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Abstract 

A Thermal-fluid Analysis of Piping Dead-legs in Hlgh Punty Water Systems 
BY 

Damel C. Coyle (B Eng MIMechE MIEI) 

Purified water forms an integral part of pharmaceutical production The consistency 
of water quality produced by purrficatron processes and d~stnbuted to pomts-of-use 
rs of utmost importance Tee-sectlons Installed m d~stnbuhon loops are commonly 
used to dvert fluid flow at take-off points However f lu~d  flow restriction at tee- 
section branches can cause plplng dead-legs. 

Dead-legs cons~st of reglons of stagnant flmd where harmful organisms can 
proliferate unaffected by the scounng effects of d~stnbut~on loop flow. Thzs thes~s 
presents a thenno-fluld analysis focusmg upon the fluid dynamics and heat transfer 
mechanisms occurrmg wthin dead-leg branches A literature review of h~gh pur~ty 
water system des~gn details sanitization methods currently employed in industry with 
reference to the demmental effects of dead-legs. 

Expenrnentatron was performed using a single-loop fluid ng complete w~th  capped 
90' tee-section representmg a piplng dead-leg. Analysis of the thermal condltlons for 
various dead-leg configurations was performed mcludmg variahons of branch length 
and hameter. The effect of varying loop velocity was also investigated. The 
application of non-mtrusive analysis techn~ques was cons~dered. Infrared 
thermography and surface-mounted thermocouples were used to map surface 
temperature distr~bution across a dead-leg branch 

Increased temperatures were noted at the base of the dead-leg branch for lncreaslng 
loop veIoc~ties. Comparison of reduced and equal d~ameter dead-legs for varylng 
branch Iengt hs suggested dead-leg temperature is strongly related to mlet loop 
velocity. Acceptable thermal responses were noted m 4d dead-legs for loop veloc~ty 
> 0.94m/s, 2d reduced diameter dead-legs at 1 50m/s and in 2d equal diameter dead- 
legs throughout the examined velocity range. 

Although all dead-leg configurat~ons used m analysis adhered to industry 
recommendations; unsatisfactory thermo-fluid cond~tzons recorded for remalnlng 
dead-legs suggests revlsion of accepted regulat~ons. Non-intrus~ve analyses 
illustrated greater temperatures at branch md-pomnt compared wlfh base 
measurements. However the appIrcahon of techniques was deemed lim~ted due to 
pipe wall conduction effects. 
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Chapter 1 Introduction 

Purified water foms the core of every pharmaceutical manufactmng plant Every 

pharrnaceut~cal facil~ty requires purlfied water, and its quallty is cntical to all 

production processes [ I ]  The consistency of water qual~ty achleved 1s as important 

as the quality of water The expense and h ~ g h  technology Involved in water 

punficahon IS negated if the distribution system cannot maintain the required water 

quality [2] A reduction m water quality may result m the suspension of 

pharmaceutical processes. Produchon downt~me suffered during cleaning and 

rectificat~on can have slgn~ficant detnrnent upon manufacturing output and company 

revenue 

For flow conversion, fluid  sola at ion and take-off polnts in a stenle process pipework 

system, the installation of a tee-section piece is the most commonly used method [3] 

However the installation of tee-sectrons m high pur~ty water systems (HPWS) has 

the potentlal to compromise water quality By resfmcting flow in the tee-sect~on 

branch; dead-legs can occur The stagnant water m a tee-sect~on dead-leg promotes 

the growth of biofilm [4] When dead-leg water 1s released, ~t has the potential to 

contammate entire production 

1.1 The 6d-Rule 
In an lnspectlons gulde [5] issued for revlew the Food and Drugs Adrninlstratlon 

(FDA) stated that "no pipe should have an unused portion greater in length than 6 

diameters of the unused pipe measured from the axls of the plpe in use". This 

statement became known as the 6d-rule within Industry A representation of the 6d- 

rule is shown in figure 1 1 

The FDA stressed that the regulation applied to hot water systems only (75-80°C) 

They considered any unused portlon of plpe m an ambient or cold circulahng systenl 

as a dead-leg, having the potential for biofilm formation The FDA recommended 

ambrent water systems have a self-san~t~zing procedure in place for dead-legs or 

e'lrminate them entrrely 



Frgure 1.1 - Classic 6d dead-leg co&guration 

Although the 6d-rule became an industry standard for suitable dead-leg Iength, it is 

not truly representative of what dead-leg characte~rstrcs are critical to desigmng a 

cleanable process piping system 161. The American Society of Mecharucal Engmeers 

(ASME) suggested that dead-legs wlthin HPWS be designed to aclueve a dead-leg 

length of 2 or less, where the length of the dead-leg extension is measured from the 

inside diameter wall. The ASME states that this is merely a target, not an absolute 

requirement and that the system designer must attempt to elimmate system dead-legs 

and identify where exceptions exlst [7 ] .  

Compared to the ASME, the FDA recommendation is poorly worded The ASME 

recommendation measures from the true begimng of the dead-leg whlst the 6d-rule 

measures the length of the dead-leg from the centrellne of the main branch. The 6d- 

rule becomes questionable when designing systems with smaller hameter branches 

located off larger diameter main pipelines F~gure 1.2 dlsplays dead-leg 

configmations with varylng branch diameters. Shown are loop to branch dlameter 

ratios of 1 : 1,2: 1 and 4: I. Take the example of a designer placlng a 12 5mm valve off 

a 50mm diameter main section of pipeline; a 2d length already exists at the pipe 

wall. Should the main pipe have a 150mm pipe diameter, the 6d-rule is already 

compromised 



Figure 1 2 - Appllcatlon of the 6d-rule wth varying branch diameter 

Definite cofislon exists concerning the application of the FDA 6d-rule, Research 

has shown that various industry experts [2, 8 & 91 have their own recommendations 

of suitable dead-leg lengths. These can range from Id - 5d lengths, however all 

accept that the 6d-rule is flawed. 

In a recent paper [lo] the validity of the 6d-rule is questioned; 

"There are many gu~delsnes currently in use that "asssst" lhe industy 

@harmaceutrcaE) in ePzgtneenng equzpinent and systems Some of the psdelznes are 

used simply because they are considered to be "standards" Often, what w not 

considered as the aclual applzcabzElty of a gjven guadekrne to a parttcular system or 

pzece of equipment " 

Pharmaceutical companies expend significant expense to adhere their system to the 

FDA 6d-rule, however little is known of actual suitable lengths for dead-legs The 

rule itself is ambiguous, ultimately leading to confus~on among HPWS designers, 

which must be avoided in such a dellcate manufactumg sector. 



1.2 Pharmaceutical Waters 
In order to understand the sanitary issues associated wth piping dead-legs, one must 

first consider the systems they can compromise Considerable expense 1s incurred m 

the purchase, mstallahon and vabdat~on of central purification equipment m HPWS 

[2], These systems are essent~aIly designed with a des~red water quality in mind 

Various standards of product water are used in the pharmaceutical industry 

dependmg upon the end-use of the manufactured product. 

Four standards of production water exist each discemable by their level of pun@ 

These mclude; 

- Source Water 

- Potable Water 

- Purlfied Water 

- Water for Injection 

1.2.1 Source Water 
Source water 1s water m ~ t s  rawest untreated state It compnses of water In 

reservoirs, lakes, rivers and streams prlor to being w~thdrawn for treatment and 

distnbutlon as potable water supply. Geological factors contr~bute to the quality of 

such waters Havlng had contact with ~ t s  surroundmgs, source water cannot be 

assumed pure. Dlssolved minerals, salts from earth and rocks wlll have leached ~n to  

the water Water, fa111ng as ram w~l l  have also scrubbed varlous gases from the 

atmosphere [4]. Natural waters serve to nurture organisms such as bactena and other 

viruses. 

Therefore, water approached as a source supply by a facllity is not entirely water, but 

contams a mulhtude of aqueous solutions and substances [4] The standard of source 

waters wlll vary by location, however some of the xmpur~tles that can exist 1n source 

water supplies include: 

- Ionic and Organic Contaminants 

- Bicarbonate and Scallng 

- Suspended Matter 

- Sllica and Dlssolved Gases 



Source waters will inevitably require cleansing to remove such contaminants and 

achieve higher punty. 

1,2.2 Potable Water 
Potable water or 'city water' as it is sometimes termed acts as feed water for facility 

product~on. The recommended m~croblal llrnlt for potable dnnkrng water specified 

by the FDA 1s 500cfulml [5]  

The purificahon of source water to potable standards typically beg~ns wlth the 

treatment of water with an ox~dant to remove tastes and odours. Following this, 

water is clmfied by removlng large suspended matter using alum treafment 

Filtration 1s performed to remove smaller organisms before finally chloxlne is added 

to protect agalnst after-contamination 

Additional attent~on must be paid to the qual~ty of source water as it can be subject to 

environmental changes. For example, new construction or fxes can deplete water 

stores and cause an rnflu,~ of heavily contaminated water fiom storage [4 J 

1.2.3 Purified Water 
Purified water 1s used in the rnanufactmng of topical and oral medications in the 

pharmaceutical industry. Punfied water consists of potable water havlng undergone a 

senes of pmfication methods to further remove darnagmg bacterial elements The 

FDA recommends an upper bacter~al llmit of 100cfulml for hlgh punty water [ 5 ]  

1.2.4 Water for Injection 
Water for Inject~on (WFI) as the name suggests 1s used m the pharrnaceuhcal 

Industry for manufactur~ng drugs intravenously admmstered to patlents Dlstnbut~on 

systems carrylng high quality WFI are assumed essentlalIy stenle However, 

sampling of the water takes place m non-ster~le environments therefore some 

rnicroblal counts are assumed FDA recommended microbial limits are shown m 

table 1 -1 / 5 ] .  



Table 1.1 - FDA m~crobial limts for WFI 

Upper bacterial limit 

Upper endotoxin 1 lmlt 

An endotoxin is a toxic substance bound to the bacterlal cell wall released when the 

bactenum ruptures or d~sintegrates. The above limlts do not refer to pass or fail 

standards, only action limts. When the supply exceeds the above llmits then process 

engmeermg must investigate the problem, reduce the microbial presence and analyze 

the impact that heightened limits may have had upon productron. 

10c=/100 ml 

0 25 units per ml 

1,3 Pre-treatment Processes 
The preparation of waters for application m the pharrnaceut~cal, sernl-conductor or 

power-industries can involve three main stages: pre-treatment, principal purlficat~on 

methods and po~nt-of-use treatment [4] Principal punficai~on typically lnvolves one 

or more of distillation, ion exchange or reverse osmosls (RO) processes. However, to 

ensure principal pwlfication treatments produce the high quality waters they must, 

pre-treatment methods must first be performed. Add~tionally in the Interest of costs, 

pre-treatment methods can extent the service life of valuable princ~pal equipment 

Flgure 1 3 Illustrates the stages necessary to increase the punty of potabIe water to 

the h~gh standard required of Water for InJectlon 

Facilities that use source water as opposed to a potable supply must perform lmtial 

pmfication methods. Yet potable water has Ilmlted direct application m 

pharrnaceutlcal manufacturing processes because ~t contains vanable amounts of 

dissoIved substances, and added chlonne for mrcrobial control I41 Fac~lity water is 

separated from 'cify water' by a check-valve to prevent back flow, whlch may 

contact and contammate production equipment One of the miha1 pre-treatment 

processes in a high purlty loop is filtration with multi-media filter 



WFI Storage 
and Dlstributlan .- 

Figure 1.3 - Functional block diagram of WFI system [l 11 

1.3.1 Deep Bed Filtration 
The function of a deep-bed filter is to prevent the passage of suspended matter, 

accommodate a reasonable volume of suspended material and hold retained solids 

loosely to aid easy cleaning by backwashing [4]. 

A deep-bed fiIter consists of a multi-media bed, with levels of varying media such as 

charcoals, manganese greensand, garnet or anthracite with a final support layer of 

gravel. Beneath the gravel support layer a distributor tank collects the water. 

Considering figure 1.4, the treated water is removed from the holding tank: via a 

system outlet pipe. Silica sand is the typical medium used in deep-bed filter 

construction, aiding the removal of bulky substrate in the water. However deep-bed 

filters may themselves become havens for organisms to flourish [4]. Accordingly 

chloride is added prior to the water passing through. 
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Flgure 1.4 - Multi-media filter illustrating varlous media [13] 

1.3.2 Water-softening 
Water softening techmques typically follow media filtrahon. Water vanes in 

hardness from soft to very hard depending upon m~neral content. Table 1 2 &splays 

the hardness levels of water in terms of calcium carbonate concentrate (CCC). 

Flgure 1.5 illustrates the water softening process Using ion-exchange, hardening 

ions such as calc~urn and magneslum are removed from the water and replaced wth  

non-hardness lons (sod~um). Sod~um l m s  are supplied vla d~ssolved sodrum chlorrde 

salt or bnne. Backwashing up through filter beds removes forelgn partrculate. Salt/ 

brine solution is passed through the bed, removing magneslum (Mg) and calc~um 

(Ca) ions Loosely aStached sodium ions are released m their place, effectively 

charging the bed wlth substitute Ions. Flnally the bed 1s r~nsed to remove excess 

sodrwnlbnne solut~on 



Table 1.2 - Water hardness levels 1141 

Level 

Soft 

Medium Hard 

Hard 

Water softening does not remove bacteria, silt or sand, lead, nitrate, pesttcides, and 

any other organic and inorganic compounds [IS] However, water softening does 

remove alkaline 1191. Alkaline reductron protects from scale formation on RO 

membranes and w~thin d~stillation stills downstream, thereby improving operating 

lifebmes of expenslve pr~ncipal purrficat~on equipment. However appllcatlon of 

water softening techniques can allow for the lnvaslon of the water-processmg system 

by organisms [4] To counteract such effect, chlorine ts added to the system. 

CCC (rngl) 
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Very Hard 

Figure 1 5 - The water softening process 
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1.3.3 De-chlorination 
Chlonne destroys bacterla and prevents b~ofiIm development on wetted pipe ~nterlors 

[16]. De-chlonnatlon rntroduces chlonne into the water using activated chlorlne 

(AC) or direct chlor~ne injection. Chlonne injection does not foster mlcroblal-growth 

as opposed to AC beds and IS favored w~th~n  mdustry 1171 The chlorine injection 

techn~que 1s shown m figure 1 6. 

When chlonne IS injected lnto the water, ~t oxldizes Into sulphate. Free chlonne in 

the system reacts with the sulphate and forms chlorlne ions, Both sulphate and 

chlonne Ion by-products are easily removed by RO treatment down-stream [27]. It IS 

worth noting the presence of chlonne res~dual m water IS prolonged for as long as 

possible as it undergoes treatment to act as a safety precaut~on against the ever- 

present threat of microblaI recontamination. 

Flgure 1 6 - De-chlomat-ron injection system 
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1.3.4 Reverse Osmosis 
Osmosis refers to the natural movement of pure or hstllled water through a 

membrane to a concentrated water solution containing salts and other lmpurltles 

[18]. With the application of sufficient pressure to the concentrated solution, the 

osmows process can be altered. Forcing a concentrated water solutlon of salts and 

other impunties on one side of a sem-permeable membrane through to an empty 

holding tank is known as reverse osmosis /18]. The techmque 1s shown In figure 1.7 

Pure water seeps through the membrane to a holdlng tank Ieaving behind zmpunhes 

trapped In the membrane Impurlt~es such as bacterra are removed from the 

membrane by a sievlng action, 

TREATED WATER 
OUTLET 



.- 

,--b Water Flow 

Figure 1.7 - The reverse osmosis process 11 81 

Membrane pores are minute in size (appmx 0.005p), with the smallest typical 

bacteria around 0.2p1, In fact, some membranes can reject 99.0% of sodium 

chloride [lq. Should contimow pressure be applied to the water to separate 

impurities through the membrane, dissolved impurities would become so 

concentrated they would precipitate the solution and foul the membrane [I$]. 

Accoxdingly, a technique is employed to carry away the impurities forming m a d  

the membrane. This is performed by 'reject water' which is flushed h m  the process 

in sacrifice of pure or 'product water' [I 81. 

The momt of 'product water' sejmated from total water (reject and product) is 

known as the process 'recovery'. The amount of 'recovery' depends upon the 

performance of the process equipment and the standard of water feeding the process. 

The reverse osmosis process moves  the following impurities; 
- Particulate matters - scale, rust, sediment, sands 
- Colloidal matter - particulate that is continuously suspended, never settles 

- Dissolved sodium 

- Bacteria 

- Pyrogens -bacterial by-products 

- Organic molecules - sugars, protein, dyes 



Pre-treatment of feed water is recommended by manufacturers of d~st~llatlon 

equipment and IS particularly advised for RO units [ S ]  AIthough RO offers a 

substantlal punficatlon of water ~t does suffer one draw back. Substances such as 

alcohols, phenols, formaldehyde and other dlssoIved gases cannot be removed uslng 

RO. Therefore, the process 1s viewed merely as a bacterial reductron mechanism as 

opposed to a complete sanlhzat~on method [4]. 

RO product water IS typically de-ronized and passes through a microbial reduct~on 

process, such as filtration or h ~ g h  lntenslty ultraviolet (W) light [ l  11. Electro De- 

Ionrzlng (EDI) IS often used m industry in conjunction with RO, RO waters serving 

as desirable permeate for the ED1 process 

1.3.5 Electro de-Ionizing 
Electro de-Ionizing consists of selective membranes that isolate ions from ther 

counter-lons [18]. Anions are negatively charged Ions; the~r resins pemit only other 

anions to pass. Equally a cabon is a positively charged ion that can only pass through 

a s~rnllarly charged resm By spacing alternating layers of anion and cation sesms, a 

series of dilutmg and concentrat~ng compartments are created, all under the influence 

of a DC current [18]. A basic ED1 system IS shown m figure 1 8 
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Figure 1 8 - Electro de-Iomzlng system [IS] 

Water is channelIed between three compartments, d~lute, concentrate and 

modelcathode (electrolyte) streams. Membranes do not allow water to permeate 

through them, actlng as barriers to flu~d flow. Therefore feed water IS channelled into 

the concenwate and &lute compartments. As the water passes through the dilute 

compartment, sodlurn and chlorlne Ions are exchanged for favourable ions on the 

resin surface 

Electrical current drrves ions away from the resln through the membrane into the 

concentratmg compartments. Negahve ions in the product stream are then attracted 

towavds the mode These Ions pass through the anion permeable membrane into the 

adjacent concentrahng stream where they are repelled by cation permeable 

membrane and become trapped. 



As water moves through the flow compartments, ions in the dilute stream wilI 

deplete and become concentrated m the adjacent concentratmg stream The resultmg 

water is flushed from the system. 

1.3.6 Distillation 
Dist~llation 1s used to remove volable impur~tles such as low-molecular-weight 

orgamcs, carbon d~ox~de  and oxygen from water. The purification process uses the 

volatrlizatlon of water as a means of separating it from its non-volatlle lrnpunhes; 

and the condensation of the volahlized water (steam) to Isolate it from ~ t s  more 

volatr le lmpurrt~es [4]. 

BO~LER WITH BAFFLE / I CONDENSER 1 \ 

+ - COOLING WATER 

STEAM 
SUPPLY * 

I 
DISCHARGE 1 

DISTILLATE 

1 COOLING WATER & I I I I I FEED SUPPLY FEED 

I 

Flgure 1 9 - Smgle-still hstlllatlon system 

An example of bas~c distillahon equipment 1s a one-stage st111 shown m figure 1 9 

One-stage shlIs consist of a boller to vaporlze the water, a dis-entrainment device 

and a condenser to convert the water back to ~ t s  llqud state. Liquid partrcles can 

become happed withln vapow in the form of mst partlcles The entranment of 

water partlcles (mist) must be reduced to avold the carryover of non-volatiles. 

