
Investigations into the Model Driven Design of Distribution Patterns

for Web Service Compositions

Ronan Barrett

Bachelor of Science in Computer Science

A Dissertation submitted in fulfilment of the

requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

Faculty of Engineering and Computing, School of Computing

Supervisor: Dr. Claus Palil

January, 2008

Declaration
I hereby certify that this material, which I now submit for assessment on the programme

of study leading to the award of Doctor of Philosophy is entirely my own work, that I have

exercised reasonable care to ensure that the work is original, and does not to the best of my

knowledge breach any law of copyright, and has not been taken from the work of others

save and to the extent that such work has been cited and acknowledged within the text of

Student ID: 53138406

Date: January 25, 2008

Contents

Abstract x

Acknowledgements xi

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 Problem Context .. 1

1.2 Problem Statement... 2

1.3 Research Objective.. 3

1.4 Solution... 4

1.5 Outline of this Document.. 6

2 Background 8

2.1 Introduction.. 8

2.2 Software Architecture.. 8

2.2.1 Component Based Software Development.................................... 9

2.2.2 Design Patterns... 10

2.2.3 Distributed Systems ... 11

2.2.4 Service Oriented Architecture... 12

2.3 Web Service Technologies.. 12

ii

2.3.1 Web Service Composition... 13

2.3.2 Collaboration Standards... 15

2.4 Semantic Web Services.. 16

2.4.1 Semantic Web Ontologies.. 16

2.4.2 Semantic Web Service Description... 17

2.5 Modeling Technologies... 18

2.5.1 Meta Object Facility... 18

2.5.2 Unified Modeling Language.. 19

2.5.3 Object Constraint Language.. 19

2.5.4 Behaviour Modeling... 20

2.5.5 Extending UML .. 21

2.5.6 Model Driven Development.. 22

2.5.7 Model Transformations.. 24

2.5.7.1 XML Metadata Interchange.. 25

2.5.12 Eclipse Modeling Framework....................................... 25

2.5.13 Java Emitter Template.................... 26

2.5.7.4 Model Transformation Framework............................... 26

2.5.7.5 Model Transformation Language.................................. 27

2.5.7. 6 ATLAS Transformation Language 28

2.5.1.1 Query/View/Transformation Language.......................... 28

2.5.7. 8 UML Model Transformation Tool.................................. 29

2.6 Quality Measures... 30

2.6.1 Observable Quality Measures ... 31

2.6.2 Non-Observable Quality Measures.. 32

2.7 Summary... 32

3 Related Work 34

3.1 Introduction.. 34

3.2 Design Patterns.. 35

iii

3.2.1 Architectural Design Patterns .. 35

3.3 Distributed System Modeling.. 38

3.4 Web Application Modeling... 39

3.5 Web Service Modeling... 39

3.6 Composition Modeling... 40

3.7 Web Service Composition Modeling.. 41

3.8 Semantically Enabled Web Service Composition Modeling....................... 44

3.9 Non-Functional Modeling ... 44

3.10 Model Transformations.. 46

3.11 Framework Comparison .. 48

3.12 Summary.. 48

4 Modeling and Transformation Framework 50

4.1 Introduction... 50

4.2 Traditional Approach to Web Service Compositions................................. 51

4.3 Proposed Approach to Web Service Compositions.................................... 52

4.3.1 A Catalog of Distribution Patterns.. 53

4.3.1.1 Discussion.. 53

4.3.2 Modeling Notations ... 53

4.3.2.1 Discussion.. 57

4.3.3 Model Relations... 57

4.3.3.1 Discussion.. 58

4.3.4 Model Transformations... 58

4.3.4.1 Discussion.. 59

4.3.5 Methodological Framework... 59

4.3.5.1 Discussion.. 60

4.4 Summary.. 61

iv

5 A Catalog of Distribution Patterns 62

5.1 Introduction.. 62

5.2 Distribution Patterns ... 63

5.3 A Classification Scheme for Distribution Patterns...................................... 64

5.4 Distribution Pattern Catalog ... 65

5.4.1 Core Patterns... 67

5.4.2 Auxiliary Patterns ... 73

5.4.3 Complex Patterns.. 75

5.5 Catalog Usage... 85

5.6 Catalog Evaluation... 85

5.7 Summary.. 8 8

6 Modeling Notations/Languages 89

6.1 Introduction.. 89

6.2 Language Definition and Semantics ... 90

6.2.1 Syntax .. 91

6.2.2 Semantic Domain.. 91

6.2.3 Semantic Mapping... 93

6.3 Framework.. 93

6.4 Notations... 94

6.4.1 UML 2.0 Notation... 96

6.4.2 Distribution Pattern Language UML Profile (DPLProfile).............. 99

6.4.3 Distribution Pattern Language Notation.......................................103

6.4.4 Collaboration Notation..107

6.4.5 Interface Notation ..110

6.4.6 Deployment Descriptor Notation.. 112

6.4.7 Deployment Catalog Notation... 114

6.4.8 XML Notation...117

6.5 Tool Support ... 120

v

7 Model Relations 122

7.1 Introduction.. . , 122

7.2 Model Relation Definitions and Semantics...122

7.3 F ram ew ork .. 123

7.4 Relations ..124

7.4.1 Relating UML 2.0 Notation/DPLProfile to Distribution Pattern No

tation ..128

7.4.2 Relating DPL Notation to Collaboration Notation.............................. 132

7.4.3 Relating DPL Notation to Interface N o ta tio n 139

7.4.4 Relating DPL Notation to Deployment Descriptor Notation..............143

7.4.5 Relating DPL Notation to Deployment Catalog N otation.................146

7.4.6 Relating Collaboration Notation to XM L N o tatio n149

7.4.7 Relating Interface Notation to XM L N otation................................... 153

7.4.8 Relating Deployment Descriptor Notation to XM L Notation 161

7.4.9 Relating Deployment Catalog Notation to XM L Notation................164

7.5 Tool Support ... 166

7.6 S u m m ary ..167

8 Model Transformations 168

8.1 Introduction.. 168

6.6 S u m m a r y ... 121

8.2 Model Transformations Specification....................................

8.2.1 ATL Transformation Language..................................

8.3 Framework...

8.4 Transformations..

8.4.1 Transforming UML 2.0 Model/DPLProfile to DPL M odel............. 174

8.4.2 Transforming DPL Model to Collaboration Model177

8.4.3 Transforming DPL Model to Interface M odel............................... 182

169

169

171

171

vi

8.4.4 Transforming DPL Model to Deployment Descriptor Model 185

8.4.5 Transforming DPL Model to Deployment Catalog Model...............188

8.4.6 Transforming Collaboration Model to XML Model.......................190

8.4.7 Transforming Interface Model to XML Model............................... 194

8.4.8 Transforming Deployment Descriptor Model to XML Model 201

8.4.9 Transforming Deployment Catalog Model to XML M odel............203

8.5 Tool Support ...205

8 . 6 Summary...206

9 Methodological Framework and Case Study 208

9.1 Introduction..208

9.2 The Methodology..209

9.2.1 Step 1 - Transform Interfaces To UML Model(s)211

9.2.1.1 Convert WSDL Interfaces to ECore...............................212

9.2.1.2 Transform WSDL to UML Class Diagram Model 213

9.2.1.3 Transform UML Class Diagram Model to UML Activity

Diagram M odel..213

9.2.1.4 Apply DPLProfile to UML Activity Diagram Model . . . 213

9.2.1.5 Case Study...214

9.2.1.6 Tool Support..215

9.2.2 Step 2 - Distribution Pattern Definition ..219

9.2.2.1 Open UML Activity Diagram in a Tool......................... 219

9.2.2.2 Software Architect Defines Distribution Pattern219

9.2.2.3 Save UML Activity Diagram in a T oo l..........................221

9.2.2.4 Case Study...221

9.2.2.5 Tool Support.. 225

9.2.3 Step 3 - Transform UML Activity Diagram Model to DPL Model . 225

9.2.3.1 Case Study...226

9.2.3.2 Tool Support.. 227

vii

9.2.4 Step 4 - Validate DPL Model... 227

9.2.4.1 Case Study...227

9.2.4.2 Tool Support.. 227

9.2.5 Step 5 - Transform DPL Model to Executable System................... 229

9.2.5.1 Transform DPL Model to WS-BPEL M odel.................229

9.2.5.2 Transform DPL Model to WSDL M odel...................... 231

9.2.5.3 Transform DPL Model to PDD M odel.........................231

9.2.5.4 Transform DPL Model to WSDLCatalog Model........... 231

9.2.5.5 Transform WS-BPEL Model to XML Model................. 231

9.2.5.6 Transform WSDL Model to XML Model.......................231

9.2.5.7 Transform PDD Model to XML Model..........................231

9.2.5. 8 Transform WSDLCatalog Model to XML Model............231

9.2.5.9 Transform XML Models to Text232

9.2.5.10 Case Study...232

9.2.5.11 Tool Support.. 232

9.3 Summary...233

10 Evaluation 235

10.1 Introduction.. 235

10.2 Problem and Objectives... 235

10.3 Assumptions ... 237

10.4 Comparison to Handcrafted Approach... 238

10.4.1 Development Effort...238

10.4.2 Maintainability.. 241

10.4.2.1 Set the Analysis G o a l..241

10.4.2.2 Describe Software Architecture....................................241

10.4.2.3 Elicit Change Scenarios...242

10.4.2.4 Evaluate the Change Scenarios....................................242

10.4.2.5 Interpret Results..244

viii

10.4.3 Comprehensibility..245

10.4.4 Q oS..246

10.5 Comparison to Existing Frameworks... 247

10.6 Comparison to Existing Tools.. 249

10.7 Discussion...250

10.7.1 Maintainability... 250

10.7.2 Complexity..................................... ...252

10.7.3 Composition..253

10.8 Summary..254

11 Conclusions 255

11.1 Summary...255

11.2 Discussion...257

11.3 Future Work.. 259

11.3.1 Alternative Modeling Languages.. 259

11.3.2 Full Modeling Approach..260

11.3.3 Workflow Based Semi-Automation ... 261

11.3.4 Semantic Based Semi-Automation..261

11.3.5 Automated Deployment..262

11.3.6 Explicit Modeling of Measure Costs...263

Bibliography 264

A ATL Helper Definitions 285

B Additional ATL Definitions 290

C ANT Task Definitions 294

I) Acronyms 299

ix

Abstract
Increasingly, distributed systems are being used to provide enterprise level solutions

with high scalability and fault tolerance. These solutions are often built using Web services

that are composed to perform useful business functions. Acceptance of these composed

systems is often constrained by a number of non-functional properties of the system such

as availability, scalability and performance. There are a number of distribution patterns that

each exhibit different non-functional characteristics. These patterns are re-occurring distri

bution schemes that express how a system is to be assembled and subsequently deployed.

Traditional approaches to development of Web service compositions exhibit a num

ber of issues. Firstly, Web service composition development is often ad-hoc and requires

considerable low level coding effort for realisation. Such systems often exhibit fixed ar

chitectures, making maintenance difficult and error prone. Additionally, a number of the

non-functional requirements cannot be easily assessed by examining low level code.

In this thesis we explicitly model the compositional aspects of Web service compo

sitions using UML Activity diagrams. This approach uses a modeling and transformation

framework, based on Model Driven Software Development (MDSD), going from high level

models to an executable system. The framework is guided by a methodological framework

whose primary artifact is a distribution pattern model, chosen from the supplied catalog.

Our modeling and transformation framework improves the development process of Web

service compositions, with respect to a number of criteria, when compared to the traditional

handcrafted approach. Specifically, we negate the coding effort traditionally associated with

Web service composition development. Maintenance overheads of the solution are also sig

nificantly reduced, while improved mutability is achieved through a flexible architecture

when compared with existing tools. We also improve the product output from the develop

ment process by exposing the non-functional runtime properties of Web service composi

tions using distribution patterns.

x

Acknowledgements
Firstly, I would like to thank Dr. Claus Pahl for his time and encouragement over the

last four years. Claus you have been a pleasure to work with. Your attention to detail and

ability to maintain focus have been invaluable.

I am indebted to you Mum and Dad for all your encouragement during my whole aca

demic life. You have always been so supportive, I hope you know how much I appreciate it.

All those registered letters to get me into Computer Science have definitely paid off Mum!

Thanks of course to Bren, Conor, Alan, Niamh and Daragh (and Adam of course) for all

your help. Especially to Bren for all the excellent advise and help you gave me before and

during my PhD.

A big thanks to all my friends in CA who made the time fly in. I believe in naming

people so here we go, in original bay order. Thanks to Cara, JJ, Declan, Mark, Bernard,

Claire K, Hego, Noel, Claire W, Neil, Sara, Riona, Gav, Caroline, George, Tommy, Adel,

Niall, Karl, James, Noreen and Grainne. The biggest thanks go to Mark and Claire K. First

of all thanks Mark for being a great friend and colleague. Our endless hours of talking

rubbish made sure there was always plenty of craic in CA. We even had some intelligent

conversations, the odd time! Secondly huge thanks to the best bay buddy ever, Claire. It

was always great having you around. For all your help on this thesis I owe you about a

million bottles of Erdinger!

I do of course have to thank all my olde skool friends for the usual weekend diversions.

Thanks to Keogher, Hego, Beachy, Cara, Paco, Raymo, Deery and Lockie. I should also

add in Matt here, as your FT228 olde skool. Matt your excuses for missing Friday pints

always amuse us!

Finally, I’d like to dedicate this thesis to Dr. Cormac who never got the opportunity to

submit his masterpiece.

List of Tables

5.1 Selected case studies.. 8 6

5.2 Pattern catalog evaluation measures... 87

6.1 Structured textual semantics of important UML abstract syntax constructs. . 99

6.2 DPLProfile abstract syntax or stereotype attributes...................................102

6.3 Structured textual semantics of DPLProfile stereotypes attributes................ 103

6.4 Structured textual semantics of DPL notation constructs............................. 106

6.5 Structured textual semantics of important Collaboration notation constructs. 109

6 . 6 Structured textual semantics of important Interface notation constructs. . . . 113

6.7 Structured textual semantics of important Deployment Descriptor notation

constructs... 116

6 . 8 Structured textual semantics of important Deployment Catalog notation con

structs...116

6.9 Structured textual semantics of important XML notation constructs.............119

9.1 Case study values applied to DPLActivity stereotypes attributes..................222

9.2 Case study values applied to getAccountName DPLParticipant stereotypes

attributes.. 2 2 2

9.3 Case study values applied to getRiskAssessment DPLParticipant stereo

types attributes..2 2 2

9.4 Case study values applied to getCreditCard DPLParticipant stereotypes at

tributes... 223

X ll

9.5 Case study values applied to the first DPLControlFlow stereotypes attributes. 223

9.6 Case study values applied to the second DPLControlFlow stereotypes at

tributes.. 223

9.7 Case study values applied to the third DPLControlFlow stereotypes attributes.223

9.8 Case study values applied to the CoreBanking DPLParticipant stereotypes

attributes..223

9.9 Case study values applied to the RiskManagement DPLParticipant stereo

types attributes...224

9.10 Case study values applied to the CreditCard DPLParticipant stereotypes at

tributes.. 224

10.1 Single lines of code required for handcrafted approach................................ 240

List of Figures

2.1 Logical representation of a Web service architecture [185]......................... 13

2.2 Orchestration models the internals of a private process.............................. 14

2.3 Choreography models only public message exchange................................ 15

2.4 A UML Activity diagram... 20

2.5 OMG four layered modeling stack [32]... 23

2.6 Generic transformation of source model to target model............................ 24

2.7 Interchange between different modeling formats in EMF........................... 26

2.8 EMF/JET operational context... 26

2.9 MTF operational context.. 27

2.10 ATL operational context [96]... 28

2.11 QVT operational context...................................... 29

2.12 The relationship between QVT meta-models... 29

2.13 UMT operational context... 30

3.1 Comparison of frameworks.. 48

4.1 Notations used in our modeling approach.. 54

4.2 Relations defined between notations in our modeling approach................... 58

4.3 Transformations defined between notations in our modeling approach. . . . 59

4.4 Overview of methodological framework..................... 60

5.1 Centralised-Dedicated Hub distribution pattern... 67

xiv

5.2 Centralised Shared-Hub distribution pattern... 6 8

5.3 Decentralised distribution pattern.. 70

5.4 Decentralised Shared-Peer distribution pattern... 71

5.5 Ring distribution pattern... 73

5.6 Hierarchical distribution pattern.. 76

5.7 Ring + Centralised distribution pattern.. 78

5.8 Centralised + Decentralised distribution pattern... 80

5.9 Ring + Decentralised distribution pattern... 82

6.1 Notations used in our modeling approach.. 95

6.2 Relationships between the notations used in our modeling approach............ 95

6.3 Excerpt of the UML2 abstract syntax as viewed in Eclipse......................... 97

6.4 Activity diagram subset of UML2 notation expressed using a UML Class

diagram... 98

6.5 The UML2 notation being used to model a distribution pattern as viewed in

Eclipse.. 100

6 . 6 UML profile for modeling distribution patterns.. 101

6.7 The DPLProfile definition as viewed in Eclipse..101

6 . 8 A UML model with the DPLProfile applied as viewed in Eclipse................104

6.9 DPL notation expressed using a UML Class diagram................................. 105

6 .10 Excerpt of the DPL abstract syntax as viewed in Eclipse............................ 107

6.11 Excerpt of Collaboration Notation expressed using a UML Class diagram. . 110

6.12 The Collaboration notation’s abstract syntax as viewed in Eclipse...............I l l

6.13 Interface Notation expressed using a UML Class diagram.......................... 112

6.14 Excerpt of the Interface notation’s abstract syntax as viewed in Eclipse. . . 1 1 4

6.15 Deployment Descriptor Notation expressed using a UML Class diagram. . , 115

6.16 The Deployment notation’s abstract syntax as viewed in Eclipse.................117

6.17 Deployment Catalog Notation expressed using a UML Class diagram. . . . 118

6.18 The Catalog notation’s abstract syntax as viewed in Eclipse........................118

xv

6.19 XM L Notation expressed using a UML Class diagram.................................... 119

6.20 The XM L notation’s abstract syntax as viewed in Eclipse............................... 120

7.1 Relations between UML 2.0 (with DPLProfile applied), DPL and Exe

cutable system notations 126

7.2 Relations between DPL and Executable System notations.............................. 126

7.3 Relations between Executable System and XML notations............................. 127

7.4 Textual QVT umlactivityTodpl transform declaration...................................... 128

7.5 Graphical QVT ActivityToPattemDefinition relation declaration.................... 129

7.6 Graphical QVT ActivityPartitionToNode relation declaration.........................130

7.7 Graphical QVT CBAToOperation relation declaration......................................130

7.8 Graphical QVT ObjectFlowToMapping relation declaration........................... 13 1

7.9 Graphical QVT PinToCorrelationVariables relation declaration.......................131

7.10 Textual QVT dplTobpel transform declaration... 133

7.11 Graphical QVT PatternDefinitionToProcess relation declaration.................... 134

7.12 Graphical QVT NodeToNamespace relation declaration..................................135

7.13 Graphical QVT OperationToVariable relation declaration............................... 135

7.14 Graphical QVT NodeToPartnerLink relation declaration................................. 136

7.15 Graphical QVT PattemDefinitionToNamespace relation declaration............. 136

7.16 Graphical QVT OperationToInvoke relation declaration.................................. 137

7.17 Graphical QVT MappingToAssign relation declaration....................................137

7.18 Graphical QVT PatternDefinitionToVariable relation declaration.................... 138

7.19 Graphical QVT PattemDefinitionToNamespace relation declaration............. 138

7.20 Graphical QVT PattcrnDefinitionToPartnerLink relation declaration.............. 139

7.21 Textual QVT dplTowsdl transform declaration..139

7.22 Graphical QVT PattemDefinitionToDefinition relation declaration............... 141

7.23 Graphical QVT NodeToNamespace relation declaration................................. 141

7.24 Graphical QVT NodeToPartnerLinkType relation declaration........................ 142

7.25 Graphical QVT FromToPart relation declaration...142

xvi

7.26 Graphical QVT ToToPart relation declaration..143

7.27 Textual QVT dplTopdd transform declaration... 144

7.28 Graphical QVT PattemDefinitionToProcess relation declaration........................144

7.29 Graphical QVT NodeToPartnerLink relation declaration................ ... 145

7.30 Graphical QVT NodeToWSDL relation declaration... 145

7.31 Graphical QVT PattemDefinitionToPartnerLink relation declaration................ 146

7.32 Graphical QVT PattemDefinitionToWSDL relation declaration.........................146

7.33 Textual QVT dplTowdc transform declaration..147

7.34 Graphical QVT PattemDefinitionToWSDLCatalog relation declaration. . . 148

7.35 Graphical QVT NodeToWSDLEntry relation declaration....................................148

7.36 Graphical QVT PattemDefinitionToWSDLEntry relation declaration. . . . 148

7.37 Textual QVT bpelToxml transform declaration... 149

7.38 Graphical QVT ProcessToRoot relation declaration... 150

7.39 Graphical QVT NamespaceToAttribute relation declaration................................15 1

7.40 Graphical QVT InvokeActivityToElement relation declaration........................... 15 1

7.41 Graphical QVT ReceiveActivityToElement relation declaration........................ 152

7.42 Graphical QVT Reply Activity ToElement relation declaration............................152

7.43 Graphical QVT AssignActivityToElement relation declaration.......................... 153

7.44 Graphical QVT VariableToElement relation declaration...................................... 153

7.45 Graphical QVT PartnerLinkToElement relation declaration................................154

7.46 Textual QVT wsdlToxml transform declaration.. 154

7.47 Graphical QVT DefinitionToRoot relation declaration................................. . 1 5 5

7.48 Graphical QVT NamespaceToAttribute relation declaration............................... 156

7.49 Graphical QVT MessageToElement relation declaration..................................... 156

7.50 Graphical QVT PartToElement relation declaration..157

7.51 Graphical QVT PortTypeToElement relation declaration.....................................157

7.52 Graphical QVT OperationToElement relation declaration................................... 158

7.53 Graphical QVT InputToElement relation declaration... 158

xvii

7.54 Graphical QVT OutputToElement relation declaration.................................... 159

7.55 Graphical QVT PLTToElement relation declaration...159

7.56 Graphical QVT RoleToElement relation declaration.. 160

7.57 Graphical QVT PLTPortTypeToElement relation declaration......................... 160

7.58 Graphical QVT ServiceToElement relation declaration................................... 161

7.59 Textual QVT pddToxml transform declaration... 161

7.60 Graphical QVT ProcessToRoot relation declaration............................ ... 162

7.61 Graphical QVT WSDLToElement relation declaration.................................... 163

7.62 Graphical QVT PartnerLinkToElement relation declaration............................163

7.63 Graphical QVT MyRoleToElement relation declaration.................................. 164

7.64 Graphical QVT PartnerRoleToElement relation declaration............................164

7.65 Textual QVT wdcToxml transform declaration.................................... ... 165

7.66 Graphical QVT WSDLCatalogToRoot relation declaration............................. 166

7.67 Graphical QVT WSDLEntryToElement relation declaration.......................... 166

8.1 Example ATL transformation definition... 170

8.2 ATL UMLActivityToDPL transform module declaration.................... ... 174

8.3 ATL ActivityToPatternDefinition transformation definition............................. 175

8.4 ATL ActivityPartitionToNode transformation definition...................................175

8.5 ATL CBAToOperation transformation definition... 176

8.6 ATL ObjectFlowToMapping transformation definition..................................... 177

8.7 ATL PinToCorrelationVariable transformation definition................................. 177

8.8 ATL DPLtoBPEL transform module declaration... 178

8.9 ATL PattemDefinitionToProcess transformation definition.............................. 179

8.10 ATL NodeToNamespace transformation definition..179

8.11 ATL OperationTo Variable transformation definition... 180

8.12 ATL NodeToPartnerLink transformation definition... 180

8.13 ATL PattemDefinitonToPartnerLink transformation definition........................181

8.14 ATL OperationToInvoke transformation definition..181

xviii

8.15 ATL MappingToAssign transformation definition.. 181

8.16 ATL PatternDefinitionToVariable transformation definition........................... 182

8.17 ATL PatternDefinitionToNamespace transformation definition......................182

8.18 ATL DPLtoWSDL transform module declaration..183

8.19 ATL PattemDefinitionToDefinition transformation definition.................. 184

8.20 ATL NodeToNamespace transformation definition.. 184

8.21 ATL NodeToPartnerLinkType transformation definition................................. 184

8.22 ATL FromToPart transformation definition... 185

8.23 ATL ToToPart transformation definition.. 185

8.24 ATL DPLtoPDD transform module declaration.. 186

8.25 ATL PatternDefinitionToProcess transformation definition............................ 187

8.26 ATL NodeToPartnerLink transformation definition..187

8.27 ATL NodeToWSDL transformation definition.. 187

8.28 ATL PattemDefinitionToPartnerLink transformation definition..................... 188

8.29 ATL PatternDefinitionToWSDL transformation definition..............................188

8.30 ATL DPLtoWSDLCatalog transform module declaration............................... 189

8.31 ATL PatternDefinitionToWSDLCatalog transformation definition................ 189

8.32 ATL NodeToWSDLEntry transformation definition.. 189

8.33 ATL PatternDefinitionToWSDLEntry transformation definition.................... 190

8.34 ATL BPELtoXML transform module declaration...190

8.35 ATL ProcessToRoot transformation definition.. 192

8.36 ATL NamespaceToAttribute transformation definition.................................... 193

8.37 ATL InvokeActivityToElement transformation definition................................193

8.38 ATL ReceiveActivityToElement transformation definition..............................194

8.39 ATL ReplyActivityToElement transformation definition................................. 194

8.40 ATL AssignActivityToElement transformation definition............................... 195

8.41 ATL VariableToElement transformation definition................................. ... 195

8.42 ATL PartnerLinkToElement transformation definition..................................... 196

xix

I

8.43 ATL WSDLtoXML transform module declaration... 196

8.44 ATL DefinitionToRoot transformation definition.. 197

8.45 ATL NamespaceToAttribute transformation definition.................................... 197

8.46 ATL MessageToElement transformation definition.. 197

8.47 ATL PartToElement transformation definition...198

8.48 ATL PortTypeToElement transformation definition..198

8.49 ATL OperationToElement transformation definition.. 198

8.50 ATL InputToElement transformation definition.. 199

8.51 ATL OutputToElement transformation definition.......................... ... 199

8.52 ATL PLTToElement transformation definition.................................. ... 199

8.53 ATL RoleToElement transformation definition... 200

8.54 ATL PLTPortTypeToElement transformation definition.................................. 200

8.55 ATL ServiceToElement transformation definition...200

8.56 ATL PDDtoXML transform module declaration...201

8.57 ATL ProcesstoRoot transformation definition... 202

8.58 ATL WSDLtoElement transformation definition...202

8.59 ATL ParterLinktoElement transformation definition.. 203

8.60 ATL MyRoleToElement transformation definition... 203

8.61 ATL PartnerRoleToElement transformation definition..................................... 204

8.62 ATL WSDLCatalogtoXML transform module declaration..............................204

8.63 ATL WSDLCatalogToRoot transformation definition...................................... 205

8.64 ATL WSDLEntryToElement transformation definition.................................... 205

8.65 ATL code environment in Eclipse...206

9.1 UML Activity diagram of the methodological framework..............................210

9.2 Overview of the modeling activities in the methodological framework. . . . 2 11

9.3 UML sequence diagram representing case study.. 2 11

9.4 UML Activity diagram of transformation from WSDL to UML Activity

diagram model.. . 2 1 2

xx

9.5 Example of a UML Activity diagram with profile applied.............................. 214

9.6 Banking case study Web service interfaces as UML Class diagram model. . 2 14

9.7 UML Activity diagram model output from Step 1 ..2 15

9.8 CoreBanking XM L based ECore model o f the CoreBanking WSDL interfaces.2 16

9.9 UML 2.0 Class diagram model of the WSDL interfaces................................. 2 17

9.10 UML 2.0 Activity diagram model o f the WSDL interfaces.............................2 17

9.11 Distribution pattern definition..218

9.12 UML Activity diagram of application of distribution pattern by Software

Architect.. 220

9.13 Example of a UML Activity diagram model with connections defined. . . . 221

9.14 UML Activity diagram model output from step 2 .. 224

9.15 UML 2.0 Activity diagram model output from Step 2 225

9.16 DPL model for case study in Eclipse tool.. 226

9.17 Validation of DPL model..228

9.18 DPL ATL validation script run in Eclipse editor... 229

9.19 UML Activity diagram of transformation from DPL Model to executable

system files..230

10.1 Comparison of existing frameworks to our modeling and transformation

framework... 247

A. 1 ATL helper definitions for UML to DPL, part 1 ..286

A.2 ATL helper definitions for UML to DPL, part 2 287

A.3 ATL helper definitions for DPL to BPEL...287

A.4 ATL helper definitions for DPL to WSDL...288

A.5 ATL helper definitions for DPL to PDD...288

A.6 ATL helper definitions for DPL to WSDLCatalog..288

A.7 ATL helper definitions for BPEL to XM L.............s ... 289

A.8 ATL helper definitions for PDD to X M L... 289

xxi

A.9 ATL helper definitions for WSDLCatalog to X M L.. . . 289

B .l ATL definition for transfroming XM L to a UML 2.0 Class diagram...............291

B.2 ATL definition for transfroming a UML 2.0 Class diagram to a UML 2.0

Activity diagram... 292

B.3 ATL script for validating DPL model...293

C .l ANT script to convert WSDL interfaces to XM L based ECore model. . . . 294

C.2 ANT script to convert XM L based model to a UML 2.0 Class diagram model.295

C.3 ANT script to convert a UML 2.0 Class diagram model to a UML 2.0 Ac

tivity diagram model.. 295

C.4 ANT script to convert a UML Activity diagram model to a DPL based model.295

C.5 ANT script for validating a DPL model.. 296

C.6 ANT script to convert a DPL based model to a WS-BPEL based model. . . 296

C.l ANT script to convert a DPL based model to a WSDL based model...... 296

C.8 ANT script to convert a DPL based model to a PDD based model..........296

C.9 ANT script to convert a DPL based model to a WSDLCatalog based model. 297

C. 10 ANT script to convert a WS-BPEL based model to an XM L based model. . 297

C. 1 1 ANT script to convert a WSDL based model to an XM L based model. . . . 297

C. 12 ANT script to convert a PDD based model to an XM L based model...........297

C. 13 ANT script to convert a WSDLCatalog based model to an XM L based model.298

C. 14 ANT script to convert XM L based models to XM L text............................... 298

xxii

Chapter 1

Introduction

1.1 Problem Context

Increasingly, distributed systems are being used to provide solutions with high scalabil

ity and fault tolerance. These distributed systems also enable and encourage the reuse of

components, a long held goal of software engineering. There are many conceptual architec

tures for distributing components. One such architecture is Service Oriented Architectures

(SOA) [61], which exposes application logic through an interface that can be interacted

with using a common or standard communications protocol. SOA has superseded previous

distributed system architectures where many fine grained distributed functions and objects

were executed to realise a certain business goal.

Web services are an example of an SOA. Web services themselves are pieces of soft

ware functionality, available at a certain location, that can be invoked using Web based

technologies [9]. Our motivation for considering Web services in this thesis is the numerous

perceived benefits that can be gained from using this technology. These benefits include the

simplicity of Web services and their use of standardised XML. Of course other technologies

that may function as an SOA, such as CORBA [129], could have been considered.

For Web services to be really useful in an enterprise environment, where many disparate

systems must work together, they must be combined with other Web services. This practice

1

is termed composition. Enterprise systems are frequently built from many existing discrete

applications. These applications are often legacy applications. These legacy applications

can be exposed using Web service and can be composed to perform some useful business

function using Web service compositions.

Acceptance of these composed systems is often constrained by the non-functional prop

erties exhibited by the composition. Non-functional properties may be partitioned into de

sign time and runtime categories. The runtime non-functional properties, also know as

Quality of Service (QoS) attributes, include reliability and efficiency. Design time non

functional properties include maintainability and portability. We align our classification of

non-functional properties with the ISO 9126 software product evaluation standard [88].

There are a number of architectural configurations or distribution patterns that express

how a composed system is to be deployed. Each distribution pattern exhibits different QoS

attributes, appropriate for a given context. Patterns help document a system’s architecture

by clearly exposing the non-functional trade-offs accepted by the software architect at de

sign time. We examine these attributes and contexts in detail. However, the amount of code

required to realise these distribution patterns is considerable. In this thesis, we propose

a novel Model Driven Software Development (MDSD) based approach using UML 2.0,

which takes existing Web service interfaces as its input and generates an executable Web

service composition, based on a distribution pattern chosen by the software architect. This

executable Web sendee composition can meet any number of non-functional requirements,

depending on the distribution pattern chosen by the software architect.

1.2 Problem Statement

Traditional approaches to development of Web service compositions raise a number o f is

sues. The problems identified in this thesis are non-functional requirement issues. Firstly,

Web service composition development is often ad-hoc and requires considerable low level

coding effort for realisation [9]. This effort is increased in proportion to the number of Web

2

services in a composition or by a requirement for the composition participants to be flexible

[29]. Such systems often exhibit fixed architectures thus making maintenance difficult and

error prone. Additionally, a number o f the non-functional Quality of Service (QoS) require

ments [72] such as efficiency and reliability of a composition cannot be assessed easily by

examining low level code.

1.3 Research Objective

With our problem statement in mind we propose that the following research objectives

should be met within the context of this thesis. These objectives are split into two categories,

as follows.

• Development Process

• Product Output

Firstly, we will improve the development process for Web service compositions. The

goal of this process improvement is to increase the quality o f the software created during

the development process, with respect to design time non-functional properties like main

tainability. We consider that the development effort for creating Web service compositions

should be reduced. As a byproduct of reducing the development effort we intend to re

duce the maintenance overheads traditionally associated with mutating compositions. More

specifically, we will obviate the coding effort usually associated with Web service composi

tion development thereby significantly reducing the development effort. Maintenance over

heads o f the solution will be significantly lowered, hi addition, improved maintainability

will be achieved through a flexible architecture. Comprehensibility will also be improved

by using standards based models throughout the development process.

Secondly, we will improve the control developers have over the product output from the

development process. The objective of improving the product output is to provide control

over the QoS of Web service compositions through distribution patterns. This approach to

3

managing QoS is to expose properties such as efficiency to ensure the resultant composition

is of the required quality.

1.4 Solution

Our solution for realising the objectives outlined is to explicitly model the compositional

aspects of Web service compositions. This approach uses a modeling and transformation

framework, going from high level models to an executable system. We base our devel

opment approach on the Model Driven Software Development (MDSD) approach [182],

MDSD considers models as formal specifications of the structure or function of a system,

where the modeling language is in fact the programming language. Having rich, well spec

ified, high level models allows for the auto-generation of a fully executable system based

entirely on the model.

Our approach is expressed using a modeling and transformation framework consisting

of five components, as follows.

• A Catalog of Distribution Patterns - Enumeration of the possible distribution schemes

for Web service compositions.

• Modeling Notations - Definition of required modeling notations.

• Model Relations - Definition o f the web of dependencies between modeling lan

guages.

• Model Transformations - Rules for transforming between modeling notations.

• Methodological Framework - Outline of how high level distribution models are used

for code generation.

We assume that Web service compositions have three modeling aspects. Two aspects,

service modeling and workflow modeling, are considered by [152], Service modeling ex

presses interfaces and operations, while workflow modeling expresses the control and data

4

flow from one service to another. We introduce an additional aspect, distribution pattern

modeling [193], These distribution pattern models are re-occurring distribution schemes

that express how a composed system is to be assembled and subsequently deployed. Pat

terns express proven techniques, which make it easier to reuse successful designs and ar

chitectures [73]. Having the ability to model, and thus alter the distribution pattern, allows

an enterprise to configure its systems as they evolve, reducing maintenance overheads. Dif

ferent distribution patterns realise different non-functional requirements, which are docu

mented in our catalog of distribution patterns. We use UML 2.0 Activity diagrams to model

the distribution patterns. The UML provides for improved comprehensibility of solutions

as it is a standards based notation.

Our framework is based upon models that drive code generation. These models are gen

erated based on existing Web service interfaces, requiring only limited intervention from a

software architect, who identifies the distribution pattern, to complete the model. This ap

proach obviates the need for low level composition glue coding. All the models used with

the context of the framework are formally defined and placed within an MDSD context.

The models themselves are defined using the Eclipse Modeling Framework (EMF) [39],

Relations and transformations are defined between these models to enable code generation.

We use the QVT (Query/View/Transformation) language [133] to define the relations, be

fore expressing the transformations using the Atlas Transformation Language (ATL) [96],

The framework is guided by a methodological framework whose primary artifact is a dis

tribution pattern model and whose output is an executable system. This methodological

framework is accompanied by a tool that implements the approach.

To assess the usefulness of our solution we have evaluated our approach by comparing

it to a traditional handcrafted approach. Central to this evaluation is our consideration of

the ALMA (Architecture Level Modifiability Analysis) method [90, 142], We also provide

a critical comparison of our approach to existing tools and methodologies.

5

1.5 Outline of this Document

The structure of this thesis is as follows. Chapter 2 presents a review of the technologies,

approaches and terminology central to Web services and specifically our model driven ap

proach. Quality attributes, which enable the technologies and approaches to be assessed,

are also discussed. In Chapter 3 we present the state of the art in software patterns, dis

tributed compositions and model driven development approaches. These related works pro

vide context to our research and expose gaps in the existing literature. Our research contri

bution begins in Chapter 4, where we present our modeling and transformation framework.

This framework, based upon Model Driven Software Development (MDSD), enables the

generation of Web service compositions, based upon a set of models, which describe the

distribution scheme of a composition. The five components o f the framework are outlined

in detail in the following five chapters. In Chapter 5 we introduce the first component, a cat

alog of distribution patterns, which is the basis for our modeling approach. These patterns

describe re-occurring distribution schemes, which express how a composed system is to be

assembled and subsequently deployed. Chapter 6 discusses the modeling infrastructure re

quired to support our modeling and transformation framework. This component consists of

eight languages, or notations, describing the constructs of the various models built within

the context of the framework. In Chapter 7 model relations are presented. These model

relations provide the semantic mappings between the modeling notations, defining the web

of dependencies that must hold between source and target modeling notation. Chapter 8

introduces model transforms. The model transforms define how a source model is con

verted into a target model, whilst respecting the relations previously defined. The final

component of the modeling and transformation framework is outlined in Chapter 9. This

methodological framework component ties together the four previous components to ensure

that non-functional attribute quality control is no longer an afterthought of the Web service

composition generation process. This is achieved by using distribution pattern models as

the driver for the executable system generation effort. In Chapter 10 we evaluate how well

our approach has met its objectives and compare our efforts to existing approaches and

tools. Finally, in Chapter 1 1 we present our conclusions and consider future work.

Chapter 2

Background

2.1 Introduction

Software engineering is a rapidly evolving discipline featuring a myriad of technologies

and approaches. These technologies and approaches attempt to manage the complexity in

herent in today’s software systems. In this chapter, we review the technologies, approaches

and terminology central to Web services and specifically our model driven approach. Our

discussions present the technologies incrementally, motivating each as it is encountered.

Along with discussing the relevant technologies we also consider quality attributes, which

enable the technologies and approaches to be assessed by profiling different approaches.

Initially in Section 2.2 we review relevant software architectural approaches, including

design patterns and Service Oriented Architectures (SOA). In Section 2.3 we discuss Web

service technologies, before presenting semantically enhanced Web service technologies

in Section 2.4. Section 2.5 presents the state of the art in software modeling approaches.

Finally, in Section 2.6 we review the quality attributes of software systems.

2.2 Software Architecture

Software architecture considers the structure of a system, and how each of its discrete parts

work together, in a given environment. The IEEE define the concept succinctly, as follows;

“Architecture is the fundamental organization o f a system embodied in its com

ponents, their relationships to each other, and to the environment, and the prin

ciples guiding its design and evolution.” [167]

Software architectures provide many benefits to the software development life cycle.

The benefits include early verification of systems, by examining the system for correct

ness and completeness, as well as abstraction of complexity using views, increasing the

comprehensibility of a system. Early consideration of the software architecture enables the

estimation of a system’s quality measures. The architecture can then be tailored to improve

the desired quality measures [26, 47, 74],

Architectures often feature abstract components to manage the complexity of describ

ing systems. This technique can also be used to expose pieces o f software for reuse and

subsequent composition, as in Component Based Software Development [173], The in

ternal structure of such components can become quite complex. This complexity can be

reduced through the use o f design patterns or architectural styles. Architectural styles may

be considered to be small pattern languages [6], These patterns or styles are akin to a

sub-architecture, that encourages the reuse of well thought out and validated architectural

approaches.

Distribution of developed components is essential so that reuse is facilitated. These

distributed components expose their functionality using interfaces, possibly in combination

with a registry, along with well known or standardised protocols and messaging formats

[173], There are many approaches to component distribution. One such emerging approach,

that encourages the use of distributed components is Service Oriented Architectures (SOA).

Each of these architectural approaches is considered in more detail in the following

sections.

2.2.1 Component Based Software Development

Component Based Software Development (CBSD) is concerned with the architectural de

sign of reusable software. These pieces of software, accessed using well defined interfaces,

are built with reuse, in different contexts, in mind. Components reduce redundancy by pro

moting reuse, and promote productivity and quality, whilst reducing production costs [173],

Examples of CBSD technologies used in industry include, Microsoft’s Component Object

Model (COM) [173] and Sun’s Enterprise Java Beans [122],

2.2.2 Design Patterns

Design patterns provide software solutions to re-occurring problems that present them

selves in software development, with the objective of making them more maintainable,

self-documenting and reusable [73], Patterns are often documented, along with related pat

terns, as catalogs. These catalogs describe the problem context to which the patterns can

be applied, how the pattern solves the design problem and document the consequences of

using a given pattern.

There are two forms of patterns, architectural patterns and core patterns. An architec

tural pattern focuses on the components that make up a system, and how these compo

nents work together. One such pattern, sometimes called a paradigm is the Model-View-

Controller (MVC) [21]. The MVC provides for clear separation o f concerns within a sys

tems architecture.

Architectural patterns are a form of architectural style. Architectural styles are cata

loged by Shaw et al. in [162], The catalog considers patterns which regularly occur in

system designs. Each pattern features a set of element types, such as software components,

a topological layout of the elements indicating their relationships, a set of semantic con

straints outlining how the component will function, and finally a set of interaction mecha

nisms, which specify how the elements coordinate through the specified topology [26]. An

example of an architectural style is the layered pattern, which groups together tasks at a

particular level of abstraction. We consider architectural patterns in more detail in Section

3.2.1.

The second form of patterns is core patterns. There are three subsets of such patterns;

creational, structural and behavioural.

10

Creational patterns abstract the instantiation process, whereby the process of creating

an object is delegated to another object. This process reduces the coupling between the

object creator and the object that it wishes to use. An example of a creational pattern is the

abstract factory pattern, which delegates the instantiation o f an object.

Structural patterns consider different mechanisms to enable class and object composi

tion. These patterns enable independently developed libraries to work with each other. An

example of a structural pattern is the adapter pattern, which adapts an object’s interface so

it is compatible with another object’s requirements.

Behavioural patterns consider generic algorithms and communications mechanisms be

tween objects. The patterns all abstract away the complexity o f run-time control flow. An

example of a behavioural pattern is the iterator pattern, which provides sequential access to

a collection of related elements.

2.2.3 Distributed Systems

A distributed system consists of a number of physically independent computers working

together as a single coherent system. The distribution o f resources should be transparent

to the end user, providing for improved scalability and fault tolerance because there is no

longer a single point o f failure within a system where redundancy exists. Improved re-use

of heterogeneous resources, such as components, and ease o f evolution are also provided

for by the distributed system paradigm [174],

A system consisting of a number of discrete components can utilise the benefits of a

distributed system by partitioning its components onto a number of physically independent

computers. Communication between these components is achieved over a network, using

well defined protocols, assuming appropriate pluming code is written, or generated by a

tool. These components are referred to as distributed components.

11

There are many conceptual architectures for distributing components, one such architecture

is Service Oriented Architectures (SOA) [61]. An SOA encapsulates and subsequently ex

poses application logic through an interface that can be interacted with using a common or

standard communications protocol. SOAs maximise loose coupling and reuse by extending

the benefits of Object Oriented Programming (OOP) and CBSD without actually relying

on these mechanisms [173]. In fact, unlike OOP and CBSD based integration approaches,

SOA does not rely on proprietaiy middleware platforms such as Microsoft’s .NET [147] or

Sun’s Enterprise Java Bean (EJB) [122] technologies. SOAs instead communicate based on

an agreed interface and communication contract that is language and platform independent.

Web services, discussed in the following section, are an example of an SOA implementa

tion.

2.3 Web Service Technologies

Web services are pieces of software functionality, available at a certain location, that can be

invoked using Web based technologies [9]. The basic technology stack for first generation

Web services is WSDL, SOAP and UDDI. Web Sendee Description Language (WSDL)

[184] is an XM L based language for defining the interface o f a given Web service along

with its input and output message types. Simple Object Access Protocol (SOAP) [186] is

an XML based language used for structured and typed message exchange between service

providers and clients. Finally, Universal Description, Discovery and Integration (UDDI)

[127] is a Web service based registry used to publish and subsequently discover Web ser

vices. Figure 2.1 outlines the relationship between the technologies with respect to the

W3C’s Web sendee architecture framework [185].

Web service toolkits such as Apache Axis [13] facilitate the generation and execution

of Web services. The following sections outline some of the additional technologies or

specifications necessary for Web services to be useful in the context of an enterprise system.

2.2.4 Service Oriented Architecture

12

Figure 2.1: Logical representation o f a Web service architecture [185].

2.3.1 Web Service Composition

Enterprise systems are often built by wiring a number of Web services together to realise

some novel functionality. This practice of gluing Web services together is termed compo

sition. Web service composition is often ad-hoc, where no architectural models are drawn,

and considerable low level coding effort is required for realisation [9], The emphasis of

such compositional developments is to gain integration between services, rather than to

achieve certain non-functional requirements, such as Quality of Service (QoS). There are

many different ways in which these novel applications can be assembled to express varying

QoS values, which are often not considered.

We consider a collaboration to be the high level cooperation of components to achieve

some compound novel task. For example, a number of Web Services working together

to achieve a goal, different to their discrete goals, may be considered a collaboration. A

collaboration is the coming together of a number of elementary Web Services to form a

complex Web Service.

When considering Web Service compositions, services comprised of two or more ele

mentary services, the area of collaboration, or more specifically, orchestration and chore

ography are of great importance. Figure 2.2 illustrates an orchestration based model, while

13

Figure 2.3 illustrates a choreography based model. Although these terms are often used

interchangeably there are subtle differences between the two mechanisms.

Chris Peltz [144] defines both terms well;

“Orchestration refers to an executable business process that may interact with

both internal and external Web Services”

Orchestration

Figure 2.2: Orchestration models the internals of a private process,

while choreography is defined as;

“More collaborative in nature, where each party involved in the process de

scribes the part they play in the interaction.”

The main difference between the two mechanisms is that orchestration takes the per

spective of one of the businesses partners and how Web Services messages interact from

its point of view, while choreography has no central partner where messages are exchanged

between mutually significant partners. Additionally it may be said that a choreography is a

user specific execution plan, while an orchestration is fixed based upon some set of business

rules [42],

14

Choreography

Figure 2.3: Choreography models only public message exchange.

2.3.2 Collaboration Standards

Second generation Web service technologies address the deficiencies o f first generation

Web services, such as transaction support, composition support, reliability and security,

by proposing a number of specifications to address these concerns [175]. Collaboration

specifications are considered second generation Web service technologies, which enable

the composition of a number of discrete Web services. The two main collaboration lan

guages are Web Services Business Process Execution Language (WS-BPEL) and Web Ser

vice Choreography Description Language (WS-CDL) [145]. WS-BPEL [12, 128] provides

XM L constructs for describing the interaction logic for participants in a complex process

flow. This is an orchestration language because the internal and external flow of messages

between services in a composition is modeled. WS-CDL [187] on the other hand, is a chore

ography language describing only the external messages exchanged between collaborators

in a composition. Critical evaluation of collaboration standards is investigated by van der

Aalst et al. in [179]. Within the Web service community considerably more support is pro

vided for the WS-BPEL language. The supremacy of WS-BPEL is probably due to the fact

15

it was standardised before WS-CDL, with support from large industrial companies such as

IBM and Microsoft. These corporations also built early prototype tools to encourage early

adoption of their standard.

2.4 Semantic Web Services

The Semantic Web consider how the currently human centric Web can be re-orientated

towards automatic consumption and comprehension by computers. By marking up Web

pages using commonly defined concepts that are comprehensible by computers, comput

ers can process information without human intervention. This idea can be extended to

Web services, where Web services are described using commonly defined concepts that are

comprehensible by computers. These services can then be consumed and composed auto

matically on our behalf by computers. The technologies required for the realisation o f this

goal are discussed in the following sections.

2.4.1 Semantic Web Ontologies

The Web Ontology Language (OWL), is a language for capturing the conceptual data of

a domain and their inter-relationships, for use in the description of resources [113]. OWL

extends both XM L and the Resource Description Framework (RDF), providing for the cre

ation of ontologies relevant to any given domain [150]. These ontologies describe the vo

cabulary for a given domain. This technology enables the conceptualisation of a domain, or

its semantic description, to describe any form of resource, such as Web pages and Web ser

vices. Such approaches can be used to assist in the automatic composition of discrete Web

services. Semantic descriptions enable unambiguous, computer interpretable documenta

tion of resources. Authoring tools, such as Protégé, assist in the creation of ontologies by

providing an editor based GUI, validation facilities and querying support [169].

16

OWL-S is an ontology based on OWL, which is used for defining the properties and ca

pabilities of Web services in a more descriptive and machine comprehensible manner than

WSDL, thus enabling automatic Web service compositions[109, 110]. The ontology is sep

arated into three distinct subontologies or parts.

• Profile

• Process Model

• Grounding

The profile describes the capabilities of the service and is more descriptive than its

WSDL counterpart. Its main function is to advertise what the service does for the purpose

of discovery by clients, which wish to utilise its capabilities. The second subontology is

the process model, which describes how a service works. It is used to enable Web service

integration and composition. Finally, the last part is the sendee grounding, which provides

a description of how a sendee can be accessed. The grounding provides a link between

the semantically marked up process model and the service’s WSDL interface description

document. In fact, both technologies are complimentary in that OWL-S provides an unam

biguous, ontology based description of the abstract types used in a service, whilst WSDL

provides an XM L Schema based description of the abstract types necessary for invocation.

Both the profile and the process model refer to a domain ontology to allow for semantic

mappings between the discrete service interfaces.

Some OWL tools useful for assisting in the creation and use of OWL-S documents are

the OWL-S Editor [59] and OWLSM [112], A European based project with the same aim

as OWL-S is the Web Service Modeling Language (WSML) [195].

2.4.2 Semantic Web Service Description

17

2.5 Modeling Technologies

Models are formal or informal representations of a system, often described using a graphi

cal notation. Informal models are used to guide the development of systems by describing

the artifacts within a system and how they interact. These informal models are often de

rived by software architects and then may be passed to software developers for realisation

in code. Formal models, however, directly contribute to code generation in that they de

scribe the system in a machine comprehensible way, enabling code generation [71]. These

models may also be used for analysis and reasoning of the quality measures of the proposed

solution.

Models that can be used to generate code are part of the Generative Programming (GP)

software engineering methodology [50], Generative Programming is useful when families

of similar software systems are to be built, albeit with a different set o f configurations.

T his approach splits the software development cycle in two. The first cycle is developing

a system to enable reuse. This system consists o f all the infrastructure required to model

and generate a family of similar software systems. The second cycle is development with

reuse, where the specific model of the system to be built is used with the previously defined

infrastructure to generate a concrete system.

The following sections detail some of the modeling technologies which assist in model

based generative programming efforts.

2.5.1 Meta Object Facility

The Meta Object Facility (MOF) is a standards based, universal mechanism for describing

different kinds of modeling constructs [71]. MOF is standardised by the Object Manage

ment Group (OMG) [137]. This technology enables the formal description of any number

of modeling languages, such as UML, discussed in Section 2.5.2. MOF enables the use of

different modeling constructs for different modeling domains. This approach obviate the

need for an all encompassing single modeling language. In fact, MOF itself is modeled

18

using a restricted subset of one o f the languages which it defines, UML [161],

2.5.2 Unified Modeling Language

The Unified Modeling Language (UML) is a standards based graphical language for the

modeling of software systems [60], The UML is standardised by the Object Management

Group (OMG) [140], whose meta-model is defined using MOF constructs. This modeling

mechanism enables the precise and unambiguous description o f software systems. Ambi

guities in the description of software systems can result in invalid system realisations [161],

UML specifies, constructs and documents a system using two categories of diagrams,

structural and behavioural. Structural diagrams describe the static structures of a system

along with the inter-relations between components of the system. Behavioural diagrams

describe the dynamic behaviour of a system. Structural diagrams such as UML Class dia

grams are appropriate for service modeling, while behavioural diagrams like UML Activity

diagrams are appropriate for modeling both workflows and distribution patterns.

Tool support for UML is considerable. Commercial tools include Rational Software

Architect [86], Poseidon [76] and MagicDraw [87], Open source tools are also available,

such as Eclipse UML2 [65], ArgoUML [178] and Dia [77],

2.5.3 Object Constraint Language

The Object Constraint Language (OCL) is a standards based formal language, based on

mathematical set theory and predicate logic, for the description of invariant conditions upon

a model [138, 190], OCL is standardised by the Object Management Group (OMG). OCL

expressions may be used to query the current state of a model. The language may also be

used to assert constraints and/or query any MOF based model. Constraints which cannot

be expressed diagrammatically can be expressed using OCL. The combination of UML

and OCL can provide for semantically rich conceptual models, similar in expressiveness to

ontologies expressed in semantic languages such as OWL [54].

19

The UML Activity diagram is a member of the UML behavioural diagram category. Ac

tivity diagrams illustrate the sequential flow of actions within a system, capturing actions

and their results [1 1 , 60]. These diagrams consist of actions, which are the basic anil of

behaviour within an activity, and control flows, which illustrate the transitions through the

system. Activity diagrams have a number of constructs, however we will only discuss a

subset of these constructs, that have relevance to our pattern catalog.

The start point of an Activity diagram is identified by solid filled circle, termed the

initial node. Actions are used to represent something that is performed to produce a re

sult. These actions appear as rectangles with rounded comers. Edges are used to represent

transitions between actions and are illustrated by arrows. These edges are triggered by the

completion of actions. Activity partitions, also called swim lanes, are used to group actions

together. The partitions may be used to explicitly illustrate where an action is performed.

Finally the end point of an Activity diagram is illustrated by a circle surrounding a smaller

solid circle, termed the activity final point. Figure 2.4, illustrates a UML Activity diagram

and labels each of the features discussed.

2.5.4 Behaviour Modeling

Figure 2.4: A UML Activity diagram.

20

The UML provides a number of mechanisms for extending the existing language. The

UML can be extended using MOF, to create additional modeling constructs. However, the

simplest method to extend the UML is the use of UML profiles [71]. Profiles allow, through

the use o f stereotypes and tag definitions and constraints, the extension of existing UML

constructs so they may be utilised in previously unimagined contexts. Although profiles

extend UML they must respect the original semantics of the extended constructs. Additional

semantics can be applied to the extended constructs using constraints.

A stereotype defines a new modeling construct based upon a previously defined con

struct, similar to the object oriented extends mechanism [60], The stereotype has all the

features of its parent construct, in addition to some context specific semantics. Stereotypes

are identified by the use of guillemets around the stereotype name. The use of stereotypes

ensures the UML does not become over complex, enabling the reuse of existing modeling

constructs in many different contexts.

Tag definitions enable the assignment of name/value pairs upon UML constructs [60],

The UML comes with predefined tag definitions. However, user defined tag definitions can

be created and assigned to stereotypes.

A profile defines a number of stereotypes and associated tag definitions, which when

applied by the software architect to UML constructs, allow for the assignment of context

specific data to the tag definitions. The OMG maintains a number of profiles, such as the

UML Profile for CORBA [130] and the UML Profile for EDOC [132],

An alternative to extending the UML is to define an entirely new modeling language,

or Domain Specific Language (DSL), using MOF. This approach obviates the need for the

end user to understand UML. Instead novel, potentially more intuitive notational constructs

can be used. However, the end user will have to understand the new modeling notation,

and prior knowledge of the UML may be wasted. The use of many diverse DSLs can cause

fragmentation issues, which the UML was designed to alleviate [161].

2.5.5 Extending UML

21

Model Driven Development (MDD), or Model Driven Software Development (MDSD), is

an emerging approach for building software [182, 30], MDD considers models, at different

levels of abstraction, as the primary artifact to reason about a given domain and devise a so

lution. Relationships are defined between these models to describe the web of dependencies

between the models. These relationships are used to assist in the generation and reasoning

of the final solution.

One specific MDD based approach is the Model Driven Architecture (MDA) [71], pro

posed by the Object Management Group (OMG) in November 2000. The approach stipu

lates models as the primary software artifact, instead of traditional procedural based code

[160]. These models are used to abstract away the complexity of a solution. Previously

models were used merely to guide the development process. MDA, however, considers

models as formal specifications of the structure or function of a system, where the mod

eling language is in fact the programming language, and is used to generate the program

code via conversion rules. Transformation between models can be performed automatically

using predefined transformation rules.

Rich, well specified, high level models, often defined in the Unified Modeling Lan

guage (UML), allow for the auto-generation of a fully executable system based entirely on

models [60], The combination of raised abstraction and increased automation should in

crease the quality of software, by exposing the important attributes of the models early in

the development process, and result in increased productivity in the development lifecycle

[160],

The MDA consists of a four layer modeling stack, as illustrated in Figure 2.5 [31, 32],

From the bottom layer upwards, the initial layer is the real system, which is represented by

a model. The model is an abstract representation of the system from a particular perspec

tive. This model conforms to a meta-model, which itself conforms to a meta-meta model.

UML, Business Process Modeling Notation (BPMN) and Common Warehouse Metamodel

(CWM), are all examples of meta-models in MDA terminology. Meta-models define the

2.5.6 Model Driven Development

22

vocabulary that may be used in specific models. To avoid the definition of incompatible

meta-models a further model layer is defined, the meta-meta model. The meta-meta model

is defined using another OMG standard, the Meta Object Facility (MOF), discussed in Sec

tion 2.5.1. MOF is a universal way of specifying meta-modeling languages such as UML

and BPMN using common MOF constructs, providing interoperability between different

meta-modeling vocabularies.

conforms to

Figure 2.5: OMG four layered modeling stack [32].

In addition to the modeling stack, M DA models describe a system from a number of

levels of abstraction, or views. Firstly a Computation Independent Model (CIM) describes

what the system is supposed to do, rather than describe the means with which the system

achieves its goals i.e. CIM represent’s the systems business model. A Platform Independent

Model (PIM) describes the system’s specification without making reference to any partic

ular platform dependent technology. Finally, a Platform Specific Model (PSM) describes

how a system is to be realised using a particular technology [101].

There is considerable tool support for the MDA approach. The Eclipse EMF project

[39], a plugin to the Eclipse development environment [64] discussed in detail in Section

2.5.7.2, supports the creation of meta-models, and also the editing of models. The Eclipse

23

based UML2 project [65] is an EMF based representation of the UML 2 meta-model, en

abling the use of UML and EMF together. Traditional CASE based tools (Computer Aided

Software Engineering), such as IBM ’s Rational Software Architect [86] are being upgraded

to support the MDA approach. Additionally a European based project, Modelware [91], has

helped provide a number of MDA based tools, such as the model transformation tools ATL

[96] and SmartQVT [176], along with a tool integration suite called ModclBus [168],

2.5.7 Model Transformations

Model transformations enable the transformation of one representation of a system to an

other. For example, a system may be defined using one form of notation known to business

modeling specialists, while the software engineers require the use of a different notation.

These different models are however related, and so it should be possible to transform at

least some of the model artifacts from one model to another. Transformations are based

upon mathematical relations. These relations are sets of elements, where each element in

a set is mapped to another element of the other set. Relations are specified at system de

sign time and ensure a mapping between candidate models is possible. A formal definition

of relations, including a case study, can be found in the work of Akehurst [5], There are

a number of transformation mechanisms available, some of which are outlined below. A

transformation from a candidate source model, Ma, to a candidate target model, Mb, is

illustrated in Figure 2.6. Further classification of model transformation approaches is pro

vided by Czamecki et al. in [51], and more recently in [52], In the following subsections we

consider a number of transformation platforms as well as supporting tools and technologies.

Frameworks that implement model transformations are presented in Section 3.10 and com

pared in Section 3 .1 1 . We do not consider the theoretical foundations of the transformations

themselves.

Ma Mb

Figure 2.6: Generic transformation of source model to target model.

24

2.5.7.1 XML Metadata Interchange

XMI or the XM L Metadata Interchange Format is a serialisation format for models [80],

The XMI specification standardised by the OMG enables models of any level to be repre

sented using XM L [134], This format enables the persistence o f models in a tool indepen

dent format. It also enables the transformation of a model from one format to another, using

languages such as the Extensible Stylesheet Language for Transformations (XSLT) [183].

XSLT is a declarative, template based language, for transforming one form of XM L into

another form of XML. Although this approach to model transformation is well established

it is not particularly effective, due to the number of incompatible XMI versions utilised in

tools, resulting in versioning problems. The XSLT code used to generate such transforms

is also very difficult to maintain as it is at a low level.

2.5.7.2 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is an open source modeling framework that in

tegrates with the Eclipse development environment [64], EMF relates user drawn mod

els directly to their implementations enabling Java code generation [39], EMF supports

XML Schema, UML (via XMI) and Java representations of models, and interchange be

tween these formats. Meta-models in EMF are defined in ECore, which is closely related to

the OMG’s EMOF, or Essential MOF, which is a lightweight subset of the MOF standard

[39, 137], Like EMOF, the meta-model for ECore defined meta-models, is the meta-model

language itself, it this case ECore. A number of ECore meta-models are available for use

in EMF, including UML2 [65] and XM L Schema [68],

EMF provides wizards out of the box, which enable the transformations from and to

XML Schema, UML, Java and ECore representations of a model. This is made possible as

EMF comes complete with ECore representations of XM L Schema, UML and Java meta

models. This facility is illustrated in Figure 2.7.

25

EMF Model
(ECore)

Figure 2.7: Interchange between different modeling formats in EMF.

2.5.1.2s Java Emitter Template

The Java Emitter Template (JET) is EM F’s transformation language, capable of generating

Java code from ECore based models [149], JET is a declarative template language similar

to JSP (Java Server Pages) [172] that is capable o f emitting code. Like JSP, JET may also

incorporate procedural code blocks. The operational context of EMF and JET is illustrated

in Figure 2.8. The JET language has no formal relationship with ECore.

Figure 2.8: EMF/JET operational context.

2.5.7.4 Model Transformation Framework

The Model Transformation Framework (MTF) is IBM ’s prototype model transformation

language, developed as part of their participation in the QVT standardisation process [56],

The language uses simple relations to define the mappings between models. Relations are

UML Model

XML Schema

Java Interface

26

defined in MTF using a declarative language, called Relations Definition Language (RDL).

A closed source transformation engine, supporting the MTF language is available. The tool

integrates with the Eclipse development environment [64], The operational context o f MTF

is Illustrated in Figure 2.9.

Figure 2.9: MTF operational context.

2.S.7.5 Model Transformation Language

MTL (Model Transformation Language) is a declarative model transformation language,

devised by the QVT-P (Query/View/Transformation Partners), featuring two distinct sub-

types of transformations, relations and mappings [15], Relations, although not executable,

enable consistency checking between two or more candidate models, ensuring a mapping

is possible between the models. Mappings define the transformation between models, by

refining any number of relations. These mappings are executable, in that they are capable

of creating and altering a model. MTL defines a syntax for both relations and mappings, in

both textual and graphical formats. Pattern matching, like that used in XLST, is utilised for

searching through candidate models. No tool support for executing MTL implementations

is available.

27

ATL (ATLAS Transformation Language) is a model transformation language featuring both

declarative and imperative constructs, which conforms to the MOF meta-meta-model [96].

The language and related open source tool, ATL Development Tools (ADT), have no re

liance on XMI. Instead, matched rules are used to define source and target patterns in the

models to be transformed, resulting in easy to read and maintain transformations. Called

rules and actions blocks may be used in addition to matched rules where necessary. The

operational context of ATL is outlined in Figure 2.10.

2.5.7.6 ATLAS Transformation Language

Figure 2.10: ATL operational context [96],

2.5.1.7 Query/View/Transformation Language

QVT (Query/View/Transformation) is a recently standardised OMG language utilised in

the MDA approach, for expressing model transformations. QVT, like ATL, is defined using

a MOF based meta-model, as illustrated in Figure 2 .11 .

