avail- 

able are structural and linguistic analysis possible, and the capability of SLR can 

be greatly improved. In general, in the field of linguistics, a subunit is defined 

to be the smallest contrastive unit in a language. In [Stokoe 781, Stokoe has pro- 

vided the evidence that the signs can be broken down into elementary units through 

the study of American SL. However, there is no generally accepted conclusion yet 



about how to model and segment subunits in the computer vision field. Therefore, 

a number of researchers have put forward a variety of definitions and segmentation 

solutions. In [Liddell and Johnson 891, Liddell et al. introduced a Movement-Hold 

model. In this model, signs are sequentially parsed into subunits, called movements 

and holds. "Movements" are temporal segments during which the signer's configu- 

ration changes. In contrast, "holds" mean the hands remain stationary for a short 

term. Following this model, Vogler [Vogler and Metaxas 991 manually detected the 

boundaries between movements and holds. The model is effective only under the 

assumption that there are clear pauses between subunits. Moreover, for a task of 

large vocabulary SLR, manual segmentation is impossible. Alternatively, Yeasin et 

al. [Yeasin and Chaudhuri 001 define a subunit as a temporal segment with uniform 

dynamics. The motion breakpoints are considered as the subunit boundaries, which 

are located by a change detection algorithm. This scheme is easy to implement, 

but requires salient movement pauses as well. In addition, due to behaviour vari- 

ations between different signers, simple change detection using a unified threshold 

may fail to achieve good performance. Another interesting work was published in 

[Bauer and Kraiss 011, which proposed to employ a K-means clustering approach to 

self-organize subunits. Nevertheless, their clustering is based only on the spatial 

features from each frame. It ignores the temporal information, which might be more 

important in SL analysis. Recently, Fang et al. [Fang et al. 041 extracted subunits 

for SLR using Hidden Markov models (HMM). One HMM is trained for each sign 

first. Then, each state in the HMM is associated with one subunit. This work suffers 

from the shortcoming that they have to predefine the number of states for the HMM. 

It implies each sign has the same number of subunits. Unfortunately, this hypothesis 

is not true most of the time. Another related work in the field of facial expression 

recognition [Xiang and Gong 041 uses HMM for recognising Action Units (AU) of 

expressions. Based on the Facial Action Coding System (FACS) which divides the 

face into upper and lower face actions, motion are divided into action units. AUs 

are defined as muscle movement that combine to produce expressions. HMMs are 

trained for each expression where the hidden states model the AUs. To reduce the 



limitations of the previous work, we propose to detect subunits from the viewpoint of 

human motion characteristics. We model the subunit as a continuous hand action in 

time and space. It is a motion pattern that covers a sequence of consecutive frames 

with interrelated spatio-temporal features. In terms of the modelling, we then inte- 

grate hand speed and trajectory to locate subunit boundaries. The contribution of 

our work lies in three points. First, our algorithm is effective without needing any 

prior knowledge such as the number of subunits within one sign or the types of signs. 

Second, the trajectory of the hand is utilized so that the algorithm does not rely 

on clear pauses any more. Finally, because of the use of an adaptive threshold in 

motion discontinuity detection, the approach is adaptive to signer variation and the 

refinement by temporal clustering (after the temporal segmentation is done) makes 

it more robust to noise. In general, our main claim is that our algorithm can discover 

subunits within a segment of raw video without any human supervision. In other 

words, it performs unsupervised learning on a set of unlabeled data. In the following 

sections, we will explain our system for subunit detection and the evaluation results 

of the proposed approach. 

5.2 System overview 

We define a subunit as a motion pattern with interrelated spatio-temporal features. 

We attempt to study human motion habits and then address the subunit boundary 

detection issue in light of the learned useful information. After we watched a large 

number of SL videos, two observations were noticed. First of all, while shifting from 

one subunit to the next subunit, the hand movement of signers always goes through 

three phases: deceleration, acceleration, and uniform motion. This motivates us to 

locate the subunit boundary by discovering the speed change of hand motion. Sec- 

ondly, the motion trajectory during a subunit often forms a continuous and smooth 

curve in 2-D or 3-D space such as in Fig. 5.1. 

The trajectory generally displays considerable discontinuities surrounding the 

subunit boundary. The detection process is thus the recognition of perceptual dis- 



y position 

Figure 5.1: Sample trajectory of British sign "Banana" 

continuities. As a result, the trajectory information can remove any restrictions on 

the speed such as time warping as it can verify the turning points where the motion 

pattern is going to change. Fig. 5.2, 5.3, and 5.4 explain these two observations using 

examples of real signs. We can see in each figure the motion speed and trajectory 

curves of the signs and the detected boundary points between subunits. As can be 

seen from the examples, the discontinuities take place around the subunit boundaries 

in both the motion speed and the trajectory domain. As a result, we try here to 

combine motion speed and trajectory in order to segment subunits. We believe that 

the two features (speed and trajectory) when used together can help to make the 

detection better and more accurate, as the trajectory information can verify if there 

is a real visual discontinuity. 

A block diagram of the system architecture is shown in Fig. 5.5. The system consists 

of four major components. The objective of the first component is to return speed 



and trajectory information. They aye easy to obtain once the hands have been peg- 

mented and tracked across frames as discussed in chapter 4. The second component, 

the speed discontinuity detector, works as follows. The speed difference is calculated 

to quantify the motion variation from frame k to frame k + I, Compared against a 

tl~lreshold T* if the speed difference is > T, a motion discontinuity between frames k 

t o  frame k + 1 is recorded. T is automatically decided by an adaptive theshalding 

technique. The third component, the trajectory discontinuity detector, is responsible 

for finding "corner" points with significant changes in trajectory by memuring the 

'%sharpness'' of the bend in the curve. Afterwards, boundary candidah detected by 

bath detectors are combined and serve as the input into the fourth component of the 

system, temporal clustering. 
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Figure 5,2: An example of the speed and trajectory curves of a real sign (sample 
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Figure 53:  An cxmplc! of the speed and trajectory curves of a real sign (sample 2) 
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Figttre 5.4: An example of the speed and trajectory mrvix of a red sign (sample 3) 



Subunit 
Boundaries 

Signing 
video 

v - 
Trajectory 

discontinuity 
detector 

Figure 5.5: Basic architecture of subunit detection system 

Combine 
boundary candidates 

5.3 System components 

' 

5.3.1 Hand segment at ion and tracking 

T 
Temporal 
Clustering 

The task of this component is to generate motion speed and trajectory information, 

which is implemented by the following three steps. Firstly, given a frame k of a sign 

f the hand segmentation and tracking (see chapter 4) algorithm is applied to get the 

position of the hand in this frame. Secondly, the trajectory of sign f, Tr f  = [xk, yk]' 

can be obtained from the hand position in every frame. The motion speed of the 

hand Sk is calculated based on frame Ic and Ic + 1: 



Finally, both motion speed and the trajectory are smoothed using splines [Lee and Xu 001. 

It is worth noting that there are two types of hand movement in SL: dominant hand 

where one hand performs the sign and bimanual movements where the two hands 

together perform the sign. The two types of movements can be distinguished by 

their trajectory information. In our work, for the former case, only spatio-temporal 

features from the dominant hand movement are used. Otherwise, features from 

both hands are employed. For simplicity, we illustrate the algorithm utilizing the 

dominant hand movement. 

5.3.2 Motion speed discontinuity detector 

This detector works by examining local speed changes of hand movements. The 

speed difference by subtraction of successive frames is utilized as the discontinuity 

metric. Given the hand motion speed Sk of the lcth frame, its speed difference is 

defined as: 

Then, the obtained discontinuity values are compared with a threshold Ts: 

[ 1 boundary candidate if Dk > Ts 
Mk = 

( 0 non-boundary candidate else 

Deciding the optimal threshold T, is a nontrivial problem and there are many famous 

techniques in the literature proposed for calculating threshold values from histograms 

usually designed to convert grayscale images to binary ones. For simplicity, we 

choosed to employ a simple adaptive thresholding method calculated based on the 

weighted sum of the total histogram average bin values: 

where N is the total number of bins in the speed difference histogram (histogram 

of Dkvalues), f reqi is the count of values in bin i, and vi is the bin value. 



5.3.3 Trajectory discontinuity detector 

Trajectory segmentation has been previously studied in areas such as video seg- 

mentation [Xiang and Gong 041 where techniques such as Discrete Curve Evolution 

(DCE) uses a distance or similarity measure such as Euclidean distance to measure 

distance using 3 neighbour points and if it exceeded a threshold, the vertex point 

is declared as a breaking point. Also, another similar technique, Forward-Backward 

Relevance (FBR) has been proposed by [Xiang and Gong 041 following DCE method 

but using non-neighbour points to become more robust to noise. The hand motion 

trajectory offers rich spatio-temporal information. The purpose of this component 

is to discover points of perceptual discontinuity along the trajectory curve. A corner 

can be defined as a point on a curve where the curvature is locally maximal. It is 

well known [Rosten and Drummong 061 that corners generally correspond to such 

places where perceptual changes are happening. Hence, the trajectory discontinuity 

detector is effectively a corner point detector. Here, we apply two metrics to specify 

the corner points. One is the angle calculated on the local neighbourhood, and the 

other is the angle difference. If a point's angle is very sharp (acute) or its angle is 

very different from the angles of its neighbouring points, this point is determined as, 

a corner. Fig. 5.6 shows an example of a trajectory where the corner points can be 

either acute or obtuse between motion patterns. This is our motivation behind using 

the two metrics for detecting corner points. 
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Figure 5.6: Tkajcctory curve of a sign sliowing motion discontinuity at d8erent types 
of corner points 

Let Tr = iskr yklf be a trajectory curve, where zk; and gk denate the hand's 2-D 

location in the kt'"ame. The angle qk aqsociated with point (zk,gk)  is calcr~lated 

by: 

Here a,b,c arc distances among three consecutivt; points. To be specific: 



Then, the angle difference is defined as: 

The trajectory discontinuity detector is thus implemented by: 

1 boundary candidate if cpk < Tv or Dvk  > TDv 
Ck = { (5.8) 

0 non-boundary candidate else 

Where the two thresholds Tv and Top are adaptively calculated using Eq. 5.4. The 

proposed technique can work online given that we have pre-calculated the speed 

and angle thresholds of the signer and accumulated few points such as the first 3 

trajectory points 

5.3.4 Combining boundary candidates 

Combining boundary candidates from the speed and trajectory discontinuity detec- 

tors Mk and Ck can be done simply by selecting the common boundaries, but as the 

data can be sometimes noisy, it is quite hard to depend only on the exact matched 

boundaries. As a result, we decided to use a small window of length 3. If there 

is no an exact matching boundary at Ci and Mi, we search for the first matching 

boundary in Mi-3, Mi-2, Mi-1, Mi+l, Mi+2, Mi+3. We call the detected boundaries 

in this stage ''preliminary boundaries". 