Dev~ces such as baffles help prevent such carryover 



Any water vapour is condensed into its liquid fornl by encountcnng cooling surfaces 

wthin the condenser Condensat~on heat that must be removed to re-liqurdlze the 

water IS extracted by cooling water flowing withln coils that condensate the water 

upon contact Coollng must be adequate but minimal as higher degrees of cooling 

encourage the condensation of volatlles aIso [4], 

Distillation IS not an absolute process [4] The quality of the hstllled water is 

proportionate to the quallty of the feed water entenng the system. 

Table 1 3 - World Health Organlsatlon mcrobiaI limits [19] 

Bacterial Limits (cfulml) 

Addit~onal point-of-use treatments such as polrshing ensure high pmty water 

rnaintalns bacter~a free after pnnclpal purification untiI tlme of use Polishing bnngs 

water to ~ t s  hrghest point of purity prror to entry into product~on Table 1 3 d~splays 

microb~al shpulatlons per process recommended by the World Health Organlzat~on 

WHO>.  
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1.4 High Purity Water System Design - Sanitary Considerations 
The deslgn of high purlty water systems is tailored to meet the requirements of the 

process yet mainta~n optimum economy [2 ] .  The pur~fied water &stnbution system 

forms the integral llnk between pre-treatment and pomt-of-use instances. The 

d~stnbution system must be above all capable of maintaming the requ~red water 

quahty. 

Crucral design parameters for HPWS deslgn include mantaining contlnuous water 

reclrculatlon at an adequate velocity, contlnuous or per~odic sanlhzatiod stenlizahon 

and the absence of stagnant areas 121 Failure to achleve any of these parameters may 

lead to a non-stenle system of contammated product water 

1.4.1 Main Distribution Loop Size 
D~strrbutlon loop size 1s a factor of user requirements. HPWS designers cons~der 

dishbution loop slze based upon circulatlon veloc~ties and circulatlon quantity 

assuming maximum simultaneous system draw-off Standard dlstributlon system 

sizes ~nclude, 

- Srngle plpe loop 

- Double pipe, flow and return loop 

- Double plpe, flowheverse retwn loop 

We w11 cons~der single plpe distribution loops, the remaining loop slzes are beyond 

the scope of this discussion. Table 1.4 llsts the characteristics of a single plpe 

distribution loop. 

Table 1 4 - Characteristics of a single pipe loop 

Advantages 

- least amount of pipework 

- equal flow ratelvelocity around loop 

Disadvantages 

- possibility of high system pressures 

- flow balancing devlces requ~red 

- flow balancing 1s complex 



A pzplng and mstrurnent dlagram (PID) of a typical single pipe d~strlbutlon loop IS 

shown in figure 1 10 A PID displays the distrlbutron system including flow 

regulation dev~ces, clrculat~on pumps and the operator control systems with key 

components such as storage vessels and heat exchangers Where stenle point-of-use 

requires ~ncreased water temperature a sub-loop incorporatrng a heat exchanger is 

installed, However the added cost of such sub-loops can be negated by designers 

usmg separate cold and warm distnbut~on loops [2 ] .  

Single pipe Ioop systems are the natural choice for cold or ambxent d~strlbution 

requirements They are most suited to sttuahons where the main requrrement is for 

loop temperature outlets wlth a small number of vanable temperature outlets 121 
Single pipe loops offer equal flowrate throughout the line along w t h  the least 

amount of pipework thereby reduc~ng costs and ~nstallation space [2] 

EXCHANGER 

INGS OM17TFO FOR C L A B M  CONSTPNT T W  

% vTIKLE OUTLET 

Figure 1 10 - Single pipe distribution Ioop 



Yet system pressures are a concern m such systems. Maximum recommended system 

pressure is lobar, wrth a potentla1 pressure drop across a heat exchanger of 0.3bar 

[2]  Heat exchangers have an accumulative pressure effect and can therefore present 

a significant port~on of system pressure alone. As such singIe plpe loops are suitable 

for a small number of heat: exchangers only 1141 

1.4.2 Circulation Temperature 
The circulahon temperature of the distnbut~on system 1s determined by the required 

m~croblal limits and/or point-of-use temperatures Far a m~croblal llrn~t of less than 

10cfi1100ml a minimum continuous temperature of at least 80°C is requlred to 

ensure self sanrtizatlon occurs [2]. However for less stringent microb~al 

spec~fications, a hot system (280°C) may not be necessary 

1.4.3 Circulation Velocity 
Reclrculahng systems are essentral if microb~olog~cal lirnlts are to be maintamed [2] 

Low veloclty or stagnant reQons with~n the distr~bution loop have the abil~ty to 

promote the growth of bactena Non-recirculation is acceptable for punfied water 

systems should the water be continually consumed and flush procedures are m place 

dunng non-use. 

The accepted mlnimum circulation velocity range for HPWS is 1 5 - 2.0 d s  [2]. 

T h s  range is concerned wlth preventing the adhesion of biofilm to Inner prpe walls 

However recent research [20] mnchcates requ~red veloc~t~es for biofilm control are 

less than half of cutwent industry recommendations In fact requlred velocities to 

ensure biofilm control can vary for hot and ambient dlstnbution systems 

1.4.4 Pipework and Assembly 
Distribution pipework must remaln inert to the pur~fied water it carries and not leach 

any components into the water AdditlonaIly ~t must withstand stenlizlng agents used 

dunng cleaning procedures. 316L Stainless Steel (SS) is the preferred pipework 

material for valves and plpework dlstnbution sys terns 13 3 Polyv~nylldene fluonde 



(PVDF) and Polywnyl chlorlde (PVC) plastic pipes are used m systems with liquid 

temperatures less than 50°C [21]. 

3 16L SS has a low-carbon content (0.03%) minimising carblde preclpltation dmng 

welding whch can lead to reduced corrosion resistance in the steel. SS offers smooth 

s d a c e  finish, dimensional consistencies and ease of cleanmg. The typical 

b~opharmnaceubcal finish is appromately 15 Ra (Roughness Average) or 0.38 pm 

for electropolished 316L SS [22] Electropollshing serves to smooth pipe inner 

surface and reduce differentials between microscopic peaks and valleys. 

Plpework assembIies with threaded or flanged connections are avoided as 

contaminants can accumulate m spaces between threads [22]. As a result system 

pipework 1s typically welded together. F~gure 1.1 1 ~llustrates a threaded comechon 

campromlsmg system waters. W ~ t h  respect to clcmng procedures p~pework return 

lines require suitable slope to encourage gravity drainage and avoid potential air 

pockets which prevent c l e m g  soluhon from reachmg inner surfaces [22] 
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F~gure 1.1 1 - Contminat~on v ~ a  theatled sections 



1.4.5 Valves 
Valves installed withrn distnbut-lon loops have the potenha1 to contribute to the 

prol~feration of contaminants It is recommended that all parts of a valve m contact 

wlth p~oduct waters be crevrce-free and accessible to steam sterilisation 131. Figure 

1.12 displays the types of valves available to HPWS designers 

Figure 1 12 - Selection of valves, (1) Ball (2) Butterfly and (3) Diaphragm [23] 

Ball and Butterfly-type valves are cons~dered non-stenle as they can harbour steam 

and water tn air-tight crevlces effechvely creating stagnant pools that encourage 

bacterial formation. The spaclng between the elastic diaphragm sections and valve 

housing of diaphragm valves can also serve as potential contamnant crevices 

Self-dramage is an Important attribute of valve design [3]; 

- maklng h ~ g h  quahty cleaning possible by reducing soil deposition 

- allowing free-drainage of condensate durlng steam steril~sation 

- m~nimlsmg flmd retenhon, important during small batches or the manufacture of 

hrgh quality product. 

As with plpework it is necessary to construct valve components chemcally inert to 

process fluid. As such SS 1s the materlal of choice for most valve housings Seals, 

gaskets and other flexible diaphragm materials in contact wlth process fluids are 



typically manufactured of Polytetrafluoroethylene (PTFE) providing the designer 

with excellent chem~cal rcslstance [3] 

All valves can pose a sterrllsablllty rrsk for designers Select~on must be based upon 

Ininrmlsing posslble system contamrnation aIong wlth incorporating necessary 

sanltlzlng techniques to l im~t  bactenal pro11 feratton 

1.4.6 Pumps 
Fluid pumps are requlred to man~pulate pur~fied water through the system at required 

velocrties. Both constant and varlable speed pumps are used in industry. Constant 

speed pumps lnvolve less ~nitlal capital expense and maintenance compared to 

vanable units However, both flow and pressure output of a constant speed pump 

varies with changlng water usage. Therefore pump effic~ency and performance is 

dependent upon the demand for water 

Multistage centrifugal pumps are commonly used in pharmaceuilcal production as 

they offer a low rate of wear at common operating levels Pump wear 1s an important 

sanltary cons~derahon for designers Particles are generated fioln the wear of rotors, 

seals and other ~nternal parts Therefore pumps should be installed sufficrently 

upstream of pre-treatment un~ts to ensure part~cle removal vla filtrat~on. 

Additional pump units are ~ncorporated into system design to compensate for main 

un~t farlure However the FDA ~dentlfy waters present in any additional pipework 

used to connect stand-by units to maln distribution loops as stagnant and poss~ble 

areas of bactenal proliferation [ 5 ] .  

1.4.7 Storage Vessels 
Facil~ties often use hgh purlty water to rinse pipework and process equlpment 

foIlowlng batch productton The hrgh volume of water necessary dmng rlnslng 

requires an adequate system storage capacity durlng such penods of maxlmum 

demand. Storage vessels act as reservoirs storlng purified waters for penods of hlgh 

' draw-off 



However storage vessels have the potential to generate bactena growth due to low 

velocities of waters within. Vessels also have the propens~ty to promote bactenal 

growth on internal surface walls when not completely filled [4]. Therefore vessel 

capacity should be selected to ensure system recirculation flowrate results in storage 

volume belng replenished approximately every 6 hours [2] Add~tionally vessels 

installed zn re-circuIatory systems dispense return waters along tank walls via wall- 

mounted spray balls to mnimlse bactena growth. 

1.4.8 Heat Exchangers 
A heat: exchanger 1s a devrce which provides for transfer of thermal energy between 

fluids at chfferent temperatures [24] They are typically employed as part of sub- 

loops in HPWS used to manipulate fluids to required point-of-use temperatures. Heat 

1s transferred between fluids via conduction through a heat transfer surface. 

Flgure 1 13 shows a single pass shell-and-tube type exchanger commonly used in 

industry S hell-and-tube exchangers consist of circular tubes mounted wthin a 

cylindrical shell with tube axis parallel to that of the shell. Fluid of set temperature 

fIows along and across the extenor of the tubing heated by a flmd at eIevated 

temperature withln the tubes 

Heat exchangers are susceptible to blo-foulmg. A mnimum velocity of lm/s is 

recommended for tubular heat-exchangers to reduce the ~ncidence of biofilm 

formation [25] 
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Flgure 1.13 - Single pass sheI1-and-tube type heat exchanger [24] 

1.5 Sanitization - Bacterial Control of PharmaceuticaI Water Systems 
Recently the cIeaning of pharmaceutical facilities and production equipment has 

become one of the most important Issues in the pharrnaceut~cal ~ndustry [lo]. 

Sanltlzatlon 1s the process of cleans~ng each component that contributes to the 

process of water purification. Sanitization is necessary in &the reduchon of harmful 

bactena in process waters that can compromzse the quality of manufactured product 

Sanitrzatron IS however not consrdered an absolute phenomenon, only servlng to 

partially remove organisms Free-floabng bactend population is ellrnmated, yet 

surface attached biofilm can remain on equipment walls [4J Hence cleaning 

validation is required to ensure the desired contarnmants have in fact been removed, 

and that all process equ~pment has been sanitized to an appropriate level. Val~datron 

of san~tization has now become a pnmary focus of both regulatory agencies and the 

industry as a whole [lo]. Var~ous methods of sanitiz~ng water systems withln 

rndustry are employed The~r application and frequency IS dependent upon the 

manufacturer's desired water qual~ty. 



The main methods 1261 used for mcrobiolog~cal control m industry Include; 

- Mamtenance of p~pmg at elevated temperatures 

- Use of chemical d~smfechng agents 

- Use of sterrl~zing radiation (IN) 

- Clean-In-Place (CIP) which renders pxplng chemically clean 

- S team-In-Place (SIP) followed by the use of stenle barriers 

B~opharmaceutical operatzons are typically based upon 24 hour per day, seven days a 

week productron. Pharmaceutical faclllties may utlllze some or all of the cleanxng 

methods menttaned above to ensure a stenle system For example m a 2417 

operatron, CIP may only be part of a typical 8-hours turn-around (dirty to clean) 

cycle whlch also includes SIP and the associated heat-up, cool down, and ~ntegnty 

testlng [22]. 

1.5.1 Sterilization 
Pharmaceutical water systems may operate at amblent temperatures or contain water 

at elevated temperatures. Hlgh temperature systems (180°C) are termed self- 

sanltiztng as water temperature is cons~dered sufficient to naturally h l l  bacterla 141 

Ambient systems require the water to be heated to 80°C for a fixed perlod of tlme 

before cooling the system back to distribution temperatures in order to kill harmful 

bacteria. 

The effectiveness of stenhzatlon in bacterral control IS accomplished by a 

combination of exposure to contaminated surfaces and temperature [28] However 

maintaining d~stnbution temperatures above 80°C will only llmit bacterial 

prohferat~on [2] Sterilization should not be assumed a complete phenomenon but be 

Incorporated as part of flush~ng techques andor CP or SIP procedures 

1.5.1.1 Bacterial Kill Rates 
Temperature 1s one of the key parameters Influencing growth, propagation and 

surv~val of all waterborne organlsms [29J Although temperature ranges where 

organlsms exhibit their greatest or Ieast growth ex~st, it IS widely accepted that 

rncreasing temperatures above a garhcular pornt wlll destroy m~crobes affecting a 



sterilizing consequence Optimal temperatures for growth tend to occur near the 

upper l ~ m t s  with lethal temperatures occumng only a llttle above optlmal 

Durlng sanit~zation, bacterra subjected to heat are lulled at a rate dependent upon 

temperature of exposure and the time required at this temperature to accomplish the 

desired destruction rate. The D-value of an organism IS a measure of its heat 

resistance. It is given as the hme requlred destroying 90% of organism populabon at 

a glven temperature Z-value reflects the temperature dependence of a reaction. The 

Z-value 1s defined as the temperature change requlred alterlng the D-value by a 

factor of 10 

Pseudomonas uerugznosa 1s a gram-negative organism typicaIly found in aqueous 

biofilm Gram-negahve organisms are known to shed endotoxins whch can cause 

sickness when lnj ected into humans [4] Pseudomonas microbes find adequate 

nutrition even m waters of extremely low nitrogen and carbon content Cpmfied 

waters). The FDA stated that the presence of Pseudomonas in WFI would be cause 

for its rejection [4]. 

The optlmal growth of Pseudomo~aas aerugtnosa ranges from 28-38OC [30]. 

Pseudomonas aerugznosa do not survlve temperatures of 60°C or higher for any 

extended periods of hme, although the contact hme required to kill them is Ionger at 

60°C than at 80°C Reported D-values [31] of Psezkdomonus aerugznosa in water are 

shown in table 1 -5.  

Table 1 5 - D-values of Pseudomonas aerugmosa 

Temperature (OC) 

50-58 

60 

70 

Time, t (mixls) 

< 5 

2.6 

1.3 



Figwe 1 14 represents the D-value for Pseudomonas aemgznosa at a temperature of 

70°C 

Figure 1.14 - Pseudomonas aerugznosa D-value at 70°C 

1.5.2 Ultraviolet Radiation 
Radiant energy from ultraviolet (UV) light induces a photochemical reactron In 

micro-orgamsms inh~bitlng thelr growth 141 In higher doses W radiation can kill 

such mlcro-organ~sms. UV radiation methods are used both dmng the pre-treatment 

stages of water purification as we11 as durlng poltsh~ng pnor to pod-of-use 

application UV 1s generated via hscharge lamps conslstmg of glasslquartz tubing 

containing an Inert gas and metal. MercuryIAragon lamps are favoured for high 

efficiencres and performance [4]. 

The bacterial destructiveness of UV radiation IS wavelength dependent. Organ~sms 

exhibit different sensitivities to drfferent parts of the W spectrum [4]. However 

organlsm destruction is not only dependent upon UV wavelength but also radlatlon 

mntensity, dwatlon of exposure as well as the medium through which the llght is 

transmitted Suspended p ~ t ~ c l e s  In the rnedlum have the potential to absorb W 

~adiat~on destined for undes~red bactena As such, t h ~ s  rned~a must be removed 



upstream prlor to W &sinfection processes. Additionally care must be taken to 

ensure UV lamps are dirt-free 

UV dosage IS a funchon of both radiation mtensity as well as exposure time. The 

rn~nlmurn recommended dosage for high-punty water treatment IS 100mJlcrn2 [4] 

(area refers to lamp geometry) Radiation exposure rs also based upon water flow 

velocity and the geometry of the radiation chamber Should the suspended media 

travel at excessive velocit~es through the chamber rnmimum requlred absorption may 

not occur. 

1.5.3 Clean-In-Place 
Clean-In-Place refers to the process of cIeamng systems and equipment without 

major disassembly of process components [22]. CIP lnvolves the introduction of 

chemical cleaning agents into the existing water distrlbuhon system. Chemical 

solutions of alkal~, ac~d and sodium hypochlorite are used to aid the removal of 

contam~nants . Sufic1ent but not excessive chem~cal concentrations, temperature and 

force are applied to the lnternal surfaces being cleansed. CIP allows the cIeaning 

solut~on to be brought into contact with all solled surfaces of the process equipment 

by a sequence of drammg, msing, washing and rinslng [32]. 

The cleaning sequence lnvolves a series of preset manual and automated operations 

Manual cleanlng IS considered unsafe and the standard of cleaning is typically much 

less effective and consistent compared to a fully automated CIF' procedure 1213. 

Addihonally autornahon reduces system maintenance costs, produchon down-tlme 

and improves operator safety [22 J 

CIP utillses hlgh pressure pumps, spray nozzles and spray balls permanently or 

tempormly installed in the system to ensure chemical soluhon contacts all necessary 

surfaces. Certain equipment such as ball valves, globe valves and gate valves are 

considered not suitable for HPWS as p a t s  of their surfaces may not be exposed to 

the steriliz~ng agent dunng CIP. 



Once the CIP process has finished and the final nnse has been performed, rt is 

necessary to ensure the complete removal of all cleanlng agent residue All sections 

of pipe must have an adequate slope to encourage the flow of materia1 under gravlty 

out of points such as elbows, valves or specially installed openings for dranage A 

slope of at least 1: 100 for all pipework 1s recommended to guarantee self-draming 

[21. 

