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Abstract 
The most commonly used definition for human tremor is as an involuntary, roughly 

sinusoidal oscillation of one or more parts of the body. It has been established that the 

application of viscous damping can significantly reduce the amplitude of tremor related 

oscillations, but that the level of damping required also impedes voluntary motion. 

Evidence would suggest that if a controllable damper were used, then it may be possible 

to modulate the damping so as to provide a significant level of tremor suppression, 

while allowing voluntary motion. A candidate for the construction of such a damper is 

electrorheological (ER) fluid. When an electric field is applied to a volume of ER fluid, 

its material properties change from that of a Newtonian fluid to that of an elastic-plastic 

solid. These structural changes occur within milliseconds and are completely reversible, 

making ER fluids an attractive option when designing controllable dampers. The 

analysis and design of control strategies for ER dampers requires the development of 

suitable mathematical models. In particular, models should be capable of predicting the 

dominant behaviour of the device when coupled to other physical systems. In this thesis, 

well known thermomechanical principles are used to develop simple, physically 

intuitive models which are well suited for analysis and control design. The simplest of 

these damper models is then coupled with a forced, second order oscillator, representing 

the human forearm/elbow subject to tremor. A detailed analysis of the qualitative 

behaviour of this system is then performed, using traditional energy based and Liapunov 

type techniques. Sufficient conditions for the existence and stability of periodic 

solutions are also presented. A result of this analysis is the development of a novel 

control strategy for the attenuation of periodic oscillations. In the final section of the 

thesis, the feasibility of using the above mentioned control strategy for suppression of 

human tremor is investigated. The theoretical results are quite favourable and are 

supported by numerous simulation results. 
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Chapter 1 

Introduction and Motivation 

Pathological tremor usually manifests itself as an involuntary oscillation of a limb or 

limbs. In its mild forms it can be a nuisance and in severe cases it can occur with such 

severity that the sufferer is unable to perform the basic activities involved in daily 

living. Drug treatment and surgery have not been very successhl in treating some of the 

more severe forms of tremor. This has led to the search for alternative approaches to the 

problem of tremor suppression. Section.1 of this chapter briefly discusses the various 

typeslcauses of tremor and reviews some of the devices which have been developed for 

tremor suppression. It is known that the application of viscous damping can 

significantly reduce the amplitude of tremor related oscillations, but that the level of 

damping required also impedes voluntary motion. Evidence would suggest that if a 

controllable damper were used, then it may be possible to modulate the damping so as 

to provide a significant level of tremor suppression, while allowing voluntary motion. 

A candidate for the construction of such a damper is electrorheological (ER) fluid. ER 

fluid is a class of smart material whose resistance to shear can be rapidly increased by 

applying an electric field. In order to investigate the feasibility of using an ER damper 

to suppress tremor, a model is required which captures the highly nonlinear behaviour 

exhibited by ER fluid dampers. Section.2 provides an introduction to ER fluids and 

reviews some of the models which have been developed for ER fluid dampers. 

Unfortunately many of the available models, which do capture the qualitative behaviour 

of ER fluid dampers are not well suited for analysis and control design. This thesis 

attempts to address this problem. 

1.1 Tremor 

The most commonly used definition of tremor is as an involuntary, roughly sinusoidal 

oscillation of one or more parts of the body. Tremor mainly affects the hands and arms, 

though certain forms may effect the legs, trunk, head and even one's speech, [1][2][3]. 

Human tremor is initially categorised as being either physiological or pathological. 

Physiological tremor is an 8-12 Hz oscillation, which is inherent in all human motion, 



both voluntary and involuntary. It is generally confined to the hands, with an amplitude 

low enough for it to be barely visible. As such, it only becomes a nuisance during highly 

dexterous tasks. Pathological tremor however is a potentially disabling symptom that 

occurs as a result of numerous neurological disorders such as Parkinson's disease and 

Multiple Sclerosis (MS). For many individuals who suffer from pathological tremor in 

their arms and hands, independent hnction during daily activities can be difficult if not 

impossible. 

During a medical diagnosis, pathological tremor is typically classified according to the 

behavioural circumstances under which it occurs, see Table I. Rest tremor appears 

when the affected limb is relaxed and fully supported against gravity. Postural tremor 

occurs when the sufferer tries to maintain a posture against gravity, such as when 

holding the arms out in front of the body. Action tremor, as its name would suggest, 

occurs during voluntary movement of the affected limb. Action tremor is usually hrther 

classified as either kinetic or intention tremor. Kinetic tremor occurs during arbitrary 

movements of the limb from point to point, whereas with intention tremor, the 

amplitude of the tremor increases as the affected limb approaches the intended goal 

[1][2][3]. It is also possible to characterize different forms of tremor by performing a 

quantitative analysis of an individual's tremor, based on the amplitude, phase, frequency 

and the activation pattern of the agonistic muscles (alternating or synchronous). 

Table 1.1, taken from 131. 

Tremor Frequency Occurrence Ty pica1 Cause ---- 
5 to 9 Hz When limb is positioned Essential tremor 

against gravity 

Parkinson's disease, Wilson's 

supported against gravity and disease, Essential tremor. 

muscles are not voluntarily 

activated 

Possibly the most disabling form of tremor is the low frequency (2.5-4Hz), large 

amplitude kinetic tremor frequently affecting those with MS. The tremor can occur with 

sufficient amplitude to obscure all underlying intentional motion [5]. The effect for the 

sufferer is that every day tasks, essential for an independent lifestyle, cannot be 

completed unaided. Fig 1.1 shows the EMG recordings taken from the triceps and bicep 

Action 

tremor 

3 to 10 Hz During voluntary muscle 

contraction 

Multiple Sclerosis, Head injury 



(main muscle group controlling flexion and extension of the elbow) of a patient 

suffering from severe kinetic tremor due to Multiple Sclerosis. As this form of tremor is 

only observed during voluntary motion, the patient was asked to slowly flex and extend 

the elbow while the recordings were being taken. It can clearly be seen that the muscles 

are activated in an alternating pattern, with a constant phase relationship. Analysis of 

the recording showed the tremor to have a mean frequency of 2.9 Hz. Recordings taken 

several months later revealed a decrease in the mean frequency to 2.6 Hz. As these were 

only short time recordings, nothing can be concluded from this shift in frequency, as it 

may be a daily occurrence. It can also be seen that the amplitude of the EMG varies 

significantly, this was confirmed by the observed variations in the physical amplitude of 

the tremor. 

Biceo EMG 

Tricep EMG 
I, I 

Fig 1.1 EMG recordings from patient with MS (recorded by the author) 

When a person is initially diagnosed with a disabling form of tremor the first line of 

treatment is oral medication. The prescription of medication for the relief of tremor is 

generally based on the cause of the tremor (associated neurological disorder). While 

medication may provide relief for milder forms of tremor, for the most severely affected 

patients, there is no consistently effective treatment. Even if some relief is found, the 

resulting side effects may be more debilitating than the tremor itself, [2][3]. 

In cases of severely disabling drug resistant tremor, there are a number of surgical 

treatments available. However these are generally only considered when all other 

options have failed to provide relief. A thalamotomy involves permanently destroying 

targeted nerve tissue in the thalamus, the region of the brain believed responsible for 

causing tremor. The effects of the surgery are often only short lived however, with 



many people finding that their tremor returns [2][3]. Another option is Thalamic 

stimulation. This involves implanting a tiny electrode in the thalamus area of the brain, 

during open-skull surgery. A wire attached to the electrode is then tunnelled under the 

scalp and down the neck to a pulse generator (similar to a pace maker) located under the 

skin below the collarbone. The pulse generator sends electrical pulses to the electrode, 

which cancel the nerve signals responsible for causing tremor. Thalamic stimulation 

was originally developed for the treatment of Parkinson's disease but has also proved 

successful in alleviating the effects of essential tremor. It is still a new therapy however 

and is not yet approved for MS tremor [2][5]. 

An alternative approach to restoring hnctionality during certain tasks is to develop 

assistive devices. To date the design of aids for those with tremor has been approached 

in two ways. The first is to design specific signal processing algorithms to remove 

tremor related inputs from a computer mouse, a joystick or a digital pen. Thus allowing 

patients to successfully operate electronic equipment such as computers and electric 

wheelchairs, [6][7][8]. The second approach is to suppress the effect of tremor using 

some form of external mechanical device. These devices act mechanically in parallel 

with the user and are based on evidence that viscous and inertial damping can 

dramatically reduce the amplitude of severe action tremor and help to restore functional 

limb control, [4][9][10]. It is known that the frequency content of the voluntary motion 

involved in activities of daily living is lower than the frequency content of most 

tremors. Thus, the success of adding viscous damping could be attributed to a form of 

low pass filtering of the motion. The external mechanical devices which have been 

developed by various research groups have followed two different approaches, active or 

passive compensation based on a grounded or wearable orthosis. Grounded devices 

have been developed to assist in various daily tasks such as eating and controlling an 

electric wheel chair. 

To the knowledge of the author the only coinmercially available eating aid is the Neater 

Eater [ll] .  In its most basic form, the Neater Eater is a two degree of freedom linkage 

with a viscous damper at the base. The base can be rigidly attached to a table or 

wheelchair. It is designed to support various utensils, which assist in eating and other 

personal care activities. 



The same company also produces a device called the Mousetrap. This uses a set of 

viscous restraints, designed to attach to a standard computer mouse and restrain jerky 

movements from transferring to the computer. 

The authors of [12] investigated methods for designing non-adaptive force feedback 

tremor suppression systems, using a small grounded robotic arm. The methods utilized 

quantitative frequency domain performance criteria for the selection of feedback gains 

to achieve a specified reduction in tremor amplitude, much like standard process 

control. The feedback coefficients are chosen to increase attenuation at a specified 

tremor frequency, while preserving the low frequency response, so as to preserve 

voluntary movement. This technique was found to be unsuitable for individuals with 

low frequency tremor, such as action tremor due to Multiple Sclerosis. 

A research group at the Massachusetts Institute of Technology has obtained patents on 

several devices for tremor suppression. The first of these, called the Controlled Energy 

Dissipation Orthosis (CEDO) is a three degree of freedom device that can be attached to 

a wheelchair or table, to facilitate eating and other tabletop activities [13]. Each degree 

of freedom is damped by a magnetic particle brake, which is controlled in real time by 

an onboard computer. Tests with the CEDO have shown up to 80% reduction of tremor 

in severe cases, though it is unclear what effect this had on the intended motion. One of 

the developers is quoted as saying that the user gets the overall feeling of "moving 

your arm through molasses". A problem with using fixed levels of viscous damping is 

that the level of damping required to suppress severe action tremor, such as in MS, will 

also make intentional motion difficult. Another development by the same group is the 

MIT damped joystick, designed to allow people with tremors operate electric 

wheelchairs [14]. Results show that the joystick provides considerable improvement in 

pursuit tracking tasks for persons with tremor. 

The first wearable tremor suppression device to have been published is the Viscous- 

Beam-Wrist-Orthosis developed in [15]. The orthosis applies a viscous resistance to the 

wrist in flexion and extension using a constrained-layer-damping (CLD) system. The 

CLD linearly converts wrist flexionlextension into rectilinear translation within the 

damper. The damper is coupled to the user by hand and forearm cuffs and is small 

enough to be worn under the sleeve. Results have shown it to be successfbl in 

attenuating the effects of tremor at the wrist. 



It was noted however, that as it was only a passive device, in cases of severe tremor, 

increasing the resistance to achieve tremor reduction was impossible without adversely 

affecting the intentional motion. In addition for cases where there is tremor present in 

the elbow and/or shoulder an additional orthosis would be required. 

More recently, the DRIFTS "Dynamical Responsive Intervention For Tremor 

Suppression" project was financed by the European Commission's Fifth Framework 

Program, a complete overview of which can be found in [16]. The main aim of the 

project is to create proof of concept prototypes of wearable orthoses for the suppression 

of upper limb tremor. As part of the project the WOTAS (Wearable Orthosis for Tremor 

Assessment and Suppression) was developed to measure upper-extremity tremor and as 

a prototyping platform for evaluating control strategies, actuators, and sensors for 

tremor suppression [17]. The WOTAS comprises an adjustable exoskeleton with 

articulated joints incorporating actuators (DC motors) at wrist and elbow, kinematic 

sensors and kinetic sensors. Using the WOTAS, tremor measurement and suppression 

strategies can be investigated in three different degrees of freedom: elbow 

flexionlextension, wrist flexionlextension and wrist pronation/supination. A recent 

result of the DRIFTS project is a prototype orthosis, similar in some respects to the 

Viscous-Beam-Wrist-Orthosis described above, see Fig 1.2. It is an articulated brace 

worn over the forearm and wrist. The orthosis incorporates a viscous-beam-actuator, 

which applies a controlled damping force in proportion to the tremor force across the 

wrist joint [IS]. Changes in the tremor pattern are instantaneously detected by miniature 

electronic gyroscopes and digital filters are used to distinguish between the intended 

motion and tremor. Feedback and control algorithms are then used to determine the 

amount of damping required to suppress the tremor. The controllable damping is 

provided by a double-viscous-beam (DVB) actuator, an electronically controlled 

damping mechanism using magnetorheological fluids [IS]. The specific details of the 

construction and operation of the DVB actuator can be found in [19]. Unfortunately 

specific details of the model and control strategies used and on experimental results 

with the device, do not seem to have been published yet. 

Electrorheological (ER) and magnetorheological (MR) fluids belong to the class of 

smart fluids. They have the ability to rapidly alter their resistance to shear in response to 

the application of an electric or magnetic field (more details will be given in the next 

section). By constructing tremor suppression devices from these fluids, it should be 



possible to modulate the resistance in such a way, so as to attenuate the oscillations 

caused by severe forms of action tremor, but with a minimal amount of resistance to 

intentional motion. Based on the success of the DVB actuator, a suitable next step 

towards a full arm orthosis, would be to develop a damper using ER or MR fluids for 

the suppression of tremor at the elbow. As will be described in the next section, 

dampers constructed fiom ER and MR fluids display highly nonlinear behavior. A 

significant hindrance to the development and analysis of control systems for such 

devices is the lack of well behaved models which capture their nonlinear behaviour. 

This fact will be discussed in greater detail in the next section of this chapter. 

Fig 1.2 Drifts orthosis (picture taken from [la]). 

1.2 ER fluid dampers 

Electrorheological (ER) fluids are characterised by the ability to adjust their mechanical 

properties through application of a sufficiently strong electric field. In particular, 

application of an electric field causes an increase in the force (yield force) required to 

induce unbounded flow of the fluid. This change in resistance to flow occurs rapidly 

and is completely reversible, upon removal of the electric field. These properties make 

ER fluids an attractive means for the construction of controllable dampers and other 

force transfer devices. Furthermore, while the electric fields required to induce this 

change in resistance are quite high, ER fluids draw very little current, resulting in low 

power requirements. Unlike active control devices, when an ER fluid device is coupled 

with a mechanical system, it can only dissipate and store energy by reacting to its 



motion. As a result the term "semi-active" is often used for ER devices, however the 

term cccontrollable passive" is probably more appropriate [20]. 

A typical ER fluid consists of a suspension of tiny polarisable particles in a viscous 

nonconducting liquid. Consider the case where a volume of ER fluid is confined 

between two parallel electrodes. When an electric field is applied to the fluid, the 

particles become polarized and form into chains that span the gap between the field 

generating electrodes. The mechanical behaviour of a sheared ER fluid is similar to an 

elastic-plastic solid, with a yield stress which is an increasing function of the electric 

field [21]. When the shear stress is less than this yield stress, the fluid behaves like an 

elastic solid, capable of sustaining stress in the absence if flow. This behavior is 

associated with the reversible stretching and deformation of the particle chains. 

For unbounded shear to occur, the shear stress needs to be maintained at a level greater 

than or equal to the yield stress. In this case, the deformations are dissipative and can be 

associated with dynamic equilibrium between chain snapping and reformation [21]. 

Thus the behaviour of sheared ER fluid can be characterized into two distinct regimes: 

preyield and postyield. Magnetorheological (MR) fluid is another controllable fluid, the 

behaviour of which is quantitatively identical to that of ER fluid. In this case however, a 

magnetic field is responsible for the formation of particle chains by inducing a magnetic 

moment in the particles. When a damper or other controllable device is constructed 

using ERIMR fluids, the behaviour of the device resembles that of the controllable fluid. 

Fig 1.3 shows the response of an activated, large scale MR damper subject to a 

sinusoidal displacement, taken from [22]. This form of response is typical of most ER 

and MR dampers (after appropriate scaling).Note that the force displacement hysteresis 

loop is traversed in the clockwise direction, while the force velocity loop is traversed in 

the anticlockwise direction. 

Fig 1.3 Typical response characteristic o f  an activated ER/MR fluid Damper [22] 
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In constructing controllable dampers using ER fluids, there are three main modes of 

operation: shear mode, flow mode and squeeze mode [20]. Shear mode involves the 

direct shearing of the fluid between translating of rotating electrodes. Fig 1.4(a) shows a 

simple model of a couette-type ER fluid damper, consisting of a fixed electrode and a 

rotating electrode with ER fluid in between them. The two cylinders also act as a pair of 

electrodes. If a voltage difference is generated between the cylinders an electric field 

builds up in the gap, which is perpendicular to the flow. The ER fluids resistance to 

shear increases with increasing level of electric field strength, as does the torque exerted 

on the outer cylinder. In flow mode the fluid is forced between a pair of stationary 

electrodes. The fluids resistance to flow is increased by increasing the electric filed 

strength, creating a sort of "flow control valve". Fig 1.4(b) show a typical flow mode 

ER damper. The piston rod moves up and down in a chamber filled with fluid, forcing 

the fluid to flow through the valve. The accumulator compensates for the change in 

volume of the chamber caused by motion of the piston and also prevents cavitation. 

The accumulator affects the behaviour of the damper, acting like a spring from a 

phenomenological point of view [23]. 

Rotating Cyhndet 

Fluid 

Accumulator 'iR Fluid 

I4 Fixed Cylinder @) 

Fig 1.4 Typical geometries for ER dampers 

In order to take advantage of ERIMR fluid devices in control applications, mathematical 

models are required to describe their dynamical behaviour and which are suitable for 

coupling with other mechanical system models. To date, there have been dozens of 

studies focusing on the characterization of the fluids and the developn~ent of suitable 

models for dampers and other devices. Phenomenological models are one class of 

model which is quite popular and appealing because of their intuitive nature. These 

models are usually constructed from idealized mechanical elements such as elastic 

springs, viscous dashpots and rigid friction elements. The elements are arranged in such 

a way so as to capture the essential macroscopic behaviour of the damper under study. 

Due to their qualitatively similar behaviour, phenomenological models for ER and MR 

fluid devices can usually be applied to either case. A brief review of some of the more 



successful phenomenological models to appear in the literature will now be given. For a 

more comprehensive review, the reader is referred to the excellent papers [24][25]. 

Let x(t) denote the displacement of the damper and F(t)  the reactive force. For the 

damper in Fig 1.4(a), x(t) corresponds with the angular displacement of the rotating 

cylinder and F(t) is the torque on the corresponding shaft. One of the first models to be 

developed for an ER damper consisted of a rigid friction element and a viscous damper 

in parallel [26]. This model is commonly referred to as the Bingham model in analogy 

with the Bingham ,plastic model from continuum mechanics (more details in $3). The 

equations describing this model are simply 

F (t) = l?i(t) + Fy (t)SGN(x(t)) (1 -2.1) 

the viscous damping coefficient R > 0 accounts for the base fluid viscosity and 

Fy(t) 2 0 is the controllable (field dependent) yield force, Fig 1.4(a). The function 

SGN(x) is the set valued signum function given by 

It is widely accepted that the Bingham model captures the dominant behaviour of 

ERIMR fluid dampers in postyield, i.e. for fully developed flow. However, it assumes 

that the fluid remains rigid in the preyield region, that is if I ~ ( t ) l <  Fy (t), then x(t) = 0 . 
Thus, the Bingham model does not account for the essentially viscoelastic behaviour of 

the fluid in the preyield region. In order to facilitate analysis and to allow for motion in 

the preyield region numerous smooth approximations of the Bingham model have been 

presented. For example, in [27] and [28] the function SGN(x) was replaced by the 

smooth hyperbolic tangent function and the inverse hyperbolic sine function 

respectively. Possibly the most popular approximation is the biviscous model 

POI  [291 [301. 

F (t) = l?i(t) + F Y  (t)sgn(~(f)) if l%t)l> 47 (t)/RP> 
(1.2.3) 

R P w  othenuise . 

The fundamental problem with these smooth approximations is that they are fluid 

models, which is to say that that they are incapable of sustaining a force at zero velocity. 



Fig 1.5 (a)  Bingham Model, (b) extended Bingham model .  

In order to account for the viscoelastic behaviour of ER fluid in preyield, in [31] the 

Bingham plastic was placed in series with the standard model for solid viscoelasticity, 

to create the extended Bingham model in Fig 1.5(b). The governing equations for this 

model, as presented in [23] and [24], are 

I G(x-x2) 
H(x2 - ) + RpX2 , otherwise. 

In [32] the parameters defining the model were fitted to experimental data from a shear 

mode ER damper. It was found that the elastic moduli G , H and the viscous 

coefficients R, R, were independent of the electric field (above some small value). As 

expected the yield force Fy(t) was found to be a strictly increasing function of the 

electric field strength. The extended Bingham model was also found to capture all the 

qualitative behaviour of an MR damper in [23]. The main criticism of the model in both 

of these studies was that the model was very difficult to deal with numerically, due to 

the presence of the friction element. In [27] this difficulty was overcome by replacing 

the friction element by the smooth approximation Fy (t) tanh(x, (t)/Vr), where Vr is 

some reference velocity governing the sharpness of the yielding. Again, the problem 

with this is that the model becomes a fluid model, incapable of sustaining a stress 

without motion. 



Fig 1.6 Model for a long stroke ER fluid damper, (b) modified Bingham plastic function, 
(c) inverse of modified Bingham plastic function (taken from[33]). 

The phenomenological model in Fig 1.6(a) was developed in [33] to capture the 

behaviour of a long stroke ER fluid damper. The mass m is included to account for the 

effect of fluid inertia and K(x - x, ; t) is a bilinear spring function given by 

iS 1x1 5 F, (t>/2G, 
K ( x ;  f )  = Gx - F, (r)/2 if 1x1 < - Fy (t)/2G, (1.2.5) 

Gx + F, (1)/2 if 1x1 > F, (t)/2G. i'" 
The hnction x(xl;t) is referred to as the modified Bingham plastic function, and 

accounts for the dampers behaviour in preyield, the graph of ~ ( x , ; t )  is shown in 

Fig 1.6(b). The resulting equations of motion are given by 

In order to solve the equations of motion, the modified Bingham plastic hnction is 

inverted as in Fig 1.6(c), to obtain the differential equation x, = x - ' ( ~ ( x  - x,; t);t) . For 

simulation purposes, the inverse of the modified Bingham plastic function was 

implemented using a lookup table. In a later study [30], this model was applied to a MR 

damper, replacing (1.2.5) with a linear spring and the modified Bingham plastic 

function by the biviscous model in (1.2.3). 



In order to obtain a numerically tractable and versatile model, in [23] a Bouc type 

hysteresis model [34] was used to characterizes an MR damper such as the one in 

Fig 1.4(b). The simplest such model presented in [23] is given by 

By adjusting the parameters y,P, A and nit is possible to control the shape of the 

hysteresis loops generated by the internal variable z . In modelling MR dampers the 

model is generally implemented using A > 0 and P = y > 0 [23] [3 51. In this case, for 

steady unidirectional flow the internal variable approaches the value 

z = d ~ / ( y +  P)  sgn(i(t)) . The value of the field dependent control variable a ( t )  2 0 can 

then be used to control the level of the rate independent yield stress. 

The last model to be described is the nonlinear viscoelastic-plastic model, originally 

proposed in [36]. The model is based on the knowledge that in preyield ERIMR fluids 

behave like viscoelastic solids and in postyield like a Bingham plastic. The idea is to use 

two separate models to capture the preyield and postyield behaviour and then to 

smoothly transition between them using suitable switching functions. In preyield the 

fluidldamper is modelled using a spring and dashpot in parallel, 

F,,.(t) = Rpx(t) + Kx(t) . In postyield the fluidldamper response is modelled using a 

viscous dashpot F,, ( t )  = f i ( t )  and a friction element with yield force F, ( t )  . To effect a 

smooth transition between these regimes the following switching function are used 

1 
S ( t )  = - 2 t a n h [ z ) .  

where the parameters E, and v, are used to control the rate at which the transition takes 

place. The total reactive force generated by the damper is then given by 

F( t )  = Sp, (t)Fpr (4 + S,, (t)Fpo ( t )  + Sy  (OFy ( t ) .  (1.2.9) 

For the purposes of identification all six parameters R,, K, R, F,, , E, and v, are assumed 

to be functions of the applied field. In [29] it was also demonstrated that the nonlinear 



viscoelastic-plastic model can capture the behaviour MR dampers when subject to 

sinusoidal excitation. 

Given that so many models have already been developed for ER/MR fluid dampers, 

why the need to develop new models. The purpose of this thesis is not so much to 

develop new models. Rather, it is present techniques which can be used to reformulate 

existing models, in a manner which is more amenable to analysis and control design. 

Based on the premise that modelling should always be performed in connection with the 

intended application, the application considered in this thesis will be reviewed to gain 

some insight into what might be required from a damper model. From the discussion in 

Section.1, the intended application could be stated as follows: To couple the damper 

model with a model of the human forearm with tremor (periodically forced second order 

oscillator) and to investigate the feasibility of using the damper to attenuate the effect of 

a tremor, on the motion of the forearm (tremor suppression). 

A logical approach to tackling this problem might go as follows. First derive a model 

for the damper which captures all of the observed qualitative behaviour. Couple this 

model with the model of the second order system and show that the coupled model is 

wellposed. In other words, to show that it has a unique solution, depending continuously 

on the data of the problem. The next step would be to investigate the qualitative 

behaviour of the system, such as boundedness of solutions, stability of equilibria and the 

existence of periodic solutions. Since ERIMR dampers are essentially dissipative 

devices, a suitable next step would be to analyze the energy flow in the system. In 

particular, to analyze the effect that varying the electric field has on the energy 

dissipated by the damper. Based on the results of the investigation, one might try to 

devise a control strategy for the damper, to maximize (in some sense) the energy 

dissipated by the damper, while ensuring that the motions of the coupled system remain 

well behaved. Finally, derive efficient integration algorithms for the models and 

investigate the effectiveness of the control strategy through a simulation study. 

Consider again the extended Bingham model in Fig 1.5(b). Based on the previous 

discussions it is clear that this model captures the dominant behaviour of ER fluid 

dampers. However, it would be very difficult (if not impossible) to use the standard 

theory for ordinary differential equations to establish existence and uniqueness of 

solutions for (1.2.4). Without this fundamental result it is very difficult to perform any 



sort of meaninghl analysis on the system or to develop integration algorithms. Of 

course, this difficulty could be overcome by replacing the friction element with a 

smooth approximation. However this modification transforms the model into a fluid 

model, loosing an essential behaviour of ER fluid devices. Alternatively, one could use 

one of the rather non-physical models (1.2.7) and (1.2.9). However (1.2.9) is only 

suitable for small oscillations and (1 -2.7) can exhibit some very non-physical behaviour 

for time varying a(t) . Now, it should not be expected that modelling and analysis tools, 

developed for smooth mechanical systems, can be applied without modification to 

systems exhibiting nonsmooth behaviours. 

This fact was recognized over a hundred years ago, by scientists and engineers trying to 

model materials exhibiting elastic-plastic and viscoplastic type behaviours (see [37] for 

a historical perspective). As a result numerous modelling and analysis techniques have 

been developed specifically to deal with such materials. A particularly intuitive and 

interesting approach is the modern theory of "thermoinechanics with internal variables", 

details of which can be found in the excellent texts [37]-[39]. This theory takes as its 

starting point, two hnctions expressing the stored internal energy and rate of energy 

dissipation. Then using some established principles from thermodynamics and some 

convex analysis, well behaved evolution equations are derived for the internal variables. 

In the context of the extended Bingham model, the internal energy corresponds with the 

energy stored in the springs, the dissipation rate is obtained from the dashpots and 

friction element , while the internal variables are simply x, and x2 .  Due the importance 

of elastic-plastic and viscoplastic models in various engineering applications, numerous 

methods have been developed for establishing wellposedness of the resulting models 

[40] and developing efficient integration algorithms [41]. 



I .3 Thesis outline 

The purpose of this thesis is two fold. Firstly, to present a method for constructing 

models of ER fluid dampers, which capture the mechanical behaviour of the devices and 

which are amenable to analysis and control design. Secondly, to investigate the 

feasibility of using an ER damper to suppress action tremor at the elbow, with as little 

effect on the voluntary motion as possible. 

Chapter 2 develops a simple second order model for the human forearm, undergoing 

point-to-point reaching movements and subject to tremor. Stability and boundedness of 

solutions of the model are briefly discussed. The final section also provides some 

motivation for the developments presented in later sections. In particular, the feasibility 

of using a controllable damper to attenuate the effect of tremor is briefly investigated. 

The purpose of 53 is to present a simple method for the modelling of shear mode ER 

dampers. The method itself is based on the method of "thermomechanics with internal 

variables", and uses some simple results from convex analysis to deal with the 

nonsmooth behaviour exhibited by ER fluid dampers. Before getting down to the actual 

modelling, some of the basic mechanisms governing the ER effect are reviewed. The 

interest in these mechanisms is not to predict the force levels or parameters values, but 

to gain some insight into the energy storage and dissipation properties of an ER fluid in 

shear. A simplified version of "thermomechanics with internal variables", is then 

presented along with the required tools from convex analysis. This theory is then used 

to reformulate some of the models for ER dampers which have appeared in the 

literature. 

In $4 the simplest of the damper models developed in the previous chapter (the EP 

model) is coupled with the second order model for the forearm, developed in 52. 

Following this, some basic internal and external stability results are established for the 

coupled system. Section 4.2 begins with a review of some known results for semi-active 

dampers. Finding that these results to be inappropriate for the present purposes, the 

notion of a OT -recurrent control is developed. Section 4.3 analyses the possibility of 

"linearizing" the response of the EP model through the use of a feedforward control. An 

outgrowth of the analysis is the novel concept of dissipation shaping. In some sense, the 

dissipation shaping control can be seen as a form of model reference control, in which 
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the response of the EP model is forced to track the response of a more desirable 

rheological model 

The control objective was stated earlier as: devise a control strategy for an ER damper 

which will reduce the oscillations caused by the tremor, with out adversely affecting the 

intentional motion. In Chapter.5, the feasibility of achieving this objective is briefly 

considered, using some of the external stability results from $4 and Appendix D. The 

theoretical results are quite positive and are backed up by numerous simulations. 

Finally, Chapter 6 provides a summery of the various results obtain in previous 

chapters, along with some possible extensions and generalisations of these results. Some 

interesting topics for future research are presented. 

This thesis contains four appendices. Appendix A outlines some results from real 

analysis and convex analysis which are use through the thesis. Appendix B provides a 

summery of the main definitions and theorems relating to stability in the sense of 

Liapunov. Some useful results for investigating the asymptotic behaviour of ordinary 

differential equations are also presented. Appendix C develops some simple results for 

investigating the wellposedness of the damper models presented in $3, when in isolation 

and when coupled with other models for mechanical systems. Finally, Appendix D 

presents some results relating to the existence and stability of periodic solutions of the 

EP model, when in isolation and when the coupled with the forearm model. These 

results will prove particularly usehl when discussing tremor attenuation in $5. 



Chapter 2 

Forearm Model and Semi-Active Damping 

The purpose of this chapter is primarily to develop a simple model for the human 

forearm, under going point to point reaching movements and subject to tremor. The 

final section also provides some motivation for the developments presented in later 

sections. In particular, the feasibility of using an ER fluid damper to attenuate the effect 

of tremor is briefly investigated. 

2.1 Model of the forearm 

In this section a simple model for the human forearm, muscles and neural controller will 

be presented. Both experimental and theoretical motivation for the model can be found 

in the papers [42] and [43], to which the reader is referred for further details. In the 

present study, only fast, short duration, voluntary motions will be considered. The term 

point-to-point motion will be used when referring to fast voluntary motions of the arm 

from some initial position to a desired position. The arm is assumed to remain at the 

desired position for some time, before making the transition to the next desired position, 

and so on. In robotic systems, the use of feedback for motion control, is justifiable as 

sampling and control frequencies can be made very high, resulting in negligibly small 

feedback delays. However, the same cannot be said for biological systems. The delay 

incurred for visual feedback on motions of the arm, are typically in the range 

150-250ms [44]. Even the fast spinal feedback loops (reflexes etc) incur delays of 

30- 50ms. This is quite large compared with the typical duration of 150 -500ms, for 

point to point motions [44][45]. As a result biological feedback loops must have small 

gains if stability is to be ensured. In contrast, co-activation of agonist muscles may be 

used to provide proportional (stifhess) and derivative (viscous) gains about a fixed 

position, without any delay, [42][44].Furthermore, increasing the net stifhess and 

damping of the system will provide a certain robustness to unforeseen mechanical 

disturbances. Indeed, numerous studies have suggested for fast point-to-point motions, 

the CNS (central nervous system) uses a combination of internal models of the 

armlenvironment and the ability to alter the arms impedance, in order to implement a 

purely feedforward control [42] [45] [46]. 



The forearm (and hand) will be modelled as a rigid link with inertia J and  mass m . It is 

assumed that the arm is constrained by a brace, so that the axis of rotation can be 

considered as fixed. The joint angle q is  defined as zero when pointing vertically 

downward and positive towards flexion, Fig 2.l(a). The numerous muscles acting on 

the forearm will be lumped into two opposing muscles, which will be referred to as the 

biceps and triceps for simplicity. The moment arm, r and the maximum extensive and 

reflexive torques which can be generated by the two muscles are assumed to be equal, 

see Fig 2.1. 

Fig 2.1 (a) forearm, (b) mechanical muscle 
For a given neural excitation, the mechanical response of muscle is extremely 

complicated. However, for the present purposes only the dominant mechanical 

properties need be considered. In particular, neural activation determines both the 

contractile force generated by the muscle and the effective stiffness of the muscle 

(resistance to stretch). The observed static relationship between muscle force and stretch 

implies a controllable "spring like" behaviour, while the observed relationship between 

muscle force and the rate of stretch implies a controllable "viscous" behaviour [42]. The 

simplest mechanical model which captures this variable stiffnessldamping type 

behaviour is a parallel combination of a variable spring and damper, Fig 2.l(b). Based 

on this model, the net moment of the two muscles will be modelled by [42] 

r b  = rF' = (ub(t) + 0.5&,)K0(q - q )  - (u, (t) + 0.5~,)&q, 
(2.1.1) 

r, = 1°K = (u,(t)+ 0.5~,)K,(q+q) + (u,(t)+ 0.5~,)R~q,  

where the subscripts b and t refer to the biceps and triceps respectively. The constant 

q corresponds with the rest length of the muscles. The dimensionless constants E, and 

ER , capture the passive stiffness and damping of the muscles, in the sense that skKO 

represents the passive muscle stiffness. Finally, the continuous variables 

u, (t), u, (t) 2 0, Vt  2 0 ,  represent the neural control signals. The physiological range of 

motion is assumed to be [O,n] radians. While an explicit representation of this 

constraint will not be included in the present model, it is easily incorporated using the 
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penalty function type methods. In order to represent the fact that muscles cannot push, 

the rest angle ij is assumed to be greater than n. This choice also captures the fact that 

the elbow can generate torque when fully extendedlflexed. As the limb moves in the 

vertical plane there will also be a gravitational torque equal to zg = -mgl sin(q), where 

g is the acceleration due to gravity and I is the distance fiom the centre of mass to the 

axis of rotation. Summing moments about the axis of rotation in Fig 2.l(a) gives 

Jq = 7, - 7, + zg + 7, (t), 
(2.1.2) 

= -(u(t) + ER)&4 - (u(t) + E ~ ) K ~ ~  - mglsin(q) + K,qAu(t) +z, (t), 

where u(t) = u, ( t )  + u, (t) , Au(t) = u, (t) - u, (t) and z, (t) is a torque resulting fiom 

interactions with the environment. It follows that at any given angle the torque about the 

joint and the stiffnessldamping can be controlled independently via the sum and 

difference of the two muscle controls. For the purposes of control design it is more 

convenient to use the representation 

from which it can be seen that the combined activation of the two muscles results in a 

variable damper and a variable spring with adjustable threshold. The question now is, 

how to choose u and6.  Referring back to equation (2.1.3) and assuming for the 

moment that z,(t) = 0 ,  the idea would be to choose fixed u and 6 so that the desired 

position q* is an asymptotically stable equilibrium point for the system (2.1.3). Then if 

necessary, increase u so as to ensure good transient behaviour. A sufficient condition 

for a mechanical system to have a unique, stable equilibrium at a position q*, is that it 

corresponds with the global minimum of the system's potential energy. For a fixed level 

of muscle activation, the limb's potential energy is 

U(q) will have a minimum at q = q* if 

W q * )  - = (u + sk)KO (q* - 8) + nzgl sin(q*) = 0, 

or equivalently 



A sufficient condition for q* to be unique (global) minimum of U(q) is that 

-- a2u(q) - (u + &,)KO + mgl cos(q) > 0, 
dq2 

for all q E 93, which will be the case if u is chosen such that u +E, > mgl/Ko . 

Inserting (2.1.6) into (2.1.3) yields 

I = -(u + sR)ROq - (u + E ~ ) K ,  (q - q*) - mgl(sin(q) - sin(q*)) (2.1.8) 

Choosing u and 6 to satisfy (1.6) and (1.7), the total system energy (kinetic and 

potential) 

1 
H(q, q) = 5q2 + U(q), (2.1.9) 

is a strictly convex function of (q,q) with minimum (q*,O). The derivative of 

H(q, q) along the trajectories of (2.1.8) is 

Inequality (2.1.10) implies that H(q(t), q(t)) is nonincreasing as a function of time, 

which implies that all motions of (2.1.8) are bounded and that the equilibrium (q*,O) is 

stable (see tjB for stability theorems and definitions). Because (2.1.8) is autonomous, 

the Krasovskii-LaSalle theorem (Theorem B.4) can be used to conclude that all motions 

of (2.1.8) are globally convergent to the largest invariant set contained in 

E = {(q, 4) I 4 = 0). For any motion staying identically in E , 4 = 0 3 ij = 0 implying 

that (U + E , ) K , ~ ~  - q*I = mg1lsin(q) - sin(q*)l a mgllq - q*l, but u + E, > mgl/K, , 

implying that q = q*. It follows then that the equilibrium (q*,O) is GAS. 

Thus the CNS can move the limb to a desired position (q*,O) by choosing u and8 to 

satisfy u + E, > mgl/K, and (2.1.6) respectively. For general point-to-point motions, 

consisting of a succession of equilibrium points, it has been suggested that the CNS 

shifts the threshold parameters between the required values (given by (2.1.6)) in a 

piecewise linear fashion [45][46]. 

For the purposes of simulation, the following parameter values were chosen based on 

the anthropometric data presented in [43][45][46], J = 0.05kg. m2, 

mgl = 2.5kg.m2 I sec2, K, = 7Nm 1 r ad ,  R, = 2.5Nm secl rad, q = 1.3mad, E, = 61 7 



, ER = 16 / 7 and for controlled trajectories u = 6 / 7 . For small perturbations, the 

uncontrolled system behaves like an underdamped oscillator with natural frequency 

= 8radlsecand for controlled motions, an underdamped oscillator with natural 

frequency = 12rad / sec . 

2.2 Incor~orating tremor 

The next step is to incorporate the effect of tremor into the arm model. In particular, the 

disabling, low frequency form of action tremor, affecting inany individuals with 

multiple sclerosis (see $1.1 for discussion). Recall that action tremor occurs during the 

voluntary contraction of muscle and appears as an additive, rhythmic disturbance in the 

voluntary control signals sent to the muscle. At this point, the only assumptions which 

will be made, are that the tremor effects the antagonist muscles in an alternating pattern 

and is only present when u(t) = ub (t) + u, (t) f 0 (see Fig I .  I). 

Consider the function p E cO,' (%+; %) taking both positive and negative values on each 

interval of %+ with length greater than or equal to T (implying boundedness of p ). On 

the assumption that the tremor has an alternating pattern, let pb (t) = max(0, p(t)) and 

p, (t) = max(0,-p(t)) define the tremorous contributions to the activation of the biceps 

and triceps respectively (see Fig.1 .l). It follows that p = pb - p, and Ipl= p, + pt . The 

net moment of the individual muscles given in (1. I), now becomes 

and the equation of motion (1.2) (minus the external torque z, , to make things shorter) 

J ~ = - ( ~ ( t ) + ~ ~ ( f ) ~ + ~ ~ ) & ~ - ( u ( f ) + ~ ~ ( f ) ~ + ~ ~ ) ~ ~ q - ~ g ~ ~ ~ ~ ( q ) + ~ o ~ ( ~ ~ ( ~ ) + ~ ( t ) ) ~  

(2.2.2) 

where u(t) = u,(t) + u, ( t )  and Au(t) = ub(t) -u, (t) . It can be shown that if u(t) is 

constant and satisfies 2 &(u + E ~ ) ( u  + E ~ ) /  J > I I P I I ~  , then all solutions of (2.2.2) will be 

uniformly bounded (UB). This result will now be used to simplify the system in (2.2.2). 

First of all, it will be assumed that u and Au are constant, satisfying (2.1.6) and (2.1.7) 

for some q* E [0, n] , SO that (2.2.2) becomes 

where 



Now, assuming that u satisfies 2 4 (u + E,)(u + E ~ ) /  J > I I P I ~  o3 , then all solutions of the 

system (2.2.3)-(2.2.4) are UB. It follows that for each set of initial conditions 

(q(O),q(O)) E iR2 , there exits a positive constant B such that ib(t)l a lP(t)IB, for all 

t 2 0.  From this point on, b(t) will be considered as a lumped, bounded "tremor torque" 

and its particular dependence on (q,q) will be ignored. This simplification is not as 

unreasonable as it may seem at first, as the relationship between (action) tremor related 

muscle activation, the state of the muscle and the voluntary muscle activation, is poorly 

understood [I] [5]. 

To facilitate later analysis, (2.2.3) will now be transformed into a first order differential 

equation, with state variables x, = q - q*, x2 = q . Using the assumption that u satisfies 

(2.1.7), define the constants 

and the functions F(t)  = z, (t)/J and 

From (2.2.6) it can be seen that h(x,) is a nondecreasing function ofx, , h(0) = 0 and 

0 5  ( h ( x l ) - h ( ~ l ) ~ x ~  - ~ 1 ) 5 ~ ( x 1  - y J 2  (2.2.7) 

where L = 2 mgl/ J . Substituting x, = q - q* , x2 = q , (2.2.5) and (2.2.6) into (2.2.3) 

yields the forced "pendulum type" system (with F(t) = z, (t)/ J added back in) 

Assuming that b(t) and F(t)  are continuous and bounded, then for each set of initial 

conditions (to ,x0) E '3, x iR2, (2.2.8) has a unique solution x(t) = x(t;t,, x,) , 

x E C' (%+;iR2), which depends continuously on the initial conditions. Before moving 

onto the next section, a basic inequality for the solutions of (2.2.8) will be developed. 



Consider the Liapunov function 

The quadratic term in brackets is positive definite and due to (2.2.7), the integral term is 

at least positive semidefinite (see 5B.l for definitions). Furthermore, using the fact 

that lh(x, )I < L~X,  1, it is easily shown that there exists two positive constants cl , c2 such 

2 that c, 1x1 5 V(x) < c2 1x1' for all x s 93'. For simplicity F(t)  will be dropped fiom 

(2.2.8) temporarily. Taking the derivative of V(x) along the trajectories of (2.2.8) gives 

~ ( x )  = -RKr? - Rh(xl)xl - + ( R ~  + 2xl)b(t), 

-(m + k;)+ ( ~ 1 x 1 ~  + 21x1 l)b(t)l, (2.2.10) 

-2c3V(x) + 2c4 dV(x)lb(t)l, 

where c3 = 0.5 min(R, RK)/c2 and c4 = 0.5 max(~,2)/& . Letting W(t) = ,/my 
then W(t) is differentiable except when x(t) = 0 ,  but has a directional derivative even 

there. It follows that the right hand derivative ~ + ( t )  = lim,,,+ ( ~ ( t  + d) - w(t))/d exits 

for all t E %+ and 

~ + ( t )  5 -c3W(t) + c41b(t)l. (2.2.1 1) 

Applying the comparison lemma in 5B.2 to (2.2.1 I), one obtains 

and using &lx(t)l< W(t) 5 &lx(t)l 

From (2.2.13) it can be concluded that all solutions of (2.2.8) are UB, uniformly 

ultimately bounded (UUB) and converge to a ball of radius c4llbllrn/&cl. Clearly if 

b(t) = 0, then the origin is globally exponentially stable (GES). Also, applying 

Lemma B.5 in 5B.2 to the integral term in (2.2.13), it can be concluded that if either 

b E Ll (%+; 93) or b(t) + 0 as t + o~ , than all solutions converge to zero. Of particular 

interest is the case wher'e b is T -periodic, i.e. b(t + T) = b(t), 'dt E 93,. In this case UUB 

implies that (2.2.8) has at least one T -periodic solution, which is to say that there exists 



at least one point x, E 9Z2 such that x(T + to ;to, x,) = x, . In §D it will be shown that 

sufficient conditions for the periodic solution to be GES and hence unique is that either 

L < R~ or that there exists a T -periodic solution such that llx211m < 2RKIL. From 

inequality (2.2.13) it can be concluded that any periodic solution must satisfy 

IIxIIrn 5 c4llbllrn/&c, , SO that the final condition will be satisfied if Ilbll, is small 

enough. 