5.3.5 Temporal clustering 

In practice, our approach is not able to achieve an outstanding performance because 

of noise from irregular motion patterns, motion variations from different signers, 

errors in matching trajectory and speed boundary candidates, and finally from the 

errors that might occur during the tracking of the hands. These noises and variations 

normally result in some false subunit boundaries and very small subunit segments. 

Fig. 5.7 shows an example of a false boundary detected due to mismatching between 



the speed and trajectory detectors. In this case, it may be necessary to introduce a 

temporal clustering process to remove the false boundaries and further improve the 

results. 
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Figure 5.7: An example of real sign trajectory with a false boundary detected 

The principal idea of our temporal clustering is to merge the consecutive similar 

preliminary subunit segments using more spatio-temporal visual features. The key 

problem is how to measure the similarity between preliminary subunit segments. 

Hidden Markov Models aim to automatically recognize time series data using the 

forward-backward or veterbi algorithm. However, the training is computationally 

expensive and needs many training samples. Other techniques used to learn intrinsic 

classes such as Entropy and Minimum Description Length treat continuous temporal 

data as a fixed length data vectors which can affect the results due to the non-linear 

warping of the time scale. In our approach, we apply DTW (dynamic time warping) 

to address this problem since it has been acknowledged to be a very good and pop- 



ular tool for comparing temporal signals of different length [Fang et al. 041, thus we 

use it as a similarity metric only without any need for recognition such as in HMMs. 

A related work in [Ng and Gong 021 was proposed to learn trajectory models based 

on Levenshtein-distance based DTW. The authors used the inverse of the pairwise 

DTW distance between trajectories to build an affinity matrix. Then, the clustering 

of the trajectories was treated as a graph partitioning problem. One difference be- 

tween their approach and ours is that they didn't assume that the trajectories could 

be merged or more specifically they assumed that the trajectories were segmented 

without errors or false boundaries, while our objective here is to use the clustering to 

detect preliminary sequential subunits that should be merged. DTW uses dynamic 

programming to find the best warping path that leads to the minimal warping cost 

between two preliminary subunits. More specifically, suppose we have two prelimi- 

nary subunits U = {ul, u2, ..., u,} of length m and Q = {ql, 92, ..., q,} of length n. 

Here, ui and qj represent feature vectors extracted from every frame. The warping 

path between U and Q is denoted by: 

where max(m, n) 5 K < m+n-1, with wk: = (ik, jk). Each element wk = (ik, jk) 

is associated with a distance between the two vectors ui, and qj,, which is: 

The warping cost of W is given by: 

The warping path is subject to some constraints such as endpoint, continuity, and 

monotony criterions. F'rom many satisfiable warping paths, we pick the best one 

with the minimal warping cost, and then define the distance between two preliminary 

subunits U and Q as: 



k=l 

The search for the best warping path can be implemented by dynamic programming. 

In order to make DTW work efficiently, the construction of feature vector pk for the 

kth frame plays an important role. 

In our discontinuity detectors, we only consider the (local spatio-temporal" features 

computed from a pair of consecutive frames. Here, we design our feature vector pk 

by taking into account some 'blobal spatio-temporal factors" to represent the motion 

pattern of the whole subunit. These global features are based on subunit trajectory 

information and are invariant to trajectory translation and scaling so that they are 

capable of dealing with the motion noises and variations. 

If we assume the hand segmentation and tracking system can provide us with the 

following information: (1) hand location in the kth frame, (xk, yk) ; (2) the corre- 

sponding preliminary subunit trajectory, Tr ; (3) the centroid of Tr, (x,, y,) ; (4) 

the head position (xh, yh) . The feature vector pk contains 6 factors, which are 

formulated as: 

a Hand motion speed. calculated as: S k  =I1 (xk+i, yk+~)  - (xk, yk) 1 1 .  

a Hand motion direction code. First, the hand motion direction is described by: 

yh+l-yk)). Then, 0 is quantized into 18 direction codes of range 20 0 = arctan(- 

degree each. The yielded direction code is denoted by ak. 

a Distance between hand position and trajectory centroid. calculated as: ,f3k =/I  

(xk, ~ k )  - (XC, YC) 1 1 .  

a Orientation angle of vector from hand location to trajectory centroid. calculated 

as: r,+ = arctan(=). 

a Distance between hand and head. calculated as: 

61, (xhr ~ h )  - (xk, ~ k )  1 1 .  

a Orientation angle of vectorfrom hand to head. calculated as: ek = arctan(=). 



In these descriptors above, the former 2 descriptors indicate the hand motion velocity 

information, the middle 2 descriptors measure the hand position relative to the whole 

trajectory, and the latter 2 descriptors depict the hand position relative to the head. 

This set of features can provide us with good information about the global motion 

pattern of the corresponding subunit. We tried to concentrate more on the motion 

because this is related to our original definition of the subunits as a continuous motion 

pattern. As a result, we didn't want to use the shape features of the hand as the 

signer might change his hand configuration while moving. To compute easily, these 

6 spatio-temporal features are normalized into the range between 0 and 1. Finally, 

the feature vector is derived as: 

where N(m) is a normalization operator. Once the similarity between prelimi- 

nary subunits can be measured, the last step is to cluster these temporal segments. 

If consecutive preliminary subunits belong to the same cluster, we merge them into 

one subunit and then refine the boundary points. DTW distance does not obey the 

metric axioms and thus can not be directly used in traditional clustering methods 

which rely on the computation of cluster centroids such as k-means. This moti- 

vated us to adopt the agglomerative clustering algorithm [Data clustering] due to its 

outst anding performance which is a hierarchical algorithm and does not depend on 

centroid calculations. 

However, the quality of the clustering is dependent on the trajectory information 

from the segmentation and tracker component. Given that the subunit segmen- 

tation algorithm has supplied us with the preliminary subunits which represents 

the different motion patterns, we are sure that trajectory continuity exists within 

each subunit. Meanwhile, the DTW distance metric combined with the hierarchical 

clustering technique can cope with some noise that can exist in the trajectory in- 

formation. In the next chapter, we will explain in detail how we use the clustering 

algorithm which provides us with codebook entries in the recognition task. 



5.4 Experimental results 

We tested the proposed work with a number of real-world signing videos. They 

were collected from three different sources: Echo database [ECHO], self-captured 

sequences, and data shared from other research group [SLR group]. To evaluate 

our proposed approach, we will first demonstrate some visual results for subunits 

segmentation to be able to subjectively judge how promising is the approach. Later, 

we will present an experiment to quantitatively evaluate the algorithm. 

5.4.1 Subjective experiment 

We demonstrate here four samples of videos, three of which are from other research 

group [SLR group], and one self captured by ourselves. Fig. 5.8, 5.9, 5.10, and 5.11 

show sample frames from the videos. We denote the detected boundary frames by a 

rectangle drawn around the frame number. In the first three samples the signer is 

wearing colour gloves to simplify the segmentation and tracking task, while in the last 

sample we tested our algorithm using our hand segmentation and tracking system 

a s  discussed in chapter 4. In the four samples, we can notice that the algorithm 

performance is promising for segmenting different motion patterns which we will use 

as our basic blocks in the recognition phase of the sign in the next chapter. 



Figure 5.8: Sample 1 of subunits segmentation (sign "banana") 



Figure 5.9: Sample 2 of subunits segmentation (sign "apple") 



Figure 5.10: Sample 3 of subunits segmentation (sign "bat") 



Figure 5.11: Sample 4: subunits segmentation for the signer's right hand. Continued 
next page 



5.4.2 Quantitative experiment 

This experiment was constructed to quantitatively evaluate our work. We randomly 

selected 10 signs (colour-glove videos, and isolated signs) from our collected dataset 

[SLR group]. To test the capability of our algorithm in handling noise and motion 

variations, every sign was performed with 10 repetitions. 5 examples of each sign 

were utilized to construct the ground truth, and the other 5 examples were used for 

testing. The ground truth was built through human manual segmentation. 

For each training sign, we manually segment the subunits of the 5 samples and 

cluster them using the DTW distance metric. For each cluster, we calculate the 

medoid subunit (the subunit which has the minimum average distance to all the 

other subunits in the same cluster). After clustering, a codebook can be constructed 

for every sign using the medoid subunits, which act as representatives for the subunits 

that exist in these sign. The experiment measures how accurate the codebook that is 

generated automatically by our algorithm compared to the ground truth codebook. 

An important issue in any clustering problem is how to decide the number of clusters. 

In our case, we use the average number of segmented subunits for the 5 testing 

samples as a threshold for the number of clusters. The two following metrics, recall 

and precision, were adopted to measure the performance: 



Recall = &= 
N, 

Precision = &= 
N d  

where : 

Ng : the number of the correct subunits in ground truth codebook 

Nd : the total number of subunits detected in the algorithm codebook 

N, : the number of correct subunits detected in the algorithm codebook 

Table 5.1 lists the statistical detection performance. As can be seen, our algo- 

rithm reaches an average recall of around 0.82 and average precision of around 0.76. 

Through carefully studying experimental results, especially failed cases, we found 

three factors mainly influence the detection accuracy. 

The first one is the noise and varying motions which negatively affect the matching of 

boundary frames detected by both the speed and trajectory information. The second 

factor is the information quality provided by the hand segmentation and tracking 

system. In some cases, the segmentation and tracking system cannot guarantee to 

return accurate hand positions and motion trajectories due to motion blur, illumi- 

nation change, complicated background, and occlusion. The third factor is the hand 

motion complexity. In some cases, the hands are involved in somewhat complex 

movements such as in the movement of the fingers while the palm is stationary or 

when the hand is occluded with other skin object. Finally, the previous factors may 

affect the real number of clusters to generate the final codebook. In general, given 

that our experiment did not try to avoid the above factors, we may claim that the 

proposed approach is promising. 