Once CIP is complete, teskng is performed to ensure desired contaminants are 

removed from the system and it has now been sterrhzed to an appropr~ate level to 

return to production Microscopic counts, filtration tests along with other 

contamnant counts are performed as verrficatlon 

1 S.4 Steam-In-PIace 
StenI~zation by steam or Steam-In-Place lnvolves draining the system, pressunzahon 

by steam, ventmg and refill~ng The sterilizat~on of WFI systems should not be 

attempted with mdustr~al steam as it may contain chemical additives and will not be 

fiee of pyrogens [2]. Although steam-stenl~zation IS considered energy wasteful, it is 

probably the most widely used sanitization method wthin industry [2]. 

CIP operations are often used in conjunction with SIP. In fact CIP performed pnor to 

SIP procedures can a d  steam-stenlizatlon. CP serves to remove chlorides that may 

cause stress corrosion when heated, along w t h  proterns that can become 'baked' 

onto equipment surfaces by steam [22] A system designed for CIP can be readIy 

adapted to perform SIP operahons. Additional hardware such as steam traps, vent 

valves and resistance temperature devices (RTD) are necessary to control and 

withstand the steam sterlllzat~on cycle [32]. 

Entrapped alr 1s recognised as the greatest impediment to the effectzveness of steam- 

sterilizat~on because ~t retards heat and moisture penetration [28] As such vents and 

bleed valves w~thtn the system allow advancing steam to displace entrapped air 

Durlng the SIP cycle it is accepted that steam temperature wlll decrease dur~ng heat 

transfer Condensate steam water (<lOO°C) must be removed by dramage as this wlll 

reduce sterllizat~on temperatures Self-dra~ning capabil~ties are important for systems 



incorporat~ng SIP stenlisation as the required sanitiz~ng temperature of 121°C could 

not be guaranteed m parts of the system where residual water 1s present [2] 

1.6 Dead-legs - Formation in a High Purity Water System 
Dead-legs have the potential to jeopardize the manufacture, cleanmg, sm~tization as 

well as stenl~zat~on of HPWS. Regardless of the pretreatments and costs expended 

to secure the desired microbial level of production water, dead-legs can critically 

compromise water quahty. 

A dead-leg is an unused sect~on of piping that contans or~gnally sterlle product 

waters. They represent a weak point in systems as transport into them IS not dlrectly 

affected by recirculation [26J Dead-legs are effectively stagnant havens where 

organisms can attach themselves to surfaces, flomsh and develop into a biofilm 

unhsturbed by scourlng water flowrates [4]. The lirmted or stagnant flow with~n 

such sechons promotes the growth of biofilm with111 the dead-leg, which can expel 

organisms ~ n t o  the man stream of fluid. 

Frwe 1 15 shows an example of a tee-section dead-leg. Static waters remain trapped 

once the operator doses the branch valve. The length of the dead-leg is calculated 

from the centre of the m a n  loop to the end of the branch-leg (length A-1-B+C) 
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I- 
DEAD LEG DIMENSION 
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Figure 1.1 5 - Dead-leg dimension 

However the formation of dead-legs is not restricted to tee-section configurations. In 

distribution networks, dead-legs can fom where process equipment connects to the 

water system. When the equipment is not required and connecting valves are closed, 

water stagnates. Consider the equipment attachment in figure 1.16. Should process 

operators open the main isolation valve before the point-of-use valve then the main 

stream will contaminate with dirty water. Methods such as regular line flushing or 

slow constant: flow from point-of-use can alleviate such problems 
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Figure 1.16 - Dead-leg at equipment attachment points 

Consider the example of dead-leg formation in the ball valve shown in figure 1.17. 

Closing the ball valve across traps fluid, which remains stagnant until the vaIve is re- 

opened. Upon doing so, the main stream is exposed to contaminated waters and 

downstream flow may be compromised. The FDA state that such valves are not 

considered sanitary valves since the center of the value can contain water when 

closed [5].  This is a stagnant pool of water than can harbor microorganisms. 



OPEN 

Figure 1.17 - Dead-legs in ball valves 

Pumps have been known to fail and for th i s  reason some systems have been installed 

with run or stand-by units. However the incorporation of an additional pump can 

lead to significant dead-legs in the system due to stagnant waters in the unused pump 

or piping. A risk also exists that should a section of process equipment be removed 

post-instal1ation, a dead-leg can form from the overlooked section of piping that 

remains [2]. 

In an effort to eradicate dead-legs from process systems equipment manufacturers 

bave developed specialized attachments. Specialty take-off valves, similar to figure 

1.18 create minimal or 'zero dead-legs' at instances within the main loop. 

Figure 1.18 - 'Zero dead-leg' take-off valves [39] 



'Zero static' tees are designed to reduce inherent dead-legs and seas of posslble 

product entrapment. As illustrated in figure 1 19, these tees consist of a section of 

pipe routed to point-of-use complete with take-off valve mhimlzing statlc fluid flow. 

Figure I .  1 9 - 'Zero static' tee [3 91 

Such specialxzed valves ensure conformance to the 6d-rule yet some areas remain 

where bacteria can proliferate under stagnant flow conditions The presence of 

clamped connections to reduce dead-legs may not justify the presence of gaskets or 

headed areas [40]. 

1.7 Biofdm - The link with Dead-legs 
Biofilm 1s fie accumulation of micro-organisms and their excretions onto surfaces of 

a water treatment system [33] A bacterial matm or covering known as glycocalyx 

forms on surfaces and acts as a barrier that traps orgamsms away from the water 

source generahng blofilm growth, The adhesion of orgamsms to the surface of pipe 

walls encourages the formation of adhtronal organisms to system surfaces Figure 

1.20 illustrates the mechanism of biofilm attachment to surfaces. 

Biofilm detachment is a determimg factor for biofilrn formation, because it is the 

primary process that balances growth [34] Self-replicating brofilm can compromise 

the microbial integrity of liquid w th  shed orgamsms Therefore WFI and Purified 

waters m contact wth biofilm could be s ~ c i e n t l y  contaminated with undesirables 
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F~gure 1 20 - Stages of biofilm formation [33] 

Tests are performed in Industry to monitor the amount of suspended organisms m an 

aqueous medium which represent plankton populatron Worryingly organisms that 

attach themselves to plant pipe walls will not flow freely wlthin the body of 11quid 

and would not feature m plankton samples Accordingly satisfactory plankton levels 

may not lnd~cate the true magnitude of biofilm formation wthin the system In fact 

in environmental and industrial flow systems the majonty of bactena are attached to 

surfaces 11 21 

1.7.1 Surface Finish Characteristics 
Regardless of the quality of valves and pipes b~ofouling can be expected. However 

smooth surface finishes are considered slower at permitting b~ofiIm formation than 

rougher surfaces [ 121. 

Pun9 water devo~d of ions IS often referred to as 'hungry water' [ 121. Minerals that 

would otherwise have deposited a protective coahng on matenals upon contact are 

removed by de-iomzmg or other water soften~ng processes making waters h~ghly 



corrosive. SS p~pework offers desirable corrosive resistance to 'hmgry water' 

Internal variations (peaks and valleys) however m SS pipes with heights as little as 

4pm can successfully house bacter~a and permit b~ofilm formation 131. 

Swface Profile 
height 

Unpotshed Casting 
@a=4 5 p )  

Vacublast F o r m  Mmor Polish Forpg  
@= 1 6 ~ )  (Ra = 0 25& 

Figure 1 21 - Bacterial movement due to surface roughness [3] 

The surface profile of an unpolished SS pipe is shown m figure 1.21 Polishing 

techlques are employed to reduce surface roughness. A polished SS surface with Ru 

< 0.2pm permits contammahng bacteria to be swept away during cleaning 131 

Electropollsh~ng can achieve a high standard of surface fimsh (up to 0 2 5 p )  

provided the part is pre-polished mechan~cally 1351 Therefore since blofilm is a 
..a surface phenomenon - the rougher the surface the higher the possible presence. 

1.7.2 Flow Velocity and Recirculation 
Dead-legs and regions of low velocity flow can signify areas of particular b~ofilm 

presence The magnitude, structure and inducbon bme of biofilm formation is 

influenced by fIwd velocity [36].  Research 1371 has shown induct~on times for 

biofilm formation at high veloc~t~es were over three times greater than that of low 

velocity mduction tmes  Reduced ~nduction ttmes at low velocities are owing to the 



11m1ted shear forces actlng at prpe walls M~n~mal  shear forces permit bacterial 

elements to attach to prpe walls 

Planktonic samples do suggest that bacter~a presence is higher in stagnant flow 

conditions. However as mentioned prevlous such samples primarily record free 

floating organisms. As velocity is increased these free floatmg organisms migrate to 

contamer walls where they form as biofilm [4]. Subsequently free floahng planktonic 

counts are reduced indcating an overall ~mproved microbial situation Yet an 

increased quanhiy of biofilm may have in fact occurred. 

Lrm~ted recirculation of flriids in dead-legs results m reduced mxing o c c u m g  

wthm the section branch. C~rculat~ng flow magnitude within dead-end plpes 

observed as Inner plpe surface shear strength xs considered the major contributory 

cleanrng force [lo] Lack of turbulent flow results in lower wall shear stresses which 

effectively leads to reduced cleaning actions. Recent research [20] confirms wall 

shear strength as the controlling parameter of b~ofilm growth as opposed to specific 

distribut~on loop velocit~es 

Cleanlng solution rec~rculation and temperature are essentral to maintain efficient 

CIP procedures [9]. Malnta~nlng system temperatures above 80°C is shown to aid the 

reduchon in the presence of blofilrn [38] Although h~gh temperature sanitizat~on 

serves to eliminate free-floating bacteria, sessile or surface attached biofilm remains 

protected by the surrounding glycocalyx film In relation to dead-legs and biofilm 

content thereof, it IS difficult to explain why dead-legs should be conducive to 

organism growth except where heat is involved; turbulence makes for good heat 

transference [4] 

1.8 Dead-Iegs - Sanitization Difficulties 
The threat dead-legs can pose to d~str~butlon loop cleanmg procedures are of 

particular concern Dead-legs have the ability to compromise the overall 

effectiveness of automated cleanlng procedures ult~mately leading to contarnmated 

product waters. 



1.8.1 Sterilization Issues 
The lack of re-circulation at the base of the dead-leg contributes to lower 

temperatures in the branch As sucb water contalned wthin the branch tends to be 

cooler, having been passed less frequently through a heat exchanger The inability to 

reach required stenllzatron temperatures contributes to a reduction m the destruction 

of micro-organisms H~gher loop velocities can increase eddy drfhs~on down the 

dead-leg branch [40]. The increased presence of eddies may contr~bute to improved 

heat transfer generating greater fluid temperature w~thln the branch 

The possible detriment a dead-leg can have upon san~tizatlon can be determuled by 

the length of the dead-leg The overalI cleanab~lity of a dead-leg pipe wlthin a 

dlstnbut~on loop is cons~dered a function of both f lu~d  veIocity and the branch 

1engWdlameter (lld) ratio of the dead-leg itself [41] However the mdustr~ally 

accepted design gu~delme of l/d = 6 is generally not considered sufficient to sanitize 

dead-legs, w ~ t h  ~ndustry experts recommendmg Ild 5 4 12, 9,263 

1.8.2 Clean-In-PIace Issues 
Dead-legs can retarn contaminants making full removal of soiled waters difficuIt 

durrng CP procedures In an effort to remove these waters ~ncreased cleaning cycle 

tlmes are requlred This leads to increased plant effluent and usage of valuable hlgh 

qua11ty waters The most expenswe stage of the CIP process is the finaI nnse due to 

the large volume of WFI or Punfied water requrred flushing chemicals from the 

system [41] 

Dead-legs also pose difficulties dwlng the cleaning stage of CIP procedures 

Cleaning chemicals may not diffuse down the entire length of vertically orientated 

dead-legs. Thrs can result In regons of ~nner plpe stirface rema~ning unexposed to 

cleaning solutron concentration for an acceptable length of time or temperature 1401. 

Should the dead-leg end wrth a valve, pulsing the valve open several hmes dmng 

each cleaning step ensures that the entire Iength of the dead-leg sees fresh chemicals 

and also cleans the vaIve seat. A dead-leg cleaned rtl  thls manner may not require 



str~ct adherence to the 6d-rule and the use of conventional san~tary fittings IS 

sufficxent as opposed to 'zero static' valves 

Optimum cleamng occm wlthin pipmg when flow rate yields a Reynolds Number in 

the turbulent regime [41]. Turbulent flow will increase fluid movement towards plpe 

surfaces where the solvent can mix and react w t h  proteln or other contammanis, 

assisting m movmg the resultant mlxture away from the ~nternal surface [22]. 

Diffusion and convection are the controllmg elements of clean~ng k~netlcs m dead- 

legs [41] Alternatively Irmiting branch length may alIow Inner pipe walls to be 

susceptible to recirculation cleanlng at normal velocit~es [9]. 

1.8.3 Steam-In-Place Issues 
Dunng SIP procedures importance IS placed upon achieving the requlred stenllzation 

temperature of 121°C at every pornt wthin the distribution loop equipment Fallure 

to maintain set-pomt temperature results in partial system stenlizatlon [8]. Trapped 

lzquid and air within system p~pework serve as potenbal thermal resistors The 

temperature of steam IS effectively lowered at such instances, fiereby reducmg 

stenIizing effects. Unless 'zero dead-leg' valves are ~ncorporated Into system des~gn, 

all mr vents have the potential to yield dead-legs [Z]. 

Failure to adequately remove particle deposits during stenllzation and CIP 

procedures leads to further d~fficuIties during SIP. Blofilm for example remaining on 

pipe inner walls can cause less efficient heat transfer and lower wall temperatures, 

thereby reducrng the stRn11z1ng effects of steam upon those surfaces 181. 

Dead-end geometr~es represent a severe challenge for the removal of air [28]. The 

physrcal onentailon of dead-legs 1s an ~mportant issue concerning systems 

incorporating SIP procedures Research [28] has shown that dead-legs orientated 

vertically upward reached steam sterrlizatton temperatures over a shorter length of 

time compared to horizontally mounted pipes Dead-legs mounted vertically struggle 

to achieve sterilization temperatures, filling with condensate protecting the dead-leg 

fiom the full steam temperature 



Branch diameter also has a slgnlficant effect upon SIP procedures. The txme taken to 

achieve sterllizatlon temperatures decreases with respect to increased pIpe diameter 

1271 Increased pipe diameter can negate the effects of negatlve dead-leg orlentation 

As suck dstr~bution loop designers must strike a balance between the optlmum dead- 

leg onentations for steam (vertically upward) and for clean (horizontal) operations 

1.9 Research of Piping Dead-Iegs 
In the ever e x p a n d  pharmaceutical industry with increasingIy slmgent 

regulatrons, the elirn~nation of design flaws such as plplng dead-legs has become 

ever cnhcal. 

Contamination issues assomated wlth piping dead-legs and the dangers they pose to 

the sanitary consistency of HPWS has prompted extenswe research Into the fluid 

dynamics associated wltb such phenomenon 

Research has attempted to descr~be the physical parameters affecting dead-legs and 

how the manipulahon of these can reduce or at best eliminate assoczated 

contamination risks 

Early research by Bates et a1 [42] identified flow charactenstlcs m an equal diameter 

90" tee-secbon for branch and straight flow scenarios Uslng Laser Doppler 

Anernometry (LDA) to descrrbe flow conditions, a flow ~nduced cavlty with swirllng 

rnohon was zdentified within the branch section 

In research by S~erra-Espmosa 1431 the author argues that the majority of previous 

research had assumed symmetrrcal fluid motion in tee-sections Statlc pressure 

analysis across the branch exit indicated however the presence of asymmettlc 

pressure cond~tions. Such asymmetry the author claimed was a result of dynamic 

three-&mensional swlrl flow m the branch as opposed to a mere reclrculatmg reglon 

LDA measurements along the branch exzt indicated h~gh  velocity flow along the 

downstream wall wlth lower, negatlve magn~tudes occumng along the upstream 

wall. Changes m boundary layer behavlour at the entrance of the branch were also 



noted. Boundary layers change from separated-rec~rculating flow along upstream 

branch wall to t h ~ n  jet-Ilke layers along the downsbeam wall posltlon 

Recent work by Nakamorr et a1 [44j ~dent~fied Issues surroundxng dead-legs in piplng 

lines wrth~n nuclear power faciIities The author highlighted the occurrence of 

thermal strat~fication and thermal cycling effects in vertically onentated reduced 

diameter dead-end plpes 

By placing themocoupIes along the outer wall of branch pipes, cavity flow 

penetration depths were deterrn~ned from outer wall temperature d~stnbutlon. 

An mcrease m cavlty flow penetratton length w ~ t h  respect to ~ncreased marn loop 

velocity was noted It was determ~ned that reduced penetrahon depth occurred for 

non-isothermal conditions due to dei~sity differences between warm and cool fluids 

w i h n  the branch. A mathematical expression between cav~ty flow penetratton depth 

and maln loop velocity was developed and experimental results compared well with 

numerical analysis. 

The issues associated wlth piplng dead-Iegs durlng sanitizat~on operatrons are of 

parbculax concern Dead-legs can retam contam~i~ants thus requiring addxtional 

flushing They are also prone to llrn~tlng the adequate diffusion of chemicals into the 

branch thereby reduclng the effect of cleanmg solution 

Earlier work by Noble [26] analysed the transport of thermal and ozone disinfectant 

dunng stertl~zlng treatments with respect to piplng dead-Iegs Research focused upon 

methods m wh~ch fluld 1s transported Into dead-legs, turbulence from attached 

convect~ve stream, natural convection xn thermal systems and diffusion. Ustng a 

mathemat~cal expression, t egrons of dead-leg flow were separated ~ n t o  turbulent, Gee 

convect~on and hffusive transport zones of dominance. 

It was argued that beyond the turbulent zone In vertically downward dead-legs, 

thermal transport is accomplished vla diffusion effects Based upon mathematical 

methods Noble predicted that substantial temperature drop occurred within this 

diffusional zone. 



Noble alluded to the presence of heat conduction m the walls and its significant role 

m heat transport, assistmg the transport of energy within a dead-leg branch An 

equatron was developed for diffusional thermal response time wlth appllcatlons to 

CIP sanmzations 

Recent research conducted by Haga et a1 [I 01 studled relahonships between dead-leg 

length and flmd flowrate and the effect these parameters had upon cleanmg 

temperatures and tlmes during C P  operations 

By placrng a fixed amount of contaminant at the base of a dead-leg branch and 

passing cleanlng solution through a maln loop, the effect loop velocity and branch 

length had upon dead-leg cleanabllity was momtored. Analysis was performed using 

an equal branch dlameter tee-section of 23mm. Results indicated for lld = 6, loop 

velocity <2m/s was requlred to immediately remove residue. However lower maln 

loop velocity of 0 5 d s  was sufficient to remove residue for Vd = 2 8 

Coupled w ~ t h  expermental results, computational simulation was used to inveshgate 

cleaning nlechan~sms Results confirmed ~ncreased maln loop velocities (>2 O d s )  

generated larger regions of recirculating flow tn the dead-leg branch The author 

suggested that circulatmg flow magnitude was assoc~ated with wall surface shear 

strength bvh~ch contr~buted to Internal cleamng. The author concluded the 

cleanabil~ty of dead-end sections must be considered in terms of both lld ratio and 

main loop velocity 

Entrapped air in dead-leg geomemes can severely impede the effectiveness of steam 

s tenlizabon as ~t retards heat and moisture penetration Work performed by Young et 

a1 [28] provided insight into parameters affecting heat and mass transfer durlng SIP 

operations in varrous dead-leg branch diameters SIP sterilizahon was governed by 

heat and mass transfer whzch were dependent upon equipment geometry and size. 