2.3 Tremor suppression 

As noted in 51, it has been established that by applying fixed levels of viscous damping 

to the effected limb, the tremor related motions can be significantly reduced. However, 

as one would expect, a concurrent resistance to voluntary motion also occurs. Motivated 

by this result it was suggested that if an ER damper were attached to the limb using a 

suitable brace/orthosis, then it may be possible to modulate the damping in such a way, 

so as to reduce the amplitude of the tremor related oscillations, with a minimal 

degradation of the voluntary motion. 

It is widely accepted that ER dampers fall into the category of passive control devices, 

to quote [20], "It is important to note that in ER actuators, only the dissipation and 

possibly some storage of energy is possible. Consequently the term semi-active is often 

applied to ER devices although the term controllable-passive is probably more 

descriptive". From an energetic viewpoint a passive system is usually defined as one 

which cannot store more energy than is supplied externally, with the difference between 

the stored and supplied energy, being the dissipated energy. This property is important 

as it implies that the use of an ER damper for tremor suppression is safe, in the sense 

that the net flow of energy must be in the direction from the user to the damper. 

In order to explore the implications of passivity more closely, a more precise definition 

is required. Consider the dynamical system with statex E 9Zn, input u E %"' and output 

y E 9Zm 

x = f (t,  x, u) 

Y = c(t, x, u), 



and f (t,O,O) = O,c(t,O,O) = 0 for all t E %+. It is assumed that f is such that (3.1) has a 

unique solution, x(t; to, xo , u) . The following definition will suffice for the present 

purposes, the reader is referred to [48] and references therein for further details. 

Passivitv definition The system (2.3.1) is said to be passive if there exists a positive 

definite functionH E c ' (%~;%+)  (called the storage function) and a nonnegative, 

integrable fimction @(t) = @(t, x(t),u(t)) (called the dissipation function) such that for 

all u E C(%+;%nz), x(tO) E 3 "  and t 2 to 2 0 

H(x(t)) -H(x(to)! + jl@(s)ds to = jt(y(s), to u(s))ds, 
stored energy -, 

dissipated supplied 

or in differential form 

~ ( x ( t ) )  = -@(s) + ( ~ ( t ) ,  u(t)) 5 ( ~ ( t ) ,  u(t)). 

Moreover, depending on the form of the dissipation function (2.3.1) is said to be 

lossless if @ - 0 ,  

input strictly passive if @(t) 2 p(u(t)) for some positive definite function 

q : % m + % + ,  

output strictly passive if @(t) 2 p(y(t)) for some positive definite function 

q : 3 " '  +%+, 

strictly passive if @(t) 2 p(x(t)) for some positive definite function 

p:!Rn +%+, 

to have finite gain if @(t) 2 kly(t)12 for some constant k > 0 . 

Passive systems are often referred to as defining a passive map from u to y (u H y ). 

For memoryless systems, that is with no state space, the above definition reduces 

toy  = c(t, u) and (y, u) 2 0 for all t E R+ . In the scalar case this is equivalent to saying 

that the graph of c(t,.) : % -+ % lies in the first and third quadrants for allt E 93,. 

Passivity is a rather abstract concept, however, for physical systems the natural choice 

of storage function is the system's energy. In this case the product of the inputs and 

outputs will have the units of power, i.e. forces and velocities for mechanical systems. 

An extremely useful property of passive systems is that passivity is preserved under 



negative feedback interconnection, with the sum of the individual storage functions 

acting as a storage function for the connected system. 

For the purposes of analysis the system Ex (2.2.8) can be viewed as a forced pendulum 

type system with unit inertia, so that the natural storage function is the system energy 

1 
Hx (x) = - (x: + Kc;)+ % h(s)ds . (2.3.5) 

2 

Taking derivative of H, (x) along the trajectories of Cx yields 

fix (x) = -@ + ( ~ 2 ,  b(t) + w)), (2.3.6) 

which when compared with (2.3.3) shows that Cx with output y = x, , is passive with 

finite gain. Note that taking the Liapunov function (2.2.9) as storage function, (2.2.10) 

implies that Ex with output y = 2x2 + Rx, is strictly passive. 

Now consider coupling an ER damper to the forearm via a rigid brace. The brace 

consists of two components rigidly fixed to the upper arm and forearm respectively. 

For simplicity the damper is assumed to be of the rotary couette type, similar to 

Fig.l.4 (a) in 51.2. It will consist of two concentric cylinders with ER fluid filling the 

small gap between them. The outer cylinder (casing) is rigidly attached to the upper-arm 

component of the brace and will not affect the dynamics of the forearm. The inner 

cylinder (rotor) is attached to the forearm component of the brace, the axis of rotation 

coinciding with that of the elbow. The rotor is assumed to be symmetric about the axis 

of rotation, so that its inertia is independent of angle and can thus be lumped in with the 

forearm's inertia. The two cylinders also act as electrodes. When a voltage is applied 

across them, an electric field will build up perpendicular to the couette flow, thus 

activating the ER fluid. When the elbow rotates the rotor is forced to rotate relative to 

the casing, shearing the fluid. The fluids resistance to shear is transmitted through the 

rotorbrace to the elbow in the form of a reactive torque, - F(t) in (2.3.6). The idea is 

that by increasing the voltage, the fluid's resistance to shear increases, hence increasing 

the elbow's resistance to rotation. 



The most commonly used model is ER devices in the Bingham plastic model (see 

equation (1.2.1). Neglecting the linear viscous term, it is basically an ideal, scalar, 

coulomb friction model. In this case the reactive force is given by 

- F(t) E r(t)SGN(x2), where r(t) = Fy(t) is a nonnegative control variable related to 

the applied voltage and SGN(x,) is the set valued signum function, given in equation 

(1.2.2). Note that SGN(x,) arises naturally as the subdifferential of Ix, I (see 53.2). It is 

easily seen that this model satisfies the passivity requirement 

since r(t)SGN(x2)x2 = r(t)lx,l 2 0 . The coupled system is defined by 

Using the properties of the hnction SGN(.) it can be shown that if b(t) and r(t) are 

continuous and bounded for all t 2 0 and if r(t) is a nonnegative, then (2.3.7) has a 

unique solution x E co31 (%+;s2) for each (t,,xo) E %+ x g 2 .  The next question is, 

how to choose r(t) so as to attenuate the effect of b(t) on the solutions of (2.3.7). In 

what follows it will assumed that b(t) is a nontrivial T -periodic function taking both 

positive and negative values on each interval of length T . 

The derivative of Hx (x) along the trajectories of (2.3.7) is 

H ~ ( X )  = -Rxi -r(t)lx,l+ b(t)x,, 

5 -& - 1x2 l(r(t) - lb(t)[). 

For the purpose of illustration it will be assumed that b(t) is known, so setting 

r(t) = Ib(t)l gives 

EiX (x) I -RX;. (2.3.9) 

Applying Theorem B.3 in 5B to (2.39), it can be concluded that all solutions of (2.3.7) 

are uniformly bounded. Inequality (2.3.9) can be used to show that 

x, E L,(%+;%) n CO,l(%+;%), so that Barbalat's lemma (5B.2 lemma B.3) can be used 

to infer that x, (t) 4 0 as t + co . Based on this and the fact that (2.3.7) is a T -periodic 

system, it follows that the positive limit set R(x) (5B.2 lemma B.2) is nonempty, 

invariant and contained in the largest invariant subset of E = E YI2 ( X, = 0). Since 

x, = 0 implies x, = 0 ,  any solution of (2.3.7) remaining identically in E must satis@ 

x, = a ,  for some constant a and from equation (2.3.7) Ka+ h(a) E b(t) + Ib(t)l[-l,l] for 



all t 2 0 .  But by assumption, b(t) takes both positive and negative values, so there 

exists a t E [0, TI such that b(t) = 0 and hence Ka + h(a) = 0,  implying a = 0 . It follows 

that no solution can remain in E other that the zero solution, thus implying O(x) = 0 

and global asymptotic stability follows. 

This is a nice result, unfortunately it relies on the set valued nature of the idealised 

Bingham plastic model at x2 = 0.  In other words, when x, = 0 the damper force can 

take any value in the set ib(t)l[-1,1]. Fig 2.2 compares the force velocity plots for the 

idealized Bingham plastic model and experimental force-velocity cycles for an ER 

damper subject to sinusoidal displacements with frequencies 0.25 Hz and 1.0 Hz 

respectively and various levels of the electric field (taken from [28]). Clearly, for each 

level of the electric field, the damper response is not set valued at x, = 0 .  Rather, it can 

take one of two distinct values, depending on the displacement history. This combined 

with the frequency dependency of the hysteresis loops, this indicates that some form of 

dynamic model is required. Note that the force velocity hysteresis loops are traversed in 

an anticlockwise direction. 

Fig 2.2 (a) shows the force velocity relation for the idealized Bingham plastic model, while (b) and 
(c) show experimental force velocity cycles for an ER damper subject to sinusoidal displacements 

with frequencies 0.25 Hz and 1.0 Hz respectively and for various levels of the electric field E. 
(taken from [28]) 

Consider now the case where the damper response is modelled using a scalar 

differential inclusion 

CZ { i E G(r(t), z, ~ 2 )  (2.3.10) 

with F = -z in (2.2.8) and where r(t) is a nonnegative control variable related to the 

applied voltage. It is assumed that the set valued map G satisfies G(r,O,O) = 0,Vr E '93, 



and is such that if x, E cO,'(%+;%) and r E c0,'(%+;%+)then (2.3.10) has a unique 

solution z E cO,' (%+;%) . The coupled system is now given by 

x, = X2 

X, = -Rx, - $3, - h(x1) - z + b(t) (2.3.1 1) 

z = G(r(t), z, x,) 

Based on the definition of passivity and the discussion preceding it, it seems reasonable 

to expect that C, would define a passive map from x, to z  , that is 

GZ (z) = -@(r(t), z) + zx2 I zx,, (2.3.12) 

where the positive definite function Hz represents the stored energy and the 

nonnegative function @(r(t), z )  ( dissipation function) is the rate at which Cz dissipates 

energy along a given trajectory. Unfortunately many of the dynamic models which have 

been devised for ER dampers do not define a passive map from x2 to z , making useful 

analysis and control design very difficult . 
Assuming that C ,  is a passive system then integrating (2.3.1 1) and rearranging yields 

which simply says that the maximum amount of energy which can be extracted from 

C Z  is finite, thus ensuring the safety of the user. Combining (2.3.6) and (2.3.12) yields 

the power balance (note that ab 5 ~ a ~ / 2  + b2/2 R ) 

where H(x, z) = H, (x) + Hz (z) , implying that the coupled system with output x, , is 

passive with finite gain. Unlike the Bingham plastic model, the passivity of (2.3.10) 

implies that x = 0 can not be rendered GAS by suitable choice of control r(t) . To see 

this note that for x = 0 to be a (partial) equilibrium for (2.3.1 1) would require that 

forx, = 0 ,  there exist a controlr(t) such that (2.3.10) has a nontrivial periodic solution 

z(t) = b(t), Vt 2 0 . Since b(t) takes both positive and negative values, so must z(t) , 

implying the existence of a time z E [O,T) such that z(z) = 0.  Setting x2 = 0 in (2.3.12) 

gives Hz (z(t)) 5 0, implying that the stored energy Hz is nonincreasing along this 

solution. Since H z  is positive definite and nonincreasing, if HZ(z(r)) = 0 then 



HZ(z(t)) = 0 for all t 2 z . But this implies that z(t) = 0 for Vt 2 z , contradicting the 

assumption z(t) = b(t),Vt 2 0 .  So what can be achieved ?. 

Assume for the moment that both r(t) and b(t) are T -periodic and that (2.3.1 1) has at 

least one T -periodic solution, say (i(t), 2(t)) . Integrating (2.3.14) along this T -periodic 

solution and using H(i( t  + T), 2(t + T)) = H(i(t), 2(t)) for all t 2 0 , yields (need only 

consider the interval [0, TI due to periodicity ) 

It follows that if r(t) could be chosen so as to maximise (in some sense) the energy 

dissipated by C,, over the interval [O,T] , this would reduce the upper bound on the 

L, norm of 2, over [O,T] . Note that this is equivalent to reducing the bound on the 

averaged kinetic energy for any T -periodic solution of (2.3.1 1). Furthermore, using the 

identity 3, = 22 and applying Holder's inequality (aA.1) to the left hand side of (2.3.15) 

gives 

where osc,i, = max 2, (t) - min JZ, (t) > 0 is the oscillation of the periodic function 2, . 
r€[O,TI rc[O,Tl 

It follows that maximising the energy dissipated by C, would also reduce the upper 

bound on the oscillation of the periodic motion 2, . Of course, for this result to be useful 

it would have to be shown that all solutions of (2.3.13) converge to a T -periodic 

solution. This would in turn, require that the damper model be well behaved and 

amenable to analysis. 

Recall that the original objective was to analyse the feasibility of using an ER damper to 

attenuate the tremor related motions of the limb, with a minimal degradation of the 

intentional motion. Also, in Section.2 it was stated that for each T -periodic tremor 

b(t) , the undamped (in the ER sense) arm model had a GES T -periodic solution. Based 

on this and inequalities (2.3.15) and (2.3.16), a suitable starting point would be to 

attempt to devise a control strategy for r(t)which would ensure that for each T - 

periodic tremor b(t) , (2.3.1 1) has a GES T -periodic solution, whose oscillation is 

smaller than that for the undamped solution (in the ER sense). 



Furthermore, the rate of convergence to the damped T -periodic solution should not be 

less than the rate of convergence to the undamped T -periodic solution (minimal 

degradation of the intentional motion). In order to attempt this, a damper model will 

need to be derived, which captures the dominant behaviour of ER fluid dampers, is well 

behaved and amenable to analysis. 

In $3, thermomechanical principles and a bit of convex analysis are used to develop 

some simple, physically intuitive damper models, which are well suited for analysis and 

design. In $4, the simplest of these damper models is then coupled to the arm model 

(C,) and the qualitative behaviour of the system is analysed using Liapunov type 

techniques. $D investigates conditions on r( t ) ,  which will ensure the existence and 

exponential stability of periodic solutions. A result of this analysis is the development 

of some novel control strategies. Finally in $5, the feasibility of using these control 

strategies to achieve the control objectives, will be investigated both theoretically and 

numerically. 



Chapter 3 

Phenomenological modelling of 

ER fluids in shear 

The purpose of this chapter is to demonstrate that the well known method of 

"thermomechanics with internal variables" is well suited to developing 

phenomenological models for ER fluid dampers. The chapter begins with a review of 

ER fluids and some of the physics-based micromechanical models which have been 

developed. A simplified version of "thermomechanics with internal variables" is then 

presented along with an intuitive model for the inelastic behaviour of ER fluids. The 

theory is then used to reformulate some of the models for ER dampers which have 

appeared in the literature. 

3.1 Introduction to ER fluids 

As early as the 1940's an experimentalist named Winslow noticed that when a 

suspension of dielectric particles in oil was placed between two electrodes and subjected 

to an electric field, the particles rapidly aggregated into fibrous chains running parallel 

to the field (see Fig 3.1). An even greater surprise was that this change in structure 

resulted in an equally dramatic change in the fluid's resistance to shear flow 

(perpendicular to the field) and which disappeared as soon as the field was removed. 

Further work showed that this controllable resistance was more akin to the yield stress 

associated with coulomb friction than with standard Newtonian viscosity. Aware of the 

potential for such a fluid, Winslow rapidly obtained patents for all manner of 

electromechanical devices including controllable dampers, clutches and brakes [49] [50]. 

Despite their apparent promise, the early ER fluids were highly criticised due to 

problems with thermal breakdown, particle settling and abrasiveness. Since then the ER 

effect has been observed for numerous combinations of particles and fluid including 

cornstarch, silica, alumina, flour and semiconductors in a hydrophobic liquid such as 

silicone or corn oil (and even molten chocolate) [52][53]. 



Fig 3.1 Electrorheological behaviour of PMA particles dispersed in silicone oil. 
Taken from [51]. 

Typically ER fluids consist of 1-100pm polarisable particles with volume fractions of 

particles to fluid ranging from 0.05 to 0.50. That said, very few combinations have the 

properties required of a commercially viable product. It is only in the last two decades 

or so that the above mentioned problems have been overcome (to some extent at least), 

sparking a renewed interest in the development of semi-active dampers and force 

transfer devices. Applications which have been investigated include automotive 

suspensions, vibration control, haptic interfaces and large scale dampers for the seismic 

protection of multi-storey buildings, [20] [54] [55]. Strangely enough, none of these have 

made the transition from laboratory curiosity to supermarket shelf. 

The shear stress, o, in a sheared ER fluid (or device) is usually modelled using the 

Bingham plastic model (compare with equation (1.1.1)) 

o = o, sgn(i) + rve  for e # 0, 

o E oy[-l,l] for i = 0, 

where qv is the plastic viscosity, e is the shear rate and oy is the Bingham or dynamic 

yield stress. The yield stress is assumed proportional to the square of the applied electric 

field, while rv is generally taken to be field independent. In equation (3.1.1), oy is 

interpreted as the dynamic yield stress, while the static yield stress is defined as the 

minimum shear stress required to produce continuous shearing flow in an originally 

static sample of activated fluid. In general these two definitions are not equivalent, 

though closely related [21], That the material is capable of supporting a stress in the 

absence of flow would suggest the definition of a solid rather than a fluid. For example, 

the simplest experiment that can be performed with an ER fluid is to dip two electrodes 

into a sample, switch on the electric field and then remove the electrodes. The ER fluid 



between the electrodes will be solidified and will remain stationary until the field is 

removed. Thus implying that the activated fluid is capable of supporting self weight in 

the absence of flow. 

For ER fluids to become a truly attractive alternative to more conventional technologies, 

the fluid needs to display rapid response times (transformation from liquid to semi- 

solid) and achieve a large yield stress with a minimum of electric power consumption. 

At present commercially available ER fluids are typically designed to obtain a 

maximum dynamic yield stress of about 4-5 kPa at 4kVlmm [57], with typical 

activation time scales in the order of 1-50ms. Although the electric field required may is 

very high, ER fluids usually maintain a current density of about 1 0 ~ ~ l c m ~  (of electrode 

surface area) for applied electric field of 4kVlmm at room temperature. As a result the 

power consumption is still extremely low. W h i l e ~ ~ c o u l d  theoretically be made 

extremely large by further increasing the electric field, all ER fluids are slightly 

conductive and too high an electric field will either result in large energy dissipation 

(due to current) causing the fluid to over heat, or the fluid will simply break down 

resulting in arcing between the electrodes. 

In the design of any rehabilitation device or techilological aid, the safety of the user 

should be given the highest priority. The main concern when designing ER fluid 

dampers, which are to interact with people, is the need for high voltages to develop the 

required damping forces. For this reason, extreme care should be taken so as to ensure 

the device itself is well insulated and that the power supply has sufficient safety 

features. Furthermore, in the design process every effort should be made to reduce the 

current consumption at maximum voltage, which will reduce the maximum power 

requirement and therefore the risk of injury. 

At about the same time that ER fluids were discovered, their magnetic analogue called 

Magnetorheological (MR) fluid was also discovered. While MR fluids exhibit much the 

same behaviour as ER fluids under the influence of a magnetic field, there are some 

important differences. At present commercially available MR fluids offer a maximum 

controllable yield stress an order of magnitude greater than that attainable with ER 

fluids and remain stable over a wider range of temperatures. For this reason MR fluids 

have taken over as the controllable fluid of choice for experimentalists and developers 

[22][23][24]. For example several MR devices have become commercially available in 

the last few years, the most popular of which is a retrofit semi-active damper for long 



haulage truck seats. Despite the advantages of MR fluids, the reasons for picking ER 

fluid for the current application is that ER fluids generally have a lower no field 

resistance, the particles are lighter meaning they are less likely to settle. Most 

importantly MR fluids require a controllable magnet for activation, which can add 

considerable weight to the device and are extremely difficult to design into small and 

complex geometries. 

As pointed out in $1.2, a substantial obstacle for the design and development of control 

systems capable of taking full advantage of these fluids has been the fact that they 

exhibit all sorts of highly nonlinear hysteretic behaviour, little of which is captured by 

the Bingham model. As an example Fig 3.2 shows the experimental responses obtained 

from [22], for an MR damper subject to a sinusoidal displacement and for a range 

control currents applied to the electromagnet. Unfortunately good experimental data for 

ER dampers is hard to come by, though this response is qualitatively typical of most ER 

and MR dampers. It should be noted that the force displacement loops run clockwise, 

while the force velocity loops run counter-clockwise. The first thing to notice is that as 

the applied current is increased the area enclosed by the force-displacement loop also 

increases, indicating an increase in the energy dissipated per cycle. 

Displacement (cm) 

(a> 

Fig 3.2 Experimental Force-displacement and Force-velocity relationships under sinusoidal 
displacement excitation, taken from [22]. 

While the Bingham model captures the basic features of force-displacement loop quite 

well, the main problem is in the representation of the force-velocity loop. Referring 

back to (1.1.1), the Bingham model presumes that the fluid remains rigid when the 



applied force is less that the yield force, which is clearly not the case. When fitting the 

Bingham model to such a response it is usual to project the high velocity asymptote 

back to the force axis and take this to be a, while the average slope of the asymptote is 

taken as the plastic viscosity, q, . Using the terminology £ram $1.2, when the damper 

force is less than the yield force, it is said to be operating in the pre-yield region. When 

the force is greater than the yield force it is said to be in the post-yield region. As noted 

in $1.2, numerous studies have come to the conclusion that ER fluids behave 

qualitatively similar to a nonlinear viscoelastic solid in the pre-yield region and like a 

Bingham plastic in the post-yield region, [2 11 [25] [3 11 [32] [36] [56]. An interesting 

feature of Fig 3.2 is the peak in the force appearing in the upper left and lower right of 

the force-displacement loop, which correspond to the apparent over shoot in the force 

velocity curve. This strange behaviour might be attributed to the presence of a higher 

static yield force, which gets 'recharged' when the fluid is in the pre-yield region and 

begins to degrade as soon the fluid enters the post-yield region [60]. Alternatively the 

over shoot could be a result of fluid inertia. That is, non-negligible inertia would lead to 

a second order response. The above discussion should be enough to convince the reader 

that controllable fluid dampers are highly nonlinear devices. 

To date there have been two main approaches to the modelling of controllable fluid 

dampers, which can be categorised as parametric and non-parametric [24]. The aim of 

the non-parametric approach is to replicate the input-output data exactly, without 

concern for the underlying phenomena. The modelling procedure can involve such 

things as fitting polynomials to the force-velocity curves, constructing fuzzy logic sets 

to discriminate between the pre and post yield regions or training neural networks on 

selected input-output data. As such nonparametric models rarely generalise to dynamics, 

which are not contained in the experimental data. In addition engineers are usually 

concerned with the physical nature of systems, so their usefulness as tools for control 

design and stability analysis is questionable. 

Parametric models on the other hand, make use of prior knowledge about the physics 

and kinetics of the device to construct a constitutive model relating the input-output 

data. As shown in $1.2, a popular approach to the construction of a constitutive model is 

to use some interconnection of linear and nonlinear springs, dampers and friction 

elements (rheological elements). While the modelling of semi-active dampers with 

rheological elements is basically sound enough, to date the method of application has 
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been too ad-hoc, resulting in models that can exhibit very unrealistic behaviour. The 

main problems are in the construction of functions to determine whether the damper is 

in the pre or post yield region and the manner in which the effects of varying 

electriclmagnetic fields are incorporated in the model. A consequence of the latter 

problem is that some of the models developed to date do not define a passive map 

between the imposed velocity and the reactive force (see $2.3 for definition of a passive 

system). As a result, it can be shown that these models are capable of generating 

"energy" under certain loading/control conditions (not a passive system). Consider first 

the model shown in Fig 1.6, which was developed in [33]. The total energy storage for 

this model consists of a kinetic component due to the presence of the mass and a 

potential energy due to the nonlinear spring (see equation (1.2.5)) 

1 
H, ( i ,  x, x, ; t) = - mi2 + %' K(s; t)ds. 

2 

The derivative of HI (x, x, x, ;t) along the solutions of the system in (1.2.6) satisfies 

From the description of the modified Bingham plastic hnction, ~ ( i ,  ; t) , in Fig 1.6(b) it 

can be seen that the term~(x, ; t )x ,  is nonnegative. It follows that if F, (t) is constant 

(constant electric field) then the model does define a passive map from i to F . 

However if ix - x, 1 > F ,  (t)/2G and F~ (t)lx - x, 112 > ~ ( i ,  ; t)i, , then the term in 

brackets will be positive (internal energy production) implying that the model does not 

define a passive map from x to F for arbitrarily time varying electric field. Note that 

in a later study [30], the field dependent nonlinear spring (1.2.5) was replaced with a 

linear spring with constant coefficient, leading to a passive model. 

Next consider the Bouc-type model described by (1.2.7), generalizations of which are 

used in [22], [23] and [35]. When used for modelling MR dampers, this model is 

generally implemented using A > 0 and P = y > 0 ,  [23][35]. The total stored energy 

for this model can be taken as H,(z;t) = a ( t ) z 2 / 2 ~  (the state variable z has the 

dimensions of length [23]). The derivative of H2 (z;t) along the solutions of the system 

in (1.2.7) (with /? = y > 0 ) satisfies 



Clearly if either i z  > 0 and d.(t)z2 > 2Af i2  - y4a(t)lillrlnt' or i z  z_< 0 and 

d.(t)z2 > 2 A f i 2 ,  then the variations in the control parameter a ( t )  causes a net increase 

in the stored energy (internal power generation). It follows that the model does not 

define a passive map from x to F for arbitrarily time varying control. Similar 

calculations show that the models in [22],[23] and [35] do not define passive maps from 

x to F .  

As a final example, the nonlinear viscoelastic-plastic model presented in [29] and [36] 

will be considered (see (1.2.8) and (1.2.9)). The model is based on the knowledge that 

ERIMR fluids behave like viscoelastic solids in preyield and like a Bingham plastic in 

postyield. The idea is to use two separate models to capture the preyield and postyield 

behaviour and then to smoothly transition between them using suitable switching 

functions. For small velocities (preyield) the fluidldamper is modelled by a spring and 

dashpot in parallel, so that the total reaction force is approximately 

F(t)  = R,x(t) + Kx(t). Both the spring stiffness K and the dashpot viscosity R, are 

assumed to be increasing functions of the electric field. In this case the total stored 

energy corresponds with the energy stored in the spring, H,(x;t) = ~ ( t ) x ~ / 2 ,  the time 

derivative of which satisfies 

H ,  (x;t) = Fi + (K(t)x2 /2 - fi2) (3.1.5) 

Equation (3.1.5) implies that there is internal power generation whenever 

K(t)x2/2 > R(~)x', from which it follows that the model does not define a passive map 

from x to F for arbitrarily time varying electric field. 

Not only can this from of non-passive behaviour produce very strange results in any 

form of stability analysis, it can in fact give unrealistically good results in simulation 

studies of vibration or disturbance control. In addition it goes against the usual 

definition of a semi-active damper, as a control device with properties that can be 



adjusted in real time, but cannot input energy into the system being controlled (see 

$1.2, $2.3). 

The purpose of this chapter is to present a simple method for modelling shear mode 

electrorheological dampers, which avoids the above mentioned problems and produces 

models which are easy to analyse and numerical friendly. The method itself is based on 

the method of "thermodynamics with internal variables" and uses some simple results 

froin convex analysis to ensure the transition between pre and post yield behaviour is 

physically consistent. It will also be shown that with a bit of insight into the underlying 

mechanisms, many of the observed nonlinear behaviours can be incorporated into the 

model in a systematic and easy to follow manner. Before getting down to the actual 

modelling, some of the basic theories presumed to govern the ER effect will first be 

reviewed. It is important to point out at this stage, that the interest in these models is not 

to predict the force levels or the actual values of parameters, but merely gain some 

insight into the relationships between observable variables such as the electric field, 

shear rate and bulk resistance of the fluid. 

Microstructural Mechanisms 

In order to formulate realistic models capable of predicting the behaviour of ER fluid 

based devices, it is important to have a basic understanding of the solidification kinetics 

and how an activated fluid responds to applied mechanical strains, especially in the case 

where substantial flow is induced. While numerous different phenomena have been 

proposed as the origin for the ER effect, many of these make specific assumptions about 

the chemical and physical nature of the ER fluid and are thus too specific to aid in the 

formulation of a general modelling procedure. For example, in [58]  the author attributes 

the large increase in an ER fluid resistance to the formation of water bridges between 

particles. The idea here is that that these water bridges must be broken (overcome 

interfacial tension) for the fluid to flow. This mechanism originally received a lot of 

attention as the responses of many early ER fluids were found to depend on the 

moisture content of the particles. However inany of the newer ER fluid formulations are 

essentially anhydrous, which rules out the water bridge as a fundamental mechanism 



The simplest and most general electrorheological mechanism is the polarisation model 

originally proposed by Winslow [50], which attributes the chaining of particles to their 

field induced polarisation relative to the base fluid. The usefulness of the polarization 

model lies in the fact that it can be easily modified to account for the attributes and 

operating conditions of a specific fluid composition, without greatly altering the 

qualitative nature of the equations. Application of the polarization model to the study of 

ER fluids has basically followed two paths, particle level simulations and single chain 

models. 

Possibly the most interesting of the single chain models is the kinetic chain model 

developed in [59], to describe the evolution of a single particle width chain in 

oscillatory shear and over a range of strain amplitudes. While the chain model does lend 

some insight into the microscopic dynamics of an activated ER fluid, the assumption of 

single width particle chains is only justifiable for very small volume fractions. It has 

been shown both numerically and experimentally that ER fluids suitable for practical 

applications (with large controllable yield stress and low power consumption), require a 

volume fraction of between 30 and 40%. At such large concentrations the structure of 

an activated fluid is known to consist of thick fibrous clusters (Fig 3.1), which evolve 

continuously under non-stationary flow conditions. Under such conditions, the 

behaviour of ER fluid can be more accurately represented through particle level 

simulations. The basic idea here is to integrate the equation of motion for each 

individual particle in order to determine the evolution of the overall microstructure and 

then to evaluate the properties of interest. For a detailed discussion on the various 

components and aspects of the numerous microscopic models for ER fluids, the reader 

is referred to the references, [2 11 [52] [53] [56] [60]. Here, only some of the basic features 

will be considered. 

The concept of electrostatic polarization as the origin of the ER effect still remains the 

fundamental building block for most successful micro-structural models. In its original 

form the induced electrostatic polarization forces were attributed to the dielectric 

mismatch between the ER particles and the base fluid (though it turns out that this is 

only valid for high frequency ac electric fields [53], for low frequency ac and dc fields, 

the important quantity is the ratio of particle to fluid conductivities). The basic idea 

being that if an uncharged particle, in a fluid of different dielectric constant is subjected 

to an electric field, it will develop an induced dipole due to the difference in 

polarizability of the two materials. The dipole itself can be seen as a concentration of 



positive charge at one end of the particle and negative charge at the other end, 

see Fig 3.3. 

For the purposes of analysis, a sample of ER fluid is usually treated as N neutrally- 

buoyant, hard spheres of radiusb , dispersed in an incompressible Newtonian fluid of 

viscosity q . Both the particle size and the fluid Reynolds numbers are assumed to be 

small enough so that inertial effects can be ignored (apparently justifiable for b < l o p  

[52]). It is also assumed that Browniadtherrnal forces are negligible, as these would 

only act to disrupt the particle chains vital for the ER effect. The exact electrostatic 

interpartical forces for a particular ER fluid could be calculated, in theory, however it 

would be an extremely difficult task due to the number of phenomena influencing the 

potential field. As a result, calculation of the electrostatic forces is usually only possible 

after a number of simplifications have been employed. The most common 

simplifications are to approximate the dipole on each sphere, as a point dipole located at 

the sphere centre, and to assume that the dipole moment on each particle is independent 

of it neighbours [53]. With this simplification and the aid of Fig 3.3, it is possible to 

qualitatively explain why ER fluids form particle chains parallel to the electric field. 

Consider two spheres who's line of centres is parallel to the electric field (i.e. By = O), 

there will be a net attraction between the positive and negative charges, pulling the 

spheres together. 

Rotation and 
Alignment 

Attraction Repulsion Notation 

Fig 3.3 Electrostatic interaction between two dipoles, i and j. Rij is the centre-to-centre 
spacing and Oij is the angle between the line of centres and the electric field, E. 

Similarly for spheres with their line of centres perpendicular to the electric field, there is 

a net repulsion along their line of centres. If their line of centres is at any other angle 

with respect to the applied field, the pair will experience a net torque, causing them to 

translate and rotate into alignment with the electric field. Thus the forces due to 

polarization will cause the formation of particle chains running parallel to the electric 

field. That the model also predicts the formation of thick clusters requires a bit more 

thought, since the polarization model predicts that particle pairs with Bii greater than 55 



degrees will repel each other. However, when a particle approaches an initially single 

particle width chain, it will experience attractive forces from the particles above and 

below its opposite in the chain. There will still be a net attractive force drawing the 

particle toward the chain. This net attractive force has other consequences, as it means 

that an electrode-spanning cluster can deform (as a result of moving the top electrode, 

relative to the lower) due to slight rearrangements and sliding of particles, without 

actually breaking any particle contacts. 

In [60] the authors analysed the structural dynamics of ER suspensions under oscillatory 

shear (the fluid is contained between two parallel electrodes and shear is induced by 

moving one electrode relative to the other).The analysis was based on simulation results 

using a particle level model similar to that described above and experimental results 

using a 20wt % suspension of acidic alumina particles in polydimethylsiloxane 

(PDMS). The simulation results agreed, at least qualitatively with the experimental. The 

basic conclusions are best summarised using the Pipkin diagram in Fig 3.4, for ER 

fluids in laminar oscillatory shear flow (taken from [60]). The flow regimes are mapped 

in terms of the nornalised frequency w~ = ~ / A E ~  , (where A is a constant of suitable 

dimensions and E is the applied electric field) and the strain amplitude yo (i.e. for 

oscillatory strain y = yo sin(wt)). In keeping with [60], the strain will be denoted by y 

rather than e . For fixedwE, veiy small strain amplitudes result in small affine particle 

displacements (from their equilibrium state), which are completely reversible/elastic. 

That is, if the stress is removed, the particles will return to their original position, 

restoring the energy that was stored during the original deformation. In this region 

dissipation will be small and of a purely viscous nature. As the amplitude increases 

above yp the elastic response becomes nonlinear due to slight rearrangements and 

deformations of the particle clusters. In this region the strain will not be entirely 

recoverable due to the occurrence of permanentfirreversible rearrangements of particles. 

These rearrangements will dissipate energy due to viscous resistance opposing their 

motion and surface friction encountered as they slide over each other. Increasing the 

strain amplitude beyond yy sends the fluid into the viscoplastic region. 



Fig 3.4 Pipkin diagram of dynamic rheological behaviour of ER fluids, the curves separating 
regions of different rheological behaviour, [60]. 

The fluid is no longer capable of accumulating additional elastic strain, resulting in a 

purely dissipative response. From a stiuctural point of view, the viscoplastic response is 

characterised by continual rupture and reformation of particle clusters, giving rise to an 

apparent yield stress. Now running the other way, for a fixed y o ,  as the frequency 

increases, hydrodynamic forces will begin to degrade the electrode spanning clusters, 

allowing plastic deformation to occur at lower strain amplitudes. At even larger 

frequencies, the hydrodynamic forces will dominate completely and the response will 

appear to be purely viscous/Newtonian. 

While the basic polarization model does lend some insight into the behaviour of ER 

fluids, it is still an over simplification of the actual behaviour. For example, when 

highly polarisable particles are in close proximity, the disturbance fields created by the 

neighbouring particles act to further polarise one another, resulting in electrostatic 

moments beyond the dipole approximation. In reality the ER fluid and electrodes should 

be treated as a leaky dielectric with a capacitance that depends on the instantaneous 

state of the fluid. The main failing of many of the micro-structural models to date is that 

the applied electric field is only treated as a constant parameter and thus, they do not 

give any insight into the effect of an arbitrarily varying field. The reason for this would 

seem to be that incorporating a varying electric field places the model in the realm of 

electrodynamics (as oppose to electrostatics), requiring consideration of the conduction 

current, charge densities on the electrodes and induced magnetic fields. Those models 

which have successfully incorporated these effects [62], are extremely complicated and 

difficult to interpret. 



3.2 Thermomechanics 

System Assumptions 

The purpose of this section is to describe a simple method for the construction of one 

dimensional models for ER dampers, based on the observed energy storage and 

dissipation characteristics of ER fluid. The method itself is based on a simplified 

version of the method of "thermomechanics with internal variables", a detailed 

development of which can be found in the excellent texts, [37][38][39]. Of course, a 

one-dimensional model can hardly be expected to provide an in anyway accurate 

description of a complex system such as ER fluid. However, a good model should be 

constructed with the application in mind and should describe the real physics only as far 

as needed for that application. By using an approach rooted in thermodynamics, it is 

hoped that the resulting models will be capable of describing the qualitative energy 

storage and dissipation properties, without being overly complicated. While the 

presentation given below may seem rather abstract at first, in later sections it will be 

shown that the models can be interpreted using idealised rheological elements (springs, 

dampers etc). This allows for a clear interpretation of the physical effects taken into 

account. 

To simplify matters, it will be assumed that the typical levels of shear to which the 

damper is subject are sufficiently small, so as to justify ignoring inertial effects. While a 

massless model does not make much physical sense, it should be kept in mind that the 

ultimate goal is to couple the model with the oscillator described in $2. From a 

thermodynamical point of view, it will be assumed that the instantaneous state of the 

damper can be adequately described using a vector of macroscopic variables~ E %", a 

vector of internal variables a E '$3"' and the thermodynamic temperature B > 0 . The 

macroscopic variables will include those quantities which can be observed externally, 

such as the strain and stored charge etc. The internal variables will be used to account 

for a lack of precise description of the complex phenomena occurring at a microscopic 

level, but which are macroscopically evident in certain observable irreversibilities. In 

particular to account for the structural rearrangements and deformations of particle 

chains, which occur when an activated ER fluid is subject to shear. The internal 

variables should be viewed as a form of "average", representing mean measures of the 

structural rearrangements. In consequence, the number of variables required to obtain a 



satisfactory description, should be finite and independent of the volume of ER fluid 

under consideration. 

Thermodynamic Potential 

In what follows, the object of study will be a system C ,  whose state is completely 

determined by the variables x E '33" , a E %'" and 8 > 0 , collectively referred to as the 

state, or state variables. Any function of them will be referred to as a state function, 

examples of which include the internal energy U ( X ,  a, B) , the entropy S(X, a ,  62) and 

the free energy, defined by W(x,a, 8)  = U - BS. Following [39], the fundamental laws 

of thermodynamics can be stated as follows. 

First Law The total increase of the internal energy per unit time balances the power of 

the forces, X , conjugate t o 2  and the heat supply Q per unit time, 

u =(x,*)+Q. (3.2.1) 

Second Law The rate of increase in entropy s = S' + S' , consists of a reversible 

contribution 

sr  = Q/Q (3.2.2) 

called the external entropy supply, and a non-negative irreversible contribution 

s1 2 0  (3.2.3) 

referred to as the internal entropy production. If (3.2.3) holds with equality, i.e. S' = 0 ,  

then the system is said to be reversible and otherwise irreversible. 

Combining (3.2.1)-(3.2.3) and using the definition W = U-BS, one obtains the 

inequality 

63' = ( x , k ) - w - e s >  O. 

Since W is a state function, w can be expanded to obtain 

By considering the case in which C is subject to a process of pure heating or cooling 

(i.e. 2 = 0, h = 0) and noting that (3.2.5) must hold for both increasing and decreasing 

temperature, one obtains the state law [39], 



Now, decompose the force X into a quasi-conservative componentXq , a dissipative 

component xd = X - Xq , and define 

where A is the thermodynamic force conjugate to a .  Inserting (3.2.6) and (3.2.7) into 

(3.2.5) yields the inequality 

BSi =(xd,2)+(A,dr) > 0, (3.2.8) 

which is the rate of energy dissipation resulting from the evolution of C.  For 

simplicity, only isothermal processes will be considered from this point on (e = 0), so 

that B can be dropped from the list of state variables and simply absorbed into the 

definition of the state functions. Being a contribution to s , the entropy production S' is 

not a state variable, but a function of both x, = (x, a )  and j, = ( j ,  dr) . It is now 

possible to define the dissipation function @(X,;X,) =&'and write the well know 

dissipation inequality 

@(j,dr;X,) =(x,?)-w = ( x d ,  ?)+(A,&) 2 0. (3.2.9) 

Systems satisfying inequality (3.2.9) will be referred to as thermodynamically 

consistent. Inequality (3.2.9) should be compared with the definition of a passive system 

given in $2.3. From the definition, it can be seen that the quasi-conservative forcesXq 

are state hnctions, whereas, being subject to inequality (3.2.9), the dissipative forces 

xd and A ,  also depend strongly on j and dr respectively. Note that the dissipative 

power ( x d ,  2) results frOm the interaction between Z and its environment, whereas 

(A, dr) represents the dissipation rate resulting from the internal evolution of C ,  (i.e. 

(A,&) does not appear explicitly in the first law). For reasons of stability, it will 

henceforth be assumed that the free energy W(X, a )  is convex in both it arguments and 

satisfies W(0,O) = 0 .  

Dissipation Potentials 

In the previous section it was shown that knowledge of the free energy provides 

sufficient information to determine the relationship between the quasi-conservative 

force and the state variables, (3.2.7). However, the free energy provides no information 



on the structure of the dissipative force Xd and if internal variables are included, the 

free energy provides only a definition of the associated force, A .  It follows that in order 

to model dissipative systems, and in particular, to obtain evolution equations for the 

internal variables, a complementary formalism will be required. In [39] it is argued that 

the required relationships can be obtained (aRer suitable scaling) from the only element 

characterizing the difference between reversible and irreversible systems, the dissipation 

function. 

In what follows it will be assumed that the dissipation function can be decomposed as 

@(Xu ; x,) = @, (j; x,) + @, (h; x,) , with Qx and @, being continuous in both 

arguments, convex with respect t o 2  and h respectively (uniformly in X, = (x, a ) )  , 

and satisfying @, (O;.) = 0, @, (O;.) = 0 .  Thus, without loss of generality, the following 

discussion will focus on the properties of @, with the appropriate extensions for @, 

being given at the end of this section (Table 3.1). A review of some definitions and 

results from convex analysis are given in sA.2. 

Consider first, the case where @, is continuously differential with respect to h . In [39] 

it was shown that the relationship between A and 0, can be obtained by applying a 

version of the maximum dissipation principle: for a given value of the thermodynamic 

force A ,  the actual velocity h , maximises the dissipation rate (A, h) , subject to the 

constraint @, (h; x,) = (A, h) 2 0 . The analytical formulation of this problem can be 

obtained by transforming the constrained maximisation into an unconstrained 

minimisation problem using the method of Lagrange multipliers. Consider the convex 

Lagrangian function 

L(h, I )  = -(A, h) + A(@, (b; x,) - (A, h)) (3.2.10) 

where A and X, are considered fixed and A E % is the Lagrange multiplier. A sufficient 

condition for (h,  A) to be a minimum of (3.2. lo), is that (by A) solve the equations 

dL/db = 0, dL/dA= 0 ,  which yields 



Using the fact that @, is convex in & and satisfies@,(O;.) = 0 ,  it can be shown that 

y E [0,1]. From a geometric point of view, (3.2.1 1) implies that at each instant the force 

A ,  corresponding to &, is an outward normal to the surface of constant dissipation 

0, = const.. It can be seen that if 0, is positively homogenous of order n > 1 in dr 

(i.e. @,(pdr,.) = pn@,(dr,.),b'p > 0 )  , then y = l/n . The case where n = 1 is more 

difficult and will be discussed in some detail later. As a quick example, consider the 

free energy and dissipation W = 0 . 5 G ( ~  - a ) *  and @, = R & ~ ,  then y = 2 and 

(3.2.7),(3.2.11) yield 

which is the Maxwell rheological model. 

The inclusion of y in (3.2.1 1) means that @, is not a true potential for A , but instead is 

what is sometimes called a pseudopotential. If @, is positively homogenous of order 

n > 1 in&,  then y does not cause a problem. However if @,is not a homogenous 

function of d. then the presence of y can make things a bit awkward. Consider the case 

where the @, can be written as 0, = (d~/t3dr,dr), where D(d.;x,) is convex in & 

and satisfies D(O;.) = 0 .  It follows that D will serve as a true potential for A ,  and is 

referred to as the dissipation potential [38]. It follows that if 0, can be written in the 

N 
form @, = z @: , where each of the N functions @: are positively homogenous of 

1 

1 
order n, > 1 in & , then D = z - @: . As D is a potential for A ,  the dual or flow 

1 nk 

potential D* (A; x,) can be obtained using the Legendre transform 

D* (A;  Xu = (A, 6) - D(&; xu 1, 

so that 

From (3.2.7), (3.2 13) and (3.2.14) it can be seen that knowledge of the potentials W and 

Dis  sufficient to determine the evolution equation for the internal variables. The 

formalism presented above is sufficient for the modelling of simple systems exhibiting 

relaxation effects (viscoelastic etc). However, as pointed out in Section.1 and 51.2, the 



qualitative behaviour of a shear mode ER damper is dominated by the presence of a 

dynamic yield stress and not by a characteristic time scale. This situation corresponds to 

the case in (3.2.1 1) for which y = 1 , implying that D(dr;~,)  = @, (d : ;~ , )  . It follows 

that A must be positively homogeneous of degree zero i n k  and hence insensitive to 

the magnitude of d: (i.e. rate independence). This property is typical of systems 

exhibiting plastic or hysteretic type behaviours [37]. This situation requires special 

attention as the dissipation potential will no longer have classical derivative for all& . 