I Sign number I, NE 1 N d  1 Nc I Recall 1 Precision I 

Table 5.1: Statistical detection performance of the proposed subunit segmentation 
system 

To demonstrate the performance of clustering and reasons of possible errors, fig. 

5.12 shows the dendrogram of subunits clustered in four clusters. The total subunits 

were segmented from 10 sign samples. From observing the sign samples, it can 

be shown that there are four main subunits. TWO types of errors occured in this 

clustering. First, subunit no.38 were originally segmented into 2 subunits instead 

of 4 due to motion variation. Then as the 2 subunits were clustered into the same 

cluster, they were merged together, so the whole sign ended up to be in one subunit. 

And as the average number of subunits for the 10 samples (in this case was 4) is 

used to determine the number of clusters, this sign is considered as one cluster. 

Second, as a direct result to the previous error, two true clusters were merged into 

one cluster to make the final number of clusters 4. However, assuming that the first 

error didn't happen, we should have ended up with the 4 true clusters. 



Subunit IDS 

Figure 5.12: An example of a dendrogram for clustering real sign subunits using 10 
sign samples 

5.5 Summary 

In this chapter, we have studied human action characteristics and taken advantage of 

them to develop a subunit boundary detection model. Dealing with a small number of 

subunits instead of the whole sign has many advantages especially in the task of SLR 

as the number of subunits is much more smaller than the total SL vocabulary size. 

Motion trajectory and speed information derived from hand motion are integrated to 

generate potential subunit boundaries. A temporal clustering utilizing more spatio- 

temporal features is then applied to refine the performance. The presented model is 

robust to various signers and doesn't require any previous knowledge about the signs 

or the number of subunits, thus it can operate in a completely unsupervised way 

to discover the subunits in the sign vocabulary. It is very easy to implement, can 



operate in real time and may be efficiently incorporated in a gesture/SL recognition 

system. Subjective and quantitative evaluations based on a real-world data have 

demonstrated the effectiveness and robustness of the proposed work. 



Chapter 6 

Subunit-based Sign Language 

Recognit ion 

6.1 Introduction 

A large amount of effort has been devoted to research in SLR. Encouraged by the 

success of HMMs in speech recognition, most existing approaches apply the same idea 

to SLR and focus on training classifiers on isolated signs. Some representative work 

can be found in [Starner et al. 98, Liang and Ouhyoung 98, Vogler and Metaxas 981. 

HMMs are capable of modelling temporal signals due to its state-based statistical 

model. However, one major shortcoming lies in its requirement for extensive training 

data to handle variations and represent temporal transitions. Normally, HMM-based 

algorithms need 40-100 training examples for each sign to achieve good performance, 

which was pointed out by [Kadir et al. 021. Hence, this group of schemes is not suit- 

able for SLR with a large vocabulary. 

In the previous chapter we discussed the subunit-based approach for decomposing the 

whole sign into small elementary subunits which has the advantage that the number 

of subunits is much smaller than the number of signs, which leads to a smaller sample 

size for training and a smaller search space for recognition. Second, subunits build a 

bridge between low-level hand motion and high-level semantic SL understanding. In 

this chapter, we attempt to develop an effective SLR system using AdaBoost learning 



on subunits. 

AdaBoost was originally invented by Freund and Schapire [Freund and Schapire 951. 

AdaBoost has been successfully used in a wide variety of learning applications such as 

image retrieval [Tieu and Viola 041, object detection [Opelt et al. 061, action recog- 

nition [Lv and Nevatia 061, and gesture recognition [Lockton and Fitzgibbon 021 within 

the last decade. Nevertheless, to our best knowledge, very little work has been done 

in SLR. In our work, AdaBoost is adopted to select discriminative combinations of 

subunits and features, which are considered as weak classifiers. A strong classifier is 

finally constructed based on a set of learned weak classifiers. 

The proposed system consists of two major stages. In the first stage, we model 

spatio-temporal features of the hand movement and apply them to break down signs 

into subunits. Next, in the second stage, we present two variations for learning 

boosted subunits where in the first case we train the sign classes independently, and 

in the second case, we train the classes jointly, which permits the various classes to 

share the weak classifiers to increase the overall performance and reduce the num- 

ber of weak classifiers due to sharing. The presented work opens the possibility 

of efficiently recognizing sign language with large vocabulary using small training 

data. One important advantage of our algorithm is that it is inspired by human 

recognition abilities so it can work in a manner analogous to humans. Experiments 

on real-world signing videos and the comparison with classical HMM-based weak 

classifiers demonstrate the superiority of the proposed work. 

6.2 The Adaboost algorithm 

The original AdaBoost algorithm [F'reund and Schapire 951, is a supervised learning 

algorithm designed to find a binary classifier that discriminates between positive 

and negative examples. The input to the learning algorithm is a set of training 

examples (x,, y,), n = 1, . . . , N, where each x, is an example and y, is a boolean 

value indicating whether x, is a positive or negative example. AdaBoost boosts the 

classification performance of a simple learning algorithm by combining a collection 



of weak classifiers into a stronger classifier. Each weak classifier is given as a function 

hj(x) which returns a boolean value. The output is 1, if x is classified as a positive 

example and 0 otherwise. 

Whereas the weak classifiers only need to be slightly better than a random guessing, 

the combined strong classifier typically produces good results. To boost a weak 

classifier, it is required to solve a sequence of learning problems. After each round of 

learning, the examples are reweighted in order to increase the importance of those 

which were incorrectly classified by the previous weak classifier. The final strong 

classifier takes the form of a perceptron, a weighted combination of weak classifiers 

followed by a threshold. Large weights are assigned to good classification functions 

whereas poor functions have small weights. A variant of the AdaBoost algorithm has 

been presented in [Viola and Jones 011. This variant restricts the weak classifiers to 

depend on single-valued features f j  only. This allows the algorithm to apply the 

feature selection process by finding each round the best feature that discriminates 

between the positive and negative examples. Each weak classifier has the form: 

( 0 otherwise 

where Oj is a threshold and p j  is either -1 or 1 and thus representing the direction of 

the inequality. The algorithm determines for each weak classifier hj(x) the optimal 

values for Oj and pj, such that the number of misclassified training examples is 

minimized: 

N 
argmin 

(pj, Oj) = C lhi(xn) - ynI 
( ~ i , @ i )  n=l 

To achieve this, it considers all possible combinations of both p j  and Oj, whose 

number is limited since only a finite number of training examples is given. To 

be specific, for each feature, the examples are sorted based on feature value. The 

Adaboost optimal threshold for that feature can then be computed in a single pass 



over this sorted list. Note that the weak classifier is not necessarily a simple decision 

rule like the one above, but can rather be any type of classifier in the machine learning 

literature. Algorithm 4 outlines the Adaboost technique. 

Algorithm 4 The Adaboost algorithm according to [Viola and Jones 011 
Input: set of examples (XI, yl), , ., , (x,, y,) where yi = 0 , l  for negative and 
positive examples respectively. 

Initialize weights wl,i = &, & foryi = 0 , l  respectively, where m and I are 
the number of negatives and positives respectively. 

For t = 1, ..., T: 

1. Normalize the weights, Wt,i + xg:;t,j 
2. Select the best weak classifier with respect to the weighted error 

N 
f j  = En wt,n Ihj(xn) - ynI 

3. Choose the classifier hj with the lowest error cj and set (ht, ct) = (hj, cj). 

4. Update the weights: 
w t+ l ,  = W ~ , ~ , O ~ - ~ " ,  where ,Ot = + and en = 0, if example xn is classi- 
fied correctly by ht and 1, otherwise. 

The final strong classifier is given by: 
T 1 T 

1 
C ( X )  = 

I if C t = l  ath&) 2 5 Ct= l  at , where at = log-& 
otherwise 

6.3 Subunits as weak learners 

6.3.1 Subunits extraction 

In the last chapter we discussed the segmentation of sign video x into a set of frame 

sequences that we called 'subunits', where every subunit represents a motion pattern 

of the hand that covers a sequence of consecutive frames with interrelated spatio- 

temporal features. Given a training set of N sample videos for sign x, the subunit 

segmentation algorithm is applied on all sample videos and we get a set of subunits: 



where su,,~ is the lth subunit in sample n. Every su,,~ is then modelled using the 

6 global spatio-temporal features we introduced in the last chapter (Hand  mot ion 

speed, Hand mot ion direction code, Distance between hand position and t~a jec tory  

centroid, Orientation angle of vector from hand location t o  trajectory centroid, Dis- 

tance between hand and head, Orientation angle of vector from hand t o  head): 

where f;" represents feature vector of frame i in subunit su, ,~.  

6.3.2 Subunits clustering 

Hierarchical clustering is a way to investigate grouping in our data, simultaneously 

over a variety of scales, by creating a cluster tree. The tree is not a single set of 

clusters, but rather a multilevel hierarchy, where clusters at one level are joined as 

clusters at the next higher level. This allows us to decide what level or scale of 

clustering is most appropriate for our application. To perform hierarchical cluster 

analysis on our data set, we have to follow this procedure: 

1. Find the similarity or dissimilarity between every pair of objects in 

the data set. In this step, we calculate the distance between objects using a 

distance metric. In our case we adopted the DTW metric as discussed in the 

last chapter. 

2. Group the objects into a binary, hierarchical cluster tree. In this step, 

we link pairs of objects that are in close proximity using a linkage algorithm. 

There are different linkage algorithms. These linkage algorithms are based on 

different ways of measuring the distance between two clusters of objects. If n, 

is the number of objects in cluster r and n, is the number of objects in cluster 

s, and x,i is the ith object in cluster r ,  we adopt the average linkage algorithm 

which uses the average distance between all pairs of objects in cluster r and 

cluster s :  



where dist(xri, xsj) = DTW(xri, xsj). The linkage algorithm uses the distance 

information generated in step 1 to determine the proximity of objects to each 

other. As objects are paired into binary clusters, the newly formed clusters are 

grouped into larger clusters until a hierarchical tree is formed. 

