An Alternative Audio Web Browsing Solution:
Viewing Web Documents Through a Tree

Structural Approach

Esmond Walshe B.Se.
School of Electronic Engineering

Dublin City University

A thesis submitted for the degree of Ph.D.
September 2006

Supervisor: Dr. Barry McMullin

Declaration

I hercby certify that this material, which I now submit for assessment on
the programme of study leading to the award of Ph.D. is entirely my own
work and has not been taken from the work of others save and to the extent

that such work has been cited and acknowledged within the text of my work.

= IMoMNE Lo al) <L
Signed: (Esmond Walshe)
ID Number: 50162071
Date: 21 September 2006

Abstract

This thesis examines methods to aid in the non-visual browsing of web based
documents, primarily using synthetic speech output. The serial nature of
speech ensures that it is a difficult medium in which to browse documents.
Much of the structure implied in the visual appearance of the content is not
available through speech. Only a narrow region in the content is perceiv-
able at any given time, and it can be difficult to navigate to the important
segments of the document. This is in contrast to visual interaction, where
cues such as changes in font or colour establish contextual changes in the
content and guide the user accordingly.

A number of browsing/navigation strategies are presented to offset these
problems. These are implemented through WebTree. This is a highly cus-
tomisable web browser which renders documents through a dynamically ex-
pandable tree structural view. This mirrors the arrangement of mark-up
elements in the source file. Contextual information about each element is
provided as appropriate. By expanding and collapsing individual tree ele-
ments, the user decides how much of the content is rendered at any given
time. The user can also determine whether a certain element is automati-
cally expanded in the rendering when encountered, or whether it appears in
the rendering at all, cffectively allowing for the easy generation of alterna-
tive document views. To speed up navigation the user can move through the
document based on the element of their choice. Specialised element search
functions are also available. Additional navigational functionality is pro-
vided to deal with the specific requirements of <table> or <form> elements.

The thesis reviews different methods previously employed to offset prob-
lems with auditory interfaces and compares these with WebTree. Initial
user tests and evaluations of WebTree are presented, which show that the
approaches taken provide a viable solution, particularly for the browsing of
large or complex web-based documents, by blind users.

Acknowledgements

Though this work bears the name of a single author, I wish to acknowledge
all those whose contributions made it possible. First and foremost, I wish
to sincerely thank my supervisor, Prof. Barry McMullin, who had to put up
with listening to all my ideas, both good and bad, and my missed deadlines.
He helped me crystallise many of the ideas found in this thesis and provided
many suggestions on how the system could be improved.

I wish to express my gratitude to Dr. Klaus Miesenberger and Dr. Derek
Molloy who had the tedious task of examining this thesis. I would like to
thank them for being both thorough and fair with their comments and for
their suggestions on possible directions in which the research could progress
in the future.

I would also like to express my gratitude to the members of the user
group who tested the application. The time they spent using the system
provided much insight into whether the system was a usable approach to
web page navigation. T would also like to thank the following people, Bryan
Walshe, Derrick Walshe, Joan O’Malley, Donal Fitzpatrick and Ciaran Kelly
for their help in proof reading this thesis and for providing comments on how
it could be improved. I would also like to thank the other members of the
caccess group and members of the “Alife” lab for acting as a screen reader
when my computer cither crashed, or the application I needed to use was
inaccessible. Also thank you to my many friends and colleagues for putting
up with me for the last while.

The work described here received financial support provided from AIB
PLC!. The work was carried out in the Research Institute for Networks
and Communications Enginecring (RINCE), established at DCU under the
Programme for Research in Third Level Institutions operated by the Irish
Higher Education Authority.

http://www.aib.ie/

ii

Finally I would like to thank my family for all their support throughout
the many years I have spent in education. They always strived to ensure
I received the best education possible and encouraged me to do the best I
could. I owe them a debt that probably cannot be repaid. Throughout the
years, my three brothers and one sister read large amounts of material for
me that I did not have access to in electronic form. So Mam, Dad, Kenneth,
Derrick, Bryan and Sandra — Thanks!

ii

Contents

1 Introduction
1.1 Setting Outthe Problem« . i i v v v vvvan o
1.2 Interaction Modalities . . . « ¢ i v o v v v v v v v v viv v v
1.3 Navigation and Browsing
14 WebTree . o o v v v v o o e e e e e e e e e e
1,5 Thesdis SELUCLUIE . « v v v oo ww vim o o v v v 0 ss s e & 8 5 4
2 Speech Output and Non-Speech Auditory Cues
2.1 Bpoken OUEPUL &« v v s v s a 5w ww w6 w w e e e
2.1.1 Synthetic SPeath: . v « v v v wm v v mon e n e
2.1.2 Comprehension of synthetic speech
2.1.3 Voice Intonation and Prosodic Cues
2.2 Tactons, Earcons, Auditory Icons and General Non-Speech
SoUNACUER & & = = i vow w5 s e w R w5 e § 0 W e & e e W
e IR V01 o R e
2.2.2 Non-speech andioecueso
23 SUOMELY o noponnenamees i@ nss 8 850G w0
3 Literature Review
3.1 The Graphical User Interface (GUI)
3.2 Manipulating the Audio Stream to Provide Contextual Infor-
f025:1= (1) o (RN SR I TR i -
3.2.1 Using Non-Speech Cues to Denote Structure
3.2.2 Using Voice Changes to Denote Structure

iv

14
15
21
25
27

32

3.3 Document Modelling 63
3.3.1 Modelling Document Structure 67
3.3.2 Conceptual Graphs 70
3.3.3 The Document Object Model (DOM) 71

3.4 Current Non-Visual Web Browsing Solutions 74
3.4.1 Conventional Browser with a Screen Reading Appli-

cation L. 74
3.4.2 Transcoding Proxies, 76
3.4.3 Dedicated Browsing Solutions 80

3.5 Web Page Navigation and Summarisation 83

3.6 Tabular Constructs 86
3.6.1 Cells Spanning More than One Row or Column 94
3.6.2 Providing Contextual Information During Navigation 96

3.7 Form Handling 97

3.8 Tree Navigation 104

39 SUMMATY . . . -+« v v v o e e e e e e 107

WebTree Implementation 108

4.1 Emacs Terminology« . o o v v oo 108

4.2 WebTree Specification and Design 110

4.3 Implementation Environment 114

4.4 Document Modelling o 122

4.5 Exposing Document Tree Structure 124
4.5.1 The Widget Tree oo v o 126
45.2 Screen Overlays e 132

4.6 Cascading Style Sheet implementation 133

4.7 Standards Complianceo 135
471 Guidelines o e e 136
472 Validation oo 146
4.7.3 Accessibility Levels and Legal Requircments 148

4.8 SUIMMATY . .« v v e v e et e e e e e e e e 152

5 WebTree User Interface 153

51 UserImterface v v v v v vv vov v ot v o v oo o s sn o 154
5.1.1 Primary Document View 156
5.1.2 Customisation 165
5.1.3 Generating Alternative Document Views 167
5.1.4 Keyboard Navigation and Interaction 169
518 SearchilE . o v s o oo cen pomms o sr w8 e 170
5.1.6 Rendering Tabular Data 173
5.1.7 XHTML Form Handling 178

5.2 ANditoryOuPUt « s s e s s e w s e e s e E e E 180
521 Mree Interachion: o vwswomwnme s o smman 184
5.2.2 Speaking Formi Data 187
5.2.3 Speaking Tabular Data 189

5.3 Reading Strategies . i v v i v w v s awn e s s e d e s 191

B4 Braile'Outpub « v = v v wsw v i ww a0 womm s s w s w5 193

BiS SUIMHALY & « v w o i 9 e @ e @ B et e e e w e 193

6 User Evaluation 194

6.1 “Test UserProfile: : « s sms o we o v i i o din % s & ik 194

62 Nlethodology « «: v e vuaamico s s w v an s eanasa 196

6.3 Formal Questionnaire Results 200
6.3.1 Results of the After Scenario Questionnaire 200

6.4

6.5

6.3.2 Results of the Computer System Usability Question-

BRIFE: s s riaia@muagssawiNsn@uagsan 200
Evaluation results summary 0oL oL 201
6.4.1 Interactive Form Data, . 208
6.4.2 Searching v vt 209
6.43 TabularDatao v oo, 210
6.44 Customisation Issueso 0o 0o 212
6.4.5 Usability Versus Page Complexity 213
Conelnsion & 4w w o v 5 5 % s @ 6 6 % e © W § @ e @ e W N 215

vi

7 Conclusions and Further Work 217

7.1 Further Work e 221
7.2 Contributions of this Research, 222
References 224
A WebTree Application User Manual 239
B WebTree Tutorial 248
C Additional User Evaluation Questionnaires 254
C.1 Preliminary Evaluation Questionnaire 254
C.2 After Evaluation Questionnaire 256
D Braille 263
Dl BrieE DESetiption o w5 v 5 o v w5 6w o 0w w0 6w e 6 b 263
D.2 Louis Braille: Biographical note 265
D.3 Braille Standards 266
D.4 Braille Reading and Usage Levels 268
D.5 Issues with the communication of highlighting and other vi-
sual cues through Brailleo o000 272
D6 Braille production0 v i e 274
D.6.1 Relreshable Braille Displays 276

vil

Chapter 1

Introduction

This chapter is intended to outline the basic ideas underlying the design
of the WebTrce document browser. It points out the origins, primary aims
and considerations of the research. It also provides a brief overview of somc
of the key concepts used within the system. A short description of the
modalities in which blind people interact with their computers is presented.

The final section provides an outline of the structure of this thesis.

1.1 Setting Out the Problem

The vast quantities of electronic information available through the world
wide web has resulted in access to substantial amounts of written material
previously inaccessible to blind individuals. Performing transactions online,
such as shopping or filling out application forms, has become very popular
over the last number of years. In the case of blind people, this has re-
sulted in greater control over aspects of their everyday lives. It can reduce
their dependence on sighted assistance to complete daily tasks. Purchasing
goods through an ecommerce website is often convenient for both blind and
sighted people alike. Nevertheless, it can have greater resonance for blind
individuals. Many of the physical barriers associated with navigating large
department stores and with the viewing and selection of products can be al-

leviated through shopping in this manner. However, for a blind person to be

able to take full advantage of these possibilities, websites must be marked up
in accordance with accessibility guidelines. For example, the Web Content
Accessibility Guidelines (WCAG) W3C (19995), produced by the W3C’s
Web Accessibility initiative (WAT)!. However, only a subset of the WCAG
guidelines is applicable to web access for blind people. (See section 4.7) for
more details. Once a web page meets a certain level of accessibility criteria,
blind people can navigate through and gain access to the relevant infor-
mation. This is achievable using either a dedicated audio browser or with
screen-reading software interfacing with a mainstream visual browser.

Many web access solutions for the blind function as add-on auditory in-
terfaces to existing visual browsers. However, there are major differences in
the interaction methods used to operate dedicated audio browsers in com-
parison to their visual counterparts. The visual reader is rather adept at
assimilating large amounts of information at the same time. The human
eye is expertly capable of quickly scanning through the document to estab-
lish those items deemed as being important page content. This is achieved
through examining the spatial organisation of clements and through visual
cues, e.g., changes in font size, colour and emphasis. For example, many
website developers position navigation links to the left of the main content
in multi-columned displays. Also, a section heading may have a different
colour or font size, making it stand out from the surrounding text. With
one quick glance, the visual reader can often isolate the starting point of the
required content and re-adjust focus accordingly.

Unfortunately, much of the spatial organisation is lost when using an
auditory browser. Due to the serial nature of access technologies for the
blind, only a single point in the audio stream is viewable at any given time.
Therefore, it is difficult to establish the page structure without examining
the entirc page. The content is presented in a sequential manner, causing
problems for multi-column presentations. Reading a line of text bascd di-

rectly on its screen position would include all of the columns in the order in

ttp://www.w3.org/wai

which they appear. For this reason, many access solutions reformat the con-
tent and present it linearly, for example, JAWS for Windows?, often hiding
the spatial organisation from the listener. Sce section 3.6 for more details
on the types of transformations performed on tabular material. A number
of web access limitations expericnced by blind people are due to the narrow
focus imposed by this form of interaction. In the case of data tables, it
might be difficult to see how each cell relates to the neighbouring cells in
the grid. This is especially the case when linking the cell with any relevant
header information, whether it be a row or column header. Thus, increasing
comprehension complexity when assimilating such content. When a tabular
construct is employed to visually organise the information for purely aes-
thetic purposes, other problematic issues surface. Presenting the content
in a linear format prevents the problem of listening to content from multi-
ple columns when reading a line. Howcever, it does mean that the user must
trawl through the content of each column to find the required data. Take for
example a two column display. If the left hand column contains navigation
links, with the second column containing the main content, the user must
navigate passed these links before reaching the required material. Also, if
the content in each column is divided into a number of cells, then different
fragments of cach column would be presented in sequence. This ensures that
a continuous read function would rcad fragments of both columns instead
of one continuous column.

Similarly, the use of visual cues, e.g., adjustments in colour or font sizc
to depict contextual changes can pose serious difficulties for auditory inter-
faces. For each visual cue, the amount of possible variation in text format-
ting parameters is quite large. Consequently, combining two or more such
cues ensures the number of possible format variations is enormous, while
the scope for mapping these changes to the audio output is rather limited.
Alternative voices or changing voice parameters such as pitch or stress can

signal the presence of these cues. However a number of problems exist. See

2http://www.freedomscientific.com/fs _products/JAWS HQ.asp

section 3.2.2 for a detailed discussion of these problems. The number of
available voices can vary greatly from synthesiser to synthesiser.> There-
fore, the voice selected to portray certain information may not be available.
An analogous problem does exist for visual formatting: any given user will
have only certain fonts installed, and these may not include some fonts spec-
ified by a page author. Also, if certain voice parameters are altered by too
great an extent, the user can become distracted with the changes, reducing
levels of content comprehension (James, 1998). Likewise, if the changes are
too subtle the listener may have difficulty recognising adjustments to the
output. Therefore mapping these changes to the intended meaning would
be extremely difficult. For these reasons, modelling document interaction
using a purely audio browser by directly mapping functionality to its visual

counterpart is not generally satisfactory.

1.2 Interaction Modalities

Braille and speech output are the two primary media in which blind peo-
ple can gain access to electronically stored documents. Braille is a tactile
method of encoding written material dating back to the early 19th century.
No attempt is made to mimic the shape of printed letters. Instead, char-
acters are fashioned using up to six raised dots, positioned in two vertical
columns of three. The dots are numbered in scquence from one to six. The
top left position is known as Dot 1, while dot 6 is situated on the bottom
right. Characters are defined by raising one or more dots in various combi-
nations. For example, a is represented by dot one, and g contains dots one,
two, four and five. In terms of computer interaction, access can be gained
through a specialised piece of hardware known as a Braille display, where
up to 80 characters are often available. Braille displays and their uses are

discussed in section D.6.1. For a morc detailed review of Braille and its

3A voice synthesiser is a software program or a mechanical hardware device which
generates an approximation of human speech. They arc often referred to as “text to
speech engines”, for they frequently take a string of text as input and convert it to speech
output. For more details see section 2.1.1.

usage, see appendix D.

Alternatively, the user can choose to have information presented through
synthetic speech. Although there have been many advances in the quality
of synthetic speech, it is still less intelligible than natural speech. Therefore,
it can be difficult to listen to lengthy fragments of content, especially if
the subject matter is complex. Users can get bored with the presentation
due to the monotonous quality of the voice. Also, problems can be caused
by poorly timed prosodic boundaries or inaccurate intonation inflections.
However, with a little training, a user can read documents at very high
speed, using this method. Sce section 2.1 for a more in-depth discussion of
speech.

Both Braille and speech output suffer from similar limitations when pre-
senting computer-based content. This is due to the narrow time-frame in
which content is portrayed. Speech output is both sequential and transient,
thus only a small segment of the content is in view at any time. Whereas,
with Braille, the size of the display is the limiting factor. Although up to 80
characters are sometimes available, screen reading softwarc has to take into
account smaller displays. Thus, a physical line of text on the screen does not
always equate to what is presented in the display. This narrow view ensures
that the reader does not automatically scc the page structure. Instead they
must examine the entire page to establish such information. Consequently,
they cannot casily jump to the important content when viewing pages whose
structure is previously unseen.

Both media pose difficulties for the presentation of contextual informa-
tion provided by visual cues. For example, changes in font, or emphasis.
Announcing the presence of such content in the vocal output would increase
dramatically the verbosity of the presentation. Thercfore, as mentioned
above, alternative voices or changes in voice parameters could be used to
portray this information. However, with Braille the capacity for presenting
such data is extremely limited. There is not much scope for defining new

Braille characters to denote contextual cues, discussed in scction D.5. For

these reasons, the use of sound cues to complement the primary method of
output is often employed. For a description of the types of sound cues used,
see section 2.2.

These sound cues can be abstract musical sounds (earcons) (Blattner
et al., 1989) or every day sounds whose meaning is taken from their role in
the natural environment (Gaver, 1986). There is a learning curve required
to associate these cues with the meaning they are intended to portray. How-
ever, once learned they ought to be able to unobtrusively signal contextual
changes to the listener. In terms of browsing web pages, the presence of a
given element, such as a header <h1> could be signalled by a sound cue. In
chapter 3, the role of sound cues in terms of previous work in the area of

browsing marked up documents are discussed.

1.3 Navigation and Browsing

Listening to an entire document through a text to speech engine (TTS)
could be described as being akin to listening to a pre-recorded spoken ver-
sion of the content. As with digital recordings, an ability to navigate to and
focus in on small segments of the document for closer scrutiny is imperative
(Arons, 1997). Many screen reader applications provide navigation facili-
ties to manoeuvre line by line, or navigate through the content relying on
larger chunks of text. For example, paragraphs or virtual pages based on
the amount of screen text available. When viewing web-based documents,
additional navigational functionality based on a subset of mark-up tags is
sometimes provided. For example, manoeuvring to the next table construct
or list entity. However, without traversing the entire document, it is diffi-
cult to cultivate an accurate impression of the document’s structure usually
apparent to a sighted user with a single glance.

To circumvent these issues, many screen reader developers equip their
applications with a page summarisation mechanism. These summaries are
frequently based on the presence of specific named elements such as headers,

hyperlinks, or by previously bookmarked page segments (Zajicek and Powell,

1997; Zajicek ct al., 1998a). Page summaries based on the first line/sentence
within a paragraph, or views containing entire paragraphs comprising spec-
ified words or phrases have also been attempted. See the document: Surf-
ing the Internet with JAWS?, for morc details. An alternative approach
would be to examine the sentence structure of the text and generate page
summarics of sentences containing the most frequently used word trigrams
(Zajicek et al., 19984).% Unfortunately, this method is rather error-prone,
for trigrams less pivotal to comprehending the page contents may feature
greatly in the summary, whilst less used more explanatory sentcnces are
excluded.

Other approaches to the presentation of web-based information include
Parente’s Audio Enriched Links system (Parente, 2004), and the Hearsay
system (Ramakrishnan et al., 2004) for browsing hypertext documents
through audio. The audio enriched links mechanism provides a spoken
preview summary of a linked web page, before the link is followed by the
user. The page summary is comprised of its title, its relation to the cur-
rent page, statistics about its content, and some highlights from its content.
The Hearsay system (Ramakrishnan ct al., 2004), attempts to automatically
partition Web documents through tightly coupled structural and semantic
analysis. It transforms raw HTML documents into semantic structures to
facilitate audio browsing. Voice XML dialogs are automatically produced
from the XML output of partitioning. See section 3.5 for a description of
the literaturc concerning page summarisation.

The major difficulty with many of the current approaches employed to
facilitate both internal document navigation and page summarisation, is the
tendency to only provide such functionality in relation to a subset of named
clements prescribed by the application developers. A better approach would

be to cncourage the user to perform element searches or create docnment

“http://tinyurl.com/rqzu4

5Zajicek ct al. (1998a) uses the word “trigrams” to denote a three word key phrase.
By extracting sentences containing the most frequently found trigrams, a page summary
based on the content can be gencrated.

renderings based on their individual requirements. Under the WebTree sys-

tem, many of these restrictions are removed.

1.4 WebTree

WebTree has been developed to explore the use of an alternative, highly cus-
tomisable tree structural approach to the auditory rendering of web based
documents (Walshe and McMullin, 2004, 2006). It provides alternative page
summaries based on user-selected components of the underlying mark-up.
The user dynamically controls how much of the document’s tree hierarchy
is to be exposed on a (virtual) screen at any given time. Thus, entire el-
ement sub-trees may be efficiently traversed with minimal difficulty. The
primary goal of this research was to establish any possible advantages that
can be associated with this approach. The major concern is the effect this
methodology may have on the efficiency at which the user can navigate to
and assimilate information.

Although the current version of the system is optimised for XHTML web
pages (W3C, 2002b), the methods should be applicable to any document or-
ganised in a tree-based structure. The system stores the parsed document
in a DOM (Document Object Model) tree structure for internal manipu-
lation (W3C, 2004a). Both the navigation and display functions interface
with the DOM structure to manipulate the document to the user’s specifi-
cations. Therefore, once issues resulting from the accurate parsing of these
documents are offset, the viewing of these pages should not be problematic
under WebTree. It should be noted that JavaScript® or Adobe Flash” com-
ponents when included in web pages are ignored by the current prototype
system.

The WebTree system attempts to use the mark-up structural elements
employed in the document’s make-up to determine how the content is to be

portrayed. Decisions on how much content is to be presented and the amount

Shttp://www.ecma-international.org/publications/standards/Ecma-262.htn
"http://www.adobe.com/products/flash/flashpro/

of style information to be associated with this material arc bestowed on the
user. Through the customisation facility, discussed in section 5.1.2, the user
can decide which elements have their content automatically appcaring in
the display. Thus, acting as a mechanism for generating alternative views
of the same document. Similarly, style information to be attributed to the
individual clements can be gleaned from an aural style sheet. See section 4.6
for more information.

The main focus of the WebTree system is to afford the user the ability
to create alternative audio renderings of a given document. By using the
expand/collapse functionality the user is intrinsically creating custom sum-
maries of the content. In addition, the ability to exclude entire clement sub
trees allows for a powerful method for creating page summaries. The man-
ner in which WebTree’s summarisation functions differ from those of current
solutions is that they are not limited to a set of clements named by the devel-
oper. That is, the user sclects the elements on which the rendering is based.
Also, summaries can be generated using a group of prescribed elements as
opposed to the conventional approach which generates a list containing only
a single kind of element, e.g., a list of links or header clements.® JAWS
provides a skim read feature that allows the user read a document using the
first line or sentence in a paragraph. Functionality to narrow the scope to
only those paragraphs satisfying prescribed text rules is also offered.? Users
can create a summary of this content, so that they can browse and quickly
link to the relevant page scgment. Again this appears to be limited to only
contain a single element type, i.e., <p> elements. Whercas WebTree also has
the ability to show a segment of a paragraph to provide an indication of its
content type, and the summarics in WebTree can contain multiple element
types.

The uscr intcracts with content rendered by the WebTree application

8With JAWS, a list of form clements can be created to include all form control types,
e.g., buttons, text entry fields, etc.

9Text rules can also be applied to sentences and lines to create summarics, depending
on the user’s preferences.

through a character-oriented virtual screen/display. By navigating through
the portrayed material, the user builds up a mental model of both the type
of content being presented and the structure in which the different elements
are organised. By expanding and collapsing segments of this structure, the
user can gain access to the desired material. There cxist three major static
points of reference for the user to guide them during navigation. These
include the left margin and both the beginning and ending points of the
document. All other points are subject to change. The virtual screen width
(right margin) is governed by variables stored in the customisation facil-
ity. Potentially, a line may contain hundreds of characters, depending on
the users’ preferences. Navigation within this rendering can be achieved
by manoeuvring in either direction character-by-character, word-by-word,
line-by-line, or through additional navigational functionality described in
chapter 5.

As well as the tree-like arrangement of the displayed mark-up eclements,
The WebTree application has been augmented with some rather powerful
methods to search for content. Thesc alternative methods were included so
that a number of different navigational approaches could be experimented
with. As well as searching for plain text, the user can search for an individ-
ual mark-up element, or limit the text search to only find instances of the
search string occurring within specific mark-up elements. Thus if a docu-
ment is properly marked up with structural clements, such as <h*> and
elements, instead of having their visual appcarance created with changes in
font, the user should also be able to navigate to the areas of the page that
the author deemed important. All elements arc allowed as targets for the
different search facilities.

The initial user evaluations demonstratc that viewing documents
through the WebTree system is a viable alternative to the linear approaches
often cmployed by traditional audio browsers. The advantages of the system
were most cvident whilst viewing large documents, for entire element sub

trees could be bypassed by the reader. This resulted in easy navigation to

10

the appropriate document segments.

Although the application would depend somewhat on web pages meet-
ing a certain level of accessibility requirements, the WebTree system should
increase the user’s productivity when viewing such documents. Despite the
low numbers of websites in Ireland embracing web accessibility guidelines,
such as the W3’s Web Content Accessibility Guidelines (WCAG), there may
be a reason for a dramatic increase in the number of pages mceting these
standards in the near future. The draft code of practice!? under the “Irish
Disability Act 2005” explicitly recommends that public sector websites val-
idate to WCAG level double-a compliance. If adopted, this code of practice
will place the requirement for public sector websites to meet WCAG level
double-a compliance on a legal footing, thercfore the number of pages meet-

ing this requirement should grow substantially.

1.5 Thesis Structure

Chapter 2 presents the different mechanisms for computer interaction used
by blind people to gain access to clectronically stored documents through a
purely auditory modality. The first section of this chapter is dedicated to
a discussion of speech output. Issues pertaining to both synthetic spcech
production and natural speech recordings are illustrated. A review of the
literature concerning the intelligibility of synthetic speech in comparison to
natural speech is provided. Also included is a brief outline of the effects
of prosodic cues in a continuous speech stream. In the sccond section, the
discussion focuses on the different types of non-speech sound cue and the
literature concerning research into their usage.

Chapter 3 contains a review of the literature concerning the use of
these technologics to portray information to the blind. Research into audio
browsers for purcly non-visual access is discussed at length. The usage of
alternative voices, changes in speech parameters and the use of audio cues

to announce contextual information are illustrated. Also presented are the

Yyttp://tinyurl. con/o3rdp

11

current mechanisms employed to alleviate the sequential nature of the out-
put. These include both additional navigational functionality based on the
presence of specific mark-up elements, and methods employed to summarise
the page content. A description of the presentation of interactive forms is
provided. Also presented is a review of the literature concerning interaction
with spatially arranged information i.e., tabular data under a purely audio
interface.

Chapter 4 describes the implementation of the WebTree system. First
the development environment is discussed, followed by a description of the
mechanisms used for document modelling. After which the technologies used
to exposc the document tree structure are presented. Also, the relevance of
the system to the presentation of documents marked up with other mark-
up languages, such as XML (W3C, 2004b) or HTML (W3C, 1999a) is included.
Finally, focus is centred on the standards and guidelines on which the system
relies, and legislation in the arca of web access for disabled users.

A description of the WebTree user interface is presented in chapter 5.
The primary document view based on the exposure of the documents’ un-
derlying tree structure plus the mechanisms used to customise this view
are discussed. Also included is a description of the facility to generate al-
ternative document renderings. Next, the methods of interaction with the
system are presented. Thesc include keyboard navigation, and the meth-
ods of interacting with complex structures such as tables and interactive
forms. Afterwards, the discussion features the spoken output interface. It
illustrates how the different components such as tree structure, form data
or tabular information are to be presented. Finally, a number of non-visual
reading strategies and how they are facilitated under Web'Tree are described.

In chapter 6, a discussion of the user evaluation process employed to ap-
praisc the WebTree system is presented. Initially, a description of the test
methodology is offered, followed by a detailed account of the test group’s
experiences using the application. A number of suggestions provided by

members of the evaluation user group on how the interface might be im-

12

proved are also included. Finally, a summary of the findings of this thesis

coupled with some ideas for future work are contained in chapter 7.

13

Chapter 2

Speech Output and
Non-Speech Auditory Cues

This chapter describes a number of alternative mechanisms used to portray
content to totally blind computer users through primarily auditory means.
The content is organised into two major sections:

Firstly, the discussion focuses on accessing content through spoken out-
put. Initially, a number of limitations with this approach are outlined, with
several proposed solutions to reduce these effects. Next a brief history of the
production of synthetic speech is presented, including a short overview of the
modalities employed to generate this form of output. Subsequently, an anal-
ysis of the literature concerning the comprehensibility of synthetic speech is
introduced. Finally, the discussion centres on the effects that speech prosody
and intonation have on the comprehension of spoken content.

The second major section details the use of non- speech audio cues e.g.,
earcons and auditory icons to convey contextual information to the listener.
The design of the different types of audio cues used, and a discussion of the
literature concerning their usage is presented.

Although the subject matter dealt with in this dissertation primarily
focuses on access to electronic content through auditory means, a discussion

of the literature concerning human computer interaction for the blind would

14

not be complete without the provision of some information on the Braille
output modality. For this reason, appendix D contains a detailed discussion

concerning Braille and its usage.

2.1 Spoken Output

A number of methods to gain access to written material are available to
blind individuals when the spoken medium is employed. These include: the
provision of books on Audiocassette; enlisting help from a sighted friend or
colleague to read aloud the relevant material; or employing a text to speech
engine to read the content of electronically stored documents. Relying on
a human reader is not always a practical solution and in many cases is an
undesirable one. This is primarily due to issues pertaining to both privacy
infringement and the reduction in independence this solution would impose.
However, the alternative methods listed have their disadvantages too. There
exists a number of problematic issues inherently linked to the serial nature
of speech interaction, which must be overcome. This is the case for both
pre-recorded speech and that, which is dynamically generated by a text to
speech engine.

There exists much previous work in the area of presenting electronically
stored content through the use of synthetic speech. The two main bodies
of work referenced in this dissertation are those by Raman (1994) and Fitz-
patrick (1999). These are referenced continuously throughout this thesis,
so it is important to provide a brief overview of some of their main ideas
here. However, a more in-depth description of these ideas can be found in
section 3.2. The manner in which they internally modelled document struc-
tures in their respective systems are described in section 3.3.1. The research
in question deals with how to non-visually render documents written in
the IWTEX mark-up language(Lamport, 1985). Although much of this work
deals with the communication of mathematical constructs through spoken
output, methods for notifying document structural and contextual cues are

also offered.

15

The ASTER project as described in Raman (1994), experimented with
assigning different voices to specific screen elements to notify both changes
in structure, such as a header element, and to signify a change in context,
for example, a piece of emphasised text. In addition, the use of audio cues to
signal interface states is used. He describes a specialised auditory formatting
language (AFL), which can specify how a given element can be rendered non-
visually. Many of the ideas offered by Raman (1994) can now be found in
the emacspeak! application, described in (Raman, 1996a,b).

Instead of using changes in voice to represent contextual changes, in his
TechRead project Fitzpatrick (1999) offers alterations in speech prosody,
such as changing the rate or pitch of the voice, as a possible solution. Take
for example the case of scctional headers. The prosodic aspects of the voice
are altered in order to convey the fact that the hierarchical level is changing.
The rate is slowed by 10% to yield a slower, more measured utterance. The
average pitch of the voice is decreased by 25% to distinguish the sectional
title from the remainder of the text. He believed it is preferable to enhance
some prosodic clements for the sake of intelligibility, than to achieve natural-
sounding, though completely incomprehensible synthetic speech. For more
information on the TechRead system, see (Fitzpatrick, 1999; Fitzpatrick and
Monaghan, 1998, 1999; Fitzpatrick, 2002; Fitzpatrick and Karshmer, 2004;
Fitzpatrick, 2006).

The Assimilation of information through the visual modality, and to a
lesser extent through Braille interaction, is acknowledged as being interac-
tive in nature. That is, the rcader is reputed to be an active component
in the reading process. Opcrating at a ratc comfortable to the reader, the
intended intonation that is implied by punctuation markers, grammatical
inferences, and/or by highlighting cues is interpreted as of when they are
encountered. The reader is able to determine the importance applied to
text fragments through the analysis of such cues. Reviewing documents in

an interactive manner ensures the user can easily limit the focus to a small

Yttp://emacspeak.sourceforge.net/

16

fragment of text for a more in-depth examination. This is especially bene-
ficial in cases where the subject matter is rather complex, e.g., examining
scientific or mathematical material.

Fitzpatrick maintains that the printed page plays an important role in
the comprehension of written material, by functioning as an external mem-
ory store throughout the reading process. He states in (Fitzpatrick, 1999,
Chapter 2):

The manner in which the eye can relate to this external mem-
ory is a very powerful tool to aid in the retention and comprehen-
sion of written information. It can rapidly scan over the printed
words, and by virtue of the juxtaposition of characters or sym-
bols on the printed page, scmantically interpret those symbols
to produce the underlying meaning. Once the information is lost
from the short-term memory, it can be casily refreshed by the

rapid movements of the eye.

There are a number of steps involved when visually reading a document.
A skilled reader will normally read at a rate of 250-300 words per minute.
The visual reading task does not normally entail the human eye positioning
focus at the beginning of the page, and sequentially moving through the
content until the end is reached. Instead, the reading process consists of
several distinct movements. Stevens (1996) tells us that the eye performs a
number of tasks in order to obtain informational input. The reading process

can be broken down into a serics of saccades (jumps) and fizations:

The saccades move the point of fixation in accordance with
how much information has been or can be apprehended. Forty
nine percent of reading time is taken up with fixations. The rest
of the time is taken up with the selection of which portion of the

text to next fixate and the move to that location.

In contrast to visual reading, assimilating information through the spo-

ken medium is said to be rather passive in nature. The reader does not ap-

17

pear to be an active component in the reading process. Instead, the material
in question is said to flow sequentially past the listener (Fitzpatrick, 1999).
The listener is not afforded full control over the content presented. That
is, they are dependant on the reader’s interpretation of prosodic boundaries
and voice intonation effects, to denote contextual meaning. Poor intonation
cues, or wrongly positioned prosodic inflections can render the content diffi-
cult to absorb. Although this is sometimes a problem found in human voice
recordings, it is much more frequently a feature associated with synthesised
speech output. See section 2.1.3, for more details.

The external memory function performed by the printed page is not
available when listening to a spoken rendition of the content. Therefore,
greater demands are placed on the reader’s short-term memory functions to
comprehend and assimilate subject matter in this form. This is due to its
transient nature, for only a single point in the content can be in focus at
any given time. Therefore, additional storage of the material in short-term
memory must take place.

According to Shneiderman (2000), the section of the human brain that is
responsible for the cognition of specch stimuli is also responsible for problem
solving. Solving tough problems is best achieved when attempted in quiet
environments, away from speech interaction. The accomplishment of rou-
tine physical activities and the interpretation of hand to eye coordination
are processed by separate components of the brain, therefore, whilst one is
engaged in such activities, e.g., typing on a keyboard, or navigating through
the on screen elements with a mouse, the problem solving processes are
not adversely affected. In short, humans can successfully walk and think,
but find it difficult to think whilst processing speech information at the
same time (Shnciderman, 2000). This ought to be a major considcration
when presenting complex information through speech ontput. The user is
expected to process speech recognition while memorising the content being
presented. This is before any interpretation of the material takes place.

The temporal and transient nature of speech interaction ensures that

18

it is a difficult medium in which to browse content. Especially when com-
pared to its visual counterpart. Take for example, the possible frustration
experienced when searching a lengthy recording for a specific passage of
text, e.g., a book stored on an audiocassette, or a digital recording stored
electronically. Regardless of the storage mechanism used, the predicament
is identical. Fast-forwarding/rewinding sequentially through the recording
will eventually find the specified excerpt, however this method can be both
slow and cumbersome.

The development of large digital libraries of pre-recorded speech content
has resulted in the need for much research into finding powerful and reli-
able audio scarch methods. Allowing multiple methods for content indexing
negates the need to sequentially search recordings for a given passage. Sep-
arating content into segments based on time index i.e., a specified number
of seconds/minutes, is not an adequate means for indexing recorded text. It
can often bear little resemblance to the contextual breaks within the spo-
ken utterance. Thus, additional methods for audio indexing needed to be
established.

The indexing method proposed by Arons (1997) analyzcs pause and pitch
structural cues in an attempt to establish changes in context. Arons (1997)
maintains that both the lengths of the individual pauses, and changes in
voice pitch, can be used as reasonably accurate indicators to the natural
segmental boundarics in the content. By analysing these prosodic and in-
tonation cues, attempts are made to determine the starting points of struc-
tural blocks, such as sections, paragraphs, or the beginning of a new topic,
to which focus can be positioned. According to Arons (1997), other re-
scarchers have investigated indexing speech recordings through scgmenting
content based on articulation by different speakers. However, to function,
all of these claboratc indexing strategies require a pre-recorded audio stream
for analysis. To evaluate contextual pauses, or changes in spcaker, an el-
ement of look ahead along the temporal cascade is necessary. Thus it is

unlikely that such methods could be employed to skim a document using

19

dynamically generated synthesised speech.

Many issues faced by screen reader users are similar in origin to those of
pre-recorded speech. That is, how can the content be best indexed to com-
bat the serial nature of the medium. Due to the transience of speech output,
only a small fragment of content is in focus at any given time. Therefore,
much work is needed to derive indexing strategies to allow for simple navi-
gation to relevant portions of the content. In Chapter 3 a description of the
current literature discussing methods attempting to alleviate this problem
is presented. In Chapter 5 the methods in which WebTree tries to address
these issues are described.

In many cases, passive listening to the content is sufficient to assimi-
late the information. For example, many novels and other fictional material
can be easily absorbed through sequentially reading large blocks of text.
However, a number of situations exist where a greater degree of interaction
with the subject matter is necessary to aid comprehension, e.g., the read-
ing of factual material, such as textbooks or technical specifications. To
minimise the effects of the transient nature of speech on memory capacity,
direct access to a synchronised textual transcription of the spoken output is
necessary. The digital talking book specification produced by the “Digital
Accessible Tnformation SYstem consortium” (DAISY consortium?) recom-
mend that this facility be introduced. This specification attempts to merge a
number of technologies, i.e., naturally recorded speech, synthetic speech and
a textual transcript, to improve the reading experience of the user. Thus, if
the reader is having difficulty understanding elements of the content, the fa-
cility to directly examine the text transcript to verify the intended meaning
is available.

The inclusion of text to speech technology in conjunction with a natural
speech rendition of the content may seem a little cxcessive. However, syn-
thetic speech may provide greater control on how the content is prescnted.

For example, it might be necessary to allow the examination of the content

%http://www.daisy.org/

20

on a character by character basis to assist in assimilating complex informa-
tion. Also, the textual transcript would allow for Braille access, in addition

to cut and paste facilities.

2.1.1 Synthetic Speech

For centuries, scientists have aspired to artificially synthesise something ap-
proximating human speech. In fact, according to Gold and Morgan (2000),
attempts at generating synthetic speech date as far back as the 18th century.
Sometime, around the 1780s, Von Kempelen built a mechanical talking ma-
chine, which demonstrated that the human speech production system could
be modelled. This device was not a direct model of the workings of the
human vocal tract. However, von Kempelen did succeed in demonstrating
that a mechanical device mimicking human speech production was possible.
A bellows was used to provide the air stream; a vibrating reed produced the
periodic pressure wave; and a number of various small whistles and levers
controlled the articulation of most consonants. The resonator of leather was
manipulated by the operator in an attempt to copy the acoustic configu-
ration of the vocal tract during the sonorant sounds (vowels, semivowels,
glides, and nasals) (Gold and Morgan, 2000). For additional information on
von Kempelen’s speaking machine, see the paper by Dudley and Tarnoczy
(1950).

Since von Kempelen’s time, many attempts at developing an artificial
speech production system have taken place. According to Gold and Morgan
(2000); Klatt (1987), modern methods of speech processing really began in
the U.S. with the development of two different types of apparatus. The
“channel Vocoder” (voice coder) and the “Voder” (voice-operated demon-
strator) were both pioneered by Homer Dudley in the 1930s. The channel
Vocoder analyzed specch into slowly varying acoustic parameters that could
then drive a synthesiser to reconstruct an approximation to the original
waveform. This idea lead to the development of the Voder device, which

was an experimental speech synthesiser whose output was controlled by in-

21

put from a human operator.

The Voder apparatus was composed of a control console in conjunction
with an electronic instrument to produce spoken output. The control console
consisted of keys for selecting a voicing source or noise source, with a foot
pedal to control the fundamental frequency of voicing vibrations. The source
signal was routed through ten bandpass electronic filters whose output levels
were controlled by an operator’s fingers (Klatt, 1987).

It is important to note that the Voder did not speak without a great
deal of assistance from the human handler. The interface to the Voder was
rather cumbersome and extremely difficult to control. Many prospective
candidates for the position of operator were unable to learn the system.
For those few who did eventually master the console interface, six to twelve
months training was often required (Gold and Morgan, 2000). For a more
in-depth discussion of the workings of the Voder device, see the paper by
Dudley et al. (1939).

Since the Voder, there has been little or no research to determine whether
a real time speech synthesiser can be accurately controlled by a human oper-
ator. Modern day speech synthesis is usually performed by digital computer
programs or specialised electronic hardware devices. Concentration has fo-
cused on devices that derive their information from a stored vocabulary, and
those which convert typed or electronically scanned text into spoken out-
put. The latter form of synthesiser is often referred to as a text to speech
(TTS) engine. However, many of the underlying principles have remained
quite fixed since the time of the Voder. That is, there is often a separa-
tion of source and filter followed by the parameterisation of each (Gold and
Morgan, 2000).

In his discussion of the source-filter theory of speech generation, Klatt
(1987) tclls us that in addition to the methods for copying the time-varying
spectral patterns of speech, found in the Voder, a critical next step in the
history of speech synthesis was the development of an acoustic theory on how

speech is produced. Also, the design of formant and articulatory synthesisers

22

based on this theory were contributing factors. He cites (Fant, 1960) as
providing a summary of this theory.

In its simplest form, the acoustic theory of speech production states that
it is possible to view speech as the outcome of the excitation of a linear filter
by one or more sound sources. The primary sound sources are voice caused
by vibration of the vocal folds, and turbulence noise caused by pressure
differences across a constriction. The resonance effects of the acoustic tube
formed by the pharynx, oral cavity, and lips are simulated by the linear
filter. This vocal tract transfer function can be modelled by a set of poles —
each complex conjugate pair of poles producing a local peak in the spectrum,
known as a formant (Klatt, 1987).

It is generally accepted that there are three distinct classifications of

speech synthesiser:

Articulation-based synthesis : This is a synthesis method mostly of aca-
demic interest at the moment. It attempts to computationally model
the human vocal tract and the articulation processes which occur.
These models are currently not sufficiently advanced or computation-

ally efficient to be used in commercial speech synthesis systems.

Concatenative based : Produced through the concatenation of segments
of pre-recorded human speech. It is generally recognised that concate-
native synthesis delivers the most natural sounding synthetic speech.
However, audible glitches in the output, due to natural variations in
speech and automated methods used to segment the wavelorm, are

known to sometimes detract from the speech quality.

Formant-based (sometimes referred to as rule based) : No human
speech samples are used in this process. Vocal output is generated
using an acoustic model. Parameters such as fundamental frequency,
voicing, and noise levels are varied over time to create a waveform
of artificial speech. Speech synthesised through this method sounds

rather artificial and robotic in nature, and would never be mistaken for

23

a human voice. However, maximising the naturalness of the output is
not always the ultimate goal of a synthesiser. Formant synthesis has a
number of major advantages over concatenative systems. They are of-
ten used by screen reading software for the blind, for speech can be very
reliably intelligible, even at high speed. Thus, avoiding the acoustic
glitches that can often plague concatenative systems. Formant-based
systems have total control over all aspects of the output speech, thus,
a wide variety of prosodic or intonation rules can be applied. Convey-
ing not just questions and statements, but a variety of emotions and

tones of voice.

Early attempts at producing synthetic speech were achieved using ded-
icated electronic circuitry. However, modern synthesisers have abandoned
these methods in favour of direct computation on a general-purpose digital
computer or specially constructed hardware devices (Klatt, 1987). As the
personal computer (PC) has become much more powerful and robust, the
cost of additional transient memory and permanent storage space has been
greatly reduced both in terms of computing resources and monetary value.
The distribution of these resources as standard by the PC manufacturers,
plus the expensc of dedicated hardware solutions, has resulted in the ten-
dency in the last decade to move towards the use of software synthesisers.
Once developed, the software synthesiser can be easily and inexpensively
transferred from computer to computer. Thus, an unlimited number of
copies can be issued without much additional expense to the developer.

Regardless of the type of speech synthesiser selected, a dynamic text to
speech engine requires an additional layer of functionality to perform text
symbol to phoneme transcription. A phoneme is the smallest phonetic unit
in a language that is capable of conveying a distinction in meaning, as the
m of mat and the b of bat in English (American Heritage Dictionary, 2000).
Writing a list of phonemes for a spoken block of text is generally not a dif-
ficult task for a trained linguist. However, it required much research before

a text to speech engine could perform this task automatically (Klatt, 1987;

24

Gold and Morgan, 2000). According to Gold and Morgan, the first fully op-
erational text to speech system was demonstrated by Umeda et al. (1968).
This research has been continued by numerous individuals and companies
throughout the following decades culminating in the abundance of text to
speech engines present today.

For a more in-depth examination of the history of how speech synthesis
evolved, and a description of many of the methods experimented with to
produce spoken output, see the paper “Review of text-to- speech conver-
sion for English” by Klatt (1987), and the book “Speech And Audio Signal
Processing: Processing and Perception of Speech and Music” by Gold and

Morgan (2000).

2.1.2 Comprehension of synthetic speech

Research in the area of speech comprehension indicates a definite reduction
in the recall of synthetic speech in comparison to that of natural speech
(Waterworth and Thomas, 1985; Luce et al., 1983; Lai ct al, 2000). Luce
et al. concluded that the reason for this is that synthetic speech increases
the effort involved in encoding and/or the rehearsal of presented informa-
tion. They suggest that more processing capacity is required to maintain
this information in short-term-memory and then transfer the material into
long-term storage. The overheads for processing synthetic speech are anal-
ogous to those of noise-degraded speech, due to the additional processing
power required. Luce et al. also cited the role of issues relating to prosodic
inadequacies, and the often-inadequate specification of acoustic cues to pho-
netic segments, as major contributors to the problem of synthetic speech
intelligibility.

Rabbitt (1966) found that when subjects used degraded speech as the
primary mode of interaction, there was a noticeable degradation in efficiency
in performing simultaneous secondary tasks. He concluded that this demon-
strated greater channel capacity demands on short-term memory, at either

the encoding or rehearsal stage, when processing noise-degraded speech. He

25

also found that if presented with two different sequences of numbers, the first
list was recalled much better if the second sequence was presented in clear
noiseless speech (Rabbitt, 1968). Thus, it seems that the processing of noise
degraded speech and hence synthetic speech takes channel capacity that
could otherwise be used for encoding/rehearsal or for performing secondary
tasks (Waterworth and Thomas, 1985). Waterworth and Thomas suggest
that although more effort is required to encode the synthetic information, it
is stored by the listener just as efficiently as natural speech.

Pisoni et al. (1985) report five major factors that influence listener’s

performance in laboratory situations:
1. Quality of speech signal
2. Size and complexity of message set
3. Short-term memory capacity of listener
4. Complexity of the listening task or other concurrent tasks
5. The listener’s previous experience with the system

Many of the previous investigations into the intelligibility of synthetic
speech have been carried out using lists of single words, separated by pauses.
For example, (Waterworth and Thomas, 1985). It was demonstrated that
when the length of the pause was reduced, the retention was degraded far
below that of natural speech. Waterworth and Thomas conjectures that the
reason for this is that listeners are exhibiting a recency or primacy effect.

Lai et al. (2000) examined the effects of listening to lengthier passages
of content using both natural and synthetic speech. Five alternative com-
mercial text to speech engines were used in this study. No definite degra-
dation between the different speech engines was observed; however, levels of
comprehension for natural speech were noticeably higher than for synthetic
speech. The experiments performed by (Lai et al., 2000, 2001) suggest that
although advances in the quality of synthetic speech have occurred, it is still

less comprehensible than natural speech.

26

According to Rosson (1985); Lai et al. (2000), there is evidence of a
training effect through exposure to synthetic speech over a period of time.

Lai et al. states:

An important factor with TTS is the rate at which humans
adapt their ear to the sound of synthetic speech (or human speech
when spoken by a foreigner) and the effect that this adaptation
has on levels of comprehension. The amount of training neces-
sary to see a change in the perception of synthetic speech ranges
in various studies from a few minutes of exposure (van Bezooi-
jen and van Heuven, 1998) to four hours of training (Greenspan
et al., 1988). Also when subjects improve performance during
the course of a study, it is hard to differentiate what portion
is due to a familiarisation with the process, and what is due to

training.

One major factor hindering the comprehension of synthetic speech is
the fatigue effect. This is primarily brought about by its often-monotonous
quality (Fitzpatrick, 1999). The comprehension of the material can decrease
as the listener becomes either tired or bored with the vocal presentation. It
often occurs in the course of reading lengthier, more syntactically complex
passages of content, or with usage over long periods of time. However, therc
is conflicting evidence as to how much the comprehension levels of syn-
thetic specch degrade duc to the length of the passage being read. Evidence
produced by Lai et al. (2000) indicates that comprchension levels degrade
linearly with the size of the passage. However, experiments performed by
Lai et al. (2001) suggest that the complexity of the subject matter being

spoken has a large bearing on the case of content recognition.

2.1.3 Voice Intonation and Prosodic Cues

Although the intelligibility of speech output is extremely important for con-

tent comprehension, a second substantial component influencing this process

27

is the pleasantness or naturalness of the speaking voice. Voice prosody is
one of the major arcas under research in the hope of achieving a more nat-
ural sounding speech interface. The prosodic component of specch is that
sct of features which lasts longer than a single speech sound. In linguistics,
prosody refers to the intonation, rhythm, and vocal stress in spcech. The
prosodic features of a unit of speech, whether a syllable, word, phrase, or
clause, are called suprasegmental features because they affect all the seg-
ments of the unit. These suprasegmental features are manifested, among
other things, as syllable length, tone (linguistics), and lexical stress—see
the Prosody/ (linguistics) page from Wikipedia, the free encyclopaedia®.

According to Klatt (1987), a pure tone can be characterised in physical
terms by its intensity, duration, and fundamental frequency. These induce
the sonsations of loudness, length, and pitch, respectively. In speech, it is
the change over time in these prosodic parameters of intensity, duration,
and fundamental frequency of vocal cord vibrations that carry linguistically
significant prosodic information.

The intensity pattern of the vocal output tends to set off individual syl-
lables, for vowcls are usually more intense than consonants. The amplitude
of a stressed syllable is generally at a higher decibel than an unstressed pho-
netic unit. Klatt (1987) tells us that intensity per se is not a very effective
perceptual cuc to stress, due in part to the confounding variations in syllable
intensity associated with vowel height, changes in pitch governed by changes
in the fundamental frequency of vocal cord vibration, laryngeal state, and
other factors. The duration of the spoken syllable’s pronunciation also can
have a major influence on the positioning of vocal stress.

The timing of the individual syllables, words and phrases contained in the
output is essential in producing natural sounding speech. Both the duration
of each syllable, coupled with the accurate insertion of pauses between words
or phrases contributes in assigning the desired context to individual speech

fragments. For example, consider the word minute. When discussing the

Shttp://en.wikipedia. org/wiki/Prosody_%28linguistics%29

28

time segment, the u is pronounced as a short vowel. However, when used in
reference to a small object, the u requires a much longer sound articulation.
The amount of stress placed on the syllables in a given word also contribute
to its contextual comprehension.

An important component required for the creation of natural sounding
speech is the use of voice intonation to provide contextual information. Voice
intonation is the variation of tone employed whilst speaking. Intonation and
vocal stress are two main elements of (linguistic) prosody. Many languages
use pitch syntactically, for instance to convey surprise and/or irony. Or, to
change a statement to a question. Such languages are called intonation lan-
guages, of which English is a well-known example. In addition, some other
languages rely on intonation to convey meaning. Those in which the sylla-
bles are contrasted by pitch arc known as tonal languages, of which Thai is a
prime example. The situation is further complicated due to the existence of
an intermediate position occupied by languages with tonal word accent, for
instance the Norwegian language, see Wikipedia’s web page on Intonation?.
However, for the purposes of this discussion, only the intonational attributes
found in the English language will be considered.

Rising intonation increases the harmonics of the articulation; falling in-
tonation denotes a decrease in voice modulation. The classic example of
intonation in an intonation language is the question/statement distinction.
For example, north-castern American English language has a rising intona-
tion for echo or declarative questions (He found it on the street?), and a
falling intonation for wh- questions and statements. Yes/no questions of-
ten have a rising end, but not always. Again see the Intonation page from
Wikipedia for more details®.