The specification describes a hybrid language featuring both declarative and imperative

parts, as outlined in Figure 2.12. Relations and Core declaratively specify the relationships

between MOF models, expressing the same semantics, albeit on different abstraction levels.

Operational mappings imperatively describe more complex relations which cannot be de

scribed declaratively. The black box represents a plugin, which defines relations coded in a

28

Figure 2 .1 1 : QVT operational context.

language with a MOF compliant binding. Unlike ATL, at the time of writing QVT does not

have tools that support all the meta-model representations. However, one tool SmartQVT

has just been released to support the transformation of operational relations [176], A useful

comparison of the architecture of both ATL and QVT is discussed in [95].

e x te n d s ex te n d s
----------------V

Rela t ions

O p er a t io n a l
M a p p in g s

>

t ra n s fo r m

f

Black
Box

e x te n d s
. .

Core
e x te n d s
. . .

Figure 2.12: The relationship between QVT meta-models.

2.5.7.8 UML Model Transformation Tool

The UML Model Transformation Tool (UMT) is an open source model transformation,

and code generation tool [153], Unlike the other transformation languages discussed here,

UMT performs transformation on XM L Metadata Interchange (XMI), using an existing

language, XSLT. An intermediate language, termed XML_Lite, is introduced to reduce the

complexity of the transformation process. XSLT transformations can be both declarative

29

and procedural. The transformations in UMT have no meta-model basis, nor any specific

transfonnation language. The operational context of UMT is outlined in Figure 2.13.

Figure 2.13: UMT operational context.

2.6 Quality M easures

Different system architectures realise different quality measures. In fact, it is often con

sidered that the system’s architecture determines the quality of a system [47]. This is par

ticularly the case for distributed systems, where resources must be shared and competed

for. Quality measures of software systems are documented using a number of attributes,

which are expressed as either quantitative or qualitative values. These values represent the

systems ability to satisfy the attribute’s requirements as specified by the project stakehold

ers. Ideally, software systems should express then non-functional attributes with the least

amount of ambiguity possible. Quality measures consider both non-functional design-time

and run-time measures of software systems.

A number of barriers to achieving acceptable quality values for non-functional system

attributes are noted by Albin in [6], These common barriers are:

• Quality control as an afterthought

30

• Underestimation or misunderstanding of importance o f quality measures

• Inadequate modeling methods and languages for expressing quality measures

• Lack of documented design and architecture patterns for addressing quality measures

• Difficulty in designing for quality measures

• Inadequate languages for expressing and specifying quality requirements

Bass et al. [26] do not distinguish between functional and non-functional requirements.

Instead, they consider the qualities o f a system as observable via execution and non-observable

via execution. An example of an observable attribute would be system efficiency, while non

observable qualities would include the mutability of the system. We consider both forms in

the following Sections 2.6.1 and 2.6.2. These criteria will be used later in the evaluation of

our framework.

2.6.1 Observable Quality Measures

Observable quality measures may be observed during the execution of a system and are

often grouped under the term, Quality of Service (QoS) [72], In [26] Bass et al. five quality

attribute categories which affect software systems at run-time are outlined; performance,

security, availability, functionality and usability. The first two categories are of particular

relevance to distributed systems. These important attributes are outlined below and detailed

in [116, 135, 196],

• Performance - The timeliness with which a system can react to requests.

• Availability - A measure of the time the system is up and running.

These run-time non-functional properties can be aligned to the ISO 9126 software prod

uct evaluation standard as follows [88],

• Performance - ISO 9126 efficiency with regards to time and resource utilisation.

• Availability - ISO 9126 reliability with regards to fault tolerance.

31

Non-observable quality measures cannot be observed during the execution of a system.

These attributes are design-time quality measures. Five quality measure categories which

affect software systems at design-time are outlined by Bass et al. in [26]; modifiability,

portability, reusability, interoperability and testability. The first four categories are of par

ticular relevance to distributed systems, and are outlined below.

• Modifiability/Mutability - Ease of modification of the system in terms of cost and

effort.

• Portability - Ease of altering the system’s context in terms of cost and effort.

• Reusability - Ease of reuse of a system’s components.

• Interoperability - Ability of system to integrate with others.

These design-time non-functional properties can be aligned to the ISO 9126 software

product evaluation standard as follows [88].

• Modifiability/Mutability - ISO 9126 maintainability with regards to analysability,

changeability, stability and testability.

• Portability - ISO 9126 portability with regards to adaptability, installability, confor

mance and replaceability.

• Reusability - ISO 9126 portability as above.

• Interoperability - ISO 9126 portability as above.

2.7 Summary

In this chapter we have introduced all the technologies used throughout the thesis. We pre

sented architectural approaches to software engineering, from Component Based Software

2.6.2 Non-Observable Quality Measures

32

Development (CBSD) to Service Oriented Architectures (SOA). The basic Web service

technology stack, along with Web service composition terminology and technology, were

discussed before considering technologies, such as OWL-S, which enable automatic Web

service consumption and comprehension. We motivated the use of formal models for the

generation of code and introduced some of the important MDD related technologies and

reviewed a number of approaches of model transformations. Finally, we presented some of

the important quality attributes of software systems, which will be considered throughout

the thesis.

33

Chapter 3

Related Work

3.1 Introduction

This chapter surveys the body of work related to software patterns, distributed compositions

and model driven development approaches. These related works provide context to our

research and expose gaps in the literature, which we will address. Each piece of related

research will be considered with respect to its relevance and significance. We will also

outline the important contributions and limitations of each presented approach.

The history of software design patterns is presented in Section 3.2, before looking in de

tail at one specific form of pattern, architectural design patterns in Section 3.2.1. In Section

3.3 we introduce early attempts to model distributed systems and consider two different no

tations for modeling such systems, before considering some modem Web application based

modeling solutions in Section 3.4 and Web service modeling approaches in Section 3.5.

Traditional distributed system based compositions are investigated in Section 3.6 before

examining the field of Web service compositions in Section 3.7, as well as attempts to

automate the composition process in Section 3.8. Modeling of the non-functional attributes

of systems is investigated in Section 3.9. Section 3.10 discusses a number of different

approaches to model transformations. Finally, in Section 3.11 we summarise the features

provided by all the solutions considered in this chapter.

34

3.2 Design Patterns

In the late nineteen seventies Alexander et al. proposed a pattern language for the design

of buildings and cities [7]. These patterns represented problems and successful solutions

to re-occurring architectural situations, such as city planning, they repeatedly encountered.

The solutions they found and documented can be reused in different contexts. This theory

is the basis of the work of Gamma et al. who apply patterns to object-oriented systems [73].

Instead of documenting patterns such as road based T junctions, Gamma et al. document

patterns such as adapters and factories, which are often used in object-oriented systems.

Classification of patterns is discussed in Section 2.2.2.

Many authors have proposed pattern libraries for other, more specific, software engi

neering contexts. Vasko et al. [181] document Web service workflow patterns in the Collaxa

workflow engine, while van der Aalst et al. [180] document advanced workflow patterns.

Buschmann et al. consider design patterns in a number of contexts in their Pattern-Oriented

Software Architecture series [41],

3.2.1 Architectural Design Patterns

Design patterns, which express the architecture of a system, are often visible in system

models. These patterns are examples of architectural design patterns or architectural styles

[47], Architectural design patterns are at a higher level of abstraction than core patterns, and

so are not tied only to object oriented contexts. When architectural patterns are visible it is

possible to predict the architectural quality of such systems, based on known attributes of

systems with the same or a similar architecture style [47]. Architectural quality has a direct

impact on the non-functional requirements, including both observable and non-observable

attributes of a solution, as outlined in Section 2.6.

One particular architectural design pattern of interest, in the context of Web service

compositions, is the topology. A number of distributed system topologies, or topological

layouts, are identified by Ding et al. in [58]. Topologies, in network computing terminol

35

ogy, are the different interconnecting structures, or architectural schemes, by which pairs

of nodes in the network are connected. The topologies presented by Ding et al. express the

architecture of a distributed content sharing network, and are based on existing networks

based topologies. The topologies presented are classified by Minar in [119], where a frame

work for comparing the characteristics of distributed system design is presented. For the

remainder of this chapter we will refer to topologies as architectural schemes. The classi

fication of the various architectural schemes is important as it enumerates the various way

in which a distributed system can be organised. However, the classification performed by

Minar does not consider their specific use in a Web service context.

There has been some work in decoupling the architectural scheme from the rest of an

applications implementation. This approach enables the architectural scheme of a solution

to be altered without affecting the remainder of the system, thus enabling different observ

able and non-observable attributes to be met after the completion of the system. We discuss

some examples from the literature in the following paragraphs.

Architectural evolution of distributed systems is considered by Ramio et al. in [156].

Here, the authors consider two schemes; the distributed scheme and the centralised scheme,

and note how the scheme chosen affects the architectural qualities of the system. Two

particular features of architectural quality, fault tolerance and ease of administration of the

system, are specifically noted. A related paper [164] notes how the scheme can affect

an additional architectural quality measure, the dependability of a distributed system, as a

single point of failure exists on centralised schemes. Performance trade-offs in relation to

message exchange overhead, for different schemes, are also considered. The solution is

based on a CORBA based composition and does not consider a Web service compositional

context. Additionally the solution is restricted to two distribution schemes.

Distribution schemes for Web based contexts are considered by Web-ML [43, 37], and

discussed in more detail in Section 3.5. Here, Web based business processes that span

multiple computational nodes are modeled. The solution supports both centralised and

decentralised process distribution, enabling the software architect to realise different archi

36

tectural quality measures, depending on the customers requirements. The solution is based

on a Web service compositional context, albeit restricted to only two distribution schemes.

Further motivation for alternative distribution schemes, specifically in a Web service

compositional context, are provided by Sheng et al. and Chen et al. in [163, 46], Here,

scalability, availability and security problems of centralised schemes are noted as serious

issues. Specific performance data for centralised vs decentralised execution are provided

by Benatallah et al. in [29]. Here, the physical message count is reduced when executing in

the decentralised mode. The execution time for the decentralised execution was also found

to be more efficient, regardless of message size. Similar results were found by Caituiro-

Monge et al. in [42] and Liu et al. in [108]. The authors conclude the decentralised scheme

is generally superior in performance, with respect to response time and aggregated cost.

Woodman et al. [193, 194] note that different distribution schemes provide different lev

els of autonomy, further motivating the consideration of distribution schemes. Autonomy is

an important non-functional consideration for businesses with sensitive information they do

not wish to share with their operational partners, for security or other reasons. The authors

coin the term, distribution patterns, to describe the architectural scheme of a composition.

We use this term later in this thesis when discussing distribution schemes.

The advantages of asynchronous messaging, used in decentralised distribution schemes,

is further explored by the IBM Symphony project [44, 126], Here the authors look at com

position of web services and propose a decentralised scheme rather than the more traditional

centralised scheme. As already noted different schemes realise different non-functional re

quirements. A centralised scheme is where one coordinator node exists and it is responsible

for coordinating all the data and control flow between the composite services. To provide

for decentralisation the authors partition the program into a number of smaller components

distributed at different locations. Here the composition engines communicate directly with

each other reducing bottlenecks, network traffic and improving transfer time, concurrency

and throughput. These gains do however come at the cost of increased complexity, with

regards to error recovery and fault handling, not to mention potential deadlocking if incor-

37

rectly designed.

Distributed systems, discussed in Section 2.2.3, are a collection of independent computing

resources that work together transparently to achieve a given goal [1 7 4] , The aggregation

of a number of computing resources is termed a composition. Modeling distributed systems

is an important activity as it provides a mechanism that can be used to assist in the visuali

sation of the system from a number of aspects. These models help manage the complexity

inherent in distributed systems, and to make good design decisions before the system is

implemented. Distributed system modeling is considered by Arief et al. [17]. The authors

note that plain text descriptions of systems are often unintuitive and don’t express complex

ity well. Architects usually imagine the architecture of a system from a graphical viewpoint.

Textual descriptions are not conducive for this process. Instead, Architecture Description

Languages (ADLs) such as Darwin and Rapide are considered [114] along with the Unified

Modeling Language (UML) [1 4 0] , as solutions for managing the complexity of such sys

tems. Arief et al. do not consider a Web service context specifically, but their approach to

complexity management by modeling is appropriate to Web service compositions.

In ADL distributed systems are modeled from a high level in terms of components and

how these components are connected. UML, is a general purpose software engineering

notation, which describes systems from many different aspects and levels of abstraction.

ADLs are designed to only express software architectures, while UML may be used in many

software engineering contexts such as networking and workflow representations. It may be

argued that architectures expressed as ADL are more easily comprehended, by software

architects, than UML, as the abstractions used are closer to the architects mental image of

the system architecture [114]. However, UML has far more elaborate tools than ADLs,

and its modeling notation is better supported in the community. UML can also be easily

extended to represent many forms of system architectures. Arief et al. note how UML based

3.3 Distributed System Modeling

38

diagrams could be used in conjunction with modeling and analysis tools to enable analysis

of the modeled distributed system. A related paper [16] considers how UML models of

system simulations can be used to generate an executable simulation. We will use the UML

notation throughout this thesis as our modeling notation of choice.

3.4 Web Application Modeling

Modeling Web applications is considered by Melia et al. in [115], Here a number of view

points of a Web application are modeled with a UML based tool, ArgoUWE, based upon a

UML Web engineering meta-model, called UWE. The approach is also extended to model

business processes in [100], UWE, unlike the approach taken by Arief et al. in Section

3.3. The authors utilise a standards based Model Driven Development (MDD) approach, as

outlined in Section 2.5.6. Transformations between meta-models using a similar approach

are outlined, this time using QVT, by Koch et al. in [125], The approach does not consider

a Web service context or modeling of distribution schemes specifically, but the authors use

of the MDD modeling process in general is appropriate to Web service compositions.

3.5 Web Service Modeling

Web services, discussed in Section 2.3 are a specific form of distributed system, that can be

invoked using Web based technologies [9]. As with distributed systems, modeling of Web

services is an important activity, assisting in the management of complexity and also the

auto-generation of simple or complex Web Services.

Modeling of Web service interfaces is considered by Provost in [151]. Here UML is

used to represent the Web service interfaces usually described in verbose WSDL docu

ments. The work is motivated by the difficulty in modeling service interfaces using an

XML based language. Gronmo et al. expand upon this work by investigating the possibility

of modeling service interfaces from a platform independent perspective. An XSLT based

tool called UMT [153], capable of generating WSDL language definitions, is provided to

39

support their technique. The UML models created, to represent the Web service interfaces,

may then be used as a basis for defining composition models. These solutions consider a

Web service context specifically, using UML and an MDD based approach. However, they

do not consider compositions and subsequently do not consider the modeling of distribution

schemes.

3.6 Composition Modeling

Often the compositional model of a distributed system’s business rules is represented as

a workflow model. This model can be used to abstract away the complexity of how the

discrete components, in a composition, connect to each other. Often the compositional

model is a mix of how the services should connect to each other, as well as a represen

tation of the business rules, as a workflow. As with distributed systems in general, these

workflows model the flow of information and tasks through the system, as well as the

connections between the compositional participants. All the related work presented here

models compositions from an orchestration perspective, or business rule workflow point of

view, using different orchestration distribution schemes. None of the literature examined

consider model compositions from only a choreography perspective, using different chore

ography distribution schemes. One framework presented does however motivate the need

for the two modeling perspectives, and presents a high level approach to achieving this ob

jective without considering a formal modeling or code generation approach. The difference

between these two perspectives is outlined in detail in 2.3.1. Previous to compositional

modeling approaches, distributed systems were rigid in architectural structure, resulting in

difficult to maintain, and evolve, distributed systems.

However, solutions such as the enhanced CORJBA run-time environment OPENFlow

[81], based on the work in [156, 164], address these deficiencies by employing a dynamic

architecture capable of assembling and connecting tasks which represent the discrete parts

of a business workflow at run-time. Instead of hard coding the connections and the control

40

flow between the various participants, a GUI based tool, not based on UML, is provided

to model the system assembly. These systems empower the architect to alter the distri

bution scheme of the distributed system, without making low level code changes, based

upon the non-functional requirements of the system. The solution supports both centralised

and decentralised orchestration distribution schemes, but does not consider a Web service

compositional context, nor does it utilise the MDD modeling process.

3.7 Web Service Composition Modeling

Web Service compositions, discussed in Section 2.3.1, consider the aggregation of a number

of Web services to achieve some goal. Web service compositions are often rigid in architec

tural structure, resulting in distributed systems that are difficult to maintain and extend. A

number of composition frameworks or environments, outlined below, provide solutions to

these problems. One such environment is DECS [193], a Web service based workflow man

agement system, which defines elementary services as tasks whose execution is managed by

a coordinator at the same location. The solution is based on OPENFlow [81], described in

Section 3.6. Like OPENFlow the system supports changing the distribution scheme at run

time, without having to manipulate low level code. The system supports both centralised

and decentralised orchestration distribution schemes. However, unlike OPENFlow, no GUI

based model support is provided. This means neither UML models nor an MDD based

modeling approach is utilised. Instead, XML documents are used to model the process

description.

Net Traveler, proposed by Caituiro-Monge et al. [42] is another Web service integration

framework. The framework proposes an XML based control document that enables the

system to operate in either a centralised or decentralised distribution scheme, based upon an

orchestration and a choreography model. However, no code generation scheme is presented

to generate code from these high level models. As with DECS, neither UML models nor an

MDD based modeling approach is utilised.

41

Web service composition modeling is considered by Benatallah et al. using the SELF-

SERV [163] tool, which proposes a declarative language for composing Web services based

on UML 1.x statecharts. Statecharts are called state machines in UML 2.0 terminology [60],

After the statecharts describing the composition have been completed they are converted to

an XML file. This declarative modeling approach should enable the fast and scalable defi

nition of Web service compositions, avoiding the usual time intensive, volatile approach to

composition definition [28]. SELF-SERV provides an environment for visually creating a

UML statechart which can subsequently drive the generation of a proprietary XML routing

table document. Pre- and post-conditions for successful service execution are generated

based on the statechart inputs and outputs. Related papers [29, 27] provide performance

measures to support the use of the decentralised orchestration distribution scheme instead

of the centralised orchestration distribution scheme. Here, we see fewer messages are ex

changed in a decentralised environment while execution time is also reduced for larger

message sizes. The authors’ more recent work [98] considers the conformance of services,

with a given conversational specification. The approach takes statecharts, representing the

workflow, as its input and is capable of outputting WS-BPEL process documents.

A similar environment to SELF-SERV, called Peer-Serv, is considered by Wang et al.

[189], Like Self-Serv, the authors utilise a decentralised distribution scheme for service

execution. However, the authors also use the same decentralised orchestration distribution

scheme for service publication and querying, improving availability, scalability and perfor

mance.

Also from the composition modeling perspective Gronmo et al. [152, 53] consider the

modeling and building of compositions from existing Web services using MDD, based on

approach outlined by Thone [170]. It is noted that XML based representations of composi

tions are useful as a means of universal representation and exchange. However, XML is not

easily comprehensible to non expeits and so a more intuitive graphical representation, such

as UML, should be used. The authors consider two modeling aspects, service (interface and

operations) and workflow models (control and data flow concerns). Their modeling effort

42

begins with the transformation of W SDL documents to UML, followed by the creation of

a workflow engine-independent UML 1.4 Activity diagram (PIM), which drives the gener

ation of an executable composition. Additional information required to aid the generation

of the executable composition is applied to the model using UML profiles. Modeling of the

distribution scheme is not considered by the authors.

A web application hypertext modeling notation, Web-ML [43], has been extended in

[37] to include modeling of business processes. Here, Business Process Modeling Notation

(BPMN) [136] modeling elements are used to model workflows in Web service based com

positions. These models, combined with hypertext models, which describe the interactions

within a Web application, are used to model entire Web service enabled Web applications.

A commercial CASE (Computer Aided Software Engineering) tool Web Ratio [191] is used

for designing WebML Web applications and service compositions. The tool is based on the

MDD modeling approach.

A platform specific UML 1.4 based business process model is investigated by Gardner

in [75], Here IBM’s Rational Rose (now Rational Software Architect) is used to apply

a UML profile to a WS-BPEL based UML Activity diagram. The model is capable of

building a completely executable system based on the MDD process, albeit based only on a

WS-BPEL workflow, as a platform specific model is used. In [11] Ambuhler considers the

same model based approach as Gardner, but uses the more recent UML 2.0 meta-model.

Neither author considers modeling the distribution scheme of the composition.

The use of UML 2.0 for modeling compositional service specifications is critically as

sessed by Sanders et al. in [158], The authors conclude UML 2.0 is very useful for describ

ing collaborations and in turn supporting service composition, however a number of minor

UML enhancements are suggested.

43

3.8 Semantically Enabled Web Service Composition Modeling

Semantics enable semi-automation of Web service compositions, as considered by Sirin et

al. [165], Semantics enrich the description of services, enabling computers to comprehend

the functions and ways of interacting with a service. This approach reduces the amount of

time the software architect must spend finding suitable, compatible service for a compo

sition, and subsequently assembling them. Services marked up with semantics can be se

lected and composed based upon both functional and non-functional properties. Functional

properties include input and output parameters, whilst non-functional requirements include

service description. Two additional systems devised by Timm et al. and Gran mo et al. use

MDD based techniques to assist in the creation of ontologies for semantically enriching

services which are to be composed [154, 92], These systems assist the composition effort

by combining semantics and MDD approaches to assist in composition development. None

of these semantically enriched systems introduced here consider the distribution scheme of

the resultant composition.

3.9 Non-Functional Modeling

Non-functional attribute modeling, which assists in the management of the complexity of

software solutions, are examined by Gray et al. in [78], The authors consider how modeling

can assist in the rapid evaluation of a system when exposed to changes in a configuration

aspect. They consider two possible changes to existing systems, changes that crosscut the

application’s design and changes to the system so that it can scale up. The authors note

that evolving models can be both tedious and error prone. Using this modeling technique

many different design decisions, such as choice of communication protocol, can be tested

at the modeling stage, and their effects observed and acted upon. The authors propose

a model to model transformation language ECL (Extended Constraint Language), and a

tool/execution environment C-Saw. Other solutions to automated model transformation and

transformation languages, such as ATL (Atlas Transformation Language) [96] and GReAT

44

(Graph Rewriting and Transformation Language) [4] are also discussed by the authors.

ATL is used extensively in the context of this thesis to enable our non-functional modeling

efforts. The authors do not consider modeling distribution schemes as a non-functional

modeling concern. They also do not consider a Web service compositional context for their

modeling technique.

An MDA based approach to modeling the efficiency and reliability of software systems

is considered by Cortellessa et al. in [48], The authors use the MDA Computation Inde

pendent Model (CIM), Platform Independent Model (PIM) and Platform Specific Model

(PSM) to analyse the efficiency and to assess the reliability of a proposed software system.

Experts in the non-functional domain of the system assign estimates of efficiency and reli

ability cost to the models, which once transformed give an overall computational costs of

the software system. Changes can be made to the models if the non-functional properties

of the system do not meet the customers requirements.

A comparison of three well known model based efficiency prediction approaches is

considered by Koziolek et al. in [102], The authors specifically compare and contrast

the Software Performance Engineering (SPE), Capacity Planning (CP) and umlPSI (Per

formance Simulator) prediction methods. As with Cortellessa et al. above, estimates of

efficiency and reliability cost must be assigned to the SPE and umlPSI models. The CP

method requires a system to already exist before it can be used to estimate the efficiency

and reliability cost of changing the system. The results from the comparison show great

variance in the precision achieved by each method. The CP method was the best predic

tion, however, it requires an already built system, which is not ideal for an model based

efficiency estimation. The results from this experiment show the difficulty in accurately

predicting non-functional properties at design time.

Other useful non-functional modeling approaches are the use of UML profiles to assign

estimates of efficiency and reliability costs to models. Three such profiles are the OMG’s

UML Profile for Schedulability, Performance, and Time (SPT) [131], the OMG’s UML

Profile for Modeling Quality of Service and Fault Tolerance [139] and an extension to

45

both of these profiles termed, Modeling and Analysis of Real-Time and Embedded systems

(MARTE) [62], All these profiles allow quantitative evaluation of systems based upon

estimates of efficiency and reliability cost applied to the profile.

3.10 Model Transformations

Model transformations, discussed in Section 2.5.7, enable the creation of anew model based

upon a previously defined model. Different models provide different views of the same

system. Transformations enable the creation of these alternate views, as well as enabling

code generation based upon models. Compositional glue code, for different distribution

schemes, can be auto-generated based upon models.

The DECS [193], Net Traveler [42] and SELF-SERV [163] run-time frameworks, rely

on XML to model their workflows. These tools then use this model, as a lookup table, for

dispatching messages to the next composition participant. No explicit transformations of

the XML model are performed.

However, UMT discussed in Section 2.5.7.8, and devised by Gran mo et al. [153] is a

UML based transformation tool. The tool is capable of many transformations types includ

ing, UML models to text, text to UML models, as well as UML model to UML model.

Examples of the transformations included with the tool include, WSDL to UML, UML to

WSDL, UML to WS-BPEL and UML to ECore. UMT utilises the XSLT language to per

form transformations on models, and is reliant on specific XMI version compatibility to

work. This is not ideal as different vendors export different XMI versions limiting the ini

tial tool selection and subsequently making inter-tool compatibility difficult. Creation and

maintenance of numerous XSLT transformations for different XMI versions can be time

intensive and debugging may be error prone.

Web-ML [43] and its associated tool WebRatio [191] utilises XSLT transformations to

transform an XML based representation of WebML models to executable code wrappers

[37]. These wrappers enable the execution of the business process model using traditional

46

programming platforms such as .Net [147], J2EE [122] and Struts [14]. The tool does

not suffer from XMI version problems, however it does require the exclusive use of the

WebRatio modeling tool, resulting in tool lock-in. The problems of using XSLT outlined

when discussing UMT are minimised by locking in the end user to only one tool.

Gardner at al. transform UML Activity diagrams to WS-BPEL/WSDL models using

EMF [75], discussed in Section 2.5.7.2, based APIs (Application Program Interface). Re

flection is used to walk the source model, creating target models which are capable of

serialising themselves as the required executable system artifacts, WS-BPEL and WSDL in

this case. This code based transformation approach is not open source and so is not open

to direct scrutiny. However, imperative code based approaches using large APIs may be

difficult to comprehend unless the reader has an intimate knowledge of the programming

environment. Often the transformational details are lost amongst lines of supporting code.

Declarative approaches such as XSLT are often simpler to code and subsequently maintain.

The “top down” approach used by Gardner at al. is compared and contrasted to the “bottom

up” approach, used by Microsoft, in [146].

Ambiihler considers a similar approach to Gardner at al., transforming UML Activity

diagrams to WS-BPEL/WSDL models. However, the author uses the IBM based Model

Transformation Framework, discussed in Section 2.5.7.4, to implement model transforma

tions between source and target models. This approach is an improvement on the imperative

code based approach of Gardner at al. MTF is a declarative language resulting in easier to

code and subsequently maintain transformations.

Finally, Bauer and Müller [19] propose a mapping from UML 2.0 sequence diagrams

to a WS-BPEL workflow. The authors use an MDD based approach to drive the software

development process and provide an example of a platform independent model being trans

formed to a platform specific model. No executable system is generated using this approach,

nor is any model transformation language considered.

47

3.11 Framework Comparison

A comparison of the frameworks presented throughout this chapter are illustrated in Figure

3.1. The figure provides a matrix of the features of each of the frameworks. The fea

tures were chosen to illustrate the major differences between the frameworks. The features

express a number of aspects of the frameworks including: the domain of interest to the

framework, the type of modeling supported, the number of distribution patterns supported,

what is being modeled by the framework, whether code generation support is provided or

not, and finally, whether the framework supports static or dynamic reconfiguration. This

comparison will provide the basis for the evaluation of our modeling and transformation

framework in Chapter 10.

A rie f et «il. DECS SELF-5ERV Peer-Serv UWE OPENFlow Web-ML UMT Net Traveler
CORBA Support

Web Application Support ✓
Web Service Support ✓ / J /
ADL Model Support ✓
XML Model Support ✓ S V / ' /
UML Model Support / 7 y
BPMN Model Support

No, of Schemes Supported n/a '¿ It 1 1 n/a 2 ' 2 n/a 1

Models Architecture J
Models Orchestrations / ✓ ? / ✓ ✓ ✓
Models Choreographies ✓
Code Generation Support ✓ ✓ / / / ✓ y
Dynamic Reconfiguration ✓ ✓
Static Reconfiguration / ✓ ✓ 7' y

Supports changing of d istribu tion scheme but does not model it explic itly
~ D istribution scheme is defined in the orchestra tion
* XML support is via XMI
& UWE uses a conservative extension to UML called WebRE
n/a Feature not explicitly considered
? Not clear from paper

Figure 3.1: Comparison of frameworks.

3.12 Summary

In this chapter, we have reviewed the literature related to software patterns, distributed com

positions and model driven development approaches. We identified that architectural design

patterns, specifically distribution schemes, originally cataloged for a networking context

48

can be applied to a Web service compositional context. Different distribution schemes

realise different non-functional quality attributes, such as dependability, autonomy and per

formance, as noted in the referenced literature.

The use of modeling notations to describe distributed systems has been motivated. Mod

els help to manage the complexity inherent in distributed systems, and to make good design

decisions before the system is implemented. Two modeling notations were contrasted ADL

and UML. UML was chosen as the preferred notation for this thesis due to its superior tool

support and high level of intuitiveness. Models can be used to describe the distribution

schemes previously investigated.

Simple approaches for modeling distributed systems have been assessed as well as more

complex approaches using the MDD modeling process for modeling Web applications and

simple Web service interfaces. Modeling the compositions of both non Web service and

Web service based distributed systems have been investigated. We have noted that none

of the modeling approaches found in the literature model compositions from a choreog

raphy perspective, with the exception of Net Traveler, which models both choreography

and orchestration perspectives. However, this framework lacks a formal modeling, or code

generation approach which all other frameworks feature. From the orchestration perspec

tive, frameworks such as OPENFlow, SELF-SERV and DECS, are still relevant as a guide

to modeling distributed systems. A number of MDD based modeling approaches were

presented, along with a number of semantically assisted approaches to Web service compo

sitions, which reduce the workload of the software architect or modeler.

Finally, non-functional modeling is motivated by considering the benefits of complexity

management, such as ease of evolution and early design verification. Model transformation

mechanisms, such as ATL, are motivated as a means to enable the creation of alternate

views, which represent different non-functional models of the system. These transforma

tions also enable code generation based upon models.

49

Chapter 4

Modeling and Transformation

Framework

4.1 Introduction

In this chapter we introduce our modeling and transformation framework. The framework

is based on the Model Driven Development (MDD), or Model Driven Software Develop

ment (MDSD) approach [182, 30]. The goal of this framework is to enable the generation

of Web service compositions, based upon a set of models which describe the distribution

scheme, from a choreography perspective, of a Web service composition. Models abstract

complexity and enable high level reasoning about a solution from an early point in the de

velopment life-cycle. Our distribution models support the capture of non-functional quality

attributes. The models consider design-time non-observable architectural quality attributes

of compositions, like maintainability and portability. Additionally, run-time observable, or

Quality of Service (QoS), attributes affected by the chosen distribution scheme, such as

efficiency and reliability, are also documented at design time by the selection of a given

distribution scheme with known QoS attributes. Together these attributes express the total

quality of a composition [6].

In Section 4.2, we consider the problems related to traditional approaches of building

50

Web service compositions. Subsequently in Section 4.3, we outline our novel approach,

including our modeling and transformation framework.

Our framework and its components are also outlined in the following conference papers,

[25, 24, 22, 23],

4.2 Traditional Approach to Web Service Compositions

Web service compositions are constructed by composing a number of discrete services.

Traditionally such compositions lack architectural models, up to date or otherwise, describ

ing the components and connections between the discrete services. The development of

composite Web services in this manner is often ad-hoc and requires considerable low level

coding effort for realisation [9], This effort is increased in proportion to the number of Web

services in a composition or by a requirement for the composition participants to be flexible

[29]. The result of these approaches is often a fixed opaque architecture.

Without formal models of non-functional quality attributes it is difficult to reason about

the architectural quality of traditional compositions. For example, it is difficult to estimate

the time and effort that would be required to maintain the composition by adding an ex

tra service to the composition. Run-time attributes are also not visible in traditional Web

service compositions. This lack of architectural transparency makes it difficult to assess

how the composed system will perform at run-time, with respect to QoS attributes such as

efficiency and reliability.

In Section 3.7 we considered a number of run-time environments, or frameworks, which

provide solutions to the lack of architectural flexibility in Web service compositions. These

solutions assist in the realisation of functional properties of a composition, such as work

flows, by using models. However, these solutions are limited to only a fixed number of

architectural schemes. Also, these solutions mix workflow modeling with modeling of the

distribution scheme, resulting in complex orchestration based models which cannot be used

to assess non-functional quality attributes easily. Finally, none of the frameworks consid-

51

ered use a formalised development approach such as MDD.

4.3 Proposed Approach to Web Service Compositions

We propose a model based development and code generation approach to address our goal

of enabling the generation of Web service compositions, based upon a given distribution

scheme. This approach suggests Web service compositions have three modeling aspects.

Two aspects, service modeling and workflow modeling, are considered by Grenmo et al.

[152] and reviewed in Sections 3.5 and 3.7. Service modeling expresses interfaces and

operations, while workflow modeling expresses the control and data flow from one service

to another.

Here, we consider an additional aspect, distribution scheme modeling [193], using a

distribution pattern catalog that will be presented in Chapter 5. This catalog expresses

a number of different distribution schemes, or patterns, which model how the composed

system can be deployed. This catalog is based on network based topologies, as discussed

in Section 3.2.1. These models enable the software architect to reason about the problem

domain and possible solutions, with respect to non-functional quality attributes, early in the

development life-cycle.

Here, we present a modeling and transformation framework, based upon model-driven

service engineering, and driven by a distribution model. The UML is used throughout the

framework as the conceptual modeling notation because of its widespread usage amongst

software architects. The components of the framework are enumerated below, before being

outlined and motivated in the following subsections and subsequently described in detail in

the following Chapters. Each element of our framework addresses the barriers to achieving

quality, as previously outlined in Section 2.6.

• A Catalog of Distribution Patterns - Enumeration of the possible distribution schemes

for Web service compositions.

• Modeling Notations - Definition of required modeling notations.

52

• Model Relations - Definition of the web of dependencies between modeling lan

guages.

• Model Transformations - Rules for transforming between modeling notations.

• Methodological Framework - Outline of how high level distribution models are used

for code generation.

4.3.1 A Catalog of Distribution Patterns

The first component of our framework comprises a catalog of distribution patterns, which

may be applied by software architects to Web service compositions. Distribution patterns

express the distribution scheme of a composed system when it is deployed. Each of the

patterns in the catalog expresses certain run-time Quality of Service (QoS) attributes, ex

hibited during execution of Web service compositions. The catalog enumerates the QoS

attributes of each of the patterns, by referencing existing implementations in the literature,

enabling the software architect to choose a pattern appropriate to the non-functional quality

requirements of a given composition. Each pattern is expressed using the Unified Modeling

Language (UML). This component of the framework is discussed in detail in Chapter 5.

4.3.1.1 Discussion

This component addresses a number of the quality control issues outlined in Section 4.2.

The catalog provides documented solutions for addressing specific run-time QoS attributes.

The catalog also utilises an expressive modeling language, UML, ensuring quality is con

sidered early in the solution design process.

4.3.2 Modeling Notations

The modeling of distribution patterns and subsequent generation of an executable system

based upon a model requires some infrastructural grounding. The modeling notation com

ponent that enables this generation consists of a number of notations, which describe the

53

constructs of the various models, which feature in our five step methodological framework

component, discussed later and illustrated in Figure 4.4. These modeling notations enable

the software architect to reason about the problem and solution domain. There are eight

such languages or notations, outlined below, illustrated in Figure 4.1 and described in detail

in Chapter 6. In MDA terminology these notations may be considered meta-models.

• UML 2.0 Notation

• Distribution Pattern Language UML Profile (DPLProfile)

• Distribution Pattern Language Notation (DPL)

• Collaboration Notation

• Interface Notation

• Deployment Descriptor Notation

• Deployment Catalog Notation

• XML Notation

Meta-Notation

"l

I

UML/DPLProfile i _______ t
Collaboration I Interface i XML

Notation 1 Notation
I
i Notation i Notation

DPL
1

Deployment
i

Deploym ent
Notation Descriptor Catalog

Notation Notation

Figure 4.1: Notations used in our modeling approach.

The UML 2.0 notation utilises a subset of the standard UML 2.0 specification [140],

and is used to describe distribution patterns using standard UML 2.0 Activity diagram con-

54

stmcts. We also utilise the UML 2.0 Class diagram constructs to represent the interfaces of

the discrete Web service participants.

The Distribution Pattern Language UML Profile, or DPLProfile, is our novel extension

of the UML, which allows extra distribution pattern specific information to be applied to

the model. This profile is not strictly a notation it is more of an extension to an existing

notation. Without this profile extension the UML would not be able to adequately describe

the distribution scheme possibilities for Web service compositions. The profile extends

appropriate constructs of the UML notation.

Together, the UML 2.0 notation and DPLProfile provide the infrastructure necessary for

the software architect to model, at step two of the methodological framework, any of the

distribution patterns outlined in our catalog, using a number of UML 2.0 based tools. The

constructs used in the UML should be familiar to software architects, making this language

ideal for defining distribution pattern based compositions. An instance of this notation, or

model in MDA terms, is output from step one of our methodological framework, and is

further refined by the software architect in step two before being used as the input to step

three of the methodological framework.

The Distribution Pattern Language notation, or DPL, provides the constructs for the

internal representation of a distribution pattern. DPL instances, from a distribution pattern

description point of view, are equivalent to UML 2.0 notation/DPLProfile instances. The

goal of DPL is to provide for ease of analysis, verification and transformation of distribution

patterns. The notation has no reliance on UML, thus allowing alternatives to the UML mod

eling notation approach, such as 7r calculus [118] and Architecture Description Languages

(ADL) [114], to be used instead.

In the context of this thesis, the UML is used as the modeling notation due to its wide

spread acceptance in the software engineering community, however alternative notations are

discussed in Section 3.3. The DPL notation is important because it allows us to reuse steps

four and five of our modeling methodological framework, regardless of how the distribution

pattern is modeled by the software architect. An instance of this notation is output from step

55

The Collaboration notation provides the constructs necessary to define a distribution

pattern based composition, to be enacted on a composition engine. An instance(s) of this

notation could be a representation of a WS-BPEL or WS-CDL document(s), discussed in

Section 2.3.1. Instances of the Collaboration notation are an intermediate output from step

five of our methodological framework, enabling the realisation of a distribution pattern on

a compositional engine. The notation could map to the structures outlined in either the

WS-BPEL or WS-CDL specification.

The Interface notation provides the constructs to define a distribution pattern based com

positional interface, which is to be exposed as a Web service. An instance(s) of this notation

is a representation of a WSDL interface document, discussed in Section 2.3. Instances of the

Interface notation are an intermediate output from step five of our methodological frame

work, and represent an entry point to the execution of the Collaboration notation instance

previously generated. The notation maps to the structures in the WSDL specification [184],

The Deployment Descriptor notation provides the constructs to define a distribution

pattern based deployment, to be enacted on a composition engine. An instance(s) of this

notation is a representation of a deployment descriptor document for a particular composi

tional engine. Instances of the Deployment Descriptor notation are an intermediate output

from step five of our methodological framework. This notation provides the link between

Collaboration notation instance(s) and the Interface notation instance(s) previously gener

ated. An example of a specification that the Deployment Descriptor notation could map to,

is the PDD deployment descriptor, which is part of the Active BPEL composition engine

specification [2],

The Deployment Catalog notation provides the constructs to enumerate the interfaces

of a distribution pattern based deployment, to be enacted on a composition engine. An

instance(s) of this notation is an enumeration of all the discrete Web service interfaces

required by a composition engine. Instances of the Deployment Catalog notation are an

intermediate output from step five of our methodological framework. An example of a

three of our methodological framework.

56

specification, which the Deployment Catalog notation could map to is the WSDLCatalog

deployment catalog, which is part of the Active BPEL composition engine specification [2],

The XML notation provides the constructs to define an XML based document. An in

stance^) of this notation is a representation of an XML document. This notation is required

because standards based specifications like WSDL and WS-BPEL are defined using the

XML notation. The XML notation will enable these notation instances to be represented in

an XML compliant notation, assuming appropriate relations are written. The notation maps

to the structures in the XML specification [188],

4.3.2.1 Discussion

This component address three of the quality control issues outlined in Section 2.6. We

provide adequate modeling languages for expressing quality attributes. This is achieved

through the use of a novel UML extension that enables the specific expression of patterns,

which realise specific quality requirements. Our approach directly addresses the problem

of designing with quality attributes in mind.

4.3.3 Model Relations

The modeling notations component outlined in the previous subsection presented eight dif

ferent modeling notations. Each of these models describes the composition, or a part of it,

from a different aspect. The modeling relations component of our framework defines the

web of dependencies that must hold between pairs of candidate notations, a source and a

target notation. These candidate notations are called meta-models in MDA terminology.

The goal of defining relations between notations is to record the process by which informa

tion is related between notations, thus ensuring modeling information is preserved from one

model instance to the next. For example, we must show formally how the information in the

UML 2.0/DPLProfile notation is related the DPL notation. These relations are considered

abstract specifications or constraints, in that they are not themselves executable. We use

relations to define abstract relationships rather than to define bi-directional mappings. The

57

relations are used as a template for defining the final component of our framework, Model

Transformations, in Chapter 4.3.4.

The modeling relations are described in detail in Chapter 7, and illustrated below in

Figure 4.2.

Figure 4.2: Relations defined between notations in our modeling approach.

4.3.3.1 Discussion

This component does not directly address the quality control issues outlined in Section 2.6.

However, the modeling relations component provides a record of how the framework will

realise the quality attributes expressed using the modeling notation, defined in the previ

ous component. These relations are an essential modeling method to ensure the quality

attributes are realised in the generated composition.

4.3.4 Model Transformations

The fourth component of our framework is modeling transformations. We have already

motivated the need for eight modeling notations, and discussed the need for the definition

of relations between these notations. However, we must also define how a source model,

an instance of one of the notations, can be used to generate a target model, that conforms

to another notation. These transformations must respect the modeling relation constraints

already defined. For example, we must show how an instance of a UML 2.0/DPLProfile

notation is transformed into an instance of a DPL based notation. Model transformation

58

languages, discussed in Section 2.5.7, are used to transform a source model to a target

model, using declarative statements in the transformation definition, based upon previously

defined modeling relations. The modeling transformations are described in detail in Chapter

8, and illustrated below in Figure 4.3.

Figure 4.3: Transformations defined between notations in our modeling approach.

4.3.4.1 Discussion

As with Modeling Relations this component does not directly address the quality control

issues outlined in Section 2.6. However, the modeling transformations component enables

the generation of a composition, based on the quality attributes expressed using the model

ing notation. These transformations, like the relations, are an essential modeling method to

ensure the quality attributes are realised in the generated composition.

4.3.5 Methodological Framework

The final component of our framework is a methodological framework, which outlines our

approach to distribution modeling and subsequent Web service composition generation.

The approach is based on the Model Driven Software Development (MDSD) process, where

models are taken as the input and code is outputted. This component consists of five steps,

taking a number of existing discrete Web service interfaces as input, and outputting an

executable Web service composition. The methodological framework relies on the four

59

components, previously outlined. The steps are outlined below, illustrated in Figure 4.4,

and subsequently described in detail in Chapter 9.

• Step 1 - Transform Interfaces To UML Model(s)

• Step 2 - Distribution Pattern Definition

• Step 3 - Transform UML Activity Diagram Model to DPL Model

• Step 4 - Validate DPL Model

• Step 5 - Transform DPL Model to Executable System

The methodological framework will be supported by a banking case study, which demon

strates its usage. Tool implementation details will also be provided to outline how we have

implemented each step of the methodological framework.

Figure 4.4: Overview of methodological framework.

4.3.5.1 Discussion

This component directly addresses two of the quality control issues outlined in Section 2.6.

Our methodological framework provides a modeling method to ensure that non-functional

attribute quality control is no longer an afterthought of the Web service composition genera

tion process. This is achieved by using models within the methodological framework, which

60

consider existing implementations that expresses given non-functional quality attributes as

the driver for the executable system generation effort.

4.4 Summary

In this chapter, we have motivated the need for a new approach to Web service composition

and definition. We identified that traditional Web service composition frameworks, or run

time environments, consider compositions only from an orchestration point of view. These

solutions do not consider modeling of the distribution scheme of the composition from a

choreography perspective, and as such do not consider non-functional quality aspects from

the outset of the development process.

A modeling and transformation framework consisting of five components has been in

troduced. This framework supports modeling of the distribution scheme of a composition

from a choreography perspective. Each of these components has been motivated with re

spect to non-functional quality aspects and each is essential in our MDSD approach for

generating Web service compositions based on a distribution pattern model.

Our modeling and transformation framework utilises a number of concrete technolo

gies, such as UML 2.0, Ecore, QVT and ATL. We have chosen these state-of-the-art tech

nologies to realise our five components as they are all widely used in both the research

community as well as industry. In fact, all these technologies are open source and/or freely

available. Our use of concrete technologies does not unduly constrain the usefulness of our

research as substitute technologies may be used where appropriate. The modeling and trans

formation framework itself, as well as the pattern catalog and methodological framework,

are implementation technology neutral.

61

Chapter 5

A Catalog of Distribution Patterns

5.1 Introduction

The catalog of distribution patterns presented in this chapter represents the first component

of our framework. Patterns express proven techniques, which make it easier to reuse suc

cessful designs and architectures [73]. These patterns also capture architectural decisions

that assist in documenting systems [84,18]. Additionally, patterns assist software architects

in determining the non-functional attributes of systems before they are built [83].

Distribution patterns, a term coined by Woodman et al. [193], are re-occurring distri

bution schemes that express how a composed system is to be assembled and subsequently

deployed. Each of the patterns in the catalog expresses different non-functional Quality of

Service (QoS) attributes. We enumerate the attributes of each of the patterns in the cata

log, enabling the software architect to choose a pattern appropriate to the non-functional

requirements of a given composition. Case studies are provided for each pattern to demon

strate its usage in a real world scenario. Unlike the related work outlined in Section 3.9, we

do not assign estimates of efficiency and reliability cost to the models, instead we refer the

reader, where possible, to related works where the costs of a given pattern have been as

sessed using profiling techniques. Where explicit measure costs are not available the reader

is referred to system implementations which are known to expose certain non-functional

62

attributes. Although many of the patterns in the catalog are new to the Web service context,

their properties in a networking context are know. We believe this is a pragmatic approach

to cost estimation for our measures.

In Section 5.2 we discuss what distribution patterns are in detail. A classification

scheme for describing our catalog is presented in Section 5.3, before presenting the cat

alog itself in Section 5.4. How a software architect would use the catalog is discussed in

Section 5.5. Finally, in Section 5.6 we present an evaluation of the catalog itself.

5.2 Distribution Patterns

Distribution patterns are a form of architectural design pattern, discussed in Section 3.2.1.

These patterns express how a composed system is to be assembled and subsequently de

ployed. Buschmann et al. in [40] consider a similar concept, termed a pipes and filter pat

tern. In our context filters are Web services, and pipes represent the connections between

these Web services. The patterns may also be considered as an architectural style family,

based upon the pipeline architecture of the dataflow systems style [26, 6]. The pipeline style

features a linear sequence of data processors or, in this context, Web services.

There is a subtle difference between two of the modeling aspects within a Web service

composition, namely workflows and distribution patterns [193], Both aspects refer to the

high level cooperation of components, termed a collaboration, to achieve some compound

novel task [145], The solutions considered in Section 3.7, do not make this distinction.

We consider workflows as compositional orchestrations, whereby the internal and ex

ternal messages to and from services are modeled. In contrast, distribution patterns are

considered compositional choreographies, where only the external messages flow between

services is modeled. Consequently, the control flow between services are considered mutu

ally independent. As such, a choreography can express how a system would be deployed.

The internal workflows of these services are not modeled here because there are many ap

proaches to modeling the internals of such services [53, 75].

63

Distribution patterns are a form of platform-independent model (PIM) [71] because

the patterns are not tied to any specific implementation language or technology platform.

The patterns identified are architectural patterns, in that they identify reusable architectural

artifacts evident in software systems.

5.3 A Classification Scheme for Distribution Patterns

Here, we present a catalog of distribution patterns, which may be applied by software ar

chitects to Web service compositions. This catalog is described using a structured format to

assist in the comprehension, comparison and utilisation of the presented patterns. The clas

sification template is derived from the work of Gamma et al. in [73], Like Gamma et al. we

document the decisions, alternatives and compromises that occur when selecting a pattern.

The pattern’s objective properties are defined under the following template headings.

• Name/Structure: Each pattern is named.

• Structure: Each pattern is represented diagrammatically using UML.

• Description: The pattern’s structure is described. The description details a number

of the pattern’s properties as outlined by Gamma et al. including “Intent, Motivation

and Known Uses”.

• Synonyms : Alternative names for the pattern are identified. Synonyms are denoted

by “Also Known As”, by Gamma et al.

• Participants: The roles of participants within the pattern are enumerated.

• Related Patterns: Any known small variations upon the pattern are noted.

Each pattern’s subjective properties, with respect to non-functional quality attributes are

analysed and evaluated using the following criteria.

• Advantages: Motivations for the pattern are provided.

64

• Disadvantages: Issues regarding the pattern are identified.

• Applicability: Contexts where the pattern should be used are investigated.

• Case Study: A real world scenario where this pattern is/could be used.

• Summary: Search-able keyword based summary of pattern attributes.

The summary uses appropriate non-functional measures as outlined in Section 2.6.2.

The value low is considered undesirable, medium less so and high is considered very desir

able.

5.4 Distribution Pattern Catalog

The pattern catalog was constructed by systematically researching distribution patterns, in

existing network based systems. Many of the patterns discussed here are identified by Ding

et al. in [58], However, their description in a Web service composition context is novel,

as is their categorisation, detailed definition and expression using a standardised modeling

language, UML. As with other pattern languages the patterns here are either fundamental

patterns, termed core or auxiliary patterns, or complex patterns, which are patterns con

structed from other patterns in the catalog.

Our catalog is expressed using the UML notation. UML, as outlined in Section 2.5.2 is a

standards based graphical language for the modeling of software systems [140], A number

of different UML behavioral diagrams were considered for modeling distribution patterns,

specifically Sequence diagrams, State Machine diagrams, Communication/Collaboration

diagrams and Activity diagrams [140], Sequence diagrams and State Machine diagrams

were considered too simplistic, in that they do not provide for the modeling of the data

that flows through the composition or provide enough constructs to adequately represent

the various features of each discrete interface involved in a composition. Communication

/Collaboration diagrams are too closely tied to objects to adequately represent distribution

patterns that are not tied to object oriented techniques. Our ultimate choice of Activity

65

diagrams was based on their successful use in modeling workflows models, as seen in the

frameworks outlined in Chapter 3. Although distribution models and workflow models

are different they both express collaborations, albeit from a different perspective. Activity

diagrams provide an ideal level of abstraction that provides enough appropriate modeling

constructs to enable code generation based on the model.

Unlike other pattern catalogs our distribution patterns are documented as prototypes.

This technique enables a software architect to intuitively select a pattern by browsing the

generic prototypes we have provided. The architect can then use the catalog as a guide

for adapting the selected pattern to their context. A shortcoming of this solution is that

architects may misinterpret the distribution pattern prototypes in the catalog as being the

only way to apply a given pattern. For example, an architect may assume that because a

pattern has x number of nodes in the catalog pattern instance that it is not possible to use

this pattern in a scenario with x+1 number of nodes. Although we believe this prototype

approach to documenting the patterns is a useful mechanism for software architects, an

alternative approach would be the formal representations of patterns as discussed in Section

11.3.1. This approach to pattern modeling would enhance our pattern catalog by describing

the discrete parts of the patterns how the actual patterns are constructed.

In the following three subsections we enumerate the patterns we have identified and

qualitatively support their use. The patterns are split into three categories: core patterns,

auxiliary patterns and finally complex patterns. Core patterns represent the simplest distri

bution patterns most commonly observed in Web service compositions. Auxiliary patterns

are patterns which can be combined with core patterns to alter a given non-functional qual

ity attributes of a core pattern. The resultant pattern is a complex pattern. Complex patterns

may also be formed by combining core patterns. We envisage that this catalog will assist

software architects in choosing a distribution pattern for a given context. The catalog is

outlined briefly below, and in detail in the following subsections.

• Core Patterns

66

- Centralised

- Decentralised

• Auxiliary Patterns

- Ring

• Complex Patterns

- Hierarchical

- Ring + Centralised

- Centralised + Decentralised

- Ring + Decentralised

5.4.1 Core Patterns

Core patterns are the fundamental distribution patterns most commonly encountered in Web

service compositions. We identify two such patterns, Centralised and Decentralised, both of

which are used as building blocks within complex patterns. QoS attributes of these patterns

are documented by [29, 44, 108, 163, 193].

Pattern 1: Centralised

Figure 5.1: Centralised-Dedicated Hub distribution pattern.

Structure:

67

Description: The Centralised pattern, illustrated in Figure 5.1, manages the composition

from a single location, normally the participant initiating the composition. The composition

controller (the hub) is located externally from the service participants to be composed (the

spokes). Two messages are exchanged between the hub and a spoke for each spoke exe

cution i.e. synchronous communication. The composition completes after the final spoke

has completed execution and has returned a response to the hub. This is the most popular,

and default, distribution pattern configuration for compositions. An example of this pattern

in an existing networking context is a Web browser (the spokes) and Web server (the hub)

interaction.

Synonyms: Hub & Spoke, Centralised Dedicated-Hub

Participants

• Hub : Participant which controls the composition execution.

• Spoke : Participant which passively performs some service.

Related Patterns: Centralised Shared-Hub The composition controller (the hub) can

be co-located with one of the service participants to be composed (the spokes), as illustrated

in Figure 5.2. For this pattern to be possible the service participant to be co-located with

must be under the same administrative control as the participant initiating the composition.

This scenario cuts down on some of the network latency between the hub and one of the

spokes, but at the cost of reduced autonomy for that spoke, along with reduced reliability.

Figure 5.2: Centralised Shared-Hub distribution pattern.

68

Advantages

• Composition is easily maintainable, as composition logic is all contained at a single

participant, the central hub.

• Low deployment overhead as only the hub manages the composition.

• Composition can consume participant services that are externally controlled. Web

service technology enables the reuse of existing services.

• The spokes require no modifications to take part in the composition. Web service

technology enables interoperability.

• Ease of development, as most Web service composition engines provide all the tools

necessary to realise this pattern.

Disadvantages

• A single point of failure at the hub provides for poor reliability.

• The communication bottleneck at the central hub constricts scalability. SOAP mes

sages have considerable overheads for deserialisation and serialisation of messages,

emphasising this issue.

• The high number of SOAP messages between hub and spokes is sub-optimal. SOAP

messages are often verbose resulting in poor efficiency in a Web service context.

• Poor autonomy in that the input and output values of each participant can be read by

the central hub.

Applicability Use the Centralised pattern when

• A high number of concurrent users is not envisaged.

• The system must be built quickly using existing Web service composition engines.

69

• Composition participants might be changed frequently.

• Composer has no administrative control over composition participants.

Case Study A medical image management system, which uses Web services is outlined

in [55]. This system features two Web services which allow neuroscience researchers access

and store medical images, as well as to process, analyse and visualise the stored images.

The composition of the two services is centrally controlled using WS-BPEL. The distribu

tion pattern expressed by the composition is the centralised shared-hub pattern. From the

case study in [55] it is clear that non-functional requirements were not explicitly assessed

before implementing the composition, and so no distribution pattern was explicitly chosen

by the architects. This situation has resulted in the use of the default distribution pattern,

centralised shared-hub. However, this pattern may be ideal for a small composition like this,

which is designed to be used only by a select number of clients i.e. neuroscience researchers.

An additional case study using the centralised shared-hub pattern for an electronic payment

application is considered by Zhang et al. in [197].

Summary: Low efficiency, low reliability, high modifiability/mutability

Pattern 2: Decentralised

Figure 5.3: Decentralised distribution pattem.

Structure:

70

Description: The Decentralised pattern, illustrated in Figure 5.3, distributes the manage

ment of the composition amongst the participants. The participant which initiates the com

position is located externally from the other participants. Only one messages is exchanged

between the caller and the callee for each peer execution i.e. asynchronous communication.

The composition completes after the final peer has completed execution and has returned

execution control to the peer which commenced the composition. An example of this pat

tern in an existing networking context is Gnutella, a file sharing system [119, 157].

Synonyms: Peer-to-Peer, P2P

Participants

• Peer : Participant which performs some service and also participates in controlling

the composition.

Related Patterns: Deccntralised Shared-Peer The participant which initiates the com

position can be co-located with one of the service participants to be composed, as illustrated

in Figure 5.4. For this pattern to be possible the service participant to be co-located with

must be under the same administrative control as the participant initiating the composition.

This scenario cuts down on some of the network latency between the initiating peer and one

of the peers to be composed, but at the cost of reduced autonomy for that peer. Reliability

may be reduced slightly because the peer instance will block, consuming some resources,

whilst it awaits the remainder of the composition to execute.

Figure 5.4: Decentralised Shared-Peer distribution pattern.

71

• No single point of failure or communication bottleneck as composition management,

including SOAP message deserialisation and serialisation, is distributed, resulting in

improved reliability over the centralised pattern. The composition can continue even

if one of the peers goes down, assuming a replacement peer is available to take its

place.

• Reduced SOAP message exchange over centralised pattern, resulting in improved

efficiency over centralised pattern.

• Good autonomy as each participant acts upon its private data, but only reveals what

is necessary to be a compositional partner.

Disadvantages

• Increased deployment complexity as each participant must be modified to support the

pattern.

• Maintaining the composition can be difficult as each participant manages different

parts of the composition.

• Web service composition engines do not support this pattern out of the box.

Applicability Use the Decentralised pattern when

• A high number of concurrent users is envisaged.

• Composition participants will not be changed frequently.

• Composer has administrative control over composition participants.

Case Study A Geographic Information System (GIS), which uses Web services is out

lined in [45], An example featuring six Web services, which allows spatial problems in the

city of Beijing to be analysed and resolved, is provided by the authors. The composition is

Advantages

72

distributed between the six Web services, each controlled by a WS-BPEL process. The dis

tribution pattern expressed by the composition is the decentralised shared-peer pattern. The

authors of the case study clearly state that the composition must not feature either a single

point of failure or a bottleneck, thus motivating their choice of the decentralised shared-peer

pattern. The pattern chosen meets their non-functional requirements.

Summary: high efficiency, high reliability, low modifiability/mutability

5.4.2 Auxiliary Patterns

Auxiliary patterns are distribution patterns which by themselves cannot facilitate Web ser

vice compositions. These patterns are often used in conjunction with core patterns to create

complex patterns. The only auxiliary pattern identified here is the Ring pattern [58].

Pattern 3: Ring

Ring

^ M irro r H ead ^ ----- M in o r ^ ^ M irror

t
^ M irro r ^

Figure 5.5: Ring distribution pattern.

Structure:

Description: The Ring pattern, illustrated in Figure 5.5, features a number of identical

participants, mirrors, acting as a cluster. The pattern by itself does not facilitate composition

and is normally used in association with other patterns. There is no start and end points to

the ring pattern. The Ring pattern provides fault-tolerant infrastructure to a Web Service

composition. The specific ring implementation defines, at the mirror head, the algorithm

for determining how the load is delegated amongst the ring participants. A classification of

73

faults, such as crashes, shutdowns and high load, which may occur in a Web service context

are outlined by Juszczyk et al. in [97], An example o f this pattern in an existing networking

context is a load balancing Web server.

Synonyms: Circle

Participants

• Mirror Head : A participant which delegates work to hub/spoke/peer mirrors.

• Hub Mirror : A participant mirror which controls the com position execution.

• Spoke Mirror : A participant mirror which passively performs som e service.

• Peer Mirror : A participant mirror which performs som e service and also participates

in controlling the composition.

Advantages

• Provides improved reliability as more participants can be added to ring when re

quired.

• N o single point o f failure or communication bottleneck as load can be shared amongst

ring participants. Expensive deserialisation and serialisation o f SOAP m essages can

be shared amongst participants.

D isa d v a n ta g es

• Participants in the ring need to be located relatively close to each other.

• Web service composition engines do not support this pattern out o f the box.

• Additional software is required to load balance/mirror the ring participants.

74

Applicability Use the Ring pattern when

• Increased reliability is required.

Case Study As previously stated, auxiliary patterns like the ring pattern are distribution

patterns, which by themselves cannot facilitate Web service compositions. This implies

that no use case will exist that directly implements the ring pattern on its own. However,

a number of papers outline the scenarios in which the ring pattern could be applied to an

existing distribution pattern to improve non-functional quality requirements.

In [166] Sobe notes that some classes of Web services suffer from long response times

and low reliability. This poor response time is not acceptable for critical applications such

as real time processing of medical images. Replication is presented as a solution to alle

viate these problems by providing load balancing over a number of computational nodes.

Also in [35] Birman et al. identify reliability as being essential for a Web service based

hospital on-line inventory ordering system. Delays or down time in this context would

make it difficult for hospitals to order urgently needed supplies. Again replication, amongst

other approaches, is suggested as a solution. The ring distribution pattern, presented here,

represents a replication scenario from a high level.

Summary: High efficiency, high reliability, medium modifiability/mutability

5.4.3 Complex Patterns

Complex patterns are distribution patterns which combine two or more core or auxiliary pat

terns. These patterns often resolve fundamental problems evident within core patterns. We

identify four such patterns, Hierarchical, Ring + Centralised, Centralised + Decentralised

and finally Ring + Dccentralised [58].

Pattern 4: Hierarchical

Structure:

75

H ie r a r c h ic a l

• f H ub ' I
— < H“ b) ------------

1— ^ / h u b X
J L

f S p o k e J f Spoke 1

Figure 5.6: Hierarchical distribution pattern.

Description: The Hierarchical pattern, illustrated in Figure 5.6, is a tree based structure

consisting of a number of levels, featuring a number of controller hubs. The pattern is

related to the Centralised pattern. Two messages are exchanged between the hub and a

spoke for each spoke execution i.e. synchronous communication. Two messages are also

exchanged whenever hubs intercommunicate. The composition completes after the final

spoke has completed execution and has returned a response to its hub, which then returns

control to its owning hub, until finally the parent hub regains control of the composition and

terminates. An example of this pattern in an existing network context is the Domain Name

Service (DNS) [121].

Synonyms: Tree, Centralised + Centralised

Participants

• Hub : Participant which controls the composition execution.

• Spoke : Participant which passively performs some service.

Advantages

• Improved autonomy for participant spokes as they can be segregated into a number

of locations or departments, where each location only reveals what is necessary to be

a compositional partner. Participants which exchange verbose SOAP messages can

be physically located close to each other.

• Improved reliability because of load balancing effect of hubs.

76

• Web service composition engines support this pattern out of the box.

• Composition is easily extensible by adding additional controlling hubs.

Disadvantages

• Secondary hubs have poor autonomy in that the input and output values of each such

hub can be read by the controlling hub.

• Maintaining the composition is more difficult as there are multiple hubs managing

different parts of the composition.

• Communication bottleneck at root hub.

• High number of SOAP messages between hubs and spokes is sub-optimal.

Applicability Use the Hierarchical pattern when

• Participants can be segregated into a number of locations.

• The number of participants is large.

• It is possible to delegate responsibility of certain compositions externally.

Case Study An information and communications system to assist police and the criminal

justice organisations in the UK, called PITO, which uses Web services, is outlined in [63].

The system features a number of discrete services such as Motor Insurance Enquiry, Vehicle

Enquiry, Finger Print Enquiry, Nominal Enquiry and Automated Number Place Recognition

Enquiry. Each of these systems is provided by a local police force system. PITO then

provides a central location for performing enquiries on the distributed services. Here, unlike

when using a centralised pattern, the choreography is distributed amongst the participants.

This hierarchical distribution pattern enables each service to invoke an authorisation service

to guarantee only authorised users can gain access to sensitive information. If authorisation

was left to the calling service its omission could potentially result in an insecure system.

77

The pattern chosen meets two important non-functional quality criteria. Firstly, improved

autonomy over the centralised pattern is achieved by delegating the provision of services to

local police forces. Secondly, security of the individual services is provided through local

provision of access control along with the partitioning of data to locations responsible for

managing such data.