3. Determine where to cut the hierarchical tree into clusters. In this 

step, we prune branches off the bottom of the hierarchical tree, and assign 

all the objects below each cut to a single cluster. This creates a partition 

of the data. In general, if we know the number of clusters we need, we can 

easily know where we have to prune the tree from. In our case, we know 

from the subunit segmentation algorithm the number of subunits that were 

generated from every signing video sample. We calculate the average number 

X of subunits segmented from all the samples of sign x and use this X as a 

threshold to prune the hierarchical tree and get out the subunit clusters for 

sign x. 

4. The final step in the clustering task is to construct a codebook for the different 

subunit clusters. For every cluster, we find the medoid subunit (the subunit 

which have the minimum average distance to all the other subunits in the same 

cluster) . 

ns 

med0id.i = m i n ( x  DTW(ri,  xj)), j E (1, . . . , n,) 
i=l 

The set of cluster medoids form the codebook entries of sign x. Fig. 6.1 

and 6.2 demonstrate two examples of codebook construction. Subunits from sign 

samples where extracted and clustered as shown in the dendrograms. Then the 

medoid subunits where identified. Fig. 6.3 shows an example of a failed example for 

a complex motion pattern (sign of "hungry") where the hand moves slowly in small 

region towards the mouth back and forth. The subunit segmentation algorithm 



detected 2 rnedoids, the first one is a long subunit where the small subunits were 

merged together, and another short true subunit. In reality, for this sign, we shodd 

get 3 rndoid subunits: one from the beginning of thc hand motion kill the mouth, 

one from the mouth outwards, and one towards the mouth. 



medoid subunit 3 

Subunit IDS 

Figure 6.1: An example of a codebook for a real sign with 3 entries, with the den- 
drogram of the subunits 



.medoid subunit 1 

C 9 10 1 1  12 

19 20 21 22 

medoid subunit 3 

Subunit IDS 

Figure 6.2: An example of a codebook for a real sign with 3 entries, with the den- 
drogram of the subunits 



medoid subunit 2 

Figure 6.3: An example of failed subunit segmentation in a complex motion pattern 

6.3.3 Constructing weak classifiers 

In this section we will discuss the construction of weak classifiers using the com- 

binations of subunits and features. Here we introduce a new feature to represent 

the shape of the hand based on the hand boundary (Fourier Descriptors) and hand 

region (Moments). 

6.3.3.1 Fourier descriptors 

Basically, Fourier Descriptors (FD) is obtained by applying Fourier transform (FT) 

on a shape signature function derived from shape boundary coordinates { ( x ( t ) ,  y ( t ) ) ,  t = 

O , 1 ,  ... N - 1). The centroid distance function is a popular shape signature function, 

which is given by the distance of the contour points from the centroid (x,, yc) of the 



shape: 

1 where x, = x(t) , yc = y(t), s (t) is invariant to translation. 

One dimensional F T  is then applied on s(t) to obtain the Fourier transformed coef- 

ficients: 

Ignoring the phase information of a, and using only the magnitudes lanl achieves 

rotation invariance, while scale invariance can be achieved by dividing the magni- 

tudes by the DC component, i.e. lao 1. FDs are basically the normalized Fourier 

coefficients [Zhang and Lu 011. Global shape features are captured with the first few 

low frequency terms, while higher frequency terms capture finer details of the shape. 

6.3.3.2 Moment Invariants 

One of the most popular region-based image invariants [Pakchalakis and Lee 99, 

Reeves et al. 881 is the Moment invariants. Based on regular moments, a set of 

invariants using nonlinear combinations were first introduced by Hu back in 1961 

[Hu 621. Regular moments are defined as: 

00 00 

mpq = 1, 1, xpyq f (x, y)dxdy p, q = 0,1,2, ... (6.5) 

where mpq is the (p + q)th order moment of the continuous image function f (z, y). 

The central moments of f (x, y)  are defined as: 

0 0 0 0  

ppq = S_, 1, (x - q P ( y  - Vf (x, Y ) ~ X ~ Y  (6.6) 

Where 5 = ELQ and jj = $, which are the centroid of the image. The central moo 

moments obviously are invariant to image translations. To obtain scale invariance, 

we let f (2,  gj) represent the image f (z, y) after scaling the image by s, = s, = a, so 



j(i,;lj) = f (ax, ay) = f (3, y), and k = ax, 9 = MJ, then we can easily prove: 

m;, = Crp*q+Zmp4 

Similarly, 

Fl;y = a~+q-F2/lprf 3 viio = a 2 PO0 

We can define normalized centrd moments as: 

vw is invariant t o  changes of scale because: 

Based on normalixcd central moments, Hu introduced seven moment invariants: 

Hu's seven moment invariants have the nice properties of being invariant under 

image scaling, translation and rotation. However, their disadvantage is that; more 



higher order moments is quite hard to compute and reconstructing the shape from 

the moments are also hard. The first lower moments can capture only global shape 

properties. 

6.3.3.3 Dynamic Time Warping (DTW) 

At this stage we have a codebook of subunits. As we don't yet know what subunits 

are more important (informative) for a sign to be recognized, nor what features are 

more important to discriminate this sign from other signs, we try here to construct a 

set of weak classifiers from the codebook entries, each with a different set of feature 

combinations. 

Using a standard Boosting framework, we can learn the informative subunits/features 

combinations and construct a strong sign classifier for every sign in our vocabulary. 

Given a codebook B, = {S1, S2, ..., SA) for sign x consisting of X subunit entries, and 

feature set F = {Fl, Fz, .. . , F7), where the first 6 features (Fl ... Fs) correspond to the 

6 global spatio-temporal features mentioned in subsection 6.3.1 and F7 corresponds 

to the hand shape feature. F7 is calculated using the Fourier descriptors (FD) and 

Hu moments with fixed feature vector size (we used 32 total coefficients, 25 Fourier 

coefficients and 7 Hu moments). 

We can construct a set of weak classifiers using different combinations of these 7 

features calculated for every Si in B,. Let W,  = {wl, w2, . . .w7), where W,  is the 

set of weak classifiers constructed for sign x, and wi is the set of weak classifiers 

constructed using i features. So wq is the set of weak classifiers constructed using all 

possible combinations of 4 features from the set F. Also note that these combinations 

of features are calculated for all the subunits Si in B,. In general, we store the 

information of every weak classifier in a structure such that: 

W i  = {(fv, F I D ,  SUID)l ,  (fv,  F I D ,  SUID)z,  ...(f v, F I D ,  SUID),) 

where, fv  is the feature vector, F I D  is the ID of the features calculated which can 

be a string of digits in the range of 1 to 7 and of length i, and S U I D  is the ID of 



the subunit Si which can be any number between 1 to A. We want a classifier to fire 

(hi(X) = 1) if the distance of hi to a sign video is below a certain threshold: 

( 0  otherwise 

D(hi, X )  = min(DTW(hi, xj)) , j E (1,2, ..., M) (6.9) 

where the sign video X consists of subunits XI ,  2 2 ,  . . . , XM, hi is the weak classifier, 

and DTW is the dynamic time warping distance metric. In the Adaboost frame- 

work, every iteration we select the best weak classifier hi that minimizes the overall 

error over the training samples using their current weights. To determine the best 

threshold Ohi for every weak classifier, we sort the distances D between the classifier 

and the training samples and in a single loop over them we can use each of them as 

a threshold and calculate the total error of the training samples. Finally, we pick the 

weak classifier and its corresponding threshold that resulted in the minimum total 

error. 

6.3.3.4 Hidden Markov Model (HMM) 

HMMs are famous for their applications in temporal pattern recognition such as 

speech [Huang et a1 901, handwritting [Veltman and Prasad 941, and gesture recog- 

nition [Yoon et al. 991. A HMM has the ability to find the most likely sequence 

of states that may have produced a given sequence of observations. Formally, the 

elements of a Hidden Markov Model are defined using the following declarations 

[Jose and Luis 041: 

set of observation strings 0 = 01, ... Ot, ... OT, where t = 1, ..., T 

set of N states SI, ..., SN 

set of k discrete symbols from a finite alphabet Vl, ..., Vk 

a state transition matrix A = {aij), where aij is the transition probability from 



state Si to Sj 

an observation probability matrix B = {bjk), where bjk is the probability of 

generating symbol Vk from state Sj 

the initial probability distribution for the states fl = q , j  = 1,2, ... N, n j  = 

Pr (Sj at t = 1) 

The complete parameter set of an HMM can be expressed compactly as X = (A,  B, n). 

For every class c where c E {1,2, ... N), and N is the maximum number of classes in 

our problem, given a set of training sequences, one HMM model X can be trained, 

and then given a testing input x to be classified, we select the class c with highest 

probability Pr(zlX,). The three basic problems must be solved for the application of 

HMM: classification, decoding, and training. These problems are in general solved 

using the forward algorithm, Viterbi algorithm, and the Baum-Welch algorithm. 

We used the classical left-right (basic) states structure, which is typical for motion 

ordered paths. 

We tried here to use HMMs as weak classifiers in the same manner of using the DTW 

as in the last section. In section 6.3.2 we discussed the construction of a hierarchical 

tree of subunits which we prune its branches to get a set of subunit clusters. Given 

the feature set F = {Fl, F2, ..., F7), and the subunits in every cluster, we train one 

HMM model for each possible feature combination. Let C = {C1, C2, . . . , C,) be the 

set of clusters for sign x, and Fcomb = {Fcomblr Fcomb2, ..., Fcomb127) be the set of all 

possible feature combinations, then we train a set of HMM models: 

where HMMmOdel, is the set of all trained HMM models, and HMM," is the HMM 

model trained on sample subunits in cluster r using feature combination n, where 

105 



n E {Fcombl1 ...Fcomb127). In comparison to the DTW weak classifiers discussed 

above, we want a classifier to fire (hi(X, H M M Z )  = 1) if the probability of X given 

the model H M M Z  is above a certain threshold: 

{ 
if P (X ,  H M M Z )  > Qhi 

hi(X, HMM;) = 
otherwise 

where the sign video X consists of subunits XI, 2 2 ,  ..., X M ,  hi is the weak classifier, and 

P is the maximum probability between the HMM model H M M Z  and the subunits 

x j  , 

6.4 Joint-Adaboost learning 

Much recent research on object category recognition has proposed models and learn- 

ing methods where a new model is learnt individually and independently for each ob- 

ject category [Opelt-PAM1 061. However, such approaches seem unlikely to scale up 

to the detection of a large number of different object classes because each classifier is 

trained and run independently. Another promising approach by [Torralba et al. 041 

has been proposed to explicitly learn to share features across multiple object classes 

(classifiers) [Opelt-CVPR 061. The basic idea is an extension of the Adaboost al- 

gorithm. Rather than training C binary classifiers independently, they train them 

jointly. The result is that many fewer features are needed to achieve a desired level 

of performance than if the classifiers were trained independently. This results in 

a faster classifier (since there are fewer features to compute) and one which works 

better (since the features are fit to larger shared data sets). 