However, the meaning attributed to changes in voice intonation can be
rather subjective. Much may depend on the location and background of
both the listener and spcaker. For example, dialects of British and Irish

English vary substantially with rises on many statements in urban Belfast,

‘http://en.wikipedia.org/wiki/Intonation %28linguistics’29
Shttp://en.wikipedia.org/wiki/Intonation %28linguistics%29

29

and falls on most questions in urban Leeds (Grabe, 2004). This subjectivity
renders the accurate prediction of intonation cues for the generation of syn-
thetic speech an arduous task. However, without this feature, the synthetic
speech would sound extremely monotonous and incomprehensible especially
for lengthy passages of content.

To mimic the intonational patterns of natural speech, or to determine
the stress applicable to individual speech fragments, an in-depth semantic
analysis of the texts’ construction must be performed. According to Sproat
(1996), the problem of converting text into speech for a given language can
be divided into two sub-problems.

The first sub-problem involves the conversion of linguistic parameter
specifications (for example, phoneme sequences) into parameters (e.g., for-
mant parameters, concatenative unit indices, pitch pairs) that can drive the
actual synthesiser. However, this is considered to be out of scope for this
discussion. The second sub-problem involves computing the linguistic pa-
rameters from input text. In any language, orthography is an imperfect
representation of the underlying linguistic form (Sproat, 1996).

One of the first things an English TTS system needs to do is tokenise
the input into words. For the English language this is not generally difficult
although for some other languages it is more complicated. A pronunciation
then needs to be computed for cach word. In English, given the irregular-
ity of the orthography, this process involves a fair amount of lexical lookup
though other processes are involved too. Also, some of the words in the
sentence should be assigned accents, before breaking the input into prosodic
phrases. According to Wikipedia’s pages on Intonation®, English punctua-
tion only partially correlates with speech prosody. Thus, although various
kinds of linguistic information need to be extracted from the text, only in
the case of word boundaries can this linguistic information be said to be
represented dircctly in the orthography (Sproat, 1996).

When reading aloud a lengthy sentence, it is quite common for the

Shttp://en.wikipedia.org/wiki/Intonat ion_%28linguistics)29

30

speaker to segment the content into smaller phrases to aid comprehension.
In situations where punctuation is used liberally through out the text, it
is reasonable to expect that prosodic phrase segregation be applied to co-
incide with these natural boundaries. However, segmenting the content in
this manner is not always appropriate. A problem arises when lengthy seg-
ments of unpunctuated text are to be transcoded into speech. In such cases,
some heuristic algorithms to determine phrase boundaries are introduced.
See (Sproat, 1996; Klatt, 1987) for some examples. The major problem
with machine generated prosodic segmentation is related to its inability to
understand what is being spoken. Thus, accurately concluding the correct
prosodic or intonational phrasing for an unknown piece of text is rather
difficult (Sproat, 1996).

Once the semantic evaluation of the material has been completed, a
set of contextual speech rules are applied to the content to determine any
additional stresses and to allocate intonational values to the individual text
fragments. According to d’Alessandro and Liénard (1996), the prosodic
parameters in natural speech interact in a way that is still unknown, in order
to supply the listener with prosodic information while keeping the fecling
of fluentness. Understanding the interplay of these parameters is today a
very active topic for research on speech synthesis. For prosodic generation,
a move from rule-based modelling to statistical modelling is noticeable, as in
many areas of speech and language technology. As far as speech naturalness
is concerned the problem is still almost untouched. Nobody knows what
speech naturalness is or more generally what is expected from a synthesis
system once its intelligibility is rated sufficiently highly. In order to explore
this domain it will be mandatory to cooperate with psychologists and human

factors specialists (d’Alessandro and Liénard, 1996).

31

2.2 Tactons, Earcons, Auditory Icons and General

Non-Speech Sound Cues

In addition to the use of visual, Braille or specch interfaces as principal hu-
man computer interaction (HCI) modalities, a number of alternative meth-
ods to complement these user interface (UI) paradigms have been proposed.
These alternative technologies include, Tactons (Brewster and Brown, 2004),
Earcons (Blattner et al., 1989), auditory icons (Gaver, 1986), and generic
non-specch sound cues (Buxton et al., 1994). These technologies are not
expected to operate as the primary user interaction modality. However, it
is suggested that their inclusion as a subordinate UI device can aid in the
assimilation of contextual information for non-visual computer usage. Some
examples of their usage include: (Raman, 1996a; Mynatt and Edwards, 1992;
James, 1998; Petrucci et al., 2000).

2.2.1 Tactons

Tactons, or tactile icons, arc structured, abstract haptic messages that
can be used to communicate information non-visually. A range of differ-
ent parameters can be used for Tacton construction including: frequency,
amplitude and duration of a tactile pulse, plus other parameters such as
rhythm and location (Brewster and Brown, 2004). According to Brewster
and Brown, tactile/haptic devices have been available for quite a while, how-
ever, only recently did they receive much attention from the HCI community.
Such devices were often just prototypes existing purely in enginecring labs.
Now that the technology has developed enough to be reliable and inexpen-
sive, members of the HCI community have started researching areas in which
these devices might add to the uscrs overall computer interface experience.
It is hoped that such technologies would be beneficial in attracting attention
to a change in user interface state where visual or sound cues are not appro-
priate. This is especially the case were the visual display is quite small, or

in situations where it is inconvenicnt to signal changes through sound. An

32

example of such a device is a mobile phone. A tactile message in addition to
an auditory signal is often produced in order to alert the user to an incoming
call or SMS text message.

According to Brewster and Brown (2004), the human sense of touch can
be roughly split into two parts: kinaesthetic and cutaneous. “Kinaesthetic”
is often used as a catchall term to describe the information arising from
forces and positions sensed by the muscles and joints. Force-feedback hap-
tic devices are often used to present information to the kinaesthetic sense.
Cutaneous perception refers to the mechanoreceptors contained within the
skin, and includes the sensations of vibration, temperature, pain and in-
dentation. Tactile devices are used to present fecedback to the cutaneous
sense.

Much of the previous experimentation with tactile interaction has fo-
cused on stimulating the touch receptacles in the fingers. However, ac-
cording to Brewster and Brown (2004), some research has becn carried out
regarding the use of other parts of the body such as the back to receive
tactile information. Due to the area of research still being in its infancy,
much work is still required to establish the best mechanisms in which this
technology might be employed, and the circumstances in which its usage

might contribute greatest benefit to the user.

2.2.2 Non-speech audio cues

As stated previously, the temporal nature of speech ensures that the de-
livery of material through spoken output alone can be sometimes slow and
cumbersome. Including additional speech fragments to convey contextual
information as a direct component of the speech strecam may drastically in-
crease the verbosity of the presentation. This can result in a degradation
in the speed of content assimilation. For exaruple, announcing task com-
pletion information for a secondary application running in the background
may interfere with the cognitive processes for the current task. Thus, alter-

native mechanisms to alert the user to changes in context were investigated.

33

One solution to this problem is to use alternative reading voices, or ma-
nipulate certain characteristics of the voice to denote such changes. For
more information see section 3.2. Another of these solutions suggested us-
ing non-speech audio cues, which do not interfere with the current operation
to complement the speech output.

According to Buxton et al. (1994, Chapter 1), it isn’t just non-visual
users who could benefit from using non-speech sounds to communicate con-

textual information:

As our displays become more visually intensive, the visual
channel becomes increasingly overloaded, and we are impaired
in our ability to assimilate information through the eyes. In such
instances, the same audio cues that help the totally blind user

can be applied to help the normally sighted.

Evidence produced by Brown et al. (1989), appears to substantiate this
hypothesis.

In general, the type of audio cues used in modern day computing can
be classified into two broad ranging categories. The first category includes
the use of abstract musical sounds to depict contextual information. These
sounds are created by directly manipulating pitch, loudness, duration, and
wave shape. Abstract auditory Earcons are a prime example (Blattner et al.,
1989). The implied meaning of such cues is not automatically apparent
on initial hearing; associations with changes in the user interface must be
learned before any advantages of their use can be illustrated. The second
classification of audio cue relies on real life associations between familiar
every day environmental sounds and the tasks they represent to provide
contextual information. For example, specifying cues in terms of events in
the natural cnvironment such as a door slamming or people applauding.
Thus, the musical sounds focus on the properties of the sound itself, while
the everyday sounds focus on the source of the sound (Buxton et al., 1994).

Non-speech audio messages can be thought of as providing one of three

general types of information: alarms and warnings, status and monitoring

34

indicators, and encoded messages. Typically, different types of audio cue are
used for each. Humans are capable of monitoring more than one such signal
in the background, providing that the sounds are appropriately differenti-
ated. However, it is important to remember that although we can recognise
and simultaneously monitor a number of different concurrent audio cues, we

can normally only respond to one or two at a time (Buxton et al., 1994).

Auditory Icons

Auditory Icons, proposed by Gaver (1986), are audio cues based on the
axiom that natural environmental sounds be employed to provide conceptual
computer information. That is, using sound in a manner analogous to the
use of visual icons to provide data. They function on the principle that
instead of using dimensions of sound to symbolise dimensions of the data;
dimensions of the reverberation’s source are relied upon to indicate meaning.
Gaver (1986) maintained that employing real life natural world sounds for
which the user has symbolic associations already mapped ought to enable
the listener to quickly establish and memorise their significance when found
in a computerised sctting. However, he observed that it was not required
that auditory icons be realistic representations of the objects they portray
but should capture their esscntial features.

Gaver uses the example of a mailbox to illustrate this point. As an
item is deposited, the size of the itcm and its type can be often ascertained
from the sound generated. In computer terms for example, the sound of
paper hitting a metal mailbox might denote that the mail received is a text
file, whereas the arrival of an executable file might be denoted by a metal
on metal reverberation. The weight of the clement expressed through the
sound of its arrival in the mailbox may indicate the size of the specified
item. Naturally an exact mapping of the size through sound alone is rather
difficult, however, a reasonable estimate ought to be obtainable through such
means. In addition, the positioning of the sound in the audio space might

also provide location information for the window in which the interaction

35

has taken place.

A direct one to one mapping between a sound source and a specific
UI concept is not always possible or in fact desirable. The types of sound
source can vary drastically across a wide spectrum, whilst still providing
similar information. In addition, a single source can often produce many
alternate sounds. Accordingly, there exists many varieties of meaning that
can be gleancd from a sound source depending on the context in which it
appears. Thus, much thought must be invested when selecting the correct
sound source to signify the intended meaning.

Gaver (1986) indicates that there exist three classifications of mapping,
namely, symbolic, nomic and metaphorical. Symbolic mappings are often
allocated on an arbitrary basis, relying on social convention to ensure com-
prehension. Telephone bells, sirens, and stop signs are examples of symbols.
At the other cxtreme are representations, which have a nomic relation to
the information they convey. Their meaning depends on the physics of the
situation. The relation between a sound and its source or a photograph
and the scene it depicts are examples of nomic mappings: The representa-
tions are images of the information. Finally, metaphorical mappings make
use of similaritics between the item to be represcented and the representing
system: They are not wholly arbitrary, yet they do not depend on physical
causation. Metaphorical mappings include structure mapping, in which sim-
ilarities between the structures of two things are exploited, e.g., mappings
between genealogy and a tree, and metonymic mappings, in which a feature
is used to indicate an entire object/event. For example, the use of a hiss to
stand for a snake is a metonymic mapping. It was expected that the more
a representation’s form depends on its meaning, the easier it should be to
learn. Thus nomic mappings should be relatively simple to learn, metaphor-
ical mappings somewhat harder, and symbolic mappings the most. difficult,

(Gaver, 1986).

36

Earcons

Earcons, Proposed by Blattner et al. (1989), are defined as structured non-
verbal audio messages used in the user-computer interface to provide infor-
mation about some computer object, operation, or interaction. Earcons are
the aural counterparts of graphical icons. However, there exists a number
of major differences between carcons and their visual counterparts. For ex-
ample, carcons are transient thus require immediate attention whilst being
played, whereas icons are often presented simultaneously. The simultane-
ous presentation of carcons is a complex issue. Blattner et al. discovered a
number of issues with earcon recognition when multiple earcons were played
concurrently. Research by Brewster et al. (1995b) appears to dispel the
belief that playing earcons in parallel is an unfeasible solution, once large
differences between the earcon components are used. However, McGookin
and Brewster (2004) noted a degradation in comprehensibility as additional
concurrent earcons are added to the stream. They suggest a number of
guidelines to aid the assimilation of data through this mechanism. They
recognise that much further work is necessary before presentation through
a number of concurrent earcons is practical.

Graphical icons are frequently both selectable and informational,
whereas earcons are predominantly just informational (Blattner ct al., 1989).

Blattner et al. divide earcons into three classifications: representational,
abstract, and semi-abstract. Represcntational earcons roughly equatc to
Gaver’s class of auditory icons, see section 2.2.2. Abstract Earcons use
single pitches or groups of pitches (motives) as the elements or building
blocks of earcons. Motives are sequences of pitches that create a short,
distinctive audio pattern often characterised by the simplicity of its thythm
and pitch design. Their very brevity and distinctive manner make motives
very powerful tools for composing earcons. Compound earcons composed of
motives or single pitches can be used to express complex objects. The final
category is a combination of the previous two classifications of earcon.

According to Blattner et al. (1989), Bernstein and Picker (1966) tells us

37

that a motive is a brief succession of pitches arranged to produce a rhythmic
and tonal pattern sufficiently distinct to allow it to function as an individ-
ual, recognisable entity. These larger structures are used in the generation
of abstract earcons. Rhythm and pitch are the fired (primary) parameters
of motives, whilst timbre, register and dynamics are known as the Variable
(secondary) characteristics. However, Brewster et al. (1995b) appears to
contradict this conjecture by implying that timbre and register of the au-
ditory cue play a more important role in earcon recognition than suggested
by Blattner et al.. Motives can be combined to create larger more complex
earcons. By varying the different components of a motive, a distinct sound
can be created.”

The three construction principles for compound earcons are combining,
inheriting, and transforming. These three methods are used with both repre-
sentational and abstract elements. Combined earcons are formed by placing
two or more audio elements in succession. They can represent computer en-
tities sharing common features and are constructed by using similar audio
elements to represent similar classes of information. Inherited Earcons are
hierarchical structures, using audio parameters allocated to common multi
application features. The more musical features e.g., timbre / pitch/rhythm
are used in earcon construction, the more precise the information to be ob-
tained. The timbre component may denote the family/application to which
the carcon has been allocated. The sccond parameter, e.g., rhythm, might
signify the type of message being portrayed, such as a system error. A third
component such as pitch could provide a precise error message designation.
The final type of earcon described by Blattner et al. (1989), is a transformed
earcon, where parameters of the audio cue are modified to denote meaning.
They suggest that transformed earcons should only be modified in simple
ways that clearly retain perceptual equivalences. It was thought that simple
changes in timbre, dynamics, and register would pose 1o perceptual difficul-

ties. However, pitch changes change the contour of the earcon and should

7An earcon can be any sound, ranging from a single note, to a motive, to a complex
collection of motives.

38

be administered with care. For detailed guidelines on how earcons ought to
be constructed, see (Blattner et al., 1989; Brewster et al., 1995a).

The time nccessary to learn an carcon based user interfacc depends on
a number of factors. Thesc include the size of the system, the complexity
of the audio cues employed, and the amount of shared features across mul-
tiple applications. The typcs of sounds used are also contributing factors.
Blattner et al. (1989) suggest exploiting the western tonal scale to produce
musical sounds for western listeners. It is thought that a lifetime of listening
to western tonal music should aid in abstract audio cuc recognition. There
is much material available on the recognition of music from work done in
the psychology of music and pure sound, however an in-depth discussion of
such material is out of scope for this thesis.

It is believed that initially, representative earcons may be casier to learn,
due to their relevant mapping to real world situations. However, a large
system may require a sizeable number of sounds to represent each featurc.
Tn addition, some features may not possess an immediate equivalent sound
in the natural environment therefore learning to associate a sound with a
unique user interface feature can place a huge additional workload on the
user’s memory capacity. Thus, although much additional effort is required
to map structured musical sounds to user interface states, the reduction in
the number of distinct sounds required should aid the user in memorising
thesc associations—that is, once the methodology used to apply structure to
the audio is apparent. Experiments by Brewster ot al. (1993) demonstrate
that structured musical cues are more useful in representing information
about the user interface than just using arbitrary unstructured bursts of
sound to achieve the same goal. Also, their evaluations as to whether there
were significant differences in the recognition abilities of musicians and non-
musicians revealed no significant differences in relation to such cues. Tn
addition, they illustrate that the subtle transformations recommended by
Blattner et al. (1989) were in many cases too small; thus, large significant

changes between components of the earcons were recommended. Also this

39

work implies that the use of timbre is a powerful tool in recognising the
earcon’s family origins.

Investigations have demonstrated that the use of earcons to portray hier-
archical information is one viable mechanism for imparting such data (Brew-
ster, 1998). Brewster illustrated that four levels of hicrarchical information
could be presented using inherited carcons. However, combination earcons
could potentially be employed to present many more levels of hierarchical
abstraction. The main advantage of using this form of compound earcon to
portray such data is that the listener must only learn a small set of rules
before comprehension of the intended meaning is possible. Take for exam-
ple a book including chapters, sections and subsections. If the numbers onc
to nine are allocated alternate sounds, plus an additional sound to sepa-
rate each number, then many levels of tree abstraction can be portrayed
by presenting sounds in sequence. However, the major disadvantage of this
approach is that it can lead to rather lengthy sound cues, which may have
an effect on the memory capabilities of the listener. It may be difficult to
recall the starting motives in a lengthy audio cue.

As part of the same study, Brewster observed a number of different
training strategies for learning to operate an earcon enabled user interface.
Although describing the rules and displaying the system have some value to
the listener, much value can be gleaned by the user actually cxperimenting
with the system. It was also shown that users could recall earcon mappings
over a week after previous usage. Brewster conjectured that the reason for
this was the simple rules employed for earcon construction were easy to

remember and apply.

2.3 Summary

This chapter focuses on the mechanisms used to provide access to electronic
information through a purely auditory modality. The next chapter will
concentrate on how these technologies have so far been employed to produce

non-visual computer interfaces for the blind.

40

Chapter 3

Literature Review

The previous chapter presented a number of different modalities available for
non-visual computer access. A discussion of the literature describing both
the advantages and disadvantages of the different technology was presented.
The methods in which these technologies can be harnessed by a computerised
system to convey information to blind people were also demonstrated. This
chapter outlines a number of different approaches in which this technology
has been used to interface with computer based information non-visually.
These include methods to convey contextual information and navigation of
large complex data constructs. The first area under focus is GUI (Graphical
User Interface) based systems. An outline of the problems with these sys-
tems and a number of attempts to ensure accessibility are presented. The
second section is dedicated to the different methods employed to alleviate
the problems imposed by the serial nature of speech output. This can be
achieved by manipulating characteristics of the speech stream to increase
the pace of content absorption. These include using non-speech sounds to
provide contextual information and changes in voice, or in voice parame-
ters such as pitch and stress to provide similar effects. In the next section,
different methods in which the document can be internally modelled are pre-
sented. These range from an attributed tree structure to conceptual

graph representations. The DOM (document object model) used by WebTree

41

is also discussed. Following this, a brief description of a number of audio
web browsing solutions available today is introduced. Finally, a discussion
of the different methods employed to both navigate and obtain information
about complex constructs is presented. These constructs include tabular

data, XHTML forms and tree based structures.

3.1 The Graphical User Interface (GUI)

The adoption of the graphical user interface (GUI) as the primary method
for human computer interaction could be perceived as being a major rea-
son for the growth in personal computer ownership in the last two decades.
According to Edwards et al. (1994), graphical user interfaces were quickly
adopted by the sighted community as a more intuitive interface. Ironically,
these interfaces were deemed more accessible by the sighted population be-
causc they seemed approachable for novice computer users. Previous to
its endorsement screen reading applications were able to provide reasonably
good access to computer information. This was due to the use of ASCII
text as the main form of output to the screen. With the advance in GUISs,
applications rarely provided content in this manner, instead favouring the
drawing of content on a pixcl by pixel basis. This made interaction for screen
reading software difficult, for they now had to develop methods for recognis-
ing the characters and deriving associations between clements. To achicve
this, many screen reading applications monitor screen drawing requests to
glean the information. However, the data provided is often at a very low
level, making it difficult to establish how elements relate to one another.
Also, the organisation of clements on the screen became important for casy
interaction. Related items e.g., controls for a single application, werc often
segregated to a certain area of the screen. It was now common to have
multiple applications open and in view in separate regions of the display
(windows) at the same time. In addition, the mode of input changed from
predominantly keyboard access to a reliance on a point and click interface

facilitated through the use of a pointing device such as a mouse.

42

The serial nature of speech output insures that it is difficult to obtain
an overall picture of the current interface without examining the entire con-
tent. Whereas for a sighted user, such impressions can be often gained with
a single glance. For this reason, the blind user is dependent on the screen
reading application deriving relationships between elements in order to pro-
duce a usable system. To allow the application gain a better idea of the
intended meaning attributed to cach interface element, it makes sense for
screen reader applications to intercept content before it is presented visu-
ally (Mynatt and Edwards, 1992). Edwards et al. (1994) tells us that this
can be problematic if elements are only described at an extremely low level,
without a description of the context in which they appear. In this case it
can be difficult to establish how the elements relate to one another. Ed-
wards et al. discovered that rather than examining low level elements such
as buttons, and their surroundings to work out their implied meaning, a
more practical solution would obtain this information from the applications
themselves. However, it would not make sense to do this on an applica-
tion by application basis. Instead they recommended changes to the shared
libraries responsible for screen interaction. In this manner, it would be pos-
sible for screen reading applications to obtain high level knowledge of the
application interface. Nowadays under Microsoft windows!, the “Microsoft
Active Accessibility” (MSAA) architecture provides a mechanism for shar-
ing information between applications (Sinclair, 2000). Many scrcen reader
applications such as JAWS for Windows? from Freedom Scientific? and GW
Micro’s? “window eyes”, and browsing applications such as WebFormator®
and Internet ExplorerS, take advantage of this facility. Similarly, under
GNOME: The Free Software Desktop Project”, a facility to share data be-

tween applications is also included. The “Java Accessibility API”, from

"hitp://www.nicrosoft.com
nttp://wuw.freedomscientific.com/fs_products/JAWS HQ.asp
Shttp://www.freedomscientific.com

“http://www.gwmicro. com/

Shttp://www.webformator. com/englisch/index.php
Shttp://www.microsoft.com/windows/ie/ie6/default.nspx
“http://wuw.gnome.org

43

Sun Microsystems®, provides similar functionality. Although the provision
of this functionality is limited to Java based applications, it is mentioned
herc for the sake of completencss. Once the application is able to cstablish
information about the interface, the next question is how to best provide
access to such information to blind users.

Although the phrase “screcn reader” is still in use today, many of these
products are much more than just applications that read aloud the on screen
content. It is true to say that the original screen reader products from the
text-mode era just read the screen. The same is perhaps true for some early
products in the GUI era which tried to “read” at the pixel level. Howcver,
the products which intercept progressively “higher” levels of interaction be-
tween the application and the display are no longer just reading the screen.
The development of application level accessibility APIs, such as MSAA, where
the application itself may potentially have explicitly encoded accessibility
supports, means that these are no longer “screen readers” in a literal sense.
But this historical term is still used, even though it’s no longer literally very
meaningful.

The primary goal for modern screen reading applications is to allow a
blind user to work with an arbitrary graphical application in an efficicnt
and intuitive manner. However, a number of practical constraints must
be addressed. First, blind users do not work in isolation, so collaboration
with sighted uscrs must be supported. For this reason, their interaction
with the computer must closely mimic the expericnce of sighted users. A
second, and sometimes competing, goal is that the blind user’s interaction
be intuitive and efficient. There is a careful balance between modelling
the visual appearance of the content and providing a representation that is
efficient for non-visual access. A prime example of this is in the viewing of
tabular data, which is discussed further in section 3.6. If the representation is
too visial it might be difficult to comprehend. Whereas if the representation

is altered greatly, collaboration with sighted users may become problematic.

8http://www.sun.com

44

Edwards et al. (1994) describes the application interface as a collection
of objects which are related to each other in different ways, and which allow
a varicty of operations to be performed by the user. The screen contents are
merely a snapshot of the presentation of that interface which has been opti-
mised for a visual, two dimensional display. Providing access to a graphical
interface in terms of its screen contents forces the blind user to first under-
stand how the interface has been visually displayed, and then translate that
understanding into a mental model of the actual interface. Edwards et al.
maintain that the visual display is only one way in which these elements
can be displayed. Therefore, they recommended abstracting out the opera-
tions of the interface at the semantic level and mapping them to objects in
a non-visual medium instead. They maintain that an explicit mapping of
the visual interface through non-visual means is inefficient. The blind user
doesn’t need to know how the on screen elements are structured, once they
can gain access to their functionality and establish how these elements are
connected. Edwards ct al. arguc that by constraining the semantic trans-
lation so that similar objects are produced in the non-visual presentation
that the native application produces in its default graphical presentation,
they can maintain the user’s model of the application interface. Also us-
ing the samc terminology as used in the graphical interface e.g., (buttons,
menus, windows), to describe components should allow collaboration be-
tween blind and sighted users. Naming elements in this manner allows blind
users to think of the interface in similar terms to their sighted counterparts,
therefore, facilitating collaboration.

The model proposed by Mynatt and Edwards (1992); Edwards et al.
(1994), presented relationships betwcen elements in a hierarchical form.
These include both parent - child rclationships, e.g., menus and menu but-
tons, and cause-effect relationships as in a push hutton canses an action.
The system is extended to work in a multi-application environment. Essen-
tially the user’s desktop is a collection of tree structures. Users can quickly

jump between applications while the system stores the focus for cach appli-

45

cation context. Navigation is achicved through the use of the “keypad” or
through application specific keystrokes and the use of user defined macros.

Savidis and Stephanidis (1998) presented a system that provided the
ability to create dual user interfaces for an application. These modes of in-
teraction were to be optimised for both visual and non-visual access. They
developed a language called “Homer” in which forms of interaction could be
specified. They maintain that whilst there is some cross over in the forms of
interaction facilitated by the two modalities, there also exists major differ-
ences. By developing interfaces in this manner the modality of interaction
should be optimal for the type of usage. This should alleviate problems
associated with trying to transform an interfacc optimised for one modality
into another. They demonstrate the effectiveness of this approach with a
picture viewing system. The picture is divided into segments navigable by
the user. Each segment is provided with a title and description of the por-
tion of the picture. By navigating through the different segments, the user
can obtain a better knowledge concerning the layout of the picture. How-
ever, this approach has the major draw back of requiring the developer to
include large amounts of additional information to ensurc that the system
is effective.

According to Barnicle (2000) there still exists many obstacles to the
efficient access of GUI based interfaces for blind people. These issues include
the inefficiency of having to read through large lists of elements, such as
menu items to find the correct item. Although sighted people may have to
check through the same number of items, they can quickly scan until the
required element is located. Whercas the serial nature of speech ensures the
user must listen to many if not all of the individual items beforc making
an informed decision. Another major obstacle is the lack of user feedback
provided. For example, if a blind user manipulates the size of a font in
a word documment they are not immediately notified that the change has
occurred. Also if non-standard windows controls are used, it can mean that

the screen reader has trouble interpreting the intended meaning. For this

46

reason, screen reader developers spend a good deal of time attempting to
customise access to many mainstream applications. Many of the problems
sited by Barnicle can also be applied to the web. The large variety of web
page structural designs ensurc that the user must obtain a general knowledge
of how the page is structured before they can become efficient users of any

particular website. Barnicle concludes by telling us:

Developers of screen reading technology are continually refin-
ing their applications to provide improved access to GUI based
software applications. However, mainstream software developers
and developers of web-based applications need to gain a better
understanding of how users with disabilities are using and at-
tempting to use their products. Including users with disabilities
in usability tests is one important step in the process of making
products that are usable by individuals with a variety of physical

and sensory characteristics.

An alternative approach to traditional screen reading software is the
cmacspeak? application described in (Raman, 1996a,). According to Ra-
man, a lot of work has been invested into the development of robust off-
screen models (internal data structures) of the data to facilitate screen
reader interaction. However, audio formatting of the spoken output has
not altered a great deal over this time. It is often left up to the listener
to establish a mental model of the content by examining different aveas of
the display. However, much of the implied structure appearing in the vi-
sual output of the application is lost when provided through a screen reader.
Emacspeak uses different voices to convey differences in structural elements.
Also, auditory icons are used cxtensively to enhance the audio cxperience.
Emacspeak integrates speech into the applications themselves in the hope of
producing more usable speech output. By using the internal representation
of an application’s results, a more usable spoken version of the content can

be generated, whilst still presenting the content in a satisfactory manner

http://emacspeak.sourceforge.net/

47

for visual users. However, to operate this system cfficiently, a customised
interaction mode must be generated for each application. Due to the system
being open source, individuals are free to write their own custom modes and
submit them for inclusion in the main distribution.

CNU Emacs!? under which emacspcak operates is more than just a text
oditor. Emacs is, in essence, an applications platform with a primarily text-
based user interface. While recent versions of emacs have added some GUI
interface mechanisms, these arc always secondary, optional, alternatives to
primary text based interactions. In this sense, speech enabling emacs ap-
plications is somewhat easier than speech enabling applications on a native
GUI platform. On the other hand, emacspeak is not just a reversion to the
carlier text-based screen readers. In using a relatively high level “off screen”
model, and integrating tightly with applications, it is actually conceptually
very close to modern GUI-based “scrcen-rcaders”. However, it docs have
the serious drawback that it is limited to accessing applications available
for this relatively minority platform. Nevertheless, the multitude of applica-
tions available that run under this environment ensures a great deal of access
through this combination of applications. The available applications range
from a shell program providing access to the UNIX shell, the Emacs/ w3ttt
web browser facilitating access to the world wide web, to clectronic mail
programs such as vm'Z: a lisp-based mail reader for Emacs. The mecha-
nisms used by emacspeak to provide auditory output shall be discussed in
section 3.2.

Trrespective of the methods in which the data is obtained from the user
interface, the prime component in determining the usability of the system is
how the information is presented to the user. For this rcason, the remainder
of this chapter is dedicated to the mechanisms used to present information
in a non-visual modality. Special foens is placed on the portrayal of web

page constructs.

Phttp://www. gnu. org/software/emacs/
Yyttp://www.cs.indiana.edu/elisp/w3/docs.html
2http: //www . wonderworks . com/vm/

43

3.2 Manipulating the Audio Stream to Provide

Contextual Information

One major problem with the use of audio output as the primary mode of
interaction, is how best to convey contextual information to the listener in
an efficient and unobtrusive manner. Augmenting the vocal output with
spoken fragments describing the context in which content appears, can sig-
nificantly increase the verbosity of the output. Although experienced blind
users often listen to speech output at very high word per minute rates, pre-
senting information in this manner can impinge on reading efficiency. If the
user has to listen to additional information that is superfluous to the main
content, they may become distracted with the presentation. This is cspe-
cially the case if the fragments are in any ways lengthy. Also, the modality
is serial in nature, thercfore including extra speech fragments will serve to
slow the rate of interaction.

In saying this, it sometimes makes sense to have this type of content
announced through speech. This can be advantageous in situations where
the user is required to directly interact with the document’s content—for
example, when filling out an online form. Announcing the presence of a
form field/control and/or its current value as it is encountered, might be
an effective solution. However, speaking the name of each inline element
e.g., or would seriously impinge on the readability of the
document. Many of the current web access solutions use this method ex-
tensively to convey certain information. For example, when a hyper link
is encountered, its presence and status is often announced by JAWS JIES.
Other applications actually incorporate an additional text fragment into the
content, for cxample, WebFormator!®. That is, the word “link” is inserted
into the content preceding the link text. This ensures that the additional
contextual information is navigable by the arrow keys just like any other

text. Figure 3.2 shows a simple web page as displayed through WebFor-

Yhttp://www.freedomscientific.com/fs_products/JAWS HQ.asp
Myttp: //www. webformator . com/englisch/index. php

49

mator. Figure 3.1 shows how the same page might be displayed through
Internet Explorer. King et al. (2004a) mainly restricts the use of additional
text to convey hyperlinks. Other structural elements such as <h*> elements
are signalled with additional line breaks. However, there is no method for
determining the type of element currently under point. This method for
signalling elements is rather ambiguous and potentially confusing. This is
because the user must establish whether the chunk of text is a heading or a
short paragraph from the context in which it appears in the text. Also no
level information is provided for header clements, for King et al. maintain
that the important factor is the meaning implied by marking an element
as a heading rather than the level at which it appears. The prime advan-
tage of speaking the contextual cue is that additional methods for gleaning
such information do not have to be learned by the user. However, the ma-
jor disadvantage is the fact that the speech cue is presented serially to the
rest of the text, whercas the optimal solution would be to have the context
recognised in parallel.

There is an obvious trade off in efficiency when using this method. On
the one hand the user knows exactly what the cue means without having
to map its occurrence to a learned meaning. That is, once the spoken cuc
is both concise and explanatory. However, the added verbosity can slow
down the user when examining content. Take for example a list of elements
containing a number of ncsted lists. Announcing the beginning and end
of each sub list, coupled with information concerning the number of sub
clements can be excessive if the user must trawl through this information
to get to the required content. This is especially the case where only one or
two clements are contained within. Therefore, it is imperative that spoken
cues be kept as short as possible. Figure 3.3 shows the default method in
which list announcements arc made through a combination of JAWS and
Internet Explorer.'®

The work by Goose and Mbller (1999) suggests that spatial audio (stereo)

5The announcement of many such elements can be turned off in JAWS if the user
prefers.

50

1S

AT qanory} umoys ofed qem oidwiis y :1°g oML

’3 Accessibility Lab at rince.ie: Home - Microsolt Tnternet Explorer

Fle Edk iew Favorites TIpok Heb ﬂ'
. &Badc - \; - jﬂ i',: ; - Search Favorites £+ L»;J‘Y i :ﬁ - d‘a
Address | 2] http:/feaccess.rince. isf B Y Be ws®
Bite Navigation:Bypass Navigation | Site Access Hints | White Papers | Contact | Legal al | Home -l
(S} Google

Sita Search via

Search eaccess.fince.je * Search entire web
Search Query, | google search

eAccessibility Lab [Home]

Welcome to the eAcc sgsinilitv lab at the Res ; iC :
(RINCE) of LI The lab carmes out research and ourreach onthe li i v
15808 With gscmgalm as We are currently contributing primarily to the mﬁ_&tﬁg@g mwsuganng the
estabhshmem of a Europe-wide "quality mark’ for web accessnblﬁb,r We also pamupate in the YW3C WA|
ycefion and Outreach Working Group (EOWG and the |« bill for-Al rk See

the white papers saction for more details of our work.

(&1 Cane 3 i T T [intermet

=

I07RULIO

4]
-qoAA USnoay) pakesuod ofed dWIOY ss000Y AYY JO 10BIXO UY (7 omS1

efccessibility Lab at rince.ie: Home WebFormator (1)
Jage edccessibity Lab at vince je: Home Hitp: jeaccess rince ier)

YLink eAccessibilty Lab Home

Site Navigation:]

wLink Bypass Navigation | |

Link Site Access Hints Ste: Accessibilty Hints for Users with Disability | |

YLink Vvhite Papers |]

Link Contact |]

Link Legal |]

YLirk Home

Site Search via]

Link Goto Google Home

Sesrch eaccess.rince.le] Radiobutton checked] Search entire web] Radiobutton unchecked]

Search Query:] Edit] Buton google search |

eaccessiblity Lab [Home]]

Welcotne to the |

Link eAccessibiity lab #t the]

Link Research Certre for Networks and Communications Engineeting (RINCE) of |

wLink DCU . The lab carries out research and outreach on the]

Link accessiility of web sites and services to users with disabilities. YWe are currently cortributing primarily to the |
Link Support-EAM Project , investigating the establishiment of & Europe-wide "gquality mark” for weh accessibiity . We also participate in
the]

Link ¥v3C WAl Education and Qutreach Working Group (EQWG) and the]

Link Irish eAccessibiity Design-for-All Network . See the |

sLink white papers section for more details of our work.]

List of subjects for Computer Science course

List of 3 items (contains 6 nested lists)

e Year 1

List of 2 items nesting level 1 (contains 2 nested lists)
e Semester 1

List of 3 items nesting level 2

e Introduction to Algorithms and Data Structures
e Basic Software Engineering 1

e ...

list end nesting level 2

e Semester 2

List of 3 items nesting level 2

e Algorithms and Data Structures (Continued)

e Basic Software Engineering 2

° .

list end nesting level 2

list end nesting level 1

e Year 2

List of 2 items nesting level 1 (contains 2 nested lists)
e Semester 1

List of 1 items nesting level 2

®

list end nesting level 2

e Semester 2

List of 1 items nesting level 2

e ...

list end nesting level 2

list end nesting level 1

o ..

list end

Figure 3.3: How lists are handled by default with JAWS

53

could be potentially used to signal this information. A second voice posi-
tioned in another part of the audio space to the main reading voice could be
used to convey certain data simultaneously. However literature describing
any such experiments showing the effectiveness of this approach was not

available at the time of writing.

3.2.1 Using Non-Speech Cues to Denote Structure

The use of spoken cues often makes sense when imparting information con-
cerning the current task. However, when the data is prevalent for a sec-
ondary process running in the background, signalling the user in this manner
may distract them from the current operation. As is evident from section 2.2,
much research has gone into the use of non-speech sound cues to provide con-
textual information. However, depending on the sound cues employed, there
exists a learning curve to this approach. Much of the work already described
deals with the use of sounds to denote interface changes. For example, task
completion or a state change occurring in a sccondary application operating
in the background. Also methods in which sound can be used to impart po-
sitional information in a hierarchy were presented. However, research into
the use of non-speech audio cues to signal specific screen elements have also
been performed (Edwards ct al., 1994; Raman, 1994, 19964,b).

FEdwards et al. used non-speech audio in the form of auditory icons to
convey an object’s type and its attributes. For example, the sound of an
old-fashioned typewriter is used to represent a text-entry field, whilst a text
field which is not editable (such as an error message bar) is represented
by the sound of a printer. They also suggest that auditory icons can be
modified to convey aspects of the interface which are presented spatially in
the graphical interface such as the size of a menu or list. For example, all
menus could be presented as a set of buttons which are evenly distributed
along a set pitch range (such as 5 octaves on a piano). As the user moves
from one menu button to another, the change in pitch conveys the relative

size and current location in the menu. Finally, the labels on buttons, and

54

any other textual information, can be read by the speech synthesiser.
Emacspeak uses auditory icons to cue common events such as the select-
ing of items, or the opening and closing of objects. Raman (19964) presents
the scenario of retrieving and opening a www document as a useful example.
Once a link has been activated, an auditory icon is played to notify the user
before the name of the retrieved file is announced. Another example of their
usage can be found when selecting a file. A sound cue is played when the
status of a file is changed. For example, when a file is marked for deletion.

Raman (1996a) tells us:

Used consistently throughout the interface, these cues speed
up user interaction—an experienced user can often continue to
the next task when an aural cue is heard without waiting for the

spoken confirmation.

Morley et al. (1998) also employed non speech audio cues to aid in the
navigation of hypermedia documents. They found that when sound cues
were used in conjunction with the navigation commands, users were less
likely to get lost when navigating the user interface.

Finally, non-speech sound cues have been used to signal the presence of
mark-up elements e.g., <h*> elements, when encountered by the user (James,
1998; Petrucci et al., 2000; Goose and Moller, 1999; Morley et al., 1998), see
also: IBM’s Home Page Reader!®. James used tonal pitch sequences to
denote these elements. By listening to the changes of pitch in sequence,
the users successfully determined the correct header levels. However, the
problem with this approach is related to the length of the sound cues. If the
user determined what the meaning of the element was before it was complete,
they still had to listen to the cue in its entirety before continuing. They may
be aware that the sound represents a header tag, but might have to listen
to the entire cue before accurately determining the level. Therefore James
warns against the use of lengthy cues. Also she stresses the importance of

choosing sounds that have some relevancy to the element being presented.

pttp://www-3.ibm. com/able/solution_offerings/hpr.html

55

It should be remembered that a sound that has some significance in one
culture may have no corresponding meaning in another. Using snippets of
well known musical compositions to convey structural data was not very
successful. She attempted to map such cues to the presentation of certain
form elements. However, although users could recognise the sound cues often
by name, they were not easily able to map their presence to a structural
element. James also warns against using numerous sound cues to represent
elements of the interface. If their usage is kept low, their effectiveness is
greatly enhanced.

James also tells us that different browsing strategies often require dif-
ferent sound mappings. If the user is skimming the page to establish its
content, then prominently marking links and headers may be advantageous.
However, in this situation list elements may not need to have any marking
associated with their appearance. This is especially the case with index
pages, where lists are often groupings of hyperlinks. Playing a sound cue
for cach list item in conjunction with the sound for each link would be both
distracting and inefficient. She also cites the example where a user is inter-
ested in reading an entire document. In this situation links may not need
to be so prominently marked. However, list elements might be important
especially if they contain relevant material to aid in content comprehension.
Nevertheless, James is not suggesting that each user will require a tailored
interface to suit their needs. Instead, she recommends that a number of user
interface mappings be created so that the user can choose the one they find
most appropriate.

Petrucci et al. (2000) created WebSound which is a generic Web soni-
fication tool allowing for the easy creation, testing and validation of new
sonification models. WebSound combines the haptic sense with an audio out-
put. The approach taken attempts to validate the hypothesis that a 3D
immersive virtual sound navigable environment combined with haptic ma-
nipulation of the audio environment can enable blind users to construct a

mental representation of the spatial layout of a document. A possible tech-

56

nique would be to provide different auditory attributes (earcons/auditory
icons) to denote each different tag. Moreover, they believed that the use of
a 3D immersive audio environment, which permits a sound to appear from
a given position, may give blind users a sense of object location. Using a
haptic tablet or a touch-sensitive screen would allow an individual to move
his/her finger about while at the same time keeping track of his /her position
on the device. The system would then respond with auditory feedback while

the user moves his/her finger (device pointer) around the virtual screen.

3.2.2 Using Voice Changes to Denote Structure

Another approach to solving this problem involves the use of different voices
to denote changes in context (Raman, 1994, 1996a,b; James, 1998; Asakawa
and Ttoh, 1998; Shajahan and Irani, 2005). Both JAWS/IE and IBM’s Home
Page reader allow for the content of certain HTML elements to be read with
different voices. For example, one voice can be used to read hyperlinks,
with different voices assigned to read <h*> elements. An alternative solution
would be to manipulate voice characteristics such as stress and pitch to con-
vey such changes (Fitzpatrick, 1999). The changes proposed by Fitzpatrick
are much less pronounced in comparison to those produced by Raman, in
the hope that they will not distract the reader whilst still providing con-
textual information. However, both approaches have their advantages and
disadvantages.

Raman (1994) uses a combination of different voices and audio cues to
convey information. He designed an auditory formatting Language called
(AFL) which could prescribe how an clement was to be presented in a non-
visual modality. Using KTEX as the source mark-up language, elements
in the object tree were assigned presentational instructions through AFL.
There were nine predefined voices available willi (e speech synthesiser used.
By manipulating characteristics of these voices such as breathiness or vol-
ume, the number of possible voices could be extended. The voice charac-

teristics available are: the speech rate, the volumes of the specaker and the

57

earphone port, voice-quality parameters, and a number of parameters that
deal with voice pitch and intonation. Each dimension has a default step
size, which specifies the minimum change needed to be perceptible. Users
could specify changes in multiples of the step size for cach parameter.

Male and female voices can be thought of as lying in distinct disconnected
components of the speech space, since it is not possible to move from a male
voice to a female voice simply by changing parameters that affect voice
quality (Raman, 1994). The reason for this is because female voices use a
different noising source. Therefore, switching from a male to a female voice
is analogous to changing fonts. Whereas modifying voice quality parameters
is like scaling different features of a specific font.

Raman classifies the use of contextual cues into two categories, fleeting
and persistent. A fleeting cue is one that does not last. Such cues are
characterised by their duration being specified by the nature of the cue
itself. For example, playing a non-speech sound as a bullet point signifier
before an item in a list. Or, announcing the section and the relevant number
before the title of a sectional element. This is sufficient to convey simple
constructs; however for more complex elements this method is inadequate.
A persistent cue lasts throughout the duration of the item. The duration
for such cues is specified by other ongoing events in the audio rendering,
rather than by the cue itsclf. An example of a persistent cue would be the
continuous playing of an earcon (Blattner et al., 1989), whilst an abstract is
being read. A second example would be changing voice parameters to read
aloud each item of a list. If a nested list is included the voice is again altered
thus the user can determine at which level the current element is present.

Switching to a new voice causes a slight pause in the speech, so it is
inadvisable to change the specaking voice in the middle of a sentence, since
this ruins the intonation (Raman, 1994). James agrees with the assertion,

but for a different reason. She states:

Speaker changes do not seem to be appropriate for mark-

ing items when it is expected that the items to be marked will

58

be found within a coherent text How. For example, subjects be-
came confused when emphasised text that occurred in the middle
of a sentence was marked using a speaker change. This is be-
cause people do not expect to hear a different person say one or
more of the words in a sentence being spoken by someone else.
When users hear examples of this in an interface, their attention
is drawn away from the content text and towards the speakers
themselves, again trying to understand the relationship between
the speakers that would allow them to work together to present

a single thought.

However, there exists evidence, which suggests that the number of dif-
ferent speakers used in a vocal presentation should be restricted to a small
number. Although James (1998) found that the use of multiple voices to
represent different mark-up elements had benefits, there was a marked differ-
ence when only one voice change was used, in this case to mark hyperlinks.
James reasons that using different voices to mark elements is analogous to
marking the same components with changes in colour. When only a small
number of items are marked, the user can easily recognise that the element
in question possesses an additional contextual meaning. Howcver, in doc-
uments where many elements have different colours associated with their
representation, the document may just look colourful and unmarked.

Emacspeak uses voice changes extensively to convey structural informa-
tion (Raman, 1996a,b). This is an effective method for presenting structural
information. However, it does enforce a high learning curve on the user.
A couple of examples where such structural cues are used include: Emacs’
“dired mode”, which is used to navigate the file system and perform op-
erations such as moving, copying and deleting files, is extended to provide
succinct aural feedback. When navigating through the file listing, the user
hears the name of the current file or directory spoken; different file types
e.g., directories, cxecutables and symbolic links are distinguished by spcak-

ing their names in different voices. A sccond example cited is the assignment

59

of different voices to presentational cues such as “bold” text and content
within quotation marks. In terms of web based documents, many elements
such as hyper links and <h*> elements are spoken using different voices.
Fitzpatrick (1999) manipulated prosodic characteristics of the vocal
stream to convey structural information. He constrained the portrayal of
this information to speech cues alone for he believed that the usc of audio

cues required a large learning curve. He states:

This is not a particularly intuitive mode of presentation, as
the user must first learn the meaning of each of the earcons used
in the system, and as there is as yet no defined standard for the
use of these non-speech sounds, each system employs a different

set of noises which they themselves find meaningful.

Rescarch into the presentation of tabular data by Pontelli et al. (2002)
appears to backup Fitzpatrick’s assertion that the inclusion of audio cues
demands a large learning curve on behalf of the user. They found that when
viewing such material, the best results were gained when spatial relation-
ships between the cells were evident. However, when content was shown on
a cell by cell basis, adding structural cues such as colour or sound tones to
replace the spatial cues were found to reduce effectiveness, even when the
meaning of the cues was explained. The evidence so far appears to suggest
that the use of auditory cues is useful to convey certain types of information
and detracts from the interface for other presentation types.

As synthetic speech does not usc all the prosodic features found in nat-
ural speech, the approach taken by Fitzpatrick emphasised those prosodic
clements found in synthesisers to compensate for those which are lacking.
The objective of this work was not to mirror the prosodic patterns of natural
speech, but to achieve a close replica which would be intuitively understood
by the listener. He bclieved it is preferable to enhance some prosodic ele-
ments for the sake of intelligibility, than to achieve natural-sounding, though
completely incomprehensible synthetic speech.

Again using INTEX as the base mark-up language, Fitzpatrick presented

60

structural information through the manipulation of prosodic cucs such as
pitch and speech rate. Take for cxample the case of sectional headers. T he
prosodic aspects of the voice are altered in order to convey the fact that
the hicrarchical level is changing. The document’s title information is scen
as being at level zero with the sectional headers at level one. The ratoe is
slowed by 10% to yield a slower, more measured utterance. The average
pitch of the voice is decreased by 25% to distinguish the sectional title from
the remainder of the text. The pitch range is maintained at 50% of the
average pitch; however the various parameters relating to the stress rise,
hat rise, and baseline fall are increased. The effect is to produce a slower,
though more animated voice. This is akin to increasing the font size in such
headings. Ideally the amplitude is also slightly increased if the synthesis
device supports it. Each sectional divider is surrounded by pauses to denote
its rclationship to the surrounding text. The word “section” is announced
for elements at this level, however, for lower levels subsections and sub sub-
section elements, names are not included. In addition, as the hicrarchical
level decreases, the changes in prosodic parameters become less pronounced
converging towards the default running voice usced. Also the length of the
surrounding pauses is reduced to reflect the change in hierarchical level.
Similarly different voice characteristics are used to convey emphasised
text. However, Fitzpatrick operates on the premise that the important fac-
tor is the meaning implied by emphasising a piece of text rather than the
type of emphasis used. Therefore no matter whether the content is marked
up using bold, underlining or italics the same voice type speaks these cle-
ments. In saying this, the option is also available to use different voices to
denote each type of emphasis, if this is what the user requires. Similarly,
footnotes, marginal notes and parenthesised text are treated with the same
voice parameters as onc another. He maintains that each of these meth-
ods for noting content perform the same semantic function in written text,

therefore are handled in the same fashion.'”

17Tn this case, “parenthesised text” refers to textual content and not mathematical
material, which is treated differently by the system.

61

Goose and Moller (1999) built a 3D audio only interactive Web browser.
Using relative positioning in the sound space, they attempted to convey hy-
permedia document structural information. To achieve this, a combination
of alternative voices and non-speech audio cues werc used. They experi-
mented with providing spatial information through the use of sterco and
a moving voice source. By analysing the voice position, they conjectured
that the users would be able to ascertain their position in the document.
However, experiments to prove this assumption were not very successful.
Therefore, they decided to deliver the main content from the centre of the
audio space, with positional information announced periodically in different
locations to reflect its position in the document. This was improved upon
by using distinct voice types to provide cach type of information. They also
extensively use different voices to read the content of specific elements e.g.,
headers and hyper links.

Coose and Moller also use non-speech sound cues to denote contextual
information. For cxample, spatially positioned sounds are used to determine
whether a link is an internal page link or connects to an external document.
Three distinct sounds, simulating taking off, being catapulted and landing
notify that an internal page link has been traversed. A sound reflecting
greater distance, such as a space ship taking off and landing is used to denote
an external link. They also provide a facility to examine the sound space to
determine the location of elements. Although this could be performed for
many different elements, they currently only facilitate the examination of
hyper links. Four distinct earcons are employed in the sound survey, thus
allowing both position and context information to be conveyed, succinctly

and in parallel, without compromising meaning. The different sounds are:

time ticker : to signify time moving by, a “tick” sound can be heard mov-
ing along the audio space from left to right. Every fifth tick is empha-
sised to provide a coarser granularity of time, with which the listener

can identify and synchronise.

Link indicators : two ecarcons representing inter-document links and

62

internal-document links are sounded at the appropriate positions along

the stereo presentation.

Sentence boundary : another sound is used to denote each sentence
boundary that is encountered. The listener can use this feature to

identify the links and their relative distances as measured in sentences.

If the sound survey was manually selected by the user, as opposed to
being triggered as the result of a link traversal, then as the survey sweeps
over the first half of the arc this should reaffirm the structural clements
recently heard. The second half of the survey introduces what is yet to be
heard. As the sound survey sweeps from left to right, the relative volume
of the link and sentence earcons is increased and decreased to simulate the
relative distance from the current position of the user (Goose and Méoller,
1999). Although this method of portrayal can be time consuming, it presents

information at a fraction of the time that reading the content would take.

3.3 Document Modelling

An important consideration when creating an efficient document browser is
the mechanism in which material is stored internally by the application. This
is especially true if the browser is intended to produce alternative views of the
content. Direct access to the constituent parts of the document is required to
dynamically create alternative views. Often internal data storage constructs
reflect the structure of the document in some manner. However, many such
mechanisms go beyond this and provide simple methods for linking to other
scgments of the content. The structure of a document may be expressed
using one of two methods. The first method is based on the layout of the
document, for example, plain text files. The second relies on the use of
mark-up to define how the document is structured and hence displayed. In
both cases, the objective is the same: to produce a model which accurately

reflects both the content and underlying structure. Due to the WebTree

63

application working with documents whose structure is defined by mark-up,
the discussion here will focus on the latter form of document model.