For example rld.1 is not differentiable at dr = 0.  Furthermore, (3.2.13) would imply that 

the dual potential D*(A;x,) is identically equal to zero. It would appear that some 

additional mathematical apparatus is required to deal with these complexities. The 

appropriate tool is convex analysis, a brief summery of the relevant aspects being 

contained in 5A.2. Recall that the subdifferential of convex fbnction f : %" + W at the 

point x is 

df (x) = {z E flnl 1 f (9- f (x) L +(z, X-X),VTE / (3.2.15) 

and the outward normal cone to a closed convex set C at xis  defined by 

N(X;C) = {z e Wm ~ ( z ,  x-2) L o,% t C)  (3.2.16) 

The normal cone N(x; C) , is the subdifferential of the indicator function, I(x; C) , of 

the convex set C ,  see 5A.2 and references therein for details. 

Assume that D(&; x,) = @, (d.; x,) is continuous in both arguments, convex and 

positively homogeneous of order one in d! . Assume also that D(O;.) = 0 and D(d:;.) 2 0, 

for all dr E Wm .Defme the closed convex set C(X,) by 

C(X,) = kt Wnl I ( ~ , d : ) <  D(dr;~,),Vdr E 'R~'},  

(see [65] for details) 

Lemma 3.2.1 

(a) D is the support function of C(X,) : D(&;x,) =  sup{(^, dr) 1 A t c(~,)}, 

(b) The Legendre-Fenchel dual of D is the indicator function of C(X,) : 

(d) A E d,D(dr;~,) G dr E d A D * ( A ; ~ , )  = N(A;C(x,)), and from (3.2.16) 



In plasticity theory, the variational inequality (3.2.19) is sometimes referred to as the 

Hill's maximum dissipation principle. The geometric interpretation of (3.2.19) is that 

the angle between the vectors ( A - i )  and dr is acute ( 5  7~12). From examination of 

(3.2.19) it can be seen that if A E int C(x,) (interior) then dr = 0 , implying that the 

dissipation is zero and the response reversible. Evolution of the internal variable, and 

hence positive dissipation, is only possible if A has reached a boundary point of 

C(X,) (yield surface), that is A E bdC(xa). As an example, consider the case of a 

scalar internal variable with D(dr; x,) = @, (dr; x,) = r(Xa)IdrI , where r (xa)  is Lipschitz 

function satisfying r(xa)  2 0, VX, E Xn+'" . 

Fig 3.5 (a) support function of the convex s e t c  = r(xa)  [-1,+1] and (b) the corresponding 

subdifferential 

It follows fiom either (3.2.1 7) or Lemma 3.2.l(c) that C(x,) = r(~,)[-l , l]  and fiom 

Lemma 3.2.l(d) , A E r(xa)al&l , see Fig 3.5(a) .The dual potential is the indicator 

hnction of C(2,) and the evolution equation for the internal variable is given by part 

Comparing Fig 3.5(b) and Fig 3.6(b) it can be seen that a,D* = (a,D)-' and that the 

mapping A e dr is not one-to-one (for each values of A there may be numerous 

acceptable values of dr). As it stands (3.2.20) is rather abstract. However, if C(x,) is 

closed convex and nonempty, it may be possible to construct a yield function f (A;x,), 



such that f (A; x,) < 0 a A E int C(X,) and f (A; x,) = 0 A E bdC(x,), (see 16.51 

for details). 

Fig 3.6 (a) indicator function of the convex set C = r ( ~ , )  [-1,+1] and (b) the corresponding 
subdifferential 

For the example given above, f (A; x,) = IA(  - r(&) 5 0 will do the trick. Now, if 

f (A;x,) is continuously differentiable with respect to A when A E bdC(~ , )  

(requires r(x,) > 0), then the normality law (3.2.20) can be expressed as 

where A r 0 is a nonnegative scalar . That is, when f (A; x,) = 0 the gradient of the 

yield function points in the normal direction to the convex set C(X,). The multiplier A ,  

often referred to as the plastic multiplier, belongs to the solution of the evolution 

problem and can be evaluated using the following conditions, (referred to as the 

loading-unloading conditions in plasticity) 

A 2 0, f(A;x,) I 0 (3.2.22) 

A f  (A; X, = 0 (3.2.23) 

~f (A; x, = 0 

or equivalently, 

A 2 0  iff = 0 a n d j = 0  

A=O i f f < O o r f = O a n d f < ~  

Equations (3.2.21)-(3.2.23) can be obtained from consideration of the physical problem 

or by transforming the constrained maximisation problem in Lemma 3.2.l(a), into an 

unconstrained minimisation problem, with Lagrangian function 

L(A, A) = -(A, d.) + Af (A; X, ) . (3.2.26) 



Applying the classical Karush-Kuhn-Tucker optimality conditions to (3.2.26) then 

yields (3.2.21)-(3.2.23), [4 11. Condition (3.2.24) is referred to as the consistency (or 

persistency) condition and derives from the fact that ifA E bdC(x,), the yield function 

should necessarily satisfy f 5 0 ,  since f > 0 would imply that A was leaving C(X,). 

Depending on the specific model, the consistency condition can usually be used to 

obtain a specific parameterisation of A . Equations (3.2.22)-(3.2.24) are most easily 

interpreted in the form (3.2.24). That is, A 2 0 and hence dc 2 0 can only occur if 

f = 0 a A E bdC and is persisting on bdC ( f = 0).  Similarly A = 0 and hence h = 0 

if f < 0 o A E int C or A E bd C and is evolving towards the interior of C ( f < 0 ). 

Now the problem of modelling the ER damper boils down to finding suitable 

expressions for the free energy W(1,a)  and for the dissipation potential 

D(X, dc; x u )  = Dx (X; xff ) + Du (dr; xu ) , with xu = (x, a ) ,  and then applying the 

fundamental equations,Table 3.1 . Recall that X, = (x, a )  and j, = ( j ,  dc) . 

Table 3.1 

3.3 A deformation mechanism 

1) Conservative Forces 

2) Normality Laws 

The purpose of this section is to develop a qualitative model relating the experimentally 

observed mechanical stress-strain relationships for an ER suspension in shear, with its 

mechanical energy storage and dissipation properties. The following section draws 

heavily from the papers [21] and [56]. Consider an ER suspension confined between 

dW 
xq =- aw 

and A=-- 
31 d a  

xd E a i D x ( ~ ; x f f )  and A E ddDa(dc;xu) 

3) Total Force x = x d + x r  

4) Flow potential 

5) Evolution equation & E ahll; ( A ; X @ )  = N(A;C(xa), or 

? f ( A ; x , }  A 2 0  iff = 0  andf = 0  
& = A  

8.4 A = 0  i f f < O o r f = ~ a n d f < ~  

6) Dissipation inequality 

1 
~ ( j , h ; ~ , )  = (x , ? ) -w  = ( x d , j ) + ( ~ , h )  20. 



two parallel plates a distance L apart, across which a constant electric field E has been 

applied, Fig 3.7 . It is assumed that sufficient time has been allowed for the particles to 

form a "steady state" microstructure consisting of particle chains running parallel to the 

electric field. The lower plate is immobile and the upper plate translates with a steady 

infinitesimal velocity. Since the deformation is simple shear, both the shape and size of 

the control volume are assumed to be constant. 

0 , e  

Fig 3.7 Control volume under consideration 

In addition, all deformations will be considered to be isothermal. The shear rate in this 

simple shear flow will be denoted by e E 9 and the shear stress on the plane parallel to 

the deformation by o E 9 . Now the electrostatic energy of the suspension can be written 

(see [21] and [56] for details) 

where n is the number density of particles , E is the applied electric field and ? is the 

ensemble average of the suspension capacitance matrix . This capacitance matrix is the 

proportionality relating the average polarization of the suspension to the electric field, 

@ = E,C and is a function of the instantaneous particle positions [56]. When the ( a) 

particles are chained and aligned with the electric field, the average particle dipole is 

very large (due to mutual interactions) and so is the capacitance matrix. Since UE is 

proportional to- ?, it follows that the U E  will be quite small in this state. If a small 

force is applied to the top plate the chains will stretch and deform, causing a decrease in 

the average polarization (particles cannot interact as strongly), and hence an increase in 

the electrostatic energy. That is to say, as the chains are deformed, the strain energy 

will increase due to the input of stress work necessary for the particles to be pulled apart 

fiom their preferred, chained configuration. Now this increase in stored energy can be 

interpreted as an increase in an equivalent, strain dependent, free energy W ( e ) ,  due to 

the work performed during deformation. For fixed E, the free energy can be defined as, 



W(e> = 4 (e) - u, (0) 9 (3.3.2) 

where UE (e) is the electrostatic energy in (3.3.1), defined as a function of the shear 

strain e . It follows that W(0) = 0 and that the shear stress o can be defined as, 

In order to form a qualitative picture of the relationship between W(e) (and hence o )  

and a monotonically increasing straine, consider the idealized microstructure in 

Fig 3.8(a), [21],[53]. It consists of a simple monolayer of single width particle chains 

spanning the electrodes and periodically repeated along the electrode length. If the 

upper electrode translates slowly relative to the lower, the chains will deform affinely, 

Fig 3.8(b), storing energy, until some critical strain ey << 1 is reached Fig 3.8(c). At 

e = e the chains will snap releasing the stored energy. The upper chain segments will Y '  

then connect with the adjacent lower chain segments (in the direction of shear) 

repeating the original, undeformed microstructure. Assuming e continues to increase, 

the process will simply repeat in a periodic fashion. It follows that in this idealized 

model, the particle chains under go two distinct motions [21], slow elastic/reversible 

affine deformations of the initially aligned chains, followed by a rapid rearrangement of 

the microstructure, in which the chains snap and reconnect with adjacent chain 

segments. In the above model and for monotonically increasing straine , the free energy 

will be a periodic fbnction ofe , with periodey . 

Fig 3.8 Idealized microstructure for an ER suspension. 

Furthermore, it has been shown in [63], that the critical strain ey of a particle chain, is 

an increasing function of the chain thickness. As an extension of the previous model, 

consider N monolayer's, with increasing particle thickness and hence increasing critical 

strain 0 < eyl < ey2 . . . e y ~  << 1,  arranged across the width of the control volume, see 



Fig 3.9. At each instant the total free energy W, will be the sum of the free energies Wi , 

corresponding to the individual monolayers. For constant shear rate e > 0 ,  each 

contribution, %, to the total free energy will be a periodic function of the strain, with 

period eyi .  Therefore, one would expect W to be an almost periodic function, with 

nonzero mean corresponding to the average stored energy. 

Fig 3.9 N monolayer's, with increasing critical strain, 0 < e,, < e,,, . . .eyN << 1 .  

Now the next step will be to relate the dynamics of the idealized microscopic model 

described above with the macroscopically observed dissipation in the control volume. 

Intuitively one would expect that the macroscopic dissipation would contain a 

component which is in some way related to the energy released by the snapping of the 

particle chains. What is not so intuitive is that this component of the dissipation is 

responsible for the macroscopically observed "Bingham" type yield stress, in equation 

(3.1.1). 

In order to develop a qualitative description of the total dissipation in an ER suspension 

subject to constant shear, a dissipation inequality similar to (3.2.9) is required for the 

control volume in Fig 3.7. In [21] and [66], it has been shown that for a statistically 

homogeneous suspension, the areal average instantaneous shear stress, o(t)  , is constant 

throughout the control volume and is thus equal to the volume averaged instantaneous 

shear stress. While the ER suspension is a highly ordered structure, it is still statistically 

homogenous [21]. It follows that the volume average dissipation inequality for the 

control volume, subject to a constant electric field and constant shear rate e > 0 , can be 

written as 

aqt) = o(t)e - w(t) 2 o (3.3.4) 

where @ and W are the volume averaged dissipation rate and free energy for the 

control volume. That is, the rate of dissipation in the fluid is equal to the rate of work 

done on the fluid by the moving plate minus the increase in the free energy for the 



system. Based on the previous discussion, one would expecto(t), W(t) and hence @(t) 

to be almost periodic hnctions, however the yield stress is a time averaged quantity 

since it appears constant on a macroscopic time scale. Choosing a time period T large 

enough so as to include numerous change snapping events, but macroscopically short, 

the time average of the dissipation inequality is, 

T 
Denoting by cr, = (l/T) o(s)dr , the time average shear stress and evaluating the last 

integral yields, 

Since W is bounded above and below in steady shear, the quantity [W(T) - W(O)]IT 

will be negligibly small for large enough T and so that (3.6) can be approximated by 

(3.7). 

In [2 I] it is shown that the time averaged dissipation @, can be further approximated 

by 

where is the hydrodynamic viscosity of the suspension, n is the average number of 

chain snapping episodes occurring in a time interval of length T and AW is the time 

averaged amount of energy released when the chains snap. Thus, the ration/T is the 

average temporal frequency at which the chain snapping episodes occur. Taking ey as 

the average critical strain of the chains in the control volume, then the snapping 

frequency n/T, is simply I e I/e, and so that 

Note that the energy release during chain snapping occurs very rapidly so that the 

energy dissipation for a monolayer can be approximated by a series of delta functions in 

time. It follows that taking AW to be a constant (for constantE) is only valid if the 

microstructural rearrangements occur on a time scale which is much shorter than the 

macroscopic time scale, which will be proportional to 1/) e 1 (see 1381 for a discussion 

on time scales). It would be expected that the averaged energy release AW and the 
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averaged yield strain e, would be functions of the electric field strength E. For 

simplicity in what follows, the ratio A W/e, will be replaced by a hnction of the electric 

field, r(E) = AW/ey 2 0 .  The manner in which r(E) might depend on E will be 

explored in the next section. Now decomposing the average stress a,, into a dissipative 

component ad and a conservative componentoq = aW/de, the dissipation inequality 

(3.3.9) can be rewritten 

a,, = o d d  + oqi = ode + r ( ~ ) l i l  2 0 , (3.3.10) 

or 

d .  .2  D y = o  e = y e  2 0 ,  (3.3.11) 

a, = o q e  = r ( ~ ) l e l >  0 .  (3.3.12) 

where @, is the viscous dissipation and a, will be referred to as the plastic dissipation 

since it is homogenous of degree one in e .  It follows from the discussions in Section.2 

that (3.3.12) implies the existence of a closed convex set C defined by 

C = [-r(E), r(E)] . In the discussions above it was assumed that the ER suspension was 

in steady shear and that the chains were continuously undergoing the process of 

snapping and reformation. Consider however the case when the activated suspension is 

initially in a state of zero stress, oq = 0 and hence W = 0 ,  and is subsequently subjected 

to a constant shear rate. In this case all of the chains will have to be brought up to the 

corresponding critical strain before the process of snapping and reformation can begin. 

It follows that during this initial loading process, oq E int C and that a, = 0 .  It is only 

when o%as reached bdC, that there will be plastic dissipation, a, > 0 .  A similar 

case occurs when oq E bdC and the shear rate e changes direction. In this case the 

suspension will initially unload its stored energy before beginning to stretch out in the 

opposite direction. During this period, oq E int Cand hence a, = 0 .  It is only when 

oY has reached bdC again (in the opposite direction) that the plastic dissipation will 

resume. To overcome this singularity in (3.3.12), e will be replaced by an internal 

variable rate dc and oq by its thermodynamic conjugate, A .  It follows that d. = e 

when A E bdC and dc = 0 whenA E int C , so that the plastic dissipation can be 

replaced by ,  

O,(d.) =suP{(~,ci)I A E C } = ~ ( E ) ( ~ ~  t 0 (3.3.13) 

(see Lemma 3.2.1 (a) in Section.2) and the total dissipation by,  

5 8 



@(P, d-) = o d d  + r(~)l&I 2 0 . (3.3.14) 

The therrnomechanical formulation for this phenomenological model will be made more 

rigorous in the next section. 

3.4 Simple Phenomenological models for ER fluids 

In the following sections a number of phenomenological models will be developed for 

ER suspensions in shear, using the therrnomechanical framework of Section.2. The 

models will be derived on the assumption that the particle and fluid Reynolds numbers 

are small enough so that inertia forces can be considered negligible (quasi-static's, or 

Stokesian dynamics in the fluids literature [56]). In addition all deformations are 

assumed to be isothermal and isochoric (unavoidable in one dimension). The models 

will be constructed using idealised "linear" rheological elements, along the lines of 

generalised standard materials, [37]. The primary reason is that this approach will 

greatly simplifj, later analysis and allows for the development of closed form, absolutely 

stable integration algorithms [41]. Due to the rather singular nature of elastic-plastic 

type models, questions of existence and uniqueness of solutions is quite a bit more 

complicated than in the smooth case. So as not to complicate the presentation, the 

required theorems are given in §C. 

Simple elastic-plastic model 

Consider the case where a fixed electric field has been applied to a static ER suspension 

(undeformed and stress free). After sufficient time for the suspension chain structure to 

achieve a steady state has elapsed, a monotonically increasing strain is applied to the 

movable electrode (at a sufficiently slow rate). At first the response will be 

predominantly elastic, due to reversible stretching and deformation of the particle 

chains. In the vicinity of some critical strain, the particle chains will begin the process 

of breakage and reformation. At this point the storage of mechanical energy will cease 

and there will be a large increase in the mechanical djssipation. The dissipation can be 

broken up into two "almost" independent components (3.3.11) and (3.3.12). The first 

component, which is homogenous of degree two in the strain rate, is due to the shear 

flow of the base fluid. The second component is positively homogenous of degree one 

in the shear rate and is due to the continuous process of breakage and reformation of the 



electrode spanning chains. In this idealised case the latter component is singular in the 

sense that it only occurs when the applied strain has reached some critical value. 

Now consider the case, where the suspension is already in steady shear and the chains 

are snapping and reforming continuously. If at some point the strain rate reverses, the 

chains will cease the process of breakage and reformation and will comove with the 

fluid until they are once again aligned with the electric field. During this phase the rate 

independent dissipation will cease and the chains will return the stored elastic type 

energy, in the form of stress work. Subsequently the chains will stretch out in the 

opposite direction (storing energy) until they are once again in the vicinity of the critical 

strain and the process repeats. 

The simplest rheological model which captures the basic behaviours described above 

consists of a series combination of a linear elastic element and a plastic element (EP) in 

parallel with a linear viscous element Fig 3.10. The case of constant electric field will 

be considered first, so that the elastic modulus G > 0 ,  viscous friction coefficient 

q,, > 0 ,  the yield stress r > 0 of the friction element, can be considered constant. It is 

assumed that the model initially possess unit length (and unit area). The system is 

subject to a total straine, which can be decomposed into an elasticlreversible strain s 

across the elastic element and a plastic/irreversible strain a on the friction element. 

e = s + a  (3.4.1) 

Fig 3.10 Elastic-plastic (EP) model in parallel with linear viscous element 

Placed in the thermodynamic framework of Section.2, the total strain e ,  and total 

stress o , take the place of the observable variable x and its associated force X . 

Likewise the plastic strain takes the place of the internal variable. From Fig 3.10 it can 

be seen that the elastic element provides the only means of storing energy, while both 

the viscous and friction elements can only dissipate energy. It follows that the free 

energy and the dissipation hnction describing this model are, 



@(i, h )  = @, ( i )  + Q P  (h)  = q V i 2  + rlhl. (3.4.3) 

Since the viscous component@, , is homogenous of degree two ine, and the plastic 

component @,, is positively homogenous of degree one in h , the corresponding 

dissipation potential is 

1 2  D(e, h )  = D, (e) + Dp (&) = - qve + rlhl. (3.4.4) 
2 

The constitutive equations describing the model can now be obtained from (3.4.2) and 

(3.4.4) by applying the formula in Table 3.1 

A E dDp = rdlhl, (3.4.7) 

Using the inclusion (3.4.7) it is possible to construct the yield 

function f (A) =I A 1 -r SO, and the closed convex set (closed line segment) of 

admissible forces C = [-r, r] = {A E '93 1 f (A) _< 0). Applying Lemma 3.2.1, the dual 

plastic potential D; (A), is the indicator function I(A; C) of the convex set C . The 

evolution equation for a is given by 

d! E aDi (A) = N(A; C). (3.4.8) 

Using Ga! = Ge - A ,  and the definition of the normal cone in (3.2.16), it follows that 

(3.4.8) is equivalent to the variational inequality , I~(t)1 I r,Vt 2 0 

~ ( h ( t ) ,  ~ ( t )  - a) = ( ~ i ( t )  - A(t), ~ ( t )  -a )  2 o vlcl <r, (3.4.9) 

with initial condition A(0) = A o  E r[-1,1]. In 5C.3, it is shown that for each 

e E Cosl (%+; %) (where C0-I(%+; %) is the space if Lipschitz functions %+ I+ %), and 

each initial condition A, E [-r, r] , (3.4.9) has a unique solution A E cO,'(%+; %) 

(implying existence and uniqueness of a! ). Due to the assumption that r > 0 ,  the yield 

hnction f (A) is differentiable at f (A) = 0 ,  so that the evolution equation (3.4.8) can 

be written as 



(i.e. n(A) = A/(A() subject to the complimentary conditions 

A.20, f IO,Af =O and A.f =0.  (3.4.1 1) 

The conditions above imply that A. 2 0 is permitted only if f (A) = 0 and f (A) = 0 .  

Evaluating f (A) at f (A) = 0 yields f (A) = n(A)Gi - GA = 0 .  Thus, if n(A)i 5 0  

then A. = 0 . Similarly if n(A)i > 0 then A = n(A)Q ensures f (A) = 0 .  Combining the 

above results, with (3.4.6), yields the discontinuous differential equation 

0 if W = r and Ae(t) > 0, 

Ge(t) otherwise. 

In a similar fashion the dissipation (3.4.3) can be written as 

llvi2 + riel if I A ~  = r and Ae(t) > 0, 

vVe2 otherwise, 

which should be compared with (3.3.1 I), (3.3.12) and the subsequent discussion. To 

obtain more insight into irreversible behaviour of the model, the loading/unloading 

behaviour of the elastic-plastic element will be examined in isolation. 

Fig 3.11 Loading-unloading behaviour of the elastic-plastic model 

Referring to Fig 3.1 1, if a positive strain rate is applied to the EP model (initially at 

(0,0)), the stress will initially increase linearly with e ,  storing energy in the elastic 

element. When the strain reaches the point a = r/G , (the elastic yield strain), A will be 

at the boundary of the set C and equal tor sgn(ci) . The system will thus stop storing 

energy and start dissipating at a rate 0, = rib1 . If at point b , the strain rate reverses sign, 

the friction element will lock up and the stress will begin to decrease (unloading) re- 

entering int C . As the stress decreases back to zero, all of the stored energy will be 



restored in the form of stress work. When A = 0, the system will have accumulated a 

plastic straina, corresponding to the point c .  Comparing the above description with 

that given at the start of this section, it can be seen that the E-P element reproduces the 

response of the idealized micro-structural model of Section.3. Note that the important 

difference between the EP element and rheological models of the relaxation type is that 

the absence of a characteristic time (rate independence), which allows the EP model to 

sustain a stress in the absence of flow ( e  = O), as apparent in (3.4.12). 

Time varying electric field 

The next question is, how should a time varying electric field be incorporated into the 

simple EP model. For the present purposes it will be assumed that the electric field 

satisfies E E cO,' (%+; %) fl [0, E l ,  where E is some positive constant possibly 

corresponding with the dielectric breakdown of the fluid. The Lipschitz constant for E 

is assumed to be small enough, so that the corresponding polarization dynamics (chain 

formation) can be considered as instantaneous and completely reversible. 

In addition the purely viscous component of the stress rye, will be ignored, since it is 

assumed to be field independent and can always be added to the model later. That r 

must be an increasing function of E is obvious, if the dissipation is to match that of the 

Bingham model. However this does not answer the question since the yield stress can be 

equivalently defined as r = Ge, . Thus there are two independent quantities available, the 

elastic modulus G and the elastic yield strain e,. . Unfortunately there is little conclusive 

evidence to guide the choice. The most popular method for analysing the effect of 

different levels of electric field on the response of ER fluids, is to subject the fluid to 

oscillatory shear and use some form of harmonic analysis to calculate the fluid storage 

and loss moduli, over a range of frequencies, strain amplitudes and field strengths [52]. 

A common conclusion of such analysis, is that the elastic modulus varies quadraticaly 

with E ,  while the strain amplitude at which the fluid response transitions from 

reversible to irreversible behaviour, remains relatively constant for E greater than some 

threshold, sayET, [53][60]. On the other hand, in [61] and [32] it was concluded that 

the elastic modulus remains constant for E greater that some small threshold ET, and 

that it is the yield strain which varies quadraticaly forE E [E,.,E]. However, it is 

difficult to compare those results that are available, due to the differing chemical 

compositions of the ER suspensions and the different experimental apparatus used. 



Furthermore, to make conclusions based on linear harmonic analysis seems a bit 

dubious given the obvious nonlinear nature of the system. In order to gain some insight, 

the thermodynamic implications of each choice will be analyzed briefly. 

In this case the observable variables are chosen as the suspension polarization per unit 

volume P (conjugate to E) and the elastic strain e . The internal variable once again 

corresponds with the irreversible strain across the plastic element. Using the partial 

Legendre transform r ( e ,  E, a )  = W(e, P, a )  - P E  and inequality (6) of Table 3.1 leads 

to the dissipation inequality 

@ = ~ + - P E - @ ( ~ , E , ~ ) > O  , 

which yields the state laws, 
- - aw o=- aw p=-- aw 

and A=--, 
ae y aE d a  

Based on (3.3.1) and (3.3.2) a simple choice for is 

where x and 6 >> e: are suitably dimensioned positive constants. Comparing (3.4.16) 

with (3.3.1)-(3.3.2) it can be seen that ~ [ 6  - (e - a12] represents the deformation 

dependent, averaged capacitance of the suspension (per unit volume). Recalling that the 

polarization dynamics are assumed to be instantaneous and reversible, a suitable 

dissipation function is 

@(&; E )  = Dp (&; E)  = X ~ 2 e ,  ( & 12 0 , (3.4.17) 

(i.e.G = X ~ 2 ) ,  in which the electric field acts as a parameter. The corresponding 

constitutive equations are as follows, 

aw o-=- 
de = xE2 (e - a ) ,  



Equation (3.4.21) leads to the definition of the set of admissible stresses 

C = {A E 93 I f (A; E) =I A I -XE2e, 5 0) , For the present purposes the constraints on 

the system are more conveniently defined in terms of a closed convex set of admissible 

elastic strains s = (e - a ) ,  C, = {s E % 1 f, (s; E) =I s I -el 5 0). Now following the same 

reasoning as before, the evolution equation for a is, h E N ( s ; C , )  or 

equivalentlyls(t)l 5 r ,  'dt 2 0 

(b(t), s(t) - q) = (i(t) - i(t), s(t) - q) 2 0 b'lpl Se, , (3.4.22) 

with initial condition s(0) E [-e,., e,]. For this model to make any physical sense, the 

yield strain e, must also tend to zero with E ,  since otherwise the elastic strain would 

continue to evolve even as E + 0 .  This issue will be tactfully ignored at present, but 

can be dealt with using methods presented shortly. Because the model automatically 

satisfies the dissipation inequality (3.4.14), it is technically, thermodynamically 

admissible. This is slightly deceiving however as will now be shown. Consider the 

mechanical strain energy, which is obtained from (3.4.16) as, 

1 2 
~ ( e , a r ; E ) = W ( e , ~ , a ) - ~ ( ~ , E , ~ ) = - ~ E ~ ( e - a )  , (3.4.23) 

2 

in which E acts as a parameter. The purely mechanical dissipation inequality, 

@, = oe- Ew, (e,a; E), (3.4.24) 

CD, = A b - X ~ ~ ( e - a ) 2  = X ~ 2 e , l b l - X ~ ~ ( e - a ) 2 ,  (3.4.25) 

is sign indefinite. In particular, when ibl= 0 the dissipation will be negative for E > 0 .  

The consequence of this is that the map i -+ o is no longer passive, for E > 0 ,  which is 

due to the additional energy supply rate PE appearing in (3.4.14). 

To examine the physical consequences of such behaviour, consider coupling the 

damped oscillator, i + 2 i  + x = 0 with the EP model. Setting s = (e - a ) ,  G = E~ and 

e,. = 1 yields 

x + ~ x + x + E ( ~ ) ~ s = o  , (3.4.26) 

( x - s , s - S ) ~ O  ~ l ~ ( l 1 ,  (3.4.27) 

If the initial conditions are taken to be x(0) = 0, x(0) = .4, s(0) = -.4, E(0) = 1 and 

E(0) = 0 ,  the system will be in equilibrium. Now if E is varied according to E(t) = 1 for 

0 < t < 2 and E(t) = 1 + .2(t - 2) for t 2 2,  the EP model will displace the oscillator, 



overcoming the restoring force - x ,  Fig 3.12. While ER fluids may display this form of 

behaviour, to the author's knowledge experimental evidence has never been reported. 

Indeed ER fluid dampers are usually regarded as providing a passive or dissipative map 

between e and o , whose dissipative properties alone can be modulated by varying the 

electric field strength (see 52.3). 

Time 

Fig 3.12 Affect of time varying stiffness 

Recall that a model with positive definite free energy, W, defines a passive map 

between e and o if it satisfies the dissipation inequality 

oi-w 2 0. (3.4.28) 

A sufficient condition for a model to satis@ inequality (3.4.28) is that the free energy 

depends only on the strain and the internal variables and that the dissipation potential, 

D(e, ci; E) , is nonnegative, satisfies D(0,O; E) = 0 and is convex in e and d. 

uniformly in the electric field, E . This statement can be verified using the formula in 

Table 3.1 

where non-negativity of the final term follows from the assumption that D(0,O;E) = 0,  

the definition of the subdifferential of a convex function in (3.2.15). This will be the 

approach taken through out the remainder of this chapter. 



Consider now the effect of varying e, in proportion  to^^ , while keeping the modulus 

G constant (once again the purely viscous stress will ignored). Since G is constant, this 

has the same effect as varying r(E) = Ge,(E) in proportion to E 2 .  Referring back to 

(3.4.2) and (3.4.6) it can be seen that the mechanical free energy and the stress no longer 

depend explicitly on E . Instead the value of the electric field controls the size of the set 

of admissible elastic strains C, = [-e,., e,] and hence the set of admissible stresses, 

sinceC = GC, . In consequence, the value of E places an upper bound on the available 

energy storage, equal to W = ~e:(E)/2 = r 2  ( E ) / ~ G  . Note however, that the energy 

itself must be supplied by the environment in the form of stress work. An apparent 

inconsistency in the model is that in the postyield regime W = r2(6)/2G cc E4 ,  

however in this case the yield stress can also be written as r(E) = 2W/e, (E) c~ E ~ ,  

which should be compared with (3.3.9). 

The next step is to formulate the model. Since the purely viscous component can be 

decoupled from the EP element, it will be ignored with the knowledge that it can be 

added in later. The free energy and dissipation function are 

DP(&; E) = Dp (b; r) = r(E) 1 & 1 

The corresponding constitutive equations can be obtained from the differentials of the 

potentials as follows. 

dW 
g=- = G(e - a) ,  

de 

Inclusion (3.4.33) and equation (3.4.32) leads to the definition of the time varying set 

of admissible stresses, C(E) = [-r(E), r(E)] = (0 t IR ( f (0;  E) = (01 - r(E) i 0). Using 

the duality results from Section.2 and equation (3.4.30), the dual dissipation potential is 

the indicator fbnction I (o ;  C(E)) of the convex set C(E) and the evolution equation for 

a is thus given by 

b E N(o; C(E)). (3.4.34) 



For simplicity in what follows, the field dependent yield stress will be replaced by the 

time varying composite function r(t) = r(E(t)) E [0, F], b't E !R+ . Using G a  = Ge - o , 

and the definition of the normal cone in (3.2.16), it follows that (3.4.34) is equivalent to 

the variational inequality , lo(t)l I r(t), b't 2 0 

( ~ e ( t )  - a(t), o( t )  - a) 2 0 ~ l p l <  r (t), (3.4.35) 

with initial condition o, E [-r(O),r(O)]. In 5C.3, it is shown that for each 

e E CO,'(%+; %) , r E CO"(%+;!R+) n [0, F] and each initial condition o, E [-r(O), r(O)], 

(3.4.33) has a unique solution o E C'.' (%+;%) . 

Fig 3.13 (a) Typical stresslstrain rate and stress1 strain loops for the system (3.4.34) subject to a 
sinusoidal strain and for two values of the yield stress, (b) with additional linear viscous term. 

Fig 3.13 (a) shows typical stresslstrain rate and stresslstrain loops for the variational 

inequality in (3.4.34), when subject to a sinusoidal strain and for two values of the yield 

stress. Fig 3.13 (b) shows the same loops as Fig 3.13 (a) but with an additional linear 

viscous term. Comparing Fig 3.13 with Fig 1.3, Fig 2.2 and Fig 3.2 it would appear that 

the EP model captures the hysteric behaviour of ERIMR fluid dampers for sinusoidal 

strains and constant electric field. The next step will be to derive the corresponding 

discontinuous differential equation, which will prove useful in interpreting solutions of 

the variational inequality (3.4.3 5). 

Unfortunately the procedure used to obtain (3.4.12) cannot be applied, as the yield 

function f (o; r(t)) = lo1 - r(t) 5 0, will not be differentiable with respect to o when 



f (0; r(t)) = 0 and r(t) = 0 .  However with a bit of extra work it can be seen that the 

variational inequality (3.4.33) is equivalent to the discontinuous differential equation 

I r(t) if o(t) = r(t) and Ge(t) > i(t), 

d-(t) = - i(t) if o(t) = -r(t) and - Ge(t) > r(t), (3.4.36) 

Ge(t) otherwise. 

Note that time derivatives appear on both sides of (3.4.36), implying the evolution of o 

is rate independent, with respect to the input e andr . As this controllable EP model, 

will form a basis for much of the stability analysis in later chapters, it will be 

worthwhile to give an energetic description of its evolution. From (3.4.231) the free 

energy can be expressed in terms of o as W(o) = 0 2 / 2 ~ .  Rearranging the dissipation 

inequality 0, = oe- w and integrating over [to, t ]  , yields the integral energy balance 

W(o(t)) - W(o(to)) = - 
Stored 

When o(t)e(t) > 0 the EP model is receiving energy fiom the environment (loading) 

and when o(t)e(t) < 0 energy is being returned to the environment (unloading). An 

important point is that varying r can only modulate the dissipation when o;! + 0 ,  

(3.4.30) and cannot add energy into the system. This implies that the map e H o is 

passive, irrespective of variations in r . Furthermore, it places the instantaneous upper 

bound W(r(t)) = r ( t l 2 / 2 ~ ,  on the available energy storage. Thus, using (3.4.34) the 

dissipation rate can be expresses as 

I o(t)i(t) - w (r  (t)) if W (o(t)) = W (r (t)) 

@,(t> = 
and o(t)e(t) > ~ ( r ( t ) ) ,  (3.4.38) 

lo otherwise. 

From (3.4.38) it can be seen that dissipation can only occur when the stored energy is at 

it instantaneous maximum and the rate of energy supply is greater than the rate of 

change of this maximum. Note that o(t)e(t) > 0 is not required for dissipation to occur. 

If the system is in the process of unloading (o(t)e(t) < 0), dissipation can still occur if 

W(r) is decreasing faster than the energy can be extracted by the environment. If e = 0 ,  

then the stored energy will be nonincreasing and can in fact be brought to zero in finite 

time by bringing W ( r )  to zero (cannot occur infinitely quickly as r E c~~'(%+;%,))  . If 

this is the case then all of the stored energy will be dissipated. In terms of the 

electrorheological response, the scenario described above might correspond to the 



relaxation and eventual disintegration of all the chains that were in tension. It is also 

conceivable that originally reversible deformations of electrode spanning chains would 

become irreversible, as the electric field would no longer be strong enough to overcome 

the particle-particle friction and restore the particles to their original configuration. 

From a thermodynamic perspective, it could be viewed as a controlled increase in 

entropy, due to the loss of ability to do useful work on the environment during natural 

unloading. To ensure that the model is in some way realistic, an important restriction 

must be placed on the relationship between E and r(E) . All of the experimental and 

numerical analyses cited so far requirelindicate that the maximum elastic strain should 

satisfy e, ( E )  = r (E)  I G << 1 . 

3.5 Viscoplastic models 

The viscous contributions to the "output resistance" of any practical ER device, will be 

numerous and will to a large extent depend on the type of ER fluid (viscosity, volume 

fraction etc.) and on the geometry of the device. The relative importance of each 

contribution will depend on the range of shear rates that the fluid experience's during 

operation and as such, only those deemed important need be included in the model (to 

maintain simplicity). For example, as only low to moderate shear rates are expected in 

the current application (people move relatively slowly) the effects of turbulence, 

complete degradation of chain structures (loss of yield) due to hydrodynamic forces etc., 

will not be covered here. The most obvious and probably most dominant viscous 

contribution to the stress in a shear mode device will be the viscous drag produced on 

the moving electrode, which has been modelled using the electric field independent 

term qve in (3.4.6) (?,is proportional to the base fluid viscosity). Of course, if the 

assumption of field independence does not coincide with the experimental data, then 17, 

can be made a function of E (or any of the state variables) without affecting the 

previous developments. The purpose of this section is to show how additional viscous 

effects can be easily incorporated into the ER fluid model by considering different 

forms of dissipation function. 



Simple Viscoplastic model 

Consider the simple modification of the EP model shown in Fig 3.14, which will be 

referred to as the viscoplastic model. The reason for incorporating the linear viscous 

element vp  in the model is to capture the effect of free chains on the system response. 

Based on the discussions in Section.3, once the process of breakage and reformation 

begins, there will be a certain distribution of chain segments attached to a single 

electrode and with no opposing segment in the flow path, with which to connect (free 

chains). In the presence of sufficient shear rate, it seems reasonable to assume that the 

free chains will not remain parallel with E , but will tilt in the direction of shear flow. 

Fig 3.14 Simple viscoplastic model (VP) 

The equilibrium angle of the chains would be a competition between the electrostatic 

forces trying to align the chains with the electric field and the hydrodynamic forces 

trying align the chain with the shear in the fluid. The chains would thus contribute to the 

viscous resistance/stress during plastic flow and also to the stored energy (due to 

misalignment with the field).The presence of these free chains would also account for 

the relaxation phenomena observed in the response of ER fluid when the imposed strain 

rate is suddenly brought to zero, [52][53] [60]. 

The model in Fig 3.14 is subject to a total straine, which can be decomposed into an 

elastic/reversible strain s across the elastic element and a viscoplastic strain a ,  which 

will be used as the internal variable. It will be assumed that the elastic modulusG is 

constant, the field dependent yield stress r ( E )  is an increasing function o f E ,  mapping 

[0, B] onto [O, 71 and that the plastic viscosity v, (E) is also an is an increasing hnction 

of E , mapping [0, E] onto[d, fi,] , for some 6 > 0.  To simplify the derivation, the shear 

viscosity 7, will be taken as zero, with the knowledge that it can be added in later. 



Now from examination of Fig 3.14, the fiee energy and dissipation function are given 

by 9 

@, (d.; E) = v, (E)k2 + r(~)ld.l. (3.5.2) 

The dissipation function the sum of two positively homogenous functions of degree one 

and two, so that the dissipation potential is given by 

1 
Dvp (d.; E) = -7, ( ~ ) d . ~  + r(E)Id.l. 

2 

The differentials of the potentials yield 

aw o=- = G(e - a), 
ae 

A E adDvp = 7, (E)& + r(E)ald.l. (3.5.6) 

Comparing (3.5.5) and (3.5.6) it can be seen that if d. = 0 ,  then 

o E C(E) = [-r(E), r(E)] . It follows that if o E int C , the response is purely elastic, as 

it was for the EP model. However, if d. ;t 0 then o = v,(E)d. + r(E)n(d.) implying that 

101 > r and hence d. = v i l  (o - r(E)n(o)). It follows that unlike the EP model, the stress 

is no longer constrained to take values in the convex set C .Based on the above 

discussion, the dual potential is easily obtained from the Legendre-Fenchel transform 

(recall o = A), 

D:, (A;E) = sup{~d.  - D, (d.; E) 1 d. E w}, (3.5.7) 

which aRer a little bit of work yields 

1 1 
D:, (A; E)  = (P(A; r ( ~ ) ) ) ~  = (A - Q(A; r ( ~ ) ) ) ~ ,  (3.5.8) 

277, ( E )  2vp (El  

where Q(A, r)  is the projection onto the set C = [-r, r] and P(A; r )  = A - Q(A; r )  (see 

5A.2 for details). Consequently 

and hence (for simplicity , dropping the dependence on E )  



The fact that (3.5.10) defines a passive map from e to o follows from (3.5.5) and 

(3.5.9) 

1 
oe- W(e,  a )  = A& = - P(o; r(E))o 2 0 

17, (E) 

where non-negativity of the final term in (3.5.1 1) follows from the definition of the 

operator P (see 5A.2). It should be clear that (3.5.9)-(3.5.10) represents rather regular 

behaviour in comparison with (3.4.34). Interestingly it can be shown that as qp  + 0 ,  

the dual potential D,; converges to the indicator function of the convex set C(E) [37] 

(physically, the viscous element simply disappears). The regularization becomes more 

apparent when the graph of the dissipation potentials (3.5.3) and (3.5.8) in Fig 3.15, are 

compared with their plastic counterparts in Fig 3.5 and Fig 3.6. The differentials in 

Fig 3.15 (b) and (d) should also be compared with the modified Bingham plastic 

function in Fig 1.5 (b) and (c). Due to the fact that the operator P in (3.5.10) is 

Lipschitz in both arguments (§A.2), existence and uniqueness of solutions can be 

obtained using standard results for ordinary differential equations (5C.2). Indeed, 

suppose the composite functions r(t) = r(E(t)) and q,(t) = q,(E(t)) satisfy 

r E L, (%+; 3,) n [0, F ]  and q, E L, (%+ ; %+) n [S, G] respectively. Then for any 

e E c0,' (%+; %) and any initial condition o(0) E % , the differential equation (3.5.10) 

has a unique solution o E co3'(%+;%). When compared with the results for the EP 

model, the significance here is that the requirements on r(t) have been weakened from 

Lipschitz continuity to measurability. Thus it would appear that the viscoplastic model 

offers a nice alternative to the EP model. However, for small 6 ,  the differential equation 

becomes very stiff and much more difficult to handle numerically than the EP model. 

Fig 3.16 shows typical stresslstrain and stresslstrain rate loops for the ordinary 

differential equation in (3.5.10), when subject to a sinusoidal strain and for two values 

of the yield stress. Comparing Fig 3.16 with Fig 3.13 (b) it can be seen that the 

hysteresis loops traced out be the EP and VEP models are almost identical. However, 

the two models have quite different energy storage and dissipation properties, as will 

now be shown. 

Consider a test at constant electric field and constant shear rate, e(t) = e, > 0, for t > 0 ,  

with initial condition o(0) = 0 .  The response of (3.5.10) is given by, 



Ge,t for 0 l t r r/Gec, 
a ( t )  = (3.5.12) 

r + qpic [l- exp(- (t - r / ~ i ~ ) / z ) ]  for r/Gi, < t  < m, 

 where^ = qp/Gis the characteristic time constant. It follows that the stress o(t)will 

tend to r+vpec as t + m, implying that the elastic strain and free energy are 

unbounded functions of the strain rate. 

- r ( E )  r )  A 

(c) (d) 

Fig 3.15 Dissipation potentials (3.5.3) and (3.5.8), and the corresponding subdifferential's. 

Fig 3.16 Typical stresslstrain and stress1 strain rate loops for the system (3.5.10) subject to a 
sinusoidal strain and for two values of the yield stress. 

However as noted earlier, the maximum tilt angle for a chain is 55 degrees, after which 

neighbouring particles will repel each other (actually for single chains in the point 



dipole approximation the critical angle is closer to 21 degrees [53][52]). It would seem 

reasonable to assume that for sufficiently large shear rate, the free chains would 

approach this critical angle. The particles at the end of the chains would then fragment, 

so as to reduce the hydrodynamic forces and allow for better alignment with the electric 

field. This would imply that the contribution of the viscous element to the total stress 

should be bounded independently of e . 
As a remedy to this problem, consider the modified viscoplastic model in Fig 3.17. 

71, (El  

Fig 3.17 Modified viscoplastic model (MVP). 

For this model to make any sense it is required that r2 (E) > rl (E) 2 0, YE t [0, El .  This 

condition can be satisfied trivially by taking r,(E) = pr,(E), for some positive 

constant p E (0,l). Unlike previous models, the modified viscoplastic model requires 

two internal variables to formulate the complete response. Referring to Fig 3.17, the 

strain across the elastic element is now given by s = e -a, - a 2 ,  so that the fiee energy 

and dissipation function can be written as, 

QV (d.; E)  = V p  (E)&: + r, ( ~ ) l k ,  1 + r2 (~lId.2 1. (3.5.14) 

Following the same reasoning as before, leads to the variational inequality 

(a(t)l< r2(t),'dt 2 0 

with initial condition a, E r2(0)[-l,l] . Similar to (3.12), the variational inequality the 

(3.5.15) satisfies the dissipation inequality (confirming passivity) 



Note that the variational inequality (3.5.15) can also be written in the form of an ODE 

coupled with the EP model 

1 
~ ( t )  = e(t) - - P(a(t); r, (t)), 

77p 0 )  

( ~ x ( t )  - a(t), a( t )  - p) z 0 vlpl 5 r2 (t). 

so that Corollary C.3.1 can be used to obtain sufficient condition for the existence and 

uniqueness of solutions. 

Model of Gamota and Filisko 

As discussed in 5 1.2 , the authors of [3 11 presented an extension of the Bingham plastic, 

formulated in order to describe the viscoelastic behaviour of an ER suspension subject 

to low amplitude oscillatory strains and the viscoplastic behaviour when subject to 

oscillations of larger amplitude. The GnF model shown in Fig 3.18, consists of the 

standard model for viscoelastic solids in series with the Bingham plastic model (plastic 

element in parallel with a linear viscous element). 