It has been shown in [Torralba et al. 041 that although class-specific features achieve 

a more compact representation for a single category, the whole set of shared fea- 

tures is able to provide more efficient and robust representations when the system 

is trained to detect many object classes than the set of clms-specific features. One 



drawback of class-specific features is that they might be too finely tuned, preventing 

them from being useful for other object classes. 

The learning algorithm is an iterative procedure that adds one feature at each step. 

Each feature is found by selecting, from all possible class groupings and features, 

the combination that provides the largest reduction of the multiclass error rate. The 

feature added in the first iteration will have to be as informative as possible for as 

many objects as possible, since only the object classes for which the feature is used 

will have their error rate reduced. In the second iteration the same selection pro- 

cess is repeated but with a larger weight given to the training examples that were 

incorrectly classified by the previous feature. This process is iterated until a desired 

level of performance is reached or until a fixed number of iterations T. The algorithm 

has the flexibility to select class-specific features if it finds that the different object 

classes do not share any property. 

6.4.1 Sharing weak classifiers 

Motivated from the related work of joint learning in object recognition and from our 

observations that different subunits can be shared between signs, we are proposing 

here to apply joint-Adaboost learning to share weak classifiers across different sign 

classes. Our aim is two-fold. Firstly to increase the overall performance, as now 

the weak classifiers are optimized to reduce the total error over all the classes at 

every iteration and so focus on more general features instead of class-specific fea- 

tures. Secondly, to reduce the total number of weak classifiers required compared 

to independently learning each class, which helps in constructing a faster, stronger 

classifier. The joint boosting algorithm is summarized in algorithm 5. We adopted 

the joint boosting algorithm proposed by [Torralba et al. 041. The main difference 

between the two algorithms is the weak classifiers, as here we use the DTW-based 

metric to measure the distance between the classifier (modelled by the corresponding 

subunitlfeature combination) and the input sign. 

The basic idea of the algorithm is that at each boosting round, we examine 

various subsets S, C, and try to fit a weak classifier to discriminate that subset 



Algorithm 5 Joint Boosting with DTW-based weak classifiers. 
Input: set of examples (xy , yf), . . . , (xf, yf) where yf E {- 1,l) for negative and 
positive examples respectively, i = l...N, 
c = l...C. 

Initialize weights w? = 1, H(x ,  c) = 0. 

For t = 1, ..., T: 

(a) Repeat for n = 1,2, ..., 2C - 1 

1. Find the best shared weak classifier ht w.r.t. the weights w:" : 

1. Evaluate error: 

En  = C: xZ1 w:(Y: - ht(xi, c))' 

(b) Find the best sharing by selecting n = arg min, En, and pick the corre- 
sponding shared ht and Sn 

(c) Update: 

H(x, c) = H(x,  c) + ht(x, C) 

W; = W;e-~icht(x,c) 

from the other classes c $2 Sn, we do this by considering all the classes in the subset 

as "positive" examples, and examples from other classes as "negative". This gives us 

a binary classification problem which can be solved in a manner similar to binary 

Adaboost outlined above. We then pick the subset that maximally reduces the error 

on the weighted training set for all the classes. The corresponding best shared weak 

classifier ht(x, c) is then added to the strong classifiers H(x ,  c) for all the classes 

c E S, and the weights of all the training set examples are updated. For classes 

that do not share this weak classifier, the function ht(x, c) is constant kc different 

for each class. This constant prevents sharing classifiers due to asymmetry between 

the number of positive and negative examples for each class and is defined as: 



Thus each weak classifier holds 2 parameters (feature vector values fv , threshold 

thht) for the positive class, and C - JS,J parameters for the negative class, and 

one parameter specifying which subset S, was chosen. As we don't know which 

subset is the best for sharing, we have to search over all 2' - 1 subsets each round 

which can be very slow. So we followed [Torralba et al. 041 in their greedy strategy. 

This starts with selecting the class that achieves alone the lowest overall error, then 

incrementally adds the next class with the lowest training error. After we finish 

adding all the classes, we select the subset that gives the best error reduction. 

6.5 Experimental results 

We tested our proposed subunit-based SL recognition algorithm on 20 different signs 

(see table 6.1) that were collected from a database from other research groups. Every 

sign is performed 10 times (total 200 video samples) with variations in speed and 

the way of performing. Some of the sign samples are presented in figures 6.4,6.5, 

6.6, and 6.7. In theory, we have 4 different case scenarios for modelling the weak 

classifiers in the Adaboost algorithm: 

a single subunit / single feature. 

a single subunit / all possible feature combinations. 

a all possible subunits combinations (or fixed number of subunits) / single fea- 

ture. 

a all possible subunits combinations (or fixed number of subunits) / all possible 

feature combinations. 

In these experiments, we chose to test with only the first 2 scenarios as the last 

two scenarios are very time-consuming. The computation cost is very heavy to se- 

lect at every iteration the best weak classifier from such huge pool of weak classifier 

candidates. For example, if we imagined that a sign consists of 3 subunits, and for 

the 7 features there is 127 different combinations, then this means that for the 3 



subunits, we need 127 * 3 + 1 2 7 ~  * 3 + 127~ = 2097151 weak classifiers for this sign 

alone using the 4th scenario. However, the third scenario is better as it gives a total 

of 7 * 3 + 7' * 3 + 73 = 511 weak classifiers and the second scenario gives 127 * 3 = 381 

weak classifiers. Thus our experiments are based on using the second scenario. Note 

that the first scenario is a special case of the second option as well. 

We experimented our proposed algorithm on different numbers of positive and neg- 

ative training samples. We begin training with 1 positive sample and 19 negative 

samples (one from each class) selected randomly. This experiment is repeated 10 

times for every sign class. Then sequentially, we repeat the process by using 2 posi- 

tive samples and 38 negative samples (two from each class) till we reached 9 positive 

samples and 171 negative samples. The rest of the 10 samples in each class is used 

for testing. We used T=20 cycles in the Adaboost algorithm to combine 20 weak 

classifiers and construct a strong classifier for every sign class in independent train- 

ing, while in joint training we used T=60 to train the whole set of the 20 classes, 

thus the number of weak classifiers needed is reduced from 400 to 60 which is part 

from our motivation in using joint training. 

Two types of experiments were done to test the performance of the proposed ap- 

proach for both types of training: independently where we evaluate both types of 

weak classifiers: DTW-based and HMM-based, and jointly. In general, first, we test 

the performance of each classifier independently by recording its performance using 

the recall, precision, specificity, and F-score measures. Then to we test the overall 

performance in a multiclass test by selecting the best classification across all the 

classes for each testing video sample and recording the minimum, maximum and 

average error and accuracy. 

We used the following metrics in our evaluations: 



Nc recall = - (6.12) 
N57+ 
Nc precision = - 
Nd 
2 * recall * precision 

F - score = (6.14) 
recall + precision 
Tn specificity = - (6.15) 

Ng- 

Where Nc is the number of true positives that were detected by the classifier, Nd 

is the total number of detected signs by the classifier, Ng+, Ng- are the total number 

of true positives and true negatives in the ground truth respectively, and T, is the 

number of true negatives that were rejected by the classifier. F-score is used as a 

single performance measure to combine recall and precision, while specificity is used 

to measure how good the classifier in rejecting the negative samples. 

In the case of multiclass test, for each testing sample we apply all the trained clas- 

sifiers. If only one classifier fired then we select this class to be the result, otherwise 

when more than one classifier fires, we select the class with maximum distance from 

its threshold which can represent the confidence of this class. 

I Sign 
Name 

Table 6.1: BSL Signs used in our evaluation tests 

1 
about 

5 
before 

2 

apple 

3 4 
ask bat 



13 14 15 16 17 18 

Figure 6.4: A sample of the sign "ask" 

-- 

I.. 

Figure 6.5: A sample of the sign "don't know" 



Figure 6.6: A sample of the sign "believe" 

Figure 6.7: A sample of the sign "about" 

6.5.1 Independent training 

6.5.1.1 DTW-based weak classifiers 

Table 6.2 shows the average performance results when each classifier is applied inde- 

pendently on the testing dataset. The values in the table are the average performance 



of all the 20 classes with different training samples. Maximum F-score was achieved 

using 7 training samples with score 0.857 and specificity 0.9997. Table 6.3 shows the 

results of testing the classifiers on multiclass test. Using only 1 training sample gives 

about 60% average accuracy with the maximum reaches about 72%. Using 50% of 

the data set for training (5 samples) gives around 87% average accuracy with max- 

imum 92%, while 9 training samples give 90% accuracy on average with maximum 

95%. 

Training samples I Recall I Precision ( Specificity ( F-score 1 

Table 6.2: Average statistical results of individual classifiers using independent train- 
ing (DTW base classifiers) 

Table 6.3: Statistical results of multiclass classification using DTW-based weak clas- 
sifiers. 

6.5.1.2 HMM-based weak classifiers 

Training samples 
1 

Table 6.4 shows the results of using HMM as weak classifiers. The results are very 

close to DTW-based classifiers as the maximum F-score 0.85 was achieved using 8 

Mean error 
0.400 

training samples together with maximum recall and precision 0.837 and 0.90 respec- 

Mean accuracy 
0.600 

Min. error 
0.277 

Max. error 
0.472 



tively. However, the results of table 6.5 show the performance in multiclass test to 

be lower than the corresponding DTW results as the average accuracy reached 53% 

using 1 training sample with a maximum of about 58%, and using 50% of the data 

set for training (5 samples) gives around 81% average accuracy with maximum 87%, 

while 9 training samples give 88% accuracy on average with maximum 95%. 