Summary: Low efficiency, medium reliability, high modifiability/mutability

Pattern 5: Ring + Centralised

Figure 5.7: Ring + Centralised distribution pattern.

Structure:

Description: The Ring + Centralised pattern, illustrated in Figure 5.7, combines the Ring

pattern with the Centralised pattern. This complex pattern eliminates the single point of

failure and communication bottleneck at the central hub by providing a number of identi

cal redundant hubs organised as a ring. As with the core centralised pattern, messages are

exchanged between the hub and a spoke for each spoke execution i.e. synchronous commu

nication. The composition completes after the final spoke has completed execution and has

returned a response to the hub. The specific ring implementation defines the algorithm, at

the mirror head, for determining how the load is delegated amongst the ring participants.

An example of this pattern in an existing network context is a load balanced Web server

(hub mirrors) serving many Web client browsers (spokes).

78

Synonyms: None

Participants

• Hub Mirror: A participant mirror which controls the com position execution.

• Mirror Head : A participant which delegates work to hub mirrors.

• Spoke : Participant which passively performs som e service.

A d v a n ta g es

• Composition can consum e participant services that are externally controlled.

• Spokes require no additional modifications to take part in the com position as they use

Web service based interoperability.

• N o single point o f failure or bottleneck at central hubs.

• Composition is easily maintainable, as composition logic is all contained on the ring

participants, all o f which work as central hubs.

Disadvantages

• High number of potentially verbose SOAP messages between hubs and spokes is

sub-optimal.

• Poor autonomy in that input and output values from each participant can be read by

the central hubs.

• Additional software is required to load balance and mirror ring participants.

Applicability Use the Ring + Centralised pattern when

• Increased reliability is required at the controlling hub.

79

Case Study No specific case study could be found for the ring + centralised pattern in

the literature. However, a useful use-case can be extrapolated from the case study of the

ring pattern [166] combined with the case study of the centralised pattern [55]. The cen

tralised pattern case study presented a medical image management system featuring two

Web services, which medical researchers use to access and store medical images. No spe

cific non-functional requirements were explicitly stated during the case study. However,

as is often the case in software systems, non-functional requirements may be stated post

development. If in this scenario the system is performing poorly due to the high load of

real time processing of medical images, as was noted in the case study motivating the ring

pattern, the two patterns can be combined to reduce the chances of delays or down time

occurring in the system.

Summary: Low efficiency, high reliability, medium modifiability/mutability

Pattern 6: Centralised + Decentralised

Figure 5.8: Centralised + Decentralised distribution pattern.

Structure:

Description: The Centralised + Decentralised pattern, illustrated in Figure 5.8, combines

the Centralised pattern with the Decentralised pattern. This complex pattern allows a num

ber of participants to function as hubs locally whilst functioning as peers within the larger

composition. Only one message is exchanged between each hub/peer for each execution

i.e. asynchronous communication. The composition completes after the final hub/peer has

80

completed execution and has returned execution control to the hub/peer which commenced

the composition. Two messages are exchanged between the hub/peer and a spoke for each

spoke execution i.e. synchronous communication. An example of this pattern in an existing

network context is email, whereby email clients (spokes) connect to a mail server (hub).

However, the mail server also connects to other mail servers (peer-to-peer) to deliver mail.

Synonyms: None

Participants

• Hub/Peer : Participants which functions as hubs locally, controlling the local compo

sition, whilst functioning as a peer within the larger composition.

• Spoke : Participant which passively performs some service.

Advantages

• Improved efficiency and reliability over centralised pattern.

• Good autonomy as each participant (peer or hub) acts upon its private data, but only

reveals what is necessary to be a compositional partner.

• Bottlenecks reduced by having a number of participants functioning as hubs.

Disadvantages

• Increased deployment complexity as each participant, acting as a peer, must be mod

ified to support the pattern.

• Maintaining the composition can be difficult as each participant, functioning as a hub,

manages different parts of the composition.

• Web service composition engines do not support this pattern out of the box.

81

• A number of compositions are being merged to create a larger composition.

Case Study No specific case study could be found for the centralised + decentralised

pattern in the literature. However, a useful use-case can be imagined in a scenario such as a

mapping service. Here, a central service allows clients to search for a destination in a given

city. The mapping service then delegates finding the destination and its mapping to another

sub-composition, whilst also providing value added services, such as presenting ways and

costs of getting to the destination, such as flying, via other sub-compositions.

Such a scenario could be realised using the centralised pattern to manage the main com

position. This pattern is ideal because only a small amount of logic is required here to glue

the sub-compositions together, meaning the load will be quite low. The sub-compositions,

which feature the majority of the logic and processing, could utilise the decentralised pat

tern, necessary for efficiency and reliability reasons as noted in the case study in [45]. This

situation results in the application of the centralised + decentralised distribution pattern.

Summary: Medium efficiency, medium reliability, low modifiability/mutability

Pattern 7: Ring + Decentralised

Applicability Use the Centralised + Decentralised pattern when

Structure:

Description: The Ring + Decentralised pattern, illustrated in Figure 5.9, combines the

Ring pattern with the Decentralised pattern. This complex pattern uses one or more rings to

82

provide redundant copies of participants. As with the core decentralised pattern, only one

messages is exchanged between the caller and the callee for each peer execution i.e. asyn

chronous communication. The composition completes after the final peer has completed ex

ecution and has returned execution control to the peer which commenced the composition.

The specific ring implementation defines, at the mirror head, the algorithm for determining

how the load is delegated amongst the ring participants. An example of this pattern in an

existing network context, is a file sharing system whose peers have load balanced enabled.

Synonyms: None

Participants

• Peer : Participant which performs some service and also participates in controlling

the composition.

• Mirror Head : A participant which delegates work to peer mirrors.

• Peer Mirror : A participant mirror which performs some service and also participates

in controlling the composition.

Advantages

• High efficiency and reliability.

• No single point of failure or communication bottleneck as composition management

is distributed.

• Ring provides improved reliability to peers as more participants can be added to ring

when required.

• Good autonomy as each participant acts upon its private data, but only reveals what

is necessary to be a compositional partner.

83

• Increased deployment complexity as each participant must be modified to support the

pattern.

• Maintaining the composition can be difficult as each participant manages different

parts of the composition.

• Web service composition engines do not support this pattern out of the box.

• Additional software is required to load balance and mirror participants.

Applicability Use the Ring + Decentralised pattern when

• Increased reliability is required for particular participants.

Case Study No specific case study could be found for the ring + decentralised pattern

in the literature. However, a useful use-case can be extrapolated from the case study of

the ring pattern [166] combined with the case study of the decentralised pattern [45], The

decentralised pattern case study presented a Geographic Information System (GIS) featur

ing six Web services, which allows spatial problems in the city of Beijing to be analysed

and resolved. The authors of the case study clearly state that the composition must not

feature either a single point of failure or a bottleneck, thus motivating their choice of the

decentralised shared-peer pattern. However, they do not consider the possibility that one of

the six Web services might take significantly longer to process its load when compared to

the other Web services. This situation would be exacerbated under high load resulting in a

bottleneck. This situation could be alleviated by applying the ring pattern to any services,

which may be computationally expensive, resulting in a ring + decentralised distribution

pattern.

Summary: High efficiency, high reliability, low modifiability/mutability

Disadvantages

84

5.5 Catalog Usage

We envisage a number of applications for our pattern catalog. Specifically, when used with

our modeling framework as described in Chapter 4, the catalog can be used in conjunc

tion with our Model Driven Development (MDD) approach, which auto-generates a fully

executable Web service composition based on a distribution pattern model [25], The soft

ware architect can browse the paper based pattern library and, based on the system’s non

functional requirements, decide which pattern to apply to a composition. We also envisage

in the future supporting a search facility, possibly using keywords, where an architect can

select a number of non-functional quality parameters, and a software tool would suggest an

appropriate pattern to use.

5.6 Catalog Evaluation

For a pattern catalog to be useful it must provide coverage of at least the most common

patterns of the systems it intends to document. Ideally it should provide full coverage

of all core pattern possibilities. To assess our pattern catalog we perform a small scale

experiment.

Cutumisu et al. in [49] consider how to measure the effectiveness of a pattern catalog

and how to objectively compare pattern catalogs. The measures considered are not pattern

catalog specific and so can be applied to our pattern catalog. Four specific measures, usage,

coverage, utility and precision, are outlined and formally defined. The authors note that a

good pattern catalog achieves high values for each of these measures over a wide range of

applications. A brief description of the four measures follows.

• Usage - Ratio of catalog pattern usage in a given scenario/application to total number

of patterns in the catalog.

• Coverage - Ratio of catalog patterns usage in a given scenario/application to total

number of patterns in the scenario/application.

85

C a seS tu d y R e fe rence
Adding High Availability and Autonomic Behavior to Web Services [35]

Service Composition Modeling [55]
A p2p architecture for dynamic executing GIS web service composition [45]

Using a rigorous approach for engineering Web service compositions [63]
Migration to web services oriented architecture [197]

Table 5.1: Selected case studies.

• Utility - Average number of times a catalog pattern is used in a given scenario/appli

cation.

• Precision - Ratio of catalog pattern usage in a given scenario/application to the num

ber of adaptations required to be made to make these catalog pattern useful in a given

scenario/application.

Our pattern catalog contains seven distinct patterns. To evaluate its usefulness we have

applied the measures and measurement methods defined by Cutumisu et al. to a number

of case studies of Web service compositions outlined in the literature. Appropriate case

studies, some of which were outlined earlier in this chapter, were found by systematically

searching the proceedings of major conferences in the digital libraries of the ACM and the

IEEE. Of the one hundred papers found only five contained non-trivial real world, fully

implemented scenarios. The selected case studies all contain enough information for clear

distribution pattern analysis e.g. workflow or sequence diagram of choreography. The se

lected case studies, some of which were outlined already in this chapter, which met our

selection criteria, are outlined in Table 5.1.

Having identified some case study applications we now apply the pattern evaluation

measures to them. The measures are applied to the case studies as a whole rather than

to each case study individually. This is done because we are analysing large architectural

patterns, rather than smaller behavioural or creational patterns. Each case study has only

one architecture, although it might contain many behavioural or creational patterns. The

results are outlined in Table 5.2.

The usage measure value of .571 shows that of the seven patterns in our catalog only

86

M e a su re R a tio V a lue
Usage 7:4 0.571

Coverage 5:5 1
Utility 5:4 0.8

Precision 1:1 1

Table 5.2: Pattern catalog evaluation measures.

four unique patterns were actually used in the case study applications. The centralised

pattern occurs twice in the case studies. No usage of three patterns, ring + centralised,

centralised + decentralised and ring + decentralised was found in the case studies.

The coverage measure value of 1 indicates that the distribution pattern of all the case

study applications was present in our catalog.

The utility measure value of .8 indicates that of the four patterns used in the case study

applications one is used twice, while three are used only once. This indicates, at least in our

small use case sample, that the centralised distribution pattern is more prevalent than the

other patterns. The highest value possible for this measure when considering architectural

patterns is one.

The precision measure value of 1 indicates no adaptions are required to make the pat

terns in our catalog fit different scenarios. However, it should be noted that architectural

patterns do not normally require adaptation as they are at a very high level of abstraction.

To summarise, we have scored good values for the majority of the measures outlined.

The usage figure is the only figure which is relatively low. This is the case because no

case studies were found in our sample selection that featured three of the distribution pat

terns. However, this is not a negative mark against the pattern catalog as it is likely that

these patterns will become more prevalent as the usage of Web services in critical appli

cations becomes more commonplace. We believe these measures indicate that our catalog

is sufficiently complete to cover all the current distribution scenarios, whilst also providing

adequate future proofing for future usage scenarios.

87

5.7 Summary

In this chapter we have presented a catalog of distribution patterns, which may be applied by

software architects to Web service compositions. These patterns have a historical context in

the field of network based systems, however their description in a Web service composition

context is novel. Also novel is their expression using a standardised modeling language,

UML. We have enumerated three categories of identified patterns. Support for their usage

is provided by referenced QoS measures where possible, case study scenarios of traditional

network based scenarios, along with Web service based specific scenarios.

The catalog itself has been evaluated using a number of pattern catalog measures. We

have concluded that the catalog is sufficiently complete to cover all the current distribution

scenarios, whilst also providing adequate future proofing for future usage scenarios. We

envisage that this pattern catalog will assist software architects in choosing a distribution

pattern for a wide range of different Web service composition based applications.

For completeness it should be noted that UML Interaction Overview diagrams could be

used to provide frames for many interacting Activity diagrams. This scenario would oc

cur when the distribution patterns consists of a composition of distribution patterns. These

diagrams would enable the modeling of many discrete compositions onto one model. Al

though we do not consider this scenario here it is possible that large real world systems

would require this level of modeling. Composition of architectural styles such as distribu

tion patterns is considered by Pahl et al. in [143]. Here, an ADL like language is used to

construct and subsequently combine styles. A number of operators are presented including

restriction, union, intersection and refinement which define the semantics of this operator

calculus, which may be applied to patterns. The approach is also compatible with UML.

Chapter 6

Modeling Notations/Languages

6.1 Introduction

In this chapter we present the modeling notations and languages necessary to enable the

modeling of distribution patterns, and the subsequent generation of an executable system.

The modeling infrastructure presented here represents the second component of our mod

eling and transformation framework. This component consists of eight languages, or nota

tions, describing the constructs of the various models, that feature in the five step method

ological framework component presented in Chapter 9. A case study illustrating the usage

of the notations is provided in Chapter 9.

In Section 6.2 we contrast two different forms of languages, Domain Specific Lan

guages (DSL) and General Purpose Languages (GPL), before discussing how a language is

defined. These languages are used within a Model Driven Software Development (MDSD)

framework to enable code generation from high level models. The framework used is the

Model Driven Architecture framework (MDA), outlined in Section 6.3. Section 6.4 defines

the eight languages, or notations, used to support our MDSD approach to code generation.

Finally, in Section 6.5 we discuss the tool support available to facilitate language definition

and editing.

89

6.2 Language Definition and Semantics

Language definition is the means by which a programming language is specified. In our

context we consider languages as a form of model representing a given domain. There are

two forms of languages - Domain Specific Languages (DSL) and General Purpose Lan

guages (GPL). DSLs are task-specific languages, which trade generality for expressiveness,

ease of use and intuitiveness in their narrow domain. An example of a DSL is the declar

ative database language SQL (Simple Query Language). GPLs, meanwhile, are flexible

languages that may be applied to any number of domains, but at the cost of increased com

plexity. An example of a GPL is the Java programming language. A full analysis of when

and where to use DSLs over GPLs is outlined by Memik et al. in [117], Here, we primarily

consider DSLs with the exception of the XML, as each language is targeting a very narrow

domain within the Web services context.

Up to now we have only discussed language definition. However, language definition

and model definition are interchangeable as both have the same goal of representing a given

domain. To define either a DSL or a GPL the same process must be followed. This language

or model specification process consists of three parts as outlined below. The parts are

discussed in more detail in the following Sections, and further detailed by Harel et al. in

[82].

• Syntax

• Semantic Domain

• Semantic Mapping

An additional characteristic of languages is their pragmatics. Pragmatics relate to the

usability of a language. For example some language pragmatics might be how easy it is to

write using the language, how useful the language is for its specific domain and how well

the language meets its stated objectives [159].

90

6.2.1 Syntax

There are two forms of language syntax definition - abstract and concrete. The abstract syn

tax for a language is developed by enumerating the abstractions, or concepts, of a specific

domain and mapping their mutual relations [105], The abstractions and concepts may also

be considered to be the grammar of the language. Here, we do not differentiate between

languages and models. We consider that once a language is expressed as a model it may be

considered a reference model for the domain. This reference model represents an ontology

of the domain modeled. An example of a definition of an abstract syntax is an object model

describing a domain notation and its interrelations. Examples of languages that can be used

to define the abstract syntax in a modeling context are MOF [137], KM3 [94] and Ecore

[39]. In a non-modeling context, languages such as BNF [20] and EBNF [192] can be used

to define the abstract syntax of a language using simple textual notations.

Languages have a concrete syntax in addition to their abstract syntax definition. A

language can have more than one concrete syntax. The concrete syntax represents a user

interface for the language, and is derived from its abstract syntax. Such user interfaces

are often realised using tools, and are represented as XML, text, graphics etc. The concrete

syntax must itself be described clearly using an abstract syntax. Once both the language and

its user interface have been defined abstractly, mappings between the two can be defined. It

is essential that the concrete syntax is user-friendly, simple and clear [105], Examples of a

concrete syntax are XML, a shape-based GUI in a tool and XMI [134],

6.2.2 Semantic Domain

Once a language’s syntax has been formally defined, its meaning should be formally de

fined. Without semantics a language’s meaning is ambiguous and is open to different inter

pretations. Each expression in a language must therefore be defined with respect to a well

defined and well understood domain [82], This semantic domain is independent of the lan

guage being defined. Semantics are useful to both language implementers and programmers

as outlined by Schmidt et al. in [159] and summarised below.

91

• Provide precise standard for implementations.

• Useful as user documentation after language development.

• Can be used as a tool for design and analysis during language development.

• Can be used with a compiler to help automate development.

The semantic domain can be defined in two different ways, loosely using a plain natural

language such as English, or more rigorously using mathematical semantics. The plain En

glish approach simply explains what the specific language construct is and where it might

be used. The axiomatic approach defines the properties of the language constructs using

formal proofs. Both MOF and ECore use English language based definitions of seman

tics, while KM3 has its semantics precisely defined using first order logic [94]. The two

approaches differ in that the axiomatic approach provides a high level of precision when

compared to the potentially ambiguous plain English approach, at the cost of comprehensi

bility for those unfamiliar with formal mathematics.

An alternative approach to defining the semantic domain for a language is operational

semantics [57, 148], There are two approaches to defining operational semantics, explicit

and implicit, both of which express the execution of a language. Explicit operational se

mantics are defined using mathematics to express the various state transitions a language

interpreter would realise. Alternatively implicit operational semantics can be defined di

rectly by writing an interpreter to process a language definition. The language’s semantics

are derived by how the interpreter interprets the language. An obvious issue with this ap

proach is that the language semantics are tightly coupled to the interpreter implementation,

making portability and comprehension of the language difficult when compared to the ex

plicit approach.

One other approach to semantic domain definition is denotational semantics [159], This

approach is more abstract than operational semantics. Denotational semantics allow a spe

cific part of a language definition to be defined using valuation functions. These valuation

functions are mathematical objects which represent the meaning of that language construct.

92

6.2.3 Semantic Mapping

A language whose syntax and semantic domain have been defined requires a link, or map

ping, between these two independently derived definitions. The semantic mapping provides

this link. Graph transformations and mathematics are two methods for defining these links

[82],

A specific mathematical approach to semantic mapping is the use of relations, or map

pings, to relate a language with no semantic domain to a language with a semantic domain.

The undefined language then takes on the semantics of the related language. This pragmatic

solution is suggested by Kurtev et al. in [105],

6.3 Framework

Model Driven Development (MDD), or Model Driven Software Development (MDSD),

described in Section 2.5.6, is an emerging approach for building software [182, 30], MDD

considers models, at different levels of abstraction, as the primary artifact to reason about

a given domain and devise a solution. Relationships are defined between these models to

describe the web of dependencies between the models. These relationships are used to

assist in the generation and reasoning of the final solution.

Here, we base our approach on the Model Driven Architecture (MDA) framework [71].

MDA encapsulates a number of technologies that provide for the formal specification of

the structure or function of a system, where the modeling language is the programming

language. In this way the models created are used to generate the program code. This

approach enables us to represent each of the distribution patterns, presented in Chapter 5,

using UML 2.0. These models are then used to subsequently generate an executable system.

We define our modeling platform as Web service specific. This means from the MDA

perspective, that all our modeling notations are Platform Independent Models (PIMs).

Each of the eight notations, introduced in Section 6.4 below, are compatible with the

MDA framework as their abstract syntax is defined in ECore. These notations are consid

93

ered meta-models in MDA terminology. Alternatives to the MDA modeling stack, including

ontologies and abstract syntax approaches, are considered by Kurtev et al. in [104].

6.4 Notations

We use eight languages or notations, outlined below, and illustrated in Figure 6.1. Each is

described in detail in the following sections. The notations were first introduced in Section

4.3.2. Three of these notations: UML 2.0 Notation, Collaboration Notation and XML

Notation have been previously defined elsewhere. The remaining 5 notations are defined by

• UML 2.0 Notation

• Distribution Pattern Language UML Profile (DPLProfile)

• Distribution Pattern Language Notation (DPL)

• Collaboration Notation

• Interface Notation

• Deployment Descriptor Notation

• Deployment Catalog Notation

• XML Notation

Relationships between each of the languages is outlined in Figure 6.2. The boxes with

grey shading are extensions to existing languages or are entirely new languages, as is the

case for DPL. Boxes without shading are direct representations of existing languages.

The abstract syntax for each of these languages is defined using ECore, based on the

specification of each language as defined by their respective designers. ECore was chosen

because it is closely aligned with a subset of MOF called EMOF, a standards based do

main specific language for defining languages. ECore, a domain specific language itself, is

94

Meta-Notation

? ;
I
I

UML/DPLProfile i
t

Collaboration i _____ i______
Interface i XML

Notation 1 Notation î
i Notation i Notation

i
DPL

i
Deployment

i
Deployment

Notation Descriptor Catalog
Notation Notation

Figure 6.1: Notations used in our modeling approach.

Figure 6.2: Relationships between the notations used in our modeling approach.

supported by the Eclipse Modeling Framework (EMF) and its associated toolset [39], The

use of ECore guarantees interoperability with a range of tools. ECore is compatible with

our chosen framework MDA. The use of ECore in an MDA context facilitates our goal of

executable system generation. An additional motivation for the use of ECore was the avail

ability of ECore based implementations of some of the notations, specifically UML 2.0,

WS-BPEL, WSDL and XML.

The concrete syntax for the UML 2.0 notation is graphical. UML features a number

of graphical icons, as outlined and illustrated by Eriksson in [60], The remaining seven

notations have no user friendly concrete syntax. To assist the end user of these languages

they may be manipulated using an EMF based editor, which is capable of manipulating

ECore based languages. However, in the context of our work these notations are never

95

dircctly manipulated, and instead are abstracted by the framework.

The semantic domain for the notations is defined here using structured textual seman

tics. Detailed textual semantics are also available for each of the existing languages in

their respective language specifications, referenced in the sections below. No axiomatic or

denotational semantics have been defined for the existing languages. These mathematical

formalisms encourage the reduction of language specification overlap and allow properties

such as completeness and precision to be assessed. Instead the authors of these languages

have deemed the textual semantics adequate for their usage. Textual semantics can be suf

ficiently complete and precise if unambiguously defined. Here, we follow this trend and

utilise semantic mappings to relate newly defined languages to existing languages. These

semantic mappings between languages are provided by relations, as discussed in Chapter 7.

All of the eight notations are defined using only one language, Ecore, which is closely

aligned to the EMOF, a subset of the MOF language. ECore is considered a meta-meta

language in MDA terminology.

6.4.1 UML 2.0 Notation

The UML 2.0 notation utilises a subset of the standard UML 2.0 specification [140] and is

used to describe distribution patterns using standard UML 2.0 Activity diagram constructs.

We also utilise the UML 2.0 Class diagram constructs to represent the interfaces of the

discrete Web service participants.

The UML notation is used to describe distribution patterns because it is capable of

providing a visual representation of the patterns, which should be easily understood by a

software architect. In addition, UML, because of its MOF compliance, is interoperable with

many tools and other notations. This interoperability provides for improved reuse of data

and models, as outlined by Moreno at al. in [123], However, this flexibility is at the cost of

the complexity of working with such a large spécification as UML 2.0.

The abstract and concrete structure of the UML 2.0 notation is specified by the OMG

using MOF, bootstrapped by utilising Class diagrams from the UML. The abstract structure

96

can be manipulated using an Eclipse EMF based editor, as illustrated in Figure 6.3.

Figure 6.3: Excerpt of the UML2 abstract syntax as viewed in Eclipse.

The semantic domain of UML 2.0 is specified by the OMG, using plain English. We

consider only a subsection of the notation - UML Activity diagrams and Class diagrams.

The significant subsection of the UML Activity diagram notation is illustrated in Figure

6.4, whilst the important textual semantics of constructs are outlined in Table 6.1. This

notation is deemed adequate as it defines all the constructs necessary for distribution pattern

modeling.

Activity diagram models provide a number of important modeling artifacts necessary

for the modeling of distribution patterns. UML ActivityPartitions, also known as swim-

lanes, are used to group a number of actions within an Activity diagram. In our model, these

actions will represent WSDL operations. Any given interface has one or more ports that will

have one or more operations, all of which will reside in a single swim-lane. To provide for

a rich model we use a particular type of UML action to model the operations of the WSDL

interface. These actions, called CallBehaviorActions, model process invocations and can

97

Figure 6.4: Activity diagram subset of UML2 notation expressed using a UML Class dia
gram.

have an additional modeling constructs applied to them called pins. There are two types

of pins, InputPins and OutputPins, which map directly to the parts of the WSDL messages

going into and out of a WSDL operation. Bock and Eriksson provide more information on

these artifacts in [36] and [60].

In MDA terminology this notation is a meta-model and is defined at the PIM level, as

UML is not tied to any specific platform technology. The Eclipse UML2 project provides

an open source ECore based implementation of the UML notation, derived from the UML

specification [65], by defining the constructs which may be used in UML 2.0 models.

An example of the UML 2.0 notation being used to model a centralised distribution

pattern, using Eclipse, can be seen in Figure 6.5. This illustration is an implementation of

the centralised shared-hub pattern that is represented as a UML Activity diagram in Figure

98

Table 6.1: Structured textual semantics of important UML abstract syntax constructs.

Construct Description

Activity An observable effect defined as a workflow

Action A unit of observable effect, which forms part of an activity

ActivityPartition An area in an Activity diagram where activities/actions are located

ControlFlow Connector between two activities

ObjectFlow Connector carrying data between activities

Pin Input or output region for accepting or returning data

CallBeliiorAction A form of action which has input and output arguments

InitialNode Start point of an activity

ActivityF i nalN ode End point of an activity

6.4.2 Distribution Pattern Language UML Profile (DPLProfile)

The Distribution Pattern Language UML Profile, or DPLProfile, is our novel extension of

the UML 2.0 notation, which allows extra distribution pattern specific information to be

applied to a UML model. The profile is an extension to an existing notation, rather that

a new notation in itself. As the UML is a general purpose software engineering modeling

language it is often necessary to extend the language to enable it to adequately describe

specific scenarios, such as distribution pattern modeling. UML profiles are a standard ex

tension mechanism of UML, as discussed in Section 2.5.5. Profiles define stereotypes and

subsequently tag definitions that extend a number of UML constructs defined in the UML

2.0 notation. Each time one of these derived constructs is used in our model we may assign

values to its tag definitions. The profile is not strictly a notation; it is an extension to the

existing abstract notation of the UML 2.0 language.

The motivation for using a UML profile is that it restricts the set of UML constructs

by extending appropriate constructs of the UML notation, which need to be used to model

the distribution domain. This reduces the complexity of the resultant models. The profile

is used to mark an Activity diagram so it can be used to describe a distribution pattern.

99

70 build,xml ^ XMLtoUML.atl : & j WSDL.ecore : |J UMLActivityDiagra,., * **15 “ Q :

7̂ f j p la tfo rm i/re so u rc e /l 'o p m a n /U M L A c tiv ity D ia g ra m .u m l

^ E& <Model> model

v d j; « d PL A c tiv ity» <AetMty> Banking

[igi <<dPLParticipant>> <Call Behavior Action> getAccountName

\> ®s<*dPLParticipant>> <Call Behavior Action> getCreditCard

> iip<<dPLParticipant» <Call Behavior Action> getRiskAssessment

$ < Initial Node> Start

< Activity Final Nade> Finish

/ <<dPLControlFlow>> <Control Flow> ControlFlowl

/ < < dPLControlFlow> > < Control Flow> ControlFlow2

/ ' <<dPLCDntrolFlow>> ^Control Flow> ControlFlowS

*» < Object Flow> o fl

•k» < object Flow> of2

< Object Flow> of3

-^Object Flow> of4

•x» < Object Flow> of5

E^<<dPLPartitjon>> <Activity Paitition> CoraBanking

§ <<dPLPartition>> ^Activity Partition> RiskManagement

<<dPLPartition>> «Activity Partition’?» CxeditCard

^ /« <Profile Application> DPLProfile

11> platform¡/resource/Tc-pman/DPLProfila.proffile.uml

Figure 6.5: The UML2 notation being used to model a distribution pattern as viewed in
Eclipse.

Without this profile extension the UML would not be able to adequately describe the various

distribution possibilities of Web service compositions. As previously noted, using UML,

and by extension using UML profiles to focus the language to our needs, allows us to

leverage software architect’s comprehension of UML and the plethora of existing tools

which support UML. An overview of our profile can be seen in Figure 6.6. The stereotypes

are placed in a UML context in Table 6.2.

It should be noted that although we apply role tag definition to UML CallBehaviourAc-

tion constructs, via our DPLProfile, this is not strictly correct and may break the UML 2

semantics unintentionally [140], We have placed the role tag definition on UML Callbe-

haviorAction constructs as different roles are often applied to different operations within

a particular Web service interface. An alternative solution which does not break the UML

semantics would be to move the role tag definition to the UML ActivityPartition. A combi

nation of horizontal and vertical ActivityPartition constructs could then be used to partition

different role tag definitions for a given interface. The drawback of this approach is the

100

<’.[.fit il-# -
M-LíítrUl«

Figure 6.6: UML profile for modeling distribution patterns.

added visual complexity of the models which feature both vertical and horizontal partitions.

The profile definition that is outlined above was implemented using Eclipse EMF [39],

which uses ECore for profile definition. The concrete syntax of the profile can be manip

ulated using an Eclipse EMF based editor. The definition of the language in the Eclipse

editor can be seen in Figure 6.7.

bwldixml !<T Class-ToActMty^tl fcjUMLActivityDiagra.. XMUoUML.ati i i D¥>Lr-ttiJ-.|*43n^i. * i: : \ 1 " " l l “ B

v § j pi4ifi]rm';rfltourcp/Pjpr»iiin^r!^Jiit;PiPrcif:Tr

1 ^ Ea *£Profile> DPLProfile

> fe, UML

< Element Im ports String

'-,7, < Element import> ActM ty

% < Element Im port» Pin

% < Element lm port> Boolean

5;?. < Element Im p0 it> ActKntyPaitition

-¿Element Import> ¡jallBehaviarAetion

i:T, <E l«m en l lm pori> CantrolFltw

<Elem snt lm part> Integer

v p) < 5 t9 feotvps> DPLActMty

< Property^ base_Activity : Activity

<.Property> collabonatron-lariguags ¡Sinnq

¿if: <Properly-5- distribution-pattsm : String

<Pioperty*- service-name : ‘String

E5L<Property> base namaspace : String

S : <Property> nam espace-prefi*: String

S,.-; < P ioperty> operation-nam e : String

f <Extension> Actrvity_DPLM&t3 dat a

t> W- <S ti:r30 type> DPLMessage

t> / <Escen$,!oni* Pin_DPLMessage

Figure 6.7: The DPLProfile definition as viewed in Eclipse.

We can see from Figure 6.6 that the profile extends the Activity, ActivityPartition, Call-

BehaviorAction, ControlFlow, InputPin and OutputPin UML constructs. This extension

allows distribution pattern metadata to be applied to the constructs via the tag definitions.

101

Table 6.2: DPLProfile abstract syntax or stereotype attributes.

DPL Attribute UML Base Element Stereotype

distribution-pattem Activity < <DPLActivity> >

collaboration-language Activity < <DPLActivity> >

service-name Activity < < DPL Activity > >

base-namespace Activity < <DPLActivity>>

namespace-prefix Activity < < DPL Activity > >

operation-name Activity < <DPLActivity> >

ns ActivityPartition < <DPLPartition> >
interface-uri ActivityPartition <<DPLPartition>>

engine-uri ActivityPartition < <DP LPartition> >

role CallBehaviorAction < < DPLParticipant> >

is-correlation-variable Pin <<DPLMessage>>

order ControlFlow < <DPLControlFlow> >

For example, the distribution pattern is chosen by selecting a pattern from the Distribu-

tionPattem enumeration and assigning it to the distribution-pattem tag definition on the

DPLActivity construct. A full description of the semantics, using plain English, for all the

profile tag definitions is outlined in Table 6.3.

Together, the UML 2.0 notation and DPLProfile provide the notational syntax and se

mantics necessary for the software architect to model any of the distribution patterns out

lined in our catalog, using a number of UML 2.0 based tools. The constructs used in the

UML should be familiar to software architects, making this language ideal for defining dis

tribution pattern based compositions. Figure 6.8 illustrates the Eclipse tool showing a UML

model of a distribution pattern with the DPLProfile applied. The stereotypes applied to the

UML constructs can be seen in the main pane of the figure, while the profile values can be

seen in the properties pane at the bottom of the figure.

Instances of the UML 2.0 notation and DPLProfile are output from step two of our

methodological framework.

102

Table 6.3: Structured textual semantics o f DPLProfile stereotypes attributes.

Attribute Description

distribution-pattem Choice of distribution pattern to be applied to composition

collaboration-1 anguage Choice of collaboration language to enact composition

service-name Name used by clients to reference the composition

base-namespace Namespace URI for the composition, avoids name clashes

namespace-prefix Namespace alias for the composition, avoids name clashes

operation-name Operation name used by clients to reference the service

ns Namespace URI of the participant, avoids name clashes

interface-uri URI specifying the location of the participant’s interface

engine-uri URI specifying the location of the enactment engine

role Choice of roles for the participant from the Role enumeration

is-correlation-variable Unique identifier field for a composition

order Execution order assigned to action

6.4.3 Distribution Pattern Language Notation

The Distribution Pattern Language notation provides the constructs for the internal repre

sentation of a distribution pattern. DPL is a novel Domain Specific Language (DSL) for

distribution pattern description. DPL, from a semantic point of view is equivalent to the

UML 2.0 notation/DPLProfile combination previously discussed.

The motivation for implementing a new language was to provide for ease of analysis,

verification and transformation of distribution patterns. This is achieved because DPL is a

precise language for representing the distribution domain. These motivations are outlined

by Memik et al. in [117] as reasons for developing domain specific languages. Further

motivation for the use of DSLs, including productivity improvements and appropriate levels

of abstraction, are also provided by Memik et al. The DPL notation provides a purpose built

simple notation for the description of distribution patterns. However, this precision is at the

cost of interoperability with tools, such as those supporting UML, as noted by Moreno et

al. in [123], For this reason we only use the language internally to assist in the analysis and

103

&Un>M %irl •»- ' Si ‘ *, DPIPiofto prciiL. *is 6=1 9 |||s Outline U
;An outljre ¡5 not available

v H i <Mod«l:* m w k l

^ 4- « d P L > U iv ity > > <Acli*tly> Ba^bng

^ Participants < call Behavior Arlion?* (jerAcMiunrNam?

<<'.dPL^e3sag3» < Input Pin»- accountNumber

■< < d sLN*9Ssage» <Qutput Pin» getAccountNamePstum

|* gBfj-irfPLBarticipanliip* cCall Behavior A d ion> gclCredifCard

i?i «r<dPLParticipant» ■'¡Call Ei-havinr Action> gatRiskAssossment

* 5-liwt

* Niuih

/ « jw d iu t liuihv* f.«intia£fa*rl

* i

Problem?! £2 Properties 22 Consols Error Lag

mi opt»ny
DPL Activity

Basenarnsspsca

Collafcorationlargusga

Distnbutionpattem

Namesp5cr?prehi<
Operstionname

Sarvicename

’C’ UML

Ib(3'

- Mip
* *G'Gfc£L
' hub-or̂-jp©*»
i Sar>Lj-*igWj!i

, sp̂itrcC

Figure 6.8: A UML model with the DPLProfile applied as viewed in Eclipse.

transformation of distribution patterns.

The language’s abstract syntax was defined using Eclipse EMF [39], which uses ECore

for language definition. The abstract syntax of the language can be manipulated using an

Eclipse EMF based editor, as illustrated in Figure 6.10. No concrete graphical syntax has

been defined by us because we believe the UML provides an adequate graphical represen

tation of distribution patterns using Activity diagrams and also due to UML’s wide spread

acceptance in the software engineering community. However, having defined a specific

DSL for distribution patterns the possibility of later developing a novel graphical represen

tation is feasible. What this representation would look like has not been considered here.

The notation is deemed adequate as it defines succinctly all the constructs necessary for

distribution pattern modeling. The notation, illustrated in Figure 6.9, defines the constructs

which may be used in the DPL Model.

The structured textual semantics, using plain English, for all the DPL constructs is out

lined in Table 6.4 below. As previously stated, the DPL language is semantically equivalent

to the UML 2.0 notation/DPLProfile combination already outlined. To enforce these se

mantics we provide semantic mappings between the UML language and the DPL language

using relations, as discussed in Section 7.4.1. Semantic mappings from DPL to other lan-

104

Figure 6.9: DPL notation expressed using a UML Class diagram.

guages, like WS-BPEL, are also defined using relations in Section 7.4.2.

The DPL notation uses static semantics to validate the correctness of instances describ

ing a given distribution pattern. For example, if the centralised distribution pattern has been

chosen, the validation process must ensure that all Operation attributes have either the hub

or spoke role applied to them. An example of the definition of static semantics can be seen

in Section 9.2.4.2.

It should also be considered that the DPL notation has no reliance on UML, thus al

lowing alternatives to the UML modeling notation approach, such as i r calculus [118] and

Architecture Description Languages (ADL) [114], discussed in Section 3.3. Both of these

languages can be used to describe software architectures, and so potentially distribution

patterns. The DPL notation avoids using the constructs associated with existing modeling

notations, instead it provides a notation specifically targeted at modeling distribution pat

tern concerns. These existing modeling notations can have relations and transformations

defined towards the DPL notation, as we have done for UML, enabling their use in our

methodological framework.

In MDA terminology this notation is a meta-inodel and is defined at the PIM level, as

DPL is not tied to any specific platform technology. As previously noted, this language is

novel and so has been defined specifically for our purposes in ECore. Instances of the DPL

105

Table 6.4: Structured textual semantics of DPL notation constructs.

Attribute Description

pattem-definition Holder for all pattern information

Nodes Holder for Node constructs

Node A node represents each participant in the composition

Mappings Holder for Mapping constructs

Mapping A mapping represents a data exchange between participants

To Information about where data is going to in an interaction

From Information about where data is coming from in an interaction

CollaborationLanguage Choice of collaboration language to enact composition

DistributionPattern Choice of distribution pattern to be applied to composition

CorrelationVariables Holder for Variable constructs

Variable Name of variables used to identify a service instance

ServiceName Name of the service assigned to the composition

Operations Holder for Operation constructs

Operation Details of an operation on a Node

OperationName Name of the operation to be called to execute the composition

BaseNamespace UR1 for the composition

NamespacePrefix Prefix used to reference the URI for the composition

106

; buildjonl ^ XMLioUML.atl (f CtaGsToAct;ivity.<ttl CoreBonkmg^ml 53 ™ a

. * I p!alform'/rasourcGrroprnan/MolaMatleb/DPL,iicoro

xr & d p l

t> 2 pattern-definition

> 0 Nodes

1» Mode

I* H Mappings

| | Mapping

t> @ From

V 0Tb

jb| Collaboratitmlanguage

f* $ DistrrbutionPattern

t* 0 GorreJationSMriBbles

J> .0 Venable

> © ServrceName

1» ifj operations

I* 2 Operation

fc 0 OperationNam»i

t> Q B3S aNam«8pac e

!> ¡3 fNfamespacePref^

Figure 6.10: Excerpt o f the DPL abstract syntax as viewed in Eclipse.

notation are output from step three o f our methodological framework, discussed in Section

9.2.3.

6.4.4 Collaboration Notation

The Collaboration notation provides the constructs necessaiy to define the choreography

of a distribution pattern based composition. The Collaboration notation is a Domain Spe

cific Language (DSL) for choreography description. The notation could be based on a

number of collaboration languages such as WS-BPEL or WS-CDL, discussed in Section

2.3.1. However, both of these languages have a different abstract and concrete syntax,

along with different semantics, as they are designed for different compositional contexts,

namely orchestration and choreography. In our context, the notation is necessary to enable

the enactment of a distribution pattern via a composition engine. Our collaboration notation

specifically considers one language, WS-BPEL. This notation was chosen because execu

tion engines are readily available for WS-BPEL based language instances, unlike WS-CDL

107

which currently has no execution engine. The notation is based, from an abstract syntax

and semantic domain point of view, on WS-BPEL.

The abstract structure of the Collaboration notation is specified by OASIS in [128]

using XML Schema. The concrete syntax of the language is expressed using XML or by

using numerous graphical WS-BPEL based tools like ActiveEndpoints’ BPEL Designer [3],

However, as we only use WS-BPEL internally there is no need to use any concrete graph

ical representation here. The more common text-based concrete representation is XML.

The semantic domain of the Collaboration notation is also specified by OASIS, using plain

English in [128], Semantics are also defined via mappings from the DPL language to the

Collaboration notation using relations, as discussed in Section 7.4.2. Semantic mappings

from the Collaboration notation to XML are also defined using relations in Section 7.4.6.

We consider only a subsection of the notation, which is specifically related to choreog

raphy. As WS-BPEL is an orchestration based language it provides constructs for scenarios

that will not be required when considering only choreographies. The notation is deemed ad

equate as it defines all the constructs necessary for distribution pattern based choreography

description. The notation is illustrated in Figure 6.11, while Table 6.5 provides structured

textual semantics of the constructs which may be used in the Collaboration notation.

In MDA terminology this notation is a meta-model and is defined at the PIM level,

meaning it can be run on any platform that provides a WS-BPEL compliant engine. The

Eclipse BPEL Project provides an open source ECore based implementation of the Collab

oration notation, derived from the WS-BPEL specification [128]. The language’s abstract

syntax can be manipulated using an Eclipse EMF based editor [39], as illustrated in Figure

6 . 12.

Instances of the Collaboration notation are an intermediate output from step five of our

methodological framework, discussed in Section 9.2.5. This enables the realisation of a

distribution pattern on a compositional engine.

108

Table 6.5: Structured textual semantics o f important Collaboration notation constructs.

Attribute Description

Process Holder for constructs which define the process
PartnerLinks Holder for PartnerLink constructs

PartnerLink Definition of process service participant

Variables Holder for Variable constructs

Variable Definition of data to be held by process

Sequence Holder for constructs which define a sequential collection of activities

Flow Holder for constructs which define a concurrent collection of activities

Invoke Execute an operation on a partner service

Receive Wait for a matching message to arrive

Assign Holder for constructs which will update variables

Copy Update the data held in variables

To Source of variable copy operation

From Destination of variable copy operation

Reply Send a message as a reply to a call received already

Correlations Holder for Correlation constructs

Correlation Description of an identifier so an instance can be identified from other instances

109

Figure 6.11: Excerpt of Collaboration Notation expressed using a UML Class diagram.

6.4.5 Interface Notation

The Interface notation provides the constructs necessary to define a distribution pattern

based compositional interface, which is to be exposed as a Web service, as discussed in

Section 2.3. The Interface notation is a Domain Specific Language (DSL) for Web ser

vice interface description. The notation is based, from an abstract syntax and semantic

domain point of view, on the WSDL specification [184], The WSDL specification was

chosen because it is standards based and compatible with the collaboration notation, previ

ously introduced. The notation is necessary to provide an entiy point for the execution of a

Collaboration notation instance previously generated.

The abstract structure of the Interface notation is specified by the W3C in [184] using

XML Schema. The concrete syntax of the language can be expressed using XML or using

UML, as outlined by Provost in [151]. However, because we only use WSDL internally,

there is no need to use any concrete graphical representation here. The more common text-

based concrete representation is XML. The semantic domain of the Interface notation is

110

;;;i buil(i.*ml f XMLtoUML.atl ib a t POD ,ecore WSDLCatalog.ecore

; v plHtforrn'./resource/Topman/MetaModels/BPEUecore

v 0 model

! I> 0 Process -> ExtensibleElement

> PartnerLink -> ExtensibleElement

l> B FaultHandler -> ExtensibleElement

t> 0 Activity-> ExtensibleElement

> £.! CorrelationSet -> ExtensibleElement

t> B invoke -> PartnerActivity

> B Link-> ExtensibleElement

P 0 Catch -> ExtensibleElement

f> 0 Reply -> PartnerActivity, Activity

> Ti PartnerActivity -> Activity

f> fei Receive -> PartnerActivity

1 l> 0 Exit -> Activity

!> (=1 Throw -> Activity

t> d Wait -> Activity

t> 0 Empty -> Activity

t> 0 Sequence -> Activity

l> £5 Switch -> Activity

!> Case -> ExtensibleElement

> {3 While •> Activity

Ecort Problems

Figure 6.12: The Collaboration notation’s abstract syntax as viewed in Eclipse.

also specified by the W3C, using plain English in [184], Semantics are also defined via

mappings from the DPL language to the Interface notation using relations, as discussed

in Section 7.4.3. Semantic mappings from the Interface notation to XML are also defined

using relations in Section 7.4.7.

We consider the notation to be incomplete as it does not define all the constructs neces

sary for representing an interface of a distribution pattern based choreography description.

We were required to extend the language to encompass a number of additional constructs,

such as PartnerLinkType and Role. These constructs enable us to expose a WS-BPEL based

compositional interface. The notation is illustrated in Figure 6.13, while Table 6.6 provides

the structured textual semantics of the constructs that may be used in the Interface notation.

Extensions are explicitly noted with an asterisk.

In MDA terminology this notation is a meta-model and is defined at the PIM level,

meaning it can be inn on any platform that provides a Web service execution environment.

The Eclipse Web Standard Tools (WST) provides an open source ECore based implemen-

111

Typ«»]

Figure 6.13: Interface Notation expressed using a UML Class diagram.

tation of the Interface notation, derived from the WSDL specification [67], However, as

previously noted, WST had to be extended to enable it to describe compositional interfaces

by adding the PartnerLinkType and the Role constructs. The language’s abstract syntax can

be manipulated using an Eclipse EMF based editor [39], as illustrated in Figure 6.14.

Instances of the Interface notation are an intermediate output from step five of our

methodological framework, discussed in Section 9.2.5. This output enables the execution

of a distribution pattern on a compositional engine.

6.4.6 Deployment Descriptor Notation

The Deployment Descriptor notation provides the constructs to define a distribution pattern

based deployment, to be enacted on a composition engine. The notation is a Domain Spe

cific Language (DSL) for Web service composition deployment. This notation provides the

link between Collaboration notation instance(s) and the Interface notation instance(s). The

notation could be based on a number of composition engine specific deployment languages.

In our context the notation is necessary to enable the deployment of a distribution pat-

112

Table 6.6: Structured textual semantics of important Interlace notation constructs.

Attribute Description

Definition Holder for service interface description

Message Description of the input or output from or to a service

PortType Description of a service’s abstract interface

Operation Description of an action provided by a PortType

Part Description of parameters for a service operation

Binding Description of the concrete message formats/protocols used by a service

PartnerLinkType* Details of participants referenced by a given service

Role* Details of roles played by a participant

Service Description of how the service can be accessed

tern via a composition engine. Our deployment descriptor notation specifically considers

one language, the PDD deployment descriptor, which is part of the Active BPEL composi

tion engine specification [2]. The notation is based, from an abstract syntax and semantic

domain point of view, on the PDD language.

The abstract structure of the Deployment notation is outlined by Active Endpoints using

an XML Schema, pdd.xsd [2], which itself is defined using EBNF. The concrete syntax

of the language is text-based and is expressed using XML. The semantic domain of the

Deployment notation is also specified by the Active Endpoints, using plain English in [2],

Semantics are defined via mappings from the DPL language to the Deployment notation

using relations, as discussed in Section 7.4.4. Semantic mappings from the Deployment

notation to XML are also defined using relations in Section 7.4.8.

The notation is deemed adequate as it defines all the constructs necessary for distribu

tion pattern based deployments. The notation is illustrated in Figure 6.15, while Table 6.7

provides the structured textual semantics of the constructs used in the Deployment notation.

In MDA terminology this notation is a meta-model and is defined at the PIM level,

meaning it can be run on any platform that supports the ActiveBPEL engine. We have writ-

113

jfcj build.xml BPEL.ecor* * . S3 « j PDD.ecore è t wSDLCatalcg.tfcore B

^ platformVresourcefropman/MetaModels/WSDL.ecore

v ' £ wsdl

1? GenModel

> Q WSDLElernent

> ¡3 PortType -> WSDLElernent, IPortType

> 0 Operation -> WSDLElernent., IQperation

> Message -> WSDLElernent, IMessage

> 0 Part -> WSDLElernent, IPart

> § Binding -> ExtensibleElement,, IBinding

§j BindingQperation -> ExtensibleElement, iBindingOperation

> Ej Service -> ExtensibleElement, IService

> B Port -> ExtensibleElement, IPort

Wi ExtensibilityElement -> WSDLElernent, lExtensibilityElement

> gj Definition -> ExtensibleElement, IDefinition

> 0 Import ■> WSDLElernent, llmport

t> ExtensibleElement -> WSDLElernent

> 9 Input -> MessageReference, WSDLElernent, llnput

> § Output •> MessageReference. WSDLElernent, lOutput

> Fault -> MessageReference, WSDLElernent, IFault

Sjj Bindinglnput -> ExtensibleElement, iBindinglnput

> Lì BindingOutput -> ExtensibleElement, IBindingOutput

> @ BindingFault -> ExtensibleElement, IBindingFault

Figure 6.14: Excerpt of the Interface notation’s abstract syntax as viewed in Eclipse.

ten an ECore based implementation of the ActiveBPEL’s deployment descriptor notation,

derived from an XML Schema. The language’s abstract syntax can be manipulated using

an Eclipse EMF based editor [39], as illustrated in Figure 6.16.

Instances of the Deployment Descriptor notation are an intermediate output from step

five of our methodological framework, discussed in Section 9.2.5.

6.4.7 Deployment Catalog Notation

The Deployment Catalog notation provides the constructs to enumerate the interfaces of a

distribution pattern based deployment to be enacted on a composition engine. The notation

is a Domain Specific Language (DSL) for enumerating the interfaces of a Web service based

composition deployment. The DSL is necessary to enable a composition engine to find the

interface and dependent resources within a deployment archive.

The notation is necessary to enable the deployment of a distribution pattern via a com

position engine. Our deployment catalog notation specifically considers one language, WS-

114

Figure 6.15: Deployment Descriptor Notation expressed using a UML Class diagram.

DLCatalog deployment catalog, which is part of the Active BPEL composition engine spec

ification [2],The notation is based, from an abstract syntax and semantic domain point of

view, on the WSDLCatalog language.

The abstract structure of the Catalog notation is not outlined by Active Endpoints. The

concrete syntax of the language is text-based and is expressed using XML [2], The seman

tic domain of the Catalog notation is also specified by the Active Endpoints, using plain

English in [2]. Semantics are defined via mappings from the DPL language to the Catalog

notation using relations, as discussed in Section 7.4.5. Semantic mappings from the Catalog

notation to XML are also defined using relations in Section 7.4.9.

The notation is deemed adequate as it defines all the constructs necessary for distribu

tion pattern based deployments. The notation is illustrated in Figure 6.17, while Table 6.8

provides the structured textual semantics of the constructs used in the Deployment Catalog

notation.

In MDA terminology this notation is a ineta-model and is defined at the PIM level,

meaning it can be ran on any platform that supports the ActiveBPEL engine. We have

written an ECore based implementation of the ActiveBPEL’s deployment catalog notation,

derived from XML examples of ActiveBPEL’s deployment catalogs in the engine’s pro

vided documentation. The language’s abstract syntax can be manipulated using an Eclipse

115

Table 6.7: Structured textual semantics of important Deployment Descriptor notation con
structs.

Attribute Description

Process Holder for constructs which describe the deployment

PartnerLinks Holder for PartnerLink constructs

PartnerLink Details of the role played by a participant in the composition

MyRole Details of the composition participant which initiates the composition

PartnerRole Details of the participants which are not the composition initiator

EndpointReference Holder for Address and ServiceName constructs

Address The URI location of a composition participant

ServiceName Name of the composition participant

WSDLReference Holder for WSDL constructs

WSDL The location/classpath of an interface in the deployment archive

Table 6.8: Structured textual semantics of important Deployment Catalog notation con
structs.

WSDLCatalog Holder for WSDLReference and XSDReference constructs

Entry Generic construct for location and classpath data storage

WSDLEntry The location and classpath of a WSDL interface in the deployment archive

SchemaEntry The location and classpath of an XML Schema in the deployment archive

116

: |i j b u i ld x m l C X M ltoU M L .atl f C la ssT o A ctiv ity a ll * £3 w S D L C a ta lo g .e c c r e >l9 1=3 Q

v * p la tfa im :/re so u rc e /T o p m a p /M 9 ia M Q d e te ,JP P D .« c o r§

I v l£r m o d e l

l> P r o c e s s

t> £i P artn erL in k «

0 P artrte fU rtk

> lij My Role

0 P a r tn e rf to le

> 0 A d d r e s s

> 9 S w v tceM a m ®

E> § E n d p o in tR e fe r ftn c a

0 w S D L R eferfcnces

> £3 WSDL

Figure 6.16: The Deployment notation’s abstract syntax as viewed in Eclipse.

EMF based editor [39], as illustrated in Figure 6.18.

Instances of the Deployment Descriptor notation are an intermediate output from step

five of our methodological framework, discussed in Section 9.2.5.

6.4.8 XML Notation

The XML notation provides the constructs to define an XML based document. The XML

notation is a General Purpose Language (GPL) for structuring data. The notation is based

on the XML specification [188]. The notation is necessary as the Collaboration, Interface,

Deployment and Deployment Catalog notations must be translated to XML for execution.

The abstract structure of the XML notation is specified by the W3C in [188] using

EBNF. The concrete syntax of the language is tree based plain text. The semantic domain

of the XML notation is specified by the W3C, using plain English in [188], Semantics are

also defined via mappings from the Collaboration, Interface, Deployment and Deployment

Catalog notations using relations, as discussed in Chapter 7.

117

Figure 6.17: Deployment Catalog Notation expressed using a UML Class diagram.

&.! build,xml f * XMlloUML.alf classToActivity.atl £ j DPLProfile.proPil... ' i3 " is = n

‘ry »j platform :/resource/Topman/MetaModGls/WSDLCatalog,ecore

^ & WSDLCatalog

^ E WSDLCatalog

children : Entry

£) WSDLEntry -> Entry

§ XSDEntry -> Entry

^ § Entry

location : EString

ci classpath ; EString

Figure 6.18: The Catalog notation’s abstract syntax as viewed in Eclipse.

One particular form of XML is XMI (XML Metadata Interchange). XMI, discussed in

Section 2.5.7.1 is the serialisation format for all the languages already introduced. There

is a semantic difference between the two languages, which can be reconciled using a tool

called AMMA [33]. This tool has semantic mappings between the languages, enabling

XML injectors and extractors to transform XMI to XML and XML to XMI.

The notation was deemed adequate as the notation is capable of representing a wide

range of structured information, including all the other notations defined here. The notation

is illustrated in Figure 6.19, while Table 6.9 provides the structured textual semantics of the

constiucts which may be used in the XML notation.

118

Figure 6.19: XML Notation expressed using a UML Class diagram.

Table 6.9: Structured textual semantics of important XML notation constructs.

Node Generic construct for data representation

Root Holder for Node constructs, there is only ever one root

Element Named structure which can contain both Text and Attribute constructs

Attribute Name value pair for data

Text Free area for text data

In MDA terminology this notation is a meta-model and is defined at the PIM level,

meaning it can be run on any platform that that provides an XML parser. An open source

example provided by the ATL project provides an ECore based meta-model, derived from

the XML specification [70], The language's abstract syntax can be manipulated using an

Eclipse EMF based editor [39], as illustrated in Figure 6.20.

Instances of the XML notation are an intermediate output from step five of our method

ological framework, discussed in Chapter 9.

119

build .xml C XMLtoUMLatl ClassToActivity.atl £} CoreBanking.xml 1 ^ »9 “ □

§) platfomr/resource/Topmen/MetaModels/XML.ecore

^ & XML

^ (a Node

ta startLine : Integer

^ startColumn : Integer

ra endLine : Integer

o endcolumn : Integer

f name : String

ff value : String

v* parent; Element

E3 Attribute -> Node

{¿j Text -> Node

i ^ @ Element -> Node

children : Node

£j Root -> Element

& Primitivelypes

c§ Boolean <null>

ci Integer <riull>

13 String <null>

Figure 6.20: The XML notation’s abstract syntax as viewed in Eclipse.

6.5 Tool Support

A number of tools are currently available to assist in the generation of modeling infrastruc

ture. Eclipse Modeling Framework (EMF), discussed in Section 2.5.7.2, is one such open

source tool. EMF provides editors to create ECore models and code generation facilities to

generate model editors based on meta-models. The IBM tool Rational Software Architect

(RSA) [107] provides a visual modeling tool, which can be used to assist in the generation

of ECore meta-models, along with EMF based models and model instances.

Another open source tool, NetBeans Meta Data Repository (Netbeans MDR), imple

ments the MOF specification, providing facilities like MOF meta-model storage, import

and export [111]. Meta-data in the MDR repository can be created, stored, retrieved and in

terchanged using the standardised Java Metadata Interface (JMI) Java API [171], The MOF

based meta-models can be designed in tools such as Poseidon [76] or MagicDraw [87], and

subsequently exported as XMI, before being stored and manipulated in the MDR reposi

tory. A UML2MOF tool is also provided by MDR to enable the definition of meta-models

120

using UML, and subsequent conversion to a MOF compliant meta-metamodel.

A MOF based tool, called MOmo, is also considered by Bicher in [34]. Here, a MOF

based meta-model is defined and exported by a tool such as ArgoUML [178], The MOmo

tool then converts this MOF representation into an object model, enabling end users to

create instances of the model in code.

6.6 Summary

In this chapter we have presented eight notations, or languages, required to facilitate the

modeling of distribution patterns, and the subsequent generation of an executable system.

Two of these languages, DPI , and DPLProfile, are novel, while one, WSDL, has been ex

tended to enable it to be used to expose the interface of a WS-BPEL based composition.

Each language has been motivated, its syntax defined, and its semantics outlined. The lan

guages, once defined, have been placed in an MDA based context to enable code generation.

Each of the languages are required by the five step methodological framework, outlined in

Chapter 9.

121

Chapter 7

Model Relations

7.1 Introduction

In this chapter we present the third component in our modeling and transformation frame

work, model relations. Relations provide the semantic mappings between the modeling

notations previously defined in Chapter 6. These semantic mappings define the web of

dependencies that must hold between source and target modeling notation. The model re

lations vary slightly depending on the distribution pattern chosen by the software architect.

In Section 7.2 we motivate the use of model relations. The MDA framework within

which the relations must be defined is outlined in Section 7.3. A full set of relations are

presented in Section 7.4. We conclude the chapter by investigating the tool support for

defining model relations in Section 7.5.

7.2 Model Relation Definitions and Semantics

Model relations enable preservation of information between notations. The goal of defining

relations between notations is to record the process by which information is related between

notations, thus ensuring modeling information is preserved from one model instance to the

next. These relations are considered abstract specifications or constraints, in that they are

not themselves executable. Model relations can be used as a template for model transfor-

122

Information preservation is achieved using tracing techniques. Traceability can ensure

system quality by establishing the purpose for a given software development artifact, in

our context modeling artifacts, existing in a given system [1], During system development

traceability enables developers to monitor the effect of changes throughout the system,

potentially increasing the quality of the system produced. Aizenbud-Reshef et al. suggest

a more general definition of traceability, where explicit relationships are defined between

software artifacts during system development [124]. We consider the most basic form of

traceability, where the semantics of relational links are not considered. Here, links indicate a

relationship between modeling artifacts, without implying any specific type of relationship.

We achieve traceability by separating the treatment of abstract semantic relations, discussed

in this chapter, and the executable implementation of top-down transformations in Chapter

Relations can be defined informally using plain English or through examples, while

formal definitions include graph transformations and mathematics [82], Relations can also

be defined between a language with no semantic domain and a language with a semantic

domain. The undefined language then takes on the semantics of the related language [105],

7.3 Framework

In Section 6.3 we discussed how we leverage the MDA framework to enable code genera

tion from high level models. The model relations defined in this chapter must be compatible

with this MDA approach. Consequently, the relations defined between notations utilise the

recently standardised QVT (Query/View/Transformation) language [133] outlined in Sec

tion 2.5.1.1.

We have chosen to use QVT graphical notation to declaratively illustrate the relations

that must hold for transformations between candidate models to be performed correctly.

The QVT notation lends itself to such definitions as it is based upon UML Object diagrams

mations, which are executable.

123

[60], which provides for an intuitive view of relations along with their selection patterns.

UML Object diagrams have been extended to allow for the specification of patterns within

a relation, along with the use of a new diamond shaped symbol to denote a transformation.

We envisage that software architects will be able to easily comprehend these diagrams.

These relations will later be used to assist in the declaration of transformations as discussed

in Chapter 8. It should be noted that the same language has not been used to define both

relations and transformations. Separate languages were required to adequately express the

relations graphically and to define executable transformations. The QVT language is used

to illustrate relations graphically but has only immature tool support to enable execution.

There is currently no tool available for defining QVT relations graphically, making the

definitions in this chapter difficult to define. We have used a general purpose drawing

tool, Dia [77], to draw the relations. Our transformation language of choice, ATL, has no

graphical representation but has well supported tools and an execution environment.

7.4 Relations

Relations provide the semantic mappings between seven of the eight modeling notations

defined in Chapter 6. The DPLProfile notation is not related to other notations as it is di

rectly applied to the UML 2.0 notation. Each of these notations describes part of a Web

service composition from a different perspective. The relations define the web of depen

dencies that must hold between pairs of candidate notations, a source and a target notation.

These candidate notations are called meta-models in MDA terminology.

Each “relations” box in Figures 7.1 through 7.3 maps to a set of QVT relations. A

QVT relation requires the definition of two or more domains. The source domain refers to a

particular artifact in the source notation, whilst the target domain refers to an artifact in the

target notation. The source domain may have a source pattern defined, which restricts the

search space over the source artifacts, and also binds source model values to variables. A

destination pattern may also be defined, to apply source model matches, and subsequently

124

bind variables to destination model variables. These variables represent model instance

artifacts of both the source and target models. In addition, a when and where predicate can

be defined in relations. The when predicate specifies pre-conditions or relations which must

have been previously executed before this relation will hold. The where predicate specifies

post-conditions or relations which should be run after this relation.

Using seven of the notations outlined in Chapter 6, we consider nine relation sets which

define relations from the high level UML notation to the lower level executable notations.

These nine relation sets can be categorised into three subsets as follows.

• UML 2.0 Notation (with DPLProfile applied) to Distribution Pattern Language (DPL)

Notation

• DPL Notation to Executable System Notations (Collaboration, Interface, Deployment

Descriptor, Deployment Catalog)

• Executable System Notations to XML Notation

Figures 7.1 through 7.3, below, illustrate how the relations between the notations in our

modeling approach will be defined.

The UML 2.0 notation (with DPLProfile applied) to DPL notation relation outlined in

the left of Figure 7.1 is a bi-directional relationship. The two notations are equivalent as

they both represent the same level of modeling information. We note in Section 6.4.3 the

motivation for implementing a new language is to provide for ease of analysis, verification

and transformation of distribution patterns. The target DPL notation is a simpler represen

tational format than the source UML 2.0 notation when used to model distributions, making

transformation definitions simpler.

The DPL to Executable System models in Figure 7.2 are uni-directional relationships.

The figure illustrates a more detailed view of the previously illustration relations between

the DPL notation and the Executable system notation in Figure 7.1. The source DPL no

tation is related to different target notations depending on the information requirements of

the target notations. Attempting to reverse engineer any one of these target models in iso-

125

M 2

Figure 7.1: Relations between UML 2.0 (with DPLProfile applied), DPL and Executable
system notations.

lation would result in an incomplete DPL source model. However, combining all the target

models together would result in a complete DPL source model.

MOF

M3
... r *..

, --T -------------------------------|---------------------------------- |--------------------------------- ,
I > I I I

M2

Figure 7.2: Relations between DPL and Executable System notations.

Finally the Executable System to XML models in Figure 7.3 are bi-directional relation

ships. The two notations are equivalent as they both represent the same level of modeling

information, albeit in different formats. The target XML notation represents the ubiquitous

XML format.

We consider relations at the notation or meta-model layer, whereby relations are de

fined between source and destination notations or meta-models. Specific source notation

elements are identified, using selection patterns, and related to destination notation ele

ments, according to a set of rules or relations.

MOF

M3

i i ii i i

M2

Figure 7.3: Relations between Executable System and XML notations.