There exist many mark-up languages able to represent documents in a
manner independently from their layout. Examples of these include BIEX
(Lamport, 1985) and SGML (Maler and Andaloussi, 1995) (Standard Gen-
eralised Mark-up Language), of which HTML/XHTML are derivatives. The
reasoning behind such languages is to allow the author to concentrate on
writing the content, whilst having the facility to programmatically include
structuring rules, e.g., sectional dividers, and parameters governing how
content should be displayed. For example, the application of emphasis to a
piece of text. Moreover, the notion of Document Type Definitions (DTD)
has evolved from (Maler and Andaloussi, 1995). Here, a document template
is defined, which encapsulates different classes of documents. For example,
the majority of information written for publication on the World Wide Web
is written in HTML, which is a DTD of SGML.

The major advantage of producing documents in this fashion is that the
use of mark-up tags removes any ambiguity in the intended semantic in-
terpretation. This is the casc where mark-up clements are used for their
intended purposes and not just to provide a purely presentational effect.
Multiple programs that recognise the mark-up language can display the
document in a consistent and efficient manner. This allows for the simple
sharing of documents. Take for example the World Wide Web: the majority
of documents are written in a derivative of the HTML mark-up language,
allowing for the easy sharing of content. However, there is a second ad-
vantage to this approach. Alternative views can be created from analysing
the documents’ structure. These views can be based on the presence of
specific mark-up elements or element groupings. In addition, navigation fa-
cilitics can be based on this structural arrangement, see section 3.5 for more
details.

Describing the document with mark-up tags allows for different render-

ing rules to be applied to the content. In terms of HTML/XHTML, this

64

can be achieved through the use of a cascading style sheet (CSS). Instead of
physically including the font size and/or text colour in the mark-up, these
attributes can be set through CSS (W3C, 2005). Linkage of mark-up ele-
ments to CSS properties can be achieved in a number of ways. The CSS
content can be stored inline in the document inside the <style> element,
or the document can be linked to an external CSS file. CSS styling can also
be placed inline in the document by setting the “style” attribute of a given
clement. The advantage of having the CSS data stored externally is that
a style sheet can prescribe the rendering rules for many documents. Thus,
if the author decides on a site-wide style alteration, then manipulation of
this file can reduce the work load for such changes. However, another ad-
vantage of this approach is that the user (as opposed to the author) can
prescribe their preferred rendering rules for a specific document. For ex-
ample, the users can sct their favoured foreground and background colours,
or the default size of text fonts. This can be very advantageous for people
with vision impairments. For this reason, the Web Content Accessibility
Guidelines (W3C, 1999b) request that presentational properties be set in a
style sheet. This separation of presentation and content structure can result
in much smaller files, for these attributes arc only set in one place instead
of every position in the document where they are used.

Similarly, the prescribed audio rendering can also be facilitated through
the use of an aural cascading style sheet. An author, or more likely a user
in this case, can set the speech preferences to dictatc how clements are to be
presented. The different methods available for element presentation include
different voices, changes in voice parameters and non-speech sounds, which
have been already discussed in section 3.2.

Typically, a tree based architecture is used to encapsulate the logical
structure of documents. Using this type of structure, the hierarchical con-
tont of documents can bc modelled both accurately and unambiguously.
Using this form of representation, it is possible to replicate the notion of the

hierarchical nature of content divisions. Take for example a HTML/XHTML

65

document. Assuming that the root node of the tree is the topmost level of
the document (i.e., the <html> element), then any subsequent elements make
up the different branches of the tree. Each branch of the tree can lead to
other lower level branches, culminating in the lowest level leaf nodes.

However, according to Fitzpatrick (1999):

As the complexity of documents increases, it is becoming in-
creasingly obvious that the nature of the constructs needed to
contain both their structure and content need to alter to reflect
this. Whereas a plain ASCII document can be modelled us-
ing a standard tree-based structure consisting of homogeneous
sub-trees, a highly technical document produced by BTEX needs
more complex heterogeneous structural components. For exam-
ple, obvious distinctions exist between the textual content found
in ITEX documents, and the mathematical content also found

therein.

This is due to the formatting methods required to structure the docu-
ment in a manner that is rcadable by the user. Text can be formatted in
linear chunks of letters surrounded by white space to form words. However,
this is not always possible for mathematical content where a dependence
on the vertical positioning of the text is often found. For this reason Fitz-
patrick tells us that two different structures are necessary to represent the
different content types. Although, both forms still need to fit into the over-
all document model. Similar modelling problems relate to documents on
the web today. Many web pages contain alternative media constructs. For
example, Java applets, graphics, sound files etc. Different approaches are
necessary to model these content types (Furuta, 1994). The structuring
method appropriate to one type of content may not be effective or efficient
for another.

Though the hierarchy of the document and all textual elements are con-
tained in a tree based architecture, it is essential that the capability for the

inclusion of alternative structures (such as linked lists) be present within any

66

system. Some work has been carried out on the transformation of documents
prepared using one system of mark-up, into another such language. T'wo ap-
proaches are commonly used to achieve this goal. The first method involves
the recognition of the high level structures in the form of an abstract syntax,
followed by the conversion of this abstract syntax to any desired concrete
syntax. Alternatively, it has been traditional to produce an output form,
which comprises the least common denominator of the various input sources,

and to then exchange this (Fitzpatrick, 1999).

3.3.1 Modelling Document Structure

ASTER (Audio System for Technical Reading) Raman (1994), airs to produce
accurate renderings of documents marked up in the TeXfamily of languages.
Unlike Fitzpatrick’s TechRead system, which also provides spoken access to
these type of documents, ASTER additionally uses non-speech audio to assist
in this process. Although both of these systems can read the textual compo-
nents of IATRX files, they specialise in the reading of mathematical content.
Due to WebTree not supporting technical content such as mathematics, an
in-depth discussion of the handling of these constructs is out of scope for
this thesis.

The component of ASTER, responsible for extracting the high-level doc-
ument structures can cater for varying degrees of mark-up ranging from
plain ASCII files to highly complex and technical ITEX documents. The
document model used in ASTER is the attributed tree. In this model,
each hierarchical level is modelled as a node in the tree, where each node can
have content, children and attributes. For example, take the class article,
as the root node. It has attributes such as title, author, abstract and date.
The children of this object are the various scctional units of the document,
while the prologue of the object cousists of any text which occurs before the
beginning of the first sectional unit. The leaves of this model comprise the
actual content. According to Fitzpatrick (1999), the model described in the

context of the article class can be extended to cope with the other classes

67

of document found in WTEX, such as report or book.

Some other examples of objects includes the section unit. This object
type has attributes consisting of title, section number and sectional name.
This sectional name could be section, subsection etc. The children of this
node are the subsectional units, while the prologue contains a list of doc-
ument objects containing the text found before the first subsectional unit.
The attributes of the word object type are the footnote markers (if any).
There are no children. The contents are made up of the string, which is the
actual word.*®

ASTER differentiates between the textual and mathematical content of a
document; the former being represented by a set of ordered textual objects,
while the latter is modelled using the InlineMath object. Each node is
linked to both its parent and siblings. For a full list of the different objects
supported by ASTER see chapter 2 of (Raman, 1994).

The Techread system proposed by Fitzpatrick (1999) models the content
using a cross linked tree. It differs from Raman’s system by using a model
more graph like than tree structured. Each document unit is represented by
a distinct object. Fitzpatrick (1999) tells us that this idea sprang from an
article submitted to the first annual conference on the theory and practice
of “digital libraries” in 1994 (DL94), by Richard Furuta (Furuta, 1994).
Furuta believed that in the case of the digital library, material prepared using
diverse composition systems, and using a range of structures to contain their
information, would have to be inter-linked to form the whole information
space. According to Fitzpatrick, Furuta says “Hetcrogencous data structures
may be used to describe different elements of an information space. ... When
multiple structures are defined over a set of contents, the general question is
whether they are interrclated in any way”. This paradigm can be applied to
the universe of technical documents, where many diverse elements (fextual,
mathematical and tabular objects to list but three) are combined to present

an author’s material (Fitzpatrick, 1999).

18 Aster can be easily extended by defining new objects and adding rendering rules for
their presentation.

63

To account for the need of linkage between hetcrogencous data structures
Fitzpatrick used a set of distinct objects derived from a base class section
using the object-oriented design paradigm. Using inheritance, objects can
be recursively defined, for example, a sectional unit can contain subsections
ete. In this way, all objects possess a number of common functions, such as
links to parent or sibling elements, in addition to the elements specific to
the object in hand. For example, the TableObject contains additional links
to the cells adjacent to it, be they in the same row or the same column. The
internal document model is organised in a hierarchy of these elements. At
the top is the root node known as the global document settings node.
This node contains all definitions and assignments which are deemed to be
global to the entire document. This could include such items as the default
font used, the default speaking voice used throughout the document etc.
At a logical level below this are found the nodes containing sectional units.
These are described as non-terminal nodes, for Fitzpatrick believed that
there would always be at least one sectional unit below the global document
settings object. Further down the hierarchy than the sectional nodes, are
found the actual terminal nodes of the model. These nodes contain the
content, and the associated formatting; both visual and audio. However, the
means in which this system departs from the traditional tree implementation
is that the objects can contain additional connections to clements in other
parts of the hierarchy. For example, the last paragraph in a section would
have a connection to the first paragraph in the next section, or the next
element at the same logical level.} Due to these additional connections,
Fitzpatrick describes the document model as a series of independent, though
integrated objects, which contains the ability to navigate from any point
to any point within the overall hierarchy. These additional conncctions
are similar to intcrnal document hyperlinks (as found in HTML/XHTML),
except that they are reflected in the document model as opposed to the

document mark-up.

19p]ements can have a connection to any type of clement and not just those of similar
make up.

69

3.3.2 Conceptual Graphs

The knowledge representation scheme proposed by Pontelli et al. (2002);
Pontelli and Son (2002, 2003) is based on Conceptual Graphs. They cite
(Sowa, 1984) as providing a good description of these constructs. Concep-
tual Graphs and their associated theory were proposed in the 1970s as a
way of drawing logical statements in diagrammatic form rather than in a
linear text-based calculus which was and is the norm. The basic ontology
is very simple as it is in logic. A conceptual graph can have two kinds of
node; a concept node that represents types and objects of that type and
a relation node that represents a relationship between these objects. The
theory allows for a basic expressiveness that is equivalent to first-order logic
as well as mechanisms for defining concepts and for representing type hier-
archies of concepts and relations. Researchers have extended the formalism
to allow representation and manipulation of more advanced ontologics, es-
pecially those involving actions and events, and higher level structures such
as viewpoints, and nested contexts (Pontelli et al., 2002).

The concept nodes of the graph represent the semantic entities which
are described by the document’s component. Nodes are commonly organ-
ised according to one or more hierarchies. The lower level of the hierarchy
commonly includes syntactic elements directly extracted from the document
(c.g., cells of a table). The higher levels of the hierarchies provide semantic
cntitics representing general concepts or collections of concepts (e.g., a col-
umn is a collection of cells). The cdges of the conceptual graphs represent re-
lationships between the conceptual entities identified as nodes of the graphs.
A natural class of relationships originates from the presence of a hierarchy
between different concepts present in the graph (Pontelli et al., 2002). The
conceptual graph representing a document component in this system (c.g.,

an HTML table) is created by combining three sources of knowledge:

1. Syntactic content of the document (e.g., use of HTML tags and at-
tributes).

70

2. Direct input from a human annotator (e.g., the teacher, the creator of

the document, a third party)

3. History of how the documents components have been used in the past.

3.3.3 The Document Object Model (DOM)

The Document Object Model, or DOM, is a platform independent interface
incorporated into many web browsers to allow for programmatic access and
manipulation of document content. It defines the logical structure of docu-
ments and the way a document is accessed and manipulated. In the DOM
specification, the term “document” is used in the broad sense - increasingly,
XML is being used as a way of representing many different kinds of in-
formation that may be stored in diverse systems, and much of this would
traditionally be seen as data rather than as documents. Nevertheless, XML
presents this data as documents, and the DOM may be used to manage this
data. The DOM is a programming API for documents, which is designed to
be used with any programming language.

In the DOM, documents have a logical structure which is very much like
a tree; to be more precise, it is more like a “forest” or “grove”, which can
contain more than one tree (W3C, 2004a). It provides a structured, object-
oriented representation of the individual elements and content in a page with
methods for retrieving and setting the properties of those objects. It also
provides methods for adding and removing such clements, allowing for the
creation of dynamic content. The DOM also provides an interface for dealing
with events, enabling the capture and response to user/browser actions.
However, the focus of this discussion will be on the DOM representation of
a document and the methods it provides to access those objects. The latest
version of the DOM specification is the “Document Object Model (DOM)
Level 3 Core Specification” (W3C, 2004a). For an introduction to the DOM

structure, see the article: Introduction to the Document Object Model?°.

Onttp://www.brainjar.com/dhtml/intro/

71

As a web page is loaded into a DOM compliant browser, a hierarchical
representation of its contents which closely resembles its mark-up structure
is generated. This results in a tree-like organisation of nodes, each repre-
senting an clement, an attribute, content or some other object. Each of
these different object types will have their own unique methods and prop-
erties. However, a common set of methods and properties related to the
document tree structure are included as part of each node. The document
object serves as the root of this node tree. In addition to the properties
and methods common to all nodes, the document object is also responsible
for the implementation of the “document interface”. This interface provides
methods for accessing and creating other nodes in the document trec. Some

example methods are:

getElementById ()

getElementsByTagName ()

createElement ()

e createAttribute()

As mentioned previously, the DOM tree reflects the structure of a doc-
ument’s underlying mark-up hierarchy. Every element is represented by an
element node with other nodes representing attributes or character data
(i.e., text). Technically speaking, the document object has only one child
element. In the case of web pages, the root node represents the <html>
element of the document tree. Its DOM element will contain links to child
elements for the <head> and <body> tags which in turn will have other
child elements. By following these element links, and/or by invoking the
designated methods of the node interface, you can traverse the document
trec to access individual nodes within the structure. However, there are
some obvious problems with accessing nodes in this manner. For one, a
simple change to the page source, like adding text or formatting elements

or images, will change the tree structure. Therefore, the path used before

72

might no longer point to the intended node. This would mean the method
of accessing the content is inefficient because of its unpredictability. A new
set of traversal steps must be performed each time to ensure access of the
correct content. There arc also some issues pertaining to browser compati-
bility. If some simple linc breaks are included in the documents’ source to
separate elements, some browsers may add nodes to represent this data e.g.,
Netscape, whercas others such as I[E do not. When these nodes are included
they are not generally afforded names for they do not represent mark-up
elements. However, they do show up when cycling through the child list for
a given element. For this reason, powerful navigation methods such as the
getElementById() method are rather useful. By adding an ID attribute to
the paragraph tag (or any tag for that matter), you can reference it directly.
This way, you can avoid compatibility issues and update the page contents
at will without worrying about where the node for the paragraph tag is in
the document tree.2! A less direct method to access element nodes is pro-
vided by the getElementsByTagName () function. This returns an array of
nodes representing all of the elements on a page of the specified HTML tag
type. For example, all the <a> elements.

There are several types of node defined in the DOM, but the ones most
common for web page handling arc element, text and attribute, see the
article: Introduction to the Document Object Model??. Element nodes
correspond to individual tags. They can have child nodes, which may be
other clements or text nodes. Text nodes represent content, or character
data. They will have a parent node and possibly sibling nodes, but they
cannot have child nodes. Attribute nodes are a special case. They are not
considered a part of the document tree - they do not have a parent, children
or siblings. Instead, they are used to allow access to an clement node’s
attributes. That is, they represent the attributes defined in an element’s
HTML tag description, such as the href attribute of the <a> tag or the src

attribute on the tag.

2IEach ID nceds to be unique to the document.
http://www.brainjar . con/dhtml/intro/

73

WebblIE (King et al., 2004b,a), and IBM’s Home Page Reader (HPR)%,
are two examples of web browsing solutions that use the DOM as their

preferred method for internally modelling the content.

3.4 Current Non-Visual Web Browsing Solutions

Solutions to the problem of web accessibility for blind people fall into a
number of categories: reliance on a conventional web browser and a screen
reader to directly access a website; using transcoding proxy servers to con-
vert web page HTML into a more accessible format?*; and using a dedicated
web browser to convey the information (King et al., 2004b). King et al. also
consider the use of HTML accessibility features, such as changes in colour
or font size to enable access in their list of solutions. However, these ac-
cessibility features are gencrally more helpful for people with some vision,
and therefore are out of scope for this discussion. The following subsections

give a brief description of a number of current web access solutions for the

blind. However it should be remembered that this is not an exhaustive list.

3.4.1 Conventional Browser with a Screen Reading Applica-

tion

Microsoft’s Internet Explorer (IE) is the most popular graphical web browser
available today for the WINDOWS platform. For this reason, many Web
site providers optimise their sites to be viewed through this application.
Therefore, using a screen reading application in conjunction with IE should
in theory provide the greatest level of access to the largest amount of web
pages. However, the problem occurs in the means of data presentation.
Reading text as it is presented on the visual display is not practical due

to the complexity of constructs involved, e.g., tables and forms. Thercfore,

http://www—3.ibm.com/able/solution_offerings/hpr.html

24 A screcn reader/auditory browser is still neccssary in this situation, however, the
page is reformatted to be optimised for screen reader access. This reduces the dependency
on built-in functionality in the screen reader application to aid navigation, allowing less
advanced applications to gain access to the content.

74

other methods of access to the underlying content need to be employed.
The two main options under the windows environment are to use MSAA
technology (Sinclair, 2000) to query the construction of the screen content.
The second method requires direct access to the internal document model
(DOM) (W3C, 2004a). Either way, without access to methods to obtain
structural data about the elements, web access for blind people would be an
arduous task.

JAWS for Windows? from Freedom Scientific?® in conjunction with Mi-
crosoft’s Internet Explorer, is a prime example of a solution classed in this
category. It is one of the most popular screen reading applications in use
today. Although it is designed as a general screen reading application, it con-
tains optimisations to enable it to present web based content. Using MSAA
technology (Sinclair, 2000), JAWS can access information presented in In-
ternet Explorer. JAWS version seven can also access the Firefox?” browser
from the MOZILLA foundation?®.2? Under the JAWS and IE combination,
the content is presented in a linear form to the blind reader, whilst still
retaining its visual presentation in the browser window. This is the case
when reading the document with the regular navigation functions, such as,
by line, sentence or with larger blocks of text e.g. paragraphs, (discussed in
section 3.5), or when reading the content continuously. However, there are
additional methods that aid navigation in a non-linear fashion, e.g. the table
navigation functions, discussed in section 3.6, and the ability to tab from
link to link, or jump to the next/previous form field/ control.?? Depending
on the type of functionality requested JAWS either announces the names of
specific elements such as links or header elements in the spoken output, or

uses different voices to convey this information. See section 3.2 for more de-

25http://wuw. freedomscientific. com/fs _products/JAWS HQ.asp

2nttp://www.freedonscientific.com

2Thetp://www.mozilla. com/firefox/

http://www.mozilla. com/

29However, in reference to this thesis, when JAWS is mentioned in conjunction with
web technology, reference to the JAWS and IE combination is intended, unless explicitly
stated otherwisc.

30Tyable navigation functions in JAWS only effectively work with data tables.

75

tails. Hyper links and form fields are presented on separate lines from other
content. This is done to aid in the ease of both recognition and selection
for interaction. Figure 3.4 shows a simple web page as rendered by JAWS.
JAWS typically does not insert additional text concerning the element type
so that it is navigable in the audio rendering. The two major exceptions to
this rule are the provision of 1ist and <table> information. However, for
the purposes of this discussion, contextual information produced by JAWS
that is not navigable in the auditory rendering is shown in figure 3.4. This
is done to show how JAWS conveys the different web page elements where
voice changes are not used. Figure 3.1 illustrates how the same web page
would appear visually in Internet Explorer. Users can also choose to have
the presence of <table> or list elements announced automatically. Tables
used on web pages for layout are presented in a linearised format to the user.
The linearisation is done on a row by row basis. Although data tables are
also presented in a linear form, as previously mentioned additional naviga-
tional functionality is provided to ensure the uscr has access to the spatial

organisation of the construct. Sce section 3.6 for more details.

3.4.2 Transcoding Proxies

The sccond approach places the solution between the author and the client
by running requested HTML pages through a transcoding proxy server. Re-
quests for web pages from servers are made not to the servers themsclves
but to an intermediate proxy, which fetches the page, converts it according
to a set of rules, and returns the transformed page to the client. Pages can
have their structure altered to present a more optimal solution, depending
on the circumstances. For example, the betsie project (BBC Education Text
to Speech Internet Enhancer). This is the filter program currently used by
the BBC to creatc an automatic text-only version of its website. It takes
graphical HTML pages as an input and strips out the graphical components
to produce a fully functional text only version of the web page. It also lin-

carises tables by removing the <td> tags and replaces them with
 tags

76

eAccessibility Lab at rince.ie: Home

visited link graphic eAccess

heading level | Site Navigation:

List of 6 items

this page link Bypass Navigation |

link Site Access Hints |

link White Papers |

link Contact |

link Legal |

visited link Home

list end

heading level I Site Search via

heading level 1 hink Google

radio button checked Search eaccess.rince.ie one of two

radio button not checked Search entire web fwe of two

Search Query:

edit

google search button

heading level 1 cAccessibility Lab [Home]

Welcome to the

link cAccessibility

lab at the

link Research Centre for Networks and Communications Enginecring (RINCE)
of

link DCU,

The lab carries out research and outreach on the

linkaccessibility of web sites and services to users with disabilities.
We are currently contributing primarily to the

link Support-EAM Project,

investigating the establishment of a Europe-wide "quality mark” for web aceessibility. We
also participate in the

link W3C WAT Education and Outreach Working Group (EOWG)
and the

link Trish eAccessibility Design-for-All Network,

See the

link white papers soction

for more details of our work.

Figure 3.4: A simple Web page conveyed through JAWS

(i

to prevent the cells from running into each other. In addition, the BBC
specific navigation bar presented on the left of the printed version is relo-
cated to the bottom of the document, for many screen reading applications
present such content at the beginning of the web page. However, it does
have problems with the use of both Java and JavaScript. More information
can be obtained from the Betsie home page®!.

Brown and Robinson (2001) created the Web Access Gateway>? as an-
other such example. It transcodes already existing Web pages automatically
on the fly for use by visually impaired users. They attempt to remove im-
ages to create a text only page; all the text information can be serialised
by removing tags; they allow for changes in font size and colour settings;
alternatively, they also facilitate the enlargement of images and so on. With
regard to serialising the text, Home Page Reader and JAWS have already
implemented this functionality on the client-side. Whereas the Web Access
Gateway and Betsie perform content serialisation on the server-side.

Another example can be found in the work of (Asakawa and Takagi,
2000; Takagi et al., 2002). Asakawa and Takagi developed an annotation-
based transcoding proxy system to convert already-cxisting Web pages to an
accessible form. The system consists of two components, one for structural
annotations and one for commentary annotations. Structural annotations
are used to recognise visually fragmented groupings as well as to show the
importance and basic role of each group. Commentary annotations are used
to give users a uscful description of each grouping. The objective was to
reorder visually fragmented groupings according to the importance of each
grouping and give useful descriptions for voice output. The annotations are
provided on a “URL” basis by volunteers. However, if pages are similar in
construction the same annotation can be used for multiple pages. It achieves
this by calculating any similarities in the DOM trees between particular
URLs. Hand crafting each annotation file with a text cditor would be an

arduous task. For this rcason, a wysiwyg (what you see is what you get)

3lhttp://www.bbc. co.uk/education/betsie/
32http://www.accu.org/cgi-bin/access/access

78

editor was developed to assign such annotations to HTML fragments. The
operator selects the elements in a group and the application selects the lowest
level node incorporating these clements for the annotation assignment. The
importance to be attributed to the node can be selected at the same time.
An image map is then inserted by the system at the beginning of each page
to act as a table of contents for the newly assigned groups. The role of each
group is contained in the alternative text for the <area> tags in the image
map. Manually creating annotation files by volunteers is a time consuming
task. For this reason Takagi ct al. (2002) attempts to automate the system
by creating much of the groupings and assigning annotations automatically.
They developed a new algorithm, “Dynamic Annotation Matching”, so their
transcoding system could automatically determine appropriate annotations
based on each page’s layout. They also developed a site-wide annotation-
authoring tool, “Site Pattern Analyzer.” They analysed the feasibility of
creating site-wide annotations by using both the algorithm and the tool. By
automating much of the annotation process they showed that the time taken
to create annotation files for HTML pages could be drastically reduced.
King et al. (2004b) also warns us that the intermediate proxy approach
has some disadvantages arising from the second-hand nature of the HTML

document transmission:

. the processing performed by the proxy server requires the
server to have full access to the content of the HTML document,
which means that secure transmission protocols used in Internet

commerce such as HTTPS arec unusable.

Another approach often used is to offer an alternative accessible version
of a website optimised for non-visual usage. However, onc major criticism
of having alternative views is that these pages are not as regularly updaled
as those on the main site. Plus, they don’t always afford the user with
the same level of functionality. Hoffman et al. (2005) tell us that the solu-

tion optimal for one user type may render the page less usable for another

79

group. Nevertheless, they do not suggest separate applications or pages for
groups with special necds because they recognise that a legitimate concern
exists that such dual source applications or separate interfaces would not be
designed or maintained equally. Instead, they believed that cmerging tech-
nologies that enable dynamic and customised views of the same application
page may present an opportunity to improve the overall user experience.
They propose some guidelines on how architecture technology can be used
to generate accessible pages. An example of such changes includes the addi-
tion of internal page links at the beginning to allow quick navigation to the
different sections of the document. Alternatively, the often lengthy naviga-
tion bar could be re-positioned to feature at the bottom of the page. This
would save the screen reader user trawling through such material to find the

main content.

3.4.3 Dedicated Browsing Solutions

The final approach is to use a dedicated web browser designed for visually-
impaired or blind people. There are two different approaches regularly em-
ployed: the first type being a self-voicing application that provides a com-
plete audio interface to web pages, for example, IBM’s Home Page Reader
(HPR)33. The second is to render the content of a web page as a text-only
flat document and permit the user to access this content using their normal
assistive technology, typically a screen rcader. This method is demonstrated
by WebbIE (King et al., 2004b,a) and WebFormator®* from Frank Audio-
data. According to King et al., developing a dedicated web browser affords
the maximum flexibility in approach, but requires the developer to take
more responsibility for the presentation of web content. Although in the-
ory a non-visual web browscr is just as standard as a visual one presenting
marked-up HTML, in practice the visual bias of the web means that alter-

native applications have to focus on providing access to resources designed

#1ttp://www-3.1ibm.com/able/solution offerings/hpr.html
34http://www.webformator. com/englisch/index.php

80

for the sighted. What follows is a brief description of a number of these
applications.

IBM’s Home Page Reader (HPR) is a standalone web browser that seg-
ments a web page into a linear array of items which can be traversed by
the user and are spoken as they are encountered. The user can select the
granularity of the presentation, from single characters to entire elements
such as paragraphs. A different voice (female as opposed to male) is used to
present links to distinguish them from other content. HPR works directly
with the document’s DOM structure, and therefore is able to generate views
optimised for blind people, as opposed to translating a visual interface. How-
ever, HPR docs still show the full graphical document view, although it is
shown in a different window to the text content being spoken. The default
setting presents the page as an array of structural mark-up elements: list
items, headers, and paragraphs. This is a good level of resolution for well-
constructed web pages, since it allows the user to immediately access the
document via a reasonable number of segments which reflect the semantic
meaning known to the document author. However, poorly designed web
pages where mark-up is used purely for visual presentation are presented
less successfully, since there is less scope for inferring the semantic meaning
of particular items of content from the mark-up (King et al., 20045).

BrookesTalk®® (Zajicek ct al., 1998a) is another self-voicing web browser.
In addition to the regular problem of presenting information relating to
elements, it attempts to address the problem of communicating to the end
user the scmantic content of a page by providing summaries and keywords
obtained by analysing the structure of the text. However, blind users did not
find the summary information very useful because it was often inaccurate
(Zajicek ct al., 1998b).

WebFormator from Frank Audiodata is a helper application running si-
multaneously with MSIE. It represcuts the contents in a text field that can

be accessed by a screen reader. This text can be navigated as a normal text

35http://www.brookes.ac.uk/schools/cms/research/speech/btalk.htm

81

based application, and like the other two applications, users can bring up
lists of links, frames and other features that can be of use in understand-
ing the content of the web page. Text describing clements such as links
are added to the presentation. The user can peruse this text along with
the content contained within. WebFormator and HPR also provide different
navigation modes for exploring HTML tables. This is useful when navigat-
ing from cell to cell within data tables. See section 3.6 for more details on
the types of tabular navigation offered. Figure 3.2 shows a simple web page
shown through WebFormator.

WebbIE (King et al., 2004b,a), uses the same tactic as WebFormator,
presenting the web page content as accessible text rather than self-voicing
an cntirely novel interface. It gocs a step further in creating a freestanding
independent application providing web access. WebbIE navigates the DOM,
collecting active content components such as hypertext links and form com-
ponents, and building up a plain-text representation of the content to be
presented to the user. As with WebFormator, components arc presented on
new lines with distinguishing titles, such as, “LINK” for a hypertext link.
Functionality is accessed through pressing the return key on a line with a
presented component. WebblE supports existing MSIE bookmarks, frames,
the great majority of HTML 4, forms, tables, and the display of embedded
multimedia. WebbIE looks much like Internet Explorer; however, the web
page is presented in purely linear text, like a Word document. However
this can be problematic where clements depend on spatial layout to denote
meaning.

The final application to be mentioned is the emacs-w3 browser in con-
junction with emacspcak. No lincarisation is performed on the document
by default. Tabular content is presented on the basis of its visual represen-
tation, with additional commands to isolate and read individual columns.
Similarly, links arc presented as they would be visually. That is, no ad-
ditional line breaks are inserted to denote breaks between linked text. A

different voice is used to announce hyper link content. Also, headers and

82

other structural elements are assigned different voices to signify changes in
context. However, emacspeak allows for XSLT translations to be performed
on the content to render it into a format preferred by the user. A number of
style sheets are supplied so the user is afforded control over the document
rendering. Also, if these do not meet the needs of the user, they are {ree to

write their own XSLT translations to suit their individual requirements.

3.5 Web Page Navigation and Summarisation

Listening to content through a text to speech engine (T'TS) could be de-
scribed as being akin to listening to a pre-recorded spoken version of the
content. As with digital recordings, an ability to navigate to and focus in
on small segments of the document for closer scrutiny is imperative (Arons,
1997). However, unlike recorded content, the dynamic nature of TTS en-
gines allows for a fine granularity of access to the material. The user can
navigate through the material character by character, or through larger let-
ter groupings c.g., words or cntire lines. In addition, the ability to read
based on punctuation delimited segments such as entire sentences is often
provided. Also, functionality to navigate using larger screen blocks such as
paragraphs or virtual pages is offered by many screen readers. The system
proposed by Morley et al. (1998) includes a single reading mode based on
many of these units. However, it is up to the user to specify the granularity
at which the content is to be read. That is, the unit on which the reading
functions are based is sclected by the user. JAWS for Windows®® also allows
navigation based on these units. However, whereas the system proposed by
Morley et al. has a single set of keystrokes to navigate units, JAWS assigns
such functionality to a number of different keystrokes. This negates the need
to actively switch reading modes when a change in navigation is required.
However, it does mean the user is required to remember a much larger set
of keystrokes.

In terms of web-based documents, sometimes additional navigational

3Onttp://www.freedomscientific. com/fs_products/JAWS_HQ. asp

83

functionality based on a subset of mark-up tags is included. For exam-
ple, with JAWS for Windows, pressing the letter ‘t’ manoeuvres focus to
the next table construct. Whereas, typing the letter ‘f” jumps to the next
form field/control. However, the number of elements for which this type
of navigation functionality is provided is often restricted to those elements
perceived to be beneficial by the developers.

IBM’s Home Page Reader®” allows navigation based on the traditional
navigation modes e.g., by letter, by word ctc. However additional navigation
modes based on units linked to HTML constructs is provided. The user can
choose to move by clement such as paragraph, link, header, etc. The user can
also use a number of modes that facilitatc movement to the next /previous
header element, link, or form control. The same keys are used to navigate
to cach element, once the user has selected the mode of interaction. The
ability to navigate tabular constructs will be discussed in section 3.6.

In addition, many applications allow the user to generate lists of el-
cments, such as hyper links, e.g., WebFormator, Home Page Readecr,
BrookesTalk®® and JAWS for Windows that can be searched and navigated
by the uscr. This allows for quick access to the hyper link content. This is
especially valuable when viewing an index page whilst searching for a spe-
cific link. Also the ability to create a list of the header tags on a page is
often provided, e.g., JAWS for Windows and BrookesTalk. Finally, a simple
jump mechanism to skip past links to the next picce of textual content is
sometimes included, c.g., WebbIE and JAWS for Windows.

Although these navigation modes allow the uscr to manoeuvre through
the material using text chunks of different sizes, the problem of not being
able to determine the page structure without examining the entirc web page
still exists. Therefore, to circumvent these issues, many screen reader devel-
opers equip their applications with a page summarisation mechanism. These
summaries are frequently based on the presence of specific named clements

such as headers, hyperlinks, or by previously bookmarked page scgments

3Thttp://wuw-3.ibm.com/able/solution offerings/hpr.html
3http: //www. brookes.ac.uk/schools/cms/research/speech/btalk.htm

84

(Zajicek and Powell, 1997; Zajicek et al., 19984a). Others allow navigation
based on these elements Goose and Moller (1999). Others have experi-
mented with page summarisations based on the first line/sentence within a
paragraph, or views containing entire paragraphs comprising specified words
or phrases. For more information see the article: Surfing the Internet with
JAWS3?, An alternative approach is to examine the sentence structure of
the text and generate page summaries of sentences containing the most
frequently used word trigrams (Zajicek et al., 1998a). Unfortunately, this
method is rather error-prone, for trigrams less pivotal to comprehending the
page contents may feature greatly in the summary, whilst less used more ex-
planatory sentences are excluded.

Another approach to the presentation of web-based information is the
“Audio Enriched Links system” described in (Parente, 2004). The audio
enriched links mechanism provides a spoken preview summary of a linked
web page. This is done before the link is followed by the user. The page
summary is comprised of its title, its relation to the current page, statis-
tics about its content, and some highlights from its content. Both JAWS
for Windows and Home Page Reader perform a more limited summarisa-
tion function after a web page has already been opened. The number of
certain clements such as links, header elecments, frames and tables can be
automatically announced to the user. The Hearsay system attempts to au-
tomatically partition Web documents through tightly coupled structural and
semantic analysis Ramakrishnan et al. (2004). The raw HTML documents
arc transformed into semantic structures so as to facilitate audio browsing.
Voice XML dialogs are automatically produced from the XML output of
partitioning. The auditory formatting language proposed by Raman (1994)
allowed for the voice setting for a given clement to be set to “none”. In this
manncr, certain elements conld he exclnded from the auditory rendering.

The system discussed by Goosc and Moller (1999) downloads pages

linked to the current page in the background and retricves meta information

3nttp://tinyurl. com/rqzud

85

about these pages to provide better information concerning the link’s desti-
nation. They believed that an automatically generated document summary
would have been too verbose and distracting. However, some basic meta-
information could be of value to a listener. This might include the title and
the time required to listen to the content. An additional synthesised voice
was introduced into the audio space to announce this information when a

link was encountered.

3.6 Tabular Constructs

Although the mark-up describing the <table> construct is tree-like in na-
ture, it poses serious problems for a purely tree-like interface. The optimum
methods for presenting and assimilating tabular information relies heavily
on its two dimensional (regular graph as opposed to tree) like organisation.
Aside from tree related issues, tabular data poses many problems for speech
interaction in general. This is due to the limited view imposed by the serial
nature of the modality. Tt is difficult to build a mental model of how the
cells relate to one another. Thus, research into the best methods for convey-
ing such material through the spoken medium has resulted in many diverse
access strategies.

The visual organisation of the material often takes on a grid like arrange-
ment of horizontal rows and vertical columns of data cells. The data cell is
the basic building block for creating these complex structures. In XHTML,
the table cell can take on either one of two forms, the data cell <td>, and the
table header cell <th>, which attempts to impose some semantic meaning
on the content. Mechanisms to explicitly link the header cells with their as-
sociated data cells are available in the XHTML specification (W3C, 2002b).
According to W3C (1999b), to make table constructs accessible, the use of
<th> to mark up header elements, and <td> for data cells is mandatory. The
use of the <thead>, <tfoot> and <tbody> elements to group rows and the
<col> and <colgroup> to group columns is also required where appropriate

to associate data with header cells.

86

In terms of the World Wide Web, <table> element usage can be classified
into two different categories. The first category of presentation is layout
or formatting tables, used to organise the information into multi column
presentations. Knowledge of the semantic structure is not usually necessary
to comprehend the information. Instead, their usage is mainly to achieve
a particular visual layout. The W3C’s Web Accessibility Guidelines (wcag)
discourages the use of <table> elements to format content in this way.
Instead, it favours the use of style sheets to perform such tasks (W3C,
1999b).

The second type of table is known as a data table. These constructs are
used to format data which depends on the semantic relationships between
the cells to illustrate meaning. An example of a data table can be found in
figure 3.5.

Data tables can be further categorised into two types based on their levels
of complexity. A simple table has at most 2 header cells (<th> clements)
associated with each data cell (<td> element), i.e., one for the row and
another for the column in which it appears. Whereas, data cells in a complez
table can have multiple logical row/column header relationships*® Figure 3.5
shows a simple table construct. In addition, a single cell may be expanded
to encompass more than one row or column. Thus its semantic significance
must be gleaned from its positioning in relation to other cells.

To further complicate the issue, HTML/XHTML allows entire tables
to be nested within a single cell, adding to the complexity of the structure.
Although this is commonly useful when tables arc used for layout, it is not so
clear that this is ever uscful for data tables. It would certainly causc severe
difficulty for any speech based browser to render in a meaningful manner.
It is not clear whether it is formalised anywhere that data tables can’t or
shouldn’t contain nested tables. However, at least one automated evalnation

tool AccVerify?! has an option to use nesting as a heuristic indication that

40 hese tables are not categorised based on their nunber of rows/columns, for both
types of table can be quite large in structure.
“Ihttp://www. cynthiasays. con/About%20Reports/DataTables.htm

87

/2§ WARE Ireland 2002 Baseline; White Paper at eAccess Lab - Micrasoft Internet explorer =] E3

| Bl Edt Yew Favorites Took Help iv'r'!

i 1 2 S - e |
eaack - . [x] ,.'.’_.L:) search * Favorites ‘2“ o~ i

Address [e] http:/feaccess.rince iefwhite-papers| 2002 {warp-2002-00/warp-2002-00. j Go |]L|rks »|

WCAG-A Conformance Fallure Rate: [149/159]93 7%
WCAG-AA Conformance Failure Rate: [159/159]100.0%
[WCAG-AAA Conformance Failure Rate:|159/159)100 0%

1 |]

ﬁjae = |4 nternet .

Figure 3.5: Table showing the levels of accessibility in Ireland in 2002. Taken
from (McMullin, 2002b).

a table is not a data table.

As Yesilada et al. (2004); Spiliotopoulos ct al. (2005) have pointed out,
tables have no aural equivalent and they can be considered as onc of the
natural functions of written language. For visual interaction, tables are a
rather efficient and effective method to format quantities of data. They
casily demonstrate the manner in which items relate to one another. For
visually impaired users, in contrast, browsing tables can become an arduous
task. The print layout may hinder rather than help access through such an
interface. This is because the richness of visual structure is not appropriate
or accessible to visually impaired users. The structure, presentation, content
and spatial cues such as labelling of tables enable many tasks to be performed
and to guide the reader in, for instance, analysing and finding data items.
According to Yesilada ct al., the retrieval of tabular content is processed by

current auditory solutions using three different methodologies:

1. Screen scraping: material is rctrieved from the visual rendering of
conventional browscrs, with the table content often being read line by

line across the page in a similar fashion to ordinary text.

88

2. Applications such as BrookesTalk?? and IBM’s Home Page Reader®3
have direct access to the source HTML mark-up, so are able to provide
greater knowledge of specific mark-up element structures such as tables

to the user.

3. Special applications are employed to transform the visual presentation
of tables into another form, so that screen readers can render them
more suitably. Different approaches are taken. Oogane and Asakawa
(1998) create an HTML file for each cell, which contains only text.
Chisholm and Novak (1999) use a script to cause another Web browser
window to open, which contains the text, as well as column and row

headers and position information for each cell.

Once the application has gained access to the relevant tabular informa-
tion, the next question is how best to convey this material in a comprehensive
and meaningful manner. One method is to rcad the elements sequentially
row by row. However, this form of interaction can pose a number of prob-
lems. When reading horizontally across the line, the user may have to listen
to the content of many cells before the required information is found. It may
also be difficult to distinguish the contextual breaks between the cells. Also,
the content may be organised in a format which requires reading by column
to ensure comprehension. Reading content in this manner means the listener
is generally a passive participant in the listening process. Therefore, due to
the complexity levels possible with such data constructs, a more interactive
method of gleaning the information might be preferable.*4

Raman (1994) proposed exploiting stereo (spatial audio) to indicate the
location of the cell. The first element of each row is spoken solely on the left
speaker; the rendering then progressively moves to the right, with the last
clement spoken solcly on the right speaker. Spiliotopoulos et al. (2005) ex-

amined the use of prosodic cues to model the underlying semantic structure

nttp: //www.brookes . ac.uk/schools/cms/Tesearch/speech/btalk. htm

http://www-3.ibm. com/able/solution offerings/hpr.html

44 JAWS for windows does allow the user to listen to an entire row at a time. However,
this is not the default behaviour of the application.

89

of tabular constructs. They presented an experimental study concerning the
spoken presentation of data tables. Human readers were asked to read aloud
both simple and complex sample tables which were then evaluated by blind
and sighted listeners alike. They analysed prosodic parameters in terms of
boundary toncs and pauscs in the hope that these could clearly illustrate
consistency against cell content and visual structure. They deduced a spec-
ification which they believed could form the basis for the auditory scripting
of tabular models. They speculated that this would aid in the automatic
rendering of such data using synthctic specch. Although this would be useful
in demonstrating the breaks between individual cells when reading each row
sequentially, it doesn’t offset problems relating to the amount of content the
user must listen to before reaching the required cell. In saying this, the use
of prosodic cues could be very uscful when imparting contextual information
such as the end of a row, or where a cell’s content begins and ends.

Alternatively transformations are sometimes performed on the content
to aid comprehension. One method often used transforms complex tabular
constructs into a linear format (King et al., 2004b,4; Yesilada ct al., 2004).
The linearisation technique is often a rcasonable approach to the presenta-
tion of tabular data when used for purely layout purposes. However, this
approach is insufficient for conveying information in data tables, for much
of the structure that the grid-like construct provides is lost. That is, when
viewed in their linear form it can be difficult to establish the relationships
between the individual cells in the grid (Pontelli et al., 2002; Yesilada et al.,
2004).

Table linearisation can be achieved in a number of different ways. One
solution would be to base transformations on the order in which clements
appear in the structural mark-up, with cach cell presented in order from
left to right on separate lincs to other content, e.g., JAWS for Windows*.
Figure 3.6 shows the same table as scen in Figure 3.5 when lincarised through

JAWS. However, row by row linearisation is not always an effective solution.

Phitp://wuw. freedomscientific.com/fs_products/JAWS HQ.asp

90

Table with 3 columns and 3 rows
WCAG-A Conformance Failure Rate:
149/159

93.7%

WCAG-AA Conformance Failure Rate:
159/159

100.0%

WCAG-AAA Conformance Failure Rate:
159/159

100.0%

table end

Figure 3.6: Table shown in figure 3.5 linearised through JAWS

Sometimes it makes more sense to present the content column by column. A
second solution is the approach taken in Tablin*®. Tablin is a filter program
developed by the WAI Evaluation and Repair group that can linearise HTML
tables and render them accordingly to preferences set by the presentation
layer (e.g., the screen reader cnd-user). It provides a lineariser entry form

that allows the user to handcraft a table’s transformation.

Yesilada et al. (2004) investigated the parameters on which linearisation
of tables should be based. Their survey revealed that table structurc is not
the only aspect that determines the style of reading supported by the table.
Therefore, the table can not be lineariscd solely based on its composition.
They suggest performing some semantic analysis on the content to optimise
the presentation for audio output, before reformatting. As opposed to the
approach taken by tablin, which requires the user to specify the parameters
on which the linearisation is based, they recommend semi automating the se-
lection process. They supply a number of XSL style sheets that can linearise
the coutent in a number of different ways. The user selects the style sheet
that best suits the current table. Emacspeak in conjunction with emacs-w3

also provides a number of XSL style shcets to re-organise the content of

4Bhttp://www.w3.org/WAI/References/Tablin/

91

HTML based pages.

As previously mentioned, interacting with a data table through a linear
approach is insufficient. The grid connections between the cells are impor-
tant in comprehending the content. For this reason, Yesilada et al. also
recommend a system allowing the user to interact with the table content
by navigating along the spatial relationships between the nodes, as a viable
method for table information perception. There are three levels of naviga-
tion functionality provided by the EVITA browser (Yesilada et al., 2004),

as follows:

Level-1 Low-level navigation functions : move to right, left, below,
above, top, bottom, first and last cell, and get current cell. These
functions are based on the “current” cell concept which is necessary

due to the transient nature of the modality.

Level-2 High-level navigation functions : they possess the following
two dimensions: Actions: move next, last, previous and first, and get
current. Targets: row and column. Every action can be applied to
every target. For example, move to last row will take the user to the
bottom row and move to last column will take the user to the last

column.

Level-3 High-level tasks : intersection (a cell can be accessed as an in-
tersection of a row and a column) and a comparison can be made.

(More than one row or column can be compared).

A number of auditory web browsing solutions offer table navigation in
this manner. Many of the functions of the specialised table reading modes
contained in IBM’s Home Page Reader, JAWS for Windows and Window
Eyes?” reflect this level of interaction. All of the lower level functions
are implemented by all three applications, whereas implementation of those

higher level functions varies from application to application. Home Page

Thttp://www.gwmicro. com/

92

Reader also allows the user to examinc the table without removing focus
from the current position. That is, if the user requests it, the focus remains
on the current cell whilst the rest of the table is explored.

Pontelli et al. (2000, 2002); Pontelli and Son (2002) have worked on pro-
ducing a domain specific language framework, which could be applied to the
navigation of table constructs. Pontelli et al. propose additional naviga-
tion functionality in terms of node clustering, based on tracking the most
frequented nodes in previous visitations to that document. They also allow
for a voluntcer to annotate relationships between nodes and their groupings
which are not immediately apparent from the HTML syntax. They first
attempt to generate these grouping relationships automatically by examin-
ing such items as background colours or visual boundaries. This is then
presented to the volunteer who can accept or rcject the grouping, before
assigning a description. Pontelli and Son (2002, 2003) sketched the design
of an action theory to support intelligent non-visual navigation of HTML
Tables and other non-lincar HTML constructs (e.g., frames). They provide
the user with the ability not only to interactively navigate, but also to pre-
scribe queries relating to the content and let a software agent perform the
navigation on his/her behalf. Filepp et al. (2002) created the text to prose
mark-up language (TTPML) which is used to determine how a table should
be rendered aurally. This method defines how cells in a grouping relate to
one another and the spoken fragments used to link the reading of these ele-
ments to increase readability. Additional prose can be included that doesn’t
appear in the on screen text. Also, short hand notation such as “Fr” for
France could be defined to be spoken in full. Although the development of
such languages is a promising approach, the designers or third partics have
to learn new languages and new engines have to be introduced to process

these special languages.

93

3.6.1 Cells Spanning More than One Row or Column

Another major problem for strategies facilitating the non-visual access of
tabular data is the ability to present cells spanning multiple rows and /or
columns. In the visual presentation, the relevant positioning of these cells
determines the nature of their relationships with neighbouring cells in the
grid. However, due to the serial nature of the modality only one cell can be
in focus at a time when viewed through speech output technology. There-
fore, the nature of these relationships is not easily apparent when using this
type of interface. This is not an easy problem to solve. There must be a
trade off in the amount of information that needs to be spoken to make the
system usable, whilst not cluttering up the interface with additional contex-
tual fragments. For example, repeatedly announcing each cells position in
the grid can often detract from the usability of the user interface. Wherecas
failing to signal the presence of these cells could potentially result in the
user losing track of their position in the navigational space. Filepp et al.
(2002) suggests that defining how a table construct is to be spoken using
a specialised mark-up language should offset these problems. The user is
no longer the one who must determine how elements relate to one another.
This relationship is already defined by the content provider. However, this
can be problematic if the user wishes to navigate through the different cells
to examine their content at a more in-depth level. It also relies on au-
thors/content providers to create these additional descriptions of how the
information is to be presented. If such languages are not widely adopted by
content providers, other means of interaction will be required. Thercfore,
there will be many cases where the cell to cell navigation strategy, pro-
posed in Yesilada et al. (2004) and those implemented by current auditory
solutions, such as Home Page Reader and JAWS, will still be required to
navigate and absorb the data.

The approaches taken by both JAWS for Windows and IBM’s Home
Page Reader differ somewhat in how they facilitate the inclusion of these

clements. When HPR 3.04 rcads a spanncd cell after an arrow key is pressed

94

in Table Navigation reading mode, it speaks the contents of the spanned cell
and then tells you the number of columns or rows it spans and /or the current
column number. For example, if a cell spans three columns, HPR rcads the
cells’ contents and then says, “width 3, column 17. When you move to the
previous or next column, HPR 3.04 announces the column number for the
spanned cell and does not repeat the ccll’s contents. Suppose there is a
spanned cell consisting of four columns. The content of the cell is “Save
$500”. When HPR encounters the first column of the spanned cell, it says
“Save $500, width 4, column 1.” Because you have already heard the entire
contents of the cell, if you press the Right Arrow, HPR moves to the second
column of the spanned cell and says “column 2”. If you press Right Arrow
again, HPR says “column 3”. If you press Right Arrow one more time, HPR
says “column 4”. You can also choose to have the cells read without this
column information, sce Home Page Reader: Online help for end uscrs.
JAWS for Windows on the other hand announces when a change in the
number of columns in a row has been detected.?? As a new row is visited,
the application appears to analyse the number of columns present. If the
number of columns is the same as in the previous row visited, then the appli-
cation refrains from announcing such data. However, if a change does occur,
information to this effect is announced. If a cell spanning more than one
column is encountered whilst navigating from row to row, JAWS remembers
the column position. Then, once navigation is moved away from the colspan
cell, focus reverts to the previous column if available. Cells spanning more
than one row seem to be treated differently. That is, no announcement is
made to this effect. In fact the entire content of that cell appears in the
first row in which it is present, with subsequent cells left blank. As one of
these blank cells is encountered, the correct contextual data for a cell in that
row is spoken, without any content. See section 3.6.2 for details on the type

of content read. However, it should be noted that very little information

Bhttp://www-3.ibm. com/able/solution offerings/hpr.html
49A cell spanning more than one column is only counted as one column, c.g., a cell
spanning 4 columns is still counted as one.

95

illustrating how JAWS handles such constructs is publicly available. These
observations were gleaned from personal experience with the product and
from anecdotal evidence provided by other jaws users. JAWS version 5.0

was the software used for experimentation purposes.

3.6.2 Providing Contextual Information During Navigation

A major problem with navigating large two dimensional grids of data
through audio is the tendency to lose track of the current position in re-
lation to the overall organisation of the material. This is especially the case
for large constructs with many rows and columns of data. As mentioned
earlier, Raman (1994) proposed the use of spatial audio to reflect the lo-
cation of each column in the construct. However, this can be problematic
for a number of reasons. The first issue is that the user needs to have the
right equipment to make this solution viable. Also, in the case of large con-
structs the differences in spatial positioning in the audio space may not be
substantial enough to accurately communicate the column position without
a proper reference location. Finally, tabular constructs can differ in width,
i.e., there is no set number of columns, therefore, the position in the audio
space for a column in one table may be completely inappropriate to repre-
sent the same column number in another table. For this reason, the user
must learn the different position of each column in the audio space for every
table encountered. Pontelli et al. (2002) showed that using non-speech audio
cues to signify column cell relationships where spatial cues were unavailable
detracted from the interface. They found that users made more errors when
such cues were employed than viewing the same information without any
cues. Another approach often taken involves the announcement of some or
all of the grid coordinates when a cell moves into focus. This is the approach
taken by both JAWS for Windows and IBM’s Home Page Reader.