Steam temperature was monitored using thermocouples secured to a nylon string 

positioned along the centreline of an operattonal branch. 



Cycle Log Reduction (CLR) times (time taken to reduce bacterial populat~on by 1 

log) were compared w~th  D-values of Baclllus stearothermophzlus in stainless-steel 

tubes 0 4 - 1 7cm ID and 9.4crn in length. 

It was drscovered that dead-ended tubes orientated at 5' to the honzontal resulted in 

temperature decrease as distance up the tube increased, At szrn~lar branch pos~tlons 

greater temperature decreases were ev~dent m vertically upward tubes compared wlth 

5" honzontal dead-ends 12-log reduction m spore populat~on took 50mms in 

vertically or~entated 1.7cm tubes whereas 167mms was requlred for 1 Ocm tubes. 

In relat~on to mass transfer the author concludes that retarhng viscous forces 

Increase with tube hameter resulting m hlgher transport of steam up the tube and 

removal of aE from the top of the tube 

Increased computer processing power and the advent of Computational Flu~d 

Dynamics (CFD) afforded researchers the opportunity to investigate hlly turbulent 

conhtions o c c m n g  within tee-sections. Although beyond the scope of this research, 

CFD analysis has provlded insight mnto flow behaviour in dead-ended branches 

Recent research by Corcoran et al 1451 identified flow character~st~cs in equal 

diameter branches under both divided and dead-leg flow scenarios The author 

hghhghts flow scenarros in a 50mm diameter 90" tee-sect~on uslng a numencaI 

model based upon earlier Laser Doppler Velocimetry (LDV) data [43], 

Us~ng CFD models, regions of low turbulence were identified wthm the dead-leg 

branch Branch wall analysis provlded areas of low veloclty and low wall shear 

stress; condltlons the author argues are conjugative of biofilm development. 

Flow visualizat~on provided by a two-dimensional flow plate collaborated well with 

CFD find~ngs, ldentlfylng a slow mowng vortex clrculatlng flud mto the branch 

along the downstream walls Dye injected into the base of the two-dimensional flow 

plate branch revealed stagnant flow conditions. 



Negahve effects of piplng dead-legs are not llmlted to pharrnaceut~cal applications 

In the oil and gas Industry dead-leg corroslon presents the highest percentage of 

~ntemal damage to p~pelines [46]. 

Research conducted by Hablb et a1 [46] anaIyzed the effect dead-legs had upon pipe 

corroslon in piping systems transporting crude oil and water solutron. Uslng 

computatlonal fluld modelling in conjunction with Laser Partrcle Image Velocrmetry 

(PIV), the author described flow field geometry and orientation in reduced d~ameter 

dead-leg branches Analysls included horizontal and vertical branch orlentat~ons 

using fixed inlet velocities with l/d ratios rangrng 1-9. 

Flow visuaIlzat~on studies correlated well w~th computatlonal analys~s It was 

concluded that no stagnant zones ex~st for l/d < 3 for vertical onentatrons For ratros 

l/d > 3, reglons close to main loop flow are character~zed by vertlcal fluid 

circulation. The rema~ilder of the branch was shown to rernatn stagnant 

Research by EI-Shaboury [47] lnvestlgated forced convection in equal and reduced 

area ducts usrng computahonal rnodelllng It was determ~ned that branch flow 

parameters were strongly influenced by branch-to-inlet rat~o. Reduction in ratio 

resulted in decreased vortex magn~tude wlth~rl the branch The slze of the re- 

c~rculahon zone was also shown to decrease with Reynolds Number 

The author also suggested that for a reduced branch slze which constitutes less area 

compared with an equal area branch size, heat flux will Increase as the flurd has Iess 

area wlthin wh~ch to transfer 

A review of research to date has mdicated that flow behaviour w~thln capped tee- 

secttons is complex m nature. The presence of rectrculatrng vortrces 1s hlghllghted m 

dead-leg branches, the magnitudes of which can vary w ~ t h  inlet veloclty Branch 

flow dynamics m general are shown to change with respect to branch depth and 

position. 

Certain key parameters affecting re-circulating flow magn~tude In dead-legs are 

h~ghltghted W ~ t h  respect to CIP procedures In distnbut~on systems with dead-legs 



present; loop velocity along with branch length and diameter are recogn~sed as the 

cruclal factors affecting cleanability The manipulation of such parameters therefore 

may contr~bute to dead-legs of acceptable configurations, 

However the general consensus of dead-leg researchers is that the 6d-rule is in fact 

flawed. Fluid dynarnlc studies cont~nually descnbe the presence of stagnant zones in 

dad-leg configurat~ons 5 6d. This could lead to the construct~on of possibly 

contaminating system dead-legs which are deemed acceptable based upon 6d- 

regulation. 



1.10 Objectives of Thesis 
T h ~ s  research aims to rnvestigate the sanitization and cleaning ablllties of plplng 

dead-Iegs considered within the llmlts of Industry recommendations Analysis offers 

the opportunity of identtfymg the thermo-flmd charactenst~cs of dead-legs with 

respect to varylng branch configurat~ons and loop operating veloc~t~es Consideration 

of any find~ngs w ~ t h  part~cuIar appl~cation to the 6d-rule will be explored in terms of 

the destruction and removal of conta~nlnants under flow cond~tions 

Expermental d~scusslon will focus upon, 

- Evaluatlon of dead-leg thermal profiles detallng nlaxtmum temperature and 

profile patterns 

- The fluid dynarnlcs contribut~ng to, if any, reglons of cooler stagnant waters 

withlo dead-legs as well as factors contr~butmg to the scale of fluid m~xmg 

- Cornpanson of branch temperature and flmd dynamlcs with respect to fixed 

dead-leg geometry rat~os 

- Determination of the heat transfer mechmisms occumng in dead-leg branches 

- The effect of Ioop Inlet velocity upon dead-leg temperatures. 

- The application of non-mtrus~ve techniques to determne methods of calcuIatlng 

dead-leg temper atwe based up011 surface temperature measurements. 



Chapter 2 Materials and Methods 

Experiments were performed uslng capped 90" tee-sect~ons fixed to a smgle pipe 

dlstribut~on loop A schemat~c of the distrtbution loop IS shown In figure 2.1. A11 

prpework and component fittlngs were supplied by Leslie Reynolds & Company 

Pipework and fittings were manufactured fiom 3 16L SS with 50mm outer diameters. 
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F~gure 2.1 - Schematic of slngle loop f lu~d ng 

All pipework was insulated w th  15mm th~ck ~nsuIatlon supplied by Marr Insulation 

Ltd. to reduce heat Ioss vla wall conduction Sect~ons of prplng were mach~ned to 

required lengths and all fittings were butt welded uslng a Tungsten Inert Gas (TIG) 

welder. Gas purging was performed on internal pipe surfaces to ensure welds were 

flush with ~nternal plpe walls Sectlons of pipework were wall-mounted uslng wall 

brackets manufactured by DCU englneemg workshop Manufactured from 

aluminium, they provided adjustable fixing to ensure accurate levelling and sloplng 

of pipework where necessary 



To ensure fully developed bulk fluid velocities and sufficient turbuIence Intens~ty 

profiles approach~ng the tee-section, a straight length of pipework was mstalled 

Calculat~ons for sultable hydrodynamic entry length were based upon the equation 

{I) for turbulent flow at 'ihe rnax~nrum operational loop veloclty Ip8J 

Lh 5 4 4D (Re) ' I 6  (1) 

Exit and entry lengths af 1 5m and 3m respectively where as those used m s~m~lar  

experimentation procedures 1421. 

2.1 Pump 
A constant speed multi-stage Grundfos CHI 12-10 centr~fugal pump supplied by 

Grundfos Ireland Ltd was installed to generate requ~red water velocit~es Shown m 

figure 2.2, the pump (1) is slmilar to those used m slngle loop systems with111 

industry [4] Pump housing and impeller were manufactured from SS wth carbon 

seals, capable of pumping th~n  non-explosive fluds between -1 5°C and +I 00" C The 

CHI 12-1 0 model has a rated flow of 1 0m3/h with rated head of 15m 

A 3-phase motor is controlled via an isolation swtch (4) mounted on the pump 

housing. The pump is complete w th  1 %" (3 8. lrnm) BSP female axla1 suctlon and 

radial discharge ports connected to supply (2) and feed lines (3) respectively The 

unit is complete wlth pressure gauge (5) and gate valve (6 )  supplied by Radlonics 

Ltd. used to regulate flow into the unit for manual control duxlng pump prlmmg All 

pipework was attached to ports using in-clamp brackets. 



Figure 2.2 - Cenlrifugd pump assembly 

2 2  Flow Regalation 
A D931 h e  valve supplied by BSS Ireland Ltd. was W e d  to mgulate system 

flowrate. Shown in figure 2.3, the valve (1) is complete with 1 '/a" (38.1mm) BSP 

female mmcti01ls attached to pipwork via in-house altered trimferrule fittings, 

t k b y  minimising total process welds. 

Flow is controlled using a valve-mounted microset hand wheel with d i a p m  seal. 

The accuracy of flow measurement is +/- 5% across the wheel settings. The valve is 

mounted vertically within the system using 50mm galvadsed wall brackets supplied 

by BSS Ireland Ltd.. The position of the valve at the highest point possibk in the 

distribution loop ensures pipework remained flooded and flow could be regulated 

accurately. 



Figure 2.3 - Flow regulation showing (1 ) Crane valve and (2) Flowtrak dial indicator 

A variable area flowrneter (2) supplied by Manotherm Ltd. was installed in the 

system vertically below the Crane valve to determine the setting of volumetric 

flowrate. As water passed through an orifice within the flowmeter, a float assumed a 

position where the forces created by flow were balanced by the weight of the float. A 

magnet in the float is then sensed by a Flowtrak did indicator providing a direct 

reading of volumetric flowrate. 

The wetted areas of the variabIe area flowmeter were manufactured from 3 16L SS. 

The device has an operating temperature range between -40°C and +200°C and is 

suitable for monitoring the flowrate of liquids or gases in industrial process lines. 

Accuracy is given as +1- 2'%0 of full scale reading. 

Pipework lengths of 10 and 5 internal pipe diameters were placed upstream and 

downstream of the flowmeter respectively. As per manufacturer recommendations, 

the placement of bends and other such fittings in close proximity to the flowmeter 

were avoided as such fiaings may disrupt flow and compromise steady movement of 

the internal float device. Additionally the flowmeter was installed to ensure it was 



not In proximity to areas of high magnetlc field or magnetic materials which may 

alter movement of the dlal recorder. 

2.3 Storage Vessel 
The storage vessel provided the voIunle of water necessary for adequate flowrates 

wlthln the loop pipework The storage vessel consists of an open tank 600mm m 

diameter and 1500rnm m helght manufactured by DCU engineering workshop Tank 

volume is 150L Storage vessel complete w ~ t h  Insulated 11d ( I )  is shown in figure 

2.4 

A cover was placed onto the tank to reduce heat Ioss to atmosphere Further heat loss 

was reduced by insulat~ng both tank and lid w t h  foam lnsulat~on supplied by Marr 

Insulation Ltd Lid and tank exterlor were insulated wlth 13mm and 15mm th~ck 

i~~su la t~on  respectively. The tank was placed upon SS supports to reduce heat 

conduction to earth. 

A butterfly valve (2) instaIled at the exit line of the tank enables tank isolat~on durlng 

maintenance and system drainage The feed lme to the pump (3) is doped to avord 

arr bubbles proliferating ~ n t o  the pipework The pipe exlt l ~ n e  (4) 1s positioned wrthin 

the storage tank to ensure that tt is fully submerged when the tank IS approximately 

% fill1 Thls ensured that the water flowed from the pipe e x ~ t  line Into the storage 

vessel in a untform manner as opposed to dralning from the section under gravity 



Figwe 2.4 - Insulated storage vessel and related components 

2.4 Heating Element and Temperature Control 
Elecfxical components relating to the heater element and temperatwe controIIers 

were housed in a galvanised box (shown in figure 2.5) supplied by John Denis 

Contracting Ltd. mounted to the laboratory wall. Each component was fused within 

the box to protect against electricd overload. 

A 9kW 3-phase SS immersion heater supplied by Ideal Ltd. was mounted to the base 

of the storage tank. The heating element increased water in the storage vessel to 

required temperatures based upon operator input via a Technologic TDF 11 

temperature controller. Both heating element and controller were supplied by Ideal 

Lid.. Water temperature was monitored via a wall-mounted T-type thermocouple 

within the tank. Temperature data was returned to the controller and a contactor 

switch was used to reactivate heating to maintain user specified temperatures, Figure 

2.5 displays the TDF 1 1 control unit (1) with wall-mounted master switch (2). 



Figure 2.5 - Galvanisad box containing TDF 1 1 unit and controls 

2.5 Tee-section Test Pieces 
A11 tee-sections were supplied by Petrochem Ltd. and manufactured by Stainless 

Fittings Ltd. as part of the Bioborem range. Test pieces (see dso Appendix A) were 

manufactmd h m  3 16L SS as part of active American Society of Testing Materials 

(ASTM) A270 T3 1 6L standards. Tee-sections were manufactured with sateen polish 

su&e finishes of 0.84.9 pn extemdly with a maximum internal Msh of 0.5 p. 

Figure 2.6 displays equal diameter branch tea-sections consisting of (1) 6d, (2) 4d 

and (3) 2d branch leg leng&Each section has 50mm outer diameter with branch 

lengths measuring 300mrn (6 x 50mm), 200mm (4 x 50mm) and 100mm (2 x 50mm) 

from the centreline the straight section. 



Figure 2.6 - Equal diameter tee-sections with accompanymg attachments 

The branch leg of test sechons was capped-off using a base-cap (4) tnth PTFE o-rmg 

seal (6) and tri-clamp assembly (7) to recreate a dead-leg flow scenmo A base-cap 

m a c h e d  by DCU engineering workshop incorporated compression fittings ( 5 )  

complete with mternal seals for thmocouple sheaths. Compression fittings allowed 

the manipulation of thermocouple depth and secured probe position during 

experiment 



Flgure 2 7 - Reduced drameter tee-sectron with accompanying attachments 

Displayed m figure 2.7 the 6d reduced branch tee-section ( 1 )  consisted of a 50mm 

outer diameter reducing to a 25mm outer hameter branch, 150mm (6 x 25rnm) in 

length measured from fie centreline of the stra~ght sect~on. Nylon inserts ( 5 )  

manufactured by DCU eng~neering workshop complete with PTFE seals were placed 

within the tee-section branch to restnct internal branch length to 50 and 1 OOmm to 

reflect 2d and 4d section flow respectively (see Appendix A). The base of the 

reduced diameter branch was capped-off uslng a base-cap (3) with PTFE o-mg seal 

(6) and tri-clamp assembly (2). Also shown I S  a base-cap (4) machned by DCU 

eng~neering workshop to ~ncorporate a thermocouple compression fitting 

Flgure 2.8 illustrates the dead-leg configuration with temperature measurement vla a 

base-cap inserted sheath-type thermocouple. All sechons where specified with 

ferrule ends to ensure ease of attachment to and removal from pipework assembly 

uslng PTFE seals and tri-clamp attachments. Test-sectlons were attached to the 

distribution loop wth a clearly defined inlet and outlet and subsequent upstream and 

downstream branch walls. 
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F~gure 2 8 - Schematic of dead-leg test section 

2.6 Data Acquisition 
Temperature measurement was performed using a Pico TC-08 data-logger suppl~ed 

by Pico Technology Ltd and attached T-type thermocouples. The data-logger (shown 

rn figure 2 9) measured bath loop fluld and ambient alr temperatures The TC-08 unit 

provided for cold junctron compensation as well as for thermocouple curve 

normalisation 

Attached to a PC via senal port, the TC-08 acts as a converter transfonn~ng the 

measured parameter (voltage across the thermocouple) ~nto  the desired system output 

(temperature recording) T-type thermocouples measured temperature on the rig 

whereby the TC-08 amplrfied the slgnal, feeding 11 to a 16-b~t analogue to digital 

(ADC) unit T-type thermocouples produced approx~mately 40pV voltage change 

per degree Celsius. Thermocouple tabIes relat~ng voltage to temperature were stored 



m the accompanying software Detals of hardware specifications of the TC-08 unit 

are described in table 2.1 

Figure 2 9 - TC-08 data-logger with attached thermocouples 

Table 2.1 - TC-08 data-logger hardware specifications 

Thermocouple types 

Nurnber of input channeIs 

Conversion time per active channel 

Standard accuracy 

Input connectors 

Environmental conditions 

T-type thermocouples consist~ng of SS sheathed and bead-types were suppIied by 

Inshurnent Technology Ltd.. The thermocouples cons~stmg of Copper and 

Constantan (CuNi) w e s  joined at both ends produced a measured current between 

ends when heated. Accuracy of the T-type thermocouples is detailed in table 2.2. 

B,E,J,K,N,R,S,T 

8 

200ms 

the sum of &O 3% and k0.5"C (cold- 

junction compensation) 

Mrniature thermocoupIe 

0-50°C/ 0- 95% humidity 



I Overnll Resolution (OC) ( O.l0C Resolution (OC) I 0.02S°C Resolution (OC) 

Table 2.2 - T-type thermocouple resolutions 

Flowate pressure was monitored upstream and downstream of the tee-section test 

piece wing two submersible Gems pressure tmmhmn supplied by Manotherm 

L a .  The, transducers mufactmd from 316L SS have a pressure range of 0-2.5 

13ar. Transducer output range of between 4-20mA was converted via the ADC-16 

unit and recorded. The ADC-16 unit (shown in figure 2.9) is a high resolution 16-bit 

converter offering 8 analogue input channels capable of detecting signal changes as 

small as 40pV. The hardware specifwtiom of the ADC-16 unit are displayed in 

table 2.3. 

-. * 

Figure 2.1 0 - ADC- 1 6 converter with power supply 

The pressure traducers were positioned lOOrnm upstream and downstream to 

measure potential pressure drop across the test-section during experiment. Changes 

in loop flowrate would result in vnhtiom in system pressure. Traducers were used 

as means of validating flowrate changes indicated by the F l o e  dial were local 



disturbances only, ensuring the desrred system flowrate was rnamta~ned for the 

durabon of the experiment. 

Table 2 3 - ADC-16 converter hardware speclficatlons 

~esolution 

Input range 

Sampl~ng rate 

Accuracy 

Input connector 

Outputs 

2.7 Pico-log Software 
The accompatiying Prco-Iog software was installed onto the PC connected to the TC- 

16 bits + srgn 
-- 

S . 5  V 

0 2% 

0 
1.5 samples per second 

025 female 

2 (fixed *5 V references) 

08 and ADC-16 units. The software continuously monitored readings horn the act~ve 

thermocouple channels and pressure transducers Software was complete with Plco- 

recorder and Plco-pIayer applications 

Pico-recorder was used to record data whlle Pico-player allowed the user to scroll 

quickly through stored files to compare previous results P~co-recorder monitored 

data in real-time modes providrng continuous recording over long per~ods of 

exper~ment Plco-log allowed the user to record as many samples as possible or a 

slngle sample across a recordmg ~nterval By recording as many samples as posslbIe, 

Prco-log saved an average of readrtlgs across the interval thereby prov~drng accurate 

results of a system that in t h ~ s  case was dynamically changing. 