Each set of model relations are either distribution pattern independent or distribution

pattern dependent. Relations which are pattern dependent define relationships between

source artifacts and different target artifacts, depending on the distribution pattern cho

sen. Pattern independent relations define relationships between source artifacts and target

artifacts, which are always the same regardless of the chosen pattern. The UML to Distribu

tion Pattern relations and the Executable System to XML relations are pattern independent,

whilst the remaining relations are pattern dependent. These pattern dependent relations

differ slightly depending on the individual pattern requirements.

In addition to relations we also define functions. Functions are simple operations per

formed over the source model to return either collections of model artifacts, individual

model artifacts or simple return values i.e. strings, booleans or integers. These functions do

not relate source artifacts to target artifacts. Instead the functions assist in the definition of

relations. All functions are prefixed with either “get” or “convert”.

To demonstrate the definition of model relations from a UML model to an executable

system, we present in the following subsections a centralised shared hub worked example.

This example features a centralised shared hub distribution pattern, outlined in Section

5.4.1. The relations are complete, meaning they cover all the important constructs of all the

notations outlined in Chapter 6. The relations enable us to semantically relate newly defined

languages to existing languages, such as from UML to DPL. The relations are implemented

using transformations in Chapter 8. The effectiveness of the relations, and subsequently the

127

transformations, is assessed in Chapter 10.

7.4.1 Relating UML 2.0 Notation/DPLProfile to Distribution Pattern Nota

tion

UML 2.0 is a standards based graphical language for the modeling of software systems,

as discussed in Section 2.5.2. DPL is our internal representation format for distribution

patterns. The first relation set is from the UML 2.0 notation to the Distribution Pattern no

tation, where the UML 2.0 and the Distribution Pattern notations are the candidate models.

The UML 2.0 notation is used to describe distribution patterns using standard UML 2.0 Ac

tivity diagram constructs and a novel profile DPLProfile, while the DPL notation provides

the constructs for the internal representation of a distribution pattern. These relations are

bi-directional as the two models are representations of the same information.

The transformation declaration, which holds all the relations, is expressed using QVT

textual notation, as illustrated in Figure 7.4. This relation set is pattern independent meaning

these relations, unless otherwise indicated, hold across all distribution patterns. There is no

graphica l representation of this transformation definition as it is simply a declaration of the

notations. The transformation is defined in Figure 7.4.

transformation umlactivityTodpl(ual:UMLActivity, dplliDPL)
{

__

Figure 7.4: Textual QVT umlactivityTodpl transform declaration.

The five relations in this set are outlined as follows, and described in more detail below.

The five relations show how the metaclasses that are stereotyped in the DPLProfile are

mapped to the DPL notation.

• ActivityToPatternDefinition

• ActivityPartitionToNode

• CallBehaviorActionToNode

128

• ObjectFlowToMapping

• PinToCorrelationVariables

The first relation, ActivityToPatternDefinition, defines the relation between a UML Ac

tivity artifact and a DPL PatternDefinition artifact. The relation is a top level relation and

so will be matched rather than being called directly by another relation. We can see the

UML Activity has had the dplActivity stereotype applied to it, allowing for distribution

specific values to be applied and subsequently related to the DPL notation. The properties

of both notations are bound using the same variable names, meaning they share the same

values. The where clause indicates that a function getActivityPartitions (retrieves all the

UML ActivityPartitions in the source model) must be subsequently executed. The relation

is expressed graphically in Figure 7.5.

ActivityToPattern Definition

Figure 7.5: Graphical QVT Activity ToPatternDefinition relation declaration.

The second relation, ActivityPartitionToNode, defines the relation between a UML Ac-

tivityPartition artifact and a DPL Node artifact. Both the UML ActivityPartitions and Call-

BehaviorActions artifacts have applied stereotypes, in this case dplPartition and dplPartic-

ipant respectively. The relation is top level thus negating the need for a when clause. The

where clause indicates that the relation CBAToOperation must be subsequently executed.

The relation is expressed graphically in Figure 7.6.

The third relation, CallBehaviorActionToNode, defines the relation between a UML

129

ActivityPartitionToNode

Figure 7.6: Graphical QVT ActivityPartitionToNode relation declaration.

CBAToOperation

Figure 7.7: Graphical QVT CBAToOperation relation declaration.

CallBehaviorAction artifact and a DPL Operation artifact. As in the previous relations,

stereotypes have been applied to the UML CallBehaviorActions and ControlFlows artifacts.

The relation is called by the second relation, ActivityPartitionToNode, which is specified

in the when clause. The where clause specifies that the relation ObjectFlowToMapping and

the function getObjectFlows (retrieves all the UML ObjectFlows in the source model) must

be subsequently executed. The relation is expressed graphically in Figure 7.7.

The fourth relation, ObjectFlowToMapping, defines the relation between a UML Ob-

jectFlow connector artifact and a DPL Mapping artifact. The relation matches UML In

put/Output Pin information, and relates them to DPL Mappings. The relation is called

130

O bjectF lowToM apping

when
CBAToOperation()

____w h e re ______________________
msf = getM apping(of,'source ')
ptf = getP in(of,'source ').nam e
tyf = getP in(of,'source').getType()
mst = ge tM app ing(o f,'ta rge t')
ptt = getP in(o f,'ta rge t').nam e
tyt = getP in(of,'ta rget').getType()

Figure 7.8: Graphical QVT ObjectFlowToMapping relation declaration.

P i n T o C o r r e l a t i o n V a r i a b l e

c v: C o r r e l a t i o n V a r i a b l e s

variable = cv_______________
u a 1 : U M L A c t i v i t y d p l 1 : D P L —

c v : V a r i a b l e

name = p_nme

____ w h e n __
g e t C o r r e l a t i o n V a r i a b l e s Q

Figure 7.9: Graphical QVT PinToCorrelationVariables relation declaration.

<<dplMessage>>
p :P in

name = p_nme

131

by the third relation, CallBehaviorAetionToNode, which is specified in the when clause.

The where clause specifies a number of functions which be subsequently executed, such

as getMapping (evaluates the source or destination pin of a UML ObjectFlow mapping),

getPin (evaluates the source or target UML Pin for a UML ObjectFlow) and finally getType

(evaluates the type of a UML Pin). The relation is expressed graphically in Figure 7.8.

The fifth relation, PinToCorrelationVariables, defines the pattern specific relation be

tween a UML Pin artifact and a DPL Variable artifact. The relation is called by the get-

CorrelationVariables function for patterns that require CorrelationVariables, as specified in

the when clause i.e. decentralised distribution patterns. This relation is not called for cen

tralised distribution patterns. We have included the relation here to exemplify distribution

pattern conditional relations. The relation is expressed graphically in Figure 7.9.

7.4.2 Relating DPL Notation to Collaboration Notation

The second relation set is from the DPL notation to the Collaboration notation, where the

DPL notation and the Collaboration notation are the candidate models. The DPL notation

provides the constructs for the internal representation of a distribution pattern, while the

Collaboration notation provides the constructs necessaiy to define the choreography of a

distribution pattern based composition. These relations are uni-directional as the target

model only represents some of the candidate model information. We assume in this example

the collaboration language, and subsequently target notation, will be WS-BPEL 2.3.2. It

should be noted that other collaboration languages, including WS-CDL, could have been

used as an alternative to WS-BPEL. We have chosen to use WS-BPEL because it has a

number of execution engines unlike WS-CDL.

This relation set is pattern dependent because the target notation’s artifacts, along with

the models outputted, depend on the chosen distribution pattern. This pattern dependency

is caused by the fact that different target artifacts must be considered by the relations, as

different distribution patterns have differing mechanisms for maintaining state, amongst

other concerns. For example, centralised distributions maintain state at a central hub, while

132

decentralised distributions distribute state amongst the participants and utilise the DPL lan

guage’s CorrelationVariables construct as a unique composition session identifier. Also,

centralised distributions require only one Collaboration model to describe a composition,

while decentralised distributions require a Collaboration model for each participant and the

composition originator. As previously stated, for the purpose of our worked example, we

assume the use of a centralised distribution pattern. The relation is expressed in Figure 7.10.

transformation dplTobpel(dpll:DPL, bpell:BPEL)
{

i " __

Figure 7.10: Textual QVT dplTobpel transform declaration.

The ten relations in this set are outlined as follows, and described in more detail below.

The ten relations show how the DPL artifacts are mapped to the BPEL notation.

• PattemDefinitionToProcess

• NodeToNamespace

• OperationTo Variable

• NodeToPartnerLink

• PatternDefinitionToNamespace

• OperationToInvoke

• MappingToAssign

• Pattern DefinitionTo Variable

• PatternDefinitionToNamespace

• PattemDefinitionToPartnerLink

The first relation PattemDefinitionToProcess defines the relation between a DPL Pat-

ternDefinition artifact and a BPEL Process artifact. The relation is a top level relation and

133

Pattern DefinttionToProcess

where.
vin = getServiceNam e() + 'R equestType'
vout = gelServiceN am e() + 'R esponseType'
opn = getO pera tionN am e()
plqn = getNam espacePrefixQ + + getServiceNam e() + 'P orlType '
npls = NodeToPartnerLink(nd)
pdtpl = PatternD efin ilionToP artnerL ink()
ovrq = O perationToVariable{'Request',op)
ovrs = O pera tionToV ariablefR esponse'.op)
pdvreq = PatternD efin itionToVariab le(’Request')
pdvres = PatternDefin itionToVariab le('Response')
inv = O perationTolnvoke(op)
mtoa = M appingsToAssign(m p)
Pattern Défini Ho nToNamespaceQ

Figure 7.11 : Graphical QVT PatternDefinitionToProcess relation declaration.

so will be matched rather than being called directly by another relation. As in the first rela

tion set the properties of both notations are bound using the same variable names, meaning

they share the same values. The where clause indicates that a number of functions and

relations must be subsequently executed. The functions are getServiceName (retrieve the

name assigned to the composition), getOperationName (retrieve the operation name as

signed to the composition) and getNamespacePrefix (retrieve the namespace prefix for the

composition). The relations to be executed are NodeToPartnerLink, OperationToInvoke,

MappingsToAssign, PatternDefinitionToPartnerLink, PattemDefinitionToVariable, Pattern-

DefinitionToNamespace and OperationToVariable. The relation is expressed graphically in

Figure 7.11.

134

N o d e T o N a m e sp a c e

n : N o d e dpl1 : DPL bp 1 : BPEL n s : N a m e s p a c e

uri = n__uri
ns = n_ns < <ZI> > URI = n_uri

prefix = n_ns

Figure 7.12: Graphical QVT NodeToNamespace relation declaration.

The second relation, NodeToNamespace, defines the relation between a DPL Node ar

tifact and a BPEL Namespace artifact. The relation is a top level relation and so will be

matched rather than being called directly by another relation. No when or where clause is

specified. The relation is expressed graphically in Figure 7.12.

The third relation, OperationToVariable, defines the relation between a DPL Operation

artifact and BPEL Variable artifacts. The relation is called by another relation, PatternDefi-

nitionToProcess, as specified in the when clause. No where clause is specified. The relation

is expressed graphically in Figure 7.13.

O p e r a t i o n T o V a r i a b l e

Figure 7.13: Graphical QVT OperationToVariable relation declaration.

The fourth relation, NodeToPartnerLink, defines the relation between a DPL Node arti

fact and a BPEL PartnerLink artifact. The relation is called by another relation, PattemDef-

initionToProcess, as specified in the when clause. The where clause specifies the function

135

N o d e T o P a r t n e r L i n k

n d : N o d e

name = n name

d p) 1 : D P L b p 1 : B P E L p l r P a r t n e r U n k

name = n_name
partnerRole = n_name
partnerLinkType = np+* : 1+n_name+'PLTf

. whe n
P a t t e r n D e f i n i t i o n T o P r o c e s s ()

_______w h e r e _______________________

n p = g e t N a m e s p a c e P r e f i x ()

Figure 7.14: Graphical QVT NodeToPartnerLink relation declaration.

P atte rnD efin itionToN am espace

p d : p a t t e r n - d e f i n i t i o n

namespace-prefix = np
base-namespace = bn

b n : B a s e N a m e s p a c e n p : N a m e s p a c e P r e f i x

text * bn no text = itp_ prefix

.w hen
P a t t e r n D e f i n i t i o n T o P r o c e s s ()

w h e r e
s n = g e t S e r v i c e N a m e ()

p l : P a r t n e r L i n k

URI = bn_ns + sn
prefix - np_prefix

Figure 7.15: Graphical QVT PatternDefinitionToNamespace relation declaration.

getNamespacePrefix (retrieve the namespace prefix for the composition) must be executed

subsequent to this relation. The relation is expressed graphically in Figure 7.14.

The fifth relation, PatternDefinitionToNamespace, defines the relation between a DPL

PattemDefinition artifact and a BPEL Namespace artifact. The relation is called by another

relation, PattemDefinitionToProcess, which is specified in the when clause. The where

clause specifies the function getServiceName (retrieve the name for the composition) must

be executed subsequent to this relation. The relation is expressed graphically in Figure 7.19.

The sixth relation, OperationToInvoke, defines the relation between a DPL Operation

artifact and a BPEL Invoke artifact. The relation is called by another relation, PatternDefi-

136

O pera tionTo Invoke

nd :N ode

name = nd_name

o p s : O p e r a t l o n s

operation = op

o p : O p e r a t i o n

• o p na n i t

when

i n v : l n v o k e

dp 11 :DPL bpe!1:BPEL

name = 'I n v o k e '+ap_name
operation = oper
portType = pt
partnerLink = pi
inputVariable = invar
(mtpgtVorlflblf ■ Otttvat

o p e r : O p e r a t i o n

name - op_name

p l : P a r t n e r L l n k p t : P o r t T y p e

i n v a r : V a r i a b l e o u t v a r : V a r i a b l e

f iU M > nd im - ' f - o p p jM s t fk e q u o f ir . • in ir . i - m l n a H f p f l n j i n i . » R ttnpm nie ''

Pattern DefinitionToProcess()

Figure 7.16: Graphical QVT OperationTolnvoke relation declaration.

nitionToProcess, as specified in the when clause. No where clause is specified. The relation

is expressed graphically in Figure 7.16.

The seventh relation, MappingToAssign, defines the relation between a DPL Mapping

artifact and a BPEL Assign artifact. The when clause specifies that the PatternDefinition-

ToProcess relation must have been previously executed. No where clause is specified. The

relation is expressed graphically in Figure 7.17.

MappingToAssign

f : F r o m

part = f_part
■tnwgnagf' ■- i _ iimaanfi^

m p : M a p p i n g

from =
to = t

f

part = t part
message - t message

_w hen.

a s s i A s s i g n

dpl1 :DPL bp1 :BPEL

PatternDefinUionToProcess()

c p f r o m : F r o m

part = fmpart
variable = fmvar

c p t o : T o

part = topart
variable - tovai

f m v a r : V a n a b l e

- f jiiart

t o v a r : V a r i a b l e

f m p a r t : P a r t t o p a r t : P a r t

- ; EadHagn name = t message

Figure 7.17: Graphical QVT MappingToAssign relation declaration.

The eighth relation, PattemDefinitionToVariable, defines the relation between a DPL

PatternDefinition artifact and a BPEL Variable artifact. The fn_in_type variable is bound at

runtime to either the “request” or “response” literal string values. The when clause specifies

137

that the PatternDefinitionToProcess relation must have been previously executed. No where

clause is specified. The relation is expressed graphically in Figure 7.18.

Pa tte rn D e fi n itio n T o V a ria b le

Figure 7.18: Graphical QVT PattemDefinitionToVariable relation declaration.

The ninth relation, Pattern Defi nitionToN amespace, defines the relation between a DPL

PattemDefinition artifact and a BPEL Namespace artifact. The when clause specifies that

the PatternDefinitionToProcess relation must have been previously executed. No where

clause is specified. The relation is expressed graphically in Figure 7.19.

P a t t e r n D e f i n i t i o n T o N a m e s p a c e

. w h e n
P a t t e r n D e f i n i t i o n T o P r o c e s s ()
______w h e r e ______________________
s n = g e t S e r v i c e N a m e Q

Figure 7.19: Graphical QVT PattemDefinitionToNamespace relation declaration.

The tenth relation, PatternDefinitionToPartnerLink, defines the relation between a DPL

PattemDefinition artifact and a BPEL PartnerLink artifact. The when clause specifies that

the PatternDefinitionToProcess relation must have been previously executed. No where

clause is specified. The relation is expressed graphically in Figure 7.20.

138

Pa ttern D éfin i tionToP artne rL ink

Figure 7.20: Graphical QVT PatternDefinitionToPartnerLink relation declaration.

7.4.3 Relating DPL Notation to Interface Notation

The third relation set is from the DPL notation to the Interface notation, where the DPL no

tation and the Interface notation are the candidate models. The DPL notation provides the

constructs for the internal representation of a distribution pattern, while the Interface nota

tion provides the constructs necessary to define a distribution pattern based compositional

interface. These relations are uni-directional as the target model only represents some of

the candidate model information. We assume the Web service interface language will be

WSDL, and thus utilise the WSDL notation, discussed in Section 2.3.

This relation set is pattern dependent because the target notation’s artifacts, along with

the models outputted, depend on the chosen distribution pattern. For example, centralised

distributions require only a single Interface model to expose the composition hub, while de

centralised distributions require an Interface model for each composition participant along

with the composition initiator. Again we assume the use of a centralised distribution pattern.

The relation is expressed in Figure 7.21.

transformation dplTowsdl(dpll:DPL, wsl:WSDL)
{

i ’ " __

Figure 7.21 : Textual QVT dplTowsdl transform declaration.

The five relations in this set are outlined as follows, and described in more detail below.

The five relations show how the DPL artifacts are mapped to the WSDL notation.

139

• PattemDefinitionToDefinition

• NodeToN amespace

• NodeToPartnerLinkType

• FromToPart

• ToToPart

The first relation, PattemDefinitionToDefinition, defines the relation between a DPL

PattemDefinition artifact and a WSDL Definition artifact. The relation is a top level rela

tion and so will be matched rather than being called directly by another relation. As before

the properties of both notations are bound using the same variable names, meaning they

share the same values. The where clause indicates that a number of functions and rela

tions must be subsequently executed. These functions are getBasenamespace (retrieve the

namespace for the composition), getServiceName (retrieve the name assigned to the com

position), getOperationName (retrieve the operation name assigned to the composition) and

getNamespacePrefix (retrieve the namespace prefix for the composition). The relations to

be executed are NodeToNamespace, NodeToPartnerLinkType, ToToPart and ToFromPart.

The relation is expressed graphically in Figure 7.22.

The second relation, NodeToNamespace, defines the relation between a DPL Node ar

tifact and a WSDL Namespace artifact. The relation is called by the first relation, Pattern-

DefinitionToDefinition, as specified in the when clause. No where clause is specified. The

relation is expressed graphically in Figure 7.23.

The third relation, NodeToPartnerLinkType, defines the relation between a DPL Node

artifact and a WSDL PartnerLinkType artifact. The relation is called by the first relation,

PattemDefinitionToDefinition, which is specified in the when clause. No where clause is

specified. The relation is expressed graphically in Figure 7.24.

The fourth relation, FromToPart, defines the relation between a DPL From artifact and

a WSDL Part artifact. The relation is called by the first relation, PattemDefinitionToDefini-

140

P a tte rr iD e fin it io n T o D e fin it io n

b n : 9 in « N i m o t p a c e s n : S e r v lc e N a m e

u u t . t : . • : i n r |

p d : p a l t e r n - d e f I n i t io n

d is tr i .b u t io n -p a U t.e rr . - pd_dp

n t i i ' . N o d B S

a a o nil

m p s :M a p p ln g s o p m e s s :M e s s a g e Ip m e s s rM e s s a g e

cMm* • Hip • • ’ ■ «.r > 'J a fo r r i iT y p i" » np - ’ • - i s - ‘ ta ip in c tîm e '

|f:From
bn = getBaseNamespace()
sn = getServiceName()
nn = NodeToNamespace(nd)
np lt= NodeToPartnerLinkType(nd)
np = gelNamespacePrefix()
ips = ToToPart(t)
ops = FromToPart(f)
on = gotOperatlonNameO

Figure 7.22: Graphical QVT PattemDefinitionToDefinition relation declaration.

NodeToNam espace

n d : N o d e
d p l 1 : D P L w s 1 : W S D Lname = nd__na.me

uri = nd_uri
ns = nd_ns
engine-uri = nd_engine_uri

w h e n

n s : N a m e s p a c e

URI = nd_uri
prefix = nd ns

P a t t e r n D e f i n i t i o n T o D e f i n i t i o n ()

Figure 7.23: Graphical QVT NodeToNamespace relation declaration.

141

N o d e T o P a r t n e r L i n k T y p e

Figure 7.24: Graphical QVT NodeToPartnerLinkType relation declaration.

tion, as specified in the when clause. The where clause indicates the function convertEType-

ToWSDLType (converts an ECore data type to a WSDL data type) must run subsequent to

this relation. The relation is expressed graphically in Figure 7.25.

F r o m T o P a r t

f : F r o m

message = f_message
part = f_part
type = f type

d p i 1 : D P L w s 1 : W S D L p t : P a r t

name = f_part
typeName = ftp

_______ w h e n ___
P a t t e r n D e f m i t i o n T o D e f i n i t i o n Q

______ w h e r e __

f tp = c o n v e r t E T y p e T o W S D L T y p e (f _ t y p e)

Figure 7.25: Graphical QVT FromToPart relation declaration.

The fifth relation, ToToPart, defines the relation between a DPL To artifact and a WSDL

Part artifact. The relation is called by the first relation, PattemDefinitionToDefinition, which

is specified in the when clause. The where clause indicates the function convertEType-

ToWSDLType (converts an ECore data type to a WSDL data type) must run subsequent to

this relation. The relation is expressed graphically in Figure 7.26.

142

ToToPart

t :To

d p i 1 : D P L w s 1 : W S D Lmessage = t_message
part = t_part
node = t__node
type = t type

p t : P a r t

name = t_part
typeName = ttp

_______ w h e n ___
P a t t e r n D e f i n i t i o n T o D e f i n i t io n ()

______ w h e r e __

t tp = c o n v e r t E T y p e T o W S D L T y p e (t _ t y p e)

Figure 7.26: Graphical QVT ToToPart relation declaration.

7.4.4 Relating DPL Notation to Deployment Descriptor Notation

The fourth relation set is from the DPL notation to the Deployment Descriptor notation,

where the DPL notation and the Deployment Descriptor notation are the candidate models.

The DPL notation provides the constructs for the internal representation of a distribution

pattern, while the Deployment Descriptor notation provides the constructs to define a dis

tribution pattern based deployment, to be enacted on a composition engine. These relations

are uni-directional as the target model only represents some of the candidate model infor

mation. We previously indicated that the WS-BPEL collaboration language will be used.

It follows that we must choose a WS-BPEL compliant deployment environment. One such

platform is ActiveBPEL. ActiveBPEL has a deployment descriptor format PDD (Process

Deployment Descriptor), which is the basis for the deployment descriptor notation.

This relation set is pattern dependent because the target notation’s artifacts, along with

a number of models outputted, depend on the chosen distribution pattern. For example,

centralised distributions require only a single Deployment Descriptor model to expose the

composition hub, while decentralised distributions require each participant to have a De

ployment Descriptor model as well as the composition initiator. As previously stated we

assume the use of a centralised distribution pattern. The relation is expressed in Figure 7.27.

The five relations in this set are outlined as follows, and described in more detail below.

The five relations show how the DPL artifacts are mapped to the PDD notation.

143

transformation dplTopdd(dpll:DPL, pddl:PDD)
{

__

Figure 7.27: Textual QVT dplTopdd transform declaration.

PatternDefinitionTo Process

where,
ntpl = NodeToPartnerUnk(nd)
pdtpl = PattemDefinitionToPartnerUnk()
ntw = NodeToWSDL(nd)
pdlw = PatternDefinitionToWSDL()

Figure 7.28: Graphical QVT PatternDefinitionToProcess relation declaration.

• PatternDefinitionToProcess

• NodeToPartnerLink

• NodeToWSDL

• PatternDefinitionToPartnerLink

• PatternDefinitionTo WSDL

The first relation, PatternDefinitionToProcess, defines the relation between a DPL Pat-

ternDefinition artifact and a PDD Process artifact. The relation is a top level relation and so

will be matched rather than being called directly by another relation. As in the other relation

sets the properties of both notations are bound using the same variable names meaning they

share the same values. The where clause indicates that a number of relations must be sub

sequently executed. The relations to be executed are NodeToPartnerLink, NodeToWSDL,

PatternDefinitionToPartnerLink and PatternDefinitionTo WSDL. The relation is expressed

graphically in Figure 7.28.

144

NodeToPartnerLink

n d :N o d e

name = nd name
uri = nd uri
ns = nd ns
engine-uri = nd engin e uri

when

p k P a r tn e rL in k

□aoie = nd name
partnerRole = pr

p r :P a r t ne rR o le

endpointReferenc
endDOintReferenc

eType • rstatic'
e = er

e r :E n d p o in tR e fe re nee

uri = nd^uri
namespace = nd_ns
address = ad
■orvlcoWdiw

ad A d d re s s

text - nd ns + ' ' + nd uri

s n :S e rv ic e N a m e

PortName = nd_name
test « nd fiB » • : ' * nd nflffg » 'Service'

Pattern Defin itionToN ode()

Figure 7.29: Graphical QVT NodeToPartnerLink relation declaration.

The second relation, NodeToPartnerLink, defines the relation between a DPL Node

artifact and a PDD PartnerLink artifact. The relation is called by the first relation, Pattem-

DefinitionToProcess, which are specified in the when clause. No where clause is specified.

The relation is expressed graphically in Figure 7.29.

The third relation, NodeToWSDL, defines the relation between a DPL Node artifact

and a PDD WSDL artifact. The relation is called by the first relation, PattemDefinition-

ToProcess, as specified in the when clause. No where clause is specified. The relation is

expressed graphically in Figure 7.30.

NodeToW SDL

nd :N ode
name = nd_name dpi 1 :DPL pdd1 :PDD w s:W S D L
ns - nd ns <---— c > - - -> location = 'wsdl/' + nd_name + * .wedl‘

namespace = nd u ri

w hen

P atte rn D efin itio n T o N o d e ()

Figure 7.30: Graphical QVT NodeToWSDL relation declaration.

The fourth relation, PatternDefinitionToPartnerLink, defines the relation between a DPL

PattemDefinition artifact and a PDD PartnerLink artifact. The relation is called by the first

relation, PatternDefinitionToProcess, as specified in the when clause. No where clause is

specified. The relation is expressed graphically in Figure 7.31.

PatternDefinitionToPartnerUnk

Figure 7.31: Graphical QVTPatternDefinitionToPartnerLink relation declaration.

The fifth relation, PatternDefinitionToWSDL, defines the relation between a DPL Pat-

temDefinition artifact and a PDD WSDL artifact. The relation is called by the first relation,

PatternDefinitionToProcess, which are specified in the when clause. No where clause is

specified. The relation is expressed graphically in Figure 7.32.

P atte rnD efin itionToW SD L

Figure 7.32: Graphical QVT PatternDefinitionToWSDL relation declaration.

7.4.5 Relating DPL Notation to Deployment Catalog Notation

The fifth relation set is from the DPL notation to the Deployment Catalog notation, where

the DPL notation and the Deployment Catalog notation are the candidate models. The

DPL notation provides the constructs for the internal representation of a distribution pat

tern, while the Deployment Catalog notation provides the constructs to enumerate the in

terfaces of a distribution pattern based deployment, to be enacted on a composition engine.

146

These relations are uni-directional as the target model only represents some of the candidate

model information. As previously stated, we assume the use of a centralised distribution

pattern, the WS-BPEL collaboration language and the ActiveBPEL execution platform.

ActiveBPEL has a deployment catalog format wsdlCatalog, which is the basis for the De

ployment Catalog notation.

This relation set is pattern dependent because the target notation’s artifacts, along with

the models outputted, depend on the chosen distribution pattern. For example centralised

distributions require only a single Deployment Catalog model to describe the interfaces

required by the composition hub, while decentralised distributions require each participant

to have a Deployment Catalog model along with the composition initiator. The relation is

expressed in Figure 7.33.

transformation dplTowdc(dpll:DPL, wdcl:WSDLCatalog)
{

r __

Figure 7.33: Textual QVT dplTowdc transform declaration.

The three relations in this set are outlined as follows, and described in more detail below.

The three relations show how the DPL artifacts are mapped to the WSDLCatalog notation.

• PattemDefinitionToWSDLCatalog

• NodeToWSDLEntry

• PatternDefinitionToWSDLEntry

The first relation, PattemDefinitionToWSDLCatalog, defines the relation between a

DPL PattemDefinition artifact and a WSDLCatalog WSDLCatalog artifact. The relation

is a top level relation and so will be matched rather than being called directly by another

relation. As in the other relation sets the properties of both notations are bound using the

same variable names meaning they share the same values. The where clause indicates that

a function and a relation must be subsequently executed. The relation to be executed is Dis-

147

tributi onPattemTo WSDLEntry, whilst the function is getAllNodes (retrieves all the DPL

Nodes from the source model). The relation is expressed graphically in Figure 7.34.

P atte rn D e f i n itio nToW S D LC a ta log

p d : p a t t e r n - d e f i n i t i o n

distribution-pattern
nodes = nds______

p d _ d p

w d c1 :W S D L C a ta lo g

---> c a t : W S D L C a t a l o g

c h i l d r e n = g a n + p d t w e

w h e re
gan = g e tA IIN o d e s ()
pd tw e = P a tte rn D e fin it io n T o W S D L E n try (p d)

Figure 7.34: Graphical QVT PattemDefinitionToWSDLCatalog relation declaration.

The second relation, NodeToWSDLEntry, defines the relation between a DPL Node

artifact and a WSDLCatalog WSDLEntry artifact. The relation is a top level relation and

so will be matched rather than being called directly by another relation. No when or where

clause is specified. The relation is expressed graphically in Figure 7.35.

NodeToWSDLEntry

nd:Node dpl1:DPL wdcl :WSDLCatalog e nt :WSDL En tr y

name = nd name < < --------> - - > location = 'wsdl/'+nd_name+'.wsdl*
classpath = 'wsd/'+nd name+'.wsdl'

Figure 7.35: Graphical QVT NodeToWSDLEntry relation declaration.

The third relation, PattemDefinitionTo WSDLEntry, defines the relation between a DPL

PatternDefinition artifact and a WSDLCatalog WSDLEntry artifact. The relation is called

by the first relation, PattemDefinitionTo WSDLCatalog, as specified in the when clause. No

where clause is specified. The relation is expressed graphically in Figure 7.36.

Pattern Def initionToWSDLEntry

pd ¡ p a t te r n - d é f in i t io n

Service-name • an

s n :S e rv ic e N a m e

nan* * air naii)

dp!1:DPL w dcl :WSDLCatalog e n t: W S D L E n try

location = 'w e dl/ ' +sn_name+'.w s d l '

when
PatternDefinitionToWSDLCatalogO

Figure 7.36: Graphical QVT PattemDefinitionToWSDLEntry relation declaration.

148

The sixth relation set is from the Collaboration notation to the XML notation, where the

Collaboration notation and the XML notation are the candidate models. The Collaboration

notation provides the constructs necessary to define the choreography of a distribution pat

tern based composition, while the XML notation provides the constructs to define an XML

based document necessary for execution. These relations are bi-directional because the tar

get and source models represent the same information, albeit in different formats. Again

we assume the Collaboration notation is targeted to the WS-BPEL collaboration language.

This relation set specifies how a WS-BPEL notation is related to an XML based notation,

enabling models based upon the WS-BPEL notation to be serialised as XML text. The re

lation set is pattern independent as these relations hold across all distribution patterns. The

relation is expressed in Figure 7.37.

transformation bpelToxml(bpell:BPEL, xmll:XML)
{

} " ' __

Figure 7.37: Textual QVT bpelToxml transform declaration.

The eight relations in this set are outlined as follows, and described in more detail below.

The eight relations show how the BPEL artifacts are mapped to the XML notation.

• ProcessToRoot

• NamespaceToAttribute

• InvokeActivityToElement

• ReceiveActivityToElement

• ReplyActivityToElement

• AssignActivityToElement

• VariableToElement

7.4.6 Relating Collaboration Notation to XML Notation

149

The first relation, ProcessToRoot, defines the relation between a BPEL Process artifact

and an XML Root artifact. The relation is a top level relation and so will be matched rather

than being called directly by another relation. As in the other relation sets, the properties

of both notations are bound using the same variable names meaning they share the same

values. The where clause indicates that a number of functions and relations must be subse

quently executed. The relations to be executed are PartnerLinkToElement, VariableToEle-

ment, ReceiveActivityToElement,InvokeActivityToElement, AssignActivityToElement and

ReplyActivityToElement. The functions are convertBooleanToString (converts a Boolean

value to its string equivalent) and getAllNamespaces (retrieves all the Namespaces in a

source BPEL model). The relation is expressed graphically in Figure 7.38.
ProcessToRoot

• PartnerLinkToElement

Figure 7.38: Graphical QVT ProcessToRoot relation declaration.

The second relation, NamespaceToAttribute, defines the relation between a BPEL Names

pace artifact and an XML Attribute artifact. The relation is a top level relation and so will

be matched rather than being called directly by another relation. No when or where clause

are specified. The relation is expressed graphically in Figure 7.39.

The third relation, InvokeActivityToElement, defines the relation between a BPEL In-

150

N am espaceT o A tt r ibu te

n s : N a m e s p a c e b p e l 1 : B P E L x m l 1 : X M L a t t : A t t r i b u t e

prefix = ns_prefix
URI = ns URI < < ----- > * name = 'xmlns:' + ns_prefix

value « ns URI

Figure 7.39: Graphical QVT NamespaceToAttribute relation declaration.

voke artifact and an XML Element artifact. The relation is called by the first relation, Pro-

cessToRoot, as specified in the when clause. The where clause specifies that the function

getActivityType (resolves the type of a BPEL source model Activity) must be subsequently

executed. The relation is expressed graphically in Figure 7.40.

InvokeActivityToElement

o p e : O p e r a t lo n

p o t:P o r tT y p e i n v a r : A t t r ib u t e o u t v a r : A t t r ib u t e

atne • * m.u i* . ' outpuiVa c ab le 1
•••tue - tv rjtri- Yttu> • nu

p a l r P a M n o r U n k

e le : E le m e n t
a c t; A c t iv i ty bpel1:BPEL xml1:XML

N |I0 «’'L. BUI* < - • ■ ■ < ______> — >
* 9**

o v : O u t p u t V a r la b le iv : ln p u t V a r ia b le

L1M ’ #ne - IV.SAfti
n m e : A t t r ib u t e p l: A t t r ib u t e

s * « • -a«M - » n o • ’ pBrtSfiiUsk*
V l iu i - • « ' -.%rm VA|UI • p it C-KW

p t: A t t r ib u t e

ProcessToRoot()
__.where___
gal = getActivityType(act)

Figure 7.40: Graphical QVT InvokeActivityToElement relation declaration.

The fourth relation, ReceiveActivityToElement, defines the relation between a BPEL

Receive artifact and an XML Element artifact. The relation is called by the first relation,

ProcessToRoot, which is specified in the when clause. The where clause specifies that the

function getActivityType (resolves the type of a BPEL source model Activity) and convert-

BooleanToString (converts a Boolean value to its string equivalent) must be subsequently

executed. The relation is expressed graphically in Figure 7.41.

The fifth relation, ReplyActivityToElement, defines the relation between a BPEL Reply

artifact and an XML Element artifact. The relation is called by the first relation, Pro

cessToRoot, as specified in the when clause. The where clause specifies that the function

getActivityType (resolves the type of a BPEL source model Activity) must be subsequently

151

Figure 7.41: Graphical QVT ReceiveActivityToElement relation declaration,

executed. The relation is expressed graphically in Figure 7.42.

ReplyActivityToElement

o0.oQ- r t T y p e

ON»» ■ P°* =>n “ “

o p e : O p e r a t lo n p a l : P a r t n e r L i n k

■ op* r . r < IUl-S* * M l SJL=3

v a r : A t t r i b u t e

fj»e* - ■
vjluw - i f i'-i r r

a c t : A c t i v i t y

bpeM :BPEL xm!1:XML e l e : E l e m e n t p t : A t t r i b u t e

r*me - gat r.aniE f 'p o rtTy p e1
v*S 'M! * po l aKame

v a r i : V a r i a b | e
n m e : A t t r i b u t e p i: A t t r i b u t e

* ‘ p artnerL ink*
- jt-hl i t j c r

ProcessToRool()
__ ,vvJiere^_____
gat = getActlv ityType(act)

Figure 7.42: Graphical QVT ReplyActivityToElement relation declaration.

The sixth relation, AssignActivityToElement, defines the relation between a BPEL As

sign artifact and an XML Element artifact. The relation is called by the first relation, Pro-

cessToRoot, which is specified in the when clause. The where clause specifies that the

function getActivityType (resolves the type of a BPEL source model Activity) must be sub

sequently executed. The relation is expressed graphically in Figure 7.43.

The seventh relation, VariableToElement, defines the relation between a BPEL Variable

artifact and an XML Element artifact. The relation is called by the first relation, Pro-

cessToRoot, as specified in the when clause. No where clause is specified. The relation is

expressed graphically in Figure 7.44.

152

AsslgnActivltyToElem ent

Figure 7.43: Graphical QVT AssignActivityToElement relation declaration.

VariableToElement

var: Variable

name = var^name
messaqeType = msg

ms g: Me ss age

name = msg_qName

when
P ro c e s s T o R o o t ()

bpel1:BPEL xml1:XML

e l e : E le me nt

name = 'variable'
children - name+messageType

n am e : A tt ri b u te

name = 'name'
value = var name

m s t : At t r ib ut e

name = ' messageType1*

Figure 7.44: Graphical QVT VariableToElement relation declaration.

The eighth relation, PartnerLinkToElement, defines the relation between a BPEL Part-

nerLink artifact and an XML Element artifact. The relation is called by the first relation,

ProcessToRoot, which is specified in the when clause. No where clause is specified. The

relation is expressed graphically in Figure 7.45.

7.4.7 Relating Interface Notation to XML Notation

The seventh relation set is from the Interface notation to the XML notation, where the In

terface notation and the XML notation are the candidate models. The Interface notation

provides the constructs necessary to define a distribution pattern based compositional inter

face, while the XML notation provides the constructs to define an XML based document,

necessaiy for execution. These relations are bi-directional as the target and source models

153

PartnerLinkToElement

Pl : P

name = p
myRole =
partnerR
parCnerL

___ when
ProcessToRootQ

Figure 7.45: Graphical QVT PartnerLinkToElement relation declaration.

represent the same information, albeit in different formats. We assume the Interface nota

tion is targeted to the WSDL interface language. This relation set specifies how a WSDL

notation is related to an XML based notation, enabling models based upon the WSDL nota

tion to be serialised to XML text. The relation set is pattern independent as these relations

hold across all distribution patterns. The relation is expressed in Figure 7.46.

transformation wsdlToxml(wsl:WSDL, xmllrXML)
{

__

Figure 7.46: Textual QVT wsdlToxml transform declaration.

The twelve relations in this set are outlined as follows, and described in more detail

below. The twelve relations show how the WSDL artifacts are mapped to the XML notation.

• DefinitionToRoot

• NamespaceTo Attribute

• MessageToElement

• PartToElement

• PortTypeToElement

• OperationToElement

154

a r tn e rL In k

l_name
pl_myRole

ole = pl_pr
inkType = p r p l b

• InputToElement

• OutputToElement

• PLTToElement

• RoleToElement

• PLTPortTypeToElement

• ServiceToElement

The first relation, DefinitionToRoot, defines the relation between a WSDL Definition

artifact and an XML Root artifact. The relation is a top level relation and so will be matched

rather than being called directly by another relation. As in the other relation sets the proper

ties of both notations are bound using the same variable names meaning they share the same

values. The where clause indicates that a number of relations must be subsequently exe

cuted. The relations to be executed are NamespaceToElement, MessageToElement, Port-

TypeToElement, PLTToElement and ServiceToElement. The relation is expressed graphi

cally in Figure 7.47.

DefinilionToRoot

Figure 7.47: Graphical QVT DefinitionToRoot relation declaration.

155

The second relation, NamespaceToAttribute, defines the relation between a WSDL

Namespace artifact and an XML Attribute artifact. The relation is called by the first re

lation, DefinitionToRoot, as specified in the when clause. No where clause is specified. The

relation is expressed graphically in Figure 7.48.

NamespaceToAttribute ___________________

ns:Namespace wsdll :wsdl xml1:xml att:Attribute
prefix = ns_prefix
URI = nsJJRI

< < c = > > name = ' xmlns:' + ns_prefix
value = ns_URl

----- w hen------------
DefinitionToRootQ

Figure 7.48: Graphical QVT NamespaceToAttribute relation declaration.

The third relation, MessageToElement, defines the relation between a WSDL Message

artifact and an XML Element artifact. The relation is called by the first relation, Definition

ToRoot, which is specified in the when clause. The where clause specifies that the relation,

PartToElement, must be subsequently executed. The relation is expressed graphically in

Figure 7.49.

M e s s a g e T o E l e m e n t

msiMessage

name - ms_qName
eParts = ms_parts

w s d l l : W S D L
<-----

x m l 1 : X M L

ele:Element

name = 'wsdl:message'
children = nme + pte

- w h e n

nme:Attribute

name = 'name'
value = ms_qName

D e f in i t io n T o R o o t ()
--------w h e r e

pte = P a r t T o E le m e n t (m s _ p a r t s)

Figure 7.49: Graphical QVT MessageToElement relation declaration.

The fourth relation, PartToElement, defines the relation between a WSDL Part artifact

and an XML Element artifact. The relation is called by the third relation, MessageToEle

ment, as specified in the when clause. No where clause is specified. The relation is ex-

156

PartToElement

pressed graphically in Figure 7.50.

pt:Part
name = pt_name
typeName = pt__tn

-w h en
DefinUionToRoolQ

wsdl1 :W SDL xm l1:XM L
--->

ele:Element

name = 'wsdl:part'
children = name + type

nme:Attribute n me .‘Attribute

name = 'type'
value = pt_tn

name = 'name'
value = pt_name

Figure 7.50: Graphical QVT PartToElement relation declaration.

The fifth relation, PortTypeToElement, defines the relation between a WSDL PortType

artifact and an XML Element artifact. The relation is called by the first relation, Definition-

ToRoot, which is specified in the when clause. The where clause specifies that the relation,

OperationToElement, must be subsequently executed. The relation is expressed graphically

in Figure 7.51.

P o r t T y p e T o E l e m e n t

p t : P o r t T y p e

qName - pt_qName
eOperations = pt_ops

. w h e n

w s d l l : W S D L x m l 1 : X M L

e l e : E l e m e n t

name = 'wsdl:portType'
children = name + ote

D e f i n i t i o n T o R o o t ()
_____w h e r e

o t e = O p e r a t i o n T o E l e m e n t (p t _ o p s)

n a m e : A t t r i b u t e

name = 'name'
value = pt_qName

Figure 7.51: Graphical QVT PortTypeToElement relation declaration.

The sixth relation, OperationToElement, defines the relation between a WSDL Oper

ation artifact and an XML Element artifact. The relation is called by the fifth relation,

PortTypeToElement, as specified in the when clause. The where clause specifies that the

relations, InputToElement and OutputToElement, must be subsequently executed. The re-

157

lation is expressed graphically in Figure 7.52.

OperationToElement

op:Ope ration

name = op_name
e Input = op__in
eOutput = op_out

-w h e n

wsdll :WSDL xml1:XML

ele:Element

name = 'wsdl:operation'
children = name + ite + ote

name: Attribute

name = '
value =

name'
op_name

PortT ypeToElement()
___ where ---------------
ite = InputToElement(opJn)
ote = OutpulToElement(op_oul)

Figure 7.52: Graphical QVT OperationToElement relation declaration.

The seventh relation, InputToElement, defines the relation between a WSDL Input ar

tifact and an XML Element artifact. The relation is called by the sixth relation, Opera

tionToElement, which is specified in the when clause. There is no where clause specified.

The relation is expressed graphically in Figure 7.53.

InputToElement

i n : l n p u t

eMessage = msg w sd ll :WSDL xml1:XML

m s g : M e s s a g e

qName = msg_qName

when

e l e : E l e m e n t

name = 'wsdl:input'
children = name

n a m e : A t t r i b u t e

name = 'message'
value = msg_qName

Ope ratio nToEle men t()

Figure 7.53: Graphical QVT InputToElement relation declaration.

The eighth relation, OutputToElement, defines the relation between a WSDL Ouput

artifact and an XML Element artifact. The relation is called by the sixth relation, Opera

tionToElement, as specified in the when clause. There is no where clause specified. The

relation is expressed graphically in Figure 7.54.

158

O utpu tT oE le m en t

o u t r O u t p u t

eMessage = msg wsdM :WSDL xml1:XML

m s g : M e s s a g e

qName = msg__qName

when

e l e : E l e m e n t

name = 'wsdl:output'
children = name

n a m e : A t t r i b u t e

name = 'message'
value = msg_gName

OperationTo El ement()

Figure 7.54: Graphical QVT OutputToElement relation declaration.

The ninth relation, PLTToElement, defines the relation between a WSDL PartnerLink-

Type artifact and an XML Element artifact. The relation is called by the sixth relation,

DefinitionToRoot, which is specified in the when clause. The where clause specifies that

the relation, RoleToElement, must be subsequently executed. The relation is expressed

graphically in Figure 7.55.

PLTToElement

pll:PartnerLinkType

name ■ plt_name
role = pltrole

-when
DefinitionToRoot()

----- where ______

wsdl1:WSDL
<— •«

xml1 :XML
—■>

ele:Element
name = 'pit:partnerLinkType'
children = nme + rte

nme .Attribute
name = 'name'
value = plt_name

rte = RoleToEtement(plt roie)

Figure 7.55: Graphical QVT PLTToElement relation declaration.

The tenth relation, RoleToElement, defines the relation between a WSDL Role artifact

and an XML Element artifact. The relation is called by the ninth relation, PLTToElement,

as specified in the when clause. The where clause specifies that the relation, PLTPortType-

ToElement, must be subsequently executed. The relation is expressed graphically in Figure

159

7.56.

RoleToElement

rle:Role

name = rle_name
portType = rle_pt

w sdl1 :W SD L
<—

xm l1:XM L

ele:Element

name = 'pit .-role'
children = name + plpttte

-W hen

nameiAttribute

name = 'name'
value = rle name

PLTToElem ent()
------- w here ______

pltptte = PLTPortTypeToElernent{rle j3 t)

Figure 7.56: Graphical QVT RoleToElement relation declaration.

The eleventh relation, PLTPortTypeToElement, defines the relation between a WSDL

PortType artifact and an XML Element artifact. The relation is called by the ninth relation,

RoleToElement, which is specified in the when clause. No where clause is specified. The

relation is expressed graphically in Figure 7.57.

PLTPortTypeToElement

p t : P o r t T y p e

name = ptqName

.when
RoleToElementQ

ws d l 1 : WSDL xml1:XML

e l e : E l e m e n t

name = 'pit:portType'
children = name

n a m e : A t t r i b u t e

name = 'name'
value = pt_qName

Figure 7.57: Graphical QVT PLTPortTypeToElement relation declaration.

The twelfth relation, ServiceToElement, defines the relation between a WSDL Service

artifact and an XML Element artifact. The relation is called by the first relation, Defini-

tionToRoot, as specified in the when clause. No where clause is specified. The relation is

expressed graphically in Figure 7.58.

160

ServiceToElement

s v c : S e r v i c e

name = svc_qName

w h e n

DefinitionToRoot()

wsdh :WSDL xml1:XML

e l e : E l e m e n t

name = 'wsdl: service'
children = nme

n m e : A t t r i b u t e

name = 'name'
value = svc_qName

Figure 7.58: Graphical QVT ServiceToElement relation declaration.

7.4.8 Relating Deployment Descriptor Notation to XML Notation

The eighth relation set is from the Deployment Descriptor notation to the XML notation,

where the Deployment Descriptor notation and the XML notation are the candidate models.

The Deployment Descriptor notation provides the constructs to define a distribution pattern

based deployment, to be enacted on a composition engine, while the XML notation provides

the constructs to define an XML based document, necessary for execution. These relations

are bi-directional as the target and source models represent the same information, albeit

in different formats. We assume the Deployment Descriptor notation is targeted to the

ActiveBPEL deployment environment, using the PDD deployment language. This relation

set specifies how a PDD notation is related to an XML based notation, enabling models

based upon the PDD notation to be serialised to XML text. The relation set is pattern

independent as these relations hold across all distribution patterns. The relation is expressed

in Figure 7.59.

transformation pddToxml(pddl:PDD, xmll:XML)
{....

Figure 7.59: Textual QVT pddToxml transform declaration.

The five relations in this set are outlined as follows, and described in more detail below.

161

• ProcessToRoot

• WSDLToElement

• PartnerLinkToElement

• MyRoleToElement

• PartnerRoleToElement

The first relation, ProcessToRoot, defines the relation between a PDD Process artifact

and an XML Root artifact. The relation is a top level relation and so will be matched rather

than being called directly by another relation. As in the other relation sets, the properties

of both notations are bound using the same variable names meaning they share the same

values. The where clause indicates that the functions, getAllWSDLReferences (retrieves all

the WSDL references from a PDD source model) and getAllPartnerLinks (retrieves all the

PartnerLinks from a PDD source model), must be subsequently executed. The relation is

expressed graphically in Figure 7.60.

The five relations show how the FDD artifacts are mapped to the XM L notation.

Pr oces s ToRoot

Figure 7.60: Graphical QVT ProcessToRoot relation declaration.

162

The second relation, WSDLToElement, defines the relation between a PDD WSDL

artifact and an XML Element artifact. The relation is a top level relation and so will be

matched rather than being called directly by another relation. No when or where clause are

specified. The relation is expressed graphically in Figure 7.61.

WSDLToElement

w snE lem ent
w d:W SDL pdd1:PDD xm!1:XML

name = ' wsdl'
ch ildren = ns+locnamespace = wd_ns

*i<)**

ns:Attribute loc:Attribute

name = ' namespace' name = 'lo c a tio n '
value - wd_ns value = wd__loc

Figure 7.61: Graphical QVT WSDLToElement relation declaration.

The third relation, PartnerLinkToElement, defines the relation between a PDD Partner-

Link artifact and an XML Element artifact. The relation is a top level relation and so will

be matched rather than being called directly by another relation. The where clause speci

fies that the relations, MyRoleToElement and PartnerRoleToElement, must be subsequently

executed. The relation is expressed graphically in Figure 7.62.

P a r tn e rL in k T o E le m e n t

Figure 7.62: Graphical QVT PartnerLinkToElement relation declaration.

The fourth relation, MyRoleToElement, defines the relation between a PDD MyRole

163

artifact and an XML Element artifact. The relation is called by the second relation, Part

nerLinkToElement, which is defined in the when clause. No where clause is specified. The

relation is expressed graphically in Figure 7.63.

M y R o le T o E le m e n t

Figure 7.63: Graphical QVT MyRoleToElement relation declaration.

The fifth relation, PartnerRoleToElement, defines the relation between a PDD Partner-

Role artifact and an XML Element artifact. The relation is called by the second relation,

PartnerLinkToElement, as defined in the when clause. No where clause is specified. The

relation is expressed graphically in Figure 7.64.

PartnerRoleToElement

Figure 7.64: Graphical QVT PartnerRoleToElement relation declaration.

7.4.9 Relating Deployment Catalog Notation to XML Notation

The ninth relation set is from the Deployment Catalog notation to the XML notation, where

the Deployment Catalog notation and the XML notation are the candidate models. The

164

Deployment Catalog notation provides the constructs to enumerate the interfaces of a dis

tribution pattern based deployment, to be enacted on a composition engine, while the XML

notation provides the constructs to define an XML based document, necessary for execu

tion. These relations are bi-directional as the target and source models represent the same

information, albeit in different formats. We assume the Deployment Catalog notation is

targeted to the ActiveBPEL deployment environment, using the WSDLCatalog deployment

language. This relation set specifies how a WSDLCatalog notation is related to an XML

based notation, enabling models based upon the WSDLCatalog notation to be serialised to

XML text. The relation is expressed in Figure 7.65.

transformation wdcToxml(wdcl:WSDLCatalog, xmll:XML)
{

i ’ " ___

Figure 7.65: Textual QVT wdcToxml transform declaration.

The two relations in this set are outlined as follows, and described in more detail below.

The two relations show how the WSDLCatalog artifacts are mapped to the XML notation.

• WSDLCatalogToRoot

• WSDLEntryToElement

The first relation, WSDLCatalogToRoot, defines the relation between a WSDLCatalog

WSDLCatalog artifact and an XML Root artifact. The relation is a top level relation and so

will be matched rather than being called directly by another relation. As hi the other relation

sets the properties of both notations are bound using the same variable names meaning they

share the same values. The where clause indicates that the function, getAllWSDLEntries

(retrieves all the WSDLEntries references from a WSDLCatalog source model), must be

subsequently executed. The relation is expressed graphically in Figure 7.66.

The second relation, defines the relation between a WSDLCatalog WSDLEntry artifact

and an XML Element artifact. The relation is a top level relation and so will be matched

rather than being called directly by another relation. No when or where clause are specified.

165

WSDLCatalogToRoot

w d c l :W SD LCata log xm l1:XM L rt: R o o t

: a t : W S D L C a t a l o g ^ ____^ 1

where

name = 'wsdlCatalog '
children = gwe

gwe = getAIIW SDLEntries()

Figure 7.66: Graphical QVT WSDLCatalogToRoot relation declaration.

The relation is expressed graphically in Figure 7.67.

W S D L E n try T o E le m e n t

w d c l iW S D L C a ta lo g x m l1 :X M L
e le : E le m e n t

e n t: W S D L E n tr y < < D > - >
name = 'wsdlEntry'
children = cp + In

classpath = ent_cp
location - ent^loc

c p : A t t r ib u t e I n : A t t r ib u t e

name = 'classpath'
children = ent cp

name = 'location'
children = ent loc

____w h e r e ____________________
g w e = g e tA IIW S D L E n tr ie s ()

Figure 7.67: Graphical QVT WSDLEntryToElement relation declaration.

7.5 Tool Support

Currently there are no tools supporting the definition of QVT relations, either textual or

graphical. However, a recently released open source tool, SmartQVT, supports the QVT-

Operational language [176]. This tool provides an Eclipse environment to define QVT

operations. These operations are then compiled using the Python language [177] to pro

duce Java code, which can be used to execute the operations as transformations. This tool

represents the first efforts to provide tool support for the QVT specification.

Here, we have used the freely available Dia tool [77] to define QVT graphical relations.

Dia supports the creation of UML Object diagrams. A text editor was used to define the

transformation declarations. No validation tool is currently available to validate the rela

tions defined.

166

In this chapter we have presented the third component in our modeling and transformation

framework, model relations. We have motivated their use as a template for the creation o f

mode! transformations. We have outlined nine relation sets that describe the web o f depen

dencies between the seven languages defined in Chapter 6, from UML distribution pattern

model to executable system XM L. The relations outlined are for a centralised shared hub

distribution pattern, however the model relations vary slightly depending on the distribution

pattern chosen by the software architect.

7.6 Summary

167

Chapter 8

Model Transformations

8.1 Introduction

In this chapter we present our model transformations. Model transformations are the fourth

component in our modeling and transformation framework. These transformations define

how a source model is converted into a target model, whilst respecting the relations defined

in Chapter 7. The relations defined in Chapter 7 define the abstract semantic mappings

between artifacts of different notations. Here, we use these relations as the basis for the

definition of executable transformations. The goal of transformations is to create a new

model based upon a previously defined model, where the two candidate models have differ

ent notations. As with model relations, model transformations vary slightly depending on

the distribution pattern chosen by the software architect.

The techniques used to define our transformations are discussed in Section 8.2. The

MDA framework within which the transformations must be defined is discussed in Section

8.3. The transformations between candidate models are discussed in Section 8.4. Finally in

Section 8.5, we discuss the MDA based tool support available for defining transformations

between models.

168

Model transformations are the programs that define a mechanism for traversing the web of

dependencies that have been previously been defined between a set of relations. They are

implemented using transformation languages which transform a source model to a target

model. This transformation process must respect the relational rules for a given domain,

such as those previously defined in Chapter 7. Model transformations realise model relation

templates and are executable.

8.2.1 ATL Transformation Language

Here, we use the Atlas Transformation Language (ATL) to define executable model trans

formation rules [96], ATL is a hybrid model transformation language featuring both declar

ative and imperative constructs, which conforms to the MOF meta-meta-model. The lan

guage and related open source tools, ATL Development Tools (ADT), have no reliance on

the UML serialisation format, XMI [80]. This independence from XMI is important as

the XMI format can, and does, change considerably from version to version. ATL instead

manipulates models using patterns and meta-models. These meta-models and patterns can

be easily updated. This results in a considerably more extensible, maintainable and user

friendly transformation solution. A wider context for the classification of model transfor

mation languages, is provided by Czamecki et al. in [51], and more recently in [52],

ATL transformations are realised using files that consist of a number of related discrete

transformations, which may be considered as a set. Each ATL transformation set is imple

mented in a module, where each module has a header section, an optional import section

and a number of optional helpers, and at least one transformation rule [96], ATL has three

rule definition formats. The module header declares the source and target models for the

transformation. An import section details external types used in the transformation. The

helper section outlines functions that navigate a source model and return a result or a set of

results. Finally, transformation rules express the transformation logic to transform a source

8.2 Model Transformations Specification

169

There are a number of formats for transformation rules in ATL. The first, matched rules

are used to define source and target patterns in the models to be transformed. Matched

rules may also feature a guard to restrict the output from the source pattern. Secondly, lazy

rules are called from matched rules or other lazy/called rules. These rule types will never

be executed directly and are normally called with a parameter consisting of source model

artifacts. Lazy rules may be tagged as unique, meaning they will only execute once for a

given match. The third format is termed called rules, which are similar to lazy rules except

they may take in any number of parameters. They must explicitly return a result or else

nothing will be outputted. Figure 8.1 illustrates an ATL matched rule. In this example

a construct A, from the Model 1 notation, is transformed to a construct B, in the Model2

notation. Two attributes, attrib 1 and attrib2 are then copied from construct A and applied to

construct B.

modul e M o d e l l T o M o d e l 2 ; ----- Modul e T e m p l a t e
c r e a t e OUT : Modcl2 f rom IN : Mode l l ;

-----T r a n s f o r m a Model I c o n s t r u c t (A) t o Model2 c o n s L r u c l (B)
r u l e C o n s l i ' u c l A T o C o n s t r u c l B {

f r om
a ; Model ! | A 1

lo
b : Mo de l 2 ! B(
a L t r i b I < — a_ a t t r i b l ,
a 1 1 r i b 2 < — a . a L l r i b 2

)

model to a target model.

Figure 8.1: Example ATL transformation definition.

Transformation rules are specified declaratively where possible. Declarative rules are

favoured as they clearly show the links between source and target models, whilst hiding

complex details like selection, sorting, ordering and subsequent rule triggering of a trans

formation. However, many complex transformations cannot be declared solely using the

declarative syntax. Imperative blocks may be used in any of the three rale forms. This con

struct is useful when the order of transformation rale execution must be explicitly managed,

or target model artifacts are conditionally created based upon some logic not expressed in

the source pattern or guard.

Traceability, discussed in detail in Section 7.2, o f ATL transformations is considered by

170

Jouault in [93], Jouault discusses how trace information is persisted after a transformation is

executed, without altering the transformations themselves. Within the ATL transformation

engine, transformation links are automatically created by relating a rule, a source match

and a newly created target.

As previously discussed in Chapter 7, we use the QVT graphical language to declara-

tively illustrate the relationships between source and target notations. However, the QVT

declarative language is currently only a specification, meaning it cannot be executed. To

enable model transformations we implement the relations previously defined using QVT in

C h ap te r 7 in ATT. ATL has no graphical format equivalent to the QVT graphical language.

A comparison of ATL and QVT is investigated by Jouault et al. in [95]. Here, the author

notes that different transformation languages are appropriate for different domains. They

also note that interoperability between QVT and ATL is possible, depending on the concep

tual levels of the defined transformations. For example ATL to QVT Operational Mappings

are possible. This interoperability between languages means the decision to use ATL or

QVT is not critical.

8.3 Framework

In Section 6.3 we discussed how we leverage the MDA framework to enable code genera

tion from high level models. As with the model relations defined in Chapter 7, the model

transformations must be compatible with this MDA approach. Both the ATL transformation

language and the QVT transformation language are compatible with this approach.

8.4 Transformations

ATL uses transformation rules to define transformations between candidate models. Each

“Relation” in Figures 7.1 through 7.3 is implemented using a set of ATL transformations.

Each ATL transformation rule requires the definition of two or more domains. The source

domain refers to a particular artifact in the source notation, whilst the target domain refers

171

to an artifact in the target notation. The source domain may have a source pattern defined,

which restricts the search space over the source artifacts. A destination pattern may also

be defined to apply source model matches, and subsequently bind variables, to destination

model variables. These variables represent model instance artifacts of both the source and

target models. The assignment of these variables from source to target models, via trans

formational rules, is the basis for the transformation process.

Transformational rules which have pre-conditions, indicated by the when clause in re

lations, are marked with the keyword lazy or have a parameter list in their transformational

prototype. These rules must be called by other rules. Transformational rules with post

conditions, indicated by the where clause in relations, will execute lazy rules, called rules

or helper functions. These function calls are marked by the thisModule identifier.

Using seven of the notations defined in Chapter 6, we consider nine transformation sets

that define transformations from high level UML model to lower level executable model.

These nine transformation sets can be categorised into three subsets as outlined below.

• UML 2.0 Notation (with DPLProfile applied) to Distribution Pattern Language (DPL)

Notation

• DPL Notation to Executable System Notations (Collaboration, Interface, Deployment

Descriptor, Deployment Catalog)

• Executable System Notations to XML Notation

Although some of the relations defined in Chapter 7 are bi-directional, all the transfor

mations defined here are uni-directional, from source to target model. We do not consider

backward transformations from target to source models as the focus here is the creation of

an executable system from high level models, rather than a reverse engineering effort. In

fact, ATL is inherently uni-directional in that the source model is read only and so can be

navigated but not transformed itself.

We use ATL exclusively in its standard mode of operation. This mode requires a trans

formation for every artifact that is to be outputted from a transformation. An alternative

172

mode, refining, is provided by ATL. This mode causes unmatched artifacts to be automati

cally outputted. The refining mode is not utilised here.

Each set of model transformations is either distribution pattern independent or distribu

tion pattern dependent. Transformations which are pattern dependent define transformation

rules between source artifacts and different target artifacts, depending on the distribution

pattern chosen. Pattern independent transformations define relationships between source

artifacts and target artifacts that are always the same regardless of the chosen pattern. The

UML to DPL relations and the Executable System to XML transformations are pattern

independent, whilst the remaining transformations are pattern dependent. These pattern de

pendent transformations differ slightly depending on the individual pattern requirements.

Pattern specific parts of the code are clearly highlighted in the transformation definitions.

A new release of the ATL language supports transformation inheritance, which would as

sist in the modularisation of the transformatio code base into pattern specific and pattern

independent modules.

Helpers, as previously noted, are simple operations performed over the source model

to return either collections of model artifacts, individual model artifacts or simple return

values i.e. strings, Booleans or integers. These helpers do not transform source artifacts

to target artifacts, instead they assist in the definition of transformations. All helpers are

prefixed with either “get” or “convert”. The helpers are defined in Appendix A. All of the

helpers have been fully tested in our tool implementation.

To demonstrate the definition of model transformations from a UML model to an ex

ecutable system, for a given distribution pattern, we consider a worked example. This

example features a centralised shared hub distribution pattern, outlined in Section 5.4.1,

and whose relations are defined in Chapter 7. Here, we will define the transformations that

implement the relations of the worked example for a centralised shared hub distribution pat

tern. Although we consider a specific worked example in this chapter, the transformations

are generic and may be applied to any application. If a different distribution pattern was

required the same process would be followed to define the generic transformations. The

173

In the following subsections we enumerate all the transformations. Each transformation

set implements a worked example relation set, as defined in Chapter 7. Each transformation

is briefly introduced before presenting the code of the ATL transformation itself. Addi

tional details are provided in the text for complex transformations. The transformations

also include comments in the code where necessary.

8.4.1 Transforming UML 2.0 Model/DPLProfile to DPL Model

The first transform set is from a UML 2.0 model to a DPL model, where the UML 2.0 and

the DPL models are the candidate models. These transformations are uni-directional as the

transformation uses the source model to generate the target model, but does not define rules

for transforming the target to the source model. UML 2.0 is a standards based graphical

language for the modeling of software systems, as discussed in Section 6.4.1. DPL is our

internal representation format for distribution patterns, which is discussed in Section 6.4.3.