Training samples / Recall I precision Specificity I F-score I 

Table 6.4: Average statistical results of individual classifiers using independent train- 
ing (HMM base classifiers) 

Table 6.5: Statistical results of multiclass classification using HMM-based weak clas- 
sifiers 

Training samples 
1 

6.5.1.3 Weak classifiers comparison 

In a comparison between HMM and DTW weak classifiers for our problem, we plotted 

the performance of recall, precision, F-score and multiclass classification and tried 

to decide which is better. It can be shown in Fig. 6.8 that the recall performance for 

both of them is nearly the same or very close with a higher average of 8.6% for HMM 

than DTW. However, in the other three measures (Fig. 6.9, 6.10, 6.11), the DTW is 

Min. error 
0.416 

Max. error 
0.516 

Mean error 1 Mean accuracy 
0.468 0.531 



better than the HMMs by an average 17%, 8% and 8% for the precision, F-score, and 

classification respectively. Specificity comparisons revealed that both are almost the 

same with about 1% higher average for DTW than HMMs. We conclude from these 

results that DTW weak classifiers could be more suitable for training the Adaboost 

in our problem, thus we use it in our joint training experiments in the following 

section. 
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Figure 6.8: Average recall performance for both types of weak classifiers 
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Figure 6.9: Average precision performance for both types of weak classifiers 
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Figure 6.10: Average F-score performance for both types of weak classifiers 
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Figure 6.11: Average classification accuracy in multiclass test for both types of weak 
classifiers 

6.5.2 Joint training 

Training Adaboost jointly helped us in two main ways: firstly, to reduce the number 

of weak classifiers, and secondly to increase the overall performance. The gain that 

we achieve from sharing weak learners can be calculated by Ti - Tj where Ti 

is the number of weak learners used to train class i, and Tj is the number of shared * 



weak learners in joint training. In our case we used 20 weak classifiers for each class 

trained independently, and we used 60 shared weak classifiers in joint training. So 

this gives 400 - 60 = 340 or we reduced the number of used weak classifiers by a 

factor of 6.6 times. 

Fig. 6.12 shows an example of the number of classes that share a weak classifier in 

each round. In this example, the number of classes sharing a weak classifier range 

from 3 to 8 classes. Using the current weights of the training samples at every round, 

the subset of classes that reduces the overall error is selected with its corresponding 

weak classifier. 

Training with I sample 
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Figure 6.12: An example of sharing 60 weak classifiers between classes in training 
with 1 sample 

Table 6.6 shows the statistical results of individual classifiers. In general, joint 

training has increased the performance of the recall and F-score by an average 34% 

and 8% respectively over independent training, while the precision of independent 

training is better than joint training by about 26%. Regarding the specificity, in- 

dependent training is better than joint training by about 1.6%, and both can be 

considered to have high specificity. 

In comparison of the performance of multiclass testing for both types of training, 



from table 6.7 we can see that joint training has very high accuracy reaching about 

85% using 2 training samples and above 90% for 3 to 9 training samples. In addition, 

we can see that the minimum error reached 0%. Overall, joint training increased the 

accuracy by about 7% on average over independent training. Fig. 6.13, 6.11, 6.15, 

and 6.16 show a plot of the F-score, recall, precision, and multiclass classification 

accuracy for both types of training with various number of training samples. Joint 

training has the advantage of achieving better performance with less training sam- 

ples. 

Table 6.6: Average statistical results of individual classifiers trained jointly 

I Training samples I Min. error I Max. error I Mean error I Mean accuracy I 

Training samples 
1 
2 
3 

Table 6.7: Average statistical results of multiclass classification using joint training 

Recall 
0.4872 
0.7937 
0.8557 

F-score 
0.4408 
0.7404 
0.8257 

0.4138 
0.6985 
0.8030 ' 

~ r e c i s i o n t ~  
0.9596 
0.9782 
0.9856 
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Figure 6.13: Average F-score for both types of training 
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Figure 6.16: Average classification accuracy in multiclass test for both types of train- 
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6.6 Summary 
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In this chapter we proposed a novel approach for sign language recognition by learn- 

ing boosted subunits. Based on our subunits segmentation algorithm in the previous 

chapter, we model the subunits using different combinations of spatio-temporal fea- 

tures which act as the weak classifiers in the Adaboost framework. Then, Adaboost 

is used to select at every iteration the best informative combination. Two types of 



training werc adopted: independent training where each class is trained indepen- 

dently and joint training where classes can share the weak classifiers thus reducing 

the number of required weak classifiers and increasing the performance by allow- 

ing the classes to learn weak classifiers that can reduce the error across the whole 

dataset. WE evaluated the performance of each classifier independentIy using the 

recalI, precision, specificity and F-score metrics afld the performance of the whole 

set of classifiers in a multicInsa test using the overdl classification accuracy. Joint 

training using DTW-based weak classifiers proved t o  be a good combination in terms 

of classification accuracy and number of required wmk classifiers. Training time us- 

ing Adabomt is very high (usually takes from few weeks to months) especially when 

the number of rounds are high. However, the classification can be done in real-time 

especially when joint training is used. 



Chapter 7 

Summary, Conclusions, and 

Future Work 

7.1 Introduction 

Vision-based Sign Language Recognition (SLR) is a complicated task that involves 

collaborative research efforts in multiple areas such as computer vision, image pro- 

cessing, pattern analysis, machine learning, and understanding of human action and 

behaviour. Three main tasks are required in any SLR system. First, the signer's 

hands have to be detected along with his face (some systems ignore the face features 

as we did in this work) and tracked across the video frames. Second, given that 

we can track the face and hands, we can extract the relevant features from every 

frame. Third, given that the useful features have been extracted, a machine learning 

technique must be used to recognize the performed sign. 

In real life, we can imagine many different useful applications for SLR such as sign-to- 

textlspeech translation systems or dialog systems for use in specific public domains 

[McGuire et al. 04, Akyol and Canzler 021. In video communication between deaf 

people, SLR can save bandwidth by translating the video to symbols which are ani- 

mated at the other end [Kennaway 031. SLR can be used for annotating sign videos 

[Koizumi et al. 021 for linguistic analysis. 

In this thesis, we aimed to provide new techniques that can be applied in SLR ap- 



plications. Our goal was to contribute to research in skin segmentation, hand and 

face tracking, modelling and recognizing signs efficiently based on human behaviour 

in performing and recognizing signs using informative subunits of the signs. 

7.2 Summary 

We started by giving a brief overview of the literature to cover the three main tasks. 

Different systems handle the three tasks in different ways. Mainly, SLR systems 

deal with either one-handed signs or two-handed signs, isolated or continuous words. 

There is a general agreement that SL relevant features includes hand shape, position, 

orientation, motion, and facial expressions. 

Regarding hand detection, approaches vary between colour glove-based methods vs 

skin detection methods. Although colour glove is simple and easier to deal with when 

we are segmenting the hands, it's not a natural way for signers or deaf people. On 

the other hand, skin detection techniques have the problems of dealing with illumi- 

nation change, skin colour variations, and occlusions with other human skin parts. 

Different systems try to avoid the occlusion problem by: performing unnatural signs, 

a choice of vocabulary that doesn't include occlusions, or using stereo cameras but 

with high computational cost. 

Tracking is one of the tasks that get highly affected by the occlusions of both hands 

or occlusions with the face, thus different assumptions have been made to resolve 

this problem. We reviewed the imaging restrictions that are usually adopted to sim- 

plify hand detection and tracking such as wearing long sleeves, uniform/stationary 

background, the signer's hand is the only moving object, head has less motion than 

the hands, and exclusion of face and/or left hand from the Field Of View (FOV). 

The hand centre is a common feature for absolute hand position or relative to other 

body parts, while regarding hand motion, hand trajectories, chain code and optical 

flow is very popular features. Hand appearance features are mainly extracted from 

the whole hand blob or hand contour using Fourier descriptors, geometric moments, 

and PCA. With respect to classification schemes, two main approaches exist. One 



approach uses all the features collected to classify the sign directly in one stage, 

while the other first classifies the different sign components and then integrates their 

results in one final stage. The most famous methods used in classification are Neural 

Networks, HMMs, PCA, decision trees, and nearest-neighbour matching. 

In an attempt to design a SLR system with limited imaging constraints, we began 

investigating different existing methods for skin segmentation. Motivated by our 

observations that sign videos usually contain few signers with small lighting changes, 

we proposed a new algorithm for skin segmentation where an SVM is trained for 

every signing video using Active Learning. First, a generic skin model is applied to 

select initial skin pixels. Then using region segmentation information we select from 

non-skin regions a ratio of pixels proportional to how close the colour of these non- 

skin pixels is to skin pixels using a principle we called "most similar-highest priority". 

Active Learning has the advantage of balancing the number of training samples be- 

tween skin and non-skin pixels, and increasing the overall accuracy by selecting more 

informative training samples and less non-informative ones. We define informative 

pixels as those non-skin pixels that are more similar in their colour to the true skin 

pixels. Finally, as region segmentation is more robust to noise and some lighting 

variations, we combine it with the SVM results to refine the final skin segmentation 

results. 

Our experimental results demonstrated that Active Learning increased the overall 

accuracy by about 6% and reduced the average training time by 114 seconds. While, 

combining region information enhanced the overall accuracy by 9%. Compared to 

Gaussian skin models (skin only, and skin/non-skin), our model achieved the high- 

est overall accuracy with the second lowest false detection rate. The skin/non-skin 

Gaussian model has the best correct detection rate. However, its false detection rate 

is the worst. 

As SLR requires the collection of hand features from the sequence of frames during 

which the sign was performed, it was necessary to develop a hand tracker compo- 

nent. We decided to approach this problem from a more general viewpoint, so we 

developed a skin segmentation and tracking system (SST) to segment and track 3 



skin objects: face and two hands. Regarding segmenting skin objects, we chose to 

combine three useful features: "motion" as it can distinguish foreground objects from 

background, "colour" as it can help to distinguish skin pixels from non-skin pixels, 

and "position" to reduce the search space by predicting the location of skin objects 

in the next frame. A Kalman filter was used to predict the position of objects in 

the next frame, thus helping us to predict occlusions. In every frame, we aimed to 

identify the existing skin objects and update the occlusion status of all the objects 

by employing a set of heuristic rules that take advantage of the occlusion alarms and 

the detected objects in the current frame, then blob matching was done between the 

previous and current skin objects. 