Chapter 3 Results and Discussion 

3.1 Introduction to Analysis 
Results are presented for a thermal analysls of pharmaceutical dead-legs Results 

include dead-leg temperature profiles recorded over time for varied dead-leg lengths 

and branch drameters across a range of loop dlstnbut~on veloc~t~es 

Prellmlnary results are presented detailing ln~tial difficult~es encountered with 

expenmental techniques The resolutions of these init~al problelns are discussed. 

Final results are presentcd for a thermal analysis of 6d, 4d and 2d equal and reduced 

branch diameter tee configuratrons Results ~nclude; 

- Evaluation of the effect of ma~n loop veloclty and branch diameter upon dead-leg 

end temperature 

- EvaZuat~on of thermal profiles w ~ t h  respect to temperature, time and profile 

pattern. 

- Detailed d~scusslon of surtable thermal dead-leg condltlons wlth respect to 

branch dlarneter and length. 

- Evaluatron of comparable dead-leg fluid and branch surface temperatures m 

equal diameter dead-legs 

A thenno-flu~d analysis of pipe dead-legs 1s presented based upon expellmenta1 data 

reh~eved fiom an expermental flurds rig. 

Analysis of temperature lrrnlts with respect to dead-leg configuration 1s presented 

Recommendattons regarding dead- leg sanlt17atlon based upon heatmg times and 

maxlmum ach~evable temperatures are set forth An lnvest~gation of the application 

of non-intrus~ve analysis withln equal diameter dead-legs is performed 



3.2 Preliminary Experimentation 
All prelim~nary results are based upon data recorded dunng expenmental runs 

performed us~ng the fluid ng, testlng and data acquis~tion techniques described In the 

Equipment & Materials section previous. 

Dead-leg temperature Td, represents fluid temperature recorded at the base of a dead- 

leg Figure 3 1 displays loop temperature TL and dead-leg temperature profiles A and 

B recorded for separate expenment runs with respect to hme Profiles represent data 

recorded over a 10800s (3 hour) sample penod with temperature recorded in 1 

second ~ntervals Tune zero signifies the instance heating was actrvated m the system 

with thermal profiles representrng temperature recorded every 5 mlnutes 

I U 
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Figure 3 1 - Loop temperature profile and contrast~ng responses of Td 

The dead-leg temperature T d  recorded for both profiles at fixed time intervals durrng 

the experiment run are shown in table 3.1 Temperature is shown to vary between 

profiles wlth respect to tlrne. Loop flowrate recorded for profile A decreased by 25% 



over the duratton of the expenment The required flowrate was matntalned for 

profile B At t h s  stage ~t was deemed necessary to remove all major flowratc loss 

from further experimentat~on to ensure both accuracy and cont~nuity of results 

Following ~nvestigatlon it was determined that trapped pockets of air escaplng from 

loop plpework dur~ng system ramp-up to set-point temperature conttlbuted to drops 

In volumetric flowrate. As such, pnor to each exper~rnent run a cotnplete and 

thorough purging cycle was performed to remove all entrapped aIr from the system. 

The purge cycle consisted of slowly Increasmg system flowrate by set ~ncrements, 

along wth v~sual inspection of the storage tank for evidence of alr bubbles escaping 

from the pipe exIt line Once the system had been fully purged of air, flowrate was 

adjusted to required levels and Inspected perrodically for change. 

Table 3.1 - Thermal data of contrasang profiIe responses of Td 

Time, t (s) 
-- 

- I -  1800 
3600 
5400 

The profile of loop temperature TL shown In figure 3 1 represents flmd temperature 

measured by a T-type thermocouple positioned on the outlet pipe of the centnfugd 

pump This thermocouple records temperature m the distnbutlon loop post storage 

vessel where fluid 1s heated to required temperatures. 

The TDF 11 unit controls system temperature based upon an ONlOFF heating 

mechanism. Heat~ng occuls according to a fixed set-pant (80°C), with a user 

specified negatrve differential switching point, -6 Figure 3.2 illustrates the ON/OFF 

heatmg mechanism and resultant temperature response The dlfferentia1 swtchlng 

Dead-leg Temperature, Td (OC) 1 
Profile A 

22 21 92 38 
21 45 
22.03 

-. ProfiIe B 
22 52 

-1 
:;::I 31.26 

2 

7200 
9000 
10800 

23.43 
24.62 
25 89 



polnt 1s defined as the decrease m temperature necessary to reactivate heatlng once 

system set-potnt tempei ature has been achieved. 

This OWOFF heatmg process is reflected in the penod~c profile response of loop 

temperature represented tn figure 3 1 once set-point temperature of 80°C is ach~eved 

Thls response was accepted as belng inherent w~thln the system and cons~deratlon 

was taken toward thls profile response for all expenment results The differentla1 

value, 6, was shown to remaln below 1.6"C for all experimentation. 

Set-po~nt temperature (80°C) 

- 

Figure 3 2 - Negat~ve differential heat~ng and temperature response 



3.3 Final Experimental Analysis 
Havlng resolved preliminary testlng issues, final exper~mentat~on and analysts 

proceeded All experimentation was performed using the flu~d ng, testing equzpment 

and data acquls~tron techniques detalled m the Equipment & Material section 

previous Thermal data was recorded for equal and reduced branch diameter dead- 

legs of varying branch length across a range of distr~bution loop velocities 

Dlstribut~on loop flowrate was converted to bulk loop velocity Ub based upon 

volumetric flowrate and internal plpe diameter Reynolds Number calculated for all 

veIocities (see Appendix B) represented flow in the turbulent regzme [48]. Bulk loop 

velocltics and correspond~ng Reynolds Numbers are shown in table 3 2 

Table 3.2 - Conversion of flowrates to velocity and Reynolds Number 

Volumetric Flowrate, 
Q (Llmin) 

20 
40 
60 
100 
120 
160 

3.3.1 Temperature Profile Analysis 
Results are presented of data recorded for experimental runs as per the recording 

condlt~ons outlined for preliminary analysrs Ambient air temperature was 21 4 1°C 

for all expenmental runs Heater control set-point was fixed at 80°C Results are 

presented as per branch configuration (see also Appenhces C & D) 

Velocity, 
Ub (rnls) 

0 19 
0 37 
0 56 
o 94 
1 12 
1.50 

Reynolds Number, 
Re (-) 

2.33 x lo4 
4 65 x lo4 
6 98 x lo4 
1 16 x 105 
1.39 x lo5 
1 8 6 x 1 0 ~  



Part A: Equal Diameter Dead-leg Analysis 
The geometries of dead-leg configurations used as part of thls analysls are descnbed 

ia table 3 3. 

Table 3 3 - Equal d~ameter dead-leg configurabons 

Diameter 

- D = d  

- 50mmOD 

- 475minID 

3,3.1.1 6d Equal Diameter Dead-leg 
Flgure 3.3 presents thermal profiles of loop temperature TL and dead-leg temperature 

Td6 with respect to time for loop velocity 0 . 1 9 d s  Td6 represents the temperature 

recorded at the base of the 6d dead-leg. 

Branch Lengths 

- 6d(3001nm) 

- 4d (200mm) 

- 2d (100mtn) 

The profile of loop temperature follows two d~shnct phases. From ambient, fluld 

temperature increases or ramps m a controlled linear manner. Once set-polnt 

temperature 1s ach~eved, loop fluld malntalns a steady-state temperature of 79 15 + 
1°C for the remainder of the nm These charactenstlcs of distr~bution Ioop 

temperature were shown to be slmilar for all loop velocities. 
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Figure 3 3 - Profile of Td6 for Ub = 0 1 9 d s  

T d 6  shows lmnrmal temperature Increase for the duratlon of the experiment From 

initla1 temperature 21 74"C, fluid at base of the dead-leg ach~eves a rnlnimum of 

20 78°C after 2400s. TdC Increases overall by 0 98°C at constant loop veloclty 

indicahng a poor standard of mixlng between loop fluid and fluid at the base of the 

dead-leg for this flowrate Lack of turbulent mixing contributes to a decrease from 

~nitial temperatuie dunng the course of the exper~ment 
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b 
L > 

I *  , * * I  
" ,g 

L' 

- - ' .-- + - - I  - +. 
2 - a Gd 

C I 

; 
+ , - , ' ,' 

profiles bf dead-leg temperature for loop viocltles O 37, O 56 and O 94&s ard 

presented m figure 3.4 All profiles follow smooth Increasing patterns From inrtial 

temperatures, Td6 shows Increases of 8.74 and 10 83°C for loop veIocitles 0.37 and 

0.5 6mls respectively Improved' dead-leg temperatures are' evident for 0.94ds 

velocity, Td6 Increases by 17 2 1°C over the durat_lon of the experiment- 
.- I 

I - 

Increase in loop veIoctty from 0.37 to 0 5 6 d s  does not result in sigl~fficant Increase. 
I " " -+ * ~6 

In temperature at' the base of &e dead-leg. 'The deady @-er irf temperature 

Increase over the experiment . - suggests constet - diffusive transfer of loop fliird ~ n t g  

tile dead-leg branch at these veIoclt~es 
> 
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F~gure 3 5 - Profiles of Td6 for Ub = 1 12 and 1 5 0 d s  

Temperature profiles for loop veIocities 1 12 and 1 5 0 d s  are presented m figure 3,5. 

Both profiles exhlblt non-linear heating patterns From amblent temperature, Td6 

rncreases by 34 35°C across the experiment for fixed loop veloclty 1.12ds 

Fluctuations m Td6 are however emdent Sudden decreases followed by subsequent 

~ncreases in temperature are noted at 3900,7800 and 10200s The dynamic mxlng of 

warm and cooler fluids along the base of the dead-leg may have resulted in sudden 

changes m Td6. Research has shown greater loop veIoclty contributes to the mcreased 

magnitude of recirculating fluid motlon rn the dead-leg branch 1441 

The thermal profile of Td6 for loop veloc~ty 1 5 0 d s  shows an Increase in 

temperature close to that of loop set-polnt Td6 exh~bits approx~mately linear 

increase, reachlng steady-state temperature close to loop set-pomt at 6000s. Td6 

increases by 51 5°C over the duration of the experlrnent The temperature profile 



rndicates improved fluid transfer from marn Ioop ~nto the branch and along the base 

of dead-leg 

However fluctuations In Td6 suggest non-un~form flow withln the branch. Reductions 

In temperature are noted at 2400 and 10200s wh~ch  indicate the rate of f lu~d flow at 

the base of the dead-leg vanes and 1s velocity dependent Sudden decreases in 

temperature rmply the d~sturbance of cooler fluld at the base of the branch. 

Table 3 4 displays the maximum temperatures recorded at the base of the dead-leg 

per dlstributlon Ioop velocity. Data lndlcates an increase m maxinlurn temperature 

with respect to rncreased loop velocity The maxnnunl dead-leg temperature 

recorded for the 6d equal diameter branch configuration was 75 14°C for loop 

veloc~ty of 1 5 0 d s  Tdb dld not achieve d~stnbution loop temperature 79 15 k 1°C 

across the velocity range 

Table 3 4 - Max~murn temperatures recorded for 6d equal hameter dead-leg 

VeIocity, Ub (mls) 
0 19 
0.37 
0.56 
0 94 
1 12 
1 50 

Temperature profiles for Ut, I0 .56mls suggest minima1 flu~d transfer into the base of 

the dead-leg branch. These profiles follow controlled Increasing patterns indlcatmg 

no turbulent f lu~d flow at 6d depths. Temperature Increases for Ut, I 0 . 5 6 d s  are 

nommal; maxrmum temperatures remaintng signr ficantly lower than distrlbutlon 

loop temperatures Results indrcate the prlmary mechanism of heat transfer into the 

dead-leg 1s diffus~on at thls velocity range 

Maximum Ta6 (OC) 
22 72 
3 1.26 
33 08 
41 64 
57 60 
75 14 

Improved fluid transfer wlthln the branch IS evldent for Ub '> 1 1 2 d s  Results 

indicate temperatures approach~ng loop set-pomt wrth respect to increased Reynolds 

Number Thermal profiles foIIow non-linear patterns with fluctuations in temperature 



evldent The primary mechan~sm of beat transfer at thls veIocity range is forced 

convection as hlgher velocity fluld from the loop cames warm fluid into the dead-Ieg 

branch However such flmd transfer is non-linear as demonstrated by fluctuatrons m 

the rate of temperature increase 

Further lnslght tnto the standard of mixing occuirlng w~thln the dead-leg branch 1s 

provided by examining in detarl thermal profifes dunng system heat~ng Figure 3 6 

tllustrates temperature profiles of Td6 for loop ve loc~t~es  1 12 and I 5 0 d s  recorded 

from 4500s to 5500s 

Td6 follows a fluctuatmg pattern for loop velocity 1.50mls with an mcrease of 10 4°C 

across the 1000s sample perlod recorded. Applying moving average calculations 

temperature is shown to fluctuate by 5 1 6°C. 

The temperature profile for loop velocity 1.12ds shows contrasting flow 

charactenst~cs Td6 shows only marglnal Increase of 5 42OC over the sample period 

Based upon a rnovlng average, T& shows minlrnaI temperature fluctuations of 4 

0.47"C. 

Sign~ficmt temperature fluctuations at the base of the dead-leg at 1 5 0 d s  indtcate 

the presence of turbulent mlxing The magnitude of turbulence is a result of high 

velocity flmds entemg the branch from main loop Forced convection becomes the 

prrmary mechanrsm of heat transfer to the base of the branch. W ~ t h  respect to 

1.12rn/s, temperature lncrease occurs pnrnarily vla the diffusion of warmer flurds 

into the branch from main loop flow The h e a r  temperature profile ~ndicates steady 

non-turbulent f lu~d transfer along the base of the dead-Ieg at this loop velocity 





3.3.1.2 4d Equal Diameter Dead-leg 
Figure 3 7 presents the temperature profiles recorded for loop temperature TL and 

dead-leg temperature Td4 at loop veloc~ties 0 19 and 0 3 7 d s .  Td4 represents the 

temperature recorded at the base of the 4d dead-leg 

For loop velocity 0 19nds, Td4 follows a smooth lncreasrng profile Temperature at 

the base of the dead-leg Increases by 17 95°C from ambient temperature The 

controlled manner of temperature increase mdlcates lack of turbulent mixing 
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F~gure 3.7 - ProfiIes of Td4 for Ub = 0.19 and 0.37ds 

S~m~la r  fluid transport mechan~sms are evldent for loop veloc~ty 0,37m/s The profile 

of dead-leg temperature Td4 follows a controlled pattern, mcreasmg by 36.74"C over 

the expenrnent Interm~ttent changes m temperature response are however evldent. 

Decreases m Td4 are noted at 4200, 6600 and 8400s mdicatmg dynamic fluld flow 

along the base of the 4d dead-leg. Such temperature changes may allude to the 

presence of pulsat~ng flu~d flow. 
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Figure 3 8 - Profiles of Td4 for Ub = 0 56 and 0 94ds  

Figure 3 8 presents temperature profiIes for loop velocit~es 0 56 and 0 9 4 d s  Both 

profiles follow s~milar pattenls md~catmg comparable heat~ng mechanisms. Profiles 

demonstrate linear heatmg ramp-up and steady-state temperature phases s~mllar to 

the charactenstic profile of the main loop 

Similar rnaxlrnum temperatures (see table 3.5) are recorded for both veloclt~es yet 

differences exist between times taken to reach steady-state temperature. At loop 

velocrty 0 56m/s, Td4 reaches steady-state temperature after 6000s compared to 6300s 

for loop velocity 0 9 4 d s  Achlev~ng steady-state temperature ovcr a reduced tlme 

length would rndicate comparably enhanced fluid transfer wlth respect to the 

~ncrcased loop velocity 
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Figure 3.9 - Profiles of Td4 for Ub = 1.12 and 1.50ds  

Figure 3 9 ~llustrates temperature profiles for loop veloc~tles 1 12 and 1 5 0 d s  

Profiles exhibit similar charactenstics to main loop temperature indicating 

slgnlficant fluld transfer between the main loop and dead-leg branch Td4 reaches 

steady-state temperature at 6000s for both velocities. 

Table 3.5 deta~ls maxlmum temperatures tecorded at the base of the 4d equal 

diameter dead-leg per loop velocity Increases In maximum temperature at the base 

of the dead-leg are rccorded wlth respect to rncreased loop veloclty T h ~ s  confirms 

the relationsh~p between loop veloc~ty and dead-leg temperature shown for the 6d 

dead-leg configuration. The maximum recorded temperature in the equal dlameter 4d 

dead-leg was 76 74°C for loop velocity 1.50rn/s. Loop temperature set-pomt of 79.25 

* 1 "C was not achieved across the d~strlbution loop range 



Table 3.5 - Maximum temperatures recorded for 4d equal hameter dead'-leg 

Velocity, Ub (mls) 
0 19 
0 37 
0.56 
0 94 
1 12 
1 50 

" ,  - . .  --,- J L  7 - - -  
-- 

Srnllar rnaxnmurn tetnpeia&res aG noLd for Ub 2 0 56rnis This would suggest a 

Maximum Td4 PC) 
40.98 
59.55 
75 22 
75 08 
75 22 
7 6  74 

thermal threshoId is achieved with respect to increasing distribution loop vkloc~ty 

Further illcreases In loop velocity may not contribute to imp~oved temperatures 

wlthin the dead-leg . 

I 

Figure 3.10 represents temperature prafi~es for Tdq recorded between 4500 and 5500s ! % 

' *  

1 ; <  

at loop vbloclt~es of 0.56 and 0 9 4 d s  Ternpeiatqre Tdq fluctuates S I ~ G ~ C & ~ ~ ~  , , ,  I ,  r l  

-. b., 

Ik 

across the sample range with respect to loop veloclty 0 5 6 d s ,  suggesting convective ,: 

rnlxlng of winner and cogla fluid at the b a ~ e  of the d e a d k g  'A tem$ra&e. :'I' 
a , 4) rn ,: O f  

Increase of 8 29°C 1s-recorded across - the q n p l e  ~ange,~wlth s l ~ f i c a n t  f luctijat~b~s - - 

- *.y ' * ' I \ \  rf. - '11 1 

of h 1 3°C from a moving average noted 3 - 
rb 

I* 

The temperature profile of Td4 for loop velocity 0.94ds-shows an increase of 7 96°C 

at the dead-leg base 'across the sample range. The profile of Td4 follows 6 quasl- 

%<I 

h e a r  pattern -suggeshng steady heat transfer Temperature at the dead-leg base 
'r- a r- J 

fluctuates by =k 0 3OC for a Fovlng average 
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Figure 3 10 - Profiles of Td4 over reduced sample perrod for Ub = 0.56 and O 9 4 d s  

Results indicate srmlar magnitudes of heating with respect to velocltles across the 

reduced sample range Yet profiles inhcate a trans~t~on from fluctuating to llnearly 

lncreaslng temperatures wlth respect to increased loop velocity 

Thls transition from dynamic to predominantly linear heat transfer is a result of 

improved mass transfer occumng wlth respect to Increased branch mlet velocity. The 

turbulent mixing contributing to forced convectrve heat transfer for 0.56mls is not 

suffinent to completely remove cooler stagnant fluid from the base of the branch 

Increased lnlet velocity 0.94mls does result m a sweeping actlon at the dead-end 

exacting a more ngorous re-c~rculation of warm loop fluids through the entlre branch 

length 



3.3.1.3 2d Equal Diameter Dead-leg 
Temperature profiles of Td2 for loop veloc~ties 0.19 and 1 5 0 d s  are shown m figure 

3 1 1. Profiles represent Td2, the temperature at the base of the 2d dead-leg at high and 

low distnbutlon loop veloc~hes. 
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Figure 3.11 - Profiles of Tdz for Ub = 0.19 and 1.50mls 

Both profiles follow patterns consistent wlth the chara~tenst~c profile of loop 

temperature. Th~s  is inhcatwe of a slgn~ficant degree of mass transfer accurrlng 

between loop and branch fluid Table 3 6 detarls maxlmum temperatures recorded at 

the base of the 2d dead-leg with respect to loop veloc~ty. Td2 IS shown to Increase 

with respect to loop velocity as with previous dead-leg configurations Loop 

temperature set-point 79.15 & 1 OC was ach~eved and maintained at the base of the 2d 

dead-leg for loop velocity 1 50rnls after 6000s 



Both loop velocities contr~bute to fluld temperature at the base of the 2d dead-leg 

dose to fiat of maln loop flow. Fluld flow character~stlcs are comparable for both 

profiles as demonstrated by the time taken to reach steady-state temperature (6000s) 

Table 3 6 - Maximum temperatures recorded for 2d equal diameter dead-leg 

VeIocity, Ub (rnls) 
0.19 
1.50 

The penodic response of loop temperature at steady-state mrbates a silnilar thermal 

response at the base of the 2d dead-leg for both velocltles TdZ for loop velocity 

0 1 9 d s  however displays a dower response to main loop temperature fluctuat~ons, 

illustrated by the increased durat~on between temperature maximums in the loop and 

dead-leg Increased response lag w~th  tespect to _reduced loop veloc~ty lndlcates a 

slight reduction m the scale of fluld transfer Into the dead-leg branch. 