JAWS for Windows announces this information after the content of the

cell is read. Home Page Reader affords the user control over which piece of

96

information is read first.?® Aside from knowing which column is currently
under focus, it is often necessary to understand the context in which this
information is intended to be assimilated. The visual reader can usually infer
how each cell relates to both column and row header information. However,
this relationship is not obvious when listening through speech. For this
reason, mechanisms for programmatically assigning headers to table data
cells is included in the XHTML and the later HTML specifications. Once
these approaches have been implemented, screen reader applications can
accurately associate data cells with the correct header information. The next
question is how this information should be used to help the user orientate
through the construct.

Home Page Reader affords the user the facility to select which headers are
read when a cell is encountered. They can choose none, row header, column
header or both.5! Users can also determine whether the header information
is presented before or after the cell’s contents. With JAWS for Windows,
the header information announced is dependent on the direction in which
navigation is taking place. If moving across a row, the column header for a
cell is read. Similarly, for column navigation it is the row header information
that is spoken. In both cases this is uttered before the cells’ contents. In
cases where there are no header elements, or at least no explicit mark-up
assigning headers to data cells, JAWS assumes the first row of cells to be
column headers and the first column to be row headers. The spoken output

is then generated accordingly.

3.7 Form Handling

Interactive form constructs can pose serious problems for non-visual ac-

cess to web based documents. According to Hoffman et al. (2005), prop-

50Home Page Reader also allows the aunouncement of grid information to be turned off
altogether.

51There is little published information on how tables are handled by both Home Page
Reader and JAWS for Windows. In fact, the available information is limited to what
can be gleaned from their respective user manuals. Neither of which mention how the
announcement of header relationships in complex tables are to be handled.

97

erly semantically marked up form fields are well handled by existing screen
readers. Once <label> elements have been explicitly assigned to individ-
ual controls/fields, screen readers can speak this information when a field is
encountered. However, problems can occur where this is not the case. Some-
times, the function of a field/control needs to be deciphered from reading
the surrounding text. This is not usually a problem when it is encountered
during general reading. However, if the user tabs to the field or moves to the
next form ficld through specialised functionality supplied by the screen read-
ing software, then this contextual information is usually unavailable. The
solution proposed by Hoffman et al. suggests placing the element contain-
ing the information on the tab-index of the document. In this manner the
user will have this information available when tabbing through the content.
However, there are disadvantages to this approach. If used extensively, the
ability to quickly navigate to the individual form fields afforded by these
mechanisms may be drastically reduced. The solution employed by JAWS
for Windows®? is to use information positioned near the form field as the
label. The success rate of this approach is dependent on the design of the
site. JAWS works best if the relevant data is positioned to the left or above
the current field, see Surfing the Internet with JAWS®2. Figure 3.7 shows a
simple form construct as presented through JAWS/ IE.** The same <form>
construct as displayed by Internet Explorer is shown in figure 3.8.
Similarly, forms which use tabular constructs to arrange the data visu-
ally, can pose major problems for blind uscrs. The default rendering by
many auditory solutions is to linearise the content. Sce section 3.6 for more
details. If the data does not linearise graccfully with row by row linearisa-
tion, then blind people may have serious problems associating form fields
with the relevant descriptive data. If the <label> element is not used to

assign explicit relationships between the field/control and the descriptive

5Ihttp://www.freedomscientific.com/fs_products/JAWS HQ. asp

S3http://tinyurl.com/rqzud

% 0Only the currently selected item of a “combo box” appears in the audio rendering
when accessing content through JAWS. If no item is selected, the first option in the list
is displayed.

98

FirstName:

edit Second Name:

edit student

radio button checked, one of three PAYE worker

radio button not checked, two of three self Employed

radio button not checked, three of three screen Reader User
checkbox checked What is the primary method you use to interact with your
computer?

combo box A combination of braille and speech four of four
Reset

Submit

Figure 3.7: A simple form presented by JAWS/IE

3 WehTree Tutarial - Microsofl Internet Explorer
B Edt Vew Favortes Took Help \

Qsad: TS ﬂ _E‘j 2| __.-‘Search Favortes /L4 ”!

Address |2 | Etjtempitemp-wt-tut.him ~| B ||unks ”!

Firsthame: | Second Name: | student
@& PAYE wotker © selfEmployed © screen Reader User W What s the primary
method you use to interact with your computer?

[A combinetion of braille and speech =] Reset | Subrait]

2] Dane T[4 My Computer

N 'Il L.

Figure 3.8: A simple form shown through Internet Explorer

99

table Caption: Table 1 Enter course results
Table with 4 columns and 4 rows
Student Number

Exam Grade

Continuous Assessment Grade
Total Grade

001

Edit0

Edit0

Edit0

002

Edit 0

Edit 0

Edit 0

Edit. ..
Edit ...
Edit ...
table end
Reset
Submit

Figure 3.9: A tabular form linearised through JAWS/IE

text, then the blind user must rely on an element of guess work to establish
the functionality of the different form fields. Figure 3.9 shows a form con-
taining a tabular construct linearised through JAWS. Figure 3.10 shows the
same form construct as it might appear through Internet Explorer. If there
are many form elements, the user can become disorientated when filling out
the content. However, the situation becomes more problematic where blank
cells are used to organise the data visually. This requires a greater memory
load on behalf of the user to establish relationships between the cells. Thus,
rendering this form of interaction more difficult. Although table reading
commands can often help in this situation, they do add an additional level
of complexity to the problem.

There are situations where the use of a data table to semantically or-

ganise the content of form constructs makes perfect sense. Consider a table

100

/23 Example flgures for chapter 3 - Microsoft Internet Explarer
| Ble Edt Vew Favorites Tools Help

v ﬂ ﬂ :.) Sefrch

> . Favorites 52 <
| Address |s_] Er\example-figures.htm

tabularised form example

Tahle 1 Enter course results

Student Continuous
Number Exarn Grade Assess Grade Total Grade
001 o o jo

002 o

o fo
| .

Reset |[Submit |
|1 Done =

|_jMvC_omtef

w

Figure 3.10: A tabular form construct

101

where the “data” cells contain only form controls; and the correct data to
be entered in cach case is indicated by the combination of the column and
row header for the particular cell. Requiring a <label> element for each
form field/control would be serious overkill.’% Therefore, in an ideal world,
it would be logical to have the row/column information act as the contex-
tual text in this case instead.’® Jim Thatcher has suggested that using
table header mark up instead of <label> is perfectly logical and reasonable,
but does not “work” with widely deployed scrcen-readers such as JAWS.57
The rcason for this may be that the table reading functions in JAWS arc
incompatible with its specialised forms mode.

Also controls may be grouped in terms of their function, e.g., “first”,
“middle” and “last” name. A shared label might be used to group these
elements. When tabbing to these fields the announced label may not be
enough to clarify the function without the context in which it appears.
Adding in full labels for each element might detract from the visual interface.
For this reason, Hoffman et al. suggest using additional labels (hidden from
view by CSS, but available to screen reader applications). A second solution
would be to attach a “title” attribute to the relevant field/control to convey
the true nature of the element.

Many auditory web solutions use a special reading mode to read web
based documents, e.g., JAWS for Windows and IBM’s Home Page Reader®®.
In this specialised mode, all the navigation keystrokes are available. In
JAWS for Windows, form items are presented on separate lines from other
content to allow for easy sclection and interaction with the item. However,
to fill out form fields, the keystrokes must revert to their character input
status. For this reason the user must change the mode of interaction to a
special forms mode to allow for data entry. Once the content for a given

field is filled in, the user can either revert to the reading mode, or move

55¢1abel> tags can have only a one to onc association with a single control.
56Table headers can be linked to multiple cells.
SThttp://1lists.w3.org/Archives/Public/wdc-wai- ig/2005AprJun/0014.html
38http://www—3.ibm.com/able/solution offerings/hpr.html

102

on to the next field with special commands often provided. WebFormator®®
requires the user to switch back to the main IE window to fill out such data.
Once the task has been completed, the user can switch focus back to the
WebFormator text window. In the case of checkboxes and radio buttons,
pressing the selection key when in the specialised reading mode will often
suffice to alter the state of the element. That is, once the relevant control
is in focus.

Select lists are often displayed in an unexpanded state by default. When
encountered, the element type is often announced in conjunction with the
first option in the list. To select a given element the user must enter a
special mode that expands the list so the user can navigate through the
options and choose the one they require. Once the user leaves this mode,
the list reverts to its collapsed state, with the selected item displayed in the
audio rendering.

Emacspeak in conjunction with the emacs-w3 browser does not require
the user to explicitly enter a specialised forms interaction mode for single
line text areas. Instead, the mapping for the individual keystrokes reverts
to their character input functionality, once focus has been positioned over
a text entry field. For multi line text fields e.g., “text areas” a new buffer
is opened to take the required content. Once the user has finished entering
the content, they can revert to the main document view. The entered data
is then presented in the field as required.

Finally, many solutions offer additional short cut commands to aid the
navigation of form constructs. For example, in JAWS for Windows, the user
can select a view limited to form fields/controls. Many applications offer
the ability to quickly jump to the next /previous form field, e.g., JAWS,
WebFormator and HPR.. However, sometimes the user can also jump to the
element of a given type such as the next button or select list, e.g., JAWS

for Windows.

http://www.webformator.com/englisch/index.php

103

3.8 Tree Navigation

The final section of this review is dedicated to the mechanisms employed
to convey tree information in a non-visual modality. Speaking the content
of each item is not where the problem lies. Instead, the issue is concerned
with how to unobtrusively convey level information to the listener. Without
this data, the listener may have difficulty relating elements to the relevant
segment of the tree. This can result in the user becoming disorientated when
navigating complex tree hierarchies. As discussed in section 3.2 this can be
achieved in a number of ways. The first method involves the insertion of
additional speech fragments to denote level information. This method is
used by JAWS for Windows® to present list information viewed through
Internet Explorer. However it is also used when navigating through the
directory tree view in windows explorer. As a change in level takes place,
the new level information is announced in the audio stream. In the case of
windows explorer, this data includes the tree level and the number of items
present at the current hierarchical position. In terms of lists in web based
documents, users are notified when entering a nested list and again when
leaving this construct. See section 3.2 for an example page containing a list
as displayed through JAWS.

The second method by which this can be achieved is through the use
of non-speech audio cues. In section 2.2 the use of non-speech sound cues
to present hierarchical information was discussed. Brewster (1998) showed
how interface hierarchies can be signalled in this manner.

Finally, the third approach to be discussed requires some manipulation
of voices and voice characteristics to convey this contextual data (Raman,
1994; Shajahan and Irani, 2005). To represent a change in the level of a sub
tree, Raman suggests manipulating dimensions of voice characteristics to
create a softer more animated voice. As deeper levels of nesting are entered,
the change in voice characteristic produces a sense of falling off into the

distance.

5%nttp://www.freedomscientific. com/fs_products/JAWS HQ.asp

104

Shajahan and Irani experimented with manipulating synthetic voice pa-
rameters to convey hicrarchical information. In a similar fashion to the
cxperiments with hierarchical earcons performed by Brewster (1998), new
voices inherited many characteristics from the parent node. To represent
changes in the different tree levels, they used duplication, variation and in-
clusion of different voice parameters to denote changes in context. Inclusion
was defined to include one or more speech parameters to the preceding voice
in order to create unique voices. For example, if the child node duplicates
all the parameters and the exact values from its parent node (such as specch
rate and pitch), then other voice parameters such as laryngealisation and
breathiness can be added (inclusion rule) to the child node, to make the child
node sound different from its parent. Similar to the experiments performed
by Brewster, Shajahan and Irani (2005) were successful in demonstrating
that once the rules concerning the creation of the different voices were un-
derstood by the test participants, they were able to recognise and classify
voices not previously heard. The results of their experiments show that
the manipulation of voice parameters to denote hierarchical information is
a viable approach. However, further work is necessary to determine the op-
timum method in how these voice changes should be used. As part of future
work, they suggest designing a study to evaluate the eflectiveness of multiple
parameter configurations for representing depth and width in hierarchies.

Smith et al. (2003) devcloped a non-visual tree based navigation interface
to the viewing of source code hierarchies. They believe that the approach
taken could also be applied to the viewing of other tree based structures such
as file systems. The results of these experiments shows that an accessible
tree navigation tool provides an effective and efficient strategy for non-visual
navigation within hicrarchical structurcs. Working on the basis that the
entire tree is fully cxpanded in view, they derived navigation functions to
traverse the construct. Moving left brought the user to the parent clement.
Navigating up and down visited the different siblings, whilst moving right

found the children of the current node. The sibling navigation was arranged

105

in a circular list. That is, moving up from the first node at a given level
would reposition focus on the last node at the same level. Users were able to
develop an accurate mental model of the tree and could therefore navigate
successfully within both familiar and unfamiliar trees of various sizes. The
tool also provides the user with a method for gleaning context information.
The “context” features let the user know the current location in the tree,
relative to the tree’s overall structure. These fcatures include giving the user
location information about distance from the root, who the cousins are, and
what the density of the sub tree is, as well as providing a means for the
user to change the context relative to a new anchor point. The strategy also
includes “focus” features that let the user get detailed information about a
specific node, including the parent, the number of children and siblings, and
the past history of visiting the node.

Chimera and Shneiderman (1994) found that both expand/contract and
multi pane interfaces produced significantly faster times than the stable in-
terface for many tasks using a large hierarchical structure, such as a table
of contents. The major drawback to a stable interface is that users have
difficulty in perceiving the global hierarchical breakdown of the text. Be-~
cause section and subscction titles arc permanently displayed inline, many
screens/pages would have to be scrolled to show enough chapter titles to
comprehend the major divisions of the text. The expand/contract and
multi pane interfaces attempt to overcome the hicrarchy breakdown problem
by displaying the high-level information contiguously and giving users the
choice of viewing specific section and subsection levels on demand. Viewing
the document through the stable interface, users must perform a consider-
able amount of scrolling and can get lost in a large document. The resultant
disorientation can be caused by conceptual confusion concerning the logical
structure. Whereas, the cxpand/contract intcrface preserves more of the
logical structure and context than the stable interface since the chapter ti-
tles preceding the one chosen for expansion often are visible on the screen.

The multipane interface overcomes the conceptual deficiency by constantly

106

displaying the high-level chapter and section information. Although the ex-
periments performed by Chimera and Shneiderman involved sighted users, it
is logical to assume similar problematic issues when viewing these structures
non-visually. In fact, the problems might be exaggerated by the limitations
on the amount of information viewable at any given time. Although Chimera
and Shneiderman favoured the multi pane approach to viewing these con-
structs, this might be problematic for blind users. The information in one
area, of the screen alters depending on interactions in another screen area.
This means the user must switch to each screen area to analyse the changes
and then revert to the previous position to continue navigation. Also, if the
hierarchy is quite deep, it may be impractical to display a pane for each level
in the display. For these reasons, the expand-contract mechanism should be
more appropriate to blind users. As will be evident in the following chapters,
WebTree applies a similar approach to the viewing of structurally marked

up web based documents.

3.9 Summary

In this chapter an outline of the research to date in relation to making elec-
tronic information accessible to blind users was provided. A discussion of
the literature in the area of accessibility was presented, coupled with a de-
scription on how current auditory solutions render web based documents. In
the next chapter, the implementation environment for WebTree is discussed.
The methods used for modelling the document are shown, in addition to the
methods used to link content in the audio rendering to WebTree’s internal
model. Also, WebTree’s dependencies on third party software are described.
The limitations of the system when faced by alternative media types such
as flash content are also presented. In section 4.7 the discussion focuses
on the web accessibility guidelines on which WebTree depends. Finally, a

discussion concerning legislation in the area of web accessibility is presented.

107

Chapter 4

WebTree Implementation

In the previous two chapters, the different technologies employed by blind
people to access electronic information were discussed. A review of the lit-
erature concerning how these technologies have so far been used was also
included. Thus, much of the remainder of this dissertation is dedicated to a
discussion of the WebTree system. In this chapter a number of implementa-
tion issues encountered when developing WebTree are described. The first
section provides a brief overview of emacs and some emacs terminology. Fol-
lowing this, a description of the implementation cnvironment under which
WebTree operates is included. Next, the methods used to model the content
and provide access to the tree components are discussed. The final section
presents an overview of the standards and guidelines on which Web'Tree is
dependent. This presentation also includes an outline of legislation in the
area of accessibility and how it applies to the Web. The relevant legislation

is discussed from both an Irish and International stand point.

4.1 Emacs Terminology

To quote the Emacs Manual:

Emacs is the extensible, customizable, self-documenting real-

time display editor.

108

or in simple terms, emacs is a text editor which can be extended to offer
much more powerful functionality. A robust customisation facility is pro-
vided to allow the user modify settings to better reflect their requirements.
However, if this is not sufficient, emacs provides its own Interpretive script-
ing language called emacs lisp or ELisp so that the application can be
easily extended. Much of emacs is written in ELisp, therefore, if a specific
function does not fulfil a users requirements, they are free to write their
own function or modify the existing method for use instead. Many of the
different packages supported by emacs are also written in ELisp. These
range from applications to brows the World Wide Web, e.g., emacs-w3!, to
electronic mail programs, such as vim?, to specialised editing modes for spe-
cific programming languages. The different components of emacs have been
created in a modular architecture. Thus, the commands available and their
keystrokes are dependent on the major/minor mode currently in operation.
As WebTree has been developed as a major mode under emacs, the rest
of this section will explain a number of emacs specific terms that are used

throughout the rest of this chapter, and also in chapters 5 and 6.

Buffer : a buffer is simply the container for whatever you happen to be
currently editing. Rather than making changes directly to a file, you
make changes to a buffer that holds the contents of that file. The file

itself is not changed until you save the buffer.

Point : In terms of cmacs/emacspeak, the term point means the current
position in the document. That is, the position in the text of the edit

curser.

Mark : Emacs allows the user to save their current position in a buffer by
setting a mark for that buffer. This is done by storing the position
under point for later use. A mark is local to a given bufter, therefore,

it only affects the one in which it is saved.

http://www.cs.indiana.edu/elisp/w3/docs . html
2http://www.wonderworks . com/vm/

109

Region : A region is an arbitrary chunk of text under emacs. It is defined
as the text between mark and point. Many commands operate on

regions, such as those for deleting text.

Widget : In terms of emacs, a widget is a component of the interface
which the user can interact with. These include, “edit-boxes”, “push-
buttons” and “text items”. The default widget classes can be found
in wid-edit.el in the emacs distribution. By setting the different
properties of these objects, the developer can determine the look and
feel of the component, and any actions to be taken when the user
interacts with the object. For more information on widgets supported
by emacs, see the documentation for the The Emacs Widget Library®
package.

Mode : a mode defines the way emacs treats the contents of the buffer.
Emacs can use both major and minor modes at any given time. Only
one major mode may be active in a specific buffer, but several minor
modes may be active. A major mode determines the fundamental way
emacs should look at the buffer contents. If it’s text mode, emacs
should treat the contents as plain text. However, if you switch the
buffer to perl mode, emacs will treat the same contents now as a
perl program, and will enforce indentation rules and enable several
commands to make entering perl code easier. Minor modes will affect
the buffer contents in less fundamental ways, and may be used with
many (or all) major modes. In the above example, you may also have
font-lock-mode enabled, which will make your perl code stand out

in different colours for comments, variables, commands, etc.

4.2 WebTree Specification and Design

The first step in developing the WebTree system was to create a high level

specification detailing the types of functionality an application of its type

3http://www.dina.kvl.dk/~abrahan/custom/widget.html

110

should provide. Establishing the data on which these requirements were
to be derived was achieved using two distinct methods. The first required
an cxamination of the problems that many blind users face when brows-
ing /navigating web based documents. Much of this data was obtained
through personal experience in accessing electronic material through audi-
tory means and by anecdotal evidence gleaned from discussions with other
blind computer users. The second method involved an examination of cur-
rent solutions to the problem and attempting to establish ways in which
these could be improved. It was decided from the outset that the focus of
the work would centre on offsetting problems with accessing content caused
by the scrial naturc of speech, as opposed to solving problems emanating
from badly composed mark-up and websites not adhering to accessibility
standards.

In sections 4.3 and 4.4 the implementation environment and the methods
used to model the document for internal manipulation by the application arc
discussed. Also included in this discussion are many of the design decisions
that were made during the creation of the WebTree prototype. In addi-
tion, any third party software used as part of Web'Tree is credited in these
scctions. However, before describing the details of the prototype implemen-
tation, the software engineering approaches used in bringing the system from
requirements stage to its current implementation state need to be discussed.

The system design methodology pursued during the creation of the Web-
Tree prototype followed an agile approach to softwarc development. The
“agile” development approach is a conceptual framework for undertaking
software engineering projects. Most agile methods attempt to minimize risk
by developing software in short timeboxes, called iterations. Each itcration
is like a miniature software project of its own, and includes all of the tasks
necessary to relcase the mini-increment of new functionality: planning, re-
quirements analysis, design, coding, testing, and documentation. While an
iteration may not add enough functionality to warrant releasing the prod-

uct, an agile software project intends to be capable of relcasing new software

111

at the end of every iteration. At the end of cach iteration, the project pri-
orities are re-evaluated. Agile methods produce completely developed and
tested features (but a very small subset of the whole) every few weeks or
months. The emphasis is on obtaining a crude but cxecutable system ecarly,
and continually improving it.

The specific “agile” approach pursued in WebTree's development was
the “adaptive software development” (ASD) framework (by Jim Highsmith,
1997). ASD functions on the principle that continuously adapting the de-
velopment process to the current work is quite a normal feature of the de-
velopment process. It consists of a repeating series of speculate, collaborate,
and learn cycles. This dynamic cycle allows the developers to continuously
adapt to changing states of the project based on what they have learned
so far. In this manner a working system emerges from the process. The
characteristics of an ASD life cycle are that it is mission focused, feature
based, iterative, timeboxed, risk driven, and tolerant to change.

As the ASD development cycle is iterative in nature it lends itself well to
a form of rapid application development (RAD). Traditional RAD is effective
for the evaluation of differing user interfaces (UT), allowing for the selection
of the most appropriate UI for each stage of the implementation. ASD also
provides some latitude to the developer to solve unanticipated problcms as
they arc encountered. This is achieved through “software spiking”. Softwarc
spiking refers to the developer’s ability to break from the current iteration
of the implementation, solve an unforecseen problem and then return to the
previous state of development. In terms of ASD, the word “speculate” is
used instead of “plan” so that any preconceived ideas of the project are
not entirely rigid and may be subject to change. Thesc alterations often
occur due to changes in available technology and through data learned from
problems encountered.

The code base for the WebTree system contains a mixture of object ori-
ented and procedural code. The methods used for content modelling, for

example, the “document object model” or DOM, which is used to internally

112

store the data, and the “widget-tree model” (see section 4.5.1), used to ren-
der the content, follow the object oriented design paradigm. However, much
of the code is procedural in nature. This includes the methods dictating
how the rendered elements interact with one another, and those which gov-
ern how/when they are to be rendered. The implementation environment
(see section 4.3) did not always lend itself well to the object oriented ap-
proach. The language in which the system is implemented is a functional
language. Functional languages are geared more towards iterative program-
ming as opposed to the object oriented method. Also much of the third
party code on which WebTree depends, although modular, is procedurally
based.

The first step in the implementation stage of the project was to integrate
the “xml” parser and the methods for modelling the document (DOM, see
section 4.4) into the system. Once content could be successfully parsed
and stored in the “DOM”, work on creating the dynamically expandable
tree rendering functionality commenced. After this objective had been com-
pleted, code to integrate the CSS parser and apply CSS “properties” to the
content was included. The “url” retrieval functionality was then added to
the system. This was followed by code to facilitate clements requiring addi-
tional functionality to operate effectively, e.g., hyperlinks, form constructs
and tabular data, which were added in that order. Finally, the specialised
“search” features were built into the application.

Software documentation was completed as each feature of WebTree was
developed. The implementation environment allows for a text string pro-
viding information about each function to be entered into the source code.
This should allow the application to be easily maintained, for developers can
see how the system operates on a function by function basis. However, to
simplify matters even further, documentation describing the overall design
architecture and how the specific functions interact with one another was

also completed.

113

4.3 Implementation Environment

When developing the WebTree system, it was necessary to determine
whether it would be better to create a browsing solution that operated on the
client side, or use a server side intermediary proxy application. It may have
been possible for the proxy system to gencrate the dynamically cxpandable
tree rendering from intercepted web pages and passed them to a mainstream
browsing application. A Java applet or J2EE traversing proxy solution in
conjunction with the user’s screen reading application were mooted as possi-
ble solutions. However, at the time this project commenced, access to Java
applets was not well supported by any of the popular screen reading ap-
plications. As for the intermediary proxy solution, it was thought that the
additional load on the proxy that cxpanding/collapsing clements through
requests to the server would have had a detrimental effect on the speed and
hence the usability of the application. If only a small segment of the page
was requested at any given time, much communication between the client
browser and the server to coordinate the delivery of the material would be
necessary. Howcver, if an cntire page was passed by the server with each
request, aside from the time delay associated with downloading the newly
rendercd content, the screen reader application may not leave the user in
the same position as before the expansion/collapse request. Performing ex-
pansion/collapsing of elements using JavaScript was not a viable altcrnative
either. This is due to the lack in comprehensive support for such technology
in screen rcaders. For further information on the support of JavaScript in
current screen reading applications, sec the article: AJAX and Screen read-
ers: When Can it Work? By James Edwards*. For these reasons it was
decided to build WebTree as a client side application.

Once it was decided to create WebTree as a client side solution, there
were a number of possible ways in which the application could have been
developed. The first method is to create a self voicing browser to handle the

user’s entire experience with the content. In this case, the text to specch

‘http://www.sitepoint.com/article/ajax-screenreaders-work

114

(T'TS) cngine is directly controlled by the application. a second approach,
as used in the development of WebTree, consists of a browsing application
to render the content and allowing the user’s own screen reading software to
handle the production of spoken output.® There are advantages in providing
information through the user’s regular assistive technology, as opposed to
controlling the text to speech engine directly. For one, it ensures that the risk
of clashes in output between the two applications is prevented. This problem
can occur when both applications attempt to read aloud the information at
the same time. To avoid this, the screen reader must be either turned off or
prevented from speaking during the time when the self-voicing browser is in
focus. However, when the focus is changed to another application, the screen
reader needs to resume speaking®. For example, when using IBM’s Home
Page Reader” in conjunction with JAWS for Windows® as the main screen
reader, the user must set up a sleep mode for JAWS to stop it reading in
HPR. Braille output can remain on so that both a Braille display and speech
can be used at the same time. A second advantage is that the content can
be provided to the listener using their preferred regular voice characteristics,
such as reading speed or voice type. This means that they do not have to
create such settings on a per application basis.

Onc of the major criteria governing the selection of the implementation
environment was the requirement to create a low cost solution using “open
source” technology, or in some cases “shareware” software. Under the Mi-
crosoft WINDOWS? operating system, the major English speaking screen

610 “window

reading applications e.g., Jaws for windows and GW Micro
eyes”, are proprietary software, hence the source code is not freely available.

Although custom control for an application is offered through special script-

50ften some customisation of the screen reader is nccessary before the application
bacomes usable and the speech output can be optimised.

SHlome Page Reader provides a limited form of screen reading functionality known as
the Desktop Reader, which can read the windows desktop, plus a number of applications
such as WordPad and Adobe Reader 6.0

"http://www-3.1ibm. com/able/solution_offerings/hpr.html

8http://www.freedomscientific. com/fs_products/JAWS HQ.asp

Shttp://www.microsoft.com

WOnttp: //www. gwmicro. com/

115

ing languages under these products, the monetary cost of purchasing this
software mitigated against their selection. Therefore, focus was switched to
the Linux operating system. At the time that development of WebTree com-
menced, the accessibility work in the GNOME: The Frec Software Desktop
project!! was still at its infancy. Also, screen reading applications such as
Gnopernicus'? were not available. Therefore, focus shifted from the provi-
sion of access through the “GUI” to access through the Linux “text” mode.
Although there were a number of auditory solutions available for this en-
vironment, many of these were console based and did not furnish a lot of
control over the final output. For example, Speakup'?, which is compiled as
a patch into the Linux kernel. At the time that development of WebTree be-
gan, only hardware synthesisers were supported by Speakup. emacspeak
on the other hand is a rather powerful, highly customisable auditory access
solution. A major advantage of this system is its cxtensibility. Due to its
modular nature, custom functionality to handle a specific application can
be easily incorporated without adversely affecting other programs. There-
fore, the WebTree application has been written in ELisp and runs under the
GNU emacs-21.31 lisp environment on the Linux platform. It is not a stand-
alone sclf-voicing web browser; rather, it relies on hooking into functionality
incorporated into emacspeak-19.0 to produce spoken output.

There is one major disadvantage to be found with the choice of imple-
mentation environment. That is, the usage levels of the emacs and emacs-
peak combination as an auditory computer access solution is quite low. This
problem did manifest itself when trying to source blind computer uscrs to
test the WebTree application.

WebTree could potentially have been written in another language e.g.,
¢/c++. However, to operate under the cmacs/emacspeak environment, it

would have been necessary to write and maintain an additional layer of ELisp

YUhttp://www.gnome.org

29t tp://www.baum.ro/gnopernicus. html
3nttp://wuw.linux-speakup . org/speakup.html
Myttp://emacspeak. sourceforge.net/

YBnttp: //www. gnu. org/software/emacs/emacs . html

116

code to handle the interaction between WebTree and cmacs/emacspeak.
Therefore, it made more sense to write the entire application in the “ELisp”
language.

The initial plan was to just implement an alternative interface to the
cmacs-w3 browser. This would have meant that WebTree would have con-
tained the full capabilities of a working browsing application and the project
could just concentrate on designing a usable user interface. However, this
was found to be quite problematic. There was very little documentation
on major components of emacs-w3. This was especially true in the case
of its internal document model and display code. Some information was
contained in the “documentation” string for most functions, however there
was little information on the overall architecture of the system. Thercfore,
it was decided to use certain components of emacs-w3 and add additional
technologies where necessary.

As already mentioned, WebTree is dependent on a number of componcnts
of the cmacs-w3'® web browser to function. Some of the code is directly used
by the system without any modifications. For example, the url library is
used to handle the downloading of documents from the web. Also, the CS8
parser included in W3 is used by WebTree to parse Cascading Style Sheets.
However, a number of scgments of the code base were adapted for use in
the system. The form handling code was used as the basis for WebTree’s
form handling functionality. Major changes were necessary to produce form
widgets compatible with the widget tree approach (discussed in more detail
below). In addition, it was necessary to alter this code to use the DOM
structure as input data, as opposed to w3’s internal representation. As
described in section 4.5.1, code to handle the collapsing and expansion of
clements was also adapted from third party software. The emacs specific
“Igearch” mode was modified to invoke the WebTree specific specialised
search functions, once in the WebTree system. This was done so that users

could seamlessly use the search methods as they would in any document.

Unttp://www.cs.indiana.edu/elisp/w3/docs . html

117

However, bar a few minor lower level display functions adapted from emacs-
w3, the rest of the code base for WebTree was written from scratch.

Speech output for the WebTree system is processed by the “emacspeak”
application. However, it was necessary to modify some of the “emacs-
peak” code to optimally render the content of documents presented by
WebTree through spoken output. For example, the emacspeak specific
emacspeak-speak-line function was modified to announce the presence
of form fields when encountered whilst reading a document line by line. In
addition, when a form element is encountered by other means, the emacs-
peak specific functions had to be altered to be able to obtain any relevant
information about the element from the internal storage mechanism. For
example, they need to check if any <label> tags are associated with the
clement and retrieve the subsequent information. Apart from these changes
the emacspeak code base was not otherwise altered. A number of WebTree
functions do also hook directly into the emacspeak speech output functions,
as opposed to using the generalised emacspeak-speak-line function. In
general, these commands provide some contextual information about the
content, for example, the name of the localised element under point, or in-
formation concerning table cell coordinates. Due to these direct calls to
“emacspeak” speech commands, it is nccessary to have emacspeak running
when using WebITrec.

The system was designed as a general-purposc XML (W3C, 2004b)
browser. Special emphasis was placed on supporting XHT ML (W3C, 2002b)
web pages. Although the browser is capable of rendering gencric XML doc-
uments, the current incarnation has been optimised to support documents
validating to the XHTML basic standard (W3C, 20006). For the purposes of
the prototype application, it was assumed that all documents were written
in valid well-formed XHTML basic mark-up. It was also understood that
these documents would be marked up in a manner that would meet level
Double-A conformance of the web content accessibility guidelines (WCAG)
version 1.0 (W3C, 19995). It might be argued that in applying these con-

118

straints, a world far different than the one we live in has been constructed.

One journal reviewer has commented:

Their solution depends on pages that validate successfully
against XHTML. Indeed, at least one of their tasks involved a
translated web site created just for their evaluative experiments.
In effect, they have constructed a world far different than the one
we live in with pages composed of bits of Flash or recondite Ajax
structures. Their experiments remind one of the physics prob-
lems that begin, In a world without friction... They said noth-
ing unsound, counterfactual, or inaccurate, but they explored a

world that, while we would like it to exist, simply doesn’t.

Although this research uses web based documents as a basis, the pri-
mary focus of the work is to try to increase the usability of document
browsing/navigation by offsetting problems imposed by the serial nature
of speech. As with any screen reading application, best results are obtained
when a web page is marked up in accordance with accessibility guidelines.
The less accessible the web page is, the greater the difficulty in browsing
its content. Admittedly the numbers of web sites currently meeting WCAG
Double-A conformance are still rather low (McMullin, 2002a; Marincu and
McMullin, 2004; UK Cabinet Office, 2005). However, there is good reason
to believe that this number will increase substantially in the future. This
is due in part to the greater awareness of accessibility issues among website
developers and also to the recent increase in legislation governing website
accessibility. For example, scction 5087 of the Rehabilitation Act in the
U.S., makes explicit reference to web accessibility requirements. The draft
code of practice!® under the Irish disability act 20059 proposes that all
public sector websites should conform to WCAG 1.0 Level Double-A. There

also exists some international case law supporting the inclusion of web site

Yhttp://www. section508.gov/
Bhttp://tinyurl. com/o3rdp
Yyttp://www. oireachtas.ie/viewdoc.asp?DocID=4338

119

accessibility featurcs. See the Reader’s Guide to Sydney Olympics Acces-
sibility Complaint?® for more details. It should be noted that not all the
guidelines required for WCAG level Double-A conformance are relevant to
web access for blind individuals. Sec section 4.7.3 for more details on the
applicable WCAG 1.0 guidelines and a description of the current state of
web accessibility, both from an implementation and a legislative point. of
view.

There is a reason for the second restriction limiting support to XML
based documents. The main focus of the project is to design an alternative
non-visual web-browsing interface. Thercfore, for the sake of the prototype
application, it was decided not to centrc resources on the development or
implementation of heuristic algorithms to solve issues with invalid mark-up,
or to decipher the implied meaning in inaccessible web pages. Instead the
focus should be concentrated on user interface design issues. However, in
saying this, it is believed that the proposed viewing methods would be useful
for viewing other HTML document type derivatives. Including support for
other HTML DTDs is not a difficult task. Due to the DOM (Document
Object Model) being the chosen mechanism for internal document storage,
all that is required is additional lisp code to parse such documents and
gencrate a representation in the required format. See section 4.4 for more
details.

The prototype system does not currently support additional embedded
technologies such as Adobe Flash?! content, Java applets?? or J avaScript?3.
In many cases the types of presentation produced using these technologics
depend greatly on visual interaction. Although Flash content can support
accossibility featurcs (Regan, 2005), care must be taken when creating such

material.2* For example, when a page is updated and the content has

Pnttp://www. contenu.nu/socog-PR.html

2nttp:/ /www. adobe. com/products/flash/flashpro/

nttp://java.sun.com/applets/

Bhttp://www.ecma-international. org/publications/standards/Ecma-262.htn

24]ash accessibility support is currently implemented only on the windows platform,
for it depends on MSAA (Sinclair, 2000) to provide content to a user’s specific assistive
technology.

120

changed, many screen reading applications revert to the top of the page
and commence reading. This can make it difficult to interact with the con-
tent, especially if the material is updated on a regular basis. They offer
some practical advice on how to ensure such content is both accessible and
useable. Regan (2005) tells us that there are times when flash accessibility

is not possible, or at least extremely problematic.

There are some complex forms of Flash content that sim-
ply can not be made accessible. For example, many simulations
require users to attend to several objects at the same time. De-
cisions must be made based on multiple factors and relayed back
to the simulation quickly. This type of multitasking activity may
be easy to do in the real world for someone who is blind, but can

pose a real challenge while using a screen reader.

Similar problems can occur when JavaScript is employed to selectively
hide certain elements of information. As the user interacts with the script,
the content on the page might be updated in accordance with the selection.
This can mean that the focus is moved away from the current position.
Otherwise, the user may not be aware of the changes due to the narrow
focus on the information through the speech output modality. For a detailed
description of the problems faced by screen rcader users, see the article:
AJAX and Screen readers: When Can it Work? By James Edwards?.
Thercfore, to successfully implement such technologies into WebTree in a
useable manner is not a trivial task. WebTree operates under emacs on a
Linux platform, whilst Flash technology requires Microsoft windows based
MSAA (Sinclair, 2000) to provide information to a screen reader. Therefore,
providing support for this content is not currently practical under the current
implementation environment. To support JavaScript, a scripting engine
must be found/written and incorporated into the system, for emacs-w3 does

not support JavaScript. At the moment the system ignores such content.

2http: //uww.sitepoint.com/article/ajax-screenreaders—work

121

However, as part of future work the best methods concerning how some
or all of these technologies could function under the tree viewing approach

should be investigated.

4.4 Document Modelling

As implementing an alternative interface to the emacs-w3 browser was not an
option, a new method for internally modelling the data was sought. The two
major options considered were the “Document Object Model” (DOM) and
the “Simple API for XML” (SAX). The DOM is a Tree-based API, which
means that an XML document is mapped into an internal tree structure,
and an application is then allowed to navigate that tree to find and process
the data. SAX on the other hand is an Event-based APL It reports parsing
events (such as the start and end of clements) directly to the application
through callbacks, and does not usually build an internal tree structure.
The application implements handlers to deal with the different events, much
like handling events in a graphical user interfacc. For more information on
SAX, see the official SAX26 website. The DOM method was chosen for
it lends itself well to the dynamic tree expansion model proposed for the
primary document rendering through WebTree. Storing content in a tree-like
structure enables simple mapping from elements in the internal document
model to what is displayed in the audio rendering. Although it is possible to
construct a parse tree using an event-based API, and use an event-based API
to traverse an internal memory tree, this would have requircd much more
development work in the implementation of the WebTree system prototype.

For the most part, the internal model used for document storage follows
a strict traditional trec approach. At the root of the tree is the <html>
clement. The branches of the tree contain the subordinate elements, with
the leaves of the tree containing the textual content. It differs from the
model proposed by Fitzpatrick (1999) in the sense that it does not contain

links to elements at the same tree level in other sub trees. The only time

2nttp://sax. sourceforge.net/

122

that the system departs from this model is in the presentation of tabular
information. Links are created between <td> or <th> clements in the same
column across <tr> elements. However, these links are not reflected in the
internal storage model; instead they are reflected in the widget tree for the
audio rendering. Sce section 4.5.1 for more details.

As previously mentioned, the DOM lends itself well to facilitating the
types of functionality offered by WebTree. The DOM’s hierarchical struc-
ture is based on having nodes to represent each mark-up element in the
document. Nodes representing the element’s attributes are linked directly
from the element node. Due to the proposed rendering approach’s reliance
on the tree-like composition of the document mark-up, a structure reflecting
this type of organisation was required. Because of this method of organisa-
tion, it is simple to create a direct mapping from the internal representation
to the clements exposed in the auditory rendering. See section 4.5 for details
on how this was achieved in the system. The aim is to exposc only a limited
number of document trec elements in the display at any given time. The
number of elements, and the type of elements to be included, are determined
first by user preferences and then through the dynamic expansion of indi-
vidual screen elements. See section 5.1.1 for more details on the structure
of the primary document rendering.

When expanding/collapsing the content of a given elcment, the DOM
node serves as an easy access point into the document’s hierarchical struc-
ture. An element’s child, parent and attribute nodes are accessible from
this position. Exposing the tree structure in this manner facilitates the
expansion or contraction of content. The interface can be manipulated to
include as much of the DOM tree as required. Similarly, it provides a sim-
ple methodology for hiding cntire sub trees of XHTML elements from the
document rendering.

In addition, using the DOM structure aids the implementation of the
proposed alternative types of search functionality. That is, searching for a

given element, or limiting the text search to be inside a specific XHTML

123

clement. These specialised search facilitics are discussed in more detail in
section 5.1.5.

There were two options when implementing the DOM component of the
WebTree system. These included developing the DOM component from
scratch, or integrating an existing library into the project. The latter op-
tion was chosen in this case. The DOM implementation used was written
in emacs lisp, however, it is not included as part of the GNU emacs dis-
tribution.?” This component does not handle the initial loading or parsing
of documents into the DOM data structure. Therefore an additional parser
that produced an output in a format that could be accepted and recognised
by the functions in dom.el needed to be found. The parser selected can be
found in xml.el in the GNU emacs distribution. To add support for other
document types would require a parser that produces a DOM data structure

similar to xml.el.

4.5 Exposing Document Tree Structure

The next major issue is how the information stored in each DOM node
should be presented in the audio rendering. It was clear that just including
the textual content of each element would not be sufficient to facilitate the
tree viewing approach. Therefore, it was necessary to provide a method
to connect text in the audio rendering to its equivalent node position in
the DOM tree structure. The expand/collapsc element methods depend on
this, for they require a starting point in the DOM tree to function. It is also
necessary for the application to be able to verify the type of element under
point. This is important in the case of a search by element or a restricted
incremental search. See scction 5.1.5 for more details on the types of search
available. If an clement meeting the correct search criteria is found in the
DOM structure, the application must then search the exposed elements to

find information from its ancestor tree nodes so the newly found item can

274om.el: DOM implementation copyright © 2001 Alex Schroede, maintained by Hen-
rik Motakef: http://www.emacswiki.org/cgi-bin/wiki.pl7XmlParser

124

be expanded. An additional reason is so that the user can programmatically
obtain tree positional information about the element under point.

It was also important to find a mechanism in which element trees can
be dynamically included/removed from the audio rendering by the user in a
controlled fashion. This could have been achieved in a number of different

ways:

e The first method involves using emacs specific screen widgets to draw
the text content of an element to the screen. To solve the problem
of linking text in the rendering to its position in the DOM tree, a
pointer to the corresponding DOM node could be linked to one of
the properties of the displayed widget. Aside from this, widgets allow
for the easy expansion and contraction of screen elements. The tree-
widget found in tree-widget.el?® Allows for a generic method to
alter the number of elements exposed in the display at any given time.
This is achieved through the expansion and contraction of tree widgets

easily controlled by the user.

e The second method involves inserting the content contained in each
DOM node directly into the buffer text. Associating content with
its cquivalent DOM node can be achieved by inserting a link from
the text properties of the displayed characters to the corresponding
position in the DOM tree. The simplest approach to allow for the
dynamic expansion and collapsing of elements would be to link the
functionality to form control widgets, such as push buttons. Although,
managing the expansion and contraction of elements in such a hybrid
system of plain text and push button widgets could be quite complex.
Expanding the content should not pose too many problems. However,

the collapsing of material could be problematic.

In the second approach, the application would have to check for each

284 ree-widget.el: Trec widget version 1.1 by David Ponce:
http://tinyurl.com/hw4h3

125

[-] head

WebTree Application User Manual

[-]1 body

[-1 hl WebTree Application User Manual
[-] h3 Contents

[+] ul Navigation

[-] n3 Introduction

[+] p Many Internet access solutions for the blind are in reality
[+] p The WebTree application has been written to explore the use

[+1 p As well as the tree like arrangement of the displayed XHTML
[Link Back to topl

Figure 4.1: A Sample XHTML page as rendered through WebTree

node in the sub tree of the element to be collapsed, and remove them indi-
vidually from the rendering. Whereas, with the widget tree approach, the
widget for the element in question acts as a wrapper for the element sub tree.
Thus, when the collapse command is called, the application can simply hide

its content. Therefore, the widget tree option was the one implemented.

4.5.1 The Widget Tree

As the name widget tree suggests, the widgets are arranged in a hierarchical
form reflecting the organisation of elements in the document. For example,
the root node represents the <html> element. As the user expands each wid-
get, widgets representing the children of the current DOM node are revealed
to the user. For example, when the <htm1> widget is expanded, the <head>
and the <body> elements are exposed through the wt-tree-expand-widget
function. In cases where the child nodes represent text content rather than
XHTML elements, the text appears fully expanded in the display once the
widget representing the parent node has been expanded.

Figure 4.1 shows a sample web page as it might be displayed through
WebTree. It is included here to show how the tree rendering of the document
can be represented. The buttons appearing at the beginning of a tree control
containing a + indicates elements in their collapsed state, whilst - signifies
expanded elements. For an in-depth discussion of the WebTree user interface

and the tree structural view, see chapter 5.

126

(define-widget ’'wt-default ’default
"Default widget from which wt widgets are to be derived"

:node-dom nil ;; Pointer to DOM node element
:voice nil ;; contains voice type information for element sub tree
:before nil ;; content to be placed before each child element
;after nil ;; content to be included after each child element
:emacspeak-help nil ;; pointer to emacspeak helper function.

;s (Function depends on the widget type)
:name "" ;; element id or name attribute

Figure 4.2: Default widget class

To be effective in the WebTree system, all the widgets used had to be aug-
mented with a number of additional properties. A new default widget shown
in figure 4.2 was created as a base class from which all other widgets were de-
rived.?? Every node in the DOM tree that is exposed in the display has its own
designated screen widget. Most of these are wt-tree-element-widgets,
which is equivalent to the tree-element-widget found in tree-widget. el,
cxcept that it is now derived from the new base class. It also contains one
additional property :display-element, (see the next paragraph). How-
ever, there are some specialised widgets included to represent particular ele-
ments such as hyperlinks wt-url-link and form control widgets. Although
widgets to represent these elements are available in the file wid-edit.el
found in emacs-21 they had to be augmented to inherit properties from the
wt-default class.

Each trec widget has two control components which are represented in
the displayed text. The first is a button that when pressed calls the ex-
pand/collapse element functions. The second is a text item which con-
tains the name of the XHTML clement. In the file tree-widget.el, the
tree-widget-value—-create function automatically inserted these controls
into the text for every tree-—element-widget it created. However, this is

not always beneficial. There are occasions where it is better to show the

297 properties of the default widget found in widget.el (part of GNU emacs) from
which the wt-default widget is derived are excluded here.

127

content, without these controls, as detailed in section 5.1.1. Therefore, the
wt-tree-widget-value-create function allows for the cxclusion of these
controls. If the :display-element property is set to nil, these controls
do not appear in the screen text. Similarly, if the :open property is set to
t, the children of the element appear automatically expanded in the audio
rendering. The reason why the :open and :display-element properties
are included in the wt-tree-element-widget and not in the default wid-
get is that these properties are only applicable to elements derived from the
wt-tree—element-widget. Plus, the :open property is an original compo-
nent of the tree- widget found in tree-widget.el, so it did not make sense
to duplicate this functionality in the default widget.

The presentation of table constructs posed a number of different prob-
lems for the modelling approaches taken. None of the existing widget types
were capable of handling the implementation of tabular constructs in an
officient and reliable manner. This is due to the additional links required
to allow navigation between the different cells, discussed in more detail in
section 5.1.6. Similarly, many of the relationships to support navigation arc
not automatically available in the DOM structure.’® The individual cells
alrcady have links to sibling clements within the row in which they appear.
However, no explicitly derived relationships exist between neighbouring cells
in a given column. To achieve this, it is important to note the column num-
ber in which the cell appears. This is due to the colspan attributc allowing
cells to span more than one column, meaning adjacent rows can contain
differing numbers of cells. Similarly relying on the sibling links between el-
ements in a row is unwisc because of the possibility of cells spanning more
than a single row. In addition, there can exist links between the data cells
and their associated header information. There are two possible approaches
available to create these links. The first involves creating links in the DOM
to point to relevant nodes to be positioned above, below, left and right of

the current node. The second solution is to reflect these relationships in the

30Tpter-cell relationships would need to be explicitly created in the DOM by WebTrce.

128

widget tree, which is the method implemented by WebTree. Although it
may have been preferable to have these links created in the DOM structure,
the reason for implementing it in this manner is due to the one-directional
linkage between individual screen widgets and nodes in the DOM. For the
purposes of the prototype application, it was easier to search the on screen
rendering for the specific widgets representing the table cells, as opposed to
searching the same content for the relevant DOM node. Also, storing the
relevant information to support navigation is rather simple with the widget
tree approach. However, for it to work successfully, all the cells need to
appear in the rendering. That is, all rows, <tr> elements should appear
automatically expanded, once the <table> element is opened. This requirce-
ment was not a problem in terms of the prototype application, for it allowed
experimentation with the different navigation and table reading facilities.
However, for these functions to work effectively with a <table> construct
with a mixture of rows in their collapsed and expanded states, the code
should be altered to reflect the cell-to-cell relationships in the DOM struc-
ture. Figure 4.3 shows the widget class for a table cell. Figure 4.4 shows
the widget class for higher level table elements. These elements include the
<table>, <tbody>, <tfoot>, <thead> and the <tr> clements.?!

Due to the tree structural approach to the construction of the rendering,
there is no need to have a specific mechanism to memorise which form fields
belong to a given <form> clement. The application only has to examine
the <form> element sub tree to find the associated fields. For this reason,
multiple forms positioned on the same page do not pose any problems for
the system. In general the widgets used to manage form interaction arc
those stored in wid-edit.el (part of GNU emacs 21). However, these werce

cdited to inherit from the new default widget class.3? 33

317he WebTree systamn does not have any special functionality to handle the <tbody>,
<thead> or <tfoot> clements. The wt-table-element-widget is inscrted without any trec
controls as a wrapper for the enclosed content, however provides no other functionality.
See scction 5.1.6 for the reasons why.

320nce trec controls are included for the <form> element, the user can casily cstablish
the start of a new form.

33The nesting of <form> elements is not allowed in XHTML, therefore problems relating

129

(define-widget ’wt-table-cell ’wt-tree-element-widget
"table cell widget"
:id nil ;;HTML id attribute string
sheaders nil ;; HTML headers attribute string
:row-header-widget nil ;;points te the relevant row header widget
:column-header-widget nil ;; points to the relevant column header widget
:scope "" ;; content of the HTML scope attribute string
:left nil ;; points to the widget cell to the left
;right nil ;; points to Cell on the right
:up nil ;; widget cell above
:down nil ;; widget cell below
:row-number 0 ;; Number of the current row
column-number 0) ;; current column number

Figure 4.3: wt-table-cell widget class

(define-widget ’wt-table—element-widget 'wt-tree-element-widget
"for table grouping elements e.g., \htag{tbodyl,
\htag{tfoot}, \htag{thead}, \htag{tr}"
:element-number 0)

Figure 4.4: wi-table-element-widget class

130

Gaining access to the position in the widget tree under focus is not a
simple operation. Using the widget-at function should return a pointer to
the widget under point. However, if the widget concerned is not on the tab-
order, then it is not recognised as a widget. This became problematic when
the element in focus was either an inline text based element or a group
of inline text based elements, which apart from a few special cases, are
generally not on the documents’ tab order, e.g., or . These
do not normally have any form controls associated with them in the display,
thus it was difficult to gain access to the DOM node contained in the widgets

:node-dom property. The list of widgets on the tab-order include:

o wt-tree-widget-handle-node widgets (tree control button): Access to
the clement tree can be gained by obtaining the parent of the widget
through its :parent property.

e url-link widgets: <a> or <area> element node.

e Form field widgets: The widgets associated with form controls. Often

a <input> element.

For the purposes of most user interactive tasks in the WebTree interface,
this restriction didn’t cause any major problems. The ability to tab from
item to item, and expand or contract individual clements was not effected.
However, there were a number of areas of development where this lack of
functionality started to be quite limiting. Not only was it difficult to be able
to inform the user of the type of clement in focus at any given time. It had
much more serious implications for the development of navigational features
that require large jumps from point to point in the DOM structure. These
include the implementation of code to handle relative links, the provision of
additional table navigation functionality and the development of searching

methodology. For example, once one of the table navigation functions is

to which <form> construct the elements belong to in a multi level structure of forms do
not apply.

131

requested, the application needs to access the widget representing the cur-
rent table cell to establish the position to which focus should be transferred.
Accessing the widget tree through the next widget on the tab-order is not
powerful enough to be able to provide the required functionality. Therefore,
it was necessary to find another method to gain access to the widget under

point. This method is explained in section 4.5.2.