Fig 3.18 The model of Gamota and Filisko (GnF) 

In [32] the model parameters were fit to the experimental data obtained from an ER 

suspension subject to oscillatory shear. The elastic moduli G and H were found to be 

independent of the electric field, while the viscosities r ] ,  , v p  and the yield stress r were 

found to be increasing functions of E ,  with r oc E ~ .  The constitutive equations 

describing this model will be derived briefly using the present thermodynamic 

framework. It will be assumed that the elastic moduli G and Hare constant, the field 

dependent yield stress r(E) is an increasing hnction o fE  , mapping [0, El] onto [0, F] 

and that the viscosities 7, (6) and q-, (E) are also increasing functions of E , mapping 

[0, El onto [G, Te] and [6, rl,] respectively, for some 6 > 0.  The free energy and 

dissipation function are given by 



1 2 1  2 
W(e ,a)=-G(e-a l  -a2) + - H a , ,  (3.5.18) 

2 2 

O(&; E)  = (E)&: + vP (E)&: + r(E)1k2 I > 0 ,  (3.5.19) 

and the corresponding dissipation potentials, 

L. 

1 
(3.5.20) 

A?+- D*(A;E) =- 
2ve (El  2vp ( E )  

( ~ (4 ;  r ( ~ ) > ) ~ .  

Taking the differentials of the potentials then provides 

aw 
o=-=G(e-a,  -a2), 

de 

and the evolution equations 

Combining (3.5.2 1)-(3.5.24) yields the nonautonomous ordinary differential equation 

(using the composite hnctions r ] ,  ( t )  = ve (E(t))  , vp  ( t )  = q p  (E(t))  and r( t )  = r(E(t))  ) 

which should be compared with the representation in equation (1.2.4). Unlike the 

previous models, all motions of the GnF model are dissipative, due to the addition of 

qe. Using equations (3.5.1 8) and (3.5.21) the free energy can be written as 

1 2 1  2 W ( o , a l ) = - o  + - H a , ,  (3.5.26) 
2 2 

which leads to the dissipation inequality 



thus confirming passivity of the GnF model. As noted in $1.2, the main criticism of the 

GnF model given in is that the system differential equations are extremely stiff (due to 

the plastic element) making it unsuitable for use in simulation studies, due to the small 

time steps required. However recent advances in numerical integration algorithms for 

plasticity based constitutive equations means that this is no longer a problem. Indeed, 

applying the projection based integration methods described in 1411, leads to a closed 

form integration algorithm capable of producing more than sufficient results with a time 

step three orders of magnitude larger than those required in [23]. 

All of the models presented so far exhibit a transition between elastic/viscoelastic and 

plastic flow which is instantaneous. Based on the discussions in sections one and three, 

it would be expected that the onset of plastic flow would be more gradual. That is, for 

an applied monotonic strain, the thinnerlweaker chains will begin to snap and reform 

first followed by the snapping of thicker chains until eventually fully developed plastic 

flow is achieved. One method of representing this form of behaviour, is to include 

additional plastic elements, with different yield stresses into the model. Referring back 

to Fig 3.18, an additional friction element could be placed in parallel with 7, and H. 

Then an additional "layer" of viscous, elastic and plastic elements could be placed in 

series with these, until N "layers" have been incorporated. Each layer would have its 

own internal variable, which would begin to evolve when the stress had exceeded 

threshold on the corresponding plastic element. In this way the transition fiom 

viscoelastic to plastic behaviour can be broken down into a finite number of steps, 

through a suitable choice of parameter values. The actual number required would 

depend on the desired smoothness of the transition. The model described above does not 

lend itself to obvious interpretation in terms of the inner workings of an ER fluid. 

However the dual of this model, obtained by arranging a finite number of elementary 

models (i.e. EP) in parallel allows for a simple interpretation and as such will be taken 

up next. 

3.6 A Multiple element model 

As noted previously, the main drawback of the models presented so far is that for fixed 

electric field, the transition between elastic and plastic flow is instantaneous. In a "real" 

ER fluid one would expect the transition to be more gradual, implying the simultaneous 



occurrence of both elastic and plastic deformation. Consider the situation where an 

electric field is applied to a fluid initially at rest (no flow, stress fi-ee), at a rate 

sufficiently slow so that viscous effects can be ignored. Suppose that aRer sufficient 

time for chain formation has elapsed, an increasing strain is applied to the movable 

electrode, at a rate sufficiently slow so that viscous effects can be ignored. At first the 

response would be predominantly elastic due to reversible stretching and deformation of 

electrode spanning particle chains. There would also be some irreversible deformation 

of the chains (plastic response), due to the friction experienced by particles as they slide 

over one another during the deformation. As the strain increases further, the irreversible 

deformations would also increase and would be accompanied by the snapping and 

reformation of weaker particle chains (see Section.3). Further increase in the strain will 

cause more and more of the chains to begin the process of rupture and reformation, 

decreasing the ratio of reversible to irreversible deformation. This process would 

continue with increasing strain until the effective elastic response had disappeared and 

fully developed plastic flow is achieved. 

Fig 3.19 Generalized elastic plastic model II(EP) 

One approach to modelling such behaviour is to combine a finite number of elastic- 

plastic models in parallel, Fig 3.19. The total strain across each of the elements is the 

same and the total stress is the sum of the stresses on the individual springs. Each 

element has a constant elastic modulus Gi > 0 and a field dependent yield straine, (E)z, . 

The sequence {z,) is assumed to satisfy 0 = z, < r, < z, ..... < z, < UJ with uniform 

partition AT = z, -zip, for all i = 1,2,-.., N. It will also be assumed that e,(E) is an 

increasing hnction of the electric field mapping  elont onto [O,c] and that the 

composite hnction e, ( t )  = e,. (E(t)) is Lipschitz continuous. Using this model it will be 

possible to break up the transition froin elastic to purely plastic flow into a finite 



number of steps. In the literature on hysteresis operators this sort of model is.usually 

referred to as the Prandtl-Ishlinskii model (of the stop type) [67][68], however in what 

follows it will simply be referred to as the lI(EP) model. 

The free energy and dissipation function for a model consisting of N (EP) elements are 

simply, 

where a = [a,, a,, . . . , a, lT is the vector of internal variables, corresponding with the 

strains across the individual plastic elements. Since the dissipation function is 

homogenous of first order in the internal variable rates, the individual dissipation 

potentials satisfy D,(&,; E) = (Pi(&,; E) . Now taking differentials of the potentials 

yields, 

A, = dDi = G,e, (E)T@~&, 1. (3.6.5) 

Applying Lemma 3.2.1, the dual dissipation potential is simply 

D* (A; E) = x: I(A, ; C, (E)) , where ( A  ; C (E)) is the indicator fbnction of the 

convex set C, (E) = {Ai E W I f; (A,; e, (E)) = IA, 1 - Gie, (E)r, 5 0). The evolution 

equation for ki is given by 

hi E N(A,; C,(E)). (3.6.6) 

Using (3.6.4) and the definition of the normal cone in (3.2.16), it follows that (3.6.6) is 

equivalent to a family of N variational inequalities (in terms of the composite hnction 

e, (t) = er (E(t)) ), Isi (t)l5 e, ( t ) ~ , ,  b't 2 0 

(e(t) - ii(t), i, (t) - n) > 0 b'lpil 5 e, (t)q (3.6.7) 

with initial condition Isi(0)1 5 e, (O)z,. Applying the results in gC.3, it follows that for 

each e E cO" (%+ ; %) , er E CO.' (%+; %+) n [O, e,] , each of the N variational inequalities 



has a unique solution s E c ~ ( + ; ) .  Define the total initial stiffness 

GT = c: G, and the stiffness ratio Pi = Gi/G, , so that x:Pi = 1. The total stress in 

(3.6.3) can now be rewritten as, 

The it' element can be interpreted as representing all the chains with yield strain 

e, (E)z, , while Pi can be interpreted as representing the total fraction (per unit volume) 

of chains with yield strain e,(E)z, . Passivity of the model (3.6.7)-(3.68) follows from 

the fact that each the individual EP elements define passive maps from e to si (see 

(3.4.37)). An important practical question is the possibility of identifyingG, and the 

individual Pi fiom physical experiments. Consider applying a fixed electric field 

(e,.(.) = 0) to a static control volume of ER fluid (as in Section.3) and assume that 

e(t) increases slowly on %+ from initial condition e(0) = 0 . It may be possible to model 

the stress response model using a memoryless fbnction of the applied strain, a = L(e) . 

In solid mechanics L(e) is often referred to as the initial loading curve [37]. For 

simplicity it will be assumed that L E c','(%+;%+) is an increasing, concave function 

(softening) satisfying L(0) = 0 and lime,, L(e) < co . Once a parameterization ofL(e) 

has been obtained for a given E (either in parametric form or from experimental data), 

the total yield stress and initial stiffness can be obtained fiom, 

r(E) = lim L(e), GT = (3.6.9) 
e+m 

To simplify developments, set e,(E) = r(E)/GT , which corresponds with the yield 

strain for single EP element with yield stress r(E) and elastic modulus GT . It follows 

that in hlly developed plastic flow (all elements yielding) 

Now, for fixed e, (E) > 0 ,  assume that e(t) increases slowly on %+from initial 

condition e(0) = 0 and that si (0) = 0, 'di = 1,. . . , N. The response of each (E-P) element 

will be given by 

si ( t )  = min(e(t), e,.?,), i = 1,. . . , N , (3.6.1 1) 

so that the total stress response can be written as 



N n 

o(t) = L(e(t)) = GTe(t) Cp, + ~ , e , . z  ~ , r ,  for e(c) E e,.[zn, r,+,), (3.6.12) 

A simple least square method for identifying the individual Pi so as to accurately 

approximate the smooth loading curve L(e) is easily deduced. It is also possible to 

extend the n(EP) so as to include an infinite number of EP elements, this inodel is 

referred to as the continuous n(EP). As an example, in [69] the authors proposed the 

phenomenological relation in (3.6.13) as a response for an ER fluid subject to 

monotonic shear, i.e. e, e 2 0 . 

a = r(E)(l- exp(-GTe / r(E)) +ye (3.6.13) 

where GT is the constant shear modulus and r ( E )  is the field dependent yield stress. To 

simplify maters the linear viscosity will be ignored for the present. Now it can easily 

be seen that (3.6.13) saturates to a = r(E) ase + a ,  so the domain of z is 93,. Using 

e,.(E) = r(E)/G, , the stress-strain relation in (3.6.13) can be written as 

o = GTe, (I - exp(-e / e,)) , from which it can be seen that e,. plays the role of a space 

constant (as opposed to a time constant), governing the rate of saturation with increasing 

e . Setting L(e) = GTe, (1 - exp(-e 1 e,.)) for e E [O, a ) ,  it can be seen that L(e) is 

increasing and concave as required. Fig 3.20(a) shows a single (clockwise) stress-strain 

loop for the simple EP model and the continuous n(EP) obtained from the loading 

curve (3.6.13). Fig 3.20 (b) shows the stress-strain loop for a 5 element approximation 

of the continuous n(E-P) model. While the E-P model predicts a very unrealistic 

instantaneous transition between elastic and plastic behaviour, the continuous n(EP) 

model predicts a smooth, asymptotic transition (the elastic modulus used in the 

simulations is unrealistically small and was used simply to illustrate the effects more 

clearly). Examination of Fig 3.20(b), shows that even using 5 elements, the 

improvement over the EP model is quite considerable. 

At this stage two important (though probably obvious) remarks need to be made. For 

fixed E ,  the shape of the hysteresis loops in Fig 3.20 are independent of the rate at 

which they are traversed. Also, for monotonic loading nothing distinguishes the 

continuous 17(EP) from a nonlinear elastic solid with the same L(e) . It is only when 

unloading, after a change in sign of the strain rate, that the irreversible/plastic behaviour 

will become apparent. 
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Fig 3.20 Stress-strain loop for (a) EP model and continuous n@P) model, 
(b) 5 element approximation to continuous H(EP). 

Fig 3.21(b) and (c) show the hysteresis loops generated by the EP model and a 20 

element n(EP) model, for a fixed electric field and a sinusoidal strain with 

monotonically increasing amplitude Fig 3.21 (a). Fig 3.22 shows the responses of the 

two models to a sinusoidal applied strain e = Asin(2wt) and a time varying yield 

strain r (E)  = B + C sin(wt) . While a model consisting of twenty or more EP elements 

may seem overly complicated and inefficient for control implementation or simulation, 

the actual integration algorithms are remarkably simple, accurate and absolutely stable 
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Fig 3.21 (a) Applied strain time history, (b) stress strain loops generated by EP model, 
(c) stress strain loops generated by 20 element n(EP). 
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Fig 3.22 Response of (a) E-P model and (b) 20 element n(EP) model to a 
sinusoidal strain and a time varying yield strain. 

Note that all of the models presented above define a passive mapping between e and o , 

even in the presence of a time varying electric field. It was noted previously, that this is 

a consequence of the fact that the electric field does not appear as a variable in the free 

energy, only as a parameter in the dissipation potential. Its overall effect is to control the 

size of the set of admissible reversible strains, thus placing an upper bound on the 

achievable dissipation rate and on the available energy storage. 

The primary purpose of this chapter was to demonstrate that the well-known method of 

"thermomechanics with internal variables" provides an intuitive and systematic 

approach for modelling the mechanical behaviour of shear mode ER fluid dampers. 

The chapter begins with a brief review of some of the present approaches for the 

modelling of ER damperslfluids. It was shown that some of these approaches can 

produce models which do not define a passive map between the imposed velocity and 

the predicted damper resistance. Not only can this form of non-passive behaviour lead 

to strange results when performing qualitative analysis on the models, it can also lead to 

unrealistically good results in simulation studies of vibration or disturbance control. The 

basic mechanisms believed to govern the ER effect were then reviewed. The interest in 

these mechanisms is not to predict the force levels or parameters values, but to gain 

some insight into the energy storage and dissipation properties of an ER fluid in shear. 



A simplified version of the theory of "thermomechanics with internal variables" was 

then presented along with the necessary tools from convex analysis. Through the use of 

examples, it was shown that a simple and intuitive approach to applying the theory is 

first construct a phenomenological model, using idealised rheological elements such as 

springs and friction elements, which conceptually captures the mechanical behaviour of 

a given damper. This model is used to construct two hnctions, the free energy and the 

dissipation function, which represent the energy stored by the rheological elements and 

the rate at which energy is dissipated by the elements respectively. Applying a 

systematic procedure to these two functions, one then obtains an evolution equation for 

the phenomenological damper model. 

It is also shown that if the electric field (control variable) appears only as a parameter in 

the dissipation function, the resulting model will automatically define a passive map 

from the imposed velocity to the resulting force. In terms of rheological elements this 

results states that the stiffness coefficients of the springs should be independent of the 

electric field, while the nonnegative viscous coefficients and yield stresses associated 

with dashpots and friction elements respectively, are allowed to depend on the electric 

field. A number of simple elastic-plastic and viscoplastic type models were then 

presented, all of which follow this caveat. 

It was noted that the main drawback of these simple models is that for fixed electric 

field, the transition between preyield and postyield behaviour is instantaneous. In a 

"real" ER fluid one would expect the transition to be more gradual. It was shown that 

one approach to modelling such behaviour is to combine a finite number of simple 

models in parallel. Using this approach it will be possible to break up the transition 

preyield to postyield behaviour into a finite number of steps. 

Sufficient coilditions for establishing existence and uniqueness of solutions for each of 

the damper models were also presented. The proofs for these results are contained in 

Appendix C. In the present literature on ER and MR fluids, little or no attention is paid 

to questions of existence and uniqueness of solutions of damper models. This is 

surprising, as many of the models which have been proposed are highly nonlinear and 

often discontinuous. 



Chapter 4 

Stability Analysis 

The primary focus of the present chapter is the qualitative analysis of a simple second 

order oscillator fiom 52, coupled with the controllable EP model from 53. The system is 

defined by the ordinary differential equation and variational inequality 

where x, and x2 represent the position and velocity of the oscillator and z represents 

the damper reaction force. The time dependent variables r(t) and b(t) represent the 

controllable yield force associated with the damper and a bounded disturbance (tremor). 

The reasons for focusing on the EP model, over the other, possibly more realistic 

damper models developed in 53, are twofold. First the EP model is relatively simple and 

as such, easier to analyse. However, when viewed as the model of a controllable 

damper, the EP model has some rather undesirable input-output properties, not present 

in more complex models, making it a sort of worst case scenario. 

Section 4.1, first develops the model presented above. Following this, some basic 

internal and external stability results are established for C . Section 4.2 focuses on the 

internal stability properties of the coupled system (i.e. b(.) - 0).  The section begins with 

a review of some know results for semi-active dampers. Finding these results to be 

inadequate for the present purposes, the notion of a OT -recurrent control is developed. 

Section 4.3 analyses the possibility of "linearizing" the response of the EP model 

through a "feedforward" control. An outgrowth of the analysis is the novel concept of 

dissipation shaping. In some sense, the dissipation shaping control can be seen as a form 

of model reference control, in which the response of the EP model is forced to track the 

response of a more desirable rheological model. 



4.1 Basic stability analysis 

The first thing to do is to couple the forearm model given by equation (2.2.8) 

with the controllable EP model defined by equation (3.4.35), ) ~ ( t ) )  < r(E(t)), V t  2 0 

(Ge( t ) -d- ( t ) ,0 ( t ) -~)20  Vlpl<r(E(t))  fora.e.t>O. (4.1.2) 

The ER damper is assumed to be of the rotary couette type and that the axis of the rotor 

is located at the elbow. For simplicity it is assumed that the shear strain can be 

approximated by e = x, and the reactive torque by - F( t )  = 01 J =: z . Setting e = x, , the 

purely viscous contribution of the damper force can simply be absorbed in to the 

damping coefficient R , in (4.1.1). It is assumed that the yield stress (torque) r (E)  is a 

known, increasing function of the controllable electric field E(t)  that maps [0, El onto 

[ O , F ] ,  where E is the maximum electric field level. To simplify notation in what 

follows, only the composite function r( t )  = r(E(t))  will be used. Now, absorbing the 

inertia J into the elastic modulus G and the controllabIe yield stress r( t )  yields the 

coupled system 

L, 
(GX, - i, z - p) t 0, bflol 5 r(t), 

lz(t)l< r(t), bft 2 0. 

with state vector x, = ( x ,  z )  . Recall that the nonlinear fbnction h : YI I+ 3 

satisfies h(0) = 0 and the inequality 

0 5  (h(x , ) -h(~ , ) ,x l  - Y I ) ( L ( ~ I  - yJ2 .  (4.1 -4) 

Using inequality (2.2.13) it follows that for initial conditions x(0) E !R2and 

Iz(0)/ < r(0) , any solution of X will satisfy iz(t)l I r ( t )  < F and 

Ix(t)l< ,Olx(~)le-~' + v$/bll, + FXl -epic ). (4.1.5) 

for some constants P, y, c > 0 .  Based on (4.1.5) and corollary C.3.1, one obtains the 

following existence and uniqueness result. Let b(t) and r( t )  be given functions such that 

b E coZ1 (%+; 93) , lb(t)I b, V t  2 0 and r  E cO,' (%+; %+) , r( t )  5 7,Vt L 0 .  Then for each 



set of initial conditions x(0) E w and Iz(o)( 5 r(0) , Z has a unique solution 

xu (t ; xu (o), r(.), b(.)) = ( ~ ( t ;  xu (o), r(.), b(.)), z(t; xu (01, r(.)> b(.))) such that 

x E c',' ( % + ; s 2 )  and z E cO,l (%+;%) . Moreover, the solution depends continuously 

on the initial conditions xa(0) and the functions r(t),b(t) . When this dependence is 

clear x, (t) = (x(t),z(t)) will be used to refer to the state of C at time t r 0 .  

Having established existence and uniqueness of solutions, the next step is to look at the 

qualitative behaviour of C . A natural starting point is to obtain some expressions 

relating to the energy flow in the system. The reader is referred back to 52.3 for the 

required definitions. In 52.3 it was shown that Cx defines a passive, finite gain map 

(b - Z) H x2 , with natural storage function and energy balance 

t 
Hx (x(t)) - Hx (x(0)) + j:fi: (s))ds = - k ( s ) x 2  (s)ds + (b(s)x, (s)ds. (4.1.7) 

By construction Xz defines a passive map x, H z with natural storage function and 

energy balance (see equation (3.4.37)) 

The function @(t) = @(z(t), x, (t);r(t)) is the nonnegative dissipation function, given by 

(see (3.4.38)) 

I x2z- HZ (r(t)) if Hz (z) = Hz (r(t)) 

@(z, ~2 ; r(t)) = and x,z > H~ (r(t)), 

1 o otherwise, 

where H,(r(t)) = r ( t 1 2 / 2 ~  places an instantaneous upper bound on the energy which 

can be stored by (and hence extracted from) C, . In (4.1.7) b(t)x2 (t) represents the 

rate of external energy supply, z(t)x,(t) represents the rate at which energy is 

transferred betweenz, and C,, and fii(t)represents the rate at which energy is 

dissipated due to the motions of Cx . If z(t)x,(t) > 0 then the energy transfer is from 



Ex to C, (loading) and if z(t)x2(t)<0 the energy transfer is from E, to Cx 

(unloading). 

The damper C, has no external power supply, rather its only source of energy is 

through its interaction with Ex. This energy flow is shown in Fig 4.1. The natural 

storage function for C is simply H(x, z) = Hx (x) + Hz (z) and the total energy balance 

is 

H(x(t), z(t)) - H(x(O), z(0)) + (s)ds + IiCD(s)ds = j:b(s)x2 (s)ds, (4.1.1 1) 
Stored Dissipated ' -  

which defines a passive, finite gain, map from b I+ x, (passivity properties of Ex 

preserved). As the tremor, b(t), provides the only external source of energy, the 

behaviour of C for nonzero b(t) will be referred to as external behaviour, while if 

b(t) - 0 ,  the behaviour of C will be referred to as internal behaviour. Assume for the 

moment that the initial stored energy is zero (H(x,(O)) = 0), so that any nontrivial 

evolution of C must be due to an external supply of energy. Rearranging (4.1.9) and 

(4.1.1 1) yields 

Thus, C, cannot dissipate more energy than is supplied to it byCx, which is in turn 

less than the energy supplied to Cx minus the energy dissipated due to the motion of 

Fig 4.1 Energy flow in (4.1.12) with lossless interconnection 

Now, energy transfer fiom Ex to 2, requires nontrivial motion of C, (x, + 0 )  , and 

this motion will dissipate some of the supplied energy. As a result, the maximum 

amount of energy that C, can possibly dissipate is strictly less that that supplied to C, 



by b(t) . This is basically a statement of the fact (see $2) that no admissible control r(t) 

( r  E c~~ ' (%+;%+) )  exists which can completely cancel the effect of a persistent 

disturbance, on the behaviour of C, . To make this a bit more precise, consider the case 

where b(t) is some nontrivial T-periodic disturbance. Then for x = 0 to be a partial 

equilibrium for C would require that for x, = 0 ,  there exist a control r(t) , such that 

C, has a nontrivial T-periodic solution z(t) = b(t), t 2 0.  Setting x, = 0 in (4.1.9) 

implies that Hz(z(t)) and hence Iz(t)l is nonincreasing as a hnction of time. Since 

(z(t)l is bounded below by zero, it tends to a limit as t + c o y  ruling out the possibility of 

a nontrivial T-periodic solution. For example, if z(t) is T-periodic then there exist two 

times t, , t, E [0, T) , such that t, > t, and Iz(t2)l < lz(tl)l . But by periodicity 

Iz(t,)) < Iz(tl + T)I , which is impossible. 

All is not lost however. Consider the case where both b(t) and r(t) are T-periodic and 

let = (x, Z) be a T-periodic solution of C (proof of existence js given in 5D.2). Then 

H(xu (t)) = H(x, (t + T)), 'dt 2 0 , so that applying the inequality x,b I RX; 12 + b 2 / 2 ~  

to (4.1.1 1) and rearranging yields 

for all t 2 0 .  Note that the left hand side of (4.1.13) represents the averaged kinetic 

energy over [O,T). Thus by ensuring Cz dissipates a positive amount of energy on 

each period, the upper bound on the averaged kinetic energy will be reduced. As noted 

in 52.3, this will also reduce the upper bound on the oscillation of Z, . 

Returning to the dissipation function (4.1.10), it can be seen that C, is not strictly 

passive and not lossless either (see 52.3 for passivity definitions). For example, if 

Hz(r(to)) = 0 and x,(t) > 0, Vt E [to, t,] , then Cz can store all of the energy supplied 

to it without any losses, provided H,(z(t)) < Hz (r(t)), Vt E [to, t,] . If after t = t, , 

x, < 0, 'dt E (t, , t,] , then all of this stored energy can be returned to C, , again provided 

Hz (z(t)) < Hz (r(t)), Vt E (tl , t,] . Examination of (4.1.10) shows that Cz will only 

dissipate energy if the stored energy is at its instantaneous maximum and if the rate of 

energy supply from C ,  is greater than the rate of change of Hz(r(t)) . Note that the 



condition x2z > 0 is not required for dissipation to occur. Indeed dissipation is possible 

if C, is in the process of returning stored energy to Cx due to the natural evolution of 

C , and if the available storage is decreasing faster than the natural energy extraction 

can take place. Now if x2 - 0 (say, clamped by some large multivalued fiiction force), 

then x2z = 0 and Hz (z) will be nonincreasing. Now Hz (z) can still be brought to zero 

in finite time by bringing Hz(r(t)) to zero (cannot be done infinitely fast due to the 

restrictionr E cO,l ). If this is the case, then all of the stored energy will be dissipated 

(which could be interpreted as a controlled increase in entropy, due to the loss of ability 

to do useful work on C,). An interesting case occurs when r(t) = r = constant. From 

(4.1.10) it can be. seen that dissipation will occur only if Hz (z) = Hz (r) = constant and 

x,z > 0 (energy flowing from C, toCz).  It this is the case then the dissipation is 

given by @(t) = x,z > 0, which can be interpreted as a sort of overflow condition. That 

is, Cz is unable to store any more energy and so instantly dissipates all additional 

energy received (maximum dissipation principle). It can also be seen that dissipation 

requires C, to exhibit nontrivial motion (x, + 0), while Cz must remain stationery 

(Z  = 0). 

So far the discussion has focused on external properties of C . However tremor is not 

permanent, so ensuring nice internal stability properties is also important. In 52.2 it was 

shown that that if b(t) - 0 and r(t) r 0 (and hence z(t) = 0 )  then the origin is a GES 

equilibrium forC,. If the tremor does vanish, what conditions can be imposed on the 

function r(t) so as to ensure that the origin (in !R3) is an internally GES equilibrium for 

C (other than the restriction r(t) = 0). This is a bit tricky and will be taken up in the 

next two sections of this chapter. For the present, sufficient conditions for the origin to 

be an internally GAS equilibrium will suffice. A review of Liapunov stability concepts 

can be found in §B. Note that for b(t) - 0 ,  x, = 0 is an equilibrium for C , irrespective 

of variations in r ( t ) .  Using (4.1.4) it is easily shown that the natural storage function 

2 
H(x,) = Hz (z) + H,y (x) satisfies c,lx,12 5 H(xo) 5 c2Ixal for some constants 

c, 2 c, > 0 .  Setting b(t) - 0 in (4.1.1 1) gives 



and hence lxa (t)l< J X I x a ( 0 ) I  for all t 2 0 ,  from which it follows that the origin (in 

s 3 )  is uniformly stable and that all solutions are uniformly bounded. Consequently the 

positive limit set R(xa) (see 5B.2) is nonempty, compact and is the smallest closed set 

approached by xa(t). Since the storage function H(x,(t)) is nonincreasing as a 

function of time and bounded below by zero, it has a definite limit as t -+ oo, i.e. 

liin,,, H(xa (t)) = 1 , so 

lo%; (s)ds I H (xu (0)) - 1. (4.1.15) 

Combining (4.1.15) with the existence result given at the start of this section, it can be 

concluded that x, E L, (%+;%) n cl,' (93,;s). Barbalat's lemma (Lemma B.3) can now 

be used to show that x, (t) += 0 as t -+ co . Since x, (t) + 0 as t + oo and 

x, E c0,l (%+;%) , the second version of Barbalat's lemma (Lemma B.4) can be used to 

concluded that x,(t) 0 as t + oo . It follows from (4.1.3) that 

limlh, (x, (t)) + z(t)l= l iml~x ,  (t) + i, (t)l= 0, (4.1.16) 
t+m t+m 

where hK (x, ) = Kx, + h(x, ) is an increasing function. The limit in (4.1.16) implies a one 

to one correspondence between limits sets C2(x1) and R(z),  which is provided by the 

function hK (.) . Now, using (4.1.1 6) and that fact that x, (t) 4 0 as t + gives 

1 
lim H(X, (t)) = lim K$ (t) + - z2 (t) + % (')h(s)ds , 
t+m 2G 1 

implying that x, (t) tends to a constant, say x; E R(x,) and that z(t) tends to a constant 

z* = -h,(x;) E R(z) . It follows that for each divergent subsequence it,} of 94, , it 

must be that 1 , ( t )  2 1 i n , z ( t n )  = z *  , which implies that 

z *  1 i n  ( t )  = r . Putting all this together it can be concluded that 

~ ( x " )  E M  = ba t s3 1 hK(?) = -z*,x, = O,Z = Z*,VZ* €1-r,,r,l}. Clearly if r, = 0 ,  

then R(xa) = 0 ,  implying that x, = 0 is a GAS equilibrium for C . For example if r(t) 

is T-periodic and mint,,,,,) r(t) = 0 ,  then r, = 0, implying the origin is GAS. 

Furthermore, in this case periodicy of C means that GAS can be strengthened to 



GUAS (see 5B. 1) .  Of course if the control r(t) is a nonzero constant, then r(t) -= r,,, and 

it can only be concluded that all solutions converge to the set M . 

Fig 4.2 shows some typical trajectories of C ,  for different initial conditions, with 

b(t)  - 0 and r(t) - r, > 0 .  The elastic modulus for the damper model will be taken as 

IOOONmlrad , which when scaled by the inertia (see 52.2), gives G = 20000. All 

simulations of C have been performed in the SimulinkMatlab software package [83], 

using a fourth-order Runge-Kutta algorithm for Cx coupled with an implicit Euler 

algorithm for the Cz. A fix time step of 0.0005 seconds was used along with the 

parameter values R = 16, K = 90, L = 100 and G = 20000. Notice that when the 

solutions are close to the corresponding limit point, the projection of the trajectories into 

the x-plane, behave as if the equilibrium was a stable focus. This is the sort of 

behaviour usually associated with a linear under damped oscillator. This form of 

oscillatory behaviour is undesirable and probably not what one would intuitively expect 

from an ER damper. However, it can be eliminated be using more complex models such 

as the multiple element EP model and the GnF model (see 53.5). As such, the EP model 

can be viewed as a worst case scenario, in terms of well behaved transients and thus a 

suitable start for the analysis. 

So what can be concluded from the analysis presented above? In terms of disturbance 

attenuation, it was shown that complete cancellation of the effects of b(t) is impossible. 

However, as b(t) provides the only source of energy supply, it should be possible to a 

least reduce its effect on the resulting trajectories of C x ,  by suitably modulating the 

dissipation function cD(t). Now if a general control scheme for r(t) could be devised, 

which would ensure that all solutions of C tend to a T-periodic solution, then Cz 

would have a periodic supply of energy at its disposal (loading and unloading on each 

period of solution). It follows that if most of this energy could be periodically dissipated 

in some suitable manner, then the average of the system kinetic energy, over each 

period will be less than that of the system with the trivial control r(.) = 0.  This would in 

turn imply that it should be possible to reduce the oscillation of the trajectory as 

compared to the trajectory resulting from r(.) = 0 .  The various aspects of the scenario 

presented above will be analysed in some detail in the sections that follow. 



Fig 4.2 Example solution trajectories for with b(.) = 0 r(t) = const. > 0 

4.2 Internal stability 

The objective of this section will be to establish some internal stability results forC, for 

the case in which r(t) is time varying. More precisely, the objective here is to obtain 

sufficient conditions on r(t) which ensure that the origin is an internal GES equilibrium 

for C,  while still allowing some scope for the development of disturbance attenuation 

schemes in later sections (thus ruling out the trivial control r(.) = 0). 

The stability analysis of mechanical systems coupled with nonlinear/nonautonomous 

dissipative devices arises frequently in the literature on semi-active control. The 

problem is not restricted to hysteretic damping either. For example, consider the simple 

oscillator, x + R(t)x + Kx = 0 , with stiffness K > 0 and controllable damping 

coefficient R(t) 2 0, Vt 2 0. The total energy for this systems is H = 0.5(i2 + Ki2) ,  

which is dissipated at the rate H = - ~ ( t ) x ~  SO. If R(.) 2 a > 0 ,  then the system is 

stable and all of the system's kinetic energy 0.5x2 , will be dissipated as t oo . 
Unfortunately, without further knowledge ofR(t), the same cannot be said for the 

potential energy. It can be shown that if R(.) I b <a is also enforced, then all of the 



systems energy will be dissipated, rendering the equilibrium x = x = 0,  GAS. However 

if R(t) is not bounded above, a little more care needs to be taken. The classical counter 

example arises with R(t) = 2 + et and K = 1, which admits the solution x(t) = c(1 + ePt) , 

Vc E % SO that liml,, x(t) = c . An intuitive explanation for this sort of phenomena is 

that as the system is linear, so it cannot approach the origin faster than exponentially. 

Thus if R(t) grows fast enough, then even if lim,,, x(t) = 0 ,  it may occur that 

lim,,,- R(t)x(t) # 0 .  A necessary and sufficient condition for GAS was obtained in 

[71]: if R(t) 2 a > 0,Vt 2 0 and c > 0 is fixed, then the equilibrium x = x = 0 

m 

asymptotically stable, if and only if [ ~ ( n c ) "  - H((n - 1)~)-' = m y  where 
n=l 

H(t) = Il?(s)ds . Using this condition it can be shown that ifR(t) = at, a > 0 ,  then the 

origin is GAS, while GAS is lost ifR(t) = at2 . The loss of GAS is not restricted to 

nonautonomous damping. For example if R(t)x = aSGN(x), one obtains the much 

studied case of multivalued coulomb friction. A straight forward application of the 

Krasovskii-Lasalle theorem (fjB.2) shows that all solutions will converge to the set 

M = kx, i )  E s2 1 i = 0, X1. E a[-1,1]}. The similarity with the results of the previous 

section is due to the fact that the corresponding dissipation function is homogenous of 

degree one in 1 . 

There have been numerous works dedicated to the stability analysis of mechanical 

systems coupled with semi-active, hysteretic dampers, however many of the results 

developed to date are inapplicable in the present case. A common approach to 

modelling is to start with a variant of Bouc's hysteresis model [34] and then to equip it 

with time varying "control" parameters. These parameters account for the effect of 

variations in the electric field, normal force etc, [23],[35],[72]-[75]. The reason for the 

popularity of the Bouc-type models is their "smoothness", supposedly making 

subsequent analysis much easier. In autonomous form these models are usually 

thermodynamically consistent [76], however the indiscriminate placement of the time 

varying "control" parameters leads to models which are often inconsistent. As an 

example, the stability of C, coupled with a simplified version of the Dahl friction 

model [77], modelling a friction damper [73],[74], will now be considered. 



The Dahl fiiction model, C, , can be seen as a special case of the Bouc-type hysteresis 

model given in equation (1.2.6), with n = 1, A = G, y = G/Fc and ,8 = 0 

In this case, the variable z represents the restoring force, resulting fiom the average 

deformation of the microscopic asperities between two contacting surfaces (in which 

case x, represents relative motion in the tangential direction). The constant G > 0 is 

proportional to the average stiffness of the asperities and Fc > 0 is the coulomb friction 

level (proportional to the normal force between the surfaces). If x,(-) is not identically 

zero and sign definite, it can be seen that lim,,, z(t) = Fc sgn(x,), and if 1z(0)1< Fc 

then Iz(t)l< Fc , Vt 2 0 . The parameter B(.) E [0, PI, ~t 2 0,  represents controllable 

variations in the normal force. While its placement in Ex may same a bit odd, it seems 

to be the placement of choice for the control parameters in [23],[35],[72]-[75],[80] (and 

many other such works). In isolation, the Dahl model is consistent in the sense that it 

describes a passive map x, H z ,  with storage function HD = 0.5 z 2 / ~  . NOW consider 

the total stored energy for the coupled system (4.2.1), 

H(x,z) = 0.5(x: + G; + z 2 / ~ )  + %h(s)ds, the directional derivative of which is 

It follows that if e(t) = I ,  then (4.2.3) becomes H 5 -ki - I X , ~ Z ~ / F ~  < -* < 0, from 

which it can be concluded that the zero solution is stable and that all solutions are 

bounded. Application of the Krasovskii-Lasalle theorem shows that the system is 

globally convergent to the largest invariant set M , contained in 

E = {(x, z) E 912 x W I X, = 0). A quick examination of (2.1) shows that 

M = ( ( ~ , Z ) E R ~ V ~ ~ X ~ = O , X ~ = ~ ~ ~ ~ ( - Z ) , ( Z ~ ~ F ~ } ,  where hK(x,)=&,+h(xl). For 

arbitrarily time varying e(.) E [O, 81 , ~ ( x ,  z) is indefinite so that no such conclusions 

are possible. The reason that this inconsistency seems to have gone unnoticed is that in 



the control formulation and subsequent analysis, only the energy function for C ,  is 

taken into account. The reasoning typically goes as follows [3 51 [55] [73] [74]. The 

derivative of the energy function Hx (x) = 0.5(x: + fi?) + h(s)ds along the 

solutions of Cx is 

fix (x, z) = -Rxi - B(t)x2z . (4.2.4) 

The control objective is now to maximize the dissipation provided by the second term in 

(4.2.4), while ensuring C ,  is GAS with respect to the origin. This leads to the 

discontinuous control law 

8, if zx2 > 0, 
0(t) = 

0, otherwise. 

Using (4.2.5), it can be seen that B(t)z(t)x2 (t) 2 0, b't 2 0,  so that (2.4) implies that the 

system will converge to the largest invariant set,  M y  contained in E = E PI2 I x2 = 0) 

(assuming (4.2.1) and (4.2.5) has a solution). Since x2 = 0 => B = 0 ,  it can be seen that 

M corresponds with the origin , thus ensuring GAS of the origin for C ,  . Justification 

for (4.2.5) is usually that since C F  can store energy, the control law (4.2.5) prevents the 

return of this stored hysteretic energy to C, . This reasoning is a bit inconsistent, since if 

x2z I 0 ,  the flow of energy is from C ,  H C ,  . However, x2z 5 0 z B(t) = 0 ,  which 

implies that C F  and C, are decoupled, so where does the energy go?. To highlight the 

thermodynamic inconsistency of the system in (4.2.1), consider the reversed control law 

2, if x2z < 0, 
0(t) = 

0, otherwise. 

which when applied to (4.2.3) yields 

Recalling that(zl5 Fc, it can be seen that second term in (4.2.7) is nonnegative, so that 

stability of the origin can no longer be concluded. Indeed H > 0 if 

Ix21 < $z(/R - l z r ~ ~ ) .  However, since B(t)lz(t)( i 2Fc , inequality (4.1.5) (with 7 

replaced by 2Fc) can be used to show that all solutions of C,  are UB and UUB. 



Fig 4.3 Examples of phase portrait of (2.1) with control law (2.6). 
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Fig 4.4 Example trajectories of x1 with R = 0, (a) 0 = 0 (b) 0 = 1 and (c) control (4.2.6). 

The fact that all solutions are uniformly bounded, means that the positive limit set 

Q(x,z) is nonempty, compact and is the smallest closed set approached by (x(t),z(t)). 

Combining this with the possible instability of the origin, would seem to suggest that at 

least one solution will converge to a limit cycle. The physical interpretation is that if 

C, injects more energy into C, during each cycle, than it can dissipate naturally, the 

system will not "settle down". 



Fig 4.3 shows some typical phase portraits of the system (4.2.1) with control (4.2.6). 

The parameter values used for C, are the same as those in Section 4.1 and 

G = 500Nm I rad and Fc = 5Nm used for C, . If R = 0 (C, is lossless), it can be seen 

that H(X,Z) L 0 and ~ ( x ,  z) > 0 if x2 ;t 0 and lzl E (0, Fc) . This suggests that solutions 

with nonzero initial conditions could become unbounded. Fig 4.4 shows examples of 

solution trajectories for x, with initial condition (x,, z,) = [.05,0,0], R = 0 and (a) 

8 = 0 (b) B = 1 and (c) control law (4.2.6). 

From the discussions above and $2.3, it is safe to conclude that the model (4.2.1) does 

not capture the expected behaviour of a semiactive damper. Indeed, the definition given 

in [35] is "semiactive devices can only absorb or store vibratory energy in a structure by 

reacting to its motion, they are considered to be stable in a bounded-input, bounded- 

output sense". Now return to the original system C i n  (4.1.3), (repeated for 

convenience) 

x1 = X2 

x2 = -R% - Kxl - h(xl) - Z  + b(t) 

( G X ~  - 2, z - q) 2 0, b'lql 5 r(t), 

lz(t)l5 r(t), 'dt 2 0. 

In Section 4.1 it was shown that if r(t) is an admissible control then all solutions of the 

unforced system (i.e. b(t) = 0 )  are UB and the positive limit set R(x,z) is contained in 

the set M = kx, z) E g2 x W I x2 = 0, xI = hKP1 (-z),IzI 5 rnl}, where r, = lim inf,,, r(t) . 

It follows that if r,,, = 0 then all solutions converge to the origin. This condition is not as 

restrictive as it may seem, for example, any T-periodic control with mint,,,,,) r(t) = 0 

will suffice. 

It would seem worth while to demonstrate why Bang-Bang type control laws (4.2.5), 

don't quite fit in with the present objectives of tremor suppression. Putting aside the 

question of existence and uniqueness of solutions for the moment (i.e. inadmissible 

control allowed), consider applying the control law (4.2.5) to C, , that is 

, if zx,>O, 
r(t) = 

0, otherwise. 



The problem is that if there exists a time z such that z(z)x2 (z) 2 0 ,  then r(z) = 0 and 

hence z(t) = 0, Vt I z , since it would impossible to obtain the condition z(t)x2(t) > 0 . 

This doesn't leave much scope for disturbance attenuation (the existence of z being all 

the more likely if b(t) is periodic). A possible modification to (4.2.9) would be to 

replace the condition zx, > 0 with zx, 2 0 .  However in this case x,(.) - 0 does not 

imply z(.) = 0 ,  so that is only possible to conclude that the positive limit set SZ(x,z) is 

contained in the set M = kx,r) E s2 Y % I x2 = O,X, = hKP1 (-z),Izl i 7). Furthermore, 

even if it were possible to implement a discontinuous, bang-bang type control, it would 

probably lead to a jerky motion, which could be more debilitating than the tremor itself. 

Recall that in $2.2 it was shown that if b(t) = 0 and r(t) = 0 (hence z(t) = O), then the 

origin is a GES equilibrium for C,. It will now be shown that by strengthening the 

condition liminf,,, r(t) = 0 ,  the equilibrium (x, z) = (0,O) can be rendered internally 

GES for C . There are numerous reasons why GES is more desirable than GAS. Besides 

the fact that it provides an explicit bound for the rate of convergence to zero, if a 

Liapunov function can be found which proves the system is internally GES, then this 

same Liapunov function can be used to establish certain nice external stability 

properties. 

Suppose there exists a finite constant T > 0 ,  such that on each interval of length T ,  

there exists a time z such that r(z) = 0 (and hence z(z) = 0). Consider the partition 

J, = T[n, n + 1) , n = 0,1,2,. . . , so that for each n there exists a time z, E J, such that 

r(z,) = 0 .  If r(t) takes the value 0 repeatedly on any interval, set 

z, = min{s E T[n,n + 1) I r(s) = 0). An admissible control satisfying these conditions will 

be referred to as a OT-recurrent control. To analyze the consequence of applying a 

OT-recurrent control, consider the energy like function V(z) = z2 ,  the directional 

derivative of which satisfies 

~ ( z )  5 2Gx2z - 2( i  - Gx2 , z) 5 2 ~ / x ,  1m. (4.2.10) 

For t E [z, , z,+] ) , integrating (4.2.10) over [z, , t] gives 

and if n 2 1 (ensuring t 2 T ) 

Iz(f)l< G [-AX, ( ~ 1 ~ s .  

100 



Using (4.2.12) it can be seen that if x2 ( t )  -+ 0 as t + a,  then z(t)  + 0 as t + a .  

Define the characteristic function X ,  by X ,  ( s )  = 1 if s E [0, TI and X ,  ( s )  = 0 otherwise. 