Maximum T d 2  OC 
77 40 
79 45 
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Figure 3 12 - Profiles of Td2 over reduced sample penod for Ub = 0.19 and 1 5 0 d s  



Figure 3 12 displays temperature profiles for selected veloc~ties in the 2d dead-leg 

branch for 4500s to 5500s Both velocihes exhlbit linear heat transfer at the base of 

the branch with sllght variances m temperature evident Fluid temperature Increases 

by 8 62 and 8 27°C across the sample range at velocit~es 0 19 and 1.50ds 

respectively. Based upon a movlng average, temperatures fluctuations of k 0 4°C and 

h 0.5OC are recorded for loop velocities 1 50 and 0.19ds respectively 



Part B: Reduced Diameter Dead-leg Analysis 
Reduced diameter tee-sections are Installed in HPWS at point-of-use Instances and 

for particular instrumentahon comechon Thermal profiles are presented for reduced 

branch diameter dead-legs, geometries as per table 3.7. Figure 3.13 illustrates the 

geomeiric transit1011 from equal to reduced diameter dead-legs. 

Table 3.7 - Reduced dlameter dead-leg configurations 

Diameter 

- D # d  

- 50mm OD 

- 47.5mmID 

- 25mmod 

- 22.5mm id 

lid= 2 (100mm) 

lid = 6(150mrn) 

lld = 4 (200mm) 

Branch Length 

- 6d (150mm) 

- 4d (100mm) 

- 2d (50mm) 

Equal Dl meter 
D ead-leg 

Reduced Diameter 
D ead-leg 

Flgure 3 13 - Cornpar~son of equal and reduced dead-leg geometries 



3.3.1.4 6d Reduced Diameter Dead-leg 
Frgwe 3.14 presents profiles of loop temperature TL and dead-leg temperature Td6 

wlth respect to tlme for loop velocrty 0 19mts. Td6 represents fluid temperahue 

recorded at the base of the 6d dead-leg. The loop temperature profile follows the 

characteristic curve described previous w~th  temperatures 79 15 A 1 "C marntained at 

steady-state for all expenmental analys~s 
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Flgure 3 14 - Profile of Td6 for Ub = 0 1 9 d s  

Td6 shows nominal lncrease over the durat~on of the expenlnent From initial 

temperature 22 27"C, fluld at the base reaches a mnlmurn 20 04°C after 1500s TdCi 

shows only marginal Illcrease of 6,8 1°C across the experiment suggesting negligible 

m x ~ n g  between fluid wtth~n the d~stnbut~on loop and that at the dead-leg base. 
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Figure 3 1 5 - Profiles of Td6 for L$, = 0.37,O 56 and 0 9 4 d s  

Figure 3.15 displays profiles of Td6 over increased Ioop velocities Thermal profiles 

demonstrate Increased temperatures at the base of the dead-leg with respect to 

increased main loop velocity. 

Similar temperatures are recorded for veloc~tles 0 37 and 0 5 6 d s  with increases in 

Td6 of 9.89 and 1 1 53 "C recorded respectively over the experiment. The slrnilar~Cy of 

profile patterns suggest comparable standards of mrxlng w~thin the branch for both 

velocities The steady transrent increase 11Iustrated by Td6 would Indicate primarily 

dlffusronal heat transfer to the dead-leg base at these veloc~ties 

Improved rnixlng at the base of the dead-leg 1s evident with lespect to lncreased loop 

velocity 0.94ds Td6 increases by 24.37OC from initla1 temperature over the 

experiment Although the profile of TdC follows a similar pattern to that of the 

previous velocities, temperature decrease post thermal maximum IS noted This 



indicates a reduction m the scale of fluid transfer to the base of the branch as a result 

of non-unlform fluid flow Prevlous results (see Part A) for equal diameter sectlons 

also suggested the occurrence of non-hear heat transfer w~thin a dead-leg branch at 

fixed velocit~es. 

As shown In figure 3.16 the profile of Td6 indtcates tmproved mixing for Ub 2 

1.12ds The profile of Tdti at loop velocity 1 1 2 d s  follows a non-hear pattern 

durrng ramp-up followed by considerable fluctuations once loop set-point 

temperature 1s ach~eved, The manner of flurd flow ~nto the branch contnbuhng to an 

increase in T d 6  IS non-uniform as suggested by the temperature decreases at 7800s 

and 9000s 

The profile of Td6 for loop velocity 1 5 0 d s  closely follows that of loop temperature 

indicating a strong transfer of f lu~d from loop to dead-leg base Although non-lmear, 

the profile of T a b  clearly exhibrts a ramp-up heating phase and quasi-steady state. 

Further ind~catron of non-uniform fluld flow w ~ t h ~ n  the dead-leg branch is ev~dent 

wrth notable changes in the rate of temperature mcrease durlng ramp-up. The profile 

of Td6 exhibits increases and subsequent decreases in temperature at 2 100s and 3000s 

respectively. Such thermal activity is conjugahve to the presence of pulsat~ng fluid 

flow at the base of the branch contrtbuting to sudden temperature increase Pulsat~ng 

fluid flow would contxrbute to the drsturbance of cooler flulds along the base of the 

branch resulting In temperature fluctuation 
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F~gure 3 16 - Profiles of Td6 for Ub = 1 I2 and 1 5 0 d s  

F~gure 3,17 displays the temperature response at the base of the 6d reduced diameter 

dead-leg with respect to a sample time of 4500 to 5500s at loop velocities 1.12 and 

1.50rn/s Loop velocities provlde contrast~ng thermal responses at the base of the 

branch. Td6 follows a fluctuating pattern wth respect to loop vcloc~ty 1.50ds with 

temperature varying by + 3 2°C based upon moving average calculations. An overall 

temperature increase of 8 62°C is recorded across the sample range. 

In cornpanson Td6 follows a controlIed steady state pattern for loop veloc~ty 1, I 2m/s 

with an Increase of 8.23"C recorded across the sample range Temperature at the 

base of the branch varies by * 0 7°C based upon a moving average However sudden 

increases In temperature are noted at 472 0 and 5325s Such temperature Increases are 

again mdlcative of the pulsating flow of warmer fltud down the branch as opposed to 

sustained turbulent flow recorded for loop velocity 1 50mls. 
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Figure 3.17 - Profiles of Td6 over reduced sample per~od for Ub = 1 12 and 1.5Ods 

Neither loop veloclty is capable of producing rigorous turbulent mxing at the base 

of the dead-leg branch The significant temperature fluctuations recorded for branch 

inlet velocity 1.50m/s suggest tbe inability of loop fluid to complete remove cooler 

fluid at the base of the branch 



Table 3.8 displays maxlrnum temperatures recorded at the base of the 6d reduced 

dlameter dead-leg across the range of man loop bulk veloc~t~es 

Table 3 8 - Maximum temperatures recorded for 6d reduced d~ameter dead-leg 

Velocity, Ub [mls) 
0 19 
0 37 
0 56 
0 94 

Data indicates a relat~onship between dead-leg temperature and Increasing loop 

velocity Maximum temperatures at branch base improve with respect to increased 

Reynolds Number The h~ghest temperature recorded in the 6d reduced dxameter 

dead-leg 1s 72.77"C for loop velocity 1 5 0 4 s .  The deslred temperature set-point of 

79 15 h 1 "C was not achieved across the velocity range 

Maximum Td6 PC) 
29 08 
34 33 
36.28 
48.97 

1 12 
1 50 

62.46 
72 77 



3.3.1.5 4d Reduced Diameter Dead-leg 
Flgure 3.18 presents profiles recorded for loop temperature TL and dead-leg 

temperature Td4 at loop velocities 0.19 and 0 3 7 d s .  Td4 represents fluid temperature 

recorded at the base of the 4d dead-leg 

A Td4 @ 0 37mls 
+ Loop Temperature T 

Figure 3 1 8 - Profiles of Td4 for Ub = 0.19 and 0.3 7m/s 

With respect to loop veloc~ty O.l9m/s, Td4 displays a quasi-linear heat~ng phase pnor 

to reachmg steady-state temperature. From initial temperature Td4 increases by 

39.03"C over the exper~ment Fluctuations in temperature increase during the heating 

phase of the profile are noted. Decreases m Td4 are recorded at 3000s and 6600s 

Such intermittent changes in temperature suggest the presence of pulsating auld flow 

at the base of the branch at this velocrty 

Further evldence of non-un~fonn pulsat~ng flow is evident with respect to loop 

veloclty 0 3 7 d s .  At t h ~ s  loop velocity Td4 follows relat~vely linear ternperature 

increase durlng the in1ha1 stages of experiment, however notable fluctuabons in 



temperature are evident for 3600 t > 6600s before a steady-state is maintamed As 

with the previous loop velocity, such temperature response is indicative of dynam~c 

fluid flow at the base of the branch 
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Figure 3.19 - Profiles of Td4  for Ub = 0 56 and 0.94mls 

Flgure 3.19 presents profiles of Td4 for loop velocitles 0 56 and 0 9 4 d s .  Profiles 

exhibit sirnrlar patterns, Td4 follows the charactenstic curve of main loop 

temperature. Simalar temperature increase is aIso noted, Td4 increases by 51 39 and 

52.8S°C from init~al temperatures for velocitles 0 56 and 0 9 4 d s  respectively, 



Times taken to reach steady-state temperature (6300s) recorded for Td4 at both loop 

velocities confirms the srmilar~ty of temperature response. Fluctuat~ons in TL at 

steady-state and the subsequent changes in Td4 mdicate the significant transfer of 

fluid between main loop and branch base wth respect to both velocities 
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Figure 3.20 - Profiles of Td4 for Ub = 1.12 and 1 . 5 0 d s  

Profiles of Td4 for loop velocities 1 12 and 1 5 0 d s  are shown m Figure 3 20 Td4 

exh~bits h e a r  heating phases prlor to achiev~ng steady-state temperature in both 

profiles. The similarity between profile patterns for TL and Td4 lnd~cates the presence 

of s~gnificant flu~d mixing between dead-leg base and loop flow Td4 temperature 

Increases of 54 17 and 54 06°C are recorded for loop velocities 1.12mls and 1.50ds 

respectively. 

A temperature difference remarns however at steady state between loop and dead-leg 

fluid reaching minimums of 1.7"C and 1.6"C for 1.12 and 1.50mls respectively The 

overall length of the dead-leg may contr~bute to this temperature vanance as fluid at 



the base of the 4d branch may be restr~cted from re-entermg main loop flow In 

effect this fluid becomes trapped at the base of the dead-leg by faster flowing fluid 

above, Flmd temperature increase at the base of the branch therefore would be 

regulated solely by heat transfer via free convective andlor diffusive means from 

main loop flwd. 

Profiles of Td4 for loop velocities 0.19, 0 37 and 0 9 4 d s  are shown m figure 3 21 

All profiles represent dead-leg temperature recorded across a sample range of 4500 

to 5500s The profile of Tdq at loop veIocity 0 1 9 d s  reflects l~mted  mixing at branch 

base An increase in Td4 of 4.9OC is recorded across the sample range Most notably 

flmd at the base of the dead-leg shows negligible temperature fluctuations (4 0 32OC) 

based upon movlng average calculations indxating pnrnarily stagnant flow 

conditrons 
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Figure 3.21 - Profiles of Td4 over reduced sample penod for Ub = 0.19,O 37,O 94mls 



However at loop veloclty 0 3 7 d s  turbulent mlxing 1s evident Fluctuations in Ta4 of 

1 73°C axe recorded based upon a movrng average Increases and subsequent 

decreases in temperature indicate the mlxing of warmer and cooler fluid at the base 

of the branch as reflected by the increase in fluid temperature of 10.3"C over the 

sample penod 

Further Increase of loop velocity to 0.94ds shows contrasting mlxlng dynamics at 

the base of the branch As opposed to significant temperature fluctuations wlth 

respect to Increased loop velocity, the profile of Td4 shows reduced fluctuat~ons of h 

0.8S°C based upon movlng average calculations Temperature shows an overall 

increase of 7.2"C across the sample penod 

The detailed analys~s provided by figure 3 21 Illustrates a shift from pnrnar~ly 

hfhsive heat transfer at the base of the branch to increasingly turbulent mixlng with 

dynamic movement between warmer and cooler flulds. Further loop velocity 

increase results in fully turbulent mixing; forced convection sweeping fluzd into the 

base of the branch S~gtllficant fluld transport to and fro the branch base prevails 

Table 3 9 &splays maxlmwn temperatures recorded at the base of the 4d reduced 

hameter dead-leg across the range of maln loop velocities The maximum 

temperature recorded in the 4d reduced dameter branch IS 77 53°C for a loop 

velocity 1.50ds.  However the deslred dead-leg ternperature set-point 79 15 4 1°C 

was not achieved across the velocity range 

Table 3 9 - Maximum temperatures recorded for 4d reduced drameter dead-leg 

Velocity, Ub (rn/s) 
0 19 
0 37 
0 56 
0.94 
1.12 
1.50 

Maximum Td4 (OC) 
62.48 
71 31 
74 29 
77 24 
77.45 
77 53 



Significant increase in Td4 i s  evident for Ub > 0.19mls. However, maximum recorded 

temperatures varled little across the remaining velocity range. Previous results (see 

table 3.8) ~llustrated Increases m dead-Ieg temperature w ~ t h  respect to increasing 

Reynolds Number flow Contrary to this, results shown in table 3 9 indicate a 

thermal threshold is achieved with respect to Reynolds Number vmance 

The occurrence of a thermal threshold may be attributable to reduced magnitudes of 

fluld enter~ng the branch under flow condihons Research [45 & 461 has confirmed 

that loop flmd flow antic~pates the entrance of a dead-leg branch under slmilar flow 

cond~tions. In fact recent research [45] has described the presence of a "ripple" flow 

effect as fast flowing flu~d passes over a dead-leg branch entrance. 

Thrs "rlpple" effect serves to maneuver flmd flow in the main loop into the dead-leg 

branch, pmarily along the upstream wall In equal diameter sections [45] Increased 

loop velocity however coupled with a reduction in branch diameter would reduce the 

magnrtude of loop flmd entenng the dead-leg branch Thls scenarlo would 

effectively restnct mixlng at the base of the branch and thus lessen the ability of the 

dead-leg to reach main loop temperatures. As such, further increase of loop velocity 

has little posit~ve overall effect upon dead-leg temperatures 



3 3.1.6 2d Reduced Diameter Dead-leg 
Flgure 3 22 presents profiles of TL and Tdz over time for loop velocities 0 19 and 

1 5 0 d s  Profiles of T ~ z  represent temperature response to high and low distr~bution 

loop veloc~ties recorded at the base of the 2d dead-leg 
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Figure 3.22 - Profiles of Tdz for Ub = 0 19 and 1 5 O d s  

Profiles of both maln loop and dead-leg temperature follow s~milar patterns. The 

simrlarity of profiles mdicates a strong Tdz response to changes in main loop fluid 

temperature. A minimum temperature d~fference of 656°C is recorded between Td2 

and loop temperature for velocity 0.19ds The d~fference in temperature between 

loop and dead-leg base is reduced with respect to increased loop velocity, reaching a 

minimum of 2.21°C for 1 5 0 d s  
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F~gure 3.23 - Profiles of Tdz over reduced sample perlod for Ub = 0.19 and 1.50ds 

Figure 3 23 11lustrates profiles recorded of Td2 for loop velocltles 0 19 and 1 50m/s 

across a sample per~od between 4500 and 5500s. The linear patterns of Td2 are 

reflected in temperature fluctuations based upon a movlng average recorded across 

the sample range Temperature fluctuations of 0 47°C and * 0 42°C for loop 

veloc~tles of 0 19 and 1 5 0 d s  are recorded respectiveIy. Both profiles of Ta inchcate 

srmilar heating magnitudes, 8 65°C and 7 22OC for 1 50 and 0 1 9 d s  velocifies 

respectively 

Table 3.10 displays maxlmum temperature recorded at the base of the 2d reduced 

diameter dead-leg for both loop velocities. An Increase in Td2 is recorded wlth 

respect to increased Reynolds Number flow. Neither velocrty however produced the 

requlred temperature set-point 79 15 h 1 "C at the base of the dead-leg 



Table 3.10 - Maximum temperatures recorded for 2d reduced diameter dead-leg 

Velocity, Ub (mk) 
0 19 
1 50 

Part C: Branch Diameter Comparison 
Dead- leg thermal cond~t~ons are compared between equal and reduced branch 

diameter configurations based upon Ild ratio. The ratlo is calculated uslng 1, the 

length of the dead-leg measured from the centre axis of the main loop over d, branch 

diameter This rabo serves to offer a comparable study between branch temperatures 

for similar dead-leg configurahons 

Maximum T ~ z  ( O C )  

73 01 
77 22 

Table 3 11 displays maximum temperatures recorded at the base of a dead-leg Ud = 

6 ,  AT represents the temperature d~fference between recorded maxlrna for bulk loop 

velocit~es Across the veIocity range UI, I 1 12mls, greater temperatures are recorded 

in the reduced dameter branch compared with the equal diameter sectlon. Greater 

dead-leg temperature IS recorded in the equal diameter branch for Ub = 1 5 0 d s .  

Values of AT offer no linear relatlonshlp between temperature difference and loop 

veloclfy. 

Table 3.11 - Maximum recorded temperatures for l/d = 6 

Figure 3.24 presents the relahonsh~p between maximum dead-leg temperature and 

loop veloclty for l/d = 6. As ~llustrated, the relationship between maxlmurn 

temperature and velocity IS sirni1ar for both sections; increasing dead-leg temperature 

AT (OC) 

6.36 
3.07 
3 -20 
7 33 
4 86 
2 37 

Velocity, Ub 
(mls) 
0 19 
0 37 
0 56 
0.94 
1 12 
1 50 

Maximum Temperature (OC) 
Equal 
22.72 
31 26 
33 08 
41.64 
57 60 
75 14 

Reduced 
29.08 
34.33 
36 28 
48 97 
62.46 
72.77 



wlth respect to Increased loop veloc~ty The greatest temperature difference (7.33"C) 

between dead-leg configuyations is recorded wlth respect to loop velocity 0 94mls. 