This transformation set is pattern independent as these transformations, unless otherwise

indicated, hold across all distribution patterns.

The ATL module transformation header declares the name for the transformational set

and declares two models, the source model UML and the target model DPL. The module is

expressed in Figure 8.2.

module UMLActivityToDPL; Module Template
create OUT : DPL from IN : UML;

Figure 8.2: ATL UMLActivityToDPL transform module declaration.

The five transformations in this set are outlined as follows, and described in more detail

below.

• Activity ToPatternDefinition

• ActivityPartitionToNode

• CallBehaviorActionToNode

effectiveness o f the transformation based approach is assessed in Chapter 10.

174

ObjectFlowToMapping

• PinToCorrelation Variables

The first transformation, defined in Figure 8.3, transforms a UML Activity artifact to

a DPL pattem-definition artifact and its child artifacts CollaborationLanguage, Distribu-

tionPattem, ServiceName, OperationName, BaseNamespace, NamespacePrefix, Nodes and

Correlation Variables. The transformation implements the relation illustrated in Figure 7.5.

------ Trans form a UML A c t i v i ly (t h e r e is one p e r UML d i a g r a m) lo a DPL p a l i e r n —d e f i n i l i o n
r u l e A e t i v i t y T o P a t l e r n D e f i n i t i o n {

f rom
a c l : UML! A c l i v i ty

to
pd : DPL! ” paLLern —d e f i n i t i o n c o l l a b o r a t i o n —l a n g u a g e 1’ < —cl d i s t r i b u t i o n —p a t t e r n ” < —dp ,

” s c r v i c e — n ame” <— sn o p e r a t i o n —n ame” < — o p n b a s e — n a m e s p a c e ” < — bn ,
’’n a me s p a c e —p r e f i x ” < — n p , n o d e s < — nds , ” c o r r e I a l i o n — v a r i a b l e s ” < — c v s) ,

cl : DPL! C o l l a b o r a L i o n L a n g u a g e (t e x t < — a c l . g e l V a l u e (a c l . g e l A p p I i e d S l e r e o t y p e s () . f i r s l ()
, ’ c o 11 a b o r a t i o n — l a n g u a g e ’)) ,
dp : DPL! D i s t r i b u t i o n P a t t e r n (t e x t < — a c l . g e t V a l u e (ac t . g e l A p p I i e d S l e r e o t y p e s () . f i r s I ()
, ’ d i s t r i b u t i o n — p n u e r n ’)) ,
sn : DPL1 S c r v i c c Nn m c (t e x l < — a c t . g e l V a l u e (a c l . g e t A p p l i c d S t e r e o l y p e s () . f i r s t () , ’ s e r v i c e —name ’)) ,
opn : D?Ll Opcrali<MlNaniiC(t e x t < — a c t . g c t V a l u c (a c l . g e l A p p] i e d S t e r e o l y p e s () . f i r s I () , ’ o p e r a t i o n —name ’)) ,
bn : DPL! HuseNumespnce { l e x l < — a c l , g e l V a l u e (a c l . g e t A p p l i c d S l e r e o t y p e s () . f i r s t () , ’ b a s e —n a me s p a c e ’)) ,
np : DPL! N a m c s p o c c Pr e f i x (t e x t < — ac t . g e t V a l u e (a c t . g e t A p p l i c d S l e r e o l y p e s () . f i r s l () , ’ n a me s p a c e —p r e f i x ’)) ,
nds : DPL! Nodes (node < — I h i s M o d u l e . g e l A c t i v i l y P a r l i t i o n s ()) ,
cvs : DPL! C o r r e l a t i o n V a r i a b l e s (v a r i a b l e < — t h i s M o d u l e . g e t C o r r e l a t i o n V a r i a b l e s ())

Figure 8.3: ATL ActivityToPattemDefinition transformation definition.

The second transformation, defined in Figure 8.4, transforms a UML ActivityPartition

to a DPL Node artifact. There can be many ActivityPartition artifacts per UML diagram.

The transformation implements the relation illustrated in Figure 7.6.

-----T r a n s f o r m a l l UML A c t i v i l y P a r l i l i o n s l o DPL Nodes
I r u l e A c l i vi l y P a r ti l i o n T o N o d e {

f rom
ap : UML! A c t i v i t y P a r t i t i o n

lo
nd : DPL! Node (name < — a p . n a m e ,

a r i < — ap . ge l V a l u e (ap . g e l A p p l i e d S l e r e o l y p e s () . fi r s l () , ’ i n t e r f a c e . u r i ’) ,
e n g i n e . u r i < — a p . g e l V a ! u e (a p . g e l A p p l i e d S t e r e o l y p e s () . f i r s t () , ’ e n g i n e , u r i ’) ,
ns < — ap . g e l V a l u e (a p . g e t A p p l i c d S t c r e o t y p e s () . f i r s t () , ' ns ’) ,
o p e r a t i o n s < — o p s) ,

ops : DPL! O p e r a l i o n s (
 g e t a l l t he UML Ca l l B e h a v i o r A c t i o n s s i t u a t e d i n t h i s UML A c l i vi l y P a r l i 1 i o n and
 a s s i g n Ihcm t o DPL N o d e ’ s o p e r a t i o n s c o l l e c t i o n
o p e r a t i o n < — ap . g e t N o d e s Q — > s c l e c l (c | e . o c l T y p e ()=U M L! Ca 1 1 B e h a v i o r Ac l i on)

—> c o l I e c t (c | I h i s M o d u l e . CBATo Op e r a l i o n (e)))

Figure 8.4: ATL ActivityPartitionToNode transformation definition.

The third transformation, defined in Figure 8.5, transforms a UML CallBehaviorAction

to a DPL Operation artifact and its child artifact Mappings. There can be many CallBehav-

175

iorAction artifacts in each UML ActivityPartition. The order value of the DPL Operation

target artifact is determined by the source UML ControlFlow artifact coming into the source

UML CallBehaviorAction. Mappings output artifacts are created based on the position

of UML InitialNode, ActivityFinalNode source artifacts, along with CallBehaviorAction

source artifacts with UML ObjectFlow artifacts going into them. The transformation im

plements the relation illustrated in Figure 7.7.

------ Trans f orm (when c a l l e d) a UML C a l l B e h a v i o r A c t i o n s t o a DPL O p e r a t i o n
l a z y r u l e CBAToOpe r a t i on{

f r o m
cba : UML! C a l l B e h a v i o r A c t i o n

lo
op : DPL! O p e r a t i o n (name < — c b a . n a m e ,

r o l e < — cba . g c t V a l u e (cba . g e l A p p l i c d S l e r e o l y p e s Q . f i r s t () , ’ r o l e n a m e ,
r e t u r n s < - c b a . g e t V a l u e (c b a . g e t A p p l i e d S l e r e o i y p e s () . f i r s t () , ’ r e t u r n s ’) ,

-----g e t t he o p e r a t i o n ‘ s e x e c u t i o n o r d e r v a l u e b a s e d on t he UML C o n t r o l F l o w
----- c o n n e c t i o n c omi ng i n t o t he CBA
o r d e r < — cba . g e t l n c o m i n g s O —> s e l e c L (e | c . o c l T y p e () = UML! C o n t r o l F l o w) , a t (1) . g e t V a l u e
(c b a , g e t l n c o m i n g s Q —> s e l e c t (e | e . o c l T y p e () = UML! C o n t r o l F l o w) . a t (1)
. g e l A p p l i e d S t e r c o l y p e s () . f i r s t () , ’ o r d e r ’) ,
m a p p i n g s < — mp s) ,

----- c o n v e r t a l l t h e UML O b j e c l F l o w s on e a c h CBA t o a DPL Ma ppi ng
mps : DPL! Ma pp i ngs (

-----c r e a t e a DPL Mappi ng f o r t he s t a r t p o i n t o f t he a c t i v i t y i . e . I n i t i a l N o d e
ma p p i n g < — UML! O b j e c t F l o w . a l l] n s L a n c e s () —> s e l e c I (e | e . g c t S o u r c e () . o c l T y p e () = UML!
I n i t i a l N o d e and e . g e t T a r g c L () . g e t O w n e r () . n a m e . d e b u g (’ cba ’) = c b a . n a m e)
- > e o l l c c t (e | I h i s M o d u l e . O b j e c t F l o w T o M n p p i n g (c)) ,

- c r e n t e a DPL Mappi ng f o r e a c h CBA wh i c h h a s an O b j e c t F l o w g o i n g i n t o i t
ma p p i n g < — UML! O b j e c t F l o w , .all 1 t i v i n i i c e s () - ’> nci s t c 1 (C | c . g c l T a t g c M 1 - g e l O w n c r C) . name

- i b i s M o d u l e getNex«CBA< cbn))•“ > c o 11 c c I (c | I h i s M o d u l e . G b j c c t F l o w T o M a p p i n g t e)) .
— c r c i i l c a Ma pp i ng f o r t h e e nd p o i n t o f i h e a c t i v t y i , e A c t i v i t y F i n a l N o d e
ma p p i n g < — UML! O b j e c t F l o w . a l l I n s in n c e * 0 ~ > 5« I e c t (c j c . g e l T a r g e t () oe IT y p c {)
= UML1 A c t i v i t y F i n a l N o d e and e . g e t S o u r c e () , g c l O w n c r () n a me . d e b u g (*cba ')
- cba . n n me } - > c o l l e c t l e | t l n s M o d u l c O b j c c t F l o w T o Ma p p i n g i e)■).)

}

Figure 8.5: ATL CBAToOperation transformation definition.

The fourth transformation, defined in Figure 8.6, transforms a UML ObjectFlow to a

DPL Mapping artifact and its child artifacts From and To. There is always one Object

Flow artifact per UML Pin, InitialNode and ActivityFinalNode artifact. The transformation

implements the relation illustrated in Figure 7.8.

The fifth transformation, defined in Figure 8.7, transforms a UML Pin to a DPL Variable

artifact. There can be many Pin artifacts per UML CallBehaviorAction. Only UML Pin

artifacts which have been marked as correlation variables should be passed into this rule.

This rule is only required for distribution patterns requiring correlation variables and is

ignored by patterns not requiring this construct. The transformation implements the relation

illustrated in figure 7.9.

176

-----T r a n s f o r m (when c a l l e d) a UML O b j e c t F l o w c o n n e c t i o n s lo a DPL Mapp i ng
l az y r u l e Ob j e c LF I o wTo Ma p p i n g {

f rom
o f : UML! O b j e c l F l o w

lo
mp : DPL ! Ma p p i n g (” froin”< — f i n l o ” < —t) ,
fm : DP L! F r o m(

----- r e t r i e v e t he O b j e c l F l o w v a l u e s
me s s a g e < — I h i s M o d u l e , ge t M a p p i n g (o f , ’ s o u r c e 1) ,
p a r t < — I h i s M o d u l e . g e l P i n (o f s o u r c e ’) . n a m e ,
t y p e < — t h i s M o d u l c , r e mo v c MMP r c f i x (th i s M o d u l c . g e l P i n (o f , 5 s o u r c e ’) . g e l T y p e ())) t

I : D P L ! T o (
----- r e t r i e v e t h e Ob j e c l F l o w v a l u e s
me s s a g e < — I h i s M o d u l e . g e t M a p p i n g (o f , 1 t a r g e t ’) ,
p a r i < — t h i s M o d u l e . g e l P i n (o f t a r g e t 1) . n a m e ,
t y p e < — t h i s M o d u l e . r emo v e MMP r e f i x (I h i s M o d u l e . g e l P i n (o f , ’ l a r ge L ’) - g e l T y p e ()))

}

Figure 8.6: ATL ObjectFlowToMapping transformation definition.

------T r a n s f o r m (when cal l e d) a UML P in c o n n e c t i o n s to a DPL V a r i a b l e . T h i s r u l e s h o u l d
-----o n l y be c a l l e d f o r p i n s wi l h i s _ c o r r e l a t i o n . v a r i a b l e s e t to t r u e
l az y r u l e P i n T o C o r r e a t i o n V a r i a b l c{

f r o m
p : UML! Pi n

to
v a r : DPL ! V a r i a b ' e (name < — p . n a me)

}

Figure 8.7: ATL PinToCorrelation Variable transformation definition.

8.4.2 Transforming DPL Model to Collaboration Model

The second transformation set is from a DPL model to a Collaboration model, where the

DPL model and the Collaboration model are the candidate models. These transformations

are uni-directional as the transformation uses the source model to generate the target model,

but does not define rules for transforming the target to the source model. It should be

noted that bi-directionality would be impossible as the target model is only a subset of the

source model. We assume in this example that the collaboration language, and subsequently

target model, will be WS-BPEL, discussed in Section 2.3.2. We previously noted that other

collaboration languages, such as WS-CDL, could have been used as an alternative to WS-

BPEL. This transformation set is pattern dependent because the target model artifacts to

be created depend on the chosen distribution pattern. Pattern specific parts of the code are

clearly highlighted in the transformation definitions.

The ATL module transformation header declares the name for the transformational set

and declares two models, the source model DPL and the target model BPEL. The module

is expressed in Figure 8.8.

177

module DPLtoBPEL; -- Module Template
create OUT : BPEL from IN : DPL;

Figure 8.8: ATL DPLtoBPEL transform module declaration.

The ten transformations in this set are outlined as follows, and described in more detail

below.

• PattemDefinitionToProcess

• NodeToNamespace

• OperationTo Variable

• NodeToPartnerLink

• PattemDefinitionToNamespace

• OperationToInvoke

• MappingToAssign

• PattemDefinitionTo Variable

• PattemDefinitionToNamespace

• PattemDefinitionToPartnerLink

The first transformation, defined in Figure 8.9, transforms a DPL pattern-definition ar

tifact to a BPEL Process artifact and its child artifacts PartnerLinks, Variables, Sequence,

Receive and Reply. The transform subsequently transforms the Reply artifact’s children

Operation, PortType, PartnerLink and Variable. There is only one pattern-definition artifact

per DPL model. The order of BPEL activities is important to ensure the sequence of events

within the composition occurs as specified by the software architect in the UML model. To

ensure the BPEL target model conforms to this sequence we order the source Operation

artifacts using their order attribute, and imperatively control the creation of appropriate In

voke and Assign target artifacts. The transformation implements the relation illustrated in

Figure 7.11.

178

-----T r a n s f o r m a DPL p a t t e r n —d e f i n i I i o n (I h e r c i s one p e r DPL mo d e l) t y p e t o a BPEL p r o c e s s
r u l e P a t l e r n D e f i n i t i o n T o P r o c e s s {

f rom
pd : DPL! ” pa K e r n —d e f i ni t i o n ’’

to
p : B P E L ! P r o c e s s (

name<—p d . ” s e r v i c e — n a m e ” , t e x t , s u p p r e s s J o i n F a i l u r e < — t r u e , — We a s s u me t h i s i s a l w a y s t r u e
l a r g e l N a i n e s p a c e < - p d . ’’ b a s e —n a me s p a c e ” , t e x t + p . n a me , p a r t n e r L i n k s < — p i s , v a r i a b l e s < ~ v a r s , a c l i v i ly <—s cq) ,

p i s : B P E L ! P a r l n e r L i n k s (— * * P a l l e r n S p e c i f i c * *
-----e a c h DPL Node i s a BPEL P a r t n e r L i n k t y p e
c h i l d r e n < — pd. n o d e s , n ode —> c o l i e c l (e | t h i s M o d u l e , N o d e T o P a r l e r L i n k (e)) ,

-----c o n s i d e r d i s t r i b u t i o n p a t t e r n d e p e n d e n t p a r t n e r L i n k s
c h i l d r e n < — t h i s M o d u l e . P a l l e r n D c f i n i t o n T o P a r t n e r L i n k ()) ,

v a r s : BPEL! V a r i a b l e s (— * * P a t t e r n S p e c i f i c * *
-----n e e d BPEL V a r i a b l e f o r e a c h DPL From a nd To t y p e
c h i l d r e n < — pd . n o d e s . n o d e —> e o l l e c t (e | e . o p e r a t i o o s) —> c o l le c t (c | e . o p e r a t i o n)

—> f l a t t e n Q —> c o l I ec t (e | t h i s M o d u l e . O p e r a t i o n T o V a r i a b l e (’ Re q u e s t ’ , c)) ,
c h i l d r e n < — p d . n o d e s . n o d e —> c o l l e c t (e | e . o p e r a l i o n s) —> c o I l e d (c | e . o p e r a t i o n)

—> f l a t l e n 0 —> c o l l e c t (e | t h i s M o d u l e . O p e r a l i o n T o V a r i a b l c (’ R e s p o n s e 1 , e)) ,
-----c o n s i d e r d i s t r i b u t i o n p a t t e r n d e p e n d e n t v a r i a b l e s as t h e y n e e d BPEL V a r i a b l e s t oo
c h i l d r e n < — t h i s M o d u l e . P a t t e r n D e f i n i t i o n T o V a r i a b l e (’ Re q u e s t ’) ,
c h i l d r e n < — t h i s M o d u l e . P a t t e r n D e f i n i t i o n T o V a r i a b l e (1 Re s p o n s e ’)) ,

s eq : BP ELI ” S e q u e n c e ” () ,
r ec : BPEL! R e c e i v e (c r e a l e l n s t a n c e < - t r u e , n a me < —’R e c e i v e C a l l e r ’ , o p e r a t i o n < — op , p a r t n e r L i n k < —pi , p o r t T y p e

< —p t , v a r i a b l e < —v a r . i n) ,
r e p : BPEL! Re p l y (n a m e < —’S e n d R e p l y T o C a l l e r ' , o p e r a Lion <—op , p a r t n e r L i n k < - p l , p o r t T y p e < - p t , v a r i a b l e < - v a r _ o u t) ,

----- t he BPEL Ec o r e r e f e r e n c e s Lhe WSDL e e o r e f o r o p e r a t i o n s , we s t i l l r e f t h e BPEL MV1 t ho u g h
op : BPEL! O p e r a t i o n (n a me < — t h i s M o d u l e . g e t O p e r a t i o n N a m e ()) *

----- t h e BPEL E c o r e r e f e r e n c e s t h e WSDL e c o r e f o r p o r t t y p e , wc s t i l l r e f t he BPEL MM t h o u g h
pt : BPEL! P o r t T y p e (q N a m e < — t h i s M o d u l e . g e t N a m e s p a c e P r e f i x () + + t h i s M o d u l e . g e t S e r v i c e N a m e () + ’ P o r t T y p e ’)
pi : BPEL! P a r t n e r L i n k (n a m e < —’C a l l e r ’) ,
v a r - i n : BPEL! V a r i a b l e (n a m e < — t h i s M o d u l e . g e t S e r v i c e N a m e () + ’ R e q u e s t T y p e s) ,
v a r . o u l : BPEL! V a r i a b l e (n a m e < — t h i s M o d u l e . g e t S e r v i c e N a m e () + ’ R e s p o n s e T y p c ’)
do— to e n s u r e t he a c t i v i t i e s a r e s o r t e d c o r r e c t l y we mu s t p r o c e s s t h e DPL o p e r a t i o n s i m p e r a t i v e l y
{

s eq , a c l i v i t i c s < — r e c ;
-----c r e a t e m a p p i n g s f o r a l l t he I n i t i a l N o d e m e s s a g e s
s e q . a c t i v i t i e s < — pd . n o d e s . n o d e - > c o II e c t (c | e . o p e r a ti o n s) —> c o l l e d (e | e . o p e r a t i o n)

—> f l a t t e n ()—> c o l l e d (e | e . ma p p i n g s) —> f l a l l e n () —> c o l l e d (e | e . map p i n g) —> f I a t t en ()— >
s c l e c l (e | e , " f r om me s s a g e = ’ I n i t i a l N o d e ’)— > c o ! i e c t (e | t h i s M o d u l e , Ma p p i n g s T o As s i g n (e)) ;

----- i n t e r l e a v e t he i n v o k e and a s s i g n s b a s e d on t h e i r o r d e r
f o r (op in p d . n o d e s . n o d e —> c o 11e d (e | e . o p e r a t i o n s) —> co 1 l e d (e | e . o p e r a t i o n)

—> f I a t i e n () —> s o r t e d B y (e | e . o r d e r))
{

seq. , a c t i v i t i e s < — t h i s M o d u l e , O p e r a t i o n T o I n v o k e (op);

f o r (nip in op . m a p p i n g s . ma p p i n g —> s el e c t (e [e . ” f rom me s s a g e O ’ I n i t i a l N o d e 1
and e t o ". me s s a g e O ’ F i n a l N o d e ’))

{
s eq . a c t i v i t i c s < — t h i s M o d u l e . M a p p i n g s T o A s s i g n (m p) ;

}
}

-----c r e a t e m a p p i n g s f o r a l l Lhe F i n a l N o d e m e s s a g e s
s eq . a c t i v i t i e s < — p d . n o d e s . node—> c o 1 l e c t (e | e . o p e r a t i o n s) —> c o l I e c t (e | e . o p e r a t i o n)

—> f l a t t e n ()—> c o l l e c t (e [e . ma p p i n g s) —> f I a t L e n () —> c o l I e c t (e | e . mapp i ng) —> f l a t t e n ()
—> s e l e c t (e | e . " to ” . me s s a g e = ’ F i n a l N o d e ’)— > c o l I e c t (e | t h i s M o d u l e . M a p p i n g s T o A s s i g n (e)) ;
s e q . a c t i v i t i e s < — r e p ; -----c r e a t e a r e p l y a c t i v i t y
t h i s M o d u l e P a t t e r n D e f i n i t i o n T o N a m e s p a c e () ;

}
)

Figure 8.9: ATL PattemDefinitionToProcess transformation definition.

-----T r a n s f o r m e a c h DPL no d e t y p e i n t o a BPEL n a me s p a c e t y p e
r u l e No d e T o Na mc s p a c e {

f rom
n: DPL i Node

to
ns : BP EL ! Na me s p a c e (U RJ < - n . u r i , p r c f i x < —n „ n s)

>

Figure 8.10: ATL NodeToNamcspace transformation definition.

179

-----C r e a t e (when e x p l i c i t l y c a l l e d) BPEL v a r i a b l e h o l d e r s f o r
----- Ihc v a l u e s i n p u l and o u t p u t d u r i n g e x e c u t i o n o f t h e DPL O p e r a t i o n
r u l e O p e r a t i o n T o V a r i a b l e (t y p e : S i r i n g , op : DPL! O p e r a t i o n){

to
v a r : BPEL! V a r i a b l e (

name < — o p . e C o n l a i n e r () . e C o n t a i n e r () , name + o p . name + t y p e , m e s s a g e T y p e < — m e s) ,
mes : BPEL! Mess age (qName < — op . e C o n t a i n e r () . e C o n t a i n e r () . ns + ’ + op . n a m e - H y p e)

-----n o l e : c a l l e d r u l e s MUST e x p l i c i t l y r e t u r n a r e s u l L
d o { v a r ;}

Figure 8.11: ATL OperationToVariable transformation definition.

------ Trans f orm (when c a l l c d) e a c h DPL Node t y p e t o a BPEL P a r t n e r L i n k l y p c
l a z y r u l e N o d e T o P a r t e r L i n k {

f rom
n: DPL i Node

to
pi : BPEL! P a r t n e r L i n k (n a m c < - n , n a me , p a r t n e r R o l e <—n . n a m e , p a r t n e r L i n k T y p e < - t h i s M o d u l c . g e l N a m e s p a c e P r e f i x ()

+ ’ : ’ + n . name+ ’ PLT ’)
}

Figure 8.12: ATL NodeToPartncrLink transformation definition.

The second transformation, defined in Figure 8.10, transforms a DPL Node artifact to

a BPEL Namespace artifact. There may be many Node artifact per DPL pattem-definition.

The transformation implements the relation illustrated in Figure 7.12.

The third transformation, defined in Figure 8.11, transforms a DPL Operation artifact

to a BPEL Message artifact. There may be many Operation artifacts per DPL Node. The

transformation implements the relation illustrated in Figure 7.13.

The fourth transformation, defined in Figure 8.12, transforms a DPL Node artifact

to a BPEL PartnerLink artifact. There may be multiple Node artifacts per DPL pattem-

definition. The transformation is distribution pattern specific. The transformation imple

ments the relation illustrated in Figure 7.14.

The fifth transformation, defined in Figure 8.13, creates a BPEL PartnerLink. The

transformation is distribution pattern specific. The transformation implements the relation

illustrated in Figure 7.20.

The sixth transformation, defined in Figure 8.14, transforms a DPL Operation artifact

to a BPEL Invoke artifact, and its child artifacts Operation, PortType, PartnerLink and

Variable. There may be many Operation artifacts per DPL Node. The transformation im

plements the relation illustrated in Figure 7.16.

180

-----C r e a t e (whe n e x p l i c i t l y c a l l e d) a BPEL P a r t n e r L i n k t y p e
-----* * P a l l e r n S p e c i f i c * *
r u l e P a t t e r n D c f i n i l o n T o P a r l n c r L i n k () {

lo
pi : BPEL! P a r t n e r L i n k (n a m e < — ’ C a l l e r myRol e < — t h i s M o d u l e . g e t S e r v i c e N a m e ()

, p a r t n e r L i n k T y p c < — t h i s M o d u l e * g e l N a m e s p a c e P r e r i x () + ’ : ’ + l h i s M o d u I e . g e t S e r v i c e N a m e () + ’ P L T ’)
do
{ p i ; }

}

Figure 8.13: ATL PatlemDefinitonToPartnerLink transformation definition.

------Trans f orm (when c a l l e d) a DPL O p e r a t i o n t y p e t o a BPEL I n v o k e t y p e
l a z y r u l e O p e r a l i o n T o l n v o k e {

f rom
op : DPL! O p e r a t i o n

to
i nv : BPELi I n v o k e (name <— ' i n v o k e ‘+ o p name * o p e r a t i o n < - o p e r , p o r t T y p e < - p i ,

p a r t n e r L i n k < - p t , i n p u t V a r i a b l e < ~ i n v a r . o u t p u t V a r i a b l e < — o u l v a r) ,
o p c r ; BPI-U O p e r a I iort{ name < - op , name) ,
p i : BPEL! Por t T y p e (qNamc < — o p , c C o n t a i n e r (h c C o n in. i n e r () , n s +:*:* + o p . c C o n t a i n c r {) . e C o n t m n e r () n a me) ,
pi : BPEL! P n n n c r i a n k l name < — op, c C o n i n l n e r () . c C o n t a i n e r () . n a m e) ,
i n v a r : BPEL! V a r i a b l e ! n ame"<- op c C o n t a i n e r () . c C o n t a i n e r () , name + o p . n a m e + ' R e q u e s t ') ,
o u l v a r : BPEL! V a n a b 1 c (name < — o p , c C o n t a i n e r () , e C o n l t t i n c r O n n r u e + o p . name + ‘ R e s p o n s e ’}

Figure 8.14: ATL OperationToInvoke transformation definition.

The seventh transformation, defined in Figure 8.15, transforms a DPL Mapping artifact

to a BPEL Assign artifact, and its child artifacts From and To, and subsequently to their

child artifacts Part and Variable. There may be many Mapping artifacts per DPL Operation.

An imperative block is used here to make the rule usable in two contexts, for handling

“Request” and “Response” source Mapping artifact types. The transformation implements

the relation illustrated in Figure 7.17.

------ Trans form (when c a l l e d) ea ch DPL Mappi ng t y p e to a BPEL As s i g n t y p e
l az y r u l e Ma p p i n g To As s i g n {

f r om
mp : DPL! Mapp i ng

to
as s : BPEL! A s s i g n (copy < — cpf r om , copy < — c p l o) ,
c p f r o m : B P E L ! F r o m (p a r t < — f m p a r l , v a r i a b l e < — f m v a r) ,
c p l o : BPEL! To(p a r t < — l o p a r l , v a r i a b l e < — t o v a r) ,
i m p a r t : BPEL! P a r i (name < — mp. " f r o m ” , p a r t) ,
l o p a r l : BPEL! P a r i (name < — m p . ” lo p a r i) ,
f mva r : BPEL! V a r i a b l e (n a m e < —

i f mp . ” f rom ” . me s s a g e = ’ I n i l i a l N o d e ’ t h en
i h i s M o d u l e . g e l S e r v i c e N a m e () + ’ Re q u e s l T y p e '

e l s e
mp . ” f r o m ” - mes s age

e n d i f
),
t o v a r : BPEL! V a r i a b l e (name < —

i f nip,” t o m e s s a g e = ’ F i n a l N o d e * Ihen
i h i s M o d u l e . g e t S e r v i c e N a m e () + *Rc s p o n s e T y p e ’

e l s e
mp . ” to ” , mes s a ge

e n d i f
)

Figure 8.15: ATL MappingToAssign transformation definition.

181

The eighth transformation, defined in Figure 8.16, creates a BPEL Variable artifact and

associated child Message artifact. The transformation is distribution pattern specific. The

transformation implements the relation illustrated in Figure 7.18.

-----C r e a t e (when e x p l i c i t l y c a l l e d) BPEL v a r i a b l e h o l d e r s f o r
-----t he d i s t r i b u t i o n p a t t e r n s p e c i f i c r e q u i r e m e n t s
— P a t t e r n S p e c i f i c * *
r u l e P a t t e r n D e f i n i l i o n T o V a r i a b l c (t y p e : S t r i n g) {

to
v a r ; BPEL! V a r i a b l e (n a m e < — t h i s M o d u l e . g e t S e r v i c e N a m e () + t y p e + ’Type ’ , m e s s a g e T y p e < - m c s ----- t h i s i s fi‘om

t he WSDL Mess age ECor e E C l a s s) ,
mes : BPEL! Me s s a g e (q Na me < — t h i s M o d u l e . g e t N a m e s p a c e P r c f i x () + ‘+ t h i s M o d u ! e . g e t S e r v i c e N a m c () + t y p c + ’Typc ’)

-----n o t c i c a l l c d r u l e s MUST e x p l i c i t l y r e t u r n a r e s u l t
d o { v a r ; }

Figure 8.16: ATL PattemDefinitionToVariable transformation definition.

The ninth transformation, defined in Figure 8.17, creates a BPEL Namespace. The

transformation is distribution pattern specific and implements the relation illustrated in Fig

ure 7.19.

-----C r e a t e (when e x p l i c i t l y c a l l e d) a BPEL Na me s p a c e t y p e
— * * P a t t e r n S p e c i f i c * *

r u l e P a t t e r n D e r i n i t i o n T o N a m e s p a c c () {
to

ns : BPEL! Na me s p a c c (UR] < — t h i s M o d u l e . g e t B a s e N a m e s p a c e () + t h i s M o d u l e . g e t S e r v i c e N a m e () ,
p r e f i x < — t h i s M o d u l e . g e t N a m e s p a e e P r e f i x ())

do
{ n s ; }

Figure 8.17: ATL PattemDefinitionToNamespace transformation definition.

8.4.3 Transforming DPL Model to Interface Model

The third transformation set is from a DPL model to an Interface model, where the DPL

model and the Interface model are the candidate models. These transformations are uni

directional because the transformation uses the source model to generate the target model,

but does not define rules for transforming the target to the source model. It should be noted

that bi-directionality would be impossible as the target model is only a subset of the source

model. We assume the Web service interface language will be WSDL, and thus utilise the

WSDL notation, discussed in Section 2.3. This transformation set is pattern dependent as

the target model artifacts to be created depend on the chosen distribution pattern. Pattern

182

The ATL module transformation header declares the name for the transformational set

and declares two models, the source model DPL and the target model WSDL. The module

is expressed in Figure 8.18.

module DPLtoWSDL; -- Module Template
create OUT : WSDL from IN : DPL;

Figure 8.18: ATL DPLtoWSDL transform module declaration.

The five transformations in this set are outlined as follows, and described in more detail

below.

• PattemDefinitionToDefinition

• NodeToNamespace

• NodeToPartnerLinkType

• FromToPart

• ToToPart

The first transformation, defined in Figure 8.19, transforms a DPL pattem-definition

artifact to a WSDL Definition artifact and its child artifacts Namespace, Message, Port-

Type, PartnerLinkType and Service. The transformation subsequently transforms the Port-

Type’s child artifact Operation, the PartnerLinkType’s child artifact Role, its child artifact

PortType, the Operation’s child artifacts Input and Output, and finally their child Message

artifacts. There is only one pattem-definition artifact per DPL model. The transformation

implements the relation illustrated in Figure 7.22.

The second transformation, defined in Figure 8.20, transforms a DPL Node artifact to a

WSDL Namespace artifact. There can be many DPL Node artifacts per DPL model. The

transformation implements the relation illustrated in Figure 7.23.

The third transformation, defined in Figure 8.21, transforms a DPL Node artifact to a

WSDL PartnerLinkType artifact, its child artifact Role, and subsequently to its child artifact

specific parts o f the code are clearly highlighted in the transformation definitions.

183

-----T r a n s f o r m a DPL p a t t e r n —d e f i n i t i o n t y p e lo a WSDL D e f i n i t i o n t y p e
r u l e P a l L e r n D e f i n i t i o n T o D e f i n i t i o n {

f rom
pd : DPL! ” p a H e r n — d e f i n i l i o n ”

lo
’’d e f ” : WSDL! D e f i n i t i o n (

t a r g e L N a m e s p a c e < — I h i s M o d u l e . g e t B a s e N a m e s p a c e () + t h i s M o d u l e . g e t S e r v i c e N a m e () ,
-----D e l e g a t e t he c r e a L i o n o f t h e WSDL n a me s p a c e s
e Na m e s p a c e s < — DPL! Node . a 111 n s t a n c e s Q —> c ol l e c l (e | t h i s M o d u l e . No d c To Na me s p a c e (e)) ,
e Na me s p a c e s < — n s . e M e s s a g e s < — mes r eq , e Me s s a g e s < — me s r e s , e P o r t T y p e s < — p i ,

-----d e l e g a t e t he c r e a t i o n o f t he WSDL PLTs
e P a r t n e r L i n k T y p e s < — DPL! Node . a I I I a s l a n c e s Q — > c o l l e c t (e | I h i s M o d u l e . N o d e T o P a r t n c r L i n k T y p e (e)) ,
e P a r t n e r L i n k T y p e s < — p i t , e S e r v i c e s < — s ve

),
-----n a me s p a c e f o r I h i s S e r v i c e
ns : WSDL!Namespace(URJ < — t h i s M o d u l e . g e t B a s e N a m e s p a c e Q + t h i s M o d u l e , g e t S e r v i c e N a m e ()

. p r e f i x < — I h i s M o d u l e . ge l ' M«ni cs | J i t ' c cPr e f i x ()) ,
ui es r eq : WSDL! Mess age (— * * l , u Li c r n S p e c i f i c * *

qName < — t h i s M o d u l e . g e t S c r v i c c N f l l i l c (J t * Re q u e s t T y p e
e P a r t s < — DPL! Fr om, a l l l n s U» n c c s O” > ^ l c Cl (e | e . me s s a g e = ’ I n i l i a l N o d e ’)—> c o l I e c l (e | I h i s M o d u l e . F r o m T o P a r t (e))

),
m e s r e s : WSDL! Mess age (— * * P a t t e r n S p e c i f i c * *

qName < — t h i s M o d u l e . g e t S e r v i c e N a m e () + ’ Re s p o n s e T y p e 5 ,
e P a r t s < — DPL! T o . a l 1 I n s t a n c e s () —> se I e c I (e | e . mes s a ge = ’ F i n a l N ode ’)—> c o l l e c l (e | l h i s M o d u l e . T o T o P a r t (e))

p t : WSDL! P o r l T y p e (qName < — I h i s M o d u l e . g e t S e r v i c e N a m e () + ' Po r t T y p e ’ , e O p e r a t i o n s < — o p) ,
-----D e f i n i t i o n f o r Hub PLT

p l l : WSDL! P a r l n c r L i n k T y p e (n a m e < — t h i s M o d u l e , g e t S e r v i c e N a m e () + ’P L T ’ , r o l e < — r l e) ,
r l e : WSDL! Ro l e (name < — I h i s M o d u l e . g e t S e r v i c e N a m e () , p o r t T y p e < — p l p t) ,
p l p l : WSDL! P o r l T y p e (qName < — t h i s M o d u l e . g e l N a m e s p a c e P r e f i x Q +

+ t h i s M o d u l e . g c t S e r v i c c N a m e () + ’ P o r t T y p e ’) ,
op : WSDL! O p e r a t i o n (name < — t h i s M o d u l e , g e t O p e r a l i o n N a m e () , e l n p u t < — i p , e O u t p u l < — o p t) ,
ip : WSDL! I n p u t (e Me s s a g e < — i p m e s s) ,
i p m e s s : WSDL! Mess age (qName < — t h i s M o d u l e . g e t N a m e s p a c e P r e f i x () + *

+ I h i s M o d u l e . g e t S e r v i c e N a m e () + 1 Re q u e s t T y p e ’) ,
o p t : WSDL! O u t p u t (e Me s s a g e < — o p m e s s) ,
opmes s : WSDL! Mess age (qName < — t h i s M o d u l e . g e t N a m e s p a c e P r e f i x () + 5; 5

+ t h i s M o d u l e . g e t S e r v i c e N a m e () + 5 Re s p o n s e Ty p e ’) ,
sve : WSDL! S e r v i c e (qName < — I h i s M o d u l e . g e t S e r v i c e N a m e ())

Figure 8.19: ATL PatternDefinitionToDefinition transformation definition.

-----T r a n s f o r m (when c a l l e d) a DPL Node t y p e to a WSDL Na me s p a c e t y p e
l a z y r u l e No d e To Na me s p a c e{

f r om
nd : DPL!Node

lo
ns : WSDL! Na me s pa ce (URl < — nd . u r i , p r e f i x < — n d , n s)

>

Figure 8.20: ATL NodeToNamespace transformation definition.

-----T r a n s f o r m (when c a l l e d) a DPL Node l y p c t o a WSDL P a r t n e r L i n k T y p c t y p e
l a z y r u l e N o d e T o P a r l n e r L i n k T y p e {

f rom
nd : DPL!Node

t o
p i t : WSDL! P a r t n e r L i n k T y p e (n a m c < — n d . n a m e + ’P L T ’ , r o l e < — r l e) ,
r l e : WSDL! Rol e (name < — n d . n a m e , po r LType < — p i) ,
p i : WSDL! P o r l T y p e (qName < — n d . n s + + n d . n a m e)

Figure 8.21: ATL NodeToPartnerLinkType transformation definition.

184

PortType. There can be many DPL Node artifacts per DPL model. The transformation

implements the relation illustrated in Figure 7.24.

The fourth transformation, defined in Figure 8.22, transforms a DPL From artifact to a

WSDL Part artifact. There is only one From artifact per DPL Mapping. The transformation

implements the relation illustrated in Figure 7.25.

-----T r a n s f o r m (when c a l l e d) a DPL From t y p e Lo a WSDL P a r i l y p e
l a z y r u l e F r o m T o P a r l {

f r o m
fin : DPL!From

Lo
p t : WSDL! P a r i (name < — f in. p a r i , t ypeNa mc < — t h i s M o d u l e , conve r l ETypeToWSDLType (f m , Lype))

}

Figure 8.22: ATL FromToPart transformation definition.

The fifth transformation, defined in Figure 8.23, transforms a DPL To artifact to a

WSDL Part artifact. There is only one To artifact per DPL Mapping. The transformation

implements the relation illustrated in Figure 7.26.

------Transform (when c a l l e d) a DPL To Lype to a WSDL ParL l y p e
l az y r u l e T o T o P a r t {

f rom
’’ t o ” : DPL!To

lo
p t : WSDL! P a r i (name < — ” Lo ” , p a r t * l ypeNanie < — I h i s M o d u l e „ conve r l EType ToWSDLType (” Lo ” . t y p e))

j

Figure 8.23: ATL ToToPart transformation definition.

8.4.4 Transforming DPL Model to Deployment Descriptor Model

The fourth transformation set is from a DPL model to a Deployment Descriptor model,

where the DPL model and the Deployment Descriptor model are the candidate models.

These transformations are uni-directional as the transformation uses the source model to

generate the target model, but does not define rules for transforming the target to the source

model. It should be noted that bi-directionality would be impossible as the target model

is only a subset of the source model. We previously assumed the collaboration language

will be WS-BPEL. It follows that we must choose a WS-BPEL compliant deployment en

vironment. Once such platform is ActiveBPEL. ActiveBPEL has a deployment descriptor

185

format PDD (Process Deployment Descriptor), which is the basis for the deployment de

scriptor notation. This transformation set is pattern dependent because the target model

artifacts to be created depend on the chosen distribution pattern. Pattern specific parts of

the code are clearly highlighted in the transformation definitions.

The ATL module transformation header declares the name for the transformational set

and declares two models, the source model DPL and the target model PDD. The module is

expressed in Figure 8.24.

module DPLtoPDD; -- Module Template
create O U T : PDD from IN : DPL;

Figure 8.24: ATL DPLtoPDD transform module declaration.

The five transfonnations in this set are outlined as follows, and described in more detail

below.

• PattemDefinitionToProcess

• NodeToPartnerLink

• NodeToWSDL

• PatternDefinitionToPartnerLink

• PattemDefinitionToWSDL

The first transformation, defined in Figure 8.25, transforms a DPL pattern-definition

artifact to a PDD Process artifact, and its child artifacts PartnerLinks and WSDLReferences.

There is only one pattern-definition artifact per DPL model. The transformation implements

the relation illustrated in Figure 7.28.

The second transformation, defined in Figure 8.26, transforms a DPL Node artifact to a

PDD PartnerLink artifact, its child artifact PartnerRole, its child artifact EndpointReference,

and finally its children Address and ServiceName. There can be many DPL Node artifacts

per DPL model. The transformation implements the relation illustrated in Figure 7.29.

186

------ Trans form a DPL p a t t e r n — d c f i n i t i o n to a PDD P r o c e s s
r u l e P a t t c r n D e f i n i l i o n T o P r o c e s s {

f rom
p d : DPL! ” p a t t e r n —d e f i n i t i o n "

lo
p : PDD! P r o c e s s (name < — t h i s M o d u l e . g e t S e r v i c c N a m e () , n a me s p a c e < — t h i s M o d u l e . g e l B a s e N a m e s p a c e ()

+ th i s M o d u l e . g e l S e r v i c c N a m e () ,
l o c a t i o n < — ’ b p e l / ’ + t h i s M o d u l e . g e l S c r v i c e N a m e () + ’ . b p e l ’ , pa r l n e r L i n k s < — p i s , w s d l R e f e r e n c e s < — w s r) .

p i s : PDD! P a r t n e r L i n k s (p a r l n e r L i n k < — pd . n o d e s . no d e —> c o 11 e c t (e | t h i s M o d u l e . N o d e T o P a r l e r L i n k (e))
, p a r t n e r L i n k < — t h i s M o d u l e . P a l l e r n D e f i n i t i o n T o P a r t n e r L i n k ()) ,

ws r : PDD! WS DL Re f c r e n c e s (wsdl < — pd . n o d e s . n o d e —> c o l l e e l (e | t h i s Mo d u l e . No d e T o WS D L (e))
, ws d l < — t h i s M o d u l e . P a l l e r n D e f i n i t i o n T o W S D L ())

}

Figure 8.25: ATL PatternDefinitionToProcess transformation definition.

-----T r a n s f o r m (when c a l l c d) e a c h DPL Node to a PDD P a r l n e r L i n k
l az y r u l e N o d c T o P a r t e r L i n k {

f r o m
n: DPL!Node

to
p i : PDD! P a r t n e r L i n k (n a m e < —n . name , p a r l n e r R o l e < - p r) ,
p r : PDD! P a r t n e r R o l e (e n d p o i n l R e f e r e n c e T y p e < — 1 s l a t i c ’ , e n d p o i n t R e f e r e n c c < — e r) ,
c r : PDD! E n d p o i n t R e f e r e n c e (u r i < — n . u r i , n a me s p a c e < — n . n s » a d d r e s s < — ad , s c r v i c e N a m e < — s o) ,
ad : PDD! A d d r e s s (t e x t < — n . n s + + n . u r i) ,
sn : PDD! S e r v i c e N a m e (P o r l Na me < — n . n a m e , t e x t < — n . n s + + n . name + ’ S e r v i c e ’)

}

Figure 8.26: ATL NodeToPartnerLink transformation definition.

The third transformation, defined in Figure 8.27, transforms a DPL Node artifact to a

PDD WSDL artifact. There can be many DPL Node artifact per DPL model. The transfor

mation implements the relation illustrated in Figure 7.30.

------ Trans f orm (when c a l l e d) e a c h DPL Node l o a PDD WSDL l y p e
l az y r u l e NodeToWSDL {

f rom
nd : DPL i Node

to
ws : PDD!WSDL(l o c a l i o n < — ’ w s d l / 5+ n d . name + wsdl n a me s p a c e < — n d . u r i)

}

Figure 8.27: ATL NodeToWSDL transformation definition.

The fourth transformation, defined in Figure 8.28, creates a PDD PartnerLink artifact,

and its child artifact MyRole. The transformation implements the relation illustrated in

Figure 7.31.

The fifth transformation, defined in Figure 8.29, creates a PDD WSDL artifact. The

transformation implements the relation illustrated in Figure 7.32.

187

-----C r e a l e (when e x p l i c i t l y c a l l e d) a PDD P a r t n e r L i n k
-----* * P a t t e r n S p e c i f i c * *

r u l e P a t t c r n D e f i n i t i o n T o P a r l n e r L i n k () {
to

pi ; PDD! P a r t n e r L i n k (n a m e < — ’ C a l l e r ' , myRol e < — m r) ,
mr ‘ PDD!MyRolcC s e r v i c e < — t h i s M o d u l e , g e t S e r v i c e N a m e () , a l l o w c d R o l e s < — b i n d i n g < — ’R P C ’)
do
{ p i ; }

}

Figure 8.28: ATL PatternDefinitionToPartnerLink transformation definition.

-----C r e a t e (whe n e x p l i c i t l y c a l l e d) a PDD WSDL
---- * * P a t t e r n S p e c i f i c * *
r u l e P a l l e r n D e f i n i t i o n T o W S D L () {

to
ws : PDD!WSDL(l o c a t i o n < — ’ w s d l / ’ + t h i s M o d u l e . g e t S e r v i c e N a m e () + ’ . w s d l ’

, n a me s p a c e < — t h i s M o d u l e . g c t B a s e N a m e s p a c e () + t h i s M o d u l e . g e t S e r v i c e N a m e ())
d o { w s ; }

}

Figure 8.29: ATL PattemDefinitionToWSDL transformation definition.

8.4.5 Transforming DPL Model to Deployment Catalog Model

The fifth transformation set is from a DPL model to a Deployment Catalog model, where

the DPL model and the Deployment Catalog model are the candidate models. These trans

formations are uni-directional as the transformation uses the source model to generate the

target model, but does not define rules for transforming the target to the source model. It

should be noted that bi-directionality would be impossible as the target model is only a

subset of the source model. We previously stated that we assume the use of a centralised

distribution pattern, the WS-BPEL collaboration language and the ActiveBPEL execution

platform. ActiveBPEL has a deployment catalog format WSDLCatalog, which is the ba

sis for the Deployment Catalog notation. This transformation set is pattern dependent as

the target model artifacts to be created depend on the chosen distribution pattern. Pattern

specific parts of the code are clearly highlighted in the transformation definitions.

The ATL module transformation header declares the name for the transformational set

and declares two models, the source model DPL and the target model WSDLCatalog. The

module is expressed in Figure 8.30.

The three relations in this set are outlined as follows, and described in more detail below.

• PattemDefinitionTo WSDLCatalog

188

module DPLtoWSDLCatalog; -- Module Template
create OUT : WSDLCatalog from IN : DPL;

Figure 8.30: ATL DPLtoWSDLCatalog transform module declaration.

• NodeToWSDLEntry

• Pattern DefinitionTo WSDLEntry

The first transformation, defined in Figure 8.31, transforms a DPL pattcm-definition

artifact to a WSDLCatalog WSDLCatalog artifact. There is only one pattem-definition

artifact per DPL model. The transformation implements the relation illustrated in Figure

7.34.

------ Traas f orm a DPL p a t t e r n —d c f i n i t i o n t o a WSDLCat a l og WSDLCat a l og
r u l e Pa t t e r n D c f i ni l i on To W S D L C a t a l o g {

f rom
pd : DPL! ” p a t t e r n — d e f i n i t i o n ”

to
c a t : WSDLCat a l og! WSDLCal a l og(ch i I d r e n < — t h i s M o d u l e . g e t A I I N o d e s ()

, c h i l d r e n < — t h i s M o d u l e . P a t t e r n D e f i n i t i o n T o W S D L E n t r y (p d))
}

Figure 8.31: ATL PattemDefinitionToWSDLCatalog transformation definition.

The second transformation, defined in Figure 8.32, transforms a DPL Node artifact to

a WSDLCatalog WSDLEntry artifact. There can be many DPL Node artifacts per DPL

model. The transformation implements the relation illustrated in Figure 7.35.

[-----T r a n s f o r m e a c h DPL Node t o a WSDLCa t a l og WSDLEnt r y t y p e
I r u l e NodeToWSDLEnt ry {

f rom
nd : DPL ¡ Node

to
en t ; WS DL Ca t a l o g ! WSDLEnt r y (1 o c a t i o n < — ’ w s d l / ’ + n d„ na me + *.ws d l ’ , c l a s s p a t h < —

’ w s d l / ’+ n d . name + ’ . w s d l ')
}

Figure 8.32: ATL NodeToWSDLEntiy transformation definition.

The third transformation, defined in Figure 8.33, transforms a DPL pattem-definition

artifact to a WSDLCatalog WSDLEntry artifact. There is only one pattern-definition artifact

per DPL model. The transformation implements the relation illustrated in Figure 7.36.

189

- —T r a n s f o r m (when c a l l e d) a DPL ” p a t t e r n —d e f i ni l i o n " to a WSDLCa t a l og WSDLEnt r y t ype
l a z y r u l e P a U e r n D e f i n i l i o n T o W S D L E n i r y {

f rom
pd : DPL! ” p a t t e r n —d e f i n i l i o n ”

to
e n t : WSDLCat a l og! WSDLEnLry(l o c a t i o n < - ’ w s d l / ’ -f t h i s M o d u l e . g e l S e r v i c e N a m e () + ' w s d l '

. c l a s s p a t h < — ’w s d l / ’+ t h i s M o d u l c ► g e t S e r v i c e N a m c () + ’ . w s d l ’) j
)

Figure 8.33: ATL PalternDefinitionToWSDLEntry transformation definition.

8.4.6 Transforming Collaboration Model to XML Model

The sixth transformation set is from a Collaboration model to an XML model, where the

BPEL model and the XML model are the candidate models. These transformations are uni

directional as the transformation uses the source model to generate the target model, but

does not define rules for transforming the target to the source model. Again we assume the

Collaboration notation is targeted to the WS-BPEL collaboration language. This transfor

mation set specifies how a WS-BPEL model is transformed to an XML based model, which

can be serialised to WS-BPEL compliant XML text. This transformation set is pattern in

dependent as the target model artifacts do not depend on the chosen distribution pattern.

Pattern specific parts of the code are clearly highlighted in the transformation definitions.

The ATL module transformation header declares the name for the transformational set

and declares two models, the source model BPEL and the target model XML. The module

is expressed in Figure 8.34.

module BPELtoXML; -- Module Template
create OUT : XML from IN : BPEL;

Figure 8.34: ATL BPELtoXML transform module declaration.

The eight transformations in this set are outlined as follows, and described in more

detail below.

• ProcessToRoot

• NamespaceToAttribute

• InvokeActivityToElement

• ReceiveActivityToElement

• ReplyActivityToElement

• AssignActivityToElement

• VariableToEleraent

• PartnerLinkToElement

The first transformation, defined in Figure 8.35, transforms a BPEL Process artifact

to an XML Root artifact along with to a number of nested XML Element and Attribute

artifacts. There is only one Process artifact per BPEL model. An imperative block is

used to ensure the source model artifacts Receive, Reply, Invoke and Assign are output to

XML based artifacts in a predetermined order. The transformation implements the relation

illustrated in Figure 7.38.

The second transformation, defined in Figure 8.36, transforms a BPEL Namespace ar

tifact to an XML Attribute artifact. There can be many Namespace artifacts per BPEL

Process. The transformation implements the relation illustrated in Figure 7.39.

The third transformation, defined in Figure 8.37, transforms a BPEL Activity artifact to

an XML Element artifact, and subsequently to a number of child XML Attribute artifacts.

There can be many Activity artifacts per BPEL Sequence. The transformation implements

the relation illustrated in Figure 7.40.

The fourth transformation, defined in Figure 8.38, transforms a BPEL Activity artifact

to an XML Element artifact, and subsequently to a number of child XML Attribute artifacts.

There can be many Activity artifacts per BPEL Sequence. The transformation implements

the relation illustrated in Figure 7.41.

The fifth transformation, defined in Figure 8.39, transforms a BPEL Activity artifact to

an XML Element artifact, and subsequently to a number of child XML Attribute artifacts.

There can be many Activity artifacts per BPEL Sequence. The transformation implements

the relation illustrated in Figure 7.42.

191

- - T r a n s f o r m t he BPEL P r o c e s s 1 0 nn XML Root typer
r u l e P r o e e s s To Ro o . t {

f rom
P BPHL!Proccs*

to
r t : XML! Root (nar nc <£- " p r o c e s s ' ,

c h i l d r e n < — nine* c h i l d r e n < — s j f , c h i l d r e n < — i n ,
c h i l d r e n < “ xml ns . c h i l d r e n < - t l i i s M o d u l c g e i A U N a m c s p i i c c s () ,
c h i l d r e n < — bp ws n s , c h i l d r e n < - x s d n s . c h i I d r e n < - p i s , c h i l d r e n < - vars-* c h i l d r e n < - i i c i i) .

nn»c:XML! A l l r i b u t « (name < - ' name * „ v a l u e < - p . rioiJie) ,
s j f :XMU A t t r i b u t e [tranic < - ' s u p p r e & s J o i n F a i l u r e

. v a l ue <— U mM o d u l e c o n vc r t Boo t c nn To S Vr i ng (p . s u p p r o s . s J o i n P n ¡ h i r e)) ,
— t h i s i s i hc BPHL p r o c e s s s p e c i f i c n a m e s p a c e f o r t h e c o m p o s i t i o n
t iv:XML! A t t r i b u t e (name < — ' i f t r g c t Na mc s p n c e v a l u e < - p , t a r g e t N a m c s p a c e) .

— t h i « i& t he BPHL r i ames paec w h i c h i s a l w a y s t he same
xit t l riKiXMU A t t r i b u t e (nmhe < - ' xml i f e ' , v a l u e < ~ ’ h t t p : / / s c h ema s : . x i nf s oap . o r g V w 5 / Z 0 0 3 / 0 3 / b u t s i n c a » — p r o c e s s i *) ,

— - i h i s i s t he BP EL u a m e s p lie e w hiel i i s a lw nys t he sa two
bp\vsns :XML! At t r i b u t e (name < - * x m l n s t b p w i *

. v a l u e < — ' h t i p :/■' s c h e m a s , x ml s o a p o r g / w s / 2 0 Q 3 / 0 3 / b u s t n e s s - p r o c c s * / *■),
- - t i n s i s t h e XSD n a m e s p a c e wh i c h i s a l w a y s t h e same
x s d n s : XML1 A t t r i b u t e (name < — ‘x m l n s ; x s d ‘ , v n l u c ■<-* ‘ h t t p / w3 o r g / 2 0 Q I / XMl.Sebcmn ‘) .
p U ;XMU E l e me n t (nnme < — * p a r t n e r ! » i n k s

. c h i l d r e n •<- p - p a r t n c F L i u k s , c h j l d r c n “ > c o l | c c t . i c | t h i s M o d u l e , P n r t n c r U n k T o B I crn.cn L(c))) ,
v n r s :XMLf E l e me n t (name < — ‘ v a r i a b l e s *

, c h i l d r e n < - p . v a r i a b l e s . c h i I d r e u —> e o l I c e t (e j l l i i s Mo d u I c . V a r i a b l e ! » E l e m e n t (e))) ,
a c t i XML! E l e me n t < name < — ' s e q u e n c e *, c h i l d r e n < — s e n) ,
i c q .XML! A t t r i b u t e (name < — ' n a m e " „ v a l u e < — ' S e q u e n c e I ’)
do

— we need t o c o n t r o l t he o r d e r o f t h e a c t i v i t i e s so we mus t u s e a f o r l oo p in s t e a d
- - o f j u s t h a v e a ma t c h e d r u l e . Ma t c h e d r u l e s c a n n o t be u s e d i f Imvc t o o r d e r t h e o u t p u t
f o r (n e t in p . a c t i v i t y a c t i v i t i e s)

{
i f { a c t . o c l T v p c () = BPEL! R e c e i v e }
t

a c t i . c h i l d r e n < - t h i s M o d u l c . R c c o t v c A c t < v i t y T o E l c i n e n t (a c t) \
)
e l s e i f (a c t . o c l T y p c () - BPHL! I n v o k e)

<
a c t i . c h i l d r e n < ~ t h i s M o d u l c . In vol t e A c i i v i i y T o E t c i u c n i (a c t) ;

e l a e i f (a c t . o c I T v p e () - BPEL! A s s i g n)
{

a c t } , c h i l d r e n < — t h i s M o d u l c A s s i g n A e i i v i l y ' l o E l c t n c u K a c t);
>
e l s e t f t a c t . o c l T y p c Q = BPEL! Re p l y 1
i

a c t i . c h i l d r e n < - t h i s M o d u l e . R e p l y A c l i v i l y T a E l e m e n l f a c t
>

>
t

)

Figure 8.35: A'l'L ProcessToRoot transformation definition.

192

-----T r a n s f o r m a BPEL Na me spa c c t o an XML A t t r i b u t e l ype
r u l e N a m e s p a c e T o A t t r i b u t e {

f rom
n s : BPEL! Namespace

lo
aLt : XML! A t t r i b u t e (name < —’x m l n s : ’ + ns . p r e f i x , v a l u e < — n s . U R I)

}

Figure 8.36: ATL NamespaceToAttribute transformation definition.

-----T r a n s f o r m (when c a l l e d) e a c h BPEL A c t i v i t y t y p e t o an XML El e me n t l ype
l az y r u l e I n v o k e A c l i v i t y T o E l e m e n t {

f rom
a c t : BPEL! A c t i v i t y

Lo
e l e : XML! E l e me n t (name < — I h i s M o d u l e . g e l A c t i v i t y T y p e (a c t . o c l T y p e ()) , c h i l d r e n < — nine,

c h i l d r e n < — o p , c h i l d r e n <— pi , ch i l d r e n < — pi , c h i l d r e n < — i n v a r , c h i l d r e n < — o u t v a r
),
nme : XML! A t t r i b u t e (name < — ’n a m e v a l u e < — a c t . n a m e) ,
op : XML! A t t r i b u t e (name < — ’ o p e r a t i o n v a l u e < — a c t . o p e r a t i o n . name) ,
p i : XML! A t t r i b u Le (name < — ’ p a r t n e r L i n k v a l u e < — a c t . p a r i n e r L i n k . n a m e) ,
p i : XML! A t t r i b u t e (name < — ’ p o r l T y p c v a l u e < — a c t . p o r t T y p e . qName) ,
i n v a r : XML! A t t r i b u t e (name < — ’ i n p u t V a r i a b l e 1 , v a l u e < — a c t . i n p u t V a r i a b l e . na me) ,
o u t v a r : XML! A t t r i b u t e (name < — ’ o u l p u t V a r i a b l e v a l u e < — a c t . o u t p u t V a r i a b l e . name)

Figure 8.37: ATL InvokeActivityToElement transformation definition.

The sixth transformation, defined in Figure 8.40, transforms a BPEL Activity artifact

to an XML Element artifact, and subsequently to a number of child XML Attribute and

Element artifacts. There can be many Activity artifacts per BPEL Sequence. The transfor

mation implements the relation illustrated in Figure 7.43.

The seventh transformation, defined in Figure 8.41, transforms a BPEL Variable artifact

to an XML Element artifact, and subsequently to a number of child XML Attribute artifacts.

There can be many Variable artifacts per BPEL Process. The transformation implements

the relation illustrated in Figure 7.44.

The eighth transformation, defined in Figure 8.42, transforms a BPEL PartnerLink ar

tifact to an XML Element artifact, and subsequently to a number of child XML Attribute

artifacts. There can be many PartnerLink artifacts per BPEL Process. An imperative condi

tional block is used to control the creation of target model artifacts, depending on whether

source model artifacts MyRole and PartnerRole exist. The transformation implements the

relation illustrated in Figure 7.45.

193

-----T r a n s f o r m (when c a l l e d) e a c h BPEL R e c e i v e t y p e to an XML E l e me n t t y p e
l a z y r u l e R e c e i v e A c l i v i l y T o E l e n i e n l {

f rom
a c t : BPEL! A c l i v i t y

to
e l e : XML! E l e me n t (name < — I h i s M o d u l c . g e l A c t i v i t y T y p e (a c t , o c J T y p c ())

, c h i l d r e n < — nine, c h i l d r e n < — cr i , c h i l d r e n < — pi , c h i l d r e n < — pt
, c h i l d r e n < — op v c h i l d r e n < — v a r) ,

nmc : XML! A t t r i b u l e (name < —’n a m e v a l u e < — a c t . n a m e
),
c r i : XML! A l t r i b u t e (n a m e < —’ c r e a t e l n s l a n c e v a l u e

< — t h i s M o d u l e , c o n v e r t B c i ß l c n n T o S i r i n y (a c t . c r e a l c l n s t a n c e)) ,
pi : XML! A t t r i b u t e (name < —'' pnr tncrLi t t J< v a l u e < — a c t . p a r l n e r L i n k . n a me) ,
p t : XML! A t t r i b u t e (name < —' p o r l T y p e " . v a l u e < — a c t . p o r t T y p e . q N a m e) ,
op : XML! A t t r i b u te (name < ~ ‘o p c r n i i o t t *, v a l u e < — a c I . o p c r a t j o n . na me) ,
v a r : XML! A l l r i b u t e (name < “ ’v a r i a b l e * . v a l u e < — a c t . v a r i a b l e . name)

Figure 8.38: ATL ReceiveActivityToElement transformation definition.

I-----T r a n s f o r m (when c a l l e d) e a c h BPEL R e p l y t y p e t o an XML E l e me n t t y p e
l az y r u l e R e p l y A c l i v i L y T o E l e m c n t {

f rom
a c t : BPEL ' . A c t i v i t y

to
e l e : XML! E l e me n t (name < — I h i s M o d u l e . g e t A c l i v i t y T y p e (a c t . o c l T y p e ()) ,

c h i l d r e n < — rune, c h i l d r e n < — pi , c h i l d r e n < — pi , c h i l d r e n < — o p , c h i l d r e n < — v a r) ,
nmc : XML! A l t r i b u t c (n a me < —’n a m e v a l u e < — a c l . n a m e) ,
pi : XML! A t t r i b u t e (n a me < —’p a r l n e r L i n k v a l u e < — a c t . p a r l n e r L i n k . na me) ,
p t : XML! A t t r i b u t e (name < —’p o r l T y p e v a l u e < — a c t . p o r t T y p e . q N a m e) ,
op : XML! A t t r i b u t e (name < —’o p e r a t i o n v a l u e < — a c l . o p e r a t i o n . na me) ,
v a r : XML! A l l r i b u l e (n a me < —’v a r i a b l e v a l u e < — a c t . v a r i a b Ie . name)

Figure 8.39: ATL ReplyActivityToElement transformation definition.

8.4.7 Transforming Interface Model to XML Model

The seventh transformation set is from an Interface model to an XML model, where the

WSDL model and the XML model are the candidate models. These transformations are

uni-directional as the transformation uses the source model to generate the target model,

but does not define rules for transforming the target to the source model. We assume the

Interface model is targeted to the WSDL interface language. This transformation set spec

ifies how a WSDL model is transformed to an XML based model, which can be serialised

as WSDL compliant XML text. This transformation set is pattern independent because the

target model artifacts to be created do not depend on the chosen distribution pattern. Pattern

specific parts of the code are clearly highlighted in the transformation definitions.

The ATL module transformation header declares the name for the transformational set

and declares two models, the source model WSDL and the target model XML. The module

is expressed in Figure 8.43.