With out loss of generality, it will be assumed thatz, = 0 ,  so that combining (4.2.1 1 )  

and (4.2.12) yields 

Iz(t)l5 G J ~ X T  ( f  - ~11x2 ( s ) ~ s ~  (4.2.13) 

for all t 2 0 . Using the fact that X, ( s ) ~ ,  ( s )  = xT (s)  and applying Holders inequality 

(see sA.1) to the left hand side of (4.2.13) gives 

lz(t)I2 5 G'T fxT (t  - s ) b  (s)12 ds. (4.2.1 5 )  

Setting t = z in (4.2.15) and integrating both sides of (4.2.15) from 0 to t 

[lz(r)rdr 5 G,T [ C X T  (T - s)lx, (s)12 dsdr, 

= G ~ T  JJx, ( $ 1 1 ,  ( r  - s)dzds, (4.2.16) 

5 G ~ T ,  [lx, (s)12 ds. 

It follows that if x, E L, (93, ; %) then z E L, (%+ ; %) . That C, now has finite L, gain 

can be seen as a consequence of the fact that the OT -recurrent control frequently 

dumps any energy stored by C, . With xu = (x ,  z )  consider the Liapunov function 

A sufficient condition for V(x,)  to be positive definite is that p E (0,2)and 

hrthermore, due to (1.4) there exists constants c,>c,>O such that 

c,(xUI2 5 V(xa)  5 4 1 ~ u 1 2 .  Taking the derivative of V ( x u )  along the solutions of X one 

obtains 



where frequent use has been made of Young's inequality (see §A. 1). Taking p < 0.5, 

setting c, = Rmin(0.5 - p,0.25p~,0.5 P/K)/c, and c4 = 2/R + pR/K (2.18) becomes 

( x )  5 -c,v(x) + c )  (4.2.19) 

Integrating (4.2.19) from 0 to t and using (4.2.16) 

(4.2.20) 

Taking p < min(0.5, K I G ~ T ~ ) ,  the final term is negative and hence 

v(x, (0) - V(xa (0)) 5 -Cj J:v(x, (s))ds + cr I:lb(s)l2 d ~ ,  (4.2.21) 

which implies that 

V(x, (t)) 5 V(x, (~))e-'~' + c4 j:e-c3(t-s)lb(s)r ds, (4.2.22) 

and hence 

It follows from (4.2.23) that if b(t) = 0,  that all solutions of C are GES with respect to 

the origin and if IbII, # 0 ,  then a11 solutions converge to a Ball in !R3, the radius of 

which depends on llbll, . While this result was obtained without restriction on the size of 

T the same cannot be said for the quantitative properties. Fig 4.5 shows an example of 



the transient behaviour of C with OT-recurrent control r(t) = 1 - cos(n2rt), (a) n = 0, 

(b) n= land  (c) n = 4 0 .  

xrm x 2 i F l  
-0.5 

(.lo 1 2 3 0 1 2 3 

Time Time 

Fig 4.5 Transient behaviour of with OT-recurrent r(t) = 1 - cos(n2nt), 
(a) n=O,(b) n=land(c) n = 4 0  

The qualitative behaviour of C with OT-recurrent control will be discussed further in 

$D, in connection with periodic trajectories and in 3.5, in connection with disturbance 

attenuation. Interestingly, it can be shown that for small enough T and large enough G , 

certain OT-recurrent controls have the effect of qualitatively transforming C, into a 

memoryless function of x, in an averaged sense. The whole idea is similar in spirit, to 

the use of dither to linearize nonsmooth control systems. Some further discussion on 

this point will be given in the final chapter of this thesis, as it would seem to be an 

interesting direction for future research. 

4.3 Feedforward Dissipation Shapinq 

In addition to the bang-bang type control law, another popular approach to the control 

of semi-active dampers, is to attempt to linearize the dampers response using some form 

of feedback or feedforward control [78]-[81]. In the present discussion the terms 

feedback or feedforward control are used to distinguish between the cases in which the 

control does or does not use measurements of the damper force. 



For example if the damper is modelled using a Bingham plastic (Coulomb friction) type 

model, the controllable damper response will be of the form F(t) = -r(t)SGN(x2) . In 

this case, setting r(t) = R, lx2 ( , with Rc > 0 , yields the linear feedback law 

F(t) = -Rex2. An alternative would be to retain some controllability (for the purposes 

of disturbance attenuation) by using the control law r(t) = Q(R, lx2 1; r, (t)) , yielding the 

feedback law F(t )  = -Q(R,x, ; r, (t)) (where Q(x; r,) is the projection operator, see 

tjA.2). In this case the controllable yield stress r,(t) can be regarded as the new control 

variable. Thus, if Rcx2 ( t )  > r, (t) , then F(t) = -r, (t) sgn(x2 ) , affording some 

controllability and if Rcx2 (t) l r, (t), then F(t) = -Rcx2, preserving GAS for the 

unforced system. Note that F(t)  = -Q(Rcx2;r,(t)) is equivalent to a linear viscous 

element in series with a controllable friction element. 

Now, if the damper is modelled by a dynamic system, such as the EP model, then the 

term linearization is a bit misleading as the actual goal would be to force the systems 

output response to track a memoryless function of the velocity. Consider again the 

system 

- f i l  - h ( x , ) - ~ + h ( i )  

} 0 'dlpls r(t), 

with the control law r(t) = Q(RClx2l; r,(t)), where r,(t) is an admissible control, i.e. 

rs E cO,' (%+;%+)n[O,F] . If b(t)  - 0 ,  it was shown in Section 4.1 that all solutions of 

B converge to the set M = E s3 I hK (xI) = -I*, x2 = 0, z = z*, b'z* E [-rn,, rn,]] where 

. . 
h, (xl ) = Krl + h(xl ) and r ,  = lim inf,, r(t) . But if r(t) = Q(R, lx2 1; r, (t)) then 

x,(t) 4 0 as t + co implies that r(t) + 0 as t + a, which implies that M = 0 .  It 

follows that the control r(t) = &(&lx2l;rS(t)) ensures that the origin is internally GAS. 

An important point about this result is that it was achieved without any restrictions on 

the size of R, or on the variations of r, (t) . This means that it would be possible to pick 

R, very large, and since r(t) = r, ( t )  , for all lx21 2 F l Rc , almost all of the original 

controllability is recovered. If it could be shown that, z(t) = Q ( R ~ I X ~ ( ~ ) I ;  rs (t)) for all 



t 2 0 ,  then it would be possible to achieve some quantitative results relating to the 

achievable disturbance attenuation. Unfortunately it is impossible to guarantee such a 

result when C is subject to an arbitrary disturbance. As an example, consider the rather 

unrealistic case where x, (t) = Aw sin(wt) for some constants A, w 2 0 and 

r(t) = Rc1x2 (t)l. A straightforward calculation shows the corresponding solution of C, 

Gx, (t) - Gx, (n r/m) for t E [n n/w, n n/w + At), 
z(t) = 

for t E [n n/ w + At, (n + 1) nlw), 

for n = 0,1,2,. . . , where the time increment At is given by 

(under the assumption that G2 > R2m2 ) . Note that At + 0 as G 3 oo (i.e. EP model 

approaches coulomb friction) and At -+ n/ro as R 3 oo . Fig 4.6 shows some simulation 

results for the EP model with, x, (t) = Aw sin(wt) and r(t) = R, lx, (t)( . The control 

described above suffers from several drawbacks. For example, it makes subsequent 

analysis of the closed loop system quite difficult and is impractical from an 

implementation point of view, in that it requires "clean" measurements of the velocity. 

A more tractable scenario would be to replace the measurement x2 , with the output of a 

first order filter, that is S = (RCx2 - S)/T and set r(t) = ~[s(t)l;r,(t)). It can be seen that 

for sufficiently small r ,  the filter will approximateRcx2. Furthermore, if 

lirn,,, x2 (t) = 0 then lirn,,, s(t) = 0 and hence lirn,,, r(t) = 0 ,  thus achieving 

internal GAS of the equilibrium x, = 0 for C . Consider the simpler case where 

r(t) = Is(t)l. It would be of interest to know how closely z(t) trackss(t) . To this end set 

r = R,/G , so that S = &(x, -s/RC) , which is equivalent to Maxwell's viscoelastic 

model. Define the tracking error Y(t) = z(t)-s(t) and the error function 

V(Y) = (Y), = (Z - s ) ~ ,  the directional derivative of which satisfies 

v(?) =2(z-s,i-Gx2)+2(z-s,6x2 -S)+2(z-s,Gx2 -6x2*2). (4.3.4) 

The first term in (4.3.4) is negative due to the variational inequality (4.3.1) so that 

inserting S = d(x, -SIR,) yields 



where ~ = G - G .  
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Fig 4.6 Simulation of EP model with x2 (t) = Aw sin(&) and r(l) = Rc )x2 (t)l, 

A = .01, = 6 ~ ,  Rc = 10 . The stared points in (a) are given by (x;, R,x;) , 
where xl  = Aw sin(wAt). 

In order to proceed further, it needs to be shown that 2(s, s - z )  2 (s - z ) ~ .  

Suppose 2(s, s - z )  < (s - z ) ~ ,  then multiplying out both sides yields s2 < z 2 ,  

contradicting the fact that 1z(t)11 r(t) = Is(t)( . Using the obtained inequality 

and hence 

The tracking error can thus be made arbitrarily small by suitable choice of & and Rc. 

Indeed if & = G ,  then the tracking error will converge to zero exponentially. Note that 

if & = G ,  then the two systems have the same energy function, that is 

Hz(.) = Hs (a) = O . ~ ( . ) ~ / G .  The power flow for each system is given by 

ffz (z) = x2z - @(r(t), Z, x2) = x2z - r(t)lx2 - YGI, 
(4.3.8) 

H= (s) = x2s -s~/R,.  



Thus if 8 = G and the control r(t) = ls(t)l is applied, then (4.3.8) implies that the 

dissipation rate for the EP model i~(ls(t)l, z(t), x2 (t)) converges to the quadratic 

dissipation rate z2(t)/RC as t + m . The effect of this "feedforward" control is to 

shape the systems dissipation. 

@) 
Fig 4.7 Illustration of dissipation shaping control. 

To recap, a controllable friction element in isolation is purely dissipative, with 

dissipation rate r(t)lx,). By suitable choice of control the fiiction element can be made 

to behave exactly like other purely dissipative elements, for example, like a linear 

viscous element with dissipation rate~,x;, or a viscous element in series with a 

controllable fiiction element, with dissipation rate Q(R~ lx2 1; r, (t)]x2 1 , see Fig 4.7 (a). 

The EP model on the other hand consists of a spring in series with a controllable friction 

element. That is, it consists of a fixed conservative element, capable of storing energy 

(has memory), in series with a purely dissipative element, whose behaviow can be 

controlled. The presence of the spring means that the EP model cannot behave exactly 

like a purely dissipative system. A more suitable goal would be to try an make the EP 

model behave like a system consisting of a fixed spring in series with a dissipative 

element, with a more desirable dissipation rate than the friction element. Indeed, it was 

shown above that by choosing the control r(t) = Is(t)l, where s(t) is the solution of the 



Maxwell model, the dissipation rate associated with the EP model converges to z 2 / ~ ,  , 

see Fig 4.7(b). 

Now, in analogy with the constrained control r(t) = Q(R, lx21; r, (t)) , consider the 

constrained Maxwell type model in Fig 4.8. For simplicity, this model will be referred 

to as the EVP model (elastic-viscous-plastic). The corresponding constitutive equations 

will be derived using the internal variable formalism of 53. 

Fig 4.8 Constrained Maxwell or EVP model 

From inspection of Fig 4.8 it can be seen that the model is completely defined by the 

internal energy and dissipations function 

Following the same reasoning as in 53, one obtains the dissipation potentials 

1 
D(b; r, ( t ) )  = - 2 R,$ + r, (414 1, 

1 
(4.3.10) 

D*(A;r,(t)) =-A: + I(A,;c,(~)), 
2Rc 

where C, (t) = [-r, (t), r, (t)] and A = [A,, A , ] ~  is the thermodynamic force conjugate to 

a = [a,, a21T . Taking the differentials of the potentials gives 

and 



Combining (4.3.1 1 )  and (4.3.12) leads to the variational inequality 

(GX,-Gs/R, - B , S - ~ ) > O  'dlvl<rs(t), 

Is(t)l s rs ( t )  'dt 2 0. 

The integral energy balance for C, is simply 

where the frictional dissipation rate 3s (s ,  X ,  ; rs ( t ) )  = @, (s ,  X ,  ; rs ( t ) )  - s 2 / ~ c  2 0 is 

given by 

10 otherwise. 

From (4.3.14) and (4.3.15) it can be seen that Cs is strictly passive (fully dissipative 

state space), in contrast with the EP model. A simple calculation using Hs (s) yields the 

estimate 

Is(t)l i min(rs (t), l ~ ( t ~ ) l e - ' ( ~ - ~ ~  )lRc + G re-G(t-T)lRc (4.3.16) 
to 

from which it follows that if x, tends to zero with time, then so will s .  Using the 

material in 5C.3, it can be shown that if x, E c~~ ' ( [o ,T] ;%+)  and 

rs E c0,] ([0, TI;  %+) fl [0, F ]  , for some T > 0 then (4.3.13) has a unique solution 

s E cO~'([O,T];%+), which depends continuously on the initial conditions. If the 

conditions on x, and rs hold on each compact subset of %+, then the solution 

s(t; s(O), x, (e), rs (.)) has a unique extension over %+ . It follows that r( t )  = Is(t)l defines 

an admissible control (note that since (s(t)( 2 rs ( t )  < F inequality (4.1.5) still holds). 

Now setting r(t)  = Is(t)l and consider the error energy V ( Z )  = ( z  - s12 , the directional 

derivative of which satisfies 



Since 1z(t)1< ls(t)l 2 rs (t), Vt 2 0 ,  the first two terms in (4.3.17) are negative and hence 

Using the inequality 2(s, s - z) > (s - z ) ~  in (4.3.18) shows that the tracking error 

converges to zero exponentially. However, it is also possible to prove finite time 

convergence. That is, for any admissible set of initial conditions lz(0)I 2 ls(0)I < lr,(0)1 a, 

there exists a finite time z , such that z(t) = s(t), 'dt 2 z 2 0 . There are two possibilities. 

First, if there exists a time t,, such that s(tl) = 0 ,  then z(tl) = Oand by (4.3.18) 

z(t) = s(t),Vt 2 tl . The second possibility is that s remains nonzero (and sign definite 

by continuity), for all t 2 0 .  In this case, there exits a positive constants > 0 ,  such that 

Is(t)/ 2 s for all t 2 0 .  Suppose that z(t) f s(t) for all t 2 0 ,  then 

sgn(s(t)) = sgn(s(t) - z(t)) since (z(t)l< /s(t)l, and (4.3.1 8) can be rewritten as 

integrating (4.3.19) and using JVO) = I?(t)l gives 

But the right hand side of (4.3.20) is negative fort 2 z > Rc IZ(O)~/GF, implying that 

z(t) = s(t),Vt 2 z. In some sense this result is redundant, since s(t) is a control variable 

and it is possible to simply set s(0) = 0 . It follows that for the purposes of analysis, it is 

sufficient to consider the controlled system, 

= t  < r (t), v t  2 0. 

with rs (t) acting as the new control variable. Now consider the Liapunov function 

(: 1 
Y ( X ~ ) =  - ( 2 ~ + ~ ~ ~ ) x ~ + p l l r ~ x , + ~ ~ + - ~ ~ ) + l ~ ~ ~ ) d ~ .  G (4.3.22) 

A sufficient condition for the term on brackets to be positive definite is that p E (0,2). 



Assuming this to be the case and using (1.4), it is easily shown that there exist two 

2 2 constant c2 > q > 0 such that c, lx, 1 5 V(x,) 5 c2 lx,l ( x, = (x, z) ). Taking the 

directional derivative of V(x,) along the solutions of (4.3.21), and using (4.1.4) yields 

v(x,) = -((2 - p)* + + pRh(xl)xI + p h 1 z  + 2 z2/RC) 

2 (r ,  i + Gz/R, - Gx2)/G + (p&+ 2x2)b(t), (4.3.23) 

5 -((2 - p)@ + pRE$ + p e r  + 2 z2/RC)+ (pRIx1 1 + 21x2 lj(b(t)l. 

A sufficient condition for the quadratic term in brackets to be positive definite is that 

0 < p i min(2, SKIRR,). Choosing p to satisfy the proceeding inequality, and 

following the same procedures as in 52.2 it can be shown that there exist positive 

constants, p, y, c > 0 (not the same as in (4.1.5) ) such that 

Ix, (I)) 5 PIX, (0)le-ct + ~llblb (1 - e-") (4.3.24) 

From (4.3.24) it can be seen that if b(t) = 0 then x, = 0 is a GES equilibrium for 

(4.3.21). Furthermore, for nonzero b(t) , all solutions of (4.3.21) 

( x, (t) = x, (t;x, (0), rs (.), b(.)) ), converge to a ball in !R3, whose radius is proportional 

to llbll,. The important point being that, compared with inequality (4.1.5), the radius of 

the ball is independent of rs(t), a point which will prove useful when discussing 

periodic solutions. It follows that the dissipation shaping control r, (t) = ls(t)l, where 

s(t; s(O), x, (a), rs (a)) is a solution of (4.3.13), improves both the internal and external 

stability properties of 2. In order to provide a comparison with the 

control- F(t)  = ~(R,x~;r , ( t ) ) ,  a simple singular perturbation type analysis will be 

performed on (4.3.21). The idea of the analysis to foIlow, is to show that if the constant 

R ~ / G  is sufficiently small, then it is reasonable to expected that the motions of C, in 

(4.3.2 1) will converge into a cylinder about the motions of the system C, 

the radius of which is proportional to %/G . Now multiplying the variational inequality 

for C, in (4.3.2 1) by R, /G and setting E = R, /G yields 



Since G is assumed to be several orders of magnitude greater than all other parameters, 

E = R,/G appears to be a suitable choice for the perturbation parameter. Note that 

E = R, /G is the characteristic time scale associated with the Maxwell model. 

From (4.3.26), it can be seen that when i se  sufficiently small, z(t) will evolve on a 

much faster time scale than x(t) . Now, the basic idea of singular perturbation theory, is 

to first set E = 0 , and then to solve (4.3.26) for z in terms of x, and r, (t) . This is called 

the quasi-steady state function. The quasi-steady state function is then substituted 

intoz,, in order to form a reduced order system. The next step is to show that for E 

sufficiently small the solutions of the full model will converge into some 

neighbourhood of the solutions of the reduced model. If this can be achieved, it will also 

provide a justification for using the reduced model in subsequent analysis. 

Unfortunately, standard singular perturbation theory cannot be applied in the present 

case, as it requires that the differential equations satisfying certain strict smoothness 

properties, which are clearly absent is C, (the reader is referred to [82] , for a nice 

development of singular perturbation theory). That said, it will still be possible to obtain 

some useful results. 

Since 1z(t)1 < rs (t) <: 7 , inequality (4.1.5) applies to all solutions of 2 . In particular, 

there exists a positive constant K,, independent of G and R,, such that IHI, < K, . 
The first step in the analysis is to set E = 0 in (4.3.26) and to solve the resulting 

inequality in terms of x, andrs(t) . The goal is to find the quasi-steady state function 

z = f z  (x,, r, (t)) such that 

( ~ 2 2  - f, ( ~ 2  3 rs (f)), f: b 2  Y rs (0) - V) 2 09 vlql C (71, (4.3.27) 

and I f ,  (x,, r, (t))l I r, (t),Vt 2 0 . It is easily seen that S, (x,, rs (t)) = Q(R,x,; r, (t)) solves 

(4.3.27), which becomes (P(R,x,; r, (t)) ,  Q(R,x, ; r, (t)) - v) 2 0, 'dIpI < rS (t) , where 

P(R,x2 ; r, (t)) = Rcx2 - Q(R,x,; r, (t)) (see 5A.2 for details). The result is intuitively 

obvious, as the ratio E = R,/G tends to zero, the EVP model in Fig 4.8 converges to the 

series combination of the viscous element and friction element shown in Fig 4.7(b). 

Substituting f, (x, , r, (t)) = Q(R,x2 ; r, (t)) for z in (4.3.2 1) yields the reduced order 

system, which corresponds with C, in (4.3.25). In order to prove that the asymptotic 



distance between the solutions x(t) of C, and y(t) of C,, can be made arbitrarily 

small, it needs to be shown that the error 

~ ( t )  = z(t) - Q(Rcx2 (fly rs (t)), (4.3.28) 

is UUB, with an ultimate bound which is a continuous, increasing function of E .  

Testing the inequality (P(R,x, ; rs (t)), Q(Rcx2 ; rs (t)) - p) 2 0, ~ I p l  i r, (t) , with p = r(t) 

and using (4.3.28) gives ( ~ ( ~ ~ x ~ ; r ~ ( t ) ) , ~ ( t ) ) S O .  The next step is to obtain a 

variational inequality defining the evolution ofp(t) .  A slight problem arises at this 

point because the function Q(Rcx2(t);rs (t)) does not have a classical derivative at the 

points Rcx2 (t) = +rs (t) . However Q(Rcx2 (t); r, (t)) does satis@ the Lipschitz type 

inequality (see 5A.2) 

Q c  ( 1  rS (1) - Q C  ' rS ' 5 RC 1x2 ( 1  - 2 ' + I s  ( 1  - , ' (4.3.29) 

Combining (4.3.29) with the fact that rs(t) and x2(t) are Lipschitz continuous, implies 

that the composite function Q(t) = Q(Rcx2 (t); rs (t)) is Lipschitz and hence 

differentiable almost everywhere. Furthermore inequality (4.3.29) implies that at those 

points where the derivative does exist it satisfies the estimatel~(t)l i RCkX + K, = KQ , 

where K, is the Lipschitz constant for rs(t) . Now, differentiating (4.3.28), inserting the 

result into (4.3.26) and using the identity Rcx2 = P(Rcx2; rs (t)) + Q(Rcx2; r, (t)), b't 2 0 ,  

gives 

(p(RCx2 ; rs (f)) - @ ( I )  - p -&A p + Q(Rcx2 ; r, (t)) - p) 2 0, ~ l p l  5 rs ( t )  (4.3.30) 

almost everywhere. Testing (4.3.30) with p = Q(Rcx2 (t);r, (t)) and using the inequality 

(p(Rcx2 ; r, (f)), ~ ( t ) )  5 0 ,  yields 

(- - P -&by P) 2 0, (4.3.31) 

which implies that 

and hence 



implying that p is UUB with ultimate bound E K ~ .  In particular, if z(t) and x,(z) are 

periodic, then so is p(t) , in which case lp(t)l 5 E K ~ ,  Vt > 0 . With inequality (4.3.33) in 

hand it is now possible to analyze the asymptotic behaviour of the error hnction 

i ( t )  = x(t) - y(t) , defining the distance between the solutions of C, and C, . Using 

(4.3.21) and (4.3.25) it can be seen that the difference %(t) satisfies 

where z ( i l ;  t) = h(il + y, (t)) - h(y, (t)) and 

G(i2 ; t) = Q(Y2 + y2 (t); r, (t)) - Q( f i  (t); r, (t)) . By construction, these nonlinearities 

satisfy the estimates 

o 2 ( ~ ( q ; t ) , % ) <  L % ~ ,  o 5 @ ( i 2 ; t ) , i 2 ) ~  R~Y.., (4.3.35)L 

for all t 2 0 . Consider the Liapunov function V(i) = 0 . 5 ( 2 ~  + a~~ )?f + aEl?, + Fi , 

which is positive definite for a E (0,2) . The derivative of V(F) along the solutions of 

(4.3.34) satisfies 

~ ( i )  = - ( 2 - a ) E .  -a=: -aR%(i1; t)z1 -2z(i l ; t ) i2  

- 2&(4  ; t ) q  - aRG(y2 ; t ) q  - (a=, + 2z2)~( t ) ,  

where (4.3.35) has been used in passing to the second inequality and Young's inequality 

(see gA.1) has been used to obtain the final inequality. Tacitly assuming that L < R2 , set 

a = mink s (0,l) 1 Q(2 - Q)R2 > L} , so that picking Rc < 8K/aR will ensure that the 

coefficients of if and 2; are positive. Note that these conditions are only sufficient 

and by no means necessary, different results can be obtained using different Liapunov 

fwnctions. Assuming that a suitable value for a exits, it follows from 

c, lz12 < V(i) 5 c, 1iI2, that there exists positive constants c,, c, > 0 such that 

and after the usual manipulations 



Without loss of generality it will be assumed that r, (0) = 0 ,  implyingp(0) = 0 ,  so that 

inserting (4.3.33) into (4.3.38) yields 
7 

Note that c,,i = 1, ..., 4 ,  K~ and K,. are all independent of G . It follows from (4.3.39) 

that the solutions of C, converge into a cylinder (in ill2 xill,) surrounding the 

solutions of C,, the radius of which can be made arbitrarily small by making G 

suitably large. Ideally the stifhess, G , of the damper would be large enough to ensure 

that the response of z(t) of (4.3.13) forms a close approximation of Q(R,x,; rs (t)), over 

a range of values of R, . Interestingly the bound on Rc can be reduced if r, ( t )  is OT- 

recurrent, for suitably small T . The usefulness of this result will become clearer in $5. 

It is important to note that the analysis performed above is not restricted to the reference 

model (4.3.13). Indeed, it can be shown that perfect tracking is achievable if the 

reference model defines a passive map from the velocity, x,, to the output, s and if it 

has a storage function which is identical to that of the EP model. This applies to models 

derived using the internal variable framework of $3, starting with the same internal 

energy function but with a more desirable dissipation function. For example consider 

replacing the internal energy and dissipation hnction in (4.3.9) with 

Where g E C(X; 3) is an increasing hnction, satisfying g(0) = 0 . Let g E C(%;%) 

denote the inverse of g , that is g(g(x)) = x for all x E ill . In terms of rheological 

elements (4.3.40) represents a series combination of a linear spring, a nonlinear viscous 

damper and a friction element with control rs ( t)  . Now, following the same reasoning as 

in $3 (or above) leads to the variational inequality 



The integral energy balance for C, is simply 

- 
where @, (s, x,; r, (t)) = as (s, x2; r, (t)) - g(s)s 2 0 is the nonnegative dissipation rate 

associated with the friction element. Since g(s) is an increasing fbnction and satisfies 

g(0) = 0 ,  the dissipation rate g(s)s is positive definite. This combined with (4.3.42) 

implies that (4.3.41) defines a strictly passive map from x, to s . Set r(t) = Is(t)l as the 

control for the EP model C, and consider the error energyV(2) = ( z - s ) ~ ,  the 

directional derivative of which satisfies 

v(?) = 2(z - s, i - Gx2) + 2(z - s, GX, - Gg(s) - S )  + 2 ~ ( g ( s ) ,  s - z). (4.3.43) 

Since Iz(t)I 5 (s(t)l< r,(t),Vt 2 0 ,  the first two terms in (4.3.43) are negative and hence 

p(Z') 5 -2~(g ( s ) ,  s - z) 5 0. (4.3.44) 

Next the proof finite time convergence is given. That is, for any admissible set of initial 

conditions 1z(0)11 1s(0)15 17, (0)1, there exists a finite timer E %+ , such that 

z(t) = s(t), Vt 2 z 2 0 .  Obviously, if there exists a time t, , such that s(tl) = 0 ,  then 

z(t,) = 0 and by (4.3.48) z(t) = s(t), 'dt 2 tl . Consider the alternative case where s 

remains nonzero (and sign definite by continuity), for allt 2 0 .  In this case, there exists 

a positive constant E > 0 ,  such that Ig(s(t))l> E for all t 2 0 . Suppose z(t) # s(t) for all 

t 2 0 ,  then since g(s) an increasing function satisfiing g(0) = 0 ,  it follows that 

sgn(g(s(t))) = sgn(s(t) - z(t)) . Equation (4.3.44) can now be rewritten as 

v(?) < -2Glg^(s)lls - zl i -2~&l?l= - 2 ~ ~ , / m  i 0, (4.3.45) 

and hence 

But the right hand side of (4.3.46) is negative fort 2 r > Rc IZ(O)~/GE, implying that 

z(t) = s(t), 'dt 2 z . The applicability of this method is not restricted to the EP model 

either. The author has also applied it with some success to the viscoplastic models $3.5. 

Some more will be said on this point in the discussions chapter of this thesis. 



In Section 4.1 an ordinary differential equation, representing the forearm with tremor 

(C,), was coupled with the controllable EP model (C,). It was shown that there does 

not exist an admissible damper control, which can completely cancel the effect of a 

persistent disturbance on the behaviour of Ex. However, using a simple energy based 

analysis it was shown that if both the tremor and the damper control are T-periodic and 

the system has a T-periodic solution, then along this periodic solution it is possible to 

reduce the upper-bound on the average kinetic energy by ensuring that the damper 

dissipates a suitable amount of energy over each period. Also, if the tremor should 

vanish, then the state of the system will converge to an equilibrium set, the size of 

which depends on the limit inferior if the damper control. 

Based on these findings, it was conjectured that the goal of tremor suppression might be 

achieved if a control scheme could be devised which would ensure that if the tremor 

was periodic, then all solutions of the system would converge to a periodic solution and 

that along this solution, the damper dissipated a suitable amount of energy. Also, if the 

tremor should vanish, then the state of the system should converge to zero. In order to 

gain some insight into how this might be achieved, the influence of the damper control 

on the qualitative behaviour of the coupled system (C  ) was analyzed in detail using 

traditional energy-based and Liapunov type techniques. 

The objective of Section 4.2 was to obtain sufficient conditions on the damper control 

which would ensure that the origin is an internal GES equilibrium for C, while still 

allowing some scope for the development of disturbance attenuation schemes. The 

section begins with a review of some know results for semi-active dampers, including a 

discussion on the popular bang-bang type control strategies. Finding these results to be 

inadequate, the notion of a OT -recurrent control was developed. A damper control is 

said to be OT -recurrent if in each interval of length T there exists a time for which the 

control is zero. It was shown that if the control is OT -recurrent, then the origin is an 

internal GES equilibrium for C . While this result was obtained without restriction on 

the size of T ,  the rate at which the state converges to zero is strongly dependent of the 

size of T .  



Section 4.3 investigates the feasibility of making the EP model behave in a more 

desirable manner by suitable choice of control. The possibility of making the EP model 

behave exactly like a passive, memoryless function of the velocity (purely dissipative 

element) was investigated first. It was shown that this is not possible because he EP 

model consists of fixed spring in series with a controllable friction element. Which is to 

say, it consists of a fixed conservative element, capable of storing energy (implying the 

model has memory), in series with a purely dissipative element, whose behaviour can be 

controlled. A more suitable goal would be to try to make the EP model behave like a 

rheological model consisting if a fixed spring with the same stiffness in series with 

purely dissipative elements, such as the EVP model. Indeed, it was shown that by 

solving the differential equation for the EVP model and setting the yield stress equal to 

the absolute value of this solution, then the solution of the EP model will converge to 

the solution of the EVP model in finite time. More generally, it was shown that the EP 

model can be made to behave exactly like another rheological model consisting a linear 

spring with the same stiffness, in series with a dissipative element with more desirable 

dissipation function (hence the name dissipation shaping).The importance of finite time 

convergence is that the EP model can be replaced by the new "reference" model for the 

purposes of analysis. In contrast to the EP model, the dissipation function associated 

with the EVP model is a positive definite function of the reaction force. As a result, it 

was shown that by making the EP model behave exactly like the EVP model then the 

coupled system will be internally GES with respect to the origin, irrespective of 

variations in the new controllable yield stress. Some singular perturbation type results 

were also obtained, which will prove extremely useful when discussing tremor 

attenuation in the next chapter. 

The question of existence and stability of the periodic solutions of the coupled system 

was studied in Appendix C. The approach taken was to establish sufficient conditions 

for the existence of at least one periodic solution using a suitable fixed point theorem 

and to then study the stability of these solutions using Liapunov type analysis. Using an 

asymptotic fixed point theorem, it was shown that if for each set of admissible initial 

conditions the state of the forearm model is UB and UUB, then the coupled system will 

have at least one periodic solution. Various conditions on the damper control which 

would ensure the periodic solution is GES and hence unique, were also investigated. In 

particular it was shown that if the dissipation shaping control was first used to transform 

the EP model into the EVP model with T-periodic yield stress, then it is always 



possible to select a value for the viscous coefficient of the EVP model, so as to ensure 

the coupled system has a GES T-periodic solution. This result will be used when 

investigating tremor suppression in the next chapter. 

The analysis performed in this chapter was also intended to illustrate that the variational 

formulation of the EP model is well suited for analysis and that the thermodynamic 

origins (well defined energy and dissipation functions) allow for a physical 

interpretation of many of the results. The importance of establishing existence and 

regularity results for the solutions of the model under investigation is also evident. For 

example, the application of the fixed point theorem in Appendix D. relied crucially on 

the assumption that the solutions depend continuously on the initial conditions. 



Chapter 5 

Tremor Attenuation 

In 52 the control objective was stated as follows: Devise a control strategy for an ER 

damper which will reduce the oscillations caused by the tremor, without adversely 

affecting the intentional motion. In this chapter, the feasibility of achieving this 

objective is briefly tackled, using some of the external stability results from 54. The 

theoretical results are quite positive and are backed up with numerous simulations. 

5.1 Basic results for Tremor attenuation 

Consider again the feedback interconnection of the controlled EP model and the forced 

second order oscillator (see 54.1) 

lx2  =-fil - ~ r ,  -h(x,)-z+b(t), 

( - z z - )  2 0, 'dlql 2 r(t), 
(5.1.1) 

IzIS r(t), 'dt 2 0. 

with total state x, (t) = (x(t), z(t)) and initial condition x, (0) E s2 x [-r(O), r(0)] . The 

nonlinear function h(x,) = O.SL(X, + sin(x, + q') - sin(q')), where q* E [O, n ]  is the 

desired equilibrium for the system (2.1.8), satisfies h(0) = 0 and 

0 5 (h(x) - h(y)Xx - y) 5 L(X - y)2. The damper control r will be called admissible if 

r E CO,' (%+; %) n[O, F] for some constant F 2 0 .  The input b E CO,' (%+; 93) represents 

a T-periodic disturbance (tremor). Under the assumptions stated above, using 

inequality (4.1.5) and corollary C.3.1, it can be concluded that C has a unique solution 

(x(t),z(t))=(x(t;x,(~),r(~),b(~)),z(t;x,(~),r(~),b(~))) such t h a t x ~ ~ ~ , ~ ( % + ; % ~ )  and 

z E CO,' (%+;%) . Moreover, the solution depends continuously on the initial conditions 

x,(O), the input b(t) and the control r(t). For simplicity, the disturbance will be 

assumed to be sinusoidal, that is b(t) = Asin(wt + q ) ,  the parameters Aand w taking 

values in the intervals [O,A] and [6nY10n] = b , ~ ]  respectively (kinetic tremor see 

51.1). 



Furthermore, it will be assumed that F r 121, so that any solution of C will satisfy 

Iz(t)l< r(t) S 2 and 

Ix(t)l_< p ( x ( ~ ) l e - ~ ~  + g(1 - e-c'), (5.1.2) 

for some constants p, y, c > 0 ,  depending only on R, K and L . 

In order to simplify the discussions which follow, when b(.) = 0 and r(-) = 0 (hence 

z(.) = 0 ) the motions of C, , x( t )  = x(t;x(O)) , will be referred to as natural motions. 

When b(-) + 0 and r(-) = 0, the resulting motions of C,, x(t) = x(t; x(O), b(.)) , will be 

referred to as perturbed motions. If b(-) # 0 and r(.) # 0, the resulting motions of C , 

x(t) = x(t; x, (o), rc), b(.)) and z(t) = z(t; x, (0), r(), bc)), will be referred to as 

controlled. Specific "steady state" motions, such as a periodic trajectory, will be 

referred to as the perturbed or controlled periodic trajectory. 

In 92 the control objective was stated as: devise a control strategy for the damper which 

will reduce the oscillations caused by the tremor, with out adversely affecting the 

intentional motion. Unfortunately it is very diecult  to give a mathematically precise 

formulation of this objective. If exact cancellation of the tremor were possible, then a 

suitable objective might be, to devise a control strategy for r(t), which would ensure 

that the controlled motion of C, converged to the natural motion of C,. While it is 

tempting to weaken this and suggest that the controlled motion should converge to some 

small cylinder centred on the natural motion, inside this cylinder the controlled motion 

could be very jerky or even chaotic, which could be worse than the smooth oscillations 

caused by the tremor. It has been shown in 92.2 that if b(-) = r(-) = 0, then the origin is 

a GES equilibrium for C, . Thus, for a given set of initial conditions, the natural motion 

of C, corresponds with exponential convergence to the origin. If in addition 

b(t) = Asin(wt + 9) and L < R ~ ,  then the perturbed motion of C, will converge to a 

unique T-periodic trajectory ( T = 2z/w ). 

All simulations of C have been performed in the SimulinkIMatlab software package 

[83], using a fourth-order Runge-Kutta algorithm for C, coupled with an implicit 

Euler algorithm for the C, . 
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Fig 5.1Example of natural and perturbed motions. The equilibrium 

signal refers to the value of the desired equilibrium q* , see 52.1. 

A shift in equilibrium occurs between 3 and 3.1 seconds. 

A fix time step of 0.0005 seconds was used along with the parameter values 

R = 16, K = 90, L = 100 and G = 20000. Fig 5.1 shows an example of the natural and 

perturbed motions of C,. The equilibrium signal refers to the value of the desired 

equilibrium q*,  see 52.1 for details. For the purposes of illustration, a shift in 

equilibrium occurs between 3 and 3.1 seconds. During this period, the representation of 

C given in (5.1.1) is not valid, as there should be an additional disturbance term on the 

right hand side of Ex. However, since this disturbance disappears once the equilibrium 

shift is made, it will simply be ignored. With reference to Fig 5.1, the control objective 

might now be stated as: to select r( . )  so as to ensure that the controlled motions of Ex 
converge to a periodic trajectory which is contained in a neighbourhood of the origin. 

The rate at which the controlled motion of C, converges to this trajectory, should be 

close to the rate at which natural motion converges to origin. Furthermore the averaged 

kinetic energy for a controlled periodic trajectory should be smaller than that of the 

unique, perturbed periodic trajectory. 

Recall that the natural storage function associated with C is given by 

(i.e. H(x, z) = H, (x) + Hz (z) see 54.1 for details) 

If the tremor b(t) is a nontrivial T-periodic hnction and r(t) is an admissible, 

T -periodic control, the results of 5D.2 can be used to show that C has at least one 

T-periodic solution, say ( ~ ( t ) , z ( t ) ) .  It was also shown in 54.1, that b([O,T]) # 0 
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implies ?([O,T]) # 0,  for all admissible, T-periodic damper controls (i.e. stabilization of 

the origin is impossible). At this point it will be worthwhile to recall some basic results 

from 52 and 54. Due to the periodicity of (?(t), Z(t)) , it follows that 

H(i?(t + T), Z(t + T)) = H(Z(t), .Z(t)) for all t 2 0 , so that the energy balance equation 

(4.1.1 1) becomes (need only consider the interval [0, TI due to periodicity ) 

where &(t) is the rate at which energy is dissipated by the periodic solution of C, , see 

equation (4.1.10). Equation (5.1.4) simply implies that the totality of the energy 

supplied to C over an interval of lengthT, can be partitioned into that dissipated by the 

motions of C, and that dissipated by C, . Applying Young's inequality 

ab I a2/2R + b2 R/2 to the left hand side of (5.1.4) and using the fact that Z2 ([O, TI) + 0, 

yields 

Note that the right hand side of (5.1.5) represents the averaged kinetic energy over 

[0, TI. Now, using the identity il = % and applying Holder's inequality (sA.1) to the 

right hand side of (5.1.5) gives 

Recall that iTlil (s)lds is simply the arc length of the closed curve q([O,T]) and that 

clk1 (s)lds> osc,?, , where the oscillation is given by 

osc,?, = max 3 (t) - min T, (t) > 0 .  It follows that for a given periodic disturbance, it 
t€[O,T) taO,T) 

should at least be possible to reduce the upper bound on the averaged kinetic energy for 

a controlled T-periodic trajectory and the oscillation of the periodic motion T,, by 

ensuring that C, exhibits positive dissipation, i.e. ~ ( [ o , T ) )  # 0 .  

The task now is to find an admissible damper control, which will guarantee that the 

controlled motions converge to a periodic trajectory, on which C, exhibits positive 

dissipation (without slowing down the initial transient response too much). If complete 

knowledge of b(t) = Asin(wt + 9)  is assumed, then one would be tempted to simply put 

r( - )  = A .  Referring to Fig 5.2 , it can be seen that effect of the tremor is greatly reduced, 



however, the effect on the transient motion is far from favourable (compare Fig 5.1). 

Recall that the state variable xl(t) = q(t) -q* is not measurable, since the desired 

equilibrium q* is unknown. It follows that degradation of the convergence rate cannot 

be avoided by simply switching off the damper control until the q(t) is in some pre- 

specified neighbourhood of the equilibrium. In addition, as tremor may disappear at 

some instant (see §2), the damper control should also ensure that if after some time, the 

tremor vanishes, all motions of C converge to the origin. Fig 5.3 compares the natural 

and controlled motions in the absence of tremor and with r(.) = E . In this case it is only 

possible to conclude that all motions of C converge to the set 

M={(x,z) '!@ x w  Ix2 =O.hK(xl) = -z , l z l s~} ,  where hK(xl)=Krl +h(x,).  

I 
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Fig 5.2 Example of perturbed and controlled motions with r(.) = A .  
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Fig 5.3 Example of natural motion and controlled motions 
in the absence of tremor and with r(.) = A .  



In order to gain some insight into possible control strategies, which might overcome 

these problems, consider replacing C, in (5.1 .l) with a passive, memoryless velocity 

feedback, to obtain the system 

where the feedback function O(y,;t) satisfies O(y2;t)y2 2 0 and @(O;t) = 0 for all 

Y1 t 2 0.  The derivative of the systems energy H y  (y) = 0.5(~: + K~:) + Jo h(s)ds along 

the trajectories of C, is 

HY (Y) = -RY~ - @ ( ~ 2  Y fly2 + b(t)~2.  (5.1.8) 

The simplest choice of feedback is obviously the linear viscous feedback 

O(y,; t) = R, y, , for some constant R, > 0.  Let y(t) be a T-periodic trajectory C, . 
Inserting @(y,, t) = R, y, into (5.1.8), applying Young's inequality and integrating 

yields the estimate 

It follows that the averaged kinetic energy of the T-periodic trajectory J(t), can be 

made arbitrarily small by making R, suitably large. However, for arbitrary motions of 

C, , which are in the process of converging to y( t ) ,  making R, too large will lead to an 

unacceptably slow rate of convergence. Assume for the moment that full knowledge of 

b(t) is available. Ideally the controlled dissipation rate @(y,;t)y,, should only be used 

to counteract the instantaneous supply rateb(t)y, . While exact cancellation of b(t)y, is 

impossible using continuous passive feedback, it would make sense to ensure that the 

instantaneous, controlled dissipation is bounded by Ib(t)lly21, for large y, at least. 

If discontinuous control is permitted, then a suitable choice would be the controllable 

friction type feedback @(y,;t) = I ~ ( ~ ) ~ S G N ( ~ , )  , where SGNO is the set valued signum 

function. In 82.3 it was shown that if @(y,;t) = l b ( t ) l s ~ ~ ( ~ , ) ,  then the origin is a GAS 

equilibrium for C, . Fig 5.4 compares the controlled motions of C, , corresponding to 

the linear feedback @(y,;t)=R,y,, with R, =]OR, and the discontinuous 

@(y2;t) = I ~ ( ~ ) ~ S G N ( ~ , )  feedback. 
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Fig 5.4 Comparison of controlled motions, corresponding to the linear @(y2;t) = R,y2 

(R, = IOR) and discontinuous O(y2;t) = I ~ ( ~ ) I s G N ( ~ ~ )  , feedbacks. 

Comparing with Fig 5.1, it can be seen that in both cases the effect of the disturbance is 

greatly reduced. However, the motion corresponding to the discontinuous feedback 

bears a much closer resemblance to the natural motion, than does the motion 

corresponding to the linear feedback. Fig 5.5 compares the tremor b(t) with the values 

of linear and discontinuous feedbacks. Comparing with Fig 5.4, it can be seen that the 

slow rate of convergence, corresponding to the linear feedback, is a direct result of the 

fact that the feedback itself is unbounded as a fbnction of y, . It can also be seen that the 

discontinuous feedback converges to b(t), asy,(t)+O, in the sense that, 

lim,,, IttiT(b(s) - ~ ~ ( S ) ~ S G N ( ~ ~  (s)))ds = 0 . The discontinuous, friction type, feedback 

would certainly appear to meet the control objectives (assuming knowledge of b(t) ). 

Motivated by these results, consider the continuous feedback O(y2;t) = Q(R,y2;r(t)), 

which corresponds with a linear viscous element is series with a controllable friction 

element (see Fig 4.7(a) in 54.3). This control can be seen as a continuous approximation 

of the discontinuous, friction type feedback. Setting r(t) = alb(t)l with a E [O,l], it 

follows that the controlled dissipation rate will satisfy 0 5 Q(Rc y2 ; r(t)) y2 6 alb(t)ll y2 1 
as required. Since Q(R, y2 ; r(t)) is continuous in y2 , it is impossible to stabilize the 

origin of C, when b(t) is a nontrivial T-periodic tremor (as it was with the 

discontinuous feedback). However, it will now be shown that it is possible to obtain an 

estimate similar to (5.1.9). 
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Fig 5.5 Comparison of linear @(y2;t) = Rcy2 

and discontinuous @(y2;t) = I ~ ( ~ ) ~ s G N ( ~ , )  , feedbacks 

Recall that the operator P(Rc y, ; r(t)) , given by P(R, y, ; r(t)) = Rc y, - Q(Rc y,; r(t)) , 

satisfies the variational inequality ( P ( R ~ ~ , ;  r(t)), Q ( R ~ ~ , ;  r(t)) - q) 2 0, ~ 1 ~ 1 2  r(t) . 

Inserting @(y,; t )  = Q(Rc y,; r(t)) into (5.1.8) gives 

where the fact that ab(t) E alb(t)I[-1,1] and Young's inequality have been employed. 

Let L(t) be a T -periodic solution of C , . Integrating (5.1.10) over [0, TI and using the 

fact that H ,  (J(T)) = H y  (J(0)) yields the estimate 

If a = 1 , then the coefficient on the left hand side of (5.1.1 1) is 1 / ( 2 ~ ~ , ) ,  implying that 

the average kinetic energy can be made arbitrarily small, by making R, suitably large. 

Based on inequality (5.1.11) and the fact that the controlled dissipation rate is now 

bounded byalb(t)lly21, it should be possible to pick Rc anda  , so as to ensure that the 



controlled motions C, converge to a unique T-periodic trajectory, with a minimal 

degradation of the convergence rate (as compared with the natural motion). 