4.5.2 Screen Overlays

Emacs provides a mechanism of screen overlays to assign specific properties
to text, such as font size or colour changes. In addition to the set of emacs
specific properties, the developer is permitted to assign and apply their own
properties. These properties are generally ignored by emacs unless they
clash with a set list of keywords that emacs recognises. Overlays can be
nested, therefore it is possible for each wt-tree-element-widget to have a
screen overlay associated with it. To aid interaction through WebTree, the

following properties were added to each screen overlay:

o :clement-name : Name of the XHTML element that the overlay rep-

resents.

e :element-widget : A pointer to the widget in the tree which repre-

sents the XHTML element.

Under WebTree, screen overlays are assigned in the following man-
ner. As each wt-tree-element-widget is created in the display by the
wt—tree-widget-value-create function, a screen overlay is also created.
The start and end points of the overlay coincide with the start and end points
of the tree widget. The overlay is generated after the widget has been created
by adding a piece of advice functionality to the wt-tree-value-create
function. The advice function can change how a function operates with-
out altering the specific function to which it is assigned, by specifying code
to be run when the assigned method is called. In this case, the advice

function invokes lisp code to generate an overlay for the widget created

132

without altering the widget creation function. The advice function assigns
the XHTML name of the element to the :element-name property, and the
:element-widget property is set to point to the tree widget itself. If the
application examines the overlays under point, it can gain access to the cur-
rent widget in focus by retrieving the :element-widget property. Through
the examination of the start and end points of each overlay, it is relatively
simple to locate the overlay in the list that is most relevant to the current
position.

It is important to note that not all screen element widgets have an
individual overlay assigned. Those that do are generally widgets that
are of type wt-tree—element-widget, or have been derived from the
wt-tree-element-widget type. This is due mainly to the designated
advice function being only assigned to the wt-tree-value-create func-
tion.

The form control widgets possess their own generation functions so this
piece of advice functionality does not apply. To crcate an overlay for each
form control or field, each specialised creation function would require an
association with a piece of advice. Due to the fact that these elements arc
on the tab-order, this additional step is unnecessary because the widget—-at

function will return the widget under point.

4.6 Cascading Style Sheet implementation

The WCAG 1.0 guidelines (W3C, 1999b) encourage the separation of con-
tent from presentation through the use of cascading style sheets. WCAG
checkpoint 3.3 states:

Use style sheets to control layout and presentation. [Prior-
ity 2] For example, use the CSS ’font’ property instead of the
HTML FONT element to control font styles.

Cascading Style Sheets are a rather powerful tool used to separate con-

tent structure from presentational properties. However, the vast majority

133

of components in the Cascading Style Sheet level two specification (W3C,
2005) are not directly applicable to the portrayal of material through a
purely auditory browser. That is, CSS components to control the visual
appearance of elements have little value in a purcly audio interface. For
example, many of the properties to control visual formatting or to apply
presentational aspects such as colour, font size or font weight to an element
are not applicable. Neverthcless, there exists a number of CSS constituents
that can still have a bearing on this form of interaction. The regular CSS2
properties handled by the WebTree application, include the display prop-
erty, and those propertics dealing with the presentation of list items and the
inclusion of white space.3*

As well as providing instructions to govern the visual presentation of
elements, CSS also allows the specification of properties to control the aural
presentation of the content. However, so far none of the more popular
auditory web browsing solutions for the blind have implemented support for
this technology. Only emacspeak in conjunction with emacs-w3 currently
supports this facility.

The main focus of the CSS implementation under WebTree deals primar-
ily with the aural style sheet propertics to be applied to voice output. At
present, only a small subsct of these properties has been implemented, being
those specifically concerned with controlling voice characteristics. However,
others such as those referring to the insertion of pauscs, managing speech
volume and the playing of non-speech audio cues have not yet been included.
As part of future work, it is hoped that many morce of the aural style shect
propertics will be implemented as part of the WebTree application.

Both user provided style sheets and author provided style information
are handled by the WebTrec application, although, the use of author pre-
scribed aural styling is rare. The prototype application docs not update the
DOM with the style information for the different elements. This is due to

the use of the emacs-w3 CSS parser to parse style sheets, which gencrates

3 Code to cope with all possible values for these properties has not been implemented
in all cases.

134

its own internal storage format. W3 also provides functionality to query the
parsed representation to find the properties to be applied to a given element.
For the purposes of the prototype application, it was thought to be unnec-
essary to update style information for each element in the DOM tree, for in
many cases, the information might not ever appear in the audio rendering.
Obviously whether or not this is advantageous is dependent on how much
of the tree structure the user chooses to render. Instead, WebTree applies
CSS properties to an element as it is expanded into the audio rendering,.
The :voice, :before and :after properties of the tree widget for each
element are used to store information to be applied to their child elements.
For example, the :voice property stores the voice settings to be applied to
any child elements. If the element in question is a text element, then the
:voice of the parent widget is applied to the data. If no :voice element
exists for that specific widget, then the ancestor elements are searched. If
no :voice properties are found, then the default voice is used. The :before
and :after propertics are used to store any prescribed text to be placed
either side of a child element—for example, a marker to be inserted to denote

the start of a new list item.

4.7 Standards Compliance

So far in this chapter the implementation issues faced when building Web-
Tree have been dealt with. Now the external factors that influence the
accessibility levels of certain web sites will be highlighted. Thus, the re-
mainder of this chapter will focus on the standards and guidelines which
arc required to make WebTree, or in fact any purely auditory based browser
a workable solution. First the different guidelines to aid web accessibility
are discussed. Following this, the benefits of using mark-up that validates
against a recommended document type definition are presented. Finally, an
overview concerning the different pieces of legislation governing the area of
accessibility (both nationally and internationally) and how they are applied

to the web is presented.

135

4.7.1 Guidelines

The power of the Web is in its universality. Access by every-
one regardless of disability is an essential aspect.

—_Tim Berners-Lee, W3C Director and inventor of the World
Wide Web3®

For most people, the web is a very powerful tool providing immediate ac-
cess to multiple information resources. However, for people with disabilities
it can take on a greater significance. It provides the potential to increase
access to many products and services that people not affected by disability
can sometimes take for granted. Nevertheless, there can exist many barri-
ers inhibiting usage of the web by such users. In saying this, a number of
measures can be implemented to offset many of these problems and ensure
that a web page is accessible to such user groups. There currently exists
many diverse sets of guidelines proposed in the hope of making the web
accessible to all. These include the U.S. governments Section 508% require-
ments, applicable under the Americans with disabilities act, which explicitly
makes provisions to maintain a certain level of web site accessibility. How-
ever, a more comprehensive set of guidelines are produced by the W3C'’s
Web Accessibility Initiative®” (WAI). These guidelines attempt to cnsure
accessibility for a greater number of user groups.

WAI maintain that it is not just web site developers that have respon-
sibility for accessibility issues. For this reason the Guidelines produced by
the W3(C’s WAI initiative are divided into three separate areas to reflect the
responsibilities placed on user agents, web site developers and the makers of
web content authoring tools. The list of guidelines is broken down into the

following documents:

e User Agent Accessibility Guidelines 1.0 (UAAG) (W3C, 2002a). This

docurment defines criteria for making user agents such as web browsers

3Shttp://www.w3c. org/wai
3Onttp://www.sections08.gov/
3Thttp://www.w3c.org/wai/

136

and media players accessible to the largest possible audience.

Web Content Accessibility Guidelines 1.0 (WCAG) (W3C, 19995).
These are intended to govern how a web site can be coded to meet
accessibility requirements. However, some of these requirements are
rather subjective or ambiguous, such as making colour contrasts suffi-
cient so that visually impaired users can recognise colour differences.
The current WCAG recommendation is WCAG 1.0. However, a re-
vised set of guidelines, WCAG 2.0, is currently being drafted (W3C,
2006).

Authoring Tool Accessibility Guidelines 1.0 (ATAG) (W3C, 2000a).
The ATAG guidelines were primarily created to assist developers of
authoring tools. These include editing tools specifically designed to
produce Web content, for example, HTML and XML editors. In addi-
tion, tools that allow the user to save content in a Web based format,
for example, word processors or desktop publishing packages. They
also guide the creation of applications to convert different document
types into Web based formats. For example, filters to transform desk-
top publishing formats into HTML. Furthermore, they cover the devel-
opment of applications such as content management systems (CMS),
web based multi media applications, and dynamically generated web-

sites from server side databases.

The guidelines developed by WAT® are widely accepted as being the de

facto international standard for Web accessibility. Also, section 508 guide-

lines have no bearing in an Irish context, thus, in this dissertation focus will

be restricted to those guidelines produced by the WAL However, in terms
of the WebTree application, only the UAAG and WCAG guidelines are di-

rectly applicable. Although the ATAG guidelines do have a bearing on web

content accessibility, they are more concerned with the automated creation

of accessible content. Therefore, an in-depth discussion of ATAG is out of

3Bhttp://www . w3c.org/wai

137

scope for this dissertation.

Both the UAAG and WCAG guidelines have three conformance levels.
The guidelines are structured in the following manner. Each guideline has
a number of checkpoints associated with it to ensure conformance. The
checkpoints are assigned a priority level ranging from one to three, in order of
their importance to accessibility. Thus, to conform to WCAG level Double-
A, for example, all the priority one and two checkpoints must be fulfilled.

User Agent Accessibility Guidelines (UAAG)

The UAAG document (W3C, 2002a) provides guidelines for designing user
agents that lower barriers to Web accessibility for people with disabilities
(visual, hearing, physical, cognitive, and neurological). These user agents
include HTML browsers and other types of software that retrieve and ren-
der Web content. Currently WebTree is a purely audio web browser, with
a focus on the presentation of XHTML /XML files. Many of the guidelines
recommended by UAAG are not applicable for two reasons. The first being
that focus is centred on non-visual usage. The prototype application doesn’t
attempt to support access through other modalities. There is little current
support for interaction through the visual modality. That is, apart from a
basic visual display of the audio rendering. The second reason is that doc-
uments containing alternative media presentations such as flash content, or
material which is dynamically rendered on the client side using J avaScript
are not supported by WebTree. See section 4.3 for further details. Similarly,
many of the guidelines specifically deal with the presentation of alternative
media types such as video and audio files, which are not covered by the
WebTree system. The development of the prototype application has so far
been focused on creating an alternative mechanism for browsing documents.
Access to these alternative media types must be handled by external ap-
plications, thus, WebTree is not responsible for the accessibility of these
applications. To conform to the guidelines all components used in the user

agent must comply with the criteria set out in the UAAG. However, as of

138

now no conformance claims with the UAAG guidelines are made in rela-
tion to WebTree. Although, many features of WebTree do conform. For
example, allowing interaction through the keyboard. Other input modali-
ties are facilitated due to the application being implemented under emacs.
As part of future work, the system could be altered to meet more of these

requirements.

Web Content Accessibility Guidelines (WCAG)

As previously mentioned, the Web Content Accessibility Guidelines
(WCAG) W3C (1999b) were designed to enable web developers ensure their
web site is accessible to the widest possible audience. WCAG 1.0 consists of
14 separate guidelines, each of which has an associated set of one or more in-
dividual checkpoints. There are a total of 65 checkpoints which are classified
into three priority levels (1-3), defined in the Guidelines as follows:

Priority 1 A Web content developer must satisfy this check-
point. Otherwise, one or more groups will find it impossi-
ble to access information in the document. Satisfying this
checkpoint is a basic requirement for some groups to be able

to use Web documents.

Priority 2 A Web content developer should satisfy this check-
point. Otherwise, one or more groups will find it difficult to
access information in the document. Satisfying this check-
point will remove significant barriers to accessing Web doc-

uments.

Priority 3 A Web content developer may address this check-
point. Otherwise, one or more groups will find it somewhat
difficult to access information in the document. Satisfying

this checkpoint will improve access to Web documents.

Based on these priority levels, three levels of conformance to the WCAG
1.0 can be achieved, which are described in (Marincu and McMullin, 2004)

139

as follows:
WCAG-A: All priority 1 checkpoints are satisfied. This is a
minimum standard which a site must meet to be con-

sidered accessible for any significant disability groups.

WCAG-AA: All priority 1 and two checkpoints are satis-
fied. This is a "professional practice” standard, which
a site should meet to be accessible to a broad range of

disability groups.

WCAG-AAA: All checkpoints (at all priorities) are satis-
fied. This is a ”"gold standard” of maximum accessi-
bility which some sites may choose to aim for—for ex-
ample, sites with a particular remit to serve disability
communities.
Although developers should be encouraged to meet all of the checkpoints
for each guideline, conforming to some guidelines is rather subjective. For

example, conforming to guideline 14:
Ensure that documents are clear and simple.
Checkpoint 14.1 states:

Use the clearest and simplest language appropriate for a site’s

content. [Priority 1]

This guideline aids people of all abilities to access the content. However,
what is termed as being clear and simple language by one person may not
be for another. It is also difficult to automate testing for such issues.

There exist a number of automated solutions facilitating the checking
of a web page for accessibility issues, for example, AccVerify®? and Watch-
fire WebXACT4®, However, these can generally only test for certain types

of accessibility problems that can be gleaned through examination of the

3®http://www.cynthiasays. com/About’20Reports/DataTables.htm
4Onttp://webxact .watchfire.com/ScanForm.aspx

140

source code. For example, does an image tag have an associated
“glt” attribute. Nevertheless, other accessibility issues such as, determining
whether tabular material linearises gracefully or whether the contrast be-
tween foreground and background colours is sufficient are more difficult to
test automatically. Thus, although these tools are useful in auditing a web
site for accessibility, review by a person with knowledge of accessibility issucs
is still necessary. Also, to be sure that a web site works correctly through
assistive technologies some user testing with members of this user group is
recommended. However, this is a contentious issue at the moment. In an
ideal, world, if the WCAG guidelines did what they were supposed to, and
if evaluation was done accurately, and if assistive technologies worked prop-
erly - i.e., in conformance with the UAAG (W3C, 2002a) - then in fact there
should be no need for actual testing with any particular Assistive Technol-
ogy. The problem in the real world is that many of the guidelines are open
to interpretation thercfore some testing with assistive technology is a use-
ful control on the application and interpretation of the WCAG guidelines.
Nevertheless, one must always be very careful not to respond naively to bad
results from accessibility user testing - problems in using a site, identified
in such testing, can sometimes turn out to be problems with the client side
technology, or the individual user’s competence or cxperience; and in that
case, changing the server side content is not necessarily an appropriate or
effective response.

Not all the checkpoints for each guideline listed in the WCAG guidelines
(W3C, 1999b) are directly applicable to accessibility for totally blind pcople.
That is, people who depend on an auditory browser or a screen reader ap-
plication to interact with a web page. Many of these checkpoints are aimed
at ensuring accessibility for other user groups. For example, the use of rel-
ative units for setting attributes of mark-up elements c.g., sctting font size
relevant to the default size, so that the matcrial is scalable for people with
low vision. Also, the use of colour contrasts is not usually an issue for blind

users. That is, unless there is a dependency on colour to denote contextual

141

information. For example, using the colour “red” to denote that a form field
is required to be filled in. In such cases the WCAG guidelines recommend
using alternative means for imparting this information in conjunction with
the colour change. Therefore, documents do not need to conform to these
guidelines for WebTree to function. When reviewing the WCAG guidelines,
cach individual checkpoint is not examined to determine whether it is ap-
plicable to web access for blind people. However, an overview of the most
important relevant areas that the guidelines cover is presented.

The requirements necessary for providing access through auditory solu-
tions are generally those concerning the inclusion of alternative means for
obtaining information about visual elements, such as, images elements
and image maps <imagemap> tags. Also content that is dynamically altered
by a client side script can be problematic for blind users. For this reason,

checkpoint 8.1 states:

Make programmatic elements such as scripts and applets di-
rectly accessible or compatible with assistive technologies [Pri-
ority 1 if functionality is important and not presented elsewhere,

otherwise Priority 2.]

Visually it is easy to make the user aware of a change in content on another
part of the screen when a selection is made. However, imparting this in-
formation to a blind user is not a simple task. This is due to the narrow
focus on the content provided by the mode of interaction. Similarly, those
guidelines dealing with the use of new technologies are directly applicable

to accessibility for blind people. Guideline 6 states:

Ensure that pages featuring new technologies transform

gracefully.

When new technologics are released, they are not always created with the
provision of accessibility in mind. Thus it can take a number of years before
auditory solutions implement a means of interacting with these technologies.

If these technologies depend greatly on visual interaction to perform tasks,

142

then new methods of how to present the information to a blind user will
need to be investigated. For these reasons, it can take some time before
such content can become accessible if at all.

It is also important to clarify natural language usage. For example,
use mark-up that facilitates pronunciation or interpretation of abbreviated
or foreign text. Speech synthesisers and Braille devices can automatically
switch to a new language if it is specified in the mark-up. This should
ensure the document is more accessible to multilingual users. The natural
language of a document’s content should be signalled (through mark-up or
HTTP headers). Expansions of abbreviations and acronyms should also
be provided. When abbreviations and natural language changes are not
identified, then the relevant content may be indecipherable when machine-
spoken or Brailled.

As demonstrated in section 3.6, it is important to use the correct code
to mark-up tabular constructs. In addition, the <table> construct should
only be used to mark genuinely tabular content and not be used to create a
visual multi-column display. That is, once CSS positioning is supported by
user agents, which is currently the situation for many of the web browsing
solutions available today.

Developers should also ensure that moving, blinking, scrolling, or auto-
updating objects or pages may be paused or stopped (WCAG guideline
7). That is, until user agents afford the user control over such items. The
reason for this is that some screen readers may have trouble with this type
of content. Unless refreshing of the material can be suppressed, the screen
reader application will move back to the top of the page and start reading
after cach content refresh. However, due to WebTree allowing the user
to control the presentation of this type of material, this guideline is not
applicable in this case.

Each form field should have a <label> element explicitly associated with
it. WebTree supports this technology. However, the <label> information

is not automatically announced when a field/control is encountered when

143

reading through the content line by line. Therefore, the recommendation
that labels be placed on the same line or the one previous to the field/control
to aid browsing solutions that do not support the <label> element can be
beneficial in this case. The user can then develop a consistent strategy
for associating content with the correct form field whilst reading in this
manner. The recommendation that form fields should contain a defaulf
value to aid access by older browsers is not applicable in this case. WebTree
announces when such a field is encountered, and automatically allows the
user cnter/edit the content.

Guidcline 9 lays down some provisions for interacting with the content in
a device independent manner. For blind people to navigate the document,
access through the keyboard is necessary. Using a pointing device such
as a mouse is impractical if you cannot see the content. This mode of
interaction relies heavily on the ability to see the screen elements and how
they relate to one another. So that screen reader applications can gain access
to alternative text, client side image maps should be used in favour of those
stored on the server side. Unfortunately, it is intrinsic to the technology
of server side image maps that they cannot be made directly accessible.
Whereas, with a client side image map, alternative text can be included by
placing an “alt” attribute on the cnclosed <area> tags. Where it is not
practical to replace a server side image map with one on the client side, a
fully accessible alternative mechanism equipped with the same functionality
must be provided.

The idea of device independence is also extended to applications imbed-
ded within a document. For such clements the relevant accessibility guide-
lines for that technology should be followed to ensure that the content is
accessible to all. Also, the use of access key short cuts, plus a tab-index
specified for the document are recommended. However, these are priority
three recommendations.

According to guideline 11, the use of W3C technologies (e.g., HTML,

CSS, etc.) arc recommended for creating web based documents. The rcason

144

for this is that W3C technologies include “built-in” accessibility features.
These specifications undergo early review to ensure that accessibility issues
are considered during the design phase. Often non-W3C formats require an
external application to be presented. This is also the case for WebTree. Al-
though much work has occurred in improving the accessibility of a number
of proprictary formats c.g., PDF (Portable Document Format) and Shock-
wave flash content, much care must be taken to ensure these documents are
accessible. Avoiding non-W3C and non-standard features (proprietary ele-
ments, attributes, properties, and extensions) will tend to make pages more
accessible to more people using a wider variety of hardware and software.
When inaccessible technologies (proprietary or not) must be used, equivalent
accessible pages must be provided. Of course, even when W3C technologies
arc used, they must be used in accordance with accessibility guidelines.

It is also important to provide context and orientation information to
help users understand complex pages or elements (guideline 12). Grouping
clements and providing contextual information about the relationships be-
tween elements can be useful for all users. Complex relationships between
parts of a page may be difficult for people with cognitive disabilities and
people with visual disabilities to interpret. For this reason large blocks of
text should be sub-divided into more manageable blocks. Header elements
should be used where appropriate.

Finally, it is important to provide clear and consistent navigation facili-
ties. If the structure of a page remains constant across a collection of pages,
then a blind person can develop methods to navigate to the relevant arcas
of the page based on this consistency. For example, if the navigation bar
is organised consistently from page to page, the user can quickly learn the
location of the different navigation segments. Therefore, if the user knows
where to look for a specific navigation link, they can easily and efficiently
move to that point in the document. However, methods to skip passed nav-
igation bars or blocks of ASCII art should be provided. It is also important
to give knowledge of the target page when including link text. Many audi-

145

tory solutions allow the user move to the link out of context with the main
text, by tabbing from link to link, or by examining a list of page links. This
can be beneficial where the user is looking for a specific link, or knows that
that the information they required is linked to the current page. By viewing
the list of available hyperlinks the user can quickly navigate to the relevant
link non-linearly. Therefore, making navigation through a serial medium
more efficient. However, if the link text is not descriptive, the user may

have some trouble deciphering the content of the target page.

4.7.2 Validation

A web page is properly constructed when its mark-up conforms to a standard
technical specification. In the case of documents derived from the SGML
specification (Maler and Andaloussi, 1995), which includes the HTML fam-
ily of languages, each standard is specified by a Document Type Definition
(DTD) document which contains descriptions of the entities, elements and
attributes that can be part of the document, and how these elements re-
late to one another. Although web pages can be written in a non-SGML
derived language, e.g., PDF or RTF, for the purposes of this discussion fo-
cus will centre on content produced in a language derived from SGML. The
reason for this is that WebTree does not currently support other document
types. Because most of the existing Web browscrs are able to render—to at
least some extent-Web pages which don’t conform to a DTD, many of the
failures in the HTML code can pass unnoticed by most users. But such
code defects can be a real access barrier for users with disability helped by
special purpose Web browsers and dedicated assistive technologies. They
also complicate, and thercfore inhibit, ongoing development of such niche
technologies (Marincu and McMullin, 2004).

Although validating to certain coding standards docs not mean a web
site is automatically accessible, it is widely belicved to be a good basis on
which accessibility features can be built. For this reason WCAG check point
3.2 states:

146

Create documents that validate to published formal gram-
mars. [Priority 2]For example, include a document type decla-
ration at the beginning of a document that refers to a published

DTD (e.g., the stricc HTML 4.0 DTD).

Marincu and McMullin (2004); UK Cabinet Office (2005) investigated
how widespread the use of valid mark-up is across a large sample of websites.
However, both of these studies have discovered that very few of the websites
examined contained valid mark-up. UK Cabinet Office (2005) cites the
failure of many web authoring tools and web content management systems
to produce valid mark-up as being a major source of this problem. The use
of tools that conform to both the ATAG (W3C, 2000a) and UAAG (W3C,
2002a) guidelines are recommended to be used instead. Currently a number
of tools complying with many features of the ATAG are available. They also
reason that a lack of training on behalf of web content authors in the use of
such tools is also a contributing factor.

Many assistive technologies operate in conjunction with a fully fledged
web browser, e.g., JAWS and Internet Explorer. They rely on these browsers
to provide them with a document model from which they gain access to
the content. These browsers often have very powerful code to both parse
documents and correct errors. However, there is no guarantee that the error
correction mechanisms will detect and fix every page error. In using valid
code an element of ambiguity is removed from the process. Take for example
the use of non-unique “id” attributes within a <table> element. If a number
of cells have the same “id” attribute then screen reader applications might
have problems associating cells with the correct header information but this
will not be apparent to visual users.

Another important concept in web page construction is to use elements
for their intended purpose and not for purely presentational effects. For
example, mark up headers with the <h*> tags and do not use header mark-
up for text that is not logically a header. A second cxample, would be to use

the <table> element to mark up tabular constructs as opposed to formatting

147

such data using the <pre> clement. By using elements for their intended
structural meaning, assistive technologies can generate renderings better
suited to the auditory modality. In addition, navigation facilities based on
these clements e.g., move to the next/previous header can be introduced.
See section 3.5 for more details on the types of navigation facilities available.

In terms of the WebTree system, the use of well-formed structural mark-
up is an important feature of a document’s structure. As will be seen in the
next chapter, the efficiency of the viewing mechanism is dependent on the
arrangement of elements. If little care is taken during the creation of these
documents, then any advantages associated with the viewing approach may
be lost. For example, if deep nesting of clements containing small amounts
of content occurs, having to expand each element of the tree individually
to gain access to the content may be an inefficient approach. Similarly, if
only a limited structure is imposed on the content, then the ability to gain

a quick overview of the material may be problematic.

4.7.3 Accessibility Levels and Legal Requirements

So far, there have been a number of studics investigating the inclusion of ac-
cessibility features in Web sites (McMullin, 2002a; Marincu and McMullin,
2004; UK Cabinet Office, 2005). Unfortunately, each of these studies show
that the current uptake of accessibility features in website construction is
still quite low. All of these studics measured a sample set of websites against
conformance with the Web Content Accessibility Guidelines. Whereas, UK
Cabinet Office (2005) was concerned with accessibility of public sector web-
sites, the warp project McMullin (2002a); Marincu and McMullin (2004)
examined sites gleaned from both the public and private sector. However,
the results of all of these studies are consistent with a slow uptake in acces-
sibility inclusion.

McMullin (2002a); Marincu and McMullin (2004) tested the levels of
website accessibility exclusively with an automated checker. Whereas, UK

Cabinet Office (2005) also included some manual checks on a subset of the

148

sample site list. Marincu and McMullin (2004) found that only approxi-
mately 5% of the sites tested met the automatically testable priority one
checkpoints of WCAG Single-A requirements. However, it is not possible to
conclude that these sites meet all the criteria for WCAG single-A confor-
mance. The manual checks necessary to claim such conformance levels were
not performed. Therefore, it is quite possible that most, if not all, of these
sites would actually have failed on one or more of these requirements.

UK Cabinet Office (2005) found that 3% of the 436 online public service
wobsites assessed achieved Level Single-A conformance with the W3C Web
Content Accessibility Guidelines (WCAG 1.0) passing the full suite of both
automated and manual checks. A further 10% of services fully passed all
the automated checks, but showed a material failure on one or more of the
manual checks. Another 17% of sites failed one or more of the automated
checks, but this failure was limited in extent or scope. Finally, the remaining
70% of sites showed relatively pervasive failure against one or more of the
automated checks. No site that achicved Level A conformance was found
to achieve the higher standard of Level Double-A conformance. The au-
thors of this report maintain that with a small amount of work, the 10%
of sites only failing the manual checks could be made accessible, reaching
single-A conformance levels. Similarly, that 17% of sites that had limited
failures on the automated tests could also be fixed to meet the grade. Much
of the failure to meet Double-A conformance is blamed on authoring tools
and web content management systems not producing valid mark-up and not
enforcing accessibility requirements at the authoring stage. They also cite
a lack of training on behalf of developers to ensure tools that can produce
standards compliant mark-up and accessible pages do so, on a regular ba-
sis. Finally, some policy recommendations to increase the amount of sites
meeting accessibility requirements are presented.

Although WCAG 1.0 accessibility conformance levels are still low, therc
is good reason to believe that the number of accessible sites will significantly

increase in the near future. The first reason for this is the W3C is investing

149

a lot of resources in creating educational material to assist authors in cre-
ating accessible websites. These include tutorials and techniques to ensurc
the requirements for a given checkpoint are met. A second reason is that
the number of tools complying with the features of ATAG (W3C, 2000a)
guidelines is on the increase. With some training in the use of these applica-
tions, authors will be able to generate content meeting accessibility criteria.
Another major reason is the increase of disability access legislation in an
international context. In designing this legislation many governments have
included explicit reference to the issue of web accessibility. Some countries,
such as the U.S. provide their own set of accessibility guidelines. Whereas,
other countries have adopted the WCAG 1.0 guidelines as the benchmark
for web accessibility requircments. Usually the entire set of guidelines is
not required. Instead, provisions arc often limited to meeting either WCAG
1.0 Single-A or Double-A conformance levels. According to UK Cabinet
Office (2005), those countries featured in their study, which have relevant
legislation governing web accessibility, in most cases fared better than those
for whom no such requirements exist. One of the exceptions was Denmark
who at the time this report was compiled had no such legislation. Instead,
the authors of this report believed that a competition for the best public
website, of which one of the criteria requires accessibility, is a major factor
in ensuring accessibility of such websites.

According to McMullin (2002a), (Waddell and Urban, 2000) tells us that
in the U.S., both the Americans with Disabilities Act (ADA) and Section
508 of the Rehabilitation Act are generally regarded as imposing signifi-
cant obligations on Web site operators to ensure accessibility for users with
disabilities. Section 5084 requircments of the Rehabilitation Act, makes
explicit reference to criteria for web accessibility. These roughly equate to
the Single-A requirements of WCAG 1.0. In Ireland, the piece of legisla-

tion responsible for access to the web for people with disabilitics is the Irish

Uhttp://www. section508.gov/

150

Disability Act 2005%2. The draft code of practice®® under this act makes
explicit reference to conforming to WCAG Double-A requirements. There-
fore, if adopted, it will ensure that requiring WCAG Double-A conformance
for public sector websites is placed on a legal footing. Although the provi-
sions of the Irish disability act only refer to websites in the public sector,
other acts, - particularly the Equal Status Act 2000%* and the Employment
Equality Act 199845 _ have wider scope, including the private sector; but
the application of these to web accessibility is still unclear, pending any
complaints and case law.

In the U.K., the Disability Discrimination Act, and the more rccent
Special Educational Needs and Disability Act, create obligations on wcbsite
providers to cnsure pages are accessible to people with disabilitics (Sloan,
2001). Similarly, many other countries such as Australia (Disability Dis-
crimination Act 1992), Canada (Canadian Human Rights Act of 1977), have
legislation governing web accessibility requirements. For morc information
on the types of legislation and documents relevant to web accessibility for
these and many more countries, see the WATI’s policy page?®. Although many
countries do not have direct legislation governing accessibility requirements,
some do have action plans to encourage the implementation of such crite-
ria, e.g., Denmark. It should be remembered that the WAT’s policy page
is not an exhaustive list of legislation for each country. That is, just be-
cause relevant legislation for a given country is not listed on this page, it
docs not mean that such legislation or indeed an action plan for accessibility
implemcntation does not cxist.

Although many countries have legislation governing the rights of pco-
ple with disabilities, there has yet to be much case law to test whether
these acts are applicable to the web. According to Sloan (2001), the rea-

son for this is that most complaints are settled before they reach a court

2htp: //www. oireachtas.ie/viewdoc.asp?DocID=4338
“nttp://tinyurl. com/o3rdp

“http://www. oireachtas.ie/viewdoc.asp?DocID=2409
http://www.oireachtas.ie/viewdoc.asp?DocID=5663
4Onitp://www.w3.org/WAI/Policy/Overview.html

151

of law. The most famous case in favour of legislation relating to the web
is “Maguire verses SOCOG” in Australia, relating to the Sydney Olympics
website in 2000, which IBM as the provider of the website lost. For more
details on this case sce the Reader’s Guide to Sydney Olympics Accessibility
Complaint?”. However, at the time of writing, there is a case pending in
the U.S. to determine whether the “Americans with disabilities act (ADA)”
is applicable to the web. The case in question is “Sexton verses Target”.
Bruce Sexton Jr. has joined the National Federation of the Blind (NF¥B)
as a plaintiff in a lawsuit that charges Target®® with violating the federal
Americans with Disabilities Act (ADA) and California’s Unruh Civil Rights
Act and Disabled Persons Act. The decision in this case could have wide
reaching consequences on the accessibility of U.S. based websites. It ought
to clear up whether the ADA which was enacted prior to the web can be
applied to such technology. If the complaint is up held, then it could force
other websites to embrace accessibility for fear of prosecution under these
acts. However, failure in this case, may mean companies are not compelled
to provide accessible websites. For more information concerning this case,

see the article: Accessibility Issue Comes to a Head??.

4.8 Summary

In this chapter the implementation issues faced during the creation of the
WebTree system were discussed. Also, the standards on which the viewing
approach is based coupled with a description of legislation in the area of ac-
cessibility were presented. In the next chapter the uscr interface of WebTree

and the viewing approach it facilitates will be looked at in much detail.

4Thttp://www.contenu.nu/socog-PR.html
Bhttp://www. target.com
Onttp://tinyurl. com/q3mxm

152

Chapter 5

WebTree User Interface

In the previous chapter, many of the implementation issues faced by the
WebTree system were outlined. The discussion covered both the methods
used for document modelling and how the content is rendered in the virtual
display. The implementation environment plus the standards and guidelines
on which the system is based were also discussed. This chapter provides a
description of the WebTree WWW document browser user interface. First,
the discussion focuses on the mechanism in which the individual mark-up
clements are conveyed. This includes the proposed tree-like arrangement
of the displayed elements. Also shown is the way in which information
stored in complex data types, e.g., tabular data and/or interactive form
constructs, are handled by the system. Following this, a description of the
customisation facility governing the method in which individual elements are
displayed under the tree modality is discussed. It is shown how alternative
views of the same document can be generated using this facility. Next,
characteristics of the types of auditory output produced by the system are
presented. This discussion includes the use of alternative voices and/or
audio cues to denote meaning, and the additional content spoken to signal
the type of element encountered. Finally, a number of reading strategies

facilitated by the WebTree system are also discussed.

153

5.1 User Interface

As was discussed in section 3.8, Chimera and Shneiderman (1994) demon-
strated that expand/collapse interfaces increased the efficiency of many tasks
in comparison to viewing the same content through a static interface. These
experiments were performed on a large table of contents. By expanding each
chapter, section or subsection element the user gained access to the relevant
subordinate elements.! The stable/linear interface showed the entire table
of contents that needed to be scrolled by the user. All subordinate ele-
ments were displayed in conjunction with the chapter headings. This work
demonstrated that the approach was a viable solution to working with large
quantities of hierarchical information. In WebTree, a similar approach is
applied to the viewing of hierarchically marked up documents. However, in
addition to the different mark-up elements displayed in the view, the render-
ing can contain the textual content of the elements alrcady expanded. Also,
some additional information is presented concerning the type of content en-
closed in an unexpanded element. The work performed by Chimera and
Shneiderman (1994) was an experiment to sce if the approach provided any
advantages for sighted users. The work described here examines whether
the approach is viable for a blind user to read documents.

The WebTree system relies on the structural arrangement of the doc-
ument’s underlying mark-up clements to determine how the content is to
be portrayed. In addition to the expand /collapse functionality, the user de-
cides how much of the subject matter is to be presented at any given time
through the customisation facility. Through this mechanism, the individual
elements to appcar in the display can be selected. This provides a methodol-
ogy for gencrating alternative views of the same document. See section 5.1.2
for more details. Similarly, style information relating to the individual el-
ements can be gleaned from an aural style sheet. Sec section 4.6 for more

information.

'Only hicrarchical divisional clements were shown in the view, and not the textual
content enclosed in these clements.

154

Currently WebTree displays web pages in the serial form that the ele-
ments appear in the mark-up. It does not intelligently try to capture the
spatial relationships between elements that are not specified directly in the
mark-up. Take for an example a <table> construct. The application as-
signs a column and row number to each cell in the table. Cells spanning
more than one cell are included, and the column/row number is altered
depending on the value of the “colspan” or “rowspan” attributes respec-
tively. In addition header information for a cell is assigned through explicit
definition in the HTML mark-up. WebTree is only concerned with data
tables. The WCAG guidelines explicitly state that tables should not be
used for layout purposes. Although these constructs appear linearly in the
rendering, navigation is afforded along the spatial connections between the
cells, as described in section 5.1.6. In the case of <form> constructs, the
application relies on explicit connections between <label> elements and the
specific form control to provide contextual information. Thus, if the in-
tended arrangement of the content does not mirror its serial presentation
in the mark-up, users can still obtain information about the different ele-
ments. Without an explicit <label> element and form control relationship,
it is difficult to determine the context in which it appears if the page uses
additional spatial formatting to arrange the content. For more information
on how WebTree presents form constructs, sce scctions 5.1.7 and 5.2.2.

The user interacts with content rendered by the WebTree application
through a character-oriented virtual screen/display. By navigating through
the rendered material, the user builds up a mental model of both the type
of content being presented and the structure in which the different elements
arc organised. By expanding and collapsing segments of this structure, the
user can gain access to the desired material. There cxist three major static
points of reference for the user to guide them during navigation. These
include the left margin and both the beginning and ending points of the
document. All other points are subject to change. The virtual screen width

(right margin) is governed by variables stored in the customisation facil-

155

ity. Potentially, a line may contain hundreds of characters, depending on
the user’s preferences. Navigation within this rendering can be achieved by
moving character-by-character, word-by-word or line-by-line in either direc-
tion. Alternatively, navigation can be achieved by invoking some WebTree
specific navigational commands. These additional commands are described
in the following subsections.

It should be noted that where the words display and screen are used
throughout the rest of this chapter, this refers to this virtual display rather

than any visual rendering of the content.

5.1.1 Primary Document View

The primary document view is derived from the hierarchical tree-like ar-
rangement of mark-up elements. The view consists of a combination of
buttons representing the XHTML mark-up elements, and plain text from
cloments whose content has already been cxpanded. These buttons when
activated, call functionality to expand or remove their content from the dis-
play. Each tree control has two components. The first is the button that
controls the cxpansion/text removal process. The second component pro-
vides the user with some contextual information about the element under
point. This includes the name of the element e.g., ul, and the content of
the element’s title attribute if it exists. In the case of paragraphs, <p>
elements, the first number of characters contained within are automatically
exposed. This is done to provide some indication as to the type of en-
closed content. The length of this string is dictated by the user through
the customisation facility. Obviously, the benefits of this method of provid-
ing contextual information about a paragraph is dependent on how well the
document is written. There will be cases where the segment of text shown
as part of the trec control bears little resemblance to the actual content.
However, for many situations, the string will be an accurate guide to the
enclosed material. As each element is expanded into the text, the child com-

ponents appear in the virtual display beneath the parent element prior to

156

[-]1 head

WebTree Application User Manual

[-]1 body

[-] hl WebTree Application User Manual
[-1 h3 Contents

[+] ul Navigation

[-] n3 Introduction

[+] p Many Internet access solutions for the blind are in reality ...
[+] p The WebTree application has been written to explore the use ...

+l p As well as the tree like arrangement of the displayed XHTML ...
[Link Back to topl

Figure 5.1: A Simple XHTML page as viewed through WebTree

the next item.

The reason the element name was used as the content type indicator,
e.g., ul as opposed to a longer more descriptive text such as unordered
list was to try to restrict the verbosity of the system. It is important to
use short precise cues because they provide as much possible information in
the least amount of time. However, as seen in section 6.4, the concern was
raised that using element names to signify their presence may be problematic
for users unfamiliar with the mark-up language. Therefore, the ability to
customise the display to present longer versions of the element name should
be included. Alternatively, a context sensitive help function to announce a
longer version of the cue may also be practical.

Figure 5.1 shows an emacs buffer image representing a simple XHTML
page as it might be rendered by WebTree. To avoid confusion on behalf
of the user, the tree control information (including any available contextual
information) for each element appears on a line of its own, with its child
clements residing immediately beneath. If the content of an element is just
plain text or its children are just inline clements, the enclosed content is
presented on the same linc as the tree control once the element has been
expanded. The buttons represented by [+] denote unexpanded elements,
and those with [-] indicate elements already expanded. Figurc 5.2 shows
the same page as rendered through JAWS and IE.

Always having to expand each level of the tree to find relevant informa-

157

WebTree Application User Manual

Heading level one WebTree Application User Manual
Heading level three Contents

This page link Introduction

This page link User Interface

This page link Customisation

This page link Forms Interface

This page link Table Navigation

This page link Searching

This page link Document Retrieval and Browser History
This page link Index of Keystrokes and commands

Heading level three Introduction

Many Internet access solutions for the blind are in reality just dedicated audio interfaces
that serve as add-on applications to out of the box visual browsers. However, it must
be noted that there are huge differences in the type of methods of interaction between
using a predominantly specch interface and that of visual interaction. The Human eye
is expertly capable of scanning through the document to establish what is deemed to be
the important page content. This is done by examining the spatial relationships between
elements and through the use of visual cues, such as colour and em phasis, included in the
text by the author. Unfortunately, due to the cereal nature of speech technology, this is
not pessible with a purely speech output interface, for it is only possible to examine a
single point in the document at any given time. To avoid any confusion on behall of the
user when reading clements that depend on their spatial layout for ecasy comprehension,
many of these applications outpuf the content in the linear format in which it appears in
the mark-up. Thus, the user must navigate through all elements that appear in the file
before the main content, before the main content is reached.

see

This page link Back to top

Figure 5.2: A Simple XHTML page as viewed through JAWS/IE

158

[-] head

WebTree Application User Manual

(-1 body

[-1 hl WebTree Application User Manual

[-] h3 Contents

[-] ul Navigation

[Link Introduction]

[Link User Interface]

[Link Customisation]

[Link Forms Interface]

[Link Table Navigation]

[Link Searching]

[Link Document Retrieval and Browser History]
[Link Index of Keystrokes and commands]

0O 0 00O 0o o0 o o

[-]1 n3 Introduction

[+] p Many Internet access solutions for the blind are in reality ...
[(+]1 p The WebTree application has been written to explore the use ...
[+] p As well as the tree like arrangement of the displayed XHTML ...
[Link Back to topl

Figure 5.3: A Simple XHTML page as viewed through WebTree

tion is thought to be rather cumbersome. Therefore, through the customisa-
tion facility provided by WebTree, the user can select whether an element is
to be rendered automatically in its expanded or collapsed state. Figure 5.3
shows the same page as in figure 5.1 with the element automatically
expanded. Furthermore the user may also choose whether it is necessary to
assign tree controls to a given element in the virtual display.?

Figure 5.4 shows the same document as in figure 5.3 with a number of
tree expansion controls removed to reduce the amount of clutter in the audio
rendering.

Assigning tree expansion controls to every element would have reduced
the overall usability of the system. Therefore, tree controls are reserved
for block level XHTML elements, as set out in the XHTML basic specifi-
cation (W3C, 2000b). That is, inline elements are automatically expanded

2Enabling both these options— collapsing an element type and hiding its (collapsed)
control—would eflectively hide the element including its entire element sub tree completely
from the audio rendering. While this is not prevented, it would not normally be a useful
configuration. Except in cases where a document view limited to contain ounly specific
clements is required.

159

at the same time as the parent (block level) element. There are, however,
two cxceptions, namely the
 and <hr /> elements. When thesc are
encountered by the display functions, a line break and a horizontal line are
inserted into the rendering respectively. To aid the usability of the interface,
no tree expansion controls are associated with inline elements.

The decision to provide tree controls for only block clements and not for
all elements found in the document is due to the effect the latter interface
state would have on the readability of the content. As speech is serial in
nature, the aim is to keep the interface verbosity as low as possible. In gen-
cral, block elements have the potential to contain large amounts of content
so allowing the user control whether they appear in a collapsed state en-
sures that they can be casily bypassed. As inline elements regularly contain
much smaller amounts of information, having to expand such content would
seriously impinge on the efficiency of the system. In addition, requiring the
reader to listen to the tree control information for each inline element could
drastically increase the verbosity of the application, hence increasing the
time taken to assimilate the material.

As XHTML prohibits the use of block clements inside <h*> elements, it
was decided to treat such elements in a similar manner to inline elements.
That is, their content is automatically presented in a fully cxpanded form.
If the user selects to have no tree expansion controls associated with these
elements, their type may be indicated through speech parameters controlled
by an aural CSS. It was decided to cxpand the <h#*> tags automatically,
for their content often provides a good indicator of the type of madterial
contained in the ensuing document segment. Thus, it can give the user an
idea of the subject matter contained in these elements before expansion.’

The rendering of hyperlinks (<a> clements) are treated as a special case.
The approach taken is similar to that of WebFormator. To aid the uscr in
locating such clements, each link starts on a new line in its fully expanded

state. The word link is inserted before the link text, to notify the user of its

3This is dependent on authors creating headers that reflect the content of the document
section to which they belong.

160

(-] ht WebTree Application User Manual

o. [Link Introduction]

o. [Link User Interface]

o. [Link Customisation]

o. [Link Forms Interfacel

0. [Link Table Navigation]

0. [Link Searching]

0. [Link Document Retrieval and Browser History]
o. [Link Index of Keystrokes and commands]

[-] n3 Contents

[+] ul

Introduction

[+] p Many Internet access solutions for the blind are in reality ...
[+] p The WebTree application has been written to explore the use ...

[+] p As well as the tree like arrangement of the displayed XHTML ...
[Link Back to top]

Figure 5.4: A simple web page as viewed through WebTrce, with many of
the high level tree controls removed.

type.* However, these items could also be styled using speech parameters
prescribed by an aural CSS (sce section 4.6). Figure 5.5 shows how links
are displayed through WebTree. Figure 5.6 shows how the samc content
appears in WebFormator.®

It was decided to place links on separatc lines to other content so that
the user could quickly move through the text to find the required link.
The importance of this is most evident in cases wherc a number of links are
contained within the same block of text. When listening to a constant stream
of material, it can be difficult to tell when one link begins and ends. This
can also occur even in the case where links are read in an alternative voice to
the main text. Consider the example of three links positioned on the same
line. The user must listen to the entire content of the first two links before
hearing the third link. Whereas moving line by line, the user can quickly
scan through the links to find the one they want. This is because the user

does not always need to listen to the entire link text before establishing if it

4N tree controls are included in the auditory rendering for this clement.

5Tn figure 5.5, the content is a mixture of hyperlinks to publications and the dates in
which they were published. The date associated with each publication is positioned on
the line following the link text.

161

is the one they require. It could be argued that this additional formatting
is unnecessary; for moving from link to link can be achieved by invoking the
next or previous link functions. However, when navigating in this manner,
any contextual information provided by additional text included between
the links is lost.

It is important to note that WebTree has the facility to restrict the
insertion of line breaks to only appear before block elements in the audio
rendering (an exception is made for hyperlinks, see previous paragraph).
This facilitates the functionality to read through the content element-by-
element. However, this reading strategy is only effective if an element doesn’t
contain any children that require tree controls, in which case, these elements
are treated as starting a new block of text. However, the user can also
choose to have lengthy streams of text presented over a number of lines, by
setting the wt-custom-line-length variable in the customisation buffer.
This variable determines the position in which to insert a line break in the
content. When this variable is set to a number less than the length of an
clement’s enclosed text, then the content is wrapped accordingly and the
reading functionality mimics line-by-line interaction.

In the prototype application there is currently no method for examining
the different attribute components of a hyperlink. Not only should the
user be able to select what is read when a link element is cncountered,
e.g., the “link text” or the content of a title attribute, a mechanism to
exarmine its list of attributes might also be valuable in many circumstances.
Furthermore, this could be beneficial for a number of different elements.
Thus, a generic method to examine the attributes for an clement ought to
be provided. One such method would be to allow access to this information
under the tree viewing method by treating attributes as children of the
clement. The problem with this approach is that the automatic inclusion
of these elements in the audio rendering could clutter the interface making
it difficult to use. A second approach would be to allow the user have

this information conveyed to them on request. This could be done with a

162

o.
[Link Web Accessibility Status/Policy in Ireland]

(November 2004)

o.

[Link Accessing Web Based Documents Through a Tree Structural Interface]
(July 2004)

o.

[Link A Comparative Assessment of Web Accessibility and Technical Sta...
(April 2004)

Figure 5.5: How hyperlinks are displayed in WebTree

eAccessibility Lab at rince.ie: Home WebFormator (1) M =] 3

YLink eAcceasibilty Lab Home

Site Navigation:]

“Link Bypass Navigstion | |

Link Site Access Hints Site Accessibilty Hints for Users with Dizabilty | |
Link White Papers |]

Link Contact |]

Link Legal | |

%/Link Home

YLink Home

lhttp:, feaccess.rince ief

Figure 5.6: How hyperlinks are displayed in WebFormator

function that reads aloud the relevant material, or through adding a sccond
button to the tree control information that if pressed will present the data
in the primary tree view rendering.

The portrayal of type information for inline elements is a complex issue.
This is due to these elements appearing automatically expanded in the screen
text, without any tree controls. To solve this issue, a trade off is necessary
between adding to the complexity of the audio stream and increasing its
verbosity. These elcments can be signalled by introducing additional audio
cues, such as changes in voice or adding non-speech sounds which add to
the complexity, see section 3.2 for more details. The sccond option is to
increase the verbosity of the auditory stream by announcing the element

name through speech cues. Under this system, the classification of inline

163

element types can be determined through two different methods. WebTree
allows the user to assign different voice characteristics to specific elements
through the use of aural style sheets. However, as discussed in section 3.2,
there is evidence to suggest the number of different speakers used in a spoken
presentation should be restricted to a small number. James (1998) reasons
that using different voices to mark elements is analogous to marking the
same components with changes in colour. When only a small number of
items are marked, the user can easily recognise that the element in question
has an additional contextual meaning. However, in documents where many
elements have different colours, the document may just look colourful and
unmarked. Therefore, in the WebTree system, the number of alternate voices
and the elements to which they are associated, are allocated by the user.
The second method announces the name of the most localised element
under point. However, this information is not spoken automatically. Instead,
the user must request this data through the pressing of a single keystroke.
Unlike the case of hyperlinks, this information is transiently announced in
the audio stream, and not physically added to the text in the virtual screen
rendering. Automatically announcing this information when an element is
encountered would vastly increase the verbosity of the output. However,
during the test process, it was evident that sometimes automatically an-
nouncing element names as they were encountered was beneficial. This was
the case for header <h*> clements, which provide a logical structural divi-
sion on the content. If no tree controls were included for the element it
was difficult to tell that a change in context had occurred. Although the
user could check the element under point, there was nothing to make the
element stand out from other inline text elements. However, if voice changes
or auditory cues were used to signal these elements, adding this spoken cue
might be unnecessary. It would depend on whether the user was familiar

enough with the system to determine the meaning of the cuec.

164

5.1.2 Customisation

WebTree currently relies on the emacs specific customize functionality to
take into account user preferences. However, a number of usability issues
with this system were observed during the user testing process. See sec-
tion 6.4.4 for more details.

After taking into account the suggestions made by the user group, it is
recommended that subsequent versions of the WebTree application should
no longer require this customize component. Instead, customisation should
be provided through an XHTML form based system. Due to the proposed
interface for the customisation facility closely mimicking the functionality of
a web based document, it should be possible to view it through the normal
document rendering, thus removing the additional learning curve associated
with using a separate customize feature. Many of the required element
display options settings could be handled through the use of multiple select
check lists (<select> elements). Text edit fields could be used to set custom
variables requiring values such as numbers or plain text, e.g., the variable
governing line length.

For the most part, the customisation functionality of WebTree deals
with how the content is to be displayed/rendered. Using this facility, the
user can dynamically generate alternative views of the current document.
This is achieved through the exclusion of specific elements from the audio
rendering. For example, a view containing only paragraph elements <p>, or
header clements <h#> is simple to generate.® Where users already possess
some previous knowledge of the page structure, generating such views should
increase the efficiency in locating the required information. See section 5.1.3
for a more detailed description of how WebTrec generates alternative docu-
ment views.

Each of the clements with tree control status, (predominantly XHTML

block elements), have two associated entries in the customisation buffer. The

6To gencrate alternative views in this manner, any higher level ancestor clements for
the sclected elements must be displayed. However, these can appear without their tree
controls, to give the illusion that they have been excluded from the rendering.

165

first determines whether a tree control is inserted into the virtual display
once the item corresponding to the element type is detected by the display
functions. The second option resolves whether the content of the specific
element is to be automatically expanded into the audio rendering. If not set,
the tree component remains in its collapsed state; otherwise the tree control
is expanded to show the element’s children. By altering these settings, the
user controls the amount of content to be automatically portrayed when a
page is loaded.” In cases where the user elects to always expand a given
element type, the user can reduce the amount of clutter on the page by
removing the associated tree control.®

WebTree does not currently extend similar customisation functionality
to the appearance of inline XHTML elements. However, to enable the ren-
dering of alternative views, the ability to eliminate specific inline elements
from the display is generally necessary. Therefore, this functionality should
be included in future versions of the system. There are no plans to include
trec controls for cach inline element. The appearance of these components
for such clements would detract from the usability of the display. This is
because their presence would affect the readability of the material. For ex-
ample, if the user must expand each element to read the enclosed
content, the user may become distracted from their train of thought. Sim-
ilarly, if the clement is alrcady expanded the added verbosity caused by
the tree controls may have the same effect. Through the use of aural CSS,
the presence of these elements can be conveyed using alternative means.
For example, through changes in voice characteristics, such as “pitch” or

“stress”.