194

— Tr a ns f o r m (when c a l l c d) cncli BPEL Ass ign t ype to an XML Element t ype
l azy r u l e A$s t gnAc f i v i i yTo El cmen t {

from
act BPEL! Ac l i v i l y

to
el e : XML! Element (name < — t h i s Modu l e . ge t Ac t i v n y T y p e (a c t . o c l T y p c O) . c h i l d r e n < - c op y) ,
copy : XML! Element (name < — ’c o p y c h i l d r e n < — “ f r om“ , c h i l d r e n <— “ t o ”) .
" f rom" : XML! Element (name <— * from ‘ . c h i l d r e n < - f m p n r i . c h i l d r e n < - f mv a r) .
" t o " : XML? Element (name < — ' t o ’ . . ch i l d r en < - t op a r t . chi Idr cn < — t o v a r) .
fin par i XML! A t t r i b u t e (name < - ’pnrt ’ , va l ue < - acl . c opy , al (I). p a r t . n a m e) .
fmvar : XML! A l l r i b u t e (name < - ’vn r i a b l c ' . va l ue < - a c t . c o p y at (I). v a r i a b l e name) .
• o p a r t : XML! A t t r i b u t e (name < ~ ‘par t ’ , va l ue < - act . c opy , al (2) . p a r t . n ame) ,
t o v a r : XML! A t t r i b u t e (name < - ‘v a r i a b l e ’ . va l ue < - acl . copy . at (2) . v a r i a b l e . name)

Figure 8.40: ATL AssignActivityToElement transformation definition.

---- Transform (when c a l l c d) each BPEL Va r i a b l e t ype to an XML Element l ypc
lazy ru l e Var iobl cToEl ement {

from
var . BPEL! Va r i a b l e

to
el c : XML! Elemcni (name < —’v a r i a b l e c h i l d r e n <- name. c h i l d r e n <- ms t) .
name ; XML! A t t r i b u t c (n a m c < — ’name ’ . va l ue < - v a r . n a m e) .
mst XML! At t r i b u t e (name < — ’ mcssageType ’ , value <~ v a r . mcssagcType qNnmc)

Figure 8.41: ATL VariableToElement transformation definition.

The twelve transformations in this set are outlined as follows, and described in more

detail below.

• DefinitionToRoot

• NamespaceToAttribute

• MessageToElement

• PartToElement

• PortTypeToElement

• OperationToElement

• InputToElement

• OutputToElement

• PLTToElement

• RoleToElement

195

-----T r a n s f o r m (when c a l l e d) e a c h BPEL P a r t n e r L i n k t y p e t o an XML E l e me n t t y p e
l az y r u l e P a r l n c r L i n k T o E I e m e n t {

f rom
pI : BPEL! P a r t n e r L i n k

Lo
e l e : XML! E l e me n t (name < —’p a r t n e r L i n k ’ , c h i I d r e n < — n a m e , c h i I d r e n < — p i t) ,

-----need t o s e c i f t h e a t t r i b u t e e x i s t s b e f o r e r u n n i n g t h i s
mr : XML! A l l r i b u t e (name < — ’ myRole 1 , v a l u e < — p i . m y R o l e) ,
name : XML! A t t r i b u t e (name < — ’n a m e v a l u e < — p i . n a m e) ,
p i t : XML! A t t r i b u t e (name < — ’ p a r t n e r L i n k T y p e ' , v a l u e < — p i . p a r t n e r L i n k T y p e) ,
p r : XML! A t t r i b u t e (name < — ’ p a r t n e r R o l e ' , v a l u e < — p] . p a r t n e r R o l c)
d o ----- i m p e r a t i v e b l o c k
{

-----some a t t r i b u t e s a r e no t m a n d a t o r y , we mus t c h e e k t o s e e i f t h e y e x i s t b e f o r e t r y i n g to o u t p u t t hem
i f (pi , myRole . o c l i s U n d c f i n e d () O t r u e)
{

e l e , c h i l d r e n < — m r ;
}
i f (pi , p a r t n e r R o l e . o c l l s U n d e f i ne d () O t r u e)
{

e l e , c h i l d r e n <— p r ;
>

)
}

Figure 8.42: ATL PartnerLinkToElement transformation definition.

module WSDLtoXML; -- Module Template
create OUT : XML from IN : WSDL;

Figure 8.43: ATL WSDLtoXML transform module declaration.

• PLTPortTypeToElement

• ServiceToElement

The first transformation, defined in Figure 8.44, transforms a WSDL Definition arti

fact to an XML Root artifact along with a number of nested XML Element and Attribute

artifacts. There is only one Definition artifact per WSDL model. The transformation im

plements the relation illustrated in Figure 7.47.

The second transformation, defined in Figure 8.45, transforms a WSDL Namespace

artifact to an XML Attribute artifact. There can be many Namespace artifacts per WSDL

Definition. The transformation implements the relation illustrated in Figure 7.48.

The third transformation, defined in Figure 8.46, transforms a WSDL Message artifact

to an XML Element artifact, and subsequently to a child XML Attribute artifact. There

can be many Message artifacts per WSDL Definition. The transformation implements the

relation illustrated in Figure 7.49.

The fourth transformation, defined in Figure 8.47, transforms a WSDL Part artifact to

an XML Element artifact, and subsequently to a number of child XML Attribute artifacts.

196

------Trans form e a c h WSDL D c f i n i l i o n t y p e t o an XML Ro o t t y p e
r u l e D e f i n i l i o n T o R o o l {

f rom
d ; WSDL! D e f i n i l i o n

to
rl : XML! Ro o t (name < — ’ wsdl : d e f i n i t i o n s c h i l d r e n < — t n , c h i l d r e n < — p l t n s , c h i l d r e n < — bpwsns

. c h i l d r e n < — xsdt i s , eli i l d r e n < — wsdl , c h i l d r e n < — w s d l s o a p ,
c h i l d r e n < — d . eNf l incspaces - > c o l l e c t (e | t l i i s M o d u k N a m c s p a e c T o A t i r i b u l e (e)) ,
c h i l d r e n < — d . eMessmgcf l—> c o 11 e c l (e | i h i s M o d u t e Me s s a g e To El e i n c n i (c)) ,
c h i l d r e n < — d. c P o r i T y p c s —> c o l l e d (e | t h i s M o d u l e . P o r t T y | » c T o E l c n i e n t (c)) ,
c h i l d r e n < — d. c P n r t n c r L i n k T y p e s —> c o 11 c c ! (c | t l u s M o d i i l c . PL T T o E l c mc n i (e)) ,
c h i l d r e n < — d. c S c i V i o c s - > c o 1 l e c t (e | i h i s i Mnd i i l c . S e r v i c c T o E l c m c n t (c))

) ,
In :XML! A t t r i b u t e (name < — ’ t a r g e l N a m e s p a c e *, v a l u e < — d . l a r g e l N a m e s p a c c) ,
p l t n s :XML! A t l r i b u t e (name < — ’ x m l n s : p i t ’ ,

v a l u e < — ’ h t t p : / / s c h e m a s . xml soap . o r g / w s / 2 0 0 3 / 0 5 / p a r t n e r —li n k / ’) ,
bpws ns ;XML! A t t r i b u t e (name < — ’ x m l n s : bpws 5 ,

v a l u e < — ’ h t t p : / / s c h e ma s . x m l s o a p . o r g / w s / 2 0 0 3 / 0 3 / b u s in e s s —p r o c e s s / ’) ,
wsdl :XML! A l t r i b u t e (name < — ’ xml ns : wsdl ’ ,

v a l u e < — ’ h l l p : / / s c h e ma s . x m l s o a p . o r g / w s d l / ’) ,
w s d l s o a p :XML! A t t r i b u t e (name < — ’ x ml n s : ws d l s o a p ’ ,

v a l u e < — ’ h t t p : / / s c hema s . x ml s o a p . o r g / w s d l / s o a p / ’) ,
x s d n s :XML! A t l r i b u l e (name < — ’ x m l n s r x s d ’ ,

v a l u e < — ’ h t t p : / / www. w3 . o r g / 2 0 0] /XMLSchema1)

Figure 8.44: ATL DefinitionToRoot transformation definition.

-^—T r a n s f o r m (when c a l l e d) ea ch WSDL Na me spa c e t y p e l o an XML A t t r i b u t e t y p e
l az y r u l e N a m e s p a c e T o A t t r i b u t e -{

f r o m
n s : WSDL! Na me spa c e

lo
a l t : XML! A t t r i b u t e (name < — ’ x ml n s : 1 + n s . p r e f i x , v a l u e < — n s . U R l)

}

Figure 8.45: ATL NamespaceToAttribute transformation definition.

-----T r a n s f o r m (when c a l l e d) e a ch W'SDL Mess age t y p e lo an XML E l e me n t t ype
l az y r u l e MessageToEl ement -{

f rom
ms: WSDL! Message

lo
eJe : XML! E l e me n t (name <— * wsdl : m e s s a g e c h i l d r e n < — nme

, c h i l d r e n < — ms, e P a r l s —> c o l l e c I (e | t h i s M o d u l e . P a r t T o E l e m e n t (e))) ,
nme : XML! A t t r i b u t e (name < — ’n a m e v a l u e < — ms . qName)

Figure 8.46: ATL MessageToElement transformation definition.

197

http://www.w3

There can be many Part artifacts per WSDL Message. The transformation implements the

relation illustrated in Figure 7.50.

-----T r a n s f o r m (when c a l l e d) e a c h WSDL P a r i t y p e l o an XML E l e me n t t y p e
l az y r u l e P a r l T o E l c m e n l {

f rom
pi : WSDL! P a r i

to
e i e : XML! E l e me n t (name < — ’ wsdl : p a r t ’ , c h i ! d r e n < — n a m e , c h i l d r e n < — t y p e) ,
name : XML! A l l r i b u L e (name < — ’ name 1 , va i ue < — p t . n a m e) ,
l ype : XML! A t t r i b u l e (name < — ’ l y p e v a l u e < — pi * t ypeNa me)

Figure 8.47: ATL PartToElement transformation definition.

The fifth transformation, defined in Figure 8.48, transforms a WSDL PortType artifact

to an XML Element artifact, and subsequently to a child XML Attribute artifact. There

can be many PortType artifacts per WSDL Definition. The transformation implements the

relation illustrated in Figure 7.51.

-----T r a n s f o r m (wh e n c a l l e d) c a c h WSDL P o r t T y p e l y p e t o an XML E l e me n l l y p e
l a z y r u l e P o r l T y p c T o E l e m c n l {

f rom
pt : WSDL! P o r l T y p c

t o
e i e : XML! E l e me n t (name < — ’ ws d l : p o r l T y p c c h i l d r e n < — n a me ,

c h i l d r e n < — p L . e O p e r a t i o n s —> c o l l e c t (e | I h i s M o d u l e , O p e r a t i on T o E l c m e n t (e))) ,
name : XML! A I t r i b u le (name < — ’n a me 4 , v a l u e < — p t . q N a m e)

Figure 8.48: ATL PortTypeToElement transformation definition.

The sixth transformation, defined in Figure 8.49, transforms a WSDL Operation artifact

to an XML Element artifact, and subsequently to a child XML Attribute artifact. There

can be many Operation artifacts per WSDL PortType. The transformation implements the

relation illustrated in Figure 7.52.

The seventh transformation, defined in Figure 8.50, transforms a WSDL Input artifact

— - Tr a n s f o r m (when c a l l e d) e a c h WSDL O p e r a t i o n l y p e l o an XML E l e m e n t Lype
l a z y r u l e O p c r a l i o n T o E l e m e n l {

f rom
op : WSDL! O p e r a t i o n

lo
c l e : XML! E l e me n t (name < — ’ w s d l : o p e r a t i o n ’ , c h i l d r e n < — n ame ,

c h i l d r e n < — S e q u e n c e { o p . c] n p u l } —> c o l I e c I (e | I h i s M o d u l e . I n p u l T o E l e m e n t (e)) ,
c h i l d r e n < — S e q u e n c e { o p . e Ou l p u l } —> c o l l e c t (e | L h i s M o d u l e . O u l p u l T o E l e m e n t (e))) *

name : XML! A I t r i b u Le (name < — 1 name 5 , v a l u e < — o p . n a m e)

Figure 8.49: ATL OperalionToElement transformation definition.

198

------Trans f orm (when c a l l e d) e a c h WSDL I n p u l t y p e to an XML E l e me n t t y p e
l a z y r u l e I n p u l T o E l e m c n t {

f rom
¡ np : WSDL! 1 n p u l

l o
e l e : XML! E l e me n t (name < — ’ ws dl : i n p u t c h i l d r e n < — n a me) ,
name : XML! A L t r i b u t e (name < — ’ message v a l u e < — i n p . e Me s s a g e . qName)

Figure 8.50: ATL InputToElement transformation definition.

to an XML Element artifact, and subsequently to a child XML Attribute artifact. There can

be many Input artifacts per WSDL Operation. The transformation implements the relation

illustrated in Figure 7.53.

The eighth transformation, defined in Figure 8.51, transforms a WSDL Input artifact to

an XML Element artifact, and subsequently to a child XML Attribute artifact. There can be

many Output artifacts per WSDL Operation. The transformation implements the relation

illustrated in Figure 7.54.

-----T r a n s f o r m (when c a l l e d) cacl i WSDL O u t p u t t y p e Lo an XML E l e me n t t y p e
l a z y r u l e O u t p u l T o E l e m e n l {

f r o m
o u t : WSDL! O u t p u t

lo
e l e : XML! E l e me n t (name < — ’ wsdl : o u t p u t c h i l d r e n < — n a me) ,
name : XML! A t t r i b u t e (name < — ’m e s s a g e ’ , v a l u e < — o u t . e Me s s a g e . qName)

Figure 8.51: ATL OutputToElement transformation definition.

The ninth transformation, defined in Figure 8.52, transforms a WSDL PartnerLinkType

artifact to an XML Element artifact, and subsequently to a child XML Attribute artifact.

There can be many PartnerLinkType artifacts per WSDL Definition. The transformation

implements the relation illustrated in Figure 7.55.

------Trans form (when c a l l e d) e a c h WSDL P a r l n e r L i n k T y p e t y p e Lo an XML E l e mc n l l y p e
l az y r u l e P LTToEl eme nt {

f rom
p i t : WSDL! Pa r l n e r L i n k T y p e

to
e l e : XML! E l e me n t (name < — ’ p 11 : p a r l n e r L i n k T y p e 1 , c h i I d r e n < — nme,

c h i l d r e n < — S e q u e n c e { p 11 . r o l e] —> c o l l e d (e | I h i s M o d u l e . R o l e T o E l e m e n t (c))) ,
nrnc : XML! A t t r i b u t c (name < — ' n a m e v a l u e < — p i t . n a m e)

Figure 8.52: ATL PLTToElement transformation definition.

The tenth transformation, defined in Figure 8.53, transforms a WSDL Role artifact to

199

an XML Element artifact, and subsequently to a child XML Attribute artifact. There is only

one Role artifact per WSDL PartnerLinkType. The transformation implements the relation

illustrated in Figure 7.56.

------ Trans f orm (when c a l l e d) e a c h WSDL Ro l e l y p c t o an XML E l e me n t t y p e
l a z y r u l e R o l e T o E l e m c n l {

f rom
r l e : WSDL! Rol e

to
e l e : XML! E l e me n t (name < — ’ p i t : r o l e c h i l d r e n < — n a me ,

c h i l d r e n < — S e q u e n c e { r l e , p o r l T y p c } —> c o 1 l e c l (e | t h i s M o d u l e . P L T P o r t T y p e T o E l e m e n L (e))) ,
name : XML! A t t r i b u t e (name < — ’name v a l u e < — r l e . n a m e)

Figure 8.53: ATL RoleToElement transformation definition.

The eleventh transformation, defined in Figure 8.54, transforms a WSDL PortType arti

fact to an XML Element artifact, and subsequently to a child XML Attribute artifact. There

is only one PortType artifact per WSDL Role. The transformation implements the relation

illustrated in Figure 7.57.

-----T r a n s f o r m (when c a l l e d) ea ch WSDL P o r t T y p e t y p e t o an XML E l e me n t t y p e
l az y r u l e P L T P o r l T y p e T o E l e m c n l {

f r o m
p i : WSDL! P o r t T y p e

to
e l e : XML! E l e me n t (name < — ’ p i t r p o r t T y p e c h i l d r e n < — n a m e) ,
name : XML! A t t r i b u t e (name < — 1 name \ v a l u e < — p Uq Na i n e)

Figure 8.54: ATL PLTPortTypeToElement transformation definition.

The twelfth transformation, defined in Figure 8.55, transforms a WSDL PortType arti

fact to an XML Element artifact, and subsequently to a child XML Attribute artifact. There

is only one Service artifact per WSDL Definition. The transformation implements the rela

tion illustrated in Figure 7.58.

------Tr ans f or m (when c a l l e d) ea ch WSDL S c r v i c e t y p e t o an XML El e me n t t y p e
l a z y r u l e S e r v i c e T o E l e m e n l {

f rom
s : WSDL! S e r v i c e

to
e l e : XML! E l e me n t (name < — ’ w s d l : s e r v i c e c h i l d r e n < — r u n e) ,
nine : XML! A t t r i b u t e (name < — ’name 3 , v a l u e < — s . q Na me)

Figure 8.55: ATL ServiceToElement transformation definition.

200

The eighth transformation set is from a Deployment Descriptor model to an XML model,

where the PDD model and the XML model are the candidate models. These transforma

tions are uni-directional as the transformation uses the source model to generate the target

model, but does not define rules for transforming the target to the source model. We assume

the Deployment Descriptor model is targeted to the ActiveBPEL deployment environment,

using the PDD deployment language. This transformation set specifies how a PDD model is

transformed to an XML based model, which can be serialised to PDD compliant XML text.

This transformation set is pattern independent as the target model artifacts to be created do

not depend on the chosen distribution pattern.

The ATL module transformation header declares the name for the transformational set

and declares two models, the source model PDD and the target model XML. The module is

expressed in Figure 8.56.

module PDDtoXML; -- Module Template
create OUT : XML from IN : PDD;

Figure 8.56: ATL PDDtoXML transform module declaration.

The five transformations in this set are outlined as follows, and described in more detail

below.

• ProcessToRoot

• WSDLToElement

• PartnerLinkToElement

• MyRoleToElement

• PartnerRoleToElement

The first transformation, defined in Figure 8.57, transforms a PDD Process artifact to

an XML Root artifact well as to a number of nested XML Element and Attribute artifacts.

8.4.8 Transforming Deployment Descriptor Model to XML Model

201

There is only one Process artifact per PDD model. The transformation implements the

relation illustrated in Figure 7.60.

------ Trans f orm t h e PDD P r o c e s s t y p e l o an XML RooL t y p e
r u l e P r o c e s s l o R o o l {

f rom
p : PDD! P r o c e s s

Lo
r t : XML! RooL (name < — ’ p r o c e s s c h i l d r e n < — n a me , c h i l d r e n < — l oc , c h i Id r c n < — xns ,

c h i l d r e n < — x ws ns , c h i l d r e n < — bpns , c h i l d r e n < — pi s , c h i l d r e n < —w s r) ,
name : XML! A t t r i b u t e (name < — ‘n a m e ’ , v a l u e < — ’ b p e l n s : ’+ p . n a m e) ,
l oc : XML! A 1 1 r i b u t e (name < — ’ l o c a t i o n 1 . v a l u e < — p. l o c a l i o n) ,
xns : XML! A t t r i b u t e (name < — ’xml ns * ,

v a l u e < — ’ h t t p : / / s c h e ma s . a c t i v e —e n d p o i n t s . c o m / p d d / 2 0 0 4 / 0 9 / p d d . xsd s) ,
xwsns : XML! A t t r i b u t e (name < — 1 x m l n s : w s a ’ ,

v a l u e < — ’ h t t p : / / s c h e ma s „x m l s o a p , o r g / w s / 2 0 0 3 / 0 3 / a d d r e s s i n g ’) ,
h p n s : XML! A t t r i b u t e (name < — ’ x ml n s : b p e l n s ’ , v a l u e < — p . n a m e s p a c e) ,
p i s : XML! E l e me n t (name < — 1 p a r t n e r L i n k s c h i l d r e n < — t h i s M o d u l e . g e t A l l P a r t n e r L i n k s ()) ,
ws r : XML! E l e me n t (name < — * w s d l R e f e r e n c e s ’ . c h i l d r e n < — t h i s M o d u l e . g e t A l l WS D L R e f e r e n c e s ())

Figure 8.57: ATL ProcesstoRoot transformation definition.

The second transformation, defined in Figure 8.58, transforms a PDD WSDL artifact to

an XML Element artifact along with a number of nested XML Attribute artifacts. There can

be many WSDL artifacts per PDD Definition. The transformation implements the relation

illustrated in Figure 7.61.

The third transformation, defined in Figure 8.59, transforms a PDD PartnerLink artifact

to an XML Element artifact as well as to a number of nested XML Attribute and Element

artifacts. There can be many PartnerLink artifacts per PDD Definition. An imperative con

ditional block is used to control the creation of target model artifacts, depending on whether

source model artifacts MyRole and PartnerRole exist. The transformation implements the

relation illustrated in Figure 7.62.

The fourth transformation, defined in Figure 8.60, transforms a PDD MyRole artifact to

an XML Element artifact along with a number of nested XML Attribute artifacts. There is

- —T r a n s f o r m a PDD WSDL t y p e t o au XML El e i nen I t y p e
r u l e WSDLt oEl ement {

f rom
wd: PDD!WSDL

Lo
ws r : XML! E l e me n t (name < — 5 wsdl ’ , c h i I d r e n < — n s , c h i l d r e n < — l o c) ,
n s : XML! A t t r i b u t e (name < — ’ n a me s p a c e *, va l ue < — wd. n a m e s p a c e) ,
l oc : XML! A t t r i b u t e (name < — ’ 1 o c a t i o n ' , va I ue < — wd. l o c a ti o n)

Figure 8.58: ATL WSDLtoElement transformation definition.

202

------ Trans f orm a PDD P a r l n e r L i n k l y p c t o an XML E l e me n t t y p e
r u l e P a r l e r L i n k l o E l c m e n t {

f r om
p i : PDD! P a r t n e r L i n k

Lo
e i e : XML! E l e m e n t (name < — ’ p a r l n e r L i n k ch i I d r e n < — n a me) ,
name : XML! A t t r i b u t c (name < — ’ n a m e v a l u e < — p i . n a me) ,
myr l : XML! E l e me n t (name < — ’ m y R o l e ’) ,
p r : XML! E l e me n t (name < — ' p a r t n e r R o l e ’)
d o ----- i m p e r a t i v e b l o c k
{

-----some a t t r i b u t e s a r e n o t m a n d a t o r y , we mus t c h e c k to s e e i f t h ey
----- e x i s t b e f o r e t r y i n g t o o u t p u t t hem
i f (p i . myRol e . o c l I s U n d e f i n e d () O t r u e)

{
e l e . c h i l d r e n < — m y r l ;
t h i s M o d u l e . My Ro l e To El e me n t (pi . m y R o l e , myr l);

}
i f (p i . p a r t n e r R o l e . o c l I s U n d e f i n e d () O t r u e)
{

e l c . c h i l d r e n < — p r ;
t h i s M o d u l e . P a r t n e r R o l e T o E l e m e n t (p l . p a r t n e r R o l e , p r) ;

}
}

)

Figure 8.59: ATL ParterLinktoElement transformation definition.

only one MyRole artifact per PDD PartnerLink. The transformation implements the relation

illustrated in Figure 7.63.

-----T r a n s f o r m a PDD MyRol e t y p e t o an XML E l e me n t t y p e
-----T h i s i s a c a l l e d r u l e , o n l y u s e c a l l e d r u l e s when t he t r a n s f o r m i s on l y
-----d e c i d c d a t r u n t i m e b a s e d upo n t he s o u r c e me t a mo d e l e l e m e n t t y p e
r u l e My Ro l e T o E l e me n l (mr : PDD! MyRol e , x r l : XML! E l e m e n l) {

lo
s v r : XML! A t t r i b u t e (name < — 5 s e r v i c e ’ , v a l u e < — mr . s e r v i c e) v
ar : XML! A t t r i b u t e (name < — ’ a l l o w e d R o l e s ’ , v a l u e < — mr , a l l o w e d R o l e s) ,
bd : XML! A t t r i b u t e (name < — ’ b i n d i n g v a l u e < — mr . b i n d i n g)
do{

x r l . c h i l d r e n < — s v r ; x r l » c h i l d r e n < — a r ; x r l . c h i l d r e n < — bd ;
}

Figure 8.60: ATL MyRoleToElement transformation definition.

The fifth transformation, defined in Figure 8.61, transforms a PDD PartnerRole artifact

to an XML Element artifact as well as to a number of nested XML Attribute, Element and

Text artifacts. There is only one PartnerRole artifact per PDD PartnerLink. The transfor

mation implements the relation illustrated in Figure 7.64.

8.4.9 Transforming Deployment Catalog Model to XML Model

The ninth transformation set is from a Deployment Catalog model to an XML model, where

the WSDLCatalog model and the XML model are the candidate models. These transfor

mations are uni-directional as the transformation uses the source model to generate the

203

------ Trans f orm a PDD P a r L n e r R o l e l y p c l o an XML E l e me n t l y p e
------This i s a c a l l c d r u l e , o n l y u s e c a l l e d r u l e s when Lhe t r a n s f o r m is o n l y
-----d e c i d e d at r u n t i m e b a s e d u p o n t he s o u r c e me l a mo d e l e l e m e n t t y p e
r u l e P a r l n c r R o l e T o E l e m e n t (p r : PDD! P a r l n e r R o le , x p r : XML! E l e m e n t){

to
e r : XML! A t t r i bu le (name < — ’ c n d p o i n t R c f e r e n c e 5 , v a l u e < — p r . e n d p o i n L R e f e r e n c c T y p e) ,
e r e : XML! E l e me n t (name < — ’w s a : E n d p o i n t R e f e r e n c c c h i l d r e n < — n s , c h i l d r e n < — a d , c h i l d r e n < — sn) ,
ns : XML! A t t r i b u t e (name < — ’ x i n l n s : ’ + p r . e n d p o i n l R e f e r e n c c . n a me s p a c e , v a l u e < — p r . e n d po i n t R c f e r e n c e . u r i) ,
ad : XML! E l e me n t (name < — ' ws a : Ad d r e s s ch i I d r e n < — a d t x t) ,
a d t x l : XML! T e x t (v a l u e < — p r . e n d p o i n t R e f e r e n c e . a d d r e s s . t c x l) ,
sn : XML! E l e me n t (name < — 5ws a : S e r v i c e N a m e c h i l d r e n < — s v t x t , c h i l d r e n < — p n) ,
s v t x l : XML! T e x t (v a l u e < — p r . e n d p o i n t R e f e r e n c c - s e r v i c e N a m e . l e x I) ,
pn i XML! A t t r i b u t e (name < — ’ P o r t Na me ’ , va l ue < — p r . e n d p o i n t R e f e r e n c c . s e r v i c e N a m e , P o r t N a me)
do{

x p r . c h i l d r e n < — e r ; x p r . c h i l d r e n < — e r e ;
}

Figure 8.61: ATL PartnerRoleToElement transformation definition.

target model, but does not define rules for transforming the target to the source model. We

assume the Deployment Catalog model is targeted to the ActiveBPEL deployment environ

ment, using the WSDLCatalog deployment language. This transformation set specifies how

a WSDLCatalog model is transformed to an XML based notation, which can be serialised

to WSDLCatalog compliant XML text. This transformation set is pattern independent as

the target model artifacts to be created do not depend on the chosen distribution pattern.

The ATL module transformation header declares the name for the transformational set

and declares two models, the source model WSDLCatalog and the target model XML. The

module is expressed in Figure 8.62.

module WSDLCatalogtoXML; -- Module Template
create OUT : XML from IN : WSDLCatalog;

Figure 8.62: ATL WSDLCatalogtoXML transform module declaration.

The two transformations in this set are outlined as follows, and described in more detail

below.

• WSDLCatalogToRoot

• WSDLEntryToElement

The first transformation, defined in Figure 8.63, transforms a WSDLCatalog WSDL

Catalog artifact to an XML Root artifact. There is only one WSDLCatalog artifact per

WSDLCatalog model. The transformation implements the relation illustrated in Figure

204

7.66.

-----T r a n s f o r m a WSDLCal a l og WSDLCat a l og t ype l o an XML Root l ype
r u l e WSDLCat a l ogToRool {

f r om
c a l : WSDLCal a l og ! WSDLCal a l og

i o
r l : XML! R o o l (n a me < —’w s d l C a l a l o g ’ » c h i l d r e n < — I h i s M o d u l e . g e l WS DL E n t r i e s ()

)

Figure 8.63: ATL WSDLCatalogToRool transformation definition.

The second transformation, defined in Figure 8.64, transforms a WSDLCatalog WSD-

LEntry artifact to an XML Element artifact along with a number of nested XML Attribute

artifacts. There can be many WSDLEntry artifacts per WSDLCatalog. The transformation

implements the relation illustrated in Figure 7.67.

-----T r a n s f o r m a WSDLCat a l og WSDLEnt ry t y p e lo an XML E l e me n t t y p e
r u l e WSDLEnt r yToEl emeni {

f r o m
e n l : WSDLCat a l og! WSDLEnt r y

t o
e l e : XML! E l e me n t (name < — ' w s d l E n l r y ’ , c h i l d r e n < — c p , c h i l d r e n < — I n) ,
cp : XML! A t t r i b u t e (name < — ’ c l a s s p a t h v a l u e < - e n l . c l a s s p a t h) ,
In : XML! A t t r i b u t e (name < — ’ l o c a t i o n ’

)

, v a 1 u e < — e n t . l o c a t i o n)

Figure 8.64: ATL WSDLEntryToElement transformation definition.

8.5 Tool Support

The ATL project provides an Integrated Development Environment (IDE), for the creation

of ATL based transformations [8], The ATL project builds on the open source Eclipse Mod

eling Framework (EMF), discussed in Section 2.5.7.2. Both EMF and ATL are plugins to

the open source Eclipse development platform [64], Once installed the ATL plugin provides

an environment for ATL code syntax highlighting and outlining, a source code debugger and

execution support. The execution engine provides ATL to bytecode compilation complete

with a virtual machine to interpret the bytecode. Figure 8.65 illustrates the ATL plugin in

action.

It should be noted that at the time of writing a QVT based tool, SmartQVT [176], which

supports the QVT-Operational language had just been launched. The QVT-Operational lan-

205

•3fw *sfel1B <<H UMl .AiiiviLwPaftitsijfVj !t> D.~Lh-cci«-
r u le A ctivityPartitioriToNode{

f r o m
.»*=_)ML octwisyoartibfiii s/pe
a p ! UM LIActivityPartition

to
•OF-L Nc<Ib tyyR

nd : O PU N ode (
n a m e < - a p .n a m s ,

e n g in e _ u n <-• op.ge^vdg«<^|p.^>lrtAppí¡ted!y<He^U>^es{),fir!itO/englne_urr,),
n s < • ap.j{*iV .iluoi«p.gflt/'ippli«<J£loreotyposi>Jirvt{),,r r i ,)<
u (« it.it ig r^ < - o p s

).
o p s | D PL IO perattonsi

• •g e t ¿11 fch~ UML Ca;i£eh&.f«t>c4*Uon» » itua tiftl in ii-tis. UML A :t'Vt?yPisrt*;cr- -:<!»
operation < • ap.aetNode5O-^select(e|e.DclTypeO=UMUCollEi®hflvi0rActiorO-

)
>

■»iiiip.’yfoi'rn ¿Vihrii i -a iM * <i UMi» C'®‘j|l'!teliflvK=rAi tw ifs t e <s DP; OpJSir-Tifron
lazy ru le CBAToOperation{

from
-UM5, »!IB%fi&Moi'Acticin Svp=?
c b a : UM LICallBehaviorAction

to
-D f tl . O peration typ ?
o p : D PL!O peration(

n a m e < - c b a .n am e ,
role < - cba.qe tva tao icba^fc t.A pp tiods?6 r*4 typ«$C J.firs ilJ . 'rc lo1) i w n » ,
m u r m < -cba.gclV tjtu ttfcba .q $ ^ p (fe d S te r e « ty p o » {) ;hrat um s*J.

l i t build,xml ; XMLtoUML.atl ^ C'lassToActivity.atl « ; y.ecore j

d a s s ig n ih i||n i t o DPl ?lod<
>colecilotth<5f-Vodiile.CBA'fc

1“ v

f! U?*flrACtivityToOt>L : Moduli*
OUT; OdModol

•&IIN : OclModol
i* L5 flB tC SA O iiks H©l|isr

i’ fifi yetC& A Cuunt ; H ctpoi

t* (jS gntWfc^lCBA ; hio-lpttr

l> f tf1 g e tP in : H elper

t> Q j rem oveM M Prefix : H elpsil

l> {¿T gatA ctiv ityP artitions : H e

t> ge tC o rre la tio n \te riab le s

i> ge tM ap p in g ; H elper

> J r ActivityToPattem D efinitio

j> f a Act jvityPartitionToNode :

• t> ❖ < d e fa u l t> ¡L azy M atch e r

t> ■§> ■«:default> : LazyM atchai-

> ❖ < d e fa u l t> : LazyM atcher1

’ gS Outline S2 “ B

I* I

Figure 8.65: ATL code environment in Eclipse.

guage can be used, like ATL, for the declarative and imperative description of a transforma

tion. The tool, like the ATL tool, builds on the open source Eclipse Modeling Framework

(EMF), and is an Eclipse based plugin. However, the tool is as yet untested on a large scale

to be considered stable. For this reason we continued to use the well tested ATL tool.

8.6 Summary

In this chapter we have presented the fourth component in our modeling and transforma

tion framework, model transformations. We have discussed how model transformations,

defined using ATL, implement the model relations defined in Chapter 7. These transforma

tions, when executed, create a new model based upon a previously defined model, where

the two candidate models have different notations. We have outlined nine transformation

sets that, in combination, transform a UML distribution pattern model to an XML based

executable system. We have rigorously and systematically defined the transformations in

this chapter by directly implementing the relations in Chapter 7 as transformations. Each

transformation is an implementation of a previously defined relation. This process helps en

206

sure the consistency and correctness of our modeling approach. It should be noted that the

transformations outlined in this chapter are pattern specific. The transformations outlined

here are for a centralised shared hub distribution pattern. Different distribution patterns re

quire different numbers of output artifacts for executable system generation. For example,

a decentralised distribution pattern would require an interface for each compositional par

ticipant. These variations also include small differences in the output artifacts themselves.

Specifically, a decentralised distribution pattern would require the passing of state between

participants in a composition.

207

Chapter 9

Methodological Framework and

Case Study

9.1 Introduction

This chapter presents the fifth and final component of our modeling and transformation

framework, our methodological framework. The goal of the methodological framework is

to detail the modeling activities, which ensure that non-functional attribute quality control

is no longer an afterthought of the Web service composition generation process. This is

achieved by using distribution pattern models within the methodological framework, which

consider non-functional quality attributes as the driver for the executable system generation

effort. These distribution pattern based models guide our code generation effort based upon

previous experience of systems expressing a given distribution pattern, documented in our

pattern catalog, which achieves certain non-functional QoS properties. The distribution

pattern catalog discussed in Chapter 5 is used to assist the software architect when modeling

the Web service composition. Three other components of our framework, the notations,

relations and transformations, enable the transformation of the distribution pattern model to

an executable system.

In Section 9.2, we introduce our methodology before enumerating its five steps in the

208

subsequent subsections. Each step in the methodological framework is exemplified by a

banking case study and details of the tool support, termed TOPMAN, we provide to auto

mate the step.

9.2 The Methodology

Our approach to distribution pattern modeling and subsequent Web service composition

generation consists of five steps, which are illustrated in Figure 9.1, and subsequently

described below. This approach is based on the Model Driven Software Development

(MDSD) approach, where models are used to assist in the generation and reasoning of

software systems [182, 30]. Our methodology commences with a number of discrete Web

service interfaces and terminates with an executable composition of the discrete Web ser

vices, exhibiting the QoS attributes of a chosen distribution pattern. In the following sub

sections we present our five step methodology, which provides guidelines and support for

compositional modeling with distribution patterns. The five steps, or activities, are as fol

lows.

• Step 1 - Transform Interfaces To UML Model(s)

• Step 2 - Distribution Pattern Definition

• Step 3 - Transform UML Activity Diagram Model to DPL Model

• Step 4 - Validate DPL Model

• Step 5 - Transform DPL Model to Executable System

The methodological framework is supported by three specific techniques, listed below,

illustrated in Figure 9.2, and elaborated in the five specific steps that follow. These tech

niques are motivated by our use case, first outlined in Section 4.3.5, and supported by our

tool implementation, TOPMAN (TOPology MANager), outlined in the steps below.

• UML Activity diagram/Profile extension (step 1,2)

209

Web Service Interfaces

Step 3

Transform UML Activity Diagram to DPL Model

Figure 9.1: UML Activity diagram of the methodological framework.

DPL generator/DPL validator (step 3,4)

Generators (step 1,3,5)

The methodological framework is accompanied by a small scale case study that mo

tivates our technique. The case study is a banking system with three interacting business

processes. We choose a banking system as it is susceptible to changes in organisational

structure while requiring stringent controls over data management, two important criteria

when choosing a distribution pattern. The scenario, illustrated in Figure 9.3, involves a

210

Slop H 1

G enera to r

UML 2,0
Model

Valid DPL
Model

o
E * e tu i able Syitton*

Gnnom iof

o
Executable !

System

Figure 9.2: Overview of the modeling activities in the methodological framework.

bank customer requesting a credit card. The customer applies to the bank for a credit card,

the bank checks the customer’s credit rating with a risk assessment agency before passing

the credit rating on to a credit card agency for processing. The customer’s credit card appli

cation is subsequently approved or declined. The case study description is integrated into

the five step methodological framework. Each step of the methodology is also accompanied

by details of the tool support that we supply.

Cu sto m er C o reB anking Risk M a n a g e m e n t C red it C ard A gency

 ̂Apply for a Cred it C ard 1 I
^ I

,1C heck C red it R M mg

R equest Cred it C a rd i

I I
A pprove or dec line C red it Card

Figure 9.3: UML sequence diagram representing case study.

9.2.1 Step 1 - Transform Interfaces To UML Model(s)

The initial step in the methodology is to take a number of Web service interfaces as input

and transform them to the UML 2.0 Activity diagram model, using a UML 2.0 model

generator. The Activity diagram model generated is logically separated as no composition

211

has yet been defined. A UML Class diagram representing the interfaces is also created at an

intermediate step. The step is illustrated in Figure 9.4 and further outlined in the following

sections. The majority of this step can be automated using our tool as outlined in Section

9.2.1.6.

Figure 9.4: UML Activity diagram of transformation from W SDL to UML Activity diagram
model.

9.2.1.1 Convert WSDL Interfaces to ECore

A number of WSDL interfaces are retrieved from either a local file-system or from a URL

These interfaces represent the Web service composition participants. These interfaces must

be converted to an EMF compatible language, like ECore, so that they can be manipulated

by our tool.

212

9.2.1.2 Transform WSDL to UML Class Diagram Model

The WSDL interfaces represented using the ECore language are transformed, using a gen

erator, into a UML 2.0 Class diagram model. The UML 2.0 Class diagram model is useful

for documenting the system because the diagram clearly expresses the discrete interfaces of

the Web services to be composed. Class diagram models in this context express the static

structures of interfaces in the system. The transformation from WSDL to UML is possible

as both WSDL and UML have well defined structures i.e. the WSDL specification [184]

and the UML 2.0 specification [140].

9.2.1.3 Transform UML Class Diagram Model to UML Activity Diagram Model

The UML Class diagram model, generated in the previous step, is transformed, using a gen

erator, into a UML 2.0 Activity diagram model. This transformation is possible as diagrams

should conform to the UML 2.0 specification [140], This approach is also considered by

Skogan et al. in [53], The Activity diagram model generated contains many of the new fea

tures of UML 2.0, such as Pins, CallBehaviorActions and ControlFlows [103], The UML

Activity diagram is chosen to model distribution patterns as it provides a number of features

that assist in clearly illustrating the distribution pattern, while providing sufficient informa

tion to drive the generation of the executable system. Activity diagram models show the

sequential flow of actions, which are the basic unit of behaviour within a system, and are

typically used to illustrate workflows.

9.2.1.4 Apply DPLProfile to UML Activity Diagram Model

For our UML Activity diagram model to effectively model distribution patterns, we require

the model to be more descriptive than the standard UML dialect allows. To this end we use a

standard extension mechanism of UML, called a profile [71]. Profiles, discussed in Section

2.5.5, define stereotypes and subsequently tag definitions that extend a number of UML

constructs. The profile we utilise, called the DPLProfile, is discussed in detail in Section

6.4.2. Figure 9.5, illustrates an example of a UML Activity diagram model comprising

213

three services each containing one operation, indicative of what is output from this step.

5UML Activity

c c C ipL A c I iv H y »
A c t iv i t y !

UK!. A c t iv i t y P a r t i t ion a

UML Input Pin

UML CallBehaviorActioimÒ-

< < D P L P a r l i l io n > >

S e rv ic e _1

a

« Q P L P a r l i N a f t »
S e rv ic e _ 2

< < D P L P a r l i l i o n »

S e rv ic e ^ n

/< < D P L P a ìl& e ip a f ii :* i
p i operation Nannie] Q

/ i <ÎJPLP n r i i'çïp am A
r i o pe r a t i o nNa i ne y - |

I^î b P L F5 a f 1 « c 1 p o 1 i i >
o p e r a t i o n N a mc > P

À A ?

(§> \ !

UML Output Pin

Figure 9.5: Example of a UML Activity diagram with profile applied.

9.2.1.5 Case Study

To illustrate this step we consider our case study scenario. The banking case study provides

three WSDL interfaces as input to the UML 2.0 model generator. The interfaces are illus

trated in Figure 9.6. These interfaces represent the bank (CoreBanlcing), the risk assessment

agency (RiskManagement) and the credit card agency (CreditCard).

<<portType>>
C o r e B a n k in g

<<portType>>
R i s k M a n a g e m e n t

<<portType>>
C re d itC a rd

+getAccountName() +getRiskAssessment() +getCreditCard()

Figure 9.6: Banking case study Web service interfaces as UML Class diagram model.

All three interfaces are represented in a UML Activity diagram model, illustrated in

Figure 9.7, albeit without any connections between them. A swim-lane is provided for each

interface. Each interface has one operation, represented by a CallBehaviorAction, which is

placed in the appropriate swim-lane. The message parts associated with each operation are

represented using InputPins and OutputPins. These pins are placed on the appropriate Call

BehaviorAction. No model intervention from the software architect is required at this step,

UML Activity

UML Activity Partitions
b-

« D P L A c t iv i iy » » 4 ^
Activity 1 à i

< < D P L P a r t i t i o n > > < < D P L P a r t i t i o n > >
C o r e B a n k in g R i s k M a n a g e m e n t C r e d it C a r d

•

Z7- c Q P i, P a r l i c i p tili I >
p f g e lA c co u n tN a m e

/* r< T 3 T F C P n rlie ip n n i> > \
f t ge iR iskA ssessm en! p

1 cibar^v-
S ' g o tC rad ilC ard V q

: K À

<U j
--------------- !--------------

i

UML Input Pin. I ' UML CaiIBehaviorActions T UML Output PinN

Figure 9.7: UML Activity diagram model output from Step 1.

as this conversion from WSDL interfaces to UML Activity diagram model is automated by

our tool, as outlined in Section 9.2.1.6 below.

9.2.1.6 Tool Support

The transformation from interfaces to UML models is supported by four specific steps.

These four steps can be automated using our tool, as discussed in detail below.

Convert WSDL Interfaces to ECore The three WSDL interfaces passed as input to the

UML 2.0 model generator are converted to ECore using the ANT script outlined in Figure

C.l of Appendix C. The ANT script makes use of the AM3 XML injector [10]. This injector

converts the text based WSDL interfaces to XML based ECore models. The CoreBanking

ECore based model output from the ANT task is illustrated in Figure 9.8.

Transform WSDL to UML Class Diagram Model The three XML based ECore models

of the three WSDL interfaces are now converted to a single UML 2.0 Class diagram model,

using the ANT script outlined in Figure C.2 of Appendix C. The ANT script takes an

XML based model as input and outputs a UML 2.0 based model by executing an ATL

215

Ai '

;xr p | f t t lorm:/ fesuui te^opmi»n/Out put r-Cora Banking . ecor^

■c* <• Bool

<• At t ribute

v AtTribure

v At t ribute

Att ribute

v Att ribute

v At t r ibute

Att ribute

*<- At t ribute

TGKt

Text

Element

v Text

P <■ Element

v TäXt:

l> {- El ement

<r Text

i> ^ El ement

+ Text

j P <f El ement

V l*-<t rrf,
i'

Figure 9.8: CoreBanking XML based ECore model o f the CoreBanking W SDL interfaces.

transformation, as outlined in Figure B.l of Appendix B. The output from the ANT task is

illustrated in Figure 9.9.

Transform UML Class Diagram Model to UML Activity Diagram Model The single

UML Class diagram model representing the three WSDL interfaces is now converted to

a single UML 2.0 Activity diagram model, using the ANT script outlined in Figure C.3

of Appendix C. The ANT script takes a UML 2.0 based Class diagram model as input and

outputs a UML 2.0 Activity diagram model by executing an ATL transformation, as outlined

in Figure B.2 of Appendix B. The output from the ANT task is illustrated in Figure 9.10. It

should be noted that the UML InputPins and OutputPins in Figure 9.10 have been manually

added using the Eclipse UML2 editor because the ATL script does not currently support the

creation of Pins. The script can be enhanced to automate this effort.

Apply DPLProfile to UML Activity Diagram Model We now apply the DPLProfile to

the UML Activity diagram just created, to enable the model to be decorated with extra

216

v pIatform:/r8Sourc6/iopman^S'en/icelntGrfaces.uml

■v E l <Mo,del>.

^ [| j <lnterface> CoreBanking

tp $ <Operation> get AccountName (accountNumber, getAccountNameRetum)

<fe <Parameter> accountNumber

{$ <Parameter> getAccountNameRetum

v § | <lnterfaee> RiskManagement

v- 0 <Qperation> getRiskAssessment (accountName, getPjskAssessmentRetum)

$ ■=.parameter> accountName

<Parameter> getRiskAssessmentRetum

v |§ <|nterface> CreditCard

v- <Operation> getCreditCard CaceountName, isRisk, getCreditCardRetum)

& < Parameters accountName

fa <Parameter> isRisk

> <Param'eter> getCreditCardReturn

Figure 9.9: UML 2.0 Class diagram model of the WSDL interfaces.

^ _______________________ = a

h r ft) platformi/resource/Topman/Models/UMLActn/ityDiagram.urn 1

??<?} <Activity>

T? <«&) <ca ll Behavior Action> getAecountName

<lnpUt Pin> accountNumber

< Output Pin> getAccountNameRetum

^ (!s) < Call Behavior Action> getCreditCard

< input Pin> accountName

Input Pin> isRisk

< Output Pin> getCreditCardReturn

^ 3jSi<Call Behavior Actions getRiskAssessment

<!nput Pin> aecountName

k-j «¡Output Pin> accountName

=-> < Output Pin> getRiskAsssssmentReturn

< Activity Fibal Node> fin ish

* < Initial Node> Start

<Activity Partition* CoreBanking

3 < Activity Partition» RiskManagement

B «Activ ity Partitions CreditCard

Figure 9.10: UML 2.0 Activity diagram model o f the W SDL interfaces.

217

Distribution Pattern

D e fin it ion f Open UML Activity Diagram in a Tool

^ Software Architect Defines Distribution Pattern ^

^ Save UML Activity Diagram in a Tool ^

Figure 9.11: Distribution pattern definition.

distribution pattern specific information. This step can be performed manually using either

the IBM’s Rational Software Architect [86] or the Eclipse UML2 plug-in [65], A full

step by step guide detailing the application of a profile, such as the DPLProfile, in RSA is

provided by Misic in [120], while a full guide to UML2 application is provided by Hussey

in [85],

This task can also be performed automatically using an ANT script in combination with

an ATL transformation using the latest version of ATL. This process requires the use of ATL

Superimposition [69], where a number of ATL modules are layered on top of each other to

perform a transformation consisting of a copy and subsequent apply operation. A use case

demonstrating the approach is made available as part of the ModelPlex project [38], We

have not integrated this feature into our tool yet because we have developed and tested our

tool using an older version of ATL.

218

The UML Activity diagram model produced in Step 1, requires additional modeling, as

illustrated in Figure 9.11. This entire step must be performed manually by a software archi

tect because the WSDL interfaces do not supply enough information to be able to connect

up the discrete Web services into a composition. Tool support is provided to assist the

software architect, as outlined in Section 9.2.2.5.

9.2.2.1 Open UML Activity Diagram in a Tool

Initially the software architect must open the UML Activity diagram model previously gen

erated in Step 1. A number of tools support editing of such diagrams including IBM’s

Rational Software Architect [86] and the Eclipse UML2 plug-in [65],

9.2.2.2 Software Architect Defines Distribution Pattern

Having opened the model in a tool the architect must select a distribution pattern from the

pattern catalog, based on the non-functional requirements of the composition. The pattern

is chosen from an enumeration of available patterns, outlined in Chapter 5. The architect

must also set some distribution pattern specific variables on the model, which will be used

to generate a distribution pattern model. These variables are outlined in Section 6.4.2.

Based on the chosen distribution pattern, the architect defines the sequence of actions by

connecting CallBehaviorActions to one another, using UML ControlFlow connectors. Each

CallBehaviorAction is assigned a role and each ControlFlow is assigned an order value to

define the composition sequence. The InitialNode and ActivityFinalNode must then be

assigned to appropriate ActivityPartitions, and connected appropriately using UML Con

trolFlow connectors. The architect then connects up the UML InputPins and OutputPins of

the model, using UML ObjectFlows connectors, so data can be passed through the compo

sition. Additional constructs deemed necessary can be added by the software architect as

appropriate. This entire workflow is illustrated in Figure 9.12.

An example UML Activity diagram model, indicative of what is output from this step,

9.2.2 Step 2 - Distribution Pattern Definition

219

i
R e tr ie v e U M L A c t iv i t y D ia g ra m M o d e l

D i s t r i b u t i o n P a t t e r n

cD e f i n i t i o n f S e le c t D is t r ib u t io n P a t te rn f ro m C a ta lo gD
A p p ly v a lu e s to s te r e o ty p e tag de f ii n i t i o n s ^

C o n n e c t C o n t ro lF lo w s bet w een C a l lB e h a v io rA c t io n s

> f

^ A s s i g n ro le va lue to C a l lB e h a v io r A c t i o n s ^

> f

f A s s ig n o rd e r v a lu e to C o n t ro lF lo w s j

> 1

A s s ig n In i t ia lN o d e and A c t iv i t y F in a lN o d e to P a r t i t io n s
and c o n n e c t to C a l lB e h a v io rA c t io n s v ia C o n t ro lF lo w s

> 1

^ C o n n e c t O b je c tF I ows b e tw e e n P i n s ^

In t ro d u c e a d d i t io n a l c o n s t ru c ts as n e c e s s a ry

0

Figure 9.12: UML Activity diagram of application of distribution pattern by Software Ar
chitect.

220

Figure 9.13: Example of a UML Activity diagram model with connections defined.

is illustrated in Figure 9.13. In this illustration we can see the UML ControlFlows con

necting the three Web service operations, along with the UML ObjectFlows connecting up

the UML Input Pins and OutputPins. This particular example illustrates the decentralised

shared peer distribution pattern. It should be noted that in Figure 9.13 the initial input for

the composition and the final output of the composition are not connected up via their Input-

Pin and OutputPin connectors as our tool automatically works out these connections based

upon the chosen distribution pattern.

9.2.2.3 Save UML Activity Diagram in a Tool

Once the software architect has completed the UML Activity diagram model using their

tool of choice it should be saved before proceeding to Step 3.

9.2.2.4 Case Study

With regards to our case study scenario the software architect selects the centralised shared

hub distribution pattern. We choose this pattern because it should be the most familiar

pattern in the catalog to readers, and can most easily illustrate our approach. The soft

ware architect after choosing a pattern must then manipulate the UML 2.0 Activity diagram

model to appropriately model the chosen pattern across the three Web services. The DPL-

Profile values for the case study are outlined in the Tables 9.1 through 9.10 below. These

Table 9.1: Case study values applied to DPLActivity stereotypes attributes.

Attribute Value
distribution-pattem hub-and-spoke

collaboration-language WS-BPEL

service-name BankingHubService

base-namespace http://acme.com/wsdl/

namespace-prefix BankingHub

operation-name applyForCC

Table 9.2: Case study values applied to getAccountName DPLParticipant stereotypes at
tributes.

Attribute Value

role hub

values can be applied using the tool support discussed in Section 9.2.2.5 below.

All of the DPLMessage stereotype attributes are set to false as this attribute has no effect

on centralised distribution patterns.

The case study UML Activity diagram model with distribution pattern applied is illus

trated in Figure 9.14 and Figure 9.15. It should be noted that in Figure 9.14 the initial input

for the composition and the final output of the composition are not connected up via their

InputPin and OutputPin connectors as our tool automatically works out these connections

based upon the chosen distribution pattern.

Table 9.3: Case study values applied to getRiskAssessment DPLParticipant stereotypes
attributes.

Attribute Value
role spoke

222

http://acme.com/wsdl/

Table 9.4: Case study values applied to getCreditCard DPLParticipant stereotypes at
tributes.

Attribute Value

role spoke

Table 9.5: Case study values applied to the first DPLControlf-'low stereotypes attributes.

Attribute Value
order 1

Table 9.6: Case study values applied to the second DPLControlFlow stereotypes attributes.

Attribute Value
order 2

Table 9.7: Case study values applied to the third DPLControlFlow stereotypes attributes.

Attribute Value

order 3

Table 9.8: Case study values applied to the CoreBanking DPLParticipant stereotypes at
tributes.

Attribute Value

ns engine-uri 1

interface-uri http://localhost: 1234/axis/services/CoreBanking

engine-uri CoreBanking

223

http://localhost

T able 9.9: C ase s tudy v a lu es a p p lied to the R isk M a n a g e m e n t D P L P a rtic ip a n t s te reo ty p es

attributes.

Attribute Value

ns engine_uri2

interface-uri http ://localhost: 1 234/axis/services/RiskManagement

engine-uri RiskManagement

Table 9.10: Case study values applied to the CreditCard DPLParticipant stereotypes at
tributes.

Attribute Value

ns engine_uri3

interface-uri http ://localhost: 1 234/axis/services/CreditCard

engine-uri CreditCard

Figure 9.14: UML Activity diagram model output from step 2.

224

g => Q
^ ay platformi/resoiiree/Tapman/UMLftctMtyDiagram.uml

v S i < Model> model

^ 41.- « d P L A c tiv ity i» <Activity> Banking
|> i|S '/«dPLParticip 'ant>> «Call Behavior Action^ getAccountName

£ (Sii<<dPLParticipant>> «Call Behavior Action^» getCreditCard

t> l» ; « d P L P a r t ic ip a n t» <Call Behavior Action> getRiskAssessment

& «Initia l Mode> Start

% < Activity Final Node> Finish

/ ««dP LC ontro lF low » «Control f!ow> ControlFlowl

/ <<dPLControlFlow>> «Control Flow> ControlFlow2

J * <«dPLControlFlow>> «Control Flow> ContralFlow3

-k* «Object Flow> o f l

->m «Object Flow> of2

->&> < Object Flow> of3

■k* < Object Flow> of 4

«Object Flow> of5

E:, <<dPLPartition>> «Activity Part ition> CoreBanking

fs « d P L P a r t i t io n » «Activity Psrtition> FuskManagement

£5 <<dPLPartition>s- «Activ ity Partition> CreditCard

l> aTi «Profile Application> DPLProfile

I t* &j platformi/resourcejTopman/DPLProfile.profile.uml

; > ¡¿) pathmap://UML_METAMQDELS/UML, metamodel, urn I
1 * *'* ■ * t v ili r fn rr- 'r f « n'rir iff1 *

Figure 9.15: UML 2.0 Activity diagram model output from Step 2.

9.2.2.5 Tool Support

Application of the distribution pattern to the model generated in Step 1 is facilitated by a

number of tools. Within the course o f this work we have considered two such tools, IBM ’s

RSA and the Eclipse UML2 editor. Both tools are discussed in Section 2.5.2. We use the

Eclipse UML2 tool to apply the case study DPLProfile values to the UML 2.0 Activity

diagram model.

9.2.3 Step 3 - Transform UML Activity Diagram Model to DPL Model

Using the model output from step two as input, the model is transformed to a distribution

pattern model, using the distribution pattern generator. This model, expressed using our

novel specification language Distribution Pattern Language (DPL), discussed in Section

6.4.3, is called a DPL model. The DPL specification, defined using EMOF, discussed in

Section 2.5.7.2, has no reliance on UML and so any number of modeling techniques may

be inputted. In fact we envisage that alternative languages such as Architectural Description

225

¿¿build,xml f BPEUoXML.atl f DPLvalidation.stl *J UMLAetivrtyDiagram.uml

^ platform'/rosaurce/ropn'ian/ModßJs^PLJniitBnce.eeDrG

•v. v Pattflm-defifiiuon

^ *«• Nodes

v . Node ftiskManogement

v v Operations

> * operation getRiskAasessment

Node Cor «Banking

x? a operations

'<? <• operation getAccountName

^ Mappings

<r Mapping

^ 4* Mapping

. From CareBaribnggotAccountNanieFtesponne

; To RiskManayementgetRiskAssessmentRequesi

^ •; Node Credit Card

■v v Operations

t> v Operation getCrediscard

Collaboration Language \VS-8PEL

Distribution Pattern hub-and-spoke

Correlation variables

v Seivteo Name BankingHubSeiVice

<► Operation Nam« applyf o rtC

; Base Namespace hUp://acmexom/wsd)/

•:* Namespace Prefn< BankirtgHub

Figure 9.16: DPL model lor case study in Eclipse tool.

Languages and the n calculus, may be used in the future in place o f UML as the transfor

mation source. This entire step can be automated using our tool as outlined in Section

9.2.3.2.

9.2.3.1 Case Study

Once again considering the case study scenario, the UML 2.0 Activity diagram model o f

the three composed Web services output from step two of the methodological framework is

converted to a DPL model. This conversion to DPL facilitates the validation of the pattern

applied and simplifies the transformations to an executable system. A DPL model for our

case study is illustrated in Figure 9.16.

226

The DPL model is created by the DPL generator using an ANT script defined in Figure C.4

of Appendix C. The ANT script executes the transformations outlined in Section 8.4.1.

9.2.4 Step 4 - Validate DPL Model

The DPL model, representing the distribution pattern modeled by the software architect,

is verified at this step by the distribution pattern validator. This validation ensures that

the values entered in step two are valid. The verification process ensures the distribution

pattern selected by the software architect is compatible with the model and applied profile

settings. The only valid values for the role and distribution-pattem attributes are the enu

merated values as defined in the UML profile enumeration in Figure 6.6. Validation of the

distribution pattern model is essential to avoid the generation of an invalid system. The

validation process is illustrated in Figure 9.17. This entire step can be automated using our

tool as outlined in Section 9.2.42.

9.2.4.1 Case Study

Step four considers validation of the generated DPL model. In our case study, because

the centralised distribution pattern has been chosen, the validation process must ensure that

all the operations on a node have either the hub or spoke role applied. The validation

process also checks that there are at least two node operations, which is necessary for a

composition. I f incorrect values have been entered the architect must correct these values at

step two before proceeding to the next step. The validation of the DPL model can be seen

in action in Figure 9.18.

9.2.4.2 Tool Support

The DPL model produced by the DPL generator is validated by a DPL validator using the

ANT script outlined in Figure C.5 of Appendix C. This script utilises ATL to validate the

DPL model, using the ATL transformation detailed in Figure B.3 of Appendix B.

9.2.3.2 Tool Support

227

Step 4

L____

c D is trib u tio n P a tte rn D e fin itio n

Complete Activity Diagram

T ra n s fo rm U M L A ctiv ity D ia g ra m to D P L M o d e l

Complete DPL Model

CV a lid a te D P L M o d e l

Failed Validation

Passed Validation

Figure 9.17: Validation o f DPL model.

228

P ro b le m s P ro p e rtie s Q S3 E rro r Log S e a rc h

< te r m in a te d > T ra n s fo rm s [A n t B uild] /h o m e /ro n a n /w o rk s p a c e /T o p m a n /b u ild ,x m l

Buildfile: /home/ronan/workspace/Topman / b i n I d . xml

l|_M_VaU d a te PPL:
: f am.l. 1 oariMode.ll Loading o f model DPL
| f arrfl. loadModel 1 Loading o f model inM odel

;LM_ValidateDPL:
I [an£LioadM odell Loading o f model DPL
¡Overriding previous d>?fina tion of refsrente t o DPL
; Ta na .1oadMndel1 Loading o f model inM odel
;Ov~rridiny previous definition of reference to inHodel

TF_ValxdatePPL:
[am2J_a±l] E xecuting ATL tra n s fo rm a tio n T ra n s fo rm s /D P L V a lid a tio n . a t l

! f arvri. a t l l T h is i s th e TOPMAN v a l id a to r :
ra m 3 .a tll Number o f node o p e ra tio n s : 3
f a m 3 .a tn Number o f in c o m p a tib le node o p e ra tio n s : Q

-BUILD SUCCESSFUL
■Total tim e : 385 m illis e c o n d s

Figure 9.18: DPL ATL validation script run in Eclipse editor.

9.2.5 Step 5 - Transform DPL Model to Executable System

Finally, the executable system generator takes the validated DPL model and generates all

the code and supporting document instances required for a fully executable system. This

executable system will realise the Web service composition using the distribution pattern

applied by the software architect. All that remains is to deploy the generated artifacts and

supporting infrastructure to enable the enactment of the composed system. The step is

illustrated in Figure 9.19 and further outlined in the following sections. Again, this entire

step can be automated using our tool as outlined in Section 9.2.5.11.

9.2.5.1 Transform DPL Model to WS-BPEL Model

The valid DPL model is transformed to a WS-BPEL model, which represents the collabo

ration between the participants in the composition.

229

T ra n s fo rm D P L M o d e 1 to W S -B P E L M o d e l

> f
^ T r a n s fo r m D P L M o d e l to W S D L M o d e l" ''

> f
^ T r a n s f o r m D P L M o d e l to P D D M o d e l ^

eT r a n s fo r m D P L M o d e l to W S D L C a ta lo g M o d e l

a

y

T ra n s fo r m B P E L M o d e l to X M L M o d e l

0

T ra n s fo rm W S D L M o d e l to X M L M o d e l

c
i)

T ra n s fo r m P D D M o d e l to X M L M o d e l

T r a n s fo r m W S D L C a ta lo g M o d e l to X M L M o d e l

a

o

T ra n s fo rm X M L M o d e ls to T e x t

l u « . - - - - « - - - - . . * - . - * - - *

4 = '

Figure 9.19: UML Activity diagram of transformation from DPL Model to executable sys
tem files.

230

9.2.5.2 Transform DPL Model to WSDL Model

The valid DPL model is transformed to a WSDL model, which represents the interfaces of

the participants in the composition.

9.2.5.3 Transform DPL Model to PDD Model

The valid DPL model is transformed to a PDD model, which represents an ActiveBPEL

specific deployment descriptor detailing the resources of the composition.

9.2.5.4 Transform DPL Model to WSDLCatalog Model

The valid DPL model is transformed to a WSDLCatalog model, which represents an Ac

tiveBPEL specific interface deployment descriptor detailing the interfaces of the composi

tion.

9.2.5.5 Transform WS-BPEL Model to XML Model

The WS-BPEL model is transformed to an XM L model. This XM L model will later be

serialised as WS-BPEL compliant XM L text.

9.2.5.6 Transform WSDL Model to XML Model

The WSDL model is transformed to an XM L model. This XM L model will later be seri

alised as WSDL compliant XM L text.

9.2.5.7 Transform PDD Model to XML Model

The PDD model is transformed to an XML model. This XM L model will later be serialised

as PDD compliant XM L text.

9.2.5.8 Transform WSDLCatalog Model to XML Model

The WSDLCatalog model is transformed to an XM L model. This XM L model will later be

serialised as WSDLCatalog compliant XM L text.

The four XM L based models identified above are serialised to XM L text, which can be

executed on a composition engine.

9.2.5.10 Case Study

In step five in our case study example a WS-BPEL interaction logic document is created

to represent the centralised distribution pattern. Additionally, a WSDL interface is created

as a wrappers to the interaction logic document, enabling the composition to work in a

centralised environment. A deployment descriptor and a deployment catalog file is also

created. All that remains is for the system to be deployed to the target environment.

9.2.5.11 Tool Support

The transformation from a valid DPL model to an executable system is supported by nine

specific steps. These nine steps can be automated using our tool as discussed in detail below.

Transform DPL Model to WS-BPEL Model The DPL model is now converted to a

WS-BPEL model. The ANT script, outlined in Figure C.6 of Appendix C executes the

transformations outlined in Section 8.4.2.