Fig 5.6 compares the perturbed and controlled motions of C,, corresponding to the 

projected feedback O(y,;t) = ~ ( R , ~ ~ ; a l b ( t ) l ) ,  with a = .9 and R, = 1OR . Comparing 

Fig 5.6 and Fig 5.5 with Fig 5.4, it can be seen that the projected feedback achieves a 

level of disturbance attenuation close to that of the Linear Feedback, but with a 

convergence rate similar to the discontinuous feedback. Furthermore, it can be shown 

that if R, is suitably chosen, then the controlled motions of C, will converge to a 

unique T-periodic trajectory. Based on the above discussion, it would seem that the 

feedback control O(y2;t) = ~ ( R , ~ ~ ; a l b ( t ) l ) ,  is capable of achieving most of the 

original control objectives. The next question is, does there exists an admissible control 

for the EP model which will lead to similar results, when the memoryless feedback is 

once again replaced by a feedback interconnection with the system C, . 
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Fig 5.6 Comparison of perturbed and controlled motions 

of x, , corresponding to the feedback @(y2;t) = Q(RCy2;a(b(t)l), 

with a = .9, R, = 1 OR . 
To that end, let s(t) denote the solution of the EVP model introduced in $4.3 (see 

Fig 4.8 in 54.3), 

( G X ~  - Gs/R, - i, s - p) 2 o 'v'lpl~ rS(t), 

Is(t)l<: r, (t) 'v't 2 0. 
(5.1.12) 

where rs(t)is an admissible damper control. In $4.3 it was shown that Is(t)( is an 

admissible control for the EP model and that if r(t) =ls(t)l is used in (5.1.1), then 



z(t) will converge to s(t) in finite time. Setting r(t) = (s(t)l in (5.1. I), the property of 

finite time convergence means that for the purposes of analysis, it will be sufficient to 

consider the modified system 

with rs (t) = a(b(t)l acting as the damper control. The subscript D is used to emphasise 

the fact that a dissipation shaping control is being used. Note that the rate at which 

energy is dissipated by Cz is now given by 

x2z - Hz (rs (t)), lf Hz (z) = Hz (rs (t)) and (x2 - z/Rc , z)> H r, 
@(t) = 

otherwise, 
Z (  (t))y(5.1.14) 

so that even if rs ( t )  = alb(t)l, the dissipation rate need not be upper bound by alb(t))lx2 1 . 
However, the rate at which energy is transferred between C, and Cz is 

zx2 5 rs(t)lx21 = alb(t)llx21. The results obtained in 54.3 and 8D.2 will now be used to 

obtain an estimate similar to (5.1.11) for the systemC,. In 5D.2 it is shown that if 

L < R~ (assumed in what follows), then picking R, I8K/aR where 

a = mini8 E (0,l) 1 Q(2 - B ) R ~  > L}, is sufficient to ensure that C, has a unique, GES 

T-periodic trajectory (Z(t), Z(t)) . Furthermore since Ilbll, 5 2 and lIr,II, I 2 , this 

solution satisfies I I x ~ ~ ~  5 y2 for some constant y > 0 ,  which is independent ofG and R, . 

Substituting ~IzII, 5 yz  into (5.1.13) gives 1141, 5 (2 + yR y + Ky + L y ) Z  = K, , implying 

that the Lipschitz constant K, is also independent of G and R,. Define the error 

variable p(t) = Z(t) - Q(RcZ2 (t); r, (t)) and substituting it into (5.1.13) gives 

x1 = x2 
(5.1.15) 

x2 = -fil - Rx2 - h(xl) - Q(Rcx2 ; rs (t)) - p(t) + b(t). 

It was shown in 54.3 that the T-periodic hnction p(t) satisfies the bound 

llpll, 5 (~:r, + R,K,)/G (see inequality (4.3.33)), where K, is a Lipschitz constant for 

the control rs (t) . Using an argument identical to that used to obtain (5.1.1 l), yields the 

estimate 



which approaches (5.1.1 1) as R: /G 4 0 (with 7, replaced by G )  . It follows that the 

level of disturbance attenuation obtainable through feedback interconnection with the 

EVP model (5.1.12) (with r, (t) = alb(t)l) approaches that of the memoryless feedback 

Q(RCx2;alb(t)l) as R: /G -+ 0 .  Note that R, 5 8K/aR with 

a = mink s (0,l) 1 8(2 - 8)R2 > L }  is also a sufficient condition for (with 

O(y2; t) = Q(Rcy2; r, (t)) ), to have a GES T-periodic trajectory y(t) . Furthermore in 

44.3 it was shown that the distance between T-periodic trajectoriesT(t) and ?(t) of 

ED and Cy respectively, satisfy the estimate (see arguments preceding inequality 

(4.3.39) for details) 

for some positive q > 0 ,  which is independent of G and R, . Inequality (5.1.17) implies 

that for a given value of R,, the controlled periodic trajectory of E D  is contained in a 

cylinder surrounding the periodic hnction ($(t), Q(R,~ ,  (t); r, (t))) , the radius of which 

can be made arbitrarily small for suitably large values of G . 

Fig 5.7 and Fig 5.8 compare the controlled motions of C y  with 

(O(y2; t) = Q(Rcy2; r, (t)) ) and C, , using the control r, ( t )  = alb(t)l in both cases. It 

can be seen that for small E = R,/G, the motions are almost indistinguishable. A quick 

glance over the previous developments, starting at (5.1 .lo), reveals that all of the 

arguments remain valid if the dynamic control r,(t) = alb(t)l is replaced by the static 

control r,(t) = aA (recall b(t) = Asin(at + q) ). Fig 5.9 compares the controlled motions 

of E D  corresponding to the dynamic control rs(t) = .9(b(t)l and the static control 

rs (t) = 0.8A (since avgsT1 lbl< A). Fig 5.10 compares a portion of the corresponding 

motions ofC,. It can be seen that the static control achieves a level of performance 



comparable with the dynamic control (even if the steady state periodic trajectory of 

2, is a bit more complex). 

Time (s) 

Fig 5.7 Comparison of controlled motions of x with feedback @(y2;t) = Q(Rcy2;rs(t)), and of 

ED with control rs(t) = alb(t)l. In both cases = .9, Rc = 10R and F = Rc /G = 0.1. 

Time (s) 

Fig 5.8 Comparison of controlled motions of with feedback @(y2 ; t) = Q(Rcy2; rs ( t ) )  , and of 

Z D  with control rs(t) = alb(t)l . In both cases a = .9, R, = 10R and E = R,/G = 0.01. 

So why bother with the more complex dynamic control ? One reason is the 

instantaneous upper bound on the rate of energy transfer between x, and C, , is more 

conservative for the static control (zx, 5 a l x , l ~  for static as opposed to zx, < alx211b(t)l 

for the dynamic control), implying that use of the static control may result in a slower 

convergence rate. 
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Fig 5.9 Controlled motions of C D  corresponding to the dynamic control 

rs (t) = .91b(t)l and the static control rs(t) = 0.8A. 
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Fig 5.10 Comparison of the trajectories of the EVP model corresponding to the dynamic control 
r,(t) = .9lb(t)l and the static control rs(t) = 0.8A. 

Now, in all of the developments so far it has been assumed that complete knowledge of 

the tremor b(t) = Asin(wt + 9)  was available. In reality, this will hardly be the case. 

Indeed, the parameters A, w and y, , characterizing b(t) will probably be time varying 

(see $1.1) . Consider first the case where only a rough estimate, 2 ,  of the amplitude is 

available. If i<  A ,  the steady state attenuation of the tremor will be degraded, 

however, there will also be less of an effect on the transient motion. As a result, the 

controlled motion should still be an improvement on the perturbed motion. 1fd  > A, 

then although there may be some additional attenuation of the tremor when the system 



is in steady state (converged to periodic trajectory), the transient motion may be greatly 

slowed down. 
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Fig 5.11Comparison of natural and controlled motions of ED corresponding to the control's 
A A 

and rs(t) = 0.8A, for the cases in which A > A and b(t) E 0 .  

Fig 5.1 1 compares the natural motion Cx with of controlled motions of Cx (only 

x, shown) corresponding to the dynamic control rs(t) = .9lb^(t)l= 0.92lsin(wt + and 

the static control rs(t) = 0.82. In the first case the estimate is given by d = 1.5A and in 

the second case, the same value of 2 is used but there is no tremor (i.e. b(-) = 0). The 

importance of a good estimate of A is clearly evident. Furthermore, if at some instant, 

the tremor should vanish, the damper control should then tend to zero rapidly. If this 

could be achieved, then the controlled motion would converge to the natural motion. 

Before moving on, the notion of a limit trajectory will be introduced. Let 

b(t) = Asin(wt + p) , with A E [0, 11 and let rs (t) be an admissible but otherwise 

arbitrary control such that (Irs(lm = F 2 2 . Let xu (t) = (x(t), r(t)) and ia (t) = (i(t), i(t)) 

be two controlled motions of E D ,  with arbitrary initial conditions 

xu (0) E !R2 x [-r(O), r(0)l and iu (0) E !R2 x [-r (0), r(0)] respectively. Set 

a = mini0 E (0,l) 1 8(2 - B ) R ~  > L }  and assuming that Rc r 8K/aR, then inequality 

(D.2.27) implies that there exists two constants A,c > 0 such that 

Ixu (t) - % (I)/ < R~X, (0) - % (0)le-". (5.1.18) 

Since x, (t) and (t) are arbitrary controlled motions of ED , inequality (5.1.18) implies 

that all controlled motions of CD are GES. Combining this with the fact that all 



motions of C, satisfy the estimate (5.1.2), it is possible to infer the existence of a 

controlled limit, or "steady state" trajectory, q ( t )  = (T(t),.T(t)), of CD ,which is GES 

and satisfies (T(t)l I $ for all t 2 0 . Note that if r, (t) is T-periodic (T = 2x/w ), then 

the limit trajectory corresponds with the unique GES T-periodic trajectory of CD . 

Fig 5.12 Comparisons of the phase portraits of the limit trajectories of 
x, under various conditions. (a) perturbed and controlled trajectories 

with correct estimates of and q . (b) perturbed and controlled trajectories 

with a phase error of x/2. (c) and (d) compare the perturbed and controlled 

trajectories 6 = 1 . 0 5 ~  and 6 = 0 . 8 ~  respectively. 

While errors in estimates of the parameters w and q will not effect the performance of 

the static damper control, they will have a large effect on the controlled motions of ZD, 

when using the dynamic damper control. It was found that errors in w and p have little 

effect on the transient portions of the controlled motions (as one might expect). 

As a result the following examples consider only the controlled limit trajectories of 

ED, with q* = 0 and the dynamic control r, (t) = 0.9~lsin(& + $11 . Fig 5.12 compares 

the phase portraits of the limit trajectories of C, under various conditions. Fig 5.12 

compares the phase portrait perturbed trajectory with that of the controlled trajectory 

assuming exact knowledge of w and q . Fig 5.12(b) compares the phase portrait 

perturbed trajectory with that of the controlled trajectory corresponding to a phase error 



of n/2 . Finally, Fig 5.12(c) and (d) compare the phase portrait perturbed trajectory with 

that of the controlled trajectory corresponding to the case where h =1.05w and 

h = 0 . 8 ~  respectively. Fig 5.13 and Fig 5 .l4Error! Reference source not found. 

show portions of the limit trajectories of Cz and the acceleration G2 (t) corresponding 

to each of the cases described above. 
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Fig 5.13 Portions of the trajectories of xz (a) correct estimates of U and p, 
(b) phase error of 7~12. (c) h = 1 . 0 5 ~  , (d) h = 0 . 8 ~  . 

Note that in the case where there is an error in the phase but the frequency is correct, the 

limit trajectory of C will still be T-periodic ( T  = 2 n l ~  ). On the other hand, if there is 

an error in the frequency, then r,(t) need not be T-periodic (depends on the error) so 

that periodicy of the corresponding limit trajectory cannot be assumed. Preliminary 

investigations would suggest that when b(t)  and r, ( t )  are periodic, but with different 

periods, it should be possible to prove that the corresponding limit trajectories are 

almost periodic (or at least recurrent). Further discussions on this point will be given in 

the discussions chapter of the thesis (86.2). 
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Fig 5.14 Portions of the acceleration x,(t). (a) Perturbed (dash) and controlled with 

correct estimates of ~3 and p ,  (b) phase error of ~ / 2  ,(c) cj = 1.050 , (d) cj = 0.80. 

From examination of Fig 5.12 it can be seen that even with errors in the frequency and 

phase, the controlled trajectories of C, are contained in a smaller neighbourhood of the 

origin than the perturbed trajectory. That said, examination of the corresponding 

accelerations shows that the controlled trajectories, without exact knowledge of w and 

9 ,  are far more complex than the perturbed trajectory. In this case, a person with tremor 

may find that the controlled motions are less useful than the perturbed. Imagine trying 

to hold a glass of water while your hand is subjected to each of the acceleration profiles 

of Fig 5.14. These examples should be enough to convince the reader that if the 

dynamic controller is to be used, then the ability to obtained accurate estimates of w 

and p is vital. 

To recap, it has been shown by first applying a feedforward model of the form (5.1.12) 

and then using the dynamic control r,(t) = alb(t)l, the effect of tremor on the motions of 

C ,  can be significantly attenuated, while remaining in a neighbourhood of the natural 

motion. However, these results rely crucially on the ability to obtain an accurate 

estimate of the tremor, b(t)  . Let (?(t), Z(t)) = ( ~ ( t ;  (0), rs (.), b(.)), Z(t; (0), rs (.), b(-))) 

be the GES T-periodic solution of C, corresponding to the T-periodic input b(t) and 
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control r, (t) = alb(t)l. Suppose that ia (t) = (i(t), i(t)) is an arbitrary solution of C, 

corresponding to the T-periodic input b(t) and estimated control Fs (t) = ali(t)I, that is 

(;(t), i(t)) = (i(t; ia (0), FS (.), b(.)), i(t; % (O), Fs (e), b(.))). It is shown in 5D.2 that if R, 

satisfies the usual assumptions, then the distance between these two solutions satisfy the 

estimate (see inequality (D.2.40)) 

for some constants y, p > 0 . It follows from Lemma.5 in 5B.2 that if it were possible to 

obtain an estimate of b(t) such that lim,,, i ( t  + nT) = b(t) , then i ( t )  will converge 

to the periodic trajectory F(t) , for which the estimate (5.1.16) holds. This is useful 

result and justifies the search for suitable online estimation schemes. Some further 

discussion is given in 56.2. 

5.2 Summarv 

The control objective was stated in Chapter 2 as follows : Devise a control strategy for 

an ER damper which will reduce the oscillations caused by the tremor, without 

adversely affecting the intentional motion. In this chapter the feasibility of achieving 

this objective, for periodic tremor, was investigated using results from the analysis in 

Chapter 4 and Appendix D. In order to simplify the discussions, when the EP model is 

removed and the tremor is zero, the motions of the forearm model were referred to as 

natural motions. When the tremor was nonzero, the resulting motions were referred to 

as perturbed motions. Finally when the forearm was coupled with the EP model the 

resulting motion of the forearm model are referred to as controlled. 

After examining simulations of the natural and perturbed motions the control objective 

was restated as follows: To select a damper control so as to ensure that the controlled 

motions of the forearm converge to a periodic trajectory which is contained in a 

neighbourhood of the desired equilibrium, and which has smaller oscillation than the 

perturbed motion. Furthermore, the rate at which the controlled motion of converges to 



the periodic trajectory, should be close to the rate at which natural motion converges to 

the desired equilibrium. 

The first step in the control design was to use the dissipation shaping control in order to 

make the EP model behave like the EVP model. Then using the results from appendix 

D, the viscous coefficient associated with the EVP model was chosen so as to ensure 

that the system has a unique GES periodic solution. This choice of control also ensures 

that if the tremor should disappear, then the state of the coupled system will converge to 

zero exponentially. It was argued that in order to avoid slowing down the rate of 

convergence to the periodic solution, the rate at which energy is transferred between the 

forearm model and the damper model should be upper bound by the rate at which 

energy is supplied to the system by the tremor. This was achieved by assuming that the 

tremor was know and then setting the controllable yield stress of the EVP model equal 

to the absolute value of the tremor. 

Simulations showed that using the control scheme described above, the controlled 

motion does indeed converge to a periodic trajectory contained in a neighbourhood of 

the desired equilibrium and which has smaller oscillation than the perturbed motion. 

The simulations also showed that the rate of convergence to this periodic trajectory was 

close to the rate at which natural motion converged to the desired equilibrium. 

Theoretical justification for the decrease in the oscillation of the controlled motion, 

when compared to the perturbed motion, was also presented using the singular 

perturbation type analysis from Section 4.3. 

Finally, it was shown that the success of this control scheme relies on some knowledge 

of tremor. As knowledge of the tremor would not be a realistic assumption in practice, a 

scheme for obtaining good estimate of the tremor is required if this control scheme is to 

be of any practical value. Some further discussion on this point is given in the final 

chapter of the thesis. 



Chapter 6 

Conclusions and future research 

6.1 Summarv and conclusions 

It is well established that the application of viscous damping can significantly reduce 

the oscillations caused by severe pathological tremor, but that concurrent suppression of 

voluntary motion may also occur. The use of controllable dampers constructed using ER 

fluids has been identified as a possible means of overcoming this problem. It has been 

argued that in order to investigate the feasibility of using an ER damper to suppress 

tremor, models are required which capture the highly nonlinear behaviour exhibited by 

ER fluid dampers and which are well suited for analysis and control design. A survey of 

the literature on ER fluids revealed that many of the models which have appeared in the 

literature fail to meet these requirements. An analysis of experimental results and 

physics based micromechanical models for ER fluids, revealed that the qualitative 

mechanical behaviour of ER fluids in shear resembles that of elastic-plastic or 

viscoplastic solid, with electric field dependent yield stress. It is now widely accepted 

that the behaviour of many elastic-plastic and viscoplastic materials can be successfully 

modelled using the theory of "thermomechanics with internal variables". One objective 

of the thesis was to show that this theory also provides an approach for modelling the 

mechanical behaviour of ER fluid dampers, which: 

Captures the qualitative mechanical behaviour displayed by ER fluid dampers. 

Is intuitive and easy to apply. 

Defines a passive map from the imposed velocity to the resistive force produced 

by the damper. 

Are wellposed and numerically friendly. 

Are easily coupled with models for other mechanical systems. 

Are well suited for analysis using traditional qualitative methods for ordinary 

differential equations. 

A simplified version of the theory of "thermomechanics with internal variables" was 

presented along with the necessary tools from convex analysis. Through the use of 

examples, it was shown that a simple and intuitive approach to applying the theory is to 



initially construct a phenomenological model which conceptually captures the 

mechanical behaviour of a given damper using idealised rheological elements such as 

spring and friction elements. This model is then used to construct two functions, 

representing the energy stored in the rheological elements (free energy) and the rate at 

which energy is dissipated by the elements (dissipation hnction). Then, applying a 

systematic procedure to these two functions, one obtains an evolution equation for the 

phenomenological damper model. It is also shown that if the electric field (control 

variable) only appears as a parameter in the dissipation function, the resulting model 

will automatically define a passive map from the imposed velocity to the resulting force. 

Depend.ing on the manner in which viscosity has been incorporated, the resulting 

equations will either take the form of a Lipschitz ordinary differential equation, or a 

variational inequality. 

An advantage of using well established modelling techniques is that there is a wealth of 

results available for establishing wellposedness and developing integration algorithms, 

for the resulting models. Unfortunately, many of the results relating to wellposedness of 

variational inequalities are presented in such general form that they are inaccessible to 

those without prior acquaintance with the theory. As a consequence, some simple results 

for establishing wellposedness of the damper models were presented, which are 

accessible to those with some knowledge of ordinary differential equations. 

The simplest of the damper models, consisting of a spring and controllable friction 

element in series, was then coupled with a forced second order oscillator, representing 

the forearmlelbow subject to tremor. A detailed analysis of the internal and external 

stability properties of the coupled system was then performed, using traditional energy 

based and Liapunov type techniques. Conditions for the existence and stability of 

periodic solutions of the coupled system were also studied in detail, using fixed point 

theorems and Liapunov analysis. 

An outgrowth of this analysis was the development of a new approach to the control of 

ER dampers, referred to as dissipation shaping. The idea is to use a suitably chosen 

feedforward control to endow the damper model with a more desirable dissipation 

function (rate). The idea itself is very simple and can be viewed as a form of global 

model reference control. Finally the dissipation shaping control and some relevant 

results on periodic solutions were used to assess the feasibility of using an ER damper 



to suppress tremor at the elbow, with minimal degradation of the intentional motion. 

The theoretical results were quite favourable and were supported by numerous 

simulation results. In conclusion, the use of an ER fluid damper to suppress periodic 

tremor at the elbow, with a minimal degradation of the intentional motion is very 

feasible. 

Models formulated in Chapter 3: 
1 Model/Formulation Equation Figure Passive Fluid/ Viscoelastic Existence, 

I solid reyield uniqueness 9 
Elastic-plastic, (3.4.35) 3.10 yes solid yes Yes 

Existing models reviewed in Chapter 1: 

Modified (3.5.15) 3.17 yes solid yes 
viscoplastic, I 

------ 
I Extended Bingham (3.5.25) 3.18 yes solid yes trivial 
1 (GnF) 

Table 6.2 

Figure 
--- 
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NIA 

1.5 

1.6 
NIA 
NIA 

NIA 

ModeUFormulation Equation 

Tables 6.1 and 6.2 list some attributes of the ER /MR damper models surveyed in 5 1.2 

Passive 

Bingham plastic 
[261 
Biviscous 
[20], [2 91 
Extended Bingham 
(fixed stiffness 
coefficients) 

and the damper models formulated in 53. A model was classified as passive if it defines 

Viscoelastic 

no 

no 

yes 

yes 
no 
yes 

yes 

Fluid/ 
solid 

(1 2 1  

(1.2.3) 

(1.2.4) 

a passive map from the imposed velocity to the predicated damper force, according to 

Existence, 

Yes 

trivial 

unclear 

unclear 
trivial 
trivial 

trivial 

the definition given in 52.1. The models were classified as solid models if they are 

Yes 

133- (1.2.6) 
:301 NIA 
Bouc-type models (1.2.7) 

capable of sustaining a non-zero force when the imposed velocity is zero and as fluid 

solid 

Nonlinear 
Viscoelastic- 
plastic 
[36],[29] 

(1.2.9) 

yes 

Yes 

no 

fluid 

solid 

------ 
solid 

yes 
no 

no 

fluid 
solid 

------ 
solid 

Table 6.1 



models otherwise. The models were deemed to exhibit viscoelastic behaviour in 

preyield if they behave like a viscoelastic solid (linear or nonlinear) when the predicted 

force is less than the yield force. When evaluating the existence and uniqueness of 

solutions, the damper models were assumed to be coupled with the nonlinear second 

order oscillator from $4.1. It was also assumed that the controllable damper parameters 

were Lipschitz continuous functions of time. Note that the references cited in Table 6.2 

do not consider questions of existence and uniqueness of solutions. Existence and 

uniqueness of solutions has been classified as trivial if the results can be obtain by 

applying well known theorems for ordinary differential equations (for example 

[96],[97]). The classification "unclear" has been used where existence of solutions was 

unobtainable, using methods known to the author. Existence of solutions for the 

oscillator coupled with Bingham plastic model was obtained by applying standard 

theorems for ordinary differential inclusions, [98]. The remaining cases in Table 6.2 

were obtained by applying Corollary C.3.1. 

In conclusion, the original contributions of this thesis were: 

(1) To show that the theory of "thermomechanics with internal variables" provides an 

intuitive and systematic approach for modelling the mechanical behaviour of ER 

fluid dampers . It was also shown that under mild conditions the resulting model 

will define a passive inap from the imposed velocity to the resulting force. 

(2) To present theorems providing sufficient conditions for the existence and 

uniqueness of solutions of the damper models. The proofs for these theorems were 

greatly simplified, so as to make them accessible to those with a working 

knowledge of existence and uniqueness theory for ordinary differential equations. 

(3) To show that the models are easily coupled with models for other mechanical 

systems and that traditional energy based and Liapunov type techniques can be 

used to analyse the qualitative behaviour of the coupled system in detail. 

(4) To show that by using a suitably chosen feedforward control, the EP model can be 

made to behave exactly like another rheological model consisting of a series 

combination of a linear spring with the same stiffness and a dissipative element 

with a more desirable dissipation hnction (dissipation shaping). 



To the best knowledge of the author the work presented in this thesis is the first in the 

literature to accomplish (I) to (4) above. 

6.2 Some topics for future research 

It is the purpose of this section to briefly outline some of the topics1 extensions which 

the author is presently investigating and plans to investigate in the future. 

To begin with, some possible extensions of the work in $3 will be considered. Two of 

the major simplifications assumed in $3, were that the polarizationlchain formation 

occurs instantaneously upon application of the electric field and that the imposed flow 

conditions have no effect on the magnitude of the yield stress. Consider the case where 

an electric field is initially applied to a static (no flowlstress) ER fluid. It is generally 

accepted that the chain formation in a static ER fluid takes place on at least two time 

scales. When the field is first applied, most of the particles will rapidly form into chains 

running parallel to the field. This is then followed by a much slower thickening of the 

chains and possibly coalescing of thinner chains. Combining this with the hypothesis 

that the thicker the chain the greater the stresslstrain required to induce rupture, implies 

that that the minimum stress required to induce unbounded flow in an activated 

suspension will depend on how long the field had been applied before the suspension is 

disturbed (mechanically). This minimum stress is often referred to as the static yield 

stress. Now consider the case where the electric field has been applied for a sufficient 

amount of time for chain formation to reach steady state. Then one of the electrodes is 

made to translate at a constant velocity. When the stress in the fluid reaches the static 

yield stress, a steady shear flow will be induced and the particle chains will begin the 

continual process of breakage and reformation. During flow, only a percentage of the 

chains will be intact at any moment. In addition the hydrodynamic forces due to the 

shearing flow will cause some fragmentation of the chains, making them thinner. As a 

result the stress in the fluid will decrease, implying that the dynamic yield stress will be 

lower than the static yield stress. This phenomena has been reported in numerous 

studies where the ER fluid is subjected to very low frequency oscillatory shear. 

From a practical point of view other electric phenomena are also of considerable 

interest. For example, the relationship between electric field, shear flow and the leakage 

current in an ER fluid is vitally important, as it will govern the power consumption of a 

device. As one would expect, the current through a static ER fluid does not obey ohms 



law. In fact numerous experimental studies have concluded that the conduction current 

through an ER fluid varies in proportion with E ~ ,  though only after E has exceeded 

some threshold E,. Also, there is an increase in the leakage current observed in static 

ER fluids, as compared to fluids in shear. Given that the particles are generally more 

conductive than the base fluid, the main source of leakage current will be through the 

electrode spanning chains. It follows that the thicker chains present in a stationary fluid 

would conduct more current than the degraded chains in a flowing fluid. 

The modelling of electrical phenomena can be performed in much the same manner as 

in $3. Simply replace stresses and strains by electric fields and charges, and replace 

rheological elements such as springs and friction elements by their circuital analogs, 

capacitors and diodes etc. The coupling of electrical and mechanical phenomena is a bit 

more difficult. One approach would to first develop separate phenomenological models 

for the electrical and mechanical systems using circuital and rheological elements. The 

total thermodynamic state will then consist of the strain, mechanical internal variables, 

electric field and electric internal variables. The coupling between the models would 

then be performed by allowing the dissipation function to depend on the entire 

thermodynamic state. It is thought that a unified modelling procedure could be 

developed based on the material in the excellent text [38]. 

The next logical step would be to validate the models using experimental data from an 

ER fluid damper. To do this, parameter identification algorithms need to be developed 

for the, models. It is thought that it may be possible to use the identification methods 

developed in [84],[85]. These methods are ideally suited for systems involving 

variational inequalities. The basic idea is to first formulate the identification problem as 

a constrained convex optimization problem. The solution of this optimization is then 

formulated as the stable equilibrium set for a system of differential equations. An 

integration algorithm is also presented in [MI, which could be used to implement the 

identification method on a digital signal processor. 

In order to use the damper models for online identification and control implementation, 

efficient integration algorithms are needed. In 5D.2 justification for a mixed implicit- 

explicit solver was presented. In practice it was found that this scheme was only suited 

for integration over short time periods. A form of mixed midpoint-implicit algorithm 

was found to be much better behaved, particularly when integrating more complex 

models, such as the GnF model coupled with a model for a smooth mechanical system. 

It would certainly be worthwhile performing a detailed analysis of the stability and 



convergence properties of this and other algorithms. A wealth of information on 

integration algorithms can be found in [41]. 

In Appendix C it was noted that a sufficient condition for the viscoplastic type models, 

to have a unique Lipschitz continuous solution is that the input (strain) is Lipschitz 

continuous and the control (yield stress) is essentially bounded. In contrast, for models 

involving a variational inequality, such as the EP model, to have a Lipschitz continuous 

solution requires that both the input x(t) and control r(t) are Lipschitz continuous. 

This is a particular disadvantage of the EP model, as on/off type controls may be of 

interest in applications such as vibration control. The conditions on r(t) cannot be 

weakened without redefining the notion of solution. For example, using the methods in 

[40] it can be shown that if r(t) and x(t) are continuous and of bounded variation, then 

the EP model will have a solution which is continuous and of bounded variation. It is 

thought that if the EP model were reformulated as a hysteresis operator, it may be 

possible to use the theorems in [86], to shown that if r(t)and x(t) are piecewise 

continuous, then the EP model will have a unique piecewise continuous solution. 

Next some possible extensions of the work in 54 and §D will be discussed. Appendix D 

presented some sufficient conditions for the existence of a periodic solution for the 

coupled system C (EP model and forced second order oscillator). This of course 

assumes that the input b(t) and control r(t) are both periodic, with the same period. It 

was noted in 55, that in applications such as tremor suppression, it is unlikely that b(t) 

and r(t) will be periodic, but will be some superposition of periodic functions, with 

different, independent periods. In this case the notion of an almost periodic solution is 

more natural. Recall that a solution x(t) of the differential equation x = F(x, t) is said 

to be T-periodic if x(t) = x(t + T) for all t 2 0 .  A solution x(t) is said to be almost 

periodic if for each E > 0 there exists a number L(s)  > 0,  such that every closed interval 

in %+ with length L(s) , contains a number z such that Ix(t + z) - x(t)I < E for all 

t 2 0, t + z 2 0 .  A more general notion, which contains both periodic and almost periodic 

solutions, is that of a recurrent solution. A solution is said to be recurrent if for each 

E > 0 there exists a number L(E) > 0,  such that for every t E %+ and every interval 

I c %+ of length greater than L(s) , there exists a z E I such that lx(t) - x(z)l< E . The 

author is presently investigating the possibility of using the results in the excellent 



papers [87] and [88], to prove the existence of almost periodic and recurrent solution of 

C . If existence can be proved, then stability of the solutions follows exactly as in 5D. 

In 54.3, a feedforward control was used to transform the EP model into the EVP model 

(dissipation shaping). A natural question is, could a feedback control be used to endow 

the EP model with more desirable behaviour (dissipation rate). Unfortunately this is 

difficult to show. Recall that the solution of the EP model z , satisfies lz(t)l I r(t) for all 

t 2 0 .  If the control r is chosen as r(t) = LIz(t)l, two possibilities could occur. If 

L E [0,1), then Iz(t)l$ LIz(t)l implies z(t) = 0 for all t 2 0 . If L 2 1 , then lz(t)( 5 ~lz( t) l  

holds for all z E % and the EP model will behave like a spring. For more general 

nonautonomous controls r(t) = @(z(t), t )  2 0,  the existence and uniqueness results in 

5C.2 can no longer be applied. Establishing uniqueness is actually the most difficult 

problem. A detailed discussion on existence and uniqueness of variational inequalities 

with state dependent constraints can be found in [89]. The author is presently trying to 

establish if a feedback control would be "usefbl", and if so, what restrictions need to be 

placed on the feedback function 0 :  % x  %+ + %+ so as to ensure existence and 

uniqueness. As usual, the viscoplastic models display much more regular behaviour. As 

an example, recall that the simple viscoplastic model from Fig. 13 in 53 is given by 

G 
&(t) = Ge(t) - - P(o(t); r (t)), 

VP 

where P(o; r) = rnax(o - r, min(o + r , ~ ) ) .  If the control r is chosen as r(t) = Llo(t)l, 

and L 2 1, then d-(t) = Ge(t) for all t 2 0 (a spring). 

However if L E [0,1) then (6.2.1) becomes 

ti 
d-(t) = Ge(t) - - (1 - L)o(t), 

VP 

which is equivalent to a Maxwell model with controllable viscosous coefficient 

qc = qp/(l - L) . The controllable coefficient 17, can be varied over the interval 

[qp , CO) by varying L over the interval [O,l) . 

In section $4.2 it was mentioned that for T small enough, certain OT -recurrent controls 



have the effect of transforming the EP model into a memoryless function of the velocity 

x,, in an averaged sense. The idea is similar in spirit to the use of dither to linearize or 

smoothen, discontinuous control systems [90],[9 11. 

For example, consider partitioning %+ into intervals T[n, n + 1] for n = 0,1,2.. . and 

implementing the control 

+fir  f E [nT,nT-i-E), 

for ? ~ [ n T + s , ( n + l ) T - r ) ,  (6.2.3) 

7 ; / & ( ( n + l ) ~ - t )  for tr[(n+l)T-r,(n+l)T), 

where F and E are positive constants. It can be shown that for E and T small enough 

1 t+T 
and 7 large enough, the averaged response of the EP model r,(t) = - I z(s)ds 

T t  

approximates GTx, (t)/2 . Which is to say that the averaged damper response is close to 

that of a linear viscous damper, with coefficient GT/2. This estimation was backed up 

by numerous simulations of the system C , carried out by the author. Unfortunately the 

author has been so far unable to obtain rigorous bounds on the error z,  (t) - GTx2(t)/2. 

It would also be of interest to investigate the averaging effect of other types of 

OT -recurrent controls and to maybe formulate some sort of procedure for constructing 

OT -recurrent controls. 

Finally, some possible topics of future research into tremor suppression are discussed. 

In 55 it was shown by first transforming the EP model into the EVP model and then 

using the dynamic control rs (1) = alb(t)], the effect of tremor on the motions of C, can 

be significantly attenuated. However, these results rely crucially on the ability to obtain 

an accurate estimate of the tremor, b(t). The need to estimate and reject periodic 

disturbances with unknown frequency arises in various important applications such as 

active noise control and vibration suppression. As a result numerous techniques and 

algorithms have been developed for just this purpose, some examples of which can be 

found in [92],[93],94].The author has developed a number of robust estimators, for 

continuously estimating the tremor, b(t). The estimator's are developed on the 

assumption that the tremor can be represented as the output of the following dynamic 

system 



with b(t) = q2(t) .The function S E C(%+, %) represents variations in the tremor 

amplitude and w E C(%+, %+) represents the unknown time varying "fi-equency". Note 

that the system in (6.2.4) defines a passive map form S(t) to q2(t). This property 

greatly facilitates the development of estimators and the subsequent stability analysis. 

The idea now is to estimate the state of the system (2.4) based on measurements of the 

velocity, x2(t). The estimators developed by the author are essentially a constrained 

version of the passive observers developed in [95]. The result is a system of differential 

equations coupled with a variational inequality, not that dissimilar to C . The theoretical 

and numerical investigations performed so far, show that the estimators are extremely 

well behaved and under certain conditions, can obtain an exponentially convergent 

estimate of b(t) . The author is currently attempting to develop estimators for more 

general tremor representations than (6.2.4). It is hoped that these estimators will also 

account for more complex intentional motions than the point-to-point motions 

considered in 5 5 .  Another worthwhile topic under investigation is the simultaneous 

suppression of tremor in the elbow and shoulder, using two ER fluid dampers. 
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Appendix A 

Functions and convex analysis 

Section.1 of this appendix presents some standard definitions and classifications for 

functions of a real variable, while Section.2 presents a summery of some results from 

convex analysis, which will be used throughout this thesis. 

A.1 Function Spaces 

The purpose of his section is recall some definitions and classifications for functions of 

a real variable. The material is standard enough and can be found in most texts on real 

analysis, for example [I]. 

In what follows, %" is used to denote the n-dimensional real Euclidean space with 

scalar product (x, y) = xTy and norm 1x1 = for y, x E %" . The one dimensional 

Euclidian space consists of all real numbers and is denoted by % .  The subset of 

% consisting of all nonnegative real numbers is denoted by%+. The subset [a, b] c W is 

the closed interval a I x I b , (a, b) c % is the open interval a < x < b and [a, b) c % is 

the half-open interval a I x < b . 

Let J c % be some interval. A subset I c J i s  said to have measure zero if for each 

E > 0 there exists a countable family of intervals Ii with length E, > 0 such that 

I c um Ii and x* E~ < E . Two functions f ,  g : J H W n  are said to be equal almost 
1=1 I =l 

everywhere (a.e.) if the set {t E J I f (t) f g(t)) has measure zero. In general a property 

is said to hold almost everywhere or a.e., provided it only fails on a set of measure zero. 

For example, a sequence of functions {A) is said to converge to a function 

f : J H '8" almost everywhere if the set {t E J I f i  (t) h4 f ( t))  has measure zero. A 

function f : J H 93'' is said to be measurable if there exits a sequence of piecewise 

constant functions { A ) ,  such that {A) converges to f almost everywhere as i + a. 
The reader unfamiliar with Lebesque integration can substitute "piecewise continuous 



functions" for "measurable functions" and interpret "almost everywhere" as 

"everywhere except at most on a countable number of points". 

A function f : J H W n  is said to be essentially bounded if it is measurable and there 

exists a compact set X c Wn (closed and bounded) such that f (t) E X for almost all 

t E J.  The space of essentially bounded measurable functions f : J H W n  is denoted 

L, (I; Wn) , with associated norm IIxll, = inf {sup~x(t)~, t E J \ M) I M c J ,  mem(M) = 0). 

b 
For a measurable function f : J H W n  , f : J H W n  , the Lebesque integral f (s)ds 

can be defined via the limits of integrals of suitable sequences of approximating 

piecewise constants functions. An integrable function is one for which PI f (s)lds is 

finite. L, (J;Wn) is the space of integrable functions f : J t+ W n  endowed with norm, 

11 f 11, = f (s)lds . Similarly L, ( J ;  Wn) , p E (1,m) consists of all measurable functions 

1 

f : J H W n  functions such that 11 f 11 = (0 (S)~p dS)'. 
P 

A function f : J H W n  is said to be continuous at a point t E J ,  if for each E > 0 ,  there 

exists a B(s,t) > 0 so that If ( t )  - f (r)l< s for all r E J, such that It -71 < S(E, t) . A 

function f : J + W n  is said to be continuous on J or f E C(J;Wn) , if it is continuous 

at each point of the interval J. It is said to be uniformly continuous on J if 6 ( ~ , t )  > 0 

in the above definition depends only on E > 0 .  The space Cm(J;Wn)consists of 

continuous functions f : J t+ W n  , with continuous derivatives or order rn , i.e. 

d'" f /dtn' E C(J;Wn). 

A function f : J H W n  is said to be locally Lipschitz continuous if for each t E Jthere 

exists two constants , S  > 0 , SO that 1 f (t) - f (r)l< K~ It - rl for all r E J such that 

It -TI< S . It is said to be Lipschitz continuous, or f E Co2' ( J ;  Wn) if there exists a 

constant K~ > 0 such that 1 f (t) - f (r)l < It - rl for all t , r  E J . If f E C' ( J ;  Wn) 

then f is at least locally Lipschitz continuous. If also J is compact, then 
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f E C',' ( J ;  g n ) .  The space f E c",' ( J ;  %" ) consists of the functions f E Cm ( J ;  R n )  

for which the mth derivative is Lipschitz continuous. Lipschitz continuous have the 

pleasant property that they are differentiable almost everywhere. 

A function f : J H R n  defined on a compact interval f : J H R n  is said to be 

absolutely continuous if for each& > 0 ,  there exists a S > 0 such that 

xi=,l f ( 4 )  - f (a,)( < E for every system of painvise disjoint subintervals 

(a,, b, ) c J with xn (b, - a,) c S . The space of absolutely continuous functions 
k=l 

f : J H 8" is denoted AC(J;9In). If J is semi-infinite, say %+ , then f : %+ H 'Sin 

is said to belong to AC(%+;'Sin) if the above definition holds on each compact 

subinterval Jk c %+. For every absolutely continuous function f : J H 93" and on 

each subinterval [a, b] c J , there exits a function f E L, ([a, b];sn)  such that 

f (t) = lirnh,o (f (t + h) - f (t))/h for almost all t E [a, b] . Or equivalently 

f ( t )  - f ( r )  = f f (s)ds for all t ,  r E [a, b] . For compact intervals J = [a, b] , the norm 

b 
associated with AC(J;Rn) is given by 11 f ll,, = 1 f (a)l+ 1 f (s)lds . Note that a 

Lipschitz function f : J t+ %" is absolutely continuous and an absolutely continuous 

function is Lipschitz if it has an essentially bounded derivative. 

The following two inequalities will prove useful in studying stability properties in $4 

and $5. 

Young's ineaualitv: Suppose that p, q E (1,co) and l/p + l/q = 1. Then 

1 1 
~ X ~ ~ < - K ~ I X I ~ + - I ~ ( V ,  ' d x , y ~ % ,  'dK>O. 

P 4Kq 

Holders's Ineaualitv: Let p,  q E [ l , ~ ]  and lip + l/q = 1 (note if p = 1 take q = o~ ). 

Let f E Lp(R+;Rn) and g E Lq(%+;'Sin) then for all t E R+ 



In proving some of the existence results in §C the following well known results will be 

needed. The first is the well know Arzela compactness theorem. Recall that a family of 

real valued functions X E C([a, b]; %") is called equicontinuous if, given e > 0 ,  there 

exits a S > 0 such that (xn (a') - xn (b')l< E for each xn E X whenever a', b ' ~  [a, b] and 

Theorem A.l. l  [I] (Arzela) If a set X c C([a,b];iRn) is uniformly bounded and 

equicontinuous, then it contains a uniformly convergent subsequence xn E X, n = 1,2.. . ; 

that is, there exists x E C([a, b]; W n, such that llxn - XI(  + 0 as n + m . 
w 

Theorem A.1.2 [2] Let A c 9 "  be a convex compact set. Assume that 

xn E AC([a,b];91n) is a sequence such that xn(t) + x(t) for all t E [a,b] and 

xn (t) E A for almost all t E [a, b] .Then x 6 AC([a, b]; 91n) and x(t) E A almost 

everywhere. 

The next two results are know as the continuous and discrete Gronwall inequalities and 

can be found in most books dealing with ordinary differential equations. 

Theorem A.1.3 [3] If r , a  are real valued and continuous for all t E [a, b] , P(t) 2 0 is 

integrable on [a, b] and 

r ( t ) l a ( t ) +  I(p(s)r(s)ds, V t ~ [ a , b ]  

then 

r ( t ) < a ( t ) + I ( ~ ( s ) a ( s ) e x ~ ( j : ~ ( u ) d u ) d s ,  Vte[a,b]. 

Theorem A.1.4 [3] If r,, , r, , r, , . . . r, is a nonnegative sequence of numbers with and 

S , 2 0 ,  

A, 2Ofor k=0,1,2 ,..., n-1, theif 

rk+l <(l+Sk)rk +Aky k ~ o y ~ y ~ y ~ ~ ~ y ~ ~ ~  

it follows that if r, = 0 then 

rn< exp x6, ZA, ( ( :  :I), 



A.2 Elements of convex analvsis 

The purpose of this section is to recall some basic definitions and results from convex 

analysis. The material present below is taken from [4], [5] and [6 ] .  

Let C be a subset of %" . The interior, closure and boundary of C are denoted by int C ,  

clC and bdC . A nonempty subset C c 3" is said to be convex if for any x, y E C and 

a E [0,1] then x a  + (1 - a ) y  E C . A nonempty subset K c %"is said to be a cone if 

along with any element x E K it contains the element ax E K for all a 2 0 . 

Let C c lS" be a closed convex set such that 0 E C . For each x E lSn there exists a 

point z E C such that ix - z( = dist(x; C) = min {x - y l  1 y E C} . It is thus possible to define 

the projection operator Q(.; C) : -+ C and its complement P(x; C) = x - Q(x; C) for 

all x E 3" , by the formulae Q(x;C) E C and (P(x;c)( = dist(x;C) for all x E %". These 

operators have the following useful properties 

When considering %, the closed convex subsets are the closed intervals 

[-r, r ]  c %, r > 0.  For simplicity the corresponding projection pair will be denoted 

Q(x;r) and P(x;r) . In this case the following formulae hold 

Q(x; r )  = min(r, max(-r, x)) and P(x; r )  = max(x - r ,  min(x + r,O)) along with the 

properties , for x, y E % and s, r > 0 

Convex functions will be considered next. It will be convenient to consider the extended 

real numbers 3 = 3 U { m ) ~  {- co). For each function f : lSn H R,  the set 

dom( f )  = E 93" I f (x) < m} is called the effective domain of f . The epigraph of f 

denoted epi( f )  is the set of ordered pairs epi( f )  = kx, a)  E 8" x lS 1 f (x) i a}.  A 

function f : %" H 3 is called proper if f (x) < m  for at least one point x E %" and 



f (x) > -m for all x E W n  . A function f : 93" H s is said to be positively homogenous 

of degree p>O if f ( m )  =aP f(x) for all a >  0 a n d x ~  W n .  A function f : W n  H %  

is said to be convex if epi(f) is a convex set in 93" x W . Equivalently, a proper 

function f : W n  H is said to be convex if 

f (h + (1 - Q)Y) Bf(x) + (1 -@If  (Y), (A.2.3) 

for all x, y E 9In and a E [0,1] . Furthermore, a convex function is said to lower 

semicontinuous or lsc if epi( f )  is a closed convex set in !Rn x 93 . 
Two very useful, though unusual, convex functions are the indicator function of the 

convex set C c W n  

0, X E C ,  
I (x; C) = 

+m, x e c ,  

and the support function of the convex set C c W n  

S(x; C) = sup{(xy i )  I Z c}. (A.2.5) 

Clearly the support function is positively homogeneous of degree one. 

An important aspect of convex analysis is that of duality. For a proper, lsc convex 

hnction f : '93" H a ,  the conjugate function f * of f (or Legendre or Legendre- 

Fenchel transform) is defined by 

f*(x*) =supj(x*,x)-f(x)~ X E  sn] (A.2.6) 

If f is a proper, lsc convex function, then so is f * and (f *r = f" = f . For example, 

iff (x) = lip c:=, lxilP, e (1, m) , then f * (x*) = llq ~ " x : l ~  I=] with l/q + l/p = 1 . Also 

the support function of the convex set C c W n  (A.2.5) is the conjugate of the indicator 

function (A.2.4) and vice versa. 