0 2 0 4  0 6 0 8 1 0  1 2  1 4  1 6  

Loop Veloctty (rnls) 

Ftgure 3 24 - Relahonsh~p of Td and Ub for Ild = 6 

With respect to dead-legs of Vd = 6 ,  reduced d~ameter branch length (1 = 150mm) 

ensures significant fluid transfer to the dead-leg base due to the closer proximity to 

main loop p~pework. At lower veloc~ty ranges (Ub < 1 5 o  such reduced branch 

volume ensures improved main loop flow penetration, achiewng greater fluid mixing 

at the base of the sectlon. At increased loop velocities (Ub > 1,50mls) the beneficla1 

effect of branch length may become less of a factor. The Increased branch volume of 

the equal diameter section contr~butes to improve mlxlng with~n the enhre section 

Research [45 & 461 has illustrated that fluid flow in the main loop ant~cipates the 

entrance of the tee-section branch under normal flow conditions. At Increased loop 

veloc~ties, fast movlng flu~d in the main loop may glide over the entrance of the 

reduced dead-leg branch effectively limiting the quanhty of flu~d enterlng the 



branch. Reductron in flmd transfer into the branch would serve to reduce the 

rnagnltude of re-c~rcdahng flow within the section Research indicates a reduchon in 

size of re-circulatmg zones in dead-leg branches with respect to decreasing branch 

diameter [47]. Such recirculatlng zones are cons~dered to be drectly related to heat- 

transfer within dead-leg branches 

Additionally slower moving flud m the branch would have less opportuniCy to re- 

enter main flow, effectively being held by faster moving fluid passlng over the 

branch entrance [49] W~th  reduced opportuty to m x  with warmer loop fluids, 

heat-transfer within the branch would be restricted. 

Maximum dead-leg temperatures for Tld = 4 are presented in table 3.12. A 

considerable temperature d~fference exlsts between maxima recorded in equal and 

reduced diameter branches for Ub < 0 .56ds .  For increased loop veloc~ty however, 

similar temperatures are recorded for both branch diameters. 

Table 3.12 - Maximum recorded temperatures for l/d = 4 

Velocity, Ub 
(mls) 
0.19 
0 37 
0.56 
0 94 
1 12 
1 50 

The relationship between maximum temperature and velocity m equal and reduced 

branches for lid = 4 is shown in figure 3 25 Both equal and reduced diameter 

profiles indicate the existence of a thermal threshold with respect to loop veloc~ty. 

MlnirnaI increase m Td4 is reported for Ub > 0 . 5 6 d s  for both branch diameters after 

initral increases at lower veloclt~es. 

AT (OC) 

2 1.50 
1 1  76 
0.93 
2 16 
2 23 
0 79 

Maximum Temperature (OC) 
Equal 
40.98 
59 55 
75 22 
75 08 
75 22 
76 74 

Reduced 
62 48 
71 31 
74.29 
77.24 
77.45 
77.53 
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F~gure 3 25 - Relationship of Ta and Ub for Ild = 4 

As wlth the prevlous dead-leg configuration (lld = 6), at lower velocities reduced 

branch volume contr~butes to favourable temperatures at the base of the dead-leg 

For greater loop velocities, Increased branch diameter conhbutes to improve 

turbulent mlxing ensurrng similar dead-leg temperatures attarnable in both dlamter 

configurations 

Table 3 13 shows recorded maxima for equal and reduced diameter dead-legs for 

lld = 2. Data indicates greater temperatures at the base of the equal diameter 

compared to reduced d~ameter branch secbon. However as wth the I/d = 4 

configuration, the positive effect of larger branch diameter lessened with respect to 

increased distribution loop velocity. 



Velocity, Ub Maximum Temperature PC) 
(mis) Equal Reduced 

AT (OC) 

0 19 77.40 73 01 4.39 
1 50 79 45 77 22 7 

Table 3 13 - Maximum recorded temperatures for lld = 2 

Withm the confines of the 6d-rule a reduct~on in branch diameter has the effect of 

reducing the overall length of the dead-leg branch The d~stance from dead-leg base 

to m a ~ n  loop pipe plays a significant role in averdl dead-leg temperatures Results 

~nbcate improved temperahres are evident for both dead-leg branch diameter 

configurations w ~ t h  respect to reduced branch lengths 

The scale-up of branch diameter conhlbutes to improved mass transfer withrn equal 

drameter dead-legs [26]. This phenomenon was recogn~sed as a direct result of a 

decrease of viscous forces with increasing branch dzameter resultmg in greater fluid 

velocrt~es m larger d~arneter dead-legs [28] Improved turbulence as a result of 

increased Reynolds Number would contribute to improved mass transfer withm the 

branch a d n g  CIP cleaning operatrons. One could agree that d~ffusive heat transfer 

would be of no a d  to san~hzatlon procedures as the sufficient d~sruphon of fluid at 

the base of the branch could not be guaranteed 

Regarding the stenl~zation of Pseudomonas uerugznosa bacterra; accepted D-value at 

70°C is 1.3mins. Temperatures presented previous (tables 3 1 1-3 13) represent 

maxima recorded, and may not reflect the translent ihermo-flud condit~ons 

occumng at the base of the dead-leg branch. Acceptable sterrlizat~on at thrs 

destrvct~on l im~t therefore is evaluated in terms of maintalnlng temperature Td > 

70°C.  As such the destrucbon of Pseudomonas aerugmosa over sustained time 

per~ods IS considered achievable in 6d dead-legs at Ub > 1 50rn/s, 4d dead-legs at Ub 

> 0 5 6 d s  and m 2d dead-legs across the velocity range. 

However cons~denng reduced sample analysis (see figures 3 6 ,  3.17); turbulent 

mixing may not be of sufficient magnrtudas m 6d dead-legs to support ngorous 



cleaning procedures Endotoxins shed by destroyed b a c t e m  would not be fully 

removed from the branch under CIP flow conditions 

HPWS designers should attempt to reduce the overall length of a dead-leg as means 

of limiting the possibility of stagnant flow con&tions occumng at their base Data 

mhcates 6d dead-legs are not capable of san~tization at their base regardless of 

branch diameter Temperatures close to requlred sanitization limts were attamed in 

4d and 2d, equal and reduced diameter sections However loop velocity magnitude 

played an integral role in the temperatures achieved. 

Results detalled m this section provide a cornpanson between the effectxve use of 

large and smaller dlameter tee-sections in HPWS design Instrumentation 

connections or point-of-use requirements are some reasons why tee-sechon branch 

diameters vary in system design. However in s~tuatlons where designers are not 

restrrcted to the size of branch diameter installed, the above &scuss~on would 

provide guidance to ensure ~nstalled sectlons are san~tlzable. 

One industry expert argues that the initial expenditure of Installing larger tubing 

should be offset aga~nst the cost of installing and matntainlng flushtng mechan~sms 

[28]. Alternat~vely the dishbution Ioop may be operated at elevated temperatures to 

overcompensate for the presence of dead-leg stagnation zones However 

consideration must be taken into seal life and system durability at excessive 

temperatures. All-m-all dead-legs should be evaluated for cleanability not only by I/d 

ratro, but also with considerat~on of operating distribution velocihes [lo] 



3,3.2 Non-intrusive Analysis 
As previously d~scussed the deslgn of HPWS are such that the consistency of water 

qual~ty is of the utmost importance. A decrease m water purity can ultimately lead to 

the suspension of manufacturing operatrons The exposure of pmfied waters to 

external non-stenle sampllng conhbons can compromise this quahty. The FDA state 

m their 'Guide to Inspections of HPWS' [ 5 ] ;  

"Regardzng micro biological results, for Water for Injectton, zt u expected that they 

are essentially stenle. Smce sampli~g frequently u performed zn non-stenle areas 

and 1s not truly aseptzc, occasional low levels counts due to sampltng errors may 

occur " 

Non-mtrusive analysis Includes testing methods used to examine a system w~thout 

lrnpairrng its future usefulness Non-mtrus~ve sampling methods may provlde 

analysls of pharmaceutical water temperature without exposing HPWS to non-stenle 

externals. Expenmentation thus far utll~sed shafted thermocouples ~nserted into the 

branch of a dead-Ieg to monitor temperature at varlous positrons. W~th  regard 

systems operating purified waters in mdustry, such methods of thermal analys~s 

would not be tolerated as thermocouples may be exposed to non-stenle conditions 

and subsequent insertion into pipework may contammate waters 

The aim of analysis is to develop a methods of calculating fluid temperature m a 

dead-leg based upon non-intrusive surface temperature measurement 

3,3.2.1 Infrared Thermography 
Infrared (IR) therrnography is a non-contact data acquisition technique for two- 

dimensronal mapplng of surface temperature dlstnbubons 15 01. An IR devlce 

measures and images em~tted radiatron from an object As radiation is a function of 

object surface temperature, the device can calculate and &splay the resultant 

femperature drstnbut~on 

Applylng thennographic principles, data was generated detailing surface temperature 

dlstribuhon over an operational dead-leg branch, Thermal images were captured 



using a ~ h e r m o ~ ~ s ~ o n ~ ~  A20M infrared camera supplied by FLIR Systems Image 

processing was performed using accompanying ~ h e r r n a ~ ~ ~ ~ ~  QuickView 

sofiware 

Analysls focused upon surface temperatures of a 6d equal chameter dead-leg branch, 

geometry as per table 3.3. This dead-leg configuration was selected as it remained 

within the confines of the 6d rule; yet thermal profile analysis demonstrated flu~d 

temperature reduct~on along the branch base (see section 3 3.1 Part A) 

Loop fluid temperature TL, was increased ffom ambient to 80°C set-point w~ th  

consequent changes in branch surface temperature recorded at set time intervals 

Time zero represents the lnstance heatlng was achvated in the system. Loop fluld 

velocity was fixed at 1 50mls. All experiments were performed m laboratory 

cond~bons with no induced air flow, with amb~ent temperature between 21 h 1°C. 

Object parameter values assigned to imaglng hardware are detailed in table 3 14, 

default values taken from accompanymng software. 

Table 3.14 - Object parameter settings 

Emssiv~ty (-1 

Distance from camera (m) 

Thermal ~mages (see figures 3 , 2 6 3  29) d~splay colored contours based upon surface 

temperature distribution. Spot recordings prov~de polnt temperature magnitudes at 

branch mid-point (spot I )  and at ~ t s  base (spot 2) Spot temperature values are 

drsplayed in the top r~ght comer along wth  a temperature scaIe on the r~ght-hand 

side of the image Temperature scales illustrate colors assigned to vanous 

0.16 

(default polished stainless steel) 

0 6 

Temperature Reflected ("C) 22 

Temperature Atmosphere ("C) 

Relative Humidity (%) 

External Optics 

2 1 

50 (default) 

OFF 



temperatures on the image, high and low temperatures at the upper and lower ends of 

the color spectrum respectively Spot temperatures and loop temperature are 

displayed with respect to time in table 3 15 AT represents temperature d~fference 

between spot poslt~ons for time t 

Table 3 15 - Infrared themography temperatures 

Translent heat increase at spot positrons with respect to increasing loop temperature 

is ev~dent. This indicates radial heat transfer from the dead-leg fluid through the pipe 

walls Greater surface temperatures are recorded along the mrd-pomt of the branch 

section in comparison ulth the dead-leg base Magn~tudes of AT are shown to 

increase over time, reach~ng a maximum of 2 1°C towards the run end 



Figure 3.26 - Thermal contour image at t = 4500s, TL = 67.3"C 

Figure 3.27 - Thermal contour image at t = 6300s, TL = 79.6OC 



Figure 3.28 - Thermal contour image at t = 8100s, TL = 79.2OC 

Figure 3.29 - Therrnal contour image at t = 9900s, Tt = 79.g°C 



3.3.2.2 Surface Thermocouple Analysis 
In conjunct~on with infrared thermography, surface temperature measurements at 

varylng dead-leg branch posihons uslng mounted thermocouples were performed 

Bead T-type thermocouples were attached to the extenor surface of the dead-leg 

branch uslng PVC tape. Fluid temperature at the correspond~ng pos~tlons was 

recorded using T-type shafted thermocouples as before 

Fluid temperature was recorded along the centre axis of the dead-leg branch 

representing flmd firthest fiom plpe walls. Results prov~de comparative data of 

surface and fluid temperatures with~n a dead-leg branch at parhcular po~nts Figwe 

3 3 0 illustrates surface and flu~d temperature measurement techniques 

Experimentation was performed over 1 0800s (3 hour) sample per~ods. Temperature 

was recorded In 300 second mtervals, tune zero representing the instance heat~ng 

was act~vated in the system (see Append~x E). Ambient temperatures and loop set- 

point temperature remained as before 



Figure 3 30 - Schematic of surface and fluid thermocouple recording methods 

Figure 3 31 represents thema1 profiles recorded for surface and dead-leg 

temperature wlth respect to time for the 6d equal hameter dead-leg Profiles 

represent thermal responses at branch base and mid-point positions for loop velocity 

1.5Ods.  Profile patterns Indicate a relationshp between f l u ~ d  and surface thermal 

responses. Both surface and dead-leg mid-point profiles exhibit similar linear 

patterns dunng system ramp-up, achlevmg and mamntalnlng steady-state temperature 

Considering temperature response at the branch base, surface and dead-leg profiles 

also d~splay similar controlled increasing patterns However times recorded to 

achieve steady-state temperature vary, 5520s for branch surface compared w ~ t h  

6000s for dead-leg flmd. 



Excess time taken for fluid to reach thermaI equilibrium at the base of the dead-leg is 

a result of diffusive heat transfer mechanisms as described in themal profile analysis 

results (see section 3.3.1). 

20 
0 2000 4000 6000 8000 I0000 

Time (s) 

Figure 3.3 1 - Fluid and surface temperature profiles for Ub = 1 .50mls 

Co~idering figure 3.3 1, the presence of axial wall conduction is evident with respect 

to profiles of surface temperature. Greater surface temperatures are noted at branch 

mid-point compared with base measurements during loop ramp-up. Yet after time 

thermal equilibrium occurs throughout the branch length with similar surface 

temperatures recorded at mid-point and base for the duration of the experiment. 

Further evidence of axial wall heat flow is evident as branch base surface 

temperatures are shown to reach steady-state before fluid at the dead-leg base 

reaches thermal equilibrium. This suggests surface temperatures may be influenced 

by axial conduction of heat along the branch wall as well as radial heat flow fiom the 

dead-leg fluid. 



With respect to pipes or tubing manufactured from stainless steels, wall conduction 

can play a significant role in heat transport. Research indicates that axial wall 

conduction is a primary mechanism of heat transfer in the difisional transport zone 

of capped branches [26]. Thermal profile analysis has identified the presence of 

diffusional zones of heat transport at the base of 6d equal diameter dead-legs. 

Figure 3.32 presents surface and dead-leg thermal profiles recorded for a 4d equal 

diameter dead-leg at loop velocity 0.56ds,  geometry as per table 3.3. Based upon 

thermal profile analysis results (section 3.3.1 Part A), convective heat transfer is 

assumed the primary transport mechanism at this dead-leg configuration and loop 

velocity. 
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Figure 3 -32 - Fluid and surface temperature profiles for Ub = O . 5 6 d s  

Considering surface temperature responses; both mid-point and base profiles exhibit 

steady-state conditions for t > 5700s. Examination of surface profiles at steady-state 

reveals little evidence of increasing surface temperatures over time. However the 

time recorded achieving steady-state dead-leg temperature at the base of the branch 



was 6000s The hfference in time between thermal equilibrium at surface and f lu~d  

~nstances suggests surface temperatures at the base of the branch remain affected by 

axla1 wall conduct~on, and not solely upon radial heat conduction from flu~d within. 

3.3.2.3 Comparison of Results 
The application of surface thermocouple analys~s 1s limted to dead-leg 

configurations where flmd temperature throughout the branch is governed by 

convective heat transfer only and axla1 heat transfer is assumed negligible along 

branch walls. W ~ t h  respect to reglons where hfhsion IS the pnmary mechanism of 

heat transfer, axla1 thermal conduction plays a significant role upon surface 

temperature distribuhon As such surface temperatures will not truly reflect thermo- 

fluid conditions w~thin a dead-leg 

Yet surface temperature responses for dead-legs experiencing primar~ly forced 

convectwe heat transfer also reveal the presence of axla1 conduct~on at branch walls. 

The author assumes therefore that the effect of ax~al heat flow along pipe walls 

cannot be considered neghgibIe and surface temperatures will not accurately reflect 

temperatures w~thin a dead-leg As such further experlmentahon is required to 

establish the magnitudes of radlal and axial heat flow along dead-leg surfaces for a 

branch of fimte length I, with fixed loop temperature TL at constant loop velocity Ub 

Axial heat flow overlaps rad~al heat flow and local surface temperature was shown to 

vary across the length of the dead-leg. With respect to both infiared themography 

and surface thermocouple results; greater temperatures were recorded at branch mid- 

points compared w ~ t h  at the base of the sechon 

This surface temperature dlstr~butron rs reflected by the thermal profiles recorded for 

mid-point and base dead-leg flu~d. These profiles hrghlighted the presence of warmer 

fluid in the dead-leg branches for regions close to turbulent loop flow. Lower surface 

temperatures recorded at branch base are related to cooler stagnant flmd wrthin the 

dead-leg unaffected by turbulent conditions Results support the ev~dence [lo, 26 & 

441 of separate regions of turbulent and stagnant flow for positions close to maln 

loop flow and at the base of dead-legs respectively 



8 L  able 3.16 - C o ~ p ~ s o n  of s&&e temperatures for -. 6d dead-leg, '& = 1 5 0 d s  
- ,  I L 

Time, t 

(s) 

1 * 

> * , c  < A  

-Compai-~i&n 6f ththe$oiraPhh'y arid surfad6 thefrqo&Yql k' data' for a16d$ye4~i1 '&ameikr 
. - _ -  , , - 5 .  - A , - '1 I" . ' - , L k  * - -  , y -  12<-> <*- k z : L < ' = L  -1. 

A -v+y  ?< L + = '  ,>v 

d&d-lbg ( I  a are pre&i~~din table 3.1 6 .  Vanapdgs m r&c$:dod ternfe$$resat ~3~ = 4 . midpomt . . 
E I J - : S - -  1 -13*-. 