We demonstrated that the tracker can help the skin colour model to be more adap- 

tive to lighting changes by providing the colour model with new training samples 

and re-training the colour model on the new training samples. Experimenting with 

our SST system on real signing videos that include large numbers of occlusions, we 

recorded the average error of the bounding box positions of the face and two hands 

on 600 frames with 40% occluded frames. The system accuracy is very high as the 

maximum error is about 6 pixels and the tracking error (by incorrectly identifying 

skin objects) reached about 6.5%. 

The skin segmentation and tracking component was a necessary and a prerequisite 

step for us to move forward and begin analyzing the characteristics of the human 

hand motion during signing. From observing the trajectory and speed curves of the 

hands, it was shown that they are related at some points, where discontinuities hap- 

pen. In the speed curve, during a continuous motion pattern the hand motion goes 

through three phases: acceleration, uniform motion and deceleration. While in the 

trajectory curve, for a certain motion pattern, the trajectory forms a smooth curve 

without sharp or noticeable corners. 

These observations motivated us to model signs using a subunit-based approach, 

where we define a subunit as a continuous motion pattern in space that covers a 

certain duration in time. Our objective is to discover these subunits from the sign 

vocabulary by detecting the subunit boundary points where discontinuities happen 



in speed and trajectory. Finally, temporal clustering was employed to refine the re- 

sults by merging subunits that have been incorrectly segmented due to noise. 

To quantitatively evaluate the performance of our subunit boundary detection algo- 

rithm, we constructed manual ground truth of the subunits (codebook entries) for 

10 signs, and compared it to the output of the automatically constructed codebook 

by our algorithm by measuring the recall and precision between the two codebooks 

for every sign. The proposed approach reached an average recall of around 0.82 and 

average precision of about 0.76. 

Towards this end, and assuming that the subunits are the building blocks of a cer- 

tain sign vocabulary, we need to develop a mechanism to recognize and understand 

signs based on subunits. Furthermore, as we don't know yet what are the infor- 

mative subunits or features in the sign vocabulary, this motivated us to adobt the 

Adaboost algorithm to select discriminative combinations of subunits and features 

and construct a strong classifier for each sign based on combining weak classifiers. 

Each weak classifier is composed of a subunit modelled with one feature or more. 

We considered using all the combinations of features for every subunit. Subunits 

are extracted from the temporal clustering of each sign class and considered as the 

medoid subunit of each cluster. Two types of training were applied and compared: 

independent training where every sign is trained independently of all other classes, 

and joint training where weak classifiers can be shared across a subset of classes to 

reduce the total error in the dataset. Two types of weak classifiers were compared in 

independent training: DTW-based using the medoids of the clusters in each code- 

book, and HMM-based trained on the subunits in each cluster for every codebook. 

Using a dataset of 20 sign classes, training was performed using different numbers of 

training samples from 1 to 9 and we recorded the measures of recall, precision, F-score 

and specificity for each classifier when tested individually. Also, in a multiclass test, 

we measured the accuracy of the overall classification performance. Evaluating the 

performance of DTW and HMM-based weak classifiers using independent training, 

we found that the recall performance of HMMs on average are higher than DTW- 

based classifiers by about 8.6%, while DTW is better than the HMMs by an average 



17%, 8%, 8%, and 1% for the precision, F-score, classification, and specificity respec- 

tively. On average, independent training using DTW-based weak classifiers reached 

F-score of 0.75 and classification accuracy of 83.6%. 

Regarding joint training, the number of weak classifiers were reduced due to sharing 

by a factor of 6.6 and on average the F-score and classification accuracy reached 0.8 

and 89.7% respectively. In general joint training increased the performance of the 

recall, F-score, and classification accuracy by an average 34%, 8%, and 7% respec- 

tively over independent training, while the precision and specificity of independent 

training is better by an average 26% and 1.6% respectively. 

7.3 Conclusions 

In this section, we will try to summarize the advantages and disadvantages of the 

proposed methods that were presented in this thesis work. Regarding the proposed 

SVM skin segmentation algorithm presented in chapter 3, the proposed approach 

has the advantage of being adaptive to different users. Training samples are col- 

lected automatically. Active Learning and region information are used to refine the 

results, and it can be used while tracking skin objects in offline mode. On the other 

hand, some disadvantages are: the general skin model must give initially reasonable 

skin samples for the training of the SVM. Also, if region information was not good 

enough, skin regions might not be detected correctly, and finally the SVM is not 

suitable for real time processing and in this case it could be better to investigate 

other types of machine learning techniques that can operate faster or use SVM in 

offline processing of videos. 

In chapter 4 we presented a skin segmentation and tracking system (SST) for SLR. 

In this system the segmentation and tracking parts were integrated together so that 

good segmentation helps to increase the accuracy of the tracker and good tracking 

reduces the search space for segmentation. Segmentation doesn't need region seg- 

mentation any more by using three perceptually meaningful fast features (except for 

SVM which is slow, but faster than when applied on the whole frame). The occlusion 



status of three skin objects were tracked and identified using simple heuristic rules. 

An adaptive skin colour model can be used using the feedback from the tracker. 

While not requiring a lot of imaging restrictions, the system provides a reasonable 

compromise in terms of computational cost relative to the overall accuracy. The sys- 

tem components and features can be replaced and used easily without much effort 

as the architecture is very modular and in general can be used in any human related 

skin object segmentation and tracking application. 

On the other hand, the disadvantages can be summarized as follows: the SVM even 

when used within a search window, cannot operate in a real time. However, test- 

ing the system using only the generic skin model (chapter 3) and the simple prior 

knowledge colour metric (chapter 4) proved to work in real time. In the case that 

the tracker has lost tracking of an object, it is quite difficult to locate it again unless 

the object appears again inside the search window where the features are calculated, 

and currently it is hard to distinguish between when the object is hiding (outside the 

view of the camera) or if the tracker has missed it. Although we don't require the 

user to wear a long sleeves, we don't distinguish between the palm area and the arm 

which is necessary in the recognition phase. Although the system doesn't require 

uniform background or non-moving background objects, it still can be affected by 

skin-like colours especially if they are within the search window of the tracker. A 

last and important point, is that we don't have a module to segment the occluded 

objects as since to date we treat the occluded parts as one big skin object. However, 

we do know the identity of the objects that are occluded (i.e, face and hand, or hand 

and hand,..etc). 

Moving forward after developing our SST system, in chapter 5 we proposed a novel 

algorithm for defining and segmenting SL subunits. The subunit-based approach (in- 

spired from phonemes in speech recognition) has the advantage that the signs can be 

decomposed into a set of subunits which can be used in the recognition phase instead 

of depending on extracting the features from the whole sign frames and using them 

directly in the recognition. The number of subunits should be much smaller than 

the number of the signs in the vocabulary, thus reducing the recognition space and 



supporting small training samples. The proposed approach does not require previous 

knowledge about the number of subunits or the type of signs. Using adaptive thresh- 

olds for detecting discontinuity in trajectory and speed curves makes the algorithm 

more robust to different users and their way of signing. Temporal clustering refines 

the results by merging similar sequential subunits that were segmented due to noise. 

On the other hand, we acknowledge a number of weak points that can affect the per- 

formance such as: in trajectory curves with low curvature points (where in reality 

there was a smooth change in the motion pattern), it is challenging for the trajectory 

discontinuity detector to detect a corner point. Errors in subunit segmentation affect 

the average number of subunits segmented for every sign, and thus the merging in 

the temporal clustering is affected as it uses this average number as a threshold in the 

dendrogram to construct the clusters of subunits. Some complex movements can be 

very challenging such as finger movements with fixed palm position, and movement 

of the hand while occluded with other skin objects, which can affect the quality of 

the hand position provided by the hand tracker. Finally, due to irregularities in the 

hand motion (mostly with non native SL users) the boundary points detected by the 

trajectory and speed discontinuity detectors may not match in the small window, 

where we search for the subunit preliminary boundary candidates. 

The subunit segmentation algorithm was a basic block for our motivation to propose 

a new SLR algorithm based on boosting subunits in chapter 6. The proposed SLR 

system based on boosting subunits has the advantage of being inspired from the way 

humans recognize signs by selecting the informative (discriminative) combinations of 

subunits and features. It opens the possibility of efficiently recognizing signs of large 

vocabulary with small training data. Our method is independent of the number of 

subunits in each sign, so we don't need to predefine any previous knowledge about 

subunits unlike in HMM-based approaches where the number of states are predefined 

in most cases. Subunit extraction and construction of weak classifiers are totally au- 

tomatic. Joint training increases the total performance while reducing the number 

of required weak classifiers by sharing them across the classes. The classification is 

simple and can operate in real-time. 



On the other hand, the training time of Adaboost is very time-consuming as each 

iteration has to select one weak classifier from a large pool, and in joint training it 

considers all the possible subsets of classes. In addition, it depends largely on the 

number of iterations, so there is a trade off between the performance and time. The 

weak classifiers and training samples in our experiments are constructed totally au- 

tomatically which can affect the training performance if they include some errors or 

noise but can be avoided if subunits are extracted manually. Tracking can still affect 

the results as the tracker data are used to segment the subunits which are the basis 

of our recognition system. We experimented with the sharing of weak classifiers but 

didn't experiment sharing of subunits by constructing one unified codebook for the 

whole vocabulary which might increase the accuracy. 

7.4 Future work 

In order to overcome the shortcomings of our proposed techniques in this work, some 

future investigations have to be done and can be summarized in the following points: 

Regarding the skin segmentation problem, a faster and more reliable machine 

learning classifier has to be adopted to be able to work in real-time as SVM 

suffers from this disadvantage. 

In many cases the users are not wearing long sleeves, so research must be done 

to investigate how to segment the palm area from the rest of the arm. 

Occlusions are very common in SL videos. In this work we proposed a solution 

for occlusion detection but still future work must be done concerning how to 

segment skin-occluded areas (facelhand or handlhand). 

In this work we concentrated on hand features only. However, non-manual 

features like facial expressions also have big weight in understanding the per- 

formed sign and can help in discrimination especially in large vocabularies. 