The calculus of convex functions will be considered next.. Let f : W n  H be a 

convex function finite at x E X n  , the set (possibly empty) 

~ f ( x ) = { ~ ~ ~ ~ I f ( y ) - f ( x ) ~ ( z ~ y - x ) , ~ ~ ~ ~ ~ )  (A.2.7) 

is the subdifferential of f a t  x E X n  . The elements of i3f (x) are called the subgradients 

of f a t  x E !)In. If f is differentiable at x then i3f (x) = Vf (x) . 



If f convex and finite at x E %", then df (x) is a closed convex set. If in addition f is 

continuous at x E S n ,  then df (x) is nonempty, compact, convex set. Similar to 

Fermat's theorem for differentiable functions, a point T E Sn minimises the convex 

function if and only if 0 E df (x) . Another important property is that the subdifferential 

of a convex fbnction is a monotone operator, in the sense that 

( ~ f ( ~ > - ~ f ( ~ > , x - ~ ) ~ o ,  vxyYe%"- (A.2.8) 

A very important result in convex calculus is the Moreau-Rockafellar theorem which 

states that ; if J; and f, are two convex, Isc functions and there exists a point where 

both functions are finite and at least one is continuous, then 

a(fi (XI + f~ (XI) = (XI + df2 (XI (A.2.9) 

for all x E dom(J;) n dom(f,) . 

In terms of conjugate functions, if f *is the conjugate of the a proper, lsc, convex 

function f given by (A.2.6), then 

x* ~ d f ( x ) a  xedf*(x*). (A.2.10) 

This result provides a usehl means of constructing the conjugate function f * .  That is , 

calculate df (x) , invert it and then integrate to find f * . 
For the special case of the indicator function (A.2.4), the subdifferential 

dI(x; C) corresponds with the normal cone N(x;C) , to the convex set C at x 

N(x;c)={zE%" ~ ( z , x - q ) > ~ , ~ q t ~ )  (A.2.11) 

If x E int C then N(x;C) = 0 ,  where as if x E bdC , then N(x;C) consists of the cone of 

outward normal's to C at x . For sets of the form[-r,r],r 2 0,  the normal cone will be 

denoted by N(x;r) . 
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Appendix B 

Liapunov stability: principle theorems and 

definitions 

B.l Principle Liapunov theorems 

The purpose of this appendix is to briefly summarize the main stability definitions and 

theorems relating to stability in the sense of Liapunov. The material to be presented has 

be taken from the excellent textbooks [I], [2] and [3], to which the reader is referred to 

for the proofs and further details. All the results will be presented for the 

nonautonomous differential equation 

x = F(t,x) (B.1) 

where F : %+ x %" H 5Rn . The differential equation is assumed to have a unique 

solution x(t) = x(t; to, x(to)) , x(0; to, x(to)) = x(to) ,defined for Vt 2 0 . The origin is said 

to be an equilibrium point for (B.I), if F(t,O) = 0 for all t 2 0. 

The principle Liapunov stability definitions, can be stated as follows. 

Definition B.l: The equilibrium point x = 0 of (B.l) is 

S: stable, if for each E > 0,  there exists a S(&,tO) > 0 such that 

US: uniformly stable, if for each E > 0 ,  there exists a S(E) > 0 ,  independent of 

to, such that 03.2) holds. 

AS: asymptotically stable, if there exists a positive constant c = c(to) , such that 

x(t) ++ 0 as t -+ cr;, , for all Ix(to)l < c . 

UAS: uniformly asymptotically stable, if it is uniformly stable and there is a 

positive constant c , independent of to, such that for each 7 > 0 ,  there exists a 

T ( r )  > 0 such that 



GAS: globally asymptotically stable, if it is stable and every solution of (B.l) 

tends to zero as t + oo . 
GUAS: globally uniformly asymptotically stable if, if it is uniformly stable and 

for any positive constants c, 7 > 0 ,  there exists a T(q, c) > 0 such that 

Ix(t)( < rl, v t  2 to + T(rl Y 4 ,  vlx(to)l< c - 
ES: exponentially stable, if there exists positive constants p ,q and a such that 

Ix(t)l< rllx(to))e-"'t-" Vt 2 to 2 Oy vlx(to)1 5 p. (B .4) 

GES: globally exponentially stable, if (4) is satisfied for any initial state x(to) . 
For autonomous and periodic systems stability and asymptotic stability are 

equivalent to uniform stability and uniform asymptotic stability respectively. 

(the same holds for global notions). 

The principle theorems relating to Liapunov-like stability are greatly simplified using 

the notions of class K and class KL functions. 

Definition B.2: A continuous function a : [O,a) I+ [O,oo) is said to belong to class K , 

if it is increasing and a(0) = 0 . It is said to belong to class K, if a = and 

a ( r )  + oo a r -+ a.  

Definition B.3: A continuous function ,B : [0, a) x [0, oo) H [0, oo) is said to belong to 

class KL if, for each fixed s , the mapping P(r,  s)  belongs to class K with respect to r 

and , for each fixed r ,  the mapping P(r,s) is a decreasing function of sand 

P(r,  s)  4 0 as s + oo . It is said to belong to class KL, if, in addition, for each fixed s , 

the mapping P(r,  s) belongs to class K, with respect to r . 

Definition B.4: A function V : 91n x %+ w 9I is said to be locally positive definite if it 

is continuous, V(0,t) = 0, Vt  2 0 and if there exists a constant r > 0 and a function a, of 

class K, such that a, 1x1) 5 V(x, t), Vt > 0, Vx 'xa B(0; r) . V is positive definite if the 

previous definition holds with r = oo . V is radially unbounded if it is positive definite 

and cq is of class K, . V is negative definite if - V is positive definite. V is decrescent 

if there exists a constant r > 0 and a function a20f  class K, such that 

~ ( x ,  t) i a, 1x1)~ ~t 2 0, vx E B(O; r)  . 



Definition 5 Let V : W n  x W H 9Z be continuously differentiable with respect to all of its 

arguments and let VVdenote the gradient with respect tox .  Then the function 

v : Wn x %+ 3 W is defined by 

and is called the derivative V along the trajectories of C . 

The main Liapunov stability theorems used in this thesis can be stated as follows. 

Theorem B.l (Liapunov Stability) Let x = 0 be an equilibrium point for (B.1) and 

D = E 9I2 1 1x1 < I}. Let V : D x %+ H W +  be a continuously differential function such 

that for b ' t > O , V x ~  D 

a, 1x1) V(x, t )  a 2  1x1) (B.6) 

V(x, t) 5 - a 3  1x1) (B.7) 

Then the equilibrium x = 0 is 

US,if a , , a , ~ K  on[O,r) and oc,(.)2O on[O,r); 

UAS, if a , ,  a2 and a, E K on [0, r)  ; 

ES, if ai(y) = qiya on [0, r) with ri > 0, a > 0, i = 1,2,3 ; 

G U S , i f D = S n  a n d a , , a , ~ K ,  and a3( . )20  on%+;  

GUAS,ifD=9In a n d a , , a , ~ K ,  a n d c c , ~ K o n % + ;  

GES, if D = Sn and if ai(y) = qiya on%+ with qi > 0, a > 0, i = 1,2,3 .O 

Even when the differential equation in (I), has no equilibrium points, Liapunov analysis 

can still be used to obtain useful estimates relating fo the boundedness of solutions. The 

definitions which follow are along this line. 

Definition B.6 The solutions of (B.l) are 

LUB, locally uniformly bounded, if there exists a positive constant p , 

independent of to 2 0 ,  and for every c E (0, p )  , there is a P(c) > 0 ,  independent 

of to, such that b't 2 to 

Ix(t,)l 5 c = Ix(t)l< p, b't 2 to. 

UB, uniformly bounded if (8) holds for arbitrarily large c . 



LUUB, locally uniformly bounded with ultimate bound B y  if there exists 

positive constants p ,  B y  independent of to 2 0 ,  and for every c E (0, p )  , there is 

a T(c, B) > 0 ,  independent of to, such that Vt 2 T + to 

Ix(t,)l 5 c 3 Ix(t)lS B,Vt 2 T(c,B) + to. 03.9) 

UUB, uniformly ultimately bounded if (B.8) holds for arbitrarily large c . 

The next theorem provides a Liapunov characterisation of boundedness of solutions. 

Theorem B.t(Boundedness) Let D = E !R2 1 1x1 < r}. Let V : D x 93, H W+ be a 

continuously differential function such that for Vt 2 0,  Vx E D 

a1 0.1) 5 v(x, t) 5 a 2  0x1) (B.lO) 

~ ( x ,  t) < -a3(xl), ~1x1 t R > 0, ( B . ~ I )  

where a i , i  = 1,2,3 are class K functions. Suppose that R < a;' 0 a, (r) and 

Ix(t,)l < a;' 0 a, (r) , then there exists a class KL functionp and T t 0 (independent of 

R and x(t,)) such that 

Ix(t)l s p(x(t,)b t -to ), tit, 5 t 2 to + T, 

x )  5 a 0 a ( R )  Vt 8 to + T, 

(B.12) 

(B. 13) 

That is lx(t)l is LUB for t 8 to and LUUB with ultimate bounda;' 0 a2(R) . 

Furthermore, if D = %" and a, , a 2  E K, , then (B.lO) and (B.ll) hold for any initial 

state, x(t,) with no restriction on how large R is. That is Ix(t)l is UB for t 2 to and 

UUB with ultimate bound a,' 0 c~., (R) .El 

The following comparison lemma is an extremely useful tool for obtaining estimates for 

the solutions of differential equations. Recall that the upper right Dini derivative of y(t) 

is defined by Dtx(t) = lim sup,,,, [x(t + h) - x(t)Vh . Note that ifx t cl(%+; W) , then 



Lemma B.l (Comparison Lemma) Consider the scalar differential equation 

y = F(t, y) , y(t,) = yo, where F(t, y)  is continuous in t and locally Lipschitz in y , for 

t 2 t, and all y E I c 93. Let [to,T) ( T  could be infinity) be the maximal interval of 

existence of the solution y(t) and suppose y(t) E I for all t E [to, T) . Now let x(t) be 

a continuous hnction, whose upper right Dini derivative satisfies the inequality 

D'x(t) I F(t,x(t)) with x(t,) 5 yo and x(t) E I for all t E [t,,T) . Then x(t) I y(t) for 

all t E [tO,T). 

B.2 Asvmptotic behaviour of Solutions 

The theorems to be presented in this section enable one to obtain estimates pertaining to 

the asymptotic behaviour of solutions of ordinary differential equations, under far less 

restrictive conditions than those required by Theorem B.1. The material presented 

below is based on the excellent text [1] and the innovative paper [4]. These theorems 

make use of the notion of a w -limit point, of the solution x(t;t,, x(0)) of the differential 

equation C . Following [4], it was found to be useful to define the concept of a w -limit 

point, in terms of arbitrary %" - valued functions. 

Definition B.7 Let x : 93, H %" be an arbitrary function. A point p E 93" is said to be 

a w -limit point ofx ,  if there exists an unbounded sequence {t,) in %+, such that 

x(t,) + p as n + co . The (possible empty) w -limit set of x , denoted R(x) , is the set 

of all w -limit points of x . 

The following lemma collects some useful properties of w -limit sets. 

Lemma B.2 The following hold for any function x : %+ + %" ; 

R(x) is closed. 

R(x) is empty if (x(t)l+ a, as t a,. 

If xis  continuous and bounded, then R(x) is nonempty, compact, and 

connected, is approached by x ,  and is the smallest closed set so approached. 

If xis  continuous and R(x) is nonempty and bounded, then x is bounded and 

x approaches R(x) . 



Possibly the most useful tool for the characterisationR(x), is a lemma known as 

Barbalat's lemma. Before stating Barbalat's lemma, it will prove useful to recall some 

definitions from advanced calculus. A function x : %+ H %" is said to be Riemann 

integrable on %+, if the improper integral lim,,, x(s)ds exists and is finite. Let I,' 
x : %+ H 8" be a Lebesgue measurable function, then x E L, (93,; %") , for some 

p E [I, m) if the function t -t ix(t)lP is Lebesgue integrable. If the function t H lx(t)l is 

essentially bounded, thenx E L,(%+;%"). Finally note that if x E c~"(%+;%"), then 

x is uniformly continuous on %+ by definition. 

Lemma B.3 (Barbalat's lemma 1) If x :  %+ H %" is uniformly continuous and 

Riemann integrable on %+, then x(t) -+ 0 as t -+ co . 

Corollarv B.l Forx:R+t+%",  if x,x~L,(%+;%")and XEL,(%+;%") for 

some p E [I, m) then x(t) + 0 as t -t c~ . 

The next corollary is a direct consequence of Lemma B .2 and Lemma B.3. 

Corollarv B.2 Let G be a nonempty closed subset of %" and let y : G + % be a 

continuous function. Assume that x : + + % is uniformly continuous 

with x(t) E G, 'dt E %+ . If y(x) is Riemann integrable, then R(x) c {x E G I y(x) = 0). 

Lemma B.4 (Barbalat's lemma 2) If x E c'"(%+;%~) has a finite limit as t -+ m , then 

x(t) + 0 as t + co . 

Finally, another simple lemma which will prove useful for analysing the asymptotic 

behaviour of solutions. 

Lemma B.5 Let o be a positive constant and letx: C(%+;%") . If Ix(t)l is Riemann 

integrable or b(r)l+ 0 as t -+ m , then I~e-c"-s'lx(s)lds + 0 as f -+ m . 



Combining Corollary B.2 and Theorem B.2, one obtains the following Liapunov-type 

theorem. 

Theorem B.3 (Liapunov-like theorem) Consider the differential equation (B.l) and 

suppose that for bounded x ,  F(t, x) is bounded uniformly in t . Let V : In x W, I+ %, 

be a continuously differential function such that for Vt 2 0,  Vx E In 

a1 0.1) 5 V(xy 0 5 a 2  1x1) (B.14) 

V(X, t) 5 - y(xl) 5 0 (B.15) 

where a,, a, E K, and y is a continuous function. Define the set 

E = {x E Wn I y(x) = 0). Then all solutions of (B.1) are UB and n(x) c E .O 

If the system C is T -periodic, that is F(t,  x) = F(t  + T, x), 'dx E %", Vt 2 0, then it is 

possible to sharpen the results presented above, using the notion of an invariant set. 

Definition B.8 A set M c %in is called a positively invariant set for (B.l) , if for some 

to 2 0 and each x(to) E M y  the resulting solution x(t;to, x(t,)) , satisfies 

x(t;to,xo) E M,Vt >to. 

Lemma B.6 Suppose the system C is periodic and let. If the solution x(t;to,x(to)) is 

bounded for all t 2 to r 0 ,  then O(x) is an invariant set for (B.l). 

The following theorems are simplified versions, of what are commonly referred the 

Krasovskii-LaSalle stability theorems [I]. 

Theorem B.4 (Krasovskii-LaSalle) Suppose that (B.l) is T -periodic, and that for 

boundedx, F(t,x)is bounded uniformly in t .  Let : I n  I I be a 

continuously differential T - periodic function, such that for Vt 2 0,  Vx E In 

.I [XI) 5 v(x, t) 5 a 2  4x1) (B.16) 

~ ( x ,  t) < 0 (B.17) 

where a, ,  ol, E K, . Defme the set E = {x E In I v(x,~) = 0) and let M denote the largest 

invariant set for C contained in E. Then all solutions of C are uniformly bounded and 

R(x) c M .O 



Theorem B.5 (Krasovskii-LaSalle) Suppose that (B.l) is T -periodic, and that for 

bounded x , F(t, x) is bounded uniformly in t . Define D = {x E W 2  1 1x1 < r }  and let 

V : W n  x D I+ %+ be a continuously differential T - periodic function and such that 

forb't 2 0 , b ' x ~  D 

a1 1x1) 5 V(xy t) a 2  1x1) (B. 18) 

where a , ,  a, E K . Define the setE = E W n  I ~ ( x , t )  = O} . Let x = 0 be an equilibrium 

point for C ,  suppose that no solution of C can stay identically in E, other than 

x(t; to ,O) = 0, t > to. Then the equilibrium x = 0 is UAS. Furthermore if all of the above 

conditions hold with D = %" and a , ,  a, E K, , then the equilibrium x = 0 is GUAS.U 
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Appendix C 

Wellposedness of damper models 

C.1 Introduction 

The main purpose of this appendix is to present some simple results establishing 

wellposedness of the models presented in 53. As the reader may be unfamiliar with the 

concept of a well-posed model, it would seem worthwhile to take a few seconds to 

explain the basic idea. Consider the following model of a simple pendulum 

q( t )  + cq(t) + sin(q(t)) = 0 (C.l.1) 

with initial conditions q(0) = go and 4(O) = go. Now suppose it was intended to use this 

model to determine the motion of a physical pendulum. Unlike its linear counter part, 

the spring mass damper (C.l.l) cannot be solved in terms of simple trigonometric 

fbnctions. In fact, does it even have a solution. It would not be a very good model if it 

didn't, since an actual pendulum certainly does move. Thus for the mathematical model 

of a physical processes to be of any use, it should at least have a solution. This is the 

problem of existence of solutions. 

Suppose the actual pendulum is released from the initial conditions q(0) = 7r/3 and 

q(0) = 0 and is allowed to swing about for a bit. Now, suppose the same experiment is 

repeated the next day, with the same initial conditions and under same environmental 

conditions. Experience would suggest that the resulting motion will be identical with 

that of the previous experiment. This is the usual notion of determinism, or in the 

terminology of differential equations, uniqueness of solutions. In reality it is impossible 

to repeat such an experiment exactly, there will always be some small variations in the 

initial conditions or in the experimental setup itself. However if the experiment is 

repeated under almost the same conditions, then it is reasonable to expect that the 

resulting motions of the pendulum would be almost the same. That is, small errors in the 

data cause only small errors in the solution. If the solutions of a mathematical model 

exhibit this sort of behaviour, then it is said that the solution depends continuously on 

the data of the problem (this idea is very closely related to stability). 



To recap, a mathematical model, along with a family of initial conditions is said to be 

wellposed, if the following can be proved 

Existence : the problem has at least one solution 

Uniqueness : the problem cannot have more than one solution. 

Continuous dependence on the data : small variations in the data, will only result 

in small variations in the solution. 

Section.2 presents some standard results for ordinary differential equations, which are 

sufficient for the analysis of the viscoplastic models. Section.3 presents some results 

relating to solutions of the EP model in isolation and when coupled with an ordinary 

differential equation. 

C.2 Differential Equations 

The purpose of this section is to present some standard results from the theory of 

ordinary differential equations and to illustrate their application to the viscoplastic 

models form 53.5. 

As noted in 53.5, when a viscous element is placed in parallel with a friction element it 

has the effect of "smoothing out" the corresponding evolution equations (as compared 

to the EP type models). The reason for this is that the stress response is no longer 

confined to a closed set, [-r,r] c % . In terms of the evolution equations themselves, 

the variational inequality can be replaced by an ordinary differential equation. This 

means that existence and uniqueness results can be obtained using the standard 

theorems for ordinary differential equations. The material in this section is based on the 

excellent text books [I], [2] and [3], to which the reader is referred for further details. 

Consider the ordinary differential equation 

~ ( t )  = F(x(t), u(t)) 

wheret E %+, x E !Rn represent the state variables , u : %+ H %" is a vector of forcing 

terms and time varying parameters and F : %" x %"' I+ F i n .  By a classical solution of 

the differential equation (C.2.1) on an interval [O,T] c %+ is meant a continuously 

differentiable function x(t) , which along with x(t) , its derivative with respect tot , 

satisfies (C.2.1) for all t E [O,T] . In general the initial condition x(0) = xo and input u(t) 

will be specified. When there is need to emphasize the dependence of a solution of 



(C.2.1) on u and x, , the notation x(t) = x(t;x,,u(.)) will be used. If x(t) is a solution of 

(C.2.1) and F(x(t),u(t)) is integrable with respect tot ,  then (C.2.1) is equivalent to the 

integral equation, 

x(t) = x(0) + [~ (x ( s ) ,  u(s))ds, Vt E [0, TI. ((2.2.2) 

Suppose the input u(t) is continuous and bounded on %+ and F(x,u) is defined and 

continuous on %" x 'SIm, then a classical result states that (C.2.1) has at least one 

solution x(t) , defined on a small interval [O,a] c [O,T]. If it can be shown that for every 

xo E 'SIn, a11 resulting solutions of (C.2.1) remain bounded, then each solution of 

(C.2.1) can be continued over the entire interval [O,T] . This theorem says nothing about 

uniqueness or continuity with respect to the data. A sufficient condition for (C.2.1) to 

have a unique solution, which depends continuously on x(0) = xo and u(t) is that 

F(x,u) is locally Lipschitz on %" x !?Im. Which is to say that for each (z,G) E 8" x 93" , 

there exists two constants 6 > 0 and Q > 0 such that 

~F(x,, u,) - ~ ( x , ,  u2)l r Qux, - x2 1 + lu, - u2 I), for all xi and ui such that 

[xi - F I S  6,1ui - G I $  6 , i=1,2. 

The continuity assumption on the input u(t) is too restrictive for many applications, 

particularly if u(t) represents some sort of control. A more useful assumption would be 

that u(t) is integrable and essentially bounded, i.e. u E L,([O,T];'SIn') . In this case, 

even if F(x,u) on 'SIn x 'SI" is continuous, it cannot be assumed that F(x,u(t)) is 

continuous on'%" x !?I+ , and hence it cannot be assumed that the solutions of (C.2.1) are 

continuously differentiable. By a Caratheodory solution of (C.2.1) on an interval 

[0, TI c 'SI, is meant an absolutely continuous function x(t) = x(t; x, , u(.)) , which 

satisfies (C.2.1) for almost every t E [O,T], or equivalently which satisfies (C.2.2) for all 

t E [O,T]. The terminology for almost every t E [O,T], or for a.e. t E [O,T] means, for all 

t E [O,T] except on a set of Lebesque measure zero (see gA.1). Recall also that a 

function x : [O,T] + 93" is said to be absolutely continuous or an element of 

r 
AC([O,T];'SIn), if it can be expressed in the form x(t) = x(0) + L$(s)ds, for some 

integrable function 9 ; it follows then that x(t) = $(t) for a.e. t E [O,T] . Most theorems 

on the existence and uniqueness of classical solution cans be carried over to the 
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Caratheodory case with a little modification 121. Note that by a solution defined on %+ , 

is meant a solution defined on [O,T] for each T E %+ . 

The following global existence theorem is not very general and has been tailored to the 

specific requirements of this thesis. For its proof and a more general discussion on 

existence theorems for differential equations, the reader is referred to [1],[2] and [3]. 

Theorem C.l Suppose that F(0,O) = 0 and for all (x,u),(Zyk) E %" x %" there exists a 

positive constant p such that 

IF(x, u) - ~(F , i i ) l  5 PIX- TI+ plu -iil. (C.2.3) 

Then for each xo E %"and u E L,([O,T];%"), T E %+ 

(i) The differential equation (C.2.1) has a unique absolutely continuous solution 

x(t) = x(t; xo, u(.)) (i.e. x E AC([O,T];%n)) which satisfies 

I X ( ~ ) - X O ~ ~ ( ~ ~ ' - ~ ~ I ~ O ~ + ~ & I I , ) .  ~ ~ E [ O . T ] .  (C.2.4) 

Let x(t) = x(t;xo, uc)) and Z(t) = Z(t; Yo, iic)) be the unique solution of (C.2.1) 

corresponding to the initial conditions and inputs 

xo E %" , u E L, ([0, TI; S m )  and Zo E Sn , k E L,([O,T];!Rm) respectively, then 

Ix(t) - ~ ( t ) l <  Ixo - %lep+ (ePt- lllu - iill,, (C.2.5) 

for all t E [O,T] (continuous dependence on the data). 

(ii) If u E C([O, TI; S m )  then x E c'([o,T];%") (classical solution). 

(iii) If u E C([O, a ) ;  %") or u E L, ([0, a); %") then x E cl([O, a) ;%n) or 

x E AC([O, a ) ;  %In) respectively (see §A1 for remarks on semi-infinite intervals). 

(iv) If u E c~~'([o,~);%"')  and all solutions of (C.2.1) are uniformly bounded (see 

§B. 1) then x E ([o, m);9In). 



To demonstrate the application of the theorem, the GnF model given by equation 

(3.5.22), will be considered as a representative example. For simplicity, setting z, = o, 

z, = Hcq , ul = e , u, = r and 77 = ve = vp in equation (3.5.25) yields the ordinary 

differential equation 

G G 
2, = Gul (t) - - (z, - z, ) - - P(Z, ; u, (t)), 

77 

It is assumed that lul ( t ) [  < m and u, (t) E [O,F] for almost all t E %+. Recall that 

P(zl ; u,) = zl - Q(zl; u,) , where Q(zl;u2) is the projection onto the interval [-u,, u,] 

and IP(Z,;U,) - P(?;Z,)~ 5 (zl - ? I  + lu, - 51 for all (z , ,~,) ,  (q,i&) E % x %+ (see 5A2). 

Defining z = (z,, z,) E s2 andu = (ul,u2) E % x %+, it can be seen that the right hand 

side of (C.2.6) satisfies (C.2.3) and so (i)-(iii) of Theorem C.l can be applied. The 

growth estimates (C.2.4) and (C.2.5) are very conservative as they don't account for the 

external stability properties of the differential equation. To illustrate this, consider the 

system energy H(z) = o.~(z:/G + z:/H) . The derivative of H(z) along the solution of 

(2.6) satisfies 

1 1 
~ ( z )  = -- (z: - 2z1z2 + 2;)- - Z1p(Z1; U2 (t)) + zlul (I), 

?' 77 
1 1 

5 -- (2z: - 2z1z2 + z:)+ - z,Q(z,; 2.4, (t)) + zluI (I), 
77 77 

In the final inequality, the term in brackets is positive definite, which when combined 

with the fact that H(z) is quadratic and positive definite implies the existence of two 

constants y,p > 0 such that 

lz(t)I2 1 plzo~e-pt + PICII~ - e - ~ ' )  (C.2.8) 

Inequality (C.2.8) is clearly much better than (C.2.4). In particular, it implies that that 

all solution of (C.2.6) are uniformly bounded, so that from (iv) of Theorem B.1, if also 

u E c',' ([0, m); 93,) then z E c~~'([o, 03); !R2) . 



C.3 The EP model 

The purpose of this section is to establish existence, uniqueness and regularity results 

for the simple EP model from 53.4, when in isolation and when coupled with an 

ordinary differential equation. Before presenting the main results, some equivalent 

representations of the EP model will be presented. For the initial discussion, the elastic 

modulus is assumed to be constant and equal to one, G = 1 . As such, no distinction will 

be made between stresses and elastic strains. In 53.4, it was shown that the evolution of 

the EP model is completely described by the variational inequality 

where x(t) is the displacement input and r(t) E [0, F] is the time varying yield stress. As 

noted in 53.4, (C.3.1) can be interpreted as a special form of the maximum dissipation 

principle. Indeed, multidimensional versions of (C.3.1) play a central role in the theory 

of elastoplastic materials [4]. Recall that the normal cone to the set [-r(t),r(t)] at the 

point z is given by N(z;r(t)) = {a E W 1 (a ,z  -a) t 0 , ~ 1 ~ 1 <  r(t)}. Comparing this with 

(C.3.1) it can be seen that the EP model can also be written in the form of a differential 

inclusion 

x(t) - z(t) E N(z(t); r(t)) 

Iz(t)l< r(t), 'dt t 0. 

A differential inclusion can be seen as a generalization of the notion of an ordinary 

differential equation. They frequently occur when modelling nonsmooth mechanical and 

electrical system and play an important role in modern control theory [5]. Now, defining 

the new evolution variable c(t) and the time dependent closed convex set C(t) by 

5(t) = ~ ( t )  - l i ( s )ds ,  C(t) = [-r(t), r(t)] - [i(s)ds, (C.3.3) 

yields 

- i ( t>  E N(5(t); C(t)). (C.3.4) 

Evolution problems formulated in the form (C.3.4) are usually referred as a (Moreau's) 

sweeping process [6]. The name comes from the fact that in the multidimensional 

setting (C.3.4) describes the movement of a point c(t) in some (Hilbert) space, as it is 

swept along by the convex set C(t) . The sweeping process can be used to model all sorts 



of physical systems which are subject to inequality constrains, a review of such 

applications can be found in [7]. 

All three of the above formulations can be used to investigate conditions for existence 

and uniqueness of solutions of the EP model. Applying the standard theory of 

differential inclusions to (C.3.2) requires a lot of work. On the other hand existence 

theory for the variational inequality (C.3.1) and the sweeping process have been 

developed specifically for physical models such as the EP model. Indeed, the results in 

[7] and [8] can be used to show that under mild assumptions on the functions r(t) and 

x(t) , the EP model has a unique solution. The results in these works admit the infinitely 

dimensional case and as such, are not readily accessible to those without a working 

knowledge of Hilbert spaces and convex analysis. If the models developed in this thesis 

are to gain acceptance in the ER fluid community, the results need to be accessible to 

those with only a working knowledge of existence theory for ordinary differential 

equations. This is not an unrealistic goal as the EP model is only one dimensional. 

The results given below hopefully go some way towards achieving this goal. Before 

stating the first theorem, the actual problem needs to be defined more precisely. 

Problem EP 

For some T > 0 ,  given the hnctions x E cO,' ([0, TI; %) , r E cO,' ([0, TI; W,) n [0, F] and 

an initial condition IzoI 5 r(O), find a function z t cO,' ([O,T]; W) such that 

(i) 1z(t)11r(t)forallt~[O,T], 

(ii) (i(t) - i(t), z(t) - yl) 2 0 for all 1yl1 2 r(t) and a.e. t E [0, TI. 

The following theorem and proof is based on a simplification of the ideas in [4] and [a], 

in particular Proposition 4.1 of [a]. The idea behind the proof is to first construct and 

discrete time approximate solution and to show that this discrete solution converges to 

the actual solution as the time step tends to zero. The construction of the discrete 

approximated solution is not obvious. Suppose the interval [O,T] is partitioned into n 

equal subintervals by the partition 0 = to < t, . . . < t, = T with h = T In and 

t, =kh ,k=0,1  ..., n. 



Now, at time tk+,, approximating the derivatives on the left hand side of (C.3.2) by 

(x(tk+,) - x(tk)) /h  and ( ~ ( t ~ + ~ )  - z( tk)) /h  yields the implicit Euler type scheme 

~ ( t k + l )  - d t k  - d t k + l )  + d t k  E hN(z(tk+l); r(tk+l)). (c.3.5) 

Note that the positive factor h is immaterial as the right hand side of (C.3.5) is a cone. 

The next step is to solve (C.3.5) for z(tk+,). Let Q(y; r )  denote the projection of 

y E 93 onto the set [-r, r ]  . A classical result from convex analysis is that y - z  E N(z;  r )  

is equivalent to z  = Q(y;r )  , [4], [6]. Applying this result to (C.3.5) yields the solution 

z(tk+l) = ~ ( ~ ( t k )  + ~ ( t k + ~ )  - x(tk);r(tk+l)) (C.3 -6) 

Theorem C.3.1 

For every x E C O > ~ ( [ O , T ] ;  I )  , r  e c',' ([o,T]; I+) n [0, 71 and initial condition I z , ~  5 r(0) , 

problem EP has a unique solution z( t )  = z(t; zo, x(.), r(.)) such that z E C O . ~  ( [ O ,  TI;  X) . 
(let K,  , K,. denote the Lipschitz constants of x and r  respectively) 

Proof: 

As outlined above, the proof of existence is based on the construction of an approximate 

solution using a simple time discretization. For each n E N,  form a partition 

O=to<t, ... <tn=Twi th  h = T l n  and tk=kh,k=O,l ..., n. Let Q(y;r )  be the 

projection operator defined in gA.2 and P(y;  r )  = y - Q(y; r )  . For k = 0,1,. . . , n  define 

the nodes x," = x(tk) ,  r," = r( tk)  and for k = 1,2.. . , n , define 

z," = Q(z,"-, + x," - xz-, ; r,") , (C.3.7) 

starting from the given initial condition z,. Note that the projection operator ensures 

that each node satisfieslz~l5 r; .Now construct a set of piecewise linear Euler arcs on 

[O,T] using 

I 1 
xn(t)  = + - ( t - t k - l ) ( ~ i  -x,"-,), 

h 
1 

rn ( t )  = r j l  + - (t - tk-1 )(r," - r j l  ), 
h 

(C.3.8) 

1 
zn ( t )  = ~i-1 + - ( t  - t k - l ) ( ~ z  - Z I - ~ ) ,  

h  

fort E [tkPl,  t k ) ,  k  = 1,2.. . , n , continuously extended to t  = T . It follows that xn + x 

and rn -+ r  uniformly in C([O,T];%) as n + oo . To make the equations a bit shorter the 
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following notation is introduced Ax," = x," - x&, , Ar; = r: - r:, and Az," = z," - z:-, . 

Now, using the identity P(y; r )  = y - Q(y; r)  yields Ax," - &[ = P(z,"-~ + x," - x[-~ ; r:) 

and applying inequality (A.2.1) in 5A.2 leads to 

( A ~ , " - & ; , Z ; - ~ ) > O  ~ l ~ l r r ; ,  (c.3.9) 

for all k = 1,2. . . , n . Since IQ(ZL, ; r;)l< r; by definition, it follows from (C.3.9) that 

(G -&;,z; -Q(z,",;r:)) r 0, (c.3.10) 

and hence 

2 
I~x:-h;l =(Ax," -&:,Ax,")-(Ax," -Az,",z:-~(z:-~;r:)) 

where (C.3.10) and the fact that lz,"_,l< r,-, =I I~(z,"-,;r;)l< (r; - rllll have been used. 

SimpliQing (C.3.11) yields 

for all k = 0,1,2.. . , n . It is now possible to obtain a uniform bound onlin(t)l , using 

(C.3.8) and (C.3.11), for t E [tk-,,tk), 

and hence 112" 11 < K~ for all t t [0, TI.  Recall that Iz,"l< r; 5 F for all k . Combining this 
m 

with the fact that zn(t) is a convex combination of the values taken by two successive 

nodes, leads to the conclusion that IIzn(I i F . To recap, as n + m the Euler arcs on 
m 

[0, TI all satisfl 

zn (0) = z,, llzn 11, i F, Ilin 11 < K=. 
m 

(C.3.14) 

It follows that the sequence {z") is uniformly bounded and equicontinuous and so by 

the theorem of Arzela (Theorem A. 1.1 in §A.l), some subsequence of {zn) converges 

uniformly to a continuous function z : [O,T] 93 . From Theorem A. 1.2, the limiting 



hnction will inherit the Lipschitz rank K, on [0, TI and hence z E cO" (10, TI;  %) . Next it 

is shown that z(t)  satisfies EP(i). Referring back to (C.3.8) it can be seen that for 

t E [tkPl, t k )  , zn  ( t )  satisfies 

I zn(t)  I< a I Zk I +(1-a) I Zk-1 15 ark+(l-a)rk- l~ (C.3.15) 

for some a: E [0,1). Combining (C.3.15) with the equality r( t )  - ar(t) - (1 - a)r( t )  = 0 ,  

yields 

Izn(t)l 5 r ( t )+a  1 1 1  r(t)-r: + ( l - a )  r(t)-r~n_~l, (C.3.16) 

for t E [tk-l,tk) and hence 

for all t E [O,T] . Selecting a convergent subsequence of { z n )  and passing to the limit as 

n -+ oo, shows that EP (i) is satisfied. The next step is to show that EP (ii) is satisfied 

as n -+ co . Pick some p E C([O, TI;  93) such that Ip(t)l 5 r( t )  for all t E [0, T I ,  then for 

1 
( f "  (0 -in ( t ) ,  zn ( t )  - ~ ( t ) )  = -(hi h - Az;, zn ( t )  - p(t)), 

From (C.3.9), it can be seen the first term on the right is positive, so using (C.3.12) 

leads to 

and so for every z ,  t E [0, TI ,  t > z , 

Setting a n ( t )  = xn(t)  - zn( t ) ,  (C.3.20) can be equivalently written as a Riemann- 

Stieltjes integral 

2 1 f ( ~ ~ ( s ) - ~ ( s ) , d a ~ ( s ) ) > - 2 ~ ~ ( ~ ~  +K,) -. (C.3.21) 
n 



As it has already been established that a subsequence of {zn} converges to a Lipschitz 

function z(t)uniformly in C([O,T];W) and {xn} converges to x(t) uniformly in 

C~~'([O,T];W), it follows that a subsequence of bn} converges to a Lipschitz function 

a( t )  uniformly in C([O,T];%). Thus, inserting the convergent subsequences into 

(C.3.21), it is possible to pass to the limit as n + o~ [9], to obtain 

O < J ; ( z ( s ) - Y 7 ( ~ ) , d a ( ~ ) ) = ~ ~ ( f ( ~ ) - ~ ( ~ ) , ~ ( ~ ) - P ) ( ~ ) ) d ~ .  (C.3.22) 

for every t ,  t E [O, TI, t > t and p E C([O, TI; 93) such that Ip(t)l 5 r(t) , which is 

equivalent to EP(ii). The next step is to establish the uniqueness of solutions on [O,T] . 

Let z(t) = z(t; zo; x(.), r(.)) and s(t) = s(t; so; y(.), r(.)) be two solutions of EP , 

corresponding to the inputs x, r E co2' (%+; 93) and y, r E ~~,'(93+;93) and initial 

conditions Izol l r(0) and Isol l r(0) respectively. Testing the corresponding variational 

inequalities with p = (s(t) + z(t))/2 and adding gives 

and hence 

for all t E [O,T]. Setting zo =so and x(t) = y(t) , implies z(t) = s(t) and hence 

uniqueness of the solution follows. While (C.3.24) does prove continuous dependence 

on the initial conditions and on i ( t )  , establishing continuous dependence of the solution 

on r(t) is a little trickier and will be taken up next. 

A more general version of this theorem, requiring onlyx,r E AC([O,T];%), can be 

obtained from the author on request. The effect of viscoplastic regularization becomes 

apparent when the result above is compared with Theorem C.2.1, where the inputs were 

only required to be inL,([O,T];W) .The next step in establishing wellposedness of the 

EP model, is to establish continuous dependence the solutions on r(t) and x(t). The 

proof of the following proposition is essentially the same as the proof of 

Proposition 2.3.4 in [lo]. 



Proposition C.3.1 For someT > 0, let z(t) = z(t;z(O);x(.), r(.)) and 

s(t) =s(t;s(O);y(-),p(.)) be two solutions of EP corresponding to the inputs 

(x, I) E cOJ ((H+;IR) x cOJ (%+; W) n [o,F], and (y,p) E CO>~(W+;%) x CO>'(W+;~R) n [o, F] 

and initial conditions Iz(0)l i r(0) and ls(0)I i p(0) respectively. Then the following 

Lipschitz-type estimate holds 

Iz(t) - s( t ) l i  IZ(O) - s(o)l+ 2 sup I x ( ~  - Y(t)l + sup lr(t) - p(t)l. ( ~ 3 . 2 5 )  
re[O,[l =[O,tI 

for all t E [O,T] . 
Proof: Proceeding as in the proof of Theorem C.3.1, one obtains the recursions 

z," = Q(z,"-, + x," - ; rkn ) . Recall that the projection operator is given by 

Q(y; r) = min(r, max(- r, y)) (see 5A.2). Defining a," = x," - z," , then 

a," = x; - Q(z,"-, + x i  - ; r;), 

= x," - Q(x; - a;-, ; r:), (C.3.26) 

= max(xi - r; , min(x,"+ r; , a,"-,)) 

Similarly defining q; = y," - s," one obtains 

Now for any a, by c, d E % , the following inequities holds [lo], 

Imax(a, b) - max(c, d)( i max(la - cl, ib -dl), 
(C.3.28) 

Imin(a, b) - min(c, d)l < max(la - el, ib - dl) 

Thus combining (C.3.26)-(C.3.27) one obtains the inequality 

la; -q;limax[x; -y,"l+lr; -~;l.la;-~ -Val) 
sup ixn (r)  - yn (r)l+ sup Irn (r) -pH (r)l, la,"-l - 

=[O,TI =[O,Tl 

for all k = I,.. .,n. Using a simple induction argument on (C.3.29) and the interpolation 

formulas in (C.3.8) withan(t) = xn(t) - zn(t) and qn(t) = yn(t) -sn(t) , it can be show 

that 

lan (t) -qn(t)l 2 max sup ixn(r) - y" (r)l+ sup irn (r) - pn(r)l, lrr(0) -q(0)1 
.r~[o,Tl re[O,Tl 

for all t E [O,T] .using(zn(t) - sn(t)l < Ixn(t) - yn(t)l + lan(t)-qn(t)l for all t E [O,T] and 

(C.3.30) gives 



sup lxn(r) - yn(r)l + sup (rn(r)  -pn(r)l, lz(0) -s(o)~+ lx(0) - -y(0)1 , (C.3.3 1) 
re[o,Tl rc[O,Tl 1 

5 lz(0) -s(o)l+ sup lxn(r)- yn(r)l+ sup lrn(r)-pn(r)l. 
~ 4 0 , T l  rc[o,Tl 

Since EP has a unique solution, the entire sequences {zn(t)} and {sn(t)} converge 

uniformly to z(t) and s(t)restively as n + oo . Passing to the limit as n + oo in 

(C.3.3 1) yields 

which due to causality is equivalent to (C.3.25). 

Interestingly, it can be shown that the solution is locally Lipschitz dependent in 

AC([O,T]; %) . There are some restrictions however. The estimate is only valid for some 

interval [O,T] c %+ , on which r(t) is nonzero, i.e. r(t) 2 6 > 0, Vt E [O,T] .This is not as 

bad as it seems however, since if on some interval,r(t) = 0, then z(t) = 0 and the 

question of dependence is moot. The following theorem is based on Theorem.7.1 of [8] 

and shows that if r(t) satisfies 0 < 6 < r(t) I F,'dt E [O,T] , then the 

solution z(t; zo, x(.), r(.))  is Lipschitz dependent on u and r , in the AC([O,T]; %) norm. 

The proof is rather long and has been omitted for brevity. The proof of the 

multidimensional version can be found in [8] . 

Proposition C.3.2 For some T > 0, let z(t) = z(t; z(0); x(.), r t ) )  and 

s(t) = s(t;s(O); y(.),p(.)) be two solutions of EP corresponding to the inputs 

(x, r)  E cO,' (93,; %) x C O ~ '  (%+;%) and (JJ, p) E cO,I (%+;%) x cO,'(%+;%) and initial 

conditions z(0) = Q(x(O);r(O)) and s(0) = Q(y(O);p(O)) respectively. If 

0 < 6 l r(t), s(t) l F, Vt  E [0, TI, then the following inequality holds 

The positive constant KO depends only on 6 and F , while K, = max(~,,  K,, K,, K,) 

where K,, K,, K, and K, are the Lipschitz constants for x,r, y and p respectively. O 



Following Proposition.2.3.7 in [lo], Proposition C.3.2 can be strengthened to global 

Lipschitz continuity with respect tox , and without insisting that r is nonzero. 

The proof is identical to the proof of proposition.2.3.7 in [lo] and so has been omitted. 

Proposition C.3.3 For some T > 0 ,  let z(t) = z(t; z(0); xc), rc)) and 

s(t) = s(t;s(O); y(),r(.)) be two solutions of EP with the same control 

r E CO,' ([0 , TI; %+ ) fl [O, F ]  , but with inputs x E CO?' (%+ ; %) and y E c0,l (%+ ; %) and 

initial conditions z(0) = Q(x(O);r(O)) and s(0) = Q(y(O);r(O)) respectively. Then the 

following inequality holds 

Before moving on lets take a look at the implications of Theorem C.3.1 for models 

based on the simple EP element. Consider first the multiple element model form $3.6, 

with constant elastic moduli. An H(EP) model, consisting if n EP elements arranged in 

parallel can be written in variational form as 

where 0 = zo < . . . < z, < c~ define the relative magnitudes of the individual yields 

strains, r(t) E [0, F] controls the instantaneous values yields strains and pi > 0 , 

x 4 = 1 are the stifhess distribution coefficients. Obviously if x, r E cO,l ([0, TI; W) 
i 

then by Theorem C.3.1, each of the individual elements will have a unique solution 

zi E co3' ([0, TI; W) . Since cO" ([0, T I ;  %) is a normed linear space, it is closed under 

n 

addition and hence z = GT fizi e Co3' ([o,T]; W) will also unique. Now, what if GT is 
i=I 

also a time varying function. If GT (t) E [0, GI, 'dt E [o, TI and GT E Co3' ([0, TI; %) , then 

z will still be unique and Lipschitz continuous. While the first remark is fairly obvious, 

to see that the second is true note 

where rcZand KG are Lipschitz constants for z(t) and GT(t) respectively. 



The final question to be explored is, if the EP model is coupled with an ordinary 

differential equation, can the existence of a solution still be assumed. Consider the 

following system 

xz { i ( t> = F(x(t), z(t), u(t)) 

(Gi(t) - i(t),z(t) - u)) 2 0, b'lal i r(t), (C.3.37) 

lz(t)li r(t), Vt 2 0. 

where x E An, z E 93, u : A+ H (JIm is a vector of forcing terms , r : A+ 4 'R, is the 

damper control, F : W" x A x (JIm H '93" and G E An is a vector with IGI = 1 for 

simplicity. If F is Lipschitz in all its arguments, then it is possible to prove a very 

general theorem like Theorem C.l. l  using the contraction mapping theorem and 

Propositions C.3.2 and C.3.4. A nice example of this sort is given in [ll]. Instead a less 

general theorem will be given, the proof of which is based on a mixed explicit-implicit 

Euler discretization of C . It is basically a combination of Theorem C.3.1 and the 

classical Peano existence theorem for ordinary differential equations [1],[9]. 