7 After changes are made (o the customisation buller, the current page must be refreshed
before the changes are implemented.

8Removing this contextual information results in the user necding to rely on other
means of obtaining the clement type information.

166

5.1.3 Generating Alternative Document Views

Many web browsing solutions for the blind offer the ability to create al-
ternative summary views of a document’s content. The provision of this
functionality is important duc to the serial nature of the modality. As pre-
viously mentioned, only a narrow focus on the material is provided by this
method of interaction. Therefore, it is difficult to quickly scan through the
information without some assistance from the application. Section 3.5 dis-
cusses many of the different summarisation methods employed by auditory
solutions to achieve this goal. These include summaries based on analysis of
the textual content in the document. For example, views created to reflect
paragraphs containing specified words or phrases. A second approach in-
volves generating web page summaries based on specific mark-up elements.
For example, producing lists of header <h*> elements, or an index of all the
hyperlinks on the current page. However, the mark-up based summarisation
features are usually based on a hard coded set of elements chosen by the
product developers. Thus, there is usually no generic mechanism in which
the user can initiate views based on their own preferred clement sclections.

In a sense, the intrinsic expand/collapse functionality of WebTree is all
about manipulating alternative custom document views. In this manner,
the user can create alternate renderings of a document to allow them access
the required information. However, there is a need for more powerful sum-
marisation functionality to complement the expand/collapse methodology.

The different views generated by the WebTree system rely on the mark-
up elements used in the document. However, there are no limits imposed
on the type of element used to generate these views. Instead, the user can
generate renderings based on any clement /groups of elements available in
the web page. The gencration of these element abstractions is achicvable
through two distinct methods. First, the user can manually select elements
using the customisation facility to be included in the view, by only setting
the display preferences for the relevant elements.

Although different views may be generated by manually setting variables

167

in the customisation mechanism, always requiring this facility to dynami-
cally create alternative document views is an unrealistic approach. Nev-
ertheless, this feature plays a major role in the generation of alternative
content renderings. For example, consider the situation where the user is
interacting with a number of documents structured in a similar fashion.
Formulating web page renderings using this method can provide an elegant
solution. However, it should be remembered that the optimal document
rendering may differ greatly depending on the document mark-up structure
and the type of content portrayed. Also, the reading strategy favoured by
the reader greatly influences the optimum structure of the audio rendering.

When skimming the document, it may often be sensible to produce views
containing paragraph elements unexpanded in the text. That is, once the
user chooses to include some of the paragraph text in the audio rendering.
It may also be beneficial to have tables and list elements presented in their
collapsed state, allowing the user to quickly navigate past these elements.
Whereas, for a more in-depth reading of the content, it might be beneficial
to have one or more of these element types automatically expanded in the
default document rendering,.

The customisation facility functions by assigning values to a number of
display variables. Using this framework, providing functionality to gencrate
views based on a list of user prescribed elements is a simple task. For
example, <h*> or htaga elements. However, due to the iterative nature of
the tree construction functions, problems may occur if a specified element is
nested within an unlisted element sub tree. Thercfore, to ensure a workable
solution when rendering alternative views, the cstablished customisation
features must be accompanied by two additional settings. The first setting
ensures the entire hicrarchical tree for the selected clement is expanded.
The sccond setting cxcludes all other content from the named element’s
ancestor hierarchy. In this manner, the regular trec expansion functionality
operates as normal whilst having the capacity to exclude all but the specified

elements.

168

There is a case for allowing the user to save named collections of cus-
tomisation settings, so that they can be quickly reloaded as needed. For
example, a set of customisation settings optimum for a specific website, or
a list containing the elements the user wishes to view. This is akin to hav-
ing a number of different local CSS files that might be loaded for different

purposes.

5.1.4 Keyboard Navigation and Interaction

As stated previously, the primary mechanism for navigating through the hy-
brid content rendering of tree structural components and plain text content
is through the use of the arrow keys. Moving through the text with the
left or right arrows, the reader can examine the content on a character by
character basis. Similarly, the up and down arrow keys facilitate navigation
to the previous/next line in the virtual view respectively. Using the control
key in conjunction with the left and right arrow keys allows for movement
word by word. As each of these distinct navigation features is employed, the
grouping of characters traversed by the application is automatically spoken.

One of the principal design goals in the WebTree system was to kecp the
user interface as simple as possible. Thus, where similar interactions were
required to perform common tasks across the interface, the same keystroke
was used to alter the display. For example, the enter key is the main key
used to dynamically change the state of the document rendering. This is
the key chosen to alter the state of buttons, whether they are tree control
buttons, checkboxes or radio buttons. However, the different types of search
functionality also have a major affect on the presented content. Once an
instance of the search string is found, the element containing the string is
automatically expanded into the on screen document view.

In instances where commands arc activated by a single keystroke, c.g.,
performing an clement search, or moving to the next tree expansion control,
the uppercase version of the same character is used to reverse the action.

This is done to reduce the number of keystrokes the user has to learn. For

169

example, e searches forward for an element, and E performs the same type
of search in reverse. Similarly, t searches forward for the next tree control,
and T reverses the search. The emacspeak specific emacspeak-learn-mode
command can also be used to check the function bound to individual keys.
Once this mode has been entered, pressing a key will result in the name of
the function to which it is bound being announced.

For a full list of keystrokes and the commands they invoke, see ap-

pendix A.

5.1.5 Searching

Under the WebTree system, the browsing of documents can be performed
through a number of distinct methodologies. Moving linearly through each
level of the tree, expanding elements when necessary, was one navigation
method observed in the user evaluation process. However, an alternative
method is to invoke one of the different search functions provided by Web-
Tree to relocate focus to another part of the document. There are three
different types of generic search functionality available to the user, as de-

scribed in the following subsections.

Incremental Text Search

An incremental text search is the primary form of search functionality pro-
vided by the system. Once invoked, the application examines the on screen
text from point until the next tree control is found. If the defined search
string is discovered then focus is positioned on its concluding character in the
virtual view. Otherwise, the document’s DOM tree is scanned using a recur-
sive depth first search algorithm in an attempt to locate the string. ‘When
the search string is found, the tree element containing the text is expanded
into the virtual screen rendering and focus is altered accordingly. As each
key is pressed by the user, the resulting character is appended to the search
string and the process is repeated. If the current length of the search string

contains more than one character, the position of point is moved the same

170

number of letters in the opposite direction before the search begins. This
is necessary to ensure that the previously found part of the search string
is included in the new scarch. This search algorithm is used regardless of
the search dircction. In the case of a backward search the focus is placed
on the left most character of the found search string. Conversely, focus is
positioned on the right most character when searching forwards.

If the incremental scarch function is invoked whilst a search is already in
operation, a new search is performed using the current search string. In this
case the search starts from point without moving the requisite distance in
the opposite direction to coincide with the length of the search string, thus
effectively searching for the newt occurrence.”

Tt is necessary to first search the on-screen text for the required string,
due to difficulties linking specific characters in the audio rendering with
their equivalent positions in the DOM structure. The cxisting linkages are
from character to screen widget to DOM node. However, there is no linkage
from individual characters in the audio rendering to individual characters
within the linked node. Problems can occur if more than one instance of the
search string is contained in the same node. It would be difficult to assess
which onc is the correct string, duc to the lack of knowledge concerning
the cquivalent position in the DOM relating to the starting point of the
search. Thus searching the screen text before the next unexpanded trec
node removes any ambiguity. The parent clement of the tree control then
serves as the starting node for the DOM scarch. Also, searching plain text
takes less time than iteratively searching the DOM, so it is best to check if
the required content is already present in the audio rendering before a full

DOM scarch.

Mark-up Element Search

The second form of scarch allows the user to search for, and jump to, the

location of any XHTML element in the document. A number of current

91f the incremental search command is called twice without any text being entcred,
then the previously entercd search string is used by default.

171

web access solutions, such as JAWS for Windows!® and IBM’s home page
reader (HPR)!!, provide additional navigational functionality based on an
ad hoc set of mark-up tags. For cxample, jumping to the next/previous
table construct or list entity. This functionality is dependent on a small
list of tags sct out by the application developers. There is no leeway to
allow the user navigate documents based on elements not on this list. Thus,
WebTree affords the user a more powerful generic element search function via
which navigational access to all mark-up element structures in a document
is available.'?

The element search functionality can be invoked in two different ways.
The first is through an interactive call from the keyboard. In this case, the
user is requested to enter the name of the element to search for. The second
method requires a call by another function where the element name is passed
as a parameter string. To achieve its goals, the function must examine the
screen text overlays between the current position and the next tree control
to sec if the required clement is already present. If this is the case, focus
is moved to the starting point of the given clement. In cases where the
clement is not found, WebTrec performs a recursive depth first search on
the DOM tree structure to find this element type. This search starts with the
DOM node associated with the next tree control's parent widget. If found
the required element sub tree containing the element is expanded into the
virtual display and focus is moved accordingly. This procedure is adhcred
to regardless of the search direction.

The specialised element search forms the basis for much of the additional
navigational functionality provided by WebTree. For example, moving to
the next/previous hyperlink in the document. Although using the generic
clement scarch for these purposes would bring the uscr to the requested ele-
ment, additional element specific navigation functions were included to aid

power users. These methods call the generic element search function and

Opttp://www.freedonscientific. com/fs_products/JAWS_HQ.asp
Hyttp://www—3.ibm. com/able/solution_offerings/hpr.html
12he clement search is a static string search.

172

pass the name of the required element as a parameter. Using this frame-
work, additional navigational features based on jumps to specific element

constructs can easily be derived.

Combined Element and Incremental Text Search

The third and final search type is an amalgamation of the previous two
types of search functionality. That is, WebTree allows the user to specify
an clement type to which an incremental text search is to be restricted.
This is achieved by setting the variable wt-1limit-search-element through
the wt-set-search-restriction function with a string containing the rel-
evant element name. After this variable has been set, the regular incremen-
tal search functionality may be called as normal. Once this variable has a
non-nil value, the search procedure only analyzes content found within the
named element and its sub trees. That is, during the screen text search,
if the required search string is found, then the application must examine
the text overlays under point to establish whether the found instance ex-
ists within the named element. If this is the case, then focus is moved
accordingly. Otherwise the application continues with the scarch. If not
found, then a recursive depth first search for the relevant element is per-
formed on the DOM tree structure. It starts with the DOM node associated
with the next tree control’s parent widget. To revert to the regular incre-
mental text scarch functionality, the restriction must be unset using the

wt-clear-search-restriction function.

5.1.6 Rendering Tabular Data

Although the mark-up describing the <table> construct is tree-like in na-
ture, it poses serious problems for a purely tree-like interface. The optimum
methods for presenting and assimilating tabular information relies heavily
on its two dimensional (graph as opposed to tree) like organisation. Aside
from tree related issues, tabular data poses many problems for speech in-

teraction in general. This is due to the limited view imposed by the scrial

173

nature of the modality. It is difficult to build a mental model of how the cells
relate to one another. Thus, research into the best methods for portraying
such material through the spoken medium has resulted in many diverse ac-
cess strategies. For a review of the literature concerning the presentation of
tabular structures through purely auditory means, see section 3.6.

In terms of the WebTree application, the individual table cells are physi-
cally portrayed in the linearised fashion in which they appear in the mark-up.
Each cell is presented automatically expanded with no tree controls included
by default.’® The main reason for not including the tree controls for such el-
ements is that they would significantly increase the verbosity of the content.
If the reader encounters the control each time a new cell is visited, having
to always listen to the control information before the cell content, may im-
pinge on the speed of table interaction. This is especially problematic if the
content of each cell is quite brief.

The linear presentation of the tabular content should assist in cases
where the author decided to use tables to structure the page layout. How-
ever, it should be remembered that the work described here is primarily
intended to deal with content stored in data tables. The WCAG 1.0 guide-
lines discourage the use of tables to spatially organise content. Instead they

promote the use of cascading style sheets for this (W3C, 1999 b):

e 3.3 Use style sheets to control layout and presentation. [Pri-
ority 2]

e 5.3 Do not use tables for layout unless the table makes
sense when linearised. Otherwise, if the table does not make

sense, provide an alternative equivalent. [Priority 2]

Additional navigation functionality is provided to ensure easy movement
along the two-dimensional relationships between the individual table cells.

These movements include navigating to the cells to the immediate left or

13 e inclusion of tree controls, and whether the <th> and <td> clements are automat-
ically expanded can be reconfigured through the customize facility.

174

right of the current cell in a given row, and up or down to the next cell
in the relevant column. If the current cell spans more than one row, then
navigating to cells to the left or right of the element is only permitted along
the first row in which the cell appears. Column navigation is not affected
in this situation. Similarly, in the case where the current cell spans more
than one column, navigation away from the cell is only permitted along the
first column spanned by the cell. In this situation, row navigation behaves
as normal. The benefit of navigating such cells in this manner is that the
application operates in a predictable fashion. However, there are some dis-
advantages to this approach. The user may get lost when navigating from
cell to cell in a row if the focus is relocated to a cell in a different row, and
not returned to the existing row once that cell is exited. A similar problem
occurs when reading cells that span more than one column. If navigation
does not continue along the same column as before the multiple column
cell is encountered, then the user may become disorientated and lost. It is
important for the navigation functions to move to the cell when the row /col-
umn being navigated is not the first row/column in which the cell appears.
The reason for this is the inscrtion of empty cell place holders in the grid to
show the overlap between columns/rows can also be confusing. The ability
to enunciate row/column headers and/or numbers, on demand, could be one
solution to help users stay oriented when navigating tabular constructs. Of
course, the very meaning of row/column numbers is a bit ambiguous when
some cells span multiple rows or columns. For this reason, it may be ben-
eficial to have the content of such spanning cells duplicated in each row in
which they appear. An automatic cue such as an auditory icon could be
used to identify when cells have this spanning property. When you take into
account the possibility of having certain <tr> elements in a collapsed state,
this is a very complex problem, which requires further investigation.

One approach to solving this problem would mean the table navigation
functions expanding the different elements when required. However, this

may be one situation where it is beneficial to move away from the strict

175

expandable tree model in favour of a pre-set display format. The expansion
collapse functionality adds much complexity to the navigation of these con-
structs. Therefore, for the purposes of the prototype application, all <tr>
clements are automatically expanded once the <table> element is expanded.

As navigation is performed from cell to cell along a specific row or col-
umn, the header information for the current cell is not automatically spoken
by the application. Instead, the option is available for the user to simply
navigate to the header cell associated with the current cell. Navigation to
both the row and column header cells if they are present is possible. Once
the user has read the related header information, the user can call a specific
table back function to revert focus to the cell prior to the original jump.
Although a table header jump could be seen as being equivalent to an inter-
nal page link, it was decided to separate the table back functionality from
the generic back function for the following reasons. Consider the situation
where the user is browsing a table with multiple logical headers for a given
cell. The user may choose to navigate to each header in succession without
pressing the back button. They might then choose to move away from the
hoader cell to other parts of the table without reverting to the original data.
cell. In this manner a large list of jumps that can be undone are added to
the table back list. If the table back function and the Generic back func-
tion were integrated, the user would have to undo cach one of the jumps
beforc undoing a regular internal page link. Therefore, due to the possibility
of having multiple internal table header jumps, it was thought to be more
beneficial to separate the functionality out into two different methods.

The use of higher-level table grouping clements i.e., <thead>, <tbody>
or <tfoot>, available in the full XHTML specification, increases the com-
plexity of the specialised table navigation functionality when viewed under
an expandable trce interface. This additional level of abstraction might be
beneficial when viewing tabular material in a lincar form because it imposcs
a strict organisation on the data. However, the main benefits concerning the

inclusion of such elements occur when applied to the visual rendering of con-

176

tent. They provide a strict mechanism to handle the displaying of header
and footer information. This is advantageous in the case of large tables
spanning multiple pages. Displaying both header and footer information on
each page may be beneficial when presenting data in the traditional page by
page basis. This segregation into pages is important for visual interaction;
however, there is no need for such organisation under an auditory interface.
Thercfore WebTree does not split such content into individual pages. Under
this system it would be difficult to consistently determine accurate virtual
page segments. This is due to user control over the expansion of elements.
Also, as previously mentioned, the size of the document segment viewable
at any given time through auditory means is quite small. This ensures the
formatting of this type of content as a sct of pages including header and
footer information is a redundant exercise. This is because the spatial ar-
rangement of content is lost through this type of interaction. Tt is expected
that the ability to jump to and from the relevant header cells should negate
any problems with navigating large table constructs.

WebTree considers these elements analogous to any other XHTML block
designated element. That is, they appear in the virtual display in the lincar
form in which they are encountered in the mark-up. However, much addi-
tional processing is required by the application to ensure accurate linkage
between the header information and the relevant cells in the body of the
table. Not only is there a requirement to link the individual cells with cells
in both the next/previous row in the table, but there must be an additional
link between the first and last rows positioned within these higher-level
group clements and thosc of their counterparts. When WebTree is gener-
ating the grid connections between the individual table cells, the first row
contained within the <tbody> element is connected to the final <tr> element
of the <thead> construct. Similar connections are made between the last
row of the <tbody> clement and the first row of the <tfoot> component.
The customisation variables governing the display of these elements are set

by default to automatically expand their content without the presence of

177

Keystroke | Navigation Command
Go to end of table
Column down

Move to row header

Row left

Read content under point
Row right

go to beginning of table
Column up

Move to column header
go to previous cell from Header jump

S WO U WY =

Table 5.1: Table of keystrokes and the table navigation commands they
invoke

tree-controls, thus, ensuring that the reader experiences a table construct
without this additional complexity.

The table navigation keystrokes are linked to the keys representing the
numbers zero to nine. The reason for this is so the numeric keypad could be
used to provide easy access to the table commands. Also, associating these
commands with the number keys allows for the same keymap to be used
with a laptop keyboard layout. Table 5.1 contains the list of keystrokes and

the table navigation commands they invoke.

5.1.7 XHTML Form Handling

Handling the interaction and presentation of XHTML <form> elements poses
a number of difficulties when using a tree-based interface. Form controls
contained within additional structural clements, e.g., <p> tags, can pose
problems for this approach. Under WebTree, once a form element has been
expanded into the audio rendering, its presentation coincides with the linear
organisation of its lower level elements in the mark-up. All field /controls
based on the <input> tag appear already cxpanded in the tree structure
without any tree controls when presented at the current level of tree ab-
straction. However, when controls are placed inside additional structural

tags, these structural elements must be expanded either manually by the

178

user, or automatically through the customisation facility, to expose the con-
trols in the rendering.

The content of option lists, (bascd on the <select> tag), is not auto-
matically expanded into the screen text by default. Instead, their expansion
may be achicved in the same manner as for any other tree control element.
These elements, when viewed in their collapsed state differ from regular
tree elements only in the type of information displayed as part of their tree
control. The regular button and element name components are present,
however, a third text item showing the current selected value of the list
is also included. Once expanded, the individual options are presented on
separate lines to aid the selection process. Each option contains two com-
ponents. Namely, a checkbox and a text item showing the option value.
To select an option, the user must check the checkbox associated with the
item. If the clement in question is not a multiple select list, the application
automatically unchecks selected items as a new valuc is selected. ™

When filling out forms with the WebTree application, there is no addi-
tional keystroke to enter a forms mode before access to the fields is granted
for editing purposes. Instead, as the focus is placed on a form edit field, the
application automatically alters the mapping of keystrokes from their Web-
Tree settings back to the normal character insert function so that editing can
take place. However, once focus is moved away from the form field/control
through the use of the arrow keys, the key mappings revert to point to the
WebTree specific keystroke mappings. Knowledge of the type of keymap cur-
rently in use can be obtained by knowing which element type is currently
under point.'®

Each form field/control is positioned on a separate line from any text
contained within the form construct. It should be remembered that the start

of a form field usually coincides with the beginning of the line on which it

4The state of checkboxes and radio buttons may be altered by placing focus on the
button and pressing the enter key.

15The keymap does not change for checkbox, checklists or radio button controls, for as
with tree control buttons, the enter key is the only key necessary to alter their state.

179

appears. As focus is placed on the form field/control, the user is notified of
its presence through speech output. When tabbing to the individual form
fields, any label information to be associated with the element is also read
by the application. This is the case whether or not the label element is ex-
panded in the display. Those functions responsible for providing additional
information about these elements examine the DOM for any associations
with <label> elements, as opposed to querying the on screen information.
Figure 5.7 shows a form construct as presented by the WebTree system.
Although radio buttons are represented by () and the checkbox by [1in
figure 5.7, these are not spoken by the system unless the user is navigating
character by character through the content.!® Figure 5.8 shows the same

form as rendered visually in Internct Explorer.

5.2 Auditory Output

In the previous section the different types of functionality making up the
WebTree user interface were discussed at length. However, focus will now
centre on how the relevant information can be best portrayed to the user.
The primary question under analysis in this segment of the document is
to determine whether contextual information should always be spoken or
whether alternative methods to impart such data should be sought? This
material can be presented using three distinct methodologies. These in-
clude: adding the contextual information as a spoken {ragment of the audio
stream; using alternative voice characteristics to signal various contextual
cues; playing non-speech sounds to notify users of changes in status. See
scction 3.2 for more details.

Tt is not always appropriate to provide additional contextual information
in the audio strcam. Providing large amounts of cxtra information may

serve only to clutter the presentation, and in doing so, ensure that the

16Fach option in the combo box (<select>) element has a checkbox associated with the
option. This is to allow the uscr select the required clement in a consistent manner across
the entire interface. However, it may be beneficial to rename this component to clearly
signify that it is just onc component of a list.

180

[-] form

FirstName:

redit

Second Name:

redit

student

radio button checked(*)

PAYE worker

radio button not checked()

selfl Employed

radio button not checked()

screen Reader User

checkboz checked[X] What is the primary method you use to interact with
your computer?

[-] Select A combination of braille and speech
checkboz not checked | | Through a visual display
checkboz not checked [|Braille output

checkbox not checked [|Synthetic speech
checkbox checked [X]A combination of braille and speech
[Reset]

[search]

Figure 5.7: A Simple XHTML <form> construct as viewed through WebTree

-aWehTrec Tutorial - Microsolt Internet Explorer
| He Edt Yew Favorias ook bebp iF L |
 3J Back l:‘] E‘] 1 :! p ' Search . . Favorites -{‘ = »i,
| Address |§_.']E:'t,tenp'l,tamp—wl-tl.ﬂ.htm :] Go I]L'nks ”‘
. al
FirstName: | Second Name: | student
& PAYE wotker © self Employed © screen Reader User M What is the primary
method you use to interact with your computer? —
| A combinetion of braille and speech -] Resitl Submﬂ ~|
£] Done | 15 My Computer

Figure 5.8: A Simple <form> construct viewed through IE

181

material being presented is difficult to understand. Therefore, a balancing
act must be performed to determine whether the extra information should be
automatically portrayed. Care must be taken not to overload the user with
too much information. Processing this extra data may affect their ability to
assimilate the content. Also, the effect that these additional cues have on
the user’s ability to comprehend the information can be influenced by the
users preferences. Some people prefer to have large amounts of information
spoken by the application. Others prefer to limit the amount of material
to be automatically announced. For this reason it is important to allow
the user to customise how much information is automatically presented. In
addition, it is often beneficial to allow the user gain access to the information
through other means when it is required.

Although the use of a number of sound cues in the WebTree system is
proposed, the predominant mechanism used to produce auditory feedback
is through synthetic specch. The sound cues used by the application will
mainly convey task status and/or task completion information. For exam-
ple, to signify that a web page has finished loading or that an element search
has becn completed. However, the main bulk of the information presented
through the WebTree system is achieved through speech output. This in-
cludes a combination of actual web page content and where relevant, some
additional contextual information is also announced.

Under WebTrce, contextual information is presented in the spoken out-
put using a number of alternative methods. The first method just includes
the relevant contextual data in the audio stream. The prime example where
this is advantagcous in the WebTree interface is in the viewing of tree con-
trol information. The name of the element is included to notify the user of
its presence. Whilst a segment of information about the clement, e.g., the
content of its title attribute, or in the case of <p> elements, some of the
enclosed text, is often also rendered. It is necessary to include this informa-
tion, so that the user can make an informed decision on whether to expand

the element, or whether they will need to look elsewhcere for the required

182

data.

Alternatively, the type of element can be signalled through employing
additional voice types to read their content, or by manipulating prosodic
characteristics of the vocal output e.g., pitch or stress, which govern how
the material is to be spoken. These changes in the spoken output can be
used to signify contextual variations in the text. However, this approach
requires a certain amount of learning on behalf of the user to dynamically
map the voice changes to the type of content they represent. Nevertheless, as
discussed in section 3.2, the number of alternative voices should remain low
to obtain favourable results in element type recognition. If a large number
of voices are used, the user must spend some time attempting to decipher
the implied meaning of each voice. The more voices employed by the system
the greater the chance of making errors in determining these associations.
Also, if the reading voice is constantly changing, it may detract {rom the
information it is attempting to communicate.

In reference to the previous example of the tree control, using the second
method for signalling contextual information should remove the need to
always include the name of the clement in the document rendering. That is,
once the user is confident in their ability to distinguish the different voice
to element mappings. However, it is not thought that this approach would
suit the display of all XHTML elements. Instead, this concept would be
best suited to the presentation of elements of high contextual importance,
e.g., <h*> elements. Or, alternatively those elements necessary to provide
navigation, for example, hyperlinks (<a> elements). Signalling clements in
this manner may mean that additional label information about the element
may be unnecessary for automatically expanded elements.

Applying alternative voices to signal the presence of inline clements such
as <emph> or , is not thought to be a viable solution. If an unex-
pected change in voice type occurs when listening to a constant stream of
speech, the listener can become distracted by the actual voice change. This

can result in reduced concentration levels when assimilating the content

183

(James, 1998). For example, consider the case where a element
appears in the middle of a sentence. The initial segment would be read
as normal, the component would be announced in an alterna-
tive voice, with the final part of the sentence spoken in the original voice.
However Fitzpatrick (1999) conjectured that applying changes in prosodic
characteristics e.g., changes in the stress levels of the default voice could
be used to signal such elements. The prosodic alterations should be power-
ful enough to notify the user of a change in context, whilst not distracting
them from their current task. Although the type of element under point
may not be directly evident using this type of spoken cue, the knowledge
that a change in context has taken place may just be enough.

The different methods for signalling contextual information through
speech may be included in the WebTree user interface through the use of
an oral style sheet. However, it should be remembered that its usage is
optional. See the section 4.6 for more details.

As stated previously, it is sometimes preferable to have no contextual
information spoken by the application; or at least not unless the user specif-
ically requests such data. For example, in the case of table navigation, the
reader may not wish to have the current cell’s row and column number read
automatically. Whereas there may be occasions where knowledge of such
data would be beneficial. Thus, the final type of context providing function-
ality offered by WebTree allows the user to establish their position in the
document hierarchy by examining the elements under point.

Tt should be remembered that different situations require different forms
of interaction. Thus, no one form of functionality described above is appli-

cable in every circumstance.

5.2.1 Tree Interaction

To effectively interact with tree structured data, the amount of contextual
information required to show how the current position fits into the over-

all structure must be examined. There is a trade off between providing

184

enough information so the user can navigate successfully without becom-
ing disorientated, and keeping the verbosity of the speech stream as low
as possible. When determining the type of information to be portrayed, a
number of additional questions must also be looked at. Should information
concerning the current tree level be announced every time a change in level
occurs during navigation? Or should alternative mechanisms for obtaining
this information be provided? In addition, how much information should
be provided about the element being expanded? For example, should the
number and/or type of nodes encapsulated within the element be automat-
ically announced? For a review of the literature concerning tree structural
presentations, see section 3.8.

Operating the clement expansion/collapse functionality needs little spo-
ken assistance. Once the task has been completed, the application proceeds
by reading the current line, including the button’s status and element name,
whilst focus remains on the tree control button. The status of an element
can be determined by the value of the button text, positioned at the be-
ginning of each tree control line. That is, [+] for collapsed and [-] for
expanded elements.

An expanded element’s child components arc placed directly beneath its
associated tree control and above the content of subsequent elements. The
user can often establish the list of child clements once they know which
element is nezxt at the corresponding tree level. This is achieved by navigat-
ing through the content until the higher-level element in question is located.
However, this method of recognising and negotiating tree levels can be rather
ambiguous. This is due partially to the large number of clements possible
at lower levels of the tree, and to the likelihood of multiple levels of element
nesting. The facility to allow certain named clements to appear automat-
ically expanded in the text also contributes to this ambiguity. Therefore,
an additional mechanism for unobtrusively portraying tree level information
was sought.

Automatically speaking the level of each element, or announcing that a

185

change in the current tree level has taken place, was quickly ruled out. The
reason for this is the large increase in the verbosity of the audio stream that
this would cause. Presenting contextual information in this manner would
offset many of the advantages that the WebTree system has over a linear
approach to document presentation. The main aim of the WebTree system
is to facilitatc easy navigation to important segments of the document. By
doing so, saving the reader from having to unnecessarily read through large
chunks of material not immediately relevant. Thus, it was thought that
always speaking tree levels and/or the number of nodes present at each tree
level would reduce the rate at which the user can assimilate the content.
Currently, the user is responsible for requesting tree context informa-
tion, before it can be spoken by WebTree. However, when announcing this
data, the application does not state the actual nested level of the tree ele-
ment. This is because it is debatable as to how valuable this information
would be in a document reading interface. For example, stating that fo-
cus is positioned on level seven in the tree does not provide the user with
any information about its surrounding elements. Instead, providing contex-
tual information in terms of element relationships should be more bencficial.
Therefore, WebTree presents the user with the name of the parent clement
encapsulating the current content. For this system to operate correctly,
access must be also given to the list of ancestors of the current element.
Through a combination of examining the element under point, and estab-
lishing the relationships between itself and its ancestor elements in the tree
hierarchy, it is anticipated that the user will be able to glean an accurate
mental model relating to the current position in the document structure.
As part of future work, an experiment to assess whether non-specch
sound cues might be exploited to signal tree level changes should be inves-
tigated. There arc many ways in which sound could be used to achicve this
goal. For example, one approach might be to use notes on a musical scalc to
denote movement through the different levels of the tree. As the user navi-

gates further down the tree hierarchy, the musical sound produced, moves in

186

sequence along the scale to reflect the corresponding level position. Another
possibility would be to rely on two distinct sound cues to provide contextual
information. The first cue signifies that the user has moved to a lower rung
on the tree structure, while the second indicates that a higher-level element
is now in focus. It would be interesting to observe whether such information
is enough to accurately navigate through a trec hierarchy, or is knowledge
of the current tree level necessary to navigate through the content success-
fully. Either way, this functionality is not expected to replace the current
methods for obtaining trec positional information. In fact, the main goal of
the experiment would be to determine whether the additional use of sound
complements the current approach. If the user is not sure of the position
from the non-speech sounds alone, they can also query the ancestor elements

of the element under point.

5.2.2 Speaking Form Data

When interacting with content presented within XHTML <form> constructs,
the delivery of contextual information is extremely important. This is nec-
essary to help the user orientate through the different fields/controls. It
is essential to announce the presence and the current state/value of the
field /control when it is encountered. However, in many situations, there
is not always enough information to rely on. Sometimes the true function
of the element is not obvious without examining the surrounding text. In
the XHTML specification there is a facility to programmatically link the
field/control to a <label> clement. In this way, contextual information
is explicitly assigned to the form control. Auditory browsers can take ad-
vantage of this linkage to provide some contextual information about the
element. Otherwise, some heuristics must be employed to determine the
context in which the element appears. See section 3.7 for information about
form handling and the problems faced by screen reader users.

As a form field/control is encountered when linearly navigating with the

arrow keys, its presence plus its current value must be signified to the user.

187

There is a trade off between announcing contextual information regarding
the control’s type and/or status, and ensuring the output is as succinct
as possible. Speaking the full name of the element type, coupled with its
current value is not always necessary. Therefore, in the case of text entry
fields, e.g., a single or multi line field, the application simply announces
the first line of its current value, followed by : edit to show that it can
be edited. When more than one line of content appears in an edit field,
the word : edit is announced after the content of each line is read. The
major difference between the two different field types is down to the expected
amount of content to be inserted. If the user presses the enter key whilst
in a multi line text field, a line break is inserted into the field’s content, and
the user may continue entering data. Whereas, with a single line text box,
such an action will result in focus being removed from the form field. In the
case of a password field, the phrase password: editis announced without
any reference to its present value.

In the case of radio buttons and checkboxes, the full name of the element
followed by its value, checked or unchecked is announced whilst navigating
in this manner. Due to the <select> element being treated as a regular tree
control element, no specialised contextual information is included. However,
the presentation of its individual <option> elements require some additional
information. Initially, the checkbox component and its status is spoken
followed by the text of the <option> element.

There exist many situations where the functionality of a form
field/control is obvious from reading the surrounding text. Therefore, when
linearly navigating the content, any explicitly associated label information is
not automatically spoken when focus is placed on a given element. However,
there cxists many cases where the control’s contextual meaning is not casily
deciphered. In these circumstances, an explicit linkage between the <input>
clement and a <label> element is necessary to determine its functionality.
Users may wish to eliminate any possible ambiguity by having such material

read automatically. Thus, the ability to include this additional information

188

in the spoken output should be configurable in the user’s customisation pref-
erences. If an explicit linkage between a <label> clement and the control
is not present, then the content of the title attribute for the field/control
could be read instead, as suggested by (Hoffman et al., 2005). That is, if a
title attribute for the clement has been included by the page author.

Navigating in a linear fashion using the arrow keys is not the only method
provided by WebTree to locate form fields/controls. These elements can be
also reached through the specific element search function, or by tabbing
through the elements on the document’s tab-order. However, using these
methods, the ability to establish the context in which a field /control appears
is often rather difficult. This is because any contextual information provided
by the surrounding text is lost. Thus, once navigating in this manner, the
content of any explicitly linked <label> element, coupled with the control’s
type information, is automatically spoken. This is done in conjunction with
the information previously described when discussing line by line navigation
of these constructs. Where label information is not present, the content of
the control’s title attribute if it exists is read instead.

The optimum order in which contextual information for form fields /con-
trols should be presented is very much dictated by user preferences. Thus,
in future iterations of the WebTree system, the presentation of this material

should be altered to reflect user choices.!7

5.2.3 Speaking Tabular Data

As the user navigates from cell to cell through the use of the specialised
table navigation functionality, the application begins reading the entire cell’s
contents once it is in focus. The original plan involved only speaking the
first line of the portrayed content of the element concerned. The reason
for this was to indicate to the listener the type of subject matter contained

within. However this proved problematic in situations where the material

17No experiments to determine the optimum reading order of form field information was
performed.

189

found on the first line was not descriptive enough. As tables should only
be used for presenting strictly tabular data and not for page layout, reading
the entire cell when under point ought to be a reasonable solution.

It should be remembered that as focus is placed on a data <td> element,
the content of any associated <th> header elements is not automatically
announced. Instead, to gain access to this material, a jump to the relevant
header cell must be explicitly activated by the user. Once a table cell is
in focus, the user can examine its content in more detail using the normal
interactive reading functions. That is, reading by character, by word or by
line. Thus, when the specialised header jump functions are invoked, the user
can either listen to the entire content of the <th> tag before returning to the
original pre-jump position, or examine its content in a more in-depth level.

There is no definitive answer to the question concerning how much table
cell positional information is necessary so that the user doesn’t get lost when
navigating a complex table construct. The amount of contextual informa-
tion to be announced is dependent on the users own rcading preferences.
Automatically announcing the row and column numbers for the current cell
should remove any positional ambiguities relating to the specialised table
navigation functions. This is especially advantageous in situations where
the rowspan and/or colspan attributes are used to cause the cell to span
more than a single grid position. However, many uscrs may prefer to reduce
speech verbosity in the interface by only having such information presented
on request. Therefore the announcing of cell positional details is configurable
in the customisation facility.

If the user attempts to navigatc in a direction where no cell currently
exists, the application informs the reader that movement along the required
path is not possible. For example, consider the situation where focus is
positioned on the cell with the coordinates row 1 column 1. If the user
attempts to move upwards along the column they are informed that they
are already in the top cell in the column. Similarly, if the user attempts to

initiate a movement to the left, they are notified that they are already at the

190

beginning of the row. Alternatively, if focus is positioned on the final cell in
a particular row or column, the user is informed accordingly if movement is
attempted in a prohibited direction.

Although nesting of tabular constructs is syntactically allowed by the
XHTML DTD (W3C, 2002b), it should never be used for data tables. Since
the table navigation functionality provided by WebTree is premised on the
basis of not having to deal with layout tables, it need not be concerned with

this issue.

5.3 Reading Strategies

By nature, the viewing of material through a dynamically expandable tree
structured interface requires much interaction on behalf of the reader. Due
to the necessity to expand elements as or when they are required, the user
has much more control over the amount of content being read in comparison
to that of a traditional linear approach. The ability to create alternative
views of the document ensures that the user can eliminate fragments of the
content, which they deem to be less relevant. For example, during the first
reading of a document, the user may prefer to skip over tabular data or
interactive forms in the rendering to establish whether the material fulfils
their expected criteria.

There are a number of different reading strategies facilitated by the Web-
Tree system. The first method allows the user to employ a skim reading
strategy. They can easily glean an overview of the document’s content by
examining the elements directly enclosed within the <body> element. Due
to the ability to include additional contextual information as part of an
element’s trec control, e.g., the title attribute, the reader can quickly es-
tablish and jump to the most relevant segments of the document structure.
Once the required material has been found, the user can easily expand the
relevant elements to read the content in greater depth.

The second reading strategy available under the WebTree system is a

continuous reading facility. The user navigates to a point in the document

191

and instructs the application to begin reading the content from that point
on. The application continues reading subject matter until either the end of
the current rendering is found, or the user explicitly requests a halt to the
proceedings. However, it should be remembered that the WebTree system
only speaks content rendered on the virtual display and does not auto-
matically expand collapsed elements as they are encountered. Instead, the
collapsed elements presence is signalled to the reader and the application
continues reading. Therefore, to achieve the effect of continuously reading
through the linear presentation of a document, all the elements must be al-
ready expanded. As part of future work, this functionality might be altered
to expand each element as it is encountered. However, under the current
implementation environment this is not a trivial task. This is due to the
way emacspeak communicates with the speech synthesiser.

At the moment, the continuous reading function in emacspeak (used by
WebTree to perform the continuous read functionality) does not realign fo-
cus to the word or phrase that is being spoken by the application. Instead,
focus remains at the starting point at which the consecutive reading function
was invoked. However, synchronising the word under point to coincide with
the word currently being spoken would often be valuable when listening to
lengthy texts. The problems with implementing this approach are directly
attributable to the mecthodology that emacspeak exploits to communicate
with the different speech servers that drive the individual synthesisers. Syn-
chronising the audio stream to coincide with the actual position in the text
requires much communication between the application and the speech syn-
thesiser being used. However, this is difficult to achieve under emacspeak.
The emacspeak functions pass the formatted text to the speech servers,
which in turn transmit the information to drive the individual synthesis-
ers. Little or no monitoring of the actual content as it is being spoken is

performed.

192

5.4 Braille Output

There is no specific functionality to produce Braille output included in the
WebTrec system. That is, the content produced is not optimised for this
form of interaction. Even so, the WebTree system should also provide ad-
vantages to this user group. As with speech, the amount of content viewable
at any given time is limited. That is, many of the problems linked to the
serial nature of speech are common to Braille interaction as well. Therefore,
the tree viewing approach should also be an effective mechanism for reading
documents. This is because it allows parts of the content to be bypassed
without much difficulty. Also, the generation of alternative views should
have a marked affect.

In most situations presenting the information as displayed in the virtual
screen should be a usable approach. This is especially true when interacting
with the tree content. Tree controls and element names would need to be
included in the content, e.g., for <h*> elements, so that the user is aware of
their contextual significance. Nevertheless, the presentation of contextual
information, for example, table cell coordinates, is an interesting problem.
With a large display, an area could be cornered off for portraying such
content. However, with small displays this approach would be problematic.
Therefore, further investigation is necessary before Web'Iree can produce a

rendering optimal to Braille output.

5.5 Summary

In this chapter, the user interface of the WebTree system is described. The
methods of rendering the different elements in the virtual screen and how
these elements are to be portrayed through speech are discussed. The next
chapter will outline the usability cvaluations performed on the system and

present a discussion of the results.

193

Chapter 6

User Evaluation

To establish whether providing access to the document’s underlying tree
structure demonstrates any advantages in comparison to interacting through
the traditional linear approach, some evaluation with prospective users is re-
quired. A second question that must also be answered is whether such an
approach hinders the rate at which content can be assimilated. Thus, the
material contained in this chapter discusses the methods engaged to assess
the WebTree application’s usefulness. Initially, the test methodology is pre-
sented followed by any results gleaned from the formal user examinations.
Next, an analysis of the user evaluations including issues observed during
the test process, and some user impressions of the system are presented.
These impressions were either stated during the test process or made on
reflection through a questionnaire filled out once the evaluations had been
completed. In the final two sections, a number of changes to the interface

to increase the usability of the application are recommended.

6.1 Test User Profile

To assess the usability of the WebTree application and the appropriateness
of the tree approach to accessing web-based documents, five totally blind
individuals in the age group of 21 to 31 were asked to evaluate the software.

Four of the subjects had a good knowledge of computing in general, whereas

194

the fifth user had a more limited knowledge. All were reasonably proficient
screen reader users. JAWS for windows! was cited as being the predominant
screen reader used. Only two subjects reported having recently used any
other screen reader application.

All subjects reported that a version of Microsoft Windows? was the main
operating system they worked with on a regular basis. Only two users had
previously worked with a derivative of the Linux® operating system. The
same two participants stated that they had also used emacs® previously,
whercas, only one test subject said that they had ever used emacspeak®.
Unfortunately, to test the application, blind users who already had a good
knowledge of the operating environment were unable to be found.

All the participants use the web on a regular basis for both work /research
purposes and leisure activities, such as reading newspapers or booking hol-
idays. Howecver, levels of knowledge concerning HTML/XHTML mark-up
elements varied greatly throughout the user group. Two uscrs claimed an
advanced knowledge of mark-up elements, whereas one stated an intermedi-
ate level of understanding. Another participant had a basic understanding,
whilst for the last subject knowledge of such mark-up elements was norn-
existent. None of the users had ever used the WebTree browser previous to
the evaluation process.

Although this user sample is quite small, it should be large enough to
glean a reasonable idea of the advantages and/or problems caused by this
system. Testing with sighted uscrs was not attempted, as the design of

WebTree has been specifically motivated by, and optimised for, blind users.

'http://www.freedomscientific.com/fs_products/JAWS HQ.asp
2http://www.microsoft.com

Shttp://www.linux.org

“http://www.gnu.org/software/emacs/
Shttp://emacspeak.sourceforge.net/

195

6.2 Methodology

The user evaluations were performed in the eAccess® lab in Dublin City
University. Each cxperiment was carried out separately, so that partici-
pants would not develop preconceived ideas of the system by listening to
another test taking place in the background. Before the evaluations took
place, each participant was asked to fill out a preliminary questionnaire
to determine some user profile information; establish their levels of knowl-
edge of HTML/XHTML elements; and ascertain how competent the user
was in interacting with their current assistive technology applications, see
section C.1 of appendix C for more details.

After filling out the prelitninary questionnaire, the user was introduced
to the WebTree software. They were initially given time to familiarise them-
selves with the user interface. This was first achieved by reading the user
manual, appendix A, (read through WebTree). After this they were asked
to complete a short tutorial, appendix B, which encouraged the user to
experiment with the different types of functionality supplied by WebTree.
There was no time limit placed on the familiarisation process, which typ-
ically lasted between one and two hours. Instead, the user was requested
to indicate when they felt reasonably comfortable with the interface. At
this point, participants werc asked to perform a number of browsing tasks
ranging from simple navigation tasks to more complex table navigation as-
signments. During the completion of thesc browsing tasks, the user had
access to both the user manual and the tutorial as reference material. Par-
ticipants were not encouraged to ask for help from the observer. Instead,
they were encouraged to refer to the reference documents for help. However,
if it was obvious that the user had become disorientated or confused by the
audio presentation, then assistance by the observer was permitted.

Each participant was asked to complete seven browsing tasks in all. Four
participants successfully completed all seven tasks; whilst the fifth subject’s

evaluation was curtailed due to unforeseen time constraints. After each

Shttp://eaccess.rince.ie/

196

task was completed, the user filled out a short questionnaire to assess the
usability of the application. The questionnaire used for this purpose was the
“After Scenario Questionnaire” (ASQ) (Lewis, 1995). The uscr was asked
to rate the system under a number of criteria to establish the application’s
usability following the completion of each individual task. See section 6.3.1
for more details.

The first four tasks involved navigating through a tree presentation of a
snapshot mirror image of the eAccess website. Users were asked to locate and
navigate to specified documents. If the required document was not directly
linked to by the current page, participants werc informed of its location. The
reason for including this number of similar tasks was to determine whether
with practice the user’s navigational efficiency improved. Also to ensure
that if any usability issues occurred, they were related to the software and
were not just problems concerning the usability of the website.

The fifth task required subjects to search within single pages for different
elements using both the specialised element search and the restricted incre-
mental toxt search functions. To complete task six, the user needed to locate
and then fill out an XHTML form. Task seven required the user to navi-
gate through a number of table constructs using the additional navigation
functions supplied by WebTree.

Once all the tasks were completed, each participant was asked to fill
out two additional questionnaires. The first was the “Computer System
Usability Questionnaire” (CSUQ) to evaluate the overall usability of the
application (Lewis, 1995). See section 6.3.2 for more details. The final ques-
tionnaire used in the WebTrec user-testing process, presented in section C.2
of appendix C, tried to establish a better idea of user opinions about and
expectations of the types of functionality included. The results of this are
discussed in section 6.4.

No quantitative empirical testing in relation to the information location
speed, or comprehension testing based on fixed time periods were performed

on the application. Although it may be said that the user evaluation pro-

197

cesses described in this chapter are subjective in nature, it was necessary to
proceed in this manner due to the technical background of the user group
and the amount of cxperience that they would have had using the system.
The time frame in which the user group members were exposed to the sys-
tem is thought to have been long enough to provide a good indicator as to
whether the approaches taken offer a practical solution for accessing docu-
ments. Nevertheless, it is accepted that a much longer period of usage by the
test group is necessary before user tests could provide accurate quantitative
data in relation to the system in comparison to other auditory solutions. The
users were both unfamiliar with the operating environment and the WebTree
system, therefore it is estimated that usage over a number of days, maybe
even weeks would be necessary before such tests could take place. How-
ever, due to the location of the user group being distributed over a large
area, providing more long term access to the application was problematic.
The members of the test group were primarily Microsoft Windows users,
therefore providing the application as a download would not have solved
the problem.” They would need to have had access to a machine running
Linux, with a functioning emacs/emacspeak setup to run the application.
In addition, providing the application as a download for the general public
would not have helped the situation either. To perform the quantitative
evaluations, a method to control and observe the users interacting with the
system would still have been necessary.

In addition, any quantitative testing would have been subject to the
starting point of the tree rendering for a given document. It is easy to
test access to areas of a document when the starting point for WebTree
is either a fully expanded or collapsed tree structure. However, WebTree
allows for elements to be automatically expanded by default if requested by
the user. Therefore any quantitative test such as those based on information
location speed would be subject to the current arrangement of the document

elements. WebTree also allows the user to customise websites to display a

"Finding cmacs/emacspeak users to perform the tests was not possible.

198

default page rendering. Therefore, the usability of the system would depend
on the user’s preferences for rendering content.

The structure of web pages tested differed greatly in element hierarchi-
cal complexity. Ranging from index pages containing multiple nested list
elements, e.g., news pages and paper indexes, to large technical reports con-
taining numerous data tables and sectional divisions. In a number of cases
the nesting of lists reached three levels of abstraction, however, many of the
pages tested had only two levels of list nesting. Pages with nested tables
were not tested. Similarly, interactive forms that depended on tabular layout
were not included in the initial evaluations. However, documents containing
predominantly text content were assessed.

The starting point for the tree structural view comprised certain higher
level elements already expanded in the audio rendering. The reason for this
was the need to expand specific elements common to each page before the
content could be accessed. The elements automatically expanded in the
text were the <html>, <head>, <body> and <div> elements. The <div>
element adds an additional level of tree abstraction to the content. This
can be useful in large documents where content sections are quite lengthy.
However, in the case of short documents, having to expand each <div>
element may reduce the efficiency of this approach. This is especially the
case if there is no contextual information available to determine the nature
of the enclosed content. A <div> element, although not cxclusively, is often
directly situated within the <body> element. If there are no other elements
apart from <div>s at that level of the tree, it can be difficult to establish
the context in which they appear, especially where no title information is
included for the clement. Due to the test site containing a number of <div>
clements containing small amounts of content, it was decided to cxpand
these elements without their trec controls in the audio rendering. Similarly
the <html>, <head>, and <body> clements also appcared without their tree

controls®.

8if the user wished, they could alter the customisation scttings to include / exclude the
tree controls for a given element.

199

Question 1 Question 2 Question3
Overall, 1 am
Overal, I am O\trgrgllc,l }oh ?}Iln satlsﬁegl Wl’fch the
satisfied with the — et va1t_ .(E ipppor 1{.1 orrlx_la—
casc of complol- | 2meuntoftime it | Han - {onfio e
}01111%5 ;?een;r%ilfs n the ta'sks in this documentation_)
scenario. when completing
the tasks.
Task | Result P2 Result % Result Y%
1 6.25 89.3 6 85.7 7 100
2 6 85.7 6.5 92.9 7 100
3 6.75 96.42 6.5 92.9 7 100
4 6.5 92.9 7 100 7 100
5 5.75 82.1 5.25 75 6.75 96.4
6 6 85.7 6.5 92.9 7 100
7 5.25 75 6 85.7 6.75 96.4

Table 6.1: ASQ results

6.3 Formal Questionnaire Results

6.3.1 Results of the After Scenario Questionnaire

Table 6.1 shows the results of the tasks when cvaluated under the ASQ. Only
results for the four users who completed all assignments have been included.
Each question in the ASQ provides a scale from onc to seven on which the
usability of the task is rated. One represents strongly disagree and seven
corresponds to strongly agree. The results presented for each assignment
is the mean mark obtained for each task. The percentage that each mark

represents is also included.

6.3.2 Results of the Computer System Usability Question-

naire

The results of the CSUQ are included in table 6.2. These results reflect
the evaluations of all five users. Although the fifth participant did not
complete all the tasks, it was thought that enough tasks had been completed
to be able to give an accurate impression of the system. For cach question,

the user was asked to rate the system betwcen one and seven, with onc

200

representing strongly disagree and scven corresponding to strongly agree.
The average mark achieved by the system plus the percentage that this
mark represents is included for cach question. In the case of question 9,
only one person answered. All others responded not applicable. The uscr
who did answer commented that it was the lack of feedback from searches

and clement expansions while in progress that caused such a low score.

6.4 Evaluation results summary

Due to participants not having an opportunity to usc the WebTree interface
previous to the evaluation, it took some time to become reasonably proficient
using the system. Their total experience with the application was limited
to between one and two hours, immediately before the tests commenced.
A limited knowledge of both emacs and emacspeak were large contributing
factors in getting to grips with the user interface. This was confirmed by a
majority of the trial group users in their comments following the evaluation.
This lack in knowledge was also observed during the test process. A number
of users attempted to invoke command keystroke combinations available on
their regular platform, instead of WebTrce specific commands. In addition,
a limited understanding of emacs/emacspeak specific short cut commands
was quite cvident.

Interaction with WebTree can be performed through a small set of
generic commands. Nevertheless, many additional commands were included
to aid power users of the application. Attempts were made to use where
possible keystrokes that were mnemonic to the instructions employed. For
cxample, e to perform an element search. However, as with any application
there is a learning curve before users become proficient with its usage. The
evidence suggested that as the user became more comfortable with the sys-
tem, their productivity in using the application increased. Most users stated
that with a little practice they thought they could become quite proficient
users of WebTree.