Our SST system proved to be a good compromise between segmentation and 

tracking accuracy and real-time performance, but still it can be affected by 



skin-like coburs inside the search windows, so it might be heIpfuI to look into 

more useful feature to include, such as texture ar even investigating texture 

analysis op~ratnrs such as Local Binary Patterns (LBP), which are grey-scale 

invariant. 

a More worlc has to be done in investigating the cases where the palm area is 

stationary while only the fingers are changing their configuration (thus the hand 

centre), and how the subunits segmentation dgorithm can detect these c ~ e s  

and whether to consider the whole duration of stationary palm as a subunit or 

not. 

* More work has to be done in fmrling ncw ways to detect discontinuity in the 

trajectory curve especially in difficult regions whme the curvature is srndl. 

a Rcgading the recognition phase, future work must investigate promoting the 

existing Adaboost learning algorithm to an incremental algorithm where new 

signs can be learned jointly with the already learned vocabulary, and experi- 

menting with more larger SL vocabulary. 



Appendix A 

Skin segment at ion dat aset 

As shown below in figures A. l  to A.8 we can see some sample frames from the 8 video 

sequence used to evaluate the proposed skin segmentation algorithm in chapter 3. 

Each frame has been ground truthed by editing the skin areas with a predefined 

colour (RGB: 0,255,O). 

Figure A.l: Sample ground truth frames from video sequence 1 

Figure A.2: Sample ground truth frames from video sequence 2 



Figure A.3: Sample ground truth frames from video sequence 3 

Figure A.4: Sample ground truth frames from video sequence 4 

Figure A,5: Sample ground truth frames from video sequence 5 

- - 

Figure A.6: Sample ground truth frames from video sequence 6 



Figure A.7: Sample ground truth frames from video sequence 7 

Figure A.8: Sample ground truth frames from video sequence 8 



Appendix B 

Adaboost sign classifiers results 

In the following tables we present the performance of each sign classifier when trained 

independently and jointly using training samples from 1 to 9. The statistical results 

are the average of 10 runs 

Sign name 
about 

apple - 
ask 
bat 

before 
believe 

best 

Recall 1 Precision 
0.333334 1 0.489899 - 
0.155556 ] 0.412073 
0.333332 ( 0.5849209 

black 
bottle 
b ov 

Table B.l: Statistical results of independent training (HMM-based) using 1 training 
sample 

0.355555 
0.555557 
0.31111 

brown -- 
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F-score 
0.350159 
0.342589 
0.17539 

0.3761697 

0.311112 
0.255555 
0.366666 

Specificity 
0.984794 
0.937427 

pp 

-- 
0.987136 
0.98187 

0.493269 ----- 
0.768651 ----- 
0.404126 

0.388888 
0.255556 

0.414649 
ppppp 

0.3299249 
0.8875 

0.372809 
0.62212 
0.282006 

1 0.39246 
0.288889 

0.991813 
0.99298 
0.971343 

0.316277 
0.27681 
0.469438 

0.987719 
0.974855 
0.99883 

1 
0.270065 

0.985381 - 
0.97193 



I Sign name I Recall I Precision 1 F-score I Specificity I 

Table B.2: Results of independent training (HMM-based) using 2 training samples 

[ Sign name I Recall I Precision ( F-score I Specificity 1 

Table B.3: Results of independent training (HMM-based) using 3 training samples 



Sign name 
about 

apple 
ask 
bat 

before 
believe 

best 
black 
bottle 

boy 
brown 
busy 
but 
can 

can't 
clever 
coffee 

confidence 
deaf 

don't know 

Recall Precision F-score 
0.466667 0.628333 0.492661 

Specificity 
0.982457 

Table B.4: Results of independent training (HMM-based) using 4 training samples 

Table B.5: Results of independent training (HMM-based) using 5 training samples 



~ - 
I 

black I 0.814683 1 0.990788 1 

Sign name - 
about 

brown 

) Recall 

0.575 
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b ov 

busv 
but 

Precision 

0.866667 

pppp 

0.625 1 0.638334 
0.975 1 1 
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F-score --- 
0.663811 

0.625 
0.985714 

clever 

Specificity 

0.998684 

L 

0.980262 
1 
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Table B.6: Results of independent training (HMM-based) using 6 training samples 

] Sign name 1 Recall I Precision ( F-score I Specificity ( 

Table B.7: Results of independent training (HMM-based) using 7 training samples 



[ Sign name I Recall I Precision I F-score I Specificity] 

Table B.8: Results of independent training (HMM-based) using 8 training samples 

Table B.9: Results of independent training (HMM-based) using 9 training samples 



I I I I 

before 1 0.233333 1 0.9 1 0.370587815 1 1 

Sign name 
about 

apple 
ask 
bat 

deaf 0.355554 0.9 0.509732915 1 
0.7 0.451611679 1 

believe 
best 

Table B.lO: Results of independent training (DTW-based) using 1 training sample 

Recall 
0.244443 
0.655556 I ---- 
0.255555 
0.233333 

Table B . l l :  Results of independent training (DTW-based) using 2 training samples 
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F-score 
0.37446639 
0.773648495 
0.325012104 
0.357777422 

Precision 
0.8 

ppppp 

0.943636 
0.446316 
0.766667 

0.244443 
0.411111 

Specificity 1 
1 

0.996101365 - 
0.985055231 
0.999350227 

0.763333 
-pppp+ 

0.85 
0.370303338 
0.554184921 

0.999350227 
0.999350227 



Sign name 

about 

Precision 

0.942858 

Recall 

0.600003 
apple 
ask 
bat 

before 
believe 

best 

I I I I 

busv 0.62857 01, 1 

0.963492 
1 

0.966667 
1 

0.7 
0.642858 
0.62857 
0.557143 

black 
bottle 
b ov 

Table B.12: Results of independent training (DTW-based) using 3 training samples 

I Sign name 1 Recall I Precision I F-score ] Specificity I 

F-score 

0.733335833 

0.557143 
0.585715 

Table B.13: Results of independent training (DTW-based) using 4 training samples 

Specificity 

0.996658312 
0.81087784 
0.782609331 
0.761790099 
0.715596448 

0.514286 
0.557142 
0.842856 

0.997493734 
1 

0.997493734 
1 

0.946667 
1 
1 

0.91 
1 

0.701456823 
0.738739307 

0.999164578 
1 

0.679245532 
0.691138581 
0.914725009 

1 
0.998329156 

1 



I Sign name I Recall I Precision I F-score I Specificity I 

Table B.14: Results of independent training (DTW-based) using 5 training samples 

Table B.15: Results of independent training (DTW-based) using 6 training samples 
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Sign n a m e  Recall 
about 0.800001 

apple 0.733336 
ask 0.866668 
pp 

bat 0.866668 
PP 

before 0.566666 
believe 0.866668 

best 0.766669 
black 1 0.833335 

Precision 

bottle 0.833334 
0.933334 

busv 0.700001 
I I 

but 1 0.733334 1 1 
I I 

can 1 0.599999 1 0.9 

I I 

clever 1 0.766667 1 0.9 
I I 

coffee 1 0.833335 1 1 
u I 

confidence 1 0.766668 1 0.9 
b I 

deaf 1 0.700001 1 1 
I I 

don't know 1 0.900001 1 1 
- --- - - ~ - 

Table B.16: Results of independent training (DTW-based) using 7 training samples 

I Sign name I Recall I Precision I F-score ( Specificity ( 

Table B.17: Results of independent training (DTW-based) using 8 training samples 



I 

bat 1 1 1 1 1 

Specificity 
1 

Sign name 
about 

apple 
ask 

Recall 
0.8 
0.5 
0.8 

' 
bottle 

boy 
brown 

Precision 
0.8 
0.5 
0.8 

before 
believe - 

best 
black 

but 
can 

can't 
clever 

I I 1 I t deaf 1 0.5 1 0.5 0.5 1 1 

F-score 
0.8 

0.8 
0.9 
0.8 

coffee 
confidence 

0.5 
0.8 

1 
1 0.9 

0.8 
0.9 

0.8 
0.6 
0.6 
0.7 

--  - - 

Table B.18: Results of independent training (DTW-based) using 9 training samples 

1 - 

1 

0.8 
0.9 
0.8 

1 
0.7 

tdon't know 1 0.9 1 
I I I I 

[ Sign name I Recall I Precision I F-score I Specificity I 

Table B.19: Results of joint training (DTW-based) using 1 training sample 

1 
0.9 
0.8 

0.85 

----- 
0.75 
0.6 
0.6 ----- 
0.7 

0.8 
1 0.9 

0.8 

1 
0.7 

1 0.9 

1 
0.9 --- 
0.8 

0.874285714 
1 
1 
1 

0.774193548 
0.6 
0.6 
0.7 

0.9 

1 
- 

1 
1 

0.994152047 

0.994152047 
1 
1 
1 

1 

1 1 
0.7 1 



1 Sign name I Recall I Precision [ F-score I Specificity I 

brown 
busy 0.85 

I I I I 

can a l  
I 9 1  can't 

I I I I 1 clever 1 0.75 1 0.57544 1 0.651225254 1 0.969736842 1 

Table B.20: Results of joint training (DTW-based) using 2 training samples 

[ Sign name I Recall I Precision I F-score I Specificity ] 

Table B.21: Results of joint training (DTW-based) using 3 training samples 

I 

1 deaf 1 0.95 
don't know 1 0.9 

0.780404 
0.694624 
0.808207 
0.728747 

0.841298325 --- 
0.779305288 
0.873385955 
0.805370386 

0.986184211 
0.979605263 
0.980921053 
0.976315789 



1 Sign name ( Recall I Precision I F-score I Specificity ] 

Table B.22: Results of joint training (DTW-based) using 4 training samples 

I Sign name I Recall 1 Precision I F-score I Specificity 1 

Table B.23: Results of joint training (DTW-based) using 5 training samples 
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I Sign name ( Recall ( Precision ( F-score ( Specificity ( 

I 

Table B.24: Results of joint training (DTW-based) using 6 training samples 

I 

Table B.25: Results of joint training (DTW-based) using 7 training samples 
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Table B.26: Results of joint training (DTW-based) using 8 training samples 

Table B.27: Results of joint training (DTW-based) using 9 training samples 

149 
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