A', 
1 .-c- 2 : ' > * k '  '- : ' . l : ~ ~  - k;:-;a 1 4 $ >>,2 74 $ ;;L*+%$j)"%*: I *  

,I , 'L3 

and & .  base positions are - noted with respdct to tlm2 The: autfior.deemdi errors ~thz;. .. , +- 
b a 

,i: ; ' T L  - ;" 
1 L ,  -- . .+- <, - .-- 4.-:,$ .- A - 'T r *  hi.' - v%$" ;- z *') 

i L *  . = "" ' c -  , w > ,  ,, 
C "  - thej-mographldal te'stkg %, - . pioceduf$ f - =  as, thigposd~ble &sourca (,of' .@h A$scr<panc~eslh A;::e , . ', . ,*; - I ", dx >;;& :-I- > TLf - ,g!: & ,  

< 

, '  +>% c 5, --L ?aJ v #  9-! 
; <. -7 r 

Upon h r t ~ e r .  invesiig~t~og !t wi! dite-&ned &hat the! ipqiieter;: cirn"hbit~ii& to" tlig .,; -3 
1 ,- LI. _ I  - n - Y - - *  = &- :>, _ 4:'. - - -- -*+2 -3' d > -9 *?b - -q 5:- + + -- *;Idd::;;< ,LP- %:?:z:,; 2% >%# y-- , 

i6accur"acy -- of therind@aphibalr$s~lts - -  y $aY !ijcludkY ; . - %-. : - -. c * & y - ~ -  . + &,A> -=%L - y y  + b  

- - * t  -2-3 ' 3LL -4 - -- * X' " 4 
-,, y 4  - 9  ,<-' < k c "  a;.9 x I I +Ch C 4 0 .  .+ , 1411 

- +<< > - ) I  - 9 - L , _ F  ' $ tT - L 
I *  . . : <  

L ' b 
,rI > 

* >  J _  -J 

L - 
. \ I .  +" 

* -  $ * 
1 - 6  - 

- 5 i- ., 1: Y ,, ,I 
' . . -  - "  " *++ 4 ' * - - 

- -~ad$tlon 1 = > .  measuied - pu , by t & ' ~ ~ ~ & e r a  , . i s  is a@:a hiidtion ,- , , - of , -* the'objects emgsslVlQ,: '. 
4T 4 44 - ? I ; ,  

~ h &  G I s  cu&d - F 1  &ace l . % l l l  :of . 1 @e branih h ' p e n n i e t ~ r c ~ a ~ ~  ~ d t  conduciie , I" - t of. - accliiate - 1 

'1 Lp 
* 7 *<- - <  

>& - $ ? ' >  * u*r t *  -!, 1 
, 7 '  

4em~gsi$ity 3 -  r ik d~te:te'ct!~~~(see,'figure: , , g * a  ;'* 3 3 3) .The face)if '!he 2 d&d-leg - ;, 3af tch  F - 4  ..wden - -  t 

- I? tr 3S L1 *&.) A -  
' ob&rv&d a@om an ek$itIo& we& g6~efat&d ?idlad h' & n ~ ~ ~ t r a t ! o n ~  && ;hi . 

,I r ~ A * T  7 - > &  + <  3 & I >  -,7 - - , - ( A  "-"-"" - b h ~ ~ + ~  --*' ,, ,- mk 2 --'I 3 ; b;?;, 
I 

> - I  A L > ' b  =o - ' - 
l&d~n'~ vTh 8 $die : lind'. if+4&6,-&hm'iter 2dgiS df the -;pipe,$h~s~ :~sul t t id~ I& the . 

", y,-'- *dc # - 4 T F . , ; * "  ,g >* - -- , V ~ ~ 4 4  - / < . + 2 %  ?'>$d i 1 

- k k ~ k i i t e '  d e t i ~ t m n ~  of;e!eva"ted s ~ & f k ~ ~ e ~ & ~ i . e s < a " t  thes$>$@ b'<th: JR 
1 , L  , '- 4- . = I  

+> >&-\+? f ' 5 :> 7 * 9  G 
X L -  

+ , h , ,  7 a - - C  

- ' 51 ; y p -  . , , '-la * "a = A ,  + *  , Y , , s f  x I , *  ' , '  device'; ':+ rlt. - ' 3 . , * A ~ + - ~ * . .  A C A  Y r  I%>.  % , r  
-> g L -  

r r f , , .  b 3 + 7 +  G d  ?A:;++; , . , - .- 
c < 

g = " . L  + " . U P  1 1  I - % I -  

, -: - < ,  J I >  ?" ' _ -  - 8 ? $-*';'; I "  : -  " 7 " ' - * " I' . I 
4 s* E *  

l ^ l b  O "  C 1 1 '  

Thermography 

Temperature ("C) 

Mid-point 1 Base 

Surface Thermocouple 

Temperature (OC) 

Mid-point Base 



Flgure 3.33 - Error sources In non-contact temperature measurement [SO] 

- Radiation emits from the surround~ngs and m turn 1s reflected by the measured 

object [51]. H~ghly polished, mlrror-I~ke matenals wlll therefore be prone to the 

reflectron of external radlation Difficulty mses when accurately recording 

temperature distribution for high-polished stanless steel matenals due to exterior 

radlation emissions 

- Rad~atlon from the measured object and reflected radiation will also be affected 

by absorption from atmosphere (see figure 3,33) [51]. In the absence of 

controlled teshng surroundmgs, varianc.es in atmospheric humidity may 

contribute to radiation detection errors A default reIatlve humidity value was 

applled for infiared analysis; however lnihal humd~ty testing may be requlred to 

develop a true representation of actual test~ng condit~ons. 

- The transmission of external ophcs around the measured object can cause 

imagng errors. Efforts to produce controlled surrormdlngs were attempted 

however the presence of external optics (sunlight, shadows etc) rerna~ned an 

issue. 



The ~esolut~on of thermography testing issues was cons~dered beyond the scope of 

th~s research The application of thermography techniques for non-intrusive analysis 

has been explored and wlth cons~derahon and resolut~on of aforementioned issues 

this technique may be applied to non-intrusive anaIysis 



Chapter 4 ConcIusions and Recommendations 

An analysis of the thermal sanitization charactenstics of equal and reduced diameter 

dead-legs for vanous branch lengths has been presented Results have illustrated the 

thermo-fluid scenarios at the base of plping dead-legs wth respect to varylng 

distribution loop velocities 

4.1 Conclusions 
Analysis of results indicates Increases m maximum dead-leg temperature with 

respect to increasing loop veloc~ty for dead-legs m general For dead-leg 

configurations lid = 6, greater temperatures are recorded at the base of reduced 

diameter branches at lower loop velociCres (Ub 5 1.12mls). However with increased 

loop velocity (Ub = 1.50m/s), a greater dead-leg temperature IS recorded m the equal 

branch diameter geometry. 

At lld = 4 considerably greater temperatures are recorded in reduced diameter 

branches at lower loop veloc~ties (Ub < 0 . 5 6 d s )  However at increased loop velocity 

( U b  = 1.50ds) similar dead-leg temperatures are recorded for both branch 

geometries. A maximum temperature threshold is achieved in both equal and 

reduced dameter dead-legs w th  respect to increasing loop velocity For I/d = 2, 

greater temperatures are recorded at the base of the equal lameter dead-leg 

branches 

At lower loop velocitres, reduced branch volume contnbutes to the thermal 

penetration of loop fluid generating favourable mixing condibons resultrng in higher 

dead-leg temperatures. However wth respect to Increased loop velocity, scale-up of 

branch hameter contnbutes to increased mass transfer generating s~gnificant 

turbulent fluid mixing within the dead-leg 

Bd and 4d dead-legs regardless of branch diameter were not capable of achieving 

desired loop temperatures Loop temperature set-point 79.15 4 1 "C was achieved and 

marnta~ned at the base of a 2d equal d~ameter dead-leg for loop velocity 1.50mls 

However rnaxlmum temperatures of sanihzable limts were attained for 4d dead-legs 



at Ub > 0 94mls, 2d reduced dlameter dead-leg at 1 5 0 d s  and 2d equal hameter 

dead-legs across the velocity range 

Wlth consideration to the application of the 6d-rule, results have indicated the law IS 

ultunately flawed Acceptable sanltlzatlon temperatures were not achievable in 6d 

dead-legs Addihonally fluid dynamrcs at the base of a branch lld = 6 suggest 

contarnlnants would be ne~ther thermally desfxoyed nor removed under flow 

conditions. 

High pur~ty water system designers should aim to h m ~ t  the length of dead-leg 

branches to < 4d and operate dstnbution loop velocity > 1.50m/s to elimmate the 

presence of diffusive heat transfer at the base of operational dead-legs With 

conslderatlon of mdustnal cleaning procedures, the ngorous turbulent mixing of loop 

f lu~d throughout the branch is required to completeIy remove free-floatlng and 

attached contaminants 

An investrgation of the application of non-mfmsive temperature measurement 

techniques was presented Infrared thermography h~ghlighted surface temperature 

dlstnbubon across an operational piping dead-leg In conjunction with surface 

thermocouple analys~s, greater temperatures were recorded at mid-point branch 

posihons compared with at the base of the dead-leg. Surface temperature hstnbuhon 

supported thermo-fluid dynamics hrghlighted by previous results The apphcation of 

non-intrusive techniques is Irm~ted however, due to the presence of axial heat 

conduct~on along pipe walls which ~nhib~ts the accurate detection of dead-leg fluld 

temperature withm. 



4.2 Recommendations 
Analysis performed durlng expenmentation has highlighted areas for possible 

continued research on this top~c Author recommendations include; 

- Evaluahon of dead-leg thermal responses over increased loop velocrty ranges 

- An invest~gatlon of the application of ~nfiared thermography to the detechon of 

flwd temperature deceases in HPWS distnbut~on loops 

- The direct measurement of bactenal population and activity prior to and after 

dead-leg stenllzat~on procedures in an operational system. 

- Surface temperature mappmg of operatronal dead-leg branches for the 

development of heat transfer coefficients 

- An rnvestigat~on of the thermal responses for dead-legs honzontally orientated or 

at an angle to the vertical. 

- An mvestigat~on of the effect of branch insulat~on upon dead-leg temperatures 

- A development of standard flushing procedures and intervals per branch 

configuration and loop velocity 
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Appendix A 

- Drawings not to scale 

- All dirnens~ons shown m mm 

2d Equal Diameter Dead-leg 



4d Equal Diameter Dead-leg 



6d Equal Diameter Dead-leg 



6d Reduced Diameter Dead-leg 



Reduced Dead-leg nylon inserts 

Groove f a r  
o-ring insertion-\ 



Appendix B 

An expression (31 is applied to convert flowrate, 

Bulk fluid velocity calculated based upon flowrate and pipe area (4). 

q = A U b  

A, cross-sectional area of fluid flow given by (51, 

ReynoIds Numbers (Re) for expenmental fluid flow calculated based upon (61, 

Loop fluid properties glven as below; 



Appendix C 

Temperature profiles for 6d equal diameter dead-leg @ Ub = 0 1 9 d s  



Temperature profiles for 6d equal d~ameter dead-leg @ Ub = 0 3 7 d s  



Temperature profiles for 6d equal dlarneter dead-leg @ Ub = 0 56m/s 



Temperature profiles for 6d equal diameter dead-leg @ Ub = 0 9 4 d s  



Temperature profiles for 6d equal d~ameter dead-leg @ Ub = 1.12ds 



Temperature profiles for 6d equal drameter dead-leg @ Ub = 1 50m/s 



Temperature profiles for 4d equal diameter dead-leg @ Ub = 0 1 9 d s  



Temperature profiles for 4d equal dlanleter dead-leg @ Ub = 0 3 7 d s  



Temperature profiles for 4d equal diameter dead-leg @ Ub = 0 . 5 6 d s  



Temperature profiles for 4d equal diameter dead-leg @ I=b = 0 94mls 

Maximum dead- 

9000 
9300 
9600 
9900 
10200 
10500 
10800 

74.02 
73.92 
74 55 
74 57 
74 31 
74 14 
73 78 

79.23 
78 94 
79.91 
79.65 
79.37 
79 12 
79.71 



Temperature profiles for 4d equal diameter dead-leg @ Ub = 1.12ds 

Time, t (s) 

1 
300 
600 
900 

Maximum dead-leg 
temperature, Td4 (OC) 

23 00 
25 99 
27 99 
30.01 

Maximum loop 
temperature, T1 (OC) 

26.91 
29.95 
32.84 
35.75 
38 53 

pp 

41 43 
1200 
1500 

33 33 
36 02 

78.96 
80.27 
79.73 
79 37 
79.12 
79.08 
79 85 
79 51 
79 23 

79 67 
79 37 

6900 
7200 
7500 
7800 
8 100 
8400 
8700 
9000 
9300 
9600 
9900 
10200 
1 osoo 
I0800 

74 37 
75.14 
75.22 
74.81 
74.57 
74 29 
75.02 
74 83 
74 39 
74.27 
74.95 
75 08 
74 79 
74.29 



Temperature profiles for 4d equal diameter dead-leg @ Ub = 1 5 0 d s  



Temperature profiles for 2d equal diameter dead-leg @ Ub = 0 1 9 d s  

Maximum loop 
temperature, TL (OC) 

25.60 
28 01 
30 96 
34.07 
37 13 
40 17 
43 21 
46 20 
49 01 
52 00 
54.96 
57.83 
60 69 
63.53 
66 35 
69 07 
71.84 
74 61 
77.34 
80.03 
80.47 
80 33 
80 00 
79 57 
79 25 
78 92 
80 25 
80.39 
80 17 
79 81 
79 45 
79.10 
79.4 1 
80 33 
80.25 

7 
79 51 

Time, t (s) 

1 
300 
600 
900 
1200 
1500 
1800 
2 100 
2400 
2700 
3000 
3300 
3600 
3900 
4200 
4500 
4800 
5100 
5400 
5700 
6000 
6300 
6600 
6900 
7200 
7500 
7800 
8100 
8400 
8 700 
9000 
9300 
9600 
9900 
10200 
10500 

Maximum dead-leg 
temperature, Tdl PC) 

25 20 
26 76 
29 66 
32 53 
35 44 
38 38 
41.17 
43 98 - 
46 89 
49 89 
52 54 
55 41 
58.06 
60 74 
63 31 
65 67 
68 35 
70 91 
73 52 
76 13 
77 40 
77.26 
77.00 
76 61 
76 35 -- 
75.97 
76 65 
77.12 
77 12 
76 65 
76.3 1 
76 01 
75 85 
76.90 
77 08 

76.78 
10800 76 43 



Temperature profiles for 2d equal dxamcter dead-leg @ Ub = 1 . 5 0 d s  



Appendix D 

Temperature profiles for 6d reduced hameter dead-leg @ Ub = 0 1 9 d s  



Temperature profiles for 6d reduced diameter dead-leg @ Ub = 0 3 7 d s  



Temperature profiIes for 6d reduced d~ameter dead-leg @ Ub = 0 5 6 d s  

Maximum 



Temperature profiles for 6d reduced diameter dead-leg @ Ub = 0 94rnls 

--- 
Maximum loop 

temperature, TL ( O C )  
23 86 
26 85 
30.00 
32 80 
35 62 
38 5 1  
41 43 
44 13 
46 87 
49.6 1 
52.35 
55 05 
57 78 
60 45 
63.12 
65.72 
68.23 
70.74 
73 -29 
75 74 
78 19 
79 59 

Maximum dead-leg Time, t (s) 
temperature, Td6 (OC) 

1 23 59 
300 
600 
900 
1200 
1500 
1800 
2 I00 
2400 
2700 
3000 

23 54 
23.99 
24 86 
25 62 
26 62 
27 5 8  -- 
28 43 
29 39 
30 35 
31 22 

6600 
6900 
7200 
7500 

p. 
8400 
8700 
9000 
9300 
9600 
9900 
10200 
10500 
10800 

3300 32.40 

45 22 
46.27 
47 47 
47 68 
48 62 
48 77 
48.80 
48.60 
48.97 
48 73 
48 60 
48 32 
48 11 
48 02 
47 96 

3600 
3900 
4200 
4500 
4800 
5100 
5400 
5700 
6000 

79 33 
79.04 
78.78 
78.52 
79.53 
79.25 
78 98 
78 72 
79 55 
79.4 1 
79 10 

---I 
79.43 
79 19 

33 85 -- 
35 03 
36 54 
37.50 
38.88 
40.14 
41.02 
42 07 
43 12 

6300 44 36 -- 



Temperature profiles for 6d reduced d~ameter dead-leg @ Ub = 1 12mk 



Temperature profiIes for 6d reduced drameter dead-leg @ Ub = 1 50m/s 

Time, t (s) Maximum dead-leg 

600 
900 

26 83 
27 45 

30.98 
34 02 



Temperature profiles for 4d reduced diameter dead-leg @ Ub = 0 1 9 d s  



Temperature profiles for 4d reduced dlameter dead-leg @ Ub = 0 37rnls 



Temperature profiles for 4d reduced dlarneter dead-leg @ Ub = 0 5 6 d s  



Temperature profiles for 4d reduced dlan~eter dead-leg @ Ub = 0 9 4 d s  

- - - 

Maximum dead-leg Maximum loop 
(') temperature, Tdr (OC) 

1 
300 
600 
900 
1200 
1500 
1800 

2700 
3000 
3300 
3600 
3900 
4200 
4500 
4800 
5 100 
5400 
5700 
6000 
6300 
6600 
6900 
7200 
7500 
7800 
8 100 
8400 
8700 
9000 
9300 
9600 
9900 
10200 
10500 

23.83 
26.27 
29 12 
31.58 
34.24 
36.93 
39 43 
42 20 
44 77 
47.17 
49.88 
52.48 
55 13 
57 64 
60 45 
62 90 
65 31 
67.73 
70 24 
72 65 
74 91 
77 10 
76 86 
76 59 
76 43 
76 21 
77.24 
76.96 
76.63 
76 59 
76.35 
77 10 
76.88 
76.72 

76.27 

26.76 
29 73 
32 49 
35 36 
38 2 

40.77 
43.66 
46.40 -- 
49 06 
51 83 
54 50 
57.25 
59 87 
62.55 

70.38 
72 87 
75,36 
77.78 
79 81 
79.37 
79 17 
78 92 
78 66 
79 87 
79.37 
79.08 
78 9 
78 64 
79 51 
79 31 
79.10 
78.82 
78 94 

10800 79 48 



Temperature profiles for 4d reduced diameter dead-leg @ Ub = I 1 2 4 s  

Time, t (s) 

I 
300 
600 
900 
1200 
1500 
1800 

Maximum dead-leg 
temperature, Td4 (OC) 

Maximum loop 
temperature, TL O C  

49.89 
52 67 
55 36 
58 32 
61 06 
63.84 
66 44 
69.1 1 
71 82 
74.45 
76.94 
79.59 
79 59 
79 33 
79.08 
78.86 
78.62 
79 61 
79.39 
79 15 
78 88 -- 
78.66 
79.77 
79 41 
79.10 
78 88 
78.70 
79 79 

-- 
48 22 

1 
23 28 1 23.48 7 
26 08 26 79 
28 75 29.59 

3000 
3300 
3600 
3 900 
4200 

31 64 
34 45 
37 11 -- 

40 02 
-- -- 

50 98 
53 5 1  
56 25 
59 01 
61 74 

32.58 
35 51 

-- 38 42 
41 39 

4500 
4800 
5100 
5400 
5700 
6000 
6300 
6600 

7500 
7800 
8 100 
8400 

10500 
10800 

64 34 
66 79 
69 48 
71 82 
74 33 
76.86 
77 18 -- 
77 03 
76 92 
76 65 
76 47 
77.38 
77 20 
76 98 
76 88 
76 53 
77.42 
77 27 
76 94 
76.78 
76 57 
77.45 



Temperature profiles for 4d reduced dlameter dead-leg @ Ub = 1 50rn/s 



Temperature profiles for 2d reduced diameter dead-leg @ Ub = 0 1 9 d s  



Temperature profiIes for 2d reduced d~ameter dead-leg @ Ub = 1 . 5 0 d s  



Appendix E 

6d equal dlameter dead-leg for base positions @ Ub = 1 5 0 d s  

Maximum 
surface base 

23.21. 



6d equal diameter dead-leg for mid-point positions @ Ub = 1.50mls 



4d equal diameter dead-leg for base positions @ Ub = 0 56ds 



4d equal d~anleter dead-leg for mld-point posltlons @ Ub = 0 5 6 d s  