Corollarv C.3.1 Suppose that F(O,O,O) = 0 and for all (x, z, u), (3, Z, zl) E A" x % x Am 

there exists a positive constant p such that 

~ F ( x , z , u ) - F ( F , ~ , ~ ) ( < ~ ~ x - ~ ~ + P ( z - z ~ + P ~ u - F ~ .  (C.3.38) 

Then for each x, E An , I z , ~  i r(0) , r E c~~'([o,T];(JI+), u c C([O,T];'Rm) and 

(i) The system C has a unique solution x(t) = x(t; x,, zo, r(.), u(.)) , 

z(t) = z(t;xo, zo,r(.),u(.)) such that z E cO'~([O,T];A) , x E c'([o,T];%") and 

Ix(t) - xol i teeBt(lxol +2R) Vt c [O,T]. (C.3.39) 

Let x(t) = x(t; xo, zo, r(.), u(.)) , z(t) = z(t; no, zo , r(.), u(.)) and 

T(t) = T(t; q, Zo, 7(.), zl(.)) , Z(t) = Z(t; To, G, F(.), zl(.)) be the unique solutions of 

C corresponding to the initial conditions, controls and inputs (x,, zo, r, u) and 

(To, Z,, ,7, zl)respectively (both sets satisfying the conditions above), then 



for some constants ply p, > 0 and for all t E [O,T] (continuous dependence). 

(ii) If also u E C([O, a ) ; s m )  and r E ([0, a);%+), the solution of C admits the 

extension then x E c1 ([o, a ) ;  fin) and z E AC([O, a); %) . 

(iii) If also u E cO,' ([O, a);%") and all solutions of C are uniformly bounded, then 

x E cl,'([O, a ) ;  5Rn) and z E cO,l ([o, a ) ;  %) . 
Proof 

F o r e a c h n ~  N ,  formapartition O=to < t  ,... <tn =Twith h = T l n  and 

tk = kh, k = 0,l.. ., n. For k = 0,1,. . . , n define r: = r(tk) and u,"-~ = u(tk) for 

k = 1,2.. . , n,  construct a set of nodes spanning[O,T] using the following mixed 

explicit-implicit Euler scheme 

starting from the given initial conditions z, and xo .Now construct the piecewise linear 

Euler arcs on [O,T] using 

fort E [tk-l, tk)  , k = 1,2.. ., n , continuously extended to t = T . It follows r n  + r in 

C([O, TI;%) as n + a . To simplify the equations a bit, define Ax; = x i  - xk , ,  

Az; =a; -z,", etc. Recall that Iz,"!~ r: for allk, due to the projection in (C.3.41). 

Using this knowledge it is possible to obtain an explicit bound on the nodes x," by using 

(C.3.38) and (C.3.41), 

1.; - xi-, 1 5 h~[x , " -~  1 + lr2, ( + lu$, 1)s hpIx;-, 1 + hp(P + 1 ~ 1 ,  ). (C.3.43) 

and hence 

where A = /3(xol + P + IIUII,). 

Application of Theorem A. 1.4 in §A. 1 gives 



for k = 1,. . . , n . Thus all of the nodes x," , are contained in the ball B(xo ; m) and due to 

the fact that xn(t)is a convex combination of successive nodes, 

xn (t) E B(xo ; m), 'dt E [0, TI. Now fort E (t,-, , t,) , taking the derivative of xn (t) and 

using (C.3.43) and (C.3.45) yields, 

5 ~ ( m  + 1x01 + F + ICII,)= ~ x -  
w (C.3.46) 

Thereforexn(t) is Lipschitz of rank K, on [O,T] . Putting all this together, it can be seen 

that the family of Euler arcs {xn) are equicontinuous and uniformly bounded. Then by 

Arzela's theorem (see §A. I), {xn) contains a subsequence, say {xn') which converges 

uniformly on [0, TI to a continuous function x(t) : [0, TI -+ Rn . By Theorem A. 1.2 in 

sA.1, the limiting function will inherit the Lipschitz rank K, and in consequence 

x E c~"([o,T];%~). Furthermore the limit function inherits the estimate (C.3.45). Of 

coarse this implies that{~x'] is Lipschitz continuous and converges uniformly on 

[0, TI to a function Gx E cO,' ([0, TI; w ") . Using the sequence {GX" ] in the proof of 

Theorem C.3.1, it can be concluded that {zn] contains a subsequence {zm 1, which 

converges uniformly on [O,T] to a function z E c~~'([o,T];%) . Furthermore the limiting 

functions Gx and z , satisfies the variational inequality C, in (C.3.37). 

The next step is to show that the limit functions x and z satisfy C, in (C.3.37). Since 

u E C([O,T];%"') , it is uniformly continuous on [O,T] . Thus, for any < there exists a 6 

such that lu(t) - u(r)ls < for all t , r  E [O,T], It - rl < 6 . Now, for m large enough and for 

any point t which is not one of the point where xm(t) is a node, then 

im (t) = ~ ( x " '  (r), zn' (r), u(r)), for some r such that It - 71 < 6 . For any E > 0 pick m 

large enough to ensure that 6 and < satisfy L K , ~  + L K = ~  + LC < E and hence 

I~(x"(r), zm(r), u(r))- F(xn'(t), zm(t),u(t)] 5 Lkx6 + Lk,S + LC < E.  (C.3.47) 

It follows that for any t E [0, TI 



Since E is arbitrary, it follows 

Thus letting m + oo one obtains 

which implies that x E c'([o, TI; %") and i ( t )  = ~ ( x ( t ) ,  z(t), u(t)) for all t E (0,T) . 

Ix(t) -x(O) - ~~(x(s ) ,z (s ) ,u(s ) )ds  

The next step is to establish uniqueness and continuous dependence of solutions. Let 

s(t) be a solution of the variational inequality ( ~ x ( t )  - i(t), s(t) - p) 2 0, 'v'lpl I F(t) and 

Is(t)l< P(t) such that so = zo ( if r(0) > P(0) use x' and F instead). So applying 

I ET. (C.3.49) 

Proposition C.3.1 gives lr(t) - s(t)l I ilr - Film, 'df E [0, TI . Define 

V( t )  = 0.5lx(t) - z(t)(Z + 0.5ls(t) - ~ ( t ) ?  .Using the Lipschitz condition (C.3.38) and 

Iz(t) - s(t)l i llr - FII, it can be shown that the directional derivative of V(t) along the 

solutions (x, s) and (Z, 2) satisfies 

Integrating the final inequality in (C.3.50) and using lz(t) -s(f)l_< Ilr - 711, ,so = zo yields 

(C.3.40) and also uniqueness of solutions. Since C has a unique solution, the entire 

sequences bn} and (zn} converge to the actual solution. Thus providing some 

justification for the use of (C.3.41) and (C.3.42) as an integration algorithm. 

If also u E C([O, a ) ;  gm) and r E c".' ([0, a); %) , then (C .3.3 9) and llzllm <,8 imply that 

the solutions of Ccannot become unbounded in finite time, and can therefore be 

continued over the semi-infinite interval [O,co). Since x may not be uniformly 

bounded, it can only be concluded that z is locally Lipchitz and thus absolutely 

continuous, proving (ii). 



If all solutions of C are uniformly bounded, then for each (x,,~,) E cJin x cJi , there exists 

a b 2 0, such that IIxllrn < b . Thus llill, i ~ ( b  + 2 ~ ) ,  so that it can be concluded that 

z E cO,' ([O, m); 93) . If also u E cO,' ([O,co);cJim), then using (3.38) it follows that for any 

t ,r  E %+ , Ii(t) - i(r)I i ~ ( l f  llm + K: + K,, b - rl , where K: and K ,  are Lipschitz constants 

for z and u respectively. This shows that x E c'~'([o,~);%") and proves (iii).U 
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Appendix D 

Periodic Solutions 

D.l Periodic solutions of the EP model 

The purpose of this section and the next section is to establish some existence and 

stability results relating to periodic solutions of the controllable EP model in isolation 

and when coupled with a simple second order system. So why the interest in periodic 

solutions. Referring back to Fig 1.2, Fig 2.2 and Fig 3.2, it can be seen that when an ER 

damper is subjected to a periodic displacement (zero mean) the resulting force- 

displacement plots which form closed or asymptotically closed hysteresis loops, clearly 

indicative of a periodic response. It follows for a model of ER damper to be of any use 

it should respond in a similar manner. Unfortunately the author was unable to find 

experimental results, in which the applied displacement and controllable yield were 

varied periodically. However, in this case the magnitude of the models response is 

bounded by a continuous periodic function, would seem to be even more suggestive of 

the existence of a periodic solution. 

As discussed in 51, the involuntary motion resulting from human tremor is 

approximately periodic in nature. In 54.1 it was shown that, complete cancellation of the 

effect of the tremor cannot be achieved using a controllable damper. Thus, the ideal 

situation would be if a control scheme could be devised for the damper, which would 

guarantee that the response of the coupled system would converge to a periodic motion, 

of smaller amplitude than in the absence of the damper. Indeed, if a chaotic or 

undeterministic motion were to result from the coupling, the effect could be more 

debilitating than the tremor itself. 

From a purely analytic point of view, if it can be shown that all solutions of the system 

converge asymptotically to a periodic solution, then a certain orderliness emerges, in 

what may otherwise seem like a highly complex situation. To quote [I], "Among all the 

qualitative properties of solutions of differential equations, none is quite so satisfying 

aesthetically as that of periodicity ". 



In 5C.2 it is shown that for a given input x E c~"(%+; %) and control 

r E cO,' (%+; %+) fl [0,7], the variational inequality 

with initial condition z(0) = z, E r(O)[-l,l] , has a unique solution z E cO,' (3,; %) , 

which depends continuously on the initial condition. Through out this section, inputs 

and controls satisfying the above conditions will be referred to. as admissible. Similar to 

the idea of a OT-recurrent control, introduced in tj4.2, a control will be referred to as OT- 

perioidic if it is an admissible, non-trivial T-periodic function, for which there is at least 

one z E [0, T) such that r(z) = 0 (and hence r(z + nT) = 0, 'dn = 0,1,2,. . . ). 

The purpose of this section is to present some simple results relating to the existence 

and uniqueness of periodic solutions of C, , when x and r are themselves T-periodic. 

If xand r are T-periodic, then Cz is T-periodic and it follows from uniqueness of 

solutions, that for all lzol I r(0) and all positive integers n , z(t + nT; nT, z,) = z(t;O, z,) 

for all t 2 0 .  That is, solutions of C, are invariant with respect to time shifts which are 

integer multiples of T. A necessary and sufficient condition for (D.l.1) to have a 

T-periodic solution, is that the mapP(z,) = z(T;O, z,) have at least one fixed point in the 

interval [-r(O), r(O)] , see [I]  for details. Sufficiency is easily established by setting 

P(z,) = z, , then z(t +T;O, z,) = z(t +T;T, Z(T,O, z,)) = z(t;O, 2,). Due to continuous 

dependence of solutions on the initial conditions, P(.) is a continuous function, 

mapping the closed interval [-r(O),r(O)] into itself. The existence of a fixed point can 

be deduced from a simple fixed point theorem, which states that a continuous function 

mapping a closed interval into itself has at least one fixed point [I]. Due to perioidicity 

of C, and the boundedness of solutions, the positive limit set Cl(z)is nonempty, 

compact, an invariant set for Cz and is approached by z(t) as t + o~ (see tjB.2). Let 

F(t) be a T-periodic solution of Cz and z(t) an arbitrary solution of C, . Adding up 

the corresponding variational inequalities, ( ~ x ( t )  - i(t), z(t) - ~ ( t ) )  2 0 and 

(D. 1.2) 



It follows that the periodic solution Z(t) is uniformly stable and that the difference 

(z(t) - Z(t)( is nonincreasing as a function of time. Since (z(t) - Z(t)l is nonincreasing 

and bounded below by zero it has a definite limit as t -+ . 

That is lim,,lz(r) - .T(t)l= a . Furthermore, defining rm = min+s~o,T, r(t) , it must be that 

a 1 2rm . Lnvariance of R(z) implies that Iz(t) - Z(t)(= a whenever z(t) E R(z) . 
Clearly if there exists a time z 2 0 such that z(z) = Z(z) , then z(t) = Z(t), Vt 2 z and 

R(z) = 200, TI). If this is not the case, then by continuity the difference z(t) - Z(t) must 

be sign definite and hence z(t) = Z(t) + a sgn(z(t) - ~ ( t ) )  whenever z(t) E n(z).  But 

periodicy of Z(t) means that Z(t) + a sgn(z(t) - Z(t)) is T -periodic, implying that once 

again R(z) contains a T -periodic solution of C, . 

Let Z1 (t) and %(t) be any two T-periodic solutions of C z ,  then there exists a 

constant a ,  with )a) S 2rm, such that Z, (t) = Zl (t) + a, Vt E [0, T) . If r is a OT-periodic 

control, then rm = 0 and hence Z, (t) = Z2 (t) , implying that Cz has a unique T-periodic 

solution Z(t). If z(t) is an solution of C,, and r is a OT-periodic , then by assumption, 

there exists a z  E [O, T) such that r(z) = 0 ,  implying z(z) = Z(z) = 0 ,  and hence 

z(t) =Z(t),b't 2 z .  For clarity the above conclusions are stated in the following 

proposition. 

Proposition D.l.l  

Let x E c','(%+; %) and r E cO,' (%+; %) fl [O, 71 be T-periodic functions. Then the 

following statements hold; 

(i) The system Cz has at least one T-periodic solution. 

(ii) Let z be a solution of C, with (arbitrary) initial condition(z(~)l$ r(0) , then 

there exists a T-periodic solution of C, , say Z(t) , such that 

lim,,,(z(t + nT) - Z(t)( = 0 

(iii) Let (t) and Z2 (t) be two T-periodic solutions of C, and define 

rm = mintaT, r(t) > 0 . Then there exists a constant a ,  with la) 2 2rn,, such that 

3 (t) = Z2 (t) + a, Vt E [O,T) . 



(iv) If r is a OT-periodic control, then the system C, has a unique T-periodic 

solution, say Z(t) , such that for each lzol 5 r(0) , the corresponding solution 

reaches Z(t) , within the time interval [O,T) . (if r(-) = 0 the question of 

solutions is moot). 17 

As a simple example, let r(t) = rm + Isin(t)l and x(t) = cos(t) / G , then zA (t) = A + sin(t) , 

with2 E [-rm,rm], is a family of T-periodic solutions for the variational inequality 

(D.l .I). Before stating the next result, the following definition is required. Define the 

oscillation of a T-periodic function x : 93, H 8 by 

osc,.x = sup Ix(t) - x(z)l= sup x(t) - inf x(t) > 0 
t,re[O,T) t a T )  te[O,T) 

(D. 1.3) 

The following proposition is based on the results presented in [2]. 

Pro~osition D.1.2 

Let z, (t) be an arbitrary solution of C, corresponding to the admissible input x, (t) and 

admissible T-periodic controlr(t). Let z2(t)be a T-periodic solution of C, 

corresponding to the admissible T-periodic input x,(t) and the same T-periodic 

control r(t) . If the T-periodic input x, ( t )  is such that oscTx2 - ~ F / G  > 0 where 

7 = r n a ~ , , , ~ , ~ )  r(t) , then there exists a positive constant p > 0 such that 

Iz, (t) - z, (t)l< Iz, (0) - z2 ( ~ ) ) e ~ ~ e - ~ '  + e2pT~jk-p( r - r ) ) i ,  o (s) - i2 (s)Ids. (D.1.4) 

Proof: Define the functions a, (t) = Gx, (t) - z, (t) and a, (t) = Gx, ( t )  - z, (t) . Clearly if 

x, (t) and z, (t) are T-periodic, then so is a, (t) . Consider the closed interval [-r, r] , 

with r E [0, F] . If zl , z2 E [-r, r] , then a simple calculation shows that an interval of 

length (z, - z2)'/(47) , centred at (z, + z2)/2, is also contained in [-r, r ]  . 
since (2, (t)l I. r(t) and (z2 (t)l< r(t) for all t 2 0 , it is possible to define the function 

d (z, (t), 2, (t); r (t)) := min (D.1.5) 
Icl=l.(t) 

Define z* (t) = (z, (t) + z2 (t))/2 and let sgn(x) denote the usual signum function. Now, 

testing the variational inequality for z, (t) with 

pl (t) = Z* (t) + d(zl (t), Z, (t); r(t)) sgn(b, (1)) with Iq7, (t)l< r(t) gives 



( ~ 4  0 )  - 21 (t), 21 ( 0  - 44 (0) 
(D. 1.6) 

0.5(Gx1 (t) - zl ( t ) ,  zl (t) - z2 (t)} - (t)ld(zl (t), z2 (t); r(t)) 2 0. 

Similarly, testing the variational inequality for 2, (t) with 

9 2  ( 0  = Z* ( 0  + d(zl(t), z2 (0; r(t)) sgn(k2 (t)) gives 

o.5(Gx2 (1) - i2 (t), z2 (t) - zl (t)) - lol, (t)ld(zl (I), z2 (t); Y (t)) 2 0. (D. 1.7) 

Setting ?(t) = z, (t) - z2 (t) and ?(t) = x1 (t) - x2 (t) , summing inequalities (D. 1.6), 

(D.1.7) and using (D.1.5) gives 

d 
- (z)~ 5 (01 + 1k2 (t)l)&zl, z2; r(t)) + 2~l?llk(t)l, dt 

(D. 1.8) 
1 < -= 1ci2 (t)l(# + +2~l?(k(t)b 
r 

and hence 

d ,  1 
- Iz 1 --I&, ( t ) $ ~ l +  ~l$(t(r)(. 
dt 2 r  

Applying the comparison principle in §B to (D. 1.9) yields 

(D. 1.9) 

On the assumption that a2 (t) is T-periodic, define the positive constant 

1 
2 - (GoscTx, - 2 ~ )  > 0, 

2 F  

by assumption on x2. Set 

t 
~ ( t )  = a(t)ePt = exp (slds + - (S)liisj. (D. 1. 12) 

227 0 

Since a, (t) = cc, (t + T), 'dt E %+ , it is easily seen that Q(t) = Q(t + T), 'dt E %+ and 

e-pT 5 Q(t) 5 ePT . Finally, putting (D. 1.12) into (D. 1.10) gives 

which is the required result.0 



Let z(t) be an arbitrary solution of Cz corresponding to the admissible T-periodic input 

x(t) and admissible T-periodic control r(t) . Let Z(t) be a T-periodic solution of C, 

corresponding to the same input and control. If oscTx > 2F/G, then setting 

x, = x, = x in (D.1.4) yields lz(t) - ,T(t)l r lz(0) - l ( ~ ) l e ~ ' e - ~ ~  . It follows that the T- 

periodic solution Z(t) is exponentially stable. Furthermore, the fact that all solutions 

converge to Z ( t )  means that it must be the unique T-periodic solution of 2, . 

Now consider the EVP model from 54.3 

(GX-GS/R,-S,S- LO vlolsr,(t), 

Is(t)l< r, (t) v t  t 0. 

where x(t) is an admissible T-periodic input and r,(t) is an admissible T-periodic 

control. Existence of a T-periodic can be established using the same reasoning as for 

CZ . Let s(t) be an arbitrary solution of C, and let S(t) be a T-periodic solution of C, . 

The directional derivative of the error function V(Y(t)) = Y2 (t) = (s(t) - i(t))2 satisfies 

V ( Y )  =(s-b,s-s), 

5 (S + Gs/RC - Gi,  s(t) - s'(t)) + ($ + GS/Rc - G i  , S(t) - s(t)) - G(S - F ) ~  /RC 

<-G(S-F)~/R~.  

(D.1.15) 

implying that the T-periodic solutionF(t) is exponentially stable. Since s(t)is an 

arbitrary solution of C,, it follows that all solutions of C, converge to i ( t ) ,  implying 

that S(t) is the unique T-periodic solution of C,. To sum up, for a given admissible 

T-periodic input x(t) and control r, (t) , C, has a unique exponentially stable T-periodic 

solution, S(t) . Following the same reasoning as before, if r,(t) is OT-periodic, then all 

solutions converge to F(t) within the time interval [0, T).  It is quite clear that C, is a 

much better behaved system than Cz and that its behaviour is also far easier to analyze. 

This alone would seem to make the dissipation shaping control an interesting option. 



D.2 Periodic solutions of the coupled svstem 

The objective here will be to extend some of the results from the previous section, to the 

case where the C, and C, are coupled with a simple second order differential 

equation. The question of existence and stability of periodic solutions for differential 

equations coupled with models of hysteresis is by no means new and continues to be a 

very active area of research. Some resent results on this topic can be found in [2]-[5]. A 

fundamental difference between the present investigation and most of the research to 

date, is that the constraints placed on the output of the hysteresis model, are now 

permitted to be time varying. That said, many of the previously obtained results can be 

extended to the present case, once it has been shown that the system is well-posed. 

While the systems considered in [2] are far more general than those considered here, the 

method of analysis is probably the closest in "spirit", to that presented below. The idea 

is to first establish sufficient conditions for the existence of at least one periodic solution 

using a suitable fixed point theorem and to then study the stability of these solutions 

using Liapunov type analysis. 

So as to include the case where a dissipation shaping control has been used, consider 

the system 

with state x, = (x,  z )  , where G, K, R > 0 and q 2 0 are constants and the nonlinear 

finction h : % + 93 satisfies h(0) = 0 and the inequality 

0 ( h ( x ~ )  - h ( ~ , ) , x ,  - Y , ) s  L ( ~ I  - Y I ) ~ .  (D.2.2) 

for some constant L 2 0.Unless stated otherwise it will be assumed that 

r E c'" (93,; 3,) is T-periodic and b E CO?' (93,; 93) is a non-constant T-periodic 

function. Also setting F = llrll, and b = llbll, , it will be assumed that F i b .Any input 

b and control r satisfying these conditions will henceforth be referred to as admissible. 

Using inequality (4.1.5) it follows that for initial conditions x(0) E 'S2 and I z ( o ) /  i r(0)  , 

any solution of c will satisfy iz(t)l< r ( t )  i 6 



Ix(t)l< ~ l x ( ~ ) l e - ~ '  + r6(1 - e-''1 (D.2.3) 

for some constants p ,  y,c > 0.  Applying Corollary C.3.1 it can be concluded that C has 

a unique solution xu (t; xu (o), r(.), b(-)) = (x(t; xu (0), r(), b()), z(t; xu (0), r(.), b(.))) such 

that x E c',' (%+ ; 'iR2) and z E coy' (8,; %) . Moreover, the solution depends 

continuously on the initial conditions xu (0) and the functions r(t),b(t) (inputs). When 

this dependence is clear the notation xu ( t )  = (x(t), z(t)) = x, (t; xu (o), r(-), b()) will be 

used to refer to the state of C at time t 2 0 .  

The first step in the analysis will be to show that satisfaction of inequality (D.2.3) is 

sufficient to ensure that C has at least one T-periodic solution. While there are many 

approaches to solving this problem, a very appealing one is to apply a suitable fixed 

point theorem, [1][6]. Define the mapP(x(O), z(0)) = (x(T), z(T)). Due to uniqueness of 

solutions, a necessary and sufficient condition for the existence of a T-periodic, is that 

the map P, have at least one fixed point in the admissible solution space. Following [I], 

the existence of a fixed point will be established using an asymptotic fixed point 

theorem from [7]. Before stating the theorem, the following definition will be required. 

Let S be a subset of %" and define by U(S,&) the E -neighbourhood of S in %" . If 

So c S, c S, are subsets of %" , then S1 is said to be a neighbourhood of So relative to 

S, if there exist an E > 0 such that S, = S2 n U(S,, E )  . 

Theorem D.2.1 ([7], Lemma.5) 

Let S, c S, c S, be bounded convex subsets of %" , such that So and S, are closed 

and Sl is a neighbourhood of So ,  relative to S2 . Let P : S, H %" be a continuous map 

such that for some integer m > 0 ,  

then P has at least one fixed point in So 



Proposition D.2.1 

Suppose that for all admissible initial conditions x, (0) = (x(O), z(0)) E W2 x [-r(O), r(O)], 

x(t)is UB and UUB with ultimate bound B ,  then C has at least one T-periodic 

solution (F(t), Z(t)) , such that Ix(t)l I B, Vt 2 0. 

Proof: 

Under the above assumptions, the proof can be completed by appropriately defining the 

sets So c S, c S, , and then applying Theorem D.2.1. Due to the fact that x is UB, there 

exist positive constants Bl, B, , such that B, > B, > B and 

Ix(0)I I B z Ix(t)l< B,, b't 2 0, 

Ix(0)I < Bl 3 Ix(t)lS B2,Vt 2 0. 

Using the fact that xis also UUB, there exists a positive constant K = K(B1, B) , such 

that Ix(o)~< Bl Ix(t)l< B, Vt 2 K. Note that periodicy of r implies lz(n~)I 5 r(0) for 

each nonnegative integer n . Define 

so = kx, z) t x2 x w 1 1x1 i B,IZI < r(01) 

S, = {(x, z) t W' x R ( 1x1 < lzl< r(0)) (D.2.5) 

S2 = {(x, Z) E !R2 x R 1 1x1 5 B,,IzI 5 r(0)) 

The sets So c S, c S, are cylinders, centred at the origin inR3. The lateral surfaces are 

the same in each case, while the radii are increasing. Clearly S, is a neighbourhood of 

So relative to S2 .  Due to uniqueness P ~ ( x ( o ) , z ( o ) ) = ( x ( ~ T ) , z ( ~ T ) ) ,  for each 

nonnegative integer j .  Now letting m be the smallest positive integer such that 

mT 2 K(B,, B), it follows that P~(s , )  c S,,b'j > 0 and P~(s ,)  c So,Vj 2 m . Continuity 

of P follows from the continuity of the solutions of C with respect to the initial 

conditions. Theorem.1 can now be applied to infer that P : S, I+ (!R2 x R)  , has at least 

one fixed point (F(o), Z(O))E So . Finally, since F(t) is periodic and ultimate bounded 

by B it must satisfy 17(t)lS B, Vt > 0. 

The next step in the analysis will be to obtain sufficient conditions for C to have a GAS 

and hence unique T-periodic solution. Note that GAS and GUAS are equivalent for 

T-periodic systems. For the general parameterization in (D.2.1), this task is by no means 

trivial. However there are certain special cases for which the task is greatly simplified. 



Consider first the case where r([O,T)) = 0 (and hence z(%+) = 0 )  and L = 0 . In this case 

C. reduces to the linear second order systemx, = x2,x2 = -Rx2 - Kx, + b(t), which is 

easily shown to have a GES T-periodic solution. All of the cases which follow can be 

seen as nonlinear perturbations of this linear system. 

Next the case where r([O,T)) = 0 and L > 0 ,  so that C reduces to Cx . It has already 

been stated in 52.2, that sufficient conditions for Cx to have a GES T-periodic solution 

is that either L < R~ or that Cx has a T-periodic solution T(t) such that 

IIT211, < 2RK/L . Since any T-periodic of Ex must satisfyll~II, 2 yb, the latter condition 

is trivially satisfied if is sufficiently small. 

When r([O,T)) # 0 and L = 0 ,  one obtains the semi -linear system 

t )  2 ( t )  b't 2 0. 

Let (F(t),Z(t)) be a T-periodic solution of EL and let (x(t),z(t)) be an arbitrary solution 

of EL . Setting y(t) = x(t) - X(t) and 9(t) = z(t) - Z(t) , the directional derivative of the 

error energy 

V(y, 9)  = o .~(K~:  + y: + s 2 / ~ )  (D.2.7) 

along the solutions (X(t), Z(t)) and (x(t), z(t)) satisfies 

from which it follows that the T-periodic solution(X(t),Z(t)) is uniformly stable. 

Consider first the case where 7 = 0 .  Then (D.2.8) and (D.2.6) imply that 

y2 E L2 ( I + ;  %) cO,' (%+; %) , SO that Barbalat's lemma (gB.2) can be used to 

conclude that y2 (t) + 0 as t 4 a , or equivalently lim,,, x, (t + nT) = X2 (t) . Since 

CL is periodic and has all solutions bounded, the positive limit set R(x, z )  is nonempty, 

compact , invariant and attractive. Furthermore R(x, z) must be contained in the largest 

invariant subset of E = Qx, z) E I2 x I I X, (t) = X2 (t), b't > 0). Define r ,  = minqq,, r(t) . 

Any solution of CL remaining identically in E must satisfy x, (t) = (t) + a / ~  and 

z(t) = Z(t)-a, where a is some constant such that la1 < 2r,, . Using the above 



mentioned properties of R(x,z), it can thus be conclude that all solutions of 

CL converge to a T -periodic solution. If r(t) is OT -periodic, then r, = 0,  implying 

that (Z(t),?(t)) is the unique T -periodic solutionC,, which is GAS (it can actually be 

shown that (X(t), ?(t)) is GES) . If r(t) is not OT -periodic but CL has a T -periodic 

solution such that osc,?, - 27/G > 0, then applying Proposition D.1.2 one obtains the 

inequality 

~z(t) - ~ ( t ) l 6  lz(0) - ~(0) le '~e-~ '  + e Z p T ~  &-P('-') Ix2(s)-X2(s)lds, (D.2.9) 

for some constant p > 0 .  Applying Lemma B.5 in 5B.2 to (D.2.9), it can be seen that 

limn,, x2 (t + nT) = X2 (t) implies limn,, z(t + nT) = Z(t). In this case R(x, z) must be 

contained in the largest invariant subset of, 

E = {(x, z) E W2 x W I x2 (I) = X2 (f), ~ ( t )  = Z(t), Vt > 01. Since no solution of Z L  can 

remain in E other than (X(t), Z(t)) , it can be concluded that theT -periodic solution 

(X(t),.T(t)) is GAS. Now consider the case wherea = l/Rc > 0 .  Then using the same 

arguments as above, it can be concluded that limn,, x2(t + nT) = q ( t )  and 

lim,,, z(t + nT) = Z(t) . But then R(x, z) must be contained in the largest invariant 

subset of E = {(x, z) c W2 x W I x2 (0 = (9, z(t) = Z(t), Vt > O} , once again implying that 

theT -periodic solution (?(t), Z(t)) is GAS. 

Based on the above analysis it can be seen that C L  is a very well behaved system which 

is quite amenable to analysis. This is rather surprising considering that C, is highly 

nonlinear. Indeed, it will shortly be shown that the rather innocent looking nonlinearity 

h(x,) is far trickier to deal with thanC, . An important point about the situations 

considered so far is that a rather complete characterisation of the periodic solutions of 

were obtained without the need to place restrictions on the magnitudes of the positive 

constants R, K ,  G or in the period T . In the more general cases, such an analysis will be 

far more difficult, if not impossible (using the simple techniques employed here). 



Consider now the case where r([O, T)) # 0 ,  q = 0 and L > 0 ,  so that one obtains the 

familiar system 

Let (x(t), Z(t)) be a T-periodic solution of C and let (x(t), z(t)) be an arbitrary solution 

of C . The distance between solutions y(t) = x(t) - x(t) and 9(t) = z(t) - Z(t) satisfy 

Y1 = Y2 

where E(yI;q) = h(yl + Jc,) - h ( 3 ) .  Due to (D.2.2) x (y l ;q )  satisfies the inequality 

for all Fly yl E %. Note also that y(t) is uniformly bounded due to the boundedness of 

x(t) and i ( t )  . Viewing (D.2.11) as the model of a physical system, it can be seen that 

the term &(yl;Jcl) acts like a time-varying, nonlinear stiffness, with the capability of 

introducing energy into the system. It is for this reason that simple energy-like 

functions, such as (D.2.7) cannot be used to provide a unified analysis of the possible 

periodic solutions of (D.2.10). As a result the author has been able to prove GAS, only 

after placing certain restrictions on the periodic solutions themselves and on the relative 

magnitude of the system parameters R,K,G andL. Rather than detail all of the 

possibilities, only a few specific cases will be discussed. It will be assumed throughout 

that L < R ~ ,  which is a sufficient condition for C, to have a GES T -periodic solution 

when r([O, T)) = 0 . Consider the Liapunov function, 

2 2 Y,  (y,$) = 0 . 5 ( 2 ~  + aR )yl + aRy, y, + yi + 9 '/G, (D.2.13) 

Which is positive definite f o r a ~  (0,2). Taking the directional derivative of 

Y,  (y, 9 )  along the solutions (Z(t), Z(t)) and (x(t), z(t))  



where Young's inequality bc < 8 b2/2 + c2/2 0, 'dB > 0 has been used repeatedly. Due to 

the assumption that L < R2 , the exists a constant a E (0,l) such that a(1- a)R2 - L > 0 .  

Picking a = mink E (0,l) I 8(1- e)R2 - L > 0) and owing to the fact that Y,  (y, 8 )  is 

quadratic and positive definite, there exits a constant c > 0 such that 

and hence 

6 Y 3 - Y 3 )  - y ,  8 ) )  + R ( 8  (r) - y )  r. (D.2.16) i. 
Now suppose that r(t)is OT/m -periodic for some positive integer m. Assume for 

simplicity that r(0) = 0 ,  then following the same reasoning as in 64.2 (see equations 

(4.2.1 0)-(4.2.16)), one obtains the inequality 

Inserting (D.2.17) into (D.2.16) gives 

(D.2.18) 

If m2 > a G 2 T 2 / ~  , then the second term on the right hand side of (D2.18) will be 

negative , so that (D.2.18) can be used to conclude that 

5 ( ~ ( t ) ,  w ) )  I 6 (Y(O)Y 8(0))e-"', (D.2.19) 

implying that the periodic solution (F(t), Z(t)) is GES and hence unique. Given that the 

elastic modulus G is assumed to very large, this condition will be very restrictive 

unless L is very small. If C has a T -periodic solution such that osc,Fl - 27/G > 0 



(r(t) need not be OT -periodic), then applying Proposition D.2 one obtains inequality 

(D. 1.4). Applying Holder's inequality (§A. 1) to (D. 1.4) and integrating, one obtains the 

inequality 

where p is a positive constant (see proof of Proposition D.2 for definition). Assuming 

that a < 2 ,  then V, (y, 9 )  is quadratic and positive definite, implying the existence of a 

positive constant C ,  such that V , ( y, 9 ) > - C ( y + I 9 I") . Inserting inequality (D.2.20) into 

(D.2.16) and rearranging, one obtains (recall that V, (y(t), 9(t)) is uniformly bounded) 

If a 5 K ~ ~ / ( G ' ~ ~ P ~ ) ) ,  then the integral term on the right hand side of (D.2.21) will be 

negative, so that (D.2.21) can be used to concluded that y ~ ~ , ( % + ; % ~ ) a n d  

9 E L2 (%+; %) . Assuming this to be the case, since (F(t), Z(t)) and (x(t), z(t)) are 

Lipschitz continuous, so are y(t) and S(t) . Barbalat's lemma can be used to conclude 

that lirn,,, x(t + nT) = Z(t) and lirn,,, z(t + nT) = .Z(t), which, because (x(t), z(t)) is 

an arbitrary solution, implies that the periodic solution (F(t), .T(t)) is GUAS. The 

condition a 5 ~ ~ ~ / ( a ~ ~ e ~ ~ ~ )  can also be seen as a condition that L is sufficiently 

small, since a = mini9 E (0,l) 1 ~ ( 1 -  @)R2 - L > 0). 

In an attempt to reduce the restrictions placed on L ,  specific bounds on the possible 

periodic solutions of C will now be considered. To that end consider the 

nonautonomous Liapunov hnction Consider the Liapunov function 

v2 (Y, 9;  1) = 6 (y, 9) + 2 iy'K(s; % (t))ds, (D.2.22) 

where 5(y ,9)  is given in (D.2.15). Assuming that a < 2 in (D.2.13), the using (D.2.12) 

it can be shown that there exists two constants c2 2 cl > 0 such that 

c1 (y2 + g2)  < V,(y, 9) 5 c2 (y2 + d2) . Taking the directional derivative of V,(y,$;t) 

along the solutions (F(t), Z(t)) and (x(t), z(t)) gives 



Y ,  ('1) ds. v2 (y, 9; t) i -(2 - a)Ry; - a ~ ~ y :  - aRy19 + Z, ( t )  1 azl 

Using h ( y , ; ~ , )  = h(y, + 2,) - h(Tl) and the definition ofh(xl) given in equation (D.2.2.6) 

it can be shown that h(y, ; ? , ) / a ~ ~  1 i 0.5Lly1 1 for all TI, y, E W , so that 

Now suppose that r(t) is OT/m -periodic for some positive integer m, then inequality 

(D.2.27) holds. Picking a 5 min(1, K ~ ~ / ( G T ) Z ) ,  if Z has a periodic solution (T(t), P(t)) 

such that llZ211w i aRK/L, then the same reasoning as used to obtain (D.2.19), can be 

used to show that (Z(t), T(t)) is a GES periodic solution of Z . Recall that any periodic 

solution of Z must satis@ llxll, i f , for some constant y > 0 independent of b . 

It follows that the conditions above can be restated as follows. If r is OT/m -periodic 

and b is sufficiently small, then C will have a GES T-periodic solution. It would be 

interesting to try and develop a control r(t) which would ensure that 

< m 2 1 X 2 / ( ~ ~ 2 ~ 2 ) .  This would obviously be quite difficult, but might be a 1122 11, - 

worthwhile research topic for the future. Unfortunately, the author has been unable to 

convincingly combine the condition osc& -2F/G > 0 with the a smallness condition 

on Z = . This is another possible topic for future research. To recap on some of 
w 

the results obtained above. 

Pro~osition D.2.2 

(i). If rand b are admissible T-periodic input and control respectively, the system 

(D.2.10) has at least one T-periodic solution. 

(ii). On the assumption that L < R2 and r is OT/m -periodic for some positive 

integer m y  if m2 > ~ G ~ T ~ / K ,  where a = mink E (0,l) I 8(1 -8)R2 - L > 01, 

then the system (D.2.10) has a unique GES T-periodic solution. 

(iii). On the assumption that r is OT/m -periodic for some positive integer m , if 

(D.2.10) has a T-periodic solution (X,Z) such that ( ( ~ ~ 1 1 ~  2 URK/L, where 

a 5 min(1, K ~ ~ / ( G T ) ~ ) ,  then this solution is GES for (D.2.10). 



Finally consider the case where r([O,T)) # 0 ,  q = l/Rc > 0 and L > 0 ,  so that one 

obtains the system 

The system ED arises when the control r(t) = Is(t)l, with s(t) being the solution of 

system C ,  in (D. 1.14), has been applied to the system in (D.2.10). The subscript D is 

used as a reminder that a dissipation shaping control is being considered. It is assumed 

that the new control rs(t) is admissible and T -periodic. Similar to the previous case, 

the distance between solutions y(t) = x(t) - x(t)  and 3( t )  = z(t) - F(t) satisfy 

Yl = Y2 

where h(yl;q) = h(y, + Zl) - h ( 3 )  satisfies the inequality in (D.2.12). Let 

(x( t) ,  Z(t)) be a T-periodic solution of C ,  and let (x(t),  z( t ))  be an arbitrary solution of 

C,. It should be clear that the stability conditions obtained for C  also apply to the 

solutions of E D .  Consider the Liapunov function V,(y,3) in (D.2.13). The directional 

derivative of V, ( y ,  3) along the solutions (x ( t ) ,  z( t))  and (x( t) ,  Z(t)) of ED now 

satisfy (see (D.2.14)) 

On the assumption that L < R ~ ,  the exists a constant a E (0,l) such that 

a(1- a ) ~ ~  - L > 0 .  Picking a = mini0 E (0,l) / ~ ( 1 -  0 ) ~ ~  - L > 01, the quadratic term 

a m y :  + aRy13 + ~ S ~ / R , ,  will be positive definite if Rc is chosen such that 

Rc < 8KIaR. Choosing a and Rc as above, the left hand side of (D.2.27) will be 

negative definite, thus implying that the periodic solution (x( t) ,  Z(t)) is GES. Note that 

the upper bound on Rc tends to infinity as L tends to zero. Now consider the Liapunov 

function V2(y, 3 ; t )  given in (D.2.21). Using the inequality 13 h(y ,  ;?,)/i?~~ 1 5 o . ~ L ( Y ,  1 ,  
the directional derivative of V2 (y, 3; t )  along the solutions C, satisfies 



2 2 v2 (y, 9; t )  2 -(2 - a)Ry: - y: - aRx9 - - 9 
Rc 

Suppose ED has a T-periodic solution (Z(t), T(t)) , such that Ilz2 l l m  < 2RK/L . Setting 

a = min{t9 e (0,2) 1 t9 > ~ ~ 1 4 1 1 / ~ ~ ) ,  if Rc < 4K/aR then the right hand side of (D.2.27) 

will be negative definite, implying that (Z(t), Z(t)) is GES and hence unique. Since any 

periodic solution of ED must satisfy Ilxll, 5 3-, for some constant y > 0 independent of 

F ,  it can be seen that bound on Rc tends to infinity as b tends to zero. Note that that the 

two conditions given above only require that the control r(t)is T-periodic. The 

discussion above establishes the following. 

Pro~osition D.2.6 

(i). If rand b are an admissible T-periodic input and control respectively, the 

system (D.2.25) has at least one T-periodic solution. 

(ii). On the assumption that L < R2 , set a = minit9 E (0,l) I @(I - 6)R2 - L > 01. If 
Rc < 8K/aR then the system (D.2.25) has a unique GES T-periodic solution. 

(iii). If (D.2.25) has a T-periodic solution (Z,T) such that 11y2 1Im 5 aRK/L , where 

a 5 min(2,4~/(RR~)) ,  then this solution is GES for (D.2.25) 

The conditions derived for the uniqueness and stability of the periodic solutions of 

C  and C D  are only sufficient and by no means necessary. It is thought that with further 

investigation and by employing different techniques of analysis, that the restrictions on 

the OT/m -periodic control and the magnitude of the parameter R, may be significantly 

weakened. Some possible directions of investigation and techniques are discussed in the 

conclusions and discussions chapter of this thesis. 

In what follows it will be assumed that L < R2 and that Rc has been chosen so as to 

ensure that CD has a GES T-periodic solution 

(F(t>Y W))  = ( ~ ( t ;  x, (01, rs (.I, b(.)), a t ;  x, (01, v, (.I, b(.))) 



Let is(t)  and b^(t) be an admissible control and input, which converge to the T-periodic 

functions r, ( t )  and b(t) respectively, in the sense that limn,, is (t  + nT)  = rs ( t )  and 

limn,, b(t + nT)  = b(t) for all t E [O,T] . Suppose that ( i ( t ) ,  i ( t ))  is an arbitrary solution 

of C, corresponding to the control and input is( t )  and &t) ,  that is 

i t )  = i t ;  ia ( 0  is ( )  ) )  and i ( t )  = 2(t; ia (0),  is (a), &a)) . It will now be shown that 

under the conditions stated above that limn,, (2(t + nT),  i ( t  + nT))  = (x(t) ,  z(t))  . Let 

z*(t)  denote the solution of the variational inequality 

For simplicity it will be assumed that r(0) 2 i ( 0 )  , so that z*(O) = i ( 0 )  is an admissible 

initial condition. Set a = GIR, , C(t)  = Gi2(t)  - ai( t )  - j(t) and 

w* ( t )  = Gi2 ( t )  - az* ( t )  - i* ( t )  . It can be shown that 

IIw* 11 , IIYI, i G K ~  + a7 + K, = B/4 ,  where KX is a Lipschitz constant for i ( t )  and K, is 
m 

a Lipschitz constant for r( t )  and r^(t). Testing the variational inequality defining z* ( t )  

with = Q(2; r(t))  yields 

( G - z - z - Q ( ( ~ ) ) ) = ( G ~ - a - * z * -  + w * ~ ( ; ( t ) ) O  (D.2.30) ) 
which implies (see §A2 for the properties of the operators Q(z^;r(t)) and P(i ;r ( t ) ) )  

(Gi2  -az* - i* , z*  -2 )  + ~ / 4 l r ( t ) - i ( t ) l >  0. (D.2.3 1) 

Similarly, testing the variational inequality defining i ( t )  with p = ~ ( z * ;  i ( t ) )  yields 

( ~ i ~  - a2 - j, 2 - z * )  + ~ / 4 l r ( t )  - i( t)I> 0. (D.2.32) 

Define p = i - z *  and T = r -i . Now adding (D.2.31) and (D.2.32), and then 

rearranging gives 

(b, p)  5 -ap2 + B/2 IZ(t)I. (D.2.33) 

Integrating (D.2.32) over the interval[O,z] and using p(0) = 0 gives 

p2 5 B [e-2a(7-s) Jr  - (s)ld~.. (D.2.34) 

For some o > 0 such that o < 2a and t 2 z multiplying (D.2.34) by e-"('-') and 

integrating up to t gives 
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An estimate in terms of Ip(t)( rather than p2(t)can be obtained by application of 

Holder's inequality to (D.2.35) 

Now setting y(t) = i(t)  - x(t), S(t) = z* (t) - T(t) , g(t) = g(t) - b(t) and using (D.2.25), 

the distance between solutions satisfies 

The directional derivative of V, (y, 9) along the solutions (2(t), z* (t)) and (F(t), Z(t)) 

satisfies 

As in pervious developments, on the assumption that L < R ~ ,  and Rc and a can be 

chosen so as to ensure (y,$) and the first term in brackets on the right hand side of 

(D.2.38) are positive definite. Assuming this to be the case and following the usual 

procedures one obtains the estimate 

(D.2.39) 



where y, (t) = (y(t), 9(t)) and for some constants P, y, a > 0 . Inserting (D.2.36) into 

(D.2.39) one obtains (one can assume that CT < 2a ,  by taking a smaller a if necessary) 

It follows from Lemma B.5 in 5B.2 that if , E ( +  or if 

lirn,,, i( t  + nT) = r(t) and lim,, 6(t + nT) = b(t) , then limn+, ia (t + nT) = ifa (t) . 

This property implies that the solutions of C, "forget" their initial conditions and 

converge to a "steady state" solution which is determined by the asymptotic behaviour 

of b(t) and r(t) . Equivalently, the structure of the positive limit set Q(x ,  z) is 

independent of the initial conditions and depends only on the positive limit sets of the 

functions b(t) and r(t) . 
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