Transform DPL Model to WSDL Model The DPL model is now converted to a WSDL

model. The ANT script, outlined in Figure C.7 of Appendix C executes the transformations

outlined in Section 8.4.3.

Transform DPL Model to PDD Model The DPL model is now converted to a PDD

model. The ANT script, outlined in Figure C.8 o f Appendix C executes the transformations

outlined in Section 8.4.4.

Transform DPL Model to WSDLCatalog Model The DPL model is now converted to a

WSDLCatalog model, The ANT script, outlined in Figure C.9 of Appendix C executes the

9 2 .5.9 T ra n s f o rm X M L M o d e ls to T ex t

232

tran sfo rm atio n s o u tlin ed in S ec tio n 8 .4 .5 .

Transform W S-BPEL Model to XML Model The WS-BPEL model is now converted

to an XM L based model by an ANT script. The script outlined in Figure C. 10 of Appendix

C executes the transformations outlined in Section 8.4.6.

Transform WSDL Model to XML Model The WSDL model is now converted to an

XM L based model by an ANT script. The script outlined in Figure C .l l o f Appendix C

executes the transformations outlined in Section 8.4.7.

Transform PDD Model to XML Model The PDD model is now converted to an XML

based model by an ANT script. The script outlined in Figure C .12 o f Appendix C executes

the transformations outlined in Section 8.4.8.

Transform WSDLCatalog Model to XML Model The WSDLCatalog model is now

converted to an XM L based model by an ANT script. The script outlined in Figure C. 13 of

Appendix C executes the transformations outlined in Section 8.4.9.

Transform XML Models to Text The four XM L based models are now converted to

XML based text suitable for execution on a Web service composition engine. The ANT

script outlined in Figure C .14 of Appendix C makes use of the AM3 XM L extractor [10].

This extractor converts the XM L based models to XM L based text.

9.3 Summary

In this chapter we have presented our five step methodological framework. This framework

enables the modeling of a Web service composition from a distribution pattern perspective,

before generating an executable Web service composition. The framework uses the Model

Driven Software Development (MDSD) process to automate, where possible, the executable

system generation. This approach front loads the development effort enabling faster Web

233

service composition development as well as providing mechanisms to reason about the

system through models. These models are used here to apply distribution patterns with

particular QoS attributes. These models can also be used to validate and verify, using OCL,

the composition to ensure it will execute correctly, before it is generated. System properties

such as deadlock and liveness can be proved using the MDSD process.

The distribution pattern catalog discussed in Chapter 5 is utilised by the methodologi

cal framework to assist the software architect when modeling the Web service composition.

The methodological framework features three specific techniques, which assist in the gen

eration of the executable system. All these techniques are supported by our tool implemen

tation. Finally, we have included a case study featuring the centralised distribution pattern

to illustrate the usage of the methodological framework.

234

Chapter 10

Evaluation

10.1 Introduction

Over the past six chapters we have presented our modeling and transformation framework.

This framework containing five components is our solution to addressing the non-functional

modeling of Web service compositions. Here, we assess how well our approach has met its

objectives and compare our efforts to existing approaches and tools.

Initially we revisit the motivations for our modeling and transformation framework to

Web service composition development, outlined in Chapter 1. We reiterate our problem

statement and objectives in Section 10.2 before outlining the assumptions we have made in

the scope of our work in Section 10.3. To assess our approach we compare and contrast our

work to existing approaches such as the traditional handcrafted approach in Section 10.4,

existing alternative frameworks in Section 10.5, and lastly to existing tools in Section 10.6.

Finally, in Section 10.7 we discuss some of the issues encountered during the course of our

research.

10.2 Problem and Objectives

Before evaluating our approach it is important to revisit our problem statement. In Chapter

1 we stated that there are a number of issues with traditional approaches to development of

235

Web service compositions. These issues are considered to be non-functional requirements,

as outlined in ISO 9126 [88, 83]. Traditional development is often ad-hoc and requires

considerable low level development effort for realisation. We also noted that this effort

is increased in proportion to the number of Web services in a composition. Effort is also

increased when there is a requirement that the composition participants must be flexible.

Such systems often exhibit fixed architectures making maintenance difficult and error prone.

Additionally, a number of the Quality of Service (QoS) requirements of a composition like

efficiency and reliability cannot be assessed easily by examining low level code because

of poor comprehensibility of the handcrafted artifacts. These quality requirements can be

better managed using UML, as outlined by Lange et al. in [106],

Our objectives can be split into two categories, as follows.

• Development Process

• Product Output

Firstly, we intend to improve the development process for Web service compositions.

We consider that the development effort for creating Web service compositions should be

reduced. As a byproduct of reducing the development effort we intend to reduce the main

tenance overheads traditionally associated with mutating compositions. More specifically,

we intend to obviate the coding effort traditionally associated with Web service composi

tion development thereby significantly reducing the development effort. Maintenance of

the solution should be significantly reduced, hi addition, improved maintainability should

be achieved through a flexible architecture.

Secondly, we intend to improve the product output from the development process.

Along with achieving improved maintainability we also intend to be able to manage the QoS

of Web service compositions. Our approach to managing QoS is to expose non-functional

properties, such as efficiency and reliability, of Web service compositions to ensure the re

sultant composition is of the required quality. This is achieved by refering the reader, where

possible, to related works where the costs of a given pattern have been assessed using pro

236

filing techniques. Where explicit measure costs are not available the reader is referred to

system implementations which are known to expose certain non-functional attributes.

10.3 Assumptions

A number of assumptions have been made in the scope of this work. These assumptions are

listed below and elaborated in the following text.

• UML Familiarity

• Closed Environment

• Design Time Definition

The first assumption is as stated in Chapter 6 where we assume software architects

will be familiar with the UML notation. For this reason we have chosen to model using

UML where possible. We believe this reduces the initial learning overhead for architects

modeling distribution patterns. I f a Domain Specific Language (DSL) had been used the

software architect would not be familiar with the notations used. In fact we have used a

DSL to model distribution patterns, as discussed in Chapter 6, however this language is

only used internally by our tools to facilitate validation and reduce the complexity of the

transformations.

Our second assumption is that our solution will be deployed in a closed environment.

This is necessary because many of the distribution patterns require a workflow engine to be

installed to enable the execution of a given pattern. It would be unreasonable to assume that

every Web service in an open environment has such a workflow engine available. Here we

assume the deployer of our solution must have control over the deployment infrastructure.

Finally, our third assumption is that Web service compositions are defined at design

time. We do not consider dynamic Web service compositions where the participants are

selected at runtime. A design time approach has been chosen as our goal is to illustrate the

237

benefits o f distribution pattern modeling. Adapting our work for dynamic compositions,

while useful, is considered to be future work.

10.4 Comparison to Handcrafted Approach

To evaluate the usefulness of our approach we must compare it to a traditional approach

for defining Web service compositions. For simplicity we compare our approach to a hand

crafted approach, which is often used for defining Web service compositions. The hand

crafted approach is the most flexible way to define code of any type, because the code may

be tailored exactly to requirements. However, this flexibility comes at a price as we will

see in the following sections. We assume handcrafting to be the use of a text based editor

to define the composition artifacts manually. To this end we compare both approaches with

respect to the following criteria.

• Development Effort

• Maintainability

• Comprehensibility

• QoS

10.4.1 Development Effort

Considerable work is required in building our modeling and transformation framework as it

is based on a generative programming methodology. Generative programming front loads

most of the development effort. In our case this required the definition of languages, rela

tions, transformations and a methodological framework. This development effort is a once

off overhead. However, this effort is offset by a greatly reduced development time for gen

erating code to realise Web service compositions, as our tool is capable o f auto generating

all of the composition artifacts with only limited human intervention required.

238

If a composition’s architecture was going to be permanently fixed, with no flexibility

with regards to participants and distribution pattern, our solution would require far more ef

fort than just handcrafting the composition artifacts without the aid o f a framework. How

ever, we do not consider that Web service compositions are by their nature fixed in this

manner. We believe that Web services are by their nature flexible and loosely coupled, thus

motivating our modeling and code generation approach.

The amount of work required to define a composition using our modeling and transfor

mation framework is considerably less than handcrafting the composition artifacts. Using

our approach the only manual work the software architect must complete is step two of

our methodological framework, as outlined in Section 9.2.2. Here, the architect defines the

distribution pattern via a UML Activity diagram using a UML modeling tool. The rest of

the work is automated using our tool. No handcrafting of any code, XM L or otherwise, is

required.

Considerable handcrafting of XM L based composition artifacts is required if no frame

work is utilised. In our case study scenario a considerable amount of XM L code, 137 lines

to be precise, must be handcrafted to define an executable Web service composition. The

breakdown of this figure is outlined in Table 10 .1. Such handcrafting is both time con

suming and error prone, requiring considerable testing and validation. The amount of work

required to define such compositions increases significantly in relation to the number of

composition participants and the distribution pattern being handcrafted. Our modeling and

transformation framework is capable of generating fully executable code, which is compa

rable to that which would have had to be handcrafted previously.

It should be noted that more complex distribution patterns than the centralised pattern

examined in the case study would require far more handcrafting of XM L for realisation. For

example, the decentralised distribution patterns would require one compositional interface,

one collaboration description, one deployment descriptor and one deployment catalog per

compositional participant. Thus the amount of handcrafting effort is directly proportional

to the number of compositional participants.

239

T able 10.1: S in g le lin es o f co d e req u ire d fo r h a n d c ra fte d app roach .

Compositional Interface 36 lines

Collaboration Description 56 lines

Deployment Descriptor 38 lines

Deployment Catalog 7 lines

Total 137 lines

The software architecture of Web service compositions is often ignored or designed on

a case by case basis when developed using a handcrafted approach. Ignoring architectural

patterns such as the distribution pattern of a Web service composition results in a number

of issues, such as the hiding of QoS attributes. Designing Web service composition archi

tectures from scratch is a time intensive process and may result in an unnecessarily bespoke

system. In contrast, our modeling and transformation framework, in association with our

pattern library, provides a reusable framework for creating Web service compositions. This

framework results in considerably lower design/development time and effort because the

framework generates the compositional code. The pattern library ensures well documented

solutions to particular deployment scenarios, which are well understood and reused where

appropriate.

Web service compositions can be realised using a number o f technologies. For exam

ple, WS-BPEL or WS-CDL could be used as the collaboration language to realise any of

the distribution patterns discussed in Chapter 5. A number of deployment environments

or compositional engines also exist. I f a Web service composition is handcrafted it must

be decided at an early stage which of these languages or environments will be targeted,

resulting in poor portability. In contrast, using our modeling and transformation framework

all the code is generated. This means that, provided transformations and notations have

been fully defined, it is only a matter of changing a tagged value on the model to generate

the desired language code. Although creating such transformations and notations is a time

and labour intensive effort this is a once off labour outlay. This highly portable approach

240

is augmented by the fact that our modeling approach is based on a platform and language

neutral modeling language UML 2.

10.4.2 Maintainability

To assess the maintainability of both our modeling and transformation framework and the

handcrafted approach we apply the ALM A (Architecture Level Modifiability Analysis)

method [90, 142], The ALM A method is a scenario based method designed specifically

for evaluating risk assessment, maintenance and costs prediction. The method consists of

five steps, outlined below.

• Set the Analysis Goal

• Describe Software Architecture

• Elicit Change Scenarios

• Evaluate the Change Scenarios

• Interpret Results

10.4.2.1 Set the Analysis Goal

Our analysis goal is to assess the maintainability of the two competing approaches as previ

ously stated. This should result in a qualitative assessment of the effort required to maintain

each approach.

10.4.2.2 Describe Software Architecture

The architecture of our modeling and transformation framework is expressed using UML 2,

while the architecture o f the handcrafted approach is expressed through raw XM L artifacts.

241

10.4.2.3 Elicit Change Scenarios

We elicit the possible change scenarios as follows. These scenarios are possible mainte

nance events that may occur within the lifetime of the system.

• Addition of composition participant

• Removal o f composition participant

• Updating of composition participant

• Change of distribution pattern

• Change of execution engine

10.4.2.4 Evaluate the Change Scenarios

With these scenarios in mind we evaluate the change scenarios for our modeling and trans

formation framework against the handcrafted approach to Web service composition devel

opment.

Addition of composition participant Often, Web service compositions are augmented

by the addition o f an additional participant. This additional participant may be used to

enhance the functional or non-functional requirements of the composition. Traditionally

this scenario required the developer or software architect to first assess the current deploy

ment environment, and to then manually manipulate the XM L composition code, as well

as any deployment artifacts. This process is both error prone and time intensive. With our

modeling and transformation framework the maintainer may open the existing UML Ac

tivity diagram of the composition, add the new participant, apply appropriate values to the

participant and use our tool to regenerate the entire composition for deployment.

Removal of composition participant This scenario is similar to the previous scenario,

the only difference being that we are removing a participant rather than adding a new one.

242

A participant may be removed from a composition due to an alteration in the functional

business process of an enterprise, or perhaps because the service is failing to meet its non

functional requirement obligations. The same benefits as in the previous scenario can be

realised by using our modeling and transformation framework.

Updating of composition participant Web services as loosely bound participants in a

composition are likely to evolve and move location. This scenario considers that the end

point of one of the compositional participants needs to be changed. Such a change using the

traditional handcrafted approach requires changes to the endpoint address in the collabora

tion, interface and deployment descriptor artifacts. Using our modeling and transformation

framework requires only one change to the DPL profile applied to the UML Activity dia

gram. Here, only the interface-uri DPL Attribute must be changed. Subsequently our tool

must be run to regenerate the entire composition for deployment.

Change of distribution pattern Changing the distribution pattern of a Web service com

position may be motivated by a number of non-functional reasons, as outlined in the case

studies of Chapter 5. Such a change is error prone and time intensive using the handcrafted

approach. Firstly, the difficult task of assessing the current deployment scenario must be

performed. Once the current environment is understood the workflow of the collaboration

description must be edited manually to match the desired distribution pattern. Additional

interfaces must be generated for certain patterns and the deployment descriptor and deploy

ment catalog must be updated to reflect the changes. The larger the composition the more

difficult it is to alter the distribution pattern because the complexity becomes so high. Even

after these manual changes it is difficult to assess if the non-functional requirements of the

composition will be met as no formal models exist. Using our modeling and transforma

tion framework this complexity is significantly reduced as only a few changes to the DPL

profile applied to the UML Activity diagram are required. Here, the distribution-pattem

DPL Attribute must be changed, the roles of the CallBehaviourActions may be changed,

ControlFlow and ObjectFlow connectors must be checked and possibly changed and finally

243

additional constructs such as extra Pins may be added. Subsequently our tool must be run

to regenerate the entire composition for deployment.

Change of execution engine Throughout this thesis we have considered only one exe

cution engine, ActiveBPEL. However, it is possible that there may be a requirement after

deployment to change to a different execution engine. Using the handcrafted approach, this

would require the creation and testing of both the new engine’s deployment descriptor and

deployment catalog. As with the other maintenance tasks considered this is both error prone

and time intensive. Our modeling and transformation framework also requires considerable

work to support a new execution engine. Specifically, new notations must be defined to

facilitate the new execution engine. New transformations between our DPL notation and

these new notations must also be defined. The notations should be as rigorously defined

as were the deployment descriptor and deployment catalog notations in Chapter 6. The

transformations must also be related as were our relations is Chapter 7, and defined like our

transformations in Chapter 8. These tasks are time and labour intensive. However, once

the notations, relations and transformations have been defined they can be plugged into our

modeling and transformation framework and reused many times, unlike the handcrafted

approach. Once the notations, relations and transformations have been plugged into the

framework our tool need only be run to regenerate the entire composition for deployment.

10.4.2.5 Interpret Results

Having enumerated over all the change scenarios we will now interpret the results. It should

be considered that before a composition can be maintained the developer must be familiar

with the current deployment scenario. Where models exist, as in our modeling and trans

formation framework, this discovery process is considerably shortened as the developer can

view a model describing the architecture of the deployment. UML Activity diagrams are

an excellent way to communicate the distribution pattern of a composition to a developer or

software architect unfamiliar with a composition. Without such models the developer has to

244

weed through XML code to discover the connections between the participants in the com

position and build up a model of the distribution pattern before attempting any maintenance

effort.

The scenarios illustrate that common maintenance issues such as adding, removing or

updating a composition participant are handled with minimal effort using our modeling and

transformational framework, when compared to the handcrafted approach. However, the

biggest gains with respect to reduced labour overheads are seen when the distribution pat

tern is required to be changed. Our modeling and transformation framework is particularly

suited to such scenarios as it was built with such tasks in mind. The final scenario noted

the considerable effort required to enable our framework to support a new execution en

gine. This is the case as the framework is targeted at a particular platform. However, the

framework is extensible and can be made to support any execution engine. The amount of

time required to support alternative platforms would however be considerably higher than

handcrafting the artifacts. O f course handcrafting the XM L will result in the loss o f the

benefits already realised using our framework approach.

To summarise, our modeling and transformational framework provides a far more main

tainable environment when compared to the handcrafted approach.

10.4.3 Comprehensibility

An essential goal of any modeling effort is comprehensibility, or readability, of the models

produced. To this end we have used the standards based UML 2 modeling language to ex

press our distribution patterns. We believe the models produced are easy to read and are at

an appropriate level of granularity for software architects to comprehend the diagrams eas

ily. Clutter in the diagrams has been avoided through the use of the UML Profile extension

mechanism. Additional comprehensibility is provided by our pattern catalog in Chapter 5,

which explains each of the patterns identified in this thesis in detail.

Our UML 2 models are far more comprehensible than the raw XML artifacts used to

describe Web service compositions. Graphical notations are instantly more recognisable

245

than terse text files. XM L files although originally designed to be human readable are far

too verbose to be human comprehensible when considering large Web service compositions.

Complexity often results in reduced comprehensibility. As the number of participants

in a composition increases the complexity of the system increases. Large Web service com

positions traditionally require unwieldy amounts of handcrafted XML for realisation. As

already noted in Section 10.4.2, this creates a significant maintenance overhead. Our mod

eling and transformation framework negates the manipulation of XM L files by abstracting

the collaboration details into high level UML models. These models however may also get

unwieldy given a large number of participants in a composition. The Eclipse UML2 editor

used to illustrate our use case is not ideal for medium to large compositions because of its

rudimentary user interface and lack of helper tools. Tools like IBM ’s RSA [86] have been

designed to assist software architects in managing enterprise systems, which would include

medium to large Web service compositions. We have noted in our future work that there are

significant automation opportunities in the area o f semantics, which may obviate the need

for any human intervention at the modeling level. In this scenario the models are used as

the primary software architecture artifact, used to drive the generation of fully executable

compositions.

10.4.4 QoS

An often overlooked aspect of Web service compositions is the non-functional Quality of

Service (QoS) requirements such as efficiency and reliability. It is very difficult to assess

the QoS of a composition purely by examining low level code because of the poor compre

hensibility of the handcrafted artifacts. We believe that QoS issues should be considered

from the beginning of the development process. This assertion is supported by our catalog

of distribution patterns in Chapter 5, which each express different QoS attributes. Using dis

tribution pattern based models as the primary development artifact we can guide our code

generation effort based upon clearly visible non-functional QoS properties. These patterns

are not visible in raw XM L artifacts resulting in compositions which have undetermined

246

Q oS attribu tes.

In Chapter 3 we discussed the state of the art in modeling and transformation frameworks

by comparing each of the approaches encountered in Figure 3.1. Here, we compare our

framework to these other frameworks. Although the ultimate goal of our work is differ

ent to the frameworks we compare to, we believe it provides considerable insight into the

usefulness of our approach. The updated comparison table is illustrated in Figure 10.1.

10.5 Comparison to Existing Frameworks

Arie f et al BECS SELF-SERV Peer-Serv UWE OPEN Flow Web-ML UMT Not Travel®r Topman

CORBA Support y 1
Web Application Support /
Web Service Support / ✓ y y y y
ADL Model Support ✓
XML Model Support / v ✓' y y
UML Modal Support /

7 y & y y
BPMN Model Support y
No, of Schemes Supported n /a 2» 1 1 n /a 2' 2 n /a 1 9
Mocleis Architecture ✓
Models Orchestrations / y 7 / / y
Models Choreographies y y
Code G eneration Support ✓ y y y y y y y
Dynamic Reconfiguration / y
Stalic Reconfiguration / y y y y y y

Supports changing o f d is tribu tion scheme but does not model it e xp lic itly
- D istribution scheme is defined in the orchestration
* XML support is via XMI
& UWE uses a conservative extension to UML called WebRE
n/a Feature not explic itly considered
? Not c lear from paper

Figure 10.1: Comparison of existing frameworks to our modeling and transformation
framework.

From Figure 10.1 we can see how our modeling and transformation framework, termed

TOPMAN in the table, compares favourably with the feature set provided by the state o f

the art in modeling and transformation frameworks. Our approach, like a number o f other

tools, considers the Web service composition domain. Two tools, UWE and OpenFlow,

consider the alternative domains of Web applications and CORBA respectively. We chose

not to consider these domains as CORBA can be considered a precursor to Web services in

that both technologies have the same objective, while Web applications are orthogonal in

that they sit on top of the functionality provided by Web service compositions.

247

We note that SELF-SERV is the only framework to support the use of an Architecture

Description Language (ADL) as its modeling language. We chose not to use ADL as our

modeling language because its various notations may not be as familiar to software archi

tects as the UML 2 notation. We do, however, future proof our approach by defining our

own DSL, the Distribution Pattern Language (DPL), which is not tied to UML 2, enabling

future work to address a perceived need to model using ADL instead of UML 2. Three of

the frameworks - DECS, SELF-SERV and Net Traveler - provide only XM L modeling of

compositions. We believe that XM L is not an ideal language for defining models because

XM L is overly verbose and is not human friendly when compared to a well designed visual

representation of a composition. Our modeling approach using UML 2 provides a visual

representation of the composition along with bindings to XM L via the UML serialisation

format XMI. This approach is also utilised successfully by UMT. An alternative approach to

UML modeling is considered by WEB-ML where BPMN models are used instead of UML

to model compositions. As previously noted, our approach could be amended to model with

BPMN as we have ensured that our approach is not UML dependent.

A number o f the identified frameworks support different distribution patterns. However,

only one of these approaches Web-ML, explicitly models the distribution pattern in a similar

way to our approach. Web-ML is however restricted to only two distribution patterns. Both

OpenFlow and DECS also support two distribution patterns; however they do not explicitly

model the distribution pattern, and merely provide a switch to alter the behaviour of the

executing system. Our approach, in contrast, considers nine distribution patterns which are

expressed in easy to comprehend high level UML models.

The majority of the frameworks model compositions from an orchestration point of

view. This perspective considers the workflow of the compositions participants rather than

the non-functional requirements, which is our objective. UMT is an example of a tool which

meets many of our requirements but models the composition from an orchestration perspec

tive. It is worth noting that Arief et al. [17] consider the modeling o f system architectures

using UML, an approach we also use. Also worthy of note is the Net Traveler approach,

248

which considers both an orchestration and a choreography model, albeit using XM L based

models. Our modeling and transformation framework combines the UML modeling ap

proach used by Arief et al. and the choreography models used by Net Traveler to address

non-functional requirements of Web service compositions.

All of the frameworks, with the exception of Net Traveler, provide an implementation

to prove their usefulness and evaluate the claims of their respective authors. Our modeling

and transformation framework provides an implementation, TOPMAN, which outputs a

fully executable system that verifies our solution.

Finally, only two of the frameworks discussed consider dynamic reconfiguration of the

systems they model. These two systems, DECS and OPENFlow, are capable of altering

the distribution pattern used at runtime. This functionality is desirable as it allows the

distribution pattern to be changed in reaction to the execution environment. For example,

under high load the decentralised distribution pattern is more favourable that the centralised

pattern. As previously noted, we consider runtime alteration of distribution patterns on our

modeling and transformation framework as future work.

10.6 Comparison to Existing Tools

Throughout this chapter we compare our modeling and transformation framework to a hand

crafted approach. There are, however, a number o f tools which facilitate the creation o f the

compositional artifacts. We have not considered these tools thus far as they do not address

our objectives of addressing non-functional requirements. However, for completeness we

compare and contrast a number of these tools here.

ActiveBPEL Designer [3] is a GUI tool that assists in the development of Web service

compositions. The tool is capable o f generating all the compositional artifacts, as well as

performing debugging and simulation activities. However, the tool takes an orchestration

perspective on compositions, ignoring non-functional requirements addressed by our ap

proach. The ActiveBPEL Designer creates compositional artifacts that can be run on the

249

The Oracle BPEL Process Manager [14 1] is comparable to the ActiveBPEL Designer

product. The Oracle tool provides the same functions as the ActiveBPEL tool. It also

takes the same orchestration perspective, once again ignoring non-functional requirements

addressed by our approach. The Oracle BPEL Process Manager creates compositional arti

facts that can be run on the Oracle BPEL compositional engine.

Artix Orchestration [89] is an Eclipse plugin developed by Iona. The tool is used to

design orchestration based compositions, which can be realised in the Artix environment.

Again the tool ignores non-functional requirements.

Finally, we consider the Eclipse BPEL Project [66]. This Eclipse plugin provides a

GUI for the development of WS-BPEL orchestrations. Unlike the other three tools previ

ously described the Eclipse BPEL Project does not include an execution environment for

orchestrations to be realised. The tool concentrates purely on facilitating the generation

of WS-BPEL orchestrations and does not consider the generation o f supporting composi

tional artifacts like the other three tools, as well as our own modeling and transformation

framework, do.

10.7 Discussion

Over the course of our research a number of issues were encountered. These issues are

listed below and discussed in detail in the following sections.

• Maintainability

• Complexity

• Composition

10.7.1 Maintainability

Although ultimately we decided on using ATL as our model transformation language, as

discussed in Chapter 8, we also considered another approach, XSLT based transformations.

A ctiv eB P E L co m p o sitio n a l engine.

250

These two approaches provide distinct advantages and disadvantages with respect to main

tainability, as discussed below.

Initially, we envisaged using the XM L based transformation language XSLT [183] to

transform XMI representations of our distribution pattern models. A prototype was built

to test the usefulness of this approach. The primary motivation for using this language

is that it is popular amongst developers, especially in the Web community. This popularity

means there is excellent support and numerous resources for the language. Additionally, the

language is declarative making the transformation code easier to comprehend and maintain

than imperative based languages.

Although we were successful in outputting a fully functional executable system based

on XSLT transformation of distribution pattern models, the code base was considered too

brittle to be considered maintainable. This brittleness was caused by a number of factors.

Firstly, the transformations are tied to a particular XMI version. Different tools output

different versions of XMI and there are a number of significant versions of XMI. Any future

version of XMI will break the XSLT transformations causing a large maintenance overhead

for future users of this approach. These problems are similar to the well documented “DLL

hell” problems in Windows based computing [79]. We consider that XMI is not supposed to

be manipulated as regular XM L as the standard is far too verbose for such transformations.

Secondly, the XSLT transformations were very verbose and complex due to the complexity

of the XMI documents they were transforming.

With these issues in mind we looked for an alternative approach. We discovered that

ATL does not incur these maintainability issues as it uses the stable metamodel UML2. ATL

does not manipulate XMI directly; instead it reads the XMI into an object model. These

transformations can be easily modified to handle new versions of the UML2 metamodel.

Changes to the metamodel are often incremental and do not break implementations based

on the same major revision e.g. UML 2.1 is backwards compatible with UML 2.0. This

resolved the brittleness problem encountered by XSLT.

251

The complexity of the XSLT transformations, discussed in the previous section, was also

solved by ATL. ATL uses the UML2 metamodel to traverse object based representations of

models rather than pattern matching within large XMI files. This approach results in far

cleaner and easier to manage code which can be easily maintained.

Another area of complexity is that because Web services is still an emerging technology

the Web service stack is in constant flux. The sheer number of standards or proposals for

standardisation causes great complexity in the domain. This flux is caused by the num

ber of large organisations vying for dominance in this emerging area. In fact, it is these

organisations flexing their influence that have caused this fragmentation by submitting to

different standards bodies such as the W3C and OASIS in an attempt to have their favoured

proposals fast tracked to consumer acceptance. An example o f this competition is the Oasis

standardised WS-BPEL and the W3C standardised WS-CDL. Both are still being revised.

A number of tools, introduced in Chapter 2, were used to support our modeling and

transformation framework. These tools exhibit considerable complexity and require con

siderable time to gain proficiency. Primarily, we used the Eclipse tool in association with the

Eclipse Modeling Framework (EMF) and the ATL transformation language. EMF is a com

plex framework requiring considerable learning effort. Ecore, EM F’s meta-model language

is complex necessitating considerable study before use. We used Ecore to define our no

tations in Chapter 6. This process required learning the Ecore notation and idiosyncrasies.

ATL is a modeling specific language requiring the user to learn a new language which is

considerably different to traditional procedural languages such as C or Java. Both Ecore

and ATL utilise an additional language OCL for defining types, constraints and functions,

which also needed to be studied.

Our approach uses the UML2 Ecore meta-model implementation. This implementation

of such a large specification as UML 2.0, although well documented, requires considerable

time before the user becomes proficient in its usage. UML 2.0’s extension mechanism,

UML Profiles, also requires a large labour outlay before usage. All these technologies

10.7.2 Complexity

252

result in a complex development environment where dependencies exist between the tools,

implementations and languages. Additionally, as the general area of MDSD is new these

technologies are undergoing fast evolution cycles. For example, UML2 has gone through

five revisions from 2.0 to 2 .1.1 in one year.

A significant issue encountered during our research was that we touch on a number of

complex research areas in order to produce an adequate solution to our research problem.

Each of these research areas, such as MDSD, Web services, software architectures and

even semantics contain many open questions in their own right. The combination of such

complex research areas results in the highly technical solution presented in this thesis. Each

of the areas required considerable research to see how they could help us define our non

functional modeling and transformation framework. Adding to the inherent complexity o f

these areas is the fact that they are, for the most part, relatively new and expanding research

areas, making the foundations for our research a moving target as the areas continue to

evolve at considerable pace. Keeping apace with these research areas has been a significant

issue in the context of our work.

10.7.3 Composition

When discussing distribution patterns with those who are unfamiliar with the concept of

distribution patterns there is often great confusion between what the patterns represent and

what traditional workflows represent. Often the audience cannot distinguish between the

non-functional requirements we wish to model and the functional business processes usu

ally represented as Activity diagrams. As noted in Section 2.3.1, we consider the best

way to distinguish these mutually independent modeling approaches is to clearly define

the difference between orchestrations and choreography, where orchestration represents the

internal workflow required to implement a businesses workflow, while choreography repre

sents the external message exchange between participants that maps closely to our concept

of distribution patterns.

253

In this chapter we assessed the value of our modeling and transformation framework. We

noted that our framework front loads the development effort. However, this effort is offset

by the gains in maintainability obtained using our approach, as proved by our validation

using the ALMA method. Our approach realises the benefits o f the Model Driven Software

Development (MDSD) approach, where models are used to assist in the generation and

reasoning of software systems [182, 30].

Often when systems use the MDSD process the end user expectation is that the entire

system will be auto-generated from a primitive model to an executable system. However, as

in our case this is often not true. Human intervention is sometimes required to manipulate

models to encode some hard to model knowledge. Here, we require the experience and skill

of software architects to make important architectural decisions about which distribution

pattern is most appropriate for a given scenario. This kind of intelligence is very difficult to

automate even through the use o f semantics. Automating important architectural decisions

like this would be neither desirable nor would it be accepted by practitioners.

We have found that our approach meets its objective of providing readable models of

the non-functional properties of Web service compositions, an aspect previously ignored

by framework and tool developers. This comprehensibility is essential to adequately com

municate the non-functional QoS attributes of compositions to software architects at design

time.

Having considered a number of different approaches to our modeling and transforma

tion framework, and having overcome a number of difficult issues, we believe we have

made a significant novel contribution to the area of Web service composition development,

and to a wider extent the software architecture community.

10.8 Summary

254

Chapter 11

Conclusions

11.1 Summary

Over the course of this thesis we have presented our novel Web service based modeling

and transformation framework. Our Model Driven Software Development (MDSD) based

approach takes existing Web service interfaces as its input and generates an executable

Web service composition, based on a distribution pattern chosen by the software architect.

We have placed this framework into context by discussing related work and evaluating our

framework against the state of the art in compositional modeling. Here, we summarise our

contributions.

We have provided a catalog of seven distribution patterns that provide solutions to vary

ing non-functional requirements, such as efficiency and reliability. These patterns, which

have been found to be useful in a networking context, are applicable to Web service compo

sitions. The effectiveness of a pattern catalog has been objectively evaluated against appro

priate case studies using four specific criteria: usage, coverage, utility and precision. The

catalog scored good values for the majority of the measures indicating that it is sufficiently

complete to cover all the current distribution scenarios, whilst also providing adequate fu

ture proofing for future usage scenarios.

A novel modeling and transformation framework consisting of five components has

255

been provided. This framework, unlike the existing tools, considers modeling of the distri

bution scheme from a choreography perspective. This approach considers non-functional

quality aspects from the outset of the development process. The framework, and its asso

ciated implementation, enables the generation of Web service compositions, based upon a

distribution pattern model. These models abstract complexity and enable high level reason

ing about a solution from an early point in the development life-cycle. Attributes that can

be observed include design-time non-observable architectural quality attributes of composi

tions, like mutability and reuse. Additionally, run-time attributes affected by the chosen dis

tribution scheme can also be observed at design time using these models. These attributes,

also known as Quality of Service (QoS) attributes, include efficiency and reliability.

Each of the five components in the framework has been motivated with respect to non

functional quality aspects and each is essential in our MDSD approach for generating Web

service compositions based on a distribution pattern model. The eight notations, or lan

guages, required to facilitate the modeling o f distribution patterns, and the subsequent gen

eration of an executable system have been provided. The abstract syntax of all of these

languages has been defined using ECore to enable their use in an MDA context. Nine

relation sets have been used to describe the web of dependencies between the languages,

from a UML distribution pattern model to executable system XML. The corresponding nine

transformation sets have also been defined. The five step methodological framework that

ties together the first four components of the modeling and transformation framework has

been thoroughly documented. This methodological framework enables the modeling of a

Web service composition from a distribution pattern perspective, before generating an exe

cutable Web service composition. A case study featuring the centralised distribution pattern

has been used to exemplify usage of the methodological framework. The case study output

has been deployed and tested on a real execution engine.

We have contrasted our framework with a handcrafted approach, which is often used

for defining Web service compositions. The approaches were contrasted by considering

four specific measures: development effort, maintainability, comprehensibility and QoS.

256

Development effort is significantly reduced as handcrafting is both time consuming and

error prone, requiring considerable testing and validation. The amount of work required to

define compositions increases significantly in relation to the number of composition par

ticipants and the distribution pattern being handcrafted. Our modeling and transforma

tion framework is capable o f generating fully executable code, which is comparable to that

which would have had to be handcrafted previously.

Maintenance issues such as adding, removing or updating a composition participant are

handled with minimal effort using our modeling and transformational framework, when

compared to the handcrafted approach. However, the biggest gains with respect to reduced

labour overheads are seen when the distribution pattern is required to be changed. Our

modeling and transformation framework is particularly suited to such scenarios as it was

built with these tasks in mind.

11.2 Discussion

We have utilised the MDSD based approach in our framework for a number of reasons.

MDSD uses models as its primary development artifact. These models capture significant

decisions made by the software architect while designing the system architecture [84], The

significance of these decisions should not be understated as they are often taken with non

functional requirements in mind. Often these decisions are not documented resulting in the

loss of important knowledge that can be used to ascertain the non-functional attributes of

the system. Distribution patterns are an example of how models can be used to document

these non-functional attributes. These patterns have well known trade-offs. The benefits and

consequences of these trade-offs can be assessed before they are used in a system, ensuring

the architect makes an informed decision before selecting a particular pattern.

The use of the MDSD approach provides for partial automation of the development of

Web service based compositions. This partial automation results in reduced development/

O ur fra m ew o rk co m p ared fav o u rab ly in all com parisons.

257

maintenance effort as well as costs over the lifetime of the system [99, 50], The ability to re

architect a previously generated system after the system has been developed is also catered

for within the MDSD approach. This flexibility enables the software architect to apply

a different distribution pattern, possibly because of new customer driven non-functional

requirements, to a composition and redeploy the system.

Our modeling and transformation framework is specifically targeted at Web service

based compositions. We consider a number of compositional languages such as WS-BPEL

[12] and WS-CDL [187], standardised by OASIS and the W3C respectively. To avoid tying

our approach to any specific compositional language we utilise the UML to model our dis

tribution patterns [60], UML Activity diagrams are particularly appropriate for describing

the connections between discrete Web services in a distributed composition.

Complexity often results in reduced comprehensibility. As the number of participants

in a composition increases the complexity of the system increases. Large Web service

compositions traditionally require unwieldy amounts o f handcrafted XML for realisation.

Our modeling and transformation framework obviates the manipulation of XM L files by

abstracting the collaboration details into high level UML models. Our UML 2 models

are far more comprehensible than the raw XML artifacts used to describe Web service

compositions. Graphical notations are instantly more recognisable than terse text files.

XM L files, although originally designed to be human readable, are far too verbose to be

human comprehensible when considering large Web service compositions.

It is very difficult to assess the QoS of a composition purely by examining low level

code because of the poor comprehensibility of the handcrafted artifacts. We believe that

QoS issues should be considered from the beginning of the development process. Using

distribution pattern based models as the primaiy development artifact we can guide our

code generation effort based upon previous experience of systems expressing a given dis

tribution pattern, documented in our pattern catalog, which achieves certain non-functional

QoS properties. These patterns are not visible in raw XM L artifacts resulting in composi

tions which have undetermined QoS attributes.

258

Our framework has also been contrasted to the state in the art of existing frameworks

and tools. Although many of these frameworks and tools overcome the issues of the hand

crafted approach, none of them make full use of the distribution pattern based modeling

approach we have motivated throughout this thesis. In fact, the majority of the frame

works model compositions from an orchestration point of view. This perspective considers

the workflow of the compositions participants rather than the non-functional requirements.

The few frameworks that do consider that distribution patterns may be useful consider only

the two most basic forms, centralised and decentralised.

11.3 Future Work

A number o f enhancements to our modeling and transformation framework have been iden

tified as future work. These enhancements are the result of conversations with researchers

at both international conferences and workshops. Some of the enhancements have been

detailed in our published papers, others are included here to encourage others to continue

our work. These enhancements are as follows.

• Alternative Modeling Languages

• Full Modeling Approach

• Workflow Based Semi-Automation

• Semantic Based Semi-Automation

• Automated Deployment

• Explicit Modeling of Measure Costs

11.3.1 Alternative Modeling Languages

We believe it would be interesting to consider alternatives to our UML 2 modeling language

approach, based on n calculus [118] and Architecture Description Languages (ADL) [114],

259

These languages offer alternatives approaches to describing distribution patterns, including

the modeling of the patterns themselves rather than pattern prototypes. This approach to

pattern modeling would enhance our pattern catalog by describing the discrete parts of the

patterns how the actual patterns are constructed.

The 7r calculus is often used to model mobile processes, where the configuration of

executing systems may change. This configuration is similar in concept to distribution

patterns. We believe it would be interesting to model distribution patterns using such a

calculus so that we can describe and reason about the distribution pattern catalog. The 7r

calculus has been previously used to this end to describe, verify and validate WS-BPEL by

Lucchi et al. in [155] and WS-CDL by Zhou et al. in[198],

ADLs are used to specifically model software architectures. Having a language de

signed with purely architectures in mind should make for a powerful representation of dis

tributed systems such as Web service compositions. Such representations may lend them

selves to better descriptions o f distribution patterns over UML 2. We noted our reasons for

not using ADLs in Chapter 3. However, we believe a full comparison of the two modeling

approaches would be of great interest.

11.3.2 Full Modeling Approach

As previously noted our modeling and transformation framework considers the modeling

of distribution patterns. These distribution patterns address only non-functional require

ments of Web service compositions. To have a really useful modeling approach we must

also consider functional requirements such as business workflows. A number of existing

approaches considered in Chapter 3 address these concerns. They do not however address

distribution patterns. We believe a full modeling approach addressing functional and non

functional requirements of Web service compositions is appropriate. Perhaps our approach

could be integrated with an existing workflow based approach such as UMT [153], How this

combined approach would address modeling of orthogonal concerns is an open question.

260

11.3.3 Workflow Based Semi-Automation

Our modeling and transformation framework assumes only that WSDL artifacts already

exist when the software architect is tasked with modeling the distribution pattern of a Web

service composition. We use these artifacts as input to our framework to help generate part

of the UML Activity diagram which will describe the distribution pattern. It may how

ever be the case that the software architect has access to collaboration documents such as

WS-BPEL [12] or WS-CDL documents [187], which describe the functional workflow of

a composition. These artifacts could be used to further help generate more of the UML

Activity diagram at step 1 of our methodological framework, as outlined in Section 9.2.1.

For example, workflow documents contain mappings which could be used to relate UML

ObjectFlow connectors, reducing the amount of work the architect must do to build a dis

tribution pattern at step 2 of our methodological framework, as outlined in Section 9.2.2.

11.3.4 Semantic Based Semi-Automation

In oili' paper [24] we have envisaged an enhancement to our modeling and transformation

framework using semantics to help reduce the software architect’s workload at step 2 of

our methodological framework. Currently the connections and mappings between Web ser

vices must be manually defined. However, if semantics were present the architect would

simply choose a distribution pattern, possibly from a pattern repository, and the connections

and mappings would be made automatically. We propose using Web service semantic de

scriptions in addition to Web service interfaces, to assist in the semi-automatic generation

of the distribution pattern model. Web services described using semantic languages, such

as OWL-S [109, 110], can be automatically assessed for compatibility and their input and

output messages can be mapped to each other.

We assume all of the Web services to be composed are semantically annotated using

OWL-S. The semantic documents for each service are passed to the semantic matching en

gine for processing. Each service must have an atomic process model describing, using an

ontology, the message input and output parts. OWL-S atomic process models are analo

261

gous to WSDL operations. These semantic descriptions enable the automated sequencing

of actions and connection of CallBehaviorActions to one another, in our distribution pattern

model, using UML ControlFlow connectors. Services are matched together based on their

level of compatibility. Each service is checked against every other participant service to as

sess if their process models are compatible. Compatibility here is defined as one participant

having output message part(s) that match the input message part(s) requirements o f another

participant. I f a sufficiently similar match is found a UML ControlFlow connector is cre

ated between the two compatible services in the model. Subsequently, the inputs and output

parts of these matched services can be mapped. This integration results in the connection

of UML InputPins and OutputPins in the model, using UML ObjectFlows connectors, so

data can flow through the composition. In some cases, additional pins may be added au

tomatically to the output of CallBehaviorActions, to meet data input requirements of other

services. Existing services are wrapped to support the new connections. Without semantic

annotation this entire step would have to be completed manually by the software architect.

At this stage the model is complete and folly expresses the distribution pattern selected by

the software architect.

11.3.5 Automated Deployment

A considerable overhead related to realising a number of distribution patterns, such as de

centralised distribution patterns, is the deployment effort related to placing the artifacts gen

erated by our tool on participating services. In our paper [25] we consider a novel approach

to automating this effort.

We consider an enhancement to the container o f each composition participant called

Interaction Logic Document Processor (ILDP). The ILDP enhancement must be installed

on each participant, however this is a once off installation. ILDP enhanced participants are

exposed as Web services, capable of receiving, processing and deploying these documents.

These enhanced participants can receive documents from the deployment engine. Subse

quently the documents are processed by ILDP to ensure they are valid before storing them

262

on the participant. Finally the stored documents are deployed by ILDP on the participant

and exposed for composition by a composition runtime interface. An enactment engine,

independent of ILDP, is responsible for enacting the interaction logic and subsequently

invoking the participant services, facilitating decentralised interaction amongst the partic

ipant services. This approach obviates any requirement of manually deploying documents

to participant services. Moreover, as the mechanism enhances the container capability, it is

non-intrusive to the existing Web service implementation or to the existing interfaces of the

participant services.

11.3.6 Explicit Modeling of Measure Costs

The pattern catalog presented in Chapter 5 uses related work to assess the non-functional

properties of the patterns. These properties are based upon Web service composition mea

sures and networking measures if there were no measures for a Web service context. Ideally,

we would like to have measures for each pattern in a Web service context. These measures

would enhance our understanding of the patterns in our particular domain of interest. Hav

ing these measures could also enable us to extend our DPLProfile to consider quantifiable

estimates o f efficiency and reliability as has been done in profiles such as MARTE [62], as

discussed in Section 3.9.

263

Bibliography

[1] IEEE Std 610.12-1990. IEEE Standard Glossary of Software Engineering Terminol

ogy. Technical report, IEEE, 1990.

[2] ActiveBPEL. ActiveBPEL 2.0, 2006. h t t p : //www. a c t i v e b p e l . o r g / .

[3] ActiveEndpoints. ActiveBPEL Designer, 2007. h t tp :/ / w w w .

a c t i v e - e n d p o i n t s . c o m / a c t i v e - b p e l - d e s i g n e r . htm.

[4] A. Agrawal, G. Karsai, , and A. Lédeczi. An End-to-End Domain-Driven Soft

ware Development Framework. In Proc. 18th ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA 03), pages 8-15,

Anaheim, California, 2003. ACM Press.

[5] D. Akehurst. Transformations Based on Relations. In Proc. o f the Workshop on

Model Driven Development (WMDD 2004), Oslo, Norway, 2004. ACM.

[6] Stephen Albin. The Art o f Software Architecture: Design Methods and Techniques.

John Wiley & Sons, Inc., New York, NY, USA, 2003.

[7] C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language. Oxford Univer

sity Press, 1977.

[8] F. Allilaire, J. Bézivin, F. Jouault, and I. Kurtev. ATL - Eclipse Support for Model

Transformation. In Proc. o f the Eclipse Technology eXchange workshop (eTX) at the

ECOOP 2006, Nantes, France, 2006.

264

http://www

[9] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architec

ture and Applications. Springer Verlag, 2004.

[10] AM3 Tool. ANT Task for AMMA, 2007. http://www.eclipse.org/m2m/
atl/doc/ANT_Task_A.MMA.pdf.

[11] T. Ambühler. UML 2.0 Profile for WS-BPEL with Mapping to WS-BPEL. M.Sc.

(thesis), Universität Stuttgart, Universitätsstr. 38, 70569, Stuggart, 2005.

[12] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Lie,

D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process

Execution Language for Web Services (BPEL4WS) version 1 .1 . Technical report,

BEA, IBM, Microsoft, SAP, Siebel, 2003.

[13] Apache. Apache Axis, 2006. h t t p ://ws. a p a ch e . o r g / a x i s / .

[14] Apache. Apache Struts, 2006. h t t p : / / s t r u t s . a p a ch e . o r g / .

[15] B. K. Appukuttan, T. Clark, S. Reddy, L. Tratt, and R. Venkatesh. A Model Driven

Approach to Building Implementable Model Transformations. In Workshop in Soft

ware Model Engineering (WiSME) 2003, 2003.

[16] L. Arief and N. Speirs. Automatic Generation of Distributed System Simulations

from UML. In Proc. 13th European Simulation Multiconference (ESM’99), pages

126-136 , Warsaw, Poland, 1999.

[17] L.B. Arief, M.C. Little, and S.K. Shrivastava et. al. Specifying Distributed System

Services. BT Technology Journal, 17 :126 -136 , 1999.

[18] P. Avgeriou and U. Zdun. Architectural Patterns Revisited - a Pattern Language.

In Proc. 10th European Conference on Pattern Languages o f Programs (EuroPLoP

2005), Irsee, Germany, 2005.

265

http://www.eclipse.org/m2m/

[19] B. Bauer and J. Müller. MDA Applied: From Sequence Diagrams to Web Service

Choreography. In Proc. 4th International Conference (ICWE 2004), pages 132-136 ,

Munich, Germany, July 2004.

[20] J. W. Backus, J. H. Wegstein, A. van Wijngaarden, M. Woodger, F. L. Bauer,

J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser, K. Samelson, and

B. Vauquois. Report on the Algorithmic Language ALGOL 60. Communications

o f the ACM, 3(5):299-314, 1960.

[21] R. Barrett and S.J. Delany. OpenMVC: A Non-Proprietary Component-Based

Framework for Web Applications. In Proc. International Conference on the World-

Wide Web (WWW 04), New York, USA, May 2004.

[22] R. Barrett and C. Pahl. Model Driven Design of Distribution Patterns for Web Service

Compositions. In The International Workshop on Models fo r Enterprise Computing

(IWMEC 06), Hong Kong, China, October 2006.

[23] R. Barrett and C. Pahl. Model Driven Design of Distribution Patterns for Web Service

Compositions. In Proc. International Conference on Web Services (ICWS 2006)

(Work-in-Progress Track), Chicago, USA, September 2006.

[24] R. Barrett and C. Pahl. Semi-Automatic Distribution Pattern Modeling of Web Ser

vice Compositions using Semantics. In Proc. Tenth JEEE International EDOC Con

ference, Hong Kong, China, October 2006.

[25] R. Barrett, C. Pahl, L. Patcas, and J. Murphy. Model Driven Distribution Pattern

Design for Dynamic Web Service Compositions. In Proc. Sixth International Con

ference on Web Engineering, Palo Alto, USA, July 2006.

[26] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice, Second

Edition. Addison-Wesley Professional, 2003.

266

[27] B. Benatallah, M. Dumas, and Q. Z. Sheng. Facilitating the Rapid Development

and Scalable Orchestration of Composite Web Services. Distributed and Parallel

Databases, 17:5-37, 2005.

[28] B. Benatallah, M. Dumas, Q. Z. Sheng, and A. H. H. Ngu. Declarative Composition

and Peer-to-Peer Provisioning of Dynamic Web Services. In Proc. 18th Interna

tional Conference on Data Engineering (ICDE'02), pages 297-308, San Jose, CA,

February 2002.

[29] B. Benatallah, Q. Z. Sheng, and M. Dumas. The Self-Serv Environment for Web

Services Composition. IEEE Internet Computing, 7:40-48, 2003.

[30] S. Beydeda, M. Book, and V. Gruhn. Model-Driven Software Development. Springer,

2005.

[31] J. Bezivin. In Search of a Basic Principle for Model Driven Engineering. UPGRADE,

2,2004.

[32] J. Bezivin. Model-Driven Development: Its Essence and Opportunities. In Summer

School on Generative and Transformational Techniques in Software Engineering,

Braga, Portugal, pages 1—40, Braga, Portugal, 2005.

[33] J. Bezivin, H. Bruneliere, F. Jouault, and I. Kurtev. Model Engineering Support for

Tool Interoperability. In Int. Workshop in Software Model Engineering (WiSME),

Montego Bay, Jamaica, 2005.

[34] L. Bichler. Tool Support for Generating Implementations of MOF-Based Model

ing Languages. In Proc. Third OOPSLA Workshop on Domain-Specific Modeling,

Anaheim, California, USA, 2003.

[35] Ken Birman, Robbert van Renesse, and Werner Vogels. Adding High Availability

and Autonomic Behavior to Web Services. In Proc. 26th International Conference on

267

Software Engineering(ICSE ’04), pages 17-26, Washington, DC, USA, 2004. IEEE

Computer Society.

[36] C. Bock. UML 2 Activity and Action Models. Journal o f Object Technology, 2,

2003.

[37] M. Brambilla, S. Ceri, P. Fratemali, andl. Manolescu. Process Modeling in Web Ap

plications. ACM Transactions on Software Engineering and Methodology, 15:360-

409, 2006.

[38] Hugo Bruneliere. MoDisco Use Case - Performance-Annotated UML2 State

Charts, 2007. http://www.eclipse.org/gmt/modisco/useCases/
PerformanceAnnotatedUmlStateCharts/.

[39] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose. Eclipse Modeling

Framework. Prentice Hall, 2003,

[40] F. Buschmann. Pattern-Oriented Software Architecture : A System o f Patterns. Wi

ley, 2000.

[41] F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-Oriented Software Architec

ture Volume 4: A Pattern Language fo r Distributed Computing. Wiley, 2007.

[42] H. Caituiro-Monge and M. Rodriguez-Martinez. Net Traveler: A Framework for

Autonomie Web Services Collaboration, Orchestration and Choreography in E-

Govemment Information Systems. In Proc. IEEE International Conference on Web

Services (ICWS'04) , pages 2-10 , San Diego, California, USA, June 2004.

[43] S. Ceri, P. Fratemali, and M. Matera. Conceptual Modeling of Data-Intensive Web

Applications. IEEE Internet Computing, 6:20-30, 2002.

[44] G. B. Chafle, S. Chandra, V. Mann, and M. G. Nanda. Decentralized Orchestration

of Composite Web Services. In Proc. 13th international World Wide Web conference,

pages 134 - 143, New York, NY, USA, May 2004.

http://www.eclipse.org/gmt/modisco/useCases/

[45] L. Chen, Ma Xiujun, C. Guanhua, S. Yanfeng, and F. Xuebing. A Peer-to-Peer Archi

tecture for Dynamic Executing GIS Web Service Composition. In Proc. Geoscience

and Remote Sensing Symposium, 2005 (IGARSS ’05), pages 979-982, Seoul, Korea,

July 2005.

[46] Q. Chen and M. Hsu. Inter-Enterprise Collaborative Business Process Management.

In Proc. o f the 17th International Conference on Data Engineering, pages 253-260,

Heidelberg, Germany, April 2001.

[47] P. Clements, R. Kazman, and M. Klein. Evaluating Software Architectures: Methods

and Case Studies. Addison-Wesley Professional, 2002.

[48] V. Cortellessa, A. Di Marco, and P. Inverardi. Integrating Performance and Relia

bility Analysis in a Non-Functional MDA Framework. In Proc. o f the Fundamen

tal Approaches to Software Engineering (FASE’07), pages 57-71, Braga, Portugal,

2007. Springer.

[49] M. Cutumisu, C. Onuczko, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy,

J. Siegel, and M. Carbonaro. Evaluating Pattem Catalogs: The Computer Games Ex

perience. In Proc. 28th international conference on Software engineering (ICSE'06),

pages 13 2 -14 1. ACM Press, 2006.

[50] K. Czamecki and U. Eisenecker. Generative Programming: Methods, Techniques

and Applications. Addison Wesley, 2000.

[51] K. Czamecki and S. Helsen. Classification of Model Transformation Approaches. In

Proc. o f Workshop on Generative Techniques in the Context o f Model-Driven Archi

tecture at OOPSLA 2003, Anaheim, California, 2003. ACM.

[52] K. Czarnecki and S. Helsen. Feature-Based Survey o f Model Transformation Ap

proaches. IBM Syst. J., 45(3):621-645, 2006.

269

[53] D. Skogan and R. Gronmo and I. Solheim. Web Service Composition in UML. In

Proc. 8th International IEEE Enterprise Distributed Object Computing Conference

(EDOC), pages 47-57, Monterey, California, September 2004.

[54] M. Daconta, L. Obrst, and K. Smith. The Semantic Web: A Guide to the Future o f

XML, Web Services, and Knowledge Management. Wiley, 2003.

[55] V. de Castro, E. Marcos, and M. Lopez Sanz. Service Composition Modeling: A

Case Study. In Proc. Seventh Mexican International Conference on Computer Sci

ence, 2006 (ENC ’06), pages 10 1-10 8 , San Luis Potosi, Mexico, September 2006.

[56] S. Demathieu, C. Griffin, and S. Sendall. Model Transformation with the

IBM Model Transformation Framework, 2005. h t t p : / /www-12 8 . ib m . com/

d e v e lo p e r w o r k s / r a t i o n a l / l i b r a r y / 0 5 /5 0 3 -S e b a s/ i n d e x . h tm l.

[57] M. D. Derk. Towards a Simpler Method of Operational Semantics for Language

Definition. SIGPLANNot., 40(5):39-44, 2005.

[58] Choon Hoong Ding, Sarana Nutanong, and Rajkumar Buyya. P2P Networks for

Content Sharing. CoRR, cs.DC/0402018, 2004.

[59] D. Elenius, G. Denker, D. Martin, F. Gilham, J. Khouri, S. Sadaati, and

R. Senanayake. The owl-s editor - a development tool for semantic web services.

In Proc. Second European Semantic Web Conference, pages 78-92, Crete, Greece,

2005.

[60] H. E. Eriksson, M. Penker, B. Lyons, and D. Fado. UML 2 Toolkit. Wiley, 2003.

[61] T. Erl. Sei'vice-Oriented Architecture: A Field Guide to Integrating XML and Web

Services. Prentice-Hall, 2004.

[62] H. Espinoza, H. Dubois, S. Gerard, J. L. Medina Pasaje, and C. Murray Woodside

D.C. Petriu. Annotating UML Models with Non-functional Properties for Quanti-

270

tative Analysis. In Proc. MoDELS 2005 International Workshop Satellite Events,

pages 79-90, Montego Bay, Jamaica, 2005.

[63] H. Foster, S. Uchitel, J. Magee, J. Kramer, and M. Hu. Using a Rigorous Approach

for Engineering Web Service Compositions: A Case Study. In Proc. IEEE Interna

tional Conference on Services Computing (SCC05), pages 2 17 - 224, Florida, USA,

July 2005.

[64] The Eclipse Foundation. Eclipse - An open development platform, 2006. h t t p :

/ / w w w .e c l ip s e . o r g / .

[65] The Eclipse Foundation. EMF-based UML 2.0 Metamodel Implementation, 2006.

h t t p : / / w w w .e c l ip s e . o r g / u m l2 / .

[66] The Eclipse Foundation. The Eclipse BPEL Project, 2006. h t tp :/ / w w w .

e c l i p s e . o r g / b p e l/ .

[67] The Eclipse Foundation. The Web Standard Tools Subproject, 2006. h t t p : / /

w w w .e c l ip s e . o r g / w e b t o o ls / w s t / m a in .h t m l.

[68] The Eclipse Foundation. XML Schema Infoset Model, 2006. h t tp :/ / w w w .

e c l i p s e . o r g / x s d / .

[69] The Eclipse Foundation. ATL Superimposition, 2007. http : / / w ik i . eclipse .
org/ATL_Superimposition.

[70] The Eclipse Foundation. Atlas Transformation Langauge, 2007. h t t p : / /www.

e c l i p s e . o rg /m 2 m /a tl/ .

[71] D. S. Frankel. Model Driven Architecture; Applying MDA to Enterprise Computing.

Wiley, 2004.

[72] S. Frolund and J. Koistinen. Quality of Service Specification in Distributed Object

Systems Design. In Proceedings o f the 4th USENIX Conference on ObjectOriented

Technologies and Systems (COOTS), New Mexico, USA, April 1998.

http://www.eclipse.org/
http://www.eclipse.org/uml2/
http://www
http://www.eclipse.org/webtools/wst/main.html
http://www

[73] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:Elements o f

Reusable Object-Oriented Software. Addison-Wesley, 1995.

[74] F. Garcia, M. F. Bertoa, C. Calerò, A. Vallecillo, F. Ruiz, M. Piattini, and M. Gen

ero. Towards a Consistent Terminology for Software Measurement. Information &

Software Technology, 48(8):631-644, 2006.

[75] T. Gardner. UML Modeling of Automated Business Processes with a mapping to

BPEL4WS. In Proc. First European Workshop on Object Orientation and Web Ser

vice (EOOWS), Darmstadt, Germany, July 2003.

[76] Gentleware. Poseidon for UML, 2006. h t t p :/ / w w w .g e n t le w a r e .c o m / .

[77] Gnome. Dia - A Drawing Program, 2006. h ttp :/ / w w w .g n o m e .o r g /

p r o j e c t s / d i a / .

[78] J. Gray, Y. Lin, and J. Zhang. Automating Change Evolution in Model-Driven Engi

neering. IEEE Computer, 39:51-58, 2006.

[79] Richard Grimes. .Net and DLL Hell, 2003. h t t p : //www. d d j . com /w indow s/

184416837.

[80] T. J. Grose. Mastering XMI: Java Programming with XMI, XML, and UML. Wiley,

2002 .

[81] J.J. Halliday, S. K. Shrivastava, and S. M. Wheater. Flexible Workflow Management

in the OPENflow system. In Proc. 5th IEEE/OMG International EDOC Conference

(EDOC 2001), pages 82-92, Washington, USA, September 2001.

[82] D. Harel and B. Rumpe. Meaningful Modeling: What’s the Semantics of “ Seman

tic” ? Computer, 37(10):64-72, 2004.

[83] N. Harrison and P. Avgeriou. Leveraging Architecture Patterns to Satisfy Quality

Attributes. In Proc. 1st European Conference on Software Architecture, Madrid,

Spain, 2007. Springer Verlag.

http://www.gentleware.com/
http://www.gnome.org/

[84] N. B. Harrison, P. Avgeriou, and U. Zdun. ’’using patterns to capture architectural

decisions” . IEEE Software, 24(4):38-45, 2007.

[85] K. Hussey. Introduction to UML2 Profiles, 2006. http : //www . eclipse .
org/modeling/mdt/uml2/docs/articles/lntroduction_toJJML2_
Profiles/article.html.

[86] IBM. Rational Software Architect, 2006. h t tp :/ / w w w -3 0 6 .ib m .co m /

s o f t w a r e / a w d t o o ls / a r c h i t e c t / s w a r c h i t e c t /.

[87] No Magic Inc. Magicdraw, 2006. http : //www . magicdraw . com/.

[88] International Organization for Standardization. ISO 9126 Software Engineering -

Product Quality, 2001-2004. h t t p : / / w w w . i s s c o .u n i g e .c h / p r o je c t s /

e w g 9 6 / n o d e l. htm l.

[89] Iona. IONA Artix Orchestration, 2007. http://www.iona.com/products/
arti x/.

[90] M. T. Ionita, D. K. Hammer, and H. Obbink. Scenario-Based Software Architecture

Evaluation Methods: An Overview. In Workshop on Methods and Techniques for

Software Architecture Review and Assessment at the International Conference on

Software Engineering, 2002.

[91] 1ST. MODELling solution for softWARE systems (MODELWARE) - 1ST Project

5 117 3 1 . Technical report, 1ST, 2005.

[92] J. Timm and G. Gannod. A Model-Driven Approach for Specifying Semantic Web

Services. In Proc. o f the 3rd IEEE International Conference on Web Services (ICWS

2005), pages 313-320, Orlando, Florida, 2005. IEEE.

[93] F. Jouault. Loosely Coupled Traceability for ATL. In Proc. o f Workshop on Trace-

ability, European Conference on Model Driven Architecture (ECMDA 2005), 2005.

273

http://www-3
http://www.issco.unige.ch/projects/
http://www.iona.com/products/

[94] F. Jouault and J. Bezivin. KM3: a DSL for Metamodel Specification. In IFIP Int.

Conf. on Formal Methods fo r Open Object-Based Distributed Systems, LNCS 4037,

pages 17 1- 18 5 . Springer, 2006.

[95] F. Jouault and I. Kurtev. On the Architectural Alignment of ATL and QVT. In Proc.

o f the 2006 ACM Symposium on Applied Computing (SAC 06), Dijon, France, 2006.

ACM Press.

[96] F. Jouault and I. Kurtev. Transforming Models with ATL. In Proc. o f Satellite Events

at the MoDELS 2005 Conference, Montego Bay, Jamaica, 2006. Springer Press.

[97] Lukasz Juszczyk, Jaroslaw Lazowski, and Schahram Dustdar. Web Service Discov

ery, Replication, and Synchronization in Ad-Hoc Networks. In Proc. o f the First

International Conference on Availability, Reliability and Security (ARES’06), pages

847-854, Washington, DC, USA, 2006. IEEE Computer Society.

[98] K. Bai'na and B. Benatallah and F. Casati and F. Toumani. Model-Driven Web Ser

vice Development. In Proc. 16th International Conference on Advanced Information

Systems Engineering (CAiSE), pages 290-306, Riga, Latvia, June 2004.

[99] A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model Driven Architec

ture: Practice and Promise. Addison Wesley, 2003.

[100] A. Knapp, N. Koch, G. Zhang, and H.M. Hassler. Modeling Business Processes in

Web Applications with ArgoUWE. In Proc. 7th International Conference on the

Unified Modeling Language (UML2004), pages 69-83, Lisbon, Portugal, October

2004. Springer Verlag.

[101] N. Koch. Transformations Techniques in the Model-Driven Development Process of

UWE. In Proc. o f 2nd Model-Driven Web Engineering Workshop, Palo Alto, USA,

July 2006.

274

[102] H. Koziolek and V. Firns. Empirical Evaluation of Model-Based Performance Pre

diction Methods in Software Development. In Proc. o f the First International Con

ference on the Quality o f Software Architectures, pages 188-202, Erfurt, Germany,

2005. Springer.

[103] G. Kramler, E. Kapsammer, W. Retschitzegger, and G Kappel. Towards Using UML

2 for Modelling Web Service Collaboration Protocols. In Proc. First Interoperabil

ity o f Enterprise Software and Applications (INTEROP-ESA2005), Geneva, Switzer

land, February 2005.