The user with a limited knowledge of HTML/XHTML mark-up elements

201

1. Overall, I am satisfied with how easy it is to use | 5.8 | 82.9
this system

2. It was simple to use this system 6.6 | 94.3

3. I can effectively complete my work using this | 6.4 | 91.4
system

4. T am able to complete my work quickly using 6 | 85.8
this system

5. I am able to efficiently complete my work using 6 | 85.7
this system

6. I feel comfortable using this system 6.2 | 88.6

7. Tt was easy to learn to usc this system 6.6 | 94.3

8. I believe I became productive quickly using this | 6.6 | 94.3
system

9. The system gives error messages that clearly tell 11]14.3
me how to fix problems

10. Whenever I make a mistake using the system, 1 6 | 85.7
recover casily and quickly

11. The information (such as online help, on-screen | 6.8 | 97.1
messages, and other documentation) provided
with this system is clear

12. Tt is easy to find the information I needed 6.2 | 83.6

13. The information provided for the system is casy | 6.4 | 91.4
to understand

14. The information is effective in helping me com- | 6.4 | 91.4
plete the tasks and scenarios

15. The organisation of information on the system 71 100
screens is clear

16. The interface of this system is pleasant 6.2 | 88.6

17. 1 like using the interface of this system 6.2 | 88.6

18. This system has all the functions and capabili- 6 | 85.7
tics I expect it to have

19. Overall, I am satisficd with this system 6.2 | 88.6

Table 6.2: CSUQ results

202

initially had some trouble navigating documents. Once the mechanism of
how such files are marked up was explained, he found the system quite us-
able. Another participant didn’t like always having to expand elements to
get to the required information. However, this problem was partly a symp-
tom of the method he used to browse web pages. Browsing for this user was
achieved in a sequential manner expanding cach element, as the information
was sought. None of the search functionality was used by this subject to
locate items. He also had issues with the time it took to navigate to the
specified documents using this method. This problem could be partially
attributed to a lack of knowledge concerning the layout of the website. The
evidence exists to suggest that as users’ knowledge of website structure in-
creased, the efficiency of browsing methods were also enhanced. The other
three users did not display any major difficulties in navigating with this
system.

All users stated that they could navigate through the content of web
pages successfully using the WebTree application. When asked if they
thought that through examining the document’s tree structural arrange-
ment, a general overview of the content could easily be obtained, 4 of the
test users answered affirmatively. The same 4 users stated they perceived
that they could navigate more easily to the main content of a given web
page through this type of view. One participant suggested that with more
practice and familiarity with the interface, this would be the case. How-
over, it was argued by another group member that functionality in existing
screen readers allows for similar navigation. The functionality referred to by
this user is the ability to jump to a number of specific element types, often
included by the developers of many auditory web solutions for the blind.

When the question was posed to determine whether viewing a document
through the tree structural interface would have any major advantages and/
or disadvantages over intcracting with a linear rendering of the same docu-
ment, most users were quite positive in relation to the system. What follows

is a list of comments from members of the trial group in reference to the

203

question.

e “The support for the navigation of tables is good, otherwise I think
the approach taken is complex, and doesn’t really offer any significant

advantages over current systems. So yes and no.”

o “Absolutely. The reason is that in a visual modality you can see this
structure and can navigate quickly to key elements. Linear presen-
tation is serial in nature and places extra cognitive burdens on the

user.”

e “T think viewing in the tree fashion allows one to get to the information

more quickly.”

e “There is certainly an advantage of being able to navigate by any
element in an XHTML document. Of course, this is predicated on the
fact that the web page is coded correctly to XHTML levels. Some of
the features such as the element search and incremental search are also
nice. The way in which forms are accessed and filled in is also more

user friendly than the way employed by other screen readers.”
e “It is easier to skip unnecessary or useless information.”

e “Added complexity; Extra time taken to navigate to the desired con-

tent”

e “Could be difficult for people with no HTML experience.”

Only one user thought the tree structural view added to the complexity
of document interaction. He stated a major disadvantage was the extra
time it took to navigate to the desired content by having to always expand
cach clement when encountered. Another member of the user group was
concerned that operating such a system might be difficult for people with
little or no previous HTML experience. However, overall feedback on the

tree structural rendering of content was quite positive.

204

Most users stated that they liked the outline web page summary that
the tree structural view provided. This was especially evident when navi-
gating through large documents. The ability to bypass complex items such
as tables and just read the plain text they found appealing. Four of the
participants believed that displaying some of the text contained in para-
graph elements when in their collapsed state was beneficial in skimming the
document. Whilst recognising this functionality to be of benefit to many,
the fifth participant would prefer it to be optional. They all agreed that
when additional information about the element is available, such as title,
or a summary attribute in the casc of tables, they should automatically be
displayed as part of the tree expansion component.

Two participants were concerned that the use of technical terms in the
user interface might be problematic in certain situations. For example, us-
ing the name of the mark-up element as part of the tree control information
to identify its type. These issues should not regularly arise for users with
a reasonable knowledge of HTML / XHTML constructs. However, for peo-
ple with little or no knowledge of these items, presentation of data in this
manner may be quite daunting. Therefore, an option to configure the ap-
plication to announce the elements’ full name was suggested. For example,
instead of using the word ul, the phrase unordered list could be used.
An alternative approach would be to provide a simple look-up mechanism
to determine the full name of an element when encountered. This would en-
able the user to determine the genuine meaning of an element name, whilst
keeping the verbosity levels low. Both mechanisms have advantages and dis-
advantages. Therefore user preference would dictate which method would
be more beneficial.

Each member of the trial group thought it important to allow the uscr
determine whether or not a tree control appeared in the audio rendering.

The main reasons stated were as follows:

e “Showing controls for every single element in a document would make

the browsing process more complex from the user’s point of view; and

205

there may be certain elements the user isn’t really concerned with in

certain circumstances.”
e “Becausc you can control what is displayed and how!”

o “I’d especially think it would be an advantage when navigating a web
site you are familiar with. Obviously, when viewing a new site you

will want to make sure you can view everything.”

The ability to have certain elements expanded automatically in the au-
dio rendering was thought to provide many advantages to the reader. It
could reduce the amount of time required to locate a particular piece of
content. This is especially the case where the page structural layout is
already known. In these situations, a layer of interaction complexity is re-
moved from the interface. Consider, as an example, a web page containing
the following clements: <html>, <head>, <body>, a element containing
a number of navigation links, and finally a number of <p> elements. Auto-
matically expanding the <html>, <head> and <body> elements is a rather
sensible approach. It removes the additional interactive steps that the man-
ual expansion of these components would require. In addition, consider the
case where the user may only be interested in the textual content of the
page. Therefore, he may elect to have paragraphs automatically expanded,
with the element remaining in its collapsed state. The user no longer
has to trawl through the content of the list element to reach the main text.
However, the list continues to be available for further expansion when nec-
essary.

The application framework can be easily expanded to include additional
functionality, therefore, it was suggested that in a future version customisa-
tions for specific web site domains or genres should be possible. The optimal
customised view may differ greatly from site to site. For example, the ele-
ments to be automatically expanded for a newspaper web site are potentially
rather different to those required for an internet banking application. How-

ever, within many web sites the content structure does not differ a great deal

206

from page to page. Therefore, setting criteria for the site wide presentation
of content should be an achicvable goal.

When appearing in the audio rendering without tree controls, users were
often unable to recognise the significance of header <h*> elements. Even
with the ability to establish the type of element currently under point, users
were often unaware of the change in context afforded by their presence.
Therefore, if such items appear without tree controls in the future, they
should be signalled by either the name of the element being announced, or
through a non-speech audio cue. Items can also be styled using alternative
speech propertics assigned by an aural cascading style sheet. However, the
effect of styling elements in this manner was not tested significantly. Possibly
due to the learning curve required to become proficient with a completely
new system, or the fact that all participants were used to reading with a
single voice, users chose to have alternative voice cues turned off at all times
during the evaluation process.

Although it may be unique to this small sample of users, it was evident
that the regular browsing strategies of each user appeared to have an impact
on how usable they perceived the system. Those users that articulated that
they usually navigated line-by-line or based on screen blocks such as para-
graphs or by virtual pages based on the information present on the screen,
struggled at first to get to grips with the tree structural interface. However,
those users that regularly use advanced navigation commands, such as nav-
igating by element, or searching for required screen text, appeared to adapt
to the system quite easily. A direct comparison of browsing with WebTree
and the users’ regular assistive technology solution was not attempted. The
main reason being the user would have had much greater experience using
their assistive technology solution. This expericnce would have been gained
over a number of years in many cases. Methods for browsing web-based
documents, specific to that assistive technology would have been developed
by the user over that time whercas their entire experience using WebTree

totalled a number of hours.

207

6.4.1 Interactive Form Data

All test subjects liked not having to specifically activate a specialised forms

mode when entering form data. One user commented:

I particularly like the fact that cntering a specialised forms
mode is not required. The key mappings changing automatically

is a good feature.?

However, most test users initially had some difficulty with the form con-
struct. The problem was unrelated to the task of filling out the information
or locating individual fields. It was as a direct consequence of the ability
to include structural elements such as paragraphs inside form constructs to
organise the content. Most users had expected to encounter the form input
fields immediately after expansion, and were a little confused when a para-
graph element was encountered instead. To solve this problem, a function
to automatically expand an element’s entire sub tree is proposed. This will
complement the regular expansion function. Also, a mechanism to specify
that once a specific element has been expanded, certain named constituents
if present within its sub tree, appear in their expanded state regardless to
how they are treated outside of this construct should be considered.

The standard use of the enter key for sctting controls, such as checkboxes
and radio buttons was liked by the trial user group. This key is consistently
used to interact with all button controls across the WebTree interface. One
particular user found that it was sometimes difficult to place focus on a form
field/control. Although, he was happy with the way they were presented!0,

There is currently no method to quickly jump to the form submission
button and submit the form. The generic element search function would
not suffice for it examines the element name, in this case input whereas

the content of its type attribute would be more beneficial. In the case of

9The key map changes in question were those from WebTree specific keystrokes back
to the character entry functionality, once a form field was in focus.

L0Form fields are generally presented at the start of a line, thus relocating focus to that
point allocates focus to a position within the field.

208

a large form such functionality may be preferable instead of requiring the
user to navigate through the fields to locate the submit control. There is
no guarantee that the user will attempt to fill out the information in the
sequential format in which it appears in the text. In fact there is no way to
predict where exactly within the form construct the submission information
might occur. Thus, a quick submit function was called for by one member

of the trial group.

6.4.2 Searching

The only complaints in relation to the different types of search functionality
were concerned with the amount of audio feedback presented. In the case
of large documents, searching may take a little time, thus notification that
the search was still in operation was requested. Apart from that, users liked
the different search technologies and thought them to be of benefit. The
designated element search was perceived as being rather convenient when
attempting to locate an element not readily available within the virtual
screen rendering. One particular trial group member used this technology
extensively throughout the evaluation. The ability to limit the incremental
text search to specific named clements was also thought to be beneficial
across the entire user group.

However, one user requested a static text search facility to complement
the cxisting search alternatives. In many situations this technology would
reduce the time necessary to complete a search. This is due to the appli-
cation no longer requiring the expansion of tree controls to ensure that as
ecach fragment of the search string is located in the uncompressed DOM tree
structure it is physically presented in the audio rendering. The fact the
search is only performed on one occasion should also reduce its completion
time. However, there is one major disadvantage with this type of search
functionality. To find the required material, the correct spelling of the word
or phrase is necessary. Whercas, with an incremental text search, a small

number of letters entered may be enough to find the content.

209

6.4.3 Tabular Data

The use of the keypad as the basis for providing access to the table navigation
functions was perceived as an integral component of its usefulness. This
is partially due to the close proximity of the required keystrokes to one
another, allowing for extremely quick and simple navigation. It was also
suggested by one member of the trial group that the numeric keypad fits
the cellular nature of tables perfectly. In general, the different types of
navigation methods functioned within users’ expectations. However, one
user requested that the commands used to jump to the start/end of the
table construct place the focus in the first and last cells respectively. This is
contrary to the current implementation, which leaves the user at the physical
point in the text, where the construct begins and ends.

The table navigation functionality was well reccived across the entire user
group. The ability to jump to a table header clement, peruse its content and
relocate focus to the previous position was generally thought a good idea.
However, it was suggested that an additional function, which announced the
relevant header content without manoeuvring away from the current cell
would be preferable. Users stated that they would rather not have header
information read automatically as focus is placed on a different cell. Instead,
they would prefer such information to be available on demand as of when
required. In addition, from our observations of the tests, a number of the
users found the automatic announcing of row and column positional data
quite irritating. A command to read this information at the users request
appears to be a more beneficial method of portraying such material. To
facilitate users who wish to have such material automatically announced, a
configuration feature to control its portrayal should be included as part of
the customisation component.

Two members of the trial group in particular liked the linear organi-
sation of the content in the virtual screen presentation. It facilitated the
linear reading strategy they regularly employed when assimilating tabular

data. Both users rarely used the specialised table navigation functionality

210

incorporated into their current screen reader applications. However, they
both stated they were happy with the grid-like navigational approach pur-
sued by WebTree.

A number of problems with the current WebTree table construct im-
plementation were discovered during the testing process. Once focus was
positioned on an end of line character between two different cells, the ap-
plication announced that the user was not currently in a table cell when
attempting to perform a cell to cell jump. To solve this problem, the initial
cell could be used as the starting point for the navigational jump where
this situation arises. A second problem was due to the original navigational
strategy only announcing the initial line of content after navigating along
the spatial relationships between cells. However, in many cases the segment
of information available was not enough to give an accurate impression of
the cells content. Thus, it may be better to automatically read the entire
cell’s content after a navigational jump.

Although evaluation was performed using large tabular constructs, ta-
bles containing cells that span more than a single row or column were not
assessed. The reason for this was simple. The time period available for the
user to obtain a working knowledge of the application was quitc short. The
learning curve associated with learning a new system from scratch, coupled
with the wide range of different technologies to be evaluated, meant the in-
clusion of such tests would have considerably added to the complexity of the
evaluation. It was thought that this level of complexity would have drasti-
cally increased the learning curve for this particular application. Thus, the
performance of these tests have not been completed as of yet.

Experiments to determine the best methods for navigating to and from
these clements along the grid connections still need to be completed. Would
moving along the first column or row in which the cell appears be a viable
solution to this problem? Or would navigation along the same row or column
from which focus has been originally manocuvred be a better solution. In

addition to this comparative evaluation, the mechanisms for informing the

211

user of the cell’s presence must also be investigated. It is necessary to
establish whether the application should announce this information when
a cell of this type is encountered, or whether it would be better to use
a non-speech sound cue to notify the user of its prescnce. To answer these
questions, an evaluation entirely centred on table navigation under WebTree

would be necessary.

6.4.4 Customisation Issues

The one component of the WebTree system that users had great difficulty
in using was the customisation facility. The emacs specific customize pack-
age was used to generate customisation views. However, none of the users
had any previous experience of working with emacs customisation buffers,
therefore, found them rather difficult to exploit. Emacspeak often employs
the use of alternative voices to portray contextual changes in the content.
For cxample, one voice type is reserved to portray text positioned within
quotation marks, whilst another is used to announce text contained within
a clickable button. However, there is a learning curve to this approach for
presenting changes in context. Some practice is required to learn how to
decipher the context associated with each type of voice. The user group
was not exposed to the WebTree system, or emacspeak for a great deal of
time, thus, accurately learning these associations would have been difficult.
In addition, the participants found the sudden alterations in voice quite dis-
concerting, therefore, each one requested that such changes be turned oft
during the evaluations.

Without voice changes to illustrate variations in context, it can be dif-
ficult to decipher the different components of individual elements in the
customisation buffer. This is especially the case for inexperienced users.
Although the customisation facility is organised as a tree-like structure, the
mechanisms for interaction with individual variable options is alien to the
rest of the functionality provided under WebTree. Thus users were required

to master an additional interface in conjunction to the software being eval-

212

uated. The arrangement of components comprising each element was not
initially obvious to the users in the test group. The methods cmployed by
their regular screen reading applications to portray similar information differ
greatly from the approaches taken under emacs/emacspeak. For example,
JAWS for windows in conjunction with Internet Explorer displays form edit
fields on separate lines to other content. This is not the case under emacs]
emacspeak. Whilst tabbing through the different components of a customise
element the values of each field/control are announced. However, the con-
text in which they appear is often lost for emacspeak does not automatically
speak this material. Therefore, all participants required a great deal of as-
sistance before they could successfully manage to operate the system.

For these reasons, it was suggested that this method for providing cus-
tomisation should be scrapped in favour of implementing an alternative
scheme based on an XHTML form input system. For the most part, in
terms of controlling the expansion of elements and the presence of tree con-
trols, this could be achieved by a set of checkboxes, or a multiple select list.
The insertion of items, such as line length, could be facilitated by a text
edit field. A specialised mechanism designated to the dynamic generation of
alternative views should also be considered for power users. See the previous

chapter for more details.

6.4.5 Usability Versus Page Complexity

The perceived usability of the system was not dircctly proportional to the
complexity of the page being viewed. Although, as expected, it did have
some bearing. Short, yet structurally complex pages fared worst of all un-
der the WebTree system. Having to expand multiple elements to obtain
access to a small fragment of text did impinge on the usability of the appli-
cation. For example, consider the following scenario: a list of publications
with a nested list pertaining to cach ycar. If each ycar contains only one
/two publications, requiring the user to expand the list for each year may

be overkill. However, in those cases where the number of publications is

213

quite large, the benefits of having this information hidden when it isn’t the
target data sought, outweighs the inconvenience of having to expand the
element. Therefore, allowing the user select whether a structural element is
automatically expanded based on the amount of child elements it contains,
might increase the efficiency of the system.

The greatest benefits of the system were observed during the viewing of
large complex documents. When faced with large lists and multiple data
tables, the WebTree system facilitated an easy mechanism for navigating
past these elements to only read the text components of the document.
Reading such content often can provide the reader with a good insight into
the nature of the documents’ subject matter. Then if the reader wishes
to peruse the content in more detail, they can simply expand the relevant
elements.

When looking for a specific hyperlink on a given page, the additional
complexity afforded by the tree system could potentially impinge greatly
on browsing efficiency. Having to expand each element to find out whether
the required hyperlink is situated within, is extremely problematic. For this
reason, additional navigational functionality to manoeuvre link by link is
provided. Alternatively, the search functionality could be used to locate
the link, or at least navigate focus to the surrounding text. However, the
facility to navigate link by link does not offset problems with links requir-
ing contextual information gleaned from the surrounding text to indicate
their meaning. This is a problem that is experienced by many applications
providing alternative views based on lists of links and is not easily solved.
In the case of WebTree, once a user navigates to a link, the link and its
ancestor hierarchy are automatically expanded into the text. Therefore, the
user can cxamine the surrounding text to assess the implied meaning.

The tree like view is a powerful mechanism allowing the user to quickly
skim the document to obtain an overview of its structural make-up. It also
permits the user to casily skip fragments of the content to more quickly reach

the required data. However, there are times when linear interaction is a more

214

beneficial method for perusing written material. When perusing a segment
of content in detail, such as continuously reading a section of content, then
it is advantageous to have the content of all elements expanded into the
rendering. Both interaction mechanisms have advantages / disadvantages
depending on the task in hand. Therefore, the ability to linearise a segment
of the tree, by expanding an element including its entire sub tree should

increase the usability of the system.

6.5 Conclusion

Overall the results of the user evaluations were quite positive. It appears
from these results that the approach taken by WebTree is a viable solution
for blind people to access the web. Although, ease of use of the application
does depend somewhat on their levels of experience with both screen reader
applications and with computers in general. It Is not thought that vast
experience with screen reading technology is necessary to operate the system
efficiently; however, a reasonable knowledge of computing would be advan-
tageous. An in-depth knowledge of the HTML family of mark-up languages
is not necessary to access the system. The user only needs to be concerned
with a number of structural elements to operate WebTree effectively. There-
fore, a basic knowledge of the elements and the mechanisms of how they are
structured should suffice.

Some additions to the interface coupled with a number of minor changes
with existing functionality, were recommended during the evaluations. Four
out of the five users tested thought it a viable system for browsing web
pages. They also indicated that such a system would provide a number of
advantages over a lincar interface. However there are some drawbacks. One
user stated that he would rather not use the interface duc to the complexity
that element cxpansion brings to the browsing of web pages. However, he
did not attempt re-configuring the display parameters for elements to auto-
matically portray them in their expanded state. Although initial usability

results are quite positive, to obtain a better idea of the usefulness of this sys-

215

tem for blind users, more familiarisation with the functionality is necessary,
especially the customisation facility for controlling the display of elements.

Tt is difficult to assess a complex system such as WebTree after only a
number of hours of usage. To realistically evaluate such an application, it
would be necessary for users to attempt to operate the system on a more
extended basis. In addition, it is difficult to simulate real time usage of the
application, so a number of the tasks may have seemed contrived.

As expected, the benefits of the tree structured approach to document
rendering were much more apparent when considering larger documents.
Users found it beneficial to bypass unrelated material to quickly locate
the required content. The ability to generate views with clements such
as <table>, <form> and list constructs collapsed by default facilitated this
navigation. Viewing documents in this manner negates trawling through
reams of lengthy information when attempting to locate the required con-
tent. However, evaluation using a more comprehensive mission critical web-
site such as an e-banking or e-commerce website should provide a more
definite impression of the application’s usefulness. The major problem is to
locate a suitable website for the evaluation process. A website claiming to be
fully accessible, i.e., marked up in accordance with the W3C’s web content
accessibility guidelines W3C (1999b), and validating to the XHTML basic
standard W3C (2000b) is what is required.

216

Chapter 7

Conclusions and Further

Work

The objective of this research was to examine alternative strategies to browse
and navigate web based documents through a non-visual modality. The
traditional approach is to present content in a linear form, removing many
of the structural cues provided by the visual organisation of the content.
Although functionality to supply navigation non-linearly is often provided,
there still exists many problems in finding the relevant information on a
page through a purely serial approach. The ability to skim through the text
guided by visual cues such as layout, colour or changes in font is unavailable
in this medium. To alleviate many of these problems, a number of auditory
web solutions perform some semantic analysis on the content in an attempt
to generate a usable summary of the material. In section 3.5 the literature
concerning the different methods for navigation and page summarisation
was discussed.

As part of the crrent work a number of different strategies for inter-
acting with web based documents were devised. The proposed tree viewing
strategy, described in chapter 5, allows the user to quickly skim the docu-
ment to establish whether the content meets their requirements. The user

controls how much of the documents content is presented at any given time,

217

by expanding and collapsing individual elements. When certain elements
are left unexpanded in the audio rendering e.g. <table> or <form> cle-
ments, the user can quickly bypass these elements and just read the text.
Often the context in which an element appears is obvious from reading the
preceding material. However, when contextual information, such as a title
attribute is available for an element, it is included in the audio rendering.
This is done to provide some knowledge of the material enclosed within a
collapsed element. By also providing a segment of cach paragraph in the
virtual screen whilst still in their collapsed state, the user can obtain an idea
of the enclosed material. If the user decides they need to read the content
in more detail, they can easily expand the relevant elements.

While interfacing with the document through this approach, the user can
quickly navigate to the clements of the page they deem important. Through
the customise facility, users can select whether to automatically expand a
given element, or leave it in its collapsed state. In this way, an optimal view
based on the user’s requirements can be generated. Obviously, there are
many possible variations in web page structure, thus, the rendering optimal
for one page may be inefficient for another. However, many websites impose
a given structure on all/most of its online content; therefore the generation
of site specific settings ought to be a viable solution to this problem.

As demonstrated by the user cvaluations discussed in chapter 6, the tree
based view is a useful approach to the viewing of web based documents.
However, the methods were more effective for large documents as opposed
to shorter index pages. Nevertheless, a strict tree view was not an ideal
solution for the viewing of all elements. That is, elements that rely on their
visual organisation to denote meaning, e.g., the <table> and <form> el-
ements. To accurately convey these types of content, and the contextual
information required to interact with their lower level clements, additional
browsing strategies nceded to be derived. See section 5.1.6 and scction 5.1.7
respectively for more details on how thesc elements are supported by Web-

Tree.

218

To solve the problem of how best to convey contextual information, a
number of different strategies are employed by the system. Firstly, the name
of the element is included in the tree control information, so the user knows
which structural element is currently under point. However, an alternative
approach facilitated by the system is to use different voices, changes in voice
characteristics or non-speech sound cues to signal this information. These
additional methods for signalling material can be provided by an aural CSS
style sheet. However, the use of CSS is optional. It is a lot to expect an
average computer user to write their own style sheet, therefore a number
of default style sheets should be provided, so the uscr can select one that
meets their needs.!

The user is the only one that knows the type of presentation they person-
ally find optimal. Some users prefer verbose interfaces with little ambiguity
in the context in which clements appear. Others rather have much of this
information provided only on request. For example, rcading table header
information, or the grid position in which a cell appears in a table. In gen-
eral, the approach taken by WebTree is to allow the user customise the type
of spoken output provided. In this manner the user can create a browsing
solution that caters for their own needs. Although a default setup is offered,
the user is free to deviate from this at any time.

Many current solutions provide navigation functionality based on a lim-
ited set of mark-up clements. WebTree cxtends this approach by providing
a generic element scarch function. That is, the user can search for any el-
ement in the document, and focus will jump to the point in the document
where it occurs. Similarly JAWS for Windows? allows the user to search
for paragraphs containing specific words, see section 3.5. The functionality
is extended to allow the user to limit the text scarch to any element. For

example, the application could be asked to only look within a <table> ele-

1T the case of inline clements the only method for obtaining knowledge of the element’s
type apart from the usc of audio cues is by requesting the name of the element currently
under point.

’http://www.freedomscientific.com/fs_products/JAWS_HQ.asp

219

ment or 8 <form> construct for the required information. In this manner it
is hoped that the ability to find and navigate to specific material should be
improved. This is especially the case where the structure of the web page is
previously known. From the initial user evaluations, discussed in chapter 6,
the feedback on the different search functionality was quite positive. How-
ever, whether the inclusion of these methods is beneficial will only become
apparent with extensive usage of the system.

One of the principle goals in the generation of the prototype application
was to try to keep the interface as simple as possible. By consistently using
the same keystrokes to perform similar tasks, e.g., using the enter key to
activate a radio button or a tree expansion control, the learning curve
to become proficient with the application is reduced. Similarly, much of
the functionality of WebTree can be used through a small set of generic
functions. Additional navigation functions based on these generic methods
were added to aid power uscrs.

To operate this system, you do not need to be an advanced screen reader
user. In fact, the basic user interface is quite simple so it is hoped that novice
users of auditory browsing solutions could effectively work with this appli-
cation. However, a certain amount of knowledge of computing is necessary
to use WebTree. That is, the user nceds to have some general knowledge of
HTML/XHTML constructs to interact with the system effectively.

Finally, WebTree operates on two assumptions. The first being that
pages meet WCAG Double-A compliance (W3C, 1999b). Although this
could be seen as a major assumption, other auditory web solutions operate
most effectively when similar accessibility levels are reached. As with Web-
Tree the less accessible the web page, the less efficient these applications are
in conveying the material. The second major assumption is that well formed
mark-up is used to generate the documents. Although this is covered by the
WCAG guidclines, it is the main premise on which the system is built. If
elements arc not used for their intended purposes, then the advantages of

viewing the tree structure will be reduced. That is, the context often af-

220

forded by the element type will be lost. For example, if a <h1> element is
used to mark-up a document heading then the user can establish the context
in which the content appears by its tag name. However, if the same element
is used to mark-up a paragraph based on how it will look visually, then the

advantages of using structural elements for blind users are negated.?

7.1 Further Work

The current prototype was developed so that the proposed browsing and
navigation strategies could be assessed. However, much work is still neces-
sary before the system can be described as a workable solution for browsing
web based documents. That is, not all of the described functionality has
been fully implemented. Therefore the next stage in the development pro-
cess is to complete the implementation of those elements that are not entirely
finished. For example, code should be added to handle more of the aural
CSS properties. Also, as mentioned in section 5.1.2 and section 6.4.4, user
testing has shown that there are problems with the current implementation
of the customisation facility. The solution needs to be redeveloped to be
more consistent with other functionality proposed in WebTrce. As previ-
ously mentioned a facility mimicking an XHTML <form> construct could
be used to enter the data. Also many additional customisation parameters,
such as those to provide greater control over the speech output should be
added.

Further testing is required to establish how beneficial the approaches
taken actually arc. The testing performed so far only included a small
number of hours usage with the system. To gain a better idea of the sys-
tem’s usefulness on an individual component basis, further testing over a
prolonged period of time is required. One problem duc to the devclopment
cnvironment is that only a small minority of blind users use emacspeak.

This is problematic because it is difficult to find users in Ireland that use

3 Although the current prototype is limited to viewing XHTML pages, the approach
should be beneficial for any HTML derived document.

221

emacs/emacspeak on a regular basis. Therefore, it might be a good idea
to redevelop the application to function under a more mainstream environ-
ment, such as under the Mozilla* project. In this way the application can
take advantage of the user’s normal setup, to determine problems with the
proposed strategies. This is because it was difficult to establish if a number
of the problematic issues observed in the user evaluations were symptoms
of the approaches taken, or were caused by the user operating in an alien
environment.

Finally, a number of recommendations proposed by the user group, such
as the ability to expand entire sub trees should be implemented. Also, as
mentioned in chapter 5, some further testing to establish the best methods
for navigating table cells spanning more than one row/column needs to be
performed. Also, as mentioned in section 3.8 there currently exists a num-
ber of methods in which tree information can be unobtrusively conveyed
to the user. However, the added complexity afforded by these approaches
might detract from the usefulness of the system. Also, these methods could
potentially clash with the additional signalling methods for contextual infor-
mation afforded by an aural CSS. Therefore, a simple yet consistent method
for portraying tree information in addition to the current solution should be

sought.

7.2 Contributions of this Research

The WebTree system is a novel alternative to the traditional linear approach
to document navigation for blind users. The primary view is based on
exposing the tree structural relationships between elements contained in
the document’s mark-up. The ability to dynamically hide or expose large
sub-trees, coupled with searching both content and structure, allows rapid
navigation through large documents. The traditional navigation by element
is extended to include all elements as opposed to a specific named set. This

is achieved through a generic element search. This work also shows how

“http://www.mozilla.com/

222

complex elements such as <form> and <table> elements can be handled
under a tree viewing system. To accurately convey tabular data requirved a
departure from the strict tree representation to one that was more graph-like
in nature. Interaction with form constructs does not require a special mode
that must be invoked by the user., Instead the application manipulates the
keystroke functionality so that interaction can be performed directly when

the control is encountered.

223

References

American Heritage Dictionary (2000), ‘The Amcrican Heritage Dictionary
of the English Language’. Houghton Mifflin Company, fourth edn.

Arons, B. (1997), ‘SpeechSkimmer: a system for interactively skimming
recorded speech’, ACM Transactions on Computer Human Interaction
4(1), 3-38.
http://portal.acm.org/citation.cfm?doid=244754.244758

Asakawa, C. and Itoh, T. (1998), User interface of a Home Page Reader,
in ‘Proceedings of the third international ACM conference on Assistive

technologies’, ACM Press, pp. 149-156.

Asakawa, C. and Takagi, H. (2000), Annotation-based transcoding for non-
visual web access, in ‘Proceedings of the fourth international ACM con-

ference on Assistive technologies’, ACM Press, pp. 172-179.

Barnicle, K. (2000), Usability testing with screen reading technology in a
Windows environment, 4 ‘Proceedings on the 2000 conference on Univer-

sal Usability’, ACM Press, pp. 102-109.

BAUK (2004), British Braille A Restatement of Standard English Braille,
Royal National Institute for the Blind, Peterborough, UK. Compiled and
Authorized by the Braille Authority of the United Kingdom.
http://www.bauk.org.uk/pubs.htm

BAUK (2005), Braille Mathematics Notation, second edn, Royal National
Institute for the Blind, Peterborough, UK. Compiled and Authorized by

224

the Braille Authority of the United Kingdom.
http://www.bauk.org.uk/pubs.htm

BAUK (2006), Braille Computer Notation, Royal National Institute for the
Blind, Peterborough, UK. Compiled and Authorized by the Braille Au-
thority of the United Kingdom.
http://www.bauk.org.uk/pubs.htm

Bell, D. (1962), ‘Reading by Touch’, Typographica 6.
http://tinyurl.com/qhwyt

Bernstein, M. and Picker, M. (1966), An introduction to music, 3 edn,
Prentice-Hall, Englewood Cliffs, NJ.

Blattner, M. M., Sumikawa, D. A. and Greenberg, R. M. (1989), ‘Earcons
and Icons: Their Structure and Common Design Principles’, HUMAN-
COMPUTER INTERACTION 4(1), 11-44.

Brewster, S. A. (1998), ‘Using nonspeech sounds to provide navigation cues’,
ACM Transactions on Computer-Human Interaction (TOCHI) 5(3), 224-
259.

Brewster, S. A., Wright, P. C. and Edwards, A. D. N. (1993), An evaluation
of earcons for use in auditory human-computer interfaces, in ‘Proceedings
of the SIGCHI conference on Human factors in computing systems’, ACM
Press, pp. 222-227.

Brewster, S. A., Wright, P. C. and Edwards, A. D. N. (1995a), Experi-
mentally Derived Guidelines for the Creation of Earcons, in ‘In Adjunct

Proceedings of HCT’95, Huddersfield, UK’, pp. 155-159.

Brewster, S. A., Wright, P. C. and Edwards, A. D. N. (1995b), ‘Parallel
Earcons: Reducing the Length of Audio Messages’, International Journal

Of Human-Computer Studies 43(2), 1563-175.

Brewster, S. and Brown, L. M. (2004), Tactons: structured tactile messages

for non-visual information display, in ‘Proceedings of the fifth conference

225

on Australasian user interface’, Vol. 28, Australian Computer Society,

Inc., pp. 15 - 23.

Brown, M. L., Newsome, S. L. and Glinert, E. P. (1989), An experiment
into the use of auditory cues to reduce visual workload, in ‘Proceedings of

the SIGCHI conference on Human factors in computing systems: Wings

for the mind CHI '89’, Vol. 20, ACM Press, pp. 339-346.

Brown, S. S. and Robinson, P. (2001), ‘A World Wide Web Mediator for
Users with Low Vision’. Paper presented at the CHI’2001 Conference on
Human Factors in Computing Systems Workshop No. 14.
http://is4all.ics.forth.gr/chi2001/files/brown.pdf

Buxton, W., Gaver, W. and Bly, S. (1994), Auditory Interfaces: The Use
of Non-Speech Audio at the Interface, Unpublished. Incomplete draft
manuscript.

http://www.billbuxton.com/Audio.TOC.html

by Jim Highsmith (1997), ‘Messy, Exciting, And Anxiety-Ridden: Adaptive
Software Development’, American Programmer .

http://elj.warwick.ac.uk/jilt/01-2/sloan.html

Chimera, R. and Shneiderman, B. (1994), ‘An exploratory evaluation of
three interfaces for browsing large hierarchical tables of contents’, ACM

Transactions on Information Systems (TOIS) 12(4), 383-406.

Chisholm, W. and Novak, M. (1999), Increasing the accessibility of the web
through style sheets, scripts and plug-ins, in ‘CSUN 1999’.
http://tinyurl.com/fwlmf

d’Alessandro, C. and Liénard, J.-S. (1996), Synthetic Speech Generation,
Cambridge University Press, London/New York,, chapter 5.2.
http://cslu.cse.ogi.edu/HLTsurvey/chbnode4 . htm1#SECTION52

Dudley, H., Riesz, R. R. and Watkins, S. A. (1939), ‘A synthetic speaker’,
Journal of The Franklin Institute 227, 739-764.

226

Dudley, H. and Tarnoczy, T. (1950), ‘The speaking machine of Wolfgang von
Kempelen', Journal of the Acoustical Society of America, 22, 151-166.

Edwards, W. K., Mynatt, E. D. and Stockton, K. (1994), Providing Access
to Graphical User Interfaces - Not Graphical Screens, in ‘Proceedings of

the first annual ACM conference on Assistive technologies, Marina Del
Rey, California, United States’, ACM Press New York, NY, USA, pp. 47—
54.

Fant, G. (1960), Acoustic Theory of Speech Production, Mouton, sGraven-
hage, The Netherlands.

Filepp, R., Challenger, J. and Rosu, D. (2002), Web accessibility: Improving
the accessibility of aurally rendered HTML tables, in ‘Proceedings of the
fifth international ACM conference on Assistive technologies’, ACM Press.

Fitzpatrick, D. (1999), Towards Accessible Technical Documents: Produc-
tion of Specch and Braille Output from Formatted Documents, PhD the-

sis, School of computer applications, Dublin City University.

Fitzpatrick, D. (2002), Speaking Technical Documents: Using Prosody to
Convey Textual and Mathematical Material, in ‘Proceedings of ICCHP
2002’, Springer Lecture Notes in Computer Science (LNCS), Springer,
pp- 494-501.

Fitzpatrick, D. (2006), Mathematics: How and What to Speak, in ‘Pro-
ceedings of ICCHP 2006’, Springer Lecturc Notes in Computer Science
(LNCS), Springer.

Fitzpatrick, D. and Karshmer, A. I. (2004), Multi-modal Mathematics: Con-
veying Math Using Synthetic Speech and Speech Recognition., in ‘Pro-
ceedings of ICCHP 2004’, Springer Lecture Notes in Computer Science
(LNCS), Springer, pp. 644-647.

Fitzpatrick, D. and Monaghan, A. (1998), TechRead: A System for Deriv-

ing Braille and Spoken Output from LaTeX Documents, in ‘Proceedings

227

of ICCHP 1998’, Springer Lecture Notes in Computer Science (LNCS),
Springer, pp. 316-323.

Fitzpatrick, D. and Monaghan, A. (1999), ‘Browsing Technical Documents:
Document Modelling and User Interface Design’, Bulletin De Linguistique

Appliquee Et Generale 24, 5-18.

Foulke, E. (1964), ‘Transfer of a Complex Perceptual Skill’, Perceptual and
Motor Skills 18, 733-740.
http://www.braille.org/papers/skills/skills.html

Foulke, E. (1979), ‘Investigative Approaches to the Study of Reading
Braille’, Journal of Visual Impairment and Blindness 73(8), 298-308.
http://www.braille.org/papers/invea/invea.html

Foulke, E. (1982), Reading braille, Cambridge University Press, pp. 168-208.

Furuta, R. (1994), ‘Defining and using Structure in Digital Documents’,
Proceedings of the First Anual Conference on the Theory and Practice of
digital libraries .

http://www.csdl.tamu.edu/DL94/

Gaver, W. W. (1986), ‘Auditory Icons: Using Sound in Computer Inter-
faces’, Human-Computer Interaction 2(2), 167-177.

Gold, B. and Morgan, N. (2000), Speech And Audio Signal Processing: Pro-
cessing and Perception of Speech and Music, John Wiley & Sons, Inc.

Goose, S. and Méller, C. (1999), A 3D audio only interactive Web browser:
using spatialization to convey hypermedia document structure, in ‘Pro-

ceedings of the seventh ACM international conference on Multimedia

(Part 1), ACM Press, pp. 363-371.

Grabe, E. (2004), Intonational variation in urban dialects of English spoken
in the British Isles, Linguistische Arbeiten, Tuebingen, Niemeyer, pp. 9-
31.

228

Greenspan, S., Nusbaum, H. and Pisoni, D. (1988), ‘Perception of synthetic
speech produced by rule: Intelligibility of eight text-to-speech systems’,
Behavioral Research Methods, Instruments, and Computers 18, 100-107.

Grunwald, A. (1966), ‘A Braille-reading machine’, Science 154, 144-146.

Harris, A. j. (1947), How to increase reading ability, New York: Longmans,

Green.

Hoffman, D., Grivel, E. and Battle, L. (2005), ‘Designing software archi-
tectures to facilitate accessible Web applications’, IBM Systems Journal
44(3).
http://www.research.ibm.com/journal/sj/443/hoffman.html

James, F. (1998), Lessons from Developing Audio HTML Interfaces, in
“Third Annual ACM Conference on Assistive Technologies’, pp. 27-34.

Johnson, D. G. (2004), ‘Fact Sheet on Manual Braille Writing Aids and
Labelers’. Document produced by ABLEDATA.
http://tinyurl.com/f9se7

King, A., Evans, G. and Blenkhorn, P. (20044), ‘Blind peoplc and the World
Wide Web’. UMIST, Manchester, UK.
http://www.webbie.org.uk/webbie.htm

King, A., Evans, G. and Blenkhorn, P. (2004b), ‘WebblE, a web browser
for visually impaired people’. Poster presented at the 2nd Cambridge
Workshop on Universal Access and Assistive Technology (CWUAAT).
http://www.webbie.org.uk/papers/King-CWUAAT2004.htm

Klatt, D. H. (1987), ‘Revicw of text-to-speech conversion for English’, Jour-
nal of the Acoustical Society of America 82(3), 737-793.
http://www.mindspring.com/~ssshp/ssshp-cd/dk-737a.htm

Knowlton, M. and Wetzel, R. (1996), ‘Braille reading rates as a function of
reading tasks’, Journal of Visual Impairment and Blindness 90, 227-235.
http://www.braille.org/papers/jvib0696/vb960312.htm

229

Lai, J., Cheng, K., Green, P. and Tsimhoni, O. (2001), On the road and on
the Web?: comprehension of synthetic and human speech while driving,
in ‘Proceedings of the SIGCHI conference on Human factors in computing
systems’, ACM Press.
http://tinyurl.com/nqjcp

Lai, J., Wood, D. and Considine, M. (2000), The effect of task conditions on
the comprehensibility of synthetic speech, in ‘Proceedings of the SIGCHI

conference on Human factors in computing systems’, ACM Press.

Lamport, L. (1985), Latez: A Document Preparation System, Addison Wes-
ley.

Larson, K. (2004), ‘The Science of Word Recognition’. Microsoft Corpora-
tion, Advanced Reading Technology group.
http://tinyurl.com/4qrnk

Legge, G. E., Madison, C. and Mansfield, J. S. (1999), ‘Measuring Braille
reading speed with the MNREAD test’, Visual Impairment Research
1(3), 131-145.
http://gandalf.psych.umn.edu/~legge/braille reading.pdf

Lewis, J. R. (1995), ‘IBM Computer Usability Satisfaction Questionnaires:
Psychometric Evaluation and Instructions for Use’, International Journal

of Human-Computer Interaction 7(1), 57-78.

Lorimer, J. and Tobin, M. J. (1979), ‘Experiments with modified Grade 2
Braille codes to determine their effect on reading speed’, Journal of Visual

Impairment and Blindness 73(8), 324-328.

Luce, P., Feustel, T. and Pisoni, D. (1983), ‘Capacity Demands in Short-
Term Memory for Synthetic and Natural Speech’, Human Factors 25, 17—
31.

Lévesque, V., Pasquero, J., Hayward, V. and Legault, M. (2005), ‘Display
of virtual braille dots by lateral skin deformation: feasibility study’, ACM

230

Transactions on Applied Perception (TAP) 2(2), 132-149.
http://doi.acm.org/10. 1145/1060581.1060587

Maler, E. and Andaloussi, J. E. (1995), Developing SGML DTDs : From
Text to Model to Markup, Prentice Hall.

Marincu, C. and McMullin, B. (2004), ‘A Comparative Assessment of Web
Accessibility and Technical Standards Conformance in Four EU States’,
First Monday 9(7).
http://tinyurl.com/qbtcy

McGookin, D. K. and Brewster, S. A. (2004), ‘Understanding concurrent
earcons: Applying auditory scene analysis principles to concurrent earcon
recognition’, ACM Transactions on Applied Perception (TAP) 1(2), 130~
155.

McMullin, B. (2002a), ‘Users with Disability Need Not Apply? Web Acces-
sibility in Ireland’, First Monday 7(12).
http://tinyurl.com/pq43f

McMullin, B. (2002b), ‘WARP: Web Accessibility Reporting Project Ireland
2002 Baseline Study’.
http://tinyurl.com/gxb86

Morley, S., Petrie, H., O’Neill, A.-M. and McNally, P. (1998), Auditory nav-
igation in hyperspace: design and evaluation of a non-visual hypermedia
system for blind users, in ‘Proceedings of the third international ACM

conference on Assistive technologies’, ACM Press, pp. 100-107.

Mousty, P. and Bertelson, P. (1985), ‘A study of braille reading: 1. Reading
speed as a function of hand usage and context’, The Quarterly Journal of
Ezxperimental Psychology 37a, 217-233.
http://www.braille.org/papers/analys/analys.html

Mynatt, E. D. and Edwards, W. K. (1992), Mapping GUIs to Auditory

231

Interfaces, in ‘Proceedings of the 5th annual ACM symposium on User

interface software and technology’, ACM Press, pp. 61-70.

Nemeth, A. (1972), Nemeth code of braille mathematics and scientific nota-

tion, American Printing House for the Blind.

Oogane, T. and Asakawa, C. (1998), An Interactive Method for Accessing
Tables in HTML, in ‘International ACM Conference on Assistive Tech-
nologies’, pp. 126-128.
http://doi.acm.org/10.1145/274497.274521

OUP (1998), The Little Ozford Dictionary, seventh cdn, Oxford University
Press, Oxford.

Parente, P. (2004), Audio enriched links: web page previews for blind users,
in ‘Assets '04: Proceedings of the 6th international ACM SIGACCESS
conference on Computers and accessibility’, ACM Press, New York, NY,
USA, pp. 2-8.
http://doi.acm.org/10.1145/1028630.1028633

Petrucci, L., Harth, E., Roth, P., Assimacopoulos, A. and Pun, T. (2000),
WebSound: a generic Web sonification tool, and its application to an audi-
tory Web browser for blind and visually impaired users, in ‘In Proceedings

of the Sixth International Conference on Auditory Display (ICAD 2000).

Pisoni, D., Nusbaum, H. and Greene, B. (1985), Perception of Syn-
thetic Speech Generated by Rule, in ‘Proceedings of the IEEE’, Vol. 73,
pp. 1665-1676.

Pontelli, E., Gillan, D., Xiong, W., Saad, E., Gupta, G. and Karshmer, A. L
(2002), Navigation of HTML tables, frames, and XML fragments, in ‘Fifth
Annual ACM Conference on Assistive Technologics’, Web accessibility,
pp- 26-32.
http://doi.acm.org/10.1145/638249.638256

232

Pontelli, E. and Son, T. C. (2002), Accesible interfaces: Planning, reasoning,
and agents for non-visual navigation of tables and frames, in ‘Proceedings
of the fifth international ACM conference on Assistive technologies’, ACM
Press, pp. 73-80.

Pontelli, E. and Son, T. C. (2003), ‘Designing intelligent agents to support
universal accessibility of E-commerce services’, Electronic Commerce Re-
search and Applications: Selected Papers from the International Workshop
on Software Agents for Business Automation 2(2), 147-161.

Pontelli, E., Xiong, W., Gupta, G. and Karshmer, A. I. (2000), A domain
specific language framework for non-visual browsing of complex HTML
structures, in ‘Assets '00: Proceedings of the fourth international ACM
conference on Assistive technologies’, ACM Press, New York, NY, USA,
pp- 180-187.

Rabbitt, P. (1966), ‘Recognition memory for words correctly heard in noise.’,

Psychonomic Science 6, 383-384.

Rabbitt, P. (1968), ‘Channel-capacity, intelligibility, and immediate mem-
ory’, Quarterly Journal of Ezperimental Psychology 20, 241-248.

Ramakrishnan, I. V., Stent, A. and Yang, G. (2004), Hearsay: enabling
audio browsing on hypertext content, in ‘Procecedings of the 13th inter-
national conference on the World Wide Web’, pp. 80-89.
http://doi.acm.org/10.1145/988684

Raman, T. V. (1994), Audio System For Technical Readings, PhD thesis,
Cornell University, Computer Science Department.

http://citeseer.ist.psu.edu/63309.html

Raman, T. V. (19964), Emacspeak-a speech interface, in ‘Proccedings of the
SIGCHI conference on Human factors in computing systcms: common

ground’, ACM Press, pp. 66-71.

233

Raman, T. V. (1996b), Emacspeak-direct speech access, in ‘Proceedings of
the second annual ACM conference on Assistive technologies’, ACM Press,

pp. 32-36.

Regan, B. (2005), ‘Best Practices for Accessible Flash Design’. Macromedia,
Inc.

http://www.adobe.com/macromedia/accessibility/whitepapers/

Roberts, J., Slattery, O., Kardos, D. and Swope, B. (2000), New technology
enables many-fold reduction in the cost of refreshable Braille displays, in
‘Proc. Conf. ASSETS: ACM SIGACCESS Conference on Assistive Tech-
nologies’, Association for Computing Machinery (ACM), pp. 42-49.
http://doi.acm.org/10.1145/354324.354335

Rosson, M. B. (1985), Listener training for speech-output applications, in
‘Proceedings of the SIGCHI conference on Human factors in computing

systems’;, ACM Press.

Savidis, A. and Stephanidis, C. (1998), ‘The HOMER UIMS for dual user
interface development: Fusing visual and non-visual interactions’, Inter-

acting with Computers 11(2), 173-209.

Schroeder, F. K. (1996), ‘Perceptions of Braille Usage by Legally Blind
Adults’, Journal of Visual Impairment and Blindness 90, 210-218.
http://www.braille.org/papers/jvib0696/vb960310.htm

Shajahan, P. and Irani, P. (2005), Manipulating Synthetic Voice Parameters
For Navigation In Hierarchical Structures, in ‘Proceedings of ICAD 05-
Eleventh Meeting of the International Conference on Auditory Display,

Limerick, Ireland,’.

Shneiderman, B. (2000), ‘The limits of speech recognition’, Commun. ACM
43(9), 63-65.
http://doi.acm.org/10.1145/348941.348990

234

Sinclair, R. (2000), ‘Microsoft Active Accessibility: Architecture’. Microsoft
Corporation.
http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/dnacc/html/actvaccess.asp

Sloan, M. (2001), ‘Web Accessibility and the Disability Discrimination Act’,
Journal of Information, Law and Technology, 2001(2).
http://elj.warwick.ac.uk/jilt/01-2/sloan.html

Smith, A. C., Cook, J. S., Francioni, J. M., Hossain, A., Anwar, M. and
Rahman, M. F. (2003), Nonvisual tool for navigating hierarchical struc-
tures, in ‘ACM SIGACCESS Accessibility and Computing , Proceedings
of the 6th international ACM SIGACCESS conference on Computers and
accessibility Assets 04’, ACM Press, pp. 133-139.

Sowa, J. F. (1984), Conceptual structures: information processing in mind

and machine, Addison-Wesley, Reading, Mass.

Spiliotopoulos, D., Xydas, G., Kouroupetroglou, G. and Argyropoulos, V.
(2005), Experimentation on Spoken Format of Tables in Auditory User
Interfaces, in ‘Proc. of the 3rd Int. Conference on Universal Access in

Human-Computer Interaction’.

Sproat, R. (1996), Text Interpretation for TTS Synthesis, Cambridge Uni-
versity Press, London/New York, chapter 5.3.
http://cslu.cse.ogi.edu/HLTsurvey/chbnode5. html

Stevens, R. D. (1996), Principles for the Design of Auditory Interfaces to
Present Complex Information to Blind People, PhD thesis, Department

of Computer Science.

Takagi, H., Asakawa, C., Fukuda, K. and Maeda, J. (2002), Site-wide Anno-
tation: Reconstructing Existing Pages to be Accessible, in ‘Proceedings of
the fifth international ACM conference on Assistive technologies’, ACM
Press, pp. 81-88.

235

Taylor, E. A. (1966), The Fundamental Reading Skill as Related to Eye-
Movement Photography and Visual Anomalies, second edn, Charles C.

Thomas, Springfield, Illinois.

UK Cabinet Office (2005), ‘eAccessibility of public sector services in the
European Union’. London.

http://tinyurl.com/96sz0

Umeda, N., E., M., T., S. and Omura, H. (1968), Synthesis of fairy tales
using an analog vocal tract, in ‘Proc. 6th Int. Cong. Acoust., Tokyo,

Japan’.

van Bezooijen, R. and van Heuven, V. (1998), Assessment of Synthesis Sys-

tems, Vol. 111, Walter De Gruyter Inc, pp. 167-249.