[104] I Kurtev, J. Bézivin, and M Aksit. Technological Spaces: An Initial Appraisal. In

CooplS, DOA ’2002 Federated Conferences, Industrial track, Irvine, CA, USA, 2002.

[105] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez. Model-Based DSL Frameworks. In

OOPSLA ’06: Companion to the 21st ACMS1GPLANconference on Object-oriented

programming systems, languages, and applications, pages 602-616, New York, NY,

USA, 2006. ACM Press.

[106] Christian F.J. Lange and Michel R.V. Chaudron. Managing Model Quality in UML-

Based Software Development. STEP, 0 :7-16, 2005.

[107] D. Leroux, M. Nally, and K. Hussey. UML 2: A Model-Driven Development Tool.

IBM Syst. J., 45(3):555—568, 2006.

[108] David Liu, Kincho H. Law, and Gio Wiederhold. Analysis of Integration Models for

Service Composition. In Proc. 3rd international workshop on Software and Perfor

mance, pages 158-165, New York, NY, USA, 2002. ACM Press.

[109] D. Martin, M. Burstein, O. Lassila, M. Paolucci, T. Payne, and S. Mcllraith. Describ

ing Web Services using OWL-S and WSDL. DAML-S Coalition working document.,

2003. h t t p : / / www. d a m i. o r g / s e r v i c e s / o w l - s / 1 . 0 / o w l - s - w s d l .

h tm l.

275

http://www.dami.org/services/owl-s/1.0/owl-s-wsdl

[110] D. Martin, M. Paolucci, S. Mcllraith, M. Burstein, D. McDermott, D. McGuinness,

T. Payne B. Parsia, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara. Bringing Se

mantics to Web Services: The OWL-S Approach. In Proc. First International Work

shop on Semantic Web Services and Web Process Composition (SWSWPC 2004), San

Diego, California, USA, 2004.

[1 1 1] MartinMatula. NetBeans Metadata Repository, 2003. http: //mdr . netbeans .
org/MDR-whitepaper.pdf.

[112] M.C. Jaeger and L. Engel and K. Geihs. A Methodology for Developing OWL-S De

scriptions. In Proc. First International Conference on Interoperability o f Enterprise

Software and Applications Workshop on Web Services and Interoperability, Geneva,

Switzerland, 2005.

[113] D.L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.

W3C Recommendation 10 February 2004., 2004. h t t p : / / www.w3 . o rg /T R /

o w l - f e a t u r e s / .

[114] N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework for

Software Architecture Description Languages. IEEE Transactions on Software En

gineering, 26(1):70—93, January 2000.

[115] S. Melia, A. Kraus, and N. Koch. MDA Transformations Applied to Web Application

Development. In Proc. 5th International Conference on Web Engineering (ICWE

2005), pages 465—471, Sydney, Australia, 2005. Springer Verlag.

[116] D. A. Menasce. QoS Issues in Web Services. IEEE Internet Computing, 6(6):72-75,

November-December 2002.

[117] M. Memik, J. Heering, and A. M. Sloane. When and How to Develop Domain-

Specific Languages. ACMComput. Sum., 37(4):316-344, 2005.

276

http://www.w3

[118] R. Milner. Communicating and Mobile Systems: the P i-Calculus. Cambridge U ni

versity Press, 1999.

[119] N. Minar. Distributed Systems Topologies, 2001. h ttp :/ /w w w .o p e n p 2 p .c o m /

p u b / a /p 2 p / 2 0 0 l/ 1 2 / 1 4 / t o p o lo g ie s _ o n e . h tm l.

[120] D. Misic. Authoring UML profiles using Rational Software Architect and Ra

tional Software Modeler, 2005. h t t p : / / www. i b m . c o m / d e v e l o p e r w o r k s /

r a t i o n a l / l i b r a r y / 0 5 / 0 9 0 6 _ d u s k o / .

[121] P.V. M ockapetris and K.J. Dunlap. Development o f the domain name system. In

Proc. ACMSJGCOMM, pages 123 -133 , CA, USA, 1998.

[122] R. Monson-Haefel, B. Burke, and S. Labourey. Enterprise JavaBeans, 4th Edition.

O ’Reilly M edia, 2004.

[123] N. Moreno, P. Fratemali, and A. Vallecillo. A UM L 2.0 Profile for WebML M od

elling. In Proc. o f the 2nd Model-Driven Web Engineering Workshop (MDWE), Palo

Alto, California, July 2006. ACM Digital Library.

[124] N. A izenbud-Reshef and B. T. Nolan and J. Rubin and Y. Shaham-Gafni. M odel

Traceability. IBM Syst. J., 45(3):515-526, 2006.

[125] G. Zhang N. Koch and M.J. Escalona. M odel Transformations from Requirements

to Web System Design. In Proc. 6th International Conference on Web Engineering

(ICWE 2006), pages 281-288, Palo Alto, USA, July 2006. ACM.

[126] M angala Gowri Nanda, Satish Chandra, and Vivek Sarkar. Decentralizing Execu

tion o f Composite Web Services. In Proc. 19th annual ACM SIGPLAN Conference

on Object-oriented programming, systems, languages, and applications, pages 170-

187, New York, NY, USA, 2004. ACM Press.

[127] OASIS. UDDI Version 3.0.2, 2004. h t t p : / / u d d i . o r g / p u b s / u d d i _ v 3 . h tm .

277

http://www.openp2p.com/

[128] OASIS. Web Services Business Process Execution Language Version

2.0 (Draft), 2006. h t t p : / / d o c s . o a s i s - o p e n . 0r g / w s b p e l/ 2 .O/

w s b p e l - s p e c i f i c a t i o n - d r a f t . p d f .

[129] OMG. Common Object Request Broker Architecture (CORBA/IIOP). Technical

report, OMG, 2002.

[130] OMG. UML Profile for CORBA, v 1.0. Technical report, OMG, 2002.

[131] OMG. UML Profile for Schedulability, Performance, and Time Specification. Tech

nical report, OMG, 2003.

[132] OMG. UML Profile for enterprise distributed Object Computing (EDOC). Technical

report, OMG, 2004.

[133] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification

Final Adopted Specification. Technical report, OMG, 2005.

[134] OMG. Meta Object Facility (MOF) 2.0 XMI Mapping Specification, v2.1. Technical

report, OMG, 2005.

[135] OMG. UML Profile for QoS and Fault Tolerance. Technical report, OMG, 2005.

[136] OMG. Business Process Modeling Notation (BPMN) 1.0, 2006. http : / /www.

bpmn.org/Documents/BPMN%2 0Vl-0%2 0May%2 03%2 02 0 04.pdf.

[137] OMG. Meta Object Facility Core Specification version 2.0. Technical report, OMG,

2006.

[138] OMG. Object Constraint Language Specification, version 2.0. Technical report,

OMG, 2006.

[139] OMG. UML Profile for Modeling Quality of Service and Fault Tolerance. Technical

report, OMG, 2006.

278

http://docs.oasis-open.0rg/wsbpel/2.O/

[140] OMG. Unified Modeling Language (UML) 2.1.2 Superstructure Specification. Tech

nical report, OMG, 2007.

[141] Oracle. Oracle BPEL Process Manager, 2007. h t t p : //www. o r a c l e . com/

t e c h n o lo g y / p r o d u c t s / ia s / b p e l/ in d e x .h t m l .

[142] P. Bengtsson and N. Lassing and J. Bosch and H. van Vliet. Architecture-Level

Modifiability Analysis (ALMA). Journal o f Systems and Software, 69(1-2):129—

147, 2004.

[143] C. Pahl, S. Giesecke, and W. Hasselbring. An Ontology-based Approach for Mod

elling Architectural Styles. In Proc. 1st European Conference on Software Architec

ture (ECSA 2007), Madrid, Spain, September 2007.

[144] C. Peltz. Web Service Orchestration and Choreography: A Look at WSCI and

BPEL4WS. Web Service Journal, July 2003.

[145] C. Peltz. Web Services Orchestration and Choreography. IEEE Computer, 36, 2003.

[146] K. Pfadenhauer, S. Dustdar, and B. Kittl. Challenges and Solutions for Model Driven

Web Service Composition. In Proc. o f 3rd International Workshop on Distributed

and Mobile collaboration (DMC), pages 12 6 -13 1 , Linköping, Sweden, 2005. IEEE

Press.

[147] D. S. Platt. Introducing Microsoft .Net, Third Edition. Microsoft Press, 2003.

[148] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical report,

Dept, of Computer Science, Univ. of Aarhus, 1981.

[149] Rem ko Popma. JET Tutorial Part 1 (Introduction to JET), 2004. h t t p : / /www.

eclipse . org/articles/Artiele-J E T / j et_tutoriall. html.

[150] S. Powers. Practical RDF. O’Reilly, 2003.

279

[15 1] Will Provost. UML for Web Services, 2003. h t t p : / / w e b s e r v i c e s . x m l .

c o m / p u b / a / w s / 2 0 0 3 / 0 8 / 0 5 / u m l . h t m l ? p a g e = l .

[152] R. Grotuno and I. Solheim. Towards Modeling Web Service Composition in UML.

In Proc. 2nd International Workshop on Web Services: Modeling, Architecture and

Infrastructure (WSMAI-2004), pages 72-86, Porto, Portugal, April 2004.

[153] R. Gronmo and J. Oldevik. An Empirical Study of the UML Model Transformation

Tool (UMT). In Proc. First Interoperability o f Enterprise Software and Applications

(INTEROP-ESA2005), Geneva, Switzerland, February 2005.

[154] R. Gronmo and M. Jaeger. Model-Driven Semantic Web Service Composition.

In Proc. o f the 12th Asia-Pacific Software Engineering Conference (APSEC 2005),

pages 79-86, Taipei, Taiwan, 2005. IEEE.

[155] R. Lucchi and M. Mazzara. APi-calculus Based Semantics for WS-BPEL. Journal

o f Logic and Algebraic Programming (JLAP), 70:96-118, 2005.

[156] F. Ranno, S. Wheater, and S. Shrivastava. A System for Specifying and Co-ordinating

the Execution of Reliable Distributed Applications. In Proc. Distributed Applications

and Interoperable Systems (DAIS’97), Cottbus, Germany, 1997.

[157] M. Ripeanu. Peer-to-Peer Architecture Case Study: Gnutella Network. In First

International Conference on Peer-to-Peer Computing, pages 99-100, Linkópings,

Sweden, Auguest 2001.

[158] Richard Torbjom Sanders, Humberto Nicolás Castejón, Frank Alexander Kraemer,

and Rolv Brak. Using UML 2.0 Collaborations for Compositional Service Speci

fication. In Lionel Briand and Clay Williams, editors, Proc. ACM/IEEE 8th Inter

national Conference on Model Driven Engineering Languages and Systems (MoD-

ELS), volume 37 13 of LNCS, pages 460-475, Montego Bay, Jamaica, October 2005.

Springer-Verlag.

280

http://webservices.xml

[159] D. A. Schmidt. Denotational Semantics: A Methodolog}’ for Language Development.

William C. Brown Publishers, Dubuque, IA, USA, 1986.

[160] B. Selic. Model-Driven Development: Its Essence and Opportunities. In Proc.

IEEE International Symposium on Object-Oriented Real-Time Distributed Comput

ing (1SORC 2006), pages 3 13 -3 19 , Gyeongju, Korea, 2006. IEEE.

[161] B. Selic. UML 2: A Model-Driven Development Tool. IBM Syst. J., 45(3):607-620,

2006.

[162] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Disci

pline. Prentice-Hall, 1996.

[163] Q. Z. Sheng, B. Benatallah, and M. Dumas. SELF-SERV: A Platform for Rapid

Composition of Web Services in a Peer-to-Peer Environment. In Proc. 28th Interna

tional Conference on Veiy Large Data Bases, pages 10 51—1054, Hong Kong, China,

August 2002.

[164] S. Shrivastava and S. Wheater. Architectural Support for Dynamic Reconfiguration

of Large Scale Distributed Applications. In Proc. International Conference on Con

figurable Distributed Systems (CDS’98), Maryland, USA, 1998.

[165] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic Composition of Web Services

using Semantic Descriptions. In Proc. Workshop on Web Sem ces: Modeling, Archi

tecture and Infrastructure (WSMA1), pages 17-24, Angers, France, 2003. ICEIS.

[166] P. Sobe. Fault-Tolerant Web Services on a Computing Cluster. In Proc. Third

European Dependable Computing Conference (EDCC-3), Prague, Czech Republic,

September 1999.

[167] IEEE Computer Society. IEEE Recommended Practice for Architectural Description

of Software-Intensive Systems. Technical report, IEEE Std 1472000, 2000.

281

[168] P. Sriplakich, X. Blanc, and M. Gervais. Supporting Transparent Model Update in

Distributed CASE Tool Integration. In SAC ’06: Proceedings o f the 2006 ACM

symposium on Applied computing, pages 1759-1766, New York, NY, USA, 2006.

ACM Press.

[169] Stanford Medical Informatics. Protégé Ontology Editor and Knowledge-Base

Framework, 2006. h t t p : / / p r o t e g e . s t a n f o r d . edu/.

[170] S.Thöne and R.Depke and G.Engels. Process-Oriented, Flexible Composition of

Web Services with UML. In Proc. Joint Workshop on Conceptual Modeling Ap

proaches for e-Business (eCOMO 2002), Tampere, Finland, October 2002.

[171] Sun. Java Metadata Interface (JMI), 2006. h t t p : / / j a v a . s u n .c o m /

p r o d u c t s / jm i/ .

[172] Sun. Java Server Pages, 2006. h t t p : / / j a v a . s u n .c o m / p r o d u c t s / j s p /

r e f e r e n c e / a p i / i n d e x . htm l.

[173] C. Szyperski. Component Software - Beyond Object-Oriented Programming Second

Edition. Addison-Wesley, 2002.

[174] A. S . Tanenbaum and M . van Steen. Distributed Systems - Principles and Paradigms.

Prentice-Hall, 2002.

[175] Information Society Technologies. The Software and Services Challenge, 2006.

ftp : //f tp . cordis . lu/pub/ist/docs/directorate_d/st-ds/
fp7 - report_en. pdf.

[176] France Telecom. SmartQVT, 2006. h t t p : / / s m a r t q v t . e l i b e l . t m . f r / .

[177] The Python Software Foundation (PSF). The Python Programming Language, 2006.

h t t p : / / w w w .p yth o n . o r g / .

[178] Tigris.org. Argouml, 2006. h t t p : / / a r g o u m l . t i g r i s . o r g / .

282

http://java.sun.com/
http://java.sun.com/products/jsp/
http://smartqvt.elibel.tm.fr/
http://www.python.org/
http://argouml.tigris.org/

[179] W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede. Web Service Composi

tion Languages: Old Wine in New Bottles? In Proc. 29th EUROM1CRO Conference,

pages 298-307, Belek-Antalya, Turkey, September 2003.

[180] W.M.P van der Aalst, B. Kiepuszewski A.H.M. ter Hofstede, and A.P. Barros. Work

flow Patterns. Distributed and Parallel Databases, 14 :5 -5 1, 2003.

[181] M. Vasko and S. Duskar. An Analysis of Web Services Flow Patterns in Collaxa.

In L.J. Zhang and M. Jeckle, editors, Proc. European Conference on Web Services

ECOWS 2004, pages 1-14 . Springer-Verlag, LNCS 3250, 2004.

[182] M. Voelter and T. Stahl. Model-Driven Software Development. Wiley, 2006.

[183] W3C. X SL Transformations (XSLT) Version 1.0, 1999. http: //www. w3 . org/
TR/xslt.

[184] W3C. Web Services Description Language (WSDL) 1 .1,2 0 0 1. http : / /www . w3 .
org/TR/wsdl.

[185] W3C. Web Services Architecture, 2002. http://www.w3.org/TR/2002/
WD-ws-arch-2 0 021114/.

[186] W3C. SOAP Version 1.2, 2003. h t t p :/ / w w w .w 3 .o r g / T R / s o a p / .

[187] W3C. Web Services Choreography Description Language Version 1.0,2004. h t t p :

//www.w 3 .org/TR/2 004/WD-ws-cdl-10-20041217/.

[188] W3C. Extensible Markup Language (XML) 1.0 (Fourth Edition), 2006. http:
//ww w .w 3 .org/TR/REC-xml/.

[189] Qing Wang, Yang Yuan, Junmei Zhou, and Aoying Zhou. Peer-Serv: A Framework

of Web Services in Peer-to-Peer Environment. In Advances in Web-Age Information

Management, pages 298-305. Springer-Verlag, LNCS 2762, August 2003.

283

http://www.w3.org/TR/2002/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/2
http://www.w3.org/TR/REC-xml/

[190] J. Warmer and A. Kleppe. The Object Constraint Language: Getting Your Models

Ready for MDA, Second Edition. Addison-Wesley Professional, 2003.

[191] WebRatio. Webratio, 2006. h t tp :/ / w w w .w e b r a t io .c o m / .

[192] Niklaus Wirth. What Can We Do About The Unnecessary Diversity o f Notation for

Syntactic Definitions? Communications o f the ACM, 20(ll):822-823, 1977.

[193] S. J. Woodman, D. J. Palmer, S. K. Shrivastava, and S. M. Wheater. A System for

Distributed Enactment of Composite Web Services. In Work in progress report, Int.

Conf on Service Oriented Computing, Trento, Italy, December 2003.

[194] S. J. Woodman, D. J. Palmer, S. K. Shrivastava, and S. M. Wheater. Notations for the

Specification and Verification of Composite Web Services. In Proc. 8th IEEE Inter

national Enterprise Distributed Object Computing Conference (EDOC ’04), pages

35-46, Monterey, California, September 2004.

[195] WSMO Working Group. Web Service Modeling Language, 2006. h t t p : / /www.

wsmo . o r g / w s m l/ in d e x . htm l.

[196] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q.Z. Sheng. Quality Driven

Web Services Composition. In Proc. o f the 12th International Conference on the

World Wide Web, Budapest, Hungary, 2003. ACM Press.

[197] J. Zhang, J. Chung, and C. K. Chang. Migration to Web Services Oriented rchitec-

ture: ACase Study. In Proc. 2004 ACM symposium on Applied Computing (SAC’04),

pages 1624-1628, New York, NY, USA, 2004. ACM Press.

[198] X. Zhou, W. T. Tsai, X. Wei, Y. Chen, and B. Xiao. Pi4SOA: A Policy Infrastructure

for Verification and Control of Service Collaboration, icebe, 0:307-314, 2006.

2 8 4

http://www.webratio.com/

Appendix A

ATL Helper Definitions

285

----Gel the order value applied lo Ihc UML ControlFlow going in to a LJML CallBehaviorAction
helper def : gelCBAOrder(cba : UML! CallBehaviorAction } : I n te g e r =

— We assume only one ConlroIFlow en ters a CBA, th is is a reasonab le assumption
cba . geLlncomings()— > s e l e c t (e | e . oclType() = UML! ControlFlow) . a l (l) . g e lV a lu e (c b a .g e t ln c o m in g s ()

—> s c le c t (c | e . oclType ()= UML! ControlFlow). aL (l) . geLAppliedSLereotypes() . f i r s t () , ’ order ’);

---- Retr ieve the number of UML Cal lBchaviourActions there are in a UML A c tiv i ty
helper def : getCBACountQ : In te g e r =

UML! Cal lBehaviorAction . a l l l n s t a n c c s () . s ize ();

----Based on a UML Cal lBehav iorA c lion’s re la te d UML ControlFlow order value, r e t r i e v e the next
— UML Cal lBehaviorAction in the chain
helper def : getNextCBA(cba : UML! Cal lBehaviorAction) : S tr ing =

----ensure there is another CBA in the chain with an order g rea te r than th is one
i f th isM odule . getCBAOrder(cba) < th isM odule . getCBACount()
then

----Gel the name of the next CBA in the chain
UML! CallBehaviorAction . a 111 ns tancesQ - > s e le c l (e | e . getlncomings()—> sele ct (e | e . oclType ()
= UML! Contro lF low). a L (1) . getVal ue (cba . getlncomingsQ—> s c l e c t (e | e .o c lT y p e Q
= UML! ControlFlow). at (1) . ge tA ppliedSte reo types () . fi r s I () , 1 order ’)
= th isModule. getCBAOrder (cb a)+1). f i r s t () . name

else
---- there are no more CBAs in the chain so re tu rn an empty s t r ing

e n d i f :

----Get a UML Pin based on a UML ObjectFlow
helper def : g e tP in (o f : UML! ObjectFlow , d ir : S t r in g) : UML! Pin =

i f (d ir = ’ source 1)
then

----Check to see i f the ObjectFlow comes from the a c t i v i t y s t a r t node, i f it does
— we handle il d i f f e r e n t ly i . e . Return the name o f the UML Pin it ta rge ts
i f o f . getSource () . oclType () = UML! I n i t ia lNode
then

---- re tu rn the name of the UML Pin to which the ObjectFlow term inates
of. ge lT argc i ()

else
---- re tu rn the name of the UML Pin from which the ObjectFlow o r ig in a te s
of. getSource ()

en d if
else

----Check to see i f the ObjectFlow goes lo the a c t i v i t y end node, i f il does
— we handle il d i f f e r e n t ly i . e . Return the name of the UML Pin i t comes from
if of. ge tTarge t () - oclType () = UML! Activ ityFinalNode
then

---- retu rn the UML Pin from which the ObjecLFlow o r ig in a te s
of. getSource ()

else
---- re tu rn the UML Pin lo which the ObjectFlow te rm ina tes
o f . g e t T a r g e t ()

end if
endif :

Figure A. I : ATL helper definitions for UML to DPL, part l .

286

----Ret rieve the UML Type as a s t r ing , without the model name p refix
helper def : removeMMPrefix(type : UML!Type) : S tr ing =

type , t o S t r i n g () . s p l i t ('! ’). aL (2);

---- Ret rieve al l the UML Activ i ty P a r t i t i o n s as a sequence
helper def : gctA c li vi ty P a r t i tio ns () : Sequence (UML! A ctiv i ly P a r I i l ion) =

UML! A c l iv i t y P a r l i t i o n . a l l l n s t a n c e s ();

----Corre la tion v a r ia b le s only e x is t on cer ta in D is t r ib u t io n P a t t e r n s , check what pa t te rn
— - i s being appl ied before c re a t in g the c o r re la t io n v a r i a b l e s . Corre la t ion v a r ia b le s arc
— used to p e r s i s t data accross cer ta in pa t te rns
— **Pattern Spec if ic**
helper def : g e tC o r re la t io n V ar ia b les () : DPL! Corre la t ion Var iab les =

---- note sequences s t a r t at 1!
i f UML! A ctiv i ty . a l l ln s la n c e s Q —> c o l lect (e | e . getValuc(e . ge tA ppliedStc reo types ()

. f i r s t () , 5 d is t r ib u t io n —pattern *)). at (1) . toS t r ing () = ’hub—and—spoke’
then

 Hub & Spoke DPs do not have co r re la t io n v a r iab le s so re tu rn ati empty set
S e l { }

else
---- -These DPs do have c o r r e la t io n v a r iab les so r e t r i e v e a ll the c o r r e la t io n
---- va r iab les as set on the model
UML! Pin , a 111 n sla nc es()—> sel e cl (e | e .g e tV a lu e (e .g e tA p p l ie d S tc re o ty p e s ()
. f i r s t () , 5 i s - c o l l a b o r a t io n .v a r i a b l e ’)) — > c o l le c t (e | thisModule . P in T o C o rre la t io n V ar iab le (e))

endi f ;

----Construct the name of the DPL Mapping source based on UML CallBehaviorAction the UML ObjectFlow
— —o rig in a te s from
helper def ; gelMapping (of : UML! ObjectFlow , dir : S i r in g) : S tr ing =

i f (d ir = ’ source ')
then

----Cheek to see i f the source of the ObjectFlow is the s t a r t node, i f il is then we
---- return a spec ia l case value to s ignify this
i f ofr getSource ()„ oclTypeQ = UML! Ini tialNode
then

’ In il ia lN ode 5
else

---- re tu rn the name of the CBA which th is ObjectFlow o r ig in a te s along with a constant s i r in g
o f ,g e lS o u rc e () . g e t l n P a r t i t i o n s () . f i r s t () . name + o f . getSource () . gelOwner () . name+’Response ’

endif
else

----Check to see i f the la rge t of the ObjectFlow is the end node, i f it is then we
---- retu rn a spec ia l case value to s ig n i fy th is

if o f . ge tTarge t () . oclType() = UML! Activ ityFina lNode
then

’ FinalNode 5
else

---- re tu rn the name of the CBA which th is ObjectFlow te rm ina tes al along with a constant s t r in g
of. ge tT arge t (). g e t l n P a r t i t i o n s () . f i r s t ().name + of, ge tT arge t () , gelOwner () . name+1 Request ’

endif
endif ;

Figure A.2: ATL helper definitions for UML to DPL, part 2.

----Ret rieve the base—namespace s t r in g value from the DPL pa t te rn —d e f in i t i on type
helper def: getBaseNamespace () : SLring =

DPL!” pattern —d e f i n i t i o n ” , all J nst ances()— > c o l le c l (e | e .” base—namcspace ” , t e x t). f i r s t () . toS tr ing () ;

— —Retrieve the se rv ice —name s i r ing value from the DPL pa t te rn — d e f in i l io n type
helper def: ge tServiccName() : Str ing =

DPL!” p a t te rn —d e f in i t io n ". a 111 ns lancesQ —> c o l l e c l (e | e . " s e r v ice —name” , text). f i r s t () . toS t r ing ();

----Retrieve the ope ra t ion—name s t r in g value from the DPL pa t te rn —d e f in i t io n type . This value
---- is used to i d e n t i fy the opera t ion name for the composit ion
helper def: getOperationName () : Str ing =

DPL!” p a t te rn —d e f in i t io n a l l ln s tan c e s Q — > c o l IccL (e | e . ” ope ra t ion—name” . tcxL), f i r s t () . toS t r ing ();

----Retrieve the namespace—pref ix s t r ing value from the DPL p a t te rn —de f in i l io n type
helper def: gelN amespacePrefix () : Str ing =

DPL!” p a l le rn — d e f in i t io n ” . all] n s lances()—> c o I le c l (e | e namespace—prefix ", t e x t), f i r s l () . toS tr ing () ;

----Retrieve the f i r s t DPL Operation type based upon i t ’ s order value
helper def: g e lF i r s lO pe ra t ion () : DPL! Operation =

DPL! Operations . a I l ln s tances()—> col le c l (e | e . ope ra tion)—> fl a 11 e nQ—>sortedBy (e | e , order)* f i r s l ();

----Retrieve the DPL Node which conta in s Ihe f i r s t DPL Operation type based upon il ’ s order value
helper def: ge tN odeConla in ingFirs lOpera t ion() : DPL!Node —

thisModule . g e tF i r s tO pe ra l ion () . eConlainer () . eConlaincr ();

Figure A.3: ATL helper definitions for DPL to BPEL.

287

— —Retrieve the se rv ice—name s t r in g value from the DPL p a t t e rn —definiL ion type
he lper def; getServiceName () ; Str ing =

DPL!" p a t te rn —def in i li on a I l ln s ta ncesO—> c o 11 ec L (e | e s e r v i c e —name text) * f i r s t () . loS l r ing () :

- - R e t r i e v e the d i s t r i b u t i o n —pat te rn s t r ing value from the DPL pa ttern — d e f in i l i o n type
he lper def: g e tD is t r i b u t io n P a t t e r n () : Str ing =

DPL!” patLern—d e f in i t i o n ” . al 11 n stances()—> co I le c t (e | e d i s t r ib u t io n —p a t te rn tex t). f i r s t () . to Si ring () ;

----Retr ieve the base—namespace s t r in g value from the DPL pa t te rn —d e f in i t io n type
helper def; getBaseNamespace () : Str ing =

DPL!” pa H ern— d e f in i t io n a l l ln s lan c e s O - > co Meet (e | e b a s e — namespace ” , t e x t) , f i r s t ()* toS t r ing () ;

----Retrieve the ope ra t ion—name s t r in g value from the DPL paLtern —d e f in i t io n type
helper def: getOperationName() ; Str ing =

DPL! ” patte rn — d e fin i ti on ” , a l l ln s tances 0—> c o l le c t (e | e . " ope ra t ion—name t e x t) , f i r s t () . loS l r ing () ;

----Retrieve the namespace—prefix s t r ing value from the DPL pa t te rn —d ef in i t io n type
helper def: getNamcspacePref ixQ : Str ing =

DPL!” pa t l e rn — def in i lion al 11ns lance s()—> c o l le c t (e | e namespace—pref ix ’’. t e x t) , f i r s t () . toS t r ing () ;

— -Change the Ecore type i d e n t i f i e r passed in to to a WSDL type and re tu rn
helper def: convertETypeToWSDLType (type : S t r in g) : S tr ing =

i f type = 5 EString ’
then

’ xsd : s t r ing ’
else

if type = ’Elnt '
then

’ x sd : ini ’
else

i f type = ’EBoolean1
then

’ xsd : boolean ’
else

’x s d : erro r 5
endif

endif
endif*

Figure A.4: ATL helper definitions for DPL to WSDL.

I---- Retr ieve the s e rv ice —name s i r in g value from the DPL p a t t e rn —de fin i l ion type
helper def: getServiceName () : Sir ing =

DPL!’’pat tern —defin iLi on al II n sta nee sQ~ > c o l le c t (e | e . ” se rv ice—name t e x t) , f i r s t () . toS t r ing () ;

----Retrieve the namespace—pref ix s t r in g value from the DPL p a t t e rn —d e f i a i l i o n lype
helper def: getNamespaccPrefix () : Str ing =

DPL!’’pa t te rn — defi ni ti on al I Ins lance sQ— > col lee t (e | e namespace—prefix ” , t e x l). f i r s t () . toS t r ing () ;

---- Retrieve the base—namespace s i r in g value Trout the DPL p a t te rn —defi n i ti on type
helper def: geLBaseNamespace () : Str ing =

DPL!” pat t e r n —defi ni ti on al I ln s lan cesQ —> c o l le c t (e | e b a s e —namespace t e x t) , f i r s t () , toS t r ing () ;

Figure A.5: ATL helper definitions for DPL to PDD.

----R etr ieve Lhe se rv ice—name s i r in g value from the DPL pa t te rn —d e f in i t io n type
h e lpe r def: getServiceName() : S ir ing =

DPL! ” pa t t e rn — d e f i n i I i on al 11 n s tan c e s () - > c o 11 c ct (e | e s e rv ice —name t e x t). f i r s t () , toS t r ing () ;

----Retrieve al l the DPL Nodes as a sequence
helper def : gelAllNodes () : Sequence (UML! Node) =

DPL [Node. a l l lnsLanccs () ;

Figure A.6: ATL helper definitions for DPL to WSDLCatalog.

28 8

— Convert true lo 'y e s ' and fa lse to 'no '
he lper def : convertBoolcanToString (boolean Boolean) ; S ir ing =

i f boolean * Irtic
then

'y e s '
else

'n o "
c n d if:

— Retrieve a l l (tie BPEL Namespaces and re tu rn as a sequence
he lper def : gelAMNamcspaees () : Sctjucncc (BPEL! Namespace) “

BPEL! Namespace n t i ln s i t tncc s {);

— Get the BPEL a c t iv i t y type by pars ing the CO. type , t in s is necessary
- os there is no e x p l i c i t -*typeM a i t i b u t c on a c t i v i t i e s in the meta—model
- - F o r example (lie OCl,. lypc miglit be BPEL! Invoke, then th is will re tu rn invoke
lie I per def : ge tA ct iv i iyType i type S t r in g) : S ir ing =

- - c o n v e r t the OCL type to a s i r i n g , s p l i t it on the ! , got the 2nd part and make
— it lower case then re tu rn
ty p e . i dS t r ing () , s p l i t ('F *). at (2) . toLovvcr() ;

Figure A.7: ATL helper definitions for BPEL to XML.

----Retrieve a l l the PDD PartnerL»nks and re tu rn as a sequence
helper def ; gctA M PartnerL tnks () : Scqucncef BPEL! Partner Link) <=

POD! Pa r Ine rL ink„ ill 11 n st ances () ;

---- Retrieve nil the PDD \VSDL refe rences and return as a sequence
hel pc t* d e f : y e t A I l W S D L R c f c r c n c c s {) : S e q u e n c e (B P E L! W 50 L) *=

PDDJWSDl.. a 111 n s t a n c e » () ;

Figure A.8: ATL helper definitions for PDD to XML.

— Retrieve a l l the WSDLCatatog‘S WSDL Entries as a sequence
ti e I p e r Uè 1" - .get A11W SDLEniric s'(J : Se q uc'ti ee (WS DLC a la log f WSDLEn t ry) -

WSDLCamlog! WSDLEmry. a 1 [In s ta nces ();

Figure A.9: ATL helper definitions for WSDLCatalog to XML.

289

Appendix B

Additional ATL Definitions

290

— C h o c k l o s e e IT n c o n s t r u c t (s e l f) i s u n i q u e a c r o s s a l l i n p u t m o d e l s
— r e t u r n t r u e i f t h e c o n s t r u c t i s u n i q u e , o t h e r w i s e f a l s e
h e l p e r c o n t e x t XML! R o o t d c f : i s U n i q u e B o o l e a n -

s e l f . u n i q u c V a l u e * s e l f ;

h e l p e r c o n t e x t XML! R o o t d c f : k ey : O c l A n y *
s e l f . n a m e ;

h e l p e r d c f : r o o t B y K c y . Map(O c l A n y . XML! R o o t) -
XML! R o o t . a l l I n s t a n c c s () - > i t c r a t e (c : a c c Map(O c l A n y . XML! R o o t) = Map f } |

a c c i n c l u d i n g (e . k e y . d e b u g i ’ k e y : ’) , c . d c b u g , (’ v a l u e : *))
);

— R e t r i e v e a c o n s t r u c t fr om a Map
h e l p e r c o n t e x t XML! R o o t d c f : u n i q u c V a l u e : XML! R o o t 1

t h i s M o d u l c . r o o l B y K . c y g e t (s e l f k e y) ;

h e l p e r d c f : g c l M o s s a g c s () : XML! E l e m e n t =
XML! E l e m e n t . a l l I n s t a n c c s () —> s e l e c t (c | c . n a m e « - ' w s d l : m e s s a g e ’) . d e b u g (*x ') ;

r u l e P r o c c s s T o R o o t {
fr om

r : XML! R o o t (
r . ¡ » U n i q u e

)
U 5 i n g {

— m e r g e n i l t h e i n p u t m o d e l s
u : S o l (XML! R o o t) * XML! R o o t . a l l l n s t a n c c s F r o m (' IN ’) - > u n i o n (XML! R o o t . al 11 u s t a n c c s F r o m (’ IN 2 *))

—> u n l o n (XML! R o o t . a l l I n s la n e e s F r o m (’ 1N3 *)) ;

)
to

rt . UML! M o d e l (
p a c k a g e d E l e m e n t < - n - > c o l l e e t (c | e . c h i l d r e n —> s c l e e l (e | c . name**' w s d l : p o r t T y p c *)

—> c o l l c c l (e | t h i s M o d u l c . P o r t T y p e T o I n t e r f a c e i e)))

)

module XMUoUML: — Module Template
c rca lc OUT UML from IN : XML. IN2 XML. IN3 XML;

l a / .y r u l e P o r t T y p c T o l n t e r f n c c {
fr om

p i : XML! E l e m e n l (
pi nam e a ’ w s td l : p o r t T y p e ’

)
t o

i n f : UM^!1 i n t e r f a c e (
name < - p i . c h i l d r c n - > s e l o c t (c | c . n a m c = ’n a m c ’) - > f i r s i () . v a l u e .
o w n c d O p c r a t i o n < - p t . c h i l d r e n —> s c I c c t (c | c . n a m e » * w s d l : o p e r a t i o n ')

—> c o l l c c t (e | t h i s M o d u l c O p c r n t i o n T o O p c r a t i o n (c))
)

}
l a / y r u l e O p c r a l i o n T o O p c r a t i o n {

f r o m
o p x : XML! E le m e n t

10
op u : UML! O p e r a t i o n (

name < - o p x c h i l d r c n - > s c l e c t (c | e . i t a m c ° ' n a m c ') - > f i r s t () . v a l u e
)

}
l a z y r u l e P a r t T o P a r a m e t c r {

fr om
ip XML! E le m e n t

to
p a r a : UML! P a r n m c l c r (
)

Figure B. I: ATL definition for transfroming XML. to a UML 2.0 Class diagram.

291

mod ilk CliissToAeU m y ; ---- Module Temp l.ilc
c reate OIJ1 : ACTIVITY from IN : CLASS;

— Transform a UML Class Diagram Model to UML A c tiv i ty diagram Aciivily
ru le ModelToActivity -{

from
m : CLASS I Model

Lo
aci : ACTIVITY! Activity«

“ -a s s ig n al l the i n te r f a c e s to the a c t i v i t y

group < - CLASS I In l e t face . a ll In s Unccn () .
ij ci'd c < CLASS IC a 11 Be her viorAciion . n 111 us I a n c c s. () „
»odc <— CLASSf P in . a III n s i a n cos 0

)
»
- "Trans To nn a UML Cl an ft Diagram In te r f ac e to UML Activ i ty Diagram A c t iv i ty Part ¡l ion
ru le In tor faeeTo Aci iv t iy P ar i it ton (

from
i CLASS! In te rfnec

to
part : ACTIVITY ! A c l iv i iy Pat l i t io n (

mime <— i - name.
node < - i . gelOwnedDpcrntions:()

)
}
— -Transform a UML Class Diagram Operation to UML Aciivily Diagram CullBchaviorAciion
rule 0 pertitionTeiCaIIBetiaviorAciion {

from
o : CLASS ! Operation

to
cha ACTIVITY ! CallBchaviorAction (

name < - o . name,
i » P a r t i t i o n < - cba get In Pa rli.t ion (a, get I n i e f face () . name),

---- fix cmun s h o u ld n ' t be using lo S i i r n g O
argument <— o golO\vnedPnramctcrs()— > s c l o c i (e [c , gc tD irce t ton () . l o S t h n g ()
= ‘ i n ’ or e . ge lD irec l ion () • # i r iou t) -> .co l loc i (e [th lsModnlc. P a ra m c ie rT o ln p u iP in (e)) ,

-— r c s u h can only c reate an outpulp in
r e su l t < - o , gel Owned Pnranici e r s Q -> s e lec t (e | e . gelDi reel ion () debug ("s ')
= Woul or e . gc lD ircc l ion 0 ** # tn ou l> -> co l loo t (e | th isModulc . PnrtunciefToOuipulPin (e)J

)
}

- -’Transform a UML Class Diagram Parameter to UML A c tiv i ty Diagram Output Pitt
lazy ru le ParameterTo Input Pin {

from
p : CLASS! Parameter

to
pin : ACTIVITY ! InputPi n(

name <-- p.name

— need to model type
-— i n P a r t it i o n

)
)

— -Transform a UML Class Diagram Parameter lo UML Activ ity Diagram OutputPiu
laxy ru le PtiramelerToOulpuiPin {

from
p - CLASSf Parameter

10
pm : ACTIVITY! OutputPin (

name < - p.name

— need to model type
— in Puri it Ion

)
}

Figure B.2: ATL definition for transfroining a UML 2.0 Class diagram to a UML 2.0 Ac
tivity diagram.

292

-Re i urn the number of node opera t ions I It a i nre not compatib le with the pa t te rn
helper del" ; chcckPaiternNodcOperalionConsris icncy (pd ; PPL [" p a t t e r n — defi it il 11 on ") : In teger ^

i f pd." d i s t r i b u t io n - p a t t e r n text « ‘hub—and—spoke *
then

- - c h e e k to ensure Ihe node operation ro les are compatible with th is pa t te rn type
—- i , e nil roles are e i t h e r hub or spokes
DPL I 0 1> e r b; t i o n , »Ill u s i a «1 e e s()—> s e 1 e c t {e jc . role O ’Jiub ' and c . role <>*spo ke ')— > si *e £)

else
if pd d i s t r i b u t i o n —p a t t e r n t e x t *» ‘p e e r - t o - p e e r 1
then

- - c h e e k to ensure the node opera t ion ro les arc compatible with th is pa t te rn type
— i . e . a ll roles ore e i th e r hub or spokes
DPL! Opera lion , mill ns < n i) e e'&'O—> 1 ec t (e] e , role < > “pecr')— > s ize ()

else
— if no pa t te rn was matched re tu rn —I lo in d ica te an error
-I

ertdi f
e n d i f :

— -Return the number of nodes
helper dcf : chcckNodcOpcratioriCounl (pd . DPL!" pa t i e r n - d c fin i I ion "} : In teger

DPL!Operation al 11 n*t anecs()— > * i / c () ;

tu le PoUcrnDcrin i t ionToProeess {
from

pd : DPL.! ” pm I i p r n - d e f i ni ti o n 1+
d o

<
- - r u n llte vn lidnlo rs
’ This i s t he TOPMAN v a l i d a t o r ; * p r i n 1 1n {);
’Number of node op e ra t io n s : \ concal (IhisModulc checkNodeOpcrcitionCount (pd). ioSlrl ng ()) - p r in t I n () ;
‘Number of incompatible node o p e r a t io n s , "
. eoncnf (litis Module. chockPat te rnNodeOperahonConsis icncy (pd). lo S tr ing ()) . p r in i ln H ;

>

module D P LV tiljd n tio n ; -----Module Template
crente OUT : DPL from IN : PPL.

Figure B.3: ATL script for validating DPL model.

293

Appendix C

ANT Task Definitions

< ! - - e o i t v c f î a i l Oie w s d l d o c u m e n t s î o e e n r e r e p r é s e n t a t i o n * u s i n g l l ic AM3 i n j e c t a i * - - ^
< I a r g c l nnmc *>M!J.\VSDLToXML,*>

< a i n 3 . l o a d M o d c l m e d e l l l n n d l c r = ”EMP* n tune ̂"XML*' i a e i a m o d o l “ HMGF,‘ p n l h = " M o l i i M c id c l s /’XML c c o r e ’V >
< a m 3 J c m d M o d c l n a m c ^ ' o i i l " p a l h * " f n p u i ifCûrçBnnfctng . w s d l ,?>

<» nj e cl o r aninc-’x m l />
<v’am3 . tondM od e t>
< a m 3 ,sa v e M o d c t n i o d e l ^ o w i n p - iih = “ O u tp u l> C o re B a n k in g c c o rc 'V >
<amî, loadModci naine®1'oui'* niotaniodcl="XML*> pnih=“ lnpul/RiskMnnagcmcnt \vsd!’t>

< m j ç c l o r nome="xitil" />
< / a m 3 , l o a d M o d c l >

< ihh3 . s a v c M o d c l m o d c l - ' o u i ' * p û i l i = , , O u i { iL i t / R i s k M y n a g c m c a i e c o r e ‘7 >
<ain3 loadModcl iiatnê^'cml >* luekim odd^’XML" paili=" lnpul f CreditCard . wsdl">

< i a j c e io r riame^’s3«I" />
</nin3 r loadModc»
<nni3.sàveModcl oïodeî^oui** p n ih -wÛuiput/CredilCard ecoré*7>

< / l t t rg e i>

Figure C .l: A N T script to convert W SD L interfaces to X M L based ECore m odel.

294

<1— load al l the ecore r e p re s e n ta t io n s of the WSDLs and support ing metamodcls-->
< Large I nauie=”LM_WSDLToUMLCIass”>

<am3, ioadModel modelHandler=”EMF” name=”UML2” meLaniodel=,,MOF”
nsURl=” htip : / /wvvw. ec l ipse . org / uml2/2,0 0/UML’7>

<am3. IoadModel modclHandler=”EMF” name=”XML” metamodel=11MOF” pa th=” MetaModels/XML. ecore”/ >
<am3 IoadModel modeiHandler=”EMF” name="wsdl 1 ” inelamodel=”XML" path=” Output/CoreBanking . ecore’7>
<am3. IoadModel model Han dler=”EMF” name=’‘wsdl2 ” metamodel=”XML” path=” Output/RiskManagement . ccore’7>
<am3* IoadModel inodelHandler=”EMF” name-'wsdl3” metamodel=”XML” path=” Output/CreditCard . ecore’7>

< / t a r g e l>

<!— convert all the ecore r e p re s e n ta t io n s of the WSDLs to a s ing le Class diagram-->
< t a r g e t namc^’TF.WSDLToUMLCIass” d e s c r ip t io n = ” Perforni WSDLToUMLClass t rans fo rm ”

d cp e n d s=” LM_WSDLToUMLClass”>
<am3 . a l l path=” Transforms /XMLtoUML. a l l ”>

<inModel name=”XML” model =”XML”/>
<inMode! name=”IN” model='’ws d i i”/>
<inModel name="]N2” model =” wsdl2’7>
<inModel name=”lN3” model=”wsdl3’7>
<inModel namc=”UML” model =”UML2”/ >
<outModel name=,,OUT" inodel^'oulModel” mctamodel=”UML2” path=”Models / Se rv ice -] n te r faees .uml17>

</am3. a 11 >
<am3. saveModel model ̂ ’outModel” pa th=”ModeIs/ Serv i c e_ In te r face s , uml’7 >

< / l a r g e l>

Figure C.2: ANT script to convert XML based model to a UML 2.0 Class diagram model.

<!— load al l the UML Class Diagram and the UML2 metauiodel— -$>
< t a r g e t name=,,LM_UMLClassToUMLActmty”>

<am3.IoadModel modelHandler=”EMF” name=”UML2” mctamodel ="MOF’
nsURl="http : / /wwvv. ec l ip se , org / uml212 , 0 . 0 /UML’7>

<am3. IoadModel modelHandler=”EMF” name=” inModel” metamodel=”UML2” p a th=” M o d e ls /S e rv ice - In te r face s *uml’7>
< / 1 a r g e t >

<!— convcrl the UML Class diagram to a UML A c tiv i ty d iagram-->
< t a r g e t name=”TF_UMLCIassToUMLActivity" descrip t ion="Perfo rm Cla ssToA ctiv i ty t ransform ”

dep e n d s=” LM _UMLClassToUMLActivity”>
<am3. a tl p a Lh=” Transforms / Cl assTo Activ i ty . a t l ”>

<inModel namc=”IN” model=” inModcl’7>
<inModel name=”CLASS‘’ model =”UML2’7>
<inModel name=”ACTIVITY” model=',UML217>
<outModel name=”OUT” model =”outModel” metamodcl=”UML2” path=”Models / UMLActivityDiagram. uml’7>

</am3. a LI >
<am3. saveModel model =” oulModel” pa lh=”Models/ UMLActivi ty Diagram. umr7>

</Large t>

Figure C.3: ANT script to convert a UML 2.0 Class diagram modei to a UML 2.0 Activity
diagram model.

< ta rge I namc=’’LM_UMLActivityToDPL”>
<am3. IoadModel modclHandler=”EMF” name=”UML2” metaniodeI=”MOF”

nsURl=” http : / / w w w . ec l ipse . org/unil2/2 .0, 0/UML”/>
<am3. IoadModel modelHandlcr=”EMF” name=”DPL" metamodcl=”MOF” pa th—’MelaModels/DPL. ccore’7>
<am3« IoadModel modelHandler=”EMF” name=” inModel” metaraodei=”UML2,> pa th=” UMLActivityDiagram.uml"/>

< / ta rg c t >

<Larget namc=,,TF_UMLActivityToDPL” d e s c r ip t io n = ” Perform UMLAcLivityToDPL tr ans fo rm ”
dcpends^’LM-UMLActivityToDPL'^
<am3, a ll p a t h - ’Transforms/UMLActivityToDPL . a tr^>

<inMode] namc=”UML” model="UML2’7 >
<inModel name=”IN” model=” inModerV>
<inModel namc=”DPL” model="DPLs7>
<outModcl name=,’OUT" model=” oulModer1 metamodel=”DPL" pa th=”Models / DPL-Instance . ecore”/>

</am3. a 11 >
<am3. saveModel modcl=”ouEModel” path=” Models / DPL_Instance . ecore’7>

< / l a r g e t>

Figure C.4: ANT script to convert a UML Activity diagram model to a DPL based model.

295

<!— load the DPL mclamodel and the input model— >
< la rg e I name=”LM_VaUdateDPL”>

<am3. loadModel modelHandler=”EMF” name=”DPL” metamode I =1,MOF” pa th=,>MelaModcls/DPL. ecore”/>
<am3. loadModel modelHandler=”EMF” name=” inModel” metamodel=”DPL” paLh^ 'Output/ DPL.lnslancc , ecore”/ >

< / t a r g c l >

<!— perform the v a l id a t io n of the DPL model— >
< l a r g c l name=”TF_ValidaLeDPL” de scr ipt i on =” Perform DPL v a l i d a t i o n '1 depends=” LM_ValidalcDPL">

<am3. at l pa lh=” Transforms / DPLValidation » a t l ”>
<inModel nainc=,,lN” model=” in Model”/>
<inModel narae=”DPL’’ model =”DPL’7>

</am3 . a 11 >
< / l a r g e t>

Figure C.5: ANT script for validating a DPL model,

< t a r g e l name="LM_DPLToBPEL”>
Cam3. loadModel modelHand ler=”EMF” name="DPL” melamodel=”MOF” palh=”MetaModels/DPL. ecore”/>
CI--BPEL meta—model re fe rences the WSDL mcta—model so we inusi load th is loo -->
<am3. loadModel modelHandler=”EMF” name=”WSDL” metamode I =”MOF” p a t h ^ ’MeLaModeJs/WSDL, ecore”/>
<am3. loadModel modelHandIcr=”EMF” name=”BPEL" metamodel=”MOF” path=”MetaModels/BPEL. ccore”/>
<am3. loadModel modelH and ler=”EMF” name=” inModcl” metamodel=”DPL” pa th=”Models/ DPL.lnslance . ecore”/ >

< / t a r g e t>

< t a r g e t name=‘,TF_DPLToBPEL'’ de sc r ip t ion =”Perform DPLToBPEL t ransform ” depen ds=”LM_DPLToBPEL”>
<am3 . a l l paLh=” Transforms / DPLToBPEL. a 11”>

<inModel name=”DPL” model ="DPL”/>
CinModel name=”IN” model=,,inModerV>
<inModel name=”WSDL” mode] =”WSDL”/ >
<inModel name=”BPEL” model=”BPEL‘V>
CoutModel name=”OUT” model=”outModcl” metamodel=”BPEL’1 path="Models / BPEL-lnstanee * ccore”/>

</am3. all >
<am3. saveModel model =”oul Mo del” path=”Models / BPEL .Instance . ecore”/>

C/ta rge t >

Figure C.6: ANT script to convert a DPL based model to a WS-BPEL based model.

< t a r g c l n a m e = ” LM_DPLToWSDL”>
< a m 3 . l o a d M o d e l m o d e l H a n d l e r = ”EMF” n a m e = ”DP L ” m e t a m o d e l = ”MOF” p a l h = ” M e t a M o d e l s / D P L . e c o r c ”/ >
< a m 3 . l o a d M o d e l m o d e l H a n d Ie r = " E M F ” n a m c = ”WSDL” m e l a m o d e l = ”MOF” p a t h = ” M e t a M o d e l s / W S D L , e c o r e ”/ >
< a m 3 . l o a d M o d e l m o d e l H a n d I e r = ”EMF ” n a m e = ” i n M o d e l ” m e t a m o d c l = ” D P L " p a t h = ” M o d c l s / D P L _ l n s t a n c e . e c o r e ”/ >

< / t a r g e t >

< t a r g e t n a m e = ” TF_DPLToWSDL” d e s c n p L i o n = ” P e r f o r m DPLToWSDL t r a n s f o r m ” d c p c n d s = ”LMJDPLToWSDL”>
< a m 3 , a l l p a l h = ” T r a n s f o r m s / DPLToWSDL. a l l ”>

C i n M o d e l n a m e = ” DPL” m o d e l = ” DPL”/ >
< i n M o d e l n a m e = ” I N ” m o d e l = ’’ i n M o d e r V >
C i n M o d e l n a m e = ” WSDL” m . o d e l = ‘’W S D L 7 >
C o u t M o d e l n a m e = ” OUT” m o d c l ^ ’o u t M o d e l 1’ m c t a m o d c l = ” WSDL” p a l h = ” M o d e l s / W S D L . I n s t a n c c . e c o r e ”/ >

C / a i n 3 . a t l >
C a m 3 . s a v e M o d e l m o d e l ^ ’o u i M o d e l ” p a l h = ” M o d e l s / W S D L . I n s l a n c e , e c o r e ,7 >

C / t a r g e l >

Figure C.7: ANT script to convert a DPL based model to a WSDL based model.

C ta rg e l namc = ”LM_DPLToPDD”>
Cam3 . loadModel modelHandler=”EMF” name=”DPL” meta m ode l=”MOF” pa th=”MelaModels/DPL, ecore’V>
<am3. loadModel modelHandlcr=”EMFn name=”PDD” melamodel=”MDF” path=” MctaModels/PDD. ecorc”/>
Cani3»loadModel modclHandlcr=”EMF1, name^’inModcl” inetamodel=”DPL‘’ pa th=” Models / DPL-lns La nee , ecorc”/ >

C/Larget >

C ta rg e t name=,’TF_DPLToPDDu descripLion=” Perform DPLToPDD t rans fo rm ” depends=”LM_DPLToPDD”>
Cam3. a LI p a I h =!> T ra n s fo r m s / DPLToPDD. a 11 ”>

CinModel namc=”DPL” model =”DPL7>
CinModel name=,,IN” mode|=” inModel”/>
CinModel name=”PDD” model =”PDD,,/>
CoutModel name=”OUT” niode]=” outModcl” metamodel=”PDD” path=” Models / PDD.lnstancc , ccorc"/>

C/am3 . a 11 >
Cam3. saveModel model =” outModcr’ palh=”Models/ PDD_lnstance, ecore”/>

C/larget >

Figure C.8: ANT script to convert a DPL based model to a PDD based model.

296

< l a r g e l name=”LM_DPLToWSDLCalalog”>
<am3. loadModel model Handler=”EMF” namc=”DPL” melamodel="MOF” path="MelaModels/DPL, ecore’7>
<am3. loadModel modelHandlcr="EMF” name="WSDLCatalog” metamodel=”MOF” palh =” MelaModels

/WSDLCatalog. ecorc’7>
<am3. loadModel model Ha ndler=”EMF” name="inModel” melamodel=”DPL” pa th=”Models / DPLJnsLance . ccore”/>

</largeL >

< la r g e l namc=',TF.DPLToWSDLCalalog” dcscri p l i o n —’Perform DPLToWSDLCatalog t rans fo rm ”
depends=”LM-DPLToWSDLCalalog”>
<am3.all path =”Transforms/DPLToWSDLCatalog, a l l ”>

<inModel name=”DPL” model=”DPL”/>
<inModel name=”]N” model=” inModer’/ >
<inModel namc=”WSDLCalalog” model=”WSDLCatalog”/>
<oulModel name=”OUT” model=” outModel” melamodel=”WSDLCatalog” palh=”Models

/ WSDLCa Lalo g_ln s tance . ecorc ,7>
</avn3, a 11 >
<am3* saveModel model =”oulModel'’ path=” Models/WSDLCatalog-lnslance, ecore’7>

< / t a r g e l>

Figure C.9: ANT script to convert a DPL based model to a WSDLCatalog based model.

< t a r g e l name=”TF_BPELXMIToXML" d csc r ip l i on =”Transform the Models from XMI re p re s e n ta t io n s to XML”>
<am3 - loadModel]nodelHandler=”EMF” name="XML1’ metamodel=”MOF" pa th=”MeLaModels/XML, eeore’7>
<am3 „ loadModel model Hand I er=”EMF” name=”BPEL” melamodel=”MOF” paLh=”MetaModels/BPEL. eeorc"/>
<am3 . loadModel modelHandler=”EMF” name=” inModel ” mctamodel=”BPEL” palh=”Models/ BPEL-lnslance. ecore’7>
<am3, al l pa th=” Transforms /BPELToXML. a t l ”>

<inModel name=”IN” model = " inModeP7>
<inModel namc^’BPEL” model =”BPEL’7>
<inModel name=’XML” model=”XML”/>
<outModel name=”OUT” model=” oulModel" meLamodel=”XML’7>

</am3* all >
<am3. saveModel model=” outModel” pa lh=” Models / BPEL_As_XML_lnslance , ecore’7>

< / t a r g e l>

Figure C.IO: ANT script to convert a WS-BPEL based model to an XML based model.

C la rg e l name=”TF_WSDLXM]ToXML” de sc r ip t ion =” Trans form the Models from XMI rep res e n lali on s to XML”>
<am3. loadModel modelHandler=”EMF” namc=”XML” melamodel=”MOF” palh=” MetaModels /XML* ecore’7>
<am3. loadModel modelHandler=”EMF” name=”WSDL” melainodel=1,MOF” palh="MctaModels/WSDL, ecore’7>
<am3, loadModel modelHandler=”EMF” name=”inModel” metamodeI=” WSDL” pa th=”Models/ WSDLJnslance. ecore’7>
<am3, at l pa th=”Trans forms /WSDLToXML. a t l ”>

<inModel name=”WSDL” model=,,WSDL”/>
<inModel namc=”lNM model=” inModel’7>
<inModel name=”XML” modcl=”XML’7>
CoulModel name=”OUT” model =” out Model” melamodel=’’XML7>

</am3. a 11 >
<ani3*saveModel modcl=”outModel ” path=” Mode!s/ WSDL_As_XML_Inslance, ecore”/>

< / t a r g e l>

Figure C. 11: ANT script to convert a WSDL based model to an XML based model.

<1 arge l name=”TFJPDDXMIToXML” de sc r ip t io n =” Trans form the Models from XMI repres c n la li o ns lo XML">
<am3, loadModel mode 1Handler=”EMF” name=”XML" melamodel=”MOF” palh=”MelaModels/XML, ecore”/>
<am3. loadModel modelHandler=”EMF” namc=”PDD” melamodel=”MOF” pa th=" MetaModels/PDD. ecore’7>
<am3. loadModel modelHandler=”EMF” namc=” inModel” melamodel=”PDD” path=” Models/ PDD-lnslance. ecorc”/>
<am3»atl palh=”Transfoi-ms/PDDToXML. a LI”>

CinModel name=”PDD” model =”PDD’7>
CinModel name=”lN” model=11inModcl”/>
<inModel name=”XML” model =”XML’7>
<oulModel name=”OUT” model =”oulModel” metamodcl=”XML”/>

</am3. all >
<am3> saveModel modcl=”oulModel ” pa Lh =,>Models / PDD_As_XML-Inslance . ecorc’7>

< / l a r g e l>

Figure C. 12: ANT script to convert a PDD based model to an XML based model.

297

Ctargci nomc*wTF-WSDLCatalogXMIToXML" description ^"Transform the Model* from XM1 representations to XML*>
<am3. loadModol modelHondlcr****EMF** namc*"XML” mctamodcl=***MQF'’ paih""MctaModcls /XML. ccore"/>
<am3. loadModcl ntodclHandlerK"EMF‘ name "WSDLCatalog" mciamodcl "MOF" path •"MctaModcIs

/WSDLCaialog. ccorc’7>
<am3. loadModcl model Handler* "EMF* name0** in Model** mciamodcl="WSDLCatalog" paih"” Modcls

/ WSDLCatalog.Instance . ocorc‘*/>
Cam3 a ll pa lb-"Trans forms/WSDLCatalogToXML. a tl">

<inModcl name*’*WSDLCaialog" model =,‘WSDLCaialog,*/>
<inModcl namc-"IN" model“ "inModcl'7>
<inModel name »"XML" model ="XML'V>
<outModcl namc*"OUT modcl="outModcl" mciainodcl-"XML"/>

</am3. a 11 >
<am3. savcModcl model ■"oulModcl" path •"Models/ WSDLCaialog. As. XM L. Instance ccore**/>

< /ta rg c t>

Figure C.13: ANT script to convert a WSDLCatalog based model to an XML based model.

C t a r g c i n a m c - " I J . X M L T o T c x t " d e s c r i p t i o n " C o n v e r t t h e XML b a s e d M o d e l s t o T c x l " >
C&m3. l o a d M o d c l m o d e l H a n d l e r “HMF" name-"XML*1 m cia m odc l-"M OF** p a t h - " M c t a M o d c l s / X M L . c c o r c " / >

Cam3 l o a d M o d c l n am c* " B P EL " n ic l a m o d c l -"XML" p a t h - " M o d e l s / B P E L . A s . X M L . I n s i a n c c c c o r c * 7 >
< a m 3 . s a v c M o d c l m o d c l= " B P E L " p a t h ‘G e n e r a t e d / B P E L . I n s t a n c e bpe l**>

C c x t r a c t o r name " " x m l " / >
< / a m 3 . s a v c M o d c l >

Cnin3 l o a d M o d c l name* "WSDL" m c i a m o d c l " "XML" p a t h “ " M o d c l s / W S D L . A s . X M L . I n s t a n c e . c c o r c * 7 >
Cam3 s a v c M o d c l m od el -" W S D L" p a t h B" G c n c r a i c d / W S D l __I n s t a n c e . w s d l " >

C c x i r a c t o r n a m c “ " x m l " / >
< / a m 3 s a v c M o d c l >

C a m 3 . l o a d M o d c l namc""PDD" m c i a m o d c l - "XML" p a t h - " M o d c l s / P D D . A s . X M L _ l n s i a n c c c c o r c * * />
Cam3 s a v c M o d c l m o d e l ^ “PDD” p a t h - " G e n e r a t e d / P D D . I n s t a n c e p dd">

C c x l r a c i o r n a m c = " x n i l" t >
< /a m 3 * a v c M o d c l >

Can>3 l o a d M o d c l name “ W S D L C a t a lo g " m c ia m o d c l - " X M L " p a i h s ‘* M o d c l s / W S D L C a t a l o g . A s . X M L . I n s t a n c e . c c o r c " / >
< a m 3 s a v c M o d c l m o d e l ' " W S D L C a i a l o g " p a i h - " G c n c r a i c d / W S D L C a i a l o g . I n s t a n c e . x m l" >

C c x i r a c t o r n a m c ^ ' x m l " / >
< / a m 3 s a v c M o d c l >

< / t a i g e t >

Figure C.14: ANT script to convert XML based models to XML text.

298

Appendix D

Acronyms

Term Explanation PageReference
ADL Architecture Description Languages 37
ADT ATL Development Tools 28

ALMA Architecture Level Modifiability Analysis 234
ATL ATLAS Transformation Language 28
BNF BackusNaur form 91

BPEL Business Process Execution Language 15
BPMN Business Process Modeling Notation 22
CBSD Component Based Software Development 9

CIM Computation Independent Model 23
CWM Common Warehouse Metamodel 22
DECS (a run time framework) 44

DPL Distribution Pattern Language 54
DPLProfile Distribution Pattern Language UML profile 52

DSL Domain Specific Language 21
EBNF Extended BNF 91,113

ECL Extended Constraint Language 43
ECORE (an EMF compatible language) 206

EMF Eclipse Modeling Framework 25
EMOF Essential MOF 25,91

GP Generative Programming 18
GPL General Purpose Language 86
IDE Integrated Development Environment 199

ILDP Integration Logic Document Processor 255
JET Java Emitter Template 26
JSP Java Server Pages 26

MDA Model Driven Architecture 22
MDD Model Driven Development 22

MDSD Model Driven Software Development 22

300

Term Explanation PageReference
Model Bus Tool integration suite 24

MOF Meta Object Facility 18
MTF Model Transformation Framework 26
MTL Model Transformation Language 27
OCL Object Constraint Language 19

OMG Object Management Group 18
OOP Object Oriented Programming 12
OWL Web Ontology Language 16

OWL-S Based on OWL for web services 17
PDD Process Deployment Description 54,139
PIM Platform Independent Model 23
PSM Platform Specific Model 23
QoS Quality of Service 2

QVT-P Query/View/Transformation Partners 27
RDF Resource Description Framework 16
RDL Relations Definition Language 27
RSA Rational Software Architect (an IBM tool) 211

Smart QVT A model transformation tool 24
SOA Service Oriented Architecture 1

SOAP Simple Object Access Protocol 12
SQL Simple Query Language 87

UDDI Universal Description, Discovery and Integration 12
UML Unified Modeling Language 19
UMT UML Model Transformation Tool 29

Web-ML Web hypertext modeling notation 35,42
WS-BPEL Web Services Business Process Execution Language 15
WS-CDL Web Services Choreography Description Language 15

WSCI Web Service Choreography Interface -
WSDL Web Service Description Language 12
WSML Web Service Modeling Language 17

XMI XML Metadata Interchange Format 25
XML Extensible Markup Language 1
XSLT Extensible Stylesheet Language for Transformations 25

301