W3C (1999a), ‘HTML 4.01 Specification’. World Wide Web Consortium,
D. Raggett, A. Le Hors and I. Jacobs, Eds.
http://www.w3.org/TR/REC-htm140/

W3C (1999b), ‘Web Content Accessibility Guidelines 1.0’. World Wide Web
Consortium, W. Chisholm, G. Vanderheiden and I. Jacobs, Eds.
http://www.w3. org/TR/1999/WAI-WEBCONTENT-19990505

W3C (2000a), ‘Authoring Tool Accessibility Guidelines 1.0’. World Wide
Web Consortium, J. Treviranus, C. McCathieNevile, I. Jacobs, Jan
Richards, Eds.
http://www.w3.org/TR/2000/REC-ATAG10-20000203

W3C (2000b), ‘XHTML Basic’. World Wide Web Consortium, M. A. Baker,
M. Ishikawa, S. Matsui, P. Stark, T. Wugofski and T. Yamakami, Eds.
http://wuw.w3.org/TR/2000/REC-xhtml-basic-20001219

W3C (2002a), ‘User Agent Accessibility Guidelines 1.0’. World Wide Web
Consortium, I. Jacobs, J. Gunderson and E. Hansen, Eds.

http://www.w3.org/TR/2002/REC-UAAG10-20021217/

236

W3C (2002b), ‘XHTML 1.0: The Extensible HyperText Markup Language
(Second Edition)’. World Wide Web Consortium, S. Pemberton, Ed.
http://www.w3.org/TR/2002/REC-xhtm11-20020801

W3C (2004a), ‘Document Object Model (DOM) Level 3 Core Specification’.
World Wide Web Consortium, A. Le Hors, P. Le Hégaret, L. Wood, G.
Nicol, J. Robie, M. Champion and S. Byrne, Eds.
http://www.w3.org/TR/DOM-Level-3-Core/

W3C (2004b), ‘Extensible Markup Language (XML) 1.0 (Third Edition)’.
World Wide Web Consortium, Cambridge, MA, T. Bray, J. Paoli, C. M.
Sperberg-McQueen, E. Maler and Fran cois Yergeau.
http://www.w3.org/TR/2004/REC-xm1-20040204/

W3C (2005), ‘Cascading Style Sheets, level 2 revision 1: CSS 2.1 Specifica-
tion’. World Wide Web Consortium, B. Bos, T. Celik, I. Hickson and H.
Wium Lie, Eds.
http://www.w3.org/TR/2005/WD-CSS21-20050613

W3C (2006), ‘Web Content Accessibility Guidelines 2.0’. World Wide Web
Consortium, B. Caldwell, W. Chisholm, J. Slatin and G. Vanderheiden,
Eds.
http://www.w3. org/WAI/GL/WCAGQO/WD-WCAGQO—20060427/

Waddell, C. D. and Urban, M. (2000), ‘An Overview of Law and Policy for
IT Accessibility’.
http://wuw.icdri.org/CynthiaW/SL508overview.html

Walshe, E. and McMullin, B. (2004), Accessing Web Based Documents
Through a Trec Structural Interface, in ‘Proccedings of ICCHP 2004’,
Springer Lecture Notes in Computer Science (LNCS), Springer.
http://tinyurl.com/r2muo

Walshe, E. and McMullin, B. (2006), Browsing Web Bascd Documents
through an Alternative Tree Interface: The WebTrce Browser, in ‘Pro-

237

ceedings of ICCHP 2006’, Springer Lecture Notes in Computer Science
(LNCS), Springer.

Waterworth, J. A. and Thomas, C. M. (1985), Why is synthetic speech
harder to remember than natural speech?, in ‘Proceedings of the SIGCHI

conference on Human factors in computing systems’, ACM Press.

Yesilada, Y., Stevens, R., Goble, C. A. and Hussein, S. (2004), Rendering
tables in audio: the interaction of structure and reading styles, in ‘The
Sixth International ACM SIGCAPH Conference on Assistive Technologies
(ASSETS)’, pp. 16-23.
http://doi.acm.org/10.1145/1028635

Zajicek, M. and Powell, C. (1997), ‘Building a Conceptual Model of the
World Wide Web for Visually Impaired Users’, Contemporary Ergonomics
pp. 270-275.

Zajicek, M., Powell, C. and Reeves, C. (1998a), ‘Orientation of Blind Users
on the World Wide Web’, Contemporary Ergonomics .

Zajicek, M., Powell, C. and Reeves, C. (1998b), A Web navigation tool for
the blind, in ‘Proceedings of the third international ACM conference on

Assistive technologies’, ACM Press.

238

Appendix A

WebTree Application User

Manual

Introduction

Many Internet access solutions for the blind are in reality just dedicated
audio interfaces that serve as add-on applications to out of the box visual
browsers. However, it must be noted that there are huge differences in
the type of methods of interaction between using a predominantly speech
interface and that of visual interaction. The human eye is expertly capable
of scanning through the document to establish what is deemed to be the
important page content. This is done by examining the spatial relationships
between elements and through the use of visual cues, such as colour and
emphasis, included in the text by the author. Unfortunately, due to the serial
nature of speech technology, this is not possible with a purely speech output
interface, for it is only possible to examine a single point in the document at
any given time. To avoid any confusion on behalf of the user when reading
elements that depend on their spatial layout for easy comprehension, many
of these applications output the content in the linear format in which it
appears in the mark-up. Thus, the user must navigate through all elements

that appear in the file prior to the main content, before it can be read.

239

The WebTree application has been written to explore the use of an alter-
native, tree structural approach to the displaying of content, when applied
to the portrayal of Internet based documents. Through this application, we
wish to discover any possible advantages to the user that can be associated
with this system. We are especially concerned with the effect this approach
may have on the efficiency at which the user can navigate to and assimilate
information.

As well as the tree like arrangement of the displayed XHTML clements,
The WebTree application has been augmented with some rather powerful
methods to search for content. These alternative methods were included,
so that we could also experiment with alternative approaches used to nav-
igate through these documents to find the required information. As well
as searching for plain text, the user can search for an individual XHTML
element, or limit the text search to only find instances that occur inside
specific XHTML elements. Thus if a document is properly marked up with
structural elements, such as <h*> and elements, instead of having their
visual appearance created with changes in font, the user should also be able

to navigate to the areas of the page that the author deemed important.

User Interface

The main document view of the application is based on the idea of exposing
the tree structural arrangement of elements contained in the XHTML file.
The view consists of a combination of buttons representing the XHTML
mark-up elements, which when pressed, cxpand or remove their content {rom
the display, and plain text content from elements that have already been
expanded. The expansion controls arc made up of two components. The
first being the button that controls the expansion or text removal process.
The sccond component is necessary to provide the user with some contextual
information about the element under point. This includes the name of the
clement e.g., “ul” and the content of the elements title attribute if it exists.

In the case of paragraph elements, the first number of characters contained

240

in the element is exposed automatically. The amount of characters to be
displayed can be customised in the wt-display group. To avoid confusion
on the part of the user, the tree controls for a specific XHTML element are
placed on a line on their own.

Not all elements have tree controls associated with them. This function-
ality is just limited to those elements that are designated as block elements
in the XHTML basic specification (W3C, 2000b). All designated inline el-
cments are automatically expanded in the display by default, without any
tree expansion controls.

In designing the WebTree application, we have tried to keep the user
interface as simple as possible. The enter key is the main key used to
dynamically change the state of the display, for this is the key that performs
operations on buttons, whether they are trce control buttons, checkboxes
or radio buttons. However, the search functionality docs also have a major
effect on the display, for, once an instance of the search string is found, the
element containing the string is automatically cxpanded into the display.

In the instances where commands require just one keystroke for acti-
vation, such as performing an element search, we just use the upper case
version of the same character to reverse the action, to avoid having a huge
number of keys for the user to learn. E.g. e searches forward for an element,

and E performs the same type of search backwards.

Customisation

All document views generated by the WebTree application are controlled
by a set of customisable variables stored in the file wt-custom.el. The
state of all of these variables can be altered through the emacs supplied
customization package. The custom groups, wt-element-expansion and
wt-display are the two groups responsible for the types of alternative view
generated. The wt-display group variables govern such things as line length
and the amount of text to be displayed when an element has not already

been expanded. But with the wt-element-expansion group we can govern

241

the generation of the alternative document views. In this group we can
specify which elements possess tree controls in the screen text, and those
elements that we wish to have automatically expanded when encountered
by the application. In addition, we can remove entire sub trees of elements
from the display, by setting both the display variable and the expansion
variable for a specific element to nil.

To access the wt—tree group, which contains links to all the sub groups
of customisation variables for the WebTrce application, from within the
application itself, you must press the c key.

To access the wi-element-expansion group automatically, just press the

C key.

Forms Interface

Unlike some other Internet solutions for the blind, there is no specialised
forms mode that the user must enter, so as to be able to fill out online
form information. Instead, once focus has been placed on a form field /
control, the application automatically alters the key mappings to allow for
the correct information to be inputted. For example, when focus is placed
on a text field, any letter pressed will result in that character appearing
in the space allocated for the specific field. In the case where the character
pressed invokes a specific WebTree related command, the command call is
overwritten and the character is placed in the text field as normal.

Each form field / control appears on a separate line from any text con-
tained within the form construct. Also, it should be noted that the start
of a form field usually coincides with the beginning of the line. As focus is
placed on the form field / control, its presence is announced. When tabbing
to the individual form fields, any <label> information associated with the
element is also read by the application.

To change the state of both checkbox and radio button elements, move
focus to the element and press the enter key.

To submit the form information, focus must be moved to the submit

242

button, and then the enter key must be pressed.

Table Navigation

In terms of the WebTree application, the table construct is physically por-
trayed in the display in a linearised fashion, with some additional naviga-
tional functionality provided to ensure easy navigation from cell to cell along
the spatial relationships between individual table cells. Navigation is pro-
vided to the cells to the immediate left or right of the current cell in a given
row, or up or down to the next cell in the column under focus. If the current
cell spans more than one row, then navigating to cells to the left or right of
the element is only permitted along the first row in which the cell appears.
Column navigation is not affected in this situation. Similarly, in the case
where the current cell spans more than one column, navigation away from
the cell is only permitted along the first columned spanned by the cell. In
this situation, row navigation behaves as normal.

As we navigate from cell to cell along a specific row or column, the
header information for the current cell does not automatically appear in
the spoken output of the application. Instead, the option is available for
the user to simply navigate to the header cell associated with the current
cell. Navigation to both the row header and column header cells, if they are
present, is possible from the current cell. Once the user has read the related
header information, there is a specific table back function that reverts focus
back to the cell from which the original jump took place.

A list of table navigation commands and their related keystrokes are as

follows:

e 8: Column up
e 2: Column down
e 4: Row left

e 6: Row right

243

e 9: Move to column header

e 3: Move to row header

e 7: Go to beginning of table

e 1: Go to end of table

e 0: Go to previous cell from Header jump

These keys were chosen to allow for the keypad to be used for simple

table navigation.

Searching

There are three different forms of search functionality provided by the Web-
Tree application. The first method to be included is a regular text search
facility, which incrementally searches the content for a user supplied text
string. As each character is inserted by the user, the application just searches
for the next instance of the current string. The search can be ended by press-
ing the enter key, or by changing the focus, through the use of the arrow
keys or keys such as home or end.

The second type of search functionality restricts the regular incremental
search method to only look for instances of a specific text string within
the contents of a particular XHTML element sub tree. For example, we can
limit the search to only search elements for a specific word or phrase. In this
case, all other instances of the search string that are not contained within
an element sub tree are ignored.

To achieve this form of search functionality, we must first notify the ap-
plication as to which element we wish to restrict the search to. This is done
by calling the wt-set-search-restriction function. When this method
is invoked, the user is prompted to insert the clement name. Alternatively,
the user can just hit the UpArrow key, to view the previous restriction ele-
ment selections. Once the restriction has been set, the incremental search

functionality can be invoked as normal.

244

The final piece of search functionality allows the user find and navigate to
any individual XHTML element in a given document. However, to achieve
this, alternative search methods to those used in the incremental text search
are invoked. Once these functions are called the user is prompted to type in
the name of the element to search for, or alternatively, using the arrow keys,
the user can select an element previously searched for by the application.
To activate the search the enter key must then be pressed.

A list of the search related keystrokes and their actions are as follows:

Control-s: Incrementally search forward for text.

Control-r: Incrementally search backward for text.

s: Set search restriction.

S: clear search restriction.

e: Search forward for element.

E Search backwards for element.

Document Retrieval and Browser History

When the wt start up command is invoked, the browser automatically loads
the web page pointed to by the wt-default-homepage variable, which can
be set through the emacs specific customization system. If this variable
is not set, then the application uses the value of the www_home environment
variable to act as the home page for the current user. As each subsequent
document is retrieved, its URL is added to the browser’s history list for later
perusal by the user.

Navigation through the browser history can be achieved in two different
ways. The first method involves the user invoking specialised history navi-
gation functions, through the use of application specific keystrokes. A list
of these keystrokes and their associated actions can be found below. The

second method for navigation only occurs when either the wt-fetch, or the

245

wt-open-local-file functions are invoked. The user is prompted to type
in a URL, or alternatively, using the arrow keys, the user is able to navi-
gate back through the previous URLs visited in the current browser session.
Pressing the enter key on one of these URLs / file path names will result
in the retrieval and displaying of the document concerned.

List of keystrokes and their associated actions:

o: wt-open-local-file. Opens an XHTML file stored locally.

Control-o: wt-fetch. Retrieve a URL from the web.

backspace: General back function

control -b: Back to previous page

control-f: Page forward

b: Undo relative link

246

Index of WebTree Keystrokes and Commands

Keystroke Command

b Undo relative link

G Go to element display customise group

C Main WebTree customise group

e Search forward for XHTML element

E Search backward for XHTML element

1 Move to next hyperlink

L Move to previous hyperlink

0 Open locally stored XHTML file

p Read XHTML element under point

r Redraw document

8 Sot search restriction for restricted incremental text search
S Clear search restriction for restricted incremental text search
t Move to next tree control element

T Move to previous tree control element
backspace General back function

control-b Page back

control-f Page forward

Control-o Retrieve URL

control-s Incrementally searches forward for text
control-r Incrementally searches backward for text

control-leftarrow

Back word

control-rightarrow

Forward word

control-home

Beginning of buffer

control-end

End of Buffer

tab

Forward to next element on the tab order

shift-tab

back to previous element on the tab order

previous cell from Header jump

End of table

Column down

Jump to row header

Row left

Speak current cell under point

Row right

Beginning of table

Column up

Ol ||| WO

Jump to column header

247

Appendix B

WebTree Tutorial

This is a short tutorial to help the user gain a basic understanding of how
to operate the WebTree application. However, for a more in-depth descrip-
tion of the WebTree application’s functionality, see the user manual in ap-

pendix A.

Tree Element Expansion

The initial display can contain a mixture of some tree controls, representing
XHTML block elements, and some plain text content from elements that
have already been expanded. The designated inline XHTML elements are
always expanded automatically by default in the screen text, without the
presence of any tree expansion controls.

To expand an element of the tree, the user must activate the button that
is placed at the beginning of the line representing the element’s tree control.
This button can appear in two different forms. If the button is represented
by [+], then the element still exists in its collapsed state. To expand this
element, move focus to the button and press the enter key. The amount of
information to be exposed by this action can vary greatly depending on the
setup and the type of element to be expanded. That is, how much of the
sub tree is to be shown automatically due to the key press, depends greatly

on the custom variables. See the customisation section for more details.

248

If the button is represented by [-], then the element already exists in
its expanded state. Thus, hitting the enter key when the button is under
point shall remove the elements entire contents from the displayed text.

Before moving on to the rest of the tutorial, it is advisable for the user
to familiarise themselves with the methods for both the expansion and the

collapsing of elements.

Customisation

The list of designated XHTML block elements to be automatically expanded
when encountered by the WebTree application is dictated by the users own
preferences. In the customisation group, wt-element-expansion, the user
can select whether they would prefer to have an individual element auto-
matically expanded by default. The naming convention for the expansion
variables is the string “wt-custom-display-” followed by the name of the
XHTML element. To automatically expand an element, just ensure its ex-
pansion variable value is set to t. Set it to nil otherwise. To go directly to
the wt-element-expansion group, press the letter C.

In addition, using the same customise buffer, you can set the display-
clement variables for each XHTML block element. These variables deter-
mine whether the tree controls for a given element actually appear in the
screen text at the point where the element is presented. This option is avail-
able for those cases where the user prefers to always automatically expand
a specific element, and would rather reduce the amount of clutter on the
screen, by eliminating its tree expansion control from the display.

To have these changes take effect on the browser settings, the user must
also select cither the save for current session, or save for future
sessions, options that appear near the top of the customise buffer.

We recommend that you spend some time experimenting with these dif-
ferent settings, until you have a good idea of how to generate an optimal
view for your requirements. For example, try changing the settings for the

paragraph<p> element and the element.

249

To get back to the document that you were using after making alterations
to the customisation buffer, either activate the finish button or close the
customize buffer using the emacs kill-buffer command bound to the key
sequence control-x followed by k. Alternatively, you can use the emacs
switch-buffer bound to Control-xb key combination.

Once back in the WebTree related document, press the letter r to redraw
using the new settings.

Setting both the display related variable and the expansion related vari-
able for the same element to a value of nil, results in the element and its

entire sub tree not appearing at all in the display.

Using XHTML Forms

When filling out forms with the WebTree application, there is no additional
specialised forms mode that the user must enter before access to the fields
is granted for editing purposes. Instead, when the focus is placed on a form
field, the application automatically alters the mapping of keystrokes from
their prescribed WebTree settings back to the normal character insert func-
tion. However, once focus as been removed from the form field / control, the
key mappings revert to point to the WebTree specific keystroke mappings.

Try filling out the following form. This is just a sample form and is not
intended to be submitted to anywhere.

Remember, to change the state of a radio button or a checkbox, just

move the focus to it and press the return key.

Table Navigation

Table navigation is quite simple Under the WebTree application interface,
once you use the keypad keys to manoeuvre around through the different
cell-to-cell relationships. Remember you need to have the num lock key set
to allow numbers to be entered otherwise the keys are bound to the same

functions as the arrow keys and the keys in the page-up and page-down

250

:r] wehTree Tutorial - Microsoft Internet Explorer

_!I':I!x!

| me gdk Yew Pavaries Ionk teb - |

J @Back - @ u j P ' Search *, . Favorites 67 g &

| Address Iﬂ E!\tempiwebtree_tutorial. html B ;, Go J Links >
FitstName: [Second Narme: [=

student & PAYE worker ¢ selfEmployed © screen Reader User ¥

Submit I il

Back to top
hd

&) Done = T T T T 14ty Computer y

Figure B.1: A simple form construct

group.

A full list of the table navigation keys and their functions is available
in the user manual. However, if you do not have access to the user man-
ual, you can use the emacspeak speak specific emacspeak-learn-mode func-
tion bound to the control-e control-h key combination to discover which
function is bound to each key. To leave this mode, type the emacs cancel
keystroke, which is bound to control-g.

Here is a simple table construct in which you can try out the different

table navigation functions.

Searching

The regular incremental text search functionality bound to the keystrokes
control-s and control-r, does not require any elaborate description of its
usage. As cach character is typed in to the search string by the user, the
application tries to find the next instance of the string in its current state.
Each time an instance of the search string is found, the containing tree
clements are automatically expanded into the audio rendering, and focus

jumps to that point.

2561

=10] x|

) WebTree Tutorial - Microsoft Internet E_x@_’o_t;g

| Ble Edk Vew Favortes Took Help b II
4 ;] l ;-"') Search - Favorites
;_ Address |§j E:\templwebtree_tutorial. html :I ﬂ Go lJI.Inks*”T
Keystroke Command Description -l
2 wi-table-column-down Column down
4 wi-table-row-left Row left

L

6 wi-table-row-rght Row right
8 wi-table-column-up Column up

&) Done n | % My Computer

a L

Figure B.2: A simple table construct

The types of search that require a much greater description of their
workings are the XHTML element search functions, and the restricted in-
cremental text search functionality.

The element specific search allows the user to jump to the position of
any XHTML clement, once it has been included in the document’s mark-up
structure. A number of web browsing solutions for the blind have imple-
mented a limited form of this type of search functionality, i.e., the user is
allowed to jump directly to such elements as <h*> elements or to <table>
constructs. However, under the system implemented in the WebTree appli-
cation, all elements contained in the document are searchable. For example,
try searching this document for the next paragraph <p> element, or search
for a element. To perform a search of this kind, press the letter
e. If searching backwards use E. Once this is done, you will be prompted
for the name of an element. Type in the name of the element to search for,
oxcluding the lessthan and greaterthan signs. Then hit the enter key. If the
clement is present in the direction in which you arc searching, the element

is automatically expanded into the display and focus is placed on the found

252

instance.

The final type of search is the restricted incremental search. This works
by only searching inside the sub trees of a named clement for the relevant
text. For example, try restricting the search to be inside a <p> element
and search for a word or phrase you know to be in the document. If the
scarch string is found but outside a paragraph sub tree, then it is completely
ignored by the application.

To restrict the search, press the s key. You will be then prompted for
the name of the clement to limit the search to. Once this has been entered,
press enter. To invoke the search use the same keystrokes as the normal
incremental search, control-s or control-r. Remember that if you wish to
go back to using the normal incremental search, you must unset the search

restriction using the 8 key.

253

Appendix C

Additional User Evaluation

Questionnaires

C.1 Preliminary Evaluation Questionnaire

It is necessary to gather some profile information about the users testing the
WebTree application, so we can establish a general profile covering the entire
group of test participants. Thus, we request that you fill out the following
form information. Note: No identifiable information about a single user
shall be included in the final report.

Thank you for your participation.

Please place answers after the question in the text. Where there are
multiple choice answers provided for a question, mark the one most suitable.

1. User profile information (all fields are optional):

First Name:

Last Name:

Age?

e Job Title:
2. How would you describe your current level of eyesight?

254

e Blind:
e Partially sighted:

e Fully Sighted:

Screen Reader Usage
3. Are you a screen reader user?
e Yos:

e No:

4. If so, which screen reader do you use on a regular basis?

5. Have you used any other screen readers recently?
e Yes:
o No:

Il so, which ones?

6. What would be your level of proficiency with screen reader usage?
o Advanced:

e [ntermediate:

e Novice:

Technical Knowledge

7. Which operating system do you nse mostly?

8. Have you ever nsed the Linux operating system?
e Yos:

e No:

9. Have you ever used emacs?

e Yes:

e No:
10. Have you ever used emacspeak?

e Yes:

e No:

Internet Usage

11. Do you use the Internet on a regular basis?

12. If so, for what functions? E.g. do you need it for research purposes
at work?

13. Which web browser -screen reader combination do you normally use?

14. How would you describe your knowledge level of HTML?
e Advanced:

e Intermediate:

e Basic:

e Non-cxistent:

15. Have you ever used the WebTree application before today?

e Yos:

e No:

C.2 After Evaluation Questionnaire

This questionnaire is used in the WebTree user testing process to try to
establish a better idea of the user opinions about, and expectations of the
types of functionality included in the application.

Thank you for participating.

256

Please answer the following questions. Feel free to add any comments
you might have relating to a question after the question in the text.

Please place answers after the question in the text. Where there are
multiple choice answers provided for a question, mark the one most suitable.

1. Do you think that through the examination of the tree structural view
of the document, you can easily get a general idea of the subject matter of

the content being presented?

e Yes

e No

2. Do you think that through this type of document view, you can

navigate more easily to the main content of a given web page?
e Yes

e No

3. When using this application, can you navigate through the content

of web pages successfully?

e Yes

e No

4. TIn general, do you think that viewing the document through the
tree view interface would have any major advantages over viewing the same
document in a linearised form? Please give a reason for your answer.

5. In general, do you think that viewing the document through the tree
view interface would have any major disadvantages over viewing the same
document in a linearised form? Please give a reason for your answer.

6. Is the ability to configure the XHTML elements that appear in the

document view without any tree controls, an advantage?
e Yes

257

e No

Why?
7. Does the ability to have certain elements expanded automatically

have any advantages for the user?

e Yes

e No

Why?

8. When displaying the tree controls for an element, should the name of
the HTML element be used, or would it be better to use the full name for
the element? For example, in the case of a element, should the user
be told that an “UL” element or an “unordered list” is present. Please give
a reason for your answer,

9. For elements not ecxpanded, is it important to display in the tree
control information, any additional data about the element if it is present.
For example, the content of a title attribute or in the case of a table, the

content of the summary attribute.
e Yes
e No

10. In the case of unexpanded paragraph elements, the <p> clement, is
it beneficial to show a small portion of its contained text in the display, so

as to alert the user of the type of subject matter it contains.

e Yes

e No

Please give a reason for your answer.

258

Forms
11. Did you like the way in which HTML forms were presented in the
WebTree application?

e Yes

e No

Please give a reason for your answer.

12. Is the lack of a specific forms mode an advantage or disadvantage?
Why?

13. Do you like the way in which the key mappings change so that
character input is rveceived by the application once a form field is under
focus, and how it reverts back to using the general application key mappings

once focus has been removed from the field?

Tables

14. Do you like the way in which table constructs are presented under the
WebTree application?
15. Is the choice of using the keypad keys to provide table navigation

functions a good one?

o Yos

e No

Why?
16. Would you prefer if the header information for each table cell were

to be read automatically every time you navigated to that cell?

e Yes

o No

259

17. Is the ability to jump to the header cell for any given table cell and
back again of any benefit?

18. As a preference, would you prefer to have the header information
read automatically, or have the ability to jump to the header information
when it is required?

19. Did the table navigation commands operate in a manner that you

would have expected?
e Yos
o No
Searching
20. Did you try to use the “scarch for an element” functionality?
e Yes
e No

21. Do you like the ability to search the document for any specific

element?
o Yes
e No

22. Do you believe this type of search to be beneficial?

o Yes

o No

If you have any comments relating to the specific element search facility,

whether positive or negative, please list them here:

260

23. Did you try to limit the normal text search to only search for text
inside a specific XHTML element?

e Yes

e No

24. Do you like the ability to limit the search in this manner?
e Yes

e No

25. Do you think this type of functionality to be of benefit?

e Yes

o No

Comments

If you have any additional comments about the WebTree application, please

add them here.

Negative Comments

1.

261

Positive Comments

1.

262

Appendix D

Braille

This appendix considers the use of Braille as the primary mode of written
interaction and how technology might employ this medium to provide access
to electronically stored information. Initially, a description of Braille and
its advantages/disadvantages compared to alternative interaction modalities
is presented. Some statistics relating to the current usage levels of Braille
both in Ireland and from an international perspective are included. Also
featured are the results of a number of studies concerning the rate of content
assimilation through Braille. A number of distinct reading strategies to
increase reading rates are also described. Finally, a number of mechanisms

used to generate Braille content are discussed.

D.1 Brief Description

Braille is a tactile method of encoding information used by the blind to per-
form written communication, dating back to the early 19th century. Braille
characters do not try to mimic the shape of their print equivalents, for coding
in this manner would have required much additional space for the written
material. Instead, cach character is fashioned from a combination of up to
six raised dots, positioned in two adjacent vertical columns of three. The
dots inhabiting the first column are recognised as dot 1, dot 2 and dot3,

whereas dots 4, 5 and 6 complete the second column. Each letter definition

263

is indicated by the positioning of different numbers of dots in alternate com-
binations. For example, the letter ‘e’ is represented by dots 1 and 5 and the
‘g’ character includes dots 1,2,4 and .

Books transcribed into Braille, are usually quite large and rather bulky
in nature, often requiring the division of content into numerous volumes.
This is partly due to the space required to represent each Braille character.
It is only possible to place 40 or so characters on a given line, whereas with
printed text, the inclusion of up to 75 characters is frequently attainable.
In addition, it is necessary to insert a limited quantity of white space as a
divider between lines of text, to ensure lines may be deciphered and read
with ease. Therefore, there often only exists approximately 27 lines of actual
content on a standard Braille page. A second reason for this bulkiness is
the thickness of the paper recommended for Braille production; to sustain
the dots over a reasonable time frame, a card varying between 100gsm and
130gsm in weight is required. To illustrate this point even further, the
content of an average printed desktop dictionary such as The Little Ozford
Dictionary (OUP, 1998) encompasses 38 volumes of Braille.

The presentation of Braille content is often subject to alternative format-
ting rules to the visual structuring of text. Thesc rules serve to both increase
the readability of Braille, and ensure its presentation is further compacted.
An example of such a rule is evident when signifying the beginning of a new
paragraph. In printed text, such blocks of content are generally scparated
by at least one line of white space. Whereas in Braille, the white space line
scparator is removed and the initial word is indented by two spaces. In gen-
eral, the insertion of blank lines is reserved to signal larger content dividers,
such as the beginning of a new section, or chapter.

To aid the readability of Braille documents, additional spaces that would
normally appear in printed text after punctuation marks are removed and
replaced by a single space character. When large segments of white space
appear on a line, difficulties can arise in determining whether the next block

of text encountered by the reader’s fingers belongs to the current row. This

264

can impact on the speed at which content can be assimilated. Both in Ireland
and Britain, English language Braille formatting is governed by a set of rules

produced by the Braille Authority of the United Kingdom (BAUK, 2004).

D.2 Louis Braille: Biographical note

Louis Braille, the inventor of the Braille reading system for the blind, was
born in Coupvray, a small town not far from Paris in 1809. He was the
son of a harness maker, and his blindncss was directly attributable to his
father’s occupation. It occurred as the result of an accident in his father’s
workshop when he was four years old, in which he managed to pierce his eye
whilst playing with an awl, destroying the eye completely. Some time later,
infection set in as a result of the accident and transferred to the remaining
eye damaging it irrevocably.!

For a number of years, he reccived a limited education whilst attending
a local school, however, it was obvious that without the ability to read and
write, the pace of learning was rather constrained. At the age of 10, Braille
received a scholarship to leave Coupvray for Paris to be educated at the
Royal Institution for Blind Youth, where he was taught practical skills such
as chair caning and slipper making. Skills to provide him with an income
so as he wouldn’t have to spend his life begging on the street. This was a
common fate for many blind people of the time. Whilst attending the Royal
Institution for Blind Youth, Braille learned to read using a system of large
embossed print letters. However, books were bulky and rather difficult to
produce using this system, for it was necessary to press large copper letters
into the underside of the paper resulting in raised lettering.

Braille’s method for representing the printed character set was not en-
tircly an original idea. Whilst he was studying in Paris, a soldier named
Charles Barbier visited the school he was attending and presented a rcading

system he had invented called “night writing”. It consisted of an arrange-

nformation in this section is summarised from The life of Louis Braille at:
http://tinyurl.com/879kn

265

ment of up to 12 raised dots, each combination representing an individual
sonorant sound as opposed to individual letters. It had already been rejected
by the army as a viable communications mechanism. They attributed their
rejection to comprehension difficulties with learning such a complex system.
However, a young Louis Braille was not so quick to dismiss this methodology.
He realised that with much simplification, it could provide a viable method
for enabling blind people to read and write. After much expcerimentation, a
6-dot combination was settled on, and the first book using Braille’s coding
system was produced in 1827.

The Braille coding system was not initially accepted as a functional
communications mechanism. Many sighted individuals were unable to ap-
preciate the benefits of such a system, for the raised dot combinations didn’t
attempt to mimic the shapes of the printed character set. One particular
head teacher went as far as to enforce a ban on the use of Braille in the
school altogether. However, many blind people recognised the advantages
of the system and learned to master it in secret. Braille himself didn’t live
long enough to witness his coding system widely accepted as the premier
method of reading and writing for the blind. He died from tuberculosis in

1852, at the age of 43, after struggling with illness for a long time.

D.3 Braille Standards

There arc 64 possible dot patterns available when the regular six dot Braille
cell is used. These range from zero dots representing a space character to a
full complement of six (Foulke, 1982). There are two main recognised forms
of Braille output used to encode material written in the English language:
Grade 1 Braille consists of the character set representing the letters
of the alphabet, the numbers zero to nine, and a number of punctuation
characters. The numbers onc to nine arc represented by the letters ’a—i’,
with the letter ’j’ used to denote zero. To signify that a number is being
presented, a special number sign precedes the characters. Where letters and

numbers are mixed, a special letter sign must be inserted between the last

266

digit and the first letter, except on those occasions where they are separated
by white space (BAUK, 2004).

Grade 2 Braille includes the cntire grade 1 character set, plus numerous
shorthand abbreviations to represent letter groupings and in many cases
entire words. These consist of both single character contractions, and a large
amount of multi character abbreviations. These serve to reduce the space
required to encode the material. They also facilitate an increase in Braille
reading speeds. The inclusion of many of these shorthand characters is
often subject to a set of contextual rules. For example, the Braille character
consisting of dots 2 and 3 provides a number of different meanings depending
on its position in a letter grouping. When viewed as the initial character
of the assemblage, it denotes the characters be. When located as the final
character, it means a ;, otherwise it signals the letters bb. It is impossible for
this character to appear at the end of a line, unless a semi colon punctuation
mark is required (BAUK, 2004).

In a number of languagcs, there is a Grade 3 level of Braille notation,
which is highly abridged. It comes quite close to shorthand, however Grade
3 is too complex for all but a small minority of readers who have a good
command of language and a good memory (Bell, 1962).

Throughout the previous two centuries, transcription into Braille has oc-
curred for many different written worldwide languages. However, different
language transcriptions may enforce variations in the method for producing
specific character sets. This is most evident when a language contains spe-
cialised accented lettering, such as those found in Irish and French. Thesc
accented letter representations often clash with accepted shorthand abbre-
viations corresponding to grade 2 Braille for English. Thus, it is important
to adhere to the correct writing standards designated for a given language.

Coding systems in Braille have also been devised to provide access to
both mathematical and written music material. Due to the abundance of
additional printed symbols required to provide clarity under these specialised

coding systems, it is frequently necessary to use contextual character group-

267

ings to represent discrete symbols. These character groupings, coupled with
the rules governing their usage ensures a high learning curve to the reading
of such complex material. Unfortunately there exists no definitive standard
determining how these symbols are to be reproduced.

There are many different standards available for producing mathematical
symbols. That is, many countries have developed their own standards. For
example, Braille mathematical and scientific notation in Ireland and the UK
is governed by BAUK (2005), guidelines set down by the Braille authority of
the United Kingdom (BAUK), which adapts a lincar approach to producing
mathematical symbols. Whereas the Nemeth Code is the preferred method
of representation for North America and Canada (Nemeth, 1972). Using the
Nemeth code, attempts are made to fashion a Braille symbol corresponding
to the shape of its printed counterpart. The major disadvantage of this
approach is as a result of the sheer number of symbols possible. Difficulties
can occur in illustrating significant differences in the shapes of mathematical
constructs, so that high levels of accurate symbol recognition are attainable.
As new symbols possessing only subtle differences to existing constructs are
included in printed mathematics, the most relevant Braille translation code
may have already been mapped to represent an alternative symbol (Fitz-
patrick, 1999). However, due to the WebTree application not attempting to
support the display of such complex mathematical data in its current form,
an in-depth discussion of the production of such material is out of scope for

this thesis.

D.4 Braille Reading and Usage Levels

Although a reasonably high word reading rate for Braille can be gained
through reading a passage of text using only onc hand, the most efficient
methods in assimilating Braille material requires the user to use both hands
operating in tandem (Mousty and Bertelson, 1985). Mousty and Bertelson
suggested that both hands play a part in the assimilation of the information,

thus, to a certain extent, limitations are imposed on the reading spced by

268

the pace of the subordinate (slower) hand. The greatest speeds of reading
demonstrated by this study were reached by those individuals for whom a
large variance in reading speed between the hands was not evident.

In his review of the literature concerning the research into Braille reading
methods available at the time, Foulke (1979) states that a number of different
investigations discovered that the optimum rcading method involved the two
index fingers working in tandem to perform much of the reading task. The
initial segment of a line is usually read with both hands side by side, with
the remainder of the line read with just the right hand, whilst the left hand
attempts to locate the starting position of the next line. Based on the
available evidence, Foulke suggests that faster reading is possible when two
index fingers are employed independently, because the reader can use the
time spent in reading more efficiently. He hypothesised that those Braille
readers who use two index fingers read faster because they have learned to
involve the two index fingers cooperatively in the same perceptual process
(Foulke, 1979).

Many blind people employ more than two fingers when reading Braille.
Depending on personal preference, up to eight fingers might in theory be
employed. Howcver, much of the recognition process is encapsulated in
the index and middle fingers. Foulke (1982) cites (Foulke, 1964) as an ex-
periment determining the sensory capacity of normally unused fingers. He
discovered that reading ability diminishes rapidly with progression from the
index finger to the little finger for both hands.

Foulke (1982) tells us that evidence exists, (Harris, 1947; Taylor, 1966)
which demonstrates that the average silent reading rate for high school stu-
dents in the United States of America ranges from 250 to 300 words per
minute, and reading rates two or three times as fast are sometimes observed.
Producing accurate figures relating to Braille reading speed is a controver-
sial topic. The conventional cstimate of the mean reading speed of adults is
about 100 words per minute (wpm) (Foulke, 1982; Lorimer and Tobin, 1979),

but others have claimed that experienced Braille rcaders achieve rates be-

269

tween 200 and 400 words/minute (Grunwald, 1966). Legge ct al. (1999) tells
us that a recent study by Knowlton and Wetzel (1996), measured speeds for
experienced Braille readers who were asked to read as quickly as they could.
The mean speed was 136 words/min with a range of 65 to 185 words/min.
Some of the discrepancy in estimated speeds across studies may be due to
differences in text materials, measurement methods and definitions of read-
ing speed (Legge et al., 1999). Legge et al. proposes a system of quantifying
reading speed through the summation of the number of characters, verses
the time elapsed. This process yielded an average reading speed of approx-
imately 124 wpm, with a minority of subjects reporting reading speeds of
between 154 to 232 wpm. However, the reading rates for the majority of
test subjects ranged between 82 and 144 words per minute.? It is logical to
assume that slower reading speeds would be found if grade 1 Braille were
used due to the number of additional characters presented.

Historically, Braille functioned as the principle method of written com-
munication for the blind. However, with the advent of talking computers
and books stored on audiocassette, the Braille usage levels amongst the
blind community have fallen drastically over the last number of decades.
According to data, from the American Printing House for the Blind (APH),
in 1963, 51 percent of legally blind school children in graded programs, in
both public and residential schools in the United States of America, used
Braille as the primary reading medium. Another four percent recad both
Braille and print. APH data demonstrates that the percentage of Braille
users has declined steadily since the 1960s, reaching a low of 9.45 percent in
1994. The 1995 data recorded the percentage of Braille users at 9.62 per-
cent (Schroeder, 1996). However, the realisation has occurred that these new
technologies cannot completely replace Braille, which has led to a renewed
interest in Braille litcracy among both educators and consumers. Since the
early 1990s, morc than half of the individual states in the U.S. have passed

Braille literacy laws requiring that Braille instruction be provided to all stu-

2All of these experiments were perforimed using grade 2 Braille.

270

dents who can benefit from it. This includes those who are currently able
to read print but whose eyesight is medically expected to deteriorate with
time. Much of this Braille literacy legislation also requires publishers to
provide all textbooks sold under its jurisdiction in electronic formats that
can be reproduced as Braille (Johnson, 2004).

The National Council for the Blind of Ireland (NCBI)? provides a library
service to approximately 4,000 blind and partially sighted readers, issuing
material in both the Braille and audiocassette media. Of this estimated
4,000 library patrons, approximately 400/10 percent of readers favour re-
ceiving subject matter in Braille.

Assimilating information through the use of the Braille medium is not
as efficient as employing a visual means of interaction. There are a number

of factors that determine this:

1. As in the case of Braille readers reading a block of text, sighted read-
ers assimilate information by moving from word to word using a serial
methodology. However, it is thought that a parallel method of pattern
matching recognition is employed by visual readers to identify the in-
dividual letters comprising each word, resulting in an increase in specd
at which information can be assimilated (Larson, 2004). This parallel
method for pattern matching the character groupings is difficult for

Braille interaction due to the serial nature of the modality.

2. Visual cucs such as large fonts or changes in colour signify variations in
context to the visual reader, alerting them to the important segments
of a given page. This allows the reader to skim through the docu-
ment, only reading the sections of text they deem important. Much of
this multi modal information is lost when reading the same document

through Braille. Sce section D.5, for more information.

3. In the printed medium, extensive usage of spatial formatting is

regularly applied to documents to demonstrate contextual changes,

Shttp://www.ncbi.ie/

271

whereas in Braille, much of this formatting is either non-existent or

much less pronounced.

D.5 [Issues with the communication of highlighting

and other visual cues through Braille

In the printed medium, numerous visual cucs are often employed to denote
changes in context, or to signal the importance attributed to a piece of text.
These cues include variations in the typographical font size, changes in both
foreground and background colour, and the use of additional highlighting
strategics such as bold and italics. Many of the advantages provided to
the visual user by the inclusion of these contextual prompts are lost when
viewed through a serial medium. That is, the skimming ability these cues
can provide is not available under these conditions. However, it may still be
valuable to signal the presence of much of this information in the Braille text
to ensure the reader recognises the significance of certain textual fragments
in the document.

Accessing content through tactile interaction is much less precise than
that of visual communication. Therefore, alternating the size of the Braille
dots, to denote changes in the dimension of typographical fonts, is not a
viable solution. Rather large changes in the dots’ dimensions would be
necessary to signal font size alterations to the reader. Problems may also
arisc in determining the correct line to which these clements belong. This is
especially the case where a number of alternative font sizes are positioned
adjacent to one another. Handling the large variances in text size could
impinge on reading speed, rendering it both slow and laborious. Plus, the
implementation of such a system, using conventional methods for Braille
production, may not be practical.

There exists only a finite number of different combinations that can be
derived from the six possible Braille dots, and the majority of thesc are al-

ready assigned to either a letter, punctuation sign, a digit or a shorthand

272

abbreviation in grade 2 Braille. Thus, the scope to derive additional Braille
characters to infer the highlighting of text is rather limited. One viable
solution is to insert additional contextual characters into the written rep-
resentation to perform this task. In fact, these limitations are so stringent
that even character capitalisation must be achieved by inserting additional
contextual characters. A single dot 6 preceding a word denotes that the
initial letter is capitalised. A second dot 6 before the word indicates that
the entire letter grouping is in uppercase (BAUK, 2004).

Another solution would be to define Braille characters in terms of cells
containing more than six dots. BAUK (2006) specifies characters in terms
of eight dots, i.e., two columns of four. However, characters which fit within
the regular six dot constraint arc still presented as described previously.
Foulke (1982) mentions previous work in which Braille cells with varying
numbers of rows and columns were experimented with. It was discovered
that the recognition of cells with six rows and six columns, or five rows
and five columns was rather slow and error prone. However, cells possessing
three/four rows or columns of dots were easily recognisable. It was suggested
that cells containing three columns with ‘N’ rows could be used to denote
additional Braille characters. No changes to the representation of charac-
ters in the current Braille standard were recommended. That is, additional
columns or rows would not be included in their presentation. However, ex-
tra dot positions would be used where additional characters currently not
specified were required. A standard single column space was recommended
to separate each character to avoid confusion due to the variation in num-
bers of columns. Neverthelcss, it should be noted that the use of additional
columns of dots has not been incorporated into standard Braille (BAUK,
2004).

Alternatively, some specialised mark-up tags to denotc the beginning
and end positions of emphasised text could be inserted into the content
(Fitzpatrick, 1999). Each tag could contain some identifiable information

to inform the user of its type. Standard Braille does not currently include

273

a system to facilitate the mark-up of items in this manner. However, one
major consideration to be taken into account is the additional verbosity it
might impose on an inherently serial method of interaction. If a document
contains numerous emphasised segments, the verbosity of the content could
grow quite considerably. This is due to the amount of characters necessary
to reliably identify the mark-up tags, both as mark-up tags, and the type of
emphasis to be indicated. However, in the case of lengthy highlighted seg-
ments, this may be a viable method for signalling typographical semantics.

Currently, the only highlighting method supported by Braille is italicised
text. It is not slanted as with its visual formatting, instcad, additional
contextual characters are included to signify the change in emphasis (BAUK,

2004).

D.6 Braille production

During the early days of Braille production, a pointed object known as
a stylus was used to punch tiny indentations into a piece of thick paper,
resulting in groups of raised dot patterns representing individual Braille
characters. Although the stylus is still used today, there are a number of
additional mechanical mechanisms used to produce content in Braille. When
using a stylus, it is necessary to imprint the text dot by dot into the underside
of the page in reversc order, working from right to left. The modern Braille
stylus has a rounded steel point set in a wooden, metal, or plastic handle. As
the point is pressed into one side of the paper, it results in the appcarance
of a raised dot. The point of the stylus is rounded so it will not puncture
through the paper cntirely, but only displace a dot corresponding to the size
of the point.

In modern times, the stylus is frequently used in conjunction with a
Braille slate, whose purpose is to hold the paper in place while guiding the
stylus to create Braille cells that are well formed and arranged in straight
lines with proper spacing. The slate gencrally consists of a front and back

plate joined with hinges, with additional pins to hold the paper in place.

274

The back plate has shallow holes arranged in three- hole by two-hole cells
representing the six dots of the Braille cell. The front plate possesses a
scries of rectangular openings, each with six indentations along its sides to
guide the stylus into the corresponding shallow holes on the back plate. The
shallowness of the holes on the back plate is intended to prevent the rounded
point of the stylus from puncturing through the paper (Johnson, 2004).

Braille may also be produced manually with a Perkins Braille typewrit-
ing machine, or electronically through a computer, operating either some
refreshable Braille display technology, or a Braille embosser.

The Perkins Braille writing machine is a manual typewriter like device,
which employs the use of needles to punch the required Braille dot combi-
nations on to the underside of a page, resulting in raised Braille characters.
Unlike a conventional typewriter, a large volume of keys is not required to
represent individual letters. Instcad, only six keys, each of which is con-
nected to a ncedle, plus one additional key to function as a space bar, are
available. The space bar is positioned in the centre of the keyboard, with a
row of three keys positioned on either side. The left hand side set of keys
are responsible for the generation of dots in the first vertical column. The
key adjacent to the space bar produces dot 1, whilst the one furthest to the
left gencrates dot 3. Similarly, the keys to the right of the space bar are
responsible for the second vertical column of dots. The immediate key to
the right is charged with producing dot 4, and the furthest kcy generates dot
6. Thus, by pressing different combinations of these keys, Braille characters
are produced.

A Braille embosser is an clectronically controlled, mechanical device used
to produce pages of highly intelligible Braille output. It functions by im-
printing an adjustable row of needles into the underside of the paper. The
levels of the individual necdles is adapted by the appliance to create the array
of dots necessary to produce the line of text, transmitted by the controlling
software. The advent of the embosser, coupled with character recognition

scanning devices has resulted in a major increase in the pace of printed text

275

to Braille translation in recent years. Much manipulation of the printed doc-
ument by the user, and in turn by the controlling software, is required, before
the embossing takes place. This work is necessary to ensure the formatting
of the target material is correct. Even whilst taking the additional editorial
labour into account, Braille books are now produced at much greater speeds

than when using previous manual methods of production.

D.6.1 Refreshable Braille Displays

A refreshable Braille display is an electronic device, which dynamically syn-
thesises the production of Braille through the automatic raising and lowering
of individual pins. The pins are often arranged horizontally across the dis-
play region in groups of eight, with each character cell divided into two
vertical columns of 4, forming a single line of text. Although traditional
Braille encoding requires just six dots to construct characters, many refre-
shable Braille display devices allow for character patterns of up to eight
dots. Eight dot combinations offer a much greater scope in the variety of
characters available. Howcver, so far their usage has been limited to the
encoding of computer notation (BAUK, 2006). The number of character
cells available for display purposes can vary greatly, depending on the size
of the device. In the case of larger appliances, up to 80 Braille characters
may be available.

The chunk of text presented in the display region of the device normally
coincides with a segment of the line currently under focus in the on screen
text. The raw data to be exposed is not generally transmitted directly to the
display apparatus. Instcad, an element of processing by a piece of specialised
software e.g., a screen reading application, is routinely undertaken before the
data is transmitted to the device. The types of manipulation performed on
the text may include the translation of text to accommodate grade 2 Braille
shorthand abbreviations, or the insertion of contextual symbols to denote
numerical data. Although many advantages to using these appliances exist,

costs relating to the technology used in the manufacture of conventional

276

refreshable Braille display devices ensures that they remain rather expensive
to purchase and out of reach for many blind computer users.

The large cost associated with conventional refreshable Braille displays
is related to the price of the individual actuators necessary to alter the state
of the pins. If you consider that each pin/dot requires its own actuator, and
the number of dots possible, the reasons for the high cost should be quite
apparent (Roberts et al., 2000). For example, an 80- character display, with
eight dots available in each cell, would require 640 individual actuators. Au-
tomated production methods and mechanical miniaturisation have advanced
a lot in recent years, so, in theory, Braille displays “could” be much cheaper.
You only have to look at the dramatic decline in costs of conventional print-
ers - also clectromechanical or “mechatronic” devices - to sec this. But the
impact still depends a lot on economies of scale. As long as these particular
actuators are specific to the one small, and perhaps even declining, niche
of Braille displays, then production scale remains comparatively small, and
costs correspondingly high.

Onc attempt to reduce the costs of Braille computer interfaces, examined
the viewing of text through a single cell character display. The reader’s finger
remains on the cell throughout the reading process, whilst at designated time
intervals, the arrangement of the pins is altered to reflect the composition of
the next letter. However, according to Roberts et al. (2000), this system was
not very effective for the finger has a low sensitivity to this type of stimulus.
Braille is easier to read when there appears to be a horizontal motion of
interaction between the fingers and the Braille material. By scanning back
and forth with the fingers, the user can simulate the horizontal reading
movement with a single cell display; however, after some time the additional
scanning may become quite tiresome.

The system proposed by Roberts et al. simulates the viewing of a con-
tinuous linc of Braille. This facade is achieved by placing the letters on
a rotating wheel, which slides under the reader’s fingers sequentially from

right to left. Multiple characters may appear in the display at any given

277

time, thus, removing any issues resulting from the lack of horizontal motion
in the reading process. The cost savings attributed to this device are ex-
pected to be rather dramatic for instead of requiring hundreds of actuators
to display the characters, only three actuators, four in the case of eight dot
Braille, are required. As each cell rotates across the actuators, which are
situated to the right of the reading area, the intended Braille patterns are
generated. In turn, as the ccll rotates out of the reading area, a ramp exerts
pressure on the pins forcing them into a lowered state. The ability to freeze
the display to facilitate a more in-depth examination of the content is also
proposed by the authors. From the initial user evaluations with the proto-
type apparatus, it was evident that with a little practice, blind individuals
were successfully able to read using this system. However, such a device is
not yet commercially available.

To date, much of the work in the development of refreshable Braille
technology has centred on producing Braille using physical pins to simulate
the dots. However, a study investigating the feasibility of displaying virtual
Braille dots through lateral skin deformation was performed by Lévesque
et al. (2005), who maintain that when the fingertip is locally deformed in
the manner of a progressive wave, onc typically experiences the illusion of
objects sliding on the skin, even if the deformation contains no normal deflec-
tion. They developed an electromechanical transducer, designed to create
skin deformation patterns with a view to investigating the possibility of dis-
playing Braille dots. Although, the test subjects were able in many cases to
distinguish correctly the intended patterns, the process in which they did so
was often rather slow and error prone in comparison to conventional Braille
reading. They also noted that a reduction in tactile sensitivity in the fingers
occurred, when using their prototype system for a prolonged period of time.
They concluded that before a commercial system would be viable, much
further research in the arca is necessary.

The major advantages in using a Braille display device are often observed

when cxamining complex data types. For example, mathematical notation

278

for which comprehension is sometimes difficult. Greater benefits may be
achievable through direct examination of the individual characters through
the fingertips as opposed to having to deal with the additional memory load
necessitated by speech output. Braille requires the reader to interface with
the content in an interactive manner, whereas interfacing with spoken out-
put tends to be more passive in nature. See section 2.1 for further details.
Tactile methods of viewing such complex information may furnish a greater
knowledge of the spatial relationships between mathematical terms. Also,
interacting in this manner often provides a greater ability to handle the as-
sociation between a closing bracket with its corresponding opening bracket.
However, limitations relating to the size of the display region on the device
can impinge on the readability of such information. This may be especially
true in cases where the length of the equation is much greater than the
amount of available character cells.

Another major area of content presentation where the use of a refreshable
Braille display could be advantageous is in the viewing of tabular data. In
theory an entire horizontal row of the table could potentially be presented in
the display region of the device. However, in practice, the implementation of
this concept is rather dependant on the length of the material and, the num-
ber of character cells available. Presenting tabular data in this manner could
negate any problcmatic issues with comprehending the spatial relationships
between the individual elements in the row. However, screen reading soft-
ware manufacturers often prefer to present tabular data one cell at a time
in a linear format, due to the differences in character cell capacity provided
by the different refreshable Braille display solutions. Therefore, they must
ensure that additional contextual information concerning the current grid
position is provided to aid comprehension. Also, in many cases, additional
navigational functionality to move along the spatial relationships betwecen
the cells has been made available.

A number of disadvantages can also be attributed to the use of this

technology. Some of which are as a direct consequence of the cxpense relating

279

to such devices, see section D.6.1. This is especially the case when compared
to the costs of synthetic speech production. However, many of the other
problems arise as a direct result of the serial nature of the medium. Only
a small segment of the page content can appear in the display region at
any given time. Although the user is usually afforded navigational control
inside the document, it is difficult to obtain an accurate impression of the
page structure, without exploring the entire document. The issues relating
to the portrayal of visual cues such as large fonts and typographical changes
to emphasise important content, see section D.5, means that the skimming
effect employed by visual readers to locate changes in contextual information

is extremely difficult to mimie.

280

